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ABSTRACT 

With the development of reliable prediction techniques, it is now 

becoming possible to examine both the static and the dynamic behaviour of 

components and assemblies at the design stage, thereby leading to more 

efficient design. However, there are still some components which are not 

amenable to theoretical treatment, and if these are to be included in a 

full system analysis it is necessary to obtain the required data from 

impedance measurements on an existing component or model. The combined 

use of theoretical and experimental data comes under the general title of 

the "building block approach", and it offers the only means of solving the 

most complex vibration problems. 

One such problem is that of multi-directional vibration isolation, 

and this has provided the impetus for most of the work described here. 

Faced initially with the task of analysing an existing heavily damped 

machinery foundation structure, it was necessary to develop a technique 

for measuring the multi-directional response properties of the most complex 

components, and to derive finite elements for the bending and torsion of 

multi-layer damped beams. Then, once the component data had been obtained, 

it was necessary to couple all the parts together to predict the system 

response. It was evident that a need existed for a general-purpose coupling 

program which would take either theoretical or experimental component data 

from virtually any source, thereby permitting the analysis of a wide variety 

of different systems, including the above-mentioned foundation structure. 

Accordingly, a suitable program was developed, along with a set of standard 

component routines, and this has subsequently been used for further, more 

general, studies of isolation systems. 

The thesis is divided into four distinct parts, dealing respectively 

with isolation systems and frequency response analysis, multi-directional 
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measurements, multi-layer beams, and the analysis of the damped foundation 

structure (or "seating"). While the first three parts are virtually 

independent of one another, the final part draws on material from each of 

the preceding parts, thereby providing an excellent example of how advanced 

analytical and experimental techniques may be used together to solve complex 

vibration problems. 
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NOMENCLATURE 

As this thesis embraces several different branches of dynamics, there 

is a certain amount of overlap between the symbols normally employed in the 

different branches. Therefore, most symbols are defined where they occur 

in the text, and only the most important of these are listed below. 

Note that Mobility is represented by the letter Y, in preference to 

an M. Besides avoiding confusion with a couple or a mass, this preserves 

uniformity between the symbols used for mechanical and electrical admittance, 

just as one normally uses a Z for both mechanical and electrical impedance. 

Also, note that the complex ratio I — acceleration  is here called  
force 

"inertiance", whereas the more commonly used term is "inertance". It is 

the Author's contention that the former is more correct, since the ratio 

relates quite closely to inertia, while only gases are inert. However, 

since the present work was initiated, the term "inertance" has found more 

widespread use, so it is now the recommended term --- but solely on the 

basis of usage. 

Y 

oC 

I 

qi 

Qi  

F 

Impedance OR Dynamic stiffness 

Mobility (mechanical admittance ) 	[see note above] 

Receptance OR Rotational displacement 	[see 104,B,8] 

Inertiance 	[see note above] 

Generalised displacement on co-ordinate i 

Generalised exciting force on co-ordinate i (force or couple) 

Displacement 

Force 

Couple OR Mass 

Cartesian co-ordinates OR Displacements in these co-ordinate 
directions 

Displacements in x,y,z directions 

Rotations about x,y,z axes 

Mass OR Metre 

Stiffness 

Viscous damping coefficient 

Moment of inertia about centre of gravity 

m 

k,K 

I
G 
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h Hysteretic damping coefficient 

7 	
Loss factor 

Q 	Q factor = 

1 
Damping ratio = 11.7 for light damping 

CO 	 Circular frequency (rad/s) = 2n x Frequency(Hz) 

w
N 	Undamped natural frequency (rad/s) 

t Time 

. dw 
Differentiation with respect to time (eg. w = --) 

dt 
1 	 dw 

Differentiation with respect to x (eg. w' = 	 ) 
dx 

i,j 	(used in complex quantities) 
OR Subscript designating either co-ordinate or layer number 

	

7 	Rectangular matrix 

	

{ } 	Column vector 

✓ Strain energy 

T 	Kinetic energy 

L Length of beam finite element 

b 	Width (breadth) of beam 

t. 	Thickness of layer i of multi-layer beam 

E Elastic modulus (may be complex) 

Shear modulus (may be complex) 

✓ Poisson's ratio 

Density 

Mass per unit length of beam 

N Number of finite elements into which beam is divided 
OR Normal force between two mating surfaces 

iasqld 	Static and dynamic coefficients of friction 

Direct stresses in x and y directions 

	

xy 	Shear stress in x direction on y face 

Shear strain 

6,0 	Phase angle OR Rotational displacement 	[seeoc,4,8] 

v 	Volts OR Velocity OR Displacement in y direction [see u,v,w] 
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CHAPTER 1  

GENERAL INTRODUCTION TO VIBRATION ISOLATION 

1.1 BASIC ASPECTS AND CLASSICAL THEORY  

Any modern industrial society thrives on "bigger-and-better" machines for 

increased production, faster travel, labour-saving in the home, and for its own 

protection against outside aggression. An inevitable consequence of this has 

been a gradual increase in pollution of the environment, not only from chemicals 

and gases but also from noise and vibration. In the latter field, the situation 

has been aggravated by the recent steep rise in the cost of raw materials, since 

this has resulted in a more economical use of all materials, and hence lighter 

equipment that is more prone to vibration. With the growing public reaction 

against all form of pollution, it is becoming necessary to adopt a more scientific 

approach to its control by using all the practical and theoretical means at our 

disposal to effect solutions to the various problems. 

In addition to polluting both the leisure and the working environment, 

vibration and noise often give rise to equipment failure -- sometimes with disas-

trous consequences -- and they may also reduce the effectiveness of those vessels 

that protect our shores and vital sea lanes by making them more easily detec-

table by an enemy. Besides all the man-made sources of vibration, nature is 

always a potential source and it has demonstrated its power just recently with 

a number of quite devastating earthquakes. Although the source is different, 

the problem of protecting a building from an earthquake is essentially no 

different from that of isolating it from the more continuous rumble of traffic 

(1)(2)*: it is simply a problem of VIBRATION ISOLATION. 

The problem is best illustrated by the two systems shown in Fig. 1.1a. 

That on the left represents a machine (SOURCE) which is to be mounted in such 

a way that the force transmission to the supporting structure (RECEIVER) is 

kept down to an acceptable level (bearing in mind that the transmitted force 

Note that References for Chapters 1 and 2 are listed on Page 75. 
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FIG. l.la THE THO BASIC TYPES OF ISOLATION PROBLEM 
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gives rise to noise and vibration at points remote from the machine). The 

mounting or isolation system normally takes the form of a number of fairly 

soft springs (ISOLATORS), but it must be carefully designed so that it does 

in fact have a beneficial effect at all frequencies in the excitation spec-

trum. It is especially important to bear in mind the multi-directional nature 

of the system, since practically every machine is a multi-directional vibra-

tion source and what is a good design for attenuating transmission in the 

vertical direction is not necessarily so good for attenuating transmission in 

either the horizontal or rotational directions. Exactly the same considerations 

apply for the system on the right, which may represent either a sensitive ins-

trument that is to be isolated from a vibrating support or a building that is 

to be isolated from ground motion. 

These two systems have long been represented by the simple "classical" 

models shown in Fig. 1.1b, where m is a rigid mass, k is a massless spring, and 

c is a massless VISCOUS DAMPER
*
. In the case of the force-excited system, the 

lower end of the spring and damper are assumed to be connected to a rigid sup-

porting structure, or ground, so the system is said to be "grounded" and it 

has only a single degree of freedom y. With the support-excited system, both 

ends of the spring and damper are free to move, so the system is said to be 

"free" and it has two degrees of freedom yl  and y2. The equations of motion 

given in the figure are valid for any sort of input variation with time, but 

the classical theory of vibration isolation is based upon the response to 

steady-state harmonic excitation
+ 
 , and all the work described herein is con-

fined to such steady-state vibrations. The solution of these equations is 

trivial and is dealt with in numerous texts on vibration(3)(4),  so the details 

will not be given here. It may be shown that the force ratio 1—xlfor the 

* Viscous and other dampers are discussed in detail in Chapter 2, Section 2.3 

+ This is no limitation, since any input may be broken down into a set,of 
Fourier components and the total response is then obtained by summing the 
responses to these various input components. 
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force-excited system is identical to the motion ratio b for the support- 
Y2 

excited system, and we call both these ratios the TRANSMISSIBILITY: this is 

shown plotted against frequency in Fig 1.1c for various values of the damping 

ratio ' (1/2T for light damping)* c.1 	 . Logarithmic scales are used for both axes, 

and the transmissibility is given in dB (deci-Bels), where T(dB) = 20 Log10T. 

This is useful because the log-log plot yields a clearer picture of high fre-

quency behaviour than a linear plot, and in particular it shows constant rates 

of "drop-off" in transmissibility which are easily expressible in dB/octave or 

dB/decade
+
. Although the response is seen to be very small in this region, it 

SuppoW
r7
wl 	X cannot be ignored, since even supposedly rigid

A
structures "break up" dynamic-

ally at high frequencies and are easily excited into resonant vibration by any 

very small forces or motions that may be transmitted. 

These classical models are very simple and they were adequate in the 

days when all machines were solidly built and ran at low speeds. However, with 

the current trend towards lighter construction and higher speeds, they must be 

used with some caution, since they often fail to describe observed system be-

haviour, particularly at high frequencies (>100 Hz). Nevertheless, they do 

illustrate some important points that should be borne in mind before we proceed 

to more complex models. Referring once more to Fig. 1.1c, we see that the 

exciting force or motion is amplified at all frequencies below 1.414v  so any 

real system should be designed to have a natural frequency (.%1  that is well 

below the lowest excitation frequency (coN  is typically about 4 to 10 Hz). We 

also see that an increase in the amount of viscous damping only has a beneficial 

* The term "damping ratio" only has significance in the case of viscous damp- 
ing. A more general measure of damping is given by the LOSS FACTOR /, which 
is equal to 2( when the damping is light. It is defined in Section 2.3. 

2 
+ When the frequency is increased by a factor of 

10  , it is said to be 

X 	"Break-up" signifies a changeover from a more or less rigid state to a more 
flexible state as the frequency becomes high enough to excite structural 
resonances. 

)*increased by one {decade
octave 
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effect at the resonance, and it can have a very detrimental effect on the 

high-frequency attenuation. Whereas the transmissibility of the undamped 

system drops off at a rate of 12 dB/octave (=40 dB/decade), that of a vis-

cously damped system drops off initially at a rate somewhere between 12 and 

6 dB/octave (= 20 dB/decade), and eventually approaches 6 dB/octave, what-

ever the damping. 

1.2 SINGLE-STAGE ISOLATION SYSTEMS  

From this point onwards we shall confine our attention to the problem 

of force transmission between a vibrating machine and a receiver structure, 

and in this Section we shall look at various aspects of the design and ana-

lysis of single-stage isolation systems. As we are particularly interested 

in the accurate prediction of system performance, it is important that we be 

aware of the different factors that impair the performance of real systems, 

so that we can allow for these in our model. Hence, we shall start by con-

sidering the limitations of the classical model given in Section 1.1, which 

are as follows: 

(1) Most machines are multi-directional vibration sources, so one 

should also consider the vibration transmission in the hori-

zontal and rotational directions. 

(2) The mount damping is not adequately described by the viscous 

damper. Also, internal wave effects (ie. resonances or 

"surges") are ignored. 

(3) Any real machine ceases to be a solid mass at high frequencies 

and starts to exhibit resonant behaviour. Similarly, an 

apparently rigid supporting structure ceases to be rigid. 
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The high-frequency limitations have been discussed by Ungar and 

Dietrich(5) in a fairly general manner, and Ruzicka
(6) 

has pointed out in-

consistencies between the elementary predictions and observed behaviour for 

support-excited systems and has modified the basic model by elastically mount-

ing the damper. We shall now proceed to examine each of the limitations in 

detail, solely from the point of view of machine isolation systems. 

Starting with multi-directional behaviour, we may return to consider the 

basic physical system shown in Fig. 1.1a. This might represent a reciproca-

ting engine or some rotary machine, and in each of these cases the out-of-

balance forces will excite the machine in both the vertical and the horizontal 

directions (Y and X). Also, since the horizontal and rotary motions X and 9 

are coupled, the machine will be forced to vibrate in the X, Y and 9 directions. 

Hence, the system should be designed to provide isolation in all three direc-

tions. 

From the simple theory, we know that isolation is only obtained at fre-

quencies greater than 1.414 times the natural frequency, so the system will only 

be effective in all directions when the frequency has risen well beyond the 

highest of the three basic natural frequencies. For the configuration shown 

in the figure, the three modes will generally be well spaced, and a good example 

of this is given in Part 2, Chapter 4, where a resiliently mounted 135 Kg mass 

has been found to have natural frequencies of 7, 18.5 and 25.5 Hz for the X, 

Y and 9 modes. Since the rotational mode has a higher frequency than the ver-

tical mode, the system will not work so effectively as is predicted by the 

classical theory. In addition, the very low horizontal natural frequency may 

make the system sway too much, so it is obviously better if the modes can be 

grouped closer together, around the vertical frequency. This may be achieved 

if the X and 9 motions are uncoupled, either by raising the mounts up to the 

same level as the machine's centre of gravity, or by inclining the isolators 

(7)(8)(9)(11) 



 

(a) 

   

(b) 
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Y 

     

Configuration (a) above is more suitable for heavy machinery, since most mounts 

are not designed to take the large static shear loads that are inevitable with 

the inclined mounting system (b). However, the cantilever feet necessitated 

by this arrangement may give rise to unwanted resonances, which will be dis-

cussed in detail at a later stage. The problems encountered with the 3-

directional or plane motion arefar less than with the more general case of 6-

directional motion
(10)

, for which one may expect an even greater spread of 

natural frequencies. 

The multi-directional motion of the machine produces force transmission 

to the supporting structure in various directions, and if we wish to predict 

the resulting motion at some distant point due to these forces, we should not 

forget to include the phase information when we sum the effects of the differ-

ent forces. Although we have so far only considered a rigid support, it may 

be necessary to mount a machine on a structure that is more flexible, and in 

such a case it is necessary to include in the analysis the dynamic characte-

ristics of the structure in all the principal directions of force transmission 

-- both linear and rotational. Such information may only be obtainable from 

measurements (see Part 2). 

We shall next examine the limitations of our isolator model in greater 

detail, but before we do this, it is useful to familiarise ourselves with the 

physical form of some typical machine mounts, four of which are shown in 
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Fig. 1.2a: (A) A rubber compression mount, (B) a rubber shear mount, (C) a 

rubber isolator pad, and (D) a double-U leaf spring isolator. Types A, B and 

C are designed primarily for steady-state vibration isolation, while type D 

allows larger deformations for absorbing shock loads in addition to providing 

steady-state isolation. The shear mount (B) is generally less stiff than the 

other types, so it is more suitable for light equipment. The isolation pad 

(D) is both cheap and effective and is suitable for isolating workshop machines, 

etc., while the other types are better in those applications where the isolator 

is to be bolted firmly in position, as in a ship for instance. The rubber 

mounts (A), (B) and (C) rely on hysteresis within the rubber to provide damping, 

while the leaf-spring (D) may either rely on dry friction between the leaves, 

or on some visco-elastic compound or wire-wool material packed in between. 

Except when viscous dashpots are purposely introduced, the only damping 

in the isolation system comes from within the mounts themselves. In the case 

of most rubbers, this damping increases only very slowly with frequency, so it 

is best represented by a HYSTERETIC DAMPER(12)(13)*,  which applies a damping  

force that is proportional to displacement, rather than velocity-jh  When used 

in place of a viscous damper, this gives a high-frequency transmissibility 

drop-off of 12 dB/octave, which is closer to observed behaviour. 

At high frequencies the mounts cease to behave as pure massless springs, 

and they start to exhibit their own resonances, thereby giving rise to increased 

force transmission. This occurs at frequencies for which the mount dimensions 

become comparable with multiples of the half wavelength of the elastic wave 

travelling through: typical machine mounts may be expected to exhibit wave 

effects at something over 200 Hz, though steel springs and large rubber blocks 

may resonate at less than 100 Hz. As a very rough guide, it is unlikely that 

these wave effects will manifest themselves at frequencies below 20 times the 

natural frequency of the mounted mass
(14)

. Although their nature is well under- 

+ [trod e_v 	To-ice, is 	act CT-phase_ frui 	ve_110 

* 	See Chapter 2, Section 2.3 
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FIG. 1.2a 	SOME TYPICAL ANTI-VIBRATION MOUNTS  

Rubber 
Metal top 
and bottom 
plates 

Rubber 

(A) Rubber mount 
(compression type) 

(B) Rubber mount 
(shear type) 

Rubber 
Fibre 
facing 
layers 

Steel leaves 
separated by 
damping mat-
erial (either 
visco-elastic 
compound or 
wire wool) 

     

(C) Rubber isolation pad (D)' Double-U leaf spring isolator 
(for vibration and SHOCK) 

FIG. 1.2b 	THE AXIAL DYNAMIC STIFFNESS RELATION FOR AN ISOLATOR  

Considering the isolator as a two-terminal component 
with generalised properties, the forces applied to 
its two ends are related to the corresponding dis-
placements by a 2 x 2 dynamic stiffness matrix: 

F1  z11 

Z1] 
Z22 

y1 

F2 
Z21 

[ 

y
2 

where the coefficients 	• - are in general complex 
and frequency dependent, 	to take account of stiff- 
ness, damping and mass. 	Also, due to reciprocity, 

stiffness k, Z11 ' Z22 = -Z12 = k. 

If this isolator is interposed between a mass m and 
a rigid support (ground), the FORCE TRANSMISSIBILITY 
is given by the following expression: 

T 	

-Z21  

F 1(Z11 - 612m) 

Y 	Z21 = Z12. For the special case of a PURE SPRING of 

Ground 	transmitted force) 
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stood, they may not in general be predicted from first principles with any 

great accuracy. The classical theory of longitudinal wave transmission in 

"long" rods yields only approximate answers, since most anti-vibration mounts 

have comparable longitudinal and lateral dimensions and are of complex shape. 

Improved results are yielded by the Love theory
(15)

, but this still cannot 

take account of complex shapes, and the finite element method probably offers 

the only hope of reliable predictions
*
. Snowdon has produced transmissibility 

curves using both of the approximate theories
(17)

. 

If high-frequency transmissibility predictions are important, better 

results may be obtained by using measured frequency response data for the iso-

lator. Referring to Fig. 1.2b, the generalised stiffness characteristics of 

any isolator may be expressed in terms of a 2 x 2 dynamic stiffness matrix
(18)

2 

where each element Z.. is complex (to allow for phase differences between force 

and displacement) and frequency-dependent. This takes account of distributed 

mass, stiffness and damping and it may be obtained from "impedance" measure-

ments+  on an existing isolator. By digitising this measured information at 

every frequency of interest, it is possible to then compute the force trans-

missibility from the expression given in the figure. 

This exercise has been carried out by the Author in the case of a double-U 

leaf spring isolator called an X mount, for which the measured dynamic stiff-

ness data are given in Fig. 1.3. It is clearly seen that this particular 

isolator has a stiffness which almost doubles between 10 and 100 Hz, after 

which some very heavily damped resonances of the steel leaves completely trans-

form the behaviour, and by 500 Hz it looks like a fairly constant mass to what-

ever it supports. At low frequencies, the phase angle gives a direct measure 

of the damping in the spring, since the LOSS FACTOR is equal to the tangent 

* Reference (16) shows some interesting finite element predictions of the res-
ponse of a short cylindrical mass obtained using axi-symmetric elements. 
Good agreement has been obtained with measurements, and although this mass 
was made of steel, one may expect comparable accuracy when using rubber. 

+ See Part 2, Chapter 3 for more information on the measurement of mobility 
and impedance. 
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of this angle (tan 35°  = 0.7). These data were obtained by mounting the iso-

lator on top of a large steel mass (135 Kg, and therefore an effectively rigid 

support) and measuring the forces F1  and -F2  (= FT) together with the displa-

cement y1, as shown in Fig. 1.4. Since a digital measuring system was used, 

the required information was punched out automatically onto paper tape ready 

for predicting the transmissibility. A 10 Kg steel mass was then attached 

to the top of the isolator, and the transmissibility was measured over the 

frequency range 1 to 2000 Hz. These measurements are shown in Fig. 1.4, to-

gether with the transmissibility predicted by theoretically combining the mass 

with the measured isolator properties, and it is seen that very good agreement 

has been obtained. In addition to demonstrating the feasibility of using 

measured mount data to improve predictions, this particular example shows that 

certain types of isolator obey neither a viscous nor a hysteretic damping law 

(though a similar exercise carried out with a rubber mount would undoubtedly 

yield closer agreement with the hysteretic model). 

In the same way that a real isolator ceases to be a pure spring at high 

frequencies, the machine and the receiver structure also "break up" and exhibit 

resonant behaviour. To put this in perspective, a stiff steel structure com-

prising beams and plates may be expected to break up around 50 to 100 Hz, while 

an engine will probably remain masslike up to several hundred Hz, and a small 

block of steel (eg. 10 cm cube) up to several thousand Hz. This break-up will 

generally impair the performance of the isolation system, though it can some-

times have a beneficial effect at higher frequencies. A good example of this 

is provided in Fig. 1.5. This is based on the study of a real engine which 

was mounted on a stiff steel structure using conventional rubber mounts. (Type 

A in Fig. 1.2). An important feature of this design is the engine feet, which 

were bolted onto the body of the engine and were necessary to give a stable 

mounting configuration. Running tests on this machine showed a strong vibration 

transmission to the receiver structure at around 200 Hz. This was known to be 



Rubber mounts 
(compression type) Steel beam 

structure 

(excitation) 

Cantilever feet 

20 

0 

—20 

-40 

-so 

24 

FIG. 1.5 	EFFECTIVENESS OF RUBBER MOUNTS UNDER A REAL MACHINE  
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somewhere near one of the principal excitation frequencies resulting from out-

of-balance, but it was not clear whether system resonances were also contribu-

ting towards this strong transmission, so it was decided to model the system 

in order to examine its transmissibility properties. 

Attention was first focused on the machine, and impedance measurements 

on one foot soon revealed a flapping resonance at 269 Hz, followed by approx-

imately spring-like behaviour up to 5000 Hz. Although other resonances were 

observed, they were very heavily damped (possibly due to friction in the bolted 

joint), so they were quite insignificant and could be ignored. Thus, the 

machine could be modelled as a mass-spring-mass system, with the lower spring 

and mass representing the foot. Next, it was necessary to examine the mount, 

and it was particularly important to recognise that this comprised upper and 

lower metal plates in addition to the rubber spring element. Thus, it was 
represented LnilLaily as a mass-sprLn9-moss system, and the rubber eLemen.b was sub-
sequently sub-divided into a series of masses and springs in order to allow 

approximately for wave effects. The steel receiver structure was very stiff, 

even up in II  resonant region (1st resonance around 70 Hz), so it could pro-

bably have been assumed rigid. Nevertheless, its measured dynamic stiffness 

properties were digitised in small frequency steps over the full range of 

interest (just as for the X mount considered previously). 

The machine, isolator and foundation were then coupled together theore-

tically to obtain the transmissibility curve Tm  shown in Fig. 1.5. This 

clearly shows the basic bouncing resonance of the machine on its mounts at 4 Hz, 

followed by the characteristic drop-off at 12 dB/octave. Then at 190 Hz we 

find a fairly strong resonance which is associated with flapping of the engine 

foot, the frequency having been reduced from the original 269 Hz by the loading 

effect of the upper plate of the mount. This obviously combined with the nearby 

excitation component to yield the strong vibration transmission observed in the 

engine-running tests, but an improvement could be obtained by adding extra mass at 

the tip of the foot in order to further reduce its resonant frequency. The re-

maining resonances result from wave effects in the mounts, and if it were not for 
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these the transmissibility would drop off much more rapidly after the foot 

resonance. This curve is fairly typical of most single-stage isolation systems, 

in that break-up of the components normally starts to show itself at a fre-

quency somewhere between 10 and 100 times the fundamental bouncing resonance. 

However, after its initially detrimental effect, the single resonance of the 

engine foot has proved very beneficial, since it has led to reduced high-

frequency transmissibility; but this benefit would not have been obtained if 

the foot had exhibited significant higher resonances
(14) 

Although the transmissibility Tm  shows the attenuation in force through 

the complete system,it gives no information on the improvement that has been 

obtained by introducing the mounts beneath the machine, so it is useful to 

also consider the transmissibility ;103  obtained with a directly mounted 

machine (ie. mounts effectively set to infinite stiffness). If we now form 

the ratio T
mco 

 /T
m  (by simple subtraction on the log-log plot), we obtain the 

ISOLATION EFFECTIVENESS 
(5)(8)(17). 

 It is clearly seen that the effective-

ness of the isolator in the present system fluctuates very considerably with 

frequency, and around 200 Hz, it has so little effect that it could
b 
A  removed. 

In contrast, the classical model of Fig. 1.1b predicts an isolator effective-

ness which is the reciprocal of the transmissibility, so it increases steadily 

with frequency. 

This example has demonstrated the important effect that engine feet can 

have on the response; in particular, if the feet can be designed to have only 

one major resonance, they may be. cili-toavt;c0-1(y-cteek)44-fied 4WA01 	-605,0 044- ce 

an extra stage of isolation. However, the decoupling frequency must be fixed 

by the designer, and the feet should be suitably damped (so they should not 

be integral with the body of the engine, but should be bolted in place in 

order to obtain some damping contribution from the joint). If the foot is 

multi-resonant, like the mounts, then the performance will definitely be 

impaired(14). 
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The receiver structure in this example was so stiff as to have very 

little effect on the transmissibility, but it is sometimes necessary to inter-

pose a slightly more flexible FOUNDATION STRUCTURE or SEATING between the 

mounts and the receiver structure. This is often only necessary because the 

mount positions on the machine do not line up with suitable attachment points 

on the receiver, and it is quite common in the case of shipboard machinery. 

Three possible examples are shown below: 

Beam seating 	 Cantilever seating 
(not a tank topl) 
	

SEATINGS 
	

(not recommended!) 

One may be tempted to make use of existing support structures, such as a fuel 

tank, but this should be avoided if at all possible, since they are generally 

fairly flexible and lightly damped, with many natural frequencies even at mode-

rately low frequencies (<50 Hz). Hence, it is very likely that resonances 

will be excited, and large plates make perfect sound radiators in addition to 

transmitting vibration to the receiver structure. Therefore, seating struc-

tures should be carefully designed and should preferably be constructed from 

beams rather than plates, since beams possess a far smaller sound radiating 

surface and they do not generally resonate at such low frequencies. Also, from 

a purely analytical point of view, it is far easier to predict the high-

frequency response of beam-like structures, so it is feasible to design such 

structures for optimum vibration isolation. 

A complete analysis which takes into account the resonant behaviour of 

the machine, isolators and foundation structure is necessarily fairly complex, 

but it can yield much more realistic results than the classical model, and it 

can take into account multi-directional vibration transmission. Snowdon(14)(19) 
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has analysed a number of systems taking these factors into account, but he has 

treated each system separately, and he has not employed directly measured data 

for any of the components. Lachlan
(20) 

has analysed a model system using a 

modal energy approach, but this is only approximate, and the use of modal para-

meters tends to cloud the basic physical aspects of the system. What is ob-

viously required is a more general analysis procedure, which can be readily 

used by the designer to suit his own requirements, and this is provided by the 

"Building Block Approach"(21)(22).  This permits one to break one's system 

down into a number of subsystems or building blocks, and then to obtain the 

dynamic characteristics of each by whichever method is most convenient (ie. 

"exact" theory, approximate theory, or measurements), so it is possible to 

combine data from various soruces. The frequency response analysis of struc-

tures using this approach is discussed in Chapter 2, where details are also 

given of a general-purpose computer program developed by the Author to permit 

the solution of a wide variety of problems. 

1.3 TWO-STAGE ISOLATION SYSTEMS  

We have so far confined our attention to the theoretical analysis and 

the observed behaviour of single-stage mounting systems, and we have not yet 

looked at the basic physical aspects of vibration isolation. These are best 

explained by looking at the flow of force through the system: 

Force flow through isolation systems  
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Diagram (a) above shows the basic single-stage isolation system (without damp-

ing) and it gives a much clearer picture of the force flow than does the class-

ical diagram in Fig.1.1b. It is seen that the input force F divides between 

the mass m and the spring k, and the proportion taken by each depends upon 

their IMPEDANCES*, Zm  = jwm and Zk jw  
=---, which are shown plotted against the 

circular frequency w. At frequencies below w
N
, the impedance of the spring is 

dominant, so this takes most of the force and transmits it straight to ground; 

above w
N 

the impedance of the mass becomes dominant, so this absorbs more and 

more of the force as the frequency is increased, thereby leaving less to go 

through the spring. Obviously, if more mass elements can be introduced into 

a system, then even less force will get through at high frequencies, so a 

logical next step is the two-stage system shown in diagram (b). The force 

flow through this system may also be examined graphically, and the details are 

given by Salter
(23)

. This procedure is very useful for gaining a clear phy-

sical insight into the effect of various parameters on the isolation. 

Thus, if high-frequency vibrations are of particular importance, it is 

better to use a two-stage mounting system, which is shown in its more classical 

form in Fig. 1.6a. Although this introduces a second vertical resonance at 

fairly low frequencies, it gives very much improved high-frequency attenuation 

due to the action of the intermediate mass, so the high-frequency drop-off in 

transmissibility becomes 24 dB/octave (= 80dB/decade). This system has been 

Note that one could equally well employ DYNAMIC STIFFNESS (-w2m for mass and 
k for spring). Dynamic stiffness is the complex ratio of force to displace-
ment, and its reciprocal is RECEPTANCE: These are generally more convenient 
for calculation purposes, since the complex operator j (or i) is only intro-
duced when damping is considered, besides which displacement is normally bet-
ter understood by mechanical engineers. IMPEDANCE is the complex ratio of 
force to velocity, and its reciprocal is MOBILITY: These are normally more 
convenient when considering log-log frequency response plots, since they yield 
clearly identifiable stiffness and mass-like behaviour (lines with slopes of 
-1 and +1 respectively) and symmetric resonance curves. In addition, for 
complex structures the impedance and mobility curves fluctuate about an approx-
imately horizontal mean line, so the overall dynamic range is less than for 
dynamic stiffness or receptance and it is possible to use larger dB divisions 
on the graph paper (thereby retaining more detail on the curve). 
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FIG. 1.6 	TWO-STAGE ISOLATION SYSTEM  
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examined in detail by Snowdon
(17)

, and some practical examples of its use are 

given in References (8) and (24): the second of these relates to the mounting 

of shipboard diesel generators on an extensive intermediate mass, or RAFT. 

Unfortunately, the ideal high-frequency drop-off of 24 dB/octave can 

rarely be obtained in practice, since the intermediate mass used in machine 

mounting systems is usually of such dimensions that its first resonance inva-

riably occurs somewhere between 50 and 200 Hz. This is unavoidable, but these 

resonances can be controlled by the application of a suitable damping treatment. 

The resiliently-mounted intermediate mass is called a foundation struc-

ture or seating, like the directly-mounted intermediate structure discussed 

in Section 1.2, and just as before, the use of a plate construction should be 

avoided if at all possible. The use of beams is recommended, and these should 

preferably be of either box or I section in order to obtain as high a stiff-

ness/weight ratio as possible, thereby delaying the onset of break-up. 

Three possible beam configurations are shown Fig. 1.6b. System A is the 

simplest, but there may be a tendency for the machine to sway at quite low 

frequencies, since its centre of gravity is so much above that of the cross 

beams. Systems B and C are to be preferred, since they give better low fre-

quency stability, and obviously, C is easier to construct since it still uses 

straight beams. The two beams may be kept completely separate or they may be 

tied together using other beams at right angles, but it should be remembered 

that the introduction of these other beams must introduce othex resonances, 

and most especially a low frequency torsional mode of the resulting frame. 

These resonances may be controlled using constrained layer damping, as will be 

demonstrated further below. 

When designing such a system, the second vertical natural frequency should 

be carefully chosen so as to avoid the running speed of the machine. At the 

same time, even though it may be theoretically desirable to reduce this frequency 

as much as possible, one should take care not to make the system laterally 
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unstable. Typically, this second frequency will be somewhere between 4 and 

10 times that of the machine on its primary mounts, and with this sort of 

separation, the frequencies of the compound system differ very little from 

11i? and 	 ii& respectively. This implies that the intermediate mass Looks 

almost like a rigid support for the primary mounts at low frequencies;-  and 

this may very well continue to be the case when the seating breaks up, provi-

ded that the seating impedance is still considerably greater than the mount 

impedance (say 10 times or 20 dB greater). If this is so, it is possible to 

analyse the seating separately from the machine, and the total transmissibi-

lity is then given by the product of the seating transmissibility and the 

machine/primary-mount transmissibility, where the latter is obtained assuming 

a rigid support. 

The analysis of this type of floating seating is relatively straight- 

forward with the general-purpose computer program described in Chapter 2, so 

a detailed study was made of one particular system in order to formulate some 

general design rules
(25)

. This is shown in Fig. 1.7, and it comprises a stiff 

undamped box-section beam
* 
(to give a high fundamental bending frequency) on 

heavily damped flexible supports. Sitting over the top of the beam are some 

mounting plates to which the primary mounts may be attached, so these add some 

mass loading. The mounting plate mass and moment of inertia are 22.508 Kg 

and 0.23277 Kg-m
2 
respectively, and the beam is a 152 mm square box with 9.5 mm 

walls. As the X mount considered in Section 1.2 is a commercially available 

unit incorporating high damping, it was decided to use the existing measured 

data in order to introduce this type of mount under the beam tips. However, 

the existing data were for a 10 Kg mount, whilst the present seating was to be 

cubic Srl-ttress 
capable of supporting 1000 Kg per beam, so the measured 

A 
data were scaled up by 

a factor of 50 in order to obtain approximate data for a 500 Kg mount. 

* This was represented using a Timoshenko beam model, which includes the effects 
of shear stiffness and rotary inertia and is therefore more suitable for the 
present stiff beam. 

Except near the resonance of the intermediate mass on the secondary mounts. 
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FIG. 1.7 
	FLOATING BEAM SEATING (Box section beam on X mounts) 
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Loss factor = 0.1/0.6 
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This floating beam might represent one of the cross or longitudinal 

beams in one the systems shown in Fig. 1.6b, and it could be analysed indepen-

dently of any machine due to its high input impedance relative to that of the 

primary mounts. The beam length and mounting plate positions were chosen to 

be the same as those used in an existing engine mounting system, but it is now 

instructive to look at Fig. 1.8, which shows the force transmissibility obtained 

with the mounting plate in various positions. It is seen that, quite by chance, 

the standard configuration gives an almost optimum response, since it yields a 

deep trough at 420 Hz due to a cancellation effect between the first and second 

symmetric modes of the beam. This phenomenon has been examined by Snowdon(17)(26) 

who has shown that it can be particularly effective in the case of a long machine 

with four mounts per side, that is supported by a floating foundation, since the 

forces then act together to completely eliminate all traces of the second beam 

mode
(19)

. As the present system is symmetric, one may consider just half the 

beam as a sprung-sliding beam with a single force input: then, the cancella-

tion results from the beam tip response in mode 1 being equal and opposite to 

that in mode 2 (so that there is no compression of the secondary mount). By 

considering a two-term receptance series, it may be shown that cancellation is 

possible at any frequency wl between the two resonancesil
l' and 112 

provided 

, ,. 	2 	2 that the excitation is applied at such a position that w
F / W2)  = (w

c - .'l )/ 
2 	2 * 

(112  - c) , where 0
F  
(i)  represents the value of the beam characteristic func- 

tion for mode i at position F. Thus, using either standard tables (as have 

been compiled by Bishop and Johnson(13) for Bernoulli-Euler beams) or specially 

computed mode shapes, it is possible to determine the excitation position for 

cancellation at a specific frequency. 

The heavy damping in the X mounts is seen to be very effective in control-

ling both the bouncing resonance and the 1st flexural resonance of the beam, 

but it has less effect on the 2nd beam resonance. Since this has a very 

Note that this ratio must be positive. 
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detrimental effect on the high-frequency transmissibility, it would be helpful 

if it could be suppressed, so it was decided to investigate the possibility 

of achieving this by applying damping to the beam. The results are shown in 

Fig. 1.9, and it should be noted that the beam has been damped over sections 

of varying length, rather than only over the complete length. The damping has 

been assumed uniform in the section and has been introduced by using a Timoshenko 

beam with complex elastic and shear moduli. The results for a section loss 

factor of 0.1 clearly show that very little improvement is obtained, and only 

with a loss factor of 1.0 is the peak really cut down. Further calculations (25) 

were carried out using multi-layer beam finite elements to apply a constrained 

damping layer to the existing beam, and these have shown that no add-on treat-

ment (as opposed to an integrally damped sandwich) can give much better results 

than the 0.1 section loss factor. Another important point to note from these 

results is that it is not always cost-effective to damp a beam or plate over 

its entire surface; in the present case, the drop in the resonant peak due to 

the application of damping over only 10 % of the length has not been matched 

by a similar drop when the treatment was applied to the remaining 90 %. This 

concurs with some results obtained by Plunkett
(27)

: he has found that for a 

beam with damped supports, very little improvement is obtained by extending the 

beam damping beyond the centre section. Nokes and Nelson(28) and Grootenhuis
(29) 

have also observed an optimum coverage for beams with other end conditons, 

whereby full coverage does not yield the highest damping. 

As the application of damping to the beam was ineffective in controlling 

the troublesome resonance, it was necessary to try another remedy. This was 

to effectively introduce another stage at high frequencies by placing stiff 

pads under the mounting plates so that they would uncouple at a pre-determined 

frequency. However, since this would introduce a bouncing resonance of the 

mounting plates, it was decided to fix this resonance at the same frequency 
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as the transmissibility trough
* 

The results are shown in Fig. 1.10, and a 

tremendous improvement is immediately seen, especially when damping is also 

applied over the centre section of the beam, between the mounting plates 

(0.449 coverage). The damping in the decoupling pads affects the depth of 

the trough, but even a loss factor of 0.1 is sufficient to prevent any signi-

ficant peak from showing, and a higher loss factor is easily obtainable in 

practice. The required stiffness and damping could be obtained from four pads 

of Velbex PVC
+
, each approximately 25 x 25x4.5 mm (Loss factor = 0.66), so 

this provides a very practicable and cheap solution to the problem. 

The decoupling of a fairly compact mass in this way is a very effective 

means of improving high-frequency transmissibility, and it is similar to the 

very fortuitous decoupling of the engine foot in the example given in Fig. 1.5. 

As a small mass does not break up until the frequency reaches several thousand 

Hz, it can remain effective long after the basic intermediate mass of the 

seating has broken up. Thus, the inclusion of thin stiff pads in all joints 

can prove very beneficial in applications where high frequencies are involved. 

1.4 SUMMARY  

We have examined the theoretical and practical aspects of single- and 

two-stage mounting systems, and have seen that classical vibration isolation 

theory has many limitations, especially at high frequencies. It has been 

shown that multi-directional vibration transmission should not be ignored, 

and that all the elements of any isolation system cease to behave as originally 

intended as soon as the frequency rises much above 100 Hz. The resulting 

resonances must be controlled by the application of damping, and this may often 

be quite effective when only applied to small areas of the structure. At the 

The chosen decoupling frequency corresponds to the 450 Hz trough yielded by 
the undamped system, rather than to the 420 Hz trough of the damped system. 

+ See Part 3, Chapter 12 
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same time, efforts should be made to introduce further stages of isolation at 

high frequencies, to counteract the break-up of the major structural elements. 

This is possible by introducing stiff resilient elements underneath the more 

compact "massive" elements of the system. 

The analysis may be carried out using general-purpose computer programs 

which permit one to "build" and "test" a system at the design stage. It has 

also been shown that more accurate theoretical predictions are possible if 

measured impedance data can be used to describe those elements of the system 

that are not amenable to reliable theoretical treatment. 

We are now in a position to proceed to Chapter 2, where we shall examine 

the aforementioned programs which permit the frequency response analysis of a 

wide variety of damped complex structures; particular emphasis being given to 

efficient methods of introducing both linear damping and non-linear Coulomb 

friction damping. Then in Part 2 we shall look at the problem of measuring 

multi-directional mobility data, since this enables us ultimately to determine 

the full multi-directional vibration transmission into receiver structures 

and components which cannot at present be analysed. In Part 3 we shall consi-

der the finite element analysis of multi-layer damped beams, thereby enabling 

us to include realistic distributed damping in the components of the isolation 

system. Finally, in Part 4 we shall look at the full analysis of a heavily 

damped machinery seating which was designed to provide efficient multi-direc-

tional isolation up to high frequencies. The design and analysis of this 

system takes account of all the factors discussed in this Introduction and gives 

some idea of the present analytical capabilities with regard to isolation 

system design. 

Two publications based on this work are included at the end of Volume II. 

These relate to multi-directional measurements and the seating analysis, and 

they provide a useful summary of much of the work described in Parts 2 and 4. 
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CHAPTER 2  

THE FREQUENCY RESPONSE ANALYSIS OF DAMPED COMPLEX STRUCTURES  

2.1 INTRODUCTION TO THE BUILDING BLOCK APPROACH 

The rapid development of the digital computer during the last few years 

has permitted the solution of many hitherto insoluble problems. However, a 

study of the resulting literature soon reveals that a large number of people 

have analysed many similar and highly idealised systems by a wide variety of 

different methods. 

Many papers exist on the vibration of multi-degree of freedom systems of 

the spring-mass type, or more often its torsional equivalent. In addition, con-

siderable emphasis has been placed on the flexural vibration of beams; generally 

of the Bernoulli-Euler type, with standard boundary conditions such as pinned-

pinned, clamped-free, etc. Problems examined include the response of non-uniform 

beams continuous over one or more supports, two and three dimensional frames 

built up from beams, and beams with attached masses, springs and dampers. Other 

papers have dealt with the vibration of plates and shells, and the application 

of constrained layer damping to these, as well as to beams. 

Many of these problems have been solved from first principles, by deriving 

the governing differential equation(s) and imposing the required boundary condi-

tions, and the computer has only been used at the final stage to solve the resul-

ting algebraic or transcendental equation(s) for the natural frequencies or the 

forced response. This approach is much too restricted, since individual problems 

are solved in isolation from one another. What is required is a more general 

approach, which is readily applicable to the analysis of any system built up from 

different types of component. A very important step in this direction has been 

the development of the "finite element" method(30)(31)*, which has facilitated 

the analysis of some extremely complex structures, involving plates, shells, 

beams, etc. However, there are still some components which defy accurate analysis 

* Note that References for Chapters 1 and 2 are listed on page 75. 
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and others for which this method does not give the most direct solution. A 

more general approach is to divide the structure or system into a number of 

subsystems which may be individually analysed for their frequency response 

properties by whichever method is most convenient, and whenever analysis is 

impossible, the data may be measured on an actual subsystem or on a scaled-

down model. These subsystem data may then be combined to give the response 

properties of the assembled system. This technique is known as the "building 

block" approach
(21)(22)(3t 

 to structural dynamics, and it is particularly 

attractive since it parallels the design process where major structural com-

ponents, or substructures, are often designed by different engineering groups 

and then built up into an assembly. 

There are basically two ways of determining total system behaviour from 

subsystem dynamic properties. The first of these is a direct coupling pro-

cedure which takes the subsystem frequency response data and builds a set of 

linear equations describing the total system response. With this approach 

the building process and the solution of the equations for the system response 

is carried out afresh at each frequency. The "dynamic stiffness coupling" 

technique
(18)(33)(34) 

falls into this category, since the subsystem data are 

set up as dynamic stiffness matrices and these are then combined to form a 

system dynamic stiffness relation which one solves for the forced response. 

Alternative techniques are "receptance coupling"
(35)(36) 

and the "general 

impedance method" used by Klosterman
(21)(32)(37)(38). 

 The latter is slightly 

more general in that one may mix receptance and dynamic stiffness data when 

building the system matrix. However, it does have the disadvantage that the 

system matrix is larger than that arising with the dynamic stiffness method. 

The second approach to determining system response is that of "component 

mode synthesis,(22)(32)(37)(39) in which one starts either with subsystem 

modal data or with the equivalent mass and stiffness matrices and combines 
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these in such a way as to obtain the natural frequencies and mode shapes of 

the full assembly. The forced response is then obtained by summing the 

responses in the various modes. This is a very powerful approach, but it is 

slightly less general than any of the direct coupling techniques, since one 

cannot utilise directly any response data obtained from an "exact" analysis 

or from measurements (eg. as for anti-vibration mounts with frequency-dependent 

stiffness and damping). 

Bearing in mind the need to combine data from various sources, it was 

decided to make use of a direct coupling procedure in the present work. Also, 

in view of its inherent simplicity and the saving in computer time associated 

with a smaller system matrix it was decided to use the "dynamic stiffness 

coupling" technique*. Accordingly, a Fortran computer program called COUPLE1 

was developed to provide the means for applying the building block approach 

to small-scale problems, where the number of coupling co-ordinates does not 

exceed 25 for damped systems, or 50 for undamped systems. The storage require-

ments of this program are small and it will run on the Instant Turnround compu-

ting facility at Imperial College (Batch mode self-service facility using 

CDC 6400 or Cyber 7314 computer, Core storage 	2457610  words, Central processor 

time 	16 secs). An enlarged version of the program (COUPLE1/100) was also 

produced to cope with the analysis of the 50 co-ordinate damped machinery 

foundation structure described in Part 4, but at the present time this is not 

so highly developed as the "standard" version (COUPLE1/50). 

The complete program is retained on file (magnetic disc), and it consists 

of a main block of routines which perform the coupling, and of a library of 

special routines which generate the response data for certain standard types 

of component. The existing library of special routines caters for spring-mass 

* All the work described in this report is based either on dynamic stiffness 
or impedance coupling (depending on whether the response is displacement 
or velocity), but one example is given in Chapter 6 (Part 2) in which 
straightforward impedance coupling is compared with the general impedance 
method. 
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systems, Timoshenko and Bernoulli-Euler beams (both damped and undamped, and 

including torsional and axial stiffness for frame analysis), symmetrical S-

and 5-layer sandwich beams, and response data stored on file from a previous 

analysis of a sub-assembly (or from impedance measurements on an existing 

component). However, it is also possible for the user to incorporate his own 

subsystem routines, so the program is very general in that it can take sub-

system data from virtually any source. Once the user has loaded those 

routines which are relevant to his problem, the main program couples together 

the subsystems and calculates the forced response
* 

of the assembly. 

The details of how the program works are given in Section 2.2, and full 

user instructions may be found in a comprehensive manual
(40)4

'. The latter 

is in three parts, which deal respectively with the main coupling program, 

the special subsystem routines, and a selection of worked examples. 

* The frequency is incremented either linearly or logarithmically and both 
motions and transmitted forces are computed. The program does not determine 
natural frequencies and mode shapes, but this facility could easily be 
introduced by using a systematic search procedure to detect the zeroes of 
the determinant of the system matrix. 

+ Note that the manual dated May 1975 does not contain the instructions for 
running the program completely from file, since at that time it was still 
necessary to retain certain routines on cards. However, the instructions 
given in the manual are not invalidated by the later modifications. 
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2.2 THE DYNAMIC STIFFNESS COUPLING PROGRAM "COUPLE1"  

In the Introduction we briefly considered the very powerful technique of 

system vibration analysis known as the "building block" approach. Now, we 

shall look in detail at the way in which it is applied using the computer 

program COUPLE1 . 

The first step in applying the building block approach is to divide the 

system into a number of subsystems which may be individually analysed for their 

frequency response properties. The specific information sought from each sub-

system analysis is the frequency response data+  relating to all points of 

interest on the subsystem, and especially to the points where it is coupled to 

other subsystems. Depending upon the complexity of the component, these data 

may be obtained either by exact analysis, or by an approximate technique such 

as the finite element method, or by measurement. The second step is to combine 

the subsystem response data in such a way as to obtain the response of the 

assembled system. This coupling may be carried out in various ways, but the 

method employed in the program COUPLET is the "dynamic stiffness coupling" 

technique
(18)(33) 

The term "stiffness" is well understood as expressing the relationship 

between force and deflection under static loading conditions, and the term 

"dynamic stiffness" is a simple extension of this idea, expressing the rela-

tionship between a harmonic loading and the corresponding vibratory displace-

ment at any specified frequency. In the case of components which are acted 

upon by a number of forces, the dynamic stiffness is expressed in terms of a 

matrix which relates the vector of applied forces to the corresponding vector 

of displacements. 

* The program structure and a detailed flow chart are given in Appendix I. 
Note that this flow chart corresponds to the program as it was when the 
manual (40) was written, and it does not include the recent modifications 
for running the complete program from file. These modifications affect sub-
routine SUBSYS, which calls up the routines for generating the subsystem 
data. Also note that the program has provision for up 12 subsystems. 

+ The frequency response data may be in any one of a number of forms, which are 
all quite simply related. These are: Dynamic stiffness, Receptance, Impe-
dance, Mobility, Apparent mass, and Inertiance. They are defined in 
Chapter 3, Section 3,2. 
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The dynamic stiffness coupling technique consists of collecting the 

dynamic stiffness matrices for the subsystems at some specified frequency, 

and combining these in such a way as to form the dynamic stiffness matrix for 

the assembled system. One may then obtain the response of the system to any 

applied forces by solving a set of equations. 

It was decided to use dynamic stiffness rather than one of the other 

forms of frequency response because stiffness and displacement are well under-

stood and widely used in engineering analysis, and especially in the matrix 

analysis of vibration. Whether one is dealing with simple spring-mass systems, 

or the finite element analysis of large structures, one almost invariably uses, 

the "matrix displacement" approach (ie. a stiffness matrix relating force and 

displacement). If the system is at all complex, it certainly provides the 

most direct means of coupling the components together(41). However, certain 

data will almost invariably be in receptance or mobility form, and these must 

first be converted to dynamic stiffness before the coupling is carried out. 

The capabilities of the program and the way in which it works are best 

illustrated with reference to an example, so we shall consider the system 

shown in Fig. 2.1a. This comprises a resiliently mounted machine which is 

sitting on top of a foundation structure in the form of a symmetrical portal 

frame. The pillars of the frame are only quasi-encastd, (ie. partially built-

in) there being some rotational flexibility at the support. When the machine 

is running, forces are transmitted through the frame to the ground, thereby 

giving rise to a disturbance at some point D which is remote from the machine. 

This might be a mounting point for some sensitive instrument, or it might be 

a point on the wall or floor of a room where people are working. Alternatively, 

it could very well be the sound pressure level within a room or in the water 

outside a ship. 
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The very first stage in the analysis is to look for any symmetry in the 

system, as this can considerably reduce the amount of work involved in prepa-

ring the data, besides saving valuable computer time. However, care must be 

taken to apply the correct boundary conditions to any part of the system which 

is cut by the line of symmetry, so that the half-system which is being analysed 

behaves just as if the other half were still in position. As is seen from 

Fig. 2.1b, the present system may be cut down the middle and analysed in terms 

of 5 subsystems. These are a grounded spring, 3 free-free Timoshenko beams, 

and a free-free sprung mass. The reason why the beams are all considered in 

a free-free state is that this preserves generality, since it is only necessary 

to consider one type of beam. The boundary conditions may easily be applied 

once all the subsystems have been coupled together, by making use of the co-

ordinate fixing
* 

facility incorporated in the program. Thus, the pinned joint 

at the foot of the pillar is introduced by setting the displacements q1  and q2  

to zero, and the sliding end+  condition imposed on the cross beam by the sym-

metry is obtained by making the displacements q10  and q12  zero.  

The block diagram in Fig.2.lc represents the system as the coupling 

program sees it. The dynamic stiffness properties of the "black boxes" 

representing the 5 subsystems must be supplied by the user. The same thing 

applies for the transfer admittance data which relate the response at the 

remote point D to the forces transmitted to ground via the pin joint at C. 

For each subsystem one may either use one of the standard subroutines such as 

exist for spring-mass systems, beams, etc., or one may write a special set of 

Fortran instructions for generating the dynamic stiffness data. The standard 

routines must be loaded from file as and when they are required, while any 

user-inserted instructions must be formed into a subsystem routine called 

SUBSI, where I is the subsystem number (this routine may either be left on 

* This "blocks" the required co-ordinates by setting their displacements to zero. 

+ Note that this must be changed to a pinned end if the machine is excited by 
a couple, instead of a vertical force. The effective mass of the machine 
will also be different. 
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cards or it may be put on file). Such an arrangement is very flexible, since 

it is possible to incorporate virtually any type of subsystem data. The 

coupling program is simply given a letter code for each subsystem, to indicate 

whether it should call one of the standard routines (eg. A for a spring-mass 

system, C for a damped Timoshenko beam, etc.), or whether it should call SUBSI 

(indicated by a blank for the letter code). Thus, at each frequency the pro-

gram proceeds through the set of subsystems, collecting the dynamic stiffness 

data from the various sources and building the system matrix. The resulting 

equations are then solved for motion responses and transmitted forces, and 

the transfer response routine SUBTRAN is called to generate the transfer admit-

tance data from which the response at the remote point is computed. At the 

present time this routine must be built around a set of user-inserted instruc-

tions, in a similar manner to the subsystem routine SUBSI. 

In the present example, the required subsystem response data are the 5 

dynamic stiffness matrices given in Fig. 2.2. These are frequency-dependent 

matrices which relate the forces acting on the subsystem to the corresponding 

displacements, and in the case of subsystems 2 to 5 they are complex in order 

to take account of the damping
*
. While the matrices for the grounded spring 

and the sprung mass may be formed quite simply from the relevant mass, stiff-

ness and damping coefficients, those for the three beam sections are much 

more complicated. Using the "exact" solution for the flexural and axial 

vibrations of a Timoshenko beam, the elements of the dynamic stiffness matrix 

are given by complicated expressions containing both trigonometric and 

* See Section 2.3 for a full discussion of damping, including how it may be 
incorporated in an analysis. Also note that the dynamic stiffness matrix 
for any passive linear subsystem is always symmetric, even if there is 
damping present. However, if a subsystem contains a rotor which is turning 
at a constant angular velocity the gyroscopic effect may cause the dynamic 
stiffness matrix to be non-symmetric (38)(42)(43). This is no problem as 
far as COUPLE1 is concerned, since the solution procedure does not require 
symmetric matrices. 
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FIG.2.2 SUBSYSTEM DYNAMIC STIFFNESS MATRICES FOR MACHINE ON PORTAL FRAME  
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hyperbolic functions
(44)(45)-f 

 A standard subroutine called ZFLAX2DX is 

available for setting up the exact dynamic stiffness matrix for a damped 

Timoshenko beam, and similarly, a subroutine called ZMAK2x  is available for 

dealing with spring-mass systems. Hence, the user need only load these two 

routines from file and introduce the letter codes A,C,C,C,A on the relevant 

data card, besides punching a few cards giving the beam parameters, spring 

stiffnesses, etc. 

The coupling program increments the frequency in either linear or loga-

rithmic steps over a specified range, and at each frequency it calls up the 

relevant subroutines to obtain the subsystem dynamic stiffness matrices for 

that particular frequency. These subsystem matrices are added together in 

such a way as to satisfy the laws of force equilibrium and displacement com-

patibility at the coupling co-ordinates, and the result is the system dynamic 

stiffness matrix shown in Fig. 2.3. At this stage the co-ordinates 1, 2, 10 

and 12 are still free, so the matrix [Z 
sys

] and the vector of applied forces {Q} 

are both modified as shown in Fig. 2.4a in order to set the displacements ql, q2, 

q10 and q12 
 to zero. The forces Q3 to Q11 

listed in the force vector are only 

retained to preserve generality, and in fact the only non-zero force in the 

present problem is Q13  = 0.5 N 	. 

+ Both papers give the dynamic stlfness matrix for a Timoshenko beam, and 
each contains a different error!" Reference (45) is particularly recommended, 
since it gives an extremely good introduction to the analysis of beam 
systems. 

x Details of the special subroutines ZFLAX2D and ZMAK2 are given in Part 2 of 
Reference (40). 

* Although we are here restricting our attention to a force input, it should 
be mentioned that it is also possible to apply a motion input. This is not 
incorporated as a special feature, but it is easily arranged by connecting 
a very large impedance to each excitation point and then applying a corres-
pondingly large force. As long as this "source impedance" is much greater 
than the system impedance at the same point, the response is governed by the 
former. Therefore, for constant displacement one must attach a large groun-
ded spring, while for velocity or acceleration one must use a damper or a 
mass. This technique has been used for applying a base excitation to two 
frictionally damped systems analysed in Appendix II. 
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FIG. 2.4 ,  

(a) DYNAMIC STIFFNESS MATRIX MODIFIED TO FIX CO—ORDINATES 1, 2, 10 AND 12 TO GROUND  

a 	 10 	 12. 

(b) SOLUTION OF EQUATIONS  

The 13 complex equations above may be re—written as 26 real equations, 
which may be solved using any standard method such as Gaussian elimination, 
Jordan's method, etc. 
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The 13 complex equations are actually set up as 26 real equations, as 

shown in Fig. 2.4b, and these are solved for the displacement response using 

a standard routine
*
. Besides being able to use a standard equation solver 

written for real arithmetic, there is the added advantage that when one is 

dealing with an undamped system the number of equations to be solved is only 

half what it would be if the system were damped, so the solution is much 

quicker. In addition, with the 50 x 60 main working array used in COUPLE1, 

one is able to analyse undamped systems with up to 50 co-ordinates, while 

damped systems are restricted to 25 co-ordinates+. 

The program permits the calculation of forces transmitted to ground via 

blocked co-ordinates, so the next stage in the solution is to calculate the 

forces P
G 
and P

2 transmitted to ground via co-ordihoies 1 and 2. For this,'a 1 

copy is taken of rows 1 and 2 of the original dynamic stiffness matrix before 

it is modified to fix these co-ordinates to ground. As is seen from Fig. 2.4c, 

the product of these rows and the displacement vector yields the required 

forces. 

In addition to finding forces transmitted to ground, the program can 

obtain the forces transmitted internally to a specified subsystem, so this 

facility may be used to find the couple transmitted to the rotational spring, 

and hence to ground. For this, a copy is taken of the subsystem dynamic stiff-

ness, and this is multiplied by the rotational displacement q3  to give the 

"force" P(1) (ie. the couple). 

We are now in a position to consider the transfer response, which may 

either be a function of the forces transmitted to ground or of the forces 

S. 
tranmitted to a subsystem. In the present case, it is assumed to be related 

A 

* Cern Library routine MATIN1: uses Jordan's method, which simultaneously 
yields the inverse matrix and the solution of a set of equations. 
The COUPLE1 program provides a check on the solution accuracy by forming 
the product of the inverse and the original matrix and comparing this with 
the unit matrix. 

+ These figures relate to the "standard" version of the program (COUPLE1/50). 
The enlarged version (COUPLET/100) used for the seating analysis described 
in Part 4 has a 100 x 110 main working array and is suitable for undamped 
systems with up to 100 co-ordinates and damped systems with up. to 50. 
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to the forces transmitted to ground via the pin joint at C (ie. Pi  and P2 

obtained above). Of course, to be strictly correct, the forces transmitted 

to a rigid ground do not produce any motion anywhere. However, in assuming 

the ground to be rigid we are really assuming that it is sufficiently stiff 

in comparison with the attached structure that that its exact behaviour is 

not important when calculating the response of that structure. It is seen 

from Fig. 2.4d that the transfer response is given by the product of a 1 x 2 

transfer admittance matrix and the two forces transmitted to ground. These 

transfer admittance data might be obtainable by calculation, but in general 

they are more likely to be measured quantities, which must be set up in the 

subroutine SUBTRAN according to instructions inserted by the user. 

The transfer response could equally well have been expressed in terms 

of internally transmitted forces, by finding the forces applied to subsystem 

2 via co-ordinates 1, 2 and 3. The forces acting on co-ordinates 1 and 2 are 

just equal and opposite to the forces transmitted to ground, and that acting 

on co-ordinate 3 is equal and opposite to the couple applied to the spring. 

Although in this problem the transfer response has been assumed to relate to 

some remote point, it may equally well relate to a point somewhere on the 

structure itself. For example, if one wished to know the deflection at one 

or more points up the pillar, one could set up as transfer admittance data the 

receptance expressions relating the motion at any point to the tip forces and 

couples (on co-ordinates 1, 3, 4 and 6)
*
. As there is provision for up to 6 

transfer responses, one should be able to obtain the mode shape for this sub-

system in considerable detail. 

* The relevant transfer receptance expressions for a Timoshenko beam have 
recently been derived by Silva (46). The corresponding receptance =f fo- 
a Bernoulli-Euler beam are given by Bishop and Johnson (13). 
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The final stage in the solution is the computation of any motion 

transmissibilities, such as yB/yA, which is given by the ratio q8/q13. 

All the responses are then converted to the required form for output and 

they are printed out. Provision also exists for saving specified data on 

a permanent file, so that it may be accessed later for plotting or other 

use. This facility is particularly useful when analysing complex systems, 

as it is possible to start by analysing the individual sub-assemblies, 

saving the response data for each of them on file. These data may then be 

read back from the files and used to form the complete assembly . 

* A standard subroutine called ZFILE is available for reading existing sub-
assembly response data from a file and incorporating these into the 
analysis of a complete assembly. Details of this special subroutine are 
given in Part 2 of Reference (40). 
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2.3 WAYS OF INCLUDING DAMPING IN THE ANALYSIS  

The Mathematical Representation of Damping  

Damping often provides the only means of controlling resonant vibra-

tions, so it is of great practical importance and it must be included in any 

analysis that is concerned with predicting either structural vibration levels 

or isolation system effectiveness. However, whereas in electrical systems 

damping is generally concentrated in discrete linear elements (resistors), in 

mechanical systems it is very often distributed non-uniformly over an area 

and it may be related in various ways to either velocity or displacement. 

Hence, it can be difficult to realistically represent this damping in an 

analytical model. 

The simplest damping element from a theoretical point of view is the 

viscous damper (see Fig. 2.5). This is a linear device which opposes the 

relative velocity between its ends with a force which is proportional to that 

velocity. It is the mechanical equivalent of the electrical resistor
*
, and 

is the only strictly linear damper, in the sense that the equations of motion 

of a system incorporating this damping may be solved for any type of input, 

whether it be steady-state or shock. Since it is so amenable to mathematical 

analysis it has received undue emphasis in most books and papers on vibration. 

In actual fact, it often bears little resemblance to damping mechanisms 

encountered in practice. In the field of steady-state vibration its use is 

only justified when it represents an actual source of viscous damping, such 

as an oil-filled dashpot or the oil film between the slides on a machine, or 

alternatively, when it represents an equivalent electro-mechanical device 

such as an eddy-current damper. 

Before we consider other types of damping we shall look at the way in 

which a simple two-terminal element such as the viscous damper may be 

* In the cgs system of units, the viscous damping coefficient c is in fact 
measured in "mechanical ohms" (= 1 dyne per cm/s). However, no special 
term has been adopted in either the in-lb-s or the SI system. 
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incorporated in a general system analysis. Supposing that the element is 

massless and in a free-free state, its complete dynamic stiffness properties 

are given by a 2 x 2 matrix: 

F11

1Y1  

Massless 
linear 
damping 
element 

z 

1Y  2 

F21 ( = —F
1 
) 

(2.1) 

Thus, the damping element may be connected between any two co-ordinates of 

a system simply by including it as a subsystem and setting up a dynamic 

stiffness matrix of the type shown here. For the special case of a grounded 

damper, y2  = 0 and we then have a single terminal element for which F1  = z yl. 

The dynamic stiffness z is real for a pure spring and imaginary for a pure 

damper, so in the general case of a damped elastic element it is a complex 

number. For the particular case of a viscous damper, z = iwc (see Fig. 2.5)
*
, 

and the dynamic stiffness matrix is easily set up using the standard module 

ZMAK2
(40) 

 . 

Having looked at viscous damping from a purely mathematical point of 

view, we shall now consider how it differs from the type of damping that is 

generally encountered in mechanical structures. A good starting point is the 

damping inherent in all materials, and it is instructive to consider Fig. 2.6a, 

which shows typical dynamic load/deflection curves for a metal. The anti-

symmetric curve passing through the origin corresponds to static loading, and 

it forms a "backbone" for the hysteresis loop produced by cyclic loading. 

The small loop (a) corresponds to loading within the linearly elastic region 

of the material, while the larger loop (b) corresponds to loading beyond the 

i =I:I, and it signifies that the force applied to the damper leads the 

relative displacement across it by 90°. 
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FIG. 2.5 	THE BASIC LINEAR DAMPING ELEMENTS  
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FIG. 2.6 	HYSTERESIS LOOPS YIELDED BY COMMON MATERIALS AND MODELS  
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linear region and possibly even into the plastic region. The area enclosed 

by each loop represents the energy loss D per cycle, and it is generally pro-

portional to y
n (47)( 8 ) 

. Under normal low-amplitude stressing, as represented 

by loop (a), the value of n for most metals lies somewhere between 2 and 3, 

while for most rubbers it is almost exactly 2. For loop (b) it is much larger 

and it varies according to the peak stress. 

For the moment we shall confine our attention to loop (a), since loop 

(b) is associated with non-linear behaviour, and any discussion of this is 

best postponed until we have examined all aspects of linear damping. In the 

case of loop (a) the energy loss is due to anelasticity or internal friction, 

and once the cyclic loading stops, the material returns to its original virgin 

state. For many metals it has been observed that this loop is essentially 

invariant with frequency, and that it is approximately elliptical in form. 

This elliptical shape corresponds to n = 2 and it is also characteristic of a 

spring in parallel with a viscous damper (see Fig. 2.6b). However, the 

viscous model differs from the observed material behaviour in that it yields 

a loop which grows in size with frequency. Hence, a more realistic model is 

obtained if the viscous damping element is replaced by one having a constant 

dynamic stiffness z = ih. This is known as a hysteretic damper(12)(13) and 

the parameter h is called the "hysteretic damping coefficient". It is normally 

represented as in Fig. 2.5, and it is incorporated into a system analysis in 

just the same way as the viscous damper, by setting up the 2 x 2 dynamic stiff-

ness matrix (2.1), either for the damper on its own (z = ih) or for the damper 

in parallel with a spring (z = k + ih). 

It must be stressed that the hysteretic damper is only a linear device 

in the sense that it is described by a linear dynamic stiffness relation. Its 

use is restricted to steady-state vibration, and it cannot be employed when 

studying either free vibration or shock response. In such cases there is 

little option but to return to the viscous damper, however inadequate this 

may be. 
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Since the damping in a piece of material is associated with the stiff-

ness, it is common to re-write the dynamic stiffness z = (k + ih) as a complex 

stiffness k
* 
= k(1 + il), where 7 = k . This parameterlis called the loss 

factor and it is basically a material property+. Since the in-phase stiffness 

k is a function of either the elastic modulus E or the shear modulus G, it is 

also common to use the complex moduli E
* 

= E(1 + 11) and G
* 

= G(1 + ik), so 

that any undamped analysis may be extended to include damping simply by repla-

cing the real modulus by a complex one. This is the usual way of introducing 

damping into a beam analysis
(17)(48)(45) 

 , and it has been utilised in the 

standard routine ZFLAX2D for a damped Timoshenko beam. 

