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ABSTRACT

The problem of stationary planetary wave forcing by orography
and longitudinal asymmetry of heating and cooling is re-examined in the
light of recent observations and theories of stratospheric motion. It
is deduced that the region between 30 and 60 km is a sink of planetary
wave energy for wavenumbers 1 and 2 in winter and that — in contrast to
many theoretical descr?ptions ;-the transmission of wave energy to those
levels is unimpeded.

!

Quasi—geostroph}c theory expressed in spherical polar geometry
suggests that in winter wave energy should be aPle to propagate freely
into the upper stratosphere for the largest scales of motion. The
uncertainty in the absorption mechanism is avoided by the use of an
energy-transmitting boundary condition at a suitably chosen level and
attention is concentrated on the structure of the wave motion below.
Features of the January mean contour charts such as the Siberian and
Aleutian anticyclones aré shown to be consistent with the theory of
untrapped, thermally forced motion. Close agreement of the structure
of wavenumber 1 in the theoretical solutions with existing observations
is obtained for all heights below 30 km vindicating the use of energy-
transmitting boundary conditions. An important consequence of the
ability of forced waves to propagate energy into the stratosphere is
the poleward transport of heat which is particularly strong for thermally-
forced motion near the level of non-adiabatic heating. The calculations
suggest that the contribution of stationary, thermally-generated waves
to the total poleward eddy heat transport is a major one in the lower

troposphere.

Some attempt to describe the monsoonal circulation of the summer -

(northern) hemisphere is made with the inclusion of a stratosphere



dominated by easterly mean zonal winds. The presence of a critical

layer where the mean zonal wind vanishes introduces some interesting
problems as regards the 'realism' of the linearized solution. Observations
below 6 km in July show the phases of low wavenumber disturbances tilting
rapidly eastward with height in marked contrast to the westward tilt

in winter, Solutions with critical layer absorption are in poor agreement
with observation in the lower éroposphere with westward tilt though the
rapid attenuation of all waves in the stratospheric easterlies is well

represented.
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INTRODUCTION

Synoptic meteorologists have long recognised that apart from the
constant progression of depressions and anticyclones on surface pressure
charts, there are some areas that are persistently associated with
cyclonic or anticyeclonic flow. In winter, the cold, continental anticyclones
are a regular feature of the surface pressure pattern, particularly the
'Siberian High' whose central pressure is often far in excess of that
found in typical 'travelling anticyclones'. Other persistent stationary
pressure perturbation phenomena at the surface are the Icelandic and
Aleutian 'lows' in winter and the summertime Azores High and Asiatic (monsoonal)
Jow. Stationary, high pressure anomalies of the surface mean pressure
charts tend to occur over the continental land masses in winter and over
the oceans in summer. This fact provides some indication of a relationship
between the differing heating and cooling effects of land and sea, and
the large-scale flow patterns. The eastern sides of the continents are
intensely cold near the surface in winter through the prolonged cooling

of air travelling from west to east.

The mean, winter contour hgight charts of the 700 and 200 mb surfaces
show pronounced low wavenumber troughs and ridges which appear in roughly
the same place from year to year, which again points to some relation to
the underlying topography. With the advent of regular high altitude
rocket soundings into the high stratosphere it soon became apparen£ that
these quasi-stationary troughs and ridges extend upwards to above 50 km,
where they completely dominate the motion. Typically, the wave motion
is made of wavenumbers 1 (off-pole circulation) and 2 with the short-
wavelength baroclinic eddies, characferistic of the tropospheric flow,
generally absent above 20 km. The January mean contours ne;r 30 km éhow
a well-defined ridge over the Aleutian Islands (~750°W) which is the

result of the constructive interference of wavenumber 7 and 2 disturbances.



Stratospheric motion remains fairly steady in the northern winter
hemisphere except for the dramatie sudden warming events when the
circumpolar vortex becomes highly distorted, usually splitting into two
distinct eddies and finally changing to a steady casterly flow similar
to that of the summertime flow. We shall be primarily interested in
the steady, planetary wavé structure arising from lower tropospheric

forcing and not strongly time-dependent phenomena.

The important questions arising are:

(1) By what physical mechanism does the surface topography
influence the flow ?
(2) How does the tropospheric forcing make its influence felt

in the upper atmosphere above 20 km ?

A wave description of the perturbed motion and its forecing is
adopted for a number of reasons. The basic periodicity of the horizontal
co-ordinates and the scale of the motion suggest én elementary representation
by the superposition of a few Fourier components in the linearized analysis.
Furthermore, the dispersive properties of large-scale motion are clearly
revealed by the wave description, through the relationship of frequency
to wavenumber and basic state parameters, and hence group velocity and

energy propagation are well-defined.

The daily hemispheric charts of contour height can be imagined
to be composed of stationary and transient components such that the
'stationary' part represents the average over some interval of time and
the transient part is the departure from this. The choice of the time
interval over which averaging should take place depends obviously on the
time scale of motion under consideration and for our case must be greater

than the typical period of transient Rossby wave motion. The monthly-mean



contour chart is taken as representing the stationary component of
planetary wave motion and its year to year similarity confirms the suitability

of this choice.

In the theoretical description of forced, stationary planetary
wave motion that follows, all unsteady motion is excluded. Some implicit
inclusion is inevitable in the origins of areas of large~scale heating
and cooling through the transport and convérgence of sensible and latent
heat fluxes (e.g. in_poundary layer convecﬁion and baroclinic wave transfer).

i

Attempts to couple the action of small—sca}e boundary-layer turbulence

to the planetary wave are made via the Ekman theory. It is quite feasible
that the transfer of energy between the baroclinic eddies and long planetary
waves will be important in the troposphere.but not in the stratosphere

where baroclinic instability is much less evident. Inclusion of these
other interacting scales through parameterization would be difficult and

so it is assumed that they are in some sort of balance with each other

“and that the stationary wave problem can be treated in isolation.

In Chapter 1 we discuss previous work and ideas on the relationship
between the underlying topography and the causes of longitﬁdinal climate
variation. Emphasis is placed on pictorial representation of the dynamics
in terms of vortex tube aréuments. Observations of zonal wind distribution
and low wavenumber disturbances are described and compared briefly with

existing theories.

Chapter 2 is a re-examination of the work of Charney and Drazin (1961)
concerning the reflectivity of stratosphere to upward propagating planetéry
waves described in spherical polar geometry. The inapplicability of
energy-reflecting upper boundary conditions is stressed and is regardéd>
as the major defect in previous attempts to model large-scale forcing

with the quasi-geostrophic equations.



In Chapter 3 we put forward theoretical models of orographic and
thermal forcing for the simplest cases that admit analytic solution., An
'energy-transmitting' upper boundary condition (closely related to the
Sommerfeld-Radiation condition) is devised which is judiciously applied
to a level above which the observations suggest there is considerable
wave energy absorption. Close similarity in structure to the existing
observational data suggests thé correctness of the chosen upper boundary
condition, and low;level features such as the Siberian anticyclone are
well-described. The significantly large transfer of heat polewards in_‘
thermally-forced waves indicates its importance in the total poleward

eddy heat transport.

Chapter 4 complements the analytic solutions of the previous chapter
with numerical calculations for various profiles of zonal wind and static
stability. Numerical-integration is particularly useful for calculating
the forced motion in summer where the complicated zonal wind structure
rules out simple analytic solution. The changeover from westerly to
easterly winds in the stratosphere causes the differential equation for
the vertical structure to contain a singular point where U=0. This
'critical layer' is excluded from the region of numerical integration
and the analytic result is used there. The rapid upward decay (in the

easterly winds) of the wave is predicted by the model solutions.

Chapter 5 is concerned with the interaction of slowly-varying
(in time) stationary waves with the zonal current. The main conclusions
of the study are that the sum of the specific zonal kinetic energy and
the total wave energy are locally constant in time and that this implies
no net propagation energy — merely a local conversion from zonal kinetic
energy to disturbance energy. Some physical insight is gained into the
transfer of momentum and its relation to the sudden warming phenomenon.

Observational evidence supporting these ideas is given.
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CHAPTER 1 OBSERVATIONS AND THEORIES OF LARGE-SCALE FORCING

(i) Observations

In the last twenty years or so, sufficient information has been
compiled to produce a description of large-scale motion from the ground
up to at least 40 km, with the data above this level being fairly scanty.
The westerly zonal winds of the winter troposphere continue to increase
up to about 5b km with well-defined jet-structure occurring near 10 km
at 30°N and 80 km at 40°N. Above 80 km the zonal wind becomes easterly
though we shall not be concernéa with the atmospheré at these heights
(Fig.1.1). In summer the zonal tropospheric westeflies are lighter and
become easterly above 20 km reaching a maximum between 60 and 80 km. It
should be noted that the mean stratospheric winds appear to be much more
variable in magnitude than the tropospheric winds with a factor of 2
difference between years being not uncocmmon. As a consequence of thermal
wind balance we infer that the polar regions of the stratosphere are
very cold in winter (-60°C at 25 km) but in summer are the warmest regions

(-40°C at 25 km).

One of the most striking examples of large-scale forced motion
in the troposphere is the wintertime Siberian anticyclone which dominates
the circulation of Asia. The continental land mass near the surface
is characterised by intense cold, especially on the eastern side where
temperatures of -50 to -60°C are frequently reported. On the 500 mb
charts there is little trace of the anticyclone over Siberia though the
contour charts are not zonally symmetric with the presence of marked
troughs extending southwards across Japan and the Great Lakes region.
A third smaller trough extends across Eastern Furope. These patterns
of waves in the mean January contour charts become even more pronounced
in the stratosphere. The 10 mb (30 km) contour heights show an intense

polar vortex displaced away from the north pole and a persistent anticyclone
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Figure 4-1 Meridional Cross-Section of Mean Zonal Wind (m/sec). (After R.E. Newell, 1969)
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near 150°W which is well-known as the 'Aleutian High'. The ‘'eddy velocities'
associated with these waves are considerably larger than their tropospheric
counterparts exceeding 30 ms™! frequently. The most outstanding difference
between the tropospheric and stratospheric flow patterns is the virtual
absence of wavenumbers greater than 3 above 20 km and wavenumber 7 usually
makes the dominant contribution. Since the low zonal wavenumber
désturbances form the major paft of the deviation from zonal symmetry in
tﬁe mean contour charts for both the stratosphere and troposphere we shall
c?ncentrate on their description.

i

Contour heights andhtemperatures are Fourier-analysed along

latitude circles and the agplitudes and phases are given as a function
of height and longitude in the usual observational anélyses of large-scale
phenomena (e.g. Muench, 1965). For our purposes a description in terms
of a spherical harmonic expansion might be more appropriate since we
shall treat the forcing of planetary wave motion as a hemispheric phenomenon

and since the linearized quasi-geostrophic equations are separable in

terms of associated Legendre functions.

Green (l97é) has summarised recent data and theories of sﬁratospheric
motion and presents amplitude and phase of wavenumber 1 and 2 up to 100 km.
though the description above 50 km is rather sketchy (Fig.l.2). Both
waves tilt uniformly to the west with height with vertical wavelengths
of about 50 km typically. Green shows that the specific kinetic energy
of the wave motion tends to remaiﬁ constant with height (or even increases)
up to 40 to 50 km above which it rapidly decreases. These points will
be enlarged upon further and at this stage it will suffice to recognise

that the stationary perturbations are of great vertical extent.
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(ii) Theories of planetary wave motion and forcing

Substantial advances in large-scale, dynamical meteorology have

been made with the approximated, vertical component of vorticity equation:

o, £+ 1) = L2 2 foww) —(1.1)

vhere D/Dty is the rate of change of absolute vorticity following the
horizontal projection of the motion, f is the coriolis parameter (with fo
being a constant middle-latitude value), po(2) is the basic state.density
field, w is the vertical velocity and z is the height. This equation

as it stands contains no twisting of vorticity (from horizontal to vertical),
no stretcring of relative vorticity and the baroclinic generation term

has been rzgge%ed (though in practice we may include it in the derivation

of the quasi-geostrophic set; see appendix or White, 1976). Vofticity

is generated primarily through the stretching term (on the R.H.S. of 1.1)

by the forced differential vertical displacement of air and subsequent

compression or stretching.

We now briefly review the behaviour of two-dimensional barotropic

flow on a rotating sphere by setting the R.H.S. to zero in equation (1.1).

Horizontally-non-divergent motion allows the definition of a streamfunction

such that :
Vg = kW (k is the unit vector pointing along

the local vertical)

If we express the vorticity equation in spherical polar co-ordinates

(see sketch)

K (VERTICAL)
A
pN
é

ORTHOGoNAL  TRIAD
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: 9 2 -
we have! [Bt + YH-Y][VHw + 2§l cos 8] =0
which admits solutions:
. m . -2
P =4 expzm()\—ct)Pn(cos 8) with ¢ = ;(nTQ])—

where m (zonal wavenumber) and n are integers (subject to the condition n >m)

m
and B (cos 8) is an associated Legendre polynomial.

We note that all spherical harmonic wave patterns propagate westward
relativée to the atmosphere and that the P: mode ( =sin® cos(X +Q¢)) remain
stationéry in space. In the high n limit, ¢-+0 and the wave pattern

moves with almost the same angulér velocity of the atmosphere.

The meridional structure given by E?(cos B) is complicated generally
(examples given in Fig.1.3) and although we will not be concerned with
the details, some useful rules of thumb exist. The number of 'peaks and
troughs' encountered along a meridian from pole to pole is given by
n-m+1 and all the modes with n=m peak at the equator.  The Eﬂll(cose)
modes are of zero amplitude at the pole and egquator with one middle
latitude peak and it is this class of waves that we assume to be most

relevant to the discussion of planetary wave forcing though other modes

will be considered.

Bince the phase speed of the waves depends on the n parameter,

the motion is dispersive.

Large-scale motion therefore has a strong tendency to move westwards
with high angular speed (120°longitude/day for n=2) and can remain
stationary with respect to the earth only if the angular speed of the
atmosphere relative to the earth is equal,and opposite in direction.

Typical angular speeds of the atmosphere relative to the earth are about
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20°longitude/day and therefore unable to balance the rapid retrogression

of low n mode planetary waves. Fast moving planetary waves are not

v m!f’ because o very lLarge seales
observed in the real atmosphere w3 ] g f

the }lfﬂi”ﬂtak dlbcvgence ot no lomgyer be YlegLEdRﬁA/ Even ﬁhf
P ah ke purpncs.

Charney and Eliassen (1949; referred to hereafter as CE) made a
quantitative study of the effects of middle-latitude orography on the
mean motions with an equivalent barotropic model of the atmosphere. They
considered a constant zonal flow bounded at the northern and southern
sides and found %he response of the stationary, linearized barotropic

'
vorticity equation to a realistic orography at the lower boundary. Those

frictional effects that are of importance\tp the amplitude of the wave
motion were included through an implicit representation of an ' Fkman
boundary layer' entering the lower boundary condition. The calculated
amplitude distribution was compared to the January 500Vmb contours at

45°N and was found to be in vefy good agreement with the observed stationary
pattern only when an excessively large eddy diffusivity was used to

describe the boundary layer turbulence. Anomalously large amplitude

motion occurred with typical eddy diffusivities and the phases of the

lowest wavenumber éomponentswerenot consistent with the observed. The
response was essentially close to resonance and this tends to detract

from the usefulness of the results since small changes in the systenm

parameters produce large changes in amplitude.

Sankar-Rao (1965) attempted to extend the CE analysis to spherical
geometry using the harmonic expansion of surface elevation and quasi-
geostrophic theory with pressure as a vertical co-ordinate. An upper
free surface boundary condition was used and the resulting amplitude
and phase was found to be in poorer agreement with observed motion than

that given by CE. The most serious deficiencies in the wave description
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were the vertical phase lines and resonant response for wavenumber &.

The orographically generated planetary waves with which this thesis
is mainly concerned are those of low wavenumber that penetrate the high
stratosphere. We are interested in the continental elevations'which
force wavenumbers I, 2 and 3 rather than the mountain range scale (e.g.
Rockies, Alps etc) features which are best treated as isolated forcing
agencies. Sankar-Rao gives the spherical harmonic expansion of the
surface elevation up to 15th order and typical amplitudes of‘low wavenumber

orographic forcing are inferred.

The oldest theories of thermally forced stationary wave motion
date back to the 1T7th century when Halley accounted for the trade wind
belts and monsoons in terms of the large scale buoyant ascen£ of warm air
in the regions of strongest heating. Hadley, later (1735) recognised
the importance of the earth's rotation in modifying the direction of flow
of the air as it moves towards the heating regions (this type of reasoning

is still used in geography books of today to explain the Asiatic monsoon ) .

Smagorinsky (1953) argues that such an explanation is not even
consistent with observation since the surface Siberian anticyclone does
not coincide with the region of maximum cooling. Classical 'land and
sea breeze' reasoning breaks down not only because the wind field is in
geostrophic balance with the pressure field on the large scale but also
because all large-scale planetary motion is dispersive. In Chapters 2
becuse d@
and 3, it will be shown how wave energy can propagate vertically édune—34o
the 'B-effect' and how this can produce motion quite different from that

suggested by vortex compression arguments alone, for both orographic

and thermal forcing.

A simple vortex tube description of the formation of 'cold surface
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anticyclones' on an f-plane (dishpan for instance) however gives some

insight into the mechanics. (SEE SKETEH)

(Kl
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A cylindrical vortex tube in a uniform westerly current between upper
and lower plane rigid surfaces will be distorted and become bottle-neck
shaped as it enters a region of low level cooling and subsides. Vortex
compression will generate an anticyclone at low levels and stretching
causes a depression aloft. The amplitude of the motion will be greatest
as the distorted tube leaves the cooling region. The changeover from
anticyclone to depression wil; occur somewhere near the top of the
cooling region. The assumption of a rigid upper boundary in this model
is a rather artificial representation of the sudden increase in static
stability in the stratosphere though it suffices for this qualitative
argument. In Chapter 2 we invéstigate the effect of the discontinuous
change in static stability at the tropopause on the long planetary Rossby
waves and show that a rigid or free surface representation is inappropriate
for the largest horizontal scale of wave motion which propagates energy
F - pleme
upwards. The wrtex—tuwbe description is useful only for the shortest

horizontal scales of motion.

Smagorinsky (1953) studied the effect of lower tropospheric zonal

asymmetries of heating and cooling on a uniform shear baroclinic zonal current.
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The quasi-geostrophic, vertical component of the vorticity equation

on a middle-latitude B-plane:

Dg _ fo 3
EH + Bo " az(pgw]

is linearized about a zonal wind U=U(0) + Az, and w is eliminated using
the thermodynamic equation (with a source term). Smagorinsky finds
solutions for the perturbed steédy motion resulting from low-level heating
between upper and lower plane rigid surfaces and contrasts these with

the corresponding solutions allowing for a siratosphere wherghperturbations-_
tend to zero at great heights. An 'Ekman boundary layer' was included
..in a similar manner to that introduced by CE such that the vertical velocity
at the lower boundary is proportional to the geostrophic perturbation
vorticity., The flow consistent with a sinusoidal heating function
Q(x,y,z)==x(z)sirlkrsin14/ was found for various profiles of ¥ (z) peaking
near 2 km. Using estimates of the magnitude of the vertically integrated
heating rate taken from other workers (e.g. London, 1952) he found that

the forced perturbation amplitude to be of the correct order of magnitude
only with the inclusion of friction which was essential to avoid near-
resonance. The inclusion of a stratosphere improved the upper troposphere
wave amplitude agreement with observed and tended to remove the response
further away from resonance. Phase lines are vertical in non-frictional
cases (except for sign changes) and westward tilt with height occurs only
in the lower troposphere with Ekman friction. Smagorinsky concluded

that the amplitudes of thermally and orographically forced motion were
comparable near the surface and that the "thermal influence' becomes
relatively less important in the upper atmosphere. A detailed comparison
of the theory with observation is not justified in view of the lack of
knowledge of the heating function, though many qualitative features are
correct including the formation of a Siberian anticyclone downstream of

the area of maximum cooling rate.
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The work of Chapters 3 and 4 will extend the description of
thermally-forced motion by Smagorinsky to spherical geometry in which
Planetary wave energy is allowed to propagate into the high stratosphere
and be absorbed there. The wave energy sink at upper levels prevents
resonance in the system for propagating waves and Ekman friction has
relatively little effect on the motion because of the largness of the
horizontal scale of wave motion. Orographic forcing is treated in a
similar way and the structure of 1ow—wave£umber motion up to 40 km is
determined.

!

(iii) The nature of the heating function

The heating function is given by the time-average of the longitudinal
variations of heating (and cooling) rate that are related to the underlying
topography in some way. Quasi-stationary long waves are forced by
regions of heating or cooling that are persistent for at least several
weeks and the month provides a convenient averaging time scale for this
motion. All scales of motion smaller than the planetary scale can
contribute to the heating function if related to the topography and the

task of finding the sum of these contributions must be tackled indirectly.

