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ABSTRACT  

The problem of stationary planetary wave forcing by orography 

and longitudinal asymmetry of heating and cooling is re-examined in the 

light of recent observations and theories of stratospheric motion. 	It 

is deduced that the region between 30 and 60 km is a sink of planetary 

wave energy for wavenumbers 1 and 2 in winter and that — in contrast to 

many theoretical descriptions — the transmission of wave energy to those 

levels is unimpeded. 

Quasi-geostrophic theory expressed in spherical polar geometry 

suggests that in winter wave energy should be able to propagate freely 

into the upper stratosphere for the largest scales of motion. 	The 

uncertainty in the absorption mechanism is avoided by the use of an 

energy-transmitting boundary condition at a suitably chosen level and 

attention is concentrated on the structure of the wave motion below. 

Features of the January mean contour charts such as the Siberian and 

Aleutian anticyclones are shown to be consistent with the theory of 

untrapped, thermally forced motion. 	Close agreement of the structure 

of wavenumber 1 in the theoretical solutions with existing observations 

is obtained for all heights below 30km vindicating the use of energy- 

transmitting boundary conditions. 	An important consequence of the 

ability of forced waves to propagate energy into the stratosphere is 

the poleward transport of heat which is particularly strong for thermally- 

forced motion near the level of non-adiabatic heating. 	The calculations 

suggest that the contribution of stationary, thermally-generated waves 

to the total poleward eddy heat transport is a major one in the lower 

troposphere. 

Some attempt to describe the monsoonal circulation of the summer ,  

(northern) hemisphere is made with the inclusion of a stratosphere 
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dominated by easterly mean zonal winds. 	The presence of a critical 

layer where the mean zonal wind vanishes introduces some interesting 

problems as regards the 'realism' of the linearized solution. 	Observations 

below 5 km in July show the phases of low wavenumber disturbances tilting 

rapidly eastward with height in marked contrast to the westward tilt 

in winter. 	Solutions with critical layer absorption are in poor agreement 

with observation in the lower troposphere with westward tilt though the 

rapid attenuation of all waves in the stratospheric easterlies is well 

represented. 
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INTRODUCTION 

Synoptic meteorologists have long recognised that apart from the 

constant progression of depressions and anticyclones on surface pressure 

charts, there are some areas that are persistently associated with 

cyclonic or anticyclonic flow. 	In winter, the cold, continental anticyclones 

are a regular feature of the surface pressure pattern, particularly the 

'Siberian High' whose central pressure is often far in excess of that 

found in typical 'travelling anticyclones'. 	Other persistent stationary 

pressure perturbation phenomena at the surface are the Icelandic and 

Aleutian 'lows' in winter and the summertime Azores High and Asiatic (monsoonal) 

low. 	Stationary, high pressure anomalies of the surface mean pressure 

charts tend to occur over the continental land masses in winter and over 

the oceans in summer. 	This fact provides some indication of a relationship 

between the differing heating and cooling effects of land and sea, and 

the large-scale flow patterns. 	The eastern sides of the continents are 

intensely cold near the surface in winter through the prolonged cooling 

of air travelling from west to east. 

The mean, winter contour height charts of the 100 and 200 mb surfaces 

show pronounced low wavenumber troughs and ridges which appear in roughly 

the same place from year to year, which again points to some relation to 

the underlying topography. With the advent of regular high altitude 

rocket soundings into the high stratosphere it soon became apparent that 

these quasi-stationary troughs and ridges extend upwards to above 50 km, 

where they completely dominate the motion. 	Typically, the wave motion 

is made of wavenumbers 1 (off-pole circulation) and 2 with the short-

wavelength baroclinic eddies, characteristic of the tropospheric flow, 

generally absent above 20 km. The January mean contours near 30 km show 

a well-defined ridge over the Aleutian Islands (-/50°W) which is the 

result of the constructive interference of wavenumber 1 and 2 disturbances. 
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Stratospheric motion remains fairly steady in the northern winter 

hemisphere except for the dramatic sudden warming events when the 

circumpolar vortex becomes highly distorted, usually splitting into two 

distinct eddies and finally changing to a steady easterly flow similar 

to that of the summertime flow. 	We shall be primarily interested in 

the steady, planetary wave structure arising from lower tropospheric 

forcing and not strongly time-dependent phenomena. 

The important questions arising are: 

(1) By what physical mechanism does the surface topography 

influence the flow? 

(2) How does the tropospheric forcing make its influence felt 

in the upper atmosphere above 20 lun? 

A wave description of the perturbed motion and its forcing is 

adopted for a number of reasons. 	The basic periodicity of the horizontal 

co-ordinates and the scale of the motion suggest an elementary representation 

by the superposition of a few Fourier components in the linearized analysis. 

Furthermore, the dispersive properties of large-scale motion are clearly 

revealed by the wave description, through the relationship of frequency 

to wavenumber and basic state parameters, and hence group velocity and 

energy propagation are well-defined. 

The daily hemispheric charts of contour height can be imagined 

to be composed of stationary and transient components such that the 

'stationary' part represents the average over some interval of time and 

the transient part is the departure from this. 	The choice of the time 

interval over which averaging should take place depends obviously on the 

time scale of motion under consideration and for our case must be greater 

than the typical period of transient Rossby wave motion. 	The monthly-mean 
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contour chart is taken as representing the stationary component of 

planetary wave motion and its year to year similarity confirms the suitability 

of this choice. 

In the theoretical description of forced, stationary planetary 

wave motion that follows, all unsteady motion is excluded. 	Some implicit 

inclusion is inevitable in the origins of areas of large-scale heating 

and cooling through the transport and convergence of sensible and latent 

heat fluxes (e.g. in boundary layer convection and baroclinic wave transfer). 

Attempts to couple the action of small-scale boundary-layer turbulence 
; 

to the planetary wave are made via the Ekman theory. 	It is quite feasible 

that the transfer of energy between the baroclinic eddies and long planetary 

waves will be important in the troposphere, but not in the stratosphere 

where baroclinic instability is much less evident. 	Inclusion of these 

other interacting scales through parameterization would be difficult and 

so it is assumed that they are in some sort of balance with each other 

and that the stationary wave problem can be treated in isolation. 

In Chapter 1 we discuss previous work and ideas on the relationship 

between the underlying topography and the causes of longitudinal climate 

variation. 	Emphasis is placed on pictorial representation of the dynamics 

in terms of vortex tube arguments. 	Observations of zonal wind distribution 

and low wavenumber disturbances are described and compared briefly with 

existing theories. 

Chapter 2 is a re-examination of the work of Charney and Drazin (1961) 

concerning the reflectivity of stratosphere to upward propagating planetary 

waves described in spherical polar geometry. 	The inapplicability of 

energy-reflecting upper boundary conditions is stressed and is regarded 

as the major defect in previous attempts to model large-scale forcing 

with the quasi-geostrophic equations. 
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In Chapter 3 we put forward theoretical models of orographic and 

thermal forcing for the simplest cases that admit analytic solution. 	An 

'energy-transmitting' upper boundary condition (closely related to the 

Sommerfeld-Radiation condition) is devised which is judiciously applied 

to a level above which the observations suggest there is considerable 

wave energy absorption. 	Close similarity in structure to the existing 

observational data suggests the correctness of the chosen upper boundary 

condition, and low-level features such as the Siberian anticyclone are 

well-described. 	The significantly large transfer of heat polewards in 

thermally-forced waves indicates its importance in the total poleward 

eddy heat transport. 

Chapter 4 complements the analytic solutions of the previous chapter 

with numerical calculations for various profiles of zonal wind and static 

stability. 	Numerical integration is particularly useful for calculating 

the forced motion in summer where the complicated zonal wind structure 

rules out simple analytic solution. 	The changeover from westerly to 

easterly winds in the stratosphere causes the differential equation for 

the vertical structure to contain a singular point where U = 0. 	This 

'critical layer' is excluded from the region of numerical integration 

and the analytic result is used there. 	The rapid upward decay (in the 

easterly winds) of the wave is predicted by the model solutions. 

Chapter 5 is concerned with the interaction of slowly-varying 

(in time) stationary waves with the zonal current. 	The main conclusions 

of the study are that the sum of the specific zonal kinetic energy and 

the total wave energy are locally constant in time and that this implies 

no net propagation energy -- merely a local conversion from zonal kinetic 

energy to disturbance energy. 	Some physical insight is gained into the 

transfer of momentum and its relation to the sudden warming phenomenon. 

Observational evidence supporting these ideas is given. 
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CHAPTER 1 OBSERVATIONS AND THEORIES OF LARGE-SCALE FORCING  

(i) Observations  

In the last twenty years or so, sufficient information has been 

compiled to produce a description of large-scale motion from the ground 

up to at least 40 km, with the data above this level being fairly scanty. 

The westerly zonal winds of the winter troposphere continue to increase 

up to about 60 km with well-defined jet-structure occurring near 10 km 

at 30°N and 80 km at 40°N. 	Above 80 km the zonal wind becomes easterly 

though we shall not be concerned with the atmosphere at these heights 

(Fig.l.1). 	In summer the zonal tropospheric westerlies are lighter and 

become easterly above 20 km reaching a maximum between 60 and 80 km. 	It 

should be noted that the mean stratospheric winds appear to be much more 

variable in magnitude than the tropospheric winds with a factor of 2 

difference between years being not uncommon. 	As a consequence of thermal 

wind balance we infer that the polar regions of the stratosphere are 

very cold in winter (-60°C at 25 km) but in summer are the warmest regions 

(-40°C at 25 km). 

One of the most striking examples of large-scale forced motion 

in the troposphere is the wintertime Siberian anticyclone which dominates 

the circulation of Asia. 	The continental land mass near the surface 

is characterised by intense cold, especially on the eastern side where 

temperatures of -50 to -60°C are frequently reported. 	On the 500 mb 

charts there is little trace of the anticyclone over Siberia though the 

contour charts are not zonally symmetric with the presence of marked 

troughs extending southwards across Japan and the Great Lakes region. 

A third smaller trough extends across Eastern Europe. 	These patterns 

of waves in the mean January contour charts become even more pronounced 

in the stratosphere. 	The 10 mb (30 km) contour heights show an intense 

polar vortex displaced away from the north pole and a persistent anticyclone 
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near 150°W which is well-known as the 'Aleutian High'. 	The 'eddy velocities' 

associated with these waves are considerably larger than their tropospheric 

- 1 counterparts exceeding 30 ms frequently. The most outstanding difference 

between the tropospheric and stratospheric flow patterns is the virtual 

absence of wavenumbers greater than 3 above 20 km and wavenumber 1 usually 

makes the dominant contribution. 	Since the low zonal wavenumber 

disturbances form the major part of the deviation from zonal symmetry in 

the mean contour charts for both the stratosphere and troposphere we shall 

concentrate on their description. 

Contour heights and temperatures are Fourier-analysed along 

latitude circles and the amplitudes and phases are given as a function 

of height and longitude in the usual observational analyses of large-scale 

phenomena (e.g. Muench, 1965). 	For our purposes a description in terms 

of a spherical harmonic expansion might be more appropriate since we 

shall treat the forcing of planetary wave motion as a hemispheric phenomenon 

and since the linearized quasi-geostrophic equations are separable in 

terms of associated Legendre functions. 

Green (1972) has summarised recent data and theories of stratospheric 

motion and presents amplitude and phase of wavenumber 1 and 2 up to 100 km. 

though the description above 50 km is rather sketchy (Fig.l.2). 	Both 

waves tilt uniformly to the west with height with vertical wavelengths 

of about 50 km typically. 	Green shows that the specific kinetic energy 

of the wave motion tends to remain constant with height (or even increases) 

up to 40 to 50 km above which it rapidly decreases. 	These points will 

be enlarged upon further and at this stage it will suffice to recognise 

that the stationary perturbations are of great vertical extent. 
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(ii) Theories of planetary wave motion and forcing 

Substantial advances in large-scale, dynamical meteorology have 

been made with the approximated, vertical component of vorticity equation: 

Dt 	÷ 	= 	— (Paid) H 	Po z  

where D/DtH is the rate of change of absolute vorticity following the 

horizontal projection of the motion, f is the coriolis parameter (with fo 

being a constant middle-latitude value), Po(z)  is the basic state density 

field, w is the vertical velocity and z is the height. 	This equation 

as it stands contains no twisting of vorticity (from horizontal to vertical), 

no stretc-ring of relative vorticity and the baroclinic generation term 
ntl 4 

has been pcjectcA,  (though in practice we may include it in the derivation 

of the quasi-geostrophic set; see appendix or White, 1976). 	Vorticity 

is generated primarily through the stretching term (on the R.H.S. of 1.1) 

by the forced differential vertical displacement of air and subsequent 

compression or stretching. 

We now briefly review the behaviour of two-dimensional barotropic 

flow on a rotating sphere by setting the R.H.S. to zero in equation (1.1). 

Horizontally-non-divergent motion allows the definition of a streamfunction 

such that 
VH = k,,011) 	is the unit vector pointing along 

the local vertical) 

If we express the vorticity equation in spherical polar co-ordinates 

(see sketch) 

K (vER-ricAL) 

4 

op-rklosoriAL 1I AO 

AT P. 
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we have: 
	

l at + Vm yr] [qtt, + 2Q cos e) = o 

which admits solutions: 

= A expim(A-ct)Pnm(cos 0) with c = -2 Q  
n(n +1) 

where m (zonal wavenumber) and n are integers (subject to the condition n ?.-m) 

m, 
and 	( cos 0) is an associated- Legendre polynomial. 

We note that all spherical harmonic wave patterns propagate westward 

relative to the atmosphere and that the 4 mode (= sin 0 cos(A. +0t) ) remain 

stationary in space. 	In the high n limit, c-3-0 and the wave pattern 

moves with almost the same angular velocity of the atmosphere. 

The meridional structure given by 1(cos 0) is complicated generally 

(examples given in Fig.l.3) and although we will not be concerned with 

the details, some useful rules of thumb exist. 	The number of 'peaks and 

troughs' encountered along a meridian from pole to pole is given by 

n - m + 1 and all the modes with n=m peak at the equator. 	The 47711(cos0) 

modes are of zero amplitude at the pole and equator with one middle 

latitude peak and it is this class of waves that we assume to be most 

relevant to the discussion of planetary wave forcing though other modes 

will be considered. 

Since the phase speed of the waves depends on the n parameter, 

the motion is dispersive. 

Large-scale motion therefore has a strong tendency to move westwards 

with high angular speed (120°longitude/day for n=2) and can remain 

stationary with respect to the earth only if the angular speed of the 

atmosphere relative to the earth is equal and opposite in direction. 

Typical angular speeds of the atmosphere relative to the earth are about 
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20°longitude/day and therefore unable to balance the rapid retrogression 

observed in the real atmosphere 

'Lk 	(rivz. cfr‘tàt 401.:v or g en cc CONt A u LM4 c r ) C" n 	6-11-6-1,1 frr 

cLve r a4lou'Nn . 

Charney and Eliassen (1949; referred to hereafter as CE) made a 

quantitative study of the effects of middle-latitude orography on the 

mean motions with an equivalent barotropic model of the atmosphere. 	They 

considered a constant zonal flow bounded at the northern and southern 

sides and found the response of the stationary, linearized barotropic 

vorticity equation to a realistic orography at the lower boundary. 	Those 

frictional effects that are of importance to the amplitude of the wave 

motion were included through an implicit representation of an 'Ekman 

boundary layer' entering the lower boundary condition. 	The calculated 

amplitude distribution was compared to the January 500 mb contours at 

45°N and was found to be in very good agreement with the observed stationary 

pattern only when an excessively large eddy diffusivity was used to 

describe the boundary layer turbulence. 	Anomalously large amplitude 

motion occurred with typical eddy diffusivities and the phases of the 

lowest wavenumber components were not consistent with the observed. 	The 

response was essentially close to resonance and this tends to detract 

from the usefulness of the results since small changes in the system 

parameters produce large changes in amplitude. 

Sankar-Rao (1965) attempted to extend the CE analysis to spherical 

geometry using the harmonic expansion of surface elevation and quasi- 

geostrophic theory with pressure as a vertical co-ordinate. 	An upper 

free surface boundary condition was used and the resulting amplitude 

and phase was found to be in poorer agreement with observed motion than 

that given by CE. 	The most serious deficiencies in the wave description 

of low n mode planetary waves. 	Fast moving planetary waves are not 

only 1-3,s40.4e a wry ,L 9C- $'645 
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were the vertical phase lines and resonant response for wavenumber 5. 

The orographically generated planetary waves with which this thesis 

is mainly concerned are those of low wavenumber that penetrate the high 

stratosphere. 	We are interested in the continental elevations which 

force wavenumbers 1, 2 and 3 rather than the mountain range scale (e.g. 

Rockies, Alps etc) features which are best treated as isolated forcing 

agencies. 	Sankar-Rao gives the spherical harmonic expansion of the 

surface elevation up to 15th order and typical amplitudes of low wavenumber 

orographic forcing are inferred. 

The oldest theories of thermally forced stationary wave motion 

date back to the 17th century when Halley accounted for the trade wind 

belts and monsoons in terms of the large scale buoyant ascent of warm air 

in the regions of strongest heating. 	Hadley, later (1735) recognised 

the importance of the earth's rotation in modifying the direction of flow 

of the air as it moves towards the heating regions (this type of reasoning 

is still used in geography books of today to explain the Asiatic monsoon). 

Smagorinsky (1953) argues that such an explanation is not even 

consistent with observation since the surface Siberian anticyclone does 

not coincide with the region of maximum cooling. 	Classical 'land and 

sea breeze' reasoning breaks down not only because the wind field is in 

geostrophic* balance with the pressure field on the large scale but also 

because all large-scale planetary motion is dispersive. 	In Chapters 2 

4 
and 3, it will be shown how wave energy can propagate vertically date--c 

the '13-effect' and how this can produce motion quite different from that 

suggested by vortex compression arguments alone, for both orographic 

and thermal forcing. 

A simple vortex tube description of the formation of 'cold surface 
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anticyclones' on an f-plane (dishpan for instance) however gives some 

insight into the mechanics. (EE 5KETCN)  

MEAN 
TONAL 
FLOW 

COOLINc 
INSIDE Go x 

  

   

   

A cylindrical vortex tube in a uniform westerly current between upper 

and lower plane rigid surfaces will be distorted and become bottle-neck 

shaped as it enters a region of low level cooling and subsides. 	Vortex 

compression will generate an anticyclone at low levels and stretching 

causes a depression aloft. 	The amplitude of the motion will be greatest 

as the distorted tube leaves the cooling region. 	The changeover from 

anticyclone to depression will occur somewhere near the top of the 

cooling region. 	The assumption of a rigid upper boundary in this model 

is a rather artificial representation of the sudden increase in static 

stability in the stratosphere though it suffices for this qualitative 

argument. 	In Chapter 2 we investigate the effect of the discontinuous 

change in static stability at the tropopause on the long planetary Rossby 

waves and show that a rigid or free surface representation is inappropriate 

for the largest horizontal scale of wave motion which propagates energy 
plg-qG 

upwards. 	The v•brt-ex--t-trbe description is useful only for the shortest 

horizontal scales of motion. 

Smagorinsky (1953) studied the effect of lower tropospheric zonal 

asymmetries of heating and cooling on a uniform shear baroclinic zonal current. 
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The quasi-geostrophic, vertical component of the vorticity equation 

on a middle-latitude f3-plane: 

pc f 	) 
= Po pZ DtH 

+ 13.7)  

is linearized about a zonal wind U= U(0) + Az, and w is eliminated using 

the thermodynamic equation (with a source term). 	Smagorinsky finds 

solutions for the perturbed steady motion resulting from low-level heating 

between upper and lower plane rigid surfaces and contrasts these with 

the corresponding solutions allowing for a stratosphere where perturbations 

tend to zero at great heights. 	An 'Ekman boundary layer' was included 

in a similar manner to that introduced by CE such that the vertical velocity 

at the lower boundary is proportional to the geostrophic perturbation 

vorticity. The flow consistent with a sinusoidal heating function 

(2(x,y,z) =x(z)sin kx sin py was found for various profiles of x(z) peaking 

near 2 km. 	Using estimates of the magnitude of the vertically integrated 

heating rate taken from other workers (e.g. London, 1952) he found that 

the forced perturbation amplitude to be of the correct order of magnitude 

only with the inclusion of friction which was essential to avoid near- 

resonance. 	The inclusion of a stratosphere improved the upper troposphere 

wave amplitude agreement with observed and tended to remove the response 

further away from resonance. 	Phase lines are vertical in non-frictional 

cases (except for sign changes) and westward tilt with height occurs only 

in the lower troposphere with Ekman friction. 	Smagorinsky concluded 

that the amplitudes of thermally and orographically forced motion were 

comparable near the surface and that the 'thermal influence' becomes 

relatively less important in the upper atmosphere. 	A detailed comparison 

of the theory with observation is not justified in view of the lack of 

knowledge of the heating function, though many qualitative features are 

correct including the formation of a Siberian anticyclone downstream of 

the area of maximum cooling rate. 
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The work of Chapters 3 and 4 will extend the description of 

thermally-forced motion by Smagorinsky to spherical geometry in which 

planetary wave energy is allowed to propagate into the high stratosphere 

and be absorbed there. 	The wave energy sink at upper levels prevents 

resonance in the system for propagating waves and Ekman friction has 

relatively little effect on the motion because of the largness of the 

horizontal scale of wave motion. 	Orographic forcing is treated in a 

similar way and the structure of low-wavenumber motion up to 40 km is 

determined. 

(iii) The nature of the heating function  

The heating function is given by the time-average of the longitudinal 

variations of heating (and cooling) rate that are related to the underlying 

topography in some way. 	Quasi-stationary long waves are forced by 

regions of heating or cooling that are persistent for at least several 

weeks and the month provides a convenient averaging time scale for this 

motion. 	All scales of motion smaller than the planetary scale can 

contribute to the heating function if related to the topography and the 

task of finding the sum of these contributions must be tackled indirectly. 

Clapp (1961) calculates the spatial distribution of heating averaged 

between 2000 and 500 mb by two different methods and finds poor agreement 

between them, as regards amplitude. 	The 'thermodynamic energy method' 

which he and other workers used involves the evaluation of potential 

temperature advection from the mean gradient wind distribution and 

potential temperature field. 	Vertical motion is crudely obtained from 

the horizontal divergence of the gradient wind (for the details of the 

approximations made by different authors, see Clapp, 1961). 	The other 

method he uses is an energy budget technique to estimate the three main 

heating components: 
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(1) Release of latent heat of condensation 

The time-mean longitudinal variation in precipitation rate 

is a useful measure of the total heating rate due to condensation, 

integrated throughout the atmospheric column above. Moller 

(1950) shows that the heating rate due to latent heat of 

condensation reaches a maximum at about 2 km (probably 

associated with frontal rain). 