Rubbers and other visco-elastic materials normally yield elliptical 

hysteresis loops
(49)(29), 

 and they only differ from metals in generally having 

larger loss factors and in exhibiting frequency and temperature dependence(17)x. 

For ordinary natural rubber one may expect a loss factor of the order of 0.025, 

but many filled rubbers and similar synthetic materials exhibit far greater 

damping than this, with the loss factor sometimes exceeding 1. In comparison, 

metals such as steel and aluminium have loss factors of the order of 0.001, 

and woods have loss factors around 0.006
(50)

. Although visco-elastic materials 

exhibit frequency dependence, it is far less pronounced than that associated 

with a viscous damping model, and over a limited frequency range the properties 

may often be assumed constant. However, frequency dependence presents no 

problems when the system is built afresh at each frequency, since one may 

simply employ the properties corresponding to the exciting frequency. To 

facilitate this, data for 4 typical visco-elastic materials are currently 

available on file for direct use with the COUPLET program(40). 

+ To be strictly correct, the measured loss factor of a solid metal component 
varies slightly according to its shape and the way in which it is loaded 
(8). However, it is normally considered as a material property in the 
same way as the elastic and shear moduli. 

x See Part 4, page 324 for shear modulus and loss factor of high-damping PVC. 
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So far we have only looked at the damping in a homogeneous piece of 

material or component, but most built-up structures often exhibit far greater 

damping than one might predict from material damping alone. This normally 

results from losses in the joints, but it is far from being well understood; 

particularly when the joint area is large and the mating surfaces are not uni-

formly clamped together, as is often the case with bolted or riveted joints. 

However, on the basis of observations, one may reasonably expect a typical over-

all loss factor of about 0.01 for a normal metal structure with no other signi-

ficant source of damping
(51)

. This is not a material loss factor as defined 

above, but an overall structural loss factor resulting from the non-uniformly 

distributed joint damping. A more general definition of the loss factor is 

obviously called for, and this is given in terms of energies: 

Loss Factor,1 = Energy dissipated per cycle 
Maximum strain energy per cycle 

Although the damping is actually concentrated at the joints, its exact form 

is seldom known and it is generally easier to distribute it uniformly through-

out the model of the structure. For instance, in a frame analysis one may 

assign to each memeber a loss factor equal to the expected overall loss factor, 

or one may even perform an undamped analysis and then determine the heights of 

the resonant peaks afterwards (this is discussed further below). 

Obviously, when the concentrated sources of damping are simple rubber 

springs and pads there is no problem, since these may each be described as 

subsystems with complex stiffness. However, heavy damping may also be applied 

to parts of a beam or plate structure by adding a constrained damping layer. 

This comprises a layer of high-damping visco-elastic material which is attached 

to the surface of the structure, and a metal constraining layer. As the visco-

elastic material shares its damping with the metal structure, the overall loss 

factor is usually considerably less than the material loss factor, but even 

so, it is possible to achieve loss factors as high as 0.1 with a thin add-on 
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treatment; and if the damping material is built into the structure so as to 

form a "sandwich", the loss factor may even reach 0.3 to 0.5. This form of 

damping is discussed fully in Part 3(Chapters 8 to 12), where finite elements 

are derived for various types of multi-layer beam. These finite elements 

may be used to form a complex dynamic stiffness matrix which fully describes 

the damping distribution through the beam, so it is possible to incorporate 

one or more sandwich beams into a general structural analysis, along with 

uniform undamped beams. This is particularly useful for studying the effect 

of partial damping
(28)(52), 

 where the treatment is restricted to a limited 

area of the structure. A standard routine called ZSAM1
(40) 

is available on 

file for dealing with symmetrical 3- and 5-layer beams, and this may be used 

in conjunction with the visco-elastic material properties routines mentioned 

above. Any other multi-layer configuration must be specially programmed, 

but in the case of a light add-on treatment it is possible to use a uniformly 

damped Timoshenko or Bernoulli-Euler beam, provided one is able to assign to 

it the correct loss factor 
(53) 

Up to this stage we have confined our attention to linear damping, but 

many damping mechanisms are in fact non-linear and they may not be adequately 

described by a linear model. Probably the most important of these is dry 

friction or Coulomb damping
(55)(56), 

 which arises wherever there is relative 

slip between two mating surfaces. In our theoretical model we assume that 

the mating surfaces are pressed together with a force N, and that the static 

coefficient of friction between the two surfaces is 	As As long as the shear 

force transmitted between the two parts is less than ,M  N, the damper remains 

locked and acts as a rigid link, but if it reaches this level slip commences, 

and under steady-state conditions a constant friction force opposes the 

relative velocity across the damper. As it is non-linear, its characteristics 

cannot be described in terms of a dynamic stiffness, so it cannot be incor-

porated in a system analysis in the same way as linear damping elements. 
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However, it can be added to a linear system as an insert once the main system 

has been analysed. This is discussed in general terms a little further on, 

and full details are given in Appendix II (including a thorough discussion of 

the slipping friction force). 

In practice, friction damping may arise either from specially designed 

damping units or from joints in a structure. Various commercially produced 

units are available, and these either employ fibre pads rubbing on steel or 

a stack of metal plates clamped together using bolts and compression springs 

and loaded axially
(8)

. Friction damping is also incorporated in certain 

isolator units, such as the larger types employing coil springs, since it is 

both simple and cheap to introduce. In isolation systems it may often supple-

ment other forms of damping, such as the hysteretic damping inherent in rubber 

springs, whilst in metal structures it may be the predominant source of damping. 

Therefore, any general purpose program should be capable of dealing with a 

combination of friction and linear damping, and the theory developed in 

Appendix II allows for this. A special subroutine called FRIC1 has been 

developed on the basis of this theory, so it is possible to add a single fric-

tion damper (either linear or rotational) to an otherwise linear system which 

already incorporates either viscous or hysteretic damping. 

In the case of isolation systems, the simple isolator consisting of a 

grounded spring in parallel with a grounded damper (either friction or viscous) 

has often failed to predict observed behaviour. Ruzicka
(6) 

has found that a 

more realistic isolator model is one in which the damper is elastically 

supported, as shown in Fig. 2.6c. It is interesting now to compare the 

hysteresis loop yielded by this bi-linear model with the loop (b) in Fig. 2.6a. 

It is clearly seen that they exhibit similar characteristics, so the bi-linear 

model represents a first approximation to material hysteresis at high stress 

levels. Whereas the model only "yields" once under static loading, the actual 

material yields very gradually, and this plastic deformation even takes place 
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within the elastic region on a microscopic scale, as local inhomogeneities 

within the material give rise to local stresses which are high enough to 

cause local slipping. Obviously, if one increased the number of elastically-

supported dampers in parallel with the spring it would be possible to allow 

for gradual yielding; and if the spring itself were replaced by an elastically-

supported damper this would allow for the possibility of fracture. Although 

the bi-linear model may easily be set up using COUPLE1 (by building the linear 

two-spring system and then inserting the damper between the springs), the 

extension to a multi-linear model is not possible at present, as the necessary 

theory has yet to be developed. However, Iwan
(57) 

has performed such an ana-

lysis for the limiting case of an infinite number of dampers and he has obtained 

good agreement with experimental response data. 

When incorporating friction in a structural analysis, it is normal to 

interpose the damper between the two co-ordinates of interest without including 

any associated stiffness (unlike a visco-elastic pad, which introduces both 

damping and stiffness)(56)(58)(59).  This results in a very sudden transition 

from a fully locked to a slipping condition and is inconsistent with the 

observed behaviour of metal structures under conditions of small amplitude 

vibration. To illustrate this, we may consider a typical curve of friction 

force versus slip as measured by Earles and Mott(60)• 

Friction 
force 
amplitude 

Slip amplitude 

It is clearly seen that for small slip amplitudes the behaviour is spring-like, 

and this suggests initial elastic deformation of the contacting asperities on 
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the mating surfaces. This is followed by an intermediate condition where the 

more rigidly clamped asperities continue to behave elastically, while others 

slip; and finally there is complete slip --- though the friction force ampli-

tude is still not absolutely constant. Comparing this with the force/deflec-

tion curve in Fig. 2.6c, it would appear that a bi-linear damping element 

would more closely describe the actual behaviour at the friction joint, pro-

vided one could estimate the relevant stiffnesses. It would also permit the 

inclusion of a small amount of hysteretic damping in the springs, to describe 

the essentially linear "friction" damping associated with low-amplitude "slip", 

before the joint actually unlocks. 

Regardless of whether the damper forms part of an isolation system or is 

incorporated within a structure, the friction force is rarely the "square" 

wave assumed in most text books and papers. This is because a perfect square 

wave can only be obtained if the damper is connected to a rigid support, and 

an elastic support such as that considered above gives rise to a more nearly 

sinusoidal wave. The analysis given in Appendix II is linearised, in the 

sense of only considering the fundamental component of the friction force and 

the fundamental component of the response. However, as the force is often 

very nearly sinusoidal, the error involved in neglecting the harmonics is 

generally quite small. 

Other types of non-linear damping, such as velocity-squared(61)(9) t 

could be introduced in a similar manner. It is only necessary to determine 

the fundamental component of the damping force wave and then apply this as an 

excitation to the linear system. Although the force is no longer constant, one 

may utilise the same procedure as for the friction case and just adjust the 

the force amplitude iteratively to take account of the displacement dependence. 

In summary, the three most important types of damping are viscous, 

hysteretic, and friction, where the first two are linear and the third is 

non-linear. Although constrained layer damping is a very important form, 
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it can be treated mathematically using linear theory and it falls into the 

category of hysteretic damping. For general material and structural damping 

one should use the hysteretic model, and viscous damping should only be used 

to represent actual viscous behaviour. Despite its non-linear nature, a single 

friction damper may be introduced into an isolation system or structure as 

an insert, once the main linear analysis has been carried out. 

Special Techniques for the More Efficient Computation of Damped Response  

The dynamic stiffness coupling technique described in Section 2.2 is 

both straightforward and very general, since one may easily mix component data 

from various sources, and some components may be damped while others remain 

undamped. However, as the system dynamic stiffness matrix must be built from 

scratch and inverted at each frequency, this approach can become expensive on 

computer time if the number of co-ordinates n is large. Although damping is 

easily introduced by using complex material properties, the resulting real 

matrix for the damped system is twice the size of that for the undamped system. 

Two problems arise as a consequence of this: (a) If the computer storage 

space is limited to n
max equations (50 for standard version of COUPLET), one 

is unable to analyse damped systems having more than nmax/2 co-ordinates, and 

(b) when n is large the damped solution takes considerably longer than the 

undamped solution
* 
 . For systems with up to about 12 co-ordinates one may 

proceed quite happily with a full damped analysis, but when the number increases 

beyond this one should begin to consider whether other more economical means 

exist for computing the required responses. 

If the damping is light (7 <0.02) and is fairly evenly distributed 

through the structure, the damped and undamped solutions only differ around 

the resonant peaks and are practically identical everywhere else. Hence, one 

* This is illustrated by the following examples: The total time required for 
building a 15 co-ordinate undamped system from 4 Timoshenko beams and then 
solving the resulting equations was 0.210 second per frequency. The corre- 

sponding time for a similar damped system having 13 co-ordinates was 0.450 
second per frequency. In each case the times relate to a CDC 6400 computer, 
and for a CDC 6600 they should be divided by 3. 
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may perform an undamped analysis over the complete frequency range and then 

do a damped analysis at one or two spot frequencies around each resonant peak. 

Alternatively, if one is able to estimate the damping associated with each 

mode it is possible to determine the resonant peak amplitude using a simple 

technique devised by Ewins(62). Using this latter approach it is only neces-

sary to compute the undamped response at two frequencies W1  and W2, where (4
)1 

is slightly below and (1.)2  is slightly above the resonant frequency W0. If 

these responses are qtal  and qw2  respectively, and the estimated modal loss 

factor is r7, the resonant peak amplitude is given approximately by the formula: 

co
2
-  w

1  

1-4-6301 = 	16)0 	

1  

0.5( 1  + 1  
—clw11 1%71 2 

This is the most general of several formulae derived in Reference (62), and it 

will yield a peak amplitude estimate that is within a few percent of the exact 

value (unless the modes are closely spaced). The only apparent problem with 

this approach is that one must be able to assign a value to the modal loss 

factor. In the case of uniformly damped structures (eg. machined components, 

with no joints) there is no real problem since the modal loss factor is equal 

to the material loss factor, but when the damping is non-uniform (eg. any 

structure with non-rigid joints), the modal loss factor is always less than 

the localised damping, and it can only be estimated approximately. Since the 

level of damping in any real structure can rarely be specified to an accuracy 

of more than 10 %, the approximate nature of the formula is of little 

consequence. 

If the damping is heavy and is distributed through the structure (either 

uniformly or non-uniformly) one must perform a full analysis, taking into 

account the different amounts of damping in the various components. However, 

if the damping is concentrated in one area of the structure or in a small 

number of discrete damping inserts (eg. rubber pads or gaskets) it is better 
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to perform the analysis in two parts. One starts by analysing the undamped 

section of the structure for its receptance properties at those co-ordinates 

to which the damped section is to be connected, and at any other co-ordinates 

at which excitation is to be applied or response is to be computed. One then 

combines the damped section with this in one of two ways: 

(1) The Sub-Assembly Method  

The computed receptance matrix for the undamped section of the structure 

is written onto permanent file frequency-by-frequency, so that it is available 

for later use. A new system is then set up, in which the undamped structure 

is just one sub-assembly which is to be connected to the various damped sub-

systems. Since the damping is concentrated at only one or two points, the 

total number of coupling co-ordinates is small and the damped part of the 

solution is quickly and efficiently carried out. This is particularly useful 

when one wishes to experiment with the damping, since one can use the existing 

data for the undamped structure instead of re-building the complete structure 

every time. 

This sort of analysis in terms of sub-assemblies is easily carried out.  

using COUPLE1, and it illustrates the great power of the building block 

approach, since it is possible to tackle problems which would otherwise be 

beyond the capacity of the program. The writing of the receptance data onto 

file is a standard feature incorporated in the main program, and the reverse 

process of reading back the data and setting up the subsystem dynamic stiff-

ness may be carried out using the special subroutine ZFILE(40) 

(2) The Insert Method  

As before, one computes the receptance properties of the undamped section 

of the structure, but these data need not be saved for later use in a further 

coupling exercise. Instead, one uses the properties of the undamped structure 

and of the inserts in order to calculate the reaction forces that the inserts 
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apply to the structure. Since these are external forces acting on the undamped 

structure, it is then a simple matter to compute the combined response resul-

ting from the excitation and the inserts. 

The procedure will be illustrated in terms of the system shown below: 

Insert coupling 
co-ordinates 

Response on 
co-ordinate r 

Qe  
Excitation on 
co-ordinate e 

In the most general case there may be a total of E excitation forces and R 

responses of interest, so the force Qe  represents a typical excitation and 

the displacement qr  is a typical response. The damped section is connected 

to the undamped structure via co-ordinates qa  to qI, and in the most general 

case it may represent a damped sub-assembly which incorporates mass, stiffness 

and damping, and which includes internal coupling between the various co-

ordinates. However, it may equally well represent a set of massless damped 

springs which are only associated with pairs of co-ordinates. Thus, the insert 

which we shall consider is a general linear damped system which may represent 

either one or a number of actual physical inserts. 

Before the insert is added, the response on any co-ordinate r is 

qrf  = 64 e  Q  e   
, where ore  is the receptance coefficient relating the response 

re  
e=1 

on co-ordinate r to the force on co-ordinate e. The subscript f indicates 

that this is a "free" response, in the sense that the structure is still a 

free undamped system, not yet connected to the damping insert. 
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When the insert is added, a set of supplementary excitation forces 

F
a 

to F
I 

is applied to the undamped structure, thereby modifying its response. 

Therefore, it is only necessary to determine these transmitted forces in order 

to obtain the response of the complete damped system. We may start by consi-

dering the modified responses on co-ordinates a to I due to the presence of the 

insert: 

Remembering that the forces exerted on the insert are in the opposite direction 

to those exerted on the structure, the dynamic stiffness relation for the 

insert takes the form 

Daa Dab — — — — - — - — Bad 

Dba Dbb bI 

D
Ia 

D
Ib D

II 

{F} = --[D]fql 	( 2 . 3 ) 
where the dynamic stiffness elements D

ab' 
etc., are complex numbers. 

If we pre-multiply (2.2) by - [D], we obtain 

{F} = -([I] 	[D]E-])-11Difcifl whence 

{F} = -[D]fqd - ED1F1{F} 
( 2.4) 
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Thus, the transmitted forces are a function of the insert dynamic stiffness, 

and of the receptance properties and free response of the undamped structure. 

The response of the damped structure on any co-ordinate r is now given by 

qr grf 
	<I

°4ri Fi 
i=1 

(2.5) 

where F. is the force transmitted to the structure via coupling co-ordinate i. 

This procedure is similar to that used by Hamill and Andrew
(63)

, except 

that they confined their attention to a number of discrete massless inserts. 

In such a case, each insert is connected between a pair of co-ordinates such 

as a and b, and since it is massless F
b 
= -Fa. Thus, it is only necessary to 

determine half the number of forces, thereby leading to a more rapid solution. 

Obviously, the present very general solution could be simplified to cover this 

specific case. 

The advantage of the general procedure is that the insert may equally 

well be a number of simple rubber pads or a complicated sub-assembly. One 

possible application is the addition of a "thin" add-on damping treatment to 

one beam in an otherwise undamped frame (instead of using a multi-layer finite 

element). Although this has not yet been investigated, it might be possible 

to represent a constrained damping layer as a 4 co-ordinate damped insert to 

be connected between the tips of the beam. 

One advantage that the insert method has over the sub-assembly method 

is that it is not restricted to linear damping elements. The only requirement 

is that one should be able to determine the forces transmitted by the inserts, 

and it is then a simple matter to apply these forces to the linear structure 

in order to obtain the damped response. In the procedure outlined above, the 

transmitted forces were expressed in terms of the linear response properties 

of the insert and of the structure, and the insert could take virtually any 

form. However, if the insert is non-linear there is no general procedure 

available, and it is necessary to examine each case separately and to determine 
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the forces by whatever method is most convenient. As this may involve some 

sort of iterative solution, it is difficult to progress beyond a single damper. 

Since any non-linear device gives rise to non-sinusoidal forces, the 

linear structure is actually excited by a fundamental component plus a number 

of harmonics; but very often these harmonics are only small and they may be 

neglected. Any analysis based only on the fundamental component is said to 

be "linearised" and it may often be relatively straightforward. 

At present COUPLE1 does not incorporate a general purpose insert facility, 

but the previously mentioned subroutine FRIC1 does allow a non-linear friction 

damper to be added to a linear system. The latter is analysed in the normal 

way, and once the equations have been solved, the receptance matrix and the 

free response columns are immediately available from the arrays ZSYS and X 

via a blank common block. Referring to the flow chart given in Appendix I, 

it is only necessary to introduce a call to the insert subroutine immediately 

before the call to CALFOR in the main program COUPLE1. This is explained in 

detail in Appendix II, and based upon the experience gained from this it 

should not be difficult to extend the theory to include other non-linear 

inserts, such as a velocity-squared damper or an undamped spring with a linear-

plus-cubic characteristic*. 

As described here, the insert method replaces the actual insert by a 

force excitation source. However, Mahalingam has recently proposed an alter-

native technique which uses a displacement excitation source instead(65). 

This is based on the concept of "internal receptances"
(66)

, and he has shown 

how it may be used for adding both linear and friction damping inserts to a 

linear undamped system. 

* Paslay and Gurtin
(64) 

have analysed a linear undamped system resting on a 
non-linear spring. They used a similar approach to that adopted here, in 
that they considered the spring force as an external excitation acting on 

the linear system. 
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CHAPTER 3  

MULTI-DIRECTIONAL MOBILITY MEASUREMENT 

3.1 INTRODUCTION  

In Part 1 we have considered how any complex structure may be 

analysed in terms of the mobility or impedance properties of its 

constituent components. Although it would be nice to determine all 

these component data by theoretical means, this is not always feasible 

in practice, and if we are to proceed with the analysis we must resort 

to experiments in order to determine the properties of the more complex 

components. Hence, the predicted response for the complete structure 

must be obtained using a combination of theory and measurement. 

At each coupling point between two components, as many as six 

motions are possible, these being translational motion in the x, y and 

z directions and rotations about these axes. Although it is seldom 

necessary to consider all six of these co-ordinates, it is usually the 

case that one must consider more than a single co-ordinate. This has 

long been recognised in the purely theoretical analysis of structures, 

but in the case of predictions made from measured data it has generally 

()( 
been ignored. As suggested by Noiseux and Meyer 1 2, the limitations  

imposed by the available measurement techniques have for several years 

impeded the application of mobility concepts and distorted the 

applications by requiring the use of what can be measured, rather than 

what ought to be measured. Although great advances have been made 

recently in the field of electronic equipment for measuring the 

transducer signals, comparatively little attention appears to have been 

given to what one should be measuring with this sophisticated equipment. 

* Note that References for Chapters 3 to 7 are listed on Page 185. 
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In consequence, many equipment users have remained blissfully ignorant 

of anything other than uni-axial measurements with a conventional 

* 
impedance head. Even these measurements may on occasions have been 

erroneous, either due to limitations imposed by the impedance head or 

to restraints applied to the structure in directions other than that of 

the intended excitation. For instance, in the case of very low mobility 

structures errors may arise due to any of the following: 

(1) An impedance head end stiffness comparable with the 

dynamic stiffness of the structure under test. 

(2) Non overall contact between the face of the head and the 

surface of the structure, giving rise to contact 

resonances in the higher frequency regions (e.g. around 

1000 Hz or above). 

(3) Electrical crosstalk between the force and acceleration 

channels in the head, so that for very low acceleration 

levels the crosstalk from the force channel may even 

swamp the true acceleration signal. 

At the other extreme, in the case of fairly mobile structures an 

excitation in one direction can cause a quite significant response in 

several co-ordinate directions, and errors can be caused by: 

(a) Secondary excitation due to the inertia loading of the 

structure in various directions by the head. Note that 

conventional mass cancellation only corrects for inertia 

loading in the direction of the head axis. 

(b) Secondary excitation due to restraints imposed on the 

free motion of the head by a stiff connection to the 

shaker, coupled with a laterally stiff shaker suspension. 

* An impedance head comprises a force gauge and an accelerometer 
mounted in a single housing. Readers unfamiliar with the more basic 
aspects of "impedance testing" should consult references (3) to (8). 
The last three are particularly recommended, since they form a 

three-part article dealing with both the measurement and application 
of mechanical impedance data. 
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To illustrate (b) some measurements were made on the spring-supported 

steel block shown in Fig. 3.1, using a Wilcoxon impedance head and 

three different sizes of push rod between the head and the shaker. 

The second resonance of this system corresponds to a rocking mode and 

the results clearly demonstrate the quite severe effect of the lateral 

restraint imposed by a stiff push rod used in conjunction with a laterally 

stiff shaker suspension. Kerlin and Snowdon(9)  have also examined these 

effects, by carrying out carefully controlled tests on a cantilever beam, and 

SilvaL(1°)has made a fairly detailed study using various rods and testpieces. 

Even when mobility measurements have been made in more than one 

direction, they have almost universally been confined to the linear 

co-ordinate directions, simply because suitable rotational accelerometers, 

impedance heads, and electrodynamic shakers have not been commercially 

available . In spite of this, complete mobility data have been measured 

by Smith
(11), 

who uses two linear shakers vibrating in antiphase in order 

to produce a couple, whilst Lemon(12) either uses a hydraulic rotational 

shaker or he avoids the problem of applying couples by taking purely 

linear point and transfer mobility measurements at points on either side 

of the coupling point. 

It should be mentioned that it is possible to deduce the rotation  
couple 

response of resonant systems from a knowledge of the translation and 

(13) 	 force 
rotation responses ,thereby obviating the need for applying and measuring 

force 
couples. However, it is first necessary to mathematically model the 

measured data, and this is not easy in the case of heavily damped structures. 

* A rotational accelerometer suitable for high frequency use has 
recently been introduced by the Endevco Corporation, but at present 
it is very much more expensive than conventional linear accelerometers. 

A rotational shaker developed at Imperial College is now produced by 
Derritron Ltd., but its large size precludes its use for the majority 
of impedance measurement applications. 
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FIG. 3.1  

THE EFFECT OF THE VIBRATOR/IMPEDANCE—HEAD CONNECTION ON THE MEASURED  

RESPONSE OF A 135 KG STEEL BLOCK MOUNTED ON RUBBER PADS  

Derritron 
VP4 vibrator 

Push rod 

135 Kg steel block 

Further details of block 
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Fig. 4.10 (page 114) 
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In addition, the known relationship between these mobilities no longer 

applies in the case of very large structures such as buildings, ships, 

etc., which exhibit both resonant and dispersive characteristics, and 

do not obey classical vibration theory when subjected to small excitation 

forces. Hence there still exists a need for measuring multi-directional 

mobility data directly. 

Faced with the limitations imposed by the existing measurement 

techniques and the lack of suitable hardware, it was decided to conduct 

a fairly detailed investigation into mobility or impedance testing. The 

primary aims of this work were to develop a method for measuring multi-

directional mobility data, and to assess the feasibility of using such 

measured data for the vibration analysis of coupled structures. 

In view of the symmetry inherent in many engineering structures, it 

is often possible to restrict one's attention to motion in a single plane, 

and even if the structure is only quasi-symmetrical the errors incurred 

by assuming plane motion may not be great. The motion of a point in a 

plane is described by just three co-ordinates — two translational and 

one rotational — so both the measurements and the analysis are greatly 

simplified. In those cases where the two translational motions are 

uncoupled (e.g. flexure of beams and plates) one may even confine one's 

attention to just two co-ordinates — translation and rotation. 

So as to keep the problem within manageable bounds during the 

initial stages, it was decided to consider only these simplified cases 

of two- and three-directional motion in a plane. Accordingly, a 

multi-directional measurement technique has been developed and applied 

to measurements in a single plane on a free-free steel beam and on the 

large steel block already shown in Fig. 3.1. These data have then been 

The term "impedance" should be avoided, for reasons given on Page 91. 



88 

used to predict the response of the beam coupled to the block, in order 

to investigate the feasibility of using measured information in the 

coupling process. 

The basic measurement technique requires the use of only a single 

shaker and standard measuring equipment, but the raw data from the test 

does have to be processed subsequently in a digital computer. However, 

this problem has been overcome by using a computer-controlled measuring 

system, which facilitates on-line processing of the data during the 

test. 

An extension of the basic techniques is to use a pair of shakers, 

and results are presented for comparison with the single-shaker 

measurements. 
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3.2 TERMINOLOGY  

The motion at any point on a structure is described completely by 

six generalised co-ordinates, of which three are translational and three 

are rotational. The co-ordinates are most conveniently chosen so as to 

form an orthogonal set. Similarly, any arbitrary excitation at a point 

may be resolved into six generalised forces acting along the chosen 

co-ordinate directions. Hence the force system comprises three linear 

forces and three couples. We shall employ the co-ordinate system shown 

below. 

R E 

Displacements at point R  Forces at point E  

  

For our purposes all motions and forces vary harmonically with time, so 

that x= -2.eicA, P----P.ej"'t, etc., where R and P are complex numbers 

to take account of phase differences. 

Considering the general case, the velocity response at point R is 

related to an excitation at point E by a 6 x 6 mobility matrix: 
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where the elements Y
ij  
. . are complex numbers, to allow for the phase 

difference between the response and the excitation* . 

If R = E, we define the matrix as being a point mobility matrix. 

If R54 E, we define the matrix as being a transfer mobility matrix. 

In addition we define the terms on the leading diagonal of the matrix 

to be direct mobilities,  whilst the off-diagonal terms are cross mobilities.  

This complies with the terminology used by Bishop and Johnson 

The distinction between transfer and cross mobilities should be 

noted, since it has been common practice in the measurement field to 

refer to any mobility Y
ij  
. . as a transfer mobility whenever i 	j. As most 

mobility measurements in the past have been confined to a single direction 

at each point, there has been no confusion. However, now that we are 

considering up to six directions at a point, it would obviously be 

confusing to refer to the off-diagonal terms in the point mobility matrix 

as transfer mobilities. 

Although we have chosen the response quantity to be velocity, we may 

equally well use either acceleration or displacement. The corresponding 

generalised mobility matrices are then "inertiance" and "receptance" 

matrices respectively. The three forms are simply related: 

Note that the mobility matrix is symmetric, so Y..
ji 

= Y. .
3 
 . 

This is a consequence of the well-known reciprocity principle. 
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Inertiance = 	Mobility 

Receptance = 71 :Mobility 

When dealing with multi-directional measurements it is advisable 

to avoid the term "impedance" wherever possible. This equally well 

applies to the associated terms "apparent mass" and "dynamic stiffness", 

which are related to impedance in the following manner: 

Apparent Mass 	= —j Impedance 
7T 

Dynamic Stiffness = jw Impedance 

The reason for this is that there exist two types of impedance, namely 

true impedance and pseudo impedance. 

True impedance is a matrix quantity, and is the inverse of the 

mobility matrix, so that 

Z11 Z12 Z13 Z14 Z15 Z16 

Z21 Z22 Z 23 Z 24 Z 25 Z 26 

Z31 Z 32 Z33 Z34 Z 35 Z 36 

z
41 

z
42 

z
43 

z
44 

z
45 

z
46 

Z51 Z52  Z53 Z54 Z55 Z56  

Z61 Z62 Z63 Z64 Z65 Z66 

R 

(3.2) 

When using the impedance or dynamic stiffness coupling technique for 

analysing built-up structures, the component data must be presented in 

terms of true impedance matrices. However, the elements of the true 

impedance matrix cannot usually be measured directly. To illustrate 

See Part 1 of this report (Chapter 2). 

A "direct measurement" here means one in which the required matrix, 
or a transformed version of it, is obtained directly. 
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this, let us consider the situation when the only excitation is that in 

the x direction: 

Fx = 	Z115: + Z12Sr + Z13 + Z148c  + Z158 + z166 

(3.3) 

In order to measure any element Zip  . . directly one would have to 

prevent motion in the other five directions, thereby leaving only one 

non-zero term on the right hand side of (3.3). When all the co-ordinates 

refer to a single point this is obviously impossible from a practical point 

of view. Even if each co-ordinate refers to a different point on the 

structure this is still very difficult to achieve. Direct measurement 

of the mobility matrix poses no such problem, as constraints are not 

applied to the system. Hence the impedance matrix must almost invariably 

be obtained by inverting the mobility matrix. 

Pseudo-impedance is the type of impedance which is generally 

measured in so-called "impedance tests". It is not a true matrix 

quantity, in that it cannot be post-multiplied by a velocity vector to 

yield a force vector. Accepting this, we may define the pseudo-impedance 

1 matrixcorrespondingto(3.1)asamatrixwhoseelementsZ..pseudo = Y. — . 
ij 	. 13 

It should be noted that this is not the inverse of the mobility matrix. 

However, if the measured data are required for any coupling procedure, it 

is the inverse mobility matrix that is needed, and the use of pseudo 

impedance is quite pointless and can lead to confusion. These basic 

mobility and impedance concepts are discussed in more detail in 

references (15) and (16). 

The matrix of (3.1) will additionally be called a six-directional  

mobility matrix, since it describes the mobility properties in all six 

of the possible co-ordinate directions, thereby describing any motion in 



Y
22 

Y
23 

Yll 	Y12 	Y13 

Y 31 	Y
32 	

Y
33 

Y21 

93 

space due to any conceivable point excitation. 

Since most of the work described in this report is limited to the 

case of motion in a single plane, it is convenient to consider the 

following simplified mobility relations, which describe respectively 

the x-9 and x-y-8 motions in a plane: 
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	( 3. 5) 

where the subscripts of the 6 mobility terms no longer correspond to 

those used in (3.1). These simpler matrices will be called two-directional  

and three-directional plane mobility matrices. 
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CHAPTER 4  

MULTI-DIRECTIONAL MEASUREMENTS WITH A SINGLE SHAKER  

4.1 THREE-DIRECTIONAL POINT MOBILITY MEASUREMENT  

The Basic Principles of a Single Shaker Method  

We wish to measure the mobility matrix relating the three velocities 

X, y and 6 to the three forces Fx, FY  and Me  acting at the same point. As 

the elements of this matrix are frequency-dependent, the complete matrix 

must be measured at all frequencies of interest. 

Fx 

FY  

Me  

R=P 	 E=P 
. 	. 

(4.1) 

Only X and Fx  can be measured directly. Hence, of all the nine elements 

in the matrix, only Y11  canbe measured with a conventional impedance head 

and linear shaker. 

The velocity Sr cannot in general be measured directly, since it is 

physically impossible to bring the axis of a finite-size accelerometer or 

impedance head down to the surface of the test structure. 

The rotational velocity 0 could until recently only be measured by using 

two linear accelerometers and taking the difference of their signals. When 

the present work was carried out, the only rotational accelerometers in existence 

had an upper frequency limit somewhere in the range 10 to 100 Hz, and it is 

only with the recent introduction of a high-frequency rotational accelerometer 

by the Endevco Corporation that the situation has changed. However, in view 

of its high cost and the fact that we also need to measure linear accelerations, 

AIM...M. M.N.... 
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there is still good reason for using a pair of linear accelerometers. 

The force Fy  cannot in general be applied directly, owing to the finite 

size of the force gauge or impedance head. 

The couple Me  can be applied using a rotational hydraulic shaker, but 

at the present time there is no small rotational electro-dynamic shaker 

commercially available. Even given the necessary means of excitation, there 

is still not available a rotational force gauge or impedance head. 

As we are unable to measure the required matrix directly we must instead 

measure a related mobility matrix. Then, knowing the relationship between 

the matrices, we may transform the measured matrix into the required point 

mobility matrix. 

Suppose that we attach a massless, non-deformable block to the surface 

of the test structure at point P, as shown below. 

BLOCK 

X I  

aA  
A 

1(-- 	
Y.. 

//////////////// /////IV ////7////////// 

  

5E 

	
TEST 

Y1 
	 STRUCTURE .. 

 

   

    

Attached to the block at points A, B and C are three massless accele-

rometers. As the block does not deform, the accelerations X, y and b at 

point P are related to the measured accelerations aA , aEi  and ac  by a simple 
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transformation matrix [C ], which is a function of the block geometry only. 

Hence the velocities at P are given by 

     

  

aA 

 

    

 

CPJ 
aB 

 

 

ac  
(4.2) 

We apply a force to the block at either 1, 2 or 3 via a massless force 

gauge, and as the block also has no mass all the force is transmitted through 

to P. For a force applied at point i (i = 1,2,3) the resultant force system 

acting on the structure is 

   

cos W. 1 

  

sin X. 
1 F. 

1 

 

(Y .1 
	1 
cos W. — X. sin X ) 

1 	1 

 

(4. 3 ) 

Now substitute expressions (4.2) and (4.3) for the velocity and force 

vectors in (4.1), at the same time dividing through by Fi: 

Y11 Y12 Y13 cos W. 

Y
21 Y

22 
Y

23 sin X. 
1 

Y31 Y32 Y
33 

cos 	— x. sin W. ) (y.1 	1 1 	1 
■••■.11. 

(4.4) 

Considering the three excitation cases together we obtain 
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-- 

COS WI  COS WE  

-- 

COS W3 

sin 2f, sin Wa  sin W3  

(Y1  COS WI  
—X1  sin WI  ) 

(Ya  cos W2  
—Xa  sin XL  ) 

(Y3  cos W3  
—X3  sin W3  ) 

(4.5) 

Post-multiply (4.5) by [F] to obtain the required point mobility 

matrix in terms of the measured inertiance matrix: 

[Co] [ L.] [F 
(4.6) 

where [Ind and hence [y] are complex matrices. 
Thus equation (4.6) gives the required point mobility matrix in terms 

of mobility measurements on the block attached to the structure. The block 

will henceforth be called an exciting block, since it provides the means 

whereby different known excitations may be applied to a point on the structure. 

The above theory has been derived on the assumption that the exciting 

block is both non-deformable and massless. The first assumption can be 

satisfied sufficiently well with a suitable choice of block shape and accele- 

rometer positions, the main requirement being that any relative motion across 

the block should be small in comparison with the motion of the structure under- 

neath the block. Problems only arise in the case of very Low mobility structures. 

In contrast, the assumption of a massless block produces no noticeable error 
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in the case of a low mobility structure, since motions are then small, 

resulting in negligible inertia loading. However, when the structure 

mobility is high, the loading effect of the block may cause the resonant 

frequencies to be lowered by around 5 to 10%. Hence it is desirable to 

introduce into (4.6) a correction for the block inertia. The resulting 

inertia-corrected mobility equation is then 

(4.7) 

where the inertia matrix [M] is a function of the block mass, moment of inertia 

and geometry. The various matrices are derived in detail in Appendix III. 

Four different exciting blocks have been made and tried out, and the 

various results are presented in this and the following chapter, and in 

Appendix IV. 
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4.2 MEASUREMENT AND PROCESSING OF THE DATA 

Any measurement technique is only as good as the equipment used to 

acquire the data. Therefore, before we consider the details of the exciting 

block we should be sure that the measuring equipment is capable of giving us 

reliable data, in a form'suited to our requirements. 

The technique described in section 4.1 requires three different excitations 

and subsequent processing of the measured data, so one cannot employ a continuous 

sweep and obtain an immediate response plot. As the processing must be carried 

out with a digital computer, the measured data should preferably be output or 

displayed directly in digital form, and it must obviously be acquired at discrete 

frequencies. Since mobility is a frequency-dependent quantity, all the elements 

of the matrix must be obtained at the same frequency, so for each of the three 

excitations one must be capable of returning to precisely the same frequency. 

In addition to digital data and good frequency repeatability, we also require 

accurate measurements of the modulus and phase of the force and acceleration 

signals. Thus, filtering of the signals is an absolute necessity. 

In the case of the experiments described in this report, the above 

requirements have been met with a Solartron digital transfer function analyser 

(Type JM1600A). This instrument provides a digital display of either in-phase 

and quadrature response or modulus and phase angle, without the need to 

continually read meters or to take readings off a graph. It has very good 

frequency accuracy (± 0.05 70), a typical measuring accuracy per channel of 

± 0.1 dB and 0.5°, and a very effective constant percentage bandwidth filter*. 

The basic unit has a upper frequency limit of 480 Hz, but this may be extended 

* The filtering process is simple Fourier Analysis, carried out digitally over 
a number of cycles to yield the fundamental component of the incoming signal. 
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to 160 KHz with the addition of a high-frequency extension unit (Type JX1639). 

The complete measuring system used for the initial experiments is shown 

in Fig. 4.1. The force gauge and accelerometers were standard piezo-electric 

types, and the latter had quoted maximum cross sensitivities of 5 %. After 

amplification in standard charge amplifiers the signals were fed into a 

switching box, the output of which went through an extra amplifier before 

reaching the analyser. 

The digital information was written down and later punched onto cards. 

Then, using a Fortran IV computer program based on equation (4.7), the data 

were processed to yield the required mobility matrix. The whole process was 

naturally rather time consuming, but this disadvantage has subsequently been 

overcome by utilising a computer-controlled measuring system. This has 

facilitated automation of the measurements and processing of the data on-line 

in the laboratory, thereby speeding up the whole process (see Section 4.5). 

The computer-controlled system currently in use within the Dynamics 

Group is the Solartron Programmable Frequency Response Analyser, Type 3381(17X18)-* 

This consists of the above-mentioned JM1600A TFA and the JX1639 HF unit, inter-

faced with a Digital Equipment PDP 8E mini-computer+. The latter is used to 

control the measurements and to process the measured response data, and it is 

programmed via a tele-typewriter using a simple conversational language called 

FOCAL. Data may either be punched out on paper tape, printed, or plotted on 

an X-Y plotter. Similarly, the controlling programs may be kept on paper tape, 

ready for loading when required. 

* Note that References for Chapters 3 to 7 are listed on Page 185. 

+ It should be noted that a more modern system is now available from the 
same manufacturers. This comprises the more sophisticated Type 1172 TFA 
and a PDP 11 computer, and the BASIC language is used instead of FOCAL. 
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4.3 THE INITIAL EXCITING BLOCK (MK 1)  

Introduction  

The first exciting block to be tried is shown in Fig. 4.2. This 

block was made a rather strange shape in order to try and satisfy the 

following requirements: 

(1) The excitation points 1, 2 and 3 should be such that the shaker is 

always well clear of the test structure. 

(2) The block should be as compact as possible, so as to compare favourably 

with the average impedance head as regards size and inertia. 

Tests with Mk 1 Block  

The exciting block was mounted near the tip of the 1.83 m steel 

beam shown in Fig. 4.10 (page 114), and the beam was suspended on ropes at 

the nodes of the first free-free mode. The block was attached with a 

UNF Allen screw. 

Measurements were made at a few frequencies around the fundamental 

resonance of the beam. The first set of readings was taken with the 

exciter at position 1. The exciter was then moved to positions 2 and 3 

respectively for the second and third sets of readings. 

Using equation (4.6) the point mobility matrix was derived from the 

measured data at each frequency. Equation (4.7) was also used in order 

to obtain the inertia-corrected mobility matrix. The results for the 

transverse mobility 
F  
-- are shown in modulus only in Fig. 4.2, and they 
x  

are seen to exhibit considerable scatter, with large deviations from the 

theory. Though the results for the other eight mobility elements are not 

shown, they are in fact at least as bad. It is particularly interesting 

that the introduction of the block inertia cancellation produces such 

large changes in the results over all ten frequencies, since the block 

mass is only 0.752 Kg, as compared to a beam mass of 28.9 Kg. This tends 

to indicate a mathematically ill-conditioned system. 
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FIG 4.2 
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4.4 AN IMPROVED EXCITING BLOCK (MK 2)  

Introduction  

The tests with the Mk 1 block have shown the impracticability of 

unscrambling the measured data when each of the forces applied to the test 

structure is of a comparable size. If we are to measure the mobility to an 

acceptable degree of accuracy we must therefore try to produce a predominant 

excitation in each of the three measurement runs. This conclusion led to 

the consideration of the simple rectangular shaped block shown in Fig.4.3. 

Ignoring the inertia of the block, it is seen that excitation at position 1 

yields the response to Fx  directly. Excitation at position 2 produces both 

a force Fy, = F2  and a couple Me  = F2.e at P, but if e is sufficiently large 

the couple excitation should be predominant. Excitation at position 3 produces 

a force Fx  = F3  and a couple Me  = -F3.hE, but if hEis kept small the force 

excitation should this time be predominant. 

This excitation sequence lends itself to a systematic elimination 

solution for the required mobilities, since the results of run 1 may be used 

to remove the effect of the force in run 2, thereby yielding the couple 

response. Similarly the results of run 2 may be used toremove the effect 

of the couple in run 3. This is useful if facilities exist for processing 

the measured data on-line, but it cannot be used if a full correction is to 

be made for the inertia of the block. 

For a rigid, massless block the results must obviously improve as e , 

and hence the block length, is increased. However, the largest practical 

length is of the order of 250mm (==10 inch). If its length is large in 

relation to the length in contact with the structure the block may bend 

sufficiently during excitation 2 to have an effect upon the results. In 

addition, an increase in size causes a corresponding increase in mass. 

Although theoretically it is possible to cancel any mass, it is a practical 

fact that if the mobility of the exciting block as a free rigid body is small 
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in comparison with the mobility of the structure, then accurate measurement 

of the latter is impossible. This is because the small part of the measured 

data pertaining to the structure is of the same order of magnitude as typical 

measuring errors, and may be completely lost. 

It was decided to examine the feasibility of a 250mm block. However, 

before having one made a computer simulation was carried out for a block/test-

structure system, and systematic errors were injected into the "measured" data. 

This should show the typical sensitivity to data errors, and hence give an 

indication of the sort of accuracy required from the measurements. 

Computer Simulation  

The theoretical exciting block Mk 2B and the theoretical test structure 

are shown in Figs. 4.4 and 4.5 respectively. Also given in Fig.4.5 are two 

sets of error matrices, which show the way in which the exact inertiances 

on top of the exciting block were polluted in order to give a more realistic 

"measured" inertiance matrix [Im]. The point mobility matrix for the test 

structure has been calculated from these "measured" data using equation 4.7. 

The results of this simulation are presented in Figs. 4.6 to 4.8, only the 

lower triangle of the matrix being given here. In the legend on the graphs, 

Mk 2B signifies a steel block and Mk 2B/A1 an aluminium block (masses are 

5.1 and 1.8 Kg respectively). The full line represents the true mobility 

of the structure. 

The results clearly indicate that quite acceptable results can be 

obtained if the inertiance data can be measured to within ± 5 % (± 0.4 dB) 

on the modulus and ± 3°  on the phase. These estimates of the required 

accuracy are necessarily only approximate, as the true nature of the errors 

is not known. However, the results do indicate that this system is not 

unduly sensitive to errors in the measured data. 

It may also be observed that the lighter aluminium block gives slightly 

better results than the steel block. 
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FIG. 4.5 	DYNAMIC SYSTEM AND ERROR MATRICES USED IN  

THEORETICAL TEST WITH EXCITING BLOCK MK 2B  
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kHA = kHB  = 2.85 x 107 Wm 
hVA = hVB = 2.22 x 104  N/m 

6 , 	 .9 = 0.050 
hHA = hHB = 1.43 x 10 N/m 

ERRORS ADDED TO "MEASURED" INERTIANCE DATA PRIOR TO PROCESSING: 

••■•■• 

Modulus Phase 

+2% +2% —2% —2°  +2*  —2°  

—2% +2% +2% —2°  —2°  +2°  

+2% —2% —2% +2°  +2°  —2°  

+5% -5% _3. +3. _3. 

+5% +5% —3°  —3°  
+3. 

-5% -5% +3°  +3°  —3° 
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Tests with Mk 2 Block  

As the simulation yielded quite reasonable results, it was decided 

to manufacture the Mk 2 exciting block shown in Fig. 4.9. Measurements 

were then made on the steel beam and on the spring-supported mass shown in 

Fig. 4.10, the block being attached in both cases by means of two 1 UNC Allen 

screws. 

The uniform steel beam was suspended on ropes at the nodes of the first 

free-free mode. The first test was performed in the vertical plane, with 

the exciting block mounted on top of the beam, near one end. However, a 

further test was subsequently carried out with the beam on its side, in order 

to ascertain whether the stiffness of the ropes was affecting the results. 

Measurements were made of the three-directional point mobility near one end 

and of the transfer to the transverse co-ordinate / at the other end. The 

measured data were processed using the standard equation (4.7), modified to 

include the transfer co-ordinate, and the resulting mobility moduli are 

presented in Figs. 4.11 to 4.18. The results have been fully corrected for 

the effects of exciting block and accelerometer inertia. The theoretical 

curves were obtained using the closed-form beam receptances listed by Bishop 

and Johnson
(14)

. The analysis was performed by considering the beam in 

three sections, whose tip receptance properties could be calculated using 

standard expressions. The sections were then coupled together to yield the 

* 
response properties at points 1 and 2 (76 mm from each tip) . 

In the case of the heavy mass on the rubber pads, measurements were 

made of the three-directional mobility at point P, 50 mm off the centre of 

The top face. These results are presented in Figs. 4.19 to 4.23. The 

theoretical response was obtained using a known value of mass, together 

with a calculated value of moment of inertia and tabulated stiffness data 

for the rubber pads
(20)

. 

* Instead of using receptances, one may work directly with the "exact" 
dynamic stiffnesses; or alternatively one may use finite elements. 
These two approaches are compared in reference (19). If using the 
computer program COUPLET described in Chapter 2 (Part 1), the dynamic 
stiffness matrices for the three sections of beam may be set up using 
one of the standard modules: either ZFLAX1 for a Bernoulli-Euler beam, 
or ZFLAX2 for a Timoshenko beam. 
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Discussion of Results for Tests on 1.83 m Steel Beam 

The x, 0 and direct and cross mobilities show very good agreement 

with the theoretical response, the only appreciable differences occurring 

below about 50 Hz. The direct y mobility is also quite accurate up to about 

350 Hz where it begins to descend to a premature anti-resonance. The 

greatest errors are apparent in the cross mobilities containing the y co-

ordinate, but this is not surprising in view of the fact that the coupling 

between y and the other directions is here very small. 

The errors below about 50 Hz have probably been caused by a combination 

of the effects of small accelerometer signals, electrical noise, accelerometer 

cross-sensitivity, and the constraining effect of the suspension ropes, but 

the last two are thought to be the most significant effects. 

The test was first performed in the vertical plane, but because of the 

errors apparent in the lower part of the frequency range it was decided to 

repeat all the readings up to 145 Hz with the beam turned onto its side and 

excited in the horizontal plane. It was thought that the beam would be 

constrained less in this configuration and that the results would be improved, 

but the reverse seems to have been the case. It is possible that this 

unexpected deterioration in the results may have been caused by rocking of 

the beam in the plane perpendicular to its axis, since the supporting ropes 

were only in contact with its low side. A small rocking motion was in fact 

observed visually at the very low frequencies. 

The accelerometers used in this and in all the other experiments were 

piezo-electric, and of the compression type. Those used on the Mk 2 block 

had a high axial sensitivity, and a quoted maximum cross sensitivity of 5%. 

The sensitivity of an accelerometer to cross-axis motion in a given direction 

Birchall accelerometers, Type A/01. Charge sensitivity = 250 pC/9 

Voltage sensitivity = 170 mV/9 
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may be varied by rotating the accelerometer about its axis, and the quoted 

figure of 5 % for the present accelerometers is only the maximum value. 

In addition, this figure does not include the effect of possible misalign-

ment when attaching the accelerometer to the item under test. However, if 

we assume that the mounted y accelerometer has a cross sensitivity of 5%, 

we may expect that it won't generally give a signal which is more than 26 dB 

below the x acceleration. If we look at Fig. 4.11, which shows the x and y 

responses to a force Fx, we see that at 20 Hz the y motion should theoretically 

be 40 dB less than the x motion, whilst in fact it is only 25 dB. Although 

the difference does vary with frequency, it is certainly of the same order 

as that expected on the basis of accelerometer cross sensitivity, so it seems 

clear that this is one of the prime causes of inaccuracy in the measurements. 

One may arrive at the same conclusion by considering Fig. 4.13, which shows 

the x and y responses to a force F. For instance, at 30 Hz the measured 

x motion is 26 dB less than the corresponding y motion. The effect of the 

cross sensitivity may be minimised if the directional properties of the 

accelerometer are known, but it is preferable to use specially selected 

accelerometers which typically have a cross sensitivity of less than 1%. 

If the directional properties are known accurately, it should also be possible 

to apply a correction to the measured results, either by analogue means or 

digitally when the data are processed. The necessary correction is included 

in the response transformation [C] P 
derived in Appendix III, but it has not 

been applied to the present data. The effect of cross sensitivity upon 

multi-directional measurements is discussed further in Appendix IV and in 

reference (21). 

Apart from the more readily apparent errors, it may be seen that on 

practically every graph there are a number of erroneous points very slightly 

below each resonance. As the measurements are not continuous it is difficult 

to see the exact behaviour, but there appears to be a very sharp pseudo- 



contrast,1- is very good, with the largest error being  about 1.5 dB. The reason 
M 0 

for the mysterious jump in the response at 75 Hz is not known for certain. As 

the test was performed manually, with occasional breaks in the measurements, it 

was initially thought that this might correspond to such a break;  however, it 

was soon found that this was not the case. Since the x and B responses above 

The disagreement between measurement and theory at the low frequencies is 

probably a combination of the effects of small accelerometer signals, 

accelerometer cross-sensitivity, and inaccuracies in the theoretical response 

due to an imprecise knowledge of the properties of the rubber pads. 

Still discounting the low frequencies, far larger errors are apparent in 

the measurement of the response to Me, as might be expected from the fact that 

this is neither a direct nor a quasi-direct measurement. The largest error 

occurs in i  , and is about 5 dB, and even a shows as much as 4 dB error. In 74 0 	 Me 
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resonance, followed by a corresponding pseudo-anti-resonance. This effect 

is due to numerical difficulties in the digital correction for the inertia 

of the exciting block. These pseudo-resonances in the corrected data 

coincide with the resonant frequencies of the combined beam/exciting-block 

system. The difficulty is caused by the fact that data measured on or near 

to a resonance is ill-conditioned, so that any subsequent numerical operations 

with these data may propagate large numerical errors. The same problem is 

discussed in Chapter 6 in connection with mobility coupling using  measured 

data. 

Considering the size of the block, together with the large contact 

area and two-bolt fixing, the measured results are certainly very encouraging. 

Discussion of Results for Test on 135 Kg Spring-supported Mass  

Except at low frequencies in the region of 25 Hz and below, the 

responses to both Fx  and Fy  have been measured to a reasonable degree of 

Sr accuracy, with the largest error occurring in 	and being about 2 dB. 
Fx 
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this frequency appear to have been shifted upwards by about 2.5 dB, it is just 

possible that the gains of the two acceleration channels might have increased, 

but this is thought to be unlikely. A more reasonable explanation is a purely 

mechanical one: namely a steel mounting bracket screwed into the underside of 

the block. This was left in position after some other experiment, and it was 

at the time discounted as being insignificant in comparison with the mass of 

the steel block. In fact, since the mobility 7
A 
-shows no jump, this assumption 

'x 
was probably justified. However, as the bracket was mounted a considerable 

distance from the centre of the block, it is very probable that its effect on 

the moment of inertia was far more significant. If this was the case, then the 

jump probably corresponds to the decoupling of the bracket from the block, as 

the former ceased to remain a pure mass. 

The other deviation from the theory occurs from about 300 Hz upwards, where 

both — and 6— begin to gradually drop off, probably to an anti-resonance at 
0 	0 

around 550 Hz. This is thought to be caused by the bending flexibility of the 

exciting block, and it is probable that if the measurements had been continued 

up to 1000 Hz they would have have shown this spring acting against the almost 

stationary inertia of the steel mass. If we take the theoretical moment of 

inertia of the mass, which is 1.7 Kg-m2, and assume that there is an anti-

resonance at 550 Hz, we obtain an effective rotational stiffness of 2 x 107 N-m/rac 

for the exciting block . 

For a fuller discussion of exciting-block flexibility, see Appendix IV 
(Page 493) 
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4.5 TWO-DIRECTIONAL POINT MOBILITY MEASUREMENT USING A COMPUTER-

CONTROLLED MEASURING SYSTEM 

Introduction  

Following the successful measurements with exciting block Mk 2, it was 

decided to look into the possibility of automating the procedure: this was 

necessitated by the large amount of data to be measured, stored, and ultimate-

ly processed during each test, and it was the only way that such tests could 

ever become fairly routine. What was required was some sort of computer-

controlled frequency response analysis system, in which the computer would 

control the frequency sweep and measurements and then subsequently process 

these data to yield the required multi-directional mobilities. A large 

central computer could obviously be used for this purpose, but this was not 

permitted by the Imperial College Computer Centre, so it was necessary to 

think in terms of a mini-computer in the laboratory. Quite fortuitously it 

* 
was discovered that Solartron Ltd. were at that time developing a computer-

controlled system around their JM1600A transfer function analyser (see Section 

4.2). This used a PDP 8E mini-computer (8 K store) which was accessed via a 

tele-typewriter, and it incorporated all the required features for automating 

the multi-directional tests. Therefore, Solartron Ltd. made available the 

prototype system for some tests to be carried out, and such a system was 

later aquired by the Dynamics Group. 

The computer system has so far only been used for two-directional point 

mobility measurements, and the measurement and processing procedure will be 

explained with reference to Fig. 4.24. The two motions with which we are 

concerned are the linear velocity X, in a direction normal to the surface, 

and the rotational velocity 8 : as the accelerometers A and B are symmetric-

ally disposed relative to point P, these velocities are yielded by simple 

sum and difference relations. The excitation points 1 and 2 are also 

* 	1971 
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symmetrically disposed relative to P, unlike in the earlier tests with block 

Mk 2: this yields more "information" on the response to a couple than does 

the single off-centre excitation employed previously, so it leads to improved 

rotational results. In addition, the required mobilities are obtained by 

simply superposing the responses to the separate excitations: the response 

to a force F
x 

is yielded by the sum of the run 1 and run 2 results, while the 

response to a couple Me  is obtained by taking their difference. 

7
10) 

( 	

6 )(1) 
During run 1 the mobilities 	and -f, are measured and punched onto 

paper tape at each frequency. The tape is then rewound and threaded into the 

(k r) //e (a) 
tape reader before starting the next run. During run 2 the mobilities 17 and 7 

are measured using exactly the same frequency sweep as before, and at each 

frequency the corresponding data from run 1 are read in from the tape and are 

combined with the run 2 data to yield the required 2 x 2 point mobility matrix 

(which may be corrected for exciting block inertia if necessary). This is 

then punched out on tape before proceeding to the next frequency. Thus, the 

processing is carried out on-line during run 2, so the full set of response 

data is immediately available in the laboratory. 

The test is controlled by a standard program, which was written by the 

Author in a conversational language called FOCAL. This program is available 

on paper tape, and is accompanied by a set of user instructions, so that it 

may be loaded and used as required. 

Tests using Computer-controlled System 

A number of multi-directional mobility measurements have been made using 

this system, and we shall now consider two examples
*
. The first relates to a 

heavily damped multi-layer beam used in the machinery seating that is analysed 

in Part 4: this beam is designated UT, and it is shown in Fig. 4.25. It was 

Other examples may be found in Chapter 12 (Figs. 12.12 and 12.13) and in 
Chapter 15 (Figs. 15.2 to 15.4) 



!57.3 mm 

3 layers aluminium alloy, 15.9 mm thick 

2 layers PVC, 4.8 mm thick 
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suspended on two 6 mm diameter ropes, which were sufficiently elastic to 

provide essentially free-free boundary conditions except at very low fre-

quencies. In order to minimise their constraining effect, these ropes were 

positioned at the nodes of the first free-free bending mode, and in addition 

the beam was mounted on its side and excited in the horizontal plane. The 

x-A mobility matrix was measured at a point near the end of the beam using 

exciting block Mk 3, which is shown in Fig. 4.26. This block is much smaller 

than Mk 2 and had already been successfully employed for some three-direct-

ional measurements on the 1.83 m steel beam
(24)

. With its single-bolt fixing, 

smaller contact area and lower mass (0.880 Kg including bolt and accelero-

meters), it is not much larger than a Wilcoxon Z820 impedance head and is 

more suitable for measurements on medium-size components and structures than 

the rather bulky Mk 2 block. It was attached to the sandwich beam solely by 

FIG. 4.25 	BEAM UT -- Symmetrical 5—layer beam used in V—beam seating  
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means of the fixing bolt, which was screwed into a hole tapped in the outer 

layer, and only a very thin film of grease was interposed between the con-

tacting surfaces. In the case of the three-directional measurements des-

cribed in Reference (24), the excitations during the three runs were applied 

at points 1S, 2 and 3 respectively, but in the present two-directional test 

the excitations were applied at points 1T and 2 respectively. 

The measured response data representing the four elements of the 2 x 2 

matrix are presented in Figs. 4.27 to 4.30 as curves of mobility modulus and 

phase. These results have been corrected for exciting block inertia in both 

the x and 8 directions. Also shown on each graph is the theoretical response 

predicted using the 5-layer beam finite element derived in Chapter 9 (Part 31.. 

The material properties and constructional details for this beam are given 

in Section 14.1 (Part 4, Chapter 14), and the analysis is discussed both there 

and in Chapter 12 (Part 3). 

The second example that we shall consider relates to the two-stage beam 

shown in Fig. 4.31. This was used by Cottney
(22) 

as a simple but readily 

analysable model for a turbine blade, and although it differs considerably 

from the real thing, it does possess similar dynamic characteristics. It 

was suspended on light elastics to simulate a free-free condition, and mea-

surements were made of the transverse and torsional mobilities at point P, 

which was effectively at the tip of the beam. No exciting block was used in 

this case: instead, the accelerometers and the force gauge were attached 

directly to the beam using small studs which were stuck in place with Plastic 

Padding. 

The measured responses are shown in Fig. 4.32, together with theoretical 

predictions obtained by Cottney. Only direct mobilities are given, since there 

is no coupling between the x and 8 responses, and the measurements have not 

been corrected for either accelerometer or force gauge inertia. 

* Note that the present displacements x and 8 correspond to w and &in the 
element derivation. 
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Discussion of Results for Tests using Computer-controlled System  

The excellent set of results obtained for the sandwich beam UT justifies 

the use of the smaller Mk 3 exciting block. Comparing the size of the block 

with that of the beam, it is in fact quite remarkable that such good agreement 

could be obtained for both the modulus and the phase over so many modes. The 

only significant errors occur below the first bending resonance, and these are 

--- 
restricted to those mobilities which include either rotational response or 

excitation. This is because points 1, 2, A and B on the block are a long way 

from the centre of gravity of the beam, and are at the same time grouped quite 

closely together, so the rigid-body response at either A or B due to a force 

at either 1 or 2 is large and changes very little with position. Since all 

rotational information is obtained from differences of these nearly equal 

response data, it is hardly surprising that errors arise. The worst case is 

the rotational mobility— 
6 

, since this involves two differences, but although 
Me  

there is considerable scatter, the points still follow a discernable trend: 

the mobility starts off as the moment of inertia of the rigid beam, and it 

then displays an anti-resonance at about 20 Hz before going on to the first 

bending resonance around 45 Hz. This only differs from the theoretical pre-

diction because of the effect of the suspension ropes. Above this region of 

rigid-body behaviour, all the responses have been measured with comparable 

accuracy, and the differences between experimental and theoretical results are 

attributable as much to errors in the finite element model as to errors in the 

measurement. However, it should be noted that this two-directional measurement 

does not include any correction for exciting block inertia along the surface 

of the beam parallel to its axis, so the extra couple applied by this force 

must obviously have some effect on the higher modes. 

The results for the two-stage beam are not so good, as often seems to be 

the case with mobility measurements on small items. However, in the case of 

the transverse mobility4- it is almost certainly the theoretical model which 
x 
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is primarily at fault, since the beam is fairly short, yet it was analysed 

using Bermoulli-Euler theory. The extra flexibility of the Timoshenko model 

would pull all the theoretical resonances down in frequency, bringing them 

closer to the measured values. At the same time, if a correction were made 

for the mass of the force and acceleration transducers, this would raise the 

measured resonances very slightly. On the whole, the torsional mobility--  
MA  

shows closer agreement between the measurements and the theory, although there 

is more scatter of the measured points. This scatter represents breakthrough 

fiReore 
A 
 rcA 

from the bending resonances, which are 	completely uncoupled from the 

torsion, and it arises because the numerical calculation that yields the 

mobility matrix is ill-conditioned around any resonance, so that small errors 

in the measured data are greatly magnified. The fact that the measured tor-

sional resonant frequency is slightly lower than the theoretical one is almost 

certainly due to the inertia loading applied to the beam tip by the trans-

ducers -- particularly the force gauge. 

It should be noted that it is not in fact necessary in this particular 

case to perform two measurement runs. As the x and 8 motions are uncoupled, - 

the two runs should yield responses which are equal in magnitude but opposite 

in sign, and it is the small experimental differences which have led to the 

breakthrough of the bending resonances into the torsional mobility, and vice 

versa. Thus, whenever the motions are known to be uncoupled, it is both 

quicker and more accurate to only perform a single measurement run. 

Conclusions  

The tests with the computer-controlled system have demonstrated the 

feasibility of the single-shaker multi-directional measurement technique 

developed here. As the measuring system, the shaker, and the transducers are 

all standard pieces of equipment, it is only necessary to have a range of 

exciting blocks to suit different structures or components. 
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Although only the two-directional measurements have been fully auto-

mated in this way, there is no reason why the system should not be program-

med to deal with the three-directional case. This would entail saving the 

results from two previous runs before performing the processing during run 3. 

Even if there were only a single tape reader available, one could still read 

in the run 1 data during run 2, and then produce a new tape containing both 

the run 1 and the run 2 data, ready for use in run 3. 

Further discussion and conclusions relating to multi-directional mea-

surements and their use in structural analysis are given in Chapter 7. 



147 

CHAPTER 5  

MULTI-DIRECTIONAL MEASUREMENTS WITH A TWIN SHAKER  

Introduction  

The multi-directional measurement technique outlined in the previous chapter 

makes use of a single shaker to provide either two or three different conditions 

of excitation, and the responses to these separate excitations are then combined 

to give the required point mobility matrix. In the case of the x-0 measurements 

described in Section 4.5, a force F was first applied to one end of the exciting 

block, and then to the other end. Ignoring the effect of block inertia, the 

response of the structure to a force Fx  = 2F or to a couple Me  = 2Fe was obtained 

by suitably superposing the responses to the separate inputs. A logical 

alternative to this numerical superposition is to actually apply the two forces 

simultaneously using a twin-shaker unit: this comprises a matched pair of small 

shakers mounted in a frame and connected electrically in series, so that each 

takes the same current and hence gives nominally the same force. The two shakers 

are used to drive opposite ends of the block, and they may run in phase to apply 

a force F
x 
or in anti-phase to apply a couple Me. The purity of the force or 

couple depends upon the matching of the shakers, and it is also affected by the 

dynamics of the system under test. 

The measurement technique currently used by Smith(n)*also employs a twin 

shaker, but differs from that described here in that he takes no force measure-

ments explicitly. Instead, he considers the complete shaker/exciting-block 

system as a multi-directional vibration source, which in accordance with 

Thevenin's theorem
(23) 

must comprise a force generator in parallel with an internal 

impedance
+ 

The latter is effectively the rigid-body impedance of the exciting 

block, which is known either from theory or from simple tests, and the properties 

of the force generator may be determined by measuring the response of the free 

* Note that References for Chapters 3 to 7 are listed on Page 185. 

Smith actually develops his theory in terms of a Norton source, which comprises 
a velocity generator in series with an internal mobility. However, these two 
source models are closely related. 
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exciting block when excited by the pair of shakers. Provided that this free 

velocity measurement can be made in all directions with sufficient accuracy, one 

obtains the full multi-directional properties of the force generator. However, 

in the subsequent development of the technique Smith makes various assumptions 

to simplify the calibration and the analysis, and in the process he assumes a 

diagonal free velocity matrix. This is the equivalent of assuming a pure excit-

ation in each of the translational and rotational directions, so the initial 

generality of the method seems to be sacrificed. Nevertheless, he has obtained 

some quite reasonable results. 

Provided that the structure under test is far less mobile than the exciting 

block, and that the shakers are fairly well matched, twin-shaker excitation does 

have the advantage of yielding the mobility data for the x and 0 excitations 

directly, without the need to unscramble. the results obtained for excitation in 

several directions. With the addition of a simple sum/difference unit one is 

able to plot the required mobilities directly using standard analogue impedance 

measuring equipment. 

