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ABSTRACT

In the first part the limear stabllity of viscous flows in a curved

channel due to time dependent slowly varying pressure gradients 1is
considered by an approach of the W.K.B. type. The asymptotic behaviour
of small perturbation waves is determined, allowing their characteristics‘
(amplitude,‘transverse structure, amplification rate) to be slowly vary-
ing with time. The evolution of such disturbances is followed and the
instantaneous marginal states are determined according to a '"momentary"
criterion for stability which is based on the definition of a "growth
ratg" of the disturbunce. An ésymptotic representation for the growth rate
is found. o

Low frequency modulated basic flows are investigated by using the
periodicity criterion to define‘the‘mafginal state. The modulation 1is
always found to destabilize the mean flow and the "eritical" wavenumber
is found to decrease from its unmodulated value when the amplitude of the
oscillation increases. \

Slowly accelerated basic flows are also investigated. The evolution
of the linear perturbations is then followed in the weakly non linear
regime and the existence of a supercritical equilibrium amplitude .solution
‘ is proved both in the steady and in the unsteady case.

In the second part the instability of the flow induced by a circular

" eylinder oscillating in an infinite fluid is.inveStigated. The flow is
shown to be uastable to a Taylor vortex mode of instability. A series
gdlution of the partial differential system governing the stability of
the flow is obtained.

The metﬁod used has several advantages over the nﬁmerical methods

-used by diffetent authors for related problems.

The instability predicted by the theory leads to a flow with no mean
velocity component tangential to the cylinders. The disturbance velocity
field decays exponentially at the edge of the Stokes layer. The theoreticai
results are qualitatively confirmed by an experimental investigation of the
problem.

Weakiy non linear offects are also examined and show the existence of

a supercritical equilibrium amplitudé solution.
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PART ONE

LINEAR AND WEAKLY NON LINEAR STABILITY
OF SLOWLY VARYING FLOWS IN A CURVED CHANNEL
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CHAPTER 1

FORMULATION OF THE PROBLEM

1.1 - Introduction

Linear stability theory for steady basic flows has been very
successful in providing the explanation for the selective amplification
of small disturbances which, eventually, leads to a change-in the flow
configuration (transition or bifurcation). The theory is consistently
based on the asymptotic criterion for stability and allows ome to determine
in the space of the parameters of the problem a region of "marginal' (or
"neutral') stability. This region separates the "stable" configurations
(which satisfy the property of being the disturbénces asymptotically
vanishing in time) from the "unstable" ones. -

When the basic flow is unsteady the previous approach applied to the
instantaneous velocity profile, "frozen" in time, leads to a "quasi-steady'
analysis. This approach is justifiable.if the basic flow is slowly vary-
ing with time, i.e. if the growth of the perturbations, once started, can
be assumed to be much faster than the evolution of the basic flow.
However, on a more careful examination this approximation is found unsatis-
factory in some respects.

As Shen (1961) has clearly pointed out, the asymptotic criterion for
étability, which is adobted in the quasi-steady analysis, is no longer
meaningful when the basic flow is time~dependent. Since the disturbances
evolve with réspéct to”aféonfigdfation which is itself vérying with time,
Shen argues that what is relevant is some instantaneous measure of the
tendency of the flow towards stability or instability. His suggestion is
to use a "growth rate” based on the ratio of the disturbance kinetic
energy to the basic flow kinetic energy. This "mbmentary" criterion does
not allow one to define in the space of parameters of the problem an
equivalent region of marginal stability. This implieé that whereas in the
steady case a change in configuration may certainly be expected after the
disturbances have started to grow, in the fime—depepdent case the instan-

taneous tendency to a change in configuration expressed by a positive
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growth rate may or may not reverse depending on the beﬁaviour of the
basic flow. Moreover, 1inear theory cannot cope with situations where
the disturbances sustain periods of growth such that their amplitudes
become too large for llnearlzatlon to be a valid approximation. Non
linear effects must be taken into account in order to follow their
development in time.

The effect induced by the evolution of the basic flow on the
instantaneous properties of the disturbance is neglected by the quasi-
~steady theory. This paper tries to overcome such a deficiency for the
case of basic flows which are slowly varying with time. Under such condi
tions the problem is amenable to solution by the "W.K.B." technique.
This well known method for the solution of differential systems with
slowly varjing coefficients (which, in this'context, is equivalent to
the method of "multiple scales") was first suggested for stability
problems by Bennéy & Rosenblat (1964). Rosenblat & Herbert (1970) have
émployed it to solve the modulated Benard convection préblem. In two
recent papers Bouthier (1972, 1973) has deveioped the method for a gen-
_eral steady, spatially dependent shear flow aﬁd applied it to the
stability of the boundary layer on a flat plate. Drazin (1974) has inves
tigated the stability'cbaractéristics for a model of flow in a cbannél
_'whose width is slowly varying iﬁktime or space. Finally, Eagles &
Weissmanh (1975) have treated the stability of the flow in a slowly-diverg
ing channel.

Essentially, by this method a solution is sought in the form of an
asymbtotic expansion in terms of the small parameter which characterizes
fhe slow variation of the basic flow. Each coefficient of the expansion
has the structure of a wave whose instantaneous propertiés. are allowed
to .be slowly varying with time. The slowly varying amplification rate
can be evaluated as a solution of the instantaneous eigenvalue problem,

‘ pafametrically dependent on ﬁime, which arises at lowest order. The
corresponding eigenfunctions define the instantaneous slowly varying
ﬁranéverSe structure of the disturbance and are unique only up to an
afbitrary multiple of a function 6f the slow Eimé variable. This "ampli-

tude function" is determined by an "amplitude equation" which arises at
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higher order from a solvability condition imposed on the higher order
system. The three functions amplification rate, transverse structure

and amplitudé, which are compléx in general, reduce to a real form

when the principle of exchange of stabilities is assumed to be valid.
This perturbation scheme leads to an asymptotic representation of the
disturbance velocity field in terms of the small parameter. The determina
tion of the growth rate associated with any quantity describing the
evolution of thé perturbation follows éasily and the stability of the
flow can then be discussed accordiﬁg to the "momentary" criterion
previously mentioned. ' |

The stability problem stu&ied in this chaptér refers to flows in.a
curved channel. This choice has a physiological motivation. In fact
recent velocity méasurements within the ascending and upper descending
aorta of animals and humans (see, for example, Seed & Wood 1971 and
Nerem et al. 1974) have shown highly disturbed waveforms which have been
attributed to ;he'presence of turbulence in the flow. The analysis of
the stabiiify of cufved channel flows may then be considered as a first
step in order to understand the more complicated phenomenon occurring
in the aorta. The steady case has been investigated theoretically by
Dean (1928), Réid (1958) aﬁd Héﬁmerlin (1958) . They examined rotatiomnally
symmetric disturbances in the small gap limit and found that instability
first develops in the form of a set of toroidal vortices of the kind
which characterizes circular Couette flow instability. These results
have been experimentallﬁ confirmed by.Bréwster, Grosberg & Nissan (1959).
Recently Gibson & Cook (1974) have considered the behaviour of asymmetric
and mixed modes for finite vaiues of the gap and found that the asymmet-
ric mode becomes the most unstable when the ratio between the gap width
and the radii of the cylinders becomes less than 2.179;10-5.

The effect of the time dependence of the basic flow arising from
driving pressure gradientsnwhich are slowly varying with time is considered
heie. In the next section the basic flow is de;ived and the governing
linear differential system with slowly varying coefficients fof small
disturbances to this flow is given. Chapter 2 is devoted to the linear

theory. The quasi-steady approach is outlined in $2.2. In §2.3 thé slowly
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varying approximation is employed to obtain aﬁ asymptotic solution for -
the distufbanée velocity field which leads to an asymptotic representa-
tion for the growth rate. The particular case of low frequency modulated
basic flowsis considered in & 2.4 where, for small amplitudes of the
modulation, the equivaience will be shown of the slowly varying approach
'to the method used by Hall (1975a) for the analogous modulated Couette
problem. Various results and some comparison with previous work are
presented in 82.5 for the modulated case and for some slowly accelerated
basic flows. Finally some conclusions follow in & 2.6. Chapter 3 is
devoted to the weakly non-linéar theory. Time dependent basic flows are
considered where both the amplitude and the frequency of the unsteady
component are '"small”. The analysis given in §3.2 follows the line of
Di Prima & Stuart (1975) approach.. Some results are presented in §3.3

and discussed in 8 3.4.

1.2 - The stability problem

Consider viscous, incompressible flow between concentric cylinders

of infinite length and radii R_, R2 (R.2 > Rl)' The difference in radii

1
of the two cylinders d is taken to be small compared with their mean R
(small gap.approximétion). Let (£:{}, Z) be cylindrical polar coordinates
with the axis of the cylinders along the Z axis and let (U , V*, W¥) be
- the corresponding velocity vector. Letnalso ﬁ*, § » ¥V and t¥* denote
pressure, density, kinematic viscosity énd time respectively. |

Consider now a driving pressure gradient of the form

" ‘ . :
éL é%%— f - K %&(G&€~) , ' : “‘ (1f1)

‘where carl is a characteristic time scale and K is a positive constant
whose dimensions dre ﬁT_z.

A second time scale, dﬁ‘o, also exists and it represents the time for
vorticity to diffuse outwards from the boundary through the characteristic
distance d.

.The non dimensional parameter

2 .
‘ wd :
U'? < (1.2)
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'is then suitable to describe the time dependence of the basic flow.
Small values of G correspond.to “slow" variations, where vj.scous ef-
fects are felt throughout tﬁé gap width: the basic flow is here '"fully
viscous". Large values of G describe 'rapidly" varying basic flows
where unsteady viscous effects keep confined within small layers of
thicknesses O(t,f}z) adjacent to the walls, the core flow being essen-
tially inviscid.

Let us now define dimensionless variables g, 'C,'\)' by

¥
)Q = E » T o= wt* s \r=“¥," ’ ' (1.3)
' m

where the reference velocity Vm is the mean velocity corresponding to

the pressure gradient F =1 and may be written

2
K d
Vm " 12VR (1.4)

1
The basic velocity field is then given by (o',\)'(;,'r.),O) where \J

satisfies the differential system

2.
&5 -62) --nfm
2% /T

(1.5)
U= 0 ' <r(”0)4§

and terms O(d/Rl) have been neglected.

The solution of (1.5) in the limit GC-——»0 is

= é Xon (%) Do () S (1.6)

where
Yo= 6(%-3%,
c\?‘xrn.-u x.m' (1.7)
——d_‘ir-= ! a,b,c
Xm = C (r(=014) 3

and ’ . '

<§o = %‘(‘t)‘ s

(1.8)
@M*‘\ = 2 P . a,b
N d't (n = 0,..1, 2, o...)




_15_

Let us now formulate the stability problem. Suppose that the basic

flow is disturbed such that the velocity vector is of the form (u*, v

+ V*, w*).-The disturbance is assumed to be rotationally symmetric. Asym

metric and mixed modes are nét considered siﬁce:

(i) asymmetric and mixed modes are known to be more stable in the
stead& case , except for gap widths which are extremely small
compared with the radii of the cylinders (Gibson & Cook (1974)).

(ii) Asymmetric or mixed modes have not been detected in‘ekperiments on
unsteady Taflor vortex flow (Donnelly (1964), Thompson (1968)).

However é more satisfactory justification of such assumption requires
further work.
Let (u,v,w) be the dimensionless disturbance velocity obtained by the

scaling which is usual for Taylor vortex flow

»- A
u

= 2 u@z,0 3 v = VV(g,z,t) 'w*= 53 V(G2 t) (1.9)

’

where
#* d2
Z=dz S - =)t (1.10)

The differential system which governs its behaviour can be derived
from the momentum and continuity equations by the usual manipulations. If

terms of O(d/Rl) are neglected we. find that

( ._?2._.)_{,0 ~ TN "oz’-=:z—>}7'-(a\ az.’at,ga';
| & - 2)v - '%"%% = Q,

S, L .G
= Q

3

(1.11)

g vz

(CF d) 4\ 7

W o= Vo=

where

[
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2 2
L= 2 o 2 , (1.12)
. i dw o 1.13
Qe = :«z(uraa“*w 2] s ()
‘ a,b,c
Dy
3 2 3 vz !
and we have defined the Taylor number T by
vd ' . |
2
T =42y% L (1.14)
v R

The differential system (1.11) is strictly valid in the limit d/Ri-vo

with q, z, t,9, u, v, w fixed.
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CHAPTER 2

LINEAR THEORY

2.1 - Linearized problem and quasi-steady approximation

The disturbance is now assumed to be small enough for linearization
to be a valid approximations. The differential system which governs its

behaviour is obtained in the form

@-2)2o=-TYV

2.
. Dz¥% )
>\

(2.1)
Q&“%Va%uwc ’
The boundary conditions associated with (2.1) are
u=v = Qu/bg = 0 P _ : (2.2)

i.e. the no-slip condition at the walls.

The coefficients of the perturbation differential equations are
independent of z and vary with ; , and slowly with t. The quasi-steady
.theory now.ignores this variation and the usual analysis by normal modes

 follows for the instantaneous configuration at t = t by setting
0

: = j éf(;;.'f-:) {exp[i(az-.f?.t)] +c.c.} da ,
- OO
~ 0 - (2.3)
v = J %g(g;t){exp[i(;z-ﬁlt)]+c.c.}da , a,b
-
where .
&9 = (o B, 0] 7 w. (2.4)

~Here c.c. denotes»complex conjugate, a is the dimensionless (real)
.wavenumber, {is a complex number whose imaginary part gives the amplifica
tion rate of the disturbance and (f,g) are functions which describe the
‘transverse struhtu;é;ofhthéiperturbation.
An asymptotic reéresentation of the disturbance velocity field in

terms of the small parameter G can be obtained by expanding in the form
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(AR} = L. + Ve . o3

§(5E) = fo(53)e SmDe +0(d , @
© a,b,c
L %(;; E) = %0 QZUEX"‘ Qi QC;E\G + O le\ .

A

By substituting the general mode of (2.3) into (2.1), (2.2) and
using (2.5),(2.4) and (1.6) it follows at order ¢°©

o

(2.6)

df0 ‘
fo=g0=a~§— =0 (§= o, 1) .
Here Q is the linear oberator defined by

2 . l . 2 B o~

Q= ; ,(2.7)

d%e & _ o= .
- ;li _—2‘ _ ;ﬁz"‘ o. b of L-Q.o)
and

T=1 [(bo(cE)] 2 | _ (2.8)

Thus %0 represents the value of T associated with the lowest order
approximation for the basic flow at t = t. The differential system (2.6)
defines an eigenvalue problem for (a, EO,IZO) which leads to dn eigen-—

relation of the form

f(a, TO,QO) =0, ' (2.9)

identicait%he eigenrelation which characterizes a steady flow with T= ?0.

1flthe principle of exchange of stabilities is assumed to be valid
(see Chandrasekhar 1961) the structure of (2.9) can easily be determined
by means of a numerical procedure. '

If we now substitute from (2.3)(2.4)(2.5) into (2.1),(2.2) and

equate terms of order @ an inhomogeneous differential system is obtained



- 19 -

whose solvability condition leads to the following expression for ifll

4
i, = [@TrXger Yo dhe of So)an 3,

L« @: NG + ab %% o Do

Here ¢0 = ¢O(G'E), ¢1(G‘E) and N is the linear operator defined by

. (2.10)

= d2/d‘('2 - 8.2 . ‘ (2.11)

+ o+
Furthermore (fo, go) is the adjoint pair of functions defined by

the adjoint differential system of (2.6)

£t
‘ 0
Q| ,]=0,
g
+0 (2.12)
P 3
f0=g0=~d—-t‘—=0 (t=0, 1) .
where Q+ is the linear operator defined by
(’i O'“Q\(%:fo) - T 2ag
Q= a1
2 2 \2 2 . >
- O TO'X.O | <__—c°\'f\7- - O +‘\.-Qo

An eigenvalue problem for (a, ?5,!20) arises from the differential
system (2.12) which determines an eigenrelation identical to (2.9).
However a glance at the form of the equations reveals that the pair of

. functions (fo, go) differs from its adjoint (f;, g;). Tﬁe marginal state
for the instantaneous configuration is then determined from (2.5a), (2.9),
(2.10) by adopting éome criterion for stability (asymptotic or momentary).
Such an approach is subject to some criticism as pointed out in 81.1.

