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Abstract  

A numerical method for solving the three—dimensional Navier—Stokes 

equations is presented which combines efficiency with applicability to 

general problems of the laminar flow of incompressible Newtonian fluids. 

The method is also suitable for problems involving non—Newtonian fluids, 

but rather less so for compressible and turbulent flow problems. For 

problems involving incompressible fluids, the method entails the 

expression of velocity in terms of scalar and vector potentials which 

ensure that the equation of continuity is automatically satisifed, and 

the introduction of vorticity so as to eliminate pressure as a dependent 

variable. The method is applied to a test problem: uniform and linear—

shear flow past a sphere, and drag, lift and moment coefficients of the 

sphere are predicted for a range of values of the flow parameters. 

Although a relatively large computational effort is required to obtain 

such three—dimensional solutions, application of the vorticity/potential 

method is straightforward, even in relatively complex flow problems, 

and results can be obtained whose accuracy is essentially limited only 

by the computer resources available. Use of the method in obtaining 

solutions of the three—dimensional Navier—Stokes equations, even for 

general flow problems, can, therefore, be recommended. 
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Notation  

We list here the more commonly used symbols, and indicate their 

usual meanings. Less commonly used symbols, and alternative meanings 

which are used only occasionally, will be indicated in the text as 

they occur. 

A 	vector potential field 

C
D' 

C
OP' 

C
DV' 

drag, lift and moment coefficients defined 
CL, Co, CLv, 

in equations (3.30) — (3.36) 
CM 

 

dR 	element of R 

dS 	element of area 

0 	diameter of sphere 

E
3 	

three—dimensional Euclidean space 

F 	body forces 

a(R) 	subspace of L
2
(R) defined in sub—section 2.2.2 

hi, h, hi 	scalar potential fields 

i, j, k, n 	discretised r, E), 0 and t coordinates, respectively 

3(R) 	subspace of L
2
(R) defined in sub—section 2.2.2 

1., 1' 	contours defined in sub—section 2.2.2 
J 	J 

KI space of Lebesgue square—integrable three—dimensional 
L
2
(R) 

 

vector fields defined in equation (2.3) 

m 	constant defined under equation (2.12) 

n 	unit outer normal to dS 

p 	pressure field 

r 	distance between two points in R; see also r, 0, 0 

r, 0, 0 	spherical polar coordinates 

r
o1 
 r* 	radius of sphere and outer envelope, respectively 

R 
	

three—dimensional subspace of E
3 
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Re 	Reynolds number defined under equation (3.10) 

Si, Sii 	surfaces defined in sub—section 2.2.2 

t 	time 

u 	velocity field 

o 
U00 	centre—line velocity at infinity 

ul(R), uf(R), 

U
2
(R) 

w 	vorticity field 

xt  x 	points in R 

xt  y, z 	Cartesian coordinates 

constants defined in sub—section 2.2.2 

Kronecker delta 

boundary of R, outer boundary of R 

rate of dilatation; see also r, E), 0 

P 	viscosity 

v 	kinematic viscosity 

e 	density 

cr 	magnitude of shear at infinity 

0 	scalar potential field; see also ro  O o  0 

V t V., VA 9 	gradient, divergence, curl, scalar Laplacian and 

v2,
0 vector Laplacian operators, respectively 

Lro /SILLO,Lt 	increments of r, 0, 0 and t, respectively 

€ , 	 element of and subspace of, respectively 

N.B. (i) all coordinate systems are right—handed unless otherwise stated; 

(ii) the same symbol is used to denote continuous and discretised, 

dimensional and dimensionless variables. The context will make 

it clear which is intended. 

subspaces of L2(R) defined in subsection 2.2.2 

°q' P 

51j 

SR , -a R 

0 
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Chapter 1 	— 	Introduction and Literature Survey  

1.1 Preliminaries  

The Navier—Stokes equations are the mathematical expression of 

Newton's second law of motion applied to an element of an incompressible 

Newtonian fluid of constant viscosity moving in an Eulerian frame of 

reference in a region R of three—dimensional Euclidean space E3. In 

vector form, the equations may be written
(1)

:— 

-au 	+ 	(u.V)u 	= 	— 1 Op 	+ I/ 2(._% u 	+ 	F 	(1.1) 

at 

where u and p are, respectively, the velocity and pressure fields of the 

fluid, 

Ii and E are, respectively, the kinematic viscosity and density of 
the fluid, both of which are assumed to be constant at all 

points in the region R for all times t, 

and 	F represents body forces which apply to the whole of a fluid 

element, and usually arise from (known) external fields such 

as gravity. 

The Navier—Stokes equations define the dynamics of the flow; the 

kinematics of the flow, on the other hand, are defined by the equation 

of continuity which, for an incompressible fluid, reduces to a statement 

that the velocity field is everywhere solenoidal i.e. 

77.0 	-- 	0 	 (1.2) 

Together with conditions imposed on the boundary SR of the region R, 

and initial conditions at the time t = 0, the set of equations (1.1) — 

(1.2) is generally assumed to be sufficient to determine the velocity 

and pressure fields of the fluid in the region R for all times t > 0. 

The validity of this assumption will be considered in sub—section 1.2.1 

below. If we accept it for the present, however, then the value of 
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solving these equations is obvious. Our overall aim here is to obtain 

a general method for solving these equations (as opposed to particular 

solutions of them) principally for laminar flows. There are, however, 

three fundamental difficulties which we encounter when we attempt to 

solve them. 

First, the expression for the acceleration of a fluid element in 

an Eulerian frame of reference (which is one that is fixed relative to 

some datum), -au 	+ 	(u.V)u, is essentially non—linear. This means 

that many 	
a 
t 	of the useful properties of linear equations, 

such as superposition of solutions, cannot be applied to the Navier-

Stokes equations. One obvious way of overcoming this difficulty is to 

eliminate it, and use a Lagrangian, instead of an Eulerian, frame of 

reference. A Lagrangian reference frame is essentially one that moves 

with the flow, so that the expression for the acceleration of a fluid 

element becomes just -au. Clearly, the equations of motion in such a 

reference frame are 	linear, but there is a drawback: we have to 

define a position vector r (relative to some datum) associated with 

every element of the fluid, so that we can follow the motion of each 

element. Thus, although a Lagrangian description is admirably suited 

to certain flows (for example, those with free surfaces, since the 

vector r immediately gives the shape and position of such surfaces), 

for many flows, especially those undergoing large distortions — for 

example, turbulent flows — a Lagrangian description is quite unsuitable. 

For most problems, this disadvantage is such that an Eulerian description 

is preferable, even allowing for its inherent non—linearity. We shall, 

therefore, confine our analysis to flows defined in an Eulerian frame 

of reference. 

The second principal difficulty that we encounter when solving 

the Navier—Stokes equations is that they involve pressure as well as 

velocity. While the boundary conditions on velocity are generally 
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straightforward (the no—slip condition, for example, means that the 

velocity vanishes on solid boundaries), those on pressure are not. It 

would, therefore, be an advantage if we could eliminate pressure as a 

dependent variable so that we could solve the resulting equations 

directly for the velocity field, and then obtain the pressure field 

by substitution back into the Navier—Stokes equations. 

This difficulty over pressure is related to the third principal 

difficulty that we encounter when solving the Navier—Stokes equations, 

which is that they must be solved subject to the constraint of continuity. 

(These difficulties are related because we may regard the pressure field 

as providing the necessary degree of freedom in a flow to ensure that 

continuity is always satisfied.) If we can — efficiently — ensure that 

continuity is automatically satisfied, then we might be able to reduce 

the amount of work we must do to solve the Navier—Stokes equations. 

Since, as we noted above, the non—linearity in the Navier—Stokes 

equations is implicit in the Eulerian description of a flow, we can do 

very little to ease this difficulty, except in certain special cases
(2)
. 

On the other hand, we can eliminate pressure as a dependent variable, 

and ensure that continuity is satisfied automatically. The method that 

we shall develop to do this involves, in effect, the three—dimensional 

generalisation of the well—known two—dimensional streamfunction/vorticity 

approach(3) (although, as we would expect, non—trivial differences are 

involved in the change of dimensionality). The basis of our method is 

a decomposition of the velocity field into mutually orthogonal components. 

This decomposition is a generalisation of results obtained from 

classical potential theory (which, incidentally, is a kinematical theory, 

so it is not surprising that we can use it to ensure that the kinematical 

condition of continuity is automatically satisfied). The theory of this 

decomposition involves only minor assumptions about the velocity field 

and the flow region. In particular, it makes no assumptions about the 
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smoothness of the velocity field so that, for example, the method can 

be used in compressible flow problems, even when there are shock waves 

present. This means that, to all intents and purposes, if the method 

is applied to the Navier—Stokes equations, no assumptions additional to 

those implicit in the equations themselves need be made. The method is, 

therefore, applicable to general flow problems. Thus although our main 

purpose is to study the flow of incompressible Newtonian fluids, the 

decomposition method can equally well be applied to flows of compressible 

and/or non—Newtonian fluids. 

A brief outline of what is to follow is appropriate at this stage. 

In the remainder of this chapter, we will review methods of solving the 

Navier—Stokes equations. Then, in Chapter 2, which is fundamental to the 

development of our whole analysis, we will discuss the theory of 

"orthogonal decomposition" and show how it may be applied in two different 

but related ways to give a general method of solution of arbitrary flow 

problems. One involves the representation of velocity in terms of scalar 

and vector potentials, while the other involves the projection of the 

Navier—Stokes equations onto the space of vector fields which satisfy 

the continuity equation (1.2). We will show that the former method can 

be applied without ambiguity to general flow problems, so that it will, 

in this sense, become our preferred method for solving the Navier—Stokes 

equations. In Chapter 3, we will apply this (preferred) method to a 

particular problem: uniform and linear—shear flow at infinity past a 

stationary, neutrally buoyant, non—rotating sphere. Our reasons for 

choosing this problem are first that it is important in its own right, 

and secondly that it will illustrate how our general method of solution 

of the Navier—Stokes equations can be applied in a particular case. 

This problem will be solved numerically, since, because of the non—linearity 

of the Navier—Stokes equations, it cannot be solved analytically. 

Finally, in Chapter 4, we will discuss the results which we obtain for 
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this problem, and compare them with other analytical, experimental and 

computational results which exist. This will enable us to draw conclusions, 

not only about the computational results we have obtained, but also 

about the method of solution of the three—dimensional Navier—Stokes 

equations that we have developed. 

1.2 Methods of Solution of the Three—Dimensional Navier—Stokes Equations  

In this section, we will first briefly examine the question of 

the existence and uniqueness of solutions of the three—dimensional 

Navier—Stokes equations. As we shall see, no definite answer can yet 

be given to this question, although there are certain indications that 

a unique solution does in fact exist. We shall then go on to review 

methods which are currently available for solving the three—dimensional 

Navier—Stokes equations. A common feature of all of these methods is 

that solutions are obtained numerically using a computer. The reason 

for this is that, as we have already noted in section 1.1, the 

essential non—linearity of the Navier—Stokes equations in an Eulerian 

frame of reference means that analytical solutions cannot be obtained 

in general. (We note, incidentally, that it has only been possible 

to obtain computational solutions to three—dimensional, as opposed to 

two—dimensional, flow problems relatively recently. This is because 

it is only recently that computers have had both the speed and the 

storage facilities to enable them to handle such problems.) A critical 

assessment of these currently available methods will enable us 

to conclude this section by identifying two particular methods which 

for various reasons appear to be suitable for use in general three—

dimensional flow problems. 
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1.2.1 Existence and Uniqueness of Solutions  

The general question of provinn the existence and uniquenass of 

solutions of the Navier—Stokes equations usually involves applyin7)  the 

techniques of functional analysis to what is essentially a set of 

non—linear partial differential equations. (In fact, the techniques 

used are almost exclusively based on the orthogonal decomposition theory 

which we shall present in Chapter 2. It is not surprising, therefore, 

that we can also base methods of solution on this theory.) Although 

we cannot yet prove whether or not a unique solution of the three—

dimensional Navier—Stokes equations (1.1), satisfying the continuity 

equation (1.2) for arbitrary boundary and initial conditions, given an 

arbitrary body force F, actually exists for all times t > 0, we can 

prove several weaker results. 

Thus we can show that the two—dimensional Navier—Stokes equations 

have a classical solution (i.e. a solution which is sufficiently 

differentiable for the various terms in the Navier—Stokes equations to 

be defined) which is unique in the large (i.e. 04 t 	assuming 

the boundary conditions etc are smooth enough
(4)

. The three—dimensional 

equations, on the other hand, have a classical solution nnly if the 

initial conditions are small enounh or, for less specific initial 

conditions, in the small (i.e. 0 < t < T <00)(5)  (lore generally, 

the three—dimensional Nevier—Stokes equations can be shown to have a 

weak solution (i.e. a solution which is not necessarily class5, a1), and 

this solution can ho shown to be unique and smooth only in the small(6) 

Thus we see that, although the general existence and uniqueness 

question of solutions of the three—dimensional Navier—Stokes equations 

is still open, there are (weak) indications that unique classical 

solutions do in fact exist. Of course, it may be that the question is 

open because of some indeterminacy in the description of three—dimensional 

flows by the Navier—Stokes equations(7). In the absence of definite 
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results one way or the other, however, we will assume, not unreasonably, 

that the three—dimensional Navier—Stokes equations do have solutions 

which are classical and unique in the large. 

1.2.2 Solution Methods  

Solutions of the Navier—Stokes equations must, as we have already 

noted, generally be obtained numerically on a computer. This involves 

solving numerical analogues of the Navier—Stokes (or derived) equations 

in a discretised, as opposed to a continuous, flow field. Because 

three—dimensional problems involve more complex equations, as well as 

dimensionally larger flow fields than two—dimensional problems, methods 

applicable to three—dimensional problems must be relatively efficient, 

both in terms of speed and storage requirements, if they are to be at 

all satisfactory. Thus a method involving direct solution of the 

(discretised) Navier—Stokes equations is not viable, because the use of 

(a priori) unknown boundary conditions on pressure and the imposition 

of the continuity constraint moan that the method is very inefficient(B). 

Other, less direct, methods must be used instead. 

Several such indirect methods are currently available, some of 

which are closely related to one another, being based on the theory of 

orthogonal decomposition which we will develop in Chapter 2. The remaining 

methods are more difficult to classify, being based on a wide variety of 

theories and techniques. It is interesting to note that it is only 

methods in the first (related) group which overcome the difficulties 

concerning pressure and continuity in solving the Navier—Stokes equations. 

Methods in the second (unrelated) group, on the other hand, make no 

attempt to overcome these difficulties, and rely for their efficiency 

on some other technique. We will discuss each group in turn, starting 

with the group of closely related methods. Note that we will be examining 

each method with the aim of using it to solve the Navier—Stokes equations 
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primarily for laminar flows in an Eulerian frame of reference. This 

means that although methods do exist for solving the equations of 

motion of turbulent flows
(9),(10)

, as well as flows in a Lagrangian 

frame of reference(11), we will not discuss them. 

An obvious way to eliminate pressure as a dependent variable and 

to ensure that continuity is automatically satisfied in three—dimensional 

flow problems is to draw an analogy with the streamfunction/vorticity 

approach of two—dimensional (and axisymmetric three—dimensional) flow 

problems. Use of the streamfunction ensures that continuity is satisfied 

automatically, while the introduction of vorticity eliminates pressure 

as a dependent variable
(12)

. The generalisation to three dimensions 

follows from the fact that we can represent any solenoidal vector field 

as the curl of a so—called "vector potential" field (this will be shown 

in Chapter 2), so that we can represent the velocity field u of an 

incompressible fluid thus:— 

u 	= 	V„ A 
	

(1 . 3 ) 
A being the vector potential of the velocity field. Use of the vector 

potential means that the velocity field automatically satisfies the 

equation of continuity (1.2), since the divergence of the curl of any 

vector field vanishes identically. Moreover, as in the two—dimensional 

case, the introduction of vorticity, by taking the curl of the terms in 

the Navier—Stokes equations, eliminates pressure as a dependent variable, 

since the curl of the gradient of any scalar field vanishes identically. 

Thus we have the basis of a method for solving the three—dimensional 

Navier—Stokes equations which, in a relatively simple manner, eliminates 

pressure as a dependent variable and ensures that continuity is 

automatically satisfied. (We note in passing that, until recently, 

there has been some controversy over the boundary conditions appropriate 

to the vector potential. This controversy has now been completely resolved, 

the essential point being that the boundary conditions can be 

— 15 — 



considerably simplified in flow-through problems by the use of a scalar, 

as well as a vector, potential thus:- 

u 	= VYJ 	+ Vn A 	(1.4) 

where v p2.4  = 0. This point will be discussed in Chapter 2.) This method 
of solving the three-dimensional Navier-Stokes equations has been used 

by Aziz and Hellums
(13)

, who studied three-dimensional thermal convection 

in a confined fluid heated from below. It has since been used by Hoist 

and Aziz(14)  in the study of thermal convection in confined porous media, 

although they applied it to equations other than the Navier-Stokes 

equations. 

A method which is closely related to the vorticity/potential 

method also introduces vorticity so as to eliminate pressure from the 

equations of motion. But then, instead of ensuring that continuity is 

automatically satisfied using a potential representation, the velocity 

field u is obtained directly from the vorticity field w by an integral 

relation which is a generalisation of the well-known Biot-Savart law
(15)

:- 

u(x) 	= 
4/T 
1 iff.ii(x)A(x.  - .) dR 	 (1.5) 

 
+ 	various (known) terms incorporating boundary 

conditions on u and the field u at infinity 

if the flow region R is unbounded 

where x is a point in the flow region R, and integration is over points 

1 in R. In fact, obtaining the velocity directly from the vorticity is 

analytically equivalent to the use of a single vector potential for the 

velocity (as in equation (1.3)), since equation (1.5) is nothing more 

than the analytical solution for the curl of the vector potential, as 

we shall show in Chapter 2. On the other hand, the integral relation 

method does differ from the potential representation method in one 

important respect. While the latter method involves solution for the 

potential(s) at all points in the flow field - which presents certain 
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difficulties if the flow field is unbounded — the integral relation 

method involves solution for the vorticity field only in regions of 

non—zero vorticity. This can be a decided advantage, especially in 

problems with unbounded flow fields, because we can confine our 

calculations to the regions of effective non—zero vorticity — say, where 

the magnitude of the vorticity 1.1 is greater than a small number S . 

Then, with an accuracy determined by the size of S , we can solve a 

flow problem which may be smaller than that resulting from a potential 

representation of the velocity field. The drawback with the method is 

that a large amount of computer time is required to evaluate the integral 

in equation (1.5), and a large amount of storage is necessary for the 

geometric factors (x — /)/lx — /1
3 
etc. Obviously, some sort of balance 

is involved, but it does seem that, except for small values of time 

when the non—zero vorticity field is relatively small in extent, the 

balance is against such an integral relation method. The method has been 

used, nevertheless, by Wu and Thompson
(16)

, who studied two—dimensional 

uniform flow past a cylinder in an unbounded region, and by Thompson, 

Shanks and Wu(17), who studied three—dimensional uniform flow past a 

slab at various angles of attack, also in an unbounded region. 

Both of the above methods use derived variables (vorticity, with or 

without one or more potentials) in the solution of the Navier—Stokes 

equations. Two methods related to these use the primitive variables 

velocity and pressure instead. The second of these methods essentially 

grew out of the first, which is an approximate method of eliminating 

pressure p as a dependent variable, and satisfying continuity 

automatically, at one and the same time. In essence, it involves putting:— 

V.0 	= 	E P 	 (1.6) 

where E is very small. Clearly, pressure can be eliminated immediately 

from the Navier—Stokes equations (1.1) by means of this expression. 

This so—called (for obvious reasons) "artificial compressibility" method 
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can then be used to give an approximate solution of the Navier—Stokes 

equations which should be better the smaller we make E . remam has shown 

that, in two—dimensional problems, the solution of the approximate 

equations exists, is unique, and converges to the true solution of 

the Navier—Stokes equations in the limit as E tends to zero. In 

three—dimensional problems, on the other hand, the solution, which 

can be shown to exist, is not necessarily unique, and only tends to the 

true solution of the Navier—Stokes equations under rather specific 

conditions
(1B),(19)

. (This, not surprisingly, is precisely analogous to 

the existence and uniqueness question of solutions of the Navier—Stokes 

equations themselves, which we examined in sub—section 1.2.1 above.) 

The disadvantage with the artificial compressiblity method is that in 

practice E has to be very small (as also does the size of the time—step 

involved in the discretisation of unsteady flow problems) to obtain an 

effectively incompressible solution
(20)

. Nevertheless, Chorin
(21) 

and 

Plows(22)  have both applied the artificial compressibility method to 

two—dimensional steady—state thermal convection in a layer of fluid of 

infinite lateral extent heated from below. 

The artificial compressibility method essentially involves an 

approximation to the solution of the Navier—Stokes equations, the 

accuracy of which is determined by the parameter E . It is clear that 

we should be able to increase the accuracy of the solution by iterating 

to effective incompressibility. In other words, we relax the constraint 

of continuity in the manner of the artificial compressibility method, 

and obtain approximations 	and p0  to the velocity and pressure fields, 

respectively. Now 110  will not generally be solenoidal, but if we update 

our estimate of p0  by putting:— 

P1  + 	7020  P o 	").  (1. 7 ) 

'X being a suitably chosen parameter, we should obtain an improved 

estimate u
1 
 to the velocity field, which should in turn give successively 
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better estimates 92, u3, get.... which will satisfy continuity more and 

more closely. We may, therefore, look on this artificial compressibility 

— plus — iteration scheme as a numerical method for projecting the 

approximate solution u
0 
 onto the space of solenoidal vector fields, 

in other words onto the space of vector fields that satisfy the continuity 

equation (1.2). Thus we arrive at a rather different method for solving 

the Navier—Stokes equations. It essentially involves obtaining some 

solution u
0 
 which satisfies the Navier—Stokes equations and boundary 

conditions, but not, in general, continuity so that mo  is not solenoidal. 

We project 9.0, therefore, onto the space of solenoidal vector fields 

(numerically), and hence obtain the true solution of the equations (to 

within some small error). This is the basis of the so—called "projection" 

method, whose theory has been developed by Chorin
(23),(24) 

and Tiiimam(25)  

out of the theory of the artificial compressibility method. As with the 

artificial compressiblity method, no completely general proofs of the 

uniqueness and convergence of solutions to the true solution of the 

Navier—Stokes equations can be given, although certain weaker results 

are available. In spite of this, the projection method has been used 

widely in the solution of the Navier—Stokes equations. Chorin
(26)

and 

Veltishchev and Zelnin
(27)

, have used it to study three—dimensional 

thermal convection in a confined layer of fluid heated from below. 

Crane
(28) 

has used the projection method to study axisymmetric flow 

development in a circular pipe, and Peskin
(29) 

has used it to study flow 

patterns around heart valves. A slightly modified method has been used 

by Somerville
(30) 

to study small—scale thermal convection in the atmosphere, 

and a differently modified method has been used by Padmanabhan, Ames, 

Kennedy and Hung(31)  to study the middle stages of the collapse of a 

fluid mass surrounded by a linearly stratified fluid. A slightly different 

method again, more closely related to a predictor—corrector approach, 

(32) 
has been developed by Patankar and Spalding 	. 
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This completes our discussion of the group of four related 

methods. The theoretical basis of two of them, the vorticity/potential 

and the projection methods, will be discussed in Chapter 2. The basis 

of the vorticity/integral relation method will not be discussed 

explicitly, however, and that of the artificial compressibility method 

not at all, because the disadvantages associated with each mean that their 

immediate alternatives (the vorticity/potential and the projection methods, 

respectively) are much more suitable as general methods for solving 

the Navier—Stokes equations. We will return to this point at the end of 

this sub—section. 

The second group of (unrelated) methods, which we will now 

discuss, attempt neither to eliminate pressure as a dependent variable, 

nor to ensure that continuity is satisfied automatically: the methods 

rely for their efficiency on some other special technique instead. 

Because these methods are all (apparently) unrelated, there is no 

natural order in which to discuss them. So, to emphasise the difference 

between this group of methods and the group of related methods, we 

will start with two methods which, far from eliminating pressure as a 

dependent variable, actually use it, rather than velocity, as the 

principal variable. 

If we take the divergence of the terms in the Navier—Stokes equations 

(1.1), we obtain a Poisson equation for pressure:— 

c--72 
v P = 	- p V . [(y... V )11 ] (1.B) 

(We have assumed, without loss of generality, that all body forces 

derivable from a single—valued potential are incorporated into the 

pressure term, so that F is solenoidal; the reason why this is so is 

given in sub—section 2.3.2.) As a rule, Poisson equations are notoriously 

difficult equations to solve numerically. Moreover, the Poisson equation 

(1.8) involves unknown Neumann boundary conditions on pressure which, 

as we have already noted, form one of the main difficulties in solving 
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the Navier—Stokes equations. Thus if a method of solving the Poisson 

equation is to be at all satisfactory, it must be really efficient. 

For flow regions of relatively simple geometry, an obvious way to 

solve the Poisson equation (1.8) is to use the Green's function
(33) 

appropriate to the region to give us the solution directly. Unless 

the flow region has a relatively simple geometry, however, determining 

the appropriate Green's function is not at all straightforward, so that 

this approach is not really suitable as a method of solving the 

Navier—Stokes equations for general flow problems. It has, nevertheless, 

been used by Lyczowski and Gidaspow
(34) 

in the study of two—dimensional 

flow and reaction in rectangular fuel cells, although they applied it 

to equations other than the Navier—Stokes equations. 

An alternative to using the Green's function to solve the Poisson 

equation (1.8) is to use an eigenfunction expansion for the pressure 

field. Suppose we put:— 

P* 	+ 	p' 	(1.9) 

where p* is any reasonable scalar field which satisfies the 

non—homogeneous Neumann boundary conditions on the pressure field p. 

Given p*, we can determine v2p*, and hence obtain a Poisson equation 
for 131:— 

02p, 	 B 	)10 	- 	v2  p* 
	

(1.1o) 

Because p' has homogeneous Neumann boundary conditions, we can expand 

p' in terms of an infinite set of eigenfunctions fi:— 
Ncn 00 

C . f 
i=1 

where the ci are constants. Clearly, the use of an infinite set of 

eigenfunctions is going to present problems when we solve the Poisson 

equation (1.10) numerically, but, because numerical solution involves 

discretisation of the flow field, only a finite number of eigenfunctions 

will (and, indeed, can) be involved (N, say):— 

P' 	i
N
1 cifi (1.12) =  
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The N eigenfunctions fi  are determined by the geometry of the flow 

field; so constructing the eigenfunction expansion (1.12) appropriate 

to a particular problem involves determining the set of N constants ci, 

and this can be performed quite efficiently. The drawback with the 

method is that obtaining the appropriate eigenfunctions is difficult 

except in flow fields with a relatively simple geometry (which is 

precisely analogous to the drawback with the Green's function method). 

The method is, therefore, unsuitable for general flow problems, but it 

has been used by Williams
(35) 

in the study of three—dimensional thermal 

convection between two coaxial circular cylinders of equal length which 

rotate relative to one another. 

Several methods for solving the three—dimensional Navier—Stokes 

equations use a Galerkin type of (approximate) representation for the 

velocity field u:— 

. 	 .V 
1=1 

C 
 11 (1.13) 

wheretheMcoefficientsc.
1 
 are constants (spatially), and the N v. 

are (known) vector fields which satisfy the boundary conditions on u. 

Such methods rely for their efficiency on the rapid determination of the 

M coefficients c.
1
, and can be used in a variety of ways, the most common 

being in conjunction with variational techniques in a so—called 

"finite—element" formulation. This formulation involves the use of elements 

of finite size and simple geometrical shape which (together) define the 

flow field. The geometry of each element, which may vary between 

elements, is characterised by a finite number of nodes, and the local 

flow properties in each element are weighted averages of the flow 

properties at the nodes of that element. Oden and Wellford
(36) 

have 

given a general formulation of the method for flow problems, and have 

applied it to several relatively simple two—dimensional examples, while 

Bratanow and Ecer
(37) 

have used the method to study three—dimensional 

flow about oscillating aerofoils. The method does not, however, overcome 

—22— 



any of the difficulties associated with pressure and continuity 

involved in solving the Navier—Stokes equations, and so offers no 

real advantages for general problems. 

A method which we may regard as being a cross between a finite— 

element and a Lagrangian method is the so—called "marker and cell" 

method, which has two distinctive features. First, it involves the 

use of special markers, or inertia—less particles, whose motion is 

determined in a Lagrangian manner by the flow:— 

x(t) 	 JD 	 (1.14) 

where x denotes the position of the marker, u its (Eulerian) velocity, 

and t the time. Secondly, it involves the use of a finite network of 

cells (which we might equally well call finite—elements). The great 

advantage of the marker and cell method is in problems involving free 

surfaces, since the markers can be used to locate the surfaces as the 

calculation proceeds. On the other hand, the method has the same 

drawbacks as the Galerkin and related methods and, in any case, the 

"marker" feature can be incorporated into other methods of solution of 

the Navier—Stokes equations without difficulty. The method has, 

nevertheless, been used widely; Welch, Harlow, Shannon and Daly
(38)

, 

for example, have used it to study a variety of flow problems. 

The final method which we will discuss for solving the three—

dimensional Navier—Stokes equations has been developed by Roache
(39) 

for the solution of steady—state flow problems using iterative 

techniques which, in contrast to common iterative techniques, are not 

time—like in any sense. So far, the method has only been applied to 

two—dimensional problems, but extensions to three dimensions should 

present no difficulty. The restriction to steady—state problems, however, 

means that the method is clearly unsuitable for use as a general method 

of solving the Navier—Stokes equations. 

This completes our discussion of currently available methods of 
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solving the three—dimensional Navier—Stokes equations. The immediate 

conclusion that we can draw is that none of the second group of (unrelated) 

methods is entirely suitable for solving the Navier—Stokes equations 

for general flow problems, although each offers certain advantages in 

particular types of problem. We are thus led back to the first group 

of four related methods for use in oeneral flow problems. We can 

eliminate two of these, the vorticity/integral relation and artificial 

compressibility methods, because their immediate alternatives, the 

vorticity/potential and projection methods, respectively, are, as we 

have already discussed, more suitable for use in general problems. Our 

conclusion, therefore, is that general problems involving the three—

dimensional Navier—Stokes equations should be solved using either the 

vorticity/potential method or the projection method. It is difficult at 

this stage to comment further on these methods, or on their relative 

merits; to do this, we need to look at each of them more closely. We shall 

do so in Chapter 2. 
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Chapter 2 
	

The Orthogonal Decomposition of Lebesgue  

Square—Integrable Vector Fields and  

Applications to Hydrodynamics  

2.1 Introduction  

In this chapter, we will show how three—dimensional Lebesgue 

square—integrable vector fields may be decomposed into mutually 

orthogonal components, and how we may apply this decomposition to 

obtain solutions of the Navier—Stokes equations. The decomposition, 

which is formalised in the Orthogonal Decomposition Theorem in 

sub—section 2.2.2, is essentially derived from Helmholtz's theorem, 

which states that if v is an arbitrary finite continuously differentiable 

vector field defined throughout three—dimensional Euclidean space E3, 

and vanishing at infinity, then we can put
(40)

:— 

v = VS + V A A 

where $ is a scalar potential and A is a vector potential. It was, in 

fact, Helmholtz who first employed the term "velocity potential" used 

in the so—called potential flows of classical hydrodynamics, in which 

the velocity field is expressed as the gradient of a scalar potential 

field. The theory of such flows was brought to a relatively high degree 

of sophistication
(41) 

using the results of classical potential theory
(42) 

This theory, which generalised Helmholtz's theorem to regions RC E
3' 

still required, however, that the field v be continuously differentiable 

and everywhere finite. The problem of extending the results of potential 

(43) 

for fields defined in Riemannian manifolds. The complete extension to 

quite general vector fields defined in RC E
3 

was performed by 

Bykhovski and Smirnov
(46) 

using the techniques of functional analysis. 

theory to more general vector fields was effectively solved by Weyl 

for fields defined in subspaces RC E
3' and by Kodaira

(44) 
and Hodge

(45) 

—25— 



In functional analysis, whole spaces or sets, rather than particular 

elements, are considered, and very general results can be obtained. The 

Orthogonal Decomposition Theorem of sub—section 2.2.2, which is due to 

Bykhovski and Smirnov, thus requires only that the vector field v be 

Lebesgue square—integrable (two other minor assumptions are also required, 

concerning behaviour at infinity if R is partly or wholly unbounded, and 

smoothness of the boundary SR of R). 

As we shall see in section 2.2, the theory of orthogonal decomposition 

is of such generality that it can be applied without essential restriction 

to obtain solutions of the equations of motion of a fluid; in particular, of 

the Navier—Stokes equations. In other words, the requirement of Lebesgue 

square—integrability, together with the two other minor assumptions 

noted above, adds nothing essential to the assumptions inherent in the 

hypotheses used to derive the equations of motion of a fluid. Thus 

orthogonal decomposition theory is applicable quite generally to all 

situations in which the equations of motion themselves are valid. And 

the reason why the theory is so valuable in this context is that for 

flows of incompressible fluids, whether Newtonian or non—Newtonian, the 

use of such a decomposition will, as we shall see in section 2.3, 

automatically ensure that the equation of continuity is satisfied, and 

also eliminate pressure as a dependent variable. Thus two of the principal 

problems involved in solving the equations of motion are removed for 

incompressible flows. The theory can also be applied to compressible 

flows, although its utility is then less apparent. 

In the next section, 2.2, we shall introduce the concept of 

orthogonality of elements of arbitrary spaces, and the concept of 

orthogonal decomposition. We shall then state the Orthogonal Decomposition 

Theorem, the assumptions underlying it, and give it a physical 

interpretation. Finally, in section 2.3, we shall show how the 

decomposition can be applied to give two essentially different general 
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methods of solution of the equations of motion of a fluid, with 

particular reference to the Navier—Stokes equations. 

2.2 Orthogonal Decomposition Theory  

2.2.1 The Orthogonal Decomposition of Arbitrary Hilbert Spaces  

Consider an arbitrary Hilbert space X with typical elements x and Y. 

The definition of a Hilbert space(47) implies that it has:— 

(i) a structure, or topology; 

(ii) a metric, e(x,y), which defines the distance between elements x 

and y E X; 

(iii) a norm, lix Q , which defines the size of elements x E. X; and 

(iv) an inner product, (x,y), which defines the relative orientation 

of elements x and y E X. 

Suppose, for example, that X is the space of n—dimensional real—valued 

vectors x = (x
1
...x

n
). Then we could define the metric thus:— 

e(2..c..K) 	= _sji1 
	1 
(x. — y

i 	— 
)2‘; x, y 	X. 

=  

The norm could be defined thus:— 

Ha =4 n2" i=1 x1 
; x E X 

and the inner product thus:— 

n 
(Zo.Y) 	=   GLI i=1 	x.

3.
y
3.
.  ; x, 1 e X. 

These definitions are familiar as the Euclidean metric, norm, and scalar 

product. 

The property which is relevant to the theory of orthogonal 

decomposition is the existence of an inner product in a Hilbert space. 

By analogy with the concept of orthogonality in vectors, we say that 

two elements x and y E X are "mutually orthogonal" if their inner product 

(x,y) vanishes identically. Consider a subspace Y of X, and denote all 

elements of Y by y. Let z denote the difference x — y, where x E X, and 
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y E Yc.:X. Suppose, with a suitable definition of the inner product, that 

(y,z) s 0 for all y e Y. We then say that the subspaces Y and Z, where 

z E Z, are "mutually orthogonal", and put:— 

X = Y IS Z 	 (2.1) 

and:— 	X 	= 	y 	+ 	z 	(x E X, y E Y, z E x 8 Y) 	(2.2) 

the circle round the operations sign denoting orthogonality. Equation 

(2.1) now represents the "orthogonal decomposition" of the Hilbert space 

X. Moreover, given X and Y, and any element x E X, we can easily show 

that the decomposition (2.2) is unique 

2.2.2 The Orthogonal Decomposition of Lebesque Square—Integrable  

Vector Fields  

We now apply the concepts of the preceding sub—section to the Hilbert 

space of Lebesgue square—integrable vector fields, in particular to three—

dimensional vector fields defined in a region RCE3. We denote this space 

by L2(R), and say that a vector field v E L2(R) if and only if:— 

114 
The inner product is defined for vectors up v E L2(R) by:— 

(u,v) 	= fffzi: 3.3. i u.v. dR 

where the integrals are understood in the sense of Lebesgue
(49)

. We 

see immediately that Lebesgue square—integrability (also referred 

to as "square—summability") does nct imply that v needs to be smooth. 

It may be piecewise continuous, and even point—, line—, or area—wise 

infinite, provided only that the (Lebesgue) integral of its 

magnitude squared is bounded. Physically, this concept is both 

reasonable and meaningful. If, for example, we identify v with the 

velocity field of an incompressible fluid, then Lebesgue square—

integrability implies finite kinetic energy. More generally, it 

implies finite quantities, which is a natural condition for any 

physical system. 

2 
= 1)1:i31 v21. dR < ''' 

(2.3) 
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One further consideration is necessary before we state the 

Orthogonal Decomposition Theorem. We must describe the topology of a 

general three—dimensional region R c: E3. The boundary of R, which we 

denote by SR, comprises:— 

(0 the outer boundary "OR of R, part or all of which may be at infinity; 

and 

(ii)msurfacesS.contained entirely within R, and thus disconnected 
i 

from -6 R. 

Thus we may write:— 

S R 	= 	-21RUS
1
052U...USm 	(2.4) 

where U implies (Boolean) union. The region R may be multiply—connected, 

and contain n holes of type ht like the hole in a torus, so that R is, 

in fact, (n+1)—ply connected. Such holes hl are characterised by closed 

contours 13  and by surfaces S'j. The contours of type 	are contained 

within R and completely encircle the hole hl; thus they cannot be 

continuously shrunk to a point without leaving R. The surfaces of type 

S' are bounded by closed contours l! on SR which cannot be continuously 

shrunk to a point without leaving SR, (Note that the surfaces Si  can 

also contain holes of type h!.) 



We can now state the Orthogonal Decomposition Theorem for the 

space L
2
(R)

(50). 
.— 

L
2
(R) = d(R) CD U

1
(R) M U/(R) e U

2
(R) s 3(R) 
	(2.5) 

where:- 

G(R) is the closure of the space of infinitely differentiable vector 

fields of the form V$, with 0 vanishing identically on SR. 

U
1
(R) is the closure of the space of infinitely differentiable vector 

fieldsoftheform2:1 NiVh.
1
,such that the (scalar) 

Laplacianofhi,V2h.,s 0 in R; m is the number of surfaces Si;  

C.<
i 
is a constant.

'  hi 
 — S ik  (the Kronecker delta) on Sk and —  

vanishes on 1.bR; and the two—period of 
Vhi' Wi

.n  dS, where 

n is the unit outer normal to the element 

dS of St  vanishes identically unless S is a closed surface 

completely enclosing Si. 

Ut(R) is the closure of the space of infinitely differentiable vector 

fields of the form Vh, such that V2h g.. 0 in R; and the two—period 

of 7h over any closed surface S vanishes identically. 

U
2
(R) is the closure of the space of infinitely differentiable vector 

fields of the form 
j1 

f;j vhi, such that V2hi  = 0 in R; n is 

the number of holes hp p„, is a constant; and the one—period of Vhi, 

O\2 	vanishes on all closed contours lk  except for contours 

1
k 	

1i 	J 
encircling the hole ht, where the one—period equals 

unity (this implies that each hi  is many—valued). Also, the normal 

J
derivative of hi  vanishes identically on ER; andfr 

 W
i.n dS 

vanishes identically except on the surface Si.. 	Sk 

3(R) is the closure of the space of infinitely differentiable 

vector fields of the form IA A, such that V.A = 0 in R; the 

tangential components of A vanish identically on SR; and 

f.1 Vol.n dS' vanishes identically for all S. 
St 
k 
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In the above definitions, we have used the term "closure" or, 

strictly, "closure in norm". By the closure of a space, we mean all the 

elements of the space plus their limit points. Thus the closure of the 

open interval 0 < x <1 is the closed interval 0 	x.<1. Similarly, the 

closure of the space of all smooth scalar functions defined on the 

one-dimensional Euclidean space E
1 

and vanishing at infinity includes 

the Dirac delta function. Closure "in norm" implies that x is the limit 

point of a sequence {x1 , x2, ... xm, ...} of elements E X if Ijx - 	0 

as m tends to infinity, with the norm relevant to the space X being 

used (which, in the present context, means the L2(R) norm defined in 

equation (2.3)). The concept of closure means that all the subspaces 

defined above are closures (in norm) of "dense" spaces(51). A space X 

is said to be dense if every element x E X has another element y E X 

near it such that the distance between x and y, Q.(x,y), can be made 

arbitrarily small. We see, therefore, that an arbitrary vector field 

from UR), say, need not be expressible in the form. Since, however, 

vector fields of the form KlyS are dense in E(R), we can approximate any 

vector field in E(R) as closely as we desire. Alternatively, we say 

that a vector field in E(R) is of the form V0 "almost everywhere". It 

follows from this that we can approximate an arbitrary Lebesgue square-

integrable vector field v defined in a region RC. E3  as closely as we 

like thus:- 

v = 	+ 	+ Qh + > 	121 + 01  A (2.6) 

where:- 

0 s 0 on SR; 

the 	. and P, are constants; 

m isthenumberesurfacesS.,and n is the number of holes W.; 

V2h. s 0, 72h a 0, V j  2h a 0 in R for all i, j; 

hi  = Sik  on Sk, and hi  E 0 on -aR for all i; 

C2(Vhi), the two-period of Vhi, a 0 except on surfaces completely 
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surrounding Si  for all i; 

C2(Vh) a 0; 

C1(0 h0), the one-period of Vhi, = 6jk  on contour lk  for all j; 

Vhi.n = 0 on SR for all j; 

Vhi.n dS' a 0 unless k = j, for all j; 
J-1  i- 

SI 
k 

A n = 0 on SR; 

V.A a 0 in R; 

and ITVA A.n dS' E 0 for all St'e  

S' 
k 

Equation (2.6) gives the orthogonal decomposition of a Lebesgue square- 

integrable three-dimensional vector field into mutually orthogonal 

components. It is not, however, the only possible decomposition of the 

field v, for we can show that we can entirely equivalently put VA H. 

instead of Vh.
1  VAN instead of Vh, and VHj  instead of Vhi  so A 

that:- 

= 1=1 
a;
i -a 
V H. + 	H + 	

n cisk  ,s7A H  j 	vA  A  
 j=1 

(2.7) 

with the same conditions as before on 0 and A, and corresponding (but 

more complex) conditions of the m Hi, H, and the n Hi. Since, however, 

the decomposition (2.6) is easier to manipulate than decomposition 

(2.7), we will develop further results for the former decomposition 

(unless otherwise stated), with the understanding that all results can 

be transferred with slight modifications to the latter. 

We can give a physical interpretation of the decomposition (2.6) by 

considering the flow of a fluid in a region R c E3, and identifying v 

with its velocity field. For other vector fields, the analogy with 

velocity will be useful. In any three-dimensional region, we can identify 

three types of motion, namely vibration, rotation, and translation. 

Moreover, we can identify three distinct types of translation. First, 
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there is translation through the outer boundary a R. Secondly, there is 

translation through the m surfaces Si  contained entirely within R. 

Finally, there is translation round the n holes h'. We might expect, 

therefore, to be able to decompose a velocity field into a linear sum 

of motions of the types mentioned. In fact, this is precisely what 

equation (2.6) represents. The VO term represents the vibrational, or 

compressible, component of the flow, and QU A represents its rotational 

component. The Vh term represents translation through i5R, the 

TL/oCiVhi termrepresentstranslationthroughttlemsurfacesS.,and 
1 

the X."1 
j  vyhj term represents translation round the n holes h'. j= 

Using this physical interpretation, it becomes an easy matter to 

determine which terms in the decomposition (2.6) are relevant to a 

particular velocity field. (Again, for other vector fields, the analogy 

with velocity will be useful.) Thus if the fluid is incompressible, it 

can have no vibrational, or compressible, component Vid. If it is 

irrotational, it can have no rotational component VA A. If the region R 

is bounded by a solid wall ER, then the normal component of the velocity 

must vanish on S R. It then follows that we can express v in the form 

+ 	n 	11-1J  + 7/1'01 almost everywhere. Similarly, if there 
j=1 j 

is flow through the outer boundary -6R, but not through any of the m 

surfaces S
i' then the decomposition of v will contain no 

	1=1 46(i7hi 
term. Again, if the flux of v through each of the n surfaces S'. 

characterising the multiply—connected region R vanishes identically, 

the decomposition of v will contain no 	n F.V0 term, and 
=1 j 

so on. 

We now list the assumptions implicit in the decomposition (2.6), 

so that they are quite clear:— 

Assumption I:— the vector field v must be Lebesgue square—integrable. 

The meaning and implications of this assumption have 

already been discussed. 
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Assumption II:— if the region R is unbounded, then we require that v, 

VyJ, etc are of order 1/1x1
2
, and their first derivatives 

are of order 1/1xt
3
, as the space coordinate x tends to 

infinity
(52)

. This condition is, in fact, consistent with 

the assumption that v e L2(R). 

Assumption III:— the boundary SR of R must be piecewise continuous, 

so that it has a unique normal almost everywhere. This 

means that point and line discontinuities are generally 

allowable. Clearly, most surfaces encountered in physical 

problems are piecewise continuous, at least to a similar 

degree as the continuum hypothesis holds, and hence are 

satisfactory. (If we further require that v, VO, etc 

belong to the Sobolev space W(R)
' 
 by which we mean that 

2  

v, vO, etc and their derivatives up to and including 

order p are Lebesque square—integrable in R, then we can 

show that the boundary SR must be at least (p+1) times 
(53) 

piecewise continuously differentiahle 	.) 

Finally, it should be noted that the decomposition (2.6) is essentially 

a decomposition in space, and not in time. Thus it does not matter 

whether the boundary SR is fixed in E3  with respect to time or not. 

So, if the vector field v represents the velocity of a fluid, and the 

surfaces Si  represent particles suspended in the fluid, for example, we 

can use decomposition (2.6) for v whether or not the surfaces Si  move 

with time. 

2.2.3 Analytical Projections Derived from the Orthogonal Decomposition  

of Lebesque Square—Integrable Vector Fields  

Consider a Hilbert space X with mutually orthogonal subspaces Y and 

Z such that equations (2.1) and (2.2) hold. Then we define the "projection 

operator" P from X onto Y by:— 	P x 
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and we call y the "orthogonal projection" of x E X onto Y. Clearly, 

P y = y and P z E 0. Also P
Y  + PZ = 

— I, the identity operator, and 

Py(Pzx) = Pyz 	0 (in other words, the projection operators Py and Pz  

are mutually orthogonal). We now apply the concepts of projection 

operators and orthogonal projections to the decompositions (2.5) and 

(2.6). If 4 denotes the orthogonal projection of v G L2(R) onto G(R), 

and P8 denotes the projection operator from L2(R) onto a(R), and so on, 

we may put:— 

—G 	—U 
1 	

_us 	—U
2 	

—0 

or v 	= 	P-v +P
U 
 v+Pv+Pv+ Pot/

-  (2.9) 
1 	

U 	a 

If we can find the form of the projection operators Pa etc, then we can 

determine vo
G 
 etc, and hence the decomposition (2.6). Now it is clear 

that VO approximates Ita (to any desired accuracy), \74 11 approximates 

v3, and so on. So all we have to do is find the form of VO, \IAA, etc, 

and to do this, all we require are some standard vector identities and 

integral theorems. 

It follows from equation (2,6) and the conditions immediately 

following it that:— 

V.v. 7.4 =V2,5 

7,1! = VA 123 = VA = -Q  11, since V.A E 0 

\-12h. = 0 for all i 
— 

\72h 	0  

V2hj  a 0 for all j 

where Z1is the vector Laplacian. It is easy to show, using Green's 

theorems
(54)

, together with standard vector identities, that the 

(2.10) 

principal value of the general solution of the equation:— 

v2lij  = f 
	

(2.11 ) 

where 	and f are scalar functions of position x E E3  

111 has continuous first derivatives in R and on gR 

III has continuous second derivatives in R 
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and 	ill can be single— or many—valued 

is (to within at most an arbitrary constant):— 

	

(11(Z) = 	1j(p(1) dR + 1 .cp 	dS — 	Tc7(1/0.n dS 
mit 	r 	 mit r 

SR 	SR 

j:1 I ici  fiV(i/r).a 	 (2.12) 

SI. —St— 

	

J 	J 

where m= 4 if x e R, 2 if x E BR, 0 otherwise; 

€ R; 

✓ is the distance between x and the element dR of volume, or 

dS of area; 

St
+ 
and SI—denote opposite sides of the surface SI.' j, 

n is the unit outer normal to the element dS; 

and 	c. is the one—period of vy around the closed contour lj  i.e. 

	

c 	y) = 	▪ - T — J 	SI 

If 	is harmonic (i.e. f m 0), then the first integral above vanishes. 

If (11 is single—valued (i.e. cj  m 0 for all j), then the final integral 

above vanishes. 

From the general solution (2.12) to the equation (2.11), it is easy 

to obtain expressions for 0, the m hi, h, and the n h , using the 

conditions listed under equation (2.6). Then provided we can differentiate 

under the integral sign, which we can do if the result is bounded or 

sufficiently smooth
(55)

, we obtain expressions for C70 etc:— 

	

V0(a) = 1 	r V.L(/) dR 	dS 

	

Mit 	 an 
r 	r 	

(2.13) 

3 3 

R 	SR 

Lii=m  1  DqVhi(20 = Li=
m  

	

1 Ni 	r ahi  dS 	+ 	g dS j 

	

m•K 	
r  
 an 

(2.14) 

- 1 
m-rr 

SR 

Vh(24) = 1 {—$1E. "e_b_ dS + 11 h dS 
m7c 	

r 
SR 
	

SR 

S. 3. 

(2.15) 
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1 
p.vhjw = 7.n1 	R. 	hi  g.  dS + 	dS 	(2.16) 

 mx 
8 R 	S +' -51 

where a.  = -(1/1.3)n + (3/r5)(r.n)r and r = x - 
	

(2.17) 

To obtain an expression for VA, we note that we cannot use equation 

(2.12) for each component of A since the k—th component of the Laplacian 

of A does not (except in rectangular Cartesian coordinates) equal the 

( 
Laplacian of the k—th component of A i.e. (AA)k 	02 	q6)(Ak) 	. (It is 

for this reason that a careful distinction has been made throughout 

between the scalar Laplacian (V2) and the vector Laplacian (La).) 

Instead, we solve the equation Q A = 	v in R. Using vectorial 

equivalents of Green's theorems, together with standard vector identities, 

it is easy to show that the solution of the equation:— 

VAVA. = f 	 (2.18) 

is:— 

VA  (x) = 

	

	dR 	( 	r- US 
mT7 

3 	 3 

	

r 	 r 
R 	SR 

jj  ((0,1),Li)"r dS1 

3 

R 

(2.19) 

with m etc defined as above. Note that we have obtained VI directly, 

as opposed to 	This is because VAP..  can be obtained in a particularly 

elegant form, and also because we do not actually require an expression 

for 	Thus the expression for VA is:— 

VAA(x) = 1 	( \702(/) 	dR 	+ 	na(1)),11),,S: d5 (2.20) 
mac

3 3 r 	 r 
 

R 	SR 

We have thus (implicitly, admittedly) obtained the projections of v 

onto the five subspaces E(R), 1.11(R), W(R), U2(R) and 3(R) — or, to be 

more precise, we have obtained approximations to the projections which 

may be as close as we desire. One point to note is that the projections 
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O 0 
onto G(R) and J(R) involve 7.v and V,v, respectively (c.f. equations 

(2.13) and (2.20), derived from equations (2.10)). Now we have assumed 

that v 6 L
2
(R), so it is quite possible that its derivatives are point-, 

line-, or area-wise undefined. To overcome this difficulty, we generalise 

the definitions of the divergence and curl of a vector field, so that 

no assumption is made about its differentiability. 

Consider a volume V with smooth surface S. Let n denote the unit 

outer normal to an element dS of S. If the vector field v has continuous 

first derivatives in V, the following integral relations hold(57):- 

V.v(x) dV 	= ff n.v dS 

V 	5 

ifVor(2_c) dV 	= 	n v dS 
for all x E VC E

3 

Then, using the mean value theorem for volume integrals(58) we can write:- 

• lim 1 If n.v dS 
V 

S 

• lim 1 fin v dS 
V40 V 

S 
Let us now assume that v E L

2(R). We define the generalised divergence 

and curl of v, which we shall denote by V*.v and V*A v, respectively, 

as follows:- 

V*.v(x) 	= 	lim 	1 	n.v dS 	(2.21) 
T 

S 
and • lim 1 fl-nhv dS 

V-,0 	V 
(2.22) 

S 

We note the equivalence of the generalised definitions and the usual 

definitions if v does have continuous first derivatives in V. As a 

result of this equivalence, we will henceforth always understand the 

divergence and curl in the generalised sense and will, therefore, drop 

the star superscript. Thus the use of V.v and V:v in equations (2.13) 
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and (2.20), respectively, is perfectly valid when understood in the 

sense of equations (2.21) and (2.22), again respectively. 

2.3 Applications of Orthogonal Decomposition Theory to Hydrodynamics  

The equations of motion of a Newtonian fluid with constant 

kinematic viscosity in an Eulerian frame of reference are, ignoring 

thermal effects:— 

au + (u.G')u = - 1 Vp + v(LIu + i'SAP.u)) + F 
at 	 P 

where u and p are, respectively, the velocity and pressure 

fields of the fluid, t is the time, F represents body forces, 

and e  and v are, respectively, the density and kinematic 

viscosity of the fluid. The equation of continuity is:— 

-6e + V.( e u) = 0 
at 

and the equation of state is:— 

a = e (p) 

Given the body forces F for all x E R and all t 1.."5: 0, and 

boundary conditions:- 

u(x) = 	U ; 	x E SR 

and initial conditions:— 

u(t=0) = u 
—o 

2.23) 

we are in general required to determine the velocity field u and pressure 

field p at all points x E R for all times t>0. 

We shall consider first a method of solution of the system (2.23) based 

on a potential representation of the velocity field. We shall then 

consider a method based on projection of either the equations of motion, 

or the velocity field, onto each of the subspaces g(R), Ul(R), etc 

defined in decomposition (2.5). All methods will be generally applicable 
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to both compressible and incompressible, Newtonian and non—Newtonian, 

fluids. Unless otherwise stated, however, we shall assume that the fluid 

is incompressible and Newtonian with constant kinematic viscosity, and 

that thermal effects are negligible, so that the equations to be solved 

are:— 

u + (u. 7)u = — 1 Vp + 	u + F 
at 	

V.0 m 0 in R 	 (2.24) 

u(x) = U; xE SR 

u(t=0) = uo  

Extensions to compressible and/or non—Newtonian fluids will be 

discussed at the end of the appropriate sub—section. 

2.3.1 The Vorticity/Potential Method  

We will assume that the velocity field u, which is the solution of 

equations (2.24), E L2(R). Now continuity implies that, in the generalised 

sense of equation (2.21), the divergence of the velocity field vanishes 

identically, so u can have no VO (vibrational, or compressible) 

component in the decomposition (2.6). Thus we may put:— 

=!iim1 0.(;57 	+ V h + Mni=i jv hi 	vA 

or, letting 	Oh' 
=!'im1 o<iV hi + Q h 

and 
	

0„ A'= 	+ 

u 	= 	+ 
	

(2.25) 

almost everywhere in R. (We use this reduced decomposition since it 

gives us sufficient generality combined with simplicity. Recall that we 

can put 0hi = Wii; c.f. equation (2.7).) Together with suitable 

conditions on h' and A', equation (2.25), substituted into the equations 

of motion (here, the Navier—Stokes equations, since e and v are constant) 

will automatically ensure that continuity is satisfied. If we now take 

the curl (in the generalised sense of equation (2.22)) of the Navier- 

Stokes equations, we obtain the vorticity transport equation:- 
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-6w + ((7h' + KKA').0)w - (w.V)(Vh' + VA A') 
at  

= ii,6, w + VA F 
	

(2.26a) 

where w is the vorticity. We see immediately that, not only have we 

satisfied continuity, but we have also eliminated pressure as a dependent 

variable. Together with the vector potential Poisson equation:— 

AA' = — N7JZA 1  = — w 	(2.26b) 

the scalar potential Laplace equation:— 

\72h, m 0 	 (2.26c) 

and suitable boundary and initial conditions on h', Al and w, equations 

(2.26) form a coupled set which may be solved in principle to give the 

velocity field u(x,t) for all x 6 R, t>0 (provided the solution exists 

and is unique; that is, provided the problem is well posed). The 

pressure field p(x,t) may also be obtained, up to an arbitrary constant, 

by substitution back into the Navier—Stokes equations. We thus have the 

basis of a method for solving the three—dimensional Navier—Stokes 

equations which we call the "vorticity/potential" method. In general, 

the method will involve numerical solution, and since equations (2.26) 

are coupled, an iterative scheme may be necessary. Such evidence as 

there is
(59)

, which is for the special case where u E 3(R) i.e. u = VkA, 

suggests that the apparent increase in complexity when using a potential 

representation for u is more than compensated for by the fact that the 

equation of continuity is satisfied automatically, and that pressure is 

eliminated as a dependent variable. 