However, these directly measured responses do not always represent the 

true mobility of the structure, and it is sometimes necessary to analyse the 

results on a computer, just as with the single-shaker method. For instance, if 

there is strong coupling between the x and 0 motions, any impurity in the excit-

ation due to slight mismatching of the shakers may significantly affect the 

results. As an example, consider a couple excitation with the shaker axes 100 mm 

apart (= 2e) and with 10 % mismatching. If the true 	and 	mobilities are 
'x 

numerically equal in magnitude, the 0 response to the net force Fx  = (F, + Fa) 

is as great as the response to the couple Me  = (F, - Fa).e 
*
. Depending upon 

their relative phases these may either add together or cancel each other out, so 

that the measured value of 
M 
 may either be 6 dB too high or many dB too low. 

* Note that for a couple excitation the force F2  is 180°  out of phase with F l . 
This is why a positive sign is associated with Fa  in the expression for Fx  
and a negative sign in the expression for Me. 
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When testing quite mobile items the exciting block inertia may have a 

significant effect upon the measurements, and a full inertia correction may be 

necessary. This is especially the case with small items, such as a short beam 

or turbine blade whose length may only be 30 cm or even less. Another problem 

with such items is that it is not feasible to bring the shaker axes closer than 

about 75 mm (without constructing special miniature shakers), so the block size 

cannot be reduced as much as might be desirable. This difficulty does not arise 

with the single-shaker method. 

The measurement of the mobility in a direction along the surface of the 

test structure is in no way facilitated by the use of a twin shaker, since one 

can still only apply the excitation to the block at some finite distance above 

the surface. For full accuracy, the results so obtained must be transformed 

down to the surface. 

Thus, if the full inertia cancellation and response transformation are to 

be carried out there appears to be only a limited advantage in using the twin 

shaker, since the measured data still require processing in a computer. The 

only real advantage lies in the application of quasi-pure forces and couples, 

which may lead to better results; at least if both force inputs are measured 

and the data are fully processed. 

The twin-shaker technique is therefore presented as an alternative, and 

not as a replacement for the single-shaker technique. Future experience with 

these two methods will indicate the applications for which each is preferred. 

Tests with Twin Shaker  

The shaker unit is shown in Fig. 5.1, and it comprises two Derritron VP2 

shakers mounted in an aluminium frame. As the shakers must push on each end of 

the block, the distance between their centres has been made 100 mm. Owing to 

their necessarily small size, they are each limited in their force output to 

about 11 Newtons. 
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A test has been carried out on the previously considered 1.83 m steel 

beam using this twin-shaker unit in conjunction with the Mk 3 exciting block. 

As before, the beam was turned on its side and excited in the horizontal plane. 

The results are presented in Figs. 5.2 to 5.6. 

The x and e excitations were carried out with the twin shaker, but the y 

excitation was performed with a single shaker. In the case of the x and 

excitations both the force inputs to the block were measured, and the ratio of 

these forces is shown plotted against frequency in the upper graph of Fig. 5.2. 

The measured data have not been fully corrected, either for impure x or 8 

excitation, or for the block inertia. Thus in the case of the x excitation the 

force F
x 

is taken to be (F1  + F2), whilst for the 6 excitation the couple M8 
 

— 
is taken as (F1  — F2  ).e — ( F L--- 

2 
 F2).2e 

*
. The force for the y excitation is 

just F
Y 
 = F 

I , but a couple correction is applied using the results of the 8 

excitation. 

On the response graphs, the points marked with the symbol (.) correspond 

to no block inertia correction. Those marked with a (x) were obtained on the 

assumption of a constant force ratio, such that F2  = ±k F1 , the factor k being 

obtained from the force ratio graph. These points have only been marked in 

cases where they differ from the first set. The final set of points, marked 

with the symbol (0), corresponds to partially inertia-corrected results. Hence 

for x excitation the inertia correction has been applied in the x direction 

only, whilst for 8 excitation there is only a correction in the 0 direction. 

For y excitation the correction is in both the y and 8 directions. 

The various assumptions and the partial correction of the results have 

been made in order to ascertain the sort of accuracy obtainable from direct x 

and 8 tests, such as might be carried out using analogue equipment. 

In addition to these tests on the beam, a comprehensive series of measure-

ments has been carried out on the 135 Kg mass considered in the previous chapter, 

and these are completely described in Appendix IV (Page 474). The same twin- 

* Note that for a force excitation the force Fa  is in phase with F1 , and for 
a couple excitation it is in anti-phase with F1. 
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FIG 5.5 
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shaker unit has been employed in conjunction with a slightly larger exciting 

block, designated Mk 4, in order to measure 12 selected elements of the full 

6 x 6 inertiance matrix for a point on top of the mass (not the same point as 

before). The results have not been processed, so they indicate the sort of 

accuracy one may expect to achieve with direct measurements on a low mobility 

structure, besides yielding useful information on the effective stiffness of 

the exciting block and on the effect of accelerometer cross sensitivity. These 

measurements were carried out in order to assess the validity of some measure-

ments made on a stiff receiver structure (See Part 4, Chapter 14, Section 14.5). 

Discussion of Results for Test with Twin Shaker on 1.83 m Steel Beam  

It is seen from the upper graph of Fig. 5.2 that with the twin shaker 

operating either in the force or in the couple mode the ratio of the two input 

forces to the block is fairly constant. Taking account of the factor 1.04, 

which is the gain ratio between the two force channels, the resulting mean force 

ratio is 1.05 for both modes of operation. The scatter about the mean is mostly 

within ±0.5 dB, with a phase scatter within ± 2°. The quite large error 

apparent at 160 Hz is caused by the resonance of the beam influencing the 

individual force inputs, and if the plot were continuous this sort of behaviour 

would probably be apparent at each beam resonance. It can be concluded from 

this graph that even with the unmatched pair of shakers chosen for the experi-

ment the force and couple excitations so produced were almost pure. 

There is quite good agreement between the measured results and the theory. 

However, apart from certain low frequency errors, the single-shaker measurements 

with exciting block Mk 2 yielded equally good agreement; and even better results 

have been obtained using a single shaker with the Mk 3 block (These latter 

results have not been included in Chapter 4, but they may be found in Reference 

24). To be strictly correct, the comparison is not perfectly fair, since the 

twin-shaker results have not been fully corrected either for the block inertia 
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or for impurity of the excitation. The former is probably the greatest cause 

of error, and it produces the downward shift in all the resonant frequencies. 

Associated with the shift in the peaks is a slight distortion of the curves, and 

this causes errors as large as 3 or 4 dB over quite a wide frequency band above 

each resonance. It is interesting to note the effects of the partial inertia 

correction: A correction in the x direction when exciting in the x direction 

causes a large improvement in the results, and gives very good agreement with 

theory, whilst corrections in the 0 or y directions only, when exciting in these 

directions, produce hardly any improvement over the uncorrected results. Thus, 

for this particular system it is apparent that the principal inertia effect is 

due to motion of the exciting block in the x direction. Whilst this can be 

corrected directly when exciting in this direction, the same is not true when 

exciting in the other directions. For instance, when exciting in the 0 direction 

the total effective excitation is the couple input from the shakers, plus the 

x force due to the block inertia. The response to this combined input cannot 

be unscrambled on-line, so the results must be recorded and processed by computer 

after completion of the test. 

The results obtained by using the measured value of F1  and assuming a 

constant force ratio only differ slightly from those obtained by measuring and 

using both the forces. Hence it is evidently sufficient to measure only one of 

the forces and to determine the mean force ratio from a subsidiary test. If the 

shakers are well matched the ratio may be taken as ± 1. 

Where disagreement between measurement and theory occurs below about 40 Hz, 

the causes are probably the effects of the suspension ropes, accelerometer 

cross-sensitivity, and the rather weak and very noisy acceleration signals. 

These signals were particularly noisy for the case of a couple input, the useful 

signal being as much as 20 dB down behind the noise. 

The only other noteworthy disagreement occurs at around 90 Hz on the k 
Me  

curve, where a trough in the response has been replaced by a small peak. This 
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was observe to be caused by a lateral resonance of one of the push rods on a 

rather "sloppy" vibrator suspension. Although this resonance was also noted 

in the case of force excitation, it appears only to have a noticeable effect on 

the results for the couple. 

Conclusions  

The results given in this chapter and in Appendix IV show that it is 

possible to make reasonable direct measurements of both linear and rotational 

mobilities using a twin-shaker unit, even on very low mobility structures where 

the small forces generated by the shakers can produce very little motion. 

Further discussion and conclusions relating to multi-directional measure-

ments and their use in structural analysis are given in Chapter 7. 
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CHAPTER 6  

COUPLING OF BEAM TO SPRING-SUPPORTED BLOCK 

Introduction  

The work of the previous two chapters has demonstrated the feasibility 

of measuring the multi-directional response properties of components, and we 

now wish to assess whether such measured data may be used directly for 

predicting the response of an assembly of components. We shall therefore 

take the mobility data obtained with exciting block Mk 2 (250 mm block) for 

the beam and the spring-supported block individually, and we shall use these 

data to predict the mobility of the system formed by bolting the end of the 

beam to the block (see Fig. 6.1). The component data are combined according 

to the rules of mobility or impedance coupling, and the procedure for this 

simple case is illustrated below. 

Coupling Procedure and Results  

For the beam and the block individually we have the mobility relations 

Block 
Mobility 

•b 
Y
b 
11 

b 
Y12 

b 
Y13 F

x 

( 6 . 1 ) 

•b 
Y21 Y22 Y23 F
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Ab  
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Y31 Y32 Y
33 

••■••■• 

M
e 

where all the matrix elements are complex numbers, to take account of both 

modulus and phase. 



Z a 
11 

Z a 
12 

Za 
13 

Z a 
14 

Z a 
21 

Z a 
22 

Z a 
23 

Z a 
24 

Za 31 
Z a 

32 Z a 
33 

Za 
 

34 

a 
Z41 

Z
a 
42 

a 
Z43 

Z a 
44 

• a 
x 

• a 
y 

ea 

is 

Fa  Fx 

Beam 
Impedance 

F
a 
Y 

a 
Me  

F
a 

161 

By inverting the mobility matrices we obtain the impedance relations 

.b 
Fx 

Z11 Z12 Z13 

Block F
b 

• Z
b Zb 

.b 

Impedance 21 22 Z 23 

Mb  zb zb Z
b b 

e 31 32 33 (6.2) 1 ■ •■• ■■■■ 

The components may now be joined together by combining these impedance 

data in such a way as to satisfy the rules of force equilibrium and displace-

ment compatibility at the coupling point. This results in the following 

matrix equation for the response of the coupled system: 

-- 
a 	b 
Z11-1- Z11 

a 	b 
Z121-  Z12 12 
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-- 
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ab. 	. 
where k = x = x = ,a b = 3.1,  6  = ea_ eb 

and F'
x 

F
Y 2 
 M and F;  are 

externally applied forces. 

Apart from the fact that we are here working with velocities rather 

than displacements, this impedance coupling technique is exactly the same 

as the dynamic stiffness coupling explained in Chapter 2 (Part 1). In fact, 

the computer program COUPLE1 could be used for this problem. 
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As an alternative to the above, one may employ the "General Impedance 

Method" used by Klosterman
(25)(26)(27)*

. This permits the formation of a 

system dynamic matrix directly in terms of subsystem data which are either in 

mobility or impedance form. Hence, in the present case we may form the system 

matrix directly in terms of the mobility matrices (6.1), without the need for 

an initial inversion to obtain impedances. Using this method, the response of 

the coupled system is given by the following matrix equation: 

1 0 0 0 
Y12 

 
Ya Y

11 11 12 13 
a a a 0 1 0 0 Y21 Y22 Y23 
a a a o 0 1 0 Y31 Y32 Y33 

0 0 0 1 
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(6.4) 
Although it is not necessary to invert the subsystem mobility matrices, the 

complex system matrix is now 7 x 7 instead of 4 x 4, since the internally trans-

mitted forces Fx
b 
 , Fb  and Meare also included in the response vector. This 

increase in matrix size is unimportant in the present small problem, but it may 

significantly lengthen the solution time when a large number of co-ordinates are 

involved. 

The choice of technique is largely a matter of personal preference, since 

they both yield the same results. However, the first approach has been used 

here. The results of the coupling procedure are shown in Figs. 6.2 to 6.9,where 

they are compared with both the directly measured and the theoretically predicted 

responses. In addition to the full coupling procedure using co-ordinates x, y 

and 8, the process has been repeated using less co-ordinates in order to assess 

the effect of using incomplete data, such as might be obtained from a standard 

uni-directional mobility test at a single coupling point. 

* 	Note that References for Chapters 3 to 7 are listed on Page 185. 
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Discussion of Results for Coupling of Beam to Spring-Supported Block  

We shall first compare the directly measured response of the coupled 

system with that obtained from theory. Only the x and t responses were measured 

and the results are given in the upper graphs of Figs. 6.2, 6.5, 6.8 and 6.9. 

The agreement is quite reasonable, although the bodily shift of the theoretical 

curves to the left is a little puzzling. It would tend to indicate a mis-estimate 

of the inertia properties of the block, since the accuracy of the theoretical 

beam data has been proved by the various multi-directional tests. The difference 

may also be partly attributable to the fact that the point measurements were 

made with separate force and acceleration transducers, mounted side by side. 

Although the distance between the force gauge and the accelerometer was only 

27 mm, this could have a noticeable effect upon the anti-resonant frequencies, 

and it might be a possible reason for the differences of up to 5 dB between the 

two transfer responses, which should of course be identical in accordance with 

the reciprocal theorem. 

We shall next compare the response predicted from the component measure-

ments with that measured directly on the coupled system. Referring to the lower 

graphs of Figs. 6.2 and 6.5, it is seen that for frequencies above about 120 Hz 

the full x-y-8 coupling gives very good agreement, both as regards the general 

level of the mobility and the positions of the resonances. The slight disagree-

ment at the lower frequencies is probably almost entirely due to errors in the 

measured component data. It is unlikely that it might be due to imperfect 

coupling between the components, since both the beam and the exciting block 

were attached to the steel mass in the same way, using the same fixing bolts. 

Also, imperfect coupling would probably affect the results more at the high 

frequencies than at the low. The 14 % upward shift in the 84 Hz resonance may 

be due primarily to the jump in the measured 1-and A data for the mass at 
Me 	Me  

around 75 Hz. From the lower graph of Fig. 6.5 it is seen that the 36.5 Hz 

In the present discussion, the term "predicted response" is used for the 

response predicted from measured component data, and not for the theoretical 

response. 
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resonance has suffered an 8 % upward shift, but this is less surprising, in 

view of the low frequency errors in the measured beam data. 

It is interesting to look now at the upper graphs of Figs. 6.3 and 6.6, 

which show the effect of using only a single coupling co-ordinate. These are 

the results that one would obtain by performing single-point coupling of the 

beam to the mass using standard uni-directional mobility data measured in the 

x direction on the two components . This single co-ordinate coupling can lead 

to predictions which are nowhere near the truth, and to allow for the transmis-

sion of couples between components it is necessary either to include rotational 

co-ordinates or to consider two-point coupling, with a translational co-ordinate 

at each point. To see the effect of introducing the rotational co-ordinate, let 

us now consider the upper graph of Fig. 6.4, which shows the response predicted 

assuming x-8 coupling. The predicted results are given with the theoretical 

results, rather than with the directly measured response, but if we also consider 

the corresponding graph for x-y-0 coupling (lower graph of Fig. 6.3) we can see 

quite clearly that there is hardly any distinguishable difference between the 

two sets of results. The general conclusion to be drawn from this observation 

is that whereas it is usually necessary to consider more than just a single co-

ordinate when applying the mobility coupling procedure, it is rarely necessary 

to go to the other extreme and consider every possible co-ordinate. 

Regarding this use of limited data for coupling, it is also interesting 

to consider Fig. 6.7, which shows the 	responses predicted using x coupling 
F 

and 0 coupling respectively. Comparing these results with those obtained using 

x-y-0 coupling (lower graph of Fig. 6.6), it is readily seen that the 0 coupling 

yields results which are much closer to the x-y-0 results than those predicted 

using x coupling. Hence, in this case the 0 co-ordinate is predominant, the x 

co-ordinate is secondary, but must still be included, and the y co-ordinate is 

quasi-redundant and may safely be neglected — unless one needs to know the y 

response. 

ie. Linear mobility data measured with a conventional impedance head or 

with separate force and acceleration transducers. 
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The transfer mobilities relating forces and responses in the x and 

directions are shown in Figs. 6.8 and 6.9, where the upper graphs give the 

directly measured results and the lower graphs give the results predicted from 

the measured component data. These are each compared with the theory. As with 

the point response data, the results predicted from the coupling procedure 

compare very well with the directly measured results above about 120 Hz. It is 

interesting to note that these predicted results do not follow the theoretical 

curve between the resonances, and that they disobey symmetry in the same way as 

the directly measured results. The agreement at frequencies below about 120 Hz 

is not so good, even discounting the resonant frequency shifts previously 

mentioned, and this is primarily due to errors in the component mobility measu-

rements. 

On all the predicted mobility graphs it is seen that there are a number 

of erroneous points around each of the resonant frequencies of the original free 

beam, or more specifically, around the resonant frequencies of the beam/exciting-

block system . The scatter of these points is a result of the numerical ill-

conditioning of the beam data in the neighbourhood of these resonances, and in 

the present type of problem, where the modes of the assembly are well separated, 

the erroneous points may safely be ignored since their origin is clear. 

In the case of thepoint mobility 4- (Fig. 6.2) at the junction between 
2x 

the beam and the mass, the scatter is far less pronounced, and this is probably 

due to the fact that the mobility of the mass is predominant at this point, 

thereby drowning the effect of the ill-conditioned beam data. The very subdued 

peak at 55 Hz also tends to indicate that the damping associated with the rubber 

pads beneath the mass has helped to damp out the pseudo-resonances associated 

with inaccuracies in the data. This is also apparent from the 	graph (Fig. 6.5) 

which exhibits very little scatter around 55 Hz, but quite significant scatter 

around 155 and 300 Hz. The decrease in the effect of the damping at the higher 

* 	Resonant frequencies (Hz). Beam + exciting-block: 55, 155, 300 
Beam alone: 60, 166, 322 
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frequencies is to be expected, since the boundary conditions have a diminishing 

influence on the behaviour of a beam as the frequency is increased . 

Conclusions  

The results show that it is feasible to use measured component data directly 

in order to predict the response of an assembly. However, there are some obvious 

limitations, and these will be discussed further in Chapter 7. 

See lower graph on page 401 (Part 4, Chapter 15, Fig. 15.19). Curve Q8  

relates to an effectively undamped beam supported at each end by a damped 
rubber block (7=0.1). The flexural resonances of the beam occur at 175, 
455 and 850 Hz, and although the first peak is heavily damped, the second 
and third peaks become progressively much sharper. 
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CHAPTER 7  

SUMMARY AND CONCLUSIONS FOR MULTI-DIRECTIONAL MOBILITY MEASUREMENTS  

7.1 GENERAL DISCUSSION AND SUMMARY  

The work described in Chapters 3 to 6 has shown that the measurement of 

multi-directional mobility data is feasible, and that such data can be mea-

sured with sufficient accuracy for their use in predicting the response of a 

simple assembly. We shall now consider the main findings of this study and 

look at the developments that have taken place during the four years since 

most of this work was carried out. 

The single-shaker multi-directional measurement technique has yielded 

fairly accurate results, even using an exciting block only 120 mm in length 

(block Mk 3). This contrasts with the findings of Smith(28)*, who abandoned 

his attempt at using a single shaker after experiencing the same numerical 

difficulties as were encountered with the Mk 1 block. An advantage of this 

method is that only a conventional shaker is required, so there is no restric-

tion on the level of the force input, and also alignment is easier. The big-

gest disadvantage is that the data must be processed in order to obtain the 

required mobilities, but the same is true of the twin-shaker approach when the 

results are to be fully corrected for exciting block inertia and impure exci-

tation, and if one uses a computer-controlled measuring system this process-

ing is easily carried out in the laboratory anyway. 

The twin-shaker technique has also given quite good accuracy and has the 

advantage of yielding linear and rotational mobilities directly, provided one 

is able to neglect the inertia of the exciting block. It is particularly 

suitable if one only has conventional analogue impedance measuring equipment 

with graphical output. A disadvantage is the need for a special shaker unit, 

which is necessarily restricted in its force output due to size limitations. 

Also, the use of two force inputs to the block means that shaker/push-rod 

stiffnesses and resonances may have a greater effect than with a single input. 

Note that References for Chapters 3 to 7 are listed on Page 185. 
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The mobility coupling exercise with the beam and the spring-supported 

mass has shown the need for accurate and sufficiently complete measured data 

for the components. A knowledge of the uni-directional dynamic characteris-

tics as given by conventional "impedance testing" techniques, is rarely suffi-

cient for this purpose, since most joints transmit both forces and couples. 

However, the exact number of co-ordinates to be used in the coupling process 

is a personal choice, based upon an assessment of the importance of each co-

ordinate in a given problem. One should always remember that the measurement 

of multi-directional mobility data is relatively time consuming, and it leaves 

one with large quantities of information, so it is advisable to use only as 

many coupling co-ordinates as are absolutely necessary for acceptable accuracy 

when performing the coupling. When using measured data directly, it should 

be borne in mind that any small errors in the component data will inevitably 

be magnified by the numerical coupling process, so one must balance the loss 

of accuracy caused by restricting the number of co-ordinates against the 

larger numerical errors associated with using more co-ordinates. 

These encouraging results provided the incentive for further studies in 

this area, and this next phase of the work has been carried out by P.T. Gleeson, 

also of the Imperial College Dynamics Group. He started with the single-shaker 

measurement technique, as presented in Section 4.5, and has taken measurements 

on a number of steel beams
(29)

. As these were smaller than the 1.83 m beam 

considered here, it was necessary to reduce the size of the exciting block, 

and this led to a number of difficulties. Three blocks have been developed
* 

in working towards the "ideal" design, and various investigations have been 

carried out into the effects of accelerometer cross sensitivity
(21)

, the 

inter-action between force and acceleration transducers, etc. The measured 

* Blocks Mk 4, 5 and 6. Owing to a lack of communication, Gleeson's initial 
block was given the same designation (Mk 4) as the large block used for the 
twin-shaker tests described in Appendix IV. 
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beam mobilities were subsequently used to predict the response of a two-

beam assembly, both in the form of an L and in the form of a long straight 

beam
(13) 

but the results were not encouraging, and were particularly 

sensitive to errors in the 	mobilities of the two component beams. 

Bagley
(30) 

has performed a similar coupling exercise with beams, utilising 

just transverse mobilities and two coupling points, and he has been reason-

ably successful in predicting natural frequencies and mode shapes, but he 

does conclude that one cannot expect good results if the assembly has natural 

frequencies which are either closely spaced or are near those of any of the 

components. Even when using purely theoretical component data, errors some-

times arise at frequencies around the component resonant frequencies. Lutes 

and Heer
(31) 

have developed a special coupling algorithm which overcomes 

this problem of ill-conditioning, and this might conceivably improve predic-

tions from measured data as well. However, it would appear that multi co-

ordinate coupling using raw measured data can only be expected to yield re-

liable results when the various components are not all highly resonant
*
. 

The much better results obtained here for the beam and the mass are probably 

a consequence of the fairly docile nature of the mass, and one might expect 

similar agreement for any assembly of damped components. 

Klosterman
(27) 

has looked at this problem of errors in the component 

data, and has concluded that the only way of obtaining reliable response 

predictions from measured data is to determine the modal characteristics of 

the components. From this modal information one is able to generate suitably 

smoothed component mobility data. It is important to note that the elements 

of any mobility matrix are related to one another in a special way, so it is 

only necessary to measure one column of the matrix in order to deduce all the 

other elements. If the inter-relationship constraint imposed by the modal 

representation is violated by even one or two per cent, this leads to signi- 

* There is no problem in the case of single co-ordinate coupling. A good 
example of this given by Silva(32), who has predicted the response of a 
symmetrical cross-beam assembly from the transverse point mobilities 
measured at the centres of the two beams. 



179 

ficant errors in the response prediction for the assembly of components, so 

it is perhaps hardly surprising that difficulties have been experienced when 

using the raw data for two highly resonant beams. 

Faced with this problem, Gleeson developed an alternative two-directional 

measurement technique
(13) 

which takes account of the special relationship 

X between the elements of the point mobility matrix: he measures-F. and either 

 
or 

X
and then derives the other two elements of the matrix from these. 

This has yielded very much improved results, both for the individual component 

mobilities and for the predicted response of an assembly. The modal identific-

ation process yields receptance (or mobility) series for the measured matrix 

elements, and is suitable for undamped and lightly damped components  

A fairly general identification program has recently been developed by Gleeson 

for use on the PDP 8E mini computer. This is written in FOCAL and is described 

in detail in Reference (35). Although no attempt has so far been made to 

extend this multi-directional measurement technique to more heavily damped 

systems, a suitable identification program based on polar response plots has 

been developed by Silva
(36)* 

and this has been used successfully for identify-

ing a complex helicopter structure(38). However, the sandwich beam example in 

Section 4.5 shows that the direct measurement technique can yield good results 

for a damped system, so it may not be necessary to go through the lengthy 

process of identifying a large number of damped modes. The other type of 

system for which the direct measurement is appropriate is any large dispersive 

system which does not obey resonant vibration theory (eg. buildings, ships, 

or an elastic half space). 

If the measured component data are to be used in the analysis of an 

assembly, these data are obviously required in a digital form, so one should 

either use a digital measuring system or an analogue system incorporating an 

analogue-to-digital converter. An analogue system with purely graphical 

* 	See also References (27) and (37) 

rs 
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output is not to be recommended, since one loses accuracy in the plotting 

and it is still necessary to digitise the data afterwards, either manually 

or using a digitising table (which measures the X and Y co-ordinates of 

points on a graph and punches these onto either cards or paper tape). What-

ever the system, it should incorporate automatic frequency sweep and data 

output facilities. A digital system is more accurate, and it can sweep the 

frequency incrementally through an exactly repeatable range of frequencies, 

so it is certainly to be preferred. Such systems are nowadays being 

developed very rapidly, and when they incorporate a mini computer they offer 

a versatility not available with analogue equipment, since the operator is 

able to program the system to measure and process the data in exactly the 

way he wishes. 

The 1172 digital transfer function analyser currently marketed by 

Solartron Ltd. is a fairly compact unit which incorporates a built-in slow 

sweep facility, and the data may be output directly onto punched tape via a 

suitable interface. This analyser may be coupled to a mini computer in order 

to form a completely integrated system or one may take the punched tape from 

the analyser and feed this into a separate computer. It is obviously desir- 

able that a computing capability should be available in the laboratory, 

either in the form of a mini computer or in the form of a link with a large 

central computer. This permits the processing of direct measurements or the 

identification of measured response on the spot, while the test items are 

still available, so it allows the final results to be checked and measure-

ments to be immediately repeated if necessary. An alternative to this 

purpose-built analyser is a more general type of frequency response analysis 

system, such as is now available from both Hewlett Packard and General 

Radio. Whereas the Solartron analyser incorporates digital hardware to 

perform a slow incremental sweep and filter and measure the signals, these 

general-purpose systems use a mini computer to do everything, so they 
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rely completely on software. This offers the possibility of either perform-

ing a slow sweep for steady-state tests, or of using the digital fast sweep 

testing technique
(39)(40)(41), 

 which considerably reduces the testing time 

-- though at the cost of reduced accuracy. 

With the improvements in electronic equipment for measuring the signals, 

it is now the transducers and the mechanical connections to the test item that 

are the most significant sources of error. For instance, the use of a fairly 

flexible interconnection between the shaker and the force gauge (or impedance 

head) is very important when testing most grounded and lightly suspended items, 

especially if the shaker has a high lateral stiffness. However, in trying to 

reduce restraints imposed by the connection to the shaker, one must be careful 

not to employ push rods which are too flexible and resonate nicely in the 

working frequency range. Since the rod resonates laterally and is a high Q 

system, a relatively large lateral force may be transmitted through to the 

structure under test, at the same time possibly affecting the force gauge 

signal
*
. The result is a "spurious resonance" in the measured lateral res-

ponse, and very often also in the response along the excitation direction(10) 

Therefore, push rods must be carefully designed, and if necessary one may 

wrap an elastic band around the rod so as to apply damping. Although they 

are very necessary when the test item responds in several directions, they 

should be avoided in favour of a stiffer connection whenever the test item 

is known to respond only in the direction of application of the force (eg. 

calibration test using axially excited cylindrical mass, or central excita-

tion of a symmetrical beam). 

When making any multi-directional response measurements one should be 

aware of the cross-sensitivity limitations of the accelerometers. This is 

particularly important when one is trying to measure the response in a direc-

tion at right angles to the principal direction of motion. If the accelera- 

* Note that a force gauge which is designed to measure an axially transmitted 
force is generally also sensitive to any lateral force or couple which 
tries to rock it. 
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tion to be measured is more than about 25 to 30 dB below that in the princi-

pal direction, the majority of the accelerometer signal derives from the 

cross-axis motion, and the motion along the accelerometer axis cannot norm-

ally be measured. The exact limit depends upon the cross sensitivity of the 

accelerometer, and also upon the squareness of the mounting surface relative 

to the principal direction(21), but even with the very best accelerometers, 

which typically have a cross sensitivity around 1 %, one still cannot hope 

to measure accelerations which are more than about 35 to 40 dB below the 

principal acceleration. If very low measurements are obtained, they are 

probably caused by cancellation of the cross-axis signal by the real signal 

and are therefore suspect. Rotational response measurements are also affected 

by cross sensitivity, and it has been shown in Appendix IV that errors of 2 

or 3 dB are quite possible. 

Another source of error with accelerometers is the effect of base 

strain. Gleeson has recently discovered that this can be particularly 

significant in the case of multi-directional measurements with an exciting 

block, since the forces transmitted through the block to the test structure 

give rise to surface strain at the accelerometer attachment points, and 

this has been found to lead to errors of several dB in the low frequency 

acceleration measurements. The accelerometers used in this test were of the 

compression type and they were screwed directly down onto the block surface. 

Very much better results were subsequently yielded by the latest Bruel and 

Kjaer shear-type accelerometers, which are far less sensitive to base strain. 

However, when the compression-type accelerometers were mounted on shouldered 

studs (which kept the accelerometer base off the block surface), the results 

improved significantly and were more or less the same as were obtained with 

the directly-mounted shear accelerometers. In the case of the multi-directional 

measurements described in this report, special shouldered insulating studs 

were used for the accelerometers (though solely as a precaution against 
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earth loops!), so it is unlikely that the results were much affected by base 

strain). A similar strain effect was encountered by Gleeson when he mounted 

a force gauge and an accelerometer on the two ends of a common stud, so one 

should avoid this practice when measuring the uni-directional point mobility 

on a beam or plate: it is far better to use completely separate studs, either 

stuck or screwed in position. 

The other important sources of error in multi-directional measurements 

are the flexibility and the inertia of the exciting block. The flexibility 

only becomes significant when one is testing very low-mobility structures, 

and the results given in Appendix IV suggest that it is associated primarily 

with the foot of the block and the interface with the structure. In the case 

of exciting block Mk 4, the compressive stiffness is relatively high and is 

comparable with that of a conventional impedance head. However, it has been 

found that the effective rotational stiffness is low enough to seriously limit 

the capability for measuring low rotational mobilities. This limitation was 

immediately apparent when measurements were carried out on a very stiff steel 

structure
*
, since the rotational mobility measurements yielded the stiffness 

of the block, instead of that of the structure. The block inertia only be-

comes significant in the case of high-mobility structures, and it can be cor-

rected for when processing the measured data. When using the twin-shaker 

technique, it is possible to apply a partial correction when performing the 

measurement, by cancelling the inertia force or couple only. However, the 

full correction can only be applied afterwards, once all the multi-directional 

data have been collected. 

This discussion has covered the most important aspects of "impedance 

testing", with particular emphasis on the multi-directional measurement tech-

niques developed in the preceding chapters. However, useful supplementary read-

ing on the measurement and use of mechanical impedance (or mobility) is pro-

vided by Ewins in References (6), (7) and (8). A very comprehensive biblio-

graphy on the subject has also been compiled, and this may be found either in 

Reference (42) or in the above three references. 

* 	See Part 4, Chapter 14, Section 14.5 
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7.2 CONCLUSIONS  

From the work presented here and from the resume of subsequent develop-

ments, it is seen that the capability now exists for measuring multi-direct-

ional mobility data. The main significance of this is that it now becomes 

possible to predict the vibration response of complex assemblies, even though 

the component parts may not be amenable to theoretical treatment. Despite 

recent advances in finite element analysis, certain large structures, rubber 

components, castings and internally-stressed parts still cannot be analysed 

with any precision, especially at relatively high frequencies, but the possi-

bility of measuring the relevant multi-directional characteristics enables 

one to bypass the component analysis problem and to proceed with the more 

important analysis of the assembly. 

Multi-directional measurements are necessarily more involved than the 

conventional uni-directional variety, but the use of a computer-controlled 

system with standard testing programs has made such measurements fairly rou-

tine. It now appears that P.T. Gleeson's derived measurement technique is 

preferable for highly resonant components, but there is still a place for 

the Author's direct measurement techniques in the case of damped components 

and large dispersive structures. Derived multi-directional data should be 

used when analysing undamped assemblies, but directly measured data may still 

be used for components which are not highly resonant. 



185 

REFERENCES FOR CHAPTERS 3 TO 7 (PART 2)  

1. Noiseux, D. U. and Meyer, E. B., "Application of impedance theory and 

measurements to structural vibration", Bolt, Beranek and Newman Inc., 

Report 1562, Aug. 1968 (Alternatively, see Tech. Report AFFDL-TR-67-182) 

2. Noiseux, D.U. and Meyer, E.B., "Applicability of mechanical admittance 

techniques", Shock and Vibration Bulletin, No. 38, 1968 

3. Ewins, D. J., "The whys and wherefores of mechanical impedance measure-

ment", Solartron Electronic Group publication, 1973 

4. Ewins, D. J. "A short guide to mechanical impedance testing", 

Solartron Electronic Group publication, 1974 

5. Ewins, D. J. "Some whys and wherefores of mechanical impedance testing", 

SEE Symposium on Dynamic Testing, Imperial College, London, Jan. 1971 

6. Ewins, D. J., "Measurement and application of mechanical impedance data: 

Part 1 - Introduction and ground rules", Jnl. of Society of Environmental 

Engineers, Vol. 14-4, Dec. 1975 

7. Ewins, D. J., "Measurement and application of mechanical impedance data: 

Part 2 - Measurement techniques", Jnl. of SEE, Vol. 15-1, March 1976 

8. Ewins, D. J., "Measurement and application of mechanical impedance data: 

Part 3 - Interpretation and application of measured impedance data", 

Jnl. of SEE, Vol. 15-2, June 1976 

9. Kerlin, R.L. and Snowdon, J.C., "Driving-point impedance of cantilever 

beams - Comparison of measurement and theory", JASA, Vol. 47, No. 1 

(Part 2), 1970 

10. Silva, J. M. M., "On the influence of the push-rod in mechanical impedance 

testing", Imperial Collegue Dynamics Group report, Oct. 1975 

11. Smith, J. E., "Measurement of the total structural mobility matrix", 

Shock and Vibration Bulletin, No. 40, 1970 

12. Lemon, J. R. (of Structural Dynamics Research Corporation), Private 

communication. 



186 

13. Ewins, D. J. and Gleeson, P. T., "Experimental determination of multi-

directional mobility data for beams", Shock and Vibration Bulletin, 

No. 45, Part 5, June 1975 

14. Bishop, R. E. D. and Johnson, D. C., "The mechanics of vibration", 

Cambridge University Press, 1960 

15. O'Hara, G. J., "Mechanical impedance and mobility concepts", JASA, 

Vol. 41, No. 5, May 1967 

16. O'Hara, G. J. and Remmers, G. M., "Shipboard shock fundamentals (Some 

thoughts on mobility and impedance)", Report on NRL Progress, June 1965, 

pp 24-25 

17. Martin, A. and Ashley, C., "A computer-controlled digital transfer 

function analyser and its application in automobile testing", SEE 

Symposium on Dynamic Testing, Imperial College, London, Jan. 1971 

18. Ewins, D. J. and Gleeson, P. T., "A computer-controlled mechanical 

impedance facility for vibration teaching and research", 1st British 

Conference on Vibration Teaching and Research, Sheffield Polytechnic, 

July 1975 

19. Henshell, R. D. and Warburton, G. B., "Transmission of vibration in beam 

systems", Intl. Jnl. of Numerical Methods in Engineering, Vol. 1, 1969, 

pp 47-66 

20. "Tico LF pad materials: Technical data on dynamic and static properties", 

Booklet issued by the James Walker Organisation, 1968 

21. Gleeson, P. T., "Limitations of accelerometers in the measurement of 

rotational mobilities", Imperial College Dynamics Group Report No. SRC/ 

DA/1, Feb 1973 

22. Cottney, D. J., "The receptance analysis of disc, blade and shroud 

vibration", Ph.D. thesis, University of London, April 1975 

23. Harris, C. M. and Crede, C. E., "Shock and vibration handbook", Vol. 1, 

Chapter 10, McGraw-Hill, 1961 



187 

24. Sainsbury, M. G., "Mobility measurements for the vibration analysis of 

coupled structures", Imperial College Dynamics Group Report No. 3 on 

MOD Contract No. DC 20(1)/55384/69, December 1971 

25. Klosterman, A. L. and Lemon, J. R., "Building block approach to 

structural dynamics", ASME publication VIBR-30, 1969 

26. Klosterman, A. L., "A combined experimental and analytical procedure 

for improving automotive system dynamics", SAE publication 720093, 1972 

27. Klosterman, A. L., "On the experimental determination and use of modal 

representations of dynamic characteristics", Ph.D. thesis, University of 

Cincinnati, 1971 

28. Smith, J. E., "Measurement of the total structural mobility matrix", 

Phase I, US Navy Marine Engineering Laboratory Report 360/66, Dec. 1966 

29. Gleeson, P. T., "Multidirectional mobility measurements on beams", 

Imperial College Dynamics Group Report, November 1973 

30. Bagley, R. L., "The analysis of two simple composite structures using 

mechanical admittance methods", Technical Note 1971-40 (M.Sc. thesis), 

Lincoln Laboratory, Massachusetts Institute of Technology, September 1971 

31. Lutes, L. D. and Heer, E., "Receptance coupling of structural components 

near a component resonance frequency", Technical Memorandum 33-411, 

Jet Propulsion Laboratory, California Institute of Technology, Oct. 1968 

32. Silva, J. M. M., "The influence of the joint on the vibration response 

of a cross-beam assembly", M,Sc. thesis, Imperial College, University 

of London, December 1974 

33. Gleeson, P. T., "Factors affecting the accuracy of the modal identifi-

cation process", Imperial College Dynamics Group Report, March 1976 

34. Gleeson, P. T., "Modal identification in a limited range of frequencies", 

Imperial College Dynamics Group Report, March 1976 

35. Gleeson, P. T., "Modal identification of lightly damped systems -- User's 

guide to program IDENT", Imperial College Dynamics Group, June 1976 



188 

36. Silva, J. M. M., "Analysis of vector response loci -- User's guide for 

program POLAR-1", Imperial College Dynamics Group, March 1975 

37. Gaukroger, D. R., Skingle, C. W. and Heron, K. H., "Numerical analysis 

of vector response loci", Journal of Sound and Vibration, Vol. 29, No. 

3, 1973, pp 341-353 

38. Silva, J. M. M., "Experimental determination of the mechanical impedance 

of an airframe", Imperial College Dynamics Group report in 2 parts, on 

Research Contract K/Al2/1068, 1976. Part 1: "Experimental procedure 

and presentation of results". Part 2: (a) "Analysis and interpretation 

of results", and (b) "System identification and modelling" 

39. White, R. G., "Measurement of structural frequency response by transient 

excitation", Technical Report No. 12, Institute of Sound and Vibration 

Research, University of Southampton, 1969 

40. White, R. G., "Evaluation of the dynamic characteristics of structures 

by transient testing", Journal of Sound and Vibration, Vol. 15, No. 1, 

1971 

41. Holmes, P. J., "Mechanical impedance measurement by the transient 

loading technique", Technical Report No. 53, Institute of Sound and 

Vibration Research, University of Southampton, 1972 

42. Ewins, D. J., "A classified bibliography of mechanical impedance", 

Solartron Electronic Group publication. 



189 

PART 3  

THE FINITE ELEMENT VIBRATION ANALYSIS OF MULTI-

LAYER DAMPED BEAMS IN FLEXURE AND TORSION  

CONTENTS  

Chapter 	 Page  

	

8 	GENERAL INTRODUCTION TO MULTI-LAYER DAMPED BEAMS 	191 

	

9 	BENDING FINITE ELEMENT FOR SYMMETRICAL 5-LAYER BEAM 

9.1 Introduction 	 199 

9.2 Nodal Co-ordinates and Displacement Functions 	201 

9.3 Strain and Kinetic Energies 	208 

9.4 Formulation of Energy Expressions in terms of 	212 
Assumed Displacement Functions 

9.5 	Stiffness and Inertia Matrices for the Element 	215 

9.6 	Reduction of Stiffness Matrix from 7 to 6 	217 
Degrees of Freedom 

9.7 Summary 	 219 

	

10 	BENDING FINITE ELEMENTS FOR UNSYMMETRICAL 
3- AND 5-LAYER BEAMS 

10.1 Introduction 	 222 

10.2 Nodal Co-ordinates and Displacement Functions 	222 

10.3 Strain and Kinetic Energies 	225 

10.4 Formulation of Energy Expressions in terms of 	230 
Assumed Displacement Functions 

10.5 Stiffness and Inertia Matrices for the Element 	231 

10.6 Reduction of Order of Stiffness Matrix 	233 

10.7 Summary 	 234 



190 

11 	TORSIONAL FINITE ELEMENT FOR SYMMETRICAL 5-LAYER BEAM 

11.1 Introduction 	 238 

11.2 Nodal Co-ordinates and Displacement Functions 	242 

11.3 	Strain and Kinetic Energies 
	243 

11.4 Formulation of Energy Expressions in terms of 	250 
Assumed Displacement Functions 

11.5 	Stiffness and Inertia Matrices for the Element 252 

11.6 Summary 	 253 

12 	RESULTS AND CONCLUSIONS FOR MULTI-LAYER DAMPED BEAMS 

12.1 Introduction 	 257 

12.2 	Results for Flexural Vibration of Symmetrical 	257 
3- and 5-layer Beams 

12.3 Results for Flexural Vibration of Unsymmetrical 271 
3- and 5-layer Beams 

12.4 Results for Torsional Vibration of Symmetrical 277 
3- and 5-Layer Beams 

12.5 Conclusions 
	 281 

REFERENCES FOR CHAPTERS 8 TO 12 
	

283 

Appendices to Part 3 start on Page 501 



191 

CHAPTER 8  

GENERAL INTRODUCTION TO MULTI-LAYER DAMPED BEAMS  

Most beams plates and other engineering components are constructed from 

metals which have high strength but very little inherent damping. A typical 

solid metal component might have a loss factor of the order of 0.001, whilst a 

fabricated component would certainly be a little better, possibly with a loss 

factor of 0.01!
l)* 

However, many components which are excited either by wide 

band noise or at a large number of discrete frequencies must be more heavily 

damped than this if high amplitude resonant vibrations are to be avoided. A more 

desirable loss factor would be 0.1 or even higher. 

Whereas metals are stiff with very little damping, certain visco-elastic 

materials possess high damping but are not very stiff. Using the two materials 

together, one should therefore be able to obtain both high stiffness and high 

damping. The initial work in this direction was carried out around 1951-2 by 

Oberst
(2) 

and Lienard(3), who examined the effect of applying a layer of visco-

elastic damping material to the surface of a metal plate. This 2-layer configu-

ration is shown in Fig. 8.1a, and is known as an unconstrained or extensional 

damping treatment, since the damping is due to direct strains induced in the visco-

elastic layer as the plate bends. Further experimental and theoretical work is 

presented in reference (4), and a general review of the topic is given in (5). 

However, the most important conclusion was that very high damping could not be 

obtained at low frequencies, due to the relatively small direct strains induced 

in the visco-elastic layer. 

A much more effective means of introducing damping was found to be the 

addition of a constrained damping layer to the surface of the metal, thereby 

forming a 3-layer sandwich, as shown in Fig. 8.1c. In this configuration, the 

* Note that References for Chapters 8 to 12 are listed on Page 283. 

+ 	ie. Rubber-like materials. 
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visco-elastic core undergoes considerable shearing as the beam bends, and it is 

this shearing action which gives rise to the high damping. With this discovery, 

various damping tapes became commercially available. These tapes comprise a thin 

layer of damping material on a foil backing strip, and they are simply stuck down 

onto the surface to be damped. 

In 1959, Kerwin
(6) 

presented an approximate analysis of a 3-layer beam, the 

results being applicable to cases where the loss factor of the core material is 

small, and the bending stiffness of one of the faces is small relative to that of 

the other face. He and his co-workers at Bolt, Beranek and Newman later gave a 

more general analysis, which was extended to include plates  

Most of the early work on constrained layer damping was based on Kerwin's 

approximate analysis, and it was not until 1965 that a more exact theory appeared, 

when DiTaranto
(10) 

derived the general sixth-order differential equation of motion 

for an arbitrary unsymmetrical 3-layer beam. The equation was derived in terms of 

the longitudinal displacement of layer 1, rather than in terms of the transverse 

displacement. He used a complex shear modulus for the core, and proceeded to 

solve the equation for the complex eigen-frequencies of the system. Although he 

wrongly attributed this eigen-solution to a decaying free vibration, the analysis 

and the conclusions drawn from it are in no way invalidated. A later paper
(11) 

extended the solution, to include the complex eigen-modes. 

Mead and Markus
(12) 

derived the sixth-order equation of motion in terms of 

the transverse displacement, and explained the complex eigen-solution as corres-

ponding to a special type of resonant forced vibration. In the same way that the 

forced response of an undamped system may be expressed in terms of its real eigen-

modes, the response of a hysteretically damped system may be expressed in terms 

. 
of its complex eigen-modes

(13)
. Markus and Valaskova(14)  have performed a 

detailed eigen-solution for a sandwich cantilever, and Mead and DiTaranto
(15) 

have derived various damping effectiveness criteria for beams, based upon the 

uncoupled modal responses. 
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The first really comprehensive analysis of multi-layer beam vibration was 

presented by Agbasiere
(16) 

in 1966, and this work is summarised in reference (17). 

Although he restricted his attention to symmetrical-section beams, he examined 

both 3- and 5-layer configurations (see Figs. 8.1b and 8.1d), and considered the 

effects of direct stresses in the visco-elastic layers, the strain dependence of 

visco-elastic properties, the effect of longitudinal and rotary inertia, etc. 

Using the finite difference method, he has solved the equations of motion for the 

forced response of 3- and 5-layer cantilevers, and the results have been verified 

experimentally. The properties of the visco-elastic materials were determined in,  

shear tests, and take into account the effects of frequency, temperature and 

strain level. A design study has also been reported on the above mentioned 

sandwich configurations. 

Nakra
(18) 

has analysed unsymmetrical 3-, 4-, 5- and 7-layer beams (see 

Figs. 8.1c, 8.1f, 8.1e). The equations of motion were set up by first obtaining 

expressions for the total strain and kinetic energies, then applying Hamilton's 

Principle. Although a cantilever beam has been examined using both the 

Rayleigh-Ritz and Lagrangian Multiplier methods, most of the work is concentrated 

on simply-supported beams, for which the mode shapes are pure sinusoids, and in 

consequence an exact solution is possible. It is shown that whereas 3-layer 

beams have an optimum loss factor over a relatively restricted frequency range, 

the unsymmetrical beams with a higher number of layers can possess optimum damping 

over a very much wider frequency range. The analysis of the 4-layer dual core 

beam is also given in reference (19), whilst the various types of multi-layer 

configuration are discussed by Grootenhuis(20)  

Ahmed
(21)(22) 

has applied the finite element displacement method to the 

dynamic analysis of curved sandwich beams of the symmetrical 3-layer type, and 

Leone and Perlman
(23) 

have used the same method to examine straight unsymmetrical 

3-layer beams. Whereas other investigators have been interested in the damping 

effect of a visco-elastic core, Ahmed's interest lies in all-elastic honeycomb 
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sandwich beams, which comprise thin metal face plates separated by a thick 

aluminium or glass fibre honeycomb core. However, the analysis is identical for 

the two problems, and damping may be introduced in the normal way by using a 

complex shear modulus for the core. 

The work described in the following pages extends the finite element approach 

to all the most common types of multi-layer beam: types (a) to (f) in Fig. 8.1. 

Although this work was initiated prior to the publication of reference X21), the 

basic approach is very similar. The main differences lie in the choice of nodal 

co-ordinates and the corresponding displacement functions, and in the fact that 

only straight beams will be considered here. In addition to the bending vibration 

analyses, the finite element method will also be applied to the torsional vibra-

tion of a symmetrical 5-layer beam, this being a problem which appears to have 

received no attention whatsoever in the literature. 

The initial motivation for this work was the need to be able to predict the 

dynamic behaviour of the sandwich beams used in an existing machinery foundation 

structure
*
. These beams are of the symmetrical 5-layer type, and due to the three-

dimensional nature of the structure, they are subjected not only to bending in two 

planes, but also to torsion. In addition, simple boundary conditions such as 

simply-supported, etc., no longer prevail, since the beams are attached to other 

non-rigid components. It was soon realised that none of the existing work could 

be applied directly to this problem, since practically all the standard references 

given above deal only with the 3-layer type of beam, with the usual textbook 

boundary conditions, and certainly no mention is ever made of bending in the plane 

of the layers, or of torsion about the beam axis. Only Agbasiere and Nakra have 

dealt with 5-layer beams, and their solution techniques are not really suitable 

for use in a general structural analysis. It was obvious that the finite element 

displacement method would provide the most general approach to the problem, 

See Part 4 of this report. 
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especially since it would yield stiffness matrices which could be utilised 

directly by the general purpose dynamic stiffness coupling programme described 

in Chapter 2 (Part 1). 

References (24) and (25) provide a good introduction to the very powerful 

finite element method. They start from first principles, and go on to deal with 

the solution of a large number of practical problems covering many branches of 

engineering. The basic work on the finite element analysis of beam vibration 

was carried out by Leckie and Lindberg
(26) 

and by Archer
(27)

, who independently 

derived the stiffness and inertia matrices for a uniform Bernoulli-Euler beam 

element in 1963. Other beam elements of interest are those for a Timoshenko 

beam
(28)(29), 

 for a uniform twisted beam
(30)

, and for a beam with non-uniform 

taper
(31)

, besides the previously mentioned element for a curved sandwich beam. 

Henshell and Warburton
(32) 

give an excellent introduction to the dynamic analysis 

of beam systems, and they compare the conventional finite element solution with 

lumped mass and "exact" dynamic stiffness. 

To briefly illustrate the finite element method as applied to beam vibration 

let us consider Fig. 8.2, which shows a free-free beam which has been divided up 

into a number of sections of finite length. These sections are finite elements 

of the beam, and the coupling points at the two ends of each element are called 

"nodal" points. The bending stiffness of an element can be expressed as a matrix 

which relates the shear forces and bending moments at the two nodes to the corres-

ponding displacements at these nodes. Applying the laws of equilibrium and dis-

placement compatibility at each node, the stiffness matrix for the complete beam 

may be built up from the element stiffnesses, and the solution obtained for speci-

fied force or displacement inputs. If the response or stiffness are not required 

at intermediate points along the beam, then a more compact coupling procedure 

such as the Transfer Matrix method may be used. At the heart of the finite 

element method is the derivation of an approximate element stiffness matrix. This 

matrix may be obtained using a procedure similar to that used in the Rayleigh-Ritz 
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method: one assumes an approximate "displacement functionII*, in the form of a 

series which is capable of describing the rigid body motion and the flexing of the 

element. This series contains unknown constants which may be expressed in terms 

of the displacements at nodes of the element, and the number of constants is 

obviously limited to the number of nodal co-ordinates. Strain and kinetic energy 

expressions are formulated, and upon substituting the approximate displacement 

function, the energies are obtained in terms of the nodal displacements. The 

element stiffness and inertia matrices are then obtained from the energies by 

using the Lagrange equation. This procedure is not unique, but it is the one 

which will be employed in this report. 

In the case of the foundation structure cited above, the heavily damped 

beams were purposely incorporated in the initial design. However, it is often 

the case that one wishes to ascertain the effect of adding damping to an existing 

undamped structure. As an example of the utility of the various finite elements, 

let us consider two practical cases to which they may be applied: 

(1) Fig. 8.3a shows a beam or strut to which a thin constrained layer has been 

added, on one face only. This gives an unsymmetrical 3-layer configuration. 

When analysing this system, any of the three layers may be given zero thick-

ness, thereby facilitating a comparison of the behaviour for the three cases 

of zero damping, extensional damping, and constrained layer damping. 

(2) Fig. 8.3b shows a box-section beam with constrained damping layers on both 

faces, these layers only covering part of the length of the beam. This gives 

a 5-layer configuration, which in most practical cases would probably be 

symmetrical. Although only solid layers have been considered in the analyses, 

the box-section could obviously be replaced by an equivalent solid layer. 

The partial coverage may be taken account of quite easily, either by using 

5-layer elements for the damped section and simple undamped uniform elements 

for the remainder, or by using 5-layer elements for the whole beam, and 

giving zero thickness to layers 1, 2, 4 and 5 of the undamped section. 

* More than one displacement function may be required. 
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It is hoped that this Introduction has served to provide a thorough back-

ground to the subject of sandwich beam vibration, in addition to presenting the 

rudiments of the finite element method, and demonstrating its applicability. 

We shall now proceed to consider the individual elements in detail. Chapters 

9, 10 and 11 contain the element analyses, whilst all results and comparisons 

with experimental data are grouped together in Chapter 12. 
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CHAPTER 9  

BENDING FINITE ELEMENT FOR SYMMETRICAL 5-LAYER BEAM 

9.1 INTRODUCTION  

As was explained in the General Introduction, the type of finite element 

which we shall be considering is a section of beam, and the elements are joined 

end-to-end in order to form a complete beam. It must be emphasised that, in 

spite of the heterogeneous nature of the multi-layer beam, it is not necessary 

to sub-divide the section of beam into separate elements for the different layers. 

The multi-layer element is considered as a whole, and expressions are formulated 

for the total strain and kinetic energies in terms of the nodal co-ordinates. 

The element stiffness and inertia matrices are then obtained using the Lagrange 

equation, which simply minimises the total energy with respect to the nodal co-

ordinates. 

The symmetrical 5-layer beam element is shown in Fig 9.1. The elastic 

layers 1 and 5 are identical to one another, as are the two visco-elastic layers 

2 and 4. Because of this symmetry, the centre-line of layer 3 is the neutral axis 

of the beam. 

Before proceeding further with the element, we shall consider the various 

assumptions used in the analysis. These are basically the same as those used 

by Nakra
(18)*, 

 and are as follows: 

(1) The elastic layers 1, 3 and 5 bend according to Bernoulli-Euler theory. 

(2) The visco-elastic layers 2 and 4 act primarily in shear, and the normals 

to the longitudinal fibres rotate through a total angle or.. Stretching 

and bending effects are included, but are of secondary importance. 

(3) All layers are homogeneous and 	iSotropic. 

(4) All displacements are small, as in linear elasticity theory. 

(5) There is perfect continuity at all interfaces between layers, and no 

slip occurs there when the sandwich bends. 

Note that References for Chapters 8 to 12 are listed on Page 283. 
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(6) At any section, the transverse displacement w remains constant through-

out the thickness of the laminated beam, there being no compression of 

the layers in the z direction. 

(7) The longitudinal displacements at an initially plane section vary linearly 

across the thickness of each layer, though with different slopes. The 

middle of Layer 3 is a neutral axis and suffers no longitudinal displa-

cement. 

(8) The strain dependence of the visco-elastic material properties in not 

sufficiently significant to warrant its inclusion in the analysis. 

(9) The most significant inertia terms are due to transverse motion, and 

rotary and longitudinal inertia are therefore ignored. 

Assumption (1) is valid provided that the elastic layers are not thick. 

While it is highly unlikely that the constraining layers 1 and 5 would ever be 

thick, the centre layer might be part of an existing structure of deep cross 

section, to which damping layers had been added. In such a case, the exclusion 

of shear might introduce significant errors. 

Assumption (6) is certainly valid in the case of rubber-like damping 

layers; which are surprisingly stiff in compression. Since rubber is virtually 

incompressible, and the metal layers prevent significant lateral bulging, the 

compressive stiffness of a typical layer might be LO to 100 times greater than 

one would expect from simple elasticity theory
(33)

. Experimental verification 

of the assumption is provided in Chapter 12, for a 5-layer beam with PVC damping 

layers. However, it is probable that in the case of softer, more viscous damping 

compounds, the damping layer would not be so effectively restrained in the 

lateral direction by the metal layer, and the compressive stiffness would be 

relatively low. The combination of a soft damping layer with a thick constraining 

layer would almost certainly invalidate the assumption. 

Assumption (8) is valid as long as the strain levels are small, since most 
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visco-elastic materials possess strain-independent properties at low strain levels. 

The level at which the properties begin to be significantly affected varies 

inversely as the stiffness and frequency. Nakra
(18) 

has measured the properties 

of several common damping materials, and his results show that at 30 Hz and at 

the maximum strain level used in the shear test, the greatest change in the shear 

modulus and loss factor is only of the order of 10%. At higher frequencies the 

change is more significant, but at such frequencies the vibration amplitude is 

almost invariably much less, giving rise to correspondingly smaller strains in 

the visco-elastic layers. Thus, the effect is not great, and in those cases for 

which strain dependence is considered important, one may use an iterative proce-

dure, starting with properties corresponding to an arbitrary strain level. 

Assumption (9) is valid if the frequency is not too high. As will be shown 

below, it also permits a very significant improvement in the accuracy of the 

element stiffness representation, without any increase in the size of the final 

matrices. 

9.2 NODAL CO-ORDINATES AND DISPLACEMENT FUNCTIONS  

The accuracy of a finite element solution depends upon (a) the number of 

elements, (b) the chosen nodal co-ordinates, and (c) the assumed displacement 

function(s). Provided that (b) and (c) are correctly chosen, the solution will 

converge to the right answers as the number of elements is increased. In the 

present problem, convergence is assured if the end faces of adjacent elements 

remain in intimate contact with one another during bending of the beam, and if the 

displacement functions are capable of describing rigid body translation and rota-

tion of the element, in addition to its flexure. The first of these two criteria 

may be expressed more precisely in terms of the derivatives in the total strain 

energy expression, but this will be postponed until we have looked at the problem 

from a physical point of view. 
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The requirement that adjacent elements mate together intimately under all 

conditions is justified by the obvious fact that no gaps or holes appear in an 

actual physical beam when it is subjected to normal loads. If gaps appear with 

the finite element model, this implies that certain internal forces which should 

be acting on the end faces of each element are in fact missing. Since the strain 

distribution within the element is a function of all the forces applied to the 

end faces, a missing force gives rise to an incorrect strain distribution, which 

in turn affects the total strain energy and the stiffness matrix obtained from 

it. Obviously, the effect of a missing force upon the strain energy could be very 

small, in which case the solution might still converge, but there is no guarantee. 

We are now in a position to consider once again the finite element shown 

in Fig. 9.1a. When this element is subjected to bending, any initially plane 

section distorts to the shape illustrated in Fig. 9.1b. In order to ensure 

intimate mating together of adjacent elements, one must choose nodal co-ordinates 

which will allow a complete description of the displacement of any point on the 

two end faces. By matching together the nodal displacements of adjacent elements 

at their coupling points, the mating faces will then distort in an identical 

manner, thereby ensuring perfect physical continuity between the elements. The 

choice of nodal co-ordinates is fairly arbitrary, in that any set which completely 

describes the face displacement is acceptable. In line with uniform beam theory, 

we shall take two of the co-ordinates to be the translation w and the rotation 

x 
t= (fr. ) of the centre elastic layer. Since this layer does not move longitu-

dinally when the beam bends, these two co-ordinates are sufficient to describe 

the displacement of any point on its end face
*
. As a consequence of assumption 

(6), layers 1 and 5 also translate and rotate by amounts w and 11, in addition 
x 

Note that the total rotation tpofthe elastic layers is equal to t since we 
are neglecting the effect of shear stresses in these layers. In actual fact, 
there is a small amount of shearing associated with (a) the bending stresses, 
as in the uniform Timoshenko beam, and (b) the shear stresses transmitted 
from the adjacent visco-elastic layers. 



204 

to moving longitudinally through equal and opposite distances wand u5. The 

longitudinal displacement III  is a possible third and final co-ordinate for 

completely describing the face displacement of the element, since the three 

co-ordinates w, 	 and ul  fix the displacement of any point on the end face of the 

outer layer, and the longitudinal displacement across the visco-elastic layer is 

assumed to vary linearly. The longitudinal displacement of the face layer has 

been used as a nodal co-ordinate by Ahmed(21)  in the case of his first 3-layer 

beam element. As an alternative, one may use either the shear )S or the total 

rotation pc (= 2l 1-4A) of the visco-elastic layer. The latter was used by dx 

Ahmed
(22) 

in a later 3-layer beam analysis, and it will also be used in the 

present case. This choice was largely due to the influence of Nakra(18)(19) 

during the early stages of the work. However, it has been found that there is 

a definite advantage in using either 25 or pc rather than ul  when one progresses 

to the analysis of plane frames built from sandwich members, since difficulties 

can arise in matching the nodal displacements of two beams meeting at an angle. 

As was mentioned above, a more precise mathematical criterion exists for 

ensuring physical continuity between the beam elements. This is that all dis-

placements and their derivatives, up to the second highest derivative appearing 

in the strain energy expression, should be continuous across the nodes(24)(25)* 

Obviously, in order to apply the criterion one must first choose sufficient co-

ordinates to completely describe the strain in the element. In the present 

problem, the total strain energy comprises contributions from the shearing of 

the visco-elastic layers and from the bending and stretching of all the layers. 

The shear energy is a function of the shear strain (Pc —4u), whilst the other 
dx 

energies are a function of the longitudinal strains in the fibres of all the 

layers. Since the variation of longitudinal displacement across any section is 

expressible in terms of Itandpc, the corresponding longitudinal strain distri-

bution is obviously a function of the derivatives of these co-ordinates 

(ie. A and 	Hence, the criterion tells us what we already concluded from 

eg. If --Y4 is the highest derivative of w in the strain energy expression, 
dx 

then w and-Ed-must be continuous across the nodes. 
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physical reasoning; namely that w,AYL and o< must be continuous across the nodes, 

and must therefore be taken as nodal co-ordinates. Whilst the physical and 

mathematical convergence criteria lead to the same conclusion in the case of 

beams, it should be pointed out that this is not the case with plates. A plate 

element which satisfies the mathematical criterion will yield results which 

converge to the correct solution, even though the elements may not mate intimately 

together. In such a case, the strain energy associated with the missing edge 

forces is obviously very small in comparison with the total strain energy, so the 

stiffness is little affected and convergence is still obtained. In fact, such 

"non-conforming" elements may even give nititret'llts than the perfectly mated 

or "conforming" elements
(24)(34). 

 This is because the stiffness of a plate built 

from conforming elements is always slightly above the true value, so any reduction 

in stiffness brought about by allowing imperfect mating of the elements may some-

times bring this stiffness closer to the true value (even if it drops slightly 

below the latter). Thus, it is seen that whereas the mathematical criterion is 

a necessary condition for convergence, the physical criterion is a sufficient 

condition, which need not always be satisfied. 

It has been shown that a minimum of 6 nodal co-ordinates are required in 

order to ensure physical continuity between elements, and these co-ordinates will 

be w, 	and oc at the two nodes i —1 and i. The displacements w and o< must there- 

fore be expressed in terms of series which adequately describe the variation in 

these quantities over the length of the element, including the particular case 

of rigid body motion, and which only contain a total of 6 unknown constants. As 

in the case of the uniform beam element
(26)

, a cubic polynomial will be used for 

w, leaving o< to be represented by a linear expression: 

a 	3 
= Q. ± 1x + (Lax + CL3X 

( whence 1p 

o< 	b + I 0 1 

aW 
t)x 

+ a a_ax + 30.3 X2  ) 

-57 

Note that a. + al l< describes rigid body translation and rotation, whilst 
aaxa  + a3X3  describes flexure. 
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It is seen that the rotations 	and oc of the elastic and visco-elastic layers 

are represented by quadratic and linear expressions respectively. However, from 

physical considerations these two quantities must obviously vary in a similar 

manner; especially in the extreme case where the two visco-elastic layers alone 

are used to represent a uniform solid beam
+ 
 , since then 	In consequence, 

the overall accuracy of the element is limited by the linear representation of 

oc, and for uniform accuracy the cubic expression for w should be paired with 

a quadratic expression fora.. This conclusion is indirectly confirmed by Cowper, 

Lindberg and Olson
(35)

, who have stated that for higher accuracy the membrane and 

normal representation of shell structures should lead to equal rates of strain 

energy convergence. Following the procedure indicated in their paper, it may be 

shown that the use of cubic and quadratic expressions for w and oc respectively 

leads to a convergence rate of 1/N
4
, where N is the number of elements into which 

the beam is divided. In the same way, it may be shown that if c4 is linear the 

convergence rate drops very dramatically to 1/N
2
. The procedure for examining 

the convergence rate is explained fully in Appendix V of this report. 

The use of a higher degree polynomial for oc introduces extra unknown 

constants, thereby necessitating the use of extra nodal displacements. However, 

these need not be actual physical displacements, and may equally well be higher 

derivatives of the basic nodal displacements. For instance, in the present case 

one could speciat each of the nodes. The disadvantage of this approach is 

that one cannot introduce the higher derivative at one node and not at the other, 

so in the present case one is forced to make oc cubic, rather than quadratic, there-

by once more upsetting the uniformity of accuracy of the bending and stretching 

energy expressions. Ahmed has used this approach to improve the accuracy of his 

sandwich element, but he wrongly claims that the two cubic displacement functions 

give uniform strain energy convergence. Further disadvantages of using higher 

+ See Section 9.3, pages 208 and 209, for further information on using this 
sandwich element to represent a uniform solid beam in which the effect of 
shear stiffness is included. 
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derivatives are that the resulting matrices are larger, and that the "forces" 

corresponding to these extra "displacements" have no physical significance. 