The slowly varying analysis developed in the next section provides a more
rational theory where the quasi—steadf approximation appears within the

framework of a rigorous perturbation scheme.
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2.2 - The slowly vafying approach

Since the coefficients of system (2.10) are independent of z and

slowly varying with time, a solution can be soughtof the form

(2]

u(g,z,t) = J %ua(ﬁ,‘ﬂ){exp[i(az- G(t))1+ c.c.]) da ,

-o (2.14)
v(g,z,t) = J iva(ﬁ,ﬁ){exp[i_(az- 9(t))l+ c.c.}da .

%0

where d 9 /dt is expected to be a function of the "slow" time variable

a8
a‘;-’\“)-

This is equivalent to assuming that the general mode of the distur-
bance has the structure of a wave whose instantaneous properties are
allowed to be slowly varying with time. The function @ (t) which
describes the "fast" variation is obviously related to the "slowly" vary

ing function A(®) by ” ,

j Ayax

O() =2>n—u.
G

By substituting the general mode of (2.14) into (2.1),(2.2) the

differential system for (ua, v ) is obtained
, - a

_ (M—G'%_E—\-'L/\)Nu“ - of'T'\)'v&=O ,
4(“"—-6'2—_‘-\»(./\\\/& - %'%%_ Sa =0 (2.15)
Ve = Vo == 3_9,"_-.::0 (Q‘O)AB.
L 8 | |

where M is the linear operator defined by

M ='32/-°§2 - a?, o (2.16)

When & —~» O an asymptotic solution can be obtained in the form

o

(0, Gw, v, (5o = 2 (@ (5D, v G® g, &7, 2.17)

mned

If we substituté from (2;17) into (2.15) and equate powers of order o?
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we obtain for (uo, vo) the differential system

u
% 0
0

' (2.18)
B“O
u0=v0=_—.;—t-l-=0 (=0, 1) ,

where Q%"‘ is the linear operator obtained from Q by replacing et by
T, d/d% by /% and QO('U) by A(x). This system now defines an eigen-
value problem parametrically dependent on time whose eigenfunctions are

unique but for an arbitrary multiple of a function of the slow variable

and can be written in the form

(uy vo) =AM E G Q ), T ®),2),8,(G 2 (), T (¥,a) .(2.19)

The solution is normalized in all the calculations such that

go(%;r) ¢0 (v =1. (2.20)

The determination of A (%) requires the consideration of the order G

problem, which after substituting from (2.17) into (2.15) and equating

terms of order @ is found to be

‘ w—-ﬂ" + Q? To k); Yo Cb:‘
Q = (2.21)
V« b gVO §O> + _(__ .bm QO -4
¢ 2 ar °/ !
g My = b\)(/b: = Q ' (t- 0)4) »

It can be shown that the inhomogeneous system (2.21) only has a

solution if an orthogonality condition is satisfied. This condition

leads to the required "amplitude equation"

Tt HE AW =0, (2.22)
* .
with 4 v | ; ' |
NCa % = * &) o R
HCE)= [t % A e T
- L@fvwofgthdn

(2.23)
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Here (f;, g;) is the instantancous solution of the adjoint differen-
tial system (2.12) with et replaced by T and d/d% by /Y

Once the eigenfunctions of the order G° system and of its adjoint
are knowﬁ for every T% 0, H(T) can be evaluated and equation (2.22) can
be integrated to give the amplitude function A(%). The lowest order ap
proximation to the disturbance velocity field is then determined by (2.19).
The next order correction to the instantaneous transverse structure of
the disturbance could now_be calculated from system (2.21). However such
a correction will not be derived here since Eagles & Weissman (1975)
showed (and it will be demonstrated in the fqllowing) that the order <§
correction to the growth rate arises from the lowest order approximation

for the disturbance.

2;3 ~ The grbwth rate of the disturbance

The growth rate associated with any quantity suitable to deseribe
the evolution of the disturbance can now be defined in the form
-1 %

G(Qi) =c, Q Yyl : (2.24)

where c, is a numérical fact;r whﬁqh can conveniently be chosen so that
comparison is enabled between growth rates corresponding to different
quantities.

The choice of 6&, which mathematica}ly,meaﬁs the choice of a metric
in the space of solutions, depends on what property of the disturbance
we choose to consider. Since no experimental results are available it
would seem qseful to determine the local as well as the global behaviour

‘of the perturbation. Thus the following quantities will be considered

Gq = 0(0-\) Q.= V(m':
At pA | (2.25)
_ Gn zwh- a,b,c,d
-] [+ 0

(@) (@)  (2)

where (u s V , ) denotes the general mode of the dlsturbance
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(2. 14) E(¢) is the instantaneous value of the disturbance klnetlc energy
density evaluated per unit wavelength of the disturbance, and e(x) is the
previous quantity evaluated relative to the corresponding one for the
basic flow. |

If we now apply the definition (2.24) (with a convenient choice for
the value of Ci) to the quantities (2.25), and take (2.17),(2.19) and
(2.14) into account, the following asymptotic representation arises for

the growth rates
g -4 et Ole ™y
G.= Ien Ro®) + & (A -3——%- + 5:0 ’,;'g"\ + Qs ) ’

Gam e )+ (8 7230 280

Ry ' (2.26)
: ' Y A a,b,c,d
Gz = 1m Qo) -\-.s'(l\ _3%__\.‘%‘? _3_%_ +~ Of=?) )

| YA A -4 =4 o 2
L G'A—:r- X.m ﬂo(_’!f\ +*. G (P\ %——c— - J; ¥ C‘);‘ é éé;:_:)_\.()\g; \’

where Im denotes the imaginary part, Gi is the growth rate associated

with Qi and F(¢) is defined by

£
) 2 2.2 10992
F(t) 7-— {fo + go ¢0 + —2-(—‘3-2) ]d‘(.. (2.27)

" Thus the order &° approximation to the expressions for the growth
rates corresponding to every quantity describing the evolution of distur
bances reduces to the quasi steady amplification rate of the disturbance
velocity field associated with the order G° approximation for the in-
stantaneous basic configuration.

The order ® correction includes terms of different kinds. By using
(2.22)(2.23) and (2.10) it can be shown that the coefficient A ~dA/dw
can be split into two parts: the quasi-steady component Im(?.1 due to the

order & correction fer the instantaneous basic flow and a slowly vérying
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component arising from the slow variation of the disturbance structure.
The remaining terms (apart from ¢;1d¢d/d1 which is the growth rate of the
basic flow at order ©°) again account for the effect of the slow varia-
tion on the disturbance transverse structure.

An interesting feature is exhibited by the order & correction:
different growth rates are associated with different flow quantities.'
This confirms Bouthier's (1972, 1973) and Eagles & Weissman's (1975)
results and implies that the quasi-steady instants of "momentary neutral
stability" (defined as the values of T when the groﬁth rate is zero)
are shifted in time by different amounts depending on the quantity chosen
to describe the evolution of disturbances. Furthermore the order & cor-
rections are slowly varying with time, their behaviour depending on the
.evolution of - the basic flow.

For a better understanding of this behaviour the specification of a

particular time dependence is instructive.

2.4 - The modulated case: comparison with Di Prima-Stuart method

Suppose now that the function ¥ is given by
J (At*) =1 + € cos (>t™ s (2.28)

where G==obd2ﬁq is now the small non-dimensional frequency of oscillation.
The basic flow associated with this time-dependence is determined by
substituting from (2.28) into (1.8).

This is an interesting case to analyse because the behaviour of
disturbances is now governed by a linear differential system with periodic
coefficients. Under. such circumstances Yudovich's (1970) extension of
Floquet theory to partial differential systems provides an asymptdtic
criterion for stability where the marginal state is defined by the pe-
riodicity of the solqtion. This "periodicity criterion” has first been
used by Venezian (1969) and Rosenblat & Herbert (1970) who treated the
stability of modulated Benard convection. Hall (1975a)has applied it
when investigating the stability of modulated Couette flow. His method in

the low frequency limit will now be shown to be equivalent, in the limit
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€+ 0, to the slowly varying approach.

Following Hall (1975a)a solution for the system (2.1)(2.2) can be
sought for € and @ approaching zero in such a way that the time
dependences of the right and left hand sides of the two differential
equations "balance" in some sense. This condition is satisfied if O~€
thus we put @ =®< and let & -0 with o¢ fixed. This procedure was
first Psed by Di Prima & Stuart (1972) who considered the‘stability of
the flow between eccentric rotating cylinders. |

We assume the disturbances: to be periodic in the z-direction and
expand their amplitudes and the parameter T in powers of the small

parameter € about the marginal state. Thus we write

20

(0,v) = 52— J {[é_o (o"“‘)v"f"’) 6"1 % . e c..} do o
oo L4 (2.29)
T =To v+ + &Moo v 2Ty« 00 - a,b

On substituting from (2.29) into (2.1), (2.2), we obtain at
a,b
(0) V(O)
b

order Gf a partial differential system for (u ) whosé solution

can be written in the form

0 (0 , ' '
(u sy Vv ) = Bo(t) (foo('q)s goo(ﬂ)) . (2'30)

Here (fo o’ &g 0) are the eigenfuctions of the eigenvalue problem for
b4 »

(a, TO) defined by the system
£
0,0

80,0

(2.31)
f0,0 = 80,0 = 40,0/9G = 0 (%= 0,1

where L is the linear operator obtained from Q by pu;ting 520 = 0 and
§0>= TO. It follows that the eigenrelation defined by the differential
system (2.31) is (2.9) with SZO = 0 and TO = TO. This is the eigenrela-
tion of the steady marginal state.

. The determination of'the function BO(T), as'yeﬁ unknown, requires

the consideration of the 0(&) system.
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The latter is an in-homogeneous linear partial differential system

1 1 ; ¢ g . . . .

for (u( ), v( )) whose solvability implies that the following condition
be satisfied

dB
X+ BO(F cost +a T A)=0 (2.32)

with

JA 2 + 1 dxo +
+
o]

'f R
. (2" T4 Xo T0,0%0,0 * 2 3% 0,0 80,0'%%

— " ; (2.33)
Jo(fo,o N £5.0" 80,0 go,o)d;
1 |
[]
+
J.f g X R4
,0 8o, |
/\_= Y oMo . (2.34)
+ +. -

4

f NE + d
j( 0,0 70,0 20,080,093
3

+ +
The adjoint pair of functions (£, g ) 1is a solution of the

- . - o~ =.
system (2.,12) with flo = 0 and T0 TO.

The periodicity criterion imposed on the solution of (2.32) gives,

as expected
T, =0 9 A (2.35)
and

. - )
B0 = A exp (- ; sinv¥) , (2.36)

where A is a constant(&hich can only be evaluated by'considering non

linear effects)whose square is negligible.

(L (D)

The solution for (u s V ) can now be expressed in the form

@V, v =

0,0 > 8 .) , (2.37)

+ B cosx (f
o T BoesT £y 10 Boq

80’

where the pair of functions (f_ _, g

) is a solutien of the differential
0,1 1

. 0,
system

.

(2.38)
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and Bl('t) is an unknown function of ¢ whose determination requires the
. 2 '
consideration of the 0(€ ) system.
The latter is an inhomogeneous linear partial differential system

(2) e

for (u ) whose solvablllty depends on the follow1ng condition

0:0" é..@.i.-\- rws't 6«&": OL&"f\'c BO*-

ek

B0 (\’H- s 21).&60‘?\-9_)( 2.39)

where

‘

“S“ (Q. To%ooX« "‘N QM) Cio, (goo % d'X.“/dZ; - %o)ﬁ)]d\q
S (goo Ng"oa -\-'%oo %o)dq

, (2.40)

A

‘ \§°0(‘ v Y\u;o'« * Q.To'\Lo %o«> %o o( /z(dxo/dq\ go ‘\"r%o;)dc
[=t
S(?""NE’“ *%oo .,Bdt (2.41)

r> ;—- : j: Xo g:,o %@dt,

3 — [y -« (2.42)

S (g:,o Ngo“'o -+ Cg:;,o %o,o) er

The requirement that Bl be a periodic function of T leads to the

following expression for T2

2
T2 = —T- . (2.43)
2 a F3

Furthermore the solution for Bl(‘t) is

. r‘a. . ) .
Bl = BO(‘\:/ {Tl cosT¥ .- o sin 2‘\:} . (?.44)



We need not proceed to higher approximations in order to show the
equivalence of the above procedure to the slowly varying approach.

Thus the marginalwéfate is found to be characterized to 0(c) by the

following expression for the disturbance |
. T o
(U N Y) =D Q%P(’- < ) (So,o ) Céo,o)\ﬂ * G.(T; oA T - Zi— st‘r;B

* € (go.‘\ ) %a,aj cad T} * O(e‘z)-

(2:45)
Furthermore the marginal value of T is given by (".29)b with T1 and
T2 defined by (2.35) and (2.43) respectively and T

3 equal to zero.
We now consider the approach devéloped in §2.2 in the limit <-+0.

If wé expand u_, vO,IZO, T in powers of &€ in thé form

. . . .. a X
- Vo = Ooo + Vg €& + Uopa & O(G“) 9y -
Yo = Vea * Vou & * *No,2 €e*» QO (ﬁ.‘) s

€2, = Lon < Noa e* C)(jf%- )

b. T- = TO o Tﬁ’ € & Tﬂ- e-g had Q(e';s )

we.can then substitute from (2.46) into (2.18) to obtain a set of dif-

ferential systems arising at different orders for the coefficients Uoii?
. . * . E

v . (1=1,2,...). .

0.1 (1= 12, .

At order €° the following system arises

2.47)
Blﬁuo

u0,0 = VO,O = ’b§ =0 (q= 0,1) ’

¥ . . 3 . ‘ ~
where QO 1s the operator obtained from Q" by putting 320 =0and T_ = TO

~ The solution of (2.47) may be written in the form

(

"o,o’vo,o) = coec) (fO,O(Q), go,o(z)) s (2.4§)



- 29 -

where CO('t) is a function whose dectermination requires the consideration
of the order @ problem in the limit € -= 0 .

By subét-ituting again from (2.46) into (2.18) and equating terms of
order € , it follows

>

. . 2“— P :
Vo, “vfapa Co Nsc.o *Q \o X?%%o Co woav + a’ W Y\?C° e

Q =

. = .

T Vo, -":.Qoak Co %o,o - 2 %Tq‘q Co g°:° s v ’

L Uoa = Ve, = R2Yoa . Q (q.. o,4) . (2.49)
=T,

The solvability condition of (2.49), together with (2.33) gives

. - r _ 2 r .
1Q0’1 cos T a T1 5 (2.50)

The periodicity condition imposed on (2.50) gives as expected

Tl =0 . (2.51)

The solution of (2.49) can now be written in the form

(uo’l, Vo,l) = Cl(T)(fo’o(q),go’o(Q)) + Co('\:)(fo,l(ﬁ),‘go’l(?})) cosT
(2.52)

where Cl(‘t:) is a function whose determination again requires the conside
ration of the order © problem in the limit € -» Q.