(2) Divergence of the net radiation field 

Heating in the atmosphere due to the absorption of short-wave 

(solar) radiation and long (terrestrial) wave radiation is 

also difficult to estimate. 	Short wave radiation from the 

sun is absorbed by ozone, water vapour and solid impurities 

and is probably dependent on longitude (through the topography) 

to a lesser extent than long wave radiation. 

(3) Divergence of heat transport by eddy motion 

Fluid transport of sensible heat, particularly due to 

boundary-layer convection forms an important component of 

the heating function. 

The energy balance method requires the use of climatological means and 

empirical expressions for sensible heat transport from the surface. 

Long wave radiation field divergence is calculated using standard 

radiation chart methods. 

Clapp gives the mean 1000/500 mb heating rate averaged between 

30°  and 60°N as a function of longitude for the two methods and the 

following results were obtained from the Fourier analysis of these curves: 
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Heat balance method 

Wave no. 	Amplitude (heating rate) Phase (longitude of maximum heating) 

1 87°W 

2 ", 0.5 °C/day 20°W 

3 47°W 

Thermodynamic equation method - 

Wave no. 	Amplitude (heating rate) Phase (longitude of maximum heating) 

1 
2 

3 

— O. 5 °C/day 

1.5 °C/day 

124°W 
330W 

446 E 

Amplitudes of the higher wavenumber components of heating rapidly become 

smaller and we shall only be interested in the first three zonal wavenumbers. 

Consistency between the two methods is not particularly good with the 

calculated amplitudes of the wavenumber 2 heating rate differing by a 

factor of 3. 
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CHAPTER 2 PROPAGATION OF ENERGY IN STATIONARY ROSSBY WAVES AND  

'REFLECTIVITY' OF THE STRATOSPHERE  

In discussions of the dynamics of Rossby waves with vertical structure 

the standard quasi-geostrophic potential vorticity equation provides much 

information. 	Briefly, the quasi-geostrophic equations are derived as 

follows: 

the vertical component of the vorticity equation is simplified to 

DC 
4  4-  13V = A 	) 	

= df) 
D,H 	Po 3z P°7° 	dY 

neglecting vertical advection, twisting, non-linear stretching 

and baroclinic generation of vorticity. 

The conservation of entropy is expressed as: 

( p 	t- ) 

(z) 
where the vertical entropy gradient 4/13 is replaced by t4e_fi4c-ENLI.q.o.-14+e-B--- 

(N.B. all thermodynamic variables are of the form Q = Q0(z) + SQ(x,y,z,t).)  

The horizontal wind is approximated by the non-divergent part of 

the real wind so that: 

917B g V = k„,V V and the thermal wind relation -= = — k„\74 H - -H 	 3z 	fo - - 

which gives a relation between the entropy perturbation and streamfunction, 

fo ati) = g 3z 	(k is the vertical unit vector). 

Eliminating w from the vorticity equation and using the streamfunction 

expressions for relative vorticity C and entropy 4 yields the quasi-

geostrophic potential vorticity equation 

D1 	
+ ALL 9  Po DIPI 

g Po UCET 	3Y = 

 

(2.1) 

 

115(1) 
+ wB = 0 

DtH 



25 

In the literature, the derivation of the quasi-geostrophic potential 

vorticity theorem is confused and two distinct sets of approximations 

lead to identical theorems. 	White (1976) has clarified the situation 

by showing how the conventional Boussinesq approximation demands a rigorous 

application of the relations: 

( 5 ( , 3 	« 1 
po ' P 

1 
and 
	

BHo <<1 	(H0 is the density scale height) 

yet this second condition may be omitted and the same equation derived 

from more complete continuity, hydrostatic and vorticity equations (see 

Appendix). 	Although a formally identical potential vorticity equation 

results, the improved set embodies elastic potential energy as well as 

gravitational potential energy. 	White shows that the only modification 

that arises in the use of the improved set occurs through the application 

of upper and lower boundary conditions (on vertical velocity) and then 

only for time-dependent problems. 

For the stationary problems which we shall be dealing with the 

mathematical problems are identical, though the entropy perturbation is 

now given by: 

= —g fo (scp 
	

-  

Much of the rest of this chapter will be a re-examination of the 

work of Charney and Drazin (1961) with an emphasis on the change to 

spherical polar geometry. 

Linearizing the equation (2.1) about a basic state of uniform 

zonal wind U (and static stability) in a 13-plane, channel flow gives: 

1 
+ U- 4 	

gBPo 3z . - 
v2v ,  +  .6   a  [ 	alli' 	0 alW po az ) + P Ti = 0 

and 1p = — 	+ 	( x,y,z). 
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Choosing stationary solutions of the form tp ,  = Real  F (z)eiXscos py 

and re-arranging gives an equation for the complex height structure F(z): 

d2 F 	1 dF 	g(13 _ r x2 4. 1.12))F = 0 

	

- Ho  dz 	fi 	` 

which admits a solution 

F(z) = tCle›T(ivz) + C2exp(-ivz)lexpkyo] 

with v 2 
4

1 _ 	(X2+112)) 

q) 	ft u 

If parameters are chosen such that v2  < 0 then 

F(z) = fClexp(-IvIz) + C2exp(Iviz)lexpi-4 

and it would be natural to select the bounded mode only (put C2=0) in 

an infinite atmosphere. 	When v2  >0 the choice of wave mode is less 

obvious with both waves having bounded specific kinetic energy at infinity. 

Setting C1 to zero gives an eastward tilting system of troughs 

and ridges and a westward tilting wave results from putting C2 to zero. 

Analogous problems exist in electromagnetic field theory where the 

stationary solution to the field equations for a radiating antenna is 

sought. 	The choice rests ultimately on the direction of energy propagation 

and the amount of reflection. 	For instance, the component Clexp -1.(?,x+vz)+—z 
2Ho 

corresponds to pure upward energy propagation and the other to pure downward 

propagation. 	That this is so may be shown by a consideration of the group 

velocity obtained from the time-dependent, linearized quasi-geostrophic 

equation (2.1). 

The direction of energy flow may also be ascertained by calculating 

the horizontally averaged pressure-work term 62ow x,y 
 since if this is 

positive, the atmosphere below a certain level is doing work on the 

atmosphere above. The observations of low wavenumber planetary waves 
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show strong westward tilt and upward energy propagation is implied. 

Upward energy propagation in stationary wave systems can occur 

only when v2  >0 and Charney and Drazin show how this imposes a condition 

on the zonal wind speed U such that propagation is only possible if: 

0 < U < 	 Uc  (critical wind speed) 
( (Az +112 ) 4_ 	f2.  

gB41-4) 

Stationary Rossby waves propagate wave energy upwards only when 

the zonal mean winds are westerly and less than some upper bound.' That 

this should be the case is borne out at least by the summer hemi4here 

easterlies of the stratosphere which are free from the large stationary 

wave distortions of the polar vortex observed in the westerlies of the 

winter hemisphere. 	Wave energy is unable to penetrate far into the 

easterlies and hence the amplitude dies away rapidly with height. 

Charney and Drazin concluded that for typical values of A and p, all waves 

would eventually be reflected by the strong polar night westerlies at 

some height by a local application of the criterion (2.2). 

They infer from the theory that conditions would be right for a 

catastrophic upward flow of energy into the stratosphere near the equinoxes 

when the zonal winds are light and westerly though there is no evidence 

of such abnormal behaviour then. 	If anything, the greatest transmission 

of wave energy appears to prevail when the zonal winds are at their strongest, 

in the winter months. 

Their analysis in 13-plane geometry was extended to spherical polar 

geometry though they discount the importance of the modification on the 

grounds that the harmonic modes Fin(cos 0)expirt4 for small n will be 

energetically unimportant for orographic forcing. 	(m is the zonal 

wavenumber, 8 is co-latitude and (I) is longitude.) 	The Q-G potential 
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vorticity equation with entropy source term is now given in spherical 

polar geometry and a separable solution for perturbations to an atmosphere 

of constant angular rotation is found. 

The transformation from the rectangular cartesian set (x,y,z) to 

e e 

is 	ncccccary. 	In contrast to the 13-plane analysis the full variation 

of the coriolis parameter is permitted in the absolute vorticity, though 

again a mid-latitude value is assumed in association with the stretching  

term and geostrophic wind equation so that the streamfunction = 
op  

The potential vorticity equation is found to be: (including  a 

source term) 

Dts + 20 cos e + 	3  [po po 	az B 5  

	

Po 	F5(1))} = 

4 D0  when the thermodynamic equation is: 	 + wB = S 
DtH 

and the conservation of potential vorticity is recovered when the entropy 

source S is zero. 

All symbols in the above equations have the same meaning  as before 

and 0 is the angular rotation rate of the earth. 

In terms of the rotational streamfunction the above equation becomes: 

D  1  V M 2I
po 

P + 	coscose + 	 -241 
B 3z 
11.1 	po  1 - 	3  ( B  P° 	2.3) DtH1 H 	 S 	 

a 
DtH 

with 	 = at + V V 

( fu- s c4Am.ri ) 

The gradient operatorAin spherical curvilinear co-ordinates is: 

$ 	a, e a 
sine cp 	T. DO 	3z 

foPo 

the curvilinear set 4,0,z) is made 

   

- • • • 

 

..L 
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where the radial co-ordinate has been replaced by z under the assumption 

of its smallness compared to the earth's radius, and the unit vectors (7), 

8 and k form an orthonormal triad pointing eastward, southward and 

upward respectively. 

The horizontal velocity vector VH  is given by: 

v PA1  $  
—H k  R ae R sinO 4)  

and with the relations ic„0=$ and k,„.$ = 4, we define the curvilinear 

velocities in the eastward and northward sense (as of the cartesian 

horizontal wind) u and v respectively so that: 

ucf) — yes = .=- O 	It 
R 38 — R sin 8 DV. 

/= 	1  and u = 	Do  , v R sin 6 aq) 

z i It can be shown that the relative vorticity VHV is given by: 

/ 	a (sin o 	+ 	I 	92p  1  V/2 4) = Resin e D8 (sin 	90 	Rzsinze 

and the substantial derivative following the horizontal motion D/DtH 

becomes: a + 	rav a_ aip a 
DtH 	at R2sineL30 DV 	3V aej 

Linearizing (2.3) about an atmosphere in differential solid rotation 

for small stationary perturbations so that: 

V = - IT(z)cos 0 + V'(8,V,z) 

and 	U(0,z) = s 	R8
IT(z)  

gives after algebraic manipulation 

al  / 	(a( . n al 	/  ay] 	fi; a (po  
R2 	Resin  De 

(sin 8 	+ sine av 	gpo az ( B az J 

1 p_T:f2 17; +2s-2  — f (!1  d i Po 	= fo 	nor, (,) 

	

R2 4  R2 	g po 	B of 	Po az B j 
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A separation of variables is possible when 	and S are chosen so that: 

= Real F(z)0(0)expim4) 

S = Real  -iSo  ( z )0( )exp imq) 

and substitution in the linearized potential vorticity equation leads to: 

dB sin - 	m2  de) 	sin 0 e - 	- f 2o 	d 	o d-F) 1 
Rosin 0. 	gR2po dz L B dzj17;) 

	 d po  
±R2) 	gpo  dz [B dz 

	 d  [P° So) 
I(z) 	mpolPF(z) dz( B 

The left hand side of the equation is a function of 0 alone and the 

right hand side of z alone, therefore: 

/Id( . 	m2   (:)} 
R4 de sin  d0 	in - s 0 - sin 0 -

- a (a constant ) 

Using  the transformation P = cos 0 we obtain: 

de) ,

P2

2  
042 -P2)-a-pj tn(n + /) - / 	10(P) = 0 

if 004  = - n(n+ /) 

This equation has solutions e(cos 0) = P17(cos0) which are the associated 

Legendre polynomials and exist only for n ;n7;  fAthen. 	 `6 1441-54-1“P"112-1- 	P:±1.  
Pe-fl u,(13 Awn s vv-fu-o A 	c- P crte-s) 

The equation 

2 F 	B 	d + 

for the 

	

+ dF 	gt2 

	

— 	_ 
dz 

complex vertical 

ft 	2_ d 

structure F(z) becomes: 

- — — [Jak) 
dz2 	p dz B 

1p 
pog 	dz 	B dz 

(n-1)(n+2)}1, 
R2 

= gBR 2  1 d (Po so  
fom11)  Po dz B 

 

(2.4) 

 

For adiabatic motion of an atmosphere in solid rotation which is uniformly 

stratified, (B = a constant): (2.11..) reduces to: 
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d2F 	/ dF glq2Q 	(n -/)(n +2)]
F(z) = 0 —2-  - 	 - R2  dz 	HO dz g 

Comparing this vertical structure equation with the corresponding 

one for constant zonal flow in cartesian geometry shows that the only 

change is the replacement of the total horizontal wavenumber squared 

(X2 +112 ) by  (n - 1) (n + 2)  
R2  

An algebraic point worth mentioning is that the Charney/Drazin 

21T 911P  
R4  

derivation of this equation omits the term 	which represents the 

eddy poleward advection of the potential vorticity of the mean flow. 

Consequently, their interpretation of (X2 +112) in the transformation 

to spherical geometry becomes n(n + 1 )/R2  which is significantly larger 

only for very small n (n=1, 2 and 3). 

Although the horizontal structure is represented by Legendre 

functions of global extent, the arguments are strictly only valid for 

one hemisphere since one of the primary approximations of the quasi-

geostrophic theory is the replacement of f in the stretching term and 

geostrophic wind relation by a constant middle-latitude value. 	The 

mid-latitude value -fo might be thought to apply to the southern hemisphere 

though this would imply pressure discontinuities etc at the equator and 

so only those wave modes that vanish at the equator are selected. 	It 

is found that all modes satisfying the condition n - m = an odd integer 

vanish at the equator and it is these in which this study is concerned. 

1 	2 
Particularly, those wave modes with one middle latitude peak. 	(P2 P3 

and P4  (cose) for the first three zonal wavenumbers.) 

Typical values used by Charney and Drazin for (A2 +1?) were /0-12  

and 4 x10 -13  m-2  and these lead to critical zonal wind speeds Uc  of 15 

and 32 ms-1. 	For spherical harmonic modes n=2 and 3, the equivalent 

total square wavenumbers ((n- 1)(n +2)/R2 ) are 10 -n and 2.5x 10 -13  M-2 
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which lead to average critical zonal wind speeds of 80 ms-1  and 46 m S-1 , 

and hence the largest scale waves associated with n=2 and 3 can propagate 

upwards in much stronger zonal westerlies than their analysis suggests. 

Referring to Fig.l.l which shows the distribution of mean zonal wind in 

winter up to 100 km and assuming that a local application of the propagation 

criterion (2.2) is valid, it is clear that the P2(cos 0) mode should be 

able to penetrate the whole depth of the mesosphere in the wintertime 

circulation. 	Pure propagating modes (C1 or C2 equals zero in previous 

expression for the height structure) are such that the horizontally 

averaged specific kinetic energy is uniform with height and a P2(cos 8) 

- 1 wave mode associated with an eddy velocity of 1 ms at the surface would 

be of the order of 1000 ms-1  at 96 km if unreflected. 	Clearly, the 

linearization would become invalid long before this amplitude was reached 

and even if it were permissible the smallness of the pressure perturbation 

compared to the basic state would be violated. 	Eddy velocities become 

comparable to the mean zonal wind speed at about 30 km and consequently 

one might expect the assumption of linearity to break down above this 

level. 	The theory of wave/mean flow interaction of Chapter 5 confirms 

this viewpoint. 

Smagorinsky's quasi-geostrophic model of thermal forcing produced 

a strongly evanescent stratospheric wave through the choice of a narrow 

channel flow and fairly short zonal wavelength (he selected a horizontal 
0, (ma/vete-mg% cu 

wavenumber equivalent tov760°1ongitude). 	The total square wavenumbers 

(A2  +p2 ) used in his analysis were 2.8 x 10-12 m-2  and 1.2 X/0-12  M-2  

which are at least an order of magnitude larger than those for n = 2 and 3 

of the spherical harmonic modes. 	The thermally forced planetary waves 

studied by Smagorinsky must be regarded as a description of high order 

(n >4) wave motion and this study will be concerned with low n modes. 

Before going on to examine planetary scale forcing by orography 
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and differential heating and cooling for various vertical profiles of 

zonal wind and static stability it will be instructive to see to what 

extent a 'lid' approximation at the tropopause is justified as is the 

case for baroclinic instability problems. 	The two-layer model of the 

Charney/Drazin paper is re-analysed with the modification of the (3-plane 

description,by the use of spherical polar geometry, accounted for. 

The reflective properties of the interface between two unbounded 

regions of constant zonal wind and static stability, for various values 

in each case is determined. 

A two-layer model  

Suppose that the height of the interface is given by: 

h(x,y,t) = h(y) + h'(r,y,t) 

then the unperturbed state will satisfy Margules relation for the slope 

of a frontal surface: 

dh 
— fo [P 	/ g[i5] 

where [ ] indicates the difference across the interface 

i.e. 	[a] = limta(h + c) - a(h - c)) 
-)-0 

Solutions in the upper and lower layers must be connected at the 

interface in a way that satisfies certain kinematical and dynamical 

conditions. 	The interface must behave as a material surface so that: 

(z h) 	0 	at z = h 	(A) 

and also, the pressure must be continuous across the interface. 

[p] = 0 	at z =h 	(B) 
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Linearizing (A) about constant zonal wind U yields: 

Dh' 	— Dh' + 	Df w' = 	+ u 	+ u 
at 	ax 	ay at z=i; 

where the expression is now applied at z = h. 

All aspects of the cartesian geometry analysis are retained except in 

the interpretation of (X 2 +p2 ).  so that: 

v2 	/_ gAV 	- 1) (72+2)) 

4 	f: 	R2  

The results will be equivalent to that of the complete spherical polar 

i  
analysis since the only change that occurs is in the horizontal normal 

mode structure (cosily 	. '711(cos 0)) and this merely complicates the notation. 

Choosing h' = hoexpiX(x-ct)cospy then we may write (A) as: 

di W. = (U-c)im,  + 	at z=Ti 
dY 

re-arrangement and application of [ ] leads to: 

W' - v' dy 	
= [Dthi] = 0 

	
at z =T1 	----(2.5) 

U - c 

The continuity of pressure condition (B) is expanded as follows: 

[p] = [i5(z) + Sp(x,y,z,t)] = 0 	at z =h 

= [ToY11) + h' C2  + Sp] = 0 dz 

and since the undisturbed pressure p is continuous across the interface 

we have: 

[h' 42- + Sp] = 0 dz at z = h . 

Using the geostrophic and hydrostatic approximations: 

dz 
	and 

	
vt = is 

pfo 

we have: 	- ghl[P] + 7,—A[PW] = 0 	 at z = T1 	 ----42.6) 
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which reduces to the continuity of the perturbed pressure only when 

the mean state density is continuous (and hence the continuity of the 

zonal mean wind). 

This condition can be simplified and h' eliminated using the 

linearized kinematical relation (A), so that after multiplication by Ti 

and application of [ ] we have 

[pry] = [p iXh + [p v c -dh  

(where the phase-speed c is set to zero since we are interested in stationary 

problems) and (2.6) can be reduced to: 

0 	(2.7) 

with the use of the Margules formula. 

Equations (2.5) and (2.7) are used to connect solutions at the 

interface of two layers with different static stabilities B and zonal wind U. 

Bi 

= 71, 

U. -/ 	 Bo  

The transmissivity of stationary planetary Rossby waves to a 

two-layer atmosphere (as depicted in the above diagram) is determined 

for solutions to the linearized, stationary, Q-G potential vorticity 

equation: 



36 

uliv240 14324P 	1  311 
- 3x II 	gBpz2  - Ho bZ + 4X = 0 

For a wave source located in the lower layer and an upper layer 

in which energy transmission is unimpeded and upward, solutions will be 

of the form: 

11)0 = RealtClexp(iVoz) + C2exp(-iVoz)lexp(iXx + —
z
)cosPY 

2110 

and 1P1 = Real C3exp(i( Xx + Viz ) +  	1-1Y 21/0 

with the subscripts o and 1  referring to the lower and upper layers respectively. 

The scale heights in each layer are necessarily different because 

continuity of undisturbed pressure p implies [(32] and a discontinuous 

mean temperature T, so that the scale height Ho 	 9J is different in 

each layer. 	The difference is small however and forms an unimportant 

contribution to the reflectivity. 

The interfacial conditions (2.5) and (2.7) relate the streamfunction 

in the upper and lower layers and a transmission and reflection coefficient 

can be defined. 	The upward energy flux given by the vertical pressure 

work term averaged zonally, (SpOLO X, and is equal to Real(Sp'w") where 
2 

6p' and w' are the complex quantities and the asterisk denotes the complex 

conjugate. 	The vertical velocity w is found in terms of IP from the 

thermodynamic equation and is found to be 

W' = _fp_ 17 .(R) 
gB 3x 3z 

so that the upward energy flux is given by: 

= - IF Imag 	po uxipkt3  

(Imag. denotes 'the imaginary part of'). 

z For the pure propagating mode ti) = Real  a exp ( i( Xx + Vz ) + -- this simplifies to : 
21/0 



P = 	 Q -  Tio  
TO1 	2 1 v + 

1  44 

and 

R - 2 	/ V + 4He 

U1  BO  
Up B 
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5p ,w , = 	pos i Xvial 2  2 gB 	with Po = 	exP [— Ho) 
z 

An energy transmission coefficient T is defined as the ratio of 

the energy propagation in the upper layer to that of the upward propagating 

component in the lower layer so that: 

T = 	 

and a reflection Coefficient R is similarly defined as: 

1C212  R =1 	 
id1I2 

Using (2.5), (2.7) and the expressions for 11)0 and 'PI to eliminate Ci, C2 

and C3  in the transmission and reflection coefficients gives: 

	

1,2 	/  

	

170 B1 V1 " 	4H 2   T 	 f 
	  tA-1  - 2A cos x + 1) 

	

2 	1 U1 B0 vo 	(v
,
o + 44J 

and R=A2  

with 

where 

A exp ix = U + iV 

)2 
U  = {(1)-  2L( Q- 	- (vjR2  - qQ2)}/W 

V = 2V0 R(f) - 21H°  (Q- P.))/W 

W = fP + *(Q_R)r - (,01Q 	V°R)2 

A graph of T and R for wave modes n=2 to 5 is plotted in Fig.2.l showing 

their dependence on the mean zonal wind of the upper layer (stratosphere). 

The zonal wind speed of the lower layer is fixed at 10 ms-1  and the 

static stability of the two layers is chosen to be representative of 
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troposphere and stratosphere. 	For U1 = 10 ms-1  the zonal wind speeds 

of each layer are identical and it can be seen that the fraction of energy 

reflected by the discontinuity in stratification at the tropopause is 

about 20%. 	Reflection is large only when the waves are close to 

evanescence. 	Green, in an unpublished calculation, shows the parameter 

2Hov to be important in determining the transmissive properties of a 

model tropopause and reflection is large when 21-10V < 1. 

