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SYNOPSIS

This thesis is essentially a study of the effects
of strain-rate, end friction and consequent temperature rise
and the changes in geometry of short hollew cylinders during
the high speed upsetting between flat parallel plaéens.
Literature is reviewed to sum up ﬁhe dynamic behaviour of
metals. A pumerical solutién using the method of weighted
residuals is presented. The mathematical treatment and'the
computational procedure are described in detail. It is also
demonstrated how this model could be uéed to obtain stress,
strain, velocity and temperature fields'in upsetting in
general. The computed results have been verified experiment-
ally and compared with other published work. A linear
induction motor was used as an impact device and some aspects
of instrumentation and measurement of transient phenomena

are also discussed.
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CHAPTER 1

INTRODUCTION

In recent yééfs,much research and development work
in metal working has beeﬂfﬁikécted at increasing conventional
forming speeds and extending the normaf-range of forming temp-
eratures. In view of the factithat supply and ceost of material
is becoming critical, the development of forming processes has
éssumed greater priority. Although the introduction of high
energy rate machines a decade or so ago has not been very
Esuccessful there is a sustained interest in the development of
such processes due to the possibility of more compact and
cheaper equipment, reduced préduction cost and better products,
Therefore the study of dynmamic behaviour of metals at high

speed is of interest and value in metalwofking.

Considerable effort has beeﬁ made in the past to
collect experimental data to establish the relationship
between applied forces and deformation at.high strain-rates.
Mechanical behaviour of metal is inflﬁenced,by strain, strain
rate, temperature, boundary and inertia'féstraints and inter-
facial friction. Research workers have developed ingenious
techniques to isolate these Variables.and study them indiv-
idually. Data thus generated enable us to sensibly interpret

the deformation and apply them to a production situationm.
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The experimental work has closely been followed
by theoretical work and in the early days many mathematical
solutions in the closed analytical form were proposed for
idealised materials. With computers it has now become possible
to employ numerical methods to const;uct mathematical models
which simulate the behaviour of deforming metals very much
closer to reality. However, much theoretical work would seem

to have been directed mainly at satisfying academic interests.

Nearly all the numerical methods that are in vogue,
in particular the most popular and possibly the most powerful
method of finite elements, make excessive demands on computer
resources.' Rewarding intelléctual exercises they may be, but
outside the academic world the costs will be prohibitive for
them to be of much use. This certainly will be so in the case
of smaller industrial establishments and less affluent societies.
The need to direct research activities into more purposeful
channels has been evident for some time and efforts are now

made to ensure this.

Insofar as this subject of interest is concermed,

the main objectives for further work should be:=-

a) - As analytical solutions cannot adequately

describe the deformatiom process, to propose numerical
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solutions that characterise the deformation in terms of
all, or at least the most significant, variables collect-~
ively. Thus the concomitant effect of the process

variables can be accounted for.,

b) To propose models to simulate deformétion at
high speeds which can be easily adopted for processes at

conventional speeds.

c) . - To adapt or devise methods that can be handled
with relative ease and are less demanding on computer

resources.

This present work is an attempt to meet some of
these requirements. The method of weighted residuals seems
to offer the best scope for a solution to this chosen problem

of high speed upsetting of rings.
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CHAPTER 2

LITERATURE SURVEY

Metél workiﬁéipheoriés are chiefly concerned with
prediction of stresseé aégihg'during metél deformation and
‘consequently the forces Ehat ﬁust be applied. During plastic
deformation there is generatiomn, movementiand interlocking of
dislocations [1,2] and the material slips along lattice planes
in directions related to the strucﬁure of the material., With
increasing deformation larger numbers of dislocations are

| produced and hence larger forces must be applied to enforce
their movement. This residual effect broadly explains the
strain hardeniﬁg phenomenon.' In order to establish this
deformation characteristic, it is first necessary to determine
the stress-strain relationship from a test.with a simple
stress system. The tensile test, simplest of all, is limited
to relatively small-changes in shape and therefore for larger
deformations it is necessary to resort to tests of compression

or shear type [;{].

2.1 QUASI-STATIC COMPRESSION

Contrary to the tensile test in which the ultimate
strength is practically independent of the length of the

specimen (above a certain length/diameter ratio), in comparison
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the stress/strain relationsﬁip is strdngly influenced by

the height (Ho)/Diameter (Do) ratio of the specimen and the

frictional constraints at-the.tool/specimen interface.

These are demonstratedﬂiq_Fig. 2.1 andfFig. 2.2,

a

MN/m2
H /D ,
o 0 400- . /b
a=.,5 l
b=1.0 . 4
c=1.5
d=3.0 ,
200
L I L ! 1§ LI
20 40 60 % Deformation
FIG. 2.1 Compression curves of Cu between lapped
tools EA:]
a
MN/m2
Ho/Do J a b T
a=0.5 o \
b=1.0 400- '
=1.5
d=3.0
2001
] k) : | j L
- ' 20 40 _60 % Deformation
FIG., 2.2 Compression curves of Cu between turned

tools

[4]
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2.1.1 _Compression Tests to determine
basic Stress/Strain Relationship

Stress/strain relatioﬁship unaffected by the aspect
ratio and the interface friction will be the "true" or "basic"
stress/strain curve. Many ingenious methods have been used to
determine the basic relationshib. Rummei [5] and Meyer and
NehlI:Q] suggested that_soft compression pieces be placed
between tool and specimen to eliminate end friction. Other
workers have found that although the bulge was minimised the
end faces of the specimen becaﬁe céncave. Siebel and Pomp [7,8]
. suggested use of conical dies and countersunk specimens and
deduced a formula which relaféd the true stress So’ the
diameter to height ratio, the friction angle @ and the come

angle Q as

= 1
S So[l+r§

Underwood [9] observed that friction decreases towards the

= fa

tan( - @) | (2.1)

apex of the cone and so suggésted the use of hyperboloid-like
tools which complicates the procedure even more, Taylor and
Quinney'Cloj used a h/d ratio of unity and to minimise bulge
applied the load incrementally‘and lubricated the specimen
between each stage. The specimen was re-maclined after 40%
deformation to reduce diameter and hence friction effect,

The method proposed by Cook and Larke [ﬁ] was based on the
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work of Sachs [il]'who observed that wﬁen.a number of cylin-
ders, equal in diametef but of various ﬁeights, are compressed
each stress/stréin curve convErgeé towérds a.lower limit as the
h/d ratio increases. ifheémeqhod is indirecf and the final
results are obtained by extrapolation.i Polokowski [12]
suggested use of h/d ratio gréater than unity and re-machining
the specimen after 25% deformation to oriéinal h/d ratio. The
results will obviously depend upon the care taken to re-machine

the specimen.

2.1.2 Measurement of friction

Among the few expégiméntal methods proposed'to
measure friction, the method suggested by Kunogi, and then
Kudo E13___| and developed by Male and Cockcroft Elﬁ:l is probably
the most reliable. It was observed that changes in geometry
of short hollow cylinders in compreséidn is a measure of
friction at the interface. ‘The changes in internal diameter
have been calibrated to give numerical Vélues of friction
coefficient . This method is discuésed,invdetail in Sectiom

2.4, ' _‘ , !

2.2 . DYNAMIC COMPRESSION

The mechanism of deformation in monocry-
stals of a particular material depends upon the form, rate of

M
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deformation, tsmperature and boundary reStraints. While at
slow sbeeds, the crystal deforms by slip along spesific
lattice planes at high speeds the deformation is produced by
glide on a greater nuﬁﬁér;qf closely pléced slip bands which
are affected by the rate of ﬁgformatioﬁ; Metallurgical [15,
lld] studies of the macrostructural chasges and motion of dis-
locations havs;established the rate-controlling mechanism in
terms of the activation energy. Physicists E17] have studied
the microstructural changes and explained the metal behaviour

~in terms of sub-grain and sub-structure formation.

However, from an engineering point of view, the
most important material property is the shape of the stress/
strain curve., Several techniques [ﬁS-BQ] were developed to
establish this dynamic relationship. These and many other
works have been reviewed in considerable detail in Stamelos
E32:| and Mohitpur [31:[. Nadai and Manjoine E34:| showed that
at high speeds as the time taken for defq;mation decreases,
adiabatic heating takes place and results in iocalised
temperature rise. This effect is even more-pronbunced' |
under conditions of higher friction. Alder and Phillips [ 35 ]
and Jones et al E36] have clearly deﬁonstrated the dependence
of strain-rate sensitivity on temperature. It was reported E35]
that for copper and steel the stress for a given strain ‘
increased with strain rate, in fair agreement witﬁ the power
law: |

M
R
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where A is a constant, and that the power index 'n' tended

to increase with temperature.

Lengyel and Agé;%éi‘[37:]considered the temperature
rise due to deformation aﬁd boundary friction in extrusion
and reported that the hardness»of the product decreased with
increase in speed. Finally, another important aspect to
ﬁonsider is the inertia effect at high speeds. The energy

.required merely to accelerate the material to the workiné
\speed could be considerable and further acceleration may

occur during the course of this forming process itself as a
result of the geometry of the.tools enforcing a reduction in
cross~sectional area of the billet [}8]. Lipman [3§j proposed
a theory to consider the inertia effects,vdiscﬁssed later in
Section 4.7. This was followed up by others E40,41]. Dean 
EAQ] observed that the inertia effects became apparent at

speeds of 30.0 m/sec. and above.

Some of the formulae proposed to correlate stress,

strain, strain rate and temperature are:

i) Ludwik [42]: O = A + B In€/E (2.2) .

where A, B and o are constants.

ii) Alder and Phillips [35]: g = A gl (2.3)

where A is a constant.



iii) Macgregor ana Fisher E&A] suggested that increase in

strain rate is equivalent to drop in temperature Tm.

T =T -mln€f) (2.4)

where T is test témperature and éo.are constants.

iv) Inouye: 0 = Bo.En:ém(A/TK) 5 (2.5)

where A, B, k, n and m are constants.

2,2.1 Dynamic Compression Test.

Many research workers have carried out dynamic tests

‘to collect data and studied strain-rate sensitivity. Usually
x\ :
‘these have been interpreted in terms of the mean strain rates.

Such average values could be misleading in the case of large
deforﬁations. Lengyel and Mohitpur E&é]‘adopted an incre-
mental method to obtain stress/strain data to large strains at
constant strain-rate and temperature. Their results, Fig. 2.3,
cleéfly demonstrate that strain-rate.énd temperature vary

significantly when the deformation is large.

T T T J T T . o] '
FLOW STRESS ! .+ £=7005
Loof-(FMN/ m?

300

X =Incrementally obtained
at actual temperatures and
strain rates

2001-

NATURAL STRAIN €) :

ool 11
0 02 04 06 08 10 12
FIG. 2.3 Comparison of Incremental (=) tests and

: large Deformation (---) tests.
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2.3 NUMERICAL SOLUTIONS

Few numerical solutions EAS-Si]'have been proposed
to obtain information regarding bulge, temperature distribution
and stress field in compression of cylindrical billets. Some
of these solutions are discussed below. |

-

2.3.1 Barreling in compression

Nagamatsu et al [4f] analysed the non-uniform flow
( barreling of free surfaces) using the method of finite
elemenfs. As interface boundary cdndition they adopted exper-
imentally determined values of slip ratio instead of the usual
coefficient of friction. Finite deformation theory was used
to allow for geometric changes in the material and elastic
plastic analysis was carried out, The results are shown in
Fig., 2,4 and Fig. 2.5. The occurrence of doubie bulge can be
seen in Fig. 2.5. Kobayashi et al Eﬁgj carried out finite
elemeﬁt analysis to study the mode of deformation and observed
that the mode changed from single bulge to double bulge for

h/d ratios over 1,6,

2.3.2 Temperature distribution

Pohl [ﬁ9,5d] derived a method to determine the heat
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" H 0.8‘ Ho mm
H
° 0.6- a=0.25
-;0.4- b= 0.50
c = 2,00
0. 24
ot
0O 1 2 3
increase in r x 10°4 mm
FIG. 2.4 Barreiing in compression
(sticking) [47]. €= 0.00094
0.81 a _.E.__
b ' a=0,00091
H 0.67
H c b=0.00098
ot " ¢=0.00107
0.2 T _ d=0.00116
0 — T —
-1 2 3 4
increase in r x 1074 mm
FIG. 2.5 Bareling in compression

(Ho = 2, no lubricant) [ﬁ7].
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generated due to work of defofmation and f;iction at the
interface and thevresulting temperature'distribution in

the specimen. The reéﬁits are'shown in Figs. 2.6 to 2.8.
it is observed that the'égﬁﬁérature rise at the centre of
the specimen is over twiée as high as Ehat at the tool/
specimen interface. This see@s to be contrary to what
might be expected at higher speeds, particularly as adiabatic
heating was assumed. The contribution of the work of
friction to heat generation at slow speeds is small, but
even so, the difference between the temperature rise at

the interface and the centre of the specimen appears rather
high. Lengyel and Mohitpur ESl] analysed this temperature
distribution during high speed upsetting using the method
of finite elements. They have clearly demonstrated that
those effects of frictiom at high speeds are quite sign-
ificant., Their results are compared'Qith the results of

this work in Section 7.8.
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FIG. 2.6 Mesh (material 12CrNil88).
. a
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=
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0 . [ ll : [ ! T .| . 1
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FIG. 2.7 Température at specific nodal points

in the mesh above [51].
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FIG. 2.8 Dlstrlbutlon of increments in temperature ESl]
AT ( C) after 33.3% deformation.

2.3.3 Stress fields

Steck [52,53]'used'the method of weighted residuals
' to obtain the stress field, Fig. 2.9. The method of weighted

residuals is described in detail in the following chapters.

2.4° RING TESTS

The changes in geoﬁetry of a short, hollow cylindgr
during axisymetric upsetting under frictionless conditions
is uniform, i.e. every element flows outwardly in proportion
to its distance from the centre, Fig.. 2.10(b). However, the
existence of end friction makes the process much more complex.
‘As the friction between the die and the specimen increas;es, thel
expansion of the hole decreases and eventually the hole begins to
contract, Fig. 2.10(c). For a sPecific geometry under certain

conditions of friction the hole may initially increase in
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FIG. 2.9 Stress distribution after 50% deformation [51].
| a) deformation mode; |
b) Or/k;
c) T /%
d)  9,/k;
.e) k*/k.
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diameter and then, as the compression pfoceeds, begin to
contract or begin to contract from the Qutsét of deformation,
depending upon the posiﬁion of neutrai‘Sgrface. The free
surface will barrel eithé}fﬁ;y again dépending upon the mode
of deformation. The two ﬁodes of deforﬁation are illustrated

in Fig. 2.10.

R T RN
B N SN (2)
T T AT AT T
L,
2 —

‘ (b)

FIG. 2.10 Ring Specimen (a); Deformation Modes (b) and (c).

2.4,1 Experimental calibration

As ofserved earlier, the riﬁg tests can be effedt-
ively used to quantify friction at thé tool/billet interface.
Male and Cockcroft E14] proposed a method to determine the
coefficient of friction by measuring the changes.iﬁ internal
diameter of the ring in compression, A set of experimentally

K] .
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determined calibration curves are shown in Fig. 2.11.
Admittedly, this is an interesting conqept'in as much as the
method of determining;Lﬁe ¢oefficient Qf'friction is independent
of the mechanical propeféié;;of the material and is dependent

only on the geometric configuration, hence has the great

100

90

80

70

60

DECREASE 0
IN INTERNAL
DIAMETER 20;
OF RING,

T 10

(a0}

1 1 1 1
] 10 20 30 40 50 60 70
DEFORMATION, “%

. FIG. 2.11 Experimental Calibration Curves ElA]
" for a ring of 6:3:2 ratio. (Outer diameter
= 19.05 mm, Inner diameter = 9.53 mm,
Height = 6.35 mm). '

advantage that no direct measurement of force is required,

thus eliminating most of the difficulties in compression
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testing at high'temperatures and high speeds.. However, when
this work was first published satisfactory theoretical analysis
of rings in compression was not available. Therefore Schroder

and Webster [54] anal?éiskﬁor the compression of solid disc

was used to compute theoretical averagélpressure during the

compression of rings under different conditions (valﬁes of W)
of friction. These were then used for the calibration of
experimental results. The need for this indirect method of

calibration, which is not entirely satisfactory, has now been

- eliminated as theoretical analyses of rings are available

\
' (Sections 2.4.2 and 2.4.3).

-

2.4,2 Upper bound solution without bulge |

Avitzur [56,57] in the first instance proposed an
upper bound solution assuming rigid plastic material, constant
shear factor 'm' to characterise fription conditions, and
neglecting non-uniform deformation of cylindrical elements.

He assumed a kinematically admissible velocity field as

=0, V

_z Z YV () .
. =0 Vr Vr(r,z) . , (2.6)

where T is the specimen height.

When appropriate boundary conditions are applied

this leads to an expression for power W as

. . Ri RI‘) RO
W = W(OO’ V; T_{" R—’ aﬁ-) (2- 7)
O .

The value of r_ that minimises this function for power is

considered to be actual. The value of r_ thus determined
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can be used to calculate average pressure as follows:

" 3(R_/R.)?
o= < 1 1n 0 L
H  2(1- R/R)"

0
o

D A
1+/1 +3(Ry/R,)

P ; |
%V‘ 1 {\/]?——)-‘ /(-—-) + 3(__)
o 1-(R,/R )2
| 2
4, — a_ 1 - (_)
. 3/"‘ ! ]}
where |
-1 - N/
(__ _V3_ 1 (R./R Y4x
R 2
0 \A(x - 1)[1 - (R,/R) x] (2.8

p ={—exp[ 021 - —-):H

- 3(R_/R.)?
—_— 1n 2 2
H™ 2(1 - Ri/Ro)

1+VL + 3R /R
R .

or when (XT§:> 5
P R R. R,
1 4 i4 A
= = > j1+%<§2) -j<-§l> +35(z)
o 1-(Ri/RO) ) N 0o )

+3i- —[1+( ‘.2( )]}

where Rn/Ro is found by successive approximations from



Rb- | Ry oy - |
2(1—1_1—(1 + -R—o- - Z-R—o-) o |
R, .| . (R/R)4+/3+(R /R )* |
i\2 n o n o
+.1n (F7) , = 0
SO (R /R )P4/3(R, /R )R _/R DY (2.9)

Ku&o ElB] aﬁéiyééd~deformatiéﬁ of hollow cylinders
assuming that the ring cénsis£s of unié‘deforming regions of
annular parts with triangularVcross—section. The sides of the
triangular sections which are lines of velocity discontinuity

are assumed to move as straight lines without changing their angle

T K//,before deformation
H

|
— ’ g 1 r
. 7 |

I . ,‘ v _J\ . t
| v after deformaticn

and .that the radial velocity component in each part is

assumed to be independent of the z-coordinate. The mode of
deformation is illustrated above. The velocity field derived
for this mode of deformation was then used to obtain an upper

bound solution

2.4.3 Equilibrium approach - Qithout<bulgg

Hawkyard and Johnson [ﬁ9:]proposed a solution from
stress equilibrium conditions. They determined calibration
(theoretical) combarable with that obtained experimentally in

[lA]. They also represented the position of neutral surface
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graphically, Fig. 2.12. This solution is'simpler than those
discussed in the previous section and describes the process

édequately if the bulge. is neglected._'

10-0
3-0
. 6-0
$+0
4-0
R,
3.0 _ _i
*a T R
R : N
_0 20
R. 1-8
i
(33
'_"
13
-2
AT
-
H
FIG. 2.12 Graphical representation of neutral

surfaces E59 , 6:3:2 ring.