Clapp (1961) calculates the spatial distribution of heating averaged
between 7000 and 500 uwb by two different methods and finds poor agreement
between them, as regards amplitude. The 'thermodynamic energy method'
which he and other workers used involves the evaluation of potential
temperatur; advection from the mean gradient wind distribution and
potential temperature field. Vertical motion is crudely obtained from
the horizontal divergence of the gradient wind (for the details of the
approximations made by different authors, see Clapp, 1961). The other
method he uses is an energy budget technique to estimate the three main

heating components:



22

(1) Release of latent heat of condensation

The time-mean longitudinal variation in precipitation rate

is a useful measure of the total heating rate due to condensation,
integrated throughout the atmospheriec column above. Mdéller
(1950) shows that the heating rate due to latent heat of
condensation reaches a maximum at about 2 km (probably

associated with frontal rain).

(2) Divergence of the net radiation field

Heating in the atmosphere due to the absorption of short-wave
(solar) radiation and long (terrestrial) wave radiation is
also difficult to estimate. Short wave radiation from the

sun is absorbed by ozone, water vapour and solid impurities
and is probably dependent on longitude (through the topography)

!
to a lesser extent than long wave radiation.

(3) Divergence of heat transport by eddy motion

Fluid transport of sensible heat, particularly due to
boundary-layer convection forms an important component of

the heating function.

The energy balance method requires the use of climatological means and
empirical expressions for sensible heat transport from the surface.
Long wave radiation field divergence is calculated using standard

radiation chart methods.

Clapp gives the mean 1000/500 mb heating rate averaged between
30° and 60°N as a function of longitude for the two methods and the

following results were obtained from the Fourier analysis of these curves:



Heat balance method

Wave no. Amplitude (heating rate)
2 ~0.5°C/day
3

Thermodynamic equation method -

Wave no. Amplitude (heating rate)
~0.5°C/day
1.5 °c/day
3

23

Phase (longitude of maximum heating)
87°W
20°W
47°W

i
Phase (longitude of maximum heating)

124°W
1]

33°W

44°E

N

Amplitudes of the higher wavenumber components of heating rapidly become

smaller and we shall only be interested in the first three zonal wavenumbers.

Consistency between the two methods is not particularly good with the

calculated amplitudes of the wavenumber 2 heating rate differing by a

factor of 3.
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CHAPTER 2 PROPAGATION OF ENERGY IN STATIONARY ROSSBY WAVES AND

'"REFLECTIVITY' OF THE STRATOSPHERE

In discussions of the dynamics of Rossby waves with vertical structure
the standard quasi-geostrophic potential vorticity equation provides much
information. Briefly, the quasi-geostrophic equations are derived as

follows:

the vertical component of the vortiecity equation is simplified to

neglecting vertical advection, twisting, non-linear stretching

\

and baroclinic generation of vorticity.

The conservation of entropy is expressed as:

%%9 + wB =0 ¢7: Lag(_PUtGRkQA t&nuycqafud@;>
H

B(=),

where the vertical entropy gradient 3¢/9z is replaced by the fixed walue B

(N.B. all thermodynamic variables are of the form @ = Qg (z) + 8Q(x,y,2,t) .)
The horizontal wind is approximated by the non-divergent part of

the real wind so that:

= 3 1 a_L’Hz_g-
Eﬁ = EAYHw and the thermal wind relation Y A kAV 6¢

which gives a relation between the entropy perturbation and streamfunction,

8¢ = é}-%% (k is the vertical unit vector).

Eliminating w from the vorticity equation and using the streamfunction
expressions for relative vorticity r and entropy 8¢ yields the quasi-

geostrophic potential vorticity equation

2
D lg2y 4 fo 1 3 {po 3Y = —(2.1
DtH Vg * g Po Bz(B 83] *t By 0 ( )
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In the literature, the derivation of the guasi-geostrophic potential
vorticity theorem is confused and two distinct sets of approximations
lead to identical theorems. White (1976) has clarified the situation
by showing how the conventional Boussinesq approximation demands a rigorous

application of the relations:

(S(b, LSP_ . gp_ << 7
Po p

i
and BHy << 1 (Hy is the density scale height)
yet this second condition may be omitted and the same eduation derived

i
from more complete continuity, hydrostatic and vorticity equations (see
Appendix). Although a formally identical potential vorticity equation
results, the improved set embodies elastic potential energy as well as
gravitational potential energy. White shows that the only modification
that arises in the use of the improved set occurs through the application

of upper and lower boundary conditions (on vertical velocity) and then

only for time-dependent problems.

For the stationary problems which we shall be dealing with the
mathematical problems are identical, though the entropy perturbation is
now given by:

_ fofo
oo = 2ol - o)y

Much of the rest of this chapter will be a re-examination of the
work of Charney and Drazin (1961) with an emphasis on the change to

spherical polar geometry.

Linearizing the_equation (2.1) about a basic state of uniform

zonal wind U (and static stability) in a B-plane, channel flow gives:
B 72l 4 Lo o 3v '
[Bt v Bx] Vvl gBoo 9z°° 3z tBep =0

and ‘P = - ﬁy + ‘P' (x,Y,3). s
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LA
Choosing stationary solutions of the form ' =Real F(z)et xcosuy

and re-arranging gives an equation for the complex height structure F(z):

a’F 1 B _
T - -ﬁ—-a— +'%?[ - (k2-+p2)JF =0

which admits a solution

F(z) = {Clexp(wz) + Coexp (- wz)}exp(gh, }

1 gB
with v2 o+ = [—— (A% +u? )]
;T P2

If parameters are chosen such that v2 <0 then

F(z) = {CleXP(‘IVIZ) + Czexp(l\)]z)}exp(zﬂ ]

and it would be natural to select the bounded mode only (put C,=0) in
an infinite atmosphere. When v? >0 the choice of wave mode is less

obvious with both waves having bounded specific kinetic energy at infinity.

Setting C, to zero gives an eastward tilting system of troughs
and ridges and a westward tilting wave results from putting C, to zero.
Analogous problems exist in electromagnetic field theory where the
stationary solﬁtion to the field equations for a radiating antenna is
sought. The choice rests ultimately on the direction of energy propagation
and the amount of reflection. For instance, the component Clexp(i(kx4-vz)+2H ]
corresponds to pure upward energy propagation and the other to pure downward
propagation. That this is so may be shown by a consideration of the group
velocity obtained from the time-dependent, linearized quasi-geostrophice

equation (2.1).

The direction of energy flow may also be ascertained by calculating

the horizontally averaged pressure-work term Gpwzhy

since if this is
positive, the atmosphere below a certain level is doing work on the

atmosphere above. The observations of low wavenumber planetary waves
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show strong westward tilt and upward energy propagation is implied.

Upward energy propagation in stationary wave systems can occur
only when v2 >0 and Charney and Drazin show how this imposes a condition

on the zonal wind speed U such that propagation is only possible if:

0< U< " 28 7 = ﬁ; (eritical wind speed) | —A2.2)
(0t )

Stationary Rossby waves propagate wave energy upwards only when
the zonal mean winds are westerly and less %ﬁan some upper bound.' That
this should be the case is borne out at least by the summer hemigphere
easterlies of the stratosphere which are free from the large stationary
wave distortions of the polar vortex observed in the westerlies of the
winter hemisphere. Wave energy is unable to penetrate far into'the
easterlies and hence the amplitude dies awéy rapidly with height.
Charney and Drazin concluded that for typical values of A and u, all waves
would eventually be reflected by the strong polar night westerlies at

some height by a local application of the criterion (2.2).

They infer from the theory that conditions would be right for a
catastrophic upward flow of energy into the stratosphere near the equinoxes
when the zonal winds are light and westerly though there is no evidence
of such abnormal behaviour then. If anything, the greatest transmissicn
of wave energy appears to prevail when the zonal winds are at their strongest,

in the winter months.

Their analysis in B-plane geometry was extended to spherical polar
geometry though they discount the importance of the modification on the
grounds that the harmoniec modes Fg(cose)expim¢ for small n will be
energetically unimportant for orographic forecing. (m is the zonal

wavenumber, 0 is co-latitude and ¢ is longitude.) The @-G potential
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vorticity equation with entropy source term is now given in spherical
polar geometry and a separable solution for perturbations to an atmosphere

of constant angular rotation is found.

The transformation from the rectangular cartesian set (z,y,z) to

the curvilinear set (¢,6,z) is madegwhere Lhe-mmreximgtionr thet—tie
gecme%;ée—Ee%ght—&beve—%he—surf&ee—fs—much—icss—thaﬁ‘fﬁg_EHTth*s—radfus

i

Is—neeessary. In contrast to the B-plane analysis the full variation

of the coriolis parameter is permitted in the absolute vorticity, though

!
again a mid-latitude value is assumed in association with the stretching
i

term and geostrophic wind equation so that the streamfunction ¥ = ?%%;'

The potential vorticity equation is found to be: (including a

source term)

D Fo 3 |po _ fo 3 (po
DtH C + 2Qcos O + o az[——g-&b) 00 3z B S

when the thermodynamic equation is: D& + wB =S8

and the conservation of potential vorticity is recovered when the entropy

source S is zero.

All symbols in the above equations have the same meaning as before

and 2 is the angular rotation rate of the earth.

In terms of the rotational streamfunction the above equation becomes:

D o2 Fo 3 (po- 3| - fo 3 fpo o)

Dty Vb + 2Qcos 8 +gpo Bz[B P 5y 3z| B S (2.3)»
D _ 3

Wt g, T e T leY

(va SCAAuJS)

The gradient operator,in spherical curvilinear co-ordinates is:

v=_% 2.

- 3
= Rsinb 9¢

a6

~ 9
+k3—z

| ®>



where the radial co-ordinate has been replaced by z under the assumption
of its smallness compared to the earth's radius, and the unit vectors a),

6 and k form an orthonormal triad pointing eastward, southward and

upward respectively.

The horizontal velocity vector Vpy is given by:

_h e, 9 8w
Vg =ka 230 " Rsin® 3¢
and with the relations k . 0= ¢ and k ¢ = -0, we define the curvilinear

velocities in the eastward and northward sense (as of the cartesian

horizontal wind) u and v respectively so that:

5 _,5-00% 8 3
¢ -v9 = 255 - Rsinb 3¢

- 13y Y
and ““Rra 7 R51n6 a9

It can be shown that the relative vorticity V;!w is given by:

1 3 3y 1%y
VHw R2%sin® 36[81n 0 36} ¥ RZsin?6 9¢2

and the substantial derivative following the horizontal motion D/DtH

becomes: D _ 3 N 1 [aw 3 30 3]
o * FToing oy 9

Dty R235in6 |36 ¢ ~ 3¢ 06

29

Linearizing (2.3) about an atmosphere in differential solid rotation

for small stationary perturbations so that:

P = - P(z)cos 6 + ¥'(0,4,2)

and U(e,z) = sinf Y(z)

gives after algebraic manipulation
B ool 1 f3f ey), 1 2% S 2 fpg 3V
R? 3¢(R 251n9 36 Smeae HESTY: 92 ¥ gpo 92| B 9z

: cm(i m - i 2l a"]} - Lo (o)

Rz a¢ 2 gpodz
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A separation of variables is possible when Y' and S are chosen so that:

Y' = Real F(z)0(6)exp im¢

S = Real -15p(2)0(0)exp imd

and substitution in the linearized potential vorticity equation leads to:

" sin B R*sin 6.0 gR2pg dz

ffped) - B gl @) f, - oL 2 )

" gpo dz( B dz ¥(2)  mp,gF(z) asl B

The left hand side of the equation is a function of O alone and the

right hand side of 2z alone, therefore:
14 do m?
_ 1 _— — — O =
75130 [51n 3] de] 306 /O sinp = ¢ ‘(a constant)

Using the transformation P = cos 8 we obtain:

i{(z—zﬂ)@} + {n(n+1) _ }O(P) =0

arP dP 1-~P2
it oR* = - n(n+1)
This equation has solutions ©O(cos 8) = Z{f(cos ) which are the associated

Legendre polynomials and exist only for n >m, w“\@q Q v ﬂm'Sh\q\Ao_f ak P=%l,

&PG""(.M\:\(Ak\;Mb vunioh ok the poles)

The equation for the complex vertical structure F(z) becomes:

aF 21[20_]£+ gBl29 _ fo_z_[p_og@] _en)(mee)|

dz2 ~ po dz(B)dz  fZ|§ Pog p dz( B dz R?
2
- QBR_ii[& So] ——(2.4)
fom po dz\B

For adiabatic motion of an atmosphere in solid rotation which is uniformly

stratified, (B = a constant): (2.4) reduces to:
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a*’F 1 aF K gB(2Q _ (n-1) (n+2)
- L - 2

— F(z) =0
daz° Ho dz ff U R J

Comparing this vertical structure eguation with the corresponding
one for constant zonal flow in cartesian geometry shows that the only

change is the replacement of the total horizontal wavenumber squared

n-1)n +2)

(A% +u?) vy 72 .

An algebraic point worth mentioning is that the Charney/Drazin

M '
derivation of this equation omits the term %%-%% which represents the
eddy poleward advection of the potential vorticity of the mean flow.
Consequently, their interpretation of (A% +u?) in the transformation

to spherical geometry becomes n(n +1)/R? which is significantly larger

only for very small n (n=1, 2 and 3).

-Although the horizontal structure is represented by Legendre
functions of global extent, the arguments are strictly only valid for
one hemisphere since one of the primary approximations of the quasi-
geostrophic theory is the replacement of f in the stretching term and
geostrophic wind relation by a constant middle-latitude value. The
mid—létitude value -fy might be thought to apply to the southern hemisphere
though this would imply pressure discontinuities etc at the equator and
so only those wave modes that vanish at the equator are selected. It
is found that all modes satisfying the condition n -m = an odd integer
vanish at the equator and it is these in which this study is concerned.

1 2

Particularly, those wave modes with one middle latitude peak. (FE, Py

3
and P, (cos®) for the first three zonal wavenumbers. )

Typical values used by Charney and Drazin for (A% +p?) were 10~%?
and 4x107!® m? and these lead to critical zonal wind speeds ﬁé of 15
and 32 ms™!. For spherical harmonic modes n =2 and 3, the equivalent

total square wavenumbers ((n-1)(n+2)/R*) are 107" and 2.5%x 1072 m™?
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vhich lead to average critical zonal wind speeds of 80 ms and 46 nls'l,

and hence the largest scale waves associated with »=2 and 3 can propagate
upwards in much stronger zonal westerlies than their analysis suggests.
Referring to Fig.l.1l which shows the distribution of mean zonal wind in
winter up to 100 km and assuming that a local application of the propagation
criterion (2.2) is valid, it is clear that the Pi(cos 0) mode should be

able to penetrate the whole deﬁth of the mesosphere in the wintertime

i
circulation. Pure propagating modes (C; or C; equals zero in previous
Vgxpression for the height structure? are such that the horizontally
averaged specific kinetic energy is;uniform with height and a P;(cosﬁ)

wave mode associated with an eddy velocity of 1 ms™?

at the gurface would
be of the order of 1000 ms™' at 96 km if unreflected. Clearly, the
linearization would become invalid long before this amplitude was reached
and even if it were permissible the smallness of the pressure perturbation
compared@ to the basic state would be violated. Eddy velocities become
comparable to the mean zonal wind speed at about 30 km and consequently
one might expect the assumption of linearity to break down above this

level. The theory of wave/mean flow interaction of Chapter 5 confirms

“this viewpoint.

Smagorinsky's quasi-geostrophic model of thermal forcing produced
a strongly evanescent stratospheric wave through the choice of a narrow
channel flow and fairly short zonal wavelength (he selected a horizontal

o wavelength of

wavenumber equivalent toh160°longitude). The total square wavenumbers
(A% +1?) used in his analysis were 2.8%x107 n™? and 1.2%10712 n?
which are at least an order of magnitude larger than those for n=2 and 3
of the spherical harmonic modes. The thermally forced planetary waves

studied by Smagorinsky must be regarded as a description of high order

(n>4) wave motion and this study will be concerned with low n modes.

Before going on to examine planetary scale forcing by orography
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and differential heating and cooling for various vertical profiles of
zonal wind and static stability it will be instructive to see to what
extent a '1id' approximation at the tropopause is justified as is the
case for baroclinic instability problems. The two-layer model of the
Charney/Drazin paper is re-analysed with the modification of the B-plane

description, by the use of spherical polar geometry, accounted for.

The reflective properties of the interface between two unbounded
regions of constant zonal wind and statiec stability, for various values

in each case is determined.

A two:layer model

Suppose that the height of the interface is given by:
hiz,y,t) = hiy) + h'(z,y,t)

then the unperturbed state will satisfy Margules relation for the slope

of a frontal surface:

ay - - folp U1/ glp]

where [ ] indicates the difference across the interface

i.e. M]=1ﬂ4ﬂh+e)—aw—eﬁ

g0

Solutions in the upper and lower layers must be connected at the

interface in a way that satisfies certain kinematical and dynamical

conditions. The interface must behave as a material surface so that:
l%z—h)=0 at z="h (a)
Dt

and also, the pressure must be continuous across the interface.

(pl =0 at z=h (B)
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Linearizing (A) about constant zonal wind ffyields:

w'=§E+ffﬂZ—'+v'% at z=h

where the expression is now applied at z =h.

All aspects of the cartesian geometry analysis are retained except in

the interpretation of (A2 +u?) so that:

2 . 1 _ gﬁ{B _ (n—z)(n+12)]
412 A

v- + —y
U R?

The results will be equivalent to that of the'’ complete spherical polar
i
analysis since the only change that occurs is in the horizontal normal

mode structure {cos Hy - 1{1”(005 8)) and this merely complicates the notation.

Choosing h' = hgexp iA(x - et )cos Hy then we may write (A) as:

w' = (U-e)i ' + u'% at z=h

re-arrangement and application of [ ] leads to:

w' _v'.d_h_

W _ ] =0 at z="% ——{(2.5)

The continuity of pressure condition (B) is expanded as follows:

[p] = [E(z) + 6p(x,y,z,t)] =0 at z2=h
~ | =3 dp -
= [p(h) +h'£ +6p] =0 z2=h

and since the undisturbed pressure p is continuous across the interface

we have: — _

1] gB = =
[h iz Gp] 0 at z2=h.
Using the geostrophic and hydrostatic approximations:

@ . _5 and AN i)x:QP—
pfo

N |

we have: —gh'[ﬁ] +-f—°—[5v'] =0 at z=
A

—2.6)
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which reduces to the continuity of the perturbed pressure only when
the mean state density is continuous (and hence the continuity of the

zonal mean wind).

This condition can be simplified and A' eliminated using the
linearized kinematical relation (A), so that after multiplication by p

and application of [ ] we have:

[pw] = [p0]arn + [pv']g—h;-

(where the phase-speed ¢ is set to zero since we are interested in stationary

problems) and (2.6) can be reduced to:
o) =0 — e)

with the use of the Margules formula.

Equations (2.5) and (2.7) are used to connect solutions at the

interface of two layers with different static stabilities B and zonal wind U.

B\

N/
<

The transmissivity of stationary planetary Rossby waves to a
two-layer atmosphere (as depicted in the above diagram) is determined
for solutions to the linearized, stationary, @-G potential vorticity

equation:
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5 aloz,, . (02w 1), Jow
_— - — + =
Uaz|'HY' * gBl3z2 T H, 32 oz =0

For a wave source located in the lower layer and an upper layer

in which energy transmission is unimpeded and upward, solutions will be

of the form:

Yo = Real{Clexp(iVoz) + Czexp(—ivoz)}exp[ikx + E%;Jcos;qj

and Y; = Real Cgexp{i(Ax-+vlz) + E%;}cos}y

with the subscripts g and ; referring to the lower and upper layers respectively.
i
The scale heights in each layer are necessarily different because
continuity of undisturbed pressure E implies [pT] and a discontinuous
mean temperature T; so that the scale height Hyp [==%§q is different in:
each layer. The difference is small however and forms an unimportant

contribution to the reflectivity.

The interfacial conditions (2.5) and (2.7) relate the streamfunction
in the upper and lower layers and a transmission and reflection coefficient
can be defined. The upward energy flux given by the vertical pressure
work term averaged zonally, Siﬂfx, énd is equal to %@Egg,(6p'w'*) where
Sp' and w' are the complex quantities and the asterisk denotes the complex

conjugate. The vertical velocity w is found in terms of Y from the

thermodynamic equation and is found to be

v - —ia_ll)
who= - g%uax[az]

so that the upward energy flux is given by:

Soov% - _ 1 fo o = [30)
Sp'w? = _ 2Imag. gB Po Ukw(g]

(Imag. denotes 'the imaginary part of').

