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2. 

SYNOPSIS 

This thesis is essentially a study of the effects 

of strain-rate, end friction and consequent temperature rise 

and the changes in geometry of short hollow cylinders during 

the high speed upsetting between flat parallel platens. 

Literature is reviewed to sum up the dynamic behaviour of 

metals. A numerical solution using the method of weighted 

residuals is presented. The mathematical treatment and the 

computational procedure are described in detail. It is also 

demonstrated how this model could be used to obtain stress, 

strain, velocity and temperature fields in upsetting in 

general. The computed results have been verified experiment-

ally and compared with other published work. A linear 

induction motor was used as an impact device and some aspects 

of instrumentation and measurement of transient phenomena 

are also discussed. 



3. 
CONTENTS 

Pau_ 

SYNOPSIS 	 2 

CONTENTS 	 3 

LIST OF ILLUSTRATIONS 	 7 

NOTATIONS 	 11 

ACKNOWLEDGEMENTS 	 15 

1. 

2. 

INTRODUCTION 

LITERATURE SURVEY 

15 

18 

2.1 Quasi-Static Compression 18 

2.1.1 	Compression Tests to determine 20 
Basic Stress/Strain Relationship 

2.1.2 	Measurement of friction 21 

2.2 Dynamic Compression 21 

2.2.1 	Dynamic Compression Tests 24 

2.3 Numerical Solutions 25 

2.3.1 	Barreling in .Compression 25 

2.3.2 	Temperature Distribution 25 

2.3.3 	Stress Fields 28 

2.4 Ring Tests 28 

2.4.1 	Experimental Calibration 30 

2.4.2 	Upper-bound Solution without 32 
Bulge 

2.4.3 	Equilibrium Approach without 34 
Bulge 

2.4.4 	Upper-bound Solution with Bulge 35 

2.4.5 	Numerical Solutions 39 

2.4.6 	Other Related Work 40 

3. NUMERICAL METHODS 42 

3.1 The Method of Weighted Residuals 43 

3.2 Different Methods of Weighting 45 



4. 

3.3 Choice of Trial Functions 	47 

3.4 Application of Different Methods of 	49 
Weighting 

3.4.1 	Collocation Method 	50 

3.4.2 	Subdomain MethOd 	51 

3.4.3 	Galerkin Method 	52 

3.4.4 	Least Square Method 	52 

3.5 Comparison of Different Methods of 	57 
Weighting 

4. 	DEFORMATION IN UPSETTING - 	58 
THEORETICAL CONSIDERATIONS 

4.1 Stress Field 	 58 

4.1.1 	Stress Function 	60 

4.2 Strain and Strain Rate Fields 	61 

4.2.1 	Stream Function 	63 

4.3 Yield Criterion 	 64 

4.4 Stress-Strain Relationship 	65 

4.5 Work Hardening 	 66 

4.6 Strain Rate Sensitivity 	67 

4.7 Inertia Forces and Stress Wave Propagation 	68 

4.8 Power of Deformation 	 70 

4.9 Temperature Field 	 71 

4.9.1 	Heat Accumulated 	72 

4.9.2 	Heat Conducted Through the 	73 
Surface 

4.9.3 	Heat Generated in the Body 	74 

4.9.4 	Heat Generated at the Surface 	74 

4.9.5 	Heat Convection at the Free 	75 
Surface 

4.9.6 	Temperature Distribution 	76 



5. 

Page  

5. SOLUTION BY WEIGHTED RESIDUALS 	77 

5.1 Method to determine Stress Field 	82 

5.1.1 	Premises 	 82 

5.1.2 	Discretization- 	84 

5.1.3 	Velocity and Strain Rate Fields 	84 

5.1.4 	Governing Equations and Boundary 	90 
Conditions 

5.1.5 	Residual Functions 	91 

5.1.6 	Solution (Rings) 	94 

5.1.7 	Solution (Solid Billets) 	95 

5.2 Method to determine Temperature Field 	100 

5.2.1 	Premises 	 100 

5.2.2 	Discretization 	101 

5.2.3 	Governing Differential Equations 	102 
and Boundary Conditions 

5.2.4 	Residual Function 	102 

5.2.5 	Solution 	 105 

5.3 Complete Solution for Deformation in 	105 
Upsetting 

6. EXPERIMENTAL EQUIPMENT AND PROCEDURE 	110 

6.1 Experimental Equipment 	110 

6.1.1 	Linear Induction Motor 	110 

6.1.2 	Stator Winding 	113 

6.1.3 	Experimental Rig 	119 

6.2 Instrumentation 	 127 

6.2.1 	Displacement Transducer 	128 

6.2.2 	Modulator/Demodulator 	131 

6.2.3 	Transient Recorder 	131 

6.2.4 	Triggering 	 134 

6.2.5 	Editing and Output 	134 

6.3 Calibration and Testing 	135 



6. 

Page 

7. RESULTS AND DISCUSSION 	140 

7.1 Experimental Verification 	140 

7.2 Verification. of Algorithm and the Method 	150 

7.3 Equivalent Stress and Temperature 	157 
Distribution 

7.4 Equivalent Stress Distribution without 	165 
Thermal Softening 

7.5 Stress Fields 	 168 

7.6 Effects of Friction and Speed 	168 

7.7 Equivalent Stress and Temperature 	-172 
Distribution (Solid Billets) 

7.8 Comparison with Finite Element Method 	172 

8. CONCLUSION 
	

175 

REFERENCES 	 180 

APPENDIX A - Computer Programme 	188 

APPENDIX B - Material Properties 	199 



7. 

LIST OF ILLUSTRATIONS  

Fig. 2.1 Compression of Cu cylinders between lapped 
tools. 

Fig. 2.2 Compression.. of Cu cylinders between turned 
tools. 

Fig. 2.3 Comparison of-incremental and large deform-
ation tests. 

Fig. 2.4 Shape of bulge on the side surface in 
upsetting. 

Fig. 2.5 Shape of bulge on the side surface at 
larger strains. 

Fig. 2.6 Discretisation of the specimen. 

Fig. 2.7 Temperature during compression. 

Fig. 2.8 Temperature distribution in compression. 

Fig. 2.9 Stress distribution during compression. 

Fig. 2.10 Modes of deformation in ring compression. 

Fig. 2.11 Calibration curves to determine 

Fig. 2.12 Nomogram to determine neutral surface. 

Fig. 2.13 Variation in [1, during deformation. 

Fig. 3.1 Solution by collocation method. 

Fig. 3.2 Solution by subdomain method. 

Fig. 3.3 Solution by Galerkin method. 

Fig. 3.4 Solution by least square method. 

Fig. 4.1 Stress acting on a cylindrical element. 

Fig. 4.2 Work hardening. 

Fig. 4.3 Strain rate sensitivity. 

Fig. 4.4 Effects of temperature. 

Fig. 5.1 Axisymetric upsetting (discretisation of 
the specimen). 

Fig. 5.2 Iterative procedure. 



8. 

Fig. 5.3 

Fig. 5.4 

Fig. 5.5 

Fig. 5.6 

Fig. 5.7 

Fig. 5.8 

Fig. 6.1 

Fig. 6.2 

Fig. 6.3 

Fig. 6.4 

Fig. 6.5 

Fig. 6.6 

Fig. 6.7 

Fig. 6.8 

Fig. 6.9 

Fig. 6.10 

Fig. 6.11 

Fig. 6.12 

Fig. 6.13 

Fig. 6.14 

Fig. 6.15 

Fig. 6.16 

Fig. 6.17 

Fig. 6.18 

• 

Fig. 7.1 

Fig. 7.2 

Fig. 7.3 

Fig. 7.4 

Mesh and boundary surfaces (ring). 

Deformation modes of ring in compression. 

Flow Chart computation of stress field 

Mesh and boundary surfaces (solid). 

Flow Chart computation of temperature 
field. 

Flow Chart - complete solution. 

Twin arrangement of linear motor. 

Parallel connection - flux distribution. 

Series connection - flux distribution. 

Stator winding diagram. 

Connection diagram. 

Connection diagram. 

Circuit diagram - control of speed. 

General view of experimental rig. 

Side view of linear motor. 

Side view of experimental rig. 

Transducer mounting. 

Test specimens. 

Measuring system. 

Connection diagram of LVDT. 

Operation of transient recorder. 

Mode of recording. 

Typical calibration curve. 

Typical analysis of output. 

Position of Rn (Al, V = 5.0 m/s) 

Position of Rn (Al, V = 10.3 m/s) 

Position of Rn (Cu, V = 5.0 m/s) 

Position of Rn  (Cu, V = 10.3 m/s) 



9. 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

7.5 

7.6 

7.7 

7.8 

7.9 

7.10 

7.11 

7.12 

Bulge 

Bulge 

Bulge 

Bulge 

Bulge 

Bulge 

Bulge 

Bulge 

profile 

profile 

profile 

profile 

profile 

profile 

profile 

profile 

(Al, 

(Al, 

(Al, 

(Al, 

(Cu, 

(Cu, 

(Cu, 

(Cu, 

7.13 0 , T distribution 

7.14 0, T. distribution 

7.15 3, T distribution 

7.16 C, T distribution 

7.17 3, T distribution 
15.7% def.) 

No lub, V = 5,0 m/s) 

No lub, V = 10.3 m/s) 

Lub, V = 5.0 m/s) 

Lub, V = 10.3 m/s) 

No lub, V = 5.0 m/s) 

No lub, V = 10.3 m/s) 

Lub, V = 5.0 m/s) 	- 

Lub, V = 10.3 m/s) 

(V = 5.0 m/s, CC = .14) 

(V - =10.3.m/s, a 7 .14) 
(V = 5.0 m/s, CL= .77) 

(V = 10.3 m/s, t = .77) 
(V = 10.3 m/s, CL = .77, 

Fig. 7.18 C , T distribution (V = 10.3 m/s, a = .77, 
46.8 % def.) 

Fig. 7.19 Q  distribution without thermal softening 
Fig. 7.13) 

Fig. 7.20 0  distribution without thermal softening 
Fig. 7.14) 

Fig. 7.21 0 distribution without thermal softening 
Fig. 7.15) 

Fig. 7.22 Q distribution without thermal softening 
Fig. 7.16) 

Fig. 7.23 6 distribution without thermal softening 
Fig. 7.18) 

Fig. 7.24 5  distribution without thermal softening 
Fig. 7.17) 

(as in 

(as in 

(as in 

(as in 

(as in 

(as in 

Fig. 7.25 Stress Field. 

Fig. 7.26 Maximum local temperature at different conditions. 

Fig. 7.27 Effect of friction on maximum local temperature 
(V = 5.0 m/s). 

Fig. 7.28 Effect of friction on maximum local temperature 
(V = 10.3 m/s) 

Fig. 7.29 0, T distribution (Solid, 26.6 % def.). 

Fig. 7:30 0, T distribution (Solid, 34.8 % def.). 



10. 

Fig. 7.31 T distribution comparison with F.E. Method. 
Fig. 7.32 Local temperatures comparison with F.E. Method. 

Fig. B.1 
Fig. B.2 
Fig. B.3 
Fig. B.4 
Fig. B.5 
Fig. B.6 
Fig. B.7 
Fig. B.8 

Stress/Strain characteristics of Copper. 

Slopes of Stress/Strain Curves. 

Strain Rate Sensitivity. 

Thermal Conductivity of Steel. 

Specific Heat of Steel. 

Thermal Conductivity of Copper. 

Specific Heat of Copper. 

Heat Transfer Film Coefficient. 



NOTATIONS  

11. 

A 	- 	area of cross-section. 

a 	- 	constant friction factor. 

b 	- 	bulge parameter. 

A.,B.,C.,D. 	- 	parameters of trial function. 

Ck  - 	slope of stress-strain curve at room temperature. 

CkT 	
slope of stress-strain curve at temperature T. 

D,d - diameters. 

Do - 	initial diameter. 

b. 	- 	Kronecker delta. 

v2 
- Laplace operator. 

E 	- 	Young's Modulus. 

e 	- 	engineering strain. 

Er 	radial strain. 

E 

- 	

hoops strain. 

Ez 

- 	

axial strain. 

E - 	shear strain. rz• 
- strain rate. 

equivalent strain. 

E 	- 	equivalent strain rate. 
p 
E 	- 	plastic strain rate. 

EP - 	plastic strain. 

Gn - 	weighting factors. 

J1 	- 	first invariant of deviatoric stress tensor. 

J9 - 	second invariant of deviatoric stress tensor. 

J3 - 	third invariant of deviatoric stress tensor. 

P 	- 	boundary surfaces. 

h - 	heat generated. 

Ho - 	initial height of the specimen. 

H1 - 	height after deformation. 

H - 	current height of specimen. 

hf - 	heat transfer film coefficient. 



12. 

- first invariant of strain rate tensor. 

I2 - 	Sewrqinvariant of strain rate tensor. 

13 - 	third invariant of strain rate tensor. 

I2. - 	second invariant of .strain rate tensor. 

i,J,k,m,n - indices. 

k 	- 	shear yield stress_(initial): 

k* - 	shear yield stress (current). 

K 	- 	thermal conductivity. 

Ak - 	increment in shear yield stress. 

- length of the specimen. 

- coefficient of friction. 

Pay 	average pressure. 

- heat generated due to plastic work. 

q
g  

- 	

heat generated due to work of friction. 

r 	- 
 

coordinate in the r-direction. 

rmax - 	maximum value of coordinate in r-direction. 

Ro 

- 	

outside radius. 

R. 	

- 	

inside radius. 1 • 
Rn 

- 	

neutral radius. 

R 	- 	residual. 

RT 

- 	

total residual. 

p 	- 	density of the material. • 

- ' density of the specimen. 

- density of the platen. 

Co 	- 	yield stress. 

Or 	- 	radial stress. 

0
9 	- 	hoop stress. 

0z - 	axial stress. 

01 	- 	deviatoric radial stress. r 
0'
9  - 
	deviatoric hoop stress. 

a' 	- 	deviatoric axial stress. 

Trz - 	shear stress. 



- equivalent stress. 

0s 	

- 	

flow stress. 

13. 

T - temperature. 

To 	ambient temperature. 

TI 	initial temperature. 

TF - 	temperature of the surrounding medium. 

- 	increment in temperature. 

t - 	time. 

At 	time increment. 

ur - 	radial displacement. 

uz - 	axial displacement. 

il 	
- 	platen velocity. 

✓ - 	volume or domain. 

VI 	impact velocity of platen. 

✓ current velocity of platen. 

Vr 	radial velocity. 

Vz 	axial velocity. 

VA - 	circumferential velocity. 

V 	- 	velocity vector. 

w 	- • work done. 

- power. 

W. 

- 	

weighting function. 

X. ,x. - coefficients of free parameters in the trial lj 
function. 

z 	- 	coordinate in the z-direction. 

z
- max maximum value of coordinate in z-direction. 



14. 

ACKNOWLEDGEMENTS 

I wish to express my sincere thanks and gratitude 

to Dr. B. Lengyel for suggesting this project and for his 

help and guidance throughout this work. 

I gratefully acknowledge Professor J.M. Alexander 

for his kind permission to use the facilities of the 

Metalworking Laboratory and the Authorities of the Imperial 

College for the award of an assistantship. 

Thanks are also due to Dr. E.L. Ortiz, Mathematics 

Department, and Dr. H. Bolton, Electrical Engineering 

Department, for their help and advice. 

The assistance given by all members of staff, in 

particular M/s. H.A. Pooley, N. Keates, R. Baxter, W.H. Plumb, 

R. Gunn and S. Pridham and my colleagues, in particular Mr. 

• H. Heiman, is gratefully acknowledged. 

Finally my thanks are due to Mrs. Shelagh Murdock 

for typing this manuscript. 

T. RAVINDRANATH 

March, 1976. 



15. 

CHAPTER 1  

INTRODUCTION 

In recent years much research and development work 

in metal working has been directed at increasing conventional 

forming speeds and extending the normal range of forming temp-

eratures. In view of the fact that supply and cost of material 

is becoming critical, the development of forming processes has 

assumed greater priority. Although the introduction of high 

energy rate machines a decade or so ago has not been very 

successful there is a sustained interest in the development of 

such processes due to the possibility of more compact and 

cheaper equipment, reduced production cost and better products. 

Therefore the study of dynamic behaviour of metals at high 

speed is of interest and value in metalworking. 

Considerable effort has been made in the past to 

collect experimental data to establish the relationship 

between applied forces and deformation at high strain-rates. 

Mechanical behaviour of metal is influenced by strain, strain 

rate, temperature, boundary and inertia restraints and inter-

facial friction. Research workers have developed ingenious 

techniques to isolate these variables and study them indiv-

idually. Data thus generated enable us to sensibly interpret 

the deformation and apply them to a production situation. 
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The experimental work has closely been followed 

by theoretical work and in the early days many mathematical 

solutions in the closed analytical form were proposed for 

idealised materials. With computers it has now become possible 

to employ numerical methods to construct mathematical models 

which simulate the behaviour of deforming metals very much 

closer to reality. However, much theoretical work would seem 

to have been directed mainly at satisfying academic interests. 

Nearly all the numerical methods that are in vogue, 

in particular the most popular and possibly the most powerful 

method of finite elements, make excessive demands on computer 

resources. Rewarding intellectual exercises they may be, but 

outside the academic world the costs will be prohibitive for 

them to be of much use. This certainly will be so in the case 

of smaller industrial establishments and less affluent societies. 