Burgdorf E60] produced a similar solution assuming
constant coefficient of friction, insteéd of the constant |
friction factor used in E59]. It is observed that the
results of E59] agree more closely withvékperimental célib-
ration Elé]. Therefore it may be concluded that it is
better to describe the interface fricfion in the case of

upsetting by constant friction factor.
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2.4.4 Upper-bound with bulge

- Avitzur [:58] extended his solution ES?] to take into
account the bulge formétion at the free surface. He modified

the proposed velocity field as:

Vg = o0

v =-2Y.1:1- (EP-)2 e -bz/H | for 0<z<H/2

r . 2 H r e

Vv, o=V (%,2) (2.10)

| Constant 'A' can be determined from boundary conditions and

the parameter 'b' determines the bulge.

The total internal power w = ﬁi + Wf, where

R R :
@ o= a(V, 3, &, g5 b, G,) (2.11)
o
The extermnally supplied power
. 2 2 | .
w, = (RO - RiA)VPév .- _ : . {(2.12)

From equations (2.9) and (2.10) an expression for average

pressure can be derived as

Pav Ro Ro Rn ' '
—_— = f('ﬁ'j, — & b) | (2.13)

a o i o
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The wvalues chosen for Rn and b are ‘those- that min-

imise the relative pressure and thus the required power.

Hence from
o(P, ./ )
ob -

. RO
b("R—,
i o

b =

o
=

Final results are

Ro 1

(2.14)

(2.15)

3(Ro/Ri)2

then Rn < Ri and

(2.16)

1 +vV1+3(r /R4

e
Pav 3

0
0 R.
o} i,2
l-('R—)
)

IRnZ )
7
4
+A¥%f)-

R A R R LI
ik, 04

1+ 3(57) ()

n o n

R.
2
-1n (—l-

2 1

st )

1 +\/1 + 3(R0/Rn)4] }

1 +V1+ 3(Ri/Ro')“(Ro/Rn)4‘

R [ =R
I o4 i\4
:{Z(Ro) l:l' &) :|
4 n o

R R R : R R R N R
0.2 i 2 1 3 i3

R R 2
0 i b, b
- <R—n>(1"R—o>§ (1-2+%

) (2.17)
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when

or when

then
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o) |

b“[a[«——) a- g :| ‘1'_)]/{ [%(_)2[1 (_)3] ;
EI-T;H \/1+3(R/R)|} - E( )]

o _i42 n=2 . | |
: (Rn)z[l_(Ro) ]+1 Riﬁ (2.18)

: 2
OL&]'> 1 1n 3(R0/Ri)
= 2(1-Ri/Ro)

1 +-VGJ+3(RO/Ri)d

R

a3

Rl R <R and

p : —(—) '
éClJV + 1+3( +3(—') ("")
o 1- (R /R )2
B / o 4 v -
-1n (E_) R | — ~%(5)‘[1-
= S BT "R
0 R. R R D
i 10/1+3 () (22" ] V143"
o n - n ‘

R, , R R, R R_ éo 4 R 4. R 3"
@) |- @& ey Hog w3 TR R
(o] n 0 1 0 n . ¢ -

R R. 2
R [ I
ni o :
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where

Vg = 0 N |
by TV £ - an b Tz |
= (
v, b (— ) cos (=37 (2.20)
lLHSin(—z—')
b, T
Vo o=- v sin ( Z)
v b,TT H
. 1
231n(—§—)

where bl is the parameter which determines bulge.

In general, upper bound solutiomns are derived -
assuming Von Mises material. However; Lee and Altanm [61]
considered the deformation inlincreménts of small steps.to
account for;hérdening. For'each step a néw distribﬁtion of O

was computed and an average value’ﬁavg was found as follows:

5 - lfﬁdv ,. (2.21)
avg v o , v :
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2.4,5 Numerical solutions

Hill EGQ] proposed a generai metﬁod of analysis
where a class of Ve1001ty fields are chosen initially and the
best approximation taken ougAeventually. The chosen velocity
fleld must satisfy all klnemaplc candlglons. The chosen
velocity fieldlwili not necessarily satisfy statical require-~
ments and theréfore a criterion must be determined which may
be regarded as closely satisfying the statical conditions.
Lahothi and Kobayashi [63] applying this method proposed a

| class of velocity field as

R 2
RARTERE- RIS
v, = -B(2) - (2.22)
Vo = 0

and determined the unknown function @(z) as
Z . h

g(z) = j- exp(-azz)dz/ J- exp(-azz)dz (2.23)

where:

a = r dA J dA '
3+(R/)
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2.4.6 Other related work

Male et al E67] reviewed some,ef‘the models disc-
ussed so far amdreported to have foundithe Avitzur model
discussed in Section ilﬁ;l'fo_be the meef realistic as
.compared with experimentai reeults. Ie was also concluded
that the concept of defining interface friction by a constant
friction factor O to be better than the cencept of constant
coefficient of friction M. . The variation of friction factor
during deformation is shown in Fig. 2.13, Jain and Bramley

\[55] studied the effects of speed in a ring test and reported
.that the interface friction decreased with increase in speed
and that this effect was more pronounced when lubricants were
used. Abdul and Bramley'[b6] produced a nomogram to determine
stress/strain relationship from ring tests, which is an

interesting extension of the ring test.
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CHAPTER 3

NUMERICAL METHODS

T

Anaiytical ébiution; to govérning differential
equations of complex systems are either vin'lpossible or too difficult
to obtain. Hence it is frequéntly necéssary to use numerical
methods to obtain approximate.solutions. Usually solutions
are proposed in the form of a set of known functions with
érbitrary parameters which are then determined so as to satisfy
the equations as closely as required or a set of unknown
| functions are proposed from which the best function is eventually
taken.out. There are several methods by which approximate
solutions can be obtaiﬁed E75,80j. Generally, the_more power-
fulithe method is, the more cumbersome it is to handle. When-
ever possible it is best to adopt the simplest method that
describes the problem adequately. Advantages gained by usiﬁg
more elaborate methods will be more than offset by the effort,
time and computational facilities required and will be of
little help in practical situations.’»Fufthermore, methods
like finite elements have come to be ideptified with variat-
ional calculus where a functional is derived mathematically and
then minimised. In many cases such variational principle does
not exist or its existence is not obvious EBO] and direct

approaches are necessary.,



43,

As most problems can be defined by a set of govern-
ing equations and boundary conditions a direct approach through
the method of weighted residuals presents interesting
possibilities. As the method is basically proposing_a.
solution in the form of a seriesAit.is inherently capable of
converging to exact solution if sufficient number o£ terms are
included in the series E79]. As the solutions obtained by the
method of weighted residuals are oé apalytical form they are
~more useful than those obtaiﬁed by numerical integration and
usually require much less computing time [75]. If it is
necessary to use expansions of higher order to achieve desired
accuracy, it might be poss}ble to_gpply economisation techniques
E82].Considering all these, it wﬁuld seem that the method of
weighted residuals is suitable for_anélysing deformation
process éf metal in compression and is discussed more fully in

the following sectiomns.

3.1 THE METHOD OF WEIGHTED RESIDUALS

The method of weighted residuals is a generai method
to obtain solutions to the equations of changes in a system.
The procedure is to propose an approximate solution in the
fofm:of a sét of known trial functions with undetermined free

parameters. This proposed solution when substituted in the
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governing equation results in a "residual" or "error" function.
The free parameters are then determined by forcing this

residual function to vanish in an average semnse.

Consider a differential eqﬁation ESZJ:

N(u) - 92 = 0 x € V . (3.1)

where u = u(x,t), N(-) is a general differential operator
involving spatial derivatives of 'u'. V is the three-

dimensional domain with a boundary s and t is the time.

Let us suppose the initial and boundary conditions

are:

u(x,0) uo(x) X 68 V (3.2)

u(x,t) fs(x,t) X €6 s (3.3)

Assume a trial solution
‘ N

W) = u Gt) + ) € (8 Got) (3.4)
i=1

where the approximating functions u, are required to satisfy

the boundary condition:
us(x,t) = fs(x,t) and u, =0 - x 6 s " (3.5)

Substituting equation (3.4) into (3.1) we obtain the residual

function



45,

ot

R(eY) = N@) - %‘—15— £ 0 (3.6)

If the assumed trial functions were the exact
solution, then the residual will be zero. To approximate this
ideal it is mnecessary to force the residual to vanish in an
average sense over the entire doﬁéin of interest. This is
done by selecting a set of weighting functions wj which are

orthogonal to the residual functions such that
<:WjRj3> =0 j = 1(1)N (3.7)
and then the weighted integrals are set to zero as

JW.R.dV = 0 | ’ (3.8)
v 3 d -

3.2 DIFFERENT METHODS OF WEIGHTING

There are several ways in which the weighting
functions may be chosen, each of which corresponds to a diff-
erent criterion, Once the choice is made, equation (3.4) is
reduced to a system of first braer equations in N unknowns

Ci(t). Some of the more widely used methods are:

i) Collocation

The Dirac delta function 5(x-x1) is used as the

weighting function so:
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I
o

\‘[Ié(x—xj)Rdv = R|, (3.9)

3

i.e., the residual at specified'collocation point j is =zero.
Therefore as many collocation pointsvmust be chosen as there
are free parémeters. However, there exists no rationale E84]
for selecting collocation points. In the absence of any
special reason, equally sPéced collocation points are usually

~chosen.

ii) Subdomain Method

The domain V is divided into as many subdomains Vj

as there are free parameters and the weighting functions are

chosen as
1 X € V.,
W, = o
J 0 x g V
and
f W.Rd4dV = 0 (3.10)
v, J
]

Here again it is perhaps best to select uniformly spaced

subdomains.

iii) Galerkin Method

The weighting functions are chosen to be the trial

function itself in Wj = Cj and:
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J—c. RdVv = 0 (3.11)
v J
iv) Least Squares Method

The residual is minimised with respect to the free

parameters and hence the weighting function is g%i and:

oC

-6_R_j 22ave o : (3.12)
jVv

All these four methods are applied to a simple

problem and compared in Section 3.4.

3.3 CHOICE OF TRIAL FUNCTIONS

Thé choice of trial functions.is somewhat arbitrary.
The essential condition is that it must be a complete set so
that when sufficient number of terms are included in them,
the solution will converge to the exact solution. Polynomials
are a complete set in as much as any continuous function can
be expanded in terms of the polynomials. They are also easy
to handle., The trial functions must be linearly independent.
Although it is not necessary for them to be linear in free
parameters, they are usually chosen to be so to permit easy
.com?utation. The trial functions must be chosen to satisfy
the governing equation and boundafy conditions as closely as

possible without unduly complicating the functions. It is not
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necessary to satisfy all the boundary conditions in ome set
of trial functions as they can be treated separately, in
which case the total weighted résidual function will be the
sum of individual weighted residual.functions arising from
separation, as:

GliijdV+G2.JWdes-'= 0 (3.13)
G, and G, are constants known as "weighting factors'. The
weighting factors are different from the orthogonalising
weighting functions discussed in the previous section. The
factors are particularly useful when in the domain of interest
only a small proportion of points lie on the boundary one may
assign higher wéighting factor to ensure that the significance
of'the particular boundary condition is not lost in the
solution. Any symmetry conditions that may exist in the
problem must also be satisfied by the trial functioms.

Finally, it is necessary to ensure that the trial function has

no bias in any one particular coordinate direction.

Apart from satisfying these requirements, the choice
of the form of trial function is very much left to the
intuition and experience of the user. Often the trial
functions are based on the simplified amalytical solutiomns

to related problems.
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3.4 APPLICATION OF DIFFERENT METHODS OF WEIGHTING

In order to illustrate the various methods of
selecting weighting functions and to compare them, let us
consider the Maxwell's rheological model [83] for the visco-

elastic solid
0 = EE + puE ' (3.14)

which may be schematically represented as

E E - Young's Modulus

L = Viscosity of the damping

The exact solution to this problem is
€ = %[1 - e'Et/“:I | (3.15)
where t is time.

To formulate the weighted residual solution we have

the governing differential equation

de
H3g + E&(t) -0 = 0 | (3.16)
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and the boundary condition

e(t) = 0]=0 | | . (3.17)

Let us consider the time interval
o<t<l1l

Assume a trial function which satisfies the boundary condition

as
D

£ = Zcitl E (3.18)

i=1

Substituting (3.18) in (3.16) we obtain the residual function

as in (3.6)
n n
R(t) =W ciitl'l + E‘L—ci tt-0# 0
i=1 i=1
or _
- Z(Mi ey ET)C, | = G (3.19)
i=1

Now we can determine the unknown'Ci for i = 1(1)n by applying

different weighting functions as follows:

3.4.1 Collocation Method

As we are considering the domain 0 <t <1 we can
choose 'n' number of collocation points at equal intervals of

el Applylng the criterion (3.9) we have vy o= G(t-tj) and
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T
_ D oLi-1 1 oA =
‘[z(’*itj +Etj)Ci] 0g=0
i=1

_ 1 l . n | ,
for £, = o3TGTT)nF1 (3.20)

Thus we have a system of n number of equations which can be

solved to determine unknown parameters.

3.4,2 Subdomain Method

Here the subdomain 0 <t <1 is divided into equally
spaced subdomains of %. Applying the criterion (3.10) we have
1 t € j

I lo t € j

and

Rj'= [Z(pt + Et )c -O:ldt-o

i+l i+l

[Z(u(t SR (—i—i—;{—pci:l

- O(t -t ) =0 for t,= %(%)1 (3.21)

This system of equations can mnow be solved to determine the

free parameters,
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3.4.3 Galerkin Method

Applying criterion (3.11) we have

and

1 n A :
= .[[(E (Miti-l+Eti)Ci)tj - OtJ:’dt= 0
0=
n 0 :
= : i E - —O—- =
- [ Z(i+j + i+j+1)ci] j+1
i=1

for j=1(1)n o (3.22)

This system of equations can now be solved to determine the

free parameters.

3.4.4 Least Square Method

Applying criterion (3.12) we have

Rj = BA ‘f R” dt

_ zjk_dt

2 j[Z(u e Leehye, -CE, [MJ 3" 1-rEtJ:ldt 0
=[Z(1+J +UE + f‘jil)ci] - O +E) =

for j = 1(1)n | | (3.23)
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%

Error

FIG. 3.1

SOLUTION BY COLLOCATION METHOD
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%

Error

FIG., 3.2

SOLUTION BY SUBDOMAIN METHOD
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%

Error

FIG. 3.3

SOLUTION BY GALERKIN METHOD
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yA
Error

FIG., 3.4

SOLUTION BY LEAST SQUARE METHOD
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3.5 COMPARISON OF DIFFERENT METHODS OF WEIGHTING

Solutions to equations (3.20) to (3.23) are
represented graphically in Fig. 3.1 to Fig. 3.4 for n = 2, 3
and 4. It is clearly seen that all of them rapidly converge
to exact solutions and, as suggested b? Finlayson [29:], the
choice of weighting function is not critical as long as
sufficiently high order expansions are used in the trial
function. It is observed that ﬁhe errors are more evenly
distributed in the method of least squares and also the mean
square residual has theoretical significance as error bounds
can sometimes be determined in terms of the residual. Even
when error bounds cannot be determined, the mean square
residual can be regarded as a measure of accuracy of the

solution.

Ay
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o CHAPTER 4

DEFORMATION IN UPSETTING -
- THEORETICAL CONSIDERATIONS

The elementé:dfgcqntinuum meghanics E85,86],
‘theories of plasticify'[87—89:]and heat transfer [90-92] that

are relevant to this work are discussed in this chapter.
’ Ve

4.1 STRESS FIELD

As the subject matter is a study of axisymetric
\ upsetting of rings and cylinders, let us consider the stresses
acting on a cylindrical element as in Fig. 4.1.

¥4

FIG. 4.1 Typical Cylindrical Element.

The distribution of stress im the continuum is defined by

Cauchy's stress tensor
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01 %5 93
0. =la. o @ (4.1)

ij |21 22 23

Q
Q

o]
31 32 33

- —

is a Cartesian system of coordinates. This second order

tensor is symmetric and has the property

= 0 ' '
0, = O (4.2)

The principal invariants of this tensor are:

I = )

1 ii

o= X - 1 '

12 L oii-ojj L Qij Oij (4.3)
13 = det Eoij:l

A tensor defined as the ‘'deviatoric tensor' has the property
that its first invariant vanishes. The stress tensor C&j can
be split into two tensors, one of which is the deviatoric

tensor and the other is the spherical tensor, Thus

0. = o, +0_0,, | (4.4)
1] 1] m 1j .

where o = %0,
m - ii

and 6ij is Kronecker delta,

hence the deviatoric stress tensor is

g'., = 0..-0_b.. (4.5)
1] 1] m 1]
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whose principal invariants are

Jl = Oii = 0
= L '
J2 L Gij O’ij . (4.6)

J3 = det [:OJ!_J.]

In a cylindrical coordinate system (r, ©, z) for this element

in Fig. 4.1
O 0 T_]
T rz
' =1
i A | (4.7)
0 ag
| 2r 3
due to symetry
Yo = Tor = Yoz T gz T 0
and
2
Rt ) oy
J, =-(0]0y + 040, + 0,00) - T, (4.8)
Equivalent stress is defined as
g = \/3J2 (4.9)

4,1.1 Stress Function

The equilibrium of stresses acting on the element

is given by
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od. . i=1, 2, 3
a—l-l +F., = 0 (4.10)
%3 J j =1, 2, 3

where F is the body force.

The body forces may be neglected for reasons expl-
ained in a later section. It is possible to select two scalar

functions called 'stress functions' ¢l and ¢2 such that

2
¢ @
6, = T—5+= = 0
dr~ =
%] or | X
a2¢ : (4.11)
g, = *—%
z r ar2
82¢

which will automatically satisfy egquilibrium of stresses in
axisymetric conditions

od aJ g--0

Z rz r 8 _
3r |~ 8z T x =0 |
aoe : ' A
S0 - 0 | (4.12)
0J o0 J

z z rz

4.2 STRAIN AND STRAIN RATE FIELDS

Cauchy's strain tensor is given by
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oi. du.

= L(—2L 4 1 "
€13 2(axj * 5 (4.13)

where uij is displacement functions.

In cylindrical coordinates, and axisymetry

i3 € 0 (4.14)

The strain rate is defined as .

asi.
sij = _SEl (4.15)

where t is the time.

This in terms of velocities of displacement vij is

= ! = X(—=
€53 2(axi +3=) (4.16)

The assumption that the material is incompressible leads to
£, = 0 (4.17)

The strain rate tensor can also be expressed as deviatoric

and spherical components as
e, = €. -¢_0.. (4.18)

whose principal invariants are
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— ' —
I1 Eii 0
= L& g '
. = ~t
13 det[ﬁij]

In axisymetry

Y - - | LA Ry | bl | - | - ’
I, = -(€lgg + €4, tEIE]) tEL (4.20) .

Equivalent strain rate is defined as

> 2
£ = — \/12 (4.21)
V3 :
4,2.1 Stream Function

Any strain rate field to be kinematically admissible

the continuity equation must be satisfied, which 1is

aur u auz
'-5?+T+_a_é—.= 0 . (4.22)

in cylindrical coordinates and in axisymetry.

It is possible to choose a stream function ¢ such

that
_ 1y
Ve T T 3z
(4.23)
1 ab
v —_— am Sy e—
z r Or

which will satisfy equation (&.21).
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Expanding equation (4.13) in terms of (4:22) we

have _
r or ‘r.oz’ or
: 1 a9 VY
€ = — =X = —
o r 0z r
(4.24)
e =-24d QQ) - EZE\
2 0z'r Or 0z
s o_ooad _aadh X %%
rz dz'r Oz or'r or 0z or
4.3 YIELD CRITERION

For an isotropic material the scalar function Oij

can be expressed in terms of its principal invariants as

f(oij) = £y Iy J3)
Assuming constancy of volume
f(dij) = £(J595) (g.zs)

Von Mises suggested that yielding of thé.material takes place

when the shear energy reaches a maximum. This is given by

or

¥0!.0, -k~ = 0 | (4.26)

where k is a scalar function depending upon the plastic

strain history of the material.

