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ABSTRACT 

Increasing interest is being shown in the use of digital 

computers for the protection, switching and data acquisition 

required in modern high voltage substations. One of the most 

difficult functions to fulfil by digital methods is that of 

transmission line protection employing samples of the voltage and 

current waveforms taken from high voltage transducer equipment 

at the usual relaying point. Given adequate speed of sampling 

and conversion to digital form for processing, problems remain 

of calculating the fault conditions within a defined protection 

zone of the transmission line, particularly when exponential dc 

offset, harmonics, nonharmonics and noise are present. 

This work explores the accuracy of the digital methods 

for protection of high voltage transmission lines under transient 

fault conditions. By using Z transform the spectrums of all 

methods are calculated and from these the optimum rate of sampling 

which is one of the decisive factors in the implementation of 

digital algorithms is determined. 

Spectrums and transient time responses of analog and digi-

tal filters are studied and the most suitable filter from pro-

tection point of view is determined. 

Different algorithms are tested off-line and on-line and the 

best algorithm is chosen based on simplicity and accuracy of per-

formance. By careful determination of the type, order and cut-off 

frequency the analog filter, the fault generated high frequency 

components and noise are filtered out. 

Close-up faults and problems involved in the protection of 

parallel lines with mutual coupling are also considered. 
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LIST OF SYMBOLS AND ABBREVIATIONS 

SYMBOLS 

Capitals 

A 
v,A.,B v1B. 	Real and imaginary parts of voltage and current. ii 

API 	Automatic priority interrupt. 

D 	Denominator of resistance and inductance formulas 

in McInnes method. 

FIA 	Fault inception angle 

l
a
, I

b 
and I

c Phase currents 

IL  

I
01, 102 

I I IC  
A' B' 

Input current of phase comparison relay 

Zero sequence current of single circuit line 

Zero sequence currents of circuits 1 and 2 of a 

double circuit line 

Currents in neighbouring parallel line. 

IP 
	Current peak. 

L
aa
, 	L

ab,... Self and mutual inductances of transmission line. 

L0, Ll 
	Zero and positive sequence inductances. 
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NR, ML 	Numerators of resistance and inductance formulas in 

McInnes method. 

N 	• Number of samples per cycle. 

Raa ...,R
ab1

.. Self and mutual resistances of transmission line. 

RL 	Resistive part of ZL  

Rg 	Fault resistance 

R1 
 R

0 
	Positive and zero sequence resistances. 

T 	Time between two consecutive samples. 

V 	Voltage Peak 

VL 	Input voltage of phase comparison relay. 

V1' V2 	Voltage outputs of mixing and measuring circuits of 

phase comparison relay. 

Va, Vb, V 	Sending end phase voltages. 

V
a
, Vb, V

c 	Fault point voltages 

X
L 	Reactive part of ZL  

Z
R1, 

Z
R2 	Transfer impedances 

Zaa' Zbb' Zee Self impedances of transmission line 



Z
a 
, Z

ac' *DO Mutual impedances of transmission line 

Z 	Z2, Z Z1
, 2' 0 Positive, negative and zero sequence impedances 

Zm0' Zml' 
Zm2  Zero, positive and negative sequence mutual impedances 

in parallel line. 

ZL 	 VL/IL 

Small letters  

f 	Frequency 

i
d' 

ib) is 	. Instantaneous Phase currents. 

ik 	The kth current sample 

i 9 
	

First derivative of current 

J 
	 1157-  

u
k 

vi and v" 

vk 

V V
b 
 , 

a 
	vc 

z 

Laplace transform variable 

Samples per cycle 

Time 

The kth output of digital filter 

First and second derivatives of voltage 

The kth voltage sample 

Instantaneous phase voltages 

z - transform variable 

Greek letters  

Angular frequency 

Starting angle for Fourier Coefficients 

a 
	

Phase angle between V1  and V2  

al' a2 	Phase angles of V
1 and V2 

81' 02 
	Phase angles of ZR1  and ZR2  

°L 
	Phase angle of IL 
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Abbreviations  

 

Bracket 

Bracket 

Matrix, Modulus, absolute value 

Integral sign 

Closed integral 
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CHAPTER 1 

INTRODUCTION 

Continuing rapid advances in digital computer tech-

nology have prompted a re-evaluation of protective devices and 

techniques. It is desirable that the protective relays should 

operate with minimum possible delay compatible with proper 

selection of faulty primary system sections. The electromecha-

nical and static relays have performed this function adequately 

until now but it does not necessarily follow that these are 

the only or the best devices for system protection. The use of 

digital computers for system protection should be compared with 

the existing techniques and adopted if found more economical, 

flexible and have advantages in application. 

A very attractive digital computer characteristic is 

its ability to readily alter its decision making criteria. For 

example protection zones can be modified by monitoring the system 

configuration and the protection scheme can be easily expanded 

or modified and new priorities can be assigned by revising or 

changing the software package as the power system grows. 

To investigate the relative advantages and disadvan-

tages of power system protection with on-line digital computers 

one corner of a mesh type high voltage substation used typically 

on the 400 KV system .of the C.E.G.B. was chosen and it was 

decided to develop algorithm and program for the following 

purposes: 

i) Data collection and recording 

ii) Sequence switching and interlocking 

iii) Mesh corner bus-bar protection 

iv) Transmission line fault measurement and detection 

v) Transformer protection able to discriminate between 

internal fault and inrush conditions. 
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This research reported here has attempted to find a 

practical algorithm and to develop the necessary programs 

for transmission line protection (part iv) and to investigate 

the implementation problem such as sampling rate, filtering etc. 

Chapter 2 contains a brief discription of static 

distance relays and their associated problems. 

Different algorithms are discussed in chapter 3. By 

using the Z-transform their immunity to d.c. and high frequency 

components for different rates of sampling are investigated. 

The overall spectrums of the algorithms with different analogue 

filters are presented and for every algorithm a practical 

sampling rate and an analogue filter with a suitable cut-off 

frequency is recommended. 

In chapter 4, the algorithms for different rates of 

sampling are tested against fault generated exponential d.c. 

off-set and high frequency components, and the most accurate 

have been determined. 

In chapter 5 analogue and digital filtering methods 

are studied and compared for spectrum and transient time res-

ponse and a recommendation made for digital protection. 

In chapter 6 the problems of close-up faults and 

relaying on parallel lines are investigated. 

Chapter 7 contains a brief description of the labo-

ratory interface and the results of on-line implementation by 

different algorithms. In this chapter also the flow chart of 

the main program is presented and described. The final conclusion: 

are presented in chapter 8. 

The original contributions presented in this thesis 

are as follows: 
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1) The noise and fault generated components have 

a continuous spectrum which contains all kind of harmonics 

and non-harmonics. To investigate how the digital algorithms 

cope with these components the Z-transform method is intro-

duced in protection for the first time. 

2) The frequency responses of different algorithms 

in the most general form, for varying rates of sampling are 

obtained and its role with respect to exponential dc off-set 

and fault generated components is clearly shown. 

3) One of the decisive factors in the implementation 

of digital algorithms is the type,order and cut-off frequency 

of the analogue filter used for filtering the unwanted compo-

nents. In all papers on digital distance relaying, usually a 

frequency corresponding to half the sampling rate has been 

suggested for the cut-off of the required analogue filter, 

without mention of the order of the filter. It is shown that 

the cut-off frequency depends on sampling rate, the order of 

the filter and the type of the algorithm which is used for 

impedance calculation. Then for every method, the order and the 

cut-off frequency of the necessary analogue filter, for a 

practical sampling rate is determined. 

4) In the Fourier method a new technique32 for cal-

culating R and X is presented which does not involve square 

root and arctangent calculation. 

5) It is shown that in order to have all high fre-

quency components attenuated with respect to the fundamental, 

the integration terms in the McInnes method must be performed 

on half a cycle of sampling. 

6) A new method26 for calculation of R and X is des-

cribed in which during the calculation any harmonic can be 

filtered out. 
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CHAPTER 2 

ANALOGUE DISTANCE RELAYS 

In 1923 Crichtonl  introduced the distance relay as an 

element in a selective form of transmission line protection. 

The relay made use of the fact that in a faulted line the impe-

dance between the relaying point and fault was proportional to 

the distance of the fault. Since then the distance relaying in 

electromechanical form and recently in static form has become 

firmly established as a means of transmission line protection. 

In this chapter the static distance relays will be reviewed for 

comparison with digital methods. 

2.1 	DEVELOPMENT OF STATIC DISTANCE RELAY ELEMENT 

To overcome some of the difficulties associated with 

the electromechanical relays (slow operation, large consumption 

of energy, large diMensions and moving parts problems) and with 

the increasing availability of electronic components, static 

relays for distance protection have been developed. The earliest 

reference to application of electronic circuit principles to 

power system protection was by Fitzgerald2  in 1928, who attempted 

to improve the performance of pilot wire systems. In 1934 

Rolfwideroe3 described how a Thyratron tube can be applied to 

a number of the more common classes of distance relays. Although 

the relays described by Wideroe were crude and subject to many 

practical and theoretical limitations, the principle laid down 

was the basis for subsequent development work in the field. In 

1948 Macpherson, Warrington and McConnel
4 described a distance 

relay using thermionic valves. The relay consisted of three 

units, a pulse circuit, a measuring circuit and a tube circuit. 
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The pulse circuit derived a pulse from the energising voltage 

at a particular point (usually peak) in its cycle and the 

measuring circuit derived a complex voltage from the energising 

voltage and current. The tube circuit noted the polarity of the 

measuring signal during the time of the derived pulse and if this 

was negative, it produced a tripping pulse for energising a 

slave relay. Later on this scheme was abandoned because of the 

difficulty experienced in the pulsing circuit, due to the 

effect of random pulses at fault inception giving rise to false 

operation. In 1954 Kennedy5 described the principle of phase 

angle comparison in electronic carrier relaying scheme and in 

1956 Adamson and Wedepohl6 generalised the works of Kennedy5 and 

Macpherson4 and introduced the application of junction-transis-

tor circuits to protective gear. The two systems used by Adamson 

and Wedepohl are shown in figures (2.1) and (2.2). In Fig. (2.1) 

the so called pulse relay, the two mixing and measuring circuits 

produce two voltages V1  and V2  from the input current and vol-

tage IL  and VL. V2  is applied to a pulsing circuit which produ-

ces a positive pulse once every cycle, when V2  is at its positive.  

maximu. V1 and the pulse derived from V2 are then applied to 

the terminals of a coincidence circuit which requires both in-

put terminals to become positive before producing any potential 

change at its output terminals. If a is the phase angle between 

-Tr 	1-71 7T- V1  and V2, it follows that a must be between 7T- and 	for the 

coincidence circuit to have a change in its output potential. 

Random pulses caused spurious6 operation of this relay during 

normal operating conditions and fault occurance arid so it was 

abandoned. 

In Fig. (2.2) the direct phase comparator is shown. 

In this relay the two measuring circuits are as before producing 
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Fig,( 2.1) Pulse relay 
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Fig. (2.2) Direct-phase-comparison relay 
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circuit 
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the same two output voltages V1  and V2, but here both voltages 

are applied directly to the coincidence circuit, so that the 

output is a square pulse lasting for the duration of coinci-

dence (Fig. 2.3). These pulses are then applied to an integrating 

circuit whose output is connected to a level detector, which 

determines whether the pulse is greater than 7/2 radians in 

duration, and if so it produces a change in output voltage. 

The criterion for operation is therefore that the duration of 

coincidence should be greater than 7/2  radians. This means that 

the phase angle between the two voltages V1  and V2, should be 

less than 7/2 radians, which is the same condition as for the 

pulse relay. The major difficulty encountered by this relay was 

faulty operation due to transient components of fault voltage 

and current. To overcome this deficiency Adamson and Wedepohl7 

proposed a dual phase comparator (Fig. 2.4) wherein two identical 

comparators were arranged to compare signals on alternate half-

cycles, and their outputs were gated so that transient overre-• 

ach in one element was blocked by the other. In this scheme the 

operation would not occur until the transient components had 

decayed sufficiently to have negligible effect and hence this 

attempt to preserve dynamic measuring accuracy sacrifices speed 

of operation and leads to long operating times. 

In 1968 Jackson8  introduced the block average compa-

rator in which the duration of polarity coincidence was measured 

on both half cycles of the input signals, and the average value 

was determined in a linear integrating circuit, a trip signal 

being produced if a specified average value was maintained for 

more than a prescribed duration. Relays using the block-average-

comparison principle have been used successfully in field trials 

and this principle now forms the basis for various production 
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Square pulses 

Fig.(2. 3) Direct phase comparison waveforms 
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designs. Figure (2.5) shows the schematic diagram of a basic 

relay using the block-average-comparison principle. The voltage 

and current VL and IL 
are applied to a measuring and mixing 

circuit, which produces two output voltages V1  and V2. These two 

voltages are compared in a coincidence circuit producing square 

pulses. These pulses are applied to a linear integrating circuit 

whose output increases linearly during the time when V1  and V2  

are of the same polarity and decreases when V1  and V2  are of 

opposite polarity. Figures (2.6) and (2.7) show the relevant wave-

forms in the steady state for phase displacements between V1  

and V2  greater than 7/2 and less than 7/2 respectively. The 

relay operates when this phase displacement is between 7/2 and 

-7/2. The time of operation of this relay for steady state ope-

ration can be estimated and it can be arranged to be 1/2 cycle 

for zero phase displacement, but increasing phase displacement 

increases the operating time which becomes infinite when the 

phase displacement is 7/2 radians. 

In recent years there has been an increasing demand 

for relay characteristics other than the conventional circle 

type, designed specifically to provide greater immunity from 

power swing and heavy system loading. Many papers have been 

published suggesting how to deal with this problem by using 

multirelay principles or multi-input comparators, but all of 

them have failed to have any practical significance. Jackson9 

introduced a modified block average relay in which the phase 

angle criterion of the comparator is a function of the primary 

system quantities and is therefore continuously variable bet-

ween well defined limits around the characteristic boundary. 

The new relay provides a characteristic with optimum fault 

coverage and immunity from extreme balanced system condition 

such as heavy loads and power swing. 
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2.2 	PHASE COMPARATOR CHARACTERISTICS 

There are two types of comparators10  , amplitude and 

phase. Amplitude comparators compare the scalar magnitude of the 

two inputs; they operate when the modulus of one input is lar-

ger than the other. One example of an amplitude comparator is 

the rectifier-bridge comparator. Phase comparators depend for 

their operation on the phase difference between the inputs, 

operating over a range of phase-angle differences and restrai-

ning over the remaining portion of the full 27 radians circular 

arc. The induction cup relay or the block-average principle 

are two examples of phase comparators. It has been
10 shown that 

there is no fundamental difference between these two principles 

and hence only phase comparators will be considered here. 

From Fig. (2.2) the outputs of the measuring circuits 

can be written as follows: 

Vi  = a+jb = 1V11 Lai = K1  VL  + ZR1  IL  

V2  = c+jd = 1V21 L 	=, K2  VL 	ZR2 IL 

Then 	
V 	

al-a2  = 
v1 = a±jb 	ac+bd+j(bc-ad) 	1 	I Vil 

1 o
V2

a 
 c+ jd c2 + d

2 	/  
2 	1 v721 

and 

cos a = 
ac + bd 

 

V 2 
(ac+bd)

2
+(bc-ad) 

  

The criterion for the operation of the relay is that 

-7/2 < a < + 7/2 i.e. 	cos a > o 

and therefore 

ac + bd > o 	 

Putting VL = IVLI Lo 

IL = 1/LI LIE 

ZR1 = IER1I /01  
ZR2 L.. = IzR2I 92 

(2.2) 

(2.1) 
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into equations (2.1) and calculating a,c,b, and d, the inequa-

lity (2.2) becomes: 

1 
K
1
K2IVL12+0/L IIIL 

ICK
1
1ZR2icos(02--(1)L) 

+ K21ZR1
'cos( --(t, )1 + IZ

R1
11Z

R2
III

L
1 2cos(01-0) > o. 

Now let 
✓ iv I 
L = L (I) 

IL— - y— 	= lz 
I LI 

then 

1 2+1ZLICKlIZR21cos(0 -(pL)+K2 IZ 	Icos(O1-(1),)] 

+ IZ
R1

IIZR2Icos(01-02) > o ..... 	
(2.3) 

from which all specific types of relay characteristic can be 

derived. 

2.2.1 	Directional rela characteristic  

If 	IZ
R1

I = K2 = o from (2.3) • 

we obtain 

IZ
L

I K1IZR21  cos(02-(1)L) > 

or cos(02-(pL) 

 

> o 	(2.4) 

  

i.e. 
-7/2 + 02 < (I)L < 7/2 + 02 	

and 

operation occurs to the right of straight line shown in 

figure (2.8). 

2.2 . 2 	Ohm rely characteristic 

yr. 

If 	K1  = -K, K2 
 = 0,  IzRil=lzR21=IzR

and 01  = e2  =
1 

the inequality (2.3) reduces to: 

IZLIcos (0-y< IZRI/K 	 (2.5) 

Operation occurs to the left of straight line shown in fig.(2.9). 

Inequality (2.5) for 0= o and 0= 7/2 reduces to resistance and 

reactance relay characteristics respectively: 
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Fig. (2.8) Directional relay characteristic 

Fig. (2.9) Ohm relay characteristic 

Fig. (2.10) Resistance relay characteristic 
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i.e. for 0 = o 	RL  < IZ R I/K 	 (2.6) 

and for 	0 = Tr/2 XL  < 1RR I/K 	 (2.7) 

These characteristics are shown in fig. (2.10) and (2.11). 

2.2.3 	Offset impedance relay characteristic 

If K1=K, K2  = -K and 01  = 02  = 0 the inequality (2.3) 

reduces to: 

-K2 
	

1 2 +KR1ZL11Z R2 lcos(0-(1) ) -K1ZL11Z R1Icos(0-Sb ) 

+ IZR1IIZR2I  >0. 

or 	

[RL- 1 (IZR21-IZR11) cose]
2 

+ EXL 	2K - 	 (1ZR2 1-1ZR1  1)sin012<(1ZR2 1+1Z R11) 2/4K2  '(2.8) 

This is the equation of a circle of radius(IZR1I +IZR2I) /2K 

and with centre (1ZR21-1ZR11)  /2K Lo and is shown in fig.(2.12). 

2.2.4. 	Impedance relay characteristic 

For 1Z
R1

1 = 1ZR2 1 = 1Zill the inequality (2.8) reduces 

to: 
RL  + XL  < IZR I 2 /K 2 

which represents an impedance relay shown in fig. (2.13). 

(2.9) 

2.2.5 	Mho relay characteristic  

For 1ZR11 = o and 1ZR2 1 = IZR I the inequality (2.8) 
reduces to: 

_1"121 	2 	I2  R- 	_1ZR12 
27 cose) + (XL - 2R- sin0) - 	(2.10) 

4K2 

which represents a mho relay shown in (2.14). 

2.3 	PROBLEMS OF ANALOGUE RELAYS 

The small but finite inertia of induction cup relay 

serve to filter out high frequency harmonic and non-harmonic 

components in the relay inputs. Also the induced eddy current 
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Fig. (2.11) Reactance relay characteristic 

Fig. (2.12) Offset impedance relay 

Fig. (2.13) Impedance relay 

Fig. (2.14) Mho relay 
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in the cup due to the exponential dc offset and its resulting 

torque is negligible and so this relay tends to have immunity 

to dc offset and other transient components. But this immunity 

is achieved at the expense of operating speed. At low voltage 

levels this slow operation can be tolerated but for a high vol-

tage integrated system, is not desirable. Although the static 

distance relay has the advantage of being free from inertia and 

other mechanical problems, it is still sensitive to noise, tran-

sient dc offset and fault generated harmonics. These relays must 

be equipped with a very shap analog filter to remove dc and other 

unwanted components of the voltage and current waveforms which 

delays the relay operation. The reason why the block-average 

relay has been successful in practice is that at present there is 

no need for a distance relay to operate in less than two cycles 

thus making it possible to tolerate filter time delays and to 

equip the relay with a very sharp cut-off filter. 

In the future from the stability point of view there 

is a need to detect the fault in one cycle or less, the block-

average relay can not be relied upon. Another major drawback is 

that it is difficult and expensive, though not impossible, to 

provide an efficient and reliable supervisory system that checks 

the relay all the time and estimates its behaviour during possible 

faults and prints or displays the necessary information. One 

solution to these problems is the use of a digital relay or com-

puter relaying. Digital relays could be made inherently faster 

than block-average and other static relays. They can calculate 

the resistance and reactance of the line continuously and it 

would be possible for them to show the result on a small display, 

if required a central computer can effectively supervise the 

behaviour of many digital relays and give an alarm whenever it 
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finds a defective part or element. Digital relaying by choice of 

an appropriate algorithm, can effectively cope with dc offset 

and other unwanted components of current and voltage waveforms. 

It can also provide an optimum characteristic with an effective 

fault coverage and immunity to extreme balanced system conditions 

such as heavy loads and power swing. In the next chapter these 

aspects of digital algorithms will be studied. 
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CHAPTER 3 

ALGORITHMS FOR DISTANCE PROTECTION 

3.1 	INTRODUCTION 

Increasing interest is being shown in the use of digi-

tal processors for the protection switching and data acquisition 

required in modern high-voltage substations. One of the most 

difficult functions to fulfill by digital methods is that of 

transmission line protection employing samples of the voltage 

and current waveforms taken from high voltage transducer equip-

ment at the usual relaying point. Given an adequate speed of 

sampling and conversion to digital form for processing, problems 

remain of calculating the fault conditions within a defined pro-

tection zone of the transmission line. For this purpose the most 

onerous condition is when a fault occurs at a voltage maximumonone 

phase, because the consequent discharge of capacitive energy 

through the line inductance causes harmonics and non-harmonics 

to be generated in the current and voltage. In addition, noise 

and non-linearity of the transducers result in further unwanted 

components against which any algorithm used to calculate fault 

impedance should be immune. The smoothness of the current and 

in particular the voltage waveforms depend upon generator source 

reactance and transmission line length. With a high reactance 

source and a long line considerable distortion occurs as is born 

out by a field oscillogram reproduced in fig. (3.1) for a three 

phase fault. It can be seen that during the first fault cycle 

the voltages exhibit considerable noise and distortion although 

in this case such noise could be attributed to the use of a 

capacitor-divider voltage transducer. In fig. (4.8) simulated 

current and voltage waveforms are depicted in which again the 
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VL-N= 9.5 KV 

ti 	 

428A 

v 	 

NOTE : Voltage obtained from a capacitive divider. 

F16.3.1 Field oscillogram for 3 phase fault on long line. 
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importance of fault generated harmonics and non-harmonics in 

both current and voltage waveforms are clearly seen. Some field 

oscillograms may not show such a distortion, because of the 

frequency response of the recorder and transducer which filter 

high frequency components. In applying digital methods to fault 

calculation, the following points should be given careful con-

sideration: 

(i) Type of algorithm: Some algorithms are capable 

of removing a portion of the unwanted components or to directly 

account for them, but others are true and reliable only in steady 

state, i.e. with sinusoidal currents and voltages. 

(ii) Sampling rate: This is one of the most decisive fac-

tors in the implementation of digital algorithms for on-line 

protection. Previously, many papers have suggested various samplin 

rates from 429 to 4021 samples per cycle without justifying the 

choice. High rate of sampling requires complicated and expensive 

hardware for digital implementation, whilst too low a sampling' 

rate may impair the accuracy from a numerical computation and 

filtering point of view. It will be shown that an acceptable 

accuracy can be obtained by an optimum sampling rate. 

(iii) Cut off frequency of the analogue filter: This is 

another decisive factor in the implementation of digital algo-

rithms. In most papers on digital distance relaying, this fac-

tor, like sampling rate, has received little attention. Usually 

a frequency corresponding to half the sampling rate has been 

suggested for the cut-off of the required analogue filter, 

without mention of the order or the filter type. Fig. (3.2) 

shows the overall spectrum of the Fourier method (section 3.3.2) 

with 8 samples per cycle(400Hz) and a single pole Butterworth 
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Fig. (3.2) Spectrum of the Fourier method with 8 samples per cycle 
and a single pole Butterworth filter with 200 Hz cut-off 
frequency. 
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Fig. (3.3) Spectrum of the Fourier method with 4 samples per cycle 
and a single pole Butterworth filter with 100 Hz cut-off 
frequency. 



- 36 - 

filter with a 200 Hz cut-off frequency. Similarly fig.(3.3) 

shows the spectrum of this method for 4 samples per cycle 

(200 Hz) and a single pole filter with 100 Hz cut-off frequency. 

It is quite clear that in the former case the components around 

7th and 9th harmonic and in the latter one the components around 

3rd, 5th, ... have not been removed effectively, and so in both 

cases either the cut-off frequencies of the analogue filter 

must be lowered or filters with more poles should be used. In 

another case using Mclnnes's method25, with any sampling rate 

the analogue filter at least should be a second order with 60 Hz 

cut-off frequency. 	Comparing 60Hz with frequencies of 400 or 

500Hz which are usually quoted with 16 or 20 samples per cycle, 

it can be realized why this very interesting method has been re-

ported to incur large errors during system transients. Considering 

the foregoing points different distance protection algorithms 

will be studied, their immunity to noise will be discussed and 

from these the sampling rate and order of the analogue filter 

and its cut-off frequency will be 'determined. 

3.2 	THEORY OF THREE-PHASE RELAYING 

An overhead line with one or more earth wires bonded 

to ground at each transmission line tower will be considered. 

These earth wires and earth can be represented by a single 

equivalent conductor. Disregarding the shunt capacitance, the 

transmission line can thus be represented by a four conductor 

arrangement as shown in fig. (3.4). 

The voltage drops from the relaying point to the 

fault point for all types of faults are given by the following 

expressions: 



Va-Va = 
1 

V 	= b 

V c  -Vc  = 

(ZaaIa 

(Z 	a I 

(Z ca  I  a  
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+ ZabIb 

+ ZbbIb 

+ ZcbIb 

+ 

+ 

+ 

ZacIc 

Z 	I 
be c 
Z cc  Ic  

+ 

+ 

+ 

ZadId)  

ZbdId)  

ZcdId)  

x 

x 

x 

(3.1a) 

(3.1b) 

(3.1c) 

But 
	Ia + Ib + Ic + Id 

= 0 and therefore: 

Va-Vd = E(z aa -zad )1 a +(zab -zad )ib  +(z ac -zad )1 ]x...(3.2a)  c 

Vb-Vb = E(zba-Zbd)Ia+(Zbb-Zbd 
	+(Zbc-Zbd

)I]x...(3.2b) 

V c  -Vc  = [(Zca -Zcd )I  a +(Zcb -Zcd )Ib  +(Z cc -Zcd )I c7x...(3.2c) 

These equations can he rewritten as: 

where 

Va-Va = Ezsa“Ia 
+ Zmab  Ib +Z 	I] x mac c 

Vb-vb = [ZmiaaIa + ZsbIb + ZmiacIc]  x 

V c  -Vc  = CZmca
Ia + ZmcbIb +Zsc Ic

] x 

(3. 3a) 

(3.3b) 

(3.3c) 

Zsa = Zaa-Zad' Zmab = Zab-Zad' 
Zmac=Zac-Zad 

Zsb = Zbb -Zbd' Zmbd = Zbd-Z 	Zmbc=Zbc-Zbd 

Z sc = Zcc-Zcd' Zmcd = Zcd-Zcd' Z
mcb = Zcb

-Zcd 

Assuming that the transmission line is perfectly 

transposed, equations (3.3 ) become: 

 

Va-Va = Ezs,Ia + Zm (Ib+Ic)] x 	 

Vb-Vb = Ezs Ib + Zm (Ia+Ic)] x 	 

(3.4a) 

(3. 4b) 

(3. 4c) 

 

v c  -vc  = Ezs c 
 + zm (1a+Ib)] x 

Zs = Zsa 
= Zs = Z sc 

 

where 

 

Zm = Zmab  = Zmba = Zmca = Zmac = Zmbc = Zmcb 
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The positive and negative sequence impedances of the 

transmission line are equal and are given by: 

Z
l 
= Z

2 
= Z

s 
- Z

m 

  

(3.5a) 

and the zero sequence impedance is given by: 

 

o 
= Z

s 
+ 2 Z

m 

  

(3.5b) 

  

From these equations it can be seen that 

 

 

Zs  = 7 (2Z1  + Zo) 

zm  = 	(zo  - z1) 
3  
1 

 

(3.6a) 

(3.6b) and 

 

 

Substituting Zs  and Zm  from equations (3.6) in equations (3.4) 

gives: 

V
a
-V
a 
= EZ

1
Ia+(Zo-Z1) 	Io]  x 	 (3.7a) 

V
b
-V
b 
= CZ

1
I
b
+(Z

o
-Z
1
)I
o 
 ] x 	 (3.7b) 

V 
C  -

V
C  

r:  EZ
1c

-1-(z"•• Z
1
)1 	] x 	 (3.7c) 

The voltages at the fault point (Va,Vb,Vc) will depend 

on the .type of fault, the fault resistance and the fault current 

which may contain infeed from the remote end. At this stage, 

for simplicity, the infeed is zero. 

Equations (3.3) , (3.4) and (3.7) will now be applied 

to various types of fault. 

3.2.1 	Single phase to earth fault  

Consider a phase a to earth fault through a fault re- 

sistance Rg, so that: 

V'
a 
 = Rg . I

a 	
(3.8) 

and equation (3.3a) becomes 

Z 

V
a 
= x Z 

sa 
 (I 
 a Z 
+ 	

Ib 	Z 
+ 
Zmac 

 I ) + Rg.I
a sa 	 c 

sa 

equation (3.9) can be written as: 

(3.9) 
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= x Zsa 
I
R 
+ Rg Ia  

  

(3.10) 

   

where 
I = I 	

Zmab  I +  mac  
R 	a + Zsa 	Zsa 	c  

(3.11) 

The fault resistance Rg has two components
20, the resistance of 

the arc and of the ground return. The latter, because of the 

earth characteristic is somewhat nonlinear. Fault arc resistance 

can be accounted by the Van Warrington formula: 

Rarc = 87502  
I . 

