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ABSTRACT 

Thin films of GalFe,Cr,ColNilIn; and Sn have been 

prepared and studied at 4°K using a Scanning High 

Energy Electron Camera.All the films have been grown 

in a vacuum of better than 5.10-1 °torrland all,except 

Inl exhibited a non-crystalline structure at very low 

temperatures.The electron diffraction data has been 

analysed using a set of computer programs to obtain 

their Radial Distribution Functions.A discussion on 

the methods of this analysis is given along with an 

alternative procedure for evaluating the film structure. 

The design of the liquid He substrate support stage 

used is described together with the other necessary 

apparatus modifications. 
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INTRODUCTION 

The work described in this thesis was originally 

prompted by a report that films of Cd,Zn and Sn had 

been prepared in a non-crystalline form(Robertson and 

Unvala(1971)),In their work the films were prepared 

in a ultra high vacuum system and then transferred 

to a conventional electron diffraction camera for 

structural investigation.The equipment used in this 

research was a Scanning High Energy Electron Diffraction 

Camera.This enabled the "in situ" growth of films 

in a much cleaner environment.In addition to preparing 

and studying the metallic films mentioned,Fe,Cr,Co, 

InI Ni and Ga were prepared all at at low temperatures. 

A set of computer programs were written and developed 

in order to analyse the experimental data in terms 

of the Radial Distribution Function. 

A general introductory discussion on non-crystalline 

thin films is given in Chapter 1.Chapter 2 describes 

the experimental apparatus and techniques,while Chapter 

3 presents the method of analysis used.The results 

obtained and their analysis is in Chapter 4 and a 

summary of the work is given in Chapterg. 
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CHAPTER 1  

Non-Crystalline  Eaterials 

1.1 Non-Crystalline Solids  

In 1915 it was shown, by Debye, that short range order 

in liquids or non-crystalline solids would lead to a 

diffraction pattern of diffuse haloes. This was subsequently 

confirmed by Debye and Scherrer (1916), investigating a 

non-crystalline solid. Frost (1954) in a review paper 

on liquid metals mentions that liquid Ar, Benzene, N2  

and 02 were also studied at about this time. It was 

found that the diffraction patterns of the liquids and 

the non-crystalline solids were very similar and led 

to the belief that the structures of the two phases were 

alike. Subsequently, however, further diffraction studies 

on a range of liquids and non-crystalline solids showed 

that their diffraction patterns were often quite different. 

Figure ( 1) shows electron diffraction curves for 

non-crystalline and molten Ge; the data being taken 

from Behrndt (1969). In these cases the solid is said 

to exhibit a lattice-like non-crystalline structure. 

That is they have the sane basic structural element as 

the corresponding crystalline material. Breitling (1969) 
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indicates that Si, Ge, As, Sb and Se, as well as the 

vitreous substances B203 and Si 2  are lattice-like when - 

non-crystalline. Some materials, however, show similarities 

in the diffraction patterns produced by the two phases. 

Figure ( 2) which is from a paper by Leonhardt et al 

(1962) shows the diffraction curves for non-crystalline 

and molten Bi. Other materials which behave in this way 

are Ga, Fe and Cr, and they are called liquid-like, 

non-crystalline solids. 

Although a number of non-crystalline solids have a 

structure similar to that of a liquid there are distinctions 

between the two states. In every case of the production 

of a non-crystalline state the transition to a polycrystalline 

state is irreversible. in contrast the solid-liquid 

transition takes place in thermal equilibrium and is 

hence reversible. Another difference is that the amplitudes 

of the maxima in the diffraction curves are larger in the 

non-crystalline case than in the liquid case (see figure 

( 2)). This implies that the former possesses a greater 

degree of order. Similarly Wagner (1969) has studied the 

non-crystalline alloys Cu-Ng, Pd-Si, Fe--C, n-P and 

Ag-Cu and has established that they have a higher degree 

of order than that observed in liquid metals. 



- 12 - 

AMORPHOUS Bi 

I 
N 
T 
E 
N 
S 
I 
T 

0.6 	0.7 0.8 	0.9 
sin9/A 

0.5 0.1 0.2 

LIQUID Bi 

I 
N 
T 
E 
N 
S 
I 
T 

0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8 	0.9 
sin9/›. FIGURE (2) 



- 13 - 

Finally there is the much r7reater atomic mobility present 

in liquids.Longini and Pansino (1969) have studied the 

variation of electrical conduction of non-crystalline 

compounds on warming and have showed there is some 

re-ordering process. The atomic arrangement, however, 

does not change appreciably and does not affect the 

diffraction pattern. 

There have been various models put forward to describe 

non-crystalline structures and these fall into two main 

types. There is the continuous model, originally suggested 

by Bernal (1964) to represent liquids, and the discontinuous 

arrangement postulated by Eichter et al (1957). Bernal 

considered that a liquid was a homogeneous, coherent atomic 

assemblage and could be represented by randomly packed 

polyhedra.From experiments on models with a random 

arrangement of atoms he discovered that the co-ordination 

numbers in a closed packed model followed some definite 

curve and was certainly different from the regular case where 
every ball bearing had twelve contacts. From his close-

packed, random model he calculated how t'-e atomic density 

should vary and this agreed quite well with experimental 

results from liquid Ar. Scott (1962) Produced a similar 

model and his results agree with those given by Bernal. 

This liquid model has since been used as a possible way 

of representing non-crystalline solids. 
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The discontinuous model proposed by Richter however consists 

of ordered agglomerates randomly arranged and surrounded 

by disordered atoms. The ordered agglomerates can take 

the form of spherical, close packed assemblies or segments 

of lattice planes. 

Atomic density data evaluated from experiments on Ge and 

Si were interpreted as containing small randomly orientated 

crystallographic regions, while data from Ga and Bi led 

to the conclusion that both types of agglomerate were 

present. To explain the close packed spheres of atoms 

they used a model of statistically distributed spherical 

shells. The central atom is surrounded by atoms located 

approxiMately in the region of these shells. The atoms 

of the first shell will only be slightly displaced from 

it and will produce a prcnounced maximum in the atomic 

density. The atoms of the further shells will show 

increasing positional variation and produce broad maxima 

in the atomic density curve. Such a model can explain 

the calculated atomic densities from non-crystalline 

films and in particular Richter (1969) obtains quite 

good agreement with data obtained from Cr by Fujime 

(1966). 

Jonscher and Walley (1969) suggests that polymers and 

elements with homopolar bonding can best be explained 
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using a discontinuous modell while glasses are best 

thought of as having a continuous structure.Warren 

(1939) studied diffraction data from vitreous Si02  

and concluded that it was non-ci:ystalline. This was- 

based on evaluating the possible crystallite size, by 

consideration of the diffraction line broadening, to be 

7.7A. Warren argued that if these crystallites were present 

then they should produce low angle x-ray diffraction. On 

careful study for such effects he was unable to detect any 

peaks and hence concluded that Si02  could be represented by 

a continuous non-crystalline model. More recently, however, 

Bienenstock and Bagley (1966) have calculated the upper 

limits to such scattering. TI:le calculated magnitude is 

extremely small compared to the independent atomic scattering 

and they regard it as extremely unlikely that it could be 

distinguished even if it were there. 

This type of uncertainty in the interpretation of diffraction 

data is a major problem in investigating non-crystalline 

solids. A polycrystalline sample will give a diffraction 

pattern of rings and for small grain sizes these rings will 

become very diffuse. (Chapter 3 gives a method for calculating 

diffraction curves from polycrystalline solids). It then 

becomes very difficult to distinguish between this pattern 

and that produced by a non-crystalline solid. This of course, 
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is to be expected and leads on to the problem of deciding 

when a polycrystalline solid becomes non-crystalline. For 

exa_frple an arrangement of crystallites containing one or 

two unit cells possesses very little long range, crystallographic 

order. This problem has been briefly discussed by Behrndt 

(1969) and he points out one important difference between 

the two states. In general the polycrystalline sample is 

stable for all grain sizes while the non-crystalline state 

has always been found to be unstable. Consequently, the 

non-crystalline/polycrystalline transition should be 

accompanied by a change in atomic arrange:Tent and this 

could possibly be detected by diffraction methods. However, 

Rudee and Howie (1972) have pointed out that great care 

should be taken in analysing such diffraction data. They 

assumed a hexagonal wurtzite structure for Ge and calculated 

the diffraction curve produced by such crystallites of 

size 14A. The results were in good agreement with 

diffraction data which had previously been thought to 

have been produced by non-crystalline Ge. In addition 

they studied Ge with an electron microscope which confirmed 

that it was in fact comprised of small crystallites. 
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1.2 The Preparation and Properties of Non-Crystalline Films  

The primary methods used to fabricate thin films are 

evaporation, sputtering, chemical vapour deposition and 

electrodeposition. A review paper on these methods, together 

with a discussion on structure-sensitive film properties, 

has been written by Behrndt (1969). The formation of 

non-crystalline films has been studied for many years and 

there are now a wide range of materials which have been 

prepared with such a structure. These can be conveniently 

classified into three groups: alloys, elements with covalent 

bonding and metals. 

Buckel (19 ) attempted to prepare non-cry talline metallic 

films by condensation onto a liquid Helium surface. He 

reported that Go and Bi could be produced in this form 

while metals such as sn  could not. However, as Behrndt 

(1970) indicates, the addition of a small amount of another 

element will often Etabilise the non-crystalline structure. 

Similarly large numbers of alloys have been produced by 

quenching condensation (eg. Duwez and Willens (1963)). 

Nader et al (1967) studied the structure of Cu-Ag, Co-Au 

alloys formed at 77 K using electron diffraction and 

microscopy. They discovered that the formation of 

non-crystalline alloys was appreciably affected by the 

substrate. In particular they found it was important to 
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use a non-crystalline surface. Hader (1965) has suggested 

an explanation for the formation of non-crystalline alloys 

using the idea of the admixture retarding the long range 

order of the folvent. It was also established experimentally 

that such alloys transformed to the crystalline state at a 

temperature of approximately one third of its melting point. 

This idea of the impurity atoms helping in the 

formation of a non-crystalline state is also common 

with covalent elements and_metals, Covalent elements 

such as As, Se, Sb, Si and Ge have all been prepared as 

non-crystalline films. As with alloys the crystallographic 

type of the substrate has an influence on non-crystalline 

film formation. The substrate temperature should also be 

below one third of the melting point of the element condensed. 

Adamsky et al (1969) reported that in an atmosphere with 

an oxygen partial pressure of 10-10  torr evaporated Ge 

films were non-crystalline on deposition, subsequently 

transforming at 50°  C. Preparation of the films in an 

oxygen partial pressure of 5 x 10-8 torr resulted in a 

more stable non-crystallihe structure which transformed 

at 200°C. Similarly Bennet and Wright (1972) found that 

a number of transition elements could only be prepared 

as non-crystalline films by adding impurities. 

Fe and Ni needed several per cent of impurity while pure 

films were always microcrystalline. Non-crystalline 
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films of pure Co however, could be prepared. They invest-

igated the structural changes by monitoring the electrical 

resistivity. The behaviour of tlese films on annealing, 

and in particular their transition temperatures depended 

on the amount of impurity present. Bulow and Buckel 

(1956) studied the behaviour of thin films on annealing 

using electron diffraction while cone; rrently monitoring 

their resistivity. They showed that a non-crystalline/ 

polycrystalline transition is accompanied by an abrupt 

redstance change, while grain growth is indicated by a 

grad -al decrease of resistance. Kato and Horikoshi (1965) 

also measured the resistance of Fe films prepared in a 

vacuum of 5 x 10-6 torr by condensation onto a liquid 

nitrogen cooled glass substrate. They observed an 

irreversible change on warming of the film at a temperature 

which varied with the thickness of the film. This transition 

temperature had an approximate value of 150°K with a 

variation of about 40°K. Suits (1963) has studied the 

effect of residual gases on the non-crystalline/crystalline 

transition in Fe films. The films were prepared, at 4°K 

with a residual gas pressure of 10-14 torr, and their 

resistance monitored during deposition. The films 

underwent a sharp change in resistance at a certain 

thickness and this was interpreted as being caused by 

a transition. He then deposited a thicker film in an 

oxygen partial pressure of 10
-8 torr. No thickness 
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dependent transition was observed bUt asharp resistance 

drop did occur on annealing to 75°K. This would seem 

to indicate how the oxygen impurity has stabilised the 

non-crystalline phase and increased the transition 

temperature by 70°K. Further work on Fe has been done-

by Grigson et al (1964) who also report a thickness 

dependent transition, although not at liquid Helium 

temperature. Fujime (1966) obtains a different transition 

temperature again, whilst not finding a thickness dependent 

change. The variation in these results is a good illust-

ration of the effect on film properties caused by the 

growth conditions and the impurities present. The effect 

of oxygen on evaporated films has also been studied by 

Preece and Wilman (1967) and Caswell and Budo (1964). 

Paulson and Friedberg (1970) studied the structure if 

evaporated Au films in different atmospheres. The presence 

of N2  and H2  had only a slight effect whilst 02  caused 

the film to form with a small island structure. This 

was attributed to the oxygen reducing the atomic mobility 

of the Au atoms. Similar work was performed by. Noss and 

Thompson (1964), who showed that evaporating Ag films in 

an improved vacuum resulted in small crystallites being 

formed. They also sound that deposition ontc a previously 

outgassed surface resulted in a smaller crystallite size. 
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Quite a lot of work has been done on investigating the 

phase of condensed atoms over a range of tez!peratures. 

Palatnik et al (1962) deposited various metals in an 

effort to discover if the condensate became crystalline 

immediately (v-4c) or if there was an intermediate liquid 

phase (v-0.->c). They found the mechanism depended on 

the substrate temperature such that: 

Tmp < T 	Tmp 	C 

Tmp<TC.-- Tmp 	c 

where Tmp = melting point. 

Krikorian and Sneed (1963) evaporated Ge films and concluded 

that the phase during deposition depended on the substrate 

used and the growth rate. Figure ( 3) shows how the 

phase depends on the substrate temperature and the growth 

rate. 

Behrndt (1966) quotes some interesting results obtained 

from evaporated Ag films which were deposited over a range 

of temperatures and thicknesses. The films were poly-

crystalline on deposition but would melt on warming at 

some temperature Tmf. The ratio Tmf/Tmp varied with 

thickness and only approached unity for films thicker 

than 500A°. It was also found that somewhat different 

behaviour occurred for films prepared at temperatures 
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below 4- Tmp. 

Whilst much of the work carried out with thin films has 

produced inconclusive, or even contradictory results, 

genuine discoveries have been made. Probably the most 

interesting property of non-crystalline films is that many 

elements although not normally superconductors become so 

in such a form. Hilsh (1951) first discovered this 

phenomena with Pi films. Since then. a great deal of 

research has been carried out and more recently Glover 

(1969) has shown that some superconductivity related 

contribution to the electrical conductance is present 

at temperatures of twice that of the critical temperature. 
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CHAPTER 2  

Te Experimental Apparatus and Procedure  

'?'he basic S.H.E.E.D. apparatus was supplied by Vacuum 

Generators Ltd., and is shown in figure (. 1). The 

system is decribed in section (2.1). Details of the 

modifications to the equipment are given in section 

(2.2), while section (2.3) indicates the experimental 

procedure. 
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2.1 Descriotion of the basic SbanninccHigh Energy 

Electron Diffraction Camera  

2.1.1 Vacuum Details  

The vacuum system had been constructed entirely from 

stainless steel except for two glass view ports. All 

the flanges were sealed using 0.H.F.C. copper gaskets. 

It was pumped by two sorption pumps, a triode ion pump 

and a titanium sublimation pumo newIrri-m. n_ccri 	1=1 

a hydrocarbon free, ultra high vacuum (conventionally less 

than 10-7torr) to be attained. The pressure was measured 

down to 10-2 torr by two Pirani gauges and below this by 

a nude ionisation gauge. Bake out heaters, shrouds and 

a csn';rol unit enabled the aoparatus to be baked for 

extended periods. 



- 26 - 

2.1.2 The Electron Optics Details  

A schematic diagram of tine electron optics arrangement 

is shown in figure ( 2). 

The H.E.G.4 gun produces a collimated beam of electrons 

with energy up to 50Kev; the high tension voltage being 

supplied by a stabilised power supply. A variable cathode 

bias can be applied to vary the intensity of the beam 

while its direction is controlled using the electrostatic 

alignment plates. The beam is focussed using the magnetic 

lens and can be tilted in the vertical plane by the 

electrostatic deflector plates. Using these controls a 

suitable electron beam can be directed into the 

experimental chamber enabling either reflection or 

transmission diffraction to be undertaken. The resulting 

diffraction pattern is formed on the first phosphor 

screen ; this phosphor containing a small central 

aperture. The pattern is viewed, by means of a mirror, 

again with a central aperture, positioned at an angle 

of 45°  to the screen and immediately behind it, through 

a suitable viewing port. 

A little way behind the substrate and outside of the 

chamber are two orthogonal pairs of scanning coils. 



phosphor 
screen 

and 
ph otomulti plier 

energy 
f liter 

electron 
gun 

substrate magnet ic 
l ens 

phosphor 
screen 

alignment deflector 
plates 	plates 

corrector 
coils 

scan 
coils 

bj 
H 

N.) 



-28- 

By applying a ramp voltage to the vertical pair of 

coils the entire diffraction pattern can be scanned 

vertically across the screen aperture. Those electrons 

which pass through this aperture fall onto a second 

phosphor screen. The light so produced is picked up 

by a photomultiplier and the resulting signal fed into 

an X-Y recorder as the ordinate. The ramp voltage itself 

provides the abscissa. An additional feature of the 

equipment is the provision of an energy filter. This 

is a very fine copper mesh held normally to the electron 

axis which is biased positively with reEpect to the 

electron gun. The biasing voltage can be varied between 

()End 45 volts or set at 250 volts. Since the high tension 

supply to the filter is common to that to the electron 

gun the effects of any voltage fluctuations are eliminated. 

The filter prevents those electrons which have lost more 

than the corresponding energy from reaching the second 

phosphor screen and hence contributing to the recorded 

intensity. It is important for the correct operation 

of the filter that the electrons should strike it normally. 

However, because the scan coils deflect the electrons 

from some way behind the specimen, it is necessary to 

deflect them back onto the electron axis and this is 

achieved by the two pairs of orthogonal corrector coils. 

To enable the energy filter to be aligned perpendicularly 
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to this axis it is enclosed in a small chamber which can 

be tilted in both the horizontal and vertical planes. 

In addition to making a single vertical scan it is 

possible to produce a three dimensional representation 

of the pattern. This is accomplished by taking a series 

of vertical scans and applying a stepIoltage to the 

horizontal coils after each one. Alternatively, the 

pattern can be scanned horizontally by applying the 

ramp voltage to the horizontal coils. 
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2.1.3 The Specimen Chamber 

The specimen chamber is eight inches in diameter and 

contains one eight inch, one six inch, two four inch 

and eight two and three quarter inch ports. 

The six inch uort on the top of tl-e chamber is used 

for attachment of the substrate supporting device, 

including the substrate cooling tube. This is called 

a Universal Motion Drive (U.N.D.). It permits all the 

necessary degrees of freedom that are required for 

obtaining a diffraction pattern. The six inch flange 

on which it is mounted also contains six electrical lead 

throughs. The flexible, stainless steel, cooling tube 

is mounted in another six inch flange. 

The evaporation boats used were made from either 

Tungsten, Molybdenum or Tantulum sheet depending on 

the material to be evaporated. It was supported by 

copper strips attached to high current electrical 

lead throughs in one of the small flanges. k shutter 

attached to a stainless steel bellows, itself argon 

are welded into a small flange, was ufed to shield 

the substrate when required. 

The other ports were used at various times to support 

A.E.I. M.S.10 mass spectrometer and an Edwards Quartz 

Crystal thickness monitor. 
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2.2 rodications to the basic equipment  

2.2.1 A Double Substrate Arranc;eent 

To improve efficiency the substrate and associated 

shielding arrangement was modified in order to be able 

to perform two depositions for each pump down. 

Two substrates projecting from a copper block and parallel 

to each other were used in conjunction with a stationary 

shield. When the substrates had been inserted into the 

system the Universal Eotion Drive was used to rotate 

the substrates so that they were parallel to the electron 

axis. When necessary the two substrates could then be 

moved horizontally so that both were covered by the 

shield from the boat. To deposit on- one substrate 

the U.U.D. was again used to expose it to the boat. To 

deposit onto the other substrate they were rotated through 

180°. The substrates are shown in figure ( 3), along 

with their mode of operation. 
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2.2.2 The Liquid Helium Stage 

The two main problems involved in designing a suitable 

Helium stage were: 

1. to reduce all heat inputs to the cooled 

surface to the lowest possible level 

2. to provide all the necessary degrees of 

freedom. 

In addition the provision of a multiple substrate, 

enabling more than one run per pump down to be carried 

out, would be a great advantage. To provide some control 

of warming rate of the substrate it was decided to use 

a continuous flow method. This a1.Eo has the advantage 

of easier transfer of the Helium. 

In order to reduce the heat input from radiation a 

shield, which could be filled with liquid nitrogen, was 

designed to surround the substrate. This radiation shield 

would then perform two further functions: 

a. it would reduce the amount of condensation 

onto the liquid Helium cooled surface 

b. it would allow more than one substrate to 

be used if it contained a suitable defining 

aperture for the evaporant. 
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The shield was constructed from stainless steel with 

the joints formed by argon are welding and is shown 

in figure ( 4). It consists basically of two in 

inter-connected nitrogen resevoirs which are aligned 

above and below the substrate, the lower one containing 

an evaporation aperture. The resevoirs are filled by 

means of a standard V.G. liquid feed-through attached 

to the top tank via a length of flexible tubing. Attached 

to the two resevoirs is a cylindrical shell which is 

aligned to be on the electron axis. This has electron 

entry and exit apertures as well as baffled pumping holes. 

The shield is supported by three rods which can be 

screwed into the bottom tank. These rods are then 

attached to an annulus itself supported by two rods 

fixed to a four inch flange. The height of the shield 

above this annulus can be varied, to align the electron 

apertures, by the nuts attaching the rods to the annulus. 

The horizontal position can be adjusted by sliding the 

annulus along the horizontal support rods. 

