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ABSTRACT 

In the first part the linear stability of viscous flows in a curved 

channel due to time dependent slowly varying pressure gradients is 

considered by an approach of the W.K.B. type. The asymptotic behaviour 

of small perturbation waves is determined, allowing their characteristics 

(amplitude, transverse structure, amplification rate) to be slowly vary-

ing with time. The evolution of such disturbances is followed and the 

instantaneous marginal states are determined according to a "momentary" 

criterion for stability which is based on the definition of a "growth 

rate" of the disturbance. An asymptotic representation for the growth rate 

is found. 

Low frequency modulated basic flows are investigated by using the 

periodicity criterion to define the marginal state. The modulation is 

always found to destabilize the mean flow and the "critical" wavenumber 

is found to decrease from its unmodulated value when the amplitude of the 

oscillation increases. 

Slowly accelerated basic flows are also investigated. The evolution 

of the linear perturbations is then followed in the weakly non linear 

regime and the existence of a supercritical equilibrium amplitude solution 

is proved both in the steady and in the unsteady case. 

In the second part the instability of the flow induced by a circular 

cylinder oscillating in an infinite fluid is investigated. The flow is 

shown to be unstable to a Taylor vortex mode of instability. A series 

solution of the partial differential system governing the stability of 

the flow is obtained. 

The method used has several advantages over the nuaerical methods 

used by different authors for related problems. 

The instability predicted by the theory leads to a flow with no mean 

velocity component tangential to the cylinders. The disturbance velocity 

field decays exponentially at the edge of the Stokes layer. The theoretical 

results are qualitatively confirmed by an experimental investigation of the 

problem. 

Weakly non linear effects are also examined and show the existence of 

a supercritical equilibrium amplitude solution. 
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CHAPTER 1 

FORMULATION OF THE PROBLEM 

1.1 - Introduction  

Linear stability theory for steady basic flows has been very 

successful in providing the explanation for the selective amplification 

of small disturbances which, eventually, leads to a change in the flow 

configuration (transition or bifurcation). The theory is consistently 

based on the asymptotic criterion for stability and allows one to determine 

in the space of the parameters of the problem a region of "marginal" (or 

"neutral") stability. This region separates the "stable" configurations 

(which satisfy the property of being the disturbances asymptotically 

vanishing in time) from the "unstable" ones. 

When the basic flow is unsteady the previous approach applied to the 

instantaneous velocity profile, "frozen" in time, leads to a "quasi-steady" 

analysis. This approach is justifiable_if the basic flow is slowly vary-

ing with time, i.e. if the growth of the perturbations, once started, can 

be assumed to be much faster than the evolution of the basic flow. 

However, on a more careful examination this approximation is found unsatis-

factory in some respects. 

As Shen (1961) has clearly pointed out, the asymptotic criterion for 

stability, which is adopted in the quasi-steady analysis, is no longer 

meaningful when the basic flow is time-dependent. Since the disturbances 

evolve with respect to a configuration which is itself varying with time, 

Shen argues that what is relevant is some instantaneous measure of the 

tendency of the flow towards stability or instability. His suggestion is 

to use a "growth rate" based on the ratio of the disturbance kinetic 

energy to the basic flow kinetic energy. This "momentary" criterion does 

not allow one to define in the space of parameters of the problem an 

equivalent region of marginal stability. This implies that whereas in the 

steady case a change in configuration may certainly be expected after the 

disturbances have started to grow, in the time-dependent case the instan-

taneous tendency to a change in configuration expressed by a positive 



growth rate may or may not reverse depending on the behaviour of the 

basic flow. Moreover, linear theory cannot cope with situations where 

the disturbances sustain periods of growth such that their amplitudes 

become too large for linearization to be a valid approximation. Non 

linear effects must be taken into account in order to follow their 

development in time. 

The effect induced by the evolution of the basic flow on the 

instantaneous properties of the disturbance is neglected by the quasi-

-steady theory. This paper tries to overcome such a deficiency for the 

case of basic flows which are slowly varying with time. Under such condi 

tions the problem is amenable to solution by the "W.K.B." technique. 

This well known method for the solution of differential systems with 

slowly varying coefficients (which, in this context, is equivalent to 

the method of "multiple scales") was first suggested for stability 

problems by Benney & Rosenblat (1964). Rosenblat & Herbert (1970) have 

employed it to solve the modulated Benard convection problem. In two 

recent papers Bouthier (1972, 1973) has developed the method for a gen-

eral steady, spatially dependent shear flow and applied it to the 

stability of the boundary layer on a flat plate. Drazin (1974) has inves 

tigated the stability characteristics for a model of flow in a channel 

whose width is slowly varying in time or space. Finally, Eagles & 

Weissmann (1975) have treated the stability of the flow in a slowly-diverg 

ing channel. 

Essentially, by this method a solution is sought in the form of an 

asymptotic expansion in terms of the small parameter which characterizes 

the slow variation of the basic flow. Each coefficient of the expansion 

has the structure of a wave whose instantaneous properties are allowed 

to be slowly varying with time. The slowly varying amplification rate 

can be evaluated as a solution of the instantaneous eigenvalue problem, 

parametrically dependent on time, which arises at lowest order. The 

corresponding eigenfunctions define the instantaneous slowly varying 

transverse structure of the disturbance and are unique only up to an 

arbitrary multiple of a function of the slow time variable. This "ampli-

tude function" is determined by an "amplitude equation" which arises at 
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higher order from a solvability condition imposed on the higher order 

system. The three functions amplification rate, transverse structure 

and amplitude, which are complex in general, reduce to a real form 

when the principle of exchange of stabilities is assumed to be valid. 

This perturbation scheme leads to an asymptotic representation of the 

disturbance velocity field in terms of the small parameter. The determine 

tion of the growth rate associated with any quantity describing the 

evolution of the perturbation follows easily and the stability of the 

flow can then be discussed according to the "momentary" criterion 

previously mentioned. 

The stability problem studied in this chapter refers to flows in,a 

curved channel. This choice has a physiological motivation. In fact 

recent velocity measurements within the ascending and'upper descending 

aorta of animals and humans (see, for example, Seed & Wood 1971 and 

Nerem et al. 1974) have shown highly disturbed waveforms which have been 

attributed to the presence of turbulence in the flow. The analysis of 

the stability of curved channel flows may then be considered as a first 

step in order to understand the more complicated phenomenon occurring 

in the aorta. The steady case has been investigated theoretically by 

Dean (1928), Reid (1958) and Hammerlin (1958). They examined rotationally 

symmetric disturbances in the small gap limit and found that instability 

first develops in the form of a set of toroidal vortices of the kind 

which characterizes circular Couette flow instability. These results 

have been experimentally confirmed by Brewster, Grosberg & Nissan (1959). 

Recently Gibson & Cook (1974) have considered the behaviour of asymmetric 

and mixed modes for finite values of the gap and found that the asymmet-

ric mode becomes the most unstable when the ratio between the gap width 

and the radii of the cylinders becomes less than 2.179x10
5 

The effect of the time dependence of the basic flow arising from 

driving pressure gradients which are slowly varying with time is considered 

here. In the next section the basic flow is derived and the governing 

linear differential system with slowly varying coefficients for small 

disturbances to this flow is given. Chapter 2 is devoted to the linear 

theory. The quasi-steady approach is outlined in S2.2. In h 2.3 the slowly 
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varying approximation is employed to obtain an asymptotic solution for 

the disturbance velocity field which leads to an asymptotic representa-

tion for the growth rate. The particular case of low frequency modulated 

basic flowsis considered in §2.4 where, for small amplitudes of the 

modulation, the equivalence will be shown of the slowly varying approach 

to the method used by Hall (1975a)for the analogous modulated Couette 

problem. Various results and some comparison with previous work are 

presented in 	2..5 for the modulated case and for some slowly accelerated 

basic flows. Finally some conclusions follow in § 2.6. Chapter 3 is 

devoted to the weakly non-linear theory. Time dependent basic flows are 

considered where both the amplitude and the frequency of the unsteady 

component are "small". The analysis given in 3.2 follows the line of 

Di Prima & Stuart (1975) approach. Some results are presented in § 3.3 

and discussed in § 3.4. 

1.2.- The stability problem 

Consider viscous, incompressible flow between concentric cylinders 

of infinite length and radii R
1, 

R
2 
(R
2 
> R

1). The difference in radii 

of the two cylinders d is taken to be small compared with their mean R 

(small gap approximation). Let (r,4Y, Z) be cylindrical polar coordinates 

with the axis of the cylinders along the Z axis and let (U , V*, le) be 

the corresponding velocity vector. Let also p*, 	,,0 and t* denote 

pressure, density, kinematic viscosity and time respectively. 

Consider now a driving pressure gradient of the form 

.44  = - K (C4t* 

where 
-1 

is a characteristic time scale and K is a positive constant 
2 

whose dimensions are LT
-2 

 . 
2 

A second time scale, dA, also exists and it represents the time for 

vorticity to diffuse outwards from the boundary through the characteristic 

distance d. 

1 gyp*  

The non dimensional parameter 

cr 
= 	

d 2 	

(1.2) 



where 

and 

a) 

00 

,* 0 

C?7)(41.4fti X.ft% 
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is then suitable to describe the time dependence of the basic flow. 

Small values of 6"correspond to "slow" variations, where viscous ef-

fects are felt throughout the gap width: the basic flow is here "fully 

viscous". Large values of or describe "rapidly" varying basic flows 

where unsteady viscous effects keep confined within small layers of 

thicknesses 0(5) adjacent to the walls, the core flow being essen-

tially inviscid. 

Let us now define dimensionless variables ,t ,\ by 

2 	 V
m 
	(1.3) 

V 

where the reference velocity V
m 

is the mean velocity corresponding to 

the pressure gradient 1 = 1 and may be written 

2 
K d 
12 R 
	 (1.4) 
1 

The basic velocity field is then given by (0,1r(,T.),0) where kr 

satisfies the differential system 

) 

<)1c4 	ear 

U' = 

= -12(T) 

Ccii 
(1.5) 

and terms 0(d/R
1 
 ) have been neglected. 

The solution of (1.5) in the limit CS.--1.0 is 

r - R 

d 1  
, 	= wt  

(1.6) 

(1.7) 
a,b,c 

4 =2. Si C% 	
(1.8) 

41 1 	 (n = 0, 1, 2, ....) a,b 
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Let us now formulate the stability problem. Suppose that the basic 

flow is disturbed such that the velocity vector is of the form (u*, 

+ V*, 14'4). The disturbance is assumed to be rotationally symmetric. Asym 

metric and mixed modes are not considered since: 

(i) asymmetric and mixed modes are known to be.more stable in the 

steady case , except for gap widths which are extremely small 

compared with the radii of the cylinders (Gibson & Cook (1974)). 

(ii) Asymmetric or mixed modes have not been detected in. experiments on 

unsteady Taylor vortex flow (Donnelly (1964), Thompson (1968)). 

However a more satisfactory justification of such assumption requires 

further work. 

Let (u,v,w) be the dimensionless disturbance velocity obtained by the 

scaling which is usual for Taylor vortex flow 

-  2d u(t,z,t) ; v* = V v(c,z,t) ; 	w 	
2d 

= 	w(4,z,t) 	(1.9) 

where 

* d
2 

(-- Z = dz 	t = 	) t . (1.10) 

The differential system which governs its behaviour can be derived 

from the momentum and continuity equations by the usual manipulations. If 

terms of 0(d/R
1
) are neglected we find that 

+ 
t 

•-6 v t  46  vv 	o 0-0 c 	et) Z 

C3 	(..r,,= a, 

where 
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-ox2- (1.12) 

2. 	roc 	•Zz 

( 	v. (1.13) 
\ 	•Z)c 	•Zz., 

a,b,c 

( 	Z■e 
eo; 2 \ 

and we have defined the Taylor number T by 

V
--- 

d 
A, m  

T =ft()
2 

 
1) 	11

1 
(1.14) 

The differential system (1.11) is strictly valid in the limit d/R-PO 

with 	z, t, 3 , u, v, w fixed. 
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CHAPTER 2  

LINEAR THEORY 

2.1 - Linearized problem and quasi-steady approximation  

The disturbance is now assumed to be small enough for linearization 

to be a valid approximations. The differential system which governs its 

behaviour is obtained in the form 

u 	T V,  
(2.1) 

,ert. 	2. 	eb 

The boundary conditions associated with (2.1) are 

u = 	= a u.i.b.;  =0 	1 
	 (2.2) 

i.e. the no-slip condition at the walls. 

The coefficients of the perturbation differential equations are 

independent of z and vary with C , and slowly with t. The quasi-steady 

theory now ignores this variation and the usual analysis by normal modes 

follows for the instantaneous configuration at t = t by setting 
00 

.... 
u = 	if (4; t) texp Li (az-.0.01 +c . c .1 da , 

co 

00  
(2.3) 

v = 	1 g (; t) lex li (az- ..Cat)1 +c . c .1 da , 	a,b I 

where 

61,c) = (u, rme! 	v). 	 (2.4) 

Here c.c. denotes complex conjugate, a is the dimensionless (real) 

wavenumber, ais a complex number whose imaginary part gives the .amplifica 

tion rate of the disturbance and (f,g) are functions which describe the 

transverse struttuxe of the'perturbation. 

An asymptotic representation of the disturbance velocity field in 

terms of the small parameter cr can be obtained by expanding in the form 

-co 



(2.7) 

/(s1—' aca. 	 aca 

st2L 
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;.2.(i) = ...c46ci) 	;.-mt(R.) or f. ()Lee) 	1  

7(;‘,i)  --. 7.0(..)k-) +  31 :i-)G. 	4" (3(za) 
	

(2.5) 
a,b,c 

%Cti E) '---= (ao (A'A -i•) 	caq CC;-t)'w 	t 0  (G-2-) • 

By substituting the general mode of (2.3) into (2.1), (2.2) and 

using (2.5),(2.4) and (1.6) it follows at order cr° 

f
0  

g o 
Q ( 1= 0 , 

df
o 

f
0  = g0 d 

= 	= 0 (C= 0, 1) . 

Here Q is the linear operator defined by.  

(2.6) 

and 

= T [0 (Crt)1
2 	

(2.8) 

Thus
0 
 represents the value of T associated with the lowest order 

approximation for the basic flow at t.= t. The differential system (2.6) 

defines an eigenvalue problem for (a, 11 X2) which leads to an eigen-

relation of the form 

f(a. 70, (10 
= o , 	 (2.9) 

to 
identical the eigenrelation which characterizes a steady flow with T= T0. 

0 
If the principle of exchange of stabilities is assumed to be valid 

(see Chandrasekhar 1961) the structure of (2.9) can easily be determined 

by means of a numerical procedure. 

If we now substitute from (2.3)(2.4)(2.5) into (2.1),(2.2) and 

equate terms of order CS an inhomogeneous differential system is obtained 



Cif 	 dts2- 

0.2. TA. 

z dc 
(2.13) 
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whose solvability condition leads to the following expression for in
1 

4 

X 	/2. tIPA t.a, ,..  a 	. (2.10) 
‘re 	(1)0 

0 

Here 00  = 00  (crt), 01
(crt) and N is the linear operator defined by 

N = d
2
/d C 2 - a2 

. 	 (2.11) 

+ +  
Furthermore (fo, go) is the adjoint pair of functions defined by 

the adjoint differential system of (2.6) 

• 

 0 

+ 

go) 
df 

= g+ 

0 	0 = d = 

= 0 , 

(2.12) 

 

where Q is the linear operator defined by 

An eigenvalue problem for (a, %,110) arises from the differential 

system (2.12) which determines an eigenrelation identical to (2.9). 

However a glance at the form of the equations reveals that the pair of 
+ + 

functions (f0,  g0) differs from its adjoint (f
o' 

g
o
). The marginal state 

for the instantaneous configuration is then determined from (2.5a), (2.9), 

(2.10) by adopting some criterion for stability (asymptotic or momentary). 

Such an approach is subject to some criticism as pointed out in b1.1. 