Reflection of wave energy is much more sensitive to the value of 
• 

the mean zonal wind speed than static stability as can be seen from Fig.2.1 

with total reflection occurring when the critical wind speed 0, is exceeded 

or if 17, S 0. 

The cut-off in the transmission curves is very sharp particularly 

for higher n values. 

An interesting point that is brought out in the calculation of 

the transmissivity is that the wave extracts energy from the mean flow 

as it passes across the interface to stronger zonal winds and loses energy 

to the flow in passing to lighter zonal winds. 	In these cases the sum 

of the transmission and reflection coefficients is not unity and T may 

be greater than one. 	An atmosphere of two layers rotating at different 

speeds requires a density difference between them and a sloping interface 

to maintain geostrophic equilibrium. 	The availability of gravitational 

potential energy due to the sloping of the density surfaces enables a 

propagating mode to exchange energy with the flow. 	This is consistent 

with the more general ideas on wave-mean flow interaction given in Chapter 5. 

The rate of propagation of wave energy in each layer is given by 

the vertical component of group velocity and the reflectivity is strongly 

connected with the difference of group velocity between each layer. 
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The dispersion relation for quasi-geostrophic planetary waves is: 

= 	- f3A 
x2 +112 + 

gB
(v2 	/ 

where a is the frequency and the vertical component of group velocity is 

obtained by differentiating with respect to V giving: 

Cgz  = DU 
av 

2PX /f  V 
gB 

= 
A2  

2 

 
+112  +f°2 

gB
1v2 + 4HJ 

For stationary waves (a= 0) this simplifies to: 

Cgz  = 
2 02 f121  XV gB  

13 

and for the largest wave scales (with n small) such that S >> 
(n-1) (n+2)  

U 	R2  

we find 
-03/2 

C gz /TT  

showing the stronger dependence of group velocity on zonal wind. 

It may be concluded from the reflectivity graphs that the n=2 and 3 

are very effectively transmitted into the stratosphere and a rigid boundary 

approximation would be quite inappropriate in modelling these waves in 

stationary forcing problems. 	Existing theories of large-scale forcing 

appear to be unrealistic in their artificial restriction of the horizontal 

scale through the choice of a narrow, 13-plane channel flow which causes 

the wave motion to be trapped (Smagorinsky, 1953 and Charney/Eliassen, 1949). 

Studies which do not have this restriction such as that of 

Sankar-Rao (1965) apparently fail through the imposition of an energy- 

reflecting upper boundary condition. 	We now proceed to set up models 

of orographic and thermal forcing without this restriction by imposing an 

energy-transmitting boundary condition in the upper stratosphere. 
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CHAPTER 3 SIMPLE QUASI-GEOSTROPHIC MODELS OF OROGRAPHIC AND THERMAL FORCING  

(i) Constant zonal wind solutions  

(a) Orographic  

On the scale in which we are interested, the orography represents 

the departure of the earth's surface from its basic oblate spheriodal 

shape rather than mountain ranges such as the Himalayas. 	Sankar-Rao 

1 
(1965) has calculated the spherical harmonic coefficients of the elevation 

of the land surface above sea-level up to /5th degree and these values 

give some idea of the amplitude of orographic forcing for the first 

three wavenumbers. Typically amplitudes are of the order of 100-200 gpm 

for m < 4, n< 6. 	A substantial proportion of the orographic 'forcing 

function' will be by-passed in this work because only the low n spherical 

harmonic modes are to be considered and, for instance, features such as 

the Himalayas make strong contributions to wavenumber 1 in the orography 

through the high n modes reflecting the short meridional scale. 	Such 

isolated orographic features land themselves more readily to treatment 

by Fourier transform techniques on a f3-plane and an unpublished calculation 

by Green shows that pressure perturbations near the surface of as much 

as 10 mb are to be expected just upstream of the Rockies in the presence 

of a uniform westerly flow of 10 ms-1. 	Similarly, flow around 'tall' 

orographic objects such as the Himalayas can be shown to generate large 

amplitude laterally propagating Rossby waves. 

It is instructive to examine the solution corresponding to orographic 

forcing of a 'solid-rotation' atmosphere of uniform static stability since 

this carries most of the physical information relevant to this type of 

problem. 

The differential equation for the height structure has already 

been derived in Chapter 2 and upward energy propagating solutions are 



a gB 
1/2 exp i(nrcl) +Vz - 6) 	2

47.(cos 0) 7/0  
11P = -Real 

f o(v2  +  4He 
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of the form 

	

, 	z = Real  A exp(i(m4)+Vz) + —
2H0

1 
 Pn  (cos 0) 

where A is a constant to be determined from the lower boundary condition 

on vertical velocity. 

Air flowing over the lower surface will remain at the surface 

during the motion and this is expressed by the equation: 

z—z°) = 0 
	

at z zo 

where zo = zo(4,0) is the surface elevation function. 	Linearizing (3.1) 

and evaluation' at z = 0 gives the condition 

	 3z0  — — 
R act) 

at z = 0 

where IT/R = a constant and represents the zonal wind speed at the equator, 

and vertical velocity is related to the streamfunction through the 

thermodynamic equation by: 

f 0 a (4,  R2  g 	+ wB = 0 . 

Combination of these two equations gives the relation: 

fo 
gB 

aZ + Z0 = 0 at z =O. 

Considering one spherical harmonic component of the expansion of the 

surface elevation so that: 

20 = a Firni  ( cos 0 )exp /mg) 

then (3.2) can be used to evaluate A and gives the solution: 

(3.2) 
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1 = gB(2Q 	(n-1)01+21 where 6= tan-1(2H0v) and v2 + 	 . 	We take values 
41-q 	11, 	R2  

for the relevant parameters which represent averages for the troposphere 

and stratosphere; with a = 200 m, n = 3, B = 3.0 x 10-5  m-1  and V= 12.8 x 107  m2  g4  

(equivalent to a zonal wind speed of 10 m s-1  at 30°N) the surface amplitude 

can be shown to be of the order of 5 mb and the westward phase tilt is 

At 30 km the contour height perturbation is 270 m. 	All 

the general aspects of the structure of the untrapped low-wavenumber 

disturbances observed are contained in this elementary solution and the 

selection of the upward propagating mode alone is justified. 

It is evident from the surface phase shift E (,-66°) that the flow 

exerts an eastward drag on the orography since the higher pressure occurs 

on the upwind slopes and low pressure on the eastern slopes. 

By correlating first order perturbation quantities, several important 

second-order flux terms can be calculated. 	For instance, the latitude- 

average of the pressure-work term 4p 1 W, which determines the rate of 

upward transmission of wave energy, can be evaluated from: 

op 1W 1  = -n 
	th 

t T137 @z  ) 
ft T t a 	 ' 

= 	P0-7
rn fc 2 
gB 2 

	

 i„g. 	Ca,') 
ft 	_ 1 n 	ma2g5‘)   (4142  (Sp 	= 	R2  M PO gB 1 41  I 	 wos 	2 	) R 	— v + 4H6 

(3.4) 

Substituting typical values into the above gives upward energy fluxes of 

- 0.3 WIC2. 	It can be seen immediately that had the eastward tilting 

wave been selected, then v would be replaced by -v and energy propagation 

would be downwards. 

Westward tilting waves in geostrophic and hydrostatic balance 

transport entropy polewards as can be inferred from a re-arrangement of (3.4): 
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6pI wt = 	Pofo  g,,/ 311)' _ fo0(0)  
B 	R 	Po OVW 

For a zonal wind speed of 10 ms-1  at 30°N this implies an entropy flux 

of -0.1 m s-1  and in an atmosphere of mean temperature 250°K implies a 

poleward heat flux poCpv'W" of -2.5 x103  Wm2  which is equivalent to about 

1.7 solar constants. 	Since the total poleward heat flux required to offset 

the radiational imbalance of heating is - 6 solar constants there is good 

reason to believe that untrapped stationary wave heat transport is an 

important component of the total poleward fluid transport of heat. 

Lastly, the drag exerted by the wave on the lower surface can be 

evaluated by correlating the pressure perturbation with the slope of the 

1  92 surface so that the eastward drag is given by 40  Rsine 40 at z = 0  
(519
(0)  
'W  

U 
which is identical to 	at z= 0. 	Surface stress is calculated to 

be -.0.03 Nm-2  at 30 °N which is about an order of magnitude smaller than 

typical boundary layer turbulent stress, though the comparison of the 

hemispheric averages of surface drag might be similar in size (since the 

subtropical westward torque due to the easterlies tends to balance the 

middle and high latitude westerly drag). 

The ability of planetary wave motion to exert drag on the orography 

is intimately related to the upward propagation of energy and poleward 

transport of entropy and therefore to the zonal wind speed. Wave drag 

occurs only for a limited range of zonal wind speeds corresponding to 

the criterion for propagation and implies a drag law quite unlike that for 

the diffusive transfer of momentum. 	Indeed the linearized analysis 

demands that momentum transfer between atmosphere and earth due to stationary 

Rossby waves should occur only for westerly zonal winds. 

Specific kinetic energy of the wave motion is constant with height 

(characteristic of pure energy transmission) and this is consistent with 

observed wavenumber 1 and 2 motion (Fig.1.2). 	In fact, wave energy tends 
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to increase with height which is explained later as a wave/mean flow 

interaction resulting from the increase of zonal wind with height. 

It is remarkable how successful this simple solution is in 

representing the general features of planetary wave motion observed up 

to 30 km when sophisticated models such as that of Sankar-Rao fail. 	The 

selection of the upward, radiating solution seems to be crucial in this 

respect. 	Upper boundary conditions commonly used in general circulation 

models, such as w 
Dt

=0 at p=p0 and ---cIDDt =0 at CY= Go reflect energy and 

their application below 40 km might be expected to lead to a distortion 

of planetary wave structure in view of the observed transmission of energy 

above these heights. 

Examination of the solid-rotation atmosphere solution to the 

problem of orographic forcing with an upper rigid lid provides useful 

information relevant to this effect and the streamfunction is found to be: 

= Real Ba 
/ V2 

sin{v (z-H) - 6 }
exp(i),# + -z-] Prn (cos8) 

sin vH 	21/0 n 
fo 

 
v2 

+ 4H 

A stationary standing wave results from the reflection of wave energy 

at z=H so that there is no net upward propagation of energy and the phase 

lines are vertical. 	The associated absence of surface wave drag and 

poleward transport of entropy are important deficiencies and the presence 

of resonant peaks when vH=ni-r would result in unrealistic modelling by 

general circulation experiments. 

Evidence of this type of modelling deficiency can be inferred from 

the results of numerical simulations of the stratosphere. 	The 11-level 

model of the circulation of the stratosphere used by Mahlman and Manabe 

(1972) was unsuccessful in the description of the mean zonal wind and 

temperature structure, with winds too strong by a factor of two and 
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polar night temperatures colder than observed by 25-30°K. 	Planetary 

wave transfer of heat is the dominant mechanism offsetting the polar 

cooling of the stratosphere in winter (Green 1972) and the absence of 

this transport process (through the forced reflection of energy at the 

upper boundary at 10 mb) could account for the coldness there. 	Thermal 

wind balance demands that the shear should be greater there and hence 

excessive zonal wind speeds result. 	The effect of spurious energy 

reflection could also seriously upset the tropospheric circulation through 

the reduced stationary wave transport of heat and build up of wave energy. 

Numerical modellers frequently complain of 'excessive blocking' in weather 

prediction schemes and it is quite possible for this to be a manifestation 

of the forced trapping of waves and their resonant behaviour. 	The 

treatment of large-scale forced waves in climate models presents a formidable 

problem to the modeller with the tropospheric wave motion suffering 

considerable distortion in the absence of a realistic stratosphere. 

(b) Thermal forcing_ 

As explained earlier, planetary Rossby waves can be generated by 

the extension or contraction of vortex tubes associated with the vertical 

motion induced by a field of heating and cooling. 	Two 'thermal effects' 

that generate quasi-geostrophic waves can be distinguished, and they are: 

(1) Heating near a rigid boundary. 

(2) Differential heating in the vertical. 

In an atmosphere of uniform static stability, if the energy heating 

function poS is independent of height then the inhomogeneous term in 

equation (2.3) associated with the forcing vanishes and the equation is 

identical to that for adiabatic flow. Wave forcing enters through the 

boundary condition on vertical velocity w which is obtained from the 

thermodynamic equation. Vorticity is generated by the forced compression 

of vortex tubes against a rigid boundary and this will be shown to be 
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the dominating mechanism in the formation of the Siberian anticyclone. 

Differential cooling in the vertical tends to cause subsidence at differing 

rates which also leads to vortex compression and wave motion. 

The Q-G potential vorticity equation can again be used to write 

down a simple solution representing the thermal forcing of an atmosphere 

in solid rotation (1T/R = aconstant, which represents the equatorial 

zonal wind speed for the solid rotation atmosphere). 	Low-level heating 

is conveniently represented by a source function Si=asinmcb Pn(cose)exp(-bz) 

so that equation (2.4), for the vertical structure of the wave, becomes: 

d2F 	/ dF 	0.(20 _ (71 -2)01 +2)11,(2) 	ga(b 11/110)  exp(-bz) dz2 	Ho dz 	IT 	R2 	 fon*P/R21 

Selecting the pure upward energy radiating component of the solution 

to the homogeneous equation and imposing a lower boundary condition that 

vertical velocity vanishes at z = 0 (through the thermodynamic equation) 

leads to the perturbation streamfunction solution: 

m; !7r )P,T(eos 0) 
= 	Real (/5 + 1 1 _-bz 	i.v  

I -  1 	i (v + 112H0)zir 
expimq) 

1 	 je 	 2110  e  
b2 + 	+ v2 -I- 
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Figs. 3.1 and 3.2 show the amplitude and phase of contour height 

and temperature fields for the 	modes with m=/, 2 and 3. 	Contour 

height perturbations are largest for wavenumber 1 and a heating function 

equivalent to 3°C/day at the surface produces a pressure perturbation of 

15 mb at the ground. An amplitude minimum in contour height occurs 

near 4 km for all three waves, above which the disturbance increases 

steadily to give a 600 gpm disturbance amplitude at 30 km for wavenumber 

one. 	Phase tilt in all three waves is very similar with the strongest 

tilt below 4 km. 

A strong surface temperature perturbation is indicated, again being 

largest for the lowest zonal wavenumber, with amplitude of 12°C for 
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wavenumber one. 	All perturbation quantities increase rapidly in amplitude 

with height in the stratosphere which is associated with the inertial 

effect of density. 	Predicted temperature amplitudes over 20 km are too 

large even though the contour height disturbance amplitudes are reasonable. 

Some interesting points regarding the surface phase relationships of 

pressure and temperature to the source function are brought out by Figs. 

3.1 and 3.2. 	The 'model equivalent' of the Siberian anticyclone appears 

about 60°  downstream of the region of maximum cooling whereas the coldest 

spot is 90°  downstream. 	This is, at first glance, consistent with 

synoptic experience with the lowest Siberian temperatures being recorded 

to the east of the region of intense high pressure. 	From this it is 

worth remarking that the coldest air will be associated with northerly 

winds and the warmest with southerlies from which the poleward transport 

of heat can be inferred. The general qualitative agreement with 

observation suggests that the model assumptions are correct. 

For a given magnitude of heating function, the amplitude of the 

resulting wave depends inversely on the zonal wavenumber m and the angular 

velocity of solid rotation of the atmosphere. Parcels of air travelling 

through the heating regions will remain there for a time inversely 

proportional to the zonal wind speed and hence will suffer the greatest 

effect of the cooling for the slowest zonal wind speed. 	The angular 

extent of the zone of heating or cooling is inversely dependent on the 

zonal wavenumber and the larger this region the longer the time a parcel 

spends in each heating phase and hence the larger the amplitude of the 

temperature perturbation. 

We might deduce from these simple arguments that thermally forced 

motion in the atmosphere is most likely to be observed in the lowest 

wavenumbers (given that the spectral distribution of forcing So(m) is 

uniform). 
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Spherical harmonic modes of high n are evanescent and their amplitude 

changes sign near the top of the heating layer. 	For these modes (3.6) 

may be approximated to: 

1p , 	gaR2  cbe-bz 
ye-Vz) 

f 	b2  - v2 
	cos mq) Pn  (cos e) 

2R2  0  
(when 	+2 << n(n+1)) and it is clear that the wave is relatively large 

at the ground and decreases to change sign at a particular height, thereafter 

tending back to zero at infinity. 	This type of wave structure conforms 

with the classical picture of a cold anticyclone changing to a cold low 

aloft. 	This is applicable only for disturbances of short horizontal scale 

for which the dispersive properties of the fluid are unimportant and for 

continental scale anticyclones the notion is quite misleading. 	The 

temperature perturbations of such disturbances are 90°  out of phase with 

the heating field from which can be inferred that there is no generation 

of available potential energy since the zonal average of S'Sci) is zero. 

Parcels assume their lowest temperatures after traversing the whole of 

the cooling region, unlike the propagating modes in general (see Figs. 

3.1 and 3.2). 

A realistic model of thermally-forced motion, that is self-consistent 

with regard to the wave-structure in the troposphere and stratosphere must 

include the basic increase of zonal wind with height. 	The magnitude of 

tropospheric forcing is critically dependent on the zonal wind speed in 

the vicinity of the heating function whereas the ability to propagate 

energy and the vertical structure depend essentially on some average zonal 

wind characteristic of the stratosphere. 

It is desirable, therefore, to consider the analytic problem of forcing 

in uniform shear flow which is the next simplest case. 
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(ii) Constant angular shear solutions  

Having examined the simple analytic solutions to the potential 

vorticity equation for stationary forcing of an atmosphere in solid rotation 

and identified the important physical processes, we shall now deal with 

constant angular shear models that are sufficiently realistic to allow 

comparison with the real atmosphere with more confidence. 	Although 

analytic solutions are obtainable, their evaluation is considerably more 

difficult. 

(a) Orographic forcing  

Analytic solution to (2.4) is possible when the angular rotation 

of the atmosphere is a linear function of height and the static stability 

is uniform, so that letting: 

 

Po = pos exp (-- 2- 
Ho 

1,1)  = 11,0 + Az, 

 

and 	So =0 in (2.4) gives: 

d2F 
dz2 — Ho  dz 	fa 470 + Az 	gB Ho 	+ Az) 	R2  

/ dF + 	2Q 	+ A 	A 	(71 -1)(n +2))F = 0 

Transforming the dependent and independent variables by the relations: 

 

F(z) = Z(z)exp[A] 

h = [111—lk + z
J
6*  

6* 	2  (y __B (n — /R)n +2)  

     

and 

with 

    

( 3. 7 ) 

1/2 

  

       

then we have: 

dz + 	z h )  _2 	f 	k ) dh2 	 - o with k = 
	/ 

.1 A Hol/o*  

This is a special case of Whittaker's Equation: 

dW (T1+- z 112) - 7  . k 	2 	= 0 
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which has two independent solutions Mk,p(z) and Wk,p(z) such that: 

M 	(z 
k ,p ) 

= exp[--f z2+4 	2+p-k, 1+2p, z) 

and z) 2+1-1 (1( 1-13-1-k, 2±2P, z) Wk,p(z) = 	z 

as given by Abramowitz and Stegun (1964). 

M(a,b,c) and U(a,b,c) are confluent hypergeometric functions and 

their series expansions are given in most text books of special functions. 

The functions M
n.
I, 
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1(z) and Wkj(z), in which we are interested, are not 

generally tabulated and in practice the latter is quite difficult to 

evaluate. 	By a combination of asymptotic expansions and limiting cases 

it is possible to evaluate the functions on a computer to a high degree 

of accuracy in regions where the series summation is difficult, and also 

get some insight into the behaviour of the solutions. 

For instance, at large positive z: 

and 

MI, 	1 ( Z) 

Wk,--;(z) 

---> 

--> 

-k 

2 
[i +0(z in 

{/ +0(z-1)] 

,

k (! 

z-k  exp (- 

and they both represent trapped waves with Mk,2(z) becoming unbounded 

at infinity and Wka(z) tending to zero. 

Rejecting the M 1(z) solution on the grounds of physical inadmissibility 
k,2  

for an unbounded atmosphere gives the height structure F(z) = Wk,2(h)(,xp(z/2H0) 

and it can be seen that the specific kinetic energy density (which is 

proportional to polF12 ) also tends to zero at infinity. 

The expression for the streamfunction IP becomes: 

IP=RealAwl(h)exp(imcb + 	8) 
k,2 	2H0 n 

 

(3.8) 
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where A must be determined from the lower boundary condition on w. 

Again, the forced vertical velocity at the surface is determined 

by the surface zonal wind speed and the slope of the orography, and is 

related to the streamfunction through the thelmodynamic equation. 	The 

uniform westerly shear will be balanced by an equatorward gradient of 

entropy (thermal-wind equation) and this introduces an extra term into 

the thermodynamic equation. 

The stationary, linearized thermodynamic equation becomes: 

2  DV 	M 	+ w, B = o 40 igz)  , 	pZ R2  ' 4°2  

and together with the kinematic relation for the surface vertical velocity 

w = 1Po  9zo R2  -5-T- gives: 

2f 	2
z 	at z= 0 

gB 3z - Tio  dz 	i)  = 0 

Consider one spectral component of the expansion of the surface elevation 

in spherical harmonics and the corresponding component of the streamfunction 

so that: 	
z 0(0 ,(0) = a Finn  (cos 8)cos 

and 	= Real  F(z)4rti(cos 0)expimq) 

then substitution into the boundary condition expression above yields a 

linear first order boundary condition on F(z) at z =0 given by: 

dF 
 AF=  ,qBa  

dz 	 fo 
at z = 0 

Applying the transformations (3.7) to this condition gives the transformed 

boundary condition: 

dZ + 6;11_ A 	/ 

IT° 4. 
 2H0JZ(h) = _

SIT°  
= foS* 	

at h =
A 	n* 

and using this to evaluate A in the streamfunction expression (3.8) leads 



gBa 	z 	I (h) Fri(cos 0)exp imcP 
= Real- 	f 	2Ho K, 	n 

wk  h „ + (*, - ) w
k' 
 (h )  

( 3 . 9 ) 
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to the solution 

For all positive values of h, W
k,  ,(h) is a real function and the 

phase of IP will be the same at all heights apart from /80°  changes associated 

with amplitude sign change. 	This is equivalent to saying that the phase 

is independent of height for all regions in the westerly winds. 	If the 

zonal wind is westerly at z= 0 then there is no net energy propagation 

in any direction and the wave motion is described as 'trapped'. 	If a 

region exists where the Charney/Drazin criterion of propagation is locally 

satisfied (roughly) then the disturbance motion may behave as a standing 

wave there with the appearance of nodes (see Simmons,1974). 

Resonance is also possible when the denominator of (3.9) vanishes 

and an example is given later. 