On the same four inch flange are two high current 

electrical lead throughs to which are attached the 

copper supports for the evaporation boat. The flange 

also holds the bellow s and associated winding arrangement 
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for supporting and moving the shutter. A schematic 

diagram of this flange is shown in figure 	5). 

In order to provide a method of manipulating the substrate 

it was decided to retain part of the Univeral Notion 

Drive. A similar bellows was used welded into a six 

inch flange. Attached to the top end of the bellows 

and passing through it are the vertical Helium inlet 

and tubes. Using the U.N.D. manipulating framework this 

bellows can then be moved as before. The only movement 

now not possible is rotation of the substrate which for 

non-crystalline or polycrystalline films is in any case 

not necessary. A diagram of the stage is shown in figure 

( 6). To minimise the heat input the inlet/outlet tubes 

were concentric and a further concentric tube provided 

an interspace which could be evacuated. Since the outlet 

tube was outside the inlet, the cold escaping gas would 

cool the inlet tube. Furthermore all the tubes used were 

thin walled cryotubing. The tubes were kept in uosition 

by P.T.F.E. spacers. To minimise heat conduction through 

these spacers they were made triangular in shape with 

suitable holes. Further reduction in heat input through 

conduction was made by making the support tubes as long 

as possible. This necessitated using a spacer between 

the Helium stage and the system's six inch port. 
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A copper substrate was designed, to screw into the support, 

with three individual projecting sa/Taces. Suitable use 

of the U.M.D. manipulator enable any one of the three 

substrates to be positioned over the evaporating aperture. 

The incream in length from the bellows to the substrate 

mentioned above also resulted in an increased amount of 

horizontal movement. This is because the substrate is 

no longer the pivot and so by tilting, the substrate can 

also be moved horizontally. 

Limitations on space made it necessary to have the filling 

tube horizontal. As a result tie top plate of the U.M.D. 

attachment had to have a slot cut in it so that it could 

be passed over the right angle bend. 

Eight lead throughs were welded into the six inch flange. 

Two of these were used for attaching the thermocouple, 

the other end of which was clamped to the copper substrate. 

In the temperature range used (4°K - 300°K) the thermocouple 

used was gold-iron/chromel supplied by Johnson-ilathey. 
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2.3 Experimental Procedure  

2.3.1 Calibration of the System 

To obtain the experimental data in a form suitable for 

analysis it is first necessary to calibrate the system 

so that the scattering angles are known. In the analysis 

discussed in chapter (3), the diffracted intensity is 

defined in terms of a function s defined by 

s _ 41-r sing 

 

where 	8 = scattering angle 

wavelength of incident radiation 

One result of using this expression is that the intensity 

at a given s value is independent of the incident radiation. 

Considering elastic scattering, Bragg's Law states: 

n)\ = 2d sinG 
where 	n = order of diffracted beam 

d = inter-planar spacing  

So for the first order scattering, 

si nO 	
= 1/2d 

which indicated that s = 4.TrSICIVN is directrly 

proportional to 1/d 
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In the case of the S.H.E.E.D. apparatus the actual amount 

of pattern scanned is controlled by the Scan Generator. 

In this calibration and in all subsequent experiments, 

this was set such that the entire pattern was just 

scanned. The diffracted intensity is displayed on the 

(Y axis of an) X-Y recorder while the displacing voltage 

produced by the Scan Generator is applied to the X-axis. 

The sensitivity of the X-axis was set so that a full scan 

caused a displacement of 25cms exactly. In order to fix 

the position of the main beam on the trace, it is scanned 

through at a greatly reduced sensitivity. 

To Provide a known diffraction pattern a Au film was 

formed which gave a pattern of sharp rings. Using an 

accelerating voltage of 30 Kv several intensity traces 

were taken and one of them is shown in figure ( 7) 

Two traces were taken for the reading of peak positions 

and the values obtained are shown in table (1). 

Using this data it is possible to calculate the camera 

constant which i s defined by 

2 X. L = D. d 

where 2AL = camera constant 

displacement of peak from main beam in cms 

d 	= inter planar distance corresponding to 
peak at D 
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PEAK DISPLACEMENT FROM MAIN BEAM 

TRACE1 ( CMS) TRACE2 (CMS) 

1 5.05 5.05 

2 5.8 5 . 	5.8 5 

3 8.30 8.30 

4 9.75  9.75 

5 10.15 10.15 

6 11.75 11.85 

7 128 5 128 5 

8 1 3.10 13.15 

9 14.40 14.45 

TABTP. (1) 

PEAK CAMERA CONSTANT 

1 11.92 

2 11.9 3 

3 11.95 

4 12.00 

5 11.98 

6 12.04 

7 12.08 

8 11. 9 2 

9 11. 9 5 

TABLE (2) 
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The calculated camera constants for each of the peaks 

is shown in table (2) using the values of d given by. 

ASTM card 4-0784. 

From Bragg's Law: 

d = 	2sin 0 

s = 4-rr sin 	= 2 Tr/d 	2-rTD/2)■ L 

Hence using an averaged camera constant we have s = 0.53D.  

This, then, is a general expression relating the X-axis 

displacement to the scattering angle and can bin u :ed to 

convert the measured displacement into the corresponding 

s-value. 
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2.3.2 Usin the basic S.H.E.E.D. S7 :tem  

2.3.2.1 Preparation of the Substrate  

In order to obtain a suitable surface on which to deposit 

the films, the copper was carefully polished to form a 

non-crystalline layer, known as the Beiby layer. 

Initially this was carried out using wet and dry abrasive 

papers followed by polishing wheels. This was followed 

by Alumina polishing powder and diStilled water. Once 

the layer had been formed subsequent polishing between 

experimental runs was restricted to the last stage. 

Finally the substrate was thoroughly cleaned using 

distilled water and iso-propyl alcohol. This procedure 

was found to produce a surface which gave a diffraction 

Pattern of two very diffuse rings indicating a non-

crystalline layer was indeed formed. Figure ( 8) shows 

an intensity trace taken from such a diffraction pattern. 
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2.3.2.2 Obtaining an Ultra High Vacuum 

The sorption pumps were used, in succession, to rough 

pump the system to a pressure of 10-2  torr at which 

point the ion pump could be started. The titanium 

pump was used in on /off cycles; the on time being 

one and a half minutes, while the off time was varied 

depend:_ng on the system pressure. Typically this would 

be ten minutes soon after starting the ion pump and 

would vary to several hours at pressures below 10-9  torr. 

Using the pumps a s indicated the base pressure of 

10-7 torr could be reached from atmosphere in about 

two hours. 

To improve on this pressure it was necessary to bake 

the apparatus. The bake-out could be controlled using 

the supplied control unit which caused the heaters to 

switch on and off at pre-determined values of the ion 

pump current. It is important to take care in selecting 

the cut-out pressure levels or thermal run away will 

occur. This is where the system become shot too 

quickly and, although the heaters are switched off as 

the pressure rises, so much gas :s evolved that the 

ion pump is switched off usirg its protection circuit. 

In practice it was normally possible to bake the 

system for 24 hours in the temperature range of 
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150°C - 200°C quite satisfactorily. After this treatment 

the pre sure could he reduced to approximately 1 x 10-9  torr. 

Subsequent use of the titanium sublimation pump enabled 

this to be reducted further and the ultimate pressure 

reached was 2 x 10 10  torr. Using this Droced=e the 

total pump down time from atmosphereic was about 36 hours. 
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2.3.2.3 Evaporation and Study  of the Thin Films  

Immediately after obtaining a suitable vacuum the ion 

gauge, electron gun filament and the evaporation boat 

are outgassed. The latter was carried out, with the 

substrate shielded, by heating the boat to near the 

evaporation temperature of the material being investigated 

for about half an hour. 

Following this the electron beam is .obtained with 

typically an accelerating voltage of 30 kilovolts aid 

an emission of 100 microamps. Adjustments are then made 

to set the energy filter normal to the electron axis. 

Denbigh and Grigson (1965) indicate that if the electrons 

are inclined at an angle 2f to the filter normal then 

the cut-off will occur When 

V Vf 
V Sin 

where V = electron gun potential 

Vi = enemy filter potential 

!Ff__ 	Sin2X 

where Ef = V— Vf 	= energy filter biasing 

In practice the beam will have a small angular divergence 

and so even if the filter is set exactly normal to the 
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electron axis the cut-off will occur at some value of 

Ef not equal to zero. However if the energy filter 

is arbitrarily set up the cut-off value of Ef will 

increase because of the larger angle Y . Hence the 

procedure is to adjust the setting until the value of 

Ef at which the electron beam is cut-off becomes a 

minimum. A plot of beam intensity against Ef for 

an arbitrary filter position is shown in figure ( 9) 

along with the plot obtained with the best possible 

energy filter position. It can be seen that in this 

case the beam cut-offs when Ef = 7 volts and so this 

is the optimum resolution possible. 

After setting up the energy filter the diffraction 

pattern from the copper substrate is obtained. Liquid 

nitrogen is then sucked through the capillary cooling 

tube by means of a small pump. The thermocouple output 

is monitored using a digital volt meter and deposition 

is carried out when the lowest steady temperature is 

reached. The time taken to cool the substrate to 77°K 

was usually about ten minutes. The warming of the film 

could be varied to a certain extent by sucking air 

through the capillary tube and the time taken to reach 

room temperature ranged from about one to two hours. 
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2.3.3 Using the Liquid Helium Stage 

It is essential when using liquid Helium to attain the 

best possible vacuum in the system. Several hours before 

the Helium transfer the radiation shield was filled with 

liquid nitrogen. It also became candard practice to 

evacuate the interspace in the Helium stage immediately 

before each run. 

One of the three substrates was manipulated into position 

to give a diffraction pattern. Since the radiation shield 

was aligned such that the evaporant aperture was along 

the electron axis this substrate was then exposed to the 

evaporation boat. 

When the diffraction pattern of the substrate was set 

up satisfactorily the Helium transfer was started. The 

syphon used was a standard L-shaped one with a flexible 

arm supplied by Oxford Instruments. The method which 

was found to work best was to suck the Helium through 

the stage by means of a rotary pump connected to the 

exit tube. The actual thermocouple used was not 

calibrated individually and this means that there is 

probably an error of up to 10% on the output. However, 

its output was measured at liquid Helium and liquid 
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Nitrogen temperatures and the former reeding showed that 

the copper substrate did reach very nearly 4°K. Typically 

the time taken to reach this temperature was ten minutes 

and the amount of Helium used was about two litres. The 

time taken to warm to room temperature could be varied, 

by sucking through air, between two and six hours. 

Some of the experiments, owing to a leak developing in 

the radiation shield, were carried out using the Helium 

stage on its own. This had the disadvantage of allowing 

only one run for every pump down but did not affect the 

performance significantly. The temperatures reached were 

the same as before although it did use about half a litre 

extra of Helium. It is likely that it also resulted in 

increased condensation onto the cold co,-per substrate. 
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2.3.4. Resistance i•:easurements 

When the radiation shield was not used it was Possible 

to modify the substrate so that the resistance of the 

deposited films could be monitored. In this way electrical 

resistance measurements could be performed concurrently 

with diffraction studies. 

2.3.4.1 Preparation of the Substrate 

The basic substrate arrangement used with the Helium 

stage is three individual substrates projecting from the 

flat copper surface. To obtain resistance measurements 

one of these triple copper substrates was modified by 

the removal of the three projections to give a flat 

surface. This flat copper surface was polished to produce 

a non-crystalline surface as described in section (2.3.2.1). 

Using an auxiliary, diffusion pumped, vacuum system silicon 

monoxide was evaporated from a tungsten boat onto the 

copper surface. This resulted in the formation of a 

suitable non-crystalline, non-conducting surface layer 

which was probably a mixture of silicon monoxide and 

dioxide. It was found by experience that an adhesive, 

good quality film could be produced providing that: 
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1. the copper surface was not allowed to 

become too hot 

2. the deposited film was not too thick 

3. the film was not exposed to the atmosphere 

for more than a few hours 

4. the copper surface was very clean 

The first condition was satisfied by simply placing the 

copper block at least six inches away from the evaporation 

boat. Thick deposited films were found to peel after 

several hours and a suitable thickness was when the film 

became light brown whilst still remaining :lust transparent. 

To minimise the effects of atmospheric contamination the 

practice followed was to leave the evaporated film inside 

the coating unit until it was to be inserted into S.H.E.E.D. 

The cleanliness of the copper surface was very important 

and in particular the slightest amount of finger grease 

would cause the film to flake. Conseauently great care 

was taken in the preparation of the copper surface and 

particularly with its final cleaning with iso-propyl 

alcohol. 
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2.3.4.2. Attachment of the Leads  

Several methods were tried. The easiest and most reliable 

was found to be the use of Silver Dag. The auxiliary 

vacuum system was used to evaporate two gold contacts 

onto the film using an aluminium mask. Thin, flexible 

copper wires were then placed on these contacts and 

secured by the silver dag. The use of this colloidal 

paint had no effect on the performance of the ultra 

high vacuum system. 

Having fitted the substrate into the Helium stage and 

attached the wires and the thermocouple,the system 

was pumped down and baked as before. 
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2.3.4.3 Monitorin,74 the Film Resistance 

A constant current power supply capable of supplying 

currents between 1p. A and 1 OnnA was built. This 

was used to obtain a voltage from the film directly 

proportional to its resistance. In conjunction with 

the thermocouple output, and using an X-Y recorder, a 

graph of resistance change against thermocouple output 

could be obtained. 



-58- 

CHA7TER 3  

Eethodof Anal. sis of the Experimental Data 

3.1 The method of approach 

There are two main ways in which information about 

structure can be obtained from diffraction data from 

a liquid or non-crystalline solid.The more usual 

approach is to evaluate the Radial Distribution Function. 

This is related to the atomic density and can in 

principle be determined from the experimental data. 

This method is discussed inthe first part of this chapter. 

The alternative procedure is to postulate a 

structural model and then attempt to predict the 

scattering produced from this structure.This calculated 

scattering can then be compared with that obtained by 

experiment.This latter approach is considered at the 

end of this chapter.As might be expected both methods 

have their advantages and disadvantages and these will 

be fully discussed. 
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3.2 The Radial Distribution Function (R.D.F.)  

3.2.1 Non-crystalline solids  

As mentioned in Chapter 1 there have been various models 

suggested for the structure of non-crystalline solids. 

Common to all of them is that they possess short range 

order of some kind while long range crystalline order 

is absent.This short range order occurs because the 

atoms in the solid have a finite 'size'-that is two atoms 

have a distance of nearest approach.Inthis way the atoms 

cannot be arranged completely randomly in the sense 

that some positions are forbidden by the presence of 

other atoms.This short range order results in the 

formation of a diffraction pattern generally consisting 

of diffuse rings. 

3.2.2 Scattering from liquids and non-crystalline solids  

Consider incident radiation represented by the unit 

vector so  impinging on two scattering atoms A1,A2  

separated by r.Let the scattered radiation be represented 

by the unit vectot sc. 

nt 
	 Sc 

Figure (1) 
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The path difference between the waves is given by 

r.(se  - so) = r.s 	where s= (sc  -s0  )  

The phase difference pd=k.r.s where k=art/ 

X =wavelength of incident radiation 

Now consider the amplitude of the scattered wave at a 

point P far from the scattering centres 

Amplitude A = A0/R.(exp(iwt-ikr.$) 	(1) 

where: 

R =distance from P to the scattering centres 

(which can be considered at the same point 

since R:Nr I ) 

A0  =amplitude of the scattered wave at unit 

distance away along se  

By considering the mechanism of atomic scattering we 

can replace A0  with -( e2/mc2 )f where e,m and c have 

their standard notation and f is the atomic scattering 

factor for the particular atom under consideration. 

Hence the intensity from the whole scattering region, 

comprising N scattering centres, is 

A 2  =(1/R2)(e2/mc2) 	f iirexp(-ik(r -r ).s —(2) 
P 4 P q 	-P -q 

where f*  represents the complex conjugate of f and 

in general can be put equal to f.Considering the sums 

over p and q, there will be N terms for which p=q 

(where r
P 
 =r 

q
),In these terms the exponential term will 
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be unity.Hence we have 
PA(1- 

I = lAl 2/C 	1 f 2+ I:  f 
P  fq 

 exp(-iks. (rp  -rq  ) 	(3) 

where C = (e2/mc2)2/R2 

In the case of scattering from a single element f =f 
P q 

1 2 Then I .1f1 (134-nexp(-iks.(rp  -rq  ))) 	(4)  

Now apply this expression to a monatomic liquid or 

non-crystalline solid.The expression has to be averaged 

over all possible arrangements and this is done by first 

considering just two atoms p and q.The average contribution 

to the intensity from these two atoms is found and 

this is then integrated over the whole scattering volume. 

The probability that atom p lies in the volume dvp  

at the same time that atom q lies within dv is given by 

W(rPq )(dv /V)(dv /V) 

where V = volume of the scattering region 

Ig(rpq  ) = spherically symmetric probability function 

that p and q will be separated by I r 1 . 

It is taken to be unity when all distances 

are equally probable as in a completely 

random arrangement.It will be the same 

for all atoms and so will be replaced 

by W(r). 

The average contribution from atoms p and q is the 

product of this probability and the term due to p and q 

in equation (4).The double summation over p and q has 

N(N-1) terms and the average value will be the same for 

each.Hence we have for the average intensity fro;i all 

N scattering atoms 
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I =Ifi2(N÷N(N-1)HWexp('-ik.s.(r
P
-r

q 
 )dv

P 
 dv 

q
/V2  ) --(5) 
 

In the ideal case of point atoms which is approached 

by a gas W =1.In this case we have 

I .1112(N+N(N-1) $1 	rdv exp(-iks.(rp- pdvq 	-- / V2) —(6) 

In this ideal case the positions of p and q are completely 

independant of each other,so that the double integral 

can be written as the product of two single integrals. 

These single integrals have the form 

	

X
P 	

. = 	exp( -iks r )dv/V 

To evaluate this integral take the scattering volume 

to be a sphere with radius R and its centre at the origin. 

Let s and r make an anglec4,so that 

	

ks .r 	rcos (sin. )/ h =srcosot 

where s = 4r-r(sin0 )/ X 

(N.B. s is conventionally used to express this term 

and should not be confused with s.) 

Let the volume element dv be the volume between the 

spheres of radii r and r+dr and the cones having s 

as axis and the semi-vertical angles 0(andd-i. 

Then 

TT a  
X = 2TT/V r2exp(-isrcos C‹ )sinoc 

o 0 
=4177/V 	r2sin(rs)/rs dr 

= 41-7/V R3/3 Z(Rs) 

where Z(Rs) =3(sin(Rs) -Rscos(Rs))/(Rs)3 
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The other integral Xq  will have the same value as 

X 1  so that 

I(s) df12(N+N(N-1)(Z(Rs))2  ) 

The form of Z(Rs) is such that it can be neglected in 

equation (7) when 

Rs> 1.430 

Typically then for a scattering sphere of radius 1011:  

I(s) .N1f12  for values of s greater than about 0.5.f-1. 

This result is entirely reasonable as a completely 

random arrangement would be expected to give just the 

sum of the intensities scattered by the individual 

atoms. 

Now return to the real case where W is not unity.The 

integral to be evaluated is 

Y = 	Wexp(-iks.(rp-Eq)dvp/V dvq/V 

and this is done by replacing W with 1-(1-W).So we have 

Y =Y1 - Y2 

where Y1 is the integral XP 
 discussed before and 

can be neglected except near s=0 

f
Y2  = 	(1-4i)exp(iks.rpddvp/V dvq/V 

(7) 
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To evaluate Y2' first suppose the atom p to lie anywhere 

within the volume V with equal probability (as indeed 

the first atom can ),Integrating with respect to dv 

then gives the factor unity.Take the position of p as 

the origin and let r be the radial distance from q to 

p.Letc4 be the angle between r and s then as before 

we have 

Y2 = 1/Vj 2TI(1-W) r2exp(isrcos )sinc< do( dr 

The limits of integration are from 0 tort fora and we 
can put 0 tow for r since W becomes unity, and the 

integrand zero, for large r.Theref ore 

0D 

Y2 . 4T; /V (1-W)r
2 sinSr /Sr dr 

and .  
I(s) =Iff2  (N-4T7 (;-1)/V f(1-W)r2sin(rs)/rsdr ) 

0 	(8) 

It is now convenient to replace the probability function 

W with the atomic density function p(r).This atomic 

density function is defined such that 4r7f3(r)r2dr 

is the average number number of atoms lying,at any 

instantl between r and ',I-dr from the centre of some 

specified atom p.Both W(r) and p(r) are spherically 

symmetric and have the same dependance on r.To determine 

the numerical factor relating the two consider a 



By Fourier's Integral theorem then 
co 

21r) 	= 2/n fai(s)sin(rs)ds 	 (11) 
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completely random distribution of atoms.In this case 

p(r) is the average number of atoms per unit volume 

and hence equals po,the average atomic density.However 

W(r) is unity and so for N scattering centres in a 

volume V we have 

p (r) 	= 	W(r) 	(N/V) W(r) 

So replacing Id(r) withp(r)/
/
0
° 

in equation (8) gives 

(cc) 
I(s) = Ifl 21; (1-417 	(p.--p(r))r2  sin(rs)/rs dr) 

/ 
having rut N-1 = N 

Now defining the normalised intensity 	(s) as 

1-7,(s) = I(s)/N and the R.D.F. as 

G(r) =41-irry (r)-p0) we have 

co 
s(I&(s)/ IfI2  -1)= I G(r)sin(rs)dr 

Now put i(s) = s(IN(s) / If 12  -1) in 

	 (9) 
equation (9) 

fo  G _ sin rs dr 	  (10) 
co 
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3.2.3 The Radial Distribution Function,Density Function 

and the information obtainable. 

The equations (10) and (11),which shows that i(s) 

(called the interference function) and G(r) form a 

Fourier pair,are the basic starting point for the 

analysis of diffraction data from liquids and 

non-crystalline solids.In addition ,the Radial Density' 

function D(r) is of use with 

D(r) = 4TT p r ) r2  

The basic information to be obtained from D(r) and 

G(r) are interatomic distances and co-ordination numbers. 
1 

From the defination of p (r) )D(r)dr represents the 

number of atoms between the spheres of radii r1  and r2. 