The need to direct research activities into more purposeful 

channels has been evident for some time and efforts are now 

made to ensure this. 

Insofar as this subject of interest is concerned, 

the main objectives for further work should be:- 

a) 	As analytical solutions cannot adequately 

describe the deformation process, to propose numerical 
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solutions that characterise the deformation in terms of 

all, or at least the most significant, variables collect-

ively. Thus the concomitant effect of the process 

variables can be accounted for.. 

b) To propose models to simulate deformation at 

high speeds which can be easily adopted for processes at 

conventional speeds. 

c) To adapt or devise methods that can be handled 

with relative ease and are less demanding on computer 

resources. 

This present work is an attempt to meet some of 

these requirements. The method of weighted residuals seems 

to offer the best scope for a solution to this chosen problem 

of high speed upsetting of rings. 
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CHAPTER 2 

LITERATURE SURVEY 

Metal working theories are chiefly concerned with 

prediction of stresses acting during metal deformation and 

consequently the forces that must be applied. During plastic 

deformation there is generation, movement and interlocking of 

dislocations E1,2] and the material slips along lattice planes 

in directions related to the structure of the material. With 

increasing deformation larger numbers of dislocations are 

produced and hence larger forces must be applied to enforce 

their movement. This residual effect broadly explains the 

strain hardening phenomenon. In order to establish this 

deformation characteristic, it is first necessary to determine 

the stress-strain relationship from a test with a simple 

stress system. The tensile test, simplest of all, is limited 

to relatively small changes in shape and therefore for larger 

deformations it is necessary to resort to tests of compression 

or shear type [3J. 

2.1 	QUASI-STATIC COMPRESSION 

Contrary to the tensile test in which the ultimate 

strength is practically independent of the length of the 

specimen (above a certain length/diameter ratio), in comparison 
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the stress/strain relationship is strongly influenced by 

the height (H0)/Diameter (D0) ratio of the specimen and the 

frictional constraints at the .tool/specimen interface. 

These are demonstrated in. Fig. 2.1 and. Fig. 2.2. 
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FIG. 2.1 	Compression curves of Cu between lapped 
tools El 

FIG. 2.2 	Compression curves of Cu between turned 
tools DO. 
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2.1.1 	Compression Tests to determine 
basic Stress/Strain Relationship  

Stress/strain relationship unaffected by the aspect 

ratio and the interface friction will be the "true" or "basic" 

stress/strain curve. Many ingenious methods have been used to 

determine the basic relationship. Rummel E and Meyer and 

Nehl [6] suggested that soft compression pieces be placed 

between tool and specimen to eliminate end friction. Other 

workers have found that although the bulge was minimised the 

end faces of the specimen became concave. Siebel and Pomp :7,8] 

.suggested use of conical dies and countersunk specimens and 

deduced a formula which related the true stress So, the 

diameter to height ratio, the friction angle 0 and the cone 

angle 0. as 

S = s 0  [1 + 171 tan(0 - a)] 
	

(2.1) 

Underwood E9] observed that friction decreases towards the 

apex of the cone and so suggested the use of hyperboloid-like 

tools which complicates the procedure even more. Taylor and 

Quinney [0] used a h/d ratio of unity and to minimise bulge 

applied the load incrementally and lubricated the specimen 

between each stage. The specimen was re-machined after 40% 

deformation to reduce diameter and hence friction effect. 

The method proposed by Cook and Larke [4] was based on the 
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work of Sachs [11:1 who observed that when a number of cylin-

ders, equal in diameter but of various heights, are compressed 

each stress/strain curve converges towards a lower limit as the 

h/d ratio increases. The method is indirect and the final 

results are obtained by extrapolation. Polokowski [12] 

suggested use of h/d ratio greater than unity and re-machining 

the specimen after 25% deformation to original h/d ratio. The 

results will obviously depend upon the care taken to re-machine 

the specimen. 

2.1.2 
	

Measurement of friction  

Among the few experimental methods proposed to 

measure friction, the method suggested by Kunogi, and then 

Kudo [13] and developed by Male and Cockcroft [14] is probably 

the most reliable. It was observed that changes in geometry 

of short hollow cylinders in compression is a measure of 

friction at the interface. The changes in internal diameter 

have been calibrated to give numerical values of friction 

coefficient 11. This method is discussed in detail in Section 

2.4. 

2.2 	DYNAMIC COMPRESSION 

The mechanism of deformation in monocry- 

stals of a particular material depends upon the form, rate of 
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deformation, temperature and boundary restraints. While at 

slow speeds, the crystal deforms by slip along specific 

lattice planes at high speeds the deformation is produced by 

glide on a greater number of closely placed slip bands which 

are affected by the rate of deformation. Metallurgical [15, 

16] studies of the macrostructural changes and motion of dis-

locations have established the rate-controlling mechanism in 

terms of the activation energy. Physicists E.17] have studied 

the microstructural changes and explained the metal behaviour 

in terms of sub-grain and sub-structure formation. 

However, from an engineering point of view, the 

most important material property is the shape of the stress/ 

strain curve. Several techniques E15-30] were developed to 

establish this dynamic relationship. These and many other 

works have been reviewed in considerable detail in Stamelos 

r32] and Mohitpur E)1]. Nadai and Manjoine [34] showed that 

at high speeds as the time taken for deformation decreases, 

adiabatic heating takes place and results in localised 

temperature rise. This effect is even more pronounced 

under conditions of higher friction. Alder and Phillips [35] 

and Jones et al [36] have clearly demonstrated the dependence 

of strain-rate sensitivity on temperature. It was reported E 
that for copper and steel the stress for a given strain 

increased with strain rate, in fair agreement with the power 

law: 
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An  

where A is a constant, and that the power index tn t  tended 

to increase with temperature. • 

Lengyel and Agarwal Di] considered the temperature 

rise due to deformation and boundary friction in extrusion 

and reported that the hardness of the product decreased with 

increase in speed. Finally, another important aspect to 

consider is the inertia effect at high speeds. The energy 

required merely to accelerate the material to the working 

\speed could be considerable and further acceleration may 

occur during the course of this forming process itself as a 

result of the geometry of the tools enforcing a reduction in 

cross-sectional area of the billet E381. Lipman D9] proposed 

a theory to consider the inertia effects, discussed later in 

Section 4.7. This was followed up by others [40,4]. Dean 

[0] observed that the inertia effects became apparent at 

speeds of 30.0 m/sec. and above. 

Some of the formulae proposed to correlate stress, 

strain, strain rate and temperature are: 

Ludwik [423: 	G = A
1 
 + B

o 
 In E/

o s  

where A, B and 	are constants. 

ii) 	Alder and Phillips [3 5] : 	= A el  

where A is a constant. 

(2. 2) 

(2.3) 
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• 

iii) Macgregor ana Fisher [44] suggested that increase in 

strain rate is equivalent to drop in temperature Tm: 

T
m 
= T(1 - mint/Ed 
	

(2.4) 

where T is test temperature and E are constants. 

iv) Inouye: Os  = Bo.E
n 
 

	
(A/TK) 
	2.5) 

where A, B, k, n and m are constants. 

2.2.1 	Dynamic Compression Test.  

Many research workers have carried out dynamic tests 

to collect data and studied strain-rate sensitivity. Usually 

these have been interpreted in terms of the mean strain rates. 

Such average values could be misleading in the case of large 

deformations. Lengyel and Mohitpur :46] adopted an incre-

mental method to obtain stress/strain data to large strains at 

constant strain-rate and temperature. Their results, Fig. 2.3, 

clearly demonstrate that strain-rate and temperature vary 

significantly when the deformation is large. 

FIG. 2.3 	Comparison of Incremental ( ) tests and 
Large Deformation (---) tests. 
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2.3 	NUMERICAL SOLUTIONS  

Few numerical solutions [48-53] have been proposed 

to obtain information regarding bulge, temperature distribution 

and stress field in compression of cylindrical billets. Some 

of these solutions are discussed below. 

2.3.1 	Barreling in compression  

Nagamatsu et al Eop analysed the non-uniform flow 
( barreling of free surfaces) using the method of finite 

elements. As interface boundary condition they adopted exper-

imentally determined values of slip ratio instead of the usual 

coefficient of friction. Finite deformation theory was used 

to allow for geometric changes in the material and elastic 

plastic analysis was carried out. The results are shown in 

Fig. 2.4 and Fig. 2.5. The occurrence of double bulge can be 

seen in Fig. 2.5. Kobayashi et al E48] carried out finite 

element analysis to study the mode of deformation and observed 

that the mode changed from single bulge to double bulge for 

h/d ratios over 1.6. 

2.3.2 	Temperature distribution 

Pohl [49,50] derived a method to determine the heat 
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.1 
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generated due to work of deformation and friction at the 

interface and the resulting temperature distribution in 

the specimen. The results are shown in Figs. 2.6 to 2.8. 

It is observed that the temperature rise at the centre of 

the specimen is over twice as high as that at the tool/ 

specimen interface. This seems to be contrary to what 

might be expected at higher speeds, particularly as adiabatic 

heating was assumed. The contribution of the work of 

friction to heat generation At slow speeds is small, but 

even so, the difference between the temperature rise at 

the interface and the centre of the specimen appears rather 

• high. Lengyel and Mohitpur [51:1 analysed this temperature 

distribution during high speed upsetting using the method 

of finite elements. They have clearly demonstrated that 

those effects of friction at high speeds are quite sign-

ificant. Their results are compared with the results of 

this work in Section 7.8. 
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FIG. 2.6 
	

Mesh (material 12CrNi188). 

30 	26 	 ' 23 	21 	 • 20 H mm 

- FIG. 2.7 	Temperature at specific nodal points 
in the mesh above L51]. 
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FIG. 2.8 Distribution of increments in temperature [51] 
A T (°C) after 33.3% deformation. 

2.3.3 	Stress fields  

Steck [52,53] used the method of weighted residuals 

to obtain the stress field, Fig. 2.9. The method of weighted 

residuals is described in detail in the following chapters. 

2.4 	RING TESTS  

The changes in geometry of a short, hollow cylinder 

during axisymetric upsetting under frictionless conditions 

is uniform, i.e. every element flows outwardly in proportion 

to its distance from the centre, Fig. 2.10(b). However, the 

existence of end friction makes the processmuchmore complex. 

As the friction between the die and the specimen increases, the 

expansion of the hole decreases and eventually the hole begins to 

contract, Fig. 2.10(c). For a specific geometry under certain 

conditions of friction the hole may initially increase in 
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it 

FIG. 2.9 	Stress distribution after 50% deformation 

a) deformation mode; 

b) 0r/k; 

c) T rz/k; 

d) z
/k; 

e) k*/k. 

E5C. 
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diameter and then, as the compression proceeds, begin to 

contract or begin to contract from the outset of deformation, 

depending upon the position of neutral surface. The free 

surface will barrel either way again depending upon the mode 

of deformation. The two modes of deformation are illustrated 

in Fig. 2.10. 

—0' 	\'.'s■ 
	 (a) 

r 
1. 2  rt. 

iz 
\\\\1 \ -1 -,  

(b) 

f ,  \\  

? M  (C) 

• / • 	.// 

FIG. 2.10 	Ring Specimen (a); Deformation Modes (b) and (c). 

2.4.1 	Experimental calibration  

As observed earlier, the ring tests can be effect-

ively used to quantify friction at the tool/billet interface. 

Male and Cockcroft [14] proposed a method to determine the 

coefficient of friction by measuring the changes in internal 

diameter of the ring in compression. A set of experimentally 
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determined calibration curves are shown in Fig. 2.11. 

Admittedly, this is an interesting concept in as much as the 

method of determining the coefficient of friction is independent 

of the mechanical properties of the material and is dependent 

only on the geometric configuration, hence has the great 

-40-  ^0-02 
Zero 

1_  1 . 1  -50
0  10 20 30 40 50 60 70 

DEFORMATION, 1. 

FIG. 2.11 
	

Experimental Calibration Curves E14] 
for a ring of 6:3:2 ratio. (Outer diameter 
= 19.05 mm, Inner diameter = 9.53 mm, 
Height = 6.35 mm). 

advantage that no direct measurement of force is required, 

thus eliminating most of the difficulties in compression 
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testing at high temperatures and high speeds. However, when 

this work was first published satisfactory theoretical analysis 

of rings in compression was not available. Therefore Schroder 

and Webster E.54] analysis for the compression of solid disc 
was used to compute theoretical average pressure during the 

compression of rings under different conditions (values of p) 

of friction. These were then used for the calibration of 

experimental results. The need for this indirect method of 

calibration, which is not entirely satisfactory, has now been 

eliminated as theoretical analyses of rings are available 

(Sections 2.4.2 and 2.4.3). 

2.4.2 	Upper bound solution without bulge  

Avitzur E56,57] in the first instance proposed an 

upper bound solution assuming rigid plastic material, constant 

shear factor 'm' to characterise friction conditions, and 

neglecting non-uniform deformation of cylindrical elements. 

He assumed a kinematically admissible velocity field as 

V8  = 0, Vz  = H, Vr  = Vr(r,z) 	(2.6) 

where T is the specimen height. 

When appropriate boundary conditions are applied 

this leads to an expression for power W as 
R. R 1 n Ro •

W= W(0-  V, — 	CC) 
o' 	H ' R' 	H 

0 
 

The value of rn 
that minimises this function for power is 

considered to be actual. The value of rn thus determined 

(2.7) 



Rn 2 	- 1 - (Ri/Ro) 
(r)  = 0 

where 2 

(2.8) 1)D1 - (Ri/110 )4x.] 
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can be used to calculate average pressure as follows: 
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where Rn/Ro is found by successive approximations from 
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Kudo :13] analysed-deformation of hollow cylinders 

assuming that the ring consists of unit deforming regions of 

annular parts with triangular cross-section. The sides of the 

triangular sections which are lines of velocity discontinuity 

are assumed to move as straight lines without changing their angle 

before deformation 

7 
,1 

V 

1 

after deformation 

and.that the radial velocity component in each part is 

assumed to be independent of the z-coordinate. The mode of 

deformation is illustrated above. The velocity field derived 

for this mode of deformation was then used to obtain an upper 

bound solution 

2.4.3 	Equilibrium approach - without bulge  

Hawkyard and Johnson [59] proposed a solution from 

stress equilibrium conditions. They determined calibration 

(theoretical) comparable with that obtained experimentally in 

[14]. They also represented the position of neutral surface 
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graphically, Fig. 2.12. This solution is simpler than those 

discussed in the previous section and describes the process 

adequately if the bulge is neglected. 

LR. 	• 1 
H 

FIG. 2.12 	Graphical representation of neutral 
surfaces [59], 6:3:2 ring. 

Burgdorf :60] produced a similar solution assuming 

constant coefficient of friction, instead of the constant 

friction factor used in [59]. It is observed that the 

results of [59] agree more closely with experimental calib-

ration D14]. Therefore it may be concluded that it is 

better to describe the interface friction in the case of 

upsetting by constant friction factor. 
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2.4.4 	Upper-bound with bulge  

 

Avitzur Ds] extended his solution DX] to take into 
account the bulge formation at the free. surface. He modified 

the proposed velocity field as: 

V9  

Vr = - — — A V r 1 _ r 
	

ebz/H for 0<z<H/2 [ 2 H  

Vz = Vz(r,z) 	J 	(2.10) 

\Constant 'A' can be determined from boundary conditions and 

the parameter 'b' determines the bulge. 

ThetotalinternalpowerW=W.+Wf, where 

R 	R 
= *(V, 	a, n b, Co) 

0 

The externally supplied power 

we  = 	(R0
2 - R.2)V P av 

(2.11) 

. (2.12) 

From equations (2.9) and (2.10) an expression for average 

pressure can be derived as 

Pav 	
R Ro  n 

f( 
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cr o 	
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The values chosen for Rn and b are those-that min-

imise the relative pressure and thus the required power. 

Hence from 

a(Pav/ .) 0 

Final results are 

then Rn  ‹:R.1  and 
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14_2)2 
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Liu :62] proposed an admissible velocity field as 
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where b1 is the parameter which determines bulge. 

In general, upper bound solutions are derived 

assuming Von Mises material. However, Lee and Altan [61] 

considered the deformation in increments of small steps to 

account for hardening. For each step a new distribution of 0 

was computed and an average value Uavg was found as follows: 

avg 
= ljUdV (2.21) 

t.i 
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2.4.5 	Numerical solutions  

Hill E4.] proposed a general method of analysis 

where a class of velocity fields are chosen initially and the 

best approximation taken out eventually. The chosen velocity 

field must satisfy all kinematic conditions. The chosen 

velocity field will not necessarily satisfy statical require-

ments and therefore a criterion must be determined which may 

be regarded as closely satisfying the statical conditions. 

Lahothi and Kobayashi [0] applying this method proposed a 

class of velocity field as 

R 2 

Vr = 3-2.(r - -11-)0r(z) 

Vz  = -0(z) 
	

(2.22) 

0 

and determined the unknown function 0(z) as 

h 

0(z) = J7  exp( -az
2)dz/ J  exp(-az2)dz 	(2.23) 

0 	0 

where: 



2.4.6 	Other related work 

40. 

