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ABSTRACT  

The partial-differential equations governing 

flow and heat-transfer phenomena in curved ducts are 

solved using a finite-difference calculation procedure. 

Both laminar and turbulent flows are considered; and the 

predicted distributions of flow variables are compared 

with experimental data. Primary importance is given 

to the computation of the developing regions of the 

_flow and temperature fields, which are three-dimensional 

in nature. Predictions are also presented of the 

fully-developed flow and temperature fields. 

The study is limited to situations in which 

the flow is predominantly along the axis of the duct, so 

that there are no regions of flow 'recirculation'. 

Such flow situations are divided in this thesis into 

two distinct categories, parabolic and partially-

parabolic. The differential equations governing each 

flow category are solved using distinctly different 

calculation procedures, appropriate for the respective 

flow category. The two calculation procedures are 

described in detail and their distinctive features are 

pointed out. The calculation procedures are applied 

to predict flow and heat transfer in ducts with mild 

and strong curvatures. 



The calculation of turbulent flows is made 

using a two-equation turbulence model. Two additional 

partial-differential equations are solved for the 

transport of the kinetic energy of turbulence aLd its 

volumetric rate of dissipation. The turbulent stresses 

are related to the mean-velocity gradients through a 

scalar viscosity, calculated from the above turbulence 

variables. Special practices are adopted for the 

calculation of flow region adjacent to the walls; these 

practices consist of empirically prescribing the momentum 

and heat fluxes for grid nodes adjacent to a wall, by 

making a simple Couette-flow analysis. 

Computations are made for flow and heat transfer 

in mildly-curved ducts using the parabolic procedure; 

and the results are compared with experimental data 

reported in literature. Agreement in the case of laminar 

flows has been good both for the developing and the 

fully-developed regions of the flow and temperature 

fields. For turbulent flows, however, the agreement 

has not been as good as that for the laminar flow 

situation. It is inferred that the turbulence model 

presently employed incompletely accounts for the complex 

turbulence-structure which occurs in the presence of 

secondary flows, as in the p.resent case. 

A modest amount of experimental data is reported 

for the turbulent flow in a rectangular-sectioned curved 



duct. The curvature of the duct was chosen to be large 

so as to make the flow partially-parabolic. Predictions 

are also made for the same flow situation and are 

compared with experimental data. The predictions using 

the partially-parabolic procedure display good agreement 

with experimental data, while the results using the 

parabolic procedure are observed to be qualitatively at 

variance with measurements, as expected. 

The present study has been undertaken with 

the primary objective of verifying the calculation 

procedures for three-dimensional flow situations. The 

flow phenomena in curved ducts have been studied from 

this viewpoint; for this reason, detailed calculations 

have not been made of the effects of various flow 

parameters on the flow and heat-transfer characteristics. 
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PREFACE  

The work reported in this thesis describes my 

research activities at Imperial College during the 

period of October 1972 and June 1975. These research 

activities centred mainly around the development and 

validation of finite-difference calculation procedures 

to predict three-dimensional flow and heat-transfer 

phenomena in curved ducts. The study was carried out 

under a research contract with the Science Research 

Council and was supervised by Professor D B Spalding. 

Calculation of flow and heat-transfer phenomena 

in curved passages is of significant importance to the 

design of various industrial equipment. Curved passages 

are used in heat exchangers, turbomachinery, aircraft 

intakes and several other equipment. However, such 

calculations are complicated because of the three-

dimensionality of the flows and also because they are 

frequently turbulent. 

Recently some success has been made at Imperial 

College in developing generalised calculation procedures, 

of finite-difference variety for three-dimensional flow 

situations. Also, simultaneously, some progress has 

been made in developing 'universally applicable' 

turbulence models, to represent the turbulence structure. 
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My primary aim in this study was to first test and later 

develop further, the numerical procedure and turbulence 

models currently available, to calculate the flow in 

curved ducts. 

I proceeded first to test the numerical 

procedure to calculate the laminar flow phenomena in 

curved ducts. I restricted my attention, throughout, 

to flows which are steady and have no recirculation in 

the longitudinal direction. The latter restriction I 

made to concentrate attention on flows which are 

'parabolic' in nature. I performed some calculations, 

using the parabolic procedure of Patankar and Spalding 

(1972), of the laminar flow and heat transfer in helical 

coils. The computations agreed satisfactorily with 

experiments and thus encouraged further study. 

I then proceeded to make calculations of the 

turbulent flow in curved pipes. For these calculations, 

the additional input needed was the turbulence model. 

First, I made a few calculations using a mixing-length 

hypothesis. These calculations, however, did not agree 

satisfactorily with experimental data and thus warranted 

a need for more-complex turbulence-models. On the 

suggestion of Professor Spalding, I therefore attempted 

to employ a two-equation ktic turbulence model. This 

particular two-equation model was selected on the earlier 

experiences of its greater universality in two-dimensional 
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situations. The predictions using the two-equation 

turbulence model displayed better agreement with the 

experimental data; but the agreement was not as good as 

that observed for laminar flows. It therefore appeared 

that the turbulence model needs further refinements to 

account for the complex turbulence structure in curved 

pipes. 

At this stage, I did not proceed further in 

refining the turbulence model, but instead decided to 

extend the study to predict flows in strongly-curved 

ducts. In strongly-curved ducts, the secondary flow 

(flow in the cross-sectional plane) is much larger i and 

the pressure variations across the duct are significant 

enough to invalidate the parabolic assumptions. The 

flow is partially-parabolic and can not be computed using 

the parabolic procedure. On Professor Spalding's 

suggestion, I therefore attempted to devise a calculation 

procedure for economic handling of partially-parabolic 

flows, the difference in this procedure from the parabolic 

one being that account is taken now of the transmission of 

downstream events upstream through the pressure. To this 

end, I worked on two different calculation schemes. In 

one procedure, two three-dimensional arrays were used for 

the pressure while in the other, only one three-dimensional 

pressure field was employed; the methods of calculation 

were also somewhat different. I tested the merits of these 

two procedures, in a few typical partially-parabolic flow 



situations. These tests proved that the one-pressure 

method is superior, as it gave faster rates of convergence 

of the pressure field. I therefore selected the one-

pressure method, and employed it, later, to predict 

flows in strongly-curved ducts. In this thesis, only 

the one-pressure method is reported. 

While the development of the partially-parabolic 

procedure was in progress, I was also making plans to 

undertake an experimental program to obtain data suitable 

for the validation of the partially-parabolic procedure. 

During this period, I came to know through Dr S V Patankar 

and Professor J H G Howard that an experimental rig 

existed at the University of Waterloo Canada, that would 

suit my needs. On the invitation of Professor Howard, I 

therefore visited the University of Waterloo and over a 

period of four months, performed measurements of the 

turbulent flow in a strongly-curyed rectangular duct. 

After my return to England, in February 1974, 

I devoted my efforts to the application of the partially-

parabolic calculation procedure to predict the flow 

situation studied experimentally. I made calculations also 

using the parabolic procedure and compared both the 

partially-parabolic and parabolic results with the 

experimental data. These comparisons showed that the 

partially-parabolic procedure is much needed to calculate 



accurately the flow in strongly-curved ducts. In 

addition to the above predictions, I made a few 

calculations using the partially-parabolic procedure of 

the laminar flow in a strongly-curved circular pipe; but 

these are not presented in this thesis because of some 

doubts regarding the correctness of the experimental 

data. The- above-described tasks marked the end 

of my research activities; in February 1975, I started 

preparing the thesis. 

I now wish to thank all those who provided me 

with help and encouragement during the present study. 

First and foremost, I thank Professor Spalding for 

providing guidance, inspiration and encouragement to 

maintain a good pace of research. I have profited 

greatly from his suggestions and criticisms in several 

disciplines of research. To have worked in association 

with him, I consider it a privilege. 

Throughout this study, Dr S V Patankar offered 

a number of suggestions and helped me both in technical 

and non-technical matters. I acknowledge with feelings of 

gratitude, the assistance and the homely atmosphere 

provided by him and the members of his family. 

It is my duty to thank several persons who 
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Howard, who proposed the idea of my going to Canada, has 
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facilities and in making various suggestions during the 
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his help. The assistance provided by the laboratory 

staff at Waterloo, in particular by Don Bartlett and by 
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administrative matters is acknowledged. Thanks are to 

Miss E M Archer for helping me in obtaining various 

technical reports. 

Last but not the least, I acknowledge with 

deep respect the encouragement provided by my mother during 
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CHAPTER 1  

INTRODUCTION 

1.1 	The problem considered 

Fluid flow and heat transfer in curved ducts 

have been the subject of considerable interest, owing 

primarily to the applicability of this information to 

the design of heat-exchangers, refrigeration equipment 

and turbomachinery. The flow pattern in a curved duct 

differs from that in a straight one primarily through 

exhibiting a 'secondary flow' in the cross-sectional 

planes of the duct, as shown in Figure (1.1.1); this 

secondary flow is generated as a result of the centrifugal 

forces which act at right angles to the main flow 

direction. Because of the enhanced 'mixing' caused by 

the secondary flow, the rates of heat, mass and momentum 

transfer in curved ducts are significantly higher than 

the corresponding straight-tube values. 

The present study describes the application 

of a finite-difference solution procedure to the partial-

differential equations governing the three-dimensional 

flow and heat-transfer phenomena in curved ducts. The 

study has been restricted to flow situations which are 

steady and are characterised by a predominant flow 

direction along which there are no regions of flow 
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Fig. (1.1.1): General flow pattern in the cross-sectional 
plane of a curved pipe. 
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'recirculation'. The existence of a predominant flow 

direction ensures that: 

(a) flow properties are convected only from 

upstream regions to downstream and not 

vice versa; and that 

(b) at moderate and large Reynolds numbers, 

molecular actions, such as conduction, 

diffusion and viscous action, along that 

direction are small enough to be neglected. 

These characteristics, simplify the equations governing 

the flow and make them easier to solve. In the present 

study, calculations have been made for both laminar 

and turbulent flow situations; the predicted results 

have been compared with experimental data and the 

capabilities of the calculation procedure are assessed. 

For turbulent flows, the additional 'stresses' due to 

turbulence have been represented through a two-equation 

turbulence model which comprised two additional partial-

differential equations for the transport of the kinetic 

energy of turbulence and the volumetric rate of its 

dissipation. 

1.2 	Practical relevance of the present flow geometry  

Because of the high rates of heat and mass 

transfer observed in curved ducts, many types of 

industrial equipment employ this geometry for their flow 

passages; further, a few environmental and physiological 

flows occur in passages which are curved in a somewhat 
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arbitrary manner. The ability to predict the detailed 

nature of the transfer processes in curved ducts would 

therefore lead to improved design of the equipment and 

to the better understanding of the natural phenomena. 

A short list of various flow situations where curved 

geometries are encountered is given below. 

1 
	

Flow passages of centrifugal compressors and 

gas turbines; 

Heating and cooling coils of heat-exchangers, 

cryogenic and refrigeration equipment; 

3) 
	

Intakes of jet aircraft; 

4) 
	

Flow in bends of rivers and canals, where 

the purpose is to estimate: 

(a) the erosion of the banks due to the 

secondary flow and 

(b) the dispersion of the effluents in the 

stream; 

5) 
	

Physiological flow systems in which it is 

desirable to understand the dispersion of a 

chemical substance into the coiled blood-

vessels, the aorta being of primary importance. 

1.3 	Present method of calculation 

The theoretical calculation of the flow and 

heat-transfer phenomena in curved ducts involves the 

simultaneous solution of a set of nonlinear partial-

differential equations describing the transport processes 
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in three dimensions. If the flow is turbulent, methods 

also need to be devised to represent the additional 

stresses arising from turbulence. Because of the 

complicated nature of the equations it is impossible to 

obtain exact analytical solutions which are of the 'closed 

form' type. 

In the present study, these equations have 

been solved by finite-difference calculation procedures. 

Two different calculation procedures have been employed; 

one to calculate the flow and heat transfer in mildly-

curved ducts and the other for similar calculations in 

ducts with strong curvature. The two procedures are 

somewhat similar but the equations which they solve are 

distinctly different in their nature. The first set of 

equations, labelled here._ parabolic, governs flow 

processes which are entirely 'one-way'; in these, the 

mechanisms of transmitting the downstream events to 

upstream namely, convection, diffusion and pressure 

transmission are completely absent so that the flow 

at any location is influenced solely by the events 

occurring upstream of that location. The second set of 

equations represents flow situations which are "partially-

parabolic" in nature, so that the events at a downstream 

location are transmitted upstream but solely through the 

mechanism of pressure transmission. The two sets of 

equations which are similar in their structure differ 

in the manner in which the streamwise pressure gradient 
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is represented. The calculation procedure for partially 

-parabolic flows is more general than that for parabolic 

flows; it reduces to the latter in appropriate circumstances. 

Both the above-mentioned calculation procedures 

t 	 are based on a numerical algorithm called SIMPLE (SIMPLE 

stands for Semi Implicit Method for Pressure-Linked 

Equations). Both procedures employ a marching integration 

procedure along the predominant flow direction and 

store velocities, temperatures etc. for only one cross-

sectional plane at any time. The two procedures however 

differ in the following two respects. 

(a) In the partially-parabolic calculation 

procedure, the pressure field is stored in a 

three-dimensional array whereas in the 

parabolic procedure only two dimensional 

storage is required for the pressure field. 

(b) The partially-parabolic procedure performs 

several "marching-sweeps" over the flow domain, 

each time employing an improved guess for the 

three-dimensional pressure field; the 
s 

parabolic procedure however, sweeps through 

the flow domain only once. 

Calculation of turbulent flows  

In the present study, the calculation of 

turbulent flows is made using a two-equation turbulence 

model. The turbulence model comprised two additional 



equations for the transport of the kinetic-energy of 

turbulence and for the volumetric rate of its dissipation; 

the Reynolds stresses were related to the velocity 

gradients through a "turbulent viscosity" which was 

defined in terms of the above-mentioned properties of 

turbulence. 

1.4 	Main results  

The present study comprised both experimental 

and theoretical investigations. In the experimental 

investigation, measurements were made of the flow in a 

strongly-curved duct with a view to collecting data 

suitable for validation of the partially-parabolic 

calculation procedure. The theoretical investigation 

comprised prediction of three different flow situations 

and comparison of the theoretical solutions with 

experimental data. The main achievements of the present 

study and the conclusions thereof are summarised below. 

(a) The parabolic calculation procedure has been 

successfully applied to predict the laminar 

flow and heat transfer in mildly-curved 

circular pipes. The computed distributions 

of mean velocity, static pressure, temperature 

etc. display good agreement with experimental 

data. 

(b) The predictions for turbulent flow in a curved 

pipe agree reasonably well with experiments 

but the agreement has not been as good as 
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that observed for the case of laminar flows. 

The turbulence model it is therefore concluded, 

requires modifications to account for the 

effects of secondary flow on the turbulence 

structure. 

• (c) 	A modest amount of experimental data has been 

collected which has been useful in validating 

the partially-parabolic calculation procedure. 

(d) The partially-parabolic calculation procedure 

has been found to give good agreement with 

experimental data in a strongly-curved duct. 

The predictions obtained using the parabolic 

procedure, on the other hand, are qualitatively 

at variance with the measurements. 

(e) The computing times required for the present 

calculations have been modest. In comparison 

with the parabolic procedure, the partially-

parabolic procedure required larger computing 

times. 

1.5 	Layout of the thesis  

• 
The remaining sections of the thesis which 

describe the present study in more detail are arranged 

thus: in Chapter 2, a review is made of the previous 

experimental and analytical studies of the flow and 

heat transfer in curved ducts. In Chapter 3 the 

partial-differential equations governing the flow 

situations considered in the present study are described. 
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Chapter 3 describes a classification system for steady-

flow situations based on the physical nature of the flow. 

The solution procedures are described in Chapter 4; and 

Chapter 5 describes the present practices for the 

modelling of the turbulence phenomena. The details of 

the experimental program are described in Chapter 6. 

The test rig, the measuring devices and the procedure 

adopted for making measurements are described; the 

experimental data obtained thereof are then presented. 

The application of the numerical procedures 

to compute the various laminar and turbulent flow 

situations is explained in Chapters 7 and 8; the results 

of the computations are presented and compared with 

experimental data. Chapter 9 summarises the main 

contributions of the present study and lists the 

conclusions obtained thereof, along with a few suggestions 

for future work. The last part of the thesis provides 

a description of the nomenclature used, a list of the 

references and two appendices. The appendices provide 

supplementary details regarding the derivation of the 

a 

	

	
governing differential equations and the data-reduction 

procedure for the measurements described in Chapter 6. 
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'CHAPTER- 2  

PAST WORK 

2.1 	Introduction 

Because of the practical importance of curved 

ducts, several experimental and theoretical investigations 

have been made of the flow and heat-transfer phenomena 

in curved ducts. The present chapter briefly reviews 

the relevant knowledge, so as to relate the present work 

to the earlier contributions. The chapter is divided 

into two main parts. The first reviews those 

investigations which, in particular, are concerned 

with flow and heat transfer in curved ducts; in this 

review, two flow-geometries are considered: (a) curved 

pipes of circular cross-section; and (b) curved ducts 

of rectangular cross-section. In the former geometry, 

studies of both laminar and turbulent flows are 

reviewed; while in the other attention is restricted 

to turbulent flows. The second section of the chapter 

reviews literature on generalised calculation- 

procedures which are suitable for prediction of flows 

in curved ducts. To this end, first the 

procedures are reviewed from the computational view 

point (i.e. mathematical formulation, numerical 

scheme employed, etc.); later the current status of the 



• 

• 

"turbulence-models" is reviewed. The chapter is 

concluded by an evaluation of the available information 

of flow in curved ducts and an outline of the areas 

for future investigations. 

2.2 	Flow in circular-sectioned curved pipes  

2.2.1 	Experimental studies  

Laminar flow  

Measurements of the laminar flow and heat-

transfer phenomena in curved pipes have been quite 

extensive; however, a large proportion of these 

measurements were restricted to the fully-developed 

regions, where the patterns of flow and heat transfer 

remain unchanged along the axial direction of the duct. 

In the investigations of the fully-developed regions, 

the measurements were mostly made of the friction 

factors and the overall heat-transfer rates; only in a 

few cases (Adler (1934) Hawes (1932) and Mori and 

Nakayama (1965)) have the distributions of velocity and 

temperature been measured. The experimental apparatuses 

and the techniques of measurement used in these 

investigations have been nearly the same, but the range 

of flow parameters such as the Reynolds number, radius 

ratio of the coil etc. differed in each case. A review 

of the various experimental investigations in fully-

developed flow and temperature fields has recently been 

made by Srinivasan et al. (1968). 
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Experimental studies in the developing region 

of flow and temperature fields have been relatively less 

in number. Kulegan and Beij (1937) measured the 

pressure drop in the developing flow field and present 

an empirical relation for the axial variation of the 

friction factor. 

The velocity-distributions in the developing 

flow field have been measured by Austin (1971) and by 

Olson (1971). In these investigations, the Reynolds number 

of the flow and the radius ratio of the coils have been nearly 

the same; but the techniques for measuring the velocity were 

different. Austin measured the velocities using hot- 

film anemometry whereas Olson employed a pulsed-wire 

technique. Measurements in the thermal entry region 

have been reported by Dravid et al. (1971) for the thermal 

boundary condition of axially-constant heat flux with 

isothermal periphery; the wall temperatures and heat 

transfer rates were measured at several axial stations 

and the heating was initiated only after the flow field 

became fully-developed. An interesting observation 

from this investigation has been that,in the thermal 

entrance region, the wall temperature and and the Nusselt 

number exhibit cyclic oscillations with distance along 

the duct axis; the oscillations however diminish in 

amplitude as the fully-developed state is reached. 

Such oscillations have been attributed by Dravid et al. 

to the convection effects of the secondary flow. 
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Oscillations of this kind had already been more 

tentatively reported by Seban and McLaughlin (1963), when 

the thermal boundary condition was that of constant  

heat flux around the periphery. 

Turbulent flow  

Measurements of turbulent flow in curved pipes 

have also been largely restricted to the fully- 

developed regions. The measured values of the fully-

developed friction factors and heat-transfer rates have 

been expressed in terms of empirical functions of the 

flow parameters and the fluid properties. Ito (1959) 

and Srinivasan et al. (1968) provide a review of such 

correlations proposed by various investigators. The 

distributions of velocity in the fully-developed 

flow field have been measured by Adler (1934), Mori and 

Nakayama (1967) and Hogg (1968); the latter two authors 

also provide temperature distributions in the fully-

developed thermal field for constant-heat-flux boundary 

conditions. 

It has been observed that,when compared with 

laminar flows, turbulent flows are relatively less  

affected by the curvature of the duct; flow and temperature 

fields are less distorted and the friction factors and 

heat-transfer rates show relatively smaller increases 

over the straight-pipe values. 

In the developing region of the turbulent flow field 

Hawthorne (1951) presents the contours of stagnation 
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pressure at several axial positions in a 180 degree 

bend; the inlet velocity distribution for these 

experiments varied linearly from zero at the bottom of 

the pipe to a maximum in the region close to the top 

wall. The measurements indicated that the secondary 

• 	 flow field in the bend develops in an oscillatory 

manner with a period of oscillation, in this case, 

approximately equal to 180 degrees. Squire (1954) 

made measurements similar to those of Hawthorne (1951) 

but, in his case, the flow field at inlet was that of 

a fully-developed, turbulent pipe-flow. The oscillatory 

nature of the secondary flow field was also suggested 

by these measurements. Further measurements in the 

developing flow have been reported by Detra (1953) and 

by Rowe (1966). The dimensions of the test section 

and the experimental apparatus in Rowe's experiments 

were the same as those employed in the experiments of 

Squire (1954); but Rowe's measurements also included 

the distributions of the flow angles. The thermal-

entrance region in the turbulent flow in bends has been 

studied by Ede (1960, 1963, 1966). Measurements have 

4 	been made of the rates of heat transfer in 90 and 180 

degree bends for the constant-heat-flux boundary-

condition. So far, no measurements have been made of 

the temperature distributions in the thermal entrance 

region. 
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Measurements have also been made of the flow 

in 'S' shaped ducts and in ducts with sinusoidal 

variations in curvature; such measurements have been 

reported by Horlock (1956) and more recently by Rowe 

(1966) and by Fish (1970).  It has been observed in 

• 	 these investigations that the reversal of curvature 

increases the amount of secondary flows. Both Horlock 

(1956) and Rowe (1966) attribute this increase to the 

augmentation of the streamwise vorticity which is 

generated by the curvature of the duct. 