R
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b.b4 STRESS STRAIN RELATIONSHIP

An assumption of the infinitesimal elasto plastic

theory is that the strain €ij can be expressed as

E P

€.. =€, +€,, | (4.27)
ij ij ij : - .
E A
where Eij is the elastic component,
and Ezj is the plastic component.

In cases where the plastic strains are much larger

 than the elastic strains the elastic component may be neglected

and then
_ P
Eij = Sij (4.28)
. " . P ' .
and €.. = €., (4.29)
iy ij

For a material that hardens isotropically

P oF -
de;, = Gagide ‘ (4.30)

Applying the yield criterion (4.26) this can be expressed

in terms of strain rates

P ' . _ .
€15 = 004 | | (4.31)
where A = @ OF _ -EZ-
: - ot k

Thus we obtain the Prandtl-Reuss relationship
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€. . (4.32)

4.5 WORK HARDENING

As Von Mises yield criterion has been adopted

G = Y = ﬁk ' | (4-33)

This is diagrammatically represented in Fig. 4.2.

SloPé 0f_6
Ck = Ck(E)

o
|

FIG, 4.2 Work Hardening.



67.
From equation (4.21) we have
CE= £ j\/Iz a (4.34)
3 N

Assuming O = O(€) we have' -

g = G + 0() - (4.35)
. g :

a5 _ 40 g

at & " dt

so

do = Ck€ dt

¢, é /T, d (4.36)

In finite increments

AG = i.ck.ﬁ'At | (4.37)
2
V3
4.6 STRAIN RATE SENSITIVITY

The strain rate sensitivity of the material is

represented in Fig. 4.3,

Now, we can express 0 = O(€) 4i5(é) (4.38)

Hence

2
ﬁ .
=éﬁ;(ckgt+ m) (4.39)
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arc tan m

0 €
FIG., 4.3 Strain Rate Sensitivity.

4.7 INERTIA FORCES AND STRESS WAVE PROPAGATION

For the purpose of this study iﬁ is assumed that
fhe stress waves propagate through thé specimen in negligible
time and therefore their‘effects may»be ignored. This is a
reasonable assumption, since the velociﬁiés of stress waves

are high enough to establish settled conditions in negligible
‘time [40].

As briefly mentioned invChapter 2 , analyses have
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been carried out taking into account the inmertia effects.
However, Lippman_[39] proposed three dimensionless quantities

to determine whether the inerﬁia effect should be considered.

They are:
o p v
~ 240 € :
0 \
2
_ bv
B = 5% (4.40)
0
y - B3 1
40 2 2€
o
; where P = density of the material,
\ . . -
| .
C% = uniaxial yield stress,
H = height of the billet,
AH = reduction in height,
€ = AH/H,

V = wvelocity of the platen. v -

It is suggested that if these quantities are <lO-2 the inertia
effects may be neglected considering that any error introduced

by neglecting these effects will be < 1%.

Applying these criteria the inertia effects are

negligible as follows E31]:

‘Copper O = 600 MN/m’
g = 0.1 (incréments)
V= 15m/s

D = 8940 kg@m®



lau
1B
'Yl

Aluminium Oo

0.15 x 10~2

0.9 x 1072

3.32 x 10”2

400 MN/m2

€ = 0.1 (incremental)
V= 15m/s
3

P = 2816 kg/m
ja) = 0.088 x 1077
IB| = 0.264 x 10~2
IVl = 0.924 x 1072

4.8. POWER OF DEFORMATION

The power of plastic deformation is given by

Jo!. ef. av
1] 71

kT, av
of LJJ%€P £
\"4

() ij ij

\
o
\
2
/3

Friction loss is given by

W

j[frv dr de
r

70.

(4.41)

(4.42)
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4.9 TEMPERATURE FIELD

The effects of temperature on the flow stress are

shown in Fig. 4.4, Thévwork due to plaétic deformation and

T
T,
I3
£

FIG. 4.4 Effects of Temperature.

friction appears as heat. 1In deformation at high sPeedé there
is little time for this heat to be dissipated to surrounding |
medium and therefore localised heating takes place. This
localised temperature rise results in thermal softenihg. To
be able to account for this it is necessary to determine the

‘temperature distribution in the billet material accounting for
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the heat conducted to the dies and heat lost due to convection

at the free surfaces.

4,9.1 Heat accumuiétéd} 2

Let us consider a body of volume V in a fixed
coordinate system (x,y,z) of reference where a scalar temper-

ature field is defined as

T = T(x,¥,2,t) ' (4.43)

X v = v(x,y,z)

The heat contained in the mass dm

dh C dmT



ho o= 'V‘I_gpcrdv | o (444)
. v BTN

where ¢ is the specific heat,

P is density' .(dr_n/dV) .

The derivative with respect to time

dh {
at dt pCTav
= fj! CD — dV

as

dT _ 9T.dx ,oT.dy , 8T.dz  aT

dt dx  dt ox dt oz dt ot

dh _ =y , 0T

T (grad. TXV) + Fn

—(—l-b = j:” Cp (9-:1‘- + V grad T)dv - (4.45)

dt v ot : '
4.9.2 Heat conducted through the suwface

The amount of heat transferred through the surface

in scme direction n is

2 . §
d"h oT A : :
el : : L, 4
dsdt * on (4. 6).
d°n oT

e D

dsdt = “n on

wherea kp is the thermal conductivity in divection n. For an

isotropic material k11 = k which is the same in all directions,
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y dh'_ f oT
. ° dt - J’k ds

[ «Vrnas
s

If k.@_'f;‘&?s‘ . (4.47)
S : : ' .

Applying Gauss theorem we have

Q-I-‘V = m div(kV T)av
v

dt
= [[J xv%rav (4.48)
\'
'4.9.3 Heat generated in the body

If the heat generatéd in the body due to plastic

work is qg per unit volume then we have

ho= I o av (4.49)
v & .
2. - *
i ( qg dv (4f50)
\Y
where a = g' ¢
& ij 13
4.9.4 Heat generated at the surface N

If the heat generated at the surface due to friction

is qg per unit surface

g qg 4 | - (4.51)
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- [fa 0

Ins

Applying Gauss theorem

R CROUC e

For axisymetry

\In this case

4.9.5

s - (8q ) N (), . (3q,),
s or T 0z
ggn = Tv. (0,0,1)
. aIvr :
div g = 33 (4.53)

Heat convection at the free surface

The heat loss at the free surface due to convection

is given by

where ot
n
surface, h

temperature at the free surface and T

&, = b1y I 7

is the gradient in the direction normal to the

£ is the film coefficient of the material, T is the

F is the temperature of

the surrounding medium.
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4.9.6 Temperature distribution

Now, the heat contained in the body (4.43) can be
equated to the heat generated (4.48) and (4.50) and heat

conducted through the surface (4.46)u Thus

J‘Jlf cp(g— + gradT.¥)dv = U KV Zav + m 4,4V

+ ‘UT d1vc1dV (4.55)

or

H[ [-CD(g—T + gradT.V) + KV 2 + q + diva]dv= 0
v t .8 e

As this is valid for any volume the function itself must _

vanish.
. q diva _
. . V2T + —Ifi + - B( L gradT.V) =
where B = %g (4.56)

Expressing (4.56) in cylindrical coordinates and applying

equation (4.53) we have the governing differential equation as

2 2 q dtlv
9T _ 98T _ (1 ._ oT . g, 1 __r_
B +r+az+( BV) szﬁz x Tk 3 -0
(4.57)

and the boundary condition

Gk = h(T-Tp) - - (4.58)
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CHAPTER 5

SOLUTION BY WEIGHTED RESIDUALS

As éxplained?in Chapter III,:Ehe method of weighted
residuals provides a viégié gpproach té‘obtaining numerical
solutions to complex problems; Differént weighting functions
were applied tg study the behaviour of visco elastic solids
over a continuous domain. However, the domain can also be
discretised into a numbef of nodal points, applying the

"residual function and the weighting function to each nodal

\points and minimising their sum as shown in the later sections

of this chapter.

Steck [52:]applied this discrete method of weighted
'residuals (least squares) to obtain velocity and stress field
during compression of cylindrical billets. His results were
shown in Fig. 2.9. The formulation of the problem is discuésed
here. The continuum was discretised as shown in Fig. 5.1.

2

| SO AP0 Ot Al 424224

W

|

n
.
1
'__&d_'—”

o A P o /I /Y

FIG. 5.1 Discretized Continuum.
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Stream and stress functions were pr0posed as follows:

‘7
2 2m 2n-1
——r z + (z -h )Z Z T (5.1)
R 5.0
1]
> )
e e 5.
Paq -

where A , B.. and C__ are unknown parameters. From equation
mn’ Tij Pq

¢

Il

2

2

(5.1) the following can be obtained:

Er = Er(r’ 2, Amn
€. = €.(xr, z, A_)
e -9 . mn (5.4)
EZ = Ez(r’ Z, Amn)
E.:rz = Erz(r’ Zs Amn)
1, = Iz(r, z, Amn)

. = Or(r, z, Bij, cpq)

Oy = Oe(r, z, Cpq)

g, = 0,(x, z, By,) (5.5)
4trz - Irz(z’ s Bij)

Op = Oplts 25 Byys C )

Applying stress strain relationship equation (4.32), the

following error functions were obtained:
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F]_ = (]r(r, Z’Bij’cpq) = Om(r’z’Bij’cpq)
-k ] -
E(r’z’Amn)‘ C - . (5'7)

«Ié(r, z!“-/_&mn)

Similarly, constancy of Vélume was assumed and the two remaining

independent error functions Fz and F3 were also obtained from

equations (5.4) and (5.5). Applying the foilowing boundary

conditions:

T, = CVr z=h (5.8)
where C is a constant

Op = O|r=d/z (5.9)

two more error functioms F4 and F5 were obtained. It was
suggested that these equations constitute residual functiomns
as in equation (3.6 ) and by applying weighting functiomns
equation (3.12) the unknown parameters A _, B.. and C can

mn’ Tij Pq
be determined. As these equations are non-linear, an iterative
procedure illustrated in Fig. 5.2 was employed. The process
of deformation was analysed step by step incrementally

accounting for the strain hardening as explained in Section

4.5 and updating the nodal coordinates in each step.

Considerable time and effort was spent in trying
to reproduce the results obtained by Steck. Two separate

computer programmes were developed, one following the iterative
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procedure illusﬁrated in Fig., 5.2 and the.othér a different
iterative procedure ESi] also suggested:by.Steck. Neither of
these programmes convgrged to'solution; Botﬁ programmes
produced idenfical reéﬁiﬁé after the fifst step of iterationm
where I2 is assumed to be equél to unify and the system is
equivalept to viscous fluid with viscosity M= k/2. This may
be considered as sufficient proof that thére were .no prog-
ramming errors. The programmes were tried for various
geometry and friction conditions and in no case could meaningful
\ results be obtained. Althoﬁgh during early attempts for a
particular geometry (which happened to be a very thin disc)
the results ééemed reasonable, they have now been discarded as

being unreliable on account of the following explanation.

It is observed that this formulation of the problem
is not satisfactory. Equation (5.7) is not the same as
residual function, equation (3. 6). -It appears as though two
sets of approximating functions with unknown parameters.were
proposed for the same quantity and thénlﬁhe parameters were
determined minimising the difference betweeﬁ these two sets

of approximating functions. ‘This can be expressed as follows:

A0 - (0 - [ CGao.

where 7\=. A(a).



g..-ke,. =0
1] 1]
& Boundary Conditions

. Determine by MWR
A, B and C.

Calculate
12==12(r,z,Amn)

4

%, K éij - 0
Vi -

A & Boundary Conditions

Determine by MWR
A, B and C.

Is
< error

Yes

A

Z

(

NEXT STEP

FIG. 5.2 Iterative Procedure [52:] .
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Given X and Y it is possible to determine‘sevéral sets of A

and B satisfying the réquirementsf MAthemétically [93] there

is no reason why any Qfﬂthese'solutiohé shouid be considered
unique unless.a crité£ioﬁfw1th a physiégi meaning is established.
Therefore it would seem that this appréach is not very sound.

It is possible.to get around this difficulty by obtaining

strain rate field through a predetermined‘velocity field

(thch can be obtained by using some other technique discussed

in Section 2.4) and construct residual functions of the form

Oij(r,z,B

where K;j is a known constant Kk éij'
vi,

5.1 METHOD TO DETERMINE STRESS FIELDS

The modified approach mentioned above is applied to'
obtain stress fields during deformation of rings and it is |
then adopted to analyse the deformation of solid billeté. The
velocity of deformation and friétibnal é&nditions are two |
variable parameters of the process which‘wiil enable different

conditions to be analysed.

5.1.1 Premises

The following conditions are held to be valid:
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The material is incompressible.
The material is isotropic.
The material work hardens as in equation (4.39).

The elastic strains are small in comparison

with plastic strains and.can be neglected.

The stress waves propagate through the specimen

in negligible time.
The inertia effects are not significant.

The frictional stress at-the tool/billet inter-
face is assumed to be proportional to the shear yield

stress of the material.

The elements of the forging machine and the
anvil are considered to be rigid and statiomary at all

times,.

The process of deformation and simultaneous

heat generation is considered to take place in steps of

small time interval.
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5.1.2 Discretisation

The platen and the specimen are divided into a
number of nodal points-as shown in Fig. 5.3. Due to symmetry

only one-quarter of the specimen and platen is considered.

5.1.3 Velocity and Strain Rate Fields

The different forms of velocity fields that have
been proposed were discusséd in Chapter 2. Male et al [57]
~analysed these proposed velocity fields and reported that
\Avitzur's solution (Section 2.4.4) agreed more closely'with
experimental results. Avitzur's solution is for a rigid,
perfectly plastic material, so for a strain hardening material
the .solution is accurate on the rate of formation of the bulge
only at the onset of deformation. It wasbassumed that any
bulge that may exist during deformation in the ring does not
influence the velocity field in othef parts of the ring, and
% .
for theoretical calibration of the ring test only the non-
bulged rectangular portion of the riﬁg wés considered in each
increment of compression. As only the recténgular portion of
the ring is considered in each increment, Avitzur's solution
(Section 2.4.2) for.determining the Eéutral surface is Vﬁlid;
which was then used to determine the bulge parameter and the

velocity field. For this investigation this method was

adopted as follows:



- Nodal point

z Platen numbers
! / 3
RN
< B 3
| 2
9 71' 61 5 88
G A
B 5
ﬂ,
3 ~. .
Specimen
A . ..1- ]-_Q_.). r
- 2.38 ol 4,76 2.38
X Boundary Surfaces
Dimensions in mm,
FIG. 5.3 " Mesh and Boundary Surfaces for Ring Specimen.

."G8
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(a)

(b)

X e

FIG. 5.4

Deformation
Compression.

Modes of Rihg in
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The two possible deformation modes are shown in
Fig. 5.4. For mode 'a', from equation (2. 8 ) we have,
when Rn <R

J2:
1 3(R,/R)

< 1n -
2(1‘R./R') - Al
1o l+\/1+3(RQ/Ri)/+

ave 1 /1+@<Rﬁ R
Oo ' (l;(R:.L/Ro)2 ) R, R

+ ——/_OL— 1- (—) :l)

= IS

- (5.12)

and

4 2
where (-Rﬂ)2 = 1-(Ri/Ro) - E
R- 2
© \/X(x-l)[l-(Ri/Ro)AXJ
&, R, R, %'2'
X =g exp -G.?(l--R—) (5.13)
_ 1 .O_ ) . | |

From equation (2.18)
- a[%é—:)z[l-(l;—i)ﬂ-[l -E—O]]} %[%(%)2[142—2)2:[ -
[ -—;:lj' \/l+3(R /R )" [%(—>{ (_):l <—-> [l- |
: ‘<§—i>2]““r<—ﬂ - '<5-14> |




For mode 'b', from equation (2.9 ), when Ri‘§ RHSQ.R ,

\2
R 3(R/R,)

o 2(1-R; /R y 1
: o 1+/1+3(R /R )

88,

(o)

(5.15)

P .
-
o 1- (R /R )

2
+-——cx 1+( ) 2( 2)
3/3 H [ R %o :J

where Rn/Ro is found by successive approximation from
L} »

R, R, R <
a?(l i-ak 22=)
(o) (o)
R (R_/R )2+/3+(R /R )4
i2 n o n o
+1n (i-)

°© (R /R)Z4/3(R,/R)*+(R /R )"

As a first approximation,

R 2/§0tR0/H (i+Ri/R°)(RO/Ri)2-1

8
= = 1+

}= 0 (5.16)

2
o (R /R.)°-1 | 2/3‘0LR0/H

From equation (2.19)

-1



‘The velocity field is glven by

where

\

r,z

It

I

. -bz/H :
bV
zHT [1 G—)] 4#2

l-e bz/H
—b/2

\'/

-(3)

l-e

platen relative velocity,

nodal coordinates.,

. This satisfies the boundary condition

v
5/ z=Hj)
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(5.18)

(5{19)

(5.20)

(5.21)

(5.22)

strain rate field (4.24) can be obtained as

b
4

|
slo
mi<
'—J
]
P
[
g

(I (EE)Z_ M
H| r’ 1. e-b/2

R .= e-bz/H I
dy-eb/2

(5.23)

(5.24)

(5.25)

(5;26)‘
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Hence for any nodal point the principal invariant of the

' Shoar
strain rate tensor I2 can be determined and K, the meaq\yield
stress, is the same at- all points at the .onset of deform~

ation. Given these two, one can estimate the stress field by

the méthod of weighted residuals.

5.1.4 Governing equations and boundary conditions

The Prandtl-Reuss relationship (4.32) can be written

as

Oy =0y 0;5 = _B_éij L (5.27)
.VIZ
The. boundary conditions are
T = Ok n e 2
Tz
Or = 0 _ -_ n 6 [6
where A is a constant, (5.28)

n is.any nodal point.

This leads to governing equations

k .
Qr " On T =& 7 0
Vi,
k N
0, -0 =~——¢€, = 0
4] m e
V1,
C;z-'Ommms/lS:Ez - O(
I
2
- ) |
T, - —€ = 0 (5.29)
rz rz
Vi,
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and boundary conditions

tr +0k = 0
2 . (5.29)

g, = 0

These equations are comparable to equations (3.16)and (3.17).
As constancy of volume is assumed, the equation corresponding

to (GZ - Om) need not be considered.

5.1.5 Residual functions

To obtain a solution for equations (5.29) it is
necessary to-select a set of trial functions which can be
used to construct this residﬁal function. As already:seen,
stress functions ¢l and ¢2 selected according to equation
(4.11) will satisfy the equilibrium conditions (4.12). There-

fore ¢l_and ¢2 are chosen as trial functions as below:

D E -
_ i 3.3 : 2e-1 _2d
g, =-Fkr + E E Bie T 2 (5.30)

P - -
EE: zf: ¢ 2Pl 2 | - (5.31)
Pq N

Applying équation (4.11) we have

D E | ” P o
- 2e-2 2_ 2d-2 2p-2.2q
o= E E Bder (4d"=-2d)z + E Cpqr z

- (5.32)

P : -
_ _13y-.2P=2_2q
O = E E -Cpq(2p r z (5.33)

g,
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Q
i

. A
- f3k+ Z ZBde(ze-l)(ze-z)rze“*ZZd (5.34)

D E o
T = Z ngezd(2é¥1)rze'322d“l (5.35)

- Obviously the functions ﬁi:égq ¢2 are ¢hosen to be polynomial
éxpressions as they satisfy the requireﬁent that the trial
function should be a complete set and they are relatively
easy to handle. The index of r is (2e-1) and that of z is 2d
éo that the reéulting functions for Or and Oé are even. This
is a necessary condition for.axisymétry, i.e. the functions
\are identical for negative and positive values of r and z.