The slowly varying analysis developed in the next section provides a more 

rational theory where the quasi-steady approximation appears within the 

framework of a rigorous perturbation scheme. 
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2.2 - The slowly varying  approach 

Since the coefficients of system (2.10) are independent of z and 

slowly varying  with time, a solution can be sought of the form 

c.* 

u(, z, t) = j iu 
a
(t,.t)lexp[i(az- 0(0)1+ c.clda , 

-00co 
(2.14) 

v(c,z,t) = 	
iv a  

(t,t)lexp[i(az- 0(t))1+ 	, 

-ao  

where de/dt is expected to be a function of the "slow" time variable 

de 
= 	(t) . dt 

This is equivalent to assuming  that the general mode of the distur-

bance has the structure of a wave whose instantaneous properties are 

allowed to be slowly varying  with time. The function e (t) which 
describes the "fast" variation is obviously related to the "slowly" vary 

ing function A(t) by 

J ACC)d-t 
e ( t ) = ° 

cr 

By substituting  the general mode of (2.14) into (2.1),(2.2) the 

differential system for (u , v ) is obtained 
a - a 

(tY1 - 64- 	02:TgVo,, o 

2. rtic 
(2.15) 

=a o = 	150- 	.0 ear, 

where M is the linear operator defined by 

- 
M ="b

2 
 /-oc

2 
 - a

2 
 . (2.16) 

When G" 	0 an asymptotic solution can be obtained in the form 

cu cr,%), v 	= 21. (un(c$1), v 	0 ey)) ell". 	(2.17) 
a 1 	 0 ',mac 

a 
If we substitute from (2.17) into (2.15) and equate powers of order 
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we obtain foru
0 
 , v0) the differential system 

(u 
Q 	

vo 
= o , 

o 
"c) u 

u
0  v0  = 
	0 = 0 	( 4 = 0, 1) , 
 -O 

(2.18) 

where Q is the linear operator obtained from Q by replacing cist by 

-C, d/dt by -6to'c, and i20(i) by A(T.). This system now defines an eigen-

value problem parametrically dependent on time whose eigenfunctions are 

unique but for an arbitrary multiple of a function of the slow variable 

and can be written in the form 

(u0, vo) =A(T)(fo(c;no(v), 50(t),a),g0(c;t10(.0, To(t),a)) .(2.19) 

The solution is normalized in all the calculations such that 

0 (1,-C) 00  ('ti) = 1 . 	
(2.20) 

The determination of k(T) requires the consideration of the order G 

problem, which after substituting from (2.17) into (2.15) and equating 

terms of order z" is found to be 

	

-4_(M0.) 	cl! To  ky4  
Q. = 

le,(04) 1:rt 

2 el CI  

us,  = 	L14/t, = 	CV) 

(2.21) 

• 

(1):4  

It can be shown that the inhomogeneous system (2.21) only has a 

solution if an orthogonality condition is satisfied. This condition 

leads to the required "amplitude equation" 

dA 
71,-c  4. 11(T) ACT) = 0 , 	 (2.22) 

with 	r  

ii 	0. To V., %„ i: -..."-) + %.: it 1  P-5- T. #*  -42.)11  cJ. --o-c i 	2. 	m i j  
2. ''. 

(3: Mobc) d' 
(2.23) 
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+ + 
Here (f

0' 
 g0) is the instantaneous solution of the adjoint differen- 

tial system (2.12) with art replaced by T and d/dc by 2/0 

Once the eigenfunctions of the order a° system and of its adjoint 

are known for every it'4. 0, H(1) can be evaluated and equation (2.22) can 

be integrated to give the amplitude function A(t). The lowest order ap 

proximation to the disturbance velocity field is then determined by (2.19). 

The next order correction to the instantaneous transverse structure of 

the disturbance could now be calculated from system (2.21). However such 

a correction will not be derived here since Eagles & Weissman (1975) 

showed (and it will be demonstrated in the following) that the order or 

correction to the growth rate arises from the lowest order approximation 

for the disturbance. 

2.3 - The growth rate of the disturbance  

The growth rate associated with any quantity suitable to describe 

the evolution of the disturbance can now be defined in the form 

-1 
G(Q.) = c. Q. 

	

	 (2.24) 
It ' 

where c. is a numerical factor which can conveniently be chosen so that 

comparison is enabled between growth rates corresponding to different 

quantities. 

The choice of Q., which mathematically means the choice of a metric 

in the space of solutions, defends on what property of the disturbance 

we choose to consider. Since no experimental results are available it 

would seem useful to determine the local as well as the global behaviour 

of the perturbation. Thus the following quantities will be considered 

QAL = N/c. , 

( alyo, 	 (2.25)  

	

alVa. 	a,b,c,d to.)%  uoa' 0.12") 
Qs  ,----.E.e)=az 	4.■? lac Q4 E.er)/ dz. 	e(-0 

0 	0 	 0 

(a) 	(a) 
where (u(a), v , w ) denotes the general mode of the disturbance 
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(2.14) E(t) is the instantaneous value of the disturbance kinetic energy 

density evaluated per unit wavelength of the disturbance, and e(t) is the 

previous quantity evaluated relative to the corresponding one for the 

basic flow. 

If we now apply the definition (2.24) (with a convenient choice for 

the value of c,) to the quantities (2.25), and take (2.17),(2.19) and 

(2.14) into account, the following asymptotic representation arises for 

the growth rates 

o  G- gs 4 SIL 4- co 4  --)12') + 	(era) cl•C 	--o 

(IT. 	4r)e -o t• 
4* 4,, *4  0 a) 

t.  25.All 	
.04 

(2.26) 
0  ve ay.;  b , c , d 

r1.0(.,> 	(A" ate 	 I 	c),' 	67: cil§).v.02 

	

ckt 	2. 	ox 	CVr 

where Im denotes the imaginary part, G. is the growth rate associated 

with Q. and F(.) is defined by 

F(t) = 	
2 m2 	1 YO‘21 A1. 

(2.27) 
f20 	g0 v0 	

a
2\1)1P4 1  ". 

0 
Thus the order 	approximation to the expressions for the growth 

rates corresponding to every quantity describing the evolution of distur 

bances reduces to the quasi steady amplification rate of the disturbance 

velocity field associated with the order 1°  approximation for the in-

stantaneous basic configuration. 

The order er correction includes terms of different kinds. By using 
(2.22)(2.23) and (2.10) it can be shown that the coefficient A 1dA/d-t. 

can be split into two parts: the quasi-steady component 'm a1 due to the 
order G" correction for the instantaneous basic flow and a slowly varying 

G 

OVT, 	2 	ck-t ) 

A 



-24- 

component arising from the slow variation of the disturbance structure. 

The remaining terms (apart from 0-1dO
0 
 MI. which is the growth rate of the 

0  
basic flow at order 00) again account for the effect of the slow varia-

tion on the disturbance transverse structure. 

An interesting feature is exhibited by the order cr correction: 

different growth rates are associated with different flow quantities. 

This confirms Bouthier's (1972, 1973) and Eagles & Weissman's (1975) 

results and implies that the quasi-steady instants of "momentary neutral 

stability" (defined as the values of 't when the growth rate is zero) 

are shifted in time by different amounts depending on the quantity chosen 

to describe the evolution of disturbances. Furthermore the order cr cor-

rections are slowly varying with time, their behaviour depending on the 

evolution of the basic flow. 

For a better understanding of this behaviour the specification of a 

particular time dependence is instructive. 

2.4 - The modulated case: comparison with Di Prima-Stuart method  

Suppose now that the function 	is given by 

6 (wet-) = 1 + 	cos (obey-) , 	 (2.28) 

2 
where q;=(Zd 1.4 is now the small non-dimensional frequency of oscillation. 

The basic flow associated with this time-dependence is determined by 

substituting from (2.28) into (1.8). 

This is an interesting case to analyse because the behaviour of 

disturbances is now governed by a linear differential system with periodic 

coefficients. Under such circumstances Yudovich's (1970) extension of 

Floquet theory to partial differential systems provides an asymptotic 

criterion for stability where the marginal state is defined by the pe-

riodicity of the solution. This "periodicity ctiterion" has first been 

used by Venezian (1969) and. Rosenblat & Herbert (1970) who treated the 

stability of modulated Benard convection. Hall (19750has applied it 

when investigating the stability of modulated Couette flow. His method in 

the low frequency limit will now be shown to be equivalent, in the limit 



05.z. ao. 

- 	E. 	E.! T3 * 0 	. 

VA) 
) (..v%) 

-r 
(2.29) 
a,b 

-25- 

E.-6-0, to the slowly varying approach. 

Following Hall (1975a)a solution for the system (2.1)(2.2) can be 

sought for 	and SY approaching zero in such a way that the time 

dependences of the right and left hand sides of the two differential 

equations "balance" in some sense. This condition is satisfied if CV-.C. 

thus we put C5 =0{.t:..7:. and let e-w0 with pc fixed. This procedure was 

first used by Di Prima & Stuart (1972) who considered the stability of 

the flow between eccentric rotating cylinders. 

We assume the disturbances to be periodic in the z-direction and 

expand their amplitudes and the parameter T in powers of the small 

parameter e about the marginal state. Thus we write 

On substituting from (2.29)a,b  into (2.1), (2.2), we obtain at 

order C
o 
a partial differential system for (u

(0)
, v

(0)
) whose solution 

can be written in the form 

(0) 	(0) 
(u 	v 	) = Bo(%) ( 

f00(), g00())  
2.30) 

Here (fg ) are the eigenfuctions of the eigenvalue problem for 
0,0' 0,0 

(a, TO) defined by the system 

L 

 (

:0,0 . 0  

0,0 

fo,O = go,o = df0,0 /dt = 0 	(t; = 0,1). 

(2.31) 

where L is the linear operator obtained from Q by putting rao  = 0 and 

0 = T0. It follows that the eigenrelation defined by the differential 

system (2.31) is (2.9) with 540  = 0 and TO  = T0. This is the eigenrela-

tion of the steady marginal state. 

The determination of the function B
0 
 (%), as yet unknown, requires 

the consideration of the 0(e) system. 
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The latter is an in-homogeneous linear partial differential system 

for (u(1), v
(1)
) whose solvability implies that the following condition 

be satisfied 

dB 
• + B

o
r cost + a2  T A) = 0 	(2.32) 

I-  - 1° 2 
i 	

+ 	1 'D 	

▪ 

\ 
4 	 ay_ 

j
(f+  N f + g

+ 
g )d4 

0 

TO 40 f0,0g0,0 	fo,o go,o'd "? 

0,0 0,0 0,0 0,0 

with 

(2.33) 

A
+  f g y 

0  0,0 0,0 A,o  
re 

j (fo,o▪ Nf o,o+ go g0,0)g 

• (2.34) 

The adjoint pair of functions (f„,„, g0,0)is a solution of the 

system (2.12) with ao  = 0 and To  = T0. 
The periodicity criterion imposed on the solution of (2.32) gives, 

as expected 

	

= 0 	 (2.35) 

and 

	

= A exp (- — sine) , 	 (2.36) 

where A is a constant(which can only be evaluated by considering non 

linear effects)whose square is negligible. 

The solution for (u(1), v(1)) can now be expressed in the form 

(1) 	(1) 
(u 	, v 	) = B et) (f + Bccs-c (f 	, g 	) , (2.37) 

1 	0,0 g0,0) 	0 	0,1 0,1 

where the pair of functions (f0 
1'  g0 

 ) is a solution of the differential 

	

, 	, 1 
system 

(2.38) 
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and B
1
(t) is an unknown function of rt whose determination requires the 

2 
consideration of the o(e...) system. 

The latter is an inhomogeneous linear partial differential system 
(2) 

for (u(2), v
(2) 

 ) whose solvability depends on the following condition 

des, 	b„, rj.,, 04, st,,, 	Bo  t 	Es.(4,.,„sat}cizaor572. (2.39) 
d..7; 

where 

. 	N 970,,o 30,0 :2:4  'Xila A)] tc\  (2.40) 

  

N To,e 	cA.,) 

re. 
_ Ns0,4 cT.1.0 co.,) c 	442.(ciiyac) 

r4 	  

(7°) 1\13°I° 	cg;)° 	c\ 	
(2.41) 

O 

A 

(\op

I„o )o, CAoioCVc 
0 + 

N3o,4 	cloac tiolc)dc 
04 

• 

(2.42) 

The requirement that B1  be a periodic function of "t leads to the 

following expression fo
r 
T
2 

• (2.43) 
r 2  

T
2 
 = 

2 a2 r3 
3 

Furthermore the solution for B
1 
 (T) is 

B
1 
 = B

0 
 (t) j r

1 
 cos t 	

4 tx. 
sin 2't E 	 (2.44) 
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We need not proceed to higher approximations in order to show the 

equivalence of the above procedure to the slowly varying approach. 

Thus the marginal state is found to be characterized to 0(s) by the 

following expression for the disturbance 

(u Ni) = ES em)(7:  s;01 1) (iv) ) ci a,,c) \.4 4-  E.(i; col'' -- -1---1- sins- 
4.6e. 

1. 
4  c (Sc),A , c,,,, 4) coat + ()(e). 

(2.45) 

Furthermore the marginal value of T is given by (2.29)
b 
with T

1 
and 

T
2 
defined by (2.35) and (2.43) respectively and T

3 
equal to zero. 

We now consider the approach developed in § 2.2 in the limit C.-0.0. 

If we expand u0, v0,f20, T in powers of c in the form 

Utko E + V 0 ia, e.2" 	(e.4) 

e.g" 4. 0 (A , 

E 	"Tia, 	(.e.3) 

(2.46) 
a,b,c,d 

we can then substitute from (2.46) into (2.18) to obtain a set of dif-

ferential systems arising at different orders for the coefficients u 	, 
0,i 

v0
i (i = 1,2,...). 
, 
At order et  the following system arises 

0 (
u0, = 

' 0,0" (2.47) 
15u 

0,0 
= 0 	(c= 0,1) 

110,0 = 170,0 = 

where Q0  is the operator obtained from eby putting 120  = 0 and TO  = T0. 

The solution of (2.47) may be written in the form 

(2.48) (u
0,0'

v
0,0

) = C
0
() (f

0,0
(), g

0,0
-00) , 
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where C
0 
 et) is a function whose determination requires the consideration 

of the order cr problem in the limit E. 	0 . 

By substituting again from (2.46) into (2.18) and equating terms of 

order C. , it follows 

t.)o,A 
	

atv,  Co N 	+ o.T.I\o%op Ca  Coa-r +Q. TA  4‘? Co 

\\;.:, at,  Co %o,o 4  Sk&_,g C. 3.3. 
00,4 
	V044 	 %.)o A 	0 	(c- 0,A) . 	(2.49) 

The solvability condition of (2.49), together with (2.33) gives 

C 

The periodicity condition imposed on (2.50) gives as expected 

= 0 . T1  

The solution of (2.49) can now be written in the form 

(2.51) 

(u0,1' v
0,1) = C

1
(t)(f0,0 (),g0,0 (c)) + C

0
(-0(f

0,1
(n),g 

0,1 

(2.52) 

where C
1
(t) is a function whose determination again requires 

ration of the order G•  problem in the limit 	0. 

Finally at order E.2- the 0(V) system (2.18) reads 

the conside 

(2.53) 

ACt  C.ev a  'Z. (— r N 30,4 

\D° 
c.0 't (—c o,4 	dc k 4  

2-r  ev 
4- 	No  C, C.47?-E 

kirto2,Co 

NA) 4. CA  toSX. 

(-7 N130,0 4. A. tO /\..3 
2 7- Nt 

Molo 0.14  TR. 1)(0 Q0 %0d 

r 0 4 	 S 3  0) 

Co celo,c:1 

Lt0)2..= 1/0442. =  	4 
) 
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where (2.48),(2.51),(2.52) have been taken into account. The solvability 

condition,  	(2.53) together with (2.41),(2.42) gives 

IA/0,2 = 
	2 cos

2 
 "C - a

2 
T
2 
r
3 • 

(2.54) 

The periodicity condition imposed on (2.54) leads to an expression 

for T
2 
which is identical to (2.43). 