Finally at order €® the 0(®°) system (2.18) reads

Voo,
e
Q,

Q

Co oo -v-(-—\-Ng’o«-r-OvTo'KO%oa +Ca m’ﬁ(‘rN?oo-&-m\oX %oo>
J: ~LQ0aCo \\\q o + O TD.X' o Co %o_]‘

[@o un x ( r%o,\ - ... CWW go;)-b-c‘Cﬂ&t( r%‘"* = t_‘0 S;o)o)_,.
- Slea, Co %o )

Uo,zﬁ Voo = Y02 = O & = ©,4)

. g )
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where (2.48),(2.51),(2.52) have been taken into account. The solvability
condition of (2.53) together with (2.41),(2.42) gives

— 2
iR = |\ cos‘\:-—azTr

0,2 2 2'3 (2.54)

The periodicity comdition irﬁposed on (2.54) leads to an expression
“for '1‘2 which is identical to (2.43).
Let us now consider the 0() system (2.21) and expand (ul, vl) in

powers of € in the form

= o+ € + 0(e?®
17 %10 4 TS,
(2.55)
= + € + 0(e® . b
Vi T V0t S, YOS &
The differential system for (u, , v, ) is found to be
1,0 1,0
i - dc
[ u N f —-—9 ‘ |
” 1,0 0,0 dv
= : 2.
1,0 0,0 d= ’
L
U 4
1,0
= = == = 1 R .
“,0 7 "1,0 " v, o (G=o0D.
, N
‘The solvability condition for such system gives
= = . . 2.
co(t) €y = cost (2.57)

v, .) is found in the form

. At 0(¢) the system for (ul,l’ 1,1

Uy a N o0 SCa _NEoa stmr Co 4 00 ToYa 0,0 $, Co
Era K

4

Vﬂ;‘ %°)° 9C, - %o A Sin T C.o e 1§ood‘x"‘ <§,\Co

a= ]

 (2.58)

L\)q)l\ = Waa = —b"“»"/'bt, = Q QQ—_* 0)‘\3 .
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The solvability condition for the previous system provides a

differential equation for Cl' which can be solved to give

¢, (v) = Corl cosT . | (2.59)

By substituting from (2.48),(2.52) into (2.46)3’b with C0 and 91
given by (2.57), (2.59) respectively, (uO, vo) are determined to order e .
Moreover 1if (2.50)i’and (2.54) are taken into account, iflo is known to
order 4;2. Thus we are in a position to derive an expression for the
disturbance amplitudes which éan be shown to reduce to (2.45) to ordere<
if we také C0 = A.

Thus it is seen that Di Prima-Stuart expansion procedure can be

interpreted as a limiting form of the WKB procedure.

2,5 ~ Results. ' ’

The starting point for the calculation is the determination of the
marginal state for the steady case. Dean (1928), Reid (1958) and Ham-
" merlin (1958) obtained approximate analytical solutions for the dif-
ferential system (2.6). Gibson & Cook (1974) employed a Chebyshev col-
“location method. We solved it numérically by means of the Runge-Kutta-
~Gill procedure of the fourth order (40 steps). The results for the
curves of neﬁtral stability are shown in figure 1. The critical values
of To and a0 are given in table i. Thé corresponding eigenfunctions
(fo,o’

The system (2,12) was solved with 1120 = 0 to obtain the pair of
+
_ v + 0’0’ . .
‘ized such that fo’o(i) = 1 . The constant | was evaluated from (2.33)

g ) are shown in figures 3 and 4,normalized such that g_ (})=1.
0,0 ) ’ 0,0

+ A .
adjoint éigenfunctions (£ go 0) which are shown in figure 5 normal
I’

and the system (2.38) was solved giving the pair of functions (f0 1’

. b

_go 1). Finally TZ,"j, FZ were determined from (2.43) (2.42) (2.41),
) . . \

respectively..Each calculation was performed for the steady critical
configuration (a0 o’ T0 C). The procedures used to solve the various

bl ’ .
differential systems have been discussed by Eagles (1971) and will not

be described here again. The numerical solutions of the boundary value



_32_

problems were obtained by the Runge-Kutta-Gill procedure of the fourth
order (40 steps). The integrations were performed by using the Simpson

" rule (40 steps). We obtained

Y
rz = - 4-505 y
(e = 0.9 1 -3 (2.60)
Y 659x10 ~, a,b,c,d
T2 = =542.59 .

- We then examined the approach described in & 2.2 for the periodic
time dependence expressed by (2.28). For given values of € and & the
marginal state was deéermined, for every wavenumber, by following in
time the perturbation corresponding to different values of T until the
periodicity of the disturbance was verified. For a given T the method
of solution proceeded as follows. For each o the instantaneous value of
"3’."0 was defined by (2.8). The eigenva'lue‘problem (2.18) was then solved
and gave the instan.taneous value of Q.O and the disturbance transverse
structure at order ®°. After detérmining the instantaneous adjoint
function pair (f;, g;) from (2.12) (with &T replaced by = and d/dg by
?/®Y), we were able to perform the integrations in (2.23)‘and obtain
the instantaneous value of H. Fipally equation (2.22) was solved and
gave the instantaneoﬁs value >of ;he amplitude function A(Y) which was
normalized such that A(O) = 1. This procedure was repeated for discrete
values of ¥ until a pér_iod of the basic flow was completed. Furthermore
for every T the expressions (2.26) could be evaluated and provided the
instantaneous values of the growth rates. The marginal value of T was
obtained by linear interpolation in a neighbourhood of the neutral
- curve. At aﬁy order in @ this value does not depend on the quantity
chosen to describe the evolution of the disturbance.

Indeed to order & the periodicity condition reduces to the relation

Ty 21 Teomw
j - H(x) dx —] i.Q.o(‘t)d‘t =0 ., (2.61)
. T < '
But we have ‘a2at

IH(T:) dv =0 . . (2.62)
T



This follows by showing that H(¥) satisfies the condition
H = - H(2N - T 2.6
(’co) (27 0) . (2.63)

In fact systems (2.18), (2.12) clearly show that

(f :go fo’go)(\- ) = (foago fosgo)(zn T ) )
50 fhat
DME. (g B) DME L (g B
(=0 9 Oy ey e m (0 9O .
2T T 0 2% 27T 0

The latter behaviour is also exhibited by the functions «51 and'yqlég;.
Then (2.62) follows from (2.23). By taking (2.62) into account, the
periodicity condition (2.61) is found fo'be

v(i) independent of thé qﬁantity chosen to describe the evoiution of
the disturbance;

(ii) independént of G.

The latter conclusion confirms the result obtained in the limit condi
tions € -»0 and can also bé’formally dérivéd if we expand the marginal
value of T in the form T = TO + G T + 62 T, + ... ; then by consider-.

1 2
ing higher order terms in the velocity expansion it can easily be shown

2
lity condition of the order & system would now involve Tl’ and similar

that the first non zero correction term to TO above is T,. The solvabi-

arguments as. those given above, along with the condition (2.63) would
give

T. =0 , O (2.64)

as exﬁected.

If higher order terms are taken into account it can be shown that (i)
can be verified to any order of approximation whereas (ii) is only true
to order G .

Neutral stability curves were determined by this procedure for the
cases € = 0.4, € = 0.9 and are shown in figure 2.‘The evolution in time
of the disturbance transverse structure is shown in figure 3 and 4 for
the critical state corresponding to € = 0.9. For the same configuration
figure 6 showsbthe behaviour of the growth rate G, (associated with the‘

4

energy of the disturbance) compared with the ‘quasi-sready ‘corfection term
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(of order ¢ ) i(Zl(t ) and with thé function H(x).

The behaviour of the growth rates Gl’ G2, G3 is very close to the

one obtained for G& and is not shown. Finally figure 7 shows the ampli .
tude function A(x) for the previous critical state,

Checks on the computation were provided

(i) by comparing the structure of the function iszQt) as given by
(2.46c) (2.50) (2.51) (2.54) (2.41) (2.43) and (2.60) with the instan-

taneous eigenvalues of thé system (2.18).
(ii) by the following relation, which can be derived algebraically
T -
3 2a T :
0,c 0O,c
(iii) by comparing the results obtained by means of Di Prima-Stuart

approach with the results given by the method employed in this work..

This will be described in the next section.
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 Slowly accelerated case

We then examined slowly accelerated basic flows characterized by

the time dependence expressed by

5 (of®) = (1 + umht). (2.65)

The corresponding basic velocity field can be obtained by substitut
ing from (2.65) into (1..8). The evolution in time of the perturbation is
then determined by a boundary value problem at any instant in time
" similar to the one previousiy outlined for the modulated case. The solu-
tion was obtained by a similar numerical procedure and ‘allowed us to
deterrrune the instants of momentary neutral stability 'tfjaand the cor-
responding values T(Q)assoc1ated with the quantity Q.. These are defined
as the values of T and T when the growth rate Gi vanishes. For the basic
flows .we are examining, Gi vanisheg ‘at most once in the interval —w<w<w.

We have

B (T, e

(2.66)
(a\ (% '

~¢4l
2P

g,o. G‘)

~

where T _ = ["i“] . The curves of momentary marginal stability
£ T %

"~
corresponding to some given values for Tf are shown in figures 8 and 9

and 6= 0.3. For given values of & and T

4 @ @
a minimum Ve for a value of a (a

) . (&)
for Q the function "« has

f
o ) which determines the critical
conditions for momentary neutral stability. The variation of the crit-
ical wavenumber with ff is fairly small and exhibits a sligﬁt dependence
on @ as shown in table 2. .
The behaviour of the growth rate of the relative énergy of the

perturbation for partiéular values of the paraﬁeters is shown in figure
10 along with lthe quasi-steady and ﬁhe slowly varying corrections of

order- ¢ . The amplitude function corresponding to the same values of

the paramaters is shown in figure 11.
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2.6 - Discussion

We first note the remarkable agreement of Dean's (1928) and Gibson
& Cook‘s (1974) results compared with the results obtained in the
present work for the steady case. The first approximate method used by
Reid (1958), though some-what simpler, is less accurate as he pointed
out. A similar argument applies to Hammerlin's (1958) method.

We now discuss the modulaéed case. We have shown in § 2.4 that, in
the limit € -+ Q, -the perturbatidn velocity field arising from the ap~
proach used in this work . reduces to the one obtained by Di Prima-
—-Stuart method. Moreover from the latter.approach it follows that the
critical value of the parameter T at which instability first occurs is
given by (2.29)beva1uated gt a= ab’c,"lndeed, Venezian (1969) showed
for the analogous modulated Benard problem that the critical value for

the wavenumber is given by

a =a +ela  +oeh, (2.67)
Cc O’C z,c o
where
(aTzlba)a=ao’c
a, == — > . (2.68)
2 C 203 T /3a")
0 a=a
0,c

2 . : ,
The correction term € a affects the rel_ation (2.29)b only at

2,c
order ef as Hall (1973) showe; by proceeding to the higher approximations
in the analysis of modulated Couette flow. Thus such an effect is fairly
small within Hall's scheme. The present approach is not subject to the
condition €<<1 and this allowed us to evaluate the previous effect
quantitatively. In fact, by quadratic interpolation in a heighbourhood

of the critical configuration, we were able to find the values of a, and
T which are shown in table 3. It appears that a, decreases sen51b1y
when € increases with @ fixed. By evaluatlng (2.29)b and (2.68) numer-
ically for a = ao’c,<taking into account (2.355 and (2.43) we could

- determine the degree of accuracy given by Di Prima-Stuart method at order
e;z. The results are shown.in table 3. The agreement is very satis- |

sfaétory for. €= 0.15 and still farly good for € = 0.4 even thbugh only

terms of order €? have been retained in (2.29% so that the dependence
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of ac on ¢ has been neglected. The results are no longer comparable
for €= 0.9.

In the low frequency limit it seems that thé dominant effect of
modulation is to destabilize the flow, the degree of destabilization
increasing as € is increased fromAzero. Such a conclusion cenfirms
Hali's (19754) results for modulated Couctte flow in the limit € and G
tending to zero. On the contrary experimental work done by Donnelly
(1964) on modulated Couette flow showed that modulation enhanced the
stability of the flow, the degree of enhanccment being maximum, for
all €, for a certgin value (Ci0.27) of the frequency parameter G . In
view of the analogy between the mechanism of instability considered
here and the nature of Couette flow instability we can conclude that
the linear theory developed in this paper is not able to explain Don-
nelly's results.

Let us now discuss the results obtained for the slowly accelerated
basic flows satisfying (2.65). It is interesting to examine the nature
.of the correction terms of order G which appear in the expression (2.26)
for the growth rétes of the disturbance.

Figure 10 shows that the global effect to the order & correction
. for the growth rate G4 (there denoted by G&l) is stabilizing. In fact
the main contribution to this correction is due to the term A-ldA/d1.=
= -H(T). As mentioned in & 2.3 this can be split_into two parts: the
quasi-steady term LnKZICt) and a slowly varying component arising from
the variation_with time of the disturbance transverse strucfure. Both
the components exhibit a stabilizing effect as shown in figure 10.
Furthef stabilization is'associated, as expected, with measuring the
energy relative to the corresponding value for the basic flow. In fact
the growth rate, ¢;1d¢o/d1», of the basic flow, is positive for 0§w¥<0
due to the acceleration and this induces a negative contribution into
the order & <correction for G4. The onl& term-which exhibits a destabiliz
ing effect is the one which directly-accounts for the growth rate of the
disturbance transverse structure, namely_%FfldF/dt . This term iévnot
explicity shown in figure 10, but its behaviour can be inferred and 1is

: -4
qualitatively similar to the one shown for [S;X"C'::O-‘{, &zsg/-ﬁlqm,s.
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Figure 10 shows also that the order ¢ correction for G, is rather
small compared with the leading term Imlﬁ%(t). This is due to the
characteristic scale of instability, which, unlike in_Eagles & Weissman's
(1975) work, is here much bigger than the "slow" scale of the basic
state. This argument also explains the apparently odd decreasing of A(x)
when < increases as shown in figure 11,

In fact the dbminaﬁt - dependence in the dig}urbance velocity
field is associated with the "l:.T‘.K.B.." exponent J(Im QO('\'_)/G')d‘\: rather
more than with the exponent - Sﬂ(j)dt on which the "amplitude" function
A(t) depends. Under these conditions the quasi-steady approximation ﬁaﬁ
be considered as a fairly accurate approach. This also implies that the
curves of "momentary" neutral stability shown in figures 8 and 9 do not
differ appreciably from the ones which are obtained by a quasi—sfeady
analysis. » |

We should also mention that a variation of éka with ff had already
been obtained by Chen & Kirchner (1971) who studied numerically the
stability of time dependent rotational Couette flow when the inner
cylinder is impulsively started at t = 0 and maintained at a constant
speed. They examined high frequency basic configurations and found that
aiE) increased seasibly when thgiReynolds number was increased. A direct
comparison between their results and ours is not possible but it seems
worthwhile to wnote tﬁaﬁ the effect we obtained, even though much slighter,

exhibits similar features.
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Table 1

T a

0,c 0,c
Dean 5169.6 3.954
" Himmerlin 5100 4.0
Reid 5277 3.889
Gibson & Cook 5161.9 | 3.950
Present work '5161.86 3.951

The critical values of the Taylor number amdwavenumber

in the steady case as obtained by Dean (1928), Hammerlin
(1958), Reid (1958), Gibson & Cook (1974) and the present
author.

Table 2
ﬁ; 6252.1 8732.3 | 11625.8 | 14932.7
G‘ .
0.2 3.9535 | 3.9563 3.9583 3.9598 -
0.3 3.9544 3.9585 3.9615 3.9638 s

The critical values of the wavenumber for the time dependence

expressed by (2.65) with §= 0.2, 0.3 and some values of Tf .

Table 3

Present approach

Di Prima-Stuart

approach
€ cy T a T a
c (4 c c
0.15 0.1 5149.6 3.9497 5149.6 3.944
0.4 0.1 | 5065.1 3.9053 | 5075.0 3.900
0.9 0.1 4355.5 3.6555

Comparison between the critical values for (a,T) as obtained by

Di Prima-Stuart approach and by the present method.
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FI6. 5 - The adjoint eigenfunctions faq(§), g'ho (%)
normalized such that fag(1/2)=1
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CHAPTER 3

WEAKLY NON LINEAR THEORY

3.1 - Introduction

In this chapter we develop a perturbation expansion in order to
determine the weakly non linear growth and equilibrium state of_the
disturbance both in the steady and in some unsteady cases. The analysis
follows the line of Stewartson & Stuart's (1971) work on non linear
paralilel instability.