The expression for Oé will satisfy the condition that

oz =‘-/§k|r=o. It is also'neéessary that Oi is a function z
alone when r = 0 and 02 is a function of r alone when z = 0.
This can be achieved by making the corresponding indices go
through zero. This will, however, lead to difficulty in comp-
utation as some of the terms will be:of tﬁe form OO. This can
be overcome by replacing the values of r and z when they are
equal to zero by a very small value (say'lO-}lO). Any error
resulting from this adjustment will bé insignifiéant and may

be ignored.

Having satisfied all the requirements a set of
residual functions can be assembled for each generic nodal

point n as follows:
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Rln = Gr(rn’zn’Bde’Cpq)-qn(rn’zn’Bde’Cpq)
-k ¢ o (5.36)
7~ T . _ :
2.
| 6. B k ¢ (5.3
RZn = (rn’zn’cpq)-g (1‘ ’ nPde’CPq)-Tz 9( -37)
Ry =T (r 2 ,Bde)—F ez (5.38)
- -d n 6 2
R4n Irz(rn’zn’Bde) (;k .0 € (5.39)
R5n = (rn,zn,Cpq) n € [6 (5.40)

\The sum total of the residual over the entire discretised

domain

M

N _
RT = E E GmRmn(rn’zn’Bde’Cpq) (5.41)

m=1 n=1
where G is the weighting factor discussed in Section (3.3).
The nodal points lying on the surfaces 2+ 16 are relatively
few., The significance of bounda;y cgnditions associated with
these may be lost in this solution. Theréfore the weighﬁing

factors Gm are determined as

¢ = X N = total number of nodal points,
m Nm N _=number of nodal points on
the boundary. (5.42)

The total residual RT when expanded will be of the form

R, = AiXi +C >0 for i = 1(1)k (5.43)
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where k = the total number of free parameters,
Ai replac§s Bde and Cpq’

C is' the constant term.

5.1.6 Solution (rings)

Given a residual function R = R(Ap), a suitable
.weighting function can be chosen to force the residual to be
zero in an average sense over the domain of interest. Applying
the criterion (3.12) we have

® J 2 o o

= R7(A) = 0 | (5.44)

p V

- -
-

In a discrete domain this can be expressed as

N b .
3 2 _
a. ) Ri(ay) =0 (5.45)
P 1= :
R 8 :
= S where R, = E Ri(Ap) (5.46)
. P T
From equation (5.43) we have
RT = Aixi + C
2 : 2 _
R.“ = A A XX, + 2CA.X, + C (5.47)
T i3)1i7j i1 ‘
aRTZ‘ _
—_— =0, AXX. +0. A. X, X + 2CX
aAp 61,t=o:| P ] 6Jp ii'p P
 ="2A.X.X +2CX = 0 . ‘ (5.48)
110p P

or-
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i%i%p p -

This system of equations can be solved to determine the
unknown free parameters Ai' Once these are determined the
stress field can be determined from‘equations (5.32) to
(5.35). The complete sequence is summarised in the form of
a flow chart in Fig. 5.5, which corresponds to the computer

programme given in Appendix A.

5.1.7 Solution (solid billets)

The solution for a stress field during upsetting of
- solid billets is identical to that of rings except that the
in;ide radius and neutral surface are equal to zero. The
specimen and the dies are divided into a number of nodal

points as shown in Fig. 5.6.

'For R; =R =0, equation (2.18) reduces to
4(@//3) (b/R )
b = o . A (5.50)
1+ 3 —"-(h/Ro)
. V3
The velocity field becomes

-bz/h
b rwe
v, =7-- - (5.51)
r 4 1-e b/2
-bz/h
l-e
v = =(5)— - (5.52)
z 2 l-e b/2

v, = 0 . (5.53)
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The strain rate field is given by

€ - %%%;é (5.54)
“0 = %H% (5.35)
3 =-%%% | (5.56)
€, =-%2ﬁ%r—le_—;b_zb—//2 (5.57)

The rest of the procedure is the same as in the case of

rings.

5.2 METHOD TO DETERMINE TEMPERATURE FIELD

.Heat generated due to work of plastic deformation
and friction often results in localised temperature rise,
particularly at large strains and high strain rates. A
method to determine this temperature fiéld by weighted

residuals is discussed in the following sectioms.

5.2.1 Premises
The following are held to be valid:

1. The material is thermally isotropic.
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2. The work due to plastic wqu and friction is
entirely converted into heat and transported simultaneously.
In order to be able to analyse the process incrementally
and to take into account the thermal softening, the heat
generated during any particular increment of deform-

ation is assumed to be transported instantaneodély [103,105].

3. The thermal conductivity and the specific
heat of the material are assumed to vary linearly with

temperature (as illustrated in the Appendix).

4. The strain rate sensitivity is unaffected by

rise in temperature up to 400°¢ E36,3i].

5.2.2 Discretisation

The specimen and the platen are discretised
as shown in Fig, 5.3 and Fig. 5.6 except that the nodal
points lying on the r and z axes are not considered. As
explained latér in Section 5.2.4, this is equivalent to
considering all four quarters of the speéimen and platen

together without having any nodal points on the axis.
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5.2.3 Governing differential equation
and boundary conditions

As it is considered that the heat generated is
transported instantaneously, from equation (4.57) the

governing differential equation may -be obtained as

2 2 _ g o(tv.)
a T a T L- 9..T... QI- —-g -——--—-r = :
6r2+622+(r V- Vet t—5 =0 (5.58)

and for convection at the free surfaces [6 and [4

!
Fan
C
.

I

hf(T- Tf) : (5.59)

It is also assumed that the temperature at the surface 5

remains equal to ambient temperature. So we have

T = T
|lr=r _ o)
- Tmax
I, = T , | (5.60)
max
5.2.4 Residual functions

To obtain a solution a trial function approximating

the temperature field is proposed as
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This function is even in r and z, which ié-é necessary
condition for axisymmetry and also satisfies the eéuation
(5.60). However, there is an.anomaly‘in th;t when r = 0 and
z = 0 the increment iﬁ?ﬁéwperature will be equal to zero. In
principle it should be ﬁéésiﬁle to getfaround this difficulty
Aby selecting values for Land m as 0, i, 2, ;.. so that there
will be ome téfm in the series which is a- function of”z only
when r = 0 and vice versa. This technique was found to be
unsatisfactory as the soluﬁion was upstable even for
expapsiéns of the Sth order. An alternative to this will be
I‘to consider the entire cross-section of the specimen (rather
than just one quarter), selecting a mesh which does not have
any nodes lying on the axes. As the nodal pointé lying
immediately beside the axes are close to the axis itself and
as there are no essential conditions that need to be imposed
~'upon at the axes, the continuum may be considered to be well
represented in this case as well. bue-to-the even nature of
the function and the fact that total residual is the |
algebraic sum of residuals at all nodés;videntical results can
be achieved by considering just one quarter of the specimen

and simply omitting the nodal points that lie on the axes.

Referring to equations (&4.14), (4.42), (4.53) and
(5.51), we have

g = 0o.¢! ' (5.62)

8 N )
T = a (O N3) i (5.63)
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BTVf b
5e = 'Evr( -H) (5.64)

Having satisfied some.of the boundary conditions it
is now necessary to set up three residual functions, one of
them approximates the governing differential equations (5.58)
and the other two approximate the boﬁndary condition equation
(5.60), which have not been satisfied by the proposéd trial

function, which are

=1 m=1 . :
2 2 22 1 Zm 2
-F8rﬂ(z - max> +20(20 - l)(r -rmax)
(z -z )rZZ 222m+2(r2_r2A )rZQZZm
max max
2 2 2m~ l 20 2
+8zm(r -rmax) +2m (Zm—l)(r -rmax)
2 2 2m=2 22 222
(z -zmax)z m=2r ==-Bv ){Zr(z - ) 2 M
2 2 2 2 20-1 2m 2
+2 1 (r —rmax)z —zmax)r z } - BVZ{Zz(r
2 2R 2 2 g2 2 )sz-lrzsz]
max max max
c;ﬂ'lj JV_b
+ = - =% | (5.65)

‘at the surface (6

ZZ A I:Zr(z - ZL 2 M2 0 (xx2,)

=1 m=1 h )
2 2 20-1 2m
z -zmax)r Tz ]—?(T-Tf) (5.66)

at the surface r&.

E E [}z(r -1 2222m+2m(r2_r2 )
max
] l m—

h
2m-1 2 f
(z -zmax)z m lr %]-TZ(T-Tf) (5.67)
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The total residual RT = Rl + R2 + R3.

5.2.5 Solution

As explained in Section 5.1.6, the residual functions
can now be assembled and weighting functions applied which
will lead to solutdon. The procedure is summarised.in the
form of a flow chart, Fig. 5.7, which corresponds to a sub-

routine (Appendix B).

It should be noted that the terms corfesponding to
heat generation (equation 5.66) apply only to nodgl points
that are in tﬁe specimen and that the platen velocities
v, = 0 and v, = V. These conditions are taken into account

as shown in the flow chart.

5.3 COMPLETE SOLUTION FOR THE DEFORMATION IN UPSETTING

The stress field and temperéture field determined as
.above can be extended to analyse the deformation process
incrementally step by step accounting for strain hardening,

strain rate sensitivity and thermal softening.

The increment Ak is calculated as illustrated in

Appendix B. The changes in geometry can be calculated as

A =V x At ' _
v L (5.70)
Nz = VZ x Ot '

The complete sequence of computation is illustrated in Fig. 5.8.
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FROM PREVIOUS STAGE
(Fig. 5.5)

Initialise
B= C =20

N

NN = 1,NTNODE

Compute
Cs’Cp’ks’kp’hf |

L = 1,NOL
IM = 1,NOM
1,NON

N

IN

'Yés

¥

AN

Qg <
I
O <O

ij"ij

For each node, each parameter
and each residual fumctiom <
. compute X (coefficients)
Equations (5.65) to (5.67)

v
¥

For each node and each residual
function compute comstant
term C. Equatioms (5.65) to
(5.67)

N

LT = 1,NERFT

+

WV

~——




Residual
Function
applicabl

For each node and each
residual function compute
B(JJ)= X.X, *G as in
Equation (5%4 ) Fig. 5.5

JJ=JJ+1

For each node and each
residual function

\ 4

Yes
JJ =1 .
I=1,KPT <
J=1,KPT
i=1
i =J

c(I) = CX_*G
(1) .

Subroutine SIMQ (B,C,KPT,KS)

solve system of equations to

determine free parameters Aj

and replace C array in the
values of A,

107.



*, 108,

NN = 1,NTNODF >

For each node compute
temperature .
equation (5.61)

A

NEXT STAGE
FIG, (5.8)

FIG., 5.7 Flow Chart, Computation
of Temperature Field,



\r.

((START )

0.1h
At Z

Compute Stress Field
Fig, 5.5

Compute Temperature
Field. Fig. 5.7

AE = ENt
Select Cy. (App. B)

Ar) _ }
AZ)-Equatlon (5.68)
r=r+ Ar
z =2+ Az
k = Appendix

No

FIG. 5.8

as deformation
reached the required
amount

Flow Chart - Complete Solution.

109.



“110.

CHAPTER 6

EXPERIMENTAL EQUIPMENT AND PROCEDURE

Features of experimental rig and measurement of

transient phenomena are discussed in Ehis chapter.

6.1 EXPERIMENTAL EQUIPMENT

A linear induction motor was used as an experim=-
ental forging machine. This particular ﬁachine was designed
and developed by Johnmson et al [94] for use as a horizontal
impact extrusion machine. The stator windings were ﬁodified
to improve performance and the machine was mounted vertically

in a framework as a high speed forging machine.

6.1.1 Linear induction motor

Linear motors can be considered as a plamar develop-
ment of conventional rotary machines. Any rotary electiical
machine can be manufactured as a develoﬁed or linear machiﬁe
E95]. As most conventional rotary motors are induction
ﬁotors, their linear counterpart has become more popular.

In a rotary machine the sinusoida}ly'distributed flux density
in the air gap produces a wave front which rotates at

synchroncus speed., Similarly in a linear stator wound with
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three-phase system of coils produces a wave front, which
travels linearly along the stator at synchronous speed. This
speed is given by:

u, = 2pf : : (6.1)

where P pole pitch,

£

supply frequency.

The secondary member of the linear machine, not necessarily

the moving member, is often called the '"translator".

The linear induction motor can be broadly classified

into two categories as:

-

i) Short stator machines, and

ii) Short translator (rotor) machines.

In general the first typevis used in applications where long
travel is required, e.g. overhead cranes, conveyors, etc.
The second type characterised by short secondary may be used
when oniy a short travel is required, as in the case of

- forging.

The linear induction motors the double-sided stator
arrangement, Fig. 6.1, is a nmatural choice in which the
corresponding poles of the two stators are of opposite

instantaneous polarity so they assist each other in forcing
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the flux throuéh the translator. Magﬁetic circuit for such
a double-sided arrangeﬁent is compléte‘whether or not the
translator is Between“them. Thié permits use of non-ferrous
translatoré which aré Q§ﬁdupting mate%ial like copper and
- aluminium, thus eliminating ﬁndesirabié magnetic forces in

the direction normal to the motiom.

The linear induction motor used in the rig is a
twin arrangement of two double-sided machines as shown in
Fig. 6.1. The dual translator carries a ramhead (serves as

an impact hammer) which travels between parallel guides.

Specification of the motor: -

Supply: 3 phase, 440 V, 50 Hz.
Maximum current: 160 A.
No. of stators: 4

No. of slots in each stator: 36
No. of coils in each slot: 2

Each coil: 50 turns, 20 SWG (0.914 mm.),
triple-stranded insulated Cu wire.

Pole pitch: 152.4 mm.
Synchronous speed: 15.24 m/s.’
Translator: 450 mm. x 225 mm, x 5 mm. Al.

Total weight including ram head
is 11.1 kg.
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6.1.2 Stator winding

The main differenée between short stator and short
translator méchines iiés-in the distfibution of magnetic
flux in the air gap andfgﬁé;current in the stator conductor.
' The driving force on thé secondary deﬁends upon the flux
penetrating éﬁd the copper lésses mainly on the stator
current and the electrical and magnetic transients produced
at the edges. 1In a paraliel connection the flux density is
distributed evenly as shown in Fig. 6.2. This is due to the fact that
flux density is proportional to vqltage, which is the same in
each coil, Consequently, the current in the secondary zone
is higher than.the current in the inactive zone which
reduces copper losses. Therefore this type of comnection
is in general suitable for short translator machines. In a
series comnection the distributioﬁ'of flux density will bé_
less in the secondary zone than in the imactive part due to
the demagnetising effect of the secondary current. This
type of connection is in general suitable for a short stator

machine.

Originally all the coils of this particular machine
were connected in parallel. . It is observed that the length
of translator is 1.5 times the.pole pitch, which is the

suggested [ 96 | minimum to reduce the dolphin effect (the
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Translator —® C () ]

FIG. 6.1 Twin arrangements of Linear Motor.

Current T
ion '

FIG. 6.2 Parallel Connection.
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FIG. 6.3 Series Connection.
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Stator Winding - Red Phase of Stator No. 1.

FIG. 6.4
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FIG. 6.6 Connection Diacram.
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dipping of leaaing edge). As this leﬁgﬁh is not an exact
multiple of the pole pitch undesirablevefﬁects are int;o-
duced. ' The lehgth of the translétof.één not be increased
much more in the preééﬁﬁ;sgt-up due t§~6ther design consider-
ations such as weight té stfength ratio. Therefoie it is
necessary to ccmbine series énd parallel‘connectioﬁs [97:]

to minimise losses.

The stator coils are conmected as shown in Fig.
6.4. Each phase of each stator has six coil groups which
are connected in the form of three parallel paths and each
path is composed of two coil groups in series. Incidentally
the double-layer system (twé coils per slot) permits chording,
which will also reduce machine losses. The coils are 5/6

chorded (i.e. the span is 150° instead of 1800).

As shown in the connectiqﬁ diagrams, Fig. 6.5 and
Fig. 6.6,‘fivé'coil sides on each end of the stator are not
accommodaﬁed‘in the slots, and faur édiis at onme end and one
coil at the oﬁher end are left open (to ensure that there
are the same number of coils in each phaéé). This arrange-
ment allows some flexibility imasmuch as one can choose to
obtain maximum force at the instant'of‘switching on .or

reduce rebound at the end of the stroke.
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6.1.3 Experimentai rig

The general front view of the rig is shown in
Fig. 6.8, The linear induction motor is mounted vertically
in a framework. A rigid table fixed to the floor serves as
an anvil‘ﬁhiéh carries the sub-press and is aligned to be
directly under the ram head carried by the translgtor. The
sub-press is of standard type. The bottom platen is fixed
to the anvil and the top platen, supported by springs, moves
up and down in guide pillérs; The translator and the ram
. head are held at the top by a spring-loaded latch, Fig. 6.9.
The latch is held in position by a solenoid, Fig. 6.10.
When the motor is switched on, the tfénslator is released
and is driven down and the.ram,head strikes the sub-press
and the work piece placed in bet&een the platens is thus

- forged.

In the past the speéd of the motor was varied by
changing the supply voltage. AThis meant the use of an
expensive transformer. The need for the transformer was
eli@ibated by use of a simple system of relays. When the
motor is connected directl& to the mains_g maximum speed of
15 metres/second (=~ synchronous speed) can be reached.
Therefore it is only necessar? to reducekthe speed of

operation.. The acceleration and therefore the speed depends
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upon the distance through which the translator is propelled.
If the translator is allowed to fall free, the motor can be
switched on for any desired duration of time during its
flight downwards and thereby vary the acceleration and speed.
This is done by using a system of timing relays as shown in
the circuit diagram, Fig., 6.7. The instant the machine is
switched on the two relays and the solenoid are energised.
The solenoid instantly releases‘the'translator which begins
to fall by gravity. The relay Rl can be set to operate after
any desired time delay (or instantly) which will complete the
circuit and energise the starter of the motor. The relay R2
has two terminals, omne of which can bte delayed. This will
determine when the machine is to be switched off. The other
terminél, which operates instantIy, is used to hold the
supply‘until~the machine is switched off. An emergency

stop and a limit switch operated by the guard are also used
in the circuit in order to ensure safety. After each
operation the tramslator is retrieved to the top position

by means of rope and pulley mechanism. The free end of the
rope attached to a rubber ball is guided inside a shield,
Fig., 6.10. The relays are mounted on a wall panel and dial

clocks are provided to adjust timing.
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6.2 INSTRUMENTATION

Measurement systems are basically a transducer,
signal conditioning equipment and a read out, which corr-
espond to information acquisition, information processing
and information output. In any measurement system there is
always a degree of uncertainty resulting from measurement
error EDZ]. Errors can be broadly classified és static
errors and dynamic errors. Static errors stem from three
basic sources: reading error, characteristic error and
environmental error.»‘Reading error arises from éuch fa;tors
as parallax,interpolation and optical resolving power.. It
is now possible to completely eliminate this by obtaining a
digital readout. Gain errors, hysteresis, linearity, etc.
are a part of characteristic errors, which will depend very
much upon the construction and quality of equipment used.
Environmmental errors relate to external influences such as
magnetic fields. These can be minimiSed by adequate shielding.
Dynamic errors are caused by time variations in the measure-
ment'and are characterised by the frequency response of the
systém, It is necessary to ensﬁre that the frequency

response of the system is higher than the highest modulation

of frequency of the measurement.

1

With these considerations in view a measuring

system illustrated in Fig, 6i13 was designed. Salient
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features of the equipment used are discussed in the

following sectioms.