Let us now consider the 0(cT) system (2.21) and expand (u
1
, v1) in 

powers of E. in the form 

ul = u10 + e u1,1 + 0(e) 

(2.55) 
v
1 

= v
1,0 

+ e v 1 , 1 + 0 ( E.4) . 	 a,b 

The differential system for (u1,0, v1,0) is found to be 

dC0 \ 

( 	= 16  (U1,1 	- f0,0 dd-ct 

1,0 \g0,0 d-c 

(2.56) 
a,b 

 

u1,0  
Ui,o = V

i,o 
 — 	 - o 	(c= 0,1) . 

ri 

 

The solvability condition for such system gives 

 

 

C0(t) = C
o 
= cost (2.57) 

At 0(E) the system for 
(u1,1'  v1 1) 

is found in the form 
, 

 

N c,,,,„ a C4 N c,„,„ st,v, ft Co + 0•..!.  "ro II ( 
d't 

V4 .0 sr•O 	
C

ati %0,1 S';'r% -C Co + 2  5- 	2\2.L'%  .4„ Co 

Co 

(2.58) 
0414 = 	=-. —0 04,0, 
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The solvability condition for the previous system provides a 

differential equation for Cl, which can be solved to give 

C
1
(t) = CO  r cost . 	<2.59) 

By substituting from (2.48),(2.52) into (2.46)a 
b 
 with C

o 
and C

1 
given by (2.57), (2.59) respectively, (u

o' 
 v0) are determined to order e . 

Moreover if (2.50), and (2.54) are taken into account, ift
o 
is known to 

disturbance amplitudes which can be shown to reduce to (2.45) to order E. 

if we take C = A. 
0 

Thus it is seen that Di Prima-Stuart expansion procedure can be 

interpreted as a limiting form of the WKB procedure. 

2.5 - Results  

The starting point for the calculation is the determination of the 

marginal state for the steady case. Dean (1928), Reid (1958) and Ham-

merlin (1958) obtained approximate analytical solutions for the dif-

ferential system (2.6). Gibson & Cook (1974) employed a Chebyshev col-

- location method. We solved it numerically by means of the Runge-Kutta-

-Gil l procedure of the fourth order (40 steps). The results for the 

curves of neutral stability are shown in figure 1. The critical values 

of T
0 
 and a

0 
 are given in table 1. The corresponding eigenfunctions 

(f  0,0' g0,o) are shown in figures 3 and 4,normalized such that g0 0  (i)=1. 
The system (2.12) was solved with i.2

0 
 = 0 to obtain the pair of 

adjoint eigenfunctions 
"
0,0' g0,0) which are shown in figure 5 normal 

ized such that f0 0(1) = 1 . The constant r Was evaluated from (2.33) 
and the system (2.38) was solved giving the pair of functions "0,1' 

g
0,1 

). Finally T2, 
3'  r 	r2  were determined from (2.43) (2.42) (2.41), 

respectively. Each calculation was performed for the steady critical 

configuration (a0 
,c 

 , T
0 
 ). The procedures used to solve the various 
,c 

differential systems have been discussed by Eagles (1971) and will not 

be described here again. The numerical solutions of the boundary value 

order E2. Thus we are in a position to derive an expression for the 
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problems were obtained by the Runge-Kutta-Gill procedure of the fourth 

• order (40 steps). The integrations were performed by using the Simpson 

rule (40 steps). We obtained 

42.87 

CI = - 4.505 

= 0.2659x10-3, 

T
2 
= -542.59 

(2.60) 
a,b,c,d 

We then examined the approach described in § 2.2 for the periodic 

time dependence expressed by (2.28). For given values of E. and G the 

marginal state was determined, for every wavenumber, by following in 

time the perturbation corresponding to different values of T until the 

periodicity of the disturbance was verified. For a given T the method 

of solution proceeded as follows. For each-t the instantaneous value of 

70  was defined by (2.8). The eigenvalue problem (2.18) was then solved 
and gave the instantaneous value of Q.

0 
 and the disturbance transverse 

structure at order e. After determining the instantaneous adjoint 
+ + 

function pair (fo, go) from (2.12) (with 51 replaced by t and d/d; by 

Ii/ot,), we were able to perform the integrations in (2.23) and obtain 

the instantaneous value of H. Finally equation (2.22) was solved and 

gave the instantaneous value of the amplitude function A(T) which was 

normalized such that A(0) = 1. This procedure was repeated for discrete 

values of t until a period of the basic flow was completed. Furthermore 

for every 1. the expressions (2.26) could be evaluated and provided the 

instantaneous values of the growth rates. The marginal value of T was 

obtained by linear interpolation in a neighbourhood of the neutral 

curve. At any order in CI this value does not depend on the quantity 

chosen to describe the evolution of the disturbance. 

Indeed to order 5 the periodicity condition reduces to the relation 

%4-2Ar 
- H(c) d% — 	

o
('t)d.t/= 0 . 	(2.61) 

But we have 	't 4- als 

HM d-r = 0 . 	 (2.62) 

-c 
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This follows by showing that H(t) satisfies the condition 

- "(21 - -CO) 

In fact systems (2.18), (2.12) clearly show that 

+ + 	+ + 
(f 
0 
,g
0 
,f
0 
,g 
0 
)(i. ) = (f 

0 
,g 
0 
,f 
0 
,g 

0
)(211- -C

o
) 

(2.63) 

so that 
!rMf • 7c (g 0 ) , 0 	0 0  

) CC 
-0*-G 	n5T. 

-bMf
o 	

( g 0) • 
0 0.  

( 	) (2T( - "C
o
) . 

Tyr, 

,0- 
The latter behaviour is also exhibited by the functions "Y1 and Oki-att . 

Then (2.62) follows from (2.23). By taking (2.62) into account, the 

periodicity condition (2.61) is found to be 

(i) independent of the quantity chosen to describe the evolution of 

the disturbance; 

(ii) independent of 5". 

The latter conclusion confirms the result obtained in the limit condi 

Lions 	-4-0 and can also be formally derived if we expand the marginal 

Value of T in the form T = T
0 

+ C. T
1 

+ G2 T
2 

+ 	 ; then by consider- .  

ing higher order terms in the velocity expansion it can easily be shown 

that the first non zero correction term to T
0 

above is T
2
. The solvabi-

lity condition of the order C". system would now involve T
1
, and similar 

arguments as those given above, along with the condition (2.63) would 

give 

T
1 

0 , 	 (2.64) 

as expected. 

If higher order terms are taken into account it can be shown that (i) 

can be verified to any order of approximation whereas (ii) is only true 

to order Gr. 

Neutral stability curves were determined by this procedure for the 

cases e.= 0.4, E = 0.9 and are shown in figure 2. The evolution in time 

of the disturbance transverse structure is shown in figure 3 and 4 for 

the critical state corresponding to E.= 0.9. For the same configuration 

figure 6 shows the behaviour of the growth rate G4 (associated with the 

energy of the disturbance) compared with the quasi-Steady 'correction term 
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(of order 6; )
1
(m) and with the function 11(T). 

The behaviour of the growth rates G1, G2, G3  is very close to the 

one obtained for G
4 
and is not shown. Finally figure 7 shows the ampli 

tude function A(t) for the previous critical state. 

Checks on the computation were provided 

(i) by comparing the structure of the function irlo t) as given by 

(2.46c) (2.50) (2.51) (2.54) (2.41) (2.43) and (2.60) with the instan-

taneous eigenvalues of the system (2.18). 

(ii) by the following relation, which can be derived algebraically 

r 
2 

2a
0,c 

T
0,c 

(iii) by comparing the results obtained by means of Di Prima-Stuart 

approach with the results given by the method employed in this work:. 

This will be described in the next section. 
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Slowly accelerated case 

We then examined slowly accelerated basic flows characterized by 

the time dependence expressed by 

(<z)e) =e (1 + tanh -C). 	(2.65) 

The corresponding basic velocity field can be obtained by substitut 

ing from (2.65) into (1.8). The evolution in time of the perturbation is 

then determined by a boundary value problem at any instant in time 

similar to the one previously outlined for the modulated case. The solu-

tion was obtained by a similar numerical procedure and allowed us to 
(0.0 

determine the instants of momentary neutral stability 1:„, and the cor- 
-.1._.(e4-:) 

respondingvainestriassociatedwiththequantity..These are defined Qi 
as the values of % and T when the growth rate G. vanishes. For the basic 

1 
floWs.we are examining, G. vanishes at most once in the interval --co<,v<vg. 

We have 

to.:) 
-C m  = 	 ) 

(2.66) 

where T = [7] 	. The curves of momentary marginal stability 
't 00 

corresponding to some given values for Tf  are shown in figures 8 and 9 
20 

for Q
4 
 and er= 0.3. For given values of er and I

f 
the function 't 0c.1 has 

(Az) 
a minimum 1. for a value of a (a

c
ka3  ) which determines the critical 

conditions for momentary neutral stability. The variation of the crit-

ical wavenumber with
f 

is fairly small and exhibits a slight dependence 

on C; as shown in table 2. 

The behaviour of the growth rate of the relative energy of the 

perturbation for particular values of the parameters is shown in figure 

10 along with the quasi-steady and the slowly varying corrections of 

order G . The amplitude function corresponding to the same values of 

the parameters is shown in figure 11. 
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2.6 - Discussion  

We first note the remarkable agreement of Dean's (1928) and Gibson 

& Cook's (1974) results compared with the results obtained in the 

present work for the steady case. The first approximate method used by 

Reid (1958), though some-what simpler, is less accurate as he pointed 

out. A similar argument applies to Hammerlin's (1958) method. 

We now discuss the modulated case. We have shown in § 2.4 that, in 

the limit E. -I. 0, the perturbation velocity field arising from the ap-
proach used in this work reduces to the one obtained by Di Prima-

-Stuart method. Moreover from the latter approach it follows that the 

critical value of the parameter T at which instability first occurs is 

given by (2.29). evaluated at a = a 	. Indeed, Venezian (1969) showed 
0,c - 

for the analogous modulated Benard problem that the critical value for 

the wavenumber is given by 

= a 0,c +  e.2a
2,c 

+ 0(e.) 
	

(2.67) 

where 
OT2Aa) 

a=a0,c 
a
2,c 	

(2.68) 
2 

2("6 T 4a
2
) 0 	a=a

0,c 

The correction term
2
a
2,c 

affects the relation (2.29)
b 
only at 

order 
4 
 as Hall (1973) showed by proceeding to the higher approximations 

in the analysis of modulated Couette flow. Thus such an effect is fairly 

small within Hall's scheme. The present approach is not subject to the 

condition 4;441 and this allowed us to evaluate the previous effect 

quantitatively. In fact, by quadratic interpolation in a neighbourhood 

of the critical configuration, we were able to find the values ofa and 
. c 

 

T
c 
which are shown in table 3. It appears that a

c 
decreases sensibly 

when e. increases with Er fixed. By evaluating (2.29)
b 
and (2.68) numer-

ically for a = a 0,c, taking into account (2.35) and (2.43) we could 

determine the degree of accuracy given by Di Prima-Stuart method at order 
2 E . The results are shown in table 3. The agreement is very satis- 

sfactory for. e= 0.15 and still fairly good for e= 0.4 even though only 

terms of order. E2-  have been retained in (2.29 	so that the dependence 
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of a on E, has been neglected. The results are no longer comparable 
c 

 

for 	.= 0.9. 

In the low frequency limit it seems that the dominant effect of 

modulation is to destabilize the flow, the degree of destabilization 

increasing as c is increased from zero. Such a conclusion confirms 

Hall's (19754)results for modulated Couette flow in the limit e and 

tending to zero. On the contrary experimental work done by Donnelly 

(1964) on modulated Couette flow showed that modulation enhanced the 

stability of the flow, the degree of enhancement being maximum, for 

all C, for a certain value (=0.27) of the frequency parameter V. In 

view of the analogy between the mechanism of instability considered 

here and the nature of Couette flow instability we can conclude that 

the linear theory developed in this paper is not able to explain Don-

nelly's results. 

Let us now discuss the results obtained for the slowly accelerated 

basic flows satisfying (2.65). It is interesting to examine the nature 

-of the correction terms of order Cr which appear in the expression (2,26) 

for the growth rates of the disturbance. 

Figure 10 shows that the global effect to the order cr correction 

for the growth rate 4 
	

G41) is stabilizing. In fact 
-1 

the main contribution to this correction is due to the term A dA/dq; = 

= -Her.). As mentioned in § 2.3 this can be split into two parts: the 

quasi-steady term Imr2(T) and a slowly varying component arising from 

the variation with time of the disturbance transverse structure. Both 

the components exhibit a stabilizing effect as shown in figure 10. 

Further stabilization is associated, as expected, with measuring the 

energy relative to the corresponding value for the basic flow. In fact 
-1 

the growth rate, 0
0 
 dO

0 	
, of the basic flow, is positive for 0,1%.00 

due to the acceleration and this induces a negative contribution into 

the order cr correction for G4. The only term which exhibits a destabiliz 

ing effect is the one which directly accounts for the growth rate of the 

disturbance transverse structure, namely IF-1dF/d% . This term is not 

explicity shown in figure 10, but its behaviour can be inferred and is 

[% 1-4  ° 	1°65t1cvo.5* qualitatively similar to the one shown for 
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Figure 10 shows also that the order cr correction for G
4 
 is rather 

small compared with the leading term Imno(v). This is due to the 

characteristic scale of instability, which, unlike in Eagles & Weissman's 

(1975) work, is here much bigger than the "slow" scale of the basic 

state. This argument also explains the apparently odd decreasing of A('.) 

when -C increases as shown in figure 11. 

In fact the dominant 't dependence in the disturbance velocity 

field is associated with the "W.K.B.!' exponent 	(lima (T..)/r)dT rather 
0 

more than with the exponent - 	on which the "amplitude" function 

A(..0 depends. Under these conditions the quasi-steady approximation may 

be considered as a fairly accurate approach. This also implies that the 

curves of "momentary" neutral stability shown in figures 8 and 9 do not 

differ appreciably from the ones which are obtained by a quasi-steady 

analysis. 

We should also mention that a variation of .3.(f2  with Tf had already 

been obtained by Chen & Kirchner (1971) who studied numerically the 

stability of time dependent rotational Couette flow when the inner 

cylinder is impulsively started at t = 0 and maintained at a constant 

speed. They examined high frequency basic configurations and found that 

a
(E) 

increased sensibly when the Reynolds number was increased. A direct 

comparison between their results and ours is not possible but it seems 

worthwhile to mote that the effect we obtained, even though much slighter, 

exhibits similar features. 
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Table 1 

T 
0,c 

a 
0,c 

• 

Dean 5169.6 3.954 

Hammerlin 5100 4.0 

Reid 5277 3.889 

Gibson & Cook 5161.9 3.950 

Present work 5161.86 3.951 

The critical values of the Taylor number aniwavenumber 
in the steady case as obtained by Dean (1928), Hammerlin 
(1958), Reid (1958), Gibson & Cook (1974) and the present 
author. 

Table 2 

I,' 

Cr 

6252.1 8732.3 11625.8 14932.7 

0.2 

0.3 

3.9535 

3.9544 

3.9563 

3.9585 

3.9583 

3.9615 

3.9598 

3.9638 
(e) a 
c 

The critical values of the wavenumber for the time dependence 
expressed by (2.65) with a'. 0.2, 0.3 and some values of Tf . 

Table 3  

Present approach 
Di Prima-Stuart 

approach 

E. G T
c a

c 
T
c 

a 
c 

0.15 0.1 5149.6 3.9497 5149.6 3.944 

0.4 0.1 5065.1 3.9053 5075.0 3.900 

0.9 0.1 4355.5 3.6555 

Comparison between the critical values for (a,T) as obtained by 
Di Prima-Stuart approach and by the present method. 
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FIG. f: The curves of neutral stability for the 
steady 	Reid, —.— — Dean, 

Hammerlin,— Present work. 
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FIG. 2: The curves of neutral stability for the modulated 
case 
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t:.- 21crt t 2.284722 

-1.0 — 
FIG. 3: The evolution in time of the function go(ct) 

-for the critical state corresponding to the modulated 
case with ..e =0.9, •—••••• The function goo  (t) 
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0-5 	 1.0 

FIG. 4: The evolution in time of the function fo ( ,T) for the 
critical state corresponding to the modulated case 
with c = 0.9...—•—• The function foo  (t) . 
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176. 5 - The adjoinf eigenfunctions f:.(t), g1,30  (%) 
normalized such that ie+00  (1/2)= 1 . 
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FIG.6: The oro,,vth rote of the relative eneroy of the disturbance 
(G4) compared N,vith the quasi -steady correction term 
• of Order rj (1Q1(1;)) and the s;cwly varying term (H(t)) 
for the critical state corresponding to the modulated 
case with E = 0.9. 
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0 	1 	2 	3 	4 	5 	f 2rt 
F/G.7: The amplitude function ACE) for the critical state 

corresponding to the modulated case with e =0.9. 
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FIG.& The instants of momentary neutral stability associated with 
the relative energy of the disturbance for the time dependence 
expressed by (2.'65) with a = 0.3. 
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stability associated with 
the time dependence 
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The configurations of momentary neutral 
the relative enf2.rgv of the disturbance for 
expressed by (2.65) with 0 =0.3. 
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FIG.10: The growth rate G4(I) compared with the order 0 correction (denoted by G41 ) for the time 
dependence expressed by (2.65) with d = 0.3 and Ti ::11G25.8. Some single components of the 
order d correctionr, for the various growth rates are a:so shown. 
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103  
FIG.11 : The amplitude function ACt) for the time dependence expressed by 

(2.65) with a 7-..aoc  ,d =0-3, 'T./ = 11625.8. 
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CHAPTER 3 

WEAKLY NON LINEAR THEORY 

3.1 - Introduction  

In this chapter we develop a perturbation expansion in order to 

determine the weakly non linear growth and equilibrium state of the 

disturbance both in the steady and in some unsteady cases. The analysis 

follows the line of Stewartson & Stuart's (1971) work on non linear 

parallel instability. 