 

(3.12) 

 

where 2 is the length of the arc in feet in still air and I is 

the fault current. Z will initially be equal to the conductor 

spacing but it will increase in the presence of cross winds 

according to the following formula 

Rarc = 8750(s+3ut)  

I1.4 

 

(3.13) 

 

where s is the conductor spacing and u is the wind velocity in 

miles per hour and t the duration in seconds. The arc voltage is 

Varc = 8750(s+3ut)  
. I04  

 

(3.14) 

 

this non-linear relation means that, if an arcing fault occurs 

near the relay bus, the fault current may be sinusoidal but the 

voltage waveform will have a rectangular tendency. Thus it can 

be seen that the fault resistance cannot be fully predicted and 

for this reason and for the sake of simplicity, the fault re-

sistance will be neglected and equation (3.10) reduces to: 

Va = x Zsa 
I
R 
	 (3.11) 

By shaping the relay characteristic, the underreaching of the 

distance measurement due to the fault resistance can be avoided. 

For a transposed line from equations (3.4) the phase 

to earth voltage Va  may be written as: 
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where 

Va = Zs Ioa 

Zm Ioa = Ia  + Zs(Ib + Ic) 

(3.12) 

(3.13) 

The operating current Ioa is made up of the correct proportion 

of three phase currents and is called the "sound phase compen-

sated current. 

In analogue relaying it is obtained by a circuit as 

in fig. (3.5). In this circuit Ioa, lob  and Ioc  (operating 

signals for different phase to earth faults) are 

1 	r(I 4. 2 (I + I Ioa = n3 	' a 	n1 	b 	c)] 

n, 	nn  
C 	 + 	 + I ] Iob = n3 	b 	n1 ' a 	c' 

n, 	n, 
Ioc 	' c + n- (Ia + Ib)] n 	1 

where 

n
2 = ml 

1 lz
s

I (3.15) 

Instead of equations (3.4) we can use equations (3.7) 

which gives: 

V = Z1 IOA 	 (3.16) 

where 
Zo_Z1  IOA = Ia + 	

I 
Zl 	o  

(3.17) 

IOA is called the residual compensated current and in analogue 

relaying it is obtained by a circuit as in fig. (3.6). 

In this circuit IOA' IOB' IOC (operating signal for 

different phase-to-earth faults) are 

n, 	3n1  
I
OA n3 
= (I

a n1  
+ I

o
) 

n-I- 
, 	3n, 

I 	= 	fI + 	4  I OB 	n3 ' b 	n 	o'%  
1 

n - 	3n, 
I 	=--±- (I + ---t I

o) IOC n3 c n1  

(3.14a) 

(3.14b) 

(3.14c) 

(3. 18a) 

(3. 18b) 

(3.18c) 

where 
n2 zo-z11 

3Z n1 	1 (3.19) 
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As can be seen from equations (3.15) and (3.19) in analogue 
Z zm  

relaying the phase angles of 	and Zo- 1 are neglected, but 
1 

in computer relaying it is possible to use these coefficients 

without any approximation. Inevitably this will add to compu-

tation time and so wherever there is a need for simplicity, 

the scalar value could be used. 

Using instantaneous values of voltage and current, 

equation (3.3a) can be written: 

Rmab 	 Lmab 
b 

mac . u =xR (i + 	lb + 	+ xL 	+ a sa a Rsa b Rsa 	sa dt a Lsa 
L 
mac . + E--- 1c) 	 (3.20) 
sa 

where 

Rsa = Raa-Rad 	Lsa = Laa-I,ad 
R
mab = Rab-Rad' Lmab  = Lab-Lad 

R 

Putting Rmab 	Rmac , ) = i ) (i + 	i ---- 	+ ---- 1
cx a R b Rs 

 Qa 
L mac . and 	(i a  + L 

Lmab i

b + E--- lc)  = i  sa 	sa 	Y 

equation (3.20) becomes: 

di 
1.)a = x Rsa ix + x Lsa dt 

--i 	(3.21) 

We can see that the coefficients R niab  , ... and 
L 

sa 

mab , ... are R sa. 
constant and independent of the fault point, so by taking samples 

of ia' ib and is the new samples ix and iy  can be computed. 

Similarly equations (3.4a) and (3.7a), become: 

L 
va x R s  [ia  + Rm (ib  +i c 	dt 

)1 +xLs-L-11i 
	Ls 
+ 	(i

b 
 +i c)] (3.22) 

and 

RR 

 P. 	Lo-L1  

	

o- 	.) u
a=x R1 a (i + 

	

to 	(i 
+ o 1 dt a 	L 

	

1 	1 
(3.23) 

Rmac = Rac-Rad 	Lmac = Lac-Lad 

and these can also be written in the form of equation (3.21). 
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3.2.2 	Double-phase fault  

For a double phase fault, the fault impedance may be 

represented as in fig.(3.7a) when the fault involves ground and 

as in fig. (3.7b) when isolated from ground. Under these condi-

tions the voltage to ground of the a and b phases at the sending 

end become: 

Va  = x[ZsaIa+ZmabIb+ZmacIc] + 	Ia+(Ia+Ib) Rg 

and 
	

Vb  = xEZmbaIa+ZsbIb+ZmbcIc] + 2 Ib+(Ia+Ib) Rg 

Subtracting Vb  from Va  gives: 

V-V=x (Z -Z 	)[I + zmab-
zsb 	Z mac-

Z 
 mbc  I  1 R(Ia

-I
b
) 

sa mba 	a Z sa -Zmba b  Zsa-Zmba 	J  2 ( Zsa-Zmba)ca b  

Since equation (3.24) does not involve Rg, it can be applied 

to both fig. (3.7a) and fig.(3.7b). In order to put equation 

(3.24) in realizable form its last term, which is the error 

caused by arc resistance, must be neglected and hence it re-

duces to: 

Va-Vb 
= x(Z - Z 	) I 

sa 	mba • R 

where 	I
R 
= 

zmab-Zsb 	mac-Z  mbc  I + 	 I + Z 
	

I
c a Z Z b Z sa mba 	sa

- Zmb
a 

(3.25) 

(3.26) 

For a transposed line the voltage between faulty phases is: 

Va-Vb = x Z1 (Ia
-Ib) 
	

(3.27) 

Hence, in this case no extra term is required and the conven-

tional delta relaying current (Ia-Ib) and voltage Va-Vb  may be 

used to find the positive sequence impedance xZi  of the line. 

Using instantaneous values of voltage and current 

for an untransposed line equation (3.24) becomes: 

u -u 	
Rmab-Rsb . 	Rmac-Rmbc  i] 

ab 
= x(R

s
a7RmbaHi 

a
+ 

Rsa-R
mb

a b+ Rsa-Rmba c  

+ x(L -L 	) --Ei + 
Lmab-Lsb 	Lmac-Lmbc  

- sa mba dt a Lsa-Lmba b
+ 
L 	

(3.28) 
sa Lmba 
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C 

Fig. (3.7a) Representation of double line to ground fault. 

C 

Fig. (3.7b) Representation of double line fault. 

d 
C 

a  
-R/2 R/ J.R/2 

Fig. (3.8a) Representation of three phase fault. 

d  
C 

Fig. (3.8b) Representation of three phase to ground fault. 



- t5  - 

Putting 
Rmab-Rsb . 	Rmac-Rmbc  is R sa -Rmba 	

+ 
b Rsa-Rmba c 

Lmab 	sb 	L
Mad-Lmbc iy   =  is Lsa-Lmba 

1b Lsa-Lmba 
equation (3.28) becomes: 

ua-Ub = x(Rsa-Rmba) x+x (L 	 L 	) 	i sa mba dt y (3.29) 

Similarly for a transposed line, using instantaneous values 

equation (3.27) may be written: 

d 	. 	. 	. 
a-I)b = x R1(ia-ib) 

 + xL1 	(1a 1b) 
) 1 dt a b (3.30) 

3.2.3 	Three phase fault  

For three phase faults, the fault impedance may be 

represented as in fig. (3.8a) or fig.(3.8b). Under this condition 

the voltage to ground of the three phases at the sending end are: 

Va = x(ZsaIa + Z
mabI

b 
+ 
Zmac
'  I 

c
) + RIa RgI

o 

Vb = x(ZmbaIa 
+ ZsbIb + ZmbcIc)  + RIb 

 + RgI 
o 

Vc 
= x(Zmca

I
a 
+ ZmcbIb 	Z 

sc 
 I 
c
) + RI

c 
+ RgI

o 

Subtracting equation Vb  from Va  gives: 

Zmab- sb T  Va-Vb  = x(Z sa -Zmba ) [Ia  Z-Zb sa mba -  

zmac- 	I
c 

mbc 	] 	R(I  a-I  b)  
Zsa-Zmba 	Zsa

-Zmba 
(3.31) 

Since this equation does not involve Rg it can also be applied 

to an isolated three-phase fault. Equation (3.31) is the same as 

equation (3.24) for a double phase fault, also in instantaneous 

form we obtain the same as equation (3.28), and hence this case 

is exactly the same as double-phase fault. 
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3.3 	CALCULATION OF RESISTANCE AND INDUCTANCE 

In the previous section, using phasor an equation of 

the form: 

V = ZI 	 (3.32) 

and in instantaneous values, an equation of the form: 

di 
U = Ri

x 
L --Y dt 

was obtained for all fault conditions where the values of 

(3.33) 

V, I, u, ix and iY 
 could be found by appropriate choice and com-

bination of voltages and currents. From equation (3.32) or (3.33) 

the values of R and L can be calculated by several methods.. These 

methods and their immunity to noise and dc offset will be studied 

in the following sections. 

3.3.1 	Peak determination method (ref. 21)  

The peak determination methOd finds the line impedance 

by the predictive calculation of peak current and peak voltage . 

in equation (3.32). The system voltages and currents are sampled 

continuously and the peaks calculated using these samples. Con-

sider a typical voltage u 

u = V sinwt 	 (3.34) 

where V is the unknown peak voltage. Differentiating (3.34) 

with respect to t gives: 

u'= wVp  coswt 	 (3.35) 

where u' is the first derivative of u. If u' can be determined, 

the peak voltage is given by.  

(3.36) 
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An equation similar to (3.36) also applies to the 

current samples and the peak current can similarly be determined. 

The modulus of the line impedance is obtained by division and, 

the phase difference A between the voltage and current waveform 

is given by: 

wu 
= arctan 011) 	arctan 	 (3.37) 

where i' is the first derivative of i. Knowing A, the complete 

line impedance is determined. 

This method relies on the fact that the dc offset in 

the primary current can be eliminated by loading the c.t. secon-

dary with a corresponding mimic impedance. It can be shown that
21, 

if a c.t. secondary is loaded with the same .3Tct- ratio as the primary 

circuit, the exponential term vanishes, and the secondary voltage 

becomes a pure sinusoid. Exact cancellation of the dc offset, 

however, is not possible for all faults, because of the variation 

in x and R up to the fault. It is recommended21 to match the 

secondary burden to a primary circuit composed of the source and 

90% of the line impedance. In order to filter out the dc compo-

nent, Rockefeller
22 suggested the use of first and second deri-

vatives for the purpose of impedance calculation as follows: 

Z = u
l2 

+ (1) )
2 

(3.38) 

 

2 	2 + (-TT) 

 

The dc component of the current or voltage waveform has an ex-

ponential form such as eat. The spectrum of this function is 

i'212 	
- which shows that eat  contains both dc and low frequency 

+w 
components. Hence by differenciation an exponential dc compo-

nent cannot be removed completely. The use of the second deriva-

tive has two main drawbacks; firstly the numerical errors in- 
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volved in calculating the second derivative are large and 

secondly, as will be seen in section (3.9.1J), the amplification 

of high and low frequency components is greater than that 

occuring in euqation (3.36). 

3.3. 1.1 Immunity to noise and high frequency components  

Using the basic central and backward difference ex-

pression for derivatives with either the first term only or the 

first plus second terms, the following difference expressions 

can be derived21. Here these equations are written for voltage 

samples, but it is clear that the results are general. 

1( 
1.) - - 	 - 
k 	2T 	k 1 	uk-1 )  

1 	2 	2 	1 or 	r 
	+ uk = 1  '- l2Uk+2 	5uk+1 	auk-1 	12uk-2 ) • T 

1 or 	uk = T (uk -uk-1)  

,1 or 
uk = 2T ( ‘uk -uk-2)  

(3.39) 

(3.40) 

(3.41) 

(3.42) 

These four equations can be looked upon ds digital 

filters with the samples of voltage as input and the voltage 

derivative as output. By using the Z transform, the transfer 

function and hence the frequency spectrum for each of the above 

digital filters can be obtained from which the effects of noise 

and high frequency components can be studied. The transfer 

functions of equations (3.39) to (3.42) respectively are as 

follows: 

H1(Z) = 2T ( 1 - Z2)  

H2  (Z) 
	12T - 	 ( Z2  -1) (Z2  8Z1+1) 

1 	- 1 H3(Z) = T  (1-z ) 

1  H4(Z) = 2T (1-Z2  ) 

(3.43) 

(3.44) 

(3.45) 

(3.46) 
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Replacing Z with eiwT  the frequency spectrum of the filters can 

be obtained as: 

1111(f)1 = 50N I sin  25N
fff  

	

(f)1 50N (4-cos 
fff 	fff  

2 	25N)  sin  25N 

Trf IH
3
(f)I = 100NI 	sin -

0si 

1  111 	sin 'If 	1 = 50N. sin  25N 4" 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

where N is the number of S/C. We can see that from spectrum point 

of view the fourth and the first methods are the same and so 

only the first three methods will be studied. Also it can be 

seen that the spectrums not only depend on the frequency but they 

are also functions of sampling rate N. All methods have more or 

less a sinusoidal shape, but to have all frequency components 

attenuated with respect to 50HZ, they must have their maximum 

fff 
at 50HZ. In the first method the 'sin .2-5-KI has its maximum at 

50HZ when: 

7 . 50 	7 

25 . N 	 2 

or 	N = 4 S/C 

Consequently in this method 4 S/C from filtering point of view 

is the optimum. By increasing the sampling rate the desired 

immunity becomes worse. Figs. (3.9) and (3.10) show the spectrums 

of the filter for 4 and 16 samples per cycle. 

In the second method it can be shown that the maximum 

would occur when: 

cos 25N
Ff  

= 1- /1.5 

and for this maximum to be at 50Hz. N = 3.5 S/C which means that 

practically the 4 S/C is again the optimum sampling rate. The 

spectrum for 4 and 16 S/C are given in figures (3.11) and (3.12) 

which are slightly different from figures (3.9) and (3.10) 
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1 	1 	2 	 2 	1 
Fig. (3.11) Spectrum of U'k  = 	(- 12 uk+2 + 3 

0 
 -k+1 - 3 	+  -k-1 	12 -k-2) 
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and from 	filtering point of view are worse than them. For 

• the third method 2 S/C is the optimum sampling rate, which from 

the sampling theory point of view is impossible. In Figures 

(3.13) and (3.14) the spectrums of this method for 4 and 16 S/C 

can be seen. Hence from immunity to high frequency components 

the first method (equation 3.39) and the fourth method (equation 

3.42) are the best. With these methods using 4 S/C all the high 

frequency components appear attenuated or at least unchanged. 

With a higher rate of sampling, say 16, it can be seen that many 

components larger than 50HZ are accentuated. 

If the problem is looked at from a numerical point of 

view, the low rate of sampling will not be acceptable, because it 

gives large numerical errors21 and consequently the peak deter-

mination method must be used with a high rate of sampling which 

will be involved by noise and harmonic amplification. 

For the second derivative use can be made of the 

following equations: 

u 	
1 

 = 	(uk+2 	2uk + uk-2) 	(3.51) 
4T  

or 	uk 
1  

144T
2 (uk+4 -16uk+3 + 64uk+2  + 16uk+1 -130uk 

+ 
16uk-1 + 64uk-2 -16uk-3 + k-4)  

or uk = 
1
2 'uk-2uk-1 	uk-2)  T  

or 	k = u" 	12 
 (uk-2uk-2 + k-4)  

(3.52) 

(3.53) 

(3.54) 

The transfer functions of these methods, respectively, are: 

H1 	
1 (Z) = 	(1-Z2  ) 2 

4T  

1  2 2 -2 -1 2 
2 H(Z) = 	(Z -1) (Z - Z +1) 

144T2 

(3.55) 

(3.56) 
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- H (z) = — (1-z1  ) 2 3 	
1 
T  

H ( ) = 1 (1-Z2)2  
4T
2 

And the frequency responses are: 

Trf  H ( ) = 2500N2  sing .25N 

2500N2 irf  2 	2 7f  
H2
(f) = 	(4 cos 25N) sin 9 	 25N 

H3(f) = 10
4N2 sin2 uf  50N 

H
4
(f) = 2500N2 sin

2 uf  
25N 

(3.57) 

(3.58) 

(3.59) 

(3.60) 

(3.61) 

(3.62) 

Study of these equations give the same results, as 

for the first derivative. In this case the amplification of the 

high frequendy components is greater than previously. 

It is concluded that the peak determination method-

must be used with a sampling rate other than 4 S/C and this will, 

lead to amplification of the unwanted components larger than 

50 Hz. Hence a high order analogue filter with very low cut-off 

frequency will be required to remove components near 50 Hz. Such 

a filter will have a long time delay. Also with this method, the 

calculation of resistance and inductance is difficult, and it is 

not easy to build an ideal characteristic. 

3.3.2 	- FOURIER METHOD 

Assume the fundamental components of voltage and 

current waveforms are: 

u = Vp  sin(wt+X+S) = A17sinwt + Bcoswt 
	

(3.63) 

i = Isin(wt+6)=A.sinuit-1--13.coswt 
	

(3.64) 

In complex form: 



and 
B A.-A B. 

X = 	 vi  (3.66) 
A.2 	B.2  + 1 	1 
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V = A 	B 

I=A.+j B. 
1 	1 

Hence from equation (3.32) 

  

B A.-A B. 
Z = 17g = R+jX = 

A A.+B B. 
vivi 	viva.  + j 

A.2 + B.2 	A.2.+ B.2 
1 	1 	1 	1 

 

or 

   

 

A A. + B B. 

  

R - 
A.2  + B.2 

 

(3.65) 

 

It was Slemon et a123 who proposed the application of the Fourier 

method to transmission line protection, but the algorithm was 

presented in a way which was not suitable for mini-computer or 

microprocessor application. They suggested calculation of the 

modulus and phase angle of transmission line impedance as 

follows: 

and 

Z = A 2+B 2 / i--2 2 A. +H. 
v v 	1 

B. 
A = tan-1 

27v - tan Al  

(3.67) 

( 3.68 ) 

It is very difficult and time consuming to calculate Z from 

equation (3.67) by mini or micro processors. Also the calculation 

of arctangents is time consuming by exact means. An alternative 

is a program using acoarse look-up table. The new method of 

calculation for R and X from equations (3.65) and (3.66) has 

overcome all the difficulties and has made it possible to build 

an ideal characteristic easily. 

If A
v' 

B
v' 1 

A. and B
i 

are calculated for each phase 

the impedance of the transmission line seen from a single relaying 

point can be determined. Now, using Fourier analysis, the coeffi-

cients can be calculated as: 
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1 	1.1+2'T  = 	j usinwt d (wt) Tr 

1f"2/T  = 	j ucoswt d (wt) if 

1 "211  A. = - IT  f i sinwt d (wt) 

1rY+2Tr  
Tr B. = - f i coswt d (wt) 

(3.69a) 

(3.69b) 

(3.69c) 

(3.69d) 

Where y is an arbitrary angle from which to start the calculation. 

By using the trapezoidal rule (which reauires less manipulation 

than Simpson's rule, but produces the same accuracy in this case) 

the coefficients can be calculated from N S/C as follows: 

1 r 	 2ff 
Avk=  Riuk-N sifly+2uk

_N_I.  sin(y+ -T)+ ... 

+ 2u
k-1 

 sin(y+ N.1-1-271-) + u
k 

sin (y+270] 	(3.70a) 

and 

B
vk
=  N cuk_N  cosy+2uk-N-1  cos (y+ -11

) + 

+ 2uk-1  cos(y+ 
N01270+ uk cos (y+27)] 	(3.70b) 

where uk, uk_i, 	 are evenly spaced samples of voltage. 

Similar equations can be written for Ai  and Bi.By calculating 

these four coefficients for each phase all other information 

about transmission line can be computed from: 

V 2 = A
v
2 
+ Bv

2 
P 

Ip
2 = A.2 + B.2 1 

Active power = 1 R Ip2 = AvAi+BvBi  

Reactive power = 1 X Ip2 = BvAi-AvBi  

(3.71a) 

(3.71b) 

(3.72a) 

(3.72b) 

Equations (3.70) show that samples taken over one 

cycle of the fundamental are required before R and X can be de-

termined, but by adding the newest sample as it is measured into 
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A v  , B
y  etc., and discarding the oldest, an updated value can 

always be readily obtained, and the change in R and X can be 

tracked. If a close up fault occurs, the new samples will be 

radically different from the old ones and R and X will move 

rapidly into the trip zone. Whereas a fault near the line far end 

might take about one cycle to be detected. 

3.3.2.1 
	

Immunity of Fourier method to noise and high 
frequency components  

Equations (3.70) are two 	finite impulse 

response (FIR) digital filters with samples of voltage as inputs 

and the Av and By 
as outputs. The Z transform of both sides of 

equation (3.70a) can be written as: 

1 L  Z(Avk)= K zN  siny+20+1sin(y+ 

+ sin (y+27)1 	Z (uk) 

+.•.+2Z1  sin(y+27- 27  ) 

(3.73) 

from equation (3.73) the transfer function of the digital filter 

can be obtained as: 

Z(Avk) 1 -N 	27 -N+1 H
A(Z) - 	

- 	[sinyZ +2sin(y+ 	Z Z(uk) 

+ 2Zisin(y- 	+ sin (y+27)] 
	

(3.74) 

Using the two relations: 

n-
y  1 Pk sin(kx) - P sin(x)-P

nsin(nx)+Pn+1sin(n-1)x  

k=1 	1-2P cos(x) + P2 (3.75a) 

and 

n
1  
7,-1 k +1 cos(n-1)x 1-P coscos(x)-Pncos(nx)+ P 

P cos(kx) = 
k=o 	 1-2P cos(x) + P2 (3.75b) 

it is possible to write equaticn (3.74) in closed form as: 

27 
. 1 (1-Z

N 
 )(Z

2  siny-2Zsin N cosy-sing)  HA  (L) 
1-2Z cos 21- + Z

2 
(3.76) 

In the same way the transfer function of equation (3.70b) can be 

obtained as! 27 
1 (1-Z-N)(Z

2cosy+2Zsin N siny-cosy)  
(377) HB(Z) = N 	2Tr 1-2Zcos7. + Z2 
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Putting Z=e
j271-fT 

and T. = 
0.02  

Sec.the magnitude of the filter's 

spectrum is given by: 

HA 
 
(f) 	2sin 

7f 

N(cos 7f -cos 27) ✓ 2 	2 	2 	2 
sin 27 cos y+sin ysin 7f 

(3.78a) 

and 

2sinlTf 
H
B (f). = 	

0  
7f 

7f 	27sin
222 

sin
2
y+cos

2 
 ysin

2 
 25N  N(cosys-N- cos--- ) 

(3.78b) 

Equations (3.78) are the frequency responses of the Fourier 

method in its most general form, for N samples per cycle and with 

a starting angle equal to y. From these two equations the proper-

ty of the Fourier method with respect to high and low frequency 

components can be investigated. 

For f = 50 Hz then: 

H
A 
 (50) = H

B
(50) = 1 	 (3.79) 

Equation (3.79) implies that the filter passes a 50 Hz component 

without any change. The amplitutde of other components depend on 

three parametres namely: frequency (f), sampling rate (N) and 

starting angle (y). For y= i the spectrum of the two FIR filters 

are the same, i.e. 

sin LI- H
A
(f) = H

B
(f) = 

If 	
50  

uf 27., 
 ✓  sin2 1L + sin 

25N 
IF  

N(cos 2sN - cos -t-Ti 	N 	25N 

(3.80) 

For N=4 samples per cylce equation (3.78a) reduces to: 

Trf ii  (f) = 2sin-2-0 
A 	i 2 2 2 

Irf 	cos y+sin ysin 	7f  
4cos 

100 	 100 

(3.81) 

25N 
25N 
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7f 

which for y=0 HA(f) = sin 100 
7f  and for y= 	HA(f) = sin2  --- . 100 

These sine and squared sine characteristics are two extreme 

cases of equation (3.81). By choosing different starting points 

(y) it is possible to obtain a variety of characteristics which 

lie between these extremes. By increasing the sampling rate the 

characteristic can be improved and more unwanted components fil-

tered out. In figures (3.15) to (3.18) the magnitude characteris-

tics of the Fourier method for 4,8,12 and 16 S/C is plotted 

against frequency. For all these figures y has been chosen equal 

to 7/4, and so they represent both HA(f) and HB(f). By choosing 

different starting angles (y), slightly different characteristics 

will be obtained which from practical points of view, no im-

portant difference can be noted among them and so y can have any 

value. Figure (3.19) shows the spectrums of Fourier method with 

16 samples per cycle and y=0, i and 7/2. From the magnitude 

characteristics of the Fourier technique with different rates 

of sampling (figures 3.15 to 3.18) it is apparent that, the part 

of the characteristic which lies between zero and 100 Hz is 

approximately independent of the sampling rate. This property 

implies that if components larger than 100 Hz can be filtered 

by analogue means, then the accuracy of the method would be 

independent of the sampling rate and hence there is no point 

in choosing too high a rate. A low sampling rate can result in 

hardware simplification and cost reduction and is very desirable 

in implementation. For this reason 4 S/C is chosen to see if 

a suitable analogue filter with a reasonable time delay which 

can effectively remove the components larger than 100 Hz can 

be found. 

With a single pole Butterworth filter the overall cha-

racteristic of the algorithm can be seen in figures (3.20) and 
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Time delay (ms) 
Cut-off frequency 	(Hz) 

one pole two pole three pole four pole 

60 5.31 6.37 8.49 14.85 

80 3.98 4.77 6.37 11.14 

100 3.18 3.82 5.09 8.91 

150 2.12 2.55 3.40 5.94 

- 63 - 

(3.21) for 100 Hz and 60 Hz cut-off frequencies. Even with 60 Hz 

cut-off frequency such a filter cannot remove the components 

near the third and fifth harmonics effectively. Table (3.1) 

shows the time delays of a Butterworth filter with up to 4 poles' 

with different cut-off frequencies. From this table it can be 

seen that a'single pole Butterworth filter with 60 Hz cut-off 

frequency has a 5.3 msec.time delay. The characteristics with a 

two poles Butterworth filter for cut-off frequencies 100 Hz and 

60 Hz can be seen in figures (3.22) and (3.23). With a two pole, 

60 Hz cut-off this method gives satisfactory results. Also the 

result would be the same with a 80 Hz 3-pole filter. Both of 

these filters have a 6.37 ms time delay. From the foregoing, we 

see that a Fourier method with 4 S/C when used with a second or-

der Butterworth filter having 60 Hz cut-off, from filtering 

point of view gives acceptable results. In this case the Av  and 

Bv, can be written as: 

A = 1  (2u k-3 4 k-3 2uk-1) 

B = 4 1 vk 	
(uk-4 - 2uk-2 + Uk) 

(3.82a) 

(3. 82b) 

Table (3.1) Time delays of Butterworth filters 

During the resistance and reactance calculation the 

coefficient -I 1 f in equations (3.82) will be cancelled out and so 

it can be neglected from the beginning. These two equations can 
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Fig. (3.20) Overall spectrum of the Fourier method with 4 samples per cycle 
and a single pole Butterworth filter with 90 Hz cut-off 
frequency 
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Fig. (3.21) Overall spectrum of the Fourier method with 4 samples per cycle 
and a single pole Butterworth filter with 60 Hz cut-off frequency. 
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Fig. (3.22) Overall spectrum of the Fourier method with 4 samples per cycle 
and a two pole Butterworth filter with 100 Hz cut-off frequency 
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Fig. (3.23) Overall spectrum of the Fourier method with 4 samples per cycle 
and a two pole Butterworth filter with 60 Hz cut-off frequency. 
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be realized simply as in figure (3.24), which gives the Avk  

and Bvk 
at its output. These two outputs can be used by a micro-

processor or mini computer for the impedance calculation. Alter-

natively the calculation of Avk and B vk  can be done by the 

computer as well. The realization of the Fourier method with 4S/C 

is simple, but it needs a filter with a time delay of about 

6.37 ms. Another great disadvantage of using only 4 S/C is that 

to prevent false detection, at least 3 successive calculations 

are necessary to provide impedance values within the protected 

zone before a trip initiation signal can be reliably sent to the 

circuit breaker. Thus the relaying time in some cases, particu-

larly for faults at the end of the line, might well become as 

large as two cycles. If faster fault detection is desired, the 

sampling rate must be increased. The spectrums with 8 samples 

per cycle can be seen in figures (3.25) to (3.27) for a 60 Hz 

single pole, 150 Hz double pole and 200 Hz three pole Butterworth 

filter. These cut-off frequencies are the highest which can be 

used to remove the unwanted components effectively. Both the 

two and three pole filter have 2.55 ms time delay, and they re-

sult in the same characteristic and so the second order filter 

is preferred. By increasing the sampling rate, studies have shown 

that the characteristic will improve, and it is possible to 

choose the analogue filter with the higher cut-off frequency. 

Table (3.2) shows approximately the highest cut-off frequencies 

for filters with different order, when used with 12 and 16 S/C. 

Although by increasing the sampling rate, the fault detection 

time slightly reduces the improvement that is obtained can not 

compensate for the complexity that involves the high rate of 

sampling, and hence no practical advantages can be obtained from 

it. 
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Fig. (3.24) Realization of the Fourier method with 4 samples per cycle 
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Fig. (3.25) Overall spectrum of the Fourier method with 8 samples per 
cycle and a single pole Butterworth filter with a 60 Hz 
cut-off frequency. 