Time dependent basic flows are considered such that

\é"(*t') = 1v+e.f.('r) P (3.1)

where both the amplitude &€ and the frequency ¢ of the unsteady compomnent

are "sﬁall". Under such conditions the problem can be treated following

the procedure used by Hall (1975a)for the analogous unsteady Taylor

problem and first suggested by Di Prima & Stuart (1975) when studying the

stability of the flow between eccentric rotating cylinders. The idea

(vhich was already mentioned in €2.4) is to let & and € tend to zero

‘keeping their ratio G/e fixed. Furthermore the growth rate of the distur

bance is_of order & , within a small neighbourhood of the marginal configura

tion; Thus expansions of the type used by Stewartson—Stuart can be set up
for the various harmonics in terms of the small parameter & .. An analysig

; of the differential problems obtained for the coefficients of such expansions

at the various orders of épproximation, shows that the solution depends on

an "amplitude function" A(%®) which, as expected, is found to satisfy an
ampiitude equation of Bernoulli type identical to that found by Hall (1975a).

A discussion of ‘such equation siﬁilar to that given by Hall (19752)shows

‘that: |

(i) an equilibrium ampii&ude solution exists in the supercritical regime

| in the steady case;

(ii) when fCt) = tanh{®) an equilibrium amplitude. solution exists as ¥+ 00
in the supercritical regime; such solution is just the equilibrium
amplitude solution for the steady problem with the Taylor number based
on the final average speed df‘the basic flow;'

(iii) when f(®) = cos® the amplitude solution is periodic in % . However by
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taking further limits it is shown that the effect of modulation
tends to disappear as Tl/T0 tends to infinity with o¢ fixed and as
¢e-»cyg with ’1‘1/’1'0 fixed.

Furthermore, as Tl/To tends to zero with o« also tending to zero

the © dependence of A becomes that of Bo(‘t) found in & 2.4.

3.2 - Anaiysis for slightly unsteady slowly varying basic flows

Let us consider basic flows such that & is given by (3.1) with

€ << 1 , << 1

, (3.2)

The basic velocity field is given by (1.6),(1.7),(1.8) with ¥ defined
by (3.1). |

Under such conditions the analysis given in é 2.4 (see eqn (2.46)c)
suggests that -if£2 ~ 0(€). Thus the growth (or decay) rate of the
disturbance is of order € and an approach of the type used by Stewartson
and Stu‘art (1971) can be employed u’sing‘ € as a small parameter.

Thus we éxpand (u,v,w,T) in the form

18 gAQ oY % ¥°“ ‘?20 cog a7

4/,
v} = Qa Qo WU SZ |4+ € %oﬂ + | Qo <08 2a.z ||,
W Viao SN AZ »\»\o-\ hae M 24z (3.3)
5, Gaa Cos 22 %20 conBaz a,b,c
+e? Qar €OV RZ | & | Qro o 3az -\-0@-2)’
e WM BZ h3° win 3az
tr = To + a T4 ()(e?) , . ‘ (3.4)

“and require (fl s B..s th) to behave like the linear solution for (u,v,w)

0" 10

as T-—~»-0.

Furthermor'e-we let ¥ and € tend to zero keeping ®/¢ fixed and equal
to oL say.

Such a procedure was used by Hall '(19755)for the .‘analysis of the non-
’linear stability of unsteady cylinder flows. Di Prima & Stuart (1975) had
developed the method when studying the non linear stability of the flow
between eccentric rotating cylinders.

On substituting from (3.3)(3.4) into (1.11) and equating terms of
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v, : .
order €~ we obtain the following differential system for the fundamental

component of the disturbance-

L(1) 10 -0,
10 (3.5)_
'-aflo >
£0° 810 =,5;:- =0 (§=0,1),
where 2
3 D 222 22
('—E -an) -a'n To o
i)
(n) K
L = 9 (3.6)
1 X'I ()i.... - aZnZ)

The similarity between (3.5) and (2.47) suggests that we take

(3.7)

(£, 8, = AG) (F) (®), 6, @)

whe#e {Flo, GIO) = (foo, gOO) isrthe‘pair of eigenfunctions associated
with the differential system (2.31) and A(t) is an amplitude function
which is expected to behave like Bexp(- % sint) as T—~~0o.

If we now substitute from (3.3)(3.4) into (1.11) equate terms of ordere
and take (3.7) into accouﬂt, we can show that the pair of functions (fzo,
gZO) is the solution of a 1iﬁearlnon homogeneous partial differential
system parametrically dependent oﬁ time with coefficients which are propor

. 2 .
tional to A (¥). Thus we write

2 .
(fzo’ gzo) = A" (%) (on(ﬂ), Gzo(g)) , (3.8)
_where
. e
bf“ F;o 3 cﬂ”ﬁ:(ii.- ?EEEQO - F;°2F;é31

4 (Fe GR-Gu ) (3-9)

Re=Te =Geoe =0 (§=0,4)

A
o

»

0

) |

|

and N(n) is the operator defined by (3.6) where

.
3T be replaced by d/dg .

Furthermore it can be shown that the function g01(§,t) which represents
the non linear distortionm of the basic flow can also be written in the

form
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2
8oy = A () Gm(z;) , ‘ (3.10)

where Gol(z) satisfies the following differential equation

2
[ a 1 I 1
5 81 =5 o0 * F1o G0 0
| 4y « |
] | . (3.11)
| Gyy = © (% =0,1) . :

i
8

The distortion that the fundamental component of the disturbance
undergoes in the non linear regime is described by the pair of functions
(fll(g,t);'gll(;,T). By taking (3.7),(3.8) and (3.10) into account, we can

write

[

%‘H lok. %:%- NEQ L O?Xo G«‘o A (T«-\-Te ?(“»‘.\) + A’s %A(:)-

w 2B G KGR s ¥ B ASE)

A
=

Q‘M = ‘%N\ = O g‘h\ i O (t]‘” 0)'\\ ) (3-12)

where

EAGIEE S E R Fao)+ &2 To Giro (Gon » Gize),
: ' (3.13)

. L(Aéa?ﬁa-éiaz EF - Rl B -51 B2 )

= p)

~.

' 3 2
%J;q:. i (EQ Gt, 4+ Fao G;g + E'Gaoﬁo*%ﬁtxo?;:* 2 Vo Gm)_ (3.14)

The differential system (3.12) only has a solution if its nomn
homogeneous part satisfies a certain orthogonality condition. By using

(2.33) this condition can be written in the form

: T
L 3 :
“E—‘. To+f('c)]f,‘A+a1A , (3.15)
where o
Yo : -
I {F;o %G (%) + Geo C%n (’C)] d:
Q,=- —L (3.16)

['(%s N + Gl Guo) a7
o

+ +
and (Flo’ Glo) is the solution of the adjcint differential system (2.12)

with i =0 .
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3.3 - Results
Thg aim of the computation was the determination of the constant a,
which appears in the amplitude equation (3.15).
The expression (3.16) shows that the knowledge of the pair of
is needed in order to perform

functions (F2 GZO) and of the function G

o’ 01
such computations. Thus the differential systems (3.9) and (3.11) were
solved numerically by means of usual procedure. (The solution of a non
homoge?eous boundary value problem is found as a linear combination of a
suitable number of independent solutioﬁs of the homogeneous initial value
problem plus a particular solution of the non homogeneous initial value
problem). The numerical integrations were performed by means of the Runge-
-Kutta~Gill procedure of the IV order with 40 steps. The solutions are
shown in figuréleZ, 13.

By using the values for the pairs of functions “(Fl;o ,‘Gi’d) =

p + + + +
= (f F G = (f 1 i 2 -
( ) and ( 10 ° 10) ( 00 goo) obtained in chapter 2, the qua

00’ 800
dratures present in (3.16) could be performed numerically by means of

' Simpsoﬂ rule with steplength 0.1. We obtain

a, = -34.613 , (3.17)

3.4 - Discussion

Equation (3.15) is é"Bernoulli“ type equation and is identical to
that obtained by Hall (1975a) .Much of the discussion will then . be to
repeat Hall'él(1975a)c0nsideratiohs.

Equation (3.15) can be solved by substitution of variables by using

A exp [- QCtﬂ as a variable, where

I T |
P x) = — {2 If(y) dy + 2 x} (3.18)
‘ o TO . .
We obtain‘ - . 2a- < .
-2 1
A " exp {—Q)(x)] === exp'[e-_.+(x)] . (3.19)
(3 0 SR

Let us first consider the steady case where
f(x) =0 . | - (3-20)

We can see from (3.19) that the amplitude equation admits an equili-
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brium amplitude solution Ae as U-+o0 in the supercritical regime (T1> Q).
We have
A = (—)" , - (3.21)
170 :

Such a result completes the analogy between the instability characte-
ristics of curved channel flow and circular Couette flow. Moreover it
agrees with Brewster Grosberg and Nissan's (1959) experimental findings.

Le; us now examine the casé
f(¢) = tanh<t . ' (3.22)

As in Hall (1975a)otie can show from (3.18),(3.19) that an equilibrium
amplitude solution still exists as ®+o . That is just the equilibrium
amplitude solution for the steady b;oblem with the Taylor number based
on the final average speed of the flow. |

Let us finally study the periodic case where
£(X) = cos® . (3.23)

The periodicity condition imposed on (3.19) determines A(QO). Thus

. 2 .
we can write A in the form

Ag('t)-_—: _ 20(, exp( q’(‘c)) [ exp (—-‘(.1)‘(2“)) -4 ‘l‘\: ' , (3.24)
Jex\o(~¢(x))dac. + [@.xp(-— hien)) - 4] { exp(-Y=) d e

where o °
1 .
Y (x) = 5—- Z{Sin X+ = x] . (3.25)
0

Further informations on the behaviour of A(®) can be obtained by
considering some special limits.
(i) If we let TI/TO tend to infinity with & £ixed, we can show from

(3.25) that ‘ '
-1
™ o+ N
Ale) ~ A {1 0 (T1/TO) 7} (3.26)
Thus the effect of modulation on the equilibrium amplitude tends to

vanish as the flow becomes more and more supercritical.

(i1) 'If we let w=»o0 with Tl/Tovfixed we 6btain

A(T) ~ Ae{l +0 (o:l)}. ' (3.27)

Thus the effect of modulation is also negligible when the ratio G/
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is large, although €& and © are both small.
Lat us now take the limit T] /TO-—’ 0 with te fixed.

We obtain

O AW

N~ 2ale exp(2 .E_:;:\_f_) Io(,zg){“o(%)%, (3.28)

where ]’.0 is a modified Bessel function of zero order.
By letting o¢ tend to zero in (3.28) the following expression is
obtained for the amplitude functiom

. “/2_
. 7 Y '
“Tyn2 (~20) "2 a .
Ak) ...{ «‘“Q«(_To ) ] ot exo _E—(«— s.m'c) &h O(%,oc)\.(z.w)

The time dependence shown by (3.29) 1is similar to that obtained for

Bo('t) in 82.4. The function A(T) is plotted in fig. 14, where ap-

. . . 1
~ pears that the maximum of A(T) is attained at T = ;7T .

2
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PART TWO

LINEAR AND WEAKLY NOMN LINEAR STABILITY
OF THE STOKES LAYER ON A CIRCULAR CYLINDER
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INTRODUCTION

The second part of this thesis deals with an example of unsteady
centrifugal instability where the basic flow is modulated about a zero
mean.

However the stability of purely oscillatory laminar flows has not
received much attention. The problem is no longer amenable to the type of
asymptotic methods used by Hall (1975a). Moreover a "slowly varying" ap-
proach of the kind developed in part 1 would be restricted to high values
of the relevant stability parameter. Except for the inviscid analysis of
Rosenblat (1968), in which the problem.is simplified considerabiy, the .
above difficulties have only been overcome by approximate techniques sui-
table to numerical work. _ |

Roeenblat (1968) showed that any purely oscillatory cylinder flow
(apart from rigid body rotation) is centrifugally unstable in the inviscid
limit. Instability is associated with a phase lag between velocity and
vorticity. Riley and Lawrence (19765 tackled the concentric cylinder
problem when the inner cylinder performs harmonic oscillations. They exa-
mined the behaviour of rotationally symmetric disturbances whose time
: dependent structure was assumed according to Floquet's theory after first
approximating the radial dependence by means of a Galerkin expansion in
. terms of Jacobi polynomials. The\éritical values of the relevant stability
parémeters were determined numerically by following the evolution of the
disturbances in time and imposing the periodieity;criterion. The flow was
found to be unstable fdr’large enough speeds at all'freqnencies. The
critieal‘parameters become independent of gap width at high frequencies
in which case the flow reduces to a Stokes layer confined to a region
‘adjacent to the inner cylinder. The above method requires a great deal of
computation and does not provide a deep understanding of the physical and
mathematical features of the problem. Furthermore a Galerkin expansion
procedure only applies to functions defined in a finite interval. Serious
doubts about the validity of the results arise when flows of the Stokes
layer type are treatedrby this method which requires the introduction of
a second bonnda:y. After introducing this second boundary the Galerkin

method can be used to approximate the disturbance flow between the two
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boundaries. The thickness of the Stokes 1ayér compared to the separation
of the boundaries must then be allowed to tend to zero in order to infer
results for the infinite Stokes layer. Thus the Galerkin method 1is
partiéularly unsuitable since, in this limit, the disturbance velocity ,
which will be non zero only in the Stokes layer, must be approximated by
functions defined in the finite interval bétweén the boundaries. In order
to obtain sensible resulté the number of terms of the Galerkin expansion
needed will rapidly increasc.

Such an argument applies to Kerczek and Davis (1974) who investigated
ﬁhe linear stability of Stokes layers on a flat plate. A‘"finite Stokes
layer" is considered with a stationary infinite plate set parallel to the
first. The stability of this flow is studied by a method similar to the
oné-ﬁreviously described. The flow is found to be stable for Reynolds
numbers less than abaut 750 and wavenumbers in the range .3, 1.3. These
results were obtained for a maximum separation distance d eight times
bigger than thé charactéristic thickness of the Stokes layer. To what
extent they can be exttapolated to the case of an "infinite" Stokes layer
is questionable. Such uncertainty particularly refefs to disturbances of
"small" wave number. In fact it appears-unlikély that a disturbance whose
wavélength is 0(d) does not interact with the stationary wall. If the ef-
fect of such an interaction is appreciable, as one might reasonably
expegt; fhe“fesulté obtained for wavénumbers 0(1) cannot be considered
répresentativé of the behaviour of an “infinite" Stokes layer.

Finally'we mention Kuwabara & Takaki's (1975) work on secondary flow
érouhd a circular cylinder in rotatory oscillation. Such work was not
known to the present author till this thesis was completéd. Kuwabara &

Takaki (1975) examine the possibilipyvof;ogcur:gnce of small, unsteady
axisymmetric disturbances supérimposéd an the basic flow originated by
~a circular cyliﬁder performing rotatory oscillations about its axis.
“Their ahélysis will be more extensively discussed in §5.5. At this

stage we notice that they tteated the radial dependence of the perturba
tions by means of a Galerkin expansion in terms of 'Laguerre polynomials.