Time dependent basic flows are considered such that 

‘-ac- 	= 1 + E. f. ('t) 	 (3.1) 

where both the amplitude E. and the frequency Tof the unsteady component 

are "small". Under such conditions the problem can be treated following 

the procedure used by Hall (1975a)for the analogous unsteady Taylor 

problem and first suggested by Di Prima & Stuart (1975) when studying the 

stability of the flow between eccentric rotating cylinders. The idea 

(which was already mentioned in 4 2.4) is to let G' and £ tend to zero 

keeping their ratio G/Is fixed. Furthermore the growth rate of the distur 

bance is of order E. , within a small neighbourhood of the marginal configura 

tion. Thus expansions of the type used by Stewartson-Stuart can be set up 

for the various harmonics in terms of the small parameter G. An analysis 

of the differential problems obtained for the coefficients of such expansions 

at the various orders of approximation, shows that the solution depends on 

an "amplitude function" A(%) which, as expected, is found to satisfy an 

amplitude equation of Bernoulli type identical to that found by Hall (1975a). 

A discussion of such equation similar to that given by Hall (1975a)shows 

that: 

(i) an equilibrium amplitude solution exists in the supercritical regime 

in the steady case; 

(ii) when f(T) = tanh('t) an equilibrium amplitude. solution exists as n1-403 

in the supercritical regime; such solution is just the equilibrium 

amplitude solution for the steady problem with the Taylor number based 

on the final average speed of the basic flow; 

(iii) when f(v) . cost the amplitude solution is periodic in % . However by 
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taking further limits it is shown that the effect of modulation 

tends to disappear as T
1 
 /T
o 
 tends to infinity with a fixed and as 

C-oca with 
11/To 

fixed. 

Furthermore, as 
T1/To 

tends to zero with oc also tending to zero 

the 't dependence of A becomes that of B0(.t) found in § 2.4. 

3.2 - Analysis for slightly unsteady slowly varying basic flows  

Let us consider basic flows such that 	is given by (3.1) with 

S# .44 1 	, 	 (3 . 2) 

The basic velocity field is given by (1.6),(1.7),(1.8) with 	defined 

by (3.1). 

Under such conditions the analysis given in 2.4 (see eqn (2.46)
c
) 

suggests that -in— 0(e). Thus the growth (or decay) rate of the 
disturbance is of order C. and an approach of the type used by Stewartson 

and Stuart (1971) can be employed using e as a small parameter. 

Thus we expand (u,v,w,T) in the form 

(uv  \ 

WJ 

3AON C4S aa. 	 04 	722 cos 2,:a.z 

0440  cos a.z 	;0, + %20 cos 2a-z 
4/2.  

‘nco■ 	VI" 3A...1 2c3.2 

+ e. 

COS 	ow* Sax 

+E2 %" co,D 	9s. to--4 Saz 

54rei az/ 	1.13o 1,..tvn Sa.z 

(E-. 	 (3.4) 

and require (f 10' 
g10, 

 h10) to behave like the linear solution for (u,v,w) 
 

as 't-,•—oca. 

Furthermore we let Sand E. tend to zero keeping wile fixed and equal 

to of say. 

Such a procedure was used by Hall (1975a)for the analysis of the non 

linear stability of unsteady cylinder flows. Di Prima & Stuart (1975) had 

developed the method when studying the non linear stability of the flow 

between eccentric rotating cylinders. 

On substituting from (3.3)(3.4) into (1.11) and equating terms of 
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L n) = 
_iyi 

'40 

- a
2
n
2
T 
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Th.c2  

where 

(3.6) 
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order E. we obtain the following differential system for the fundamental 

component of the disturbance 

(1)if10) 
= 0 , 

\,g10 	 (3.5) 
a,b 

El° 
f 10 = g 10= - 0 	( = 0,1 

The similarity between (3.5) and (2.47) suggests that we take 

(fg g10) = Aft) (F (;), G (V) 10' io 	lo 	10 
(3.7) 

where 
(F10,  G

10) = (f
oo' g00) 

is the pair of eigenfunctions associated 

with the differential system (2.31) and A(ti) is an amplitude function 

- r which is expected to behave like Bexp(- 	siniG) as T-10. -00• 

If we now substitute from (3.3)(3.4) into (1.11) equate terms of order 

and take (3.7) into account, we can show that the pair of functions (f20, 

g20) is the solution of a linear non homogeneous partial differential 

system parametrically dependent on time with coefficients which are propor 

tional to A
2
('r). Thus we write 

 

(f
20' g20) = A

2
(%) (F20(' 	G20 (;)) (3.8) 

where 

  

 

I Ise) C.2. 

GI 

G2 	

0,To 	V.Zol2.C■7,r-  4. 	o 	o-31  

7:44;  (go G.to GA. C,,.;) 

(sc 0.11t) 

2. 
(3.9) 

and N
(n) 

is the operator defined by (3.6) where "21; -- be replaced by d/d; . 

Furthermore it can be shown that the functiong
01 

 ( ,'t.) which represents 

the non linear distortion of the basic flow can also be written in the 

form 



( ok. to 1\1 FA o 4. of )(5, G 4 0 I\ (rt 4 To T (..c.)) + P.5  c-6.„() at 4 

D (IL G40 	As 	(;) f 	o C't 0 

c Pt 	 4 	0 
r$ 

(3.12) 

-. 
[T 
T 
i 
+ f(v) 

0 

(F: Cai 

3 
+ al  A. 	, 

+ G;re, c% N] az, 

(3:15) 

(3.16) 
Wit, 4. C.A1:0 G A.0) dc 

so 

a ds
= — 

where 

g
01 

= A2  (t)G01  (r)' ' 

where G
01
(4) satisfies the following differential equation 

• G
I  = 
	(F G

I 
 + Fi G10)  c  O 	4 10 10 	10 10 d2  

d2 

1 G01 
= 0 	(c = 0,1) . 

(3.11) 

The distortion that the fundamental component of the disturbance 

undergoes in the non linear regime is described by the pair of functions 

(f11(C' ); g11( 	). 
By taking (3.7),(3.8) and (3.10) into account, we can 

write 

where 

0,!‘ ( E■0 F210 .1.• TNto F.11; + To G■e@o4 G2o\ 
\ 2 	 2. rt.  

11- 	
(3.13) 

( S•Q Fit. 0 	72.10 Wof rft0 F4.10 * 	Fzig 

,4-ict (Tao C:bia + Fop C312.0 + 2 Gb ao*E■t. 	2. Fm, GoI).  (3.14) 

The differential system (3.12) only has a solution if its non 

homogeneous part satisfies a certain orthogonality condition. By using 

(2.33) this condition can be written in the form 

and (F10, 
 G10) is the solution of the adjcint differential system (2.12.) 

with iCle = 0 . 
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3.3 - Results  

The aim of the computation was the determination of the constant a
1 

which appears in the amplitude equation (3.15). 

The expression (3.16) shows that the knowledge of the pair of 

functions (F20, 
 G20) and of the function G

01 
is needed in order to perform 

such computations. Thus the differential systems (3.9) and (3.11) were 

solved numerically by means of usual procedure. (The solution of a non 

homogeneous boundary value problem is found as a linear combination of a 

suitable number of independent solutions of the homogeneous initial value 

problem plus a particular solution of the non homogeneous initial value 

problem). The numerical integrations were performed by means of the Runge-

-Kutta-Gill procedure of the IV order with 40 steps. The solutions are 

shown in figures..12, 13. 

By using the values for the pairs of functions 	(E 	
,.G ) 10 	1,0 + + + 

= (f ,g ) and (F 	, 
G)  = (f  ' 

g
oo
) obtained in chapter 2, the qua- 

00 00 	
10 10 
	oo 

dratures present in (3.16) could be performed numerically by means of 

Simpson rule with steplength 0.1. We obtain 

= -34.613, 	 (3.17) 

3.4 - Discussion 

Equation (3.15) is a"Bernoulli" type equation and is identical to 

that obtained by Hall (1975a).Much of the discussion will then be to 

repeat Hall's (1975a)consideratiofis. 

Equation (3.15) can be solved by substitution of variables by using 
-2 
A exp (- eci as a variable, where 

0 (x) = 11  12 [1 f(y) dy 	 (3.18) 
01 	• 

0 

We obtain a • 
-2 

 
A 	exp [-0(xi = - 04.  j' Atp.{-..+(x)-1. 

0  
(3.19) 

Let us first consider the steady case where 

f(T) = 0 	 (3.20) 

We can see from (3.19) that the amplitude equation admits an equili- 



211  e,T(...4)(4)clx. 
where 	0 

(x) = 
QC 

ilexr,(-1k2m)) 

2sin 
T
1 

x + T 	x 
0 

-11 
r 

0 

. 

g(t).:- 0E. 	eqAP (- liege s)}• t e4q)(11/('))- 11 (3.24) 

(3.25) 

T 

e-4,t71P(4 
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brium amplitude solution A as 1'..4to in the supercritical regime (T
1
> 0). 

We have 
r 1 Ae = 
a T 
1 0 

(3.21) 

Such a result completes the analogy between the instability characte-

ristics of curved channel flow and circular Couette flow. Moreover it 

agrees with Brewster Grosberg and Nissan's (1959) experimental findings. 

Let us now examine the case 

f(1.) = tanht . 	 (3.22) 

As in Hall (1975a)one can show from (3.18),(3.19) that an equilibrium 

	

amplitude solution still exists as 	That is just the equilibrium 

amplitude solution for the steady problem with the Taylor number based 

on the final average speed of the flow. 

Let us finally study the periodic case where 

f er) = cos 	. 	 (3.23) 

The periodicity condition imposed on (3.19) determines A(0). Thus 

we can write A
2 
 in the form 

Further informations on the behaviour of A(t) can be obtained by 

considering some special limits. 

(i) If we let T
1 
 /T
0 
 tend to infinity with 04 fixed, we can show from 

(3.25) that 

A(%)~ Ae 	
+ 0 (T /T ) 

-1 
1 0 

(3.26) 

Thus the effect of modulation on the equilibrium amplitude tends to 

vanish as the flow becomes more and more supercritical. 

(ii) If we let pt.-4.m with 
T1/T0 

fixed we obtain 

MT).- Aell. + 0 (o-C1)\. 	(3.27) 

Thus the effect of modulation is also negligible when the ratio ve. 
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is large, although e. and z' are both small. 

(iii) Let us now take the limit T
1 
 /T
0 

 *-4  0 with tot. fixed. 

We obtain 

)6;2(.-c e.y.'!..( 	r's;,17)loc. I: t o(1 (3.28) 
06, 	

2. tz) '1*  

where I
0 
 is a modified Bessel function of zero order. 

By letting ot. tend to zero in (3.28) the following expression is 

obtained for the amplitude function 
aj 

A(t) -A---r s̀̀   a 	- 4  
Q„ .0 

The time dependence shown by (3.29) is similar to that obtained for 

B
0 
 et) in § 2.4. The function A(%) is plotted in fig. 14, where ap- 

pears that the maximum of A( 	
2 

	

A(t) is attained at 't = - 	. 
'11 

e..xv 12-(4- 	ki+0(
T
.
o
4(3.29) 
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PIG. 12 - The transverse structure of the radial (E2o) 

and azimuthal (G20) components of the 

first harmonic. 
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FIG.13 - The transverse structure of the 
non linear distortion of the 
basic flow . 
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A(x) 

Fla 14 - The amplitude function A(r) in the weaKly 

non linear regime wirh Ti/To  and cc both 

tending to zero. 



PART TWO 

LINEAR AND WEAKLY NON LINEAR STABILITY 

OF THE STOKES LAYER ON A CIRCULAR CYLINDER 
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INTRODUCTION  

The second part of this thesis deals with an example of unsteady 

centrifugal instability where the basic flow is modulated about a zero 

mean. 

However the stability of purely oscillatory laminar flows has not 

received much attention. The problem is no longer amenable to the type of 

asymptotic methods used by Hall (1975a). Moreover a "slowly varying" ap-

proach of the kind developed in part 1 would be restricted to high values 

of the relevant stability parameter. Except for the inviscid analysis of 

Rosenblat (1968), in which the problem,is simplified considerably, the 

above difficulties have only been overcome by approximate techniques sui-

table to numerical work. 

Rosenblat (1968) showed that any purely oscillatory cylinder flow 

(apart from rigid body rotation) is centrifugally unstable in the inviscid 

limit. Instability is associated with a phase lag between velocity and 

vorticity. Riley and Lawrence (1976) tackled the concentric cylinder 

problem when the inner cylinder performs harmonic oscillations. They exa-

mined the behaviour of rotationally symmetric disturbances whose time 

dependent structure was assumed according to Floquet's theory after first 

approximating the radial dependence by means of a Galerkin expansion in 

terms of Jacobi polynomials. The critical values of• the relevant stability 

parameters were determined numerically by following the evolution of the 

disturbances in time and imposing the periodicity criterion. The flow was 

found to be unstable for large enough speeds at all frequencies. The 

critical, parameters become independent of gap width at high frequencies 

in which case the flow reduces to a Stokes layer confined to a region 

adjacent to the inner cylinder. The above method requires a great deal of 

computation and does not provide a deep understanding of the physical and 

mathematical features of the problem. Furthermore a Galerkin expansion 

procedure only applies to functions defined in a finite interval. Serious 

doubts about the validity of the results arise when flows of the Stokes 

layer type are treated by this method which requires the introduction of 

a second boundary. After introducing this second boundary the Galerkin 

method can be used to approximate the disturbance flow between the two 
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boundaries. The thickness of the Stokes layer compared to the separation 

of the boundaries must then be allowed to tend to zero in order to infer 

results for the infinite Stokes layer. Thus the Galerkin method is 

particularly unsuitable since, in this limit, the disturbance velocity , 

which will be non zero only in the Stokes layer, must be approximated by 

functions defined in the finite interval between the boundaries. In order 

to obtain sensible results the number of terms of the Galerkin expansion 

needed will rapidly increase. 

Such an argument applies to Kerczek and Davis (1974) who investigated 

the linear stability of Stokes layers on a flat plate. A "finite Stokes 

layer" is considered with a stationary infinite plate set parallel to the 

first. The stability of this flow is studied by a method similar to the 

one previously described. The flow is found to be stable for Reynolds 

numbers less than about 750 and wavenumbers in the range .3, 1.3. These 

.results were obtained for a maximum separation distance d eight times 

bigger than the characteristic thickness of the Stokes layer. To what 

extent they can be extrapolated to the case of an "infinite" Stokes layer 

is questionable. Such uncertainty particularly refers to disturbances of 

"small" wave number. In fact it appears unlikely that a disturbance whose 

wavelength is 0(d) does not interact with the stationary wall. If the ef-

fect of such an interaction is appreciable, as one might reasonably 

expect, the results obtained for wavenumbers 0(1) cannot be considered 

representative of the behaviour of an "infinite" Stokes layer. 

Finally we mention Kuwabara & Takaki's (1975) work on secondary flow 

around a circular cylinder in rotatory oscillation. Such work was not 

known to the present author till this thesis was completed. Kuwabara & 

Takaki (1975) examine the possibility_of.occurrence of small, unsteady 

axisymmetric disturbances superimposed on the basic flow originated by 

a circular cylinder pe'rforming rotatory oscillations about its axis. 