Hence by evaluating the area under the peaks in D(r) 

one can arrive at a estimate for the co-ordination 

numbers.This process is complicated by the overlapping 

of the various peaks and Mrafko,Duhai(1974) give three 

methods of measuring the areas.Consider the typical 

peak shown in figure (2).The co-ordination number is 

given approximately by the three following expressions: 

fr, 
N 2 'ia" 21--tyir)r2dr 

rmin 

N = 	r 
	

4171)(r)r2dr 
min 

irs 	2 N 	4-4r)r dr 
r . n 

method 1 

method 2 

method 3 
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Figure (2) 
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The three integrals are calculated and the results 

obtained are said to agree to within two percent.An 

alternative method,suggested by Karle and Karle(1949) 

is to approximate the peaks in D(r) with Gaussians of 

the form 

D(r) 	(Ni/ rk7-171)exp((r -ri  

where 	ith = position of 	peak 

2A. = mean square deviation of ri  

co-ordination number 

Hence by fitting the best Gaussian to D(r) peaks the 

valuesforLand-A-can be deduced. 

In addition to the evaluation of these basic quantities, 

Gokularathnam(1974) has pointed out a further use to 

which the R.D.F. can be put.This is in the case of 

where the specimen is suspected of containing micro-

crystalline regions and gives an estimate of their 

maximum possible size.A size factor V(r) is introduced 

such that 

V(r) = 1 	inside the diffracting region 

V(r) = 0 	outside the diffracting domain 

Suppose G(r) is calculated from equation (11) using 

diffraction data from a micro-crystalline specimen.This 
2 will lead to a D(r) = 4rri (r)r given by 
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/1-1--to 
44 

(r)r2 4rrAr2 +rG(r) 

The apparent densityp (r) being  evaluated without 

considering  the size factor appropiate for the micro 

crystals.Let the true atomic density be p (r) and 

define 

g(r) =p(r)/pc, 
4- 

g(r) = p (r)/f 
Then taking  the size factor into acoount 

24- 	2 	2 14-rtrp(r) 	4-17r00(1-V(r))+4--nr ioo s(r)V(r) 

Hence 	g*(r) = 1-V(r) + g(r).V(r) 

Therefore g(r) 	when V(r) 	0 or 

g(r) ----;).1.Now for a non-crystalline material,g(r) 

approaches unity before V(r) becomes zerolwhile in the 

micro-crystalline case V(r) becomes zero before g(r) 

becomes unity.Hence by inspecting  the calculated G(r) 

to see when it becomes zero(i.e.y0 (r) =pp ) it is 

possible to estimate the size of any micro-crystalline 

regions. 

a 
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3.3 Computation of the Radial Distribution Function 

3.3.1 The errors involved in obtaining the R.D.F. 

and their treatment.  

In principle the R.D.F. can be evaluated exactly from 

the interference function by the use of equation(11). 

However in practice serious errors can be introduced 

into the resultant R.D.F. due to two main causes.These are: 

(1) errors in the interference function caused by 

improper normalisation of the experimental intensity 

(2) collection of the data over an incomplete range. 

This results in a termination error and is mainly 

because the data is only known to some maximum 

value of s. 

In addition equation (11) refers only to the coherent 

scattering.This necessitates the removal of the inelastic 

scattering from the total intensity diffracted. In the 

case of X-rays this Compton scattering is usually 

calculated and then used to correct the experimental 

data.In electron diffraction it is possible,as in 

this project,to eliminate the inelastic contribution 

experimentally. 

The usual method chosen to normalise the data is to 

fit the experimental intensity (I(s)) to the independant 

1 a tomic scattering (i.e. Efi2  ) at large scattering 

angles.This is utilising the fact that at such scattering 

angles the intensity approaches that from a completely 

random arrangement of atoms.This procedure of col:a.se 
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then relies on accurate measurement of a small intensity. 

A r.odification of this method is to fit s.I(s) to s.1f12  

over the whole range of experimental data.An alternative 

procedure due to Krogh-Moe is obtained by again considering 

equation (11). 
0:3 

4rT rp (r) 	477 rpo  2/11 jii(s)sin(rs) ds 

so 21-12rf) (r) 	2r72rn = fr(s)sin(rs)ds 
r 0 

Differentiating with respect to r gives 

/ 	2
cc 

2r-r2f, (r) 	2172  rip (r) -2r-v /30  .1si(s)cos(rs)ds 

Since the atoms have a distance of closest approach, 

P(0) = 0.Then at r = 0 

)( OD 

s.i(s) ds = 	2 pc 

 

(12) 

 

Let 	IN (s) = A.I(s) 

where I(s) = experimental intensity leasured in 

arbitrary units 

IN(s)= normalised intensity 

A 	= normalisation factor 

Hence 	i(s) = s.(A.I(s)/if12  - 1) 

So substituting for i(s) in equation (12) 
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OD 	OD 

A (1 s2ds 2r72p0)/fs2.I(s)/ f gds 	 (13) 

Equation (13) indicates that if the average atomic 

density is known then the normalisation factor can be 

calculated.Furthermore it can be seen that the integral 

in the numerator can be evaluated analyLically.If the 
° -1 data is known out to say s = 12 A 	then the integral 

has a value of about 550.(Its exact value depends 

on the minimum value of s,which is generally not zero). 

This means that in most cases the second term in the 

numerator can be neglected without affecting the resulting 

normalisation factor. 

The form of the error introduced into the R.D.F. by 

faulty normalisation has beendiscussed by Krogh-Moe 

(1956),Wagner(1972) and Kaplow et Al(1965).Following 

the approa ch of kaplow et Al let the fractional error 

in the normalisation constant beAA/A.The interference 

function is: 

i(s) =s(A.I(s)/ f 2  - 1) 

so the corresponding error function is: 

LS i(s) = s.tiA.I(s)/ If' 2  . s.AA/A.I/,i(s)/If 12  

Hence 4 i(s) = 	VA).s.(IN/1f12  - 1) + (tiA/A).s 

This error function is shown in figure (3) for a one 
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per cent error,while figure ( 4.) illustrates the resulting 
error in the R.D.F.Kaplow et Al also considered the effect 

of errors in the atomic scattering factors.They point 

out that it is impossible to be sure of the exact form 

of the error but it is likely that it will be of the 

form L3. (IN/(fl
2
) = IN /if 

i2 .E where E is a slowly 

varying function of s.The resultant error in i(s) is 

given by: 

Li(s) = E.s.(IN  /11'12  - 1 ) 	E.s 

and it will combine with the normalisation error to give 

i(s) = CE -1-LA/A).s.(IN  /1f12  -1) = 	+Ls..A/A).s 

	 (14) 

The error in the R.D.F. from the first term in equation 

(1L,) will consist of the convolution of (E +A.A/A) 

with the true R.D.F. Since (E -FLA/A) is a slowly 

varying fundtion of s this will result mainly in a 

scale change. The second term will cause an error most 

significant below the first peak and so it the more 

important term. 
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Kaplow et al also considered the problem that in general 

the data is only known from some minimum s to some 

maximum value (Smax).  The absence of data at small 

s values is not too important because the intensity 

is very small in this region. The upper limit, however, 

affects the resultant R.D.F. quite considerably by 

causing spurious oscillations. 

Mathematically it can be treated by modifying the true 

interference function i(s) with a function c(s) where 

c(s) = 1 	s < Smax  

c(s) = 0 	s y Smax  

Consequently instead of evaluating the Fourier 

transform of i(s) the transform of i(s) • c(s) is 

performed instead. The Convolution theorem then 

indicates that the true R.D.F. is modified by a 

function of the form: 

G (r) = 2Smax  Sin 21-7Smax. r 

2TT Srnax4r 
	 (15) 

This results in subsidiary maxima and minima appearing 

around the true R.D.F. peaks at distances of: 

r = 	5/4Smax, ± 9/4Smax (maxima) 

(minima) 3/4smax, 
± 7/4S 	(minima) 
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Kaplow et al undertook a computational study of the effect 

of the termination error. They concluded teat the main 

error in the R.D.F. was in the vicinity of the first 

peak, as would be expected from equation_ (16). Since 

the R.D.F. is altered by the normalisation/scattering 

factor error and the termination error at different 

positions, they devised a method of treating them 

separately. 

This is outlined below: 

In a real R.D.F. the value of 0(r) would be zero before 

the first peak leading to a R.D.F. of - 4rw.r. The 

normalisation and scattering factor errors will be 

apparent by oscillations about this straight line. 

In this small r region a straight line of gradient 

IQ 

this and the experimental R.D.F. is defined as A. G(r). 

As discussed before, the transform of this error function 

will appoximately equal s(E A/A). Then, as can be 

seen from equation (14), the corresponding interference 

error function -A i(s) can be obtained by multiplying 

Im(s)/1f12.  this by 	This calculated error function 

is then used to modify the original interference function. 

- 4 -c-r is calculated and the difference between 
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Rahman (1965) has derived a reliability criterion with 

which the accuracy of the interference function can 

be tested. Since the atomic density 	(r) is zero 

at values of r less than the hard-core diameter of 

the atoms he has shown that the following; equation 

should hold: 

S(U, d) 	= 	Sexp  (U, d) 

where 

S(U, d) = 4 ;7 pc, r3  J 1  (Ud),/ Ud 
op 	1 (  Sexp  (U, d) 4d/rill) f i(s), 	0  ,,,((s+u)d)--jo((s-u)d))as 
0 

andj i  are spherical Bessel functions 

ie. 	30(x) 	(sin x)/ x 

t  (x) = (sin x/x2) - (cos x/x) 

U is any arbitrary value and d may have any value less 

than the hard core radius. 

It can be seen, then, thatthe reliability criterion 

S(U,d) depends only on the average atomic density 

and should be compared with Sexp (U, d) calculated 

from the experimental data. 
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In an attempt to reduce the termination error Kaplow 

et al suggested imposing; two, or more, additional 

cut-offs on the data. Transforming with the three 

values ofS 	leads to three different R.D.F.s. By max  

inspection of these curves the underlying trend is 

observed and by following these trends a fourth R.D.F 

is constructed. This fourth R.D.F. should then be 

transformed to give an interference function wich 

will hopefully extend meaningfully behong Smax  to 

Smax say. In general this new function (i (s)) will 
not agree with i(s) below Smx' In this case i (s) 

should again be transformed, using the two cut-off 

points S ax  and Smax' to obtain two further R.D.F.s. 

The difference between these two curves is defined as 

6r= term(r)-  and represents the error induced in the 
true R.D.F. by the termination error. This error 

function is then used to modify the original E.D.E. 

This process can be repeated until a satisfactory 

R.D.F. is obtained. This final R.D.F. should satisfy 
two basic criteria: (1) The R.D.F. should be linear 

below the first peak; (2) when transformed the 

interference function produced should agree with the 

original function out to S 0- 	 and extend beyond it. max 
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Finally it should be noted that by far the most common 

way of treating the termination error is to damp the 

interference function before transorming it. This 

is done by including a factor of the form: 

 

exp (- Bs2) 

  

where B is a constant (see for example Fujime (1966), 

Ichikawa (1970), Karle and Karle (1949), Maitrepierre 

(1969). This leads to equation (11) becoming: 

S ,.., 

G (r) = n2 	111 	i(s) exp (-Bs2) sinrs ds 

0 

The extra factor is called the artifical temperature 

factor and Fujime (1966) has suggested that a reasonable 

value for B is given by: 

(16) 

exp (- Bs2max) = 0.1 

  

A radial density function obtained using a damping 

factor can still have Gaussian functions fitted to its 

peaks. They should now be of the form: 

D(1)41../P., 
	I
4110k.74exo((r.../.i)2 /477(A.+B ) ) 
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3.3.2 The Implementation of Suitable Computer Froprams 

A set of computer programs were developed to analyse 

the experimental data. The use of the energy filter 

made it unnecessary to consider the inelastically 

scattered electrons and the intensity was read, in 

arbitrary units, directly from the x-y recorder. 

This method of collection of the data is not entirely 

satisfacotyr especially at the larger values of s. 

In this region the intensity has fallen to a small 

value and the associated error is of the order of 

5-1G%. Furthermore the resultant interference function 

contains the factor of s, which with this equipment 

extends to about 12.0 A° -1. Hence all the errors 

that occur in the reading of the data at such s values 

are multiplied by this factor. 

The interference function is defined as: 

i(S) = s (A.I(s)/If(s)12 — 1) 
with the same notation as before. 

Hence an error of A I(s) in I(s) leads to a 

corresponding error in i(s) of 

L i(s) 	S A-A2 . 	I(s) 	
 (17) 
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If we substitute typical values for the Quantities in 

equation (17) of: 

s = 10A° -I 	A ,̂0.5 

If(10)[2,... 0.5, 	I(s) = 0.05 

then 

CS i(10) ....,, 10. 2-2-2 0.5 	0.05 ,, 0.5 

This is a rather large error because at s = 10A° -I  

the interference function should probably be approaching 

zero. With the present experimental set up the only 

answer appears to be extreme care in the collection of 

the data. It is often possible, however, to improve 

the collected data by inspection of the calculated 

interference function. Any sharp fluctuations in this 

function at large s can be traced back to the original 

data and corrected if necessary. In addition the use 

of a small damping factor, as in equation (16), could 

now be possibly justified. 

The main programs used are listed in appendix A. The 

collected experimental intensity is normalised and a 

corresponding interference function calculated using 

program iiORMAL. The two methods of normalisation 

described in section (3.2.1) are used. The presence of 

the main beam results in a minimum value of s, not equal 

to zero, from which the data can be read. The intensity 
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at low values of s, however, is negligible compared 

with the value of Id2  . It follows then from the 

definition of the interference function as: 

i(s) = s ( Iu(s)/OL 1) 

that for small values of s 

i(s) 	- s 

The usual next stage in the analysis was to obtain the 

corresponding R.D.F. This would contain a great deal 

of spurious detail arising from the errors mentioned 

previously, but would be inspected to determine the 

position of the first real minimum which was then used 

in the main program. This is called RDFGEN and 

basically follows the method outlined in section (3.3.1). 

This program is fully documented and so will n7,,t be 

described in detail here. 'i:he main addition to the 

method already described is the removal of obvious 

irregularities below the first peak that still remain 

after the normalisation error routine.In paticular 

it was often found to be necessary to discard a very 

deep minimum just below the first peak.The justification 

for this was that the R.D.F. should be linear at 

small values of r.Furthermore the position of this 

minimum is that predicted by equation (15) and so 

would appear to be due to the termination error. 

In addition a routine using the Rahman criterion is 

used. 
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Having obtained Radial Distribution and Density Functions 

an attempt to estimate the co-ordination numbers was made 

by program GAUSS.This program estimates the area 

under the peaks in D(r) using methods (1) and (2) 

described in section (3.2.3),It also approximates 

the first peak by a Gaussian function to derive another 

estimate. 

Finally consideration is given to the actual process 

of transforming the data.The Fourier pair G(r) and 

i(s) are related by: 

'OD 
G(r) = 2/1-71'i(s)sin(rs)ds 

0 

OD 
i(s) 	)( G(r)sin(rs)dr 

0 

The simplest way to evaluate these integrals is to 

replace them with summations such that 

G(r) = 2/TT A...E i(n4s)sin(rnAs) 
r 0 

00 

i(s) = 	A rE G(m r)sin.(sm &r) 
m..70 

where ,Nsl Ar are the respective sampling increments. 
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Hence 

G(r÷217//1, s) = 2/r-rAsEi(nAs)sin(rnLs÷2rrni) 

= G(r) 

and i(s+2rT/Ar) = i(s) 

G(r) and i(s),therefore,calculated in this way will 

be periodic with half periods ofri//ss and ri/Ar 

respectively.This means that As and Q r should be 

chosen such that the corresponding half periods 1-1/As 

and Y{ //fir are significantly greater than the values 

at which G(r) and i(s) approach zero.In the analysis 

carried out here it was assumed that both i(s) and 

G(r) would be zero at values of s = 25 A
0 -1 and 

r = 25 A°  respectively.This then leads to the conditions 

A8 < 0.125 A°-1  

0.125 A°  

In implementing the actual transform,in order to improve 

effiency,especially in view of the large number of 

transforms undertaken the so-called fast fourier transform 

was used.This is a method of performing the summation 

without the large number of redundant calculations 

that are normally done.The basic routine was written 

by D.Monroe of the Electrical Engineering Department 
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of Imperial College and was modified to be applicable 

in this case.The concepts used in the transform,together 

with the mathematics required to manipulate eauation 

(11) into a suitable form, are given in Appendix B. 

Its introduction resulted in the transform being executed 

in a quarter of the time taken by the usual summation 

method.It should be pointed out that the F.F.T. is 

not an approximation. In fact it is slightly more accurate 

than the conventional summation because of the fewer 

number of rounding off errors. 
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3.4 Computer Predictions of Scattering Intensity  

3.4.1 	General scope and advantages of the method  

This method of utilizing the experimental data entails 

calculating scattering intensities for a postulated model 

and comparing with experiment.The one big advantage 

this indirect method has over the method just described 

is that there is no termination error involved.In 

principle if the given model is well defined then a 

complete range of intensities can be.  predicted.The 

major disadvantage is the multitude of models which 

can be put forward.A model aimed at representing a 

non-crystalline structure can be produced using the 

ionte-Carlo method with which various degrees of 

packing can be obtained(Pader et Al(1955)).Similarly 

various polycrystalline models can be adopted and the 

resulting diffraction intensity calculated.It would 

then be possible to compare this with that obtained 

experimentally in an effort to decide if the sample 

was indeed non-crystalline. 
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3.4.2 Computation of scattering intensities for a 

polycrystalline sample  

Eorozumi anr Ritter (1953),and Grigson and Barton(1966) 

have both calculated diffracted intensities from randomly 

orientated cubic lattices.By considering the scattering 

from such a sample it can be shown (James(1948)) that 

the diffracted intensity is given by: 

, N-1 

	

(s) = 	 E (N1—ipl)(N --icil)(N3-111) o 	 —(N-1) 	2 
sin(2rIslpql /21-1s1pql )) 

where 

I0  (s) = intensity at the point s 

f 	= atomic scattering factor 

Ni,U21N3= number of atoms along crystal sides 

	

1pal 	distance from the origin to the point 

p,q,l of the crystal lattice 

In the case of small crystallites io(s) becomes slowly 

varying with s so that the contribution from the 

structure factor has to be considered.This has to be 

calculated for the particular lattice being considered 

and then averaged over all possible orientations.In this 

work the effects caused by interference between scattered 

waves from different crystallites has not benn considered. 

It is assumed that for all but the very smallest 

crystallites the path difference between the crystals 

would be too long to support significant interference. 
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The programs written to evaluate this scattering are 

listed in Appendix A, alongwith full documentation. 

The actual intensities predicted will be illustrated 

and compared with experimental data in Chapter 5. 
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CHAPTER 4 

The Experimental Results and their Analysis  

4.1 Preliminary Study of Tin, Zinc and Cadmium Films 
Prepared at 77°K  

This initial work was performed in an attempt to confirm 

that these films could be formed with a non-crystalline 

structure. It was carried out in an un-baked system with 

a pressure of 1 x 10-7  torr. This procedure enabled a 

great deal of time to be saved while still having vacuum 

conditions comparable with Kato and Horikoshi (1965), 

Fujime (1966) and Belevtsev and Kommik (1971) whose 

work was mentioned in Chapter 1. 

The first metal to be investigated was Tin. A set of 

intensity traces taken over a range of temperatures, as 

the deposited film was warming, are shown in figure (1). 

On deposition the pattern consisted of diffuse rings 

which sharpened on warming of the film. At 160°K an 

abrupt change occurs in the pattern which becomes one of 

sharp, textured rings. At 175°K the pattern again 

suddenly changes to one similar to that observed just 

below 160°K. No further change in the pattern takes 

place on warming of the film to room temperature. 
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Similar results were obtained when Tin was deposited onto 

a Carbon layer which had previously been evaporated onto 

the Copper. Furthermore the observed effects did not 

depend on the rate of deposition or the thickness of the 

film. On thermally recycling a Tin film no significant 

change took place while cooling but similar changes were 

apparent on warming. Further experiments were performed 

entailing the preparation of Zinc and Cadmium films with 

the same results. 

At this point a M.S.10 mass spectrometer was attached to 

the system and this indicated that water vapour was the 

main residual gas with a partial pressure of 4 x 10-8 torr. 

A final experiment was performed where the Copper substrate 

alone was thermally cycled while concurrently monitoring 

the partial pressure of water vapour. The variation with 

temperature, along with that of the total pressure, is 

shown in figure (2). 

On cooling of the substrate the water vapour partial 

pressure decreases. 4 hen warming begins it increases 

and the rate of increase is very rapid within the 

temperature range 140°K to 180°K. Soon after 180°K 

the partial pressure levels off and remains steady on 

warming to room temperature. The total pressure follows 
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this general behaviour although there is an additional small 

peak, the beginning of which coincides with the start of 

the substrate warming. 

The results strongly suggest that the observed diffraction • 

pattern changes are caused directly by the condensation 

of water vapour onto the substrate and its subsequent 

evaporation. To support this, figure (3) shows the 

diffraction pattern produced during the temperature range 

150°K - 180°K. Marked on this diagram are the calculated 

peak positions due to a tetragonal ice structure (ASTN 

card number 16-5 CIE3). 

As confirmation the experiments were performed in a baked 

system where the water vapour had a partial pressure of 

5 x 10-9  torr. Under these conditions the effects described 
above were not observed. 

The results described emphasise the importance of attaining 

the best possible vacuum especially when preparing films 

at low temperatures. In particular it would appear 

essential to bake the apparatus before each experiment. 

This condition made it impossible to prepare Zinc and 

Cadmium films since both elements possess a very high 

vapour pressure (e.g. 10-3 Corr at 230°C for Cadmium). 
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4.2 T--Ie Preparation of Films at 77oK 

All the work described in this section was performed in 

 a vacuum of between 1 x 10-8 torr and 2 x 10 10  torr, 

using a Copper substrate. 

4.2.1 Gallium  

It had been hoped that these films would exhibit a 

non-crystalline structure but it was found that all but 

the thinnest produced a diffraction pattern of sharp, 

Polycrystalline type, rings. On examining the growth 

of these films it was seen that they passed through 

stages during which they showed a fibre texture. Oshima 

and Nakamure (1969) have reported that evaporat;ed Silver 

and Copper films when condensed at 77°K also display fibre 

texture and it was decided to study the growth of these 

Gallium films. 