2.2.2 	Theoretical studies  

In this section the previous theoretical 

studies in curved circular pipes are reviewed. For the 

reader's convenience, the various studies are 

categorised under three main headings, as follows. 

Inviscid solutions  

The applicability and methods of inviscid-

flow analyses to calculate the flow in curved ducts have 

• 
	 been reviewed by Hawthorne (1965, 1966). The objective 

of the inviscid-flow analyses has been to seek solutions 

to the equations of motion in which terms representing 

the effects of viscosity have been omitted. For the 

inviscid equations governing the flow in curved pipes, 

it has not been possible to obtain exact solutions for 

all ranges of curvature; hence, approximate solutions 
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have been obtained, from the assumption of small shear. 

In this, it is assumed that the stagnation pressure 

contours undergo negligible distortion around the bend. 

This approximation which is often referred to as the 

'secondary-flow' approximation, was first employed by 

Squire and Winter (1951); they showed that, for such an 

approximation, the 'secondary' vorticity in the flow 

increases linearly with the bend angle. The same 

approximation was used in subsequent calculations by 

Detra (1953) and by Rowe (1966). Detra calculated the 

distribution of stagnation pressure at the exit of 21°  

and 42°  bends and compared the results with measurements; 

the agreement was satisfactory; but difficulties were 

encountered in prescribing the correct distribution of 

the inlet-vorticity. The computations of Rowe (1966) 

were made for the developing flow in 180 degree bends and 

in 'S' shaped ducts. The computed distributions of 

stagnation pressure agreed satisfactorily with 

experimental data upto 45 degrees of the bend angle; 

but after this distance, the calculations displayed 

substantial discrepancies with the measurements. 

Inviscid calculations of the oscillatory 

nature of the secondary flow field have also been 

presented, by Hawthorne (1951). The oscillatory nature 

of the secondary flow field was demonstrated through the 

solution of an equation for the angular displacement of 

the stagnation-pressure contours. The calculated period 
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of the first oscillation in a 1800  bend agreed 

satisfactorily with the measured value. Hawthorne's 

analysis was also later extended to calculate the 

oscillatory nature of the flow in ducts with reieated 

reversals of curvature (Horlock (1956)). 

Analysis of fully-developed flows 

A number of theoretical studies have been made 

in which the complete equations governing the fully-

developed flow in curved pipes have been solved either 

by analytical techniques or by finite-difference methods. 

Of these studies, we first review, those for laminar 

flows. The first calculations of laminar fully-developed 

flow in curved pipes were made by Dean (1927); Dean 

employed a perturbation technique to analyse the 

secondary flow field as a deviation from the Poiseuille 

flow. His solution is however applicable only to flows 

in which the Dean number, defined as K = ReVa/R is 

smaller than about 17. For Dean numbers which are 

sufficiently large (<80) solutions of a different 

type have been proposed, by Adler (1934), Barua (1962). 

and Mori and Nakayama (1965). In these three solutions, 

a 'boundary-layer approximation' was made; first the 

flow cross-section was divided into a viscous, near-wall 

region and an inviscid core; equations were then solved 

separately for each flow region; and the flow conditions 

at the boundary of the two regions were matched. Using 
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a similar approach, Mori and Nakayama (1965) also 

calculated the fully-developed thermal field; and 

obtained expressions for the distribution of temperatures 

and heat-transfer rates. These authors analysec the 

temperature field for two different thermal boundary 

conditions, these being the constant-wall-temperature 

condition and the constant heat-flux condition. 

The above-mentioned boundary-layer approximation 

is however valid only in flows with Dean number greater 

than about 80. In the intermediate range of Dean numbers, 

i.e. between 17 and 80, neither the analysis of Dean 

(1927) nor that based on the boundary-layer concept gives 

correct solutions to the equations. Solutions for flows 

in this intermediate range of Dean numbers have been 

obtained by McConalogue (1969), using Fourier-series 

expansions. 

Solutions to the differential equations governing 

fully-developed flow and temperature fields have also 

been obtained using finite-difference numerical-schemes 

(Truesdell and Adler (1970), Austin and Seader (1973), 

Akiyama and Cheng (1971), Kalb and Seader (1972), 

Tarbell and Samuel (1973) and Greenspan (1973)). The 

schemes proposed by the above researchers differ in 

(a) the dependent variables employed in the 

governing equations; and 

(b) the way the finite-difference form of the 

differential equations is derived. 
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Numerical solutions of the temperature equation have been 

presented by Kalb and Seader (1972) and by Tarbell and 

Samuels (1973). 

For the turbulent, fully-developed flow in 

curved pipes, two theoretical solutions have been reported 

(Ito (1959) and Mori and Nakayama (1967)); both solutions 

were based on the boundary-layer concept, akin to that 

adopted for calculating laminar flows. Numerical studies 

of the turbulent heat-transfer in curved pipes have not 

been reported yet. 

Analysis of the developing region  

Only a few theoretical solutions of the equations 

governing the developing flow and temperature fields 

have been reported. Singh (1974) calculated the 

development of the flow field, using a method based on 

asymptotic expansions. Solutions to the governing 

equations were obtained for two different inlet-

conditions: (a) a uniform inlet pressure and (b) a 

uniform axial-velocity at the inlet. Yao and Berger 

(1975) analysed the developing flow field, using 

a method which was an extension of the method of 

Barua (1962) for the calculation of fully-developed 

flow field. Neither Singh (1974) nor Yao and Berger (1975) 



• - 20- 

presented any comparisons with experimental data. The 

thermal entrance region has been studied theoretically 

by Dravid et al.(1971) and by Tarbell and Samuels (1973). 

Both assumed the flow field at the start of the thermal 

entrance region to be fully-developed; and solved only 

the temperature equation, using finite-difference methods. 

Dravid et al.assumed the flow field to be that calculated 

by the analysis of Mori and. Nakayama (1965) whereas 

Tarbell and Samuels obtained their velocity field from 

a numerical computation. Both theoretical solutions 

satisfactorily predicted the oscillatory development of 

the wall temperatures and Nusselt numbers observed in the 

experimental investigation of Dravid et al (1971) and of 

Seban and McLaughlin (1963). 

Theoretical calculations taking into account 

the effects of viscosity, have not been yet made for the 

turbulent developing flow in curved pipes. 

2.3 	Turbulent flow in rectangular-sectioned  

curved ducts  

s 
2.3.1 	Experimental studies 

Measurements of the turbulent flow in bends of 

rectangular cross-section have been made by Joy (1950), 

Eichenberger (1953) and Squire and Winter (1951). In 

these investigations, the contours of stagnation pressure 

were measured at several axial positions along 90 and 180 



• - 21 - 

degree bends. The conditions at the inlet were such 

that the stagnation pressure varied linearly from zero 

at the bottom wall to its maximum at the centre of the 

duct, the flow being nearly symmetrical about the central 

plane of curvature. The flow patterns observed have 

been similar to those observed in circular bends. A few 

experimental investigations have also been reported in 

which the primary interest has been to study the three-

dimensional turbulent boundary-layer which developed on 

the top. and bottom walls of the curved duct (Gruschwitz 

(1935), Francis (1965), Vermeulen (1971)). In these 

investigations, the measurements were confined to regions 

close to the bottom wall and the variations of flow 

variables normal to the bottom wall were measured at 

several locations in the flow field. Recently Young, 

Jerie and Howard (1972) and Young (1973) presented 

distributions of the overall flow-field in a curved 

rectangular duct whose outer wall was varied in an 

arbitrary manner so as to create a zero axial pressure-

gradient along the centre line of the duct. They also 

made measurements of the velocities and flow angles in 
i 

the region close to the bottom wall to study the three-

dimensional boundary layer. 

2.3.2 	Theoretical studies  

Calculations of the flow in rectangular curved 

ducts have been mostly restricted to the boundary-layer 

region close to the bottom wall of the duct. In these 
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calculations it is assumed that the properties of the 

boundary layer are the same at all the locations in the 

direction of the duct width; and thus the characteristics 

of the complete flow are inferred from studying the 

properties of the boundary layer at selected locations 

along the duct width. The calculation of this three-

dimensional boundary-layer is made by one of the 

following two types of methods
*
. 

(a) Integral methods in which the momentum-

integral equations are solved to produce 

integrated properties of the boundary layer 

at various locations on the surface; 

(b) Differential methods, in which the time-mean 

equations of motion are numerically solved 

to produce flow properties at discrete locations 

across the thickness of the boundary layer. 

Calculations of flow in rectangular curved 

ducts have also been made using inviscid-flow analysis; 

(Squire and Winter (1951), Eichenberger (1952), Stuart 

and Hetherington (1968)); in these the viscous effects 

in the flow are neglected and thus no account is made 

of the effects of turbulence. The analyses of Squire 

*
A review of the calculation methods proposed for three-
dimensional boundary layers is given in Patel and Nash 
(1972). 
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and Winter (1951) and Eichenberger (1952) are based on 

approximate solutions such as those discussed in 

Sec. (2.2.2), while Stuart and Hetherington (1968) propose 

a finite-difference solution to the inviscid equations. 

.11 
2.4 	Generalised calculation procedures  

In the above two sections, the experimental 

and theoretical investigations in curved ducts were 

reviewed. The solution procedures proposed in these 

theoretical studies however have limited applicability 

in the sense that they are restricted only to the 

calculation of flows in curved ducts. In this section, 

a review is made of more-general calculation procedures 

for analysis of three-dimensional flow situations. Such 

calculation procedures comprise two distinct aspects: 

(a) the solution procedure for the governing equations; 

and (b) the mathematical modelling of the turbulence 

phenomena. These aspects are reviewed below separately. 

Solution procedures  

0 	
Generalised solution procedures for the equations 

governing two- and three-dimensional flows have been, 

because of the complexity of the equations, only of the 

finite-difference variety. One such calculation procedure 

for two-dimensional 'parabolic' flows was reported by 
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Patankar and Spalding (1967). Gosman et al (1969) 

later, reported a method applicable in two-dimensional 

elliptic flows (i.e. flows with recirculation). Among 

other calculation procedures for two- and three-

dimensional steady and unsteady flows are those of 

Harlow and Welch (1965 ), Chorin (1968) and Amsden and 

Harlow (1970). 

A procedure for calculation of three-dimensional 

'parabolic' flows was reported by Gosman and 

Spalding (1971); subsequently a somewhat different 

calculation procedure for the same flow problem was 

reported by Caretto et al (1972). Later, Patankar and 

Spalding (1972) developed a calculation procedure for 

the same flow problem; but this procedure employed a 

more efficient numerical algorithm. The numerical 

scheme of Patankar and Spalding was also subsequently 

extended (Caretto et al (1972) to three-dimensional 

recirculating flows (also referred to as elliptic flows)). 

Several application studies of the latter two procedures 

have also been made e.g. (Sharma (1974); Tatchell (1975)). 

A calculation scheme for an intermediate class of flows, 

termed partially-parabolic, was proposed by Spalding 

(1971); it is this proposal which is developed further 

and applied in this thesis to predict the flow in 

strongly-curved ducts. 
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Two recent reviews of existing calculation 

procedures for steady, three-dimensional boundary layers 

are also available. They are due to Patankar (1971) 

and Nash and Patel (1972). 

r 	 Turbulence models  

Research on the nature of turbulence and on 

the calculation of the turbulent stresses is quite 

extensive. Methods proposed for calculation of the 

turbulence-stresses date back to Prandtl's (1925) mixing-

length hypothesis in which the Reynolds stresses are 

related to the velocity gradients through a prescribed 

length-scale distribution. Subsequent research in 

modelling the turbulence phenomena has led to the 

development of one, two- and multi-equation turbulence-

models; each of these differ in their degree of complexity 

by the number of additional differential equations solved 

for the turbulence variables. The current status of 

such turbulence models has been reviewed by Launder and 

Spalding (1972), Harlow (1973), Mellor and Herring (1973) 

r 
	 and Launder and Spalding (1973). In the latter, Launder 

and Spalding also discuss'in particular, the applicability 

and performance of a two-equation turbulence-model in 

which the additional equations solved are for the kinetic-

energy of turbulence and for its dissipation-rate. They 

show, through comparison of predictions with experimental 

data, that such a turbulence model gives results which 

are satisfactory while also being economical from the 
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computational view-point. Based on the recommendation 

of Launder and Spalding (1973), the two-equation 

turbulence-model has also been applied in the present 

study. 

2.5 	Status of existing information 

The status of existing information, both 

experimental and theoretical, on the flow and heat-

transfer phenomena in curved ducts may be summarised 

as follows: 

1) Studies of fully-developed laminar flow and 

heat-transfer phenomena in curved pipes have 

been made in sufficient detail to provide 

adequate information for the design of 

equipment involving such flow processes. 

2) For turbulent flows, the experimental data 

on mean flow and heat transfer are adequate 

to test the prediction procedures and the 

turbulence models; but information on the 

structure of turbulence is lacking. Such 

information is needed to understand and to 

correctly represent the effects of curvature 

on the turbulence structure. 

3 
	

Measurements of the developing flow and 

temperature fields have been only few; it is 

therefore necessary to obtain additional data 

in order to test the calculation procedures 

over a wider range of flow parameters. 
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4) Calculations of the developing flow, with 

the viscous forces included in the equations, 

have only just begun. Calculations of 

turbulent flows with the effects of turbulence 

incorporated into the equations have not been 

reported. 

5) The calculation of turbulent flow in 

rectangular-sectioned curved ducts has been 

attempted from a restricted view-point and 

needs to be extended to the prediction of the 

overall flow field; for this, further 

experimental information is needed of the 

overall distributions of the velocities and 

pressures over the flow field. 

2.6 	Concluding remarks  

In the present chapter, a brief review has 

been made of the available experimental and theoretical 

information of the flow and heat-transfer phenomena 

in curved ducts; studies in ducts of circular and 

rectangular cross-section have been reviewed separately. 

The available experimental and theoretical information 

has been evaluated and the areas where further studies 

need to be undertaken are outlined. 

's. 
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CHAPTER 3  

MATHEMATICAL DESCRIPTION OF THE FLOW SITUATIONS  

3.1 	Introduction  

The present chapter and the next two describe 

the details of the theoretical calculations made in 

this thesis. These chapters are provided for the sake 

of completeness; and to some extent they review 

information already reported before, such as the 

calculation method and the turbulence model. First, 

in this chapter, the mathematical equations which 

govern the transport of mass, momentum, energy etc. 

in the various flow situations considered in this 

thesis are stated. These equations have been derived 

from the general form of the Navier-Stokes equations 

by the neglect of terms of small order of magnitude. 

The solution procedure for these equations is described 

in the next chapter; and the subsequent chapter is then 

devoted to the description of the turbulence model used 

in the present study. 

- The present chapter is arranged thus: first, 

a classification system for steady-flow situations is 

introduced; in this, steady-flow situations are divided, 

from a computational view-point, into three distinct 

categories: elliptic, partially-parabolic and fully-

parabolic. The distinctive features of each flow 
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category are pointed out and the differences in their 

mathematical nature are stated. The classification 

system is then applied to identify the flow phenomena 

in curved ducts, based on the curvature of the duct. 

The partial-differential equations solved in the present 

investigation are then stated for three different flow 

geometries considered in this thesis. The equations 

are stated in a form common to both laminar and turbulent 

flow situations. Finally, the auxiliary information 

necessary to complete the mathematical formulation of 

the problem is listed. 

3.2 	Classification of steady-flow situations  

It has been useful (ref. Gosman et al (1969)) 

in numerical fluid dynamics to classify steady-flow 

phenomena into two main categories: elliptic and 

parabolic. Strictly speaking, all flows except wholly 

supersonic ones are elliptic; this means that 

perturbations of conditions at any point in the flow 

can influence conditions at any other point. The 

mechanisms of these interactions are usually:- 

• (1) 	convection (i.e. downstream transmission 

along stream lines); 

(ii) conduction, diffusion and viscous action 

(i.e. dissemination'in all directions by 

molecular inter-mixing); 

(iii) pressure transmission (e.g. the tendency of 

a fluid in a subsonic flow to move out of the 
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way of a downstream obstacle before reacting 

it). 

In parabolic flows, mechanisms (ii) and (iii) 

are weak enough to be ignored; and the flow configuration 

• 	 is free from "recirculation" so that mechanism (i) 

transmits effects only in one direction. Many boundary-

layer, duct flow and jet phenomena are of this parabolic 

kind; for the Reynolds number is high enough to render 

the molecular actions to be insignificant in the 

streamwise direction; and the conditions of the flow 

provoke no sharp curvatures of the streamlines. 

There is however, also another category of 

steady flows which lies in between the elliptic and 

parabolic categories. This category, studied extensively for 

the first time in this thesis, represents flows which 

are characterised by: 

(a) 
	

absence of recirculation, so that mechanism 

(i) (convection) operates only in a single 

(downstream) direction; 
A 	

(b) 
	

high Reynolds number, so that mechanism (ii) 

(molecular action) is significant only normal 

to the streamlines and 

(c) 	significant curvature of the streamlines, 

rendering mechanism (iii) (pressure 

transmission) the dominant transmitter of 

influences in an upstream direction. 
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Examples of such flows include flow in strongly-curved 

ducts, flow in ducts with distributed resistances etc. 

The consequences of the above classification 

are reflected through simplifications which are achieved 

in the governing differential equations for each 

flow category. These simplifications are explained 

below with reference to the differential equations 

governing a steady, three-dimensional, incompressible 

flow in the (x, y, z) coordinate system; the equations 

given below represent an elliptic flow situation; they 

will be later simplified to obtain those which describe 

parabolic and partially-parabolic situations. 

Mass Conservation 

 ax 	 ay(pu) + 	 (pv) + az(pw) = 0 
	

(3.2.1) 

• 

Transport of: 

x -momentum 

a 	 3T
xx + 

3T 
 

ax (puu) + 	(puv) + 	(pwu) 	- aE az 	ax 	ax ' —Ty— 

at 
XZ 
aZ 

(3.2.2) 
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y -momentum 

 (puv) 	 3 	a 	3T 	at 
l 	+ 	(pvv) + 	2R (pwv) = — 	+ 	+  YY 

az 	ay 	ax 	ay 

3T yz  s  
az 

(3.2.3) 

z -momentum 

 ( puw) 
	 DT 	DT 

zy 
ox 	+ ay  (pvw) + 	(pww) = - 12 	zx 

az 	ax 	ay 
k  

at 
ZZ + s 

(3.2.4) 
Scalar. property, 0 

, 	a 	aJ 

ax kPlicD) + 7— (pv(D) + 3  (plo) - 	(1)x  I.  ajti,y 

oy 	az 	ax 	ay 

s  

(3.2.5) 

In the above equations, u, v and w 

respectively represent the components of the velocity 

along the x, y and z directions. p represents the 

density and p is the pressure field. The 'T's represent 

the stresses in the fluid; and can be expressed in 

terms of a viscosity and the velocity gradients. The 
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• 

'J's represent the fluxes of the entity (I) and can 

also be represented by gradient-type laws. The terms 

su' sv, sw and s(1)  stand for additional sources or sinks 

of the corresponding property which is being transported. 

In the above equations, the terms on the left 

hand side represent the transport of flow properties 

by convection along the three coordinate directions. 

The mechanism of diffusion is represented by terms 

containing the shear stresses 'T', and the 'J' fluxes. 

The mechanism of pressure transmission which exists 

only for the transport of momentum is represented by 

the pressure-gradient terms. 

The equations for partially and fully-

parabolic
* 
 flow situations can be now obtained from 

those given above by omitting the terms representing 

the mechanisms that are weak enough to be ignored. For 

partially-parabolic flows, the simplification consists 

of neglecting the diffusion fluxes along the predominant 

flow-direction. For a flow which is predominant along 

the z-direction, we can therefore write that 

T 	T 	= T 	J0,z = 0 	(3.2.6) xz yz zz 

• 

The  term 'fully-parabolic' is synonymous with the term 
'parabolic'; it is introduced in this thesis, wherever 
necessary, for more clear distinction from the term 
'partially -parabolic' . 
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Equations for a partially-parabolic flow situation 

are obtained by substituting (3.2.6) into equations 

(3.2.2) to (3.2.5). 

The governing differential equations for a 

fully-parabolic flow are the same as those for a 

partially-parabolic situation but for additional 

simplification in the treatment of the pressure field. 

For fully-parabolic flows, the absence of pressure 

transmission implies that there are no sharp curvatures 

of the streamlines and thus the streamwise pressure- 

gradient, 	is nearly uniform over the cross-stream; 

therefore-P-P- can be calculated without reference to az 

the momentum balances in the x- and y-directions. The 

independence of 	from 22  and 2-1-3- results in the az 	ax 	ay 

decoupling of the z-direction momentum equation from 

the other two momentum-equations; and equation (3.2.4) 

can be recast in the following form: 

aT 

aa 	 n; 

x (PUW) 	
a 	a 
(PVW) 	(PWW)  - 	;Z 	aXX  

aT 
ay
zy  _w. 

(3.2.7) 

• 

• 

The quantity 15 may be interpreted as an average pressure 

over the x-y plane; i5 is constant in the x-y plane but 
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varies along the z-direction depending on the flow 

situation considered. The above-mentioned decoupling 

of the momentum equations presents a simpler solution 

task, as shall be seen in Chapter 4. 