An alternative approach to providing extra nodal displacements is to 

introduce one or more "internal nodes"
(36)

. These differ from the "external 

nodes" at the two ends of the element, in that they are not connected to adjacent 

elements. In the present case we require one extra nodal displacement associated 

with the upper visco-elastic layer, to enable us to use a quadratic expression 

foroc. Referring to Fig. 9.1a, the obvious choice is the rotation oc. , at a 

position half way along the element. Although the resulting model has 7 degrees 

of freedom, the size of the stiffness matrix may be reduced to 6 x 6 by removing 

the co-ordinate oc. 1 . This is achieved quite simply, by specifying that the 
L- a 

 acting on this co-ordinate is zero, and eliminationg the corresponding 

equation. In the general case, such an elimination can only be carried out on 

the dynamic stiffness matrix, obtained from the individual stiffness and inertia 

matrices at each frequency. However, as a consequence of assumption (9), the 

inertia matrix in the present case contains zero rows and columns corresponding 

to the displacements ocL_ 1 , ocL and oc ,, thereby permitting the elimination to L-2  

be carried out on the original stiffness matrix at the formation stage. Thus, 

it is possible to significantly increase the accuracy of the sandwich element 

without increasing the size of the element stiffness and inertia matrices. 

In view of the above, the following displacement functions will be used 

for this symmetrical 5-layer element: 

t3  

+ 	+ a-31 

+ b + La! 
	

(9.1) 

where 	otj  = oi(t) , etc. 

The dimensionless distance 	= -f is used in order to simplify the algebra by 

keeping the element length L outside the matrices when setting up the quadratic 

forms (9.15) and (9.16) corresponding to the various energy integrals. The use 
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of the dimensionless displacement 14. permits the setting up of these energy 

quadratic forms in terms of non-dimensional displacement vectors, thereby faci-

litating the formation of non-dimensional stiffness and mass matrices suitable 

for use in parameter studies. This has been done in the case of uniform beams
(26) 

and plates
(37)

, where only a single frequency parameter is involved, and it is 

equally feasible in the case of the present sandwich beam. However, it should 

be noted that this will not be pursued here, so the present use of dimensionless 

displacements only facilitates further study in this direction at some later 

stage. Hence, one might equally well work in terms of the actual displacements 

w and ocright from the start, and in general this is to be recommended. 

Using these functions, the 7 x 7 stiffness and inertia matrices will be 

derived in the manner previously indicated. The number of degrees of freedom 

will then be reduced to 6 by eliminating the co-ordinate oc. 1  associated with L-T 

the node half way along the element. 

We start by considering the strain and kinetic energies in the beam element. 

9.3 STRAIN AND KINETIC ENERGIES  

The total strain energy comprises contributions due to shearing of the 

visco-elastic layers, and to bending and stretching of all the layers. Although 

bending and stretching energies associated with the visco-elastic layers are 

generally very small, these energy terms are retained in the present analysis so 

that the sandwich element may also be used to represent uniform beams of deep 

cross section, in which the shear effect is important. This is done by giving 

layers 1, 3 and 5 zero thickness and treating layers 2 and 4 as the upper and 

lower halves of the uniform beam. 
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Shear Strain Energy in Visco-elastic Layers  

Due to symmetry, both the visco-elastic layers shear by an equal amount 

(0.< — w f),where the ' signifies:L
x
. The corresponding shear strain energy in the 
) 

two layers is given by 
L 

Vshear 
	a x -k b kaG, La 	(04. — 	clx 

	 (9.2) 
0 

Where ka  is the shear constant for layer 2. 

The shear constant is defined as follows: 

k 
Average shear stress in layer 

Shear modulus x Angle of shear at middle of layer 

Average shear stress in layer  
Shear stress at middle of layer 

It is actually a correction factor to allow for an approximation made in the 

theory. When the beam bends, any section through a visco-elastic layer is 

assumed to remain plane and to rotate through an angle oc (which varies along the 

length of the layer). However, this assumption is only strictly correct if the 

layer has a shear stiffness, but no bending stiffness. When there is bending 

stiffness, the pure shearing of the layer between the adjacent elastic layers is 

supplemented by a small amount of shearing associated with the bending stresses 

in the layer, so the section no longer remains plane (though it is very nearly so). 

In the theory, the shear strain energy in the layer is calculated assuming pure 

shearing, and the result is multiplied by a correction factor (the shear constant) 

in order to give the energy associated with the actual stress distribution. 

In practice, the elastic modulus E
2 
of the visco-elastic layers is so much 

smaller than that of the elastic layers that the bending stresses and their 

associated shear contribution are fairly insignificant. Nakra
(18) 

has computed 

the shear constant for the core of a 3-layer beam, and for G
2 
as high as 

* 	For most soft visco-elastic materials, Poisson's ratio V = 0.5 and E 	3G. 
However, for the harder varieties of filled rubber E is closer to 4G (33). 
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0.69 x 10
8 
N/m

2 
(10

4 
lbf/in

2
) has still obtained a figure of 0.9977. Hence, k

2 

may generally be set tounity, and it is only retained here so that the sandwich 

element may also be used to represent a uniform beam, in the manner described 

above. It should be noted that the correct value for the shear constant of a 

uniform beam of rectangular cross section with a Poisson's ratio of 0.3 is about 

0.85(28)(38)(39)
, and this differs significantly from the value of 0.66 calculated 

by Timoshenko
(40) 

using the definition given above. 

Bending Strain Energy in All Layers  

The total bending strain energy in all the layers of this symmetrical beam 

is given by 

L 	 L 

Eab: 	f  a  Vbend 
.=. 	2 x 6 E L3 	w fi a  clx  

+ 	a x ID 	\ oc clx 2 x 12 	 a x 12. 
0 	 0 
L 

6 E L3 	w ffa cl x  
2.xl2 

0 

(9.3) 

Extensional Strain Energy in All layers  

The total extensional or stretching energy in all the layers is given by 

Vext 

L 

Lj 	
2 

(IX 
) 

j = I to 5 	0 

(9.4) 

Referring to Fig. 9.1b, it is readily seen that the longitudinal displace-

ments of the layers are as follows: 

= 	U5 = 	tZ  oc ± 3  w f  (t  

L w f u4 

U 3 	0 	 (9.5) 

u l  



dx 
1 2 

a 	L 
I 

 a 
W" 	

2 n,1 G  WI 

L
a 

fa , 
x d ▪ —g-

12  

+ a r1 	L tao‹.' + 
0 

2 ra  

L 

b2  tia  
a w I  (Ix 	 ( 9.7) r3 
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Substituting the displacements (9.5) into (9.4), we obtain 

L 

V ext 
a x _k 	E,E, 

1 
0 

bac.cf 	(LI 	t3)  
2. 

clx 

L 

2x 1  10Eb z z 	[1.2""(  
0 

I 

a 
ta w ll 

2 clx 	(9.6) 

Total Strain Energy  

The total strain energy in the finite element is 

VVshea.r. + Vbend  + 	Vex 

Summing the energy expressions (9.2), (9.3) and (9.6), we obtain 

V a 9,a  C oc — 

0 

0 

where 9/ a 
6 kaGat, 	and. 	_ 6 Ei  

2 	 ri —  

(j = 1 to 3) 

Expression (9.7) may be expanded into the sum of 6 integrals: 

L L 

w'   V 	 04 = 	V, 	
a 	

\,42.  
1 

	

tlX + 	W dX 

o o 
L L 

+ V3  \‹. 0 yv ' a 	 .c x + 	V4 	0 ,a  a x 
o 0 
L L 

+ V5 	Vi
/la  dx 	+ 	V6 	I /I C><_ W clx 	(9.8) 

O 0 

The constants V 1  to V6 are listed in Fig. 9.2 (Page 220). 
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Kinetic Energy  

The kinetic energy due to transverse motion of the symmetrical section 

beam is given by 

L 

6 
—27 < PJ ti 

tos 
w clx 

6 
= 	L a ( t'  + fZ La  ) + r3b3] • a cox 	(9.9) 

      

where • = 
b 

Rotary and axial kinetic energies will not be considered. 

9.4 FORMULATION OF ENERGY EXPRESSIONS IN TERMS OF ASSUMED DISPLACEMENT  

FUNCTIONS  

The displacement functions (9.1) and their derivatives may be expressed 

in matrix form: 

o CLI 

w, = 	0 	 421 { o_0 01 

w" = +_Lo 	o 	Z 61{0-,, a I  

0 	r 	{ 6. 	6, 	62  } 

	

= I  Lo 	 6. 6, 	62  

0.a 0.3 	= L 'xi { a-} 

0.3 } 	= 	D1{0.} + 

C1-2* =  +-MN 3 

[X1 1 6 } 

= 	 6} 

w L 

(9.10) 

• The braces 	} denote a column matrix. 

• Note that c = -)-L and -)—= 	. 



— 
1 0 0 

-- 
0 

0 1 0 0 

1 1 1 1 

o 1 2 3 

a. 

0- I 
az  

0.3 
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1 0 0 

1 1 1 

....■■• 

1 1 
2 

1 
4 

21 3 

We may now obtain the relationship between the dimensionless nodal displace-

ments and the sets of "constants" a and b : 

{L} = [cJ{a-} 
	

(9.11) 

{K} = [q{k} 
	

(9.12) 

The inverse transformations are 

tal = [cti lfg4 = [-FiN * 

(9.13) 

Using these inverse transformations, the displacements functions and their 

derivatives may be expressed directly in terms of the nodal displacements: 

(9.14) 

Substituting these displacement functions into the six strain energy 

integrals (9.8), we obtain the.following quadratic forms: 

* 	These transformation matrices are listed in Appendix VI. 
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— +_ { g.}r[A] {     g.1 
L 
	

1 

	

  4 	 )  <f W" IX 	+ { g41T  ( [TS MT[X1 [1] R} o C  

,_ 	-: { g-}TIAJ { g.} 	 (9.15) 

Similarly, the kinetic energy integral (9.9) yields 

L 
q ( 	

i 
w" lc 	= 	

of trl [x]T[x] c l [T]) { Q 
 of  

. T 420fQ[A] 

	

 { tw} 	 (9.16) 

Substituting  these quadratic forms into the strain and kinetic energy 

expressions (9.8) and (9.9), we obtain the final matrix expressions for the 

energies: 

* Note the matrix operation ([A] [B] 
)T 

= [B

]

T[A]

T 

 

+ The matrices [A] to [Ad in the quadratic forms are listed in Appendix VI. 
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{ K}TtAil gol 	 {S[A21{ .} + 	{ s'S[Ad{ kW} 

+ 3 cr[ A 	+ 	s'A A s'w} 	\L'_6 g.St Ad{ g.} 
(9.17) 

T = T,t& MIT[A.J { 
	

(9.18) 

9.5 STIFFNESS AND INERTIA MATRICES FOR THE ELEMENT  

The stiffness and inertia matrices may be obtained from the strain and 

kinetic energy expressions (9.17) and (9.18) by using the Lagrange equation: 

d (aT aV 
dt \ aek) —L (9.19) 

Where (IL  and Q. are the i'th generalised co-ordinate and force respectively. In 

the present case the generalised co-ordinates are the dimensionless nodal displa- 

cements, so the corresponding "forces" all have the dimensions of a couple: 

Forces 	 Displacements 

(9.20) 

If we confine our attention to simple harmonic motion, the damping in the 

visco-elastic layers may be described quite simply by making the shear and 

extensional moduli G2  and E2  complex. Applying (9.19), we then obtain a matrix 

equation of the form 
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[K] 	 2[1\111)  
	

FF:} 

	

(9.21) 

	

7x7 	7x1 
	7x1 

where the stiffness matrix [K] is complex and the inertia matrix [1\1] is real. 

The differentiation of the energy terms is carried out using the product rule
*
, 

and the matrices of (9.21) may be written directly in terms of the submatrices 

N to [Ad : 

(Sa[A] + S5  [Ad) — CO2Co[Aj S3  [Ad + S6  [ Ad 	Fw  

S3  [ Ad + s6  [A6] 	S1  [A] + S4  [ 	go„ 
. 	, 

(9.22) 

where the stiffness coefficients S1  to S6 and the inertia coefficient Co  are 1  

listed in Fig. 9.2. It should be noted that although there are six strain 

energy terms, these are not all associated with the same nodal displacements, 

so any individual element in [K] contains contributions from only two of the 

six terms. 

Whilst the energy expressions and the stiffness and inertia matrices are 

most easily formulated in terms of the individual displacement vectors f 	and 

{'o<} , the resulting co-ordinate order in (9.22) is not very convenient from a 
practical point of view. A better arrangement is to group together all the co-

ordinates corresponding to each node. The re-arranged stiffness and inertia 

matrices are shown in Fig. 9.3, and these are for use with the following force 

and displacement vectors: 

(uTAv) =si\f-_, • Au + 	.Av 
094. 	aciA. 



WL FWL  

MY'L 

M.L 
M. (9.23) 

Force 	 Displacement 

r 

WL-i 

oG. 
L-1 

217 

Note that the dimensionless form has now been dispensed with, and the element 

length L has been introduced into the matrices of Fig.9.3 in the form of the 

constants C I  = 1/L and Ca  = 1/L2. 

It should be emphasised that the dimensionless displacements were only used 

so that the resulting dynamic stiffness relation (9.22) could readily be converted 

to non-dimensional form if the need arose. By suitably combining the various 

constants in the matrix, it should be possible to form non-dimensional stiffness 

and inertia matrices in terms of the shear, thickness and frequency parameters
(20) 

of the beam. This would facilitate a study of the effect of the individual para-

meters on the overall damping. However, this will not be pursued here, since 

the present work is directed towards predicting the forced response of specified 

beams, rather than carrying out detailed parameter surveys. 

The stiffness and inertia matrices in Fig. 9.3 may now be reduced in size, 

as is shown below. 

9.6 REDUCTION OF STIFFNESS MATRIX FROM 7 TO 6 DEGREES OF FREEDOM  

As was explained on page 207, the 7 x 7 element stiffness matrix may be 

reduced to 6 x 6 by removing the co-ordinate pc.. 	associated with the internal 
L- 2  

node. The reduction procedure is quite simple, and is as follows: 

Consider the stiffness matrix partitioned into submatrices A, B, and C: 



21 8 

A B 

BT  C 

I 

Ki 
7x7 6 — xL  

7 t, 

We may then write 

F A B 
Si_ 

(9.24) 
7 x1 

BT  C SL.4 
7x1 7x7 

where the upper parts of the force and displacement vectors contain the six forces 

and displacements at the nodes i -1 and i. These equations may be expanded in 

terms of the submatrices, and since no external forces are applied at node i -+ , 
the force F.L-T  1  = 0. 

1 F 	[ A 1 { g,_, J + 	[ B  1 { '-i} L-11 	 (9.25) 
{ ° 1 = [ B 11-k j + [ c 

]f 
 SA (9.26) 

-I 	T 

-[ 
C ] [ B 1 f k_,,j (9.27) 

Substitute (9.27) into (9.25) 

{ Fi-_,J 	= 	( [ A i 	_ 	B I [ C 11[ B 11-) t l._,,i} 
(9.28) 

In the present case, [B] and [C] are respectively a vector and a scalar, 

so (9.28) simplifies to 

From (9.26), 

g. 	1 
{ IA 

= 

FL1 [ A B 	B 1r) (9.29) 
6x1 	 6x6 	6x1 
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This reduction is best performed numerically , and is a trivial operation 

once the 7 x 7 stiffness matrix of Fig. 9.3 has been set up. The inertia matrix 

is not included in the above, since there are no transverse inertia terms associa-

ted with the co-ordinate oc. 1 . However, the 6 x 6 inertia matrix is simply i-T  

obtained by deleting the null row and column corresponding to this co-ordinate. 

9.7 SUMMARY  

Stiffness and inertia matrices have been derived for a 7 degree-of-freedom 

bending finite element of a symmetrical 5-layer beam. Uniform accuracy of strain 

representation has been assured by the introduction of an internal node, which 

may subsequently be eliminated, thereby reducing the matrix size to 6 x 6. 

Results obtained with this element may be found in Chapter 12, and in 

addition to comparisons with measured data, a comparison is also made with an 

element derived using the inferior linear representation for 0‹. 
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FIG. 9.2 	STRAIN ENERGY AND STIFFNESS COEFFICIENTS  

For bending finite element of symmetrical 5-layer beam 

Strain energy coefficients  
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Pr
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FIG. 9.3  

STIFFNESS AND INERTIA MATRICES FOR 7 DEGREE OF FREEDOM  

BENDING FINITE ELEMENT OF SYMMETRICAL 5 -LAYER BEAM  

STIFFNESS MATRIX  

(3652+12S5) 
xC,_ 

(3 5,4- 6 S5) 
xCI  

(-653+4S6) 
xC, 

(-36S,.- i255) 
xCi 

(3 St  + 6 SO 
xC, 

(-653+4 S4) 
xC. 

(-4853- 8S6) 
xc, 

(4 S2.+ 4 S5)(753+ 3 S,) (-3 S1-6S5) 
x c, 

(-Si+ 2_ 55) (-353+S6)  (-4S3-45) 

(8S, + 7 S4) (6S3  -4 S6) 
x C, 

(-353+S6) (-25, + S.4) (4S, - 8 Sa) 

(36 Si+l2.SX-35,_- 
x c2. 

6 SO 
xC, 

(6 S3-4S6) 
,cc, 

(4853+8S4) 
xC, 

S Y M M E T R IC (45,+ 4 5) (753+3S6) (-453453 

(Bs, + 7s4) (4s,- 854) 

(32Si+ I654) 

INERTIA MATRIX  

156 C,,Cz  22 C.C, 0 54 C.C, -I 3 C.C, 0 o 

4C, 0 13 C.C, -3 C. 0 0 

0 0 0 0 0 

156 C„Ci  -22C.C, 0 o 

S 	Y M M E T R I c 4C, o o 

0 0 

O 
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CHAPTER 10  

BENDING FINITE ELEMENTS FOR UNSYMMETRICAL 3- AND 5-LAYER BEAMS  

10.1 INTRODUCTION  

We shall immediately proceed to consider the unsymmetrical 5-layer 

beam. Since the asymmetry necessitates a completely general analysis, 

the 3-layer beam may be considered as the special case when layers 4 

and 5 are of zero thickness. In consequence, a stiffness matrix will 

first be derived for the 5-layer beam, and the matrix for the 3-layer 

beam will subsequently be obtained from this by deleting all those terms 

which pertain to layers 4 and 5. 

The unsymmetrical 5-layer element is shown in Fig. 10.1. Due to 

the asymmetry, the normals to the longitudinal fibres in layers 2 and 4 

now rotate through different angles o< and 5. In addition, the middle 

of layer 3 is no longer the neutral axis of the beam, and it now suffers 

a longitudinal displacement u. In fact, the neutral axis is neither 

co-incident with the middle of layer 3 nor with the geometric centre-line 

of the beam, and for different end conditions its position can vary along 

the length of the beam. Apart from these two differences, all the 

assumptions made in the symmetrical beam analysis still apply. 

10.2 NODAL CO-ORDINATES AND DISPLACEMENT FUNCTIONS  

The nodal co-ordinates and the displacement functions are chosen 

in the same manner as before. Referring to Fig. 10.1b, it is seen that 

the displacement of any point on an initially plane section may be 

described in terms of the co-ordinates w, 	,<, 	and u.. By using 

these 5 co-ordinates at the two external nodes 1-1 and L , plus the 

04 , 5 and u co-ordinates at the internal node 1-1- we are able to 2 

employ the following displacement functions: 
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BENDING FINITE ELEMENT FOR UNSYMMETRICAL 5 -LAYER BEAM 
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a0  + OI + OaS 	a3 

.< 	+ 	+ IDS 

8 	= 	co  + c,t + cat 
a 

U  
L d. + 	+ cc la  (10.1) 

where 	= 	and 	, etc. 

Using these functions a 13 x 13 stiffness matrix will be derived 

for the 5-layer element, and a 10 x 10 matrix will subsequently be 

obtained for the 3-layer element. By eliminating the co-ordinates 

associated with the internal node, the numbers of degrees of freedom 

will be reduced to 10 and 8 respectively. 

The present choice of nodal co-ordinates and displacement functions 

may be compared with that of Leone and Perlman(23)1' who have derived a 

finite element for the unsymmetrical 3-layer beam. They have introduced 

nodes only at the ends of the element, and they make the four co-ordinates 

)1.4 w , ax 	ax 
u.3and-I-13  continuous at these nodes (a3=  U. in the present 

analysis). They then employ cubic displacement functions for w and for 

the core shear strain W (rather than for u3  ), so the resulting finite 

element has 8 degrees of freedom, just like the reduced version of the 

element which will be derived in this report. A slight limitation of 

their element for general structural analysis is the fact that it is 

derived on the assumption that the net axial force on a section is zero, 

so its use is limited to flexural vibration, and it cannot be used to 

Note that References for Chapters 8 to 12 are listed on Page 283. 
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describe axial vibration. Although only transverse motion and inertia 

are considered in the present work, the basic 10 x 10 stiffness matrix 

describes both bending and stretching of the beam element. The subsequent 

reduction to an 8 x 8 stiffness matrix is possible if axial inertia is 

ignored, but this simplification is only introduced at the final stage. 

10.3 STRAIN AND KINETIC ENERGIES  

Shear Strain Energy in Visco-elastic Layers  

The shear strain energy in the two visco-elastid layers is given by 
L 

VSI-tear 
	

2
. 10 ka  G, ta 	(0‹ — 	0Ix 

0 

	

+ 26 k4  G, t, 	lS — 	dx 	 (10.2) 

0 
where ka  and k4  are the shear constants for the visco-elastic layers, 

and (o( —14') and (13 — w') are the shear strains. 

Bending Strain Energy in All Layers 

The total bending strain energy in all the layers is given by 

L 

Vbend = 	
6 E, b3,  W clX 
2 X  12. 

0 
L 

b Et3
3 
	/ a W IOX 2 x 12 

L 

Ea t: 0‹.
/2. 

d
I
X 

a x la 
0 
L 

6E41.4 	81' dx  
a x ia 

0 	 0 

E5  b35  1 w//a QX  a x 12 
(10.3) 
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Extensional Strain Energy in All Layers  

The total extensional or stretching energy in all the layers is 

given by 

Vext 

L 

== 	EJ  bJ 	(LI -1  -x 
j

• 

=1 to5 
0 

(10.4) 

Referring to Fig. 10.1b, it is readily seen that the longitudinal 

displacements of the layers are as follows: 

- u + ba c< + 	(LI 	b3)  W r 

a 

u = 	__zo<  + 2. 

U3 

U5 == 10t 	 3 ) \N I 

a 
5 

 
(10.5) 

Substituting the displacements (10.5) into (10.4), we obtain 

L 

	

6 E., b, 	tao<' 	(t, + L3)  w ti 	dx  

0 

L 
2 

+ -J;IF  6 E2  t2 	[LC i- 11.<' + _tawIll dx  
a 	a 

0 
L 

+ -12- b E3L3  
\ 	

I 
U a  dx 

0 
L 

+ k 6 E4b,, [i ul! __ .t1 2 )5' — 
	

2 
.ta.2.  W"1 dx 

0 
L 

+ i-- b E5L5 	[i u' — t4i3' — (t, + Ls')  wn]a dx a 
0 

(10.6) 

V ext 
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Total Strain Energy 

The total strain energy in the finite element is 

VVshear + Vbend 	Ve,±  

Summing the energy expressions (10.2), (10.3) and (10.6), we obtain 

L 

V = — w r  dx 
0 
L 

2  • 9/4 

	

	(B — w') dx 

0 
L 

L

,2. 2   , 
ll 1  	1_   	l  	L.  	I  1 dx + r i   	bac.<   +  	(LI   +   La)   wn]   

a 
+   _L.   w 

a 	 la 

0 
L 

+ _2.. o< + ra 

[ 

1 
u + t / _1_ _1,_ c< 

a 	-I- L
I w  l a  ta 	ra 	...1 

la 	
ux 

o 
L 

a  r3 
I 
u 	+ _3.. w b a  „ a  J 

4- 

	

la 	
ax 

0 
L 

+ r4 
r  " / 

, -- t4B' 
a 	

__ ta. w  t, a  

a 	
+ _4_ B' ,a  A 

la 	k.x 

0 
L 

r5 
, 

r  " r  
— b43 ' + — 	(L31 t5)  wrria + ___,,b: w tra i 

la 	dx 

0 

(10.7) 

where 
Vj  

b kJ G; tj  
a 

(j = 2 and 4) 

r. 
	 b E.b. 	= 1 to 5) 
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Expression (10.7) may now be expanded into the sum of 14 integrals: 

• V13  1' If 
W dx U4 

dx 

(10.8) 

The constants Vi  to V14  are listed in Fig. 10.2. 

Kinetic Energy 

The kinetic energy due to transverse motion is given by 

L 

< b• 2 	• J 
j=1 toy 

. a 
dx 

L 

== 	531 	+ 	ta 	r L3  + )94 + P] 
	  0 

*,,r a  W dx 

(10.9) 

where • = 
at 

Rotary and axial kinetic energies will not be considered. 
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FIG. 10.2 	STRAIN ENERGY COEFFICIENTS  

For bending of unsymmetrical 3L and 5-layer beams 
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10.4 FORMULATION OF ENERGY EXPRESSIONS IN TERMS OF ASSUMED DISPLACEMENT 

FUNCTIONS  

The procedure is the same as for the symmetrical 5-layer beam 

considered previously. In consequence, only the essential details 

will be given here, and the displacement functions and their derivatives 

will be written directly in terms of the nodal displacements: 

L [X] [T,] SW} 

W1  = 	
[X1 	{ sv,} 

wr, 	
[xl 	{ sw} 

[5<] [-UM} 

0<' = +- [51 LC] { se<} 

8 = 	[5] [-Fa] 

8' 	[)7] [Ta] 
L  [57(] [Ta] %"} 

= 	[51 [-Fa] N 
	 (10.10) 

where the matrices [X], [X], PEW etc. are exactly the same as in 

the previous analysis, and the dimensionless nodal displacement vectors 

are the following: 

{L} 

(lo.11) 

Substituting the functions (10.10) into the fourteen strain energy 

integrals (10.8), we obtain the total strain energy in matrix form: 



V 	= 	V(1,01._  g.,}T[ 	{ g0(} 	Vz0L  ga  IT Ad g 
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(10.12) 

where the six matrices [Aj to [AJ are the same as before, due to the 

use of quadratic expressions for oc, 6 and 
The kinetic energy does not change at all, and is given by 

T = 	a ),(d.g. {OTAI g'w} 

10.5 STI.b.hNESS AND INERTIA MATRICES FOR THE ELEMENT  

The stiffness and inertia matrices are obtained from the energy,  

expressions (10.12) and (10.13) by using the Lagrange equation. Since 

the procedure has been explained in the previous chapter with reference 

to the symmetrical 5-layer element, it is not necessary to consider the 

details here. 

(10.13) 
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The stiffness matrices for the 5— and 3-layer elements respectively 

are shown in Figs. 10.4 and 10.5, and are for use with the following 

force and displacement vectors: 

Unsymmetrical 5-layer (13 d.f.) Unsymmetrical 3-layer (10 d.f.) 

Force 

F . 

Displacement Force Displacement 

W. L-I 

M  L-1 qj  L-1 

04. L—I 
t•—

Ma
l L-1 

M  - B
L-1 

F.  U.• L-1 F./L.  WI.  

F. WL 

MK Mcc. 

MIL  caC• FLL  u• L  

MaL /3 oc• 

U L  u  

Me  L-7 
(10.14) F,, 

• 

The stiffness coefficients S1  to S14 are listed in Fig. 10.3. As before, 

the element length has been introduced into the stiffness matrices in 

the form of the constants C, 	iL and Ca  = —11 . The matrix for the 

3-layer element has been obtained from that for the 5-layer element 

simply by deleting all those terms which become zero when t4  = t5  = 0 . 

The removal of the rows and columns corresponding to the co-ordinates 

reduces the matrix size from 13 x 13 to 10 x 10. 

The inertia matrix is basically the same as for the symmetrical 

element and will not be given here. The order of the stiffness matrix 

may now be reduced by removing the node i 
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10.6 REDUCTION OF ORDER OF STI.k.PNESS MATRIX  

The procedure has been fully explained with reference to the 

symmetrical 5-layer element (see page 217), and will only be briefly 

summarised here. 

The stiffness matrices for the 5- and 3-layer elements respectively 

may be partitioned as follows: 

A B 

BT  C 
10 11 	13 

Unsymmetrical 
5-Layer K 

13 x 13 

— wt.-1 

W 	UL 
II 

13 — U 

A B 

BT  C 

Unsymmetrical 
3-Layer [ K 

10 x 10 8— LIL  
9 --- 04=L_I 

10 — 
1 
	

69 10 

By eliminating the co-ordinates corresponding to the node i - 2, one 

obtains a reduced order stiffness matrix: 

[ K 	= 	[ A 	- 	[ B] [C]  [ B T1  
5 Layer —10 x10 
3 Layer — B x 8 	 (10.15) 

which is referred to the end nodes i-1 and i only. 
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10.7 SUMMARY  

Stiffness matrices have been derived for unsymmetrical 5- and 

3-layer beam elements, these having 13 and 10 degrees of freedom 

respectively. As with the symmetrical beam element, uniform accuracy 

of strain representation has been assured by the introduction of an 

internal node, which may subsequently be eliminated, thereby reducing 

the matrix sizes to 10 x 10 and 8 x 8 respectively. 

Results obtained with these elements may be found in Chapter 12. 
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FIG. 10.3 	STIFFNESS COEFFICIENTS  

Used in stiffness matrices for bending finite elements of 
unsymmetrical 3- and 5-layer beams (See Figs. 10.4 and 10.5) 
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FIG. 10.4  

STI FFNESS MATRIX FOR 13 DEGREE OF FREEDOM FINITE ELEMENT OF UNSYMMETRICAL 5-LAYER BEAM  

(3653+124)(353+40 
x c,_ x c, 
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FIG. 10.5  

STIFFNESS MATRIX FOR 10 DEGREE OF FREEDOM FINITE ELEMENT OF UNSYMMETRICAL 3-LAYER BEAM  
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CHAPTER 11 

TORSIONAL FINITE ELEMENT FOR SYMMETRICAL 5-LAYER BEAM 

11.1 INTRODUCTION  

The analysis of the torsional vibration of a multi-layer beam is 

more complex than the corresponding bending analysis. No longer are 

we confronted with a simple plane stress problem; since an element of 

any layer is now able to stretch, bend and twist in any plane. In view 

of the greater complexity, it is necessary to start with the general 

strain energy expressions for a multi-layer plate. By making certain 

assumptions regarding the behaviour of the layers during torsion, these 

energy expressions may later be simplified slightly. 

Fig. 11.1 shows the finite element of beam. The distortion with 

which we are concerned is the pure twist 0 about the x axis, under the 

action of opposing couples at stations 1-1 and L of the element. Due 

to the symmetry of the beam section about the y and z axes, layer 3 just 

twists about the x axis, whilst layers 1 and 5 not only 'twist in the 

same manner as layer 3, but they also translate and bend laterally in 

their respective planes. The lateral displacement V of layer 1 is 

equal and opposite to that of layer 5, and it obviously varies along the 

length of the element. The relatively complex motion of the centre and 

outer layers causes the visco-elastic layers to shear in both the x-z 

and y-z planes, thereby dissipating energy. 

Before proceeding further we shall consider the various assumptions 

used in the analysis. Since the torsion problem differs considerably 

from the bending problems dealt with in the last two chapters, a new 

list of assumptions will be given: 

(1) The elastic layers 1, 3 and 5 bend according to standard thin 

plate theory, and the effect of shear is therefore ignored. 



239 

(2) The visco-elastic layers 2 and 4 shear in both the x-z 

and y- - z planes, and in both cases the in-plane displacement 

in the direction of shear is assumed to vary linearly across 

the thickness of the layer. Due to symmetry, the two layers 

shear by equal amounts. Stretching and bending effects are 

also included. 

(3) All layers are homogeneous and - iSotropic. 

(4) All displacements are small, as in linear elasticity theory. 

(5) There is perfect continuity at all interfaces between layers, 

and no slip occurs when the sandwich twists. 

(6) The layers do not compress in the z direction (i.e. " = 0 ) 

(7) The layers do not bend or stretch in the y-z plane (i.e. across 

their width). Thus w  = —av  = 0 
3yz 	3y 

(8) On any line parallel to the y axis, the longitudinal displacement 

u varies linearly across the width of the beam, and is zero 

wherever the line cuts the x-z plane or is co-incident with 

the x-y plane. In consequence, u =0 for any point on the 

x-z or x-y plane. 

(9) The x axis forms the centre line of layer 3, and due to 

symmetry it is also the axis of twist of the sandwich. 

(10) The strain dependence of the visco-elastic material properties 

is not sufficiently significant to warrant its inclusion in the 

analysis. 

(11) The only significant inertia terms are those pertaining to motion 

in the y- z plane (translations in y and z directions, and 

rotation about x axis). The effects of longitudinal motion 

and of rotation about the y axis will be ignored. 

Note that u, v and w refer to displacements in the x, y and z directions. 
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Assumption (1) is valid provided that the elastic layers are not 

thick. Assumption (6) is possibly less valid in the torsion case than 

in the bending case considered previously. Assumption (7) follows from 

the fact that we are considering a beam, and not a plate. It is 

obviously valid as long as the beam is not too wide. 

11.2 NODAL CO-ORDINATES AND DISPLACEMENT FUNCTIONS  

Co-ordinates must be chosen which will completely describe the 

distortion of any initially plane section when the sandwich is twisted. 

Referring to Fig. 11.2, and bearing in mind the assumptions listed above, 

it is seen that the four co-ordinates 0, t, v and2ZO.Y.are sufficient 
dx 

to describe the three displacement components u, v and w at any point on 

the section. Therefore, subject to the choice of correct displacement 

functions, the solution must converge if these co-ordinates are made 

continuous at the nodes L--I and L of the element. Although the rate 

of twist lk is not a displacement in the conventional sense, it must be 
ax 

included as a nodal co-ordinate in order to ensure continuity of the layer 

. end rotations t3 to ,8 across the interface between adjacent elements 

aw (i.e. It ensures slope continuity. Note that t31. 433=-
ax 	

. 

Thus, a minimum of 8 nodal co-ordinates may be used. This enables 

us to represent both 0 and v by cubic polynomials: 

3 
a.o  + a-, + 	+ 

+ 63 + 13j1  + 63 3  L 

where 	L 
	and 	a-• •  = CL. (t) , etc. 

Once again the dimensionless forms are used to simplify the algebraic 

analysis. Using the procedure outlined in Appendix V , it may be shown 

that the use of these functions gives a uniform convergence rate of -I-4 
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for the twisting and in-plane bending strain energies, so it is not 

necessary to introduce an internal node. The uniformity of convergence 

rate between this torsional element and the previously considered bending 

element is very convenient, since a given division of the beam into 

elements will yield bending and torsional response data of the same order 

of accuracy, in those cases where there are a similar number of bending 

and torsional modes within a given frequency range. 

Using the above functions, 8 x 8 stiffness and inertia matrices 

will be derived for the torsional beam element. In contrast to the bending 

element, no reduction is possible in the number of degrees of freedom, 

since 8 is the minimum permissible number of nodal co-ordinates for 

convergence. 

We now proceed to consider the strain and kinetic energies associated 

with twisting of the beam element. 

11.3 STRAIN AND KINETIC ENERGIES  

The total strain energy is the sum of the energies due to shearing 

of the visco-elastic layers, and to bending and stretching of all the 

layers. Whilst in the flexural problem considerable proof exists that 

the bending and extensional effects in the visco-elastic layers are 

negligible, far less is known about the torsional problem, so one must 

include these effects at the present stage. From physical considerations, 

it seems reasonable to expect each visco-elastic layer to be relatively 

stiff in bending in its own plane, so it is possible that these effects 

are far more important than in the flexural problem. Besides this, the 

inclusion of these extra energy terms is quite straightforward, and it 

does facilitate the use of the sandwich element for representing the 

torsion of uniform beams, by using layers 2 and 4 and setting the other 
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layers to zero thickness. 

Shear Strain Energy in Visco-elastic Layers  

The shear strain energy in the two visco-elastic layers is given by 

6 x=L y=-z  

Vshear 	 j 	clX  J 	J 	z 

1—  2 	a —1 

j=2. &4 	 6 x=o 97-T  
(11.2) 

This expression includes only the shear in the y-z and x-z planes, 

and any shear in the plane of the layers is taken account of in the 

extensional energy expression (11.6) below. 

The shear strains are given in Fig. 11.2. Substituting these in 

(11.2), we obtain for the symmetrical section beam 

L 6 

V = a x 2 G2 shear 	2 ta 	 — 	Ja 	+ 
a -1  a 	 7   

0 —15 
a 

ata + 3 1  where EL — 

Following integration with respect to y, this may be expanded into 

the sum of 6 integrals: 

L 	 L 
Vsz 	°2. dx  Vshear = 	y, 	va dx 	+ 

o 0 
L 	 L 	a 

	

+ Vs3 	v . 96 dx 	+ 	Vs, 	(t) dx 
o 0 L 

	

+ - Vs, S 41.  dx 	+ 	V„ t-, -#, dx O 0 
The constants Vs1  to Vs6  are listed in Fig. 11.3 (Page 249). 

Bending Strain Energy in All Layers  

The total bending strain energy in all the layers is given by 

(11.3) 
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6 = 
V 	 paw)2. 	Paw.) 	V. ASII 	+ (1 — V.)() 	c19 cox 

bend 	2- 	la 0 —v2±) 	9 xa/ 	 J 

j= i ns 	6 x=o y=-7 
( 11.4 ) 

This expression is well-known from thin plate theory, and gives the 

energy associated with the combined bending and twisting of the layers, 

assuming no stretching of their middle planes. Although it is derived 

in fundamental texts such as reference (41), an alternative derivation 

is presented in Appendix VII, this being based on the two-dimensional 

theory of elasticity. The first three terms relate to bending, whilst 

the fourth relates to twist. Since it has been assumed that no bending 

takes place in the y—z plane (i.e. across the width of the beam), the 

second and third terms disappear. In addition, since the layers have 

been assumed incompressible in the z direction, wi =wa =w3=w4=w5 =w 

The elemental transverse displacement w is given in Fig. 11.2. On 

differentiating and substituting in (11.4), we obtain for the symmetrical 

section beam 

x 	izE(I _t v) 	52 (r0a)a  + 2.(I Vi )(Zal 	dx 

o -6 
L b 

E6baT 
 

+ x  la—y)  [Arg + (I V2)(Kt 	 1 dy dx 
O -6 

L 6  7  
12. 1-11) 	axa  [Liz 	 + 	( I —1' )(4 )1 	cix 3  

O -6 

Following integration with respect to y , this may be expanded into 

the sum of 2 integrals: 

Vbend 

Note that References for Chapters 8 to 12 are listed on Page 283. 
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L 

v6,, = 	(t--)a  dx 
L 

aath \Z  
VB 	 u X (11.5) 

0 	 0 

The constants V/31  and Vi32  are listed in Fig. 11.3. 

Extensional Strain Energy in All Layers  

The total extensional or stretching energy in all the layers is 

given by 

X =L y= 

	

\ 	a v. 	+  -v j)  /Ili 	 cx  V = 	(iEj 	 [() (7-j) 	2. ex t  
j=i to 5 	 6 x=0  

(11.6) 

This expression is derived from first principles in Appendix VII , 

and is associated with the plane stress system in the plane of each layer. 

The first three terms relate to pure stretching in the x and y directions, 

whilst the fourth term relates to shearing in the x-y plane. In the 

present problem, this energy arises from in-plane bending of layers 1, 2, 

4 and 5. One might argue on the basis of simple bending theory for beams 

that the term (I - yi2) should be deleted from the denominator. However, 

its retention is consistent with the assumption that the in-plane 

displacement V of layers 1 and 5 is independent of y. It simply implies 

that any elemental strip along the length of a layer is incompressible in 

the y direction, and is therefore in a state of uni-directional strain, in 

the x direction. 

The required elemental displacements are given in Fig. 11.2. On 

differentiating and substituting these in (11.6), we obtain for the 

symmetrical section beam 



a 

(m  dX  
clx 

VE 2  

▪ VE4  

CIX 

av 124. c , 
axa axa 

(11.7) 

\text 
	

VE I 

+ E3 

247 

L b 

T  a (I - v,z) c PO1 cx  V 	= 	ZX I  Eb  

x 

O -6 T 
L Li 

(D 
E b  

a I —V 	Db 
o -6 T 

+ a.2 x-2  a91,) ) ( I —2_10  (a..  _.101 

where a. - 

 

 

a 

Following integration with respect to y, this may be expanded into 

the sum of 4 integrals: 

The Constants VEI  to VE4  are listed in Fig. 11.3. 

Total Strain Energy  

The total strain energy in the finite element is 

V= "shear

▪ 

Ve„b V 	end sheo_r 

Summing the energy expressions (11.3), (11.5) and (11.7), we obtain 

a final total of 9 integrals: 

L 	 L 

Vst V
2 

ax ± Vs2 1 °a fix 

o 0 
L 	 L 	_ 

+ VS3 	V V.  911 C1X 	 + 	 V54 	
t)4  A ...X 

o o 
L 	 L 

+ (it)z clx 
	+ 	t.t:  clx 

	

(vss+ vEn 4- vEl) 	 v56 
0 	 0 

L 

+ VE2 
o 

( 	\2.  )2.v  

	

3 Xa) 	
clX 	

\2 

+ (VB2 +  VE3) L  a CIX  0 
 

L 

( aaV . )2.96  C1X 	 (11.8) + VE4 ) )X2  :(2' 
0 
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Total Kinetic Energy  

The total significant kinetic energy in all the layers is given by 

T = • j=1 to5 

x=L _6  

[ ja 	Vi  
• a 

6 x=o = -T.  

(11.9) 

where • = at 

This expression includes all motions in the plane of twist (y-z 

plane). The energy associated with motions in the other directions is 

obviously of second order importance and will be ignored here (Assumption 11). 

The elemental displacements are given in Fig. 11.2. On differentiating 

and substituting these in (11.9), we obtain for the symmetrical section 

beam 
6 

x 	
Pi 
	+ N. 

 v
a  + -101 dj cox 

O -10 
7 

6 

	

+ a x z P2 ba 	[Oa  + 	- a-031 + 4(■;if 	- ft-3 6)21c11 dx 
a 

O -6 7 
L 6 

a 
+ 	/32.1 (21 clx  

	

2. .P3  3 	Yj 	la 
o -6 

a 

where E = t - t3  
a a, =-_ 

3 

t + t3  

Following integration with respect to y, this may be expanded into 

the sum of 3 integrals: 

	

T1 	■/a  clx 

	

1 	 + 	Ta 	,Y6l a  dx 	+ 	T3 	\*/ 	ax 

0 	 0 	 0 

The constants Ti  to T3  are listed in Fig. 11.3. 
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FIG. 11.3 	STRAIN AND KINETIC ENERGY COEFFICIENTS  

For torsion of symmetrical 5-layer beam 
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11.4 FORMULATION OF ENERGY EXPRESSIONS IN TERMS OF ASSUMED DISPLACEMENT  

FUNCTIONS  

The displacement functions (11.1) and their derivatives may be 

expressed in matrix form: 

1 	a 	3  ] I CLo al 
	as a } 3 

1 	2.1 W] f a-c, 	al 	as 	a 1 3 

o 	z 61 ] f a. m 	m2. a ) 

	

, 	3 

6. 6, 6, 63 

6. 6, 62  63  

6. 6, 62  63  

} 

} 

1 

The sets of constants a and b are each related to the corresponding 

nodal displacements by the transformation matrix [T], which was 

derived in the bending analysis and is listed in Appendix VI. 

= 	syl 
where the non-dimensional displacement vectors are 

OL-1 

ax 

oL 
LAAL 

gol = 

V L-I 
L 
aY L-1 
ax  

V 
L 

aX 

Using the transformations (11.12), the displacement functions and 

their derivatives may be expressed directly in terms of the nodal 

displacements: 
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Substituting the functions (11.14) into the nine strain energy 

integrals (11.8), we obtain the total strain energy in matrix form: 

V l A 1 I  
420

s 
v 

r
^ L7_110vj 	

Y5L.Lf sjr A ii g-1 	Vs31±4.  
420 	01 	420 gir[A]t go} 

+ %tcL  { gv}lt A21  { s. j  + ( Vs5 +
30

B I ± VEI )  { so}r[A21{  g95} 

+ 3 { gv}T[ Ad { 09s} + vEz { gv}Tt Ad{ gv} L 

+ ( VBa  +L3VE3){  go}Tt Ad { S'95} + \II—Y-f ga Ad { g6} 

Similarly, the three kinetic energy integrals (11.10) yield the 

following matrix expression: 

(11.15) 

T = 	T4 203  { ••,,}r[ Ad f 	2-4220-{ 66}T[ Ad { g•9s) 	7-74324ca  { 	A{ kid 

(11.16) 
The matrices [AI [A5] and [A7] are exactly the same as those 

derived in the bending analysis, and are listed in Appendix VI. 
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Displacement 

V 
L 
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11.5 STIFFNESS AND INERTIA MATRICES FOR THE FLPMENT  

The stiffness and inertia matrices are obtained from the strain 

and kinetic energy expressions (11.15) and 11.16) by using the Lagrange 

equation. For simple harmonic motion we obtain the following matrix 

equation: 

(sz[iq + s5[A] + ss[A]) — jinz[A.] 

(S3[A] + S6[A j + s9[Ad) —jm3[A] 

(s3[A] + se  [A] + sc,[Aj) — wan13[A] 

(s, [A] + siAj + s7[A$ — warn, [A] 

( 

Sib 
	 Fo  

4 	 

s, 	Fv  

where the stiffness coefficients SI  to S9  and the inertia coefficients nn, 

to m3  are listed in Fig. 11.4. Since the displacement sub-vectors fS01 

and {Ey} are dimensionless, the corresponding force vectors have the 

dimensions of a couple: 

Force 

V L 
'-I  

M 

V. L 

M,,. 
, 	 (11.18) 

 

Force Displacement 

01,1  

{ go} = 
3x  

OL 

aX 

 

 

Mch 

_Lm 
L 

Mo t  

I 

 

 

    

The "force" Ivy corresponding to the rate of twist 	has the dimensions 

Force x Length
2 

and is therefore not a physically recognisable force or 

couple. However, it must be transmitted between elements in the same 

way as the other forces if the beam model is to behave correctly. 

The equations (11.17) are better re-arranged so as to group 

together all the co-ordinates corresponding to each node. The final 

re-arranged stiffness and inertia matrices are shown in Figs. 11.5 and 

11.6 respectively, and are for use with the following force and 

displacement vectors: 



Mo. 

L-1 

L-1  

MoL  

Mo. 

V L  

Mvt 

Displacement 

L-1 
ax 

V V. 
L-I 

ax 

VL 

ax 

Force 
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The dimensionless form has now been dispensed with, and the element 

length L has been introduced into the stiffness and inertia matrices 

1 either directly or in the form of the constants CI = 7  and Ca = 17  

The matrices in Figs. 11.5 and 11.6 are ready for immediate use, 

since no reduction in order is possible in the present problem. 

11.6 SUMMARY  

Stiffness and inertia matrices have been derived for an 8 degree 

of freedom torsional finite element of a symmetrical 5-layer beam. 

Uniform accuracy of strain representation has been obtained without the 

need to introduce an internal node. 

Results obtained with this element may be found in Chapter 12. 
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FIG. 11.4 	STIFFNESS AND INERTIA COEFFICIENTS  

Used in stiffness and inertia matrices for torsional finite 
element of symmetrical 5—layer beam (See Figs. 11.5 and 11.6) 
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FIG. 11.5  

STIFFNESS MATRIX FOR 8 DEGREE OF FREEDOM TORSIONAL FINITE ELEMENT OF SYMMETRICAL 5-LAYER BEAM  
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FIG. 11.6  

INERTIA MATRIX FOR 8 DEGREE OF FREEDOM TORSIONAL FINITE ELEMENT OF SYMMETRICAL 5-LAYER BEAM  
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CHAPTER 12  

RESULTS AND CONCLUSIONS FOR MULTI-LAYER DAMPED BEAMS  

12.1 INTRODUCTION  

The results given in this chapter relate to the beam finite elements 

derived in Chapters 9 to 11. Only a limited selection of results is given 

for each element, but this is sufficient to illustrate the sort of accuracy 

that is obtainable. As the initial motivation for this work was the need 

to analyse the symmetrical 5-layer beams used in a machinery seating, we 

shall use the results obtained with one of these beams to justify certain 

assumptions made in the analysis, and in particular to demonstrate the 

superiority of a bending finite element having an "internal node". All the 

theoretical results are compared with measured frequency response data, 

obtained either by the Author or by earlier researchers in this field. 

12.2 RESULTS FOR FLEXURAL VIBRATION OF SYMMETRICAL 3- AND 5-LAYER BEAMS  

We shall start by considering the symmetrical 5-layer beam UT, shown 

in Fig. 12.1. This is one of the beams in the machinery seating analysed 

in Part 4, and as it constitutes part of the intermediate mass in a two-

stage mounting system, it is both heavy (43.7 Kg) and highly damped. The 

design and the finite element representation are discussed in detail in 

Sections 13.2 and 14.1 (of Chapters 13 and 14 respectively), and consider-

ation is given to bending in both planes, as well as to torsional and axial 

behaviour. Some particularly interesting experimental results are presented 

which show that whereas the beam is very heavily damped when bending in the 

plane at right angles to the layers, it behave& as an essentially undamped 

uniform beam when bending in the plane of the layers. The bending in both 

planes may be described using the symmetrical 5-layer finite element, but in 

this chapter we shall confine our attention to bending in the heavily damped 
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plane, since the in-plane vibration is dealt with in sufficient detail in 

Section 14.1. The torsional response of this same beam is considered in 

Section 12.4. 

Beam UT comprises 3 identical aluminium layers and 2 layers of Velbex 

PVC Type 629/0900 *. The latter is a high-damping visco-elastic material, 

with a loss factor around 0.6, and its dynamic properties are given in 

Section 14.1, together with those of the metal layers. The PVC shear modulus 

formula given in Fig. 14.1 was obtained by Agbasiere
(16)x 

from measurements 

on a sheet A of the material, and it includes frequency-, temperature- and 

strain-dependence. The graph in Fig. 14.3 shows the variation of modulus 

and loss factor with frequency, but it corresponds to a fixed temperature and 

strain (22.8°C and 5.27 x 10-3  respectively). Also included on this graph 

are some results obtained by Nakra
(18) 

for a nominally identical sheet B, and 

it is seen that the shear moduli for the two sheets differ by as much as 30 %. 

As no tests were carried out on the sheet of PVC used in this beam, it was 

decided to use the properties corresponding to sheet A, though the loss 

factor was not allowed to vary and was kept constant at 0.66. The temperature 

and strain were assumed to correspond to those in Fig. 14.3. 

Referring to Fig. 12.1, measurements have been made of the point 

mobility --F— 	at the two points B and A, and the results are given in 

Figs. 12.2 and 12.5 respectively. The beam was suspended on two ropes and 

was therefore in an effectively free-free state, except at low frequencies. 

The measured data were obtained using an electrodynamic shaker and separate 

force and acceleration transducers, in conjunction with the Solartron 

Programmable Frequency Response Analyser described in Section 4.2 (Part 2, 

Chapter 4). 

* Black industrial grade Polyvinylchloride with 35-40 % phthalate plasticizer. 
It is supplied in sheets of various thickness and is manufactured by 
British Industrial Plastics Ltd., Manningtree, Essex. 

The layers of the sandwich are bonded together using Araldite epoxy resin. 

+ The transverse displacement x used here corresponds to w in the element 
analysis. 

x Note that References for Chapters 8 to 12 are listed on Page 283. 
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The theoretical response was obtained by building the beam from a 

string of symmetrical 5-layer elements. These elements were joined together 

using the dynamic stiffness coupling program COUPLE1 in conjunction with 

* 
some specially devoloped routines . Just as if it were a uniform solid 

beam, the present sandwich beam may be divided into 3 sections: LH tip -- 

A, A -- B, B -- RH tip. The tip dynamic stiffness properties of each 

section are set up using special routines and these sections or subsystems 

are then joined together using the general-purpose coupling program, in 

order to obtain the forced response of the complete beam at points A and B. 

Since the beam is built afresh at each frequency, it is a simple matter to 

change both the visco-elastic properties and the number of elements with the 

frequency. At anything other than very low frequencies, it is necessary 

to sub-divide each section into a number of elements, but it is quite a 

simple matter to join elements end-to-end and to eliminate the inter-element 

coupling co-ordinates as one progresses, so that one is just left with a 

dynamic stiffness matrix relating to the co-ordinates at the two tips of 

the multi-element section. This may be accomplished using the well-known 

Transfer Matrix method, or alternatively, using a procedure based upon 

Gaussian elimination. The latter has been employed in the present work, as 

it is less prone to numerical difficulties. The two techniques are dis-

cussed in detail in Appendix VIII. 

The mobility modulus and phase curves in Fig. 12.2 relate to point B, 

which is at the centre of the beam, so only symmetric modes are excited 

and the beam is effectively a root-excited double cantilever. These curves 

are particularly interesting in that they illustrate the high level of 

damping that is obtainable with a carefully designed sandwich construction. 

* See both Part 1, Chapter 2 and Reference (49) for further information on 
COUPLE1. A standard module called ZSAM1 has been developed from the 
present sandwich beam studies to facilitate the inclusion of symmetrical 
3- and 5-layer beams in any general structural analysis. Standard 
routines are also available for visco-elastic material properties, and 
these include one called GPVCA which yields the properties of PVC sheet A. 
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In addition, they illustrate the frequency-dependence of the damping, since 

the loss factor gradually drops from about 0.25 at the 1st mode to approx-

imately half this value by the 5th symmetric mode. Both response plots show 

quite good agreement between measurements and theory, except at frequencies 

below 40 Hz, where the effect of the suspension ropes became more significant. 

In assessing these results one should remember that the properties of the 

sheet of PVC used in this beam were not measured; and in addition, both the 

assumed temperature and the strain were probably slightly in error. Since 

the mobility was measured directly as a ratio, the input force was not obtained 

explicitly; so it was not possible to apply the true input force to the finite 

element model in order to determine the actual strain, and ultimately the 

correct properties. 

As the results in Fig. 12.2 prove the validity of the model, we may now 

look at the number of element§ that are required for accurately representing 

a given mode of vibration. At the same time, we shall examine the practical 

effect of not correctly matching the displacement function for the visco-

elastic rotationoc with that for the transverse displacement w. This was 

discussed in Section 9.2 of Chapter 9, where it was concluded that a cubic 

polynomial for w required a quadratic polynomial for o<. In order to achieve 

this it was necessary to introduce an "internal node" half way along the 

element, and to consider the visco-elastic rotation at this node as an extra 

degree of freedom: this resulted in a 7 degree-of-freedom element, but as 

transverse inertia was not included it was possible to immediately eliminate 

this extra freedom and still obtain a 6 x 6 element stiffness matrix. Without 

the internal node one is restricted to using only a linear polynomial foroc, 

resulting in a 6 degree-of-freedom element with vastly inferior convergence 

properties. The difference is immediately apparent when one studies the 

computed response curves in Figs. 12.3 and 12.4. These correspond to the 

point mobility shown in Fig. 12.2, and they allow one to compare the 6 and 
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7 degree-of-freedom finite elements for different numbers of elements along 

the length of the beam. The full line represents the "exact" solution and 

was obtained using 18 elements. It is quite clear from these curves that 

the use of a quadratic polynomial for o gives greatly improved results, as 

one might expect from the discussion in Section 9.2. This improvement is 

best measured by comparing the proportion of a bending wavelength that can 

be adequately described by the different elements. If we take the 10-

element beam as an example, it is evident that the 7 degree-of-freedom 

element adequately describes all modes up to the 4th symmetric, which is 

the 7th mode when one also counts the anti-symmetric ones. When the beam 

vibrates in this mode the beam length corresponds to 3.5 wave-lengths, so 

each element is describing 0.35 wave-length. If we now turn to the 6 degree-

of-freedom element, we see that the 2nd symmetric is the highest mode that 

is adequately described, and for this mode each element represents only 0.15 

wavelength. Thus, one must use around twice as many of the 6 degree-of-

freedom elements in order to achieve the same sort of accuracy! As this 

astounding improvement has been obtained without any effective increase in 

the size of the element stiffness matrix, the use of an internal node with 

no associated inertia is obviously an extremely worthwhile means of refin-

ing sandwich elements. Similar figures are obtained if one considers the 

2-, 6- and 14-element beams, and as a very rough guide one may assume that 

the standard 7 degree-of-freedom element is capable of describing anything 

3 
up to about -8- wavelength with acceptable engineering accuracy. 

We shall now proceed to consider the upper graph in Fig. 12.5. This 

shows the mobility at point A, which is not far from the tip of the beam, 

and the agreement between measurements and theory is generally better than 

in Fig. 12.2. The reader may also care to consult either Section 4.5 in 

Part 2 or Section 14.1 in Part 4, where he will find the same response 

quantity measured using a multi-directional measurement technique. Despite 
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FIG. 12.1 	SYMMETRICAL MULTI—LAYER BEAMS  

BEAM UT 	Symmetrical 5—layer beam used in V—beam seating  

BEAM 3B 	Symmetrical 3—layer beam used by Agbasiere  

Steel insert in place of 
PVC over centre section 
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the greater complexity of the multi-directional measurement, it has in fact 

yielded results which are closer to the theoretical predictions, especially 

at the low frequencies. Thus, the straightforward measurements with the 

force gauge and accelerometer may have been very slightly in error: this 

was probably due to the fact that the accelerometer was not on the same axis 

as the force gauge, but was mounted just beside it. 

The lower graph in Fig. 12.5 also corresponds to excitation near the 

tip of the beam, and it shows the measured relative motion between the two 

outer faces of the 5-layer sandwich. The lack of relative motion clearly 

justifies the assumption that the layers are incompressible in the transverse 

direction. It was in fact necessary to proceed beyond 2000 Hz before any 

relative motion occurred. 

The response curves here and in the other sections clearly show that 

the element is capable of adequately describing the vibrational behaviour of 

a symmetrical 5-layer beam over a wide frequency range, encompassing a large 

number of modes: beam UT possesses 10 bending modes (symmetric + anti-

symmetric) in the range 0 to 1000 Hz, and even among the highest of these 

the peak mobility is rarely in error by more than 4 dB. These results also 

justify the omission of rotary and axial inertia terms when deriving the 

element mass matrix. As was explained before, it is this which permits one 

to introduce an internal node without effectively increasing the size of the 

element stiffness matrix. Since the predicted resonant frequencies already 

tend to be slightly below the measured ones, the inclusion of extra inertia 

terms would in fact only accentuate the error! 

Having examined the 5-layer beam UT in considerable detail, we shall 

now look briefly at a symmetrical 3-layer beam used by Agbasiere
(16)

. This 

is beam 3B in Fig. 12.1, and it consists of a layer of PVC (sheet A), sand-

wiched between two layers of aluminium alloy Si C 1/21-I (composition specified 

in BS 1470). The properties of the PVC are exactly the same as for the 
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previous beam, but the elastic modulus of the aluminium is very slightly 

lower than before, with a value of 0.689 x 10
11 
 N/m

2 
 . This beam was tested 

by Agbasiere as a double-cantilever, and as he clamped the centre section 

directly onto an exciter, a steel insert was used in place of the PVC over 

this section. The root and tip displacements XR  and XT  were measured using 

capacitance-type displacement transducers, and Figs. 12.6 and 12.7 show the 
X
T 

variation of amplitude ratio-- with frequency for the first and second 
X
R 

"mode shape" corresponding to the resonant frequency, where the latter is 

here defined as being the frequency at which the tip amplitude ratio is a 

maximum. The shape was measured by moving the tip displacement transducer 

towards the root in small steps. 

The theoretical frequency response curve was obtained by setting up 

the complete 0.305 m cantilever beam as a single multi-element subsystem, 

with only the tip co-ordinates retained. The root was excited by a constant 

force of 1 N and the amplitude ratio was computed. As the element was 

developed for a 5-layer beam, this 3-layer case was dealt with by setting 

the centre layer to zero thickness, while each of the visco-elastic layers 

was set to half the core thickness. For the mode shape, the beam was divided 

up into nine single-element subsystems, so that the coupling program would 

yield the transverse response at sufficient points for the mode to be plotted. 

As COUPLE1 does not take account of banding in the stiffness matrix, this 

calculation was somewhat inefficient and was only carried out at the two 

resonant frequencies. The graphs show quite good agreement between experi-

ment and theory, especially for the 1st mode, and the errors are almost 

certainly due to the use of a incorrect temperature and/or strain when com-

puting the PVC properties, since neither this information nor the root 

* Note that these cantilever resonant frequencies correspond to the anti-
resonant frequencies associated with the point mobility at R. 

cantilever resonances
*
. Below each frequency response curve is the forced 
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displacement were specified by Agbasiere. In the case of the 2nd mode 

resonance curve, it will be observed that the response obtained with only 

2 elements differs very little from that yielded by 5 elements. Remember-

ing that a single element can describe up to 1 wavelength, and noting that 

for the 2nd mode the cantilever length corresponds to about 3/4 wavelength, 

we immediately see that 2 is the minimum number of elements that will give 

acceptable results and the "error" incurred by using this minimum number is 

seen to be very small. Hence, the rule has been substantiated using a 

completely separate example. 

12.3 RESULTS FOR FLEXURAL VIBRATION OF UNSYMMETRICAL 3- AND 5-LAYER BEAMS  

As no unsymmetrical section beams were tested by the Author, the un-

symmetrical 3- and 5-layer elements will be checked against measurements 

and theoretical predictions obtained by Nakra
(18)

. He tested a number of 

simply-supported beams, applying an equal displacement excitation XT  at 

each support and measuring the displacement response XC  at the centre span. 

His analysis followed an energy approach, just as with the finite elements 

derived here, but he proceeded from the energy expressions to the differen-

tial equations of motion by using Hamilton's Principle, and he then solved 

these equations exactly. This exact solution is only possible when the beam 

is simply-supported, since the mode shape for this particular case is known 

to be a sinusoid, but for any other boundary conditions it is necessary to 

solve the equations by some approximate technique. 

We shall consider the three beams shown in Fig. 12.8. These comprise 

various combinations of steel, aluminium and PVC layers, bonded together 

with Araldite epoxy resin. The aluminium alloy is Si C 1/211, while the steel 

is ordinary commercial grade bright mild steel strip: Nakra measured the 

elastic moduli of both these materials and obtained figures of 0.6828 x 1011 
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and 0.2066 x 10
12 

N/m
2 
for the aluminium and the steel respectively. Although 

all the PVC layers are nominally the same, it was found that the properties of 

sheet B differed considerably from those of sheet A. As was explained in 

Section 12.2, sheet A was tested by Agbasiere
(16) 

and its properties were sub-

sequently expressed in terms of the formula given in Fig. 14.1. Sheet B was 

tested by Nakra and its full properties are only available in graphical form 

in Reference (18). However, Fig. 14.3 shows the variation in properties with 

frequency for one particular value of temperature and strain, and it is clearly 

seen that the shear moduli of the two sheets differ by as much as 30 %. 

Because of symmetry, the finite element calculation was carried out using 

just half the beam, and this was set up in COUPLE1 as a single 3-element section 

(so the beam length from tip to tip corresponds to 6 elements). Figs. 12.9 to 

12.11 show the frequency response plots corresponding to the first two modes 

of each beam. Although there is reasonable agreement between measurements and 

theory, it is immediately apparent that Nakra's theoretical predictions are 

generally closer to the measured data points than the present finite element 

predictions. This is almost certainly due to the fact that the finite element 

model was excited by equal forces of 1 N at the two supports, whereas Nakra's 

model was excited by a displacement input equal to that measured on the expe-

rimental setup . Although both models are linear, the properties of the PVC 

vary with strain, and since this has been allowed for in both calculations it 

is inevitable that the results should be slightly different. 

In addition to these comparisons with Nakra's results, the unsymmetrical 

5-layer element has been used to predict the response of the symmetrical S-

layer beam UT considered in Section 12.2, and it has yielded identical results 

to the symmetrical 5-layer element. 

* At the time that the finite element calculations were carried out, the Author 
had not yet investigated the possibility of applying a "constant" displace-
ment excitation using COUPLE1. Only subsequently was it realised that this 
could be achieved by using very stiff elastic supports K in conjunction with 
a large exciting force F, such that Displacement = F/K. This is illustrated 
in an example given in Appendix II (to Part 1). 
In case the reader should wish to try this for beam S2, the support excita-
tions used by Nakra were 0.0378 and 0.0182 mm for modes 1 and 2 respectively 
and the corresponding temperatures in the visco-elastic core were 21.1 and 
22.9°C. For beams Ml and M2, it is necessary to consult Reference (18) to 
obtain the properties of PVC sheet B and the necessary excitation data. 



273 

PIG. 12.8 	UNSYMMETRICAL MULTI—LAYER BEAMS USED BY NAKRA  
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3.34 mm PVC (Sheet A) 

3.24 mm Aluminium alloy 

BEAM M1 	Unsymmetrical 5 layer  
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3.30 mm PVC (Sheet B) 

2.52 mm Mild steel 

3.30 mm PVC (Sheet B) 

2.52 mm Aluminium alloy 

        

        

        

        

 

 

        

        

BEAM M2 	Unsymmetrical 5 layer 

1.66 mm Mild steel 

3.34 mm PVC (Sheet A) 

3.24 mm Aluminium alloy 

3.30 mm PVC (Sheet B) 

0.89 mm Aluminium alloy 
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12.4 RESULTS FOR TORSIONAL VIBRATION OF SYMMETRICAL 3- AND 5-LAYER BEAMS  

As the torsional vibration of sandwich beams has not received any 

attention in the literature, the torsional finite element can only be checked 

against measurements made by the Author. The two beams in Fig. 12.1 have 

been used for this purpose, and torsional point mobility measurements have 

been made using the single-shaker multi-directional measurement technique 

developed in Part 2 (see Chapter 4, Section 4.5). In each case the beam was 

suspended on fairly resilient supports in order to simulate a free-free 

condition. 

In the case of the symmetrical 5-layer beam UT, the torque was applied 

at point A and the resulting mobility curve is shown in Fig. 12.12. The 

measured data were obtained from a multi-directional test using exciting 

block Mk 3, where the latter was bolted to the upper face of the beam with 

its axis at right angles to the beam axis. The block was first excited at 

one end, then at the other end, and the two sets of response data were sub-

sequently combined to yield the transverse and torsional mobilities. This 

test included a correction for the exciting block inertia in the x and $ 

directions, but there was no correction for transverse loading in the plane 

of the layers. 

As point A is inboard from the tip, it was necessary in the analysis 

to divide the beam into two multi-element sections which were subsequently 

coupled together to yield the response at A. Just as for the bending analysis 

considered in Section 12.2, it was decided to use 10 elements up to 400 Hz, 

and 14 at higher frequencies; but these numbers could undoubtedly have been 

reduced without adversely affecting the results. All the beam data are the 

same as before, except that Poisson's ratio must now be included: 	0.33 for 

the aluminium and 0.5 for the PVC. 