For the pure propagating mode 1 = Realczexp[i(kx-*Vz) + E%_ this simplifies to:
0
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Do

Sp'w' = ﬁ’z— posfj-l\)|a|2 with Po = Pos exp[— %J

gB

An energy transmission coefficient T is defined as the ratio of
the energy propagation in the upper layer to that of the upward propagating
component in the lower layer so that:
Ul 2
ﬁlcal Vi

A
Bolcll Vo

and a reflection coefficient R is similarly defined as:

e |?
ICIIZ

R =
Using (2.5), (2.7) and the expressions for Yy and P; to eliminate Cy, C»

and (3 in the transmission and reflection coefficients gives:

o 8+ 2
0 1
T =____1_—‘—.-———€U1{‘J (42 - 24 cosx + 1)
Uy Bp v [\)2 + —]
1 0 0 0 4H§
and R=42
with Aexpiyx = U + iV
where U= (P - —J—(Q— R))2 - (vEr? - v2Q2) /W
2Hy 0 1
V= 2v R(P- —J—(Q-R)J/W
0 2Hy
1 2 2
W= {P + ZHO(Q'R)} - (v1Q + VeR)
and o El Bo
P =_é_g Q - UO/UI R = UO B
PB1 w21, Vo t+ Zgm
T 4Hy

A graph of T and R for wave modes n=2 to § is plotted in Fig.2.1 showing
their dependence on the mean zonal wind of the upper layer (stratosphere).
The zonal wind speed of the lower layer is fixed at 10 ms™' and the

static stability of the two layers is chosen to be representative of
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troposphere and stratosphere. For ﬁl = 70 ms™! the zonal wind speeds

of each layer are identicgl and it can be seen that the fraction of energy
reflected by the discontinuity in stratification at the tropopause is
about 207% . Reflection is large only when the waves are close to
evanescence. Green, in an unpublished calculation, shows £he parameter
2Hov to be important in determining the transmissive properties of a

model tropopause and reflectioh is large when 2Hgv <1,

Reflection of wave energy is much more sensitive to the value of
the mean zonal wind speed than static stability as can be seen from Fig.2.1l
with total reflection occurring when the critical wind speed ﬁé is exceeded

or if U, <0.

The cut-off in the transmission curves is very sharp particularly

for higher n values.

An interesting point that is brought out in the calculation of

the transmissivity is that the wave extracts energy from the mean flow

as it passes across the interface to stronger zonal winds and loses energy
to the flow in passing to lighter zonal winds. In these cases the sum
of the transmission and reflection coefficients is not unity and T may

be greater than one. An atmosphere of two layers rotating at different
speeds requires a density difference between them and a sloping interface
to maintain geostrophic equilibrium. The availability of gravitational
potential energy due to the sloping of the density surfaces enables a
propagating mode to exchange energy with the flow. This is consistent

with the more general ideas on wave-mean flow interaction given in Chapter 5.

The rate of propagation of wave energy in each layer is given by
the vertical component of group velocity and the reflectivity is strongly

connected with the difference of group velocity between each layer.
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The dispersion relation for quasi-geostrophic planetary waves is:

g=TUx\ EA
N T2 2 T¢[.2 1
AS + '*gB[v + Zﬁg}

where 0 is the frequency and the vertical component of group velocity is
obtained by differentiating with respect to v giving:

- ZXﬁ\)
dg _ B gB

C = — =
ga oV ” 2 FEf.2 7 Y)?
{}\ +U +gB[\) + 4—HZ—J

0

For stationary waves (0=0) this simplifies to:

2 ﬁzi% Av
ng = 8
and for the largest wave scales (with »n small) such that -Eg >> iﬁ:l%éﬁigl
732
we find c,. <«
92 vy

showing the stronger dependence of group velocity on zonal wind.

It may be concluded from the reflectivity graphs that the n=2 and 3
are very effectively transmitted into the stratosphere and a rigid boundary
approximation would be gquite inappropriate in modelling these waves in
stationary forcing problems. Ixisting theories of large-scale forcing
appear to be unrealistic in fheir artificial restriction of the horizontal
scale through the choice of a narrow, B-plane channel flow which causes

the wave motion to be trapped (Smagorinsky, 1953 and Charney/Eliassen, 1949).

Studies which do not have this restriction such as that of
Sankar-Rao (1965) apparently fail through the imposition of an energy-
reflecting upper boundary condition. We now proceed to set up models
of orographic and thermal forecing without this restrictiop by imposing an

energy-transmitting boundary condition in the upper stratosphere.
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CHAPTER 3 SIMPLE QUASI-GEOSTROPHIC MODELS OF OROGRAPHIC AND THERMAL FORCING

(i) Constant zonal wind solutions

(a) Orographic forcing

On the scale in which we are interested, the orography represents
the departure of the earth's surface from its basic oblate spheriodal
shape rather than mountain ranges such as the Himalayas. Sankar-Rao
(1965) has calculated the spherical harmonic éoefficients of the elevation
of the land surface above sea-level up to 15th degree and these values

: !
give some idea of the amplitude of orographic forcing for the first

i
three wavenumbers. Typically amplitudes are of the order of 100-200 gpm
for m<4, n<é. A substantial proportion of the orographic 'forcing N
function' will be by-passed in this work because only the low n spherical
harmonic modes are to be considered and, for instance, features such as
the Himalayas make strong contributions to wavenumber I in the orography
through the high n modes reflecting the short meridional scale. Such
isolated orographic features lénd themselves more readily to treatment
by Fourier transform techniques on a f-plane and an unpublished calculation
by Green shows that pressure perturbations neair the surface of as much
as 10 mb are to be expected just upstream of the‘Rockies in the presence
of a uniform westerly flow of 10 mst. Similarly, flow around 'tall'

orographic obJjects such as the Himalayas can be shown to generate large

amplitude laterally propagating Rossby waves.

It is instructive to examine the solution corresponding to orographic
forcing of a 'solid-rotation' atmosphere of uniform static stabiiity since
this carries most of the physical information relevant to this type of

problem.

The differential equation for the height structure has already

been derived in Chapter 2 and upward energy propagating solutions are
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of the form
_ . 2 m
Y' = Real 4 exp[z(m¢+\)z) + —ZHO}Pn(COS 8)

where 4 is a constant to be determined from the lower boundary condition

on vertical velocity.

Air flowing over the lower surface will remain at the surface

during the motion and this is expressed by the equation:

D—l?t-(z—zg) = 0 at z=29 (3.1)
where zp=20(¢,0) is the surface elevation function. Linearizing (3.1)

and evaluationat z=0 gives the condition

\

w=B%—%o at 2=0

where ﬁ/R = a constant and represents the zonal wind speed at the equator,

AN
and vertical velocity is related to the streamfunction through the

thermodynamic equation by:

ﬁﬂ'+zo=0 at z=0. —(3.2)

Considering one spherical harmonic component of the expansion of the

surface elevation so that:
Z0 = a PZI(cos 8)exp imd
then (3.2) can be used to evaluate 4 and gives the solution:

B
Y' = —Real ;Zg T exp{i(m¢-+vz-—€) + E%;}Pg(cose)
fo[ }

v+ =
48

—(3.3)
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1 _ 32{22 - iﬂ:lliﬁigl . We take values

where € = tan™*(2Hov) and v2-+zﬁg-— 12 w 22
for the relevant parameters which represent averages for the troposphere
and stratosphere; with @=200 m, n=3, B=3.0x10 >’ and Y=12.8%107 n® g?
(equivalent to a zonal wind speed of 710 ms™' at 30°N) the surface amplitude
can be shown to be of the order of 5§ mb and the westward phase tilt is
~89°/km. At 30 km the contour height perturbation is ~270 m. All
the general aspects of the structure of the untrapped loﬁ;wavenumber

i

disturbances observed are contained in this elementary solution and the

selection of the upward propagating mode alone is justified.
H

i
It is evident from the surface phase shift € (~66°) that the flow

exerts an eastward drag on the orography since the higher pressure occurs

on the upwind slopes and low pressure on the eastern slopes.

By correlating first order perturbation quantities, several important
second-order flux terms can be calculated. For instance, the latitude-
average of the pressure-work term §p'w', which determines the rate of

upward transmission of wave energy, can be evaluated from:

1 1 - j v 1 8 8 !
Vv fo1 ' |
= - Pogrmiy g Inss. {‘P' (%] }

— ma®gBv m2
Sp'w' %RZ mvPo OB |¢"|2 = %pos‘[z—gz]‘(}?z]lpﬂ

Substituting typical values into the above gives upward energy fluxes of
~ 0.3 Wii?, It can be seen immediately that had the eastward tilting

wave been selected, then v would be replaced by -V and energy propagation

would be downwards.

Westward tilting waves in geostrophic and hydrostatic balance

transport entropy polewards as can be inferred from a re-arrangement of (3.4):
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' _ ol 0o 3B DT

pof '
006¢) aqb 5

o =
Sp'w 5

e
= TR

1 at 30°N this implies an entropy flux

For a zonal wind speed of 710 ms
of ~0.1 ms™? and in an atmosphere of mean temperature ~250°K implies a
poleward heat flux ponIFE§T of ~2.5%x10% Wm? which is equivalent to about
1.7 solar constants. Since the total poleward heat flux required to offset
the radiational imbalance of heating is ~ 6 solar constants there is good

reason to believe that untrapped stationary wave heat transport is an

important component of the total poleward fluid transport of heat.

!
I Lastly, the drag exerted by the wave on the lower surface can be

evaluated by correlating the pressure perturbation with the slope of the

: . 1 920
- ] i t -
surface so that the eastward drag is given by &p Rsind 90 at z=0
' .41
which is identical to Sp'w’ at 2=20. Surface stress is calculated to

u(e)
be ~0.03 N2 at 30 °N which is about an order of magnitude smaller»than

typical boundary layer turbulent stress, though the comparison of the
hemispheric averages of surface drag might be similar in size (since the
subtropical westward torque due to the easterlies tends to balance the

middle and high latitude westerly drag).

The ability of planetary wave motion to exert drag on the orography
is intimately related to the upward propagation of energy and poleward
transport of entropy and therefofe to the zonal wind speed. Wave drag
occurs only for a limited range of zonal wind speeds corresponding to
the criterion for propagation and implies a drag law quite unlike that for
the diffusive transfer of momentum. Indeed the linearized analysis
demands that momentum transfer between atmosphere and earth due to stationary

Rossby waves should occur only for westerly zonal winds.

Specific kinetic energy of the wave motion is constant with height

(characteristic of pure energy transmission) and this is consistent with

observed wavenumber 7 and 2 motion (Fig.l.2). In fact, wave energy tends
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to increase with height which is explained later as a wave/mean flow

interaction resulting from the increase of zonal wind with height.

It is remarkable how successful this simple solution is in
representing the general features of planetary wave motion observed up
to 30 km when sophisticated models such as that of Sankar-Rao fail. The
selection of the upward, radiating solution seems to be crucial in this
[
respect. Upper boundary conditions commonly used in general circulation
Dp|_ Do _ = '
models, such as w =0 at p=pp and =0 at 0=0p reflect energy and

Dt bt
i

their application below 40 km might be expected to lead to a distortion
i
of planetary wave structure in view of the observed transmission of energy

above these heights.

Examination of the solid-rotation atmosphere solution to the
problem of orographic forcing with an upper rigid 1id provides useful

information relevant to this effect and the streamfunction is found to be:

. 2 m
exp[1m¢-F2H°]Eh(cose)

gBa sin{v (z-#) - §}
1 112 .
fb[VZ +-ZEJ sin VH

P! = Real

—(3.5)

A stationary standing wave results from the reflection of wave energy

at 2=H so that there is no net upward propagation of energy and the phase
lines are vertical. The associated absence of surfacé wave drag and
poleward transport of entropy are important deficiencies and the presence
of resonant peaks when VH=nmT would result in unrealistic modelling by

general circulation experiments.

Evidence of this type of modelling deficiency can be inferred from
the results of numerical simulations of the stratosphere. The 11-level
model of the circulation of the stratosphere used by Mahlman and Manabe
(1972) was unsuccessful in the description of the mean zonal wind and

temperature structure, with winds too strong by a factor of two and
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pdlar night temperatures colder than observed by 25-30°K. Planetary
wave transfer of heat is the dominant mechanism offsetting the polar
cooling of the stratosphere in winter (Green 1972) and the absence of
this transport process (through the forced reflection of energy at the
upper boundary at 10 mb) could account for the coldness there. Thermal
wind balance demands that the shear should be greater there and hence
excessive zonallwind speeds result. The effect of spurious energy

1
reflection could also seriously upset the tropospheric circulation through
the reduced staﬁionary wave transport of heat and build up of wave energy.
Numerical model%ers frequently complain of 'excessive blocking' in weather
prediction schemes and it is quite possible for this to be a manifestation
of the forced trapping of waves and their resonant behaviour. The
treatment of large-scale forced waves in climate models presents a formidable

problem to the modeller with the tropospheric wave motion suffering

considerable distortion in the absence of a realistic stratosphere.

(b) Theérmal forcing

As explained earlier, planetary Rossby waves can be generated by
the extension or contraction of vortex tubes associated with the vertical
motion induced by a field of heating and cooling. Two 'thermal effects'

that generate quasi-geostrophic waves can be distinguished, and they are:

(1) Heating near a rigid boundary.

(2) Differential heating in the vertical.

In an atmosphere of uniform static stability, if the energy heating
function ppS is independent of height then the inhomogeneous term in
equation (2.3) associated with the forcing vanishes and the equation is
identical to that for adiabatic flow. Wave forcing enters through the
boundary.condition on vertical velocity w which is obtained from the
thermodynamic equation. Vorticity is generated by the forced compression

of vortex tubes against a rigid boundary and this will be shown to be
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the dominating mechanism in the formation of the Siberian anticyclone,
Differential cooling in the vertical tends to cause subsidence at differing

rates which also leads to vortex compression and wave motion.

The §-G potential vorticity equation can again be used to write
down a simple solution representing the thermal forcing of an atmosphere
in solid rotation (/R = aconstant, which represents the equatorial
zonal wind speed for the solid rotation atmosphere). Low-level heating
is conveniently represented by a source function SngsinnM>Fg(gose)exp(—bz)

so that equation (2.4), for the vertical structure of the wave, becomes:

2
a’F 1 aF | g@{zg ~ (n-—l)(n-+2)}F(z) - galb + I/Hy) o gy

dz2 ~ . d=z 21 2 -
R AN f fom($/R*)

Selecting the pure upward energy radiating component of the solution
to the homogeneous equation and imposing a lower boundary condition that

vertical velocity vanishes at z=0 (through the thermodynamic equation)

leads to the perturbation streamfunction solution:

[gaRz]Pm(
—| Py, (cos B) B .
P o= fQ”ZI;P 7 Real [b + Hl_o]e bz + [’l:\) - E}Z{—D']et(\)-*-l/ZHO)z] exp im¢
b? + 07— + v% +-——
Ho Hz

Figs. 3.1 and 3.2 show the amplitude and phase of contour height
and temperature fields for the ﬁ;+1 modes with m=1, 2 and 3. Contour
height perturbations are largest for wavenumber 1 and a heating function
equivalent to 3°C/day at the surface produces a pressure perturbation of
156 mb at the ground. An amplitude minimum in contour height occurs
near 4 km for all three waves, above which the disturbance increases
steadily to give a 600 gpm disturbance amplitude at 30 km for wavenumber
one., Phase tilt in all three waves is very similaf with the strongest

tilt below 4 km.

A strong surface temperature perturbation is indicated, again being

largest for the lowest zonal wavenumber, with amplitude of 12°C for
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wavenumber one, All perturbation quantities increase rapidly in amplitude
with height in the stratosphere which is associated with the inertial
effect of density. Prédicted temperature amplitudes over 20 km are ﬁ99~7
large even though the contour height disturbance amplitudes are reasonable.
Some interesting points regarding the surface phase relationships of
pressure and temperature to the source function are brought out by Figs.
3.1 and 3.2. The 'model equi&alent' of the Siberian anticyclone appears
about 60° downstream of the region of maximum cooling whereas the coldest
spot is 90° downstream. This is, at first glance, consistent.with
synoptic experience with the lowest Siberian temperatures being recorded
tp the east of the region of intense high pressure. From this it is
worth remarking that the coldest air will be associated with northerly
winds and the warmest with southerlies from which the poleward transport

of heat can be inferred. The general qualitative agreement with

observation suggests that the model assumptions are correct.

For a given magnitude of heat;ng function, the amplitude of the
resulting wave depends inversely on the zonal wavenumber m and the angular
velocity of solid rotation of the atmosphere. Parcels of air travelling
through the heating regions will remain there for a time inversely
proportional to the zonal wind speed and hence will suffer the greatest
effect of the cooling for the slowest zonal wind speed. The angular
extent of the zone of heating or cooling is inversely dependent on the
zonal wavenumber and the larger this region the longer the time a parcel
spends in each heating phase and hence the larger the amplitude of the

temperature perturbation.

We might deduce from these simple arguments that thermally forced
motion in the atmosphere is most likely to be observed in the lowest
wavenumbers (given that the spectral distribution of forcing Sy (m) is

1

uniform).
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Spherical harmonic modes of high n are evanescent and their amplitude
changes sign near the top of the heating layer. For these modes (3.6)

may be approximated to:

-b -vz
o= -}5&{ (e b: - \)i )cos mquZl(cos 9)
oy -V

2
(when ZQ? + 2 << n(n+1)] and it is clear that the wave is relatively large

at the ground and decreases to-change sign aﬁ a particular height, thereafter
tending back to zero at infinity. This typé of wave structure conforms

with the.glassical picture of a cold anticyc%one changing to a cold low
aloft. This is applicable only for disturbénces of short horizontal scale
for which the dispersive properties of the fluid are unimportant and ﬁor
continental scale anticyclones the notion is quite misleading. The .
temperature perturbations of such disturbances are 50° out of phase with

the heating field from which can be inferred that there is no generation

of available potential energy since the zonal average of S'6¢ is zero.
Parcels assume their lowest temperatures after traversing the whole of

the cooling region, unlike the propagating modes in general (see Figs.

3.1 and 3.2).

A realistic model of thermally-forced motion, that is self-consistent
with regard to the wave-structure in the troposphere and stratosphere must
include the basic increase of'zonal wind with height. The magnitude of
tropospheric forcing is critically dependent on the zonal wind speed in
the vicinity of the heating function whereas the ability to propagate
energy and the vertical structure depend essentially on some average zonal

wind characteristic of the stratosphere.

It is desirable, therefore, to consider the analytic problem of forcing

in uniform shear flow which is the next simplest case.
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(ii) Constant angular shear solutions

Having examined the simple analytic solutions to the potential
vorticity equation for stationary forcing of an atmosphere in solid rotation
and identified the important physical processes, we shall now deal with
constant angular shear models that are sufficiently realistic to alléw
comparison with the real atmosphere with more confidence. Although.

analytic solutions are obtainable, their evaluation is considerably more

difficult.

(a) Orographic forcing

Analytic solution to (2.4) is possible when the angular rotation

of the atmosphere is a linear function of height and the static stability

is uniform, so that letting:

¥ = Yo + Az, Po = Pos exP[- %]
and Se=0 in (2.4) gives:
&F 1 aF .@(_252_ , fo A <n—1><n+2>}F=0
dz? Hy dz T \Qo + Az gB Ho(Uo +Az) R?

Transforming the dependent and independent variables by the relations:

|
= _2_
F(Z) - Z(Z)exp[2H0]
and ho o= [ﬂ + 3]6 \ —(3.7)
A ¥ ’
1/2
. B (n-1)(n+2) 1
with ) =2 {Q— + }
* 72 R2 4HZ J

then we have:

a2z 1
+ {—Z‘i‘

ahZ }Z(h) 0 with k [f% At Ho)/5,

This is a special case of Whittaker's Equation:

>

2 L 2
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which has two independent solutions Mk,u(z) and W u(z) such that:
b

:
z2) 1
My u(2) = exp["z‘]zw M(2+u-k, 1421, 2)

3 %+U 1
and Wk’u(z) = exp|-5 |z U(z+pu-k, 1+2y, 3)
as given by Abramowitz and Stegun (1964).

M(a,b,e) and U(a,b,e) are confluent hypergeometric functions and
their series expansions are given in most text books~0f special functions.
The functions Mk’%(z) and Wk’%(z), in which we are interested, are not
generally tabulated and in practice the latter is quite difficult to
evaluate, By a combination of asymptotic expansions and limiting cases
it is possible to evaluate the functions on a computer to a high degree
of accuracy in regions where tﬁe series summation is'difficult, and also

get some insight into the behaviour of the solutions.

For instance, at large positive z:

-k
e, 3(2) = yr e (3] [1+06:]
Z—>
-k z -1
and W, i(z) — 2 exp[—éﬂ[1-+0(z )]
Z—>

and they both represent trapped waves with My, %(z) becoming unbounded
>

at infinity and Wk,%(z) tending to zero.

Rejecting the Mk (z) solution on the grounds of physical inadmissibility

1
32
for an unbounded atmosphere gives the height structure F(z) = Wy %(h)cxp(z/ZHo)

b

and it can be seen that the specific kinetic energy density (which is

proportional to DOIFIZ) also tends to zero at infinity.

The expression for the streamfunction Y becomes:

¥ = Real 4 Wk’%(h)exp[im¢ + 5%;}?5(0056) —(3.8)
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wvhere 4 must be determined from the lower boundary condition on w.

Again, the forced vertical velocity at the surface is determined
by the surface zonal wind speed and the slope of the orography, and is
related to the streamfunction through the thermodynamic equation. The
uniform westerly shear will be balanced by an equatorward gradient of
entropy (thermal-wind equation) and this introduces an extra term into

the thermodynamic equation.