The disturbance time dependence was assumed on the basis of some experi-
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mental observations by Taneda (1971). The perturbation was not allowed
for any growth or decay and was assumed to be synchronous with the basic
flow. Thus such study cannot be considered as a proper linear stability
analysis. Furthermore some inconsistencies are present in the perturba-
tion procedure which will be discusséd in & 5.5. Finally the number of
terms retained in the Galerkin expansion and in approximating the time
dependence of the perturbation was toosmall for reasonabie accuracy to
be achieved. Thus, as will be seen in & 5.5, Kuwabara & Takaki's (1975)
results for the critical values of the parameters above which secondary
flow may occur, disagree considerably with those obtained by the present
author. .
In view of the above difficulties, a more reliable approach appeafs

to be needéd. A thorough understanding of the stability mechanism of
Stokes layers is relevant to the analysis of a wider class of external
and internal oscillatory incompressible flows. In fact viscous boundary
layers of the Stokes type are developed near the walls of any such flow
at high frequencies of the oscillation. Important examples are: the
viscous iayer at the bottom of a channel over which a gravity wave
propagates (Longuet—Higgins,,1953); the viscous layer generated close to
the wall of a cylindrical body 6sci11ating along a diameter (Stuart,1963,
©1966); the flow near the walls of a straight or curved rigid pipe under
‘the action of an oscillatory pressure gradient (Sexl, 1930; Lyne, 1971).
We emphasize that the occurrence of such flows in practical problems is
of ébnsiderable importance. For example the flow regime at the bottom of
-a water wave controls the sedimentation process. Similarly the flow field
close to the arterial wall appears to be associated with the uptake of
iipoproteins which is thought to be responsible for the onset of atheroma
(Caro, 1973). The velocity fields in the -above flows are generally more
-compticated than that of a simple St&kes layer. A normal as well as a
tangéntial componént of velocity is present. Furthermore the flow is not
always confined to the Stokes layer; a steady streaming sometimes persists

away from the layer. These additional features have some influence on the
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stability characteristics of these flows. However it is of fundamental
interest to investigate first the instability process for the simplest of
them, a Stokes layer. |
We will consider the flow generated by an infinite cylinder which
oscillates harmonically about its axis in an unbounded viscous incompres
sible fluid. For high values of a suitable frequéncy parameter (see®4.1)
the flow is confined to a thin boundary layer adjacent to the wall, which
reduces to a Stokes layer at the lowest order of approximation. Thus, at
this order, centripetal forces associated with the curvature of the stfeag
lines have negligible effect on the basic flow. However, as in a steady
laminar flow with curved streamlines, centripétal forceslmay be expected
to play a major role in controlling the stability of the flow.

In chapter 4 we consider a "small" periodic disturbance of the Taylor
vortex type (rotationally symmetric and axially periodic) and assume its
tangential velocity to contain a harmonic component with the same frequen
¢y & as the basic flow. Then, from the intéraction between such distur—
bance and the basic flow a convective force arises in the azimufhal direc
tion. This force contains a steady part plus a harmonic component of
fréquéncy 260 . For a balénce to be possible between such inertial force
end the azimuthal viscous f&rce,‘a radial velocity with the same time
. dependence is réquired. A similar dynamic balance bétween radial viscous
force and centripetal force can be imposed. For this to be possible a
higher harmonic (frequency 3w) is needed for the azimuthal velocity. The
above balances are coupled, thus giving rise to the production of higher
and higﬁer harmonics in a cascade procesé.

A more general structure for the disturbance can be envisaged where
an exponential time factor, with complex exponent in general, is -
introduced in order to account for: (i) damping or growth of the perturba
tion away from the neutral state; (ii) possible subharmonic responses of
the type characteristic of the solutions of Mathieu equation. Such a
structure may be anticipated on the basis of Floquet's theory.

The solution of the stabiiity problem then arises from solving an

eigenvalue problem for the growth rate in terms of the stability parame-
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ters. This is obtained by substituting the above form of the solution inéo
the governing differential system. It is apparent that such a method 1is
only effective if thé contributions associated with the higher harmonics
of the perturbation tend to become iﬁcreasinglj negligible. Such a condi
tion is expected to be satisfied‘in the present problem, since the partial
differential system which describes the behaviour of the perturbations has
a time dependencé of the Hill's type. The method of solution outlined
above is in fact just an extension of the procedure given by McLachlan
(1947) for the solution of Hill's equationm.

In the présent case the absolute convergence of the series expansions
defining the disturbance velocity can be proved. The coefficients of these
series are the eigeﬁfunctions associated with the eigenvalue problem
mentioned abové, which essentially consists of solving an infinite system
of homogeneous coupled differential equations with homogeneous boundary
conditions. An #nalytic solution is obtained which is thought to be the
general solution of the eigenvaiue problem. Comparison with the results
obtained by a numerical approach strongly supports this conclusion. The
solution automatically satisfies the boundary conditions at infinity and
is given in terms of an infinite set of unknown constants to be determined.
This is accomplished by imposing that the no-slip condition at the wall
should also be satisfied. An infiﬁite set of linear homogeneous, algebraic
equations is then obtained for the above constants. The infinite determi-
nant associated with the algebraic system must vanish if a non trivial
solution is to exist. This leads to the required eigenrelation between the
’ stability paraméters. The marginal state is obtained by imposing that the
groﬁth raté of the perturbation should vanish.

- On carrying out the above procedure the flow is found t6 be.uqstéble
to rotationally symmetric disturbances charactefized by dominant steady
radial and axial velocity components and smaller unsteady components in
all the directions. The relevant stability paréheter'is not surprisingly
a Tayior‘number, T, based on.the thickness of the Stokes layer. Tﬁe
critical value of T was found to be TC'= 232,52, and corresponds to a

cfitical wavenumbér ac = 0.85852.
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FChapter 6 is devoted to the problem of the weakly non—linear develop-
ment of the linear solution. The analysis féllows the lines of Stewartson
“.and Stunrt (1971) approach. Supereritical equiliﬂrium amplitude solutions
are constructed. The results agree with the analysis Qf Joseph (1972). By
means of a Poincaré-Linstedt type perturbation procedure Joseph (1972)
showed that forced periodic basie solutions of the Navier Stokes equations
bifurcate to supercritical stable and subcritical unstable periodic
solutions with the same frequency as the basic flow, provided the Floquet
exponent of the linear solution is zero at criticality (as is the case in
the present problem).

These results were qualitatively confirmed by some experimental
observations carried out on the apparatus described in chapter 7. A Taylor

vortex type flow of the kind suggested by the theoretical analysis was

. . 1
observed to develop when T exceeded a critical value T = 210 with ai )
. . 2
=2 0.88. However at values of T higher than Ti ): 260.-a second stage of

instability was observed, which gave rise to a set of bigger vortices

(2)
(ac

tions. The linmear and weakly non linear analyses developed in this work

22 0.17) characterized by steady velocity components in all the direc

cannot provide an explanation for the occurrence of this second stage of
instability. No rotationally symmetric mode with steady tangential'velqg
ity was found unstable with respect to thé basic flow. However, this type
of disturbance might give rise to instability when interacting with the
first mode. Ounly a non linear théory of the kind developed by Davey, Di
Prima and Stuart (1968) can providé a'complete understanding of the whole
proééss. Finally Taneda's (1971) experimental observations could not be
madé aVailable to thekpresent.author. However the experimental results
plotted in Kuwabaré & Takaki's (1975) paper suggest that the time depen-
dénce of the disturbances observed by Taneda (1971) is similar to.that
obtained in the present work. Furthermore the critical value of the Taylor
number observed by Taneda (1971) seems to be‘qualitatively in agreement

with the above results.
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CHAPTER &

FORMULATION OF THE PROBLEM

4.1 - Basic Flow

| Let us consider a éircular cylinder of infinite length and radius R
.in an unbounded viscous incompressible fluid. Let (r,éﬂ Z) be cylindrical
bolar coordinates with the axis of the cylinder taken as the Z axis and
let (U¥, V¥, W® be the corresponding velocity vector (the star denotes
dimensional quantities). Furthermore Vv and t™ define kinematic viscosity
. and time respectively.

The cylinder is'aSSumed to rotate about its axis with an angular
velocity é‘-&-—) cos e t™ where fnd is the tangential displacement of the
cylinder in centimetres from its mean position and €3 is the frequency of
the oscillation in rad/s - A purely tangential basic flow may then be
induced in the surrounding fluid, whefe viscous forces are balanced by the
inertial forces associated with the local acceleration and the centripetal
forces due to the curvature of the streamlines.

The flﬁid motion is confined to a region of thickness O( 453%5) adja-
cent the cyliﬁder. The relative importance of the centripetal forces then
‘tends to vanish when the value of the parameter (45372;)/R tends‘to zero.
In this limit the basic flow at tﬂé lowest order of approximation is a
"Stokes layer'". The velocity field is given by (o, Nroq, t), 0) wherelq t,

\rare dimensionless quantities defined by

r-R « J__VY*
‘Yl | et =Wt, + - T3 e, s (4-1)
- 42\)7(&) Am a,b,c
and
n-Ni+ it
f\)‘--____ e v re.c. (4.2)

2

Here c.c. denotes '"complex conjugate".

1

4.2 - The equations for rotationally symmetric disturbances
A disturbed flow is considered such that the disturbed velocity fleld

is of the form (u*, V' + @)\, w*). The vector (u*, v*, w™ is rescaled by
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writing

(W, v5, W) = ({2ves T, @A) ¢, f2ve W),  (4.3)

Furthermore (ﬁ,V,W) is assumed to be independent of A%, This assump-
tion (rotationally symmetric disturbances) in supported by the experimen
tal observations reported in chapter 7, suggesting that.this type of di-
_sturbances is the most unstable one. However, as found in the classical
Taylor instability,‘asymmetric and mixed modes might become important in
the further stages of the bifurcation process (see chapter 7). An under-
standing of their role requires further work.

The differential system which géverns the behaviour of the disturbance
velocity can be derived from the momentum and continuity equations and the

condition of zero relative velocity at the surface of the cylinder. We

obtain
(- 235« TV 85 =- T35, 200 26
>t 22~ 2 mazR ComzE T ezt th
M-22)9 - 23 V. q,
=t = ’
{28 | 2% _ |
28 .20, | (4.4)
a,b,cyd’e
G = Q 1 \‘;/ -'-‘0 (“Y\:-.O) ’
LG N < 3 = "”O Qvl"w)’
whére
' -1 éﬁ 2@).
2= (D z 5 T=28 %2, PR
..bi 2 ‘
we DL ¥ (4.6)
M2 'bzz .
PR Y SR |
Ql— Z(U,a + W_az) > ‘ (4.7)
uza "}ﬁ
Q= 2(H 55 - ¥ 5D (4.8)
BV WV
o 262 45 (4.9)

The parameter T is recognized a2s a Taylor number based on the Stokes
layer thickness. The boundary conditions (4.4)e require the disturbance
velocity to vanish at infinity. Finally the solution (§,V,%) has been

expanded in powers of the small parameter sz/ob/R and the system (4.4)
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.1s obtained at lowest order. This system may be expected to provide a
good approximation for the solution in the limit 1’2\#&/1{—-0 with 0,

~ ~ ~ .
zZ, t, Uy, v, w, T £fixed.
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CHAPTER 5

- LINEAR THEORY

5.1 - Linearized problem

The disturbance is now assumed to be small enough for linearization
to be a valid approximation (strictly infinitesimal). Moreover the coef-
ficients of the system (4.4) are independent of z, so a Fourier analysis

is- convenient i1n the z direction. Thus we can write

40 .
~ - ~ (=4 iaz
(u, v, w)y = Y {(u, v, W) e + c.c;} da , (5.1)
-0 . ' |
. with e small, |
On substituting from (5.1) into the system (4.4) the following
linear partial differential system is obtained for {u,v)
r : . ; . -
: - 2 - o* =
(-ﬁ a'at)‘&" 2TVUv =0 |,
(-f: —-2% Y - é.Zﬁ“U =0Q ’ (5.2)
) : ' ™M : a,b,c,d
, ) A _ L
U=V = ;5-;‘\ = 0 er.—.-O) »
| v, vy, ;%%i.—+ Q (),
where »
’ R 2 2 2
;B: = B /b'fL - a * ' (5-2)e

The previous system is of second order in time and has coefficients
periodic in time. Such time dependence can be suitably modelled by
considering an ordinary differential equation of the type

ZLrdany=0 , | (5.3)
dt

where 45(2t)'is a periodic function.

The equation (5.3) is the well known Hill equation which has been
extensively studied (see Mc Lachlan (1947) particularly with reference to

the stability of its solution. On the basis of such knowledge a solution '

for (u,v) can be sought in the form
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0 ,
(ﬁ(«l, t; a,T), vin, t; a,T)) =K e‘-i"(Zt Z(u t:a,T), v (-q;a,'l‘)) eipt.
. ~e P P (5.4)
Hére K is an unknown constant, -if} is a complex number whose real
part gives the growth rate of the disturbance while the imaginary part al
lows for the possibilit§ of subharmonic responses, and (up, vp) are func—’
tions which account for the v dependence of the differential system
(5.2).
On substituting from (5.4) into (5.2) - an infinite system of dif-
ferential equations is pbtained for ‘the functions (un, vn).,This'gan'be‘

shown to consist of 2 independent systems, each of which is of the form

Yan-a

1 - 2 - b wrp A=t
[N + 202 -24 (2~Q‘& N oan - 35‘1‘&@‘(” )v LEmY )va,,,;\:.‘ o ,

4

{N v 2002 - 2;'(2""4)] Van-'\'*'{QhL e.rwﬂ)uan-a.*_ ("4"‘35—%(‘.003“‘ ]:: O,

y . “(5.5)
T ‘ a,b,c,d
‘ 1
{ Uan = \fg_“-a) Ugn —» S Q\’L"" w)}
where |
2 2 :
N= dz/d'q - a . ; (5.6)

The other system can be shown to be identical to (5.5) by‘redefiningII.
Thus, an eigenvalue problem for the parameters (a, T, -if2) is
obtained which defines an eigenrelation of the type
f(a, T,) =0 . : (5.7)
The configurations of neutral stability are then defined by (5.7)
with the growth rate ( S?-;) equal to zero. Various '"'modes' may arise with

different values of flf.

5.2 - An analytic approach for the solution of the eigenvalue problem

Suppose ¥ is defined as V = {Vﬁ} where sz = uzj » V2j+1 = v2j+1
and j is any integer. Then the expression



- 73 -

;o o ;
\Vzn gz: éi; {$€:.~» .= { +_ }
(2.) _{(o.. + 2n +\2N—ml)+ i (= 2—“")} "
+ F'M;rv e )
vwhere ' ' §?58)

&P wo™ i 6t -qfa’ - 212+ 2

4
can be shown to satisfy the differential system (5.5) wi thtu(M) Fé;?i
1

’

,
constants to be determlned

Let us discuss briefly the construction of the solution (5.8).
Consider equation (5.5)a with n = 0. The solution for uy will depend on
each of the Vm's through the coupling terms arising from the interaction
between_the disturbance and the basic flow. In the absence of such an
interaction, (5.5)a (n = O) admits a particular solution of the form

(0) €1)] (O) (0)] o |, .
. . s .
uo,o ‘ 0,0 exp{ [ MNy. Then uo’0 interacts with the basie
flow in (S.S)b (n = +1) and a term arises which can only be balanced by
. R C) B
- the contribution, v( ) from v_. Thus v(O) =tx(0) p{ [(6(0)+ 1) +
(0) 1,0 1 1,0 1,0
+ 1(6 + 1)]#1} . .
It should be noticed that a similar balance could not involve the

term proportional to'u2 since this would produce an increasing power of %

in the solution for u, and, in a successive step, would lead to functions

2
' not bounded at infinity. Similar arguments im (5.5)b (n = -1) give
(0) (0) { [ (0) (0) l k
G + + G‘ + .
v_l’o‘ o -1, 0 © ( 1) i ( ni
The process continues through the'feedback in (5.5)a (n = 0) where
the interaction involving v(o) and V(O) leads to a new term for u

(0 (0) (0 10 G,( 70 o
'uo 1 —cto 1 Xp{ [ + 2+ l g, and so on. In such a way series
’ . '

expansions of the form
(o) ‘ . Lo ’
E ©) N
Oé ex\oi‘ {(G"' "'2'"‘%' - o lfq'g /  (5.9)
a,b,c

(vi ; ‘°’> Z_e*q [(s‘,*em-\-'ﬁ»u.s ]wd(&c’) S f:fef),

L
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are gene?ated for uge v1 and‘v_1 . »
Such solutions do not apparently account for the influence of higher

harmonies. In fact the cascade process proceeds involving the higher

(0 (0)

order equations. Now v1 and vy

give terms which require a balance from the terms associated with u, and

interact in (5.5)a (n =1, n = -1) to

u_,- These, in turn, will produce new contributions for vy and vy in
(5.5)b (n = 0). Fortunately the "loop 1is closed", i.e. it can be shown
that the new series expansions obtained for v, and v_1 are of the same
form as (5.9)b,c with initial wvalues n = 1. They ﬁay then be absorbed
into (5.9)b,c . This is the main feature of the problem: the feedback
effect coming from higher harmonics simply reinforces part of the solu-
tion obtained at lower or&ér.