These effects are summarised schematically in the following diagram: 

Clearly, this model is quite unlike the observed structure of 

wavenumber 1 and 2 wave motion in the real atmosphere with the complete 

absence of phase tilt. 	No absorption process exists in the model and 
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its implicit inclusion through an energy transmitting boundary condition 

is required. 

It is appropriate at this point to review some of the theoretical 

work carried out on planetary wave motion in the stratosphere and interpret 

it in the context of the model used here. 

Simmons (1974) obtained solutions to the quasi-geostrophic potential 

vorticity equation for the motion resulting from forcing at the base of 

a stratosphere with jet profiles of zonal wind in the meridional direction 

and constant vertical shear. 	In general the problem is non-separable 

and is only tractible for special cases; yet Simmons circumvents this 

by expansion of 13 into the horizontal eigenmodes and finds that the 

amplitude of the forced wave tends to mimic the shape of the zonal wind 

field. 	He calculated the stationary response of wavenumbers 1 and 2 to 

forcing of an atmosphere of 'realistic zonal wind' distribution up to 

100 km, imposing an upper boundary condition demanding the boundedness 

of energy density at infinity. 	Although the calculated amplitude variation 

in the vertical is quite reasonable, the phase lines are vertical and 

no net upward propagation of energy occurs. 

In an attempt to reproduce the westward tilting wave patterns of 

wavenumbers 1 and 2, he introduces dissipation through height-independent 

Newtonian damping of the temperature perturbations of magnitudes, estimated 

by Lindzen and Goody (1965) from photochemical calculations. 	The destruction 

of available potential energy of the wave by the radiative relaxation of 

the temperature field is offset to a large extent by the potential energy 

drawn from the mean state by the wave through poleward heat transport by 

the wave (and hence westward tilt). 	Although Simmons obtains a westward 

tilting wave system with the introduction of Newtonian cooling it is far 

too abrupt with all the phase change occurring in a shallow layer (,-/0 km) 
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above the forcing height. 	Muench's data indicates a much more uniform 

westward tilt with height of both wavenumbers 1 and 2. 

Matsuno (1970) investigated the vertical propagation of wave energy 

into the stratosphere in a model with realistic horizontal and vertical 

variation of the mean zonal wind in winter. 	Observed amplitudes and 

phases of the low zonal wavenumbers were specified at the lower boundary 

corresponding to the 500 mb level and a simple radiation boundary condition 

was applied at 65 km. Wave energy was found to propagate upwards and 

southwards to be absorbed at the zero-wind line (critical layer). 	In this 

way energy was prevented from reaching the high stratosphere by the strong 

critical layer absorption and phase tilt westward with height was quite 

realistic. 	The major deficiency of the model results was the under- 

estimation of the amplitude of wavenumber 2 in the stratosphere with 

amplitude decreasing above 25 km. 

Matsuno's numerical solutions appear to differ from those of 

Simmons who found that the critically absorbing layer (of the equatorial 

zero-wind line) has little effect on the penetration of wavenumbers 1 and 

2 into the upper stratosphere and his predicted amplitude variation of 

wavenumber 2 was in better agreement with observation. 

In Chapter 4, we argue that a critical-level absorption process 

is not desirable in stationary wave problems since it implies an infinite 

drag on the zonal wind at the zero-wind line which would be inconsistent 

with a steady basic state flow. 	Nevertheless, the exchange of energy 

between the wave and mean flow by this process is not ruled out for the 

non-linear system and the question of its importance remains unanswered 

at this stage. 
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An energy-transmitting upper boundary condition  

In view of the uncertainty concerning the wave energy absorption 

mechanism in the upper stratosphere, whether it be by radiative damping 

of the temperature perturbations or exchange with the mean flow at the 

equatorial zero-wind line, we avoid the problem by imposing an energy-

transmitting boundary condition below the region of observed absorption. 

Energy transmission is allowed by keeping the angular rotation 

rate of the atmosphere fixed above 40 km and selecting the purely upward 

energy radiating solution there. This upper solution is connected to 

the motion below 40 km by demanding continuity of pressure and vertical 

velocity (consistent with the interfacial conditions of the previous chapter). 

This allows a boundary condition to be formed as follows: 

B = A CONSTANT 

u = 	coNS-rANT).siNe 

4)* = REAL C exi){,E(rn,(1)-i- z) 4 H o 
V crt  (cos0 

H 

i Z: REAL FLz) edCio rr14)  Pam  (c°&9) 

.131e4 (AND CO ARE c oNTINtiovis ACROSS z=H 

The upward radiating solution of the hypothetical upper layer is: 

z m 
IP
+ 

= Real C exp [i (mg) + vz ) + 
2Ho

) Pn (cos 

where C is an undetermined complex constant and the lower solution is of 

the form: 
= Real  F(z )exp imcb Pmn( cos 8 ) 
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so that the connecting conditions at z =H are: 

C expfivH + 2H  -0) = F(H) (continuity of pressure) 

 

{H)dj--7  - F 
dz 	dz 

= Tp(H)(iv + 2110
)C 

z=H 
and 

 

(from the thermodynamic equation) 

Elimination of C between them yields the complex boundary condition: 

with 

dF 	p_gp. 	+ iv]F(z) =0 
dz 	(1-T) dz 	110 + 2 

v2 + 1 = 2S2 	(n - ) (n + 2)) 
g 	 R2 

at z =H 	(3.10) 

This type of boundary condition, which is closely related to the 

Sommerfeld radiation condition, will be particularly useful for numerical 

integration where an infinite integration region must be reduced to a 

finite region. 	When v2  <0, the upper wave is evanescent and the boundary 

condition is no longer complex which prevents the sloping of the phase lines. 

The solution to the orographic forcing problem with radiation 

condition (3.10) is straightforward to obtain and involves the linear 

combination of the independent solutions W 1(h) and M ,(h) which satisfy 
k,2 	k,2  

the upper and lower boundary conditions. 	Fig.3.3 gives the amplitude 

and phase of wavenumbers 1 and 2 up to 40 km for a 'realistic' choice of 

zonal wind shear (values given at 45°N) and average static stability*. 
m  

Amplitudes of the contour height field forced by Zo = 200 Pn (cos 0)cos mq) gpm 

are of the order of 1 mb at the ground and -500 gpm near 30 km which 

compares favourably with observed values. 	Phase tilt is in good agreement 

with Fig.l.2 and is less rapid in the upper regions as one would expect 

from a local application of the constant zonal wind solution. Unevenness 

in the curves results from the partial internal reflection inherent in 

the solution, which causes interference with the propagating component. 

*The static stability B in the 'hypothetical layer' is 5x/0-5m-1. 
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A useful test of accuracy of the solution arises from an interesting 

property of the differential equation for the height structure F(z). 

Setting S=0 in (2.4) and re-arranging gives: 

d fpo  
dz 03 dzj 	k(z)F(z)  

----( 3. 11) 

where the coefficient of F(z) is replaced by the real function k(z). 

Also taking the complex conjugate (denoted by *) of (3.11) gives: 

d 
 dip() dF* 

dz 
) 	k(z)F*(z) = 0  4B  

 

(3.12) 

 

Multiplying (3.11) by F*  and (3.12) by F, subtracting the resulting equations 

and further re-arrangement gives: 

dz 
imag.fps_  * -d1-1 = 0 

B 	dz 

or t Po -IT F* dF ,c-f- Imag. 	F 	is independent of height. 

Now the poleward eddy entropy flux v'W is given in terms of the streamfunction 

by: 
Po v' 64' = Real 2-1r111*(fillt 

az 2 R 	g  

(where the overbar denotes the average about a latitude circle) 

which may be simplified to: 

Po 7,141  = - Pc/f°777  Imag.(F*F') 2gR 

and therefore: 	Po vw 	is independent of height. 

The eddy heat flux poCp  wse should be proportional to the vertical 

gradient of potential temperature for a propagating wave in a given zonal 

wind field. 	It must be remembered however that the ability to transport 

heat polewards is primarily dependent on whether or not the wave is trapped 

by the zonal winds. 	It is interesting to speculate on the possible 

sensitivity of stationary wave heat transport in the troposphere to the 

wind circulation of the stratosphere. 	The reduced transmissivity of 



61 

the stratosphere to upward propagating planetary waves through the increased 

strength of the polar night jet might have important repercussions on 

the tropospheric circulation through the reduction of the stationary wave 

heat transport. 

The year to year variability of the polar night vortex strength 

is large with as much as a factor of 2 involved in the'variation of the 

zonal wind speed at 10 mb and so the tropospheric respOnse should also 

vary. 	Another interesting possibility is that of resonance of trapped 

planetary waves and their influence on the weather. 

To demonstrate and emphasise this possibility, a trapped resonant 

wave was found for the orographic forcing of the E3(cos0) mode and the 

surface pressure response is plotted for different uniform shear profiles 

in Fig.3.4. 	The surface (mid-latitude) zonal wind speed is fixed at 

5 ms-1  and the speed at 40 km is varied between 40 and 75 ms-1. 	A highly 

peaked resonant state occurs when the zonal wind at 40 km is about 52 ms-1. 

Naturally, the growth of a near-resonant wave is limited by the 

availability of energy in the system and dissipation so that the response 

of a real (non-linear) atmosphere would be bounded. 	The question that 

must be raised is, 'Does planetary wave resonance occur naturally in the 

atmosphere and if so how does it manifest itself'? 	One hypothesis is 

that 'blocking', so-named by synopticians, is a persistent, resonantly 

amplified planetary wave. 	Certainly, trapping is favoured by the high n 

spherical harmonic modes consistent with the 'splitting of jet streams 

phenomenon' since (n-m) determines the qualitative characteristics of 

the meridional wave structure and harmonic modes change sign with latitude 

more frequently the larger the value of (n-m). 

This point might form the basis of an interesting investigation 
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into the resonant growth of planetary waves in a multi-levelled, non-linear 

numerical model in order to determine the meteorological significance of 

such waves. 

Summarizing this section, we conclude that satisfactory models of 

orographic forcing are obtained with the use of a radiation boundary 

condition at 40 km and that amplitudes and phases of wavenumbers 1 and 2 

are in good agreement with observed structure in the atmosphere. 	Using 

calculated spherical harmonic coefficient values for the P; and P; modes 

of the spherical harmonic expansion of surface elevation, we find 

stratospheric disturbances of realistic amplitude. 

Further work on the structure of orographically forced waves will 

be presented in Chapter 4 where the observed variation of zonal wind and 

static stability in the vertical will be accounted for. 

(b) Thermal forcing  

Attention has been focussed so far on the propagation of energy 

away from the forcing regions into the upper stratosphere in winter and 

we have attempted to improve the tropospheric description of the wave 

motion by constructing a more suitable upper boundary condition. 	The 

energy transmitting boundary condition will now be used to examine the 

structure of thermally forced waves of the largest horizontal scale 

(with n=2, 3 and - 4). 	The P2 and P3
2  
(COS 8) modes should represent a 

substantial proportion of the thermal forcing at these zonal wavenumbers 

since they possess one middle-latitude peak in their meridional structure, 

1 	1 	2  
and the higher modes P49 P69 '5 and P7 (cos 	are trapped and are important 

mainly in the troposphere (choosing only modes that vanish at the equator). 

The amplitude of thermally-forced motion depends critically on 

the strength of the zonal winds in the vicinity of the heating region and 
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a constant shear profile of wind allows the smallness of the westerlies 

near the ground to be represented without underestimating the stratospheric 

wind, as in the solid-rotation atmosphere solutions. 

The thermal-forcing of planetary waves poses a more difficult 

mathematical problem through the inclusion of an inhomogeneous term in 

the differential equation for the height structure. 	Introduction of a 

uniform shear of the angular rotation rate into equation (2.1l) such that 

= IT°  

d2F 

+ Az; 	letting 

1 	dF 4.  gp 
Ho dz 	• fo 

B = a constant 
ff A 

2Q 	gB Ho + 

and po = pos  exp(-z/H0) 

(n - 1)(n + 2) 

)gives: 

gR2 1 	d
(PoSo) po dz dz2  itTo + Az 1170 + Az - 	R2  fo  

As before, using the transformations: 

F(z)=Z(z)expW 

and 	h = S*(1%°- + z) 

the above equation reduces to: 

d2Z 	f 1 4.  k)z 	R2 expt - ( 27/7(114)J  1 d 
dh2 	h (h) - 	g 	PO dh(P°S°)  foAm 

-{3.11) 

This is a second-order inhomogeneous linear differential equation with 

variable coefficients and may be intergrated by standard Green's function 

construction. 	The Green's function G(h,hF) is the solution to the equation: 

d2Z  
dh2 	4 

f_ 1_ + 
19Z(h) = o(h-h ) 

under homogeneous boundary conditions, where (S is the Dirac delta function. 

In this problem the lower boundary condition is inhomogeneous if the source 

term So does not vanish at the ground z = 0, and an extra term is added 

to the Green's function solution that originates from the 'surface term' 

of the generalised Green's identity. 	The modified radiation upper boundary 

condition to be used is identical to that used for orographic forcing 

Provided that the flow is adiabatic in that region. 
bk e rucii-Ab:oh Gun 	.6.a 	ro 011/44Ace) 	re{ 	:q wr*,.ocim 5 frinn 	c<NA,,,,Abtly 

4 s 	01 	6-1.3  )a- 4 air e  fit ati.;„ 
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The Green's function solution in our case corresponds to a step-

function in energy heating rate poSo and it will be of some interest to 

examine the elementary Green's function solution which corresponds to 

constant poSo up to a certain height and zero elsewhere, i.e. poSo  (0) =H(zF -

where H(s) is the unit stepfunction (i.e. lower tropospheric heating anomaly). 

The Green's function method consists of constructing an upper solution 

from the two homogeneous solutions Wk , ;(h) and Mka(h) which satisfies the 

upper boundary condition and a lower solution which satisfies the homogeneous 

lower boundary condition. 	These are connected by the condition that the 

streamfunction is continuous at h=hF  (the non-dimensional height correspondin 

to zF ) and a jump condition which imposes a unit discontinuity in the 

derivative of Z(h) at h=hF. 	If Z > ( h,hF) and Z < ( h,hF) denote the upper 

and lower solutions respectively, then, 

Z>(h,hF) = KiWka(h) + K2Mka(h) 	for h?- h p  

and 
	

Z<(h,hF ) = K3Wka(h) + K4Mka(h) 	for 72‘,hF  

where K1, K2, K3 and K4 are constants to be determined from the two boundary 

conditions and the continuity and jump conditions at h=hF. 

The homogeneous upper and lower boundary conditions can be shown to be: 

dZ 	 {dh 	u x* 
	 + iv)Z(h) = 0 	at h=hTo

(radiation condition) 

and 64-2HF-0- + idZ(h) = 0 at h =ho 
(vertical velocity is zero at the ground 

with 	hT  = 8*ri  + H) 	and ho = (S*P 

At h=hF the connecting conditions are: 

dZ > dZ < Z>( hF ) = Z< (hF) 	and dh  - (7.h. _ 
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and after algebraic manipulation the Green function, given by Z>  and Z<  

in their appropriate ranges, becomes: 

, i(hF) - Mk , ;(hF ))(ct2Wk j(h) - Mk , i(h)) 	for ho‘h.chF  

G(h,hF ) = 

a Wk,  l(hF  ) - Mk,  l(hF ))(alWk,2 
 l(h) - Mk, l(h)) for hF-..c h < hT  

where al - 

a2 

MI 	 T (h ) + k,2  

k,2 l(hT  ) + Eirikj(hT) 

Mic j(h0) + E2Mkj(ho) 

Wk ,2  1(120) + c2W
r‘
I, 
s2 
i(ho) 

(- k )!  with 	Y = (al -a2) El = 

62 = 

iv] 

(Primes denote the ordinary first derivative.) 

In the derivation above, the property that the Wronskian of the 

independent solutions is constant for this homogeneous differential equation 

was used and is found to be such that: 

Wka(h)Mk , l(h) - M4(h)Wkj(h) = - 	 

For a heating function poSo = Po(0)S0(0) H(zF - z), the right-hand side 

of (3.11) becomes: 

(h 	h ) 
gR2 

expl_ 
 2H06* 	Po(0)SD(0) 6(h - hF) 	gR2  h-ho 

ex-
1,90(0)6(h -hF )/ hF 

AAm 	hF 	 Po(hF) 	 foAm 	t 2H04 

To obtain the solution to (3.11) with a step-function profile of forcing, 

the Green function must be multiplied by the coefficient of gh-hF) above 

and the inhomogeneous term of the lower boundary condition must be accounted for 
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At the lower boundary h= ho, the vanishing of vertical velocity w 

gives: 

dZ 
dh 	E2Z(h) = _ gS0(0)R

2  

fob in o 

(from the thermodynamic eqution using the transformations (3.7)) and the 

extra surface term from the Green's identity is: 

gS0(0)R2  
G(h,72(;) 

fo(S* 10o 

so that the full solution becomes: 

Z(h) 	gs0
f

0
m

R 2  [exp(
A
zFV2H0)  

	

G(h,hF) 
	G(h,20  )) 

 F 	
po 

Once the Green's function is known, the solution for any distribution 

of So(z) may be synthesised by summing the influences from all levels, 

which is expressed formally by the integral: 

hT  

Z(h) = 	G(h,hF) 	 

I ho 	

gR2 ex  

	

41/06* )/ 	dr 
Po(hF) dkr(P°S0(hF)) dhp 	gRS0(0)  G(h,hci 

fom 5*470 foAm 

-----(3.12) 

Having outlined the mathematical procedure, it remains to discuss 

those results obtained by calculating the Whittaker functionS and performing 

numerical integrations to evaluate the above complex integral. 

Firstly, consider step-function forcing in a uniform shear profile 

equivalent to a mid-latitude zonal wind speed of 2 ms-1  at the surface 

and 30 ms-1  at 40 km where the modified radiation condition is applied. 

The heating function poso is constant below 4 km and equivalent to a heating 

rate of 1.5°C/day at the surface. 	The graphs (Fig.3.5) show the amplitude 

and phase of the wavenumber 1 response (n=2) compared to the response 

with the uniform shear profile altered so that the surface wind is 10 ms-1  

(again with zonal wind of 30 ms-1  and 40 km). 	In the case of light surface 

winds, the amplitude is everywhere much larger than is reasonable in the 
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real atmosphere with a surface pressure perturbation of -25 mb. 	When 

the mid-latitude surface wind is increased to 10 ms-1  the amplitude is 

greatly reduced particularly in the stratosphere and is smaller than 

observed magnitudes. 

The difference in amplitude size between each must be attributed 

mainly to the reduction of the-effective forcing when the zonal wind speed 

in the heating region is large. 	This is, as explained before, due to 

V/  the greater time spent by air in the heating and cooling phases which 

allows greater compressive effects on the vortex tubes and hence larger 

amplitudes and upward energy propagation. 	In reality, these two cases 

probably represent extremes of the mean zonal wind in the troposphere. 

Phase variation is broadly similar in both cases with the most 

rapid phase tilt westward occurring just below 'the step' in the heating 

function. 	Above 4 km the tilt is fairly uniform except for its slow 

decrease in magnitude with height. 	Typically, phase variation with 

height is observed to be about 6°/km in the stratosphere which compares 

favourably with both of these curves. 

The distribution of zonal wind speed in these profiles is not 

very representative of the tropospheric flow and so it is instructive to 

- 1 consider forcing in a flow with zonal wind speeds of 2 and 20 ms at 0 and 

10 km respectively with a radiation condition at 10 km. 	Fig.3.6 shows 

the amplitude and phase of the contour height field, together with the 

associated poleward heat flux (given by v'62") for wavenumber 1 forcing 

of such a flow. 	Amplitude is largest at the ground (-11 mb) and rapidly 

decreases to a minimum at 4 km (above which the heating function is zero), 

strongly resembling the characteristic intense, shallow surface anticyclones 

of the continents in winter time. 	In the upper troposphere, the increase 

in amplitude is due mainly to the inertial effect of density associated 
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with the factor exp(z/2H0) in the height structure. 

Phase variation with height is small below 2 km and increases to 

become most rapid near the top of the heating layer, with a phase difference 

of 90°  between the 1000 and 500 mb level (this difference forms a useful 

yardstick when making comparison with synoptic chart data). 

Poleward heat transport is greater in the heating layer and changes 

discontinuously at 4 km with povicST1  being constant in the regions above 

and below. 	Calculated values of v'ST' in the heating layer of - 5°C m s 1  

indicate the importance of stationary forced waves as transporters of heat. 

Looking again at the phase relationship of the pressure perturbation to 

the source function S, shows that the surface anticyclone is to be found 

nearly 90°  downstream of the region of highest cooling rate which is 

significantly further than that for the constant rotation atmosphere solutions. 

The discontinuity of the heating function in the vertical used so far 

allows a very crude representation of low level heating and we supplement 

these with constant shear calculations for an exponential heating function, 

a exp( -bz) of the form used in the solid rotation atmosphere solutions. 

The height structure is found by substituting this expression for So into 

equation (3.12) and evaluating the integral numerically. 	Fig.3,7 gives 

1 	1 
the resulting amplitude and phase for the P2  and P4(cos 0) modes with 

heating rate a equivalent to 1.5°C/day and scale height b-1  of 4 km. 	A 

constant shear zonal wind profile was chosen with Ti(z=0)= 5 ms-1  and 

Tt(z=40km)= 50 ms1  (mid-latitude values) with modified radiation condition 

at 40 km. 

Only the n = 2 mode is propagating with the characteristic westward 

tilt of the phase lines; the phase lines of the n=4 mode are vertical 

except at the node near 4 km. 	The amplitude of this trapped mode actually 



HEIGHT 
(km) 

40 - I 

36 — 

32 -- 

28 - 

24 - 

20 — 

16 - 
P1  

12 2 

8 
1 

4 

0 I I III! 1111 I 1 I I I 1 	1 
0 	100 200 300 400 500 600 700 800 900 1000 1200 40 0 320 280 240 200 	160 120 80 40 

AMPLITUDE (gpm) 
	

PHASE (°) (OF RIDGE) 

F19.3:1 THE S-TRIAcTuRE OF THE -THEr?mALLy-FoecED l)1 . AND P MODES 1N 
UN1E0RM ANSULAR SHEAR, 
U (==o):= S rrl 5 -1  

1I-5 °N 	AND 	2= 3.Ox 10-5 tyri. 
0 (z.--40Km)= so 

0 



73 

decreases above 30 km and is reminiscent of the adiabatic solutions found 

by Simmons. 	As in the step-function heating profiles the amplitude of 

the untrapped wave exhibits a minimum near 4 km and it is later found 

that this is a general feature of thermally forced motion generated by 

lower tropospheric heating anomalies. 	The amplitude of the Pl(cos 0) mode 

increases very rapidly with height in the stratosphere consistent with the 

upward propagation of energy into the tenuous, upper regions of the stratosphere 

Poleward heat transport by the P12(cos A) mode is given in Fig.3.8 

and shows again, a significant low-level transport of heat with a minimum 

in vi dl" occurring in mid-troposphere. 