Fig. (3.26) Overall spectrum of the Fourier method with 8 samples per 
cycle and _a two pole Butterworth filter with 150 Hz cut-off 
frequency. 
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Fig. (3.27) Overall spectrum of the Fourier method with 8 samples per cycle 
and a three pole Butterworth filter with 200 Hz cut-off frequency 
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Table (3.2) The highest cut-off frequency for 12 and 16 S/C 

Sampling rate Single pole Double pole Three pole 
cut-off 	cut-off 	cut-off 

12 S/C 100 250 320 

16 S/C 150 350 450 
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A Fourier method with 8 samples per cycle when used 

with a 150 Hz second order Butterworth filter can attenuate all 

unwanted components and at the same time is reasonably fast and 

simple. In this case Avk  and Bvk  are calculated as: 

A
vk 	8 

= 1 — 1 r ,2(Uk-6 -Uk-2 ) 	/T (uk-71-0k-5-0k-3-0k-1)1(3.83a 
 

Bvk 8 " 
r 
k-8 	(uk_7-uk_5-uk_3+uk_1)1(3.83b =  

In each equation only one multiplication is necessa-

ry. But even this can be avoided by approximating VT with 1.5 

and writing equations (3.8 )as 

Avk = 2(uk-6-uk-2)+ 1.5(uk-7+uk-5-uk-3-0k-1) 	(3.84a) 

Bvk = uk-8 2uk_4+uk+ 1.5(uk_7-uk_5-uk_3+uk_1) 	(3.84b) 

1 The coefficient -8- has been omitted, because it will 

be cancelled out in the impedance calculation. These two equa-

tions can be calculated by only addition and shifting operation. 

They can also be realized as in figure (3.29). The frequency 

response of the method is: 

7f 	7f  
HA 	

1 (f) = sin 155  (1+iT cos 200' 
‘ 

and with 1.5 instead of ,2 it becomes: 

1 	7f 
100 	20 

7f HA(f) = -f sin 	( 1 + 1.5 cos 6
1

.1  

(3. 85a) 

(3.85b) 

Figure (3:28) shows these two spectrums. The maximum difference 

between them is less than 4% and for practical purposes they can 

be considered identical. 
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Fig. (3.29) Realization of the Fourier method with 8 samples per cycle 
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The accuracy of the Fourier method with any sampling 

rate is impaired by its inability to remove the exponential dc 

offset effectively. In the spectrum shown, it can be seen that 

a constant dc offset can be filtered out completely, but an 

exponential one which contains all low frequency components 

including 50 Hz, can not be removed. It can only be attenuated, 

and so the methods which can account directly for this component 

may be preferable. 

3.3.3 	SQUARE WAVE METHOD 

To reduce arithmetical calculation of R and X in the 

Fourier method, orthogonal functions based on the square.waves 

can be used
24

. (Note that the technique of section 3.3.2 employs 

sine and cosine waveforms as orthogonal functions). With 'square 

waves, the values of Av  and By  can be calculated as: 

7 
1 	 2.7r 

A
v 
= 	f ud(wt) --1 f ud(wt) 

7 	
Tr
311.  

(3.86a) 

21- 
1 

j  2 
	1 

j  2 
	

+ .71 
1 

j
7 

Sv  = 71. 	ud(eit) - 	ud(wt) 	- 	ud(wt)(3.86b) 

o 	 7 	37 
f 	 2 

By using the trapezoidal integration rule the values of Av  and Dv  

can be calculated from N samples per cycle as: 

A = 2T Pu +2u 
Avk 4N k-N k-N+1

+...+2u
k-N-1

+u
k-N

) 

2 	2-  

-(u
k-N

+2u
k-N+1 

+...+2uk-1+Uk)]  
2-  

Bvk=  4N[(uk-N-4-2uk-N+1-1---1-2uk-3N -14-1)k-3N)  

4 	4 

-(u
k-3N

+2u
k-3N+1

+...+2u
k-N-1

+u
k-N

) 

4 	4 

(3.78a) 

+2u
k-1+uk )] 

	
(3.87h) 

4 	4 

These two equations are non-recursive (finite impulse response) 

digital filters with samples of voltage as inputs and the A
vk 
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and Bvk 
as outputs. The Z-transform of Avk can be written as 

-N -N -N -N 

	

_ 	- - +1 
) . 7  rt V4.2e1+11.....+2z2 	14.z2)...(z24.2z2 

Z(Av 

	

	
+...+Zi +1)] Z (Vk) 4N I. ‘ 

or 	 -N 

Z(Avk ) 	4 = -- 	

7 2 

4N ir  r  (Z -1) (1+Z
1 
 ] ) 1 

	

Z (uk  ) 	(3.88) 
L 	-1  Z -1 

From equation (3.88) the transfer function of the filter can 

be calculated: 
-N 

Z(Avk) 	
1 2.  2 u 	(Z +1) (Z -1)  HA(Z) = Z(V ) - 4N 	-1 k 	Z -1 

(3.89) 

The frequency response of the filter can be obtained by replacinc 

Z with ejwT: 

HA(w) = 	cot )7 sing Nw7-- 
- 	4 e  

Putting w=2uf and T= 0 .0 2 we obtain: 

-j(1f +  
f 
55)n 

	

HA(f) = 
2 	i 	0 n cot irf= s 2 7f= 

	

N 	5N 	 0 e  

+NwT) 
2 (3.90) 

(3.91) 

The magnitude of the frequency response is: 

A(f) 1= 
1  sin2 100  Trf  1 cot 

SON N 	fff 	1 

Also the Z-transform of the Bvk  is: 

	

-3N-3N 	-3N 	-3N _Li  
I  . Tr Z(Bvk' 4N 	+2Z 4 -1  +Z 4  )-(Z 	+2Z p.4.2-e+1+... 	4 	4 -L  + ... 

-N , -N -N -N 
4 	

Tei +1 	 1 
...+2Z 	+Z )+(Z +2Z 	+...+2Z + 1)] Z(uk) 

or 	 -N 	-N 

nNL 	

74 2 
r(Z+1) (1-Z ) (1-0  j  )  1 Z(Bvk) - 4 

	

	 Z(uk) 	(3.93)  Z-1 

From here: 	 -N 	-N 
z (B 	) vk  - IL (1+z) (1--Zif) 2 (1-J) 	 (3.94) 

HB(Z) =   Z(uk) 	4N 	Z-1 

or in terms of f and N: 

f) 	27 	uf 
B ( 
	--- 	7f 	2 7f 	j(1-  f ) 

H 
	)Tr 

50Nsin  100sin  200 e 	50 (3.95) 

(3.92) 
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and the magnitude of frequency response is: 

	

ft.\ 	. 	. 2 7f 	7I 

	

'B' ' 	sin — 20 I cot(-51.71. 0  
. tf  

100 

The constant coefficients of Avk and Bvk may be discarded. 

(3.96) 

By adding the newest sample as it is measured into 

Av and By 
and discarding the oldest, both Av and By 

can be 

written in recursive form as follows: 

• A 	=A  vk+1vk-1-(-u -u  k-Nk-N+14-2u +2u k _Nk_N _ +1  uk-uk+1) (3'97a)  
2 

B
vk+1

==-13
vk
+(-U

k-N
-Uk-N+1 +2u 

	+2u k-3N 	k-3N 	-2uk-N 
4 	4- +1 

-2uk-H +1 + uk + uk+1) 4 

The Z-transforms of these equations are: 

- 	2 1 
rN  

Z(Avk+1)=Z1Z(Avk)+(-Z 
	-ZN  +2Z 	+2J-Z1-1) Z(uk+1) 

(3.97b) 

3N 	3N _1471 	_ 
4 
H 

z(B
vk

+1)=Z1z(B
vk
)+(-ZN-1  -ZN 	4 	4 

+2Z 	+2Z 4  -2Z 	-2Z 	+Z1  +1) 

Z (uk+1) 

From these two equations the transfer functions can be shown to 

be the same as equations (3.92) and (3.96), indicating that this 

method has the same frequency response in recursive or non-re-

cursive form. 

From equations (3.92) and (3.96) the spectrums of 

Ay 
and B

y 
have been plotted in Figures (3.30) to (3.37) with 

spectrums of the Fourier method for comparison. Comparison of the 

two methods shows that the square wave method accentuates some 

components and as a whole it has a poorer characteristic. For 

example in calculating Av  by it some components smaller than 

50 Hz will be amplified (figures 3.29 to 3.32). This amplifica-

tion of components between 30 and 40 Hz might reach 30% of the 
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Fig. (3.32) Spectrums of the Fourier and square wave methods (A
vk
) 

for 12 samples per cycle 

square wave method 
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fundamental. The exponential dc offset of the current and voltage 

waveforms contain these sort of components which by this method 

will be accentuated. Consequently in dealing with exponential dc 

offset the behaviour of the square wave method is much poorer than 

the Fourier method. Also the attenuation of other unwanted compo-

nents in the Fourier method is better than for the square wave 

method. For example in figure (3.36) the 130 Hz component has 

been attenuated 4 times by the Fourier method, but only 2.1 times 

by the square wave method. As a result of this comparison, no 

advantage is gained by use of the square wave method. Of course 

it can be argued that the calculation of Ay  and By  by this method 

does not need multiplications, but as seen earlier, by approxi-

mating the coefficients of the Fourier method, multiplication 

can be omitted, producing a characteristic which has negligible 

differences to the exact one. 

3. 3.4 . McINNES METHOD25 

The Fourier and square wave methods make use of 

equation (3.32) of section (3.3), to find the resistance and 

reactance of the transmission line. McInnes used equation (3.33) 

of that section for calculating resistance and reactance. By in-

tegrating equation (3.33) once over time instants (tk) and 

(tk+KT) and again over (tk+1)  and (tk+1+KT), the following two 

equations are obtained: 

tk+KT 

ft udt = R k 

tk+1+KT  

f t udt = 
k+1 

k 

tk+l+KT 	tkEl+KT 

R ft 	dt +L f, 	di 
k+1 	Y 

t
k
+KT 	tk+KT 

ftk  ixdt+L f 	di (3. 98a) 

(3.98b) 

X is an arbitrary constant whose optimum value will be deter-

mined later on. These two equations can be written as: 



SVk. = R SIk 
+ L DIk 
	

(3.99a) 

SVk+l 
= R SIk+1 + L DIk+1 
	(3.99h) 

where SVk, SIk, ... represent the integration terms in equations 

(3.98). From this pair of simultaneous equations, R and L can be 

calculated: 

S\jk+1 DIk  - SVk  DI k+1 = 
M
R 

SIk+1 DIk - SIk 
DIk+1 

Svk.SIk+1 - SVk+1 
 SIk

ML 
L = 

	

	 =  
2 SIk+1.DIk 

- SIk.DIk+l 

(3.100a) 

(3.100h) 

using the trapezoidal rule and N samples per cycle, SVk  and SIk  

and DIk can be written as: 

k-1 2 T SVk = uk+K uk 2 	uk+n 	(3.101a) 
n=1 

K-1 
SIk  =i 	i 	2 	i 	(3.101b) k+K k 	k+n n=1 

DIk  = ik+K -ik 	 (3.101c) 

where the uk and ik 	are the instantaneous samples of voltage 

and current taken at equally spaced intervals. A similar equation 

can be written for SVk+1' SIk+l and DIk+l. These equations are 

three non-recursive digital filters with the current and voltage 

samples as inputs and SIk, ... as outputs. The transfer functions 

of SVk  and SIk  are the same and so only SVk  and DIk  will be con-

sidered. The Z-transform of DIk is: 

and so 

Z(DIk) = (1-EK) Z (ik) 
Z(DIk) 	 K 

k 
HDI (Z) 	- 1-Z Z(ik) 

(3.102) 

(3.103) 

or in terms of frequency it will be: 

• 1 	Kf  KTrf  HDI 	50N 	
2((f) = 2 sin --- e 	2 	50N 

k  
(3.104) 



1 	07 Isin (5 5K0N)  I = 1 

K7 7 _ 
= 2' 

N 
2 	' 

37 
' 

• 
' 

57 
N 2 

3N 

2 	' 

5N 
2 2 	' 

or 

or 

(3.106) 

(3.107) 

(3.108) 
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and the magnitude of its spectrum is: 

K7f 
I HDI 	= 2Isin -

50
K I (3.105) 

Equation (3.105) shows that the frequency response of this 

filter has a sine shape and is dependent on two parameters; N 

(sampling rate) and K representing the interval over which the 

integration is performed. If it is desired to attenuate the un-

wanted components with respect to the fundamental, the maximum of 

the sine characteristic must occur at 50 Hz. For this we must have 

This is a very interesting result, since in order to have all 

components attenuated with respect to 50 Hz, the interval of 

3 integration must be half a cycle, y cycles etc. and from this 

interval the smallest giving the fastest fault detection routine 

is the optimum. So if the integration interval is chosen to be 

half a cycle, independent of the sampling rate, the spectrum is 

as in figure (3.38). By increasing this interval, figure (3.39) 

is obtained and decreasing it, figure (3.4.0). In both figures the 

accentuation of the undesirable component can be seen. 

The transfer function of SVk is: 

T (1+) K-1)  
SVk 2 1 Z -1 

giving the spectrum: 

(3.109) 

.7f  
IHs 	= NI sin  KTrf 50N cot 50N 	(3.110) Vk  

Here again it can be shown that k equal to f produces the opti-

mum characteristic. For k = 2 equation (3.110) becomes: 
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I HSVk(f) I 

1irf 	71-f KT  'sin - 100 cot  

This spectrum, as is seen in figures (3.41) to (3.43) for 4, 

8 and 16 samples per cycle is dependent on the sampling rate. 

Hence in this method the choice of cut-off frequency for the 

analogue filter depends upon the spectrum of DIk, because this 

term is most vulnerable with respect to the harmonic and non-

harmonic components. As stated, for optimizing the characteristic, 

the integration interval must he half a cycle, which gives the 

spectrum shown in figure (3.38). This spectrum is independent of 

the sampling rate, and is the same as the spectrum of FoUrier 

with 4 samples per cycle, and like that method, as already 

discussed, for effective removal of the unwanted components a 

second order Butterworth filter with 60 Hz cut-off frequency is 

needed. The overall spectrum of Fig.(3.44) shows this combination. 

With this analogue filter, the spectrums of SVk  and SIk  with any 

rate of sampling equal or larger than 4 is acceptable, but from 

a numerical point of view the higher rate of sampling gives 

greater accuracy. For this reason 8 samples per cycle is suggested 

because it gives acceptable numerical accuracy and at the same 

time is low enough to allow for simple hardware. The overall 

characteristic of SVk with a 60 Hz second order Butterworth filter 

and 8 samples per cycle is shown in Fig. (3.45). With this 

method, calculation of R and X requires samples of little more 

than half a cycle and so with a 6.37 ins time delay of the ana-

logue filter, the overall fault detection time, even for the. 

fault at the end of the line, is less than one cycle, Hence this 

method is faster than the Fourier method which needs the samples 

of one complete cycle for distant faults. 
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Fig. (3.38) Spectrum of DI
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Fig. (3.42) Spectrum of SVk for 16 samples per cycle 

Fig. (3.43) Spectrum of SVk  for 8 samples per cycle 
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3.3.5 MEAN SQUARE ERROR MINIMIZATION METHOD
26 

Equation (3.33) of section (3.3) can be rewritten as: 

di 

L 
dt

+ R i
x 
- u = e 	 (3.112) 

where e is the error caused by shunt capacitance and noise effects 

By integrating both sides over (0,t) we obtain: 

t 	t 	t 
L f 	di +Rf 	i

x
dt - f udt = e

t 
	

(3.113) 

The average of the square of the errors over the interval T is 

given by: 

1 
t 9 

em  = 
T 	

f di + Rf i
x
at -f udt]Lat (3.114) 

We can choose L and R so that e
m 

is a minimum, for which the 

partial derivatives of e
m 
with respect to R and L should be zero. 

The following equations are obtained: 

T t 	t 	T t 	T t 	t 

R f (f di ) (f ixdt)dt+L f (f di )2dt = f (f udt) (1 di )d 
0 o 	o 	o o 	o o 	o 

Y 	 Y 	 Y 

and 	 (3.115a 
T t 	T t 	t 	T t 	t 

R f (f i
x
dt) 

2
dt+Lf (1 di ) (f i

x
dt) dt = f (f ixdt) ( f vdt)dt 

o o 	o o Yo 	o o 	o 

(3.115b 

From these two equations R and L can be calculated. In comparison 

Jbet4T 
%.----- 

with the McInnes method accuracy can be obtained, but the method 

is more complex and needs many more multiplications. For this 

reason it is discarded. 

3.3.6 MINIMIZATION OF ERRORS OVER SEVERAL INTERVALS 

In equation (3.113) the interval (0-t) can be divided 

into n parts by taking a sequence of samples
27
. This allows n 

equation of the type 

t. 
t. 	 3 

R f 3  idt + L(i -i ) - 1 	udt = e 

t 	
, 

Yj Yi 	 J . 
x 	

t.  
1 	 1 

(3.116) 

n 
e' to be written for the intervals t

i
t t

j
. Minimising 1 c4  in re- 

j=1 
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lation to R and L gives two equations from which R and L can be 

calculated as before. The accuracy of this method was found
26 to 

be less than the method 3.3.5 although the speed of computation 

was about the same. 

3.3.7 
	

DIGITAL HARMONIC FILTERING METHOD
26 

In general, it is possible to calculate R and L from 

equation (3.33) so that any number of harmonics can be eliminated. 

For example, to remove the third harmonic, equation (3.33) can 

be integrated once over 0,8 ( 5 is an arbitrary constant) and 

again over the intervals Tr  , (8 + 3'  the resulting equations, 

when added give: 

8 	8+n/3 	8 	8+n/3 
L[ f di +f 	di ]+R[f i dt+f 	idt] . 

0 17-  'rr/3 Y 	o x n/3 X  

f3-1-Tr/3 
f udt +f 	udt 
	

(3.117) 
o ff/3 

In this equation the third harmonic is completely filtered. Also 

to remove the third and fifth harmonics equation (3.33) can be 

integrated once over (o, ----E 
2u T) and again over'the interval 

Tr 
(-
3 
 -- 

2ff 
). The resulting equations, when added, give: 

5 
2n 	2n n 	2n 	2n n 

5 	
7T+ 5 	

-
3 r L f 5  di + 	r 

j i dt + f 	i
x
dt] = 

x 
 

2n 
5 	2 n + n 

f vat + f 5 	3 	udt 	 (3.118) 
0 	Tr 

3 

In general to remove two harmonics of order m and n the resulting 

equation will be: 
2n. 	2n

+  71- 	2Tr 	2Tr 2Tr 	Tr 
  — 	-- 

m 
j L{ 	di +f m 	ndi ] +R[ ir m i xdt + f 

m 	n i
x
dt] = r r  

Y 	Y o TT 	0 	Tr _ 

2Tr 	- 	
n 	 n  

	

71- 	Tr 
M 	

2 -- 4- 
ii 

	

f udt + f m 	udt 
o If 

n 

(3.119) 
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This principle can be extended to any number of harmonics by 

making a sufficient number of integrations. For example, three 

harmonics of orders m,n and k can be eliminated by using: 

L (1 f diy) + R (1fixdt) =/fudt 	(3.120) 

where 2n 	271. 	Ti 	 2n 	it 	27 	it + — 
udt +f k 

+ + — 

	

I fudt = f k  udt +1k 	1T1 	 4. 	
udt+f 

k 
udt

m 	n 

O 	7f 	7 	 1TTT 

m n   m n 

and Ifdiy  and fix are calculated similarly. The spectrum of this 

method is better than that of McInnes (see discussion of refe-

rence 26) but it involves a little more calculation and also it 

needs more memory space, which is an important factor if it is 

intended to use a micro-processor for implementation. 

3.3.8 	GILBERT AND SHOVLIN METHOD28 

Neglecting the exponential dc offset and other unde-

sirable components of current and voltage waveforms, Gilbert and 

Shovlin showed that R and X can be calculated from: 

uk-1 ik 	uk  1k-1  
X = 

	

	sin (wT) 2 
1k-1 	1k-2 1k 

(3.121b) 

This method is very sensitive to dc offset and noise and so only 

from an academic point of view it is of interest (see discussion 

on the method at the end of this thesis). 

3. 3.9 
	

ORTHOGONAL NOTCH DIGITAL FILTERS METHOD29 

Carr and Jackson29 established a method involving two 

orthogonal notch digital filters with sine characteristics from 

which the magnitude and phase angle of the fundamental components 

of a waveform can be calculated from samples taken at four 
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equally spaced time intervals over a period, In this way they 

obtained the following equations: 

Xk_2+Xk)-j(2Xk_3-2Xk_i) 4 Ck ichk' = (xk-4-2 

4 Ck+1  Ac+1 = (-2Xk_2+2Xk)-j(Xk_3-2Xk_1+Xkl.1) 

4 Ck+2 /4)k+2 = (-Xk-2
+2xk-Xk+2)-j(-2Xk+1+2  Xk+l) 

4 Ck4.3  /4)k+3 = (-2Xk+2+2Xk)-j(-xk_1+2Xkl_i-Xk4.3) 

(3.122a) 

(3.122b) 

(3.122c) 

(3.122d) 

The two-term brackets have a sine wave, and the three 

term brackets have a sine-squared wave characteristic. It can be 

shown that this method is the same as a Fourier method with 4 

samples per cycle. By using a Fourier method the real and imagi-

nary parts of a phasor quantity can be calculated as follows: 

2u-i-u/2 
Real =

7  f 
	x sin(wt) d (wt) 
u/2 

27-Pu 
Imag.= 1 f 	2 x cos (wt) d (wt) 

T/2 

(3.123a) 

(3.123b) 

where x is the continuous function whose samples x. x xk-1° 

are the input of the digital filter. Using the trapezoidal rule 

• with 4 intervals over a period, equations (3.123) can be rewritten 

as: 
7 k  Real = 1 2u 	1 -2- -- + 2X_3sinu + 2Xk-2sin 

21 + 7T  • 	(Xk_4sin f 	 2 

5w sin2Tr + xk sin -T 2 Xk-1 

1 	91T 	1 	7 	 37 Imag. = 	. =t- . -2- (Xk_4cos f + 2X k-3 COS7 	2X 	coscos j-- + 

2Xk--1 cos2u + xk cos 
511 ) 2 

Real = 	(Xk-4 -2  Xk-2 + Xk) 

and 

or 
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1 
Imag, 	74- c-2xk_3-4-2X k-11 

From heref.  

- 1 
k 	= CX -X +x 1"(-2X +2X ) 4 k-4 k-2 k 	k-3 k-1 

or 

4Ck 	 = (xic_4-2Xk...2+xk)-j(2Xk_3-2Xk_1) 

By moving ahead with new samples the interval of the integrations 

37 	37 changes to (7, 27 +7), 	, 27 + --) and (27r, 47) which give 2 	2 

ck+1' ck+2  and ck+3. So there is no difference between the ortho-

gonal notch digital filters method and the Fourier method with 

4 samples per cycle (also see discussion at the end of this 

thesis). 

3.3.10 
	

CURVE FITTING METHOD30 

By using the least square method, the samples can be 

fitted to an offset sine wave,and from which the real and ima-

ginary part of the voltage and current can be calculated. The 

waveform is assumed to be as: 

- K1  eat  + 	(K2msinmwt + K2m+1cosmwt) 	(3.124) 
m=1 

where M is the number of harmonics being considered, E is the 

decaying time constant and co is the angular frequency of the fun-

damental. To fit the fault current or voltage to expression 

(3.124) the following function must be minimised: 

TM 1 E = f [ I-K1 e- Et - 1 (K2msinmwt + K2m+1cosmwt)j
2 
 dt 

o 	m=1 

where I is the current or voltage waveform and T is the sampling 

Period. After minimisation we obtain:

•
T  

Kr = f I fr(t)dt for r = 1, 	2N+1 

where the f
r(t) are weighting functions which can be calculated 
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off-line. In this method E and mw have to be predetermined. The 

method seems interesting and it is simple enough for on-line 

application, but it has two main drawbacks, namely: 

(i) In general, the .)S- ratio for the source is diffe-

rent from that of the line, so different t; values for faults at 

different points on the line are necessary. Also depends on 

the fault resistance which might change widely for different fault 

and so cannot be predetermined accurately. 

(ii) During the fault there are a large variety of 

harmonics and non-harmonics generated. Analogue filters can 

remove high frequency components, but the algorithm should account 

for low frequency ones. Practically expression (3.124) can account 

only for 1 or 2 of these components, otherwise the off-line 

calculation of fr(t) becomes very complicated. 

3. 4 	CONCLUSION 

In this chapter we obtained the following results: 

(i) The cut-off frequency of the analogue filter which 

is used in filtering the noise and high frequency components, 

depends on;type of algorithm, order of the filter and sampling 

rate. 

(ii) In peak determination methods, in order to have 

all high frequency components attenuated with respect to 50 Hz 

the sampling rate should be 4S/C, which from a numerical point 

of view is not acceptable. Also this method is unable to cope 

with exponential dc components. 

(iii) The Fourier method, with 8 S/C and a 150 Hz, two 

pole Butterworth filter, from the filtering point of view is 

quite acceptable but its accuracy might be impaired by its inabi-

lity to remove the exponential dc offset effectively. In this 
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method by approximating the coefficients, multiplication in real 

and imaginary parts of a phasor can be avoided, without any 

practical changes in the spectrum. 

(iv) Square wave method accentuates some components 

and as a whole it has a poorer characteristic than the Fourier 

method. Also in dealing with the exponential dc off-set its 

behaviour is worse than that. 

(v) In the McInnes method, the interval of integration. 

must be half a cycle, otherwise the fault generated high frequen-

cy components will be accentuated. It directly accounts for ex-

ponential dc offset and this is its great advantage over other 

methods. If it is used with a 60 Hz, two pole Butterworth filter, 

it will filter out all noise and fault generated high frequency 

components. 

In the next chapter these algorithms, in the presence 

of exponential dc off-set and fault generated high frequency com-

ponents, are used to calculate R and X in a test model, and then 

the results are compared. 
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CHAPTER 4 

OFF-LINE TESTS 

In this chapter the effect of exponential dc offset 

and fatlt generated high frequency components on the accuracy of 

Fourier, Square wave and McInnes methods with different rate of 

sampling are studied. The typical system which was used for 

this purpose is described in Appendix Al. This system has a high 

ratio, and consequently for fault inception angles about zero 

radian, results in a high exponential dc offset. Many high 

frequency components are generated when fault inception angle is 

about 7/2 radians. The waveforms obtained (Figs. 4.7) and (4.8) 

tend to be idealistic and neglect the effects of random and non-

predictable parametres such as arc-resistance variations, sen-

sitivity of zero-sequence impedance to earth resistivity and 

changes in mutual coupling between parallel circuits due to 

varying power flows. However, the simulation does allow the 

merits of different algorithms to'be compared on the same basis. 

4.1 	D.C. OFF-SET STUDIES. TEST SERIES 1 

The aim was to study the effect of the transient dc 

offset on the accuracy of the algorithm, and so at this stage 

the shunt capacitance of the line was discarded. To obtain the 

most severe dc off-set, the line was considered to be unloaded
31 

and opened at point B (Fig.A1.1 in Appendix Al).For faults at the 

end of the line AB, the impedance seen at point A was calculated 

using different algorithms. The end of the line was chosen for 

fault study because the accuracy of the impedance calculation 

with a fault at. this point is the most important one. In this 

model, the overall IC ratio was about 23.8 which for some fault 
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inception angle results in a high transient dc off-set. The 

highest dc off-set was obtained for a zero fault inception angle 

and this component completely disappeared when the angle was 

equal to the overall system impedance (source + line) angle. The 

system impedance angle was near to ff/2 and at this angle the dc 

component was negligible. 

4.1.1 	Fourier method 

The impedance seen at point A was calculated for 

different sampling rates and different fault inception angles. 

Some typiCal results for 8 and 16 samples per cycle for 3 diffe-

rent fault inception angles can be seen in figure (4.1). From 

these the accuracy of the Fourier method is more or less indepen-

dent of the sampling rate and a low rate of sampling (8 S/C) is 

preferred. The maximum errors of R and X are given in table (4.1) 

Col. A where it can be seen that for a fault inception angle near 

to Tr/2 the maximum error for X is less than 0.5% and for R less 

than 4%. For fault inception angles near zero, the errors increas 

and reach about 80% for R and 6% for X. The large error for zero 

fault inception angle is due to the exponential dc off-set in 

fault current and the inability of the Fourier method in removing 

this component effectively. The Fourier method attenuates this 

component but such attenuation is not enough. 

The errors for R and X change periodically and the 

maximum errors reduce exponentially as the calculation continues. 

When the exponential dc off-set disappears the errors become 

negligible. This effect can be shown also mathematically: If in 

the presence of an exponentially dc off-set the peak of the 

current waveform is calculated by the Fourier method, the result 

would be: 
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Fig. (4.1) Results of resistance and reactance calculation by the 
Fourier method.. (Shunt capacitance is discarded). 

a and b : calculated resistance and reactance with 8 samples 
per cycle 

c and d : calculated resistance and reactance with 16 samples 
per cycle 

0 0 r] 0 zero fault inception angle 

0 9 • o Tr/4 fault inception angle 

ff/2 fault inception angle 
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Calculated current peak  
Actual current peak 

t 	
-
it 	

1 

(1+C.1e C
2
e cos(wt+y) =  

(4.1) 

where C1,C2  and y are constant coefficients and T is the time 

constant of the exponential dc component of the current waveform. 

Equation (4.1) shows that the calculated current peak changes 

periodically and its error decreases exponentially until it be-

comes (in the steady state) equal to the actual current peak. 

Figure (4.2) shows the accuracy of the Fourier method 

with 8 samples per cycle with exact and approximated coefficient 

( VT and 1.5), and no difference is descernable between them. In 

the previous chapter it was seen that from filtering point of view 

they are also identical. 

It can be concluded that the Fourier coefficients can 

be approximated without practically affecting accuracy or spectrum. 

Table (4.1) Maximum error (in %) for different methods 
Shunt capacitance is discarded 

Sampling 
rate 

Fault 
inception 
angle 
(FIA) 

R 
and 
X 

Fourier Square McInnes 
Wave 	method method method trapezoi- 

dal rule 
A 	B 	C 

McInnes 
method 
Simpson 
rule 

D 

8 S/C 

0 

R 73.76 115.75 14.23 
(142.1) 

0.79 
(1.66) 

X 6.08 

. 