3.2.1 	Classification of flows in curved ducts  

Flows in curved ducts may also be classified 

as , elliptic, partially-parabolic and parabolic. The 

factor that influences this classification most is the 

curvature of the duct. If the curvature of the duct is 

so large as to cause flow recirculation, the flow 

situation is necessarily elliptic. Flows in 90o elbow 

bends are one example of flows in this category. In 

ducts with curvature too small not to cause recirculation, 

the flow may be a combination of both partially-

parabolic and fully-parabolic flow-regions. The 

partially-parabolic regions for flows in curved ducts 

are usually only at the entrance and at the exit. The 

influence of these regions on the rest of the flow 

depends on (a) the curvature of the duct; (b) the 

cross-sectional shape of the duct; and (c) the state 

of the flow, laminar or turbulent. Although it is 

difficult to define a precise value of the curvature 

ratio distinguishing parabolic and partially- 

parabolic flows, as an approximate criterion, 

it may be stated that the flow in ducts with a radius 

ratio (R/a) greater than 15 is parabolic to a large 
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extent; and thus it can be accurately calculated by 

using a calculation procedure designed to handle 

parabolic flows. 

• 
	 3.3 	Governing partial-differential equations  

For later convenience, in this section the 

partial-differential equations governing the flow and 

heat-transfer phenomena in the various flow situations 

computed in this thesis are stated. The flow situations 

and the coordinate systems in which they have been 

mathematically described are shown in Figure (3.3.1). 

The flow geometries have been (a) a curved circular pipe; 

(b) a curved rectangular-sectioned duct and (c) a 

curved rectangular-sectioned diffuser; the coordinate 

systems in which these flow situations have been 

presented are respectively (a) the (r, 0, 4); (b) the 

(x, y, f); and (c) a quasi-orthogonal system represented 

by the coordinates (n, 	The three sets of 

equations described below have been derived from the 

generalised form of the Navier-Stokes equations assuming 

• 	 the flow to be incompressible and predominant along the 

cp direction. The equations stated below are 

thus partially-parabolic; their parabolic form 

can be easily derived by rewriting the longitudinal 

momentum equation using a 15 pressure field. 

Since the equations for the three momenta and for other 
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FLOW  
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CURVATURE 	14 	 

Fig. (3.3.1(a)): Coordinate system for a curved, 
circular pipe. 



A - 

ENTRE OF 
CURVATURE 

Ro  

x , 

SECTION A-A  

A — 

CENTRE OF 
CURVATURE 

--A 

1 
SECTION A- A  

X 

X - 
xW  

XE _ XW 
- Ys  

Y -Y N S 

DEFINITION OF11 &  

- 38 - 

Fig. (3.3.1(b)): Coordinate system for a curved, rectangular 
duct. 

Fig. (3.3.1(c)): Coordinate system for a "curved diffuser. 
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scalar flow-properties have similar structure, they 

have all been represented below by a single equation for 

a general variable 4; the individual equations can 

easily be obtained and are given in Appendix Al. 

(a) Curved circular pipe: (r, 0, 4))  

Continuity: 

Du Dv u Dw 1 
Dr r 30 F Rai+ u cose - v sin° = .0 

0.3.1) 

Transport of a general flow-property, 4  

, ac 	vat -I- way  ) = s + 	(r ray , pku 	+ Dr 	r30 	Rai 	r Dr 	4 3r ' 

+ 4 , 34) 	94 sine  ) - - C ose - R 3r 	rD0 

+
(r4) 7TtY 

aci) 
 ) 

	
(3.3.2) 

(b) Curved rectangular-sectioned duct: (x, y, (p)  

Continuity 

• 

• 

Du 4.  av 	w 	Dw 
ax ay R RD(1) = 0 (3.3.3) 



( 	 E 	a P. (xE-xw ) an f il- 37/  kR 	+ T1 Ra  (xE-xw ) )1+' 1 	a(I) 	 ax 

a-f--I) 
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Transport of (I)  

	

uacI) 	a(11 	aci) 

	

P( ax 	 TaTp ) 	Si) + x (1'4) fl) 

+ 1' 4) a (I) + a a 	al) )  

	

R ax ay 	aY 
• (3.3.4) 

(c) 	Curved, rectangular-sectioned diffuser: (n, c,  

Continuity: 

1 
 a • X 

I 911 	DIN 	E 	a 
(xE-xo -571 - an 	 0-0xE-xvi))1 + 

1 	 aw 

 

ays  
(YN-Ys) 	Bc Ra 	C  ITFC `371■7 -570}  

+ u _ 0  
R aE R (3.3.5) 

Transport of (I):  

ays  
(YN-

1 

 YS) 	
- w ( RTE. 	(YN-Ys) )}+ 

w 341 = s  +  •  
R BE 	 (xE-xw )2 911 3 (11. 	) 	

1 	a (r 2±) 
(YN-YS 	

(I) ac 

1 	(I) 	a (I) 
	 (3.3.6) 

(xE-xw ) 	R 	art 
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The nomenclature used in the above sets of equations 

is the same‘as that used earlier, for equations (3.2.2) 

to (3.2.5). u, v and w represent the three velocity-

components along the three coordinate-directions; (I) 

is a general flow-variable which represents all scalar 
• 

flow properties and also the three velocity components, 

u, v and w; 	contains all the additional terms 

representing the source or sink of (1) ; it includes 

pressure gradients, body forces, heat fluxes etc. 1'4)  

is an exchange coefficient which relates the diffusion 
or temperature 

fluxes to the velocityLgradients; for turbulent flows 

it represents the combined laminar and turbulent 

exchange coefficient and is calculated from the 

turbulence model. The expressions for the source terms 

and the exchange coefficients appearing in these 

equations can be obtained from the equations given in 

Appendix Al. 

In the above coordinate systems, the one 

represented by (11, r, E) is only quasi-orthogonal; and 

the equations presented for this coordinate system 

imply a few more approximations, in addition to those 

because of the predominant flow direction. It is 

postulated that the errors introduced by these 

approximations are small for 'the diffuser angle (2.5°) 

studied in the present thesis. 
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3.4 	Auxiliary information  

In addition to the set of equations described 

above, the mathematical specification of the flow 

situation also requires the following information. 

	

(a) 
	

Initial conditions, i.e. initial values of 

dependent variables corresponding to the 

position along the predominant flow direction 

(i.e. (p) at which solutions to the set of 

equations are begun. 

	

-(b) 
	

Exit conditions, i.e. conditions at the outlet 

of the duct, either as a specified pressure-

distribution or as a specified distribution 

of axial-velocity; these conditions are 

necessary only for the calculation of 

partially-parabolic flow situations. 

(c) Boundary conditions, i.e. conditions of all 

the dependent variables at the four boundaries 

of the cross-sectional plane, as a function 

of (1). 

(d) Auxiliary relationships, which allow the 

density, diffusion coefficients, sources and 

sinks in each of the equations to be computed 

in terms of the dependent variables of these 

equations, over the entire flow field. 

The manner in which the auxiliary information 

is incorporated in the solution procedure will be 

described in Chapter 4. 
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3.5 	Summary 

The contributions of the present chapter may 

be summarised as follows: 

1) Three categories of flow situations have 

been defined which are distinct from a 

zomputational view point.; they are: elliptic, 

partially-parabolic and parabolic. The 

physical nature of the flow in each of the 

above categories has been discussed and the 

differences in the governing equations have 

been pointed out. 

2) The nature of the flow phenomena in curved 

ducts has been examined from the view point 

of the above classification. 

3) The partial-differential equations governing 

the transport of mass, momentum and energy 

etc. have been stated for three different 

flow geometries. 

4) The auxiliary information necessary to complete 

the mathematical specification is listed. 

The calculation procedures for solving the 

above sets of parabolic and partially-parabolic 

equations will be described in the following chapter. 
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CHAPTER 4  

SOLUTION PROCEDURE 

4.1 	Introduction  

The purpose of this chapter is to provide the 

details of the solution procedures for the equations 

governing three-dimensional parabolic and partially-

parabolic flows. The calculation procedure described 

here for parabolic flows is that reported earlier by 

Patankar and Spalding (1972); the details of this 

procedure are thus given here only for the sake of 

completeness and for the reader's convenience. The 

partially-parabolic procedure, however has been a 

development of the present investigation; and is 

described here for the first time. 

The two calculation procedures are quite 

similar in their approach; they share several important 

features but differ in the manner in which they 

calculate the pressure field. The partially-parabolic 

procedure employs a single pressure field common to all 

the three momentum-equations whereas the parabolic 

procedure employs two separate pressure fields - one for 

the solution of the lateral momentum-equations and 

the other for the longitudinal-momentum equation. 

Since the calculation steps in the two procedures are 

similar, only one procedure is described here in detail. 
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From the view-point of ease in understanding, the 

partially-parabolic procedure is presented in detail; the 

parabolic procedure is later explained only briefly, 

by outlining its distinctive features. 

• Both calculation procedures comprise the 

following main steps. 

(a) Subdivision of the flow domain into smaller 

regions by a finite-difference grid; 

(b) integration of the differential equations 

over the finite-difference 'cells'; and 

(c) solution of the algebraic equations obtained 

from the integration of step (b). 

The details of these steps are described below. 

4.2 	Calculation procedure for partially-parabolic  

flows  

The present section describes the calculation 

procedure to solve the differential equations governing 

a partially-parabolic flow situation. This calculation 

procedure has been a development over the parabolic 
• 

calculation procedure of Patankar and Spalding (1972); 

thus a number of important details described below have 

already been reported earlier; and are reproduced here 

for sake of completeness of the description. The main 

features of the partially-parabolic calculation 

procedure are as follows. 
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4.2.1 	The finite-difference grid  

The finite-difference grid consists of 

orthogonal, intersecting grid lines, disposed over the 

flow domain along directions parallel to the three 

coordinate-axes. The intersections of these grid lines, 

usually called _ 'grid nodes',form reference locations 

for identifying the discrete values of the flow 

variables. The spacing between the grid lines is not 

stipulated to be uniform but can be varied to locate 

more grid nodes in regions of steep variations of the 

flow variables. The finite-difference grid is chosen 

after experimentation with finer and coarser grids so 

as to make the results of the computations substantially 

independent of grid-fineness. 

4.2.2 	Location of flow variables  

Figure (4.2.1) shows the manner in which the 

flow variables are arrayed in the finite-difference 

grid. The pressure and the scalar properties such as 

enthalpy, concentration etc. are stored at the grid  

nodes while the velocity-components are placed midway  

between adjacent grid nodes. The 'staggered-grid' 

system adopted here has the following advantages: 

(a) the velocity components are conveniently 

located for calculating the convective fluxes 

of flow properties stored at the grid nodes; 

(b) the calculation of mass balance over a region 

surrounding a grid node is made easy because 
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Fig. (4.2.1): Location of variables on the finite-difference 
grid. 
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the velocities normal to the boundaries of 

this region are located directly on the 

boundaries; 

(c) 
	

the pressures are stored so as to make it 

easy to calculate the pressure gradients 

that affect the velocity components. 

The dotted enclosures shown in the figure describe 

the manner in which the variables have been grouped 

for the purpose of identification; the variables 

enclosed by these dotted lines are denoted by the 

same subscript. (It is necessary to note here the 

slight difference in the practices for grouping 

the velocities in the x-y plane and in the y-z plane.) 

4.2.3 . 	Control volumes for integration 

The 'control volumes', represent regions, 

over which the partial-differential equations are 

integrated to obtain their finite-difference form. 

These control volumes are different for each flow 
• 

variable. Figure (4.2.2) shows the control volumes 

for the velocity components and for a general variable, 

(1). The boundaries of these control volumes are 

defined as follows. For variables located at the grid 

nodes, the boundaries of the control volumes, in all the 

three directions, lie half-way between two grid nodes; thus 



- 49 - 

BOUNDARY 

r- (1 ) 1 	-. IN 

.. _... ,,,„, 
1 

_ 14,..(  

1 
2 )0p .."I

F

II..  E 0- 

-40. --Ob. --* 
I 

_L_ os 

1 
(3)1 

I 

_,... -4. 
t + + 

4 4 4 
x-y PLANE  

ITzij 
j„ 0N * 

Control 
Symbol volume for  
(1) 	uN 
(2) w (I) and P' P 

continuity 

(3) vE  

Control  
'Symbol volume for  
(4) (I) N' uN and 

continuity 

(5) vP 

(6) wP 

UPSTREAM CURRENT DOWNSTREAM 
PLANE PLANE PLANE 

y 

z 

INLET 
BOUNDARY 

OUTLET 
BOUNDARY 

y_z PLANE 
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the interfaces of the control volumes always pass 

through locations at which the normal-velocities are 

stored. The control volumes for velocity”components 

are defined in a similar way, but the above practice 

is adopted only along those directions which are 

perpendicular to the velocity; for the direction along 

the velocity, the edges of the control volume pass 

through the grid nodes which lie on either side of the 

velocity. 

4.2.4 	location of flow variables near the boundaries  

The staggered grid system explained above 

for locating the velocity-components presents a few 

difficulties in calculating the flow variables situated 

adjacent to the boundaries of the flow domain. To 

overcome these difficulties, slightly different 

practices are adopted for locating the near-boundary 

velocities. Figure (4.2.1) illustrates the location 

of the velocities near the boundaries. The new 

practice consists of altering the locations of the 

velocities normal to the boundaries from their staggered 

positions to locations directly on the boundary. The 

new locations of the near-boundary velocities also modify 

the control volumes for the'variables situated near 

the boundary; these changes are shown in, Figure (4.2.3). 
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Fig. (4.2.3): Near-boundary control volumes. 
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4.2.5 	Discretisation of the differential equations  

The discretisation procedure described below 

is the same as that described in Patankar and Spalding 

(1972) except that it is now recast in a slightly 

different manner to suit the partially-parabolic 

equations. Since the transport equations have a 

generalised form (ref. Chapter 3), the procedures for 

their discretisation are identical; thus the steps in 

the discretisation procedure are explained below with 

reference to the differential equation for a general 

variable 0. The equation considered is the partially-

parabolic form of (3.2.5), written as 

ax (P") 	(P") 	(P")  = ax (1'4) N)  

(1) 	(2) 	(3) 	(4) 

	

+ aya (r  al, + s 	(4.2.1) (1. ay 	(1) 

(5) 	(6) 

The symbols in the above equation have the same 

meanings as in equation (3.2.5). 

Assumptions. 

To discretise the various terms of (4.2.1) a 

few assumptions are first made regarding the variation 

of 0 over the grid spacings. These assumptions have 

been earlier validated in the various application-studies 

of the parabolic procedure and are thus also adopted 

here. The assumptions are: 

4 

• 
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(a)  

(b)  

For terms representing convection along the 

x and y-directions (i.e. terms (1) and (2)), 

the value of (I) is assumed to vary linearly 

between grid nodes. This implies than for 

an interface which is midway between two 

grid nodes, the value of (I) that is convected 

across the interface is the arithmetic mean 

of the (1) values at the grid nodes. However, 

this value of (I) is later modified in 

circumstances when the convective flux is 

much larger compared to the diffusive flux 

in the same direction. This modification, 

called the "high-lateral-flux modification" 

removes certain difficulties associated with 

the central-difference scheme (for details 

of this modification, refer 	Spalding (1971); 

or Patankar and Spalding (1972)). 

For convection in the z-direction (represented 

by term (3)), it is assumed that the value 

of (I) which is convected is equal to its 

upstream value, (Du. The variation of (Du  

in the x-y plane is assumed to be step wise, 

i.e. 6U  is constant over the dotted region - 

shown in Figure (4.2.2) but changes suddenly 

at its edges, to the values at the neighbouring 

nodes. 
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(c) 
	

For diffusion in the x-y plane, the 

variation of is assumed to be linear; 

but is also altered later, by the high-

lateral-flux modification. 

The integrated equation  

Equation (4.2.1) is now integrated over the 

control volume for the 	variable; and in the integrated 

form it may be expressed as follows. 

Lex0e 	w w +LnY 0n  -LsY 0s  +FP  0P  -FU 
 4) 

"U 

(1) 	 (2) 	(3) 

= Te
x

E-(1)P) - Tw  (0 P w 

(4)  

+ TnY  (0N-gyp) - T s  Y  (0PS) 

(5)  

+ s0,U  Ax Ay Az + s0,P  (1)P  Ax Ay Az 

(6) (4.2.2) 

In the above equation, the symbols L, T and F stand 

for the following expressions: 
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• 

Lex  = (Ay Az) (pu)e  

Lwx  = (Ay Az) (pu)w  

LnY = (tax Az) (pv)n  

Ls 	= (Ax Az) (pv)s  

 

 

r AxAz 
e Sx e 

(4.2.3) 

AyAz Twx  = r ( ox 

T y .rtAxAz 
n 	657 

T Y f AxAz , 
s = r k 	j 

S 	(Sy 

= (pw)u  Ax Ay ; Fp = (pw)p  Ax Ay F
U  

where the subscripts E, W, N, S, P and U refer to the 

grid nodes E, W, N, S, P and U; the subscripts e, n, s, w 

refer to the corresponding locations, shown in Figure 

• 	 (4.2.4); and the dimensions Ax, Ay, Az, dx and Sy are as 

defined in Figure(4.2.4). 	The values of (De' (I)w' (I)n' 

(I) s represent the flow properties convected from the 

interfaces normal to the x. and y directions; they are 

expressed as a linear combination of the values on 

either side of the interface, thus; 

w 

n 
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= f
e
x

E 
+ (1 - fex) (I)P 

(I)Iv 
= f  X 	/1. 	f  XN 0  

	

w P 	w W 

(4.2.4) 
= fnY 	+ (1 - fn37) (1) 

s = fs (I)P + (1 - fsY) (1) 

with the interpolation factors fx,fx f y f y e  w ' n ' s 
having the following meaning: 

(Sx)e  

fe
x  - 	 2Ax 

(.5x)w  

w 
f  x 

2Ax 

(65)n  f
n
Y 

2Ay 

(4.2.5) 

f
s
Y _ 	 

2Ay 

The expression for Fp 	may be obtained by integrating 

the continuity equation; and is as follows: 

F = FU - Lex  + Lwx  - Ln + Ls 
	(4.2.6) 

The last two terms in (4.2.2) represent the contribution 

due to the source terms; they have been obtained by 

expressing sci)  of (4.2.1) in a linearised form so that 

• 

• 

(sy)s  



• - 58 - 

s 

• 

s 	+ s 	0 0,U 0,P P (4.2.7) 

where the subscripts U and P refer to the upstream 

and the 'current' values. s0,U  and s0 	are volume- 

averaged  values of the source terms and are prescribed 

• 	 after integrating the corresponding expressions over 

the control-volume. 

The expressions (4.2.4) to (4.2.7) when 

substituted into (4.2.2) give the following 

expression for 0p: 

= AEel) E + AW 0W + AN
o

N + AS(1)  + B0 

(4.2.8) 

where, 

AE = App 

A = yA; 

AN = AT N P 

A
S 
 = AS /AP 

B = B/A;)  
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• 

and, 

A' = Te
x - fe

X Le
X 

E 

A • = Tw + (1 - fw
x) Lwx  

A' • = TnY  - fnY  LnY  

= TsY  + (1 - f s  Y) Ls  Y  

B' 	 (I) U 	Ax Ay Az + Fu  (Du  

 

 

AP = 	+ A + A' 	s N 	S 	(I),P Ax Ay Az 

(4.2.9) 

Equation (4.2.8) represents the final form of the 

finite-difference equation for the differential 

equation (4.2.1) and describes the general structure 

of the finite-difference equations solved by the 

solution scheme, to be described in Sec. (4.2.6). 

Equations for the velocity components  
• 

The finite-difference equations for the 

velocity components are obtained in a manner similar 

to that of (4.2.8), by integrating each momentum-

equation over the control volume for the appropriate 

velocity-component (shown in Figure (4.2.2)). The 

finite-difference equations so obtained for the 
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velocity components are: 

1110 	
u uE + A uW  + AN

u uN + AS  uS  + B
u 

+ Du  (11P  -P ) 

= A  V v 
 "
r  + A V v  + A V 	+ A V 	+ taV 

P E E W W 'N " 
" 
' N 	S " 

" 
5 ' 

Dv  Op-PS ) 

(4.2.10) 

(4.2.11) 

wP =AEw wE+AW  wW  + AN  wN  + AS  wS  + Bw 

+ Dw 
 

PD-Pp ) 
	

(4.2.12) 

The A and B coefficients in the above equations have 

similar meanings to those in (4.2.9); the subscript 

D (eqn. (4.2.12)) refers to the value at the 

downstream location. The new symbols Du, Dv, Dw  are 

defined as follows. 

Du = -Ay Az /A1,11  

Dv  = - Ax Az/A;v 
	 (4.2.13) 

Dw =- Ax Ay/Afpw  

where the A's have the same meaning as in (4.2.9). 
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The continuity equation  

The discretised form of the continuity 

equation is derived by making a mass balance over the 

control volume shown in Figure (4.2.2); and is expressed 

as follows: 
• 

Cu  {(pu )E  - (Pu)p} + Cv  {(Pv)N  - (Pv)pl 

Cw  Upw)p 	(pw)u} = 0 	(4.2.14) 

where the quantities Cu, Cv  and Cw  represent the areas 

of the cell faces normal to the corresponding 

velocity-components. It may be interesting to note 

that equation (4.2.14) can also be obtained by 

substituting a value of (I) equal to unity in equation 

(4.2.2). 