The phase relationship of heating function to pressure perturbation 

is such that for the trapped n=4 mode they are either 90°  or 270°  out of 

phase. 	In this case, at the surface the cold anticyclone occurs 90°  

downstream of the maximum cooling region. 	For the propagating n=2 mode, 

the surface high is 63°  downstream of the maximum cooling spot, and is 

similar to that for the solid rotation atmosphere considered previously. 

Fig.3.9 gives the response to the same forcing function S of an 

atmosphere with uniform shear such that u(z=0)= 5 ms-1  and Ti(z=/0km)=25.0ms-1  

with the radiation condition at 10 km. 	General features of the solution 

for P2(cose) are as before with surface amplitude of -8 mb. 

These more sophisticated models of thermal forcing are sufficiently 

realistic to allow comparison with observation and we shall briefly compare 

the calculated structure of wavenumber 1 with data given by Muench. The 

final summary of theory and observations will be given after the detailed 

numerical calculations of Chapter 4. 

Muench (1965) presents mean amplitude and phase of contour height 
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up to 10 mb for the wavenumbers 1 to 4 at 50°N in January 1958. 	Dickinson 

(1972) published data (from Muench) giving the latitude/height distribution 

of wavenumber 1 for the same year up to 10 mb and we use this in the 

comparisons with the theory. 	The outstanding feature of the phase variation 

is the uniformity of westward tilt with height which is particularly large 

at low levels. 

There is no evidence of trapping in the troposphere for wavenumbers 

1 and 2 which would be reflected in the presence of vertical phase lines 

and nodes, as in the theoretical solutions. 	The vertical profile of 

phase is strongly latitude dependent and since the solutions have no 

0 dependence of phase it is appropriate to latitudinally-average the 

observed phase. 	Fig.3.10(b) gives the height variation of latitudinally- 

averaged phase compared with that at 70 and 50°N (which represent extrmes 

of phase variation) and shows that the phase tilt in the troposphere at 

50°N is much less rapid than the latitude-average. 	The corresponding 

distributions of amplitude are shown in Fig.3.10(a) and in agreement with 

the thermal forcing calculations - an amplitude minimum occurs near 4 km. 

In Fig.3.11, the theoretical solution for 'exponential' thermal 

forcing in uniform shear is compared with the latitudinally-averaged curves 

of amplitude and phase, with the latter displaced by a constant value to 

give the best 'fit'*. 	The similarity in structure is quite surprising 

particularly in the phase agreement and there can now be no doubt that 

the imposition of an energy transmitting boundary condition at upper levels 

is desirable. 

The behaviour of the wavenumber 1 structure north of 60°N seems to 

resemble thermal forcing to a much greater extent than near 50°N with a 

pronounced minimum in amplitude in mid-troposphere and rapid westward 

phase tilt there. 	It might be speculated that the orographic forcing of 

* In the absence of exact knowledge of the distribution of forcing. 
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wavenumber 1 dominates near 40°N where the Himalayas exert a strong 

influence on the flow, and therefore the structure of wave motion is 

different for these latitudes. 	The 1000-500 mb phase difference given 

by the latitude-average curve is - 90°  which is in good agreement with the 

theoretical solutions given, though rather smaller than that shown in Fig.3.11. 

It has aleady been seen that the poleward eddy heat flux associated 

with the above constant shear solution shows a strong low-level bias with 

surface correlation v'SI" of -12°C ms-1. 	Oort and Rasmussen (1971) have 

calculated from observation the stationary eddy heat fluxes for each month 

of the year and find a low-level maximum of v'67" near 850 mb with typical 

amplitudes of 10-15°C ms-1  in January. 	Other calculations, with realistic 

tropospheric shear and radiation condition at 10 km, show v'(51" to be 

5°C ins-1  and generally comparable to observed fluxes indicating the 

importance of stationary planetary waves in the total wintertime poleward 

heat transport. 

Since only the untrapped planetary waves transport heat it might 

be inferred that the P2 and P3
2  
(cos 0) modes are the most important transporters 

of heat. 	We have failed, so far, to consider forcing by wavenumber 2 which, 

according to Clapp, should be just as large if not more so than the thermally-

forced wavenumber 1. 

Briefly summarising this section, it has been found that the observed 

structure of the mean January wavenumber 1 disturbance has many of the 

features of an untrapped, thermally forced wave. 	Using a lower tropospheric 

heating function of magnitude consistent with calculated values given by 

Clapp, the resulting disturbance forced in uniform shear flow is closely 

comparable with observation up to 30 km where a radiation condition is 

applied above. Notable features of the thermally-forced waves are: 
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(1) An intense, shallow surface disturbance of depth — 3 km. 

(2) An amplitude minimum near 4 km and associated rapid phase tilt 

westwards there. 

(3) Strong low-level transport of heat. 

1 
The untrapped orographically forced waves 

f 
 /;"2  and P3

2  
(cos 0)) are of much 

smaller surface amplitude and their contribution to the tropospheric 

poleward heat transport is small ( < 1°C ms-1). 	Both types of forcing 

appear to be important in the production of large amplitude stratospheric 

waves in winter. 
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CHAPTER 4 NUMERICAL SOLUTIONS: SOLUTION FOR VARIOUS VERTICAL PROFILES  

OF ZONAL WIND, STATIC STABILITY AND HEATING 

The analytical solutions of the Q-G potential vorticity equation 

as given in Chapter 3 provide the simplest description of forced motion. 

The atmospheres considered so far are of isothermal basic state and uniform 

static stability #0/dz with exponential distributions of mean state pressure 

and density, po and po  respectively. 	The vertical variation of zonal wind 

 4ffer .elvers,s s,n11 o-re CIE 
vaa

n  
most important propertfdetermining the propagation of Rossby wave 

energy and the constant shear solutions adequately describe this wintertime 

variation. 

In this chapter we will further elaborate the wintertime description 

of forced motion by allowing a more realistic variation of zonal wind 

and static stability and more importantly will be able to describe the 

forcing in summer by numerical integration of equation (2.4). 	The selection 

of a 'realistic' profile of zonal wind is somewhat arbitrary since the 

angular rotation rate at any level must represent a mean latitude value 

and the effects of jet peaks will be excluded. 	Simmons (1974) found that 

the important modifications of allowing a horizontal jet structure were 

the enhanced ability to propagate wave energy vertically (through the 

increased meridional gradient of potential vorticity of the mean state) 

and the similarity in shape of contour height amplitude and zonal wind 

magnitude. 	On the hemispheric scale it is anticipated that planetary 

wave modes will be insensitive to the presence of jets which are essentially 

'local' phenomena. 	One might imagine that with a realistic distribution 

of zonal wind on a sphere that has a mid-latitude peak and vanishes at 

the equator, the increased mean state potential vorticity gradient would 

raise the critical wind speed ue  and allow even freer transmission of 

energy into the stratosphere. 
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Some additional simplifying assumptions are made in describing 

the thermodynamic basic state when the static stability is allowed to 

vary. 	The basic state temperature of the atmosphere is assumed to be 

uniform except in the origin of the height variation of static stability B, 

so that the basic state fields of pressure and density decrease exponentially 

with height. 	Justification for this approximation is given as follows: 

Using the perfect gas equation in the hydrostatic relation we have: 

1 dpo = 	(  g 	1 dT0) 
Po dz 	RT0 To dz 

where To(z) is the basic state temperature and R is the gas constant. 

Comparing the terms in brackets reveals that Ito —IT
z 
	is -40 km 

To d 

in the troposphere and -200 km in the stratosphere which is considerably 

greater than Ho (=RTolg) - 7 km. 	Since To varies by at most 15 % throughout 

the troposphere and stratosphere, the density stratification —
/
o 
dpo 
 is 

Po 

well approximated by -Rwhere To is a mean atmospheric temperature. 

(
Now B = 

To -   + la and in the troposphere the two terms on the 
 p dz 

right-hand side of the equation are of comparable size so that no similar 

approximation is valid. 	It is therefore a useful simplification to assume 

exponential distributions of mean state pressure and density even when B varies. 

The numerical integration procedure allows freedom in the choice 

of heating function profiles So(z) as well as static stability B and angular 

rotation rate (TP/R 2), and later in this chapter, the results of experimentation 

with various low-level profiles of heating are given. 	Little is known of 

the actual vertical distribution of heating in the atmosphere so- that the 

calculations of wave structure for various profiles of So(z) will serve as 

a useful guide when making comparison with observations. 

-1 

Numerical integration is most useful for the evaluation of forced, 
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stationary motion in summer when the complicated zonal wind variation in 

the vertical rules out simple analytic solution. 	This advantage is offset 

to some extent by the existence of a singular point at the height where 

= 0, corresponding to the 'critical-level' for stationary waves (see Eq. (2.4)). 

Numerical methods fail in the neighbourhood of this point so that an analytic 

solution must be sought there and connected to the numerical solution. 

Only thermally forced motion is considered for the summertime situation 

since the orographically forced component 16 very small and provides little 

further information. 	The introduction of Ekman friction into the summer 

description of thermal forcing is found to give some extra realism to the 

structure of the wave motion. 

The details of the method of numerical integration are given next 

and is taken from a short article by Lindzen and Kuo (1969). 

(i) Method of integration (Gaita,s.e..an climinati n)  

All second-order linear differential equations with variable 

coefficients of the form: 

dd + g(z) + h(z)f(z) = r(z) 

with linear first-order boundary conditions of the form: 

 

(4.1) 

 

.-f 
dz alf= bl  

dz a2f  = b2  

at z=zi 

  

(4.2) 
at 2=z2 

  

    

are integrable by this method, provided that g(z), h(z) and r(z) do not 

contain singularities in the range of integration,Aena oNJA3 	C.-1 	J 

ittrw) bleintO 	rtrlo 1eW1 	1141,b ILO 11.611. 	rw ;1 5 Uktr'l • 

Comparison of equation (4.1) with the Q-G potential vorticity equation 

for the height structure (2.4) yields: 



85 

f(z) = F(z) 

g(z) . IL. ljal 
Po dz B 

h(z) = 	foe   1 d (po 	l _ (n-1)(n+ 2)  
y(z) Pog dz B dz 	R2  

r(z)  = 	gB R2  1 d(PoSo) and 	
fom IP Po dz l B 

Dividing the integration range into N segments of length óz, we may write 

zi =idz with 0 < i < N. 

We adopt the convention that f(zi)=f.2
, g(zi) =gi  etc. and express the 

first and second derivative in finite difference form as: 

d‘zn) 	if  - k,n+/ 	fn-/)//2dz 

and 
	cazo 	 f .„.7  - 2.t.n)//s22  

Substituting these expressions into equation (4.1) gives: 

fn+1 fn-1 2fn gn  

(5z2 	2Sz(fn+1 - fn-1) 	hnfn = rn 

gn) 
.fn 

2 1 gn ] rn 
 26z j oz2) fn-1(622 26z 

and on collecting terms: 

1 
3° 71+1 

 (  z
2  

or 	Anfn_l + Bnfn + Cnfn4.1 = Dn  

with 	A = 	 .2.1L 	
2 Bn  = hn  - 6z2  ,  Cn  = 6z2 	gn 

n 	6z2 - 26z ' 	 2Sz 

-(14.3) 

and 	D=r. 

Equation (4.3) can be used at all interior points 1< n ‘. N-2 since at the 

boundaries fictitious points are involved. 
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The boundary conditions, equations (4.2), are given by: 

fi - fl  
2Sz 	+ alfo = bi at z =0   4.4) 

and fN+/ fN -/ 
2Sz 	a2fN = b2  at z =iN 	 ----(4.5) 

and involve the fictitious values f f  and fiv+1  . 

Using (4.3), we may express the fictitious values in terms of two real point 

values and substitute these expression& into (4.4) and (4.5). 

From (4.3) we have: 

A0j11 + Bofo + Coh = Do 

and substituting in (4.4) for 	gives: 

Co fill + AoAo 	 Ao + 	+ 2Szaii = 119-- + 2Szb 1 

Similarly, eliminating fN+1  from (4.5) gives: 

—(4.6) 

 
fN-1( 1 	- 	

BN]DN 

-N 	
fNi2dza2 - 	= 	- 2dzb2 

 

(4.7) 

 

The upper and lower boundary conditions may now be written as: 

Abf o  + Bbfi = Db 	(lower boundary condition) 

and 	Atf/17_/ +BifN=  Dt  (upper boundary condition) 

with 

Bt  = BN 
	

CN
DN  

- 2Sza2 and Dt = 	- 2Szb2 

from (4.6) and (4.7). 

The Gaussian elimination method works by expressing the function fn  at zn  

in terms of the adjacent point value so that: 

Ab = ",7 1  + 2Szai , Co Bb = Ao 
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fn = anfn+1 f3n 

 

(4.8) 

 

or 	.fn-1 = an_grz  + 13n_/ 	(an  and $n are sets of constants) 

The above equation for fn-/ is substituted into equation (4.3) giving an 

expression for fn in terms of 414./  and: 

fn 
Cn  	1 	Dn  - Ana.n_1 

Anan -/ 	Bnif711-1 	Anan-1 +Bn 

which on comparison with (4.8) yields: 

- 	

- Cn  

an   Anan-1 Bn 
and 

Dn  - A07.1_1 

n  Anan-1 Bn 

 

(4.9) 

 

Equations (4.9) are recurssion relations for the ans and Sns with the values 

An, Bn, Cn  and Dn  determined by the variable coefficients of the differential 

equation. 	Once the values of ao and N are known, the rest of the values 

of a and 13 may be generated. ao and f30 can be determined from the lower 

boundary condition using equation (4.8) and are found to be: 

Bb 
ao = - A 

nb 

Db 
and 	= — • 

Knowledge of fly will permit the calculation of all the values of fn and 

this may be obtained from the upper boundary condition as follows. 

Re-arranging the upper boundary condition gives: 

Dt  = Bt 

and eliminating fiv_i  with equation (4.8) gives an expression for fiv  in terms 

of known quantities: 

f  Dt - At4_1  
N  aN_lAt  + Bt  

and hence equation (4.8) is again used to generate the remaining values of f. 

All parameters may assume complex values. 
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In the following calculations it was found that /V=1000 was sufficient 

to assure rapid and accurate integration over the height range 0 to 40 km. 

Doubling the number of points caused a change in the numerical value of F(z) 

of less than 0.1 % and comparison with the analytic solutions shows this 

to be the order of magnitude of the error. 

The variable coefficients of the differential equation should be 

continuous for the method to succeed, and for the height structure equation 

(2.4)'this implies the continuity of static stability B, entropy source S 

and shear through dtTidz. 

(ii) Thermal forcing (Winter)  

'Realistic' variation of the mean angular rotation rate of the 

atmosphere is inferred from the zonal wind distribution given by Newell (1969) 

(Fig.l.l) and the equivalent mid-latitude zonal wind is shown in Fig.4.1. 

This profile is not very different from the constant shear profile of 

zonal wind though has some suggestion of an upper tropospheric maximum. 

In view of the sensitivity of the transmissive properties of the atmosphere 

to zonal wind variation, a study of the structure of the thermally-forced 

,1 
r2(cose) mode is made for various sizes of tropopause wind maxima (Fig.4.3). 

It must be remembered that the tropopause maximum represents a latitude-

average and is much smaller than the January mean sub-tropical jet maximum 

(-35 ms-1). 

A realistic vertical profile of static stability B was obtained 

from the Charney/Drazin paper based on average mid-latitude data (from the 

U.S. National Bureau of Standards) (shown in Fig.4.2). 

(a) Structure of P2(cos 0)for different vertical profiles of angular rotation 

of the atmosphere  

Profiles of zonal wind A, B and C in Fig.4.3 represent different 
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magnitude tropopause peaks of mean westerly wind with the 'realistic' 

profile given by the dashed curve. 	The response of these different mean 

state atmospheres, with static stability profile as given in Fig.4.2, is 

found for 'exponential thermal forcing' with S = a exp( -bz)P2 (cos 0) sin 4) 
and a E- 1. 5°C/clay, b' =4 km. 	As before, an energy-transmitting boundary 

condition is applied at 40 km. 

The corresponding curves of contour height, amplitude and phase 

are plotted in Fig.4.4 and show some considerable variation in stratospheric 

wave amplitude. 	The stronger tropopause wind speed in curve A causes more 

wave energy reflection and a more pronounced minimum of contour height 

amplitude near 4 km. 	Westward phase tilt is more rapid in the mid-troposphere 

for this case and becomes more like the nodal structure of the trapped wave. 

These curves for various zonal wind profiles give some idea of the 

maximum 'error' one might expect through the incorrect choice of wind field 

that approximates to the real winter distribution of U. 	The structute 

of the contour height field is much more sensitive to changes in the upper 

boundary condition type than the profile of zonal wind and a reflecting 

boundary condition would'have completely altered the phase variation with 

height. 

Furthermore, the approximate nature of the upper boundary condition 

in simulating wave energy absorption does not warrant the refinement of 

the profiles of zonal wind and static stability. 	In view of this, the 

zonal wind profile of Fig.4.1 will be considered to be the most satisfactory 

approximation to the January mean distribution and the structure of forced 

waves willnowbe determined for different zonal wavenumbers. 

(b) Comparison of low-wavenumber, thermally forced waves (m=/, 2 and 3)  

The contour height and temperature fields forced by a heating function 
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S =a sin mm Pm+1  (cos e)exp( - z/4 km) is examined for zonal wavenumbers m = 1, 

2 and 3 with 'realistic' vertical distributions of zonal wind and static 

stability. 	Again, a heating function amplitude is chosen so that 

a = 1.5°C/day/260°K. 	Fig.4.5(a) gives the amplitude and phase of the 

contour height fields and shows that wavenumbers 1 and 2 are untrapped 

with the characteristic westward slope with height which contrasts with 

the nodal structure of wavenumber 3. 

As in the analytic solutions of the previous chapter, the amplitudes 

of contour height perturbations are roughly inversely proportional to 

zonal wavenumber m. 	Surface amplitudes of 15, 9 and 4 mb are found for 

m=1, 2 and 3 respectively and are of the correct magnitude to account for 

the Siberian anticyclone. 	The maximum of surface perturbation (Siberian 

High) is about 70°  downstream of the region of maximum cooling and is 

nearly 30°  to the west of the surface temperature minimum (Fig.4.5(b)) — 

similar to the solid rotation atmosphere solutions. 	It should be noted 

that for the solid rotation atmosphere solutions, the heating function 

amplitude a was equivalent to a heating rate of 3°C/day, double the value 

used here to give a similar surface amplitude wave. 	This is due almost 

entirely to the reduced zonal wind speed in the heating region for the 

realistic zonal wind case. 	According to the Fourier analyses of Clapp's 

heating rate calculations, 3°C/day is an overestimate (by a factor of 3) 

and the values used in the present calculations are more in line with 

those of his work. 

Pronounced minima in contour height amplitude occur near 4 km 

coinciding with the region of most rapid phase tilt westwards. 	The trapped 

wavenumber 3 mode has zero amplitude, associated with nodes at 4 and 17 km. 

The amplitudes of all three increase steadily with height up to 35 km above 

which the increase is very rapid and their amplitudes become unrealistically 

large. 
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In Fig.4.6, the wavenumber 1 solution is compared with constant 

shear solution found in Chapter 3 and the latitudinally-averaged data of 

Muench for January 1958. Agreement between the calculated wave structure 

and the observations is striking, particularly in the phase and the constant 

shear calculation appears to be better than realistic profile case. 	It 

must be borne in mind that only the n=2 harmonic mode of wavenumber 1 has 

to be considered and all the other even n modes will contribute to the 

structure of wavenumber 1. 	In view of this and the neglect of the 

orographically forced component of wavenumber 1 the good agreement is 

somewhat surprising. 

The phase tilt of wavenumbers 1 and 2 is very similar and of magnitude 

typically about 9°/km yet in terms of degrees of longitude, the wavenumber 2 

tilt will be half of this. The observed phase variation of wavenumber 1 

and 2 in Fig.l.2 shows that the slope of the wavenumber 1 curve is roughly 

twice as rapid as that of wavenumber 2. 

Another useful rule of thumb to remember from the calculated phase 

structure is that the phase at 10 km is /80°  different from that at the 

surface, which compares with 1600  from the Muench data oP wavenumber 1. 

The amplitudes of the temperature fields are shown in Fig.4.5(b) 

and all reveal large surface perturbations in conjunction with the maximum 

heating rate and steadily decrease with height up to 10 km. The amplitudes 

increase suddenly at the model tropopause in association with the increase 

in static stability and become very large above 25 km for the propagating 

modes. 	As with the contour height amplitude, this rapid amplification 

in the stratosphere is due mainly to the inertial effect of density. 

Wavenumber 3 achieves a maximum in temperature amplitude of about 5°C at 

25 km and decreases above. Phase tilt of the temperature perturbations 

is much less rapid than that of the contour height field particularly in 
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the troposphere where the difference in phase between 0 and 10 km is 60°  

compared to 160°  for the height perturbations. 	Relating this behaviour 

to the structure of the Siberian anticyclone, we may conclude that although 

the anticyclone is a shallow feature, its associated temperature anomaly 

is deep. 

Green has shown (unpublished lecture notes) in an analysis of the 

pressure and temperature deviations over Siberia (compared with the zonal 

mean) that this is indeed the case. 

The negative temperature anomaly was found to vanish (and change sign) 

near 11 km whereas the positive pressure anomaly vanishes at about 5 km. 

A quarter of a wavelength phase shift in the temperature field between the 

surface and 11 km might be inferred from this observation and Fig.4.5(b) 

shows that this fits in well with the theoretical calculations. 	Unfortunately, 

there is no data available at present of the Fourier analyses of the 

temperature field at selected heights in the troposphere. 

A spectral decomposition of the mean January temperature field in 

the troposphere would help considerably to disentangle the contributions of 

orographic and thermal forcing to the total stationary wave patterns. 

Temperature amplitudes in the troposphere associated with orographic forcing 

are calculated to be — a few degrees centigrade and much smaller than 

those of the thermally-forced waves. 

5 	6/ (c) High zonal wavenumber, thermally forced motion r P5
4 
 , P6 and P7kcos8)) 

Fig.4.7 gives the amplitude response to forcing at wavenumbers 4, 

5 and 6 with a heating function which peaks at 2.5 km with a heating rate 

of 2°C/day. 	It is evident that even though the forcing function is probably 

an overestimate the magnitude of the pressure perturbation forced is small 

and at most gives a surface wave of 4 mb. 	This is in line with inverse 
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relationship between forcing magnitude and zonal wavenumber as previously 

discussed. 	The resulting wave motion quickly becomes evanescent with 

only one node at 4 km in contrast to the two nodes of wavenumber 3. 	Not 

only is the response much smaller than for wavenumbers 1, 2 and 3 but the 

higher n parameters lead to stronger trapping of wave energy and virtual 

confinement of the disturbances to the troposphere. 	Zero poleward eddy 

heat transport is indicated by the presence of vertical phase lines and 

we conclude that high zonal wavenumber thermally forced waves (m > 3) do 

not play an important part in the large-scale dynamics as anticipated for the 

low wavenumber waves. 
1 

(d) Comparison of the responses to various heating profiles So(z)  

Deviations of the net, time-mean heating rate in the atmosphere from 

its zonal average are only roughly known and even less is known about its 

variation in the vertical. 	The only aspect of the distribution of heating 

associated with the underlying topography that one can be reasonably sure 

about is that the bulk of the non-adiabatic effects occur in the lower 

troposphere below 5 km. 	If latent heat release contributes strongly to 

the total longitudinal variation of heating (reflecting the time-mean 

longitudinal variation of precipitation), one might expect the amplitude 

of heating to attain a maximum near the condensation level at about 2 km. 

