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ABSTRACT 

Previous studies of the pressure drop, liquid holdup and 

interfacial area during two phase upward cocurrent flow 

in beds of spherical particles have been interpreted in 

terms.  of a liquid distribution model. The single phase 

.flow region is one extreme of this model where the 

predominant flow regime is gas and liquid travelling 

through separate pores within the packed bed. During two 

phase flow the gas and liquid phases flow mainly through 

the same pores. 

The validity of these models has been assessed by an 

experimental study of the dispersion occurring in the 

liquid phase during its passage through the packed column. 

Several mathematical models of varying complexity have 

been developed to represent the liquid flow within the 

column. The parameters of these models have been 

determined by Transfer Function analysis of the responses 

to a pulse injection of dye tracer into the liquid phase. 

Correlations based on dimensional analysis are given for 

the liquid dispersion and liquid holdup. 
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NOMENCLATURE 

All dimensions are in terms of SI Units 
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Length L metre m 

Mass M kilogram kg 

Time T second s 

Temperature e Kelvin K 
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F newton N = kg Force m s
-2 

Symbol 	Definition 	 Dimensions  

a 	interfacial area per unit volume 	L
-1  

ak 	
general coefficient in series solution 

(e.g. eq.4.31) 

A 	cross-sectional area of packed bed occupied 	L
2 

by flowing liquid 

A
e 	

exchange area per unit bed length 
2 

b
k 	

general coefficient in Transfer Function 

Asr 
	

cross-sectional area of packed bed occupied 

by stagnant liquid 

B 

C(t) 

C
. 

C
AV 
C
Bb 
C
s
(t) 

de  

dP 
d
t  
DAS 

 
D
L 
e 

e_ 
1 
E 

fr 
F(p) 

representation by series solution 

(e.g. eq. 4.34) 

pressure drop parameter in eq. A.6 

tracer concentration 

concentration of component A at interface 	ML
3 

arithmetic mean solute concentration. 	ML
3 

bulk concentration of component B 	ML
3 

system forcing function 

equivalent particle diameter 

particle diameter 

column diameter 

diffusivity of component A in solvarit S 	L
2
T
1 

longitudinal Dispersion coefficimit. 	L
2
T
-1 

bed voidage 

step lengths in minimisation procedure 

noise weighting function in eq. 5.21. 
friction factor 

theoretical system Transfer Functiori 
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g gravitational constant 	 LT
-2 

2 	gradient vector in eq. 5.32 

g(t,k) 	impulse response 

G(p) 	experimental system Transfer Function 

gas mass velocity 	 MT-1L
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H parameter for evaluating axially dispersed 
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/
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air, water and carbon dioxide 
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I
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light intensity incident on photomultiplier 

parameter for evaluating axially dispersed plug 
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k
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ke 	mass exchange coefficient 	 LT-1  

k
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liquid phase mass transfer coefficient 	LT-1  
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' reaction velocity constant 	M
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characteristic packing length 

L distance between two measurement points 

LM 	liquid mass velocity 	 ' ML-2T
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-1
T
-2 

Ltp 	
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CHAPTER 1 INTRODUCTION  

Generally it is commercial practice to operate packed towers for gas-

' liquid contacting with liquid flowing downwards under gravity and gas 

flowing upwards. In recent years there has been increasing interest in 

cocurrent operation. The capacity of columns operated cocurrently is not 

limited by flooding and the pressure drop at any specified values of the 

superficial gas and liquid velocities is less than in the case of a 

countercurrent column. The higher mean concentration driving force 

obtained during the countercurrent mode is unnecessary when gas 

absorption is accompanied by an irreversible reaction or in physical 

absorption and stripping applications where one equilibrium stage only 

is required for the separation. 

For the design of a cocurrent gas-liquid contactor it is necessary to 

know for a given set of gas and liquid flowrates the pressure drop, 

liquid holdup, interfacial area and fluid flow regimes. Previous studies, 

described in detail in Chapter 2, have concentrated almost exclusively on 

the first three areas and a number of empirical correlations are available 

in the literature for determining these quantities. 

Work in this Laboratory on the pressure drop, liquid holdup and interfacial 

area during upward cocurrent air-water flow through packed columns of 

spherical particles has suggested a liquid distribution model of the flow 

within the packed bed. TwO extreme conditions of this model are single 

phase pore flow when the predominant gas and liquid flow is through 

separate channels, and two phase pore flow when both gas and liquid flow 

through the same channels. It should be possible to distinguish between 

these two extreme modes of flow from the dispersion exhibited by the liquid 

phase during its passage through the packed bed. In the single phase pore flow 

regime, changes in gas.  rate will have little effect on the liquid dispersion. 

Results similar to those reported for single phase liquid flow in a packed 

column should be found. In contrast, when both phases flow through the same 

pores, the gas rate must influence the liquid dispersion and generally an 

increase in liquid dispersion will occur due to the presence of the higher 

velocity gas phase. 

The present study has been undertaken to provide data on liquid dispersion 

during upward cocurrent air-water flow and to assess the validity of the 

liquid distribution model. For this investigation a vertical column 101.6mm 

diameter x 1 m long was packed with 5mm diameter glass ballotini spheres 
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to a porosity of 35.6%. Air and water were introduced at the base of 

the column through a gas-liquid distributor. The range of Reynolds 

Numbers for the liquid and gas phases, based on the superficial fluid 

velocity and particle diameter, was 40 to 140 and 30 to 300 respectively. 

A tracer dye injected into the liquid stream entering the column was 

measured by a photomultiplier detector beyond the column exit. The 

measurements were repeated for two packed columns which differed in 

length by 0.835m. Differences between these two measurements were related 

to the dispersion occurringwithinthe packed column. The liquid flow 

through the packed column was represented by three mathematical models 

of differing complexity. The parameters of these models were obtained 

by matching the theoretical and experimental Transfer Functions. 

In considering the problems of analysing the passage of the gas through 

the packed bed a new method was developed to determine the Transfer 

Functions for systems where the fluid compressibility cannot be ignored. 

Although the experimental results obtained in this study exhibited a 

fair degree of scatter they supported the concepts of the liquid 

distribution model. In particular, the Dispersion Numbers in the single 

phase and two phase regions were substantially different both in magnitude 

and in the way they were affected by variations in gas and liquid Reynolds 

Numbers. The two phase flow region occurring at high gas to liquid ratios 

was characterised by high axial dispersion and low liquid holdup. There 

was a significant gas rate effect on the liquid dispersion. Liquid 

dispersion in the single phase region approached the values found when 

liquid alone is flowing in the packed bed and was little influenced by 

the gas rate. 
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CHAPTER 2 A GENERAL REVIEW OF MODELS FOR TWO PHASE FLOW IN A PACKED BED 

2.1 Flow patterns arising from visual definitions  

The extensive work carried out on two phase flow in open pipes has 

greatly influenced subsequent investigations into two phase 

cocurrent flow in packed beds. Visual characterisation of various 

modes of flow encountered in horizontal and vertical pipes has been 

extended to cover packed beds. In pipes as many as seven regimes 

have been summarised by SCOTT (67). Although the situation is less 

complicated in packed beds, little agreement has been reached on 

either the terminology to be used or the boundaries of various flow 

regimes. WEEKMAN and MYERS (79) and TURPIN and HUNTINGTON (73) have 

both indicated in graphical form the limits of various regimes as 

functions of gas and liquid mass velocities, as shown in Fig.2.1 and 

2.2 respectively. The general findings of WEEKMAN and MYERS (79) 

have subsequently been endorsed by CHARPENTIER et al (11). 

Unstable transition regimes exist making a precise definition of 

these patterns extremely difficult when based on visual appearance 

alone. It is possible to have several flow patterns of the same basic 

phenomena which differ in visual appearance. However a change in 

appearance does. not necessarily mean a significant change has 

occurred in the basic mechanism whereby momentum or material is 

transferred. If flow types are to be distinguished on the basis of 

the prevailing transport mechanism theoretical analyses and extensive 

data are necessary. For this reason many investigations have been 

limited to a visual classification. In subsequent discussions, 

following the suggestion. of SCOTT (67) flow pattern will refer to 

visual classification and flow regime to flow behaviour capable of a 

more quantitative analysis. 

WEEKMAN and MYERS (79) and TURPIN and HUNTINGTON (73) indicate three 

main flow patterns. The uncertainty of the boundary regions can be 

illustrated by comparing points on both graphs having identical gas 

and liquid mass velocities. Three sets of gas and liquid mass 

velocities were chosen such that each point fell inside the 'gas 

continuous' region of WEEKMAN and MYERS (79) (see Table 2.1 below). 

According to Fig.2.2 of TURPIN and HUNTIU TON (73) these points are 

in the 'bubble', 'slug'.and 'spray' regions respectively. Also shown 

on these two Figures are points representing changes in flow mechanism 

according to SAADA(60) whose studies will be discussed in detail in 

Section 2.2.3. 
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... 
G M 

Gas Mass 
Velocity 

LM 
Liquid Mass 
Velocity 

LM/Gm Sy
mbol 

Classification 

WEEKMAN(79) TURPIN(73) 
kgs

-1
m
72 kgs-1m

-2 

0.0405 4.05 100 Al All in Gas Bubble 

0.27 6.75 25 ie Continuous Slug 

1.35 2.70 2 • Region Spray 

Table 2.1 Comparison Points between WEEKMAN & MYERS(79) and 
TURPIN & HUNTINGTON (73) 

In spite of this apparent lack of agreement as to the exact regions 

where various flow patterns may be encountered, it is still possible 

to attempt some visual definitions. 

2.1.1 Slug or Pulsing Flow  

The pulses which traverse the length of the column consist of liquid 

with a sharp leading edge and a trailing edge which tapers off in 

the form of a wake. The overall flow pattern is that of a non-

homogeneous region of variable density. This flow pattern exists 

mainly'at high gas and liquid flowrates but can also occur at low 

flowrates when the rate of one fluid, particularly if liquid, isauch 

greater than that of the other. 

2.1.2 Gas or Bubble Flow  

At low liquid flow rates the liquid appears to trickle over the 

packing as a laminar film. Depending on the gas rate, the gas will 

pass through the voids either as a set of discrete bubbles of varying 

size; termed displacement flow, or as a continuous fluid. 

2.1.3 Spray Flow  

At high gas rates a continuous flow pattern is formed in which the 

density difference has become far less noticeable than in slug flow. 

The liquid film is of gradually decreasing thickness due to the 

progressive liquid entrainment. 

• 
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In both investigations, there was no abrupt change in the pressure 

driving force vs fluid flow rate curves on transition between flow 

patterns. The direction of flow; whether upward or downward, will 

modify these flow patterns especially for the bubble flow region. 

Fig.2.1 from WEEKMAN and MYERS (79) is for cocurrent downflow. 

TURPIN and HUNTINGTON (73) suggest that Fig.2.2 is applicable for 

both upward and downward flow. During upward flow slugging will 

exist over a wider range of gas velocities for a given liquid 

velocity. The greatest differences in flow patterns due to flow 

direction can be expected at liquid flow rates up to the point at 

which the bed is flooded. BEIMESCH and KESSLER(3) studied the phase 

distribution within the segregated slugs which occur during downward 

cocurrent flow in the pulsing region. They found that the liquid 

portion of the slug increased in length with increasing liquid rate 

although the fluid hydrodynamics remained essentially unchanged 

and the liquid holdup was affected by variations in the gas rate. 

Up to the present, little effort has been spent, apart from the work 

of LARKINS et al (43), on developing correlations which can predict 

flow patterns from a knowledge of such system variables as gas and 

liquid mass velocities, fluid densities and viscosities. The effect 

of packing size and shape is also uncertain. HUTTON and LEUNG (37) 

have recently suggested that further work is needed to develop such 

quantitative flow pattern diagrams. 

2.2 	Flow Models from Pressure Drop and Liquid Holdup Studies  

The number and type of flow regimes which have been suggested in 

the main reflect the manner in which the problem has been approached. 

Either a flow model was assumed a priori and the experimental results 

fitted to this model or else the nature of the experimental results 

enabled a plausible model to be proposed. 

2.2.1 A priori models for pressure drop measurements  

The influence of LOCKHART and MARTINELLI'S(47) work on two phase 

flow in open pipes has led both LARKINS et al (43) and WEEKMAN and 

MYERS (79) to extend this type of correlation, based on a friction 

factor approach to packed beds. By comparison with the results for 

open pipes they attempted to deduce whether a phase was in the 

laminar or turbulent flow regime. It was not possible to consider 
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the phase intermixing in any detail. The gas phase was assumed to 

restrict the liquid phase and the two phase friction loss was 

stated in terms of the single phase liquid flow. 

2 
Hence AP

p 	
2f
r  pL  UL  

t 
Az 	{e4]kld 

 

(2.1) 

 

where AP
tp 
Az 

= 

= 

f
r 

= 

p
L 

= 

U
L 

= 

e = 

(I)
L 

= 

d = 

two phase friction loss 	ML
1
T

2 

axial distance measured vertically 
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= liquid viscosity 

and 
k1-k4 

are constants. 

1T1 

Then AP
tp 

= (1)
L
k
4
k
3
-k
1 APL  = (1 - •)

k
4
k
3
-k
1 AP

G 

 

(2.3)(2.3) 

 

Where AP
L 

and AP
G 

are the single phase friction losses as given by 

the ERGUN (21) equation for single phase flow in the same bed. 

The functional relationship which fitted the data the best was: 

( APtp 

log Ap
Az 	0.416  

	

L 	
AP
G 	

for 0.05 < x < 30 
(log x) + 0.666 

	

Az 	Az 
(2.4) 
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APL/ 13 	in the where x
2 
is defined as 6 L APG i th LOCKHART-MARTINELLI(47) 

Az Az 

manner. Experimentally APtp 
was determined from: 

AP
tp 

= AP + p
m 
g Az for downward flow 

AP was the measured pressure gradient and pm  was interpreted as 

the density of the mixture flowing within the bed. 

The results obtained using eq.2.4 hada standard deviation of ±13% 

and suggested a laminar mode for both phases when compared with the 

open pipe curves of LOCKHART and MARTINELLI(47). WEEKMAN and MYERS(79), 

however, found agreement with the turbulent curves. Most probably 

this difference was accounted for by the use of an homogeneous or 

mean density which neglected the significant amount of liquid which 

was supported by the packing. In a later study REISS(57) showed that 

even if the density term was neglected, the majority of the data were 

within the 50% confidence limits of the LARKINS(43) equation. If a 

two phase packed bed system was analysed by an energy, rather than 

a force balance, CHARPENTIER(11) et al found, the form of the 

LARKINS(43) empirical equation was suitable for trickle flow 

conditions. When the velocities are equal in both phases then the 

same-equation resulted from using either approach. 

SWEENY(71) has criticised the homogeneous flowmodelofLARKINS(43) et al 

because the resulting dimensionless groups involve only single phase 

flow properties. In his analysis, which again is based on the ERGUN(21) 

equation, the liquid was assumed to flow uniformly over the packing 

surface and that both gas and liquid were continuous but separate. 

The frictional pressure drop was based on the liquid velocity with 

respect to the packing surface using the commonly accepted 

relationship: 
U
L 

= 	
e(I) 

 

(2.6) 

 

modified to account for the presence of a second phase. This average 

void velocity although useful in many situations can be criticised 

in pressure drop analyses in thatitmay bear little relation to 

the component of the interstitial velocity which is responsible for 

the drag on the packing surface. 

(2.5) 

The ratio of frictional pressure loss for liquid when in two phase flow 

APLtp 
to that when flowing alone APL 

was shown by SWEENY(71) to be: 



APLtp = 1 
AP
L 	47 3  

L 

 

(2.7) 
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The equivalent expression for the gas phase was: 

 

AP
GtR 	

k5 
AP
GG  

  

(2.8) 

  

where k5 
was a complex function of the system variables but numerically 

equal to unity in most situations. After equating pressure drops in 

both phases the following equation was obtained for the total 

pressure drop AP : 

AP 	1
/3 	AP 	1/3 

DP + pLgAd 	[AP +Gp
G
gAd 	1 	 (2.9)  

SWEENY (71) found that eq.2.9 and that of LARKINS(43) nearly always 

agreed even though they were based on different models. 

REYNIER And CHARPENTIER (58) also used the ERGUN(21) equation in 

a stratified pore model to estimate liquid holdup in cocurrent gas/ 

liquid downflow. This model assumed .that gas and liquid flowed 

through' the same pores but no account was taken of any frictional 

pressure drop at.the interface. The authors claimed reasonable 

agreement. with the experimental liquid holdup and pressure gradient 

results of TURPIN and HUNTINGTCN(73). 

HUTTON and LEUNG (37) extended the model of BUCHANAN(7) to include 

the effect of pressure gradient. In this model the liquid is assumed 

to run down inclined surfaces of length equal to a piece of packing 

and lose a fraction of its kinetic energy at the end of every such 

surface. The following relationship was developed: 

U
L 

= k6  4)L
- g)11  

p dz 
L 

 

where 9, = characteristic packing length 

k6 = shape factor 

 

(2.10) 

 

dP gradient. The pressure gradient was again correlated by a form of 

the ERGUN(21) equation. • 

Thus for a given gas-liquid system and a specific packing the liquid 

holdup (I)L 
depended only on the liquid velocity UL  and the pressure 
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The above correlations resort to the ERGUN(21) equation for 

estimations of the single phase frictional pressure gradient for 

a phase, f, flowing alone in a similar packed bed. 

2 
Thus 

APf = Pf of 	k7 +  k8pf  
Az 	dp 	 fdp  

 

(2.11) 

 

This equation is strongly dependent on the experimentally determined 

constants k7 
and k

8 
for its accuracy. 

The final work reviewed is that of TURPIN and HUNTINGTON Z73) who, 

instead of replacing the friction factor fr  by a function of the 

liquid Reynolds Number,obtained the following functional relationship: 

logefr 
= 8.0 - 1.12 log

e
k
9 

- 0.0769 (log
e9

)2 + 0.0152 (log
ek9)

3 

(2.12) 
1.1667 

where k
9 	

Re
G  

ReL  0.767  

There seems little justification for the form of eq. 2.12 except that 

it approximates the normally accepted shape for friction factor 

relationships in pipes. 

The two phase pressure drop was obtained from: 

AP 
f
r 	=  Az 	de 2 2p

G  UG  

 

(2.13) 

 

where the equivalent diameter de  is given by: 

d 	
= 2 
	[ e 	

1p e 	/3  a7...]  

In conclusion it seems clear that pressure drop data, when 

analysed in this manner cannot be used to distinguish between 

models. It makes little difference whether the two phases are 

assumed to flow through the packed bed in the same pores or in 

separate identifiable channels. 
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2.2.2 Pressure Drop Data Plotted with Linear Coordinates  

WEN et al (80) proposed three regimes of flow: 

(i) Channeled flow at low liquid and gas rates without 

the necessary turbulence to mix the phases into an 

homogeneous pseudophase. The liquid trickled over 

the packing whilst the higher velocity gas stream 

bypassed the liquid. 

(ii). At high gas rates but moderate liquid rates the flow 

regime was assumed to be thoroughly dispersed liquid 

throughout a continuous gas phase. 

(iii) At high liquid rates the gas is assumed to be dispersed 

through the' liquid. 

There is a significant difference between region (i) and the 

other regions in that the former has separate phases whilst the other 

regions assume similar conditions within all the voids. This concept 

has been expressed more quantitatively by EISENKLAM and FORD (20). 

WEN(80) derived functional relationships between pressure drop 

and fluid flow rates for all regions; those for regions (ii) and 

(iii) being almost identical. 

2.2.3 Pressure Drop Data Plotted with Logarithmic Coordinates  

When data have been plotted on log-log coordinates break points 

lave been found at which the constant liquid rate lines change 

slope. MCILVROID(49) in 1956 reported two distinct zones. The 

lower zone was pulsating flow occurring at high liquid to gas 

ratios. The other zone at high gas to liquid rates could be sub-

divided depending on whether or not the column was flooded. This 

data may be unreliable in that both wall and end effects may be 

present since the measurements were taken in a 51 mm diameter 

column using 4 mm and 6 mm beads.over a packing height of only 

0.114m. Little was inferred about the possible flow regimes 

within each zone. 

FORD(22), although concerned with upward flow, found similar zones 

and suggested possible flow mechanisms for regions above and below 

the break point in terms of a liquid distribution model. Two 

distinct regimes of flow termed single phase pore flow and two phase 

pore flow were proposed. In single phase pore flow gas and liquid 

• 
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have separate flow channels, although there might be some liquid 

flow through the pores in which the gas flow was dominant. In two 

phase pore flow both fluids travel in the same pores in either 

core or displacement flow. The dominant regime was determined 

from the relative flow rate curve of the liquid as a function of 

the liquid holdup at various pressure drops. The liquid holdup at 

the break point was found to be almost constant at 43% ± 3% for 

the reported values of Gas Reynolds Number. 

SAADA(60) has since shown analytically from the reported saturation 

correlations of FORD(22) that this liquid holdup had to vary and 

verified his findings experimentally as shown in Fig.2.3. The 

pressure drop measurements of SAADA(60) given in Fig.2.4 also show 

break or transition points. These break points occur at the same 

Gas Reynolds Number for any particular liquid flow rate as in the 

holdup curves. This agreement was taken to represent a definite 

change in flow regime. 

WEN et al (80) have also found these transition points, but suggest 

that the use of data with a non zero intercept produces a skewed 

log-log curve which erroneously indicates the presence of more 

than one flow regime. 

EISENKLAM andFORD(20) pointed out that it is better statistically 

to represent this pressure drop data by two distinct lines of 

different slope meeting at a break point than by one curve drawn 

through all the data. This argument only holds however if the data 

should in fact be correlated linearly when using log-log coordinates. 

The justification for using simple power law correlations often 

arises as a result of dimensional analysis of the'system under 

consideration (see section 2.2.4). 

SAADA(60) suggested the following relationship for determining 

the Gas Reynolds Number at the break point, termed the transitional 

Reynolds Number Re16 : 

As shown in Fig.2.5 this relationship does not satisfactorily 

correlate all the data. Reanalysis of the transitional data by the 

present author yields the correlation: 
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It has been suggested that the transition point might be analogous to 

the phenomenon of flooding which occurs in counter-current flow. A 

plot of the data on a similar basis to that used by LOBO et al(46) 

to determine the onset of flooding is shown in Fig.2.6. Break 

points were not found by other workers because all their results 

were limited to the two phase region and, according to SAADA(60), 

did not cross the boundary line linking the transition points. 

However, there is some doubt as to the accuracy of such a boundary 

curve. A reasonable correlation of the transition points was 

obtained by SAADA(60) even though his ordinate of 2.45 x 10 
5 
 Rd 

G
2 
p
-2 
 

was incorrect. The correct expression can be developed from the 

original work by LOBO et al (46) and is 2.39 x 10 
6 
 ReG

2 
 %
-3

as 

shown in Fig.2.6. Results given by SAADA(60) for particle sizes other 

than 0.974mm in diameter are therefore incorrectly plotted. In 

Figs. 2.1, 2.2 and 2.6 the experimental universe of the present 

work is indicated. Assuming the extrapolation of the boundary region 

shown in Fig.2.6 is valid the present results encompass both the 

single phase and two phase regions. 

2.2.4 Correlations derived through Dimensional Analysis  

Correlations obtained by fitting regression equations to a set of 

data are strictly only valid within the experimental universe from 

which the data were obtained. Although usually based on no flow model 

as such, these correlations are useful in that, through dimensional 

analysis, the important system parameters are emphasised. 

FORD(22) and SAADA(6P)have both given correlations for their 

liquid distribution model to represent flow conditions within the 

two distinct flow regimes of single phase and two phase pore flow. 

For two phase pore flow FORD(22) suggested for 1 mm diameter 

spheres: 

d0.28 
(2.16) 

L
g 
AP 	0.29 0.57 PI, 

- 0.0407 Re L0.29 
pAz 

SAADA(60), although restricted to an air-water system, varied the 

packing size to determine the effect of the group 
d
t/d . The 

resulting correlation was: 
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P 1.15 
AP 	0.35

G
0 

• • • • = 0.027 Re 	ReG 	[d
t/d 

p gAz 
(2.17) 

In single phase flow the corresponding equations were: 

AP 
0.485 Re 

L 	
Re 

0.67 	0.3 
G 

P r, 

uG 

0.8 

• • • 
p
L
gAz 

and  Ap 	
_ 0.024 Re 0.6  Re 0.39  [dtm 1-1  

p gAz 

(2.18) 

(2.19) 

The dependence of pressure drop on the gas and liquid Reynolds 

Numbers is in fair agreement between the two sets of equations 

even though there is a wide discrepancy between the transition 

points reported by the two workers. 