It was stated above that we can solve equations (2.26) given 

suitable boundary and initial conditions on h', A' and w. Initial 

conditions present no problem. Given u(t=0) = u p we immediately know 

w(t=0) = V„u , and hence A 1(t=0) from equation (2.26b). We also know 

hqt=0) from the normal component boundary conditions on u and 

equation (2.26c). Boundary conditions, on the other hand, though 

straightforward, can cause difficulties. The correct boundary conditions, 
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which follow directly from the conditions listed under equation (2.6), 

and the definition of vorticity, are:— 

-611'Rn = u.n = Un  

(Dat)t1,2 
= U

t 1,2 — (Vh') t
1,2 	on SR 	(2.26d) 

A' = 0 n 

= VA I-1 

where n t and t
2 

refer to the normal and two tangential components 

of a vector, respectively. In the case of a simply—connected region, or 

a multiply—connected region with zero net flux across all of the surfaces 

V. characterising it (c.f. sub—section 2.2.2), we note that these 

boundary conditions.can be simplified as follows:— 

-oh'/an = U
n 

A' = 0 = 
t
1 	At2 

2 (ht  ht  A4)/3 n = 0 
1 2 

= it 

on SR 	(2.26e) 

where the scale factors h
t 

and ht areare defined as follows:— 
1 

if SR is sufficiently smooth (say, a Lyapunov surface, or 

regular surface in the sense of Kellogg
(60)), 

 then we can 

represent SR locally in terms of mutually orthogonal 

curvilinear coordinates g
n
, St  , and St as follows:- 

1 	2 

§n = 	 n(
1
' -§t ) 

2 
 (2.27) 

If the position vector of a point on 6R is r = 

r( gn, St  , §t  ), then we define the scale factors hi  thus:— 
1 	2 

ny
= 	-)L/6.i_ I • 

(It should be noted, incidentally, that the boundary conditions on w are 

not (all) known a priori, since we do not know u(t) in advance; numerical 

methods which involve the discretisation of tine into steps of length At 

generally u7e u(t— At) to give boundary conditions on w at time t.) 

The reason why the boundary conditions have been stressed is that, 

even quite recently; the boundary conditions on the vector potential in 
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particular have not always been stated correctly. It has, for example, 

been asserted
(61) that if the velocity field vanishes on ER, the vector 

potential can be required to vanish also, which is quite incorrect. 

It might be argued that the use of a scalar plus a vector potential 

(c.f. equation (2.25)) is unnecessary, and that, by analogy with the 

streamfunction in two—dimensional and axi—symmetric three—dimensional 

applications (indeed, the vector potential is the full three—dimensional 

generalisation of the streamfunction), a single vector potential would 

be sufficient, as indeed it would, i.e.:— 

u 	= VA 32* 	 (2.28) 

There is, however, a difficulty then with the boundary conditions on Ait, 

which are not at all straightforward
(62)

. Furthermore, if the boundary 

conditions on the velocity field are constant with respect to time, then 

so also is the complete scalar potential field h' (since it is defined 

by a Laplace equation with constant Neumann boundary conditions). So 

the field h' need only be determined once, at time t = 0. This, together 

with the simpler boundary conditions involved in the scalar plus vector 

potential representation (2.25), suggests that there is nothing to be 

gained from a single vector potential representation, a view supported 

elsewhere
(63),(64). 

 (But note that in problems without flow—through, 

the scalar potential field h' vanishes, and a single vector potential 

representation for the velocity field is then appropriate.) 

If the fluid is now assumed to be compressible, but thermal effects 

are still neglected (incorporating them in fact involves no essential 

difficulty), so that u is no longer solenoidal, we replace the potential 

representation (2.25) by:— 

u 	= Vh" 	+ Q„ A' (2.29) 

where 	\7h" = VO + Vht 

The vector potential Poisson equation is still:— 

QV = —W4111  = — w (2.30a) 
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but the equation for h" is a Poisson equation:- 

72n" = 9 	 (2.30b) 

where e = V.0 is the rate of expansion or dilatation of the flow field, 

the divergence being understood in the generalised sense. (This is in 

contrast to the Laplace equation for ht in the incompressible case 

above.) By taking the divergence and curl of the equations of motion 

(2.23), again in a generalised sense, we obtain:- 

-69 + D2  I (vh,, +vi11) 12  + (vn„ +QA').( Vw) 	W 2 
= -7(1/E ).Vp - 1.v2p 	4 vV29 	V.L. 

	

e 	3 
and 

2)w 	((ph“ +vA p0).p)w 	(w.N7)(phu +7,2) 

= -c(i/e 	vA w  + VAL 

The boundary conditions are:- 

(2.30c) 

(2.30d) 

-bh"Pon = Un  

(V4 A t)t 	= U
t 	- (c7h") t

1,2 1,2 	1,2 
A t  = 0 on 5 R 	(2.30e) 

	

= uA - 
	unknown 

	

9 =V.12 	a priori 

and the initial conditions are:- 

	

1( t=0) = 	u , 	( t=0 ) 	u 	(2.300 

with At(t=0) and h"(t=0) easily obtained from equations (2.30a) and 

(2.30b), respectively. 

It is quite clear that determining the velocity and pressure fields 

for compressible flows from equations (2.30) is much more complex than 

it is for incompressible flows. Moreover, compressible flows can give 

rise to shock waves, and since 9  will have to be defined in a generalised 

sense along these shock waves, additional equations (the Rankine-Hugoniot 

equations
(65)

) will be required to determine the discontinuities in 

velocity, pressure and density. Certainly, it is still possible to 

obtain solutions of the coupled system of equations, but it is readily 
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apparent that a great deal more computational work is involved, compared 

with the incompressible case. When we also consider that the use of 

potentials neither satisfies continuity automatically, nor eliminates 

pressure as a dependent variable, the advantages of such an approach 

would seem to be minimal. Even if the flow was assumed to be irrotational, 

so that w a 0 in R, these disadvantages would remain, though the 

equations would be simpler, admittedly. This is in direct contrast to 

the incompressible case discussed above. 

If the fluid is now assumed to be incompressible and non—Newtonian, 

then all of the advantages of a potential representation applied to the 

flow of an incompressible Newtonian fluid discussed above remain in 

force. Altering the form of the stress relationship certainly alters 

the complexity of the problem (for example, by the introduction of 

further non—linearity), but continuity will still be satisfied automatically, 

and pressure still be eliminated as a dependent variable. Analogously, 

a potential representation applied to the flow of a compressible 

non—Newtonian fluid will suffer from all the defects discussed in the 

preceding paragraph. We see, then, that non—Newtonian behaviour adds 

little formally to the method of solution using a potential representation. 

2.3.2 The Orthogonal Projection Method  

As in the preceding sub—section, we assume that the velocity field 

u, which is the solution of equations (2.24), G L
2
(R). We further assume 

that each of the terms in the equations of motion (the Navier—Stokes 

equations) also E L2(R). This assumption implies that the total forces 

acting on the fluid are bounded. We now incorporate all body forces 

which are derivable from a single—valued scalar potential (for example, 

1 gravity forces(66)) into the 1TVp term; this involves no loss of 

generality. Then, using standard vector identities, it is easy to show 

that:— 
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-6u 	E 	U1  (R) 
9 W(R) 9 U

2
(R) m 3(R) 

at 

(u.V)u E 

— vp E 

vAu E 

(G(R) e U1(R) e U i(R) e U2(R) 0 3(R) 

G(R) e U1(R)  e Ul(R) 

U (R) EB U'(R) e U
2
(R) e 3(R) 

u2(R) 	3(R) 

We note immediately that if we project each of the terms in the Navier- 

Stokes equations onto the subspace U2(R) 	.1(R), then the resulting 

equations will contain no pressure term. moreover, projection onto this 

subspace of solenoidal vector fields ensures that continuity is satisfied 

automatically. We thus have the basis of a method for solving the 

Navier—Stokes equations which, for obvious reasons, we call a "projection 

method". Before we proceed to develop this method, we note that such a 

projection method is very similar to the vorticity/potential method 

discussed in the previous sub—section; the essential difference is that 

here we use the primitive variables u and p, as opposed to the derived 

variables h', A' and w used there. A final point to note is that there 

is a vibrational component of the convection term (u.7)u which has to 

1 
be balanced by the vibrational component of the pressure term 17Vp. It 

might seem surprising that such a vibrational (or compressible) 

component is involved in the equations of motion of a solenoidal velocity 

field u. It is, however, typical of the effects of the convection term. 

There is, in fact, a variety of ways in which a projection method 

may be applied. In all the methods, however, the translational components 

u 	and u 	have to be determined first (because they are not orthogonal 11
1 	

ul 

to the --Vp term), either by solution of equations (2.14) and (2.15) or, 

using a mixed potential/projection approach, by obtaining uu  + uut  
1 

as the solution of the Laplace equation:— 

/2 h' E 0 

with Neumann boundary conditions 	"a1-0/i5n = Un  
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where uU  + uU, = VII' almost everywhere. We now have to obtain Liu  and 

	

1 	 2 

u6). There are two basic ways in which we can do this. We can solve the 

vorticity transport equation (2.26a) for w, and then obtain uu  and LI 

2 

from equations (2.16) and (2.20), respectively. Alternatively, if we 

denote the projection operator from L2(R) onto U2(R) 0 3(R) by P*, then 

operating on each of the terms in the Navier—Stokes equations with P* 

gives:— 

	

-4)P*Cul 	+ 	P*C(u. S7)0 	P* [p 	+ 	F 	(2.32) 

a t 

assuming that P* and WC)t commute; it is not hard to show that they 

do. Since we know u on SR, and have already determined u 	+ u , we 

1 
_ 1.1ul  

can determine u 	+ up on SR. We may thus solve equation (2.32) for 
2 

= au  + u3 using an analytical expression for P* derived from 
2 

equations (2.16) and (2.20) above. Whichever method is adopted, the 

velocity field u can then obtained by straight addition of the various 

components, and the pressure field determined up to an arbitrary 

constant by substitution back into the Nevior—Stokes equations. 

In general, of course, the various equations involved in the 

particular projection method adopted will have to be solved numerically. 

This presents no great difficulty as far as 	and uu, are concerned, 
1 

whatever method is used to obtain them. A difficulty does arise, 

however, in obtaining A., and 9. Although the integral relations (2.16) 
2 

and (2.20) can be and have been used, they are computationally 

inefficient for general problems
(67) 

(recall the comments made on the 

vorticity/integral relation method in sub—section 1.2.2 of Chapter 1). 

We will, therefore, eliminate the integral relations method from 

further consideration. Use of the operator P* for projecting the Navier- 

0 
Stokes equations onto the subspace U

2
(R) @ J(R), on the other hand, 

implies a priori knowledge of P*, and the analytical determination of 

it (from equations (2.16) and (2.20)) may well be very difficult, so that 
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a numerical analogue must be sought. One way of obtaining a numerical 

analogue is to use an iterative scheme to project vector fields onto 

U
2
(R) e 3(R). This approach has been applied to the Navier—Stokes 

equations for the special case where u E 3(R)(68), and it seems that 

the apparent increase in complexity when using  this projection method, 

as opposed to straight solution of the Navier—Stokes equations, is 

more than compensated for by the fact that continuity is automatically 

satisfied, and by the elimination of pressure as an immediate dependent 

variable. (Pressure is in fact retained as part of the iterative scheme, 

which can be shown not to rely on orthogonal projection at all, although 

it does give the projection of the Navier—Stokes equations onto J(R). 

The reason why the iterative scheme used does not involve orthogonal 

projection follows directly from the fact that the scheme will also 

give the translational velocity components u 	and u 	in flow—through 
LI
1 	

u, 

and moving—boundary problems, as well as uu  and u3, even though uu  
2 	 1 

1 and uus 	 t 
are not orthogonal to the ,-,Vp term.) As we would expect, this —  

is precisely analogous to the results we obtained using the vorticity/ 

potential method in the previous sub—section. 

Again, as with the vorticity/potential method, if the fluid is 

now assumed to be compressible, but thermal effects are still neglected 

(although they may be incorporated with no essential difficulty), 

complications arise. Analysing  the equations of motion (2.23), we can 

show that:— 

i)u 	E 	G(R) e U1(R) 9 U'(R) 	U2(R) 6 5(R) 

at 

	

(u.V)u E 	G(R) e U1 (R) ED,  U'(R) e u2(R) e i(R) 

	

E 	G(R) ED U1(R) (ID U'(R) ED U2(R) ED 3(R) 

	

/A\ u E 	G(R) 	U1(R) E) U'(R) ED U2(R) e 3(R) 

	

3V(V.u) E 	G(R) 	U1 (R) E) W(R) 

F 	E 	 U
2
(R) e 3(R) 
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where we have again incorporated all body forces derivable from a single—

valued scalar potential in the iF\lp term. We can easily see that all the 

projections of u are coupled via the boundary conditions as well as the 

equations of motion, so we have to solve for all the projections 

simultaneously. Furthermore, continuity is not automatically satisfied, 

and pressure cannot usefully be eliminated, since we need it to determine 

4. The advantages of applying the projection method to compressible 

flows would thus seem to be minimal. It is hardly surprising that this 

is precisely what we found when we considered applying the vorticity/ 

potential method to compressible flows in the previous sub—section. 

Again, if the fluid is assumed to be non—Newtonian, then precisely 

the same comments may be made as were made in the previous sub—section 

when discussing the application of the vorticity/potential method to 

non—Newtonian fluids. The fact that the fluid is non—Newtonian will 

only alter the subspaces onto which the viscous term in the equations 

of motion has non—zero projections. 

2.3.3 Conclusions  

In the absence of direct theoretical or numerical comparisons, it 

is difficult to say with certainty whether the projection method is 

superior to the vorticity/potential method, or vice versa. One possible 

indicator is that the projection approach uses the primitive variables 

velocity and pressure (and density, if the flow is compressible), whereas 

the potential approach uses the derived variable vorticity (and rate of 

dilatation, if the flow is compressible), together with a scalar and a 

vector potential. Thus the latter method requires the existence of one 

more space derivative of velocity than does the former. So it may well 

be that, in flows with high velocity gradients (turbulent flows, for 

example), the projection method may prove superior. Moreover, the 

projection method involves only four dependent variables (or five, if the 
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flow is compressible), whereas the vorticity/potential method involves 

seven (or ten, if the flow is compressible). So, in principle at least, 

more computational work is involved in the vorticity/potential method, 

compared with the projection method. 

On the other hand, the vorticity/potential method is much more 

straightforward. The exact form of the equations, together with their 

boundary and initial conditions, is known, whereas the projection method 

involves a projection operator whose explicit form is unknown. And it 

is this factor which seems far and away the most important drawback to 

the projection method. Clearly, it is difficult to say that one method 

has definite advantages over the other. But the complete lack of 

ambiguity with which the vorticity/potential method can be used does 

seem to weigh heavily and, in the final analysis, decisively in its 

favour. 

What we can be definite about, however, is that the use of either 

a potential or a projection approach in incompressible flow calculations 

is almost certain to reduce the amount of computational work required 

to solve them. Involving, as they do, only minor assumptions additional 

to those inherent in the equations of motion, continuity and state 

themselves, their use can be confidently recommended. 
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Chapter 3 
	— 	Numerical Solution of the Navier—Stokes  

Equations for Flow past a Sphere  

3.1 Introduction  

In this chapter, we will show how the vorticity/potential method 

developed in the previous chapter can be applied to a particular problem, 

namely flow past a sphere. In particular, we shall consider the flow of 

an incompressible Newtonian fluid of constant kinematic viscosity (a 

so—called "Navier—Stokes fluid"
(69)) 

moving either uniformly, or with 

a constant unidirectional rate of shear, at infinity past a stationary, 

neutrally buoyant, non—rotating sphere. This does, of course, represent 

an idealised flow situation: for example, no fluid is completely 

incompressible, and the sphere would be unlikely to be stationary and 

non—rotating. On the other hand, the problem is sufficiently general 

to enable us to predict certain important features of the flow past the 

sphere and, in any case, it would be a relatively straightforward 

matter to extend the problem to more general flow situations. 

The principal reason for studying this problem is that it has 

important physical applications — for example, fluid—particle flow 

past solid boundaries, such as fluid—borne reactants in chemical 

reactors, blood corpuscles in veins and arteries, and silt on river 

beds — where, provided the particles are approximately spherical in 

shape and are not too close to one another, the flow can be approximated 

by our idealised problem. 

Three important points must be borne in mind when we set about 

formulating and solving this problem. First, we are primarily interested 

in obtaining its steady—state solution (which we interpret in a 

sufficiently wide sense to cover, for example, periodic vortex shedding). 

Secondly, because many physical situations involve low Reynolds number 
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flows, we will aim to solve the equations primarily for flows with 

Reynolds numbers less than (say) 10
4
, although it will obviously be an 

advantage if we can obtain results for Reynolds numbers higher than this. 

(This also means that we will not have to deal with highly turbulent 

flows, and that we can use a variety of (very) low Reynolds ruJmber 

analytical solutions to the problem, making Stokes flow and other 

similar approximations, for comparison purposes.) The third and final 

point which we must bear in mind is that the problem, once formulated, 

will be solved numerically on a computer, since there is no way of 

solving it analytically. It is, therefore, important to realise that 

this solution is not necessarily the same, even qualitatively, as the 

analytical solution. (For example, turbulence, which affects the point 

of separation of a flow past a body such as a sphere, may be on too 

small a scale to be predicted computationally, so that the numerical 

solution may differ from the analytical solution.) These three points 

will constantly recur as guiding principles in the formulation and 

solution of our prohlom. 

In the next section, 3.2, we will formulate the complete problem 

of flow past the sphere analytically, and then numerically, using 

finite—difference methods. Then, in section 3.3, we will show how the 

problem may be solved computationally and finally, in section 3.4, we 

will present the results we have obtained. 

3.2 Formulation of the Problem 

3.2.1 Analytical Formulation  

Our aim, as discussed in section 3.1 above, is to determine the 

motion of a Nevier—Stokes fluid moving either uniformly, or with a 

constant unidirectional shear rate, at infinity past a neutrally buoyant, 
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stationary, non—rotating sphere. We will assume that the velocity and 

pressure fields u and p, respectively, of the fluid are sufficiently 

differentiable for the flow to be determined by the Navier—Stokes equations:— 

-du + (u.V)u 	1Vp + vAu 
	 (3.1) 

at 

together with the constraint of continuity:— 

.0 - 0 	 (3.2) 

where E■and-u denote, respectively, the density and kinematic viscosity 

of the fluid, and t denotes time. Whether the system of equations (3.1) — 

(3.2) does in fact possess a solution, and whether this solution is 

unique, is, as we saw in sub—section 1.2.1 of Chapter 1, still unknown. 

In the absence of evidence to the contrary, we will assume that it does. 

The boundary conditions to be imposed on the solution are clearly:— 

u _ 0 	on the surface of the sphere, 

and 	u 	U.., as the space coordinate tends to infinity; 

U.eis the velocity field at infinity. 

(The boundary condition u = 0 on the surface of the sphere implies that 

there is no flow—through and no slip. Other boundary conditions can be 

considered, for example permeable surfaces
(70) 

(where there is flow—

through), and the flow of rarefiedgases
(71) 

(where there is slip).) 

The initial conditions to be imposed are, on the other hand, not 

quite so obvious. As we mentioned in section 3.1, we are primarily 

interested in the steady—state solution of the system (3.1) — (3.2). 

(It could be argued, therefore, that we need only solve the steady—

state equivalent of equation (3.1) — i.e. put Zu/ at E O. This 

presupposes, however, that such a steady—state solution actually exists — 

the occurrence of periodic vortex shedding behind bluff bodies, 

turbulence at high Reynolds numbers, etc, suggests that it may not.) 

We can, therefore, choose suitable initial conditions for the unsteady 

(72) 
system by acknowledging this, and assuming (not unreasonably 	) that 
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} on SR 

in R 

(3.4) 

the asymptotic, or "late—time", solution of the unsteady equations, 

obtained as time t tends to infinity, is the steady—state solution, 

and that it is effectively independent of the choice of initial 

conditions. On this assumption, therefore, we can choose (virtually) 

any initial conditions that satisfy the boundary conditions and be 

reasonably certain that the late—time solution so obtained is the 

steady—state solution we desire. The exact choice of initial conditions 

will be discussed in sub—section 3.3.2 below. 

In order to solve the system of equations (3.1) — (3.2), we will 

use, for the reasons discussed in sub—section 2.3.3 of Chapter 2, the 

vorticity/potential method, as opposed to the projection method. 

Following  the argument of sub—section 2.3.1 of Chapter 2, and in the 

same notation, we might put:— 

u = Vh' + \2\ A' 
We can, however, simplify this representation. Because the surface of 

the sphere is in effect a solid wall, there can be no flow through it. 

Thus the potential representation of a cnn contain no :ET 	i  
pegh. 

1=1  

term. Moreover, because the flow region is not multiply—connected, the 

potential representation of u can contain no 	J.1  piVhi term. Thus 
we can use the following  more specific representation of u:— 

u = Vh + VA  A 	 (3.3) 

(which is equivalent to saying  that u E U'(R) e 3(R)), where:— 

v2h = 

LA = -vo„ A = -pAu 

V.A E-_- 0 

--oh/6n = Un  

A n = 0 —n- 
--a(ht  ht  An)/)n = 0 

1 2 

Again, following the argument of sub—section 2.3.1, we eliminate 
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pressure by taking the curl of the terms in the Navier—Stokes equations, 

and obtain the vorticity transport equation:— 

w + (u.V )w — (w.V )u = •vL w = — AVOA  w 

at 

or, substituting from equation (3.3):— 

-aw + ((Oh +V,A).\7)10 - (w.)(Vh +Q̂  A) = -1-/VAVA it (3.5) 
at 

with boundary conditions:— 

w = vx, A on the sphere 	
(3.6) 

w = 	U00  at infinity 

The system of equations (3.4) — (3.6) forms a complete set from which, 

if the problem is well—posed, the vorticity (w), scalar potential (h), 

and vector potential (A), fields may be determined at all points in the 

flow field, and for all times greater than zero. (We note, however, 

that h is arbitrary up to a constant.) The velocity field may then be 

obtained from equation (3.3), and the pressure field up to an arbitrary 

constant by substitution hack into equation (3.1). 

We note, incidentally, that the potential representation (3.3) for 

u is invalid in the unbounded flow field round the sphere, since the 

motion at infinity means that u is not Lebesgue square—integrable. This 

difficulty can be overcome in one (or both) of two ways. We can put 

u = u' + Uco, where Upo is the velocity field at infinity; clearly 	is 

then Lebesgue square—integrable, so we can decompose u' instead of u. 

Alternatively, since we are eventually going to solve equations (3.4) — 

(3.6) numerically, we will generally use a finite representation of the 

unbounded flow field. This will usually mean that we enclose the sphere, 

radius r
o
, in an envelope of radius r* (r*;)r

o
) and ignore the rest of 

the flow field outside the envelope. Inside the envelope, the velocity 

field is then Lebesgue square—integrable. The question then arises: 

what boundary conditions do we impose on the envelope? However large 
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the envelope is, if we merely impose the boundary conditions which apply 

at infinity, we will eventually run into difficulties with respect to 

wake lengths etc. Other boundary conditions which might approximate the 

flow at this envelope, such as parallel flow downstream etc, have been 

investigated for two—dimensional flows using a streamfunction/vorticity 

formulation, the conclusion being that, while there is no entirely 

satisfactory answer, we should be as precise as possible when specifying 

the boundary conditions on the envelope
(73),(74) 

— which generally means 

imposing the boundary conditions which apply at infinity. Of course, 

this means that, for example, wakes will be curtailed in length 

compared with an unbounded flow. On the other hand, infinite regions 

are not (generally) encountered in physical problems, so we might 

argue that phenomena such as wake curtailment by outer boundary 

interaction are physically realistic. (There is, indeed, no very good 

reason for considering unbounded regions, other than ease of analytical 

formulation and, in some cases, solution.) 

Sinco our aim hare is to onlvo the equations (3.4) — (3.6) 

numerically, we will in fact adopt the latter course, and enclose the 

sphere (radius ro) in a concentric spherical envelope (radius r*>>ro). 

We will henceforth, therefore, understand all boundary conditions "at 

infinity" to mean conditions on this spherical envelope, unless otherwise 

stated. This does not, in fact, alter the form of the conditions (3.4) 

and (3.6); it merely alters where they are to be applied. 

3.2.2 Dimensionless Form of the Equations in Spherical Polar Coordinates  

The obvious and natural system of coordinates to use for flow in 

an unbounded region past a sphere is (right—handed) spherical polar 

coordinates (r, 9  , 0). It will also be useful, however, to have a system 

of (right—handed) rectangular Cartesian coordinates (x, y, z) with 

origin at the centre of the sphere, and aligned so that:- 
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slope = 0 	 slope = 

e, -1J 

(0 the flow at infinity is in the positive z (0 = 0) direction;  

(ii) the flow varies at infinity in the x (e= n/2; / = 0,77) direction 

only, if at all. 

Thus we have, diagramatically:— 

The parameters characterising  the system ar0:— 

— the magnitude of the velocity at x = 0, y = 0, 	t ao(r-->oo, 

B = 0,70, denoted by U,Z;  

— the rate of shear at infinity,Tbuz/i)x, denoted by Cr; 

— the diameter of the sphere, denoted by D;  

— the fluid density and kinematic viscosity, denoted by e  and 

respectively. 

Using  the methods of dimensional analysis, we can reduce the effective 

number of parameters from five (0, 	or, e, and v) to two (a Reynolds 

number and a ratio of velocities). There is a variety of ways in which 

this reduction to dimensionless form can be performed depending  on the 

choice of the characteristic velocity of the system. The choice rests 

naturally between the centre—line velocity at infinity, 4" and the 

product of the shear rate at infinity and the diameter of the sphere, e0. 
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at r = ro (3.9) 

 

  

at r = r* 	(3.10) 

We will adopt the convention that we will always use Uco  as the 

characteristic velocity unless it is identically zero, in which case we 

will use crD. Then, with D as the characteristic length of the system, 

we can easily show that:- 

w + ((Q h +'q, A) .V )w - (w •V )(V h + V, 	= - 1WVA  
at Re 

in R 	(3.7) 

in R 

11\f^ 	

(3.8) 

VhSIA  A = 

7.A a 0 
,q2h  = 0  

-6 hie) n = 0 

	

(r2  sin() An)/an 	0 

(i.e. Arrar = - 2Ar/r) 

Ahn a 0 (i.e. AG s 0 s A0) 

wn = 

w n = 	A),,n —n- 
n = U .n 

-81Aria r = - 2Ar/r 

A s 0 s A0  

w = - 

where Re is the Reynolds number of the system; its definition depends 

on the choice of the characteristic velocity. Thus:- 

CD/t) 	if U°0,4 0 
Re = 	 o 	; o'D2/t) 	if Uco= 0 

n is the unit outer normal to S R; clearly, this is in the 

positive radial direction at r = r*, and the negative radial 

direction at r = ro ; 

the condition wn 	0 at r = r0 follows directly from the no-slip 

condition on velocity; 

and 	cr is the vector (<7' 	' a' a ) = (crsin6sin0, crcosOsin0, 0-cos0), with 0 0 
C- made dimensionless with respect to (ILA) if Ug.:4 0, and 
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itself if 40= 0 (i.e. o = 1). 

Note that we use the same symbol to denote both dimensional and 

dimensionless variables; henceforth, we will always understand variables 

to be dimensionless, unless otherwise stated. Thus ro  = il  and:— 

t

((1 +(Tr*sin0cos0)cos0, —(1 + (Yr*sinOcos0)sing, 0) if Ucgc4 0 

undefined. Also, terms such as 
sin  
—:--- tend to become unbounded. We can 

overcome these difficulties as follows:— 

(i) to overcome the problem of undefined 0— and 0—components, we define, 

on the polar axis only, a local Cartesian coordinate system (X, Y, Z) 

and align it such that X = r, Y = x, and Z = y:— 

Roo = o 
i (resinecosOcose, —r*sinecos0sin9, 0) 	if Uon = 0 

A final point to note is that on the polar axis (0 = 0,TC), the 

0— and 0—directions, and hence the 0— and 0—components of vectors, are 

X 

Note that this implies a right—handed coordinate system on the 9 = 0 

polar axis, and a left—handed system on the 9=7C polar axis. Note also 

that because the boundary conditions on the flow are symmetrical about 

the x—z plane, the scalar potential field h is also symmetrical about 

this plane; this fact is used to simplify terms involving h on the 

polar axis. Such symmetry is not necessarily carried over to the vector 

potential or vorticity fields, however, as the possible existence of 

oscillating wakes etc makes clear, so no symmetry arguments can be used 

to simplify terms involving A or w on the polar axis. 

(ii) the terms which tend to become unbcunded on the polar axis are or 

the form f/sine, f/sin
29, f/tane, and f/tanOsine. Now although f(0*)/g(0*) 

may be undefined, where f and g are functions of 9, the limit of 
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f(0)/g(8) as el ,e* may exist. L'Hospital's rule(75)  gives:- 

lim 	 = fl(p)  
0-3.9* g 1) 	gl(v) 

the primes denoting differentiation with respect to q. (The rule may be 
applied again if ft(G*)/gt(11*) is undefined, and so on.) We may easily 

show that:- 

lim 	f 
g--3.o sin e 

lim 
2 

sin 9 

f  -f' 

lf" 

 

(3.11) 

lim 	f 	ft  
0-3,0,7r tan 9 

lim 	f 	= f 1.fn 

0 tang sin 9 
-rr 	-if" 

which solves our second difficulty. 

We are now in a position to write down the dimensionless form of 

the vorticity transport, vector potential Poisson, and scalar potential 

Laplace, equations, together with their boundary conditions, in spherical 

polar coordinates, and with suitable modifications on the polar axis. 

Because of their relative length, however, they are written elsewhere 

(c.f. Appendix 1). 

3.2.3 Finite-Difference Formulation  

The numerical solution of partial differential equations essentially 

involves the discretisation of the domain of definition of the dependent 

variables. Thus numerical solution of the unsteady equations of motion 

of a fluid involves discretisation of the three-dimensional region R in 

which the fluid is flowing, and the half-open time interval [0,T), where 

T is sufficiently large for us to obtain all our desired results. (In 

practice, this generally means until steady-state has effectively been 
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reached.) 

The region R is the closed subspace of E
3 

defined by:— 

r 	r < r* 

and hence 
	

0 < 9 < -ft 
	 (3.12 ) 

and 
	

0Co<2TC 

There is a variety of ways in which we may discretise R. The way in 

which we shall do it is probably the simplest: we discretise the radial 

coordinate r into n
r 
sections of equal length Ar, the polar angle 6 

into no  equiangular sections AG, and the azimuthal angle 0 into n0  

equiangular sections L10. Thus if (i, j, k) denotes a node in the 

discretised region RI, with coordinates (r, 0, 0) in the continuous 

region R, 

r = (i — 1)Ar + ro; 1 4 i nr  + 1 

B = (j - 1 )L\B 	; 1 4 j 4 n e  + 1 	(3.13) 

= (k - )PO( 	; 1 Ck Ln0  

where nr  = (r* — r
o)/C1r, ng = 7t/b.0 , and n/  = 27t/W. 

Note that this disrretisntion donn not involve scaling of the 

space variables (for example, exponential scaling of the radial 

coordinate, which is often used to give increased spatial resolution 

near solid boundaries where velocity gradients tend to he greatest). 

Also, it uses constant intervals Li',  	A.Ø. The reason for this i 

that the question of the superiority of any other approach over the 

straightforward one given above has not yet been resolved. (The increase 

in resolution near solid boundaries quoted above, for example, must ho 

balanced against a loss of resolution in the shear layers at the edge 

of wakes.) Indeed, in certain circumstances, scaling and/or variable 

intervals can modify the problem adversely(76) 

The discretisation of [0,T) is straightforward: we split it into 

n
t intervals of equal length At, so that:— 

t = nLt; 0< n 	nt  = T/at 
	

(3.14) 
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The maximum size of the time—step length at is generally governed by 

considerations of stability of the numerical scheme, and will be discussed 

in sub—section 3.4.1. 

With this straightforward discretisation of the space Rx[0,T), 

the product being understood in the sense of a Cartesian product(?), 

we can proceed to obtain finite—difference analogues of the partial 

derivatives in the vorticity transport, vector potential Poisson, 

and scalar potential Laplace, equations, and their boundary conditions, 

given in Appendix 1. (Finite—element analogues might be used instead of 

finite—difference analogues; our choice of the latter is necessarily 

arbitrary. We note, however, that the use of finite—element and finite—

difference analogues can involve us in solving a similar, if not the 

same, set of matrix equations. Thus our choice between the two 

approaches, though arbitrary, is not necessarily of crucial importance.) 

Consider a function il of a variable x. Assuming that y is sufficiently 
differentiable, a Taylor series expansion of y about the point x = xo  
gives(  

78 ) : - 

1\1(xo+h) = 11( xo) + gr (x0) + 12*(x_
u
) + 

2! 
• • • 

where a prime signifies differentiation with respect to x. Thus we have:— 

111(xo+h) — 11J(xo—h) = 2h1!' (xo)+ 32.0x0) + ... 

or ir(x0) = 111(x0+h) — 1[1(xo—h) + 0(h2) 	(3.15) 

2h 

where we say that a(z) is 0(b(z)) if lim a(zkap.  We see that equation 
z—+0 b(z) 

(3.15) gives us an approximate expression for the first derivative of 

with respect to x at the point xo, in terms of values of y at the points 
(xo+h) and (xo

—h), together with an idea of the size of the error 

involved in the approximation. Because tl e(x
o) is given in terms of 1p 

at points on either side of xo, and because the error is 0(h2), we say 
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that equation (3.15) is a second-order centred-difference approximation 

to tr(x0). Similarly, we can show that:- 

il l(%) = 1p(xo+h) - y(x0) + 0(h) 	(3.16) 

h 

which is a first-order forward-difference approximation to yl(x
o
). 

Backward-difference approximations are defined in a similar manner. 

When we come to choose the form of spatial differencing that we 

will use, we might argue that points in the flow field receive diffused 

information from all directions, but convected information only from 

points upstream, and that this should be reflected in the spatial 

differencing of the diffusion and convection terms. This means that we 

should use centred-space differencing for the diffusion term, and 

so-called "upwind-differencing" for the convection term. Upwind-

differencing is, however, generally of first-order accuracy only(79) 

On the other hand, provided we do not use "downwind-differencing" for 

the convection term, whose meaning is obvious, and which can be shown 

to be unconditionally unstable(80)1  we can and will use centred-space 

differencing to maintain second-order accuracy both for the diffusion and 

for the convection terms wherever possible, i.e. at all interior nodes. 

We now decide what form of time differencing we will use. Simple 

first-order time differencing of the equation:- 

It= fQ) 	 (3.17a) 
at 

would give:- 

$(t+At) - $(0 = F(10 	 (3.17b) 
At 

where F(i) denotes the finite-difference analogue of f(y). If we 

evaluate F(LI) using values of p at time t, we can immediately determine 

11(t+At) from equation (3.17b). Such a scheme is termed explicit, for 

obvious reasons. If, on the other hand, we evaluate F(lJ) using values 

of y at time t+ fit, an implicit scheme results. Clearly, the latter 
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scheme is more complex inasmuch as it involves implicit solution of 

equations of the form (3.17h). On the other hand, it can in general be 

shown to be stable for much larger time—step lengths At than the 

explicit scheme. Indeed, for certain linear equations, such as the 

diffusion equation:— 

= 'Q'2111 
	

(3.10 
at 

implicit schemes can generally be shown to be unconditionally stable, 

whereas explicit schemes have limitations on the size of Lt for 

stability(al) 	 n?),(83) 
. (Various other semi—implicit schemes can be devised 	9 

but we can neglect then for our purposes, because they offer no 

additional advantages.) As a result of the inherently superior stability 

of implicit schemes for large £t, we will use such a scheme for the 

numerical solution of the vorticity transport equation. In dimensionless 

vector form, this is (c.f. equation (3.7)):— 

+ ((\7h +VA A).\nw — (w.V)(Cjh +va) =— L:vAvA,„2 
at Re 

(3.19) 

Assuming that Vh is known — and it can be easily determined — at a 

given time—step n, we know An and w
n
, and require A

n+1 
and w

n+1
. To 

 

determine them implicitly, and yet retain a linear finite—difference 

scheme, so that solution of the implicit equations is straightforward, 

we solve the spatial finite—difference analogue of:— 

n+1 	wn 	((vh  +7,An).v)wn+1 	(wn+1
.v)(Vh +VA  Ari) 

Lt 	 n+1 
= 	1-- VAVA  

Re 
(3.20) 

In other words, the finite—difference form of the vorticity transport 

equation uses a vector potential field in the convection terms evaluated 

at the previous time—step. To update A, all we need then do is solve 

the spatial finite—difference analogue of:— 

A  n +1 	= 	+1 	
(3.21) 
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the right-hand side of which is known. (We could then use this estimate 

of An+1 to get a better estimate of w
n+1 

in equation (3.20), and so on. 

In fact, provided At is not too large, such iteration is unnecessary, 

especially since we are primarily interested in the late-time solution 

of the equations, when changes in the field A between time-steps will 

be small. This point will be further discussed in the penultimate 

paragraph of this sub-section on enforcing the no-slip condition on 

the surface of the sphere.) 

We now define C
r
m,n 
 to be the space of continuous r-dimensional 

vectors with continuous derivatives up to and including order m in 

space, and n in time. If we assume that A E C8
3
'2  (which implies that 

,2. 	4,0 
E C3  ) and also that h E Ci 	in R then, by suitable Taylor series 

expansions, we can obtain implicit (in time) centred-space finite-

difference approximations to the various terms in the equations in 

Appendix 1 at all interior nodes in the discretised region R'. These 

approximations will be second-order correct in space, and first-order 

correct in time. 

Boundary conditions, however, introduce complications, for two 

reasons. First of all, we cannot use centred-space differences at 

boundaries (schemes that do generally involve reflection principles, 

and are very suspect); we must use one-sided differences instead. 

Provided we assume that h g C4'0  and A E C'0  (so that w 	C2'°) on SR, 1 — 3 	3 

the boundary of R, then use of one-sided differences presents no 

difficulties, though truncation errors do tend to be larger. For 

example, we can easily show that:- 

tp(x0) - 4(x0) + 41jJ(xo+h) - 

2h 
ill( x0+2h) 0(h2) 	(3.22) 

   

with the error of order h2 in equation (3.22) being precisely twice 

that in equation (3.15). 

The second complication arises from the use of a finite-difference, 
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as opposed to an analytical, method of solution, and centres on enforcing 

the no—slip condition on the surface of the sphere. Our approach has been 

to set up equations for h, A, and w. Since the boundary conditions are 

time—invariant, we can solve for h at once, and regard it as a known 

field thereafter. Thus we have to solve two coupled second—order 

equations in A and w. (We do not solve a single fourth—order equation 

in A, since experience with a fourth—order streamfunction approach in 

two dimensions suggests that this can lead, as a result of imposing 

first—order boundary conditions, to computational inefficiency
(84),(65)

, 

and instability(86)0 On the surface of the sphere (r = r
o
), we have the 

following boundary conditions:— 

AB  m 0 m A0  

Ar/i5r = — 2Ar/r 

w
r 

s 0 

11)hr = (7„ u n = CVA VN  

together with the no—slip condition u = 0. The first three conditions 

(on A) are sufficient to determine A. And the no—slip condition is 

necessary for us to specify w on the surface cf the sphere (indeed, the 

no—slip condition provides the mechanism by which vorticity is 

generated at the surface of the sphere
(87)

). This is the only correct 

way in which the boundary conditions can be applied. A difficulty arises, 

however, in numerically enforcing  the no—slip condition, so that 

vorticity is in fact correctly generated at the surface of the sphere. 

Out of various possible schemes, numerical results obtained both in the 

present work and elsewhere(88) suggest that the following scheme' is best:— 

wr(ro)  N  

we(ro) = —1 (— 3v0(ro) + 4v0(roi-LSO — vis(r0+26,r) + Vo(ro) 
2Lr 

r
o 

(3.23) 
1 (— 3v8(ro) + 4v8(ro+Lr) — vo(r0+2,Nr) — Vs(ro) 
2Lr 

r
o 

o)  
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where v =VA and V = 17h. (Clearly, the no—slip condition implies that 

v 	V = 0 at r = r
ot 
 which can be used to simplify these expressions.) 

Comparison of equations (3.23) with equation (3.22) suggests that this 

scheme is of second—order accuracy; since, however, v and V are 

obtained from A and h, respectively, by numerical differentiation, the 

scheme is, in fact, only of first—order accuracy. This is not 

necessarily a disadvantage, since first—order schemes for boundary 

conditions can give more accurate results than higher—order schemes
(89) 

and also present fewer numerical stability problems. We note, 

incidentally, that the field v is not known a priori, so we use the 

field v evaluated at time t to give the boundary conditions on w at 

time t+ Lt. We could then, if we wished, obtain an estimate of v(t+Lt), 

and hence a better estimate of the boundary conditions on w(t+Lt), and 

so on. Such iteration seems unnecessary, however, provided (as here) 

the Vt A terms in the vorticity transport equation are also evaluated 

at time t
(90). 

We are now able to write down . the finite—difference form of the 

equations and boundary conditions of Appendix 1, together with suitable 

modifications on the polar axis. because of their relative length, 

however, they are written elsewhere (c.f. Appendix 3; the notation 

used is that of this sub—section). 

3.2.4 Drag, Lift and Moment Coefficients  

This sub—section completes our formulation of the problem of flow 

past the neutrally buoyant, non—rotating, stationary sphere. We show 

how, given the vorticity field w, we may calculate the drag in the 

positive z—direction, the lift in the positive x—direction, and the 

moment or torque (interpreted in a right—handed sense) about the y—axis, 

on the sphere. These are not the only net forces and moments that can 

act on the sphere — periodic vortex shedding, for example, would give 
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Drag 

omen t 

,Lift 

rise to periodic forces. We may reasonably expect, however, that, for 

low Reynolds numbers, the symmetry of the problem will he such that 

these are the predominant effects. We note, incidentally, that, because 

the sphere is assumed to be neutrally buoyant, there will be no buoyancy 

contribution to the lift or drag. Similarly, because the sphere is 

assumed to be stationary, it maintains a constant position with respect 

to the flow at infinity. Finally, we note that, until otherwise stated, 

all variables are dimensional. 

The drag force on the sphere may be thought of as comprising a 

form component (due to normal or pressure forces) and a friction 

component (due to tangential or viscous forces). The pressure force 

acting in the z—direction on an element of area dA is given by 

(—p cose)dA. Now the element of area dA is given, on the surface of the 

sphere (radius r
o
), by dA = r

o
2 
  sine d9 0. Thus the form drag Dp  on the 

sphere is given by:— 

/2/17 
D
P 	

— r p core sine de dO = 	
(23 (3.24) 

0=0 0=0 

If -C
ab 

denotes the flux of b—momentum in the a—direction, then the 

viscous force acting in the z—direction on an element of area dA is 

(-17
r0

)(—sine)dA. Thus the friction drag D
V 
 on the sphere is given by:— 
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D 

	217 7r e

rg 
sin9r

2 
sine dO dO 

0=0 0=0 

We can easily show, using the no-slip condition, that, on the surface 

of the sphere, 71-
re

= -µaue/ar(91)  

of the fluid ( tt= el)). Thus:- 

-ir2  
- 	

11277 
Dv  = L 	

71:  

= - 1.L wo, where II is the viscosity 

(3.25) w0 sin29 d9 dO 

0=0 9=0 

The total drag D is given by the sum of Dp  and Dv. 

The lift force on the sphere may, by analogy with the drag force, 

be thought of as comprising a form component and a friction component. 

The pressure force acting in the x-direction on an element of area dA 

is (-p sin9cos0)dA, so that the form lift L on the sphere is given by:- 

2 	
2 

Lp 	- r 
- -71: 15 7V 

p 51029 cosi! d9 dO 	(3.26) 

0=0 9=0 

The viscous force acting in the x-direction on an element of aroa dA is 

(-7C
r9

)(cos9cos0)dA + (-1: )(-sin0)dA. We can easily show that, on the 
1.0 

surface of the sphere,lco = -11-6u0ror = 	in in the same way that 

we showed thatrro  = -txwo. Thus the friction lift Lv  on the sphere is 

given by:- 

2TC 7C 

 
V 

= 	ur
2 

	

(w sin0 + w0  cos9 cos0) sine dO d0 
o 

0=0 9=0 	 (3.27) 

The total lift L is given by the sum of Lp  and Lv. 

The moment, or torque, M on the sphere arises as a result of 

viscous effects alone. Since, by assumption, the sphere is not rotating, 

we can easily show that the moment on an element of area dA on the 

surface of the sphere is (-1:
r9
cos0 +TrosinOrosO)r

o
dA, so that:- 

3 	
rr 

N = ur 	(w0  cos0 + we sink cos ) sine d9 d0 
I 0 	P 

	

0=0 9=0 	 (3.28) 

Given w and p, we see that we can immediately obtain the drag, 

lift and moment on the sphere. Our formulation does not, however, give 
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p explicitly; nevertheless, it is a simple matter to determine it on 

the surface of the sphere: we apply the no-slip condition on the 

velocity field to the Navier-Stokes equations, and can easily show that:- 

1 3)a 	= 2 -bu- + 	=w + -62.2 — 
1/ r", -69 

° ar 	7,r2  0 	-Or 

and 

1 	1511 = 23)21 + u wyr,  = -w, - awe. 
ro  sing 	r-, -ar 

and hence:- 
a 

vro 
 

awe) de + p(r=ro, 9.0) 
ro 	-Or 

0 
-vrosi.n9 	(w9  + "Ow,) 	+ 	/=0) 

P = 0 

Zr 
0 

(3.29) 

which gives p directly from a knowledge of w. 

As in the formulation of the rest of the problem, we use the 

methods of dimensional analysis to decrease the effective number cf 

parameters which we have to deal with. We choose the diameter D of the 

sphere as a characteristic length, and the projected area of the sphere, 

7tr2 = 4
1102,  

as a characteristic area. Finally, as a characteristic 

kinetic energy per unit volume, we choose iTUhar,  where U
char 	

H = U00 

if this is non-zero; otherwise, 
Uchar 

=crD. (Note that, by convention, 

the pressure is made dimensionless with respect to twice the 

characteristic kinetic energy per unit volume.) We can now define 

the dimensionless drag, lift and moment on the sphere as follows (note: 

these are not standard definitions, necessarily; indeed, there seem to 

be no universally accepted definitions):- 

./ 2-11.7 

C
DP 

= 8 DP  	= -1 	p sin29 d9 d5 
TC 

" e 1)2 u2 	0=0  0=0 9=0 

1-21Trt 
C
DV 

= 8 D
V  	= - 2 	sin29 d; d/ 

7tRe 

Q 
n n  2 2 7t

e - -char 	
kl=0 0=0 

-70- 

(3.30) 

(3.31) 



2Re 
1 	I (al 	+ Z111 	dB 9=0) 

0 
ar 

0 

C
D 

= C
DP 

+ C
DV 

CLP 
= 	8 L

P 	
= -2 	p sin

2  a cos/ dei dpi 
TC 

1-277 

0=0 9 =0 
23t 7t 

CLV = 	8 L V  	= 	2 (w9 sin0 + wif  cose cos0) sing di) 

7cRe  
7C e 

2 2 
° °char 	X=0 9=0 	 (3.34) 

CL = C
LP 

+ C
LV 

(3.35) 

- 8 M 	= 	
27cITC 

(W0 cos0 + we  sin/ case) sine de d/ 
71fie 

f 
 
it=() 9=0 	 (3.36) 

and:- 

(3.32) 

(3.33) 

it   n2 H2 
- -char 

TC 2 D3  U2har  

0 
I —1 	(2wB  + Zwo) d% + P(r=z, e =9, 0=0) 

2Re sine 
"Dr 

(3.37) 

0 

where all variables are now dimensionlesv. again, and Re = U
char

Vv. We 

note, incidentally, that, for positive values of the shear rate 0', we 

anticipate (correctly) that the moment M will be negative; this explains 

the minus sign in the expression for the moment coefficient E. We also 

note that, because pressure is arbitrary up to a constant, we can (and 

will) set p(r=1, B=0) m  0 in equation (3.37). 

Equations (3.30) - (3.37) give the drag, lift and moment coefficients 

of the sphere, together with the pressure field on the sphere, 

analytically in terms of the vorticity field w. In order that we may 

determine them numerically, we require discrete analogues of line 

integrals (to obtain the pressure field on the surface of the sphere) 

and surface integrals (to obtain the various coefficients). The obvious 

way to obtain such discrete analogues is to replace the integrals by 

summations. Thus if some coordinate x is discretised into constant 

cx2  
intervals Qx, the line integral 	ii(x) dx (where x2  = x1  + nAx, say) 

x
1 

might be replaced by the sum:- 

111(x1  )Ax+ 111(x1 +Lx)Ax + 	+ 1(x1 +(n-1)Ax)Lx + li(x2)Ax 

2 
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jrx

1 

: ii(x) dx i.e. 
	 i=1 

(3.38) 

which we may apply directly to equations (3.37). (Alternative, more 

accurate, methods such as Simpson's rule
(92) 

cannot be used because the 

number of intervals n is not always suitable. Also, obtaining the line 

integral between points other than x1  and x2  (for example, x1  and x2+ Ax) 

is particularly straightforward with expression (3.38).) Note that we 

can determine the pressure at any node by integration along a variety 

of paths; the results should be (and will be, analytically) identical. 

Any discrepancies that occur in the numerical implementation are due to 

errors in the solution for w, and errors in the numerical line 

integration. The discrepancies thus give a guide to the errors involved 

in the whole numerical scheme. 

A discrete analogue of a surface integral may be obtained in a 

similar manner to the discrete analogue of the line integral in equation 

(3.38). Thus it is easy to show that:- 
27 Tr 

J1=o G.o 
y sine de do 2'2. 2Tr(y(0=0) + 1.11(0=r))(1 - cos) 

4:1  
(3.39) 

,\ 	,27c-614 	Tr-La 
	 0.0 	 _La  

21 sine sinla pie 

which we may apply directly to equations (3.30), (3.31), (3.33), (3.34), 

and (3.36). 

With this, we complete the formulation of our problem. 

3.3 Method of Solution  

In this section, we will first discuss the methods we shall adopt 

to solve the finite-difference analogues of the vorticity transport, 

vector potential Poisson, and scalar potential Laplace, equations. We 
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will then show how the complete solution of the problem may be 

obtained. 

3.3.1 Solution of the Finite—Difference Equations  

When we come to choose between various methods for solving the 

finite—difference equations developed in the previous section, we must 

distinguish between the parabolic (vorticity transport) equation and 

the two elliptic (vector potential Poisson and scalar potential Laplace) 

equations. In general, parabolic equations are based on a half—open 

integration domain, whereas elliptic equations are based on a closed 

integration domain. (Thus the vorticity transport equation has to be 

solved in the half—open region Rx[D,T), whereas the vector potential 

Poisson and scalar potential Laplace equations have to be solved in 

the closed region R.) The result of this is that parabolic equations 

can be "marched" through the half—open domain from a (given) initial 

state, being modified by the boundary conditions as they go. Elliptic 

equations, on the other hand, have to be solved everywhere in the 

closed domain simultaneously. Consequently, the numerical schemes 

which we can use to solve parabolic equations are, in general, different 

from those we can use to solve elliptic equations. 

Various methods exist for solving parabolic equations, depending 

on how we march in the half—open coordinate direction d E D in the 

integration domain CxO (in our problem, the coordinate d is time). As 

we discussed in sub—section 3.2.3 above, an explicit method of solution 

means that if we are at some point d E 0 in the integration domain CxD 

we may proceed explicitly to the point d+Qd which is further along 

the integration domain, but instabilities may result. An implicit 

method, on the other hand, although very much more stable, will 

involve more computational work in proceeding from the point d to the 

point d+Ld. It is possible, however, to reduce the amount of 
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computational work we must do in an implicit method by splitting each 

interval LSd into n equal sub—intervals, where n is the dimensionality 

of the space C in the half—open region CxD (in our problem, C is the 

region RC E3, so n = 3). In the first sub—interval, between d and 

d+ d, we solve equations which are implicit in one dimension of C 

only. In the second sub—interval, between d+ CS d 
	

8 and d+ 
2d

, we solve 
n 	n 

equations which are implicit in another one dimension of C only, and 

so on, until we have reached the point d+bd, when we will have solved 

equations implicit in each of the n dimensions of C in turn. Such 

so—called "locally one—dimensional" or "alternating—direction implicit" 

methods are not new
(93)

, although extensions to n>2 dimensions are 

more recent
(94),(95). 

 Their basic value lies in the assumption that it 

will be easier to solve several small problems than one big one; provided 

this is the case (and it often is), then the advantages of such methods 

are obvious, combining relative simplicity of solution with high 

stability. The principal difficulty with such methods, on the other hand, 

is that they are relatively complex to formulate. Also, mixed derivatives 

(96) 
require special treatment (though they can be handled 	), and the 

presence of derivatives of higher than second—order means that it is 

not possible for the matrix equivalent of the finite—difference equations 

(97), 
to be manipulated into a tridiagonal form (which is easy to invert 	). 

Because the parabolic equation of interest to us, the vorticity 

transport equation, possesses mixed spatial derivatives, as well as 

spatial derivatives of higher than second—order, difficulties arising 

in locally one—dimensional and alternating—direction implicit methods 

become particularly acute. We shall, therefore, use a fully implicit 

method for the vorticity transport equation, as already mentioned in 

sub—section 3.2.3. More particularly, we shall use an iterative method 

which, as it happens, can be applied both to the parabolic vorticity 

transport equation, and to the elliptic vector potential Poisson and 
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scalar potential Laplace equations. 

Iterative schemes, which are a common feature of many methods for 

solving elliptic equations, involve guessing a solution, and then 

determining by how much the guess does not satisfy the equations and the 

boundary conditions. On the basis of this information, a (better) 

estimate of the solution is obtained; the amount by which this does 

not satisfy the equations and the boundary conditions leads to a 

further estimate, and so on, until, if the process converges, the 

estimates tend to the solution of the equations. So that we can 

select the particular iteration scheme that we will use, it will be 

helpful if we express the various finite—difference equations in matrix 

form. The vorticity transport equation may be written:— 

at interior nodes 	(3.40) 

with Dirichlet boundary conditions on w*, 

the vector potential Poisson equation may be written:— 

at interior nodes 	(3.41) 

with mixed boundary conditions on A*, 

and the scalar potential Laplace equation may be written:— 

T h* 	= 0 	at interior nodes 	(3.42) 

with Neumann boundary conditions on h*, 

where, if N is the number of interior nodes in the discretised region 

R', w* is the 3N—element column vector whose elements are components 

of the field w, A* is the 3N—element column vector whose elements are 

components of the field A, and h* is the N—element column vector whose 

elements are from the field h. R, S, and T are (sparse) square matrices. 

We may regard the right—hand sides of each of the above equations, 

together with the coefficients of the matrices R, S, and T, as known. 

We may, therefore, represent any of the above equations thus:— 

A x = 	 (3.43) 

with A and I known. Now we can decompose the matrix A as follows:— 

R 10*
n+1„n = law 

S A*
n+1 	,n+1 = ww 
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A =L +D+U 	 (3.44) 
WWI 	 ...= 	 .1■11 

where L is a strictly lower triangular matrix, 

D is a strictly diagonal matrix, 

and 	U is a strictly upper triangular matrix. 

Using this decomposition, we can construct certain iterative schemes 

for solving equation (3.43)(98). Thus the so—called "Jacobi" method 

may be written:— 

x
(k) 

= 1 	. (k-1) + D-1.y. — D (L + U)x 	 (3.45) 

the superscript k denoting the k—th approximation to x. Similarly, the 

so—called "Gauss—Seidel" method may be written:- 

x(k)  = — (L + D)-1U x(k-1)  + (L + D)-1y 	(3.46) 

and the so—called "point successive over—relaxation" method may be 

written:— 

—1 	k-1) x(k) 	= (D + (.3 L) 	[c (1 ••• 6..) )13 — Lot.l)x(  + wy.] (3,47) 

where co is a relaxation parameter, chosen so as to optimise the 

convergence of the iterative scheme (in general, 0 -44)4( 2; usually, 

1 ...,; u3<:2). Any of these three well—known schemes may be initiated 

merely by guessing a suitable vector x(0); this is generally quite 

straightforward
(99)

. Then, apart from the choice of co in the point 

successive over—relaxation scheme, we can proceed from iteration to 

iteration until convergence is effectively achieved. It is possible to 

show, both analytically (for certain forms of the matrix A) and 

numerically, that of the three schemes mentioned the point successive 

over—relaxation scheme is generally the most efficient, and converges 

to the solution of equation (3.43) fastest, provided a suitable 

(preferably, an optimum) value of co is used; the optimum value of GO 

can be determined either numerically or, in certain cases, 

analytically
(100). 

 We will, therefore, use a point successive over—

relaxation scheme for the solution of each of the finite—difference 

equations. Since, however, the matrices involved in these equations 
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are not of the form for which analytical prediction of the optimum 

relaxation parameter is possible, a numerical trial—and—error procedure 

must be adopted instead. 

To conclude, we should note that the schemes (3.45) — (3.47) are 

not the only possible ones nor, indeed, necessarily the most efficient 

ones that we might use. For example, "block" schemes can be devised  

in which several elements of x are updated simultaneously; this can 

sometimes be desirable. These more complex schemes have not, however, 

been conclusively shown to be more efficient or faster than the simple 

schemes above. 

3.3.2 Overall Solution  

We are now in a position where we can solve the complete flow 

problem, given the necessary parameters which describe it (such as the 

Reynolds number) and suitable initial conditions. As we noted in 

sub—section 3.2.1, we are primarily interested in the late—time 

(steady—state) solution of the problem. It would be useful, therefore, 

from a computational point of view, if we could use an estimate of the 

solution as an initial condition, whether or not this estimate is 

likely to be physically realisable. For the case of uniform flow past 

(102) 
the sphere, a good initial estimate might be Stokes flow 

u
r 

= (1 — 9(1/r) 	*(1/r3)) cos 9 

up  = —(1 — t(1/r) — -1—(1/r3)) sin e 	 (3.48) 
32 

uo  = 0 

the variables being dimensionless. For such flows, this is in fact 

the initial condition we will use. For the case of shear flow past 

the sphere, however, the situation is not quite so straightforward. 