Male et al [0] reviewed some of the models disc-

ussed so far alldreported to have found the Avitzur model 

discussed in Section 2.4.4 to be the most realistic as 

compared with experimental results. It was also concluded 

that the concept of defining interface friction by a constant 

friction factor a to be better than the concept of constant 

coefficient of friction 	The variation of friction factor 

during deformation is shown in Fig. 2.13. Jain and Bramley 

E65] studied the effects of speed in a ring test and reported 
that the interface friction decreased with increase in speed 

and that this effect was more pronounced when lubricants were 

used. Abdul and Bramley :66] produced a nomogram to determine 

stress/strain relationship from ring tests, which is an 

interesting extension of the ring test. 
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FIG. 2.13 	Interface Friction Factor of 
Various Metals [67]. 



CHAPTER 3  
42. 

NUMERICAL METHODS  

Analytical solutions to governing differential 

equations of complex systems are either impossible or too difficult 

to obtain. Hence it is frequently necessary to use numerical 

methods to obtain approximate solutions. Usually solutions 

are proposed in the form of a set of known functions with 

arbitrary parameters which - are then determined so as to satisfy 

the equations as closely as required or a set of unknown 

\functions are proposed from which the best function is eventually 

taken out. There are several methods by which approximate 

solutions can be obtained D5,80]. Generally, the more power-

ful the method is, the more cumbersome it is to handle. When-

ever possible it is best to adopt the simplest method that 

describes the problem adequately. Advantages gained by using 

more elaborate methods will be more than offset by the effort, 

time and computational facilities required and will be of 

little help in practical situations. Furthermore, methods 

like finite elements have come to be identified with variat-

ional calculus where a functional is derived mathematically and 

then minimised. In many cases such variational principle does 

not exist or its existence is not obvious [SO] and direct 

approaches are necessary. 
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As most problems can be defined by a set of govern-

ing equations and boundary conditions a direct approach through 

the method of weighted residuals presents interesting 

possibilities. As the method is basically proposing a.  

solution in the form of a series it is inherently capable of 

converging to exact solution if sufficient number of terms are 

included in the series :79]. As the solutions obtained by the 

method of weighted residuals are of analytical form they are 

more useful than those obtained by numerical integration and 

usually require much less computing time E75]. If it is 

necessary to use expansions of higher order to achieve desired 

accuracy, it might be possible to apply economisation techniques 

DilConsidering all these, it would seem that the method of 

weighted residuals is suitable for analysing deformation 

process of metal in compression and is discussed more fully in 

the following sections. 

3.1 	THE METHOD OF WEIGHTED RESIDUALS  

The method of weighted residuals is a general method 

to obtain solutions to the equations of changes in a system. 

The procedure is to propose an approximate solution in the 

form of a set of known trial functions with undetermined free 

parameters. This proposed solution when substituted in the 
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governing equation results in a "residual" or "error" function. 

The free parameters are then determined by forcing this 

residual function to vanish in an average sense. 

Consider a differential equation D323: 

N(u) - 
au

= 0 
	

G V 	(3.1) 

where u = u(x,t), N(-) is a general differential operator 

involving spatial derivatives of 'u'. V is the three-

dimensional domain with a boundary s and t is the time. 

Let us suppose the initial and boundary conditions 

are: 

u(x,0) = uo(x) 	x G V 	(3.2) 

u(x,t) = fs(x,t) 	x G s 	(3.3) 

Assume a trial solution 

    

u*(x,t) = us(x,t) + > C.(t)u.(x,t) (3.4) 

 

1=1 

  

where the approximating functions ui  are required to satisfy 

the boundary condition: 

fs(x,t) 	•x6s 
	(3.5) 

Substituting equation (3.4) into (3.1) we obtain the residual 

function 
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at -R(u ) = N(u
* 	

at  ) - 	o (3.6) 

If the assumed trial functions were the exact 

solution, then the residual will be zero. To approximate this 

ideal it is necessary to force the residual to vanish in an 

average sense over the entire domain of interest. This is 

done by selecting a set of weighting functions Wj  which are 

orthogonal to the residual functions such that 

<W.R.=> = 0 
	= 1(1)N 	(3.7) 

and then the weighted integrals are set to zero as 

J.  W.R.dV = 0 	 (3.8) 
V 3  

3.2 	DIFFERENT METHODS OF WEIGHTING  

There are several ways in which the weighting 

functions may be chosen, each of which corresponds to a diff-

erent criterion. Once the choice is made, equation (3.4) is 

reduced to a system of first order equations in N unknowns 

C1(t). Some of the more widely used methods are: 

i) 	Collocation 

The Dirac delta function 5(x-x1) is used as the 

weighting function so: 
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irb(x-x.)RdV = RI 	0 	(3.9) 
V 	

x. 

i.e., the residual at specified collocation point j is zero. 

Therefore as many collocation points must be chosen as there 

are free parameters. However, there exists no rationale 034] 

for selecting collocation points. In the absence of any 

special reason, equally spaced collocation points are usually 

chosen. 

ii) Subdomain Method  

The domain V is divided into as many subdomains V. 

as there are free parameters and the weighting functions are 

chosen as 

1 	x G V. 
W. = 
3 	0 	x A V. 

and 

I W.RdV = 0 	 (3.10) 
V. J 
J 

Here again it is perhaps best to select uniformly spaced 

subdomains. 

iii) Galerkin Method  

The weighting functions are chosen to be the trial 

function itself in W. = C. and: 
3 
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jC. R dV = 0 	 (3.11) 
V J  

iv) 	Least Squares Method 

The residual is minimised with respect to the free 

R 
parameters and hence the weighting function is — 

O
-- and: ac. 

OC J V R2  dV = 0 
	

(3.12) 

All these four methods are applied to a simple 

problem and compared in Section 3.4. 

3.3 	CHOICE OF TRIAL FUNCTIONS  

The choice of trial functions is somewhat arbitrary. 

The essential condition is that it must be a complete set so 

that when sufficient number of terms are included in them, 

the solution will converge to the exact solution. Polynomials 

are a complete set in as much as any continuous function can 

be expanded in terms of the polynomials. They are also easy 

to handle. The trial functions must be linearly independent. 

Although it is not necessary for them to be linear in free 

parameters, they are usually chosen to be so to permit easy 

computation. The trial functions must be chosen to satisfy 

the governing equation and boundary conditions as closely as 

possible without unduly complicating the functions. It is not 
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necessary to satisfy all the boundary conditions in one set 

of trial functions as they can be treated separately, in 

which case the total weighted residual function will be the 

sum of individual weighted residual functions arising from 

separation, as: 

G 	W. R dV + G 	W. R ds = 0 	(3.13) 
V 

1 	3 	2 

G
1 
and G

2 
are constants known as "weighting factors". The 

weighting factors are different from the orthogonalising 

weighting functions discussed in the previous section. The 

factors are particularly useful when in the domain of interest 

only a small proportion of pOints lie on the boundary one may 

assign higher weighting factor to ensure that the significance 

of the particular boundary condition is not lost in the 

solution. Any symmetry conditions that may exist in the 

problem must also be satisfied by the trial functions. 

Finally, it is necessary to ensure that the trial function has 

no bias in any one particular coordinate direction. 

Apart from satisfying these requirements, the choice 

of the form of trial function is very much left to the 

intuition and experience of the user. Often the trial 

functions are based on the simplified analytical solutions 

to related problems. 
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3.4 	APPLICATION OF DIFFERENT METHODS OF WEIGHTING 

In order to illustrate the various methods of 

selecting weighting functions and to compare them, let us 

consider the Maxwell's rheological model [0] for the visco-

elastic solid 

0 = EE + µE 
	

(3.14) 

which may be schematically represented as 

E - Young's Modulus 

pL- Viscosity of the damping 
fluid 

The exact solution to this problem is 

	

E = —
0 
 [1 -

Et/1 	 (3.15) 

where t is time. 

To formulate the weighted residual solution we have 

the governing differential equation 

dE 

	

+ EE(t) - 0 = 0 	 (3.16) dt 
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and the boundary condition 

E(t) = Ol t=0 	 (3.17) 

Let us consider the time interval 

0 < t 

Assume a trial function which satisfies the boundary condition 

as 

E = 	 (3.18) 
i=1 

Substituting (3.18) in (3.16) we obtain the residual function 

as in (3.6) 

R(t) = 	C. ti-1 	E C. 	- G # 0 

   

i=1 

 

i=1 
Or 

[ip, 	+ Eti  )C - ( 3.19 ) 
i=1 

Now we can determine the unknown C. for i = 1(1)n by applying 

different weighting functions as follows: 

3.4.1 	Collocation Method 

As we are considering the domain 0 <t <1 we can 

choose 'n' number of collocation points at equal intervals of 
1 

irwAppbringthecriterio11(3.9)wellavew.=5(t-t.) and 



[R. = 2. 	3 
i-1 + Et. )C.1 - 0 = 0 2. 

51. 

i=1 

1 	1 	n for t. = 	() n+1 n+1 n+1 (3.20) 

Thus we have a system of n number of equations which can be 

solved to determine unknown parameters. 

3.4.2 
	

Subdomain Method  

Here the subdomain 0 <.t <1 is divided into equally 

spaced subdomains of n.  Applying the criterion (3.10) we have 

t G j 
W. = 
3 0 t 

  

and 

	

t. 	n 

. = f 
J 	

3 R 	[ 	 (1.iiti--1  + Eti)C. - C]dt = 0 
tj-1 i=1  

t1+1-t. 1+1  i  
= [ 	(11(ti. -.ti. 	i + 1 ti. )+E( 	1 	1-1"))Cd J-1   

1=1 

 

 

1 1 - 0(ti-tj-1) = 0 for tj  = 71.(71.21 (3.21) 

This system of equations can now be solved to determine the 

free parameters. 
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1=1 
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3.4.3 	Galerkin Method  

Applying criterion (3.11) we have 

W. = ti 
3 

and 

for j = 1(1)n 	 (3.22) 

This system of equations can now be solved to determine the 

free parameters. 

3.4.4 	Least Square Method 

Applying criterion (3.12) we have 

R. = aA. 	R2  dt 

= 2jr R -67 dt BR 

1 n
a 

	

= 2 i [ TOli 	1ti-l-Eti)C. -]x[lij ti-i+EtJ  d =0 
0 1=1 

112 . 	7 
)c.1 	a(p.j+E) = 0 -1 	E  

1=1 

for 	j = 1(1)n 
	

(3.23) 
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- FIG. 3.1. 	SOLUTION BY COLLOCATION METHOD 
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Error 

FIG. 3,2 	SOLUTION BY SUBDOMAIN METHOD 
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FIG. 3.3 	SOLUTION BY GALERKIN METHOD 
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FIG. 3.4 	SOLUTION BY LEAST SQUARE METHOD 
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3.5 	COMPARISON OF DIFFERENT METHODS OF WEIGHTING 

Solutions to equations (3.20) to (3.23) are 

represented graphically in Fig. 3.1 to Fig. 3.4 for n = 2, 3 

and 4. It is clearly seen that all of them rapidly converge 

to exact solutions and, as suggested by Finlayson E791, the 

choice of weighting function is not critical as long as 

sufficiently high order expansions are used in the trial 

function. It is observed that the errors are more evenly 

distributed in the method of least squares and also the mean 

square residual has theoretical significance as error bounds 

can sometimes be determined in terms of the residual. 	Even 

when error bounds cannot be determined, the mean square 

residual can be regarded as a measure of accuracy of the 

solution. 



CHAPTER 4  
58. 

DEFORMATION IN UPSETTING -
THEORETICAL CONSIDERATIONS  

The elements of1 -.continuum mechanics E85,86], 

theories of plasticity E87-89] and heat transfer :90-92] that 

are relevant to this work are discussed in this chapter. 

4.1 	STRESS FIELD 

As the subject matter is a study of axisymetric 

\upsetting of rings and cylinders, let us consider the stresses 

acting on a cylindrical element as in Fig. 4.1. 

z 

FIG. 4.1 	Typical Cylindrical Element. 

The distribution of stress in the continuum is defined by 

Cauchy's stress tensor 



11 612 
0
13—  

0 .. 
621 21 22 

0
23 

631 
0 
32 

0 
33 

•■• 

59. 

(4.1) 

is a Cartesian system of coordinates'. This second order 

tensor is symmetric and has the property 

ij 
	 (4.2) 

The principal invariants of this tensor are: 

I
1 

= a
ii 

1
3 

= ii jj 	Gii aii  
= det JQ. . 

;] 

(4.3) 

A tensor defined as the 'deviatoric tensor' has the property 

that its first invariant vanishes. The stress tensor 0.. can 13 

be split into two tensors, one of which is the deviatoric 

tensor and the other is the spherical tensor. Thus 

0.. = al. + a 5.. 13 	13 m 13 
(4.4) 

where 	6m 
	a 3 11 

and 	
5.. 

is Kronecker delta, 
l 

hence the deviatoric stress tensor is 

a! = 	-6 5 3.j 	m 
(4.5) 
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whose principal invariants are 

J1 
= 0.. = 0 

11 

J2 = 2 alj  alj  

= det Ecl!.] 1.3 

(4.6) 

In a cylindrical coordinate system (r, 9, z) for this element 

in Fig. 4.1 

0 	T rz 

(4.7) 0!.13= o 	09 
0 	az zr 

due to symetry 

Ire = TOr  = Az = TOz 
= 0 

and 

J
2 = -(°;G; GEOZ 6'Q;)  

Equivalent stress is defined as 

= 3.72.  

(4.8) 

(4.9) 

4.1.1 	Stress Function  

The equilibrium of stresses acting on the element 

is given by 



ac.. 
--11  + F. 

J ax. • 0 
i = 1, 2, 3 

j =• 1, 2, 3 

where F is the body force. 

The body forces may be neglected for reasons expl-

ained in a later section. It is possible to select two scalar 

functions called 'stress functions' 01  and 02  such that 

1 a2o1 
Cyr r 9  r ar 

_ a02   2 
ar 

• 0 

l a201 
	 (4.11) 

z r 
ar
2 

a201 1 
rz = - r anaz 

which will automatically satisfy equilibrium of stresses in 

axisymetric conditions 

OC rz
-CY
9 + - + 	

• 

0 
ar 	az 

ace 
ae 0 (4.12) 

aJ 	ac rz rz + + 
Or 	az 

4.2 	STRAIN AND STRAIN RATE FIELDS 

Cauchy's strain tensor is given by 
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ai. 	au. 

	

Eij 	ax.)  

	

J 	1 

where u.. is displacement functions. 
13 

In cylindrical coordinates. and axisymetry 

13 E

r  0 Erz 
E.. =  0 E 0 

E rz 	z  

The strain rate is defined as 

BE.. 

• • 	at 3.j  

(4.13) 

(4.14) 

(4.15) 

where t is the time. 

This in terms of velocities of displacement v13
..  is 

Dv. 5v. 
= ( --1) 

13 	Dxi  Ox. 
3 

(4.16) 

The assumption that the material is incompressible leads to 

= 0 	 (4.17) 
14 

The strain rate tensor can also be expressed as deviatoric 

and spherical components as 

=E.. - E b.. 13 	13 	m 13 
(4.18) 

whose principal invariants are 
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I1 
= 

I2 = 

I3 
= 

Eii l  = 0 

-tt  
13 ij 

detE!.] 
Ij 

(4.19) 

In axisymetry 

I2 
= -(E' 	+ 	 z t9'' 	z + 11) + rZ 	

(4.20) 
r  

Equivalent strain rate is defined as 

= 2 if-- 
v  2 

(4.21) 

4.2.1 	Stream Function  

Any strain rate field to be kinematically admissible 

the continuity equation must be satisfied, which is 

au
r 

ur au
z 

br r 8z = 0 	 (4.22) 

in cylindrical coordinates and in axisymetry. 

It is possible to choose a stream function (1) such 

that 

aq) vr 	r 8z 

_1 a(1) 
z 	7 ar 

(4.23) 

which will satisfy equation (4.21). 



r 

a ` 
dJ = z\  

azr Or 	

av

Oz 

r az 

z 

(4.24) 
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Expanding equation (4.13) in terms of (4.22) we 

have 
av r a) 	• 

or ( 	= Or 

av  
a 1 au 	a 

rz = -87(7 51)  - ar(7 6T.)  - 	

av 

az 	ar 

4.3 
	

YIELD CRITERION 

For an isotropic material the scalar function C13.. 

can be expressed in terms of its principal invariants as 

f(0..) = f(J 	J
2' 

J
3
) 

Assuming constancy of volume 

f(0..) = f(J1,J2) 	 (4.25) 
13 

Von Mises suggested that yielding of the material takes place 

when the shear energy reaches a maximum. This is given by 

. J2 - k
2 

= 0 

or 

0!. 0! - k
2 	 (4.26) 

1)  lj 

where k is a scalar function depending upon the plastic 

strain history of the material. 
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4.4 	STRESS STRAIN RELATIONSHIP 

An assumption of the infinitesimal elasto plastic 

theory is that the strain E
ij 
 can be expressed as 

E. 	= E
E  
.. + EP :. 

13 	13 	13 

where 	E.. isis the elastic component, 

and 	E.. is the plastic component. 
13 

(4.27) 

In cases where the plastic strains are much larger 

than the elastic strains the elastic component may be neglected 

and then 

	

E. = E. 	 (4.28) 
13 	13 

and L. = Ep 
13 . 	13 

(4.29) 

For a material that hardens isotropically 

dE 	= G OF  dF TaT; (4.30 ) 

Applying the yield criterion (4.26) this can be expressed 

in terms of strain rates 

1j = AG!. 13 
(4.31) 

where 8 
	aF

at G = k2 

Thus we obtain the Prandtl-Reuss relationship 
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k .P O.. = 	E. 3.3 
2 

(4.32) 

4.5 	WORK HARDENING 

As Von Mises yield criterion has been adopted 

= Y = Vqk 	 (4.33) 

This is diagrammatically represented in Fig. 4.2. 