2.3 	Model Evaluation by Interfacial Area Measurements  

The break points in the pressure drop and holdup measurements of 

both FORD(22) and SAADA(60) have been interpreted by them as 

representing a change in flow pattern which should affect the gas—

liquid interfacial area. SAADA(62) by undertaking both physical and 

chemical absorption studies within the same column determined 

independent values for both the interfacial area a and the liquid 

phase mass transfer coefficient kL. The interfacial area results 

shown in Fig.2.7 were obtained for carbon dioxide absorption in 

sodium hydroxide solutions and exhibit almost identical break 

points to those found in the previous pressure drop and holdup 

studies. The absolute value of these results are open to doubt 

as the following critical appraisal indicates. 

Both DANCKWERTS(17) and ASTARITA(2) show that the absorption 

rate N
A 
when a chemical reaction occurs in the 'fast regime' can 

be expressed by: 

N
A 
a = a(k

r
C
Bb
D
AS
) C

Ai 

  

(2.20) 

  

The conditions for a fast reaction regime are: 

(k
r
C
Bb
D
AS
) 	<< k

L 
C
Bb 

 

(2.21) 

 

 

2 C
Ai 

    

• 
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• 

where for the CO2/NaOH system : 

k
r 

is the reaction velocity constant 	M 1L3T 1 

C
Bb 

is the bulk concentration of sodium 	ML
3 

hydroxide 

DAS 
is the diffusivity of CO

2 
in the NaOH 	L2T-1 

solution 

CAi is the concentration of CO2 at the 	
ML 3 

• interface 

SAADA(62) related the interfacial concentration CAi  to the 

partial pressure of carbon dioxide in the bulk of the gas by Henry's 

Law neglecting the gas phase resistance. This assumption was based 

on the findings of YOSHIDA and MIURA(82) that the gas phase 

resistance in the CO2
/NaOH system was less than 10% of the overall 

resistance. 

The average mass transfer rate was determined from eq. 2.20 using 

the mean values of C
Bb 

and CAi between the two extreme sampling 

positions within the column.,  

The experimental mass transfer rate in both chemical and physical 

absorption studies was determined from: 

N
A 
a 	L

v 
C
av 

 

(2.22) 

 

where L
v 

is the liquid flow rate per unit volume of 

packed bed 	T
-1 

 

C
av 

is the arithmetic mean concentration of solute 

between the two measuring points 1 and 2. 

This expression is incorrect and should be replaced by: 

N
A 
a 	= L

v (C2 - C1) 

The values of interfacial area reported are therefore liable to 

large inaccuracies. 

For physical absorption SAADA(62) defified the mass transfer rate 

as: 

NAa 	kL  a (C 
Ai  C ) Ai Ab 

 

(2.24) 

 

• where CAb  is the bulk concentration of CO2 in the water. 

(2.23) 
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To evaluate kL, the interfacial area was taken to be the same for 

both physical and chemical absorption. When the resistance to 

mass transfer is mainly due to the liquid phase, the age 

distribution of surface elements.is of the greatest importance. 

In physical absorption surface elements of large age contribute 

very little to the mass transfer since they become saturated with 

solute. An 'average' interfacial area could therefore have little 

resemblance to the actual geometric area of the gas-liquid 

interface. In the fast regime in chemical absorption the absorption 

rate is almost independent of the age of surface elements. Thus the 

values determined for interfacial areas will not necessarily be the 

same in physical and chemical absorption studies even though the 

hydrodynamic conditions are identical. ASTARITA(2) has shown that if 

the chemical reaction occurs in the 'instantaneous'. regime the 

interfacial areas will however be the same. 

The condition for this regime is: 

[k C
Bb DAS ]

1/2  >> kL CBb 	 (2.25) 
 

2 C
Ai 

The concentration of carbon dioxide dissolved in the water, during 

the physical absorption studies was determined by a new radiological 

technique to overcome the problem of withdrawing liquid samples 

from the packed bed at elevated pressures. It is not clear what 

concentration SAADA(61) assumed this technique measured since 

the concentrations so determined were used in eq. 2.22 at the same 

time as the concentration of CO
2 
in the bulk of the liquid needed 

in eq.2.24 was taken as zero. 

The concentration of carbon dioxide in the liquid phase was defined 

as the moles of carbon dioxide per unit volume of solution, CA
, 

and determined from the relationship: 

moles of solute 	moles of solute + moles of solvent  
volume. of solution 	volume of solution 

moles of solvent  
volume of solution 

or 
C
A 

Ps 

 

- 1 	 (2.26) 

  

• 
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s s 
It Was shown(61) that PP — could be determined from the 

s 

equation: 

ss log
e 

[I
11/Idl 

log
e 

il/I
d 

 

(2.27) 
Ps 

 

where I
d 

= radiation count rate for dry empty column (counts rain
-1) 

11  = radiation count rate for air + water in 

packed column 

I
11 

= radiation count rate for air + water + CO
2
( 

in packed column. 

s s 
For the sample calculation given by SAADA(60) 	P = 1.034, and 

s 

since p
s 
was taken, albeit incorrectly, as the density of water i.e. 

55.5 kmol m
3 

from eq.2.26 C
A 

= 1.9 kmol m
3
. 

The inaccuracy of the method is shown in that this concentration 

is greater, by a factor of 103, thanthe interfacial concentration 

C quoted by SAADA(60) in his example. 
Ai 

This criticism of SAADA's (60) studies, questions his contention 

that these results support the liquid distribution model of 

EISENKLAM and FORD(20). 

During the last 3 years a number of other studies (24,68,70,74) 

have determined the effect of gas and liquid mass velocities on the 

interfacial areas and liquid phase mass transfer coefficient 

encountered during cocurrent flow. Usually the results have been 

specific to cocurrent downflow conditions and often the CO2  - NaOH 

and CO
2 
- H2O systems have been investigated. SHENDE and SHARMA(68) 

and GIANETTO et al(24) both found the interfacial area increased 

with gas and liquid superficial velocities. The increases were 

most marked in the pulsing and spray flow regimes but no effects 

similar to those observed by SAADA(62) were observed. Values of the 

interfacial area as much as 3 times greater than the geometric area 

were reported by SPECCHIA et al(70). 

Liquid phase mass transfer coefficients increased with liquid rate 

• but UFFORD and PERONA(74) in contrast to SPECCHIA et al(70) found a 
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significant gas rate effect. SAADA(61) however found kL  to be 

independent of both gas and liquid rates. Values of a and kL  were 

greater in upward than downward flow. According to SPECCHIA et al(70) 

this was due to the increased liquid holdup during upward flow. In 

comparing liquid mass transfer coefficients under co- and counter-

current conditions there is disagreement between UFFORD and 

PERONA(74) and GIANETTO et al(24). The former suggest k
L 

values are 

a factor of 3 lower in cocurrent flow whilst GIANETTO et al(24) say 

up to a tenfold increase can be expected. 

2.4 Flow Models used in Fluid Mixing Studies  

Many different mathematical models have been proposed to describe 

the fluid intermixing on passing through a packed bed system. A few 

have attempted to incorporate details of the packing structure but, 

due to its complexity, have met with limited success. Most models 

were originally developed for the simpler single phase systems, but 

their use in analysing continuous phases in a two phase system seems 

justified. Except for their effect in reducing the fluid flow area, 

the second phase is generally excluded from the analysis when no mass 

transfer or chemical reaction occurs between the phases. In this 

section our main consideration concerns the type of models used to 

represent two phase flow systems. The values obtained for the 

parameters of these models will however reflect the flow 

directions. 

The most commonly used models in process analysis where axial mixing 

is of importance are generally based either on aDispersionmodel or 

on a series of perfectly mixed stages. Most studies have analysed 

the phases independently and this review covers only liquid phase 

studies within a two phase system. The reasons underlying this 

choice are detailed in Section 6.2. 

2.4.1 Axially Dispersed Plug Flow Model  

This model is based on the assumption that a diffusion process in 

the bulk flow direction is superimposed on this bulk flow. A single 

parameter, termed the Dispersion Number, ND, characterises this 

model where N
D 
is defined as: 

ND = 
D
L 
UL 
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where D
L 

= DispersLon Coefficient 	L
2
T
1 

U = fluid pore velocity 	LT 
1 

 

L = characteristic length 

This model has been used with varying degrees of success by 

several workers. WEBER(78),in cocurrent studies, and both 

HOOGENDORN and LIPS(34) and SHESTOPALOV(69) et al in counter; 

current bubble flow conditions found the model quite adequate. 

KRAMERS and ALBERDA(41) however felt the model would not account 

for their countercurrent results and suggested this was due to a 

velocity profile effect. DUNN at al (18) concluded that the model 

was the best available even though their data showed poor 

reproducibility with a mean deviation of 30%. SCHWARTZ and ROBERTS(66) 

determined that the dispersion model appeared to be an adequate 

representation of liquid backmixing in trickle bed reactors. 

Predictions based on the dispersion model differed very little from 

those based on more complex two parameter models. Significant 

differences only occured at high degrees of backmixing and at high 

reactant conversions. 

2.4.2 Extensions to the Dispersion Model  

HARRISON at al(29) and HOOGENDORN and LIPS(34) both concluded that 

some form of liquid stagnancy existed due to the strong tailing of 

their response curves. GLASER and LICHTENSTEIN(25) characterised 

their axial dispersion by variability, defined as the ratio of 

standard deviation of residence times to the mean residence time. 

They were able to isolate the variability due to stagnant pools and 

found it diminished at high liquid rates. To accommodate this 

stagnancy both HOOGENDORN and LIPS(34) and HOCHMAN and EFFRON(33) 

suggested the liquid stream might consist of a stagnant section 

and a bulk flow section with cross flow between the two regions. 

In both instances plug flow was assumed for the flowing region. This 

extension correlated HOCHMAN and EFFRON's(33) results better than 

the simple Dispersion model. A natural extension to this model 

was the inclusion by VILLERMAUX and VAN SWAAIJ(76) of axial 

dispersion in the flowing region. The resultant 3 parameter model 

successfully fitted the two phase air/water data of VAN SWAAIJ 

et al(75). 

• 
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GOTTSCHLICH(27) and GLASER and LITT(26) have both attempted to 

describe the stagnancy effect in greater detail by including 

physical models for the packed bed. GOTTSCHLICH(27) divided each 

interstice into a region in which the dispersion equation applied 

and a stagnant film around the packing into which material diffused. 

The area for diffusion was taken as an average of the particle 

surface area and the interfacial area between the stagnant and 

mixed regions. By considering the bed as a bundle of parallel 

tubes this interfacial area could be determined from the film 

thickness and tube geometry. The physical validity of this film 

was checked by comparison with the mass transfer film and both 

appeared to be manifestations of the same distributed film. 

GLASER and LIT(26) considered the bed to consist of void channels 

external to the packing which included dead-end pockets holding 

stagnant liquid. The size and distribution of these channels and 

pockets were assumed to be some function of the packing material 

size and arrangement. Only diffusive flow occurred between the 

dead end pockets and the void channels, where again the flow was 

described by the dispersion equation. The axial velocity variation 

was determined by assuming the expression for laminar flow in pipes. 

Their results Auggested that the liquid mixing caused by combination 

of streams of different residence times from various channels was 

greater than that due to dispersion within the flowing void 

channels themselves. 

2.4.3 Series of Perfectly Mixed Stages  

The free flow area normal to the direction of flow will vary as the 

fluid moves from one layer of particles to the next. Together with 

the resulting variation in fluid velocity the spaces between 

particles act as fluid mixing cells with jet mixer inlets promotitg 

turbulence. The cell mixing efficiency is a function of the 

turbulence and retention time within the cell. However the 

impossibility of equating an ideal, perfectly mixed stage to a 

physical void space does not greatly diminish the model's usefulness 

or validity. In fact BUFFHAM and GIBILARO(9) show that the number 

of stages n can reasonably assumenon integer values. This is 

important for low n especially in the range 0 < n < 1. 
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RAGHURAMAN and VARMA(56) have expanded this simple model in a 

similar manner to the extensions of the basic Dispersion Model. 

They proposed a four parameter model consisting of a series of 

' perfectly mixed stages in which each stage exchanged material 

with an associated dead region, with a fraction of the feed 

short circuiting each stage. For certain values of the dead 

space parameter, the size of the cross flow was found to have 

little effect on the residence time distribution of the 

system. 

2.4.4 Probabilistic Models  

Residence time distributions for flow in packed beds can also 

be derived from probabilistic considerations and the work of 

BUFFHAM et al(10) is typical. Essentially the problem is one 

of determining the number of times a fluid particle stops and 

the length of time it remains at rest as it passes through 

the packed bed. 

Further consideration of this approach has not been undertaken 

since this literature review has shown that models based on the 

dispersion concept have received by far the widest acceptance 

--in both single and two phase packed bed studies. 

• 
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CHAPTER 3 GENERAL METHODS OF SYSTEM ANALYSIS AND MODEL PARAMETER  
ESTIMATION  

	

3.1 	Summary  

If any quantitative analysis of the system is to be attempted 

a multiparameter mathematical model is needed. There are several 

advantages, both theoretical and experimental, to be gained from 

using a variation of the two point measurement technique. In 

particular the requirements of a system forcing function are 

substantially relaxed. A review of various parameter estimation 

techniques suggests that overall, the most suitable form of 

model representation and analysis is by Transfer Functions. 

	

3.2 	General Analyses of Flow Systems  

A general description of any flow system is possible by the 

application of age distribution analyses. DANCKWERTS(16),in a 

classic paper, and since then NAOR and SHINNAR(53), have defined 

a number of distribution functions for describing the residence 

time of fluid elements within any system. Even though the 

spatial variation of the dependent variables is unknown residence 

time distributions, which give information about the fraction 

of fluid that spends a certain time within the system, are often 

sufficient to give adequate qualitative estimates of the system's 

behaviour. 

The experimental determination of the age distribution functions 

is achieved by a stimulus - response technique using some form 

of tracer material in the system feed. The residence time 

distribution (r.t.d) function, for example, can be obtained from 

the variation with time of the dimensionless tracer concentration 

at the system outlet after injection of a tracer impulse at the 

system inlet. 

LEVENSPIEL and TURNER(44) studied the influence of velocity 

profile, at the locations where tracer is injected and measured, 

on the interpretation of pulse response measurements in terms of 

the r.t.d. This work has since been extended by LEVENSPIEL et al(45) 

and TURNER(72) and generalised by BUFFHAM(8). LEVENSPIEL and 

TURNER(44) showed that if the velocity profile is not flat at the 

injection and measurement points, then different ways of injecting 
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and measurement will give different tracer curves. Only when 

tracer is injected in quantities proportional to the flow 

through each point in the injection plane and measured as the 

'mixing cup' average concentration, is the r.t.d of the fluid in 

the vessel obtained. 

However since r.t.d's themselves cannot be simply correlated 

with system variables, it is usual to devise some mathematical 

model, containing several parameters, which will closely 

approximate the experimental age distribution functions. 

A major premise involved in process analysis is that, where 

necessary, the entire process can be broken down into distinguish-

able subsystems and that relationships exist between the sub-

systems, which when assembled into a whole can simulate the 

process. Although these subsystems do not have to correspond 

to any basic physical subdivisions of the real process, the 

danger may exist that a concept, intended merely as an analysis 

technique, can become endowed with a physical reality which was 

never intended. 

3.3 	System Forcing Functions  

Whilst any stimulus or forcing function can, in principle, be 

used only a few are used in practice. One of the main reasons for 

the prominence of the stp,impulse and sinusoidal forcing 

.functions has been simply one of mathematical convenience in those 

situations where the forcing function cannot be excluded from the 

equations describing the system. Although the two point measurement 

technique described in section 3.4 alleviates this problem, a 

comparison of the various inputs is still justified since the 

choice of forcing function affects, to some degree, the ease 

with which the various parameter estimation techniques may be 

applied. 

3.3.1 Step Functions  

A reasonable approximation to a step function is obtained if the 

rise time is fast compared with the process response time. 

Usually the considerable quantity of tracer needed is a 

disadvantage. An 'up step' can however simply yield the internal 

age distribution function. The response from step inputs are most 

commonly used in systems capable of analysis in the time domain, 

especially those involving ordinary first order differential 

equations. 
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3.3.2 Sinusoidal Functions  

Frequency response shows how a system responds to a sustained 

disturbance varying in a sinusoidal manner. The technique is 

useful in distributed parameter systems, such as packed beds 

where it is often difficult to invert the Laplace transform of 

the governing differential equations to obtain the complete time 

domain solution. To obtain enough points to define the frequency 

response a number of sinusoidal tests must be made at various 

frequencies. HOUGAN and WALSH(36) consider ahuridredfold. 

variation in frequency is often necessary to get a good 

description of the system dynamics. Although setting up a 

disturbance in the normal process operation, KRAMERS and 

ALBERDA(41) considered the main advantage of harmonic analysis was 

that no discontinuities are introduced and that steady cycling 

can be obtained. Both KRAMERS and ALBERDA(41) and CLEMENTS and 

SCHNELLE(15) agree on the difficulty of generating a good input 

sine wave and the disadvantage in some circumstances of carrying 

on tests long enough to remove the system transients. 

.3.3.3 Pulse Functions  

Two distinct forms of pulse; the delta function and the imperfect 

or general pulse have been used. The response when the forcing 

function C
s
(t) is taken as the unit impulse or delta function 

is usually termed the impulse response g(t,k). This response is 

in general a function of the time t of the response measurement 

and the time k at which the impulse input was applied. 

If the input, Cs(t) is arbitrary, it can be regarded as consisting 

of a succession of pulses. If the magnitude of this input at 

time k is Cs
(k) and the input lasts for time dk then, since the 

response to a unit impulse at time k is g(t,k), the response to 

the pulse of value Cs(k)8k will be Cs(k)6k g(t,k) for a linear 

system. 

Thus the system response Co(t) at any time t, will be due to all 

pulses applied between k = 0 and k = t. 

In the limit as 8k -0- 0 

k=t 
C
o
(t)=f 	C

s
(k)g(t,k)dk 

k=0 

 

(3.1) 

 

• 
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If the input Cs(t) is the delta function which has the 

properties: 

d(t-k) = 0 tOk 
co 	 (3.2) 

f 	6(t-k) = 1 
-co 

then theoutputCo
(t) given by equation 3.1 will be the impulse 

response g(t,k). If the differential equation describing the 

system is known the impulse response for the model can be 

obtained by setting Cs(t) = 6(t-k) in this differential equation. 

The problems associated with representing a delta function 

accurately under experimental conditions are overcome when using 

an imperfect pulse with measurement at two positions as described 

in Section 3.4. 

Defining the general pulse as a function which varies from zero 

for a finite time, the principal requirement, given by HOUGAN 

and WALSH(36), is that the system be driven sufficiently hard 

so that the system dynamics are excited, but not at such a rate 

as to exceed the system's capacity to respond. 

3.4 	Imperfect Pulse and Two Point Measurement Technique  

When the standard impulse-response technique is used, tracer is 

injected at some position upstream of the test section and the 

response measured near to the downstream exit. The following 

points must be considered: 

(i) The tracer injection must be described mathematically. 

(ii) The effect of the detector must be known 

. (iii) The effect of subsystems either side of the test 

section, termed 'end effects' must be allowed for. 

By measuring at two positions however all the above requirements 

can be avoided. 

3.4.1 Tracer Injection  

ARIS(1) showed that a mathematical description of the system 

forcing function wasunnecessary'ifthe transient tracer concentration 

was measured at two points, since it could be eliminated from the 

equations describing the system. Extensions of this work by 

BISCHOFF(4) and BISCHOFF and LEVENSPIEL(5) form the basis of 

the imperfect pulse technique. 
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3.4.2 Effect of Detection System  

SCHMALZER and HOELSCHER(64) studied the effect of both the mean 

residence time and mixing characteristics of the detector on 

the apparent tracer concentration. They concluded that the mean 

residence time of the detector should be less than 0.1 c (where 

a is the standard deviation of the recorded pulse), if the 

measurements are to reflect accurately the actual tracer 

concentration. JOHNSON and FAN(39) showed that the detector 

analysis is unnecessary if the two point measurement technique 

is used. 

From Laplace Transform theory equation 3.1 can be written: 

Co  (p) 	= Cs  (p)F(P) 

 

(3.3) 

 

where 	- denotes a Laplace transformed variable such that 

Co(p) = 	C
o
(t)e-Pt  dt 

0 

  

(3.4) 

  

p = Laplace Transform variable 

 

T
-1 

 

F(p) is termed the Transfer Function of the system between the 

two points identified by subscripts o and s. 

Measurements at two positions in the test section, designated 

0 and 1 would result in 
e

p) and 
e
a1

(p). The second subscript e 

indicates that it is not the true tracer concentration at these 

positions which is recorded since the measurements include the 

effect of the detectors. 

If T(p) is the Transfer Function of a detector system then t
C(p) 

the true tracer concentrations are related to the measured values 

by: 

eEo(P)  = tEo(P) To(P)  
(3.5) 

e1
(p) = tCl  T

1
(p) 

The experimentally measured Transfer Function eG(p) is given by: 

eE1(p) = t1 (p) 
	T1  (p) .  

e
G(p) 

eEo(p) 	tE0(P) 	T0 (P) 

• 



or e
G(p) = t

G(p) 
T
1
(p) 

T
o
(p) 

 

(3.6) 
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Since the ratio T
1
(p)/T

o
(p) will be near unity for similar 

detectors, the error in the measured Transfer Function due to 

the detectors will be small. 

3.4.3 End Effects  

When the effects of the unpacked sections at either end of the 

experimental test section can be ignored, the equations describing 

the system are usually considerably simplified. This neglect of 

end effects is justifiable on theoretical grounds if we postulate 

the test section to be part of a doubly infinite packed bed 

system as shown in Fig.3.1(a). Experimentally this can be 

approximated by taking both measurements inside a packed bed of 

finite length as shown in Fig.3.1(b). Exact conditions, 

applicable to the Dispersion Model, are given by BISCHOFF and 

LEVENSPIEL(5). In a packed bed system containing two phase flow, 

internal concentration measurements create experimental 

difficulties unless radioactive tracers are used. With any other 

tracer measurements must be taken outside the packed bed, in the 

unpacked sections. Any theoretical analysis must then make some 

assumptions concerning the flow within these sections. One 

possibility is to consider the Dispersion model applicable but 

with different values for the Dispersion Number. Even if this is 

a realistic representation, the resulting relationships are so 

complex as to preclude their use. An alternative approach was 

used by OTTO and GESTRICH(54). They deliberately mixed the fluid 

on either side of the test section. Knowing the residence time 

distribution of an ideal mixer they were able to determine the 

residence time distribution of the test section by removing from 

the overall response the effect of the two mixers. 

EDWARDS(19), during single phase packed bed studies, modified the .  

classical two point technique in the following manner, as 

illustrated in Fig.3.2. 

(i) A pulse is injected upstream  of a short length of packed 

bed L
o 

and the response C
o
(t) is measured outside the 

downstream exit. (see Fig.3.2(a)). 

• 
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(a) Infinite Packed Bed System 
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(ii) The bed length is increased to a length L
1 

and another 

pulse injected in the same position as before. The 

second outlet pulse is measured at the same distance 

beyond the downstream exit to give C1(t) as shown in 

Fig.3.2(b). 

EDWARDS(19) argued that if the injection was reproducible and 

all subsystems linear, the end effects would be the same for 

both bed lengths and could therefore be ignored. 

The validity of this assumption can be shown by the following 

analysis: 

Using the subsystem Transfer Functions shown in Fig.3.2 we have 

For outlet pulse designed by o 

Co  (p)= T1(p). T2(p). T3(p)-. Cs  (p) 

For the longer bed length 

 

(3.7) 

 

Cl  (p)= T1(p). T2(p). G(P). T3(p). Cs  (p) 

where C
s
(p) is the Laplace transformed pulse on injection. 

T1(p) = Transfer Function of the subsystem between the 

injection point and some position within the bed 

where the upstream end conditions have no effect. 

T
3
(p) = Transfer Function at the bed exit allowing for 

downstream end effects and the detector subsystem. 

T
2
(p) = Transfer Function for a length of the short bed 

where end effects are absent. 

G(p) = Transfer Function of the additional length of 

packed bed added when the second outlet pulse 

was recorded. 

The following assumptions are made: 

(i) The subsystems between the injector and bed inlet, and 

the bed exit and detector are identical for both bed 

lengths and hence T1(p) and T3(p) are the same in both 

cases. 

(ii) The pulse injection is reproducible. 

• 



Then from eq.3.7 we have: 
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G(p) = 1(p)  

Co(p) 

 

(3.8) 

 

  

3.5 	Parameter Estimation Techniques  

In the following sections the tracer measurements are assumed 

to have been recorded using the modified two point measurement 

technique outlined in section 3.4. Three methods of analysing 

and fitting models to pulse testing data have been reported in 

the literature. These methods are the moments method of analysis, 

Laplace Transform analysis and frequency response analysis. 

Whilst it would be desirable to estimate the model parameters 

from response curve matching in the time domain, this is always 

time consuming. Often its use is precluded by the difficulty 

or even impossibility of obtaining analytically the inverse of 

the describing Laplace Transforms. 