Although the analytical solution for centred linear—shear (i.e. Ul= 0) 

Stokes flow exists
(103), 

 it is relatively complex and its use is, in 

fact, unnecessary, because it is not very critical what initial 
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condition we use (provided it is reasonably smooth): the convergence 

time to reach steady—state will not vary much
(104) 

For shear flows, 

therefore, we might — and will — use a linear radial variation between 

the boundary conditions which hold on the sphere (r = ro) and those 

which hold on the outer envelope (r = r*) as an initial condition 

on the velocity field. Thus, since there is no slip on the surface 

of the sphere, and the velocity field at the outer envelope is U,, 

the initial condition is:— 

u = ((r — ro)/(r* — ro)) 	
3.49) 

i.e. 	u = ((r — i)/(r* 	1)) Uco 

Given these initial conditions on u, it is a straightforward 

matter to obtain (analytical) initial conditions on the vorticity 

field w, and hence (numerical) initial conditions on the vector 

potential field A by iterative solution of the vector potential 

Poisson equation. Note, incidentally, that when there is uniform 

flow past the sphere, we could either impose the analytical boundary 

conditions obtained by putting r = r*, or those obtained by letting 

r-*00, at the outer envelope. Numerical tests indicate that it does 

not matter much which course we adopt; accordingly, to be consistent 

with the rest of the formulation, we impose the r-1...o boundary 

conditions at the outer envelope. 

We can now proceed to solve the complete flow problem. A 

computer program has been written, in what is essentially FORTRAN IV, 

which will solve the problem, given all the relevant parameters 

defining the discretised flow system. A listing of the program 

and its associated subroutines is given in Appendix 4 (q.v.), while 

details of the storage requirements of the program are included 

with the results presented in section 3.4 below. We present here, 

on the other hand, a flowchart showing in outline the complete 

computational procedure:— 
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Given — all the relevant flow parameters 

— all the relevant parameters describing the 

discretised flow region 

— suitable convergence criteria for the 

iteration schemes 

■ 
Determine the scalar potential field by point 

successive over—relaxation 

Calculate the initial conditions on the vorticity 

and vector potential fields 

Set the time t = At 

field at time t 

Determine the vorticity field at time t by point 

successive over—relaxation 

Set the time 

Determine the vector potential field at time t by 

point successive over—relaxation 

Decide:— 

has steady—state been 

reached? 

Yes 

Determine the drag, lift and moment coefficients 

( Stop 
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The implementation of this procedure raises three main questions, 

the first two of which are related:— 

(i) how do we decide when the over—relaxation schemes have converged? 

(ii) how do we decide when steady—state has been reached? 

(iii) for any reasonable three—dimensional problem, the procedure 

involves a large amount of computer storage — what can we do to 

minimise it? 

There is, in fact, no entirely satisfactory answer to the first two 

questions. Various criteria can be applied(105);  we will use the 

following:— 

(i) the over—relaxation schemes will be said to have converged if:— 

max 	Ix(k) — xck-1)1 	 (3.50) 

all i 

where x.
(k) 
 represents the estimate of the element xi  of the vector x 

representing the unknown vorticity, vector potential, or scalar 

potential fields obtained in the k—th iteration, and S is very small. 

(ii) steady—state will be said to have been reached when a criterion 

analogous to inequality (3.50) has been satisfied, with xi
k) 
 now 

representing the value of xi  at the k—th time—step. 

The answer to the third question is that we can do a great deal to 

minimise the computer storage required, with possibly the greatest 

savings being made in the storage of the matrices R, S, and T (c.f. 

equations (3.40) — (3.42)). As we have already noted, these matrices 

are (very) sparse. Accordingly, we need only store non—zero coefficients 

of these matrices, together with indicators of the positions of these 

coefficients in the matrices. 

A variety of minor difficulties occur in the actual implementation 

of the computational scheme. The only one of any importance is the 

following. Because we are solving the problem numerically as opposed to 

analytically, the vector potential field A is not exactly solenoidal in 
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the flow field. This can, and in certain circumstances does, manifest 

itself in the addition of a small constant field of the form VO to A 

at each iteration of the vector potential Poisson equation. Since the 

field WI does not affect the representation of the velocity field 

(recall:—W70 m 0), this is not a serious problem. All that we need 

to do is incorporate an additional (but alternative) convergence 

criterion into the relaxation scheme:— 

max i (At
(k) 

- At
(k-1)

) — (At
(k-1) 

— At
(k-2))< E 

all i 

i.e. 	max 1 At
(k) 

— 2At
(k-1) 	At(k-2 )I 
	

( 3. 51 ) 
all i 

where At(k) is the k—th approximation to the element AI of the vector 

A* representing the unknown elements of the vector potential field A, 

and E is very small. 

3.4 Numerical Results  

In this section, we will present the numerical results obtained 

using the computer program mentioned earlier. We will first present 

some basic results, concerning the number of mesh—points in the 

computational flow field, the position of the outer envelope, the 

choice of optimum relaxation parameters, and the maximum size of 

time—steps we can use. We will then present some typical late—time 

velocity fields predicted by the program. Finally, we will present 

computer predictions of the late—time drag, lift and moment coefficients 

of the sphere for a range of Reynolds numbers, shear rates at infinity, 

and centre—line velocities at infinity. The results will be discussed 

in section 4.1 of Chapter 4. 

— 81 — 



3.4.1 Preliminary Results  

The computer on which all numerical results to be presented were 

obtained is the CDC 6400 / CYBER 7314 system at Imperial College, London. 

The maximum central (i.e. fast—access) memory available on this system 

is, after the requirements of the compiler etc have been met, 50K 

sixty—bit words (1k = 1024). This fact is important when we consider the 

number of mesh—points in our spatial discretisation of the flow Field. 

The smallest problem that can give useful results for shear flow past 

a sphere involves a discretised region R' with two radial, two polar 

angle, and four azimuthal angle, spacings. This means that the flow 

region has six interior and twelve boundary mesh—points. Now the total 

storage requirements of the computer program simulating the flow for a 

problem of this size would be about 28K words on the 6400 / 7314 system, 

of which about 22K words would be needed to store the program and 

associated subroutines, which are independent of the size of the problem. 

The remaining 6K words are required for the storage of matrix 

coefficients, vector components, etc. The reason why such a large 

amount of storage is required for this small eighteen—node problem is 

that the analytical equations in spherical polar coordinates are 

relatively lengthy (c.f. Appendix 1), and hence the matrix band—widths 

in the discretised equations are relatively large. If we were to increase 

the size of the problem to one with, say, three radial, four polar 

angle, and four azimuthal angle, spacings, giving a flow region with 

fifty—six mesh—points, then the total storage required would be about 

45K words. Because the maximum central memory available is 50K words, 

as we noted above, this (three radial) x (four polar angle) x (four 

azimuthal angle) spacing problem is in fact the largest that we can 

efficiently handle on the 6400 / 7314 system. Accordingly, in all 

computer runs, a fifty—six mesh—point flow field was used. Although 

this implies a very coarse mesh, quite acceptable results could be 
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obtained using it, as we will see in sub—section 3.4.3. 

Given this discretised region, we may now determine the optimum 

relaxation parameters for use in the point successive over—relaxation 

schemes. Numerical trial—and—error tests with various relaxation 

parameters showed that, for the scalar potential Laplace equation, 

the optimum value was 1.7, one hundred iterations being typically 

— 4 , 
necessary for convergence with S = lo 	kc.f. inequality (3.50)). For 

both of the other equations, the optimum relaxation parameter was 1.0, 

corresponding to the Gauss—Seidel scheme, as opposed to point successive 

over—relaxation. This is not too surprising, in fact, because 

relatively few iterations are needed for convergence for these equations 

(typically, five for the vorticity transport equation and twenty for 

the vector potential Poisson equation, with 5 = 10 5  and 6 = 10 3  

(c.f. inequalities (3.50) and (3.51))). Although over—relaxation with 

the optimum relaxation parameter is generally the best strategy when a 

relatively large number of iterations is involved, using values of the 

relaxation parameter less than the optimum can lead to better results 

when only a small number of iterations is involved; indeed, if just one 

iteration is to be performed, it can be shown that the Gauss—Seidel 

scheme always gives the greatest reduction in error
(106) 

. 

Having decided on suitable relaxation parameters, we may now 

determine the radius r* of the outer envelope. This is not, however, 

a straightforward problem. If we position it close to the sphere, the 

blockage effect of the sphere will be very high. Positioning it far 

away from the sphere, on the other hand, will lead to inaccuracy, since 

we can only have three radial spacings between the sphere and the 

envelope, and truncation errors are a function of this spacing. Some 

sort of compromise is clearly required. No single answer is satisfactory, 

however, for all flow situations. Thus where viscous effects are 

important (in the moment coefficient of the sphere, for example), we 
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are interested in detail close to the sphere, and would aim to make r* 

relatively small. Where pressure effects are important, on the other 

hand (in the drag and lift coefficients of the sphere, for example), far 

field pressure data is important, and this is sensitive to blockage 

effects; consequently, we would aim to make r* relatively large. 

Numerical tests indicate that:— 

(i) where pressure effects are important, the balance between blockage 

effects and loss of accuracy occurs at about r = 1.25; 

(ii) where viscous effects are important, the balance occurs at about 

r = 0.875. 

Consequently, we will choose r* = 1.25 (corresponding to PSr = 0.25) 

when determining pressure dominated effects, and r* = 0.875 (Ar = 0.125) 

when determining viscosity dominated effects. (So that the fineness of 

the balance can be seen, certain results obtained using both values of 

r* will be presented in the following sub—sections.) 

The final numerical parameter which we have to fix is the size of 

the time—step, At. So that we can reach steady—state as rapidly as 

possible, we clearly want Lt to be as large as possible. Analytical 

stability analyses
(107) for various model equations give indications 

of the maximum At that we can use but, in the final analysis, a trial-

and—error procedure must be adopted. Numerical tests showed that the 

maximum Lt we can use varies approximately as the square—root of the 

Reynolds number of the problem, being about 10
3 

at a Reynolds number 

of unity. The time taken to reach effective steady—state at this 

Reynolds number is about 10
1 

and varies approximately linearly with 

the Reynolds number. (The computer time required to set up and solve 

a typical problem, incidentally, is about five minutes at a Reynolds 

number of 10
-2

, and ten minutes at a Reynolds number of 102, on the 

6400 / 7314 system.) 

To conclude this sub—section, we recall our assumptions that the 
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late—time (or steady—state) solution and the computer time taken to 

reach steady—state are virtually independent of the choice of initial 

conditions (c.f. sub—sections 3.2.1 and 3.3.2). A series of numerical 

tests showed that these assumptions are in fact justified, provided 

the initial conditions are reasonably smooth. 

3.4.2 Velocity Fields  

Our purpose in presenting (late—time) velocity fields is to enable 

us to visualise the flow past the sphere noting, for example, 

recirculatory regions and stagnation points. Because of the relatively 

coarse nature of the mesh used in the computer program, however, 

localised or small—scale phenomena, such as points of flow separation, 

are unlikely to be accurately predicted, or even predicted at all, in 

the velocity fields. (This is in contrast with overall or integral 

properties of the flow, such as drag, lift and moment coefficients, 

which we might — correctly — expect to be more accurately predicted.) 

A direct result of this is that the predicted velocity fields at various 

Reynolds numbers are very similar qualitatively (and even quantitatively, 

at low Reynolds numbers, because the equations of motion are then 

effectively independent of Reynolds number). For this reason, therefore, 

we shall only present velocity fields obtained for a Reynolds number of 

unity. We shall, moreover, only present velocity fields for which:— 

(i) the centre—line velocity at infinity Ow= 1 and the shear rate at 

infinity 0' m 0 i.e. uniform flow past the sphere; 

(ii)(ii) o  U,,= 0 and Cr = 1 i.e. centred linear—shear flow past the sphere; 

(iii) Uclo= 1 and 0- = 1 i.e. uniform plus centred linear—shear flow 

past the sphere. 

This is because other combinations of the parameters Uland 0-  give 

qualitatively similar results. 

When it comes to presenting the velocity fields in a useful way, 
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we encounter the problem of depicting a three—dimensional field on a 

two—dimensional surface. Possibly the most useful information can be 

gained from projections of the velocity field onto:— 

(i) the x—z plane y = 0 (0 = 0,7), and 

(ii) the y—z plane x = 0 (0 = i`, i). 

(There is nothing to be gained from a projection onto the x—y plane 

TC 
z = 0 (9 = 2) — i.e. the meridional plane — since the flow will be 

approximately parallel to the z—axis for all 145, cr and Re.) These 

projections of the velocity fields are given, for ease of reference, 

in Appendix 2.1. 

3.4.3 Oran, Lift and Moment Coefficients  

Our principal numerical results are the predicted (late—time) drag, 

lift and moment coefficients of the sphere obtained for various Reynolds 

numbers Re, centre—line velocities at infinity U.0, and shear rates at 

infinity o. As in the preceding sub—section, we will present results 

obtained for which:— 1120= 1, 0-  = 0; 112.= 0, cr = 1; and 4.= 1, o'= 1. 

For each of these cases, we will present results obtained for Re = 102, 

10
-1

, 10
0
, 10

1 , and 102. There is little point in presenting results 

for Reynolds numbers less than about 102, since the equations of motion 
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are then effectively independent of Reynolds number, while at Reynolds 

numbers greater than about 300, the computational scheme becomes 

unstable, and no useful results can be obtained. (The reason for this 

instability is almost certainly a growth in the magnitude of the 

truncation errors involved in the finite—difference approximation of the 

equations of motion. The larger truncation errors are due to the 

increased importance of higher derivatives of the flow variables at 

higher Reynolds numbers. The instability is not, therefore, a numerical 

simulation of a physical flow instability leading, for example, to 

turbulence, though the two effects are clearly related.) The predicted 

drag, lift and moment coefficients are presented both in tabular and 

graphical form in Appendix 2.2. 

Note, incidentally, that no lift or moment coefficients are 

presented for the case of uniform flow, and no drag or lift coefficients 

for the case of centred linear—shear flow; this is because, as we would 

expect physically, a uniform flow exerts no net lift or torque, and a 

centred linear—shear flow exerts no drag or lift, at least at low 

Reynolds numbers. We also note that results are presented for the case 

of uniform plus centred linear—shear flow for two positions of the 

outer envelope; this is for comparison purposes. (In fact, as we noted 

in sub—section 3.4.1, we use the inner position (r* = 0.875) for 

prediction of the moment coefficient, and the outer position (r* = 1.25) 

for predicition of the drag and lift coefficients, of the sphere.) 

Finally, we note that (again for the purposes of comparison):— 

(i) an experimental drag coefficient curve
(108) 

is plotted together with 

the computed drag coefficients for uniform flow past the sphere; 

(ii) Stokes flow predictions(109)  are plotted together with the computed 

drag coefficients for uniform flow (with or without centred linear—shear 

flow) past the sphere; 

(iii) Stokes flow predictions(110)  are plotted together with the 
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computed moment coefficients for centred linear—shear flow (with or 

without uniform flow) past the sphere; 

and 

(iv) predictions from a (low Reynolds number) matched asymptotic 

expansions analysis(111)  are plotted together with the computed lift 

coefficient for uniform plus centred linear—shear flow past the sphere. 
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Chapter 4 
	

Results and Conclusions  

In this chapter, we first discuss the numerical results we have 

obtained in Chapter 3 for flow past a sphere, and then go on to discuss 

the feasibility of solving the three—dimensional Navier—Stokes equations 

for general problems using, in particular, the vorticity/potential 

method developed in Chapter 2. 

4.1 Flow past a Sphere  

4.1.1 Velocity and Pressure Fields  

Inspection of the velocity fields presented in Appendix 2.1 (q.v.) 

indicates that the main features of the predicted flows are much as we 

might expect physically. All of the flows show maximum velocity gradients 

at the surface of the sphere (as they should), and all show a physically 

reasonable variation between the surface of the sphere and the outer 

envelope. In the case of uniform flow, there is an obvious symmetry 

about the z—axis, while in the case of centred linear—shear flow, there 

is an obvious anti—symmetry about both the x—y and y—z planes. In the 

case of uniform plus centred linear—shear flow, the effect of adding 

a uniform flow to a centred linear—shear flow is clear, the non—linearity 

of the addition being hardly noticeable at a Reynolds number of unity, 

as we would expect. 

Certain features of the flows, in particular the slip that occurs 

on the surface of the sphere, are not correct, however. The most serious 

case of slip is shown by the uniform plus centred linear—shear flow when 

the radius of the outer envelope r* = 1.25; it is rather less serious 

when r* is reduced to 0.875. The reason for this is that, compensating 

errors apart, unless the iteration schemes involved in the numerical 

solution converge to a high degree, and the truncation errors involved 
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in the finite—difference analogues of the various derivatives are very 

small, slip is bound to occur. Although it is relatively easy to ensure 

that the iteration schemes converge satisfactorily, truncation errors 

are only going to be small if a very fine mesh is used to define the 

discretised flow field (and we in fact use only fifty—six mesh—points 

to define the complete flow field; c.f. sub—section 3.4.1 of Chapter 3). 

This difficulty over slip is in fact inherent in the use of derived, 

rather than the primitive, variables in the solution of the Navier—Stokes 

equations; clearly, if we use the primitive variables, the no—slip 

condition can be imposed directly on the velocity field. On the other 

hand, the presence of these relatively large errors in the form of slip 

does not necessarily mean that there will be correspondingly large 

errors in the predicted drag, lift and moment coefficients. This is 

because these coefficients are obtained directly from the vorticity field 

by numerical integration, and integration is essentially a smoothing 

operation, in contrast to differentiation, where errors tend to be 

accentuated. 

Errors do, of course, still arise in numerical integration, for a 

variety of reasons. We can, however, obtain an estimate of the magnitude 

of these errors from the line integrals used to obtain the pressure on 

the surface of the sphere from the vorticity. The contours used in these 

integrals start at the 6 = 0 node, and proceed along constant-0 paths 

to the 9 =77 node, so that several estimates of the pressure at this node 

are available (an average is in fact used). Analytically, these estimates 

will be equal, but numerically they are not, because of errors arising 

not only in the line integration, but also in the determination of the 

vorticity field (c.f. sub—section 3.2.4 of Chapter 3). The overall error, 

which we may define as the maximum percentage difference between these 

estimates and their average value relative to the maximum pressure on 

the surface of the sphere, averages -±30%, and is typically in the range 
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±10 to 50%. Thus we may expect that the average error in our predicted 

drag, lift and moment coefficients is also of the order of ±30% in 

general, and this is in fact what we will find in the next sub—section. 

4.1.2 Drag, Lift and Moment Coefficients  

Inspection of the predicted late—time drag, lift and moment 

coefficients presented in Appendix 2.2 (q.v.) indicates good qualitative 

agreement with experimental and theoretical results in general. In the 

case of uniform flow, both experimental and theoretical drag coefficients 

are available for comparison purposes. The Stokes (creeping) flow 

result (c.f. sub—section 3.4.3 of Chapter 3):— 

C
D 	

24/Re 	 (4.1) 

and experimental results agree for Reynolds numbers less than about 101 

At higher Reynolds numbers, inertial effects become relatively more 

important, and viscous effects become important only in a (thin) boundary 

layer near the sphere, so that the pressure (form) component of the 

drag coefficient increases in size relative to the viscous (friction) 

component. Assuming that the boundary layer remains laminar, the net 

effect is for the total drag coefficient to increase relative to the 

Stokes flow result (4.1) as the Reynolds number increases. For the 

limited range of Reynolds numbers investigated numerically, this is 

precisely how the predicted drag coefficient behaves (c.f. Graph 1 of 

Appendix 2.2). At low Reynolds numbers, the predicted drag coefficient 

varies as the reciprocal of the Reynolds number, being within 45% of 

both experimental and theoretical results. Then, at a Reynolds number 

of about 10
1
, the drag coefficient shows an increase relative to 

reciprocal Reynolds number variation, with a corresponding increase in 

the importance of the pressure component with respect to the viscous 

component. The drag coefficient does not show as strong an increase as 

happens in practice, however, being about 35% low at a Reynolds number 
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of 102. This is probably because of numerical errors in the predicted 

pressure component of the drag coefficient, which is relatively too 

small, even at low Reynolds numbers (where it comprises only 25% of the 

total predicted drag coefficient, and not 33%, as it ought to according 

to the Stokes flow result). 

In the case of centred linear—shear flow, the Stokes flow result 

(c.f. sub—section 3.4.3 of Chapter 3):— 

CM  = 4/Re 	 (4.2) 

can be compared with our predicted moment coefficient (c.f. Graph 2 of 

Appendix 2.2). For Reynolds numbers less than about 101,  the predicted 

moment coefficient does in fact vary as the reciprocal of the Reynolds 

number, though it is about 30% lower than the Stokes flow result (4.2). 

For higher Reynolds numbers, however, the moment coefficient shows a 

decrease relative to reciprocal Reynolds number variation. The reason 

for this is probably that viscous effects, which alone determine the 

moment coefficient (recall that it is independent of pressure; c.f. 

sub—section 3.2.4 of Chapter 3) are less important at higher Reynolds 

numbers. 

In the case of uniform plus centred linear—shear flow, the drag 

and moment coefficients (c.f. Graphs 3 and 4 of Appendix 2.2) show 

the same trends, even quantitatively, as the drag coefficient for 

uniform flow and the moment coefficient for centred linear—shear flow, 

respectively (c.f. Graphs 1 and 2 of Appendix 2.2). (Note that a direct 

comparison is possible because the two alternative definitions of 

Reynolds number given in sub—section 3.2.2 of Chapter 3 are equivalent 

for this particular case of uniform plus centred linear—shear flow.) 

Although this agreement is hardly surprising at low Reynolds numbers, 

because the equations of motion are then effectively linear, it is a 

little more surprising at higher Reynolds numbers, where we might expect 

the non—linearity in the equations of motion to be more evident. Since 
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predicted departures from linearity only seem to occur at Reynolds 

numbers greater than 10
1 however, as we noted when comparing the 

predicted drag and moment coefficients with Stokes flow results in the 

two preceding paragraphs, it may well he that non—linearity will become 

more evident at rather higher Reynolds numbers than those investigated. 

The predicted lift coefficient for uniform plus centred linear—

shear flow (c.f. Graph 5 of Appendix 2.2) varies as the reciprocal of 

the Reynolds number over the whole range of Reynolds numbers 

investigated (and between 90 and 95% of its magnitude is due to the 

pressure component, so that the viscous component is more or less 

negligible, certainly at low Reynolds numbers, and probably at high 

Reynolds numbers too, where pressure effects tend to he more important 

than viscous effects anyway). Now the Stokes flow assumption in fact 

implies zero lift, because there is no lift in either uniform or centred 

linear—shear flow, so there cannot be any when the two are combined, 

because the Stokes flow equations are linear. The presence of lift is, 

therefore, essentially a non—linear effect resulting from inertial 

forces (or, possibly, from non—Newtonian viscous forces). Incorporating 

the inertial effects in an Oseen—like outer expansion, and with a 

Stokes—like inner expansion, a matched asymptotic expansions analysis 

(c.f. sub—section 3.4.3 of Chapter 3) gives:— 

C
L 	

= 	4.1124/ Re 	 (4.3) 

for the centre—line velocity and magnitude of shear at infinity used in 

our calculations. In the absence of experimental data, it is difficult 

to decide whether the predicted reciprocal Reynolds number variation or 

the theoretical reciprocal square—root of the Reynolds number variation 

(if either) is correct. One might argue that, at low Reynolds numbers, 

flow properties such as pressure and vorticity should be independent of, 

and hence that the lift coefficient should vary as the reciprocal of, 

the Reynolds number (c.f. equations (3.33) — (3.35) of Chapter 3). On 
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the other hand, because lift is essentially a non—linear effect, one 

might argue that this will be reflected in the behaviour of the lift 

coefficient with respect to the Reynolds number. Experimental results 

are clearly of crucial importance in deciding the matter. 

We conclude this sub—section by noting that (with the obvious 

exception of the lift coefficient for uniform plus centred linear—shear 

flow) the predicted coefficients agree with experimental and theoretical 

results to within a maximum of ±46% and an average of 1:30%. As we would 

expect, this agrees with the average error of ±30% predicted in 

sub—section 4.1.1 above, and shows that the errors involved in the 

integration for pressure give a good guide to overall errors. 

4.2 Solution of the Three—Dimensional Navier—Stokes Equations  

We begin this section by presenting a brief summary of our 

principal theoretical and numerical results. We continue by discussing 

the main advantages and disadvantages of the vorticity/potential method, 

and finish by stating the overall conclusions which we are able to 

draw from our results. 

From the various methods currently available for solving the 

three—dimensional Navier—Stokes equations, we were able in Chapter 1 to 

distinguish two, the vorticity/potential and projection methods, which 

are suitable for general flow problems. Examination of the common 

theoretical basis of these two methods, and demonstration of how each 

can be applied to a general flow problem, then enabled us in Chapter 2 

to conclude that the vorticity/potential method is likely to be superior 

because of the complete lack of ambiguity with which it can be applied. 

We found in Chapter 3 that application of the vorticity/potential 

method to a test problem is very straightforward, and that it gives 
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quite reasonable results, showing fair agreement (by and large) with 

experimental and theoretical results. The immediate conclusion which 

we can draw about the vorticity/potential method is, therefore, that it 

clearly works, even if it involves a relatively large computational 

effort. The method does, however, suffer from two practical drawbacks. 

The first drawback results from the use of derived, rather than 

the primitive, variables. As we saw in sub—section 4.1.1, this can lead 

to various problems, such as slip on solid surfaces. In a sense, however, 

this is only an apparent drawback, because most flow properties, and 

certainly those of primary interest, are obtained directly from the 

vorticity field, which is in fact determined more accurately than the 

velocity field (as comparison of predicted vorticity and velocity fields 

with theoretical results shows). In any case, the drawback can effectively 

be eliminated by the use of a sufficiently fine mesh to define the 

discretised flow field, so that the effects of the drawback can be made 

as small as we please, computer resources permitting. 

The second drawback with the vorticity/potential method results 

from the complexity of the equations of motion for the derived variables. 

Compared with the equations of motion for the primitive variables, those 

for the derived variables involve many more terms, especially if a 

non—Cartesian coordinate system is used. This large number of terms is 

important, because the computer storage required to deal with them is 

really the only factor that limits the size of flow problem that can be 

handled. Thus, until computers with much larger central (i.e. fast—access) 

memories become available, the range of three—dimensional problems that 

can be solved efficiently is rather restricted. (Extensive program 

manipulation can increase the maximum size of problem that can be handled, 

but this is very inefficient from the point of view of computer time.) 

On the other hand, against these drawbacks, we note that for a 

relatively simple three—dimensional problem, the results presented in 
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section 4.1 indicate that reasonably accurate predictions of overall 

properties (such as drag coefficients) can be made, even using a 

relatively coarse mesh to define the discretised flow field. We may, 

therefore, conclude that the vorticity/potential method is suitable 

for obtaining solutions of the three—dimensional Navier—Stokes equations 

numerically. Of course, in the absence of direct comparisons (and perhaps 

even with them), we clearly cannot assert that the vorticity/potential 

method is in any sense the "best" method for solving these equations. 

But we can be certain that the method will work for flows of incompressible 

Newtonian fluids in arbitrary flow fields. If, moreover, the flow field 

has a relatively simple geometry (i.e. one that is readily defined in 

an orthogonal, preferably a Cartesian, coordinate system), and the flow 

is dynamically simple (for example, it is not turbulent), then we can 

solve the three—dimensional Navier—Stokes equations numerically, using 

the vorticity/potential method, and obtain reasonably accurate results 

with quite modest computer resources. We can, therefore, confidently 

recommend its use. 
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Appendix 1 
	

Analytical Equations of Motion  

In this appendix, we give the equations of motion, and associated 

boundary conditions, in dimensionless vorticity/potential form for 

uniform and linear—shear flow past a sphere, in the notation of Chapter 

3. We note that certain symmetry properties of the flow have bean used 

to simplify the equations, in particular for terms involving the scalar 

potential on the polar axis (c.f. sub—section 3.2.2 of Chapter 3). We 

also note that, on the polar axis, the 9 and 0 axes of the spherical 

polar coordinate system (r, 9, 0) defining the flow field refer by 

convention to the x and y axes, respectively, of the Cartesian coordinate 

system (x, y, z) also defining the flow field (again, c.f. sub—section 

3.2.2 of Chapter 3). 

(i) The scalar potential Laplace equation is:— 

2h + 2 bh + 1 Z2h + cot B   ah + 	1 	.32h 	0  
.61-2 	r 3r 	r2  a 82 	r2  ag 	r2  S U'?9 ape 

while, on the polar axis, we have:— 

-eh + 2 an + 2 . (2h = 0 

ar-2 	r ar 	rz  392  
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rz 	rl ---- -"dcz) 	

7- 0 
--or2 	Ora) rz sing 24 

-.62h w 
r br -o4) r 

+ 	

(
cot() 27% 

r r 
cots A(4 - cot G:3Ar + cot G 

r 2 	 r-2 bc) 
1/0 - 1 -a2A 9 

Dr-be 

- 1
Iv 

+ 1 -6211 r — 	1 2h + 	1 	"bh w g 

r2 	r 2 — 	s[nO -604 r 2 sW) 604, ae 	-6 92 

• —1 ( 1 -b2wr — 2 bil2/ — —el2 tani — 1 -32tad cot 9 -aidd 

Re rSing ,e7r ,64) 	z)r. ' 	•?, 02 	r- 

+ 1 	w0 + 1 -62% - cs211-61.23, 
r2sinzB 	r2s1r) -- (T

o 
b 	 r 2Sit-10 

while, on the polar axis, we have:— 
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2 Th - 2 -62110 + 2 o h 
r 	 r2 

"Or-69 
+ 2 k/ r r ( + 2 ZADit 

rz --.&. 
bp 

1 212h 	w 04 
Dr-g3 

2 1 --a A 	w r op r 
rz 

-34) -aG2 

	

afar + 	2 -6A 	- 1 -62AB + V 	-bw r 

	

biz) 	8-exi) 	- sr" 

	

+ 	-62A 	+ 2 Von 	1 -3A9 + 1 -62A9 	wr 
r 

	

r 	r u 
-N) 	 r2 -- 

	r 
br-4, aB 

1 -62%. + 1 -23110 ; !2Ar -e)wr 
r - F2 .69 -drag 	r2 	-696 

(4. 1 
"aikes 

-Or 	
A -7 1 --3A -a2w r 
r2 	r DO 'On§ 

;

▪ 

47 	-622 

"Wacb 

- (4. 12) A a 
ri --.- 

24 - 1 -62A B) i- -62wif 
r2  

. 11)2 	2) D 2 

- 1 -61\4 - 1 -WAB -6 wf) 

	

	- 	f.g. + 1 -bile 	i --gb.19 

(.. —....E. + 
( 

r2 
-6 	

r2 --... 

0 	 -M>ci, -6 i) 	 r2 	1-1-6 4) 	-302- 

= 	-1 	2 -62w9 + 2 .6 we, - 2 -?.2tor - 1 a4wr + 
2. .1 
	

1 .3Wig 
_ 

Re r - 	(-2 
-brae   	3e 	r 02 	21-2 2)6/42 	7 .6 (60-4 

+ 4 6.2■Ad 
r -beak 

"2) w9 	-and 7 	+ v r r 
-60 	"a,c3+ / r 

+ ( - 12)ika - 2 A + 2 Va 
r 	r 2 P 	r u 

1 -6A tbk )awe r2 
.191) 
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+ -62A(3 + 1 -64b, - 1 
-2, 	

-WA r  ) Ow 
rbe 	

7  r -692 -ab  

+ (1 V - 	1 -63A 	+ 1 -32h + 1 -a2A 	- Li  'A(1)  r
_ r+ 
	, 	r 	2 ___ , 2 	r_ 	 

2r-  .6212.0 	r oU 	' zr-o13 	r -6 B  

) + -62h + 1 b2 A0  wg  
are 	r2  -s-6-z-i, 

( + + 2 iA - 2 A + 1 V 	1 a3A_ + Z
2

/10,  - 	r 	-7 P 	A +  r-z 	 r_ 	r 	r 	' , .2)94 	 Dr•Nap 	br2  

) - 1 .2h + 1 ah 	wr  

	

r arm 	r2  BO 

( - 1 -34A - 1 -a3A 	- 1 -WA 	w
0  2r 

	

r +   	—1 2  - 	r- 	r aB Dcr. 	araqa# 	-aQibt, 

+ (..Ag 1:  in ....10,1 	+ (4. 3 -aA
1 

 ) -b2wD  
 r 	r  ?DI braO 	 2 r2  -N)  -692 

( 	 2 + + 1 'ZAN + A - 1 "); 	a w D 	- 	1 -b2Ar  -62_1 o• - _ x + -7. r -,2 r 	 r 	— 	2r2  -6c- 	rz 	-60 "DOci) 	DV 082  

+ (+ 2  -6A - 1 -62A yw 
r- — I- — — 
, r + 	r 	r 	- ( ; 1 -32Ad ; 1_ 2) d ) Iwi  

	

r 	' 	r  2 ---E 
-6(}) 	or-D4) --8G 	 -6 r-o0 	r  -64) *00 

= =1woi  - 1 -64w 0  - 2:6%  - -02%  + 1 -Wwr Re 	2r 	 -Delo 	2r2  w640-z r  Zr 	are 	r  arag 

+ 	a 	7.  1-62AB + Ur  -62/I 
r ?) 	-68 	r-S6713 	ar 

+ ( + 2 -62A - A + 1 V - 	-6 D 1 62A 	w 
- TT

- 	
E 	 g 7 t) + 7   

	

' -60a6p, 	r2 	 "Or-04) -a() 

+ (+ 1 eA + 1 BA - 1 	2A 	31.0 

	

r  2 	-7 ...3 + --2 L.  _1 

	

2 -Z9 	I  Z30 	r  Dela 0 

( 
r 	

iYA0( IT 	A + 82h + 1 -63A 
aro() 	r 

 -B,3 
-arl!. 	

, - 7 	r 
+ 1 V + - r "" •4) 	-6  r- 	2r--awal, 

- L_ZAd  + 1 .212h 	tuo  
r2 	r2  
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( + 2 Ale, 
F2 

- 2 --241 - -62A 1 r 	 21 
r br

211
brae wr  

?)r- 

/ 

	

-7- 1 aA8) Z2wo 	+ + 1 3Ar 

	

r  34 	-Or68 	
21-2 aq) 	602  

311c)  + Ac.)  - + 1 -311 -62wg  

	

7 s. 	 
or 	r2 	-ae 	--aB 30 

( 

+ 	1 "bAq + AG  - 1 --8Ar 
_a  we 

r 	r, 

	

or r2 	.60 .oc) 

.a2w  

The boundary conditions are:- 

wr = 0 

w() 
r 

= -2) 	V; 
-3r 

wr 	-0"sina sin0 

-Cr coso sing( 

at r = ro 

   

  

at r = r* 

wg  = -crcos0 

where v = (vr, ve , vg) = QU A =(1 	 + 	cot :Ltt
F- 4 = 	r 	

1  DA() , 
r sin() 

1 	'a A • r rsund 60  

+ 
Dr 

- -3 ri  
-_ 
ar 

- 1 3Ar  

r a8 

I2g.9  

and V = ( r  , Lie, v0) = \-jh = f ah, 1 'an, 	1 ah 1 , while the boundary 
7-7")§.  rsInb 

conditions on the polar axis at r = r* are:- 

wr 	0, we  E 0, w0  = 
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Appendix 2 
	— 	Computational Results  

In this appendix, we present certain computational results 

obtained for uniform and linear—shear flow past a sphere. The notation 

and flow configuration used are those of section 3.2 of Chapter 3. 

Appendix 2.1 Velocity Fields  

We present here typical late—time velocity fields for various 

combinations of the flow parameters ao and Q , with Re = 1 

throughout. The scale of the fields is as follows:— 

unit dimensionless length 	= 1.00 inches 

and 	unit dimensionless velocity = 0.25 inches. 

Note that two sets of fields are given for the case of uniform plus 

centred linear—shear flow; this is for comparison purposes. 

(i) Ulgo = 1 and Cr = 0 (i.e. uniform flow) with r* = 1.25 (i.e. Ar = 0.25) 

—104— 



(ii) 0 ,,,= 0 and Cr= 1 (i.e. centred linear—shear flow) with r* = 0.875 

(i.e. Ar = 0.125) 

(iii) 44 = 1 and Or= 1 (i.e. uniform plus centred linear—shear flow) with 

(a) r* = 0.875 (i.e. Ar = 0.125) 

(b) r* = 1.25 (i.e. Lr = 0.25) 
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Appendix 2.2 Drag. Lift and Moment Coefficients  

We present here computed late—time drag, lift and moment 

coefficients for various combinations of the flow parameters 200, cr 

and Re, together with certain experimental measurements and analytical 

predictions of these coefficients, for comparison purposes (c.f. 

sub—section 3.4.3 of Chapter 3). Note that two sets of results are 

given for the case of uniform plus centred linear—shear flow; again, 

this is for comparison purposes: results in parentheses will generally 

not be used (c.f. sub—section 3.4.1 of Chapter 3). 

= 1 and a' m 0 (i.e. uniform flow) with r* = 1.25 (i.e. L r = 0.25) 

Re CDP CDV CD 

10 2 8.17x102 2.66x103 3.48x103 

10-1  8.17x101  2.66x102 3.48x102 

100  8.77x100  2.69x101  3.56x101 

101  1.26x10°  2.83x10°  4.08x100  

102 3.39x101 — 3.26x10 1  6.65x10-1 

(ii) 	= 0 and a' = 1 (i.e.centred linear—shear flow) with r* = 0.875 

(i.e.LSr = 0.125) 

Re CM 
 

10
-2 

10-1  

10
0  

10
1  

10
2 

2.76x102 

2.76x101 

2.74x10°  

2.72x10-1 

1.50x10-2 
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(iii) do = 1 and a' = 1 (i.e. uniform plus centred linear-shear flow) with 

(a) r* = 0.875 (i.e. Ar = 0.125) 

Re (COP) 
(C 

DV)  
(C

D
) (C

LP
)  (C

LV
) (C

L) 
CM 

 

10-2 

-1 10 

100 

101 

102 

4.57x103 

4.57x102 

4.58x101 

5.03x10°  

2.20x100 

6.54x103 

6.54x102 

6.54x101 

6.64x100 

8.25x10-1  

1.11x104 

1.11x103 

1.11x102 

1.17x101 

3.03x10°  

7.47x102 

7.50x101  

8.18x100 

8.42x10 1 

- 1 -2.52x10 

8.29x101  

8.36x100 

8.87x10-1  

1.59x10-2 

-1.40x10 2 

8.30x102 

8.34x101 

9.07x100 

1.00x100 

- 1 -2.66x10 

3.27x102 

3.27x101  

2.92x100  

- 2.71x10 1  

1.10x10-2 

(b) r* = 1.25 (i.e.Lr = 0.25) 

Re C0  
DP 

C
DV 

C
D 

C
LP 

C
LV 

C
L 

 
(CM)  M 

10
2 8.17x102 2.66x103 3.48x103 5.91x102 6.87x101 6.60x102 4.92x101 

10-1 8.17x101 2.66x102 3.48x102 5.92x101 7.06x10°  6.62x101  4.89x100  

100 8.21x10o 2.65x101 3.47x101 8.40x10°  7.41x10-1  9.14x100 -3.36x10-1  

101 1.04x100 2.72x10°  3.76x10°  9.85x10-1  8.80x10-2 1.07x100 -1.04x101 

102 3.41x101 3.24x10-1 6.65x10 1  2.11x10-1 -9.00x10 3 2.02x101 -3.40x10-2 

Graphs of computed overall coefficients versus Reynolds number are 

given as follows:- 

Graph 1 - Drag coefficient for uniform flow at infinity; 

Graph 2 - Moment coefficient for centred linear-shear flow at 

infinity; 

Graphs 3 to 5 - Drag, moment and lift coefficients, respectively, 

for uniform plus centred linear-shear flow at infinity. 

The curves of experimental and theoretical coefficients included for 

comparison purposes are referenced in sub-section 3.4.3 of Chapter 3. 
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versus Reynolds number: 

uniform flow at infinity 
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Graph 3 — Drag coefficient 
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0 

0 

1 	 Graph 5 - Lift coefficient 

versus Reynolds number: 

uniform plus centred linear-

shear flow at infinity 
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3 	
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10
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Appendix 3 	

- 	

Finite-Difference Equations of Motion  

(i) The scalar potential Laplace equation is:- 

C
h. 

	

	1 	+ 1 	+ hi-1 	1 	- i .._l _ 	+ hj+1 	1 	+ cot 8 
8,1-4 	rb- 	Lr 2 	r Ar 	r2P9

2 	
2r2AO 

hJ.-1 
	▪ hk 

h 	
_1( 	 :) 

	

----- 	k 	1  +1 2 	
Sin 

• 2 

	

r2,6,02 	2 r 2A9 	r 	13 	sin2  LI) 
 

	

+ h - 2 - 2 . - 	 2 	= ( 	 0 

	

,Lr-2 	r2.6.82 	r.2  sin2 1, Acl? 

while, on the polar axis, we have:- 

1 	+ 	1 	1 	- 
+hi-1 hio  1 	+ 

r.nr) 
h .
O  J 

= 

2 

Ar2 	FL\r- 	Lr2  
( 	) 	( 

+ 	h 	2 	) 	+ 	h ( 	2 - 	4 	) 

ati=1  

„ r -.AG- 

0 

0 

J-1 i7162 	
Ar2  

( 

The boundary conditions are:- 

1 	h 	+ 	4 h
i+1  

r-2  L02  

. h 1+2 (-3 
2 Ar 

-1 	-3 h + 4 h.1-1 	- 

( 	

= hi-2i
) 

28,r 

('r*sine co. (1).09 B at i = nr 
(ii) The vector potential Poisson equation is:- 

A
r 	

2  ▪ Ag( 1 	(  1  (  
r2 Acy 	r2sin2  042) 	r2  Fong) 	2r itkr,9 Ar 

- A. i-1 ( 1 	+ A rj+1 ( -1 	- 	1  — 
2r i-anlaAr 	r'LL)2 	2r2  }-0,46.1;)) 

— 	(  1 	— 	 1 	+ A 	(  1  ) - A Arj-1 	 01+1 	W (
—L1  - ) i2  LO-2. 	2 r2  I-0,4) &fz) 	2r2P8 	2 rzAG 

+ Ark+1 	-1 	- A
rk-1 	

1 	+ A   +1 	 
r2 	 r2SW bfp2 	r/sin0 Aok) 

- A k-1 

	

1 	)+ A9i+1j+1 	
1 	

- A

Oi-1j+1 	1  (2,2,4),L,  
(LH-Li-Lo) 	(4,-Lri1.0) 

r 
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1 
Ar ,  

A pi-1k +1 
1  

O rs ■ of2tAr 
+ A _I pi+1k+1 

1  
1-1-rsinOLI-D)I.  

jai+1k-1 

A8 i+1 ,Lr 

1  
(4-r2s'Ir,c) Lei Lep) 

- AO j -1k +1 ( 	1  
LF 	 9Lgt* 

A1/0+1 k -1 

- Aei.+1j-1 ( Lr 	6,8) j-1  
1+-r6rA8 

-1 + 1 
Qr2  

+ 
rnr- 

A k+1 	 
(r2S\--12 0 LY1)) 

+ Apfk+1 	1  
r2s*Incal-ang Ai) 

A0k-1 	1  
21-25mcc) 'rang 

• A . 	. j+1 	
.i (kr &r 

A  ri-1 j+1 ( 	) 
\14-F-ArN) 

ri+1 j-1 	 
.1  (11-r L r LO) 

• A 	j-1 	1  
14-r Lc IA 

k +1 1  
r2s\n LA LI)) 

+ A 0j-1k-1 	 
(4-risin() L()L.(1)) 

( + 
P  Sri 

2 + 
1 	)rz -sin' '0 

A 	( -1 Oi+1 r  

c - 110i-1 ,, 
FL\ r Lr2) 

A+1 	 1 0,1 r2t.4 
— 1  

2 r2 	A.0) 

- A ,_, 	( r2Qeom  1  
2 r2 	L(3) 

A r , bik +1 	 
2r2's\rmrcP-cun0 Lip 

- A8k -1 
( 	 + Ari+1 k +1 	- 1  
2 rls'in0 1-czn 14) 	\ r.si n L iD4) 

- Sri-1 k+1 	11  ri÷1  k-1 
 1+- r .s.fr) Lf-L4)) rs'tn OLr LcE) ) - A  
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l+r7-Li;44) 

+1 - A 0 j+1 k-1 	 
1-1-72LS;) Li)) 

+1 

Le) NI) 
11,1 

jai+1 j+1k+1 

(2c11- L'02 

+1 

( 
A01.4.1J-lki1 

erL ,L, Lcb, 

M.0 
+1 

y

- 

ii+1,j+1k-1 

+ Pi+1j-1k-1 

+1 

+ Ari-1k-1 	 )+ A 
i4-rsin8L,r0 

 

1  
14-r s'ingLf84b4) 

 

gj+1k-11 

 

  

_ A 	1  
k+1 Li.rzsinic)LOISI)- 

A120+1k-1 
(I+ r 

1  

 Lt)Ltib) 

+ A 	1  
B 1-1-r/sin88 

 

while, on the polar axis, we have:- 

A ( 	-2 	+ r  
r Li)2L1)2 

4 	+ 
r1L\le 

A . ( -2 
riAtY 

+ 	1  

r2ls,820,2) 
- A rj-1 ( 2 

r2-AW- - 	1)r
2
6,0

2
L432 

A 
83-1 	1 

r-2Q9 

+ A rk +1 
r ni02;111:3) ( 	1 

- ark-1 	-1  
L(1)2 

( 	 
▪ Af3i+13'+1 21-,11.1-L8 

A 	j +1 ( 	Lir Lz) 

	

j*-1 	r 1 	Lc-LB 

_ A rj-1k+1 

+ A rj-1k-1 

- Aifj-1k +1 

+ j-1k-1 

( r-1-1 2 V-L4P) 

(2 	c-1,4 14 

t4_

) 

( 	) 
 r2L!f! Li 

(14..r2zoo 

+1 

(r- L,r,L,8Lcb 

+1 

g r!cL 

+1 

'r Lc- 	L.cb) 

Aa-1 j+1 k+1 

• A01-1 j-1 k+1 

• Ajiii-1j+1k-1 
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	) j-1 k-1 
+1 

r r L8 LI) 

+ AOi+1 (-1 
rnr 

--1 ) A 	( 
01--1 rLr 

+ A fc)k+1 
1 

2 r/LWQ() ( 	 ) 
• A /.1+1 	-3 	 _ Ad 	( 3  

2 c--2A92 	2 f-2L,( 2) 

A ri+1 j+1k+1 
$(-LrA91.`1,4) 

1  r .L8.141  ( -I  2 	 ) 

rim j 	1 
n.9 
) A . 

k.)k+1 	 (2 r 2,6, 2L,(1)) 

1  A 	 j+1 (14-r Lcb,0) 

+ AOk+1 	1gzn  r  2 ncv. 

IlAk -1 	 
3 

2 2-ACS
21W 

Ar3k -1 

+ 

- 

+ 

A 
121.rn) 

•-• 

+ 

••• 

+ 

j-1 	 

A" 	k ( 

A,, 

Pj-1k+1 

Aj-11<-1 

(41-11cL9) 

1 

ri+1 j-1 

A 	
-1  

tdj+1 k+1 
( 2 r 2-Lg2  42) 

A,, 

2 (--2L\ 

-1 DO,j+1k-1 
(2  r 2  LI,LV) 

+3 A 

2 r-'2,L\ 

0 J-1-1k+1 

+3 A 

3  1-1-r243245 

frifj+1k-.4 
r-2,L82  Lac 

( 

r2L 2L,4) 

A 	+1 
9j+1 k+1 	 

4-1-2  NY-  

- A j+1 k-1 	 
1-1N)2LID 

+1 

—114— 

( 
2. 	2. -2 . . 	+ 

r4e219.2.4 

- A
8.i. - 1 L=1-  + 8r 

(-1  r - ) 
Ar. 	Lr.2. 

( 	 
\ r.2- ZYY L142  

A01+1 

A „ ej. +1 

A ;1K-1 

— A 0,j-1 k+1 

• A0j-1 k-1 
1  (14- r 2-AD20) 



+1 	 +1 - A 	 - ri-1 j+1 k+1  	Ari+1j-1k+1 	 
r .L.f.  L9 L. 	 r LrLG 

+1 	 +1 + Ari-1j-1k+1 	) - A 

	

ri+1 j+1 k-1 	 

	

Lr Lo /NID 	 R 	LcP) 

+ A 	
+1 

( 	

+1 

	

ri-1j+1k-1 	- 	

) + 
Ari+lj-lk-1 	- 

	

2r ,Lr AG 4 	 8r-Lc-L14) 

- 	 _+1 
Ari-u-m-1 

8 r L 1-- a) Lit) 

The boundary conditions are:- 

Ao 	0 

Ar  2 - 
r 
0 

  

A. 	Ari+2 (=1-) = Ar 	26c  
at i=1 

   

A8 F. 0 7,- A0  

Ar 	- 3 l  + Ar.1-1  ( 2 ) + Ari-2 	= 0 	at i = nr+1 
ZA r* 	r- 

	

6.r 	 2Ar • 

(iii) The vorticity transport equation is:- 

1 wn = wr 	1 	+ A 	- A 	+ - AOk+1  - Aek-1  AL 	 2r--2-L9 	rz hanB 	2 r7-sin LI) 

+ 2 V - A 	- A 	+ h. - 9h + h. 	+ F  - r 	01+1 01-1 	1+1 - 	11  

	

2 r 1--nr,C4 nr 	r2 A (Y- 	r1--an9 

- 
— 110i-1 1+1 	A0i+1 	+ Ali-1 1-1 

4 r/Lr E 

n  + Aei+lk +1 	Irsi-1k +1 - ADi+1 k-1 	A 
 

r--  sin Ar-  Aft.) 
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Appendix 4 
	

Computer Program Listing  

In this appendix, we present a listing of the program written to 

solve the finite—difference equations of Appendix 3. The main programs 

and associated subroutines which form the overall program are listed in 

alphabetical order as follows:— 

	

Programs 	UROT, 

UROTA, 

	

and 	UTRANS. 

Subroutines AUTHOR, 

COEFF, 

MATMA, 

MATMA1—B, 

MATRIX, 

MATRJ, 

MATRJ1-7, 

MATRY, 

MATRY1-9, 

PRESS, 

SCRIBE, 

SOR, 

SORJMA, 

SORY, 

SPEED, 

START1-2, 

TYPIST, 

VELOX, 

VORBCI-2, 

	

and 	WRITER. 
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PROGRAM UROT(DATA,OuTPUT,DATB,TAPES=DATA,TAPE6=OUTPUI,  

1TAPE7=oATB) 
DIMENSION VORTEX(160, A(168), ANEW(Ifi8), ASTAR(112) 
DIMENSTON DIFF1(112), DIFF2(112) 
DIMENSION V(168), U(168), H(56), VORNEW(168) 
COMMON/COMAUT/NI,N21 N3INODES,RI,RO,RE,SHEAR,W1,DELTI,W,  

1OELTY,1)ELT 
COMMON/COMWRI/IOPTI.IOPT2,IOPT301,DIFFJM,RESTI,M,DIFFY,RESTY,  

IDIFFCE,TIMEINSTEP,N0DE3 
REAL JL, JD, JU, MAL, MAUI MAO 
COMMON YL(112,20)., YD(112), YU(112,20), NYL(112,20), NYU(112,20) 
COMMON JL(84,27), Jo(84), JU(84,27), NL(84,27), NU(84,27) 
COMMON MAL(84,27), mAD(84), MAU(84,27) 

C 	 
C 	THIS PROGRAM DETERMINES THE ROTATIONAL COMPONENT OF,  
C 	THE VELOCITY FIELD, TOGETHER WITH THE VORTICITY AND 
C 	VECTOR POTENTIAL FIELDS, FOR UNIFORM AND LINEAR SHEAR 
C 	 FLOW PAST A SPHERE, 
C 	THIS IS PERFORMED BY SOLVING THE VORTICITY TRANSPORT 
C 	AND VECTOR POTENTIAL POISSON EQUATIONS NUMERICALLY. 

C 
	 OVERALL PROBLEM PARAMETERS 

C 	SET NUMBER OF RADIAL SPACINGS 	(GE 3) 
N1 = 3 

C 	SET NUMBER OF POLAR ANGLE SPACINGS 	(GE 3) 
N2 = 4 

C 	SET NUMBER OF AZIMUTHAL ANGLE SPACINGS (GE. 4) 
C 	THIS NUMBER MUST HE EXACTLY DIVISIBLE BY FOUR 

N3 = 4 
C 	SET INNER RADIUS 

RI = 0.5 
C 	 SET OUTER RADIUS 

PO = 1.1 
C 	SET NUMBER OF NODES ( = (N1 s  1)*((N3*(N2 	I)) 	2) ) 

NODES = 56  
NOOE3 = 3*NODES 
NALPHA = NODES/(N1 4'1) 

C 	SET REYNOLDS NUMBER 
RE = 1,0 

C 	SET MAGNITUOE OF SHEAR AT OUTER BOUNDARY 
SHEAR =-0,0 

C 	SET LENGTH OF TIME-STEP 
DELTAT = 0,002 

C 	SET NUMBER OF TImE-STEPS 
NSTERS-= 40 

C 	SET OUTPUT SELECTION-PARAMETERS IOPT1-.3 AS 
C 	 FOLLOWS -"THE VORTICITy FIELD IS WRITTEN OUT 
C 	 UNLESS IOPT1 = 0, 
C 	'- THE VECTOR POTENTIAL FIELD IS 
C 	 wRITTEN OUT UNLESS IOPT2 = 0, 
C 	 - THE ROTATIONAL COMPONENT OF THE 

VELOCITY FIELD IS WRITTEN OUT 
C 	UNLESS I0PT3 = 0. 

IOPT1 = 0 
IORT2'= 0 
TOPT3 .1 

C 	 VORTICITY TRANSPORT EQUATIONPARAMETERS 
C 	SET NUMBER OF UNKNOWNS VORTEX 

C 	 ( = 3*(N1 	1)*((N3*(N2 	1) 8  2)) ) 
C 	 (REMEMBER TO SET UNLABELLED COMMONS ACCORDINGLY) 

NEON = 84 
C 	SET RELAXATION FACTOR 

WI = 1,0 
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C 	 SET MAXIMUM TOLERABLE NUMBER OF ITERATIONS 
MMAX1 = 20 

C SET MAXIMUM TOLERABLE SQUARE OF THE DIFFERENCE BETWEEN 

	

C 	ELEMENTS IN SUCCESSIVE ITERATIONS FOR CONVERGENCE 
DELT1 = 0,0000000001 

	

C 	 VECTOR POTENTIAL POISSON EQUATION PARAMETERS 

	

C 	 SET NUMBER OF UNKNOWNS A (-= ((3*N1) — 1)*((N30 (N2 	1)) 4  2) 

	

C 	 (REMEMBER TO SET UNLABELLED COMMONS ACCORDINGLY) 
NEQNY = 112 

	

C 	SET RELAXATION FACTOR 

= Ton 

	

C 	 SET MAXIMUM TOLERABLE NUMBER OF ITERATIONS 
MMAX = 100 

	

C 	SET MAXIMUM TOLERABLE SQUARE OF THE DIFFERENCE BETwEEN 

	

C 	ELEMENTS IN SUCCESSIVE ITERATIONS FOR CONVERGENCE 

OELTY = 0.0000000001 
CSET MAXIMUM TOLERABLE DIFFERENCE BETWEEN SUCCESSIVE 

	

C 	DIFFERENCES IN SUCCESSIVE ITERATIONS FOR CONVERGENCE 
DELT = 0.000001 

	

C 

	• * 	 •* 

PEAn FrELDS DETERMINED BY PROGRAM UTRANS 
READ(5)(H(K),K=I,NODEs) 

PFAD(5)(U(L),L=1,NODE3) 
READ(5)(V(M),M=1,NODE3) 
READ(S)(VORTEX(N),N=1,NODE3) 
REWIND 5 

	

C 	SET UP THE TIME»TNVARIANT MATRICES AND BOUNDARY CONDITIONS, 

	

C 	 AND THE INITIAL rONDITIONS ON THE VECTOR POTENTIAL FIELD 
DO 900 11=1000E3 
A(II) = 0.0 

900 CONTINUE 
CALL VORBCI(VORTEX,NODE3,SHEARIN2,N3INALRMA) 
CALL MATRJ(NEON,N1,N2,N3,RI,RO,U,H,NODESINODE3,RE) 
CALL MATRY(N1,N2,143,RI,RO,NEONY) 
CALL SORY(VORTEX,A,ANEW,ASTAR,NALPMA,NEONY,NODE3,W,DELTY, 
1M,MmAX,RESTY7DIFFY,nIEF1,DIFF2,DELT,DIFFCE) 
CALL AUTHOR 
NSTEP = 0 
TIME = 
CALL WR/TER(VORTEA,A,V,NO0E3) 

	

C 	 PROCEED FROM TIME-STEP TO TIME-STEP UPDATING THE 

	

C 	VORTICITY, VECTOR POTENTIAL, AND VELOCITY FIELDS 
00 901 NSTEPnl,NSTERS 

LENGTH OF TIME-STEP ALTERATION FACILITY 
IF(NSTFP4E(1,,?1) DELTAT = DELTAT*? 0,0 
TIMF - = TIME 	DELTAT 
CALI VDRBC2(VORTEX,NODE3,NALPHA,N1,RIIROIV,U) 
CALL mATMA(A,NODE31NFON011N203,RI,R0) 
CALI SORJMA(NEON/VORTEX,VORNEW11A1,DELTI,M19MMAXI,  

IRESTj,nIFFJW,NOD 3,NALRHA,DELTAT) 
CALL SoRY(VoRTEXIA,ANEWIASTAR,NALPHAINEONY,NODE3,W,WaLTY,  

1M7 MMAX,PESTY40IFFYIDIFF1,DIFF2,DEUT,DIFFCE) 
CALL.SPEED(Apv,NODE301020N3,RI,R0) 
CALL W9/TER(VORTEX,A,V,.NODE3) 

901 CONTINUE 
C 	 'WRITE PARAMETERS REQUIRED IN PROGRAM UROTA 

.wRITE(-,1,NODES,NALPHA,N102,N3,NSTEPS 
WRITE(7)RI,RO9RE,TIME 

C 	WRITE VORTICITY FIELD REQUIRED IN PROGRAM UROTA 
WRITE(7)(VORTEX(I),1=1,NODE3) 
STOP 
END 
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PROGRAM UROTA(DATB.0UTPUT.TAPE5=DATBoTAPE6=OUTRUT) 
DIMENSTON VORTEX(160s)1 P(14), SUM(4), PTEST(4) 

C 	 * 	* 	* 	* 	* 	* 	* 	*- 	* 

C 	THIS PROGRAM USES THE RESULTS OF PROGRAM UROT TO 

C 	CALCULATE THE PRESSURE FIELD ON THE SURFACE OF THE 

C 	SPHFRE* AND THE DRAG, LIFT AND MOMENT COEFFICIENTS 

C 	OF THE SPHERE. 