4.2.6 	The solution procedure  

Main features  

The aim of the solution procedure described 

• 	 here is to seek a simultaneous solution of the 

finite-difference equations expressed by equations 

(4.2.8), (4.2.10) to (4.2.12) and (4.2.14). The 

unknowns in these equations are the three velocity-

components u, v and w, the pressure and the scalar 

flow-properties. Since the three momentum equations 

are coupled through the unknown pressure field it has 
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been necessary to employ an iterative procedure for 

their solution in which the pressure field is guessed,and 

is corrected so as to bring the velocities in 

conformit Y, with the continuity equation. Tha 

equations being nonlinear, this correction procedure 

necessitates more than one iteration. The main 

features of the present solution procedure are as 

follows: 

1) The solution procedure employs a guess and 

correct procedure for the calculation of the 

correct pressure-field. Several 'sweeps' 

are made through the flow domain and the 

pressure field is corrected each time. 

2) The flow variables are calculated by 

'marching' through the flow domain, along 

the predominant flow direction; in this 

marching, the flow variables at any longitudinal 

station are calculated solely from values 

at an upstream location. 

3) The finite-difference equations are solved 

by a tridiagonal matrix algorithm (TDMA), 

along lines in the x and y directions; in 

this, when the equations are solved along 

lines of constant-x, the values of the 

variables at adjacent y-locations are kept 

fixed; and vice versa. 

4 
	

The pressure field is stored as a three- 

dimensional array and is 'updated' in each 
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marching of the flow domain. All other 

variables and the coefficients are stored 

at any time as two-dimensional arrays along 

cross-sectional planes. 

Sequence of calculation steps  

The sequence in which the calculation steps 

are executed is as follows. 

1) The pressure field which is stored in a 

three-dimensional array is assigned guessed 

values at the start of the integration. 

2) Using the guessed values of the pressure 

field, the momentum equations in the x, y 

and z directions at a downstream station 

are solved; the coefficients in the equations 

are evaluated on the basis of flow properties 

at the upstream longitudinal-station. The 

sequence of the calculations has been to solve 

first for the u and v velocities and then 

for the w-velocity which is situated ahead 

of the cross-stream plane containing the u 

and v velocities. 

3 
	

The pressure field is corrected to bring 

the velocities in conformity with the 

continuity equation. These corrections are 

applied for one cross-stream plane at a time, 

and are calculated as follows: 



- 64 - 

(a) 	The pressure and velocity fields are first 

expressed as 

P* 

u = u* + u 
(4.2.15) 

v = v* 	v 

w* + w 

where the primed quantities represent the 

corrections to the approximate (starred) 

values. 

(b) 
	

The corrections to the velocities are related 

to the pressure corrections by substituting 

(4.2.15) in the momentum equations. The 

expressions for the velocity components are 

written in a simplified form as 

uE = uE
* 
 + DEu (pE  - pP ) 

up  up*  = 	+ DP
u  (p' - P/;/  ) 

vN = vN + DN (P tN  - Pp 
I ) (4.2.16) 

See footnote on next page. 
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, vP  = vP  • + DP  kpP  - PS,  ) 

tt 
w
P  = wP  • - DPP  w  (Pp ) (4.2.16) 

W f ttt 
WU = WU 	DU Pp 

The relations expressed above are then 

substituted in the finite-difference form of 

the continuity equation (4.2.14); the coefficients 

for pi)  are collected and rearranged to obtain 

the following expression for pi). 

App   p' = A P p' + A P  p' 	A P p'  P E E W W N N 

• +A P  p + m S S P (4.2.17) 

The complete expressions for these velocities are 

of the following form: 

up  = up
* 

+ Dpu  (pp  - p1:47  ) + AEu (uE  - uE
*
) + 

+ Awu (uw  uw
*
) + ANu (uN  - uN ) + Asu (us  - us ); 

• 
	 by dropping the last four terms we get the expressions 

described by (4.2.16). 

tt In deriving this expression and the one following it, 

it has been assumed that pi)  = 136 = 0. 

ttt Although wu  is not calculated along with up, vp  and 

wP' it is affected by a change in the pressure at 

P; hence the expression for w'u  . 

• 

(c) 
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where, pE , piv  , p1,1  , p's  are corrections to 

the pressures at the nodes N, S, E and W; 

and the 'A's represent the products of the 'D' 

coefficients and the cell areas Cu, Cv  and 

Cw. The quantity thp expresses the mass 

• 	 imbalance over the region surrounding the 

grid node P and is given by 

Cu  {(pu*)E  - (pu
*
) 1 + Cv {(pv*)N  - (pv )0 

- Cw  { ( pw*) p  - ( Pw*)u} 
	

(4.2.18) 

and 

App = AEP + A P + ANP + A81  + A P + ADP 

(4.2.19) 

(d) 
	

Equation (4.2.19) which has the same form as 

(4.2.8) is solved in the same manner as the 

momentum equations are solved; and the pressure 

• 	 and velocities are thereafter corrected 

accordingly. However, while correcting the 

pressures it has been found beneficial to 

under-relax the corrections so that 

P = 	ap' 
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where p is the correction calculated from 

the equation and a is a value between 0 and 1; 

a usually has a value around 0.5. 

4) The equations for variables such as enthalpy, 

kinetic-energy of turbulence etc. are solved so 

• 	 as to provide distributions appropriate to the 

downstream station. 

5) Steps 2, 3 and 4 are repeated at all the 

downstream locations in the flow domain. 

6) Such sweeps through the flow domain, 

consisting of steps 2, 3, 4 and 5 are repeated 

several times, each time using a more-correct 

guess for the pressure-field; the procedure 

is terminated when the corrections to the 

pressure field have become smaller than a 

preassigned value. On the last sweep, the 

distributions of the velocities, shear stresses 

as are required are printed out. 

Details of the TDMA sweeps  

The TDMA sweeps by which the finite-difference 
• 

equations are solved are described below in somewhat 

more detail. These sweeps are performed as follows. 

First, for the x-direction sweep, equation (4.2.8) is 

written as 

(1.  	(I) 	+ A1) 	E (I)E  + A w  IDN  + (A N N,U 	S 	- + B)  

(4.2.20) 
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The expression in the parenthesis is calculated 

from the upstream values; and equation (4.2.20) is 

solved by an elimination procedure. The superscript I 

denotes the values obtained from this first phase of 

solution. In the second phase, the y-direction sweep is 

made in a similar manner; the equation now solved is 

+ B) 

(4.2.21) 

where, the quantities in the pare.nthesis represent those 

obtained from the x-direction sweep. 

In order to reduce the errors in the solution 

of the equations, the TDMA sweeps are usually repeated 

a number of times, depending on the equation under 

consideration. For the momentum equation, it has been 

found sufficient, from the viewpoint of accuracy, to perform 

only one TDMA sweep in each direction. For the pressure-

correction equation however, it has been advantageous 

to make at least three such sweeps along the x and y 

directions. The sequence in which these x and y 

direction sweeps are made is however, arbitrary; 

nevertheless, it is advantageous from accuracy view point 

to alternate this sequence, as the flow domain is swept 

through. 
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• 

4.2.7 	Incorporation of the auxiliary information 

Boundary conditions 

The boundary conditions for the equations described 

by (4.2.8) are normally of two types. They are such that 

either the value of the variable is specified at the 

boundary or a prescription is made, indirectly, of the 

gradient of the variable normal to the boundary. For 

example, at stationary, impervious wall's, the velocities 

are zero; but at planes of symmetry, their gradients  

normal to the boundary are zero. The incorporation of 

either type of boundary condition, into-the calculation 

procedure is easy; and is achieved by modifying either 

the source terms or the exchange coefficients in the 

finite-difference equations for the near-boundary 

variables. The boundary conditions for the pressure- 

correction equation are also prescribed in a similar 

manner. Thus,at boundaries where the velocities are 

fixed; the gradients of the pressure-corrections normal 

to that boundary are made zero; and when the values of 

the pressure themselves are prescribed, such as that at 

a free-stream boundary, the corrections to the pressure 

at that boundary are put to zero. As for other variables, 

the incorporation of either condition is straightforward . 

Other auxiliary information.  

Other auxiliary information to be specified 

consists of: (a) the exchange coefficients (P's) and 

(b) the source terms in the individual equations. 
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These are prescribed as follows. The exchange coefficients 

are calculated from the physical conditions of the flow. 

For laminar flows, the r's are made equal to the 

molecular diffusion coefficients and are prescribed as a 

function of the fluid temperature; for turbulent flows, 

the exchange coefficients are calculated in conjunction 

with the turbulence model employed. The turbulence model 

employed for the present computations is described in 

Chapter 5. The source terms which usually represent the 

effects of body forces, chemical reaction, turbulence etc. 

are prescribed to thd calculation procedure as values 

averaged over the appropriate control volumes; and are 

evaluated partly from the values of variables at the 

upstream. This partial use of upstream values of the 

source terms has been, in several earlier instances 

(see Sharma (1974), p. 208) beneficial in promoting stability 

of the numerical scheme; and is therefore adopted also 

in the present procedure. 

4.2.8 	Summary of the entire calculation procedure  

The main steps in the partially-parabolic 

calculation procedure may now be summarised as follows: 

1) 	The flow domain in which the distributions of 

velocity, temperature are to be calculated is 

divided into smaller flow ,regions, by a finite-

difference grid. 
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2) The partial-differential equations governing 

the transport of various flow variables are 

integrated over finite-difference 'cells' 

and are expressed as algebraic equations. 

The auxiliary information consisting of 

s 	 boundary conditions, source terms and the 

exchange coefficients is incorporated into the 

algebraic equations. 

3) The finite-difference equations are then 

solved by making repeated sweeps through the 

flow domain; at any longitudinal station in the 

flow domain, the variables are calculated solely 

from the values of the variables at the upstream 

station. In each sweep, the guessed three-

dimensional pressure field is corrected for the 

simultaneous satisfaction of the momentum and 

continuity equations. 

The procedure is terminated when the corrections 

to the pressure field have become smaller than 

a certain preassigned value. 
• 

4.3 	Calculation procedure for parabolic flows  

4.3.1 	Introduction  

This section describes the calculation procedure 

for parabolic flows. This procedure has been earlier 

reported by Patankar and Spalding (1972); and is 



- 72 - 

described here only for the sake of completeness. The 

partial-differential equations solved by this procedure 

are those expressed by equations (3.2.1) to (3.2.7). ,The 

distinctive features of the parabolic procedure in 

comparison with the partially-parabolic procedure are 

(a) the pressure field, like all other variables, 

is stored in a two-dimensional array; and 

(b) all variables are calculated in one single 

sweep through the flow domain; and no 

iterations are made. 

In the following sub-sections, the details of the 

parabolic procedure are explained in the same manner as 

those for the partially-parabolic procedure. However, 

only the differences between the two procedures are 

described in detail; and the common features are only 

briefly mentioned. 

4.3.2 	A reminder of the parabolic concept  

Parabolic flows, which have been defined in 

Chapter 3, are fundamentally one-way processes; i.e. 

influences travel only from upstream to downstream and 

not vice versa. Thus in these situations, diffusion and 

also pressure transmission are negligible along the 

predominant flow direction; and convection exerts 

influence only along the flow direction. The difference 

between the governing equations for parabolic and 

partially-parabolic flows is tht for parabolic flows, 

the pressure field in the longitudinal momentum equation 

is simplified and is represented by a value 
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which is constant over a cross-sectional plane. The 

longitudinal momentum equation for parabolic flows is 

given by: 

3X 	3- (puw) + - (pvw) + aZ  ( pWW) 

aT 	aT = a2 ZX _Zy. s  
aZ 	ax 	DY 

(3.2.7) 

The use of such a T pressure field prohibits any down- 

stream events to be transmitted upstream. It is 

economical to be employed because it permits a 'once-

through' marching procedure through the flow domain. The 

use of a T field does not introduce large errors in the 

solution when there are no sharp curvatures in the 

stream lines. 

4.3.3 	The finite-difference grid  

The finite-difference grid, the location of 

the flow variables and the definition of the control 

volumes in the parabolic calculation procedure are the 

same as those explained earlier except for one difference 

which is that the w-velocity in the parabolic procedure 

is no longer staggered between two grid nodes but instead 

is placed directly at the grid nodes where also the 

pressures are storedt Because of this new location of 

the w-velocity, the control volumes are defined in a 

ilately,Spalding (1975) has suggested that the w-velocity in 
parabolic procedure can also be considered as staggered, 
the above difference is based on the method as reported 
in (1972). 
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slightly different manner. The differences which are 

only in the y-z plane are shown in Fig. (4.3.1). The 

two cross-stream planes at the sides of the control volume 

are labelled as upstream and current, and are separated 

by the step size in the z-direction. 

4.3.4 	The finite-difference equations  

The finite-difference equations for the 

parabolic procedure are derived in the same manner as 

explained in Sec. (4.2.6); they are: 

up = AE
u uE + AW  

• u

W  + AN
u uV + 

+ DP • (pp  - pW  ) + B
u 	(4.3.1) 

vP = AE
v vE + AW

v vW + AN
v vN + AS

v vS 

+ DP • (pp - pS  ) + B
y 
	

(4.3.2) 

w p = AEw w E  + Aww w N  + ANw w N  + Asw ws  

(4.3.3) 

0P  = AE  0E  + AWE 0W  + AN
0 0

N  + ASS S  + BO (4.3.4) 

The above equations are identical to those derived in 

Sec. (4.2.6) except for equation (4.3.3) which differs 

from its counterpart because of the underlined term. 
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z 

Fig. (4.3.1): Location of flow variables for 
the parabolic calculation-procedure. 
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4.3.5 	Solution procedure  

The finite-difference equations for a parabolic 

flow present a simpler task for their solution. Since 

the longitudinal momentum equation is not couplcd with 

the other two momentum equations, it can now be solved 

independently, provided the coefficients and the pressure 

gradient term are correctly prescribed. Thus iteration 

is restricted to the cross-stream planes, so that all 

variables can be calculated by a single 'sweep' through 

the flow domain; in this sweep several forward steps 

are taken along the longitudinal direction.,and at each 

forward step the flow variables are calculated for the 

cross-sectional plane at that location; the pressure 

fields p and T are first guessed and later corrected for 
the satisfaction of the continuity equation. The present 

procedure, which incorporates the above features, is 

comprised of the following calculation steps. 

1) 	The pressure field 'p' at any longitudinal 

station and the value T at an adjacent 
downstream location are assigned values. 

2 
	

The three momentum equations expressed by 

(4.3.1) to (4.3.3) are solved to get a first 

approximation to the velocity field at the 

longitudinal station; the 'A' coefficients 

in the equations are calculated from upstream 

values of the flow variables. 

3) 
	

The mean .pressure ii, and the axial velocities, 

are thereupon corrected by reference to 



- 77 - 

continuity and the linearised longitudinal 

momentum equation, so as to ensure that the 

mass flow rate through the cross-sectional 

plane is the same as the true flow rate 

through the duct, M, computed from inlet and 

boundary conditions. The expression for this 

pressure-correction is deduced as follows: 

we first write 

- -* 
P = P 

- ' and w, = w 	Dw  pp  

Since it is desired that 

E E p wp  Ax Ay = M 	(4.3.7) 

where Ax, Ay are the cell areas normal to the 

w-velocities and the summation is carried over 

all cells in the cross-stream plane, we get, 

by substitution of (4.3.6) into (4.3.7) 

EE pw Ax Ay 
1-52  = E 	  

EE p Dw Ax Ay 
(4.3.8) 

pp  is assumed to'be uniform over the cross-

section. 

The w-velocity field and the p pressure-field 

are thereafter corrected accordingly. 
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4) 	The cross-stream velocities are corrected for 

the local satisfaction of the mass-continuity. 

A pressure-correction equation is derived in a 

way similar to that of (4.2.17) but now the 

w-velocity field is kept fixed at the value 

calculated in step 3. This pressure correction 

equation which has the same form as (4.2.17) is 

also written as 

AVID' = A P  Pi 	A P int 	A P TIT  - P 	E -E 	-W 4-1A1 	-N 

AY SpS +M (4.3.9) 

However, the present value of ApP  is different 

from that defined by (4.2.19); in the present 

case, it is given by the expression 

APP = AEP + AwP + ANP + A
SP 	(4.3.10) 

The difference between (4.2.19) and (4.3.10) 

is the absence of terms A P  and ADP  in equation 

(4.3.10). These terms connect the downstream 

regions with the upstream ones and are 

absent in (4.3.10) as a consequence of the 

fully-parabolic nature of the flow. 

Another important aspect to note is that the 

pressure field calculated in this step 
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corresponds to an upstream station whereas the 

p field calculated in step 3 is at the current 

longitudinal station; this difference is 

conceptually important but as such ha: no specific 

bearing on the calculation scheme. 

5) The pressure field p and the velocity fields 

u and v are accordingly corrected. 

6) The equations for the general flow variables 

such as enthalpy etc. are solved as to provide 

new distributions appropriate to the current 

longitudinal station. 

A forward step is taken and calculation steps 

1 to 6 are repeated at the new longitudinal 

station. The process of taking forward steps 

and calculating the flow variables is repeated 

till the end plane of the flow domain is reached. 

4.4 	Some improvements to the partially-parabolic 

calculation procedure  

In this section, three modifications are 

suggested to the partially-parabolic calculation procedure 

described in Sec. (4.2). The objective of making these 

modifications is to procure faster rates of diminution of 

the pressure-corrections. These modifications have been 

successfully tested for the calculation of flow in curved 

ducts; but need further testing before being recommended 

for a permanent inclusion into the calculation procedure. 
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The first two modifications described below are the 

author's contributions, while the third was originally 

suggested by Spalding (1974). 

1) 	Under-relaxation of the variables  

While describing the calculation steps for the 

partially-parabolic procedure, it was mentioned that the 

pressure-corrections were under-relaxed before they were 

applied to the pressure field. A similar under-relaxation 

procedure has also been adopted for the calculation of 

flow variables themselves. The procedure consists of 

under-relaxing the variables calculated at any longitudinal 

station with their values at the upstream location. 

Thus, Op  is calculated by the relation 

= 	5,0 + (1  - 	1)13, U 	 (4.4.1) 

where the '0' refers to the value calculated with no 

under relaxation (a=1) and the subscript U refers to the 

value at the upstream. a is the under-relaxation factor, 

usually of a value close to 0.5. It is however important 

to note here that the above under-relaxation, although 

will promote convergence, will give incorrect solutions 

when convergence is obtained. This is because of the 

'weighting' done by the values at the upstream location. 

It is therefore necessary to remove this modification 

before final solutions are obtained, by making a=1. 
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2) 	Bulk-correction to the pressure field  

This improvement consists in making an 

additional correction to the pressure field by reference 

to the integral mass-balance over the cross-sectional 

plane. The correction which is analogous to the correction 

of the T pressure field in the parabolic procedure, is 
also derived in a similar manner. This correction is 

applied to the pressure (pp) at the downstream plane 

and is calculated from an expression similar to (4.3.8), 

thus: 

PD 
171  

EE p wp  Ax Ay 
(4.4.2) 

EE p Dw  Ax Ay 

where the symbols have the same meaning as in (4.3.8). 

The pressures and velocities are also corrected 

accordingly. It is necessary to mention that this 

correction, as in the parabolic procedure, is applicable 

only for the calculation of confined flows. 

3) 	Upstream shifting of pressure corrections  

In the calculation procedure described earlier 

in Sec. (4.2), the downstream influences travel upstream 

at a rate which is only one cross-stream plane•per 

iteration of the flow domain. This rate of transmission 

of downstream events is slow; and it necessitates 

a large number of marching sweeps through the 
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flow domain before the downstream events are made to 

influence the upstream flow. The present modification 

is designed to overcome this disadvantage. The 

procedure is to apply parts of the pressure corrections 

• calculated at any longitudinal station also to the 

pressures at the upstream locations. Thus, 

(Pu) 	= (Pu) 	$ Pp 	 (4.4.3) 
new 	old 

where pu  is the pressure at a typical upstream plane 

and pp  is the pressure correction calculated at the 

'current' longitudinal station. 8 is a 'reduction factor' 

which depends on the dimensions Ax, Ay and the proximity 

of the upstream plane; a diminishes in a somewhat 

geometric way with distance between the upstream plane 

and the plane where the pressure-correction is 

calculated. The formula for 8 is derived in Appendix A2. 

The experiences of using the present modification 

have been encouraging; savings in computer time to the 

extent of 25 percent have been observed using this 

modification. 

4.5 	Summary  

In the present chapter, two calculation 

procedures have been described for the calculation of 

parabolic and partially-parabolic flow situations. The 



- 83 - 

procedures are based on finite-difference methods and 

share several important features. The calculation 

procedures are general and are flexible to be applied 

to calculate various physical flow situations, governed 

by different boundary-conditions. 

The results of the computations made using 

the above calculation procedures will be presented in 

Chapters 7 and 8. 
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CHAPTER 5  

MATHEMATICAL MODELLING OF TURBULENCE 

5.1 	Introduction  

This chapter outlines the mathematical 

problem of turbulent flows and describes the way in 

which the effects of turbulent motion have been 

mathematically represented in-the present study. 

First, the equations governing turbulent flows are 

stated; these equations are derived by time-averaging 

the equations governing the instantaneous transport 

of the flow variables. The additional terms which 

arise because of the turbulent motion are mathematically 

represented using a two-equation turbulence-model. 

In this turbulence model, the additional terms are 

related to the gradients of the corresponding flow 

property through an eddy viscosity; this viscosity 

is allowed to vary from one location in the flow 

domain to the other; but, at any point, it is assumed 

to be isotropic. The distribution of the eddy 

viscosity is calculated from the value of two 

turbulence variables, for which a pair of partial-

differential transport equations is solved. The two 

variables in the present turbulence model are the 

kinetic energy of turbulence k, and its rate of 
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dissipation, e. 

The k%e turbulence model was first put 

forward by Harlow and Nakayama (1968) and has been 

subsequently used by many authors (e.g. Jones and Launder 
and 

(1972), Launder et al (1972), Sharma (1974) Latchell (1975)): 

A full account of the model is given by Launder and 

Spalding (1973). The following description 

reproduces some of that account for completeness and 

draws special attention to a few novelties that have 

been introduced. 