Factors which can affect the alternative methods are: 

(a) The experimental tracer response measurements may contain 

excessive noise. 

(b) • The measured output signal often registers non-zero values, 

termed tailing, even.  after long periods of time. 

(c) The model chosen may not represent the physical situation 

exactly. 

(d) The different methods attach varying importance to any one 

part of the response curves. 

As the number of parameters in the model increases, these 

effects are compounded. More parameters require more information 

to evaluate them, and this information is known with progressively 

decreasing accuracy. 

3.5.1 Analysis by Moments  

For systems where there is a small degree of mixing, the peak of 

the response curve occurs near the mean velocity plane and the 

curve is nearly symmetrical. These features resulted in the 

widespread use of two parameters based on Gaussian curves, namely 

the mean and variance. 

• 



Defining the r
th 
 moment above the origin M

r 
as: 
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m 
Mr = ftr  C(t)dt 

0 

  

(3.9) 

 

   

and assuming the response curve is normalised such that 

.00 
jo  C(t)dt = 1 	 (3.10) 

the mean and variance are M
1 

and M
2 [ 
- M11

2 
 respectively. 

Comparing equations 3.4 and 3.9 we see that: 

M
o 

= Lt C(p) 
F*0 

Differentiating eq.3.4 with respect to p we obtain: 

aa (p)  
ap 

co 
- 	f 	tC (t) e-Pt  dt  	(3.11) 

o 

On comparison with eq.3.9 we see that 

Lt 9E(3) - 
-m
1 

(3.12) 
P÷0  aP 

- 
Similarly one finds Lt a2  C(p) = M

2 

a
:2 
P 

(3.13) 
p4o  

Thus in general M
r 

= (-1)r  Lt 8
r
C(p) 	(3.14) 

p4.3. apr 

Therefore the mean and variance of the model can be obtained by 

setting p'= 0 in the expressions for the first and second 

derivatives of the Laplace Transformed tracer concentration. The 

model's parameters can be estimated by matching the theoretical 

and experimental mean and variance. In general n+1 moments will 

be required fOr an n parameter model. When the modified two point 

pulse technique is used, the mean and variance of the experimental 

concentration curves at the two points are calculated. The 

difference between the variances can then be related to the model 

parameter e.g. Dispersion Number. 

In equation 3.9 the weighting tr  given to C(t) is greatest at 

large twhenthe response is known with least accuracy. Ideally 

the weighting function should approach zero under these conditions. 

This requirement already existed with the Laplace Transform when 

• 
	 the variable p was real and positive. The use of the model's 
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transform for moments analysis by setting p = 0 was clearly a 

retrograde procedure. 

If the Laplace Transform variable p is retained as real and 

positive in eq.3.4, then an analysis method based on Transfer 

Functions results. 

3.5.2 Transfer Function Analysis  

We can define the Transfer Function F(p) of any system, or 

subsystem as the ratio of the tracer concentration at the outlet 

C
1
(t) to that at the inlet Co

(t) in Laplace transform space 

-t 0  ci(t)e 	dt 
 

fw  Thus F(p) = 

  

(3.15) 

  

 

fc° C (t)e
pt 

dt 
o o 

   

Similar to the ordinary moments defined by eq.3.9 we have a set 

of weighted moments 	such that 

Mi = 	trC
i
(t)e Pt  dt 	(3.16) 

O 
14  o 

Thus F(p) = 	1 	 (3.17) 

M.° 
 

0 

th 
Analogous to eq.3.14 the r weighted moment can be related to 

the derivatives with respect to p of the Laplace transformed 

concentration by: 

r 
Rr 	2iaLaL 

ap
r  

 

(3.18) 

 

Whilst the zeroth ordinary moment M°  from eq.3.9 only serves as a 

mass balance check the zeroth weighted moment M°  contains useful 

information as eq. 3.17 indicates. 

The studies of MICHELSEN and OSTERGAARD(50) have suggested a 
-o 

number of ways in which the various weighted moments M , M
1 
 and 

2 
M can be used to determine the model's parameters. In particular 

they discuss further restrictions on the range of p values which 

may be used (other than that they must be real and positive) in 

order that: 

(a) the contribution of the tails of the response curves should 

be minimised. 

• 
	 (b) the early portion of the response should not be overemphasised. 
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A detailed discussion on these points is left to Chapter 5. 

Models with several parameters can be analysed by Transfer 

Functions using a range of p values, without necessarily 

resorting to the higher moments needed by the ordinary moments 

analysis. 

3.5.3 Frequency Response Analysis  

The basic difference between Transfer Function and Frequency 

Response analysis is that the Transfer Function analysis requires 

curve fitting along the real positive p axis, while frequency 

response analysis involves fitting along the imaginary axis, jw. 

The frequency response F(jw) is given by: 

m 

F(jw) = 	
f . ci ( t)e-jwt 

dt (3.19) 

n_ 	oC(t)e-iwt  o dt 

Since both C
1
(t) and Co

(t) are zero for t<0, the lower limit of 

the integrals can be set to zero. The frequency response can 

therefore be obtained from the system Transfer Function by simply 

replacing the Laplace Transform variable p by jw. 

Using the Euler identity: 

e
-jwt 

	

= coswt - jsinwt 	 (3.20) 

we obtain F(jw) = 
A
1
-jB

1 
A -jB 
o o 

where A
l 

= fw  C
n
(t) coswtdt 

(3.21) 
= 

B
n 
= m C

n
(t) sinwtdt 

The frequency response is often characterised by the gain and 

phase lag which are given by the modulus and argument of F(jw) 

respectively. 

4-11/2 
Gain = 1 D1  

2 
+ 

2 
A 

Phase Lag = tan-1 [A
1
B
o 
- A

o
B
1  

A
l
A
o 

+ B
l
B
o 

 

(3.22) 

 

• 
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Frequency response analyses have been discussed in detail by 

HAYS et al(31) and by CLEMENTS(13). Usually it is assumed that 

the frequency response is obtained from pulse tests by evaluating 

F(jw) for various values of w as suggested by CLEMENTS and 

SCHNELLE(15). There is however an upper limit on the values w 

may take due to the oscillation of the coswt and sinwt curves 

which may become zero leading to indeterminate values for the 

gain. Both JOHNSON et al(40)and JEFFRESON(38) suggest empirical 

criteria for determining this maximum frequency. As noted by 

CLEMENTS(I5), the success of this method depends on the accurate 

evaluation of the integrals given in eq.3.21. HARRISON et al(30) 

discuss the relative accuracy of complex Transfer Function fitting 

and amplitude ratio fitting to obtain the model's parameters and 

conclude that least squares minimisation of the complex Transfer 

Function has a much lower sensitivity to noise. 

The function to be minimised is thus: 

{Re [F(i4 - Re .[G(jw)]}2 + 

'/ {Im [F(jd 	Im [G(iw)1 )2  

 

. 	(3.23) 

 

Since both the real, Re, and imaginary, Im, parts are involved in 

eq.3.23 additional mathematical manipulation of the model is 

required. CLEMENTS(14) points out, however, that resolution 

problems. can be overcome by using complex mode arithmetic in 

FORTRAN and using the appropriate FORTRAN functions to do the 

resolution. numerically. Additionally, the results obtained by 

minimising the least. squares error in the frequency domain are 

shown by CLEMENTS(13) to be the same as would be obtained by a 

least squares error in the time domain. 

JOHNSON et al(40).compared the relative advantages and 

disadvantages of the three methods described above, by analysing 

pulse testing data obtained from radioactive tracer studies 

of liquid mixing on distillation trays. The data was fitted to a 

Gamma Distribution Model with bypassing, containing three 

parameters. They found the results from the Transfer Function 

Analysis were intermediate and significantly closer to the results 

of the Frequency Response method than those of the moments method. 

• 
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Balancing simplicity, rapidity and reliability, they recommended 

the Transfer Function method of analysis. This view is also 

endorsed by WILLIAMS and ADLER(81) from their study of finding 

parameters to a complex model, describing gas mixing in a 

fluidized bed, by least squares fitting of the Transfer 

Function. 

• 
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CHAPTER 4 MATHEMATICAL MODELS FOR TWO PHASE FLOW SYSTEMS BASED ON  
THE DISPERSION MODEL  

4.1 Summary  

On the basis of the review in Chapter 2, three models are derived, 

all based on the Axially Dispersed plug flow model. Apart from 

the basic axially dispersed plug flow.model itself, more complex 

models incorporating liquid stagnancy and split flows are 

developed. All the models are characterised.by their Transfer 

Functions, since this form was considered the most suitable in 

Chapter 3. A new technique for deriving the Transfer Functions 

of complex flow systems is developed. 

4.2 Development of the Axially Dispersed plug flow model  

Models based on the analogy between mixing during actual flow and 

a diffusional process are termed Dispersion models. This class of 

model is relevant in packed bed systems we close approach is 
obtained to the idealised concept of plug flow. 

Mixing can be caused by any or all of the following: 

- molecular diffusion 

- flow splitting around particles 

- turbulent fluctuations 

- convective diffusion in channels 

Due to the complexity which would result from considering the rapid 

concentration fluctuations present during turbulent flow, it is 

convenient to characterise the mixing by a Dispersion coefficient, 

whose magnitude is determined experimentally. For a non reacting 

system with no source term present within the system boundaries 

(i.e. the two measurement positions) an unsteady mass balance yields 

the following: 

at 
U. VC - V. (D VC) + at — = 0 

 

(4.1) 

 

The dispersion coefficient D will depend on both the flow regime 

and the properties of the fluid, the latter being prevalent at 

low fluid flow rates. Only axial and radial components of D will 

exist if axial symmetry is assumed. Two assumptions concerning the 

fluid velocity are made to obtain a solution to eq. 4.1: 

• 
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(i) No axial dependence of u since the fluid density is 

assumed constant. 

(ii) No radial dependence of u i.e. the velocity u constant 

at the mean value. 

A further simplification resulting from assuming a constant velocity 

is that both the axial and radial dispersion coefficients are 

assumed independent of radial position. It is clear that the effect 

of the fluid's velocity profile is now included in the Dispersion 

coefficients. 

If the radial variation in.fluid concentration is negligible in 

comparison with. axial variations, the axially dispersed plug flow 

model with one parameter DL  is obtained: 

ac 	82 
u 	

C 	ac 

	

= D 	+ 	= 0 	 (4.2) 

	

L2 	at 

where z = axial distance measured from the upstream 

system boundary i.e. the 1st measurement point 
- 

u = average. pore. velocity in direction of macro 	LT 
1 

 

flow 

D
L 
= axial dispersion coefficient 

The concentration C(z,t) is made dimensionless through dividing 

by the average fluid concentration that would result if the tracer 

was evenly spread throughout the system. 

The system under investigation is shown diagrammatically in Fig.4.1, 

and has a system Transfer. Function F(p) which by definition is the 

ratio of the Laplace transformed concentration at the second 

measurement point z=L to that at the first measurement point 

i.e. z = 0. 

Setting x = z/L where L is the distance between the two measurement 

points we have: 

C (1,p)  

	

F(p) = 	 (4.3) 
C (0,p) 

where C (x,p) = 4: C(x,t)e Pt  dt 	(4.4) 

L2T 1 

• 
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'DIAGRAM OF FLOW SYSTEM WITH TYPICAL TRACER CURVES 

FIG. 4.1 
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Equation 4.2 may be written as: 

3
2
C 	3 

3
C 	a ac 

= 0 	(4.5) 
ax 

ND 	2 - 	- T 
x 	t 

where N
D 	

D
L is the system Dispersion Number 

uL 

L
/u is the system mean residence time. 

A solution in the p domain is sought for eq.4.5 subject to the 

following conditions in the time domain: 

C(x,0) = 0 for 0< x< 1 	(4.6) 

C(x,t) 4 0 for x increasing 	(4.7) 

Laplace transforming eq. 4.5 and using condition 4.6 we obtain: 

2- 
d 	dE 

- 	 = 0 	(4.8) ND C 
dx 

 dx 

whose solution is given by: 

1 

[ 

C(x,p) = A exp x — tl + (1 + 4TpN
D
)1/2] + 

2N
D - 

[ 

B exp x 	11 - (1 + 4TpN
D
1 .... (4.9) 2ND  

The condition that C(x,p) 4 0 as x increases follows from eq.4.7 

and can only"be met in eq. 4.9 with A = 0. 

[ 

Thus C(x,p) = B exp x Ili.- 11 - (1 + 4TpND)1 	.... (4.10) 
D 

From eq.4.3 and eq.4.10 we have: 

F(p) = exp [-L- [1 - (1 + 4ipN
D)1/2}1 	.... (4.11) 2ND  

As N
D 
4 0, from eq.4.11 F(p) 	e-TP  (the plug flow Transfer 

Function) 

The effect of varying the model's parameter ND  can be represented 

both in the time domain and Laplace (p) space. The latter is most 

convenient for complex flow models where. Transfer Function inversion 

is difficult. The time domain solutions in this Chapter are 

determined by solving the differential equations describing the 

model by a finite difference technique. An actual experimental pulse, 

• 
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illustrated in Fig.4.2 was used as the system forcing function 

in preference to some imaginary pulse which although mathematically 

definable, would be unobtainable experimentally. 

For the axially dispersed plug flow model, the variation in 

Transfer Function with Tip, given by eq.4.11 is shown in Fig.4.3 

with the Dispersion Number as the.curve parameter. The equivalent 

time domain responses are illustrated in Fig.4.4. As the Dispersion 

Number increases the Transfer Function curves tend towards perfect 

mixing, whilst in the time domain a greater spread of tracer about 

the mean occurs. 

It is realistic to apply eq.4.11 to a two phase system when the two 

phases either. form an homogeneous pseudo-phase.or else when the 

gas is assumed to.be immiscible and limits the liquid flow area, 

increasing the average interstitial velocity. in the direction 

of macro flow. The numerical value for the Dispersion Number will 

reflect the degree of gas-liquid interaction. 

The liquid holdup (pi,  i.e. the fraction of the total cross sectional 

pore flow area available to the liquid, can be simply determined 

by: 

T 

T*  

 

(4.12) 

 

where = mean residence time determined from the experimental 

tracer response_ measurements 

= mean residence time calculated on the basis of the 

volumetric liquid flow rate and the volume of bed 

available for flow. 

4.3 A model with regions containing stagnant and flowing liquid 

We shall now .consider a model in which part of the liquid is 

considered to be essentially stagnant and some exchange occurs 

between the flowing and stagnant regions. The stagnant regions will 

exist in practice at the contact points between particles. The 

flowing region will be characterised by the axially dispersed plug 

flow model with an additional, term to represent the mass transfer 

between the two zones. As with the previous model the presence of 

the gas phase does not enter into the describing equations directly 

but is reflected in the reduction in pore area available to the 

flowing liquid and in the values obt'ained for the liquid Dispersion 

Number. 

so 

• 
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This model has been used by VILLERMAUX and VAN SWAAIJ(76) to 

represent some liquid residence time results obtained in a two phase 

system by VAN SWAAIJ et al(75). They, however, used moments 

analysis for a delta function input with a single measurement 

point to obtain the residence time distribution. 

A diagrammatic representation of the model is given in Fig.4.5. 

A balance over both flowing and stagnant liquid zones yields the 

following equations. 

For the flowing region we have: 

u aC + k
e
A
e 
[c C 

sr  
]+ aC = DL  D2C 
 at 	2 az A 	az 

 

(4.13) 

 

and for the stagnant region 

keAe  [c 
Sr] 	

aCsr 
 (4.14) 

where: the subscript sr signifies conditions in the stagnant region 

k
e 
is a mass exchange coefficient 	LT-1  

'e 
is the exchange area/unit bed length 

A is the pore area occupied by the flowing liquid L
2 

Asr is the pore area occupied by stagnant liquid 	L
2 

Defining y as the fraction of the pore area available to the liquid 

which is occupied by flowing liquid we have 

Y - 
A 

A+A 
sr 

 

(4.15) 

 

As with the basic axially dispersed plug flow model we set x = z/L 

and T = 
L
/u and after taking Laplace Transforms of eqs.4.13 and 4.14 

we dotain: 

da 
dx 

k
e
A
e
T 	E

sr 	
TpE = N

D 
d28 	(4.16) 

A 	 dx
2 

and keAeT E - sl = 11)Esr 
A 
sr 

 

(4.17) 

 

A 
sr at 

• 
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From eq.4.16 subsituting for Asr  in eq. 4.17 we find: 

Asr =  NT
y 

(4.18) 
N
T
y+Tp(1-y) 

where N
T 

= 
k
e
A
e
T 

is termed the number of Transfer Units 

(dimensionless) 

Substituting for Esr  into eq. 4.16 we obtain: 

ND  d2E 	dE - NT 4. TP (1  -  y) 	E 	0 	.... 	(4.19) D —dx2  
dx NT  y + Tp (1 - y) 

For no stagnancy Asr  = 0 i.e. y = 1 and eq. 4.19 reduces to the 

basic axially dispersed plug flow equation (eq.4.8). 

Hence by analogy with eq. 4.11 the Transfer Function for the liquid 

stagnancy model is given by: 

F(p) = exp 2

[ 1 

17- 11 - ( + 4TpN
D
a) 12 

D 

    

   

(4.20) 

   

where a = N
T 

+ Tp (1 - y) 

    

(4.21) 

    

 

N
T
y + Tp(1 - y) 

     

Whilst the model is characterised by the three parameters ND, NT  and y, 

it is better to write eq. 4.21 as: 

A 

a = k
1 
 + p (1 - y) 	where k1 

 
k A 
e e 
A 

(4.22) 

 

k
1
y + p (1 y) 

 

and to set T =7:01,  * similar to eq.4.12. 

A search is made in the four variables ND, kl, y and 

Details of the effect of the model's parameters on the system's 

response are presented by VILLERMAUX and VAN SWAAIJ(76). Although 

these workers gave an expression for the inverse of the Laplace 

Transformed concentration it is so complicated as to limit its use 

in parameter estimation methods involving optimisation techniques. 

It is felt that the Transfer Function representation derived above, 

though lacking some of the advantages of a time domain solution, 

is to be preferred for its simplicity and clear resemblance to 

the form obtained for the axially dispersed plug flow model. 

• 
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DIAGRAM OF SPLIT FLOW MODEL WITHOUT INTERACTION 

• 	 FIG 4.6 
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4.4 A split flow model without stream interaction  

In a two phase system the overall liquid hold up cpi,  may be achieved 

by an infinite number of gas-liquid configurations. The idealisation 

of this complex physical situation results in every case in the 

postulation of two distinct flow areas. One zone will contain 

liquid whose passage through the packed bed can be considered to be 

unaffected by the gas. The other region will contain liquid streams 

which are influenced by the gas. In both zones it will be assumed 

that the liquid flows in such a manner that the basic axially 

dispersed plug flow model is applicable. Each region can, therefore, 

be described by Transfer Functions of the form given by eq.4.11. This 

two region model encompasses the liquid distribution model of 

EISENKLAM and FORD (20). If all the liquid passes through the region 

uninfluenced by gas then the flow regime is single phase pore flow. 

The other extreme when all the liquid flows with the gas is the two 

phase pore flow region. 

The model is shown diagrammatically in Fig.4.6. The liquid phase 

is assumed to split on entry to the packed bed into its two idealised 

flow regions, designated 1 and 2, and recombines at the bed exit. 

Each flow region is characterised by a mean interstitial velocity ui  

and Dispersion Coefficient Du. As shown in Fig.4.6, two additional 

parameters X
1 
and X

2 
greatly increase the model's flexibility where: 

X
1 
is the fraction of the total liquid flow going through region 1 

X
2 
is the fraction of the total pore area available to the liquid 

which is associated with stream 1.. 

The liquid velocities in regions 1 and 2 are 
X
1 u and 

1-X
1 u 

X
2 	

1-X
2 

respectively where u in the average pore velocity prior to flow 

splitting. 

By analogy with eq.4.11 the two subsystem Transfer Functions 

T
1 
 (p) and T

2
(p) are given by: 

T
1 
 (pT exp[-1-- tl - (1 + 4T

1
pN

D1
)11 

2N {1 

1 
and T2 
	2N 
(p) = exp[--- ( 	

2
1 - (1 + 4T pND2 )1] 

D2 
 

 

(4.23) 

 

The subsystem mean residence times Ti  and T2  are related to the overall 

theoretical mean residence time T*  by 

• 
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EFFECT OF SPLIT FLOW MODEL PARAMETERS ON SYSTEM TRANSFER FUNCTION 
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X,3  

(1) T*  and T 	
1 - X2 

W T*  	(4.24) 1 X
1 

L 	2 1 - X1  

In theory it is possible to assign either section to the flow 

region in which the liquid is influenced by the gas. The overall 

Transfer Function F(p) of the system is obtained simply by mass 

balance at the exit mixing point where, due to the linearity of 

Laplace Transforms, we find 

F(p) = X1T1(p) + (1-X1)T2(p) 	(4.25) 

The flexibility of this model is shown in Fig.4.7, for the 

Laplace (p) domain, by the wide range of Transfer Function 

values possible at any given value of 'cp. The effects of varying 

the model's parameters in the time domain are illustrated in 

Figs. 4.8 to 4.10. For X
1 
 = X

2 
 = 0.5 and N

D1 
= N

D2 
= N

D 
the split 

flow model is identical to the basic axially dispersed plug flow 

model with a Dispersion Number value of N
D
. Thus curve 1 in 

Fig.4.7 is identical to curve 2 in Fig.4.3. 

By adjusting the fractional flow split X1  in Fig.4.8, from 0.5 

to 0.2 it is possible to produce increasingly assymmetric 

curves. The peak of the curves appears earlier since the higher 

velocity stream is weighted by the greatest volumetric flow and 

hence has the greatest effect on the overall Transfer Function 

as indicated by eq. 4.25. Secondary peaks after the main peak 

are due to the slower stream. Curves 2, 3 and 4 in Fig.4.8, where 

the bulk of the liquid is travelling at a velocity greater than the 

overall mean velocity have Transfer Functions lying below curve 9 

of Fig. 4.7 representing plug flow in both regions. It is clear 

therefore that there are no values for the Dispersion Number in 

the basic axially dispersed plug flow model which will match 

curves of the form shown in Fig.4.8. Similar effects are observed in 

Fig.4.9 where the area ratio is varied but 50% of the total volumetric 

flow always passes through each region. Again there is a tendency 

to form two peaks but this time the smaller peaks occur before the 

main peak. In the Laplace domain of Fig.4.7 the curves 5,6 and 7 move 

rapidly towards and beyond curve 10 which represents two equal volume 

perfect mixers in parallel. Thus any system where there are regions of 

differing velocity will be characterised by large, and often unrealistic 

values for the Dispersion Number, if only the basic axially dispersed 

plug flow model is used. 
• 
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In the split flow model the effect of a subsystem Dispersion 

Number on the overall response will depend largely on the weighting 

given to that subsystem by the flow split. In Fig.4.4 curve 3, 

for the basic axially dispersed plug flow model with a Dispersion 

Number of 0.05, shows a large spread in the tracer curve. This 

spread is reduced quite considerably if only 50% of the fluid 

travels through a subsystem with a Dispersion Number of 0.05 

and the remainder through a subsystem for which say ND  = 0.01 

as shown by curve 2 of Fig.4.10. 

It is possible to derive Transfer Function contours at any value 

of Tip as functions of the parameters Xi  and X2  whilst maintaining, 

as an example, the subsystem Dispersion Numbers constant. 

Typical contours are shown in Fig.4.11 for Tp = 1.0 and ND1  = 0.01. 

Symmetry about the line Xi  = X2  exists so that points 

such as A and D in Fig.4.11 are equivalent. A system whose 

Transfer Function at Tp = 1.0 is 0.4 can be represented by any 

point on the curves AB or CD. The difficulties introduced by 

this symmetry when determining the model's parameters are 

discussed in Chapter 5. 

From the above discussion the flexibility of the split flow model is 

apparent. The features of this model are: 

(i) the reduced influence of the subsystem Dispersion 

Numbers on the overall Transfer Function, with the 

main deviations from plug flow accounted for by 

zones of different velocity 

(ii) the ability to handle systems where the basic 

Dispersion model is not applicable. 

4.5 A split flow model with stream interaction  

It is recognised that the previous flow model is a simplification 

in that physical interaction between the two zones must result in 

some form of mass exchange between the streams. 

Denoting the two regions by subscripts 1 and 2 we have, by analogy 

with eq. 4.16 which describes the flowing stream in the liquid 

• 
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stagnancy mode,. the following two equations: 

2- 
[- 

	

d C
1 - 

dE
1 - 

k 
	e

A
e
T
lC

1 
- C

2 
- T

1
pE ND1 	
1 

= 0 	.... 	(4.26) 
2 	dx 	Al dx 

2- 
- - 

	

and N
D2 
!; 

- 
7d: + k 

e
A 
e
T 
2  JC

1 
- C

2 
- T2pC

2 
= 0 .... 	(4.27) 

A2 dx 

where A
l 

and A
2 represent the pore flow areas available to zones 

1 and 2. 