FIG. 4.2 
	

Work Hardening. 
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• 

(4.39) 

From equation (4.21) we have 

67. 

Assuming 

E = jL 

5= 5(E) we 

dt (4.34) 

have 

= 	60 + 5(E) (4.35) 

dadO 	dE 

so 

dt = dE'dt 

dO 	= 	Ck dt 

C., dt (4.36) is. 

In finite increments 

2 

2 
= 	

.c (4.37) 
2 

4.6 	STRAIN RATE SENSITIVITY 

The strain rate sensitivity of the material is 

represented in Fig. 4.3. 

• Now, we can express Q = d(E) +NO 	(4.38) 

Hence 
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El  

arc tan m 

FIG. 4.3 	Strain Rate Sensitivity. 

4.7 	INERTIA FORCES AND STRESS WAVE PROPAGATION 

For the purpose of this study it is assumed that 

the stress waves propagate through the specimen in negligible 

time and therefore their effects may be ignored. This is a 

reasonable assumption, since the velocities of stress waves 

are high enough to establish settled conditions in negligible 

time [402. 

As briefly mentioned in Chapter 2 , analyses have 



240E 

Pv2  
40 E 

y = pv2(1 
4 C/0' 

P a - 	v2  

R (4.40) 
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been carried out taking into account the inertia effects. 

However, Lippman E.39] proposed three dimensionless quantities 

to determine whether the inertia effect should be considered. 

They are: 

where density of the material, 

0 = uniaxial yield stress, 

H = height of the billet, 

LH = reduction in height, 

E = &I/H, 

V = velocity of the platen. 

It is suggested that if these quantities are <10-2  the inertia 

effects may be neglected considering that any error introduced 

by neglecting these effects will be <1%. 

Applying these criteria the inertia effects are 

negligible as follows D1D: 

Copper 	0 = 600 MN/m2  

e = 0.1 (increments) 

V = 15 m/s 

p = 8940 kg@m3 
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= 0.15 x 10-2 

101 = 0.9 x 10-2  

111 = 3.32 x 10-2  

Aluminium
o
= 400 MN/m2 

E = 0.1 (incremental) 

V = 15 m/s 

p = 2816 kg/m3  

101 

1)1 

4.8 	POWER OF DEFORMATION 

The power of plastic deformation is given by 

* = f 0
l
! E
j  iP 

j 
 dV  V 

= f 2 kir dV 2 V 

= 	G ShEP—EP  o v 	ij ij 

Friction loss is given by 

(4.41) 

= 	Ir Vr dr de 
	

(4.42) 

= 0.088 x 10-2  

= 0.264 x 16-2  

= 0.924 x 10-2  
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4.9 	TEMPERATURE FIELD 

The effects of temperature on the flow stress are 

shown in Fig. 4.4. The work due to plastic deformation and 

FIG. 4.4 	Effects of Temperature. 

friction appears as heat. In deformation at high speeds there 

is little time for this heat to be dissipated to surrounding 

medium and therefore localised heating takes place. This 

localised temperature rise results in thermal softening. To 

be able to account for this it is necessary to determine the 

temperature distribution in the billet material accounting for 



z 

v = v(x y,z) 
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the heat conducted to the dies and heat lost due to convection 

at the free surfaces. 

• 

4.9.1 	Heat accumulated  

Let us consider a body of volume V in a fixed 

coordinate system (x,y,z) of reference where a scalar temper-

ature field is defined as 

(4.43) T = T(x,y,z,t) 

The heat contained in the mass dm 

dh OC dmT 

7•1 
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c T c_1V 
V 

;ihere 	C is the specific heat, 

p is density (dm/dV). 

The derivative with respect to time 

fkif p c T dV 

Ii] c p dt  cw 

dT 	dx aT dy 	dz aT 
dt ax dt ax dt az dt at 

clh 
dt 	

grad. T x 	+ PT 
.at 

dt 	at 
iff C p (—aT  

V grad T)c1V 
V 

dh 
dt 

as 
V 

(4.44) 

(4.45) 

4.9.2 	Heat conducted through the surface 

The amount of heat transferred through the surface 

in some direction n is 

d
2.11 

GC T 
o 

 

	

dsdt 	an 

	

d
2
h 	aT 

cisdt — kn an 

(ti.46) 

where k r. is the thermal conductivity in direction n. For an 

isotropic material k = k which is the same in all directions. 
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• • 
dh = 	k- 

a
—
T  
-ds dt 	 on 

(4.47) 

= 
	 T ds . 

= ff.  T 

Applying Gauss theorem we have 

dh 
dt 

j (13_11(0 T) dV 

= fff k V2  T dV 
V 

(4.48) 

	

'4.9.3 	Heat generated in the body 

If the heat generated in the body due to plastic 

work is qg  per unit volume then we have 

h = fif qg  dV 	 (4.49) 
V 

dh 
= (f( q dV 	 (4.50) 

dt 

	

where 
	

4g 
. of 

	

4.9.4 	Heat generated at the surface 

If the heat generated at the surface due to friction 

is qs  per unit surface 

if
q d s s 

(4.51) 



dh 
dt 

Applying Gauss theorem 

tfis n 

div qs  = 

I vr(0,0,1) 

aiv
r 

oz (4.53) • • 
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dh 
dt 

= jfdiv(4sil)dV 	 (4.52) 

For axisymetry 

) 	) 	
(aqs)z s 	 div e = 	s r . s 	r 

Or 	r 	az 

\ In this case 

4.9.5 	Heat convection at the free surface  

The heat loss at the free surface due to convection 

is given by 

aT 
(
-517;

)
k 

= hf(T-TF
) (4.54) 

where -67; 
aT 
i s the gradient in the direction normal to the 

surface, hf  is the film coefficient of the material, T is the 

temperature at the free surface and TF  is the temperature of 

the surrounding medium. 
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4.9.6 	Temperature distribution 

Now, the heat contained in the body (4.43) can be 

equated to the heat generated (4.48) and (4.50) and heat 

conducted through the surface (4.46).. Thus 

JJf C p ( a + gradT.V)dV = BT.  k02dv + Jr 4 dV 
V 	• V 	V g 

+ gr d iv q.  dV 	(4.55) 
V 

or 

if((LI" + 	 r72 	. gradT.V) + kv + q + di qs  dV= 0 v  `at 

As this is valid for any volume the function itself must 

vanish. 

divqs 	aT 
. . 	

2T + - p(a. + gradTM = 0 

where pc 
k 

(4.56) 

Expressing (4.56) in cylindrical coordinates and applying 

equation (4.53) we have the governing differential equation as 

„aT , a2T 8
2
T 11 nu  ,aT 	aT 

-P8r ' art ' az2 ' `1 - P y 	v  r/or -1- z az ' 	
1  aTvr  

k 	k 8z = 

(4.57) 

and the boundary condition 

(4.58) 
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SOLUTION BY WEIGHTED RESIDUALS  

As explained in Chapter III, the method of weighted 

residuals provides a viable approach to obtaining numerical 

solutions to complex problems. Different weighting functions 

were applied to study the behaviour of visco elastic solids 

over a continuous domain. However, the domain can also be 

discretised into a number of nodal points, applying the 

residual function and the weighting function to each nodal 

\points and minimising their sum as shown in the later sections 

of this chapter. 

Steck E52] applied this discrete method of weighted 

residuals (least squares) to obtain velocity and stress field 

during compression of cylindrical billets. His results were 

shown in Fig. 2.9. The formulation of the problem is discussed 

here. The continuum was discretised as shown in Fig. 5.1. 

2 

FIG. 5.1 	Discretized Continuum. 
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Stream and stress functions were proposed as follows: 

78. 

where Ann, B.. and C
Pq 

 are unknown parameters. From equation 

(5.1) the following can be obtained: 

Er 

E9 = 

r(r, 

(r 

z, Ann) 

z Amn) (5.4) 
z 

Erz 

I2 

= 

= 

z(r, 

rz(r, 

2
(r 

z, Ann) 

z, 	Athn
) 

z' 
Amn) 

From equations (5.2) and (5.3) the following can be obtained: 

Gr = r(r, z, Bl. 	C ) jt  pq 

G = 00(r 	C ) 
9 	 Pq 

Gz 
 = az(r, z, Bij

) 

rz = rz(z, r, B. ) 

G
m 

= Gm(r, z, B.l  , C ) j pq 

(5.5) 

Applying stress strain relationship equation (4.32), the 

following error functions were obtained: 
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F = ar
(
r,z,B..,C ) - 	(r„B..,C ) 

1 	pq m 	pq 

-k (5.7) 

    

VI2  (r,z,Amn) 

  

Similarly, constancy of vOlume was assumed and the two remaining 

independent error functions F2  and F3  were also obtained from 

equations (5.4) and (5.5). Applying the following boundary 

conditions: 
rz = CV

riz=h 
	 (5.8) 

where C is a constant 

Cr 
	

Ir=d/2 
	 (5.9) 

two more error functions F
4 
and F

5 
were obtained. It was 

suggested that these equations constitute residual functions 

as in equation (3. 6) and by applying weighting functions 

equation (3.12) the unknown parameters Ann, Bid  and C
Pq 

 can 

be determined. As these equations are non-linear, an iterative 

procedure illustrated in Fig. 5.2 was employed. The process 

of deformation was analysed step by step incrementally 

accounting for the strain hardening as explained in Section 

4.5 and updating the nodal coordinates in each step. 

Considerable time and effort was spent in trying 

to reproduce the results obtained by Steck. Two separate 

computer programmes were developed, one following the iterative 
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procedure illustrated in Fig. 5.2 and the other a different 

iterative procedure [51] also suggested by Steck. Neither of 

these programmes converged to 'solution. Both programmes 

produced identical results after the first step of iteration 

where I2 
is assumed to be equal to unity and the system is 

equivalent to viscous fluid with viscosity 71= k/2. This may 

be considered as sufficient proof that there were.no prog-

ramming errors. The programmes were tried for various 

geometry and friction conditions and in no case could meaningful 

results be obtained. Although during early attempts for a 

particular geometry (which happened to be a very thin disc) 

the results seemed reasonable, they have now been discarded as 

being unreliable on account of the following explanation. 

It is observed that this formulation of the problem 

is not satisfactory. Equation (5.7) is not the same as 

residual function, equation (3. 6). It appears as though two 

sets of approximating functions with unknown parameters were 

proposed for the same quantity and then the parameters were 

determined minimising the difference between these two sets 

of approximating functions. This can be expressed as follows: 

A CA] 	- CBJ CYJ = Co] 
	

(5.10)- 

where A= X (A). 
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FIG. 5.2 	Iterative Procedure[52]. 
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Given X and Y it is possible to determine several sets of A 

and B satisfying the requirements. Mathematically [93]  there 

is no reason why any of these solutions should be considered 

unique unless a criterion with a physical meaning is established. 

Therefore it would seem that this approach is not very sound. 

It is possible to get around this difficulty by obtaining 

strain rate field through a predetermined velocity field 

(which can be obtained by using some other technique discussed 

in Section 2.4) and construct residual functions of the form 

J. 

a.
1
.(r,z,B

de
,G
pq

) - K?. = 	0 ]  

* 	. k . where K.. is a known constant --- E.. 
1] 	

If- 1J 
2 

(5.11) 

5.1 	METHOD TO  DETERMINE STRESS FIELDS  

The modified approach mentioned above is applied to 

obtain stress fields during deformation of rings and it is 

then adopted to analyse the deformation of solid billets. The 

velocity of deformation and frictional conditions are two 

variable parameters of the process which will enable different 

conditions to be analysed. 

5.1.1 	Premises  

The following conditions are held to be valid: 
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1. The material is incompressible. 

2. The material is isotropic. 

3. The material work hardens as in equation (4.39). 

4. The elastic strains are small in comparison 

with plastic strains and can be neglected. 

5. The stress waves propagate through the specimen 

in negligible time. 

6. The inertia effects are not significant. 

7. The frictional stress at-the tool/billet inter-

face is assumed to be proportional to the shear yield 

stress of the material. 

8. The elements of the forging machine and the 

anvil are considered to be rigid and stationary at all 

times. 

9. The process of deformation and simultaneous 

heat generation is considered to take place in steps of 

small time interval. 



5.1.2 	Discretisation  

84..  

The platen and the specimen are divided into a 

number of nodal points- as shown in Fig. 5.3. Due to symmetry 

only one-quarter of the specimen and platen is considered. 

5.1.3 	Velocity and Strain Rate Fields 

The different forms of velocity fields that have 

been proposed were discussed in Chapter 2. Male et al [67] 

analysed these proposed velocity fields and reported that 

\Avitzur's solution (Section 2.4.4) agreed more closely with 

experimental results. Avitzur's solution is for a rigid, 

perfectly plastic material, so for a strain hardening material 

the .solution is accurate on the rate of formation of the bulge 

only at the onset of deformation. It was assumed that any 

bulge that may exist during deformation in the ring does not 

influence the velocity field in other parts of the ring, and 

for theoretical calibration of the ring test only the non-

bulged rectangular portion of the ring was considered in each 

increment of compression. As only the rectangular portion of 

the ring is considered in each increment, Avitzur's solution 

(Section 2.4.2) for determining the neutral surface is valid; 

which was then used to determine the bulge parameter and the 

velocity field. For this investigation this method was 

adopted as follows: 
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FIG. 5.4 	Deformation Modes of Ring in 
Compression. 
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The two possible deformation modes are shown in 

Fig. 5.4. For mode 'a', from equation (2.8) we have, 

when R 
Il 	1 

and 

o 1 	
3(Ro/Ri) 

2(1-R./R 
o 

1Ali+3(RolRi) 

(5.12) 

where 

0 	
1 	j1+1.- / n  4 - / 1‘441.-/ Rnr --3■ R 

	1  ti/ R. , 	R L  
‘11  i 	3k 

Pave 

o (1-(Ri/R0)
2 	

Ro 	o 	o 

+ .2  ot_ i_101/ 
R 2. [ f 

 R. 

3/5 H 'It
o
' 

R 	1-(Ri/R0)4x2  
	 1-31  

(e)2 - 	, . 2 
o 

Vx(x-1)[1-(Ri/R ) x] 

From equation (2.18) 

b= a(a 2F- R1 3j
-1  
-[1-R. i1 CC 
	
.24R 

 
r) (7) tj[(7) R 

- [1-11j 

R. 	Ro/H 	[ R. 	R. 4  

R • Ro 
   3/4(-2)11-(-2--) 	(e)2L1--  

R 

Nt.L.+3(Ro/Rn)4 	n 

- (r) 2  + In Ro 

0  R. 
(5.14) 
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For mode 'b', from equation (2.9 ), when R. 	RE1 5--Z- Ro, 

Ro . 
1  

H 2(1-Ri/R(  

3(Ro/Ri )2  

 

(5.15) 

1+ 1+3(Ro/Ri)41  

Pay 	
1 	R 	-f  j R. 4 35R ) 1+3, ny 	( 1)  +( n 

C 	2 	3  R 	R 

	

1-(Ri/R0) 	o 	o 	R 0 

R [I R. R_ 
+ L a. °  i+e-1\-2(-a)J 

	

3/3 H 	Ro Ro 

where R /Ro  is found by successive approximation from . n  

R R. R 
Cti2.(1+7-3.- - 2e) 

o o 

R. , 	(Rn/R0)2+/3+(Rn/R0)4  
+ln (e)z 	  = 0 (5.16) 

° (Rn/R0)2+A(Ri/R0)4+(Rn/R0)4 

As a first approximation, 

R 	21/70R/H 

Ro (R0/Ri)2-1 

From equation (2.19) 

(1+Ri/R0)(Ro/Ri)2-1 
1+ 	 1 

2/3 CX,R0/H 

R q 

+5(e )11(1 )
3 Ro 

  +R1

[ 

	:o 	n 70] 

o 	

1+3(e) . n 
• 

o R. - (RR1)41-  CI [1- R. ) s

0 
+ 1n 11-.°  

. 0   
(5.17) 



V 1-e  Vz  = (2) 1 - e-b/2‘ 

.;.bz /H 
(5.19) 
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The velocity field is given by 

R 	-bz/H 
= — —r[l - (22r)2  • -b/2 
'b V 	e  
4 H  (5.18) 

V = 0 	 (5.20) 

where 	V = platen relative velocity, 

r,z = nodal coordinates. 

1 This satisfies the boundary condition 

V Vz 	a z=HA 

Vz 	01z=0 

The strain rate field (4.24) 

Er 
12
4 

EH 	(%)21  e-bz/H. 
r 1- e-b/2 

b V  e
-bz/H 

2 H 1-e-b/2 

ee - 12  i[1- - 4 H (
n 

) 
2-1 e-bz/H 

7 	e -b/2 7 j 	 

(5.21) 

(5.22) 

can be obtained as 

(5.23) 

(5.24) 

(5.25) 

(5.26) E _ 
rz 
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Hence for any nodal point 	the principal invariant of the 

strain rate tensor 12 
can be determined and k, the meanA  yield 

stress, is the same at• all points at the onset of deform-

ation. Given these two, one can estimate the stress field by 

the method of weighted residuals. 