5.2 	The mathematical problem 

The present approach to calculate turbulent 

flows is to solve the equations which govern the 

transport of mean-flow variables; these equations are 

obtained by time-averaging the transport equations 

for the instantaneous values of the flow variables. 

Mathematically, this means expressing a general 

variable (I) as 

(1) = T 	 (5.2.1) 

where (I) is the time-averaged value and 4) is the 

fluctuating component; and time-averaging the 
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resulting equations after substitution of the above 

relation. 	The time-averaged equation governing the 

property in a steady, uniform density flow may be 

expressed as follows. 

a — — a p 	(ui  0) = so 	3x (j0)i 	P axl  (ui 	) 

(5.2.2) 

where the bars denote the average values and the primes 

denote the fluctuating components. ui  is the velocity 

th in the . coordinate direction; and the repetition 

of the subscript 'i'implies summation over all values 
t 

of i . s4, denotes the source of 0; and (Jo)i  is the 

molecular-diffusion flux in the ith  coordinate 

direction; p represents the fluid density. 

The mathematical problem of turbulence lies 

in evaluating the 'turbulent fluxes', expressed by 

p3x. (u. 	) in terms of the known variables of the 

equations. A relation of the following form is 

t
The summation convention is introduced here for sake 
of brevity. In the next sections, the nomenclature 
used earlier in Chapter 3 will be reintroduced. 
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therefore sought: 

 

 

= f 	if) 	(5.2.3) 

The manner in which the above functional relationship 

is expressed in the present study is explained below. 

5.3 	The kr%,c turbulence model  

In this turbulence model, the turbulent 

fluxes are related to the gradients of the flow 

properties through a viscosity which, at any location 

in the flow, is assumed to be isotropic. The 

distribution of this viscosity over the flow domain is 

calculated from two turbulence variables; for which 

a pair of partial-differential equations is solved. 

The 'two variables in the present turbulence-model 

are the kinetic-energy of turbulence k, and its rate 

of dissipation, c. The quantity k is defined as 

follows 

k = -1 2 

,2 2 	,2 
u + v + w ) (5.3.1) 

where u , v and w are the fluctuating components of 

the three velocity-components u, v and w. The 

turbulent viscosity is calculated from the values of 

k and c through the following formula 



k2 
pt = pC c (5.3.2) 
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where pt  is the scalar eddy viscosity; p is the density 

of the fluid and C is a constant. 

The partial-differential equations governing 

the transport of the k and c, after making simplifications 

for the predominant nature of the flow, are represented, 

as followst: 

ak Dk 	3k 	a 	ak 
P (u  a 	3y w  Ti)  = ax (rk - 7") 

ak + 
y —
a (rk Dy  --) + G - pc (5.3.3) D  

3c, ac 	3E\ 	a (r  ac 	a (r  ac\  
P  1̀1  ax 	v  3y 

.4. 
w  3z1  = ax 	 k ax' 	ay 	 k ay' 

2 
+ C1 k • G -C2  p k 	(5.3.4) 

t
These equations have been obtained through a straight-
forward extension of their two-dimensional form, as 
described in Launder and Spalding (1972). 

Equations described here are for the (x,y,z) system; 
equations for the coordinate systems (r,04), (x,y,4) 
and (1-1,) are given in Appendix Al. 
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where G represents the generation of turbulence energy; 

rk and re represent the diffusion coefficients for k 

and c respectively; and Cl, C2  are constants in the 

turbulence model. 

The three constants in the turbulence model 

have been assigned the following values
* 

• 

Cl  C2 C
U  

1.47 1.92 0.09 
(5.3. 5) 

• The 'effective' exchange coefficient  

It is now easy to obtain the value of the 

effective exchange coefficient which relates the 

combined molecular and turbulent fluxes to the gradients 

of the flow variables; it may be expressed by the 

following relation: 

• 

P0 	Pt  
r 	

= 
eff,01) 	a 	at,(1) 

(5.3.6) 

where the subscript (I) denotes the values fOr the variable 

(I); 11 2,  and pt  are the laminar and turbulent viscosities; 

and a and at represent the laminar and turbulent 

* 
based on Launder and Spalding (1973). 
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Prandtl/Schmidt numbers. 

The value of a52, is dependent on the molecular 

properties of the fluid; and is equal to unity for the 

velocities and for k and e. The value of a
t on the 

other hand, is a property of the turbulence phenomena; 

and is assigned the following values: 

. a 	a 	a 	-= 1 t,u 	t,v 	t,w 	t,k .u; 

(5.3.7) 
at 	= 1.3; 	at T = 1.0 , 

where the subscript T denotes the value for the 

transport of temperature. 

5.4 	Treatment of near-wall regions  

Special practices are needed to compute the 

near-wall region, for the following reasons. In the 

central region of the flow, the gradients of flow 

properties are usually not very steep; a moderately 

fine finite-difference grid yields accurate solutions. 

However, close to solid walls the variations of flow 

properties are much steeper, thus necessitating an 

extremely fine grid for their accurate computation. 

Also, the present form of the turbulence model is 

valid only for fully-turbulent flows; modifications 

are required to make it apply to regions where the 



- 91 - 

Reynolds number of turbulence (E pk24112,  where 

Y (i13  E k'/e) is low (or alternatively when y+  = _ 

is less than 11.5, where y = the distance from the 

wall; .T147  = wall shear stress). 

There are two methods for accounting the 

near-wall regions in numerical methods for 

computing turbulent flows; the wall-function method, 

and the method of modelling the low-Reynolds-number 

phenomena. In the present study the wall-function 

approach is adopted chiefly because of its economy 

from the view points of both computer storage and 

computer time. 

Wall functions have been proposed and used 

earlier by several authors including Wolfshtein (1969), 

Runchal (1969) and Ng and Spalding (1972). In a 

recent review Launder and Spalding (1973) described 

the wall functions which have been proved to be 

satisfactory in two-dimensional situations. It is 

these wall functions, with their appropriate extension 

to three dimensions, that have been employed in the 

present study. The practices adopted are as follows. 

The first feature of the method is to locate 

all the finite-difference grid nodes (except for those 

representing the wall values) in the fully-turbulent 
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region. Thus the point P adjacent to a wall is 

located sufficiently far from the wall for the local 

turbulent Reynolds number (pktip)P to be much greater 

than unity. It is then assumed that a logarithmic 

velocity-profile prevails in the region between the 

wall and the node P, the expression being 

	

qp 1 	E yp  (tp)w  
	 - 	( 	 

	

(T/P)// K 	Pt (5.4.1) 

where the subscript P indicates that the values are 

those at grid node P; and the subscript W indicates the 

values at the wall. yp  is the distance of P from the 

wall and K and E are the log-law constants (K = 0.4187 

and E = 9.8 from Patel (1965)1 qp  is the resultant 

velocity at P and is assumed to be parallel to the wall 

shear-stress (this latter assumption is made in the 

present extension to three dimensions). 

The shear stress in the fluid layer between 

P and W is then related to the kinetic-energy of 

turbulence by considering that, in the uniform-shear-

stress layer, the generation and dissipation of k are 

nearly in balance; this leads to the relation 

TP  = TW  = p CV 
1,
P 
	 (5.4.2) 

where C is the constant (= 0.09) in the turbulence 



ip 	 
E yp  Cu  pkp  

In 1 	 
112, 

i kp  qp  
(5.4.3) 
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model. By the use of (5.4.2) in conjunction with 

(5.4.1), the shear stress is expressed by the 

relation 

The rate of dissipation of kinetic energy, 

e near the wall is fixed by reference to the 

requirement that the length scale varies linearly 

with distance from the wall; the corresponding 

expression for ep  is then given by 

C = Cud  P
k y P 
	 (5.4.4) 

k being the near-wall kinetic energy of turbulence. 

The quantity kp  is calculated from the regular 

balance equation but with following changes. First, 

diffusion of energy is set equal to zero; the generation 

term in the kinetic-energy equation is then modified 

to account for the value of wall shear-stress 

calculated from (5.4.3). The dissipation term is 

also modified in the light of (5.4.4) and is assigned 

an average value over the control volume for the 

near-wall node; thus 
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YN 	/ YN 1 
IDE =pi 	dy =CV 
	Ky kph 

 I 
	dy 

0 
(5.4.5) 

The wall functions for the transport of 

temperature (or enthalpy) are derived in a manner 

similar to (5.4.3). The near-wall variation of 

temperature is also assumed to be logarithmic, the 

expression being, 

cp  (T 

=3.11

Tv) 
TW  - 1  In ( E y iT

IWP 
	 ) + PT Pk 

(5.4.6) 

where, Tw is given by (5.4.2); and Jh represents the 

heat flux from the wall. t stands for the specific 

heat of the fluid; and the symbol T represents 

temperature. The term PT  (absent in equation (5.4.1)) 

represents the additional resistance caused by the 

laminar sublayer to the transport of heat and is of 

the following functional form (from Patankar and 

Spalding (1970)). 

a T 	ao m  -0.25 
PT = 9.24 	1)( at,T 	at,T 

(5.4.7) 
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5.5 	Summary and concluding remarks  

In the present chapter, the details of the 

turbulence model employed in the present calculations 

of turbulent flows have been described. In this 

turbulence model two additional equations are solved 

for the transport of the kinetic-energy of turbulence, 

k and its dissipation rate, E. The turbulent fluxes 

are related to the gradients of the time-averaged flow 

properties through an exchange-coefficient. This 

exchange coefficient is assumed to be isotropic and 

is calculated from the distributions of k and c. 

Special practices are adopted for the treatment of 

near-wall regions. The fluxes of momentum and heat 

for grid nodes adjacent to a wall are not calculated 

from usual gradient laws but are empirically prescribed 

based on a simplified analysis. 

The results of the computations employing 

the calculation procedures described in Chapter 4 

and the present turbulence model will be presented in 

Chapters 7 and 8. 



- 96 - 

CHAPTER 6  

THE EXPERIMENTAL PROGRAM 

6.1 	Introduction  

An experimental investigation of the 

turbulent flow in curved ducts was undertaken to collect 

data suitable for validation of the partially-parabolic 

procedure. The distributions of mean velocity and 

static pressure in the developing flow field of a 

strongly-curved duct have been measured. The height 

and the width of the duct were respectively 0.304 m and 

1.22 m; and the duct curved through 90 degrees with a 

centre-line radius equal to 2.52 metres. Two different 

configurations of the duct shape have been studied. 

In the first configuration, the cross-sectional 

dimensions of the duct were kept constant throughout 

the flow domain; in the second, the outer wall of the 

duct was made to diffuse outwards by 2.5 degrees. The 

measurements in the central region of the duct were 

made using a three-hole pitot static probe whereas in 

the region close to the bottom wall, a single hole 

total-head tube was employed. The flow Reynolds. 

number based on the average velocity and hydraulic 

diameter of the duct (4 x area/perimeter) was about 

7 x 105. 
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The measurements described in this chapter 

have been made in an existing experimental set-up at 

the University of Waterloo, Canada. In the following 

sections, first a brief description is given about the 

experimental apparatus and the measuring devices; the 

details concerning the design and fabrication of the 

apparatus however, have been omitted from the present 

description as they can be obtained from Jerie (1971). 

The experimental procedure is outlined and the scope 

of the present measurements is stated. Later the 

experimental data are presented and analysed; in this 

chapter, only a selected amount of data are presented; 

the complete set of experimental data will be described 

in Chapter 8 where they will be compared with the 

predictions. 

6.2 	Description of the experimental apparatus  

6.2.1 	General layout  

A schematic layout of the experimental 

apparatus employed in the present investigation is 

shown in Figure (6.2.1). Figure (6.2.2) shows the 

overall view of the apparatus. It consisted of a 

blower, settling chamber, a 6 m. long straight duct 

and a 90°  curved duct, all connected in series in the 

above sequence. The blower was driven by a 20 h.p. 

A.C. motor and was connected to the settling chamber 

through flexible rubber bellows which prevented the 
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Fig. (6.2.1): Schematic layout of the experimental apparatus. 



• 

Fig. (6.2.2): Overall-view of the apparatus. 
(i) Blower, (ii) Plenum chamber, 
(iii) Straight section, (iv) Curved duct. 
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vibrations of the motor from being transmitted to the 

test section. The settling chamber was 1.22 m. long 

and 1.83 m. square in cross-section and contained 

honey-combs and wire screens to smoothen the non-

uniformities in the flow from the blower. The exit of 

this settling chamber was 0.61 m. square in cross-

section and provided an area reduction of 9:1. The 

complete set-up was supported on angle-iron frameworks 

which contained provisions for levelling. The amount 

of air supply to the test section was controlled 

either by varying the opening of the inlet vanes; or 

by using different combinations of pulley drives 

connecting .the motor and the blower. The present 

apparatus was capable of producing a maximum average-

velocity of 22.5 m/sec in the test section; the 

corresponding Reynolds number, based on this velocity 

and the hydraulic diameter (4 x area/perimeter) of 

the test section, is 7.05 x 105.. 

6.2.2 	The test section  

The test section in which measurements were 

made is shown in Figure (6.2.3). The test section 

was rectangular in cross-section with a width and 

height respectively equal to.1.22 m and 0.304 m. It 

was curved in the horizontal plane, with a centre-line 

radius of 2.52 metres. The top and bottom walls and 

the inner side wall of this test section were firmly 
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connected to each other but the outer wall was allowed 

to be freely positioned. The inner side wall was 

made of a transparent material so as to permit f'.ow- 

visualisation and to ease the task of positioning 

the probes. The bottom wall was made of 6 mm. thick 

plywood and was supported by a wooden framework. On 

this bottom wall static-pressure taps were provided 

at 24 equally-spaced axial positions; each axial 

position contained nine taps which were placed at 5 cm 

intervals on either side of the duct centre-line. The 

top wall was constructed of eight wedges of equal size 

and was clamped to a wooden framework on the top of 

the duct. During the measurements the top wall wedge 

corresponding to the location of measurements was 

unclamped and replaced by the traversing gear to which 

the measuring devices were fixed. The outer wall of the test 

section was made of plastic and was manoeuvred by long 

metallic-screws; the desired variation in the duct 

width was achieved by advancing or retracting these 

metallic screws. The maximum permissible width in the 

present test section was limited to 1.42 m, the 

nominal width being 1.22 m. 

6.2.3 	The traversing mechanism 

The mechanism employed to traverse the pitot 

probes to the desired location in the flow field is 

shown in Figure (6.2.4). The main component in this 



Fig. (6.2.4): The traversing mechanism. 
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mechanism is the traversing gear to which the probes 

were attached through a miniature chuck. This traversing 

gear was supported on two horizontal steel shafts which 

in turn, were fixed to an aluminium platform. The 

aluminium platform was made of the same dimensions as 

the top-wall wedges; and could be conveniently 

positioned on the top wall by replacing the corresponding 

top-wall wedge. 

The above-mentioned arrangement permitted 

movement of the probe along the three coordinate 

directions (x,y,4) shown in Figure (6.2.5). The 

movement normal to the bottom wall (i.e. the y-direction) 

was achieved by a lead screw mechanism which formed an 

integral part of the traversing gear. The total 

vertical traverse permitted by this mechanism was 33 cm. 

The vertical position of the probe was measured on a 

vernier scale to an accuracy of 0.05 mm. The movement 

in the horizontal direction (i.e. along the x-coordinate) 

was obtained by sliding the traversing gear on the steel 

shafts. The horizontal position of the probe was 

measured by a simple tape-scale device to an accuracy 

of 2.5 mm. For movement in the direction along the 

bend the aluminium platform itself was unclamped from 

one position and was placed at the other. This 

aluminium platform also contained three traversing 

slots, where the traversing gear could be fixed. The 
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positions available for traversing are shown in Figure 

(6.2.5). 

In addition to the vertical movement, the 

traversing gear also provided angular rotation to the 

probe about the vertical axis. The rotation of the 

probe which was employed to align the probe with the 

flow direction was read on a vernier scale to an 

accuracy of 0.1 degree. 

6.2.4 	Measuring devices  

In the present investigation, the measurements 

were made using Pitot probes. Two different probes 

were employed and are shown in Figure (6.2.6). 

Probe (a) was a direction - sensitive probe and was 

employed.for measurements in the central region of the 

duct. This probe contained four pressure-sensing holes; 

three of these were located on the nose while the 

fourth, which measured the static pressure, was 

displaced slightly away from the nose. Of the three 

holes located on the nose, the central one was employed 

in the measurement of the total pressure; the other 

two, called the directional holes, were used in aligning 

the probe with the flow direction. The directional 

holes were drilled at an angle of 40 degrees to the 

stagnation point. Probe (b) which is referred to as 

the 'total-head tube' was much smaller in size than 



PROBE (a)  
E 
0 

B HOLES (I) 1.04 mm. 
E 
E 

r7. 

-ek 

k _ 216mm. 
(4.56 d) 

PROBE (b)  

	 54.0mm. 	  
(II-5d) 

14___1 	
61.5mm. 

4)1.16mm. 
4) 3-24mm. E 

E 

- 107 - 

4) 2-10mm, 

E 

4)1-60 mm. 

Fig. (6.2.6): Pitot-probes used for the present 
measurements. 
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Probe (a) and was used in measuring the flow variables 

in the region close to the bottom wall. Probe (b) 

comprised only one pressure-sensing hole; and for this 

reason, the flow angles with this probe were measured 

using the bisection method. Probe (b) did not have 

any provision for measuring the static pressure. 

The pressure outputs from the pitot-probes 

were measured using a pressure transducer and an 

integrating digital-voltmeter. The transducer converted 

the pressure signal to a voltage which was then read 

on the voltmeter;, the integration time on the volt-

meter was set to 1 sec. The voltages were read to an 

accuracy of .001 volts in a nominal value of 3 volts 

for the present values of velocities. For measurements 

with probe (b) a time-delay circuit (time constant 

= 10 secs) was also used in addition to the integrating 

circuit of the digital voltmeter; this additional 

device was necessary because of the large turbulence-

levels in the near-wall regions. 

6.3 	Calibration of measuring devices  

The measuring devices used in the present 

experiments were already calibrated, for accuracy and 

consistency, in a recent investigation by Young (1972). 

For this reason, no .calibration tests were made in the 

present investigation;but instead, the recommendations 
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of Young (1972) were followed. The recommended 

corrections to the measured values, in all instances, 

have been small; they are listed in Appendix A3 and 

have been applied to the experimental data during the 

t 	 data-conversion process. 

6.4 	Experimental procedure  

The procedure for measurements was simple 

and straightforward. 	It involved systematic and 

patient traversing of the probes from one end of the 

flow domain to the other and recording the various 

pressure outputs in the form of voltages which were 

indicated on the digital voltmeter. The traversing 

and the data recording were done manually; and no 

automatic devices were employed. The following two 

preliminary checks were first made to ascertain the 

correctness of the experimental apparatus. 

1) 

	

	
The experimental apparatus was ensured to be 

levelled along both its length and width; 

the heights of its supporting frameworks 
s. 

were accordingly adjusted wherever necessary. 

Second, a few measurements were made to 

examine the symmetry of the flow about the 

central horizontal' plane of the duct. These 

preliminary measurements indicated some 

asymmetry which could be partially removed 

by making all top-wall wedges to be in flush 

with each other. 
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For the measurements reported in this thesis, the 

maximum difference between flow angles measured at 

two symmetrically placed locations was 0.7 degrees in 

a nominal flow angle of 20 degrees; asymmetry in the 

mean velocity was about 2 percent. 

The final measurements comprised two identical 

sets of measurements in the same test section but 

with differing positions of the outer wall. For the 

first set, the width of the duct was kept constant at 

a value equal to 1.22 m throughout the flow domain. 

In the second, the outer wall was displaced uniformly 

outwards to provide a diffuser angle of 2.5 degrees. 

For each of the above flow configurations 8 axial 

stations along the duct were chosen to represent the 

flow field. Of these the first one was placed in the 

straight section, at a location 1.22 m. upstream of 

the curved duct. The others were dispersed in the 

curved duct at intervals of 11.25 degrees, the first 

being at the 0 degrees position. At each axial station, 

first, measurements were made of the flow in the central 

region; the mean velocity, the flow angle and the 

static pressure were measured at a total of 108 

locations which were disposed over the cross-sectional 

plane in a manner shown in Figure (6.3.1). The 

measurements were made using the Pitot directional 

probe; the shaded areas shown in Figure (6.3.1) were 
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not traversed due to obstructions caused by the side 

supports of the traversing mechanism. Later, attention 

was focussed oin the flow region close to the bottom 

wall of the duct; and the distributions of mean velocity 

• 	 and flow angle normal to the bottom wall were measured 

at a distance of 61 cm from the inner side wall. A 

total of 12 readings were taken in a vertical distance 

of 15 mm, the first measurement being with the probe 

touching the bottom wall of the duct. These measurements 

were made using the total-head tube. 

In addition to the above measurements of the 

mean flow, measurements were also made of the distributions 

of wall static-pressure; these measurements were made 

using the pressure taps situated on the bottom wall of 

the duct. The wall static pressures provided an 

estimate of the radial and axial pressure gradients; 

and in addition, also acted as a check on the 

corresponding values measured by the pitot directional 

probe. A few auxiliary variables such as the barometric 

pressure, the dry-bulb and wet-bulb temperatures of the 

room air were also measured, at frequent time-intervals 

during the experiment. 

( Contd. ) 
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6.5 	Data conversion 

The data-conversion procedure consisted of 

obtaining the distributions of velocities and static 

pressures from the 'raw' experimental data which were 

measured in the form of output voltages of the 

transducer. The first step in this procedure was to 

apply corrections to the data to account for the errors 

due to imperfections in the measuring devices. These 

errors which were determined from the calibration 

tests have in general been small; and are summarised 

in Appendix A3. In addition, corrections were also 

made to account for the effects of the displacement of 

the pressure centre of the pitot probe. These 

corrections consisted in increasing the heights of the 

measurement location by an amount equal to .15 times 

the diameter of the probe (as recommended by McMillan 

(1957)). For the measurements with the total-head tube 

this amounted to a correction of .16 mm to the heights 

of the measurement points; similar correction for the 

pitot directional probe was 1.35 mm. 