From eq. 4.27 we obtain: 

A 

	

T ,,, 4. 
keAeT2 

	C2 + dC2 - 
N 	

2- 
C
2 

d Cl 
= k A2T 	t2L-. 	A 	2 	--j-di 	D2 	 f- 	.... (4.28) 

e e 2 	2 dx 

Differentiating eq.4.28 twice with respect to x yields the following: 

dE 

	

2C- 	3- 

	

2 	
d C

2 1 A
2 	keAer2  da2  d 

 
dx k

e
A
e
T 	
2 

(T2P 	A 	
2 dx 

dx
2 N02 3 
 dx 

2- 	 2- 	3- 	4- d C 	A

2 % 	
keAe

T
2 
 ld 	d C 	 [ 2 	d C

2  
2 	41 dx2  ke

1
e
T
2 T2p 	

A2 	dx2 

4.3 ND 

 dx 

Substituting for Cl  and its derivatives into eq.4.26 we obtain: 

4- 	3- 	2- 

	

d C
2 + m2 d C2 + m

3 
d C 	a m

1 

	

	 4 
E2 + m

5 
E2 

= 0 0000 	(4.29) 2. + m 

dx

74 	

dx
--75 	2 	dx 
 dx 

where1 
= 

m2 = 

m3 = 

m4 = 

= 

m6 

m
7  

-N
D1 

N
D2 m6 

(ND1 + ND2)  m6 

A
2 
 • 

k
e
A
e
T
2 

Al  

k
e
A
e
T
1 

(p[ND1T2 + ND2 
T
l
i - 1 + 

ND2) 
m + N 

m7 6 D1 

[P (T1 - 
T2) 

4.  1 '1 
m
7 - 1/ 

m61 m6 

1 	1 	1 
/152  - (T2P 	/m6) (T1p 	/m7) m6 

• 



k== 

E2 (x'P)  = 	
akxk 

 
k=0 

(4.31) 
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The two liquid flow areas Al  and A2  and the two mean residence 

times can be related using the split flow model parameters X1  and 

X2. 

By definition X2  
Al 

 
Al  + A

2 

ALT*  

	

and T
1 
 = 

X
2 ALT* 	T2 = 

1 - X
2  

	

X - 	1 - X 
1 	1 

The auxiliary equation of the 4
th 

order differential equation 

represented by eq. 4.29 will be a quaitic, whose coefficients are 

functions of the model's parameters and whose roots are say Ai,  i=1,4. 

The solution to eq. 4.29 is therefore: • 

i=4 
E2 (x,p) = 	a

i 
exp [ A

ix] i=1 

 

(4.30) 

 

where the constants a. must be determined from the appropriate 

boundary conditions. MITAUCHI and VERMEULEN(51) have considered a 

steady state analysis for the above model and obtained an equation 

similar to eq. 4.29 except that since in the original equation 

3C 
= 0,. one root can be taken as A = 0, reducing the problem to 

at 

solving a cubic auxiliary equation. An extremely complex solution 

in terms of the coefficients m
i 
was obtained for each root A

i 
and using four boundary conditions the coefficients a

i 
were evaluated 

as functions of the model's parameters. 

The solution to this unsteady state problem is extremely difficult by 

the conventional approach but these difficulties may be overcome 

by postulating a series solution to eq. 4.29 of the form: 

- 
where in general d

r 	k=a0 
C2  = 	k(k-1)(k-2)...(k-r+l)akx

k-r 

k=r 
dx 

 

(4.32) 

p) (1, 
By definition T2(p) = 

C
2 	as in eq. 4.3. 

a2  (0,p) 
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k=002 
Thus T

2
(p) =

r a
k a 	

L 
o k=0 

 

(4.33) 
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k=0) 
or T

2
(p) = 1 + 	b

k 
where b = 

a
i 

k=1 	a 
 

 

(4.34) 

 

The Transfer Function of both subsystems can be obtained in this 

manner. 

The solution to this model will not be derived since the use of 

a model with this number of parameters is not justified unless 

some of the parameters can be determined by means other than 

tracer studies. However to illustrate this technique, a detailed 

solution to the problem of estimating the dispersion for isothermal 

compressible gas flow through a packed bed is given in Appendix A. 

To the author's knowledge the use of equations 4.31 to 4.34 in 

obtaining the system Transfer Function and the solution to the 

isothermal compressible flow problem have not been reported prior 

to this work. It is felt that this approach will extend the range 

of systems whose Transfer Functions are desired but are difficult 

to obtain by the usual techniques. 

• 



66 

CHAPTER 5 PARAMETER ESTIMATION FROM EXPERIMENTAL DATA  

	

5.1 	Summary 

We are concerned in this Chapter with particular methods for 

estimating the parameters of the three specific models developed 

in Chapter 4. For the basic axially dispersed plug flow model, four 

methods presented by MICHELSEN and OSTERGAARD(50) are considered. 

These methods enable the Dispersion Number to be determined 

directly from the system Transfer Function and its derivatives 

with respect to the Laplace Transform variable p. The problems 

associated with determining the optimum range of values for p are 

covered in detail. The two other models described in Chapter 4 

must be analysed by parameter fitting through optimisation 

techniques due to the number of parameters involved. Finally, 

brief details are given of the computer programs used to interpret 

the experimental data and estimate the model's parameters by each 

method. 

	

5.2 	Analysis of the Axially Dispersed Plug Flow Model  

Four methods have been derived by MICHELSEN and OSTERGAARD(50) for 

estimating the Dispersion Number from the system Transfer Function 

and its derivatives with respect to p. 

5.2.1 Methods requiring one value of the Laplace Transform variable p  

The Transfer Function for the axially dispersed plug flow model is 

given by eq. 4.11 as: 

F(p) = e
J 

(5.1) 

where 	J = J(p) such that J = 	(1 - k) .... 	(5.2) 
2N
D  

and k
2 

= 1 + 4TpN
D 

 

(5.3) 

 

Differentiating eq. 5.1 we obtain: 

sitEL = F(p ) dj  i.e. - dj  = 	izi)--  /F(p) 
dp 	dp 	dp 	dp 

From eq. 5.2 we find 	
-dJ = T 

 ii- = Q say 	Oaf" 

	(5.4) 
dp 

Combining eqs. 5.2 and 5.4 we can derive the following expressions 

for T and N
D 
: • 

• 



From eq. 5.1 J = loge  [F (p] 

4: Cl(t)e Pt  dt 

C
o
(t)e-pt  dt 

and by definition F(p) - 
Mo  

J. 	• • • 
"'O 

.140 

(5.7) 

= -JQ  
2Qp+J 

 

(5.5) 
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N
D 
	J+Qp  

J(J+2Qp) 

We now require to express J and Q in terms of the weighted 

moments M. As defined by eq. 3.16 and eq. 3.18 we have 

r- 
M
r 
	r = j tr  C 	

pt 
dt = (-1)

r d C
i  

o 
dp

r  

In the subsequent derivations the subscripts i = d and i = 1 refer 

to the first and second measurement points respectively. 

(5.6) 

Rol 

	

Hence J = log
e 	

1 
m-o 

F
p
(p) 

	

From. eq. 5.4 Q = 	- dd 
	/F(p) 

and from eq. 5.7 F(p) = al 

C  

. 	(P) 	C1  - alaO • • 
dp 

2 Co 	Co 
 

where a ,  E dai 
dp7. 

• 
. . Q = LL. + Co' 

1 	0 

 1 m 	-1 
Q = 	1 - 

M
o 

-o -o 
M
1 

M
o 

   

(5.8) 

(5.9) 

(5.10) 

• • • . OOOOO 

   

From the experimental tracer concentration measurements the 

weighted moments RI can be calculated and hence J and Q from 

• 
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eqs. 5.8 and 5.10. The parameters T and ND  are then determined 

from eqs. 5.5 and 5.6 using the values of J and Q. These 

equations constitute the 1st method. 

d  (E121/F(p)] = H say ... (5.11) For _ the 2nd method we require — 
dp dp 

Thus from eq. 5.4 H = -115-1 Tp-d3) = 
dp k 

2T 
NDUsing eq. 5.3 H 

  

(5.12) 

  

 

k
3 

   

Combining eq. 5.12 and 5.4 we obtain: 

-1/2 
= Q (1 22E) 

 

(5.13) 

 

and N 	-3-211  ' 
D 	

(1 
Q 2Q

2 

   

(5.14) 

   

To evaluate eqs. 5.13 and 5.14 we require H in terms of the 

weighted moments IV . 

Using eq.5.9 we have: 

2112.1. /F(p) 	= 
dp 
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(5.16) 

 

The 2nd method involves evaluating the experimental weighted 
- 

moments M
i 

for r = 0,1,2 at the two measurement points and 

hence determining H and Q from eqs. 5.16 and 5.10 respectively. 

Finally the parameters T and ND  are calculated from eqs. 5.13 and 

5.14. 
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The problem of determining the optimum value for p in methods 

1 & 2 is analysed in section 5.3. 

5.2.2 Methods requiring several values of the Laplace Transform 
variable p  

From eq. 5.2 and 5.3 we can obtain: 

- 1 = - N, + 2  
j  

 

(5.17) 

 

Hence a plot of -a-vs P  /J2  should yield a straight line of slope 

and intercept -ND. This constitutes the third method. 

From eqs. 5.3 and 5.4 we may also obtain: 

11 	4NDp 
(5.18) 

4
2 = 

T
2 + 

A plot of 
1
/Q

2 
vs p should give a straight line of slope 

4N
D and 

T 

and intercept. 
l
/1-2. This linearisation constitutes the fourth 

method. 

5.3 	Determination of suitable p values for the four direct methods  

All of the methods given in section 5.2 utilise certain of the 

weighted moments RI of the response curves. The value of any 

moment for either response curve will depend on the value used for 

p. In an early paper on this problem by the author et al(35), a 

general indication of the effect of the weighting function e
pt 

on the response curves was given for method 3 using the zeroth 

moments.' To minimise errors in both the front and rear portions 

of the response curve, there must be an upper and lower limit for 

the range of p values used. From an arlalysisctEsome of EDWARDS(19) 

experimental results for single phase gas flow through a packed 

bed a range of values for p such that 2 < tp < 5 was suggested. 

The more detailed analysis which follows indicates that the 

following factors also influence the choice of p. 

(i) The shape of the system forcing function 

(ii) The distance between injection and measurement points 

(iii) The dispersion prevailing throughout the system. 

These factors must be considered since they affect the measured 

tracer response curve. 

• 
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There will also be some experimental error or noise associated 

with the measurement of C(t) at any time t. Thus: 

e
C
i
(t) = tCi 	+ V(t) for 0 < t < T 

 

(5.19) 

 

where: v(t) is the noise component of the measured response 

T is the upper time limit beyond which tracer is not 

detectable. 

The pre-subscripts t and e denote the true and error tracer 

concentrations respectively. 

T 
Since the contribution of the noise to Mr  will be JO  v(t)(tr

e
-pt 

dt 

both the type and magnitude of the noise, as well as the time at 

which the noise occurs is important. The noise will in general be 

of two forms: 

(i) A constant error, independent of tCi(t) for all t 

(ii) A variable error depending on the magnitude of tCi(t). 

Whether either or both. of these two noise forms are present will 

depend to a large extent on. the type of tracer used. Radioactive 

tracers will exhibit both forms, whilst the dye-photomultiplier 

arrangement used in this work is characterised by some constant 

error due to fluctuations about the mean recorded value. The direct 

methods utilise moments of.different orders and it is to be 

expected that the optimum value(s) of p will vary with each method. 

The correct choice of p can be determined from a set of noise 

weighting functions E(t), which relate the error in any response 

curve to the error it produces in the calculated Dispersion Number ND. 

5.3.1 Evaluation of Noise Weighting Functions  

This analysis is directed towards finding a value of p at which the 

error in the calculated Dispersion Number is a minimum. 

Let AN
D be the relative error in the Dispersion Number such that: 

AN
D 

e
N
D t

N
D 

t
N
D 

 

(5.20) 

 

where the true Dispersion Number tND  would be obtained from noise 

free curves and the error Dispersion Number eND  results from noise 

v(t) at any time t. 

• 
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If we consider noise at some time t*, lasting for a time interval 

6t*, then this will be operated on by some weighting function E(t*) 

to give an error 6ND  such that: 

6N
D 

 

v(t*) E(t*)dt* 

 

(5.21) 

 

Assuming the total error in ND  is the sum of individual errors 

over infinitessimal time intervals we have, for noise at 

measurement point i only: 

co 
AN
D 

= J
o 

v
i
(t)E

i
(t)dt 

 

(5.22) 

 

For convenience we define an error integral eIi  for noise occurring 

on the response measured at position i as: 

co 
e
I
i 
= 'v

i
(t)E

i
(t)dt 

 

(5.23) 

 

As there will be simultaneous noise on the responses at both 

measurement points it will be assumed, following MICHELSEN and 

OSTERGAARD(50) that the total error in the Dispersion Number is 

proportional to the sum of the absolute errors on each individual 

response 

2 
Hence AN

D 
a 

e
I
o 	e

I
1 

1/2 
 

 

(5.24) 

 

2 
The desired value of p is therefore that at which t 

e
I
o 

+ 	 2 12  
ell  

is a minimum. To evaluate the error integrals defined in eq. 5.23 

some estimate for N(t) must be made. When using a dye-photomultiplier 

tracer detector, the main error will be in the estimation of the 

base-line voltage and thus it is reasonable to assume vi(t) is 

constant. In this case the mean value of the noise weighting function 

may be used: 

Hence 	
e
I
i 

= 	Jo  Ei(t)dt 	(5.25) 

where T is the upper time limit beyond which the tracer concentration 

is not measurable. 

Details of the determination, of the noise weighting functions E(t), 

for methods 1 and 2 requiring a single value of p, have been given 

by MICHELSEN and OSTERGAARD(50). Their results were, however, 

presented in a form unsuitable for direct use in the present studies 

for the following reasons: 
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(a) The system mean residence time t and Peclet Number Pe (where 

Pe = 
1
/N
D
) must be known to evaluate E(t). 

(b) The error free weighted moments are required. 

Since t and ND are to be determined from experimental results, and 

are therefore unknown (a) makes the following iterative procedure 

necessary to obtain r and ND. 

(i) Estimate values for T and N
D and find minimum value of 

noise weighting functions to obtain optimum value of p. 

(ii) Determine values for t and N
D from one of the direct methods 

at this value of p. 

If there is any discrepancy between the two sets of estimates the 

procedure must be repeated. 

In the present work, the weighted moments available to calculate the 

noise weighting functions are those derived from the experimental 

response curves and hence not error free. 

An analysis was undertaken to express the noise weighting functions 

solely in terms of the modified moments derived from the experimental 

response curves at the two measurement points. 

Details of the analysis are given in Appendix B and the following 

points should be noted: 

(a) The noise weighting function for the Dispersion Number is of the 

opposite sign to the noise weighting function on the Peclet Number. 

(b) In the expressions given by MICHELSEN and OSTERGAARD(50) the error 

free weighted moments tMi  can be replaced by the experimentally 

measured moments M.r  . 
e 1 

(c) There are discrepancies between the two analyses, in particular 

a term eMi is missing from eq.49 in Appendix B of the MICHELSEN 

and OSTERGAARD(50) study. 

Typical noise weighting functions Ei(t) are shown in Fig.5.1 for methods 

1 and 2 (section 5.2.1). The curves illustrated are those obtained from 

experiment 11 for gas and liquid Reynolds Numbers of 59.7 and 48.7 

respectively. The curves relating to the 2nd measurement point have large 

positive noise weighting functions for noise shortly after injection 

for both methods. Larger errors would be expected with method 2. Due to 

the exponential damping, noise occurring at times greater than the mean 

residence time is less important than noise in the early portions of 

the response. Experimental curves should be filtered to ensure that all 

base line fluctuations, prior to the time at which a definite curve rise 

appears, are removed. This filtering is done automatically by eye when 

using results stored on graph recorders but must be accomplished 

• 
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numerically when analysing results stored on magnetic tape as described 

in Chapter 6.At.aqualitative assessment would predict, noise near the 

mean of either response curve has little effect on the Dispersion 

Number. The form of the noise weighting functions is shown to be 

correct by the qualitative discussion given in Appendix C. 

The error integral curves for the noise functions shown in Fig.5.1 are 

illustrated in Fig.5.2. The minima occur at different values of Tp for 

both methods due to the different weighted moments used in each case. 

Fig.5.3 shows the effect of varying the Laplace Transform variable p, 

expressed as Tp, on the evaluated Dispersion Number. HoweVer methods 

1 and 2 both give the same value for the Dispersion Number if the value 

of p used in each method, is taken as that giving the minimum in the 

appropriate error integral curve of Fig.5.2. 

MICHELSEN and OSTERGAARD(5) showed that similar values for T and N
D 

were obtained from methods 1 and 3 if the arithmetic mean of the 

several p values used in method 3 was the same as the single value 

used in method 1. A similar correspondence was found between methods 

2 and 4. Since the noise weighting functions for methods 3 and 4 require 

an estimate of the Dispersion Number before they can be evaluated, an 

iterative process is required to determine the minimum in the error 

integral:durves. To avoid this, the findings of MICHELSEN and OSTERGAARD(50) 

were accepted and two Tp values either side of the value used in methods 

1 and 2 were used in. methods .3 and. 4 respectively.. The general level of 

consistency between the values obtained by the four methods, as shown 

in Appendix E justifies this approach. 

5.4 Parameter Estimation for the split flow model without interaction and  
stagnancy model with interaction  

In contrast to the axially dispersed plug flow model it was not 

possible to obtain explicit relationships for the parameters of these 

two models due to the larger number of parameters involved. Recourse 

to some indirect optimisation technique was, therefore necessary. 

5.4.1 Split flow model without interaction  

The Transfer Functions for each region and the overall system Transfer 

Function for this model were given in Chapter 4 eqs. 4.23 and 4.25 

respectively. In order to reduce the number of parameters, one region was 

assumed gas free. It is reasonable therefore to assume that the Dispersion 

Number in this region, where liquid would be flowing at a particular 

Reynolds Number, ReL' could be taken as that which would occur in a 
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packed bed in which liquid alone was flowing at that same 

Reynolds Number. The reported data for liquid dispersion, as 

summarised by GUNN(28) can be reasonably approximated by: 

N
D 

= 0.027 Re
L
-0 .27 

 

 

(5.26) 

 

Since it will be shown later that the importance of the subsystem 

Dispersion Number is drastically reduced in a split flow model, 

high accuracy is not demanded from eq. 5.26. The Dispersion Number 

in the second zone will depend on both the Dispersion coefficient 

D
L2 

and the liquid velocity in that zone. Since the liquid 

velocity and hence the mean. residence time in both zones can be 

expressed as functions of Xi  and X2  and OL, the system is 

characterised by the four parameters DL2, Xi, X2.and (1)L. 

These parameters can be determined by minimising the difference 

between some property of the theoretical model and its experimental 

equivalent. 

Two of a number of possibilities are: 

(i) At a particular value of p match the Transfer Function, 

first and higher derivativeS with respect to p 

(ii) For a range of p values match only the experimental and 

.theoretical Transfer Functions. 

The latter approach is better in. that a least squares solution cam 

be obtained. In this work, the parameters were estimated by 

minimising the square error between the experimental Transfer 

Function G(p) and theoretical Transfer Function F(p) for 20 values 

of p chosen such that Tp lay in the range 0.2 £ Tp :5. 3.0. This 

range on Tp was chosen to cover the region of maximum variation 

of F(p) with Tr). Transfer. Function fitting was used in preference 

to the derivatives due to .the increase in experimental errors 

associated with the latter, since they. contain higher weighted moments 

of the response curves. The derivatives may however be used as 

checks on the parameter estimates obtained from Transfer Function 

fitting. WILLIAMS et al(81) found Transfer Function fitting over 

a range of p values from 1 to 10 quite acceptable in their fitting 

of a 2 parameter model for gas mixing in a fluidised bed. 

The theoretical 1st and 2nd derivatives with respect to p are 

obtained from eqs. 4.23 and 4.25 for the split flow model: 

• 
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dF(p) 	
IX

1
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.... 	(5.27) 

and 
d2F(p) - X1T1

2
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The experimental 1st and 2nd derivatives with respect to p are 

obtained from eq. 5.7 i.e. 

G(p) 
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.. 	(5.30) and 

-o 
M
o 

M1 1 
-o 
M 
0 

R2 	R2 
1 - 

M
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M
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dp 

d2G(p) 	= 

dp
2 

M
o 

We can therefore define the problem as one of seeking values for the 

model.parameters such that S is minimised where: 

i=20 	2 
= 	1- Fi(P)  

1=1 	Gi(p) 

 

(5.31) 

 

The fractional errors at each p value prevent the solution being 

dominated by the numerically largest values occurring at low 

values. of Tp. 

Fig.5.4 illustrates a typical response surface, during Transfer 

Function minimisation, as a function of the variables X
1 

and X
2 

when, for example, N_D1 = ND2 = 0.01. The similarity between this 

surface and the Transfer Function contours given in Fig.4.11 is 

clear, with the symmetry about X1  = X2. In Fig.5.4, for which the 

solution lies at X
1 

= 0.6, X
2 

= 0.4, two curved valleys appear, 

separated by a ridge. Since there is also a solution at X1  = 0.4, 

X
2 = 0.6, then if the same solution is to be found from different 

initial points, these starting points must be on the same side of 

the ridge. All the contours in Fig.5.4 are open-ended. However, 

• 
	 the expanded view around the solution point, indicated by the box 



Volume 
Flow 
Split 
Xi 

79 

j z20 

Contours of  F. —1 
Gi 

constant 

   

1=1 

• solution points 

.2 	.3 	.4 	.5 
	.6 	.7 	.8 	.9 

	
10 

Flow Area Ratio X2  

RESPONSE SURFACE FOR TRANSFER FUNCTION FITTING OF SPLIT 
FLOW MODEL 

• FIG 5.4 



Volume 
Flow 
Split 	.60 
Xl  

BO 

•30 	•32 	.34 	•36 	•38 	•40 	•42 	.44 	•46 	•43 	•50 

Flow Area Ratio X2  

LOCALISED RESPONSE SURFACE FOR TRANSFER FUNCTION FITTING 

OF SPLIT FLOW MODEL 

FIG 5.5 
• 



81 

in Fig.5.4, shows that contours representing a sum of squares 

less than 3 x 10
4 

are closed by the parameter values 

0.5 s Xi  < 0.7 and 0.3 S X2 	0.5. This is shown in Fig.5.5. 

The curve representing the path of the valley bottom, as determined 

by a Fibonacci search, is shown and a number of contour values 

marked on it. For the parameter values shown this curve is 

approximately represented by the line Xi  = X2. The contours 

are elongated- paralle3-to the valley bottom, yet very narrow 

normal to the valley. Thus to remain within a given contour for 

a given value of X2  say, only small changes can be made in X1. 

However the ratio 
X1/X2 

may vary considerably and still remain 

within the same sum of squares contour. A response surface very 

similar to that shown in Fig.5.4 would be obtained if any of the 

derivatives of the Transfer Function were used in the minimisation. 

5.4.2 Liquid stagnancy model with interaction  

The following four parameters were estimated for the liquid 

stagnancy model by Transfer Function minimisation using eq.4.20. 

(i) The system Dispersion Number N
D 

(ii) The number of Transfer units N
T
, representing the inter-

, change between the flowing and stagnant liquid zones. 

(iii) The fraction of the pore area available to the liquid which 

is occupied by flowing liquid,y. 

(iv) The overall liquid holdup (PL. 

5.5 	Optimisation Algorithms used in parameter estimation studies  

Of the three minimisation algorithms tried, that developed by 

POWELL(55) proved to be the- most successful. 

Initially a general method suggested by ROSENBROCK and STOREY(59) 

was tested, in which successive function evaluations were compared, 

and a set of rules defined the action to be taken according to 

the outcome of the comparison. If S(x1) and S(x2) where S(x2) =S(xi-I-A) 

were two such evaluations the problem reduced to finding the length 

and direction of A such that the step made was an improvement. A 

set of n orthogonal unit vectors 
-1  
V and an associated set of step 

lengths e
i 
were stored such that successive steps in x were 

• 
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e1V1, e2y2....enyn... The step lengths were either trebled or 

halved depending on whether the last step was successful or not. 

The procedure was rejected due to the large number of function 

evaluations required and the problems encountered in escaping 

from the constraint boundaries on the parameter values, especially 

with the split flow model where both X1  and X2  are bounded by 

0 S X, 5 1 and 0 S X2  1. 

The second method by MURTAGH and SARGENT(52), whilst in principle 

the most powerful, sometimes proved unreliable and unable to obtain 

the best solution. The. method was based on assuming a local quadratic 

approximation to the function and constructing successive 

approximations to the inverse of the Hessian matrix H 1. This is 

then used to estimate the position of the minimum at each step. 