C 	ALL PARAMETERS ARE SET IN PROGRAM UROT, WITH THE 

C 	EXCEPTION OF IOPT4, WHICH IS SET BELOW. 

C 
C 	REAP PARAMETERS uSED IN PROGRAM UROT 

READ(5)NODE3*NALPHA,N1.N2013.NSTEP 
READ(5)RI,ROIRE.TIMR 

C 	REAn VORTICITY FIELD DETERMINED BY PROGRAM UROT 
READ(A)(VORTEX(I),I=1.N00E3) 
REWIND 5 

C 	SET OUTPUT SELECTION PARAMETER I0PT4 AS 
C 	FOLLOWS ,-. THE PRESSURE FIELD ON THE SURFACE 
C 	OF THE SPHERE IS WRITTEN OUT UNLESS 

C 	IOPT4 = O. 
TOPT4 = I 

C , 	 * 	* 	* 	* 	* 	* 	* 	* 	•* 

CALL PoESS(VORTEX.N0DE3,RI,RO,RE,NI.N2*N3.P.NALPHA,  
ISUm*RTEST*ERRMAX) 
CALL CoEFF(VORTEX.N0DE39P,NALPHAIN203,RE.CDP,CDV.CL ,CLV*CM) 
.CALL TYPIST(POALPHA.CDP*CDV.CLP.CLVICMOSTEP*TIME.I0PT4,ERRMAX) 
STOP 
EMI-) 

PPOGPAm UTRANS(INPUT,OUTPUT,OATA,TAP5=INPUT/TAPE6=OUTPUT, 
1TAPE7=nATA) 
DIMENSTOM.E(-4t55)1.F(4955), NE(4,55)9 NF (4755) 
DHOFMSTON 9(55)4 H(56)) HGUESS(55) 
DIMENSTON U(168)4 V(168)1 VORTEX (168) 

C 	THIS PROGRAM DETERMINES THE TRANSLATIONAL COMPONENT 
C 	 OF THE VELOCITY FIELD* AND ASSOCIATED SCALAR POTENTIAL 
C 	 FIELD7 FOR UNIFORM OR LINEAR SHEAR FLOW PAST A SPrtERE, 
C 	 THIS IS PERFORMED BY SOLVING THE SCALAR POTENTIAL • 

lAr-)LACE .EQUATION NUMERICALLY* 
C 	 THTr; PROGRAM ALSO SETS UP THE INITIAL CONDITIONS FOR 
C 	 PROnRAM UROT AS rOLLOWS 	FOR EFFECTIVELY UNIFORM FLO1A 
C 	 PAST THE SPHERE* STOKES FLOW IS 
C 	 ASSUMED INITIALLY* 
C 	 — FOR OTHER FLOWS, A LINEAR RADIAL 
C 	 VARIATION BETWEEN THE INNER AND 
C 	 OUTER BOUNDARY CONDITIONS ON 
C 	 VELOCITY IS ASSUMED INITIALLY* 
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CSET NUMBER OF RADIAL SPACINGS 	(GE 3) 
NI = 3 

C 	SET NUMBER OF POLAR ANGLE SPACINGS 	(GE'3) 
N2 = 4 

C 	SET NUMBER OF AZIMUTHAL ANGLE SPACINGS (GE 4) 
C 	THIS NUMBER MUST SE EXACTLY DIVISIBLE. BY FOUR 

N3 = 4 
C 	SET INNER RADIUS 

RI = 0,5 
C 	SET OUTER RADIUS 

RO = 1,1 
C 	 SET CENTRE-LINE VELOCITY AT OUTER BOUNDARY 

U0 = 1.0 
C 	SET MAGNITUDE OF SHEAR AT OUTER BOUNDARY 

SHEAR = 0.0 
C 	SET NUMBER OF NODES ( = (Ni 	1)*((N3*(N2 - 1)) + 2 ) ) 
C 	(REMEMBER TO SET DIMENSIONS ACCORDINGLY) 

NODES = 56 
NEQNS = NODES 	1 

C 	SET RELAXATION FACTOR 
W = 1.7 

C 	SET MAXIMUM TOLERABLE NUMBER OF ITERATIONS 
MMAX = 500 

C 	SET MAXIMUM TOLERABLE SQUARE OF THE DIFFERENCE BET0EEN 
C 	ELEMENTS IN SUCCESSIVE ITERATIONS FOR CONVERGENCE 

DELTA = 0.00000001 

C 	SET UP INITIAL GUESS TO SCALAR POTENTIAL: FULD 
DO 999 I = 1,NEQNS 
HGUEsS(I) = 1,0 

999 CONTINUE 
NO0E2 = NODES + NODES 
NODE) = NODE2 ► NODES 

C 	 DETERMINE TRANSLATIONAL COMPONENT OF VELOCITY 
CALL MATRIX(Ni.N29N1tRI,ROIUO,SHEARIEIFINE,NFO'NEQNS) 
CALL SoP(E.F.NE.NF9RIM/HGuESS,NEQNS,NODES,W,m,MmAXTDELTA,REST, 
1DFFCE) 
CALL vFLOx(H,B.NODEs.NEQNS,U,U09N17N29N3,RI,ROINODE27NOOF3) 
CALL SCRIBE (N1029m3RI,R000,SHEAR,NODE59W,m7DELTA,H,REST. 
1DIFFcE,NODE2.NODE390) 

C 	SET UP INITIAL CONDITIONS ON VELOCITY AND VORTICI!Y 
IF(ARS(SHEAR).GE.0.000001) GO TO 1000 
CALL STARTI(V.VORTEx7U7NODE37N1027N3IRIIRO) 
GO To 1001 

1000 CALL START2(V9VORTEx7U,NODE30102,N31RI)R03SHEAR,U0) 
1001 wRTTF(7)(H(K),K=1000Es) 

WRITF.(7) (U(L),L=11N0DE3) 
WRTTE(7)(V(M),N=19N0DE3) 
WRITE(7)(VORTEX(N),N=1,NODE3) 
STOP 
END 
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C 
C 
C 
C 
C 
C 
C 
C 

C 
C. 

SUBROUTINE AUTHOR 
CONMON/CONAUT/N102,M3,NODES,PI,RD,RE,SHEAR,Wi,DELTi,W, 

IDELTY,DELT 

THIS SUBROUTINE WRITES OUT THE PRINCIPAL PARA'AETERS 
USED TN PrOGAN UROT. 

WRITF(6,950) 
950 FORMAT(1H1/////) 

W-),ITr(6,951)RI,R.O,PE,"7HEAP 
951 FO2MA1(1X,13HRADIUS OF SPHERE =,):7.4,3?X, 

12SHRAD1US OF ()UTE? 30UNDIWO =,F7.4/1X, 
2179REYNOLUS NUMBER =,FP.1,3!X, 
339HMAGNITUDE OF SHEAR AT OUTER? BOUNDAPY =,F7.4) 
WP,ITE(6,952)Ni,N2,N3,NOOES 

92 F1RMAT(1H3,27HNUW3FR OF RADIAL SPACINGS =,I3,27X, 
132HNUMBER OF POLAR ANGLE SPACINGS =, I3/1X, 
236HNUMEER OF AZI?IUTHAL ANGLE SPACINGS =,173,18X, 
3I7HNUMBER OF NODES =,I5) 
WRITE(6,953)141,0ELT1 

953 FORMAT(1H),79HVORTICITY TRANSPORT EQUATION PARAMETERS/1X,11X, 
12OMFLAXATION FACTOR CHOSEN =,F7.4/1X,10X, 
257HMAXIMUM SQUARE DIFFERENCE PETWEEN ELEMENTS IN SUCCESSIVE , 
32'SHITERATIONS FOR CONVERGENCE =,F15.13) 

WRITE(6,954)W I DELTY,DFLT 
954 FORMAT(1H0 z 44HVECTOR POTENTIAL POISSON EQUATION PARAMETFRS/IX,10X 

125HRFLAAATiON FACTOR CHOSEN =,F7.4/1X,1JX, 
257H4AXIMU1 SQUARE OlFFEP.ENCE BETWEEN ELEMENTS IN SUCCESSIVE , 
3213HITEPATIONS FOR CONVERGENCE =,F15.13/1X,1PX, 
457HMAX.11U" SQUARE DIFFERENCE PETWEEN SUCCESSIVE DIFFERENCES 
542HIN SUCCESSIVE ITERATIONS FOR CONVERGENCE =,F15./3) 

RETURN 
END 

SUBROUTINEEFFU/07.77X,NODE7,P,NALPHA,NN2 7 NN3,RRE ICDP,COV,CLF, 
ICLV,CM) 
DIMENSION VORTEX(NODE3), P(NALPHA) 

C 	THIS SUPROUTINE CALCULATES — THr FORM ADFPToTION 
C 	 P&AG COEFFICIENTS CD° 
C 	 ANO CDV, RESPECTIVELY. 
C 	 — THE FORA AND FRICTION 
C 	 LIFT COFFFICIFNIS CLP 
C 	 AND CLV, ,:tESPECTIVELY. 
C 	 — THE MOMENT COEFFICIENT 
C 	 C'!. 

C 
C 

N? = NN2 
N3 = NN7 
RE = RRE 
PI = .3.1415926575e98 
Ca =.2.0/PI 

=.0A/RF. 
CC = —CR/2.0 
'XN2 	N? 
XN3 = N3 
H2 = PI/X12 
H3 = 2.3*?I/XN3 
S = SIN(H2/2."7) 
C = CPS(H2/2.0) 
DA = 2.J4S4H3 
DR = 2.Cr""T4 (1.9 — C) 
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C 	 THETA = C POLAR NODE. 
L = 1 
LY = 2 
L7 = 3 
EI - = -P(1)*0? 

'FA = EA4 91 
FS -= F°* ,9 
'GA = 0.n 
GB = VORTEX(3)05 
HA = GA*CA 
HO = Ga40,1 
BA = GP 
BB DA'CO 

C 	 NON-FPOLIP, NODE:;. 
J = 2 
K = 1 
THETA = H2 
PHI = 0.0 

810 L = L 
LY = LY + 
L7 = LY + 1 
ST = SIN(THETA) 
CT = COS(THETA) 
SP = SIM(PHT) 
GP .= COS(PHI) 
EA = -P(L)4CT4ST*DA 
F5 = -VORTEX(LZ)"ST4ST'OA 
FA:= FA + (EA4 9A) 
F3 = FP + (EB*C9) 
GA = -P(L) 4ST*ST4C 0*DA 
G9 = ((VO;;TEX(LY)SP) + (VORTFX(L7)*CT*CP))*ST*DA 
HA = HA + (GAS C4) 
H3 = HR + (GB*CB) 
BA = ((VORTEX(LZ)*CP) + (VORTFX(LY)4SP4CT))4ST 4DA 
59 = B5 + (OM'CC) 
IF(K.ED.N7) GO TO 811 
K = K + 1 
PHI = PHI + H7 
GO TO 810 

911 IF(J.ED.N2) Gn Tn $12 
J = J + 1 
K = 1 
THETA = THETA + H? 
PYI = e.n 
GO TO 810 

C 	THETA = PI POLAR mon:. 
812 L = L + 1 

LY = LY + 7 
L7 = LY + 
EA = p(L)*F13 
ER = c.o 
FA = FA + (EA*OA) 
FLi = -Fe 	CEB'99) 

G9 = VORTEX(L7)02. 
HA = HA + (GA',9A) 
H3 = Hfl + (7,34,99) 
5A = GB 
f3; = 	+ A- ,C) 
COD _- FA 

"} 
 

= FR 
CHF) = HA 
9LV = H9 
Cm = BR 
-P='TURN 
ENO 
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SUBr1OUTTN7  .MATMA(A,NNOnr3,NNECINAON1,NN2,MN7,PI,RPO) -  
DI1ENSION.A(NNOE7) 
C.31MnN/COMMA.1/LJX,LJr,LJ7,LX,LY,L7 
CO - ON/CTIMA7/NALOH7,37,N330N201-530N4I N7q0N41 H2,H7 
ConilOti/Co1HA3/Nr27,Nc1193,cp?3 

	XPO 
Sp rpp,rp,c.P!1

q 
 SPN 

.COMION/COINAh/LXPA,LXP53,LXP,L,LXPE,LX,LXPG,LP1H,LX°I,LXFJ, 
1LXPY,,LXPL,LYPH,IXPN,IXPO,LXPP,LXPO,LYPP,LXnS,LX°T,IXPU,LYPV,LXPW, 

.7LXPX,LXflY,IXP&A,LXPM3,LXPCCILXPOD,LXPEE,IX°EF,LXPGE7, 
LXNA,LXMB,LXMC,LXMO,OME,LXNE,LYMbILXNH,LY"I,LXNJ, 	- 

4LX1;,LX'IL,LXNI,LXNN,LXMO,LXMP,LXMOILXNR,LXMS,_LXMT,LXMU,LANV,L.XNW, 

	

5LXMX,LXMY,LXNAA,LXM9S,LKMCC,LXN90,LXNEEI LX9FF5 LX%& 	 - 
CONNON/COMMA5/ 1 YPA,LYPB,LYPc,LYPD-iLYEE,LYPF,LYPG,LYH,LYPI,LYPJ,' 

1LYPK,LYL,LYPN LYPN IYPO,tYPP LYPU,LYPD,,LYS LYPT,LYPU,LYPV,LYP(4, 
2LYPX,LY°Y,LYPAA,LLYPCC,LYPOO,LYPEr,LY?F tLYPGG, 

LYIA,LY13,LYNC,IYND,LYE.,.LYNF.Lv1G,LYNH,LYMI,LY"J, 
4LYM:<,LYmL,LYMN,IYNN,LYNO,LYN,LYMO,IYMR I LY1S,LYMT ILYNUI LYNV,LYMW, 
5LvMX,LYNY,LYMAA,LYIrM,LYNCO,LYMOO,LYNEF,LY"EF,LYm6G 
COMMON/COIMAG/LZPA,LZ.P9,L7PC,LZPO,LZPF,LZPF,LZPG,LZPH,LZ°1,LZcj, 

iLZPK,LZPL,LZPM.I LZPN,LZPO,L7PP,LZPO,LZPR,LZPS,LZPT,LZPU,LZPV,LZPW, 
2LZPX,LZPY,LZPAA,LZP3;:1 ,L7PCC,L7PDD,L7P7E,LZPFF,LZPGG, 

LZMA,L7:1°,,LZNC,LZNO,L7MF,LZMF,L7'.1G,L7MH,L7MI,LZMJI  
4LZMK,LZMLILZMN,LZNN IL7N0fLZMP,LZNO,LZMR,L7MS,17.NT zLZMUI LZMV,L7NW, 
5L7NX,LZMY,LZMAA,L71BP,L7CC,L7100,LEE IL7NEF,L7%G 
COMMON/COMNA7/01,02,03,04,05,06,07,0P,D9,D10011,012,013,0147 r)15, 

1D15,017,D1 8,0 1 9,D20,021,n22023,P24 
PEAL JL, JD, JU, MAL, MAO, TIN 
COMMON YL(112,20), YO(112), YU(112,2e), NYL(112,70), "YU(112,20) 
COMMON JL(84,27), JO(P14), JU(-84,27), NL(84,27), NU(84,27) 
COMMON MAL(84,27), r4AD(84), 3-1A0(8.4,27) 

C 
C 
C 
C 	THIS SURPOUTINF SETS Ur' THOSE TEES IN THE MATRIX 
C 	EOUATION ANAL07,UF O THE VORTICITY TRANSFOPT 	• 	• 
C . 	EQUATION WHICH DEPEND ON THE V7CTOF: POTENTIAL FIELn A. 
CSUBP,OUTTNES IA 	1-7 SET Up THE NAT <IX COFEFICTc'ITS 
C 1ALPIAWIAU. THE NjOE LOCATIONS NL/NU APE SET UP 71Y 
C - 	3UPPOUTINES NATJ AN'? MATP,J1-7 
C 	SLP3ROUTINF HATX 	SETS Up THE ARGUMENTS OF THE . 
C 	VECTOR POTENTIAL FIELD A. r 

C 
NFQ1M = NIECNM 
Ni = NNt 
H2 = NN? 
N3 = NN7  
PI = RPI 
PO = kR0 
hrIDE3 = N1011E7 
N'',LPH3 = !:007:77/(N1 + 1) 
;4ALT1HA = NAIPH:3/.1 
N33 = N3'1 
N330N2 -= 13.3/2 
N37ON4 = 137/4 
N7.':PON4 = .13304*7 
PI = 3-.1.4159nr--57.53 
X11 = N1 
XN2 -= N7  

-XN3 = 
Ht-= (RO -  
Fr! = 

= 2.',7*01"/XN7 
-LX •= 1 4- IIALPH -7. 
LY = 2 + 7-iALPH7 
LZ = 6 + WLDH7 
LJX = 1. 
LJv = 2 

= 3 
T 	7 

R  = 
69P M = 1 

= 

	

'THETA 	0., (1 
r4T '77 	1  

craLP1I-i)) + 1 
N023 = NC243 
NON? = 1ALPHA*I 
tr,N27 = NCt1237  
ni = 
07 = 1.n/H1 
03 = 
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04 = n2=in7. 
05 = 01/H2 
05 = 01*05 
U7 = 02*05 

= p5',11 7; 
no  = . 05/H.3 
010 = m.?/H9 
011 = D13/H3 
D12 .= 07/ 1 4:3 
u94 = 014 i1 
CALL MAT'1A8 

C 	 IMTEPIOR HOOFS (THETA = 0 POLAP AXIS). 
CALL HAT 1 A1(A,M09E3) 
LX = LY + 3 
LY = LX 4- 1 
LZ=L'ri- 1  
LJX = LJX + 3 
LJY = LJX + 1 
LJZ = LJY + 1 
J = 2 
THETA = 

700 Sr .= 7TH(THETA) 
TT = TAM(THETA) 
PHI? = PHI + H.3 
PHIM = PHT - H3 
GP = C0S(5HI) 
Sr =-I4(HI) 
OPP = COS(PHTo) 
SP° = SIN(PH) 
C°ti = COS(P-IT) 
SP ki = SIN(PHIM) 

01/TT 
014 = 
015 = 013*02 
016 = 01 71 05 
017 = 024/(ST*ST) 
018 = 01/(ST-7. H3) 
D19 = 011 v- 01 
D20 = 019/(S1H3) 
D21 = 01902 
022 = 019/H2 
.023 = 019/TT 

721 S.LL 1ATmA8 
TF(LY.M.E.GF.1) GO Tr.  7715 
LUIE = 
LYmE - = 1 	• 
L? -1E = 1 

7015 IF(L7P0.LE000E7) GO To 7016 
LYPO -= m09E7 
LYnn-- HO1F-2 
L7.0 = 

-IHTFPIO NODES (GEF.,;AL c.AFF). 
7015 CALL mATMA2(A,M0OF3) 

IF(K.Nt.1) SO TO 702 
C 	INTEr:IOR HOOFS ( 1.1  = 1). 

CALL MAT'113(1,.,M00F7) 
IF(K.E.m3) Go TO 71Y7  

■innE (Y = 13 ). 
CALL NAT %04(1,NUo,- 7) 

'70'Z IF(3.HE.2) GO TO 704 
C TMTFPI0c: NLi0FS (J = 9). 

CALL ATMA5(A,N00E3,K,N7,M7:5) 

	

7G4 IF(J.HF.H9 1 . 	7 0  
TNTErZTOR N00Es (J = N7), 

CALL HATmA6(A,m0077,K,H.7037) 
705 LX = LX + 3 

LY = LX + 1 
L7 = LY + 1 
LJX = LJX + 7  
LAY = LAY + 1 
LI7-=.LJY + 
J.7(K.E(.1.!.17:) GO 7'1  7:7!F) 

K 	1 
— 1 

Pdj..77 
PHTP = -7 4-1. 4' "7 
PHIM = PHI - H3 
CP = TOEIMI) 
S'7)  =  
CPP = CO -Sic-1TP) 
Sop = Q.7- N(o4To) 
rs:Th = r'-'17(PHT.'1) 
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GO TO 701 
706 K = 1 

P P I = 	. 0 
(j.EO.N-1 ) GO TO 707 
= J +. 1 

Y 	- - 1 
THETA = Y *PI/X!r! 
GO TO 700 

707 C4LL 
C 	 INTERIOR NODES (THETA = PI POLAR AXIS). 

CALL HATHA ( A , N0DE.3) 
LX = LX + 7 
LY = LX + 1 
1_7 = LY 4-  1 
.LJX -= -LAY + 
LJY = LJY + 1 
LJZ = LJY + 1 
IF ( I. EQ.. N1) GO TO 7P8 
1 = I + 1 

+ 
GO TO 699 

70 R Pr---T UPN 
EN 

..• 

SU -r3ROUTINE 	A -r1 	( A PIODE 
n-THENsioN A (NOPE3) 
CW1:109/CO1. 111/LJX,LJY ,LJ7,LX ILY ,L7  
CO/:V.ION/COTIA 2 /NALP H3 03-3, N330N2, N330t`.44, N790194 012,113 
COisitiONI/C(I-P1AL/LXPA ,LXPP,LXRC,1 XD P,LX=-'E,LX.EF,LXRG,LX°H,LXPI I LYPj, 

1LXEK, LXPL,LXPM,LXPN,LXDO,LXP7',LXPr?,LYPR,.LXPS, LXPTILXPU,LXPV,LX.PW, 
2LXPX,LXPY,LXPAA,LXP9E ,LXPC.C,LYPPD,LXPEE,I_XPFF 
3 	 LX1A7-,  VA E., ,LXMC,LX"D,LX:V--7,LXMF,LXMG,LXNH/LXt-II,LXMJ, 
1+LX:1K2LXML,LX!1 '1,LX"'I,LY,HO,LX?-1 P,LX .10,t_XMR,I.VI5,LYANIT,LV4U, LX1V,LX1-1 1.1, 
51.,1X, LXHY, LPA AA, 	,LX'ACC, L X .̀10!),LYPEE,LVIFF,LX'GG 

C(Mt1ON/C011HAq/LYPA ,LY17- C3.,LYPC,LYPO,LYPE,LYPF ILYPG.LYDH,LYPI,LYFJ 
1LYRK,LYRL.,LY,LYP1',1,LYPO,LYPP,LYPO, LYPR,LYPS, LYPT, LYPU,LY- PV,LYPW, 
2LY 2X,LYPY.,LY:.) A 11 ,1.Yi--'13E;,1..YPCC,L Y clOO,LYPEE,LYPFF ,LYrtG, 

LYr.cA, LYME , LYMC, LY 	, LY1E, LrIF, LYNG,LYMH,LY‘II LYMJ 7 
f+LY .-1K,LY,1L,LYN!'1,LY'Irl,L v "P,LY"0 ,12,P,LY!.1 R,LY'-1S,I_YmT, ,  Y:'-i tt,LY■AV,LYMIet, 
5Lr-1X,LYIY, LY NIA A,LVIL39 

C'.1)"!M(1■-1/CO■PIA6/LZPII,LZF:3,1_7.Pr,,L 7P0,LZFEILZPF,LZEG,LZPH.LZnI,LZPJ, 
1L7PK,LZPL-ILZP ,I,LZPN,L7PO,L7_')R ,1_7PO,LZP,L7PS,LZT'T ,LZPU,LZPV,LZRW, 
2LZRX,LZRY,LZE'AA,(ZF3?,L7ECC,1_ 7RDO,L7EEF,L7PFF,L 7 ''GG, 
7 	 L7t1A,L_DIE3,LZM(;,LZMO,LZ1F-- ,LZME,LZHG,LZHH,L7_!-II,LZMj, 
t41.7"1‹,LZML,-.1-7."1,!..7;•.:NO 
51_7 	LV•IY,L7 __!1!-11,LZ`liT ,L7 k.1 CC ,L7'101),' 	,1..7 '1 FF L7N!GG 
TO:INON/C-MVA7/D1,O2,'1 7,04 ,05,P6,P7 ,OP,,Dc1,017,011,G12,O17,014,115 1  

0,02 ,021,D72, 033, c.1 24 
JL, JD, JU, NAL, 	AO 

c.-mtori YL (112,20) , 10(11') , YU (112, 2r2) 	NYL (112,203 , rlYU(112, 20 ) 
nnm1oN1 JL (8 1+,27 ) , JT) ( "t+) , 	( 	, NL( R4,27)1 "Ii(84,2 7) 
CM11CIN Mr,_  ('34,77) 	''!ft1( ,-111)-, '1A.O(P 1+, 27) 

C 
C 
C 

THIS F,M1r.MTTNE SETS U? THE :1 -7IX COEFFICIENTS FOR 
10 ,3ES ON THE T HETA -= 0 POLAn  AXIS. 

116- (,1.(1...7r,c) -A (L7PN) 
= 0-9"-  (A 	 (.LYnX) -A (LY-P3) +A (LYPY) ) /4.0 

fl 	P74  (•1 (L.17 7)F) 	(L Z!-IF)-A (L7_RO)+rk (L7'1 0) )/'-) .0 
1112;=  ( A (LY :-.'AA) 	( L`ei AA) -A (.LY 17'91.3) +A (LYN1On) -A (t..YPO) +A (I Y!i0)+ Yrcc) 	 fl.r; 

= 'f'1,2*( A ( L;Cr'11) 	(1 '/02 ) ) 
(LJ,X ) --11':3-ir.7.+D:I-aF 

DE 	 ( 	(Lx,n) )- +A('_Y r Y) -A(LX0,3)+(?....?4  (LXF ))) - 
1. 2 Cif>: PY ) / . 
Tr; = DC/ C 

= PA/ 2. 
DI = 3. 041E/'. 
Man(LJY) = -nFfoG-oH+nn-pi 
II,1 	r, 

= )1; - 1-)04-nF 
( 	L i '1) C ) 	( L 	) 	2 . 

!-11_ = 012 2' (A LLYP IA -A (L'(r`X.) -A (LYP -1 )+-!: (1..Y r-s Y)) 
'..1n,L(LJX7.11 = 
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D'1 = D7'I- A(LZ)/4.0 
= Di2*(A(LYPO)-A(LYP?) ) /F3.0 

MAL (LJX, 2) = -0M+nN 
HAL (LJX, 3) = -MAL (LJX 72) 
DJ 710 101=4,27 
MALL 	= 

710 CaNTINW-.. 
pP = 094. (A (LXPt.1)-A (LXF-'X)-A 	XPP) +t; (LXPY) ) / 2.0 
r.)Li = ?.021+*4 (L7) 
D. = 134* 	(L 7PA) -( 1.0*A(LZ) ) 	(L7"A ) ) 

- DS = D12* (A (LXPAA) 	(LXMAA)-A (1..XP9B) +A (ONDr3) 	(EXPO) +A (L X` 
1A(LXPCO) 	(L r10C) ) /1_1 

4AL (LJYy1) = OP-D0+0P-OS 
MAL 	JY, 2) = 1AL (LJY,1) 
MIL (LJY, 3) = 0.0 
mAL (LJY 4) = n. 0 
HIL(LJY,5) = qAL(LJX,?) 
NAL(LJY, 6) = HAL(R I :3) 
DO 711 NO2=7,27 
MAL (LJY ,ND2) = 0.0 

711 C'INTINUE 
UT = 2.0*D244 A(LY) 
DU = D6* (A (t_ XPr7,) -4 (LXPN) ) 
0V = 044  (A(l YPA)-(2.A(LY))+A (LY"A)) 
• = 074.  (A (LXFF)-A (LXNF)-A (LXPfi) +A(LXMQ) )/4.0 
HAL (LJ7,1) = OT-OU-DVI-ON 
KAL (LJZ3 2) = MAL (L. JX,1) 
MAL (LJZ,3) = 	(LJX,2) 
M'IL (LJZ,4) = 1̀ AL (LJX,:i) 
DO 712 t'ir.3=5 ,?7 
MAL (LJZ,NO3) = f7.0 

712 CONTINUE 
DX = 3.n*084 	(L7?C)-(2.C*A (L7) )+A (L7PN) )/2.0 
rY = 013( A(LYPW) 	2.G*A (LYPO) )+A(L YFX)-A(LYPB)+ (2.0*A (LYPP) 

1A(LYDY)) /4.1 
07. = 09=- 11(1_7) 
ODA = 010' (A (LYPO) 	(I_YPP) ) P.? 
MAUILJX,11 = -0X+0Y-074-0?A 
003 = 	04 0.104  (A (LZPV1 ) -(2. 94 A (LZPO) ) +A (LZP X ) 	(1-ZPB)+ (2. e 4. A (L7PP) 

1-A (L7PY) ) /4. 0 
DOC = 011-" (A (LYPVI) - (P.OA.(LYPO) 1+A 	YPX) -(2.0*A (LYPC)) + (4.0*A (L1') 

1-(2.0*A(LYPN)) +A (LYF.?)-(2. 01̀ A (LYP?)) +A.(LYPY) ) /2.n 
010 = 0/04  (8 (L720) -A (LZPP) ) /2.0 
or: = oil" (A (LYPO) -(2. 6=- A (L?)) +A (LYPn) 
MAU (LJX 1 2) = -003+00C+000-DOE 
MAI3(LJX,3) = -tIAL(LJX,1) 
ODF = OP/ (4. n.*1-12) 
00G = 07*(A(LZPA)-A(LZHA))/?.0 
ODH = DrIA'1 1-12/2.0 
OJI = 012' (A (LYPS) 	(Lr-)S) -A (LYPT) +A (LY'IT) ) 	0 
^t AU (LJX, 4) = DOF-10r, -ODH+Ur_iI fnJ 
OD.) = WA/ (H2*4.0) 
on v, = OR/(H2'2.0) 
• = 07/2.0 
0DM = ODA/ 2. 0 
MAJ(LJX 7 5) = -00J+DOK+00L-00.1 
01N = Di 	(A (L7?',.1) -A (1.7.-?X)- (L7?0) +A (L 7PY) ) /B. 
DDn = O')0/2.7 
O)P -= ..00F/ 2. 3 
m ,AU(LJX,1  6) = --ODN.-DOcH-Ono 
DOD = 012- (A (LYPF) -A (LY`1F) -A (LYPO) +A (LYMO) )/ 3.0 
DD? 	09*(A(LYPC)-A(L`'RM)) /4.r 
OUS = 019 4  (A (LXPC) -(?.. " (LX) ) +A (LXPN) )/ 2.0 
MAU (LJX, 7) = orm-i-orip,-ons 
l-IAti 	= 	(LJX,,) 

= MAL (LJX, 2) 
MAID (LJX, 13) = 0.0 
NAU(LJX1 11) = 
DOT = r1124-  uk CLYPA1 	(LYIA) /.9.1 
DoU = 0941(LY) /4.0 
OTIV = 0134  (A (LXPC) 	(1.X2N) ) 	0 

(LJX 1 12) = 001-+L)Dtl-DOV 
P-1 AU(L.JX,f 5) = -`1AU(L.JX,12) 
no 	I174.=14,19 
MAU (LJX, W''04) = 

713 coNT -i luF 
mau(ux,23) = -00F+00G-1-0DH-00T+0J 

(LJX, 21) = ODJ-ODK+90L-Dr),-4  
NV) (LJX, 22) = 00N- J'10 1-0:1P 
NAU (LJX 2.3) = -"IAU (LJX,7 ) 
HAU(LWXy?.4) = mAti(LJX,13) 

(LJX, 25) = mAt_1( LJY, 12) 
".!W 	= [1 .11  

-14-2- 



'VW (LOX; 27) = 0.0 
DOW = 	(Lxpw) --(2.o*A (LxPo)) +A(LxPx) —c 2. 04 A (LXPC) 	( 4,0*A (LX) 

1 -( 2.C 4 A(LXPN) ) +A (LXPB) -(?. 0*A (LXPP) ) 	(LX"Y) )/2.r! 
Oi X -= - D12* (A(LZPAA)-A (LZki AA)- A (LZPF30)+A (LZMBO) -A (LZPD)+A (LZMOH-
A(.LZFCC)---A (LZ-'10(3)) /F.:3 
JOY = 2. ns-  H2-4- 091 
013,7 	 (1._XPo) -(2.14- 1 (LX))+A (LXPP) 
MAU(LJY 1 1) = 77:)0N+ODY+00Y-1-097. 
OrzA 	074(A(LZnC)-A(L7P))/2.g 
1AU(LJY,2) = DEA-DL 
DEB = H2*9,1 
DEC = 0124 (A(LXPS)-A(LXMS)-A(LXPT)+A(LXMT))/8.0 
HAU(LJY,3) = DER-!-'EC 
DEFY= D7*(A(LZDA)-A(L7MA))/4.^ 
DEJ.: = D6-'4. A(L7) 
UT-7F = DI/2." 
MAU(LJY 7 4) = -0ED-DEF+ODJ4+OEF 
OFG = 01,2(A(LZPS)-A(LZmS)-A(LZPT)+A(LZNIT))/3.0 
OEH = 09 4- (A(LZPO)-A(LZPP))/4.0 
DEI = DOZ/2, 
MAU(LOY,5) = 9FG4-DEH-'AEI 
MAU(LJY 7 6) =-MAU(LJX,7) 
MAU(LJY 1 7) = 
MAU(LJY 7 8) = 1.0 
MAU(LJY,9) = C.0 
MAU(LJY,11) = MAL(LJY,6) 
MAU(LJY,11) •= MAL(LJY,5) 
MAU(LJY 7 12) = MAU(LJX 7 12) 
MAU(LOY,17) = 1AU(LJY,13) 
-MAU(LOY,14) = G. 1  
mAU(LJY 1 15) = 0.0 
MAU(LJY,lo) = -HAU(LJY,7) 
1AU(LJY,17 ) = OFDFOEE-00H+DEF 
MAU(LJY,1S) = -DEG-DEH-DEI 
HA1J(LJY,19) = ---AU(LJX,7) 
MAU(LJY,2J) = n.0 
MAU(LJY 7 21) = !1AU(LJX,13) 
HAU(LOY 1 22) = MAU(LJX,12) 
DO 714 M95=23,27 
MAU(LJY,Ni.)5) = o.n 

714 DO'1TIA!UE 
- MaU(LJZ,1) = -'1AL(LJX,1) 

HAU(LJ7 7 2) = 2.0*H3*MAU(LJX,12) 
OFJ = 2. 4 09F 
DEK = D6*1(LZ)/2.0 
W-71_ - DE/4.0 
HAH(LJZ,3) = DFJ-DEK-DOI+nFL 
mAU(LJZ,4) = 0.0 
MAU(LJZ,5) = '/AU(LJX 2 7 )- 
-mAU(LJ7.7 6) = !-IAL(LJY,) 
MAu(LJ7_ 1 7) = ,IAL(LJY,5) 
.1.1H(LJZ,3) = 0.0 

!.1AU(LJ7.,) . = 0.0 
.mAu(LJZ,10) = !1au(Lax,12) 
'IAU(LJZ,11) = MAU(LJX,13) 
NAU(LJZ 3 12) = 0.0 
.1Au(LJ7,13) = C.0 
Y4U(LJ7 i11 ) = n.n 
W1t!(LJZ,15) = 0.9 
!-141J(LE 1 16) 	--.AU(LJZ,2) 
mAU(U7_ 1 17) = -9FJ+DEK+00I+r)FL 

-Mlu(LJ2,13) 
9AU(LJZ,1',J) ,= -1AU(LJY.7) 

= 
HAU(LJ7,21,) = 

-MAU(LJZ,?2) = mau(LJx,17) 
MAO(LJ7,2) = AU(LJX,12) 
CO 71S NO6=24,27 

-1-i(1_,J7,t1D6) = J. 
715 C)NTINUE 

SUOUTTW: AAT-t• V.(11.1 110OF -3) 
01.FNSTnN?A(*!on=7) 

-.C1.41tION-IGG)4mA1./LJX,LJY.,LJZ-0,X,L-Y-„L7 
C01MON/CA4/LXPL".,LXC:=3,LXPC,LXPD,LXP7 ILYD,LXPG,LXPH,LXPI,LX ,,J, 

1LX°K,LXPL,LXPM,LXPN,LXPOILXPP.LXPO,LY0R,LXPS I LYPT2.LYPU,LXPV,LYPW, 
2LYPX,LXPY,LXPAA ILXPO,LX ,'CO,L 20n,LXFFEfLYPFF.LXPL/G, 
3 	LY'1 /1 1 !_XMB,LXMC,LXMn,LXMEILXF,LXH6,LXNH,LXMI,LXMJI  
4LXMK,LM,LXf1-1,LX .IN,Ln,1__XP,LXH,LXP,tAmS,LXMT,LY'4U,LYMV,LYMW, 
5 4-XMX,LX1Y,LXMAA,LX19BOAMCC,LN"100,LXNEE,LXqFF,LXMGG 



• = (LLN'zri)ivk 

L24L=r,-,JN 2c2L_ 

(3')(F1)7V1- = 

= (54Zr1)-ivk 

C2 'xi'  irlvk 	oTlzririvw 

(T ̀X('1) 	= (2'2.ri)1vo 

SLO+.JGO-.E00-UOU-OUU4-600 = (E'zri) lvw 

((dr‘x-1)+((xi)v*v•(:)-(c:Gx-)v),,Ao, = OCJO 

"7/ CzkAlYV-i-(:ci.1) V—  Ctik-A A) V -(L0A-1")V)*-121 =" 1LT 

• 7-!/ ( (C.f1,1) V 	'1,1) V ) v9.6. :-:: 

( (6v1X1) - (GGX'-1) V) *;:) U =: OLD 

Al) V 	TO = CM 

'2/ (Vt,.41)1;-  (VdA 1) v) 	fO = 	OL 

VuOTZO-AO-X0 =. (T4Z1-1)-IVN 

L'ilicc21,;Al)t/+(_:_3dx-i)v-cu.;xiiv-(ndx-)v)*Lu = ULO 

C(VhAl)V+((A1)V-;-e'2)-(Vol)wn0 = ZO 

C(EkX1)V-(Udx1)V)*9U = AC 

(A-1)1-7-*'2 = XO 

41,11EiruJ TZL 

= (2LNI-A11)1-  

CS''Xn1)--Ivh = 	Arinvk 

(L'xri)ivk  

m+ru-No-  = (2.'Ar71)1viq 

WArirlvk 

( uz-n v*o 	(v•Jz -1) ■, 	=• 

L,'47/«Dkx1)v-v(odx-ov-(kx-)v-t.,:dx-)v)-,To = 1111 

= In 

((3NX1)V-(OdX1)V)*bTO = CO 

02.L. 

= (TON'Xr1)1VH 

i:-:'9=TGhcaLa 

= (4Xn1)1Vk 

06t/(Ct]e(X1)1/-(2dX1)V)v22U = sz:0 

c—c:/(A,1)V.*6TO = (.0 

u'i1/C(V.v.1.1)V-(VciAl)V)*T,70 = GO 

= (t'xr1)7vw 

kO-PAU+1u-  = (24Xr1)1uN 

"7/ ( (V-11) V-  (Vr.-,Z1) C) *L0 = NO 

Li*/(7_l)v*90 = 

:1*{-1/C(OilX1)V-(0c1X1)V) 426 = 70 

= (2xri)1tiN 

XO+rO-TO-  =.(T'xri) lvw 

f7/(c.)14A-utl-(odAl)v)*Tai = >U 

1-2/(z1)v*sTu = FO 

0*+//(CEI-;211)*-C&:!-L1)V)*L0 = In 

vo-hof9n-du-uo 	(zri)nvw 

=- (.4r1)6v14 

i-:•+7/«I44x1)v+(1dx1)v-(Hwx1)v-o-idx-1)v)*22o = HO 

u•-c-;/C(0:.:X1)V-(00X1)V)*220 = SO 

..:!U+39-00-JU-LU+VO = (xr-pum 

0•ti((9hA1)v-i-cc..1Ai)v-(dAl)v-cddA-1)v)*T20 = SCI 
o—tic (Bwzi) v+ 	v-  (oNzi) v-  (adz 1) v)*Lo = 30 

• 'E/ 	(V.dZi)V),(TO = Le 

L;'ai (:l,kAl) V-  (00A-1) V) *6T0 = 00 

(Z1) 	= 

t:;*2/ ( (8kZ1) V-  (bd-L1) v)*90 = NU 

cVleci 3H1 NO lot: s?(JoN 

iLUA 	XI iVW 	dfl SI3S 3NII1o'clans SIN! 

(q‘i-76InviN 4()ovi,! 4CL24f7i3)11-qi NOWNO3 

czz'tpnli 'cL24+)toliN 	n9)Ac 	onoer 4(.4z4,1in-ir NOWk00 

A0242ITHIAN 	(0242TT)1AN 	(942T.T)11A 	(2-1,T)0A '(OZ'2TT)1A NONWo3 

nvw 'Up 	'Hr 'or `in-  1t/_ 

tc.c-J'2ZU'ZZO ILU462CpbTO'S,?Til`2.TU'9TuT 

45T34i7T042T042TU'TTO'OTO'be'i3U4t09̀0'S0+70 0421] TO/ZVNI.00/NOWNO0 

9f)1,1ZltA.dkZ1433RZ-1400WZ1'00i-i-L1'9@kLl'CVNZ-144NZ-OXN7_15 

	

rNZl'INZ1'HHZ1'pZ1`d1l'31,4214014Z243k211'6V-L-1 tiNZ1 	2 

"..)90Z1 443dZ7'33dic1LOCidp 306Z1'HfloLliVaZl4Ad.714Xd7_12 

41-1dZ14AdZ1f̀id7141dZ1-Sd214dZ1 UciLl odZl'OdZI4NdZ1 .4d-ilciaZ14::d21T 

`riZI'IdZl'HdZ149G714ddZl'zdLl'Oal'OdZ-Ob:Cll'Vq1/9VHVOO/N0140 

u21-R14..7_1NA13DNAl'LONAl'00NAl'Uk),1 VVi,JA-141.kA14XNA15.-1 

`MHA14ANp4fINA1 INAl'SA1-2J414U1-4414dk0'014,1,14NkAl`NA14-1H414›.144147-  

	

'N.441 IWAliHNAl'ONAl'AI,2A1 3kAl4014A1'3NAl'ZWAl'VkAl 	2- 

3E'dAi400dfliAl'b-pA141/V0Al'AdAVYdAla•  

4Vkl4AdAl‘ndAl4idAl4dA14>;dA140dAl-dAl Odnl NdAl kdA1416A-14>ldAlT 

AdA1-2dAl`UdAi 'qciAl467!).14V60/Vbit,03/NQI-M03 

3 

u 
3 

3 



722 CONTiNir 
DOH = 094 (A(LZP9)-(2.0*A(LZ))+A(L7_15)) 
001 = P174A(L7) 
DOJ -= - 0164 (A(L7P9)-A(L7T1))/2.n 
00K = D23-"(A(LYPC)-A(LYMC))/2.0 
OOL = 022(A(LYRH)-4 (LYMH)-A(LYPI)+A(LYMI))/4.0 
flAU(LJX,i) 	-00H+DOI-OrJ-DE)K+DOL 
DUI = 0224 (A(L7PH)-A(LZMH)-A(L7PT)+A(LZMI))/4.0 
DrO1 - = [123' LA (1.2:PC) -A (1_ 721 (7) )/2.O 
000 . = 020'(A(LYPC)-(2.1)*A(LY))+A(LY"C)) 
11AU(LJX,2) = -0n1-00T,1 4.0r30 
NAU(LJX,3) = -MAL(LJX 1 1) 
MAU(LJX 1 4) = 0.0 
AU(LJX,9) = -MAL(LJX,3) 

NAU(.LJX,6) = J.0 
MAU(LJX,7) = -MAL(LJX,5) 
00 723 MO4=5,27 
MAU(LJX,N04) = P.? 

723 CONTINUE 
DOP = 020*(A(LXPC)-(2.0*A(LX))+A(LXIC)) 
ODO-= 021*(A(LZPF)-AILZHF)-A(LZPG)+CALZMG))/4.0 
OUR = 019(A(LZPC)-A(L7mC))/2.1 
NAU(LJY,i) = -0004-900+00P 
MAU(LJY,2) = -MAL(LJY,?) 
IAU(LJY,7,4 ) = -MAL(LJX,3) 
MAU(LJY,4) = -mAL(LJX,5) 
00 724 NO5=5,27 
NAU(LJYIN05) = 0.0 

724 CONTINUt 
MAU(LJZ,1) = -HAL(LJX,1) 
MAU(LJZ,2) = -IAL(LJX,3) 
NAU(LJZ,3) = 1.0 
-NAU(LJZ,4) = -MAL(LJX,5) 
00 725 ND5=5,27  
M4U(LJZ,Nn6) = 0.0 

725 CONTINUE 
RETUP.N 
EMO 

SUBROUTINE MATIA3(A,NODE3) 
OINFISION A(NOOF7) 
COMMON/CO14MAl/LiX,LJY,LJZ,LX,LY,L7 
COMION/COmMA7/NAH.-3073,N770N20330N4,N790I4,H2,H3 
COMMON/COMMA4/LXDA,LXPB,LXP2,LXPO,LXFF,LXFFILXPG,LX.PH,LXPI,LXPJ 

1LXPK,LxPL,tx7m,LxpNI Lypoo_xp2,LXQQ,LxpR,LxPs,LxPT,LxPU,LYPv,Lxpj/, 
2LXPX,LXPY,LXPAA,LXP6P,LXPc'C,LXR00,LXPEF,LXPFF,LYPG6, 
3 	 LV14,LXH6,LX0C,Lxmn,LxF,LAmF,LXmG,LymH,LXrAT I.LXMJ, 
4LYAK,LXML,LXII,LX"N,LXIn,LXMP,LXIO,Lr!R,LXMS,LXNT,LXNU,LXIV,LXMW, 
5LXMX,LY1Y,LXIAA,LYA0P,LXMrfl,LXMOO,LXIPF,LXIFFILXmGC 
COMMON/COANA5/LYPA,LYPO,L"ePr,,LYPP,LYPE,LYPF,LYPG,LYPHI LYPI,L'rPJ, 

1nPK,L'tPL,LYPI,LYFN,LYPO,LYPR,LYPq,LYPR,LYPc;,LYPT,LYPU,LYPV,LYFW, 
2LvPX,LYPY,LYRAA.LYPP I LYPCC,LYPDO,LYPFElt_YPFF,LYRGG, 

LYMA,LYMR,IYNC,I.Y"D,LYM7 ,LYMF,CYNG,LY!'1H,LYNI,LYMJ, 
4LYM'<,LYIL,LYN'I,LYmN,LYMO,LYMP,LYMO,LYMP,LYMC,LYMT,LYNU,LYIV,LYNN, 
5LYNX,LYMY,LYM4A,LYN9c1,LYMCC,LY100,LYIEE,LYMFF,LYGO 
COmMON/COMIAc)/LZPA,L7PP,LZPC,LZPIO,LZPE,L7PF,LZPG,LZPH,L7PI,L7FJ, 

11.7PK,LZDL,LZP;-,,L7Pm,Lzon,LZpo,L7cO,L7PP,L7PS,LIPT,LZPU,L7PV,L2pw, 
2L72A,L7PY,LZPAA,L7n9L6LZRCC,L7POD,L7PEE,LZPFF,LZ2GG, 

LZMA I L7MD,L7NC,L2MO,L7ME,LZIF,LZMO,L7MH.L 7MI,L7, 
.4L 7.1K,L7M1...,J.7.-,L.7.MI,L7M0,L7MP,LZIO,J.ZM7,LZISIL7.ITIL?MU,LZMV,LZMW, 
5LZHX,LZIY,L7MAA,LZmbi3,1_7_MCC,L 7IDO ILZrEE,LZIFF / L7"6(7,  

-CnIION/C07/01,n2,0,04,0'77n,n7,P8,09,O1 '701-17012,0177014,015, 
1016,017,018,010,0211 / 021 022,023,n24 
R,EAL JL, JO, JO, MAL, 

021, 
	11 

Co,laOr YL(112,71), '(0(112), Y0(112,215), NYL(112,20), "Y. U(112,20) 
CIMMON JL(84,27) 	JCP14), JU(84 27), IL(84,27), NU(4,27 ) 
C1MMON MAL(84, 9?), MA0(34 ), 1A1084,?7) 

C 
C 	THIS STIPOUTTmF MAKES THE NECESSAPY ALTFRATIONS TO 
C 	THE MATRIX Cf)=FFICIEmTS F07 NOnES 'MEPF PHI 
C 	VAPI!1,T7O1S Inv= COFFFICTv'NTS F),OM THE LUWE' TO THE 
C 	URPLP TRTANCULAP 1177-1JX. 
C 
r. 
C 

OA = 03(A(LZP3)-r\(LZtA5))/2.0 
03 = nif4-KA (L7) 
CC = 0.1.1'(A(LY0C)-A(LVIC-4-1137))/2.1  
9O = D15-*(1(L7F'A)-A(L7mA))/?.? 
DE = D74 (A(L7Pr)-A(LZVO)-A(LZPE)+A(L717))/4.0 
OF = n21.'(A(LYPF)-A(LYMF)-A(LYPG+137.)+A(LYIG+N77))/4.c! 
'1\D(LJX) = 0A-1-D'"-PC-nil-DL+nF 



C 
C 
C 

Bry = 023(A(LXPC)-4(LY1C+H33))/2.0_ 
OH = 02?'(A(LXPN)-A(LX1H)-A(LXPI-1-137)1-A(LX1I+133))/4.0 
NAO(LJY) = DC,+02---0E14-Ur.-nH 
MAD(LJZ) = OP-OF-9G+nH-JA 
DT = 07(A(L7n0)-A(L7."R))/4.0 
0J =Di5*A(L7)/2.° 0" = n21*(A(LYPC)-A(Lv"1-133))/4.' 
"L(LJX,1) = 
91_ = 527".'(A(LXPC)-8(1.X1''+"73))/4.1 
D" = 06='-A(LZ)/2.17 

. ON = o7 ,(A(tzpa)-A(L7mA))/4. ,1 
HAL (LJX, 3) = -0L+pm+DN 
OVA = .4AL(LJX,5) 
"AL(LJX,51 = n.fl 

= P1a*(A(.LXPC)—A(LY"04- 
DT = 2.1-1*-)24/1(' 7) 
DU = n21='(A(LXnF)-A(LXM=)-A(LYPG-1-'173)-1-A(LX1G+"73))/4.rl 
DV = 04(A(L7PA)-(2.i:*A(LZ))4-n(L7"11)) 
MAL(LJY,1) = 9S-0T-OU+OV 
MAL(LJY,2) = -01-0,J4-nv 
1AL(LJY,7) = "AL(LJX,') 
HAL(LJY,4) = n.r 
NIA.L(LJ7,7) = 6AC(LJY11) 
1•IAL(LJZ,4) = 1AL(LJX,7) 
NAL(LJ7,6) = 0.0 
DJH = Ml*CA(L7PB)-(2.2(1_2))+A(L7'42)) 
nfli = n17*A(L7) 
uDJ = D161.(A(LZPP)-A(LZ13))/2.0 
09K = 023'(ARYnl-A(LY1(7:+1133))/2.0 
901_ = D22*(A(LYPH)-11()Y"))-A(LYPI+133)+A(LY1I+N33))/4.0 
i4AU(LJX11) = -00111-00T-9DJ-90K+Ont_ 
DJ1 = 0724.(A(LZPH)-A(L7:"H)-A(L2PI+177)+A(LZ1I+133))/4. 
nail = 023*(A(LZPC)-A(L71fli-M33))/2.0 
1100 = O204-(A(LYrC)-(2.fl''A(LY))+A(LY"C-1-M77)) 
NAU(LJX,?) = -nEl-OnN4-Dnn 
MAU (LJX13) = -.181  (LSX71) 
i'.1AU(LJX15) = 	(L,4,3) 
MAU(LJX,13) = ')VA 
[-MP = (370 1- 	(LXPC) —(7 .n* (LX))+A (L.V4C+13 -7) 
1161 = D217' (A (L. 7_PF) -A (LZMF) -.A (LZPG+137) +A (L7HGI-N137) ) /4. 
07)P. = 919'0 (1, ZPC1 	(L7"CfM73))/2.(1 
1AU(LJY,1) = -nn24-nnn+DOD. 
HAtittJY,2) = -r-InL(LJY,2) 
MAH(LJY,3) = -MAL (LJX, 1) 
MAU(LJY,13) = OVA 
mAu(LJZ,1) = -1AL(LJX,1) 
1IAU(LJ7,2) = -"AL(LJX,71 
1AU(LJZ,!.1) = OVA 
R7TURN 
F10 
SNI3 =n0TINE 1.ATMA4(A INO9') 
DIM7NSI0N A(M09c3) 
COM101/0011411/LJY,LJY,LJZ,LY,LY,L7 
COMOON/C01MA2/NALPH3,137,1730M2,N730140390N4,H2,H3 
001101/COMMA4/LXPA,LX7r3,LYDC,LYPOILYPF,LY0F,LYDG.LXPHI.LYPI,LYPJ 

1LXPK,LXPL,LXD",LXPN,LAnO,LXPD,LXPLI,LX0R,tXPS,LXPT,LX°U,LXPV,Lei, 
2LYPX,LXP'1,LXPAA,LXPPD,LXPCC,LXP09,LXPEF,LYPFF,LXPGG, 
3 	 LX"8,LXt'",LX"0,1_X"9,LX1E,I.j("F,LY1G,LX1HI LY1T,LV"J, 
4LX1K,LXML,LX"1,LX"N,LX"0,LX1P,LXNOILX","S,LX1T,LXNU,LY1VILYMW, 
5LXiiX,LX1Y,LX1AA,LX9BP,LX1CC,LX1P9,LXNEL7,LX"FF,LX"GG 

COAMON/CC11A5/LYP'2,LYcB,LYPo,,LYPD,LYPEILYF,LYPG,LYmH,IYPI,LYPJ, 
11.Y°K,LYPL,LY°l,LYPN,Lsron,LYPP,LYPOlLYPP,LYPs,LyPT,LYPU,LYPV ILYP'4 1  
2LYPX 11.YrY,LYPAA,LYPRR 	 c7 ,LYPCC,LYPOn,LYPE,LYPFF.tLYPGG, 
3 	 Lv1A,LYt19,LY1C,LYMD,LY1c,LYMF,LYG,LY'elH,LY'lI,Lr-'J, 
4LYIK,LYML,LYVM,LY1N,LYMO,LY10,LY10,1Y1R,LY1S,LYMT zLYMO,LYMV,LYVW, 
5LY1X,LY"Y,LYAA,IY15",,LYMCC,Lv1007LYIsIFE7 LY1FF,LYtAbG 
CnMON/COMIA5/LZPA,L7n0,LZPr,,L7_PO,LZPF.,L.7.PF,L7PG,LZPH,LZPI,LZFJ, 

11-ZPK,LZPL,L7.7.".,LZPN,L7POIL7PP,L7P9,L7PR,L7°S,L7PT,LZPU,LZPVfLZPW, 
2L7PX,LZPY,LZPAA,L2PLir?,LZPCC,L7n90,LZPEE,L70F.F,LZPOG, 
3 	 LZ1A,LZ117,LZHC,L7"1:11L7HE,LZ1F,LZG,L71H,L7MI,L7"J, 
LL7.,L711_,L7"1,L7NN,L7."0,LZ1P,LZ1d,L7MR,L71S,LZ"T,LZMU,L7MV,L7MW, 
5LZMX,L211'e,LZMLIA,L7132,L7"CC,L7.1000ZNFE,L7OFF,LZ"GG 
CM'elON/C019A7/ni,n2,03,94,05,11,07, 1q,D9,01 r201,012,013,0147 C15, 

ini3,017,018,919,0?1 921022,023,094 
JO, Jit, 'la. 

 

1110, "AU 
Cni-;NON YL(112,2J), YO(112), YU(i12,2C), 1Y1 (112,26), 1YU(112,2G) 
COMMON JL(84,27), J9(84), JU(R4,27), NL ( 34 7 27), MU(84,27) 
C91"01 MAL(84,27), lAD(84), 1AU(8h,?7) 

C 	 THIS 5.1-92.0UTI17 riAK7S TH7 "vEC7SSP.PY ALTcoATToNS Tn 
C 	 ThE IATP,TY COEFFTrTTS F07 NOnES WHErr';= DHT 
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C 
C 
C 
C 
C 

VAR1kTIONS MOVE COEFFICTENTS FROM THE UPPER TO THE 
LOWER TRIANGULAR MATRIX. 