Their analysis will be more extensively discussed in §5.5. At this 

stage we notice that they tteated the radial dependence of the perturba 

tions by means of a Galerkin expansion in terms of Laguerre polynomials. 

The disturbance time dependence was assumed on the basis of some experi- 
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mental observations by Taneda (1971). The perturbation was not allowed 

for any growth or decay and was assumed to be synchronous with the basic 

flow. Thus such study cannot be considered as a proper linear stability 

analysis. Furthermore some inconsistencies are present in the perturba-

tion procedure which will be discussed in § 5.5. Finally the number of 

terms retained in the Galerkin expansion and in approximating the time 

dependence of the perturbation was too small for reasonable accuracy to 

be achieved. Thus, as will be seen in § 5.5, Kuwabara & Takaki's (1975) 

results for the critical values of the parameters above which secondary 

flow may occur, disagree considerably with those obtained by the present 

author. 

In view of the above difficulties, a more reliable approach appears 

to be needed. A thorough understanding of the stability mechanism of 

Stokes layers is relevant to the analysis of a wider class of external 

and internal oscillatory incompressible flows. In fact viscous boundary 

layers of the Stokes type are developed near the walls of any such flow 

at high frequencies of the oscillation. Important examples are: the 

viscous layer at the bottom of a channel over which a gravity wave 

propagates (Longuet-Higgins, 1953); the viscous layer generated close to 

the wall of a cylindrical body oscillating along a diameter (Stuart,1963, 

1966); the flow near the walls of a straight or curved rigid pipe under 

the action of an oscillatory pressure gradient (Sexl, 1930; Lyne, 1971). 

We emphasize that the occurrence of such flows in practical problems is 

of considerable importance. For example the flow regime at the bottom of 

a water wave controls the sedimentation process. Similarly the flow field 

close to the arterial wall appears to be associated with the uptake of 

lipoproteins which is thought to be responsible for the onset of atheroma 

(Caro, 1973). The velocity fields in the above flows are generally more 

compticated than that of a simple Stokes layer. A normal as well as a 

tangential component of velocity is present. Furthermore the flow is not 

always confined to the Stokes layer; a steady streaming sometimes persists 

away from the layer. These additional features have some influence on the 
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stability characteristics of these flows. However it is of fundamental 

interest to investigate first the instability process for the simplest of 

them, a Stokes layer. 

We will consider the flow generated by an infinite cylinder which 

oscillates harmonically about its axis in an unbounded viscous incompres 

sible fluid. For high values of a suitable frequency parameter (see§4.l) 

the flow is confined'to a thin boundary layer adjacent to the wall, which 

reduces to a Stokes layer at the lowest order of approximation. Thus, at 

this order, centripetal forces associated with the curvature of the stream 

lines have negligible effect on the basic flow. However, as in a steady 

laminar flow with curved streamlines, centripetal forces may be expected 

to play a major role in controlling the stability of the flow. 

In chapter 4 we consider a "small" periodic disturbance of the Taylor 

vortex type (rotationally symmetric and axially periodic) and assume its 

tangential velocity to contain a harmonic component with the same frequen 

cy to as the basic flow. Then, from the interaction between such distur-

bance and the basic flow a convective force arises in the azimuthal direc 

tion. This force contains a steady part plus a harmonic component of 

frequency 20 . For a balance to be possible between such inertial force 

and the azimuthal viscous force, a radial velocity with the same time 

dependence is required. .A similar dynamic balance between radial viscous 

force and centripetal force can be imposed. For this to be possible a 

higher harmonic (frequency 36) is needed for the azimuthal velocity. The 

above balances are coupled, thus giving rise to the production of higher 

and higher harmonics in a cascade process. 

A more general structure for the disturbance can be envisaged where 

an exponential time factor, with complex exponent in general, is • 

introduced in order to account for: (i) damping or growth of the perturba 

tion away from the neutral state; (ii) possible subharmonic responses of 

the type characteristic of the solutions of Mathieu equation. Such a 

structure may be anticipated on the basis of Floquet's theory. 

The solution of the stability problem then arises from solving an 

eigenvalue problem for the growth rate in terms of the stability parame- 
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ters. This is obtained by substituting the above form of the solution into 

the governing differential system. It is apparent that such a method is 

only effective if the contributions associated with the higher harmonics 

of the perturbation tend to become increasingly negligible. Such a condi 

tion is expected to be satisfied in the present problem, since the partial 

differential system which describes the behaviour of the perturbations has 

a time dependence of the Hill's type. The method of solution outlined 

above is in fact just an extension of the procedure given by McLachlan 

(1947) for the solution of Hill's equation. 

In the present case the absolute convergence of the series expansions 

defining the disturbance velocity can be proved. The coefficients of these 

series are the eigenfunctions associated with the eigenvalue problem 

mentioned above, which essentially consists of solving an infinite system 

of homogeneous coupled differential equations with homogeneous boundary 

conditions. An analytic solution is obtained which is thought to be the 

general solution of the eigenvalue problem. Comparison with the results 

obtained by a numerical approach strongly supports this conclusion. The 

solution automatically satisfies the boundary conditions at infinity and 

is given in terms of an infinite set of unknown constants to be determined. 

This is accomplished by imposing that the no-slip condition at the wall 

should also be satisfied. An infinite set of linear homogeneous, algebraic 

equations is then obtained for the above constants. The infinite determi-

nant associated with the algebraic system must vanish if a non trivial 

solution is to exist. This leads to the required eigenrelation between the 

stability parameters. The marginal state is obtained by imposing that the 

growth rate of the perturbation should vanish. 

On carrying out the above procedure the flOw is found to be unstable 

to rotationally symmetric disturbances characterized by dominant steady 

radial and axial velocity components and smaller unsteady components in 

all the directions. The relevant stability parameter is not surprisingly 

a Taylor number, T, based on the thickness of the Stokes layer. The 

critical value of T was found to be T
c 
= 232.52, and corresponds to a 

critical wavenumber a
c 
= 0.85852. 
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Chapter 6 is devoted to the problem of the weakly non-linear develop-

ment of the linear solution. The analysis follows the lines of Stewartson 

and Stdart (1971) approach. Supercritical equilibrium amplitude solutions 

are constructed. The results agree with the analysis of Joseph (1972). By 

means of a Poincare-Linstedt type perturbation procedure Joseph (1972) 

showed that forced periodic basic solutions of the Navier Stokes equations 

bifurcate to supercritical stable and subcritical unstable periodic 

solutions with the same frequency as the basic flow, provided the Floquet 

exponent of the linear solution is zero at criticality (as is the case in 

the present problem). 

These results were qualitatively confirmed by some experimental 

observations carried out on the apparatus described in chapter 7. A Taylor 

vortex type flow of the kind suggested by the theoretical analysis was 

observed to develop when T exceeded a critical value Ttt 210 with a(1) 
e 	c 

0.88. However at values of T higher than T
c
(2) 

 tl 260 a second stage of 

instability was observed, which gave rise to a set of bigger vortices 
(2)„,  

(a
c 

— 0.17) characterized by steady velocity components in all the direc 

tions. The linear and weakly non linear analyses developed in this work 

cannot provide an explanation for the occurrence of this second stage of 

instability. No rotationally symmetric mode with steady tangential veloc 

ity was found unstable with respect to the basic flow. However, this type 

of disturbance might give rise to instability when interacting with the 

first mode. Only a non linear theory of the kind developed by Davey, Di 

Prima and Stuart (1968) can provide a complete understanding of the whole 

process. Finally Taneda's (1971) experimental observations could not be 

made available to the present author. However the experimental results 

plotted in Kuwabara & Takaki's (1975) paper suggest that the time depen-

dence of the disturbances observed by Taneda (1971) is similar to that 

obtained in the present work. Furthermore the critical value of the Taylor 

number observed by Taneda (1971) seems to be qualitatively in agreement 

with the above results. 
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CHAPTER 4  

FORMULATION OF THE PROBLEM 

4.1 - Basic Flow  

Let us consider a circular cylinder of infinite length and radius R 

in an unbounded viscous incompressible fluid. Let (r,4L, Z) be cylindrical 

polar coordinates with the axis of the cylinder taken as the Z axis and 

let (Us, V*, W) be the corresponding velocity vector (the star denotes 

dimensional quantities). Furthermore -4 and t*  define kinematic viscosity 

and time respectively. 

The cylinder is assumed to rotate about its axis with an angular 

ca velocity --- coscaes  where irais the tangential displacement of the 

cylinder in centimetres from its mean position and GO is the frequency of 

the oscillation in rad/s . A purely tangential basic flow may then be 

induced in the surrounding fluid, where viscous forces are balanced by the 

inertial forces associated with the local acceleration and the centripetal 

forces due to the curvature of the streamlines. 

The fluid motion is confined to a region of thickness 0( 42v/W) adja-

cent the cylinder. The relative importance of the centripetal forces then 

tends to vanish when the value of the parameter (2;WC::)/R tends to zero. 

In this limit the basic flow at the lowest order of approximation is a 

"Stokes layer". The velocity field is given by (0,q(11, t), 0) wherel, t, 

'Tare dimensionless quantities defined by 

r - R 	ver 	V W  
 	t = CA) t 
2VA4 	 CO S  

and 

e 	+ c.c. 
2 

Here c.c. denotes "complex conjugate". 

(4.1) 
a,b,c 

(4.2) 

4.2 - The equations for rotationally symmetric disturbances 

A disturbed flow is considered such that the disturbed velocity field 

is of the form (u*, 17+ 	w*). The vector (u*, vicc, wl) is resealed by 
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writing 

(Li*, v*, w*) = 	42-,,z 11, 0%0) v, 2vw i,1). 	(4.3) 

Furthermore (u,.407) is assumed to be independent of42'. This assump-

tion (rotationally symmetric disturbances) in supported by the experimen 

tal observations reported in chapter 7, suggesting that this type of di-

sturbances is the most unstable one. However, as found in the classical 

Taylor instability, asymmetric and mixed modes might become important in 

the further stages of the bifurcation process (see chapter 7). An under-. 

standing of their role requires further work. 

The differential system which governs the behaviour of the disturbance 

velocity can be derived from the momentum and continuity equations and the 

condition of zero relative velocity at the surface of the cylinder. We 

obtain 

- 0--)m 	T 	L(GI)-+ 1 (Q.2.) 
Za 	2. "a 2.2 	"Z) 

— 2 t; 	== (15 

• 
'Tref( 	-a z. (4.4) 

a,b,c,d,e 

1.) = 
0 

where 
2 

z 1 Z ; 	T= Z x31- 
{2.1 A. 

- 
R 

. 
M -  ,oz2 

e 
?Xi au 

Ql= 2 (ti 	'ikT z-o;) , 

Tr; 	Zi 
Q2= 2(u i7k- 	 ) 

-0 -0 
Q3= 2(U .-g71 +  

The parameter T is recognized as a Taylor number based on the Stokes 

layer thickness. The boundary conditions (4.4)
e 
require the disturbance 

velocity to vanish at infinity. Finally the solution (t,'.4:4) has been 

expanded in powers of the small parameter 42;;;T/R and the system (4.4) 

(4.5)
a,b 

(4.6) 

(4.7) 

(4.8) 

(4.9) 
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is obtained at lowest order. This system may be expected to provide a 

good approximation for the solution in the limit '2/w/R—.4.-0 with 11, 

z, t, u, v, w, T fixed. 
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CHAPTER 5  

LINEAR THEORY 

5.1 - Linearized problem 

The disturbance is now assumed to be small enough for linearization. 

to be a valid approximation (strictly infinitesimal). Moreover the coef-

ficients of the system (4.4) are independent of z, so a Fourier analysis 

is convenient in the z direction. Thus we can write 
4, 00 

(11, v, "N,1) = 
	

t

(u, v, w) eiaz + c.c. da 	(5.1) 

with e small. 

On substituting from (5.1) into the system (4.4) the following 

linear partial differential system is obtained for (u,v) 

-r• ft r 
I V = 0 

  

where 

—2 -a-t.▪ \'` -69. u =0  

t) =I  v 

0. 	cia) 

= 	0 	(:%1") 

ro 

(5.2) 
a,b,c,d 

`()2A1,12.  - a2 
	

(5.2)e  

The previous system is of second order in time and has coefficients 

periodic in time. Such time dependence can be suitably modelled by 

considering an ordinary differential equation of the type 

2 
d Y 	

(2t) Y 
dt
2  (5.3) 

where 117(20 is a periodic function. 

The equation (5.3) is the well known Hill equation which has been 

extensively studied (see Mc Lachlan (1947) particularly with reference to 

the stability of its solution. On the basis of such knowledge a solution 

for (u,v) can be sought in the form 
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03 

1 (01, t; a,T), v(1, t; a,T)) = K e i2t  Z4u 01;a,T), v 61;a,T),leipt  
P 	(5.4) 

Here K is an unknown constant, -in. is a complex number whose real 

part gives the growth rate of the disturbance while the imaginary part al 

lows for the possibility of subharmonic responses, and (u , v ) are func- 
P P 

tions which account for the "et dependence of the differential system 

(5.2). 

On substituting from (5.4) into (5.2) - an infinite system of dif-

ferential equations is obtained for the functions (u
n
, v

n
). This can be 

shown to consist of 2 independent systems, each of which is of the form 

{N4 2%: a - la.z. (2,,,t1 C4 1J%,, - 

2 ,:f2.- 2;.(a ..4] Ni a  yt  - 4 [Qt # e". lit"  ° u a Y1 -• 2.1' ( I) e."0")  'Jan 	 -- 0 IN 
(5.5) 
a,b,c,d 

Where 

N d2  /d'  -a2 	 (5.6) 

The other system can be shown to be identical to (5.5) by redefining a 
Thus, an eigenvalue problem for the parameters (a, T, -iX1) is 

obtained which defines an eigenrelation of the type 

f(a, T,SZ) = 0 . 	 (5.7) 

The configurations of neutral stability are then defined by (5.7) 

with the growth rate (.Q.4) equal to zero. Various "modes” may arise with 

different values of a 

5.2 - An analytic approach for the solution of the eigenvalue problem 

Suppose V is defined as V = IV 1 where V23  = u
2j 

, V
2j+1 

= V
2j+1 

and j is any integer. Then the expression 

1.044.) e"It"")v2,1 4.4  = 0 

Li
„  

°an 	*211+ 74  03.yv =Iv 	(:rtz.- 0) 



{.(4:414. 2 n. 	w4) 	0-1-tr,101  
e 

Qi  

00 	00 

4E14106 
!OM. 

fel= 	tt 0 

oe') ex 	(0) 0 •Ilt.  
orkw 0 

00 

Vls 

en.) 	t. e',:, 	ret  
• (''11. (5.9) 

a,b,c 
(0.1 	L70) ( (o) Ni  (m) 

4 
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where 
(5.8) 
a,b 

(N) 	04) 	2
a  es, 	Gr + 	= a 	- 21.0.+ 2Mi 

can be shown to satisfy the differential system (5.5) withot (M) (P.M) 
m n'P) m,n 

constants to be determined. 

Let us discuss briefly the construction of the solution (5.8). 

Consider equation (5.5)a with n = 0. The solution for u
0 
 will depend on 

each of the V
m
's through the coupling terms arising from the interaction 

between the disturbance and the basic flow. In the absence of such an 

1,0 
+(0) + 1)]11 . 

1 
It should be noticed that 

interaction, (5.5)a (n = 0) 

	

u
(0) r.--  (0) 	1 	. 

exp - 	1 
0,0 	0,0 
flow in (5.5)b (n = +1) and 

the contribution, v(0)  

admits a particular solution of the form 

G 0 	Then u0 0 interacts with the basic 
0, 

a term arises which can only be balanced by 

exp-((G
xo)+ 1) + from v1. Thus v

(0) 
=C4

(
1
0) 

1. 	1,0 	0 

a similar balance could not involve the 

term proportional to u
2 
 since this would produce an increasing power of Nt  

in the solution for u
2 
and, in a successive step, would lead to functions 

not bounded at infinity.. Similar arguments in (5.5)b 	= -1) give 

v
(0) 	CA(0) 	1 [ (0) 

=C 	exp - OT 
-1,0 	-1,0 	r 

The process continues 

the interaction involving 

u
(0) .12(0) ex  45.(0) + 
0,1 0,1 P( r 
expansions of the form 

	

+1) + i 	(0) 
 + 

through the feedback in (5.5)a (n = 0) where 
(0) 	(0) 
v1,0  and v_1,0  leads to a new term for uo, 

2 + iG-(°)1fri, and so on. In such a way series 

	

i 	4- 
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are generated for u
o' 

v
1 
and v

-1 
. 