Thus if gk...1  is the gradient at the point 	then the change is 

given by: 

2k  2k-1 = 	- 

 

(5.32) 

 

Hence if 4 is the solution then grc  = 0 and providing H is non-

singular 

I 	
-1 

'-(Pc = k -1 - 
T42

k-1 

 

(5.33) 

 

A method such as this should have been the most reliable especially 

as the gradient of the objective function was available 

analytically. 

The method finally adopted was that due to POWELL(55), which did not 

require derivatives. Starting from the best known approximation to 

the overall minimum a search is made down the n linearly independent 

directions, so that the function is minimised in each direction. On 

each iteration a new direction is defined such that if a quadratic were 

being minimised the minimum would be found after n iterations. 

5.6 	Analysis of Experimental. Data to obtain the weighted moments  

The experimentally recorded tracer. measurements were stored directly 

onto a magnetic tape by a data logging system as described in detail 

in Chapter 6. The response curve, at each measurement point, was 

described by 829 data points, each point being represented by the 

photomultiplier voltage. The first 50 data points were averaged to 

obtain a value for the base voltage and any reading greater than 
• 



83 

this value, was set equal to the base voltage. This avoided 

negative estimates of the tracer concentration when using the 

logarithmic transformation on the photomultiplier voltages as 

described in Chapter 6. 

From an estimate of the mean residence time, 20 values of the 

Laplace parameter p were chosen so that 0.2 S Tp s 3.0. For each 

of these p values, the zeroth, 1st and 2nd weighted moments were 

calculated together with the error integrals. 

As a check on how rapidly the Dispersion Number was changing with 

p three values of p, around the p value giving the minimum in 

the error integrals, were used in the direct methods land 2, 

eqs. 5.6 and 5.14, to determine the Dispersion Number and mean 

residence time. Five p values around the minimum error integral 

value of p were used in methods 3 and 4 which required several 

p values for the straight line relationships given in eqs. 5.17 

and 5.18. Finally the experimental Transfer Function and its 1st 

and 2nd derivatives were calculated for use in the later 

optimisation studies for estimating the parameters in the two more 

complex models. 

• 
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CHAPTER 6 	EXPERIMENTAL EQUIPMENT AND MEASUREMENT TECHNIQUES  

6.1 Summary  

The experimental equipment and techniques used to obtain the dynamic 

response of a packed bed system containing two phases in upward 

cocurrent flow are described in this Chapter. The underlying.  

reasons behind the choice of tracer and its effect on the experi-

mental arrangement are discussed. The systems for injecting, 

detecting and recording the tracer pulses are examined in detail. 

6.2 Choice of Tracer and Experimental Technique  

The choice of tracer depends primarily on the environment to be 

studied. The mathematical techniques, described in section 3.4, for 

estimating the model's parameters from the experimental results, are 

to some extent of secondary importance. There are two possible ways 

to measure the system response at two bed positions: 

either (i) the detector can be situated within the packed bed 

itself in such a manner as to minimise any 

disturbance of the fluid flow patterns 

or (ii) the tracer must be capable of detection by equipment 

external to the packing. 

A summary of the tracers used in single phase liquid dispersion 

studies is given by CHUNG and WEN(12). Tracers utilising the 

conductive properties of certain solutions have been used 

extensively with the small conductivity cell conveniently 

incorporated within the bed packing material. As with photoelectric 

techniques, the use of such systems is severely limited in two phase 

work due to the high level of noise induced by the presence of the 

gas phase. 

Radioactive tracers, on the other hand, seem ideally suited since 

measurements can be made external to the packed bed and recordings 

are unaffected. by the presence of either a second phase or any 

packing material.SATER and LEVENSPIEL(63) used 1131,  a high toxicity 

nuclide, the radiation from which was detected by a scintillation 

counter. The pulses were amplified and sent via a rate meter to a 

pen recorder. The rate meter converted pulses received over a finite 

time interval into an instantaneous rate. The combination of 

resistances and capacitances effectively averages out these pulses 

over a time interval equal to twice the instrument's time constant 
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which is usually in the region of about 0.2 seconds at its 

lowest value. In this time interval a tracer particle can move 

40mmalong the column axis at the highest velocities encountered 

in the present study, resulting in completely erroneous pulse 

rates. 

Even if a sufficiently fast rate meter, or some alternative device, 

were available to overcome this problem, a second difficulty 

inherent in the use of radiation would still exist. Since radio-

active disintegration is random, sufficient pulses must be counted, 

over the time interval in question, to reduce the error in the 

count estimate to an acceptable level. Since the distribution is 

Gaussian, a 1% standard deviation would require 10,000 counts or a 

count rate of about 2.5 x 10
4 

counts/sec for the time constant given 

above. For the high energy gamma emitters in the MeV range 

scintillation counter efficiency is around 20%. Since the pulse 

rate is taken to represent the average tracer concentration at a 

particular axial position, the solid angle viewed by. the detector 

should be small. After allowing for all.these factors, count rates 

in the region of 3 x 10
7 

counts/sec are necessary. This corresponds 

to a radioactive solution strength of approximately 1 millicurie which 

is greater than that.acceptable.in normal laboratories if 1131 is 

used. Due to its moderate toxicity it would. however be possible to 

use Na
4
, in the form of sodium chloride solution, at these con-

centrations if the necessary precautions were taken. 

EDWARDS(19), in recognising this problem, has suggested an 

alternative theoretical and experimental technique. In view of this 

development. it.is felt that. the practical. difficulties associated 

with radioactive tracers outweighitheir advantages.. EDWARDS(19) 

approximation to the original.two point measurement technique 

requires measurements of the tracer concentration at the bed exit. 

If phase separation.can be achieved, without obliterating the 

tracer response, then either conductivity or photoelectric methods 

may be utilised. Due to .its simplicity and rapid response to changes 

in tracer concentration, a photomultiplier-dye arrangement was chosen. 

Full details of the equipment are given in section 6.6. 

For the following reasons tracer injection in the gas phase was not 

considered: 

• 
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(i) Gas phase detectors such as beta ionisation and hot wire 

are sensitive to both water vapour and water droplets. 

(ii) The response times of such detectors are usually slow. 

(iii) The gas velocities encountered in this study are much 

greater than the liquid velocities, increasing the 

detection difficulties. 

(iv) There are difficulties associated with the analysis of a 

compressible gaseous phase as illustrated in Appendix A. 

(v) There are no indications that tracing the gas phase will 

yield more information on the flow regimes than can be 

deduced from studying the liquid. phase. 

6.3 The Overall. Experimental System  

The approximation to the two point technique allows separate 

measurements to be made outside of two packed bed sections of 

different lengths, as shown in Fig.3.2, providing conditions at 

both extremes of either packed bed remain the same and the 

tracer pulse is reproducible. A. diagrammatic representation of 

the experimental apparatus used to obtain the system responses 

at two different bed lengths is shown in Fig.6.1. The positions 

of the bed inlet relative to the injection system G and the bed 

exit relative to the detector J must remain unchanged when using 

beds of different lengths. To accommodate the change in bed 

length, the injection system, in preference to the detection 

system, was moved in a vertical plane as the performance of the 

latter was easily upset by any movement. The necessary air and water 

supplies could be provided at the two elevations approximately 

0.835 m apart by simply rerouting the streams via the thre-way 

valves, as indicated in Fig.6.1. 

A line diagram of the experimental system is given in Fig.6.3. 

Air from a two stage compressor A at a discharge pressure of 3 x 106 

Nm
-2 

was stored in a series. of large reservoirs prior to use 

within the system. This allowed some separation of entrained water 

and oil droplets and also avoided the pulsations in the air supply 

which were present when the compressor was running. A suitable 

working pressure range was obtained by a dome-type reducing valve V 

with the safety valve V2  set at the desired upper limit of 6.9 x DOS  

Nm
-2

. The charcoal separator B removed any remaining oil droplets. 

• 
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The air supply had to fulfil three functions: 

(i) provide metered air for the packed bed system 

(ii) provide a high pressure water flow by displacement 

(iii) operate the tracer injection system. 

Two rotameters R
1 
(4-18x10

4 
m
3
s
-1

) and R
2 
(17-75x10

4 
m
3
s
-1
) 

fitted with pressure gauges and a thermometer metered the air 

flow through the system. Liquid displacement, by the high 

pressure air, from the storage tanks C gave a steady high pressure 

water supply to the packed bed. This was a superior. arrangement 

to the alternative of a reciprocating pump with its inherent 

and R
4 
(.12-.42 kgs-1), a filter D packed with 4 mm. ballotini 

removed any suspended solids. A small bleed after the filter 

provided sufficient water for the.heat exchanger F which maintained 

the air and water streams to the packed bed at a similar. temperature. 

Both the air and the water entered the base of the:padked.bed 

column H at either of the elevations by using the three-way valve 

arrangements with the water. passing through the tracer injection 

system G en route.. On leaving the packed bed system the air and 

water were separated in a hydrocyclone I. The gas-free liquid 

underflow from the hydrocyclone was analysed.by the tracer detection 

systeth J before passing to.the drain. The gas overflow with a small 

amount of entrained water was vented to atmosphere after passing 

through the final separation tank K. 

The relative positions of the various items of equipment when using 

the long. packed bed are shown in the photograph of Fig.6.3. 

The tracer injection system, G, required air at a pressure of 

5.5 x 10 Nm
-2

to operate its two parallel solenoid valves. This 

requirement was met from a storage drum E periodically charged 

to this pressure. 

6.4 Details of the Packed Bed  

It was intended to use the same column and packing as that employed 

previously in the study by SAADA(60). A larger, longer column 

and consequently a larger packing size were chosen finally, for 

the following reasons: 

flow fluctuations. Prior to metering in rotameters R
3 
(.02-.12 kgs

-1
) 

• 
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(i) Increasing the packing size greatly reduced the pressure 

drop in the ~olumn preventing compressibility effects. 

(ii) The increase in bed length made possible by the reduction 

in pressure drop enabled more accurate mean residence time 

measurements to be ·made. 

(iii) ThS required ranges of gas and liquid Reynolds Numbers 

could.be.covered at.lower fluid velocities reducing the 

difficulties in recording the. tracer. 

(iv) The injection of tracer was made substantially easier 

using a low pressure. liquid stream. 
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The two column sections. used for the short and long packed beds. were 

constructed from 101.6rom.I/DPerspex tube with a.wall thickness of 

6~35mm.Negligible wall. effects were present by keeping the ratio. 

of column. diameter .to particle diameter above 20, enabling glass 

ballotini of 5 rom nominal ~size . to be used •. Wire gauzes .attached 

to brass flanges at. both ends of each, column section, enabled the 

sections to be removed without. disturbing ,tbepacking •. These 

I gauzes also. prevented the.ballotini fluidising at high: fluid 

velocities. Leak.age .past. the. flanges,. w:hich occurred at moderate 

column pressures when ~erspex'flanges were used,· was overcome by 

connecting the flanges with tie rods as shown in Fig.6.3. 

The gas and liquid .. streams. entered the .packed bed .. through a 

distributor, .. based.on a. design used by. SAADA(60). The original work 

on ·this di$tributdr,by HELSBY.(32) indicated .. that. if a perforated 

plate was used of thickness .. greater. than. 4d , with holes greater 

than 4d apart;. d .. bei.ng. the', hole . diameter, ° then the' gas streams 

-----

emerge separately from ,the holes .and .. do.not intermix. Immediately 

above. the distributor a calming .section 0.2m in length' and identical 

in construction to.the test sections was sufficient to establish 

the fluia flow patterns. 

6.5 Details of the Gas-Liquid Hydrocyclone 

One of the most difficult problems in tracing part of a two phase 

system,. by other than radioactive means is the prevention. of 

fluctuations in the detector signal caused by the .presence of a 

second phase. This is par.ticularlytrue when .the.estimate of the 

tracer concentration depends on the Yariation in light intensity 

received by the detector. The apparatus chosen to give' complete 

separation of the phases prior to the detection equipment must 
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fulfil two conditions: 

(i) The equipment must have a linear response i.e. its 

output signal is linearly related to its input signal. 

(ii) The mean residence time of the separation equipment 

should be small in comparison with that of the packed 

bed system. 

When the pseudo two point measurement technique is used the input 

function to the separation equipment will obviously be different 

for the two bed lengths used. Since the Transfer Functions for all 

subsystems but that representing the test section, must be identical 

when different test bed sections are inserted then clearly (i) is a 

necessary condition. With regard to the second condition De,MAAL 

and VAN MAMEREN(77) found that.a mixer, of up to 10% of the bed 

volume in size, situated at the bed exit, had little effect on 

their results. However as OTTO and GESTRICH(54) pointed out when 

using an ideal mixer at the exit of their test section, this 

condition is relaxed if the response of the subsystem is known 

or can be eliminated. 

BRADLEY(6) has suggested that separation of a gas-liquid stream 

can be done quite easily using a hydrocyclone, although there 

seems -to be.no criteria by which the hydrocyclone diameter can be 

gauged. In their normal form of operation this diameter is 

governed by the particle size to be separated but in this 

application the bubble size is unknown. A review of commercial 

hydrocyclones by the author suggested that a 76 mm diameter 

cyclone might prove adequate for the range of gas and liquid flow 

rates under consideration. The remaining hydrocyclone parameters 

could then be estimated from relationships given by BRADLEY(6). 

A view of the hydrocyclone showing constructional details, together 

with the principle dimensions is given in Fig.6.4. A valve in the 

underflow, and the vortex breaker in the cone apex ensured that no 

air bubbles left with the liquid stream. The overflow could be 

moved vertically within the cyclone body and locked in a position 

which minimised the liquid carryover with the gas overflow. A skirt 

around the overflow greatly reduced the losses due to short circuit 

flow of liquid across the hydrocyclone roof. In the majority of 

experimental runs there was negligible liquid carryover but at the 

highest liquid and gas flow rates, the liquid loss in the overflow 
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was up to 7%. These losses had little effect on the tracer curves 

since the quantities of liquid in the overflow were very similar 

for both bed lengths and the tracer response curves were normalised 

prior to model parameter estimation. 

By manufacturing the cyclone body in Perspex, the base of the 

vortex could be seen easily during the experimental runs and 

maintained at a convenient fixed position by adjusting the valve 

in the underfloor. Although the hydrocyclone frequently required 

slight adjustments to counter a very slow cyclical variation 

in vortex height, the reproducibility exhibited by the tracer 

curves shown in Fig.6.5 indicates the accuracy possible with 

careful control. These normalised response curves were obtained 

with different initial tracer concentrations and therefore also 

illustrate the hydrocyclone's.linearity. A valuable insight into 

the separation efficiency to be expected from this hydrocyclone 

was obtained from the short study by LUCAS(48). 

6.6 The Tracer.• Analysis System  

The equipment required to obtain the dynamic response of the 

packed bed system, for a pulse of tracer injected into the liquid 

phase, is shown diagrammatically in Fig.6.6. The overall system 

can be conveniently subdivided into the injection, detection 

and recording subsystems. 

6.6.1 The Tracer Injection System  

The theoretical analysis required a reproducible tracer pulse to be 

injected near to the column inlet. With the two point technique the 

source term does not enter into the equations describing the system 

and hence the pulse need not be represented mathematically. It is 

sufficient that the forcing function varies from zero for a finite 

time in such a manner that the system dynamics are excited. 

The methods available for creating a pulse depend mainly on the 

nature of the fluid to be traced.. In gaseous systems direct injection 

is possible, using a solenoid valve arrangement of the tracer line. 

One advantage of this method is the ease with which the pulse length 

may be changed simply by varying the time the solenoid valve is 

open. Care must be taken however over the tracer expansion on entry 

into the gas feed due to the reduction in pressure. With liquid 

systems a large force would be required to inject sufficient liquid 

in a short time and also a pressure wave would be set up since the 
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liquid in the feed to the column would have to be accelerated to 

accommodate the volume of tracer introduced. This may destroy the 

fluid flow patterns within the packed bed system. 

The approach developed in this study and shown in Fig.6.7 was 

found to work well. Two three way valves were coupled by two 

equal lengths A and B of 19 mm diameter copper tube. A cylindrical 

brass section containing two removable 6.3mm screw plugs was 

inserted in leg A to allow the contents of leg A to be charged 

or discharged. Approximately 100 ml of tracer were placed in leg A 

whilst the column was operating on liquid passing through leg B. 

The two three-way valves were switched over simultaneously by high 

pressure air, controlled by two solenoid valves. This pushed the 

tracer out of leg A to replace the same volume of liquid trapped 

in leg B. The valves were quick acting because of their operation 

by high pressure air and produced negligible disturbance to the 

column's liquid supply by virtue of their sliding piston arrange-

ment for diverting the fluid streams. A microphone attached to the 

end of one valve picked up the impact of the piston within the 

valve hitting its end stop. This signal was taken to indicate tracer 

injection and via a transistor circuit the recording system was 

shorted to earth and automatic data logging initiated. The 

reprodUcibility of this form of injection system is shown in 

Fig.6.5. 

6.6.2 The Tracer Detection System  

The tracer detection system illustrated in Fig.6.6 consisted of a 

light source and a photomultiplier situated either side of a perspex 

tube through which the underflow from the hydrocyclone passed. A 

line filament bulb powered. by a 6V stabilised supply illuminated 

the perspex tube. Two ground glass diffuser plates were inserted 

between the light source and the narrow viewing slot to provide 

even illumination. This prevented variations in the photomultiplier 

output voltage due to any bulb vibration when the system was 

operating. To obtain good output voltage stability at fast recording 

rates -300V was applied. to the first stage of the photomultiplier. 

A separate E.H.T source. of -1200V powered the remaining stages. 

The output signal from the photomultiplier which varied from 1V to 

300mV was connected to one input of the multichannel data logger. 

• 
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Constructional details of the detector itself are given in Fig.6.8 

together with the principal dimensions. The detector consisted of 

a 30 mm O/D perspex tube surrounded by a light-tight aluminium box. 

A rectangular section containing a 25.4 mm x 2.54 mm slot was held 

perpendicular to the perspex tube such that at any instant the 

photomultiplier measured only the light passing through this cross-

sectional area. A light-tight brass housing connected the 

photomultiplier to the detector end plate. 

Lamberts Exponential Law for the absorption of monochromatic 

light in an homogeneous medium states that the light intensity I, 

is reduced by a constant factor k per unit depth of penetration 

such that: 

It = I exp
-kx  

where I = initial light intensity 

x = penetration depth 

This equation can be modified to determine the concentration of the 

medium by defining a molar absorption coefficient k' = k/C leading 

to the relationship often termed the Lambert-Beer Law: 

tn I
t 

= to I
o 
- k'xC 

 

(6.1) 

 

The photomultiplier output voltage, Vt  , is directly proportional 

to the incident light intensity It  and hence a plot of 2n Vt  vs C 

should be linear..For.the photomultiplier used it was necessary to 

limit the detector output voltage to a maximum of .1V to avoid any 

nonlinearities. This voltage will occur when the detector contains 

only water and can be achieved at numerous settings of the E.H.T. and 

low voltage supplies. By trial and errorthebest stability was 

obtained with the main E.H.T. at -1200V and the light source supply 

at 4.5V. The light intensity incident. on the Perspex tube was 

reduced to the desired level by inserting two exposed photographic 

plates in the cylindrical tube housing the light supply. 

The region over which the Lambert-Beer Law applied in this detector 

is shown in Fig.6.9. The maximum concentration that could be used 

was 24 x 10
-3 

kg.m
-3 

corresponding to a detector output voltage of 

approximately 240mV. 

• 
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Rearranging eq. 6.1 we have: 

C = k
v
o 

Tr; 

 

(6 .2) 

 

where V
o 

= base voltage i.e. water only passing through the 

detector 

V
t 

= voltage at any time t. 

Since the methods used in this study for estimating the models' 

parameters in effect only involve ratios of Laplace Transformed 

( 

concentrations, the k values for the responses at both measurement 
V 

points cancel out. Hence the ratio 241 o is sufficient to 
V
e 

represent the tracer concentration. 

6.6.3 The Tracer Recording System  

The output signal from the photomultiplier was connected to one 

channel of a multichannel Vidar magnetic tape Data Logger. 

Unfortunately towards the latter part of the experimental program, 

faults developed in the Data Logger and nearly 25% of the 

experimental runs recorded had to be discarded since they were 

impossible to read off the magnetic tape. 

The photomultiplier signal was periodically sampled at preset time 

intervals by an integrating digital voltmeter and the resultant 

voltage encoded into Binary Coded Decimal format and transferred 

to the tape. The sampling rate could be varied continuously between 

the limits of one reading every 5 secs and 25 readings per second. 

This sampling rate was. adjusted to suit the particular conditions 

of each experimental run and enabled the whole response curve to 

be recorded within 830 voltage-time measurements. Since each voltage 

was represented by a 12.character word, 9960 characters were 

recorded per. run. An end-of-record gap was automatically inserted 

after the 9960 characters had been recorded. Due to the high 

recording speed it was impossible to stop recording immediately after 

the 9960 characters had.been coded onto, the magnetic tape. Every 

experimental record was, therefore, followed by an unknown number 

of unwanted characters, until recording was stopped. The digital 

voltmeter integration period could be set to one of 1
2
/3, 16

2
/3 or 

166
2
/3 milliseconds. For each experimental run, the integration 

period was chosen so any fluid entering the 2.54 mm wide viewing 



103 

slot the instant the integration period started, remained within 

the slot for the whole of the integration period. Any fluid 

dispersion occurring within the viewing slot whilst the readings 

were taken was neglected. 

After several experimental runs were recorded a special record was 

inserted manually onto the tape to signify the end of the 

experimental data. This special record, consisting of 4 words with 

each word containing the characters 999999999999, was entered 

via the predata panel of the Data Logger shown in Fig.6.3. 

6.7 	Experimental Procedure to obtain the system response  

The procedure was the same for either length of bed. 

Once the desired packed bed section had been secured in its 

correct position between the tracer injection system and the tracer 

detection systems, and the gas.and liquid streams correctly routed 

via the three-way valves, a slight gas flow was started. Water was 

then introduced. slowly and,then both fluid flows adjusted to their 

desired levels. The valve in .the pipe leaving the tracer detector 

was continually adjusted such that the back pressure created'was 

sufficient to ensure the.liquid stream from the hydrocyclone passing 

to the detector was gas free. When the flow patterns had stablised, 

the liquid stream was diverted.by the solenoid.valves through the 

limb of the injection system. containing the dye tracer. From this 

instant the recording of the tracer curve by the detector and its 

storage on magnetic tape for subsequent analysis were fully 

automated. 

• 
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CHAPTER 7 ANALYSIS AND DISCUSSION OF THE EXPERIMENTAL RESULTS  

7.1 Summary  

The experimental results from the dynamic response of the packed 

bed system are analysed through Transfer Functions for the Basic 

Axially Dispersed Plug Flow Model, the Liquid Stagnancy Model and 

the Split Flow Model. The Dispersion Number results from the simple 

Axially Dispersed Plug Flow Model are interpreted in the context 

of the liquid distribution model described by SAADA(60) and 

EISENKLAM and FORD(20). 

7.2 Liquid Only Experiments Analysed by Axially Dispersed Plug Flow Model  

A number of runs were made with only the liquid phase present. 

This enabled the reproducibility of the injection/detection 

equipment to be checked, in particular the linearity of the 

hydrocyclone system. Details of the results are tabulated in 

Appendix E and shown in Fig.7.1. Given in this figure for comparison 

are the correlations derived by the author from the data summarised 

by GUNN(28) and the correlation of CHUNG and WEN(12) namely: 

e Pe = 0.2 + 0.011 Re
L 

  

(7.1) 

  

• 

where Pe = The system Peclet Number 

e = bed voidage. 

U 
D
L 

 

In terms of the Dispersion Number, bed voidage and particle diameter 

used in this work eq.7.1 becomes: 

N
D
1 
 = 93.82 + 5.16 Re

0.48 

 

(7.2) 

 

The standard deviation of the CHUNG and WEN(12) correlation was 

-46% based on 482 data points. The present liquid phase results are 

therefore well within the limits of this correlation. The 

reproducibility of the results has already been discussed in 

Section 6.5. The response curves for both bed lengths are shown 

in Fig.6.5 for the 5 repeat runs at ReL  = 108.5. For all the single 

phase liquid results the theoretical and experimental mean residence 

times agreed to within 3%. 

• 
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7.3 	Variation in Liquid Phase Response with Gas Rate  

The reproducibility of the system response when there are two 

phases present is illustrated in Fig.7.2 for liquid and gas 

Reynolds Numbers of 120.3 and 31.2 respectively. Comparison 

with Fig.6.5 for the liquid only responses shows a slight 

decrease in reproducibility when the second phase is present 

although the Dispersion Number for both runs as given in 

Appendix F is approximately the same at 0.015. The effect on the 

system response, at a constant liquid Reynolds Number of 68.9, 

due to varying the gas Reynolds Number from 30.4 to 155.2 is 

shown in Fig.7.3. The change in the liquid holdup, reflected 

in the reduction in the overall mean residence time, can be 

seen clearly. Little however can be inferred,from a visual 

inspection of the spread of each response curve, concerning the 

effect on the system Dispersion Number of varying the gas rate. 