It will be observed that this beam exhibits less damping in torsion 

than in bending, with a loss factor of approximately 0.1 for the 1st torsional 
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mode, in comparison with a figure of about 0.25 for the 1st bending mode. 

The measured and theoretical responses agree reasonably well, especially 

around the first resonance, although the overall agreement is not quite 

so good as for the bending analysis. This is probably due to a combination 

of three factors: (a) The assumption of incompressible visco-elastic layers, 

(b) the neglect of shear stiffness when analysing the in-plane bending of the 

outer layers, and (c) the transverse inertia loading applied to the beam by 

the exciting block along the surface of the outer layer. The second of these 

may be quite significant in the present case, since the ratio of beam length 

to width is only 13.9, and it would have the effect of stiffening the beam, 

thereby raising its resonant frequencies. However, it is likely that the 

loading effect of the block is the most significant source of error, since 

this would cause the measured resonant frequencies to be reduced, and at the 

same time it would pull the response curve down towards a line representing 

the effective block inertia. 

This beam has also been analysed by E. Ioannides
(42) 

using a finite 

element program developed for unsymmetrical 5-layer sandwich plates. The 

beam was divided into a large number of triangular elements, and the couple 

was applied as equal and opposite forces at two of the nodes. His results 

are very similar to those yielded by the present beam element, and if any-

thing they are marginally better, but the solution time per frequency is 

very much higher. 

In the case of the symmetrical 3-layer beam 3B, the torque was applied 

at point T and the resulting mobility curve is shown in Fig. 12.13. Once 

again the measured data were obtained from a multi-directional test, but in 

this case no exciting block was used. 	Instead, the force and acceleration 

transducers were attached to the beam using studs, in just the same way as 

for the torsion test on the two-stage beam in Section 4.5. This minimised 

the extra inertia attached to the tip of the beam, but the force gauge inertia 

was still present. 



279 
i1.12_ 

1133213:11  Graph 12•• Nal 1121 WPLLIPINI • 

Mfs 	TORSIONAL POINT MOBILITY 127 MM FROM TIP OF 2.120M SYMMETRICAL 5-LAYER BEAM (UT)  

izhz/7z 

MEASURED (DLocx mx3/100 
THEORETICAL (10 FINITE rums. 

UP TO 400 Hz , 14- A OVE) 

ley 2 C.d... met.t and 1 cm  

—10-' 

-20 

I 

-4o 
-I 

O 

-SO 

60 

-70 

10 	 100 	 FREQuEncy (Hz) 
	

° 1000 

• 
• 

• 

• 

• 

• 

• 

• 

• • 

02,,1131113331,.,... Graph Data 110. SS21 
	

1..11 2 Cv•I•• • Pm, S ••• 1  P.,  

M 14 	TORSIONAL POINT MOBILITY _127 MM FROM TIP OF 2.12.0M SYMMETRICAL S-LAYER BEAM (UT)  

I 	 I- 

12.112/72 

MEASURED (BLOCK MK3/IS/IC) 
THEORETICAL (10 FINITE ELEMS• 
UP TO 400 Hz,  14 ABOVE) 

L 
I 

180 

M
O

B
IL

IT
Y

 P
HA

SE
  

(D
eg

re
es

)
 90 

0 

  

  

• 

-90 

-ISO 

• 

  

 

L. 

• I 	• 	 

10 '100 1 	 V 

FREQUENCY (114 
-1000 



:  
	 .... . 	- 	. 10 

• .01 100 1000 FREQUENCY (Hz) 

. 	
.. 

I  ......... 

280 
FiC. b..13. 

IMMO 
t W 	

Data 110.1111 	 leg 1 Cycle • rem 1 and 1 ant 
15/2/74 

T_ORagatm.6.2otNT_MmouTY _AT ZIP OF 0,670M SYMMETRICAL 3-LAYER BEAM WITH STELL1SE5.1.=.,._.THEORETICAL(• FINITE EL4 
FULL AGBASIERE BEAM 35. IN FREE-FREE CONDITION 	 ••• MEASURED (No BLOCK/1 six 

• . . 	. 	. .... 	. 	•• ... 	.. 	.. : 	• 
50 

15/2/74 
Graph Data Ref. 5511 	 Leg 1 Cad. nu, 1 and I ern 

FULL AGBASIERE BEAM 38. IN FREE-FREE CONDITION  
:40 	TORSIONAL POINT MOBILITY AT TIP OF 0.670M SYMMETRICAL 3-LAYER BEAM WITH STEEL INSERT  

• • • MEASURED (NO BLOCKAS4 
- THEORETICAL(' FINITE E 

180 

9o- 

O 
O 
X 

• 

is 
• t 

-180 	
It 

100 1.• 

.. 	. 

. 	. 

FREQUENCY (Hz) 	
1000 



281 

As the centre section of the beam contains a steel insert in place of 

the PVC, it was necessary to analyse the beam as three sections or subsystems. 

Each damped section was divided into 4 elements, while a single element was 

used for the stiff centre section. All the beam data are the same as before, 

except that Poisson's ratio must now be included. 

The beam only has a single resonance below 1000 Hz, so it does not 

provide such a good check as the previous beam. Nevertheless, the anti-

resonance is fairly well described; and although the predicted resonance is 

a little high, the peak mobility is only about 3 dB greater than the measured 

value. As with beam UT, it is probable that the measured resonance is lower 

than it should be, since the force gauge applied quite a significant loading 

to the beam. 

12.5 CONCLUSIONS  

The results presented here prove the validity of the various multi-

layer beam elements developed in Chapters 9 to 11. The errors in the pre-

dicted response are thought to be mainly due to the use of slightly incorrect 

visco-elastic material properties or to difficulties in correctly measuring 

the dynamic response, rather than to failings in the elements themselves. 

It has been shown that the introduction of an "internal node" mid-way 

along a multi-layer bending element can very greatly improve its accuracy, 

since it allows one to match together the different displacement functions. 

In the case of the symmetrical 5-layer element derived here, the introduction 

of just one co-ordinate at this internal node has halved the number of elements 

that are needed to build a beam, and each element is capable of describing 

anything up to a  wavelength. It has also been shown that an element with 

only transverse inertia can adequately describe the vibrational behaviour up 

to quite high frequencies, so it is not necessary to associate any inertia 
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with the internal node. This allows one to obtain the improved accuracy 

associated with an internal node, without the disadvantage of having extra 

unwanted degrees of freedom, since it is possible to reduce the (static) 

stiffness matrix immediately after it has been formed, thereby eliminating 

these extra freedoms, while still retaining the improved accuracy. 

With the development of the torsional finite element for a symmetrical 

5-layer beam, it now becomes possible to analyse more general 3-dimensional 

beam-type structures incorporating constrained layer damping. However, when 

designing such structures it is important to bear in mind that the damping 

associated with in-plane bending and with torsion will always be less than 

that associated with bending in the plane at right angles to the layers. 
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CHAPTER 13 

DETAILS OF SEATING AND ITS ANALYSIS  

13.1 INTRODUCTION  

The measurement and analysis techniques introduced in Parts 1, 2 and 

3 will now be applied to the analyis of an existing highly damped machinery 

foundation structure or "seating". This structure was conceived and designed 

prior to the development of the necessary analytical capability, and is 

based on simple isolation concepts and intuitive reasoning, rather than 

on mathematical analysis. Although it has been found to work fairly 

effectively, the lack of any analysis makes optimisation virtually impossible, 

and one cannot say how much better or worse the performance might be with 

a few minor modifications. However, if it is possible to compute the 

performance with sufficient accuracy, the effect of modifications may be 

examined quite simply. In addition, if the adequacy of the measurement and 

analysis techniques can be proven on this fairly complex system, then any 

structure of comparable complexity may in future be designed, analysed and 

modified to have the required characteristics, before a prototype is built. 

Fig. 13.1 shows the complete seating with an engine in position on 

top of it. The bottom of the seating is bolted down onto four steel cruciforms, 

which form part of the receiver structure, and we require that the dynamic 

forces transmitted to these cruciforms should be as small as possible. The 

lower part of the seating comprises two longitudinal beam assemblies, which 

are attached to the cruciforms by means of steel V-supports, and which each 

consist of a pair of highly damped sandwich beams arranged so as to form a 

"V". The upper part of the seating comprises two transverse beam assemblies, 

again highly damped and arranged as a "V", and supported by complex-shaped 

rubber blocks which sit in the "V" formed by the lower beams. Each transverse 

beam assembly includes two steel V-pieces which sit in the "V" between the 

beams, and to which are attached the soft rubber mounts which support the 

engine. All these components are connected together with steel bolts, but 
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a very important feature of the design is the avoidance of any metal-

to-metal contact between one component and another. This has been achieved 

by interposing rubber pads between the metal component4 and by using 

rubber sleeves and washers on the connecting bolts. 

It is because of the "V" arrangement of the beams that this foundation 

structure has been given the name "V-Beam Seating". This arrangement was 

decided upon in order to try and achieve good isolation in more than just 

the vertical direction. The requirement for multi-directional isolation 

was necessitated by the fact that the multi-cylinder diesel engine for 

which the seating was designed generates a complex mixture of forces and 

couples, acting in various directions, and each of these must be attenuated 

within the seating. Since the normal running speed of the engine is 

1800 revs/min., the seating should be effective at all frequencies from 

30 Hz upwards. 

Before we proceed to consider the V-beam arrangement and other aspects 

of the system in great detail, let us first obtain a clear picture of the 

complete system by considering the simplified model shown in Fig.13.2. In 

this model, the beam assemblies have been represented by rigid beams, with 

attached concentrated masses for the V-supports and V-pieces. The springs 

k m and kRB represent the stiffnesses of the engine mounts and of the 

rubber blocks respectively, and the four nominally identical cruciforms are 

represented by the impedances Z 	, it being assumed that no coupling 
CR1-4 

exists between the cruciforms through the receiver structure . As the 

cruciform impedances are very high relative to the impedances of the springs 

k RB 	
the motion of the lower end of any of these springs is extremely 

small, and the force transmitted by the spring is 

3.5 mm PVC pads between the V-pieces and the transverse beams, and 
between the V-supports and the longitudinal beams. 

Measurements in the vertical direction have shown that the transfer 
mobility between cruciforms 1 and 2 is at least 20 dB less than the 
point mobility on cruciform 1(1) 

Note that References for Chapters 13 to 15 are listed on Page 430. 
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virtually independent of the exact behaviour of the lower part of the 

seating. Hence, the engine plus the upper part of the seating form a 

two-stage mounting system. The longitudinal beam assemblies are not an 

essential part of the isolation system, but were necessary in the present 

case because the longitudinal distance between the engine feet is not the 

same as the distance between the fore and aft cruciforms, and this is 

something over which the seating designer has little or no control: However, 

the lower beams probably have a beneficial effect, in that they stiffen 

the cruciforms in the relatively flexible rotational directions about the 

X and Y axes. 

Although the complete engine-seating system has been presented above, 

it is not proposed to include the engine and its mounts in the present 

analysis, and our attention will be confined to the seating mounted on the 

cruciforms. If required, the engine may be added at a later stage, once 

the input characteristics of the seating have been obtained. However, if 

one is to predict the absolute levels of the forces which will be transmitted 

when the engine is running on the seating, one does need to know the multi-

directional mobility properties and force spectra of the engine, and such 

data are not easily obtained. Hence, it seems wiser at the present stage 

to concentrate on the seating structure, and tJ endeavour to obtain good 

force attenuation through the seating for all possible inputs from the 

engine mounts. 

Regarding the analysis, the reader should not be misled into thinking 

that all the work described in the following pages is based on the simple 

model shown in Fig. 13.2. This model has only been introduced at the 

present stage because it clearly shows the isolation system in an easily 

recognisable form. It should not be construed from this that the V-beam 

arrangement is an irrelevance, since it does have a definite purpose, as 

is explained in the following section. 

In order to predict the response of the seating to all possible 
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force inputs and to examine the effect of changing various parameters 

(e.g. damping in beams, PVC pad stiffness, rubber block stiffness, etc, it 

is necessary to resort to a more detailed analysis which is capable of 

describing the multi-directional dynamic behaviour of each component. No 

longer do we idealise the components as pure masses and springs, but 

instead we consider them as the complex dynamic elements that they are, 

each with its own distributed mass and stiffness, and in consequence its 

own resonant behaviour. As was explained in Part 1 of this report, one 

may consider each of the components or "building blocks" in turn, obtaining 

their dynamic properties by the most convenient means, and then one can 

mathematically couple them together in order to predict the dynamic behaviour 

of the built-up structure. For given force inputs on the V-pieces, one 

may then examine in detail not only the motions and transmitted forces at 

the cruciforms, but also the response at various intermediate points, thereby 

gaining a clearer insight into the way in which the system works. The 

analysis will be checked against measurements on the assembled seating, but 

because it is not easy to physically apply a carefully controlled mixture 

of forces, we must rely on straightforward point and transfer mobility 

measurements. All forces will be applied to the V-piece nearest to cruciform 

2, and since the majority of the force is obviously transmitted to this 

cruciform, most attention will be given to this one corner of the seating. 

The results of'the full multi-directional analysis will also be compared 

with results obtained using the simple model already described. 

Since the excitation forces from the engine are known to be most 

severe in the frequency range 30 to 500 Hz, the seating performance will 

be examined over the slightly wider range of 10 to 1000 Hz. This range 

encompasses most of the main seating resonances, and the chosen upper 

frequency limit of 1000 Hz probably extends the analysis to somewhere near 

its limit, given the assumptions ar.de in the present work. 

Before proceeding to consider the analysis, we shall now examine the 

V-beam system in more detail. 
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13.2 DISCUSSION AND DETAILS OF THE V-BEAM ASSEMBLY 

In the simple model presented in the Introduction, the transverse 

and longitudinal beam assemblies have been represented by rigid beams. As 

they introduce considerable mass loading between the flexible elements of 

the mounting system, the rigid beams are able to shunt a large part of the 

input force to ground, thereby allowing only a small proportion of this 

force to reach the cruciforms. Unfortunately, no beam of sensible proportions 

remains a purely rigid mass up to our chosen upper frequency limit of 1000 Hz. 

In fact, other than in the axial direction, one is lucky if it is still 

behaving as a pure mass at even 100 Hz: To illustrate the point, let us 

consider one of the transverse sandwich beams UT on its own and in a free-

free condition. Figs. 13.3 and 13.4 show the beam and the two point 

mobility curves corresponding to transverse excitation normal to and in the 

plane of the layers. It is clearly seen that even in the plane of the 

layers, in which direction the beam is very stiff, the limiting frequency 

is only of the order of 100 Hz. A fairly deep box section beam might have 

a slightly higher limiting frequency in flexure, but the torsional limiting 

frequency would probably be lower, so no dramatic improvement could be 

expected. The conclusion to be drawn from this is that the textbook 

idealisation of a perfectly rigid intermediate mass is only achievable in 

practice at relatively low frequencies. One is therefore faced with the 

fact that the beam assemblies in the seating cannot possibly be made rigid 

over the complete frequency range 10 to 1000 Hz. However, the "break-up" 

and consequent resonant behaviour can be controlled by the introduction of 

damping. Whilst the high-frequency behaviour can never be that of the 

ideal pure mass or inertia, the damping does at least ensure that the 

assembly will not resonate severely, with consequent amplification of 

the transmitted force. 
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Since multi-layer or "sandwich"beams are known to possess high 

damping in flexure, one might suppose that the solid beams need only be 

replaced by simple 3- or 5-layer beams in order to introduce the 

required damping. This would be the case if one were only concerned 

with isolation in the vertical direction, but experience with a flat 

beam seating* has shown that this is inadequate if multi-directionl 

isolation is to be achieved. Referring once again to Fig.13.4, it 

is clearly seen that the sandwich beam UT is extremely heavily damped in the 

direction normal to the layers (x direction), whilst it is virtually  

undamped laterally in the plane of the layers (z direction). It will 

be shown later that the torsional damping lies somewhere between these 

two extremes. Thus, a simple multi-layer beam does not possess omni- 

directional damping properties, and is clearly inadequate on its own. 

Obviously, what is required is a beam or beam assembly which does have 

such properties, and two possibilities are shown in Fig.13.5. 

The first is a "dual-plane" 3-layer beam, which simply consists 

of a 3-layer construction in the two planes of flexure. The flexural 

behaviour in each plane is the same as for the corresponding simple 

or "single-plane" 3-layer beam bending in its damped plane. A dual- 

plane sandwich beam is obviously more difficult to manufacture than 

the single-plane type, and for this reason must almost certainly be 

restricted to 3 layers. In addition, one must be extra careful 

regarding attachments to the beam so as not to "short out" the layers, 

since this results in reduced flexibility and damping. 

The AEL highly damped flat beam seating (1)(2) 
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An alternative to the dual-plane sandwich beam is the V-beam 

arrangement used in the present seating. This comprises a pair of simple 

sandwich beams arranged in the form of a "V", and the input forces are 

transmitted to these beams by means of a metal V-piece and rubber pads. 

This V-piece has been fabricated from thick steel plate and is essentially 

rigid, and the pads have been made from 3.5mm thick PVC sheet. The idea 

behind this arrangement is that the rubber pads should be sufficiently flexible 

in shear to approximate to sets of rollers between the V-piece and the 

beams, thereby ensuring that forces are only transmitted to the beams in 

the axial direction and in the direction normal to the layers (i.e. the 

heavily damped direction), and not laterally in the plane of the layers 

(i.e. the undamped flexural direction). The effectivness of this arrangement 

depends upon the softness of the rubber pads in shear, and this will be 

examined in greater detail when we look at the measured and computed 

response data for the seating. Of course, the pads will not work effectively 

if they are "shorted out" by the connecting bolts which pass through from 

the beams to the V-pieces, so another important feature of the assembly is 

the use of rubber sleeves and washers on all the bolts (see Fig. 13.5b). The 

longitudinal beam assembly works in a similar manner to the transverse 

assembly, but the PVC pads are this time interposed between the beams and 

the steel V-supports. Again, the connecting bolts are suitably sleeved, etc. 

The V-beam seating evolved from the previously mentioned flat beam 

seating, and utilises very similar multi-layer beams. As has been seen 

from Fig. 13.3, these are of the symmetrical 5-layer type, comprising 3 

layers of aluminium and 2 of PVC, the latter material being chosen because 

of its high damping capacity (Loss Factor,1 --- (÷1  0.6). The dual-plane 

sandwich beam was not seriously considered at the time, mainly because of 

the associated manufacturing difficulties, but it probably merits greater 

consideration in any future design, in view of the alignment and assembly 

difficulties encountered with the V-beam assemblies. 5-layer beams were 



305 

chosen in preference to the more common 3-layer type because it was desired 

to have a relatively high beam-assembly mass, combined with heavy damping 

in the beams. The mass requirement dictates the beam thickness, and it is 

known that for a given thickness the damping increases with the number of 

layers, whilst the stiffness decreases. Hence, the 5-layer beam possesses 

higher damping at the expense of stiffness, and is simply a good compromise. 

The uniformity of damping over the frequency range could have been improved 

by using an unsymmetrical 5-layer construction, but it is doubtful whether 

this would have been worthwhile, in view of the very high damping already 

achieved (see upper graph of Fig.13.4). 

The chosen beams give a total intermediate mass of 250 Kg for the 

two transverse beam assemblies, and since the engine is approximately 

2000 Kg, the mass ratio is 8. Such a figure is quite normal for a two-

stage mounting system, though it could usefully be lower in the present case. 
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13.3 DETAILS OF THE ANALYSIS 

It was explained in the Introduction that the analysis of the seating 

for its full multi-directional response properties must be carried out using 

the building block approach. To apply this, the system is first divided into 

its basic components, and these are then examined in detail for their multi-

directional response properties, the required information being obtained 

either from theory or experiment. The components are then coupled together 

mathematically to predict the overall system response, in the form of motions 

and transmitted forces. 

In the present work, the dynamic stiffness coupling technique has been 

used throughout, the complete building and solution procedure being repeated 

at each frequency. This method was chosen in preference to other more 

sophisticated modelling methods for a number of reasons. First, the properties 

of the seating components have been obtained from a number of sources - direct 

analysis, finite element modelling and experimental measurement - all of 

which could readily be adapted to provide the data as dynamic stiffness. 

Second, it was considered likely that it would be necessary to allow for 

material property variations in the frequency range of interest (10 to 1000 Hz), 

especially for the visco-elastic layers in the sandwich beams. This could 

not be so easily achieved with a mathematical procedure which required the 

component data as separate inertia and stiffness matrices, and which solved 

for the forced response by summing modal responses. 

Our primary interest in performing this aralysis is to predict the 

force transmission to cruciform 2 when input forces are applied to the V-piece 

nearest to this cruciform. In consequence, it is not necessary to analyse 

the complete seating system, and in fact it is sufficient to consider just 

the forward transverse beam assembly with its rubber blocks, together with 

the starboard longitudinal beam assembly on cruciforms 2 and 3 of the 

receiver structure. Henceforth, these two parts will be referred to as the 

upper and lower parts of the seating. 
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Due to the considerable complexity of the problem, the analysis is 

best carried out in two parts. This is most clearly explained in terms 

of the simple seating model, as shown in Fig.13.6. Since each rubber 

block has a very much lower stiffness than the structure which supports it, 

the motion of the transverse beam assembly and the forces which are transmitted 

via the blocks are virtually independent of the exact behaviour of the 

lower part of the seating. Thus, one may analyse the upper part, assuming 

the blocks to be grounded, and one may then use the transmitted forces 

obtained from this analysis as the input forces for calculating the response 

of the lower part. This is just a special case of a more general procedure 

in which the upper part is considered as a Thevenin type force source (3), 

which comprises a force generator P in parallel with the internal impedance 

Z1. Hence, it would still be quite feasible to perform the analysis in 

two parts even if the rubber blocks were very much stiffer. It is readily 

seen that the transmitted force P equals the blocked force P when Z2
).> Z

1. 

Since Z
1 
is the mass impedance of half the upper beam assembly at very low 

frequencies, and the stiffness impedance of the rubber block at higher 

frequencies, its value should always be small - except possibly at the 

resonant frequencies of the upper system, and at the frequencies of wave 

resonances in the rubber blocks. 

In the present analysis, point coupling is assumed between all 

components in each half of the seating. Hence, the transverse beams are 

considered to be connected to the upper faces of the rubber V-blocks only 

at the centre of each face. Similarly, the actual fairly large area of 

contact between the bottom plate of the V-support and the top plate of 

the cruciform is also represented by a single point connection. The 

implications of this assumption will be discussed further at a later stage. 

At each coupling point, all six possible motions are considered. 

To avoid confusion at a later stage, it should be made clear that 

two systems of co-ordinates will be referred to in the following pages. 
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The first is the GLOBAL system X-Y-Z, as given in Fig.13.1, where the 

three co-ordinates correspond t'J vertical, transverse and longitudinal 

directions, and are invariant. The second is the LOCAL system x-y-z, which 

is used in component analysis, and which may or may not correspond to the 

global system. Having clarified this point, we may now proceed to consider 

the two halves of the seating in detail. 

The forward transverse beam assembly and its rubber blocks are shown 

in detail in Fig.13.7, and it is seen that the complete system comprises 

six components: A pair of sandwich beams, a pair of rubber blocks, and a 

pair of male V-pieces. There are thus three basic items which are designated 

UT, RB and VB, respectively. Six coupling co-ordinates have been used at 

each of the inter-component connection points A to H, but the beams are 

assumed to behave as rigid masses in the axial direction, so the total number 

of co-ordinates associated with each beam is only 21. As four co-ordinates 

have been used at each of the force input points I and J on top of the 

seating, the complete assembly has a total of 50 degrees of freedom. However, 

it should be noted that this is only the number of degrees of freedom retained 

at the system assembly stage. If one includes all the internal co-ordinates 

used in the finite element analysis of the beams, the total number of degrees 

of freedom is actually between two and three hundred. It will be observed 

that in addition to co-ordinates 1 to 50, a co-ordinate 0 is also shown, 

corresponding to the X direction at point I . Since a large hole prevented 

the application of a vertical force at the centre of the V-piece top plate, 

it was necessary to use point I/  as the vertical excitation point for 

mobility measurements on the seating. However, it is assumed in the analysis 

that the V-piece behaves as a rigid inertia, so co-ordinate 0 is simply 

related to co-ordinates 43 and 46, in the manner indicated in the figure. 

The 3.5mm PVC pads which are interposed between the V-pieces and the 

beams have not been shown as separate components, since they are best 

considered in conjunction with the V-pieces. Hence, unless otherwise stated, 

it will in future be understood that the term "V-piece"refers to the 
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assembly comprising the steel V-piece and the PVC facing pads. If these 

parts were not considered together as a single component, it would be 

necessary to use 6 co-ordinates at each V-piece/pad interface and a further 

6 co-ordinates at each pad/beam interface. Since there are four connection 

points B,C, F and G, the total number of degrees of freedom would then be 

increased by 24, with a corresponding threefold increase in solution time 

for the system response! 

The response properties of the components have been obtained as 

dynamic stiffness matrices, which relate the forces at the component 

connection points to the displacements at these points. These matrices 

are frequency-dependent and complex, and each has been obtained by the 

method most suited to the particular component. For instance, the beam UT 

has been analysed using the finite elements derived in Part 3 of this 

report, and the V-piece VB has been considered as a rigid inertia to which 

are attached hysteretically damped springs, which represent the PVC pads, 

and have easily calculable stiffness. On the other hand, the rubber block 

RB was not amenable to theoretical treatment, so it has been represented 

by a multi-directional spring model, whose parameters were obtained from 

measurements on one of the actual blocks. This model also incorporates a 

number of lumped masses, which allow it to describe wave effects within the 

rubber. Since the analysis of the components is considered in great detail 

in the following chapter, it is not proposed to go into any further detail 

at the present stage. 

The resulting dynamic stiffness matrices for the six components are 

shown diagrammatically in Fig.13.8a,* and the sub-matrices and vectors 

relate to the various connection points, and are of order 6 or less. 

* Note that as given in the figure, the matrices for RB1 and 2 are identical, 
as are those for VB1 and 2. However, the co-ordinate order for UT2 
must be changed to H, G, F, E if UT1 and 2 are to have identical matrices. 
The rearrangement in the figure has no significance. 
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At each frequency, these dynamic stiffness data are first derived; then, 

using force equilibrium and displacement compatibility relations, the 

component stiffnesses are combined to form the overall system dynamic 

stiffness matrix shown in Fig.13.8b. This matrix relates the externally 

applied forces at each of the connection points to the corresponding 

displacements, and for the present system is 50 x 50 and complex. The 

required displacement responses are obtained by inverting this matrix and 

multiplying by various force vectors. 

This complete building and solution process has been carried out 

using the dynamic stiffness coupling pro&amme COUPLE 1, which was described 

in Part 1 of this report. In that programme, the complex system matrix is 

converted into a double-size real matrix, which is inverted using a very 

efficient real matrix inversion routine (Cern library rountine MATIN 1: Uses 

Jordan's method with partial pivoting). In the present problem this matrix 

is 100 x 100, and it has been found that it can be inverted in approximately 

4 seconds* on a CDC 6600 computer. Taking into account the known solution 

time per frequency (5 seconds for present system), and the relatively 

heavy damping in the structure, it was decided to compute the response at 

just 51 frequencies in the range 10 to 1000 Hz. 

It should be mentioned that the upper part of the seating could have 

been analysed more economically by making use of its symmetry with respect 

to the X-Y plane that passes through the apex of the "V" formed by the two 

beams. One need then only consider half of each rubber block, one transverse 

beam, and half of each V-piece, thereby reducing the total number of degrees 

of freedom to less than 30. Since the inversion time for a 30 x 30 stiffness 

matrix would be between 20 and 30% of that required for the 50 x 50 matrix 

considerable savings could be made in computing time. If one were 

* Time taken by COMPASS (Assembler language) version of routine. FORTRAN IV 

version takes 5 secs. 
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restricting one's attention to excitation in either the X or Y directions, 

the procedure would be quite straightforward, since the half V-pieces 

need only have their motions blocked in the Z,c4and directions in order 

to satisfy the conditions of symmetry. However, for excitation in the Z 

direction one would first need to calculate the input mobility properties 

of one half of the system, as seen by the other half,* and then one would 

use these data to couple together the two halves and predict the forced 

response. Matters are further complicated by the need to calculate the 

displacements at point A, for the purpose of calculating the force transmission 

through the block. In view of these difficulties, it was decided that the 

straightforward coupling together of all six complete components would 

provide a much simpler and more direct solution to the problem. The 

increased computation time associated with this direct approach only becomes 

significant if one wishes to repeat the calculation a large number of times. 

We shall now proceed to consider the force transmission through the 

rubber blocks to the lower part of the seating. Referring to Fig.13.7, 

is seen that the lower faces of the rubber V-block are in contact with the 

longitudinal beams over quite a large area, so the.transmitted forces cannot 

be considered as acting at a single point. To take account of this, the 

spring model used to represent the rubber block has been set up in such a 

way that it divides the forces between six points, and at each of these 

points, three linear forces are assumed to be transmitted in the local x, y 

and z directions. Since the axial co-ordinate is assumed to be common for 

i.e. Looking into the half V-pieces, at the imaginary interfaces where 

the two halves of the system are joined together. 



315 

all points along each of the lower beams, the total number of forces 

transmitted to the lower part of the seating by any one block is 14. 

The forces transmitted via rubber block RB2 were not obtained 

directly from the analysis described above, since it was only possible to 

compute the displacements and forces on the top faces of the block (i.e. at 

coupling points A and H). However, one can calculate the force transmission 

if one knows the transfer characteristics of the rubber block, given either 

in terms of the input displacements or forces. Hence, it was decided to 

write the displacement data onto a magnetic disc,* where it could be stored 

for subsequent use by a subsidiary programme, specially written to compute 

the force transmission. This special programme proceeds frequency by 

frequency, first setting up the transfer dynamic stiffness matrix for the 

block, then reading the 12 complex displacements, and finally obtaining the 

transmitted forces from the product of the stiffness matrix and the 

displacements. At each frequency, these 14 complex forces are written onto 

another magnetic disc, so that they can be used later as input forces in the 

analysis of the lower part of the seating. In addition to obtaining the 

complete set of forces, it was also decided to calculate the net force 

transmission in the global X, Y and Z directions. Since the rubber blocks 

are so close to the cruciforms, the net forces in the X and Y directions 

at RB2 may be expected to differ only slightly from the corresponding forces 

transmitted to cruciform CR2. 

We shall now consider the lower part of the seating; or morespHcifically, 

the starboard longitudinal beam assembly and the cruciforms to which it is 

attached. It is seen from Fig.13.9 that there are once again six components: 

A pair of sandwich beams (LL), a pair of V-supports (VS), and the two cruci-

forms (CR) which form part of the receiver structure. However, in spite 

* A "permanent file" in this case. 
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of the fact that the two cruciforms are assumed to be uncoupled, it is more 

convenient to consider the complete receiver structure as a single component. 

Therefore, the present analysis is carried out in terms of five components. 

The PVC pads which are interposed between the lower beams and the 

steel V-supports have been considered in conjunction with the V-supports, in 

just the same way as the pads beneath the V-pieces were considered as 

forming part of a V-piece assembly. Hence, unless otherwise stated, it 

will in future be understood that the term "V-support" refers to the 

assembly comprising the steel V-support and the PVC facing pads. 

Six co-ordinates have been used at each of the inter-compianent 

connection points K, L, M, P, Q and T, and when one includes the co-ordinates 

introduced at points N, 0, R and S, this complete assembly also has 50 

degrees of freedom. The six points of force input from the rubber block 

RB2 are M, N, 0, R,S and T, and the 14 forces applied at these points act 

in the following co-ordinate directions: 96, 97, 84, 92, 93, 88, 89, 63, 64, 

65, 69, 70, 73 and 74. The co-ordinate order given corresponds to that used 

in the analysis of the rubber block. The rotational co-ordinates corresponding 

to points N, 0, R and S could have been omitted from the analysis, and were 

only included in order to obtain further response data which might be compared 

with future mobility measurements on the lower part of the seating. 

As before, the response properties of each component have been obtained 

by the method most suited to the particular component. The longitudinal beam 

LL has been analysed in. precisely the same way as the transverse beam UT, 

using the finite element method. Since the cross-sectional properties and 

the number of connection points are the same for these two beams, it has 

been possible to use the same computer subroutines for both. The V-support 

VS has been considered as an essentially rigid inertia, whose response 

properties could be obtained exactly. However, the torsional stiffness of 

its inclined face plates has been calculated approximately using plate 

finite elements, and this stiffness has been lumped with the calculated 

stiffness of the attached PVC pads. As it was not considered possible to 
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theoretically predict the response properties of the receiver structure, it 

was necessary to measure the complete 6-directional mobility matrix for the 

cruciform CR. This data has subsequently been modelled in such a way that 

it can easily be reproduced at any specified frequency in the range 10 to 

1000 Hz. After modelling all the components in the manner described, it 

was found that the actual connection between the cruciform and the V-support 

was far from being a rigid joint. To allow for this, an "interface stiffness" 

has been added between the two components, and since all response measurements 

were made on the upper side of the interface (i.e. on the bottom plate of the 

V-support VS2), this stiffness has been combined with the cruciform dynamic 

stiffness in order to yield a modified cruciform model. Full details of 

these three basic components are given in the next chapter, together with 

the results of an investigation into the interface behaviour (see Section 14.6). 

The resulting dynamic stiffness matrices are shown diagrammatically 

in Fig.13.10a*, and as before, the sub-matrices and vectors refer to the 

various connection points and are of order 6 or less. In the case of 

component 5, the cruciform point stiffness matrices [ZK jand[Z_L 5 ]are 

k
s 

identical to one another, whilst the transfer stiffnesses [Z
5
j and [Z-LK] 

are assumed to be zero. Upon combining the various component data, one 

obtains the overall system dynamic stiffness matrix shown in Fig.13.10b. 

The required displacement responses are obtained by inverting this 50 x 50 

complex matrix and multiplying by various force vectors. 

In the same way as before, the matrices given for VS2 and 3 are 
identical, whilst the co-ordinate order for LL4 must be changed 
to T, S, R, Q, if LL3 and 4 are to have identical matrices. Once 
again, the rearrangement in the figure has no significance. 
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It should be noted that the lower part of the seating does not 

possess the same inherent symmetry as the upper part, since the X and Y 

motions of the cruciforms are coupled. In addition, the forces transmitted 

by the rubber block are not equally distributed between the two lower beams. 

Hence, it is not possible to economise on solution time by only considering 

a single beam with half V-supports and half cruciforms. 

The cruciform response due to a given input on top of the seating  

has been obtained by first reading from the magnetic disc the stored values 

of the 14 forces transmitted by rubber block RB2, and then applying them at 

points M, N, 0, R, S and T. As the basic COUPLE 1 programme contains no 

provision for changing the force vectors at each frequency, it was necessary 

to write a special subsidiary routine which is called at each frequency, and 

which reads the force data from the disc and forms the required complex 

force vector. 

The results of this full analysis are presented in Chapter 15, in 

the form of a large number of frequency response curves. The majority of 

these are point and transfer mobility curves, which show the velocity 

responses at various points on the seating due to different force inputs 

on V-piece VB2. All such predictions are compared with measurements made 

either in the laboratory or with the seating mounted on the actual receiver 

structure, the primary purpose being to fully check the adequacy of the 

analysis technique for predicting the multi-directional behaviour of the 

seating structure. In addition to these mobility data, curves are also 

given of force transmission to the lower part of the seating and to the 

cruciforms. Since the prime requirement of the seating is that it should 

reduce the force input to the receiver structure by as much as possible, the 

force transmission curves are obviously more useful for assessing the 

effectiveness of the isolation system. However, since the measurement of 

internal forces is in general either impossible or extremely difficult, 

only limited experimental data are available for checking the predicted 

forces. 
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CHAPTER 14 

ANALYSIS OF SEATING COMPONENTS 

14.1 TRANSVERSE AND LONGITUDINAL SANDWICH BEAMS (Components UT and LL) 

The transverse and longitudinal beams are shown in detail in Fig.14.1. 

The two types of beam have the same symmetrical 5-layer construction, but 

they differ in length and in the arrangement of the fixing holes, and they 

weigh 43.7 and 34.7 Kg respectively. The sandwich comprises 3 layers of 

aluminium alloy and 2 of PVC, all bonded together with Araldite epoxy resin, 

and full details of the dimensions and of the material properties are given 

in the figure. An important practical feature of the design is the use of 

counterboced holes for the connection bolts, so that the heads of these 

bolts only clamp down onto the bottom layer of the sandwich and do not 

"short out" the damping layers. Thus, when the beams are built into the 

seating system, there is no metal transmission path between their top and 

bottom layers. 

Since the beams form part of a relatively complex 3 dimensional 

structure, they are subjected to both bending and torsion, and it is necessary 

to consider all 6 motions at each connection point. Although this is not 
(4) (5) (6)* 

the author is not uncommon in analyses using uniform beams 

aware of any such analysis having been carried out with highly damped 

sandwich beams. Practically all the standard references on sandwich beam 

vibration deal with the 3-layer type, with the usual textbook boundary 

conditions such as simply-supported, etc., and certainly no mention is ever 

made of bending in the plane of the layers or of torsion about the beam 

axis. In view of the lack of any suitable solution for the bending and 

torsional characteristics of the beams, it was necessary to examine 

sandwich beams in some depth, and to derive a solution in a form suitable 

for inclusion in the dynamic stiffness coupling procedure. The obvious 

* Note that References for Chapters 13 to 15 are listed on Page 430. 
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choice was to use the finite element displacement method, since this 

approach yields stiffness matrices which may be utilised directly in the 

coupling process. Hence, elements have been specially derived for flexure 

and for torsion of the symmetrical 5-layer beam, these having 7 and 8 degrees 

of freedom respectively*. For full details of these finite elements, 

together with the resulting stiffness and inertia matrices, the reader 

should consult Part 3 of this report (Chapters 9 and 11). The finite 

element modelling of the beam response properties will now be discussed 

with reference to the transverse beam UT 1. 

In Fig.14.2 this beam is shown divided into a number of finite 

elements, these being finite lengths of beam which are joined end to end. 

It should be emphasised that each element is a complete 5-layer slice, there 

being no subdivision of the beam through its thickness. Hence, the only 

"nodes" that we shall be considering here are at the ends of each element 

(e.g. nodes i-1 and i in Fig.14.2). Referring back to Fig.13.7 in the 

last chapter, we see that the connection points A and D are actually on the 

lower face of the beam, whilst the points B and C are on the upper face. 

Because of this, a force input in the local Z direction at any of the 

connection points gives rise not only to an in-plane motion but also to a 

small rotation t3 about the beam axis. However, for the purposes of the 

present analysis it is assumed that all connection points lie on the neutral 

axis of the beam, so the motions in the different planes are uncoupled, and 

they may consequently be considered separately using the above mentioned 

flexural and torsional finite elements. Returning to Fig.14.2 we shall now 

consider how these standard elements have been utilised in order to give 

the full 6-directional response properties of the beam. 

* Bending element has 7 dof - 3 co-ordinates at each end of element, plus 
1 at centre which is eliminated immediately stiffness matrix is formed, 
in order to leave 6 x 6 matrix. Torsional element has 8 dof - 4 co-
ordinates at each end of element. 

In finite element analysis, the term "node" refers to a point where two or 
more elements are connected together. 
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Bending in the x-y plane has been described using the symmetrical 

5-layer bending element, and as is seen from Fig.14.4, excellent correlation 

has been obtained between theoretical and experimental data, for the beam in 

a free-free condition. The two curves correspond to point A, near the 

tip of the beam, and the upper curve shows the transverse direct mobility 

whilst the lower gives the rotational mobility -L e' It is clearly seen F,, ' 	 M  
that the beam is extremely heavily damped in this plane, the loss factor 

being of the order of 0.3. It is also interesting to observe how a transverse 

force at this position only weakly excites those modes in the frequency 

range 100 to 600 Hz, whilst a couple excites all the modes. The excellent 

results were obtained notwithstanding the use of measured data for the shear 

modulus of the PVC, which is frequencyn  temperature - and strain-dependent 

(see Fig.14.3 for curves of shear properties of PVC at constant strain, and 

Fig.14.1 for shear modulus expression obtained by Agbasiere). Both the 

measured curves were obtained using the multi-directional measurement 

technique developed in Part 2 of this report*, and the errors in the low 

frequency rotational data were due to deficiencies in the measurement 

technique and to the effect of the suspension ropes. 

The flexure of a sandwich beam in the plane of its layers has not 

been accorded the same detailed theoretical examination as the heavily 

damped flexural motion in the plane at right angles to the layers. Hence, 

it was necessary to experiment a little before arriving at a suitable 

representation of bending in the y-z plane, and a point mobility test was 

therefore carried out at point A, exciting the beam in the z direction on 

the centre layer (i.e. layer 3). The results of the test are shown in 

Fig.14.5, and it is clearly seen that the beam is virtually undamped in 

this plane. Consequently, it was decided to represent the in-plane behaviour 

by a solid undamped beam model; though still using symmetrical 5-layer elements, 

rather than simple uniform beam elements. The sandwich element has been 

* See Part 2, Chapter 4, Page 132. Exciting block Mk 3 was used (Aluminium, 
120 x 50 x 50mm, Weight 0.950 Kg with accels) 
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used in the manner indicated in Fig.14.2, layers 2 and 4 representing the 

upper and lower halves of the beam, and being assigned real elastic and 

shear moduli, whilst layers 1, 3 and 5 are set to zero thickness. The 

use of this element has permitted the same computer subroutines to be used 

for bending in both planes, and it has also facilitated the inclusion of 

shear stiffness* in the analysis. The effect of shear is certainly not 

insignificant in the present case, since the ratio of beam length to width 

is only 13.9 for the transverse beams, and even less for the longitudinal 

beams. The Timoshenko shear constant k
2 

has been set to 0.860, this figure 

having been obtained from reference (7). In view oC the very high in-plane 

bending stiffness of the aluminium layers, it was decided to ignore the 

PVC stiffness. However, it was necessary to experiment a little with the 

PVC mass, and as is seen from the two theoretical curves for — in Fig.14.5 

far better agreement is obtained between experiment and theory if the mass 

of the PVC layers is included. Thus, the beam model for in-plane behaviour 

has been given a width equal to the total thickness of the 3 aluminium 

layers of the actual beam, and the material density has been modified 

slightly to account for the mass of the PVC layers. In spite of the fact 

that a solid beam model has yielded results which agree quite closely with 

measured point mobility data, one might still expect the overall behaviour 

of the model to differ slightly from that of the actual beam, since it 

cannot describe relative motion between the layers due to shearing of the 

PVC. It is therefore instructive to consider the lower graph in Fig.14.5, 

which shows the relative motion between layers 1 and 3, as measured during 

the above mentioned point mobility test. This clearly shows that the two 

motions are essentially equal at all frequencies other than those in the 

neighbourhood of the antiresonances in the point mobility response. 

* Note that in deriving the stiffness, properties of this 5-layer element, 
bending, stretching and shear effects were included for layers 2 and 4. 
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Torsion about the y axis has been described using the symmetrical 

5-layer torsional element. The upper graph in Fig.14.6 shows both the 

measured and the theoretical direct mobilities corresponding to the 

direction at point A, and the agreement between the two is seen to be 

quite adequate, although not so good as for the bending motions considered 

above. However, bearing in mind the greater complexity of the torsional 

problem, this is not surprising. The principal causes of disagreement are 

thought to be the assumption of incompressible visco-elastic layers, and 

the neglect of shear stiffness when considering the in-plane bending of 

the outer layers (due to twisting of the beam about its neutral axis), 

but without these assumptions the derivation of the finite element would 

have been greatly complicated. The measured results were obtained using 

the multi-directional measurement technique, with the exciting block bolted 

to the upper face of the beam. Since no correction was made for block 

inertia in the z direction, it is possible that the slight shift of all the 

measured peaks relative to the theoretical ones is due to the mass loading 

effect of the block. 

The axial response has been assumed to be masslike, thereby precluding 

the possibility of longitudinal wave motion. The tip-to-tip transfer 

mobility curve in Fig.14.6 shows this assumption to be sufficiently accurate, 

even though the measured results do begin to deviate gradually from a mass 

line at around 300 Hz. As a result of this assumption, each of the connection 

points A, B, C and D has the same motion in the y direction, so a single 

axial co-ordinate may be used for all four points. In consequence, the 

full 6-directional response properties at the four connection points may 

be expressed in terms of 21 co-ordinates, instead of 24. Fig.14.7a shows 

the 21 seating co-ordinates associated with beam UT 1, co-ordinate 2 being 

the common axial co-ordinate. 

We shall now consider the numb6r of elements that are needed, and 

the way in which they are coupled together to yield the required response 
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properties. Referring to Fig.14.4 the curve of Tie  clearly shows that 

the beam possesses 10 damped flexural modes in the frequency range 10 to 

1000 Hz. This means that at the upper frequency there are approximately 

5 complete waves along the length of the beam, and even at 400 Hz there 

are still as many as 3. It has previously been shown* that the 7 degree 

of freedom bending element is capable of describing as much as of a 

wavelength of flexure with quite reasonable accuracy, so this leads to the 

requirement for at least 8 elements at 400 Hz and at least 13 at 1000 Hz. 

Due to the non-uniform division of the beam into elements, it was decided 

to increase these numbers slightly, and 10 elements have been used at all 

frequencies up to 400 Hz, whilst 14 have been used between 400 and 1000 Hz. 

With 14 elements, the model for bending in the x-y plane alone has 45 degrees 

of freedom, and when we also consider bending in the y-z plane and torsion about 

the y axis, the total number of degrees of freedom for a single beam is 

well over 100. 

Whilst it is quite common in finite element analysis to work with 

very large systems of equations, this is neither necessary nor desirable 

in the present problem, especially since the beams form only part of a far 

more complex assembly. It is much better to eliminate all degrees of 

freedom other than those at the four connection points. This elimination 

is performed at the component stage, and in finite element analysis it is 

known as "substructuring". (8)  The procedure is outlined diagrammatically 

in Fig.14.7b starting with the division of the beam into 5 sections and 

the subdivision of these sections into elements. The tip dynamic stiffness 

properties of a section comprising N
s 

elements are obtained by building up 

the section element by element, at the same time eliminating the co-ordinates 

* See Part 3, Chapter 12, Page 260. 
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associated with the inter-element coupling points. This may be accomplished 

using a procedure based upon Gaussian elimination, or alternatively, using 

the Transfer Matrix method. The former procedure has been adopted in the 

present work, but for a fuller discussion of these two techniques the 

reader is referred to Appendix VIII (to Part 3). Once the tip dynamic 

stiffness matrices have been formed for the 5 sections, 1 and 2 are coupled 

together and the co-ordinates associated with the left hand beam tip are 

eliminated, again using Gaussian elimination. A similar procedure is then 

followed for sections 4 and 5, after which the dynamic stiffness matrices 

for the 3 parts are added together to yield the required dynamic stiffness 

properties for the four connection points A, B, C and D. The number of 

co-ordinates associated with each of these points may also be reduced at 

the same time.* 

Since we are assuming that the bending in the two planes and the 

torsion about the beam axis are all dynamically uncoupled from one another, 

this complete building and elimination procedure must be carried out three 

times at each frequency. 	The resulting 21 x 21 complex dynamic stiffness 

matrix is banded, as is shown in Fig.14.7c, but the row order does not 

correspond to the co-ordinate number sequence used in the seating analysis. 

However, it is not necessary to re-arrange the rows and columns, since this 

is done automatically by the dynamic stiffness coupling programme when 

building up the system matrix from the component data. 

See Fig.14.2, which shows all the nodal co-ordinates used in the 
building process. Those co-ordinates which are retained at A, B, C 
and D are shown boxed. 

Note that time required to form complete 21 x 21 complex matrix on 
CDC 6600. computer is only 280 mS for beam UT, and 315 mS for beam LL 
cf. 4s to solve the 50 complex equations for the system. 
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14.2 RUBBER V-BLOCK  (Component RB) 

The rubber block is shown in Fig.14.8. It is solid, weighs 15.4 Kg, 

and was moulded from an almost natural rubber. Besides being relatively 

difficult to manufacture, a block of such complex shape is not easily 

analysed, and it was apparent from the outset that the stiffness properties 

would have to be measured, whether this be for the purpose of modelling 

the block directly from measured data or for the purpose of checking an 

analysis. As a full analysis did not appear feasible at that time, it was 

decided to use measurements to model the block. However, this posed certain 

problems, since not only were the point dynamic stiffness properties to be 

obtained for the two upper faces of the block, but also required were the 

transfer stiffness properties relating the transmitted forces to the 

displacements of the upper faces. In view of the basically spring-like 

nature of this component, it is doubtful whether the necessary data could 

be obtained with sufficient accuracy by performing receptance* tests on the 

block in a freely suspended condition. In consequence, it was necessary to 

mount the block in an effectively rigid V-support and to measured its 

"grounded" receptance properties. Whilst the point recepLances on the 

upper faces could be measured without undue difficulty, it was considered 

impracticable to even attempt to measure the force transmission to the 

support, since not only is it multi-directional, but it is also distributed 

non-uniformly over a very large area. Since it was not possible to obtain 

the required data exclusively by experimental means, it was necessary to 

resort to a compromise solution, whereby a physically realistic model was 

chosen to represent the block, and the parameters of the model were adjusted 

until it yielded receptance data which approximated to the available 

measurements. 

* We shall consider receptance rather than mobility, because the block is 
a spring and therefore has constant receptances at low frequencies. 
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Before proceeding to consider the model, it should be emphasised that 

the rubber block is being considered throughout as an effectively "grounded" 

component*, both for the purpose of determining the stiffness which it 

presents to the transverse beam assembly, and also for determining the 

force transmission to the lower part of the seating. As has been discussed 

elsewhere, this is justified by the relatively high flexibility of the 

block in comparison with the supporting structure. The coupling points 

P
1 
and P

2 
on the two upper faces of the block are each allowed 6 degrees 

of freedom, and the force transmission to the lower sandwich beams is 

assumed concentrated at three points along each of the lower faces of the 

block, there being a total of 14 force transmission co-ordinates associated 

with these points (see Appendix IX). Thus, the resulting point and transfer 

dynamic stiffness matrices are of size 12 x 12 and 14 x 12 respectively. 

The model is shown in Fig.14.8, and also in Fig.14.9, where it is 

superimposed upon a drawing of half the rubber block. It comprises a 

network of springs arranged in such a way as to adequately describe the 

behaviour of the actual block, especially with regard to the probable paths 

by which forces are transmitted through to the supporting structure. The 

assumption is made that the two halves of the block are uncoupled, and this 

is justified by the fact that the block is attached to the lower part of the 

seating by a pair of 12.7mm (i in) bolts which pass through the centre 

section and thereby minimise elastic coupling between the two halves. The 

rigid massless plates on the two faces distribute the load and prevent 

deformation in the planes of the faces, thereby approximating to the conditions 

which prevail when the transverse beams are attached to the block. In 

view of the relatively large dimensions of the block, it was obvious that 

wave effects within the rubber could not be ignored, and in consequence it 

was decided to lump mass at the ends and at the mid-point of each spring, 

as shown in Fig.14.8. 

* i.e. No motion is possible for points on the lower faces of the block. 
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The analysis of the spring-mass model for its point and transfer 

dynamic stiffness properties is a little involved, especially since the 

spring "framework" is an indeterminate structure. The details are therefore 

given in Appendix IX. Computer subroutines have been written which generate 

the necessary dynamic stiffness matrices, given the stiffness and mass 

data for the members of the framework. However, these basic data must be 

obtained from tests on an actual block, so we shall now consider the 

various experiments which were performed for this purpose. 

Selected point receptance measurements were made at the centre of 

one face of the block, which was mounted as shown in Fig.14.15. The steel 

plate attached to the face served to distribute the load, and in addition 

it acted as an "exciting block" for obtaining rotational point receptance 

data*. However, the addition of this 3.6 Kg mass to the relatively 

flexible "ear" of the rubber block gave rise to a flapping resonance at 

around 30 Hz, so measurements were confined to the frequency range 5 to 20 Hz. 

Although mass cancellation was employed, this could not be expected to be 

very effective with such a large mass near to a resonance, and certainly 

not above it. Thus, only "static" stiffness and damping information were 

yielded by these tests. The nylon rope shown in Fig.14.15 was used to 

apply a small preload to the rubber block, so as to hold it down reasonably 

firmly even when the shaker was pulling on the face. It is not thought that 

this applied any significant constraints to the block, since the rope was 

only in contact with its corners and these were obviously far less stiff 

than the centre of the face. 

* See Part 2 of this report. 

i.e. The combination of a stiff spring K1  with a weak pre-loading spring 

K
2 

in parallel still looks like K
1
. 
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FIG-. 14.8 THE RUBBER V-BLOCK AND THE SPRING- MODEL USED TO REPRESENT IT  
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__FIG. 14.13 	 
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The measured direct and cross receptance curves are shown in Figs. 

14.10 to14.12, and the average values of modulus and phase obtained from 

these curves have been listed in Fig.14.15. These measured receptances 

are relatively constant, as one would expect for a spring, and are best 

in the range 10 to 15 Hz. The errors below 10 Hz were probably due to the 

small accelerometer signals and to changes in amplifier gain, whilst those 

above 15 Hz were due to the flapping resonance, and possibly also to 

accelerometer cross-sensitivity in the case of the cross receptance 

measurements. The bump at 13 Hz was caused by a resonance of the chain 

supporting the shaker. 

These dynamic measurements were obtained using forces of the order 

of 50N, and the preload applied by the nylon rope was of the same order. 

To examine the behaviour under higher loads, a static test was carried out 

in which normal loads were applied simultaneously to the two faces of the 

rubber block using large steel discs which sat in the "V". The deflection 

was measured with dial gauges. The resulting load/deflection curve is 

given in Fig.14:5, and it clearly shows that the block becomes stiffer with 

increasing normal load. Whilst the dynamic forces transmitted from the 

engine are probably less than 50N, the static load due to the weight of 

the engine is very much larger, so the effective stiffness of the loaded 

block may be at least twice that of the unloaded block. The dynamic tests 

should ideally have been performed with representative amounts of preload 

applied to the block, but the lack of a hydraulic shaker precluded this. 

However, since this report is concerned primarily with the response of the 

unloaded seating, the effect of preload need not be considered here. 

Admittedly, the blocks are subjected to a small preload due to the weight 

of the transverse beam assembly, but this is probably not much greater than 

that applied by the nylon rope during the dynamic tests. If the seating 

analysis were later extended to include the effect of the engine, the 

results of the static test could of course be used to increase the stiffness 

of the lineaxised V-block model. 
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The static test also provides a good check on the receptance 

measurements: From the displacement/force law which has been fitted to 

the measured data in Fig.14.13, it is seen that for small loads the ratio 

5 --F- = 0.574 x 10-5 m/N, which compares quite well with the figure of about 

0.5 x 10-5 m/n obtained from the receptance test for
Fx. 

 The slightly 

higher figure obtained in the static test is a consequence of two factors; 

(a) The normal load was applied 18mm above the centreline of the face, 

and (b) The load was applied by means of a disc which sat in the "V", so 

a small forcelAF* was also applied down the face. 

Using the measured receptances as a guide, and taking physically 

realistic dimensions for the model, the stiffnesses of the six basic 

members were judiciously guessed. By a process of trial and error, the 

dimensions and the stiffnesses were then adjusted to give the best possible 

agreement between the measured receptances and those given by the model. 

The final dimensions and stiffnesses are given in Figs. 14.9 and 14.14. 

respectively, and the corresponding zero frequency receptances given by 

the model are listed in Fig.14.15, together with the measured values. With 

G 
, 

theexceptionof—and -=which are both approximately twice the 
110  

measured figures, the agreement is quite reasonable, especially bearing in 

mind the complexity of the problem. This agreement was obtained after 

only two or three tries, and could not be improved upon, since any attempt 

to improve  
Fy  and – 

9
-- had a detrimental effect upon the other receptances. 
Me  

Since the shear modulus of rubber is known to increase slightly with 

frequency, the member stiffnesses were increased by 20% in progressing from 

10 to 1000 Hz. It is interesting to note that the measured phase angles were 

best described with a loss factor of 0.1, whilst natural rubber only 

possesses a loss factor of about 0.025 (9). This tends to suggest that 

* 	= coefficient of friction between disc and plate on face of block. 
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MEMBER STIFFNESSES  (N/m) 

K1 — 1.0x108  

= 1.2 x 105  

K3 = 0.8 x 106  

K4 = 1.2 x 106  

K, = as x lo5  
K, = I.o x los  

BALLOONED NUMBERS ARE REFERENCE 
NUMBERS OF THE BASIC MEMBERS OF 
THE RUBBER V-BLOCK MODEL 

LOSS FACTOR, r7  = 0.1 
FOR ALL SPRINGS 

FIG 14.14 LUMPED MASSES AND SPRING STIFFNESSES USED IN MODEL OF RUBBER V-BLOCK  
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MI = MA + ifrID 

M2 -= MB 

M3 = MC + ±MF 

M4 = ME 

M5 = mi + 244F 

Ms= MH 

M7 --,-- ' MG + PID 

M 
I 

MA, MG, ETC. ARE THE 
MASSES OF SECTIONS 
A, B , ETC. OF THE 
RUBBER V—BLOCK. 

HALF RUBBER V—BLOCK, 
SUBDIVIDED INTO SECTIONS 
A To I. 

FIG.. 14.16 INITIAL LUMPING OF MASS FOR RUBBER V-BLOCK MODEL  

FIG-. 14.17 LUMPING OF MASS AT NODES AND AT MID-POINTS OF MEMBERS  
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most of the damping arose from friction between the lower faces of the 

rubber block and the supporting surfaces, and not from within the block 

itself. 

Having modelled the stiffness properties of the block, it was then 

necessary to consider the mass distribution and to lump suitable masses 

at the nodes of the spring model and at the mid-points of the members. 

Referring to Fig.14.16, the half block was first divided into nine sections 

A to I. The masses of these sections were calculated and proportions of 

these masses were then judiciously lumped at the seven points shown. The 

masses M
1 
 to M

7 
were finally divided up across the width of the block, as 

shown in Fig.14.17. The resulting masses associated with the six basic members 

of the model are given in Fig.14.14. Following the procedure outlined in 

Appendix IX, the masses at the mid-points and upper ends of the members are 

combined with the member stiffnesses in order to form the point and transfer 

dynamic stiffness matrices for the block. Since it has been assumed that 

the six points of support for the model displace a negligible amount in 

comparison with the points on the upper faces, the six lower masses (0.561 

and 0.417 Kg) are not used in the calculation of the dynamic stiffnesses. 

However, When analysing the lower part of the seating, these masses are 

concentrated at the six points of force input on the lower sandwich beams. 

Although necessarily very approximate, and unsubstantiated by 

measurements, this fairly arbitrary lumping of mass does give block resonances 

at the right sort of frequencies, as will now be demonstrated by considering 

basic wave theory. It is well knownthat any elastic body exhibits wave 

effects when the excitation frequency is such that the resulting elastic 

waves passing through the body have half wavelengths, or multiples thereof, 

which are comparable with the dimensions of the body. If we consider the 

classical problem of a uniform long rod of length 1, the natural frequencies 

of axial vibration are given by fr, = 	 where n = 1, 2,----, the2L , 

factor k = 1, and the "long rod -wave velocity" C0 /.. 
 
E . However, Davies (10) 
)3 
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has shown that if the cross sectional dimensions of the rod are comparable 

with its length, and Poisson's Ratio Y = 0.29, then the factor kt= 0.58. 

Since the wave velocity kCo  is a function of the coupling between motion 

along the axis and motion at right angles to it, the virtual incompressibility 

of rubber may give rise to an even lower value of k. If we now consider 

Fig.14.9, we see that a typical path length 1 for the V-block is about 

150 mm (e.g. centre of face down to region of point C). Assumingk=0.58, 

this gives a natural frequency of 95 Hz. We may next refer to Fig.14.13, 

which shows the computed vertical force transmissibility across the block when 

it is mounted in the seating and a vertical force is applied to the top of 

the seating. Due to the multi-directional nature of the seating, the 

transmitted force also comprises components due to inputs to the block in 

the horizontal directions Y and Z, but this is immaterial in the present 

discussion. The important thing is the prediction of internal resonances 

at relatively low frequencies, and in the same sort of frequency range as 

one would expect from basic wave theory. Another point of interest is the 

rather rapid drop-off in transmissibility above 300 Hz. This is a consequence 

of the limited number of masses into which the block has been divided, and 

it is unlikely that the actual block would exhibit such a marked decrease 

in transmissibility. 

The combined use of measurement and theory has led to a successful 

representation of the rubber V-block in all its aspects. However, it now 

appears that the finite element method may be successfully applied to the 

analysis of such a block; at least for determining the stiffness under zero 

preload. Following the recent development of a suitable volume finite 

element computer programme by S. Ioannides of the Dynamics Group, a trial 

calculation has been performed on the rubber block, and using a 200 degree 

of freedom model for half of the block, the computed -1-receptance was 

found to be about 30% of the measured value. The fact that the computed 

figure was low is not surprising, since it was observed that the actual 

block did not sit snugly in the supporting "V", and this was not allowed 
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for in the analysis. In addition, one cannot be absolutely sure of the 

material properties. It therefore appears that the finite element method 

may be considered in any future analysis of a complex-shaped rubber block, 

provided that preload is not important. However, the behaviour under large 

loads is very non-linear, and the analysis becomes far more complex(11) 

For other than very simple shapes the analysis should certainly be checked 

against measurements wherever possible. 
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14.3 	MALE V-PIECE  (Component VB) 

The V-piece is shown in Figs.14.19 and 14.20. It is built 

up from thick steel plate, and comprises a top plate and two triangular 

plates which are welded to it. On the faces of the "V" are the 3.5mm PVC 

pads which separate it from the cross beams. The complete assembly weighs 

16.7 Kg. To avoid further complicating the seating analysis, the steel 

V-piece plus the pads have been considered as a single component. These 

parts have been analysed separately and coupled together at the subsystem 

stage, in order to yield a 16 x 16 dynamic stiffness matrix for the component. 

This matrix relates the four forces at point P and the six forces at each of 

the assumed coupling points A and B to the corresponding displacements. The 

co-ordinates have been given in Fig.13.7, and they may also be found in 

Appendix X, along with full details of the analysis. It should be noted 

that points A and B are only fictitious coupling points, since they lie 

half-way between the actual physical coupling points on the inclined faces 

of the triangular plates (see Fig.14.20). 

In view of its fairly stiff construction, and the way in which forces 

are applied to its top face, the steel V-piece has been idealised as a rigid 

body with six-directional inertial properties. Since the mobility measurements 

on the seating were carried out with a vertical force applied directly over 

the top of one of the triangular plates (see Fig.14.19), one can be fairly 

sure that the actual V-piece remained essentially rigid during the tests. 

Also, when an engine is mounted on the seating, the engine mount which is 

bolted to the V-piece should further stiffen it. As final proof of the rigid 

body behaviour, we may refer to Fig.14.21, which shows the results of a point 

mobility test on a freely suspended V-piece. These results also provide a 

check on the calculated figures for the mass and for the moment of inertia 

about the Z axis, since the theoretical response is a function of these two 

quantities. 
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The PVC pads on the two inclined faces have been represented as 

hysteretically damped springs (linear and rotational), concentrated at the 

assumed coupling points A and B, and the spring stiffnesses have been calculated 

using simple theory. However, the compressive stiffness of a firmly held 

rubber pad is also affected by the bulging restraint imposed by the metal 

surfaces between which it is sandwiched. This has been taken account of 

by replacing Young's Modulus E by a Compression Modulus E
c
, which is a 

function of the Shape Factor 
(12) 

 of the pad. The PVC properties are the 

same as those used in the sandwich beam analysis, and the damping has been 

introduced by making E and G complex. 
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14.4 	FEMALE V-SUPPORT (Component VS) 

The V-support is shown in Figs.14.22 and 14.23. It is fabricated 

from 9.5mm steel plate, and consists of five steel parts which are welded 

together, plus two 3.5mm PVC facing pads. The latter separate the upper 

faces of the steel support from the longitudinal beams which lie in the "V". 

The complete assembly weighs 13.5 Kg. In the same way as for the Male V-piece, 

the steel V-support plus the pads have been considered as a single component, 

and the analytical coupling together of these parts has been carried out at 

the subsystem stage. The resulting 18 x 18 dynamic stiffness matrix relates 

the six forces at each of the coupling points A, B and C to the corresponding 

displacements. Full details of the component analysis are given in Appendix XI. 

Since the steel V-support appears relatively stiff, it has been 

idealised as a rigid body with six-directional inertial properties. When the 

longitudinal beams are bolted to the face plates, they effectively prevent 

any bending distortion, and the only obvious flexibility is in torsion of 

the faces about their supporting gusset plates. The torsional stiffness of 

a face has therefore been calculated approximately (kB  =e. 1.4x 106 N-m/ral ) 
Face 

and this has been combined with the corresponding rotational stiffness of the 

attached PVC pad. As regards the base plate, since it is bolted down to the 

thick top plate of the cruciform by 19mm (4 in) bolts, its bending flexibility 

in situ would appear to be minimal, and it will be neglected for the present. 

However, it should be mentioned at this stage that the assumption of a rigid 

base plate has subsequently been found to be invalid, and this will be discussed 

in detail in section 14.6. For reasons there outlined, the base plate 

stiffness will be considered in conjunction with the cruciform stiffness, so 

it need not enter into the analysis of the V-support. 

The PVC pads have been represented as hysteretically damped springs 

(linear and rotational), concentrated at the assumed coupling points at the 

centre of each of the face plates, and the spring stiffnesses have been 

calculated using simple elasticity theory. As a consequence of face plate 
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distortion caused by the welding, the pads are not sandwiched very tightly 

between the steel V-support and the longitudinal beams, so it seemed valid to 

ignore the effect of bulging restraint on the compressive stiffness of the 

pads (i.e. stiffness term which is a function of shape factor ( 2)). The PVC 

properties are the same as those used in the sandwich beam analysis, and the 

damping has been introduced by making E and G complex. 
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14.5 	CRUCIFORM (Component CR) 

The four nominally identical cruciforms were fabricated from 19mm 

steel plate, and as is seen from Fig.14.24, each comprises a 305mm square 

top plate which is welded to web plates arranged in the form of a cross. 

This assembly is welded to the steel supporting structure. As was stated 

in the Introduction, transfer mobility measurements between two cruciforms 

have shown that the dynamic coupling between them is relatively small, so 

we may justifiably assume the cruciforms to be uncoupled for the purposes of 

the present seating analysis. Therefore, we may now confine our attention 

to the dynamics of a single cruciform, which we shall choose to be cruciform 

2. 