Such solutions do not apparently account for the influence of higher 

harmonics. In fact the cascade process proceeds involving the higher 
0 

order equations. Now v(0) 
1 	

and v
()

1 
 interact in (5.5)a (n = 1, n = -1) to 

give terms which require a balance from the terms associated with u2 
and 

u
-2
. These, in turn, will produce new contributions for v1 

and v
-1 

in 

(5.5)b (n = 0). Fortunately the "loop is closed", i.e. it can be shown 

that the new series expansions obtained for v
1 
and v

-1 
are of the same 

form as (5.9)b,c with initial values n = 1. They may then be absorbed 

into (5.9)b,c . This is the main feature of the problem: the feedback 

effect coming from higher harmonics simply reinforces part of the solu-

tion obtained at lower order. 

The structure of the solution (5.8) becomes clear when it is recog-

nized that a series expansion of the. type (5.9) for all the V
n
's can be 

similarly constructed starting from a particular solution of each of the 

equations (5.5)a,b in the absence of the coupling terms. The double series 

expansion in (5.8) is thus obtained. 

By substituting from (5.8) into (5.5)a,b the constants 

(M) 	(2N) 04) 	(2M) 
pG 	, 	appearing in (5.8) can be determined in terms of 04  
m,n 	m,n 	 M,02M,O.  

The following relationships are obtained for IX
(m) 
2m,n 

cm) (m) 
c). -r 	A 0,2.-re, tn. = 2. 	2 ret 

-1 

N")+ 2(IN + I M— 2.rml + (2m— M)412  

le. kt e) -t. 2,n im- 	+ (eirA- r1) .Z1 

(5.10) 

where 



where 

••• 

I (PI) 
AgAlvot vr" 

(M) 
( (A+ 	 + (4- C) 
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( Cm) 	 (m) 
r 

	

0. 2.rn 	et 	awnA4-4, fn.-A ) 	(Mr: 2Tvt, M# 0) 
-A,-A 

	

C.((f‘l) 	
(m) 	 (M 2m ell 4 c) 

2.4•41-45 	 0112.44‘4•A ) 0-4-a) 

M) 	 Cm) 	 (M y 2m, "n4. SIer4-4 er ,...- 14 -4- 	tarri-44 

CM) 	\ 
(.M c 2 m ) rel= 

C14 2Yrb +vet, 

(.(41 	"•\ 
\, am+ 4,0 ) 

(5.11) 

and 

(m) 
A 2.ty4 

A
(pq 

{ 

 

AT-[tC"  2vnt 
+ Vt -(2" + /)1 

 

(5.12) 

( 111 
( (At Z.) 	'n" 04.2.YA Jr 	M) 

(.04) 

(tA=1 21,14 ) er1+ 0) 
QV%) 

Jr 
`Mc Q...rn-t. 4) m+ 	) 

k.M) 

a YVA 2. res. 
(M .7 2m+ A , ill+. 0), 

(1Y\ 	A jfy% or 0))  

.S1A) 
'A.2" ,AN, 

(SA) 
c.) 	czy, *t oo OA sr rev* It 	0). 

(5.13) 



- 76 -  

(n = 0, 1, 2, ....; m = 0, + 1, + 2, ....; M = 0, + 1, + 2, 	 

(2M) 
The expressions for 	are obtained from (5.10), (5.12) by 

,n 
 

replacing T(M)  by a. Finally the values of the constants OC(M)  fS(214)  M0' 2M,0 

as yet undetermined must be such that the boundary conditions (5.5)c are 

satisfied. This condition leads to the following infinite, homogeneous 

system-of linear algebraic equations 

00 

00 

VA) 
i4) 1 

(5.14) 

et 

o 
2,n. 	M 2.x.1) 

 

VAI \ lot) M + 2.1-ea, 2.,„v". 

(.2.01) 
— 2 V0.1 eJ2m ,m.  

(m = 0, + 1, + 2, 	 

(5.15) 

where cg,
(m) 

 , (211
) are given by (5.10), (5.12). If a non trivial solu 

m,n 	m,n 
tion of such algebraic system is to exist, its infinite determinant must 

vanish. This leads to an algebraic eigenvalue problem which allows one to 

determine the eigenrelation (5.7). The structure of the latter has been 

obtained by means of a numerical procedure after retaining a suitable 

number of terms in the expansions (5.14), (5.15). The results will be 

presented in §5.4. 

The convergence of the series expansions defining the elements of the 

determinant is'proved in 'Appendix A. 
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5.3 - A numerical approach  

The solution (5.8) clearly shows that any accuracy can be achieved by 

retaining a suitable number of terms in the expansions (5.4). However it 

may be found quite difficult to obtain an analytic solution of the kind 

(5.8) for more complicated Stokes layer type flows. In such circumstances 

it is necessary to employ a numerical method suitable to tackle boundary 

value problems of the type (5.5). This has been done for the present pro-

blem and the results of this alternative approach have supported the 

conclusion that (5.8) is in fact the general solution of the system (5.5). 

Boundary value problems of the type (5.5) can be solved by using a 

method used by many previous authors in the context of hydrodynamic stabi 

lity theory (see, for example, Krueger, Gross and Di Prima, 1966). By 

retaining a suitable number of terms in the expansions (5.4), the infinite 

system (5.5) is reduced to a finite set of equations. By means of some 

numerical scheme, independent integrals of the differential system are then 

obtained, each satisfying the boundary conditions at one of the extremes 

of the interval. A number of independent solutions of this initial value 

problem are required such that a linear combination satisfies the boundary 

conditions at the other extreme. This leads to a homogeneous linear alge-

braic system for the coefficients of the combination. The determinant of 

this system must vanish if a non trivial solution is to exist. An eigen-

value problem then arises for the parameters -i2, a, T, which can be 

solved numerically by fixing a,T dnd locating the zeros of the determinant 

as a function of -in. by means of some root finding routine. 

The numerical integration corresponding to each solution of the 

initial value problem must be carried out starting from infinity, i.e. 

some "large" value ofn(10). This is one of the remedies for the well 

known (e.g. see Fox and Mayers, 1968) form of induced instability 'which 

affects the present numerical method when some of the complementary solu 

tions of the differential system increase very. rapidly. Also, the value 

ofilm  at which the boundary conditions (5.5)d must be imposed is too 

high in general for the numerical integration to give accurate results 

in the whole range (m.). This difficulty can be avoided by following a 

method originally suggested by Meksyn (1950). A good approximation for 
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the solution of the system (5.5) for "large" values of 11 is obtained by 

neglecting the terms with coefficients proportional to e 1  . Comparison 

with the analytical solution shows that the neglected terms are 

0(a
2 
T e-21 	 2  "a) smaller than those retained.. Thus, if aT is sufficiently 

small, satisfactory accuracy can be achieved with reasonably "low" values 

ofolv. The solution of the reduced system can be shown to be such that 

the following conditions hold at 1=112.0  

d 	(2m+1) 
- er 	) V2m4.1  = 0 

d
G 
2m) d 

(— - 	
)(4:1 	

a) V
2m 

 =- 0 

d 	 (2m) d 
(--
d 
	) (-

d
- - a) V = 0 
% 	2m 

where 	= "'to 

Thus the procedure outlined at the beginning of this paragraph can 

be carried out starting the numerical integration from t= 0 (with Ntoo 

reasonably small) and initial conditions given by (5.16). 

5.4 - Results  

The aim of the computation was the determination of the eigenrelation 

(5.7). This was first obtained from the solution given in 65.2 . The 

results were then checked following the numerical approach described in 

5.3. 

The procedure was as follows. For fixed values of a and T and an 

initial guess for (-1S2) the series (5.8) were evaluated for Im16.4 

00,2M 
(2ND 

0 in terms of the unknown constantsd
M
( 

0 ' r 
through the recurrence 

, 
relationships (5.10) -(5.12). Terms for nt0, 8 ,IM1> 4 were neglected. The 

accuracy thus achieved was of the order of the accuracy provided by the 

computer (10
14). The infinite matrix (A-1) was then approximated by a 

finite (14 x 14) matrix whose determinant was evaluated by determining 

the product of the eigenvalues. This was done numerically by employing 

NAG subroutines provided by the Imperial College Computer Centre. The 

matrix was first balanced, then put into Hessenberg form; the eigenvalues 

were finally obtained by means of the LR algorithm with shift of origin. 

(5.16) 
a,b,c 



A root finding routine using the secant method was employed to determine 

the zero of the determinant as a function of (-ii'?). Convergence was very 

satisfactory when 'the procedure was started from a reasonably accurate 

initial guess. The unstable disturbances detected were of the form 

(5.17) 
v = A e. 

-iftt 	(aft- qYt
L.  Van- ok 	 a,b 

n Fhe. m ELy91.; ra1 

with Real( )) = OY The corresponding marginal state is shown in Fig. 15. 

The critical values T , a were found to be 
c c 

T
c 
= 232.52 

(5.18) 
a
c 

= 0.85852 . 
a,b 

The functions u0(,0, v1(1), u2(1), v3(1), u4(q) are shown in Figs. 

16-20. The structure of the disturbance (5.17) and the critical values 

(5.18) as predicted by the theoretical analysis will appear to agree 

qualitatively with the first mode of instability observed experimentally 

(see chapter 7). 

The results (5.18) were checked by performing a numerical integration 

of the system (5.5) following the approach outlined in a 5.3.' Terms for 

1111 > 2 were neglected in the series expansions (5.17)a,b so that the 

system of infinite order (5.5) was replaced by a finite set of 28 first 

order ordinary differential equations. For fixed values of a,T and an 

initial guess for 	14 independent solutions of the'initial value 

problem were obtained as described in 35.3. The numerical integrations 

were performed by means of the Runge-Kutta-Gill procedure with initial 

conditions (5.16) (m = 0, + 1, + 2) and n= 7. A step length h = 0.1 oo   

was used. The optimum choice of N) and h was the result of some numerical. 
Leo 

experiments. The linear algebraic system obtained on imposing that the no-

-slip conditions at the wall are to be satisfied by a linear combination 

of the 14 independent solutions was solved by a numerical procedure simi-

lar to that described above. The zeros of the determinant associated with 

such algebraic system were similarly obtained. The accuracy of this 

numerical method can be appreciated on comparing the values obtained for 

the growth rate by the two independent approaches for fixed values of a,T. 

ea 
—in. t 	 2rit 

u = A e 
 

(33.ri 
= 00 
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These values are shown in Table 4. The agreement is satisfactory. This 

feature appears to be fairly important in view of the possible extensions 

of-the numerical approach to treat more complicated Stokes layer type 

flows of the kind mentioned earlier. The rapid convergence of the numer-

ical method, though obvious in view of the solution (5.8), was checked by 

retaining an increasing number of terms in the expansion (5.17)a,b. Some 

typical results for different values of n are given in Table 5. 

Finally, an extensive search performed in the range of small wave-

numbers (at=0.1) did not show the existence of any further unstable mode 

with rotational symmetry. An explanation for the experimentally observed 

second stage of instability in terms of an instability of the first mode 

probably requires the development of a non linear theory of the kind 

developed by Davey, Di Prima and Stuart (1968). 

5.5 - Discussion  

The critical values (5.18)a,b are in good qualitative agreement with 

the results of the calculations performed by Riley and Lawrence (1976). 

A comparison is possible because the concentric cylinder problem with the 

inner cylinder modulated with zero mean, approaches the Stokes layer 

problem under investigation as the frequency of the modulation tends to 

infinity. From Figs. 1 and 2 of Riley and Lawrence's paper (1976) it was 

possible to estimate the asymptotic values of the parameters T
c 
and a 

 

which were found as follows 

T(RL) C'..1 	236 + 3 
	

(5.19) 

a
(RL) t.

' 0.87 + 0.01 
	a,b 

Kuwabara & Takaki's (1975) results do not agree as well with those 

obtained in the present work. This seems to be due to some deficiencies 

present in their approach. They examine the problem studied in this 

chapter. First they obtain a solution for the basic flow in closed form 
1 

i.e. for any value of the parameter 4-i7G: /R (there denoted by Oa. 1). 

However in the actual calculations they use an asymptotic form of the 

previous solution obtained by assuming N1 
(KT) 

 O(o4) *1 where M(KT)  is 

a radial coordinate related to 1 by 
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(Kr) 

The asymptotic form of the basic flow is given in the first expres-

sion of t 4 of Kuwabara & Takaki's (1975) paper. Such expression is 

incorrect. In fact: 
1 6) ° 0-rj 

- the argument of the exponential should be [- 0-1-t- 1 + 0 
1,

(1' i rather 
" 	bet) 

than i-I + YI. 	0(Nr).1 ; 

	

el 	ot) - the argument of the functions sin and cos should be -- + 
5  
-V+ 0(1 .))1 

7 8 

[ 7 

	rr 	(mr4 	 4 

	

rather than 	 2 + 5  + 0(n, ) as reported there. 

:With the above corrections the expression can then be shown to reduce 

to (4.2) except for a factor [ 1 -41 tc-11.+ O(ct2) . Thus it would seem that 

Kuwabara & Takaki (1975) wish to retain terms 0(c);./) in their analysis. 

However this is not so when coming to the study of what they call 

"secondary flow". They seek the marginal configuration of small axsymme-

tric disturbances whose time dependence is assumed according to some 

experimental observations by Taneda (1971). Indeed we have shown that such 

time dependent structure arises from a proper stability analysis. Thus 

Kuwabara & Takaki (1975) expand the perturbation velocities in series of 

the form (5.17) with -ia. equal to zero and, without further justification, 

retain only terms corresponding to u0, vl, v_1. Such sharp approximation is 

not consistent with having retained an 0(1%) effect in the basic flow. 

Furthermore it does not seem to be consistent on one hand to retain 0(0
2
. ) 

terms in the disturbance equations, on the other approximating the radial 

dependence of the perturbation by retaining only three terms of suitable 

expansions in terms of Laguerre polynomials. Indeed the number of terms 

required is expected to be much higher and strongly dependent on 01(.. as 

discussed in the Introduction. 

Finally, Kuwabara & Takaki (1975) apply Galerkin method but do not 

specify how large is the domain that they consider. Their results written 

in terms of T and a are shown in Tab. 6. The critical values T (KT)  of the 

Taylor number for different values of 01. are considerably smaller than 

that given by (5.18)
a
. The critical values a

(KT) 
of the wavenumber fall 

within a range which is not too far from the value given by (5.18)b. 

However one would expect a
(KT) 

to become closer and closer to the value 

lb 

(5.18)
b 
as ot.increases, whereas the opposite behaviour is shown by Tab.6. 
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This might be the result of the accuracy of the approXimation decreasing 

as oeincreases. 

Finally fig. 2 of Kuwabark & Takaki's (1975) paper would suggest 

that the flow is stable against disturbances with small wavenumber. This 

feature was not shown by the present results and appears to be related to 

the failure of Galerkin's method for large wavelengths of the disturbance 

as discussed in the Introduction. 

Let us now discuss the implications of the present work to that of 

Hall (1975a). Attention is focused on the results given by Hall for the 

stability of high frequency modulated.circular Couette flow. It was found 

that, if the speed of the inner cylinder is S(1 +Scoscat*), the Taylor 

number based on S and the gap width d is perturbed only by an amount of 
2 	23 

order E...(V/tAd ) in the limit c.)400. In this limit the Stokes layer 

becomes confined to a thin region near the inner cylinder. These results 

suggest that a Stokes layer is quite stable to centrifugal effects. 

However the present work shows that this is not the case. The apparent 

inconsistency is easily explained. The wavelength of any disturbance 

considered by Hall (1975a) was scaled on the gap width. Hall did not 

consider the possibility of a mode of instability of the type discussed 

here, with the disturbance scaled on the Stokes layer thickness. Let us 

determine which mode is the most dangerous. The steady basic velocity 

component is assumed not to alter significantly the critical Taylor number 

for the mode of instability discussed in this paper. (Notice that this 

will certainly be true in the limit 6-..00). We define a Taylor number T
s 

in terms of S, d, R, and V in the form 

2 S
2 
d
3 

T
s 
- 	• 

Rv
2 

(5.20) 

where-d is.the separation of the cylinders, assumed small compared to R. 