	

7.4 	Analysis by the Basic Axially Dispersed Plug Flow Model  

The Dispersion Number and liquid holdup results from the analysis 

of the system responses by the Basic Axially Dispersed Plug Flow 

Model are given in Appendix F. The Dispersion Number is evaluated 

by the four methods developed in Chapter 5.2. In almost every run 

the liquid holdup was.the same from all four methods and only the 

average value is listed. The Dispersion Number results are shown 

in Fig.7.4 for all experimental runs. 

7.4.1 Dispersion Numbers from the Basic Model  

At low liquid flow rates high Dispersion Numbers are encountered 

particularly for high gas Reynolds Numbers. For liquid Reynolds 

Numbers below 61.4 the gas flow rate has a significant effect on 

the Dispersion Number. As the liquid rate increases the Dispersion 

Numbers tend towards the values shown in Fig.7.1 and those reported 

by CHUNG and WEN(12) for single phase liquid flow. The effect of 

gas rate diminishes as the liquid Reynolds Number increases. At 

any given gas Reynolds Number there is a tendency for the Dispersion 

Number to decrease with increasing liquid Reynolds Number. Again 

this effect is most apparent at the lowest liquid flowrates. In 

common with most other studies of phenomena in two phase flow in 

packed beds the Dispersion results were correlated against the 

system variables of gas and liquid Reynolds Numbers assuming a 

functional relationship of the form: 
• 
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• 

The regression program used to correlate the data rejected any 

variable which was not significant at the 5% level. Since the liquid 

and gas velocities within the packed bed itself have a direct 

influence on the fluid intermixing, the resultS were fitted 

using interstitial Reynolds Numbers as well as the more usual 

superficial Reynolds Numbers. 

The interstitial Reynolds Numbers are defined in terms of the 

superficial Reynolds Numbers by: 

I
Re
L 	

Re
L and 

I
Re
G 

= 
 Re

G 
01, 

	e(1-( 
 L
) 

 

where e = bed voidage and 	is the average liquid holdup. 

The coefficients obtained from fitting eq. 7.3 to all the 

experimental results are given in Table 7.1 below. 

Reynolds 
Numbers 

a b 
- 

c d/F 

95% Confid- 
ence limits 

% Fit 
b c 

Superficial. 

Interstitial 

0.874 

0.407 

-0.957 

-1.1 

rejected 

0.504 

72 

72 

±0.202 

±0.21 

- 

±0.17 

55.7 

61.9 

Table 7.1 Regression of all Dispersion Number Results 

For the correlation based on superficial Reynolds Numbers the gas 

rate has no significant effect and is rejected. A better fit is 

obtained with the interstitial Reynolds Numbers and the dependence 

on gas rate is retained. The % fit stated in Table 1;1 is-the ratio 

of the reduction date to regression to the total variance. The 

interstitial correlation is shown in Fig.7.5 and the main area 

where the fit is relatively poor is for the lower liquid Reynolds 

Number. 

The scatter in the Dispersion Number shown in Fig.7.4 is replaced 

by a distinct grouping of the results if the points are distinguished 

on the basis of the liquid distribution model developed by 

• 



111 

•005 
	•01 
	

•015 
	•02 	•025 	•03 

	
035 	•04 
	•045 

Experimental Dispersion Number ND  

CORRELATION FOR ALL DISPERSION NUMBER RESULTS BASED QN 

INTERSTITIAL REYNOLDS NUMBERS 

FIG 7.5 

• 



• 
o single phase region 
0 boundary 
• two phase 

• 0 
▪ •02 

Ja
qu

in
N

  u
o!

m
ad

su
  

• 01 

-03 

.04 
• • • 

• 

• 
• 

0 0 
spo 	()%f 	gi 

P r 
OCF 0 0 Or( 

0 0 0 	 0 ° 0 

• • 

0 	0 	 • 
fog,/ 	0 0 • • 	• 

• • • • 

• • 

0 	3 
	

60 
	

90 
	

120 
	

150 
	

180 
	

210 
	

240 
	

270 
	

300 

Gas Reynolds Number .Rec  IOW 



113 

EISENKLAM and FORD(20) and SAADA(60). Fig.7.6 shows the single 

phase pore flow results separated from the two phase pore flow 

points by a band of values termed the boundary region. In the 

single phase pore flow region the predominant flow regime is 

one in which the gas and liquid flow through separate pores. The 

gas phase should therefore have little influence on the passage 

of liquid through the packed bed. At the other extreme of well 

established two phase pore flow, the gas and liquid flow through 

the same pores. In this region the gas phase will affect the 

liquid dispersion. Between these limits there will be a transition 

region in which the predominant mode of flow changes. The boundary 

curve between the two regions identified by SAADA(60) was extended 

in section 2.2.3 into a boundary region as shown in Fig.2.6. 

Separation of the Dispersion results into the three regions shown 

in Fig.7.6 was on the basis of the broad boundary region. 

From Fig.7.6 it is seen that the Dispersion Numbers in the single 

phase pore flow region are lower than those in the other regions 

and very similar to the values obtained during the single phase 

liquid studies. These results are in agreement. with a model in 

which the liquid is unaffected by the presence of a gas phase. 

The highest Dispersion Numbers are.in the two phase pore flow region 

where the presence of a gas phase can have a significant effect on 

the liquid phase. This is particularly true at low liquid rates and 

high gas rates when the difference in velocities between the two 

phases is largest. Even in two phase pore flow however the Dispersion 

Numbers tend towards the liquid only values at the highest liquid 

Reynolds Numbers. The values of the Dispersion Number in the 

boundary region are consistent with a transition from one mode of 

flow to the other. 

Correlations of the same functional. form as before were fitted to 

the results in the three regions based on interstitial Reynolds 

Numbers. Details of the coefficients are given in Table 7.2 below. 

• 
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. . 
95% Confidence 

Reynolds a b c d/F 
Limits % Fit 

Numbers a b 

Single phase 
region 

.645 -.675 rejected 18 ±0.419 - 40.2 

Boundary region .246 -.482 rejected 30 ±0.211 42.9 

Two phase 
region 

.571 -2.17 1.36 22 ±0.486 ±0.554 81.4 

. 

Table 7.2. Separate Correlations for Dispersion Number in 
each Region 

Table 7.2 shows that only in the two phase pore flow region is any 

dependency retained on the gas Reynolds Numbers. 

For the 95% confidence limits given in Table 7.2 there is a 

significant difference between the coefficients for the two phase 

region and those in the other two regions. To test whether. three 

correlations rather than a single correlation should be fitted to 

the data, the sum of squares due to regression for these two 

situations were compared as shown in Table 7.3. 

D/F MS F 

SS due 	(3 regressions) 	1347.076 9 

SS due 	(1 regression) 	1344.6258 3 

Difference 	2.4502 6 .4084 5.65 

Error 	 4.6242 64 .0722 

Total 	 1351.7016 73 

Table 7.3 Comparison of separate regressions for each region 
vs single regression 

Since the F ratio is significant at the 1% level it is concluded 

that three regressions should be used instead of one. 

A plot of experimental vs predicted Dispersion numbers using 

separate correlations for each region is given in Fig.7.7. 

• 
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• 

7.4.2 Liquid Holdup from the Basic Model  

The liquid holdup results are shown in Fig.7.8 for all experimental 

runs. There is a strong decrease in liquid holdup with increasing 

gas Reynolds Numbers at any given liquid Reynolds Number. However 

at high gas rates there is a tendency for the liquid holdup to 

reach a constant value of about 0.4 irrespective of the liquid 

Reynolds Number. At any given gas Reynolds Number the liquid holdup 

increases with liquid Reynolds Number. The results were fitted to 

the same.form of functional relationship as used for the Dispersion 
• 	 Number: 

L 
= a ReLl, ")  Re

G 

 

(7.4) 

 

The coefficients foreq.7.4 are tabulated in Table 7.4 and the 

• correlation plotted in Fig.7.9. 

a b c d/F 
95% confidence limits 

% Fit 
b c 

1.33 0.0752 -0.272 72 -1-.0252 ±.0145 95.6 

. Table 7.4 Coefficients for all liquid holdup results , 

Figure 7.10 shows the same correlation for liquid holdup as Fig.7.9 

except that the results are now distinguished on the basis of the 

prevailing flow regime. As in the case of the Dispersion Numbers the 

liquid holdup results separate out into groups. This effect is 

particularly apparent in the two phase flow regime which is 

dharacterised by low liquid holdups in the range 0.37 to 

approximately 0.49. The flow regimes pass from predominantly single 

phase pore flow through the boundary region towards two phase pore 

flow as the liquid holdup decreases from unity. 

A comparison of three separate regressions with a single regression 

was made on the liquid holdup results similar to the Dispersion 

Number analysis. In this instance however the F ratio was not 

significant and only the single correlation for all data points has 

been retained. 

A functional form similar to that used by SAADA(60) namely 

(1) 1,  = a (ReL/Red
b 

was tried but rejected due to the poor fit obtained. 
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Experimental holdup 

CORRELATION OF ALL LIQUID HOLDUP RESULTS 

FIG 7.9 
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7.5 Analysis by the Liquid Stagnancy Model  

The parameters of the liquid stagnancy model are listed in 

Appendix G. This model is characterised by three parameters but 

a search was also made to determine the liquid holdup. Since the 

liquid holdup results obtained from this model by Transfer Function 

minimisation are almost identical to those obtained from the 

Dispersion model they will not be discussed further. The Transfer 

Function for this model given in eq. 4.20 can be rearranged as: 

[ -2T*pm0L 
• F(p) = exP 1 + (1+4r*p0LaND) 

In this form it can be seen that there is no change in the numerical 

value of F(p) with changes in the Dispersion Number, for values of 

N
D 
[10-16] due to the limits of computer precision. All values of 

this order or less are recorded in Appendix G as zero. For the three 

runs at which y = 1, the value obtained for the Number of Transfer 

Units is immaterial since there is no stagnant. region with which to 

exchange fluid. The results suggest that with the parameters NT  and y 

it is quite adequate to treat the flowing liquid phase as a plug flow 

region i.e. ND  = 0. 

There are no discernable trends in the Number of Transfer Units, as 

a fundtion of the gas. or liquid Reynolds Numbers. The majority of 

the values obtained for the liquid flow fraction, y, are within a 

relatively narrow range of 0.83 to 0.92 but again it is not possible 

to deduce a correlation with the gas and liquid flow rates. In 

contrast with the simpler 1 parameter basic axially dispersed plug 

flow model results, there is no simplification if the results are 

separated into the single phase pore flow and two phase pore flow 

regions. 

It is concluded therefore that this model is not suitable for 

representing this two-phase system. 

7.6 	Analysis by the split flow model without stream interaction  

The parameters of the split flow model are listed in Appendix H. 

As in the case of the liquid stagnancy model, the liquid holdup was 

also determined from the fitting procedure. The holdup results will not 

be discussed further since they are the same as those obtained from 

the Basic Dispersion Model. 
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It has not proved possible to obtain a satisfactory correlation 

of the model's parameters with either the liquid or gas flow rates. 

The liquid distribution model does not provide any insight into the 

trend of this model's parameters. As in the case of the stagnancy model, 

it must be concluded that this model is unsuitable for correlating 

the experimental residence time distribution data of this system. 

7.7 	Comparison with the results of previous studies  

Compared with the considerable literature on dispersion in packed 

beds for single phase flow there are few two phase flow results 

published. It is convenient to separate. those liquid mixing studies 

that have been reported for gas-liquid-particle operations on the 

basis of whether the bed was under trickle flow or bubble flow 

conditions. In trickle flow the liquid phase flows downwards and 

the continuous gas phase moves in. either cocurrent or countercurrent 

flow. During bubble flow operation the gaseous phase moves upwards 

as discrete bubbles and the liquid phase may be either co- or counter-

current. The majority of the two phase studies found have been for 

countercurrent trickle flow conditions. 

7.7.1 Liquid Dispersion Studies under cocurrent trickle flow conditions  

The studies of SCHOENEMAN(65) in a trickle flow reactor used for 

butyndiol synthesis reported a residence time distribution approxi-

mating to 4 mixers. The residence time distribution in the 16m high 

and 800mm diameter reactor, packed. with 4mm diameter silica pellets 

was unaffected by variations in the gas.and liquid velocities for 

liquid velocities in the range 5 x 10
4 
to 3 x 10

3 
ms
-1

. LAPIDUS(42) 

presented a few results for air water downward flow in a column 

51mm diameter and 0.9Im in height packed with 8.5mm glass beads. The 

results were taken to indicate a close approximation to plug flow 

for the liquid phase. 

GLASER and LICHTENSTEIN(25) measured their residence time 

distributions in downward gas/liquid flow in columns of 19, 50 and 

300 mm diameter containing 1.6 mm cylindrical packings. The fluid 

media were CaC1
2 

solution and air in one set of experiments and 

kerosene and hydrogen in another. They characterised their results 

by variability defined as the standard deviation of the residence 

time divided by the average residence time. 

• 



122 

For liquid flow rates ranging from 0.13 to 13 kg s
-1

m
2 
the 

bulk flow variability was approximately constant at about 0.2. 

At liquid rates above 4 kg s
-1

m
2 
the variability due to diffusion 

in and out of stagnant pools disappeared. (The current study covers 

a liquid range of 8 to 28 kg s
-1

m
-2

). 

7.7.2 Liquid Dispersion Studies under Cocurrent Bubble flow conditions  

SCHOENEMAN(65) reported qualitatively that the liquid residence 

time distribution for cocurrent upward bubble flow was narrower 

than that observed in trickle flow. WEBER(78) studied dispersion for 

air and water in upward cocurrent flow in a lm high column of 50mm 

diameter. 

For 5mm spheres the correlation given by WEBER(78) reduces to 

- 	0 
ND  = 0.11

I
Re
L
0.96 

 I
Re
G
.48 
 

in terms of the present study. Comparison with the coefficients 

listed in Table 7.1 shows similar dependencies on the gas and 

liquid Reynolds Numbers. Overall, however, the correlation predicts 

smaller values for the Dispersion coefficient than found in this 

study. 

7.7.3 Liquid Dispersion studies under Countercurrent Flow Conditions  

KRAMERS and ALBERDA(41) concluded that axial mixing increased with 

increasing gas.flow rate and decreasing. liquid. rate, as found in 

this study. The results were not however adequately represented by 

the basic dispersion model. DUNN et al(18) also found. the liquid 

mixing to increase with decreasing liquid rate but there was no gas 

rate effect over the range of flowrates studied. Details of the 

experimental systems for studies reported in this section. are 

tabulated in Table 7.5. The reproducibility of the data was poor and 

it was proposed from these results that the Dispersion Number was 
- 

proportional to Re
L 
0.5 

 

HOOGENDORN and LIPS(34) found a representation based on the basic 

Dispersion model using moments analysis was not possible due to the 

significant tailing effect. A negligible gas rate effect was found 

but there was a slight liquid rate effect on an approximately 

plug flow liquid phase. 

• 
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Study 
Liquid 
Rates 

kg m-2s-1 

Gas Rates 
. 	_2l-.1 
kg 

m 	s  
 

Column 
Dia 
mm 

Column 
Ht 
m 

Particle 
size 
mm 

DUNN(18) 2.71-14.9 0 - 1.49 610 1.82 2.54 Rings 

KRAMERS(41) - - 150 0.66 10 Rings 

HOOGENDORN(34) 2.13-5.18 .009-.09 410 3.04 12.7 Rings 

De WAAL(77) 1.38-22.2 0-1.38 305 3.04 25.4 Rings 

SATER(63) .81-47.5 - 101.6 3.65 12.7 Rings 

FURZER(23) 1.35-9.05 0-0.76 50.8 1.52 6.35 Rings 

THIS WORK 7.9-27.7 .09-1.02 101.6 .835 5 Spheres 

Table 7.5 Experimental conditions for countercurrent dispersion 
studies 

De WAAL and VAN MAMEREN(77) in contrast found no tailing and decided 

that the effect of liquid residence time distribution can be 

neglected in tall columns. 

SATER and LEVENSPIEL(63) correlated their Dispersion results as a 

function of the liqUid Reynolds Number. In terms of the present 

study their correlation becomes: 

N
D 

= 0.79 ReL 
0.703 

 

The 95% confidence limit on the exponent was ±0.238. 

In a later study FURZER and MICHELL(23).found.the Dispersion model 

correlated their data well. The scatter reported by other workers, was 

attributed to the errors associated with the evaluation of the 

second moments of the response curve when tailing was present. 

Their correlation, based on interstitial Reynolds Numbers, reduces 

to the following in terms of the present study: 

N
D 

= 0.149
I
Re
L 
0.5 

During bubble flow conditions HOOGENDORN and LIPS(34) found the 

Dispersion model to be a good fit even though the Dispersion 

parameter was obtained using the second moment. The axial dispersion 

was largely independent of liquid flow rate and only slightly 

dependent on gas rate. Dispersion coefficients an. order of magnitude 

greater than those obtained by WEBER(78) were reported. 

• 
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To summarise it seems clear that in all modes of two-phase flow, 

there is little agreement as to 

(i) the suitability of the basic Dispersion model for 

characterising liquid mixing and 

(ii) the effect of the gas and liquid flowrates on the 

liquid residence time distribution. 

• 
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CHAPTER 8 	CONCLUSIONS  

The following conclusions can be drawn from the theoretical and 

experimental studies undertaken in this work. 

1 The liquid Dispersion results from the Axially Dispersed plug flow 

model are in agreement with the qualitative predictions of the 

liquid distribution model. 

2 The Dispersion Numbers characterising the single phase.pore flow 

regime are similar. in magnitude to the values obtained when liquid 

alone flows through the packed bed and are not significantly 

influenced by variations in gas rate. 

3 Dispersion Numbers in the two phase pore flow region are 

substantially higher than those in the single phase region, 

particularly at high'gas to liquid ratios. In this region 

dispersion increases with gas Reynolds Number. 

4 The Dispersion Numbers in the three regions can be correlated by: 

N
D 
 = 0.645 IReL

0.675 	
for the single phase region 

N
D 

= 0.246 
I
Re
-0.482 	

for the boundary region 

N
D 	

0.571 IReL
-2.17 

IG 
Re
1.36 

for the two phase region 

5 If all the dispersion data are taken together, to facilitate 

comparisons with the results of previous studies, they can be correlated 

by: 

N
D 

= 0.407
I  ReL

1.1 
IG  
Re°

.504 

6 The parameters of the stagnancy and split flow models cannot be 

correlated satisfactorily with gas and liquid Reynolds Numbers. 

These 3 parameter models are considered too complex for resolution 

by the experimental data available. 

7 The liquid holdup data for all regions can be taken together and 

correlated by: 

(1)
L 

= 1.33 Re
0.0752 

Re
-0.272 

• 
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8 The use of noise weighting functions gives consistent values for 

the Dispersion Number in the axially dispersed plug flow model when 

1st and higher order modified moments are used. 

9 The series solution technique will permit easier solutions to be 

obtained for the Transfer Functions of more complex flow models. 

10 The series solution technique, applied to the problem of compressible 

flow in a packed bed, has shown that substantial errors in estimating 

the fluid Dispersion Number can arise if the commonly made assumption 

of fluid incompressibility is inappropriate. 
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APPENDIX A - APPLICATION OF THE SERIES SOLUTION TECHNIQUE IN  
DETERMINING THE TRANSFER FUNCTION FOR ISOTHERMAL  
FLOW OF A COMPRESSIBLE GAS IN A PACKED BED  

In the past, solutions for gas flow within a packed bed have been 

obtained by considering the fluid within the system to be 

incompressible. Whilst this assumption is valid for the liquid systems 

it has little justification in packed bed systems when the gaseous 

phase can experience a considerable pressure drop. 

The new technique for evaluating Transfer Functions outlined in 

eq.4.31 to eq.4.34 of the main text will be applied in this Appendix 

to analyse a system consisting of isothermal gas flow through a 

packed bed. The difficulties in determining accurately the true 

Dispersion Number for a compressible gaseous phase are clearly 

demonstrated. 

For this system an unsteady state mass balance yields 

9C + - 221-1  - D a2C  - 29- .'9DL + 25- u — + 	 = 0 	(A. 1) 
9z 	C  az 	DL TZZ 	az 	. Bt 	

... 

BZ 

For constant fluid velocity and dispersion coefficient eq.A.1 reduces 

to the incompressible dispersion eq.4.2 of the main text. 

Setting x = z/L as in the incompressible case the system is limited by 

0 s x S 1. 

In the subsequent analysis the subscripts 0 and 1 refer to conditions 

at the upstream and downstream boundaries respectively. 

The equation of continuity yields: 

pu=p
o  uo 

 = p
1 ul 	

(A.2) 

For isothermal flow: 

P P = P 

	

= o 	1 

	

p
Po 	1 

 

(A. 3) 

 

where P and p are the average fluid pressure and density at any axial 

position x. 

From eq.A.2 and eq.A.3 it follows directly that: 

P 
u = o u 

13- o 

 

(A.4) 

 

• 
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The fluid pressure P can be expressed as a function of the dimensionless 

distance x from the upstream system boundary by the general expression: 

P
2 

= P
o
2 

+ k x 
1 

 

(A.5)  

 

where k
1 
is a constant depending on the mass flow rate, fluid properties 

and permeability of the porous mass. This linear dependence of the 

square of the pressure is applicable for isothermal flow at all subsonic 

velocities. 

Setting B = 
k
1/P

o
2 

eq.4.5 can be written 

P = P
o 
(1 + Bx) 

 

(A.6)  

 

For a convergent series expansion of P by the Binomial Theorem, Bx must 

be limited such that -1 < Bx < 1. On physical considerations P will 

always be less than Po  and greater than zero imposing the limits 

-1 < Bx < O. 

Combining eq.A.4 and eq.A.6 we obtain: 

u = u
o 

(1 + Bx) -1/2 
	 (A.7) 

Eq. A.1 allows for a variation in the Dispersion Coefficient with axial 

position. 

The Disperiion within any system at a particular Reynolds Number or 

mass flow rate is characterised by a particular value of the Dispersion 

Number. Since a constant mass rate may be achieved at various fluid 

velocities by varying the system pressure it is argued that the 

Dispersion coefficient must also vary with the fluid velocity. 

Thus 
D
L = 

DLo = constant is a reasonable assumption for a first 
uL 	u

o
L 

approximation. 

-La 
Then D

L 
= D

Lo 
(1 + Bx) 

 

(A.8) 

 

Substituting for DL  and u in eq. A.1, differentiating, taking Laplace 

transforms and dividing by uo/L we obtain 
2-  

N
Do 

(1+Bx) d 
c 	(1+Bx+B/2 N

Do 
d
dx 

) ---+ (B/2 - (1+Bx)
3/2 

T
o
p) 	= 0 

a 

dx   (A.9) 

where N
Do 	

Lo and T
o 
= 
L
/u
o 

u
o
L 

• 
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The Dispersion Number NDo 
 and system mean residence time T

o 
would 

alone characterise the system if it were treated incompressibly 

i.e. B = 0. 

Eq. A.9 can be written in the general form: 

2- 
dE + R(x) — + S(x)E =

d 
	0 

dx 
C

x
2 

 

(A.10) 

 

By inspection R(x) and a(x) are analytic at all x except when Bx = -1, 

which is not a feasible point since Bx > -1 as discussed previously. 

Expanding (1 + Bx)3 ./2  , up to terms in (Bx)
5 

2 	3 	3 	 3 
(1+Bx)3/ = 1 + /2 Bx + /8 (Bx)2 

	1  
- 1/16 (Bx)

3 
 .+ /128 (Bx)

4 

- 
3
/256 (Bx)

5 + 

 

(A . 11) 

 

From eq.4.31 and 4.32 of the main text we have : 

N 
_ N 	N  
C = L 

	r 
N xk 	de = 

	k x k-1 d
2 
 C = L k(k-1)akx

k-2 
... (A.12) 

	

; d3c 	1 a. 	, 
o 

ak 	
1 k 	dx

2 2 

On substitution in eq. A.9 (dropping the o subscript for convenience) 

we obtain : 

B N 	N 
ND  1 k (k-1) akx

k-2 
+ BND  / k (k-1) akx

k-1 
- (1+y ND) 

Nr 
 ka_x

k_i 
 - B 

N

r lc 
Lka.x

k  

D 2  - 2 	 1 k  1 

N N 	N 	N 
1 	7 

+ (I; - TP) / akxk  - 3/2 BT/3 / a xk+1  - 
3/8 8211) akkk+2 

+1
1 T
6 	1.• 

akxk+3 

o o k 

	

	0 	0 

N 
i'  4 	' 3 

- 3/128 B4  Tp 1 a
k  x

lvi.  + 
256  B5 

Tp T i.. 
L akx

k+5 
 = 0 

	

0 	0 

From eq. 4.34 of the main text the system Transfer Function F(p) is 

given by: 
a 

	

F(p) = 1 + 1 bk 	where b
k 
= ka

o 
1 

Each series in eq. A.13 can be rearranged into a more suitable computational 

form, as a series: N-1 

6 
X Ka

r
x
k 

+ remaining terms 

where 	K = K(k, ND
, tp, B) 

r = r(k) 

(A.13)  

(A.14)  

• 
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For example the series ND  I k(k-1)akx
k-2 

can be written as: 
2 

N-1 
N
D 

I (k+2)(k+l)a,k+2 x
k 

+ N
D 
 [2a2+6a3x+12a4x2+20a5x3+30a6x4+42a7x5  

6 

Setting all the series terms in eq.A.13 in this form and collecting 
terms we obtain: 

N-1 
[N

D
(k+2)(k+l)a.x+2 

 + ( c+1)(BN
D(k-1/2) -1)ak+1 - B(k-1/2+Tp)a

k  
6 

3 	3 2 	'3 
- Papa_ - - B Tna_ 	+ 13- 	Tim. 	