The Fourier analysis of longitude distribution of heating calculated 

by Clapp (1961) revealed average heating rates throughout the 0 to 5 km 

layer of around 1°C/day for the low zonal wavenumber components. We chose 

sinusoidally peaking heating functions So(z) such that the vertical average 

is of this order of magnitude with: 

= So(z) 

1 So(z)= 0 

(V17 sin 	1-5r2  for z <5 km 

elsewhere 

So(z) — 

i 

(1;Zco lTr i  sin( 	'131-Z  ] for z < 8 km 

SO(2) = 0  elsewhere. 

(i) 

and 
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The amplitude and phase of the contour height and temperature fields 

resulting from the thermal forcing of the P2  and P32 
 

(cos0) modes with these 

heating functions are given in Figs. 4.8 and 4.9, together with the 

'exponential' forcing. 

Their similarity in height field response is surprising with virtually 

identical phase structure and all showing minima in their respective amplitude 

1 curves near 4 km with only the surface amplitude showing appreciable variation. 

The apparent indifference of the qualitative amplitude structure to radical 

alteration of heating function shape probably reflects the dominance of 

vorticity generation by compression against the rigid lower surface (see 

the beginning of Chapter 3). 

This result is quite gratifying since it provides stronger grounds 

on which to justify making comparisons with observation in the lower 

troposphere and knowledge of the vertically integrated heating rate, which 

is more readily assessed, provides the most important information. 

The structure of the temperature field of the P3 mode and the 

associated poleward transports of heat are given in Figs. 4.9(b) and 4.9(c) 

for the same profiles of So(z) and in marked contrast to the contour height 

fields show strong differences between each other. 	The amplitude of the 

temperature field and poleward heat transport have similar shapes to that 

of the So profile in the lower troposphere and increase rapidly across 

the tropopause in response to the sudden increase in static stability. 

This is in agreement with the relation derived in Chapter 3 which shows 

that the poleward eddy heat transport should be proportional to the vertical 

gradient of potential temperature in adiabatic flow for untrapped stationary 

waves. 

The magnitude of stationary wave heat transport calculated, if 
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realistic, leads to the conclusion that this transport mechanism is as 

important as that arising from unstable baroclinic waves and therefore is 

an important component of the wintertime general circulation. 	Unlike 

the heat transfer properties of baroclinic eddies, the transport by 

stationary planetary waves is more or less independent of the shear of 

the zonal wind (and hence the north-south temperature gradient) and for 

upward energy propagating modes in negative shear the heat transport is 

upgradient and the system behaves as a thermodynamic 'refrigerator'. 	This 

situation arises in the region above the tropospheric jet in winter. 

Observations of the monthly mean temperature waves (m=2, 2 and 3) 

in the troposphere would again greatly assist in determining the So(z) 

profile, especially in view of the similarity in shape of the temperature 

wave amplitude and heating function. 

Oort and Rasmusson (1971) have calculated from observations, the 

total eddy heat flux (or temperature flux v i cST') averaged around a latitude 

circle and partitioned it into stationary and transient eddy contributions. 

The latitude-height distribution of both transient and stationary eddy 

transports of heat are broadly similar with low-level maxima'near 850 mb 

and it has been argued by White, A. (1975) that the stationary component 

might represent the organising effect of stationary waves on cyclone scale 

motion. 

However, in so far as there is good agreement between amplitude 

and phase of the contour height fields and the data of Muench, the untrapped 

stationary wave contribution to the poleward heat transport must be important. 

(iii) Thermal forcing in summer  

Previous studies of stationary, planetary wave motion have tended 

to concentrate on the wintertime structure, particularly in the stratosphere 
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in connection with the upward transmission of energy. 	The nature of 

forced motion in summer poses a more subtle physical and mathematical 

problem resulting mainly from the transition from zonal westerly to easterly 

winds in the stratosphere above 20 km. 	The differential equation (2.4) 

has a singular point at IT(z) =0 where the zonal wind speed is zero and 

the numerical integration technique outlined cannot work in its vicinity. 

The upward propagation of wave energy towards the zero of zonal wind gives 

rise to the critical layer absorption process at the height corresponding 

to -4-7=0. 

The problem of the integration of (2.4) in the neighbourhood of the 

singular point is circumvented by solving analytically in the surrounding 

region, and connecting this solution to the numerical integration region 

below as a boundary condition. 	The phenomenon of critical layer absorption 

can in this way be included yet examination of the nature of the process 

raises some doubt as to its realism in stationary solutions. 	The following 

section will be devoted to the method of solution of the mathematical 

problem with the critical layer absorption process included and possible 

ways of eliminating the unphysical aspects of the linearized analysis 

associated with it. 

The introduction of an Ekman boundary layer into the model is found 

to improve the agreement with existing data of the low-level structure of 

wavenumbers 1 and 2 in July by providing a sink of wave energy. 

(a) Method of solution  

et. 
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In precisely the same way that the 'radiation' condition was applied, 

so the connection of the constant negative shear solution above to the 

numerical solution below can be achieved through the use of interfacial 

conditions on pressure and vertical velocity. 	As before, the vertical 

velocity is expressed in terms of the non-divergent streamfunction through 

the thermodynamic equation: 

w i = fg /
( 
	_ 

	
21  

gB 74 dz 
T.(2)3

0zj 

and demanding continuity of pressure (poff) and vertical velocity with 

the constant shear solution above, gives a condition on F(z) at z =H which,  

can be shown to be: 

  

)(6W:C;)  2o F(z)= 0 
z=14. 

  

dF 
dz 	x(H) dz 

c1-115-  

z=H_ 
dz 

 

 

(44o) 

 

  

at z =H Or h =h*  
t4(H) 

with h = 6*  + z - H 

dz 
z=H+  

for the constant shear solution IlLf. = Cif?k,2 2  1(h)exp 
z
H
-11]F(77

n(cos0)e
imq) whose 

energy density is bounded at infinity. 

The solution in the lower region is found by numerical integration 

with (4.10) as an upper boundary condition and w'= 0 giving the lower 

boundary condition. 	From the computed solution, the value of F(z) at z=H 

is used to determine C1 and hence the solution in the constant shear layer. 

The 'realistic' variation of IT(z) was chosen to have a sinusoidal 

peak at 10 km as given in Fig.4.10(a) and again the static stability 

variation was taken from average mid-latitude profiles given in Charney and 

Drazin (1961) (Fig.4.10(b)). Diagrams of amplitude and phase for the 

Pin+/(cos 0) modes forced by a heating function with vertical profile 

(2°C/day) 	(  TrZ 
m
) 

So(Z) = 260°K  sin 	are given in Fig. ]+.11. 	All three have similar 
4k 
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amplitude curve shapes with minima at 4 and 18 km and maxima at 20 and 14 km 

with a strong surface perturbation. 	The amplitude decreases rapidly in 

the easterlies and is virtually insignificant above 30 km unlike in the 

wintertime stratosphere where the westerlies transmit wave energy. 	Phase 

variation with height is virtually identical in all three, with strong 

westward tilt up to the critical level above which there is no change and 

the waves are evanescent. 	This implies upward propagation of wave energy 

towards the critical level and its subsequent absorption there. 	Poleward 

heat transport W6T' changes discontinuously at this level and of course 

is zero in the easterlies above. 

Generally, amplitude magnitudes are larger than their wintertime 

counterparts because the zonal wind speeds in the troposphere are smaller 

in summer and the P2(cos o) mode is unrealistically large at the surface 

for this heating function magnitude. 	Analyses of the observed amplitudes 

of wavenumbers 1, 2 and 3 in winter and summer are given by Eliassen, E. 

(1958) at the 1000 mb, 700 mb and 500 mb levels and show that the July 

amplitudes are at least half those of the mean January contour charts. 

This is exactly opposite to what one might have expected given similar 

heating function magnitudes and so it must be concluded either that the 

heating rates are much smaller in summer or that the theory breaks down. 

(b) Critical-level absorption  

The critical-level absorption phenomenon is a feature of the 

linearized analysis and it is necessary to consider its feasibility in 

the real atmosphere particularly relating to the behaviour of stationary 

planetary waves. 	Geisler and Dickinson (1974) and Murikami (1973) have 

made numerical studies of the non-linear coupling of wave and mean flow 

in critical level absorption problems and have found that the resulting 

accelerations of the zonal flow in the neighbourhood of the critical level 
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conspire to wipe out the gradient of mean potential vorticity thus 

causing the eventual reflection of all wave energy. 	They considered 

only the horizontal propagation of Rossby wave energy towards a critical 

layer; though it seems probable that the same qualitative results will 

hold for vertical propagation. 

It will be discussed in some detail in the next chapter on wave/mean 

flow interaction how the acceleration of the zonal flow due to the 

'second-order' effects is proportional to 
Dz  
J-L-(B

2- v'd(P' in the absence of 

horizontal eddy zonal momentum transport and consequently the discontinuity 

of heat transport calculated at the zero-wind line implies an infinite 

drag there. 	This would be quite inconsistent with the assumption of a 

steady, balanced mean zonal wind and thus the stationary solution with 

critical level absorption must be rejected. 	It is interesting to note 

that the differential equation property that 1-2P4' is independent of 

height found in Chapter 3 is exactly a statement of the non-interaction 

of stationary wave with the mean flow and holds in all adiabatic flow 

regions away from critical levels. 

One might conjecture that a steady coexistence of wave and mean flow 

can only be achieved when no wave absorption occurs which, as shown in 

the numerical experiments of Geisler and Dickinson, is possible if the 

energy is reflected before it reaches the zero-wind line. 	The profile 

of zonal wind only has to be altered in a vanishingly small region 

about -u= 0 to effect the total reflection of wave energy by destroying the 

basic state potential vorticity gradient. 

The northward gradient of mean potential vorticity Q*  is given by: 

iT 	/ d ipa  dj.) 
Q* = 4R3  + 	gR pa dz B dz 

and it vanishes when the zonal wind variation in the vertical is chosen 
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so as to cause the cancellation of the above terms. 

Other small alterations to the zonal wind field in a small finite 

region about the singular point cause a complete change in the nature of 

the solution and lead to reflection. 	For instance, if the zonal wind 

goes to zero not just at a point but in a layer of any finite depth, then 

the stationary, linearized potential vorticity equation in this layer 

reduces to: 

a 	
0 

• IT 	(I) 

and hence the perturbation must vanish in the layer. All wave energy 

will suffer perfect reflection from the zero wind layer regardless of its 

thickness. 

Also, allowing a discontinuity in zonal wind so as to exclude 

zonal wind values about Ti=0 causes total reflection as can be inferred 

from the two layer model solutions in Chapter 2. 

That the structure of the stationary planetary wave system should 

depend on a vanishingly small region about u= 0 seems physically implausible 

and in view of the wave/mean flow arguments given, it is concluded that 

the zero-wind level should reflect wave energy and so the 'summer solutions' 

are re-calculated with a more appropriate upper boundary condition. 

Perhaps the simplest mathematical 'trick' that can be used to avoid 

critical level absorption while retaining the stratospheric easterlies is 

to allow a small discontinuity of zonal wind so as to exclude a small region 

containing the point where u = O. 	The connection of the upper analytic 

solution to the lower numerical solution is based on the interfacial 

conditions as derived in Chapter 2 for discontinuous zonal winds. 	The 

solution obtained was compared to that arrived at by imposing a rigid lid 

boundary condition just below the zero-wind level (and integrating numerically) 
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with the result that there was little difference between them. 

The amplitude and phase of the P2  and P3
2  
 modes obtained under an 

upper rigid lid boundary condition are given in Figs. 4.12 and 4.13 

respectively and show a pronounced nodal structure. 

(c) Introduction of an Ekman boundary layer  

Charney and Eliassen (1949) introduced the concept of 'Ekman pumping' 

whereby the effect of a turbulent boundary layer on the free atmosphere 

can be crudely incorporated into a lower boundary condition on vertical 

velocity. For steady, boundary layer flow, approximate balance exists 

/  
between the stress torque curl Po azHI and the (linearized) stretching 

	 a term 
Po CZ 

7,--(pow) (where TT'  is the horizontal component of the stress vector). 
P 

Integrating over the whole depth of the boundary layer, putting w= 0 at 

the ground and assuming the stress vanishes at the top of the boundary layer 

gives: 
oWT =

J0 
curl T s  

where wT  is the induced vertical velocity at the top of the boundary layer 

and Ts  is the surface stress. 

It is evident that an upward mass flow occurs for regions of cyclonic 

surface stress. 	A form suitable for inclusion as a lower boundary condition 

in the quasi-geostrophic theory results from the rather crude assumption 

that the surface stress is proportional to the gesotrophic wind so that 

Ts  = pc) c Vg  and gives: 

w 	c  
-T 

with c equal to a constant and Cg the geostrophic vorticity. 	c may be 

related to the eddy diffusivity K of Ekman-Taylor theory and approximates 

to AT°. 	Using the non-divergent streamfunction IP, the expression for 

the induced upper vertical velocity WI, is given by: 
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and substituting this into the thermodynamic equation yields a lower 

boundary condition on IP. 

Selecting a typical value of eddy diffusivity of about 10 M2s-1  

(Brunt 1934) and solving the problem of (ii) with this modified boundary 

condition gives amplitude and phase as in Figs. 4.12 and 4.13 (dashed lines). 

The structure is very similar to that of the frictionless case except that 

the phase lines tilt eastward with height in the-bottom 4 km. 

(d) Interpretation of the planetary wave structure in summer and comparison  

with observation  

The most outstanding difference between the summer and wintertime 

structure is the rapid attenuation of wave energy above 20 km in summer 

where the prevailing winds are easterly. 	At the 40 km level, the predicted 

amplitudes are small enough to be barely detectable by the sparse network 

of observing stations that collect rocket data and this is confirmed by 

the observed contours which are almost parallel to the latitude circles. 

Unfortunately, there is insufficient data of amplitude and phase 

of the low-wavenumber waves to allow a similar comparison with theory to 

the one made with the January data given by Muench though some Fourier 

analyses have been made in the troposphere by Eliassen. Amplitude and 

phase of wavenumbers 1, 2 and 3 are calculated at the 1000, 700 and 500 mb 

levels in July (at 50°N) by Eliassen (1958) and these form a rough basis 

for comparison with the theory in the lower troposphere. 

As has been noted, the general amplitudes are much smaller than 

those calculated which probably implies that longitudinal asymmetry of 

heating is considerably smaller in summer than winter. Wavenumbers 1 and 2 

show distinct amplitude minima near 700 mb (- 3 km) though the accurate 
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location of the minimum is impossible from data at only 3 levels. 	Again, 

the presence of an amplitude minimum suggests the dominance of thermal 

forcing in summer. 

Strongly eastward sloping phase lines are indicated by the Eliassen 

data up to 500 mb which is in marked disagreement with those model solutions 

that allow a critically absorbing layer but compares more favourably with 

the trapped solutions (Figs. 4.12 and 4.13), especially with the inclusion 

of a frictional boundary layer. 

Oort and Rasmusson (1971) calculate from observations, a small 

equatorward, stationary eddy transport of heat in summer and if we assume 

this to be carried mainly by low wavenumber stationary waves, then this is 

consistent with the eastward slope of the phase lines. 	It should be noted 

that the transport of heat in summer is from cold to warm regions constituting 

a 'refrigerator' and is opposite to what one might expect of a diffusive 

transport of entropy through fluid instability. 

It follows from the Clausius statement of the second law of 

thermodynamics that an external agency is involved for the system to act 

as a refrigerator. 	This is provided by the forcing and the origin of the 

heating and cooling regions which is external to the atmosphere (i.e. the sun). 

Note that orographically forced motion could not act in this way for the 

earth/atmosphere system since no outside perturbing forces are invoked and 

' the overall transfer of heat must be from warm to cold. 

The observations of stationary wave heat transport in summer support 

the hypothesis that the pure, long wave transport of heat dominates any 

organised, transient wave transfer in the total stationary wave heat transport, 

since the latter would imply a poleward transfer of heat, contrary to 

observation. 
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Wavenumber 3 is observed to have vertical phase lines below 500 mb 

in winter and summer according to Eliassen and this is in agreement with 

the theoretical prediction that the wave is trapped. 

Clearly, a more detailed analysis of the structure of planetary 

wave motion in summer is required before a proper evaluation of the role 

played by stationary planetary Naves in the general circulation can be 

assessed. 	It is hoped that these calculations provide theoretical guidelines 

for the interpretation of the observed structure and assessment of the 

importance of critical level effects. 

(iv) Orographic forcing (Winter)  

The orographic forcing calculations of Chapter 3 are repeated with 

realistic winter profiles of zonal wind and static stability for surface 

elevations given by zo =(200 gpm)Pmm+i(cosO)cosmcb taking m=1, 2 and 3. 

Amplitudes and phases are given in Fig.4.14 and show that the surface 

amplitudes are much smaller than those for thermal forcing and are typically 

—1-2 mb. 	Contour height amplitudes are generally a good deal smaller 

than observed magnitudes given in Fig.l.2 and, for instance, the predicted 

wavenumber 1 amplitude at 30 km is 170m compared to observed amplitudes 

of 500 m. 	The phase slope westward of the propagating wavenumbers 1 and 2 

is fairly uniform and implies an average vertical wavelength of — 30 km. 

Nodes appear in the trapped wavenumber 3 structure at about 2 and 17 km. 

It should be remembered that only one harmonic component of each 

zonal wavenumber has been selected and it is instructive to compare the 

amplitude curves of higher n modes to assess their relative importance. 

The amplitudes and phases of the 	modes (for n=2, 4,6) are given in 

Fig.4.15 and correspond to forcing by the same surface elevation amplitude 

of 200 gpm. 	(N.B. these modes have zero amplitude on the equator.) 
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The magnitude of the forced contour height amplitude for each mode 

is similar up to 20 km above which the P16  wave is highly attenuated. 	Higher 

n modes are even more strongly attenuated in the stratosphere and it may be 

concluded that the main contribution to the wavenumber 1 disturbance there 

comes from the P2  and P4  modes. 

The calculated tropospheric poleward heat transpbrt effected by the 

orographically forced waves P2  and P3
2   is an order of magnitude smaller 

than that indicated by their thermally forced counterparts with vi dT' — 1°C ms-1  

at most. 

(v) Stationary planetary wave forcing: Summary and conclusions  

The underlying tenet of the work presented so far is that the upper 

stratosphere behaves as a wave energy sink for forced, stationary wavenumbers 

1 and 2 and that this aspect of the motion has important repercussions on 

the general circulation and its modelling. 	The largest planetary scales 

of quasi-geostrophic motion are highly dispersive which permits the propagation 

of wave energy away from the regions of forcing for stationary disturbances. 

This can only be properly accounted in terms of a quasi-geostrophic theory 

represented in spherical polar geometry since (3-plane theories underestimate 

the ability of planetary wave energy to propagate in strong westerly winds. 

It has been deduced from the observations of low wavenumber stationary 

waves in January that wave energy propagates freely up to about 30 km above 

which it is strongly absorbed by physical processes that are not clearly 

understood with the result that the wave energy density decreases rapidly 

above 50 km. 	The whole issue of the mechanism of wave energy destruction 

in this region is circumvented by the use of an energy-transmitting boundary 

condition at an appropriate height. With this knowledge of the response 

of the stratosphere to upward propagating Rossby wave energy, we have set 

up models of orographic and thermal forcing in the troposphere and determined 
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their structure and heat transferring properties. 

General agreement of the vertical structure of wavenumber 1 with 

observations is very good especially for the thermally forced wave where 

longitudinal variations of lower tropospheric diabatic heating of the order 

of 1°C/day set up a realistic 'Siberian anticyclone' surface disturbance 

and cause a strong stratospheric wave. 

One of the important features of the thermally-forced, untrapped 

stationary wave is the large poleward transport of heat in the region of 

diabatic heating. 

The strong lower tropospheric stationary wave transport of heat 

is in good agreement with the stationary eddy heat transfer in January 

calculated by Oort and Rasmusson from observations. 	This suggests that 

the untrapped stationary wavenumbers 1 and 2 in winter carry as much, if 

not more, of the total poleward eddy heat transport as the transient 

cyclone waves since the Oort and Rasmusson calculation of stationary eddy 

heat flux is slightly greater than the transient eddy heat flux. 

The main distinguishing characteristics of the thermally-forced 

wave as compared to the orographically forced wave (N.B. of planetary scale) 

is the much larger surface disturbance and amplitude minimum near 4 km. 

Both surface contour height and temperature waves are an order of magnitude 

larger for thermally forced waves than for planetary waves set up by the 

continental elevations. 

It must be stressed that only those waves of hemispheric extent 

are referred to in this comparison and locally, near mountain ranges such 

as the Himalayas, the orographically forced wave may be much larger. We 

are interested primarily in these continental scale waves that influence 

the stratosphere through Rossby wave propagation. 



124 

The structure of low-wavenumber, stationary waves in summer is 

quite different from that of the wintertime in the stratosphere with the 

prevailing easterlies blocking the upward flow of wave energy for all waves. 

The existence of a critical layer (where 7.t= 0) in the steady flow description 

of the wave structure has been treated with scepticism in view of the 

implied unsteadiness through interaction of the wave with the mean zonal flow. 

This is backed up by the disagreement between the theoretical solution with 

a critical level effect and the observed eastward phase tilt. 	The observed 

absence of poleward eddy heat flux in the stationary waves (or even a 

southward transport) in the lower troposphere in summer points to the 

absence of upward wave energy transmission which one would expect from 

a theory with critical level absorption. 	The absorption of wave energy 

by boundary layer friction might account for the eastward slope of the 

phase lines with height in the lower troposphere, as found in the calculations. 

This fundamental difference in planetary wave structure between winter 

and summer might play an important role in determining the seasonal variation 

of the zonal mean circulation — primarily through the poleward heat 

transporting properties. 

Year to year fluctuations of the January monthly mean zonal wind 

.of as much as 100 % occur in the stratosphere and in view of the sensitivity 

of the transmissive properties of upward propagating Rossby waves to 

zonal wind speed changes, one might expect some variation in wave structure. 

Sato (1974) gives the amplitudes and phases of wavenumbers 1, 2 and 3 

between 500 and 10 mb for the winters of 1963 to 1970 at 60°N and 40°N. 