5.1.4 	Governin e uations and boundar conditions 

The Prandtl-Reuss relationship (4.32) can be written 

as 

6. - 	6. 	k 
ij um j 	ij 

2 

The boundary conditions are 

 

(5.27) 

T = a k 
rz 

CSr 
= 0 

n G 12  

n G 

 

where 	a is a constant, 	 (5.28) 

n is any nodal point. 

This leads to govel:ning equations 

a - a - r 
mr r = 0 

V 2 

a -a 	k 

9 
in ir 
	

= 0 

-- 	= z m 	z 
2 

rz 	rz 
k 	0  (5.29) 



e
r
2e-2

(4d
2
-2d)z

2d-2 C r 
2p-2 

z
2q 

pq  
(5.32) 

D E 

Cpq (2p-l)r
2p-2

z
2q 

•  a (5.33) 
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and boundary conditions 

T 
rz 

 +ak = 0 

G = 0 Qr .= • 

(5.29) 

These equations are comparable to equations (3.16) and (3.17). 

As constancy of volume is assumed, the equation corresponding 

to (az  -am) need not be considered. 

5.1.5 	Residual functions  

To obtain a solutibn for equations (5.29) it is 

necessary to select a set of trial functions which can be 

used to construct this residual function. As already seen, 

stress functions 01 
and 02 

selected according to equation 

(4.11) will satisfy the equilibrium conditions (4.12). There- 

fore 01  and 02  are chosen as trial functions as below: 

D E 

01  = 	+ 1 	6 
B r2e-1 z

2d 
de 

 
(5.30) 

    

02  = 

 

C r
2p-1 

z
2q 

Pq 
'(5.31) 

   

Applying equation (4.11) we have 



B
de
(2e

-
1)(2

e- 
2e-4.2d (5.34) az = - k + 
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E 

2d(2e-l)r
2e-3

z
2d-1 

(5.35) 

Obviously the functions 01  and 02  are chosen to be polynomial 

expressions as they satisfy the requirement that the trial 

function should be a complete set and they are relatively 

easy to handle. The index of r is (2e-1) and that of z is 2d 

so that the resulting functions for Or  and Gz  are even. This 

is a necessary condition for axisymetry, i.e. the functions 

are identical for negative and positive values of r and z. 

The expression for Oz  will satisfy the condition that 

az = -15k1
r=0

. It is also necessary that 0
r 

is a function z 

alone when r = 0 and 0
z 

is a function of r alone when z = O. 

This can be achieved by making the corresponding indices go 

through zero. This will, however, lead to difficulty in comp-

utation as some of the terms will be-of the form 00. This can 

be overcome by replacing the values of r• and z when they are 

equal to zero by a very small value (say 10-10) . Any error 

resulting from this adjustment will be insignificant and may 

be ignored. 

Having satisfied all the requirements a set of 

residual functions can be assembled for each generic nodal 

point n as follows: 
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Rln = °r(rn'zn'Bde'Cpq -gm(rn'zn B e, pq) 

k 

r  

R = (r-  z 	-U (r z B C )--1Q (5.37) 2n 	9 n' n' pq m n' 	pq 	9 

(5.36) 

R3n = 1 (rn ' zn ' Bde ) rz  
k 

Vi—  
rz 

r2 

n 6 re 

(5.38) 

(5.39) 

(5.40) 

R4n = Trz(rn'zn,Bde
) - CCk 

R
5n 

= G(rn'zn,C ) pq  

\The sum total of the residual over the entire discretised 

domain 

RT 
	>--  GmRmn(rn,zn,Bde,Cpq) 	(5.41) 

m=1 n=1 

where Gm is the weighting factor discussed in Section (3.3). 

	

The nodal points lying on the surfaces r2+ 	are are relatively 

few. The significance of boundary conditions associated with 

these may be lost in this solution. Therefore the weighting 

factors Gm 
are determined as 

Gm 
N = total number of 
N = number of nodal m  

the boundary. 

nodal points, 
points on 

(5.42) 

The total residual RT when expanded will be of the form 

RT = A.X. + C > 0 for i = 1(1)k 
	

(5.43) 



N 

R.2(A ) = 0 
OA 	p 
P i=1 

OR T2 OR
T 

where RT = 	R A 

i=1 
OA 

. 	P 

From equation (5.43) we have 
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where 	k = the total number of free parameters, 

A. replaces B
de 

and C , pq  

C is.the constant term. 

5.1.6 	Solution (rings)  

Given a residual function R = R(A ), a suitable 

weighting  function can be chosen to force the residual to be 

zero in an average sense over the domain of interest. Applying  

the criterion (3.12) we have 

(A p) = 0 	 (5.44) 

In a discrete domain this can be expressed as 

(5.45) 

(5.46) 

RT 
= A.X. + C 

R
T
2 = 

	

	 + C2  A.A.X.X. + 2CA.X. 
1 3  a. 3 	1  

2- 

(5.47) 

= 5. A.X X. + 5. 3 A.X.X + 2CX 
aA 	p 3 	p 	p 

= 2A.X.Xp  + 2CXp 
 = 0 	(5.48) 

T 

or 
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aRT2 

aA 
= A.X.X

p 
 + CX 	= 0 	(5.49) 

p 

This system of equations can be solved to determine the 

unknown free parameters Ai. Once these are determined the 

stress field can be determined from equations (5.32) to 

(5.35). The complete sequence is summarised in the form of 

a flow chart in Fig. 5.5, which corresponds to the computer 

programme given in Appendix A. 

5.1.7 	Solution (solid billets)  

The solution for a stress field during upsetting of 

solid billets is identical to that of rings except that the 

inside radius and neutral surface are equal to zero. The 

specimen and the dies are divided into a number of nodal 

points as shown in Fig. 5.6. 

b 

For RI  = Rn  = 0, equation (2.18) reduces to 

4(0.7(5)(h/R0) 
(5.50) 

0 
1+-- 

2  —(h/R ) o 

The velocity field becomes 

- b rwe  
r = t/  41 - e -b/2 

t\-e
-bz/h 

z '2i i  e-b/2 

(5.51) 

(5.52) 

0 	 (5.53) 
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Subroutine VAL 
Assign known values and 
generate mesh (for name 
list see Appendix A) 

    

             

             

             

             

    

A = Equation (5.12) 
B= Equation (5.12) 

    

             

       

    

R = Equation (5.13) 
bn  = Equation (5.14)  

 

Rn  = Equation (5.15)1 
= Equation (5.16)1 

             

             

             

             

    

NN = 1, NSNODE 

    

        

             

             

             

             

    

For each nodal point in 
the specimen compute 
v , v , E. . , I E. r z 1.] 2 

Equation  (5.21-26)  

r 

    

        

        

        

        

             

     

Initialise 
B = C = 0. 

    

             

             

    

NN = 1, NSNODE 

    

        

        

             

      

	L 	 

     

           

    

NK. = 1, MTERMS 
NL = 1. MTERMS 
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For each node, each 
parameter compute and 
each residual function, 

compute X. 
Equation (5.43)  

For each node and each 
residual function, 

compute constant term 
Equation (5.43) 

LT = 1, NERRFN 

heck if residua 
function is 
applicable 

Yes 

i= I 

A A 

For each node and each 
residual function compute 

B(JJ) = 	Z X.X
p 
 *G 

Equation (5.49) 
Note: G is the weighting 
factor equation (5.42) 
lied here for convenience  



JJ = JJ + 1 

For each node and each 
residual function 

compute 
C(I) = ECX *G. 

A AA  

Subroutine SIMQ (B,C, 
KP,KS) solve system of 
equations to determine 
free parameters Ai and 
replace array C with 

values of Ai. 

= 1,NSNODE 

For each node compute 
stresses G. and qg  

1 j 
Equation (5.32-35) 
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NEXT STAGE DETERMINE 
TEMPERATURE FIELD 

FIG. (5.7) 

FIG. 5.5 Flow Chart, computation of 
Stress Field. 
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11 

Nodal point 
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	126 

f2 
4 

57 Boundary Surfaces. 

Dimensions in mm. 
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FIG. 5.6 	Mesh and Boundary Surfaces for Solid 
Specimen. 
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The strain rate field is given by 

b v  e
-bz/h 

r 4 h 
1-e-b/2 

b v  e
-bz/h 

9 	4 h 
1-e-b/2 

b v e
-bz/h 

E
z 2 h 

1-e
-b/2 

e-bz/h b2 v Ee   
8 h2 r 1-e

-b/2 

(5.54) 

(5.55) 

(5.56) 

(5.57) 

The rest of the procedure is the same as in the case of 

rings. 

5.2 	METHOD TO DETERMINE TEMPERATURE FIELD 

Heat generated due to work of plastic deformation 

and friction often results in localised temperature rise, 

particularly at large strains and high strain rates. A 

method to determine this temperature field by weighted 

residuals is discussed in the following sections. 

5.2.1 	Premises  

The following are held to be valid: 

1. 	The material is thermally isotropic. 
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2. The work due to plastic work and friction is 

entirely converted into heat and transported simultaneously. 

In order to be able to analyse the process incrementally 

and to take into account the thermal softening, the heat 

generated during any particulai increment of deform- 

ation is assumed to be transported instantaneously E103,105]. 

3. The thermal conductivity and the specific 

heat of the material are assumed to vary linearly with 

. temperature (as illustrated in the Appendix). 

4. The strain rate sensitivity is unaffected by 

rise in temperature up to 400°C D6,32]. 

5.2.2 	Discretisation  

The specimen and the platen are discretised 

as shown in Fig. 5.3 and Fig. 5.6 except that the nodal 

points lying on the r and z axes are not considered. As 

explained later in Section 5.2.4, this is equivalent to 

considering all four quarters of the specimen and platen 

together without having any nodal points on the axis. 



102. 

5.2.3 	Governing differential equation  
and boundary conditions  

As it is considered that the heat generated is 

transported instantaneously, from equation (4.57) the 

governing differential equation maybe obtained as 

82T a2T 1 	aT 	a(Iv)  
++ (- V ) 

aT
- V 	 +—+ 	r  

Or
2 
 az

2 r r ar 	z az k 	bz 

and for convection at the free surfaces r6 and F4 

aT (or)k = hg  (T - Tf) 

= hf  (T - Tf ) 	 (5.59) 

It is also assumed that the temperature at the surface r5 

remains equal to ambient temperature. So we have 

'T 
r=r 

max 
T  

To 

 

 

z=z 
max 

(5.60) 

5.2.4 	Residual functions  

To obtain a solution a trial function approximating 

the temperature field is proposed as 

2 2 	2 2 T = To + (r -rmax)(  z -z max 
Ar2.ez2m 
.em 

 

(5.58) 

(5.61) 
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This function is even in r and z, which is a necessary 

condition for axisymmetry and also satisfies the equation 

(5.60). However, there is an anomaly in that when r = 0 and 

z = 0 the increment in temperature will be equal to zero. In 

principle it should be possible to get around this difficulty 

by selecting values for and m as 0, 1, 2, ... so that there 

will be one term in the series which is a function of z only 

when r = 0 and vice versa. This technique was found to be 

unsatisfactory as the solution was unstable even for 

expansions of the 5th order. An alternative to this will be 

\ to consider the entire cross-section of the specimen (rather 

than just one quarter), selecting a mesh which does not have 

any nodes lying on the axes. As the nodal points lying 

immediately beside the axes are close to the axis itself and 

as there are no essential conditions that need to be imposed 

upon at the axes, the continuum may be considered to be well 

represented in this case as well. Due to the even nature of 

the function and the fact that total residual is the 

algebraic sum of residuals at all nodes, identical results can 

be achieved by considering just one quarter of the specimen 

and simply omitting the nodal points that lie on the axes. 

Referring to equations (4.14), (4.42), (4.53) and 

(5.51), we have 

qg  = at. . 	. 13 13 

= a (Go/i3) 

(5.62) 

(5.63) 



az. 
(5.64) 

bTv r = T vr( - 
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Having satisfied some of the boundary conditions it 

is now necessary to set up three residual functions, one of 

them approximates the governing differential equations (5.58) 

and the other two approximate the boundary condition equation 

(5.60), which have not been satisfied by the proposed trial 

function, which are 

R1 = To + 

 

	 Aim 2( -z2 )rz
2m 

max 

   

t=1 m=1 

+8rR(z2-zm2ax)rn71z2m+22,(2E-1)( 

	

2 2 	22.-2 2m 	2 2 	2Q, 

	

(z -z2 	z +2(r -rmax)r z 

+8zm(r2-r2  ' 	+z (2m-1)(r max 

2  r-r2  max)  
2m 

2 2 -rmax)  

2 	2m-2 2k 1 13 	2 	22 2m 
(z -zmax)z 	r  +(7 -Vr)12r(z -zmax)r z 

+2),(r2-rmax  2 )z2-zmax2  ):r2"1z2111  - pvz12z(r
2 

-r2 )r2.2z2m+2m(r2-r2 )(z2-z2 )z2m-1r max 	max 	max 

  

JVrb 

h 
(5.65) 

at the surface IZ 
L 

R2 = 2r(z2-zmax)r22ax r 	
2m+2 .P..(r 2-r2 ) max 

L=1 m=1 
(z2-z2 Nr2E-1z2m1.. hf(T _ T  

max 	k 	f l  
at the surface r4. 

(5.66) 

- A 
Em  [

z(r2-1.
max'  
2 \r22z2m4.2m(r2-r2 

max' 
E=1 m=1 

(z -zmax)z 	r1 - hf  (T 	) -T. f  2 2 	2m-1 2  

R3 = 

(5.67) 
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The total residual RT  = R1 
+ R

2 
+ R3. 

5.2.5 	Solution  

As explained in Section 5.1.6, the residual functions 

can now be assembled and weighting functions applied which 

will lead to solution. The procedure is summarised in the 

form of a flow chart, Fig. 5.7, which corresponds to a sub-

routine (Appendix B). 

It should be noted that the terms corresponding to 

heat generation (equation 5.66) apply only to nodal points 

that are in the specimen and that the platen velocities 

v
r 
= 0 and v

z 
= v. These conditions are taken into account 

as shown in the flow chart. 

5.3 	COMPLETE SOLUTION FOR THE DEFORMATION IN UPSETTING 

The stress field and temperature field determined as 

above can be extended to analyse the deformation process 

incrementally step by step accounting for strain hardening, 

strain rate sensitivity and thermal softening. 

The increment Ak is calculated as illustrated in 

Appendix B. The changes in geometry can be calculated as 

Ar = V
r 

x 8t 

Az = z x Lit 

The complete sequence of computation'is illustrated in Fig. 5.8. 

(5.70) 



FROM PREVIOUS STAGE 
(Fig. 5.5) 

Initialise 
B = C = 0 

NN = 1,NTNODE 

Compute 
.0 .k ,k ,h p, p  f 

IL = 1,NOL 
IM = 1,NOM 
IN = 1 NON 

Yes 

V = 
V
r .

= V 
0.
z
.E..=0 11 11  

For each node, each parameter 
and each residual function 
compute X (coefficients) 
Equations (5.65) to (5.671_ 

1---  
For each node and each residual 
function compute constant 
term C. Equations (5.65) to 

(5.67) 

LT = I,NERFT >a•mmIrma 

JV
r
b 

h 
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J= 1,KPT 

For each node and each 
residual function compute 

B(JJ)= X. Xh*G as in 	I 
Equation (5149) Fig. -5.5 I 

JJ= JJ+1 

For each node and each 
residual function 
C(I) = CX *G 

Subroutine SIMQ (B,C,KPT,KS) 
solve system of equations to 
determine free parameters Ai 
and replace C array in the 

values of A. 

107, 
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NN = 1,NTNODF 

For each node compute 
temperature 

esuation (5.61) 

NEXT STAGE 
FIG. (5.8)• 

FIG. 5.7 	Flow Chart, Computation 
of Temperature Field. 
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Field. Fig. 5.7 

as deformation 
reached the required 

amount 

Yes 

STOP 
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FIG. 5.8 	Flow Chart - Complete Solution. 



CHAPTER 6  

110. 

EXPERIMENTAL EQUIPMENT AND PROCEDURE 

Features of experimental rig and measurement of 

transient phenomena are discussed in this chapter. 

6.1 	EXPERIMENTAL EQUIPMENT 

A linear induction motor was used as an experim-

ental forging machine. This particular machine was designed 

\ and developed by Johnson et al Es] for use as a horizontal 
impact extrusion machine. The stator windings were modified 

to improve performance and the machine was mounted vertically 

in a framework as a high speed forging machine. 

6.1.1 	Linear induction motor 

Linear motors can be considered as a planar develop-

ment of conventional rotary machines. Any rotary electrical 

machine can be manufactured as a developed or linear machine 

[95] • As most conventional rotary motors are induction 

motors, their linear counterpart has become more popular. 

In a rotary machine the sinusoidally distributed flux density 

in the air gap produces a wave front which rotates at 

synchronous speed. Similarly in a linear stator wound with 



three-phase system of coils produces a wave front, which 

travels linearly along the stator at synchronous speed. This 

speed is given by: 

u
s 

= 2pf 	 (6.1) 

where 	p = pole pitch, 

f = supply frequency. 

The secondary member of the linear machine, not necessarily 

the moving member, is often called the "translator". 

The linear induction motor can be broadly classified 

into two categories as: 

i) Short stator machines, and 

ii) Short translator (rotor) machines. 