3/128 B4
Tpak_4+

3
/256 B5 T pa_ _ xk - 

2 	k-1 8 	k-2 	/16 " K-3 - 	 -k-5 

+ remaining terms = 0 	 (A.15) 

The remaining terms will consist of those terms outside the summation 

range. However it will only be necessary to deal with these terms in 

powers of x/  for 0 4 j < 5 in addition to those given by eq. A.15. 

Thus equating coefficients of powers of x to zero:- 

Terms in x
o 

- (1 + 2 ND) a1  + 2NDa2 + (B/2 - Tp)a
o 

= 0 

For a
o 
non zero we define b

i 
= 
a
i/a

o 

i.e. (1 + B/2 N
D
) b

1 
- 2N

D
b
2 

= B/ -Tp 

Terms in x 

-(
B
/2+Tp)b

1 
 + (BN

D
-2)b

2 
+ 6N

D
b
3 

= 
3
/2 Tp B 

Terms:. in x
2 

  

  

  

-3/2tpBb1  - (
3
/2 B+rp)b

2 
+ (

9
/2 BN

D
-3)b

3 	D 
+ 12N b

4  =
3
/8 TpB

2
... (A.18) 

Terms in x
3 

3 
-TpB

2 
 b
1
+
3 
 /2TpBb

2
+(
5
/2B+Tp)b

3
-(10NDB-4)b

4
-20N

D
b
5 
= 
1
/16TpB

3
... (A.19) 

Terms in x
4 

35 1/16TpB
3
bi-

3
/8TpB

2
b2-

3
/2TpBb3 - (

7
/2B+Tp)b4+(-1-END-5)b5+30NDbe,  

- 3 B4  
128 tp  

 

(A.20) 

 

-N(N+1)a_
-N+1 x

-11 
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Terms in x
5 

128 TpB4b
1
-
1
/16TpB

3
b
2
+
3
/8TpB

2
b
3
+
3
/2TpBb

4
+(
9
/2B+Tp)b

5
-(27BN

D
-6)b

6 

-42N
D
b
7 

= 
3
/256 TABS 

 

(A.21) 

 

The general series eq. A.15 can also be divided by ao  to yield bi  

coefficients. At the upper summation limit, k=N-1, the largest 

coefficient will be b
N 

since the first term in eq.A.15 is cancelled 

out by the term - (N+1)NaN+1  which is a'remainder term from the first 

term in eq.A.13. 

We therefore have N coefficients to evaluate from N equations 

obtained by equating powers of x
k 
to zero for 0 .,k 5 N-1. 

This set of linear equations in b; eqs. A.15 to A.21 may be concisely 

written as E. b = S 	 (A.22) — — 

where E is the square N X N coefficient matrix 

and S contains the elements of the forcing . vector and 

S = 0 for 	i < N-1 

This set of equations was successfully solved by Gaussian Elimination 

with row pivoting on the row with the largest magnitude leading element. 

Reduction to Plug Flow Transfer Function when ND  = B = 0  

Equations A.16 to A.19 become 

b1 = -Tp 

Tpbi  + 2b2  = 0 

Tpb2  + 3b2  = 0 

Tpb3  + 4b4  = 0 

Solving these equationswefind: 

(12) 
2 
. b 	(12)

3 
. b 	(12)

4 

bl = -Tp ; b2 = 2 	' 3 	2.3 	' 4 	2.3.4 

Using equation A.14 then 

(.1.2)2 
	

(IP)3 + (TP).4  F(p) = 1 - Tp + 
2 	2.3 	2.3.4 

F(p) = exp [-Tp) i.e. plug flow Transfer Function. 

• 
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Value of the Transfer Function for p = 0 

From the definition of the System Transfer Function eq. 4.3 we have: 

F(p) 	f: Ci(t)e pt
dt 

  

(A.23)  

  

Ico C (t)e
-pt

dt 
0 ° 

   

ro 
F(0) = J 0  cl(t)dt 

   

(A.24)  

   

 

Jo Co(t)dt 

    

The response curves at the two measurement points are related by a 

mass balance on the tracer. 

If V
o 

and V
1 

are the volumetric flow rates at the two measurement 

points then q the quantity of tracer in the system is given by: 

r= 
q = Vo I Co 	

re* 
(t)dt = V1  Jo  Ci(t)dt 

o  

Hence F(o) = V o 
V1 

 

(A.25)  

 

Thus the Transfer Function as defined only has a value of unity at p = 0 

for systems in which the volumetric flow rate remains constant. 

For isothermal flow Vo = Pl/B
o 

= (1 + B) 
V
1 

F(o) = (1 	B)
;2  

 

(A.26)  

 

The effect of pressure drop as represented by B, on the plug flow 

Transfer Function is shown in Fig.A.l. For all values of B 0 0 there 

is a non unity intercept at Tp = 0 which obeys eq.A.26. This effect has 

been removed in Fig.A.2 by normalising each curve such that for any B 

F(o) =1.0. It can be seen that for any given Tip the Transfer Function 

increases as the pressure drop is increased. This is the same effect 

as occurs in an incompressible flow system when the system Dispersion 

Number is increased. 

• 
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Thus a system, which when treated incompressibly is characterised by 

a particular Dispersion Number, could in fact be a plug flow system 

with a certain pressure drop. Since this extreme case does not exist 

in reality, the more realistic case of pressure drop in systems where 

some fluid dispersion occurs is shown in Fig.A.3. 

The combined effect of low dispersion and a fluid pressure drop is 

seen to be equivalent to a system exhibiting a higher Dispersion 

Number. 

For a particular pressure drop, the behaviour of the System Transfer 

Function as the System Dispersion Number is increased, is identical 

,to that found in incompressible systems, except for the displacement 

due to the pressure drop. This effect is illustrated in Fig.A.4. 

The effect of pressure drop on the system response is in accord with 

the following qualitative assessment of the passage of a packet of 

tracer through a compressible system. As the fluid pressure decreases 

the tracer packet will expand giving an apparent dispersive effect. 

This will. be in addition to the usual processes, e.g. diffusion and 

flow splitting around particles, which together are often characterised 

by a Dispersion coefficient. 

For a compressible system the term Top, involving the incompressible 

mean residence time T
o
, becomes a system parameter. The relationship 

between the compressible mean residence time To  and To  is obtained 

from 

dt = L dx — and u = u (1 + Bx)-1/2  

Thus T
c 

= 	
L 	fl 	-1/2 — 	(1 + Bx) dx 
0 0 

Tc  = 
2
/3 B{(1 + B)

3/2 
- 1 T

o 

  

(A.27) 

  

The variation in the mean residence time with pressure drop B is 

shown in Fig.A.5. 
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APPENDIX B DETERMINATION OF THE NOISE WEIGHTING FUNCTIONS  

To determine the optimum value of the Laplace Transform parameter for 

methods 1 and 2, the noise weighting functions Ei(t) at the two 

measurement points must be evaluated. 

From eq.5.22 of the main text, the error AND  in the Dispersion Number 

is related to the noise v (t) and the noise weighting function Ei
(t) by: 

co 
AN
D 
= 'o 	E

i
(t) dt 

 

(B.1)  

 

To determine the weighting function at any time t = T, we consider the 

effect on the Dispersion Number when noise occurs only at time T. 

For noise at time T only we can express vi(t) by 

v (t) = A.6 (tom) 

 

(B.2)  

 

A will be small since the noise is assumed small in comparison with the 

recorded tracer concentration c
i
(t). 

Using the properties of the delta function that: 

6(t-T) =0 for t T 

6(t-T) = 1 for t = T 

  

(B.3)  

  

CO 

     

and f 6(t - T) Ei  (t)dt = E (T) 
.o 

   

we have AND  = 1(T) 

or E.(T) = 
AN
D 

   

(B.4)  

   

 

A 

    

Thus the noise weighting function at time T is the ratio of the error in 

the Dispersion Number due to noise at time T, to the noise itself. 

B.1 Weighting functions at the 1st measurement point i = 0  

The response at the 2nd measurement point i = 1 is assumed error free. 

Thus eC
o t 
= C

o  vo 

and C = C 
el tl 

 

(B.5)  

(B.6)  

 

 

where the presubscripts e and t denote the error and true values 

of the tracer concentration respectively. 

If the response curves are assumed to be normalised such that 

4: tC dt = 1 	 (B.7) 

• 
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then the normalising ratio for the 1st measurement point will be 1 + A 

ez 
In general therefore t

Mo- = 	
t
C
O e

pt 
t
r 
dt 	(B.8) 

 Io  
1 

	

and 	 J
. 

eco e
-pt 

tr at  	(B.9) 

	

d 	M
o e - = 1+A J

o 

For no noise at the 2nd measurement point 

Mr = 
e1 	t

M
1 

 

(3.10) 

 

MICHELSEN and OSTERGAARD (50) expressed the error weighted moments 

in terms of the error free moments. In this study the expressions 

developed for Ei(t) will contain only the error moments eMi  

Thus eM o 1+A o t o = 	C e pt tco  dt+jo . (t-T) e-Pt  -  

1 	t - 0 

	

Ro 	m 	Ae
-pT I 

	

e o 	1+A 	t o 

On rearranging into the form suggested above: 

o 
tMo
o 
 = (1 + 

A)eMo 
- A.e PT  

Similarly we find: 

	

t o 	6 0 
Mi  = (1 + A) M1  - TA.e

pT 

	

-2 	- 
tMo = (1 + A) eMo

2  - T
2 
 A.e

-pT 
 

 

 

 

B.1.1 Method 1 weighting functions  

The Dispersion Number is given by eq.5.6 of the main text: 

N
D 

=  J+Qp 

Taking logs and differentiating: 

dND 	

1 	

1 	1 ] 	2 	1 - — J + J+2Qp J+Qp dJ p ( J+2Qp J+
Qp dQ  	0.14) ND  

N - N ; dJ = J-J ; dQ = Q-Q 
Assuming dND =eD tD 	e t 	e t  

then from eq.5.20 ..dND  = AND  . 

ND 

J(J 2Qp) 

• 
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. • . 

. • 

E (T) 

. 	E (T) 

= A  

1 	dN 
= 	

A 
— 	D 

1 
A 
[ 1 p (B.15) 

N 
D 

1 	
1 

 a-  + J+2Qp J+Qp J+2Qp J+Qp 

Comparison with the work of MICHELSEN and OSTERGAARD (50) shows 

that the noise weighting function for the Dispersion Number is the 

negative of the noise weighting function for the Peclet Number. 

• From eq.5.8 

and 

t 

e
J 

= kn 

= kn 

trl°  1 (B.18) 

(B. 17) 

M-c)  
[ t 

o  [eilil 
- 
M
o 

eo 
 

t
J = kn 	 

(1+A)
e 
 o - Ab-PT  
o 

M 
-o 

Ae
LpT  

	

= 241  e 1 	_, 

I 

- o 	1773 

e
M
o

. 	
kn 	1 + A  

e o 

- 
pT 

. 

▪ 

. t
J = 

e
J - 	I + 1 • e  Ro 

e o 

 

(B.18) 

 

dJ 	1 - e 
since A << 1 	(B.19) A 	-o 

e o 

This is the same expression as MICHELSEN and OSTERGAARD (50) except 

- 
that their 

t
M
o
o 
 is now replaced by 

e
M
-o
. 

From eq. 5.10 of the main text: 

-1 	-1 

t
Q = tb-t

M
o 

-o 	-o 

	

t
M
1 	t o 

 

(B.20) 

 

Substituting for 
t
M
i- 

from B.11 

-o 
e
M
1 

-pT 

 

- 1 	R1 
and 

e
Q =el-eo 

	

Ro 	Ro 

	

e 1 	e o 

 

(B.21) 

• 
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-o 
From eq. B.11 and B.12 substituting for 

t
M
o
1 
and 

 t
M
o 
into B.20 

1 
we find dQ = 

e
Q-
t
Q = (1+A) eMi 

o 
 - The 

pT 
- e Ro 

Simplifying we find on neglecting second and higher order 

terms in A 

-1 
= e

-pT 
T 	e

M
o 

A 	-o 	
M 
-o 

	

e 0 	e 

 

(3.22) 

 

Again comparison with MICHELSEN and OSTERGAARD (50) shows that 

- 	- 	 - 	- 
e
M
o
o 

and 
 eMo

1 
 ean be substituted for their 

t
Mo 
o 

and 
 t

M
o
1 
 respectively. 

The term 
e
Mo 
o 

in the denominator is however missing from eq.49 of 

their paper. 

dQ 
On substituting for -ID 

dQ
eJ and 

e
Q into eq.B.15 we may obtain 

the noise weighting function E(T). This requires the zeroth and 

first weighted moments of the experimentally recorded concentration 

curves at a particular value of p. 

Method 2 weighting functions  

The Dispersion Number is determined from eq.5.14 of the main text: 

- 1 1/2 H 	2pH 	 (B.23) 
N
D 

= 
2Q

2 

(1+A) 1745)  - Ae-PT 	
Ro 

e o 	e o 

A similar analysis to that used for method 1 may be undertaken 

to yield: 

E (T) = - 
2 + ELI l  .2213 
Q Q2 	Q 

-1  
dQ 1 j.  P 1  2pH 
A H Q Q 

1  dH 
A 

	 (B.24) 

-PT  

	

-1 	;le 	R1 2  

	

- 	
e

-o 
dH 

where 	= 	-eoT 

e
M 	

Mo 
	

M o 
	

M 
o 

	

eo 	eo 	eo 

	 (B.25) 

Comparison with eq.50 of MICHELSEN and OSTERGAARD (50) indicates 

differences in sign and also the e o M denominator term is again 
fi 

missing. 

• 
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B.2 Weighting Functions for the 2nd measurement point i = 1  

In an identical manner we can consider a noise free response 

at the first measuring point i = 0, whilst noise occurs at the 

second measurement point i = 1. This will yield the noise 

weighting functions at the 2nd measurement point. 

If the analysis is undertaken it will be found that expressions 

similar to eq.B.15 and B.24 are obtained except that: 

. (i) the sign of the function is now positive 

(ii) the weighted moments used in evaluating 
dJ  E-, A  and dH 

now refer to the second measurement point i.e. 
e
M
1 

replaces ,14
r 
 . 

e o 

• 
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APPENDIX C A QUALITATIVE ASSESSMENT OF THE FORM OF THE NOISE  
WEIGHTING FUNCTIONS  

The following analysis which holds equally for positive or negative 

noise shows that the form of the noise weighting functions E(t) as 

illustrated in Fig.5.1 is correct. These noise weighting functions 

are nearly always positive at the second measurement point and 

negative at the first measurement point. 

If we consider positive noise at the 1st measurement point alone, 

then the error integral given in eq.5.23 will be negative since E(t) 

is negative. Thus AND  will be negative by eq.5.22, hence from 

eq.5.20 tND  > eND. 

It is well known e.g. BISCHOFF and LEVENSPIEL (5); that the Dispersion 

Number for the axially dispersed plug flow model when end effects are 

Absent is proportional to the difference in variance between the 

tracer curves at the 2nd and 1st measurement points. 

Thus 	N
D 
a (a

2 
- a

2) 	 (C.1) 
1 o 

Assuming the true Dispersion Number tND  is obtained when there is no 

noise on either input or output curves then: 

t 	
2 to, • N

D 
 a (ta

i 
- 	2 ) 	 (C.2) 

•  

For positive error at the 1st measurement point the variance of this 

response curve will increase so that 
eat 

> t a
2
. Thus N D > 

e
N
D 
 is in 

o 	o 	t  
agreement with the predictions of the noise weighting functions. 

2 	2 
For positive noise at the 2nd measurement point eal  > tal, hence 

from eq.C.2 it is clear that eN
D ) > t 

t ND. This result is also obtained 

from eq.5.22 since AN
D 
is now positive. 

• 
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APPENDIX D 	BASIC EXPERIMENTAL DATA  

Particle Diameter 	dp 	5 mm 

Column Diameter 	dt 	101.6 mm 

Column Cross-Sectional Area 	A
t 	

8.107 x 10
-3 

m
2 

Test Section Length 	L 	0.835 m 

Bed Voidage 	e 	0.356 

Viscosity of air 	p
G 	

1.7 x 10
5 
Nsm

2 

Viscosity of water 	p
L 	

1.0 x 10
-3 

Nsm
2 

Calculation of Reynolds Numbers based on Open Tower: 

ReL  = 	 M 	where L
M 

= Liquid Mass Velocity kg s-1 
At PL 

ReL  = 616.75 Lm  

Re
G 	

M dp_ 	where GM  = Gas Mass Velocity kg s-1 
A
t 

p
G 

Re
G 

= 3.63 x 10
4 
 GM 

Limits of Experimental Universe  

PHASE 

UPPER LIMIT LOWER LIMIT 

Mass 
Velocity 
kgs-1  

Reynolds 
Number 

Open 
Tower 

Velocity 
ms-1  

Mass 
Velocity. 
kgs-1  

Reynolds 
Number 

Open 
Tower 

Velocity 
ms -1 

GAS 

LIQUID 

0.00827 

0.225 

300.3 

138.8 

.783 

.028 

0.00081 

0.0639 

29.3 

39.4 

.076 

.0079 

• 
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APPENDIX E .RESULTS OF SINGLE PHASE LIQUID DISPERSION RESULTS  

The Dispersion Numbers are determined using the four methods derived 

for the Basic Axially Dispersed Plug Flow Model. 

RUN 
NO. 

LIQUID 
MASS 
RATE 

X10
2 
k
4;1 

REYNOLDS 
NUMBER 

DISPERSION NUMBER ND 
LIQUID 
HOLD UP 

OL ReL  
I II III IV 

1 7.89 48.7 .0125 ..0122 .0125 .0122 .990 

2 11.17 68.9 .0086 .0085 .0087 .0085 1.000 

3 12.00 74.0 .0089 .0089 .0089 .0088 1.008 

4 12.00 74.0 .0089 .0089 .0089 .0089 .990 

5 12.00 74.0 .0084 .0085 .0084 .0084 1.002 

6 14.50 89.4 .0091 .0090 .0091 .0091 1.02 

7 17.60 108.5 .0083 .0084 .0083 .0084 1.03 

8 17.60 108.5 .0082 .0082 .0081 .0080 1.019 

9 17.60 108.5 .0079 .0078 .0079 .0077 1.02 

10 17.60 108.5 .0081 .0082 .0081 .0081 1.014 

11 17.60 108.5 .0081 .0081 .0081 .0081 1.02 

• 
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APPENDIX F RESULTS OF AXIALLY DISPERSED PLUG FLOW MODEL  

Run 
Number 

Re 
L Re

G 

Dispersion Number N
D Average 

holdup 

I, 
I II III IV 

1 39.4 29.3 0.014 0.014 0.014 0.014 0.68 
2 • 56.6 0.013 0.013 0.013 0.013 0.60 
3 • 110.8 0.029 0.029 0.029 0.029 0.50 
4 11 133.4 0.033 0.032 0.033 0.032 0.45 
5 • 165.4 0.021 0.021 0.022 0.021 0.41 
6 n 195.0 0.036 0.032 0.037 0.033 0.40 
7 11  222.3 0.027 0.028 0.028 0.028 0.41 
8 • 222.3 0.028 0.025 0.029 0.025 0.38 
9 • 278.5 0.046 0.048 0.047 0.047 0.39 
10 48.7 31.2 0.023 0.022 0.023 0.020 0.67 
11 11  59.7 0.017 0.017 0.017 0.017 0.60 
12 • 87.4 0.016 0.016 0.016 0.016 0.53 
13 11 120.9 0.026 0.025 0.025 0.025 0.48 
14 • 154.1 0.035 0.034 0.034 0.033 0.47 
15 • 183.3 0.032 0.031 0.031 0.031 0.45 
16 • 218.4 0.032 0.031 0.031 0.031 0.41 
17 11  255.5 0.038 0.038 0.037 0.037 0.42 
18 . 	• 300.3 0.036 0.035 0.035 0.034 0.40 
19 61.4 36.7 0.015 0.015 0.015 0.015 0.70 
20 11  46.9 0.019 0.019 0.019 0.019 0.69 
21 n 56.6 0.018 0.018 0.018 0.018 0.65 
22 • 66.3 0.016 0.015 0.016 0.015 0.60 
23 11 78.0 0.023 0.022 0.022 0.022 0.595 
.24 • 89.7 0.021 0.021 0.021 0.021 0.57 
25 • 101.4 0.014 0.014 0.014 0.014 0.52 
26 • 101.4 0.015 0.015 0.015 0.015 0.51 
27 • 297.2 0.017 0.016 0.017 0.015 0.38 
28 68.9 30.4 0.011 0.011 0.011 0.010 0.65 
29 11 57.3 0.013 0.013 0.013 0.013 0.61 
30 83.5 0.013 0.012 0.013 0.012 0.53 
31 • 122.9 0.012 0.011 0.012 0.011 0.51 
32 • 155.2 0.008 0.008 0.008 0.008 0.44 
33 78.6 40.2 0.013 0.013 0.013 0.013 0.70 
34 11 67.5 0.015 0.015 0.015 0.015 0.54 
35 • 117.0 0.009 0.009 0.009 0.009 0.50 
36 • 117.0 0.007 0.007 0.007 0.007 0.49 
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Run Re L  Re
G 

Dispersion Number N
D 

 
V 

average 

I II 
oldup  

III IV 
holdup 

0L 

37 78.6 156.0 0.013 0.013 0.014 0.012 0.45 
38 II 183.3 0.007 0.007 0.007 0.007 0.41 
39 it 223.9 0.009 0.010 0.009 0.010 0.40 
40 ,I 255.5 0.010 0.011 0.010 0.011 0.40 
41 1, 294.5 0.011 0.012 0.011 0.012 0.39 
42 89.4 28.5 0.010 0.010 0.011 0.010 0.77 
43 I, 56.9 0.013 0.013 0.013 0.013 0.65 
44 11 80.0 0.015 0.015 0.015 0.015 0.62 
45 11 122.9 0.021 0.022 0.021 0.021 0.54 
46 ,, 157.6 0.018 0.019 0.018 0.018 0.47 
47 1, 183.3 0.012 0.013 0.012 0.012 0.45 
48 I, 216.5 • 0.011 0.011 0.011 0.011 0.42 
4911 to 314.4 0.005 0.006 0.005 0.006 0.40 
50  11 314.4 0.008 ' 0.009 0.008 0.008 0.40 
51 98.7 29.3 0.011 0.012 0.011 0.012 0.73 
52 n 52.8 0.011 0.011 0.011 0.011 0.63 
53 it 75.7 : 0.007 0.007 0.007 0.007 0.59 
54 ti 95.2 0.014 0.014 0.014 0.014 0.57 

• 55 . 	n 115.5 0.015 0.016 0.015 0.015 0.53 
56 

57 

I, 

11 
156.0 

200.5 

0.012 

0.010 

0.012 

0.010 

0.012 

0.010 

0.012 

0.010 

0.51 

0.45 
58 120.3 31.2 0.015 0.016 0.015 0.015 0.75 

' 59 II  31.2 0.015 0.015 0.015 0.014 0.76 
60 "  55.8 0.015 0.015 0.015 0.014 0.66 
61 s, 78.4. 0.007 0.007 0.007 0.007 0.57 
62 ' t, 92.8 0.010 0.010 0.010 0.010 0.54 
63 II 122.9 0.011 0.012 .  0.011 0.011 0.52 
64 n 122..9 0.012 . 0.012 0.012 0.012 0.52 
65 • 11 156.0 0.008 0.008 0.008 0.008 0.48 
66 mi 179.4 0.010 0.010 0.010 0.010 0.46 
67 138.8 32.8 0.006 0.006 0.006 0.4006 0.71 
68 