The stationary, linearized thermodynamic equation becomes:

ngoz {E(z)azw' - Q‘g} +w'B =0

and together with the kinematic relation for the surface vertical velocity

w = ]H%_giq gives:

Consider one spectral component of the expansion of the surface elevation
in spherical harmonics and the corresponding component of the streamfunction
so that: m

20(6,9) = aP, (cos 8)cosmo

and P' = Real F(z) Pg(cos 8)exp imd

then substitution into the boundary condition expression above yields a

linear first order boundary condition on F(z) at 2=0 given by:

ANp_ _gBa _
i TJJ_OF—— 7o at z=0

Applying the transformations (3.7) to this condition gives the transformed

boundary condition:

dZ | - 1 o
a+5*1[—%+m]Z(h)=-%* ath=%=h*

and using this to evaluate 4 in the streamfunction expression (3.8) leads
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to the solution

%.B—a'exp{g%] Wk,%(h) Z{Z(cos 8)exp imd
]‘Dz Real - 1] 0 7 A —(3-9)
SRR TPy ERS PR

For all positive values of h, W ,%(h) is a real function and the
phase of Y will be the same at all heights apart from 180° changes associated
with amplitude sign change. fhis is equivalent to saying that %he phase
is independent of height for all regions in the westerly winds. | If the
zonal wind is westerly at z=0 then there is no net energy propaéation
in any direction and the wave motion is described as 'trapped'. ; If a
region exists where the Charney/Drazin criterion of propagation is locally

satisfied (roughly) then the disturbance motionmay behave as a standing

wave there with the appearance of nodes (see Simmons,19Th).

Resonance is also possible when the denominator of (3.9) vanishes

and an example is given later.

These effects are summarised schematically in the following diagram:

=z
4 . > EVANESCENT.
STRoNG WESTERLY WAVE
WINDS |
N —
r e LEVEL OF U,
N
Py

\4

—_—> _ TURNING OF

WAVEFRONTS

e
G N\
Clearly, this model is quite unlike the observed structure of
wavenumber 7 and 2 wave motion in the real atmosphere with the complete

absence of phase tilt. No absorption process exists in the model and
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its implicit inclusion through an energy transmitting boundary condition

is required.

It is appropriate at this point to review some of the theoretical
work carried out on planetary wave motion in the stratosphere and interpret

it in the context of the model used here.

Simmons (19T74) obtained solutions to the quasi-geostrophic potential
vorticity equation for the motion resulting from forcing at the base of
a stratosphetre with jet profiles of zonal wind in the meridional direction
and constantlvertical shear. In general the problem is non-separable
and is only tractible for special casés; yet Simmons circumvents this
by expansion of B into the horizontal eigenmodes and finds that the
amplitude of.the forced wave tends to mimic the shape of the zonal wind
field. He calculated the stationary response of wavenumbers I and 2 to
forcing of an atmosphere of 'realistic zonal wind' distribution up to
100 km, imposing an upper boundary condition demanding the boundedness
of energy density at infinity. Although the calculated amplitude variation
in the vertical is quite reasonable, the phase lines are vertical and

no net upward ﬁropagation of energy occurs.

In an attempt to reproduce the westward tilting wave patterns of
wavenumbers 1 and 2, he introduces dissipation through height-independent
Newtonian damping of the temperature perturbations of magnitudes, estimated
by Lindzen and Goody (1965) from photochemical calculations. The destruction
of available potential energy of the wave by the radiative relaxation of
the temperature field is offset to a large extent by the potential energy
drawn from the mean state by the wave through poleward heat transport by
the wave (and hence westward tilt). Although Simmons obtains a westward
tilting wave system with the introduction of Newtonian cooling it is far

too abrupt with all the phase change occurring in a shallow layer (~10 km)
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above the forcing height. Muench's data indicates a much more uniform

westward tilt with height of both wavenumbers 7 and 2.

Matsuno (1970) investigated the vertical propagation of wave energy
into the stratosphere in a model wifh realistic horizontal and vertical
variation of the mean zonal wind in winter. Observed amplitudes and
phases of the low zonal wavenumbers were specified at the lower boundary
corresponding to the 500 mb level and a simple radiation boundary condition
was applied at 656 km. Wave energy was found to propagate_upwards and
southwards to be absorbed at the zero-wind liﬁe (critical la&er). In this
way energy was prevented from reaching the high stratosphere by the strong
critical layer absorption and phase tilt westward with height was quite
realistic. The major deficiency of the model results was the under-
estimation of the amplitude of wavenumber 2 in the stratosphere with

amplitude decreasing above &6 km.

Matsuno's numerical solutions appear to differ from those of
Simmons who found that the critically absorbing layer (of the equatorial
zero-wind line) has little effect on the penetration of wavenumbers 1 and
2 into the upper stratosphere and his predicted amplitude variation of

wavenumber 2 was in better agreement with observation.

In Chapter 4, we argue that a critical-level absorption process
is not desirable in stationary wave problems since it implies an infinite
drag on the zonal wind at the zero-wind line which would be inconsistent
with a steady basic state flow. Nevertheless, the exchange of energy
between the wave and mean flow by this process -is not ruled out for the
non-linear system and the question of its importance remains unanswered

at this stage.
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An energy-transmitting upper boundary condition

In view of the uncertainty concerning the wave energy absorption
mechanism in the upper stratosphere, whether it be by radiative damping
of the temperature perturbations or exchange with the mean flow at the
equatorial zero-wind line, we avoid the problem by imposing an energy-

transmitting boundary condition below the region of observed absorption.

Energy transmissioﬁ is allowed by keeping the angular rotation
rate of the atmosphere fi%ed above 40 km and selecting the purely upward
energy radiating solution;there. This upper solution is connected to
the motion below 40 km by demanding continuity of pressure and vertical

velocity (consistent with the interfacial conditions of the previous chapter).

This allows a boundary condition to be formed as follows:

B = A CONSTANT
G = QA ConNsTANT)-SING

5m
W+ = REAL C exP{Lb¢-+ vz) + f‘m} }Dn (COSG)

z=H

W_ = Rear Fl=)expimd Py (coso)

Q} M (AND Ul) ARE ConTINWoUus ACReSS z=Y

The upward radiating solution of the hypothetical upper layer is:

_ . 2 m
Y, = RealCexp[z(mcp +vz) + —2H0} Pn(cos 8)

where ¢ is an undetermined complex constant and the lower solution is of

the form: m
¥_ = Real F(z)exp Zm¢ P, (cos 8)
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so that the connecting conditions at z =H are:

C exp[ivH + E%;} = F(H) (continuity of pressure)
ST | YN SR
and {w(H)dz - F dz} z=H_ w(a)(w + 2Ho]c

(from the thermodynamic equation)

Elimination of C between them yields the complex boundary condition:

y. - .l..g'.q_'i _.1 3 = = —
i [IT’ Eri o, + zv]F(z) =0 at z2=H (3.10)
_ 2, 1 _gB[20 (-1 (m+2)

This type of boundary condition, which is closely related to the
Sommerfeld radiation condition, will be particularly useful for numerical
integration where an infinite integration region must be reduced to a
finite region. When v2 <0, the upper wave is evanescent and the boundary

condition is no longer complex which prevents the sloping of the phase lines.

The solution to the orographic forcing problem with radiation
condition (3.10) is straightforward to obtain and involves the linear
combination of the independent solutions Wk’%(h) and Mk,%(h)_which satisfy
the upper and lower boundary conditions. Fig.3.3 gives the amplitude
and phase of wavenumbers 1 and 2 up to 40 km for a 'realistic' choice of
zonal wind shear (values given at 45°N) and average static stability®.
Amplitudes of the contour height field forced by Zg==2b0452(cos 0)cos md gpm
are of the order of I mb at the ground and ~ 500 gpm near 30 km which
compares favourably with observed values. Phase tilt is in good agreement
with Fig.1.2 and is less rapid in the upper regions as one would expect
from a local application of the constant zonal wind solution. Unevenness

in the curves results from the partial internal reflection inherent in

the solution, which causes interference with the propagating component.

*The static stability B in the 'hypothetical layer' is 5x1073m?.
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A useful test of accuracy of the solution arises from an interesting
property of the differential equation for the height structure F(z).

Setting S=0 in (2.4) and re-arranging gives:

i{%’- g—i’-} + k(2)F(z) = 0 —(3.11)

where the coefficient of F(z) is replaced by the real function k(z).

Also taking the complex conjugate (denoted by =) of (3.11) gives:

2fa & rore - e

Multiplying (3.11) by F* and (3.12) by F, subtracting the resulting equations

and further re—arrangement gives:

4 Do x dF} _
iz Imag.{B F dz} 0

or Imag.-El L is independent of height.
— | B dz

Now the poleward eddy entropy flux v'6¢' is given in terms of the streamfunction

by: .
oo 7 e G (B3 - )

(where the overbar denotes the average about a latitude circle)

which may be simplified to:

po V'6¢' = - Qgggﬂ-Imag.(F*E”)
and therefore: -%% v'6d! is independent of height.

The eddy heat flux pon V'66 should be proportional to the vertical
gradient of potential temperature for a propagating wave in a given zonal
wind field. It must be remembered however that the ability to transport
heat polewards is primarily dependent on whether or not the wave is trapped
by the zonal winds. It is interesting to speculate on the possible

sensitivity of stationary wave heat transport in the troposphere to the

wind circulation of the stratosphere. The reduced transmissivity of
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the stratosphere to upward propagating planetary waves through the increased
strength of the polar night jet might have important repercussions on
the tropospheric circulation through the reduction of the stationary wave

heat transport.

The year to year variability of the polar night vortex strength
is large with as much as a factor of 2 involved in the variation of thé
zonal wind speed at 10 mb and so the tropospheric respgnse should also
vary. Another interesting possibility is that of resonance of trapped
’ !

planetary waves and their influence on the weather.
!

To demonstrate and emphasise this possibility, a trapped resonant
wave was found for the orographic forcing of the Pf(cos 0) mode and the
surface pressure response is plotted for different uni%orm shear profiles
in Fig.3.h4. The surface (mid-latitude) zonal wind speed is fixed at
5 ms! and the speed at 40 km is varied between 40 and 76 ms. A highly
peaked resonant state occurs when the zonal wind at 40 km is about 52 ms™t.

Naturally, the growth of a near-resonant wave is limited by the
availability of energy in the system and dissipation so that the response
of a real (non-linear) atmosphere would be bounded. The question that
must be raised is, 'Does planetary wave resonance occur naturally in the
atmosphere and if so how does it manifest itself'? One hypothesis is
that 'blocking', so-named by synopticians, is a persistent, resonantly
amplified planetary wave. Certainly, trapping is favoured by the high n
spherical harmonic modes consistent with the 'splitting of Jet streams
phenomenon' since (n -m) determines the qualitative characteristics of
the meridional wave structure and harmonic modes change sign with latitude

more frequently the larger the value of (n-m).

This point might form the basis of an interesting investigation
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into the resonant growth of planetary waves in a multi-levelled, non-linear
numerical model in order to determine the meteorological significance of

such waves.

Summarizing this section, we conclude that satisfactory models of
orographic forcing are obtained with the use of a radiation boundary
condition at 40 km and that amplitudes and phases of wavenumbers I and 2
are in good agreement with observed structure in the atmosphere. Using
calculated spherical harmonic coefficient values for the P; and P§ modes
’ !

of the spherical harmonic expansion of surface elevation, we find

stratospheric disturbances of realistic amplitude.

Further work on the structure of orographically forced waves will
be presented in Chapter 4 where the observed variation of zonal wind and

static stability in the vertical will be accounted for.

(b) Thermal forcing

Attention has been focussed so far on the propagation of energy
away from the forecing regions into the upper stratosphere in winter and
we have attempted to improve the tropospheric description of the wave
motion by constructing a more suitable upper boundary condition. The
energy transmitting boundary condition will now be used to examine the
structure of thermally forced waves of the largest horizontal scale
(with n=2, 3 and 4). The P; and Pg(cos 8) modes should represent a
substantial proportion of the thermal forcing at these zonal wavenumbers
since they possess one middle-latitude peak in their meridional structure,
and the higher modes Pi, Pé, Pg and P?(cose) are trapped and are important

mainly in the troposphere (choosing only modes that vanish at the equator).

The amplitude of thermally-forced motion depends critically on

the strength of the zonal winds in the vicinity of the heating region and
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a constant shear profile of wind allows the smallness of the westerlies
near the ground to be represented without underestimating the stratospheric

wind, as in the solid-rotation atmosphere solutions.

The thermal-forcing of planetary waves poses a more difficult
mathematical problem through the inclusion of an inhomogeneous term in
the differential equation for the height structure. Introduction of a

i

uniform shear of the angular rotation rate into equation (2.4) such that

U=yp +Az; letting B=aconstant and po = pgs exp(-z/Hy) )gives:

! f-Z /\

&F 1 4F 91_9{ 20 gBHy _ (n-1)(n+2) _ _ gr* 1
a2 T Hy az fo(lj70+/\z ¥ Jo +thz R? F(z) T fom p dz(p°s°)

As before, using the transformations:

F(z)= (Z)exP(2H]
and h =6*[£A°-+ z]

the above equation reduces to:

(h-h*)}
’ 2 exp{———————
BT O R R T

This is a second-order inhomogeneous linear differential equation with
variable coefficients and may be intergrated by standard Green's function

construction. The Green's function G(h,hF) is the solution to the equation:

a%z 1 .k N
Fi*a +-{- Z—+-z}z(h) = 6(h-—hF)

under homogeneous boundary conditions, where § is the Dirac delta function.
In this problem the lower boundary condition is inhomogeneous if the source
term Sy does not vanish at the ground z =0, and an extra term is added

to the Green's function solution that originates from the 'surface term'

of the generalised Green's identity. The modified radiation upper boundary

condition to be used is identical to that used for orographic forcing

Provided that the flow is adiabatic in that region. d k»kuJi
* e rudidim cnddin wred produces semp reflechn, avieiny fwm the G o
o Shear ob the height of applicakim |
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The Green's function solution in our case corresponds to a step-
function in energy heating rate pgSo and it will be of some interest to
examine the elementary Green's function solution which corresponds to
constant poSp up to a certain height and zero elsewhere, i.e.p°S°(0)==H(zF-Z)

where H(x) is the unit stepfunciion (i.e. lower tropospheric heating anomaly).

The Green's function method consists of constructing an upper solution
from the two homogeneous solutions Wk,%(h) and Mk,%(h) which satisfies the
upper boundary condition and a lower solution which satisfies the homogeneous
lower boundary condition. These are connected by the conditiﬁn that the
streamfunction is continuous at h=hp (thé non-dimensional height corresponding
\tQ zF) and a jump condition which imposes a unit discontinuity in the

derivative of Z(h) at h=hp. If Z >(h,hF) and Z‘i(h,hp) denote the upper

and lower solutions respectively, then,

Z>(h,hF) K]_Wk’%(h) + Ksz’%(h) for hz2h

F

and Z<(h,hF) = Kng,%(h) + Kqu,%(h) for h<hp

where Ky, K, K3 and Ky are constants to be determined from the two boundary

conditions and the continuity and jump conditions at h=hp.

The homogeneous upper and lower boundary conditions can be shown to be:

’d—z - _1——/\—— ’ = =
an 6*[@}-+AH + 1v]Z(h) 0 at h hT
(radiation condition)

and — + §

L4 ——Jz(h) =0 ' at h=hy

(vertical velocity is zero at the ground

with hp = 5*[911 + H] and ho = 5*/‘\“

At h=hgp the connecting conditions are:

a
Zy(hp) = Z (hp)  and S2>- SL< oy
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and after algebraic manipulation the Green function, given by Z> and 7,

in their appropriate ranges, becomes:

7

Y(oaby 3(hp) - My 3 (hp)) (b 3(R) - My 3(R))  for ho<h<hy

G(h’hF) :J
Y (02¥y 1 () - Mk,%(hF)) (@2, 1 (R) - M, 1(1) for hp<h< hy
M, 1(h)+€1M 1 (Am) i
where oy = ?’2 ol K,z T
wk,%(hT) + € Wk’%(hT)
) i
My 1(ho) + e2M; 1(ho) '
(12= k:? k’2 i
W, %(ho) + E2M %(ho)
with Y (o1 —a,) ° €1 = - 6*'$0+AH+W
- 1 A
- £ = (S 1 ['—— - —_“‘]
2 * (2Ho Yo

(Primes denote the ordinary first derivative.)

In the derivation above, the property that the Wronskian of the
independent solutions is constant for this homogeneous differential equation

was uséd and is found to be such that:

W, 3 ()M 3 (B) = Mg 1 (W)W 3(R) = - =737

For a heating function poSp = po(0)Se(0) H(2p- 2), the right-hand side

of (3.11) becomes:

R (hF_;O) (0)S0(0) 8(h - hp) R? hp-h
g* | T T 2Hob ; pa(0)50 P _ 9 exp{F U}So(o)é(h-hF)/hF
foAm -hF Pol(hgp) foAm 2Ho8y

To obtain the solution to (3.11) with a step-function profile of foreing,
the Green function must be multiplied by the coefficient of §(h-hp) above

and the inhomogeneous term of the lower boundary condition must be accounted for
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At the lower boundary h=hg, the vanishing of vertical velocity w

gives:

¥4 - gSo(0)R?
e A O T

(from the thermodynamic eqution using the transformations (3.7)) and the

extra surface term from the Green's identity is:

B gSo(O)RZ -
Fodzmig G(hsha) ;

so that the full solution becomes:
i

_ 950 ()R (exp(Zp/2Hy) i G(hzﬁg>]
z2(h) Form A G(h,hp) T

Once the Green's function is known, the solution for any distribution

of Sp(3) may be synthesised by summing the influences from all levels,

which is expressed formally by the integral:

m hE"’h
2(h) = hlG(h np)- 25 exp{—(%‘si) L_ L (0,50(hp)) anp - Z2500) g
) 20% foAm hF po(hF) th ooo\AR F fﬂm 6’(’% L)
0
—(3.12)

Having outlined the mathematical procedure, it remains to discuss
those results obtained by calculating the Whittaker functions and performing

numerical integrations to evaluate the above complex integral.

Firstly, consider step-function forcing in a uniform shear profile

equivalent to a mid-latitude zonal wind speed of 2 ms™ at the surface

and 30 ms? at 40 km where the modified radiation condition is applied.

The heating function poSo is constant below 4 km and equivalent to a heating
rate of 1.5°C/day at the surface. The graphs (Fig.3.5) show the amplitude
and phase of the wavenumber 1 response (n =2) compared to the response

with the uniform shear profile altered so that the surface wind is 10 ms™}
(again with zonal wind of 30 ms™ and 40 km). In the case of light surface

’

winds, the amplitude is everywhere much larger than is reasonable in the
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real atmosphere with a surface pressure perturbation of ~ 25 mb. When
the mid-latitude surface wind is increased to 10 ms™! the amplitude is
greatly reduced particularly in the stratosphere and is smaller than

observed magnitudes.

The difference in amplitude size between each must be attributed
mainly to the reduction of the-effective forcing when the zonal wind speed
in the heating region is large. This is, as explained before, duelto
the greater time spent by air in the heating gnd cooling phases which
allows greater compressive effeéfs on the vorte; tubes and hence la;ger

!

amplitudes and upward energy propagation. In reality, these two cases

probably represent extremes of the mean zonal wind in the troposphere.

Phase variation is broadly similar in both cases with the moét
rapid phase tilt westward occurring just below 'the step' in the heating
function. Above 4 km the tilt is fairly uniform except for its slow
decrease in magnitude with height. Typically, phase variation with
height is observed to be about 6°/km in the stratosphere which compares

favourably with both of these curves.

The distribution of zonal wind speed in these profiles is not
very representative of the tropospheric flow and so it is instructive to
consider forcing in a flow with zonal wind speeds of 2 and 20 ms™® at 0 and
10 km respectively with a radiation condition at 70 km. Fig.3.6 shows
the amplitude and phase of the contour height field, together with the
associated poleward heat flux (given by v'8T') for wavenumber I forcing
of such a flow. Amplitude is largest at the ground (~ 17 mb) and rapidly
decreases to a minimum at 4 km (above which the heating function is zero),
strongly resembling the characteristic intense, shallow surface anticyclones
of the continents in winter time. In the upper troposphere, the increase

in amplitude is due mainly to the inertial effect of density associated
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with the factor exp(z/2Hy) in the height structure.

Phase variation with height is small below 2 km and increases to
become most rapid near the top of the heating layer, with a phase difference
of 90° between the 1000 and 500 wb level (this difference forms a useful

yardstick when making comparison with synoptic chart data).

Poleward heat transport is greater in the heating layer and changes
discontinuously at 4 km with poZFEEﬁ—'being constant in the regions above
and below. Calculated values of »'87' in the heating la&e} of ~5°C ms™?
indicate the importance of stationary forced waves as transporters of heat.
Looking again at the phase relationship of the pressure perturbation to
the source function S, shows that the surface anticyclone is to be found
nearly 90° downstream of the region of highest cooling rafe which is

significantly further than that for the constant rotation atmosphere solutions.