The structure of the solution (5.8) becomes clear when it is recog-
nized that a series expansion of théltype (5.9) for all the Vn's can be
similérlyVCOnstructéd starting from a particular solution of each of the
equations (S;S)a,b in the absence of the coupliﬁg terms. The double series

expansion in (5.8) is thus obtainéda

By substituting from (5.8) into (5.5)a,b the constants

(M) (2m) . . ‘ . (M) M)
i . i o .
u'm,'n_ s ﬁm,n appearing in (5.8) can be determined t;) terms of M,0 ’&2M,0
The following relationships are obtained for °L2m n
' 3

3
)] 2-r (M
Yom,m = siz“ ﬁxaxn,av '

-4

{[ém"' am + [ M- 2| (Qm— M\L‘]a_ [v;““f‘} x
{[ 'GW)-\- ?m * \M—- Qm\ +‘ (Q_m‘_' M)@.]a_ o2 ’Y , ,

(5.10)

where
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1 () T ' M) ' .
Bom-a,m-a * %amea,m-a ) (M= 2wm, m$ 05 )
(e (™) '
Aam-a,m =+ OL:.“,,\ ‘M-q> (M< 2m , M O) ,
O] ) ) a
Aam,'f\-=4 “a.m«s et v Hawea, QM >‘2m)m:f. O)'
: (€1,
( Ham-a o} (.M<2m)m= O)’
My ‘
(D‘Qm*t\, ) : (.M>2m)mzo)l
(5.11)
and
My
MQM-&-A)W = - A 2amtA »
-A
{[Gm-* 2m + \M (?’"‘*")] + L (m-t- 2m+'\)-} [é?m”)l}
)
' (5.12)
:‘there '
) () (M)
((’H“"\ Lam, n-4 + (ﬂ Q Olam +2 m=4
. Co (N'—"—Qma-'\ , Nk o) 3
B ™M) -
(('\kb‘) D%g_m,m o (/\— \-) O‘Q-M-Q-Q - )
ey : (Me2m+4, m40) ,
t ( : ((A ") (M) (« 3 d\M\ ..
T2 ¢ *L o ~a -\ zm*zen
Avird N 2 Mm-A ‘ (m . czm.../\ M+ 0\)
‘ "~ .
QH' ") lam o | QY\< mtA = O\)
. )
1 &&’ ) O(Qfanm‘ra,-o (M v Qenr A JM‘OB-

(5.13)
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(n=0,1, 2, «.oosm=0, +1, +2, ....; M=0, +1, + 2, S I

v e (2 ,
The expressions for P:I l:) are obtained from (5.10), (5.12) by
o . M 2M
replacing G‘(M) by a. Finally the values of the constants OﬁéI 2), %éM )O

as yet undetermined must be such that the boundary conditions (5.5)c are
satisfied. This condition leads to the followihg infinite, homogeneous

system-of linear algebraic equations

.

Sl - () @m) |

 (am
PRy, e
M'«‘Z—w “=Q ’ ‘

!

= & ‘ (1) : G e
Z Z_ [ G, * 2m + \M—_-Qm.\)-\- L(B‘.; - M« 2"“)]0(2'«,«\.

Mgum mMm=Q

o ; e
g -!-[Cb + 2"7‘\.—\'\20"\*2\'\'\-\-’« C(‘Qm—QM)] bam,m =O,
{m = O, i.l, * 2500000)
(5.15)
where D"n(1M21 , B:Iz? ‘are given by-(5.10), (5.12). If a non trivial solu

tion of such.algebraic system is to exist, its infinite determinant must
‘ vanish. Th.i_s 1ead§ to an algebraic eigenvalue problem which allows one to
determine the eigenrelation (5.7). The structure of the latter has been
" obtained by means of a numerical procedure after retaining a suitable
number of terms in the expansiomns (5.14), (5.15). The resﬁlts will be
pfesented in 85.4.

The convergence of the series expansions defininé the elements of the

determinant is'ptoved "in "Appéndix- "A.
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5.3 - A numerical approach

The solution (5.8) clearly shows that any accuracy can be achieved by
retaining a suitable number of terms in the expansions (5.4). However it
may be foundvquite difficult to obtain an analytic solution of the kind
(5.8) for more complicated Stokes layer type flows. In such circumstances
iﬁ is necessary to empioy a numerical method suitable to tackle boundary
value problems of the type (5.5). This has been done for the present pro-
blem and the results of,thié alternative approach have supported the
conclusion that (5;8) is in fact the general solution of the system (5.5).

Boundary value problems of the type (5.5) can be solved by using a
method used by many previous authors in the context of hydrodynamié stabi
lity theory (see, for example, Krueger, Gross and Di Prima, 1966). By
retaining a suitable number of terms in the expansions (5.4), the infinite
system (5.5) is reduced to a finite set of equations..By means of some
numerical scheme, independent integrals of the differential system are then
obtained, each satisfying the boundary conditions at one of the extremes
of the interval. A number of independent solutions of this initial value
problem are required such that a linear.combination satisfies the boundary
conditions at the other extreme. This leads to a homogeneous linear alge-
bréic system for the coefficients of the combination. The determinant of
this system must vapish if a non trivial solution is to exisﬁ. Aﬁ eigén-
value problém then arises for the parameters -if2, a, T, which can be
solved numerically by fixing a,T dnd locating the zeros of the determinant
as a function of -iLQ by means of some root finding routine.

‘The numerical integration corresponding to each solution of the
initial value problem must be carried out starting from infinity, i.e.
gome "large" value of W (Mw). This is one of the reme&ies for the well

>knowﬁ-(e.g. see Foi and Mayers, 1968) form of induced instability which
affects the present numerical method when some of the complementary solu
tions of the differential system increase very.rapidly. Also, the value
of ~b°aat which thé béundary conditions (5.5)d must be imposéd is too
high in generél for the numerical integration to give accurate results
in the whole range (O;Wb). This difficulty can be avoided by following a

method originally suggested by Meksyn (1950). A gdod approximation for
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the solution of the system (5.5) for "large" values of v} is obtained by
‘neglecting the terms with coefficients proportional to e_q . Comparison
with the analytical solution shows that the neglected terms are

O(a2 T e-2q2‘°)v smaller than those retained. Thus, if aZT is sufficiently v
smail, satisfactory accuracy can be achieved with reasonably "low'" values
Of Mg,. The solution of the reduced system can be ‘shown to be such that
the following conditions hold at ‘Yl=~1m

4 (m1) i
A '

(g_ (2m)
%
d . d (2m) d B
ER&RC G O
where '%=”L°o"'

Thus the procedure outlined at the beginning of this paragraph can

)('—'—a)v =0, (5.16) -
% ; a,b,c

be carried ocut starting the numerical integration from ‘%= 0 (with ML».Q

reasonably small) and initial conditidns given by (5.16).

5.4 - Results
The aim of the' computatien was the determination of the eigenrelation
* (5.7). This was first obtained from the solution given in §5.2 . The
results were then checked following the numerical approach described in
& 5.3. | ‘

The procedure was as follows. For fixed values of a and T and an

initial guess for (-i{2) the series (5.8) were evaluated for lm\é.-&
' ) L (2m)
M,0 ’ V' 2M,0
relationships (5.10) -(5.12). Terms for n>8 ,[Ml) 4 were neglected. The

in terms of _the unknown constants & through the recurrence
accufacy thus achie;red was of the order. of the accuracy provided by the
computer (10_145. The infinite matrix (A-1) was then approximated by a
fiﬁite (14 x 14‘) matrix whose determinant was evaluated by determining
the product of the eigenvalues This was done numerically by employing
NAG subrou ines prov:Lded by the Imperial College Computer Centre. The
matrix was first balanced, then put into Hessenberg form; the eigenvalues

were finally obtained by means of the LR algorithm with shift of origin.
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A root finding routine using the secant method was employed to determine
the zero of the determinant as a function of (-i{Q). Convergence was very
satisfactory when the procedure was started from a reasonably accurate

initial guess. The unstable disturbances detected were of the form

< , 2%
. - -
u=Ae iRt Z~ Uan @ ’
. n=-0g (5 17)
-ire = r (an=-a)t ’
v = A e‘]’. t V\Z-oo Van-4 eh(. ) ’ a,b

tn the wmargival stave,
with Real{ Q) = OY The corresponding marginal state is shown in Fig. 15.

The eritical values Té, ac were found to be

)]

232.52

Tc ’

0.85852 . (5.18)
c : a,b

a

The functions uoéq), vlﬁq?f uZQnQ, V3@Q>’ u&(n? are shown in Figs.
16-20. The structure of the disturbance (5.17) and the critical values
(5.18) as predicted by the theoretical analysis will appear to agree
qualitatively with the first mode of instability observed experimentally
(see chapter 7). |

The results (5.18) were checked by performing a numerical integratioﬁ
of the system (5.5) following the approach outlined in § 5.3. Terms for
\n\ > 2 were neglected in tﬁe se;ies expansions (5.175a,b so that the
system of infinite order (5.5) was replaced by a finite set of 28 first
order ordinary differential equations. For fixed values of a,T and an
initial guess for (~if2), 14 independent solutions of the 'initial value
problem were obtained as describéd in 85.3. The numerical integrations
were ﬁerforméd by means of the Runge—Xutta-Gill procedure with initial
conditions (5.16) (m = 0, + 1, + 2) and Yl: 7. A step length h = 0.1
was used. The optimum choice of leﬁnd h was the result of some numerical
experiments. The linear algebraic system obtained on imposing that the no-
_—slip conditions at the wall are to be satisfied by a linear combination
of the 14 independent solutions was solved by a numerical procedure simi-
lar to that described above. The zeros of the determinant associéted with
such algebraic system were similarly obtained. The accuracy of this
numerical methed can be appreciated on comparing the values obtained for

the growth rate by the two independent approaches for fixed values of a,T.
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These values are shown in Table 4. The agreement is satisfactory. This
feature appears to be fairly important in view of the possible extensions
of-the numerical approach to treat more complicated Stokes layer type
flows of the kind mentioned earlier. The rapid convergence of the numer-
ical methéd, though obvious in view of the solufion (5.8), was checked by
retaining an increasing number of terms in the expansion (5.17)a,b. Some
typical results for different vélues of n are given‘in Table 5.

Finally, an extensive search performed in the range of small wave-
numbers (a=0.1) did not show the e#istence of any further unstable mode
with rotational symmetry. An explanation for the experimentally observed
second stage of instability in terms of an instability of the first mode
; probably requires the development of a non linear theory of the kind

devéloped by Davey, Di Prima and Stuart (1968).

5.5 - Discussion

The critical values (5.18)a,b are in good qualitative agreement with
the results of the calculations performed by Riley and Lawrence (1976).
A comparison i1s possible because the concentric cylinder problem with the
inner cylinder mﬁdulated with zero mean, approaches the Stokes layer
problem under investigation as the frequency of the modulation tends to
infinity. From Figs. 1 and 2 of Riley and Lawrence's paper (1976) it was
'passible to estimate the asymptotic valuas of the parameters Tc and a,

which were found as follows-

SR S | (5.19)
(RL) . @,b
a

=~ 0.87 + 0.01 ,
c -

Kuwabara & Takaki's'(1975) results do not agree as well with those
obtained in'ﬁhe pfesent work. This seems to be due to some deficiencies
present in their approach. They examine the problem studied in this
chapter. First théy obtain a solution for the basic flow in closed forﬁ
i.e. for any value of the parameter NFEZ; /R (there denoted by 0:1).

. However in the actual calculations they use an asymptotic form of the

KT) (KT)

previous sclution obtained by assuming v{ ~ 0(c¢) »>1 where WQ is

a radial coordinate related to "1 by
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(XT)

o= Nem o+,

The asymptotic form of the basic flow is given in the first expres-—
sion of & 4 of Kuwabara & Takaki's (1975) paper. Such expression is
incorrect. In fact:

- —'{%q + 0('t(z')ﬂ rather:

- the argunent of the exponent1al should be

than l fl+ O(}fﬂl

Yot
~ the ‘argument of the functions sin and cos should be [:%%-+ §1f+ O(Qtﬁ\
rather than L + q'+>O((m)f"‘) as reported there
- Nz g CvL /| asTee '

With the above corrections the expression can then be shown to reduce
to (4.2) except for a factor [1 —'@ uf%14-0(&?il . Thus it would seem that
Kuwabara & Takaki (1975) wish to retain terms OGQB in their analysis.
However this is not so when coming to. the study of what they cail
"secondary flow". They seék the marginal configuration of small axbymme-
tric disturbances whose time dependence is assumed according to some
experimental observations by Taneda (1971). Indeed we have shown that such
time dépendent structure arises from a proper stability analysis. Thus
Kuwabara & Takaki (19755 expand the perturbation velocities in series of
the forﬁ (5.17) with -ifZ. equal to zero and, Qithout further justification,

retain only terms corresponding to u o’ vl, v .. Such sharp approximation is .

-1
not consistent with hav1ng retained an OGx) effect in the basic flow.
Furthermore it does not seem to be consistent on one hand to retain 0@42)
terms in the disturbance equations, on the other approximating the radial
depeﬁdencé of the perturbation by retaining only three terms of suitable
expanéions in terms of Laguerre polynomials. Indeed the number of terms
required is expected to be much higher and strongly depéndenf on 0 as
discussed in the Intréduction. _

Finally, Kuwabara & Takaki (1975) apply Galerkin method.but do not
specify how large is the domain that they consider. Their results written

(KT)

in terms of T and a are shown in Tab. 6. The cr1t1ca1 values T of the

Taylor number for different values of O  are con51derab1y smaller than

(RT)

that glven by (S 18) . The critical values a of the wavenumber fall

within a range. whlch is not too far from the value given by (5.18)b
’ KT) ‘

However one would expect a( to become closer and closer to the value

(5;18)b as ot . incfeasés, whereas the opposite behaviour is shown by Tab.6.
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This might be the result of the accuracy of the approkimation decreasing
as ®& increases.

Finally fig. 2 of Kuwabard & Takaki's (1975) paper would suggest
that tﬁe flow is stable against disturbances with small wavenumber. This
feature was not shown by the present results and appears to be related to
the failure of Galerkin's method for large wavelengths of the disturbance
as discussed in the Introduction.

Let us now discuss the implications of the present work to that of
Hall (1975a). Attention is focused on the results given by Hall for the
stability of high frequency modulated.circular Couette flow. It was found
that, if the speed of the inner cylinder is S(1 +€:coscu€*), the Taylor
number based on S and the gap width d is perturbed only by an amount of
order eg(V/aadz)ain the limit &%, In this limit the Stokes layer
becomes confined to a thin region near the inner cylinder. These results
suggesc that a Stokes layer is quite stable to centrifugal effects.
However the present work shows thaé this is not the case. The apparent
inconsistency is easily explained. The wavelength of any disturbance
considered by Hall (1975a) was scaled on the gap width. Hall did not
consider the possibility of a mode of instability of the type discussed
here,.wicﬁ the disturbance Scaléd on the Stokes layer thickness. Let us
determine which mode is the most dangerous. The steady basic velocity
component is assumed not to alter significantly the critical Taylor number
for the mode of instability discussed in this paper. (Notice that this
: willvcertainiy be true in ghe limit €<*w). We define a Taylor number Ts
in terms of 8, d, R, and ¥V in the form

2 3
T = g—s-_i. ’ (5-20)
s 2 :
Rv ' ‘

' ..where-d iswthe separation of the cylinders, assumed small compared to R.