The evaporation rate and the thickness of the films were 

determined using an Edwards Thickness Monitor. This was 

calibrated using a half-covered glass slide mounted next 

to the substrate. This produced a film step from which 

the film thickness could be estimated using the Tolansky 

interferrometric method. The calibration graph obtained 

using Sodium wavelength of 5 990 Av is shown in figure (4). 
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A typical growth sequence is shown in figure (5). The 

diffraction pattern changes shown occurred on polycrystalline, 

as well as non-crystalline, substrates and for a range of 

deposition rates. At deposition rates of below 2 A°  per 

second the two intermediate stages showing the fibre texture 

did not appear. On condensing the films at temperatures 

above 80°K the Gallium gave first a diffraction pattern of 

diffuse rings which gradually sharpened on further deposition. 

Furthermore it was found that both forms of texture 

disappeared on warming of the film to room temperature. 

Figure (6) shows a schematic diagram of the position of 

diffraction spots when the <j, 1 1> axes of the Gallium 

crystallites are perpendicular to the film surface normal. 

Comparing this with figure (5 (t1)) it can be seen that 

the :pots are in similar positions to the arcs. It is 

therefore concluded that the pattern in question possesses 

a <1 	) fibre axis. 

Oshima and Nakamura in discussing their results suggest 

a likely hypothesis to explain the observed effects. 

They show, by considering the mechanism of nucleation, 

that those planes with the higher atomic density are most 

likely to nucleate. At very low evaporation rates the 

impinging atoms condense exactly where they land and have 

no energy to cause crystal growth. This results in the 
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formation of very small grains with completely random 

orientation. At higher rates of evaporation surface 

diffusion may be possible and this would result in more 

ordering of the atoms leading to preferred nucleation on 

those planes with the highest atomic density. Deposition 

at higher temperatures results in extra atomic migration 

being possible allowing the formation of larger crystallites 

without fibre axes. This extra surface migration at 

higher temperatures could also explain why the texture 

vanishes on warming. 
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4.2.3. Chromium 

Chromium films deposited onto a non-crystalline Copper 

substrate held at 77°K were found to undergo structural 

changes during growth. A typical growth sequence is 

shown in figures (7-10). The first three stages all 

appear to show that Chromium is in a non-crystalline phase 

while the fourth stage indicates a polycrystalline form. 

It should be added that the growth is continuous and it 

has been split into stages only for presentation. One 

noticeable effect is that the first peak moves outward 

during growth until it assumes the position due to the 

213>planes. Figure (11)  shows the indexed pattern 

Produced by the film after warming to room temperature. 

The estimated thickness at which the film becomes definitely 

polycrystalline is approximately 300°  although it should 

be stressed that no abrupt transition was observed. 
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4.2.3 Iron 

Iron films grown under similar conditions as Chromium 

films exhibited a very similar growth pattern. A series 

of traces showing the observed effects are given in 

figures (12-15). Again the first two stages indicate 

a non-crystalline structure while by stage 4 a poly-

crystalline pattern is apparent. The movement of the 

first peak was, as with Chromium, a gradual process and 

it was difficult to estimate at what thickness a 

crystalline structure was observed. Such a structure 

however had always appeared before the film had become 

about 300 A°  thick. 
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4.3 The Study and Analysis of Films Prepared at  

Approximately 4°K 

All the results described in this section are from 

- experiments performed in a vacuum of better than 5 x 10 10  

torr. In all the cases, except Indium, non-crystalline films 

appeared to be formed and in these cases the computed 

R.D.F.'s are shown. In section 4.3.1, using the results 

obtained with Gallium, a number of intermediate functions 

are shown in order to illustrate the working of the 

computer programs. 

4.3.1.1 Gallium 

Numerous Gallium films were prepared with thicknesses 

ranging approximately from 50A°  to 500A°. Similar results 

were obtained from all the films and the description given 

here is felt to be entirely representative. 

Immediately after deposition the Gallium produced a 

diffraction pattern typical of a non-crystalline solid. 

On warming of the film, fairly sharp polycrystalline 

rings were observed to have appeared by 100°K although 

an abrupt transition was not observed. Further warming 

caused the diffuse rings to re-appear at a temperature 
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of approximately 250°K presumably as a result of the film 

melting. This structure then remained stable at room 

temperature. A graph showing the variation of resistance 

of the film during warming is shown in figure 16. A sharp 

decrease in resistance occurs immediately after deposition '  

followed by a levelling off which continues to about 200°K. 

After this point the resistance begins to increase and 

by 280°K the film has become discontinuous. 

On re-cooling of the liquid Gallium film crystallisation 

occurs in the temperature range 250°K - 170°K. By 170°K 

the film has reverted to the polycrystalline structure 

it possessed on warming. This crystallisation process is 

shown in figures (17 and 18). Figure (18) shows the 

intermediate pattern observed on cooling in the region 

250°K to 190°K, while figure (17) shows the final pattern 

obtained. 
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4.3.1.2 Detailed Analysis of Liquid Gallium Data 

Using the atomic scattering factor calculated by the Self 

Consistent Field method, the experimental data was 

normalised and the interference function calculated. 

This is shown in figure (19) while the corresponding 

R.D.F. is in figure (20). The effect of damping the 

interference function, as described in Chapter 3, is 

shown by the two R.D.F.s shown in figures 21 and 22. 

The damping factors used are 0.005 and 0.05 respectively. 

The interference function is now treated for a normal-

isation error by the routine ERNC211. Figures 23 and 24 

give the normalised intensities before and after this 

error minimisation routine respectively. Similarly 

figure (25) gives the interference function and figure 

(26) the corresponding R.D.F. after treatment by this 

routine. _The extrapolated interference function is 

shown in figure (27) while the final treated R.D.F. is 

given in figure (23). The corresponding Radial Density 

Function is shown in figure (29). 

It is interesting to consider what happens if the atomic 

scattering factor calculated using Thomas-Fermi-Dirac 

statistics is used instead. It would be expected that 
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a worse result would be obtained in this case because 

of the approximate nature of the scattering calculation. 

Using the same Gallium data figure 30 and 31 show the 

calculated interference function and R.D.F. respectively. 

Figures 32 and 33 are the normalised intensities before 

and after being treated for normalisation error. In 

conjunction with this the Rahman normalisation criterion 

can be applied. Figure 34 is the function SUD calculated 

from the averafe atomic density of Gallium. Figures 

35 and 36 are the functions SUDEX calculated from the 

experimental data before and after being treated for the 

error respectively. Ihe Rahman criterion says that UD 

and SUDEX should agree if the normalisation is correct. 

Finally figures 37 and 38 are the extr000lated. interference - 

function and the treated final R.D.F. respectively. These 

can be compared with corresponding functions obtained 

using the self consistent field scattering factor. 

The final stage in the analysis, having obtained a 

reasonable R.D.F., is to estimate the first co-ordination 

number. Figure 39 shows the Gaussian function fitted to 

the first Radial Density Function peak. Program Gauss 

having fitted this function estimates the co-ordination 

number using the three methods indicated in Chapter 3. 

These are: 

sylimetrical 	minimum to 	Gaussian 
method 	minimum method 	method  

5.0 	6.4 	6.6 
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4.3.1.3. Analysis of the Non-Crystalline Data 

This data is taken immediately after deposition of the 

film. In the analysis and for all other materials the 

self consistent field scattering factor is used. 

The final interference function is shown in figure 

40 while the corresponding Radial Distribution Function 

is in figure Al. 

The Gaussian function fitted to the first peak in the 

density function is shown in figure 42. The three methods 

of estimating the co-ordination number give an average 

value of 6. 
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4.3.2. Nickel 

On deposition onto the liquid Helium cooled substrate, 

the Nickel films produced a diffraction pattern of 

diffuse rings. This pattern did not appear to change 

significantely with increasing thickness. During the 

process of warming the film to room temperature 

polycrystalline rings were observed to appear. However 

as with the Gallium films no particular temperature could 

be assigned to this change. 

The calculated interference function is shown in figure 43 

while the corresponding R.D.F. is given in figure 44  

The normalised intensity is figure 45. The extrapolated 

interference function is illustrated in figure 46 while 

figure 47 shows the final, treated R.D.F. Figure 48 is 

the Radial density function and figure 4 9 is the Gaussian 

fit to the first peak in this function. The average 

co-ordination number is 7. 
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4.3.3. Cobalt  

Thin films of Cobalt prepared at approximately 5°K 

appeared to have a non-crystalline structure (see figure 

50). Further deposition, however, caused the film to 

transform into a polycrystalline form illustrated in 

figure 51. This structural change had occurred by the 

time the film was about 300A°. 

The data shown in figure 50 was analysed and figure .52 

shows the calculated interference function. Figure 53 

is the corresponding R.D.T. The normalised intensity 

is shown in figure 54. Figures 56 and 57 are the 

extrapolated interference function and the final R.D.F. 

respectively. Figure 55 is the Radial Density function 

and the fitted Gaussian is in figure 58. The average 

calculated co-ordination number for Cobalt is 8. 
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4.3.4. Chromium 

The films of Chromium prepared at 5°K exhibited a diffraction 

pattern typical of a non-crystalline solid. Increasing the 

thickness of the films appeared to have no appreciable • 

effect on the observed pattern although no films thicker 

than about 500A°  were produced. During warming of the 

films polycrystalline rings appeared and were certainly 

present at a temperature of 150°K. The transition, however, 

may have occurred at a lower temperature. 

An intensity trace taken at approximately 5°K is shown 

in figure 59, while figure 60  is the polycrystalline 

pattern observed at 150°K. These traces can be compared 

with figures 9 and 11 respectively which were obtained 

from Chromium deposited at 77°K. 

The data from figure 59 was analysed and figure 61 

shows the calculated interference function. 

Figures62  and 63 are the corresponding R.D.F. and the 

normalised intensity respectively. The extrapolated 

interference function and the final R.D.F. are given 

in figures 65and 66. The Radial Density Function and 

the fitted Gaussian function are illustrated in figures 

64 and 67. Using these last two functions the average 

co-ordination number for Chromium is 6. 
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4.8.5. Iron 

Iron films prepared at 50K appeared to have a non-crystalline 

structure over a range of thicknesses up to about 500A0. 

On warming of the films polycrystalline rings were apparent 

by a temperature of 1000K. The non-crystalline type 

pattern observed at 5°K is shown in figure 68, while 

figure 69 gives the polycrystalline pattern seen at 100°K. 

The experimental data of figure 68 was analysed and 

gave the final interference function shown in figure 

70.The corresponding R.D.F. is given in figure 71. 

Figure 72 is the fitted Gaussian to the first peak 

in the Radial Density Function from which an average 

value of 8 is obtained for the co-ordination number. 
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4.3.6. Tin 

Tin films prepared on the liquid Helium cooled substrate 

produced a non-crystalline type pattern. As previously 

no films thicker than about 400A°  were formed. Poly-

crystalline rings had appeared when the film had been 

warmed to 89°K. A non-crystalline and an indexed 

polycrystalline trace are shown in figures 73 and 74 

respectively. 

The experimental data when analysed produced the 

final interference function shown in figure 75. The 

corresponding H.D.F. is shown in figure 76.In this 

case because of the high atomic number of Sn the atomic 

scattering factor used was one calculated using Thomas-

Fermi-dirac statistics.The Gaussian fit to the first 

Radial Density Function peak is given in figure77. 

The average co-ordination number is 6. 
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FIGURE (75) 
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4.3.7. Indium  

Indium, of the seven metals studied, was the only element 

to apparently have a polycrystalline structure on 

deposition at 5°K. Figure 78 shows a trace of the 

diffraction produced by the film immediately after 

deposition. This is quite different to those produced 

by the other metals but very similar to the pattern at 

room temperature (see figure 79). 
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4.4. Computer Predicted Diffraction Intensities from 

Randomly Orientated Cubic Crystallites  

Diffraction intensities were calculated for Nickel, Cobalt, 

Chromium and Iron. In addition the spherically integrated 

structure factors derived from the face-centred and 

body-centred lattices were calculated. These are shown 

in figures 80 and 81 respectively. 

It was found that for a crystallite with more than two 

atoms along each edge the calculated intensity distribution 

was appreciably more detailed than the non-crystalline 

type patterns observed experimentally. Consequently the 

size of the crystals were set such that: 

Na  = 2 	Nb = 2 	Nc = 2 

or 

Na . 1 	Nb = 2 	Nc = 3 

where Na'  Nb, Nc = number of atoms along the three edges 

One example of a calculated intensity function is shown in 

figure 82. To obtain the total diffracted intensity this 

should be multiplied by the product of the relevant 

scattering factor and structure factor. A number of such 

intensities are shown in figures 83-88. 
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These can be compared with the experimentally obtained 

results. It would appear that even such small crystallites 

produce a diffraction patter; of three or four disinct 

peaks. These do not agree very well with those patterns. 

considered to represent a non-crystalline structure which 

in general contain only two or possibly three peaks. 



a 
tri 

FACE—CENTRED CUBIC LATTICE 

(o
e)

  a
n

oi
a  

0 
Woo 
c3" 
U 
CC 
LLC3  

• 
gzI• 

CC" 

=C3 

(\I 
Cr) C\1 

c%4 

- I 

CO 

co 
Th.oa 2.00 	4.00 6.00 	8.00 , 	10.00 	12.00 	14.00 	16.00 	18.00 

S VRLUE 



BODY—CENTRED CUBIC LATTICE 

(1
,8
)
 al

if1
DI

3
 

A 

0 N 
ma _ 
-.4 

2
1 	  
.00 	 6.00 4

1
.00 

 
81.00 , 10.00 	12.00 	14.00 	16.00 	16.00 
S VALUE 



NUMBER OF ATOMS ALONG CRYSTAL SIDES: 
2 	2 	2 

IRON 

(9
)  

m
no
ia

  

  

 

  

  

   

   

cb.00 2.00 	4.00 	6.00 	8.00 	110.00 
S VALUE 

112.00 14.00 	116.00 	18.00 



(
8
)
 a
a
n
D
i
a
 

T
O

T
A

L
 I

N
T

E
N

SI
T

Y
 

00
-0
0  
4
0
.
0
0
 
8
0
.
0
0
 
4
0
.
0
0
 
l
s
o
.
0
0
 

2
0
0
.
0
0
 

a 

z
 

is 

11
3 

O
 

C3
 
O
 

CT
) 

0
 

co
 

:/
) a

  a
 

O
 

O
 

O
 
O
 

■-
• O
 

0
) 

z
 

it 1*
.) 

— 
1.9

 1,
 —

 



8.00 	10.00 	12.00 	14.00 	16.00 	18.00 
S VALUE 

(1
7e

)  
sa

n-D
ia

  

2.00 4.00 6.00 

0 a 

Co 	 Nb= 2 
	

Nc= 3 



PJ
 
0
 
0
 

0
 

CD
 

0
 

1
 

co
 

CS
) 

t 

r
f
l 

D.-
1r

 
0
 

a 

(8
) 

T
O

T
A
L
 I

N
T
E
N

S
IT

Y
 

.0
0 	

20
.0

0 	
to

.0
0 	

sp
xo

 	
so

•cm
 	

10
a. 

cp
 

I I N
.)

 

S.
+ 0
 

•
 0
 

0-
6  

0
3
 

0
 

I I C
L)

 



fS
) 

C
)
 

0
 

(9
8)

 S
H

I1
D

I3
 

T
O

T
A
L 

IN
T
E
N

S
IT

Y
 

0
.0

0
 	

20
.0

0 	
40

.0
0 	

00
.0

0 	
80

.0
0 	

10
0.

00
 

0
 

II
  

cr
 II  I 

•
 O
 	

0
 I I  CA
) 

•
 O
 

O
 

a+
 

C
)
 

O
 

• 0
) O
 

a 

—
 1

79
1-

 - 



O
 

C
3 

O
) .
 
O
 

C
g
s
)
 s
a
n
o
i
a
 

T
O

T
A

L
 I

N
T

E
N

SI
T

Y
 

1
0
.
0
0
 	

2
0
.
0
0
 	

3
0
.
0
0
 	

4
0
.
0
0
 	

s
p
.
0
0
 

 
 

l■-
•• 

IV
 

O
 
O
 

P
-4

  

O
 

O
 

CO
 

O
 
O
 

c
D
  II

 

C
)
 

— 



- 166 - 

CHAPTER 5 

5.1 Summary and comparison of the results obtained 

Of the seven metals investigated Ga,ColFelSn,Cr and 

Ni are all concluded to possess a non-crystalline 

structure when prepared at 4°X.Their co-ordination 

numbers along with their first and second R.D.F. 

peak positions are tabulated in table (5.1).Also 

included are their respective crystalline interatomic 

distances to ken from the standard tables. 

As was pointed out in Chapter 1 the results obtained 

from the study of thin films can vary quite widely. 

The results given here do not in fact agree terribly 

well with other published data.Almost certainly a 

major contribution to these differences is provided 

by the method of calculation as well as the difference 

in experimental conditions mentioned previously. 

Table (5.2) gives data obtained from Fe and Cr prepared 

at 40K by Fujime(1966).From his results he also concluded 

that these metals were exbiting a non-crystalline 

structure.In table (5.3) data for liquid Sn,Ga and 

Ni is listed.In comparing this with the results found 

here two things should be noted.First of all a liquid 

structure is not necessarily the same as a non-crystalline 

solid and secondly the work on Sn and Ni was done at 

280-0 and 1500°C respectively. 
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TABLE (5.1) 

material 	co-ordination 
number 

r1 
A A 

rcryst 

Ga(liquid) 6 2.55 4.70 2.5 

-Ga(non- 
cryst.) 

6 2.70 4.90 2.5 

Co 8 2.30 4.20 2.5 

Fe 7-8  2.45 3.80 2.5 

Sn 6 1.50 2.90 3.0 

Cr 5-6 2.45 4.00 2.5 

Ni 7-8 2.40 3.80 2.50 
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TABLE (5.2) 

material 	r1 	r2 	co-ordination number 

Fe 	2.60 4.50 	7 

Cr 	2.64 4.50 

TABLE (5.3) 

material ri  co-ordination temperature 
number 

Sn 3.20 10 280 

Ga 2.77 11 20 

Ni ' 2.52 10-11 1500 
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5.2 Discussion of the reliability of the data 

The study of non-crystalline solids is fraught with 

difficulties and these have been discussed in the 

preceeding chapters.Probably the most important in 

the work described here are: 

(1) collection of the data 

i.e. reading the results from the graphs 

(2) the analysis of the experimental data 

It is quite clear that errors introduced by (1) and 

(2) above can seriously affect the resulting R.D.F. 

However it is also true that certain information can 

be quite accurately found.In particular the effect of 

(1) will little effect on the actual diffracted peak 

positions.Similarly (2) will not effect significantly 

the peak positions in- the R.D.F. Consequently it is 

possible to regard the calculated nearest neighbour 

distances as quite reliable. 

The errors in ,(1) and (2) will however effect the 

shape of the R.D.F. and hence the co-ordination number 

obtained.In addition there is quite a lot of room for 

error in evaluating the area under irregular,overlapping 

peaks.It is therefore quite likely that the co-ordination 

numbers quoted contain some,possibly large,error. 
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5.3 Suggestions for future work 

Before further work on non-crystalline thin films 

is undertaken it would be desirable to modify the 

existing equipment. 

Firstly,when preparing films at 4°K it would be a 

great advantage to use a cryopump.Initial designs 

have been drawn up for this and it is contemplated 

that it will involve the fabrication of an additional 

eight inch port on S.H.E.E.D. In view of the already 

complicated procedure during an experimental run it 

would seem to be a good idea to make the cryopump 

such that the resvoir need only be filled once for each 

run.Preliminary calculations indicate that for a 

two hour run the resevoir should be approximately 

two litres in volume and of course surrounded by a 

liquid Ni cooled baffle. 

The second modification necessary is the introduction 

of some form of data-logging system to collect the 

experimental data.This would eliminate one major 

source of error and make the analysis much less tedious. 

It might even be worthwhile to go one step further 

and use an on-line mini computer.Alternatively,and 

certainly much cheaper,it would be possible to input 

the paper tape produced immediately into an Imperial 

College Computing Centre terminal.If suitable arrangements 
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were made this could be virtually on-line. 

Once these modifications have been carried out a ,-sreat 

deal of useful work on non-crystalline films could 

be carried out.In particular it would be possible 

to produce much more accurate and reliable results. 

One aspect of the research done which would be interesting 

to pursue is the relationship between liquid and 

non-crystalline structures.This would of course involve 

further equipment modifications in order to be able to 

' melt the films. 
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APPENDIX A 

Computer Programs  

The programs used in this thesis were run on the 

Imperial College CDC 6400 ma chine.The main program 

RDFGEN was run as a batch job and is in standard 

Fortran IV. The other smaller programs were designed 

to run interactively and hence have some non-standard 

features (mainly in input/output). 
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PROGRAM RDFGEN(INPUT,OUTPUT,TAPEllTAPE21TAPE3ITAPE41-  

TAPE5,TAPE6=OUTPUT,TAPE131TAPE141 TAFE171TAPE62) 

C 
C 	THE MAIN PROGRAM CALLS A SERIES OF ROUTINES IN ORDER TO 
C 	CALCULATE A R.D.F. EACH ROUTINE IS DOCUMENTED.MILE THE 
C 	BASIC IDEAS ARE DESCRIBED IN THE TEXT- 
C 

C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 
C 	INPUT: 
C 	F=INTERFERENCE FUNCTION 

ATOM=ATOMIC SCATTERING FACTOR 
C 	 EXNORM=NORMALISED INTENSITY 
C 	RHO=AVERAGE ATOMIC DENSITY 
C 	 RMIN=R VALUE OF FIRST MINIMUM IN THE 11-0.F. 
C 	BETA=DAMPING CONSTANT(PUI=0-0 IF NONE REQUIRED) 

C 	 IFILM(SEE ROUTINE RAHMAN) 
C 
C 	OUTPUT: 
C 	RDF=RADIAL DENSITY FUNCTION 
C 	G=INITIAL CALCULATED R.D.F. 
C 	 FNORM=INTERFERENCE WITH IMPROVED NORMALISATION 

GNORM=R.O.F. CORRESPONDING TO FNORM 
C 	 GEXTRA=EXTRAPOLATED R-D.F. 