The discontinuity of the heating function in the vertical used so far
allows a very crude representation of low level heating and we supplement
these with constant shear calculations for an exponential heating function,
a exp( -bz) of the form used in the solid rotation atmosphere solutions.

The height structure is found by substituting this expression for Sy into
equation (3.12) and evaluating the integral numerically. Fig.3.T gives
the resulting amplitude and phase for the P; and Pi(cos ®) modes with
heating rate a equivalent to 1.5°C/day and scale height bl of 4 km. A
constant shear zonal wind profile was chosen with 7(z=0) =5 ms} and
#(2=40km) = 50 m s (mid-latitude values) with modified radiation condition

at 40 km.

Only the n =2 mode is propagating with the characteristic westward
tilt of the phase lines; the phase lines of the n =4 mode are vertical

except at the node near 4 km, The amplitude of this trapped mode actually
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decreases above 30 km and is reminiscent of the adiabatic solutions found
by Simmons. As in the step-function heating profiles the amplitude of
the untrapped wave exhibits a minimum near 4 km and it is later found

that this is a general feature of thermally forced motion generated by
lower tropospheric heating anomalies. The amplitude of the P;(cos 8) mode
increases very rapidly with height in the stratosphere consistent with the

upward propagation of energy into the tenuous, upper regions of the stratosphere

Poleward heat transport by the P;(cos ©) mode is given in Fig.3.8
and shows again, a significant low-level transport of heat with a minimum

in v'6T' occurring in mid-troposphere.

The phase relationship of heating function to pressure perturbation
is such that for the trapped n =4 mode they are either 90° or 270° out of
phase. In this case, at the surface the cold anticyclone occurs 90°
downstream of the maximum cooling region. For the propagating n =2 mode,
the surface high is 63° downstream of the maximum cooling spot, and is

similar to that for the so0lid rotation atmosphere considered previously.

Fig.3.9 gives the response to the same forcing function S of an
atmosphere with uniform shear such that %(z=0)=5 ms™! and %(2=10km) =25.0m s}
with the radiation condition at 10 km. General features of the solution

for P;(cose) are as before with surface amplitude of ~ & mb.

These more sophisticated models of thermal forcing are sufficiently
realistic to allow comparis@n with observation and we shall briefly compare
the calculated structure of wavenumber 1 with data given by Muench. The
final summary of theory and observations will be given after the detailed

numerical calculations of Chapter L.

Muench (1965) presents mean amplitude and phase of contour height
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up to 10 mb for the wavenumbers I to 4 at 50°N in January 1958. Dickinson
(1972) published data (from Muench) giving the latitude/height distribution
of wavenumber I for the same year up to 10 mb and we use this in the
comparisons with the theory. The outstanding feature of the phase variation
is the uniformity of westward tilt with height which is particularly large

at low levels.

[

There is no evidence of trapping in the troposphere for wavenumbers
7 and 2 which would be reflected in the presence of vertical phase lines
i

and nodes, as in the theoretical solutions. The vertical profile of
i

phase is strongly latitude dependent and since the solutions have no

8 dependence of phase it ;s‘appropriate to latitudinally-average the
observed phase. Fig.3.10(b) gives the height variation of latitudinally-
averaged phase compared with that at 70 and 50°N (which represent extremes
of phase variation) and shows that the‘phase tilt in the troposphere at
50°N is much less rapid than the latitude-average. The corresponding

distributions of amplitude are shown in Fig.3.10(a) and in agreement with

the thermal forcing calculations - an amplitude minimum occurs near 4 km.

In Fig.3;ll, the theoretical solution for 'exponential' thermal
forcing in uniform shear is compared with the latitudinally-averaged curves
of amplitude and phase, with the latter displaced by a constant value to
give the best 'fit'¥*. The similarity in structure is quite surprising
particularly in the phase agreement and there can now be no doubt that
the imposition of an energy transmitting boﬁndary condition at upper levels

is desirable.

The behaviour of the wavenumber I structure north of 60°N seems to
resemble thermal forcing to a much greater extent than near 50°N with a
pronounced minimum in amplitude in mid-troposphere and rapid westward

phase tilt there. It might be speculated that the orographic forcing of

* In the absence of exact knowledge of the distribution of forcing.
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wavenumber I dominates near 40°N where the Himalayas exert a strong
influence on the fleow, and therefore the structure of wave motion is
different for these latitudes. The 1000-500 mb phase difference given
by the latitude-average curve is ~ 90° which is in good agreement with the

theoretical solutions given, though rather smaller than that shown in Fig.3.11.

It has already been seen that the poleward eddy heat flux associated
i
with the above constant shear solution shows a strong low-level bias with
surface correlation v'8T' of ~12°C ms™t. Oort and Rasmussen (1971) have
)

calculated from observation the stationary eddy heat fluxes for each month
!

of the year and find a low-level maximum of v'8T' near 850 mb with typical
amplitudes of 10-15°C ms™ in January. 6ther calculations, with realistic
tropospheric shear and radiation condition at 10 km, show v'8T' to be
~ 5°C ms™ and generally comparable to observed fluxes indicating the

importance of stationary planetary waves in the total wintertime poleward

heat transport.

Since only the untrapped planetary waves transport heat it might
be inferred that the P; and Pg(cos f) modes are the most important transporters
of heat. We have failed, SO faf, to consiaer forcing by wavenumber 2 which,
according to Clapp, should be just as large if not more so than the thermally-

forced wavenumber 1.

Briefly summarising this section, it has been found that the observed
structure of the mean January wavenumber I disturbance has many of the
features of an untrapped, thermally forced wave. Using a lower tropospheric
heating function of magnitude consistent with calculated values given by
Clapp, the resulting disturbance forced in uniform shear flow is closely
comparable with observation up to 30 km where a radiation condition is

applied above. llotable features of the thermally-forced waves are:
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(1) An intense, shallow surface disturbance of depth ~ 3 km.
(2) An amplitude minimum near 4 km and associated rapid phase tilt
westwards there.

(3) Strong low-level transport of heat.

The untrapped orographically forced waves (P; and Pg(cos 8)) are of much
smaller surface amplitude and their contribution to the tropospheric
poleward heat transport is small ( < 1°C mst). Both types of forecing
appear to be important in the production of large amplitude strgtospheric

waves in winter.
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CHAPTER 4 NUMERICAL SOLUTIONS: SOLUTION FOR VARIOUS VERTICAIL PROFILES

OF ZONAL WIND, STATIC STABILITY AND HEATING

The analytical solutions of the -G potential vortieity equation
as given in Chapter 3 provide the simplest description of forced motion.
The atmospheres considered so far are of isothermal basic state and uniform
static stability dd¢e/dz with exponential distributions of mean state pressure
and density, po and pg respectively. The vertical variation of gzonal wind
uppee CMEr9H sk ot the . L
and the is—%he most important propertfgdetermlnlng the propagation of Rossby wave

energy éﬁd the constant shear solutions adequately describe this wintertime
variation. :

In this chapter we will further elaborate the wintertime description
of forced motion by allowing a more realistic variation of zonal wind
and static stability and more importantly will be able to describe the
foreing in summer by numerical integration of equation (2.4). The selection
of a 'realistic' profile of zonal wind is somewhat arbitrary since the
angular rotation rate at any level must represent a mean latitude value
and the effects of jet peaks will be excluded. Simmons (1974) found that
the important modifications of allowing a horizontal jet structure were
the enhanced ability to propagate wave energy vertically (through the
increased meridional gradient of potential vorticity of the mean state)
and the similarity in shape of contour height amplitude and zonal wind
magnitude. On the hemispheric scale it is anticipated that planetary
wave modes will be insensitive to the presence of jets which are essentially
'local' phenomena, One might imagine that with a realistic distribution
of zonal wind on a sphere that has a mid-latitude peak and vanishes at
the equator, the increased mean state potential vorticity gradient would
raise the critical wind speed u, and allow even freer transmission of

energy into the stratosphere.
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Some additional simplifying assumptions are made in describing
the thermodynamic basic state when the static stability is allowed to
vary. The basic state temperature of the atmosphere is assumed to be
uniform except in the origin of the height variation of static stability B,
so that the basic state fields of pressure and density decrease exponentially

with height. Justification for this approximation is given as follows:

Using the perfect gas equation in the hydrostatic relation we have:

1 dpy _ _[_g ., 1 arg
RTy Ty dz

where To(z) is the basic state temperature and R is the gas constant.

) -1
Comparing the terms in brackets reveals that L;:-%%f} is ~40 km
in the troposphere and ~ 200 km in the stratosphere which is considerably
greater than Ho ( = RTo/g) ~ 7 km. Since Ty varies by at most 15 % throughout
. . o . 1 dpo .
the troposphere and stratosphere, the density stratification Er- az 1S
0

well approximated by - E%%-, where Ty is a mean atmospheric temperature.
0

m

Now B = —1-41-+ aTg. and in the troposphere the two terms on the
To Cp dz

right-hand side of the equation are of comparable size so that no similar

approximation is valid. It is therefore a useful simplification to assume

exponential distributions of mean state pressure and density even when B varies.

The numerical integration procedure allows freedom in the choice
of heating function profiles Sy(z) as well as static stability B and angular
rotation rate (Y/R3?), ana later in this chapter, the results of experimentation
with various low-level profiles of heating are given. Little is known of
the actual vertical distribution of heating in the atmosphere so that the
calculations of wave structure for various profiles of Sp(z) will serve as

a useful guide when making comparison with observations.

Numerical integration is most useful for the evaluation of forced,
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stationary motion in summer when the complicated zonal wind variation in
the vertical rules out simple analytic solution. This advantage is offset

to some extent by the existence of a singular point at the height where

U =0, corresponding to the 'critical-level' for stationary waves (see Eq. (2.4)).
Numerical methods fail in the neighbourhood of this point so that an analytic

solution must be sought there and connected to the numerical solution.

|
Only thermally forced motion 1s considered for the summertime situation

since the orographically forced component is very small and provides little
: ) !
further information. The introduction of Ekman friction into the summer
i :
description of thermal forcing is found to give some extra realism to the

structure of the wave motion.

The details of the method of numerical integration are given next

and is taken from a short article by Lind®en and Kuo (1969).

(i) Method of integration (Geuwseian eliminebien)

A1l second-order linear differential equations with variable

coefficients of the form:

EL v g%+ w)f(s) = r(2) ——(1.1)

with linear first-order boundary conditions of the form:

g-f+a1f=b1 at z=2;
dz L
gf —_( '2)
dz+a2f=b2 at z=2,
are integrable by this method, provided that g(z), A(z) and r(2z) do not
contain singularities in the range of integration, amd thj 4 the  covros pending

homoy encous  problem  hos no non-brovid s dubie

Comparison of equation (L.1l) with the @-G potential vorticity equation

for the height structure (2.4) yields:
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f(z) = F(z)
= B dipo
glz) = 5 dz[B]
n(z) = 948].20 _ jbz_iﬁ_[ao_@] (n-1)(n+2)]
FZlu(z) pog ¥ dz\ B dz R2
= _ iﬁl.ﬂi_l_Jl{poso]
e #(2) fom ¥ po dz\ B

Dividing the integration range into N segments of length 6z, we may write

z; =18z with 0<Z <M.

We adopt the convention that f(zi)==f€, g(zi)==gi etc. and express the

first and seconé derivative in finite difference form as:
d
a‘zf(zn) = (fna1 - fn-z]/252

. .
and %Egkzn) = (fﬁ+1 + fp-1 - th)//szz

Substituting these expressions into equation (L.1) gives:

Tnv1 + Tnoz - 2fn N In

557 oo+l = fn-1) *+ hnfn = 7n

and on collecting terms:

or Anfn-1 * Bufn *+ Cnfn+1 = Dn ——(}4.3)
with By = - By =y -y, Oy =t i
and D, =r,

Equation (4.3) can be used at all interior points I<n<N-7 since at the

boundaries fictitious points are involwved.



The boundary conditions, equations (b4.2), are given by:

fi - f<
268z

Fyer = Ty-q
28z

+ aIfO = b1

1]
D

at =

+ asz = bz at z=1N

and involve the fictitious values f - and Fysg - '
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Using (L4.3), we may express the fictitious values in terms of two real point

values and substitute these expressions into (4.4) and (4.5).

From (4.3) we have:

Aof-1 + Bofo + Cof1 = Do

and substituting in (4.4) for f.; gives:

f [1 + Qi] + fo[%g—+ 2dza1} = Do, 28zb,

Ao

Ao

Similarly, eliminating fy,; from (L.5) gives:

Dy

f [1 A”] F [26 "n 28zb
. + == - fyl|28zas - —] = —— - 28zb;
N-1 Cy Cy c,

The upper and lower boundary conditions may row be written as:

Apfo + Bpf1 = Dy

and Ath—] + BlfN = Dt
with Ap = i—° + 28za, ,
0

By
Bt = — - 28za, and

Cy

from (4.6) and (4.7).

(lower boundary condition)

(upper boundary condition)
_ Co

Bb =71 + 2o

Dt = =5 - 262b2

——(4.6)

—(4.7)

The Gaussian elimination method works by expressing the function fh at z,

in terms of the adjacent point value so that:



87

fn = anfn-i-_z + B?’I, ———(h.B)

or fno1 = an—lfh + Bn-] (a, and B, are sets of constants)

The above egquation for fﬁ-] is substituted into equation (k4.3) giving an

expression for f,, in terms of f},;,; and:

£ = {_ Cp }f + Dy — AnBy-1
n Anom-1 + Bp)" ™1 anon_7 +By

which on comparison with (4.8) yields:

_ -0y a _Dn - AnBn-1 —(%4.9)
\ n Apty_7 + By & B Aply_7 * By (

Equationé (4.9) are recurssion relations for the o,s and B,s with the values
Ay s Bn, C, and D, determined by the variable coefficients of the differential
equation. Once the values of og and By are known, the rest of the values

of o and B may be generated. op and Bp can be determined from the lower

boundary condition using equation (4.8) and are found to be:.

Dy

Bo = Zg .

Knowledge of fy will permit the calculation of all the values of f, and

this may be obtained from the upper boundary condition as follows.

Re-arranging the upper boundary condition gives:

- D¢ Bt
fN_] _At - At f]v

and eliminating fy_; with equation (4.8) gives an expression for fy in terms

of known quantities:

Dy - ArBp.
o= st
V= ay 14, + By

and hence equation (4.8) is again used to generate the remaining values of f.

All parameters may assume complex values.
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In the following calculations it was found that N =1000 was sufficient
to assure rapid and accurate integration over the height range 0 to 40 km.
Doubling the number of points caused a change in the numerical value of F(z)
of less than 0.1 % and comparison with the analytic solutions shows this

to be the order of magnitude of the error.

The variable coefficients of the differential equation should be
contiﬁuous for the method to succeed, and for the height structure equation
(2.4) 'this implies the continuity of static stability B, entropy source S

! -
and shear through ay/dz.
i

(ii) Thermal forcing (Winter)\

'Realistic' variation of the mean angular rotation rate of the
atmosphere is inferred from the zonal wind distribution given by Newell (1969)
(Fig.1.1) and the eguivalent mid-latitude zénal wind is shown in Fig.k4.1l.

This profile is not very different from the constant shear profile of
zonal wind though has some suggestion of an upper tropospheric maximum.
In view of the sensitivity of the transmissive properties of the atmosphere

to zonal wind variation, a study of the structure of the thermally-forced
. .
Py(cos 0) mode is made for various sizes of tropopause wind maxima (Fig.L.3).

It must be remembered that the tropopause maximum represents a latitude-
average and is much smaller than the January mean sub-tropical jet maximum

(~ 35 ms™t).

A realistic vertical profile of static stability B was obtained
from the Charney/Drazin paper based on average mid-latitude data (from the

U.S. National Bureau of Standards) (shown in Fig.k4.2).

1 . .
(a) Structure of P,(cos ) for different vertical profiles of angular rotation

of the atmosphere

Profiles of zonal wind 4, B and C in Fig.4.3 represent different
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magnitude tropopause peaks of mean westerly wind with the 'realistic'
profile given by the dashed curve. The response of these different mean
state atmospheres, with static stability profile as given in Fig.L.2, is
found for 'exponential thermal forcing' with S=uzexp(—bz)P;(cos B)sin ¢
and @ =1.5°C/day, b ! =4 km. As before, an energy-transmitting boundary

condition is applied at 40 km.

The correspond{ng curves of contour height, amplitude and phase
are plotted in Fig.4.4 and show some considerable variation in stratospheric
wave amplitude. The%stronger tropopause wind speed in curve A causes more
i
wave energy reflection and a more pronounced minimum of contour height

amplitude near 4 km. Westward phase tilt is more rapid in the mid-troposphere

for this case and beccomes more like the nodal structure of the trapped wave.

These curves for various zonal wind profiles give some idea of the
maximum 'error' one might expect through the incorrect choice of wind field
that approximates to the real winter distribution of u. The structute
of the contour height field is much more sensitive to changes in the upper
boundary condition type than the profile of zénal wind and a reflecting
boundary condition would have completély altered the phase variation with

height.

Furthermore, the approximate nature of the upper boundary condition
in simulating wave energy absorption does not warrant the refinement of
the profiles of zonal wind and static stability. In view of this, the
zonal wind profile of Fig.l4.1l will be considered to be the most satisfactory
approximation to the January mean distribution and the structure of forced

waves willnowbe determined for different zonal wavenumbers.

(b) Comparison of low-wavenumber, thermally forced waves (m=1, 2 and 3)

The contour height and temperature fields forced by a heating function
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S=asinm Prr:+1(cos 8)exp( - z/4 km) is examined for zonal wavenumbers m=1,
2 and 3 with 'realistic' vertical distributions of zonal wind and static
stability. Again, a heating function amplitude is chosen so that

a = 1.5°C/day/260°K. Fig.k.5(a) gives the amplitude and phase of the
contour height fields and shows that wavenumbers 1 and 2 are untrapped
with the characteristic westward slope with height which contrasts with

the nodal structure of wavenumﬁer 3.
i

As in the analytic solutions of the previous chapter, the amplitudes

! .
of contour height perturbations are roughly inversely proportional to

i
zonal wavenumber m. Surface amplitudes of 15, 9 and 4 mb are found for

m=1, 2 and 3 respectively and are of the correct magniéude to account for
the Siberian anticyclone. The maximum of surface perturbation (Siberian
High) is about 70° downstream of the region of maximum cooling and is
nearly 30° to the west of the surface temperature minimum (Fig.L.5(b)) —
similar to the solid rotation atmosphere solutions. It should be noted
that for the solid rotation atmosphere solutions, the heating funection
amplitude a was equivalent to a heating rate of 3°C/day, double the value
used here to give a similar surface amplitude wave. This is due almost
entirely to the reduced zonal wina speed in the heating region for the
realistic zonal wind case. According to the Fourier analyses of Clapp's
heating rate caiculations, 3°C/day is an overestimate (by a factor of 3)

and the values used in the present calculations are more in line with

those of his work.

Pronounced minima in contour height amplitude occur near 4 km
coinciding with the region of most rapid phase tilt westwards. The trapped
wavenumber 3 mode has zero amplitude, associated with nodes at 4 and 17 km.
The amplitudes of all three increase steadily with height up to 35 km above
which the increase is very rapid and their amplitudes become unrealistically

large.
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In Fig.4.6, the wavenumber I solution is compared with constant
shear solution found in Chapter 3 and the latitudinally-averaged data of
Muench for January 1958. Agreement between the calculated wave structure
and the observations is striking, particularly in the phase and the constant
shear calculation appears to be better than realistic profile case. It
must be borne in mind that only the n =2 harmonic mo@é of wavenumber i has
to be considered and all the other even »n modes will éontribute to the
structure of wavenumber I. In view of this and the ;eglect of the

orographically forced component of wavenumber 1 the good agreement is
. '

somewhat surprising.

The phase tilt of wavenumbers I and 2 is very similar and of magnitude
typically about 9°/km yet in terms of degrees of longitude, the wavenumber 2
tilt will be half of this. The observed phase variation of* wavenumber I
and 2 in Fig.l.2 shows that the slope of the wavenumber 1 curve is roughly

twice as rapid as that of wavenumber 2.

Another useful rule of thumb to remember from the calculated phase
structure is that the phase at 10 km is 180° different from that at the

surface, which compares with 7160° from the Muench data of wavenumber I.

The amplitudes of the temperature fields are shown in Fig.k4.5(b)
and all reveal large surface perturbations in conjunction with the maximum
heating rate and steadily decrease with height up to 10 km. The amplitudes
increase suddenly at the model tropopause in association with the increase
in static stability and become very large above 25 km for the propagating
modes. As with the .contour height amplitude, this rapid amplification
in the stratosphere is due mainly to the inertial effect of density.
Wavenumber 3 achieves a maximum in temperature amplitude of about 5°C at
25 km and decreases above. Phase tilt of the temperature perturbations

is much less rapid than that of the contour height field particularly in
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the troposphere where the difference in phase between 0 and 10 km is 60°
compared to 160° for the height perturbations. Relating this behaviour
to the structure of the Siberian anticyclone, we may conclude that although
the anticyclone is a shallow feature, its associated temperature anomaly

is deep.