8.54 
5.75 

(8.82) 
0.28 

7/2 R 3.79 5.20 0.17 0.00 

X 0.26 0.35 5.21 0.00 

16 S/C 

0 R 87.88 111.20 4.14 
(23.57) 0.41 

X 6 6.38 8.17 8 .. . (21.41
47 
) 

0.03 
 

Tr/2 R 3.95 5.00 0.14 0.00 

X 0.27 0.35 1.29 0.00 
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4.1.2 	Square wave method  

Some typical results for this method with 8 16 S/C and 

for 3 different fault inception angles can be seen in figure (4.3). 

Like the Fourier method, the accuracy is the same for different 

rates of sampling. Also the errors change periodically and decrea-

ses exponentially. The maximum error for resistance changes from 

about-5% (when FIA = 7/2) to about 115% (when FIA = 0) and for 

reactance it changes from about 0.5% (FIA = 7/2) to about 8.5% 

(FIA = 0). As a whole the overall accuracy is less than the Fou-

rier method. Hence a modified Fourier method with 8 samples per 

cycle is preferable, because it gives greater accuracy with simi-

lar simplicity. 

	

4.1.3 	McInnes method 

The integration terms SVk, SIk,... in the McInnes 

method can be calculated by using either the trapezoidal or Sime-

son's rule. The trapezoidal rule is simpler but it gives less 

accuracy than Simpson's rule. From a spectrum point of view both 

of them produce almost identical results. Typical results can be 

seen in figures (4.4). Also the maximum errors are given in 

table (4.1) Col. C. In contradistinction to the Fourier and square 

wave methods, increasing the sampling rate improves the accuracy. 

With 8 S/C, the error for R is less than 15% and for X is less 

than 6%. With 16 samples per cycle, these errors reduce to 5 and 

1.5% respectively. Figure (4.4) shows that at some point the 

error is large. These large errors, which appear only at two or 

three points have been shown in brackets in the table (4.1). These 

errors are due to the exponential dc offset in current waveforms. 

When there is no exponential dc off-set the numerators and deno-

minators in the equation (3.100a) and (3.100b) are constant, but 
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Fig. (4.3) The results of resistance and reactance calculation by the square 
wave method. (Shunt capacitance is discarded). 

a and b : calculated resistance and reactance with 8 samples 
per cycle 

c and d : calculated resistance and reactance with 16 samples 
per cycle 
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Fig. (4.4) The results of resistance and reactance calculation by the 
McInnes method (trapezoidal rule). Shunt capacitance is discarded. 

a and h: calculated resistance and reactance with 8 samples per cycl 
c and d: calculated resistance and reactance with 16 samples per 

cycle 
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if these terms are plotted in the presence of exponential dc 

off-set, figure (4.5) is obtained. It is seen that these terms 

change periodically (as the calculation continues) and reduce 

exponentially to their final value. At some point such as A the 

numerators and denominators are large and so they are not sen-

sitive to the numerical errors. As a result of this, the accuracy 

of the calculated resistance and reactance at these points is 

very good, but sometimes it happens that at some points, e.g. B, 

the values of the numerators and denominators become very small, 

and the terms are very sensitive to numerical errors. As a re- 

sult 	the error in R and X at these points becomes large. This 

problem does not necessarily impair the practicability of the 

McInnes method with the trapezoidal rule, because it happens 

only at two or three points which are usually reached after the 

fault has been detected. However, these errors can be predicted 

very easily by checking the values of the numerator and denomi-

nator terms. If these terms are very small, the error could be 

large and R and X for that particular point or points should be 

discarded to await for the next samples. 

Figures (4.6) show some typical results for McInnes' 

method with the Simpson rule. The maximum errors for this method 

also can be seen in table (4.1) col. D. The results are very 

encouraging. The maximum error for reactance is less than 0.3% 

and for the resistance is about 1%. These errors are with 8 

samples per cycle. With 16 samples per cycle the results are more 

accurate. In this case even for small values of numerator and 

denominator of R and X, the maximum errors are less than 0.3 

and 1.66% respectively. In fact the numerical error in using 

Simpson's rule is much less than the trapezoidal rule and because 

of this, even with a very small numerator and denominator, the 

errors of R and X are very small. 
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4.2 	FAULT GENERATED HIGH FREQUENCY COMPONENTS 
TEST SERIES 2 

The aim of these tests was to study the accuracy of 

different algorithms against fault generated harmonics and non-

harmonics when the shunt capacitance of the transmission line 

was taken into account. The representation of transmission line 

was obtained by a multi section lumped parameter model consisting 

of 10 cascaded T sections23 in which self and mutual impedances 

and shunt capacitance were included. In previous sections the 

spectrums of different methods were studied to determine the 

necessary analogue filters and their associated cut-off frequen-

cies. For the McInnes method with any sampling rate, at least a 

second order Butterworth filter with 60 Hz cut-off frequency was 

necessary, and for the Fourier or square wave method, with 8 

samples per cycle, a second order, 150 Hz Butterworth filter 

was needed. 

The voltage and current waveforms of the test model 

were passed through the necessary filters and then the output of 

the filters were used for R and X calculation by the different 

methods. The Butterworth filters were simulated digitally (see 

next chapter) by the bilinear transformation for 60 Hz cut-off 

frequency: 

u
k+2

= 0.000537(uk+2  +2uk+1  +uk  ) + 1.933 uk+1  0.935 uk 

For 100 Hz cut-off frequency: 

u
k+2

= 

and for 150 Hz 

0.00146(uk+2+2uk+1k)+ 

cut-off frequency: 

1.889  uk+1 - 0.895 uk 

u
k+2 = 0.0032(uk+2+2uk+1

+u
k
)+ 1.834 1.1k+1 - 0.846 11k 

where uk is the k
th input sample to the filter and uk is the k

th 

output sample from the filter. The same filters must be applied 
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to current samples (the sampling rate for the digital filters 

was 8000 samples per second). Some typical current and voltage 

waveforms before and after filtering can be seen in figures 

(4.7 and (4.8). For a fault inception angle equal to 7/2 radians 

the voltage waveform is very distorted. The field oscillograms 

which have been recorded in high voltage substation are smoother 

than waveforms in figures (4.8). This is because the recorders 

have a poor frequency response at high frequencies and they 

filter out many components. 

In tables (4.2) and (4.3) some typical results for the 

Fourier method with 8 and 16 samples per cycle are recorded. 

Here again for zero fault inception angle, for which there is a 

large exponential dc offset, the error for the resistance is 

large and for the reactance is about 10%. For 7/2 fault inception 

angle, although there are a large number of harmonics and non-

harmonics components, the errors are acceptable, because in this 

case, no d.c. off-set is present. These results and also the 

results of section (4.1) show how the Fourier method is vulne-

rable to the presence of an exponential d.c. component. 

Tables (4.4) and (4.5) show some typical results for 

the McInnes method with Simpson's rule. The results have been 

obtained with a second order, 60 Hz Butterworth filter. With 8 

samples per cycle the maximum error for reactance is about 3% 

(for zero fault inception angle, at one point the error reaches 

about 6%, but at this point the numerators and denominators of 

R and X are small and the value could be discarded, also before 

this point is reached, the fault actually has been detected). 

For the R the maximum error is about 20% but this is quite 

acceptable, because in building the relay characteristic, to 
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Fig. (4.7) The inputs and outputs of second order 60 Hz Butterworth filter 
(fault inception angle = 0) 

a - Input voltage waveform 

b - Output voltage waveforth 

c - Input current waveform 

d - Output current waveform 
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to- TIME( SECOND) ■10''-> 

a 

TIMEISECONO 	N 1 Ir1".4.  

b 

a 

I.-- TIME ( SECOND) ■10''-> 

C 
TIME( SECOND) it10-1--* 

d 
Fig. (4.8) The inputs and outputs of second order 60 Hz Butterworth filter 

(fault inception angle = 7/2 radians) 

a - Input current waveform 

b - Output current waveform 

c - Input voltage waveform 

d - Output voltage waveform 
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Table (4.2) Off-line test results with the Fourier method. 
Fault inception angle. = O. 
Shunt capacitance is considered. 
The results are with a two-pole, 150 Hz Butterworth 
filter. 

Time 	(ms) 
after fault 

* 
100 R/RF 

8 S/C 	16 S/C 
__I 

* 100 X/XF  

8 S/C 	16 S/C 
-4- 

20.00 227.40 247.90 95.28 99.31 

21.25 234.43 94.83 

22.50 146.72 193.68 90.74 91.83 

23.75 146.90 90.37 

25.00 60.18 101.05 91.23 90.12 

26.25 58.29 90.91 

27.50 - 	3.94 20.85 95.62 92.71 

28.75 - 8.01 .95.45 

30.00 -18.69 -24.15 102.75 98.97 

31.25 -23.34 102.87 

32.50 37.08 - 3.01 108.83 106.56 

33.75 35.19 109.23 

35.00 128.33 83.71 108.11 110.20 

36.25 130.89 109.26 

37.50 179.51 166.02 103.53 106.80 

38.75 183.65 103.58 

40.00 167.75 183.95 97.75 100.33 

41.25 170.53 97.57 

42.50 119.70 147.92 94.66 95.57 

* RF = Actual fault resistance 

XF = Actual fault reactance. 
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Table (4.3) Off-line test results with the Fourier method. 
Fault inception angle = 7/2. 
Shunt capacitance is considered. 
The results are with a two pole 150 Hz Butterworth 
filter. 

Time 	(msec) 
after fault 

* 
100 R/RF 

8 S/C 	16 S/C 

* 
100 X/XF 

8 S/C 	16 S/C 

20.00 70.58 74.08 97.46 92.34 

21.25 69.65 98.81 

22.50 87.02 83.87 100.36 100.62 

23.75 88.62 100.31 

25.00 79.21 85.40 99.54 99.77 

26.25 79.63 99.47 

27.50 66.02 72.64 99.77 99.46 

28.75 65.52 99.72 

30.00 58.27 59.93 100.96 100.23 

31.25 57.18 100.93 

32.50 62.54 58.12 102.35 101.72 

33.75 62.25 102.41 

35.00 75.19 68.31 103.05 102.88 

36.25 75.36 103.11 

37.50 86.72 81.98 103.07 103.13 

38.75 87.03 103.06 

40.00 93.81 90.73 102.88 102.96 

41.25 93.77 102.86 

42.50 101.22 96.99 102.68 102.74 

* RF Actual fault resistance 

XF Actual fault reactance 



cover fault resistance, a large tolerance for R must be 

considered. With 16 samples per cycle more accuracy can be 

obtained, if desired. 

The accuracy of square wave method, and the McInnes 

method with trapezoidal rule, also were investigated. Square 

wave method was the worst one. McInnes' method with trapezoidal 

rule was less accurate than the one with Simpson's rule and 

more accurate than the Fourier method. 

Table (4.4) Off-line test results with the McInnes Method 
(Simpson's rule). Fault inception angle = O. 
Shunt capacitance is considered. The results are 
with a two-oole 60 Hz Butterworth filter 

Time 	(msec) 
after fault 

100 
8 S/C 

R/RF* 

16 S/C 

* 
100 X/XF 

8 S/C 	16 S/C 

11.25 100.65 100.47 99.86 100.08 

12.50 99.50 100.25 

13.75 99.02 99.11 100.52 100.38 

15.00 99.08 100.44 

16.25 99.58 99.28 100.62 100.45 

17.50 99.39 100.41 

18.75 99.81 99.39 100.42 100.32 

20.00 99.05 100.17 

21.25 97.15 97.96 99.61 99.90 

22.50 94.54 99.30 

23.75 113.10 61.79 102.78 94.43 

25.00 115.69 102.16 

26.25 104.42 108.17 100.80 100.92 

27.50 106.35 100.43 

28.75 103.74 106.53 99.97 99.95 

30.00 111.55 98.76 

31.25 81.03 54.10 106.10 108.59 

32.50 91.54 101.87 

33.75 96.18 94.56 101.35 101.21 

* RF = Actual fault resistance 

XF = Actual fault reactance 



- 112 - 

Table (4.5) Off-line test results with the McInnes method 
(Simpson's rule). Fault inception angle. = Tr/2 
Shunt capacitance is considered. The results are 
with a two-pole 60 Hz Butterworth filter. 

Time 	(msec) 
after fault 

100 R/RF
* 

8 S/C 	16 S/C 

* 
100 X/XF 

8 S/C 	16 S/C 

11.25 78.88 65.22 97.25 98.19 

12.50 65.49 99.10 

13.75 76.49 71.37 98.67 99.85 

15.00 79.10 100.16 

16.25 83.42 85.01 99.85 100.10 

17.50 87.36 99.88 

18.75 88.69 86.79 100.01 99.74 

20.00 85.03 99.74 

21.25 88.14 83.81 100.03 99.98 

22.50 83.85 100.20 

23.75 86.18 84.89 100.39 100.33 

25.00 86.18 100.37 

26.25 86.68 86.73 100.54 100.31 

27.50 85.68 100.20 

28.75 87.35 83.10 100.58 100.16 

30.00 79.90 100.24 

31.25 83.90 77.33 100.63 100.50 

32.50 76.57 100.87 

33.75 81.66 77.98 100.93 101.22 

* RF = Actual fault resistance 

XF = Actual fault reactance 
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4'.3 	FAULT DETECTION SPEEDS. TEST SERIES 3 

The aim of these tests was to study the fault detection 

speed of the Fourier and McInnes method(Simpson's rule) with 8 

samples per cycle. Many tests were carried out, showing that the 

McInnes method was faster than the Fourier method. For faults 

at the end of the line the fault detection time for the Fourier 

method was about 20 (ms) and for the McInnes method about 12.5 

(ms). Faults not far from the relaying point were detected 

sometimes faster, but this was not true for all cases. Figures 

(4.9) to (4.12) show the trace of resistance and reactance for 

some typical results. 

4.4. 	VARIATION OF FAULT RESISTANCE. TEST SERIES 4 

During a fault, the fault resistance might change 

because of the cross-winds, ionization etc. To investigate the 

effect of this variation on the accuracy of the reactance cal-

culation, the resistance of the model was changed linearly with 

a rate equal to 10% per cycle or 5 times per second. With the 

McInnes method, the maximum errors were found to be around 2°/0  

71-  and 0.3% for zero and -2- fault inception angles respectively. 

4.5 	CONCLUSION 

It has been shown that the McInnes method with Simpson', 

rule gives the most accurate and encouraging results among all 

the algorithms. Two conditions apply as: 

i) The integration terms in the method must be performe,  

on half a cycle of samples. 

ii) The method must be used with a second order analogue 

filter at least, with 60 Hz cut-off frequency. 

It was shown also that 8 samples per cycle is quite 

acceptable. With this sampling rate the different terms in the 
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McInnes method are as follows: 

SIk 
= k-4

+4ik-3
+2ik-2

+4ik-1+ik 

SVk = uk-4
+4uk-3

+2uk-2+4uk-1+uk 

SIk+l = ik-31-4ik-24.2ik-14-41-k-Fik+1 

SVk+1 = Uk-3
+4uk-:+2uk-1

+4uk+uk+1 
(4.2) 

DIk  = ik  - ik-4 

DIk+1 = ik+1 	ik-3 

The criterion for the fault to be inside the zone is 

that: 

DIk  (SVk+i-KiSIk4.1) < DTkl_1(SVk-Ki  SIk) 	(4.3a) 

and 

SIk(SVk+1-K2DIk+1) > SIk+1(Svk-K2 DIk) 
	

(4.3b) 

where 

K1  = Rz  and K2  = 3 Xz  , and Pz  , XE  are the positive 

sequence resistance and reactance of the zone. In equations 

(4.3) there are 8 multiplications with no division. 

The terms SIk, ... can be calculated very easily by 

computer or can be realized outside the computer by simple hard-

ware as in figure (4.13). In this case, after each sample, only 

SIk, ... are read into the computer and it checks only the 

inequalities (4.3). 

Throughout,chapter 3 and this chapter, analogue 

Butterworth filters have been employed to filter out unwanted 

frequencies. There are other kinds of analogue filter, e.g. 

Chebyshev, Bessel, etc. that might be used. Also instead of 

analogue, digital filters could be used. In the next chapter 

a study of Butterworth and possible alternatives from spectrum 

and transient time response point of view will be undertaken to 

decide which kind of filter is most suitable for line protection. 
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Fig. (4.13) Realization of integration terms in the McInnes method 
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CHAPTER 5 

ANALOGUE AND DIGITAL FILTERING 

In the previous chapter we saw that with every method 

of impedance calculation a low pass filter should be used to 

remove undeSirable harmonic components for which either ana-

logue or digital filters could be used. Analogue filters are 

cheaper and simpler and so unless there are some clear advan-

tages in using digital filters from transient time response or 

spectrum point of view, the analogue filter is to be preferred. 

In this chapter, both kinds of filters will be reviewed, 

their spectrums and step responses will be compared and recommen-

dations for digital protection purposes will be made. 

5.1 	ANALOGUE FILTERS 

  

 

1-5 	2.5 

Fig. (5.1) Ideal low-pass filter characteristic. 

It is well known that a filter with an ideal charac-

teristic (a filter which passes all components in pass band 

without any attenuation and removes all components in stopband 

completely) is unrealizable by a physical network and so it 

becomes necessary to approximate it. In order to build a practical 

filter, only certain types of function are physically realizable, 

known as rational functions. In modern filter theory, approxi-

mation theory is used to find a realizable rational function 

which gives a magnitude or phase characteristic as near to the 

ideal as possible. Butterworth and Chebyshev are the two most 
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common types of filters which have been established in this 

way. Modern filters do not possess a definite cut-off frequency, 

as in classical filter theory, but are usually normalized at a 

convenient point, specified by the designer. Butterworth filters 

are usually normalized at the 3db point and in the Chebyshev 

filter this is taken as the last point of interest in the passband 

The basic design procedure for these filters is to 

choose a function H(s) whose squared magnitude when s = jw gives 

the desired filter function. The poles of this function are then 

determined from which the filter design is synthesized. 

5.1.1 	Butterworth filter  

One approximating function which gives the flattest 

magnitude characteristic at w=o has been suggested by Butterworth
5 

as 

H (S ) H (-S ) • = I H (S ) I 2 = 	
1-1-w2n 
	(5.1) 

The function H(S) is called the Butterworth function, of n
th • 

order and its denominator the Butterworth polynomial. The net-

work realization of this function is the Butterworth filter. 

The characteristic of the Butterworth filter is called a maxi-

mally flat one, and it is monotonic in both, the passband and 

the stopband. For a transfer function whose numerator is a 

constant and whose magnitude is monotonic in the passband, the 

Butterworth filter for a fixed n, gives the flattest possible 

curve at the origin. It should also be clear that the higher 

the value of n (or what is equivalent, the larger the number 

of elements required in the network realization), the greater 

the degree of maximal flatness possible. The approximation to 

an ideal characteristic close to w=o is very good but there is 

an increased attenuation at the higher passband frequencies, 
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because the approximation is of the Taylor-series type, i.e. 

it is an approximation about a point. The poles of the Butter-

worth filter are given by the left half plane roots of: 

S 2n (—) 	+ 1 = o 

or 
2k-1 	2k-1  = _sin 	 + j cos 	7 k  2n 	2n (5.3) 

where k is integer 1,2,...,n. From these poles the filters can 

be synthesized and the answers obtained are then scaled to give 

the exact physical values of the practical filter, Sketches of 

the first ten orders of Butterworth approximation to low pass 

filter can be seen in Fig. (5.2). 

5.1.2 	Chebyshev filter  

If some ripple is allowed in the passband or stopband 

a Chebyshev filter with the following transfer function can be 

used: 

H(S). H(-S) = I H(S)I 2  = 1 	 

l+c2C
2 
WO (5.4) 

where Cn(w) is the Chebyshev polynomial of order n and is 

defined as: 

Cn(w) = cos (n arc cos to ) 	for o < to 

and 	Cn(w) = cosh (n arc cosh to ) for to >1 

Of all possible transfer functions with constant 

numerator, the transfer function obtained by the use of Cheby-

shev polynomials is optimum in the sense that it is the function 

of lowest order for achieving a prescribed deviation in the pass-

band and the fastest possible rate of cut-off outside the pass-

band. In this case the filter characteristic has ripples only 

in the passband. When the transfer function is permitted to 

have finite zeros, the optimum function becomes the Chebyshev 

rational function. For this case the characteristic has equal 

(5.2) 
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ripples in both the passband and stopband. These polynomials 

and rational functions are unique. No other polynomials and 

rational functions with the same optimum properties exist. 

Knowledge of these upper bounds on performance is extremely 

valuable, because it shows the futility of searching for other 

approximating polynomials that will give better performance than 

Chebyshev polynomials of the same degree. 

The definition of the Chebyshev polynomials may 

easily be put into recognizable polynomial form if we let 

= cos-1  w 

so that w = cos 

Substitution of this change of variable in Cn(w) and subsequent 

manipulation leads to: 

Cn
(w) = Real (w+ji2)11  1-w 

Also it can be shown that: 

Cn+1(w) = 2 w Cn(w) 	Cn-1 (w) 

(5.5) 

(5.6) 

By inspection of (5.5) we can see that co=1 and Ci= w. Other 

Chebyshev polynomials can be calculated from (5.6): 

C2(w) = 2 w
2 -1 

C3(w) = 4 w
3 -3w 

C4(w) = 8 w
4 - 8 w2 + 1 

C5(w) = 16w
5 - 20w3 + 5w 

C6  (w) = 32w
6 - 48w4  + 18w2  -1 

The poles of the Chebyshev filter are given by: 

2 S 1 + 62  C
n 
 (=) = 0 3 

which after necessary manipulation gives 

S= sin y sinh8. + j cos y cosh 

where 

(5.7) 

2k+1  
= 2n 7  

= 1  sinh-1 1  

k=1,2,...,11 



or 
. 	. 	U. 	. 

G(s) = A 	(

• 

	
U 
1/
s 	s 
1 	 1/ 1  ) 

s+s. 
i=1 	1 

(5.10) 
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It can be shown that these poles lie on an ellipse. Sketches 

of first ten orders of the Chebyshev approximation to low pass 

filters with 1 and 3 db ripples can be seen in figures (5.3) 

and (5.4) respectively. Allowing larger ripples in the pass-

band enables the filter characteristic to become sharper. 

5.1.3 	Transient response of filters  

The impulse response function of both Butterworth 

and Chebyshev filters can be expressed in the form: 

H(S) = p'sj 
	 (5.8) 

where P(S) is the corresponding polynomial in s and A is a 

constant whose value depends on the type and order of P(s). 

Upon expansion into partial fractions, this system function 

becomes: 
n U. H(s) = A Y s+s, i=1 

(5.9) 

where U.1  is the residue of the pole at -si
. The residues can 

be computed from (5.8) and (5.9) by standard methods. 

The step response is the integral of the impulse res- 

ponse, i.e. 
n 	 . 

G(s) = H(s) 
	1  --- = A 	

U 
 

S 	
_i_
2 1 S(SA-S

1
.) 

.2.  

By using the inverse Laplace transform the impulse and step 

response of filters can be calculated in the time domain as 

follows: 
n 

h(t) = A 1 e-Re (si)t  [Re(Ui)cosIm(s.)t+Im(u.) 
i=1 

sinIm(s.)t] 
	

(5.11) 

and 
• u

i g(t) = A 1 	-- -A n  
s 	

c-Pe (s .I  ) t [Re (u, /s . ) cosIm 
1=1 i i=1 	

A_ 1 
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(S, )t. 	im(u./s.) sinIm(s.)t] 	(5.12) 

Figures (5.5) and (5.6) show the impulse and step responses of 

Butterworth filters for first ten orders. Also figures (5.7) 

and (5.8) show the step responses for the first ten orders 

of Chebyshev filter with 1 and 3 db ripple. We can see that by 

increasing the ripple the transient time delay of the Chebyshev 

filter increases and also the final steady state value of the 

filter with the odd number of poles is different from that of 

the filter with an even number of poles 

5.1.4 	Comparison of analogue filter types  

The loss of the Butterworth filter (in db) for w >> 1 is 

Loss = 20 log wn  = 20n logw 

and for Chebyshev filter it is: 

Loss = 20 log 2n-1 c wn  = 20nlogw +20logc+6.02(n-1) 

It can be seen that the fall-off for Butterworth filter is 20n 

db/decade but for the Chebyshev filter it is larger and de-

pends on c and n. For a larger amount of ripple, the fall-off 

is sharper. 

From a transient time response point of view, the 

Chebyshev filter is worse than Butterworth's. By increasing 

the ripple in the passband of Chebyshev filter its spectrum 

becomes sharper but its time delay also increases. Since in the 

protection field both the spectrum and time delay are important, 

no advantage can be discerned in the Chebyshev over the Butter-

worth filter. 

There are other types of filter which have been 

suggested by different authors. One claSs of filter was de-

veloped by Papoulis36  with an odd number of poles and later on 

by Fukada37 with an even pole number. This class of filter is 



Fig .(5 .5 ) Impulse responses of Butterworth 
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called L or optimum filter. Since its amplitude characteristic 

has no ripple in the pass band and a high rate of attenuation 

in the stop band, it combines the desirable features of both 

the Butterworth and Chebyshev response. Among all filters of a 

given order this new class has the maximum cut-off rate under 

the condition of a monotonically decreasing response. Comparing 

this filter with the Butterworth filter for the same order, 

it is sharper than the Butterworth at cut-off frequency, but 

its time delay is larger. For protection, there is thus no 

advantage of L filters over the Butterworth type. 

Another class worth considering are the Bessel filters 

which have a small transient time delay, but their spectrums 

from sharpness point of view are worse than Butterworth filters. 

The phase response of these filters are more linear than Butter-

worth and because of this they have some application in commu-

nication systems but not for protection purposes. 

5.1.5 	Realization of Butterworth and Chebyshev filters  

All filters can be realized by an active Rc network 

in which the active element is an operational amplifier. If 

the transfer function is written as the multiplication of first 

and second order transfer functions as: 

A 	1 	1   H(s) - 	A (s+s x 	 x...x 	2 
1 	x...) 

l P(s) 	s+s2 	s
2 
1 

+as+b s+cs+d 

(5.13) 

then each of these functions can be realized by an active net-

work, containing a single operational amplifier. 

The transfer function with one pole such as: 

sq-s 1 
	 (5.14) 

can be realized either by a simple network as in fig. (5.9)a, 

or by an active network as in fig. (5.9)b. In using the simple 

H(s) = 



Q 
	 b 

Fig.(5.9) First order low-pass filter 

Fig.(5.10) Sallen and Key second order 

low-pass filter 
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network of fig. (5.9)a, a buffer might be necessary when this 

circuit is connected to other circuits. But the output of 

circuit (5.9)b can be connected to other circuits directly, 

because the operational amplifier acts as an isolator for the 

filter. In order that the circuit (5.9)b can represent equation 

(5.14), the following relations must be satisfied: 

R 
= s1 and 1  (1 + - 

	= K 	(5.15) 
RC 	R2 

A transfer function with two conjugate poles such as: 

H(s) = 2 	
(5.16) 

s +as+b 
can be realized by different schemes. One commonly used, sugges- 

ted by Sallen and Key38  '6°  is shown in figure (5.10). The ele-

ments of this circuit must satisfy the following relations: 

R1R2CC1 
= K 

1 	1 	1  (1-r) + R2C 	
R C RC a  
1 	2  

1  - b R J R2CC1 
R4 1 + — = r R3 

(5.17) 

These 4 equations have 7 unknown parameters and so 3 of them 

can be chosen arbitrarily. These arbitrary elements are deter-

mined to minimize the sensitivity
62 of filter poles with res-

pect to all elements.. The sensitivity of a pole Sp  = a 
P 
 +jw

P 
 with 

respect to an element X is defined as: 

D/
w
P  sensitivity = 	+ j 	 (5.18) 

DX/X 
X 

In table (5.1), for second order Butterworth filter, the ele- 

ments of fig. (5.10) which have been calculated for different 

cut-off frequencies can be seen. 
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Table (5.1) Elements of second order Butterworth filter 

cut-off frequency 
HZ 

R1 
KO 

R2 
KQ 

R3 
KQ 

R4 
KQ 

C 
PF 

Cl 
PF 

60 3.8 23.0 30 260 0.2 0.4 

100 4.8 27.5 36 320 0.1 0.2 

150 4.8 27.5 36 320 0.068 0.136 

200 5.2 30.0 40 350 0.047 0.094 

250 4.0 24.0 30 270 0.047 0.094 

5.2 	DIGITAL FILTERING 

Digital filtering is the process of spectrum shaping 

using digital methods and is defined by the following equation: 

Yk = 	1 k-i L.x 
1=o 	i1 

where xk is the k
th input sample to the filter and yk  is its kth 

output sample. 

The design of a digital filter consists of finding the 

coefficients L.1 
 and k.

1 
 to fulfill a given filtering requirement. 

The filter is a recursive one unless all the le. 1 

coefficients are zero in which case it is called non-recursive. 

Equation (5.19) can be realized either as figure 

(5.11) or in canonic form as figure (5.12). 

5.2.1 	Z-transform 

The basic mathematical tool of digital filters is 

z-transform calculus. The z-transform of a sequence xk_i  

i = o,1,2,... is defined as: 
CO 

X(Z) = i=o xk_i  Zi 	 (5.2o) 

and the inverse z-transform is: 

(5.19) 



xn-1 	
x n-r x n 

Yn-m 
	 Yn-1 

Fig.(5.11) Representation of an m-order recursive fitter 
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Fig.(5 .12) Canonic representation of digital filter 
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xk 2ffj = 	X(Z)4-1  dz 
	 (5.21) 

The integration is performed around any closed curve which 

encloses all the singular points of X(Z) and the origin. 