Some interesting differences in vertical phase variation are indicated 

between years as is exemplified by the years 1963 and 1967 tabulated below: 

Wavenumber 
	

Phase (°1ongitude/km)  

JAN. 1963 JAN. 1967  

1 
	

10 	6 

2 
	

4.4 	1.6 
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Apparently the upward transmission of wave energy was much stronger 

in January 1963 with steeply westward sloping phase lines which, incidentally, 

compare very favourably with the calculated slopes of the P2  and P3 (cos 

modes for the realistic basic state profile. 

The two-layer models of Chapter 2 emphasise the suddenness in 

transition from the propagating to evanescent regimes with increase of 

1 
zonal wind and there is good reason to believe that planetary waves near 

this transition point will be susceptible to small zonal wind changes. 

This sensitivity to the mean stratospheric zonal wind speed could provide 

the link between the high atmosphere circulation and the surface climate 

that has been professed by climatologists for so long, though this is 

of course, rather speculative (see for example Willet, 1961). 
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CHAPTER 5 THE INTERACTION OF A STATIONARY WAVE SYSTEM OF SLOWLY  

VARYING AMPLITUDE WITH THE 'MEAN' FLOW  

(i) Theory of wave-mean flow coupin,  

The previous chapters have been concerned only with stationary 

(a/at E0) solutions to a very specific problem of large-scale forcing 

without questioning how such a-state might be attained or even if it is 

possible. 	The time dependent evolution of a stationary wave system from 

a region of forcing involves a multitude of interactions between the wave 

and basic state and within the wave itself. 	It is only for 'very small' 

amplitude wave motion that it is justified to treat the basic state parameters 

as unmodified and the questions that arise are 'How small is 'very small'?' 

and 'What effect does the wave have?'. In a sense, the conventional 

initial-value problem for the response to a 'switch-on' of forcing produces 

only half the description of the motion since the very small changes to 

the basic flow are not calculated. 	The sudden 'switching-on' of forcing 

causes a spectrum of 'transient' waves which spread out in all directions 

with time. We shall only consider the behaviour of the interactions of 

wave with basic flow under the assumption that the forcing varies slowly 

in time and that the wave system can always be regarded as a quasi-stationary 

system (no transients). 

Analogous approaches exist in classical mechanics for slow time-varying 

oscillatory systems (e.g. the pendulum bob on a string pulled over a support) 

such that the time scale over which the string is shortened is much longer 

than the period of oscillation. 

In the approach given here, we will not be concerned with the type of 

dispersive motion involved -- only that it should be consistent with the 

linearized Boussinesq equations (hydrostatic). 	The resulting description 

is applicable to inertial-gravity wave motion as well as planetary Rossby 

wave motion. 
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The following assumptions are essential: 

(1) The wave system set up is slowly varying in time. 

(2) Changes in amplitude take place slowly in the vertical. 

(3) We consider regions away from critical levels (U=0). 

In general (1) implies (2) since if changes are transmitted upwards 

with a finite speed (typically the group speed) then the smallness in time 

variation implies largeness of vertical spread of the changing amplitude. 

This will not be true near the critical layer where the group speed tends 

to zero. We shall not be concerned with evanescent wave systems or 

trapped situations even though the results may be applicable to some extent. 

The smallness of variation of z and t and the size of the perturbation 

quantities is denoted by E such that we may define new height and time 

variables Z=Ez and T=Et. Also q' OW where q' represents any 

perturbation quantity. 

Eliassen and Palm (1961) (hereafter EP) derived equations for 

stationary waves forced by mountains which relate physically significant 

quantities such as the average perturbation pressure work term to eddy 

momentum and entropy transport. 	The procedure for the derivation of their 

equations will now be re-capped. 

The standard Boussinesq set is 

Dt- - fv + 4-2-136 0] = 0 

3 11 + 0  
Dt 	ay po  

st 
az 
a [po ) 

- 9'4 = 0 

au 4.  av ▪ 1 
ax ay 	

lj po  
w) = 0 po az' 

D6c1)  
+ WB = 0 

Dt 

x-momentum equation 

y-momentum equation 

z-momentum equation 

Continuity of mass 

Conservation of entropy. 



D  Multiply by OW (la+ 	— a2-°- 17 61  I 
Po 	B 	

and average with respect to x 

aV a-671)  
a  0 	

au 
u (I) 
- 

I 2,e+ §2  - az 	[au (5 ,  

Po B 1 ay  - f - az 	B 	vt = 0 
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Linearizing about a basic state of zonal flow with 

u = ri(y,z,T) + u'(x,y,z,T) 

v = vt(x,y,z,T) 

w = w'(x,y,z,T) 
	

T= et 

Sp= Sp + Sp' 

643,- 

gives to first order 

- 
U ax ' 

Uti  

36  

4 + 4' 

in E: 

v , 	y- + Lot 	- fv  ay 	
ai7 T 	az 

f 41  + k['pol = 0 

- g"'  = 
+ 	+ w' B = 0 

0 

(overbar indicates x-average) 

+ L[pol = 0 

2) 

____(3) 

9x 
Du' 	+ ax 

@y 
3v' 	/ 	3 + ay 	po az (5) 

Eliminating w' between (1) and (4) and re-arranging 'gives.  

faU 	 T7 	 / 
Dz 

a 
 Dy
Up 

 /Bit' uivi 	6Ppi ovi 	64).v/B) = 0  

ar7 _ 	ari kisa/ 	n if Dy 	Dz Dy / B 

aU 

Sp' v' 	= poU 	 41v' - u'v' —(6) 

then 

Similarly re-arranging (1) into: L(.0141  + 
po 

+ I 
Dy 

- fiv7  + 	= 0 

multiplying by (du' + Sph/po)  and averaging w.r.t. x gives 
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(0 -5— - 	§-2LL
Po 

 '') 	K 
3z(  

ir u,,, 	s_n_dT) 
= 0 

Po 

Eliminating Spiv' from the above with equation (6) gives: 

a779Y)  Scbiz;, — dp'w' = Pou (f— g  l  

The EP relations (6) and (7) relate the vertical and meridional eddy 

pressure-work terms to the vertical and meridional flux of momentum and 

poleward transport of entropy. 	(5,p'w' and (Spiv' are tentatively identified 

with the rate of transmission of wave energy upwards and in the y-direction. 

The zonally-averaged zonal momentum equation is formed and can be 

re-arranged into: 

aU 	ari a 	, 	 
TT + Pov 	+ Pow -5-z  + -5--(Pou V

I  ) + .5ppou'W) — fPor = 

using the continuity equation and the property that aqVax= 0 when the 

x-coordinate is cyclic or if q' vanishes at the end points of the averaging 

interval. 

This expresses that the zonally-averaged zonal momentum changes 

through advection of mean or eddy momentum or by the coriolis force acting 

on the north-south drift (representing the conservation of angular momentum). 

Zonally-averaged the conservation of entropy equation with the use 

of the continuity equation yields: 

aai  2---(4v) + -1-3—(poscimd) +DB = 0 at 	ay 	Po az —(9) 

The convergence of vertical eddy entropy flux is negligible for 

flows where the product of Richardson and Rossby numbers is much greater 

than one, and will be omitted hereafter. 

(8) 

It will now be shown that under the assumptions made at the beginning 
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of this section, the time rate of change of zonal mean entropy is small 

compared with the convergence of poleward entropy flux, i.e. the first term 

of (9) may be neglected. 

Zonally averaging the y-component of the momentum equation leads to: 

p) / 
Po 	 (ID°17`7) 	+ 

0Y l f3o.) 
1'311 = 

and since ij and 77.) are 2nd order quantities at most, V2  and vw can be replaced 

by v'2  and v'w' respectively. 	Differentiating with respect to z and t gives: 

33   ( 	
aT 
a a 	a r 	 k 	+ Dtay az 

a2  { 3  (51)1 = o 62aTaZay (v' 2 ) az [po az °:)° viv'w'),) ÷ 	DZ 	at 	Po 

(with the use of Z=Ez and T= Et). 	Notice that it is not necessarily correct 

to replace 
-5

--3 with E-3 
when operating on terms involving density since DZ 

changes in the vertical of density might be more rapid than wave amplitude. 

The zonally-averaged hydrostatic relation is: 

= g 6(13  

and substituting this into the above equation yields: 

4.  a  raTil   _ E2  a 3  (v12 ) + 	 1 a  (Po v'w9)} 	9.3(Dti 	g Day 	0 3/13Z3y 	aT az po az 

0(0) 	 O(E3) 

asThe upper bound on the magnitude of 	 can be deduced by assuming that at 
it balances the largest term in the equation. 	The second term is at most 

0(0) but in practice scale arguments show that is much smaller than the 

other terms. 	The term Ef--1)11  is of order 0 at most since DU/at 
DZ at 

.ad(1)  
is 4()(0) and therefore we conclude that 	is less than or equal to at 
3rd order in E. The above argument would be considerably simplified had 

we assumed initially that the mean flow is in geostrophic balance. 
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It is permissible, therefore, to reject this term in equation (9) compared 

to-04)vj which is Q(E2)  and assume that the convergence of poleward 

9 r.1 
entropy flux drives the mean meridional circulation and Tv = - / -to0j. 

Using the zonally-averaged continuity equation: 

3 
+ Yz(P07) = 0 3y 

P
T.) can be expressed in terms of poleward entropy flux so that 

a ( 	v(scp1  
a Dz P°  B 

Now vsq) = 	(5(1),  + vs(j) and if we take 	= Ho at most:
az  

0(.15) % 	 7;  
BH0 

( C)( ) denotes the order of magnitude) 

Since 4/BH0 is typically <<1 it may be assumed that the advection of entropy 

by the mean meridional circulation is much smaller than that of the eddy 

transport, 

2 a I v idl and Tv = - / B Dy (dyb' vT 
Po az pc)  B 

The approximations made so far appear rather stringent though their 

dependence on the assumptions of slowness of time and height variation is 

much less critical than implied here. 	For instance the advection of 

entropy by the mean meridional circulation is always much smaller than 

the eddy transport in the stratosphere and one might expect the conclusions 

to be more generally valid. 

Substituting the expressions (10) into equation (8) gives on 

multiplying by Po 

a (p 	.4 _ 	a Du f a ( 	6(p' jay a (n  ( wav a ( 	,v,) p 	( 	, zo,) 
at 	0 	az  Po 	B 	ay  ay  ,0 B  az  3y  Pou az  pou az Po 	B 

Re-arranging and collecting terms leads to: 

(10) 



a a 
= 0 

f v' Sp' 	au v'dcp' ToPou'vl  — Po 	B  
{(DU 	) 

az 	ay  — f Po 	B 	Polew' 
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and on using the EP relations for the terms in { } we have: 

3 	. a r_71 + D  (67;11 
at " 	3y u 	az u 

Notice that in general the zonal momentum field is accelerated in 

regions of diverging wave energy flow and that the important quantity 

involved is (Spirit]. 	This expression implicitly contains the acceleration 

of the mean flow by advection of zonal momentum polewards and upwards by 

the induced circulation and also the coriolis acceleration due to north-

south movement. 

,Lastly the wave energy equation is formed from the time-dependent, 

linearized momentum and thermodynamic equations as follows. The perturbation 

momentum and hydrostatic equations are: 

at Ulu' +. 7p 
3Y - 

w' 	fvi 	—a—ii1P2—] x po  

a 	
a v ' 	3 	— o -1) 

	

u jv 	fu' 	po 
(§21 po  — g 6  _ (I) — 0 

Multiply (12) by u', (13) by v', (14) by w' and add; using the continuity 

equation and re-arranging gives: 

pL T./1 	I 12 	121 	au 	au 
Dt 9x P°ku 	J) Pol uTv' 	P°914/W  

+ 	((5/,'u') + k(4579 1 v9 + -(612'wl) = 0 	(15) 

The linearized equation for entropy conservation is 

	

(Tfa  + 	+ v' 	+ w' B = 0 

and after multiplying by pog41 /B gives 

u ) 
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l at + U4 IP° 6 62(P:3 	2 ] 	P°B" v 64)  E pog6vw,  = 0 

(using the thermal wind equation). 

Adding to (15) and averaging w.r.t. x yields: 

af ) 	a ( 	 
at 	P° 	@y 	P° 	LI/  - Po LB 	6(1)1317  + 	Op' v' + 	w' ) = 0 ----(16) 

where E = 2  no  fur 2  + 'V 2  4- i6q)' 2 ). 

Using the Eliassen and Palm relations, (6) and (7), equation (16) can be 

re-arranged into the form: 

DE 	_ 
= - U 

a  6 	, 
P_ [Sp' +  

-Y 
L 	

u 

and after multiplying (11) by U and adding to the above expression we have: 

9 —2 -1 
9t

1.1 P° 
	Ej = —(17) 

This is the main result of this section and expresses the constancy 

in time of the sum of the specific zonal kinetic energy and total perturbation 

wave energy at a point in the y-z plane. 	Summarising the theme of the 

argument presented: the zonally-averaged momentum and perturbation energy 

equations are formed and knowledge of the wave-coupled meridional circulation 

(T),13) (induced by the poleward eddy entropy transport) and the EP relations 

allows them to be linked. 	The slowness of variation in time and in the 

vertical direction are the main assumptions. 	It can be seen from equation (11) 

that near 11= 0 the wave stress becomes very large and that the slowness 

assumptions would be violated. 	It is important to realise that in making 

these assumptions and interpreting the above equations, we have had in mind 

the notion of stationary dispersive waves though nowhere has this been 

explicitly introduced or the type of wave specified. 

The conclusions are valid for any stationary wave disturbance varying 

slowly in time which satisfies equations (1)-(5). -f 	L (ler pw6L,36.4 wrurlk 69 Ands 	A.1,41, McIntyre M. shave l t v.mt bit LI OL-et 	(nevi IS 
c,-(m 31 ( 51T) V imul 	tme ef bke 510.4 	r 

'at 	 ( 	 J.4,11Acemeni 
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Some interesting results follow immediately from (17). 	The slow 

propagation of wave energy into an undisturbed region of the atmosphere 

does so at the expense of the specific zonal kinetic energy so that no 

net transfer of energy takes place. 	Changes in the available potential 

D&T)   energy of the mean state are possible since the approximation that a  i s 

negligible in the thermodynamic equation does not mean that & cannot change, 

only that it does so slowly. 	The change in available potential energy must 

however be much smaller than the change in zonal kinetic energy and hence 

. little net energy transfer. 
• 

The exponential variation of density also produces interesting 

implications for a stationary wave disturbance propagating into progressively 

less dense regions. 	Propagation of waves in a homogeneous medium is 

characterised by the conservation of disturbance energy following the group 

velocity and for waves whose propagation properties are unaffected by the 

local density the specific disturbance energy is conserved even when the 

density field is non-uniform. 

In an atmosphere of constant zonal wind U and exponentially decreasing 

density with height, an' upward propagating wave conserving specific energy 

will have progressively more effect on reducing the local zonal wind strength 

until the assumptions on which the equation (17) are based become invalid. 

We might use this as some crude guide to the limit of validity of the 

linear theory in describing the propagation of Rossby wave energy into 

the stratosphere. 	Non-linear effects become important when the specific 

wave energy is comparable to the specific zonal kinetic energy. 

Equation (17) implies that a stationary wave system that does not 

vary in amplitude with time, cannot accelerate the zonal flow if the motion 

is adiabatic and without dissipation. 	This conclusion was also reached 

by Charney and Drazin in connection with quasi-geostrophic wave/mean flow 
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interaction. 	Dickinson (1969) puts forward a theory of wave interaction 

with the mean flow in the presence of critical layer absorption and 

dissipation processes in which stationary, time-independent planetary waves 

can interact with the mean flow. 	The introduction of dissipation into 

the foregoing analysis only serves to complicate the physical picture and 

hence is omitted. 

Although no net transfer of energy is accomplished by the quasi-

stationary wave motion — transfer of momentum is and a simple pictorial 

representation is suggested (Fig.5.l). 

Consider an undisturbed atmosphere of uniform zonal wind and allow 

a 'wave packet' to be created by the slow application of forcing at a 

given level for a given length of time (assuming that in this atmosphere, 

some form of dispersive wave may be excited). 	In the region of the wave 

packet where the disturbance energy density is large, equation (17) demands 

that U should have decreased so that a deficit of zonal momentum exists 

there compared to the undisturbed environment. 	The deficit of zonal 

momentum travels with the wave packet and therefore is transported by the 

disturbance. 	It is the result of the working of the drag force exerted 

on the zonal flow during the production of the disturbance wave energy. 

The action of orography for instance is to convert zonal kinetic energy 

into perturbation energy by exerting a drag on the flow through the correlation 

of perturbed pressure with the slope of the orography. High pressure 

occurs on the windward slope and low pressure on the leeward slope so that 

zonal (atmospheric) momentum is communicated to the earth. 	This is in 

quantitative agreement with equation (11) which gives after integration 

over the whole atmosphere: 

where the limits y=.0,L will be assumed to be rigid walls. 
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Assuming that the upper limit z=li is chosen where the vertical pressure-

work term is negligibly small, then the above expression reduces to: 

dt jj Po U dydz = - 	619wi  (y, z = 01)dy 

0 

noting that v' vanishes at the lateral walls at y=0 and L. 

The linearized lower boundary condition for flow over orography of small 

slopes is: 
w, = U 9Z°  

3x 
at z = 0 

where Zo =Zo(x,y), the surface elevation function. 	Substituting this 

expression for w' at the surface into (18) gives: 

dt 	Po Udydz} = - 	dy 

0 

,0 is the net eastward drag exerted on the orography and will be denoted 

by Tx so that: 

dat ft 

L 

Po 17 dydz + j Tx  dy = 0 
0 

which states that the loss of zonal momentum from the atmosphere is equal 

to the drag exerted on the orography or the momentum communicated to the 

earth — as it should be. 

It is instructive to look now at how momentum is transported by 

large-scale quasi-geostrophic waves. 

For vertically propagating Rossby waves, the vertical eddy transfer of 

zonal momentum is small and equation (7) reduces to: 

6P'zat  = 	Wv' 

so that equation (11) becomes: 

a rnom = 
aVP° 

T 	
= PO f .17 

(18) 
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Drag is exerted on the zonal flow through the 'coriolis torque' for quasi-

geostrophic motion and vertical transfer of momentum is effected by the 

induced meridional circulation (see Fig.5.2). 

For purely horizontal propagation of quasi-geostrophic wave motion 

equation (6) is well approximated to: 

Sp' v' = — Po Uu'v' 

so that the acceleration of the zonal momentum field is given by: 

a ( 	a , 	 
at (NUJ = v(Po vi  )1 

Momentum transport is effected primarily through eddy transfer processes. 

In small-scale wave motion where the Rossby number is of order unity, 

the vertcial eddy transfer of momentum becomes important and acts in the 

same sense as the coriolis acceleration i.e. to decelerate the zonal mean 

flow. 	Inertial-gravity waves provide an example of this type of mixed 

momentum transport. 

An obvious consequence of the inferred momentum transport is that 

wave packets forced in westerly flows carry easterly momentum and vice versa 

for easterly flows. 

(ii) Observational confirmation  

Observational evidence of this type of wave/mean flow interaction 

is generally difficult to ascertain since the zonal flow is accelerated 

by Reynolds stresses associated with other scales of motion that are strongly 

time-dependent, particularly baroclinic instability in the troposphere. 

The stratosphere is apparently free of the baroclinic eddy motion which 

is so characteristic of tropospheric flow and it is here that the wave/mean 

flow interaction mechanism should be most prevalent. 
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Hirota and Sato (1971) analysed observations of zonal wind speed 

and wave amplitude and found a strong negative correlation between them. 

Their interpretation of this behaviour was that the decrease in zonal 

wind speed favoured enhanced upward penetration of tropospheric wave energy 

consistent with the Charney/Drazin criterion of propagation. 	Since the 

critical zonal wind for propagation is -90 m s-1  for n=2 modes, typical 

zonal wind variations of 15 ms-1  about the monthly mean will have little 

effect on the transparency of the stratosphere to upward propagating 

wavenumber 1 disturbances. 

Our conclusions suggest that the phenomenon is completely accounted 

for by the interaction of quasi-stationary waves with the mean flow and 

that the negative correlation of zonal wind speed with wave amplitude 

represents the upward transmission of pulses of easterly momentum accompanying 

the disturbances. 	The deposition of the momentum depends ultimately on 

the fate of the wave disturbance and it might be concluded that since 

wave energy is absorbed between 30 and 50 km, this region will experience an 

east-west acceleration. 	The maintenance of a steady, zonal momentum field 

poses an interesting problem in view of the constant upward transport of 

easterly momentum. The accumulation of easterly momentum is probably 

offset to a large extent by its downward transport by a thermally-driven 

meridional circulation set up by strong polar night cooling. 

(iii) Planetary Rossby wave propagation and wave action conservation  

In this section, the wave/mean flow interacting properties of 

travelling, quasi-geostrophic Rossby waves will be discussed and relations 

derived in terms of the zonally-averaged wave energy equation, under the 

assumptions of the slow spatial variation of the mean zonal wind and 

static stability. When the mean state parameters of the flow on which 

propagation depends change only slowly over the distance of one wavelength 

then group velocity and associated wavetrain concepts are useful. 	The 
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dispersion relation appropriate to propagation in a weakly non-uniform 

medium expresses the relationship between frequency, wavenumber and the 

weak dependence on position i.e. a = a(k,R) where a is the frequency, 

k the wavenumber vector and R the position vector. 

It will be shown how the eddy-pressure work term, given by the 

correlation of the perturbed pressure and wind speed, repreSents the flow 

of wave energy at the group speed and when substituted into the wave energy 

equation leads eventually to a conserved quantity, 'wave action', as named 

by Bretherton (1966). 

Consider the quasi-geostrophic, cartesian geometry description of 

an atmosphere of uniform static stability on a f3-plane. 	Linearizing 

the quasi-geostrophic potential vorticity equation about a mean zonal wind 

that is weakly space and time dependent such that U = TJ(Ez,Ey,Et) where E 

is a smallness parameter, gives: 

• 

( 	 y  1 i 2 
+ 

a 
Villp 	" ( 	v 3 

gB Po Ti 	

a

x = 0 3 

Wavetrain solutions are of the form: 

to order E. 