Due to the complex nature of the cruciform and of the surrounding 

steel structure, no attempt has been made to predict its mobility properties 

theoretically. However, it is possible that if the mobility on the cruciform 

top plate is little influenced by the surrounding structure, then one might 

be able to obtain sufficiently accurate data from a finite element analysis 

of the cruciform alone, assuming it to be attached to a rigid supporting 

structure. As yet, this has not been investigated, and anyway it would require 

experimental verification. Hence it was decided to obtain the necessary data 

by measurement. 

Since all the work described herein assumes single-point coupling 

between components, it was necessary to measure the complete multi-directional 

mobility matrix pertaining.  to the assumed coupling point P at the centre of 

the cruciform top plate. This 6 x 6 matrix relates the 3 translational and 

3 rotational motions to the corresponding forces and couples, and may be 

measured using the special techniques developed in Part 2 of this report. Due 

to externally imposed limitations on testing time, it was decided to use a 

twin-shaker unit in conjunction with a conventional analogue impedance 

measuring system. This permitted the direct measurement of the elements of 

the mobility matrix, without the need for on-line processing of the data, and 

the slow frequency sweep only lasted about 4 minutes, so setting-up time 
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FIG. 14.24 FORWARD STARBOARD CRUCIFORM (2)  

WITH EXCITING BLOCK AND TWIN SHAKER IN POSITION FOR MOBILITY MEASUREMENTS) 
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OF EXCITING BLOCK ATTACHED TO CENTRE OF CRUCIFORM TOP PLATE  

DISPLACEMENT TRANSFORMATION FROM G TO POINT P ON SURFACE OF CRUCIFORM  

Islp—C -Ost POINT G IS A DISTANCE 
h.=50MM ABOVE POINT P 

DYNAMIC STIFFNESS RELATION FOR POINT P ON CRUCIFORM  

= (+2[Tpd E L1 C -Fp6d)if 
NOTE THAT THE MATRIX WITHIN THE PARENTHESES ( ) IS THE CRUCIFORM RECEPTANCE MATRIX 

FIG.  14.26 THE 6 x 6 DYNAMIC STIFFNESS MATRIX FOR THE CRUCIFORM  
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usually exceeded actual measurementtime. However, no digital output was 

available with this system, so the mobility data could only be collected 

as plots of modulus and phase angle versus frequency. 

Referring once again to Fig.14.24, we see an aluminium exciting 

block attached to the centre of the cruciform top plate, and above this 

is the twin-shaker unit. This unit comprises a pair of small shakers 

connected electrically in series, and each capable of delivering up to 

about 10N thrust. Since the two shakers are nominally identical and the 

same current passes through both, they each deliver approximately the same 

force, and by reversing the direction of current flow through one of them, 

they will either run in phase to apply a pure force to the block, or out of 

phase to apply a couple. It is only necessary to measure the force input 

from one shaker, whilst the response is obtained as the sum or difference 

of the signals from two accelerometers, depending on whether translational 

or rotational response is being measured. A schematic diagram of the 

complete measuring system is shown in Fig.14.25. For more information on 

multi-directional measurements using a twin shaker, the reader is referred 

to Part 2 of this report, and particularly to Appendix IV, which describes 

in detail some test measurements made with precisely the same exciting block 

and transducersas were used for these cruciform tests. 

It will be observed that the exciting block was not attached directly 

to the cruciform. Instead, a 100 mm dia. x 16 mm thick steel disc was first 

stuck down using Plastic Padding adhesive, and the block was then bolted down 

onto the ground upper face of the disc using a 12.7 mm high tensile steel bolt 

(i inch BSF). A thin film of Plastic Padding was also interposed between the 

block and the disc, so as to ensure an absolutely solid joint. This arrangement 

obviated the need for attachment holes in the cruciform, and it also simplified 

re-orientation of the exciting block for measurements in another plane. When 

it was necessary to rotate the exciting block axis through 900, the fixing 

bolt was removed and a sharp tap then separated the block from the disc (which 

remained attached to the cruciform). After gently scraping the mating surfaces 
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and applying a thin film of Plastic Padding, the block was bolted down in the 

new position. 

The matrix which was measured is shown in Fig.14.26, It will be 

observed that inertiances were obtained, rather than mobilities, but this was 

only due to limitations in the integrating amplifiers of the analogue measuring 

equipment. Due to symmetry, only 21 of the 36 elements are unique, and also 

5 of the off-diagonal elements were obviously very small in the present case, 

so only 16 inertiances were actually measured. The complete sequence of 

tests for obtaining these data is shown in Fig.14.27. Each test gave either 

the acceleration sum or difference divided by the force measured by gauge 1, 

and the curves were subsequently scaled to give the required inertiance 

properties. 

From the table it is clearly seen that the resultant of a horizontal 

pure force input acts through the exciting block centre of gravity G, and not 

along the surface of the cruciform. Similarly, horizontal acceleration 

measurements also correspond to the same point. Thus, the measured inertiance 

matrix relates to the block centre of gravity, and not to the point P immediately 

below it on the cruciform top plate. Since point G was only 50 mm above point 

P, the effect has been found to be relatively small. However, a correction 

may be applied using the transformation matrix [7n,c] of Fig.14.26, provided 

that one is able to express the measured data in a numerical form. Since the 

data is ultimately required in such a form for inclusion in the seating 

analysis, it was decided to apply this correction after digitisation of the 

graphical data. 

The curves pertaining to element A of the matrix are shown in Fig.14.28, 

but for the complete set of measured data the reader should consult reference 

(13). Studying both the modulus and phase plots, it is clearly seen that the 

vertical point inertiance is approximately spring-like over the frequency range 

35 to 150 Hz, but outside this range it deviates considerably from a spring- 

like behaviour. Similarly, the other 15 measured responses fail to exhibit 

exclusively spring-, damper- or mass-like characteristics, especially in the 
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case of the cross inertiances. Another observation to be made from Fig.14.28 

is the lack of any sharp resonances or anti-resonances. The same has been 

found to hold for the other curves, and as a consequence it was decided to 

mathematically model the measured data by representing each response curve by 

5 straight line segments, in the manner indicated by the dashed line in Fig.14.28. 

This has permitted a more accurate representation of the data than could be 

obtained using single straight lines such as spring lines, whilst at the same 

time the amount of data to be stored is minimal in comparison with what would 

have been required if the curves had been digitised at small frequency intervals 

so as to describe every little detail. From the stored data at the 6 frequencies. 

one may easily compute the inertiance modulus and phase corresponding to any 

intermediate frequency. All the measured responses have been modelled in this 

way, whilst the 5 unmeasured responses H, I, N, S and T have each been set to 

-99c1B/0°, this being smaller than any of the measurements. With this numerical 

representation of the measured data, it is quite easy to set up the complete 

6 x 6 inertiance matrix [1 at any frequency, and to transform from the 

exciting block centre of gravity G to the cruciform surface P using the 

transformation matrix [1-PG].  The 6 x 6 dynamic stiffness matrix [27: is obtained CR2 

in terms of these two matrices in the manner indicated in Fig.14.26. 

In the present analysis we are only concerned with cruciforms 2 and 

3, which support the starboard longitudinal beam assembly. Since these are 

assumed to be identical and uncoupled, the required dynamic stiffness relation 

for the two cruciforms is 

      

      

cRa 

O 

  

0 

 

SCR2.  

12%1 

  

Z CR2 

 

     

   

I 2 x 12 

The computer subroutine for generating the dynamic stiffness matrix is listed 

in reference (13). 
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14.6 STIFFNESS OF THE V-SUPPORT/CRUCIFORM INTERFACE 

In deriving the dynamic stiffness of the V-Support, it was assumed 

that this component was effectively a rigid mass, and that its steel base 

plate would not flex. Although this plate is only 9.5 mm thick, and is 

obviously quite flexible in a free condition, it was thought that when 

it was fixed to the stiff top plate of the cruciform it would be held 

down fairly rigidly. This seemed reasonable, in view of the 19 mm top 

plate thickness and the four 19 mm fixing bolts. Thus the V-support/cruci- 

form assembly was initially modelled as a basically masslike V-support 

sitting on a basically springlike cruciform. Only after the lower part 

of the seating had been analysed did it become apparent that the V-support 

might not be so rigid as had been supposed. Fig.14.29 shows the 

measured and initially predicted vertical responses at cruciform CR2 for 

a vertical force input to the seating at V-piece VB2. The measurement 

was obtained by mounting accelerometers on the bottom plate of the V- 

support, and for the calculation, the masslike V-support was assumed to 

be connected directly to the measured cruciform mobility (corresponding 

to the centre of the cruciform). Upon discovering the difference of 

approximately 20dB between these measured and predicted responses, a 

thorough check was carried out on the analysis. However, when no errors 

were discovered, it became obvious that the difference could only be 

attributed to the V-support/cruciform interface, so it was decided to 

examine this more closely. The results of this investigation will be 

seen to be very instructive, since they bring into question the assumption 

of point coupling between components when the actual coupling is over a 

relatively large area. In addition, they show how a bad choice of accel- 

erometer mounting position can give a completely false impression of 

the seating performance. 

We shall start by considering the accelerometer arrangement used for 

the measurements on the installed seating. It is seen from Fig.14.29 that an 
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FIG. 14.32 V-SUPPORT CLAMPED TO IMITATION CRUCIFORM FOR LABORATORY TESTS  
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aluminium block was glued to the bottom plate of the V-support, and two 

accelerometers were attached to the block by means of studs. By moving 

these accelerometers to various positions on the block, and by passing 

the signals through an analogue sum and difference unit, all six motions 

could be measured. When the accelerometer block was placed in this 

position it was mistakenly believed that there would be negligible relative 

motion between the bottom plate of the V-support and the top plate of 

the cruciform. However, as the measured response turned out to be 

greater than that predicted on the basis of a rigid coupling, it was 

decided to examine the relative motion across the interface. Unfortunately. 

by that stage it was no longer possible to return to the actual cruciform 

used in the main tests, but the cruciform could be simulated sufficiently 

accurately by using one of the four spacing pillars normally employed 

to raise the engine well clear of the seating structure*. The pillar 

was inverted and bolted down onto a large spring-mounted concrete table 

weighing several tons. The actual cruciform and this imitation are 

shown in Figs. 14.30 and 14.31 respectively. The former was constructed 

from 19 mm steel plate, and owes its name to the cross arrangement of 

the web plates to which the top plate was welded. The imitation "cruci-

form" does not strictly deserve this name, as it is simply a pillar made 

up from large diameter steel tube, with 19 mm steel plates welded to 

its two ends. However, it has similar dimensions to the actual cruciform, 

and was therefore considered to be an adequate imitation both as regards 

size and dynamic properties. As the top plate of the inverted pillar 

was slightly smaller than that of the actual cruciform, the bolt holes 

would not line up with those in the V-support, and rather than drill new 

holes it was decided to use large G-clamps to join the two components 

together (see Fig.14.32). It should be mentioned that the V-support 

These pillars were necessary when the engine was clad, as the cladding 
otherwise fouled the seating. 
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used in these special tests was not one of the four used in the present 

seating assembly, but was one which had been manufactured earlier, 

during the initial development of the seating. It was of the same type, 

and was only used in preference to one of the others because the 

seating had already been assembled in the laboratory*, and it was not 

wished to disassemble part of it unless absolutely necessary. 

Upon clamping down one side of the V-support, it was observed 

that the other side lifted off the top face of the cruciform by approx-

imately 3.5 mm, as shown in Fig.14.33a. This resulted from distortion 

of the component during welding. When the other clamps were applied, 

they pulled down the bottom plate of the V-support in the manner 

indicated in Fig.14.33b. The drawing is slightly exaggerated, but there 

remained a gap of at least 0.1 mm (0.004 in) between the bottom plate 

and the surface of the cruciform in the region immediately beneath the 

triangular gusset plate. Consequently, the distorted bottom plate 

formed a relatively flexible bow spring underneath the gusset plate, and 

the total vertical stiffness presented by the V-support/cruciform 

assembly comprised the fairly low stiffness Kvs  of this spring in series 

with the considerably higher stiffness Kc 
R 
 of the cruciform. The 

measurements on the installed seating were made on the bottom plate of 

the V-support, and hence on top of the bow spring, whilst the prediction 

shown by the thick line in Fig.14.29 corresponds to the cruciform. It 

is easily shown that the relative motion between the two points is 

given by 1 + - 
KCR
---  so the 20 dB difference between the measured and 
Kvs 

predicted vertical responses suggests that the V-support is approximately 

1 the stiffness of the cruciform. 10 

The seating was assembled with the four V-supports bolted directly 
onto the concrete table. 
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In order to confirm the large relative motion across the interface, 

accelerometers were attached to the V-support and to the imitation 

cruciform, as shown in Fig.14.32, and a normal excitation was applied 

at the centre of the inclined face above the accelerometers. The 

upper graph of Fig.14.34 gives the measured relative motion between the 

upper and lower points, and clearly shows a difference of 15 to 20 dB 

over the frequency range 50 to 200 Hz. The results below 50 Hz may be 

ignored, since the concrete table no longer remains an effectively rigid 

termination for the springlike cruciform, and the combination of cruci-

form and table in series then has a mobility which is comparable with 

that of the attached V-support, leading to very little relative motion. 

The considerable variation above 200 Hz must be due to local plate 

resonances, and to resonances of the large G-clamps used to hold the 

assembly together. 

Having confirmed the large relative motion, it was decided to 

measure the vertical stiffness both of the assembly and of the cruci-

form, and to use this information to obtain the effective stiffness of 

the V-support. The stiffness of the assembly was obtained from mobility 

measurements on one of the upper faces of the V-support. However, due 

to the difficulty of applying a force at 45°  to the inclined upper face, 

the vertical stiffness was not measured directly. Instead, direct and 

cross mobility measurements were made in the directions normal to and 

up the face. The resulting 2 x 2 mobility matrix was then subjected to 

a co-ordinate transformation, in order to yield the matrix relating to 

the vertical and horizontal directions. The procedure is outlined in 

Fig. 14.35, and all the measurements and the processing of the measured 

data were performed in the laboratory using the computer-controlled 

measuring system. The resulting vertical point mobility is shown in the 

lower graph of Fig.14.34, but it should be stressed that this is only 

the mobility one sees when looking into one of the inclined faces of the 
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assembly. Also shown in this figure are the vertical point mobilities 

measured on the imitation cruciform in the laboratory and on the actual 

cruciform attached to the receiver structure. The measurement on the 

imitation cruciform was at a point immediately above the wall of the 

tube which supports the top plate, whilst the measurement on the actual 

cruciform was at the centre of the top plate, immediately above one of 

the stiff webs (see Fig.14.30). Each of these measurements was made at 

a point of maximum stiffness for the particular cruciform, and due to 

the considerable variation in mobility over the surface of the top plate, 

the effective stiffness presented to the V-support must certainly be 

less than is indicated from the measurements shown. However, the flexibility 

of the cruciform top plate has been included with that of the V-support 

base plate in order to give an overall coupling flexibility which may 

be used in the seating model. 

The mobility curves for the actual and imitation cruciforms are 

extremely interesting, since they are in very close agreement with one 

another over quite a wide frequency range. However, the apparently good 

agreement at the low frequencies is misleading, as below 50 Hz the 

measurements on the imitation cruciform show only the effective mass 

(4010 Kg) of the concrete table. The trough at 50 Hz is an anti-resonance 

of the table-cruciform system, and this is then followed by the springlike 

behaviour of the cruciform on the effectively rigid table. If we ignore 

the effect of the table, and extend the stiffness line down to the low 

frequencies, we see that the two cruciforms behave in a very similar 

manner between 30 and 300 Hz. Bearing in mind the similar top plate and 

web/wall thicknesses for the two cruciforms, and the dissimilar nature 

of the supporting structures, it seems probable that the cruciform 

behaviour up to 300 Hz at least is only a funct,on of local deformation 

of that part of the cruciform in the immediate vicinity of the measurement 

point. The observed resonances of the imitation cruciform above 300 Hz 
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may have corresponded to rocking and bouncing resonances of the top 

plate on the springiness of the vertical tube, or alternatively they 

may just have been top plate resonances, if the exciting force were 

not exactly over the tube wall. The measurements are certainly thought 

to have been reliable, since the motility of the. imitation cruciform 

was measured using separate force and acceleration transducers, and 

the force gauge was attached by means of a stud screwed into the 

cruciform. 

It is clearly seen that the measured cruciform stiffness is almost 

exactly 10 times greater than the stiffness measured on one of the 

inclined faces of the V-support. The large intermediate flexibility 

is obviously due to the combined effects of the flexibilities in the 

V-support bottom plate and in the cruciform top plate, but the proportions 

are unimportant. Referring to Fig.14.36, the measured stiffness of the 

assembly and of the cruciform have been used to calculate the stiffness Kvs  of 

one half of the V-support. If it is assumed that the two upper faces 

are uncoupled, the two halves act as a pair of simple springs in 

parallel, and the total X stiffness of the support is then 2 K *. 
vs 

Similarly, the total e stiffness is given by 2 K 
vsa

2
.  The corresponding 

flexibilities
X INT 

 and cL 
9 INT 

are the reciprocals of these stiffnesses, 

and because the springiness of the V-support bottom plate only affects 

the x and g motions of the accelerometer attachment point S, these two 

flexibilities are sufficient to correct the model. 

Since the seating response measurements were made on the V-support 

bottom plate, above the flexible part of the assembly, the simplest way 

of correcting the analysis was to still consider the V-support to be 

masslike, and to combine the intermediate flexibility with the measured 

Note that this total stiffness is only about 5 times (i.e. 14dB) less 

than the cruciform stiffness. 
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cruciform data. In this way, the computed responses would correspond to 

the same point as the measurements - and no longer to the centre of the 

cruciform top plate. Hence, the two flexibilities oC 	and c,C. 
X INT 	 e INT 

have been added to the corresponding diagonal terms of the cruciform 

receptance matrix. The corresponding re-computed response data for the 

lower part of the seating are given with all the other results in 

Chapter 15, and they will be seen to agree much more closely with the 

measurements. 

The findings of this section clearly illustrate the danger of 

taking measurements at a single point and them assuming true point 

coupling, when the two components are in fact coupled rather imperfectly 

over a relatively large area. The initially predicted results might 

have been more accurate if the components had been either glued or welded 

together, but the seating performance in terms of force transmissibility 

would probably have been no different, and it is not the job of the 

dynamic analyst to modify the system solely to enable him to accurately 

compute its response! 

The other important lesson to be learnt from these findings is the 

very startling effect that the accelerometer position can have on the 

measurements of seating performance. In this particular example, the 

accelerometers were only mounted on the V-support bottom plate because this 

was more accessible than the underside of the cruciform top plate, yet 

the two points were later found to have a very large relative motion. Thus, 

the true motion transmissibility from the top of the seating down to the 

cruciform is in fact about 20 dB better than was indicated by the measurements 

made on the installed system. It is believed that many seating response 

measurements in the past have been made with accelerometers mounted on 

the bottom part of the seating, rather than on the cruciform, and since 

the intermediate flexibility must vary considerably from one seating 

to another, comparisons of seating performance based upon these figures 

may not be very reliable. 
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CHAPTER 15  

RESULTS AND CONCLUSIONS FOR THE SEATING  

15.1 RESULTS FOR THE ASSEMBLED STRUCTURE 

The results are presented as frequency response plots of mobility 

and force transmissibility, and in most cases both theoretical and 

measured responses are given. In every case but one, the excitation 

has been applied to the top of the seating on V-piece VB2, either at 

point I or at point It* (See Fig.15.1). The results are grouped together 

in the following order: 

Upper Part of Seating  (shown in Fig.15.1) 	Figures 

(1)  Point mobilities on V-piece VB2. 15.2 - 15.4 

(2)  Transfer mobilities on upper part of seating. 

15.4 - 15.8 

(3)  Forces transmitted to lower part of 

seating via rubber 	blocks RB1 and RB2. 15.9 - 	15.11 

Lower Part of Seating (shown in Fig.15.12) 

(4) Velocities at cruciform CR2 due to excitation 

at VB2.(i.e. transfer mobility from 

top to bottom of seating). 

(5) Forces transmitted to cruciform CR2 due to 

excitation at VB2 (i.e. overall force 

transmissibility across seating). 

Simple Analysis  

(6) Comparison between results of full 

analysis and simple analysis. 

The Influence of Pad Shear Stiffness  

(7) Force transmissibility and mobility data 

showing effect of shear stiffness of 

PVC Pads beneath the V-pieces. 

15.13 - 15.15 

15.15 - 15.16 

15.17 - 15.18 

15.19 - 15.20 

Horizontal forces F, and F, were applied on edge of top plate, and 
acted through I. Vertical force Fx  and couple Me  were applied directly 
at I 
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All measurements in the laboratory were carried out with the 

Solartron computer-controlled frequency response analyser, which was 

described in Chapter 4 (Part 2). Other measurements have been made on 

the seating when it was mounted on the actual receiver structure, and 

these were performed with a slow-sweep analogue measuring system. 

The laboratory measurements on the transverse beam assembly were 

made with the lower beams removed, the rubber blocks being mounted. 

directly on the V-supports, just as for the block stiffness measurements 

described in Section 14.2. Since the blocks are quite soft in relation 

to the support impedance, this should not effect the response of the 

beam assembly. 

A force gauge and separate accelerometers* were used for all point 

and transfer mobility measurements. In the case of the point measurements 

on VB2, the results for -  Er- , -,77e  and -T were obtained using the multi- 
directional measurement techniques developed in Part 2. Exciting block 

Mk4 was used for this purpose, the block being securely bolted down at 

point I with a 12.7 mm bolt (i inch BSF). The laboratory measurements 

were performed using a single shaker, whilst the measurements on the 

installed seating were made with a twin shaker (see code at top of upper 

graph in Fig.15.2 - Block Mk4/1S/IC signifies exciting block Mk4 and 

single shaker, with results inertia-corrected for effect of block). 

When measuring the responses on beam UT1 due to an excitation on 

VB2, the velocities a. and $3  in the plane of the layers were obtained from 
vz 

accelerometers mounted on the centre and bottom layers respectively 

(i.e. layer 3 for 6111,_ and layer 5 for C113  ). 

Force gauge: Endevco type. 2103-100 
Accelerometers: Environmental Equipments AQ40 and Birchall A/02 

See Appendix IV for block data. 
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The force transmission to the lower part of the seating was 

measured in the laboratory, with the seating fully assembled. Due to 

the very large area of contact between the lower faces of the rubber block 

and the longitudinal beams, it was obviously impossible to measure the 

forces directly, so it was decided to measure the compression of the 

block in each direction and to multiply this by the relevant block 

stiffness. Thus, the net vertical force P
x 

= K
x (Xtop 

- 
Xbottom)' 

and 

the horizontal forces P.1. and P, are given by similar expressions. Whilst 

this does not take account of the reduction in effective stiffness due 

to wave effects, it does give a sensible estimate of the force at low 

frequencies. The block compressions in the X, Y and Z directions were 

measured by accelerometers mounted on triangular aluminium blocks which 

were glued to beams UT1 and LL4, and the forces were calculated on-line 

by the computer. The block stiffnesses were calculated from the multi-

directional dynamic stiffness data generated by the spring model; and 

when obtaining the vertical stiffness Kx, the rotation 1E3 of the inclined 

upper face was "blocked", since it is not free to rotate when the V-beam 

assembly is in position. The stiffnesses- obtained in this way are: 

K
x 

= 1.240 x 10
6 

VMS, KY  = 0.501 x 10
6 

N/m, K
z 

= 0.297 x 106 N/m. 

The velocity response at cruciform CR2 was measured with the 

seating attached to the actual receiver structure. The vertical input 

on VB2 was applied by a twin-shaker unit, with the two shakers running in 

phase. Both translational and rotational responses were measured using 

a pair of accelerometers on an aluminium block, which was glued to the 

bottom plate of V-support VS2. The exact arrangement and the implications 

of using this particular measurement position have already been discussed 

in considerable detail in Section 14.6. 
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15.2 DISCUSSION OF RESULTS • 

Upper Part of the Seating (shown in Fig.15.1) 

The various point mobility curves are given in Figs.15.2 to 15.4 

and the transfer mobilities in Figs. 15.4 to 15.8. Before proceeding 

to consider these and the other results in more detail, it will be useful 

to list the major seating resonances, which are associated with the 

peaks in the point mobility curves. However, as a consequence of the 

heavy damping, some of these peaks are very much subdued, whilst on 

the transfer mobility and force transmissibility curves they show more 

strongly. The identification of the corresponding modes of vibration 

involves examination of many responses, both in magnitude and phase, 

so it is only proposed to list the modes, without going into the details 

of how they were identified. In order to see all the major resonances 

from point mobility data, it is necessary in the most general case to 

look at the mobilities in the X, Y, Z,c.e...08 and 0 directions. However• 

in the present case, all the major resonances show themselves to some 

degree in the X, Y and Z point mobility curves. This is because of the 

offset of the V-piece from the centre of the cross beams, together with 

the strong coupling between motions in the different directions. Nevertheless, 

one of the most important peaks, occurring at 175 Hz, is in fact a combin- 

ation of two peaks. 
• 9/0  . x 

The curve of vertical point mobility ,..., 	-,r=- shows five of 
Lgo 	rx ii  

the major seating resonances, which have been identified as corresponding 

to the following modes of vibration: 

19 Hz 	Vertical bouncing of essentially rigid beam assembly on 

rubber blocks (X)*. 

The principal direction of motion in each mode is given in parentheses. 
The corresponding global co-ordinate system is shown in Fig. 15.1. 
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35 Hz 

56 Hz 

Single peak 165 Hz 
at 175 Hz 
on graph 	185 Hz 

Rocking of beam assembly on rubber blocks (E)). 

First flexural mode of beam assembly (flapping of 

sandwich beams in their plane of high flexibility 

and damping). 

Rocking of steel V-piece on PVC pads (E)). 

Vertical bouncing of V-piece on pads (X). 

where the frequencies given are those predicted by the analysis, rather 

than the measured values. 

The transverse point mobility (if  44 -7 9 shows three other 
%A.:14 

F7 [ 	
FY 

resonances: 

	

13 Hz 	Transverse motion of rigid beam assembly on rubber 

blocks (Y). 

	

110 Hz 	Principal resonance of rubber V-block in X-Z place* 

(See Fig. 14.18). 

	

260 Hz 	Transverse motion of V-piece on pads (Y). 

T.45 [..: 
and thd longitudinal mobility e-N 	shows five more: 

Lx 45 	F1 I  

approx. 8 Hz 	Fore and aft motion of beam assembly on rubber blocks (Z). 

19 Hz+ 

21 Hz 

74 Hz 

265 Hz 

Rotational motion of beam assembly in horizontal plane 

on rubber blocks (00. 

Rotational motion of beam assembly about its own axis ($). 

Rotational motion of V-piece on pads (i8). 

Fore and aft motion of V-piece on pads (Z). 

From this list, it is seen that the 6 basic modes of the beam-

assembly/rubber-block system are spread over the relatively wide frequency 

range of 8 to 35 Hz. 

Excited by rocking of beam assembly, since horizontal force causes 
rotation A in addition to translation Y. 

This has been distinguished from thQ_19 Hz-vortical reson2ince by the 
fact that the phase difference between q45 and q49 is 180 . 



405 

We shall now consider some of the mobility curves in a little more 

detail. Returning to the vertical point mobility Qo, it is seen that 

one of the major peaks occurs at 175 Hz. This rather broad peak is a 

combination of the 165 and 185 Hz peaks associated with the rocking 

and bouncing resonances of the V-piece on its pads (8 and X resonances). 

It is rather pronounced because the offset vertical excitation at point 

I is equivalent to a vertical force and a couple acting at point I 

(Centre of top plate of VB2). Although it is not shown here, the 

1/0 
vertical mobility at point I is less than c7-10  by between 2 and 7JB over 

the range 100 to 1000 Hz, with the maximum difference occurring around 

175 Hz. Hence, the chosen excitation position has given rise to a 

strong excitation of the e resonance of the V-piece on its pads, and 
this should be remembered when interpreting all subsequent results. 

In addition to the predicted curve, there are two measured curves, which 

correspond to tests performed in the laboratory and on the installed 

system. Bearing in mind the complexity of the system, the predicted 

results are very good, with a maximum deviation of only 5 dB from the 

laboratory measurements. One could hardly hope for better agreement, 

especially since the two sets of measurements differ by a similar amount. 

This latter difference was probably caused by the connecting bolts 

'between the V-pieces and the beams having been tightened up different 

amounts in the two cases. It is certainly unlikely that it has anything 

to do with the different supporting structures, since the rubber block 

is sufficiently soft to completely mask the effect of the support 

impedance. 

The point mobility 'IL-4Q  P -Mitogether with the tranafer mobility 
44 

Ch. 
(44 (Fig.15.6) show the effect of the resonances of the V-piece on 

its PVC pads. The pronounced peak in the point mobility curve at 180 Hz 

is again due to a combination of the 0 and X resonances of the V-piece 

on its pads, and in contrast, the Y resonance at 260 Hz is very much subdued. 
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The theoretical transfer mobility curve clearly shows an increase in 

drop-off rate from 6 to 12 dB per octave above the 165 Hz e resonance, 
thereby indicating that the V-piece is effectively decoupled from the 

beams at the higher frequencies. The measured results show a stronger 

Y resonance, which delays the increased drop-off rate till about 300 Hz, 

but both sets of results demonstrate that the transverse beam assembly 

on its rubber blocks is in fact a two-stage system, comprising V-piece mass, 

pad stiffness, beam mass, and rubber block stiffness. When we come to 

consider the force transmission to the lower part of the seating, it will 

be seen that this two-stage behaviour in the X, Y and Z directions has 

a very beneficial effect upon the high frequency attenuation. 

946 _ The rotational point mobility -is-- 
Mal 
 clearly shows the same 

t.5146 	 I/ 

major peak as was observed on the vertical point mobility curve at 175 Hz. 

The width of the peak and its centre frequency suggest that there is 

strong coupling between the 0 and X motions, and this is borne out by 

the cross mobility 	[4-] shown in Fig.15.4. The coupling gives 
Lgo 	UK I/  

rise to a strong excitation of the V-piece in both its rocking and 

bouncing modes. It is also interesting to observe that once again there 

is a difference of several dB between the measurements made in the labor-

atory and those made on the installed system, with the predicted results 

generally lying somewhere between the two sets of measurements. Apart 

from minor differences in the system in the two cases, it is possible 

that the differences between the two sets of experimental results may 

be partly due to the fact that the laboratory tests were performed using 

the single-shaker measurement technique, whilst the measurements on the 

installed system were made using the twin-shaker technique. The only 

major deviation between the experimental and theoretical results occurs 

in the neighbourhood of 800 Hz, where both measured curves show a resonant 

peak. It is thought that the resonance corresponds to the bending mode 

of the 19 mm top plate of the V-piece, which was not allowed for in the 

analysis. Although the results are not perfect, the reasonable agreement 
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between prediction and experiments testifies to the adequacy of the 

analysis and of the multi-directional measurement techniques. 

It is not proposed to discuss all the transfer mobility results 

for the upper part of the seating, since we are more interested in the 

force transmission to the lower part of the seating  and to the cruciforms. 

However, it will be observed that very good agreement has been obtained 

between predictions and measurements. Although in some cases these 

differ by as much as 10 dB or more, the average difference is probably 

less than 5 cIB. Bearing  in mind the various unknowns associated with 

such a complex damped structure, this agreement is very gratifying. 

Figs.15.9 to 15.11. show the net force transmission to the lower 

part of the seating  when various inputs are applied on V-piece VB2. Px  Qo 

is the vertical transmissibility via rubber block RB2 and it is seen to 

exhibit three major peaks. The first two correspond to the basic 

bouncing  and rocking  modes of the beam assembly on the blocks, whilst 

the third is due to the resonances of the V-piece on its pads, and is 

in fact the combination of two close peaks. The fat peak associated 

with these V-piece/pad resonances is only kept down to a reasonable level 

by the very heavy damping  in the pads ( 7  = 0.66). However, the 15 to 

20 dB rise in transmissibility around 165 Hz is followed by a much more 

rapid drop-off* after 200 Hz, due to the partial decoupling  of the V-piece 

from the beams in the X and e directions. Hence, the high frequency 
performance is even better than if the transverse beam assembly were rigid! 

The predicted and measured forces agree remarkably well, especially 

remembering  that the measurements were obtained as the product of block 

static stiffness and measured block compression. The differences at the 

24 dB/octave, as against 12 dB/octave before the resonance. 
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higher frequencies were to be expected, since the effective stiffness 

of the block decreases due to wave effects. In addition, the limited 

number of modes allowed for in the rubber block model undoubtedly causes 

its effective stiffness to decrease too rapidly with frequency. Thus, 

the actual force transmission above 250 Hz probably lies between the two 

curves. 

Py 
The corresponding transmission in the Y direction is given by 

and it is very interesting to note that whereas I', and P1  differ by around 

30 dB at the lower frequencies, they become practically equal around 

200 Hz. The considerable scatter of the measured data was caused by two 

factors: (a) The very small accelerometer signals at low frequencies, 

and (b) the effect of cross-axis motion, due to the triangular accelerometer 

blocks not being mounted exactly in the vertical plane. 

The upper graph in Fig.15.10 shows the forces which are transmitted 

in the X and Y directions when a horizontal input is applied in the Y 

Px 	Py 
direction (i.e. 77 and 	). Once again it is seen that the two curves 

%-x44 	1/4-x44 	• 

converge around 200 Hz, after which the drop-off is quite rapid, as a 

consequence of the decoupling of the V-piece from the beams. 

The lower graph in the same figure shows the force transmissibility 

in the Z direction (i.e. Q45 ). The fairly large difference between the 

predicted and measured results between 50 and 180 Hz may be the result 

of inadequate modelling of the force transmission characteristics of the 

rubber block in the Z direction. 

It should be emphasised that the four graphs of Figs.15.9 and 

15.10 only show the forces which are transmitted to the lower part of 

the seating via rubber block RB2. Of course, forces are also transmitted 

via RB1, and the upper graph in Fig.15.11 shows the transmission in the 

X and Y directions when a vertical input is applied to VB2. Comparing 

Px 
R B I 	 pRB1 

(A . 	
with Go 
	

' it is seen that over a large part of the 

frequency range the transmission via RB1 is a few dB less than'that via RB2, 
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just as one would expect from the fact that the excitation point is 

closer to RB2. However, it is very interesting to observe that above 

about 250 Hz the four transmitted forces Px , P' 	Px
RB1 

and Py RB1  

differ only very slightly from one another. 

Another point of interest is the existence of two close peaks in 

the Px 
RB1

curve between 150 and 200 Hz, as compared with the single fat 
Qo 

peak in the Px curve. This clearly shows that there are two adjacent 
Qo 

resonances, which in the latter case have merged together to form a 

single peak. These are the rocking and bouncing resonances of the V-piece 

on its pads. If the input had been applied to the V-piece at point I, 

• 
instead of at the offset point I , the 165 Hz peak would probably have 

been considerably reduced in magnitude. However, the 185 Hz peak 

associated with the bouncing resonance would still be there - though in 

the case of Px it might be as much as 5 to 10 dB lower than the present 
Qo 

165 Hz peak. 

In the analysis it has been assumed that the motion of the structure 

supporting each rubber block is negligible in comparison with the motion 

of the top of the block. This has permitted the calculation of the 

transmitted forces from a knowledge just of the displacements on the 

upper faces of the block. The validity of this assumption is substantiated 

by the lower graph in Fig.15.11, which shows the measured relative motions 

across block RB2 in the same directions as the applied forces on VB2. 

These results clearly show that over most of the frequency range 10 to 

1000 Hz the relative motion is at least 20dB. The poorer results between 

40 and 170 Hz may be a consequence of wave effects within the block. 

Although these measurements were made in the laboratory, there is no 

reason to suppose that the results would have been any different if the 

tests had been carried out in the actual operating environment, since 

the receiver structure has quite a high impedance. 
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In studying the transmissibility curves, it should always be 

borne in mind that one is only looking at the force transmission 

corresponding to a single input force in either the X, Y or Z direction. 

Whilst this is useful for assessing the seating performance, it does 

not give quantitative information regarding the overall force transmission 

to the lower part of the seating when the engine is running. If this 

were required, it would be necessary to know the various force inputs 

to the seating, and these are certainly not just in the vertical direction 

(as is often assumed in textbooks on vibration isolation). Tests 

carried out with the engine running on the seating have shown that the 

X, Y and Z motions of an engine foot are of comparable magnitude, as 

are the attenuations across the primary mount in these three directions. (14)  

Since the mount has similar stiffnesses in the vertical and lateral 

directions, it is obvious that the X, Y and Z forces transmitted to the 

top of each V-piece are each of the same order of magnitude. The forces 

are also bound to differ somewhat in phase, so the engine is able to excite 

all the seating modes, and the overall force transmission can only be 

obtained from a knowledge of all the excitation forces and all the 

transmissibilities, both in magnitude and phase. It must therefore be 

stressed that even though the engine is symmetrically mounted on the 

seating, it does not apply a pure symmetrical excitation to the V-pieces. 

Hence, although the symmetry of the system might lead one to expect 

that the 34 Hz rocking mode would not be excited, the existence of a 

significant horizontal input in the Y direction ensures that it will 

always be excited (see Px 	in Fig.15.10), even if the vertical input 
Q44 

is symmetrical. The same is also true of the 165 Hz rocking mode of the 

V-piece on its pads. The close proximity of the 34Hz resonance to the 

30 Hz fundamental excitation frequency is obviously undesirable, and 

the situation is probably made even worse if spacing pillars are inter-

posed between the mounts and the V-pieces, since the extra mass brings 
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the rocking frequency even closer to 30 Hz, besides permitting a 

stronger excitation of the mode. 

We have so far only considered motions of various points on the 

upper part of the seating, together with the forces which are transmitted 

to the lower part via the rubber blocks. Since the whole purpose of 

the isolation system is to attenuate vibration transmission to the 

receiver structure, we shall now proceed to examine the motions at 

cruciform CR2, together with the forces transmitted to that cruciform. 

Lower Part of the Seating (shown in Fig.15.12) 

The dynamical behaviour of the lower part of the seating has not 

been examined in such detail as that of the upper part, so its modal 

characteristics are not so well understood. However, limited point and 

transfer data have been.computed for the lower part on its own, and 

although no curves are given here, it is certainly worthwhile to consider 

the main results. Since we are interested in how the longitudinal beam 

assembly affects the force transmission to the cruciforms, it is 

instructive to consider the force transmissibilities P51 and P51, where 
Q70 

P51 is the force transmitted to cruciform CR2 in the vertical direction. 

Since Q69 excites the beam in its plane of high flexibility and heavy 

damping, the transmissibility P51 exhibits a number of well damped 
Q69 

resonant peaks in the range 10 to 1000 Hz, the first occurring at 138 Hz, 

with a peak value of -0.5 dB (or + 2.5 dB in terms of vertical component 

of input force, i.e. P51 	). Q70 is an excitation in the plane of the 

0:7"-x°7  
layers, and since the beam is very much stiffer in this plane, the 

transmissibility P51 only exhibits two resonant peaks in the same 
Q70 

frequency range. These are at 180 and 570 Hz, with peak values of 

+ 2.5 and - 0.5 dB respectively (or + 5.5 and + 2.5 dB in terms of 

vertical component of input force). Thus, the 180 Hz resonance is 

the major resonance of the system. The two peaks are thought to 
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correspond either to in-plane resonances of beam LL3 on its shear 

pads or to resonances of the complete beam assembly on the relatively 

flexible cruciform/V-support interfaces. An examination of the phase 

angles associated with forces P51 and P57 shows these to be in phase 

at 180 Hz, and approximately 180°  out of phase at 570 Hz, so this suggests 

bouncing and rocking motions. 

We shall now examine the predicted and measured velocities at 

cruciform CR2 due to a vertical input on V-piece VB2. These responses 

have been measured on the bottom plate of V-support VS2 in the X, Y, Z, 

43 and e directions and they are shown in Figs. 15.13 to 15.15. It 

should be emphasised that only three of these five responses represent 

actual cruciform motions, since a detailed examination of the V-support/ 

cruciform assembly has shown that there is a relative motion of 

approximately 20 dB across the interface in the vertical direction (see 

Section 14.6); and the flexibility which causes this also gives rise 

to relative motion in the e direction. 

The vertical motion of the V-support bottom plate is shown in the 

upper graph of Fig.15.13, and it is seen that quite good agreement has 

been obtained between the predicted results and the measurements. Up 

to 250 Hz, the maximum difference does not exceed 10 dB , and the 

deviation above this frequency is only a consequence of the premature 

stiffening of the rubber block model, due to inadequate modelling of 

its higher modes. It may be observed that the predicted response 

exhibits all the same characteristics as the measured response, even 

though there may be slight differences.in level and frequency. Hence, 

the model adequately describes all the principal modes of the seating. 

The dashed line on the same graph is the initial response 

prediction, which corresponds to a rigid connection between the V-support 

and the cruciform. It also represents the motion at the centre of the 

cruciform top plate when the interface flexibility has been introduced, 
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since this flexibility has little effect upon the force transmission — 

at least at the low frequencies. This response is obviously the one 

which one should consider when assessing the overall motion attenuation 

across the seating. Upon comparing the transfer response Q51  with 
. 

the point respone --(see Fig.15.2), it is seen that up to about 250 Hz 

the motion attenuation between the V-piece and the bottom plate of the  

V-support is only between 20 and 35 dB ; although there is a more 

rapid increase above this frequency, and by 500 Hz the attenuation is 

as much as 75 dB . However, when we include the 20 dB of attenuation 

across the V-support/cruciform interface we obtain much better figures: 

40 to 55 dB up to 250 Hz, increasing to 95 dB at 500 Hz. These figures 

represent the attenuation of vertical motion between the V-piece and the 

centre of the cruciform top plate, and are thus the overall attenuations 

across the seating. 

The above results show that it is possible to get as much attenuation 

across the bolted joint between the seating and the cruciform as across 

the seating itself: This clearly demonstrates the importance of 

carefully choosing accelerometer positions when performing comparative 

measurements on different seatings, since measured differences in 

motion attenuation may only be a function of joint flexibility, and 

may have nothing to do with differences in force attenuation. It is 

obviously best to measure the motion on the cruciform itself, rather 

than on the bottom of the seating. 

The predicted velocities in the other directions do not show such 

good agreement with the measurements. The greatest disagreement  occurs 

in the frequency range 10 to 100 Hz, where the predicted responses are 

seen to exceed the measurements by as much as 40 dB . In addition, the 

"measurements" are generally only noise, so the actual response may be 

even lower. However, between 100 and 300 Hz the agreement is much 

better, with the predicted responses having the right sort of level and 
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the same basic character as the measurements. This suggests that the 

measured cross mobilities of the cruciform may generally be a little 

high at the low frequencius, possibly due to the effects of noise and 

accelerometer transverse sensitivity. It is interesting to note that 

the measurements show the cruciform motion to be more strongly influenced 

by the V-piece, rubber block and lower beam resonances than by the 

low frequency resonances of the beam assembly on the blocks. 

We shall now consider the forces transmitted to cruciform CR2 

when the same vertical excitation is applied at V-piece VB2. These 

forces obviously cannot be measured, so only theoretical results are 

available. The vertical force is shown in the lower graph of Fig.15.15, 

whilst the horizontal forces in the Y and Z directions are given in Fig.15.16. 

Also shown for comparison are the forces transmitted to the lower part 

of the seating via rubber block RB2. As one might expect, the vertical 

force P51 does not differ very much from the input Px to the lower 

part of the seating, though there is a magnification of up to 9dB in 

the frequency range 100 to 170 Hz. From the previous discussion on the 

transmissibility characteristics of the lower part of the seating, it 

is obvious that this 9 dB magnification has been caused by the 138 and 

180 Hz resonances of the system*. The Y force P52 shows the same 

magnification in this region, and the distinct peaks at 145 and 175 Hz 

are almost certainly these same two resonances. The increased low 

frequency transmission is probably due to the suspected errors in the 

cruciform mobility data. It is interesting to observe how a significant 

Z force P53 has been generated internally even though no force was 

transmitted in this direction by the rubber block. Whilst the low 

Note that these are theoretically predicted. The actual resonances 
may be lower, due to reduced stiffness of pads and face plates of 
V-support (caused by distortion of faces). 
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frequency results are almost certainly in error, the peak at 175 Hz 

is thought to be of the correct sort of magnitude, and it could even be 

a little higher. This is clearly seen from the Z velocity response 

graph shown in Fig.15.14: This shows a theoretical peak of -129.5 dB 

at 175 Hz, as compared with the corresponding measured peak of -118 dB 

at 125 Hz. 

It will have been observed that all these results are less accurate 

than the predictions for the upper part of the seating. This is partly 

due to inadequate modelling of the force transmission characteristics 

of the rubber blocks, but the main source of.inaccuracy is thought to 

be the measured cruciform data. Smith and Harmers (5)  have encountered 

the same problem in the analysis of a uniform beam seating, although 

they were using less complete data for the seating attachment points. 

Probably the most important observation to be made regarding all 

the results is the fact that an uni-directional force input at the top 

of the seating gives rise to a multi-directional force transmission to 

the lower part of the seating, and hence to the cruciforms. Whilst 

the transmission in the direction of the applied force is usually 

dominant at low frequencies, the present results show that at high 

frequencies the forces transmitted in the various directions may each 

be of comparable magnitude. This will always be the case with any 

complex structure, so simple uni-directional isolation theory is clearly 

inadequate at high frequencies. 

The foregoing results show that the seating gives very good 

isolation at the high frequencies, due to the two-stage behaviour of 

the transverse beam assembly on its rubber blocks. However, it should 

be mentioned that this was not intentionally incorporated in the design, 

and it has only arisen as a side effect of trying to minimise force 

transmission to the transverse beams in the plane of their layers. 

* Note that References for Chapters 13 to 15 are listed on Page 430. 
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Unfortunately, the basic modes of the system give rise to 

troublesome peaks at 19 and 34 Hz, and the latter is uncomfortably 

close to the 30 Hz excitation from the engine. In addition, the 

rocking and bouncing resonances of the V-piece on its pads give rise 

to a significant peak in the Px curve* at 165 Hz, and this is further 
Qo 

amplified in the lower part of the seating as a consequence of its own 

resonances, thereby forming a particularly high peak in the P51 curve 
Qo 

at 152 Hz. It is purely coincidental that all these resonances should 

be so close together, and the performance could probably be improved 

by spreading them over a wider frequency range. 

Simple Analysis  

Figs.15.17 and 15.18 show selected response plots on which are 

+ 
superimposed the results of the simple seating analysis . This analysis 

was based upon the simple model shown in Figs.13.2 and 13.6, in which 

the transverse and longitudinal beam assemblies are represented by 

rigid beams, with concentrated masses for the V-pieces and V-supports. 

The rubber block is represented by a simple hysteretically damped 

spring, whose stiffness KRB  is the block stiffness Kx  given on page 382 , 

and the cruciform impedance Zca  comprises the interface flexibility 

in series with the measured cruciform data in the vertical direction. 

The analysis has once again been carried out in two parts, in the 

manner indicated in Fig.13.6. An examination was also made of the 

effect of including the "source impedance" Z1  when analysing the lower 

part of the seating, and this showed that it could quite safely be 

ignored (as has been assumed in the complex analysis). 

Dashed line on lower graph of Fig.15.15. 

The results of the simple analysis are given by the dashed line 
in every case. 



To The point mobility graph --a7,  shows a slight upward frequency 

shift in the basic bouncing and rocking resonances of the beam assembly 

on the blocks. This is because the stiffness associated with these 

modes is not solely that of the rubber blocks. The bending stiffness 

of the beams also has an effect, and this is ignored in the simple 

analysis. The large difference between the results of the simple and 

complex analyses above 100 Hz is due to the assumption of rigid coupling 

between the V-piece and the cross beams in the simple model. Obviously, 

a spring-mass subsystem could be used to represent the resonances of 

the V-piece on its pads, but there is no simple way of determining the 

correct spring stiffness, since the actual effective stiffness is a 

function of both the PVC pads and the beams underneath the pads. 

Thetransfermobility— 
Cl

hasbeenobtainedas7=of the 
o  

vertical motion at the tip of the cross beam, and in the frequency 

range 200 to 400 Hz it shows slightly better agreement with the 

measurements than do the results of the complex analysis. 

Since the resonances of the V-piece on its pads have not been 

allowed for, the force transmissibility curve Px fails to describe 
Qo 

the large peak at 165 Hz, followed by the rapid drop-off. Nevertheless, 

surprisingly good agreement has been obtained for the cruciform 

9/51  response Qc,  . This is mainly due to the fact that the bouncing 

resonance of the lower beam assembly has been predicted fairly accurately 

(160 Hz peak), thereby making up in part for the lack of the V-piece 

resonance at almost the same frequency. If the V-piece resonances 

were included, the existing 160 Hz peak would just be accentuated, 

without any change in the basic character of the curve. However, if 

the resonance of the lower part of the seating had been at a higher 

frequency, the agreement would not have been so good. The 220 Hz peak 

associated with rocking of the lower beam assembly does not concur 

with the results of the complex analysis. 

4 1 7 
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Whilst this simple analysis has yielded quite satisfactory 

results in the present case, it is doubtful whether it could be extended 

to give sufficiently accurate multi-directional transmissibility 

data. In addition, the results would not be so good if the blocks were 

stiffer or if the damping were reduced, since the structural resonances 

which have been .s0  conveniently ignored would then show as much 

sharper peaks. 

The Influence of Pad Shear Stiffness on Seating Performance  

The foregoing results show how the analysis has been able to 

predict multi-directional motions and forces with a fair degree of 

accuracy. It is now instructive to look at how this analytical 

capability can give us a clearer insight into what is happening 

within the system, thereby enabling us to propose sensible modifications 

which may improve its performance. The effect of such modifications 

may then be examined analytically using the model. This is a far 

quicker procedure than modifying the actual physical system and re-

testing every time, and in addition, the analysis furnishes the engineer 

with far more information to assist him in his choice of modifications. 

The aspect of the system which we shall examine in detail is the 

functioning of the transverse beam assembly. The reason for adopting 

this type of construction was the need for an assembly which would 

provide heavily damped transmission paths between the V-pieces and the 

rubber blocks, for any force input in the X-Z plane. As was explained 

in Chapter 13 (see page 304), a very important feature of the assembly 

is the PVC pads which are interposed between the steel V-pieces and 

the transverse beams, and it is a prime requirement that these should 

be as soft as possible in shear, so as to prevent force being transmitted 

into the beams in the plane of the layers. We shall now examine whether 

the system actually behaves as intended, and if not, we shall see what 
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happens when it is put right. 

Let us start by considering the upper graph in Fig.15.19. This 

shows the forces transmitted into the face of the rubber V-block RB2 

when a vertical input of 1N is applied on V-piece VB2. The force P1  

is normal to the face*, and is therefore associated with bending of 

the beam in its damped plane, whilst the force P
3 
 is up the face, and 

is associated with bending in the plane of the layers. It is immediately 

apparent that the system is not behaving as intended, since over most 

of the frequency range, P3  is greater than P1. Although these forces 

are a function of the rubber block stiffness, it is known that the 

stiffnesses normal to and up the face are very nearly the same, so the 

cause must lie in the PVC pads. Since P
3 

exceeds P1,the principal 

transmission path is via the undamped plane of the beam; which is the 

exact opposite of what was originally intended! 

Before we proceed to rectify this, it is useful if we have some 

idea by how much the shear stiffness of the pads must be reduced. A 

useful guide is given by the lower graph of Fig.15.19, which shows the 

measured mobilities at point B on beam UT1, with the two V-pieces 

removed. The mobility 
91a was measured directly using an impedance 

head, whilst the mobility —7 
9'7 

 has been obtained from the results of a 
`...k 

multi-directional mobility test, and corresponds to the case where 

rotation about the beam axis is "blocked" (since the beam is normally 

restrained from rotating by the attached V-piece). Obviously, these 

same responses could have been calculated, though this was not done. 
9/8  

It is interesting to note in passing that the response - 77-  does not 

exhibit such sharp peaks as one might expect from the results obtained 

For co-ordinate directions and numbering, see Fig.15.1. 

See page 346, Fig.14.15, for direct and transfer receptances on 
inclined face of rubber block. 
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for the free-free beam (i.e. virtually undamped). This is due to the 

damping effect of the rubber blocks ( 	= 0.1), and is quite significant 

in the case of the first mode. The theoretical compressive and shear 

stiffnesses of the PVC pads are also shown*, and since these stiffnesses 

are frequency-dependent, the lines do not have the usual 6 dB /octave 

slope. The mobilities seen by the V-piece are obtained by adding 

together the beam and pad mobilities. Remembering that the graph is 

drawn to a logarithmic scale, it is seen that the mobility in the 

9/7 direction normal to the layers is just the beam mobility 7F,E 
w7-, whilst 

that in the plane of the layers is equal to the beam mobility 	1/8czil,  

up to about 100 Hz, after which it approximately follows the pad shear 

stiffness line. Even allowing for the fact that 75E7
7 
 will drop a little 

when the other V-piece is bolted in place, it is still quite apparent 

that the V-piece at point B sees a beam-pad assembly which has comparable 

mobilities in the local x and z directions. It is clearly seen that 

if the pads are to effectively eliminate force transmission to the beam 

in the local z direction over most of the frequency range, the shear 

mobility of these pads must be increased very considerably. Since a 

30 dB increase appears to be adequate, we shall now see what happens 

when the longitudinal shear stiffness of the pads is decreased by 30 times. 

The loss factor will not be changed. 

The computer programme has been re-run with this reduced value of 

pad shear stiffness, and the resulting force transmission to the lower 

part of the seating is shown in Fig.15.20. The change in seating 

performance is quite remarkable, since the attenuation at all frequencies 

above about 135 Hz has been improved by around 10 to 20 dB ; though at 

the expense of a slight degradation in performance between 40 and 120 Hz. 

Note that these stiffnesses refer to pairs of pads. 
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The great improvement in high frequency response has been achieved 

as a result of two factors: (a) The reduced force transmission to the 

beam in its undamped plane, and (b) the lowering of the resonant frequency 

of the V-piece on the pads. The resonant frequency has dropped from 

170 to 110 Hz, and since the mean slope of the transmissibility curve 

changes at this frequency from -12 to -24 dB per octave, it does appear 

to be the prime cause of the improved high frequency performance. The 

shift of the 170 Hz peak to the lower frequency has uncovered the 

previously hidden 190 Hz resonance of the beam in its undamped plane. 

The reason for this resonance still being excited despite the decreased 

pad stiffness is probably the coupling* within the rubber block. This 

coupling causes the beam to be excited in its undamped plane via the 

rubber blocks, as well as via the PVC pads directly. Since both force 

inputs existed previously, the reduction or elimination of one of these 

must almost certainly effect some improvement; although this cannot 

be measured, due to the fact that the original peak was hidden. 

The re-routing of forces via the damped transmission path has 

produced a 2 to 3 dB attenuation in the first two peaks, but the 

transmission in the intermediate frequency range is not so good. This 

is because the majority of the force was previously transmitted in the 

stiff undamped plane of the beam, and up to around 100 Hz the beam 

behaved as an ideal rigid mass in this plane. Now that the forces 

have been re-routed, they are transmitted in the flexible and highly 

damped plane, in which the beam no longer behaves as a rigid mass. Thus, 

the effective mass of the transverse beam assembly has been reduced, 

thereby resulting in a higher force transmission at these intermediate 

frequencies. 

Coupling between local x and z notions. 
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This detailed examination of a particular aspect of the seating 

has demonstrated the power of the analysis technique employed herein, 

since not only has it been possible to examine exactly what is happening 

within the system, but also it has been possible to see and understand  

the effect of making a modification. Besides this, it has shown that 

the transverse beam assembly was not behaving in the manner originally 

intended. 

It is not proposed to consider any further parameter variations 

at the present stage, since these will be reported separately (15) 



423 

15.3 GENERAL DISCUSSION AND SUMMARY  

Although the present mass-spring type of seating gives good 

isolation at the high frequencies, it does have the disadvantage of 

introducing six basic seating resonances at the low frequencies, and 

in the present case the fundamental excitation frequency of 30 Hz lies 

within the frequency range of these resonances. At the same time, the 

system has a very low natural frequency in the fore and aft direction, 

which tends to make it a little unstable when the engine is in position. 

These faults highlight the need for attempting to group the six basic 

frequencies in a narrower band, so as to ensure a fair amount of attenuation 

of the fundamental excitation, whilst at the same time not making the 

system unstable. 

If it is not possible to satisfy these two objectives, it may be 

necessary to employ a more conventional frame or box type of seating, which 

is attached directly to the receiver structure, and has no troublesome 

low frequency modes. Although the high frequency isolation is not as 

good as that achieved with the mass-spring seating, the performance can 

be improved considerably by introducing high natural frequency mass-spring 

systems between the four engine mounts and the seating frame. This has 

been found to be very effective in the case of the V-beam seating, and the 

associated resonances need not be very severe if high damping material 

is used for the pads under the masses. The resonant frequencies can also 

be suitably adjusted to fall between known major excitation frequencies. 

With such an arrangement, one sacrifices low frequency performance for 

stability, since the complete engine-seating system only gives a single 

stage of isolation at the beginning of the frequency range. However, at 

a chosen intermediate frequency the performance improves dramatically, 

as the mass underneath the engine mounts decouples from the seating frame, 

thereby giving two-stage isolation. 
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It has been shown that the assumption of point coupling between 

components can lead to considerable errors when the components are 

coupled rather imperfectly over quite a large area. If the seating had 

been welded or stuck to the cruciform, it is probable that the measured 

cruciform mobilities would have represented the true foundation seen 

by the seating model. However, the rather imperfect coupling caused by 

the distortion of the V-support and by the widely spaced bolts has demon-

strated the need for a closer examination of the dynamic characteristics 

of junctions between components. It is possible that in such cases as 

this cruciform, it would be better to measure the X, Y and Z mobility 

properties at four or more points over the surface, rather than obtain 

the linear and rotational properties at a single point. An alternative 

procedure might be to deduce the support mobility properties from 

measurements on a simple resonant structure which is attached to the 

support. For instance, one might use a uniform beam which was welded to 

an attachment plate. This plate could then be bolted to the support in 

the same way as the seating. By combining the known theoretical response 

properties of the beam with the measured data for the beam on the support, 

it should be possible to deduce the support properties. Such a procedure 

would have the advantage of giving an overall mobility which would also 

include the flexibility of the joint between the plate and the support. 

However, the discovery of a significant "interface flexibility" 

between the V-support and the cruciform in the vertical direction leads 

one to suggest that it might even be beneficial to purposely insert a 

known 6-directional flexibility*, which is less than the cruciform flexi-

bility. This would have the advantage of completely eliminating metal-

to-metal contact between the seating and the cruciform, and it would 

e.g. Rubber pads. 
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provide a further stage of isolation at high frequencies. In addition, 

one could then calculate the force transmission to a cruciform without 

actually knowing its mobility properties, in the same way as the force 

transmission to the lower part of the seating was obtained without 

having to consider the impedance seen by the bottom faces of the rubber 

V-blocks. 

Use of the dynamic stiffness coupling technique has permitted the 

use of component data from various sources, and in addition, the necess-

ity for re-building the system dynamic stiffness matrix at each frequency 

makes it easy to take account of the frequency-dependence of material 

properties. An alternative procedure would have been to use the more 

general coupling technique employed by Klosterman 
(16)*, 

 but this would 

have resulted in even larger matrices, and hence increased solution time. 

The analysis has demonstrated how one may examine the behaviour 

of an isolation system in considerable detail, thereby leading to a clearer 

understanding of the way in which vibration is transmitted to the supporting 

structure. This then facilitates a study of the effect that various 

parameters have upon the response. These parameters are not obscure 

quantities such as modal mass, coupling stiffness, etc.,
(1)(17) 

but are 

actual seating dimensions and material properties. This in turn opens 

up the possibility of optimising the isolation performance of the seating, 

either by a process of trial and error, or using mathematical optimisation 

techniques (18) 

Whilbt it has been shown that fairly complex structures can be 

analysed successfully up to high frequencies, there are still many 

practical seating structures which are too complex to permit accurate 

prediction of their performance, this being particularly the case with 

This technique permits the direct combination of receptance and 
dynamic stiffness data. 
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box type structures. Although it may not be possible to analyse such 

structures at the design stage, it is still possible to optimise their 

performance, provided that they can be represented by a mathematical 

model. Using recently developed System Identification techniques, it 

is possible to set up such a model from measured data (i.e. point and 

transfer mobility measurements on the structure), and this procedure has 

already been applied to practical systems.(16)(19)(20)(21)  

Obviously, the ideal is that one should be able to design and 

optimise the seating on paper, before it is ever built, for only in this 

way can one hope to obtain the very best performance possible. However, 

if this is to be done, the designer must accept the limitations of the 

currently used analytical techniques, and design his seating in such a 

way that its performance can be predicted. It has been shown that multi- 

layer beams can be treated analytically, and multi-layer plates can also 

be dealt with, but complex stiffened boxes can pose problems. This does 

not rule out the use of one or two components which defy accurate analysis 

(e.g. the rubber blocks in the V-beam seating), since their properties can 

be obtained from measurements on a specially built component. However, it 

is preferable that the majority of components should be analysable. 

Regarding analysis techniques, there is a popular belief that finite 

element analysis must always lead to large systems of equations, and that 

even then it can only be used to predict the fundamental modes of a structure. 

This is certainly true if one couples together all the elements without 

eliminating any of the nodal co-ordinates. However, by combining the 

finite element method with a coupling and elimination procedure based 

upon either Gaussian elimination or the transfer matrix method, it is 

possible to obtain the required response properties of a complex component 

or structure without forming any large matrices. Although it is necessary 

to repeat the process at each frequency, this can be an advantage, since 

the material properties and the number of elements can be varied to suit 
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the frequency. Hence, one need only use a few elements to describe low 

frequency behaviour, whilst a large number may be used at high frequencies. 

The utility of such a procedure has been demonstrated quite effectively 

by the sandwich beam analysis, where a beam having well over 100 nodal 

co-ordinates has been "built" very rapidly in the computer, and only 

those co-ordinates relating to the four connection points have been 

retained. Such a procedure has also been applied to the analysis of 

rectangular plates,
(22) 

where a strip across the width has first been 

divided into triangular elements and analysed for its dynamic stiffness 

properties, and then all the identical strips have been coupled together 

using the transfer matrix method. It is possible that the same technique 

might be used for analysing box structures which comprise a number of 

identical sections joined end to end. 

The seating analysis described in this report is certainly quite 

complex and the reader may well question the need for examining a system 

in such detail, especially in view of the reasonable results obtained 

using the simple model. Of course, it is unnecessary to go into such 

detail in many practical cases, and a simple analysis will often suffice - 

if any analysis is attempted at all! However, in those critical applications 

where optimum multi-directional isolation is essential, the use of this 

type of complex analysis can prove very beneficial. 

In the present case, the simple model only gave such good results 

because of the relatively high stiffness of the beam assemblies in com-

parison with the rubber block stiffness. This is shown very clearly when 

one increases the block stiffness.
(15) 

Admittedly, the rigid cross beams 

in the model could be replaced by simple flexible beams, but there 

remains the problem of assigning the correct value of flexural rigidity 

to such a beam. In the same way, the resonances of the V-piece on its 

pads could be represented quite simply if the effective stiffness of the 

pad-beam assembly were known. Obviously, such information is only available 
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from a full analysis of the complete V-beam assembly. Hence, the simple 

model is severely limited in its applicability. On the other hand, the 

building block approach used for the full seating analysis is far more 

general, in that it can take account of the distributed mass and 

stiffness properties of every component in every direction. This is 

particularly important when analysing conventional stiff seatings, which 

are generally more highly resonant,(5)(23) with a large number of flexural 

and torsional modes. 

Although this type of analysis is fairly complex, it will soon 

become more commonplace and quite straightforward, with the rapid 

development of computing facilities and the growth of dynamic analysis 

programme libraries. This is currently happening in the United States, 

where it is now possible to access an extensive dynamic analysis 

library via a telephone link, on a time-sharing basis.
(24) 

Under such 

conditions, it is much cheaper and less time consuming to analyse and 

optimise a design with the aid of the computer than to build an expensive 

prototype and then modify and re-test it many times. In addition, one 

computer run lasting several minutes can yield as much response information 

as several hundred measured mobility plots, so it can lead to a better 

understanding of the system behaviour. 

The present work has spurred the development of a general purpose 

coupling programme, plus various subroutines for generating the response 

characteristics of both uniform and multi-layer beams in flexure and 

torsion; and other developments will inevitably follow. Using such a 

programme library, the engineer does not need to know the details of how 

each component is analysed, and his work is reduced to deciding uron 

component dimensions and material properties, which are then used by 

the standard library routines for generating the component data. This 

opens the way for more creative design, and for system optimisation. 
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15.4. CONCLUSIONS  

The highly successful vibration analysis of the V-beam seating has 

demonstrated the feasibility of analysing damped complex structures for 

their multi-directional response properties. Use of the "building block" 

approach has permitted each individual component to be analysed in detail 

by whichever method was most convenient. Thus, it has been possible to 

combine data obtained from exact theory, finite element modelling, and a 

model based upon measured data. The power of the analysis technique has 

been demonstrated by examining a particular aspect of the seating in 

detail, and from this it has been found that the system failed to behave 

precisely as intended. Nevertheless, the seating has been found to possess 

good multi-directional isolation properties over a wide frequency range. 

An important result of the analysis has been to show the way in which 

a uni-directional force input on the top of the seating generates multi-

directional response at the points of connection to the receiver structure. 

This is especially important at the high frequencies, since the responses 

in the different directions are of comparable magnitude; and it highlights 

the inadequacy of simple uni-directional analysis when dealing with high 

frequency vibration isolation. The combination of multi-directional 

excitation from the engine together with this coupling within the seating 

demonstrates the necessity of designing the system to give effective 

isolation in all directions. 
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APPENDIX I  

FLOW CHART FOR THE COMPUTER PROGRAM COUPLE1  

The program structure is shown in Fig.I.1, where each box represents 

a. subroutine. Flow charts are then given for the following routines: 

COUPLE1, INPUT, SUBSYS, SUBSi, FORMZ, SOLVE, CALFOR, CALTRAN, SUBTRAN 

The variable names used in the flow chart are the same as those used in 

the Fortran program, and they are defined in the table below. The variables 

are listed in the order in which they occur in the flow charts. 

Program 
Symbol(s) 

Definition and Notes 

FOR 50 x 10 real array to hold force vectors 

S1,S2 Frequency sweep parameters. 	For log sweep, freqL4.1 	= S1 x freqi, 
so S2=0. 	For linear sweep, freqi.." 	= freqL + S2, 	so S1=1. 

KOUNT Counter for number of the frequency 

FREQ Frequency in Hz 

ZSYS 50 x 60 real array for system dynamic stiffness matrix (put in 
upper left hand corner). 

X 50 x 10 real array to hold the computed displacement vectors. 

KS Number of subsystem for which internally transmitted forces 
are required. 