By replacing A in (4.5)b 	by e:S/GsWe - can shOw that the Stokes. layer 

mode of instability occurs when 

 

T=7.- 1643E-23/2 
(5.21) 

where 

c. d
2 

 

(5.22) 
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is the frequency parameter as defined by Hall. However the critical value - 

of T
s 
for the mode discussed by Hall (1975a)was found to be 

T --r 3390 
	

(5.23) 

when G'-roo. Thus, for fixed C , the latter mode is expected to be the most 

dangerous when 

c >6-'4.= (20.7 €
2
)
213 	

(5.24) 

i.e. a change in the mode of instability is expected for (51-111.. The 

critical wavenumber will therefore be discontinuous at c'=em. This discon 

tinuity can be seen in the numerical results of Riley and Lawrence. For 

example, when C.= 5.0, Riley and Lawrence found the wavenumber to be 

discontinuous at G = 61.6 whilst the corresponding value of eis 64.3. 

The above discussion might also be relevant to the work of Hall 

(1975b) on the stability of Plane Poiseuille flow modulated at high 

frequencies which also overlooked the possibility of a disturbance with 
st• eazu 	 rosit,va  

wavelength based on the Stokes layerYon a flat plate to disturbances with 
q%*2,4k1D Vb be imvs 40% ex- 	 te-tt 	w 	pe.o eta-.• 

relatively "small" wavenumbers. It should be emphasized that such informa 

tion can be obtained by using an approach similar to that developed in 

5.2. 

5.6 - Relevance to flow in the aorta  

Finally one of the motivations for the present work is related to its 

possible relevance to the stability of the flow in the aorta. The aortic 

arch may be considered as a curved tapering and branching pipe of slightly 

elliptic cross-section. The arterial walls exhibit some viscoelastic ef-

fects. Blood flow is not fully developed. In spite of this quite complica-

ted picture, attempts have been made to investigate the flow pattern esta 

blished in the aorta by neglecting the least important of these features. 

Lyne (1971) has studied the fully developed flow in a curved rigid pipe 

of circular cross-section and small curvature due to a purely oscillatory 

pressure gradient acting down the pipe. Blennerhasset (1976) and Smith 

(1975) have considered fully developed pulsatile flow in a curved rigid 

pipe of circular cross section and small curvature. We shall not discuss 

the stability of such solutions here. However we notice that Lyne's solu- 
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Lion shows in the high frequency limit that viscous effects are confined 

to a thin layer on the wall, the flow being essentially inviscid elsewhere. 

A stokes layer type flow with a "small" secondary motion in the cross-

section is then established close to the wall. Due to the curvature of the 

latter the local flow along the outside bend then might be subject to 

centrifugal instability of the kind studied in this work-: Various problems 

arise when an attempt is made to extend the present analysis in order to 

cover the effects of the secondary flow and of the curvature characteris-

tics varying round the pipe. In particular it is necessary to investigate 

how the stability characteristics of the Stokes layer change on proceed-

ing from a locally concave wall (outer bend) to a locally convex wall 

(inner bend). 

In order to obtain some information about this problem let us study 

the inviscid limit T-4-00 in both the cases of convex and concave wall. 

The differential system (5.5) is first considered and an inviscid balance 

between centrifugal effects and local acceleration is imposed. It can be 

seen that such a balance requires that 

C M T 
Thus the following expansions are set up 

1 	, -2, 
u m = u

2m
,
0 
+.0

2m,1
T + 0(T ) ; 

-1 
v 1.

= 
 [v 
 2m-1,0+ v 	,,T + 0(T-2)1 T-i  

2m1 2m-1,0 2m-1 	A 

=Ti (0
0 
 +.52 1 T

-1 
+ O(T

-2 
 )) . 

(5.25) 

(5.26) 
a,b,c 

By substituting from (5.26) into (5.5) and equating terms of order 

0(T), the following system of coupled equations is obtained 

N o„ 	 e.* 	„ 

2 	vew,-40 	(A+ ■.) en. (.N4.‘..)  02;ert-210 Qfk 	 , 

= 'Jam 00 C)  

%Iwo.% t o 

Qn."-"" 

( 	cw3) • 
(5.27) 
a,b,c,d 

Some information about the qualitative behaviour of the solution of this 

system can be obtained by considering, at the lowest approximation, the 

following equation: 
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d2 

2 

d
- a

2
1 u2m,0  + 0(1) u2m,0  = 0 , 

(5.28) u
2m,0 

= 0 

u 	0 
2m,0 

where 

= 0 , 

Art.-+o0 , 	(m = 0, + 1, 

a214 a-2 , 

0 (1) = e-21  - 

(5.29) 

(5.30) 

Thus u
2m0 

is the eigenfunction associated with an eigenvalue problem 
, 

 

of the Sturm-Liouville type for a 
0
. It is a standard result for such 

problems (when defined in a finite interval) that the characteristic values 

form a denumerable sequence and are all positive when the function 0(v1) 

is positive for every Y1 within the interval of definition (e.g. see 

Courant and Hilbert, 1953 pg.294). Thus we may infer that rz o  is purely 
imaginary and the flow is inviscidy unstable at the lowest order of approx 

imation. It does not seem worthwhile to determine higher order corrections 

to the present result, which is also expected to be valid in view of the 

full viscous solution presented in the previous paragraphs. It should also 

be noticed that Rosenblat's (1968) results are also confirmed. 

A similar qualitative analysis can be performed for the case of a 

Stokes layer on a concave wall. It can be shown that in the inviscid limit 

the relevant equation at the lowest order of approximation is (5.28) with 

a change of sign in the last term. It follows that a Stokes layer on a 

concave wall is inviscidy stable at lowest order. The latter result is 

expected not to be altered by viscous effects. 

Thus the Stokes layer type flow occurring near the wall in Lyne's 

solution appears to be locally unstable along the outside bend and locally 

stable along the inside bend (°). Further work is required to determine 

the flow pattern which is established. 

(°) - When the flow is driven by a pressure gradient we expect the 
behaviour obtained for the Stokes layer on a concave wall to 
occur along a convex wall and viceversa. 
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Table 4 

a T Analytical Numerical 

, 
0.85852 1 

1 
 233.345 0.002277 0.002278_ 

Comparison between the values obtained for the growth 
rate by the analytical and numerical approach.  

Table 5  

a 	l T n = 1 n = 2 n= 3 n= 4 

0.85852 233.345 0.0074 0.002277 0.002264378 0.002264383 

Higher approximations for the growth rate of the perturbation for 
fixed values of a and T (numerical method). 

Table 6  

OC. T
(KT) 
c 

a
(KT) 
c 

20 79.5 0.849 

40 86.7 0.906 

60 89.3 0.927 

80 90.9 0.939 

100 91.8 0.946 

The critical values of T and a for different values of QC as 
obtained by Kuwabara & Takaki (1975). 
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Fig.15 The critical curve 
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CHAPTER 6  

WEAKLY NON LINEAR THEORY 

6.1 - Introduction  

Our aim in this chapter is to obtain a perturbation solution of 

(4.4) which is centred round the neutral configuration of the most 

unstable linear mode. We consider the non linear development of a mono 

chromatic disturbance with axial wavenumber a under slightly supercritical 

(T>T
0 
 ) or subcritical (T< TO) conditions. The analysis follows the method 

of 	Stewartson-Stuart (1971) with obvious variations needed in order 

to account for the periodic time dependence of the basic flow. 

The inverse time scale for growth in the linear regime is Im(X2.)=L2-,and 

may be assumed to be small within a small neighbourhood of the neutral 

configuration. This is discussed in § 6.2. Using the method of multiple 

scales'a new (slow) variable 	is defined by 

(6.1) 

and a suitable expansion is set up for the disturbance velocity 0 6.3). 

An analysis of the differential problems obtained for the coefficients of 

such expansions at the various orders of approximation, shows that the 

solution depends on an "amplitude function" Ot.). This function is found 

to satisfy an amplitude equation of Bernoulli type which allows for 

equilibrium amplitude solutions in the supercritical regime. 

Such findings are in agreement with the results of Joseph (1972). By 

using a generalization of Poincare-Linstedt perturbation procedure, Joseph 

(1972) treated the problem of bifurcation of quasi-periodic solutions 

which bifurcate from periodic solutions of the Navier-Stokes equations. 

After assuming that the Floquet exponents ((-i12.) in our case) are simple 

eigenvalues of the spectral problem, the formal construction gives two 

bifurcating solutions of the same frequency as the basic flow when the 

Floquet exponent is zero at criticality. The small amplitude solutions 

which bifurcate supercritically are stable, subcritical solutions with 

small amplitude are unstable. 
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The existence of bifurcating solutions had been proved by Sattinger 

(1971), Yudovich (1970) and Iooss (1972). 

6.2 - The time scale for growth  

The inverse time scale of the disturbance in the linear regime is img 

Following Stuart (1960) we may anticipate that (no
-1 

is also the 

time scale for the non linear growth under investigation. 

Thus,before proceeding in our discussion of the non linear theory 

it is convenient to investigate the behaviour of the growthrate (-ice) 

within a small neighbourhood of the neutral configuration. Let us set up 

series expansions for 	
u2m

,  v
2m+1

) in powers of (T-T
0 
 ). We write 

) 
((-±S/), u ,v 	)=(0, u

(0)
, v

(0) 
)+(d 	u(1 v(1) ) (T-T )+.... (6.2)

2m-12m 2m 	2m-1 	1 	2m 	2m-1 	0 

= 0, + 1,....) 

where a is held fixed and (T-T 
0
) is assumed to be small. 

On substituting from (6.2) into (5.5) and equating terms 0(1) an 
(0) 

infinite system of ordinary differential equations is obtained for (u2m 
, 

v
(0) 

1
) which is identical to (5.5) with (T, -iQ) replaced by their 

2m- 
neutral values (T0,0) corresponding to each value of a. 

At 0(T - T0) the following system is obtained 

[ IN- 2L(2.yeki N %4.,..,  ..... c,?Te, Ei-..z.)1 
s`tayn-4 'k* ie- 	•12.,,,,.... 	17= 

(0) 

	

2.  4A N 02.,,., * s! e ("")"1- `*) 	--(4-̀ )A. co) 
2 	

"iayA-4 # e 	 1̀2,m+ 
f 

("t4:.),/, 	0) 	. 	- 	(4)
1 1V - 	(.2071- 	(4)  arn-i 	 e 	 •i.••• 1.) 

(P)  mp Varet-A 

(4) 	 i(4) 
	 (.4)

V9.vn. L12.Y.1% =•"" "2.Y11 	= 04. 	2.fft..76 	o 

(.4) 
Oav„,„ 	Oarniciert 	yarn-,N 	0 

(6.3) 
a,b,c,d 

where N is the operator defined by (5.6). 

It can be shown that the condition that the linear non-homogeneous 



oa 

e 	Varn-4 	 w2•01%+4 r 
(4*.z.).1.  (01 	- -1%) ,ta)  co 

m:-co 4 	0
t.) 
2.vr‘ ' 2reu 

k01 	
CX4 axil 1 deft  

o 
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differential system (6.3) has a solution defines d
1 
in the form 

*(6:4) 

Here the infinite set of functions denoted by (F
2m
,  G

2m+1
) with m 

equal to 0, +1, + 2, 	 is a solution of the following linear system 

of ordinary differential equations 

[11 4- 2 i.. Q2orill NI F:,,,,. + t`1--■,) Q7 C":1e1" G 	4. (.0\4.;.) .. c,"4" 	1-0 
2.vrt4A 

I'L 

2- 	
tit roN + C1.1 = CI 

2. vn - it - ) 

IN # 2  ` (.2''''‘ 4 4S1 C*42.1.1%46, ''' C;/* 70  [ e: (A a.)'‘ft v-2.1......„ t....(4_,:).n. F., 

The differential system (6.5) is adjoint to the system (5.5) where 

(T, -if?..) be replaced by the neutral values (T0,0). 

We intend to expand the solution of (4.4) in terms of the small 

parameter C, defined by 

	

=d1  IT -
o 
	 (6.6) 

6.3 - Analysis in the limit of small amplification  

Let us introduce the "slow" variable 't defined as in (6.1), so that 

t 	t 	9-0't 
	 (6.7) 

Following the lead of Stewartson and Stuart (1971) we seek a perturba 

tion solution of the differential system (4.4) which represents a small 

finite disturbance whose amplitude grows with the time scale discussed in 

I3 6.2 in a neighbourhood of the neutral configuration. The scaling 

follows from the usual argument that the amplitude of the fundamental 

component of the disturbance is of order IT - T01 within such neigh-

bourhood. Thus we expand (u, v, w, T) in the form 

.net. 4- A =A 0 

r.4",,,,/ 	c.A4'2.y.,. 4 	"4" 0 • 2-  ) 

(6.5) 
a,b,c,d 
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(

Tie  Go S 0 Z \ 

(%•% 0 Co S r3.Z 

‘ 1.140  51*(1 AZ/ 

o(C..a 

3434 	(72.o Cos 20•Z 

%20  uns2a.Z. 

11 a 	VI a 0 Soh Q0.74 

( [ 4 €35./2.  3V4 Con 4-Z. 	ro  cos Sa,7„ \ 

%%4 Goy di-2■ -1- %At) col .1A.Z, 4 0 (0) 
) 

,44 StY1 c.:74/ 	\-Ptao Si" 3 a.z/ 

(6.8) 
a,b 

where 

1 
= (dl)-1 
	

(6.9) 

Furthermore we separate the "fast" time dependence from the "slow" 

growth of the disturbance by further expanding f10, etc. in the form 

L2viNt 

(6.10) 
00 

N 	;..aret-i1 t 

1 (ce-P ) ‘1 ‘ VI) ":" L.  (1 Mai .• 60 	r-61* )2.A1-4 (VI j't i a• 21-) ) \'‘ rt1).)2r.1-411 it ; 0->r) a 

and require (f 	; g 	) to behave like k e (u
2
11101), v

2m-1
("2)) 

	

10,2m 	10,2m-1 
as V — 

The fundamental 

If we substitute from (6.8), (6.10) into (4.4), use (6.7) and equate 

terms of order (s1), we obtain a partial differential system which de-

scribes the behaviour of the fundamental component of the disturbance. 

We obtain 

a 	Y*1-)A 	 ito,2,re„ 	aTe 1 
	

am-4 ilAc> a.rfit.A 4-L)11--' 

[4#1  - 	(2'6" 4)1 
 

0)  r4- 	.4.,2r11 01  

3+10 32,m '-'6T4oh 
(14 4:3 )0.$$$■!4 

••••bP. 0 Ciai40 ) trY1..11 
(6.11) 
a,b,c,d 

 

= 0, + 1, + 2, ....) 

where 
-62 

(ja)
2 

-eolF 
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The similarity between the differential systems (6.11) and (5.5) 

suggests that we assume a separable solution for (f
10,2m

,  g
10,2m-1

) of 

the form 

(f10, 2m ' g10, 2m-1
) = A(T) (u

2m
(1:)(q), v(0) 

1 
(-f ) ) 

/ 	
(6.12) 

2m-  

where A(.-c) is an amplitude function (complex in general) which behaves 
,(0) (0) 

like A e'6  when't-v-eo, and (u
2m 

 v
2m-1

) are as defined earlier. 

The first harmonic  

The differential system obtained by substituting from (6.8), (6.10) 

into (4.4) and equating terms of order C describes the behaviour of 

the first harmonic of the disturbance (f
20,2m

,  g
20,21

:a
-1
). By taking 

(6.12) into account it can be shown that (f
20,2m

,  g
20,2m-1

) are the solu 

tion of a linear non-homogeneous partial differential system paramet-

rically dependent on 't through coefficients proportional to A
2 
('t). Thus 

we assume 

(f20,2m, g20, 2m-1) = 
A
2 
 (t) (F

20,2m(1)' G20,2m-1(1))' (6.13) 

where 
(F20,2m 

 el), 
 G20,2m-1 

 (11)) are the solution of the following linear 

non-homogeneous ordinary differential system: 

— 	(2w,; .L 1 720 	2 al- 	 (4)41.-i• C.A2o arn+A i,(4)  rA. 	O.. C3 .siaowen-o■ e 	• 	 = ) 

C-r 	
ee 

(0J 	(6) 	 tol (0)131- 	(..) (40- 
04_41 + 2 L. ,Vaa awn-23 	1.) am.° 

iv,.  