The remaining data-conversion procedure 

consisted of converting the corrected output-voltages 

to the corresponding pressures and calculating the 

distributions of the desired flow variables. The 

velocities measured. along the flow direction were 

resolved into two components, one along the longitudinal 
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direction and the other along the transverse direction 

.(i.e. along x); and the velocities were non-dimensionalised 

with the vector velocity at the centre of the cross-

section. The static pressures were similarly interpreted in 

terms of non-dimensional pressure coefficients, 

defined as 

cf = (P - P0)/ PQ2 	(6.5.1) 

where, p is the static pressure at any location and 

po  is the value at the 0°  position; Q is the vector 

velocity at the centre of the cross-sectional plane and 

p is the density. The value of the skin friction was 

also calculated, from the total pressure measured with 

the total-head probe resting on the bottom. wall (i.e. 

as a Preston tube). The procedure adopted for these 

calculations has been that recommended by Patel (1965). 

All the calculations described above have 

been made on a IBM 370 computer at the University of 

Waterloo, Canada. 

6.6 	Presentation of experimental results  

In this section, a few results are presented 

which describe the general flow-pattern observed in 

the present flow situation. The complete data 

obtained in the present investigation will be presented 
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Chapter 8 where they will be compared with the 

predictions from the calculation procedures. 

Figure (6.6.1) shows one typical plot for 

the variation of longitudinal-direction velocity (i.e. 

along the (P-direction) for various angular positions 

along the curved duct; these velocities have been 

measured in the constant-area duct at a height of 1 cm 

from the bottom wall. The velocities have been non-

dimensionalised with the vector velocity at the centre 

of the cross-sectional plane. From this figure it can 

be seen that the velocity profiles are distorted with 

their maximum towards the inside of the curved duct; 

and the flow field is distorted even before it enters 

the curved duct. Figure (6.6.2) presents .the 

development of the transverse velocities in the constant-

area duct at a location 61 cm. from the inner side-

wall; and Figure (6.6.3) shows the development of the 

radial pressure gradient in the same situation. It 

has been observed that, in the flow region presently 

investigated, the static pressure is nearly constant 

along lines normal to the bottom wall; the values 

plotted in Figure (6.6.3) are the average values 

normal to the bottom wall. 

Figures (6.6.4) and (6.6.5) show the results 

of the measurements in the near-wall region. In these 
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Fig. (6.6.1): Development of longitudinal velocity 
along the bend at plane y = 2 cm. 
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Fig. (6.6.5) 	Variation of velocity in the near-wall 
region in the diffuser, at a distance 
of 61 cm. from innerwall. 
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figures, the variation of velocity normal to the bottom 

wall is plotted for a location 61 cm. from the inner 

side wall. The coordinates are chosen to suit the 

verification of a logarithmic variation, of the 

following form: 

   

E y 

- 1  loge 	
/2)  

(6.6.1) 

the component of velocity in the direction 

of wall shear-stress, 

sectional plane, 

the density, 

the normal distance from the bottom wall, 

kinematic viscosity, 

K and E = constants in the logarithmic law. 

The dots in the above figures represent the 

experimental results; and the straight lines represent 

the best logarithmic fit to the experimental points. 

The straight lines were obtained by chosing a value 

of the skin friction, cf  in (6.6.1), so that they 

contained the maximum number of .experimental points. 

The values of skin friction calculated from Figures 

where wf = 

cf = 

Q = 

p = 

y = 

v = 
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(6.6.4) and (6.6.5) are shown in Figure (6.6.6). 

The results presented above lead to two 
Is 

main conclusions. First, itLobserved that the flow 

in a strongly-curved duct is partially-parabolic in 

nature. This is seen through the significant 

influence of the downstream events on the flow at the 

0°  position. Second, it may be concluded that in the 

region close to the bottom wall, the variation of 

velocity is logarithmic with distance from the bottom 

wall; a large proportion of the experimental points 

have been observed to lie on the 'best-fit' straight 

lines. 

6.7 	Concluding remarks  

In the present chapter, the details of the 

expertmental program have been described. The test 

rig, the measuring devices have been briefly described 

and the sequence and scope of measurements were outlined. 

The experimental results show that the flow is 

partially-parabolic in nature and is considerably 

influenced by the transmission of downstream events 

through the pressure field. The present experimental 

results also provide proof to the existence of a 

logarithmic variation of the frictional component of 

velocity with distance from the bottom wall. This 

information adds support to the assumptions made in 

deriving the wall functions explained in Chapter 5. 
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CHAPTER 7  

PREDICTION OF FLOW IN MILDLY-CURVED DUCTS  

7.1 	Introduction  

The flow and heat-transfer phenomena in 

mildly-curved ducts have been predicted using the 

parabolic calculation procedure described in Sec. (4.3). 

Computations have been made of the developing 

and fully-developed flow and temperature fields in 

curved pipes of circular cross-section. Both laminar 

and turbulent flow situations have been studied and 

the predictions have been compared with experimental 

data. For calculation of turbulent flows the 

Reynolds stresses have been modelled, using the two-

equation turbulence-model, explained in Chapter 5. 

In this chapter, the results of these computations 

are presented, in two separate sections. In the first, 

the predictions of laminar flow and heat transfer are 

presented and their agreement with experimental data 

is examined. From these comparisons, the validity 

of the 'parabolic' assumptions and the accuracy of 

the calculation procedure are ascertained. Later, 

the results of the turbulent-flow calculations are 

presented and compared with experimental data. The 

results presented in this chapter have also been 

reported earlier by the author in Patankar, Pratap 
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and Spalding (1974 and 1975). 

7.2 	Prediction of laminar flows  

7.2.1 	Computational details  

The physical situation considered for the 

present computations is illustrated in Figure (7.2.1). 

The flow situation has been mathematically represented 

in the (r,(3,0 coordinate system by the equations 

described in Chapter 3. Because of the mild curvature 

of the duct, the flow was assumed to be parabolic. 

The fluid properties namely viscosity, density and 

specific heat have been assumed, in the present 

computations, to be uniform throughout the flow domain. 

The computations were started at the 0°  position of 

the bend with the inlet conditions prescribed to be 

those of a fully-developed pipe flow. Because the 

flow is symmetrical about the diameter in the plane 

of curvature (plane AA), the finite-difference grid 

in the present computations covered only a semi-

circular sector of the cross-section, as shown in 

Figure (7.2.2). The boundaries of this flow domain 

comprised the two radial lines on the horizontal 

diameter, a semicircular region of small radius 

at the centre, and the pipe wall. The first three 

boundaries were considered as planes of symmetry; and 

the gradients of variables normal to the boundary 

were prescribed to be zero. The finite-difference 
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Fig. (7.2.1(a)) : The physical situation 
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. Fig. (7.2.1(b)): General flow pattern in the 

cross-sectional plane of a curved pipe. 
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grid in the cross-sectional plane possessed 15 

intervals in the r-direction and 11 intervals in the 

0-direction. That the 15x11 grid gave sufficient 

accuracy was confirmed by repeating the computations 

with finer and coarser grids; the results of one such 

'grid-independency test' (along r-direction) are 

shown in Figure (7.2.3). The forward-step dependency 

was tested by repeating the computations with smaller 

and larger step sizes; a step size was then chosen 

which was small enough not to affect the solution. 

The developing flow solutions were obtained 

by the marching procedure with small forward steps. 

However, when only the fully-developed flow was to 

be computed very large forward steps were taken and 

the velocities were under-relaxed at each step. The 

fully developed computations, starting with a uniform 

velocity profile, usually needed about 140 steps for 

convergence of the solution. The computer time needed 

for each forward step was of the order of 0.28 secs on 

a CDC 6600 computer. 

7.2.2 	The developing region  

Figures (7.2.4) to (7.2.6) display the 

development of the axial-velocity field along the 

cp-direction and comparisons with experimental data of 

Austin (1971). The agreement is quite good considering 
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the fact that the inlet velocity-profiles in the 

experiment were not exactly parabolic. Figure (7.2.7) 

shows the development of the secondary flow field 

along the 4)-direction. The predictions indicate that 

the secondary velocities develop in a damped oscillatory 

manner in which the amplitude of the oscillations is 

greatly diminished after the first oscillation. 

Because of lack of experimental data, the present 

oscillatory behaviour could not be compared with 

results of Austin (1971); but it is qualitatively 

in confarmity with some other measurements such as 

those of Hawthorne (1951) and Squire (1954) for 

turbulent flow in curved pipes. The secondary velocities 

(0-components) plotted in Figure (7.2.7(b)) at two 

typical locations in the cross-section show that the 

period of first oscillation is about 75 degrees. 

Figure (7.2.8).shows the radial variation of static 

pressure plotted for various angular positions in the 

4-direction. Close examination of this plot shows 

that the static-pressure distribution also develops 

in an oscillatory manner but attains a uniform value 

much quicker than the secondary velocities. Figure 

(7.2.9) shows the development of the friction factor 
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Fig. (7.2.7(a)): Development of secondary velocity along 
the diameter BB. K=198.0, R/a=29.1. 
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Fig. (7.2.8): Development of static-pressure variation 
in plane AA at K=198.0, R/a=29.1. 
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seen to be satisfactory. Figure (7.2.10) shows the 

development of the temperature field for the condition 

of axially-constant heat flux with isothermal periphery. 

The flow field for these computations was prescribed 

to be fully-developed at the entrance of the 

temperature field in accordance with the experimental 

conditions reported by Dravid et al.(1971). The 

Prandtl number of the fluid was varied linearly from 
(0 in radians) 

6 at the inlet to 4 at location where (Rqqa) Lequals.250. 

The calculations reproduce the oscillatory development 

of the temperature field which has been observed in 

the experiments; but the predictions show a quicker 

damping of the oscillations. Figures (7.2.11) and 

(7.2.12) show the effect of Prandtl number on the 

nature of these oscillations. It is seen that the 

oscillations are more pronounced at larger Prandtl 

numbers. .A dimensionless wavelength A of the first 

oscillation, defined as the distance (114/a) between the 

point at which a line parallel to the bulk temperature 

line is tangential to the first maximum and first 

minimum in the wall-temperature curve is compared with 

experimental results for various Prandtl and Dean 

numbers. The present computations confirm the 

experimental results of Dravid (1971) that the Prandtl 

number, in the range studied (0.7 - 15.0) has little 

effect on the wavelength X. The values of the 

wavelength A for a few Dean numbers are shown in Table (7.2.1). 
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Fig. (7.2.10): Development of wall temperature and 
Nusselt number for the case of axially-
constant heat flux at K=225.0 and 
R/a=20.0; Prmean  =5.0. 
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Fig. (7.2.11): Development of wall temperature and 
Nusselt number for the case of axially-
constant heat flux at K=225.0 and 
R/a=20.0; Pr=0.71. 
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Fig. (7.2.12): Development of wall temperature and 
Nusselt number for the case of axially-
constant heat flux at K=225.0 and 
R/a=20.0; Pr=16.0. 
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Table 7.2.1  

Dean number 	 X 

(K=Reia/R) 	Computed 	Measured 

225.0 	51.0 	52.5 

447.0 	71.0 	75.0 

800.0 	73.0 	100.0 

7.2.3 	The fully-developed region  

The computations of flow and heat-transfer 

characteristics in fully-developed regions have also 

been compared with experimental data of various authors. 

Figure (7.2.13) compares the present predictions of 

the fully-developed velocity profiles with those of 

Adler (1934) and Mori and Nakayama (1965). Figure 

(7.2.14) compares the corresponding friction factors 

with data of various authors (from Ito (1969)). The 

agreement of the predicted velocity profiles and friction 

factors with experimental data is good. The computed axial- 

velocity profiles at various angular planes are shown 

in Figure (7.2.15),and Figure (7.2.16) displays the 

effect of Dean number on the axial-velocity profiles. 

It can be seen that the velocity peak is shifted towards 

the outside as the Dean number is increased. Consistent 

with the angular variation of the velocity profile is 

also the variation of the friction factor along the 

periphery of the cross-section, as shown in Figure (7.2.17); 
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• 

the friction factors at the outside are considerably 

higher than those at the inside. 

The fully-developed temperature field has 

been computed under the conditions of axially-uniform 

heat flux and is compared in Figure (7.2.18) with the 

experimental data of Mori and Nakayama (1965). The 

comparison shows good agreement in the outside half 

of the plane; but there are significant differences in the 

inside region. To investigate the reason for this 

discrepancy,further comparisons of the predictions 

have been made with the theoretical solutions of 

Akiyama and Cheng (1971); from (7.2.19) it is seen 

that the present calculations of peripheral variations 

in Nusselt number are in good agreement with Akiyama and 

Cheng's results for the Dean numbers they considered. 

It is also seen from Figure (7.2.20) that the inside 

heat-transfer coefficient approaches half the straight 

tube value at a Dean number of about 300 and then 

increases slowly to the straight tube value at a Dean 

number of 1200; these observations which are in 

agreement with the solutions of Akiyama and Cheng (1971) 

disagree with the experimental findings of Mori and 

Nakayama which show much steeper temperature-gradients 

on the inside. In view of the comparisons in Figures 

(7.2.19) and (7.2.20), it appears that the temperature 

profile of Mori and Nakayama (1965) may be in error, 
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either owing to inaccuracy in measurement or imperfection 

in setting up the stated temperature boundary-conditions. 

However, despite the discrepancy in temperature profile 

the agreement in the mean Nusselt numbers seems to be 

goodlas can be seen from Figure (7.2.21(a)). Further 

comparisons of the predicted fully-developed Nusselt 

numbers have been made with the experimental results of 

Dravid et al. (1971) and are shown in (7.2.21(b)); the 

agreement is satisfactory. In Dravid's experiments 

the Prandtl number varied from 6 to 4 over the 

.developing region. Since the comparison in Figure 

(7.2.21(b)) is for the fully-developed condition, the 

0 	computations were based on a uniform Prandtl number of 

4, which was appropriate to the outlet condition. 

Figure (7.2.22) illustrates the effect of Dean number 

on the temperature profiles along plane AA; the effect 

is observed to be the same as that on the velocity 

profiles. The effect of Prandtl number on the heat-

transfer rates is shown in Figure (7.2.23). It is seen 

that the peripheral variation of the heat-transfer 

ratesiis larger for fluids with high Prandtl numbers. 

7.2.4 	Discussion  

The predictions presented above show good 

agreement with experimental data and thus validate 

the accuracy of the calculation procedure. The good 
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agreement observed in the predictions of the developing 

flow-field also proves that the flow in mildly-curved 

ducts is parabolic in nature. The flow phenomena 

observed in the present flow situation may be described 

as follows: The curvature of the duct gives rise to 

centrifugal forces which act at right angles to the 

main flow direction; in order to balance the centrifugal 

forces, pressure-gradients along the cross-stream 

directions are set up with the high-pressure zone at 

the outside of the curvature. As a consequence of 

these cross-stream variations in the pressure field, 

secondary velocities are generated, which distort the 

primary (axial) velocity field, the distortions 

increasing with the Dean number. The secondary flow 

pattern which consists of two symmetrical vortices in 

the cross-sectional plane is shown in Figure (7.2.1(b)). 

The secondary flows have two main consequences: Firstly, 

they cause an increased 'mixing'.  in the flow, thereby 

enhancing the friction factors and the rates of heat and 

mass transfer over their straight-tube values. Secondly, 

because of the distortions in the velocity field, the 

friction factors and heat transfer rates vary 

significantly over the periphery, the ratio of outside 

to inside values being as large as 4. Also, as a 

consequence of these secondary flows, the heat-transfer 

rates increase with Reynolds number compared with the 

case of the laminar flow in straight pipes where the 
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heat-transfer rates remain constant at a value depending 

on the thermal boundary condition. The secondary flow 

is thus the chief distinguishing feature of the flow 

phenomena in curved pipes. 

The development of the flow and temperature 

fields in curved pipes has been observed, both 

experimentally and theoretically, to be oscillatory. 

Squire and Winter (1951) explain the oscillations 

in the flow field to be a result of the changes in the 

kind (sign) of streamwise vorticity which is produced 

as the flow passes around the bend. Hawthorne (1951), 

shows using an inviscid analysis, that the period of 

first oscillation is approximately equal to 2.36 Tr i2a/R 

R
which for the present radius ratio of N  = 29.1 gives a 

value of 110 degrees. Compared with this value, the 

present computations, which include the effects of 

viscosity, give a period of first oscillation of about 

75 degrees. However, the inlet conditions assumed in 

Hawthorne's theory have been somewhat different than 

those employed in the present computations and because 

of this fact, some difference may be expected between 

the two solutions. The oscillations in the development 

of the temperature field however, are not a result of 

the oscillations in the secondary flow; this is 

because, in the present computations, the flow field 

has been prescribed to be fully-developed at the start 
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of computations. Therefore these oscillations can be 

due to the secondary flow itself which provides the 

mechanism for convecting colder temperatures from the 

central core to the near-wall regions. A detailed 

explanation, of this kind, has been given earlier, 

by Dravid et al.(1971). 

7.3 	Prediction of turbulent flows  

7.3.1 	Computational details  

The success achieved in the prediction of 

laminar flows in curved pipes encouraged the author to 

extend the application of the parabolic procedure to 

predict the turbulent flow and heat transfer characteristics 

in curved pipes. The computations have been made in 

a manner similar to the laminar flow computations; but 

for the turbulent flow calculations two additional 

differential equations have been solved for the transport 

of the turbulence kinetic-energy and the volumetric 

rate of its dissipation. The details of the practices 

adopted in representing the turbulence structure have 

already been described in Chapter 5. 

The finite-difference grid, as in the case 

for laminar flows, covered only a semi-circular sector 

of the cross-section; and possessed 14 intervals in the 

r-direction and 11 intervals in the 0-direction. The 

forward-step size was fixed, after tests for grid 
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independency of the results to be 0.1 degrees. The 

computer time for the calculation of turbulent flow 

was of the order of 0.45 secs per forward step, on a 

CDC 6600 computer. 

7.3.2 	The developing region  

Figure (7.3.1) provides a comparison of the 

predicted velocity-head contours with the experimental 

data of Rowe (1966) for a 180°  pipe bend. The Reynolds 

number of the flow was 2.36 x 105 and the ratio of bend 

radius to pipe radius was 24. Comparisons are made for 

various angular positions along the bend, the inlet 

being a fully-developed turbulent pipe-flow. It is 

seen that both for the predictions and the experiments, 

the velocity head is distorted with the velocity 

maximum shifted to the outside of the bend. The 

agreement with experimental data has been satisfactory 

although it is not as good as that observed for laminar 

flows. Figures (7.3.2) and (7.3.3) present the 

predicted development of the secondary flow field for 

the above flow situation. It is seen that, as in the 

laminar-flow case, the development of secondary flow-

field is oscillatory; but the present period of 

oscillations is somewhat larger than that for laminar 

flows. For the present radius ratio of 24, the period 

of oscillations has been observed to be about 135 degrees 

which is in close agreement with the measured value of 
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150 degrees by Squire (1954). The development of the 

temperature field in a 180°  bend has been calculated for 

the boundary condition of constant heat flux and the 

results are compared in Figure (7.3.4) with experimental 

data of Ede (1963). The flow field at the inlet was 

prescribed to be that of a fully-developed turbulent 

pipe-flow. The agreement with experimental data is 

satisfactory. The heat transfer rates and the wall 

temperatures in case of turbulent flows also display 

oscillations in their development but the amplitude of 

these oscillations is less than that observed in the 

laminar flow situation. 

7.3.3 	The fully-developed region  

Figure (7.3.5) displays the comparison of 

fully-developed axial-velocity profiles along the 

diametrical planes AA and BB (ref. Fig. (7.2.1)) with 

experimental data of Hogg (1968) and Mori and Nakayama 

(1967). In Figure (7.3.5(c)), results are also presented 

for calculations using a form of the mixing-length 

w 	 hypothesis. It can be seen that the two-equation • 

turbulence-model yields superior predictions. The fully-

developed secondary velocities along plane BB are 

compared in Figure (7.3.6) with the experimental data of 

Hogg (1968); the agreement is good for both the Reynolds 

numbers. Figure (7.3.7) shows the fully-developed 

friction factors compared with the empirical relation 
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of Ito (1959); also shown in Figure (7.3.7) are the 

computed friction factors for turbulent flow in straight 

circular pipes. The agreement with experimental data is 

quite satisfactory in case of straight pipes but for 

the case of curved pipes, the magnitude of the friction 

factor is under-predicted, the maximum difference 

between the experimental and computed values being 

about 8 percent. Figure (7.3.8(a)) shows the fully-

developed axial-velocity profiles at various angular 

positions along the bend; it is observed that the 

angular variation of the velocity, in case of turbulent 

flow, is smaller than that observed for laminar flows. 

The peripheral variation of the friction factor is 

also observed to be smaller, as shown in Figure (7.3.8(a)); 

the ratio of friction factors at outside to those at 

inside is about 2 whereas for laminar flows it was 

about 4. 

Computations have also been made of the fully-

developed temperature field for the boundary condition 

of constant heat flux around the periphery. Figure 

(7.3.9) and (7.3.10) show results of computations made 

in coils of radius ratio of 104 and comparison with 

experimental data of Seban and McLaughlin (1963). The 

agreement is observed to be good both in the peripheral 

variation of the Nusselt number and in its average value. 

However, some discrepancies have been observed when the 
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predictions at lower values of radius ratio have been 

compared with experimental data. Figures (7.3.11) 

shows the computed temperature profiles (non-

dimensionalised with inside wall temperature) in coils 

with radius ratio of 25.9 and comparison with experimental 

data of Hogg (1968). The agreement is satisfactory in 

the inside region but discrepancies exist in the outside 

region. The Nusselt numbers, shown in•Figure (7.3.12), 

also seem to be under-predicted in the outside region. 