69 

,, 

u 
54.2 

75.3 

0.010 

0.009 

0.010 

0.009 

0.010 

0.009 

0.010 

0.009 

0.64 

0.60 
70 " 	• 102.2 0.006 0.006 0.006 0.006 0.54 
71 II  124.8 • 0.006 0.006 0.006 0.006 0.51 
72 

73 

,, 

t, 
'159.9 

196.6 

- 

0.008 

0.010 

0.008 

0.011 

0.008 

0.010 

0.008 

0.011 

0.49 

0.48 
. 
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APPENDIX G RESULTS OF LIQUID STAGNANCY MODEL FROM TRANSFER FUNCTION  
FITTING 

Run 
Number 

Re 
L 

Re 
G 

Dispersion 
Number N

D 

Number 
of 

Transfer 
Units NT 

Liquid 
Flow 

Fraction 

Y 

Liquid 
Holdup 

"L 

Mean 
Prediction 

Error 
% 

1 39.4 29.3 0.0021 1.63 0.863 0.677 0.0159 

.2 " 56.6 0.0014 1.75 0.856 0.594 0.0040 

3 " 110.8 0.0059 0.53 0.877 0.505 0.0025 

. 	4 " 133.4 0.0056 0.31 0.895 0.454 0.0087 

5 	. " 165.4 0.0 0.889 0.852 0.411 0.0097 

6 " 195.0 0.018 4x1045 1.0 0.392 0.221 

7 " 222.3 0.0 0.556 0.860 0.411 0.0139 

8 " 222.3 0.0 0.285 0.898 0.380 0.0912 

9 " 278.5 0.032 4x10
45 

1.0 0.386 0.314 

10 48.7 .31:2 0.0 0.459 0.903, 0.673 0.0178 

11 " 59‘7 0.0 1.245 0.846 0.597 0.0098 

12 " 87.4 0.0 0.972 0.865 0.532 0.0155 

13 " 120.9 0.0 0.537 0.864 0.484 0.0284 

14 • " 154.1 0.0086 0.186 0.899 0.475 0.0014 

15 " 183.3 0.0 0.554 0.839 0.448 0.0182 

16 " 218.4 0.0 0.451 0.849 0.414 0.0149 

..17 11.  255.5 0.0058 0.459 0.849 0.426 0.0003 

18 " 300.3 0.0051 0.327 0.871 0.401 0.0120 

19 61:4 36.7 0.0 0.971 0.866 0.700 0.0077 

20 " 46.9 0.0 1.272 0.833 0.691 0.0287 

21 " 56.6 0.0 0.899 0.857 0.652 0.0087 

22 " 66.3 0.0 0.653 0.884 0.603 0.0118 

23 " 78.0 0.0013 0.867 0.846 0.597 0.0111 

'24 " 89.7 0.0 0.935 0.839 0.569 0.0107 

25 " 101.4 0.0 0.902 0.871 0.520 0.0143 

26 " 101.4 0.0 1.248 0.848 0.510 0.0067 

27 " 297.2 0.0 0.316 0.905 0.386 0.0079 

28 68.9 30.4 0.0 0.769 0.899 0.646 0.0111 

29 " 57.3 1.7x10 9 1.138 0.863 0.610 0.0275 

30 " 83.5 0.0 0.430 0.910 0.532 0.0211 

31 " 122.9 0.0 0.951 0.880 0.508 0.0132 

32 " 155.2 0.0 2.244 0.855 0.436 0.0053 

33 78.6 40.2 0.0 0.871 0.878 0.700 0.0089 

34 " 67.5 0.0 1.245 0.849 0.541 0.0021 

35 " 117.0 0.0 0.895 0.898 0.496 0.0043 

• 
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Run 
Number 

ReL  
Re
G N

D NT Y `'L Error 
% 

36 78.6 117.0 0.0 2.345 0.863 0.490 0.0140 
37 " 156.0 0.0 0.557 0.895 0.454 0.0128 
38 " 183.3 0.0 1.284 0.893 0.406 0.0101 
39 " 223.9 0.0 0.696 0.906 0.404 0.0065 
40 " 255.5 0.0 '0.573 0.907 0.400 0.0124 
41 " 294.5 0.0 0.237 0.928 0.395 0.0173 
42 89.4 28.5 0.0 1.201 0.876 0.768 0.0052 
43 " 56.9 0.013 2.174 0.831 0.651 0.0006 
44 " 80.0 0.0086 2.030 0.818 0.619 0.0021 
45 " 122.9 0.0 0.550 0.856 0.550 0.0245 
46 " 157.6 0.0 0.697 0.863 0.472 0.0094 
47 " 183.3 0.0 1.32 0.855 0.452 0.0095 
48 " 216.5 0.0 0.492 0.907 0.426 0.0123 
49 " 314.4 0.0 0.877 0.901 0.402 0.0070 
50 " 314.4 0.005 0.0 1.00 0.394 0.0276 
51 98.7 29.3 0.0 4.497 0.765 0.733 0.0052 
52 " 52.8 0.0014 0.579 0.912 0.635 0.005 
53 " 75.7 0.0014 0.376 0.942 0.586 0.009 
54 " 95.2 0.0 1.21 0.852 0.567 0.0082 
55 w 115.5. 0.0 0.673 0.877 0.532 0.0093 
56 " 156.0 0.0 0.637 0.893 0.507 0.013 
57 " 200.5 0.0 0.156 0-..936 0.450 0.021 
58 120.3 31.2 0.0 0.677 0.875 0.752 0.016 
59 " 31.2 0.0 0.742 0.873 0.776 0.011 
60 " 55-8 0.0 0.811 0.868 0.663 0.010 
61 " 78.4 0.0024 3.17 0.872 0.566 0.0033 
62 " 92.8 0.0027 1.768 0.881 0.537 0.0097 
63 " 122.9 0.0 0.774 0.887 0.527 0.0086 
64 " 122.9 0.00035 1.795 0.842 0.524 0.0057 
65 " 156.0 0.0 1.554 0.878 0.477 0.0077 
66 " 179.4 0.0 0.455 0.912 0.464 0.019 
67 138.8 32.8 0.004 6.704 0.886 0.707 0.0017 
68 " 54.2 0.0 0.855 0.888 0.638 0.0101 
69 " 75.3 0.0 1.867 0.855 0.597 0.0072 
70 " 102.2 0.0048 5.204 0.904 0.538 0.0073 
71 " 124.8 0.0013 2.056 0.890 0.512 0.0096 
72 " 159.9 0.0024 2.57 0.877 0.487 0.0049 
73 " 196.6 0.0 0.339 0.915 0.484 0.0257 
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APPENDIX H RESULTS OF SPLIT FLOW MODEL FROM TRANSFER FUNCTION FITTING  

Run Re 
L 

Re
G 

Volume 
Flow 
Split 
Xi 

Area 
Split 

2 

Liquid 
only 
N
D1 

ND2 4L  

Mean % 
Prediction 
Error 

1 39.4 29.3 0.996 0.990 0.0103 1.92x10
7 
0.68 0.0147 

2 " 56.6 0.998 0.992 0.0103 4.36x10-7 O.GO 0.0090 

3 " 110.8 0.857 0.792 0.0101 0.0337 0.51 0.0005 

4 " 133.4 0.883 0.826 0.0101 0.0858 0.45 0.0006 

5 " 165.4 0.041 0.078 0.0122 0.0094 0.41 0.0005 

6 " 195.0 0.974 0.927 0.0101 0.0077 0.40 0.003 

7 " 222.3 0.963 0.918 0.0101 0.0020 0.41 0.0014 

8 " 222.3 0.987 0.952 0.0102 4.0x10
7 

0.38 0.0988 

9 " 278.5 0.903 0.807 0.0100 0.0109 0.39 0.0017 

10 48.7 31.2 0.995 0.976 0.0097 9.0x10
7 

0.68 0.0270 

11 " 59.7 0.424 0.498 0.0101 3.2x10
8 

0.60 0.0201 

12 " 87.4 0.105 0.152 0.0107 0.0051 0.53 0.0153 

13 " 120.9 0.932 0.885 0.0096 0.1113 0.49 0.0091 

14 " 154.1 0.873 0.794 0.0095 0.0817 0.47 0.0005 

15 " 183.3 0.907 0.834 0.0095 0.0452 0.45 0.0024 

16 " 218.4 0.941 0.872 0.0095 0.0155 0.42 0.0017 

17 " 255.5 0.834 0.739 0.0094 0.0382 0.43 0.0009 

18 " 300.3 0.912 0.832 0.0095 0.0224 0.40. 0.0123 

19 61.4 36.7 0.025 0.049 0.0109 0.0085 0.70 0.0005 

20 " 46.9 0.418 0.500 0.0096 6.9x10
9 

0.69 0.0362 

21 " 56.6 0.037 0.070 0.0108 0.0090 0.65 0.0005 

22 " 66.3 0.022 0.048 0.0113 0.0082 0.60 0.0003 

23 " 78.0 0.868 0.814 0.0089 0.0460 0.60 0.0017 

24 " 89.7 0.879 0.830 0.0089 0.0565 0.57 0.0006 

25 " 101.4 0.012 0.030 0.0117 0.0945 0.52 0.0001 

26 " 101.4 0.944 0.917 0.0905 0.049.4 0.51 0.0004 

27 " 297.2 0.116 0.185 0.0103 8.9x10-9 0.39 0.0114 
28 68.9 30.4 0.999 0.996 0.0088 4.0x10 7 

0.64 0.045 

29 " 57.3 0.445 0.512 0.0092 1.5x10 7 0.61 0.0340 

30 " 83.5 0.995 0.982 0.0088 5.1x10 7 
0.53 0.0298 

31 " 122.9 0.994 0.981 0.0088 3.7x10 7 
0.51 0.0027 

32 " 155.2 0.433 0.477 0.0091 0.0013 0.44 0.0054 

33 78.6 40.2 0.024 0.048 0.0102 0.0075 0.70 0.0006 
34 " 67.5 0.367 0.443 0.0089 1.5x10 

8  
0.54 0.0098 

35 " 117.0 0.056 0.075 0.0092 0.0043 0.49 0.0151 

36 " 117.0 0.999 0.999 0.0085 4.0x10-7  0.49 0.0497 
4 
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Run Re L Re
G 

Volume 
Flow 
Split 
Xi 

Area 
Split 

X2 

Liquid 
only 
N
D1 

ND2 (I)
L  

Mean % 
Prediction 
Error 

37 78.6 156.0 0.983 0.961 0.0085 0.0731 0.46 0.0013 
38 " 183.3 0.424 0.469 0.0088 9.6x10 8 0.41 0.0107 
39 " 223.9 0.228 0.284 0.0091 1.8x10-4 0.40 0.0080 
40 " 255.5 0.997 0.983 0.0085 2.5x10 7 0.40 0.0405 
41 " 294.5 0.014 0.040 0.0112 0.0058 0.40 0.0009 
42 89.4 28.5 0.995 0.986 0.0082 1.7x10 7  0.77 0.0065 
43 " 56.9 0.518 0.583 0.0085 2.0x10 6 0.65 0.0017 
44 " 80.0 0.458 0.533 0.0086 1.4x10 6 0.62 0.0018 
45 " 122.9 0.888 0.832 0.0081 0.1055 0.55 0.0012 
46 " 157.6 0.928 0.881 0.0081 0.0378 0.47 0.0001 
47 " 183.3 0.013 0.028 0.0102 0.0092 0.45 0.0002 
48 " 216.5 0.016 0.037 0.0104 0.0067 0.43 0.0006 
49 " 314.4 0.525 0.506 0.0082 3.6x10 8 0.39 0.0204 
50 " 314.4 0.373 0.427 0.0085 3.2x10 8 0.40 0.0109 
51 98.7 29.3 0.671 0.721 0.0082 6.8x109  0.73 0.0058 
52 " 52.8 0.988 0.974 0.0080 0.0429 0.64 0.0022 
53 " 75.7 0.099 0.135 0.0087 0.0019 0.59 0.0095 
54 " 95.2 0.593 0.656 0.0082 1.4x10 8 0.56 0.0524 
55 " 115.5 0.032 0.064 0.0097 0.0081 0.53 0.0005 
56 " 156.0 0.015 0.036 0.0101 0.0075 0.51 0.0003 
57 " 200.5 0.061 0.110 0.0094 3.5x10 4 0.45 0.0256 
58 120.3 31.2 0.019 0.046 0.0096 0.0095 0.75 0.0005 
59 " 31.2 0.021 0.047 0.0094 0.0093 0.78 0.0002 
60 " 55.8 0.030 0.060 0.0091 0.0086 0.66 0.0022 
61 " 78.4 0.471 0.504 0.0077 0.0031 0.57 0.0044 
62 " 92.8 0.976 0.967 0.0076 0.0923 0.54 0.0006 
63 " 122.9 0.724 0.770 0.0077 1.0x10 7  0.53 0.0543 
64 " 122.9 0.989 0.959 0.0075 2.6 0.54 0.0379 
65 " 156.0 0.440 0.490 0.0078 4.4x10 8 0.48 0.0086 
66 " 179.4 0.156 0.215 0.0083 5.9x10 5 0.46 0.0218 
67 138.8 32.8 0.517 0.507 0.0073 0.0041 0.71 0.0016 
68 " 54.2 0.427 0.490 0.0076 3.6x10 8 0.64 0.0287 
69 " 75.3 0.980 0.970 0.0073 0.1072 0.60 0.0002 
70 " 102.2 0.006 0.004 0.0067 0.0062 0.54 0.0067 
71 " 124.8 0.377 0.411 0.0075 0.0025 0.51 0.0096 
72 " 159.9 0.503 0.494 0.0073 0.0078 0.49 0.0118 
73 " 196.6 0.013 0.038 0.0098 0.0069 0.49 0.0016 

• 
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Page Number 

ERRATA AND ADDENDA 

Amendment Line Number 

16 Fig.2.5 In legend read Re
G
* for Re

G 

53 eq. 4.20 F(p) 	= exp 
1 

(1 - 	(1 + 4Tptipa)12) 

69 20 ... using the zeroth weighted moments. 

86 29 Read Fig.6.2 for Fig.6.3. 

108 19 insert the following after 	 in 
Chapter 5.2. 

The values of the Laplace parameter used 
are listed in Appendix I. 

115 Table 7.2 Confidence limits given for a and b 
constants are for b and c exponents 
respectively. 

156 25 Read HOUGEN for HOUGAN in Reference 36. 

158 9 Replace Reference 9. by .... 

MIYAUCHI T, VERMEULEN T 
Longitudinal Dispersion in Two Phase 
Continuous Operations. 
Ind.Eng.Chem.Fund. (1963), 2, 113. 
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APPENDIX I VALUES OF LAPLACE PARAMETER USED IN AXIALLY DISPERSED 
PLUG FLOW MODEL ANALYSIS 

Run 
Number 

Tp 	values for methods I - IV 

I II III IV 

1 .293 .195 .0976, 	.195, 	.293 

.390, 	.488 

.0976, 	.195, 	.293 

.390, 	.488 

2 .5 .4 .3, 	.4, 	.5, 	.6, 	.7 .2, 	.3, 	.4, 	.5, 	.6 

3 .7 .5 .5, 	.6, 	.7, 	.8, 	.9 .3, 	.4, 	.5, 	.6, 	.7 

4 .629 .449 .449, 	.539, 	.629 .269, 	.359, 	.449 

.719, 	.809 .539, 	.629 

5 .722 .516 .516, 	.619, 	.722 .309, 	.412, 	.516 

.825, 	.928 .619, 	.722 

6 .5 .4 .3, 	.4, 	.5, 	.6, 	.7 .2, 	.3, 	.4, 	.5, 	.6 

7 .8 .5 .6, 	.7, .8, 	.9, 	1.0 .3, 	.4, 	.5, 	.6, 	.7 

8 .572 .477 .382, 	.477, 	.572, .286, 	.382, 	.477 

.668, 	.763 .572, 	.668 

9 .8 .5 .6, 	.7, .8, 	.9, 	1.0 .3, 	.4, 	.5, 	.6, 	.7 

10 .3 .3 0.1, .2, 	.3, 	.4, 	.5 .1, 	.2, 	-3, 	.4, 	.5 

11 1,009 .606 .808, 	.909, 	1.009, .404, 	.505, 	.606, 

• 1.211, 	1.412 .707, 	.808 

12 .912 .608 .709, 	.810, 	.912, .405, 	.507, 	.608, 

1.013, 	1.216 .709, 	.810 

13 .907 .605 .705, 	.806, 	.907, .403, 	.504, 	.605, 

1.007, 1.209 .705, 	.806 

14 1.009 .706 .807, 	.908, 	1.009, .504, 	.606, 	.706, 

1.211, 	1.413 .807, 	.908  

15 1.006 .704 .805, 	.905, 	1.006, .503, 	.604, 	.704, 

1.207, 	1.408 .805, 	.905 
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Run 
Number 

Tip values for methods I - IV 

I II III IV 

16 1.003 .702 .803, 	.902, 	1.003, .502, 	.602, 	.702 
1.204, 	1.405 .803, 	.902 

17 1.048 .734 .838, 	.943, 	1.048 .523, 	.629, 	.734, 

1.258, 	1.467 .838, 	.943 

18 .980 .686 .784, 	.882, 	.980 .490, 	.588, 	.686 

1.176, 	1.372 .784, 	.882 

19 .995 .696 .796, 	.895, 	.995, .497, 	.597, 	.696, 

1.194, 	1.393 .796, 	.895 

20 1.0 .7 .8,.9,1.0,1.2,1.4 .5, 	.6, 	.7, 	.8, 	.9 

21 1.003 .702 .802, 	.903, 1.003, .502, 	.602, 	.702, 

1.204, 	1.404 .802, 	.903 

22 1.006 .704 .804, 	.905, 1.006, .503, 	.603, 	.704, 

1.207, 1.408 .804, 	.905 

23 1.109 .776 .887, 	.998, 	1.109, .555, 	.666, 	.776 

1.331, 	1.553 .887, 	.998 

24 1.203 .802 .902, 	1.002, 	1.203, .601, 	.702, 	.802, 

1.403, 	1.603 .902, 1.002 

25 1.205 .803 .904, 	1.004, 	1.205, .602, 	.703, 	.803, 

1.406, 	1.606 .904, 1.004 

26 1.137 .758 0.853, 0.948, 	1.137, .569, 	.663, 0.758, 

1.327, 	1.516 .853, 0.948 

27 1.132 .809 .809, 	.971, 	1.132 .647, 	.728, 	.809, 

1.294, 1.456 .971, 	1.132 

28 1.0 .7 .8,.9,1.0,1.2,1.4 .5, 	.6, 	.7, 	.8, 	.9 

29 1.211 .807 .908, 	1.009, 1.211 .606, 	.707, 	.807 

1.413, 	1.615 .908, 1.009 

30 1.203 .802 .902, 	1.003, 	1.203, .602, 	.702, 	.802, 

1.404, 1.604 .902, 1.003 
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Run 
Number 

Tp values for methods I - IV 

I II III IV 

31 1.404 .903 1.003, 	1.203, 	1.404, .702, 	.802, 	.903 

1.604, 	1.805 1.003, 	1.203 

32 1.384 .889 .988, 	1.186, 	1.384 .692, 	.791, 	.889, 

1.582, 	1.782 .988, 	1.186 

33 1.267 .845 .950, 1.056, 	1.267 .634, 	.739, 	.845, 

1.478, 	1.689 .950, 1.056 

34 1.361 .875 .972, 	1.167, 	1.361, .681, 	.778, 	.875, 

1.556, 1.751 .972, 1.167 

35 1.393 .895 .995, 	1.194, 	1.393, .696, 	.796, 	.895, 

1.592, 1.790 .995, 1.194 

36 . 	1.462 .853 1.097, 	1.218, 	1.462, .609, 	.731, 	.853, 

1.706, 1.949 .975, 1.097 

37 1.328 .854 .949, 	1.138, 	1.328, .664, 	.759, 	.854, 

1.518, 1.708 .949, 	1.138 

38 1.396 .898 .997, 	1.197, 	1.396, .698, 	.798, 	.898, 

1.596, 	1.795 .997, 1.197 

39 1.484 .848 1.059, 	1.272, 	1.484, .636, 	.742, 	.848, 

1.696, 1.908 .954, 1.059 

40 1.504 .859 1.074, 	1.289, 	1.504, .645, 	.752, 	.859, 

1.719, 	1.934 .967, 	1.074 

41 1.367 .781 .976, 	1.171, 	1.367, .586, 	.683, 	.781, 

1.562, 	1.757 .879, 	.976 

42 1.404 .903 1.003, 	1.204, 	1.404, .703, 	.803, 	.903, 

1.605, 1.806 1.003, 1.204 

43 1.6 1.0 1.2,1.4,1.6,1.8,2.0 .8, 	.9, 	1.0,1.2,1.4 

44 1.611 1.007 1.208, 	1.409, 1.611 .806, 	.906, 	1.007 

1.812, 	2.014 1.208, 1.409 

45 1.623 .913 1.218, 	1.420, 	1.623, 0.710, 	.812, 	.913, 

1.826, 2.029 1.015, 	1.218 
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Run 
Number 

tp values for methods I - IV 

I II III IV 

46 1.560 .878 1.170, 1.365, 1.560, .683, .780, .878, 

1.755, 1.950 .975, 1.170 

47 1.619 .911 1.215, 1.417, 1.619, .709, .810, .911, 

1.822, 2.024 1.012, 1.215 

48 1.614 .908 1.210, 1.412, 1.614, .706, .807, .908, 

1.815, 2.017 1.009, 1.210 

49 1.687 .937 1.312, 1.499, 1.687, .750, .843, .937, 

1.874, 2.062 1.125, 1.312 

50 1.642 .912 1.277, 1.460, 1.642, .730, .821, .912, 

1.825, 2.007 1.095, 1.277 

51 1.546 .994 1.104, 1.325, 1.546, .773, .883, .994, 

1.766, 1.987 1.104, 1.325 

52 1.575 .875 1.225, 1.400, 1.575, .700, .788, .875, 

1.750, 1.926 1.050, 1.225 

53 1.549 .968 1.162, 1.355, 1.549, .775, .871, .968, 

1.743, 1.936 1.162, 1.355 

54 1.702 .957 1.277, 1.489, 1.702, .745, .851, .957, 

1.915, 2.128 1.064, 1.277 

55 1.594 .897 1.196, 1.395, 1.594, .697, .797, .897, 

1.793, 1.993 .996, 1.196 

56 1.621 .912 1.216, 1.419, 1.621, .709, .811, .912, 

1.824, 2.027 1.013, 1.216 

57 1.584 .863 1.150, 1.342, 1.584, .671, .767, .863, 

1.725, 1.917 .959, 1.150 

58 1.605 .903 1.204, 1.405, 1.605, .702, .803, .903, 

1.806, 2.007 1.003, 1.204 

59 1.526 .954 1.145, 1.336, 1.526, .763, .859, .954, 

1.717, 1.908 1.145, 1.336 

60 1.610 1.006 1.207, 1.409, 1.610, .805, .906, 1.006, 

1.811, 2.012 1.207, 1.409 
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Run 
Number 

Tp values for methods I - IV 

I II III IV 

61 1.8 1.0 1.4, 	1.6, 	1.8, 	2.0, .8, 	.9, 	1.0, 	1.2, 

2.2 1.4 

62 1.785 1.020 1.275, 	1.530, 	1.785, .765, 	.892, 	1.020, 

2.040, 	2.295 1.148, 	1.275 

63 1.851 .926 1.481, 	1.666, 	1.851, .741, 	.833, 	.926, 

2.037, 	2.222 1.111, 1.296 

64 1.736 .964 1.350, 	1.543, 	1.736, 0.771, 	.868, 	.964, 

1.928, 	2.121 1.157, 	1.350 

65 1.900 .950 1.520, 1.710, 1.900, .760, 	.855, 	.950, 

2.090, 2.280 1.140, 1.330 

66 1.772 .886 1.378, 	1.575, 	1.772, .689, 	.788, 	.886, 

1.969, 	2.166 	• .984, 1.181 

67 1.793 .996 1.394, 	1.594, 	1.793, .797, 	.896, 	.996, 

1.992, 	2.191 1.195, 	1.394 

68 1.8 1.0 1.4, 	1.6, 	1.8, 	2.0, .8, 	.9, 	1.0, 	1.2, 

2.2 1.4 

69 1.794 .997 1.396, 	1.595, 	1.794, .798, 	.897, 	.997, 

1.994, 2.193 1.196, 	1.396 

70 1.963 .976 1.562, 	1.757, 	1.963, .781, 	.879, 	.976, 

2.148, 	2.343 1.172, 	1.367 

71 2.030 1.015 1.624, 1.827, 	2.030, .812, 	.913, 	1.015, 

2.233, 	2.436 1.218, 	1.421 

72 2.004 1.002 1.603, 	1.803, 	2.004, .802, 	.902, 	1.002 

2.204, 2.405 1.202, 	1.403 

73 1.888 .944 1.469, 	1.678, 	1.888, .734, 	.839, 	.944, 

2.098, 2.308 1.049, 	1.259 