By replacing A in (A,S)b by & S/J.we can show: that the Stokes layer
mode of instability occurs when , »
-2 3/2 i
T = 164%€ "e7 7, : (5.21)
where . |
2.
d
G = —— , - (5.22)

v
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is the frequency parameter as defined by Hall. However the critical value -
of TS for the mode discussed by Hall (1975a)was found to be

T —» 3390
S

, (5.23)

when G+w. Thus, for fixed € , the latter mode is expected to be the most

dangerous when

2.2/3

& »&%= (20.7€) (5.24)

b

"i.e. & change in the mode of instability is expécted for G=&* The
critical wavenumber will therefore be discontinuous at G=&™ This discon
tinuity can be seen in the numerical results 6f Riley and Lawrence. For
example, when € = 5.0, Riley and Lawrence found the wavenumber to be
discontinuous at é’= 61.6 whilst the corresponding value of tf”is 64.3.

| The above discussion might.also'bé relevant to the work of Hall
(1975b) on the stability of Plane Poiseuille flow modulated at high
frequencies which also overlooked the possibility of a disturbance with

Hricmnems, The stebi@lty of P  SToves  Yauyes

wavelength based on the Stokes layerybq a flat plate to disturbances with

meeds W e imfeofiga¥ed  Ror Wt Rester posmbiBitu Yo be e ploted.,
relatively "small"™ wavenumbers¥ It should be emphasized that such informa

tion can be obtained by usihg an approach similar to that developed in

g 5.2,

5.6 - Relevance to flow in the aorta

Finally one of the motivations for the present work is related to its
'possiblé relevance to the stability of the flow in the aorta. The aortic
arch may be considered as a curved tapering and branching pipe of slightly
elliptic cross—section. The arterial walls exhibit some viscoelastic ef-
fects. Blood flow is nét fully developed. In spiﬁe of this quite complica-
ted picture, attempts.haVe been made to investigate the flow pattern esta
blished in thé aorta by neglecting the leastvimbortant of these features.
Lyné (1971) has studied the fully developed flow in a curved rigid pipe
of circular cross-section and small curvature due to a purely oscillatory
préssuré gradient acéing down the pipé. Blennerhasset (1976) and Smith -
(1975) have considered fﬁlly developed pulsatile flow in a curved rigid
pipe of circular cross section and small curvature. We shall not discuss

. the stability of such solutions here. However we notice that Lyne's solu-
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tion shows in the high frequency limit that viscous effects are confined
to a thin layer on the wall, the flow being essentially inviscid elsewhere.
A stokes layer type flow with a "small" secondary motion in the cross—
section is then established close to the wall. Due to the curvature of the
latter the local flow along the outside bend then might be subject to
centrifugal instability of the kind studied in this workv Various problems
arise when an attempt is made to extend the present analysis in order to
cover the effects of the secondary flow and of the curvature characteris—
tics varying round the pipe. In particular it is necessary to investigate
how the stability characteristics of the Stokes layer change on proceed-
ing from a locally concave wall (outér bend) to a locally convex walll
(innér bénd). |

'In order to obtain some information about this problem let us study
the inviscid limit T—-¢ in both the cases of convex and concave wall.
The differential system (5.5) is first considered and an inviscid balance
between centrifugal effects and local acceleration is imposed. It can be

seen that such a balance requires that

2~ 'l:‘i . (5.»25)

Thus the following expansions are set up

- . -1 -2
: = + +
“oa T Y2m,0 ¥ Yom,1T o,

(5.26)

T4 O(T_zﬂ !
a,b,c

’

" Vome1 [VZm-1,0+ Vom-1,1
o =1 (R, T L 4 o(T %))

By substituting from (5.26) into (5.5) and equating terms of order

}

0(T"), the following system of coupled equations is obtained
(. ' af - —(A=t) '
2.0, N C2m,o = %—-19’ h Yoo ¥ S ( Mawnea,0 | = c,

¢ Lo Vamaro =« (Ax \‘,3 e—_v\'““)ozm-z.o*@‘\:\ e‘"\.(ﬁ-ﬂozm'cv:O R

L

U?—\'ﬂ '@ = ‘ o . (’V\": o\ 2
‘ ' (5.27)
a,b,c,d

Uzwm,0 —» O _ (> 00) |

3

Some information about the qualitative behaviour of the solution of this
system can be. obtained by considefing, at the lowest approximation, the

following eqﬁétion:
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2
dn
Ym0 - ° =0, (5.28)
om0 ° Mmoo , (m=0,+1,+2, ..... )
where
- - ng , (5.29)
b () =e . (5.30)
. Thus u is the eigenfunction associated with an eigenvalue problem

2m,0
of the Sturm—Liouville type for SLO. It is a standard result for such

problems (when defined in a finite interval) that the characteristic values
"M form a denumerable sequence and are all positive when the function @(v)
is positive for every v within the interval of definition (e.g. see
Courant and Hilbert, 1953 pg.294). Thus we may infer that IZO is purely
imaginary and the flow is inviscidy unstable at the lowest order of approx
imation. It does not seem worthwhile to determine higher order corrections
to thé’présent résult, which is aléo éxpécted to be valid in view of the
full viscous solution presented in the previous paragraphs. It should also
Eé noticed that Rosenblat's (1968) results are also confirmed.

A similar qualitative analysis can be performéd for the case of a
Stokeé layer on a concave wall. It can be shown that in the inviscid limit
the relevant equation at the 1o§ést order of approximation is (5.28) with
a change of sign in the last term. It follows that a Stokes layer on a
concave wall:is inviscidy stable at lowest order. The latter result is
éxpected not to be altered by viscqus effects.

Thus the Stokes layer type flow occurring near the wali in Lyne's
solution apbears to be locally unstable along the outside bend and locally
stable along the inside bend (°). Further work is required to detgrmine

the flow pattern which is established.

(°) - When the flow is driven by a pressure gradient we expect the
behaviour obtained for the Stokes layer on a concave wall to
occur along a convex wall and viceversa. '
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Table &
a T Analytical | Numerical
0.85852 i233.345 0.002277 0.002278._

Comparison betwecen the values obtained for the growth
rate by the amalytical and numerical approach

Table 5
a . T n=1 n=2 n=23 n=54
0.85852 l333;345 0.0074 0.002277 0.002264378 0.002264383

Higher approximations for the growth rate of the perturbation for
fixed values of a and T (numerical method).

Table 6
N KD D)
Cc Cc

20 79.5 0.849 .
40 86.7 © 0.906
60 89.3 . 0.927-
80 ©90.9° 0.939
100 91.8 0.946

- The critical values of T and a for different values of o as
obtained by Kuwabara & Takaki (1975). '
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CHAPTER 6

WEAKLY NON LINEAR THEORY

6.1 - Introduction

Our aim in this chapter is to obtain a perturbation solution of
(4.4) which is centred round the neutral configuration of the most
unstable linear mode. We consider the non linear development of a mono
chromatic disturbance with axial wavenumber a under slightly supercritical
(T > Td) or subcritical (T<'T0) conditions. The analysis follows the method
of Stewartson-Stuart (1971) with obvious variations needed in order
to account for the periodic time dependence of the basic flow.

The inverse time scale for growth in the linear regime is Im(£2)=£2;dhd
may be assumed to be smail within a small neighbourhood of the neutfal
configuration. This is discussed in & 6.2. Using the method of multiple
scales "a new (slow) variable ® is defined by |

v=et 6D
and a suitable expansion is set up for the disturbance velocity (§ 6.3).
An analysis of the differéntial.problems obtained for the coefficients of
such expansions at the various orders of approximation, shows that the
solution depends on anA"amplitude function" A(T). This function is found
to satisfy an émplitude equation of Bernoulli type which allows for
equilibrium amplitude solutions in the supercritical regime.

Such findings are in agreement with the results of Joseph (1972). By
using a generalization of Poincaré-Linstedt pertﬁrbation procedure, Joseph
(1972) treated the problem of bifurcation of quasi-periodic solutions
which bifurcate from periodic solutions of the Navier-Stokes equations.
After assuming that the Floquet exponents «—i(Z) in our case) are simple
eigenvalues of the spectrél problem, the formal construction gives two
bifurcating solutions of the same frequency as the basic f£low when the
Floquet exponent is zero at criticality. The small amplitude solutions
which: bifurcate supercriticaily are stable, suberitical solutions with

small amplitude are unstable.
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The existence of bifurcating solutions had been proved by Sattinger

(1971), Yudovich (1970) and Iooss (1972).

6.2 ~ The time scale for growth

The inverse time scale of the disturbance in the linear regime is ImiQ)
=Qi. Following Stuart (1960) we may anticipate that (.Q.i)-l is also the
time scale for the non linear growth under investigation.

Thus,before proceeding in our discussion of the non linear theory
it is convenient to investigate the behaviour of the growthrate (-iQ)

within a small neighbourhood of the neutral configuration. Let us set up

series expansions for (-if2,, _uzm, v2m+1) in powers of (T—TO). We write
. (0) (0) (1) (1)
« _1g)’ u2m9V2 ) (o, u om ° )+(d uzm, ) (T-T )+ ‘Y (6.2)

(m = 0, + lyeees)
where a is held fixed and (T—TO) is assumed to be small,

On substituting from (6.2) into (5.5) and equating terms O(l) an

infinite system of ordlnary differential equations is obtained for (u?(.m),
0
; ) ) which is identical to (5.5) with (T, —if2) replaced by their

neutral values (TO,O) correspondlng to each value of a.

At O(T - TO) the following system is obtained

o ‘ ) 2 kel oy ~(A-9n @
[N -2t m.;l N Ozm -~ _0_-212{3 Vam-4 T Yamaal =

(o) 2 - (a\. Y ~=, (&)
= Zd& N Ozm » %{ m"nm—ﬂ +€ Vzwwq
’

W — (avd) @ eI W
[N - 2: (2n- 4)1 \,g_‘?“_« I.Q\*"\ (Aem, Ugm-2 +@-0) & A=, o,_mn.].

(o)

= 26‘\ Vame-a ,

’ : (6.3)
(5} A) @y .
Pam = Vé_m_.‘ = A _Oa.m,/d,(\‘ = Q , Q‘\’ 0\ | a,b?c,d
) Q) W '
1 OVawm. ) Ol.m/d,.q. y Yam-a —» o, (A= ©o)

where N is the operator defined by (5.6).

It can be shown that the condition that the linear non—homogeneous
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differential system (6.3) has a solution defines dl in the form

© .
2 Lo. { -(e0m, vmq + e~ (-, v.f,)ﬁul Fam 9mM,

dy=

P (6.4)
) e
-0 4 N Fg_m, + Nam va ‘C\am“‘ d'ﬂ. :
o
+ +
Here the infinite set of functions denoted by (F_, , G ) with m
» _ 2m*  2m+l
equal to 0, *1, + 2,..... is a solution of the following linear system

of ordinary differential equations

- (A~0) ~(aeiny
[N-P 2».(2m.)]N ram + I\&‘»X wm szﬂ + (M) e C‘&.\m] 0

' - ‘:\ — -~
- [N-»e:(amuﬂ C.ZW,, ‘ G\T [ (e "LF— (st am+9. 0
d . -
X -
Fam —y C\Fg:‘/dd\. - G+g_m4-¢\ = Q > (6.5)
LF:"\‘\ 3 C\?QW\/d"\, ) c“ 3‘“f“ —r Q. a,b,c,d

The differential system (6.5) is adjoint to the system (5.5) where
- (T, ;iQ). be replaced by the neutral values (TO,O). |
We intend to expand the solution of (4.4) in terms of the small

parameter ¢ defined by

€= di |z - 1| (6.6)

6.3 -~ Analysis in the limit of small amplification

Let us introduce the "slow" variable % defined as in (6.1), so that

2R L. .
.Sat-:-"'.b——t- +C > ' (6.7)

Following the lead of Stewartson and Stuart (1971) we seek a perturba
tion solution of the differential system (4.4) which represents a small
finite disturbance whose amplitude grows with the time scale discussed in
-é 6.2 in a neighbourhood of the neutral configuration. The scaling
follows from the usual argument that the amplitude of the fundamental
component of the disturbance is of order IT - Tnl : within such neighf

bourhood. Thus we éxpand (u, v, w, T) in the form
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G fio 000z Goa S0 cos 202
~ T4
= €./2' %qo oS dZ |y € %oll |t %20 ws 282z (6.8)
' a,b
s \ l’\«o sin. aZ \'\«/ haq Sin 202
) A4 CO3 AA s COS3AZ
+ C-‘f/a ] s 0(&.‘)
: Quq O3 AZ |+ Qzo conBaz ||+ ,
aa Sin oz 1o sinBaz
| T= Tor e Taxr 0e?) ,
where ' '
-1
T1 = (dl) . _ (6.9)

Furthermore we separate the ''fast" time dependence from the "slow"

growth of the disturbance by further expanding £ _, etc., in the form

10
oo _ ‘
[ ﬁmt
gwf = ,‘,é.oo ?“‘ha““ (ﬂ A T) e ' (6.10)
20
, Lam-0t
l‘ (%""P > \"'“P) = MZ_:"Q (%np,a.m-a ("\f": QaT) ) \"np,am-ac”\f‘:'lo"-r))e ’
- » . ' ‘ - 1 . P
and reduire (f10,2m : g10,2m—1) to behave like k e (uzméq}, vzmnf“q))

as W -»—00,

The fundamental .

If we substitute from (6.8), (6.10) into (4.4), use (6.7) and equate
terms of order (E}), we obtain a partial differential system which de-
scribes the behaviour of the fundamental component of the disturbance.

We obtain

: ~Gwdim, D
q']: 4]

. >,
o - 2] 2 fopm = ER g € om0,

~(ava o =AM
[‘;E"« -2L (2m- "SX Qro,am-a * (1+) e ran Jao,em-2 A~ v =0

g'\o,o.ml = 'Bg‘“/aw\‘-" Ao, am=4 = Qo ' ("'\“ O) ’

i %«o‘am 7 ’b?“yfarq ) %w)em-a'*' G ' QY\-* M§ ) a,b,c,d

where

Ao M 7,
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The similarity between the differential systems (6.11) and (5.5)

suggests that we assume a separabl.g solution for (flo,Zm’ ‘810,2‘m-1) of

the form

N (0) (0)
(£ g ) = A(®) (uzm(q_) , ("Z)) , (6.12)

10,2m > °10,2m-1

where A(x) 1is an amplitude function (complex in general) which behaves

(0) (0)

like A e°  when ~x-w-t, and (u om’ Zm—l) are as defined earlier.

The first harmonic

The differential system obtained by substituting from (6.8), (6.10)
into (4.4) and equating terms of order € describes the behaviour of

the first harmonic of the disturbance (f ). By taking

20,2m° 520, 2m-1

(6.12) into account it can be shown that (f20,2m’ gZO,Zm—l) are the solu

tion of a linear non—homogeneous partial differential system paramet-

. . . . 2
rically dependent on "¢ through coefficients proportional to A (®). Thus
we assume

(f

20,2m’ g

2, . ’
20,2m—1) = A (D (FZO,ZmCVO’ GZO,Zm—l(_’?))f (6.13)

~ where (F "D, 20»2m—i(n)) are the solution of the following linear

20,2m
non-homogeneous ordinary differential system. .