MODULATOR
TRAEéggCER DEMODULATOR
SE905

‘ .| TRANSIENT
EDITING . o RECORDER
OSCILLOSCOPE °

(DIGITAL)
DL901

¥ A

Y

. PAPER TAPE
PUNCH
DD1133

FIG. 6.13 Measuring System,

6.2.1 Displacement transducer

Insofar as this work is concermned displacement,

velocity and acceleration are the three quantities of
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interest. As these quantities are interrelated bf é
simple differentiating and integrating operations and as we
have digital output, it does not matter which one of these
is actually measured. Among the many devices available on
the market the Linear Variable Differential Transformer
manufactured by Electro Meéhanisms Ltd.,.Slough, Bucks.,
seemed most suitable. The transducer mounting is shown in

Fig. 6.11. -

Red

Y

Yellow Red

OUTPUT

INPUT _ Black

Yellgy Black

FIG. 6.14 Comnection Diagram of LVDT,
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LVDT Specification

AC Series D50 1 (Serial No. 170F).
Range + 25.4 mm.
~ Core Length 100 mm.
'Frequenéy response depends upon primary excitatiom.
Null voltage 1.6 mV. |
Primary excitation 6 V RMS.
Secondary load 600 k.ohms.
Differential output é.235 V.

Shock up to _lOOO g

The specifications as listed is quite adequate

for this pérticular application, When an AC carrier excit-
ation is appiied to the transducér it broduces an electrical
output proéo:ﬁiomal to the displacement of the movable core.
The transducer body was mounted to the rigid frame of the
machine and the core was fi$ed to the top platen, which is
the moving member of the sub~press. Thus displacement could
be recorded against time during deformation. The LVDTS are
insensitive to lateral movement. However, the extension
rods (non-magnetic stainless steel) of~the core were guided
betweep nylon bushes. The LVDT ise¢adequately shielded from
any surrounqing mégnetic fieid. As explained earlier, the

linear induction motor of the experimental rig was always
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switched off before impact and therefore the output of the

transducer is unaffected by the operation of the motor.

6.2.2 ' Modulator/demodulator

~As the LVDT is a passive dévice it is ﬁecessary
to apply an excitation voltage to obtain a response which is
then demodulated before being input into the recording
device. A S.E. laboratory transducer convertor SE905 was
used for this purpose. This generates a carrier of 6 V at
5 kHz and a maximum attenuation of 54 db.is available. The
main consideration for selection of this equipmenﬁ is tﬁat
the carrier wave frequency should be Bomething like ten
times as high as the highest modulation frequency of the

signal to be measured.

6.2.3 . Transient recorder

in general storage oscillosﬁopes are used to
record transient signals -and the photographs of the trace
uséd for further analysis. This is not entirely satisfactory
as the resolution is very poor and reading errors may also
be introduced. Furthermore, it is difficult to trigger at
the correct instant and usually some of the available time

base is lost on account of this. However, nowadays digital
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transient recorders are available which completely eliminate
this difficulty. The digital output énébles-one to perform

such operations as numerical differentiation.

A Data Labdré£of§'transient fgéordér DL901 was sel-
ected for use. Main considerétions for;selection of this
equipment are high sampling rate, high resolution and some
flexibility in the mode of recording. The sampling rate of this
particular machine is 5 to -200,000 (slower rates can be obtained
by using external pulse traip). The two modes of recording

X'delayed mode' and 'pre-trigger mode' that are available allow
some flexibility inasmuch as the recording can either be
delayed or part of the output'prior to the event can be
retained in the memory. As the memory is 1024 words long,

this facility makes recording very much easier. The operation

of this device is represented schematically in Fig. 6.15.

Due to the discrete nature of sampling, it is
necessary to ensure that 'aliasing' (incoﬁplete definition of
the signal) does not occur. If furtﬁér éna;yses are to- be
carried out on a digital computer the selected sampling rate
should be such that at least two samples are taken to define
the maximum frequency contained in the signal. Insofar as
the present work is concerned, in all cases at least 50 sampleé

define the displacement in the zone of interest,
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& Converter Memory
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> v
. Timing Built in
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Control ) 905 ASCL
! ] I
Chart Oscilloscope Paper Tape
Recorder for editing - Punch
FIG. 6.15 Operation of Transient Recorder.

It may be of interest to record the fact that a

FM tape recorder was also considered. This seemed an

attractive proposition as the time base can be expanded

after recording.

The recorded signals were digitised and

processedwén a PDP15 mini-computer. Although satisfactory
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analysis could be carried out the procedure was found to be

too cumbersome and time-consuming.

6.2.4 Trigeering

In order to be able tb capture a transient phen-
omenon it is necessary to trigger the recording device at the
correct instant. Devices such as micro-switches, photo-
electric cells, were found unsuitable as the electrical
trénsients produced during switching on and operation of the
motor usually caused triggering before the event. A
compression type pilezoelectric accelerometef was used as a
triggering device, which produces a ;oltage when subjected
to shock. The accelerometer was mounted on the anvil which
produced the triggering signal on impact. The 'pre-triggering’
mode available in the transien; recorder ~enabled retention of

a part of the signal immediately prior to the moment of impact,

as illustrated in Fig, 6.16,

6.2.5 Editing and output

The recorded signal was first scrutinised with the
aid of an oscilloscope. To obtain a permanent record of
uséful signals a Data Dynamics 1133 paper tape punch was
used. The output is ASCII coded, a format suitable for

computer analysis.,
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1024 samples

100 samples

Moment of Total
impact ' ’ Displacement
Trigger
FIG. 6.16 Mode of Recording.
6.3 CALIBRATION AND TESTING

The output of the displacement transducer was
statically calibrated before each éeries of experiments.
The calibration was carried out in situ using distance
pieces of various thicknesslbetween the platens of the sub-
press. A typlcal callbratlon curve 1s shown in Fig. 6.17.
The digital output value of 256 corresponds to the full

scale voltage setting on the recorder. The dynamic response
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of the transducer was checked by upsetting specimens at
various speeds. There was no significant difference between

dynamic and static response of the transducer.

Specimens of commercially pﬁ;e aluminium and high
conductivity copper were machined from cold drawn bars.

The rings were of 6:3:2 ratio (19.05 mm O.D., 9.525 mm. I.D.,

6.35 mm. height), which is in keeping with most of the

published work on ring tests. A circular grid as shown in
Fig. 6.12 was inscribed on each face of the specimen. A
thread:chaser of 0.508 mm. pitch (50 TPI) was used for this
purpose. The grooves were 0.05 mm. deep and 0.05 mm. wide.
The solid specimens were 12.7 mm. in diameter and 12.7 mm.
in height., The aluminium specimens were annealed at 360°C
for one hour and the copper specimens were annealed at 600°C

for one hour. A vacuum furnace was used for ammealing.

Before each dry test without lubriqant the platens
and the specimen were cleaned with trilchloroethylene to ensure
that they were clean and perfectly dry,: F6r tests with lubr-
icantmolybdeqwndisulphidegrease(Mply Slip) was used. Testéqn
copper and aluminium specimens were carrigd out at four
different speeds and four different reductions in héight for
each case. Crash rings were used to limit deformation to

the required degree.
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Digital Value of 256 corresponds
to full scale output.

O
"a]
N

Output

0 6 mm 12om 18 mm

Displagement

FIG. 6.17 . Typical Calibration.
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Fig. 6.18 Typical Analysis of Displacement

Time Recording.
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The displacement/time recording was numerically

differentiated to obtain velocity/time curve.

An example of derived results is shown in Fig.

6.18.
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CHAPTER 7 '

RESULTS AND DISCUSSION

Theoretical solutions were éompuﬁéd for upsetting
of copper specimens oﬁl&€ Ihe stress/Strain relationship
and other material propé%fie£ used in ébmputation are given
rin Appendix B. All the stress fields énd temperature fields
illustrated iﬂ.this chapter are for upsetting of copper rings,
Eig. 5.3, except those in Sections 7.7 and 7.8 which correspond
to solid specimens as descfibed therein. The illustratioms
- of stress fields show the top right-hand quarter of the
specimen and the illustrations of the temperature fields
show the top right-hand quarter of the specimen and a part of

the platen as required.

6.1 EXPERIMENTAL VERIFICATION

The experiments were carried out mainly to measure
the changes in geometry of rings during compression at
different speeds to verify the suitabiiity of.the assumed
velocity field and to determine fricfion factor ‘o' fof the
dry and lubricated conditions. Experimeﬁﬁs were carried out
on both copper and aluminium rings sé'as to verify the
assumption that the velocity field is independent of the
mechanical properties of the material and that it is

affected only by the frictionmal restraints at the interface.
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The circular grid marked'onlfhe”face of each
spedimen was measured at different stagés Qf'deformation at
selected.speeds; From. these measﬁremeﬁts, the neutral
surface was détermineé:eigheﬁ by intefpoiation (when Rn>>Ri)
‘or extrapolation (when Rﬁ< Ri). Besidéé being relatively
easy to measure, the position of R ig considered to.be a
more reliable measure than the change in internal diameter,
more so when the bulge at Fhe free surface is pronounced.
There is some scatter in the experimental results. This
- may be attributed to the fact that the test specimens were
rather small and measurement errors are inevitable. Unfort-
unately, lafger test specimens could not be used on account
of the limited capacity of the experimental rig. The
experiments were repeated three or four times for each
condition and their mean values were used. The maximum

observed variation from these mean values is 8%.

Experiﬁentally measured values -of Rn are compared.
with theoretical values in Figs. 7.1 to 7.4. The bulgg
profiles were measured on a measuring projeétor (with
magnification of 20) and are compared with theoretical
profiles in Figs. 7.5 to 7.12. No discernible effect of
speed was observed in the range of up to 12 m/s. Coﬁsidering

the fact that numerical solutions are unlikely to be accurate
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enough to respond to small variations recorded during these
tests, it is suggested that the following values of friction

factor will adequately describe the cbnditions:

1) For copper and"éluminium with lubricant (Moly Slip)
o= 0,14, |
2) For copper without lubricant, o = 0.77.
3) For aluminium without lubricant, O = 0.50.
*7.2 VERIFICATION OF THE ALGORITHM AND THE METHOD

As it is not possible to verify experimentally the
numerical solutions for stress and temperature fields, it is
necessary to resort to indirect methods to establish the reli-
ability of such solutions. 1In this particular case it is
possible to verify the algorithm by comparing the computed average
pressure for simplified cases with p?escribed stress/stfain
relationship (experimental) of the material. Stress fieids'
were computed by the method of weighted fesiduals simulating

quasi-static deformation at constant temperature as follows:

1) V=1.0m/s, &=0.001, T=120°C.

2) 'V =1.0 m/s; o= 0.001, T = 320°C.

From these stress fields, average pressure was
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calculated at different strains. The results as shown in
Appendix Fig. B.l compare well with known (experimental)
material properties. This may. be considered as adequate

proof that there are no programming errors.

It is possible tb compute deviatbric stresses at
the onset of deformation from Avitzur's velocity field,
equationsl(5.18) and (5.19), and compare them with thosé
deriveﬁ from the total stresses, equation (4.5), computed by
the method of weighted residuals. These are shown in Tables

7.1 to 7.4 for the following cases:

= 4,5 m/s and U= 0.001,

He
N
<
|

| aad
e
S
<

I

4.5 m/s and A = 0.14.

It is observed that when the friction is low the
results of the method of weighted residuals, Table 7.2, are
almost identical to those computed directly from the velocity
field, Table 7.1, and the stress field is uniform throughout
the continuum. It is also observed that the yield criterion,
equation (4.26), has been satisfied exactly at all nodal points.
When the friction is higher (O = 0.14) the two results agree
quite well. The error in the yield criterion lies between
-8.8% and +2.6%. Although this range is somewhat large, it

- should be noted that the yield criterion is satisfied much
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NODE o Jg o' K2 3y
1 3600#78 v36Q5+028 -,729E+08  ,L0QT+1A «4795+15
2 .359c+Gn ¢2A9E4N8  -,73295+08  ,L403%41A LG0T +H1A
3 3h9T+03 W 2A3T4re —.7735493  ,L09T+15 4NOE+1H
L ,3I638°+07 v 7HIE+R - =,73372493 L LJQTHEA W LNOE+16
s «3507 403 ¢HIAEFNA =,73Q9T403  L4007+16 4002215
6 JILRQE+08  L,TAYE+N8  -,733c+Nn§  L,L0AT+16 «4NaZ+16
7 W3RQZ+08 W 2AFEHGR  =,7 735403 WLCTH1R «LGOE+1A
R ,2paZsne fTEATH"R -, 72T 8 +L03Z+16 4007 +16
9 L3627+ ¢ 7B3ITHLA =,7237408 L LDATZ+AF W4iOZ216

10 «3AATE( A «3IRITHAR =,779T408  L4097+1F 4797 +1A
11 36837408 «RBATHE8  -,779TH(R LLN9T+16 Lrafiyp
1?7 .3K05%)n +2AQT4(0  =,7237+03  L409Z+1€ JLTOEH1A
13 « 7607408 «3697308  =,778Ixn3  40AT31F WLGOE+16
14 RKAFsQR s 763F+03 -,73732+08  LL(CT+16 «4Nat+16
15 +399E408 ¢TEIEH0E  -,7732408  ,492T7+15 W419%+16
16 J3FAS+08 «IEIEHE3  =,77IT+03  LLOAC+1R W 1)OT41H
17  ,3€QFsng «2635407  ~,7333408 4003446 4102415
in «3AQT4NR ¢ T69T+NA =, 729T403 4392416 JBNOTH+LF
19 ,pQE+nR ¢IRATH03  ~,739T+08 L 4[9T+1R fuO5+1R
2 « 3605406 $ 2637408 =,7397+08 L uGOE+46 JLOAE+TH
21 +363C+0 R «3AQF308 =,773Z3)8 «LN9TH1E 4G9S +16
22  +3R0E3N2 «TRIEHCR =,773T408 L uNoT+iF JLOAT41A
23 .36Qc+n8 «I69F+03 =-,73354+08  ,L,409Z+16 40QZ+16
2L JZRAF+NA + 2695408 -,739%+#]8 «409Z4+1R J4NBE+16
25  J360F+078  LTRAF4IR =,7237T+453 WLN0T416 J4N0AE+16
26 «2BTEH0R «369THNR ~,7 297493 W 409T44F «40QAE+1A
27 J3RQ9F#198 +369E498  =,7729I438 L LAQZ+1F 4095415
P8 +368C 318 P TRAEXNE  =,7335403  L408T+1R «4997+16
29  .7/At4+038 «2RAE+NAR  =,7793408  ,40AI+1F 4005 +16
3n «36AE+0R L TEQF 403  «,779%403  ,LNAS4+1A 40ac314
31 .369C+98 «2BH9EH0R  ~,7735433  ,u000+1c J40AC+16
22 SLLIENE « 7R9T4AR =, 7TITINR G 4(0Z4+1K JLOOF2YR
23 «369C4+0% ¢ THASHNR = 73740 L LIGTHLF 4005416
L ,3695408 ,3IB69T453  =,7737+08  LLOOTH1F «4095+16
35 v 36354018 ¢IAROEHMR ~,7235403  ,L0GT+1A  L,L(SE+16
36 «369E+0° «359T408 ~,77934(8 4NaZ+18 4095 +16
37 «3RAE+N A +269E+03 =,729T403  LLOATH{A 4795418
28 +263c4+08 ¢ 2695439 =,7792403 - ,LQQI+1A JLNOE+1A
39 « 3537408 +209E+408 =,723T40%  L,40QT+4€ . 40ac4+15
L0 «3R3ER]A ¢ 2BOE+"R]  =4,77374038 L4007 +1A «L0ACH1E
61 ,3693539% «369T#"g  ~,73I35408  L,LOQI+iR 4005415
b2 +I63T 401 «75974J7  -,7797458 WL03Z 1A L4095+146
43 36095408 +360E+08 ~,7793C403  ,uLNAZ4+1p +L0GE+1A
‘Ll «360Z4+08 ¢« TEOATHNE  —¢72954+08  LLOAT+1F WL0OTH1A
4Le 03695""’&19 « 359741 "0."39."‘..4’98 ol‘ﬁg-':.-"'i“.-‘ -h09:'f+16
e 43HITHOE ¢ IRIE4NE  =,73QC40R «L30%416 WLNOTH1E
L7  ,%6Q7+A8 «26QCH0R ~,73IJT4AR Lu09T44F «400E+1E
48 »THROE4CS ¢ 2AAT4N8  =,723E4+08 L LNITHLF L00T4+4R
L9  ,TE9Z+08 ¢ 2635408 —,77373083. L4027 +16 «4JAE+16
50 «3695+78 «TRATHN8  -,7327T408  LLOOC+HiE W LOAE+16
€1 «3RQE4(8 ¢ 3RITHNB -, 737+T8  LULIZ+1F 479E+1A
€2  .2635+08 +269E+03 ~-,77QT+08  LL0AT+4F SLJAT+1E
53  ,XE£Q7+(8 ¢ 2R3S+JR  -,779T403  LL09T+1F L, L409E+16
S5 «360FX00  TRQEHGE  -,7JT+0R . (L(IT+1E JuNntadg
55 «363E+038 +260F2n8  =,730%208  ,4NGZ+16 WL03T+4R
56  «369T#(" 0 269T+(8 =,729T408  LLOAC+{F L4 00E+16
57  «3A0%3#08 $ 269548 =,72324+08  LLT9T+4R JANAE+15
58  .3ASCsT8 «3RIEHMT 2, 7233458 L4797 +16 W 4092416
59  (36QE+4GR » 2695 +NR  -,72Q2403  ,L0NQT31e 4095416
‘€0 «260T4+T8 ¢ 2695420 =, 72T L LRYTHAR «479%4+16
€1 LI6ATHOT [ TRAEHTT <, 7IJT4]g3 L LOATHYF JLNCE+4F
62  +359°+98 »269E4C0R  ~,773T40R  LLGITHIA JHOOZHAE
€2 WIFRCT3NR W 3HOE4NR =,772Q5408  GLJOZ4+16 . L,u2AZsiA
B4 ,26AT#(N «3597408  =,772E5493 43 0Z4+16 J47GE+1E
65 369340 «IARGTICE  =,779T408  LLJO0I+1R 4097416
€6 ¢360SapB ¢2627478  =,723%#08 L L09C+16 L00C116
€7 «269C%(® e FROE40R  =,770T403  JLAOCHF «3JAE+16
63 ¢3B6CE4NR ¢ THIEFND  ~,7707473  L4(00Q%+1A WBNOZ 415
€3  ,3AQr+ng «T69E+0R =,73IIT4068 o409Z+45  LLNIS+16
70 +3IHIEFCR (TRQFH08  -,739T+08 . LL0AT+1A c400T+16

'I’ABLE 7.1 Deviatoric Stress from Avitzur's Velocity Field
. (V=14.5m/s and &L= 0.001). |



NODE

Nt

:omﬂmmrumpaoxdmabWNMoowﬂmmeuNHdon4mmrwmumom4mm:»wuaomdmmﬁumuaomﬂdmrw

Qmmmmmmmmmﬁmmmmmmmmmmﬁbbbbrr::rwuuwmmamMNNNNNNNNNNNHHupM»HMMM

TAi;LE

s3EQT 40

e 3BCFE+( P
« 26385 +40838
e3595+08
« 2HAE+CR
« 377428
¢ IRJT +0°
e 35737 +08
«3BAE+NS
«3684Q%+03
e X6QFE+08
« 535403
e36QT4+NA8
e IROZ4I8
«3H0FE&N3
+ 369Fa 8
e36097+]8°
e36QC$NA
«e3R3F4NA
« 3685400
«3RAT&05
a8

°
n

® & & & & & & 2 5 & % 8 00 0 8o
N NNNANANA AN NNDN i AN A

W0 000 00 VWO DNW.0 I O0O0OW

T R T THAL ) T I I R

-
AN
PO NIDIDIIIDINNDNANDADINDDND

rH+ Pt rrrF bt re e bty

[
W
n
DODMIINODCIDII DD DI IICHLD INM DM 2D ICICID I3 I

-
AN
DN

W00 O

-

A

N\

NG
mm. .,

a
t.
o
o)
R S I SR S A s

WO 0O DOO DO
(R TE R s s IR TT R I

e
W HAN
o

L J
W
VA DTIVD VDD
OO ODXD® P DIPAOEPX.DV PIEOW PO.PPIRO DV O BPLOoD DO .DM

© ¢ 8 o o
NN AN W N

7.2

g!
e

26254118
« I6QE+"3
« 3RATHNA
«360E+03
« 269737

« 3025 +53 -

¢ 3BT +(R
e 269E4+ 1713
+389E40A
1i8aFang
v HIT+(CR
W IRATENA
395404
+« XR9T#NA]
¢« 3RQE+28
+369c+928
¢« IR9E 4 0E
« 36871703

«359T+H0R

«268%E+103

363FK+NA
2595+ 00
2RQZ 418
IHBEL0R
T62AE+08
« 3R9- 409
e 2695478
e 3HATEM3
» 3697418
¢« 230 +08
» 36QE+NA
¢ 3RAE4[0N
« IRAT4NR
e 7HQC+G3
+ 363F+59
¢« TAGE QA

+
(]
oo

NI PORN
DJWOOW 0.0
MUY M,y Y
+ 4+ + 4

Lon Tha ¥ o R PR ¥ o)
0.0 000 X o

~e713540¢

-~ 7335403
-7 33Z407
7297+498

-.7333403

-e 7237403
=a 7737408
~7397473
~e72254n3
~+729%+1093
=e779Z4+0M3%
~e7737403
=¢ 3232471
-.773‘_‘,},’?3
“e 7385413

2

'k
WL0AZ+1A
W N0 4 4F
ebfNAT34c
o409 417

-« b"374+16

L0ATH+1F
W3 +1A
« 4397”416
«40QE+1A
A S L
b0 H+1A
+ LOOT+1F
¢ 433 +1F
R e b L
JLfaT 416
8z 418
L0NT4+1F
dLJATHIA
LG +1R
LINT 448
R B
02T +15
459z +16
s LnN3IT 4T
LT 414
4023”+146
L0345
«10J3E+16
¢ 4NAT 416
kAT +1F
eLU3Z #1417
«4NQ9=+16
L03TH+16
LI +1E
eBJAT 1R
sLfQ-4+48
L3417
«430T4+17
«LJATHIR
WLNAT+1F
1097 +14A
L3 +1F
L0GT+46
s0Q=4+16
33T +16

b b b b S
NINTUN

su08Z4+1FR
W LN3TH16
0T 414
LJAZ 416
W BL0ITH1LR
s L0341
k(AT +1F
WlLNITHLR

153.