'Green has shown (unpublished lecture notes) in an analysis of the
pressu}e and temperature deviations over Siberia (compared with the zonal

mean) that this is indeed the case.

IThe negative temperature anomaly was found to vanish (and change sign)
near 11 km whereas the positive\pressure anomaly vanishes at about § km.
A quarter of a wavelength phase sﬁift in the temperature field between the
surface and 11 km might be inferred from this observation and Fig.u4.5(b)
shows that this fits in well with the theoretical calculations. Unfortunately,
there is no data available at present of the Fourier analyses of the

temperature field at selected heights in the troposphere.

A spectral decomposition of the mean January temperature field in
the troposphere would help considerably to disentangle the contributions of
orographic and thermal forcing to the total stationary wave patterns.
Temperature amplitudes in the troposphere associated with orographic forcing
are calculated to be ~ a few degrees centigrade and much smaller than

those of the thermally-forced waves.

(c) High zonal wavenumber, thermally forced motion [P;, P: and ngcos 6))

Fig.4.T gives the amplitude response to forcing at wavenumbers 4,
o and 6 Wwith a heating function which peaks at 2.5 km with a heating rate
of 2°C/day. It is evident that even though the forcing function is probably
an overestimate the magnitude of the pressure perturbation forced is small

and at most gives a surface wave of 4 mb. This is in line with inverse
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relationship between forcing magnitude and zonal wavenumber as previously
discussed. The resulting wave motion quickly becomes evanescent with
only one node at 4 km in contrast to the two nodes of wavenumber 3. Not
only is the response much smaller than for wavenumbers I, £ and 3 but the
higher »n parameters lead to stronger trapping of wave energy and virtual
confinement of the disturbances to the troposphere. Zero poleward eddy
heat transport is indicated by'fhe presence of vertical phase lines and
we conclude that hggh zonal wavenumber thermally forced waves (m> 3) do

not play an important part in the large-scale dynamics as anticipated for the

low wavenumber wavgs.

K

(d) Comparison of the responses to various heating profiles Sy(z)

Deviations of the net, time-mean heating rate in the atmosphere from
its zonal.average are only roughly known and even less is known about its
variation in the vertical. The only aspect of the distribution of heating
associated with the underlying topography that one can be reasonably sure
about is that the bulk of the non-adiabatic effects occur in the lower
troposphere below 5 km. If latent heat release contributes strongly to
the total longitudina; variation of heating (reflecting the time-mean
longitudinal variation of precipitation), one might expect the amplitude

of heating to attain a maximum near the condensation level at about 2 km.

e
The Fourier analysis of longitude distribution of heating calculated

by Clapp (1961) revealed average heating rates throughout the 0 to 5 km
layer of around 1°C/day for the low zonal wavenumber components.  We chose
sinusoidally peaking heating functions So(z) such that the vertical average

is of this order of magnitude with:

o ( '
So(z)=[2 C/deéx]sin TTZ] for 2<5 knm

. 260°K 5 km
(1) . .
So(z) =0 elsewhere
and
_{1°c/day) . [ mz
(i) So(z)-—[ 5 0K }SlnLEBKm} for z<8 km
So(z) =0 elsewhere.
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The amplitude and phase of the contour height and temperature fields
resulting from the thermal forcing of the P, mnd P5(cos8) modes with these
heating functions are given in Figs. 4.8 and 4.9, together with the

'exponential' forcing.

Thelr similarity in height field response is surprising with-virtually
identical phase structure and all showing minima in their respective amplitude
curves near 4 km with only the surface amplitude showing appreciable variation.
The apparent indifference of the qualitative amplitude structure»to radical
alteration of heating function shape probably refléﬁts the dominagce of
vorticity generation by compression against the rigid lower surface (see

the beginning of Chapter 3).

This result is quite gratifying since it provides stronger grounds
on which to justify making comparisons with observation in the lower
troposphere and knowledge of the vertically integrated heating rate, which

is more readily assessed, provides the most important information.

The structure of the temperature field of the P§ mode and the
associated poleward transports of heat are given in Figs. 4.9(b) and L.9(c)
for the same profilés of S¢(z) and in marked contrast to the contour height
fields show strong differences between each other. The amplitude of the
temperature field and poleward heat transport have similar shapes to that
of the Sy profile in the lower troposphere and increase rapidly across
the tropopause in response to the sudden increase in static stability.

This is in agreement with the relation derived in Chapter 3 which shows
that the poleward eddy heat transport should be proportional to the vertical
gradient of potential temperature in adiabatic flow for untrapped stationary

waves.

The magnitude of stationary wave heat transport calculated, if
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realistic, leads to the conclusion that this transport mechanism is as
important as that arising from unstable baroclinic waves and therefore is
an impoytant component of the wintertime general circulation. Unlike
the heat transfer properties of baroclinic eddies, the transport by
stationary planetary waves is more or less independent of the shear of
the zonal wind (and hence the north-south temperature gradient) and for
upward energy propagating modes in negative shear the heat:transport is
upgradient and the system behaves as a thermodynamic 'refrigerator'. This
situation arises in thg'region above-the tropospheric jet én wintef.
i

Observations of the monthly mean temperature waves (m=1, 2 and 3)

in the troposphere would again greatly assist in determining the Sy(z)

profile, especially in view of the similarity in shape of the temperature

wave amplitude and heating function.

Oort and Rasmusson (1971) have caléulated from observations, the
total eddy heat flux (or temperature flux BTEEW) averaged around a latitude
circle and partitioned it into stationary and transient eddy contributions.
The latitude-height distribution of both transient and stationary eddy
transports of heat areAbroadly similar with low-level maxima near 850 mb
and it has been argued by White, A. (1975) that the stationary component
might represent the organising effect of sfationary waves on cyclone scale

motion.

However, in so far as there is good agreement between amplitude
and phase of the contour height fields and the data of Muench, the untrapped

stationary wave contribution to the poleward heat transport must be important.

(iii) Thermal forcing in summer

Previous studies of stationary, planetary wave motion have tended

to concentrate on the wintertime structure, particularly in the stratosphere



107

in connection with the upward transmission of energy. The nature of

forced motion in summer poses a more subtle physical and mathematical
problem resulting mainly from the transition from zonal westerly to easterly
winds in the stratosphere above 20 km. The differential equation (2.k4)

has a singular point at Y(z) =0 where the zonal wind speed is zero and

the numerical integration technique outlined cannot work in its vicinity.
The up%ard propagation of wave‘energy towards the zero of zonal wind gives

t
rise to the critical layer absorption process at the height corresponding

to ¥v=20.
'

'
The problem of the integration of (2.14) in the neighbourhood of the

singular point is circumvented ﬁy‘solving analytically in the surrounding
region and connecting this solution to the numerical integration region
below as a boundary condition.  The phenomenon of critical layer absorption
can in this way be included yet examination of the nature of the process
raises some doubt as to its realism in stationary solutions. The following
section will be devoted to the method of solution of the mathematical
problem with the critical layer absorption process included and possible
ways of eliminating th¢ unphysical aspects of the linearized analysis

associated with it.

The introduction of an Ekman boundary layer into the model is found
to improve the agreement with existing data of the low-level structure of

wavenumbers 1 and £ in July by providing a sink of wave energy.

(a) Method of solution

Flz=)= C WK,%(h) pr(%‘j)

— ——~ _—  — UPPER BOUNDARYy TO0O z=H
NuMERICAL INTEGRATION
REGION

A 20KM, - - - — - — =
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In precisely the same way that the 'radiation' condition was applied,
so the connection of the constant negative shear solution above to the
numerical solution below can be achieved through the use of interfacial
conditions on pressure and vertical velocity. As before, the vertical
velocity is expressed in terms of the non-divergent streamfunction through

the thermodynamic equation:

gB R? dz 3d>3z

M'L[_lk'_ _w_] i

and demanding continuity of pressure (pyfY') and vertical velocity with
the constant shear solution above, gives a condition on F(z) at z=H which

can be shown to be:

m T A 1(hy)
a1 (Y ay ¥k, ¥ 1 - )y
at z=H or h=hy
V(H)
with % Sy ﬁ— s - H
dz z2=H,

for the constant shear solution Y, = C1W. %(h)exp[-z—[}i—{]PZ(cos G)etmd) whose
)

energy density is bounded at infinity.

The solution in the lower region is found by numerical integration
with (4.10) as an upper boundary condition and w'=0 giving the lower
boundary condition. From the computed solution, the value of F(z) at z=FH

is used to determine C; and hence the solution in the constant shear layer.

The 'realistic' variation of Y(z) was chosen to have a sinusoidal
peak at 70 km as given in Fig.4.10(a) and again the static stability
variation was taken from average mid-latitude profiles given in Charney and
Drazin (1961) (Fig.L4.1l0(b)). Diagrams of amplitude and phase for the

m
Pm_,,](cos 8) modes forced by a heating function with vertical profile

o
Sol(z) = [32%3%]51%4“&] are given in Fig.L.1l. All three have similar
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amplitude curve shapes with minima at 4 and 78 km and maxima at 20 and 14 km
with a strong surface perturbation. The amplitude decreases rapidly in
the easterlies and is virtually insignificant above 30 km unlike in the
wintertime stratosphere where the westerlies transmit wave energy. Phase
variation &ith height is virtually identical in all three, with strong
westward tilt up to the critical level above which there is no change and
the waves are evanescent. This.implies upward propagation of wave energy

|
towards the critical level and its subsequent absorption there. Poleward

heat transport v'S8T' changes discontinuously at this level and of course

is zero in the easterlies above.,

\

Generally, amplitude magnitudes are larger than theiy wintertime
counterparts because the zonal wind speeds in the troposphere are smaller
in summer and the P;(cos p) mode is unrealistically large at the surface
for this heating function magnitude. Analyses of the observed amplitudes
of wavenumbers I, 2 and 3 in winter and summer are given by Eliassen, E.
(1958) at the 7000 mb, 700 mb and 500 mb levels and show that the July
amplitudes are at least half those of the mean January contour charts.
This is exactly opposite to what one might have expected given similar
heating function magnitudes and so‘it must be concluded either that tﬁe

heating rates are much smaller in summer or that the theory breaks down.

(p) Critical-level absorption

The critical-level absorption phenomenon is a feature of the
linearized analysis and it is necessary to consider its feasibility in
the real atmosphere particularly relating to the behaviour of stationary
planetary waves. Geisler and Dickinson (1974) and Murikami (1973) have
made numerical studies of the non-linear coupling of wave and mean flow
in critical level absorption problems and have found that the resulting

accelerations of the zonal flow in the neighbourhood of the critical level
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conspire to wipe out the gradient of mean potential vorticity thus
causing the eventual reflection of all wave energy. They considered
only the horizontal propagation of Rossby wave energy towards a critical
layer; though it seems probable that the same qualitative results will

hold for vertical propagation.

It will be discussed in some detail in the next chapter on wave/mean
flow interaction how the acceleration of the zonal flow due to the
'second-order' effects is proportional to g%{%g-ETEET] in the absence of
horizontal eddy zonal momentum transport and consequently the discéntinuity
of heat transport calculated at the zero-wind line implies an infinite
draé there. This would be gquite inconsistent with the assumption of a
steady, balanced mean zonal wind and thus the stationary solution with
critical level absorption must be rejected. It is interesting to note
that the differential equation property that %3 ETEET is independent of
height found in Chapter 3 is exactly a statement of the non-interaction

of stationary wave with the mean flow and holds in all adiabatic flow

regions away from critical levels.

One mighﬁ conjecture that a steady coexistence of wave and mean flow
can only be achieved when no wave absorption occurs which, as shown in
the numerical experiments of Geisler and Dickinson, is possible if the
energy is reflected before it reaches the zero-wind line. The profile
of zonal wind only has to be altered in a vanishingly small region
about u=0 to effect the total reflection of wave energy by destroying the

basic state potential vorticity gradient.

The northward gradient of mean potential vorticity @, is given by:

9. = 2[i+9] _ fcii_d.{p_o@}'
* R3 R gR po dz| B dz

and it vanishes when the zonal wind variation in the vertical is chosen
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so as to cause the cancellation of the above terms.

Other small alterations to the zonal wind field in a small finite
region about the singular point cause a complete change in the nature of
the solution and lead to reflection. For instance, if the zonal wind
goes to zero not jusf at a point but in a layer of any finite depth, then
the stationary, linearized potential vorticity equation in this la&er

|
reduces to:

2y Y

R 0

i
and hence the perturbation must vanish in the layer. All wave energy
will suffer perfect reflection from the zero wind layer regardless of its =

thickness.

Also, allowing a discontinuity in zonal wind so as to exclude
zonal wind values about u =0 causes total reflection as can be inferred

from the two layer model solutions in Chapter 2.

That the structure of the stationary planetary wave system should
depend on a vanishingly small region about u =0 seems physically implausible
and in view of the wave/mean flow arguments given, i£ is concluded that
the zero-wind level should reflect wave energy and so the 'summer solutions'

are re-calculated with a more appropriate upper boundary condition.

Perhaps the simplest mathematical 'trick' that can be used to avoid
critical level absorption while retaining the stratospheric easterlies is
to allow a small discontinuity of zonal wind so as to exclude a small region
containing the point where % =0. The connection of the upper analytic
solution to the lower numerical solution is based on the interfacial
conditions as derived in Chapter 2 for discontinuous zonal winds. The
solution obtained was compared to that arrived at by imposing a rigid 1lid

boundary condition just below the zero-wind level (and integrating numerically)
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with the result that there was little difference between them.

The amplitude and phase of the P; and Pg modes obtained under an
upper rigid 1id boundary condition are given in Figs. 4.12 and 4.13

respectively and show a pronounced nodal structure.

(c) Introduction of an Ekman boundary layer

Charney and Eliassen (1949) introduced the concept of 'Ekman pumping'
whereby the effect of a turbulent boundary layer on the free atmosphere

can be crudely incorporated into a lower boundary condition on vertical

velocity. For steady, boundary layer flow, approximate balance exists
' 1 3t
between the stress torque curl[a—-szy] and the (linearized) stretching
0

term g%-é%(pow) (where Ty is the horizontal component of the stress vector).

Integrating over the whole depth of the boundary layer, putting w=0 at

the ground and assuming the stress vanishes at the top of the boundary layer
gives: 7
powp = ﬁ curl Tg

where wp is the induced vertical velocity at the top of the boundary layer

and Tg is the surface stress.

It is evident that an upward mass flow occurs for regions of cyclonic
surface stress. A form suitable for inclusiop as a lower boundary condition
Tin the quasi-geostrophic theory results from the rather crude assumption
that the surface stress is proportional to the gesotrophic wind so that

Tg = pocjb and gives:

with ¢ equal to a constant and Cg the geostrophic vorticity. ¢ may be
related to the eddy diffusivity X of Ekman-Taylor theory and approximates
to vKf. Using the non-divergent streamfunction Y, the expression for

the induced upper vertical velocity W is given by:
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P
vy = »/?—o' Vil

and substituting this into the thermodynamic equation yields a lower

boundary condition on V.

Selecting a typical value of eddy diffusivity of about 10 m?s™

(Brunt 1934) and solving the problem of (ii) with this modified boundary
condition gives amplitude and phase as in Figs. L4.12 and 4.13 (dashed lines).
The structure is very similar to that of the frictionless case except that

the phase lines tilt eastward with height in the .bottom 4 km.

(d) Interpretation of the planetary wave structure in summer and comparison

with observation

The most outstanding difference between the summer and wintertime
structure is the rapid attenuation of wave energy above 20 km in summer
where the prevailing winds are easterly. At the 40 km level, the predicted
amplitudes are small enough to be barely detectable by the sparse network
of observing stations that collect rocket data and this is confirmed by

the observed contours which are almost parallel to the latitude circles.

Unfortunately, there is insufficient data of amplitude and phase
of the low-wavenumber waves to allow a similar comparison with theory to
the one made with the January data given by Muench though some Fourier
analyses have been made in the troposphere by Eliassen. Amplitude and
phase of wavenumbers 71, 2 and 3 are calculated at the 1000, 700 and 500 mb
levels in July (at 50°N) by Eliassen (1958) and these form a rough basis

for comparison with the theory in the lower troposphere.

As has been noted, the general amplitudes are much smaller than
those calculated which probably implies that longitudinal asymmetry of
heating is considerably smaller in summer than winter. Wavenumbers 1 and 2

show distinct amplitude minima near 700 mb (~ 3 ¥m) though the accurate
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location of the minimum is impossible from data at only 3 levels. Again,
the presence of an amplitude minimum suggests the dominance of thermal

forcing in summer.

Strongly eastward sloping phase lines are indicated by the Eliasseﬂ
data up to 500 mb which is in marked disagreement with those model solutions
that allow a critically absorbing layer but.compares more favourably with
the trapped solutions (Figsf 4,12 and 4.13), especially with the inclusion

of a frictional boundary layer.

i
Oort and Rasmusson (f971) calculate from observations, a small

equatorward, stationary eddy transport of heat in summer and if we assume

this to be carried mainly by low wavenumber stationary %aves, then this is

consiétent with the eastward slope of the phase lines. It should be noted

that the transport of heat in summer is from cold to warm regions constituting

a 'refrigerator' and is opposite to what one might expect of a diffusive

transport of entropy through fluid instability.

It follows from the Clausius statement of the second law of
thermodynamics that an external agency is involved for the system to act
as a refrigerator. This is provided by the forcing and the origin of the
heating and cooling regions which is external to the atmosphere (i.e. the sun).
Note that orographically forced motion could not act in this way for the
earth/atmosphere system since no outside perturbing forces are invoked and

the overall transfer of heat must be from warm to cold.

The observations of stationary wave heat transport in summer support
the hypothesis that the pure, long wave transport of heat dominates any
organised, transient wave transfer in the total stationary wave heat transport,
since the latter would imply a poleward transfer of heat, contrary to

observation.
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Wavenumber 3 is observed to have vertical phase lines below 500 mb
in winter and summer according to Eliassen and this is in agreement with

the theoretical prediction that the wave is trapped.

Clearly, a more detailed analysis of the strﬁcture of planetary
wave motion in summer is required before a proper evaluation of the role
played by stationary planetary waves in the general circulation can be
assessed, It is hoped that these calculations provide theoretical guidelines
for the interpretation of the observed structure and assessment of the

importance of critical level effects.

(iv) Orographic forcing (Winter)

The orographic forcing calculations of Chapter 3 are repeated with
realistic winter profiles of zonal wind and static stability fbr surface
elevatioﬁs given by =z =(200 gpm)ézﬂ(cose)cosm¢ taking m=1, 2 and 3.
Amplitudes and phases are given in Fig.4.1lh and show that the surface
amplitudes are much smaller than those for thermal forcing and are typically
~ 1-2 mbdb. Contour height amplitudes are generally a good deal smaller
than observed magnitudes given in Fig.1l.2 and, for instance, the predicted
wavenumber 1 amplitude at 30 km is 7170 m compared to observed amplitudes
of 500 m. The.phase slope westward of the propagating wavenumbers 1 and 2
is fairly uniform and implies an average vertical wavelength of ~ 30 km.

Nodes appear in the trapped wavenumber 3 structure at about 2 and 17 km.

It should be remembered that only one harmonic component of each
zonal wavenumber has been selected and it is instructive to compare the
amplitude curves of higher n modes to assess their relative importance.
The amplitudes and phases of the Ez modes (for n=2, 4, 6) are given in
Fig.4.15 and correspond to forcing by the same surface elevation amplitude

of 200 gpm. (N.B. these modes have zero amplitude on the equator.)
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The magnitude of the forced contour height amplitude for each mode
is similar up to 20 km above which the Pé wave is highly attenuated. Higher
7 modes are even more strongly attenuated in the stratosphere and it may be
concluded that the main contribution to the wavenumber I disturbance there

comes from the P; and Pi modes.

The calculated tropospheric poleward heat transport effected by the

i
orographically forced waves P; and Pé is an order of magnitude smaller

than that indicated by their thermally forced counterparts with v'87' ~ 7°C m s~
’ i
at most.
i

(v) Stationary planetary wave forcing: Summary and conclusions

The underlying tenet of the work presented so far is that the upper
stratosphere behaves as a wave energy sink for forced, stationary wavenumbers
1 and 2 and that this aspect of the motion has important repercussions on
the general circulation and its modelling. The largest planetary scales
of quasi—geosfrophic motion are highly dispersive which permits the propagation
of wave energy away from the regions of forecing for stationary disturbances.
This can only be properly accounted in terms of a quasi-geostrophic thepry
represented in sphefical polar geometry since B-plane theo;ies underestimate

the ability of planetary wave energy to propagate in strong westerly winds.

It has been deduced from the observations of low wavenumber stationary
waves in January that wave energy propagates freely up to about 30 km above
which it is strongly absorbed by physical processes that are not clearly
understood with the result that the wave energy density decreases rapidly
above 50 km. The whole issue of the mechanism of wave energy destructién
in this region is circumvented by the use of an energy-transmitting boundary
condition at an appropriate height. With this knowledge of the response
of the stratosphere to upward propagating Rossby wavé energj, we have set

up models of orographic and thermal forcing in the troposphere and determined
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their structure and heat transferring properties.