In general the first type is used in applications where long 

travel is required, e.g. overhead cranes, conveyors, etc. 

The second type characterised by short secondary may be used 

when only a short travel is required, as in the case of 

forging. 

The linear induction motors the double-sided stator 

arrangement, Fig. 6.1, is a natural choice in which the 

corresponding poles of the two stators are of opposite 

instantaneous polarity so they assist each other in forcing 
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the flux through the translator. Magnetic circuit for such 

a double-sided arrangement is complete whether or not the 

translator is between them. This permits use of non-ferrous 

translators which are conducting material like copper and 

aluminium, thus eliminating undesirable magnetic forces in 

the direction normal to the motion. 

The linear induction motor used in the rig is a 

twin arrangement of two double-sided machines as shown in 

Fig. 6.1. The dual translator carries a ramhead (serves as 

an impact hammer) which travels between parallel guides. 

Specification of the motor: 

Supply: 	3 phase, 440 V, 50 Hz. 

Maximum current: 	160 A. 

No. of stators: 	4 

No. of slots in each stator: 36 

No. of coils in each slot: 	2 

Each coil: 	50 turns, 20 SWG (0.914 mm.), 
triple-stranded insulated Cu 'wire. 

Pole pitch: 	152.4 mm. 

Synchronous speed: 15.24 m/s. 

Translator: 	450 mm. x 225 mm. x 5 mm. Al. 
Total weight including ram head 
is 11.1 kg. 
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6.1.2 	Stator winding 

The main difference between short stator and short 

translator machines lies in the distribution of magnetic 

flux in the air gap and the current in the stator conductor. 

The driving force on the secondary depends upon the flux 

penetrating and the copper losses mainly on the stator 

current and the electrical and magnetic transients produced 

at the edges. In a parallel connection the flux density is 

distributed evenly as shown in Fig. 6.2. This is due to the fact that 

flux density is proportional to voltage, which is the same in 

each coil. Consequently, the current in the secondary zone 

is higher than the current in the inactive zone which 

reduces -copper losses. Therefore this type of connection 

is in general suitable for short translator machines. In a 

series connection the distribution of flux density will be 

less in the secondary zone than in the inactive part due to 

the demagnetising effect of the secondary current. This 

type of connection is in general suitable for a short stator 

machine. 

Originally all the coils of this particular machine 

were connected in parallel. It is observed that the length 

of translator is 1.5 times the pole pitch, which is the 

suggested E96] minimum to reduce the dolphin effect (the 
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FIG. 6.1 	Twin arrangements of Linear Motor. 

FIG. 6.2 	Parallel Connection. 

FIG. 6.3 	Series Connection. 
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FIG. 6.5 	Conne6tion Diagram. 
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118. 

dipping of leading edge). As this length is not an exact 

multiple of the pole pitch undesirable effects are intro-

duced. The length of the translator can not be increased 

much more in the preSent set-up due to other design consider-

ations such as weight to strength ratio. Therefore it is 

necessary to combine series and parallel connections [973 

to minimise losses. 

The stator coilS are connected as shown in Fig. 

6.4. Each phase of each stator has six coil groups which 

are connected in the form of three parallel paths and each 

path is composed of two coil groups in series. Incidentally 

the double-layer system (two coils per slot) permits chording, 

which will also reduce machine losses. The coils are 5/6 

chorded (i.e. the span is 150°  instead of 1800). 

As shown in the connection diagrams, Fig. 6.5 and 

Fig. 6.6, five coil sides on each end of the stator are not 

accommodated in the slots, and four coils at one end and one 

coil at the other end are left open (to ensure that there 

are the same number of coils in each phase). This arrange-

ment allows some flexibility inasmuch as one can choose to 

obtain maximum force at the instant of switching on or 

reduce rebound at the end of the stroke. 
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6.1.3 	Experimental ria 

The general front view of the rig is shown in 

Fig. 6.8. The linear induction motor is mounted vertically 

in a framework. A rigid table fixdd to the floor serves as 

an anvil which carries the sub-press and is aligned to be 

directly under the ram head carried by the translator. The 

sub-press is of standard type. The bottom platen is fixed 

to the anvil and the top platen, supported by springs, moves 

up and down in guide pillars. The translator and the ram 

head are held at the top by a spring-loaded latch, Fig. 6.9. 

The latch is held in position by a solenoid, Fig. 6.10. 

When the motor is switched on, the translator is released 

and is driven down and the ram head strikes the sub-press 

and the work piece placed in between the platens is thus 

forged. 

In the past the speed of the motor was varied by 

changing the supply voltage. This meant the use of an 

expensive transformer. The need for the transformer was 

eliminated by use of a simple system of relays. When the 

motor is connected directly to the mains a maximum speed of 

15 metres/second 	synchronous speed) can be reached. 

Therefore it is only necessary to reduce the speed of 

operation.. The acceleration and therefore the speed depends 
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upon the distance through which the translator is propelled. 

If the translator is allowed to fall free, the motor can be 

switched on for any desired duration of time during its 

flight downwards and thereby vary the acceleration and speed. 

This is done by using a system of timing relays as shown in 

the circuit diagram, Fig. 6.7. The instant the machine is 

switched on the two relays and the solenoid are energised. 

The solenoid instantly releases the translator which begins 

to fall by gravity. The relay R1 can be set to operate after 

any desired time delay (or instantly) which will complete the 

circuit and energise the starter of the motor. The relay R2 

has two terminals, one of which can be delayed. This will 

determine when the machine is to be switched off. The other 

terminal, which operates instantly, is used to hold the 

supply until the machine is switched off. An emergency 

stop and a limit switch operated by the guard are also used 

in the circuit in order to ensure safety. After each 

operation the translator is retrieved to the top position 

by means of rope and pulley mechanism. The free end of the 

rope attached to a rubber ball is guided inside a shield, 

Fig. 6.10. The relays are mounted on a wall panel and dial 

clocks are provided to adjust timing. 
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6.2 	INSTRUMENTATION 

Measurement systems are basically a transducer, 

signal conditioning equipment and a read out, which corr-

espond to information acquisition, information processing 

and information output. In any measurement system there is 

always a degree of uncertainty resulting from measurement 

error [100. Errors can be broadly classified as static 

errors and dynamic errors. Static errors stern from three 

baSic.sources: reading error, characteristic error and 

environmental error. Reading error arises from such factors 

as parallax,interpolation and optical resolving power. It 

is now possible to completely eliminate this by obtaining a 

digital readout. Gain errors, hysteresis, linearity, etc. 

are a part of characteristic errors, which will depend very 

much upon the construction and quality of equipment used. 

Environmental errors relate to external influences such as 

magnetic fields. These can be minimised by adequate shielding. 

Dynamic errors are caused by time variations in the measure-

ment and are characterised by the frequency response of the 

system. It is necessary to ensure that the frequency 

response of the system is higher than the highest modulation 

of frequency of the measurement. 

With these considerations in view a measuring 

system illustrated in Fig. 6413 was designed. Salient 
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features of the equipment used are discussed in the 

following sections. 

TRANSDUCER 
LVDT 

EDITING . 
OSCILLOSCOPE 

MODULATOR 
DEMODULATOR 

SE905 

TRANSIENT 
RECORDER 
(DIGITAL) 

DL901 

PAPER TAPE 
. PUNCH 

DD1133 

FIG. 6.13 	Measuring System. 

6.2.1 	Displacement transducer 

Insofar as this work is concerned displacement, 

velocity and acceleration are the three quantities of 
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interest. As these quantities are interrelated by a 

simple differentiating and integrating operations and as we 

have digital output, it does not matter which one of these 

is actually measured. Among the many devices available on 

the market the Linear Variable Differential Transformer 

manufactured by Electro Mechanisms Ltd., Slough, Bucks., 

seemed most suitable. The transducer mounting is shown in 

Fig. 6.11. 

Red 
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LVDT Specification  

AC Series D50 1 (Serial No. 170F). 

Range 	+ 25.4 mm. 

Core Length 	100 mm. 

Frequency response depends upon primary excitation. 

Null voltage 	1.6 mV. 

Primary excitation 	6 V RMS. 

SeCondary load 	600 k.ohms. 

Differential output 	2.235 V. 

Shock up to 	1000 g. 

The specifications as listed is quite adequate 

for this particular application. When an AC carrier excit-

ation is applied to the transducer it produces an electrical 

output proportional to the displacement of the movable core. 

The transducer body was mounted to the rigid frame of the 

machine and the core was fixed to the top platen, which is 

the moving member of the sub-press. Thus displacement could 

be recorded against time during deformation. The LVDTs are 

insensitive to lateral movement. However, the extension 

rods (non-magnetic stainless steel) of the core were guided 

between nylon bushes. The LVDT isoadequately shielded from 

any surrounding magnetic field. As explained earlier, the 

linear induction motor of the experimental rig was always 
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switched off before impact and therefore the output of the 

transducer is unaffected by the operation of the motor. 

	

6.2.2 	Modulator/demodulator 

As the LVDT is a passive device it is necessary 

to apply an excitation voltage to obtain a response which is 

then demodulated before being input into the recording 

device. A S.E. laboratory transducer convertor SE905 was 

used for this purpose. This generates a carrier of 6 V at 

5 kHz and apaximum attenuation of 54 db is available. The 

main consideration for selection of this equipment is that 

the carrier wave frequency should be something like ten 

times as high as the highest modulation frequency of the 

signal to be measured. 

	

6.2.3 	Transient recorder 

In general storage oscilloscopes are used to 

record transient signals and the photographs of the trace 

used for further analysis. This is not entirely satisfactory 

as the resolution is very poor and reading errors may also 

be introduced. Furthermore, it is difficult to trigger at 

the correct instant and usually some of the available time 

base is lost on account of this. However, nowadays digital 
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transient recorders are available which completely eliminate 

this difficulty. The digital output enables one to perform 

such operations as numerical differentiation. 

A Data Laboratory transient recorder DL901 was sel-

ected for use. Main considerations for selection of this 

equipment are high sampling rate, high resolution and some 

flexibility in the mode of recording. The sampling rate of this 

particular machine is 5 to-200,000 (slower rates can be obtained 

by using external pulse train). The two modes of recording 

\'delayed mode' and 'pre-trigger mode' that are available allow 

some flexibility inasmuch as the recording can either be 

delayed or part of the output prior to the event can be 

retained in the memory. As the memory is 1024 words long, 

this facility makes recording very much easier. The operation 

of this device is represented schematically in Fig. 6.15. 

Due to the discrete nature of sampling, it is 

necessary to ensure that 'aliasing' (incomplete definition of 

the signal) does not occur. If further analyses are to be 

carried out on a digital computer the selected sampling rate 

should be such that at least two samples are taken to define 

the maximum frequency contained in the signal. Insofar as 

the present work is concerned, in all cases at least 50 samples 

define the displacement in the zone of interest. 
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Chart 
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FIG. 6.15 	Operation of Transient Recorder. 

It may be of interest to record the fact that a 

FM tape recorder was also considered. This seemed an 

attractive proposition as the time base can be expanded 

after recording. The recorded signals were digitised and 

processed on a PDP15 mini-computer. Although satisfactory 
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analysis could be carried out the procedure was found to be 

too cumbersome and time-consuming. 

6.2.4 	Triggering 

In order to be able to capture a transient phen-

omenon it is necessary to trigger the recording device at the 

correct instant. Devices such as micro-switches, photo-

electric cells, were found unsuitable as the electrical 

transients produced during switching on and operation of the 

motor usually caused triggering before the event. A 

compression type piezoelectric accelerometer was used as a 

triggering device, which produces a voltage when subjected 

to shock. The accelerometer was mounted on the anvil which 

produced the triggering signal on impact. The 'pre-triggering' 

mode available in the transient recorder enabled retention of 

a part of the signal immediately prior to the moment of impact, 

as illustrated in Fig. 6.16. 

6.2.5 • 	Editing and output  

The recorded signal was first scrutinised with the 

aid of an oscilloscope. To obtain a permanent record of 

useful signals a Data Dynamics 1133 paper tape punch was 

used. The output is ASCII coded, a format suitable for 

computer analysis. 
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FIG. 6.16 	Mode of Recording. 

6.3 	CALIBRATION AND TESTING 

The output of the displacement transducer was 

statically calibrated before each series of experiments. 

The calibration was carried out in situ using distance 

pieces of various thickness between the platens of the sub-

press. A typical calibration curve is shown in Fig. 6.17. 

The digital output value of 256 corresponds to the full 

scale voltage setting on the recorder. The dynamic response 
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of the transducer was checked by upsetting specimens at 

various speeds.. There was no significant difference between 

dynamic and static response of the transducer. 

Specimens of commercially pure aluminium and high 

conductivity copper were machined from cold drawn bars. 

The rings were of 6:3:2 ratio (19.05 mm 0.D., 9.525 mm. I.D., 

6.35 mm. height), which is in keeping with most of the 

published work on ring tests. A circular grid as shown in 

Fig. 6.12 was inscribed on each face of the specimen. A 

thread chaser of 0.508 mm. pitch (50 TPI) was used for this 

purpose. The grooves were 0.05 mm. deep and 0.05 mm. wide. 

The solid specimens were 12.7 mm. in diameter and 12.7 mm. 

in'height. The aluminium specimens were annealed at 360°C 

for one hour and the copper specimens were annealed at 600°C 

for one hour. A vacuum furnace was used for annealing. 

Before each dry test without lubricant the platens 

and the specimen were cleaned with trichloroethylene to ensure 

that they were clean and perfectly dry. For tests with lubr-

icant molybdenum disulphide grease (Moly Slip) was used. Tests on 

copper and aluminium specimens were carried out at four 

different speeds and four different reductions in height for 

each case. Crash rings were used to limit deformation to 

the required degree. 
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FIG. 6.17 	Typical Calibration. 
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Fig. 6.18 	Typical Analysis of Displacement 
Time Recording. 
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The displacement/time recording was numerically 

differentiated to obtain velocity/time curve. 

An example of derived results is shown in Fig. 

6.18. 
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CHAPTER 7  

RESULTS AND DISCUSSION 

Theoretical solutions were computed for upsetting 

of copper specimens only. The stress/Strain relationship 

and other material properties used in computation are given 

in Appendix B. All the stress fields and temperature fields 

illustrated in this chapter are for upsetting of copper rings, 

Fig. 5.3, except those in Sections 7.7 and 7.8 which correspond 

to solid specimens as described therein. The illustrations 

of stress fields show the top right-hand quarter of the 

specimen and the illustrations of the temperature fields 

show the top right-hand quarter of the specimen and a part of 

the platen as required. 

6.1 	EXPERIMENTAL VERIFICATION 

The experiments were carried out mainly to measure 

the changes in geometry of rings during compression at 

different speeds to verify the suitability of the assumed 

velocity field and to determine friction factor 'a' for the 

dry and lubricated conditions. Experiments were carried out 

on both copper and aluminium rings so as to verify the 

assumption that the velocity field is independent of the 

mechanical properties of the material and that it is 

affected only by the frictional restraints at the interface. 
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The circular grid marked on the face of each 

specimen was measured at different stages of deformation at 

selected speeds. Fram these measurements, the neutral 

surface was determined either by interpolation (when Rn  >R.) 

or extrapolation (when Rir Ri). Besides being relatively 

easy to measure, the position of Rn  is considered to be a 

more reliable measure than the change in internal diameter, 

more so when the bulge at the free surface is pronounced. 

There is some scatter in the experimental results. 	This 

may be attributed to the fact that the test specimens were 

rather small and measurement errors are inevitable. Unfort-

unately, larger test specimens could not be used on account 

of the limited capacity of the experimental rig. The 

experiments were repeated three or four times for each 

condition and their mean values were used. The maximum 

observed variation from these mean values is 8%. 

Experimentally measured values of Rn 
are compared 

with theoretical values in Figs. 7.1 to 7.4. The bulge 

profiles were measured on a measuring projector (with 

magnification of 20) and are compared with theoretical 

profiles in Figs. 7.5 to 7.12. No discernible effect of 

speed was observed in the range of up to 12 m/s. Considering 

the fact that numerical solutions are unlikely to be accurate 
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enough to respond to small variations recorded during these 

tests, it is suggested that the following values of friction 

factor will adequately describe the conditions: 

1) For copper and aluminium with lubricant (Moly Slip) 

CI= 0.14. 

2) For copper without lubricant, c = 0.77. 

3) For aluminium without lubricant, a = 0.50. 

\7.2 	VERIFICATION OF THE ALGORITHM AND THE METHOD 

As it is not possible to verify experimentally the 

numerical solutions for stress and temperature fields, it is 

necessary to resort to indirect methods to establish the reli-

ability of such solutions. In this particular case it is 

possible to verify the algorithm by comparing the computed average 

pressure for simplified cases with prescribed stress/strain 

relationship (experimental) of the material. Stress fields 

were computed by the method of weighted residuals simulating 

quasi-static deformation at constant temperature as follows: 

1)  V = 1.0 mm/s, 0.= 0.001, T = 120°C. 

2)  V = 1.0 mm/s, a= 0.001, T = 320°C. 

From these stress fields, average pressure was 



151. 

calculated at different strains. The results as shown in 

Appendix Fig. B.1 compare well with known (experimental) 

material properties. This may. be considered as adequate 

proof that there are no programming errors. 