NF Total number of frequencies in sweep. 

KSUBS Current subsystem number. 

N Number of subsystems. 

ZSUBS 12 x 12 complex array in which dynamic stiffness matrix for 	_ 
current subsystem is set up (put in upper left hand corner). 

NFIX Number of co—ordinates to be fixed to ground. 

IFG 12 x 1 integer array for holding co—ordinate numbers which are 
to be fixed to ground. 

F 12 x 50 complex array used for keeping original rows of ZSYS 
when co—ordinates are fixed to ground. 	Also holds transmitted 
forces following solution for displacements. 

NFI Number of forces transmitted to subsystem KS that are to be 
output. 

NFG 

ITRAN 

Number of forces transmitted to ground via. fixed co—ordinates 
that are to be output. 

Transfer response code. ITRAN=0 for no transfer response. 

YTRAN 6 x 12 complex array in which transfer admittance matrix is 
set up (put in upper left hand corner). 

TRAN 6 x 10 complex array to hold computed transfer responses.' 

ZS 12 x 12 complex array to hold dynamic stiffness matrix for 
subsystem KS. 



FORMZ 

CALFOR 

CALTRANT] 

INPUT 
	

SWEEP 

CHKORD 
	

TITLE 

CHKSUB 

SUBSYS 

I 
CONVT 
	

OUTPUT 
	

TAP OUT 

FIG. I.1 PROGRAM STRUCTURE 	 MAIN PROGRAM AND ALL SUBROUTINES  

COUPLE1 

FORCE 
	

CHKTRAN 
CHKSYS 

I  
SUBS1 SUBS2 SUBS3 SUBS4 SUBS5 SUBS6 SUBS7 SUBS8 SUBS9 SUBS10 SUBS11 SUBS12 

	
SUBTRAN 

Standard routines which may be called from set routines in SUBS1 to SUBS12 and SUBTRAN 

ZERO 

  

CHKSING ZMAK2 

       

CZCOPY RZCOPY ZFLAX2 ZFLAX2D ZSAM1 GPVCA or GADYEL ZFILE 

CHKOP 
	

ZBEAMT ZBEAMTD FEMAT3 PSAM1 

Built-in routines (ie. in main file) 
M,K,H,C 
matrices 

Undam ed Damped 
Timoshenko beam 

Symmetrical 5-layer sandwich 
beam + PVC or Ad. Yellow 

Subsystem 
matrix on 4:-. 
file 

111 
Special routines - must be loaded by user 
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Main program COUPLE1  

Subroutines called 

Flow charts are given 
for those marked with 
a letter, since they 
call other subroutines 

START 

"COUPLE1" 

Read system data.. 
Set up force vector(s) 

in matrix FOR 

Set frequency sweep 
parameters S1 and S2 
for log. or lin. sweep 

KOUNT 4-0 

FREQ 4- (FS -S2)/S1 

KOUNTE-KOUNT+1 

FREQ 4- Sl*FREQ+S2 

Form system 
dynamic stiffness 
matrix ZSYS 

Solve for 
displacement response 

X=ZSYS- *FOR 

"INPUT" A 

"SWEEP" 

"SUBSYS" B 

"SOLVE" C 



YES 

NO 

Compute forces 
transmitted to ground 
and to subsystem KS 

"CALPOR" D 

Print out motion 
responses and 
transmitted forces 

"OUTPUT" 

437 

Compute motion 
transmissibilities and 

convert motion 
responses to required 
form for output 

"CONVT" 

 

Output selected 
responses to permanent 
file (for subsequent 
punching of paper tape, 
graph plotting, etc.) 

"TAPOUT" 

  

NO 

STOP 



Print error 
message 
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Subroutine INPUT 

ENTER 

"INPUT" 

Read codes 
and other data. 

Check for errors. 

A 

Read co-ordinates 
at which responses 

are required 

Check co-ordinate 
numbers 

Print title 
and other data 

Print response 
co-ordinate numbers 

Read force 
vector(s) and set up 

in matrix FOR 

"CHKORD" 

"TITLE" 

"FORCE" 



Print out subtitle 
announcing check 
printout of subsystem 
dynamic stiffness 
matrices 

Subroutines SUBSYS and SUBSi (i=1,12)  

ENTER 
B 

"SUBSYS" 

KSUBS 0 

"CHKSUB" 
(1st call) 

RETURN 

Form dynamic 
stiffness matrix ZSUBS 

for subsystem 1 

"SUBS2" BB 

Form dynamic 
tiffness matrix ZSUBS 

for subsystem 2 

i=KSUBS 
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BB 

Set up the following 
according to instruc-
tions inserted by the 
user: (a.) Subsystem 
dynamic stiffness 
matrix in top left 
hand corner of ZSUBS, 
(b) Connection co-ords 
in vector ISUBS, and 
(c) Matrix size MSUBS. 

"SUBS1" BB 

• 

Insert subsystem 
matrix ZSUBS in 
system matrix ZSYS 

KSUBS=N ? 
	ES 

KSUBS <—KSUBS+1 

I 

I 	/ 

"FORMZ" 
BBB 	/ 

/ 

:::::: / 

11 / 

I/ 	12  

"SUBS12" BB 

Form dynamic 
stiffness matrix ZSUBS 

for subsystem 12 

  

  

     

 

Print out subsystem 
dynamic stiffness 
matrix ZSUBS, connec-
tion co-ords ISUBS 
and matrix size MSUBS 

 

"CHKSUB" 
(2nd call) 
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Subroutine FORMZ  

   

ENTER 

"FORMZ" 

  

 

BBB 

  

           

  

           

  

Set elements of 
system matrix 
ZSYS to zero 

  

           

           

           

           

  

Insert subsystem 
matrix ZSUBS in 
system matrix ZSYS 

  

           

  

  

  

  

Modify ZSYS to fix to 
ground the co-ords. 
listed in vector IFG. 
Copy original rows of 
ZSYS into array F 
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Copy current subsystem 
matrix ZSUBS into ZS. 
(Used in subroutine 
CALFOR for calculating 
forces transmitted 
internally to subsystem 
number KS) 

  

          

          

          

   

Print out matrix 
ZSYS as a check 

(optional) 

   

"CHKSYS" 

          

          

          

          

       

RETURN 



Subroutine SOLVE 

C 
ENTER 

"SOLVE" 

Save a copy of the 
system matrix, either 
in array ZSYS, or on 
disc if matrix is 

large 

Invert system matrix 
and solve for dis-
placements. Inverse 
matrix and displace-
ment vector(s) replace 
original matrix and 
force vector(s) 

"MATINl" 

Copy displacement 
vectors into array X 

Search for largest 
error in (inverse x 
original — unit matrix] 

Copy force vector(s) 
FOR into array ZSYS, 
to right of system 
dynamic stiffness 

matrix 
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Subroutine CALFOR 

  

ENTER 

"CALFOR" 

                 

D 

                  

                   

             

         

    

RETURN 

  

      

             

             

             

             

 

Compute forces 
transmitted to ground 
at specified fixed 
co—ordinates. Put 
forces in array F 

               

                        

                        

                        

             

             

             

                        

 

Compute forces 
transmitted to sub-
system KS. Put 
forces in array F 

                

                 

              

"CALTRAN" DD 

       

Compute transfer 
responses. Put 
in array TRAN 

 

        

                 

                 

                 

                        

 

Convert forces 
to required form 
for output 

                

                        

                        

  

RETURN 

                 

                        

                        



Prints out subtitle 
announcing check 
printout of transfer 
admittance matrix 

DDD 

Set up the transfer 
admittance matrix in 
the top left hand 
corner of array YTRAN 
according to instruc-
tions inserted by user. 
This relates transfer 
responses to transmit-
forces. 
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Subroutines CALTRAN and SUBTRAN 

ENTER \ 
DD 	

"CALTRAN" 

"CHKTRAN" 
(1st call) 

"SUBTRAN" DDD 

Form transfer admit-
tance matrix YTRAN, 
relating responses at 
non-coupling points to 
transmitted forces at 
coupling points 

NO 

Print out transfer 
admittance matrix 	"CHKTRAN" 
as a check 	(2nd call) 

Compute 
transfer 
responses 

Convert responses 
to required form 
for output 

RETURN 
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APPENDIX II  

THE ADDITION OF A SINGLE FRICTION DAMPER TO A LINEAR DAMPED SYSTEM 

Introduction  

Linear damping of the hysteretic or viscous type is easily incorporated in 

a system analysis, simply by giving the damped subsystems a complex dynamic stiff-

ness. However, if the system is large and the damping is just concentrated at 

one or two points, it is computationally more efficient to analyse the undamped 

part of the system for its receptance properties, and then to add the damping 

afterwards in the form of inserts
*
. As far as the undamped section is concerned, 

the reaction forces applied to it by each insert are just external forces; so 

once these are known it is a simple matter to modify the responses to include the 

effect of the inserts. The set of forces is easily determined by suitably com-

bining the dynamic stiffness properties of the inserts, the receptance properties 

of the undamped system at the insert attachment points, and the "free" response 

of the system at the same points. 

So far we have only considered the addition of linear damping inserts to 

an undamped system, and this approach simply provides an alternative and more 

efficient solution to the problem. However, it also opens up the possibility of 

introducing non-linear inserts, which cannot be incorporated in the general 

coupling procedure. One such insert which is of great practical importance is 

the Coulomb friction damper, since all built-up structures automatically incorpo-

rate a certain amount of friction in the joints, and if this can be understood 

and controlled it can provide a cheap and efficient source of damping. Hence, 

it is necessary to examine the properties of the damper and to use these to 

determine the reaction forces that it applies to the linear system. 

* This is discussed more fully in Chapter 2, Section 2.3 
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Friction 
damper 
transmits 
force F 

FIG. II.1  

( b ) 
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The procedure given below is very similar to that developed by Earles 

et 
al.(56)(58)(60)* 

and it yields an approximate "linearised" solution, since 

the actual non-sinusoidal friction force is replaced by an equivalent sinusoidal 

force of constant amplitude. The present work extends Earles's solution to 

include linear damping within the main system, but the extra complexity of the 

analysis makes it impossible to include any displacement dependence of the fric-

tion force, unless this is done numerically using an iterative procedure. The 

inclusion of linear damping facilitates the study of isolation systems which 

employ a combination of friction and viscous (or hysteretic) damping(67)  

The Linear System and the Damper Characteristics  

We shall consider a general linear multi degree-of-freedom system excited 

by E sinusoidally varying forces Q +, as shown in Fig. Il.la. A single friction 

damper is to be introduced into this system between co-ordinates a and b, as 

shown in Fig. II.lb. The basic linear system may incorporate any type of linear 

damping, so it may equally well represent an essentially undamped structure or 

an isolation system with viscous and/or hysteretic damping elements. 

* References for Appendices I and II are given on page 75. 

+ Note that a bar (-) over a variable signifies that it is a complex number. 
In the present analysis this prevents confusion between the complex number 
and its modulus. Thus Ti = Q eie  or IQI eie, where Q is the modulus and 
is the Phase angle. 
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Before the friction damper is added, the displacement response on any general 

co-ordinate r is given by qrf = 
	, where a re  is the transfer e=1 

receptance relating the displacement on co-ordinate r to the force applied 

on co-ordinate e. As co-ordinates a and b are left free, we shall define 

this as being the "free" response of the system, and this is indicated by 

the suffix f. 

When the damper is fitted the linear system experiences two extra 

excitation forces Pa = +F and Pb = -P, where F is the complex force trans-

mitted through the damper. If this force can be determined, the response 

q
r of the modified system may be obtained by superposing the "free" response 

qrf  and the response to the two extra forces. 

Before we can determine the transmitted force P (= F e) we must look 

at the way in which the damper works. Basically, it consists of two parts 

which are clamped together by a normal force N. If the mating surfaces at 

the interface between the two parts have a static coefficient of frictionp.a, 

the damper will remain locked throughout the complete cycle as long as the 

transmitted force does not reach the level 
/Is

N at any time during the cycle. 

Once this level is reached slip commences and the magnitude and nature of the 

force change. 

Under slip conditions, the damping force applied to the linear system 

is exactly 180°  out-of-phase with the relative velocity between the ends of 

the damper. This is the same as with a viscous damper, and it means that the 

relative displacement (qa  - qb) leads the friction force by 90°. The force 

does not vary sinusoidally, but is a flat-topped or "clipped" wave as shown 

in Fig. 11.2. The flat top corresponds to a levelpdN, where p.d  is the dynamic 

coefficient of friction for the damper surfaces and is typically about T1u . 4/s 
The exact waveform depends upon the proportion of the cycle that is taken up 

with slipping. In case (b), for example, that part of the cycle during which 
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the force remains constant at a level pdN corresponds to slipping, while the 

part during which the force is changing from its maximum value in one direc-

tion to its maximum in the other direction corresponds to a locked condition. 

Force 

pdN  

0 	
Time 

(a) Damper rigidly supported  (b) Damper flexibly supported 

FIG. 11.2 	TYPICAL FRICTION FORCE WAVEFORMS  

This alternate slipping and locking is characteristic of a damper which is 

either connected between two points on a flexible structure or to a grounded 

elastic support. The locked condition during part of the cycle is associated 

with elastic deformation of the structure or support as the friction force is 

reduced to zero then applied in the opposite direction. The pure "square" 

wave of case (a) corresponds to slipping throughout the cycle, and is only 

strictly obtainable if one side of the damper is connected directly to ground. 

However, it is possible to obtain an approximate square wave even when the 

damper is flexibly supported, provided that the slipping friction force iudN is 

small enough to cause negligible elastic deformation. Whatever the system to 

which the damper is attached, it is quite obvious that the limiting cases for 

the friction force waveform are a pure sine wave and a square wave, each with 

a peak value of/tN. 

In the linearised analysis we shall only consider the fundamental compo-

nent of the wave, so the amplitude F of our sinusoidal friction force must lie 

4 
somewhere between pdN  and TAN 

*
. Remembering that for most materials /d 

* Note that the square wave only has odd components (n = 1,3,5, ...) and that 

each component has an amplitude 1 — (-
4  
i m N) n Trd 
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these limits conveniently become pp and p5N. Since the force is restricted 

to a fairly narrow range it is reasonable to assume a constant value 

F = F
slip 

= S
/11s

N, where S is a suitable scale factor which depends upon the 

type of system. Thus, when the friction damper is connected to a rigid 

support or when it loosely couples two co-ordinates in a flexible structure, 

one may set S = 1.000, and under other conditions one may give it a lower 

value, approaching the bottom limit of 0.785 (= -1:). Since the true value of 

the force depends upon a number of factors, it cannot be predicted with any 

precision, but this crude procedure gives the vibration analyst the possibility 

of using his experience to assign to it a realistic value. 

Even Den Hartog's early experiments on a single degree-of-freedom system 

with a supposedly grounded damper yielded a friction force wave like that of 

case (b) in Fig. 11.2, so his "exact" solution
(55)(68) 

assuming a square wave 

is in fact only an approximation to the truth, and the use of his "linearised" 

force
(3) 1111dN is clearly incorrect when the damper is contained within a 

structure, as in the example in Reference (58). This is quite clear from a 

similar example in Reference (56), where the measured friction force was very 

nearly sinusoidal and certainly nothing like a square wave, since none of the 

harmonic components was more than 5.5% of the fundamental. Most of the 

measured data for dampers built into systems shows a variation of the force 

with frequency, and Earles and Williams (56)(59)have established that this 

is due to a slight dependence on the relative slip amplitude. In consequence, 

they have used a force F = i_tdN +SU, where U is the relative slip (= qa  - qb) 

and S.  is a parameter dependent on the system. Although this gives slightly 

improved results, there is no way of knowing the parameter S.  without testing 

an actual system, and it varies considerably from one system to another. It 

is particularly interesting to observe the friction force and receptance curves 

shown in Reference (59) for a system with an elastically supported damper. 
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These show that for a moderate normal force N across the damper the recep-

tance curve is basically that of the locked system, but with the resonance 

peak cut off, and the slipping friction force is essentially constant at 

around /0. Only in the case of the lowest normal force is there any signi-

ficant variation of slipping force with frequency, but over the complete slip 

region the level lies somewhere between ).1cIN and IV, thereby indicating the 

expected tendency towards a square wave as the normal force N is reduced. 

From the above observations it is clear that the use of a constant friction 

force with an approximate scale factor can adequately describe the slip 

behaviour in most cases, and only for more detailed studies need one consider 

including slip amplitude dependence. 

Before proceeding with the analysis it is convenient to summarise the 

damper characteristics, and to outline the procedure for determining the 

complex transmitted force F: 

(1) The damper will remain locked as long as the maximum transmitted force 

does not reach a level 
A

N at any time during the cycle. Therefore, 

- 	- 
lock the damper by setting q

a 
= q

b 
and compute the complex transmitted 

force P. If the modulus of this force, Flock  .?-.. 
Ps

N, the damper will 

slip. 

(2) Once slip commences, the complex damping force F applied to the sur-

rounding 
 

 system lags the relative displacement (qa- - q

- b

) by 90
o 

and 

has a constant magnitudeFsli = S
)
u
s
N, where the slipping friction 

p 

factor S has a suitable value between 0.785 and 1.000. Therefore, set 

the magnitude of the force and determine its phase angle 0 (relative to 

the reference) such that it lags the relative displacement by 900. 



qa = 	Elaf 	(;(aa 	;4ab) P  

Elb = 	Elbf 	(;ba 	;tip) P  
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The Linearised Analysis  

Referring back to Fig. II.1, consider once more the linear system 

vibrating under the influence of one or more exciting forces. Before the 

friction damper is introduced between co-ordinates a and b, the "free" 

displacement responses are qaf  and qbf. 

As soon as the damper is fitted, a complex friction force P = F e10  
is transmitted between these co-ordinates, so the responses are modified: 

In order to determine the correct force we must find out whether the damper 

remains locked or whether it slips. Both these conditions are conveniently 

examined if we combine equations (II.1) and (II.2) to obtain an expression 

for the ratio of the relative displacement to the friction force: 

Ela - Elb 	= 	Elaf - Elbf 	4. 

( P 	p 	
(11.3) 

where 	= (;( as - ;cab - (74b a + bb)  

LOCKED Condition  

Since (qa  - qb) = 0, the force P is given by 

F 
	

-(Elaf 	Elbf)  
A 

The force magnitude F
lock =  J . If F

lock PsN' the damper will slip. 

SLIP Condition  

The force magnitude is now constant and is given by Falip  = SAN, 

where S is a slipping friction factor whose value depends on the type of 

system (0.785 < S < 1.000). Thus, 
P  = Fslipei°' where the phase angle 0 is 

to be determined. 



whence 	cos(6f  - 0)= 	F 
Iiaf 	_ 4bfl sli P 

—Real A 
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P 
Since (qa  - qb) leads P by 900, the ratio ( qa 	qb  is a purely 

imaginary number with positive sign. Hence the real part is zero: 

Real ga 4b) = 	Real (4af 	cibf) 	+ 	Real A 	= 	0 

Real(

4af 	4bfleief)  

Fslipe
i0 

+ Real A 	= 	0 

( 

Real 1 4af - 'Ibfl  ei(ef - 0)  
F
slip 

+ 	Real A 	= 0 	(II.5) 

Employing the identity eie = cos 6 + i sin 9, equation (II.5) becomes 

Faf 	gbfl  cos(Of  - 0) 	+ 

Fslip 

Real A 	= 0 

Upon taking the arc cosine of the right hand side of (II.6), we obtain two 

possible values for the angle (6
f - 0), and since we know the phase 6f 

associated with the free relative displacement we get two values for 0. 

The correct value is determined by seeing which one makes the imaginary 

part of (II.3) positive: 

Imag (4a  4b)  = 	Imag (cIal 	cibf) 	+ 	Imag 0 > 0 
(11.7) 

whence 	Flaf 	gbf I  sin(9f  - 0) 	> 	Imag 

Fslip 

s in(ef  - 0) 	> Imag 
_ F 

 
slip  ribfl 	slip 

Thus, one may either solve (II.6) for the two values of 0 and then see 

which satisfies (II.7) or one may apply the test to (Of  - 0) directly 

using (II.8) and only afterwards obtain 0. 

* When the linear system is undamped, this simplifies to cos 0 = --slip 
lock where Flock is the real force (with sign) yielded by eqn. (II.4). 
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Response with Damper in Position  

Once the transmitted force F has been determined, the response on any 

co-ordinate r is given by: 

j1r 	q
rf 

+ 	(c-X 	- (7:74_ ) p 
ra orb) F 

Friction Force with Slip Amplitude Dependence  

It is generally adequate to keep the friction force 
Fslip 

constant. 

However, the force may be allowed to vary slightly with slip amplitude by 

employing an iterative procedure
*
. 

If the slip amplitude is U = (Els  - 40, the force is given by: 

F
slip

= f_
dN 	gU 	= 0.785 pp + gU 	(II.10) 

Since Fslip  must lie somewhere between 0.785)usN and ipsN, we may employ a 

constant force F
slip = S/usN and increment S in small steps up from 0.785. 

At each step, after computing the slip U we may calculate a new force 

using (II.10), and obtain a difference d = FslipU - Fslip . FslipU  

By searching for the zero of the continuous function d we obtain the actual 

slip-dependent force. 

* If the linear system is undamped, it is possible to obtain the slip-
dependent force directly (56)(59). 
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Implementation of the Procedure  

The computer program COUPLE1
* 

already provides the means for analysing 

a wide variety of linear systems, both with and without damping. The intro-

duction of an insert into such a system is fairly straightforward, even though 

the program does not at present incorporate this facility as a standard 

feature. Referring to Appendix I, and specifically to the flow chart for the 

main program COUPLE1, it is only necessary to insert a call to a special sub-

routine immediately before the call to CALFOR. By this stage the linear system 

has been built and the resulting equations have been solved, so the system 

receptance matrix and the "free" response columns are available from the top 

left-hand corners of arrays ZSYS and X respectively. These arrays form part 

of a blank common block and are readily accessible, so we have at our disposal 

everything that is required for adding an insert. Thus, for the single fric-

tion damper being considered here, it is only necessary to write a subroutine 

which will extract the relevant elements from the array and implement the 

procedure given above. Once the transmitted force has been determined, the 

responses are suitably modified and the new values qr 
are inserted into X in 

place of the original free responses qrf' The program then proceeds in the 

normal way. 

A special subroutine called FRIC1 has been developed which will add a 

friction damper between any two system co-ordinates (linear or rotational) or 

between two points which are free to slip in a plane. It also includes 

provision for a slip-dependent friction force, although this still requires 

further refinement. Data input is via cards, which are placed immediately 

after the sub-sytem data cards. This routine is available from file and it 

is used in conjunction with a special version of the main program which 

incorporates the necessary call instruction. 

A similar routine was developed by J.L. Williams for adding a torsional 

friction damper to an undamped linear system, but this is less general than 

FRIC1. Full information on his routine is given in Reference (69). 

* See Chapter 2. 
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Results Obtained Using the Subroutine FRIC1 in Conjunction with COUPLE1  

Several systems have been analysed, but only two examples will be 

considered in detail. The first of these is a base-excited spring-mass system 

which was examined by Levitan
(67)

. This is shown in Fig. 11.3 and it includes 

both a viscous and a friction damper in parallel with the spring. It is 

clearly seen that the addition of friction to the viscously damped linear 

system significantly reduces the transmissibility at resonance. In addition, 

as the friction is increased the transmissibility peak shifts upwards in 

frequency, instead of downwards, as would be the case with extra viscous dam-

ping. The approximate solution yielded by the linearised analysis is here 

compared with an "exact" solution obtained by breaking down the square-wave 

friction force into its harmonic components, and it is seen that the agreement 

is extremely good. It should be noted that the curves given here differ very 

slightly from those given in Reference (67), in that "breakaway" (unlocking of 

the damper) occurs here at higher frequencies. This is because Levitan did 

not take account of the different coefficients of friction associated with the 

locked and slip conditions. Thus, he assumed a locked condition as long as 

the transmitted force was less than F, and when slipping commenced he assumed 

a square-wave friction force with a peak value of F. In the present calcula-

tions it has been assumed that F is only associated with slipping, so that the 

4 	4 maximum locked force is if F (since ps  = wia), and the linearised slipping 

friction force has the same value. 

As COUPLET does not at present have any built-in provision for including 

a "constant" displacement input, it was necessary to connect the base of the 

system to ground using a very stiff spring and then to apply a very large force 

to the base. Since the spring stiffness is very much greater than the dynamic 

stiffness of the attached spring-mass system, the base displacement remains 

constant throughout the frequency range. Similarly, if one required either a 

constant velocity or a constant acceleration input, one could employ either a 

large damper or a large mass as the "source impedance". 
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FIG. 11.3 

FORCED VIBRATION OF A SPRING-MASS SYSTEM HAVING COMBINED COULOMB AND VISCOUS 
DAMPING 

(Exact solution given by E.S. Levitan in J.A.S.A., Vol. 32, 1960, page 1265) 

Motion input 

--r-----,r---..,...--~ Xo = X cos wt 

k c F 

m 

Friction damper. 

For this system 
the friction force 
is a square wave 
of amplitude F: 

System parameters 

Viscous damping ratio, 

where 

C ri tical damping, Cc = 2Jkffi = 2 m wN 

Undamped natural frequency, wN = If- rad/ s 

10 r-------~------~--------+_------~--------~--~ 
Friction damping 

F factor, Z = k X 

-- Exact solution 

~I >40 8 f--------+-------+_------t------I--+-lr------+----I • Approx. solution 
( sinusoidal 

friction force) ~ 
.p 
0'-; 
rl 
0'-; 
,.0 
0'-; 
(J) 
(J) 

0'-; 
e 
(J) 

§ 
H 
8 

I=! 
o 

0'-; 
.p 
o 
~ 

6 r-------+-------~------_4----~+_~~----4_------_+------~------~ 

4 ~------~------+_------+_-~+_--+_~~--+_------~------4_------~ 

2 r-------~------~--~~~--~----~----~~~----_+------~------~ 

o ~------~------~--------~------~--------~------~------~------~ 
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 

Frequency Ratio 
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This system was set up as two subsystems, representing the sprung mass 

and the source spring respectively, and the various elements were assigned 

the following values: k = 1, m = 0.0253, c = 0.0159, source spring stiffness 

4 
= 1000, and linearised friction force = F. A force input of 1000 was then 

applied to the base, to produce a base motion of unity. Using these values, 

the motion transmissibility, friction damping factor and frequency ratio 

were numerically equal to xl, F and 75  (= frequency in Hz) respectively. 

The other system that we shall consider is shown in Fig. 11.4. This is 

a two-mass system with viscous damping and base excitation, but in this case 

the friction damper is attached between the main mass and a rigid support. 

The results of the linearised analysis are compared with an "exact" solution 

performed by Yeh
(70)

, and it is seen that fairly good agreement is obtained 

for low friction forces, whereas the errors become considerable when the 

friction becomes large. These linearised results agree exactly with an appro-

ximate solution used as a check by Yeh, and they are adequate for most practical 

purposes. However, in a case such as this in which the friction force is an 

exact square wave, it would be very easy to improve the accuracy by also com-

puting the response to higher harmonics of the friction force. These could 

then be added together to obtain the "exact" peak value of the response at any 

frequency. 

Once again the system was broken into two subsystems, representing the 

two-mass system and the source spring respectively, and the following values 

were assigned to the various elements: kJ.  = 1, ml  = 0.0253, cl  = 0, k2  = 

0.050, m2  = 0.00127, c2  = 0.00159, source spring stiffness = 1000, and linea-

rised friction force = F. As before, a force input of 1000 on the base 

produced unit displacement, so the transmissibility, friction factor and 

frequency ratio were given by xl, F and A respectively. 
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FIG. 11.4 

FORCED VIBRATION OF A TWO-MASS SYSTEM HAVING COMBINED COULOMB AND VISCOUS 
DAMPING 

(Exact solution given by G.C.K. Yeh in J.A.S.A., Vol. 39,1966, page 14) 

Friction damper 

Motion input 

__ --w-__ -.-__ ~xo = X coswt 

Slstern 

= 

Earameters 

rn2. = 0.05 connected to ________ 
ground. F 

f XI rn l 

~ 
For this system 
the friction force 
is a square wave 
of amplitude F: 

JtfPF 

VI = w,rn, = 0 

)I, = ~ = 0.2 
warn, 
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COUPLE1 has also been used to analyse the idealised turbine blade 

considered by E. J. Williams
(59)

. This provides a very good example of the 

use of the general purpose coupling program in conjunction with the friction 

damping routine, since the blade was built up from various undamped beam 

sections and spring supports, and then the damper was added (including slip-

dependence of the friction force). Another good example is that of a rectan-

gular frame with a single diagonal member which was loosely clamped at one 

corner. This system was analysed by J. L. Williams(69)  using COUPLE1, and a 

single torsional damper was inserted at one end of the diagonal between it 

and the frame. The friction was introduced using a specially developed routine 

which was similar to FRIC1, though less general and only applicable to undamped 

systems. However, the system has also been analysed using FRIC1 and identical 

results have been obtained. The only other system to be examined was the very 

basic single-degree of freedom system with combined viscous and friction damp-

ing, as studied by Den Hartog
(71)

, and the results for this system agree 

exactly with an approximate solution given by Yeh
(70) 
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APPENDIX III 

DERIVATION OF MATRICES USED IN MULTI-DIRECTIONAL  

MEASUREMENTS  

In this appendix are derived the matrices associated 

with the multi-directional measurement method described in 

chapter 4. The matrices are given in a completely general 

form. 

The response transformation [Cp] includes the 

effect of accelerometer cross-sensitivity. Inertia correction 

terms are derived for the exciting block, accelerometers and 

force gauge. Both the accelerometer cross-sensitivity and 

force gauge inertia effects are known to be small, but are 

included in the analysis so as to preserve generality. 

Each inertia term is considered separately, its 

effect being expressed as a system of forces acting at the 

point P, and given in terms of the accelerations at this 

point. 

The completely corrected mobility matrix is given 

by: 

EY]= licalcd[IX[r] [m][cd[L] 
— 	In11 , [mFT [mlf  

FORGE GAUGE INERTIA CORRECTION 

WHERE [M ] = M6 + [MA] + [MA1 + [MA 

I 	

. 	A 	B 	C. 
ACCELEROMETER INERTIA CoRFLEcTioN 	 (111.1) 

EXCITING BLOCK INERTIA 
However, the force gauge inertia correction may usually be 

Omitted, so that (III.1) reduces to the form (4.7)*. 

Equation (4.7) in Chapter 4. 
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TRANSFORMATION FROM MEASURED ACCELERATIONS TO THOSE AT P.  

Consider the block shown below, where the three 

accelerometers are arbitrarily positioned at the points 

A, B and C. 

a, 

YA  

When the block moves, each accelerometer produces a 

signal which is amplified and measured as a voltage e . If 

the acceleration scale factor is S , then the measured 

acceleration a. = g.e . Because an accelerometer has a small 

cross-sensitivity E , this acceleration differs slightly from 

the true axial acceleration a., so that a. = S.e = 	E.a! 
. 

where as  is the acceleration at the accelerometer base in a 

direction perpendicular to the axis. 
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We require the transformation 

 

Cm  C11 Cm  a, 
CL  CU C21 (5-13 

C31 Cu cn ac 

 

However (111.2) is most easily obtained via its inverse 

transformation: 

€A  0 0 

o Es 

O 0 6c  

I a'A  

a.. = ( [ pl + EA Cs  

o E5 0 

o o Ec  

(111.3) 

where EP] and [a]  relate respectively the axial and transverse 
accelerations to the accelerations at point P. By considering 

the accelerations at A, B and C due to accelerations X ,9 

1A8  

az 

04 

as 

at  

 

   

I  cLA 

a.8 

and e in turn, we may obtain the columns of these matrices. 
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It is easily shown that 

Wm... ( 
—COS YA — sin YA ( XA  Si" YA — YA COS YA) 

— CAS Y8 — sin. Ya  (X8 Si.n- iti —Y8  cos YES) 

— cos Yc — si.n. ?fe (Xc si" We — yc cos  Irc) 6 

---■-■--- 

[P1 
and 

Sir% X A 

si.n. YB  

Siii. Ye 

— COS YA 

— cos Ya 

—cos We  

(XA  C.OS YA ÷ YA Sin. WA) 

(XII  COS W8 -I- Ys sin Ye) 

(X, cos Ye + Ye sin Ye) 
ear 

[Q] 
Then the transformation (III.2) is given by 

I 

  

ia 

9 
e 

EA 0 0 

O E8 0 

0 0 Ee  

  



APPLIED 

FORCE 

EXCITING BLOCK 

Yrt 
REACTION To APPLIED FORCE 

Fx  

FY 

Me  

0 

0 

I 

Cos e 

st.n. Y 

(YcosX-XsLra) 

-Si-n, Y 

Cos Y 

-(Ysin.Y -1- X cos )f) 
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FORCE AND ACCELERATION TRANSFORMATIONS ACROSS THE EXCITING BLOCK 

FaR. sirtZ 

The application of forces Fpck 1 FO R and MeR to the 

exciting block at point R causes forces F-xl, , Fyp and Map 

to be applied to the test structure at point P. 

transformation is 

gc 
Fy 

Me 

It 

= 

is 

I 

o 

Y 

readily 

0 

I 

-x 

seen 

0 

o 

I 

that the 

-- 
cos 

si.n. li 
0 

force 

-siza 

C °5  Y 

0 

R 

-- 
o Fa  

0 	Ffi 

I 	Me 

R 
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is 
Similarly, the inverse acceleration transformation 

   

 

cos X siza 	0 	I 	0 	y 

y cos 	o 	0 	I "")( 

.■■■ •■■•• 

R 

 

  

  

   

   

cos 1r 

— 

0 

Sin. 

cos Y 

0 

(Ycosi — X sin )f) 

+ X cos )0 

    

    



FORCE APPLIED TO GAUGE 

MASS OF ENTIRE FORCE GAUGE = rYlp  

MOMENT OF INERTIA ABOUT GF = IGF  

MEASURED FORCE ON CRYSTAL 

CRYSTAL 

MASS OF END OF GAUGE = trtFE  

EXCITING BLOCK 
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THE FORCE APPLIED BY THE FORCE GAUGE  

The force gauge transmits through to the block an 

axial force from the shaker. However, due to its own motion 

the gauge also applies inertia forces to the block. These 

inertia forces are only a second order effect, but they will 

be included in the analysis in order to preserve generality. 

By applying Newton's 2nd Law to the force gauge, and 

to the end of the gauge below the crystal, we obtain the 

matrix equation: 



- _ — 
0 0 I o 0 

mf  0 o I . -5F 

-rri9F. IG, - O - o I 

    

Fx 
Fy 

Me  

F 

= [T] ° 
E  0 

MFE 

0 

0 
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•■••• ••■•■■ 

Ex  F M. FE 0 0 

Fs  = 0 o 'TIT 0 

Me  0 o - m F 5F IGF 
■ •■ 

Transform accelerations to point E on the block: 

GF 

- — — 

Ex  "1  FE 0 0 I o 0 

Fs  0 frtF 0 o I -9F 

0  
M. 	0 

0 -mrgF I&F o 0 I 

Now transform both the forces and the accelerations 

to point P on the block, using the transformation (III.7) 

and (III.8): 

The expanded matrices are given on the following 

page. 



F 11 
(E1.9) 

MFE  coe 2( + rn.F5irel cost. sing ( ( 	FE — Fr̀ F) 
M. FE cos ?r (Y COS )r 	Xsix) '' 	a 

+1-rIF siza{(Ysird +Xcosr)+ F} 

(rnFE — rr`F) cos ?r. six,- Y in  FE  sirt. 21 + m-Fcos'Y rn  FE Sin Zr (Yeas Y — X si" 2) 

— rnF COS YgYsi.ra + X cos Y) + 54 

in FE COS X (Y COS Y — X si.ra) 

+ mF  sin Y {(Ysip. r + X cos y) + 9 F} 
mFE Serif (Ycos /1— X siA.X) 

— rrtF  cos X {Ciesi.pa + x cos zr) + IF) 
rriFE (Ycos X — X stn 2)2  

+ mFgYsira+ XcosY)+5F11+ 10F  

F cos 2l 

F sin 

F(Ycosv—xsifir 

Fx  

Fy 

Me  
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THE EFFECT OF EXCITING BLOCK INERTIA 

We shall consider the inertia effect by applying 

D'Alembert forces to the block at its centre of gravity G. 

The D'Alembert or inertia forces applied at G are 



•• 

0 

—mX0  

Fx  Fir 

Me 
P 

Fx  

FY 
Me  

P 

rri 	0 	0 

o m 0 LC 
0 	0 

171YG 

rrt XG. 

rn.(X: Ya2) 

m 

O 

YG. 

••■ 

471 

Transform both the forces and the accelerations 

to point P on the block, using the transformations (111.7) 

and (111.8): 

[M 
(111.10) 



MASS OF ACCELEROMETER = rrtA  

BM 
	MOMENT OF INERTIA ABOUT GA = IGA  

EXCITING- BLOCK 
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THE INERTIA EFFECT OF AN ACCELEROMETER 

Apply Newton's 2nd Law to the accelerometer: 

F.(  

Me  
= MM. 

A 
	 GA 



= 	[-q 
rnA 

0 

0 

O 

rnA 

-rn,3A 

.•■• 

o 

0 

IGA  

•••■• 

1 

0 

0 

0 

I 

0 

0 

M q A 

I 
Lc] 

Fx 

Fy 

Me  
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Transform accelerations to point A on the block: 

Fec 

FA 

Me 

MA 

o 

o 

0 

MA 

-MA gA 

- 
0 

0  

IGA  

- 
I 

o 

o 
ill■ 

0 

I 

0 

0 

-3A 

I 

/ 

A 

Now transform both the forces and the accelerations 

to point P on the block, using the transformations(III.7) 

and (III.8): 

e 

■. 

whence 

MA (Y + ga sira) 

-rYlA (X + lA cos 0 
mAfX2'+ Y1 -1- 51 + 2gA0(cosr 

+ Ysira)} +IGA __ 
A 

Fx   

FY 

Me  

MA 

0 

rnA (Y + gA  sin X) 

 

   

   

( III . 11 ) 
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APPENDIX IV  

SOME MULTI-DIRECTIONAL MOBILITY MEASUREMENTS ON A LARGE MASS  

Introduction  

It has been shown in Chapters 4 and 5 that multi-directional mobility 

measurements may be made using a specially designed "exciting block" in 

conjunction with either a single or a twin shaker. For the test items 

considered in those chapters, quite good agreement was obtained between 

measured and theoretical results. However, if the measurement technique 

is to be applied to structures of unknown mobility it is essential that 

accuracy bounds be known, so that the results may be interpreted correctly. 

The measurements described in this appendix were carried out on a 

large steel mass using exciting block Mk 4 and a twin shaker, the object 

being to determine the effective stiffness of the exciting block and to 

examine the effect of accelerometer cross-sensitivity. This information may 

be used to assess the validity of any other measurements made with the 

same block-shaker system, in addition to giving a qualitative guide to the 

limitations of the multi-directional measurement technique. 

Instrumentation and experimental details  

The exciting-block/twin-shaker system is shown in Fig. IV.1, and a 

detailed drawing of the Mk 4 block is given in Fig. IV.2. It will be 

observed that the block was not attached directly to the item under test. 

Instead, a 100 mm dia. x 16 mm thick steel disc was first stuck down using 

Plastic Padding, and the block was then bolted down onto the ground upper 

surface of the disc using a 2  inch BSF high tensile steel bolt. A thin 

film of Plastic Padding was also interposed between the block and the disc, 

so as to ensure an absolutely solid joint. This arrangement had been used 

previously for some measurements on a large steel structure*, since it 

See Part 4, Chapter 14, Section 14.5. 
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obviated the need for attachment holes in the structure, and it also 

simplified re-orientation* of the exciting block for measurements in another 

plane. 

As a precaution against earth loops, the accelerometers were 

attached to the block by means of insulating studs. Two force gauges 71  

were mounted on top of the block, but only one of these was actually used 

for measuring force, it being assumed that F2  = F1. It has been shown in 

Chapter 5 that this assumption is not far from the truth, provided that 

the two shakers are fairly closely matched. The push rods were 1 mm dia. 

x 50 mm long, so they only introduced a minimal constraint on the six 

directional motion of the block. 

The complete measuring system is shown in Fig. IV.3. Apart from 

the twin-shaker unit, the only important difference between this and the 

system shown in Chapter 4 is the inclusion of an analogue sum and difference 

unit. This permits the direct measurement of linear and rotational acceler-

ations with the transfer function analyser (TFA). The twin shaker is 

switchable to give either a force or a couple, which may be measured with 

force gauge 1 : Force = 2F1; Couple = 2 eFi.
X 

Using this system, measurements were made of 12 of the 36 elements 

of the 6 x 6 mobility matrix for a point on top of the large mass. These 

measurements were obtained directly, and were not subsequently processed. 

Hence, no correction has been made for the inertia of the exciting block or 

for impurity of excitation due to slight mismatching of the shakers. In 

After removing the fixing bolt the block could be released with a 
sharp tap, since the ground surface of the disc did not allow a rigid 
bond. 

Environmental Equipments type AQ40 (3 and 5% max. cross sensitivity). 

4 	Endevco type 2103-100 

X 	2e = distance between push rods. 
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addition, the measurements correspond to axes x, y' and z' through the 

centre of the exciting block, whilst the required mobility properties pertain 

to axes x, y and z through point P on the surface of the item under test. 

Although the two points are only 50 mm apart, it will be shown that this is 

50 mm 
(Mk 4 block 

+ disc) 

sufficient to introduce errors of several dB. 

Prior to performing the tests on the large mass, it was necessary to 

set up the amplifier gains and to calibrate the system. For this purpose 

the two accelerometers and the force gauge were mounted co-axially on a 

cylindrical 10 Kg mass, as shown below. The mass was then vibrated at a 

fixed frequency and the gains of the two acceleration channels were adjusted 

Accel B Force gauge 1 	Shaker 
Accel A 

Mass (M) 

CALIBRATION 
SETUP  

to give equal outputs. The two signals were measured independently using 

the TFA, although one could alternatively measure their difference and set 

this to zero. The setting was checked at various other frequencies and 

was found to remain constant. Then the inertiance calibration factor S 

was obtained by measuring acceleration A and force 1 in volts at a number of 

frequencies in the range of interest (60 to 1500 Hz) . 	If the average 

value of  accel.A[v] is L and the calibration mass is M, then S = 	1 
force 1 	 ci.M 

The various multi-directional inertiance responses were then given 

by the following expressions: 



4 8 0 

Translation =  (aPi[v] aBM)  
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4 F
1 
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( a

A 
[I] - a

B [v] ) 

   

Force 	4s F
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t (a
A
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Couple 	4e F
1 
 [v] 

    

Rotation 	= 
S (a

A
[v] - a

B 
[v] ) 

(IV.1) 
Couple 

4se F
1 
 [v] 

   

where a
A M' aB 

 [v] and F1  [v] are the accelerations and the force in volts 

and 2s is the distance between the two accelerometer axes. These responses 

could easily have been converted to mobilities by dividing by A but it was 

not considered worthwhile in the present case, since the inertiance 

properties of a pure mass are independent of frequency and are therefore 

represented by horizontal lines on an inertiance frequency response plot. 

Tests on the large mass  

The mass was a 135 Kg block of steel, which was mounted on rubber 

pads (see Fig. IV.4). Since the six natural frequencies of this system 

were all less than 50 Hz, the response was purely masslike above about 80 Hz. 

The inertiance properties were to be measured at point P on top of the 

mass, and because only the masslike response was of interest, measurements 

were confined to the frequency range 60 to 1500 Hz. The complete 6 x 6 

point inertiance matrix is shown below: 
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Point inertiance  
matrix  

(theoretically 
symmetric) 

The 12 boxed elements have been measured in the manner described in the 

previous section. 

The exciting block orientation and the force gauge and accelerometer 

positions are shown in Fig. IV.5. Since incorrect positioning of the 

transducers can lead to a 180
o 

phase shift in the measured inertiance, it 

is important to observe the convention adopted: This is best illustrated 

by considering the -0- case, and imagining the exciting block to be 
Me 

connected to a spring-like structure. Then the application of a positive 

couple must cause force gauge 1 (the measurement gauge) to push against the 

block, whilst gauge 2 pulls it. As the block rotates in a positive sense 

it must pull accelerometer A (Red) with it and push accelerometer B (Blue). 

This convention only gives the correct inertiance phase if the calibration 

test described in the previous section gives a 180
o
.phase difference between 

the force and acceleration signals. If the calibration phase is 00, then a 

180
o 

correction must be applied to the measured inertiance data. It should 

be noted that reversing the positions of the force gauges or accelerometers 

will not correct the phases of all the elements in the matrix. 

The theoretical point inertiance matrix may be obtained in terms of 

the mass and the principal moments of inertia, in the manner indicated in 
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Fig. IV.6. The resulting matrix is given in Fig. IV.7, both in inertiance 

units and in dB with phase angle. 

The 12 selected responses are given in Figs. IV.8 to IV.13, where the 

order corresponds to the rows of matrix (IV.2). 
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FIG.I5 EXCITATION ARRANGEMENTS AND RESPONSE MEASUREMENT  
POSITIONS USED FOR TWIN SHAKER TESTS ON 135 KG- MASS  
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DISPLACEMENT TRANSFORMATION FROM G TO P  
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FIG IV.7 
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The effective stiffness of the exciting block in various directions  

Fig. IV.8 shows the measured x response to be almost constant 
Fx  

up to 400 Hz, with a maximum error of 2dB. It then drops gradually to 

an antiresonant trough around 1190 Hz, after which it rises quickly and 

become spring-like. This behaviour is characteristic of an antiresonant 

oscillator, which comprises a spring in series with a mass, neither element 

being connected to ground: 

= 0.011 Kg'  
(theor) 

A 	Freq. 

= 1190 Hz 

In the present case, M is the effective mass at the point of excitation of 

the steel block, and K is the effective stiffness of the exciting block, 

given by K = (21T fA)2M. It must be emphasised that M is not simply the 

total mass of the steel block. The effective stiffness in the x direction 

is therefore 

	

K
x 

= (217 x 1190)
2 
x 	1  

- 5.08 x 109 N/m 0.0110 

In the same manner, we obtain the following stiffnesses for the z, o4 

and e directions: 

K
z 

= 1.47 x 109 N/m 

Kex  = 4.02 x 10
6 

N-m/rad 

Ke  = 3.49 x 10
6 

N-m/rad 

where the relevant data have been obtained from the direct inertiance curves 

for Z , a and 6, given in Figs. IV.10, IV.12 and IV.13 respectively. In 
Fz 	Me  

the case of X , OZ and e , the measured "low frequency" response is very 

	

Fx  Mcx 	Me  
close to the theoretical, so the theoretical figures have been used for the 

effective mass or moment of inertia. However, in the case of Z the 
Fz 



K4, Local stiffness under 
head of bolt 

Probable  
stiffness  
distribution 

K Bolt stiffness 

Foot of block 

Foot—joint—disc stiffness 	K2, Thread stiffness 
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measured data correspond to a Z axis passing through the centre of the 

exciting block*, whilst the theoretical data correspond to an axis along 

the surface of the steel block. This has caused a 3dB difference at the 

"low frequencies", and consequently the measured effective mass has been 

used in calculating the stiffness K. 

Although these stiffnesses have been attributed to the exciting block, 

they probably arise from the combined effects of exciting block stiffness, 

joint stiffness, and the local stiffness of the steel mass. However, due 

to load spreading by the 100 mm steel disc, the first two of these are 

probably the more important in the present case. 

One might imagine that the stiffnesses were associated solely with 

the foot on the exciting block, but a simple calculation yields a 

compressive stiffness of 3.5 x 1011 N/m for the 1 mm slice. This is 70 

times greater than the measured value of K
x
. 

In the present case it is unlikely that the stiffness is affected 

to any large extent by the fixing bolt. From the diagram below it is 

seen that the bolt acts as a spring in parallel with the local stiffness K1  

around the foot, so the bolt can only have an effect if the combination 

* 	To be strictly correct, the force is applied through the block centre, 
whilst the measured acceleration corresponds to an axis 3 mm above. 
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of K2, K3  and K4  is comparable with or greater than Kl. Since the bottom 

of the foot and the surface of the disc were machined surfaces, and the 

thin film of adhesive ensured a solid connection over a large area, it 

seems highly probable that K
1 

would be greater than the combined effects 

of the thread stiffness (K
2
) and the local stiffness under the head of the 

bolt (K
4
). 

Hence, the exact mode of deformation is unknown at present. However, 

it seems probable that it is associated with the region around the foot of 

the block. 

The relationship between linear and rotational effective stiffnesses 

Whilst it does not appear to be possible'to calculate the effective 

stiffnesses in the linear directions, it does seem that a simple relation-

ship exists between the linear and rotational stiffnesses. This will be 

demonstrated with reference to the x and 0 stiffnesses. 

Considering the exciting block shown below, we shall postulate that 

the linear stiffness K
x 
is associated with the region enclosed within the 

dashed line, and that the cross section of this region in the y-z plane 

is exactly the same as that of the foot. 

Block thickness = 70 mm 
(z direction) 

This seems reasonable, if the total stiffness is due to the combined effects 

of foot, adhesive and disc stiffnesses. If we now isolate this region we 

have a piece of material of length 1 and width equal to that of the block: 



Loading  

Loading due to 
application of 
couple to block 

Elemental 
stiffness 

dK= Kx  dx 
1 

dF = Kx  0 x dx 
1 Deflection u= ex 

6 

dK 

Deformation  

1 
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Since the total effective stiffness is Kx  = 5.08 x 109  N/m, the stiffness 

per unit length is obviously Kx. The application of a couple to the 
1 

exciting block causes a force dF = Kx6xcbc to act on an element at 
1 

distance x from the centre. The total applied couple is therefore 

	

X= + —1 	 +-27  a 

j 
Me 	x dF 	Kx 	x

2 
 dx 	= 	Kx 1

2 

	

1 	1 

	

1 	12 
x=--/  

whence the rotational stiffness 

Ke  = Me  = Kxl2 
	

(iv.3) 
0 	12 

9 
and for Kx  = 5.08 x 10 N/m and 1 = 0.070m, we obtain 

Ke  = 2.08 x 10
6 

N-m/rad 

This may be compared with the measured figure of 3.49 x 106 N-m/rad. 

The remarkably good agreement seems to substantiate the assumption that the 

stiffness is a local effect associated with the foot, adhesive, etc. 
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Accelerometer cross-sensitivity  

An important source of inaccuracy in multi-directional measurements 

is the effect of accelerometer cross-sensitivity. This is well illustrated 

by the lower graphs in Figs. IV.8 and IV.10: These show that the measured 

x response to a force Fz  was only about 32 dB less than the corresponding 

Z response, whilst theoretically it should have been zero (-CO dB). The 

measured signal was almost certainly the result of transverse or cross-axis 

motion, and the 32 dB difference in fact corresponds to a cross-sensitivity 

of 22%. which is of the right sort of order for the pair of accelerometers 

used in these tests. 

In the case of the other response curves the cross-sensitivity effect 

is less obvious, since the component due to transverse motion forms only a 

relatively small part of the total measured signal. However, under the 

right conditions it is not difficult to obtain errors as large as 30%,  

particularly on rotation measurements. This will be illustrated with 

reference to the 0 response: 
Me 

Since the output from an accelerometer comprises components due to 

the axial and transverse accelerations a and a', the amplified voltage 

signal e = 1 (a +Ea!), where 
SACand 

 E are the acceleration scale factor 
g
C 

and the cross-sensitivity respectively. Let us now consider the exciting 

block and accelerometer arrangement: 

2s= 0.050 

jAa  
A 

h= 0.080m 

P 	ali = al  /3  = a' 
///////)//// 	 ie//////////// 

The rotation signal emerging from the difference unit may be written in 

terms of the true accelerations at A and B: 



Es  = -ENB 
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e - e = , 	(a + E a' ) - 	
(aB 	 BB 

+ E 
	= ACFaA aB) 	a' (EA - A B

AC 
A A A S

AC  

(Iv .4) 
Using the theoretical data given in Fig. IV.7, we have 

6 = 0.794 rad/S2 and 	= -0.097 m/s2  
Me 	N-m 	Me 	N-m 

Then, assuming a couple Me  = 1 N-m, we obtain the acceleration difference 

(a - a ) = 2s o = 0.050 x 0.794 = 0.040 m/s2  
A B 

and the transverse acceleration 

a' = y 	= -0.097 - 0.080 (0.794) =-0.160 m/s2  

Substituting these figures in (IV.4), we obtain the difference signal 

eA 	B S
AC 	 g 

- e = 	[I . 40 - 0.160 (EA - E:B)] = 0.040 	- 4.o ( 	- CB)] 

AC (IV.5) 

Before examining the possible magnitude of the error term, we must 

consider the nature of the cross sensitivity, since it is a variable quantity 

which depends upon the orientation of the accelerometer relative to the 

direction of transverse motion, and also upon the squareness of the 

attachment surface to the required axis of measurement. This is discussed 

in some detail in reference (21), where it is shown that the cross-sensitivity 

may vary in the manner shown below. 

Direction of 
transverse motion 

E
N = Nominal cross-sensitivity 

(max. cross-sens., as quoted 
by manufacturer) 

E
Ap 

Apparent or actual cross- 
sensitivity 

Accelerometer 
not mounted square 

(a) Typical  
cross-
sensitivity 
variation  

E
Ap 

Axis of max 
cross-sensitivity 

w 

Ap max Accelerometer mounted square 

(b) Worst case for difference  
measurements, assuming  
accelerometers are 
mounted square  

y 

- 	= (E NA+ Etia) 

Measurement axis into page 

EA 
	

CNA 
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To obtain an estimate of the possible error in the difference signal 

(IV.5), let us assume that the accelerometers are mounted squarely, with 

their axis of maximum cross-sensitivity parallel to the y direction, as 

shown in (b) above. Accelerometer B is also rotated through 1800 relative 

to accelerometer A. Using the manufacturer's cross-sensitivity figures of 

3 and 5% respectively for the two accelerometers used in the tests, the 

cross-sensitivity difference (EA  — EB) is -8%. and we obtain 

eA  - eB  = o.o4o  D - o.32o1 	Error = 32% = 2.4 dB 
g
AC 

Thus an error of the order of 30% is quite possible, and this could well be 

the reason for the slightly low 8 measurements before the anti-resonance. 
Me 

The same approach leads to a similar conclusion in the case of the 8 response. 
Fx  

Although the error might in fact be less, it could equally well be greater 

if the accelerometers were not mounted squarely. 

In the case of translational response measurements the signals are 

generally much larger, and cross-sensitivity is not so much of a problem. 

However, in assessing its importance one should bear in mind that the 

measurement is obtained as the sum of two signals, and in consequence the 

error is proportional to the cross-sensitivity sum (EA  +CB). 

If the axis of maximum cross sensitivity is known, one may be able 

to orientate the accelerometer to minimise the effect. However, in the 

case of general three dimensional motion the best orientation will not be 

known in advance. The easiest way of reducing the problem is to use very 

low cross-sensitivity accelerometers, carefully aligned relative to the 

required axis of measurement. 

Conclusions  

Despite the quite large errors at the higher frequencies, the 

various response curves testify to the adequacy of the direct measurement 

technique for obtaining acceptably accurate multi-directional data for 
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many applications. It should be remembered that the mass used in these 

tests had a very low mobility at high frequencies, and therefore provided 

a more severe test than most typical engineering structures. On the other 

hand, the low mobility also made exciting block inertia effects insignificant. 

The most significant limitation of the measurement technique is 

certainly the combined stiffness of the exciting block and of the interface 

with the structure, and this appears to be most serious in the case of a 

couple excitation, due to the relatively low rotational effective stiffness. 

Expression (IV.3) shows that this stiffness is dependent upon the linear 

effective stiffness and the foot size, and a significant improvement can 

only be obtained by increasing them both. An improvement in block stiffness 

may be effected by using beryllium instead of aluminium. Due to its high 

stiffness/weight ratio, the extra stiffness can be obtained without a 

corresponding increase in mass. 

At the lower frequencies, before the block deformation became signi-

ficant, the errors were due to two causes. In the case of measurements in 

the y and z directions the primary source of error was the non-coincidence 

of the measurement axes with the surface of the mass. The error in E 
Ma  

was as large as 5 dB, but the other responses were a little better, with 

errors of only 3 dB or less. The other source of error was accelerometer 

cross-sensitivity, and it has been shown that this may easily affect 

rotational results by several dB. In the case of linear measurements its 

main effect is to prevent the measurement of very small motions in the plane 

at right angles to the direction of the principal motion. If the true 

motion in the plane is more than about 3D dB below the principal motion, 

an accelerometer with its axis in the plane will produce a signal which is 

predominantly due to its cross-axis motion, so the true motion cannot be 

measured. 
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APPENDIX V  

THE CONVERGENCE RATE OF ENERGY INTEGRALS IN THE FINITE ELEMENT METHOD  

The assumed displacement functions are finite series, which can 

rarely describe the exact displacement distribution over the length of 

the element. In consequence, the strain and kinetic energy expressions 

formulated in terms of these series are only approximate. The procedure 

outlined here gives an estimate of the order of the error when using 

polynomial displacement functions. 

The total energy in a beam finite element of length L may be 
L 

expressed in terms of a number of integrals of the form 	g1 , g2  ax 
S 0 

where S1  and g2.  are polynomials in X, and may be either the displacement 

functions or their derivatives. If a displacement is represented by a 

polynomial of degree n, then its k'th derivative is represented by a 

polynomial of degree n.—k, so those energy integrals which involve 

only displacements are inherently more accurate than those involving 

their derivatives. The non-uniformity of accuracy is unavoidable, but 

it is possible to match together the different displacement functions so 

as to set a uniform minimum level of accuracy, and thereby fix the 

overall accuracy of the finite element representation. 

The effect of the degree of the polynomials on the accuracy of 

any energy integral may be examined in a fairly general manner by 

considering a pair of quartic polynomials: 

g = r 	r x 	r x 	r x
3 	

r x' 0 	1 	3 	4 

ga  = So  + SI X -1- SO  .a 	
S3:(

3 
HI- S4X

4 

These are capable of representing anything up to a cubic polynomial 

displacement function or derivative, together with an error term. 

The integral of their product is 

(v.1) 
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L 

gi.ga  dx 	= 	(cso)L 	-I—(r, so  + r0  5,)L2 	-A-(ras. + r;5,-Fros„)L3  
0 	

+ +(r,  s. + ra s, + r,5,+ ro53) L4  + 5  (r4 s. + r3  + rasa +r, S3 + ro  S4) Ls  

+ 6  (r4 s, + r; + 2s3 + 	+ +(r4 sa  + r53+  ra  s4) 

+ -L(r 5 r S 	+  L (r s )L9  8 4 3 	3 4 	9 4 4 (V.2) 

The expression (V.2) may now be used to examine specific integrals, 

as is demonstrated by the following example: 

Example from the symmetrical 5-layer beam. 
L 
( 

ocf  W if  cix oc = 6 + 6 x +xa  
0 	 2 	3 W = 0.6 	al  X + CLaX 	CL3X 

The derivatives are 	o< = 6, -4- 26x (+ 	) 	g, 
2 W = acLa  + 60.3x (+ Ewit x ) 	= g 

where Ee x
z 
and witx

z 
represent the higher order terms which are ignored 

when one uses only a few term's for o< and w. The constants in the 

"standard polynomials" (V.1 ) are therefore. 

-= , r =.26, 	r= r-4  =. 0 	s =2a. 	s =60- 	s = S 	0 3  , 	a 9 	i 	3f 	a 	w"f 	3 	4 

and expression (V.2) gives 

L 

c-c! w" dx = 	(2a61  )L + 2(4a.a62.  + 6 a..36.  )12' 
0 

+ 	( mc, + 12x36 + 6, E„)12 + 	26E„)12 

It is seen that the term in L4  is the first to contain only the 

error coefficients E ,, and E it 
. Therefore, provided that 12 x36>> acLE,--1-1  6,E „ 

Ot w 

in the L3  term, the energy integral will have a convergence rate 

proportional to L
4 

or 1/N
4
*,where N is the number of elements along 

the length of the beam. 

Note that Element length, L = Beam length/N. 
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It may similarly be shown that the above displacement functions 
L 	L 

gives 	c.eadx and w"adx to the same accuracy, thereby fixing the 
0 	0 

convergence rate of the total strain energy at a uniform minimum level 

proportional to 1/N
4. 
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APPENDIX VI  

"STANDARD" MATRICES ARISING IN THE FINITE ELEMENT ANALYSIS OF SANDWICH BEAMS  

1 	o 	o 	o 

0 	1 	o 	o 

-3 	-2. 	3 	-1 

2 	1 	-2. 	1 
■■• 

-3 	-1 	4 

2_ 	-4 

8 	4 

-2. 	8 	4 

4 	4 	32 
AMP, 

36 	3 	-36 	3 

3 	4 	-3 	-1 

-36 	-3 	36 	-3 

..... 	3 	-1 	-3 	4 maw. 

-6 	7 	6 	-3 

-6 	-3 	6 	7 

-48 	-4 	48 	-4 



[Aj = 

[A] 

[A] = 

7 

4 
-8 

4 

156 

az 

54 
-13 

12 

6 = 
-12 

6 
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APPENDIX VI contd.  

"STANDARD" MATRICES ARISING IN THE FINITE ELEMENT ANALYSIS OF SANDWICH BEAMS  

7 
-8 

-8 

-8  
16 

6 -12 6 

4 -6 2 

-6 12. -6 
2. -6 4 

3 -4 1 

1 -4 3 
-4 8 -4 

22 54 -13 

4 1.3 -3 

13 156 22 

-3 -2.2 4 
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APPENDIX VII  

EXTENSIONAL AND BENDING STRAIN ENERGIES IN A THIN PLATE  

In-plane stretching energy in an element of thickness dz  

Referring to Fig. VII.1a, the plane stress system 0-,'0 0-; gives rise 

to the strains 

= 
x 	E lcrx — cry ) 

= 	( c-J 	-vo'" ) 

Solving for the stresses we obtain 

E 	 y v 
(1— va) ax 

cr E 	[ Dv 	v  a u 

	

(I —V9 ay 	ax 

The stretching energy in the element is given by 

dV
SEretch, 	a

l  [crx DDitx + 	 dx cly dz 

E 	(Du.)2- 	(DV)2  a.  2 ,, Du Dv dx 	dzax ay  2 (I — V a) [ )x 	-5-;- 	 " 

(VII.3) 

In-plane shearing energy in an element of thickness dz  

Referring to Fig. VII.1b, the shear stress 7-x, gives rise to a 

shear strain 

0-x 

)9 ( v11.4) 

The shearing energy in the element is then given by 

d\/
Shear == 	7;y xy dx dy dz 

--== 	G(2L  2 	,)y 	ax 
I 	E 	+ av 12

dx d dz 
2 2(T4-0 \ ay 	ax J 	y 

(VII.5) 

Note that G — 	 
2.(I +v) 
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Total in-plane energy in an element of thickness dz 

The total in-plane strain energy in the element is given by the 

sum of (VII.3) and (VII.5): 

dV 	_ 	E  [04 ± 0v)a  + 	(1-v)Ou  + ay dx  dz
• in-pLarte — 	(I -v9 Qx/ 	03/ 	-5Tc 	 Qj 	Dx/ 

(VII.6) 

Total in-plane or "extensional" energy in a uniform plate of thickness  

For in-plane stretching and shearing, the displacements u and V 

are constant through the thickness of the plate. If its dimensions in 

the x and y directions are a. and 6 respectively, expression (VII.6) 

yields the energy integral 

	

= 	L 	 + 	+ 	3u, 	+  -a0aLtj 	ly_c)a  dx clq Vext 	.(I -119 	 J) 
0 0 

(V11.7) 

Total bending energy in a uniform plate of thickness b  

When the plate bends, the displacements u and v vary linearly 

through the thickness, and are both zero on the neutral surface. From 

Fig. VII.2 it is seen that u=-z-Lw and v.-z.`A , and when we substitute 
.)x 

these displacements in expression (VII.6), we obtain the energy integral 
td/ lom 

	

V = 	E 	za paw \a  + Oawf - --I  

	

2  YW 	 ( 	 " 	d dz bend 	2 (I -V9 	Ox ) 	R") 	 a \ 

0 0 0 

6 a. 
I 	E b3 	[eawY + (Na 	23) 	+ a 0 11)(  Z Y -1 cixas 2 12(1 -va) 	)ca  ,)x2.  

0 0 

3  The coefficient 	Eb 	is known as the "Plate Flexural Rigidity", and 12.(I -va) 
is generally represented by the letter D . 

(v11.8) 
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ay  

ELEMENT THICKNESS = dz 

FIG 1ZII 1 PLATE ELEMENT SUBTECTED TO PLANE STRESSES  

FIG. ITII.2 PLATE ELEMENT SUBTECTED TO FLEXURE  
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APPENDIX VIII  

THE FORMATION OF A TIP DYNAMIC STIFFNESS MATRIX FOR A MULTI-ELEMENT BEAM  

The beam shown in Fig.VIII.1 has been divided into N finite elements. 

In the case of a uniform beam all the elements may be identical, but in 

the general case this will not be so. However, it will be assumed that 

all elements are of the same basic type, with n co-ordinates per node. 

If the elements are joined together using the straightforward stiffness 

coupling procedure, the laws of force equilibrium and displacement 

compatibility are applied at each node and a banded stiffness matrix is 

formed, which relates to the n(N + 1) nodal co-ordinates. 

Nodal point 

Beam divided 
into N elements 

n co-ordinates/node 

f  Step 1 

Step 2 

Step 3 
FIG. VIII.1  

Step N-1 

Unfortunately, in vibration analysis it is often necessary to use a 

large number of elements in order to adequately describe the higher modes, 

and the beam model may have as many as 70 degrees of Freedom — just for 

bending in one plane! If this beam is to be joined to other components 

which are also represented by a large number of finite elements, the 

stiffness matrix for the coupled system may become enormous. Unless it is 

necessary to know the mode shapes in detail, it is better to simplify the 

e.g. For the 10'th. mode of a free-free unsymmetrical 4 or 5 layer 
beam (5d.f./node), one must use at least 13 elements, giving 70 d.f. 
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whole procedure by eliminating all unnecessary co-ordinates at the 

component building stage. In the case of the beam in Fig.VIII.1, it 

is relatively easy to eliminate all the nodal co-ordinates other than 

those at the two ends, thereby forming a tip dynamic stiffness matrix 

for the whole beam which is only of the same size as the individual 

element matrices. As is illustrated, the procedure is quite systematic 

and the complete elimination is carried out in N - 1 steps. Two 

elimination techniques are available and these will be discussed below. 