A •■• 

 

(44 4) ft, 	/ 	(A':).11, 
[La.-2a: 2,,„_4) Gao 20-11-4 	e. 1-20)2m-2. 	 20 )2m= 

3v-e• 
(6.14) 

F2.04ci tt% = So 	= 	2riv- = 
Cel 	a,b,c,d 

400 

)Usk; V (2 ,".. 4) .... 2..i 	---* LI iii.j 	‘ita TA_ 401  ,.. 2.1 	I 

V20 sr" ; V20 arr. )  Gro 	--Is 

+ 1, + 2,... 
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where 

d
2 

L
n = 2 

n
2 2 
a . 

dl. 

(6.15) 

The distortion of the basic flow  

The behaviour of the function g
01 

 (1,-C ; a,T) which represents the 

distortion of the basic flow can also be obtained by subgtitdting from 

(6.8), (6.10) into (4.4) and equating terms of order e . If (6.12) and 

(6.13) are taken into account, we can assume 

g01, 2m-1 
= 2 A() G

01, 2m-1(11) 
(6.16) 

where G
01,2m-1

(irt) (m = 0, + 1, + 2, ...) are the solutions of the follow 

ing ordinary differential system 

.* 

1 	

(01 
2 Z. (2. 	GoA ) 2"...l --4. I 	04:1  

.1"-' 

Cs )1  (0) 
/VA -4). 2.,)* "th 'jai Y2 ni • 4) 

GO01,2r6-1 (6.17) 
a,b,c 

GO 1 2 Iv% - 	0 

(m = 0, + 1, + 2,....) 

The distortion of the fundamental  

If (6.8),(6.10) are again substituded into (4.4) and terms of order 

3 (e./2  ) are equated the system which describes the behaviour of the dis- 

tortion of the fundamental component of the perturbation can be obtained. 

By using (6.12), (6.13) and (6.16) we find 
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LEA 44,2m.4 e• 	figki 2rel4k 2. (20,,(4) L4 344,2m — 2. 	c) 

rztS2vw dA 	( orrA ?am) A (CDF.TC. Q2.1"0 fR2eA.) 

, 	(4+ i)01., [4 - 2 (2m-091 ,%44 a + 04 , 	 4432m, 

■ 111. 
•••••• 

(0) 
Va rn_ A Zs are% -4 

2VY■ 	A frIZ 	%A1 >a."" "` = 

!Aq,2m ; 	
rb T44 ) am, /,,,a)y.l. 	%‘4 ) trn 4 

0 
e.. 	144,2rA 

(6.18) 
a,b,c,d 

(rim C) 

("1.-*°°)• 

On = 0, + 1, + 2, 	 

where 15
2m' 2m , R2m 

, 
m 
, 
Z2m-1 are functions of ngiven by 

2 ( l') -(A}  (A 	(0) 	k-■.1"1.) 
2 vim-4 	 vavv.4 

eo 
-- ( 

(o) 	 (0)
l 	\ 	G 	.. a y  Doti s'-) 

.4- 
 	j t2i- 	arn-(24-A)

2 30-to 	y 

00 

{l  	
I rzr 

a a0,2jF,0,2m-my - i r20,2s r40 ,arn-ai - 
z

40, 21 r2  0,2m-ai 
t-I 

+ rio j2.1 r•aoi21"0-2 — S c ( 1 FoioArn-2j F2.0 s2.i #C110,20%-z. ‘caz".) 

Q. (0)St 
••••.• G. U 0.4 

(41) 

(F2.0,12.i (0): ZA 2". = 	 %AZ* jaVe1.•11 .111 {2" 

(14 	 Co) z 2. 02j + 
2

Yana-4. 	7;...z32,1 	‘32:1 (.4 

(6.19) 
a,b,c,d,e 
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The infinite set of linear ordinary differential equations is non-

homogeneous. An orthogonality condition is to be satisfied for the solv 

ability of such differential system. An amplitude equation is thus ob-

tained in the form 

where 

dA 
-- +a A+a2 A

3 
 = 0 , 

dT  

to 

21  1 (a T2 	
+ 	+ 

0 	0
Q 
 2m 

+ R
2m
)F

2m 
 + z

2m-1 
G
2m-1 

Ms-go 	 _ F: + 2 v 
i 

S
zm zm m-1 

e  
2m-1 

 dn 

(6.20) 

(6.21) 

• (6.22) 

a
l 
= 
a
2 
 T
1 

00 

0  P2m F 2m 
 dr) 
 

 

✓ m  2 	
e2 m-1)dr, 

0 

If (6.4) and (6.9) are taken into account a is found to be (-1). 

Furthermore on setting 

A = E 	
1 
	 (6.23) 

the amplitude equation can be rewritten in the form 

d

dt
Al 
 - 6 A

1 
 + a2 A

3 	
(6.24) 

Equation (6.24) is a Bernoulli type equation of the kind discussed by 

Stuart (1960). After usual substitutions the solution is obtained in the 

form 

2Ceexp (2e. 
A - 
1 	+ C a

2 exp (2C 0 
(6.25) 

with C an arbitrary constant. 

The condition that (6.25) allow the matching with the linear solu 

tion (5.4) gives 

C = K . 	 (6.26) 

Furthermore, according as a
2 

0 or a
2
> 0 , (6.25) shows that 

sub-critical or supercritical disturbances decay from or amplify up to 

their equilibrium values respectively. To the present approximation the 
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equilibrium amplitude A
e 
is given by 

6 
A2 = 
e a

2 
(6.27) 

6.4 - Results  

The aim of the computation was the determination of the constants 

d
1 
 and a

2 
 which, 	

3/2
ch, to order 6 	, characterize the behaviour of the 

amplitude function A(t). 

Equations (6.4) and (6.22) show that the knowledge of the pairs 

of functions (u2m)  q, v
2m-
) 
1
(1)), (F 	G 	, G 20,2m 20,2m-1(1)  01,2m-1012,  

F2m 
(N), G2m-1 ('l)) and some of their derivatives is needed in order to 

perform such computations. Thus the differential systems (6.14)(6.17) , 

(6.5) must be solved. 

Each of such infinite systems was approximated by a finite set of 

ordinary differential equations by neglecting terms for 1ml > 4 in the 

series expansions (6.10). Such approximation, which was chosen on the 

basis of the results of the linear theory, was "a posteriori" found to 

be satisfactory. 

Each set of equations was solved numerically following a numerical 

procedure similar to that discussed in §5.3. The numerical integration 

of each differential set was performed by means of the Runge-Kutta-Gill 

procedure of the IV order. The boundary conditions imposed at 9 equal 

VIto  for each independent solution of the initial value problems were 

obtained by neglecting the centrifugal terms in (6.5) and the centrifu-

gal and non-homogeneous terms in (6.14) and (6.17). 

The values of some of the pairs of functions mentioned above are shown 

in' figs. 21 - 32, They show that enough accuracy was achieved by retain 
ing terms for `ml .4. 4 in (6.10). A check for.the solution of 	the 

adjoint system (6.5) was obtained by comparing its eigenvalues With 

those associated with the linear system (5.5). The agreement was 

satisfactory (5 significant figures). 

Only partial checks were available for the solutions of the systems 
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(6.14) and (6.17). For instance the structure of such systems shows 

that the functions (G
01,2m-1 ; E20,2m ; G20,2m-1

) are complex con-

jugates to (G
01,-2m

4.
1 
; F

20,-2m 
; G

20,-2m4.1
) respectively and F20,0 

is real, except for an arbitrary constant. Such conditions were 

satisfied by the numerical solution with an accuracy of 3 significant 

figures. In fact the solution was affected by the error associated with 

two numerical integrations (the non-homogeneous terms of (6.14) and(6.17) 

were only approximately known). 

If should be emphasized that the value chosen for Yto. had to be large 

enough for the numerical quadratures (6.21),(6.22) to be performed with 

sufficient accuracy after replacing the limit of integration op with rlm. 

In the same time the opposite requirement was present that ,1100  should be 

small enough for the numerical integrations of the differential systems 

to lead to sufficiently modest errors. The value chosen was 	= 10 

with step length 0.1. 

After obtaining the functions previously mentioned, the functions 

P/n ,Q2m,R2m
,S

2m
,  Z2m-1 as given by (6.19) were determined. Finally the 

numerical quadratures present in (6.21),(6.22) could be performed numer-

ically by means of Simpson rule. Thus the constants d1 
and a

2 
were ob-

tained. They are 

	

d1  = 0.00431 
	

(6.28) 

	

= 1.51 	 (6.29) 

6.5 - Conclusions  

The results given in § 6.4 show that an equilibrium amplitude solu-

tion exists in a supercritical neighbourhood of the marginal configuration. 

Such findings are in agreement with the experimental observations de-

scribed in chapter 7. Also, as mentioned earlier, they are consistent 

with Joseph's (1972) results on the problim of bifurcation of quasi pe-

riodic solutions of the Navier Stokes equations from basic time periodic 

solutions of fixed frequency. Indeed, the eigenvalue(-iiI) being zero 

at criticality the bifurcation leads to a stable supercritical branch of 
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the same frequency as the basic flow. 

The analysis shows that the type of non linear interaction discussed 

in this chapter cannot produce a steady component in the azimuthal di-

rection as shown by the experimental observations in the second stage of 

instability. This suggests that such a component may be.associated with 

an asimmetry of the disturbance. We will not discuss asymmetric distur-

bances here. However we notice that, by inspecting the differential 

system that governs their behaviour in the linear regime, one can show 

that a steady azimuthal component of the disturbance can exist coupled 

with a steady radial component both being periodic in the axial direction. 

Thus it is desirable to investigate the possibility that an interaction 

of such a mode with that discussed in the present work might be responsi-

ble for the second stage of instability. 
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FIG. 21 - The function F200  (vi) . 
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CHAPTER 7  

EXPERIMENTAL OBSERVATIONS 

7.1 - Apparatus  

The apparatus consisted of two concentric cylinders. The gap was 

filled with water. The outer cylinder, of relatively "large" diameter, 

was transparent and stationary. The inner cylinder, of much small diame-

ter, was driven in simple harmonic angular motion by a scotch-yoke (an 

eccentric mounted on the shaft of an electric motor). A variac connected 

with the motor provided a continuous variation of the frequency of the 

oscillation. The amplitude of the oscillation could be adjusted by chang 

ing the position of the eccentric. The apparatus is shown by Fig. 34. 

The dimensions of the apparatus were as in Fig. 33. 

The gap between the cylinders was wide enough to ensure' that the basic 

flow and the disturbance would not be affected by the presence of the 

outer cylinder. Furthermore the cylinders were carefully set up in the 

vertical position so that no induced secondary motion occurred. 

The indicator dye used in the visualization technique was normal ink 

whose density was adjusted to be the same as that of water by adding a 

sufficient quantity of alcohol. By means of a pipette lifted mechanically 

a uniform streak of dye was deposited on the well polished surface of the 

inner cylinder with the apparatus at rest. 

7.2 - Observations  

The apparatus was set in motion with the amplitude 	of the oscilla 

tion held fixed and the movement of the streak was observed. The fre-

quency of the oscillation varied in the range 0.5 Hz to 2.0 Hz whilst 

the Stokes layer thickness then varied in the 'range 0.4T0.8 mm. 

At low oscillation frequencies the motion was purely in the azimuthal 

direction as the dye remained within the layer where it had been injected 

(Fig.354.When the frequency, and hence T, was increased beyond a critical 

value of about 1.18 Hz, axial and radial components of velocity were 
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detected. A Taylor vortex type flow then developed with vortices evenly,  

spaced in the axial direction(rig.35b-g).The vortex motion appeared to 

be dominantly steady. Very small periodic oscillations could be observed 

on careful examination. The approximate value of T
c 

associated with the 

above critical frequency was 210. The critical value of the wavenumber 

was found to be a 0.88. 

It should be emphasized that the purpose of the experiment was to 

observe the phenomenon more than to,perform careful measurements. The 

above values of T
c 
and a are then to he taken as qualitative estimates. 

The frequency was then increased further. The flow pattern was not 

significantly altered till a frequency of about 1.8 Hz was reached (T 

260). At that stage some vortices appeared to interactwitth each other form 

ing bigger vortices with atI0.17 (Fig. 35h-1). The present visualization 

technique was not good enough to let us draw definite conclusions about 

the new flow configuration. However, during the short interval when the 

dye had not completely diffused, this second "mode" of instability 

appeared to contain steady tangential as well as radial components of 

velocity. However, unlike the steady Taylor vortex problem the second 

stage of instability does not appear to lead to a wavy vortex regime. 

The above observations could not be compared with those performed by 

Taneda (1971) whose results were not available to the present author. 

However Kuwabara and Takaki (1975) plot some of Taneda's (1971) results 

for the critical value of a Reynolds number above which secondary flow 

was observed, as a function of the wavenumber of the perturbation and 

of the frequency parameter 42:3 /R. The number of data reported is quite 

small and difficult to interpret. Thus one can only infer an order of 

magnitude for the critical configuration. After expressing this results 

in terms of T and a one finds that the critical values T(T)  and a
(T) 

c 
(T)  

observed by Taneda (1971) lie within the range 

T(T)  T
c 	
1 00 I 400 

a
(T)

,.., 0.85 t 1.0 
c 
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It is seen that both the theoretical and the experimental results 

for T
c 

and a
c 
obtained in the present work lie within Taneda's range. 

The flow pattern observed by Taneda (1971) as reported by Kuwabara 

& Takaki (1975) also seems to agree with that observed in the present 

work in the first stage of instability. No mention is made in Kuwabara & 

Takaki (1975) of a second stage of instability. 
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Fig.33: Sketch of the apparatus. 
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1ter., 
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Fig. 34 	The apparatus 



Fig,35The development of the instability. 
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APPENDIX A  

A PROOF' OF CONVERGENCE 

For the sake of clarity it is convenient to write a few terms of 

the infinite determinant associated with the linear algebraic system 

(5.14),(5.15) explicitly. 

Let us consider the general element of the matrix, namely the 

!! 

(m1[ (m) ]-4  

series 	64: 	c• ms 	and let us prove that such a vt.o 

series converges. 

The recurrence relationships (5.10)(5.11)(5.12)(5.13) show that each 
0.10 	 (c 

coefficient 	011,1, can be expressed in terms of Mimi°. It may be worth 

showing schematically the series of steps needed for a particular term, 

say with M = 1, p = 3, n = 2. 

(4) 

0132 
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The indices (n., p.) associated with each of the coefficients 
1 	1 

generated at step i, are related to those associated with each of the 

coefficients of the previous step (i-1) by the following relationship 

2n. + 1M - p.) = t2n(1_1)  + 1M - p(iA + 1 	(A.2) 
1 	1 

Thus the integral quantity 12n. + 1M  - p
ill wit h M fixed increa-

ses when i increases. 

Let us now consider the recurrence relationship (5.10) and denote 

by F(M) (p even) the expression on the right hand side. Thus we write 
p,n 

(A.3) 

It is easy to prove that 

0.2. T 

2,en, 

(A. 4) 

if 

2n + IN  - pl > Nf 	 (A.5) 

where Nf  is a positive integer which satisfies the inequalities 

N . 4- 2 Re(e.(N  ) ) >1 , 

+ 2Re( (N ) ) - 1) Nf > - 2 Re (-ia) , 

for fixed values of a, M, 	Im(-iQ.), T. 

Let us consider the recurrence relationship (5.12) and denote by 

G(M)  the factor present on the right hand side. We can write 
1:0 9n 

G
(M) 

= - 
p,n ir (to Lts- + 2n + 	p 	(p 	M) it 2  - [a(13)1 2) -1 

(A.7) 

It can be proved that 

(A.6) 

a,b 



- 127 - 

I G(M)  I p,n 
1 

(A.8) 
1 2n + 1M - 

if 

2n +IM- pl > N 
g 

(A.9) 

where N is a positive integer which, for fixed values of a, M, 
g 

satisfies the inequality 

M) ( Ng  + 2Re( er ) > 1 	(A.10) 

Thus, if n is sufficiently large (depending on a, T, m , M, Re(iX1), 

Im(it/)) we have 

0(ID 	1 \ /V0.4 
T 	1 (1) I 

4* 

(A.11) 

So by the ratio test the series in question converges absolutely. 
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