It is possible to compute deviatoric stresses at 

the onset of deformation from Avitzur's velocity field, 

equations (5.18) and (5.19), and compare them with those 

derived from the total stresses, equation (4.5), computed by 

the method of weighted residuals. These are shown in Tables 

7.1 to 7.4 for the following cases: 

V = 4.5 m/s and CC= 0.001. 

V = 4.5 m/s and a= 0.14. 

It is observed that when the friction is low the 

results of the method of weighted residuals, Table 7.2, are 

almost identical to those computed directly from the velocity 

field, Table 7.1, and the stress field is uniform throughout 

the continuum. It is also observed that the yield criterion, 

equation (4.26), has been satisfied exactly at all nodal points. 

When the friction is higher (a = 0.14) the two results agree 

quite well. The error in the yield criterion lies between 

-8.8% and +2.6%. Although this range is somewhat large, it 

should be noted that the yield criterion is satisfied much 
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.4197+1r-
.410•7+1.6 
.4607+1A 
.469:+1A 
.4-607+14, 
.469f7416 
.4097+16 
.4097+16 
.4097+1r,  
.499E+16 
.419E+16 
.4097+16  
.4097+16 
.4097+16 

01-  
-.73'3E+05 
-.779E7+65 
-.7737+93 
-.1197+93 
-.7797+05 
-."3:9E+98 
-.71.37+^3 
-.113E+08 
-.7797+01 
-.71'1E+01 
-.1197+01  
-.7797+08 
-."197+93 
-.7117.404 
-.119E+05 

-.7/97+n8 
-.7717+03 
-.71974.n3 
-.719E+j1 
-.7117+08 
-.7'97+11 
-.771E_+65 
-.7.1.97+35 
-.7197+91 
- 117+18 
-.7737+01 
-.771t+95 
-.7797+05 
-.779+13 

152. 

NODE 

2 
7 
4 
c 
6 
7  
8 
9 

10 
11 
1? 
13 
14 
15 
16 
17  
18  iq 
29 
21 
22 
23 
214 
?5 
26 
27  
P8 
29 
30 
31 
2 

73 

35 
36 

. 	37 
38 
39 
4'1  
41 
1? 
43 

16 

48 
129 
50 
51 
F2 
51 
514 
59 

57 
58 
t9 
EO 
61 
62 
61 
64 
65 
FE,  
67 
68 
69 
70 

01  r 
.36c1E+18 
.369E+68 
.3697+08 
.1697+08 
.7697+°8 
.369E+08 
.3697+08 
.1697+-08 
.1698 
.1697+08 
.169E+08 
.350740 4  
.5(17+-051  
.759F+08 
.160E+98 
.379E+08 
.1697+n5 
.76974-n8 
.169,74.00 
.769E+08 
.1697+V 1  
.369c+18 
.169E+08 
.769E+15 
.36°74-r',5 
.769E+08 
.369E+98 
.1697+08 
.760•+o8 
.369E+01 
.369E+95 
.369E+98  
.369E+0° 
.7697+08 
.16974-0g 
.369E+0° 
.369E+111 
.1697+08 
.1697+01 
.1697+01  
.1697+18 
.169'7+171 

.1697+05 
!!!!!! 
.169E+08 
.169E+08 
.1697+-98 
.369E+08 
.769E+08 
.1E97+05 
.169E+01  
.169E+08 

8 
.76974-'08 
.769E+0P 
.7697+01 
.7600+n-0 
.1697+98 
.769E+08 
.769E+0° 
.359E+0° 
.1697401 
.1697+0° 
.769E+nR 
.369:=4-18 
.759+0g 

0' 
9 

.76q7+08 

.46974.(152 

.769E+0° 

.769E+ne. 
'7697+91 
:'69E+01 

.169E+01 • 

.76917+11 

.769E+68 

.769E+0° 

.3637+01 

.169E+08 

.169E+08 

.359E+08 

.1697+78 

.7697+1'8 

.7697+08 

.769+08 

.3697408 

.7A1E+C8 
0169F+n8 
.769E+08 
.169E+08 
.1697+^1 
.769E+08 
169E+08 

:769E+91 
e 469F+P3 
.769E+91 
.697+01 
.715.7411 
.169f+13 
.70E+ne 
.769E+95 
.769E+08 
.7697+0° 
.769E+08 
.769E4'1 
.3697+'11 
.1697+0° 
.16'1E+01 
.16'17+08 
• 769E4-08 
.763E+18 
.169E+01 
.1697+n8 
.169E+ 0. 

.369t.+08 

.7697+05 

.769E+08 

.-z69E+08 

.7607+18 

.7697+08 

.769t+OR 

.769E+11 

.7697+11  

.7697+11 

.7697+Pyl 

.169t+08 

.369E+°B 

.769?-4-08 
3A97408 
• 761=7+08 
76E+1')3 
'69E+08 
769E+PS 
369F+08 

J
2 

.41c)F+i6 

.400c+ir, 

.409F+16 

.419E+16 

.409E+16 

.419E+16 

.400E+1A 

.4097+16 

.409E+16 

.4197+16 

.419F+16 

.410 +16 

.409E+16 

.409E+16 

.4197+16 

.4197+16 

.419E+16 

.410E+16 

.4197+/6 

.400E+16 

.4097+16 

.4097+16  

.409E+16 

.409E+16 

.41°E+16 

.40°E+16 

.40'1E+16 

.4197+16 

.409c+16 

.41°c+1 6 

.409E+16 

.4097+16 

.4097+16 

.419+16 

.409E+16 

.409E+16 

.4197+16 

.4097+16 

.4097+1.6 

.409E+16 

.4019E+16 

.4197+1.6 

.409E+1 6 

.4097+16 

.409E+16 

.4197+16 

.409E+16 	. 

.4097+16  

.409E+16 

.409E+16 

.419E+16 

.40°7+16 
..499 +16 
,Lont-J.i6 
.409'7+16 
.400E+16 
.410E+16 
.4197+16 
.4097+16 
.419.7+16 
.4107+16 
.409E+4 6 
,u1o41A 
.409E+16 
.4197+1 6 
.40°7+16 
.479E+16 
.411(1E+16 
.4qcF+16 
.4097+16 

TABLE 7.1 	Deviatoric Stress from Avitzur's Velocity Field 
(V = 4.5 m/s and CC= 0.001). 



153: 

NODE 	Qr 
.3;9.7+08 

	

2 	.3607+19 
3 .7597+CP 
4 .3697+01 

, 5 	.3697+11 
6 .369E+r9 

	

7 	.7369E+1'8 
8 0697+01 

	

9 	.1717.408 
19 	.378F+^8 
it 	.3697+r8 
12 .7697+11 
13 	.3697+0.9 
14 	.169F+n0  
15 .1697+09 
16 	.169-E+09 
17 .7697+08 
18 	.369E+18 
1q 	..7697+09 
2n 	.3717+09 
21 	.76974-09 
29 	.369E+18 
27 	.169E+15 
24 	.1697+18 
25 	.769E+08 
26 	.7697+08 
27 	.7697+1P 
28 	.7607+18 
29 .369P-P1 
30 	.76(1F+C8 
31 	.3697+0P 
32 	.3607+19 
-33 	.15974n0  
34 .169E40Q 
35 .1697+08 
736 	.769E+08 
• 37 	.3697+ 1'8 

	

-38 	.7697+TP 
39 	.'759c+ 08 
49 	,3607+-11 
41 	.369E+1 
42 .7697*C8 
41 	.1697+08 
44 	.360-7+1P 
45 	.769-7+00 
46 	.7697+11 
47 .3697+t9 
48. '7697+18 
'49 	.7607+G1 
50 	.369E+19 

.369E+11 
52 	.7697+08 

.769E+19 
54 .769E+18 
55 	.1697+r8 
56 .7697+01 
57 	.1697+09 
58 0697+11 
59 	.7697+11 
68 	.759E+01 
61 	.369E+18 
E2 	.169-7+11 
63 .369E+01 
64 	.369E+01 
65 	.3m9E+0P 
E6 	.7697+11 
67 .369F+08 
68 	,369E4-11 
69 	.769E+01 
79 	.369E+08  

0' 
9 

.760E+'1 8  

.769E+11 

.769+18 

.369E+18 

.769r+18 

.3697+18 

.769E+0'1 

.769E+11 

.369E+11 

.7A1T7+n8 

.7697+C1 
'769-7+11 
.7697+11 
.769r+nA 
.7697+08 
.369E+01 
.7697+11 
.3697401 
.369E+011- 
.769E+11 
.769E+OP 
.7697+08 
.76°7+08 
.3697+rg 
.3697+0-9. 
.7697+08 
.769E+18 
.269F+1 
.7697+0'8 
.7697+11 
.36974-C9 
.3697+19 
.769E+19 
.769E+18 
.769E+18 
.769E+19 
.760E+08 
.7697+C1 
.769E+18 
'7697+08 
.769.7+18 
.7697+08 
.369E+11 
.769.74PQ 
.7697+18 
.76c1c-4.i;8 
.7697+01 
.769E+19 
.3697+11 
.7697+19 
.769+18 
.369E+11 
.769E+19 
.3697+18 
.7607+18 
.769E+01 
6769E+11 
.7697418 
.7697+09 
.769E+08 
.769E+19 
.76717'..nct 
.7697+18 
.369.7+r,8 
.3607+1;3 
.769E+19 
'7697+08 
.7697+03 
.769E+;31 
.7697+01 

-.7317+08 
-A7797+11 
-.7797+01 
-.779E+11 
-.779'7+13 
-.7797+01 
=.77974-18 
7.'297+05 
-..7117+11 
.7797+18 

-.7797+18 
-47'97+18 
-.779E+08 
-.7717+18 
-.779E+01 
-.7297+08 
-.7717+18 
-.7737+11 
-.7797+18 
-.7797+01 
-.7797_+n1 
-.731E+18 
.-.7217+18 
-.7717+09 

-.77'97+13 
-.7197+11  
-.7797+08 

...7-79c+03 

...7397+08 
-.7797+08 
-.7797+18 
-.771:7+08 
-.7737+11 
-.7-ri=408  
-.7797+11 
-.7717+18 
-.7797+21 
- 7297+08 
-.7797+11 
-.7797+01 
-.7797+18 
-.7797+01 
-.7797+08 
-.7217+08 
-.7797+08 
-.7797+21 
-.7797+11 
-.779E+13 
-.779E+11 
•.7717+18 
-.7-797+ro 
-.77i7+61 
-.7797+03 
-.7797+11 
-.7297+08 
-.7797+18 
-.7797+11 
-.7337+08. 
-.7797+11 
-.07797+13 
..7797+13 
-.7297+01 
-.779E+08 
-.729E+19 
-.7717+13 

-.7717+11 
-•.7787+11 

k
2 

.4097+16 

.410+IF 

.4107+1F 

.409E+16 

.4197+16 

.40°7+16 

.499-7+16 

.4107446 

.4007+16 

.4107+16 

.4097+16 
44097+16 
.409E+16 
:4197+16 
44007+16 
.4097+16 
0,0i7+16 
.4097+16 
.409E+16 
•L!19 +•,A 
.4r07+1A 
.41j97!+16 
.409E+16 
.4197+16 
.4197+16 
.4197+16 
.4097+16 
.4097+16 
.4197+16 
.4097+16 
.4097+16 
0007:+16 
.409:7+16 
.4097+16 
.4097+16 
.4197+16 
.419-7+16 
.4097+16 
.4097+16 
.429E+16 
.4u97+16 
.4097+16 
.4097+16 
.4097+16 
.4197+16 
.4097+16 
.4m07+1r, 
.419E+i6 
.4007+16 
O00:+16 
.4197+16 
.4097+16 
,4n.r174.16 
.4097+1r, 

.40974-16 

.4007+16 

.4097+16 
,Unor+AF, 
.409'74.16 
,4f1V-4.1A 
.400E+16 
.400E+16 
.4197+16 
.40,17+in 
.40?7+16 
.409:+16 
.402'7+1c 
.4597+16  

J
2 

.4?0=4.1Ft 

.49?7-4-ic- 

.4noc41A 

.4097+16 

.4007+1F,  

.4097+16 

.14.00c+4A 

.410E+16 

.4197+16 

.4007+1,6 

.4007+1g, 

.409E4-'"- 

.4197+16 

.40°7+16 

.409E+16 

.40^7+1c„ 
409E+16 
.409E+16 
.41°7+16 
.409E+16 
.4197+1 
.419E*16 
.4007+1a 
.40,374.ip 
.410.7+1g 
.Lioc+ic 
.4197+16 
.4197+1c 
.419E+16 
.419E+16 
.4097+16 
.40°7+16 
.4197+16 
.4097+1 
.4107+1a 
.419+16 
.4097+16 

.4097+1.6 

.7.107+16 

.4007+1A 

.4007+16 

.4097+1F, 

.4097+16 

.4097+1C 

.41,07+16 

.41°7+16 

.409E+16 

.4097+16 

./00,7+1a 

.4017+Ic! 

.10c1,-+4 

.4197+16 

.409E+16 

.4007+16 

.4007+1.6 

.4007+16 

.41914-1t; 

.4007+i6 
,Lay-4=4.16 
.400E+16 
.400E+16 
.4197+16 
.409E+16 
.4197+16 
.4097+16 
.409E+16 
.4197+"7. 
.409E+16 

51 

TABLE 7.2 Deviatoric Stresses - Method of Weighted 

Residuals (V = 4.5 m/s and U.= 0.001). 
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more closely at most nodal points. Besides it is an essential 

feature of the method of weighted residuals to force these 

. errors to vanish in an average' sense over the entire 

continuum. As it is not possible to include the frictional 

restraints in the governing equation, it was necessary to 

treat it as a boundary condition leading to a separate 

residual function as in equation (3.13). Presumably this 

introduces some error in the solution when friction is high. 

However, these errors were no higher than the values mentioned 

above, even for very high values of friction 0i= 0.77. 

Therefore it would seem reasonable to suggest that the method 

of weighted residuals is quite adequate for this purpose. 

The method of weighted residuals was used 031] to 

solve the elliptic partial differential equation 

m2 	a2F .4 _ a2F F = 	= -A 	(7.1) 
art az

2 

where F = F(r,z) and A is a constant. 

The results were compared with known solutions and 

found to agree within +1%. 

The above equation (7.1) also describes the temp-

erature distribution in a plane section with uniform source 

of heat all over the surface, in which case the governing 

••I 
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differential equation is 

t7 2T 
	 (7.2) 

The equation (7.2) is a special case of equation (5.58) and hence 

the method of weighted residuals could be used with some 

confidence to obtain a solution to the equation (5.58) as well. 

In view of the above-mentioned facts, the results 

of this work can be considered as reliable. 

\7.3 	EQUIVALENT STRESS AND TEMPERATURE DISTRIBUTION 

The temperature distribution as computed by the 

method of weighted residuals is illustarted in Figs. 7.13 to 

7.18' for different cases. The ambient temperature is taken 

to be 18°C. The results indicate that the temperature rise 

is quite significant, and the temperatures at the tool/ 

specimen interface are much higher than temperatures in the 

rest of the specimen, and that the conduction of heat into 

the die is very slow as observed by others in upsetting 

[31] and extrusion E102,103]. The temperature fields 

obtained in this work are compared with those obtained by 

the finite element method pi.] in Section 7.8. 

The equivalent stress as given by equation (4.19) 
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FIG. 7.13 	Equivalent Stress and Temperature Fields 
(V = 5.0 m/s; CC= 0.14; 31.5% Deformation). 
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• FIG. 7.14 
	

Equivalent Stress and Temperature Fields 
(VI  = 10.3 m/s; C(= 0.14; 31.5% Deformation). 



FIG. 7.15 	Equivalent Stress and Temperature Fields 
' 	(VI  = 5.0 m/s; a= 0.77; 31.5% Deformation). 
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FIG. 7.16• 	Equivalent Stress and Temperature Fields 
(VI  = 10.3 m/s; a= 0.77; 31.5% DeforMation). 
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FIG. 7.17 	Equivalent Stress and Temperature Fields 
(V1  = 10.3 m/s; Q•= 0.77; 15.7% Deformation). 



FIG. 7.18 	Equivalent Stress and Temperature Fields 
(VI  = 10.3 m/s; OL= 0.77; 46.8% Deformation). 
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represents the state of stress at any nodal point and there-

fore their distributions are included in Figs. 7.13 to 7.18. 

These have been computed incrementally accounting for thermal 

softening as explained in Chapter 5. The results demonstrate 

the fact that the stress field is nearly uniform within the 

continuum when the friction is low and that they vary within 

the contimuum more significantly when the friction is high, 

and that the value of stresses increases with friction. 

Comparing Fig. 7.13 and 7.14, the strain rate 

effects can be observed. At higher deformation velocity the 

stresses increase as might be expected. The isotherms, 

particularly 80°C and 70°C, spread deeper into the specimen 

at higher deformation speed, indicating greater localised 

heating at the interface. These effects of strain rate are 

similar in nature when the friction is high. However, as 

can be seen in Figs. 7.13 to 7.15, the effect of friction by 

itself is much more pronounced than that of strain rate. 

As the radial velocity at the interface at an impact 

velocity of 10.3 m/s is approximately 1.5 times the radial 

velocity at an impact velocity of 5.0 m/s, and the assumed 

friction factor (CC= 0.77) for dry conditions is 5.5 times 

greater than the friction factor (Ct= 0.14) for the lubricated 

conditions, the work due to friction given by equation (4.42) 
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will vary accordingly. It was observed earlier that the 

conduction of heat into the die surface is slow and the 

heating is almost adiabatic. On account of these two facts, 

it is quite plausible that the effects of friction are more 

pronounced than that of strain rate. 