The Transfer Matrix Method 

This well known dynamic analysis technique had its origins in the 

tabular methods developed by Holzer(43) 	(44)* and Myklestad , for the torsion 

of shafts and the bending of beams respectively, and it developed rapidly 

during the fifties with the advent of the high-speed digital computer. A 

fairly comprehensive survey of the method has been made by Uhrig(45) who 

compares it with other analysis techniques and points out its limitations. 

Instead of working with element stiffness matrices, one works with 

hybrid "transfer matrices", which transform the "state vector" for one 

end of an element into the state vector for the other end. The state 

vector in this case contains the displacements and forces at a nodal point. 

Consider the two adjacent elements of a uniform beam: 

FIG. VIII.2 TRANSFER MATRIX SIGN CONVENTION 

References for Appendices V to VIII are given on Page 283. 
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For these elements we may write the transfer relations 

where the state vector 

Combining the two transfer relations of (VIII.1), we obtain 

I  = [ 4'1 Tj 
	

(VIII.2) 
1+1 	 i-1 

From this it is obvious that any number of elements may be coupled 

end-to-end by simply multiplying together the element transfer matrices. 

However, one must first obtain the transfer matrices from the stiffness 

and inertia matrices normally derived for a finite element. 

Fig. VIII.3 on page 514 shows the sign convention generally used in 

the finite element analysis of beams. Using this convention we obtain the 

dynamic stiffness relation 

F 	K 	— wa[ M 	s. 	—11 = 	
Z11  
Z T 

1 11 
F. 
  

   

 

Z
12 

 

 

Z
22_ (VIII.3) 

 

As the sign of the forces at the right hand end differs from that used in 

the transfer matrix method, we must introduce. a negative sign into the 

dynamic stiffness matrix in order to convert to the transfer matrix 

convention: 

F is a force sub-vector consistent with the sign convention in 
Fig. VIII.2 (Transfer matrix convention). 

+ F is a force sub-vector consistent with the sign convention in 
Fig. VIII.3 (Finite element convention). 
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11 
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{ Si 1  
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T
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T
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(vIII.5) 
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2121  gi-11  

-Z22 	1 K ( v111.4) 

Now, the forces and displacements correspond exactly to those in (VIII.1) 

Re-arranging these equations we obtain the transfer relation 

To return to the dynamic stiffness relation, with the sign convention 

of Fig. VIII.3, we use the inverse transformation 

   

-I Z12  [ gi-1 = 	
-T
12
T11 

222 	%i  
LT21 + T22T12T11  

  

T112 

     

F. 

   

-T
22T12 

g
i 

      

      

(VIII.6) 
The coupling procedure therefore involves finding the element dynamic 

stiffness using (VIII.3), converting these to transfer matrices using 

(VIII.5), forming the product of the transfer matrices in the manner of 

(VIII.2), and converting the overall transfer matrix to a dynamic stiffness 

matrix using (VIII.6). For the common case where all elements are 

identical, the element transfer matrix (VIII.5) need only be computed once, 

and the whole procedure then only requires two matrix inversions. 

Dokainish(46)  has recently applied this same basic procedure to the 

analysis of plate vibrations. He divides the plate into several strips, 

with a number of nodes on the left and right hand sections of each strip. 

Each strip is then subdivided into triangular plate elements, and the 

stiffness and inertia matrices are obtained for the individual strips. 

Strip transfer matrices are then formed in the same way as those for the 

beam considered above, and the transfer matrix for the whole plate is 

obtained by multiplying together the individual transfer matrices. As 

his interest lies in determining natural frequencies, he then follows the 

standard procedure of applying the boundary conditions to the overall 
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transfer matrix, and searching for zeros of the determinant of a 

submatrix of this transfer matrix. 

It should be noted that numerical difficulties may be encountered 

with the transfer method when applied to the search for natural frequencies. 

This is discussed in references (45) and (47), where various procedures 

are given for avoiding the difficulties. 

The Method of Substructures  

This method is commonly used in finite element analysis in order to 

group together a number of simple elements into one large "refined" 

element or substructure, and unlike the transfer method, it is equally 

well suited to two- and three-dimensional problems as to the present 

one-dimensional beam problem. It also utilises stiffness matrices directly, 

so it is a more convenient procedure in some ways if the element dynamic 

properties are obtained by the finite element displacement method. The 

same basic technique, under the name "detachment of constants", was 

proposed by Falk(48) as a means for overcoming the numerical difficulties 

inherent in the transfer method. 

Let us consider the two beam elements shown in Fig. VIII.3 

q11-1, Mi-1 

Cl 	  ) 	( I 
w. 	F. 	w. F. 	• w. 1-1' 11 	3. 	 1 F.  

1pi+1' Mitt 

w. 	F. 1+1' 1+1 

'Pi Mi 
j+1 

FIG. VIII.3 FINITE ELEMENT SIGN CONVENTION  

For these elements we may write the dynamic stiffness relations 

(VIII.7) 
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0 
If no external force acts at node i, then F1

.0  = -F
)

i. Combining 

equations (VIII.?) and (VIII.8), we obtain 

— 

 

which may be rearranged to form 

In the manner illustrated on page 217, the equations pertaining to the 

co-ordinate gi  may now be eliminated: 

  

Z(j)-  EZ(j) + Z(j+1 [Z(j)  
12 22 11 21 

Z0+0 
21-  

\ g.  
Z(
12 	1-1 

si...,a 

(v111.9) 
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The resulting stiffness matrix for the two elements is therefore of the 

same size as the original element matrices. To build up a complete beam, 

one just repeats the procedure, joining the two-element section to a 

single element to form a three-element section, and so on. Since each 

node elimination requires one matrix inversion, a total of N - 1 

inversions are carried out in building a beam of N elements. Therefore, 

for more than three elements this method takes longer than the transfer 

method. However, it does have the advantages of being more direct and of 

avoiding certain numerical difficulties. This procedure is simply the 

Gaussian elimination process by which one would solve the large 

banded set of stiffness equations obtained by coupling all the elements 

* Note that the building procedure may be significantly speeded up in the 
case of uniform beams, since all elements are then the same. Thus, one 
may join together 2 elements to form a 2-element section, then take 2 of 
these sections to form a 4-element section, and so on in the sequence 
8,16,32,... elements. For this case the method of substructures only 
takes longer than the transfer method if there are more than 4 elements. 



516 

together directly. 

Although ordinary uniform beam elements have been considered above, 

the procedure is equally well applicable to sandwich beams, in which 

case the sub-vectorsMand {F} just contain extra displacements and 

forces. 
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APPENDIX IX 

DERIVATION OF DYNAMIC STIFFNESS MATRICES FOR SPRING-MASS MODEL OF RUBBER 

V-BLOCK (RB) 

IX.1 POINT DYNAMIC STIFFNESS ON UPPER FACES OF BLOCK  

A matrix will be derived which gives the relationship between the 

applied forces and the displacements on the two upper faces of the block, it 

being assumed that the two faces are uncoupled. In order to avoid difficulties 

due to the indeterminate nature of the spring-mass model, we shall divide 

it into mathematically determinate sub-assemblies and then join these 

together. 

1  V-Block 

We commence with the simple spring system .shown in Fig.IX.1. This 

represents one quarter of the total V-block and is mathematically deter- 

minate. 

By considering force equilibrium at the two free nodes A and B we 

obtain a relationship between the externally applied forces F1  to F6  and 

the compressive forces C in the members: 

= [T1̀ f 
6)(1 	6x6 	6x1 

The transformation matrix is given in Fig.IX.5. 

The member AB is necessarily a pure spring*, since it is assumed that 

the same compressive force acts on its two ends. The remaining five members 

are two degree-of-freedom spring-mass systems, and their stiffnesses are 

consequently frequency-dependent. The axial dynamic stiffness of such a 

member at its free end is given in Fig. IX.2. Grouping together the 

dynamic load-compression relations for the six members, we may form a 

This member is only introduced in order to form a non-collapsible ,-1-1 

V-block. It will subsequently be "shorted out by a rigid massless plate 
which joins A and B. 
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diagonal transformation matrix which relates the loads C to the member 

compressions 	: 

C = MEM 
	 (IX.2) 

6x1 	6x6 	6x 

The relation between the compressions .6, and the nodal displacements 

gi  to g6  is given by the transposed force transformation: 

6xI 	 6x6 	6x1 

This may be proved by considering the work done by the internal and 

external forces. 

Combining (IX.1), (IX.2) and (IX.3), we obtain the 6 x 6 stiffness 

matrix relating the forces on the nodes A and B to the corresponding 

displacements: 

Z[ TF cl) 	ZAd .A13} 
6x1 	6x6 	6x6 	6x6 	6x6 	6x 

V-Block  

The half V-block is shown in Fig. IX.3. It is formed by introducing 

a second quarter V-block, which is a mirror image of the first, and joining 

the two by a rigid massless plate which is attached to the four nodes A, 

B, A and B . The dynamic stiffness matrixp
A
'
B
1 for the second quarter 

V block differs tromp
AB 

 lonly in the signs of those elements* which are 

a function of either 

12 x 12 matrix 

d or e. 

FAI 

For the 

ZA13 

two uncoupled 

0 

quarters we have the 

(IX.5) 

axi 

0 ZA/B/ 

12 x 12. 

"ABI 

AB 

12x1 

* Elements (1,2), (2,3), (4,5), (5,6) and their transposes. 
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which relates the 12 nodal forces to the corresponding displacements. 

The attachment of a rigid plate to the four nodes prevents their 

independent movement, and six equations of constraint are introduced. 

Considering forces, rather than displacements, we obtain the constraint 

equations relating the 6 forces applied at the centre of the plate to the 

12 forces transmitted to the nodes: 

f
FP  == [ 	FAB 	 (IX.6) 

6x1 	 6 x12. 	FA/13/ 
12. x 1 

The transformation matrix is given in Fig. IX.6. As before, the displacement 

transformation is given by the transpose of the force transformation. 

Combining (IX.5) and (IX.6), we obtain the 6 x 6 stiffness matrix relating 

the forces at the plate centre P to the corresponding displacements: 

1 
f FP} = ([ TF  1 ZAB 0 

P 
A  [TTF) I Si} = [ z  IP] sl 

6x 	6x. 0  z, 	 6A6 6x1 

izxa 12,(6 	 (IX.7) 

where the superscript 1 refers to the first half V-block. We thus have a 

stiffness matrix for one face of the rubber block. 

Full V-Block  

The full V-block is made up of two uncoupled half blocks, as shown in 

Fig. IX.4. The stiffness matrix[Z] for the second half block differs from 

that for the first half block only in the signs of the coupling terms 

between the x ,o( and the 9 , Z, 43, e co-ordinates.* This is due to 

the different choice of positive directions for the local 	, z , 5 and e 

co-ordinates. The dynamic stiffness relation for the attachment points on 

the two upper faces of the V-block is therefore 

* Elements (1,2), (1,3), (1,5), (1,6),(2,4), (3,4), (4,5), (4,6) and their 
transposes. 
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IX.2 TRANSFER DYNAMIC STIFFNESS ACROSS THE BLOCK 

A matrix will be derived which gives the relationship between the 

forces transmitted to the supporting structure and the displacements on the 

two upper faces of the block. 

1 
The displacements at the nodes A, B, A and B of the half V-block 

are related to those at point P by the transpose of the force transformation 

matrix in expression (IX.6): 

TF  

I2.x6 
1 	t 

For the quarter V-blocks with free node pairs A, B and A , B 

respectively, the member compressions are given by the vectors tL AB  

and f , A '13 '
/
. The vector tLAB  is related to the nodal displacements 

[
S.

AB
)by the transposed force transformation TAB] given in expression FC 

(IX.3), and the matrix relating .[.. 
A
'
B
it° 0

A
'
B
lis obtained from 

this transformation by changing the signs of those elements which are a 

function of either d or e. Thus, the 12 member compressions may be 

expressed in terms of the 12 nodal displacements: 

     

     

   

(T A B) 
0 

0 

0-Ft 
T 'NIB ) 

   

      

      

      

12 x la 	la x I 
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Except for member 1, the transfer dynamic stiffness of a member 

relates the axially transmitted force C at the fixed end to the compression 

A of the member. This force is identical to the axial reaction force 

applied to the member by the supporting structure, and due to the effect 

of the mass within the member, it differs from the compressive force C 

applied at the free end of that member. Member 1 may be treated as a pure 

spring with transfer stiffness K1, and the calculated force is simply the 

force in the member. However, it is not used in the ensuing calculation. 

The general transfer stiffness expression is given in Fig. IX.2. 

Since the second quarter V-block is a mirror image of the first, the 

two quarters have identical 

CAB 
• 

members. 

TM EM 

Hence we 

0 

may write 

(IX.11 ) 

AiA'Elf CAB 
lax 

0 TM Em 

12.x12. lax 1 
where the vectorst.O.AB}and

A
'
B 

contain the axial reaction forces acting 

on the two quarter V-blocks, and the 6 x 6 diagonal matrix rTmEnd 

contains the six member transfer stiffnesses. 

The axial reaction forces C may be transformed into reaction forces 

F acting in the global X, Y and Z directions at the grounded nodes 0, C, 

D and E: 

     

TFC 

  

CAB ( IX . 12) 

   

   

 

la x 12_ 

  

The transformation matrix is given in Fig. IX.7. 

The product of the transformations (IX.9) to (IX.12) yields the 

relationship between the reaction forces F and the displacements S'i5 

on the upper face of the half V-block: 



... 	• 
24 x 1 
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24x12 
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1Z x 1 0 14xl 	I4x24 14x 12- 
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■ •• 

       

         

 

TM EM 0 

 

0 

      

        

        

             

             

      

TA1F11).  FC 

12. x12- 

      

 

0 T14Em 

12. x 12. 

  

0 

      

       

6x1 

           

           

12 x 1 

       

12_ x 6 

   

6 xl 
12_ x 6 

where the superscript 1 refers to the first half V-block. 

A similar transfer stiffness matrix may be formed for the second half 

V-block. This only differs fromMin the signs of columns 2, 3, 5 and 6, 

the change being  due to the different choice of positive directions for the 

local y, z, f3 and e co-ordinates. For the separate halves we may write 

By joining together the two half blocks at the nodes 0 and E, 

and grouping  together all the reaction forces F, we may form a complete 

transfer stiffness matrix relating  the 14 transmitted forces P to the 

displacements on the two upper faces of the V-block: 

The directions of the transmitted forces are given in Fig. IX.4, and these 

have been chosen to yield the force transmission normal to and in the plane 

of the lower beams of the seating. The transformation matrix[Tpd therefore 

not only groups together the various reaction forces but also effects a 

rotation of co-ordinates (see Fig. IX.8). 
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FIGAXA SPRING-MASS MODEL FOR QUARTER V-BLOCK (ABOVE) 

FIG.E.2 DYNAMIC STIFFNESS RELATIONS FOR A MEMBER (BELow) 
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FIG:M.4 COMPLETE V —BLOCK AND TRANSMITTED FORCES  
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6x1 	6x6 

(1 

where the vectorsfEJ and tS4 contain the forces and accelerations in the 
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APPENDIX X  

DERIVATION OF DYNAMIC STIFFNESS MATRIX FOR MALE V-PIECE (VB) 

An exploded view of the V-piece is given in Fig. X.1, and from this 

it is seen that there are three components, which are welded together to 

form a very stiff assembly. To the inclined faces of the triangular plates 

2 and 3 are affixed PVC pads. It will therefore be assumed that the support 

may be adequately represented by a rigid inertia with damped springs attached 

to its inclined faces. 

Before obtaining the inertial properties of the assembly, we must firstly 

determine the position of the centre of gravity G in the manner indicated 

in Fig. X.2. The next step is to obtain the inertial properties of each of 

the three components,'referred to the X, Y and Z axes passing through G 

(i.e. the principal axes of the assembly). The moments of inertia of the 

top plate (Component 1) and of the triangular plates (Components 2 and 3) 

are given in Figs. X.3 and X.4 respectively. The inertial properties of the 

three components may be combined, as shown. in Fig X.5, in order to form a 

6 x 6 diagonal inertia matrix for the complete assembly: 

X, Y and Z directions at point G. In order to couple the damped springs 

to the assembly, it is necessary to work in terms of receptances, and the 

corresponding receptance relation is 

-1 

{ Fa } 

6x6 	6x1 

where the inversion of the diagonal matrix is accomplished simply by 

inverting its diagonal elements. 

However, we require the receptance properties not at the centre of 



16x1 16x16 I6x I 

[ TF  
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gravity G, but at the three points P, A and B. These points and the 

corresponding co-ordinates of interest are shown in Fig. X.6. It should 

be noted that the assumed coupling points A and B lie in the planes of the 

inclined faces of the V-piece, midway between the two triangular plates. 

Considering force inputs in all 16 directions, the net force system acting 

at G is given by the relation 

( . 3 ) 

16)41 

which is shown in Fig. X.8. Since the displacements at P, A and B are 

related to those at G by the transpose of the above transformation, we may 

write 

( X . 4 ) 

which relates the displacements at P, A and B to the corresponding forces. 

We must now obtain the stiffness properties of the PVC pads attached 

to the inclined surfaces of the V-piece. The rectilinear and rotational 

stiffnesses of the pair of pads on each "face" may be expressed in terms 

of the three rectilinear stiffnesses of a single pad, as is shown in Fig. X.7. 

The two in-plane stiffnesses of a rubber pad are associated with pure 

shear, and are given by simple theory. However, the compressive stiffness 

Kxx is not only associated with pure elastic compression, but also with the 

lateral bulging restraint imposed by the metal surfaces between which the 

pad is sandwiched. Although the pads were not stuck in place, the V-piece 

was bolted up tightly to the transverse beams, so it is unlikely that the 

pad surfaces were able to slip over the metal surfaces. Thus, the 

compressive stiffness is given by an elastic compression term, yielded by 

simple theory, plus a bulging restraint term which is a function of the 
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Shape Factor, SF  = (loaded area of pad)/(force free area of pad). The 

reader is referred to references(12) and (25)* for a fuller discussion 

of this topic. 

If the 6 x 6 diagonal matrix of stiffnesses is[K],the corresponding 

1  
receptance matrix is [K] , and this is obtained by inverting the diagonal 

elements of the stiffness matrix. By adding the pad receptance matrices to 

the receptance matrix (X.4), we obtain the overall receptance of the steel 

V-piece plus the PVC pads. Upon inverting this relation, we finally obtain 

the required dynamic stiffness matrix: 

16x1 	 16)(16 	16x1 

(X.5) 

which relates the applied forces at the three points to the displacements 

at those points. The displacement vectors {s-A} and {S.a} refer to the two 
assumed coupling points in the planes of the free faces of the pads, whereas 

r 
the vectors {S A} and Ni,} in (X.4) referred to the corresponding points in 

the planes of the inclined faces of the rigid steel assembly. 

Referencesfor Appendices IX to XI are given on Page 430. 
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FIG-. X.1 EXPLODED VIEW OF MALE V-PIECE  
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FIG. X.5 6 x 6 INERTIA MATRIX FOR MALE V-PIECE (REFERRED TO C.G) 	{Fcl = 
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APPENDIX XI  

DERIVATION OF DYNAMIC STIFFNESS MATRIX FOR FEMALE V-SUPPORT (VS) 

An exploded view of the V-support is given in Fig. IX.1 and from 

this it is seen that there are five components, which are welded together 

to form a relatively stiff assembly. To the face plates 2 and 4 of this 

assembly are affixed PVC pads. It will therefore be assumed that the 

support may be adequately represented by a rigid inertia with damped 

springs attached to its upper faces. The only immediately apparent 

flexibility in the steel assembly is in torsion of the face plates about 

their respective gusset plates, but this may be calculated approximately 

using plate finite elements, and the relevant stiffness may be combined 

with the corresponding stiffness of the PVC pad. 

Before proceeding to obtain the inertial properties of the assembly, 

we must first determine the position of the centre of gravity G in the 

manner indicated in Fig. XI.2. We may next obtain the inertial properties 

of the five components, referred to axes passing through G. In the case 

of the base plate (Component 1), the moments of inertia may be obtained 

about the X, Y and Z axes through G, as shown in Fig. XI.3. However, the 

moments of inertia of the face plates (Components 2 and 4) and of the 

triangular gusset plates (Components 3 and 5) are more readily obtained 

about the U, V and Z axes, as shown in Figs. XI.4 and XI.5. The inertial 

properties of the five components may be combined to give a 6 x 6 diagonal 

inertia matrix for the complete assembly: 

F,} = 

 

6x1 	 6x6 	6 )(1  

f1 
where the vectors N and is4 contain the forces and acceleratinns in the X, 
Y and Z directions at point G. The combining together of the component 

data is shown in Fig. XI.6 

In order to couple the damped springs to the assembly, it is necessary 
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to work in terms of receptances, and the corresponding receptance 

relation is 

S'G/ == 
CA)1  

6x 

—1 

t‘/ 	FG} 

6x6 	6x1 

(XI.2) 

where the inversion of the diagonal matrix is accomplished simply by 

inverting its diagonal elements. 

However, we require the receptance properties not at the centre of 

gravity G, but at the three coupling points A, B and C shown in Fig. XI.2. 

Considering the six possible force inputs at each point, the net force 

system acting at G is given by the relation 

{r}=[ TF  (XI.3) 

18x1 

This relation and the corresponding 18 co-ordinates are given in 

Fig. XI.7. Since the displacements at A, B and C are relted to those at 

G by the transpose of the above transformation, we may write 

 

 

18x1 

 

which relates the displacements at A, B and C to the corresponding forces. 

We must now obtain the stiffness properties of the PVC facing pads, 

and the torsional stiffness of the face plate itself. The pad stiffnesses 

have been derived using simple elasticity theory, and they are listed in 

Fig. XI.8. The internal damping in the pads is introduced by making the 

compressive and shear moduli complex. Due to uncertainty as to the exact 

area of contact between the pad and the metal surfaces of the face plate and 

of the attached beam, one cannot possibly calculate the stiffnesses exactly. 

The compressive stiffness could have been expressed more correctly in terms 
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* 
of the shape factor (12)  , but by using V = 0.495 in the stiffness 

expressions derived, a more realistic stiffness is probably obtained, 

since it is about half the value obtained by considering the shape 

factor. 

The torsional stiffness of the face plates of the assembled support 

has been calculated using a plate finite element programme. The division 

into triangular elements and the assumed loading are shown in Fig. XI.9. 

The assumption that the gusset plate provides a simple support ensures a 

lower bound on the stiffness. However, since there is not a true point 

connection on the face, the actual effective torsional stiffness can only be 

obtained approximately. 

As the face plate stiffness K aga  and the rotational stiffness 
FACE 

of the pad are in series, their total effective stiffness is given by 

k4,3 . k i3B  
FACE 

kOB 	k BB 
FACE 

If the 6 x 6 diagonal matrix of stiffnesses isM,the corresponding 

r 
receptance matrix isLKj , and this is obtained by inverting the diagonal 

elements of the stiffness matrix. By adding the pad/face plate receptance 

matrices to the receptance matrix (XI.4) for the rigid assembly, we 

obtain the overall receptance of the complete support. Upon inverting 

this relation, we finally obtain the dynamic stiffness matrix for the 

V-support with the pads: 

k 

18x1 	 18 AlE3 

S'ec= S.c 

which relates the input forces at the three points to the displacements 

at those points. The displacement vectors IS'Al and fq. refer to the 

References for Appendices IX to XI are given on Page 430. 
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coupling points on the free faces of the two pads, whereas the vectors 

SAl and {S'5/ in (XI.4) referred to the points on the upper faces of the 

rigid V-assembly. 
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MOBILITY MEASUREMENTS FOR THE VIBRATION ANALYSIS 

OF CONNECTED STRUCTURES 

D.J. Ewins and M.G. Sainsbury 

Imperial College of Science and -Technology, 

London, England 

The mobility or impedance coupling technique is widely used 
for the vibration analysis of structures which comprise an 
assembly of connected components. 	Its application is 
straightforward when the components are amenable to theore-
tical analysis, but if certain components are too complex 
to be analysed their mobilities must be obtained experimen- 
tally. 	Standard 'impedance' testing methods are generally 
inadequate for measuring the required multidirectional 
mobility data', and the work described in this paper is an 
attempt to develop techniques for obtaining such data. 
Measurements have been made on a freely supported beam and 
on a resiliently mounted block, and these data have been 
used to predict the response of the system formed by bolt- 
ing the beam and the block together. 	The results illus- 
trate the importance of obtaining sufficiently complete and 
accurate data if mobility measurements are to be used for 
the vibration analysis of connected structures. 

• INTRODUCTION 

Vibration analysis of complex 
structures which comprise an assembly 
of connected components is often made 
using the mobility or impedance coup- 
ling technique. 	This approach per- 
mits analysis of each component indi-
vidually and then couples them 
together by matching forces and velo-
cities at each connection point, which 
is considerably more convenient than 
attempting to analyse the complete 
structure at once. 	It is in fact a 
standard technique in dynamic analysis. 
However, it often happens that one (or 
more) of the components is itself too 
complex to be analysed directly and 
for such a case, recourse may be made 
to an experimental approach in order 
to obtain the mobility data which is 
required for the analysis of the com- 
plete assembly. 	This paper is con- 
cerned with the development of experi-
mental techniques suitable for measur-
ing this data. 

When the mobility coupling tech-
nique is applied analytically, it is 
customary to consider as many co- 

ordinates at each connection point as 
are necessary to realistically des-
cribe the conditions at that junction. 
The motion of a point on a structure is 
completely defined by six co-ordinates, 
three translational and three rotation-
al, but in the analysis of specific 
cases it is often possible to ignore 
some of these by virtue of the symmetry 
of the structure. 	In the simplest 
case where motion is known to occur in 
a single direction, such as a mass 
moving in a straight line, then only 
one co-ordinate is required. In prac-
tice, this degree of symmetry is seldom 
encountered, especially with the com-
plex engineering structures that we are 
considering, so vibration analysis 
using a single co-ordinate is usually 
unrealistic. 	However, in many practi- 
cal cases, motion is confined to a 
single plane involving vibration in 
three directions - two translation and 
one rotation - and for these it is 
necessary and sufficient to include 
three of the six co-ordinates in the 
analysis of vibration. 

Such considerations are made regu-
larly in theoretical vibration analysis 
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Fig. 2 CO-ORDINATES FOR COUPLING BEAM AND BLOCK 
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but are seldom included in those exer-
cises which make use of experimental 
data for one of the components. Stan-
dard 'impedance' testing techniques are 
confined to measuring mobility in a 
single direction and are generally inade-
quate for the acquisition of such com-
plete data as are required for a real-
istic analysis of a complex structure. 
This limitation has been identified 
already [I], [2] and previous work has 
demonstrated the difficulty and extent 
of the task of measuring the complete 
6 x 6 mobility matrix for a structure 
M. 	However, as mentioned above, 
many practical structures do have a 
certain degree of symmetry and this 
permits us to confine our attention to 
motion in one plane and to consider 
only three co-ordinates at a time. 
The mobility data required in this 
case constitutes a 3 x 3 matrix which 
is considerably easier to handle than 
the complete 6 x 6 matrix. 

This paper describes a case study 
made to assess the feasibility of 
using experimental data to analyse 
connected components and employs a 
particular structure composed of two 
components as an example. 	The first 
stage was to specify those mobility 
data which are required in order to 
analyse the vibrations of the assembled 
structure. 	Next, an experimental 
technique was developed for obtaining 
these data to the required accuracy. 
Finally, predictions of the dynamic 
characteristics of the assembled 
structure based on measurements of the 
individual components were compared 
with measurements made on the structure 
itself. 

CASE STUDY 

The structure treated in this 
study comprised two simple components. 
The first was a solid steel block 9" x 
9" x 12" resting on four identical 
rubber pads, one under each corner, 
while the second was a uniform rectan- 
gular steel beam 11" x 2" x 72". 	The 
assembled structure was formed by 
attaching the beam to the block in such 
a way as to obtain symmetry in one ver-
tical plane but not in the other, as 
shown in Figure 1. 	Interest was con- 
fined to vibrations in the vertical 
plane containing the longitudinal axis 
of the beam, although a similar analy-
sis could he made for motion in the 
other planes. 

THEORETICAL APPROACH 

In order to predict theoretically 
the vibration properties of the assem- 

bly formed by these two components, use 
is made of the mobility coupling tech- 
nique. 	By considering each of the 
components individually, we may derive 
mobility expressions for each of these 
which relate the velocities at the 
point of connection to forces and 
couples applied at that point. This 
data may be presented generally by the 
matrix equation: 

{5(} = EY] {F} or {F} =[z]f5(} 

where [y] is the mobility matrix and 
[Z] 	[y]-' is the impedance matrix for 
that point on the structure, 4,;(1 is a 
vector of velocities in the co-ordinate 
directions included and IF1 is the vec-
tor of forces (or couples) in those 
directions. 	These matrices and vec- 
tors, and all those which follow, have 
complex elements in order to describe 
both the amplitude and the phase of the 
various quantities represented. 

Equations for two components (a 
and b) connected together may be rela-
ted by virtue of the fact that at the 
connection point their respective velo-
cities must be identical, so that 

N = 15(bi = Al 
	

(2) 

Furthermore, by considering equilibrium 
at the point of connection, 

+ frbi = 	 (3) 

where fpl is an externally applied 
force. 
Combination of equations (2) and (3) 
leads to an expression for the mobility 
of the combined structure at the con-
nection point PTA : 

Cyj = (CY..1-1+ 	 (It) 

As mentioned earlier, as many as six 
co-ordinates may be necessary to de-
fine the motion of a point on a struc-
ture (in which case the order of these 
matrices and vectors would be 6), but 
in this case, as in many others, we may 
limit our interests to a limited number 
of these. 	Figure 2 shows the con- 
nection point for each component and 
indicates those co-ordinates and forces 
which should be included. 	Because of 
the symmetry of the structure, the 
other three co-ordinates (which include 
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motion out of the plane of the paper) 
may be ignored in this analysis or, if 
required, treated separately. 	Thus 
the equations defining the mobility 
matrix above 	(1) 	are in this case: 

	

[Yxx. 	 :xY 	YX13 11 Fx y 	
YYe 	

F 

6 	Ye% 	YeY 	Yee 	Me 

(5) 

The object of this ai alysis is to 
predict the vibration characteristics 
of the complete assembly formed by the 
two components, and this information is 
contained in the assembly mobility,CIA. 
It will be seen from equation (4) that 
this technique involves a number of 
matrix inversions and these can be the 
source of some difficulty in numerical 
applications. 	In the first instance, 
the component mobility matrices b'aj and 
NJ become ill-conditioned and are 
difficult to invert at frequencies 
close to one of their respective natur- 
al frequencies. 	A similar limitation 
applies to the combined expression 
(Cycj-1  [y0-1  ) 	which also has to 
be inverted. 	Secondly, it is known 
that operations involving the mobility 
matrices can be sensitive to small 
errors in the individual mobility ex-
pressions, and this feature must be 
taken into account when experimental 
data is to be incorporated. 

Theoretical expressions for the 
component mobility matrices were de-
rived by standard methods [3], 
although it was necessary to use exper-
imentally derived data for the dynamic 
stiffness and damping capacity of the 
rubber pads which support the steel 
block. 	Calculations were made using 
these expressions and the results are 
presented later in the paper. 	A fur- 
ther series of calculations were made 
to predict the mobility of the assem-
bled structure, again using the mobil-
ity coupling technique, and these will 
also be presented and discussed later, 
together with corresponding results 
from the experimental approach. 

EXPERIMENTAL APPROACH 

We shall now consider a situation 
in which mobility data for the indi-
vidual components are to be determined 
solely from experimental measurements, 
as opposed to theoretical analysis. 
This is a matter of necessity when 
dealing with particularly complex 
structures. 

In exactly the same way that it 
was considered necessary to include  

three co-ordinates in the theoretical 
approach, so it is necessary to include 
all three in an approach using experi- 
mental data. 	The requirement for such 
comprehensive data may not be met using 
conventional methods of measuring mobil-
ity (collectively referred to as 
'impedance tests') as these are insuf-
ficiently developed to provide either 
the completeness or the accuracy 
demanded for this application. 	In all 
but very exceptional cases, mobility 
measurements are confined to those ex-
pressions which relate response to a 
translational force in a direction nor-
mal to the surface of the structure 
under test. 	The response to applied 
couples or in-plane forces is not gen-
erally measured so that the mobility 
matrices required here may not be ob-
tained directly from current experimen-
tal methods. 

One previous worker has attempted 
to measure the complete mobility matrix 
and has developed a twin shaker unit to 
apply either a direct force (with the 
two shakers in phase) or a couple (with 
them in antiphase) to the structure 
DU. 	An alternative solution to the 
problem of rotational excitation is 
being explored in the design of a tor-
sional electromagnetic shaker, but this 
is at an early stage of deVelopment. 
A third approach is provided by the 
technique described in this paper which 
is based upon the use of a single 
shaker and other standard impedance 
testing equipment with the minimum of 
specially designed attachments. 	The 
aim of this measurement technique is to 
determine the 3 x 3 structural mobility 
matrix described above in relation to 
the case study which is used here as an 
example, and is achieved in the follow-
ing way. 

There are nine elements of the 
mobility matrix to be determined and 
these are obtained by measuring the 
three responses 	and e) to each of 
three different excitation conditions. 
Thus three tests over the chosen fre-
quency range are required and in each 
of these the shaker is attached so that 
a different combination of the three 
reference forces (F., Fr  and MG) is 
applied to the structure. 	Knowing 
these specific combinations, it is then 
possible to extract the responses to 
each of these forces individually and 
thus derive the required mobility 
matrix. 	Details of the specific 
shaker attachment arrangements used are 
discussed in the next section. 

It is clear that whatever tech-
nique is employed to measure this mobil-
ity data, there is a vast quantity of 
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Fx 	cos gi 
Fr 	= /sin 	Pi, or 1F-1 { 	ID, (6) 
Me  

t. L=1,2,3 

information to be handled. 	Essen- 
tially, all that is required from the 
exercise is a prediction of the vibra-
tion properties of the assembled struc-
ture and all the mobility measurements 
made on the separate components are of 
no inherent interest beyond that of 
enabling the calculation of the assem- 
bly properties. 	The mobility coupling 
process (i.e. application of equation 
(6)) is applied at each or a number of 
discrete frequencies using the component 
data measured al those frequencies. 
Thus it is convenient if such data are 
in a digitaL format rather than 
analogue (i.e. in the form of graphs). 
Since there is considerably more of 
this intermediate data than is even-
tually required to describe the assem-
bly properties, it is most conveniently 
acquired and stored in digital form, 
either on punched tape or in the memory 
of a digital computer which is subse-
quently employed to carry out the matrix 
manipulations for extracting the re- 
quired information. 	This requirement 
indicates the suitability of the digital 
transfer function analysers currently 
available which may be readily inter-
faced with a small digital computer to 
provide an automatic testing facility. 

MEASUREMENT TECHNIQUE 

Based upon the concept of a single 
shaker technique for measuring multi-
directional mobility data, a number of 
specific configurations for attaching ' 
the shaker were investigated. 	It was 
necessary in all of these to attach an 
'exciting block' to the point of inter-
est on the structure and to connect the 
shaker to this block in different ways 
so as to exert the chosen excitation 
conditions to the structure. 	The 
first design for this block is illus- 
trated in Figure 3(a). 	The shaker was 
attached to the block in each of the 
directions indicated by Pi , Pa and P3  
in turn, and the corresponding compo-
nents of the excitations in the three 
directions (F, FY  and Me) are given 
by the matrix equation: 

For each shaker position, measurements 
were made at specific frequencies of 
the input force and the three res-
ponses, and from the collected results 
of all throe runs the required mobility 
expressions could be derived as follows. 
The response was measured at three con-
venient stations on the block and by 

assuming the block to be rigid, these 
could be related to the response of the 
structure itself in the three reference 
directions by means of a simple geo-
metric transformation: 

=  [T]{

VAi 

VB 	or [5(1 =E-111Vi (7)  
Vc 

For each excitation position, we may 
write 

= [7] { v}, = [y] fF}L 	
(8) 

= [Y] {11, rt. 
or 

CT] P{V}, = Cy] {Mi.  
[-filYappiL = CY]frii. 	(9) 

where 	is is a vector of apparent 
mobilities and frIL  is the force trans-
formation vector for the ith excitation 
position. 	Combining the three equa- 
tions for i = 1, 2, 3 gives 

ET] bpp] = EY] Cr] 
or 

[Y] = CT] YaPPHrri 

	
(10) 

relating the measured quantities with 
the required properties. 

The first stage in assessing the 
suitability of the proposed exciting 
block design was a check on the sensi-
tivity of the numerical manipulation 
described by equation (10) to realistic 
errors in the measured data. 	This was 
performed numerically by taking a speci-
fic mobility matrix for the structure, 
computing the apparent mobilities that 
would be observed in the three runs 
with the exciting block, polluting this 
data with random or systematic errors 
typical of those which might be expect-
ed from the experimental equipment used 
and then recomputing the structure 
mobility with this polluted data. It 
was soon found from this exercise that 
the exciting block shown in Figure 3(a) 
would not be suitable for obtaining the 
required mobility data because errors 
in measured quantities of the order to 
0.01% in amplitude and 0.01°  in phase 
were sufficient to generate large 
errors in the computed mobilities (in 
excess of 5 dB). 	Accordingly, alter- 
native designs for the exciting block 
were investigated and the one finally 
adopted for all the tests reported here 
is shown in Figure 3(b). 	This has a 
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simpler transformation to the reference 
co-ordinates and the checks on error 
sensitivity described above indicated 
that a measurement accuracy of 1% in 
amplitude and l°  in phase was usually 
sufficient to maintain an accuracy of 
better than 1 dB in the mobility of the 
structure computed from equation (10). 

In addition to the basic force 
transformation Prom the shaker posi-
tions to the reference co-ordinates, it 
was also considered necessary to allow 
for the presence of the exciting block 
and the transducers mounted on it 
between the force measuring transducer 
and the structure. 	By assuming the 
block to behave as a rigid mass, it is 
possible to incorporate this correction 
in the transformations described above 
and the complete equation relating 
measured and required data then becomes: 

[Y]=MEY.p](Erl-jw[m]EilLy.41 (11) 
where [A] is an inertia matrix for the 
specific exciting block. 

Consideration of mobilities in more 
than one direction leads to an appre-
ciation of some of the limitations of 
conventional impedance testing. 	In 
particular, it is noted that if a 
structure is not symmetrical, or is not 
excited through its mass centre, there 
will often be a significant response in 
directions other than that in which the 
forcing is being applied. 	If this 
effect is not properly allowed for, 
erroneous results can easily be obtain- 
ed. 	For example, in measuring the 
mobility at the end of a simple canti-
lever beam it is found that there is a 
significant rotational response to an 
applied transverse force. 	In most 
cases, the shaker and its connection 
are not completely free to accommodate 
this rotation and as a result, they 
impose a restraint on it. 	This is 
equivalent to applying a couple to the 
end of the beam in addition to the 
intended force. 	This couple is not 
measured, but the response which is 
measured is the sum of that generated 
by the force and the couple and is not 
the information which is sought. 	In 
order to overcome this difficulty, it 
is generally sufficient to incorporate 
a 'decoupling rod' between the shaker 
and the structure which has a low stiff-
ness in all directions other than that 
in which it is desired to apply excita-
tion [4] and accordingly, this has been 
adopted as standard practice in all 
tests of the current study. 	A series 
of measurements were made to indicate 
the importance of using such a device. 
The results are given in Figure 11 which 
shows measurements of the response of 

the steel block using a range of de-
coupling rods and clearly demonstrates 
the limitations of a direct connection 
between the shaker and the structure. 

In order to measure and process 
the data required in this exercise, a 
digital transfer function analyser 
(DTFA) was used in conjunction with a 
small digital computer to form an inte-
grated system, described in reference 
[5] . 	Measurements were made at dis- 
crete frequencies in a chosen range (as 
opposed to a continuous sweep through 
that range) and the computer was pro-
grammed to select these frequencies, 
control the DTFA while it measured each 
of the transducer outputs in turn, and 
then store or output these results for 
subsequent processing. 	The amount of 
information which has to be acquired in 
order to derive the required mobility 
is considerably in excess of the actual 
data to be determined for the assembled 
structure. 	In order to compute the 
amplitude and phase of one mobility ex-
pression for the complete assembly, it 
is necessary to measure a total of 24 
quantities on the components. 	Thus, 
while the information sought may be 
handled or presented in the form of a 
graph, the same is not true of the 
intermediate data and because of this 
it was decided that the automatic data 
handling facility was an essential fea-
ture of this measuring technique. 

RESULTS 

The measurements which were made 
on the individual components - the 
steel block on rubber pads and the 
freely supported beam - were carefully 
checked against theoretical predictions 
of their mobilities. 	Care was taken 
to ensure a high degree of accuracy 
throughout the experiment. 	The volume 
of the complete set of results (a total 
of 18 graphs for the two components) 
prohibits their inclusion here. How-
ever, two of the nine mobility expres-
sions for each component are illustra-
ted in Figures 5 and 6, for the block 
and beam respectively. 	In each case, 
the two examples shown represent the 
best and the worst correlation between 
theory and experiment, and apart from 
some difficulties encountered with sig-
nal noise at the low frequencies 
(below 50 Hz), the results are consid-
ered to be satisfactory. 

The complete mobility data for the 
two components were then used in con-
junction with equation (4) to predict 
the mobility of the assembled structure 
formed by connecting them together as 
shown in Figure 1. 	This process 
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derives the 3 x 3 mobility matrix for 
the assembled structure and from these 
data the specific information that is 
required may be extracted. 	In many 
cases the properties of greatest inter-
est are the natural frequencies of the 
structure, and these may be convenient-
ly described by a single mobility 
expression. 

For the case being studied here, 
the direct mobility of the assembly in 
the x direction was computed from the 
component measurements and b.. shown in 
Figure 7 alongside the corresponding 
data obtained by measurements made 
direct on the assembled structure. 
There is an unexplained discrepancy he_ 
tween the two results in the magnitude 
of the third natural frequency (near 
90 Hz) but otherwise the agreement is 
quite close. 	Perhaps the most signi- 
ficant result, however, is that illus-
trated in Figure 8 which again shows 
the mobility of the assembled structure 
predicted from the measured component 
mobilities, but in this case we have 
used the limited data which might be 
obtained from a conventional impedance 
test. 	This result is obtained by 
application of the mobility coupling 
technique but with only a single co-
ordinate included in the analysis (in 
this case, the x co-ordinate). 	The 
errors in the natural frequencies pre-
dicted by this over simplified approach 
are quite striking, and they clearly 
indicate the need for the more complete 
data which has been measured by the 
method described above. 

A final result given in Figure 9 
shows the measured mobility of the 
assembled structure compared with that 
predicted entirely from theoretical 
analysis. 	Such an approach was only 
possible in this case because of the 
simplicity of the two components. The 
result illustrates the important point 
that even for such simple structures as 
were used in this study, agreement 
between theoretically predicted and ex-
perimentally measured characteristics 
is not remarkable. 	In fact, the data 
predicted from the component mobility 
measurements shows better agreement 
than that predicted from theory. 

DISCUSSION 

We have shown that it is both 
possible and practical to predict the 
vibration charpcteristics of an assem-
bly of connected components using ex-
perimentally measured mobility data. 
However, it must be emphasised that 
such an approach is only reliable when 
the measured data is sufficiently corn- 

plete and accurate and this require-
ment is not usually satisfied by con-
ventional impedance testing techniques. 

At the outset of a theoretical 
vibration analysis it is necessary to 
consider which co-ordinates must be in-
cluded in order to satisfactorily de-
fine the motion of the components con- 
cerned. 	Only exceptional cases demand 
all six co-ordinates at each point of 
connection between components, but on 
the other hand, very few may be treated 
with only a single co-ordinate. Exact-
ly the same considerations must be made 
for an analysis which employs experi- 
mentally obtained data. 	There are 
many applications in which one or more 
components may not be analysed directly 
because of their complexity and for 
which experimental measurement of mobi- 
lity data is undertaken. 	The majority 
of mobility measurements are made with 
standard 'impedance testing' techniques 
and these are often totally inadequate 
for the application of such data to a 
mobility coupling exercise. 	Standard 
testing is usually confined to a single 
direction - that normal to the struc-
ture in most cases - while mobility 
data in other directions can be of equal 
or even greater importance. 	This fact 
is illustrated by the case studied here 
where exclusion of the rotation co-
ordinate,e, results in a marked deter-
ioration in the quality of the pre-
dictions (cf. Figures 7 and 8). 

While it is essential to include 
as many co-ordinates as are necessary, 
it is also important to ensure that the 
unimportant ones are omitted. 	The 
reason for this is that as the order of 
the matrices increases (by the inclu-
sion of more co-ordinates in the analy-
sis), so does the sensitivity of the 
numerical operations to small errors. 
Thus it is possible to gain no benefit 
from the inclusion of an extra co-
ordinate (providing this is a relative-
ly unimportant one) without simultan-
eously improving the accuracy of the 
measured quantities. 

In the majority of cases, it will 
be necessary to measure mobility data 
in more than one direction. 	The two 
main problems encountered in making 
these measurements are (i) the applica-
tion of a couple, and (ii) the applica-
tion of 'in-plane forces, to the struc- 
ture under test. 	The first of these 
maybe overcome by using a torsional 
shaker or by using a twin shaker sys-
tem but the second is very difficult to 
overcome. 	In some cases, it is 
possible to excite with a force parallel 
to the surface but raised above it by 
an amount sufficient to accommodate the 
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shaker. 	This gives rise to an applied 
couple in addition to the desired force 
and although this may be small, the 
response due to it could be of the same 
order of magnitude (even greater) as 
that due to the force. 	Thus unless 
the response to a couple (i.e. the ro-
tational mobility data) is known, this 
technique must be used with a degree of 
caution. 

One general solution to these dif-
ficulties is the experimental technique 
described in this paper, where it is 
accepted that the required mobility 
data may not be measured directly but 
must be extracted from a series of 
carefully controlled and designed ex- 
periments. 	By this approach, it is 
possible to determine the mobility 
matrix for a component using a single 
shaker in conjunction with an 'exciting 
block' which is attached to the test 
structure, and other standard equipment. 
However experience has shown that care 
must be exercised in the design of the 
exciting block in order to maintain an 
acceptable degree of accuracy in the 
final results. 	It is also an accepted 
feature of the technique that a large 
amount of data has to be measured, 
acquired and processed in order to ob-
tain relatively little desired informa- 
tion. 	Since it is likely that this 
data is itself required for detailed 
analysis (as for the mobility coupling 
in this example), then it is conven-
ient to present it in a digital format, 
readily stored on punched tape and 
available for further computation. Thus 
it was decided that an automatic in-
strumentation system based on a digital 
computer and digital transfer function 
analyser was necessary for efficient 
application of the technique. 

CONCLUSIONS 

It has been shown that vibration 
analysis of an assembly of connected 
structures may be made using experi-
mentally measured mobility data for the 
components. 	However, this approach 	is 
only practicable when the measured 
data is sufficiently accurate and com-
plete for the structure in question. 
This requirement demands the measure-
ment of mobility data in more than one 
direction for most practical struc-
tures. 

An experimental technique using a 
single shaker has been described for 
measuring mobility in up to three 
directions and this has been tested in 
a case study of two connected compo- 
nents. 	The results of the exercise 
confirm that the experimental method is 

satisfactory and that the additional 
complexity involved in multi-directional 
measurement is essential to a realistic 
analysis of typical engineering struc-
tures. 
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DISCUSSION 

Voice: Could you say something about the 
time required to compute the measurements 
from the raw data? 

Mr. Ewins: On the full 3 x 3 matrix, we 
have not used the PDP-8 for that calculation. 
The system that you saw in the photograph was 
the preproduction prototype. There is only one 
in existence, and the store that is attached to it 
is not sufficient to do the matrix calculation. 
We have been using that for running the test, 
for storing the data and putting the data onto 
paper tape which we feed into our CDC com-
puter. The actual computation time in a CDC 
is a matter of seconds - less than a minute. If 
we were to use the PDP-8, it is not sufficient to 
store all the data. We need an extra magnetic 
tape or extra disc storage. It would presumably 
take somewhat longer, but, using the PDP-8 to 
interface with a larger computer, it is a very 
short time -- on the order of a minute. 

Mr. Bouche (Endevco): Is there some prac-
tical solution to your noise problems at low fre-
quencies such as using accelerometers with 
higher sensitivity or narrow band filtering? 

Mr. Ewins: The accelerometers that we 
used had a sensitivity of 300 picacoulombs per 
g. I do not think we could use more sensitive 
ones. The digital transfer function analyzer 
does the filtering in a quasi-digital manner. It 
handles a very high noise level very well. The 
problem was that the mobility levels we were mea-
suring were so low at these low frequencies that 
they just could not be handled. The main difficulty 
on the beam example, where we had rather poor 
agreement between the theoretical curve and the 
measured one was that it was in the region of 
the first antiresonance where you have effec-
tively zero mobility. It was in getting this anti-
resonance through that we ran into the noise 
problems at about 15 Hz. I think it was proba-
bly an extreme condition for the equipment to 
be tried on. 
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A detailed dynamic analysis is made of a heavily damped foundation structure designed 
for the multidirectional isolation of machinery vibrations. The principal components 
of the structure are damped sandwich beams and complex-shaped rubber blocks. In 
order to study the complete structure, each component was analyzed for its mechanical 
impedance data. Where possible, these were obtained theoretically, but in some cases 
it was necessary to resort to experimental measurement. The individual components 
were then connected together using the dynamic stiffness coupling technique in order to 
predict the vibration characteristics of the complete structure. The accuracy of the final 
results testifies to the feasibility of combining measured and theoretical data in this way 
in order to analyze a complex mechanical structure. 
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Introduction 
IT Is now widely accepted that the practical prob-

lems of vibration isolation of machinery are not adequately de-
scribed by the traditional one-degree-of-freedom concepts. A 
number of workers have considered the problem of vibration 
isolation of a nonrigid machine which has to be mounted on a 
nonrigid floor [1, 2, 31.' For this situation, a considerably more 
detailed form of analysis is required in order to predict the isola-
tion afforded by the mounting. In this paper we describe one 
such analysis which has been made of an antivibration mounting 
for a diesel engine. 

The engine (referred to as the source) had to be mounted on a 
relatively flexible and lightly damped receiver structure. Be-
cause the receiver was susceptible to vibration, it was important 
that the machinery foundation (interposed between the source 
and the receiver) should prevent vibrations generated within the 
engine from being transmitted to the receiver. It was also im-
portant, that this isolation should be effective in all directions and 
not just the vertical. A foundation s tructure  was designed which 
had the properties of flexibility in all directions while at the same 
time possessing no internal resonances which would seriously 
impair its isolation performance. The structure, which is de-
scribed in detail below, was formed of heavily damped sandwich 
beams and rubber blocks. 

• n Numbers in brackets designate References at end of paper. 
Contributed by the Vibration and Sound Committee of the Design 

Engineering Division of the American Society of Mechanical Engi-
neers for presentation at the Design Engineering Technical Confer-
ence,.Cincinnati, Ohio, September 9-12, 1973. Manuscript received 
at ASME Headquarters June 11, 1973. Paper No. 73-DET-136. 

Copies will be available until June, 1974. 

In order to design this structure to have an optimum isolation 
performance, it was necessary to formulate a detailed mathe-
matical model of it. With this, and data describing the dynamic 
properties of both the engine and the base structure, it would be 
possible to predict the transmission of vibrations from the engine 
through to the base. This paper describes the development of a 
vibration analysis for the foundation structure. 

Method of Analysis 
The philosophy underlying the vibration analysis used for this 

problem is sometimes referred to as the "building block" ap-
proach [41. Its basis is to consider the structure as an assembly 
of connected components and to perform a detailed analysis of 
each component individually. The specific information sought 
from these analyses is the mechanical impedance' data for each 
component at all points where it is connected to other components 
in the assembled structure. The analysis of the complete struc-
ture is then achieved by suitable combination of the component 
impedance data. 

The main advantage of this approach is that it enables each 
part of the system to be analyzed by whichever method is most 
convenient; some components inevitably being more amenable 
to theoretical analysis than others. In fact, it may well be that 
certain data is not readily determined by direct analysis, and in 
such cases, it may be expedient to resort to experimental measure-
ment of impedance. 

We have found it convenient to classify typical engineering 
components into three groups: 

1 Components suitable for direct analysis, whose impedance 

2  "Mechanical impedance data" is used here to indicate any of the 
various forms of structural frequency response such as mobility, dy-
namic stiffness, mechanical impedance, etc. 

1 
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properties may be confidently predicted from theory. 
2 Components for which predictions of impedance data need 

to be checked experimentally, or for which only part of the neces-
sary data can he predicted from theory. This class requires 
some limited experimental measurement. 

3 Components for which theoretical analysis is extremely 
difficult and for which experimental measurement of imped-
ance data is essential. 

In order to obtain a comprehensive analysis of the complete 
assembly, full use has been made of both theoretical and experi-
mental techniques. 

The method chosen to combine the various components was 
that of "dynamic stiffness coupling". In general terms, this is 
based on the principle that at any frequency the dynamic stiffness 
(or mechanical impedance) of a structure composed of two com-
ponents connected together may be obtained by adding the dy-
namic stiffness (or impedance) of each component at the connec-
tion point. Thus impedance properties of the assembled struc-
ture may be expressed in terms of the corresponding properties 
of the individual components. A more detailed explanation of 
the coupling process is given below. 

Application of this process to a specific case involves the ac-
quisition and storage of the dynamic stiffness or impedance prop-
erties of each component at the various connection points and at 
a number of frequencies. Then, frequency by frequency, the 
stiffness coupling is applied at each junction and response proper-
ties of the assembled structure are derived. This method was 
chosen in favor of other more sophisticated modelling methods 
for a number of reasons. First, component properties were to be 
obtained from a number of sources—direct analysis, finite element, 
modelling and experimental measurement—all of which could be 
readily adapted to provide the data as dynamic stiffness. Sec-
ond, it was considered likely that it would be necessary to allow 
for material property variations in the frequency range of interest 
(10 to 1000 Hz), especially for the viscoelastic layers in the sand-
wich beams. This could not be so easily achieved with a mathe-
matical procedure which required the component data as separate 
inertia and stiffness matrices, and which solved for the forced 
response by summing modal responses. 

The Structure 
We shall now describe the foundation structure in more detail  

and the method used to obtain the required dynamic stiffness 
data for each component. 

The structure is a highly damped machinery foundation, to be 
interposed between the vibration source and a receiver structure, 
and having multidirectional vibration isolation properties. It 
consists of two identical subsystems mounted on a fairly stiff base 
with the two subsystems each supporting one end of the engine. 
This study is confined to an analysis of one subsystem, an illus-
tration of which is given in Fig. 1. It comprises six components: 
a pair of sandwich beams, a pair of rubber blocks and a pair of 
male V-pieces. There are thus three basic items which are 
designated UT, 1113, and VB, respectively. The rubber blocks 
(RB) are attached to the base of the structure which is in turn 
connected to the receiver, and since they are considerably more 
flexible than the base, it is assumed in the analysis that they are 
effectively attached to rigid supports. The cross beams (UT) 
are bolted onto the rubber blocks, and the V-pieces (VB) sit in 
the "V" formed by the two beams. There is however no met al-t o-
metal contact between the V-pieces and the beams since there are 
3.5 mm (0.138 in.) rubber pads separating them. The top faces 
of the V-pieces take the low-frequency engine mounts and are 
thus the input points of the foundation structure. 

Cross Beams. The cross beams are of sandwich construction in 
order to ensure a high damping capacity and eliminate sharp 
resonances of the foundation structure. The sandwich is of the 
symmetrical 5-layer type, comprising 3 layers of aluminum and 2 
of PVC, the latter material being chosen because of its high loss 

1 
factor (n = —

Q 	
0.6). 

It may be readily appreciated that the configuration of the 
system is such that these beams are subjected to bending and 
torsion, and if accurate response predictions are to be made for 
the assembled structure up to relatively high frequencies, it is 
necessary to consider all 6 motions at each connection point on 
the beams. Although this is not uncommon in analyses using 
uniform beams, the authors are not aware of any such analysis 
having been carried out with highly damped sandwich beams. 
Practically all the standard references on sandwich beam vibra-
tion deal with the 3-layer type, with the usual textbook boundary 
conditions such as simply supported, etc., and certainly no men-
tion is ever made of bending in the plane of the layers or of torsion 
about the beam axis. Only in references [5 and 6] are 5-layer 
beams considered, but the resulting equations have either been 

Fig. 1 Foundation structure 
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solved by the finite difference method or by Rayleigh-Ritz, again 
assuming the usual simple boundary conditions. In view of the 
lack of any suitable solution for the bending and torsional charac-
teristics of the beams it was therefore necessary to examine sand-
wich beams in some depth, and to derive a solution in a form 
suitable for inclusion in the dynamic stiffness coupling procedure. 
The obvious choice was to use the finite element displacement 
method, since this approach yields stiffness matrices which may 
be utilized directly in the coupling process. Hence elements have 
been derived for flexure and for torsion of the symmetrical 5-layer 
beam, these having 7 and S deg of freedom, respectively. The 
derivation of the stiffness and inertia matrices for the flexural de-
ment, is outlined briefly in Appendix I, but it is hoped to give full 
details of this and of the torsional element, at, some future stage. 

It was considered necessary to check the dynamic stiffness data 
predicted by this new finite element analysis against experimental 
measurement. In fact, it was only at a late stage that it was 
found possible to analyze the beam for torsional motion about its 
longitudinal axis and it was originally planned to obtain the rele-
vant stiffness data from experiment. Thus, the beams fall into 
our category 2, above, where recourse was made to experimental 
data to check the validity of the analysis. 

Fig. 2 shows theoretical and experimental values for four of the 
six direct mobility responses for point A on beam UTE with the 

beam in a free-free condition. The 	—
0 

and — theoretical 
Alo 

curves were obtained using the flexural finite element, but in the 

case of the last of these, the beam was assumed solid and un-
damped, and only layers 2 and 4 were used, thereby permitting 

the inclusion of shear distortion. The — theoretical curve was Alp  

obtained using the torsional finite element. The measured -- 
F. 

data were obtained with an impedance head, while the other 
data were obtained by the multidirectional measurement tech-
nique outlined in Appendix 2. The good agreement between 
experiment and theory testifies to the adequacy of the finite ele-
ment solution and of the measurement technique, and was ob-
tained notwithstanding the use of measured data for the shear 
modulus of Ihe PVC, which if frequency-temperature and strain-
dependent. 

Rubber Blocks. The rubber V blocks are solid and were molded 
from an almost natural rubber. Owing to their rather complex 
shape and to uncertainty about the exact dynamic properties of 
the rubber, it was necessary to resort to measurement in order to 
obtain their multidirectional dynamic stiffness characteristics 
(category 3 in the forgoing). However, in order to avoid having 
to measure the complete six-directional stiffness matrix for each 
face of the block it was decided to measure only selected linear 
and rotational mobilities and to use these data to model the block 
with an equivalent set of springs. Not only did such a procedure 
reduce the number of measurements required, but it also pro-
vided a means for examining the transmission of force into the 
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base structure. The block and the associated spring model are 
shown in Fig. 3. The dimensions of the model were chosen 
from a physical consideration of the likely directions of force flow 
through to the base, and the spring stiffnesses were chosen by a 
process of trial and error until reasonable agreement, was obtained 
between the data measured on the faces of the block and that 
predicted by the model. An allowance was made for internal 
resonances of the block by lumping mass at the ends and mid-
point, of each spring. 

V-Pieces. Each V piece is made of 25 nun (1 in.) steel plate, and 
consists of a top plate and two triangular plates which are welded 
to it. On the faces of the V are the 3.5 mm (0.138 in.) PVC pads 
which separate it from the cross beams. In the analysis, the 
the steel V piece plus the pads have been considered as a single 
item. In view of its fairly stiff construction, and the way in 
which forces are applied to its top face, the steel piece was con-
sidered as a rigid body with six-directional inertial properties, 
and thus its response could be calculated relatively easily. The 
PVC pads were represented as hysteretically damped springs 
(linear and rotational), concentrated at, a single point on each of 
the faces of the V. The spring stiffnesses were calculated using 
simple theory and the same measured data for the PVC proper-
ties as was used in the beam analysis. 

Analysis and Results for the Assembled Structure 
Having thus obtained the component data in a suitable form, 

the six components were then coupled together using a general-
purpose computer program for dynamic stillness coupling. The 
coupling procedure is outlined in Fig. 4, where the submatrices 
and vectors relate to the various connection points, and are of 
order 6 or less. At each frequency, dynamic stiffness data were 
derived for each of the six components; then, using force equi-
librium and displacement compatibility relations, these com-
ponent stiffnesses were combined to form the overall system dy-
namic stiffness matrix. This matrix relates the externally ap-
plied forces at each of the connection points to the corresponding  

displacements, and for the present system was 50 X 50 and com-
plex. The required displacement responses were obtained by 
inverting the matrix and multiplying by various force vectors. 
Using the response data for the top faces of the rubber block, 
the forces transmitted to the supporting structure could then be 
computed with a subsidiary program. 

Frequency response information has been obtained over the 
relatively wide frequency range of 10 to 1000 Hz, and four se-
lected response curves are shown in Fig. 5. Each of the com-
puted curves is accompanied by the corresponding measured 
data, obtained from experiments on the assembled structure. 

Figs. 5(a) and 5(b) show the velocity responses in directions 
normal to and up the face of block 11B2 (coordinates 1 and 3) due 
to a vertical force applied slightly off the center of VB2. This 
input was represented theoretically by a force and a couple acting 
on coordinates 43 and 46, respectively. Fig. 5(c) and 5(d) 
show the responses in the same directions on RB2 when a hori-
zontal force is applied on coordinate 45. 

The four curves show quite good agreement between the mea-
surements and the theoretical predictions, especially bearing in 
mind the complexity of the system. As one might expect, the 
results in the frequency range 10 to 100 Ilz show better agreement 
than those at the higher frequencies, where the beam and V-piece 
assembly ceases to behave as a solid mass. The principal sources 
of error are thought to be inaccuracy in the measurement and 
modelling of the stiffness of the rubber blocks and the assumption 
of point coupling between the components. 

Conclusions 
In order to make a detailed vibration analysis of a complex 

mechanical structure, it has been found necessary to obtain de- 
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tailed impedance data on each of that structure's component 
parts. Where pOl;sible, ~uch data has been derived from theo· 
retical analysis but in certain cases it has been necessary to resort 
to experimental meal;l\l"ement. Using It combination of theo
ret,ical and measured impedance data is has been possible to pre
dict accurately the dynamic behavior of an aSl;embly of several 
components. 

The machinery foundation structure studied in this way has 
been found to possess good multidirectional isolation properties 
over a wide frequency range. 

APPENDIX 1 
Finite Element for Symmetrical 5 Layer Beam in Flexure. Referring to 

Fig. 6, when the beam is loaded any plane section AB distorts to 
the shape A'B'. The displacement of any point on the section 
is expressible in terms of the transverse displacement JV and the 

. uJV 
rotatIOns - and a. The total significant strain energy in a ux 
finite element of beam of length L is then given by 

V = 2(1/2bk2G,J.f2) foL (a - Uu
l:)2 dx + 2(1/zbE1tl) 

X il- [t ua (tl + t3) U2JV]2 ~ (U2JV)2 dx 
2;,. + .) ;,. 2 + 12 ;,. 2 o vX .., vI vX 
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where h is the beam width and k, G, E, and t are, respectively, the 
shear fador, shear modulus, elastic modulus and thickness of a 
layer. This expression takes into account. the symmetry about 
the neutral axis, and it includes direct and bending effects in all 
the layers, and shear in the visco-elm;tic layers. 

The total kinetic energy comprisel; contributions from the 
transverse motion and from rotary inertia, but it has not so far 
been found necessary to include the \aUer. IIence 

l' = 1/2b(2plt1 + 2p2t2 + P3(3) lL (u;;y clx 

where p is the denshy of a layer. 
The following "shape functions" have been assumed for JV and 

a: 

IV = ao + alx + a2x2 + n3x3 

a = bo + blx + b2x 2 

and the 7 constant.s have been related to the 7 nodal displace
ments indicated in Fig. 6. The strain and kinetic energy ex
pressions have been writteil in terms of these nodal displacements, 
and the element stifTness and inertia matrices have been obtained 
from the energy expressions using Lagrange's equation. 

Provided tha.t the element il; ouly used for harmonic vibration, 
the damping within the visco-elastic layers is introduced by 
making the moduli G2 and E2 complex. Thus the element stiff
ness matrix is a complex matrix. 

Headers unfamiliar with the finite element analysis of bea.m 
vibration should consult the papers of Archer [7] or of Leckie 
and Lindberg [8] for the basic uniform beam element. The 
only sandwich beam element to appear in the literature has been 

5 



X 0 

I (E) 

o  <4 .<•-1 ' 	1-1 	a NI 

4 
3 (E3 

oi 

4N) 

5 (E) 

5 	5 

E 	ELASTIC 

V 	YISCO-FLASTic 

Fig. 6 Finite element of symmetrical 5-layer beam 

   

111 ff Y. Y. 

   

  

zs 

    

L 

rs' 
- EF 

e [Y.. Ydteri 	JeNi  

point mobilty matrix may be derived for each frequency, and if 
necessary, the inertia effect of the exciting block may be cancelled. 
The diagonal terms of this matrix are the "direct" mobilities in 
the linear and rotational directions, and the off-diagonal terms 
are the "cross" mobilities relating forces and motions in the two 
directions. 

Using a digital transfer function analyzer under the control of 
a small computer [11] such measurements have been automated, 
and the processing of the data is carried out within the computer 
during the second run. Although only one element of the 2 X 2 
complex matrix may be plotted during the test, the information 
may be punched onto paper tape for subsequent plotting or other 
use. 

The greatest inaccuracy is always apparent in the rotational 
mobility, and is a function of the relative magnitudes of the two 
direct mobilities, of accelerometer cross-sensitivity, etc. Never-
theless, the measurements on the sandwich beam show that the 
technique is capable of producing quite good results. 

It should be mentioned that Smith [12] has developed a similar 
technique for multidirectional measurements but he uses a pair 
of shakers and also he avoids the use of force gauges. 
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that derived by Ahmed [9] for a curved symmetrical 3-layer beam. 

APPENDIX 2 
Multidirectional Point Mobility Measurement. Owing to the lark 

of suitable shakers, force gauges and accelerometers, the mea-
surement of rotational mobility presents some difficulty. In 
consequence, a measurement technique has been developed 
which only requires the use of a single conventional shaker and 
conventional transducers [10]. The technique is illustrated in 
Fig. 7. A metal "exciting block," upon which is mounted a 
pair of accelerometers, is attached to the structure at the point 
where the mobility properties are required. A sinusoidal excita-
tion is applied at one end of the block, and the force and accelera-
tions are measured at a number of discrete frequencies, as the 
frequency is swept incrementally through the required range. 
A second test is then performed, through the same set of fre-
quencies, but with the excitation being applied at the other end 
of the block. From the two sets of measurements the 2 X 2 
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