C 	 FEXTRA=INTERFERENCE FUNCTION CORRESPONDING TO 
C 	 GEXTRA 
C 	 GMOD=R-D.F. MODIFIED BY TERMINATION ERROR 

C 	 FMOD=INTERFERENCE FUNCTION CORRESPONDING TO GMOD 
C 	 GDAMP=CALCULATED R-D-F. USING A DAMPING FACTOR 

PROGRAM RDFGEN(INPUT,OUTPUT,TAPELTAPE2.TAPE3,TAPE4,TAPE5. 
TAPE6=OUTPUT,TAPE13,TAPE14,TAPE17,TAPEG2) 

C 
C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 

COMMON PI,DELR,DELS 
DIMENSION F(512),G(512),FNORM(512),GNORM(512) 
DIMENSION SINES(512).FEXTRA(512),GEXTRA(512) 	' 
DIMENSION ITITLE(10),COORDT(10.2),COORDN(10,2),INUMB(10) 
DIMENSION GDAMP(512),FM00(512),GMOD(512) 
DIMENSION EXNORM(200),ATOM(200),S(200),RDF(512) 
DATA PIE/17216220773250420551B/ 
EQUIVALENCE(GDAMP,GEXTRA,GMOD),(F,FEXTRA,FMOD) 
N=512 

INCS=30 
C N IS THE NUMBER OF POINTS TO BE USED FOR THE 
C 	F.F.T. ROUTINE 

C 
C 	INCS IS DEFINED IN THE ROUTINE EXTRAP WHERE IT IS USED 

C 
C 	SET THE MICROFILM COUNTER 

C 
NFRAME=4 

NPLO=N/4 
CALL START(2) 
CALL FRAME1 
CALL FRAME2 
PI=PIE 
N2=N/2 
READ(1.10)NUMS,DELS,(F(I),I=1,NUMS) 
READ(2,10)NUMS,DELS,(ATOM(J),J=1,NUMS) 
READ(5.372)IFILM,RHO.RMIN,BETA 

• READ(13.11)NUMS,NMIN,DELS,(EXNORM(J),J=NMIN,NUMS) 
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372 	FORMAT(I3,3F7.4) 
11 	FORMAT(2I4,F10•4/(6(2X,F8.4))) 
10 	FORMAT(I4,F10•4/(6(2X,F0•4))) 

DELR=2.*PI/(FLOAT(N)*DELS) 
WRITE(6,400) 

400 	FORMAT(1H1,21HINTERFERENCE FUNCTION) 
WRITE(6,71) 

71 	FORMAT(37H 	NUMBER OF POINTS 	INCREMENT 
WRITE(6,18)NUMS,DELS 

18 	FORMAT(1OX,I4,7X,F10•4) 
WRITE(6,20)(F(I),I=1,NUMS) 

20 	FORMAT(8(2X,F9•4)) 
C 
C 	CALL THE PLOTTING ROUTINE FILM TO PLOT THE INTERFERENCE 
C 	FUNCTION 
C 

CALL FILM(DELS,NUMS,F,2,4,1.ITITLE,COORDT.0,INUMB,COORDN, 
NFRAME) 

C 
C 	CALL THE F•F•T• ROUTINE TO TRANSFORM THE INTERFERENCE 
C 	 FUNCTION 
C 

CALL FASTFT(F,G,SINES,N,1,1,NUMS) 
WRITE(6,401) 

401 	FORMAT(1H1,12HCRUDE R.D•F*) 
WRITE(6,71) 
WRITE(6,15)N2,DELB 
WRITE(6,20)(G(I),I=1,N2) 

C 
C 	CALL FILM TO PLOT THE R.D.F• 
C 

CALL FILM(DELR,NPLO,G,1,14,1,ITITLE,COORDT,O,INUMB. 
COORDN,NFRAME) 

C 
C 	CALL THE ROUTINE WHICH CALCULATES RADIAL DISTRIBUTION 
C 	FUNCTIONS USING SUPPLIED DAMPING FACTORS 

C 
CALL DAMP(F,N,N2,NUMS,SINES,GDAMP,NFRAME) 

C 
C 	IF REQUIRED THE ORIGINAL INTERFERENCE FUNCTION CAN BE DAMPED 
C 

IF(BETA•EQ•0•0) GO TO 999 
DO 998 J=1,NUMS 

990 F(J)=F(J)*EXP(-BETA*(FLOAT(J-1)*DELS)**2) 
WRITE(6,400) 

400 	FORMAT(1H1,28HDAMPED INTERFERENCE FUNCTION) 
WRITE(6,71) . 
WRITE(6,10)NUMS,DELS 
WRITE(6,20)(F(J),J=1,NUMS) 

C 
C 	CALL FILM TO PLOT THE DAMPED INTERFERENCE FUNCTION 
C 

CALL FILM(DELS,NUMS,F,2,5,1,ITITLE,COORDT,O,INUMB,COORDN 
,NFRAME) 

C 	CALL THE F•F•T• ROUTINE TO CALCULATE A R•D•F• USING 
C THE DAMPED DATA 

C 
CALL FASTFT(F,G,SINES,N,0,1,NUMS) 
WRITE(6,409) 
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409 	FO RMA T( 1H1, 13HDAM PED R• D • F • ) 
WRITE (G, 995) BE TA 

996 	FO RMA T (20H DAM PING CONSTANT = , F7• 
WRITE (5, 71) 
WRI TE ( 5, 13) N2, DELR 
WRITE(6, 20) (G( I), I=1, 

C 
C 	CALL FILM TO PLOT THE CALCULATED R• D • F• 
C 

CALL FILM ( DEL R, N PLO , G , 1, 15, 1, ITITLE , COO RD T, 0, IN WU , COO RDN 
NE RAVE ) 

999 	KCHECK=O 
C 
C 	ARRANGE THE NORMALISED IN TENSITY AND THE SCA TTE RING 
C FACTOR IN TO A SUITABLE FORM FOR PLOTTING TOGE THE R 
C 

DO 471 J=NMIN , NUMS 
K =J-NMIN 
S(K )=FLOAT( J-1)*DELS 

471 	ATOM (K )=ATOM (J ) 
KI=N  UM 5+ 1- NM IN 
KL =KI+ 1 
KJ =KI+2 
CALL SCALE ( ATOM , 14• 0, KI , 1) 
CALL SCALE ( S 19.0, KI 1) 
DEL TA V=0.0 
IF (ATOM (KJ ) • GT• DEL TAV) DELTAV=A TOM ( KJ ) 
DO 472 J=NMIN , N UMS 
K=J-NMIN+1 

472 	E XN 0 RM (K )=E XNO RM ( J ) 
672 	CALL SCALE ( E XNO RM , 14. 0, KI , 1) 

IF ( E XNORM ( KJ ) • G T• DEL TA V) DEL TA V=E XN RM ( KJ ) 
A TO M ( KL ) =0.0 
A TOM ( KJ ) =DE L TA V 
E 	RM ( KL ) =0.0 
E XNO RM (KJ )=DEL TA V 

C 
C 	CALL THE KINGMA TIC PLO TTING ROUTINE S 
C 

CALL AXIS( 0. 0, 0• 0, 9HINTEN SI TY, +9, 14. 0, 90. 0, 0. 0, DEL TM) 
CALL AXIS( 0• 0, 0. 0, 7HS VALUE 	19• 0, 0. 0, S(KI+1) S(KI+2) ) 
CALL LINE ( S , A TOM, KI , 1, 0, IN TE 
CALL LINE ( S, EXNO RM KI , 1, 0, IN TE 
CALL NE WPACE 
KCHECK =KCHECK+ 1 
IF ( KCHECK • E O• 2) GO TO 57.1 

C 
C 	CALL THE ROUTINE WHICH IM PRO VE S THE NO RMALI SA TION OF THE 
C DA TA • THE NE Y NORMALISED INTENSITY TOSE THE RWITH TI-E 
C SCA TTE RING FACTOR ARE THEN PLOTTED • 
C 

CALL E RNORM (F G , NUM S, N , SINE S, ENO RM , GNORM 
E *JO RM , ATOM , RHO , RMIN , N2, NMIN) 

GO TO 672 
675 	NF RAME =NF RAME +2 

WRITE  ( 5, 46) 
46 	FORMAT( 1H1, 41H 	CORRECT 	R VALUE OF THE FIRST) 

WRITE ( 5, 47) 
47 • FO RMA T( 39H MA TE RIAL DENSITY 	MINIM UM IN THE ROE ) 

411 RI TE ( 5. 4B) RHO, RMIN 
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40 	FORMAT(4X,F10•4,12X,F10.4) 
WRITE(6,402) 

402. FORMAT(1H1, 
45HINTERFERENCE FUNCTIDN(IMPROVED NORMALISATION)) 

WRITE(6,71) 
WRITE(6,10)NUMS,DELS 
WRITE(6.20)(FNORM(I),I=1,NUMS) 
WRITE(6,403) 

403 	FORMAT(1H1,35HR.0-F. AFTER IMPROVED NORMALISATION) 
WRITE(6.71) 
WRITE(6,1B)N2,DELR 
WRITE(6.20)(GNORM(I),I=1,N2) 

C 
C 	CALL FILM TO PLOT THE IMPROVED INTERFERENCE FUNCTION 
C 

CALL FILM(DELS,NUMS.FNORM,2.6.1,ITITLE,COORDT, 
0,INUMB,COORDN,NFRAME) 

C 
C 	CALL FILM TO PLOT THE CORRESPONDING B.D.F. 

C 
CALL FILM(DELR,NPLO.GNORM,1,16,1,ITITLE,COORDT.O<INUMB,COORON 

,NFRAME) 
C 
C 	CALL THE ROUTINE CONTAINING A NORMALISATION RELIABILITY 
C 	CRITERION TO ANALYSE THE DATA BEFORE AND AFTER CALLING 
C 	ERNORM 
C 

CALL RAHMAN(F,WUMS,RHO,N2,IFILM,NFRAME) 
CALL RAHMAN(FNORM,NUMS,RHO,N2,IFILM,NFRAME) 

C 
C 	CALL THE ROUTINE WHICH,BY IMPOSING TWO EXTRA CUT-OFFS, 
C 	PRODUCES A NEW R•D.F. 
C 

CALL EXTRAP(FNORM,NUMS,N,SINES,INCS,BETA.RHO,RMIN,FEXTRA 
,GEXTRA,N2) 

C 
C 	CALCULATE THE RADIAL DENSITY FUNCTION 
C 

GRAD=4.*PI*RHO 
NVAR=N/0 
DO 495 J=1,NVAR 
R=FLOAT(J-1)*DELR 
GRA=H*GRAD 

495 
	

RDF(J)=(GEXTRA(J)+GRA)*R 

1 	C 	STORE THE RADIAL DENSITY FUNCTION ON A PERMANENT FILE 
C 	FILE FOR ANALYSIS BY PROGRAM GAUSS 
C 

WRITE(14,10)NVAR,DELR,(ROF(J),J=1,NVAR) 
WRITE(6,404) 

404 	FORMAT(1H1,19HEXTRAPOLATED 11.0•F*) 
WRITE(6.71 ) 
WRITE(6,10)N2,DELR 
WRITE(6,20)(GEXTRA(I),I.1,N2) 
WRITE(6,405) 

405 	FORMAT(1H1,35HINTERFERENCE FUNCTION(EXTRAPOLATED)) 
WRITE(6,71) 
WHITE(6,10)N2,DELS 
WRITE(6.20)(FEXTRA(I),I=1,N2) 
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C CALL FILM TO PLOT THE EXTRAPOLATED R•D•F• AND THE 
C 	CORRESPONDING INTERFERENCE FUNCTION 

C 
CALL FILm(DELn, NPLO, GEXTRA, 1 , 17, 1 , ITITLE, COORDT, 

0,INUM8,COORDN,NFRAME) 
CALL FILM(DELS,N2,FEXTRA,2,7,1,ITITLE,COORDT,O,INUMB,COORDN. 

NFRAME) 
C 
C 	CALL THE ROUTINE WHICH ATTEMPTS TO DETERMINE THE TERMINATION 
C ERROR AND THEN MODIFY THE ORIGINAL R•D•F• 
C 

CALL ERTERM(FEXTRA,GEXTRA,GNORM,NUMS,N,SINES,FMOD,GMOD,N2, 
RMIN,RHO) 

WRITE(6,406) 
406 	FORMAT(1H1,30HMODIFIED INTERFERENCE FUNCTION) 

WRITE(6,71) 
NRITE(6,18)N2,DELS 
_WRITE(6,20)(FMOD(J).J=1,N2) 
WRITE(5.407) ' 

407 	FORMAT(1H1,15HMODIFIED R•D•F•) 
WRITE(6,71) 
WRITE(6, 18)N2, DELR 
WRITE(6,20)(GMOD(I),I=1,N2) 

C 
C 	CALL FILM TO PLOT THE CORRECTED R•D•F• AND THE CORRESPONDING 
C INTERFERENCE FUNCTION 
C 

CALL FILM(DELS,N2,FMOD,2,8,1,ITITLE,COORDT,0,INUMD. 
COORDN,NFRAME) 

CALL FILM(DELR,NPLO,GMOD,1,18,1,ITITLE,COORDT,J,INUMO, 
COORDN,NFRAME) 

C 
C 	CALL FILM TO PLOT THE RADIAL DENSITY FUNCTION 
C 

CALL FILM(DELR,NVAR,RDF,1,20,1,ITITLE,COORDT,0,INUMD,COORDN 
,NFRAME) 

wAITE(0.410) 
410 	FOHMAT(1H1,23HRADIAL DENSITY FUNCTION) 

WRITE(6,71) 
WRITE(6,18)NVAR,DELR 
WRITE(6,20)(RDF(J),J=1,NVAR) 
CALL ENPLOT 
STOP 
END 
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SUBROUTINE FASTFT(ARRAY IXINAG,SINES,NDUN,NENTRY,INVERT, 

NUM) 

C 
C 	THIS ROUTINE ENAELES THE DISCRETE FOURIER TRANSFORM 
C TO BE COMPUTED EFFICENTLY - 
C 
C ********************************************************** 
C 
C INPUT : 
C 	ARRAY-DATA TO SE TRANSFORMED 
C 	N-NUME1ER OF POINTS FOR F -F •T • 
C 	NENTFiY s---_. 1 ON FIRST ENTRY 
C 	 ON SUBSEQUENT ENTRIES 
C 	INVERT 	1 FOR F TO C TRANSFORM 

FOR 0 TO F TRANSFORM 
C 	NUM JUMBER OF VALUES IN ARRAY TO BE TRANSFORMED 
C 
C INPUT /OUTPUT 
C 	SINES-ARRAY OF SINE VALUES 

SUBROUTINE FASTFT (ARRAY ,XIMAG *SINES ,NDUM ,NENTRY ,INVERT ,NUM ) 
C 	OUTPUT ON FIRST CALL 
C 	 INPUT ON SUBSEQUENT CALLS 
C 
C OUTPUT : 
C 	XIMAGE-TRANSFOP,MED ARRAY 
C 
C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 

DIMENSION XREAL (512) ,XIMAG (NDUM ) ,SI NES (NOM ) *ARRAY (NDUIY ) 
DIMENSION XTWDS(3),YT1"JDS(3),X(3),Y(3) 
LOCI CAL SKPTWD 
EQUIVALENCE (ZZ 	) 
COMMON PI ,DELR ,DELS 
N =NDUM 
N 2=N /2 
N 21=N 2+1 
NUM 1=NUM +1 
DO 600 J=1,NUM 

600 	XREAL )=ARRAY (J ) 
C 
C THE INPUT ARRAY IS FvADE UP TO N/2+1 POINTS WITH ZEROES 
C THIS IS THEN IMAGE INVERSED ABOUT N/24.1 
C THE INPUT AND OUTPUT ARRAYS ARE SUBSEQUENTLY MODIFIED 
C 	TO GIVE A FOURIER PAIR 
C 

DO 601 K=NIX1 ,N 21 
601 	XREAL (K )=0- 

DO 602 L =2,N 2 
,.1\1+2-L 

602 	XREAL (J )=-XREAL (L ) 
DO 101 K=14N 

101 	XIMAG (K )=0 
IF (INVERT -NE - 1) GO TO 100 
D EL =0 LS 
DE LPI =DEL /PI 
DO 103 K =1,N 

103 	XREAL (K )=XREAL (K )*DELPI 
GO TO 190 

100 	DEL =DELA 
DELLA=FLOAT (N )DEL /2- 

C 
C INITIAL CHOICE OF RADICES 
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C 
190 
	

IFACTC =1 
IFACTB =4 
IFACTA =N /4 
IF (NENTRY -NE - 1) GO TO 12 

C 
C CALCULATE CONSTANTS ON FIRST ENTRY 
C 

MKSINE=N /4 
KSINE =',,,IKSINE +1 
KKSINE =KSINE +1 
MSINE 	+MKSINE 
FAISINE 	E+1 

SINE-1 
L SIN E -4,,1SINE+MKSINE 
LLSINE =LSINE +1 

C 
C SET UP SINES AND COSINES 
C 

PIE 2=2- *PI 
YC=N 
DO 15 K=2 f,!K SINE 
XC=K —1 

15 	SINES (K )=SIN (XC*PIE 2/YC ) 
SINES (1)=0 	. 
SINES (KSINE )=1 

C 
C START HERE ON SUBSEQUENT ENTRIES 
C 
12 	I TIrciES=0 
C 
C RETURN TO HERE WITH NEW FACTORS 
C 
16 	IFACAB =IFACTA*IFACTB 

ITIMES =I TIME S +2 
C 
C 	CALCULATION OF B —POINT TRANSFORr.':S 
C 

INCTWD =0 
SKPTWO =- TRUE 
00 80 LITTLA =1 ,IF ACTA 
DO 82 IZ =L IT TLA ,N ,IFACAB 
IQ =IZ+IFACTA 
IV =IQ +IFAC TA 
IP=IY+IF AC TA 
XSUM 1=XREAL (IZ )+XRE AL (IV ) 
X SUM 2=XREAL (IZ )—XREAL (IY ) 
YSUN! 1=XIMAG (IZ ) +XIMAG (IV ) 
YSUM 2=XIMAG (IZ )—XIMAG (IY ) 
XSUM 3=XREAL (I ) +XREAL (IP ) 
X SW 4=XREAL (IC )—XREAL (IP ) 
YSUYI 3=XIMAG (IQ )+XIMAG (IP ) 
YSUM4=XIMAG (I0 )—XIMAG (IP ) 
XREAL (IZ )=XSUM 1+XSUr,; 3 
XIMAG (IZ )=YSUM 1+YSUM 3 
X (2 )=X SUM 2+Y SUM 4 
X ( 1 )=X SUM 1—X SUM 3 
X (3 )=X SUM 2—YSIN 4 
Y (2 )=Y SUM 2—X SUM 4 
Y ( 1 )=YSUM 1—YSUM 3 
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Y(3) =YSUM2+ XSUM4 
41 	IR=IZ 

IF ( SK PT :7l) GO TO 33 
DO 31 'BHA T=1, 3 
IR=IR+ IF AC 7, 
XREAL ( IR) =X( I8HAT)*XTWDS( ISHA T)+ Y( 'BHA T)*YTVID S( IBHA T) 

81 	XIMAG ( I R) =Y( I3HA T)*XTWD S( IBHA T )- X ( IBFIA T)*YTWO 5( II3HA T ) 
GC) TO 32 

83 	DO 84 IBHA T=1,3 
I R=I R+ IF AC TA 
XREAL (I R) =X( IBHA T) 

84 	XIMAG (1 R) =Y( Ii.-3HAT) 
82 	CON TIN UE 

IF ( LIT TLA • E Q• IFAC TA ) GO TO BO 
INC TWD=INC TWD+IFAC t 
SK PPM) =• FAL SE• 
ITWID =INC TWD+1 
DO 91 IBHA T=1, 3 

44 	IF ( I TWID • LE • K SP../ E ) GO TO 
IF ( I TWID • G T• M SINE ) GO TO.0 
K TW ID =MM SINE-I TWID 
YTWD 5( IBHA T) =SINE S( K TWID ) 
K TWID =I T WID - SINE 
XTWD S( IBHA T) -SINES( KTWID ) 
GO TO 91 

46 	YTWDS( IBHA T) =SINE S( ITWID) 
K T WID =KK SINE-I TW-ID 
X TWD S( DMA T ) =SIN E 5( K TW'ID ) 
GO TO 91 

45 	K TWID=ITWID-MJ SINE 
YTWD S( IBHA T) 	5( K TWID) 
K TWID =LL SINE- ITWID 
X -11:10 S( IBHA T) 	SINE S( K TWID) 

91 	ITWID=ITWID+INC TWD 
TEM PRE =XTVID S ( 2) 
XTWD S( 2) =XTVID 5( 1) 
XTWDS( 1) = TEMP RE 
TEMPRE=YTWDS( 2) 
YTWDS( 2) =YTWI) 5( 1) 
YTWD S( 1) =TEM PRE 

BO 	CON TIN UE 
C CHOOSE NEW FACTORS 	EXIT  IF FINI 

IF ( IFAC TA • E O. 1) GO T021 
IFAC TC=IF AC TC.x-IFAC 
IFAC TA=IF AC TA/ IFAC 
IF ( IF AC TA • NE • 0) GO TO TT 
ITIME 5=1 TIME S+ 1 
DO 40 K=1. 11,2 
TEM PRE =XREAL (K )+ XREAL (K+ 1) 
XREAL ( K+ 1) =XREAL ( K )- XREAL ( K+ 1) 
XREAL ( K ) = TEM PRE 
TEM PRE =XIMAG ( K )+ XIMAG ( K+ 1) 
XIMAG ( K+1) =XIMAG ( K)-XIMAG ( K+ 1) 

40 	G ( K ) =TEM PRE 
21 	IF (IN VERT• NE- • 1) GO TO 18 

DO 19 K=1, N 
19 	XIMAG ( K )=- XIMAG ( K ) 

GO TO 153 
18 	XC 

DO 177 K=1,N 
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XREAL (K )=XREAL (K )/XC 
177 	XIMAG (K )=XIt,PAG (K )/XC 
166 	CONTINUE 