7.4 	EQUIVALENT STRESS DISTRIBUTION WITHOUT 
THERMAL SOFTENING  

In order to be able to establish the effect of 

localised temperature rise due to work of deformation and 

friction, stress fields were also computed without consider-

ing the thermal effects, assuming that the material remained 

at constant ambient temperature of 18°C. The equivalent 

stress distribution is shown in Figs. 7.19 to 7.24. 

Conditions of speed and friction correspond to 

those in Figs. 7.13 to 7.19, so that direct comparison can be 

made. It is quite evident that the thermal effects are 

significant. 

Comparing Fig. 7.13 and Fig. 7.19, it can be seen 

that significant thermal softening does occur at the inter-

face and the areas immediately surrounding it as a result 

of localised heating. This thermal effect is similar in 

nature at higher speeds and friction, as shown in other 
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illustrations. At early stages of deformation, Fig. 7.17, 

this thermal softening is not significant as the increase 

in temperature is quite small.• The increase in stress 

between 31.5% deformation, Fig. 7.24, and 46.8% deformation, 

Fig. 7.23, when the thermal softening is neglected is higher 

than the corresponding increase, Figs. 7.16 and 7.18, when 

the thermal effects are taken into account. This indicates 

that thermal softening assumes greater significance as 

deformation proceeds. 



FIG. 7.19 	Q (MN/m2) Without thermal softening 
(V = 5.0 m/s; a = 0.14; 31.5% Deformation). 

FIG. 7.20 	G (MN/m2) Without thermal softening 
(V = 10.3 m/s; a = 0.14; 31.5% Deformation). 



FIG. 7.21 
	

(MN/m2) without thermal softening 
(VI  = 5.0 m/s; OC= 0.77; 31.5% Deformation). 
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FIG. 7.22 	TT(MN/m2) without thermal softening 
(V./  = 10.3 m/s; a = 0.77; 31.5% Deformation). 



FIG. 7.23 	(MN/m2) without thermal softening 
(VI  = 10.3 m/s; a = 0.77; 46.8% Deformation). 
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FIG. 7.24 	CS (MN/m2) without thermal softening 
(VI  = 10.3 m/s; a. = 0.77; 15.7% Deformation). 
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7.5 	STRESS FIELD 

So far only the equivalent stress distributions 

were discussed as they fully represent the state of stress 

at a point and can be more meaningfully interpreted. 

However, for the purposes of illustration, complete stress 

field for a selected condition is given in Fig. 7.25. 

	

7.6 	EFFECTS OF FRICTION AND SPEED 

The effects of friction and speed can be more 

readily assessed by studying the maximum localised temperat-

ures. In Fig. 7.26 it is apparent that the effect of friction 

on local temperature is more pronounced than that of the 

speed, particularly at large deformations. It is also 

observed that in the temperature distributions discussed 

earlier the temperatures at the tool/specimen interface are 

much higher than temperatures in the rest of the specimen. 

However, Figs. 7.27 and 7.28 show that the maximum local 

temperature rises rapidly with friction up to a particular 

value c = .35 and then becomes more or less steady. This 

is due to the fact that as friction increases the radial 

velocity at the interface becomes smaller and hence the 

work due to friction is less and the temperature rise is 

due only to plastic work of deformation. 
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FIG. 7.25 	Stress Field (VI  = 10.3 m/s; a= 0.77; 
31.5% Deformation). 
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FIG. 7.26 	Variation of Maximum Localised Temperature 
during Deformation. 
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Local Temperature at V
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Local Temperature at VI  = 10.3 m/s. 
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Friction Factor a 
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7.7 	EQUIVALENT STRESS AND TEMPERATURE DISTRIBUTION 
(SOLID BILLETS)  

The computer programme can be easily adapted to 

obtain stress and temperature field during upsetting of 

solid cylindrical billets, as explained in Chapter 5. The 

equivalent stress and temperature distributions for a 

particular case are illustrated in Figs. 7.29 and 7.30. 

The deformation velocity/time relationship was taken from 

[31].  for a copper cylinder 25.4 mm in diameter and height. 

	

7.8 	COMPARISON WITH FINITE ELEMENT METHOD 

Mohitpur [31] proposed a finite element solution 

for temperature field during upsetting of solid billets, 

assuming uniform deformation and Coulomb friction. This 

makes direct comparison of the results of this work and that 

of [31] difficult. It is suggested [57] that the average 

pressures computed using the two theories can be compared 

and that for any given value of coefficient of friction a 

corresponding value of constant friction factor may be 

determined so that the average pressure given by the two 

theories is identical in the region of interest. However, 

experiments [31] were carried out in dry conditions 

(without lubricant) and the centre point temperature was 
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measured during deformation which were compared with the 

finite element solution which corresponds to a coefficient 

of friction p.= 0.5. The agreement between the two results 

was quite good. 

The tooling used in this work is the same as that 

used in [31];  the specimens were machined in the same 

manner and materials as in Ref. [31.] and tests were conducted 

in similar dry conditions.' As observed earlier in Section 

7.1 friction factor of CC- 0.77 adequately described this 

condition. Therefore this value OL= 0.77 was used to obtain 

a weighted residual solution and the temperature field for 

nearly the same reduction in height is compared with that 

obtained by the method of weighted residuals and shown in 

Fig. 7.31. Referring to Fig. 7.32, it is observed that the 

centre point temperatures agree quite well and that maximum 

local temperatures as given by the finite element method 

are very much higher and appear to reach a maximum and then 

begin to drop. The higher maximum local temperature (at 

this interface) during early stages of deformation is 

possibly due to the assumption of uniform deformation, in 

which case the radial velocity at the interface is much 

higher and consequently the contribution of work due to 

friction. This comparison suggests that the assumption of 

uniform deformation is not realistic. 
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FIG. 7.29 	Temperature and Stress Distribution 
(VI  = 4.5 m/s; 	= 0.77; 26.6% Deformation). 



FIG. 7.30 	Temperature and Stress Distribution 
(V1  = 4.5 m/s; 0= 0.77; 34.8% Deformation). 
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FIG. 7.31 	Temperature ( °C) distribution (V. = 4.5 m/s). 
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CONCLUSION 

The knowledge of the deformation process of upsetting 

has progressed in the years as reviewed in Chapter 2. It 

is evident that strain, strain rate, interface friction and 

temperature significantly influence the deformation process 

and that there is interaction between them. Experimental 

work has led to several empirical formulae which determine 

the stress/strain relationship, the most important material 

property from the engineering point of view. Analytical 

solutions based on simplifying assumptions have been proposed 

to predict theoretically average values of essential para-

meters. As the process is far too complex to be fully 

solved in closed analytical form, numerical solutions have 

been proposed which determine the velocity, stress and 

temperature fields so that the variation of these factors 

within the continuum may be assessed. Numerical methods 

that are in popular use require much effort and computational 

facilities and often the effort needed is out of proportion 

to the advantages that may be gained by applying these 

sophisticated methods. It is therefore necessary to 

develop relatively simple, less demanding and sufficiently 

accurate methods. Judging by the results of this and other 

work carried out at the Imperial College, London, the method 
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of weighted residuals appears to be satisfactory. 

Analysis of Steck's work [511, the only other known 

application of the method of weighted residuals to metal-

working problems, reveals that it is necessary to assume a 

velocity field to obtain reliable solutions. The assumed 

velocity field based on Avitzur's upper bound solution and 

constant friction factor throughout the deformation describes 

the process adequately. However, it is desirable to eliminate 

the need to assume a velocity field and take into account the 

variation of friction during deformation. 

The linear induction motor developed as an exper-

imental forging machine presents interesting possibilities, 

particularly in view of the fact that the speed of operation 

could be controlled effectively and economically by a simple 

system of relays as described in Chapter 6. The measurement 

system designed to measure the transient phenomenon fully 

exploits the up-to-date advances in the field of electronics. 

The digital recording system not only eliminates most of the 

errors that may arise in a conventional system but also 

enables data to be processed directly on the computer, 

resulting in a much more accurate analysis of data. In this 

particular case, accurate derivatives could be obtained. 

Precise triggering of the recording system to capture the 
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transient signal has always been difficult, causing many, 

otherwise useful, experiments to be discarded. This 

difficulty has been overcome simply and effectively by using 

piezoelectric accelerometer as a triggering device. 

The restits presented for different conditions 

provide adequate information regarding the effect of speed, 

friction and temperature rise during upsetting of cylindr-

ical billets at high speeds. Some of the results may be 

summarised as follows:- 

a) Interface friction causes non-uniform deform- 

ation resulting in increase in stresses and variation 

.of stresses within the continuum. 

b) There is significant rise in temperature due 

to work of deformation at high speeds. 

c) The temperature rise increases with increase in 

friction due to additional work of friction. 

d) The temperature rise also increases to a 

lesser extent with increase in strain rate. 

The heating of the specimen due to work of 

deformation and friction is almost adiabatic. 
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These findings confirm the results of other numerical. 

solutions found in the literature. 

As a result of this work additional conclusions 

of importance may be made as- follows: 

a) The temperature rise rapidly increases with 

friction up to a value of about a.= 0.35 and thereafter 

remains more or less steady. As explained earlier, 

this is due to the fact that the radial velocity at 

the interface is reduced as sticking begins to occur and 

work of plastic deformation assumes predominance. 

b) The localised temperature rise is significant 

and considerable thermal softening takes place, partic-

ularly at the interface and the areas immediately 

surrounding them. 

So far as is known, this important thermal effect 

has not been accounted for in the solutions available. In 

fact, available solutions are either for stress fields 'or 

for temperature fields and is not known to have been 

combined. 	It is essential that as far as possible all the 

process variables should be accounted for. 

On account of the simplicity of the method of 

weighted residuals this complex problem could be formulated 
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and handled with relative ease. To determine temperature 

and stress field for deformations up to 50% (in ten 

incremental steps) only 50 seconds of central processing 

time (CDC 6400) and memory of 20 K was required. This is 

several orders of magnitude less than the requirements for 

the finite element solution 	which requires 60 K memory 

and processing time of 125 seconds just to obtain the 

temperature field. 

Finally, it is hoped that this work will lay the 

\ basis for future work and any further work directed at 

application and development of this method should be 

rewarding. 
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APPENDIX A 

COMPUTER PROGRAMME 

The flow charts are given in Chapter V, Fig. (5.5,7,8). 

The listing of the programme and variable name list are 

included in this appendix. 

Main Programme 	compute stress field. 

Subroutine VAL - supplies some of the initial values and 

generates mesh. 

Subroutine TEMP - computes temperature field. This sub-

routine is called after the stress fields 

have been computed in the main programme. 

Subroutine SIMQ - a library procedure for solving a system 

of equations which employs Gaussian 

elimination technique. This subroutine is 

called in the main programme and in the 

subroutine TEMP. 

Subroutine INC - computes flow stress. 

A.1 	VARIABLE NAME LIST 

Main Programme 

RTO 
	

outside radius of the specimen at the interface. 
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RTI 	- 	inside radius of the specimen at the interface. 

RMAX 	- 	maximum radius (platen). 

ZMAX 	- 	maximum height (platen). 

HITE 	- 	current height of the specimen. 

RO 	- 	equatorial outside radius. 

RI 	- 	equatorial inside radius. 

RNUT 	neutral radius. 

BB 	- 	bulge parameter 'b'. 

AKN(N) 	- 	shear yield stress at a node. 

EDOTR ) 
EDOTT ) 
EDOTZ ) 
EDOTRZ) 

- strain rates. 

SINVAR 	

- 	

second invariant of strain rate tensor. 

QG(NN) 	

- 	

plastic work of deformation. 

SR ) 
ST ) 
SZ ) 
SRZ) 

SIGRC ) 
SIGRB ) 
SIGTC ) 
SIGZB 
SIGRB ) 
SIGRZB) 

- deviatoric stresses. 

- coefficients of free parameters. 

Z(NTT) 	- 	assembly of coefficients. 

A(I,J) 	- 	corresponds to equation 

C(N) 	- 	after call of SIMQ contains the estimates 
for free parameters. 

SIGMAR) 
SIGMAZ) 

- SIGMAT)  
SIGH:Z) 

stresses. 
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Subroutine VAL 

DEF ) _ deformation velocity. 
DEFVEL) 

DELTAT 	- 	t (time). 

NSTEP 	- 	number of deformation steps. 

SHYLD 	- 	shear yield stress of the material. 

TIME 	- 	time at any instant. 

TI 	- 	ambient temperature. 

ROES 	- 	density of the specimen. 

ROEP 	- 	density of the platen. 

RN ) 
ZN ) 	

▪ 	

parameters for generating mesh. 
RNH) 

NODERS 	

- 	

number of nodes in'the r-direction (specimen). 

NODERP 	- 	number of nodes in the r-direction (platen). 

NODEZS 	- 	number of nodes in the z-direction (specimen). 

NODEZP 	- 	number of nodes in the z-direction (platen). 

NSNODES - 	number of nodes in the specimen. 

NTNODES 	- 	number of nodes in the specimen and platen. 

KPS 	

- 	

total number of terms in the trial function 
for stress field. 

KPT 	

- 	

total number of terms in the trial function 
for temperature field. 

RORD 	- 	r coordinates. 

ZORD 	- 	z coordinates. 

MP(N) 	- 	boundary conditions; see Fig. 5.3 and Fig. 5.6. 
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Subroutine TEMP 

TEMPRT 	- 	temperature of a nodal point. 

SPKS 	- 	specific heat of the specimen. 

SPKP 	- 	specific heat of the platen. 

TKS 	- 	thermal conductivity of the specimen. 

TKP 	- 	thermal conductivity of the platen. 

DTR - aT or 

DTZ - aT az 

DTRR - 8T2/or2 

DTZZ - aT2/az 

DTT - aT/aT 

T(N) 	- 	temperature of a nodal point. 
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APPENDIX B 

PROPERTIES OF MATERIALS 

Mechanical and thermal properties D2,99,102] of 

the materials used in this work are illustrated in this 

appendix. 

B.1 	STRESSES 

In Chapter V it was shown that the increment k 

can be calculated by 

r— 
8k = 2 VI2

(Ck
nt+m) 

where: 1
2 	

second invariant of the strain 
rate tensor, 

Qt = increment in time, 

Ck,m = constants. 

.The stress-strain characteristics of copper and aluminium 

are graphically represented in Fig. B.1 and Fig. B.4. The 

curves are divided into segments, within which the slope Ck  

is assumed to be constant. Similarly this slope is assumed 

to vary linearly within specified ranges of temperatures. 

The values of C
kT 

derived in this manner are given in the 

following tables. The slopes can also be used to calculate 

flow stress for any given strain. 
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COPPER - CkT 

0.5 < E <0.15 

0.15< E <0.30 

0.3 < 	<0.50 

0.3 < E <0.80 
0.8 < E <1.20 

18°C < T < 100°C 100°C < T < 400°C 

716-1.84 (T-82) 565-0.94 (T-100) 

550-1.58 (T-82) 420-0.89 (T-100) 

265-0.97 (T-82) 185-0.40 (T-100) 

153-0.79 (T-82) 88-0.24 (T-100) 

70 -0.59 (T-82) 21- 0.72 (T-100) 

Strainrate Sensitivity - m 

Copper 	m = 0.053 (Fig. B.3) 

Swedlow C90] used a technique very similar to this 

and reported them to be satisfactory. The incremental strain 

= At 

therefore 

= + 8E 

If the strain sustained before the incremental step of 

deformation and strain after the incremental step of deform-

ation are such that they lie in two different regions of 

linearised segments, then the average slope is used to 

calculate Ak. As the incremental steps are small, any 

error that arises from this averaging  of slope may be 

ignored. 
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B.2 
	

HEAT PARAMETERS 

The heat parameters are graphically represented in 

Figs. B.7 to B.13. They may be numerically represented as 

follows: 

TI = 18°C. 

SteelIlazaterl  

Specific heat C (Fig. B.7) 

= 0.1055 + 0.000107(T-TI)] 4186 J/kg.°C. 

Thermal conductivity k (Fig. B.8) 

= 	- 0.0146(T-TI)] 1.1627 J/ms.°C. 

• 

Copper  

Specific heat Cs  (Fig. B.9) 

= E0.092 + 0.000027(T-T0)] 4.86 J/kg.°C. 

Thermal conductivity ks  (Fig. B.10) 

= [349.5 - 0.088(T-TI)D 1.1627 Jims.°C. 

Surrounding medium 

Heat transfer from coefficient hf (Fig. B.13) 

= E.9.9 + 0.057(T-TI)] 1.1627 J/ms.°C. 
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FIG. B.1 	Stress/Strain Relationship 
of 99.9% Cu [32] 
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FIG. B.2 	Slope of CAE Curve/Temperature 
of Copper [32,991 
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FIG. B.3 	Flow Stress/Strain Rate Characteristics of 99.9% Cu E32j. 
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FIG. B.5 	Specific Heat of Steel (platen) :101]. 
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FIG. B.6 	Thermal Conductivity of Copper [100]. 

FIG. B.7 	Specific Heat of Copper E100]. 
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FIG. B.8 , 	Heat Transfer Film Coefficient D00]. 