5.2.2 	Transfer function of di ital filters 

The Z-transform of both.sides of equation (5.19) 

can be calculated as follows: 

Y(Z)=1,Zi)X(Z)-(K.Z1") Y(Z) 
i=o 	i=1 

or 	L. Zi  
=o Y(Z) = i 	X(Z) 

K. Z 
i=o 

Putting: 

X 	L. Zi  
i=o  	= H(Z) 

	
(5.23) 

X K Zi  
i=o 

equation (5.22) becomes: 

Y(Z) = H(Z) X (Z) 	 (5.24) 

Analogous to continuous analogue filtering, H(Z) is called the 

transfer function of the digital filter. In analogue filters 

by replacing s by jw, the frequency response of the filter can 

be obtained. In digital filtering Z must be replaced by ejwT, if 

the frequency response function is needed39 Also, as in analogue 

filtering, H(Z) is called the impulse response of the digital 

filter. 

5.2.3 	Recursive digital filter  

There are two common methods for designing a recur-

sive digital filter; one valid method is to design it from an 

analogue filter. For many years efforts have been made to 

(5.22) 



- 140 

improve and optimize such filters. This technique enables use 

to be made of the efforts in this field. 

Assume that a stable analogue filter is chosen, e.g. 

Butterworth or Chebyshev, with a transfer function HA(s). If, 

Z-1  
in this transfer function, s is replaced by Z+1 $ we would 

obtain the transfer function39, H
D
(Z) of the Butterworth or 

Chebyshev digital filter. 

If the angular frequency of the digital filter is wp  

and its corresponding analogue one is wA, they are related to 

each other as follows: 

S 
Z+1 

jw T 
e D -1  

JwA  ' eJWDT +1 
wDT or 	WA = tan 2 

= j tan 

(4.25) 

Now assume that we wish to design a third order Butterworth 

digital filter with a cut-off frequency equal to 	First we 

design a third order Butterworth analogue filter with a cut-off 

frequency of wAc, where: 

wDCT  
wAC = tan ---- 2 

and then in the designed transfer function s is replaced by Z-1  
Z+1 

producing the transfer function of the desired digital filter. 

Some typical Butterworth and Chebyshev digital filters which 

have been designed in this way are given in Appendix A2. 

Another method for designing a recursive digital 

filter is the optimization method40. The problem of choosing 

thecoefficientsK.andIp.of the digital filter (equation 5.19) 

to suit an arbitrary specified frequency response may be con-

sidered as a classical approximation problem. In this approach, 

the coefficients are chosen such that the square of the 
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difference (error) between the designed and desired coefficients 

is minimum. Minimization of this square error in the frequency 

domain is done using the non-linear optimization algorithm 

described by Fletcher and Powell
42. A general recursive filter 

transfer function can be written either in cascade form as 

Kl+aZ-1  + bk 
E2 

H(Z) = A 
A-I 1 + ckZl  + dk 

E2 

or in parallel form as 

(5.26) 

K 	1 + ak 
El + bk 

E2 

H(Z) = A 
k=1 	1 + ck

1 + dk 
E2 (5.27) 

In the parallel form for high order filters it is both difficult 

to find the zeroes and 	increase the number of filter sections 

(K) produces negligible improvement in the desired characteristic. 

This form is not usually used. 

In the cascade form assume that the desired magnitude 

at angular frequencies w1,  w2' 	wp  are y1, y2,...,y • k 
,jw T corresponds to values of the variable Z as, Z 	i . The square i 

of the error is 
Q 

Q(0) = 

	

	-Yi  12  
i=1 

where 0 is a vector of (4K+1) unknown coefficients: 

(5.28) 

0 = (a1,b1,c1,d1,a2,b2,c2,d2,...,A) 

The problem is to find a value of 0, say 0 such that for all 0 

Q(0  ) < Q(0) 

By using Fletcher's and Powell's method, digital filters with 

any sections can be designed. For example for a low pass filter 

1 with a cut-off frequency at Tdth sampling frequency, the two 

following digital filters have been designed in this way. With 

one section only (second order digital filter): 



Z2-1.79Z+0.836 
H(Z) = 0.121 Z

2-1.64Z+1 (5.29) 
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or 

u = 0.121(uk-1.64uk-1+uk-2)+1.79uk-1-0.836uk-2 
(5.30) 

and with two sections (4th order digital filter); 

H(Z) = 0.0249 Z-1.852+1 	x  Z2-1.22Z+1  (5.31) 
Z2-1.86Z+0.944 	Z2-1.729Z+0.765 

Z4-3.07Z
3
+4.262

2
-3.072+1 

uk = 3.591uk-1-4.93uk-2+3.057uk-3-0.72uk-4 

+ 0.0249(u
k-3.07uk-1+4.26uk-2-3.07uk-3+uk-4) 

	
(5.33) 

In all recursive filters for stability all the 

poles, on the complex plane must be inside the unit circle59.  

5.2.4 	Non-recursive digital filter 

In a non-recursive digital filter, the value of an 

output, uk  is related to the input sequency by: 
M-1 

uk  = 	1 	L. u , 
k-1 

i=0 1  

(5.34) 

Although this filter needs more storage and a greater number of 

arithmetic operations in comparison with recursive types, it 

has also a number of advantages. Stability is always ensured, 

and particularly it can be designed with a linear phase charac-

teristic. This property is valuable in communication systems. 

For protection purposes it does not offer any particular ad-

van'tage. 

The transfer function of the equation (5.34) can be 

written as: 
M-1 

H(Z) = 	1 	L. Z 
i=o I  

(5.35) 

There are a number of ways for designing nonrecursive 

digital filters, but only two are useful here. 

or 

H(Z) = 0.0249 
Z4-3.59Z3+4.93Z2-3.0572+0.722 

or in time domain: 

(5.32) 
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5.2.4.1 	Fourier method design of non-recursive filters  

Assume that the design of a non-recursive digital 

filter with a characteristic 1H(jw)1 as in fig. (5.13) is 

required. 

Fig.(5-13) Desired characteristic of a non-recur-

sive digital filter 

In this figure ws  = 2fffs  and fs  is the sampling frequency. 

Bv using the Fourier series the real and imaginary parts of 

H(jw) can be expressed as follows: 
CO 

Re(w) = a
o 
+ 	a

n 
cosnwT 

n=1 
CO 

(5.36a) 

where 

Im(w) = b sinnwT 	(5.36b) 
n=1 n  

H(jw) = Re(w) + j Irn(w) 	 (5.37) 

e 	+ e 	Z jnwT -jnwT n+Z  -n cosnwT - 	2 	2 = 	 (5.38a) 

e 	
2j e 

jnwT 	-jnwT 	n -n - sinnwT - 	Z2jZ 
	(5.38b) 

Putting cosnwT and sinnwT from equations (5.38) into (5.36) 

and (537) we obtain: 

But 

and 

co 	n -n + 
+ 	bn 

Zn-2Zn H(Z) = ao  + 	a 
n=1 n Z 2Z 

	

n=1 

or 	1 H 	2 (Z) = ao+ 	[(an+bn)Z
n+(a b )Z11] n'-  n n=1 

(5.39) 



The series is truncated at a finite number of terms and then 

by comparison with equation (5.35), the coefficients Li  are 

obtained. In figUre (5.14a)the spectrum of a digital filter with 

20 terms which have been designed in this way can be seen. This 

filter in the stop band has some undesirable oscillatiOn caused 

by truncation of the Fourier series, called Gibbs oscillation. 

Multiplication of the impulse response of the filter by a window 

function results in a smoothing of the frequency characteristic 

with significant reduction in ripple. There are a wide variety 

of window functions43. One of them is Hamming's window function 
 

Using this window we obtain an improved characteristic as in 

figure (5.14b). 

5.2.4.2 
	

Linear-phase non recursive digital filter
45 

In order that a non recursive digital filter has a 

linear phase, one of the two following relations must exist 

between its impulse response coefficients. 

Li  = LM-i-1 	
(5.40a) 

or 
Li  = -LM-i-1 	

(5.40b) 

where M is the length of the filter. In the first case digital 

filter has positive and in the second, it has negative symmetry. 

Also the filter might have odd or even length, and so linear 

phase digital filterg can have one of the following 4 cases: 

a) Positive symmetry and odd length. Spectrum is 

given by 
n 

G(f) = 	a(k) cos 2ff kf (5.41a) 
k=o 

 

where n=(M-1)/2, a(o)=Ln  and a(k)=2Ln_k, for k=1,...,n ; 

b) Positive symmetry and even length. Spectrum is 

given by 



0 	0-5 	1 	1.5 	2 	2.5 3 • 3.5 	4 	4.5 	5 
Frequencyx 0.1 (Sampling frequency=1) 

FIT ( 5.14)a Spectrum of a non-recursive band-pass digital filter 
with 20 terms desighned by Fourier method. 

0 
0 
	

0.5 
	

1 	1.5 	2 	2.5 	3 	3.5 	4 	4.5 
	

5 
Frequency x0.1 (Sampling frquency..1) 

Fig. (5-14)b Spectrum of anon-recursive band-pass digital filter 
with 20 terms designed by Four ie method and 
with Hamming's window function. 
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G(f) = 	b(k) cos2Tr (k-2) 
k=1 

(5.41b) 

where n=M/2, and b(k)=2Ln_k, for k=o,1,...n 

c) Negative symmetry and odd length. Spectrum is 

given by 
n 

G(f) = 	c(k) sin2Trkf 
	

(5.41c) 
k=1 

where n=(M-1)/2, and o(k)=2Ln_k  for k=1,2,...n 

d) Negative symmetry and even length. Spectrum is 

given by 

G(f) = 	d(k) sin2ff 	1(k- 	f 
	

(5.41d) 
k=1 

where n=M/2 and d(k) = 2Ln_k, for k=1, ...n 

Mccellan45 has shown that cases (b) , (c) and (d) can 

be put in the form of case (a) and treated in a unified way. 

Then by using the Remez exchange method46,48,44 filters with 

minimum weighted Chebyshev error in annroximating a desired 

frequency response can be designed. 

5.2.5 	Transient time response of digital filters  

In a digital filter as in an analogue one the output 

of the filter for a unit step input is used as a measure to 

represent the time delay which a filter may introduce during 

the transient state. 

A unit step function in discrete form can be defined 

as: 

x
k = 1 for k = o,1,2,... 

and 

xk = o for k < o 

where xk is the k
th 

sample of a continuous unit step function 

at equally spaced intervals. 

The Z-transform of this function can be obtained 

in a Closed form as: 
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Z (x, 	
1
-1 = 7(z) = 	= Z-1 (5.42) 

1-Z 
Now assume that the impulSe response of the digital 

filter is H(Z) and its output for a unit step input yk, with a 

Z-transform equal to Y(Z), we can write: 

Y(Z) = H(Z) X(Z) 	 . 	(5.43) 

Putting X(z) from (5.42) into (5.43) we will obtain: 

Y(Z) = Z-1 H(Z) 

By using inverse Z-transform we can calculate the output of 

the filter in time domain: 

Y = 1
7 

	

	
1.  1  Z  zik-1 H(Z)dZ Y(Z) Zk-1 dZ = . 	k 	2j 	27i v Z-1 

By using the Residue Theorem we can write: 

(% yk  = 1 (Residue of 
Z

Z
k
HZ)

i  -1  

From equation (5.44) the output of any digital filter for a 

unit:.step input can be calculated. 

5.2.6 	Comparison between analogue and digital filters  

Nonrecursive digital filters can be designed to have 

exact linear phase and an approximating ideal characteristic, 

but they suffer from the drawback that they must have many 

terms , 32 terms or even more 	These large number 

of terms require a long time delay,  for computation 

which is unacceptable. Also the linearity of the phase charac-

teristic is not important in protection. 

A recursive digital filter with fewer terms can give 

a sharp characteristic. In figures (5.15) to (5.17) the spec-

trums of 1st, 2nd and 5th order Butterworth digital filters 

which have been designed by the bilinear transformation method 

can be seen. In these figures for comparison the corresponding 

spectrums of analogue filters have also been plotted. The 

(5.44) 
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digital filter spectrums are periodic and for the frequencies 

around half the sampling frequency and below them are better 

than analogue filters, but at higher frequencies, the spectrums 

of analogue filters are better. Figure (5.18) shows the unit 

step responses of 2nd, 5th and 8th order digital and analogue 

Butterworth filters, and we can see that the transient time 

delay of both types of filters are the same. The spectrums of 

the 2nd and 4th order digital filters which have been designed 

by Fletcher and Powell optimization method (equation 5.30 and 

5.33) are depicted in figures (5.19) and (5.20) and the unit 

step response of the 4th order filter is given in figure (5.21). 

The corresponding Butterworth analogue filter curves, again 

have been replotted for comparison. We can see that the digital 

filters obtained in this way have sharper spectrums, but they 

also have longer time delays in the transient state. Hence for 

protection purposes the digital filters again do not offer any 

advantages over analogue types. 

It is argued that digital filters are more accurate 

and drift free, but since sample and hold circuits, analogue 

to digital converters etc, which might have offset and drift 

are required before the digital filters, it is unlikely for the 

overall digital filter to be more accurate than analogue one. 

Another important point in the power system, in 

which a low rate of sampling is used, digital filters must be 

accompanied by analogue ones, otherwise the high frequency 

components cannot be removed. 

5.3 	CONCLUSION  

In this chapter the analogue and digital filters 

have been compared and it is concluded that for protection 

purposes analogue filters are preferred, for the following 

reasons: 
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(1) Analogue filters are cheaper. They are simple 

to design and to construct; 

(II) Digital filters must be used with analogue, 

otherwise high frequency components will not be removed; 

(III) From the transient time delay and spectrum point 

of view no clear advantage can be seen in either filter type; 

(Iv) For frequencies higher than half the sampling 

rate analogue filters have the better spectrums for digital 

protection purposes. 

From the choice of analogue filters the Butterworth 

filter is recommended. For protection purposes, other filters 

such as L or Chebyshev filters do not offer any advantages over 

the Butterworth filter. The Chebyshev filter designed with a 

large ripple together with the L filter both have sharper cha-

racteristics, but unfortunately they.  have longer time delays 

than the Butterworth filters. 
114007:ti 

In chapter 3 it was shown that Butterworth analogue 

filters, second order, can give a satisfactory result. This 

filter can be realized by only one operational amplifier. 
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CHAPTER 6 

CLOSE-UP FAULTS AND DOUBLE CIRCUIT LINE PROBLEMS 

Close up faults and double circuit lines present 

problems in distance measurement and must be dealt with carefully. 

These problems are studied in this chapter, 

6.1 	CLOSE-UP FAULTS  

The correct operation of protective systems using 

distance relays depends on the determination of the direction 

in which the fault current is flowing with reference to the 

voltage at the relaying point. 

In conventional analogue relaying, this is generally 

achieved by using either directional relays in conjunction with 

impedance relays or mho relays in which both the directional and 

measuring characteristics are combined. In these relays, close-up 

faults present a problem, since the voltage collapses to a 

point at which there is insufficient voltage to provide the re-

quired operation. In polarised mho relay, this problem has been 

solved by selecting a suitable polarising voltage derived from 

the fault voltage through a resonant circuit tuned to system 

frequency (memory) or from an unfaulted phase through a suitable 

phase shifting circuit (sound-phase polarising); alternatively, 

a combination of part sound-phase and part faulted-phase pola-

rising54  is used. The last two methods do not solve the problem 

in the case of 3-phase faults, because an unpolarised mho cha-

racteristic is obtained, and operation for close-up faults be-

comes indeterminate. Most transmission systems have additional 

earth wire protection for a certain distance out from the 

switching station or generating station64, so that a three-phase 

flashover due to a lightning stroke in this region is considered 
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unlikely. Flashover for other reasons in this region is likely 

to affect one or two phases and not three phases, and it is 

only enough for the fault to remain as a phase-fault or earth-

fault for about 1.5 cycles before developing into a three phase 

fault in order that the operation of distance protection is 

ensured. One possible cause of terminal three-phase faults is 

the failure to remove temporary earthing connections on a line 

after completion of maintenance work. In some instances, where 

earthing switches are used for this purpose, interlocking with 

the main circuit breaker is possible and the risk of closing 

on to a three-phase fault is remote. Because of the foregoing, 

the requirements for protection against instantaneous three-phase 

faults are subject to some difference of opinion. For example 

in Great Britain64, the risk involved is not considered to be 

great and the protection for three phase close-up faults is 

provided only in the third zone of the relay. For zone 3 an off-

set mho relay is normally used which also initiates the starting 

and timing relays, and it is set with the backwards reach about 

10% of the forwards reach and so covers the region near to the 

relaying point. For the first zone a polarized mho distance re-

lay is used. In computer relaying, for close-up faults small 

values of resistance and reactance of the faulty line will be 

obtained, but numerical and other errors may make the computed 

results unreliable in determining the fault direction. In such 

a case, as in analogue relays, the directional information must 

be obtained either by using memory voltage or sound-phase vol-

tage principles. 

6.1.1 	Memory voltage principle  

Holden and Morrison65 have shown that transmission 

line impedances calculated using prefault voltage values can be 
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related to the positive sequence impedance of the source behind 

the relay and are of sufficient magnitude that the directional 

information obtained would give directional discrimination for 

all types of faults. To establish the fault as close-up, the 

voltage samples could be used. Depending on sampling rates, 3 

to 5 small samples within a predefined tolerance could indicate 

that the voltage is sufficiently small to preclude its use in 

reliably ascertaining the direction of the fault. In this case, 

a memory voltage would be substituted for normal relaying vol-

tage in subsequent impedance calculation. The selection of the 

appropriate memory voltage is based on the type of the fault. 

The criterion for operation is that the calculated reactance 

(by using the last prefault cycle of the memory voltage) becomes 

positive. There is no need for the resistance to be calculated. 

Having established that the fault is close-up. Table (6.1) 

summarises the relaying quantities to be chosen when the fault 

has been classified into one of the six fault types. 

Table (6.1) Relay quantities and criteria for operation 

By using the Fourier method, the reactance is cal-

culated from equation (3.66) of chapter 3. In this equation the 
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denominator is always positive and so it can be omitted, which 

reduces the criterion for operation to: 

A. B > A B. 1 v v 1 

For the McInnes method, the criterion becomes: 

SIk+1(SVk-DIk) > SI (SV 	-DI 	y k k+1 k+1 

(6.1) 

(6.2) 

In equations (6.1) and (6.2) only two multiplications are 

required and computation can be fast. 

6.1.2 	Sound-phase voltage  pI-inciple 

When the fault is established as close-up, a sound 

phase voltage can be substituted for the normal relay voltage 

in subsequent impedance calculations. With this method all 

unbalanced close-up faults can be discriminately detected. 

Holden66 has shown that by substituting the sound 

phase voltage for relaying voltage the criterion for operation 

reduces to 

R > 0 
	

(6.3) 

Table (6.2) summarises the new criteria for operation. 

Table (6.2) Relay quantities and criteria for operation 
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For the McInnes method the criterion becomes: 

DIk 
(SV

k-1-1
-SI

k+1
) > DIkF1 (SV

k 
 -SI

k 
 ). 

and for the Fourier method it reduces to: 

(6.4) 

A A. > B B. 	 (6.5) 
V 	 V 1 

Equations (6.4) and (6.5) again have only two multiplications. 

The sound phase voltage principle is easier to use 

since it does not need prefault samples. Its main drawback is 

that it cannot give directional information for three-phase 

close-up faults, but as mentioned earlier, three phase faults 

are unlikely to occur and can be accounted for in the third 

zone calculation. 

6.2 	DOUBLE CIRCUIT LINE 

A double circuit line may have one or more earth 

wires bonded to earth at short intervals. The voltage gradients 

along the earth and earth wires can generally be assumed the 

same and thus they can be replaced by an equivalent conductor 

having the necessary self and mutual impedances with the various 

phase conductors (figure 6.1). For circuit 1 the voltage drop 

per unit length may be written as 

where 

oR  v = ZI (6.1) 

Zaa ab mac ZaA ZaB ZaG 
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Z
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c I 1  
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IC  

These relations account for intercircuit mutual 

Z = 
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terms and will be used for the derivation of suitable relaying 

quantities which can account for the mutual effects. 

RELAYING POINT 	 FAULT POINT 

A o 	 o A' 

B o 	 o B' 	Circuit 

G o 	 o G' 	2  

a o 	 o a' 

b o 	 o b' 	circuit 

c o 	 o c' 
1 

 

o d' 	common earth 
return 

Fig. (6.1) Equivalent double circuit lines. 

If circuit 1 is transposed its self and mutual impedances each 

become balanced and can in turn be expressed in terms of 

positive and zero sequence impedances as follows: 

1 	-1-
3 
 (Z0 2Z1) 

Zaa = Zbb = Zee = 

Zab = Zbc = Zac = 3 (zo-Z1) 
	

(6.2) 

If circuit 2 is also transposed its self and mutual 

impedances would become balanced and if each conductor of cir-

cuit 1 in turn occupies every spatial position with respect 

to every conductor of circuit 2 and vice versa, all the inter-

circuit mutual terms become equal. As a result the positive 

and negative sequence mutual coupling between two circuits 

vanishes, leaving only zero sequence mutual coupling. For 

example consider three major types of transposed double circuit 

overhead lines construction in the United Kingdom. Their posi-

tive and zero sequence impedances, given56  in table (6.3), 

shows that the positive sequence mutual impedances are about 

3 to 5% of the positive sequence self impedances, but the zero 

sequence mutual impedances are abo ut 50 to 55% of the zero- 
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sequence self impedances. For practical purposes the positive 

sequence mutual impedances can be neglected, and only zero 

sequence coupling need to be accounted as follows: 

1 ZaA = ZbB 
= Z

cG 
= Z

aB 
= Z 	=

bA 3 Z mo 

aaG = ZcA = ZbG = ZcB = 1  Z 3 mo (6.3) 

Using these equations together with equations (6.2), the 

equations (6.1) may be simplified as: 

d
d a . z1 a  i + (Z6-z1 	olmo ) IIo2 

d Vb 
dX = Z1 Ib + (Zo

-Z
1
) I

ol
+Z
mo
I
o2 

d V 

ol
+Z

moIo2 
c 	4. (zo-Z1) dX 	1 c 

(6.4a) 

(6.4b) 

(6.4c) 

From equations (6.1) and (6.4) the voltage drop can be 

calculated for any given fault condition. Such conditions will 

now be considered in turn. 

Table (6.3) Impedances of double circuit overhead lines 

circuit 
construction 

400KV quad. 	275KV twin 	132KV single 
0.4 in2copper 0.4 in2copper 0.175 in2 copper 
equivalent 	equivalent 	equivalent 

positive sequence 
self-impdance 
1 0/mile 

0.032+J0.446 
• 

0.063+J0.510 0.286+J0.647 

positive sequence 
mutual-impedance 
Zm Q/mile 

J0.023 J0.021 J0.019 

zero-sequence 
self-impedance 
Zo Q/mile 

0.167+J1.27 0.222+J1.38 0.589+J1.64 

zero-sequence 
mutual-impedance 
Z 	Q/mile mo 

0.136+J0.68 0.174+30.74 0.304+J0.80 
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6.2.1 	Single Phase to Earth  Faults  

When a solid single phase to earth fault occurs on 

phase a of circuit 1 at a distance x along the line from the 

transducer, the phase to earth voltage Va  can be calculated 

by use of equations (6.1) for an untransposed line or by 

equations (6.4) for a transposed and balanced double circuit 

line. 

For an untransposed line the voltage drop may be 

written 

Z
ab 	lac 	

Z
aA 	

ZaB I Va = xZ (I + 
	I + 	I + 	I + aa a Z b Z c 	A Z B aa 

	

aa 	aa 

ZaG  I ) 
aa G  

• 

which is in the form 

Va = x Zaa 
I
x 

= 

where 

Zab 	Zac 	+ _RA 	Z aB  Ix 	
a 	Zaa Ib 	Zaa c 	Zaa A Zaa  IB 

4_ aG 	... 

Zaa G  

For a transposed line the voltage drop is: 

Z
0-

Z
1  mo  Va =xZ (I + 	ol + Z1 I ,) 

	

1 a 	oz. Z1 	1 

which is in the form 

Va 
= x Zl 

I
y 

where 
Z Z 1 I = I 	o- 

a 
+ 	1 	+ mo 1 

• y 	Z1  of Z1 o2  

(6.5) 

(6.6) 

(6.7) 

( 6 . 8 ) 

( 6 . 9 ) 

(6.10) 

Equations (6.6) and (6.9) are in a form similar to equation 
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(3.32) of chapter 3. The resistance and inductance can be 

calculated by the methods described previously. The current Ix  

and I
Y 
 are calculated from equation (6.7) and (6.10). The phase. 

 
angle of coefficients Z 	Lac ac 	

Z
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Z
1 	

Z 
mo ---can be 
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neglected and I and I
Y 
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Ix = I a  +Kb  1b  +K cI c +KAIA +KB  IB 
 +K
G  IG 	(6.11) 

Iy  = I
a 
+ 
Kolol 

+ K
om Io2 	(6.12) 

where now the Kb, Kc,...Kol'  Kora  are scalar values. 

Using instantaneous values of voltage and current 

equation (6.5) may be written: 
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(6.14b) 

equation (€.13) becomes 

ua = x Raa 
i
x + x L 	i 

aa dt  (6.15) 

For a transposed and balanced double circuit line from 

equations (6.4) the voltage drop using instantaneous value may 

be written: 
R 

= x R1 ‘ a 
(1  + 

R 
 0-
R
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R ol R o21  
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d Lo-
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 1o2) 1  

(6.16) 
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which again can be written in the form of equation (6.15). 

In this case ix 
and i are 

y 

R
o-R1  mo  i

x 
= i

a 
+ 	i 	+ 	102 ol R 1 	1 

Lo-L1 . Lmo iy  =
a 
+ L1 

 1
01 E1  102 

From equations (6.15) or (6.16) the resistance and reactance 

can be calculated by the McInnes method. Hence, the single 

circuit line analysis can be extended to account for the pre-

sence of a mutually coupled line by adding extra terms that 

require knowledge of the currents flowing in the phases of the 

coupled line. The accuracy of the impedance computation may be 

maintained by this compensation but greater computation time 

would be required. In order to obtain the correct faulted line 

impedance the various line currents and also the self and mutual 

line impedance terms must not change over the entire distance 

between the transducers and the fault point. In practical power 

systems it will be seen that the line current varies and special 

care might be needed in the application of mutual compensation 

methods. 

6.2.2 	Phase faults  

For double phase faults between conductors a and b and 

a three phase fault involving all three conductors of circuit 1, 

the voltage between the faulty phases for an untransposed line 

can be written as: 

Z
ab-

Z
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(6.18) 
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which is in the form 

Va-Vb = x (Zaa
-Zab

). Ix 

where 
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(6.20) 

For a transposed line the voltage between faulty phases is: 

Va-Vb 
= xZ1 

(I
a
-I
b
) 
	

(6.21) 

Hence, in this case no extra terms are required to account for 

the effects of intercircuit mutual coupling, and the conventional 

delta relaying current (ia-Ib) and voltage (Va-Vb) may be used 

to find the positive sequence impedance xZ of the line using 

one of the methods described in chapter 3. 

Using instantaneous values of voltage and current for 

an untransposed line equation (6.18) can be written: 
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equation (5.22) becomes: 
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(6.24) 

Similarly for a transposed double circuit line, using instanta-

neous values, equation (6.21) may be written: 

ua-
u
b 

= xR1(ia-ib)+ x Li dt '-a-lb) 
	

(6.25) 

in which no extra terms are required to account for the effects 

of intercircuit mutual coupling. Equations (6.24) and (6.25) 

can be solved by the McInnes method. 

6.3 	BEHAVIOUR OF DISTANCE RELAYS UNDER EARTH FAULT 
CONDITIONS ON DOUBLE-CIRCUIT LINES 

It has been shown that compensation for the effect of 

mutual coupling between circuits on the impedance measurement 

may be made for both balanced and unbalanced circuits. When the 

circuits are unbalanced the amount of computation required in 

the impedance measurement is far more than for the balanced 

line, the latter requiring compensation only for ground faults. 

It may, however, be possible to use the simpler zero sequence 

compensation for an unbalanced circuit, and allow for or 

accept thd errors that arise. If the inter-circuit mutual 

coupling is neglected, from equation (6.8) it can be seen that 

the earth fault relay will overreach when the zero sequence 

currents in the two circuits are of the opposite sign and it 

will underreach when the zero sequence currents are of the 

same sign. If the intercircuit mutual coupling is accounted for, 

acceptable results are only possible if the amount of mutual 

coupling and the values of the current flowing in the coupled 
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circuit are the same over the entire distance between the 

relaying and fault points. Since the relay relies on infor-

mation obtained at the relaying point only, this will not be 

true if the fault is beyond the busbar of the next substation, 

or on the adjacent mutually coupled line. This can lead to non-

selective interruption of the sound line and so it is not 

always desirable to provide such compensation. On the whole 

compensation has more drawbacks than advantages and in general 

it is not applied. 

The advantages and drawbacks of intercircuit mutual 

compensation has been studied by Davison and Wright67. Their 

results are shown in figures (6.3) and (6.4). These figures 

indicate, that if no attempt is made to compensate distance 

relays against the effects of inductive mutual coupling on 

double circuit lines, the effective operating zone of such a 

relay will be modified to a moderate degree owing to the 

preserice of the second line. There is no risk of a non-selec-

tive interruption of the sound line. With mutual compensation 

applied to normal distance protection, the relays would per-

form correctly for faults on the circuit with which they are 

associated. They would, however, measure incorrectly for faults 

on the adjacent circuit, and would lead to non-selective 

interruption of it. Hence, if mutual compensation is to be 

applied, it would have to be applied selectively and for this 

the peak of the relaying currents in the two circuits might be 

calculated and compared. If one of the currents is signifi-

cantly greater in magnitude than the other, the fault would 

appear to be on that circuit with the greater current, and 

mutual compensation would be permissible for that circuit but 

should be avoided on the other. However, for faults at the end 
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P Circuit A Fl 
	

L 

Fig. (6.2) 	Single line representation of faulted 

double circuit line 
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Fig. (6.3) Curves illustrating the distances measured by relay P when 
fault is on circuit A 

Ideal relationship and mutually compensated relays 

Re Lay YiLhout mutual compensation 

Numbers on curves indicate the source NVA ratios. 
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of the line, the two currents would appear to be approximately 

equal and in such a case mutual compensation could be safely 

applied to both circuits. The calculation of the peak of the 

relaying current in the two circuits would add to the amount 

of computation required in the impedance measurement and it 

would make the system more complicated. For this reason, as in 

analogue relays, neglecting the intercircuit mutual compensa-

tion, reducing the zone-reach and using the inter-tripping sig-

nal to avoid delay which could be caused by zone-reduction, 

might be preferable. 