L ]
r
=]
[o}
It
+
e

L J
ol
o }
00
I
++

o)
0
+

i

0
a
+

*
=
2 e T T Yo X os York Yoo T o Y o IO &)
o]
2]
+
;'"l'.l".l Ar‘r"""‘f“l""""“"““‘f .’_L’—hr&'-hpr-h: L'.&.A'A.—‘,-ﬁ\—.y&’-“.ﬁ,

Rl o R e R R R S

.
fd
m
[8)

=~

s I oo}
0pO0O0ODD0ID
AT TR, T
+HEt At Frr bt

+
[
0

a
+

VAP MATUAOVD P IVDADD RN DN

<4005

<LNAF+
JLhots
cu0GT+

DYDY

[ ]
ol
(o=
¢}
1
t+

T4

.
+=
2
o)
3}
+

.
=
o |
o
-

f40974
4

SATEARD LES B o)

*

e

©
0
n

»
&
2
0.
T
4+

py Yo |
0D 9
OIGIOR

+ +

e & o
FimF e

[y Yo ]
0.0
ninN
++

(B R ER T EE R R A TR N I A RN IR TR ]

R O T O SOt

L]
£
3
9
T
. 3
}.L.-Lr.h,&ph:.&,-h’.s)-A|-Ap.&,.n._-:_a.|_a.H].-l.L}.A.-A'.ApAl..'.h'.A.-s‘.al.A
VTUROVYD R DT D

e 6 08 a0 o
[ R oS QN Sos oF
o X80 R R Fiou Xl Yol ¥ b |

‘0 0.09 0000

L ]
e
2O
o

s4naty
Lpocs
e 409Z 4
sL0 4+
L4009z 4

B DR NADNODNDD DAY I D VLD TY VROV

Qv

.Deviatoric Stresses - Method of Weighted
- Residuals (V = 4.5 m/s and U= 0.001).



154,

1 [ i o e o i o b 1 o b e 0 o b o e s e [ e b b e e e e o e e e e 1 e e b oy e e e b e i e b o (b ke
PINDIOINDANNIIAPRNNAINOINRNNARAD IININIIVADIOONNDIATITRIRNDINDNDRIINNVANO TV IVD D DNV INDDN NN DNORDSNNDNRN NN

: 2
NODE ! ! ! 'k
NODE oy % 0 Lo 2
1 «JRATENA - STRNELPR = ,729%403 4N9731e L400C4
2 « 3795408 «2RGTH0L] ~47205408 - S LQOZ+]F L%
3 +3R2CE+C8 f2RATENA =, 7EGT4N] »LO3E+1E +4COZ4+
b e 350 4N] W3AYTHAR -,729T403 - LLJGQT+16 «4Joc+
5 +I63E+08 + 2F95 R =,773%408. | ,L0QAZ21Fk « L2054
6 - J3RAT418 «TRIEH]R ¢ =, 7IHTANR] 0 G LGITHIA o 403C +
i e3R974+08 s IRAE+HT =, 7737403 . LL]INT 416 2 LOE+
" « 3RGZ+(0 3 «I0ITH0] =,737T409 . JLIFT+HIR s LIOE+
9 « 387418 2 2C3E4N = TTTZ408 0 L 4LI0T+1A o 40OL +
10 e 3RRT40 8 e FRATHNO =, 767408 +L02%Z410 +L0GT+
11 «2RJE+TA «3FRAFENA = ,73374+(] 8 4293 4+1R LlOL+
12 e 3R97#718 o IHOE+N3  =473324(]8 4037 +16 4004
13 « THRAE+(A e 09F+48 - 73374019 «LNATHIF JLTAES
is « 37395 +N8 17635408 =,7235493 2 L3G7+16 L0+
15 «3H0OT+ICS « 269+ =,73824+08 e e 4104
15 « 3HAE+"8 » 269F+0R =7 232401 e LJAT+1R «L0OZ+
17 « 3595408 « ZA3EAN]  -,773%+]3 «4037+16 L5+
18 «3737+08 +3ROTH0R =,7270403 s 400418 e {07+
19 e 3634017 ¢ 368+ =, 737409 L09Z 414 +LT9E+
2n e 3RB8E+08 «BRE4JR ~ 7TTIRTHOR L3337 +1R JLlOES
21 + 3RCZ40N8 +RRAE4NE  =,729Z+019 o03Z+1A « 509+
22 ¢ 3RAQF+(QR «769F 408 =,7329240R «h09Z+16 e LOOE+
23 » 3ROEENR » 3AQF40R . =,72797408 s 40074145 » LJOES
24 «359%+31% »3635+ER «,7237+18 « LNOT 1A L0954
2% «35954+0 8 2 THELNT <, 730451 2097 +1A L0 4
25 » TFAT409 23535408 =,7737+0% o 4027315 L02ES+
27 e3595+(08 ¢ 369E+13 =47 I3Z+05 R DEEES RS 24002+
28 e 3R9Z+08 W 2TRATENA =, 72774073 «L433THIR « L39F 4+
29 e 3Rz #0R + 3622408 =,737T+03 fLGATHLR o LOAT+
2n ¢ 3RBC+2R +363E408 =47265473 48T 31K « U3+
21 e 369 +28 W 2HIATHR 2, 72354083 e L59=+17 40O+
22 « TRGE 48 + I60Z 403  =,T77TI5+18 «40O7+16 2 4395+
37 ¢ 3H70=*03 e I69Z3408  =,739%4+019 «LN3T+16 e4lQC+
3L e 26CE4(R +369T+02  ~,77787408 e 430z 417 LN0OT 4
25 « TRCE+(0Y « 3R9T+0%  =,7285+418 409”416 3Oz +
36 e 3695 +NA « 2635 +G8 =,72%c+08 «109%+16 + Hh00E+
37 « 3635408 «IAATHAR 7297408 24097416 s 50T+
38 «3635+38 «363E+08 =,737E+C3 s L03ATHIG LG+
39  «36%7+08  L3GT4N8 =,7373408  ,400%+1p  ,40)QE+
. 4n « 36972408 « 3635400  =,7355+03 2 4TG5 416 s400C+
41 ¢ 3537408 «356CTFNR =,773T408 n 403416 80+
L2 « 370F4+08 «I59E+LR  =,7793T4+(8 LA & R N0+
43 e25CF+ 03 «2RAL4TR =4,723%403 LA +1R e kN4
Ly » 7895478 «363T+M =,77373107 14702 +15 Hl0c+
L5 «3AQCE+08 ¢« 2692408 ~,7273%308 24H40AT41F elOES
L6 «?69:+"18 ¢ IRQTHAR ~,T7737418 «L0AQZ+1R o BNG-+
L7 ,3R/9T408  [TRATHGR -,73I3T208  LLIAZ41R (4)OF+
Lo « 3595408 +369E4+0R = ,727-478 s LNOZ+15h e 2(0E+
g « 3H8%+09 ¢ IRRTFOR =, 772408 4037 +18 «L0OZ4
£9 «368E+(R » 208T+0R =,736T408 wLGAT+16 « 400+
51 «3695+(10 «3R9E40R  =,723E040§ RN oL4CZ 4
K2 «JROE+DR «2H3TENT =, 7IITH0] «L03T24E 430+
£3 ¢ 36QC+08 «7EAF LR =,77IT54)8 o LGATHIE e 4ZOT+
54 «362F493 » 369T+08  =,732354+18 2037416 e LOOZ+
€5 e360CZ4( % «350%+N8  «,7235+03 «L09L+16 « 4095+
5% «3/CZ+08 «I697+(8 =,77374+]8 »LTATHLA 49+
57 «3H2T 40N «2R2E4+0]  ~,773I4]R o LICT4+1R e 430+
5r ¢ 368741 2 JEQEAQR  =,72724+04 L4007 416 e bOT+
=9 ¢ IHRT4QQ #3/B8T+NR =, 777203 LT +10 47074
€% I58C+08 «2BRZ3N8  «,775%40N8 e473T+186 JLJa%+
Fi e 360QC4NG ¢ JEITHPP ~,77374+(3 e LO3TH1F s LNOE%
€2 «2RGT+N A « 2AJE+08  ~,7T2IT408 WLN3T+16 «40CE+
B3  J3RIEFNB L2697 4N3 -,779T4n8  Lu0AT41R og400Z+
€4 L,THOSHNR  ,3IFIQE40R  -,723I40R 097416 ,400=4
65 «3HCZ+08 + FRAT+08 =,77F33418 LGC 418 o L3I0 H
A «3RACHNE «7RIE4QR  ~,773Za219 «L409T 416 o LT+
6~ e 3505418 ¢ 363T+(CY  =,7735+08 4097445 « ULEGE 4
63 ¢3525401 23692408 =, TTI7249R% «459=+1A s a0+
£Q «¥H3T+ 08 e 3RBZHN8  =,7R774(18 o LJ3TH1F « 4NGQT+
77 ¢3H8E+0S « 30BE+3R =, T7THZ+0R AR & K e 409T ¢
TABLE 7.3 Deviatoric Stresses from Avitzur's Velocity
K

+Field (V = 4.5 m/s and Q= 0.14).



NODE

O3NS WSO BN A AN O D O N W EW0 DNDITEWN -

L NN O DD OV U TIUTUITIT T1ES £ 6 £ 50 2o s B0 B0 G Al N A CA G G EAS E NI NI NI NI Y NN e o b b o b b s ok e
OOBNNMENNVI*IOD NIV EWNIF D OBV SN D

TABLE

O'
r

acyge
?4c4+08
«373°5%N0
e 37CE#DNA
« 3795418
«XR2T+18
e 385E 401
+333E %01
e391E4+178
«3HATENQ
« 3625308
t37AE4n3
s274c40A
$37352u9
SX7ETH08
e 27Qr4n8
0382F*0a
«3RCF30A
o?8°:+08
e IBKE 400
« 36T +08
¢« JRETHNR
«3R7C54+08
«3H3c4n8
«3717%(8
e 373C+08
« 275408
e 3775408
e 379F408
¢ 3HITH]R
¢ 3h3E+08
« X163+ 0 2
« JALEEIR
¢e3PLZ4T3
«3H4LTFNA
«3[5E+NG
«J0RE+G8
« 3RBE4(8
«270F+0"
o TELT4)S
«3H4T4NA
«7HIEHNQ
«362£4018
e 2H1EHQR
«3H95+78
«35QE+08
¢ 2RO +08
o 2R1T408
«IRFETH(0Q
c36ac4ng
«3H8E+N8
e TRRTE 4R
e 3 RLTH08
e 3Hh1F&NR
«I5BE+NB
e I5EF+N2
¢ 35E5=4+198
3= 7E+NR
«e367F+(°
«a371F 41§
«370E ()7
« 3682408
e 3HLE+IA
« 3607418
e 35540
e 35CE4+"8
«3LT7FHNR
e ILA/Z4NY
«3L9T#Nn8

3
o3
«3

7.4

359F+08-
?

!
g
«+ 36QT+08
.1°9P+gﬁ
+ 3AGE+TR

« /3T 200

’66=+J8

« 3652400
0363E+53
e 3Hh2F+NQ
v I6TE+]R
« 353E408
e IRREHNY
2635+ 0B
2§8E+08
ZAR7E+]8
TERF40Y
TART+0R
25LT+N)8

-
b

D
N A
"

¢ ® # 060 0600 @ ¢ w0 0 o g a
+
3 3
‘N Do

Ol NN AN NN

CTARLE+GR
« 36LE+08
» 26RT+78
e I6H65+08
«JETT4+0R
«3RAE4038
« 2745408
W 37E4NR
«JELT4CE
."ﬁ‘»—'.":+ﬂ8
3H55+]8
. ’66 +{ 8
0

777:;0%
77f:+13
«Z75E+08
e I757% +”8
o~’2"+pn
s thHTENA
i155:+n8

:Deviatoric Stresses
* Residuals (V = 4.5 m/s and 0= 0.1l4

- 716c+q3
-.725%418
-.777 308
~e773%408
-e73354014
- 7613408
~ea 7435493
-¢7L5E+014

I T T T T O T T IO IO I |
* @ & ©® @ ®» @ & g % © & 0 " ¢ ©® a0
J I NN J I INNIN Y
P R TR T 1 A B PRI P00 R P FUD ¥ ¢ TR PR ¢ TRRURWE B4 TR TS BN I

R I o T S T S e T S o R U

[ |
s 0 e
NN

-
ﬂ

]
J I
VR B O TS SN TOVENER TR T X BN IR TN LN TV RN T ST S TN RN TR

-7

[}
-
d
A

]
.
N
iy
SINN DN EFEDRCUFNV D ANAVEVNINNY JFNDLVLOLVWWLI AW

(DLIODDOODISIDDEOI IDNDOOIDINDOOOIODDIUDOQDICD.
[o-XP-F0 -2 30 J0-Ju -J0 30 - Ju-1p 2. RoJo 38 To - I0 - 30 Yo Jo 10 -Jv-Ry-Jo-Jo-To - I - Yo J¥- Jo~Fo - To - Lo  J% -]

1 R TR R PRI T I G Y IR R

)
*

4
~

"kz

WLO9T4+1R

CLOAZ+1F
LufnTa1R
.unaislp
CLDAT+16

VLGOI +1E

«3(AT+1F
dLNAT 4R
CLDaT+1R
«H03T+10
sLNAZ 24/
.QOO--LiF.
+L3AT+16
e ENAT +1 A
.L}ﬁf)?-#if-
LNATHIA
WL{AT LR
W LDNTHARA
dLOAT +1IR
o LNOT+1F
JLNATHAF
«1L0AT+16
409 +1F
LT AT+14
e bNA=+14
s LUTTH+1A
<L0gT+1A
N
«LDAT+106
o LU 416
00T 4+16
« 540024156
e LLPNAT 1€
sL0A=+1F
e L0AZ#1F
e4NAZH1A
WLlATHIA
e LCNT+1E
sLaT+1R
+13QZ 416
o LOAT +1F
dLDOT +1FR
JLEOTHIR
«LNAT+1F
«279Z 416
cL0AZ 416
.hDO +1A
cu0aZ+1R
+Lu(035+16

2409z +1F

+u0Qg416
ufAa= 416
»u0a=+16

e LLAZ +1€

«LOIE+4F
W4NAT 16
L4097 +H1A
13T+
s LQZT+14A
AT F1A
LNATHAFR
« 408 +1¢
200416
e LNBT+1A
«403T+16
s3I 1A
s LLATHIR
007416
«L0AT+16
2»40AaT %16

- Method of Wei

155.

—
)

FEFCRPEFREDErmEd s .

L
Pl

DOOW DLOWN OF I 2D DW-0W IV DOD DMOONF A R R e 30 3NN IS b e e O )

FNANAWNNAPLE T EF A dANANEFSES e
O D0 8 0RNOANGYD < JO PESIH DM NI A DR N D0 NN M & Y000

® & B & & @ & o % ® & O 8 O @ ¥ O oG b e s O e s B ss 0

F
2
B A T TR TR s T T T T Tl L P Y M PR T PR TR Tt Pt R R R FR T Y e Yo Ua s TR P T TE R B B R d VAN B T B T R T A TRY R YR AT R T3

kL e e R b R o ok i R o S g e g P

b o b b b b b b o b o e b b o (o e e e b b b e b e o b b o i e [ o o b o b e i o b b (b e e b e o (o e o e o b |k e e e
OTANNONOINN IR NN AR AINND DRAQAR D PR DN RO NPRADNOANARNNANRRN PRI RO NN NGO ID N NRNNTRN

> & ¢
Faitngt o
2.3
~N=~n
h.n
¥+

%hted



156.

more closely at most nodal points. Besides it is an essential
fearure of the method 6f weighted residﬁalé to force these

. errors to vanisﬁ in an-average sense ojer thé entire
continuum, Aé it is ﬁat;possible to iéclude the frictional
restraints in the goverhing equation, i£ was mnecessary to
treat it as a boundary condition leading to a separate
residual function as in equatiom (3.13). -Presumably this
introduces some error im the solution when friction is high.
However, these errors were mo higher than the values.mentioned.
. above, even for very high vaiues of friction a = 0.77.
Thereforé it would seem reasonable to suggest that the method

of weighted residuals is quite adequate for this purpose.

1

The method of weighted residuals was used ESi] to

solve the elliptic partial differential equation

2 2 _
VZF = §_£.+ oOF _ ~-A , (7.1)
2 2
or oz ,

where F = F(r,z) and A is a constant.

The results were compared with known solutions and

found to agree within +17%.

The above equation (7.1) also describes the temp-
erature distribution in a plane section with uniform source

of heat all over the surface, in which case the govermning
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differential equation is
'VZT = 'A-% . o A . (7.2)

The equation (7.2) is a special case of equation (5.58) and hence
the method of weighted residuals could‘ﬁe used with some

confidence to obtain a solution to the equation (5.58) as well.

In view of the above-mentioned facts, the results"

of this work can be considered as reliable.

\7.3 EQUIVALENT STRESS AND TEMPERATURE DISTRIBUTION

The temperature distribution as computed by the
method of weighted residuals ié illustarted in Figs. 7.13 to
7.18 for different cases. The ambient temperature is taken
to be 18°C. The results indicate‘that the temperature rise
is quite significant, and the temperatures at ﬁhe tool/
specimen interface are much higher than temperatures in the
rest of the specimen, and that the condu@ﬁion of heat into
the die is very slow as observed by others in upsetting
[3lj and extrusion [ 102,103]. The temperature fields
obtained in this work are compared with those obtained by

the finite element method [}l] in Section 7.8.