DA = D6".  (A 02PN-A (LZ"3) ) /2.0 
= 01444(L 7_)  

Dr = 01o4  (A(LYPG-M 73) 	(LvMr3) ) /2." 
00 = 0154( A (LZRA) -A (L7mA) ) /2.0 
LE = 07' (A (LZPO)--A (LZ:10) 	(LZFE) ÷A(LZME) )/4.0 
OF = r121# ( A (LYPF-N3:;) -A(LYMF-N33)-A (LYPG)+A (LYmG)) /4.0 
mAD(LJX) = DA+DO-OC-0D-11E+OF 
Dr, = P23*( A( LXPC-N33) -A(LXMr;) ) /2. -  
DH = D224  (A (LXPH-N37)-A (LvMH-N33) -A (LXPI)+A (LXm7))/4.' 
"AO (LJY) = Or;+0:---11.3-1-Dr-OH 
U10 (LJZ) = no-OF-oc+oH-nA 
DT = D7(A(L7PB)-A(LZm3))/4.0 
DJ = 0154A(LZ)/2.' 
OK = D21*(A(LYPC-N33)-A(LYMC))/4.3 
MAL(LJX,1) = 
DL = 022*(A(LXPC-'1 3-4 )-A(LY.MO))/4.° 
Om = 06*A(LZ)/2.0 
ON = D7- A(L7PA)-A(17"A))/4.0 
MAL(LJX,3) = -OD-DMA-DM 
OVA = MAL(LJX 1 5) 
MAL(LJX,1t) = -OVA 
DS = D19*(A(LxPC-N33)-A(LXmC)) 
UT = 2.04024*A(L7) 
DU = 021*(A(LXRF-N7')-A(LXM=-N33)-A(LXPG)+A(LXMG))/4.0 
DV = 1141 (A(LZPA)-(2.P4 A(LZ))+A(LZ1.1A)) 
MAL(LJY,1) = DS-OT-OU+OV 
MAL(LJY,2) = -D`1-DJA-nY 
MAL(LJY,3) = MAL(LJX,3) 
MAL (LJY, 10) = —OVA 
1IAL(LJZ,3) = mAL(LJX,1) 
NAL(LJZ,4) = 9AL(L)X,7 ) 
MAL(LJ7,12) = 
DOH = 984(A(L7°E,)-(2.'I'A(LZ))+A(LZMB)) 
001 = 017=- A(LZ) 
00J = 016'- (A(LZP8)-A(LZ1R))/2.n 
00K = 023*(AftYPC-N33)-A(LYuC))/2.n 
DOL = 0294 (A(LYPH-N3)-A(LYMH-137)-A(LYPI)+A(LYMI))/4.° 
MAU(LJX,1) = -09H+OOT-OoJ-DOK+DOt 

= D22"(A(L7PH-N33)-A(L7UH-N77)-A(LZPI)i-A(LZmI))//1. 
DON = 023(A(LZPC-N33)-A(LZC))/'.g 
OPO = 0204 (A(LYPC-N33)-(2.04A(LY))+A(LYC)) 
HAU(LJX,2) = -001-00"4-000 
MAU(LJX,3) = -MAL(LJX,1) 
mAU(LJX 1 9) = -1AL(LJX,3) 
MAU(LJX,7) = r e,  
OD')  = 023'(A(LXPC-N33)-(2.r^l(LX))+A(LX1r)) 
000 = 011'(A(L7R=-N33)-A(LZMF-W23)-A(LZPG)+A(LZMr))/4.0 
DoR, = O19'(A(LZPC-N33)-A(L2C))/2.9 
MAU(LJY 1 1) = -0DP4- 0300- DOD 
MAU(LJY,2) = -MAL(LJY,2) 
MAU(LJY,:3) = -"AL(LJX,7) 
HAU(LJY,4) = 
NAU(LJZ,1) = -9AL(LJX,j) 
NAU(LJZ,2) = -"AL(LJX,7) 
MAU(LJZ,4) = r.9 
H=TURM 
ENP 

SUBZOUTTN,: 4ATNA5(A,U0O77,KK,MM7,,IN37) 
DIT=MSION A(NOOE7) 
CO1MON/C01141/LJY,LJY,LJZ,LX,LY,L7  
COMMON/CCm.11A3/MC23,NON231OP,SR,CPP,SPP,OPm,SPP 
COMMOM/C01HA4/LXPA,LXPr LX000XRDLXP= LX°F,LXFG,LXPH LXPI,LXFJ 

1LYRK,LAPL,LXFM,LXPN,LXP6,LXRP,LXR(21,LXP,LXR'-,LXRT7LX 0VXPV,LYP, 
2LXRXILXPY,LX;:AA,LXPRo,LX°CC,LX 0OryXFFE,LXPFr,LxrpuG, 
3 	LXMA,LXMF,,LXMO,LX"0,LXMC,LXM=,LXMO,LvMH,LXUI,LXMJ, 
4LXNK,LPAL,LXI,LX91,LX0,LX1P,LY11:1,LXM°,1X"S,LX:''',LXMU,LY;;V,LX"W, 
5LYUX,LYMY,L<IAA,LYM°3,LYMCC,LY101,LXM=E,LXMFF,LX"GG 
CONNON/r'0'.1M49/LV) A lLYv.i,LYPO LYPO,LY"E,LYP,LY-)G,LY2H,LYPI LYEJ, 

1LYPK,LYPL,LYPi1.LYPN,LYPO,LY-^13,LYPO,LYRR,LYPS,LYP-T,LYPU,LYR,LYP',d, 
2LYDY,LWY,LvPAA,LvPon,LYRCO,LYRDP,LYPEFILYPFF,LvPGG, 
3 	LYMA,LYNd,LYMC,LYMO,LY4E,LYF,LYMG,LYMH,LYMI,LYMJ, 
4LY`1<,LYL,LY11,LY, N,LY10,LYMPILYMO,LYMP,LYUS,LY"T,LYU,LYMV,LYMU, 
5LvAX,LY1YILYAA,LY"-n,LYmCC,LY909,LYmcF,LvIFF,LYmGG 

1 COUMPN/C0MA6/LLPA,1'ZFO,I.:00,L7RP,L7n=,L'=,L7FG,LZPH,L7PT,LZPJ, 
1L7°',L7PL,L7PM,LLPNILZPO,LZ0P,L7')0 I L7DD,LZPc,L7QT,L7DU,LZrV,LZPW, 
2LZO!,t 77-Y,L7cAA,L7PoO,L'POO,L7P0o,L7oF.E,! 7PrF,, Zr6G, 

LZmil,L2m0,L""r,L7m00 7'iF,LZ"FO 7 vr,,LZMH,L7m1.L7'1. 
4L7NK,LZIL,L7'IM,LZUN,L7.MO,LZ.I2,L,L7R,1-71S,LZNT,L71'U,L7mV,L7mW, 
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5 1_71X;LZMY;LZMAAILZ9,LnCC,L7MDD,LZMEE;LZMFF,LZNG 
COMMON/CCAMA7/0/,O2,07,04,05,06,07,08,09,0100111,01 2,01370147C15, 

1D16,017,018,019,07 	D22,023,D24 
R:AL JL, ID, JU, NIL, ”an, NAN 

N comom YL (112,2r?) , YD(112) 	YU(112,2C) 	NYL (112,20) , NYU(112,20) 
COMMON JL (14,27) , JO (84) , JU ( 94,27) 	ML (FL, 27) , NU ($4, 27) 
COIMON NAL (84,27) , MAD (84) , "AU(94,27) 

C 
C 	 THIS SUBROUTINE MAKES THE NECESSARY ALTERATIONS TO. 

THE MATRIX COEFFTCIENTS FOR NODES ADJACENT TO THE 
C 	THETA = 0 POLAR AXIS. 
C 
C 

K = KK 
N3 = 
N73 = NN33 
Al = A (NC'3-2) 
A 	= A (NC"73-1 ) 
AC = A (NC23) 
DA = nb* ( (AR*S0)-  AC4CP) +A (LZ4r1) ) /2.0 
03 = D74  ( ( A (LYPFF) 4-S0) - (A (LZ RFF)4CP) - (A (LYMFF)''SP) (A (LZMFF) 4CP)+ 

lA (L 7PF)-8(1) ) /4.] 
taAD(LJX) = !111! (LP' )+DA-OP 
DC = 022* (A (LXAH)-A (LY1I) ) /4. iz 
MAD (LJY) = MAO (LJY ) 
MA3 (LJZ) = 	Ao (Liz) -1-m--op 
DO = D7*  ( (AR'SR)-  ( AC4(3°) +A (L7.1n) ) /4.0 
*-4 AL(LJX,1) = 	AL(, ix ,1) -on 
OVA = MAL (LJX, 3) 
MAL(LJX13) = n n 
OH = 021*  ( A ( 	- A (LY"A) ) /4." 
1.T._ A = D19'4( LY) /2.3 

= n224  (A (LXP9) -AA) /4. r: 
MfiL(LJX,5) = -9F.-0 =:1+oE7i 
• (LJX,17) = D4A 
t11...(LJY,T.) = 0.0 
t'AL (LJY,L) = MAL 	,(' 5) 
NAL(LJY,12) = nva- cr,  
• (LJY, 13) = ova-7,  
CF = 1,6 4 ( -AA -1-1% (1_Y";1) ) 

= P74  (-A (LXPFF) +A (LXFF) +A (LYP=) -A (LXM7 ) ) / 6..0 
MAL (LJZ 	= '-'AL (L J7,1)-DF+OG 
OH = D1o4  (-A A+ A (LY'4 n) ) /2.0 
DI = O6*(-  (An-''CP)- ( AC*SP) +A (LY9-3) ) /2.r 
• = D7' (- (A (LYPf- ='--  ) 4 CP)- (A (L''FF )'SP)+ (A (LYMFF)'OP)i-  (A (LZPFF) 4SP) + 

1 A (LY P7 ) -A (LY"E) ) 	n 
DK = 17 4.  (AA-A (LXT-  )) 
"AU (LJZ,2_) = NAL (LJ7,2) 
?'AL (LJ7,3) = MAL (_ IX ,1) 
MAL (LJZ, 4) = 	.9 
W1L (LJ7, ) = "AL 0_ JX, 5) 
NAL (LJZ, 1?) = -Dv *S° 
NAL (LJZ, 14 ) = FIVA'7 CP 

= 1194" (- ( Ar.4 S") + ( AC'CR ) -A (' 7"3) ) 
• = 01'S" ( (A 1 )- (AC" C'3 ) +A ( 1 _ 	)/2 .^  
▪ = 022 4 ( -( A --"CR7-  ) - ( AC* RP) + ( A;1CPN) 4-  (AC'SP1)+A (LYMH) - A (LYMI)) / 

1L. 
JX 	= 	ix ,1)-m_-,1 ,-.+TI 

• = 02"' ( (A q4 SPR) - (AC.'CP0 ) -  ( 1',3StM) + (ACCPN) +A (LZMH) -A (L7MI) )/4.0 
• (LJX, 2) = MANN JX,2)-fl0  

(LJX, 3) = -MAL (I JX,1) 
M', U(LJX, 7) = -"AL(C,Ne, r,) 
'''fAti(LJY, 14) = -"AL (LJX, ci) 
!4 - 	(LJZ, 1) = -`!AL (LJX, 1) 
P'01( JZ,4) = -NAI (LJX15) 
(311 -1 = m AL(LJY,) 
▪ ( v..Nr. 1) GO TO 75-  

= 0224 (A(LX \II)-A(LYNI+N33))/4.^  
'4 A 	(a- 3v) 

(LJ,fl = r.t Al CL 1') +Fr; 
= 

NAL (LJZ, 6) = 
D' = D22" (A(LYMT ) - A (LYMT+N37) ) /4.r2 
NAU(LjX 1 1) = mA1J(LJx,1)+1D, 
• = n22-  c A (1_ 7  ;1T) 	(LpIT+ 3-) /4.11 

= -1 AULJX,'")-°S 
■';

• 

f_l (I JY ,11) = 
' U(LJY,1' ) = DV-1  

fly"' 
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7531.F (K.NE.N3) GO TO 751 
DT = 022* (-A (LX,-1H) +a (LXMH-M33)) /4.0 
MAD (LJY) = MAD (LJY) -OT 
ii!D(LJZ) 	MAI) (LJ7.) +07 
MAL (LJX,11) = -OV:3 
NAL (LJY,171) = 

(LJZ, 1'..) = 
O!J = D27 4 ( -A (LYNH) +A ( LYMH-M33) ) /4.1 
mAtJ(LJX,1) = WIU (LJX 1 1)+DU 
DV = 0224 (-A (LZHH) +A (1_721H-1933) )/4.0 
NAU(LJX, 2) = MAU (LJX ,2)-OV 
NAI.J(LJX,7) = 3.0 
tl(lid(LJY,4) = 

(L.J7.14) = rJ.0 
751 *R.: TURN 

SUBROUTINE MAT;-!A6 (A ,NOOE3, KK ,9113 ,N1133) 
DIMENSION A ( NODE3) 
COMMON/C0\1k1A1/LJX, LJY,LJZ,LX, LY,L7 
COMMON/C0"'1A7/NIC23 ,NCN23,CP,S0 ,CPP,SPP,CPN,SPm 
CONMON/CCMMA/4/.LXRA,LXP0,LXPC,LXPD,LXFF,LXPF,LXPG,LXPH,LXPI,LXFJ, 

1LXPK,LXPL,LXP+,LXPN,LXPO,LXRP,LXPO I LXRR,LYPS,LXPT,LXRU,LXFV,LXPW, 
X?_L PX,LXPY,LXPAA,LXPBR,LXPCC,LXPDO,LXPEE 7LXPFF,LXRGG, 

3 	 LXMA,LXME,LXMC,LXMO,LXNE,LXMF,LXMG,LXMH,LXMI,LxmJ, 
4LXHK,LX9L,LXMM,L;C7N,LXHO.,LX'4P,LXMO,LXi.IP,LXMS,LXNT,LXHU,LXMV,p(MW, 
-.5LXMX,LXMY,LXMAA,LXNE33,LXMCC,LX.MDO,LXPEE,LXMFF,LXMGG 

COMMON/COMMA5/LYPA ,LYPR,LYRC,LYPD,LYPR,LYPF,LYPG,LYPH,LYRI,LYFJ, 
iLYPK,LYPL,LYFti,LYPN,LYPO,LYPR,LYPD,LYPR,LYRS/LYPT,LYPthLYPV,LYPW, 
2LYPX,LYRY,LYPAA,LYPRS,LYRCC,LYPDO l LYFER,LYPFF,LYPGC, 
3 	 LYMA,LY,LYMC I LYMO,LYME,Lr-IF,LYMG,LYMH:LYMI,LYMJ, 
LiLY'IK,LYML, LY-"N, LYNN, LYN°, LYNP.LY!'1 Q,LYmR,LY 7-1S,LYNT I LYNU,LYNV,Lr-'41, 
5LYNX,LYMY,LYMAA,LYT313,LYMCCILYMDC,LYNEE,LYMFF,LYMGG 

COMMCN/COMMAc., /LZPA LZPB,L ZRC,L ZPO,LZFEILZPF,LZPG,LZRH,L ZPI,LZRJ, 
ILZ°K,L7RL,L7PN,L7RN,LZPO,L7PP,LZPO,L7P?,LZIRS,LZPT,L7PO,LZFV,LZpW, 
2LZRX,LZPY,LZPAA,I 7PBP.,LZ0CC,L7PDO,LZPFE,LZPFF,LZR(;(;, 
3 	 LZMA,L7mT3,L7i1C,L7,-1 0,1 7.ME,LZMF,L7MG,LZMH,L7.MI,LZMJ, 
i+L7MK,LZMi...,LZMM,LZ'iN,L 7MO,L7MR,LZMO,L7',1R,LZNS,_LZHT,LZMU/LZ,-1V,L Zw4, 
51.7NX ,LZMY,LZ!".AA,LZmE3R,LZMCC,L7MOD,LZHEE,L7.MFF,LZ!"GG 

COMMON/COINA7/01,71 2,0 -4 04, D5,P6, n7, 08, 09,D10,1-)11,D12,D17, C14, 015, 
101 6,017,018, D19, 070 ,0?1,D22,n23,D24 

JL I JO, Jtl, MAL, mAn, MAU 
CO-INON YL(112, 70), YOC112), Ylit112,217), t‘iYL(112,2r1), '‘IY(1(112,20) 
COMMON JL( ;If4- ,27) , JO ('34), JI-1 ( 4, 2 7) 	NL (514, 27) , NL1(34, 27) 
CO M1ON "1AL 	127) , N!An (4) , MALI (p4, 27) 

C 
C 	 THIS SJ0POUTINE 	TH= NECESSARY ALTcRATIONS TO 
C 	 THE MATRIX LOEFRICTENTS FOP NOCE'S ADJACENT TO THE 
C 	 - THETA = PI POLAR AXIS. 
C 
C 
C 

K = KK 
117 	N N 3 

3 = N:17 
A ( NC!,1?si-? ) 

A 7 = A ('!C123-1) 
A; • = A(NC:1 	) 
OA = n6$ (- car)sp)4-(Ac,=c;--) -A (LZP?) ) / 2.0 

= 	(- (A (LY:-3 1-,(3)',- S0 )+ (A (LZRGG)=,- CP) -1-(A (LYNIGG)*SP) -( A (LZMGC,)*CP) - 
-IA ( LZPO) +A( 	) 	.(  

(L,m) = 	 r) ,. -71 n. 
- -="027=!- f -A (LXf)(1) +A (LYPI))/4.`1 
(LJ?) = MAO (LJY)+01-0C 
( 	) 7 ‘( AO (L.17) +ri,-'11 

. 2") 	( - (11 114 SP) + (AC C'') -A (L 709) ) 
•1-141.. (LJX,i) 	= `-iAL (t..JX,1)-07-1 

= i_r_1. 4. (A(LYnA)-A (LVIA) )/t+.t: 
rrA = D19'. A(LY)/2.r 

C)22-'t (A A-A (Lxsti) ) /I+. r 
= 
= 	JX,5) 

-r1F- = 	( A.A- A (.!.X "r') ) 
(A (L•X,PC,G)-A (L xm(;r,)--A (LXPO)+A (t X'IC) ) / 1+. 7 

NAL (LJZ, 1) = '-1 AL (LJZ,1)-0F+OG 
= r)15c( AA -A (LXfl9) )/ 2.72 

01: = r.)64. (- (A rl*C0) - ( AC'.(2.P) 	( LYPR) ) /?. 
D.) = 1)7*(- (A (L YPI.3G ) 	(A (1.7RGG) 4 SP)4- (A (LY MGG) 4CP) + (A (LZMGC)*F..0) 

1-A (L`f PO) I-A (L 	) 	.0 
0.< 	0 	(AA-A (t.X07") ) 
"A!..(LJZ, 2) 75 MAL 	7)-DH-OT.-0J+nK 
riAL. (LJZ, 3) = NIAL (LJX , 1) 
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tAL (LJZ,r)) = MAL (LJY; 
DL = 08* (- 	Fr.SP)-4- ( AG'"-CP) - A (L7P9) 

= 01 6*(-( Ar34SP) +( AC*CP) -A (L2'1 9) ) /P.0 
ONI • = 022 4  (-(Ar34CPP)-(AO*SPP) (AB4CDM)+ (AVSPM)-A (LYPI-) +A (LYPI))/ 

14.0 
MAU(LJX,t) = MAU(LJX11)-OL-P"14-0M 
DP = D22-7. (-(AP*SPP)+(AC4OPP)-1-(AB*SPM)-(AC*CPM)-A(LZ°H)+A(L2PI))/ 

14.0 
MAU(LJX,2) = MAII(LJX,2)-Dr1  
MAU(LJX 1 3) = -MAL(LJX,1) 
OVA = -NAU(LJX,5) 
MAU(LJY.,5) = 9.9 
MAU(LJX,7) = -MAL(LJX,5) 
MAO(LJX,1•7 ) = -OVA 
'i4U(LJ`r,3) = 0. 
141J(LJY 1 4) = -1AL(LJX,5) 
MAU(LJY,12) = OVA*OP 
MAU(LJY,13) = oVa=,, sP 
MAU(LJZ,1) = -MAL(LJX,1) 
MAO(LJ7,7) = 0.c 
mau(LJZ 1 14) = -mAL(LJY,5) 
flAu(LJz,ii) = oVIV'sP 
u.AU(LJZ 212) = -oVA*CP 
Ov? = MAL(LJX,9) 
TF(K.ME.1) GO TO 769 
no = 072 4.- (-A(LYPI)+A(LVI+M37))/4.9 
MAD(LJY) = NAO(LJY)-O0 
MAO(LJZ) = MAO(LJ7)+90 
MAL(LJX,5) = 0.9 
MAL(LJY,4) = 3.0 
AL(LJZ,E, ) = 0.7 

= 022*(-A(LYPI)+A(LYPT-M33))/4.9 
MAU(LJX,i) = NAU(LJX,1)+O 
OS = (122-'"(-A(L7PI)+A(LZPI+N73))/4.0 
HAU(LJX,2) = AU(LJX,2)-OS 
IAU(LJX,13) = OVE1 
MAD(LJY,10) = nv9 
1AU(LJ7,19) = OV71 

763 IF(K.NE.N3) GO TO 761 
OT = D22=''(A(LXPH)-A(LXPH-U37))/4.0 
N1AD(LJY) = NAD(LJY)-91-  
TID(LJZ) = MAD(LJ7)+0T 
MAL(LJX,11) =.-9Vn 
MAL(LJY,10) = -DV:1 
MAL(LJ7,12) = -OVT 
DU = 11224 (A(LY°H)-A(LYPH- 1137))/4.9 
NI,U(LJY,1) = ''AAULJX,1)+OU 
DV = 02241A(L7PH)-A(LZRH-37))/4.9 
WJ(LJX,2) = MAU(LJX,2)-0V 
!-1AU(LJX,7) = 0.0 
)1AU(LJY,4) = 1.P 
MAU(LJZ,4) = 0.0 

761 RETURN 
END 
SUBaOUTINE MATA7(A,NODE3) 
DiNENcION A(NOOF7) 
COMMON/CUIMAl/LJX,LJY,LJ7,LX,LY,L7 
co,iNim.VCPANA.7/UALrH7,7301330N2).,N330N403q0'!4,H20-47 
CO;INON/CC1MA 4 /LXDA,LXPD,LXP,LXPU,LYPE,LXRF,LXPG,LXPH I LXPI,LYRJ, 

1LXPK,LXPL,LXPN,LXPN,LXPO,LX",LXPO,LXM',,LY,PS,LXPT,LXPU,LXPV,LXPW, 
2LXRX,LXPY,LXPAA,LXPRB,LXPCC,LXRDD,LXREE,LXPFF I LXRGG, 
3 	 LX"A,LYMB,LVIC,LX40,LXME,LXciF,LXMG,LV1H,LXmi,L)01J, 
4LXN1,LX1L,LX,LXNN,LXM71 ,LV-In,LXNU,LXP,LXMS,LXMT.LX,MU,LXNV,LYrt4, 
5LXNX,LXJY,LXUAA,IXNTI,LYNCO,LXMOn,LM4E,LXIFF,LYMGG 

CONMON/GO"V-1 A5/LYPAILYPG,LYPC,LYPD,LYPE,LY 0F,LYPC,LYPH,LYRIlLYFJ, 
1LYPK,LYnL,LYRU,LYPN,LYRO,LYPP,LYPO,LYP,LYPS,LYPT,LYPU,LYPV,LYRW, 
2LYRX,LYDY,LYPAAILYPRB,LYPCC,LYPDO,LYPrE,LYPFF,LYPGG, 
3 

	

	LYIA,LYMB,LYMC,LYMO,LYNc,LYNF,LYMG,LYMH,LYMI,LMJ, 
4LY'Vti,LYAL,LYM 1̀ ,LYMN,LYMO,LY;IP,LYMO,LYMP,LYNOT,LYMU I LYMV,LYMW, 

H SLYX,LYHY,LYmAA I LYMBR,LYMCC,LYMOD,LYNFE,LY,LY+AGG 
coxmcwcTima6/L7rA,LZPB,Lzoc,L 7Pn,LZP,- ,L70F,1zpr,0_70y,L7pT,LZPJ, 

ILZP4 ,L7-,1_,L7MLZPN,LZflo,L7P0 ,L7Pn,L7DR,L7P7, 1 ZP7 /LZPu,LZpv,L7pw, 
2L7PX,L7Y,Lzz)14,L7E, B,L7PCC,L70JD,L70=E,LZDFF,LzPGG, 
3 	 L7NA,LZR,L724C,LZ"0,LLE,L7.1F,1 _7'1G,L7MH,LZMT,LZMJ, 
4L7W<,LZ*11_,LZ!ThL7N,LZMO,LZMR,L7M^ ,LZMR,L7mS,L7N72L7i1 U,L7NV 5 LVAW, 
5L7hX,L7:1Y,LZHAA,LZUER,IDICr,L710P,L7E7 0_7°FF,L7G 
CO1MON/C01MA7/T)1, D2,0 7,,D4,05,n607,08,0q010,011,012,D13,014,015, 

1016,017,013,010,02'3 1 o21,n22,n23,0?4 
JL, JO, JO, "AL, MAD, 

YL(112,?L), YU(112), YU(112,2C), '4YL(112,2C), NYU(112,20) 
CPMMOil JL(84,27), JD (g4), JO(8h,27), NL(R4, 97), NU(84,27) 
CONC ,̀  ■1AL(34,27), 'IAL(84), "IAU(R4,27) 
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C 

C 
C r 
C 

THIS SUR'),OUTTflE SETS U? THE MAPZIX COEFFICIENTS T=OP 
DES'ON THE TilETA = PI PnLA (0(Tc7. 

Dr,".  (:1(1,.D4 9)•-8 (1_7'tN)) 
= _E)94  (A (LYM1) -A (LVIX)-A(LY:1C)+A(LY"'Y) )/ 4. 0 

DC = 074.  (A (LZPE) -A (LZNF") 	(LZ°R) +A (LZMR) )/?. 
DO = 0124  (A(LYPK) -A (L'01<) -A (LYDDO) +A (LYMOr11 -A (LYPG) +A (LY"G)+ 

1A(LYPEE) -A (LY`4FE)) /r). 
DL. = DI:0 .'1 ( A(.LY.s1)) -A (1. -M1P) ) 
rIAD(LJX) 
Di: = 	111 (A(Lvit-11- (2. *A (I X!.10))+1(1...X■4X.)-A(LXMC)+(2,:)".(i Y.w.7))- 

1.A(LX9Y) ) /4.0 
DG = DC/2.0 
01-1  = DA/ 9.0 
LiT ,= 	O*0E/ 2. 0 

(I_Jy) = 07 -1-DG-0H-0 7 +DT 
DJ '7: DE/ 2 . 
;-;Ar.I(LJ7) = 
CAI< = '774 	(L 7J18) -A. (LZ*11)) /2.J 
OL = 0124  (A ( LC-1M -A (LY`!X) -A (L)10) 	(LY9Y) ) /8. 0 

L (LJX,1) 	-0K-nL 
0 	= Dia* A(LXHW) -A (t.VIY) -A (LYME!) frS (LX1Y)) /R. n 

	

= 07*(1 (L7-PA) 	(LZ-la)) /2.'1 
07' = 094 	(LYA0) 	(Lr4r1) /4.1 

	

- Dn = '0124  (11(LYPU) -A (I "YN1J) 	(L YPV) 	(LYMV)) / 
'-1AL(LJX,2). = (...);14-int-o61-00-nj 
07: = 7.8'/ (A (1.21.17,) 	(LZ'IN) ) /4. 
FIS = 	(".r1'4 H?) 
CT = 084  A (I 7)/2.r.' 
13U = nr:7;-r) 
Nr,L. (LJX, 3) = 	0 •S + 0 T 4- 01,./ 

	

010 .'"- (11(L__7 '!!,1) -A (L:"!X) 	(L7T-,) 	(L7:1,Y))/R.C.! 
(IA = 1316''` ( A(L7:10) 	(L7tIP) ) /4." 
DX = 511*( A( LY'.0) - (2. r'1 2'- 1(LY) ) +A(1 YkiP)) /7.C, 

( L J X , 	= - DV 	X 
ny = n124 (A(Lyp7) -A (LYN-7) -A(LVPR).+A(LYMP)) 
D7 = D94-  (A 	YT-3) - 11 (L'IqUI) )/ 1+.n 
ClA = Di0 (A (1.X!!E) -(2.0 4 !!. (LX) ) +A (LXMN) ) 2.f7 

	

(LJX, F,) = r`Yfr)7 -D7‘A 	' 
= r_174(L 7.)/I+Jj 

JIG = n124-  (A (LYkln)-:1(LY'Ar))/P,.g 
11-AL (LJX, 6) = -000-0"C 
:-1AL (LJX, 7 ) = -MAL ( LJX,F) 

(LJX, R) = 
i'!AL(LJX,9) = 	. 0 

= 17112 ( 	( T.. YPA) -A ( LY't ) ) 
= 	A ( 	/ 
= 01C-v• (A (1..x;iri) 	(I. 	/cl.r.) 

'1AL 	 = 
(LJX, 11) 7= -,!aL (LJY,1.0) 

„in 77C Nnt=12,17 
''Al. 	 = 	. 
r.ThT 
i-!Al_ -(LJY, 1A) 	= 
:1AL 	 = -D, - 71S+ 7 T-1-nu 

(LJX, 7 J) = rivi-m,4÷11:< 
1AL (LJX,21) 

2 7 ) = ",1A 1....(1.1",11) 
(L,ix,2-4 ) 

cl-) 771 ilc,,:!=24,27 
1al.,(1.,IX,M02) = ?..r 

771  Cr-iTTrUE 
G 
14 = 2. r." 0? t," 	(! 7  ) 

rr; = 	(11.(L71=11l- (2. "A (L.Z))+A(L 7"rt)) 
f"),)J 	012  (A (!..Y="r;) 	( 	(LX?Dr7) -1-11 (LYHD0) 	(LY",--'G) 	(LX`IG)+ 

?a(! 	 ( 1  ;CAFE)) / 
I) -= -fl,-7r;-7DnHi-nOT+nnJ 

(L-jY, 2) = HAL (i_ J X, ) 
0,1'4' 

T11._ = 	24  (A (1_. X':)!..1) -.17k ( !_ X'f!) ) 	XD ) 	( L X 	) ) / 3 . 
AAL(LJY,3) = 00v, -nnL 
Dr1 = 0 -.,4 (A(L7CDA)-A (L 7 '1A))/L.'' 

= 	(I 7) 
Dn 0 = 
;:Al_ 	 4) = 
Ti r)  = 	

' 	
( 1 .Z '" 1) 	(1_7"1.)) -11(1_7:D V)+A (1.7- '111) )/ P■• 
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a=i0 	1111u(A(LXHn)-(2.0*A(LX))+A(LXmP))/2.0 
MAL (LJY, 5) = nopi-uoin-Onn 
NAL (LJY 7 6) = MAL (LJX,5) 
'11L(LJY,7) = ri,;0 
tlikL(LJY,R) = "sr.! 
-Z4AL(LJY,q) = 
rIAL(LJY,1) = MAL (L.1X 
NAL (LJY, 11) = MAL (LJX, 7) 
MAL(LJ? y 12) = MAL( L,Pe,1!".!) 
MAL (LJY 2 1,i) = MAL (LJX111) 
MAL (LJY ) 114) = 0.0 
MAL (LJY,1E)) = 0. 
1:A1.(LJYy 	= -MAL (1_,P 1 3) 

(LJY,.:17) = -flO"--7.-jr)N-CP-Orlr) 

	

(LJY, 	-7-7 
MAL (LJY,Irl) = -MAL (LJX,S) 
MAL (LJY 7 	= 2.0 
MAL (LJY, 21) = MAL(LJX1 1i) 
MAL (LJY 1 22) = MAL (LJX,10) 
00 772 MO 73=2 3 ?7 
"AL (LJY,N93) = 

772 CONTINUE 
= 2.04024*A (LY ) 

DOS.  = DE).  (A ( LXMR)-A (LXMN) ) 
OUT = C44.(A(LYPA)- (2.3*A(LY))+A(LYMA)) 
OJU = 	(4 (LXPE) 	(LYM:=") -A (LXPR)÷4 (LXMR)) / 
HAL (LJZ ) 1) = 91-1:<-005.-110T+DOU 
NAL (LJ7,2) = MAL (LJX, 1) 
NA L LJZ, 3) = -2. 	( LJY 	9.) 
D?V = 2. fl  BM 
Ou1J = DO / 2. 0 
DOX = nr7/14.,D 

(LJ7,4) = DOV+D(TeI-TI-Or_IX 
MAL ILJZ, 5) = C.!) 
NAL (LJZ,6) = "AL (LJX, 5) 
MAL (LJ7. 7  7) = '"AL(LJX,6) 
NAL (LJZ, P) = 	7) 
MAL (LJZ, 	= U .0 

(LJZ, ) = 0.0 
MAL (LJ7,11) = `1AL(1 JX,11') 
MAL (LJZ, 12) = 	(LJX, 11) 
MAL (LJZ1 13) = 
`-.111.(LJ7,14) = 0.0 
M11L 	1'3) = 
DIAL 1:5) = 0.0 
MAL (LJZ 17) = -MAL (LJ7.,7) 
MAL (LJ7,11) 	-00v-DOwt0n-n7e. 
•!i1L (LJ7_,19) = n ^ 
MAL 	 " (LJZ, 0) = -MAL (L.JX,5) 

(LJZ 2"_1) = 7; . 
"I‘L (LJZ)  22) = 	C 	• 
'NAL (L,J7,23) = MAL (LJX,11) 
MAL (LJZ,26.) = MAL (LJX,117!) 
HAL(LJZ,25) = G.: 

(LJZ1 2'-', ) = 0. 
(LJ7,27) = 

Dqv = 3.ir-O(A(L71)-(2.0*A(L7))4-A(L3MN))/2.r 
717  = D.1.0(A (LY)-( c-f.7-1'A(Lrlfl.))+A(LrIX)-A(LYr) -1-(2."A(LYMP))- 

lacCYmY»/4.c 
TEA = 2. rY"-OT 
0E 3 = 2 . 	U 

(LJX, 1) = -ODY-0 .-17-FIEA-nfl 
1-371; = 3.11'":)1 04 (A (L Z114) -(2 . (1=-A (LZMO) ) +A (1..z1x) -a (L7mr) + ( ?. 	(Lzr,D) 

(LZ''11) ) 
n•-"D 	(LYT:I) 	(LY'An))+A(LYHX) 

	

(4.;j4A (LY) )- 	(LYMN))+A(LYMC) - (2. ^*,A (LYMP) )+P. (I YMY) )/ 2.0 
01±:F = -2. 0" OW 
0:7F-  .= 2. -nx 
MAU( LJX, 9)  = DEr'.÷O75-fir''T-OEE 
MAU(LJX,7) = 

1.) (I JX,4) • = 'IAL 	7) 
:11U (LJX 7  5) 72- "AL(L 	, 

27 
(L.JX 7 N -34) = C.' 

773 C!:NTI1!117. 
G = 01-1-' (A (LXM4) - (" A (LX'-in)) 	(L. YmX) -(2

: 
	(LX`ifi))+ 

1 (4. J*A (LX) )- (?.0*4 (I_V*P1))+A(LX1C)-(2.r'l (LX1?) 
 

 )+11(LP4Y)1/2.2 
11TH = D124  (A (LZPK) -11(L71K) -1(LZP07)) +A (LZMOO) -A (LZPG) +A (LZMO-1- 

	

1A(LZPEE) 	(L TAF_E.) ) 
= 2. 0=t14?_°0\/ 
= 	. rt OD 

'AVI(L,1Y, 	= --DEG-:-IF;4-11ET4-nr=J 
?.) 	(L.,./Y,1) 
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NAU(LJY 1 4) = 0.0 
!AU(LJY,5) = MAL.(LJY 1 7) 
qAU(LJY,6) = !'4 1L(LJX 1 6) 
DO 774 H13=7,?7 
mAU(LJY,N)5) = 

774 CONTINUE 
-'1AU(LUZI1) = -71AL(LJX71) 
-MAU(LJZ,2) =-1AL(LJX,7) 
MAU(LJ2,3) = NAL(LJX,6) 
DO 775 NO5=4,27 	• 
NAU(LJZ,N06) = 0.0 

775 CONTINUE 
Pr--TUPN 
NO 
SUa7OUTIN7 
COM'ION/C01141/LJX,LJY,LJZ,LX,LY,LZ 
COMMON/GONA2/NALPH30733002,N330N4,N790N4,H2,H3 
COMMON/COMMA -3/NC23,NCN23,CP,SP,CPP,SFP,CP4,SOM 
COMMON/CO'IMA4/LXPA,LXPP.,LXPOILXPn7LXPF,LYDF,LXPG,LX 0H,LXPI,LXFJ, 

1LXDK,LXPL,LXnm,LXPM,LX00,LXP0,LXPO,LXFR,LXS,_LXPT,LXPU,LXPV,LXPW, 
2LXPX,LXPY,LXPAA,LXPBe"LXPCC,LXPOD,LXPEE,LXPFF,LXPGG, 
3 	LXMA,LXHP,LXMC,LXD,LXE,LX:IF,LXMG,LXXH,LXMI,LXMJ, 
4LXNX,LXML,LXmM,LXmN,LXMOI LX11 0,LXMO,LYMR,LXNS,LYMT1LXMU,LXMVILXMH, 
5LXHX,LX"MY,LXAA,LX1851 LXt.!CC,LXMOD,LXMFE,LXMFF,LIbG 
COMMON/CCAWVLYPA,LYPD,LYPC,LYPO,LYFr,LvPF,LYPG/LYPH,LYPIlLY.PJ, 

1LYFK,LYPL,LYP:1,LYPN,LYDO,LYPP,LYPQ,LYPRILYPS,LYPT,LYPU,LYPV,LYPW, 
21YPX I LYPY,LYPAA,LYPF38,LYPCC,LY°DO,LYPF7,LYPFF,LYPGG, 
3 	LYMA,LYMB,LYMC,LYMnI LYME,LYMF,LYMG,LYMH,LYMIILYt4J, 
L.LYMK,LYML,LYMN,,LYNN,LYMO,LYMP,LYMO,LYMR,LYMS,LYMT,LYMU,LYMV,LMW, 
5LYMX,LYNY,LYMAA,LY989,LYMCC,LYMOD,LYMEE,LYmFF,LYMGG 
CONNON/r.01MA/L7DA,L2Fq,LZDC,LZPUILZPF,LZ2F,LZPG,LZPH,L7PI,L7FJ, 

11-7PK ILVDL,LZPI,LZPH,LZPO,LZP°O.ZPO,LZPR,LZPS,j_7PT,LZPUIL7PV,LZPM, 
2LZPX,LZPY,LZPAA,LZPBB,LZPCC,L7P00,LZPEE,LZPFF,LZDGG, 
3 	LZHA,L7u,B,L7NC IL7NO,LZME,LZHF,LZ9G,L7NH,LZHI,L71"J, 
4LZMK,L7ML,L7MI,LZNN,LZMO,L7NP,LZNO,LZMPILZMS/L7MT,LZMN,LZMV,LZMW, 
5LZMX,LZ1Y,LZNAA,LZ,15.5,LD4CC,LZOO,LZNEE,LZ!IFt- ,LZNGG 

C 
C 
C 
C 
	

THIS S'JD''OUTINE SETS Up THE APGUMENTS OF THE 

C 
	 VECTOR POTENTIAL FIELD A. 

C 
LXDA = LX + NALPH3 

= LY + NAI1-13 
L7PA = LZ + NALPH 
LXNA = LX - NALPH7 
LY'iA = LY - NALPH7 
L7111 = L7 - NALPH7  
Ls'Pr3 = LX + N33 
LYP9 = LY + N37 
L7P3 = 17 + N7,7 
LXM3 = LX - N33 
LY M? = LY - M3 
L7M? - L7 - N33 
Lx.flC 	LX + 
.LY-PC = LY + 7 

= L7. + 3 
Lx"C = 't— 

= LY 
= L7 — 

LXPD.= L'O? + t1ALT-H7  
LrP9 = LY 0 ?. + NALPH7 
17PTI = L7nn + 
LXMr)-= LXP9 	NAI.P11 
LY "'l 	- NALPH3 
LL'IL) = L7P9 - MAIPH-7, 

= LX- 13 + NALPFT:; 
L.YPE = LY;r3 + NALPH7 
L7r17-  = L 7qn 	`!,‘LnH' 

LX•iTI - NALP;-1 
LYr17 - = LYJR — NALP117 
LZ:1E - = 1 7N,3 - NALDH3 
L'4PF'=. L. XC + NAL"'H7 
LY 0c = LYi)C + NALPH7 
L?PF = L7PC + NALPH3 
LX"F = LX7C 	MALPH3 
LYilP = LYPC 	NALF-H7 
L7"F = L7PC - NALPH7  
LX 06 = LX IC + NALF+13 
L?Pr, = L" !C + nr_:,H7 
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L:PG = L71C + NALP117 
LXNG = LX;-IC - NALPH3 
LYMG = LY •1C - NAL°H3 
L7IG = LZ1C - NALPH3 
LXPH = LX?C + N37 
LYPA = LYPC + M37 
LZPH = L720 + N33 
LXAH = LXPC - N33 
LYMH = LY°0 - H33 
LZMH = L720 - M33 
LXPI = LX9C + M33 
LYPI = LYAC + N33 

= H412 M LZPI 
LXMI 
LYNI = LYNG' - N37 
LZMI = LZAC - N37 
LXPJ = LX?H + MALPH7 
LYPJ = LY°H + HALPH3 
LZPJ = LZPH + NALPH3 
LXMJ = LXPH - NALPH3 
LYIJ = LY°H - MA] PH3 
LZMJ = L7PH 	NALPH3  
LXPK = LX1H + "AL .FH3 
LYPK = LYIH + NALPH7 
LZPK = LZ1H + MALPH3 
LXNK = LX'IH - MALPH3 
LYNK = LYNN 	NAL°H3 
1.71K = LZAH - NALPH7 
LXP L = LXPT + NALPH3 
LYPL = LYPT + MALPH3 

= LZPI + 'NALPH3 
LX ML = LYPI - NALPH7 
LY `!L = LY°T. - '1ALPH3 
LZNL = LZPI - NALPH3 
LXFN = LX iI + MAI °H3 
LYPI = LYAI + NALPH3 
L7PN = L711 + NALPH7 
LX M`1 = LX'II - NALPH3 
LYNN = LY1I - NALPH3 
L21 = LZ 1I - NALPH7 
LX13 	= LX + `133O 12 + 
LYP = LY + H37012 + 7  
L7P'  = L7 

 • 

N770,4? 4-  3 
LXW = LY 	N3 70N2 
LY' = LY - N37012 
LZMt' = LZ - N330m7.! 
LXPO = LX + M730 -(4 + 
LYPO = LY 

• 

H370Nu + 
L721 = L7 + M730N4 + 7 
LX Mr = LX - N790H4 
LY I0 = LY - 'J-=q0"!4  
LZNO = LZ - is,1390NN+ 
LXP = LX + N9ON4 + 7 
LYPrl = L -Y + `!390"11-,  + 
1_71.7P = L7 + N7q0w!4 + 3 

= Ly - N330"!L 
L1-1 0  = LY - 33)T4  
LZ 1P = L7 - H7 39ML 
I_XP1 = LX°N + NAL°H7 
L .(P") = L YPN + NA' 'I-' 
L7°1 = L7RN + MAI PH3 
LXXO = LX°N - NAL°H3 
LYml = IY°N 	NALPH3 
L7M.7i = LZPN - NALPH7 
LXP% = LX N + MALPH7 
LYP° = LY\N + MAL2H7 
L7°2. = L7N + MALFH3  
LX12. = L)C- N 	NALPH3 

= LY.H - MALPY7 
L7 NR = L7 N - MALPH3 

= LX=10 + ÌA! "'U 3  
LY P; • LYnn + NALPF17  
I7DS = LZ.0 + rO, PH7 
Lx,r1'73 = LY DO - mALDH7  
L‘cl; = 1_Y 00 - 	i^1-13 
L7 mS = LZ PO - NALPH7  
LXPT = LXDP + !IAL7H5 
LY°T = Ly 0p 

• 

MALPH7 
L7°-  = L72P + MALPH3 
11T = LX°P - MALPH3 
L'' "T = LY 'P 	!111_ -  H3 
L71T = L7°P - NALPH7  
LXPU = LY40 4- NALFH7 
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LY PU = LY10 + NALPH3 
L7PU = L710 + MALPH3 
LXMU = LXAO – NALPH3 
LYMU•= LYMO-- MALE H3 
LZMU = LZIO – -NALPH3 
LXPV-= LX1P + mALPH3 
LYPV = LYMP + MALPH7 
L7PV = LzNP + NAIPM7  
LXMV -,=.LXMP 	NALPH3 
tYMV = LY 1P – "AL PH7 
LZMV = LZMP 	HALPH3 
LXPW = LY + 6 
LYPW = LY + 6 
LZPW = L7 + 6 
LXNH = .LX – H33 + 7 
LYMH -= LY – M77 + 3 
LZMN = L7 – N37 + 3 
LXPX = LX + ,M330N2.+ 6 
LYPX = LY + N330M2 + 6 
L7PX = L7  + N330H2 + 5 
IXMX = LX – N730N7  + 7  
LYHX = LY – N330IE + 
LZIX = L7 – N33042 + 7  
LXPY = LX + N330N2 
LYPY = LY + N330M? 
L7PY = L2 + N330U2 
LXHY = LX – N7SOM2  – 
LYMY = LY – N330M2 – 
.LZMY = LZ – M33012 – 
LXPAA = LXPW + MALPH3 
LYPAA = LYPH + NALPH3 
LYPAA = L7 PH + MALPH3 
LXMAA = LXPH – MALPH3 
LYMAA = LYPH – MALPH7 
L7MAA = L7PW – MALPH3 
LXP5,73 	LXPX + HALPH3 
LYP33 = LYPX + NALPH3 

- LZP3ts = LZPX + MALPH? 
LX115B = LXPX — MALPH3 
LYMEiB = LYPX – IALPH3 
1 7M.T6 = L7PX – NALPH3 
LXPCC = LXP9 – 3 
LYPCC = LYP() – 
LZFCC = L'PrI – 3 
LYMOC = LXIT1 – 3 
LVMCC = LYmia – 3 
L7mcr, = L7mn - 3 
LXP90 = LXP' + 3 
LYPCO = LYP7; + 3 
LZPOU = IZPP + 3 
.1_MOT1 = LXAP + 
LYNO0 = LYM + 3 
LZMDC= L3MR + 

= LXPF-1 – 
LYPEF = LIPP – 7  
L3PEF = L7PD, – 
LXMEE = IXAR - 
LY" 	= LY T; – 
L711-77 	L3 1D – 
LXc',Fr 	N!;23 	NALP7 . _ 
LYPr-7F = LX0FE  - 1 
L7oFF = LXPFF + 
LXMFF = NO23 – MALPH:S – 
LYMFc = L'XmF7 + 
LZMFF = LXMFF + 
LYPGG = hOPPZ 	NALPH3 – 
LYPGG = LXPGG + 
LZPGG = LXPGG + 2 
LXMGG = MCM23 – MAL-PHY – 2 
LYMGG = LXMGG 
L7MGG = LXmGG + 
Pr- Tu.Dm 

-- 15s -- 



SUBROUTINE 1W-RIX (NNlyNN2,NN7yRRI,RRO,UU1,SSHEA1?,F,F,NE,NFIB, 
1MMEnNS) 

DIMENSION F(4,N)EONS),F(U,NNEONS),ME(+,NNEOMS),NF( 4 ,NNECMS) 
DIMENSION P(NNEONS) 

C 

rHiS SNBROUTTNE 577S UD . TH ,7:: MATRIX EOUATTON ANALOGUE 
C 	 OF LAP_ACE'S EqUATTO\! WITH NEUMANN B!")UNDARY CONDITIONS 
C 	 OESCRI3ING THE POTENTIAL FLOW OF A LImEAR-SHEAR (AT 
C 	 INFINITY) VELOCITY FTELD PAST A SPHERE OF i-',ADIUS I. 
C 	 FHE BONNDARY CONDITIONS AT INFINITY ARE REPLACED BY 

SIMILA? CONDITTONS Ov A SPHERE OF RADIUS RO 
CONCENTRIC WIT" TH- .. R .HERE. OF -:A.D7jS 	SF.CONL-0R97R 
"FINITE-DIFFER,ENCE APPROXIMATIONS A:%,E U3ED 90TH FOR 

C 	 THE LA RLACTAN AND F0=7, THE NEUMANN --30UNOARY CONDITIONS. 
C 
C 
C. 

N1 = NM1 
N2 = MN' 
NT = NM3 
RI = RRI 
RO = RRO 
U2 = UUO 
SHEA = SSHEIV, 
N7 NS = NMFONS 
°I = 3.141592653549P 
XN1 = N1 
XN2 = N2 
XN3 = N3 
H1 = (RO - RI)/XM1 
H2 = PI/ XN2 
H3 = (2.04RI)/Y13 
NALRHA = (N3=- (N2 - 1 ))+2  

C 	 INNER BOUNDARY CON-ITTIOMS. 
E(1,1) = 3.5 
E(211) = q.0 
E(3,1) = 1.0 
E(4,1) = 1.0 
F(1,1) = 7.2 
F(21.1) = L.0 

F(4,1) = 1.0/3.0 
NE (1,1) = NEGMc, + 1. 
N=(2,1) = NEONS + 1 
NE(3,1) = NEfl"S + 1 
NE (4,1) = NEON + 1 
NE(1,1) = NE::1Mc + 1 
NF (2,1) = N"IMS + 1 
NE(3,1) = I + 
NE(4,1) = 1 + (2)"!AL rDNA) 
6(1) = 0.3 
I = 1 
J = 
K = 
N = 

1 E(1,M) = 3.0 
E(2,N) = 1.1] 
Ef3,N) = 1.0 
E(4,N) = 
F(1 ,N) = 7.0 
F(2,N) = 
F(3,M) = -4.7j3.0 
F(4, N) = 	1.C/7.0 
NE(1,N) = NFONS + 
N- (2,N) = NFONS + 1 
NE C -i,N) = NEO' 	+ 
NE(40) = NON`' + 1 

= NEONS + 
NF(2,N) = MF.ON77) + 

-= 	+ NA 1 RHA 
NE f+,N) = N + (2'4MAIRHA) 
ri('!) 
K = V + 1 

= N + 
IF(ii.LT.N3+1) GO TO 1 
K = 1 
J = J + 1 
IFiJ.LT.N+1) GO 7(1  
E(I,N) = 3.0 
j-7'.(2 9NO = CO I) 
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E(4,N) 

F(1,N) 

F(2,N) 

F(3,N) 

F(4,N) 

= 	0.0 

= 	0.7 

-= 	0.0 

= 

= 	1 .0/3.0 

ME(10) = 1'1:TONS + 1 

NE (2,N) = NEONS + 1 

NE- (3,N) -= NEnms + 4  

h7(4,11) = N_ 01  + 1 

NF(1 0) = NEONS + 

NF(?,N) = NEONS + 1 

NF(3,N) = N 	+ 	MALPHA • 

tiP(4,N) = N 	+ 	(2*1ALPHA) 

(N) 

I -=- 2 

J = 1 

K = 

N = N + 1 

16 X = I - 1 

R = (X*H1) + RI 

01 = 1.0/(H1 *N1) 

P2 	1.0/(R4H1) 

P3 = 2.7/(R*Ri- H2'H2) 

P = -2.0 (P1 + P3) 

C 	 INTERIOR NODES (THETA = 7 POLAP. AXIS). 
E(11N) = 0.0 

E (2,N) = (P1.-  P2)/P 

E(3,N) = 7.0 

E (4,N) = 3.0 

F(1_,N) = 0.0 
F(2,N) = 03/P 

F(3,N) = (P1 + P2)/P 

F(4,N) = P3/P 

NE (1, 	= NECINS + I 

NE (20) = N - MAL--) HA 

NE(3,N) = NEONS + 

NF (4,N) = NEONS + 1 

NF(1,N) = NEONS + 1 

NF (2,M) = 	+ 1 

NF(3,N) = N + NAI ?HA 

NF(4,N) = N + t + (m3/2) 

B (N) = 

J = 2 

Y = J - t 

META = (Y 4.='I)/Y1'L 

S = SiN(THETA) 

C = COS(THETA) 

H = N + I  

4 T1 = 1.5/(H1 *H1) 

T 2 = 1."i/(R*R4H24Li2) 

T3 = 1.C./(R;.- R*H3H3'S'S) 

1-4 = 1.7 /(R H1) 

T7) = (3/(2.0*F4P-4-PH2) 

T = .-2.04 (T1+T2+T) 

C 	 INTEPIOR NOOES (ADJACEMT TO THE' THETA = 	POLAP AXIS) . 

E(2,N) = (T1-T 1or"  

E(3,N) = (T2-T5)/7 

• (4,N) = T3/T 

F(1,14)'= TI/T 

F(2,N) = (T7+75)/
T  

F(3,N) = (T1+T4)/T  

Mi.(10) = NEONS + 1. 

117(2,N) = N - MAL?HA 

HE (3,N) = 1+ 	 - 1)) 

Nr(4,N) = N -  1 

NF (1,N) = H + 1 
NF(2,H) = N + 13 

NF(7,N) = N + NA_PHA 

N7 (401) = NEO'!S + 1 

IF (K. E2.1) GO TO 2fl: 

7F(K..EO.N7) GO Tn 21 

GO Tn 2? 

70 -E(4,N) = 

F(4,N) = T3/T 

N7-- (4,N) = NEON.; + 1. 

NF(40) = N - 1 + N7 

G9 TO 2? 

21 E(1,r) = 1-3/1.  
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NT (1,M) = tr + 1 - NS 
NFS1,N) = NEOMS + 

22 3(N) = C1.9 
K = K + 
N = N + 1 
IF(K.LT.NJ+1) GO TO 4 
K = 1 
J = J + 1 
Y = J - 1 
THETA = (PIY)/XN? 
S = SIN(THETA) 
C = COS(THETA) 
IF(J.EO.M2) GO TO 5 

9 Ti = 1.0/(H1.*H1 ) 
T? = 1.0/(R4 2) 
T3 = 1./(R"RA'H3*H34S ).- S) 
T4 = 1.e/(R*H1) 
T5 = C/(2.0*S4R4RH?) 
T = -2.04-(T1+T2+T7) 

C 	 INTERIOR NODES (GEERAL CASE). 
E(i,N) = J.r 
E(2,N) = (T1-T4)/T 
E(7,r) = (T2-T5)/T 
E(40) = T3/T 
F(1,N) = 7.3/T 
F(2,N) = (T2+T5)/T 
F(3,M) = (Ti+T4)/I 
F(4,M) = 5.9 
NE(1,N) -= NEQNS + 1 
NE(2,N) = N - MALPHA 
NE (3,f) = N - N3 
NL(4,N) = N - 1 
MF(1,N) = N + 
NF (2, N) = N + M3 
NF(3,N) = N + NAL''HA 
HF(4,M) = NEONS + 1 
IF(K.E0.1) GO TO 5 
IF(K.EQ.N3) GO TO 7 
GO TO 

6 E(4,M) = 
F(4,N) = 73/T 
NE 	= 	+ I 
MF(4,N)..= N - 1 + N' 
GO TO 8 

7 E(1,H) = 13/T 
F(1,N) = 
MF(1,N) = N + 1 - N3 
'IF (1,N) = 	+ 1 

3 7?(N) 
= V + 1 

N = N + 1 
IF(K.LT.N7+1) G9 TO n 
K = I 
J = J + 1 
Y = J - 1 
THETA = (73-1 4-- ))/XN2 
S = STM(T.-{ETA) 
C = COF(PHETA) 
IE(J.Eq.N2) (U TO 5 
GO TO 

5 IL = 1 .5/(H1 4-H1) 
T2 = 1,LIRR 4- ?'=H24.-!?) 
T3 = 1.,;/(R42 H3- 3T54S) 
TL 	1.0/(R'''M1) 
15 = C/(2.E*S4 H2) 
T = -2.O 4(TifT2+T31 

C 	 INTE"IOR NODES (ADJACENT Tn THE THETA = PI POLAR AXIS). 
F(1,N) = 
E(2,N) = ( -1!-T4)/T 
F(J,N) = (T?-75) /T 
E(4,M) = T3/7 
F(1.01) = r3/T 
F(2,N) = ( -PfTs)/T 
FrJ,N) 	(T1+T4)/' 
F( 4,N) = 
tr7 (1,") = MEOMS + 1 
NE (?,M) = N - N!ALDHA 
N7 (75,N) = H - 
H`: (4,N) = N - 

rfF(?,h) = HA1 01-1A 
rn114) = 

= 	+ 1 
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(K.E0.1) GO TO 19 
IF(K.EO.N3) GO TO 11 
GO TO 12 

10 E(4,N) = 9.0 
F(40) = T3/T 
"!E (4,t!) = NEONS + 1 
NF(4,N) = N- 1 + N3 
GO TO 1? • 

11 17 (1,N) = T3/T 
F(10) -=-.2 
NE (1,N) = N + 1 - M3 
NF(10) = W- QMS + 1  

12 q(N) = 0.1 
K = K + 1 
N = NA- 1 
IF(K.LT.N3+1) GO TO 5 
K = 1 
J = N2 + 1 
P1 = 1.0/(H1 4H1) 
P2 = 1.2/(P*H1) 
P3 = 2.0/(R4R*H2''72) 
P = -2.34(P1 + P3) 

C 	 INTERIOR NODES (THETA = PI POLAR AXIS). 
F(10) = P3/P 
E(2,N) = (P1 - P2)/° 
E(3,N) = P3/P 
E(4,N) = 9.0 
F(i,N) = 0.0 
F(2,N) = C.0 
F(3,N) = (P1 + P')/P 
F(4,N) = 
NE (1,N) = N - (N3/2) 
NE (2,N) = N - MAL2HA 
NE (3, 	=11 - N3 
NE (4,N) = NFTIs 	i 
NF(10) = MEONS + 
NF(2,N) = "1 ENS + 1 
MF(3,N) = N + WILPHA 
NF (4,i1) = NET!S + 1 
?(N) = 0. 
I = I + 1 
J = 1 
K = 1 
• = N + 1 
IF(I.E0.W+1) SO TO 15 
GO TO 16 

C 	OUTER DOUNOA2,Y CONDITIONS. 
15 E(1,N) = 1.0/3.7 

F(2,N) = -4.9/3.0 
E(3,N) = 1.9 
E(4,N) = i.0 
F(1,N) = 
F(2,N) = 
F(5,N) = 
F(4 M) = - 2 = N - (2ALnH1l.) 
N'" (2,N) = H - NAL-'HA 
IT7 C3,M) = 
k7-- (4,N) = NFP:tS + 1 
1F' (1,N) = NETrqs + 4  
NF (2, 	-=•NEW1 S 
NF(3,N) = N` NS + 1 
ti7 (4,N) = 	+ 1  
11(N) = 

= 2 
Y = J - 1 
THETA = (Y*OI)/X*!? 
S -= SIN( -P!ETA) 
C = COS(THETA) 
N = N + it 

1 7 :1(1,M) = 1. -J/3.0 
E(2,M) = -4.7J/3.1  
E(3,t!) = 1Ci 
E(4iN) = 
F.(.10) = 
'F(2,N) = 
F(3,N) = 3.0 
F(4,N) = 9.0 
NE  (1,M) = N - (2*'1ALPHA) 
NE (2,N) = N - NALpHA 
N-:(3,N) = WZ1 ".!7 + 
N7(4,h) = Ni_QNS 4-  
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(1,N) = NTrImS 
NF(2,N) = 1170mS + 1 
NF(30) = NET1 + i 
NE(41 N) = W7 oNS + 1  
7 = 	K - 	1 

C7= 	= 

pH
, 

COS(HI) 
71(N) = 	2.741-11(U9 
K = 	K + 	1 
N 	= 	P1 + 	1 
IF(K.LT.M7+1) GO 10 17 
J= J+ 1 

= j - 1 
THETA = (PI4 Y)/XM^ 

= sr!l(T,17TA) 
C = COS(THFTA) 
K = 1 
TF(J.LT.N?+1) GO TO 17 
07 T,IPN 
DIP 
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SUP.:701JTINY_ NAT°J(NNPOI4J,NN1,NN2,N171PPI,PT-7.0,U,H,NNOnESINNOOF 7 ,RF 
fl:MPINSTON U(NNOOE7), H(NNOOFS) 
GUNCN/CCIJ1 /1:FINV,NALPH,N73,N77UN2,N33014,N390N4,LX,LY,L7, 

1LJX,LJY,LI7 
COMI0N/CC1J2/C1,02,03,114,n5,76,07,09,O1 11,011,r'12 
COMMON/CCAJ3/J1 3,rilL, !1P),D1:-),D17 ,J18,J19,D2'2,021,D22,02,7, 
C1INCN/C01J4/DA,OL,00,00,0E,CF,DG 
COMMCN/CC"J5/OH,OI,03,.01‹,OL 
OOAMON/o0/7N,TY]fl,00,0P,^P 
COMMCN/CC1J'/DT,OU,OVIDW,OX,OY,O7 
COAION/CONJ3/NC23,NCN473,CP,SP,OPP,SPP,CPN,SPN 
'':AL JL, JO, JU, AAL, `+ An, MAU 
COINON YL(112,7"1 ), YO(112), Yu(112,2), iYL(112,77), NYU(112,2C) 
CONMCN JL(84,'7), J2(;4), JI(g4,27), 1L(4,727), NU(34,9 7) 
COINON NAL(34,27), 	NAU(°h,''7) .  