1))' = Real  1,b0(6z,cy,Et)exP12(Xx+Ily i-vz-ot) 	2H0 

and associated with a dispersion relation: 

a = 
x2 	p2 	fi v2 4.  

grE3 	44) 

The Boussinesq equations consistent with the derivation of the quasi-

geostrophic potential vorticity equation are: 

+ 4u' — fv' + 
3x Po 

— 0 

3 
+ 	+ 	+ 	[§E1) 

— 
— 0 

dY Po  

( 	g  (1)
1 	' = 0 

3z Po  
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(

3 
at u-a—x)04)' 	B = 0 

u' 3V' / 3 
'T.E(Pow 	= 0 

y 	Po 

All perturbation quantities are of the form: 

= Real  fo (Ez,cy,Et)expli(Xx + 	vz - at) 2H 0  

with 	u' = - 
	

v' 	2.4!! 	and 	AA  
By ' 	ax 	g 3z 

so that to first order in E, (a) becomes: 

- iuFLPT.( - io- + iAU) - 	+ 	
Po 

= 0 

which gives a complex expression for Sp' 

= Real  ff + ip(0- c) )1P' 
Po 

The zonally-averaged eddy pressure-work term, opt v'/P0 can be calculated 

immediately from the complex expressions for Sp' and v' since: - 

= I- Real  (.5p1 W*) 

with the result that: 

Sp' 	= 	popA CU - 	Ilpo 1 2  

Similarly the complex expression for w' can be determined from the 

thermodynamic equation (d) and hence the vertical eddy pressure-work term, 

(519'w' becomes: 

6p, 	
2 	) 

f o  (17 c ){1-21HX 0 (u c ) — favA} 111)01 2  

The first term in brackets is negligible for large-scale flow since 

typically v rk,  1/2H0 

PA - (U- c) 	p (U- c) 2Ho 	,L 	 ti Ro (Rosso y No. ) << / 
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so that the vertical pressure-work term is given by: 

1 .4 
(Sp' 	= —2  Po gB  (U c)vA 

1 
The zonally-averaged specific wave energy E = Tpo  I 24.'2  + v'2  + F-6V2  I can 

be expressed in terms of the streamfunction i and gives: 

I n4A2  4. 112.4. ftiv2 4. 1  14 12 
4 'u 	gB 	71:12-  ' °I  

The meridional and vertical group velocity components C
gY 
 and Cgz can.be 

calculated from the dispersion relation so that: 

From these expressions and those for the pressure-work terms dp'w and Spiv' 

it can easily be shown that: 

Sp' vi = ECgy 	and 	cSp' wt = ECgz  

demonstrating that wave energy propagates with the group speed. 

a77 Neglecting the term pou'V - in the wave energy equation of the last section* 

gives: 

DE' 	U  
— 	zit — _ 3  
Dt Dy 	Po 

f  
B 4  v' 	T(6.10T vT ) 	—az(61)r w? ) = 0 

and expressions for (5(1)'/P and u'v' can be obtained in a similar way to 

those of (Sp'w' and (Spiv' giving: 

EC 	 EC 
(Scrvi = 	

gz  
and ut  = 	gY  

	

Po B(U- 	 Po (U- c) 

* justified for quasi-geostrophic motion. 
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Substituting the expressions derived for (Spowl, dp1 vi, (541o'vT and ut t.P into 

the wave energy equation and re-arranging gives: 

at
+ Div (Er cg) = 

U 
E 	 cg. grad -11 

where Div applies only to the y,z plane. 

If U is uniform equation (19) reduces to the conservation of wave 

energy and Cg  is constant in space. 	The source term on the right-hand side 

indicates that wave groups propagating towards stronger zonal winds gain 

energy at the expense of the mean flow. 

Wave groups propagating in non-uniform media have characteristic 

wavenumbers and frequencies that vary slowly in space and time with the 

medium properties, and for this case: 

= ojK(T,Y,Z), U(T,Y,Z)) 

where 	K = Xi + T.tj + vk, T = Et, Y = Ey and Z =Ez. 

The rate of change of frequency at a point in space, @ci/T can be expanded 

by the chain rule for partial differentiation into: 

Da 	Da DA 4.  Da 92.  Da Dv 	9a 
DT as 3T 9p aT Dv DT DU DT 

. From the dispersion relation, 9cr/31j= A and after collecting terms, the 

above equation can be written as: 

Da _ 	3K 10 
DT - -Cg' DT +1'DT --(20) 

Redefining a and K by introducing a phase function* X  such that the wavetrain 

solution becomes: 

= 1Po (Y,Z,7)exP{iX 

with 	a  = aX - 	and K = grad X 

(19) 

*As suggested by Whitham, 1961. 
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The slowly varying functions of space and time, a and K satisfy the equation: 

DK 	y a = 0 	, = a . 	. 	k) 
aT 	 ( where y 	9 z  _ _ 

by definition and this is then known as the 'conservation of wave crests'. 

Substituting this into equation (20) for 9K/9T gives: 

Da 
9/7 Cg.To 

=05 
9T 

which indicates that the frequency of wave groups changes following the 

group only when the zonal wind field is being accelerated. 	X is a constant 

since the medium properties are not dependent on x and so the above equation 

may be re-arranged into the form: 

[3
+ 	(U- c) = (cg . v ,  ) U with c a 

x 

Multiply by U- c and taking it inside the derivative following the group 

leads to: 
Ri + c9HE - (7-0)R)T., +   =  E  (cg.T)U 

u-c 	Zi-c 

Subtracting this from equation (19) leads to the conservation relation: 

DT Uc 
a E J 

— 	
+ 	.coy) = 0 

U-c 
(primes denote slow variables) 

(after dividing (19) by c and transforming to the slow variables T, Y and 2). 

The conserved quantity - g  is named 'wave action' after Bretherton (1966), 
U-c 

who derived it in connection with gravity wave propagation. For all its 

elegance, it is difficult to interpret and to make use of in this form. 	It 

is similar to the 'adiabatic invariant' quantities of classical mechanics 

that are of the form, energy/frequency. 

It has been shown that the zonally-averaged momentum equation for 

large-scale flow is: 
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( 
az

a 

of 

6cp , v ,) 
at 

expressed in terms 

__[fpo 	 
 B 

E C z 
' q  fPo (S(Wv' energy density and group velocity is 	_ 

U-c 

so that: 
_1(p (7)  a ECgzi I 

U- c J  ° at 

Combining this with the wave action equation, neglecting y-variation gives: 

a 
MP°17  U_ cj 	 0 (22) 

Uryu (1974) arrived at a similar relation from the quasi-geostrophic potential 

vorticity equation and interprets wave action as the momentum carried by 

the wave group. He points out the similarity in form of the momentum 

carried by a photon, energy/phase speed of light and wave action though 

in our case the momentum carried is at right angles to the direction of 

propagation i.e. east-west momentum. 

Here again we see the role of a wave packet in decelerating the 

zonal wind field. 	On approaching a critical level, the quantity _
E  

U - c 

becomes very large since U-c 4-0 and the zonal momentum field suffers a 

correspondingly large deceleration. Uryu uses this as a crude explanation 

of the sudden warming process. The easterly drag carried by the wave group 

from the region of forcing causes the greatest effect in the stratosphere 

where the zonal momentum p00 decreases rapidly with height and the downward 

movement of the zero-wind line caused by the interaction cuts off the 

transmission of wave energy. 

Strictly, the assumptions of slow variations in space and time are 

violated under these circumstances though some insight is gained. 



146 

Acknowledgements  

I would like to thank my supervisor, Dr. J.S.A. Green for guidance 

during this work, Alastair Seaton who provided much computer, programming 

assistance and the 'Climate Group' in general for many interesting 

discussions and collaboration. 

The typing, along with many diagrams, was dOne by Marion Street 

to whom I am very grateful. 

This work was supported by a NERC research studentship. 



147 

References  

Abramowitz, M. and 	1964 	'Handbook of Mathematical Functions'. 

Stegun, I. 	Dover Publications. 

Bretherton, F.P. 	1966 	'The propagation of groups of internal gravity 

waves in a shear flow', Quart.j.R.Met.Soc., 

92, p.466. 

Brunt, D. 	1934 	'Physical and Dynamical Meteorology'. 

Cambridge University Press. 

Charney, J.G. 	1948 	'On the scale of atmospheric motions', Geofys. 

atbZ., 17, 2, pp.1-17. 

Charney, J.G. and 	1961 	'Propagation of planetary scale disturbances 

Drazin, P.G. 	from the lower into the upper atmosphere', 

J.Geophys.Res., 66, pp.83-109. 

Charne7, J.G. and 
	

1949 	'A numerical method for predicting the 

Eliassm, A. 	perturbations on the middle latitude westerlies', 

Tellus, 1, pp.38-54. 

Clapp, P.F. 	1961 	'Normal heat sources and sinks in the lower 

troposphere', Month.Weath.Rev., 89, pp.147-162. 

Dickinson, R. 	1969 	'The theory of planetary wave- zonal flow 

interaction', J.Atmos.Sci., 26, pp.73-81. 

Dickinson, R. 	1972 	'Motions in the stratosphere', CIAP Survey 

Conference Proceedings, pp.148-161, (U.S. 

Dept. Transportation). 

Elias/en, E. 

Eliassen, A. and 

Palm, E. 

1958 'A study of the long atmospheric waves on the 

basis of zonal harmonic analysis', Tellus, 

10, pp.206-215. 

1960 'On the transfer of energy in stationary 

mountain waves', Geofys.Publ., 22, 3, pp.l-23. 

Geisler, J.E. and 	1974 	'Numerical study of an interacting Rossby 

Dickinson, R.E. 

	

	wave and barotropic zonal flow near a critical 

level', J.Atmos.Sci., 31, pp.946-955. 

Green, J.S.A. 	1972 	'Large-scale motion in the upper stratosphere 

and mesosphere: an evaluation of data and 

theories, Phjl.Trans.R.Soc. Lond. A, 271, pp.577 
-583. 



148 

Hadley, G. 	1735 	Phil.Trans.R.Soc., 29, p.58. 

Hirota, I. and 	1969 	'Periodic variation of the winter stratospheric 

Sato, Y. 	circulation and intermittent vertical 

propagation of planetary waves', J.Met.Soc. 

Japan, 46, pp:418-430. 

Lindzen, R.S. and 

Kuo, H.L. 

London, J. 

Mahlman, J. and 

Manabe,.S. 

Matsuno, T. 

1969 'A reliable method for the numerical integration 

of a large class of ordinary and partial 

differential equations', Month.Weath.Rev., 

97, PP.732-734 (correspondence). 1  

1952 	J.Meteor., 9, p.145. 

1972 'Numerical simulation of the stratosphere: 

implications for related climate change problems', 

CIAP Survey Conference Proceedings, p.186, 

(U.S. Dept. of Transportation). 

1970 'Vertical propagation of stationary planetary 

waves in the winter Northern Hemisphere', 

J.Atmos.Sci., 27, pp.871-883. 

Moller, F. 	1950 	Experientia, Basel, 6, p.361. 

Murikami, M. 	1974 	'Influence of mid-latitudinal planetary waves 

on the tropics under the existence of a 

critical latitude', J.Met.Soc. Japan, 52, 

pp.261-271. 

Muench, H.S. 	1965 	'On the dynamics of the wintertime stratospheric 

circulation', J.Atmos.Sci. 22, pp.349-360. 

Oort, A.H. and 	1971 	'Atmospheric circulation statistics', 

Rasmusson, E.M. 	NOAA Prof. Paper 5, U.S. Dept. Commerce. 

Sankar-Rao, M. 

Sato, Y. 

1965 'Continental elevation influence on the 

stationary harmonics of the atmospheric motion', 

Pure and Appi. Geophys., 60, pp.141-159. 

1974 	'Vertical structure of quasi-stationary 

planetary waves in several winters', J.Met.Soc. 

Japan, 52, pp.272-281. 



149 

Simmons, A. 

Smagorinsky, J. 

Whitham, G.B. 

White, A.A. 

1974 	'Planetary-scale disturbances in the polar 

winter stratosphere', Quart.J.R.Met.Soc., 

100, pp.76-108. 

1953 'The dynamical influence of large-scale heat 

sources and sinks on the quasi-stationary 

mean motions of the atmosphere', Quart.J. 

R.Met.Soc., 79, pp.342-366. 

1974 'Mean zonal flows induced by a vertically 

propagating Rossby wave packet', J.Met.Soc. 

Japan, 52, pp.481-490. 

1961 'Group velocity and energy propagation for 

three dimensional waves', Commun. on Pure and 

AppZ. Maths., XIV, pp.675-691. 

1976 'Modified quasi-geostrophic equations using 

geometric height as vertical coordinate', 

submitted to the Quart.J.R.Met.Soc. 

Uryu, M. 
1 

White, A.A. and z_ - 	1975 'Parameterised heat transfer in a low-resolution 

Green, J.S.A. 	spectral climate model', contributed paper 

to A.N.M.R.C. Conference, 'Climate and 

Climatic Change'. 

Willet, H.C. 	1961 	'The pattern of solar-climatic relationships', 

Ann. N.Y. Acad.Sci., 95, pp.89-106. 



150 

APPENDIX Notes on the quasi-geostrophic potential vorticity equation  

The following is a brief summary of the derivation of the quasi-

geostrophic potential vorticity theorem and the approximations constituting 

the Boussinesq set. 	White, A. (1976) derives the normal Q.G.P.V. equation 

from a substantially less approximated set than the standard Boussinesq 

equations and most of this section is adapted from his work. 	Although 

it turns out that the mathematical problem of stationary forcing is unchanged 

by the increased generality inherent in the modified set, some changes in 

emphasis in the energetics of the wave motion become apparent which are 

important in the stratosphere. 

Following the procedure of Charney (1948), typical velocity scales, 

V (horizontal), W (vertical) and length scales L (horizontal), H (vertical) 

are chosen and associated with these are pressure, density and entropy 

deviations 6p, Sp and Sr fromthe undisturbed basic state variables p0(z), 

Po(z) and (1)0(z) respectively. 	All local time derivatives are taken -to 

be of the order of the advective part of the substantial derivative at 

most and the flow is assumed hydrostatic throughout. 

The height scale H of the motion under consideration is typically 

of similar size to the vertical scales of the static pressure and density 

i 	dp  -1 	1 dpo fields 	o 	_ and 	-1  
_ 1 	

(=Hp) respectively and White concludes po dz 
	
Po dz 

that the important results are modified only through the replacement of H 

by the smaller of H and Hp. 

The equations of motion for inviscid, adiabatic flow in hydrostatic 

balance are: 

av 
L 57-  + VH.OJ VH + W 

m
+ fk AVH + iVHST) = 0 	(A) 

(momentum equation) 

az + Pg = 0 	• 	(hydrostatic equation) 	(B) 
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(Pt  + ii./.2;)5P + p V.VH + 	pw) = 0 	(continuity of mass) 

+ V V14 + 7401  =0 at -II"- 	3z 

= 
1 
—log p - log p 

(where y is the ratio of specific heats) 

The coriolis term, 20cos(lat.)w..i has been omitted from the horizontal 

momentum equation (A) since W << V. 

' Hydrostatic balance and quasi-geostrophy impose a close relationship 

between the motion field and thermodynamic variables such that (A), (B) and 

(E) give: 
620 5p an

d S n,
VL  

P P 	gH 

Motion in rotating, stratified fluids is characterised by the non-dimensional 

numbers: 
V Ro = 

 

Rossby No. 

  

and Ri = --21272- 
(V / H 

 

Richardson No. 

 

and the order of magnitude of terms is conveniently expressed as a function 

of them, so that: 

Sp (5p and 	
BH  — 	4 "1,  . 

P p 	 RsRo 

For large-scale flow, typically: 

Ro 'ti 0.1, Ri % 100 and BH 	0.3 

0 and it can be seen that Sp  P and 4 are all very much less than unity. 
P 

The conservation of entropy, equation (D), allows estimation of the 

vertical velocity W and gives: 

f2 	V 
" ti 

gBH

U 
v 	

. 
( 	RO )-1  H - L 

which implies physically that knowledge of the slope of isentropic surfaces 

(conservation of entropy) 

(entropy of a perfect gas) 
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and typical horizontal velocities gives the order of the vertical velocity 

since parcels tend to move along the isentropes (exactly for steady entropy 

fields, with (V.V)4= 0). 

Using the above results to estimate the size of terms in the 

continuity equation (C) gives: 

2  
5 	(3 xFpy)p gH 
1 	.pri2 . 

and 	
p az(Pw)  
1  

gH 
	(BH)-1 

which implies that V.VH --Ti(RiRo)-1  and in this sense the flow is almost.  

horizontally non-divergent since RiRo >> Z. 	Also, it can be seen that 

3 
horizontal advection V V is much larger than vertical advection w— and 11* 	 3z 

this allows the rejection of wel  in (A) and the replacements L(pw) with 

3, 
(Pow) in (C) and w

Dz 
with wB in (D). 

The horizontal advection of density is only negligible compared to 

a --(po w) if BH<< 1 and for deep stratospheric motion this is not a good 
Dz 

approximation. 

The horizontal wind Vs may be partitioned into a rotational component V1p 

and divergent component Va with: 

1711)  = k V tp 

and 	V. VH  = V( Vip + Vcr ) = 

Consistent with these approximations, we may form the vorticity equation 

from (A) giving: 

+ 	[VI/ IP 	f) 	f y._vo. + poo Nag) „, v(Sp) = 0 

Introduction of the scale expressions into the baroclinic and horizontal 

advection terms gives the ratio: 

k. (vaq) „ yap) 	f 2  L2  
BH (Ri Roe )-1  

(4-V) (q11) 	gH 
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and for large-scale flow RiRo2  (1,1 so that the smallness of the baroclinic 

term in the vorticity equation depends on the inequality, BH << 1. 

The entropy expression (E) may be approximated to give the perturbation 

entropy equation: 4 = Y Po - .152- (since p=po and p=p0) and using this LSE Po 
 

DO')  
in the perturbation hydrostatic equation, az  + gdp = 0 gives: 

las I a  - 
P
o gSqb 0 

The familiar Boussinesq approximation is based on the smallness of op  Po , op 
Po 

and 4, plus the change in density following the horizontal motion'in (C) 

and B
Po 
op 
 in the above hydrostatic relation. 	Both of these latter assumptions 

are necessary to form a dynamically consistent set and both are justified 

by the smallness of BH. 	The standard derivation of the quasi-geostrophic 

potential vorticity equation involves the omission of the baroclinic generation 

term in the vorticity equation which is also based on BH << 1. 

White shows that a dynamically consistent, quasi-geostrophic set 

may be obtained for motion with BH 1 by the retention of all these terms 

and puts forward the following equations to determine the motion: 

and 

(at VH.OJ [VIA 	 f 	+ Po v 64,. v Sp = 0 

	

= 	62)  
Pofo 

— B)-(-52  — 04) = 0 

	

at 

oz 	 po  

+ ylp.y)k— + 	li( pow) = 0  Po 

4.v)(sit 	wB = o 

66  _ 	(JR. 	dp 
po — Po 

As in standard, quasi-geostrophic theory the coriolis parameter is approximated 

by a constant, mid-latitude value fo  in the association with the divergence 
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of the horizontal wind in (1) and the pressure/streamfunction relation (2). 

It can be shown that this modified set ((1)-(6)) has well-defined 

integral conservation properties of mass, entropy, potential vorticity and 

energy which is desirable if they are to be a suitable approximation to the 

'primitive equations'. 

The potential vorticity theorem is derived as follows: 

Eliminating V.Vcr  from (1) and (4) gives: 

(1E + Yip.7) hIP + f - foAl - i '33- 72, r(pow) + Lc  .V Sq),, V Sp = 0 
Po 

	(7) 

Multiplying equation (5) by 4 and differentiating w.r.t. z gives: 

kli + 170)7...(13,÷54)) + -11- V. Y6(1) + 2-( pow) = 0 

and elimination of az (pow) between (7) and (8) leads to: 

1 
[53T + ITH.Y.) qii)  + f - fo 2:-I01-:-  + A-  .--1--7,-.- &pi + 4 ep.,,_,  ScP + LC-  •V sq) ,, v Sp = 0 Po d2 b 	PO - 	- 

	(9) 

The complete thermal wind equation obtained by applying the operator k ,, V to 

(3) and using (2) results in: 

- k vIL111 . 	rg V Syb + B V AO az 	Laz) 	 f 0 	Po) 

and on substitution into the second term of equation (9), we find a cancellation 

with the baroclinic term. Moreover, when 4 and 4 in the remaining part 

of (9) are written in terms of tP, the equation simplifies to the conservation 

theorem: 	

(11E+71p.7]{VH24)+f -1-",22_2 
gpo  az

1 B
po 
 az

1.111 = 0 

which states that the quasi-geostrophic, potential vorticity is conserved 

following the horizontal projection of the non-divergent motion. 

Although the corresponding theorem derived from the standard Boussinesq 

(8) 
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set (which includes the subsiding assumption BH<< 1) is identical, the 

equation developed here is more general since it implicitly contains 

virtually exact hydrostatic and continuity equations together with the 

baroclinic generation of vorticity term. 

The equation for the entropy perturbation in terms of ip  is however 

different and equations (2) and (3) lead to: 

= fop
z — B)* g 3 

go  
3z 

as opposed to 4= -11  for the standard Boussinesq set. 
g  

Upper and lower boundary conditions are usually expressed as conditions 

on w, which is obtained from the conservation of entropy equation as: 

a — 	v71 fro 4 	foll)1 
[TE 	T.E3 az 	g J 

and is different from- that-obtained-  from'the standard Boussinesq approximation 

by virtue of the term L. But for all time-independent problems with 
at 

this extra contribution vanishes since Vd.:7 fob  - 0 and the boundary condition g 

is not modified. 

An expression for the temperature perturbation in terms of the 

streamfunction can be obtained from the hydrostatic equation: 

Dz 
+ Op = 0 

by using equation (2), 	610, and the differential form of the perfect 
PoIo 

gas equation: 

6p = _ ST + 6p  
Po 	To po 	

(where ST is the temperature deviation from 

the basic state temperature To(z)) 

so that: 6P = 	q) 	41 = _ (ST 4.  jp_ 
Po 	g H o 	azj 	To 	po 

and for a constant temperature atmosphere Po =PogHo, and substitution into 
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the above equation gives: 

ST = meaty  
To 	g 3z 

The conservation of energy is obtained by multiplying (1) by IP, using (2) 

and (4) and integrating over a volume V with zero boundary fluxes giving: 

Ptlf P° [1(V 4))2 	f w 31P + 	 n 2 _ 	o Tz- 	o 	po 	T - - 

V 

which, using (2), 

d 
dt 

(3), 	(5) 	and 	(6), 

	

Po I (VIP? + 	2 6 

V 	
B 

(where 

reduces to: 

2 	/ Op) ) 
dT 

dT 

= 

is an increment of volume) 

0 -j2-1p7)  j 2  

(c = -)1/?7'0, the speed of sound). 

The total potential energy of the modified equation set, involves an elastic 

( /2 Po  
Op 2  energy contribution from the term ---- which can be seen to be comparable 

c 

with the kinetic energy term 7.. 
/ 
rpo (V tpr , J  for if V '1,  La  (m= zonal wavenumber R 

and R = the earth' s radius ) then : 

Tp
o2 

cz o j 	c 2 	4 

07  02 	
(min)2 	

m 2  

and the elastic modification is most important for long waves. 

In view of the much wider range of validity of the Q.G.P.V. equation 

than implied by the standard Boussinesq approximation we can be confident 

that the stationary forcing problems of earlier chapters are well-founded. 