The equivalent stress as given by equation (4.19)
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represents the étate of stress.at any ﬁodél point and there-
fore their distributions are includedriﬁ'Figs. 7.13 to 7.18.
These have beenlcomputed incrementally éccouﬁting for thermal
softening as éxplaine&.ih;Chapter 5. ihé results demonstrate
the fact that the stress_field is neari& uniform within the
continuum When”the friction iévlow and that they vary within
the contimuum more significantly when the friction is high,

and that the wvalue of stfesses increases with frictiomn.

Comparing Fig. 7.13 and 7.14, the strain rate
Eeffects can be observed. At higher deformation velociﬁy the
stresses increase as might be expected. The isotherms,
particularly 80°C and 70°C, sbread deeper into the specimen
at higher deformation speed, indicating greater localised
heating at’the interface. These effects of strain rate are
similar in pnature when the friction is high. However, as
can be seen in Figs. 7.13 to 7.15, the effect of friction by
itself is much more pronounced than that of strain rate.

As the radial velocity at the interface at an impact
velocity of 10.3 m/s is approximately 1,5Vtimes the radial
velocity at an impact velocity of 5.0 m/s, and the assumed
friction factor (= 0.77) for dry conditions is 5.5 times
greater than the friction factor (o= 0.14) for the iubricated

conditions, the work due to friction given by equation (4.42)
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will vary accordingly. It was observed_eéfliérhthat the
conduction of heat intb the die surfageiis'siow and the
heating is almost adiabatic. On accouﬁélof ﬁhese two facté,
it is quite piausible\thét'the effectslof friction are more

pronounced than that of strain rate.

7.4 EQUIVALENT STRESS DISTRIBUTION WITHOUT
THERMAL SOFTENING

In order to be able to e;tablish the effect of

. localised temperature rise due to work of deformation and
friction, stress fields were also computed without consider-
ing the thermal effects, assuming that the material remained
at constant ambient temperature of 18°C. The equivalent

stress distribution is shown in Figs. 7.19 to 7.24.

Conditions of speed and friction correspond to
those in Figs. 7.13 to 7.19, so that direct comparison can be
made. It is quite evident that the thermal effects are

significant.

Comparing Fig. 7.13 and Fig. ?;19, it can be seen
that significant thermal softening dées occur at the inter-
face and thé areas immediately surrounding it as a result
of localised heating. This thermal effect is similar in

nature at higher speeds and friction, as shown in other
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illustrations. uAt early stages of deformétion, Fig. 7.17,
this thermal softening'is not significaﬁt'as'the increase

in temperature ié quite:small.- The iﬁcfease'in stress
between 31.5%'deformaéioh;AEig; 7.24, énd 46.8% deformation,
.Fig. 7.23, when the thermal séftening ié neglected is higher
than the corresponding increaée, Figs. 7.16 and 7.18, when
the thermal effects are taken into account. This indicates
that thermal softening assumes greater significance as

deformation proceeds.
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7.5 STRESS FIELD

So far only the equivalent stress distributions
were discussed as theflfully éepresent’the state of stress
at a point and can be mdégiééaningfully interpreted.
‘However, for the purposeé of illustration, complete stress

field for a selected condition is given in Fig. 7.25.

7.6 EFFECTS OF FRICTION AND SPEED

The effects of friction and speed can be more

" readily assessed by studying the maximum localised temperat-
ures. In Fig. 7.26 it is apparent that the effect of friction
on local témperature is more pfbnounced than that of the
speed, particularly at large deformations., It is also
observed that in the temperature distributions discussed
earlier the temperatures at the tool/specimen interface are
much higher than temperatures in the rest of the spécimen.
However, Figs. 7.27 and 7.28 show that tﬁe maximum local
temperature rises fapidly with friction up to a particular
value O = ,35 and then becomes more or less steady. This
is due to the fact that as friction increases the radial
velocity at the interface becomes sméller and hence the
work due to friction is less and the temperature rise is

due only to plastic work of deformatiom.
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FIG. 7.25 Stress Field (VI = 10.3 m/s; Q= 0.77;
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7.7 EQUIVALENT STRESS AND TEMPERATURE DISTRIBUTION
(SOLID BILLETS)

The computef programme can be easily adapted to
obtaiﬁ:stress and.temperature field during upsetting of
soiid éylindrical billets, as explained in Chapter 5. The
equivaient stress and temperature distributions for a
particular case are illustrated in Figs. 7.29 and 7.30.
The deformation velocity/time relationship was taken from

[31] for a copper cylinder 25.4 mm in diameter and height.

7.8 COMPARISON WITH FINITE ELEMENT METHOD

Mohitpur [31] proposed a finite element solution
for temperature field during upsetting of solid billets,
assuming uniform deformation and Coulomb friction. This
makes direct comparison of the results of this work and that
of E3ﬂ] difficult. It is suggested ESf] that the average
pressures computed using the two theories can be compared
and that for any given value of coefficient of friction MU a
corresponding value of constant friction factor may be
determined so that the average pressure given by the two
theories is identical in the region of interest. Howéver,
experiments E3l] were carried out in dry conditions

(without lubricant) and the centre point temperature was
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measured during deformation which were compared with the
finite element solution which corresponds to a coefficient
of friction M = 0.5. The agreement between the two results

was Qﬁite good, -

The tooling used in this work ié the same as that
used in [}l];' tﬁe specimens were machined in the same
manner énd materials as iﬁ Ref. E3l] and tests were conducted
in similar dry conditions. As observed earlier in Section
7.1 friction factor of G = Q.77 adequately described this
condition. Therefore this value X = 0.77 was used to obtain
a weighted residual solution and the temperature field for
nea;ly;the same reduction in height is compared with that
obtained by the method of weighted residuals and shown in
Fig, 7.31. Referring to Fig. 7.32, it is observed that the
centre point temperatures agree quite well and that maximum
local temperatures as given by the finite element method
are very much higher and appear to reach a maximum and then
begin to drop. The higher maximum local temperature (at
this interface) during early stages of deformation is
possibly due to the assumption of uniform deformation, in
wﬁichvcase the radial velocity at the interface is much
higher and consequently the contribution of work due to
frictiqn. This comparison suggests that the assumption of

uniform deformation is not realistic.
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CONCLUSION

The knowledgéiof the'deformétion process of upsetting
has progressea in the.yegfs as reviewed.in_Chapter 2. It
is evident that strain, Straiﬁ rate, iﬁterface friction and
temperature significantly influence the deformation process
and that there is interaction between them. Experimental
work has led to several empirical formulae which determine
the stress/strain relationsh@p, the most important material
property from the engineering point of view. Anpalytical
solutions based on simplifying assumptions have been procposed
to predict theoretically average values of essential para-
meters. As the process is far too complex to be fully
sol;ed in closed analytical form, numericai solutions have
been proposed which determine the velocity, stress and
temperature fields so that the variation of these factors
within the continuum may be assessed. Numerical methods
that are in popular use require much effort aﬁd computational
facilities and often the effort needed i$ out of pr0poftion
to the advantages that may be gained by applying these
sophisticated methods. It is therefdre necessary to
develop relatively simple, less demanding and sufficiently
accurate methods, Judging by the}results of this and other

work carried out at the Imperial College, London, the method
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of weighted residuals appears to be satisfactory.

Analysis of Steck's work[ZSl], the only other known
application of the me?ﬁbq_of wéighted:residuals to metal-
working problems, reQeélgifhét it is nécéssary tc assume a
velocity field to obtain-reliéble solufions. The assumed
velocity field based on Avitzuf's upper bound solution and
constant friction factor throughout the deformation describes
the process adequatel&. However, it is aesirable to eliminate
the need to assume a velocity field and take into account the

variation of friction during deformation.

The linear induction motor developed as an exper-
imental forging machine presents interesting possibilities,
particularly in view of the fact that the speed of operation
could be controlled effectively aﬁd economically by a simple
system of relays as described in Cha?ter 6. The measurement
system designed to measure the transient phenomenon fully
exploits the up-to-date advances in the field of electronics.
The digital recording system not only'elimipates‘most of the
errors that may arise in a conventional'éYStem but also
enables data to be processed directly on the computer,
resulting in a much more accurate anaiysis of data. In thisi
particular case, accurate derivatives could be obtained.

Precise triggering of the recording system to capture the
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transient signal has always been difficult, causing many,
otherwise useful, experiments to be discarded. This
difficulty has been overcome simply and effectively by using

plezoelectric accelerometer as a triggering device.

The resitlts presented for diffefent.conditions
provide adequdte.information.regarding the effect of speed,
friction and temperature fise during upsetting of cylindr-
ical billets at high speeds. Some of the results may be

summarised as follows:-

a) Interface friction causes non-uniform deform-
ation resulting in increase in stresses and variation

‘0of stresses within the continuum.

b) There is significant rise in temperature due

to work of deformation at high speeds.

c) The temperature rise increases with increase in

friction due to additional work of frictiom,

d) The temperature rise also increases to a

lesser extent with increase in strain rate.

e) ' The heating of the specimen due to work of

deformation and friction is almost adiabatic.
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These findings confirm the results of other numerical

solutions found in the literature.

As a result;bf this work additional conclusions

of importance may be made as follows:

a) ' The temperaturé rise rapidly increases with
friction up to a value of about & = 0.35 and thereafter
remains more or less steady. As explained earlier,
this is due to the fact that the radial velocity at
the interface is reduced as sticking begins to occur and

work of plastic deformation assumes predominance.

b) The localised temperature rise is significant
and considerable thermal softening takes place, partic-
ularly at the interface and the areas immediately

surrounding them.

So far as is known, this important thermal effect
has not been accounted for in the solutioﬁs available. 1In
fact, available solutions are either forvstress fields or
for temperature fields and is not known to have been
combined. * It is essential that as far as possible all the

process variables should be accounted for.

" On account of the simplicity of the method of

weighted residuals this complex problem could be formulated
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¥

and handied witﬁ relative ease. To detefﬁime‘temperature
and stress field for deformations up to 50% (in ten
incremental steﬁs) only 50 secondé of éentrai'processing
time (CDC 6400) and m;ﬁofyvqﬁ 20 K was:réquired. This is
several orders of magnitude less than ghe requiremeﬁts for
the finite element solution [31] which requires 60 K memory
and processing time of 125 seconds just to obtain the

temperature field.

Finally, it is hoped that this work will lay the
| basis for future work and any further work directed at
application and development of this method should be

rewarding.
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. APPENDIX A

COMPUTER PROGRAMME

The flow charts are given in Chapter V, Fig. (5.5,7,8).
" The listing of the programme and variable pame list are

included in this appendix.
Main Programme - compute stress field.

Subroutine VAL supplies some of the initial wvalues and

generates mesh,

Subroutine TEMP - computes temperature field. This sub-
routine is called after the stress fields

have been computed in the main programme.

Subroutine SIMQ a library procedure for solving a system

|

of equations which employs Gaussian
elimination technique. This subroutine is
called in the main programme and in the
subroutine TEMP,

Subroutine INC - computes flow stress.

Al VARIABLE NAME LIST

Main Programme

RTO - outside radius of the specimen at the interface.



RTI
RMAX
- ZMAX
HITE
RO
RI
RNUT
BB
AKN(N)
EDOTR )
EDOTT )
EDOTZ )
EDOTRZ)
SINVAR
QG(NN)
SR )
ST )
Sz )
SRZ)
SIGRC
SIGRB
SIGTC

SIGRB
SIGRZB

z(NTT)
A(I,J)
c(N)
SIGMAR)
SIGMAZ)

SIGMAT)
SIGMRZ)

)
)
)
SIGZB )
)
)

inside radius of the specimen at the
maximum radius (platen).

maximum height (platen).

current height of the specimen.

equatorial outside radius.

~equatorial inside radius.

neutral radius.
bulge parameter 'b'.

shear yield stress at a node.

strain rates.

se¢ond invariant of strain rate tensor.

plastic work of deformation.

deviatoric stresses.

coefficients of free parameters.

assembly of coefficients.

corresponds to equation

189.

interface.

after call of SIMQ contains the estimates

for free parameters.

stresses.,



Subroutine VAL

DEF )
DEFVEL)

DELTAT
NSTEP
SHYLD
TIME
1
ROES
ROEP
RN )
ZN )
RNH)
NODERS
NODERP
NODEZS
NODEZP

NSNODES

NTNODES

- KPS

 KPT

RORD
ZORD

MP(N)

190.

deformation velocity.
t (time).
number of deformétién steps. -
shear yield stress of the material.

time at any instant.

. ambient temperature.

density of the specimen,

density of the platen.

parameters for genmerating mesh,

pumber of nodes in’ the r-direction (specimen).

number of nodes in the r-direction (platen).
number of nodes in the z~direction (specimen).
number of nodes in the z-direction (platen).
number of nodes in the specimen.

number of nodes in the specimen and platen.

total number of terms in the trial function
for stress field.

total number of terms in the trial fpnction
for temperature field.

r coordinates.
Zz coordinates.

boundary conditions; see Fig. 5.3 and Fig. 5.6.
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Subroutine TEMP

TEMPRT - temperature of a necdal point.

SPKS - specific heat of the specimen.

SPKP - specific heat of the platen.

TKS - thermal conductivity of the specimen,
TKP - thermal conductivity of the platen.
DTR - g%

DTZ - %%

DTRR - aTZ/ar2

DTZZ - o1/02

DTT - 8T/oT

T(N) - temperature of a nodal point.
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MAIN ©OPOGRAMVE

CoHHNy A(37,32),?(152h),P(7?),GrG),ﬁkw(?ng),ez ya 200y,
L YU 59327, {2(200),2070 (203),7902(270) 22 (12) ,NEFV (10D,
°V°H(?”C),’J”(ZC”)~?( 27R),T(200),N(290),
20T CYSL,D LT AT, NS TER,, SHYL D, KSP TN, TTnE 1T "0ES,FOET,MERET  HERREN,
QNOFEPq,iﬂﬂ_ZQ , MONTE T NN T7Y, oH 7N, Pk NERT A, PR T, fiSvonFE, HTNOHE’
sHgn s -Sug MRTEDH MCT TRM, K PS4KP, hCL’NOH’NOM,KDT KT, gq
CotvErSion Sne 2009

ASSTEN ALL YNOWNMN VALUSS  AND GTNTRATT MTSH

cALL YAL

0O 150 NET = 31 ,MNSTEE

DEFVEL = ozry(hsT)
TMTTIALIST Y=LOGITTES OF PLATEMN NODES

DO 430 T = (FSNQDE+1Y,NTVO0E
V2H(TY = 3, "
130 VYTH(T) = MTEVEL
EP"OLn = 41,NE26
cpoTrAT = g, n
POYOLE = 1

BTN = o022 HSHOTS)
oTT = PARPJ(MCNITC)

PUAY = DO (MTNODED
THAX = 7020 INTNODE)
HITE = 7D {M]YQTE) *2,0
15X0) AR { |NNERS)

PI = ROPN(L)

TF(ONH (LT, 7.210004) 67O 205
206 NAYOLE = nbvelE+d
655 FACUAT(AS1h,6)
FRNAT = pO/OT .
FRTA = RI/PO .
FOYE = EP-AXEPTA
FRIC = £R¥3%cRTA
FOTN = FPTC*FDTA
=34 = QFPICXTQ/PITS :
FRB = (0,37 71,0=(21/20))) * AL0G(3,0%FR0I*FROI/
(1,045 7 (1, 04 (3, 7* (FROTI**4)))))
TF(FRA 6=, F5%) GOTC 291
NEUTRAL RADIUS LS, INSTOT RADIUS
Y94 = FOATRTYP (-QFNICETA% (1,0-FRTA)/HITE)
)\'3 - Xgiiv-"'
 FHT = RO (0,866 (140771 IN=XR®EXD) /SOP T (XP*(XR=1,0)* (1,0-FRIN*-
Fann & dnuT/20
Fona = roAAXFBAA
FoNS = ERAT*EROA
FRNPO = FROS*FPOA ,
FACTA = NEATRX ([FPNA*(1,0=FOTGY/3,5) - (1,0-FRIA))
FACTR = (277 (HTT=2G377 (1. 1434 9%FROM ) X ((FRAD* (1, 0=FRIM) /4,0)
4 -{ Faanx(1,9-F717Y) + AL OGISRAT))
BR = FECTAZ ((FACTA/E,N) +F AGTRY
WBITE(6,9112)FRA,F2E,PRUT 32,1FRIC, L, DELTAT
¢o~0 199
NEUTRAL PADTYUS .CT. INSIDE SADIUS
204 2010 = 0,9047
nQ 110 T = 1,200
Fond = BOLNTRO
RNt = EEHAXEROA
FOGr = FROI*CROA .
FDAR = FPATECRAA .
BHTK = (HT= /(L 02NTDTIMY ) = ((2, NEQFDTCE(PN+PT) JHITE)
1 ALNGIARST (SRTPX (FRCI+SORT (3. 045R0ONY) 7 (FPORASQAPT (2, D¥FRINH
2 Tarn)IYIYY)
1E LS TRRT (N - -ATS(SAL DY) ZARSIONEWIY LLT. 9.04) 6ATH 198
TE{T .=n, 27n) WRITE (6,9013)
62 FA2~AT(274  DOZS NOT 0ORVERSE . o )
1% CONTINUE " :



1a= bW”T

1 R = pu;j,oq : ’

F3ND = FRAL=ERIA : 193.
FROC = F==eDdna

FeQr = £pAs*rrnp

FACTRE = (NZ2T0/F70AY* (1,7 323+ (FPCC™ (1, N3FRIC) /3. 0) =
1 (FROA®* (L ,2+FPTAY Y

FACTR = (”ﬁ/!u""CF“(4 ¢  A¥EROM) ) ) X({FPONE(1,0-FPIT) 74, D)
1 =t FQOF*(t. =217)) + A'WF(F°OT))

3 = FAT T'\/((C"r‘*"/c + FACT™)Y

WBITE(R,3]1])?)FR4, Fra, ’WU’ QF,QWOIC O=TFVEL, DELTAT

cNTn 1ao

205 203 = ((L,A1*2ERTO2HYTIY /(1 ,732%R0O) Y /7 (1. M+ ( (2, 0¥NEPTC*HITE) Y/
1 (4, 1QR“PW)))
CHNT = (0, )
WoT~e (A, ?J"\Q",”FDIC,“E:V Ly DELTAT

i10¢ ¥RTI™ F'(5,1 ih)
1044 FOBMAT(/714CH MQ R - "7 R - VZ
1017 e Z0oTTY croT? EDOTRZ . I? /)
ng 101 J= 1,Kp o .
PN 100 T = 1,KP
100 A(T,J) = 7,7
NO 139 NN = | ,NSNODE
Z = 700N
F = porooerp
TE{? LT, 3J.072001) P = (,2000001
IF(Z .L7T. 0,70C0001) 2 = 7,70739001
R2= R*R
2= 7%*7
AK= 2KN(N'D
COMPUTE VELNTITITS AND STRRAIN RATFES
FRN = (SM1)T 70y * (BNUT /)

FAYT = EX2(=3327/HITY

€r = =yo (=322, ")

VR =RAXCPTEYTL ¥D% (] (T=TTKN) *CRYT /(1 0-FS)*HITE*4L, M)
vV? = -n”FV LF(L,0=-"SYT)/(2,5F%(1,1=-F?))