6.4 	CONCLUSION 

For close-up fault protection the sound phase voltage 

principle was found to be more convenient for digital protec-

tion.By this method all types of unsymmetrical close-up faults 

can be discriminately detected by simple computation involving 

only two multiplications. A three phase close-up fault ought 

to be accounted for in the 'third zone. 

For double circuit lines it is better to neglect the 

intercircuit mutual coupling. In this case the zone length 

must be reduced, and for the fast removal of the fault at the 

end of the line, inter-tripping principles should be applied. 
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CHAPTER 7 

ON-LINE TESTS 

For research and development purposes, 33'63  the re-

quirement for data acquisition and control of a typical 400 KV 

mesh substation on the CEGB networks has been chosen. As indi-

cated in figure (7.1), one corner of such a substation has been 

modelled by setting up 220 V, 3-phase circuits in the laboratory 

in which the circuit breakers and isolators have been simulated 

by a three-phase contactor. These are slugged electronically 

to provide realistic operating times and the control circuitry 

enables them to be operated from a digital processor. In the 

mesh corner, full instrumentation is applied by means of vol-

tage and current transducers, but in the remainder of the sub-

station only the status of breakers and isolators is modelled 

by single phase relays so that the substation configuration can 

be determined. 

In this chapter only the hardware and software which 

are relevant. to the transmission line protection are described 

and some typical results of the on-line tests are presented. 

7.1 	HARDWARE 

The schematic diagram of the interface, which was used 

for the tests is depicted in figure (7.2). In the following 

sections a brief description is given. 

7.1.1 Transducers  

Signals which are monitored by the computer are current 

and voltage. The current signals are measured by air cored 

current transformers (linear couplers). The sensitivity of the 

linear coupler is about 6mv pp/amp r.m.s. The voltage is 
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measured between each phase and neutral as shown in figure (7.2). 

Since the linear coupler output is proportional to the rate 

of change of input current, such differentiation leads to the 

amplification of noise and high frequency components, producing 

distortion on the output voltage of the linear coupler. 

	

7.1.2 	Amplifiers  

The maximum voltage that can be applied to the A/D 

converter is ± 10 volt. It is desired to scale up the signals 

up to this voltage because in this case more accuracy can be 

obtained. The fault current on the transmission line is limited 

to about 10 amp r.m.s. At higher currents the transmission line 

inductors become saturated and consequently the current becomes 

distorted. For this maximum current the output of the linear 

coupler is about 60 my peak to peak, and so the gain of the 

amplifier for the linear coupler was chosen to be about 300. 

Because of improper design, the linear couplers outputs were 

different for exactly the same.inputs. The amplifiers were 

designed to have variable gains which could be adjusted so 

that all the linear couplers had the same outputs for the same 

inputs. The same is true for the voltage transformers for which 

the amplifier gains was about 1.1 and was mainly used to adjust 

the inequality in the turn-ratios of the transformers. 

	

7.1.3 	Low-pass filters 	
are 

The low pass filters which used for current and voltage 

filtering must be exactly the same, otherwise the phase shift 

between corresponding voltages and currents would be variable 

producing a large error in R and X calculations. Linear couplers 

have been mounted unsymmetrically in the model and because of 

this the effect of mutual coupling on the yellow phase is 
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different from the other two phases. This causes the linear 

couplers to produce slightly different phase shifts which 

increases the errors of R and X. The filters which were used 

are simple RC Butterworth filters with single pole and 130 Hz 

cut-off frequency. The filter resistances are variable and are 

adjusted until all the linear couplers outputs have the same 

phase shift. 

In chapter 3 it was shown that a second order Butter-

worth filter with 60 Hz and 150 Hz cut-off are required for 

the McInnes and Fourier methods respectively. The interface was 

designed and built before that analysis. At that stage by 

inspection it was found that a single pole filter with 130 Hz 

cut-off frequency was necessary to smooth the distorted wave-

forms of the linear couplers outputs during normal operations. 

No other criterion was involved in choosing the filter. In 

this chapter the results of on-line tests with this filter 

are presented. 

7.1.4 	Sample and hold circuits  

The instantaneous voltage level of the signal was 

stored in a capacitor before being scanned by the computer. 

This function was performed by the sample and hold circuit 

consisting of an analogue switch, a capacitor and a buffer 

(fig. 7.3). A IC00 pf capacitor was used to store the voltage 

level and the analogue switch was closed for 5 microseconds 

to allow the capacitor to acquire the instantaneous voltage 

level. The capacitor was buffered from the output by a dual 

FET, and an 741 operational amplifier set at unity gain. 

The operation of the analogue switch was synchronised 

to the scanning of the computer, both controlled by the phase 
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Fig.(7.3) Sample and hold circuit 
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locked oscillator in the interface. The sampling pulse from 

the phase locked oscillator was used to trigger a monostable 

wired to give a 5 microsecond pulse, applied. to close the 

analogue switches. Because there is some capacitance from the 

gate to the source of the switch, a portion of the gate signal 

to the switch was coupled through the device on to the holding 

capacitor ch. Thus, a slight offset voltage was added to the 

output when switching from sample to hold. A particular advan-

tage of the operational sample and hold is63  that the a.c. off-

set is independent of the analogue signal level. This offset 

can be compensated by removing a fixed amount of the charge 

from the holding capacitor upon switching into the hold mode. 

In Fig. (7.3) the offset is cancelled out by an opposing signal, 

coupled by Cc  from the sample pulse input onto the holding 

capacitor. The variable capacitor Cc  can be adjusted to obtain 

a zero offset at ch. 

7.1.5 	Phase locked oscillator and frequency multiplier  

The function of the phase locked oscillator and fre-

quency multiplier (fig. 7.4) is to synchronise the sampling 

and programmed data transfer to the system frequency. Pulses, 

which are synchronised (locked) to the system frequency, set 

the computer program interrupt flag for data transfer and 

trigger the sampling circuit for system current and voltage 

sampling. 

This circuit consists essentially of a basic phase 

locked loop (National semeconductors LM5650N phase locked loop) 

and a frequency multiplier. The filter used in the phase 

locked loop was a simple low pass filter. The frequency Multi-

plier chain consisted of a binary counter. The counting process 
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was such that for every 2
6 pulses going into the chain, 1 

pulse comes out at the other end of the chain. The phase de-

tector compares the feedback waveform with the reference and 

produces a voltage signal proportional to their phase diffe-

rence. The ac component of this signal was removed by the low 

pass filter and the resulting signal used to control the fre-

quency of the voltage controlled oscillator. The system ope-

rated with a steady-state phase error, because the voltage 

controlled oscillator required a finite input control voltage 

for its operation. The control voltage at the voltage controlled 

oscillator changes the frequency in a direction that tends to 

reduce the phase difference between the reference and feedback 

signal. The frequency of the voltage controlled oscillator was 

thus exactly 26  times the average frequency of the reference. 

Waveforms at 3200 Hz, 1600 Hz, 800 Hz, 400 Hz, 200 Hz, 

100 Hz and 50 Hz from the frequency multiplier could be made 

available through manual or computer controlled switches. These 

waveforms, through a monostable both operated the analogue 

switches of the sample and hold and at the same time interrup-

ted the computer program to carry out the pre-programmed 

functions (for example, data transfer). The computer could be 

interrupted by setting the interrupt flag by grounding the 

interrupt line. 

7.1.6 	Analogue to digital converters  

The analogue to digital converter in the PDP15 provi-

ded a fast multichannel scanning and conversion facility under 

program control. Channel selection occuted under program 

control by giving a channel address to the multiplexer control. 

Conversion accuracy could be pre-selected by setting a 7 
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position rotary switch. The variation of conversion errors and 

conversion time with word length is listed in table (7.1) and 

0 bit word length was chosen with a conversion time of 18)6S eC 

and conversion accuracy of ±0.1%. 

Table 	(7.1) 	Conversion time and accuracy of A/D converte] 

Word lengths 
No. of bits 

Max. conversion error.  Conversion time P-s 	• 
6 ± 	1.6 9. 

7 ± 	0.8 10.5 

8 ± 	0.4 12. 

9 ± 	0.2 13.5 

10 ± 	0.1 18. 

11 ± 0.05 25. 

12 ±0.025 35. 

The A/D converter accepts inputs in the range of -10 

+10 volt. Analogue inputs were converted to numbers in the TWO's 

complement representation. 

7.2 	SOFTWARE 

The sampling rate and interrupt were controlled by 

programs prepared in Macro 15 language and calculations have 

deen done in 18 bit TWO's complement integer arithmetic. Both 

single and double precision arithmetic could be used. 

In the multiply and divide subroutines, numbers were 

entered in two's complement representation and converted to 

one's complement representation before processing. When multi-

plication or division was completed, numbers were converted 

back to two's complement representation before exit. 

With the PDP15, two's complement addition of two 

numbers takes about 1.6 microseconds. Although this computer 
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has hardware multiplication and division which can perform, 

the multiplication or division of two integer numbers (in 

one's complement) in about 3 microseconds, in order to put 

the numbers in the appropriate address and to convert them to 

one's complement, and after processing back to two's complement, 

between 21.3 to 26.1 microseconds to multiply two numbers is 

required and about 24.8 to 29.6 microseconds to divide them. 

Multiplication by 2 or 4 is done by shifting the number in the 

accumulator one or two bits to the left. This takes only 0.8 

microseconds. Division by these numbers can be performed by 

shifting the number one or two bits to the right. As a typical 

example in Macro 15 programming the subroutine for signed 

multiplication of two numbers is depicted on the next page. 
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/SUBROUTINE FOR MULTIPLICATION OF TWO INTEGERS 
/HANDLES +VE AND -VE NUMBERS 

/EXECUTION TIME 21.3 TO 26.1 MIOROSECS. 

CmA.B 

/CALLING SEQUENCE 

LAC A 
JMS* MULT 
LAC B 
DAC C 

00000 

00001 

00002 

R 000600 

R 664000 

R 	741400 

A 

A 

A 

.TITLE MULT 

.GLOBL MULT 
MULT 	0 

/GET SIGN 	AND MAGNITUDE 	OF AC 	(I.E. 	OF A) 
GSM 

/SKIP 	IF LINK m 	0,I.E. 	A +VE 
SZL 

/A -VE, 	ADD. 1 	TO COMPLETE 2'S 	COMPLEMENT 
00003 R 340017 R TAD 	(1 

/STORE A'S 	NAGNITUDE(SIGN 	IN LINK) 
00004 R 040012 R DAC AA 

/LOAD AC WITH B 

00005 R 420000 R XCT* 	MULT 
/INCREMENT MULT 	SO THAT RETURN 	IS 	TO 	'DAC 	C' 

00006 R 440000 R ISZ MULT 
/SKIP IF AC(=B) 	+VE 

00007 R 	741100 A SPA 
/13 	IS -VE AND 	IN 2'S 	COMPLEMENT 
/CHANGE TO 	I'S 	COMPLEMENT(LINK 	IS 	UNCHANGED) 

00010 R 300020 R ADD 	(-2 
/MULTIPLY 

00011 M 	657122 A MU1S 
/A'S MAGNITUDE IS STORED HERE 

00012 R 000000 A AA 	0 

/LOAD PRODUCT FROM MO . REGISTER. 
00013 R 641002 A LAC() 

/SKIP IF +VE 
00014 R 	741100 A SPA 

/-VE CHANGE TO 2'S COMPLEMENT. 
00015 R 340017 R TAD 	(1 
00016 620000 R JMP* 	MOLT 

000000 A .END 
00017 R 000001 A *L 
00020 'R 	777776 A *L 

SIZE:00021 NC) ERROR LINES 
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7.2.1 	Main program 

Fig. (7.5) shows 
	the flowchart of the main program 

which was used for on-line tests, In this program, detection 

of system abnormalities is achieved by comparing samples of 

the current cycle with corresponding samples of the previous 

cycle. Samples of a complete cycle must be stored before this 

process is initiated. 

The program starts with setting countersand API 

addresses, after which it turns on the program interrupt'faci-

lity and waits for the first program interrupt. When this 

interrupt occurs, the system voltages and currents are sampled 

and stored. Then it waits for the next interrupt. It remains 

in this phase until samples of a complete cycle are stored. 

After this the computer is ready to start detection of system 

abnormalities. Upon receiving the next program interrupt, it 

samples the system voltages and currents, then compares the 

voltage samples with the corresponding samples in the previolis 

cycle. If these samples differ by an amount larger than the 

predefined tolerance limit, the associated fault counters 

are incremented. If not, the associated fault counters are 

decremented if they are not already zero. Then the fault coun-

ters are examined, and if one of them equals or exceeds 3, the 

fault classification routine is initiated, otherwise the 

program waits for the next interrupt. Fault classification is 

accomplished by analysing the fault counters. A fault diagnostic 

code is constructed, consisting of 3 binary digits each of 

which is associated with a fault counter. If a fault counter 

is equal to or greater than 2, the corresponding bit of the 

code is set. In this way for each type of fault a unique code 

is established. 
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The actual construction of the diagnostic code is as 

follows: After clearing the accumulator, the fault counters 

are examined sequentially. If the fault counter under exami-

nation equals or exceeds 2, the link is set, otherwise the 

link is cleared. The content of the link is moved into the 

least significant bit of the accumulator by rotating the link 

and accumulator one place to the left. In this way, when all 

the fault counters are examined, the diagnostic code is 

formed in the accumulator. 

The diagnostic code is micro-programmed into a JMS 

instruction (jump to subroutine). Execution of the resulting 

instruction effectively calls the appropriate fault service 

subroutine to service the fault. After classifying the fault 

and calling the appropriate fault service subroutine the compu-

ter is ready to enter the impedance calculation. 

In the fault service subroutine the corresponding terms 

such as Sv,SI,... or Av,Bv,... are calculated and then the R 

and X from the appropriate algorithms are obtained. If these 

are equal to or smaller than the predifined resistance and 

reactance of the protected zone, the associated zone counter is 

incremented, otherwise decremented if it is not already zero. 

The zone counter is examined and if it exceeds or equals 3 

the fault is assumed to exist inside the zone and so the C.B. 

trip signal is sent, otherwise the program waits for the 

next interrupt. 

In this way after each set of samples the fault is 

classified repeatedly, and so random false classifications do 

not cause a wrong decision, but lengthens the overall time 

delay. 
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If, after each set of samples, the impedances 

between each two phases and also between each phase and ground 

are calculated and compared with predetermined zone impedances, 

there is no need for voltage monitoring and fault classifica-

tion. Fig. (7.6) shows the flowchart for this method of pro-

tection. The main problem of this method is the lengthy. process 

of calculating 6 impedances which is time consuming and re-

quires a fast hardware and a low sampling rate on this computer. 

As a typical example table (7.2) shows the calculation time 

distribution of the impedance calculation by McInnes' method 

with Simpson's rule and 16 S/C. For single phase faults, the 

calculation of R and X with their associated terms takes 517.3 

microseconds and for phase faults 468.4LS but if the R and X 

are calculated for all types of faults, the time needed is 

about 28981,IS . To. .this the necessary time for data acquisition 

and fault classification and house keeping must be added. Al-

though the A/D conversion time for the 10 bits range is 18, US 

the program for conversion and storing every single item of 

analogue data takes about 46415. Fault classification takes 

another 40[15 and so with the PDP15 the fault must be classified, 

and the faulty phase or phases must be found. In this manner 

only one R and one X needs to be calculated. 

Table (7.2) Calculation time (425) in the McInnes 
method (Simpson's rule) 

Ty
fa
p
ult
e of 

Single 
phase 
earth 

SI
1 

SI
2 

SV1 SV2 R and X Total 

to 107.7 107.7 24 24 253.9 517.3 

Phase 
faults 53.6 53.6 53.6 53.6 253.9 468.3 
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7.3 	ON-LINE TEST RESULTS 

The model described in Appendix Al was used to inves-

tigate the accuracy of different algorithms on-line. The hard-

ware and software described in this chapter were used to de-

tect the abnormalities on the transmission line and to cal-

culate the reactance and resistance of the faulty phase or 

phases. Many tests for differenttypes of faults were carried 

out. Not only were the algorithms tested off-line in chapter 4, 

re-examined again, but also tests were carried out on the 

algorithm described by Gilbert and Shovlin28 who claimed that 

their method used with a linear coupler could give acceptable 

accuracy. 

Three main sources of error in the impedance calcula-

tion, were common for all the algorithms, namely: 

i) The reactances of the transmission line model sa-

turated at about 10 amps r.m.s. and made the waveform distor-

ted. These reactances have been assembled quite close together 

and have a strong mutual effect on each other. This mutual 

coupling affects the accuracy of R and X calculations in single 

phase to earth more than in other types of faults. 

ii) The linear couplers have been assembled unsymmetri-

cally and very close to each other and so they are affected 

differently by mutual coupling which causes the model to act 

as an untransposed transmission line. 

iii) The interface shifts both the currents and the 

voltages. These phase shifts must be the same for all signals, 

otherwise the ratio between calculated R and X will be changed. 

Another very important source of error in the McInnes 

method (and also G-ilbert and Shovlin method) is the d.c. shift 
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of the current and voltage signals due to the amplifiers and 

sample and hold circuits etc. Fourier or square wave methods 

filter out the constant d.c. component in these waveforms 

and they are therefore not sensitive to any d.c. shifts. 

In almost all the tests which were carried out the 

Fourier method from an accuracy point of view gave the best 

results. McInnes' method was more accurate than the square 

wave one. The results of Gilbert's and Shovlin's method were 

unacceptable. 

There were three main reasons why the Fourier method 

produced greater accuracy than the McInnes method. 

i) McInnes' method must be used with a second order, 

60 Hz, low pass filter, if good accuracy is desired. A first 

order, 130 Hz is not suitable for this method. 

ii) The linear coupler attenuates the exponential d.c. 

offset considerably, and consequently removes the main draw-

back of the Fourier method. 

iii) The current and voltage'signals had a d.c. shift 

due to the improper design of the interface. Sample and hold 

circuits were imperfect and it was not possible to adjust to 

zero their d.c. off-set. One section of the interface which is 

used as a part of a larger interface for frequency control 

research. purposes was not under the control of the author. 

This part of the interface was also responsible for the d.c. 

offset in the current and voltage signals. The Fourier method 

can cope with this d.c. shift successfully, but in the McInnes 

method, this component is integrated and consequently causes 

the accuracy to be decreased. This d.c. shift can be calcu-

lated and accounted for by software, but this increases the 

computation of impedance. 
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Figures (7.7) to (7.14) show some typical results 

for the different algorithms, and table (7.3) shows the mean 

deviation of these results from the true values. 

Table (7.3) Mean deviation of resistance and reactance  

Algorithms M.D. of 	R % M.D. 	of X % 

S.P.F. D.P.F. T.P.F. S.P.F. D.P.F. T.P.F. 

Fourier 
method 9 2 6.5 2.4 1.3 1.1 

Square 
wave 
method 

17 22 14 9.6 9.3 5.6 

McInnes 
method 11 11 10.8 8.2 4 3.1 

M.D. 	= Mean deviation 

S.P.F. = Single phase to earth fault 

D.P.F. = Double phase fault 

T.P.F. = Three phase fault 

Figures (7.15) to (7.17) show the traces of R and X 

values during the fault. In most experiments McInnes' method 

was faster than the Fourier or square wave methods. 

In off-line tests it was shown that by increasing 

the sampling rate, the accuracy of the McInnes method increa-

ses. In on-line tests the accuracy of this method for 8 and 16 

S/C was almost the same bec,4use of the considerable attenuation 

of the exponential d.c. off-set by the linear coupler. For the 

Fourier and square wave methods, the results for different S/C 

were also the same. Also the Fourier method with exact and 

approximated coefficients, had almost .the same results. From 

simplicity point of view McInnes' method was simpler than both 

the Fourier and square wave methods. 
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Finally it is worth mentioning, that the linear 

coupler output is the derivative of the current and so if the 

current itself is necessary, it must be calculated. For exam- 

ple, assume that the fundamental components of i and 
di (which dt 

can be measured at linear coupler output) are as follows: 

i = Ai  sinwt + B. coswt 

-C11  = A. sinwt + B. coswt dt 	1 	i  

calculating di from (7.1a) and putting it into (7.1b) gives: dt 

wA- coswt - wBi sinwt = A. sinwt + Bi 
coswt 

Hence: 

A. = 1  B. 
1 	co 	1 

B. = — 1  A. 
1 	w 1 

(7.2a) 

(7.2b) 

By applying the Fourier method to the samples of the 
o 

linear coupler output Ai  and Bi will be obtained. Then from 

equations 0.2) the component of current itself can be calcu-

lated. Also we can write the R and X formulas in terms of A, 

and B. as: 
A B. - B A. 

R= w 	v  
' 

+ B.
2 

 

	

1 	1 

A A. + B B. 

	

and 	X= w v 	i 	v  

	

A. 	+ B:2 

	

1 	1 

(7.3a) 

(7.3b) 

7.4 	CONCLUSION 

4 different algorithms were implemented on-line and 

test results have been presented. The Fourier method gave the 

best results when judged on accuracy. Because of improper 

design of interface and particularly the sample and hold 

circuits, current- and voltage waveforms were shifted causing 
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the McInnes method to show less accuracy than the Fourier 

method. In most of the experiments, the McInnes method was 

faster than the Fourier and square wave methods. 
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CHAPTER 8 

CONCLUSION 

8.1 	GENERAL CONCLUSION 

This thesis has attempted to obtain a simple and prac-

tical algorithm for high voltage transmission line protection 

using digital techniques. The algorithm must cope with the many 

fault generated high frequency components and also exponential 

d.c. offset. In dealing with these components, the role of the 

analogue filter, its cut-off frequency and the sampling rate is 

very important. 

In chapter 3 it was shown that the cut-off frequency 

of the analogue filter is determined by its order and the type 

of the algorithm used. It was found that in the peak determina-

tion method, to have all frequency components attenuated with 

respect to 50 Hz, the sampling rate should be 4 S/C which from 

a numerical point of view is not acceptable. This method also 

is unable to 'cope with exponential dc component. 

The Fourier method, with 8 S/C and a 150 Hz, two pole 

Butterworth filter from filtering point of view is quite accep-

table, but its accuracy might be impaired by its inability to 

remove the exponential d.c. off-set effectively. In this method 

by approximating the coefficients multiplication in real and 

imaginary parts of a phasor can be avoided, without any practical 

changes in the spectrum or results. 

The square wave method accentuates some components and 

as a whole it has a poorer characteristic than the courier 

method, chiefly because the exponential dc off-set behaviour is 

poor. 

In the McInnes method, the interval-of integrations must 
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be half a cycle, otherwise the fault generated high frequency 

components will be accentuated. It directly accounts for ex-

ponential d.c. off-set which is its great advantage over other 

methods. If it is used with 60 Hz, two pole Butterworth filter, 

it will filter out all noise and other unwanted components.  

In chapter 4 the off-line tests showed that the McInnes 

method with Simpson's rule.gives the most accurate results 

among all the algorithms. Two conditions apply: 

i) The integration terms in the method must be performed 

over half a cycle of samples; 

ii) The method must be used with a second order analogue 

filter at least, with a 60 Hz cut-off frequency. 

It was shown that 8 S/C gives quite acceptable perfor- 

mance. 

In chapter 5 the analogue and digital filters are com-

pared for spectrums and transient time responses and it was con-

cluded that for protection purposes analogue filters are pre-

ferred. No clear advantage can be 'seen in any type of analogue 

filter. A second order Butterworth filter with any algorithm 

gives satisfactory_ results. This filter can be realized by only 

one operational amplifier. 

In chapter 6 it was shown that, in the case of a parallel 

line, if inter-circuit mutual coupling is incorporated, over-

reaching would occur. Neglecting the mutual coupling and reducing 

the protected zone length is therefore preferable. In addition, 

the sound phase voltage principle is recommended for close-up 

faults. 

Different algorithms were implemented on-line and the 

test results presented in chapter 7. Because of linear coupler 

characteristics, the Fourier method was shown to give the best 
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result. The sample and hold circuits were imperfect and they 

shifted the waveforms, and this caused the McInnes method to 

be less accurate than the Fourier method. 

In general, from off-line and on-line test results it 

can be said that if the current transducer is linear coupler, 

both Fourier's method with modified coefficients and also McInnes' 

method can be used succesfully for distance measurement. With 

a current transformer, the results of the Fourier method are 

not acceptable. In this case the McInnes method is recommended. 

In using the McInnes method care must be taken over the constant 

d.c. off-set produced by the interface. 

The original contributions presented in this thesis are 

as follows: 

1) Z-transform analysis of protection algorithms. 

2) Mathematical presentation of the frequency respon-

ses for different algorithms, in the most general forM. 

3) Determination of the filter cut-off frequency. 

4) Presentation of a new technique32 for R and X cal-

culation. 

5) Determination of the optimum interval for the inte-

gration terms in the McInnes method. 

6) Presentation of a new method26 for harmonic filtering. 

8.2 	FURTHER RESEARCH 

The model which has been constructed for digital pro-

tection research can be improved by reassembling the linear 

couplers symmetrically and reducing the mutual coupling effect. 

The connectors should be screened effectively and the termi-

nations tightened. The sample and hold circuits should also he 

replaced by integrated circuits. 
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The idea of using a modest size computer for primary 

protection of the whole substation or even a corner, from the 

reliability point of view is now the subject to some contro-

versy.
30,68,69 For primary protection, the use of one computer 

alone is not reliable. By using 2 or 3 computers the reliability 

can be increased, but economic considerations may not justify 

this number. Experience shows that, a computer such as .the 

PDFEcannot manage all the jobs that are necessary for protection 

and switching of a mesh corner satisfactorily and there is a 

need for a multi-computer system which from the economic point 

of view needs further justification. 

Because of the foregoing a fully segregated system for 

primary protection is preferred, and so the future research in 

the digital protection field should be concentrated in developing.  

simple digital hardware (digital relay) for every transmission 

line or transformer etc. If these relays are used in a substa-

tion, a central processor can check and monitor these relays 

and provide information about their status.. For transmission 

line protection, effort should be made to develop simple hard-

wares for implementation of the McInnes method. Cory, Dromy 

and Murrey have presented
72 a scheme for primary and back-up 

protection in which the role of a central processor for back-up 

protection and also monitoring every individual digital relay 

has been shown. 
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APPENDIX Al 

A1.1 	EyteruLparametres 

The system used for off-line study was as follows: 

01 	T1 

Li 

=100 miles 

Fig.(A1-1) System for off-line study 

The parametres of this system are given in table A1.1 

Table A1.1 Parametres of Fig. A1.1 

A1.2 	Transmission line model 

The voltage drop per unit length for a small section of 

the transmission line can be written as: 

dX 

dVa = Z1  I a  +-(Z  o
-Z

l 
 ) (I 

a
+I
b 
 +I 
c
) 3  

dX 	 = Zl  Ib 	3 
+ -(Z -Z

l 
 )(I +I

b 
 +I ) 1 

oac 

dX

dVc 	1 = Z
1
I
c 

+ -d(Z
o-Z1

)(I
a
+I

b
+I
c
) 

dV 

Also the rate of current change per unit length along the 

line, due to the capacitive link between phases and also bet-

ween phases and earth can be written as: 
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dIa 
dX-  = VaYs 1-(Va-Vb)Ym V -V ) Y a c m 

- dI 

dX = vo.s  + (Vc-V Ym  + (Vb-Vc) Ym 

- dI 

dXc V  c  Ys  + (V c  -v ) Ym  + (VC-VI) Ym  a  

Putting 

Ys = Yo 

ym = 	(Y1-Yo)  

equations (A1.2) become: 

1 dI Y
1-Yo d -

Va Y 
= -- --2 + 3YoY1 dX 

--- -- (1 
a 
 +I
b c 
+I ) 

1 dX  
dI

b 
Y
1 Yo d 1 -V = -- -_,-.=-_

X 
 + 

b 	Y 	dX 	3YoY1 dX 
(I
a
+I
b
+I
e
) 

dI
c  Y1-Yo d -V = 1 	 + 	(Ia+Ih+Ic) c Y dX 1 	3YoY1 dX 

(Al. 2a) 

(A1.2b) 

(A1.2c) 

(A1.3a) 

(A1.3b) 

(Al. 3c) 

Equations (A1.1) and (A1.2) describe the behaviour of a 

small section of a three phase transmission line. These 

equations can be simulated by figures (A1.2) and (A1.3) respec-

tively. Figure (A1.4) represents both equations and so it 

can be used as a model for a transposed transmission line with 

short length. Slemon and et a123 have shown that if ten of 

these networks are cascaded, it can simulate the behaviour of 

a long transmission line. For off-line studies 10 of these 

networks were cascaded, but for on-line tests only three of 

them were available to be cascaded. 