General agreement of the vertical structure of wavenumber 7 with
Observations is very good especially for the thermally forced wave where
longitudinal variations of lower tropospheric diabatic heating of the order
of 1°C/day set up a realistic 'Siberian anticyclone' surface disturbance

and cause a strong stratospheric wave.

i
One of the important features of the thermally-forced, untrapped
stationary wave is the large poleward transport of heat in the region of

!
diabatic heating.

The strong lower tropéspheric stationary wave transport of heat
ié in good agreement with the stationary eddy heat transfer in January
calculated by Oort and Rasmusson from observations. This suggests that
the untrapped stationary wavenumbers I and 2 in winter carry as much, if
not more,. of the total poleward eddy heat transport as the transient
cyclone waves since the Oort and Rasmusson calculation of stationary eddy

heat flux is slightly greater than the transient eddy heat flux.

The main distinguishing characteristics of the thermally-forced
wave as compared to the orographically forced wave (N.B. of planetary scale)
is the much larger surface disturbance and amplitude minimum near 4 Xm.
Both surface contour height and temperature waves are an order of magnitude
larger for thermally forced waves than for planetary waves set up by the

continental elevations.

It must be stressed that only those waves of hemispheric extent
are referred to in this comparison and locally, near mountain ranges such
as the Himalayas, the orographically forced wave may be much larger. We

are interested primarily in these continental scale waves that influence

the stratosphere through Rossby wave propagation.
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The structure of low-wavenumber, stationary waves in summer is
quite different from that of the wintertime in the stratosphere with the
prevailing easterlies blocking the upward flow of wave energy for all waves.
The existence of a critical layer (where u=0) in the steady flow description
of the wave structure has been treated with scepticism in view of the
implied unsteadiness through interaction of the wave with the mean zonal flow.
This is backed up by the disagfeement between the theoretical solution;with
a critical level effect and the observed eastward phase tilt. The observed
absence of poleward eddy heat flux'in the stationary waves (or even a i
southward transport) in the lower troposphere in summer points to the |
absence of upward wave energy transmission which one would expect from
a theory with critical level absorption. The absorption of wave energy
by boundary layer friction might account for the eastward slope of the:
phase lines with height in the lower troposphere, as found in the calculations.
This fundamental difference in planetary wave structure between winter
and summer might play an important role in determining the seasonal variation

of the zonal mean circulation — primarily through the poleward heat

transporting properties.

Year to year fluctuations of the January monthly mean zonal wind
-of as much as 700 % occur in the stratosphere and in view of the sensitivity
of the transmissive properties of upward propagating Ro;sby waves to
zonal wind speed changes, one might expect some variation in wave structure.
Sato (1974) gives the amplitudes and phases of wavenumbers 1, 2 and 3
between 500 and 10 mb for the winters of 1963 to 1970 at-60°N and 40°N.
Some interesting differences in vertical phase variation are indicated

between years as is exemplified by the years 1963 and 1967 tabulated below:

Wavenumber Phase (°longitude/km)

JAN. 1963  JAN. 1967

1 10 6

2 4.4 1.6
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Apparently the upward transmission of wave energy was much stronger
in January 1963 with steeply westward sloping phase lines which, incidentally,
2
compare very favourably with the calculated slopes of the P; and P5(cos 8)

modes for the realistic basic state profile.

The two-layer models cof Chapter 2 emphasise the suddenness in
transition from the propagating to evanescent regimes with increase of
zonal wind and tﬂere is good reason to believe that planetary waves near
this transition point will be susceptible to small zonal wind changes.
This sensitivity %o the mean stratospheric zonal wind speed could provide
the link between ;he high atmosphere circulation and the surface climate

that has been professed by climatologists for so long, though this is

of course, rather speculative (see for example Willet, 1961).
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CHAPTER 5 THE INTERACTION OF A STATIONARY WAVE SYSTEM OF SLOWLY

VARYING AMPLITUDE WITH THE 'MEAN' FLOW

(i) Theory of wave-mean flow coupling

The previous chapters have been concerned only with stationary
(3/3t =0) solutions to a very specific problem of large-scale forcing
without questioning how such a -state might be attained or even if it is
possible. The time dependent evolution of a stationary wave system from
a region of forcing involves a multitude of interactions between the wave
and basic state and within the wave itself. Tt is only for 'vé;y small'
amplitude wave motion that it is justified to treat the basic state parameters
as unmodified and the questions that arise are 'How small is 'very small'?'
and 'What effect does the wave have ?'. In a sense, the conventional
initial-value problem for the response to a 'switch-on' of forcing ﬁroduces
'only half the description of the motion since the very small changes to
the basic flow are not calculated. The sudden 'switching-on' of forcing
causes a spectrum of 'transient' waves which spread out in all directions
with time. We shall only consider the behaviour of the interactions of
wave with basic flow under the assumption that the forcing varies slowly
in time and that the wave system can always be régarded as a quasi-stationary

system (no transients).

Analogous approaches exist in classical mechanics for slow time-varying
oscillatory systems (e.g. the pendulum bob on a string pulled over a support)
such that the time scale over which the string is shortened is much longer

than the period of oscillation.

In the approach given here, we will not be concerned with the type of
dispersive motion involved — only that it should be consistent with the
linearized Boussinesq equations (hydrostatic). The resulting description
is applicable to inertial-gravity wave motion as well as planetary Rossby

wave motion.
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The following assumptions are essential:

(1) The wave system set up is slowly varying in time.
(2) Changes in amplitude take place slowly in the vertical.

(3) We consider regions away from critical levels (5==0).

In general (1) implies (2) since if changes are transmitted upwards
with a finite speed (typicaily-the group speed) then the smallness in time
i
variation implies largenessAof vertical spread of the changing amplitude.
This will not be true near Fhe critical layer where the group speed tends

to zero. We shall not be Foncerned with evanescent wave systems or

trapped situations even though the results may be applicable to some extent.

The smallness of variation of z and ¢ and the size of the perturbation
gquantities is denoted by € such that we may define new height and time
variables Z=¢€z and T=¢€¢t. Also g' ~ O(e) where q' represents ahy

perturbation quantity.

Eliassen and Palm (1961) (hereafter EP) derived equations for
stationary waves forced by mountains which relate physically significant
gquantities such as the average perturbation pressure work term to eddy
momentum and entropy transport. The procedure for the derivation of their

equations will now be re-capped.

The standard Boussinesq set is

%%—- fv + g%{%%} =0 x-momentum equation
%% + fu + g%{g%} = y-momentum equation
.gg{gg] - gép =0 z-momentum equation
%§-+ %ﬁ- s%—g%{pow) =0 Continuity of mass

Conservation of entropy.
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Linearizing about a basic state of zonal flow with

u = Uly,z,7) + u'(x,y,z,T)

v = U'(x,y,Z,T)

w = w'(x,y,2,T) T = €t
&p=6p + &p
8o =8¢ + &¢'

(overbar indicates x-average )

gives to first order in €:

= ou' U U - )21 B - N\
Uam + 5 +w' e T fo' + Bx[po] =0 —(1)
=ov' v, 9 |8p'| _ -
Uoo * fu' + By[po] 0 (2)
9 |ép v

az[po] 66" = 0 —(3)
7300 4 1 3%, =g —()

X 2
du L B ) =0 ——(5)

Eliminating w' between (1) and (4) and re-arranging gives -

Eﬁ&bl _ _Bi_].aﬁ_
i[[—,u.+§z _ 5 J+ [w_f_az_;zLJv. _,

3 Po B 9y
sy 2276y
Multiply by (Uu'+ -6% - B and average with respect to x
T 37 350 7o, op'y ﬂ——"'/ -
[ay_f_az Yy B][qu+ Po ZU&bUB =0
; 30 3T 35¢
if 5y f - 5z 8y /B # 0 then
U
T - poﬁ[a?z & - u—vu'v] ——(6)
mi . into: gyt + &2 4 (3T 3y _
Similarly re-arranging (1) into: a:I:[Uu' + po] + [By - f]v' + w'az =0

multiplying by (Uu' + 8p'/po) and averaging w.r.t. x gives
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[ﬁ— ][Uu_'ﬁ +§_&'v_'] +£[u‘—'ﬁ+ 8 'w']= 0

Eliminating 8p'v' from the above with equation (6) gives:

Sp'w' = poﬁ[&%m.l) m_ u'w'] —7)

The EP relations (6) and (7) relate the vertical and meridional eddy

pressure-work terms to the verfical and meridional flux of momentum and
i
poleward transport of entropy. Sp'w' and 6p'v' are tentatively identified

with the rate of transmission of wave energy upwards and in the y-direction.
- ]

!
The zonally-averaged zonal momentum equation is formed and can be

v

re-arranged into:

30 , (580, (=3, 3

_— - - ' ' - 3 = _—
~g T Pov 5y * pow o=t 5 pou'v') + -—(az pou'w') - fpov (8)

using the continuity equation and the property that 557/8x==0 when the
x-coordinate is cyclic or if g' vanishes at the end points of the averaging

interval.

This expresses that the zonally-averaged zonal momentum changes
through advection of mean or eddy momentum or by the coriolis force acting

on the north-south drift (representing the conservation of angular momentum).

Zonally-averaged the conservation of entropy equation with the use

of the continuity equation yields:

BE + 3y (88) + 2o 5(po8f) + BB = 0 —9)

The convergence of vertical eddy entropy flux is negligible for
flows where the product of Richardson and Rossby numbers is much greater

than one, and will be omitted hereafter.

It will now be shown that under the assumptions made at the beginning
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of this section, the time rate of change of zonal mean entropy is small
compared with the convergence of poleward entropy flux, i.e. the first term

of (9) may be neglected.

Zonally averaging the y-component of the momentum equation leads to:
3 (3 7 9 — 3(61)]
—|v°) + — =—[poww U+ =0
By( ) Do az(pD )+ f oY (Po

and since v and W are 2nd order quantities a@ most, 53 and W can be replaced
by »'2 and D' respectively. Differentiating with respect to z and ¢ gives:

3 77 2 .
2 0 2 alaf1 a3, - 8 (,00) , 9% |3 ()] _
€ aTazay(”' ) + egp Bz[p % (p"””‘")] T E%z [f at] * otay Bz(po 0

3

(with the use df Z=¢€z and T=¢t). Notice that it is not necessarily correct

to replace é%-with Eé%’When operating on terms involving density since

changes in the vertical of density might be more rapid than wave amplitude.
The zonally-averaged hydrostatic relation is: °

3 (6p) _ ==
-;;5[5%} = g6¢

and- substituting this into the above equation yields:

2_9° (0 818 (2 3 Sim 2 [av 8289 _
< omozay (') * cap 82.[5- 32 (Po ”"‘"]] * Efaz{at] * 95tay 7

O(e") e?) O(e*)

The upper bound on the magnitude of %éé can be deduced by assuming that

it balances the largest term in the equation. The second term is at most
(](63) but in practice scale arguments show that is much smaller than the
other terms. The term Ej’az[g%g is of order e? at most since 3U/dt

is S()(EZJ and therefore we conclude that-—ih is less than or equal to
3rd order in €, The above argument would be considerably simplified had

we assumed initially that the mean flow is in geostrophic balance.
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It is permissible, therefore, to reject this term in equation (9) compared
to é%{é&;) which is O(EZ) and assume that the convergence of poleward

entropy flux drives the mean meridional circulation and w = - %-é%{é@%).

Using the zonally-averaged continuity equation:

) - 2 —\ _
55(000) + ag(p°w) =0

¥ can be expressed in terms of poleward entropy flux so that

> _.l__é_(poé§§}

po 92 B
—— _ - = : 9 _ 1 i
Now 08¢ = v'8d' +v 8¢ and if we take %z~ Ho at most:
0®) ~ vide' %9 ( O( ) denotes the order of magnitude)

BHq BHq

Since 56/BH0 is typically <<I it may be assumed that the advection of entropy
by the mean meridional circulation is much smaller than that of the eddy

transport,

agii(po_v_'ﬁi] and 5 = -

Po 92 B gi{6¢‘ ) (10)

m|~

The approximations made so far appear rather stringent though their
dependence on the assumptions of slowness of time and height variation is
much less critical than implied here. Fgr instance the advection of
entropy by the mean meridional circulation is always much smaller than

the eddy transport in the stratosphere and one might expect the conclusions

to be more generally wvalid.

Substituting the expressions (10) into equation (8) gives on

multiplying by po

Kl v' 8¢ 3 83U , 3. Ty 4 O (e T D[ v _
sz (Pol) + 3 (Oo 5 ]5—5[00—3 ]$+3—y(00uv)+—a—z-(00u w')—faz[po | =0

Re-arranging and collecting terms leads to:
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B 3 4 0 == v'8¢' U 3 | (37 v' 6o’ —
o) + Soarw o TR 2B A TE i)

and on using the EP relations for the terms in { } we have:

B¢ = _ 3[po) . B[
3¢ (Pol) = By{ T ] ¥ Bz[ 7 ] (11)

Notice that in general the zonal momentum field is accelerated in

regions of diverging wave eneréy flow and that the important quantity
i

involved is sp'z'/ﬁﬂ This expression implicitly contains the acceleration

of the mean flow by advection of zonal momentum polewards and upwards by
!
the iqduced circulation and also the coriolis acceleration due to north-

south movement.

. Lastly the wave energy equation is formed from the time-dependent,
linearized momentum and thermodynamic equations as follows. The perturbation

momentum and hydrostatic equations are:

d , 70 aoU 93U e o(sp' | ._ ,
[5? + Usg)uv +~vv§g-+_w N fv +-§E[po]'i 0 - —(12)
o L7 d%p'| o —
[—3—5+Ua—x]v’ + fu' + ay[po] 0 (13)
9 (sp') Voo _ N
7 po] - g8¢ 0 (1Lk)

Multiply (12) by u', (13) by v', (14) by w' and add; using the continuity

equation and re-arranging gives:

3 _ — —
[—B—t_ + U%} [% po[u’z + vrz)] + po_g_zurvr + po%u'w' - pogw' 5o’

d d d
+ a(optur) + -a—y-(ap'v') +==(6p'w') =0 ——(15)
The linearized equation for entropy conservation is
d =9 9 77 _-
[—8—5+U%]6¢' + v'—a—y-(Sd; + w'B =90

and after multiplying by peg8d'/B gives
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i_ 7.0 96¢'2 _ _J: ! .B_U—_ ' =
(at + Ug] [po———ZB ] Pog V'8¢5 + Pog SR’ = 0

(using the thermal wind equation).

Adding to (15) and averaging w.r.t. x yields:

_QE —Qz ——.@ il 10U 9 (5 9 1,91 ) =
o pou'v'ay +poutw s~ poL 0T EY S ay(dp v') 4+ az(cSp w) =0 ——16)

- 1 — — N
vhere E = 5 po (w2 + 02 + %&p'z].

Using the Eliassen and Palm relations, (6) and (7), equation (16) can be

re-arranged into the form:

= - [J{— —

ot oy EE

U

P _ St oy [
dE a[sgv]+a[5 w]
U

and after multiplying (11) by U and adding to the above expression we have:

X
LA R e

This is the main result of this section and expresses the constancy

in time of the sum of the specific zonal kinetic energy and total perturbation

wave energy at a point in the y-z plane. Summarising the theme of the
argument presented: the zonally-averaged momentum and perturbation energy
equations are formed and knowledge of the wave-coupled meridional circulation
(,w) (induced by the poleward eddy entropy transport) and the EP relations
allows them to be linked. The slowness of variation in time and.in the
vertical direction are the main assumptions. It can be seen from equation (11)
that near U=0 the wave stress becomes very large and that the slowness
assumptions would be violated. It is important to realise that in making
these assumptions and interpreting the above equations, we have had in mind

the notion of stationary dispersive waves though nowhere has this been

explicitly introduced or the type of wave specified.

The conclusions are valid for any stationary wave disturbance varying

slowly in time which satisfies equations (1)-(5). . .
*  Luter publiohed wwk by Andrews D. and McInbtye M. slwwE that this "‘”‘”‘1‘5“4 omiks

.ox Lerm %{:(D—J) throwgh the we of the S{:cvwlg E.P.(r"): m;dw Lag ranguan dic p lucermend
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Some interesting results follow immediately from (17). The slow
propagation of wave energy into an undisturbed region of the atmosphere
does so at the expense of the specific zonal kinetic energy so that no
net transfer of energy takes place. Changes in the available potential

) i o 384 .
energy of the mean state are possible since the approximation that 3 1S
negligible in the thermodynamic equation does not mean that 56 cannot change,
only that it does so.slowly. ‘The change in available potential energy must
|

however be much smalier than the change in zonal kinetic energy and hence

. }ittle net energy trénsfer.
)

The exponenti;l variation of density also produces'interesting
implications for a stationary wave disturbancé Propagating into progressively
less dense regions. ‘ Propagation of waves in a homogeneous medium is
characterised by the conservation of disturbance energy following the group
velocity and for waves whose propagation properties are unaffected by the

local density the specific .disturbance energy is conserved even when the

density field is non-uniform.

In an atmosphere of constant zonal wind U and exponentially decreasing
density with height, an upward propagating wave conserving specific energy
will have progressively more effect on reducing the local zonal wind strength
until the assumptions on which the equation (17) are based become invalid.

We might use this as some crude guide to the limit of validity of the
linear theory in describing the propagation of Rossby wave energy into
the stratosphere. Non-linear effects become important when the specific

wave energy is comparable to the specific zonal kinetic energy.

Equation (17) implies that a stationary wave system that does not
vary in amplitude with time, cannot accelerate the zonal flow if the motion
is adiabatic and without dissipation. This conclusion was also reached

by Charney and Drazin in connection with quasi-geostrophic wave/mean flow
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interaction. Dickinson (1969) puts forward a theory of wave interaction
with the mean flow in the presence of critical layer absorption and
dissipation processes in which stationary, time-independent planetary waves
can interact with the mean flow. The introduction of dissipation into
the foregoing analysis only serves to complicate the physical picture and

hence is omitted.

Although no net transfer of energy is accomplished by the quasi-
stationary wave motion — transfer of momentum is and a simple pictorial

representation is suggested (Fig.5.1).

Consider an undisturbed atmosphere of uniform zonal wind and allow
a 'wave ﬁacket' to be created by the slow application of forcing at a
given level for a given length of time (assuming that in this atmosphere,
some form of dispersive wave may be excited). In the region of the wave
packet where the disturbance energy density is large, equation (17) demands
that U should have decreased so that a deficit of zonal momentum exists
there compared to the undisturbed environment. The deficit of zonal
momentum travels with the wave packet and therefore is transported by the
disturbance. It is the result of the working of the drag force exerted
on the zonal flow during the production of the disturbance wave energy.
The action of orography for instance is to convert zonal kinetic energy
into perturbation energy by exerting a drag on the flow through the correlation
of perturbed pressure with the slope of the orography. High pressure
occurs on the windward slope and low pressure on the leeward slope so that
zonal (atmospheric) momentum is communicated to the earth. This is in
quantitative agreement with equation (11) which gives after integration

over the whole atmosphere:

_ Y=L ——12=H
t U _ U _
0 y=0 0 =0

where the limits y=0, will be assumed to be rigid walls.



136

2ONAL WIND

MINIAAYM

~ e ETH F
— ~ -— 180PLETHS o
~ Y zgNAL WIND
~ - .
Flg. L.l DEFcIT oF 20NAL MAOMENTUM CARRIED By A WAVE PACKET.

U PWARD PROPAGATION
v<0 U <o
2t

< — — . MERIDIONAL CiRCULATION . POLE WARD E NTROPY
FLyx
F)g T.Q INpucep CIRCULATION AnD HEAT TRANSPORT AscociATEp WITH
A QuAS) - GEOSTROPHIC WAVE DISTYRBANCE . ( SCHEMATIED



137

Assuming that the upper limit z=H is chosen where the vertical pressure-

work term is negligibly small, then the above expression reduces to:

L
d - 1,40
EE po Udydz = - LSP—ﬁ—w—(y,zf-O) dy —(18)
0
noting that »' vanishes at the lateral walls at y=0 and L.

The linearized lower boundary condition for flow over orography of small

slopes is:

w' = ZTQZJ at z2=0
ox
where Zo==Zo(x,y), the surface elevation function. Substituting this

expression for w' at the surface into (18) gives:

L.—
— 92
. = _ 1 82
i po Udydz Sp e dy
0
Gp'%gp is the net eastward drag exerted on the orography and will be denoted
by Ty so that:
L
< Uadydz} + - dy = 0
at Po ydaz Ty Yy =
0

which states that the loss of zonal momentum from the atmosphere is equal
to the drag exerted on the orography or the momentum communicated to the

earth — as it should be.

It is instructive to look now at how momentum is transported by

large-scale quasi-geostrophic waves.