C 

C 	 THIS soF3onuTTN,:-  s,:- Ts UP THOSE T7PMS TN THE MATRIX 
f. 	 EQUATION ANALOGUE OF THE V9P,TICITY TRANSPOT 
C 	EOUATICN WHICH ARE I7:01- PENflENT OF THE VPCIOR POT7NTTAL 
C 	FIELD A. IN 0..),DP_P TO ALLOW THE SIZE OF THE TIME-STP 
C 	 TO BE VA',IEO PP7TCIENTLY, 'HP OIAGONAL "AT IX 
C 	COFFFTGI:NTS JO A:), SET UP WITHOUT TW7: P.FGTrPnCAL 
C 	TINE-STEP TERM INCLUDED. 
C 	 SUB°,0UTINES MAT°J1-7 SFT Up THE MATRIX COEFFICIENTS 
C 	 AND NOM": LCOATTONS JL/JD/JU AMO NL/NU RESPECTIVPLY. 
C 
C 
C 

N.TONJ = NiEONJ 
?,!1 = NN1 
'? = NN7 
• = NN7 
NODES = NNOOPS 
woE7 = 24- NOCES 
NOD _3= N.100E 7) 
• = RRE 
PEINV = 1.0r:7 
rT = FRI 
PO = RP1 
NALPHA = 10n7S/(N1 4- 1) 
aLPH3 = Y'"IAL°F1,1 

iv7 r)N2 = N -4 /? 
N33 = 3'1'13 

.

• 

:,0N2 = 173/2 
N33T•11-4. = '1 37/q 
r', RON4  = 4N7-z0 \It. 
PT = 7.144 5925.759 
Y11. = N1 

= N2 
X13 = 
• = (PO - °I) /Y`!1 
▪ = PI/Y:12  
H3 = 2.^- 1./YNT 
L = "IAL'"Hl + I 
Lv = 	•IAI c‘--H 
LY = 2 + 
L 7  = 3 	IALru7 
LIX = 1  
LIY = 2• 

= 
= ? 

= 	+ 
2"7 J = 

!"11-  = 
• = (roltnHA't(r-1)) 

HflO = 

rl 	
= 

= 1.7J/ D  
= 4 .?/Ht 

• = 1.)2"rr 
• = 
•- - 

	

	nr_-; 
- ,••12" r 

go. = n5-r7 
Dr1 = 116/H7 
• = rr3/:17 
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9 - 
(T-.7.1.+1)1;-( 74 1) -J 

L. U9 	( (LI.'.E1:*>,) • 	• (-c 

	

c•,,“ 	(71,-,‘,_1 +1)H = 
arcLu 0  

	

(2i..-1) 	(Z! `Jt;)H = 
C-2N-VHrilVN-.1)b+ Ei_N--VHG-7,̀t+ 

 
H-( 	( 	= 

".:JN•r) 

(1, 	= 
H- ( 	= t 

	

(VHolt/1,4-ei,)H+(VHG-1V;::+23(1)}-1- 	= LU 
01 D'_.) 	TU2 

LT-1)H+ ( 	(,..1.•-;+-1)H 	ALJ 

	

( T -Lk-1)1i+ 	N 	H-( 1+71).H.iU 

	

I-VH:12-11/14-1)H+ (1.--VHit-L4N+-1)H- (LN-.1.-+VHG-1V14-  i)H-  (21•4-T+VH-...11V1.4.1)H 	• 

	

H-(Jri-1 +1) H- 	C, 
i:bZUi uU 	(.z.N•7!4•:i) L.j. 

- 
1-; - (i--.J -f 1)H = 

	

(EN-FT - VriGitiN+1)H-  (1+ Vi-io- 	H- (T+ 	it11,4 	= 
(Li•I+1-1)H-( T+1) H = • 	L.; 

0-̀.J 
( 	) H+ ( ( 	H 	• 	- ( 4 1) H 

	

( 	(5.1,  + i)H 
(VHG-tio--1)H,  ( (1 ) 	[. 	- 	,+-1)ft 

= 

	

T - VI-1 1 V - 1) ri + (T V H,J 	+ ) - ( T + 	d 1 V 14 	H -(+v 	+ ) H = 
- (1+71) H = Li] 

:JO 9F,R7 
' = ku b 

(-•.;'6f32: L.).1 
(EN+V-1-1tW+7)H 

E., 

 

OL u 	(1]-F1Ldi 
(S(.10:.•  

- VH 	- 1 = 
+ 	+ 1 = dl 

= 

(1)11 
11/OTO = 

/G TO = 
2 u U 	T 0 

(iHylS) /610 = 6LO 
= 0T(1 
= 

( S*1S) iT(L, 	CI = LTU  
= 9TO 

OC1=T'i 
0 = T 

11./TU = ETrl 
(h.T_HG)N1S.  
(r,-.Klid )S03 = 
(c.:.T.Hd)NTS = c.idS 
(ul.Pd)S(JO = cJ 

( .1Hc-i)NTS = GS 
( 	SO'J = 
- Hd = T 

21-1 + lHd = cIhcf 
(Vii-H.L)M11 = .11 
(iH)NI = C;i2 

= V1:3111 
= 1' 

+ A F-1 = 
- + xrl = Ari 

x 	= y. r 
T + Al= 

+ x1 = 
+ Xl= Y1 

+ 1 = 1 
11t0 

• (SIXV cV]Oa 	= VIPHI) S?.(1.0N 't-10F631t4I 
(VHd1VN-1)H+ ( ( 	)- (VHdiCk+1)H = no 

= .1L 
= 

(T.+6t40i1P+VHdlt/N+1)11-  (T+ti"Hci1VN-1)H-  (T+VH.tiVri+1) H = Ci(J 
.( 	1)11 = jfl 

n = 
(-1)11 = VU 

= 20 
£H/TO = TO 



295 IFNA.NE.N2).OR.(K.NE.1)) GO TO 296 
= -H(L-N3+1)+H(L-1) 

296.IFNA.NF.12).0P.(K.Nc.N7)) GO TO 797 
DS = -H(L-N3+1-13)+H(, _ -N7-1) 

INTEPI30  NODES (G7NrP,AL OaS7). 
297 CALL NATPA2 

.17(!:.NE.1) GO TO 79i5 
13 	 INTErun NODES (K = 1). 

CALL -'40- r?A7 
298 IF(K.NE.Nii) GO TO 299 

C 	TNTFRIOR NOS (K = N7). 
CALL MATPA4 
IF(J.NE.2) Gfl TO 30'7; 

NCoES (J = 2). 
CALL NATRA5 

3n0 IF(A.NE.N2) GO TO 3'1 
iJTERT:1R NUDES (J = H7). 

CALL MATPJ6 
301 L = L + 1 

LX = LX + 3 
LY = LX + 1 
L7 = LY + 
LJX = LJY + 3 
LI? = LJX + 
LA7 = LAY + 1 
IF(K.ED.N7) GO TO 302 
K = 	+ 
Z = K - 1 
FHT = (?.0*Z"PI)/Y"13 
PI1T 0  = 0HT + H7 
PHIN = PHI - 117 
CP = COS(PHI) 
S7 = SI1(PHI) 
rPe = coF(pHT0) 
SP = SIN(PHIn) 
CP1 = GOS(PHTM) 
S N = STN (PHI"') 
&-) TO 259 

302 K = 1 
PH' J = 0.0 
I='(J.EO.t.2) GO To 303 
J = J + 1 
Y = i - 
T1  TA = Y4PT/XN2 
GO in 23 

313 oa = U(L) 
07  = U(L+"I071 ES) 
OC = U(L+NO3E2) 
• = H(L+AALPHA-N7)-H(L-NALPH"-'1 3)-HC_+NALPHA-1170N2)+ 

1H(L-Ni=,LI'HI-117O?) 

flO = H(L+AW PHA)-(2.'H(L))+H(L-NALPHA) 
DV = H(L-13)-(2.0'4(L))+H(L-N'ON1 7) 

C 	 INTFRI,-)P NUDES (TH E TA = 0I POLA' AXI7). 
CALL 
L = L + 1 
IX = IX + 3 
tv = LX + 1 
L7 = LY 
Lix = LJX + 7 
LAY = LAX + 1 
L17 = LAY + 
TF(T.EO.N1) GO TO 3,- !: 
I = 
• = 17: + hi 
C,i Tr 287 

304 7.--7-11P1.1 
EA'J 

c;IT'01.1TIN7  11 A72-1 1  
1 -10A/C0- 	21A 7, N7 ? 7 `177:. Th4 	LX L ? I L Z 7  

1L 1%:? L,JY AL 7 
G.-;"1:1ON/.,0 J2/01,92,C?“14 ,p5tr“;,n77"1 8,n97 -31:1,j11,12 
rrnIWIM/CO'J4/71A,fl, 1C 7 0 -) 1 F,a 7:,fl 
n-l'kPUCC J7 /0T.7U.rV,o,l,DX,Fiv,'17 

, 	'/AL, 
Cull(r

A
!
L
YL(11 2,?fl), vn( 11 2), YY(11'.;2:), NYL(11 2,7r ), "Y0(112,2r) 

';f' 110`1 AL(8,+,77), 	 "IL(54,27), t,!1.1( 53 4,27) 
.4,1_(314,27), 	"PA1( 0,L,27) 
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C 
C 
r 
C 
C r 
C 
C 

THIS SAA'a.nuTTN7  SETS UP THE MATTZIX COEFFICIENTS AND 
NOtJE L1CATT1)mS FO? NODES ON. THE THETA = 6 r=OLAF: AXIS. 

(1Jx) = (2. 441*DA)+(2.1: 4,10T)+(((4,n41?8) -(2. r4 ni 1 ) )'''R 7TMV) 
Jn(LJY) = (i:CPDA)+(jR 1 DT)+(n4'"TJ)+(((?.:2='0L)-(2.^7- 011)) =INV) 
J0(LJZ) = (01-'=0A)+(03*DT)+(040U)+(((2.004)+(3.C*08))*R7INV) 
JL(LJX,1) = -0241nA/2.n 
NL(LJX,i) = Lx - MALPH7 
JL(LJX,?) = f3.9 	• 
NL(LJX,2) = LX 	MAL°H3 + 3 
JL(LJY 1 7)  
NL (LJX,3) = LX 	MALPH3 + N732N2 + 7 
JL(LJX,4) = -i:EIN,P‘C7/2.0 
NL(LJX,4) = LY - NALPH3 + 3 
J1_(LJx,5) = -JL(LJY,4) 
NL(LJX,5) = LY - NALPH7  + N330M2 + 
JL(LJX,6) = 
NL(LJX 7 6) = LZ - MALPH7 + 6 
JL(LJY,7) = -JL(LJX,6) 
NL(LJX,7) = L7 - NALPH3 + N330N2 + 6 
JL(L.JX,8) = -JL(LJX,6) 
MI (ID(0) = L7  - NALPH3 + N37 
JL(LJX,O) = JL(LJX,6) 
NL(LJX,9) = LZ - NALPH3 + 11730N? 
DC) 31;) MO1=19,27 
JL(LJX,N91) = 
NL(LJY,N01) = 1 

31.9 CONTINUE 
JL(L„P,1) = ('110:';)-(D7=- 00/4.1)+(061.'0E/2.!=i) 
NL(LJY,1) = LX 
JL(LJY,2) = -(02*DA/2.i)+((03-04)*REINV) 
NL(LJV / 2) = LY - NALPH3 
JL(LJY,3) = JL(LJX,4)/2.r' 
NL(LJY,3) = LX - HALPHT + 3 
JL(LJY,4) = -JL(LX(,71 
Mt. (LJY,4) = LX - NALPH3 + N37992 + 7 
JL(LJY,5) = 
NL(LJY,5) = LY - HALDH3 + 7 
J1-(L„Iv 7 6) = 
NL(LJY,6) = LY - NALPH3  + M330M9  + 
011 311 mo2=7,27 
JL(LJY,mEn = 
NL(LJY mO2) = 1 
CONTINUE 
JL(LJ7,1) = (11 .7, 
mL(LJ71 1) = LX 
JL(LJZ,2) = -(D2.3. C.A/2.C)-((D4-93) - V) 

ML(UJZ12) = L7 - NaL7)+.7 
= u. 

ML(LJZ 1 7) = LZ - mAL0H3 + 7 
JL(LJ7,4) = i.9 
mL(LJ7,4) = t7 	NALPH3 + N37,0,T,  + 
JL(LJZ,3) = 	(LJY,r) 
mL(LJ7,,5) = LX - NAt 0H7 + 6 
JIALJ7,) = -JL(Liy,6) 
M_(LJ7_,6) = L/,- 18,7 21 7 + N33nT2 + 6 
JL(LJ2,7) = -iL(LJx.;) 
ML( 1 ,17,") = Lx - 	+ M77 
JL(LJLO) = JL(LJY,6) 
mL(LJ7,9) = LX - NALHH7  + N3 3^N? 
09 312 Nr7=0,-, 7 
Jt (LJZ,ND ,) = 1 .7 
NL(LJ7,mr):3) = 1 

„:12 r.ONTINUT 
Ju(LJX,1) = 
Mm(LY^,i) = 1 Y 
JICLJY 1 1 = 	r. 
Mm(LJX,2) = 
10(LJX,) 	O2'fIn1 2.- 5 
muRJX,7 ) 	LX + 
JI(LJx,4 ) -= (fl,-;=r)- )+(fD11 -(2.7n))4Rr'Im) 
NN(LJX 1 4) = LX + 7  
Jj(LJY 7 7) = r6'RE:HV 
"U(LJX,!:0 = LY + 7 
JI(LJY / 6) = 
Mm(LJX,6) = L7 + 
Jj(LUX,7) = 
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MU(LJY,7) = LX + M330M4 f 7 
JU(LJX1 9) = 0.0 
MU(LJX,3) = LX + NALPH3 + 3 
JULJX,9) = 0.0 
MU (LJX,9) = LX + NALPH3 + M330M2 + 
JI(LJX,10) = -JL(LJY, 14) 
MU(LJX,1?) = LY + NALPH3 + 7 
JU(LJX,11) = -JU(LJX,1C) 
NU(LJX,11) = LY + MALcH3 + M730NL + 
JU(LJX,12) = -JU(LJX,7)/2.9 
NU(LJX,12) = LX + 5 
JU(LJX,13) = JU(LJX,12) 
NU(LJX,12) = LX + M37 
J11 (LJY,14) = 9q4RrIMV/4.0 
MM(LJX,A4) = LZ + 5 
,P.J(LJX,15) = -JIJLJX,14) 
MU(LJX,15) = L7 + M37  
JU(LJX,1E) = -JL(LJX,F, ) 
NU(LJX,16) = LZ + ,NALPH3 + 6 
JU(LJX,17) = JL(LJX 1 5) 
NU(LJX,17) = L7 + MALr=-13 + M730N7 + 6 
,Pt(LJX,1F) = JL(LJY,6) 
MU(LJX,13) = LZ + MALPH3 + N37 
JU(LJX,19) = -JL(LJX,) 
MU(LJX,19) = LZ + MALDN3 + M330112 
J1!(LJX,20) = -(05'09)-(((2.0*.n5)-ni1)*RFTMV) 
MU(LJX,20) = LX + M330N2 + 3 
JU(LJY,21) = -P6P.ETMV 
NU(LJX,21) = LY + M379M2 + 3 
,P1(LJX,22) = 0.0 
ill)(LJX,22) = LZ + N37CN2 + 7 
JU(LJX,23) = JU(LJX 2.7) 
MU(LJX,23) = LX + M690m4 + 
JI1(LJX,24) = JU(LJX,12) 
MJ(LJX,24) = LX + N33nm? 
JJ(LJX,25) = JU(LJX,12) 
MIJ(LJX,2) = LX + W73nt92 
JT,(LJX,26) = -JU(LJY,14) 
M)(LJX,26) = LZ + M330M? + 6 
jJ(LJX,27) = JU(LJX,14) 
MU(LJX,27) = LZ + M33nM? 
JI(LJY,I) = C.0 
Nt(LJY,i) = LZ 
JU(LJY 72) = (n2;'n/1/2.C)-((n71-C.touREIv) 
NU(LJY,2) = LY + 
jtI(LJY 1 3) = 0.0 
MULJY 1 3) = LX + 7 
j_1(LJY,4) = (95 -̂ 0:)+JU(LJX,') 
NU(LJY,U) = LY + 
JA(LJY,S) = 
N1(LJY,5) = LZ + 
jJ(LJY,5) = JU(LJX, 7) 
N11(LJY,5) = LY + N3 30M4 + 
JM(IJY77) = -3.0* rl1C *PMIV/7.7 
NU(LJY,7) = LZ + N330M4 + 7 
JU(LJY,8) = -JL(LJY,3) 
MU(LJY,3) = LX + MALPH7 + 3 
J'](LJY0) = JL(LJY,7) 
NU(LJY,q) = LX + NALPL-43 + M37'1? + 
J1(LJY,10) = 0.0 
MU(LJY,1C) = LY + MaL°H7 + 
JU(LJY, 11)  = "C 
NU(JY,11) = 1Y + N.aLPH3 + M33Tr + 
J:J(LJY,12) = JII(LJX,12) 
M1 1(LJY,12) = IY + 6 
JU(LJY,13) = JU(LJY,12) 
M1 )(LJY,13) = LY + N33 
Ji(LJY,14) = -JU(LJY 1 7)/2.r 
Mt (LJY,14) = LZ + 6 
Jt (LJY,15) = -JU(LJy,14) 
• (LJY,15) = LZ + M33 
• (LJY,1=',) = C.0 
N (LJY,15) = LX + M370M2  + 
• (LJY,17) = JU(LJX,7) -(r5*1=7) 
M (LJY, 17) = LY + N3 )N? + 
Pj(LJY,1?) = C.0 
MU(LJY,18) = L7 + N730M2 + 7 
Y3(LJY,19) = JU(LJY,7) 
• (LJY,19) = LY + N3g0N4 + 
J:J(LJY,77) = -JULJY,") 
M:J(LJY,2G) = L7 + 	+ 
JJ(LJY,21) = JM(LJY,12) 
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MU(LJY,21) = LY + N3ZOM2 + 6 
JU(LJY,22) = JU(LJY t 12) 
MU(LJY,72) = LY + Mi70,19 
JU(LJY,73) = JU(LJY,1L) 
NU(LJY,2 -,i) = LZ +11730N? + 6 
JIJ(LJY,24) = JU(LJY,15) 
NU(LJY,24) = LZ + N73nM? 
Jr) 313 mP4=2 ,'7 
JM(LJY,M7L4) -r_7 1.2 
NU(LJY,Mn4) = 1 

313 CONTINUE 
JU(LJZ,1) = (D7'na/2.7)+((-D3-04)*RFINV) 
Wi(LJ7,1) = L7 + NALPH3 
JJ(LJ7,,fl = 
MU(LJ7,2) = LY + 
im(LJ7,3) = ('Y.54 ')J/2.7)-(3.e*r.'3'''RETMV/9.r2) 
MU(LJZ,3) = LZ 
SJ(LJ7 7 4) = JU(LJY,')/3.0 
MU(LJZ,4) = LY + M33iN4 + 7 
J11(LJ7,5) = C.0 
NU(LJ7,5) = L7 + '!330M4 + 7 
Jj(LJ7,6) = 
NU(LJL,6) = LZ + 	L°H.7 + 3 
JU(LJZ,7) = 
NU(LJ7 ,7) = LZ + NALPH3 + N33ON2 + 
JM(LJ7,P, ) = -JU(LJY,7)/5.n 
NU(LJZO) = LY + 6 
JM(LJ7,9) = -JU(LJ7,q) 
ITJ(LJZ,9) = LY .+ 
JU(LJZ,1u) = 0.0 
MIA(LJ7, 1 1) = L7 + 6 
JU(LJZ,11) = 113 
NU(LJ7,11) = LZ + M37 
JU(LJZ,12) = -JL(LJX,r1) 
NU(LJ7,12) = LX + M!LDH7 1- 5 
JM(LJZ,1) = JL(LJX,6).  
NM( JZ 1 13) = LX + NALPH7 + M7 1M? + 
JU(LJZ,14) = JL(LJX,F.) 
NU(LJZ,14) = LX + N1LcH3 + N3' 
JU(LJ7,15) = -JL(LJV,0) 
MU(LJZ,15) = LX + NALPH7 + M730M? 
JU(LJZ,16) = E.0 
MM(LJ7,1E) = LY + N7 -30M2 + 
SA(LT7,17) = -(05'07:r'.C)-(3.:*nP,="1"V/2.^) 
NU(LJZ,17) = LZ + M330N2 + 7 
JJ(LJ7,19) = -JUC_J7 1 (-0 
tYl(LJ7 21.3) = LY + N39nM4 + 
Jm(LJZ,19) = 
YJ(LJ.7 1 1c!) = L7 + 	 + 
J1 1(LJ7,'P = JU(LJ70) 

(LJ7,21) = LY + M33flm? + T.) 
JM(LJL,21) = JM(LJ7,1) 
VI(LJZ,''11 = LY + N37OM? 
,N(LJ7,22) = 
hU(LJ7,2_') = L7 + N3JOM? + 5 
JM(LJ7,?!) = 
:V(LJ7,?.3) = L7 + N73^N7 
iD.-1 314 Mn5=24,27 
JM(LJZ,N95) = 
N1 + 1 (LJ7,"7":) = 

14 C:ANTINU7 
iv.ZTUF-:N 
E*In 

.!17771_17 
ClINON/C01JI./v:El.M4,NnL°H7,M73,N77(112037nM4,N790NL,LX,IY,L7, 

11-r<ILJY,I 17 
CnmiCM/I;CIJ2P-11,02,n",n4,;-+5,15,07,1q,n9,n10,9111 D12 
CJM;1":VCC'IJ1/1117,014,1115,(315,n1",1P,fl19,07:,n21,n").:',C?S 

COMNO/CTIJ5/0m,r)T,TJ,nK,rL 
CiMMOm/r.'71J/r:IT,ni,nV,DM,DX,ov,n7  

J1_, An, JM, 	AO, 
r,JAMO YL(A1?,7..1), YO(1i2), YO(11 12,,), mYL(1:2,7'), NY11( 1 12,2) 
Cn:1,11-rt JL(2-4,7), Ji:1(11 ,.JU(rJL,7 7), "L(A4 / 27), "j(?14 7 27 )  
C1'.1■10M 	(94,77), 	, 

C 
C 
	

THIt:; c:M7.qPITTN' 	THe 	CO'FFICIrN" 
C 
	

mu...: IJnA-IOMS 	MJnrS NOT ON 71-J2 PO!_ AP, 

r 
C 
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J 1 (I JX) = (2.U *DIVOA) -1- ( 017 4.99)+(DI* 061 ) +(2- 17. *LIX)+ 
1 (( (3 13 *- 2. 	+( r11 2 1*2. /") ) 1̀ P,r-- 1 111/) 
J.J(LJY) = (11 1 E/A)+ (J17--- 0-1 )+(01+ At OU)+07120'DX)+ 
(( ( 2.C"'"D2'11) -1-  (2.1.3 4q34) ) 'REINV) 
JT1 ('_J7) = (, ) 4  'DA) (C 1̀'91-1)+04'1T-1 )+( ( (2. C -0 10+ (2.1=- D1)+017)*FEINV) 

JL (LJX 	= -924-nA / 	'1  
(LJX11) = LX - NAL 11 -7  

JL(LJX,?) = -0 1 17.1MV/'.■ 
ML (LJX,2) = LY - 11 ALPH3 
JL(LJX,3) = -(05'09/2.10 -(('3R -(n16/2.0))''IMV )  
NL(LJX77) = LX - M37 
JL(LJX,4 ) = -06'R'TMV/2. 1  
NL(LJX1,-, ) •= LY - N37 
JL(LJX,6) = -(011"DC/2.-2)-(n21*R7IMV) 
N-(LJXyri) = LX - 7 
J1 ALJX1")) = -0194c:EINV/?.] 
iii_ALJx 75) = LZ - 
JL 

 
{LJX,7) = -n7 4.R.7 INV14.0 

NL(LJX,7) = LY - MALPH3 + N37 
JL(LJX0) = -JL(LJYy7) 
ML (LJX,3) = LY - MALmh" - M57  
JL(LJX,9) = -n21*J INV/4.0 
ML(LJX,9) = LZ - NALPH7  + 3 
JL(LJX,10) = -JL(_JX, c1 ) 
"oL(LJX51- ) = L7 - NaLPH7 - 3 
1-13 32C MOI.=11 ,27 
JL(LJX001) = 
ML(LJXIME1) = 1 

320 C9NT1NUE 
JL (LJY,1) = (n14r1 = ) -( 1174 OH/4.')+(0 *T7/2.1 ) 
NL(LJY11) = LX 
J1 _(LJY12) = -(n2'nA/2.C) -((04-97) .."REINV) 
ML(LJYy2) = LY - NA1P147 
JL(LJYy7) = -F.:1 5*n7V2.r 
NL(1JYy3) = LY - M3' 
Ji.(LJYy4) = -(r118- 0'2/2.r) - (n?":2CI9 V) 
ML(LJYy 4) = LY - 
JL(LJYy5) = -(123*PEI9V/2.0 
NL(LJYy5) = LZ - 
JL(LJYy6) = JL(LJX,7 ) 
ML (LJY,6) = LX - MALnH7 + M77  

(LJY 	= 	,JY 	) 
NL(LJYy 7) = LX - MALP1-3 - N77 
JL(LJYy9) = 
N-(LJYy3) = 	- M37  + - 
1L(LJYy9) = -JLCLJY0) 
ML(LJYy9) = LZ - M7 -  - 
01 321 "C2=10,77 
JIALJYyM11.) = 1.1 
NL(LJYymr?) = 1. 

31 1 C,-)MTINU7  
JL(1 _,J251) = (02'0C)+(n194 0J/2.1)-( 021'01/4.,::) 
ML(LJZyl) = LX 
JL(LJZ,2) = (013*OC)+(023* OJ/P.0) -(022*nL/4.1) 
NL(LJZy'') = LY 
JL (LJ7,3) = -(02-=- 9A/2.1 ) -((91= -n7) = (FTV) 
tL(LJ7,3 ) = L7  - "'AL"1~; 
JL (LJZ,4) = - ( 1.1 51.1/2.9)-((:)A-(n15/2.C)) 1'. ;t- TMV) 
hl 	SZy4) = 17  - M3' 
JL(LJZ1 - ) = -JL(LJY1.71 ) 
NL(LJ715) = LY - 
J1-(1....17.76) = -11 10/2.0 
N1 ALJ7 ,6) = L - 
JI (LJ2, 7 ) = JL(LIY99) 
NI (LJZ,7) = LX - NALP,13 + 3 
JL(LJ278) = JL(LJxylC) 
ML(LJZ,8) = LX 	rAL0P7 - 3 
J1  (LJZ19) = j1_(LJYy9) 
NL(LJZO) = LY - 	1-  - 
1L(LJ2,11) = JL(LJY,Q) 
ML(LJ711.') = LY - M37 - 7  
JJ 322_ km7=11,27 
JL(LJ7 1 mo') = :.1  
NIALJ7,w1:) = 1 

3?? r-InTiN1 1 7  
JJ(LJx,i) = -(D7'9H/4.r)+(01/4- R=INV) 
MU(LJXyl) = IX 
J1 1(LJ), 12) = -n21*PW-p.0 
ml(LJXy 1 ) = 
Ji(LJYy3) = r2.)-"J4/2.' 
MN(LJX,7) = LX + "111 °117  
,J1J(LJX24) = -JL(LJX,?) 
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MJ(LJX;4) = LY + NALPH7  
JU(LJX,5) = (05"HYt/2. 73)+((-D9- (016/2.'2)) "REPN) 
N!J(LJX,5) = LX + 
Jli(LJX,6) = -JLCLJY,4) 
tfl(LJX,O) = LY + N37 
JU(LJX,7) = (018 Y- 0C/2.1)-(029EINV) 
NU(LJX,7) = LX + 7 
JII(LJX,8) = -JL(LAY.,!= ) 
TI(LJX,3) = L" + 7 
JU(LJX,':3) = JL(LJX,q) 
NU(LJX 7 9) = LY + NALPH3 + N37 
JU(LJX,10) = JL(LJX,7) 
WJCJX,LtD = LY + NALr'H7 - N37  
J't(LJX,11) = OL(LJX,1 71 ) 
NU(LJX 211) = L7 + . NALcH7 + 7 
J)(LJX,12) = JL(LJY,9) 
NU(LJX,12) = I 	+ NALPH7 - 
00 323 NO4=17,27 
JU(LJX,ND4) = g.0 
mil(IJY,N(74) = 1 

323 CONTINUE 
.,1=-1(LJY,1) = -7)22 4- nL/4.9 
NU(LJY,1) = L7 
J1)(LJY,2) = (774-DA/7.,;)+((-733-04),EINV) 
N!I(LJY,2) = L'' + NALPH3 
JU(LJY,3) = 135[37372.0, 
MU(LJY,3) = LY + 
J1 1(LJY,4) = (018*9C/7.0) -(02077:V) 
NMLjYy4) =AY + 
JU(LJY7. 5) = -JL(LJY,5) 
NU(LJY,5) = L7 + 7  
j)(LJY / 6) = JL(LJY0) 
Wl(LJY,6) -= LX + NALPH3 + N37 
JU(LJY17) = JL(LJX, 7 ) 
NU(LJY,7) = LX + NALPH3 - N33 
J!I(LJY13) = JL(LJY,q) 
NU(LJY,8) = LZ + N.57 + 7 
JU(LJY,9) = JL(LJY,8) 
NU(LJY79) = L7 + "33 - 
SO 3?L Nr11 5=1,27  
St(LJY005) = 
!-Ri(LJY,NO75) = 1 
rnmTDM: 
J0(1_,J7,1) 	(rInt,,/2.r)+((-07-r14) "ac imV) 
rTJ(LJZ,1) = t7 + MALPH-7, 
JU(LJZ12) = (1.75*DE/2.".)+((- 13 4 -(016/2.D)P'RETNV) 
NU(LAL,2) = L7  + 1:37 
JU(LJZ,3) = JL(LJY,5) 
W(LJ2,3) = LY + 7 
J1(t_J2,4) = C 1 9'''DCA2.fl 
NU(LJZ 7 4) = L7 + 7  
J!J(LJZ,5) = Jt(LAY,1(1) 
W)(LJ7,5) = LX + NALPH3 + 3 
JU(LJ7,6) = jL(LJY,9) 
NU(LJZ26) = LX + !'!ALnH7 - 3 
JU(LJZ,7) = JL(LAY,9) 

I(LJ7,7) = LY + N33 + 7  
Y.7 (LJ715) = JL(LJY.1) 

'!UC I J7,3) 	i( 	 - 7  
" 	!ofl.:>=1, 3.7 
Jij(LJZOCr.0 = 
:(LA-7_ 1 '105) = 1 

725 C:-)1Mtj=" 

=7:19 

SU9'-'0UTINL k!AT 7,J7 
COH;1O'I/C01J1/=TNV,NALPH3,!'137 ,N730N2,43374,N7 ?ONL,LX,LY,LZ, 

1A_IX,LOY,LA7 
0711MON/CC1j7/'11, ,T.,,05,Dr.07,DR,n-),n,T11 1 ,11 t2 
C-1.!NC:i/rC1J7,/r)13,r.;14., fl.117,1 01(7,, r;1 7  91_3 7 Olq 	071,027, n9  

,00,0E,07,0r, 
JI.1 197 	"" 

Y;J(112), 	TiL(1 !_277C), "(1.12,7"() 
JL(94,:!7), J:)(f, 41, JU( 0 4, 9 7), JL("`.,27), *!1J(..3L.27) 

rmmOr mAL( 14.,:") '4O(4), "AU(P,'"?7) 

C 
r 
C 	 THIS 	MilVES THET NEC''5APY ALTTPATTNS TO 
C 	THr- 	GrI 7 FTCTI:'ITS ANn  NUT-  L'CATT1NS cr' 

W-1c PHI "A 1 Tr,TION7, 	CjTFFTC 7NT:.:: 
cP;) TIE 	TO TtA7 	T7'1- INGULi-J)  
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JL(LJX,5) = G. 
NL(LJX,5) = 1 
JL(LJX,6) = 
ni__ALJx,5) = I 
NL(LJY,1G) = NL(LJX,10) + N37 
JL(LJY,4) = 0.0 
NL(LJY,4) = 1 
JL(LJY,5) -= 0.0 
NL(LJY,9) = I 
HL(LJY1 9) = NL(LJY,9) + N33 

(LJZ,5) = 
NL (LJZ,5) = 1 
JL(LJZ16) = 6.7 
NL(LJZ1 6) = 1 
NL(LJZ,8) = NL(LJZO) + N33 
NL(LJZ,10) = NL(LJZ,1C) + N33 
NU(LJY,i) = NU(LJX,12) + 
JU(LJX,17) = -(01P*o.C/2.0)-(O7:79*REINV) 
NU(LJX,13) = LX - 3 + N37  
JII(LJX,14) = -019'REINV/2.0 
MU(LJX,14) = L. - 3 + N3:3 
MI(LJY,9) = NU(LJY,9) + m33 
JU(LJY,10) = JU(LJX,17) 

JY,10) = LY - 3 + N33 
JU(LJY,11) = -023EINV/2.9 
NU(LJY,11) = LZ - 3 + N37 
N'J(LJZ,6) = NU(LJZ,6) + N37 
NU(LJZ,3) = NU(LJ7,9,) + M33 
JU(LJZ,9) = -JU(LJY,11) 
1'1U(LJ7,9) = LY - 3 + "1 37' 
OJ(LJZ,10) = -D1300/2.0 
Nj(LJZ,1,1) = LZ - 3 + N33 
R7TURN 

S-U3ROUTIME MATDJ4 
COMMON/CC1J1/REINV,NALPH3,N73,1330N2,N330N4,N390N4,LX,LY I LZ, 

1LJX,LJY,LJZ 
COMMON/CC1J2/01,0"),D3,D4,D5,0,n7,08,n9,01 0,011 ,012 
COMMON/CCAJ7/O17,D14,n1 5,0151 (117,01,019,07 ,D21,D22,0?3 
COMMON/CC1J4/0A,'D3,OC,00,OE,I)F I DG 
r3'7 AL JL, JO, JO, "AL, 4AP, .`EAU 
COMMON YL(112,20), YU(112), YU(112,2C), NYL(112,26), NYJ(112,20) 
(_7olmom JL(84,27), Jn(94), 	NL (,3L,97), NU(34,?7) 
COMMON MAL(84,27), HAfl(84), MAU(P4,27) 

C 	THIS Sq8),CUTIM7_ '4;1.'1:FS THE MECESSAmY ALTPITInNS Tn 
C 	 THE HATRIX co7FPTuTn!Ts ANn MOOF LOCUF ONS FOP 
C 	 INTERIOR NUDES WHERE PHT VARIATIONS MOVE COEFEICIcNTS 
C 	 FROM THE UPPEF, TO THE LOWER TRIANGULAR MATRIX. 
C 
c- 

NL(LJX,9) = NL(LJ(,9) 	N'3 
JL(LJX,11) = (019"0C/2.,])+(-r17I'REINV) 
ML (LJX, 11) = LX + 3 - N33 
JL(LJX,12) = OlVR"--- INV/2.0 
NL(LJX,I2) = L7 + 3 - N3' 
NL(LJY0) = NL(LJY,i!) - N33 
JL(LJY,10) = JL(LJY,11) 
ML(LJY,10) = LY + 3 - M37 
JL(LJY,11) = t773 '.EINlV/2.r 
T_ALJY,11) = LZ + 3 - N33 
N'_(LJZ,7) = NL(LJ7,7) - M33 
ML(LJ2,9) = NL(LJZ,9) - N73 
JL(LJZ,11) = -JL(LJY,:',1) 
NL(LJZ,111 = LY + 7 - M33 
JL (LJZ, 12) = :118'flC/ 2.0 
NL(LJZ,12) = LZ + 3 - M37 
JU(LJX,7 ) = 0.' 
i(LJY.1 7) = 1 

J'! (L JX0) = 
NU(LJX,9) = 1 
NU(LJY,11.) = MU(LJX,11) - N37  
JU(LJY,4) = 0.0 
NH(LJY,4) = 
j1(LJY,5) = C.1 
':U(LJY,) = 1 
'."(LJY0) = NN(LjY,Q) 	r,7717 

C 

r. 
r 
C 
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MU(LJ7 1 3) = 
JU(LJ7,4) = 
N1J(LJZ,4) = 1 
WJ(LJZ,5) = NU(LJ7,5) - N33 
NU(LJZ,7 ) = MU(LJ7,7) - N33 
R-TURN 
ENO 
su9,,,nuTim7 MATJ5 
C11NMON/COMJ1/REINV,NALPH3,N33033012 0330N40390N14,LX,LY /LZ, 

1LJX,LJY,LJZ 
CD'IMON/C01J7/01,92,C3,04 ,05,06,077 DR,09,010,011,012 
C1'IMON/CCAJ3/013,01,401 5.0162 017 ,71B 4 O19,0?'],D21,D22,n?3 
COINON/COAJ4P-)A,Dc,Orr,PE,OC,nc,  
rONM'ON/CC1J5/CH,D,_,DJ,nv,,r-q_ 
Cr“.NON/CCiY)/D"1 ,T4,0P,OD,DR,OS 
COANC1/CC1J-'/DT,OU,DVO0ij,DX,DY,07 
COMNON/COWNC23,MCN23,CP,SP,CP°1 SFP I CP,SPM 
REAL JL, JO, JU, MAL, MAD, HAU 
COMMON YL(112,20), Y0(112), YU(112,22), NYL(112,M, NYU(112,20) 
C2",10N JL(9,L.,27), J0(34), JU(94,'77), HL(34,27), NU(P4,?7) 
COlclON MAI (34,27), HAD( 14), NAM'14,27) 

C 
C 
C 	THIS SUB!-!CUTINc'' MAKES THE' NECESSARY ALTERATIONS TO 
C 	 THE MATRIX COEFFTCIETS AND MODE LOCATIONS FOP. 
C 	 INTERIOR NODES ADJACENT TO TLIE THETA = 0 POLAR AXI. 

r 

JD(LJX) = (2.LI=T'01.'DA)+(D1-74D9)+(03"DY)+(D294DX)-1- 
1MDF!*2.2)4-(D2,].4. 2.0))'RE7J0V) 
JJ(LJZ) = (P14 0A)-4- (04'OU)+(D8.9Y)-4-(((04*?.6)+(D3'2.7)+D17)*RRINV) 
J..(LJX,7)) = 
NL(LJX,Z) = 
JL(LJX,4) = Q.0 
NL(LJX,4) = 1 
JL(LJX 1 3) = g.0 
NLOJX,3) = 1 
JL(LJX,13) = -((J5-*D5/2.f3)-C(DR-( 1.1 1 5/2.11 ))*RFINV) 
NL(LJX,13) = MC23 	? 
JL(LJX,14) = -(0.54- REV/2.0)-''CP 
W (LJX,1 4) = NC23 - 
JL(LJX,15) = -(064REINV/2.0)*" 
NL(LJX,15) = NC?3 
JL(LJX,16) = (717471-NV/4. 7)V=Cc 
NL(LJX,15) = NC23 - 1 - NALPH7 
JL(LJY,17) = (07*EIH)r/4.11)"S'-' 
W(LJX,17) = NC23 - M.,ILP1-17  
J!_(LJY,1) = (1)1'11'))-(?7' 1H/4..)-4-(DS*DN/2.c) 
JL(LJY,3) = 
NL(LJY,3) = 1 
J. (LJY, 7) = 
NL(LJY,7) = I 
JL (LJY,3) = 
NL(LJY0) = 
JLALJY,D) = 	1, 
m!ALJY,O) = 1 
JL(LJY,12) = 
ML(LX/ 1 17) = 023 - I 
JL(LJ'f,13) = -(F1553/2.7) 4SP 
t;L(LJY,13) = NC23 
JL(LJY 1 1.6) = 
NL(LJY,14) = MC23 - 2- rIaLPH7 
JL(LJY,15) 7-  (D221MV/4.r)''-'7;10 
N1..(LJY,15) = 	- 1 
JL(LJY11) = 
NL(LjY,117) = NC2.3 
1L(LJY,17) = -(D2247 NV/4.1 ) 3 SP'.1 
t:L(L.P(,17) = "C23 - 1 
JL(LJY,1) = 
ML(IJY,1.') = "C7-i 
j,_ALJ7_,9 ) = ("13"r)4- (11?3J/7?..:=1)-('27)")°,L.7) 
J:..(LJ7,14) 
NL(LJ7,4) = 
JL(LJ7,q) = u.'11  
NL(LJZO) = 
JL(LJZ,1)) = 
NL(1.37,1') .- 1  
JL(LJ7,1 :i) 	-JIALJY,1 3),7P 
ML(LJ7,13) = 	- I 
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C 
C 

it. (LJZ;14) = JL(LJY,1?)=C7 
NL(LJ7,14) = MC23 
JL(LJZ,15) = JL(LJY,1,:,) 
NL(-J7,15) = NC23 - 
JL(LJ7,1S) = 
NL(LJ7,16) = r!023 
JL(LJZ,17) = 
NL(LJL,17) = NC23-- 
JL(LJZ,V!) = -JL(LJY,17) 
NL(LJ7,13) = NC23 
JU(LJX,1) = -(07*DM/4.0)4(0144R7IMV) 
01 (LJX,1!2) = 2.r 
N1(LJX, 1 7) = 
J1 1(LJX,15) = -A(LJX,t6) 
NIJ(LJY,1q) = N073 - 1 + MALPH' 
JU(LJX,1) = -J!..(LJY,17) 
NU(LJX,16) = NC23 	MAL°1-13 
JU(LJY,±) = -0220°/4.f.) 

= 0.0 
NUCLJY,7) = 1 
JU(LJ0.2) = 
NU(LJY

Y 
 ,12) = NC23 - 2 + ALPH7 

PETUPN 
■•4D 

SUOUTINF MAIRJ6 
Cl1MON/CO1,11/FINV,NALPH3,N73,N370N2,N32M4,N390N4,LX,LY IL2,' 

1LJX,LJY,LJZ 
COMMON/CC1J2/01,02,7,71r)4,05,0";07,08,O9,Dirl,011,012 
COMMON/C01,17/013,01 4,01F,D16,1117,01 1301902,021,022,fl93 
Cn1MON/CC1J4/11A,U6,Dr,00,0E,9E I nG 
COMMON/CO'IJ9 rjHOT,OJ,flK,flL 
COMMON/C01J6/0M,ON,017 ,0q,OR,OS 
COMMON/COMJ7 /OTOU,DV,V,DX0Y,07 
COMMON/COIS1/11023,NCM273,CP,7,CPP,SPP,C7)",z2PM 
REAL JL, JD, JU, NA 1 	MAD, mv! 
cgmtioN YL(112 1 2::!), YD(1 12), YU(112,2C), "YL(112,7 ), Isliti(1 1 2, 20) 
COMMON JL(84,27), J0(84), JU(4,27), NL(4,27), NU(34,27) 
COMMON MAL(B4,27), :iAD(PL), MAU(P.4 ,27) 

C 	 THIS SUTrOUTT1 m;AKES THE NECESSAPY ALTrPATTONS TO 
C 	 THE MAI. TX COEFEIrTENTS n.Nfl HO'17 LoCA-Ins Err' • 
C 	 INTEP,IDR NODES ADJACrNT TO THE THETA = PT POLAR AXIS. C  
C 
C 

= (2.0 401 -0A)+(ni7*DE)+(D3D7)4.(r?'9'DX)+ 
1(((08*2.N+(^20*2.C))=-R5INV) 
Di(LJZ) = (111'"D1)(JL"DU)+(fll'qZ)+(((r-W.2.G)A-(084'?.0)+D -17):.=FP- INv) 
JL(LJX,7) = 	r.1  
ntALJX,7) = 1 
JL(LJx,17) = (07'-',FIV/4.r)*r-
NL(LJX,13) = NCN23 - 1 - NALPH3 
JL(LJX,1/4) = (07'F;EINV/4.1 )'S- 
NLALJX,14) = NCN27 - :)A_PP7 
Jt(LJY,1) = (D14D -3)-(fl74. 0(:./4. - )+7P/2.r) 
J'..ALJY,6) = 
NL(LJY,) = 
JL(LJY,12) = -n7s-,:EINV/4.0  
11'ALJY,1 2) = MON2::; - 	- MAL73 H7 
jL(LJ7,7) -= (013;t:1 )+(D230J/2.1 )-(P22/4.2) 
JU(LJX,1) = -(07'00/4.'3)+(nlh'R,---1"V) 
JtJ(LJX,5) = 
MII(LJY.,75) '= 1 
SI(LJX 1 6) = 0.r 
N(1._JX, 	= 1 
JfJ(LJX,9) =• 
"U(LJX,9) = 1 
XJ(LJX,15) = (95"13/7..::e)-1-((-1P,-(5/2.7))':FINV) 
N1)(LJX,15) = Nrs,23 - 
JU(LJX,1E) = 
t1l1(LJY,15) 	T 377  - 
J1J(LJX,I 7) = -(967:V/?.C)4 S0  
":!..I(LJX,17) = '17N2Z 
J'J(LJX,13) = JL(LJY,12)7P 
N!J(LJY,1P) = ACN"), - 1 + MA1-DH7 
P(LJY.,1'3) = JL(Dm,12)4Sp 
"OJ(L../Y71) = 	+ !'Ai PH7 
JU(LJY,1) = 
V(LJY17.) = 
NU(LJY 1 7.) = 4  
JU(LJY,c1) 	r7.3 
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C 

C 
C 

W(LJY,6) = 
JU(LJY,1) = ". 1  
MI(LJY,3) = 
JU(LJY 1 ')) = Cj.1 
NU(JY,q) = 
JU(LJY,12) = —(054 T-'./2.1J) .xC')  
WI(LJY,12) = 	— 
Sl(L,n,13) = 
MU(LJY,1) = NCI?J 
JU(LJY,14) = —JL(LJY,i2) 
MU(LJY,14) = M1M2 — 2 + NALPH7 
JU(LJY,15) = —(022EINV/4.'1):'SPP 
MU (LJY, I ) = MC"127 — 1  
V(LJ4, 1 6) = (02277T:':V/L...c7)Ntcp ,-,  
NU(LJY,16) 	MCM23 
jj(LTt,17) = (022 - c— V/ 1-,.!7)Soli 
NU(LJY,17) = MCM23 — 
JU(LJY,18) = —(02"- REINV/4.0)'`CP" 
NU(LJY,18) = NCN73 
ji(LJ7,2) = C.0 
MU(LJZ,2) = 
J'I(LJ7,7) -= 5.0 

= 
jJ(LJ70) = 0.0 

= 1 
JU(LJ7,11) = —JUMJY,15)*SP 
MU(LJZ,11) = NCM23 — 
JU(LJZ I i2) = JUtLJX,t5)=`C'•' 
NU(LJZ,12) = 1.1OM?3 
JM(LJ.7. 7 1.;?) = -JU(LJv,16) 
MU(LJZ,17) = MCM23 — 4  
jU(LJZ, 1 4) = JU(LJY,11:3) 
NU(LJ7,i4) = MC" 73 
TI(LJZ05) = —JU(LJY,1`',) 
NU(LJZ,15) = MCN2 — 
Jj(LJZylE) .= JU(LJY,17) 
WJ(LJ7,1%3) = MCM73 
P=TUPN 
EMO 
SUOUTINT M1TRJ7 
r.1110N/C01J1/RETMV,NALPH3,N33,M33M12,N370M4,N79CM4,! X,LY,LZI 

iLJX,LJY,LJZ 
CIMHOWrOs!J2/01,07,P7,04 05,CE,D7,1-01,09,0tC,011 ,fl12  
CilMOM/CO1J4/DA,fin,LiC,fln,DF,iP,r)r 
C71MON/00:1J7/0T,OU,nV,nW,PX,OY,97 
Pc7 AL JL, fp, JU, MAL.'  Mn, lAt! 
CnVIGM YL(112,?), YD(112), Yli(112,2C), "YL(112, 9(2), "YU(112,2C) 
GOmMON JLC84,2 -7 i, J9(84), JU( 24,P'), ML(4,27), MU(P,4,27) 
CD'1NO MAL(14,27), 	 mAU(PL,27) 

THIS SUT:'CUTTMF SE..TS Up Ti-! MAT?_IX 007EFICTrNTS ANC 
`JOlJE LgCATIONS FOR NOnFS 	THETA = PI POLAP AXIS. 

Jn(LJX) = (2 ,.*01.''- 0 8 )f(2.:2 - V- DV)+(((,=.3)-(Z.7'011 	:-' ))*7ENV) 
Jn(LJY) = (Oi'iriA)+(r'vnV)+(nti'flU)+(((2."r'4) - (2.2 4- nt 1 )) !V) 
Jfl (LJ7) = (n14 :-)A)+(OVDV)+(D4 -1 )U)+(((2.7'1)4)+(7. 4D?.))FINV) 
JL(LJX21) = -0A'02/2.7  
HL(UX,1) = LX - 

= -(r15)--(((2.C47rfl-211)7INV) 
ML (LJX,2) = LX - N370V 
JLO_JX,;31 = -964H,EIV 
ML(LJX7) = y*/  - 
JL(LJX,

1
4) = 2.0 

NL(LJX,4) = L7 - fl -57,0N? 
JL(LJX,5) = C11. 7 "  "!V 
ML(LJX15) = LX - N57uNq.. 
JL(LJX,5) = 
:T-(LJX,c)) = 	- ;0 4LrH7 -M73-7  
„L(LJX_,7 ) = 
Nt._.(LJA,7) = LX - 	- t'f73ON? 
JL(LJX,1) = -27*psr-i'lv/7 .f3 

(L.JX78) = LY - 	- t‘17, 
JL(I_JX79) = -JL(LJX,P) 
`IL(LJX,9) = LY - NALFH7  - f■MPT,  
JLALJX,Jc2) = -JULJX.-72) 1 2.1-2 

= LX - N'f\17 + 7 
JI_(.1_,JX)1.1) = 
NL(LJA,11) = LX 	- 
JLPJX.121 = 
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'iL(LJX,i2) = L2 - N330N2 + 3 
JL(LJX,13) = -JL(LJX,12) 
ML(LJX,13) = LZ - N370M2 - 7 
JL(LJX,14) = r11 2:4P,FINV/.0 
NL(LJX,14) = LZ - NALPH3 - N77 + 3 
JL(LJX,15) = -JL(LJX,1L) 
ML(LJX,15) = LZ - NALPH7 - M33012 + 
JL(LJY,16) = -JL(LJX,14)• 
NL(LJX,1E.) = LZ - NALPH3 - 3 
JL(LJX,17) = JL(LJX,14) 
NL(LJX,17) = L7 - NALPH3 - N7S0N2 
JL(LJX,18) = (69405)+(((-2.1'08)+011)*REIMV) 
NL(LJX, 4 3) = LX - M37 
JL(LJX,j9.) = W'RE1'!V 
NL 0 JX, 1 c) = LY - N37 
JL(LJX,20) = C0 
NL(LJX,2 J) = LZ - N33 
JL(LJX,1) = JL(LJX,5) 
NL(LJX,21) = LX - N7grIN4 
JL(LJX,2%) = JL(LJY,lc) 
NL(LJX,22) = LX - N33 + 7 
JL(LJX,23) = JL(LJX,1C) 
NL(LJX,23) = LX - 7 
JL(LJX,24) = JL(LJX,13) 
HL(LJX,24) = L7 - N73 + 
JL(LJX,25) = JL(LJX,12) 
NL(LJX,25) = L7 - 
C) 37C N01=26, 27 
JL(LJX,ND1) = C.9 
NL(LJX,"01) = 1 

379 CONTINUE 
JL(LJY,1) = (91*g_1)-(070F/4.12)+(7)6*TIG/2.9) 
NL(LJY,i) = LX 
JL(LJY,2) = -(07=H1A/2.9)+((D3-04)'REIMV) 
NL(LJY,2) = LY - NALPH3 
JLO-JY,3) = 
NL(LJY,3) = LX - M370M2 
JL(LJY,4) = -(05'''09)+JL(LJX,5) 
ML(LJY,h) = LY - N330N2 
JL(LJY,9) = 0.9  
NI (LJY,5) = LZ - N73017 
JL(LJY,6) = JL(LJX,5) 
HL(LJY,6) = LY - 1077oN4 
JL(LJY, 7) = -7.2*P17*PEINV/2.' 
NL(LJY,7) = LZ - m370mh 
JL(LJY,3) = JL(LJX,9)/2.0 
NL(LJY,A) = LX - NALPH7  - N37 
J1.(LJY,9) = -JL(LJY,g) 
NL(LJY,9) = LX - NALPHS - M33nN2 
JL( 1 ,11',16) = J. 0  
NL(LJY, -.1_1) = LY - MALP93 - M37  
JL(LJY,11) = "L].9 
NL(LJY,11) = LY - NALPH3 	N330N2 
JL(LJY,12) = JL(LJX,19) 
NL(LJY,12) = LY - N3j1N? + 
JL(LJY,13) = JL(LJY 1,1,]) 
• (LJY,17) = LY - M67CM? - 
JL(LJY,14) = JL(LJY, 7)/2,1: 
NL(LJY,14) = L7 - N.37/ 7  + 
JL(LJY,15) = -JL(LJY,14) 
NL(LJY,15) = L7 - N330N2 - 
Jt..(LJY,1) = 
NL(LJY,U=) = LX - M37 
JL(LJY,17) = (95*n9)+UL(L)Y.,51 
NL(LJY,17) = LY - N37 
JL(LJY,19) = 
NL(LJY,18) = L7  - M37 
JL(LJY,19) = JL(LJX,5) 
NI-(LJY,1) = LY - 
J.L-(LJY,217) = -JL(LJY,7) 
NL(LJY,22) = L7 - M79"4  
.IL(LJY,21) = JL(LJX,1r) 
NL(IJY,21) = LY - '176  
TALJY,22) = JL(LJY,17) 
ML(LJY,22) = LY - 7  
▪ _CLJY, 93) = JI-( 1  JY.1%) 
NL (LJY,23) = LZ - N33 + 3 
JL(LJY,24) = JL(LJY,15) 
NL(LJY,24) = L7 - 
91 371 T') ?;,27 
JL(LJY,Nr?) = 0.0 
• (LJY,"1:2) = 1 

37A_2 -1TrU7  
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JL (LJZ,1) = 

NL(LJZ,1).=  LX 

JL(LJZ,2) = -( 02.1" 0/2.C)- (0D4-03F"- aEIMV) 

hL(LJZ,?) = LZ - NALr-1 H3 

JIALJ7,3) = !).0 

NL(LJZ,3) = LY - 11 330N2 

JL(LJZ,4) =-(05-1. 0/2.7J) - (3.'30EIV/2.]) 

NL(LJZ,L) = L7 - 370"?  