The discrepancies in the computed heat transfer rates 

and the friction factors suggest that the turbulence 

model presently used needs further refinements to 

account for the effects of curvature on the turbulence 

structure. 

7.3.4 	Discussion  

From the experimental and theoretical results 

presented above for turbulent flows, it is observed 

that the effects of curvature on turbulent flows are 

smaller than those observed for laminar flows. Thus, 

the distortion of the velocity-profile is less than 

that observed for laminar flows; and consequently the 

magnitudes of friction factors and heat-transfer rates 

vary less over the periphery.. For example, the turbulent 

friction-factors (Figure (7.3.7)) vary only half as 

much as that observed in Figure (7.2.17) for the laminar 

' flow case. The development of secondary flow-field 
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in turbulent flows is also oscillatory; the period of 

first oscillation is in good agreement with the 

experimentally observed value. The development of the 

temperature too is oscillatory but the oscillations 

are small; in the present computations, the inlet flow 

was prescribed to be the fully-developed straight-pipe 

flow; and thus the oscillations now observed are also 

partly due to the development of the flow field. 

The agreement between the present computations 

and the experimental measurements is satisfactory; the 

velocity contours have been predicted to be distorted 

and the friction factors have been observed to be 

larger than the straight-pipe values. However, their 

quantitative agreement is not as good as that observed 

for laminar flows; hence it is probable that the 

turbulence model is the source of what discrepancies 

exist. Possible modifications to the turbulence model 

that may be considered in future studies are: 

(i) to discard the effective-viscosity approach 

and to solve differential equations for each 

individual shear stress; or 

(ii) to employ an intermediate approach, such as 

that proposed by Launder (1971) where the 

differential equations for turbulent shear-

stresses are approximated by algebraic 

equations. 
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• 

Of these, the second one is somewhat easy but the 

first possibility, namely the use of Reynolds-stress 

models will involve considerable development effort and 

validation over simpler three-dimensional flow situations 

before their being applied to predict the present flow 

situation. 

7.4 	Concluding remarks 

The parabolic calculation procedure has been 

successfully applied to predict the three-dimensional 

flow and heat-transfer phenomena in mildly-curved 

circular pipes. For laminar flows, the agreement 

between predictions and the corresponding experimental 

data has been observed to be good. For turbulent flows 

however, the agreement is not as good as that observed in the 

predictions for laminar flow-situations. It is concluded 

that some modifications need to be made to the turbulence-

model to account for the effects of secondary flow; 

possible approaches have been outlined. 
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CHAPTER 8  

PREDICTION OF FLOW IN STRONGLY-CURVED DUCTS  

8.1 	Introduction 

0 
The flow phenomena in strongly-curved ducts 

are different from those in ducts with mild curvature 

because of their substantial elliptic effects in the 

pressure field. These elliptic effects make the flow 

partially-parabolic; and require for their computation 

a different numerical scheme. In the present chapter, 

the partially-parabolic procedure described in Sec. (4.2) 

is employed to compute the flow in the geometrical 

situation described in Chapter 6. A sketch of this 

geometry is provided in Figure (8.1.1). The flow was 

turbulent; and the turbulent stresses were modelled using 

a two-equation (k‘k,e) turbulence-model, the details of 

which have already been described in Chapter 5. The 

computations covered both the geometrical configurations 

experimentally studied, namely the constant-area duct 

and the diffuser. The computed distributions of static 

pressure and mean velocity are compared in this chapter, 

with experimental data and also with the calculations 

using the parabolic procedure. 
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8.2 	Computational aspects  

The flow domain in which computations have been 

made consisted of the 1.22 m. long straight section and 

the 90 degrees of the curved duct; because of the 

• 

	

	symmetry of the flow, only one half of the height has 

been considered. The finite-difference grid possessed 

17 nodes in the x direction and 14 in the y direction; 

the grid was non-uniform with more nodes in the near-

wall regions. In the longitudinal direction, 10 stations 

were placed in the straight section and 24 in the curved 

section, the latter with an approximate spacing of about 

5 degrees. The computations were confirmed, by 

experimentation with finer and coarser grids to be 

substantially independent of grid fineness. 

The partially-parabolic procedure converged in 

50 sweeps of the flow domain; and the necessary computing 

time on a CDC 6600 computer was about 15 minutes. In 

the parabolic 'scheme only one sweep of the flow domain 

was necessary; but it was necessary to reduce significantly 

• 

	

	the forward step size (to q,  0.2 degrees) in order to 

make the computations numerically-stable. The computing 

time in the parabolic case was about 5 minutes. 

w 
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8.3 	Prescription of inlet and exit conditions  

The flow conditions at the inlet plane to the 

calculation domain were prescribed based on experimental 

measurements at the location 1.22 m. upstream of the 

a 
	curved duct. Figure (8.3.1(a)) shows the inlet profiles 

for the longitudinal-direction velocity (w) measured at 

the above location; the transverse velocities at the 

same location were observed to be negligibly small and 

the static pressure was uniform over the cross-sectional 

plane. The inlet-values of kinetic energy of turbulence 

were prescribed based on measurements of the intensity 

of turbulence (w /w) along the axial-direction; Figure 

(8.3.1(b)) shows the variation of turbulence intensity 

with distance from bottom wall at one location in the 

inlet plane (from Young (1972)). The inlet values of 

dissipation of kinetic energy were calculated assuming 

a dissipation length-scale distribution similar to the 

ramp function for the mixing length in two-dimensional 

boundary layers (Patankar and Spalding (1972), p. 20). 

The sensitivity of the predictions to the prescription 

of the inlet values of turbulence kinetic-energy and its 

dissipation rate was however, observed to be only small. 

The boundary condition at the exit was prescribed to be 

that of the uniform pressure, corresponding to the 

physical condition of free discharge into the atmosphere. 

These inlet and exit conditions were the same for both 

the geometrical configurations. 
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Fig. (8.3.1(b)): Variation of inlet turbulence intensity 
at the centre of the duct width(x=24 in.). 
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8.4 	Results for constant-area case  

Figures (8.4.1) to (8.4.4) show the predicted 

development of the longitudinal velocity and comparisons 

with experimental data. The comparisons have been made 

at different values of normal distance (y) measured from 

the bottom wall. The velocities have been non-dimension-

alised with the total velocity at the centre of the cross-

sectional plane. Figures (8.4.5) to (8.4.7) display the 

development of transverse-direction velocity, along the 

curved duct; the predictions using the parabolic and 

the partially-parabolic procedures are compared with. 

measurements. Figure (8.4.8) illustrates the 

distribution of static pressure in the curved duct. It 

has been observed both from the experiments and the 

computations that for regions farther than 10 cm from 

the side walls, the static pressure is constant along the 

y-direction; the values plotted here are thus the mean 

values along the y-direction. The velocities and static 

pressures presented above are also represented in Figure 

(8.4.9) as contours of total pressure (= p + IL 2  ( u2+v2+w2)). 

In Figure (8.4.10), comparisons are presented for the 

longitudinal variation of the static pressure along the 

duct centre-line; it is referred to its value at the 0°  

position and is non-dimensionalised with the velocity-

head corresponding to the total velocity at the centre 

of the 0°  cross-sectional plane. Figure (8.4.11) 

presents the predicted variation of skin friction 
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coefficient (2w/ r- pQ2  where T = wall shear stress; 

Q = total velocity at the centre of the cross-sectional 

plane and p is the fluid density) at several angular 

positions along the bend. It is observed that the 

skin-friction coefficient in the inside region is larger 

compared with its outside value. From the above results 

it is seen that the flow situation presently considered 

is partially-parabolic in nature; and the computations 

using a partially-parabolic calculation procedure display 

good agreement with experimental data; but when the flow 

is treated as fully-parabolic, the results are in # 

disagreement. The origin of the elliptic effects in the 

pressure field will be discussed in a later section. 

' 8.5 	Results for the diffusing-area case 

Computations of the flow in a curved diffuser 

were made in an identical manner; except that in these, 

the width of the duct was varied along the (-direction; 

and a different coordinate system (T-1,,) was employed. 

The inlet and exit conditions for these computations 

were the same as those for the constant-area case, as 

presented in Sec. 8.3. The results of the computations 

for the diffuser are presented in Figures (8.5.1) to 

(8.5.9). It is observed that these results do not differ 

significantly from those for constant-area duct; this 

may be because of the small diffuser angle (2.5°) 

considered in the present study. 
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Fig. (8.5.4): Development of longitudinal velocity along the 
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8.6 	Discussion  

The comparisons presented above show that the 

flow in strongly-curved ducts is partially-parabolic in 

its nature; that is the flow is significantly influenced 

by the effects of the transmission of downstream events 

through the pressure field. The origin of the elliptic 

effects can be better understood by examining the flow 

situation in somewhat more detail. As described in 

Sec. (7.2.4), the flow in a curved duct is associated 

with cross-stream variations in the pressure field 

which are generated as a result of the centrifugal 

forces acting on the fluid. The consequence of these 

cross-stream pressure-variations are two fold: Firstly, 

they give rise to transverse velocities, i.e. velocities 

along the x and y directions, as shown in Figure (8.6.1) 

(in the present case, because of large width of the duct, 

the y-direction velocities are confined only to the 

regions near the side walls and are negligible elsewhere). 

Second, the cross-stream variations accelerate certain 

regions of flow relative to the other by creating 

differential amounts of longitudinal pressure gradients 

over the cross-section. The elliptic effects arise 

because of this later consequence. It is through the 

variations in the longitudinal pressure gradients that 

events at a downstream station are transmitted to upstream 

regions. The flow region which is most influenced by 

these downstream effects is that where the cross-stream 
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Fig. (8.6.1): Secondary flow pattern in a curved duct. 
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pressure variations are changed rapidly; in the present 

case this happens at the inlet of the curved duct. In 

this region, the flow from the straight section is 

suddenly accelerated on the inner side and retarted on 

the outer side as it encounters the pressure variations 

in the curved duct. The profile of longitudinal velocity 

is hence distorted, with a velocity maximum at the inside, 

even before the flow enters the curved duct. The flow 

pattern produced in the straight section continues to 

develop further in the curved duct; and is influenced 

then by the centrifugal forces. The effect of the 

centrifugal forces is to drive the fluid outwards to 

shift the maximum to the outside; but the extent to which 

they overtake the inlet effects depends on the curvature 

of the duct, the state of flow. (laminar or turbulent), and 

the duct length provided for the flow development. In 

strongly curved ducts, since the radial pressure 

variations are large the distortion of the flow field 

at 0°  of the bend is substantially large; and therefore 

the effects of the inlet ellipticity prevail over a 

large region of the flow domain. In mildly-curved ducts, on 

the other hand, the cross-stream pressure gradients are 

relatively small; and the effects of the inlet ellipticity 

are quickly dominated. 

The need for a partially-parabolic calculation 

procedure depends on the length of flow region influenced 

by the elliptic effects in the pressure field. From 
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• Figures (8.4.8) and (8.5.8) it may be seen that 

after about 20 degrees of the bend, there are no large 

changes in the cross-stream pressure-gradients; this 

means that the region after about this distance in the 

curved duct is parabolic; and can safely be computed 

using the parabolic procedures  provided the starting 

conditions for the marching integration are prescribed. 

correctly. In mildly-curved ducts since the flOw field 

at the 0°  position is relatively unaffected it is safe 

to assume that the flow at the 0°  location is the same 

as that in the straight pipe; such an approximation will 

not give correct results for flow in strongly-curved 

ducts, as has been evident from the present calculations. 

The partially-parabolic nature of the flow in strongly-

curved ducts is also evident from the contours of total 

pressure which show regions of equal total-pressure on 

the inside and outside. The static pressure at the 

outside is higher than that at inside but since the 

velocity is smaller, the total pressures at inside and 

at outside are nearly the same. But in mildly-curved 

ducts it is the opposite; the regions of high velocity 

and high static pressure are both at outside. 

Two aspects of the present calculations need 

further discussion. First, the conditions at the exit. 

In the present computations, the exit boundary was 

prescribed to be of uniform pressure i.e. with no 

variations across the duct cross-section. But in 
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reality, the pressure field is not changed suddenly to 

the atmospheric conditions; but some variations will be 

present at the end of the test section. Since these 

variations were not measured at present, a uniform-

pressure was prescribed at the exit. The effect of this 

wrong prescription of exit-boundary condition is however 

small on the calculations made in regions away from the 

exit. In the present calculations comparisons with 

experiments upto 67.5°  of the bend have been good; but 

since no comparisons have been made farther than this 

position the precise extent of region influenced by the 

exit-boundary condition is not known. In any case, it is 

possible in the present calculation procedure also to 

prescribe a desired variation of exit pressure without 

additional difficulty. 

Second, the present calculations using the 

partially-parabolic procedure /although show good 

agreement in axial-velocity profiles,under-predict the 

transverse velocities by about 10-15 percent. It may be 

recalled that a similar discrepancy between predicted 
the 

and measured values was also observed incase of turbulent 

flow in mildly-curved pipes (Sec. 7.3). The discrepancies 

observed earlier and in the calculations of the present 

chapter are probably due to the turbulence-model currently 

used From a few measurements of Vermeulen (1971) in a 

curved duct, it appears that the turbulent viscosity for 

flow in. curved ducts is not isotropic as has been assumed 
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in the present turbulence model; for the viscosity in 

the transverse directions was observed to be about half 

of that in the longitudinal direction. It may therefore 

be necessary to discard the effective viscosity approach 

for calculation of flow in curved ducts; and employ 

more complex turbulence models; alternatively,•it is 

also possible to make empirical modifications to the 

kl,e model, based on experimental findings.such as that 

of Vermeulen (1971). 

8.7 	Concluding remarks  

The computations reported in this chapter 

have shown that for the calculation of flows in strongly-

curved ducts, the partially-parabolic procedure is 

greatly superior; it gives good agreement with experimental 

data, whereas the fully-parabolic procedure is even 

qualitatively at variance with the measurements. From 

the view point of economics, the partially-parabolic 

procedure is however, about three times more expensive 

than the parabolic one; but when compared with a fully-

elliptic procedure, it is significantly cheaper, not 

least in computer storage. 
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CHAPTER 9  

CONCLUDING REMARKS  

9.1 	Main results of the present study  

The main achievements of the present study 

and the conclusions thereof may be summarised as 

follows: 

1) - 	The parabolic calculation procedure has been 

successfully applied to predict the laminar 

flow and heat transfer in mildly-curved 

circular pipes. The computed distributions 

of mean velocity, static pressure, temperature 

etc. displayed good agreement with experimental 

data. 

2 
	

The capabilities of the two-equation (k%e) 

turbulence-model to predict the turbulent 

flow in curved ducts have been assessed. 

Predictions for turbulent flow and heat 

transfer in a 180°  bend agreed reasonably 

well with experiments but the agreement has 

not been as good as that observed for the 

case of laminar flows. The turbulence model, 

it is concluded, therefore requires 

modifications to account for the effects 

of secondary flow on the turbulence-structure. 
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3 
	

A calculation procedure has been developed 

for economical handling of partially-

parabolic flow situations. In this 

procedure, account is taken of the 

influences of downstream events which 

travel upstream via the pressure field. 

The distinctive features of this procedure 

are: 

(a) it stores the pressure field as a 

three-dimensional array; and 

(b) it performs several marching sweeps 

through the flow domain 

In each sweep, the guessed pressure field 

is corrected so as ultimately to satisfy 

the momentum and continuity equations over 

the complete flow domain. The procedure 

has been successfully validated for 

turbulent flow in a strongly-curved 

rectangular duct. The predictions using 

this procedure have been observed to be in 

close agreement with experimental data; the 

results from the parabolic procedure, on the 

other hand, were at qualitative variance 

with measurements. 

4) 
	

An experimental program has been successfully 

completed; measurements have been made of 

the distributions of velocity and pressure 
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for turbulent flow in a strongly-curved 

duct. The data obtained from this 

investigation have been useful in 

validating the partially-parabolic calculation 

procedure. Further, the measurements made 

close to the bottom wall of the duct have 

suggested that, in this region, the 

component of velocity along the wall-shear-

stress direction varies in a logarithmic 

manner with distance from the wall. • 

5) 	The computing times required for the present 

calculations have been modest. The partially-

parabolic procedure has been observed to be 

more economical than a fully-elliptic 

procedure; but in comparison with the 

parabolic procedure, the partially-parabolic 

procedure requires computing times three 

times as large. 

9.2 	Suggestions for future work 

The present investigation suggests a few 

areas where further research is needed to improve 

the present capabilities to predict flows in curved 

ducts; these areas are as follows. 

1) 
	

First, it shall be beneficial from view 

point of economy if the convergence rate of 

the partially-parabolic calculation 
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procedure can be further improved. At this 

stage, the author is not aware of any 

specific improvements to the procedure, 

except those discussed in Section 4.7; but 

it is recommended that in future studies 

concerning the partially-parabolic calculation 

procedure, attention may be focussed also on 

this aspect. 

A second observation from the present study 

is concerned with the turbulence model 

currently employed to predict flows in 

curved ducts. It appears from the present 

calculations that turbulence models based 

on the concept of turbulent viscosity do 

not completely represent the turbulence 

structure in curved ducts. Further testing 

of the turbulence model needs to be made 

to establish that the present conclusions 

are sound, by predicting other experimental 

data in curved ducts and in similar flow 

situations (e.g. flows with rotation, 

buoyancy etc). If the present conclusions 

are firmly proved, it is necessary then to 

develop either more-complex turbulence- 

models, such as the Reynolds-stress models, 

or to devise empirical modifications to the 

current two-equation turbulence model. 
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Both these refinements to the turbulence 

model will need some experimental information 

on the turbulence structure in curved ducts 

which, at the moment is lacking; it is 

therefore also necessary to make 

measurements of the turbulence structure 

in curved ducts. 
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NOMENCLATURE 

Location of  
Symbol' 	Meaning 	 first appearance 

A 

C 

coefficient in the discretised 

equation. 

radius of pipe. 

coefficient in the finite-

differetice equation; represents 

contribution from upstream and 

source terms. 

cell areas for calculating mass 

fluxes. 

a 

B 

Eqn. (4.2.8) 

Sec. (2.2.2) 

Eqn. (4.2.8) 

Eqn. (4.2.14) 

CC2'Cp 	constants in the turbulence model. Eqns.(5.3.2-5.3.4) 

cp 	specific heat. 	Eqn. (5.4.6) 

cf 	coefficient of skin friction 

(TO PQ2). 	 Eqn. (6.6.1) 

Du,Dv,Dw 	coefficients of pressure gradient 

terms. 	 Eqns. (4.2.10-4.2.12) 

d 	diameter of pitot probe. 

E 	constant in the log law. 	Eqn. (5.4.1) 

F 	coefficient in the discretised 

equation. 	 Eqn. (4.2.3) 

friction factor (dp/dz / ipw:v); 

also interpolation factor in 

Eqn. (4.2.4). 	Sec. (7.2.2) 

generation of turbulence energy. 	Eqn. (5.3.3) 

flux of ci) in the ith  direction. 	Eqn. (3.2.5) 
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Location of  
Symbol 	Meaning 	 first appearance 

Sec. (2.2.2) 

Sec. (5.1) 

Eqn. (4.2.2) 

Eqn. (4.2.18) 

Eqn. (4.3.7) 

Eqn. (5.4.6)• 

Eqn. (3.2.2) 

Eqn. (3.2.7) 

Eqn. (6.6.1) 

Eqn. (5.4.1) 

Eqn. (3.2.8) 

Eqn. (3.2.8) 

Eqn. (3.2.2) 

Eqn. (5.4.6) 

Eqn. (3.2.1) 

Eqn. (3.2.1) 

K 	Dean number. 

k 	kinetic-energy of turbulence. 

L 	convection coefficients in the 

derivation of the discretised 

equation. 

residual mass source. 

total mass into the flow domain 

through inlet and boundaries. 

PT 
	 P function in the wall functions 

for the energy equation. 

pressure. 

15 	average pressure field, used in the 

parabolic procedure. 

Q 	total velocity at the centre of 

the cross-sectional plane. 

q 	total velocity at a point. 

R 	radius of curvature. 

r 	coordinate in the cylindrical 

polar system. 

s 	source/sink term. 

T 	temperature; also used to represent 

diffusion terms, in equation 

(4.2.2). 

u,v,w 	the three velocity components. 

x,y,z 	coordinates in the cartesian 

system. 
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Location of  
Symbol 	Meaning 	 first appearance 

y 
	non-dimensional distance used in 

a relation u
+
=f(y

+
) to express the 

velocity-variation. 	Sec. (5.3) 

YN 
	distance from wall to the inter- 

face of the near-wall control 

volume. 	 Eqn. (5.4.5) 

Greek symbols  

relaxation factor. 

reduction factor; defined by 

equation (A2.). 

difference of 

dissipation rate of turbulence 

Sec. (4.2.6) 

Eqn. (4.4.3) 

Fig. (4.2.4) 

kinetic-energy. 	Sec. (5.1) 

r 
	exchange coefficient. 	Eqn. (3.2.9) 

p 	density of fluid. 	Eqn. (3.2.2) 

coordinates in the (n,c,E)system 	Eqn. (3.2.12) 

0 	coordinate in the cylindrical- 

polar system. 	Eqn. (3.2.8) 

coefficient of viscosity. 	Eqn. (5.3.5) 

K 	constant in the logarithmic law 

for variation of near-wall-velocity.Eqn. (5.4.1) 

v 	kinematic viscosity. 	Eqn. (6.6.1) 

A 	dimensionless wavelength. 	Sec. (7.2.2) 

(I) 	general flow variable. 	Eqn. (3.2.5) 
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Location of  
Symbol 	Meaning 	 first appearance 

4) 

T 

a 

Subscripts  

av 

,c1 

D 

E 

e 

eff 

f 

k 

m 

n 

new 

0 

coordinate in the (r,0,0 and 

(x,y,4)) systems. 

shear stress. 