ENNTP = 3IEATFYTLE (1, 04FR N)ZFNYT/ (L, J¥KHITE*(1,0=FR))
EH”TT = RAIAIEYCU X (1 3-FDHY)XCIYT/ (L, PEHITE*( 1, N=F2))
FDAT7=={INTBLTARTT)

SNQTR? = ZANTTERISN/ (2, NFHITT) -
STNYAR(NN) = A3S( ZT0QTRAZ*ZNOTRZ=-EDOTR*eDOTT=-ENOTTRENQTZ-L00TZ*
1 ©neY2) -

V_“‘(“N) - \,'D.
V"NH\N) = 7
, K = AK/SOTT (STHUYAR (VM) )

QZCCH = = 1,722 pV
TELTAT = 4,4GLT¥SNDT (STNVAR(N'D ) * DSLTAT
WRI*:(G,iﬂi?)'w PeZ g ¥y V7 3 ZDNTRLEDQTT,EN0TZ, T00TP7,SINVAR (NN)
y ATLTAT,, = ﬂ) ,JKL(NN) :

1612 FOCHAT(TL,%2511,2)
NHTTE(ﬁ,qjﬁi)S’QCT,S?,S=7,SH,QJ,OG(N")

SOQ2 FNOMAT(LY ,71711.7) . -
EN(1,NN) = =nnTp
EN(24,NN) = ECNTT
?D(?,N”) = FnnTy -
EN(LyNNY = TNOTR7 )
CAMBUTE COTFFTECTIZNTS OF FRFEZ SARAMETERS
NTT =1
NTTT = MATZI°oM
NO 102 NK = 1 ,MTCRpMS
No 172 NL = 4 4MTERMS
MDD = NK
TNRE = NL
THNE = MK
THNn = MU
NTYT = MTTTs4
SIGRC = (REX(23TNHNPC<2)) * (Z**¥ (2¥INDD) )
STRTE = SIGED * (2*INDP-Y)
NTT = MTT2
sIGee TI2*¥(OXINTE=2)) X (Z¥% (2XTINP=2)) ¥ (LI THNNITHCP-2XTHON)
STGE?78 = (2FXTNONTL4)¥ (2*xTN" D7 PYIFR¥X(PETNMT L) )R (7X% (2FTNON))
STGRZ3 == THNCA (oL TNAT-4)* (QEX(2¥IMOZ=3)) *(Z¥*(2*TNDD-1))
XCLGNTTT) = D FAE7XS™AR7L 0, 7I332CT AT
x(?’u?T*) = p‘egév;cTr*r-0.?321¥QIGDC
X(3I4NTTTY) = n.n
YL ,MNTTTY = G,N0 -
Y{S4NTTT) = |7T45°T0 ‘
YL NTT ) = G ARRRT2STLDI= 3,3333*TIG?8
X{24yNTT 3} = ~3.’3”*tSIGPa+<TG7“)
X{3,NTT ) = STGRZ=
X{UyNTT) = CIGRZB



NTT ) = SIGPR
(02 FontInE ‘ 194,

C COMPUTE CMISTANT TERMS

-QZ#?OOTD _3.373?¥C7ﬁnﬂ
-QV¥"an* - O.“T?“#Q7CON
~CURXTANTP T
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~
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, H
’ 7,0
ARE ve3ZnUAL FUNC’ION

~ 1,MERRFN
¢ TeANT, HMPMN) (NS, 2) £0TA 129
LAMD,  MD(NN) NS, 6) GOTN 120
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e

=4 oo— o

+ Y(LT,I) *X(LT,J) *6(L™)
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M e s .
=L DT
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CARAR
~3 39

D ZZ~RP
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20 D
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AYSIIS
POAhy | =1,K59)
1 22738

1017 3r41.’/)

1011
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MEZME
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N2~ &L
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z
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bl = 2V

0.0
Ne?

C  COMPUTE STR<SS FTELD

na 243 BN = 1,NSMODE
70D (Y
TOPD )Y

3 L7 2407

DD
- >
o<
|
]

~

i
o

- o
[t JV8 ]
vl |
Do
I
O
[ Xowe }
[l ol

Wl I~ il

>N R4
DR RZNO

P (NH))

Hzz pNAO

ANHNIA AT
NNTTF L4 Ol

K = 4,MTEPMS
M2 1)4TzRMS

e (I
Wil es 400
=

)
3

{.0-4D 0 1.

DN DIONO D

\L'O#ULIU

nsun

[R*% (2XTHNND <2} )+ (7** (2*INTN))
SIGPC ¥ (2 *INDP-1)

S(OR¥ (22 THNCL 2) ) X (7XX (22X NN=2) ) ¥ (LETHNNFTNFT=2¥TNGN)
= (2FTUNT=A )X (2ATNNZ-D) ¥ (PHE (2XTMOT <L) ) F(TEX(2XINCD) )
.:-9*TN““*(9‘TNH=-1)*(D**(zt*ﬂﬁ»—?)) FLZEXL2XINON=-1))

STHMAD $STAEST CLNTTT)
SLGMATASIATO™ FINTTT)
3L GMAPESTAREY CLNTT)
ATRMATECSTE 7% C(NTT)
IC7=CT 4 C7+STAEZRF € (NTT)
Tune

{STGHUACHSTGMAZ+SIGMATY /3. 0

er:\;';\ 3 Qu

SIAHAT-SM

TR

NTT+4

ZIADAOINNNIAINAHANNHI DD

wun -4: TrexoaNGO

21u

NN VD NN NNUHDZMAZ - FEHANND N Z ZN:ATINTD 4 IN
N OO At A A=~ Z Z 2 Z D D AHIAH A~ ARV TN



NN
o
(WO |

ST - QTFMA*-QH

SJ==(SOP*ST+ T3S 74S7* S + (STGMDZXSTGHRT) ‘ 195
SAK = AK*AW .
VP = RN ()Y
V7 = VINCGFY

AGINNY = Qﬁ(i,wﬂﬁ“§7+”“(° NMYXSTHEN(2,NN) * S74+70 (L, NN) *QIAMRY
WO TTE (fa1942) NN, Py 87,57, 314,5T0HAR, STE VAT, oT648Z,SIGMR7 4 AK,SNK, S
CONTINUE

COYPUTE TIMDPOATYRE FIELN
CALL Trup
CAMFUTE THCREMENT OF K

CALL TMNC

rONTINUE

eTnp

ENN

SUROPUTINT vAL

CONMMON L (32,32),204024L) 4,7 {22) G (6) ,AKM(200) , STNYAR (207),
1 ¥Y( 6, QD)P”F(ZDU),°C7W(?"93,2030(230),"c(1?),DECV(lﬂ),
7V°”(79C),’7W(2nq)q¢( 220),7(20Nn) ,0200),
2NETFVEL,DT “',Ucffﬁ;SHYLDI"KQ°7C9 TTMT T T  ROT S FOE T, NEPET JNERR
‘LNNADZTS, HQW 7T G NOPTEEL RS TD, 9H,ZN,°WH,“¢°IC,”NUT,J°“OU*,J'”
BMQRETE, M TIENS G MITERM HCT I8 K PS,KP, MCL, N0, N0, KOT X T, A3

DATA n;FV(t‘vIziginjooo)OOOQ

SHvIN = 1410770000,0

NSTEP = 7

TI = 18,0

pAceE = 7Q53,0

PNES = RQLA I

NERFT = 3

MERPFN = K

NOQNEDS = 17

NONc78 = 7

Nonerp = 10 .

NOPT7ZD = L

PM = 0.00352247 - -

ZM = 0,00352017

FNH = 0,2747€35

PERIN = 0.4in

TTUE = DELLTAT

NEFYSL = S=Eve1)

SHYL P =(SHYI Y+ (637", ”*"’FV"L)/(7”* 2e 3*”00“29))/1.”3?

Nq'“"Dr - ]()n"pf‘x-ugn.- <

NTNCC? = N3NMDT + NCLCERC*NONZZP

No5 = SMANE-NONESSE 4

q'rDMQ—7 .

MBTERM=Q -

MOTEDOY=0O \ .

KPS = MPTERVAMOTERM

KB = KPS+1

NOL = ®

NOY = 2

HoM = 3

KPT = NOM*'|ON¥NOL

KT = KDPT4+4 : : -

G(1) = 1.7 '

G(2) = 1.1

G13) = 1.1

G(LY = 1,0

G(r) =1,M

G(6Y = 1,9

GEME2ATE MTSH ANDM ASS IGN 30UMDARY rQHDITIOMS

¥V =7

no S0 J = 4,M0NE7S

Z = IN*FLNOLT (J=-1)
nn 50 I = 1,4MODERS

M = M3

ROSN(M) = TN*FLOAT{I-~1) +RNH

70PT (M) = 7

STNYAR(IHMY = 1,0

AKN(M) = SHYLD
F(Y) = 0.7
T4y = 71

M2 (M) = n

IF(J +EN., 1Y MP(M) = 14

FNy
NE,



58

6l

TE(J oFQ, '[ARF7Q) MT (M) = 2
TEA(NHLLT01,0001° ,0 5,1 .34, 1) PO = 3

TFAT .70, 2 T »2% HODIRS) MP(M) = 6

77 = 7070 (1SNONEY

ng &N ) = 4, mANFTIN

7 = 7nxelnEtg-1) + 27

DO 6C I = 1,MONERP

V= W31

RASN(H) = JMEFLQAT(T-1)

Znsn(M) = 7.

PR () = n

TEM) = T¥

TF('CNH.L’.C‘.Dﬂﬂﬂ o0 R'I .EQQ 1) Py =3

TF0 JEN, 11 MPM) =4 :

TE(T LEN, 10NTOD _0R, J o EN. MODEZ®) IP(M) = 5

DE T{jRY

ENN

SUAEAYTING TNA

CO'tHNN A{32,22),211724) ,"(22), (£}, 501 (200), STHYAD (200)

Y( £,22) M2 0300) 5075 (209),2000(200) 3550447 ,NEFV (10,

9V°W(9"“)l JTMER0Y S 297, (216) 86301,
FNTEYEL, PELEAT MSTED, Y0, fuSP I, TI M YT RAES, 0TS METET, NEDDFN,
LNONEBI I NAITTIS  Nnn= 8T vEnd o) AN 2N, o, AESTE ANGT, fioNgnE NTHODE,
GNATETEIWTINNG JpaTeew uf- 80k pETRA, NAL, NOMINON, XPT KT, PR
FOLLOWING TS FAR FOFFER

NO 241 MN = 1,NSNANT
PORT(ANNYI= AR INE) &+ (Y= (NN 23 TAT)

ZOST (M) =700 (1) + (V7H (N *DEL TATY

NELTAT = 4,1547*SnNDT (RTNVAD(NN)) * DELTAT

FIANY = 5(1"3 + PLTAT

C = T (NN)

TH = TINY) ,

A¥ = SHYLN*1,732/4,07% .

TE(TC 6T, 400.0) GC™A 212 .

TN = Th=18, 7 : .
IF('—'P-@.il';) 1.1’12 42

AK = AK +{"1A.7=1.84%Tn)* (=r=3,08)

GOTe 215

AR = 8K #0218,0=1, 8477020,

TF(Er-r,37) {7,114,

AK = AK+(550,0=-1, ES*TW)4('“ £.15)

GATO 215

AK = A¥3(330,0-1,73%TN)%q, 45

IF (5C=",50) 15, 18,17

AK = AK+(255,0=0.,07¥TN)¥(=r=0,3)

GOTO 21F : -
AR = AK+(7265,0=0,7%TN) %0, 2

TE(Er=0,81) 17,128,148 )

AK = AK+(153,0=n,53¥Tn)x(crag, )

GOTC 24F

AY = AK+(437,0-0,75¥TH) 20,3

EK = AK+( "3.0=0.%a)%(EC=1,8)

GoTP 29%

TN = T6-171,9

JF(FC-0.,131 21,22,2?

AR = AK+{50F,"=0,9L*¥TN) *(EN=0,5) -

6A™A 21F

AK = AK+(3A5,0-N,aL*TD)*0,1

TF(Tr-5,37) 2%, 24, 24

AK = ARH(427,0=0.82%T7) ¥(=r=0, 15)

GNTN 24t

AK = Bs(429.0-9,29%70) 30,15

IF (ET-1,503) 25, 2¢,

AK = AKE(187.428748Tny % (=0a0,3)

OT0 21%

BV = MK+ (135,0-0,n0%TM* 9,2

IF(FC-OOQD)?"ZQ, -

kK = AK+(33,nM3-3. 9?*'“)*(="—n.=)

GNTO 248

EK = A¥4(33,77-0,"2%7nyxn =

AKX = A¥#(38,77=n.23xTn)x(E0=0, 8) )

EKMANMY =(AK/1,.732 J%1,0E6

COMNTINUE

RETURM

END

196,
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SURRQGUTING TLup ’

TOMYON A(R2,72) (0 (4524L) ,7(32),G{6Y 2N (200) 4SIMVARI220),

Y( £y22)," (300 ?03’1(2?3),?.’)"-"(9-'"))%5'—’(10),“éFJ(i.l
VPH(°Q0),”"I(°°”),’( PIEY) ZTHUPAQY 4G (200)

DEEVWT AT T AT MST R, SYYL Y, TKSPTC, TIVE ,¥T,R0TS,PNCP,MERFET, NERB SN,
NONERG MO TS  MARE s e EIn, ONG ZN, D IH, OF IR RMYT , MENACF, “TNODE,
NMOPTTC G MTEDMT (MATERY,MLT LMK BSyKPy NCL 9 NOMyNON, KDT KTy
KPT = NOL= jnnu

KT = KEeT414

KPHOCE = *SMONE+NNNEPD

o301 T = 1,7

LG 201 J = 1,KT

AT ,J) = n,n

Do 302 YN = MTNONE

R‘IAY = pn"nn%u)r"‘)

ZHA‘X = 7q~:h(n—nnr~ )

HITZ = 7000 (M3M0NTY*2,9

TEYFTT = T(NN)
T=DOTN (M)

Z=70RN (NN)

RTN = ROPD(NODETTY
FOUT = P07 ({KSNQONES)

NOTBES ON THS INTZIPFACT (2LATIN QNLY)

T JLE, DAUTY GOTNR 2In?

TE{NN +GTe NSNODT ,ANA, NN ,LT. NPMODT ,BNN, R +GE, RIMN .8ND,
NOPFES ON T4 P=AXIS

IF (NN LL5, NODERS ) cQg™n 3n2

NONES ON THE Z=AYTS (SCLTD S PELIMTMS ONLY)

TF(RNH .L ﬂ. por1 LA NP, MD(IMN) L,EN, 3) GOTH 392

TF(R ,L7 u.GGEUOi) R = (0,9707304 :

TF(7 .LT Can0On001)Y 2 = N¢0003001

R? = mM=xp

22 = 7*7 '
OF = Re - TWMAXERMAY .

ZIF = 79?2 = TMAX*ZMAX i : )
AK = AWM ‘

yn=\2 N(Nd)

V? = VZN Y
MATERTAL DNPEDRTICS
SPYUS=(N, 022 (M, N02/74L,0)¥ (TEMPPT-TT))*4, 86*1000."

SAVE= ((,47°65+(0, 0LS/L2, N)¥(TEMNPP T~ ”)\ 419674790, 0
TKS = (FL1,56-(17,5/¢2, n)*x (TEMDI T~ 71)3*4196.0/’603.9
TKP = (20,71~ (1.,27°2,7 X (TIMOIOITTTYIIXLIR,0/3R00,7
HETLM = (1,0+0,04L%( TIMPOToYT))¥4486.7/3F00, N -
RETAS = RITO®TDKS/TKS

BETAT = PNIS#SPKP/TKS .
CNMEUTS CPISTAMT TTRMS

TEANM «GT, MSHNNE) 07N 2G4

TF(NN ,GE, MNOONZTr) GCTn 359

pLCNA = "’ /("q;—Q*QEKQ)

Y(1,KT) = q’(wu)/t“o S*SP KS)

GNTNn 3IE2

ALCHA = (TYHS+TYD) /7 (2,02 {DNN=S*%SPKS + RIEF2SOKP) )
X(1,K™) = (APS(QFPIC#AK*YR*23/HITEY+QG(NN))Y*2,0/ (POES*SPKS+

RREP¥INYP)

GCNTC 382

ALSHS = T2/ (ROED®STKD)
Y{1,KkT) = 0,9
Y{2KT) = ~WFILMX(T=NPDT-TT)/TKS
Y{F4KTY = =HEILVE(T=MOPT-TI)/TKD
COMEYTE NATCFIZCTTNTS NF FRET PAPAMETETS
NT =10
nNo IPT TL = 1 ,4,M0OL .
N 303 T = 414NQM
MT = NT+4
NTM = TM
HY1, = TL

SER = (BEFAXMNTLIV*F (77* ( 2*MTM))
DTR = Z2E%(QTD/2) %2, 05X (P243520T)
DTOR = ZF¥(RTD/D2) 32 AX(D2+4N2FNTL¥L, N4+ (2, 0*MTL=-1, MY ¥RF=NTL)
0T7 = rF*{(grR W2 DF(Z2+ZFFNT YY)
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1013 FNOMVET éii
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APPENDIX B

' PROPERTIES OF MATERIALS

Mechanical and thermal properties [ 32,99,102 ] of
the materials used in this work are illustrated in this

appendix.

B.1 STRESSES

In Chapter V it was shown that the increment k

can be calculated by

e = éﬁgmk&m)

where: I. = second invariant of the strain

2 rate tensor,
At = increment in time,
Ck,m = constants.

.The stress-strain characteristics of copper and aluminium
are graphically represented in Fig. B.l and Fig. B.4. The
curves are di&ided into segments, within which the slope Ck
is assumed to be constant. Similarly this slope is assumed
to vary linearly within specified ranges of temperatures.
The values of CkT derived in this manner are given in the

following tables. The slopes can also be used to calculate

flow stress for any given strain.
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100°%c < T < 400°¢C

COPPER - C .

18%C < T < 100°%¢C
0.5 < € <0.15 716 - 1,84 (T-82)
0.15< € <0.30 550 ~ 1.58 (T-82)
0.3 < € <0.50 265-0.97 (T-82)
0.3 < € <0.80 153-0.79 (T-82)
0.8 << € <1.20 70 - 0.59 (T-82)

Strainrate Sensitivity - m

565~ 0,94 (T-100)
420 - 0.89 (T-100)
185=-0.40 (T-100)
88 ~ 0,24 (T-100)
21 ~-0.72 (T-100)

Copper m = 0.053 (Fig. B.3)

Swedlow EQO] used a technique very similar to this

and reported them to be satisfactory. The incremental strain

I
Mt
>
cr

AE

therefore

Ml
I
m
+
&
m

If the strain sustained before the incremental step of

deformation and strain after the incremental step of deform-

ation are such that they lie in two different regions of

linearised segments, then the average slope is used to

calculate Ak. As the incremental steps are small, any

error that arises from this averaging of slope may be

ignored;
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B.2 HEAT PARAMETERS

The heat parameters are graphically represented in
Figs. B.7 to B.13. They may be numerically represented as

follows:

Steel (platen)

Specific heat Cp (Fig. B.7)
= [0.1055 + 0.000107(T-T)7] 4186 J/kg.°C.
Thermal conductivity kp (Fig. B.8)

= [(39 - 0.0146(T-T;)] 1.1627 J/ms.°c.

CoEEer ,

~ Specific heat C (Fig. B.9)
= [0.092 + 0.000027(T-T )] 4.86 J/kg.°C.
Thermal conductivity k_ (Fig. B.10)

= [349.5 - 0.088(T-T;)] 1.1627 J/ms.’cC.

Surrounding medium

Heat transfer from coefficient hf (Fig. B.13)

= [9.9 + 0.057(T-1,)] 1.1627 J/ms. C.
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FIG. B.,1 Stress/Strain Relationship
of 99.9% Cu [32]
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FIG. B.4 . Thermal Conductivity of Steel (platen) [101]].
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FIG. B.5 Specific Heat of Steel (platen) [lOlj.
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