JL(LJZ,5) = JL(LJYt7)/7.7 

ML(LJZ,5) = LY - Mo7nN4 

JL(LJ7,6) = 0. r.3 

NL(LJ2,6) = LZ - M370*ftl 

JL(LJZ,7) = 

NL(LJL,7) = LZ - ::ALPP3 - N37 

JL(LJZ,8) = 0. 
NL (LJZ,8) = L7 - NALI-43 - N7,-"N"  

JL(LJZ,g) = JL(LJY,7 1 /r,.0 

NL(LJZ,9) = LY - N330N2 + 3 

JL(LJZ,10) = -JL(LJ2, (1 ) 

ML(LJ7,10) = LY - N37f1M2 - 3 

JL(LJZ,11) = 

NL(LJZ,11) = L - N370N? + 3 

JL(LJZ,12) = 

NL(LJ7,12) = L7 - N330N2 - 

JL(LjZ,13) = JL(LJY,1!4 ) 

NL. (LJ7 ,13) = LX 	NA!..P1-1 3 - \j3-2  4- 7 
J. (LJ7_ 7 11+) = -JL (_JX, -1.4) 
ML(LJ7,14) = LX - NALnH3 - N73T12  
JL(LJZ,i5) = -JL(LJY,14) 
NL(LJZ,15) = LX 	NAL °P3 - 7 

JL(.LJ7,1E) = JL(LJX,11 ) 

NL(LJ7,16) = LX - NALPH3 - 37992  - 

JL(LJZ, 1 7) = c11.0 

NL(LJZ,17) = LY - N37 

JL(LJZ,19) = (951?;3/2 .(2) - (3.0:1 09'2,7"V/2. 1,) 

NL(LJZ,18) •= .L7 - 

JL(LJZ,1(%) = -JL(LJ7,e;) 

N'-(LJZ,19) = LY - N790"14 

JL(LJ7,7C) = t:; 9  

HL(LJ7,22) = L7 - N'1.- 14 
(LJZ,21) = JL(LJZ,9) 

fAL(LJZ 7 1 ) = 1 Y - 	+ 
A(LJZ, -.) 7 JL (LJ7,1C) 

NL(LJ7,22) = LY - 

JL(LJZ,23) = 

NL(LJZ,23) = L Z 	N33 + 7  

JL(IJZ,24) =  
NL(LJZ,2/4 ) = L7 - 

CY) 372 NO3=25, 27 

jiALJZ,NO3) = 

!'i: (LJZ, 1̀[23) = 

372 COTFINU7 

,I1 J(LJY11) = -n7 nF/14..? 

NU(LJX,1) = :Y 
Ji(LJX,?) = 
PN(LJX,7) = L7  
SI(LJX,3) = M")=en1/.7, 
!1! 1 (1_,J,K,5) = LX + 
J.1 ('_JX,4) = 
WJ(LJX,4) = LX + N4lPH3 - N33 

,P1(LJX,5) = 

w1(Lsix:-.5) = 	+ 	- N-530: q? 
j.1(LJX,6) = JL(Lix ,9) 
.1 1(LJX,1")) = LY + 	3' 
J"(LJX,7) = JL(LJY,'1 ) 

MJ(1_JX,7) = Ls( + 	°1-1 3 - N73("I N7  

,Y1(LJX,s',) = -JL(1,AX,V0 

NU(LJX,I) = LZ + 
"'n! -n"7  - N33  + 

JI(LJX0) 	JL(IJY 1 1- 4) 
V1(LJX,9) = L7 + naLPH", - N33r.!N? 

j)(LJX,1j) = JL(LJY,11, ) 

; 11(LJX,In = U 7  + '!ft! '?FN - 
.1 1 (LJX,11 ) = ---11(LJY,!4) 
!srt(LJA,11.) = 17 + MAI N.. - *13-7 0'17 - 
J) 	!Int.-12,77 
J!J(LJX0r7;) 7 11, -.  

W( I JY,1)f74) = 1  

373 CONTINUE 
Jj(LJY 1 1) = 

(LJY,I.) = L7 
,P(LJv I 2) = 

= LY + 
J: 	 y 	) 

-174- -  



71U(LJY;3) = LX + rALPH3 - N3"; 
JU(LJY 7 4) = JI-(LJY78) 
NN(LJY,4) = LX + NALPH3 - N370N? 
JJ(LJY 7 7) = 
NU(LJY,5) = LY + NALnH3 - N37 
JU(LJY,6) = 0.0 
NU(LJY 1 6) = LY + NALPH7 - N330N7 
DO 374 NC:3=7,7 7  
J1.J(LJY,M01) = 
1i/.1( 1-JY/Nr/ ) = 

374 CONTINUE 
JU (LJZ,1) = (D2'DA/2.1,3)+((-D7-04-)4REPIV) 
NU(LJZ, 1 ) = L7 	,41_°H3 
JD(LJ7)?) = 
NU(LJZ,2) = L? 	NALPP3 - N33 
JU(LJ7,3) :4 • 

NU(LJZ,3) = L7 + NALDH3 - N3301? 
JU(LJZ 7 4) = -JL(LJY ) 14 ) 
W(LJZ,4) = LX + NALPH3 - N33 f 
JU(LJZ,5) = JL(LJX,14) 
NU(LJZ 7 5) = LY + *IAL°1-1:,5 - M330112 	' 
JN(LJ1,6) = JULJY,14) 
NU(LJZ,6) = LX + NALPH3 - 3 
J:J(LJZ 7 7) = -JL(LJX.7 14) 
NU(LJZ,7) = LX + NAL°H3 - N730N2 - 3 
00 375 ''1n,:)= f1,27 
JU(LJZ,NCri) = C.f! 
NU(LJ7 / N95) = 1 

775 CONTTNU'7  
R7-TUPM 
ENO 
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C 
C 

SUPROOTINE MATRY (NN1,NN2,NN3,PRI,RPO,MMFONY) 
REAL JL, JD, JO, :1AL, MAD, "AU 
CjOMON/CO"Y1/j1,D7,715,P6,17,D8,09,010,011,912,0171 019,920, 

10'71,1922,023,074,036 
CoMMON/CONY2/LX,LY,LZ,LJX,LJY,LJZ,N73,M37OM201330N4079ON4 
C91NoN/C01Y7/2,ST,TT,11,H3 1 MALPH3.NALPH6 
C91MoN/C01Y4/1C2,NO2.3.NNLOCO231CP zSP I OPP,SPP,CPM,SPN 
CoNNON YL(112,21), Y9(112), YU(112,'ctr.,), NYL(1±2,2C), MYU(t12,20) 
CO1MON JL(84,77), J9(ii4), JUM,27), NL(FL,?7), NU(84,27) 
C91 NON 9AL(34,27), '4ADH4), 1AU(84,27) 

r 	THIS SOC3':1UTIM SETS J° THF MATRIX EOUAT1ON ANALOGUE OF 
C 	POISSON*' FOUAiION FOF THE VECTOR, 00TFNTIAL A OF THE 
C 	D.OTATIONAL CO\iPONET OF THE VELOCITY 'FIELD UPcT EOP 
.0 	LINEAR-SHEAF. (AT INFINITY) FLOW PAST A -SPHERE OF RADIUS 
C 	RI. THE 30UNDARY CONDITION'" AT INFINITY ARE REFLACFC EY 
C 	SINILA CONOTTIONS ON A SPHEPE, RADIUS PO, CONCENTRIC 
C 	KITH T47 SPHEPE OF PADIUS 71. SFOOND-oP9TER FINITE- 
C 	DIFFERENCE APPDXIrATTOMS AR: USED BOTH POR THE VECTOR 
C 	LAPLACIAN AND FO7 THE (MTXEU) 3OUN9A9Y CONDITIONS. 

SORFOUII1ES MATRY1-9 SET OP TH: mATRIY COEFFICIENTS 
C 	AND NODE LOCATIONS YL/YD/YO AND NYL/NYTJ P,ESPECTIVELY.• 
C 
C 
C 

• = NNI 
N9 
NE = NN3 
PI = RRI 
P.O = RRO 
NE_O,NY = NHEONY 
PT = 3.141597F535PBq 
XN1 = Nl 
Xl? = M2 
• = NT 
HI = (RO - 0I)/XN1 
HE = PI/X1? 
H7 = (2.i; 	PE)/XP,3 
NALPHA = (N3'. (N? - 1)) + 
NODES = (11.= 1) ". 1ALP4A 
NALOH3 = liNALPHA 
NALPHEI = ;5*NALPHA 
W6 = 31,17 
N3'30H2 = N33/2 
MS39N4 = N37/t, 
N390N4 = VtN370N4 
R 
L = 
LX = 1 
LJX -= 1 
ni = 
92 = 1.1/H1 

INNER -10UNLARY 
I UiLL "ATRY1 

L = L + t 
L" = (3,'L) - P 
LTA = LJX + t 
1r(L.EO.NAL:7,HA+1) GO TO 4 
Go TO 4  

4 I - 

= 

P 7  °I + Hi 

TO:TA = 0.0 
PHI = 
PHI° = HE 
P11" =-47 
L P? = LJY + 1 
L.17  = LT/ 4- 4 
L= LX + 1 

LY + t 
0/(-F".P:'(H2=1-H?) 

(.),/(H.317) 
07 = 1.r1/(H-v-H1) 
nq 	1.1/(R-H1) 
nq - 9B/43 
• = 59/(Fs.1M-7) 

1.,)/(Ys:7:*H2) 
niliw; • 

n17 	917/H? 
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NC? = (NALPHA*(I-1)) f 
N'27 = 3'1C2 
NCN2 = (NALPHA4I) 
N" N23 = 3'NC:'12 

C 	INTE7.10 NOOF.S (J = 1) 
CALL NATPY2 
J = 2 
THETA = PI/XN? 
ST = SIN(THETA) 
Tr = TAN (THETA) 
L = L + 1 
LY = (34-L) - 2 
LY = LY + 1 
L7 = LY + 1 
L.JY = LJX + 7  
LJY = LJX + 1 
Lj7_ = LJY + 1. 
019 = 1.0/(RST'ST) 
020 = 019/(H3'-H3) 
021 = 1.0/(R 4-°*TT'H?) 

= 1.]/(r, T)al'H7) 
023 = 1.0/(RST"TT4H7) 
024 = 1.C/(V'RST*H2H3) 
CR = COS(PHI) 
SP = SIN(PHI) 
CPP = COS(PHIP) 
SPP = SIN(PHIP) 
C'M = COS(PHI1) 
SPM = SIN(PHIM) 

C INTERIjP NODES 	(GENEP.AL 	CASE) 
11 CALL 1AT°Y3 

IF(K.NE.1) 	GO 	TO 	18 
C INTERIOR NODES 	= 1) 

CALL NATRY4 
18 IF(K.NE.N3) 	GO 	TO 	I85 

C INTERIOR 	;Ion.7s 	(K 	= 
CALL 	MATPY.5 

185 TF(J.E0.2) 	GO 	TO 	19 
IF(J.LO.N2) 	GO 	TO 	2C 
GO 	TO 	21 

C INTF_RIOR 	NODES 	(J = 2) 
19 C A LL MATPY6 

GO 	TO 	21 
NOOrIS 	(J 	= '421 

20 CALL MATRY7 
21 L = L 	+ 	1 

LX 	= 	(7=ft) 	- 	2 
LY = LX + 	1 
L7 	= LY + 
LJX 	= LJY 	+ 	7 
LJY 	= 	LJX 	+ 	1 
LJZ = 	LJY 	+ 	1 
IF(K.EO.N7) GO TO 2? 
K = K + 1 
Z = K - 1 
°HI = (2.]*Zoi -" )W17 
CP = COS(PHT) 

= SiN(PHI) 
PHIP = °W1: + H3 
PH 71 = PHT - 
Grip = COS(PHIP) 
snp = crN(pc-1Tp) 
CP.! = cos(oH.:") 

sTN(PH1'1 ) 
(-;'1 

22 K - 1 
PFI = 0.0 
rp - cos(",HT) 
SP = ",TN(PHT) 
PrltP = H7  

= -H7 
C!" = cos.(m-iir)) 
7r2 = 7,iN(PHin) 

= cm-“DHI,1) 
5P1 = SIk(PHTM) 
J = J + 
TF(J.EO.N2+1) GO TO 23 
Y = j - 
ETA = (Y*PI)/X12 
ST = STN(TH.=- TA) 
77 = TAN(THPTA) 

= 	 "X(ISTT'T) 
n19' (H.-3"H3) 
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(2.24+7M-Ivik 	(+2P)nni 	(2.2't1) -A114 kuPNCO 
(a‘+1.)riN 	(1.2`±7C)-Iii 	orc-lur,`(Lvtiv) ir 

(32:'?'“ flAk 	`2TT ) 7).1.1 	(RIT“JA *(:2:',":"!-;-T )1A NOI.:1,:CO 
9HolGO::HolV;.,4iWTH'Il'ISM:A403/0k;:n3 

+7N06:;..N‘+7N0221:447N0i2NLi.CN44r1',U+1'XV1‘2_14A1')(1/2AP03/NOWNC3 
9Li'472L1'220'22O'T20T 

4'32C'EDICIc2TO‘TO4TT040-1C'eAY9042.0'9O'SG'LG4TO/TA1.00/NOPWC3 
nvh 4UVi, 4! 'fir 'or 

J2 01 Ot, (T+S:O0N'I1'1)di 
T + Xil = Yr1 
- (1*2) = X1 
T+11  - 

17V0 02 
SNOLLILA400 

Od/L'2 = 920 62 
5 Ji LJ 

E.2 UI C9 (T+TN'OP.'i)I 
T + Arl 
T + Yri = 

+ xri = Xr1 
T + Al = 71 
T +. X1 = 

- (1*!=:) = Xi 
T + 1 = 

=-NTHd 
cH = IHd 

= id 
0'0 = 
TH + 

T = 
; = r 

+ 1 = 1 
11V3 22 

s]uON 
TT ul 00 

(2H,-;2}-1.JS)/2'T = 
= $73 

(2H*TH*IS-kiL)/0'T = 720 
(t--:H*111)rl'T = 720 



C 
C 

YD(LJX) = -(2.*06) + ('4.0405) 
Y1(LJY) = -( 2.11 ) 	(2.' *n7) 
Yr)(LJZ) = (2.14D7) + (3.005) 
YL(LJX,1) = -09/2.1  
NYL(LJX.1) = LY - NA:  ^H3 + 7  
YL(LJX,2) = 09/2.0 
NYL(LJX,2) = LY - IALPH7 + 3 	N73nN2 
YL(LJX,7) = -1)10 
NYL(LJX,3) = L7 - MALt1H7  + 6 
YL(LJX,4) = nio 
myL(LJx,4) = LZ - UALPP3 + 6 + N730N2 
YL(LJX,5) = 01? 
NYL(LJX,r3) = L7 - NlInH3 + N37 
YL(LJX,6) = -010 
NYL(LJX,6) = LZ - NALPH3 + 1370N2 
00 6 N014=7,29 
YL(LJX,N01.4) = 
NYL(LJX,"D14 ) = 2 

6 CONTINUE . 
YL(LJY,1) = OP - 
NYL(LJY,I) = LY - mALE'H7 
YL(LJY,2) = -n9/4.0 
NYL(LJY,2) = LX - NALPH3 + 7 
YL(LJY,)) = 09/4.0 
NYL(LJY,.3) = LX - NALPH3 + 7 + M33ON2 
ra 7 M015=4, 20 
YL(LJY,N015) = 0.0 
NYL(LJY,N117)) = 2 

7 r9NTINUT_ 
YL(LJZ,1) -= DP - )7 
NYL (LJZ,1) = LZ - NALPH7  
YL(LJZ,2) = -P10 
NYL(LJZ,2) = LX - MALPH7 + 6 
YL(LJ7,3) = n10 
NYL(LJZ,-.3) = LX - NAL 9H7 + 6 + N3-'0N2 
YL(LJ7,4) = n10. 
MYL(LJ7,4) = LX - NALPH3 + N37 
YL(LJZ175) = -n 1C 
NYL(LJL,5) = LX - NALPH7  + N330N2 
00 9 tqnle=6.?r, 
YL(LJZ,Nni6) = 
NYL(LJ7,16) = 
CONTINUL. 
YU(LJX,1) = 	+ 06 
NYU(LJX,1) = LX + 
Y'I(LJX,2) = n1 1  
NYU(LJX,9) = LY + 3 
Y'l(LJY,3) = '5 
NYU(LJX,3) = LX + N73nN4 + 
r!(LJX,4) 
NYO(LJX,4) = LY + NALPH3 + 3 
Yj(LJX,5) = -09/2.0 
NYU(LJX2 5) = LY + !!AL^H3 + N33T12 
'01(LJX0) = 
trYU(LJX 1 ,1.)) = LY + 6 
Yj(LJX 1 7) = -06 /2. 
T(U(LJX,7) = LX + !'!:7 
Y!!(LJX,P) = "1 9/4.0 
NYU(LJX,3) = LZ 	r, 
Yj(LJX,1) = -012/L.1 
HYU(LJ'",9) = LZ + 137  
X!r(LJX 7 1n) = 'IC 
NYU(LJX,11) = LZ + NALPH7  + 6 
Y'f(LJX,11) = -01: 
NYINLJX,1L) = L7 + "ALDHS + 6 + Nri3ON? 

JX,121 = -010 
NYj(LJX,12) = LZ 	m43 + N33 
YU(LJX,17,) = n10 
NYU(LJX,1;) = LZ + NAL.9 	+ N73DN' 
M(Ljx,..Itt) = YU(LJY,1) 

= LX f ';370N2 + 7  
W)(LJX,IS) = 
NYU(LJX71 1̀ ) = LY + 'f3-7 0'!7 A- 7 
Y!:(LJX,J.6) = YU(LJX ) 3) 
NYU(LJX,15) = LX + N39014  + 
Yi(LJX,17) = YU(LJX 1 6) 
NYU(LJX,1') = LX + 1370"? + 6 
"(LJA,19) = YU(LJX,c;) 
U(LJX,11) = !X + NS7 ON? 

Y(LJX,19) - -YUC_JY,o) 

‘• 
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'IYU(LJX,1.9) = LZ + NZ30"i? + 6 
vu(LJY,20) = YU(LJX,A) 
UYU(LJX'21) - 17 + N33'1N2 
Y'_1(LJ,1) = -0R - 07  
NYU(LJY,1) = LY + NAL71H-i 
Ytt(LJY,2) = 
NYU(LJY,2) = LY + 7 
YU((_JY,3) = 
NYU(LJY /.3) = LY + N73(1w., + 7  
'01(LJY14) = .3e0.*.P 13/ 7?0 

NVU(LJY,4) = LZ + N330U4 ± 3 
YU(LJY,5) = 09/4.1:1 
NYU(LJY,S) = LX + NAL -1H7 + 7 
Yu(LJY,6) = -n0/4. r, 
NYU(LJY,6) = LX + NALPIA-7, + N3 -70N2 + 3 
Y'J(LJY,7) = -P6/2.0 

:r1YU(LJY,7) = LY + 
Y11(LJY / 8) = -96/2.0 
NYU(LJY,8) = LY + N33 
\C1(LJY 1 9) = 3.613/4.0 
NYU(LJY,9) = L7 + 6 
Yu(LJY 1 10) = -3.0'913/4.0 
NYU(LJY,13) = LZ + N37  
\M(LJY,11) = YU(LJY,?) 
NYU(LJY,11) = LY + ■170"l2 + 7 
rl(LJY t12) = YU(LJY,3) 
NYU(LJY,12) = LY + N7q0N4 + 
YU(LJY,13) = -YULJY,L) 
WeU(LJY,13) = LZ + N7nnu4 + 
Yu(LJY,14) = YU(LJY,7) 
MvU(LJY,14) = LY + N3 0"1? 
Y'l (LJY , 15) = 
NYU(LJY 2 15) = LY + N -':70M2 
Ys!(LJY,16) = YU(LJY,0) 
NYU(LJY,l''.) = LZ + N370\17 + 6 
YU(LJY,17) = -YU(_JY,q) 
NYU(LJY,17) = L7 + :433rw? 
On 	mr117=13,20 
Yl1(LJY,NE11.7) = 0." 
riYU(LJY,19017) = 2 

9 CONTTMUF 
Y(LJZ,1) = -no - n7 
NY1J(LJL,1) = LZ + NA!-')H7 
\!u(LJZ,2) = -3.U."15/2. ,1 
NYU(LJZ,2) = L7 + 3 
YU(LJZ,3) = -,113/2.9 
NYU(LJZ,3) = LY + N330N4 + 3 
YU(LJZ,4) = 
,1YU(LJZ,4) - = Ly + 
YUCLJZO) = -n13/L.n 
NYU(LJZ,5) = LY + 
xrl(LJZ,6) = 

1J(L.J7,6) = LX + kiaLPH7 + 
yu(LJZ1 7) = -fl10 
NYU(LJZ,7) = LX + NALPH7 + N37nN2 + 5 
Y!ItLJ70) = -91G 
MYH(LJZ,Q) = LX + 	L'?1-43 + N3' 
'01(1J:7_0) = nib 
NYU(LJZ,9) = LX + t'!ALPHT + m77rri? 
Ic.1(LJ2,1C) = YU(LA7,2) 
witi(LJZ,1:) = LZ + M730N2 + 
Yu(LJ7 1 11) 7 -YU(LJ7, -A 
NYU(LJZ,11) = LY + 	+ 
YU(LJZ,12) = YU(LJZ,4) 
mYU(LJZ,1?) = LY + ',137,017 
Yu(LJ7,17) = -YU(LJ-7 7;,) 
NYU(LJ7,13) = LY + "13,30N2 

*1 911=14,20 
YU(JZOOLq) = C. 
ovu(J7o-)1 ) = 2 

iC CnNTTnup. 
TU;;N 

-u-y:;ouTTN 
JL, JO, JU, "AL, "AO , "AU 

rxrIMONP3C1Y1/n1,0',--1 5,D5171,DP,,D9.01G011,D12,01 37012,"'.:, 
1n",022,n27,n2 ,075 
Co'IN(PI/COIY2/LY,LY,L7,LJX,LTY,LJZ,N37,N370N2033nN4,N70N4 
Cl-hin"/CrHY7P,,ST,TT,P1 1 H7,"ALnH3,1ALnI-16 
r71"l'IN YL(112,?]), Yr;(11L) 7  YI!(1L,7"- ), !"YL(11.2,7C), "YU(112,2C) 

J' (T) 	 "L(Q:4,27), N(_fC ,34,27) 
un-,(34), 1AU(34,27) 
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C 
C 
C 
C 
C 
C 
C 

THIS SJBP.OUTTNE SETS UP THr NAT7IX COEFFICIENTS ANC 
NODE L9CA7IONS FOP. INTERIOR NODES NOT ON THE ROLAP_ AXIS. 

Yq(IJX) = (9 .Q 405) + (2.7:4921 ) 
Y2(LJY) = (?..C:402() + (2.04[1 7 ) 
), q(LJZ) = (2.:3=M7) + (2.1' 4'95) + 019 
YL(LJX,1) = -1.0/(2.0'R4. TT*H1) 
HYL(LJX,1) = LY - NAL'H7 
YL(LJX,2) = -35 + (921/2.') 
NY.L(LJX12) = LX - "33 
r.(LJX,3) = -ni1/2.12 
,r(L(LJX,3) = LY - H73 
YL(LJX,4) = -021) 
NYL(LJX,4) = LX - 3 
YL(LJX,5) = -1.:J/(2.e'kR*ST 4H7) 
NYL(LJX,S) = L7 - 3 
YL(LJX,6) = -99/4.0 
N4'L(LJX,1) = LY - NALPH3 + "37 
YL(LJX,7) = 09/4.r. 
MYL(LJX,7) = LY - NALPH7 - N37 
YL(LJX,8) = -022/4.0 
NYL (LJX 3) = LZ .- NALPH7 + 7 
YL(LJX,) = v2/4.c,  
HYL(LJX,9) = L7 - NAL 7'143 - 7  
90 12 NO25=1,21 
YL(LJX,N0?5) = 
WeL(LJX0925) = 9  

12 CONTI^JUr 
P (JY,i) = r,n - n7 
1,1YL(LJY,1) = LY - NAC'H3 
YL(LJY,2) = -02' 
NYL(LJY,2) = I. - 
YL(LJY,3) = -923/2. 
NYL(LJY,3) = L7 - 3 
YL(LJY,4) = -99/4. fl 
NYL(LJY,4) = LX - NALPH3 + N37  
YL(LJY,5) = 09/4.r. 
HYL(LJY,5) = LX - "ALrH7 - H37  
YL(LJY,6) = -924/t=.!' 
HYL(LJY,6) = L7 - N33 + 
YL(LJY,7) = 924/4.0 
1'YL(LJY,7) = LZ - N33 - 
09  '73 Nr725=i2q 
YL(LJY,N9-26)= 
HYL(LJY,N125) = 2 

13 CONTI"Ur= 
YL(LJZ,1) = 09 - 97  
NYL(LJZ,1) = L7 - H6 LnH3 
YL(LJZ,2 ) = -05 + (921/:?.C) 
ML(LJZ 2) = LZ - H37 
YL(LJ7,3) = 973/2." 
"4'L(LJ7,3) = LY - 7 
YL(LJZ,4) = -'1 22/h.r' 
ilYL(LJZ,4) = LY - NA1_ 7113 + 7 
YL(LJ7,S) = 922/4. 1  
HYL(LJZ,5) = LX - NnL7'w3 - 
Yt (LJZ,6) = -2, 24/t,.2  
i'4YL(LJZ,5) = 	 + 
YL(LJZ,7) = 021,./4.? 
NYL(LJ7, 7) = 1Y - N73 - 7 
nn ih ton27= 11,2n 
4'L(LJZ,"07'.7) = G. 
YL(LJZ,N927 ) = 

14 90N7TNUT 
YrI(LJX,i) = 1.^/(17.), -* TT) 
MY;J(LJ,1) = LY 
Yti(LJX,2, = -YL(LJX,1) 
HYUlLJX,P) = LY E NALrH3 
YI(LJX,7) = -25 - (271/2.r) 

= LX + '437 
YU(LJX,4) = 011/2.7 
NYR(LJX,4) = LY + m37. 
YU(LJX,5') = -n21 
"YU(LJX,5) = LX + 3 
YUCLJX,":0 = 
'U(LJY,5) = L7 + 7 

YU(LJX,7) = -YL(LJY,6) 
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C 

Trril -jY";7) = LY + NALPH7  + M33 
YU (LJX,3) = YL (LJX , 6) 
NYU(LJX, 8) = LY + NAL7 43 - M37 
YU (LJX, 9) = -YL (LJX,8) 
1Y U (LJX , 9) = 	+ MAL rd7 + 3 
YU (LJX ,tr.1 ) = YL(LJX,q) 
NYU(LJX, 17) = L7 t MA_Ln-17 - 
DO 1 5 NO?M=1 1, 71  
YU (LJX ,NO2 c) = j. 
MY() (LJX, 192n) = 2 

15 COMTINU7- 
YU (LJY ,1) = -D8 - n7  
NYU (LJY 1 1) = LY + NAL9H7 
YU (LJY,2) = -927 
HYUCLJY,2) = 	3 
YU (LJY,0) = C23/2. 
MYJ (LJY 3) = L7 + 3 
YU (LJY,..) = 
MY U(LJY, 4) = LX + NALPH7 + N77 
YU (LJY ,5) = -n9/4.0 
MY 'J (LJY,5) = LX + MAL'H! - ,s133 
• (LJY 6) = 924/4. r 
HYU(LJY, 6) = LZ + M37 + 
YU (LJY 1 7) = -974/ 4. 
MYJ (LJY, 7) = LZ + N33 -
CC 16 N92 ')•=1,2" 
YU ( LJY 0929) = 0.: 
NYU (LJY,NO2'.3) = 2 

16 CONTINUE 
YU (U.17,1) = 	- D7 

MYU (LJL. 1) = LZ. + MAL 917  
• (LJ7,2) = -n5 - (721/2. fli 
MYU (LJZ,2) = 	U33 
YU (LJZ 7_7) = -923/2 1 7  
MYU(LJZ, 7) = LY 	3 
YU (LJZ,4) = 027/4.9 
W.1(1.37_14) = LY + mAL"H3 + 3 
YU (LJZ,5) = -022/4.7  
NYU(LJ7,5) = LX + MAL"'H7 - 3 
YU (1 J7,6) = '1 2 4/4. 
MYU (LJ7,6) = LY + M33 + 
YU (LJZ 1 7) = -924/4 r 
MYU(LJZ,7) 	LY + M33 - 7 
no 17 NnT3 3=8 , 7 
v!J (LJZ I ND7) = 0.7 
NYU (LJZ,N117'3 ) = 2 

17 CONTIMUF 

FMD 
S:MCUTTN7  1",-F9Y4 	. 

JL 	HI, 1j, MAL , MAD , MAU 
C:-/ -1.1C/COIY1/01,q7,0ti3 O;),07,9,90,91F,,011.912,013,91q,n2C, 

.1C7:1,022,U7.3,924,T170 
C9.110N/C!_:!Y 7 /LX,LY,L7,LJX.LJY,LJZ,173,N770,N33914,M720N4 
CamMOM/OCMY7/%,ST,TT I HI,H7 ,NALPH',1/11PH6 
COMMON YL (112,21 ) , YO (112) , 	U(11Z, 213) 	"YL (11 2,2i1) . "0(112, 2C ) 
r;mrirN JL(R4,77), J9(P4), JU(94,27), "L(Fit.,27), mi(AG,27) 
• ,m1) 	NAL (34, 97) , 12 "i(9.4) 	MAI/ ( 	.27) 

C 	THIS SU4CUTI1' M4 K:71 THE MEr'.5SSAPY ALTF_R A T IONS TO 
C 	THI-. MTill. X Cf:1 7 FrT::; T7  1T:T AN') li.in7  LoC8TION(; I=Qn 
C 	THTL-7;TIP ',(7 ES qH7 r PUT VA,11A7IONc,' 110T: COFFrICTNT 
C 	P-i=0.1 1:1:1 Lo,- 	Trl tH= UPnr:,  TL1TA Mf;1)1_ A:--,, !111TTX . 
r 

YL (LJY 4 ) = 
NY L. (LJx, it) = 7 
• (LJX,5) 
MYL( JX,9) --- 2 
• (LJX,1) - 	 N37  
YL (LJY,2) = - .r 
NY L (L_JY 	= 7 
YL ( LJY , 	) 	.,.  
NYL (LJY, 	= 2 
NY L (LJY t 7) = MYL (_JY,7) + N33 
Yl. (LJ7, )) = 	r' 

MYL (LJ7, 	= NYL (_ JZ 	+ H77 
MY L (LjZ 1 7) =t YL(-,1',T) + H37  
HY0 (LJX,1.) 	NYU(LAX,1r) + 137 
21: 1 (LJX 	= 
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MY.J(LJX,11) = LX - 	+ N33 
YU(LJX,12) = -1.0/(2--,4:*R.*ST- 3) 
MYU(LJX,12) = LZ - 3 + N37 
NYu(LJY,7) = MYU(LJY,7) + M37 
YU(LJY,8) = -973 
MYu(LJY,9) = tY - 3 + M33 
Yu(LJY,9) = -fl23/2..g 
NYU(LJY,2) = L7 - 3+ N37 
NYU(LJ7 ,5) = MYU(_JZ,) + N37 
NYU(LJZ,7) = :,IYULJ7, 7 ) + 1`37 
YU(LJ7,3) = 023/2.? 
MYU(LJZ,B) = L" - 3 + N37 
P.ETIIRN 
E'!0 
SU -,.7'u(JTIME Nv7),y7 

	

JL, Jr, Ju, 	mAn, 
COMmON/C01Y1/010,05,06,L171 0Ft091 DIC,01 1,012,013,010,02:, 

1021,022,0?3,024076 
ColMON/C0%1Y2/LX,LY,LZ,LJX,LJY,LJZ,N33,N730N2,N330M40390N4 
C0M ,IO1/COMY7PD,ST,TT,HI,H7,MALPH3,NALPH6 
COMMON YL(112 1 2:1), ''D(112), YU(112,?r7), NYL(112,2n), mYU(112,20) 
COMNOM JL(84,27), JO(?..4), JU(A4,27), ML(34,27), NU(94,27) 
COmMoN MAL..(84,27), MAD(4), MAU('4,27) 

C r 
C 	 THIS SUBPOUTIM. -liAKES THE NECESSARY ALTFPATIONS TO 

THE MATPIX COEFFTrIF_TS AN NO9F LocaTtor!s FOR 
C 	 TNTERI17 MODES WHE.=)E PHT VAF:TATIONS MOVE COEFFICIENTS 
C 	FROM THE UPPER TO THE LONE'' TPTAMGJLA MATRIX. 

C 
C 

NYL(LJX,8) = NYL(LJX,8) - N33 
YL LJX,10) = -021 
NYL(LJX,L) = LX 	3 - m37 
YtAljY, 1 1) = 1.9/(2.P.1")Y- T -',- H3) 
NYL(LJX,11) = LZ + 3 - N33 
HYL(LJY,O) = HYL(t_JY,6) - "133 
YL(LJY 1 8) = -fl?' 
MYL(LJY,9) = LX + 3 - N33 
YL(LJY 1 9) = 023/2.g 
MYL(LJY,P) = L 7 i 	- 
HYL(LJ7,4) = .NYLCIJ7,L) - N77  
NYL(LJZ,6) = MYL(LJ7,6) - N33 

= -073/2.? 
M'cL(LJ7,9) = LY + 3 - M33 
Yu(LJX,5) = 
MYU(LJX,5) = 
YH(LJX15) = 
YU(LJY,F:) = 2  
mvU(LJX0) = ''YU(LAY,q) - m77 
Yu((_JY,2) = 
NYU(LJY,2) = 
'yu(LJY 7 3) = '7.11  NYU(LjY,7.) 7 ? 
M'fM(I.JY,6) r :fl/1 1( 1-JY30) 	trn 

Y'1(LjZ,7) 
t rYIWY7,3) = 

MYU(LJZ, 4 ) = M(((1._A7,7 4 ) 
t rn(LJZ/ CA = 	U(11-7_, ')) - M33 

EM,1  
M irTpr7_,  

JL, AO, JU, MAL, HAfl, 
Co'1710m/cOAY1/J1,r-j2,O5,Dfl',07,O3,3117,011,012,017,019,02f3, 

1021,022,C23,11::4,976 
-CANON/30:1Y7itYlLY,L7,LJX,LJY,LJ71',133,M730N2_,N33PM4,M7POM4 
1.1MOM/0O1Y3/-,),ST,TT,H1,1-1 3,mAL 0HT,MALPHr, 
J'INOM/CO 1 Y4/1C2,MCL.:3,MME,MCm73,CPc7D/CP,SP'-',CD ,SP" 

c .")110H YL(1L2,26), YU(112), YU ( 112,2) 	(112,2C) , MYU ( 112,2f: ) 
mssH1ON 	'!7) 	(:114) 	J!) ( 34, 7,7) 	'4L ( 1.4 1 27) , t,15(AL, 27) 

MMCJM MAL_ C2'+727) , 	An ( -3t+ ) 	At' ( ;.11+ , 27) 
r. 
C 

THis Si3POUTimr--  NAvE3 THE 	 :, 7, A '.'Y ALT7FATIONS TO 
r 	THE. NnTRIY COTEETCIPmTS Amn Non= LOCATTOMS Fr),1 

TMTE=1I1R NOn7-:2 ArJJACEMT T') THE_ TNFTA 	P^L AD AXIS. 
C r 
C 

Y L( L JY , 2 ) = 
WiL(LJX.2) = 



YLALJX,3) = 2.0 
MYL(LJX,7) = 2 
YL(!_JY 2 -1 ) = n.n 
NYL(LJX,7) = 
Y.-(LJX 1 i2) = -05 I. (1)21/2.0) 
NvL(LJX,12) = MC?? - - 
YL(LJX,Ifl = -°11'Cn/'.0 
NYE (LUX, 15) = NC2:, - 
YL(LJX,14) = 
MYL(LJX,110 = MC23 
YL(LJY,15) = nci),CP/4.0 
MYL(LJX 1 15) = MC23 - =.PH3 - 
YLALJY 7 16) = 0n49 /4.1 
IT'L(LJX.11) = NO27, - "A_DH7 

= C.0 
N"L(LJY,5) = 2  
YL(LJY,6) = 0.9 
MYL(LJY,) = 2 
YL(LJY,7) = 0.2 
NYL(LJY,7) = 2 
YL(LJY,15) = n9/4.0 
MY 1  (LJY, 4 1) = '1023 - MA_T-'117  - 
YL(LJY,111 = C.;24*7-PDP.^ 
MYLALJY,11.) = MC2o - 1 
Yl_(LJY,12) = -024-- CP'/4.0 
MYL(LJY,12.) = MC23 
YL(LJY,1 7) = -1.)24'"/4.0 
MYL(LJY,13) = MC27  - 1 
Y! (LJY,14) = n.244.CPrP-.2 
HYL(LJY,14) = MC23 
YL(LJZ,2) = 
N''L(LJZ,2) = 
Y-(LJZ,6) = '2 
MYL(LJZ,6) = 
YL(LJZ,7) = 0.0 
NYL(LJZ,7) = 2 
Y.__(LJL,9) = (Dti 	(n21/2. 1 ))'S" 
MvL(LJZ,9) = MC23 - 1 
Yl..(LJZ 7 19) = (-05 + ( 1̀ 21/2.0))'*0n 
NvL(LJZ,1:3) = NC2:, 
YL(LJZ,11) = -n24  C20 /4.0 
NYL(LJZ,11) --- "C23 - I 
YL(LJZ,L2) = -D24'SP'/4.3 
1YL(LJZ,12) = MC23 
YL(LJL,1:i) = 0e4*("P11/4.0 
N"L(LJZ,13) - "IC27.) - 1 
YL(LJZ,14) = n24'""/4.0 
H"L(LJZ,14) = MC23 
YH(LJX0) = 
tlYU(LJX,3) = 
v(LJY 1 1-3) = -nq*C 0/4.r 
mYo(LJX, 1-3) = NO23 - 1 + NALPP7 
Y')(LJX,14) = -09'3'/4.0 
NYU(LJX,14) = 1ir,23 + NA_PW7  
Y!!(LJv,5) = 0.0 
T(H(LJY,) = 
Y.1(LJY.1") = 
"WU(LJY,1;) = MCL 	M AL-7"4' 7  

S1 -1 ROUTIMF mATPY7  
JL. JD, 3H, sIAL, MAO, mAH 

C')MION/OT-Pft/01,0',Cq,D6 7 117,7)(1 ,09.91 '.1,0 11 ,01 2,0'3,01.9,Er". 
i0P. 4 ,022,973,024,0'6 
CirivOM/CO'IY2/LX,LY,1_2,LJX 7. LJY,LJ7,M37,A37ON2 ,37:0M4,N7004 
COMMON/CO)Y"3/.7 3T,TT,H1,H:),NAlnP3,Ma1PHr, 
CMMOI/CO1YWNc27 MC73,M(;MPOCNY23 1 oP,SP I C"P'S°P,Cr',SP'A 
CJ ).';Orr , YL(112,?), Y) 	H (112), Y(112,2"), 	(112,?'), weu(112,20) 
r0‘1‘10■: .11( (3 7 ,?"'), 	(Q4), 311( '4 1 27) I 	( 34, 27) , MU ( 0 4,27) 
GnT1ON MAL(,I4,27), "A. (MO, "10(°4,27) 

C 	 1.HTS . SHBOUTINF r4a cam,, TPF Mr7CES-3AY AL77;=;f1TIO"S TO 
THE :InTRTY COFFT1CiP)T A'.!" lon,7 LOCATIoNS FOP 

NOO 7S AJACNT TO THE THEIA = PI 0 n1_^ AXIS. r 
r. 
C 

yL(LJY,)  
NvL(LJX,F) = 
VALJ/,12) = 71n4 C7'/4.-  
NYL(LJX.12) = NC'I33 - 1 - NALPH3 
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YL(LJX,13) = r10 4"30 /4.r 
NYL(LJX,13) = MCN23 - MALPH" 
YL(LJY,4) = 0.0 
NYL(LJY,4) = 2  
YL(LJY,10) = -c1/4.-  
MYL(LJY 1 1.1) = NCN23 - MALPH3 - 2 
rJ(LJX 7) = 0. 0 
NYU (LA 3) = ; 
111(LJY,4) = 0.1 
NYU(LJX,4) = 2 
YU(LJX,7) = 0.0 
MYU(LJX,7) = 2 
YO(LJ/ 117) = -05 - (o'i/2.0) 
NYU(LJX,17) = MCM3 - 
YO(LJX,14) = -Oil Cn/i.0 
NYU(LJX,I4) = "C"1 ,3 - 
Yu(LJ/,15) = -011'S"/2.o 
NYU(LJX,15) = MCM23 
YU(LJX,16) = -D9*CP/4.0 
HYU(LJX,Ir=) = NC1'3 - 1 + MALTH' 

(LJX,17) = -C"ST/4. 0  
MYU(LJX,17) = MCM"3 + NAL°113 
YO(LJY,4) = 0.0 
MvU(LJY,4) = 2 
YO(LJY,6) = 1 .0 
MvU(LJY,6) = 2 
YU(LJY 1 7) = 0.0 
MYU(LJY,7) = 2 
Y11(LJY,1C) = ^0 /4.0 
NYU(LJY,1J) = NCM23 - 2 + MALDH3 
YU(LJY,11) = -1124- SP"/4.° 
MYU(LJY,1I) = NCt1_3 - t 
YH(LJY,12) = ^24*r 00/4.n 
MYU(LJY,12) = MC"123 
YJ(LJY 1) = D24'°"/4.r 
MYU(LJY,13) = NC1:3 - 
Y'l(t_JY, 1 4) = -n24-""/4.r.  

MYU(LJY,i-r) = Ma"I23 
Yu(LJ7,2) = 0.1 0  NYU(LJ7_,2) - 
YU(LJZ,6) = 9.0 
MYU(LJZ,) = 
YJ(LJ717) = 0.0 
"IYU(LJ7,7) = 
Yl(LJ7,9) = (05 + (o"4 /2.0)) 4"P 
NYU(LJZ79) = t'C'123 - 
YO(LJ2,17) = -(7)5 + (021/2.c)) 4C' 
r,v11 (LJ7,10) = NC"I'3 
rHLJ7,11) = -^2LL'o00 /4.c 
N(U(LJZ,11) = NCN'3 - 
Yu(LJZ,12) = -024 - '3P"/4.0  
HYU(LJ7,12) = 1CN'3 
YJ(LJ7,13) = "24'''P"/L.1  
MIU(LJL,1-1) = NCM23 - 
Y)(LOZ,14) = 024T"P4.0 
to,u(LJ7,10 = MC'1''3 
i -TUPN 
r-1" 
:305°PUTTN-  'tITY$3 
°EAL JL, 31, 	 `11\n, "an 
CO'"10i1/r01YI/31,3*7 1 057 05,07,0°09,010,0117n12,n1,010,07-, 

1',12 1 ,622;')23,!):4y07," 
CTIV'"/.,n1v2 /1X,LY,L7,LJ',LJY,L)7037. -0'1 21r33^Ni-0-10,  

ic.;/ro 	TT 1 ,--4 1, -1 73, '‘141 D 1 ;t`tAL 
CrThriON YL(112,21), r1 (112), Yl1(112,2r), mYL(112,2,), MYU(112,20) 
c) 1Mo" JL(8'.-, 7 ), Jr1(>14), JU(`.14,2 7), NL(P4,77), ru(84,27) 
GO•INCN "1aL(34,27), "AC(A4), MAU(8,, ,27) 

C.  
C 
C 

THIS STY=PuTT;47 S7.TS UP THE 'IAT0IX COEFFICIENTS grin 
Nor-F7  L1CATIUNS 	INTERIO::. 	"WOES ON THE THETA = PI 

C 	 POLAR AXIS. 

C 

Y1(LJY) = 	+ (4.C 4-n;) 
\')(Liy) = 	+ (2.r=tr17) 
Yl(LJ7) = 	+ (.3. 719) 

= 	+ 
"YL(LJX,1) = t X - N33fr'2 

(._OX,2) = 
= LY 	M330N-.1 

— 185— 

s.• 



Yt_ (LJX 3) = 05 
NYL (LJX, 3) = LX — M330"14 
YL(LJX.,4) = —n9/2.r.1  
N"L(L JX, 4) = LY 	 — M3' 
YL (1.JX 7 5) = r)')/?.7 
MYL (LJX,5)— = LY — MALPH3 — M370M? 
YL. (11X,) = —T5/2." 
NY L (LJX,r.)) = LX — 1137r"12 + 
YL (LJX,7) = 	r.1  
hYL (LJX, 7) = LX — 1\13:3CP12 — 3 
YL (LJX,3) = 012/4.11 
NYL (LJX, 	= LZ — N33nM2 + 
YL (LJX,g) = —'112/4. ,  
1'1L (L.1X,9) = L7 — N73011 ? — 
YL (LJX,10) = 017  
NYL (LJX,i_'?) = LZ — !ALP-13 — M73 4- 3  
YL (LJX,11) = —fig 
NYL (LJX,11.) = LZ — NALPH3 — N33011? + 3 
YL (LJX,12) = 
"!YL (to: 	= L7 — 	— 3 
YL (LJY.7 13) = nio 
NYL (LJx,17) = LZ — HALPH 	— 113301‘12 — 
YL (LJX 7 1/4) = YL (LJX,1) 
MYL(LJX,14) = LX — P133 
YL (LJX,15) = —YL (L,JX,2) 
MYL (LJX1 .I.5) = LY — N3T: 
YL (LJX,16) = YL (LJX,3) 
ITIL(LJX / 1.6) = LX — 11390k11+ 
YL (LJX,17) = YL (LJX, 
NYL (LJ)(i 17) = LX — 1‘J33 + 3 
YL (LJY,13) = YL (LJX,6) 
1.1YL(LJX,11) = LX — 
YL (LJX,19) = —YL (LJX ) ) 

(LJX1 1')) = LZ — N.37 + 3 
YL (LJX 1 2(?) 	YL(LJX,8) 
MYL(LJX123) = L3 — .3 
YL (LJY,1) = 	— 
11Y L (LJY,1) = LY — "JALrH3 
YL(LJY,2) = pc,  
NYL(LJY,_2) = LY — i,13301‘12 
YL (1_,JY, 3) = 
MYL (LJY,3) = 1.Y — N3301,14 
YL 	= —.3.171-7- 1113/"-2.1' 
MYL(LjYtil) = 	— M730 M4 
YL (LJY,3) = —n9/4. n 
HY L.. (LJY 	= LX — 1•TAL °Fr? — \137  
YL (LJY 7 6) = 9`)/4.7  
HYL (LJY,E-:)) = LX — NaLPH3 — 1137 0'12 
XL (L.IY, 7) = 
t1Yi_ (LJY 7) = LY — 113712 + 
YL(LJY,3) = 

8) = LY — 11.3 -311"? — 3 
YL (LJY1 9) = —3. V71 13/ 

L (LJY,9) = LZ — ?133PM9  + 3 
YL (L.)Y,10) = 3.04- 1)13/ 4 .n 
'4.(1..(LJY,1J) -= L7 — ;17=0'12 — 
YL 	11) = YL (LJY, 
IYL (LJY 11) = LY — M33 

YL (L..1`/ 11.2) 	= YL (t. 1Y, 7) 
NYL(LJY,1') = LY — :13°0"4  
Y1_ (LJY, 13.) = —YL 	JY, 

(LJY 7  1. 7 ) = 	— N•“1(-)`:4 
XL. (L.11',1/4) = Yl_ (LJY,7) 
t1 YLALJY,1:+) = LY — m:33 4- 3 
YLALS‘ '15) = YL (LJY, 7) 
NYL 	7 1'5 ) = LY — 3 
YL(LJY,15) = YL(LJY,9) 
NYL(LJY,1;;)) = L7 — 1'33 4-  7 
YL (LJY,17) = —YL (_JX,1) 
NY!. (LJY,17) = LZ — 3 
Ou 21, NO31=1 S,P7! 
YL(LJY,m177.1) = r1 .0 
Ny! (L,JY, 1‘! --)31) = 

24 rns; -11r1F 
(1...17 1.) = 	— n 7  
(LJ, 1) => 	- 

YL 	JZ,?) = —3.C*n5/ 2.') 
UYL(LJ712) = L7 — 113-7 r."1?- 
Y1_ (LJ7 t 7) 	—1)13/7.f7 
NYL(LJ7,;3) =- Lv — ■13T:r1T4 
YL (L J7,4) 	—n13/L.r7  
!:'.(1_,J7../ 	= i.Y — ;137r''1? + 
YLALJ2,5) = Dt 3 /1- ' n  
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C 

C 

C 

NYL(LJZ,5) = LY - 1330N2 - 3 
YL(LJZ,6) = 010 
1YL(LJ7 ,6) = LX - NALM7 - 13' + 7 
YL(LJZ,7) 	-n16 
NYL(LJZ,7) = LX - NALPH3 - 173012 + 
YL(LJZ,9) = -010 
NYL(LJZ,o) = LX - NALPH" - 
YL(IJZ,1) 	nle 
NYL(Lj70) = LX - NAL2H7 - N370N? - 7  
)1.(LJ7,10 )  = YL(LJZ12) 
NYL(LJZ,13) = LZ 	133 
YL(LJ-(1,11) =- -YL(LJZ77) 
NYL(LJZ,11) = LY - H39014 
YL(LJZ,12) = `eL(_JZI4) 
NYL(LJZ,12) = LY - 'r33 + 
YL(LJL / 17) = -YL(LJ7,4) 
NYL(LJL,1-i) = LY - 
DO 25 NO32=14,20 
YL(LJZ71032) = 6. 1) 
kYL(_LJ7,M1 32) = 2 

25 COTINU:  
YU(LJX,1) = 
NYU(LJX,1) = LY + NALPH3 - N3' 
Y1(LJX,2) = YL(LJY,4) 
NYU(LJX'2) = LY + NALPH3 - 137012 
'CJ(LJX,3) = - 010 
NYU(LJX,3) = L7 + NALPH7 + 3- N33 
YU(LJX14) = 010 
NYU(LJX,4) = L2 + NALPH3 - N33012 + 7 
YU(LJX,5) = 010 
NYU(LJX,5) = L7 + NALPH3 - 
YU(LJX,6) = -n1rJ 
NYU(LJX,6) = LZ + NALPH3 - N77012  - 3 
on 26 1033=7,2  
• (LJX,1033) = 0. -  
NYUCLJX,1q33) = 2 

26 CONT'INUF 
Yj(LJY,1) = -D9 - 07 
HYU(LJY,1) = LY + NALPH7 
YN(LJY,2) = -YL(!_JY,5) 
HYLI(LJY,2) = LX + NALoH3 - 13T 
Yu (L,Ir 	= YL (LJY ,5) 
NYU(LJY,3) = LX + 1/11_7117 - ■3, -7012 
n:-) 77 N07.,, =4, 2C 
YJ(LJY,1G34) = 0.T 
NYU(LJY,1036.) = 2 

27 CONTINUF 
• (LJ7,1) = 	- n7 
NYU(LJZ,1) = LZ + NALPH3 
YJ(LJ7,2) = -013 
NYU (LJZ,2) = LX + Nt,L7H7 - 17: + 
Y1(LJ7,3) = nie 
1Xj(( JZ.,7) = LX + NALPH.3 - N37012 + 
Yj(LJZ,4) = 011] 
NYU(LJZ,4) = LX + NALrH7 - 
'O'C(_JZ 1 5) = -r1C 
ft(Li(LJZ,:)) 	LX + NALPH7 - 13.3012 - 

YO(LJ -7.,10',5) = 3. -  
NYN(LJE,1135) = 2 

28 0J1T.T..i1U: 
z  

JL, JD, JU, HAL, NAD I  'IAN 
(-.,!-)1N0j/COdY/F.11,02 ,D5,06,J7,D9,J9,j1f1,O11 ,012,07/ 1- '19,920, 

O.):1101/nO1Y -'/L,LY,LL I LJX,LJY,LJZ,177,13"012,173°N4 ,117:3014  
ri:Iti01/C01Y3/v.,ST,TT,H1,H,1,1AC)H3,1ALPH6 

YL(112,,Z), Y1(112), 	NYL(112,2r), NYN(112,2C) 
Cu

• 

1,10.; JL( 7 27), JJ(S4), W1(841 77), 	1'u(F)L,27) 
cl,mn 	 mAti(P,,27) 

7 1 4 1s 	uP it 1!\T'TY CnE7-FIC-1 7 7 ANn 
NODE L JnATTONS FOk N3nES ON TH:= OUTS a 30UNDAT-IY. 

YJ(LJX) = 	-(7.'2'n2/2.9) 
Y_CLJX,1) = 

= LX - N^:; nH7 
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`ft (LJX 7 ?) = -D?/2. 
?•1YL (LJX, 2) = LX - !OIL°H5 
no 31 Nr,37=3,,En 

(LJX, 1"inl7) = 0.7  
NY!. (L,IX,Nr..)37) 	? 

31 C-:.r4TR.F.  
MI 3? D  Nr)71,3=.1 ,77 

NY!, (LJX,11133) = ? 
32 CO "IT NUF 

Pr- TURN 
Erin 



SUBROUTINE PRESS (VORTEX, Nunr7 , RRI,RP.o,RRE, MN1, NN27 N13, Py NNAI PH, 
1SU71,PTEST,FRF"-lAY) 
DIMENSION P(NNAL°H), VO?,TrY(NO0E3), SUM(NN3), PTFST(NN3) 

C 

C 	 THIS SJOROUTINE DETERMINES THE °RESSUPF FIELD ON TH:" 
C 	 SU7FACE OF THF SPHERE (R = RI). SINCE PRESSURF TS 
C 	 APQITPARY UP TJ A CTISTAJT. THE PPFSSUP.E kJ THE S0HFRE 
C 	IS SET EQUAL TO ZERO AT THE THETA = 0 NODE. 

C 
NI = NN1 
N2 = W12 
NJ = NN.? 
RI = RPI 
RO = RRO 
RE = RRE 
pinrlRE = RI/RE 
YN1 = N1 
XN2 = MP. 
`.<3 = N3 
P1 = 3.141592653598 
H1 = (RO - RI) /XN1 
H12INV = 1.C/(2.g*H1) 
H? = PI/X.!2 
Hj = 2.C*PI/XN7 
NALPHA = 'INALPH 
NALPHj = 3*NALPHA 
NALPHF, = 5*NAL°HA 

C 	PRESSURE AT THETA = ^ POLA7 AXIS. 
P(1) = 0.0 

C 	PRESSURE AT NON-POLAR HOOFS. 
PHI = 0.0 
on 31'.0 '(=1 .`17 
SF = SIN(PHI) 
C° = cos(nHT) 
DA = --(v(i-cr-lX(2)*SP) + (VORTEY(3)*CR) 
DAB = DArZI 

= -3.(pLnl 
or, = -(VORTEX(2+MALPH:;)"- SP) + (VORTEY(3+NALPH3)4CP) 
OD = 4.049C 
DE = -(VORTEX(?+MAL0H6)'SP) + (VO'r;;TEX(3+NALPH6)*CP) 
OF = H12I1V*(On + DO - PE) 
0 = (DA + . 0F)*RIONREH? 
SUH(K) = 0/2.1) 
PHI = PHT + HT 

P,r)0 CONTINU' 
J = 2 
K = 1 
L = P 
L7 = 6 

8 -11 06 = VORTEX(LZ) 
OAB = nn/'I 
OP = 	DA 
r(; , 41..c*,/oD.TEY(L+HALn-1:5) 

n = -VORTEX(L -Z+NLPH6) 
flE. = H12THV4 (0°, + nc 4- On) 

= (DA:1 + OF)*aIONRF4H2 
On^IP = nr!.0 

= SUl(K) + On` 2 
SUN (K) = StP4(K) + 0 
L = L + 1 
LZ = L7. + 3 
IF(X.E.O.M3) GO TO W22 

= K + 1 
GO TO R11 

8J22 J = J + 1 
K = 
IF(J.EQ.N'+1) Gn Tn y)3 
r,n Tr 8n 1 

C 	0RESSUPE AT TH:TA 	PI pnAa AyTs. 
873 PHI = C. 