DO 74 K=2,N 
IZ 4K-1 
IY=0 
DO 51 J=1,ITIMES 
ZZ =AND (I Z , 1) 
IV =IY+IYA-II 

51 	IZ=IZ/2 . 
IF (IY -LT •K ) GO TO 74 
IY =IY +1 
TEMPRE =XREAL (IV ) 
XREAL (IY )=-XREAL (K ) 
XREAL (K )=TEMPRE 
TEA,IPIM=XIMAE (IV ) 
XIA.1AG (IV) =XIMAG (K ) 
XIMAG (K )=TEI'MDIM 

74 	CONTINUE 
IF (INVERT •EQ • 1) GO TO 14 

C 
C MODIFY THE OUTPUT ARRAY 
C 

DO 105 K=1,N 
105 	XIMAG (K )=-XIMAG (K )*DELLA 
14 	RETURN 
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SUBRCUTINE DAFT(F,N,N21 NUMS,SINES,GDAEP) 

C 
C 	THIS ROUTINE COMPUTES THE R-D-F-'S WITH VARIOUS 
C DAMPING CONSTANTS-THE DAMPING FACTOR IS GIVEN BY: 
C 	 EXP(-04S*5) 
C 
C *************J4*********************.******************* 
C 
C INPUT: 
C 	FF=INTERFERENCE FUNCTION 	. 
C 	N=NUMBER OF POINTS FOR F.F.T. 
C N2=N/2 
C 	NIJMS=NUMBER OF F VALUES 
C 	SINES=ARRAY CF SINE VALUES 
C 
C OUTPUT: 	 . 	. 
C 	GDAMP=CALCULATED R.D.F.'S 
C 
C *********************************************************** 

SUEROUTINE DAMP(F,N,N2,NUMS,SINES,CDAMP) 
COMMON PI,DELR,DELS 
DIMENSION BETAS(10),F(N2),GDAMP(N2),FDAMP(512),SS°(512) 
DIMENSION SINES(N2) 
DIMENSION ITITLE(10),COORDT(10,2),COORDN(10.2),INUMB(10) 
READ(3,15)NUMB 4 (BETAS(J),J=1,NUME) 

15 	FORMAT(I3/(9F7-A)) 
DELSSQ=DELS**2 
WRITE (6,10) 

10 	FORMAT(1H1) 
DO 100 NS=1,NM1S 
SUNS=(NS-1 )**2 

100 SSQ(NS)=SONS*DELSSO 
C 
C 	EACH SPECIFIED VALUE OF THE DAMPING CONSTANT IS TAKEN 
C 	 IN TURN 
C 

DO 110 NB=1,NUMB 
EDAMP=EXP(-BETAS(NB)) 

C 
C THE INTERFERENCE FUNCTION IS DAMPED 
C 

DO 120 NS=1,NUVS 
120 FDAMP(NS)=F(NS)*(EDAMP**SSO(NS)) 
C 

CALL FASTFT(FDAMP,GDANiP,SINES,N,0,1NUMS) 
WRITE( ,2L  
WRITE(6,43) 
WRITE(6,30)N2,DELR 
WRITE(6,31)(GDAMP(I),I=1,N2) 
CALL FILM(DELR,N2,GDAMP,1,15,1,ITITLE,COORDT,0,INUR,COORDN 

,NFRIWE) 
110 CONTINUE 
20 	FORNAT(1HX,34HDAI;TED RDF FOR DAMPING CONSTANT = ,F7.4) 
43 	FORMAT (37H 	NUBER.OF POINTS 	INCREMENT 
30 	 7X  
31 	FORr:AT(10(4X,F7-4)) 

RETURN 
END 
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SUBROUTINE RAMAN (11  I NUITS ,R110 , N2 IF ILL1 NFRMIE ) 

C 	THIS ROUTINE IS A RELIABILITY CRI TE RION FOR THE 
C CORRECTNESS OF THE NO RMALI SA TION• 

C 
C  *********-y.--F.-**************-m-****************-x-********- 
C IN PUT: 
C 	FE-IN TERFERENCE F UNC TIO\J 
C 	N UM S—=N UMBE R OF F VALUES 
C 	RH0=-MATERIAL DENSITY OBTAINED FROM F_RN0 R  
C 	N2=-N/2 (ADJUSTABLE DIMENSIONS) 
C 	IF ILMF-TA RAME TE T FOR PLOTTING 
C 	=1 FO R PLOTTING 
C 	=0 FOR NO PLOTTING 
C 
C ***-.******************************************************* 
C 

COMMON PI , DEL R, DEL S 
DIMENSION F ( N2) , SUD (500) , SUDE X( 500) 
DIMENSION ITITLE ( 10) , COO RD T( 10, 2) , COO RON ( 10, 2) , IN U[',1B (10 
n.2. 
NUM u=  
DEL U=0. 05 
SUM S0=0. 0 
C PI =1. 0/ a 
N WIN T=N UM S-1 
SMA X=FLOA T( NUMIN T)*DEL S 
U=0•021000 V011 
DO 300 N U= 1, NUM..; 
CON ST=C PI/ U 

RHO =D" R!-0 
un = U*D 

C 
C SUB IS A F UNCTION OBTAINED F ROM RHO ,INDE PENDAN T OF THE 
C EXPERIMENTAL VALUES FOR F 
C 

SUD ( NU) =( SIN ( UD ) UO—CO S( UD ) )*0 RHO / 
A RGF 1=SMA X--U  
ARGF2=SUA X—U 
TEM P1=0. 5*(F ( NUMS)*( SIN (ARGFVE- 0 ) /ARGF 1— SIN (ARGF2*D ) /A RGF 2) ) 
TEM P2=0. 0 
DO 301 N S=2, N UMIN T 
S=FLOA T( t.)S-1)*DELS 
A RG 1=S-t-U 
A RG2=5--U 
TEM P2=TEM 	(f'.!S)*( SIN (ARG1*D) /ARG 1— siN (ARG2*D)/ARG2) 

501 	CON TIN LE 
C 
C SUDE X IS A FUNCTION  OBTAINED FROM THE EXPERIMENTAL DAR 

C 
SUDEX(NU)=1301.,:ST*( TEMPI+ TEMP2)*DELS 
SUm SQ=-3Um S ( ( SUD ( U)— SUDE X( N U) )**1 
U= DELU 

300 	CON TIN LI 
C 
C FOR CORRECT NO FiciALI SA TION SUD APPROACHES  SUDE X 

C 
STDEV=SORT( SU:ASQ)*0- 
WRITE (5, 10) 

10 	FO RMA T(11-11 , 3F;HSTANDA RD DEVIATION OF SUB FROM SUDE 
WRI TE ( 5, 20) STDEV 

20 	FORMAT(1HX,1PE15. 
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20 	FORMAT(1HX,1PE166) 
C 
C WRITE OUT AND PLOT SUD AND SUDEX IF REQUIRED 
C 

IF(IFILM-EQ.0) GO TO 69 
WRITE (6,87) 

87 	FORMAT(1H1,5H SUD ) 
WRITE(6,30)NUMU,DELU,(SUD(I),I=1,NMU) 
WRITE(6,88) 

68 	FORMAT(1H1,7H SUDEX ) 
CALL FILM(DELU,NUMU,SUD,3,29X,ITITLE,COGRDT,O,INUVB, 

COORDN,NFRAME) 
CALL FILM(DELU,NUMU,SUDEX,3,30,0,ITITLE,CODRDT,O,INUR, 

COORDN,NFRAE) 
30 	FORMAT(1HX,I4,F10•4/(1HY,,1C;F1ii•4)) 
89 	CONTINUE 

RETURN 
END 
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SUBROUTINE ERNORM(F,G,NUNDUM,NISINESIFNORMI GNORM,EXNORN, 

ATOM, RHO7RMIII,N2 NMIN) 

C 
C THIS ROUTINE REDUCES. THE OSCILLATIONS IN THE R •D •F • 
C BELoW THE FIRST PEAK •THESE OSCILLATIONS ARE DUE TO 
C ERRORS IN NORMALIATION AND IN THE SCATTERING FACTOR 
C 
C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCOCCCCCC 
C 
C INPUT : 
C 	Fr.INITIAL INTENSITY FUNCTION 
C 	•D •F - CORRESPONDING TO F 
C 	SINES-ARRAY OF SINE VALUES. 
C 	NUMBER OF POINTS FOR F •F •T • 
C 	N 	/2 FOR ADJUSTABLE DIMENSIONS 
C 
C INPUT /OUTPUT : 
C 	Nur,.1.5 --NUfvBER OF F VALUES 
C 
C OUTPUT : 

SUBROUTINE ERNoRk (F ,G 	,N ,SINES ,F NOW, ,GNORm ,EXNORT.,  , 
. . ATOM ,RHO 	,N 2 ,Nr,.M\i ) 

C 	GNORr,.:-.L=Fi•D •F • WITH REDUCED OSCILLATIONS BELOW THE 
C 	FIRST PEAK 
C 	FNORMr.-INTENSITY FUNCTION CORRESPONDING TO GNORM 
C 	RHO-r4,6:ATERIAL DENSITY OBTAINED FROM EXPERIMENTAL. DATA 
C 	RMIN -7-CALCULATED VALUE OF FIRST MINIM= IN P, •D •F • 
C 
C CCCGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 

COMMON PI ,DELF1 ,DELS 
DIMENSION F (N 2) ,G (N2) ,ERRG (200) ,ERRF (512) ,EXNORM (512) 
DIMENSION SUMSQ(10),GRAD(10),FNORM(N2),GNoRM(N2) 
DIMENSION SINES (N2) ,ATOM (200) 
NUMS UMDUM 
N4=N2//1 
MINR=RMIN /DEL R 

C . 	. 
C FIT STRAIGHT LINE TO R •D •F • TO OBTAIN ERROR • 
C 
C THIS ERROR IS TRANSFORMED • 
C 

DO 97 J=1,MINR 
97 	ERRG (J )=G (J )+FLOAT (J-1 )*DELR*4.*PI*RHO 

CALL FASTF T (E RAG ,ERF,F ,SINES ,N , , ,MINR ) 
C 
C 	MODIFY THE ORIGINAL INTERFERENCE FUNCTION WITH THE 
C 	CALCULATED ERROR FUNCTION 
C 

DO 103 J=1 ,NUf','S 
103 	FNORM (J)=F 	)—ERRF 	) 

CALL FASTF T (FNORM ,GNORM ,SINES ,N 	, 1 ,HUMS ) 
C 
C 	CALCULATE THE MODIFIED NORMALISED INTENSITY 
C 

DO 108 K=_NMIN ,NUMS 
KCOR =X +1—N MIN 
E XNORro (KCOR 	(F NORM (K) / (FLOAT (K —1 )-xDELS )4-1-0 )*ATOM (KC OR ) 

108 CONTINUE 
RETURN 
END 
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SUBROUTINE EXTRAP(F I NUEDUN I N,SINES I INCSIBETA,RHO, 

RMINJEXTRA,GEXTRA,N2DUH) 

C 
C 	THIS RuUTiNE UDTA1NS THREE R-D-F.'S FRUM THREE 
C TERMINATIONS HF THE INTERFERENCE FUNCTION •U1' FuELOV:ING 
C ANy TRENDS A FUURTH,EXTRAPULATED R.U-F- IS UuTAiNED. 
C 
r  **************************************************** 
C 
C INPUT: 
C 	FI=INTERFERENCE FUNCTION 
F 	SINES=ARRAY OF SINE VALUES 
C 	NUM=NUmDER OF F VALUES 
C 	N=NUMDER OF POINTS FUR F•F•T• 
C 	142-N/22 
C 	INCS==S INCREMENTS IN TERMINATION VALUES 
F 	OETA=DAMPING CONSTANT 
C 	RHU:=MATERIAL DENSITY OUTAINED FROM ERNORM 

SUDROUTINE EXTRAP(F.NUMDUM,N,SINES,INCS,SETA,RHU. 
RmiN,FEXTRA.GEXTRA,N2DUM) 

C 	FIIN=FIRST MINIMUM POSITION IN R.D-F. UBTAINED FRuM 
C 	 ERNORm 
C 
C OUTPUT 
C 	GEXTRA=EXTRAPOLATED R-D.E• 
C 	FEXTRA=21NTERFERENCE FUNCTION CORRESPONDING TO GEXTRA 
C 
C  **-!-,11,*****iti-,******i.:*********-h-************************** 

Cuw.MON PI.DELR,DELS 
,FDAMP(:31),NUMCAT(j).GDUMP(3,U12).U(512),DEL3(512) 

,DELL(b12),FRACT(S12),0UUT(512).BELG(2),b(E1 
+EXNURM(b12) 
OlmENSION F(NL2DUM),SINES(N2DUi,1),FEXTRA(N2DUN-1),GEXTRA(N2DUm) 
NL-NLDW 
NUM.NUMOUM 

C 
C 	DAMP THE F VALUES 

DU 	J=1.NIN 
10U 	FDAMP(J)=F(J)i',EXP(-DETA*(FLOAT(J-1)*DELS)**2) 
C 
C CALCULATE THE THREE n.o.F.'s CORRESPONDING TO 
C 	DIFFERENT TERMINATIONS 
C 

DU 101 J=1 ,J 
NUMCAT(J)=NUm-(J-1)*INCS 
NUi6CUT.NWCAT(J) 
CALL FASTET(FDAli,P,G,SINES.N.1,NWCUT) 
OH 1.,A ts=1,N2 
GOUMP(J,K)=G(K) 

DU 	J=1,2 
SUlo=SUM-i-(FLOAT(NUF;CAT(J)))**'e 

C 
C COI-AIN THE EXTRAPOLATED R.D.F• 
C 

CCU 7t I-1,NL 

DELL(1)=UOUMP(2,I)-ODUmP(1,I) 
IF(DELJ(1).EG-2.-0.AND-DEL(I)'ES.) CL TU U7 
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FflACT(1)rELL..(1)/iiLLL(1) 
IF(EPACT(I)*UT*1•„A GU Tu 
ULXTRA(1)=,.•i. 
DU 46 J=1,2 

46 	LEXTRR(I)-GEXTPA(I)+ODUk.P■J,IV, (fLuhT(NULinT(J))) 
UEXTRA(1)=LEXTPA(1)/SUm 
CD Tu 76L 
QUuT(I).(DEL3(i)-DELL(1))/DELL(I) 
IF(CUOT(1).GT*1') OEXTPA(1)=6UnIP(3,1)+(DELj(1)-DELL(1 ) 

)/FPACT(I) 
IF((!UuT(1).LT.I.i;) GEXTP(1)=GDM,P(:_3.1.)+CUOT(1)*(DELJ(I) 

+ 	-DELL:(1)) 
00 Tu 762 
GEXTflA(I).ODUP(1,L) 

762 CONTINUE 
C 
C ELIIIRTE LaViUMS IpPECuLWIITILS DELOV! THE FIFIZT PEAK 
C 

w,INR:=R;o1N/DELF-1 
DU 41v, J,1 .min 
DELO(J).0EXTPA(j)+FLOAT(J-1)DELA4-*Pii,P.H0  

41 	GEXTRA(J)0EXTMA(J)-(FLUAT(mINFI-J))+,DEILO(J) 
/FLuAT(INP) 

DU 11 
D(K)--4-*Pi*PHOFLIJAT(K-1)tUELF1 

11L 	IF(ULXTPA(K)-LT.t)) UEXTflA(r.).b(K) 
LUTA1N FEXTRA 

CALL FASTFT(GEXTPA,FLTRA,SINLS.N.,) 
EXNP4- (1)-::•;j 
DU 71,J1 
LYNOPf6(L)=FLgTRA(L)/(FLUAT(L-1)DELS)+1.L.  
PETURN 
END 

At; 
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SUBROUTINE ERTERM(FEXTRA,GEXTRA,G,NUS,N,SINES,FMODI  

Gis:OD,N2IRNIN,RHO) 

C 
C 	THIS ROUTINE ULiTA1NS A TErk:INATION ERROR AND THEN 
C MODIFIES THE ORIGINAL P-D-F. 
C 
C  ********-h-**********-!:*************************,,**** 

C INPUT: 
C 	OEXTRAi:LXTPAPLILATED n.D-F. obTi-xiNED bY LXTRAP 
C 	FEXTRA=INTENSITY FUNCTION connEsPoNoiko TU GEXTRA 
C 	On'OPiOINAL P-D-F- 
C 	NE:NUMOEP uF POINTS FUR F.F.T. 
C 	SINES=APPAY OF SINE VALUES 
C NL=i42 
C 	NUMS:2NUOER OF F VALUES 
C 
C uUTPUT: 
C 	01600=D MODIFIED WITH TEMINATION ERROR 

SUORuUTINE ERTERM(FEXTRA,OEXTRA,G,NUMS,N,SINES.FMIOD,OUD,N2  
,RW,IN,PHO) 

C 	FmUDE2INTENSITY FUNCTION CORRESPONDING TO GmOD 
C 
C  ******--,--,******************************** 
C 

CoMON PI,DELP,DELS 
DIMENSION FLXTRA(N'.2),OLXTRA(W,J,CTERM(EJ- 12).GERR() 

OMOD(N'4!),FMuD(N2).SINEC(N2) 
olf.,E14SluN O(NL),DELO(1).0(01L) 
CF,LL FASTFT(FEXTPA,OTERM,SINES,N.,;2,1,NUS) 
DO 46 L=1.NL 

4Lib 	04uD(L)=G(L)+OE;;TRA(L)—GTEMt(L) 
MINR.SMIN/HELR 
DO 4E7 
DELO(J)=.0m0D(J)+FLOhT(J-1)itDELF:*4-*Pl*RHU 

457 	GmOD(J)=ONAJD(J)—(FLUAT(MINR—J))*DELG(J)/FLOAT(f,INR) 
00 4LiU K=1 ,N2. 
Li(K)=-4L-*Pl*RHO*FLOAT(K-1)*DELP 

4O0 	1F(OmOD(K)-LT-b(k)) 0MoD(K)==li(K) 
CALL FASTFT(,GOD,Fm0D,SiNES.N.',J,O,N2) 
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SUBROUTINE FILM(DEL,NUNDUNIYARRAY,DELABlIILLBINDUM, 

ITITLE,COORDT,NNUMBlINUMBICOORDNINFRAPIE) 

C 
C 
C 	THIS IS A GLNEPAL 1,,ICROFILM ROUTINE WHICH CAN 
C PLOT ANY FUNCTION TADULATED AT EQUISPACED INTERVALS. 
C AXES APE DRAWN .SCALED AND LADELLED AND PROVISION IS 1,,ADE FUR 
C THE INCLUSluN OF ANY oTH1R LADELLiNG INFORmATION THAT 
C 1„1GHT HE PLQUIRED. 
C 
C CCCCCCOCCOCLUCCCCCGGCCCCCOCGLDGCCCCUrCCCCECCCRCCRECCC 

C INPUT: 
C 	 YARRAY: ARRAY CONTAINING VALUES TO DE PLOTTED 
C 	NUm: Nui.tJER OF VALUES TO CE PLOTTED 

DEL: AbSCISSA INCREk.ENT 
C 	 IXLAD: INTEGER CORRESPONDING Tu REQUIRED X-AXIS LAEJEL 

1YLAU: INTEGER CORRESPONDING TO REQUIRED Y-AXIS LAEJEL 
NTITLE: TOTAL NOME ER OF TITLES AND CAPTIONS REQUIRED 

C 	IF NTITLE=i;.NO TITLES APPEAR 
C 	IF WTITLE=1.THE TITLE CORRESPONDING TO IYLAB 

IS DRAn 
C 	IF NTITLE>I,THE TITLE CORRESPONDING TO IYLAG 
C 	 AND (NTITLE-1) OTHER CAPTIONS ARE DRAWN 
C 
C 	ITITLL:RRRAY CURTAINING THE (NTITLE-1) 
C 	 INTEGER REFERENCES Tu THE REQUIRED CAPTIONS 
C 	 COORUT: 2-U ARRAY CONTAINING THE (X,Y) COORDINATES OF THE 
C 	 STARTING POINTS FUT,:,R THE ([TITLE-1) CAPTIONS 

COORDT(N,I)AX-CoORDINATE uF LAPTIoN N 
C 	 counuT(N.L)AY-LuunuihATE uF cAPTiuN 

PROVIDES THE REQUIRED DikiENsluN FUR THE X AND 
ARRAYS WHEN USING 'SCALE' 
iukiDEn OF REAL NUMBERS Tr] CE PLOTTED 

C 	 INUW.U: ARRAY CONTAINING THE NNUI,:iD REAL Itil,,DEns 
C 	 COUPON: 2-D ARRAY CONTAINING THE (X,Y) COORDINATES OF THE 
C 	 STARTING POINTS FOR THE NNWO REAL Nuf,:uEns 

SUDRoUTINE FILw.,(DEL,NUmDUiv,,YARRAY,IXLAO.IYLAB,NOUI,,,ITITCE. 
COORDT,NNUMD,INUmO,GOORDN,NFRAN-,E) 

C 	 COOPON(m,l)AX-COORRINATE OF NUmBER M 
C 	 COORDN(2)AY-COURDINATE OF NUI,ABER 
C 
C INPUT/OUTPUT: 
C 	 NFRAME: iJUIOBER uF FRAMES PLOTTED TO DATE 
C 
C uuTPuT: 
CW,ICROFILM 
C 
C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 

COMMON PI,DELR,DELS 
C 
C DIMENSION ARRAYS 
C 

DIMENSION XAPRA1'(514),YARRAY(:)14).CO0RDT(1,2),ITITLE(1 1,J) 
,COUREIN(1,2),INUmD(110) 

INTEGER XLAD(L;,),YLAD(OiA,NXLAD(2),NYLAD(bA 
C 
C READ IN DATA FUR POSSIOLE X-AXIS LADELLINO 
C 

DATA XLAO(1),NXLAD(1)/4HR(A),4/ 
DATA XEAO(2).NXLAD(2)/6HS(1/A),(3/ 
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DATA XLAH(3),NXLAD(:3)/6HU(1/A).6/ 
C 
C READ IN DATA Fun PUSSIDLE Y-AXIS LADELLING 
C 

DATA. YLAL(1).NYLAD(1)/E5HEXINT(S).0/ 
DATA YLAO(L).iYLAL(2)/HSCATTF(5),/ 
DATA YLAG(3),NYLAD(J)/EIHEXNURw.i(S),/ 
DATA YLAD(4),NYLAO(4)/4HF(S).4/ 
DATA YLAD(.5),NYLAU(E))/t2AFDAP(S).6/ 
nATA YLAG(b).NYLAO((j)/FNOPW,(S)./ 
DATA YLAO(7),WYLAD(7)/HFEXTPA(S)./ 
DATA YLAD(tA,NYLAO(D)/7HFOD(S).7/ 
DATA YLAD(),fYLAfi(C)/7HFFIN(S).7/ 
DATA YLAD(141).NYLAu(14)/4H3(F1).4 / 
DATA YLAB(1:A.NYLAD(1LA/dHDDAK.P(P),/ 
DATA YLAO(1L),NYLALJ(ib)/JHCNOR(P)./ 
DATA YLAH(17),NYLA13(1-/)/t?HOLXTRA(r),:7/ 
DATA YLAD(1c.,),NYLAU(IL)/7HGW.OD().7/ 
DATA YLAD(1::),NYLAL.(1:))/7HGFIN(R),7/ 
DATA YLAG(L24,),NYLAb(2/6HPDF(P).6i 

C 
C. CALCULATE TuTAL 	uF FRALS IiA;LUOING THL CuE ALJGOT TO LL 
C PLOTTED .IF THIS Nm.ban EXCEEDS t,;) CFHL 	ALLGV:LD ThRoUGH ILCC) 
C EXIT VITHGUT PLUTTING. 