A1.3 	Generator model  

For the Generator model a constant voltage behind 

subtransient reactance was chosen. Jaleeli has shown that71 

the waveforms generated by using full representation of the 
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Fig.(A1.3) Model representing 	Fig . (A1-2) Model representing 
equation (A1.2) 	 equation (A1.1) 

Fig.(A1.4) Model representing a short length of 

transmission line 
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generator in the first cycle, is almost the same as if the 

generator is simulated by a constant voltage behind a reactance. 
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APPENDIX A2 

DIGITAL BUTTERWORTH AND CHEBYSHEV FILTERS, DESIGNED BY BILINEAR 
TRANSFORMATION METHOD 

(I) Butterworth digital filters (cut-off frequency equal to 	th 

sampling frequency): 

uk  = 0.542( 'uk+uk-1) 	0.085uk_i 

uk = 0.133(uk+2uk-1+uk-2)+ 0.799uk-1-0.361uk-2 

uk  = 0.028(uk+3uk_1+3uk_2+uk_3)+1.693uk_1-1.293uk-2 

+ 0.378uk-3 

uk  = 0.006(uk+4uk _1+6uk_ 2+4uk _3+uk_ 4 )+2.56uk _1-2.92uk_2  

+ 1.66uk-3+ 0.4uk-4 

uk = 0.001(uk+5uk-1+lOuk-2+10uk_3+5uk_4+uk_5)+ 3.42uk-1 

- 5.26uk-2+4.43uk-3-2.C2uk-4+0.4uk-5 

1 (II) Butterworth digital filters (cut-off frequency equal to Tx  th 

sampling frequency: 

uk = 0.363(uk+uk-1)+  0.27uk-1 

uk 	0.042(u +2u 	+u 	)+1.39911 	-0.5701  k k-1 k-2 	 A-2 

uk  = 0.004(fl -k 3fl+--k-11-3uk-24-uk-3)  

+ 0.61uk -3 

uk = 0.0004(uk+4uk-1+6uk-2+4uk-3+uk-4)+0.34u 	-4.46u k-1 	k-2 

- + 2.7 uk-3 	0.62uk-4  

uk  = 0.00004 (uk2r5uk _1+10uk_2+10uk_3+5u - k-euk-5)  
+4.36uk_1-7.8uk _2+7.11uk_3-3.31uk_ 4+ 0.63uk_5 

+2.41uk _1-2.058uk-2  
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(III) Chebyshev digital filters (1 db ripple, cut-off frequency 

1 equal to Ix th sampling frequency): 

uk = 0.28(uk+uk-1)  + 0.44uk-1 

uk = 0.031(uk+2uk-1+uk-2)+1.51uk-1 -0.65uk-2 

uk = 0.003(uk +3uk-1 +3uk-2 +uk-3 )+2.51uk-1-2.21uk-2 +0.68u k-3 

uk = 0.00031(uk  +4u 	+6uk-2 +4uk-3 +uk-4 )+3.48uk-1  -4.7u k-1 	 k-2 

+ 2.9uk-3-0.688uk-4 

uk  = 0.00003(u 	 J+Su  +5uk _1+10uk_ 2+10u,__ x 	k-44uk-5)u+4.45uk-1 

-8.1uk-2+7.54uk-3-3.57uk-4+0.69uk-5 

(IV) Chebyshev digital filters (1 db ripple, cut-off frequency 

equal to 8  th sampling frequency): 

uk = 0.49(uk+uk-1)  + 0.102 uk-1 

uk = 0.102(uk+2uk-1+1.)k-2)+0.98uk-1 -0.447uk-2 

uk  .= 0.021(ukx  +3u.-1 +3uk-2 +uk-3 )+1.866uk-17-1.5uk-2+0.46uk-3 

uk  = 0.004(uk+4uk_1+6uk _2+4uk_ 3+uk_ 4 )+2.7uk_1-3.25uk_2  

+ 	1.92uk-3-0.47uk-4 

uk = 0.00085(uk+5uk-1+10uk-2+10uk-3+51)k-41-1)k-5)  
+ 3.58uk_1-5.72uk_2+4.99uk_8-2.35uk_4+0.48uk_5 
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AN IMPROVED METHOD FOR THE DIGITAL PROTECTION 
OF HIGH VOLTAGE TRANSMISSION LINES 

A. M. Ranjbar and 13. J. Cory 
Imperial College 
London, S.W. 7. 

Abstract— This paper explores the accuracy of the digital methods 
for protection of high voltage transmission lines under transient fault 
condition on a long line and describes an improved method for future 
digital protection schemes. With this method it is possible to calculate 
R and L of high voltage transmission lines so that any number of 
harmonics on the current and voltage waveforms can be eliminated and 
it is shown to he suitable for distance protection during the first cycle 
of fault occurrence. 

INTRODUCTION 

Increasing interest is being shown in the use of digital computers 
for the protection, switching and data acquisition required in modern 
high voltage sub-stations. One of the most difficult functions to fulfill by 
digital methods is that of transmission line protection employing samples 
of the voltage and current waveforms taken front high voltage transducer 
equipment at the usual relaying point. Given adequate speed of sampling 
and conversion to digital form for proeesshej, 	oblems -remain of 
calculating the fault conditions within a defined protection zone of the 
transmission line, particularly when harmonics and noise are present. 
One method, proposed by Slemon, Robertson and Ramainoorty3, is 
based on the calculation of the fundamental components of the voltage 
and current waveforms by a Fourier technique requiring evenly spaced 
samples taken over a complete cycle of the system liequency. From the 
fundamental components, the impedance magnitude and angle seen 
from the relaying point can be calculated. The use of a mini-processor 
for this purpose requires a time to firer titan that obtainable from modern 
static analog relays with the added difficulty of achieving an ideal relay 
characteristic in the X-R plane. 

Another method, described by Rockefeller l for it practical installa-
tion based on the work of Mann and Morrison6, uses samples to predict 
the peak values of fault voltage and current as well as the phase angle 
between the peaks. In these methods the desired differentiation tech-
niques employed tend to amplify the harmonies present in the wave-
forms due to the line shunt capacitance characteristics and transducer 
effects. High frequency noise can readily be eliminated by analog filters 
with suitable cut-off characteristics but to reduce the harmonic effects, 
particularly those up to I 1th and 13th, it is necessary to use digital in-
tegration techniques as proposed by ,Couch et al 10  and PonceletS. 
These techniques involve a form of digital filtering, an application which 
has been highly developed in the telecommunication field, but to be use-
ful for high speed power system line protection it is necessary to com-
bine them with the minimum number of sequential samples consistent 
with desired accuracy and speed of detection. Consequently a measure-
ment and calculation time equivalent to about half a cycle (10 ins in a 
5011z system) and a measurement error of no greater than 5% of line 
reactance to the fault point is sought. 

This paper explores the accuracy of various digital methods under 
transient fault conditions on a long line and proposes an improved 
method which, by filtering out low order ILirmonies, enables greater 
accuracy to be obtained. 

Paper T 74 350-2, recommended and 	Sc' the I1 Eh Power System 
Relaying Committee of ill_ 1E1'1: Power lineincerin.:Soeien,-  for pr,:.,,ontation at th..: 
RiE.E PLS Summer lAcerine 	Enerey 	Conf.. Anaheim, Cal., July 14.19, 
1974. ',-1:111u.s,:tipt satmlitt,A1 IA:tasty 25, 	ay.ii1.11,1c for printing June 4, 
1974. 

THEORY OF DIGITAL FAULT MEASUREMENT 

The voltage drop per unit length of an overhead line consisting of 
three phase conductors a, b and c with no shunt capacitance can be 
represented by: 

dV,  

dx 
dVb 

Zsa 

zraba 

men 

Zmab 

sb 

mcb 

Zrnac 

Zmbc 

sc 

a 

Ib 

IC 

(1)  
dx 

dV_ 

dx 

where Zs _ are the self impedances and "lm _ are the mutual impedances 
per unit length. If the line is perfectly transposed all phases have the 
same self and mutual impedances of Zs  and Z mn  per unit length respect-
ively, so that equations (I) become: 

dY 	Z I 	Z I 	) a = 	z a + 	ITI 	+ c 
dx . 

dVb 	ZsIb 	Z (I 	I )  + m a + c 
dx 

dVc = 
Z
aIc + zrn(la + Ib) 

dx 

In terms of the positive and zero sequence impedances of the line, Z1 
and ZO, equations (2) become: . 

dVa = Z1Ia + (5o — Z1)Io 
dx 

dVb = zlib + (Zo —
1
)I

o 
	

(3) 
dx 

dVc = Z1Ic + ('Lo  z1)io 
dx 

From equations (2) and (3) the voltage drops due to measured fault 
currents la , and lb and ic and/or the residual current lo can be calculated 
for any given fault condition. Such conditions will now be considered in 
turn. 

Single-phase to Earth Fault 

When a solid single phase to earth fault occurs on phase a at a dis-
tance x along the line from the transducer, the instantaneous phase to 
earth voltage va  can be calculated by use of eq. (I) for an untransposed 
line or by eq. (2) or (3) for a transposed line. 

Using instantaneous (simplest) values of voltage, current and rate 
of eilainie of current, eq. (I) can be written: 

(2)  
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equation (4) becomes: 

v a = x12ma iX  + xL di ma y.  
dt 

Similarly equations (2) and (3), using instantaneous values, become: 

F + xLs  d la  + L  n(ib+id 
at 	Ls 

and 
va = xR1(1a + Ro – 1  io)+ xL 	(i + Lo –1 	) 1 — a --- o 111 	 dt 	L1  

and these can also be written in the form of equation (5). 

Double Phase and -fluke Phase Faults 

Fora double phase fault between conductors a and b and a three 
phase fault involving all three conductors, the voltage between the 
faulty phases can be written as: 

Va 	Vb 	xZ1 (Ia – Ib ) 
	

(7) 

when the line is perfectly transposed. In instantaneous form this equa-
tion becomes: 

va 	vb  = x121  (ia  – ib ) + xLi 	(ia 	 (8) 
dt 

Corresponding equations can be written for the other phases and more 
complicated equations can be derived for untransposed lines. If neces-
sary, the value of (xRt) in equation (8) can be replaced by (xi: + 
where 12f is the fault resistance. 

CALCULATION OF RESISTANCE AND INDUCTANCE 

In the previous section, an equation of the form: 

v = Rix 
+ L di 
	

(9) 
dt 

is obtained for all fault conditions where the values of v, ix and iy can 
be found by appropriate choice and combination of sampled voltages 
and currents. It should be noted that the required samples must be taken 
simultaneously on all three phases as can be achieved by suitable sample-
and-hold peripheral equipment. 
• From equation (9) the values for R and L can be calculated by 
several methods. To compare them for accuracy and speed of computa-
tion, a particularly difficult case was simulated using the parameters of a 
300 mile long, 230kv overhead lire. 'f he r..spiecntation was obtained by 
a multi-section lumped parameter model Ca r!,:isting of 10 cascaded T 
sections in which self and mutual impedances and shunt capacitance 
were included3  (see Appendix). In each case the current and voltage 
waveforms at the relaying point for four fault inception angles were 

computed off-line for faults at a distance of 300 miles and 150 miles. 
Two such typical waveforms are shown in figures 1 and 2 where the 
distorted natu-re can be noted, particularly during the first fundamental 
cycle. The various calculation methods for R and L are reviewed in this 
section, where sampled values taken at 625 j.ts intervals (32 samples/ 
cycle in a SOIL. system) were used as input data to a fault detection 
program. 

co_ 
0 C0 	' 0.02 	 0 4 	() . t3 

SEC 
Fig. (1) Current Waveform 

Simple Integration (Method 1) 

By integrating equation (9) once over time instants ti and t2 and 
again over t3 and t4, the following two equations arc obtained: 

rt2 vat . 

1 

)/(t  " 

tr vdt = R 	I; 

,7  
3  

(4)  

(5)  

= x12 a 	3 
m (ib  

▪ i

c ) 
12 --  

  

i
x dt + L (iy2 	y ) 	(10a) 

ix dt + L (iy4 — iy3) 
	

(10b) 
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From this pair of simultaneous equations, R and L can be calculated 
after 4 samples have been taken giving the results of Table 1 for double-
phase and three-phase faults. Despite satisfactory computation times 
using a PDP 15 processor of 3.6 ins for double-phase and three-phase 
faults and 5 ms for sift:de-phase-to-ground faults these times include 
data acquisition, .fault detection, classification and impedance calcula-
tion) it can be wen that the errors in L are unacceptable. If the error is 
to be kept below 	only 	harmonic on current and voltage wave- 
forms could be tolerated. With this method the errors in R are cor-
respondingly high (see table IV). 

TABLE I 
Double-phase and three-phase faults: transposition assumed, simple 
integration •(Method 1). 

Fault dint— 
once 

(miles) 

Actual value 
of L 

(x103p.u) 

Fault incep— 
tion angle 

(degrees) 

Calcu— 
lated 

L 	, 
(x103p.u.) 

Error 
in L 

% 

o 0.51 56 
45 0.31 73 

300 1.18 90 0.35 70 
135 0.28 75 

0 0.50 16 
150 0.59 145 0.84 44 

90 0.90 56 
135 0.90 56 

Mean square error minimisation method (Method 2) 

Equation (9) can be rewritten as: 

Ldi 	Pi — v =E 
+ 

dt 
where c is the error caused by shunt capacitance harmonics and low 
frequency noise effects. By integrating both sides over (o,t) we obtain: 

t 	t 
L 	di + 	ixdt 	vdt = t 

	(12) 

0 

The average of the square of the errors over the interval T is given by: 

2 

ixdt — 	vdt] 	dt (13) 

We can choose. L and R so that cm  is a minimum, for which the partial 
derivatives of c m  with respect to R and L should be zero. The following 
equations are obtained: 

T Lt 
t  ( 	di y  )( o  i x 	 o 

dt)dt + L T( t  di 
y

) 2  dt = 

(14a) 
vdt )( 	di f ) dt  

From these two equations R and L can be calculated which, with 
samples, takes S ins on the PDP 15 computer for double and three-

phase faults. Typical results are shown in Table 11 where it can be seen 
that the accuracy is still unacceptable although overall a small improve-
ment can be noted. For an error in I. of 5% to be obtained, only 0.3% 
bats onic on the current and voltage waveforms can be tolerated. 

TABLE II 

Double-phase and three-phase faults: minimisation of error (Method 2). 

Fault dist- 
once 

(miles) 

Actual value 
of L 

103  p.u.) 

Fault incep- 
tion angle 

(degrees) 

Calcu- 
lated 
L 

(x103p.0) 

Error 
in L 

% 

0 0 100 
45 0.54 54 

app 1.18 90 0.5? 51  
135 0.22 61 

0 0.46 22 
0.59 tt5 0.78 33 

150 90 0.84 44 
135 0.81 38 

Minimisation of errors over several intervals (Method 3) 

In equation (12) the interval (o- t) can be divided into n parts by 
taking a sequence of samplesS. This allows n equations of the,type 

t. 
ixdt + L(i 	i ) - 

YJ 	Yi 

to be written for the interval ti to tj. Nlinimising n, c 2  in relation to R 
n  

j=i 
and I. gives two equations from which R and I. can be calculated as be-
fore. The accuracy of this method was found to be less than for method 
2 although the speed of computation was about the same. 

An Improved Digital Harmonic Filtering Method (Method 4) 

The methods shown so far are particularly sensitive to low order 
harmonics on the voltage and current waveforms. In long high voltage 
transmission lines there are considerable harmonics generated in the 
first cycle due mainly to the shunt capacitance effects which for the 
voltage waveform with high source impedance can amount to more 
than 100% of the fundamental. Consequently unless steps are taken to 
eliminate the harmonics, calculation of R and L will inevitably involve a 
large unacceptable error. Filtering the signal waveforms by analogue 
means to reduce low order harmonics is also unacceptable because of 
the slow response then achieved following fault initiation. 

In general, it is possible to calculate R and L so that any number 
of harmonics can be eliminated. For example, to remove the third 
harmonic, equation (9) can be integrated once over the intervals o,a (a 
is an arbitrary constant) and again over the interval er/3, (a + rr/3), the 
resulting equations, when added give: 

1 cm = T it  di + R 
Y 

0 	0 

vdt = C
i 	

(15) 
 



5 	5 
vdt + 	vdt] 

it 

2r. 	211 	it --7.- + 3 
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In this equation the (bird harmonic and all its multiples are completely 
filtered. The time to calculate It and L from two equations such as (16) 
is about 6 ms when nine sampled values are taken at 6671ts intervals (30 
samples/cycle in a 50 Ilz system). Also to remove the third and fifth 
harmonics and all their multiples equation (9) can be integrated over 
(o,.:257) and again over the interval 7r/3, (7r/3 + -21-). The resulting equa-
tions, when added, give: 

diy  

f2n 	it 	 crt 	(2n 	it 
5 	 5. 	5 	3 

di
yJ 
 + RI 	ixdt + i 

lll o 
3 3 

(17) 

The time needed to calculate R and L from two such equations and 13 
samples is about 9 ms. In general to remove two harmonics of order m 
and n and multiples thereof the resulting equation will be: 

di 	+ 

(2n 

	

vdt + 	vdt 

(2n + 71 
CI 

n 

it 	 27 	(2n 
fr. 	21 	In 	 n 

1 	d t 	rt7a1x 	= 

n 

+ — 

c  

TABLE IV 

The accuracy for the calculation of R 

Fault 
incer- 
tier: 
angle 

5 Error in R 

Method 1 Method 2 Method 3 Method 4 

!,degreco)  

0 650 950 96 12 

.45 400 35 85 50 

90 260 240 220. 52 

135 600 ,1300 880 7 

harmonics) the time for calculation including the acquisition of samples, 
fault classification and impedance calculation can be about 17 ms. It 
should be noted that for efficient and accurate calculation the rate of 
sampling is best chosen as a multiple of the order of the harmonics 
which it is intended to remove, 	 • 

The accuracy for the calculation of L is shown in Table III for a 
double and three-phase fault where it can be seen that acceptable 
measurements are now being achieved when 2nd, 3rd and 5tii harmonics 
are filtered out by this improved method. 

The accuracy of the calculation for R with the different methods 
already described is shown in Table IV. Since allowance for the fault arc 
resistance needs to be made, the fourth method again gives acceptable 
accuracy. 

o 

Tt 	 (18) 	 USE OF A COMPUTER FOR DIGITAL RELAYING 

This principle can be extended to any number of harmonics by making 
a sufficient number of integrations. For example, three harmonics of 
orders, m, n, and k can be eliminated by using: 

L ( ypy+ R ( 2-jixdt) . yPdt 

where: 	27 	27 	7 (27 	7 	71 	71 
IF 	 n 

>l  vdt . 	vdt+ 
T‹ 

vdtr3 
k 

+ 	vat
n 

+ 	 vdt 

TS Tt +— 
rl n 

and If diy and Efix dt are calculated similarly. In this way with 2nd, 3rd 
and 5th harmonics removed (leaving only 7th, I I th and higher prime 

TABLE III 

Double-phase and three-phase faults: improved filtering method (Meth-
od 4). 

Fault diet- 
once 

(miles) 

Actual value 
of L 

(x103p.u.) 

Fault incep 
tion angle 

(degrees) 

Calcu- 
lated 
L, 

(10'p.14) 

Error 
in L 

% 

0 1.24 5 
300 1.18 45 1.18 0 

90 1.33 13 
135 1.43 21 

0 0.59  0 
150 0.59 45 0.62 5.5 

90 0.52 11 
135 0.41 16 

By adopting suitable algorithms as have been described a m i n i-
computer with modest storage but fast cycle time (Ins on the NW 15) 
can be used to calculate fault impedances for protection par poses. Fven 
if such a device is not acceptable for main protection purposes it would 
be very useful for locating the position of faults on lone lines and per-
haps to provide a hack-up protection feature. In any cose, if given 
access to the appropriate waveforms, it could prepare comprehensive 
fault reports which include fault types, location, event sequences etc., 
and such a tool would be invaluable to operating and maintenance 
engineers. 

Using small process computers, improvements on conventional 
distance relaying techniques can be made because provision of a quadri-
lateral characteristic and 3 zone protection presents no problem. The 
sides of the quadrilateral can he adjusted by program, tire discrimina-
tion between a power swing and genuine fault can be obtained by suc-
cessive calculation of R and L and even high resistance faults care be 
located if communication channels to adjacent substation computers 
arc installed. In addition, the problems involved with conventional 
analog relays in dealing with residual compensation for single-phase to 
ground faults no longer exist. It has been shown 9 that the assumption 
that the coefficient 70.7:/1 is real causes a large error in conventional 

impedance measurement whereas this coefficient appears as 

land _RA:- R in the digital relay, both of course being real. The method ltj 
proposed can also deal with untransposed lines if equation (4) is imple-
mented in full. In practice this adds very little to the calculation time 
because much of the delay occurs in waiting for the samples to he taken. 

One area that needs further investigation is that of determining the 
best combination of analog and digital filters to apply in each particular 
case. 

Off-line Fourier analysis of voltage and current waveforms for the 
line simulated in section 3 has shown that there is no disee..- niNe pattern 
in the occurance of dominant harmonics for faults of varying types at 

(19) 



Transmission Line and Source Simulation Date 

Base data 
Line parameters: 
Positive sequence resistance 
Zero sequence resistance 
Positive sequence inductive reactance 
Zero sequence inductive reactance 
Positive sequence capacitive reactance 
Zero sequence capacitive reactance 
Source impedance: 
Positive sequence reactance 
Positive sequence resistance 

230KV, 100NIVA 

0.113 x 10-3  
1.216 x 10-3  
jo.I23 x 10-2 
jo.320 x 10--
-j420 
-j714 

jO.35 
0.033 

p.u./mile 
p.u./mile 
par./1110e 
p.u./mile 
p.u./mile 

p.u. 
p.u. 

V 0-3 

I9 	3050 mps 

- 233-. 

Positive and zero sequence currents p.u. instantaneous. 
Self and mutual impedances, p.u./mile. 
Positive and zero sequence impedances 
Positive sequence resistance and inductance p.u.imile. 
Distance between transdneers and fault point m miles. 
R= x121,1, ,-7xLl 
Error 
Time intervals 

	

different distances .from the relaying point. From Eig. (2) it is obvious 	ii, io 

that the voltage waveform is the worst affected and care with the selec- 

	

tion of a filter on the output of the voltage transducer would be most 	"LI ' 7-4) 	- 
12 1, 

 

Li  beneficial.  

	

'the method requires further development for application to partic- 	R, L 

ular systems which may require consideration to be given to pre-fault 

	

loadings, remote end infeed and parallel lines with strong mutual coup- 	'' tJ 

lines. Most of these conditions are well known in present relaying 
practice and the methods used in analog relaying to obtain the desired 

accuracy can he incorporated into the digital method. 

CONCLUSION 

The improved method of calculating resistance and inductance to 
the fault by a digital processor as proposed in this paper can in theory 
compete with conventional relaying techniques in speed and accuracy. 
It filters Out the low order harmonies and to the authors knowledge it 
has not been used before but it does require special consideration of the 

likely positions of fault. This needs careful thought to be given to the 
combination of analog and digital filter to be applied. 

Further development will be necessary under simulated conditions 
and in an actual substation environment before an assessment of such 

factors as reliability and cost can be made. Discussion 
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APPENDIX 

Symbol Definition  

A. C. Phadke, T. Illibka, and NI. Ibrahim (American Electric Power 
Service Corporation, N.Y.): \\e have read the authors' paper With great 
deal of interest. Our own work hi this area started with the aleorilluns 
described in the authors' references 4, 5, and 6. We will pucscnt our 
results in ereatei detail in a forthcoming paper: for the present we would 
like to confine out selves to a few observationson the techniques used in 
this paper. 	 . 

It would he interesting to know sonic details of the simulation 
program used by the authors to generate the waveforms of their Figures 
1 and 2. In partiettlar, we would be interested in knowing the modeling 
techniques of ground tousle 	 \\'c have found that unless care is 
exercised in setting up the model, the computer genetated waveforms -
especially after the first few leflections depart considerably from the 
waveforms obtained in practice. Ev.dua ting  f ault impedance algorithms 
based on such waveforms leads to a performance which is far too erratic. 
We have redrawn in our Figure I a field oseillogrinn of a line-to-ground 
fault on our 765 KV line 1 125 miles) and it can be seen that qualitative-
ly both the current and voitage waveforms are much smoother than the 
authors' Figures I and 	would indicate. In our min work. we tend to 
test most of our algorithms on the waveforms generated by a model. 

We would also like to know whether the waveforms of Figures 1 
and 2 were filtered to band-limit the signals presented to the sampler 
below the Nyquist frequency. With the somewhat slower mainline rate 
we are using (12 times per cycle), we have found that the required 
analog filtering produces a (11:12y of about 1.2 millsecond wide!' we 
consider to be quite acceptable. Such a filter also renders harmonics be-
yond the 7th quite insignificant. 

Va, Vb, Arc 
Va, Vb, 5'c 
1a, lb. 1c 

ia, 	Ic 
11,10 

Phase voltages pm.. complex. 
Phase voltages p.m, instantaneous. 
Phase CUT rill Is pm., complex. 
Phase currents pm., instantaneous 
Positive and zero sequence currents p.u. complex. 

Fig. I 

Maintsciipt received August 2,1974. 
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We note the authors comment that the algorithms using derivatives 
arc prone to harmonic amplification. We would like to know the 
authors' views on the discussion of their reference 6, v.diere it is shown 
that at the sampling rates being considered, the algorithms using deriva-
tives perform almost identically to those using integrals. 

Next, we would like to summarize our experience with algorithms 
which seems to parallel the authors'. The simplest algorithms using a 

• quantity and its derivative (or the first and the second derivative, or the 
first derivative evaluated at two points) without any smoothing perform 
as poorly as the authors' method 1. The techniques which use an n'th 
order least-square-fit polynomial on to points (n < in) as a digital filter, 
perform almost as poorly when the previous algorithms are used on the 
filtered data. We think this procedure is quite similar to the authors' 
methods 2 and 3. Digital filtering (in the conventional sense) gives the 
most satisfactory results. 

In applying the conventional digital filter equations (as in all 
others) the exponentially decaying de offset must be compensated for. 
This is quite easily done by a preprocessor to the digital filter. In this 
sense, the authors method deserves attention as it directly accounts for 
the etc offset. We wonder whether the authors have tested their algorithm 
on data where the Fault path included an rue whose resistance is variable. 

Finally, the authors' point about the ratio 	-7.1)//0 not being 
a real number is well taken. In many cases the (:round relaying is not of 
the impedance type, and this poses no serious problem. Even when 
impedance relays are used fur ground protection, currently available 
conventional relays permit an adjustment in this factor only within the 
nearest 10":c. The complex factor must be taken into account if its 
effect is found to be significant.  

tend to be idealistic and neglect the effects of random and non-
predictable parameters such as arc-resistance variations, sensitivity of 
zero-sequence impedance to earth resistivity and changes in mutual 
coupling hetsveon parallel circuits due to varying power flows. However, 
the simulation does allow the merits of different algorithms to he 
compared on the same basis and, for any particular application, studies 
should be made involving these parameters. We have not done any such 
studies to date. 

In reply to Messrs. Couch and Dembeeki our technique does not 
result in rimplification of some frequencies during the elimination of 
others. In fact, all harmonics above the fundamental are attenuated as 
the following analysis will show. 

Consider the equation 

Using, the trapezoidal rule and with 30 samples per cycle in a 5,011z 
system, sv can be calculated as 

v 	v16 
T.sv 	 15 + 

2 = (;1  + v2 + 	  

S V vdt + vdt (a) 

v • , +kr6 v  + + 

 

v
20 + 

v21 
	(h) 

 

• 
G. I1. Couch and J. A. Dembecki (Electricity Commission of New South 
Wales, Australia): Tile paper describes techniques for relaying transinis-
siun lines by impedance measurement, assuming, a line model of the 
form 

v = Hi + L 
t 

'this model overcomes the disadvantages of earlier models which 
assumed sinusoidal voltages and currents. However, the model used 
ignore:, the fact that the transmission line is distributed and the effects 
of shunt capacitance. 

The authors arc to be congratulated for designing an elegant 
technique in which the effects of certain high frequency components 
can he eliminated in the measurement of impedance assuming a simple 
first order model. The results quoted are indicative of the power of the 
technique. Further comments on the following aspects would he of 
interest. 

1, The noise which occurs in the voltage and current signals may 
cover a continuous frequency spectrum and not sirmly consist of 
discreet harmonics of the power system nominal frequency. It is 
essential that the elimination cif some Frequencies dues not result in the 
accentuation of others. 'lave the authors mealy/Lid this possibility? 

2. The discussion of the inode of simnlation of the system whether 
by digital computer or using an analog model would be of interest. 

3. accuracy of each of the methods described in the paper is a 
function of: 

(a) The fault data acquisition time interval. 
(b) The sampling frequency. 

In this respect the results of the methods appear to be given for 
different values of these parameters. The longer times used for method 
4 if available tor methods 1, 2, ;1 ad 3, could he expected to rec?tice the 
differences in accuracy quoted. An explanation of the reasons for 
treating the methods differently would assist evaluation of the technique 
proposed.  

where T is the sample period and VI, v2 etc. are the samples of voltage 
taken at evenly spaced time periods. Equation (16) of our paper shows 
that using equation (a), the second and third harmonics as well as their 
multiples will be eliminated using this technique, The effect on har-
monics vdrich are our multiples of the second and third can be found by 
the z-transform technique using a general form of equation (b) as 
follows:- 

v T.  rivk 	 k- 19 +  

+ v + (— 	
, 

vk2- 15
‘-• 	k- 11+ + 	 vk-1 + 74) (c) 

where T.svk is the kth value. and requires the kth sample of v and 20 
simples before it. If desired, T.svk can be calculated for each new set of 
samples continuously by ridding tile newest sample and subtracting the 
oldest durinn each sample period. Equation (c) has the form of a non-
recursive digital filter and its z: transform is: 

20 
H = 

T.61/ (Z) 
= 	 Z 

19 

Z-5 -14 	-1 1 +• 	+ z 	+ 	z 	+ -27) 

(1+ z-5)(1+z-1)(1-z-15) 

The frequency response of equation (d) is then given by: 

v 
71--6  + 

giving B(Z) (d) 

11(j0) 
Manuscript received July 25,1974. 5 T (.1.)T 

[ 4 cos 2 — cos =-"-- sin 2  
15t0T 

2 	exp(-j10caT) (e) 
. 	toT 

A. M. Ranjbar and B. J. Cory: We wish to thank the discussers for their 
comments and kind remarks on .our technique. As 3 general point our 
off-line simulation using a CDC 660(1 digital computer was taken largely 
from ref. 3 of our patter supplemented by ter:India:es described in Urant 
and MillerA and Subramaniam and 1dakki The waveforms obtained 

Manuscript received November IS, 1974.  

The amplitude of this function has been plotted in figure I and it can be 
seen that it effectively attenuates both integer and non-integer 
harmonics. 