= C 
87.4 !",° = STN(PHT) 

CP = CO(PHT) 
on - -(vo,,,TY(Lz-)4s0) + (VORTEX(L7 ) 4C°) 
DAB = 0A/-1I 

= -(VU:TFX(LZ+ALPH7-1)*SP) + (VOPTEX(LZ+MALPH3)'CP) 
;-1„J = 
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DT = -(V02,TFY(LZ+NALPHE-i) 	f (VORTEX(LZ+IALPH6)',Cr) 
OF = H12IMV*(OP + DD - "IF) 
0 = (DAP. + OF) 4-ZI:1 NRE'H2 
DON? = -7/2.r.7 
PTFST(K) = SUtl(K) + 00N7  
PL =. PL 	DTr:ST(1-() 
IF(K.r0.M3) GO TO 805 
K = K + 
PHI =-rHT + H3 
GO TO 894 

305 P(L) = PL/Y43 
C 	 TEST THAT Pr.:FS7;URE IS SINGLE-VALUED. 

POAX = 'TEST (1) 
PMIN - = DTTST(1) 
DO 	K=2,N3 
IF(0TESTM.GT.PMAX) PMAY = DTEST(K) 
IF(PTESTM.LT.PM:N) PNIN = 0TEST(K) 

ef?6 CONTINUF 
EP.RMAX = DMAX - FrIIN 
R7- 1-11KN 
r!,!0 

C 
C 
C 
C 
C 
C 
C r- 

SU9rOJTINF 	(N1,N207,P,I,P.O,U0,SW=AP.IMMODES,W,N,DFLTA,F, 
1RF_ST,DIFFCE,HODE2I NOO -i,U) 
DIMENSION H(NNOOEJ,),U(NODF3) 

THIS SUB:',OUTIE WK:TES GUT ALL THE PRIMCInAL RESULTS 
uPTAINFO f3'( PRnr,,:AM UT-3,ANS. 

iionrs = N100F5 

4t-2 FnDNAT(1H1/////1Y,19HADTJS oF '7,n;IE2E =,P7.4,32X, 
126H,),ALT,_!S OF nuiF,' 50t;N:1A-sY =,F7.4/ 1 Y, 
24T2F;-.:FN-17::-LIMF v17_0CIFY AT c;u1F-D, -31UNDAF:f =,F7.4,15X, 
37,,1w1Ac;ritiun:-. nF S,IFAY AT oUTr 71nUNDARy =,7(.to 

(5,401) mi,m2,;4.‘10(sE7, 
4_1 FOIATI1H1,P7HU1 	GF 7(11):::AL SPACINGS =„T3,97X, 

17?HNUri7=i-R OF 7OLA7-' 	SPAC::N5 = 1I:5/1Y,' 
236HNUmT-4; OF AZIMUTHAL ANGLE srAcpaGs 
:317HNWIEFP OF HODFS =,Tc! 
WnIT;: (6,402) 1A,C17.LIA,DIFFCE,MR= T 

4C2 FO,:mAT(1H,],26H, LAXAT - ON FACTOR ONOSPI=.,F 7.4/1X, 
15IN 1 AXIMU 1 SOUAF!E DIF -PF_NCE nETw7Em FL7,17NTS IN SUCCESSIVE , 
270,,-4,771P!,,TT0T-,  FOP, CONVEFMCF  

 T 	

_=F1210/tm 
757HMAXIMUM SctIADE rIFF7FNCr 9Fit-IFEN ELEM7

,  
NTS IN sucr7ssIvE , 

421H:.iEnATIONS ATflDNV'F,:Nr,  =,rt2.10/1.X, 
 

5:!9Y1:iuNP.:P OF TTFF:ATTOS FOP CONIP=-15Fts,CF 
64^H1AYTmUM ScHAR.E RFSIOJAt. AT COMV=PGENCE =,F12.1C/////) 
WITTE: (6,407) 

1tC3 FLAT (1X,113Y,P2H_:C1L ,', 17  onT7NTIAL El:LW) 
(6,404) 

14Pb- F(Th1 ,0, 7 	1;(,r) ( 4.401.4i ___,79.515,):E=4-, 14 H 	 ) 

1435 F,,r17 1111 (11-Q/////11A771:411FLnr7T`e  FT.71 f) (tY' 
(;') 7. 40 ,5) (K,U(K),U(K+MaDES),O(K+NO0?),=1,007S) 

4r.,6 FOmA7 ((1,<,?(T 4,4H ---,F9.5,6Y,F9.5,6X,Fq.r5.15X01)()) 
(6,4,7 7) 

4r:7 FO:VT(1H1) 
r-?:. TUcN 
7NO 
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SU3ROUTINE 	SOH. 	(E,F,NE,ME,6,H,HGU:SSI I4ErTIS,NODESI ww,m011;ox, 
100c7LTA,RP=ST,00IEC) 
iJIAPNSION 	F(4, 7TINS), 	F(4,NNEONS), 	NF(4,Hm7oNs), 	NP(4,NNEONS) 
DIMENSION 	B(MNET1N7), 	H(MOjES), 	HGUESS(NIMMF) 

C 
C 
C THIS TH3ROUTINT SrLVTS THE MATRIX EQUATION SET UP 
C SUDROUTINE 	NAT -2IX 	7Y 	-..UCCESSIVH 	POINT rV7P-FELAXATION, 
C 
C 
C 

DELTA 	= 	DDELTA 
t''MAX 	= 	?'11 ,AX 
trf..aNs 	= 	NMEC( M3 
ld 	= 	WW 
H(NEONS 	+ 	1) 	= 

C SET TH7 SCALAR POTENTIAL FIELD H 	EDUAL Tn  THE 
C • GUESSED 	FIELD HGUrSS. 

09 	199 	T 	= 	1,NroN-:; 
H(I) 	= 	FiGUE§S(T) 

199 CNTIMUE 
M 	= 	1. 

200 DIFFCF 	= 	0.;? 
C UPOAT- 

	
THE 	SCA_AR. POTErTIAL 	FIELD 	H. 

Or 	2,42 	I= 	1,NEOT: 
p = 	0.0 
DO 	201 	J 	= 	1,4 
JMF 	= 	NF(J,I) 
SHE 	= 	NE(J,I) 
0 	= 	n 	+ 	( c(J,T)*H(JNF)) 	+ 	(E(J,T)*H(ylE)) 

201 COI 51INUE 
HI 	= 	H(I) 
H(T) 	= 	- 	(W*D) 	+ 	((1.T. 	- 	W)-"HT) 	+ 	(9(I)4ii) 
SOD 	= 	(H(I) 	- 	HI)(H() 	- 	HI) 
DIFFCr = 	AMAX1(SMOIFF:;E) 

2,72 C•TITPME 
DDIFFC = DIFFCE 

C TEST 	FOR COkVE73 GECE. 
IF 	(DIFFC,---.LE.',rLA) 	GO 	T1 	2'1 7 

C TEST 	WHrTHE0-. 	THE 	:1 ' XT 	 A-iL 	NIPArIED. OF 
C ITEP,ATtOMS 	HAS 	BEEN 	EXCEEDED.

I7(M.EC.M1AX) 	GO 	Tr 	93  
M = 	M 	+ 	1 
GO Tn 	200 

C CALCULATE 	THE 	"AXIMUm 	SQUA'71E 	RESIDUAL. 
2u3 REST 	= 	0.0 

n!-) 	2C5 	I 	=1,W7 ONS 
C) 	= 	1f 
09'2E4 	J=1,7 4 

= 	NF(J,I) 
,pqr 	= 	NE( 1,I) 
as 
	

= 	+ 	(F(JI I)4H(JNF)) 	+ 	(E(3,T)4H(JNE)) 
2734 CrHI7NUL 

V 	= 	+ 	- 	R(,) 
mis  = V"- V 
(7,FsT 	,-.AMAX1(SEST) 

205 Cmi- Trlij7 
= PEST 

RE1UPr'! 
ENO 

SO:-.J1:1( W)rE) H,V0P7rx,VO I,W41 ,0?'IT1, 44 ,"M!"4Y1, 3 T1,'1F..EF-?,N'11) 
ifr•ITY (\l!Or-); 

JL, 	.111 
?)̂ 

 "AO, '1AU 
cr.rmnri 	Ynfil7), 	N!'eL(112,7-,1), 
co,1,-tc‘7 	, 	Jr ( 	.3H ( 9.4,7'7 ) , 	"!L ( ;;•, 7'7 ) , NU (3 4,7'7) 
CM-IC i 	(31+ 7 27) 	"AO (•" 4 ) 	,lati(F4,77) 

C 

C 
THIS S.1970,,T 7 M Sr.) 	MAT7'TX 7PMATTnkl .-.377  UP --111 
SH1,7rUTPIE: mAPJ f:ND MAT MA lY SjCcESVr rOI"T 
OVLF-RLAXATION. 
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-ZGL- 

CUE 

= 

9.EDL 
(7]>1)M2i-KG,A = (>) .LOA 

	

4 	= 
0 

Mh-Uf-OLJA 	0 
LOI.LL11'c' 	EH! dr 

SF)2 
= TISsc 

410*idil = %JuS 
(61))c:i1C0A - u + ((d1)M7W,7.0b*90) = 

u'T + (.1.11P-A-((1)0+(1)u1)) = 96 
_nkIiNoo 

L:j + j=  0 
(-70-Fr+a-i+TG)1.11.7111 = 
(4.'1)1Vi-'*(1Nr)McUA = 4)0 
(P'7)1Li-(10.11h:NcDA = 

(o'h)riv,*(1),T)m,\JA =L;o 
ch'i)nrv(nr,r)m.:NuA = -;J! 

= 
(0-)nN = nRr 

76i_ 60 
5'0 = u 

rjIVI + I = 

	

1:1;1441-=1 	u0 
- 	2b2 

knkixvk 	L -E1.1n31V0 
bi 69 

T 	= TN 
26.,= 01 Uc0 

'OEUL-,.-33X] 	SVH 	0 
20 'ci4C:k1IN .Ji71,1011V 	2-H17H1211M IS=.41 	0 

z.uSi 	(T110'D-I'T4L,IIC)za 

= TdIu0 
riNIINU3 6i1 

(u0S4Td3IG)TXVI,V = TAIO 
L0*-0 = OCS 

- (dI)M=NOA = 4U 
(ICOAir(TM-Q)) + (90/((dI)X110A-C:)*TM) - = (I)MEN:7i6A 

E'T + (1L1AC(L)0Vh+(i)Eir)) = 90 
(di)M3N)A = ICOA 

T62 
"0 + 0 = 0 

(1:6+0+al+TO)*Ikill0 =- 
(r‘Trivi,*(-1Nr)m=7.Ni-20A = =70 
(r=i)irt-(iNr)mw,oh = io 

(F41)CIVN*(riNC)M7Wd0A = ZO 
cr'imr*(riNr)mLoon = TO 

iNr 
cr'7Yriki = ir 
L24T=r TES 00 

O'D = U 
EHu]VU + I = di 
kU2t0T=T CiA 00 

O'P = TddTU u52 
T = 

c 
(I)Xli(JA = (T)M.dkJA 

NO 
Iv (7) 

OV 'S--300N 	F4-1.L!]d ;'Hi. IV (T) 	3 
X-1,1C0A 012.1.1 Alijiid0A 	I 01 la1)u3 M.N.d0A 'ci01.0ziA =HI _LE'S 	0 

IMM = TM 
OOtN = C'-:300N 

= 211(4.-IVN 
Hc7VNN = VHditql 

1,(J_\t; = Nry.t, 
TXV1-(1-4 = 

= 1V1170 
= TITiq! 



SUBROUTINE SOTZY(VORTEX,A,A*1E'4,ASTA7,MNALPH,NNEONYONWIE- 3,.e1W, 
100ELTY,MM,MM1AY,PESTYIODIFFY,DIFF1,DIFF2,0oELT,DOIFFC) 

OTMENSION VO2TEX(NNOoE3), A(NNODE3), ANE'4(NNOUE3), ASTAR(NNEDNY) 
DIMENSION 	 (N'h 	DIFF2(NMEONY) 

m REAL JL, JO, JU, 	aL, MAO, `?AU 
C!')'-1`iON YL(112,20), YO(1_2), vU(112120), NYL(112,2r), NYU(212,20) 
COMMON JL(84,27), Jn(84), JU(94,27), NL()i4,27), NU (34, 27) 
CuMMON NAL(14,27), MAD(34), '1AU(34,27) 

C 
C 
C 
C 	 THIS SUBROUTTN'i SOLVES THE MATRIX EOUATION SET UP BY 
C 	 strRouTim 	MA TRY AND MAT7Y1-9 3Y SUCr'=SSIVE POINT 
C 	 OVER-R7LAXATIn". 
C 
C 
C 

DELT = DD= LT 
DELTY = 01ELTY 
111,X = MMMAX 
JALDHA = 1NAL°H 

NALPH2 = 2'3NALPHA 
NALPH3 = 34NALPHA 
;SONY = NNE2NY 
NO0E3 = NNOnE3 

= WW 
C 	 INITIALISE THE VECTOR, JF OIFFERENrES ,?FTWEEN ELEMENTS 
C 	 OF ASTAR IN THE PE;;ULTTNATE SUCCESSIVE ITERATIONS. 

00 4R IN=1,NEONY 
OTFF1(IN) = 0.9 

43 CONTINUE 
C 	 SET UP THE VECTOP. ASTA 0  COr'RESPONOING To THE INITIAL 
C 	 GUESS A OF THE VECTOR POTENTIAL FIELD ANEW. 

DO 49 I=1,NALPHA 
ftiA = (34I)- - 2 
ASTAR(I) = A (NOA) 

49 CTINTTNU-7  
N-M = NAL7HA+1 
NOG = NFONY-NALPHA 
Oo 50 J=N13,NOC 
N09 = j+NALPH? 
A"TAR(J) = A(NDO) 

57 OJMTINIUF 
NDE = NOC + 1 
03 51 K=NDF,NEONY 
PInF = (3;) - 2 - NODT3 
A7TAE(K) = A (NOE) 

51 C1NTINUE 
SET TH= VECTOR POTENTIAL FTELO ANEW EOUAL TO THE 
GUESSE9 FIE.L9 

DO 52 L=1,Nno=7 
ANEJI(L) = A(L) 

52 CONTTUF 
M = 1 

53 DIFFY = 
N = 

UPOAT7  THE VECTO S ASTA ANO 	(I;HER 30UOARY "J ES). 
sh 1)1 = 0r 

GO 55 1=1,20 
M, = NY0(1,T) 

= NyL('i,I) 
Dr; = OG + (YL(NI I)*AM-H(ML)) + (YU(N,I)ItANFW(MU)) 

55 rONTI,Anr- 
= ASTA,:(N) 

A_,TV(N) = - (W06/YO(N)) + ((1.,7,-W)4 ASTA:!,N) 
0 = ASTAR(N) - AST A -;̀ 1 
nIFF2(N) = 
SDY = r"1 
DIFFY = AlAX1(SQOY I n:FFY) 
MOH = (741) 
ANEW(NOH-?) = ASTP(N) 
AN=W(MDU-fl = 0.r1 
AjE'l(NOH) = (7.7 
• = 9 + 
TF(1.LT.N12) CO 	54 

UnnATE THE V7CTrr A7TAP ANO AN7W (INT7RIOP NODES). 
56 OG = t",.9 

fr 57 I=1,2^ 
• = flii)(1,T) 
;'-1L = NYL(N,I) 
N,; = OG + (YL(NI I)ANFu(":_.)) f (vu(N,:)',AJFW("U)) 

7' ClITTNUE 
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ASTAcW = 1STA:).(N) 
= - W(95 - VOTEX(1+NALPH2))/YO(N)) + ((1.:-W)4 ASTARN) 

0 = ASTA(N) - ASTAr.N 
OIFF?(N) = 
1- DY = 0.n 
0-FE'Y' = ;n1AX1(9y,DJ.FF‘e) 
oiT .46..++-!At PH2) = nr.ILA 
• = r + 
IF(A.LT.N)E) GO In 	i- 

C UPDATE THE vEGTo,),S ASTr A ,10 ANEW (OUTE r?, POUNDAPY NODES). 
56 D5  - 0.73 

90 =c1 1=1,29 
MU = NYU(1,I) 

= iAL(!,I) 
DO = DC + (YL(N,1) 4 ANNL)) +  

0 GMTC'Ll7 
ASTV'M = ASTA(N) 
ASTArs(M) = 	(W*DG/YO(N)) + ((1.0-W)*ASTAN) 
D = ASTAR(N) - AsrARN 
DIFF2(N) - 9 
• = D41  

= AlAXi(SCIDY,DIFFY) 
N0H = (32'N) - \IOn77 
Aci=wci,ioH-7, ) = ASTuP.(N) 
ANEW(NOH-1) = 
A:LIW(NDH) = 1.9 
N = N + 1 
IF(A.LE.NHONY) :.;0 To 5;1 

C 	TFST FO C3NVEGENC,7. 
IF(DIFFY.IE.DELPt) GO To 

C 	TEST ,411ETHEF., THE mAXI!,!wA ALLOw ,A3LE N1M7ER OP 
HA3 

IF(H.EO.m1AX) GO TO 67. 
C 	TEST WHETHEP THE V7CTor, A'.3TA IS BEING UPDATED 
C Te A CiNSTAMT JCTr I IEUCC:SSIVE ITEPATIONS. 

DiFFCE = 
00 501 T=1,.-fly 
DK = DiFFL(I'A) - 9IFF2(il) 
DTFFIAiH) = DIFF2(i'l) 
DL = ARS(JK) 
PIFFOE = A1AX1(DIFFrF,9L) 

5031 CONTINUE 
IF(JIFFCE.L=.DELT) Go TT -c,r,  

• + 
5.) TO 57 

6 1  DflIErY = -JIFFY 
N I = 
T31FFC = 

71-F. IAXT.WN 7(),L017 -- JSflJAL 
PLSTY = 
• = 

= C.0 
n? 	T=1,2,-3 
• = mYH(H,I) 
• = MYo(i,I) 
DI = Di + 	 + (YUP0,1)-,'ANEw(",q1)) 

6? 
Uj =111 + (Yi- (H)* (')) 

Fljj. n.) 
= AHAX1(70),,17:3TY) 

N = N + 1 
1 -7 (N.LT,111) 

00 6!,- 
• = Y!) (' 7 i

= 
= 	+ (YL(N,I)=LIO!'-HCIL)) -' t'Ci(N,1)*AN7WP,IU)) 

r1NTINUE 
n! 7 1-11 	(Y)uOk''IsTn.,(,!)) - Vn?T::'X(N!- NAL,0 I1?) 

=  
= AIA;Ki(S,R7-- STY) 

• "J 4- 1 
GO T6Tz 

71:-; 	T=1,2C 
• = ?I'(. (1,1) 
▪ = 
0!J = MI + (YL(0,I)*AME:Il("_)) + (Yi(N 7 7.) 4*AN=OC15.J)) 
r!-) 	r15!--  

+ 	ST 	( 1 ) ) 

= A 1,2,Y1(7,-1 -'2T 
1 

1;f1 Tfl 
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= -;ESTY 
ST THE VECTO; PUTFNTIAL FIELD A FlUAL TO THE FL) ANE'd. 

01 67 I=1I1ILJCF7 
ACT) = ANE'd(I) 

S7 C..)HTU: 

SUPOUTTN: SPEEOCAO,NNO0E3,NN1,NA2,NN3,Pfl,i,;),P0) 
D-1.ENSION A(N'i01E7::), V(W400F3) 

C 
r 
C 	 TH1S SUT),CUTINE COs!V=PTS TYE VECTCP orT,7 NTLAL FTc.L0 
C 	 A PET MINED 1Y SUOUTTNE SOPY TNTO THLT THR.7:7- 
C 	DIN7NSIONAL POTATIONAL VELOCITY PIFL0 V. 

C 
Ni = NN1 
M2 = NN2  
N3 	NN7  
N33 = 3'N3 
N.7,5OM2 = 1133/? 
NC1E5 = W101F.7 
NALPH3 = MOOE'/(N1 + 1.) 
NAL=DH6 = .7.4. 1AL1H3 
HI.L°HA = 1ALPY3/7  
PI = RPI 
P,1 = 
Pi = 3.1 415q2653589S 

: 
XN3 = N3 
HI = 	- 
• = PI/X11  
H7  

INNF2, iOUNuAIZY NODES. 
I = 1 
J = 1 
• = 
LY = 1 
LY = 2 
L7 = 7 

= PI 
ni = 1.q/CP'P?) 

D1/(4.ill -7) 
D

• 

; = 	 C 4H1) 
fl = 1.0/D 
r.L77), = (laLPHV'CI-:_)) f I 

= '31C2 
tir:t

• 

:1 7  = HI 
= 3`NC^I9  

✓(LX) -= 
DA = A(LX1-6) 	AC._xlin”?+c)) - A( Y+KI73) + A(LX-1-C137.0"%') 
• = -(-4A( -7 4-W,LjH7)) 4- ;»(174-"Ai PH6) 
V(LY) 	()A) 	(fl'-'fl) 
• - (4.'PACL(+NAT_PY7)) - A(LY+W4L1H,$) 
01 = 	+ A(IYI-N2301'1 21.3))/2.7, 
V(LZ) = ('C'71 ) + (n1 4 pi) 
JzJ+1 

- 
THTA = Y -tPT./Y`I2 
• = 7;1"qtrW7 TA) 

= 

= 
= !X f 7 

+ 
L7  = LZ + 3 
VCLY) = 0.0 
T'iK,Ej.1) 
TF(K.E°..N3) Cr) Tn 451 
nl = A(LX4-7) — 
Cu rn 452 

45, 	= ACLX+31 - 1\0 X-3+41 7 ) 
GO 'TO 457 
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451 Da = A(LX+3-M33) - A(LY-3) 

452 	= -(4.1*4(L'+MALPH7)) + A(L -.7.+ALHF,) 

V(LY) = (0A*0--0 + (0-3-p,) 

D; = (u.o,' A(ty+Nlat 2H3)) 	A(LY+NALPH6) 

r;r1 Tn 45,  

IF(J.C1.V) GO TO 454  

• = (-A(LX+133) + A(LY-'173))/2.r 

C^  Tn 

4-_-)7  71  = (-A (LX+H33) + A('If-73-2))/2.1  

GO TO 455  

454 OD = (-A (1O123-2) + A(LX-H33))/2..] 

455 V(LZ) = (0C4t 0:) + (or t ni) 

Ic(K.En.Ni) GO Tn 456 

- = K + I 
Cn le /44 

456 IF(J.La.N') GC TO 457 

GO TO 441  

457 LX = LX + 3 

LY = LY + 

LZ = LZ + 3 

V(LX) 

DA = -A(LX -N7-1-7) + A(LX-;4370N2+3) + 	- A(LY-N-'3M02-3) 

OR  = -(4-14A(L7+NAL ni-13)) + A(L7+NAL DH6) 

V(LY) = ()A40?) + (t="rM7) 

DC = (4.6A(LY+NA_ DH7)) - A(LY+NALI-16) 

On = (-A(LX-N37) + A(LX-N33nN2))/2.0 

V(LZ) = (0C4 03) + (no-Di) 

C 

	

	INTERI-10  

4575 I = 1 + 
J = 1 
K = 

R = P + Hi 
LX = LX + 

LY = LY + 

7 = L7. + 
ni = 1.C/( E".11') ) 

n2 = n1/ ( =4..:"H3) 
03 = 1.3/(2.0-H1) 

D4 = .-Vo  

h ( .;2 = Hod orW. (I-' )) + 1 

NC23 7 3x"IO2 
NCH? = MA_PFWI 

Mr1.123 = I NC,09  

• = A(LZ+3) - A(LZ+N:;7-1*'2+3) 

OF = -A (LY+E) + A(LY+N3ON2+6) + A(LY+M3') - A(LY+M
730N2) 

V(LX) = ()E*01) + (OF'09 ) 

nr, = -A(L7 ) 

OH = -11(1.1AL°H-4 ) + A(LZ-N1L°H3) 

Or. = 	X+6) - A (' Y+N371.12+ 7, ) - A (LX+N33) + A(LX+1033017) 

V(LY) = ()(3',' 04 ) + (1H- 03) + 

OJ = A(LY) 

1-Pc: = A(LY 4- M d1 L-)H,) - A(LY-,1ALPH7) 

nL = (-A (1_X+3) + n(LX+M3,ON'+3))/2.0 

V(LZ) = (),JD40 + ( 17v'' Cr.) + (nL-''01) 

451 	7-  J + i 

Y 

TH TA -7--  S;IPI/X1? 
• = 
Tr -- lAN(-1- 7 TA) 

54/T1 

nr,  = 

49 7 = K - 4  
PV1T = 

C"  = COS( '̀HI) 

SP = SIN(DHI) 

LY = LY + 3 
LY = LY + 3 
L/ = LZ + 3 

D-  = A(17) 

nt= = A(LY) 
rn  = -A(L:+NALPH7) a11(47,-NI I  PH3) 

PH = A(LY +NALPH3) - A(LY-mAL -1H) 

In(K.:0.1) G'0 TO 1.6-  

T1.(v..En.m-,1 1,0 Tn 411 

OI = -A(LY+3) + A(Lv-3) 

DJ = A(LX+3) - 

GO TO 4r7)? 

4C;-)  nT  = -A(LY +7) + A(LY--74- 7) 

= A(LX+3) - A(1Y-7+Nj7)  
Gri Tr 4r12 

461 OT = -8(Lvis7) 	A(LY-') 

nJ= A(LXf3-N33) - A(LY-7 ) 
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4 2 IF(J.Er.,.2) GO TO 467 
1F(J.EQ.N2) GO TO 4S4 
OK = (A(L7.+116) - A(LZ-N37))/2.'7 
nL = (-A(LX+N37) + A(LX-N33))/2.0 
GO TO 465 

467 DK = (A(L!.+133) + (A(NC23-1)'SP) 	(P.(NC93)'Cfl))/2. 
DL = (-A(LX+N73) + A(NC23-2))/2.71 
GO To 4S5 

454 	= ((-A(NON,3-1)"S0) 	(A(NrN23)1"3P) - A(LZ-N37))/?..9 
DL = (-A(1CN23-2) + 1(LX-N33))/2.5 

465 V(LX) = (DE'05) + (DK"Ol) + (DI'o6) 
V(LY). = -(0E4'04) + (OG*O7) + (0J*06) 
V(LZ) = (JF'''04) + (DH;- O7) + (oL'Ol) 
IF(K.EO.N3) GO To 4F,6 
K = V 
GO TO 459 

466 IF(J.El.N2) GO TO 467 
K = 1 
GO TO 458 

467 LX = LX + 3 
LY = LY + 7 
L7 = LZ + 3 
OE = A (L7-N37) - 4(1_7-m73oN12) 
OF = A(LY-N33+7-7) 	A(LY-N33ON2+7) 	A(LY-3) + A(LY-N330,02-7) 
V(LX) = (IP"31) + (r-W"0?) 
DO = -A(LZ) 
Dd = -A(L7+NAL9H7) + A(LZ-NAIPH3) 
DI = -A (L'{-N33+3) + A(LX-(1730N7+7) + A(LX-3) - A(LX-N330N2-3) 
V(LY) = (OG404) + (DH 03) + (7I4O?) 
11J = A(LY) 
DK = A(LY+NAL9H3) - A(LY-MAL9H7) 
nt_ = (-A(LX-T57) + A(LX-H730N2))/2.0 
V(LZ) = (DJ4P4) + (nK407) + (OL*01) 
IF(I.EO.N1) GO To 4S9 
GO TO 4575 

C 	OUTER 80UND1RY NOOFS. 
466 I = N1 + 

= 1 
K = 1 
▪ = izn 
r_11 = 1,W(94H2) 
02 = D1/(4.9*H7) 
03 = 1.0/(2.G H1) 
D4 = 
NO2 = (N/IL9qA*(I-4)) 
N023 = 75.*NG? 
NON? = NALPH(vLT 
Nr,N96 = 3''NO1? 
LX = LX + 3 
LY = LY + 3 
LZ = L7 + 3 
V(LX) = 1.n 
ry ,  = A(LX+6) - A(LX+31"7+6) - A(LX4-N3') + A(LX+N37ON2) 
ON = (4.0A(L7-NALPI-43)) - A(LZ-NAL9H6) 
V(LY) = (Own?) + (DN'07) 
• = -(4.- 11(LY-NAL9H3)) * IL'(1.Y-NAL9HE) 
no = (-A(LX+3) + n(LX+N77CN9+3))/7.:: 
V(LZ) = (:,!":;.3) + 

469 .J = J + 
Y = J 
THETA = 1".PI/xN2 
ST = spi(Tp,uil) 
TT = Tat.1(THRTI) 
Os = n4/TT 
0;) = 114/(2.0*(,P197) 

470 LX = LX + 
LY = LY * 7 
LZ = 17 + 3 

V(LY) = 
IF(K.EO.11 GO To 
TFC:.17.O.NU Gn Tn 47-) 
nA = Act_Yi-s) - 4(LX-3) 
Gn TO 473 

471 	= A( X+3) - A(_X-3+N33) 
GO TO 477 

47? T?:A = A(LX+3-N77) - &(LX-7) 
473 Do = (4.-A(LZ-NA`.PH7)) - A((_?-NP.,  PH6) 

✓(LY) = (1A'D6) + Ur7*O7) 
no = -(4.14(LY-NALD47)) + A(LY-UfAl 9HE) 
IF(J.E0.2) Gn rn fc7L 
IF(J.E0.h2) Go TO 475 
51 = (-A(LX4-N73) 4 A(IY-N:3))/2.n 
GO TO 476 
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474  DO = (—A(LX+N33) + A( 1'1 C23-2))/2.0 
GO TO 476 

475 JE = (—A(ICN23-2) + A(LX—N33))/2.f7 
476 V(LZ) = (3O*D5) + (or1 ^r1) 

IF(K.EO.N3) GO TO 477 
• = K + t 
GO TO 1471' 

477 IF(J.FI-1,.N2) GO TO 473 
= 

CC TO 469 
473 LX = LX + 3 

LY = LY + 
LZ = L7 + 3 
V(LX) = 
DA = —A(LX—N3:1 +3) + A(LX—N30"7+7) + A(LY-7) — A(LY—N330"2-7) 

= (4.64 A(LZ—NLPH75)) — A(L7—NALDHE) 
V(LY) 7 (JA*02) + (Oq'D7) 
00 = —(4.J*A(LY—NaLpH3)) + A(LY—NALPH6) 
• = (—A(LX—N73) + A(LY—N330W))/2.0 
V(LZ) = (DM4 D3) + (00'01) 
RETUKN 

SU9;WUTINE  STA;)T1(4,VOTEX,O,NOM73,NN10127NN77 RRI,RRO) 
DIMENSION V(NODEZ), VORTEX(NOflE3), U(NOOE3) 

C 
C 
C 	 THIS SWEIROUTINE 	UP THE INITIAL CONDITIONS ON Vy 
C 	 THE ROTATIONAL COMPOENT OR THE VELOCITY FIELD, ANC 
C 	 VODTEX, THE V9-:TICITY 	CORP.ESPONOING TO UNIFORM 
C 	 STOKES FLOW 2;)7,T A SPHERE. 
C 

C 
NI = NN1 
N2 = NN? 
N3 = 6N3 
RI = PPI 

NODES = tfl9E3/3 
Xj1 = NI 
X12 = N? 
HI = (PO — rI)/X'!1 
PI = 3.14'59253 5'9R 
• = PI/X1? 
LX = 4  
Js.4  = 2 
LL = 
."X = 1 
• = 1  4- NOD =-S 

flO 552 I=1,N1f1 
X1 = l — 

= 1-J + (XIMI) 
A = RI/P 

= PA 4-Pl*PA 
THETA = 11.n 

THETA = 0 PCLA -, NOPF. 
V(LX) = ('. 	(1.5'A) + C1.5*an» — U("X) 
`!(LY) = 171,.0 
V(17) = r;.r.  
VO:.J.TEY(L)e) 
V°F;TLX1LY) = 
110 -7TY(L7) 
LX 	L X + 7 
L).  = LY 	3 
L7 = LZ + 
NX = NX + 1 
• = ;1Y 4- 1 

10N—r3CLA7: 1092S. 
9fl  S51 J=".,"7 

= 	+ q7 
:TINCTIIPTA) 
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CT = COS(rHETA) 
no 55C l<=1,13 
V(LX) = 01.0 - r 	+ (l!.*P:1))'CT) - U(1X) 
V(LY) = -((1.0 	(0.75 :A) - (0.25*RB))ST) - U(NY) 
V(L7) = 0.0 
VO -r:TEX(LX) = 
VOrJEX(LY) 7 u.1  
VOr;TLX(LZ) = -1.9*0,11"1T/7. 
LX = LX + 7 
LY = LY + 3 
LZ = LZ + 3 
MX = MX + 1 
mY = MY 1- 1 

55C COMTIMUE 
571 CONTINUE 

THETA 7: PI POLL,.P 
V(LX) = -(1.0 - (1.5*A) + (.54,'3)) - U(1X) 
V(LY) = 9.0 
V(LZ) = 0.0 
VORTEX(LX) 
VOFJEX(LY) = 17.n 
VORTEX (LZ) = 9.0 
LX = LX + 7  
LY = LY + 3 
LZ = LZ + 3 
!IX = "X + 1 
MY = '.'Y + 1 

552 CONTINUE 
PFTURN 

SUEV),OUTINc7  STnP.T2(V,VORTFX,U,M09E7,MM1,Mm2,M43,PET,C,SSHEAR uua 
O DIMENSION V(NO73), V0PTFX(M00E3), U(m09E7) 

C 
C 
C 
C 	THIS SNID.OUTINE SETS UP TH7 INITIAL CONnITIONS OM V, 
C 	THE :;0TATIONAL CONPOMEMT 07 THE VELOCITY FTELn, AMn 
r 	vor;TEx, THE VOTIC:TY FI7L0, CORESPONOImr,  TO A LINEtIR 
C 	VAPIATTOM 71i:- TWEE' THE 50Mm^10Y COMnITTnmC ON THE" 
C 	.PHEE.  (7=='I) PNO THE 30UNflARY COM"IITIONS ON TW7 
C 	OUTER 110UNOARY (R=0). 

NI 7 NN1 
N7  = NN? 

= c4N7 
PT  = R°1 
Rd = PP() 
SHH1R = S7HF.A7 
U.? = UU0 
NOO:S = !.IJOFI/7 
".AL 'HA= 10flFTS/(`11 4-1) 
NALPH7 = MALPH17 
XML = M1 
Xm2 = N7 
X:`1 i = M3 
TILITAP = 	0 - 
H1. = 	 ;i.  
PT = 3.141597.65.11 
117,  = (-TiNc12 
H3 = 2.14.'I/XN7 
LX = 1 
LX = 
L7 = 3 
MY = 1 
MY = 1+ m097S 
NZ = 1 + MOO FS + mOD7S 
rlf) 5E)2I71,M1+1 
XT = 1 — 1  

= 	t (X± 4-H1) 
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PA = tk - 
Pp = PAY. HEAR"RO/R 
THETA = 6.0 

C 	 THETA = 0 P0L! 	0E. 
V(LX) = (M"- ir) - U(MX) 
V(LY)  
✓(LZ)  
VOaTEA(LY) = 
voTrri=x(LY) = C." 
VOi-ZTEX(LZ) = -R3 
LX = LX + 3 
LY = LY + 3 
L7 = L7 + 7 
!•.)( = 	+ I 
MY = MY + 
iT = M7 + 

C NOM-POLAR 	fir'S 
DO 561 J=2,M2 
THETA = THETA + H2 
ST = SIN(THETA) 
Cr = CCS(THETA) 
r=HT = C.0 
DO 560 K=1 ,Wz 
SP = SPI(PHI) 
CP = COS(DH) 
• =LID + (SH,7 AR*F10"STD) 
V(LX) = P,A4 Rr;41:7) - U(MY) 
V(LY) = -(RA=,k0'f- ST) - U( -1 Y) 
V(LZ) = -U(M7) 
krITEX(LX) = 
WPTEXCLY) = --64CT4SP 
VOII,TEX(LZ) = 	- (T.CST/DELTAR) 
LX = LX + 7 
LY = LY + 3 
L7 = 17 + 
MX' "X + 1 
.1)1  = mY + 1 
N2 = MZ + 1 
PHT_ = PHI + H3 

56C (":1'ITImU7  
561 CONTINUE 

C 	THETA = PI ROL!'•° 
V(LX) = -(R1*U,2) - U(!)(,) 
✓(LY) = -U(mY) 
V(LY) = -U(M7) 
VO,).TEX(LX) = 
VO;TEX(LY) = 2.n 
VnPJFX(L7) = -R9 
LX = LX + 7  
LY = Lm + 3 
L' = L7 + 
MY 	1)( + 1 
• - "y 
• = "Z + 1 

562 CONTMUE 

E"T) 

— 2.00— 



SU9ROUTIN: TYPIST(P,NNALPH,COD ,C0V,CLP,CLV,CMOSTEP,TIME,IOPT4, 
lEAX) 
DIMENSION P(NNALPH) 

C 
C 
C 
C 	 THIS SLFIPOUTINF WiTES OUT THE FORM, fliCTION AND 

TOTAL 1RAG AND LIFT 1:0EFFICIEmTS (COP, cnv, CD 
C 	 AND CL" CLV, CL, !ESPECTIVFLY),_ AND THE MOMENT 
C 	 COEFFICIENT (MI). THE PPESSURE FIELD (°) OM THE 
C 	SURFAC OF THE SPHFRE (P=RT) TS WRITTEN OUT ALSO, 
C 	 UNLESS THE OUTDUT SELECTION PAAMETER IOPT4 = C. 
r. 

NALPHA = 1NALPH 
CD = COP + CDV 
CL = CL° + CLV 
W7',ITE(6,91?) 

98C FO21AT(1Ht/////) 
1,NITE(6,931)NSTEP,TIM7  

951 FOP!AT(1X,16HTIM-STFP NUm6R I I6,A6Y,21H(OINEMSIONLESS TINE =, 
1F9.4,1H)) 
WDITE(6,912)CDP,CDV,CO 

982 FOr 	CO;FFTOIENTS/1X,1X, 
127HFORM O AG COEF;=ICIENT 	=,F7.3/1X,10Y, 
227HFRTCTI1N DRAG COEFFICIENT =,F7.3/1X,1X, 
727HTOTAL JRAC, COEFFICIENT 	=,F7.3) 
WRITE(6,933)CLPICI_V,CL 

983 FOr:MAT(1H] t17HLIF7  GOEFEICIENTS/1X,1CX, 
127HFOPM LIFT COEFFICIENT 	= 1 F7.3/1Y,1r1 X, 
227HFP.ICTION LIFT COEFICIFNT =,F7.3/1X,1CIY, 
327HTOTAL LIFT COEFFICIENT 	=,F7.7) 
WD,ITE(6,9135)Cm 

9835 FORMAT(1H73,2MOMENT COE'FICTENT =,F7.3) 
TE(IOPT4.:0.0) GO TO 97 
W7!ITF(6,!54) 

984 F.DIAT(114',////1Y,10X,35HPESSUP,F FIELD ON SURFACE OF S)HrRE/) 
WPITE(6,9A5) (K,P(K),K=1,MALPHA) 

935 FO°.MeAT ( (lX,S(T4,4H ---,F9.5,9X01X)) 
W:ITE(6,916)E:::RMAY 

986 FT-IIAT(1HJ,10X,43HDIFFENC 3FTWEE'N THE lAXIMUM AND 
112HPDESSUES AT/1X,1 :,"1,7:7HTHE THETA = PI POLAP NOCE CALCULATr 
217HALONF,  :ACH OF THE/LX,1JX,7'HCONSTANT-0HI INTEGRATION PATHS =, 
3Fq.5) 

987 D.TTURN 
EmD 

SULiROUTINE VELOX(H,NODES,NFDMS,U,D09,MN1,NM2,Nm3,RD,I,RPC, 
iNNODE2NM)DF7) 

mEN,
1

H( 	( TIE C197) ,U( 11`?9 977 ) 
C 
C 
C. 
C 	 THIS SUR:;OUTINri CONVERTS THE SCALAR POTENTIAL FIIILD 
C 	 H DFTE4.MTNED 9Y SU'ROUTTNE saR TNT7 TH,  THPE'- 
C 	0:MEWS':W -7'):,N5L;\TIMIAL VP_OCTTY PTTLLD U. 
C 
C C 

rU. = NN1. 
• = 
• = NN3 

DI = RPI 
DO = PPo 
U. = DIP' 
tinjES = N''ODFS 
M3D72 = N"OCF.' 
"E3 = 
• = !.1/f15"-)26575'9 
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• = M1 
)012 = M2 
YA3 - 
Hi = (RO - RI) /XN1 
H2 = PI/X' 2 

NALDHA = (A.5*("2-1)) 1- 2 
.30UN9A;Y 

U(i) = 
T = H(2) - H(N30")2+2) 
U(14-HOOPS) = T/(2.e4R1 1.42) 
U(l+NUOE2) = 
J=T! 
TH:TA = P./v2 
• = 5IN(TAcT 2) 
V=1 
N=2 

499 Igki) = 
T = H(M+N') - H(1) 
MN:I-NODES) = 
IF(K.t(1.1) GO TO 
IF(K.EQ.i.i.3) GO TO 

T = H(N+1) - -1(N-1) 
GO TO 522 

51'2 T = H(141-1) - H(1-1+,43) 
GO TO 5-'2 

5:1 T = H(N+1-N3) - Ht"-1) 
5C2 U(9+NODE2) = 	 H3'}S) 

• = V+1 
• = N+1 
IF(K.LT.N7+1) SO TO 499 
J = 
'META = (2..1)/XN2 
S = STN(THETA) 
V = 1 

5:3 1J(N) = 
1 = Fi(rifm7.;) - 
u(mi-NUDES) = 
IF(K.L0.1) 7,(1 To -.)04 
IF(v..FO.H-3) GO TO 55 
T = H(N+1) - 
GP Tr' 50o 
T = H(Nfl) - 
GO TO 5-36 

515 T = H(M+1-M3) - H(M-1) 
UP1*MOD'72) = 
K = Kfl 
H = 
IF(<.,..T.N-;+1) GO TO ,7- 3 
v = 4  
J = J + 1 
Y = J - 1 
ThE■A = (Y "3-1)/V;2 
S SI'l(TdETA) 
TF(J.LT.N2) GO TO '7 .;:5 

5'7 11(1) - 1. 
= 	- 1-1(N- 

U(;:f"(io,..S) = r/(2.'-er:'*rr) ) 
17,f 1  1- 9 ig? 

.F('%:fl.z) GO TO 5'0  
= h(H+1) - 	1-1) 

Cy-, In c-;t 
- 1i(1 1 1j) - 

(fl TO 511 
5-,9 1= h(-11-1-rri) - H("1-1) 
5i U(di+Nui)E2) = 1/(2.(2'rl--":"S) 

K = K-1- 1  
• = T'14-1 
Tr(K...T.+1) GO TO 5 -'7 
U('') 
= H("-M - 

u(m i.Non=j) 	r/(2.2' 
Unlf‘q,1177) 
I -2- 
• = 0 T 1- '11 
J = 1 

',NTERIJc: NJO=- S (TH-TA = 	rOLA -) AYTS). 

• = 
T - H(N+NAL0HA) - o(1-'1AL"H1) 
H(N) 	T/(2.2'HI) 

= H(k1 +1) - 
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N(:1+,0 011ES) = T/(2.C*n'H7) 
N(NI-NuDE2) = 0.^  
J = 

INTE-,I31; PoJOES (,2,0JAC-NT TO 1.1-1 7_ -1-4=:TA - 2  POLAR AXTS). 

T- TA = 
S - sIN(THE-A) 
• = t,t+1 

5'..2 T = H(N -'0 ALoriA) - H(N-11AL 0H1) 
• = T/(2.P"1-11) 
NJ = (NALDNA'4 (1-1)) + 
T = H(N+N3) - HOW) 
U(N+MODES) = T/(2.1--"."1-r) 
T=(K.=Q.1) 01) TO 51 
Tr(K.'-'4.M) GO TO 514 
T = ii (M+1) - H(1-1) 
no TO 51q 

513 T = h(N+1) - H(1-1+405) 
GO TO 515 

514 T = H('1+1-N3) - H(H-1) 
515 U(N+Nu0E2) = T/(2.1 -, t-H7'1. S) 

K = Kfl 
• = N+1 
IFU/s.LT.N7+1) GO TO 512 
J = 

C 	 INTERIJR 	(G*--"-'7?,AL CAE). 

THETA = ('.', -)1)/Yv 
S = SIN(THETA) 
K = 1 

516 T = H(M+NAL0HA) - 1(N-MALPH1) 
U(N) = T/(2.C'H1) 
T = H(N+N-) - Hitl-"T) 
U(N+MOOES) = T/(2.211') 
Ic(K.Eo.1 ) Gn TO 917 
1F(K.EO.H5) GO TO 513 
T = h(M+1) - h("-1) 
GJ TO 519 

517 T = H(N+1) - Hfl-1i-"7) 
GO TO 519 

518 T = H(H+1-143) - H(N-1) 
519 U(4+MuDE2) = 	H''S) 

K = K-1-1 
N = N+1 
11-(K.LT.MJ+1) 	rn 51r, 

= J+1 
Y = J-1 
THETA = (Y4or)/XM' 
S = SItI(TAETA) 
K = 1 
TF(I.LT.')I) G1 To 510 

TNTE'l- h-; 	(4-,JA:-"!T Tr T1-“7 	= DI !DMA') AY1- =').• 
523 T = h(M+:4141.-)Hq) - q(11-:IALPHil) 

U('') = T/ (2..;"H1) 
NO = wILD,IVT 
T  = H(N1) 
U( 1+"00E) = r/(2.:"1  H,) 
IF(K.t0,1) GO TO 921 

C° rn 522 
T 	H(N+1) - H(N-4) 
Gr 10 59-5 

5'1 T = h(N+1) - d(1-'+`13) 
GO TC 52J 

52? T = H(`+t-Ni) 	9("-1) 
U(N+1'106'..2) 	T/(2.' ''..')!T'S) 
K = vfl 
• = r+t 
II-7 (K.LT."7 +1) GO TO 

C 	 _LNrF,Inc,  "IJ)7S ("TH -T!1 = PT POLAD, AXI), 
T = H(rH-J.-11.7-W+) 	H(":-NA_ -HA) 
O f`f) = :1/(2.4-11) 

" T = H(11-:) - H("!-j-nni2) 
U(N+4)0'..?=_)) = 
U(,4+"uO92) = 

- T4-4 
• = 

re 	+ I 

N - /oft 
T7(r.1--.h14-j) GO -n 5'1 

30UN-, A;Y Inn-S. 
,i(N) = J: 
T = H(14.1) - 
H(Nft10,J) = 	'h2) 
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- W1+!00r72) = 
J = 2 
THETA '= PI/XN? 
S = sr(THETA) 
N = 
NO = (NALDHA*N1) 4- 

524 U(N)  
T = H(N+V)  
U(4A1-m00ES) = T/(2 H2) 
IF('CEL1.1) GO Ti) 525 
IF(K.EO.N3) GO TO 5215 
T = H(N+1) 	H(11-1) 
GO Tn 527 

525 T = H(N+1)  
CO TO 527 

52:5 T = H(N+1-N7) - H(*1 -1) 
527 Wil+NODE2) = 

K = K+1 
N = N+1 
IF(K.LT.N3+1) GO TO 521+ 
J = 7 
THETA =  
S = SIN(THETA) 
K = 1 

526 0(N) = (3.0*(N))/(2.Tm.H1) 
T = H(N+J3) - H(N-m7) 
U(N+NO(JES) = T/(2.04°,41-12) 
IF(K.00.1) GO TO 329 
IF(K,EO.N3) GO TO 5:'- 
T = H(N4-1) - H(1-1) 
GO TO 531 

52g T = H(;4+1) - H  (N-1+N3) 
GO TO 531 

530 T = H(H+1-N3) 	H('1-1) 
531 U(N+NOOE2) = 

K 
• = '1+1 
IF(K.LT.U3+1) Cr) TO 52g 
J = J+1 

= J-1 
THETA = (Y*01)/P17  
S = STN(TtiETA) 
• = 1 
TF(J.LT,N2) nn TO 52 

532 U(N) =  
T = P(NOO7S) 
ll(N+NOOFS)  
IF(K..E0.1) GO To 533 

nn To .574 
T = H(N-1) - H(N-) 
Go TO 935 

537 T = h(N+1) -  
GO To 57,-; 

3j4 T = H(r+l-N-S) - 1--1) 
535 U(N+NOnc2.2) = 

K = 11.4-1 
H ti+1 
IFIK.LT.N“.1) 	-n 5;? 
U(N) = 
T = H(N-W.') - H(N-NSW!?) 
u(N4-flonr-- S) 	T/(7.7*- H2) 
u;'!on=- 1 

Ftlo 

SUn'OUT7:1":. 
CM::NTON V15 1.=_X(NNOnr7 7).  

Twrz; 	 ',fl1 J9oAY r.oNn7TIoNs 
voTC:TY -.4HTC'4 A 	E.P7"flN7 
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NAL:=HA = 1NAL°H 
NO013 = N109'77  
tl2  = 
• = NN3 
SHE 	= SjHEA 
• = 
Y13 = 13 
PI = 3.1.41592?17)359 

TNNE7 113U10AY CufC:TTCNS ol oA374,_ vo,Jic:=TY 
093 NOJ=1,NAL7mA 
N01 = (3100) - 2 
VORTEX(NCI) = 3.9 
CONTIY-lUE 

ouTT? 	rT,LiTT7r)MS 01 All VORTTCITY COMPONENTS 
(;, 	(THTA = 	ooLAP, AYT7). 

NJ? = NO 	- (74NAl PHA) 
1Y-J;TEX(102+1) = 0.0 
VOPTEX(102+?) = 0.0 
1/07).TEX(102+7) = --z.H7 AP 

C 	OUTER 30UN,-)APY CONmITTONS ON ALL VORTICITY COMPONENT 
(GENERAL C-F). 

LX. = 
LY = 
LI = 6 
J = 2 

671 K = 1 
Y = J - 1 
THETA = (YATT)/xtl,  
ST = SIN(THETA) 
CT = COS(TH.7.- TA) 
PHI = 0.0 
SP = 
CP = 

6r2 VO"TEX(10?+LX) = -SHFA,7:"ST"Tp 
VORTFX(NO'+LY) = -SH-TAD4rTr:o 
VOTEY(NO?+LZ) = 
LX = LX + 3 
LY = LY + 7 
LZ = LZ + 3 
TF(K.EQ.N-i) Gn To 6T;3 
K = 	+ 1 
7 = 	- 
PHI = (Z*2.7'°T)/YN7 
3r-) = cYrt1(0111- ) 
• = COS ('Hi 
Gl TO 602 

657 TE(1.E0.N' 
J = J + 1 
G) T' 691 

^UTEJ, nOU19A"Y CCITIONG ON ALL VO,RTTCITY CCNPONE1TS 
C 	(THETA = 0I POl_A? 7‘YI'7). 

604 V12,T7X(N77+Lsi) = 
VT;TEY(N0?+LY) = 
1/j -l- FX(N09+LZ) = -SH7,V-7 
kFTW:N 

SUtJUTIN V2.12(VODTEX,10077,11ALPH,N11,I,RPO,V,U)  
D71T1SION lr)P -"X(100F:::), U(10rF7), V(lon-3) 

C 

C 
C 

C 

THISSU9:0UTT1-: sTrs 1- 1-67  c:rmio,1 7Y coNnTiToNs r-
qTIcT.Ty 4HT.' A--  FUNCTICN JTT'1E. 

AL HA = 
= 

 
N4  = NN1. 
frv,1:7 = 	c1.1 

= 
• = RP° 
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Yll = N1 

H1 = (17:0-:I) /X"1 

CA = 1.7./ (2.H1) 

= 1.0/RI 

6u6 I=1,NAL7)HA 

IA = 

= TA - 1 

17 = I + NOOES 

IJ =  IC + NW -.27S 
DA = C94 PI0) 

= 

DC = -4.7'VCIA+'W !")H 1  

= V(1A I- "\iF-  ) 

-C-1--t ucTn) 

3.r.' '4!1(Tr) 

= 

OH = -V (I'31-NA! PHrl) 

7A = (D9 + DC + DO)'CA 

=F = (OF + 0, 

Vflp TEX(T?) = 7A + nn 

VOT =X(IA) = E =  + OE 

E.,05 CO1TINUF 	. 

PFTURM 

C 

C 

SUOUTINE W n.T.TEP,(VOTEX,A,V,NNODE3) 
DIMENSION VO?TEX(NNOOF.3), A (NN0077), ViNNO0E3) 
COMMON/COMWRI/IOPT1,IOPT2,IOPT7,M1,DIFFUN,RFST1,M,DIFFY,RESTY, 

10iF=CE,TIqr,NSTEP,NJOE3 

	

C 	 THIS SU9POUTINT HITS OUT THE ".INCI DAL RESULTS 

	

C 	 OETAINLIO O v  PI:'OG;A; U;OT AT EACH TIME-STEQ. THE 

	

C 	 OUTPUT SELECTION FAPA F TFP7  IOPT I-3 FUNCTION /17, 

	

C 	 FOLLTf.S - .THE vORTir T TY c I cir) IS WRITTEN OUT UNLESS 

	

C 	 IOPTI = r'r. 

	

C 	 - THE vFCTO2 ^0T=  JTTAL FIELD IS W°.ITTEN OUT 

	

r. 	 UNLESS TRPT2 = ;). 

	

C 	 - THE '),OTATTnw!  COmTI O'lErT  OF THEVELOCITY

C 	 FTEL"  IF WPITTEN OUT UNLESS IOPTI = 0. 

C 
r, 

96'3 7n-JMAT(1H1/////) 

H'ITE(6,91)N7T7P,TI =  

9E:1 F,P,MAT(1Y,113HTTAF-STEE-  NU1PFalT6,7,5X,21H(OIMENSIONLESS TI"1E =, 

1Fn.4,1H)) 

t477-..ITL( 2) 1'1,nI=FJ",r7ST1 

'.6 7  FO,;N41( 1 1- ,,'9HYO.i-;TTOTiY T--).  A` 	7nuATTow l.X,11 Y, 

.-OUNUNT3E =  07 T -1 °71TIOT-; R U CONV.7'57NCE =,I4/1X,iCX, 

25-7 H1AX1"Ul SOUA°,E OTFED7!7NCE nET4EEN ELEMENTS IN SUCCESSIVE , 

3271- F7T ,7 RATTnNs AT 30'dvp rE =,F15.17/1X1ICY, 

4L'H"AXI"Ul SQUA7'F P7STnUAL AT nNVEGENC.:1 =,r15.1.7) 

cf.-7 PlMATC1t4',7MVF-Irjn ^0.7-::;;TTIL DrIT!=;r*! 	TON/ 4 Y7 1  Y 

1L1Ntl 	n7  1T -77) A 7T5r- 1lC  nn\IV 7- 1,!rF 7,T4/1x,icy, 

257WIAXIMUM SrUA;;= DIFFEIC= ncTWE '-7 N 7LEN7NT S IN SUr.:C r7 SCIVE , 
?7HIFT--;),AT:u 	 =,Fi'5,1 -4/1.Y119Y, 

MUAPF  1?,"STnUA' AT CONY-7c(WNC= =.F15.133/1X,I.flX, 

cftIcr7r,3SIVE niFFR0 77--ccrs , 

SUC-,7SI;'/7:  TI- ATI ONS AT CONVEFG=NCE =,F15.17) 

I(ToPTI_.o.",) GO TO ()EA 

WI TT7 (6,q64 ) 

(?64 FnlAT(1H2////s.X,t0X,j2HVORTICTTY FIELD (U7:04THETA,HPHI)/) 

(K,VOTHX((:,'K)-2),1°.:JIX((3)-1),VoRTIX(7.), 

1K= 1,NUO__IS) 

9(":5 1711AT((iX,7(7- 4,LH ---,Fri.576X7F9,75,X,Pci.5715X01Y)) 

T_FLO1T7.:=10.'1) (;') Tn n5n  

N.:H.7(6,9W) 

Fr'lAT( 1.H"; ////1Y.1 1.9- X, '(1HV::.CTO F  201-MTTAI FTFLn (nR,AV1c il,nr'HI)i) 

t-i'ir7(r-,,q)(v,-ANTY,K)-?1 ,A( K)-1),A(34.!),.<=1,NOn ) 

PO :-)' AT((lX,(i4,4h ---,:= 9.576Y,F9.50)X,E9.5,15X01X)) 

969 TF(1OPT3.7O.') GO TO D7')  

97-  Ffin"AT(IH-t///lX,X-.71"VtLOC-T"  7T =LO (V,VTHfl.A,V0HT )/) 

',1  IT 	( 	) ( ( 	"11  ) 	) , V ( ( • 	) -1) , V ( 	7-- 	,!"On 
' 	( ( 	( 1 /4,4H 	 r.X7)1X) ) 

gi? 
:s1 ,1 
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Appendix 5 
	

Flow Fields 

In this appendix, we present numerical values of various fields 

defining uniform plus centred linear-shsar flow past a sphere at unit 

Reynolds number, for the purpose of comparison with results that may be 

obtained elsewhere. The fields given are the scalar potential h, the 

surface pressure p, the vector potential A and the vorticity w. The time-

dependent fields are given at effective steady-state, which occurs after 

about forty time-steps of length Lt = 0.002. The radius of the outer 

envelope r* = 1.25. The nodes in the discretised flow field are numbered 

as follows. On the surface of the sphere, the 0 = 0 node is node 1. The 

=:"Tr/4 and 0 = 0,7c/2, 7t, and 37/2 nodes are, respectively, nodes 2 to 5. 

The 0 = 7/2, 	= 0, 7t/2, 7t, and 37I/2 nodes are, respectively, nodes 6 to 9, 

and so on, so that the G =ir node is node 14. Then, at a distance Ar 

from the surface, the B . 0 node is node 15, and so on. 

(i) scalar potential field h:- 

node 	1 	--- 
7  --- 
13 --- 
1q --- 

	

.25 	--- 

	

31 	--- 
37 --- 
43  --- 
49 --- 

2.4310n 
1.45Q4 
.76POn 

2_. 1 Y72i 
.7223 

2.73(.31  
1,45(44- 
2;92(14, 
1.45r1g1 

node 	? --- 
A --- 

14 --- 
en --- 
26 --- 
32 --- 

3'1 	--- 44 --- 
50 	--- 

P.32911 
1.45967, 
.48861! 
1.45970, 
.9344) 

2.0191`.; 
.2699b1 
2.95179 1  
1.459E42 

node 	3 --- 

9  --- 
15 --- 
21 	-- 
27 	-- 
33 	-- 
39 --- 
45 	-- 
51 	--- 

2.15141 
1.4596c, 
2,49559 
1.45972' 
.72234 .  
2.33442 
.58522 
2.4901 
1.45984 

	

4 	--- 

	

In 	--- 

	

16 	--- 
2? --- 

	

21 	--.. 
34 --- 
4n --- 
46  --- 
2  --- 

1 	.'17311 
• i..3 ,-)r, :35 

2.4(192;1 
1.4,)73 

1 
.42429 . 

I.,+997,5 

-900q: 
2.u44,2 
--09?1 

' --- 
11 	--- 
17 	--- 
21 --- 
2(..) 	--- 
1"; 	--- 
41 	--- 
.,--, 	--- 
21 --- 

2.15144 
.76793 

:-!.197191 
1.4597.=ii 

1 -,!.4,891H1 
1..45977' 
.8524 
2./L9H03i 
.4d1691 

o --- 
I 	ie 	--- 

ld --- 
24 --- 
3°  --- 
3b --- 
44. 	--- 
46 --- 
54 --- 

1,45964 
.9457o 
1.98511' 
.51020: 
2.b4q63 
1.4597d 
.,2.230R''9 
1.459m1 
.87550i 

surface pressure rield p:- 

node 1 	--- 7 node 2 --- -1.131115 node 3 --- 
4 --- 2,73339 .748e!O 6 --- .07860 
7 --- 2.711q,'=,  A --- 9.5ff-04 9 --- 2,72071 

1° 1.43727 11 	--- 4,.32942 12 --- P,.5383T1 
13 --- 4.93;:94 14 	--- 5.92511 
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