NTITLL=NOM. 
NFPA;oL-NFRAI,;.D4-1 
IF (NF PAi6E OE 	) ELi TU 

C 
C CALCULATE VALUES FuP ;APPAY 

DU 	N=1,NU 
XPPA'1'FLCAT(N-'i)- [..LL 

C 
C SCALL AND DPA•' AXES rITH APPPLIPPIATE LALELLING 

CALL SCALE(XAPAY,1,NUI1) 
CALL SCALE(YARPAY,14.,NU.1) 
CALL AXISuj•c;,;.2.*Li.XLAL(IXLAW),-NXLAD(1XLAEJ). 1 . ,  

XAPPAY(NU+1).X,i,Rni,Y(i4M+)) 
CALL AXIS(v- ,07,YLAD(IYLAU),NYLAD(IYLAL).14',.).9 . 

YARPAY(NUI.,..+1).YAPPAY(NW,4-2)) 
C 
L JUIN PUlkTS IN \'AD -1AV ELY STPAICHT LINE SEGENTS 
C 

CALL LINE(XAPPAy.YAPPAY,NM,1,v).1) 
C 
C EXIT IF NC; TITLES APE RlOUIFIE[' 
C 

IF(NT1TLE.EC.i.) CU TU EJ 
C 
C SELECT APPFWPRIATL TITLE 
C. 

GU TO (1.,J,4.f.J.5.7.0, ,1i.,11,12 , 1.1i,14 .1L,1 U ,  
• 17,1U.1:J.2),IYLAO 
CALL SYfobuL(L.tib.lb.-jL., 

• 2LHEXPE01LENT1L INTENSITY  • 
Go TO ',2F4 ,  

2 	CALL SYldWL(6.b2.1,V<iLig 
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17HSCATTEMING FACTUP ,v;-17) 
OU TO Lis_ 
CALL S'iq;.0oL(6•0.1 , 

2v4iNuP,ALIZEL INTENSITY .•';.;.2';,:) 
• GO TU 

4 	CALL SYN:BOL(G.J4,1,O•3b. 
21HI4TEPPERENCE FUNCTION,.L1) 

GO TO 220 
CALL S=DGL(5.13,15'0.5. 

2CHDAmPED INTERFERENCE FU1CTION,U.20) 
GU TO 

6 	CALL SM-IJUL(1.27.1b—.. . 
4H1NTERFERENCE FUNCTION WITH Ic,'PRuVED 

GU TO 
7 	CALL SUOUL(47.1b*0.0<k), 

34HEXTPAPOLATED INTERFERENCE FUNCTION.C',34) 
GO Tu 

6 	CALL SYk,OUL(4-78,15.0.-311). 
3;„1-4,1OD1FILD INTERFERENCE: FUNCTION..3Z) 

GU TO 'L;,_; 
CALL SWEioL(5*.30.153S. 

L7HFINAL INTERFERENCE FUNCTION.,27) 
GO TO 
DUIY 

GO Tu 
11 

GO TU 
1L 	EJLWiY 

--0q) 
Cu To Lo, 

13 	OWMY 
+ 
Gu TU 	. 

14 	CALL SWOUL(7.2.16•VJ.0. 
&s,mcnuciL PDF ,.9) 

U CO T 	• 

1E) 	CALL SYkYoUL(3•73,1L-35, 
J(JHRDF Fun CIAPED INTERFERENCE FONCTION..ju) 

GO TU 
lb 	CALL SMOUL(4.b,1!..1*.db. 

.'26HEIDF GURRESPUNOINL Tu 	mu'io.Lu) 
GO Tu 

17 	CALL S`NOuL(o-b.1b**35. 
lbHEXTRAPULATED PDF 

CLI TU 
CALL SYkiOUL(7-40,1 3S. 

1LhiuDIFIED REF .•iL.1"cJ 
Cu TO 
CALL  

r[;F 
GO TU 't2 

GU TU 2;A„ 
c L-k NTITLENT1TLE-1 
C 
C EXIT TO kUi,uEP PLOTTikO IF ku TITLES REAIN TO LIE GRAV?N 
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C 
IF ( N TITLE • L T• 1) GO TO 300 
JTITLE=ITI TLE ( NTITLE ) 

C 
C SELECT AND DRAW NE XT TITLE 
C 

GO TO ( 1001,1002,1003) , JTITLE 
1001 CALL SYMBOL (C00 RD T( NTITLE 1) , COORDT( NTITLE , 2) , 0* 14 

• 12HTEM PE RA TURE= 0* 0,181 
GO TO 200 

1002 CALL SYMBOL (COORDT( NTITLE , 1) , COO RD T( N TI TLE , 2) , 0-14, 
+ 9H PRESSURE= , 0.0.9) 
GO TO 200 

1003 CALL SYMBOL (COORDT(NTITLE 1) , COORD T( NTITLE , 2) , 0* 14 
▪ 12HRESISTIVITY= , 0.0,11 

GO TO 200 
C 
C EXIT  IF NO NUMBERS  REMAIN Ti] BE DRAVirN 
C 
300 	IF ( NN Ur,,IB • L T• 1) GO TO 9M 

CALL UMBE R ( COO RDN ( NN UME3,1) , COO RON ( NN UMB , 2) , r1• 
IN UME3 ( NN UMB ) 0* 0,3) 

NN UMB=NN 
GO TO 300 

C 
C MO VE MICROFILM ONTO NEXT FRAME 

C 
999 	CALL NE WPAGE 
1000 RETURN ' 

END 
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SoOROUTINE FnA,0E1 
C 

Pl,DLLR,DELS 
C 
C 
C SUDROUTINE TO PLOT A SINGLE FRAE 
C LADELLINC ****ANALYSIS OF ELECTREI 
C 
C 

OF 	 IURUFIL Iii  
N DIFFRACTIoN DATA**:,* 

CALL MWDoL(5'6. 
CALL SYDOL('7. 

O'V).2.21-3) 
CALL i4EWPAOL 
RETURN 
END 
SUDROUTINE FnAi6E2 

l'U.D*7.11HA 
3.0.7.2SHEL 

NALYSIS OF 
ECTRO DIFFRACTION DATA. 

C 
PI,DELR.DELS 

DIENSION RUNCAP(7.2) 
C 
C 
C SUDROUTINE TO PLOT A SINGLE FRALiE OF kiICRoFiL CoNTAINiNG ALL 
C DETAILS NECESSARY FUR DOCUkiENTING A SINGLE DEPOSITION 
C 
C 

L 

CALL SYI;i0DL( 
CALL SY1.;,boL( 
CALL S=DOL( 
CALL SY1,;.GoL( 
CALL SYi6BOL( 
CALL S'XDoL( 
CALL SYLJuL( 
READ(4,2N)(( 
FURL. AT  
CALL S=DOL( 
CALL SYkiBoL( 
CALL SWDOL( 
CALL S'NE;OLC 
CALL S=DuL( 
CALL SYEiOL( 
CALL SYouL( 
CALL NEVTADE 

URN  
END r6 

;,-7,1LHDATE uF 
r. 	'7.1JHr,;ATEflIAL:so•c,.:;) 

0-5,7-9.c; 
	

THICK,JESS:..1b) 
.7.23HDEPOSITION TENJJEflATUFIE:..,=3) 
7.16hDEPOSITION 

-7.2',HDEPOSITION PRESSURE:.0-0,L,4 
TWI4CAP(I. j),J=1,2).1.1.7) 

7-tj,13--7,FIUNCAP(1.2),;_:.0,FILINCAP(1.1)) 
7.S.11.7,RUNCAP(L.L),J.RUNCAP(L.1 )) 
O-2,9*u1L).71RUNCAP(j. RUNCAP(J.1)) 
11.7.7-9..J.7.RUNCAP(4.2).RUNCAF(4,1)) 
17.3.O.2.',,.7.RUNCAR(5.2).J.RUNCAR(.1)) 
1L.4,4-5..7,RUNCAP(O.2).flUNCAP(6.1)) 
16 ,2.2'6.1,-,.7.11UKCAP(7.2).;:i•O.RU;4CAP(7, 1 )) 
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PROGRAM NOR1`1AL(INPUT,OUTPUT,TAPE1 I TAPE2ITAPE3,TAPE4) 

C 
C 	THIS PROGRAM NORLIALISES THE EXPERIMENTAL DATA AND 
C CALCULATES THE INTERFERENCE FUNCTION• 
C 
C 	TWO METHODS OF NORMALISATION ARE AVAILABLE: 
C 
C 	(1) HIGH ANGLE FITTING 
C 	 (2) KROGH-MOE METHOD 
C 
C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 
C 	INPUT: 
C 	 NUMS=NUMBER OF EXPERIMENTAL POINTS 
C 	 NMIN=MINIMUM NUMBER FROM WHICH DATA WAS READ 
C 	 DELS=INCREMENT IN S(=4*PI*SIN(THETA)/WAVELENGTH) 
C 	 EXINT=EXPERIMENTAL INTENSITY 

PROGRAM NORMAL(INPUT,OUTPUT,TAPE1,TAPE2,TAPE3,TAPE4) 
C 	SFAC=ATOMIC SCATTERING FACTOR SQUARED 
C 	OUTPUT: 
C 	 ENORM=NORMALISED INTENSITY 
C 	 F=INTERFERENCE FUNCTION 
C 
C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 

DIMENSION EXINT(500),SFAC(500),ENORM(500).F(500),SSO(500) 
READ(1,11)NUMS,NMIN,DELS,(EXINT(K),K=NMIN,NUMS) 
READ(2,10)NUMS,DELS,(SFAC(K),K=1,NUMS) 

10 	FORMAT(I4,F10-4/(6(2X,F8-4))) 
11 	FORrAT(2I4,F10-4/(6(2X,F8-4))) 

NUMINT=NUMS-1 
C 
C 	CHOOSE WHETHER TO USE HIGH-ANGLE FITTING 
C 

PRINT,/,/,*IF HIGH ANGLE FITTING IS REQUIRED,ENTER ZERO* 
READ,ITEST1 
IF(ITEST1)101,100,101 

C 
C 	SELECT THE MINIMUM S VALUE FROM WHICH TO NORMALISE 
C 
100 	PRINT,/,*EXPERIMENTAL DATA CUTS-OFF AT ARRAY NO-*,NUMS 
102 	PRINT,*READ IN MIN- ARRAY NO- FOR FITTING* 

READ ,MINS 

SMIN=FLOAT(MINS-1)*DELS 
SMAX=FLOAT(NUMS-1)*DELS 
SUM1=(SFAC(MINS)*SMIN+SFAC(NUMS)*SMAX)*0.5. 
SUM2=(EXINT(MINS)*S('. IN+EXINT(NUMS)*SMAX)*0-5 
DO 800 NS=MIN,NUMINT 
S=FLOAT(NS-1),*DELS 
SUMUSUMUSFAC(NS)*S 

800 SUM2=SUM24-EXINT(NS)*S 
AUSUMWSUM2 

C 
C 	Al IS NORMALISATION FACTOR 
C 

PRINT,/,*NORMALIZATION CONSTANT = *,A1 
C 
C 	CHOOSE WHETHER TO SELECT DIFFERENT MINIMUM S VALUE 
C 

PRINT,/,*IF DIFFERENT MIN- ARRAY NO. REQUIRED ,ENTER ZERO* 
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READ, JTE ST1 
IF ( JTE ST1) 101, 102, 101 

C 
C 	CHOO SE WHE THE R TO USE KROGH-MOE ME THOD 
C 
1 01 	PRIN T, / , / ,*IF KROGH-MOE METHOD RE QUIRED , EN TE R ZERO* 

READ , I TE ST2 
IF ( ITE ST2) 106, 105, 105 

105 	DEL SQ=DEL S**2 
DO 803 NS.NMIN , NUM S 

803 	SSQ( NS) =FLOA T( NS)**2*DELM 
SUf.i1=( SSQ( NMIN )-ESSQ( NUMS) )*0.5 
SUM2=( ( SSQ ( NMIN )*EXIN T ( NMIN ) / SFAC ( NMIN ) )4- ( SSQ 

( NUM S)*EXINT( NUMS) / SFAC(NUMS) ) )*0.5 
NMIN 1=NMIN +1 
DO 804 N S=NM IN 1, N TAINT 
SUM1 =SUM14- 5S0( NS) 
SUM2.SUM2+ ( SSQ( NS)*EXIN T( NS)/ SFAC ( NS)) 

804 	CON TIN LE 
C 
C 	READ IN BULK DEN SITY 
C 
997 	PRIN T, / ,*READ IN BULK OEN SIT`t* 

READ , RHO 0 
SUM 1=SUM1-2. 0*( 3. 141593**2)*RHOO 

C 
C 
	

A2 IS NORMALISATION FACTOR 
C 

A2= S UM 1/ S UP412 
PRINT, / ,*NO RMALIZA TION CON STAN T =*, AP 

C 
C CHOOSE WHETHER TO SELECT A DIFFERENT DENSITY 
C 

PAIN T, / ,*IF DIFFERENT DENSITY RE QUI RED , EN TE R ZE REY' 
READ , JTE ST2 
IF ( JTE ST2) 106, 997, 105 

106 	C 0 N TIN LIE 
C 
C 	CHOOSE WITH WHICH ME THOD TO NORMAL'S_ 

C 
PAIN T / *TO NORMALISE WITH METHOD 1, EN TE R-1, WITH * 
PRIN T,*ME TH002, EN TER ZERO, AND TO AVE RAGE ENTER 
READ , 1TE ST3 
IF ( ITE ST3) 400, 401, 402 

400 	AFIN =A1 
GO TO 57 

401 	AF IN =A2 
GO TO 57 

402 	AFIN=( A1+A2) / 2'0 
C 
C 	NO RMALI SE THE E XPE RIMEN TAL DA TA AND CALC ULA TE TFE 
C 	INTERFERENCE FUNCTION  
C 
57 	DO 701 J =NM IN , N UM S 

ENO RM (J ) =AF IN*E XIN T( J) 
F(J)=FLOAT(J-1)*DELS*(ENORM(J)/SFAC(J)-1) 

701 	CON TIN IE 
C 
C 	EXTRAPOLATE  THE IN TE RFE PENCE FUNCTION  F ROM THE MINIMUM 
C 	S VALUE TO THE ORIGIN 
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C 
FCALC =-FL OAT (NMIN-1 ) -m-DELS 
FRAC T= (FCALC-F (NMIN ) )/FCALC 
N 1MIN \IttlIN -1 
DO 914 J=1,N1MIN 
F (J )=-FLOAT (J-1 )-x0ELS*( 1. 0-FRACT ) 

914 	CONTINUE 
WRITE (3,11 )HUMS ,NMIN ,DELS (ENORM (J ) ,J JMIN ,NUMS ) 
WRITE (4, 10 )NUNS ,DELS (F (J ) ,J=1,NUMS ) 
PRINT , / ,*NORMALIZED INTENSITY STORED ON TAPE 3* 
PRINT,*INTERFERENCE FUNCTION STORED ON TAPE 4* 
STOP 
END 
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PROGRAM INTEG(INPUT,OUTPUT,TAPEl l TAPE21TAPE31  
TAPE6=OUTPUT) 

C 
C 	THIS PROGRAM INTEGRATES THE STRUCTURE FACTOR,CALCULATED 
C By PARTF,OVER A SERIES OF SPECIFIED SPHERES 
C 
C 
C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 
C 	INPUT: 
C 	NCOORDENUMBER OF ATOMS IN THE UNIT CELL 
C 	COORD =CO-ORDINATES OF THE ATOMS 
C 	 S 	=4*PI*SIN(THETA)/WAVELENGTH 
C 	DELS=SPECIFIED INCREMENT IN S 
C 	NUMS=NUMOER OF POINTS AT WHICH THE INTEGRATED 
C 	STRUCTURE FACTOR IS RFQUIRED 
C 	DEL =ANGULAR INCREMENT IN 50TH THETA AND THI 

PROGRAM INTEG(INPUT,OUTPUT,TAPELTAPE2,TAPE3,TAPE6=OUTPUT) 
C 	OUTPUT: 
C 	SUMFACESPHERICALLY INTEGRATED STRUCTURE FACTOR 
C 
C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 

DIMENSION SUMFAC(300) 
COMMON COORD(25,3),NCOORD 
READ(3,313)DEL,DELS,NUMS 

313 FORMAT(2F7•4,I4) 
NUMMER=NUMS+1 
PI=3.142 
PI2=2.*PI 
READ(1,93)NCOORD,((COORD(I,J),J=1,3),I=1,NCOORD) 

93 	FORMAT(I2/(3F10•4)) 
DO 91 J=1,NUMS 
S=FLOAT(J)*DELS 
DELSIG=DEL 

C 
C THE INTEGRATION IS CARRIED OUT USING SPHERICAL 
C 	CO-ORDINATES OF INCREMENT DEL 
C 
161 SUMFAC(J)=0•0 

PHI=-DELSIG 
19 	PHI=PHI+DELSIG 

THETA=-DELSIG 
17 	THETA=THETA+DELSIG 

IF(THETA•GT•PI) GO TO 999 
X=S*SIN(THETA)*COS(FHI) 
Y=S*SIN(THETA)*SIN(PHI) 
Z=S*COS(THETA) 

C 
C 	THE CORRESPONDING CARTESIAN CO-ORDINATES ARE CALCULATED 
C 

SUMFAC(J)=SUMFAC(J)+PARTF(X,Y,Z)*SIN(THETA) 
C 
C 	THE STRUCTURE FACTOR AT THE POINT (X,Y„Z) IS CALCULATED 
C 	 BY PARTF 
C 

GO TO 17 
999 	IF(PHI•LT•PI2) GO TO 19 

SUMFAC(J)=SUMFAC(J)*DELSIG**2 
ANS=SUMFAC(J) 
WRITE(6,703)S,ANS 

703 FORMAT(4X,F10.4,10X,F10•4) 



- 198 - 

91 	CONTINUE 
WRITE (2,61 )NUMS .DELS (SUMFAC (K) .K =1 ,NUMS ) 

61 	FORMAT (I4 ,F10•4 / (6 (2X ,F8•4 ) ) ) 
STOP 
END 
FUNCTION PARTF (X „v ,Z ) 

C 
C 	PARTF CALCULATES THE STRUCTURE FACTOR PARTF (X ,Y ,Z) AT THE 
C 	POINT (X 	) •X ,Y ,Z ARE SPECIFIED IN THE MAIN PROGRAM 
C 

COMMON COORD (25,3) ,NCOORD 
PI=3•142 
SUMR=0.0 
SUMI=0.0 
DO 96 I=1„NCOORD 
FUN= (COOK) (I .1 )*X i-COORD (I ,2 )*Y+COORD (I ,3 )*Z )*2 •*PI 
SUMR=SUMR +COS (FUN ) 

96 	SUMI UMI +SIN (FUN ) 
PARTF= (SUMR**2+SUMI**2 )**0 •5 
RETURN 
END 
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PRO GRAN GAUSS ( INPUT I OUTPUT,TAPEl l TAPE2 , TAPE 3 ) 

C 
C 	THIS PROGRAM EVALUATES  THE FIRST CO-ORDINATION NU' ?DEP 
C USING THE RADIAL DENSITY F UNC TION • Tv.'n METHODS OF SUMMING 
C THE AREA UNDER THE PEAK ARE USED: 
C( 1) SETTING THE SURROUNDING MINIMA AS THE SUMMATION 

LIMITS 
C( 2) THE SYMMETRICAL ME THE 
C IT THEN FITS A GA USSIAN TO THE FIRST PEAK FROM V,HICH ANO THM 
C VALUE OF THE CO-0 RDINATION N LUBE R CAN BE OBTAINED • 
C 

C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 
C 	IN PUT: 

PROGRAM GAUSS( IN PUT, n UTPUT, TA PEI, TA PE2, TA PE3) 
C 	 U.RDE =RADIAL DENSITY F UNCTIa, 

C 
C 	OUTPUT: 
C 	 RDF=RADIAL DENSITY F UNC TION (FIRST PEAK ONLY) 
C 	 GA US.GA USSIAN FIT TO ROE 
C 
CCCCCCCCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 
C 

DIMEN SION RDF ( 500) , U( 51.10) , MA XIMA ( 50) , 	( 5C) 
, COO RD ( 3) , GA US( 500) 

E GUI VALENCE ( U, P.DF ) 
READ ( 1,10) N NIA X,DELR, ( U( J) , J=1, NPMA X) 