[Lz - 24 \2""} Lz F20,2m. — EQ.Tol\.uo 2m=4 é'(“." " + Gzo,2mea e“(“":)'ﬂ____

(o) (e (© (o\n‘f- (0? (-
oo Z‘{"ax—« Vam- (ai—ﬂ} + 22— \ Vaj Y am-2j = Y3} Unm-zs}

j=-0e
[La - QA.(Q"\-“\] Gao,zm-1 + (&-'H.\ Nt Bo am-2, +(’\— S (et Foo,2m=

- .
Z ( °3' @ o @DF .
$ Uzj Vam-ay-23 — Laj Cem-g-2;)

Jreve

Fg_o)q_m = ?ao)zm = Gaoézm-a =0 Qvl:. O) 3 a,b,c,d
- '
on,nm ; T2ozm 5 Geo,2m-a -> Q (N\—-b- o) ,

(m=0, +1, +2,....)
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. where

L =——-mn a . : (6.15)
s B

The distortion of the basic flow

The behaviour of the function gol(q,’c s a,T) which represents the
distortion of the basic flow can also be obtained by substituting Erom
(6.8), (6.10) into (4.4) and equating terms of order € . If (6.12) and

(6.13) are taken into account, we can assume

2 ' '
= ‘6.16
801, 2me1 = & O Sy on ™ - (6.16)
where G | M) (m=o0, +1, +2, ...) are the solutions of the follow
01,2m~-1"* - - -

ing ordinary differential system

[ e
2 (s ()3 (a)* (o
{—-——— -2 C'KQ.'m-:- '\3} Go‘\,zm-\ = 2.. 5>,

Upt AKX
am? e \ Yoramay-z; T 2] \[afn-a)-z

1 Guﬂaa"ﬂ“\ - O F) (6-17)
" a,b,c
GO\,ZM‘& — O .

L

(m=0, +1, +2,....)

The distortion of the fundamental

1f (6.8),(6.10) are again substituded into (4.4) and terms of order
3/2, . . . .
(€' ") are equated the system which describes the behaviour of the dis-
tortion of the fundamental component of the perturbation can be obtained.

By using (6.12), (6.13) and (6.16) we find
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[ ) . 2 ~(Ari)m, ~(r=1) |
[“—’a - 2 (2""‘% Jou gu,zm. - Q—'E—.—r—‘?‘[%mgm-a e +Quamen & WLJ

= Som %ﬂ + (T Pam) A +(2To Qom + Ram) AP s
~

[;&‘ - 2v (2m+‘\)‘i %AA,Zm—4+ (’H’ C) e_'.(u-C)w\_ ?u am-2 + ("\ \-) s \)"L?u.v.m

: (2) 3 ‘

ﬁ = 2> dA 7. N (6.18)

. am 4  _—d'c + am-4 3 " a,b,c,d
Cam = PFeam/on = Guansa= O =),
?M,zm 3 | Pa?“’z“/’bﬂ_ > Qu y2m-a 7 Qe Q«\_am).

~ . : } . (m = 0’ i 1’ i 2, ooooc) )
where 152 s sz, Rzm, SZm’ sz__l are functions of v, given by

- @) ~(Ax L) IO PY(TIAYY
Pam = }i(v,_m_a, cWOM 2., ,

A &= @) @
Qaom = 35 Z:_ (Va.;-« Gao 2= (2j-a) * 2 Vam-ioa Gon a;-b :

J=-vo

. ‘ w
] N . m A ' 1 . -I . ﬁ v
Rem= Z—. [% Facaj Tac,am-aj — & Faog] Tao,am-a] ~Fio 2| Fao amea)
. .1 <= ‘ .
: F .y . 2 Y . . . t
+ Tag,2j \"-:.o‘z.m-:z) - % . EFAOIZM‘Q) \:30,1; "'FN,?-"‘") F\o,z:y

)

(o)’ﬁ ()
Sﬁ-m—- 2. - Q_, OQam ’

s @ 1
Z..zm-o: Z.. (Faoe.) V(am .\_2) -+ \’2.3 Gao)gm.u -2y +

j=-oo

@ . (.o\

. = g
2 Gzo,zm-u-q Vzj % G

Yam-a- 2.‘\ Eaaz; + 2‘32“ Goa JLTAA &>

P>

" (6.19)
a,b,c,d,e
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The infinite set of linear ordinary differential equations is non-—
homogeneous. An orthogonality condition is to be satisfied for the solv
ability of such differential system. An amplitude equation is thus ob-

tained in the form

dA 3 : . : :
E% + a1 A+ a2 A =0 |, (6.20)
where . : RPN

poet [ s +2¢ g )d . (6-20)
om 2m © © Vom-1 C2m-17"
o
°0
(a T Q ) dvy _
- 2 -
Zm Zm ?m 1 m—1 . (6.22)
Moo Som Fom ¥ 2 Vop-1 Zm-l dn
o
If (6.4) and (6.9) are taken into account a, is found to be (-1).
Furthermore on setting ‘ ‘
| -4
A= € “ A, : (6.23)

the amplitude equation can be rewritten in the form

da, 3 _ | |

Equation (6;24) is a Bernoulli type equation of the kind discussed by
Stuart (1960). After usual substitutions the solution is obtained in the

form

2 Ceexp (2et) | »
A1 1+cC a, exp ety '’ - (6.25)

‘with C an arbitrary‘conétant.
-The condition that (6.25) allow the matching with the linear solu-

tion (5.4) gives

C=K . (6.26)

Furthermore, according as a2< 0 or a2> 0 , (6.25) shows that

sub-critical or supereritical d1sturbances decay from or ampllfy up to

their equilibrium values respectlvely. To the present approx1mat10n the
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equilibrium amplitude Ae is given by

A =§-. : | o (6.27)
2

6.4 - Results

| The aim of the computation was the determination of the constaﬁts
dl and-a2 which, to order 23/2, characterize the behaviour of the
amplitude function A(X).

Equations (6.4) and (6.22) show that the knowledge of the pairs
°f f““Cti:“S (“gg)@’ 72221('??)’ 20,20 * S50, 201> €51, 20-1(
FszﬂD, sz_l(n)) and some of their derivatives is needed in order to
perfo?m such computatibns. Thus the differential systems (6.14)(6.17) ,
(6.5) must be solved. |

Each of such infinite systems was approximatéd by a finite set of
ordinary differential equations by neglecting terms for Jm\ > 4 in the
series éxpansions (6.10). Such approximation, which was chosen on the
basis of the results of the linear theory, was '"a posteriori" found to
be -satisfactory. ‘ |

Each set of equations was solved numerically following a numerical
procedure similar to that discussed in 85.3. The numerical integration
of each differential set was peffofmed by means of the Runge-Kutta-Gill
procedure of the IV order. The boundary conditions imposed at 9 equal
Vl«,'for each independent solution of the initial value problems were
obtained by neglecting the centrifugal térms in (6.5) and the centrifu-
gal and non-homogeneous terms in (6.14) and (6.17).

The values of some of the pairs of functions mentioned above are shown
inﬁfigs;' 21 - 32, Théy‘show that enough accuracy was achieved by retain
ing terms for "ml < 4 in (6.10). A check for the solution of the
adjbint systém (6.5) was obtained by comparing its eigenvalues with
those associated with the linear system (5.5). The agreement was

satisfactory (5 significant figures).

Only partial checks were available for the solutions of the systems
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(6.14) and (6.17). For instance the structure of such systems shows

that the fuqctions (GOI,Zm-li; FZO,Zm 3 GZO,Zm—l) arevcomplex con-

jugat ;s F ; G
jugates to (G _rne1 ¥ F20,-2m } ©20,-2m1

is real, except for an arbitrary constant. Such conditions were

) respectively and F20,0‘
satisfied by the numerical solution with an accuracy of 3 significanf
figures. In fact thé solution was affectéd by the error associated with
two numerical integrations (the non—homogéneous terms of (6.14) and(6.17)
were only approximately known) .

If should be emphasized that the value chosen for oo had to be large
enough for the numerical quadratures (§.21),(6.22) to be performed with
sufficient accuracy after replacing the limit of integration = withlqm.
In the same time the opposite requirément was present that #, should be
small enough for the numerical integrations of the differential systems
to lead to sufﬁiciently modest errors. The value chosen was Moo = 10
with step length O.1. |

After obtaining thé functions préviouslyvméntioned, the functions

s S as given by (6.19) were determined. Finally the

R Z
PZm’ Vo Fom’ Pom’ 2m-1 .
numerical quadratures present in (6.21),(6.22) could be performed numer-
ically by means of Simpson rule. Thus the constants dl and a, were ob-
tained. They are :

4, = 0.00431, | | (6.28)

a = 1.51 . | ' " (6.29)

6.5 - Conclusions

The results given in 86.4 show that an equilibrium amplitude solu-
tion exists in a supércfitical neighbourhood of the marginal configuration.
Such findings are iﬁ agreement with the experimental'obseréations de-
scribédiin chapter 7.>Also, as mentioned earlier, they are consistent
with Joséph's (1972) results on the probiem»of bifurcation of quasi pe-
riodic solutions of the Navier Stokes equations from basic time periodic
solutions of fixed frequency. Indeed, the eigenvalue(-if2) being zero

at criticality the bifurcation leads to a stable supercritical branch of
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the same frequency as the basic flow.

The analysis shows that the type of non linear interaction discussed
in this chapter cannot produce a steady component in the azimuthal di-
rection as shown by the expcrimen;al observations in the second 'stage of
instability. This suggests'that such a componént‘may'bé‘aésociated with
an asimmerry of the disturbance. We will not discuss asymmetric distur-
bances here. However wé notice that, by inspeéting the differential
system that governs their bchaviour in the linear regime, one can show
that a steady azimuthal component of the disturbance can exist coupled
with a steady~radial component both being periodic in the axial direction.
Thus it is desirable to investigate the possibility that an interaction
of such a mode with that discussed in thé present work might be responsi-

ble for the second stage of instability.
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¥ Faeo

F16. 27 - The funchion Faee(n) .
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CHAPTER 7

EXPERIMENTAL OBSERVATIONS

7.1 - Apparatus

The apparatus consisted of two concentric cylinders. The gap was
filled with water. The outer cylinder, of relatively "1arge" diameter,
was transparent and stationary. The inner cylinder, of much small diame-
ter, was driven iﬁ simple harmonic angular motion by a scotch-yoke (an
eccentric mounted on the shaft of an electric motor). A variac connected
with the motor provided a continuous variation of the frequency of the
oscillation. The amplitude of the oscillation could be adjusted by chang
ing the position of the eccentric. The apparatus is shown by Fig. 34.

The dimensions of the apparatus were as in Fig. 33.

The gap between the cyiinders was wide enough to ensure'that‘the basic
flow and the disturbance would not be affected by the presence of the
outer cylinder. Furthermore the cylinders were carefully set up in the
. vertical position so that no.induced sécondary motion occurred.

The indicatof dye used in the visualization technique was normal ink
whose density was adjusted to be the same as that of water by adding a
sufficient quantity of alcohol. By means of a pipette lifted mechanically
a unifo;m streak of dye was deposited on the well polished surface of the

inner cylinder with the apparatus at rest.

7.2 - Observations

The apparatus was set in motion with the amplitude A of the oscilla
tion held fixed and the movement of the streak was observed. The fre—
quency of the oscillation varied in the range 0.5 Hz to 2.0 Hz whilst
the Stokes layer thicknéss then varied in the range 0.4+0.8 mm.

Aﬁ low oscillatioh frequencies the motion was purely in the azimuthal
direction as the dye remained within the layer where it had been injected
(Fig.354) .When the frequeﬁcy; and hence T, was increased beyond a critical

value of about 1.18 Hz, axial and radial components of velocity were
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detected. A‘Taylor vdrtex‘type flow then developed with vortices eveanly.
spaced in the axial direction(Tig.35b-g).The vortex motion appeared to
be dbminantly steady. Very small periodic oscillations could be obsérved
on careful examination. The approximate value of Tc associated with the
above critical frequency was 210. The critical value of the wavenumber
was found to be aéz 0.88.

It should be emphasized that the purpose of the experiment was to-
observe the phenomenon more than to perform careful measurements. The
above values of Tc and a_ are then to be taken as qualitative estimates.

The frequency was then increased further. The flow pattern was not
significantly altered till a fréquency of about 1.8 Hz was reached (T-

2 260). At that stage some vortices appeared to interactwith éach other forﬁ
ing bigger vortices with a® 0.17 (Fig. 35h-1). The present visualization
technique was not good enough to iet us draw definite conclusions about

the new flow configuration. However, during the short interval when the

dyé had not completely'diffused; this second "mode'" of instability

appeared to contain steady tangentiai as well as radial components of
velocity. However, unlike the steady Taylor vortex problem the second

~ stage of instability does not appear to lead to a wavy vortex regime.

The above observations cbuldunoc be compared with those performed by
‘Taneda (1971)ﬂwhose results were ﬁot available to the present author.
‘However Kuwabard2 and Takaki (1975) plot some of Taneda's (1971) results
for the critical yalue of a Reynolds number above which secondary flow
was observed, as a function of the wavenumber of the perturbation and
of thé frequency parameter Mrg;‘/R. The number of data reported is quite
small and difficult to interpret. Thus one can 6n1y infer an order of
magnitudé fér the critical configuration. After expressing this results
in terms of T and a one finds that. the cfitical values TiT) and'aiT)

obsefvéd by Taneda (1971) lie within the range'

T((:T) = 100 + 400

a(T) ~ 0.85
e

b -

1.0

-
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It is seen that both the theoretical and the experimental results
for Tc and a, obtained in thé present work lie within_Taneda's range.
- The flow pattern observed by Taneda (1971) as reported by Kuwabara
& Takaki (1975) also seems to agree with that observed in the present
work in the first stage of instability. No méntion is made in Kuwabara &

Takaki (1975) of a second stage of instability.
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84cm.

Fig.33: Sketch of the apparatus.
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Fig. 34 The apparatus



Fig35The development of the instability,
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Fig. 35 cont.
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APPENDIX A

. A PROOF ' OF CONVERGENCE

f’or the sake of clarity it is coﬁvenient to write a few terms of
the infinite detérminant associated with the linear algebraic system
(5.14),(5.15) explicitly.

Let us consider the general element of the matrix, namely the

~ (o) T () o =4
series {Z_. Xpn “M,o] and let us prove that such a
series copvergeé. ' ‘
. The recurrence relationships (5.10)(5.11)(5.12)(5.13) show that each
cbefficient; o(i‘::,. can be expressed in termé of oét:.?,. It may be worth
showing schematically the series of steps needed for a particular term,

sayWithM=1,p¥3,n=2.
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The indices (ni, pi).associated with each of the ccefficients
generated at step i, are related to those associated with each of the

coefficients of the previous step (i-1) by the-followipg relétionship

2ni + lM - pi} =. 2n(i_1) + lM - p(i-l)\S +1 (A.2)

Thus the integral quantity '{Zni + lM - pi\} with M fixed increa-

ses when 1 increases.

Let us now consider the recurrence relationship (5.10) and denote

M ’ ' . . . .
by F; i (p even) the expression on the right hand side. Thus we write

b

() -4

2 4 [ et

P

() P ' R
“6‘ + 2m \‘Y\—‘P\ A Qa-(“ﬂ«:\—- c\.},
' | O (A3)
It is easy to brove that
(o) o> T
Fom | Py (A.4)
2{QM \N—pl}
if _ ‘

2n + lM - p‘ > Nf (A.5)

where Nf is a positive integer which satisfies the inequalities
Nf +2 Re(égﬂ) >1, - (A.6)

a,b

(N +2Re(q(-M))-1)N >~ 2 Re (~iQ) ,

for fixed values of a, M, Re(-if2), Im(-iQ), T

Let us consider the recurrence relationship (5.12) and denote by

(M)

G the factor present on tﬁe right hand side. We can write
, ) .
M ‘ M 2 21 -1
G; 31 = - {[é-) + 2n + ll_v[— pl + (p - M):i.] - [e'(p)l } (A.7)
2

It can be proved that
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M) 1
‘Gp,n = | iZn + lM - p” (4.8)
if
2 - .
n +, M pl > Ng (A.9)

where Ng is a positive integer which, for fixed values of a, M, Re(-if2),
Im(-if), satisfies the inequality

N+ 2Re( ey i (4.10)

Thus, if n is sufficiently large (depending on a, T, m , M, Re(ifv),
Im(igYy)) we have

(L))

o P‘,M#A

eT ' (™) ‘ ’
o < “P.ml (A.11)
{2«\'\ . \M-—plk

~

So by the ratio test the series in question converges absolutely.
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