Surprisingly, the apparently simple addition required to evaluate 
equation (b) has a very sharp cut-off characteristic which is impossible 
to obtain with an analogue filter without considerable delay. It should 
be noted from fig. 1 that the d.c. component and all sub-harnionics have 
Innei amplified. In fact the d.C.001111)(111;rnt can be regarded as providimt 
valuable information for fauit identification and is accounted for in the 
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Fig. 1 Amplitude characteristic of filter. 
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60 

NOTE : Voltage obtained from a capacitive divider, 

Fig. 2. Field oscillograrn for 3 phase fault on long line. 

'choice of algorithm which uses v = Ldi/dt 	Ri as the basis for 
calculation. 

Equation (b) should be compared with a full Fourier analysis 
technique which would involve taking samples generally over a full 
cycle and employing many multiplications unless the Fourier algorithm 
is based on a square wave orthogonal function. Our method can 
respond with less samples if the fault is,stivere. Reduction in the number 
of samples per cycle is possible with minor degradation of performance 
and the limits of this are now being investigated. Our experience shows 
that the accuracy of methods I to 3 cannot reach that of method 4 even 
with a greater number of samples. The second integration term adjusts  

the cut-off frequency and produces a sharp characteristic which de-
pends on the lowest harmonic removed. The cut-off can also be varied 
by adjusting the interval of the second integral. 

In reply to Messrs. Phadke. Hlibka and Ibrahim, the smoothness of 
the current and, particUlarly, the voltage waveform depend upon gener-
ator source reactances and transmission line length. For a !Ugh reactance 
source and long line considerable distortion occurs as is horn out by a 
field oscillogram reproduced in figure 2 for a 3 phase fault. 
It will be noted that the current waveforms are similar to our simulation 
during the first fault cycle and the voltages exhibit considerable noise 
although in this case such noise could be attributed to the use of a 
capacitor-divider voltage transducer. 

We agree that in many eases a band limiting analogue filter can be 
used and that perhaps a 1.2 ins delay is acceptable. Our simulated wave-
forms were not band-limited but the nature of the lumped constant 
simulation (see ref. 3 of our paper) does lend to limit the frequency 
response of the line. 

In connection with the discussion of ref. 6, it has been shown that 
for the simple case of v 	vp sin cot waveform both differentiation and 
integration give the same result which can be understood intuitively. 
However, the ditferenee between these two methods is apparent when 
harmonics are present because differentiation must accentuate them 
but integration can he used to provide attenuation when time technique 
is correctly chosen. A method which uses a quantity and its derivative 
cannot be satisfactory because it is not able to account fur 
even if noise and harmonics are neglected. Even first and second 
derivative methods involve- considerable numerical calculation error 
which- make the result unacceptable for tong lines. The use of a simple 
digital filter would considerably improve the accuracy and conid be 
used for all the methods given in our paper but would also involve an 
extension to the built detection time. 13y the continuous calculation of 
resistance and inductance after each new set of samples is obtained, a 
reduction in fault detection times is achieved, which is particularly 
marked for close-up faults. 

Finally, the approximation involved in using the scalar value for 
(Zo - 7,1)/7.1 in residual compensation schemes introduces error in Loth 
resistance and inductance calculations. This error depends upon the pre-
fault load condition and the source impedances. For high source imped- 
ance the resistance error may reach 	and the inductance error 41%. 
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ALGORITHM FOR DISTANCE PROTECTION 

A. M. Ranjbar and B.J. Cory 

1. Introduction 

Several methods have been published
1,2,3,4 

for the digital calculation of 
• transmission line fault impedance using a mini-computer on-line. All 
methods rely on sampling and storing voltage and current waveforms at a 

- single measurement or relaying point. For measurement purposes, the most 
onerous condition is when a fault occurs at a voltage maximum on one phase 
because the consequent discharge of capacitive energy through the line in-
ductance causes harmonics to be generated in the current and voltage. In 
addition, noise and non-linearity of the transducers result in further 
harmonics against which any algorithm used to calculate fault impedance 
should be immune. 

This paper examines and compares three algorithms suitable for fault imp-
edance measurement,.with particular reference to their accuracy. and speed 
Of calculation. These algorithms have been chosen because of their ability 
to deal with low order harmonics. 

2. Fourier Technique  

Using a hardware sample/hold technique it can be shown that with N samples 
per fundamental cycle, harmonics not of order K x N±1 can be filtered out 
by a suitable digital technique, ;here N is an integer taking values from 
1 to oo . However, an analogue filter on the input to each sample/hold 
circuit can attenuate high order harmonics, leaving the low orders 2,3,4E.tb. 
to be eliminated by digital means. It is convenient for hardware design to 
use 8, 16 or 32 samples per fundamental 50 Hz cycle thus allowing the 
possibility of eliminating everything below the 7th, 15th or 31st harmonic. 
One method is as follows: 

Assume the fundamental components of voltage and current waveforms are 

v = V sin (wt + 0  + 6) = Av sin wt + By can wt ) 

i = I sin (wt + 6) 	= A.
1 
 sin wt + B.

1 
 cos tot 

p 

• • 0 • 0 • • • • 4( 1) 

In complex form y = 	j By  

I = A. + j B. 
1 

Hence 

	 (2) 

A A. + B B. 	B A. - AB, 
V 	 + = = R + jX = 

	

2 	2 	2 

	

ATP  ± B. 	A. + B. 
1 	1 	1 

or R= 

	

A A, 	+ BrB. 	and X = 	B A. 	- A B. 

	

vi 	Va. 	-r -1. 	vi 

	

AL.- 	+ B2 	A. 	+ B. 

	

1 	3. 	 3. 	3. 

******* 44105 (3) 

A.H.Ranjbar is at Imperial College, London, .ST? 2BT. 
B.J. Cory is at Imperial Colley, London, SW7 21T. 
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IfA,B,A.andB.are calculated for each phase, the impedance of a 
v v 	1 

transmission line seen from a single relaying point can be determined. 

Now using Fourier analysis, we have that 
t
o
+T 	 t

o
+T 

o.v sin wt d(frt), 	By 
	T 
= 	o.v cos wt d(et) 

0 
	 (14) 

w.i sin wt'd(0t), 
0 

 

0.i cos wt d(ot) B
. 

= 

0 	 0 

where T is the period of the fundamental and t is an arbitrary time from 
which to start the calculation. By using the °trapezoidal rule (which 
produces less manipulations than Simpsons rule with the same accuracy in 
thiscase)thevaluescfA,A.,BandB.can be calculated from N samples 
per cycle as follows: 	

v 	v 
 

1 
Av N 

= 	[v(t ) sin wt
o 
+ 2 v(to  + 	sin w(to  + 

o 	N 	N 

+ 2v(t
o 
+ 
N1 

 .T) sin w(t
o 
+ 
N-1

.T) + v(t
o
+T) sin w(t

o+T)] 

'- 
and B 	

1 
—Iv(t ) can t + 2v(t + 	cos co(. 	—4..0c..c. 

V N 	o o 	o 	N 	o . N 
(5) 

N-
N
1 

+ 2v(t
o  + 
	cos w (t

o 
+ 
Nj-1.T)  + v(t

o
+T) cos w (t

o
+12)] 

where v(to), v(t
o 
 + —).... are evenly spaced samples of voltage. Similar 

N 
equations can be written for A. and B.. 

1 	1 

The method shown has the property that the harmonics not filtered remain 
without change in magnitude. Its disadvantage is that samples taken over 
one cycle of fundamental are required before R and X dan be determined. 
However, by adding the newest sample as it is measured into A , Bv  etc. 
and discarding the oldest, an updated value can always be reaLly obtained 
GO that the change in R and X can be tracked. If a close up fault occurs, 
the new samples will be radically different from the old and R and X will 
move rapidly into the fault zone. With a typical 400 kV, 100 mile long 
system fed from generators and transformers having the parameters given in 
Table I and fig. 1, figs. 2 and 3 show the tracking of X and R for various 
3 phase fault conditions using 16 samples per cycle in an off-line study. 
It can be seen from the movement of the line reactance and resistance into 
the tripping zone that a close up fault at end A can be detected in less 
than j cycle (10ms) whereas a fault near the far end would take at least 
3/4- cycle (15ms). Fa,,Ilts in transformer I and on the neighbouring line do 
not cause X and R to reach the tripping zone simultaneously. 

The following sections consider some typical faults in more detail. 

2.1 Close-up  faults 

The import and export of power can cause different values of R and X to be 
measured. Fig. 4 shows the tracking of X for a three phase solid fault 
close to end A on line Ll. If the fault is inside the distance zone, the 
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reactance reaches near zero from the positive side for both import and 
export of power. When the fault is outside the protected zone, the re-
actance approaches from the negative side. It is obviously important to 
track the direction. of X towards the tripping zone, otherwise incorrect 
tripping could occur. 

2.2 Phase-to-pLailf and phase-to-earth faults 

To avoid having to calculate six impedances (3 phase-phase and - 3 phase-
. earth) after each set of samples, time can be saved by first calculating 
the zero sequence or residual current. If the residual is greater than a 
predefined value, only phase-to-earth impedances are calculated and if it 
is less, only phase-to-phase-impedances are determined, Residual compen-
sation, as used in analogue form on conventional distance relays, is 
applied for phase-to-earth faults in the calculation. With phase-to--phase 
faults, delta currents and voltages are computed from the measured values. 

To ensure reliable tripping, three successive calculations using at least 
three new sample values are required to be within the trip zone to initi-
ate a trip signal using the algorithm, 

2.3  Double circuit lines  

In the double circuit case, the mutual reactance between the lines should 
be included in the impedance calculation. However, with measurements at 
only one end, overreaching occurs in the digital method as with the con-
ventional analogue relay-). The only solution, other than a fast data link 
between the ends of each line, is to reduce the reach and to use an inter-
tripping signal. It may be advantageous to utilise an existing data link 
to coordinate fault measurements at the line ends,in special circumstancea 

2.4 quadrilateral  characteristic 

One of the advantages of the digital method is that the-  trip zone can be 
altered to account for the pre-fault flows on the protected line. A 
characteristic can be defined as in fig. 5 by the points A, B and C, so 
that R and X must satisfy the following inequalities: 

X› 0 , 	2;7=-0 , 	X<X 	K
12 b' 	
2 )- K 	 (6) 

and K 
h-R 

Rio, Xb  and R can be varied depending upon a defined relationship with pre-
fault P andZ flow measured on the line (by sampling or otherwise). This 
flexibility enables the largest tripping zone to be maintained for both 
directions of power floww. Zones 2 and 3 can be bounded in a similarmennen 

2,5  SamolinR rate 

In the m ethod described, the maximum useful sampling rate is dependent, 
among other things, on the speed of calculation of 2 and X and their 
comnarison with pre-set values. At least 33 multiplications and 6 
divisions are necessary taking at least 105011s on the PDP 15 computer. 
With A/D conversion and housekeeping procedures at least another 500 1;s 
are necessary so teat 3 samples per cycle is about the fastest feesible 
rate. Consequently, an analogue filter cutting-off at around 350 Hz is 
necessary to ensure good performance, 

where K =-X 
1 -11.)11% 



- 240 - 

3. Square wave correlation  

To reduce the amount of arithmetic in the calculation of R and X,othogonal 
functions based on the square waves of fig. 6 can be used1. (Note that 
the technique of section 2 employs sine and cosine waveforms as orthogonal 
functions). With. square waves, the values of Av 

and B
v 
can be calculated 

as 

Av  = V d(wt) 	
1  

2n 

V d(wt) 

 
n/2 	(3n/2 

1 f 
B
y 

= 	V d(wt) 	vd(0)0+--Vd(wt) 

n/2 	
• 4 

51I/2 

• 0 0 • 0 • •es 0 .4(7) 

With harmonics up to order n present, the integrations of (7)theoretically 
should result in: 

1 
A
v
= A +— A + -

1
- A 

v1 3 v3 5 v5 

 

1 	A  
2n+1 v2n+1 

 

 

	 (8) 

B
y 
= B

yl 
- Bv3 + 

5 
B
v5 
	 (-1)n 	1 	B

v2n+1 2n+1 

where A
v1' 

A
v3 

and B
v1' 

B
v3 

are the associated parameters of the funda-
mental, third harmonic etc. Equations 8 show that this method filters out 
the d.c. component A 	and B, and all the even harmonics whilst atten- 
uating the odd 	

o 	v0  
 in inverse proportion to their orders. By using 

the trapezoidal rule on (7) with N samples per fundamental cycle, it can 
be shown that 

tan n/N  
- I-Icot I. (A 	+ 	_ , A 	

tan n/N 
A 

	

Av  - N 	
N 	vl 	tan 3n/14 	v3 	(=n-1-7771-  

can 
Pi 

(9) 
tan n/N 	io  tan TO 

and B = 
I
- cot -.1-1 (B 	- 	B

v3 	+ • • • • • (-- 	B 

	

v N 	N vl 	3n 	 (?n+l)rr v2n+1) 
t an — 	tan 

N 

With N = co, equations (9) reduce to equations (8). The coefficients of 
these equations are constants depending upon the sampling rate chosen. 

As with the method of section 2, even harmonics are removed but in this 
case all odd harthonics are either attenuated somewhat or come through 
unaltered. The algorithm can be applied in the same way using a running 
total for the calculation of A

v 
and B

y 
etc. as each new set of samples is 

taken. Its main advantage is that it requires 12 less multiplications so 
saving on computer time, but its accuracy is impaired by the presence of 
odd harmonics. 

4. Harmonic filtering method  

This method has been discussed by the authors in some detail in reference 
4. It consists of the simultaneous solution of two equations of the form 
di 

L-- Ri = v taken at successive intervals of time so that the inductance 
dt 

to the fault, L and the resistance R can be calculated.. 
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By using several successive samples, any desired harmonic can be removed 
although in this case the sampling rate must be a multiple of the unwanted 
harmonic. The simplest form of the equations are obtained by considering 
four samples taken at time intervals, t1,• t2, t3  and t1  as follows: 

/t
2 	1 t2_ di dt + R 	dt = 	v dt dt 

..... ....... ....(10) 
it 1 	4 

dt + dt dt = l 	v .dt 

t3 	 3 	r3 
The integral terms can again be computed by the trapezoidal or Simpson's 
rule as before: 

The accuracy of the method has been discussed in reference 4 and depends 
upon the harmonics eliminated and the magnitude of )che remaining harmonics 
in the waveform. It has the advantage that samples need only be taken 
over a portion of the waveform before a trip signal can be determined. On 
the PDP 15 the algorithm takes about 500 1.s for execution using four sets 
of samples previously obtained. 

5. On-line tests and conclusions 

Using part of the simulator described in a companion paper, on-line tests 
were performed to check the accuracy of the algorithms. A three-phase 
400 kV, 10.0 mile long transmission line was modelled by four - L sections 
which were sufficient to generate a number of low order harmonics when 
faults were simulated towards the line end. A micro-machine was used to 
model a 1300 MW source. From many tests with different types of fault,the 
results of a double-phase to earth fault are shown in figs. 7a and b where 
the calculated values of reactance and resistance to the fault are tracked 
using the three methods discussed in this paper. The superior accuracy of 
the Fourier technique is evident, followed by square wave correlation. 
Although the harmonic filtering method shows some variations due to un-
filtered harmonics, this method's speed of calculation may, however, be 
the deciding factor in its favour for practical implementation. 
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TABLE I : System data (on 1000 MVA base) 

Equipment 
Positive and negative 
sequence reactance 

per unit ohm 

Zero sequence 
reactance, 

per unit ohm 

Generators 1, 	11 kV 0.1 0.08 
Transformers 1, 	11/400 KV 0.1 0.08 
Equivalent generators 2 0.04 0.06 
Transformers ? 0.07 0.05 
Transmission lines L1,L2 Z =0.02 4- 	' 	0.276 Zo=0.104 ±j0.794 

400 kV (B =10.5x10-  p.u.mho) /c=5.9x10- 	p.0 mho) 

A 	 B L1 	100miles  I- X 	

I --% E -- — L2 	 - 	-- --0 
T, 	x 	 x , 

I 	 
T2 	G2 
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In large high voltage transmission lines considerable harmonics are 

generated in the first cycle following a fault due mainly to the shunt 

capacitance effects. 	In the case of the voltage waveform these 

harmonics can amount to more than 100% of the fandamenta13. Consequently • 

unless steps are taken to eliminate the harmonics, calculation of the 

line impedance by digital means will inevitably involve a large un-

acceptable error. 

The authors have investigated in the frequency domain the sensitivity 

of previously published methods of digital protection (1968 and 1971)1'2  

to the current wave harmonics and have obtained results which are obvious 

by an intuitive understanding. The first method that the authors have 

analysed, is the one proposed by Slemon et alt based on the calculation 

of fundamental components of the voltage and current waveforms by the 

Fourier technique which requires evenly spaced samples taken over a 

complete cycle at the system frequency. From the fundamental components 

the impedance magnitude and angle, from the relaying point can be 

calculated. After analysing this method in the frequency domain the 

authors have reached the conclusion that it has a high rejection to d.c. 

and to the higher order harmonics. 	It is well known that by the Fourier 

technique we can obtain the fundamental and filter out all haimonics 

as well as the d.c. component, and hence investigation of this method 

in the frequency domain does not add to knowledge. The authors then 

propose that in place of the sine and cosine function, other orthogonal 

functions are used and as an example they have investigated the 

employment of even and odd square waves. They have obtained the not 
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unsurprising result that square functions do not reject the harconics 

but only tend to limit them. There exists, however a large number of 

sets of mutually orthogonal functions4  but it can be seen that to 

obtain the fundamental eomponent the sine and cosine function only are 

applicable. The last method investigated is that proposed by MANN and 

MORRISON1. 	In this method the voltage and current peak are calculated 

as follows: 

v 	= V sin. 6..) t 

6.)V cos ed t 

i 	= I
D 
 sin (u; t + 0) 

i' 	= coIp cos (eo t + 0) 	 (2) 

2 , %2 
V
2 

= v +1 
v' 
 ) 

P 	
. a)  

P2 = i2 I 	+ (i 'Ay )2 

from which the impedance can be calculated as: 
72 

= V
2
/I 

2 
P P 

and also 0 = arctan (i.4) i/i') - arctan (442v/Vl). 

The authors show that this method amplifies the harmonics. From the • 

equations (1) and (2) it can be seen that differentiation amplifies the 

harmonics and this is why we believe that this method can not be used 

for protection in a real system because of inevitable existance of 

noise and harmonics. 	Orthogonal functions to be useful in digital 

protection schemes, must be chosen such that will eliminate or, at 

least severely attenuate the lower harmonics in the voltage and current 

waveforms. Such harmonics cannot be filtered by analogue means because 

the inherent delay in response of the filter slows the fault measuring 

(1) 
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time unacceptably, and consequently a digital scheme using an integral 

method is thought to be most appropriate. If the authors could devise 

an orthogonal function which reduces the 3rd, 5th and 7th harmonics and 

still allow the fault to be measured with better than 10% error in less 

than half a cycle, they are in business. 
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In simulation sets -7Y: 2 and 3 the authors have investigated the 

accuracy of their method in the presence of inrush current and third 

harmonic on the fundamental waveform. They admit that the calculated 

impedance. was in error but they claim that the third harmonic content 

of fault currents within the response capability of the sensors would 

be sufficiently small to assure correct relay 'operation. For short 

transmission lines operating at low or medium voltages, neglecting 

the inherent non-linearity of transducers, the authors claim could be 

substantiated, but experience shows that for high voltage transmission 

lines especially of considerable length the shunt capacitance effect 

produces a large amount of harmonics on the voltage and current wave- 

forms, particularly in the first cycle after fault occurrence. 	These 

harmonics in•the case of a high source impedance can be more than 100% 

on the voltage waveform. Low order harmonics cannot be filtered out 

by analogue means because of the time delay in the response. By 

considering the existence of these harmonics we believe that all the 

methods which neglect the harmonic and the d.c. component of the wave-

form during fault occurrence cannot give acceptable results. 

In simulation set -7;5 the authors have calculated the output of 

a linear coupler using the equivalent circuit of Fig. (3). 	In 

computer relaying the output of the linear coupler is usually connected 

to sampling circuits through an operational amplifier and so the out-

put impedance is very high and can be assumed open circuit. In 

Fig. (3) it seems that the output of the linear coupler is short 

circuited as for a C.T. and r2 is the resistance of the secondary 
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winding. 	If this is the case, then it is not clear what the voltage 

across r2 means. 	It is true that the linear coupler reduces the d.c. 

component relative to the fundamental but this reduction is not enough 

in order to neglect the d.c. component in digital calculation. Using 

linear couplers will cause an increase in noise and harmonics(1), due 

to inherent amplification of these quantities. Disregarding the 

harmonics in order to show the effect of the d.c. component of the 

fault current current and voltage waveforms on the accuracy of the 

authors' methods, we used it to calculate resistance and reactance of-

a three phase transmission line during a three phase fault. The 

results for several fault inception angles with respect to the 

voltage zero at phase a are given in Table A (the reactance of the 

line to the fault point was 1.5 ohm representing about 3 miles of 

132kV line). 
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Table A 

fault inception 
angle (Deg.) 

calculated 
reactance (ohm) 

Error 

0 5.91 294 

20 1.93 28 

40 1.67 11 

60 1.57 5 

80 1.51 1 

100 1.46 2.2 

120 1.41 5.6 

140 1.35 9.7 

160 1.37 8.4 

170 4.36 191 
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It can be seen that large errors are involved under unfavourable 

conditions which would give a false indication unless other measures 

are taken to improve the accuracy of the computer relay. 

We will be grateful if the authors would comffient on the points 

we have raised and we look forward to further papers on their interesting 

and novel approaches to digital computer protection. 
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The authors are to be complimented on establishing a method 

involving two orthogonal notch digital filters with sine characteristics 

from which the magnitude and phase angle of the fundamental component 

of a waveform can be calculated from samples taken at four equally 

spaced time intervals over a period. This method is the same as a 

Fourier technique with four samples per cycle. By using a Fourier 

series the real and imaginary parts of a phasor quantity can be calculated 

as follows: 

2 If+ le • 

	

1 	
) 	

A - 

	

Real.  = 7_ 	r x. 	Sin (6:., t) d( wt) 11.  
TL/ 
2 

21Z' 

	

= 1 
	x. 	Cos (wt) d(e.0t) 

iL 

tr/ 
'2 

where x is the continuous function whose samples xk, x1{-1, 	are 

the input of the digital filter. Using the trapezoidal rule with 4 

intervals oVer a period, equations (a) can be rewritten as: 

1 Real = 	. 12:  . 	(x Sin .25+ 	Sin r+ 2xk_.2  Sin -T+ 
"g 4 	2 k-4 	2 	rc— 3 	

2xk_1 

Sin 2Te + xk  Sin 

and 
1 	217- 	1 

7 
 , 

pc 	 .2:' Imag. = 	. 4  . 	k_4Cos 7 le 	.k + 2xk_3  Cosa: 2x_2  Cos 2  + 2. 

Cos 27 xk Cos 5.2:) 

or: 

Real = 	(x
k-4 

- 2xk_.2  + xk) 
4  
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1 
Imag. = 7  

From here: 

Ckdk = - 
4 
( 
xk-4 xk-2 xk)  4 (-

2x
k-5 

+ 2x' )  k-1 

or 

4Ck (xk-4 - 2xk-2  + xk) - j(2 	5 
 - 2xk-1) 

By moving ahead with new samples the interval of the integrations changes 

to (z, 	+ 	
(1z 	

"". 
'2v+ 	) and (2rr , 4 ) which give 

2 	2 
3,n 

Ck+1' Ck+2 and  Ck+3 as follows:- 

4Ck C4k  = 	- 2xk-2  + xk) 	j(2x ..3 	2xk...1) 

Pk+1 
4Ck -1 	= (-2x

1c
_2  + 2xk) - j(xk_.3  - 	+ xk.41) 

//°k+2 
4Ck+T----= (xk_2 - + 2xk xk+2 ) 	j  (1-2x-1 + 2x

k+1) 

Pk+3 
4Ck+3 ----= (-2xk+2 	2xk) 	j(-xk-1 + 2x

1c4.1 	xk+3) 

These equations are similar to those of 17 in the paper. 

The two-term brackets have a sine wave, and the three term brackets 

have a sine-squared wave characteristic. 	It should be noted that if 

we are interested in the magnitude of the phasor quantities, the left 

hand side of the enuations (13) and also (17) of the paper should be 

multiplied by 2. 

Our experience with digital algorithms for distance protection is 

that acceptable accuracy of measurement cannot be obtained with 4 

samples per cycle, because the third harmonic cannot be effectively 

filtered or even attenuated. 	Cases have been noted in which the 
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- third harmonic, particularly on the voltage waveform, has been as much, 

as 100% of the fundamental in the first cycle of the fault. 	Increasing 

the sampling rate improves the filter characteristic and makes the 

filter more effective in removing the low order harmonics. 	Fig. (1) 

and Fig. (2) show the magnitude characteristic of Fourier technique 

with 4 samples (which is the same as authors' method) and 16 samples 

per cycle. 	In these figures the effect of sampling rate can be seen. 

If even sharper filter characteristics are desired then Bilinear 

transformation
A or clasical optimisation methods'

C can be used. 	These 

filters will be much more complicated than the simple types discussed 

in the paper but with micro-processor techniques such an approach may 

be justified both economically and practically. 

Continuous sampling before and after the fault, coupled to a 

continuous calculation of resistance and inductance has always, in our 

experience, resulted in faster fault detection times than any method 

proposed so far based on fundamental waveform filtering. 

One great disadvantage of using only 4 samples per cycle is that, 

to prevent false detection, at least 3 successive calculations are 

necessary to produce impedance values within the protected zone before 

a trip initiation signal can be reliably sent to the circuit breaker. 

Thus the relaying time with the authors' method would be at least 2 

cycles - not at all fast by present day solid state relaying standards. 

Perhaps the authors would comment on the extension of their method 

to faster sampling rates and the application to long transmission lines 

with a significant source impedance. 
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We would like to compliment the authors in their efforts to high-

light one of the most decisive factors in the implementation of 

digital algorithms for on-ijneprotection. Previously, many papers 

have suggested varying sampling rates from 4A  to 40
B 

samples per cycle 

without justifying the choice of an appropriate rate. 

High rates of sampling require complicated and expensive hardware 

for digital implementation whilst too low a sampling rate impairs the 

accuracy from a numerical computation and filtering point of view. 

Somewhere between we believe there is an acceptable accuracy given by. 

an optimum sampling rate. 

Our investigations into this problem shows that a combination of 

digital and analogue filtering is required to give the best accuracy, 

speed Of response and lowest cost. We agree with the authors that 

an optimum sampling rate is around 8 samples per cycle but that further 

work is required on the type and order of the analogue filter. For 

this purpose first, second or higher order Butterworth, Chebyshev or 

Bessel filters can be employed and the best choice is a matter for 

investigation when the exact protection requirements for a particular 

line are known. 

We hope that this paper will stimulate further work in these areas. 
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We wish to compliment the authors for the useful work which they 

have done on digital protection and we would like to give a few 

comments on their paper. 

1. From figures (3) to (5) it seems that the authors have used the 

modulus of impedance and (probably) its angle as a criterion for 

measurement thus providing the modulus of impedance with direction. 

It is well known that such a. characteristic does not provide 

immunity against balanced system conditions such as heavy loads 

and power swings, By calculating the real and imaginary parts of 

the voltage and current it is possible to build an ideal quadri-

lateral characteristic
A which has the necessary immunity against 

extreme loads and power swings. The authors have mentioned this 

(equation.1) but they have not used it throughout the paper. 

2. In table I of the paper the authors have given the minimum data 

windows for different sampling rates. 	In determining these 

windowS, one important factor which has been neglected is the 

spectrum of equations (5). 	By reducing the data window, the 

spectrum becomes worse and less unwanted components are filtered 

out., For example the spectrum of equations (6) for one cycle 

data window and equation (7) for half a cycle data window have 

been plotted in figures 1 and 2 and it can be seen that with half 

a cycle data window, even a constant dc offset cannot be filtered 

out. 

3. In equations (10) and (11), R21  and R41  are not dependent only 
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upon harmonics, of order 21 and 41. They are also functions of non-

harmonic components and so we cannot agree with the authors that 

R
41 

is a negligible quantity. We can neglect R
41 

if the current 

and voltage waveforms consist only of odd harmonics, but in general 

this is not true. 	Our computations on transmission lines have 

shown that there is no discernable pattern for voltage and current 

spectrums and they might contain almost any harmonic or non-

harmonic components. 

4. 	The computation of Yk from equations (12) to (15) involves several 

multiplications. Yk  is then used in equation (5) which in turn 

needs further computation, producing the real and imaginary parts 

of only one current. The whole process must now be repeated for 

at least two other currents (assuming that the dc offset of voltage 

ls negligible), and then the computed real and imaginary parts are 

used in equation (1) for the resistance and reactance calculation. 

This is a tedious procedure which takes some time on a mini-

computer. Can the authors say if they have given any consideration 

to reducing the computations necessary for fault determination ? 
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The ability of the Fourier and square wave correlation methods in 

removing the. unwanted harmonic and non-harmonic components from the 

current and voltage waveforms depends on the sampling frequency. For . 

a 200 Hz sampling rate (4 samples per cycle) the magnitude characteristic 

of the Fourier method is shown in Fig. (1). From this figure it can 

be seen that all the even harmonics have been completely filtered out; 

the odd harmonics have not been changed and many of the non-harmonic 

components have been only slightly attenuated. By increasing the 

sampling rate to 800 Hz (16 samples per cycle) 'the spectrum becomes as 

in Fig. (2) where it can be seen that all the harmonics and non-

harmonics up to 700 Hz have been effectively attenuated. Higher 

frequencies can be removed by a suitable analogue filter. 

In the third method mentioned in our paper the filtering depends 

on both the interval of integration and the frequency of sampling. If 

the integration interval is less or more than half a cycle, many 

components with high or low frequencies will be amplified. The optimum 

interval is half a cycle in which case all 'the unwanted components appear 

either attenuated or with no change. 	In this method also by increasing 

the sampling rate the spectrum will be improved. The first and second 

methods cannot remove the exponential d.c. offset completely, but they 

reduce it enough so that the error resulting from it is within an 

acceptable limit. 	The third method directly accounts for the ex- 

ponential d.c. component. 
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