10 	FORMA T(I4, F10.4/ ( 6( 2X, Fa- 4) )) 
N=0 
M=0 

C 
C FIND THE ARRAY NUMBERS OF THE MAXIMA AND THE MINIMA 
C THE RADIAL DEN SI TY F UNC TION 
C 

I(MA X=N AMA X-1 
DO 1000 K=2, KMAX 
IF( U(K)•LE• U(K-1)•OR•U(K)•LE• U(K+1)) GO TO 1011 
N=N+ 1 

XIMA ( N)=I( 
1001 IF(U(K)•GE•U(K-1)•OR•U(K)•GE•U(K+1)) GO TO 100 

=M 4-1 
MIN IMA ( M) =K 

1000 CON TIN UE 
PRIM T.*ARRA Y NOS OF MA XIMA ARE*, / 
PAIN T 100, ( MA XIMA ( I ) , I=1, N ) 

100 	FORMA T( 1016) 
PRIN T, ,*ARRA 1.)  NOS OF MINIMA ARE*, / 
PRINT 10D, ( MINIMA ( I ) , 1=1, m) 
PI=3-141593 

C 
C 	READ IN THE ARRAY NUMBERS OF THE FIRST REAL PEAK AND 
C THE SURROUNDING MINIMA, IGNO RING THE SrfALL , SPURIOUS PEAK S 
C 	AT SMALL R VAL UES• IN PRACTICE IT IS USUALLY ONLY THE FIRST 
C PEAK ViiHICH HAS MINIMA AROUND IT- 

C 
PRIN T, ,*READ IN ARRAY NOS OF MAXI(/' Ut,'; AND SURROUNDING MINIMA 
READ ,IJAXR, MIN R1, MIN R2 
f-r1R=MA XR± 1 
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C 	SUM THE AREAS BELOW THE FIRST PEAK USING THE METHODS 
C (1) AND (2) INDICATED ABOVE* 
C 

COORD(1)=0.0 
DO 802 J=MINR1.MAXR 

802 COORD(1)=COORD(1)+RDF(J)*DELR 
COORD(2)=2•0*COORD(1)-RDF(MAXR)*DELR 
DO 803 J=MR.MINR2 

803 COORD(1)=COORD(1)+RDF(J)*OELR 
PRINT./,*APPROXIMATE COORDINATION NUMBERS* 
PRINT.* 	METHOD 1 	METHOD 2 * 
PRINT 101.COORD(1),COORD(2) 

101 	FORMAT(2X.F10•4.6X,F10.4) 
C 
C 	FIT A GAUSSIAN FUNCTION TO THE FIRST PEAK 
C 
C 	COMMENCE BY FINDING AN APPROXIMATE VALUE OF SIGMA 
C 

HALF=ROF(MAXR)/2•0 
DIFF =RDF(MAXR) 
DO 804 KR=MINR1,MAXR 
IF(ABS(RDF(KR)-HALF).GE.DIFF) GO TO 804 
DIFF=ABS(RDF(KR)-HALF) 

HALFRI=KR 
804 CONTINUE 

DIFF=RDF(MAXR) 
DO 805 KR=MAXR.MINR2 
IF(ABS(RDF(KR)-HALF).GE-DIFF) GO TO 805 
HALFR2=KR 

805 CONTINUE 
SIGAPP=(HALFR2-HALFRI)*DELR*0.5 
PRINT./.*APPROXIMATE VALUE OF SIGMA* 
PRINTd.SIGAPP 
FNORM=RDF(MAXR) 
PI2=2•*PI 
PIS=SORT(PI2) 
APROXN=FNORM*SIGAPP*PIS 
PRINT,/.*APPROXIMATE COORDINATION NUMBER* 
PRINT./.APROXN 

C 
C COMPUTE THE GAUSSIAN FUNCTIONS,FOR A RANGE OF SIGMA. 
C AND SELECT THE VALUE OF SIGMA WHICH GIVES THE BEST FIT 
C TO THE RADIAL DENSITY FUNCTION 
C 

PRINT,/,*READ IN MIN AND MAX VALUES FOR SIGMA* 
READ,SIGMIN,SIGMAX 
MINSIG=100•0*SIGMIN 
MAXSIG=100•0*SIGMAX 
DO 806 NSIG=MINSIG,MAXSIG 
SIGMA=FLOAT(NSIG)*0•01 
SUMS0=0•0 
DO 807 KR=MINR1,MAXR 
FIT=FNORM*EXP(-((FLOAT(KR-1-MAXR)*DELR)**2)/((SIGMA**2)*2•0)) 
SUMSQ=(FIT-RDF(KR))**2+SUMSQ 

807 CONTINUE 
IF(NSIG•EQ•MINSIG)SUMMIN=SUMSQ 
IF(SUMSQ*GT•SUMMIN) GO TO 806 
SUMMIN=SUMSQ 
STORE=SIGMA 

806 CONTINUE 
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STDEV.SQRT(SUMMIN/FLOAT(MINR2-MINR1+1)) 
PRINT,/,*BEST VALUE OF SIGMA* 

PRINT, STORE 
PRINT,/,*STANDARD DEVIATION* 
PRINT,STDEV 
COORDN=FNORM*STORE*SQRT(2.0*PI) 
PRINT,/,*COORDINATION NUMBER* 
PRINT,COORDN 

C 
C 	GENERATE THE GAUSSIAN FUNCTION OVER THE RANGE OF THE 
C 	FIRST PEAK 
C 

MC=MINR2+10 
DO 808 KR=1,MC 
GAUS(KR)=FNORM*EXP(-((FLOAT(KR-1-MAXR)*DELR)**2)/((STORE**2) 
+ 	*2.0)) 

808 CONTINUE 
WRITE(2,10)MC,DELR,(RDF(J),J=1,MC) 
WRITE(3,10)MC,DELR,(GAUS(J),J=1,MC) 
PRINT./.*GAUSSIAN FIT TO FIRST PEAK STORED ON TAPE 3* 
PRINT.*RDF STORED ON TAPE2* 
STOP 
END 
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PROGRAM SCATTER(INPUT,OUTPUT,TAPE1ITAPE21TAPE3, 

TAPE5=OUTPUT,TAPE61TAPE62) 

C 
C 	THIS PRoGRAM CALCULATES THE TOTAL DIFFRACTFD 
C INTENSITY FROM THE SUPPLIED ATOMTC SCATTERING 
C FACTOR, THE sTnurTuRF FACTOR AND THE INTENSITY 
C FUNCTION CALCULATED BY FERENC 
C 
c nocccccccccccccccncncccccocccccccnccccccccrcccc 
C 	INPUT: 
C 	 ATOM.=ATOMIC SCATTERING FACTOR 
C 	 SFACF23PHMIC;-\LLY INTEGRATED STRUCTURE FACTOR 
C 	 NX,NY,NZaNIIMRER OF ATOMS ALONG CRYSTAL SIDES 
C 	 NUMS=NUMBER OF DATA POINTS 
C 	 DELS.TNCREMENT IN S 

PROGRAM SCATTER(INPUT.OHTPUT,TAPE1,TAPE2,TAPF3,TAPF5=OUTPHT 
,TAPE6,TAPE62) 

C 	 A =CELL EDGE OF ELEMENT 
C 
C 	OUTPUT: 
C 	 S-=-4*PT*SIN(THETA)/WAVELENGTH 
C 	 CALINTECALCHLATED TOTAL INTENSITY FUNCTION 
C 
C ccccccnccccccocccccccmccrccccccceccccccccccccc 
C 

DTMENSION ATOM(300),SFAC(300),CALTNT(300),S(300) 
DIMENSION TOTINT(300),SNFW(300) 
READ(2061)NUMS,DELS,(51FAC(K),k=1,NHIVS) 
READ(1,61)NUMS,DELR,(ATOM(J),J=1,NHMS) 

C 	SET MINIMUM DATA VALUE FOR PLOTTING 
C 

MIN.13 
NMIN.MIN+1 
NEW.NUMS—MIN 

M1=NU MS —1 
C 
C 	SELECT PLOTTING MODE 
C 	 INDEX.0 	LARGE PLOT OF CALINT 
C 	 =1 	4 SMALL PLOTS 
C 

INnu=1 
61 	FORMAT(I4,F10.4/(6(2X,E8e4))) 

READ(3,63)NX,NY,NZ,A 
63 	FORMAT(3I4,F7•4) 

FNX.FIOATMO 
FNY.FLOAT(NY) 
FNZ=FLOAT(NZ) 
DO 109 I=1,NuMS 
S (I)=FLOAT (I)*DELS 

C 
C 	CALL ROUTINE TO CALCULATE THE INTENSITY FUNCTION 
C 

CALL FERENC(NX,NY,NZ,A,TOTI,S(I)) 
IF(I.NF-1) GO Tn 79 
AFACT.1•0/TOTI 

79 	TOTT.AFACT*TOTI 
TRTTNT(T)=TOTT 

109 CALINT(I)=TOTI*ATOM(I)*SFAC(T) 
WRITE(6,62)NUMS.NMIN,OFLS,(CALINT(L),L=MTN,N=1) 

62 	FORMAT(2T4,E10.4/(6(2X,FR'4))) 
C 
C 	CALL KINGMATTC ROUTINES Tn PLOT THE CALCULATED 
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C 	 RESULTS 
C 

CALL START(2) 
IF(TN0Fx-FQ.1) Go TO 17 
CALL SCALF(s,17.0,NuMs,1) 
Dn 110 J=1. NEW 
CALINT(J)=CALTNT(.1+1.1IN) 

110 	s(J)=c(J+mIN) 
s(WEW+1)=S(NUms+1) 
S(NEW+2)=S(NuMs+2) 
CALL scALF(CALINT.10.0.NEW.1) 
CALL AxiS(0-0,0.0,714S—VALuF,-7 

NUMS+2)) 
CALL AXIS(0.0.0.0,20HCALCULATE 

CALINT (NEW+1) ,CALINT 
CALL SYmOnL(6.0,9-0.0.14, 

36HNumRFR OF ATOMS AL 
CALL NuMRFR(7.0.0.0,0.14,FNX,0 
CALL MImRER(O-0,0-0,0-14,FNY,0 
CALL NUMRER(9.0,0-0,0.14,FNZ,0 
CALL LINF(g.rALINT.NEW,1,1,3) 
Go TO 16 

17 	Do 99 K=1,NFW 
TOTTNT(K)=ToTTNT(K+MIN) 
CALINT(K)=rAi INT(K+mTN) 
SFAC(10=sFAC(K+miN) 

99 	sNEW(K)--q(K+mTN) 
CALL SCALF(TnTINT.5-G,NEW.1) 
CALL SCA, E(s,9.0,NuNis,1) 
SNEw(NEw+1)=R(Nums+1) 
SNEW(NFIN+2)=s(NUMs+2) 
CALL FLoT(-1.0,0.0.-3) 
CALL AXIc(0.0.0-0,7us VALUE,-7,9-0,0-0,S(NumS+1) 

S(Nums+2)) 
CALL AxIS(0.0.0•0,10HINTENRTTy RINcTION,10, 

5•0,90.0,TOTTNT(NEw+1),TOTTNT(NFw+2)) 
CALL SYmROL(1.5,5.25,0-14, 

36HNumRRA OF ATOMS ALONG CRYSTAL SToEq: 
CALL NumBER(3.0,5.0.(-14,FNX,0.0,-1) 
CALL NumRFR(4.0,5.0,0.14,FNY.0-0.-1) 
CALL NumRFR(5.0,6.0.0.14,FNZ,0.0.-1) 
CALL LINE(GNFw,ToTTNT,NEw.1.0.INTEN) 
CALL PLOT (0.0,6.0,-3) 
CALL SCALF(ATOm.6-0,NuMS,1) 
CALL AXIS(0.0,0.0,7hS VALuE,-7,9.0,0.0,5(NumR+1) 

S(Nuu,s+2)) 
CALL AXIS(0-0.,0.r,24HATnmTc sCATTERTNG FACTOR.24 

AT0m(NUMS+1),ATOWNUMS+2)) 
CALL LTNF(s,ATOM,NUMs,1,0,INTE0) 
CALL PLOT(10.0,0.0,-3) 
CALL SCALF(sFAC,6-0,NEW,1) 
CALL AxIS(0.q,O.0,7us VALuF,-7,9.0.0•0,s(NuuS4-1) 
CALL AXIS(0.0,0-0,16ucTRuCTURF FACToR,16,6.0,90. 

SFAc(Npw+1),RFAC(NEW+2)) 
CALL LINE(sNEW,RFAC,NE47l,1,0.TNTE0) 
CALL PLoT(0-0,-6.0,-3) 
CALL ScALF(CALTNT,5-0,NEW.1) 
CALL Axis(0.0,0.0,7uS VALUE.-7,9.0,0.0,S(NumS+1) 
CALL AXig(H.0.0.q,15uTRTAL INTEN5ITY.15,5.0,90-0 

CALINT(NEW+1),CALINT(NEW+2)) 

.0.0,36) 

.6*0.90•0. 

.5(NuMs+2)) 
0, 

,c(Nuus+2)) 

,12.0.0.0,5(uums+1).F; ( 

0 INTENsITY.20,10.(i,90.0, 
NEw+2)) 

ONG CRYSTAL sIDEs:.0.0,36) 
.0,-1) 
.0,-1) 
.0,-1) 
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CALL LINE(sNEW,CALINT,NEW,1.0,INTEO) 
16 	CALL ENPLOT 

STOP 
END 
SUBROUTINE FERFNO(NAMX,NBMX,NOMx.A.T0TI,R) 

C 
C 	THIS ROUTINE cALMLATES THE INTENSITY FUNCTION,ToTT, 
C FOR A GIVEN CRYSTAL SIZE 
C 

TOTI=FLOAT(NAMx)*FLOAT(NEMx)*FLoAT(Nomx) 
NAL=NAmX*2-1 
NBL=NRmX*2-1 
NCL=NCMX*2-1 
Dn 1000 NA=1.NAL 
N AA=—N AMX +N A 
DO 1000 NO=1,NBL 
NRB=—NOMX+NU 
DO 1000 Nc=1,NRL 
Ncr.=—Nrmx+Nn 
AM=F10AT(NAMx) 
8M=H OAT(NDMX) 
Cm=FLOAT(NCMx) 
AA=FLOAT(NAA) 
GB=FLRAT(NRD) 
cC=FLOAT(NnC) 
POSL=MARs(AA)**2)÷(ABS(RB)**2)÷(ARS(OC)**2))**0.5)*A 
IF(POSL.E0-0-0) GO TO 1000 
F=PoSL/A 
n=(Am—ARs(AA))*(Rm—ARs(RD))*(Dm—ABs(nC)) 
FT=(sIN(R*pQsL)/(R*PoSL))*P 
TOTI=FI+TOTI 

1000 CONTINUE 
RETURN 
ENn 
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APPENDIX B 

The Fast Fourier Transform (F,F.T) 

The most efficient method of evaluating a Fourier 

transform is by means of the F.F.T which utilizes the 
Discrete Fourier Transform. This is defined as 

1%1 - 1 
Y = 1/N J  X k  exp(-j2nkn/N) n=0,1 	. . . .N-1 (1)  

N-t 	kr- 0  
X = 	exp(j2rikn/N) k=0,1,.. .N-1 ---- (2)  

(1=0 
It is necessary then to manipulate the Fourier Integral 

expressions(equations(10) and (11) of chapter 3) into 
their discrete form.We have 

op 
F(s)= f G(r)sin(rs)ds 	 (3) 

0 
Sample F(s) at intervals ofISsi  and define S= 2n/IN.s 

Then: 
OD 

	

F(nds) .ir G(r)sin(nr2r1/S )dr 	 
0 

which can be rewritten as: 

F(nAs) :=E G(r)sin(21nr/S )dr 
1.;:z o 

co fivti-i)S1  

Let if= r-ks co s/ 	/ 
mss/  

F(nAs) 	G(r+ks)sin(2 n(r +ks)/S)dr 

i   

o 
F(nLs) =IS 	G(r+ks)) sin(2ri nr

/
/S

/
)dr 

/0 
since sin(21ink)=0, cos(2rtnk) =1 

si 

	

F(nAs) .)r G,(r)sin(21.1nr/S )dr 	 (6) 
0 

where 
a) 

G (r) 	G(r+ks) 	 (7) 
11.  

Equation (6) can be inverted to give an expression 

of the form: 
co 

G (r) =C F(nAs)sin(2r-inr/s 

n::0 
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To evaluate the constant C, multiply both sides by 

sin.(2 rimr/S ) and integrate with respect to r between the 
i 

limits 0 and: S . 
is` 
) 	 -r• 	s G, (r)sin(2ri mr/SI  )dr 	/ ,- 
la fa 	 co 	 I 

=CTIF(nLs)Isin(2nmr/S )sin(2r-rnr/S )dr 
rir_ 0 

	

CD 	 SI  
=CEF(nAs) J  1 /2(cos(2ri (n-m)r/S) 

	

r,..: 0 	0 	 1 
-cos(2ri (n+m)r/S))dr el .) 	 / 

A =C/2(F(m s) L(1+cos(2 rr .2mr/S))dr 

	

co 	el 	 I  
+ZP(nL s)fr (cos (2rr (n-m)r/S)-cos(2c-i(n+m)r/S) )dr; n:.-o0 

Now use the face .fat 15c/os (2ripr/S)  ) = 0 
5' 	 o 

J Gp(r)sin(2 rtmr/S )dr =C/211(m As) Si  =F(m A s) 
o 

from equation (6) 

Hence C =2/S and we have 
CO 	 1 

	

Gp (r) =2/S TF(nLs)sin(2nnr/S ) 	 (8 ) 
nr.:0 

If G,(r) is sampled at N eauispaced points in the 

interval (0,S ) then the interval between samples is 

Ar = S/N = 2 n /N.AL s 

i.e. N=2n/1, s.Qr 	 (9) 
Then 

/ co 
G(p A r) =2/S r F(nA s)sin(2 n np/N) p=0 , 1 , 	N-1 

2/S11E(F(n d s)sin(2rt np/N) 

(n 6,s+NL s)sin(21-t (n+N)p/N) 

+F(n s+2NAs)sin(2-ra (n+2N)p/N) 

+ 	 ) 
!,1-1  

=2/SE(FF(nA s+111.  s) )sin.(2-n np/N) 
N_I 

=2/S F F (n s)sin(2 n np/N) 
N- I 

Gp  (p Q r) =2/S nF8(n.D.$)sin(2rr np/N) 	 (10) 
n. 



- 207 - 

Similarly one could put 
N-1  

F (n ds) =C EG (p r)sin.(27.1 np/N) 
?=0 

and evaluate C' by multiplying both sides by sin(2unm/N) 

and summing from m=0 to N-1 . Alternatively one can 

use the fact that G (p A.r) and_ F(n s) are a discrete 

Fourier pair and by comparison with equations (1) and (2) 

1/N = C .2/S 
/ / so C =8 /2N 

Since N .2rt /A r. s ,we have for the Discrete Fourier pair: 
N- 

F (n s) h.r/2 EG (p r)sin(2 nnp/N)  	 (11) 
t4-4 

G (pitS. r) =6. s/T; 	(nA.$)sin(21-( np/1    (12) 

where N =2 Ti/A. r. L s 

and Gp(p r) =tG(-pb.. r+ks) = G(pLr+kNb.r) 

F (nas) = 	F(nL\ s+1NLs) 
(.0 

On comparing the Diiscrete Fourier transform we wish to 

evaluate with equations (1) and (2) it is evident that 

6 s.17[1(nA s)/-\--1 and Gc,(p 6r) form a Discrete Fourier pair. 

It is, thennecessary to modify the data accordingly.On 

transforming the function Fa  (n as) it should first be 

multiplied by 6. sin ,while if ypa.r) has been transformed 

the answer should be divided. by /1 sirt to give FA  (n b s). 

It was mentioned in Chapter (3) that F(s) and G(r) will 

be periodic in form with a half period of "n /d r andil 	s 

respectively.This means that N/Y s and NA r represent one 

complete period in F and G respectively .Consequently if 

Ls and /Yr a re chosen with care then 

F(s+N s) = 0 	and 

G(r+N6 	= 0 
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and F (nAs) and G,(pilr) can be replaced with F(hAs) and 

G(pAr)(i.e. the experimental data),It should be noted 

however that the calculated Discrete Fourier Pair will 

consist of one complete period.This necessitated modifying 

the experimental data F(s) to be periodic.If n values of 

F(s) have been determined then the n+1 to (N/2 +1) terms 

are set to zero and the'. (F/2 +2) to N terms are set to 

be the inverse of those in the first half period.Similarly 

only the first N/2 terms are considered out of the N terms 

in the output. 

Finally it should be noted that the equations(1) and (2) 

refer to the complex quantities Yr, and Xh  .In, t.tis particular 

application then the modified data F(s) is read into the real 

input while the imaginary input is set to zero.The required 

result will then be in the imaginary part of the transform 

since the sine terms refer to the imaginary part of the 

exponential. 

In using equation (1) it can be seen that the entire 

sequence Xh is'used to calculate every Ytl.This results,due 

to the periodicity in exp(-j2r1kn/N)Ithe same value of 

Xhexp(-j2r1kn/N) being calculated for many different 

combinations of n and k.The F.F.T. reduces this redundancy 

by factoring the number of data values such that intermediate 

results,which are themselves transforms of shorter sequences 

,are stored. 
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Suppose N = A.B.0 then the entire data seouence can be 

specified by n = 
n.+b.0+a.B.0 

where 	c =0,1,2, 	C-1 

b =0,1,2, 	B-1 

a =0,1,2, 	A-1 

Treating Xvc  in a similar way equation (1) can be expressed as 

P-1 Q1-1 C-1 

La+ToC-FaBel irxa+bA±cADexP(-2rig 
CAC-1aBC)(a+bA+cAB)/N) 

c..0 

Simplifying this expression,and putting exp(-2rtjp)=e(p), 

gives the Cooley version of the F.F.T. 

	

A-1 	 Q-1 

YCAC+aBC =I7e(aa/A)e(a(MC)/ABC)I7e(bb/B)( 

	

0..0 	c-1 	bo 

e(bC/BC)e(cc/C)X
aq-bA+cAB ) 
	 (13) 

e:0 

This indicates how the F.F.T. is calculated for,by inspection 

,the bracketed operation can only be specified in A.B.C. 

ways,one for each value of a,b,c.These N values are 

calculated and stored rather than evaluating the actual 

sum (A.B)2.0 times(once for all choices of a,b,c,a and b). 

For further details see Cooley and Tuhey(1965),or Gentleman 

and Sande(1966). 

In fact various ways of calculating equation(13) have been 

put forward and generally it is required that N be a 

power of 2.This condition leads to the value chosen in 

this particular application. 

We have N = 21-1/Ar-As and in Chapter (3)Lr andL s 

were chosen such that they had maximum values of 0.125A 

_1 
and 0.1254 	respectively.Then N is defined by 

N = 2n 2> 2ri/(0.125)2  

and the smallest value of N which is consistent with this 

condition is N = 512. 
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