For vertically propagating Rossby waves, the vertical eddy transfer of

zonal momentum is small and equation (7) reduces to:

Sp'w' = poé?'5¢'v'
so that equation (11) becomes:

a%(ﬂoﬁ) = 335(%1 5‘1"”'} = po D



Drag is exerted on the zonal flow through the 'coriolis torque' for quasi-
geostrophic motion and vertical transfer of momentum is effected by the

induced meridional circulation (see Fig.5.2).

For purely horizontal propagation of quasi-geostrophic wave motion

equation (6) is well approximated to:

p'v' = - po Uu'v'

so that the acceleration of the zonal momentum field is given by:
!

9 - 9 —
3g(Pol) = @(pou'v )i

\

Momentum transport is effected primarily through eddy transfer processes.
N

In small-scale wave motion where the ﬁossby number is of order unity,
the vertcial eddy transfer of momentum becomes important and acts in the
same sense as the coriolis acceleration i.e. to decelerate the zonal mean
flow. Inertial-gravity waves provide an example of this type of mixed

momentum transport.

An obvious consequence of the inferred momentum transport is that
wave packets forced in westerly flows carry easterly momentum and vice versa

for easterly flows.

(ii) Observational confirmation

Observational evidence of this type of wave/mean flow interaction
is generally difficult to ascertain since the zonal flow is accelerated
by Reynolds stresses associatéd with other scales of motion that are strongly
time-dependent, particularly baroclinic instability in the troposphere.
The stratosphere is apparently free of the baroclinic eddy motion which
is so characteristic of troposﬁheric flow and it is here that the wave/mean

flow interaction mechanism should be most prevalent.
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Hirota and Sato (1971) analysed observations of zonal wind speed
and wave amplitude and found a strong negative correlation between them.
Their interpretation of this behaviour was that the decrease in zonal
wind speed favoured enhanced upward penetration of tropospheric wave energy
consistent with the Charney/Drazin criterion of propagation. Since the
critical zonal wind for propagation is ~30 ms™? for n=2 modés, typical
zonal wind variations of 15 ms ! about the monthly mean will have 1little
effect on the transparency of the stratosphere to upward propagating

wavenumber 1 disturbances.

Our conclusions suggest that the phenomenon is completely accounted
for by the intérqction of quasi-stationary waves with the mean flow and
that the negative correlation of zonal wind speed with wave amplitude
represents the upward transmission of pulses of easterly momentum accompanying
the disturbances. The depésition of the momentum depends ultimately on
the fate of the wave disturbance and it might be concluded that since
wave energy is absorbed between 30 and §0 km, this region will experience an
east—west acceleration. The maintenance of a steady, zonal momentum field
poses an interesting problem in view of the constant upward transport of
easterly momentum. The accumulation of easterly momentum is probably

offset to a large extent by its downward transport by a thermally-driven

meridional circulation set up by strong polar night cooling.

(iii) Planetary Rossby wave propagation and wave action conservation

In this section, the wave/mean flow interacting properties of
travelling, quasi-geostrophic Rossby waves will be discussed and relations
derived in terms of the zonally-averaged wave energy equation, under the
assumptions of the slow spatial variation of the mean zonal wind and
static stability. When the mean state parameters of the flow on which
propagation depends change only slowly over the distance of one wavelength

then group velocity and associated wavetrain concepts are useful. The
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dispersion relation appropriate to propagation in a weakly non-uniform
medium expresses the relationship between frequency, wavenumber and the
weak dependence on position i.e. 0 = o(k,R) where 0 is the frequency,

k the wavenumber vector and R the position vector.

It will be shown how the eddy-pressure work term, given by the
correlation of the perturbed pressure and wind speed, represents the flow
of wave energy at the group speed and when substituted intoéthe wave energy
equation leads eventually to a conserved quantity, 'wave action', as named
by Bretherton (1966). %

i

Consider the quasi-geostrophic, cartesian geometry description of
an atmosphere of uniform static stability on a B-plane. Linearizing
the quasi-geostrophic potential vorticity equation about a mean zonal wind

that is weakly space and time dependent such that U= 5(€z,€y,€t) where €

is a smallness parameter, gives:

2 , 5.2 o2y o+ S5 1 B[ 0|, gaur_
[Bt + Uax] VHw + EEHEF-§E[DDBZ + Bax 0 to order €.

Wavetrain solutions are of the form:

' = Real Yo(ez,cy, et)exp[ (A +uy +vz-ot) + EEGJ

and associated with a dispersion relation:

= 7j BA .
WT g 4H?

The Boussinesq equations consistent with the derivation of the quasi-

geostrophic potential vorticity equation are:

8 . -9), 3 [sp'

[8t+Ua ]u - fu' +B—[p°] =0 (a)
3,721, 3 [Sp'| _ ——(b)
[3 Ua]v r By[oo] |

3 (Sp!
55{%%_ - g8 = 0 _ (c)
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i _._8_ t ' = —_—
[3t+U8x]6¢ tw'B=0 (@)

u' s 13

E —3? —p—ofz. (e)

All perturbation quantities are of the form:

ft= Real fO(EZ,Ey,Et)exp[i(}\x +uy +vz -0ot) + ZZTOJ
. . -
with ] u' = - % 3 ' = '%qxi and 6¢' = %)__g%

so that to first order in e, (a) becomes:

~ iyl (40 + IAT) - EAfY + ix%’%'= 0

which gives a complex expressién for Op'

g%' = Real {f + iu(ﬁ—c)}xp'

The zonally-averaged eddy pressure-work term, &p'v'/po can be calculated

immediately from the complex expressions for Op' and v' since: .. .

with the result that:
épto' = 'é- pouA (T - ¢) [¥o®

Similarly the complex expression for w' can be determined from the
thermodynamic equation (d) and hence the vertical eddy pressure-work term,

Sp'w' becomes:

Lh

o([j_c)fuk (T-¢) - fo\))\} lvo |

1
Ta4 — il —
Sp'ut = -3 \2H,

|

The first term in brackets is negligible for large-scale flow since
typically v v~ 1/2H,

uA (5 _

s -e)  u(i-o)

"N v Ro (Rossby No.) << 1
Fova fo
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so that the vertical pressure-work term is given by

Splw' = -é—po—g—‘o;— (ﬁ—c)\)k Iwolz

1
E = 3 Po [u'z + p'2 4 %qu'z] can

The zonally-averaged specific wave energy

be expressed in terms of the streamfunction Y and gives:

2
i

93[\)2 —éz-] o |® |

ay and ng can .be

The meridional and vertical group velocity components C
calculated from the dispersion relation so that ’ !
i
c 2BuA
gy — 2
2+ + L[ + 1 ]
[A R -

ZBA\)ﬁ

and ng = gB 2
X2+ 2+ il V2 o+ L
gB 4HE

From these expressions and those for the pressure-work terms Op'w' and Sp'v'

it can easily be shown that:

Sp'v' = ECgq and Sp'w' = ECgy
demonstrating that wave energy propagates with the group speed

in the wave energy equation of the last section*

Neglecting the term pou'w Bz

gives:
E —~— 90 93U _ fo ) D x5 5
3%’ + pou'v'—ay - 5z PR 6¢'v' + —ay(dp ') + 'a—z(ﬁp’w') =0

and expressions for §¢'v' and u'v' can be obtained in a similar way to

those of Sp'w' and Sp'v' giving:

¥ Jjustified for quasi-geostrophic motion
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Substituting the expressions derived for Sp'w', Sp'v', 8¢'v' and w'v' into

the wave energy equation and re-arranging gives:

3E
ot

+ DlV(E Cg) = _i- g grad U —(19)

where Div applies only to the y,z plane.

If U is uniform equation (19) reduces to the conservation of wave
energy and Cg is constant in space. The source term on the right-hand side
indicates that wave groups propagating towards stronger zonal winds gain

energy at the expense of the mean flow.

i
Wave groups propagating in non-uniform media have characteristic

\

wavenumbers and frequencies that vary slowly in space and time with the

medium properties, and for this case:

Q
[}

o(k(r,7,2), U(T,Y,2))

where K=A+yj+vk, T=et, Y=gy and Z=g¢z.

The rate of change of frequency at a point in space, 90/3T can be expanded

by the chain rule for partial differentiation into:

80 _ 30 3\ , 30 du , 30 v , 30 3F
oT 9A 9T ou 9T 9V aT ol 9T

. From the dispersion relation, 30/3U = A and after collecting terms, the

above equation can be written as:

3o 3K U

37 = Cgoom 7 xﬁ —(20)

Redefining 0 and K by introducing a phase function* ¥ such that the wavetrain

solution becomes:
, Y, { '
Pr o= Yo ZT)expzx+2H]

. _ 0
with g = —-3% and K = grad ¥

*As suggested by Whitham, 1961.

)
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The slowly varying functions of space and time, o and X satisfy the eguation:

. . 0
— 1 = (- —_—
=+ Vg=290 [where \ 7 + 7 J + 57 k}

e

by definition and this is then known as the 'conservation of wave crests'.

Substituting this into equation (20) for 3K/3T gives:

30 1o =330
ar + Gg- V'O = Agp

vhich indicates that the frequency of wave groups changes following the
group only when the zonal wind field is being accelerated. A is a constant
since the medium broperties are not dependent on x and so the above equation

may be re-arranged intoc the form:

o il 7 . o
[a—T+gg'z'](U—cJ = (¢.9")U with ¢ = -

Multiply by ﬁ{?c and taking it inside the derivative following the group

leads to:

(2 _Cg.y']i - (-e) [% + g7 [ﬁi] = =L (cg.9)7

Subtracting this from equation (19) leads to the conservation relation:

U-c

s(F). . [ E ). |
a—T-[_ ] + Div! [ﬁ_cgg] =0 ) —21)

(primes denote slow variables)

(after dividing (19) by € and transforming to the slow variables T, Y and Z).

The conserved quantity i is named 'wave action' after Bretherton (1966),
-c

who derived it. in connection with gravity wave propagation. For all its

elegance, it is difficult to interpret and to make use of in this form. It

is similar to the 'adiabatic invariant' quantities of classical mechanics

that are of the form, energy/frequency.

It has been shown that the zonally-averaged momentum equation for

large-scale flow is:
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2 (00T) = %[f—g"— <S¢'v']

EC
i§£-6¢'v‘ expressed in terms of energy density and group velocity iS'ifiﬁi
-c
_ d( =y _ 0 [ECqgz
so that: =z (Pol) = a—z[(j_ ~

Combining this with the wave action equation, neglecting y-variation gives:

2( - E ).
a_t[pou . a-c] =0 —(22)

Uryu (1974) arrived at a similar relation from the quasi-geostrophic potential

vorticity equation and interprets wave action as the momentum carried by
!

the wave group. He points out the similarity in form of the momentum

carried by a photon, energy/phase speed of light and wave action though

in our case the momentum carried is at right angles to the direction of

propagation i.e. east-west momentum.

Here again we see the role of a wave packet in decelerating the

zonal wind field. On approaching a critical level, the quantity 7o
becomes very large since U-c¢ +(0 and the zonal momentum field suffers a
correspondingly large deceleration. Uryu uses this as a crude explanation
of the sudden warming procéss. The eaéterly drag carried by the wave group
from the region of forcing causes the greatest effect in the stratosphere
where thé zonal momentum pol/ decreases rapidly with height and the downward

movement of the zero-wind line caused by the interaction cuts off the

transmission of wave energy.

Strictly, the assumptions of slow variations in space and time are

violated under these circumstances though some insight is gained.
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APPENDIX Notes on the quasi-geostrophic potential vorticity equation

The following is a brief summary of the derivation of the quasi-
geostrophic potential vorticity theorem and the approximations constituting
the Boussinesq set. White, A. (1976) derives the normal §.G.P.V. equation
from a substantially less approximatea set than the standard Boussinesq
equations and most of this section is adapted from his work. Although
it turns out that the mathematical problem of stationary forcing is unchanged
by the increased generality inherent in the modified set, some changes in
emphasis in the energetics of the wave motion become apparent which are

important in the stratosphere.

Following the procedure of Charney (1948), typical velocity scales,
V (horizontal), W (vertical) and length scales I (horizontal), H (vertical)
are chosen and associated with these are pressure, density and entropy
deviations Sp, 8p and 8¢ from the undisturbed basic state variables py(z),
po(z) and ¢¢(2) respectively. All local time derivatives are taken to
be of the order of the advective paft of the substantial derivative at

most and the flow is assumed hydrostatic throughout.

The height scale H of the motion under consideration is typically
of similar size to the vertical scales of the static pressure and density

: 1 dpy)™? 1 dp,|™ . .
fields [-EF-EE-J and [-BE-EE- (==Hp) respectively and White concludes
that the important results are modified only through the replacement of H

by the smaller of H and Hp.

The equations of motion for inviscid, adiabatic flow in hydrostatic
balance are:

9 ¥y 1 _ '
[‘a? + KH-Y]ZH + waZt + FkAVyE + BYHGP =0 —(a)

(momentum equation)

P pg = 0 . (hydrostatic equation) (B)

9z

i
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3 3 _ s s
[a_t. + -I-/H'Y]dp + pV.Vy + E(pw) =0 (continuity of mass) (C)
N 3¢ _ i
[Bt +-KHY]5¢ +’”az = 0 (conservation of entropy) (D)
¢ = %Tlng - logp (entropy of a perfect gas) (E)

(where Yy is the ratio of specific heats)

The coriolis term, ZQcos(lat.)w;g has been omitted from the horizontal

momentum equation (A) since W<< V.

Hydrostatic balance and quasi-geostrophy impose a close relationship
between the motion field &nd thermodynamic variables such that (a), (B) and
(E) give: \

%’i , %ﬂ and 8¢ f%
Motion in rotating, stratified fluids is characterised by the non-dimensional

numbers:

Ko =

and Ri = (—V;ng-f

and the order of magnitude of terms is conveniently expressed as a function

Rossby No.

B

Richardson No.

of them, so that:

o i
5 and dcb'bRiRo.

For large-écale flow, typically:
Ro~ 0.1, Ri ~v 100 and BH £ 0.3

and it can be seen that %l’ G_pp_ and §¢ are all very much less than unity.

The conservation of entropy, equation (D), allows estimation of the

vertical velocity W and gives:

¥ 2 Y (pi po)t
7" 5%2— v L'(R‘I,RO)

which implies physically that knowledge of the slope of isentropic surfaces
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and typical horizontal velocities gives the order of the vertical velocity
since parcels tend to move along the isentropes (exactly for steady entropy

fields, with (V.V)d=0).

Using the above results to estimate the size of terms in the

continuity equation (C) gives:

(3 i/ 13 V2 oy
p[at +-KHYJGP n o and 5 az(pw) n gH(BH)

which implies that V.Vy 7 z_JT{(J:.’*IZ}i’o)"1 and in this sense the flow is almost“
horizontally non-divergent since RZ Ro >>1. Also, it can>$e seen that

horizontal advection I,.V is much larger than vertical advection l”g% and
. this allows the rejection of w%’ﬁ in (A) and the replacements %(pw) with

a%(pow) in (C) and wg% with wB in (D).

The horizontal advection of density is only negligible compared to
g%(pow) if BH<<1 and for deep stratospheric motion this is not a ‘good

approximation.

The horizontal wind Vy may be partitioned into a rotational component yw

and divergent component Vg with:

and Vg = U, + V) = VL

Consistent with these approximations, we may form the vorticity equation

from (A) giving:

(& + my) (e + 7] + rory + Lrfos vep) - 0

Introduction of the scale expressions into the baroclinic and horizontal

advection terms gives the ratio:

k 2
_.(Yd(b,\zdp) n sz n BH(Ri }3’02)_1

V) (Vv +f) g
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and for large-scale flow RiRo® V1 so that the smallness of the baroclinic

term in the vorticity equation depends on the inequality, BH<<1I.

The entropy expression (E) may be approximated to give the perturbation
entropy equation: &¢ = %-EE-- %E (since p¥po and p ~pg) and using this
0 0
. . . . 862 _ .
in the perturbation hydrostatic eguation, o + g6p = 0 gives:

5 8 B |
R R N

The familiar Boussinesq approximation is based on the smallness of g%—,-g%

- !
and 8¢ , plus the change in density following the horizontal motion in (C)
I

and ng-in the above hydrostatic relation. Both of these latter assumptions
are necessary to form a dynamically consistent set and both are justified
by the smallness of BH. The standard derivation of the quasi-geostrophic

potential vorticity equation involves the omission of the baroclinic generation

term in the vorticity equation which is also based on BH<<I.

White shows that a dynamically consistent, quasi-geostrophic set
may be obtained for motion with BH v I by the retention of all these terms

and puts forward the following equations to determine the motion:

2 2, 4 k. _
[5?+—VH‘Y-]{VHw+f] + folYg +FOYG¢AYGP— 0 —(1)
= _Sp ;
v pofo —(2)
3 Sp _
9z B}Oo - 9% =0 —3)
d 8p ) B L
B+ 5380 amy o 2 tow) = 0
a = .
[8—1: + _w.V] 8¢ + wB= ¢ — (5
and 8¢ = 1% _dp —(6)
Y Po 0 » _

As in standard, gquasi-geostrophic theory the coriolis parameter is approximated

by a constant, mid-latitude value fy in the association with the divergence
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of the horizontal wind in (1) and the pressure/streamfunction relation (2).

It can be shown that this modified set ((1)-(6)) has well-defined
integral conservation properties of mass, entropy, potential vorticity and
energy which is desirable if they are to be a suitable approximation to the

'primitive equations'.

The potential vorticity theorem is derived as follows:

Eliminating Zyb from (1) and (4) gives:

3 fo i -
[at + V‘P J[Vpr + f - fo po] oo aZ(p ow) + V8~ Vep = (7)
Multiplying equation (5) by-%; and differentiating w.r.t. z gives:

2 3 [po Po Wy 3 - —
[ + VIP V] [ 5¢] + 53 e V& + E(p"w) 0 (8)

and elimination of Ji(pop) between (7) and (8) leads to:

[88t+VH] Vi o+ F - fa 2 2+ 2o aaz[°°5¢] +f°av"’\75¢ X yeo.vep =0

The complete thermal wind equation obtained by applying the operator kK .V to

(3) and using (2) results in:

) oY k Sp
= = A + B
2z =ka V[az Fo gV ypo
and on substitution into the second term of equation (9), we find a cancellation

with the baroclinic term. Moreover, when §p and &8¢ in the remaining part

of (9) are written in terms of Y, the equation simplifies to the conservation

theorem:
) f% Po || _
[at * YIP'Y] Vab + F + gpo az[B 3z = ¢

which states that the quasi-geostrophic, potential vorticity is conserved

following the horizontal projection of the non-divergent motion.

Although the corresponding theorem derived from the standard Boussinesq
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set (which includes the subsiding assumption BH << 1) is identical, the
equation developed here is more general since it implicitly contains
virtually exact hydrostatic and continuity equations together with the

baroclinic generation of vorticity term.

The equation for the entropy perturbation in terms of ¥ is however

different and equations (2) and (3) lead to:

_ fol|o
oo = Lol - oy

. : i
as opposed to 6¢=%°—g—i’ for the standard Boussinesg set.
i

Upper and lower boundary conditions are usually expressed as conditions

on w, which is obtained from the conservation of entropy equation as:

_ d Fo 30 _ foy
or a3 4

and is different from that obtained from the standard Boussinesq approximation
by virtue of the term f—;w- But for all time- independent problems with —a% =0,
this extra contribution vanishes since yw.yf—;‘k = ¢ and the boundary condition

is not modified.

An expression for the temperature perturbation in terms of the

streamfunction can be obtained from the hydrostatic equation:

3p -
2z *gép =0
. : __0p . .

by using equation (2), w_pofo and the differential form of the perfect
gas equation:

Sp_ _¢r + Sp (where 6T is the temperature deviation from

Po To po ]

the basic state temperature Ty (2))

so that: ﬁ)-=:7i‘3-[—1”'-_ﬂp-]=_g.,._6‘p_

Po  glHo 3=z To Ppo

and for a constant temperature atmosphere po = pogHo, and substitution into
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the above equation gives:
ST _ fo 3
To g 9z

The conservation of energy is obtained by multiplying (1) by ¥, using (2)

and (4) and integrating over a volume V with zero boundary fluxes giving:
a (o o) i) i(éz] =
dt vaﬂ [E[Y lp) - fﬁwaz + fﬁwat Do dt 0

(where 4T is an increment of volume)

which, using (2), (3), (5) and (6), reduces to:

a1 g 1 (8p)2 =
at vau[[v DER Sl ZT[E%] ]dT 0

(e =VYRTo, the speed of sound).

The total potential energy of the modified equation set, involves an elastic

2
energy contribution from the term i[ép—] which can be seen to be comparable

e? P

with the kinetic energy term é—pg (Z xp)z, for if 2’\:% (m= zonal wavenumber

and R =the earth's radius) then:

1 (&p)? fo
e?lpy a2 4
n n,

(vo)* (m/R)* m*

and the elastic modification is most important for long waves.

In view of the much wider range of validity of the @Q.G.P.V. equation
than implied by the standard Boussinesq approximation we can be confident

that the stationary forcing problems of earlier chapters are well-founded.