Prandtl/Schmidt number. 

average over the cross section; 

also denotes peripheral average 

in Fig. (7.2.21). 

centre line. 

downstream. 

east grid-node; also east 

boundary in eqn, (3.2.12). 

east interface. 

effective value. 

frictional component. 

kinetic-energy of turbulence. 

laminar value. 

mean value; average of outside 

and inside. 

north grid-node; also north 

boundary in eqn. (3.2.12). 

north interface 

new value. 

inlet. 

Eqn. (3.2.8) 

Eqn. (3.2.2) 

Eqn. (5.3.6) 

Fig. (7.2.3) 

Fig. (7.3.5(a)) 

Eqn. (4.2.12) 

Eqn. (4.2.2) 

Eqn. (4.2.2) 

Eqn. (A1.2.15) 

Eqn. (6.6.1) 

Eqn. (5.3.3) 

Eqn. (5.3.5) 

Fig. (7.2.21) 

Eqn. (4.2.2) 

Eqn. (4.2.2) 

Eqn. (4.4.3) 

Fig. (8.4.9) 
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Location of  
Symbol 	Meaning 	 first appearance  

old 	old value. 

P at point P. 

✓ r coordinate direction. 

S south grid node; also south 

boundary in eqn, (3.2.12). 

s 	south interface. 

T 	temperature. 

t turbulent. 

U upstream. 

u velocity. 

✓ v velocity. 

W west grid node; also wall. 

w w velocity; also west interface 

in eqn. (4.2.2). 

x,y,z 	coordinate directions. 

(I) 	general variable. 

dissipation rate of kinetic-

energy of turbulence. 

6 	coordinate. 

coordinates. 

Eqn, (4.4.3) 

Eqn. (4.2.2) 

Eqn.. (A1.2.2) 

Eqn, (4.2.2) 

Eqn. (4.2.2) 

Eqn, (5.3.6) 

Eqn. (5.3.5) 

Sec. (4.2.5) 

Eqn. (3.2.2) 

Eqn. (3.2.3) 

Eqn. (4.2.2) 

Eqn. (3.2.4) 

Eqn. (3.2.2)' 

Eqn. (3.2.5) 

Eqn. (5.3.4) 

Eqn. (A1.2.2) 

Eqn. (A1.4.6) 
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Superscripts  

Location of  
Symbol 
	

Meaning 	 first appearance  

p 	pressure correction. 	Eqn. (4.2.17) 

u,v,w 	velocity components. 	Eqn. (4.2.10-4.2.12) 

x,y 	coordinate directions. 	Eqn. (4.2.2) 

approximate value. 	Eqn. (4.2.15) 

denotes corrections in Chapter 4 

and fluctuating component in 

Chapter 5 and elsewhere. 	Eqn. (4.2.15) 
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APPENDIX Al • 

THE GOVERNING DIFFERENTIAL EQUATIONS  

A1.1 	Introduction 

In this appendix, the partial-differential 

equations governing the steady, three-dimensional 

incompressible flow and heat-transfer phenomena in 

curved ducts are described in their full form. The 

equations are expressed in the three coordinate systems 

mentioned in Chapter 3, namely the (r,0,4), the (x,y,4) 

and the (n,,) systems. The equations stated here are 

identical for laminar and turbulent flow situations 

except that for turbulent flows, the shear stresses are 

calculated from an 'effective' exchange-coefficient 

which is the sum of the laminar and turbulent exchange-

coefficients; also, for laminar flows the equations for 

the kinetic-energy of turbulence and its dissipation rate 

are not solved. The following sets of equations are 

stated in their partially-parabolic form; if their 

parabolic form is desired, only the longitudinal 

momentum equation needs to be rewritten using a p pressure 

field. 

A1.2 	The (r e 0 coordinate system 

The partial-differential equations governing 

flow and heat-transfer phenomena in a flow situation 
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described by the (r, 6, (p) coordinate system are as 

follows: 

Continuity: 

Du 	Dv „ u „ 3w + (u cos() - v sine) _ 
Dr • rD6 • T 	R94) • R (A1.2.1) 

r-momentum: 

, aTrr 	1 aTrO 

	

f  Du • v Du 	v2 .1.  w Du 	Dp 

	

P vu  Dr 	T.  30 	r 	R a4) Dr 'r  Dr 	r ae 

w
2 

- — cos° ) 
Tee + _ 

r rr 

rr + R cos() - Tre  sine - 

(A1.2.2) 

0-momentum: 

aT
er  aT88 

	

, Dv 	w2 	.Dp 	P ku 	+ u Dv  + uv   + w — Bv + 	sine) = 	+ 

	

Dr 	r ae 	r 	R 	R 	rD6 	Dr 	rD6 

T 2 	Or + y Tr0 + 	cos@ 

60  sin° 

(A1.2.3) 



- 

(0-momentum:  

aw 	v aw waw w 
p (u Tr, + —r-FoT + -FITT + 	(u cos6 - v sine)) 

= _ 
a 

ap 

 + 	+ 
Tfj)r T 	

T 
(j)r 	(i)r 	o 	

Sine 
cos  

Racp 	ar 	r 	R 	r36 

(A1.2.4) 

Kinetic-energy of turbulence (k): 

	

p - (u ak 	 y_ 	w 	= a ,-- 	ak, 	3.r• 	ak
•  ar 	r 96 	R aci)' 	ar 	eff,k-57 

e _retf ,k:ake  sine) r 	9k + R ( 	 cos 

+ 4_ (.reff , k  ak ) + G - pe 
r 96 	36 

(A1.2.5) 

Rate of dissipation of k(e):  

	

Be 	v Be 	w Be, 	3 	De, „ 1, 	ac 

	

P  "4  -ST 	-r-  To" -1-  1-1 	 -517.  Leff ,E '51" 	eff  

ae 	 Be 
+ rt (Feff ,e-57, cos0 -reff,e  7,-Fe-  sine) 

	

ae 	 e 	 pE
2 

(r- 	--) 	C 	G  - C2 k 

	

2 	bff,c 30 	1 k 
r a0 

(A1.2.6) 

Energyrh:  

	

911 	v ah 	w ah 	a an, , r 

	

f 	ah, 

	

P 1̀1  ar 	DO 
+ 
	ae 	rar r̀'

r 	
Dr' ' eff,h 	230 r 

	
ae/ "eff,h 

 

r 

eff h 
R 	

(
Br 

cos° 	ah sine)  
1'36 

(A1.2.7) 
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The shear stresses in equations (A1.2.2) to (A1.2.4) 

are expressed below, after they have been simplified 

by the neglect of gradients in (j)-direction. 

• 

v Dv -r 
Dr) = 

Ter 

where p = pi  for laminar flows 

2 p TT, Du  , 

Du 
T
r0 	P (r30 

Dv u 
Tee 	2p (rD° 	7)  

aw  - w  cos0) 

p ( rD0 	R + E si ne)  

(A1.2.8) 

(A1.2.9). 

(A1.2.10.) 

(A1.2.11) 

(A1.2.12) 

(A1.2.13(a)) 

rr 

T 

•:19r 

(1) 

• peff = (p + pt) for turbulent flows (A1.2.13(b)) 

andPt = 	C p k2/e 
	 (A1.2.14) 

The effective exchange coefficient for transport of a 

vardable, cl) is 

reff,(1) 	a(1. ,k 

▪ P

t 	 (A1.2.15) 

where the subscripts t and t refer to the laminar and 

turbulent values and the subscript 'eff' refers to the 
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effective value. The expression for the generation of 

kinetic energy of turbulence is expressed'as follows: 

G = pt  
3U 

2 {(71) 
au 2 	2 	au 2 

(7.14) 	2 Ur D: 

   

U0 aur RIO 	aur 3U 2 au 2 
0 	(1) 

- r (7.1ST + 7TF)/  + (7'73-  + 75717)  + (7q7)  

au  2 u  2 u  2 

+ IT  114)  4 4. 	 02  sine f  CPN + 

2 

0 	CP 	2 + 
2 'r3e)  r R  

au, 
cose) Dr 

(A1.2.16) 

The terms which were treated in the form of source 

terms, from viewpoint of the computational procedure, 

can be obtained by subtracting, from the above equation, 

terms represented by the following equation: 

	

div (GO) = div (reff  grad 0) 	(A1.2.17) 

where G 	is the mass velocity vector; 

is the dependent variable of the equation; 

reff is the effective exchange coefficient; 

and the divergence and gradient operators have the 

following expressions in the present coordinate system: 
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av
1 	

ay
2 4. V1 4. 

av
3 4. ,

V1 cos° - V2  sine div - ar rae r Rhp 

(A1.2.18) 

where 	= Vi  i + V2  j + V3  k ; 

and i, j, k are the unit vectors along r, 0, cp directions. 

hi) 	a(1) 	1 ;4) grad (I) = — + 	+ - 
ar 	rBe 	R hp (A1.2.19) 

A1.3 	The (x,y,(P) coordinate system 

The governing differential equations for the 

(x,y,4) coordinate system have been derived in a similar 

manner as those in Sec. (A1.2); the equations in the 

(x,y,(p) system are: 

Continuity: 

au 	av 	1 aw u - - = 
ax 	ay R hp 	R 

(A1.3.1) 

x-momentum: 

aT aT
xy  TXX a _ xx 

	

, au _ au w 	_ w2 + P ku 	v 
ay 	R 	) = 	p+ 

ax 	ax ay 	R 

(A1.3.2) 



— 244 — 

y —momentum: 

av 	av w av, = _ 
P (U "TR + V 	 r  ay 

a ap 	T yx 	yy 	yx 
ay 	ax 	ay 

(A1.3.3) 

cp—momentum:  

aw uw 	aw w aw 
— 	— 	

ap 	
aT(I)x 

u 	+ 	+ v 	+ 
ax 	R 	ay 	R a

--)  
(1) 	Raq5 	ax 

at 
T  

ay
07 
 R 4x 

(A1.3.4) 

Kinetic energy of turbulence.(k): 

	

, ak 	ak 	ak) 	a „ 	ak, 	a f r 	ak)  p 	v 	w 	) = 	,ieff;:k-Tx ) 	ay  .-,eff,krii 

	

ax 	ay 	Racp 

reff,k • —R
1 k

x + G — pe (A1.3.5) 

Rate of dissipation of k (e): 

	

ae 	aE 	ac. 	a (r 	aE\ 
+ 

a (r 	9c 
p (u 	+ v 	+ w 	) = ay 	Rag) 	ax eff,eax' 	ay tdf,c ay) 

C
l  c 
	C2 pc2 

_ reff,c 	k 
 

(A1.3.6) 
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The expressions for the shear stresses, after neglect 

of terms representing gradients in 4)-direction are 

as follows: 

, au 
T
XX 

= Au   
ax 

u ax) = Txy = P (ay  axi Tyx 

ay T5-7y  = 2p -537  

aW W 
= V (TT  

aw 
Toy = P 

(A1.3.7) 

(A1.3.8) 

(A1.3.9) 

(A1.3.10) 

(A1.3.11) 

. The expressions for p are the same as in (A1.2.13) and 

(A1.2.14). 

The term G, which represents the generation 

of turbulence kinetic-energy, is given by the following 

expression: 

[1 au 2 	 2 

 
	 2 	 2 

G = ut 	 2 f, , 	(av
) 	

(au 4
x) 	

( aw)  

+ aw
2 2 aw 2 

u
2 

ax'
% 	

Ti w  -5 	
w 

-"R 	
„ 2 	(A1.3.12) 

R 

The divergence and gradient operators for the present 

coordinate system have the following forms: 
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div = 
3V1 	av2 	1 av3 V1 
3x + ay + —51 + -Tr 

apl) 	a(1)  grad (I) = aci)
+ ay + Ra(1)  

(A1. 3.13) 

(A1.3.14) 

The expression for -V is the same as that described in 

(A1.2.18). 

A1.4 	The (fl,C,E) system 

The governing differential equations in the 

(n,,.) coordinate system were derived by transforming 

the equations of (A1.3) using the following transformations: 

X - X W• 
n = 

xE 

(A1.4.1) 

The subscripts N, S, E and W refer respectively to the 

North, South, East and West boundaries in the x-y plane 

of the calculation domain, as illustrated in Figure 

(3.2.2(c)). In the above transformation, the coordinates 

n and C are mutually orthogonal for all values of E; and 

planes of constant-c are approximated as planes of 

constant-4. The velocity components u and v are defined 

as before, to be normal to the y-z and x-z planes 
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respectively, i.e. to be aligned with the n and 

coordinates. The w-component of velocity however, is 

defined to be along the grid lines joining two adjacent 

(n ti 0 planes and thus is not exactly normal to the 

constant-cp direction. The coordinates (n,,0 defined 

above satisfy the following relationships: 

a . 3n 4. 	3 4.  3 . 3 
ax DTI ax a 3x 3C ax 

a . 	-r  an , 	-r  aC 	a 	a • • 
By an ay ac 3y ac 3y 

- 

 (A1.4.2) 

a a ,  an + 	. 3 4.  a 	aE 
acp - an 	Dcp 	acp 	ac 	311) 

	

These relations and the definitions of n, C, 	given in 

(A1.4.1), when substituted in the equations for a (x,y,(p) 

system result in the following set of differential 

equations, which govern the three-dimensional flow in a 

curved difffuser of rectangular cross-section. 

Continuity: 

1 	au 	3w f axW. 4. 	3 
(x -xw) 	3n - 3n '113E 	R3E 	E W (x -x ))I 

ay 

+ 
	 f 	57S 	fT7 YS))} 
(YN-Y)  3C 

( 	

N- 

	

Dc 'R3C 	Rac 	Ys' 

1 3w u + — 	+  = 0 R a 	R (A1.4.3) 
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n—momentum: 

1 	au u 
	

alcw 
(xE—xw) an { 	w  (TOT 	

a 
Rai(xE—x0)1 

1 	3u {u 	r 

	

Lu 	r 

	

w (Rai 	( LyN—ys)))Rai 

• 

( YNYs )  

2 
w aw ▪ — — — 
R a 

1 	12. 4. 	1 	aTnn 
(xE—xw) an 	(xE—xw) an 

1 	a T 

(YN—YS )  a  

(A1.4.4) 

—momentum: 

axw  

(xE—xw) a
1 	av {u — w (13.7747  + nT57a (xE—x0)} 

n 

ay 	
(y N-y-))1 

	 av {v — w (Rai + RaiT 	6 
(YN-YS)  " 

▪ w aw 
a 

1 	ap 4. 	1  

(YN— YS ) a 	(XE—XW) an 

 

1 	3T 

(YN—YS)  

(A1.4.5) 
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cp-momentum:  

3w 	axw 1 	 a 
—x ) an {u 	w (Rai 	 (xE—xw ))1  

ay a 1 	aw 
{v - w (Rai  + 	( YN  -Y ))1  

	

T 	 S (YN Ys) aC 

w 3w + uw —  
R 3 	R 

ap 	1  aT En 4. 	1  
R3 

4. 
(xE-xw ) an 	

(YN—Ys) 

   

2 
+ R — T 

(A1.4.6) 

Kinetic energy of turbulence (k): 

3x 

P 1L(....xExW)  ic. 

	a 	 an  {1.1 — w (ITTT  + fl RT(. (XE—X11 ))1 

1 	 3k 

 

ay + 	{v - w 
(Rai + 	(v _.„ )o (y

N
yS) a 	 Ra(1) 	- R4 	 N JS" 

Dk + w 
Rai  

1 	a 
(
Peff  3k 

(xE-xw)
2  an 	ak an) 

 

1 	3.• flieff  3k 

YN- YS)  
2 ac 	a

k
) 

1  
(xE-xw )  

lieff 1 3k „ 

ak R 	PC  

(A1.4.7) 
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Rate of dissipation of k (e): 

[I 

 

axw  1 	e 
r - w ( ---=1  + n —a-- (x -x 111 

	

P  (xE xw) 311 '11 	Rag) 	RD(1) 	E W''' 

ays  

(YNYs) 	

r 	( 1 	{V 	i 	w i  (Rai 	Rai orN-YS))} 

w ae 
DE 

1 	a Peff De ( 
2 an 	a 	TIT,) 

 
(xE-xw) 

1 	a ueff 3e, 
2 3C 	a 	3c

)  

(YN-YS)  

1 	1 3c 	C1c 	C2 	pe
2 

-x ) R an 	k 

(A1.4.8) 

The expressions for the shear stresses can be 

derived in a similar way by transforming equations 

(A1.3.7) to (A1.3.11), which thereupon result in the 

following expressions. 

1 	Du Tnn = 2p (xE-xw) an 

1 	au 	1 	av 
T 	= 1-1{((37N-YS)

)  DC 	(xE-xW) an} Tcn 

1 	aV = 2p 
(YN-YS) 

( 

1 	aw 
(x 	rE  xw)  

1 	3w 

(YN-Ys) 3C  

(A1.4.9) 

(A1.4.10) 

(A1.4.11) 

(A1.4.12) 

(A1.4.13) 



1 	at 
(YN-YS) 

 aC fl - a  
RaE 	Rai ' 

( 
YN—Ys)}  

ays  
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The generation of kinetic-energy of turbulence, G is 

transformed into the following form: 

	

2 	2 

 (an ) 
, 	Dv 	Du 2 1 	---ff (x-xW) 

' 	2 (DC) 1 	((xE-
1 x

W) an 
E Y 

1

N-YS)  

1 	ay 2 	1 	Dv/ 2 	1  
t77-1 )

aw,2 

(YN-YS) a
) + 	2 (ac )  

	

(YN-YS) 	(xE-xW)
2  

1 	2w aw w2 	2 u2  
(xE-xW) R TIT + 17 (A1.4.14) 

  

The expressions for the divergence and gradient 

operators for the ( n ,,E) coordinate system are as 

follows: 

ax vi  
div V - 	 { 3171 	( 	(x —x (XE  1—X/47 ) 	an 	Ra + n RaE 	E W))1  

DV2 DV ay 3 ,  , 

	

a 	'113E + 	11.3 `YN-YS))/  (YN-1  YS ) 	aC 

1 av3 , V1 
••."' 	T- 
R 3E 	R (A1.4.15) 

	

ax at 	 , grad t - 	- 	x -x (xE-
1 	{1 xw) 3n 	n 	k RaE 	E W)1 

G= 

1 at 4.   
R a (A1.4.16) 
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APPENDIX A2  

A MODIFICATION TO THE PARTIALLY-PARABOLIC  

CALCULATION PROCEDURE  

	

A2.1 	Introduction 

In this appendix, a modification to the 

calculation procedure for partially-parabolic flows is 

described. This modification, suggested by Spalding 

(1974), has been observed to improve the rate of convergence 

(i.e. rate of diminution of the pressure-corrections) 

of the calculation procedure. In this modification parts 

of the pressure-corrections calculated at a downstream 

location are applied to the pressure field at the 

upstream stations, the purpose being to compensate for 

the mass imbalances caused by the downstream pressure-

corrections. Details of this modification are as follows. 

	

A2.2 	Details of the modification  

The central idea in the modification is to 

apply parts of the pressure corrections calculated at any 

location to all upstream stations. The reason for 

correcting the upstream pressures is as follows. In the 

unmodified procedure, the equation for pressure corrections 

was derived by assuming that the pressure field at 

adjacent cross-sectional planes remains unaltered; and 

thus pu  and pp  in equation (4.2.8) were put equal to 
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zero. This assumption was necessary to make the 

pressure-correction equation two-dimensional so as to 

reduce the necessary computer-storage. 

However this practice, although advantageous 

has two shortcomings. First, since the corrections made 

at any downstream location disturb the mass balance at 

the upstream locations, and since pu  is assumed to be 

zero these imbalances are not compensated. Second, 

the influences of the downstream events are not quickly 

disseminated upstream; for the influences travel only at 

the rate of one plane per sweep through the flow domain. 

Both these disadvantages decrease the rate of convergence 

of the calculation procedure. 

The present modification is introduced to 

overcome the above defects. The aim is to compensate 

the mass imbalances at the upstream locations without 

changing the existing practices for calculating the 

pressure-corrections, i.e. without changing the two-

dimensional form of the pressure-correction equation. 

This is achieved by once again correcting the upstream 

pressures, the amounts of which are calculated in the 

following manner. 

Consider the control volume shown in Figure 

(A2.1). In this diagram, the point P is the location 

By two-dimensional it is meant that the corrections are 
calculated for one cross-sectional plane at any time. 
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y-z plane 
	

x-y plane  

where a pressure-correction p is just applied. The 

grid node U is situated one plane upstream of P; and 

the nodes N, S, E and W are neighbours to U in the 

same cross-sectional plane. UU is located one plane 

further upstream to U. 

The pressure correction pp  applied at P alters 

the velocity w ; and thus introduces a mass imbalance 

at U. The expression for this mass imbalance, M, is 

given by: 

= DP  . pp 	Ax.Ay . 	(A2.2.1) 
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where Ax and Ay are the areas of the control volume 

normal to the w-velocity and Dw  is the coefficient 

linking the velocity change to the pressure change. The 

purpose of the present analysis is to obtain expressions 

for correcting the upstream pressures so as annihilate 

the mass imbalance M; the way these expressions are 

derived is as follows. First, it is assumed that the 

pressures at locations N, S, E, W and UU remain unchanged; 

i.e. no corrections are made at these locations to 

counteract the effects of pp  . Thus the mass imbalance 

M is assumed to be corrected solely by changing the 

pressure at U. If the correction to this pressure is 

denoted by pu  , the expressions for the velocity changes 

may be expressed as follows. 

PU D  
u 	(A2.2.2) 

u uu = PU
" 
 DU 	

(A2.2.3) 

fl  Dv 
N vN 	= - PU 	

(A2.2.4) 

1  vU 	PU 
n 
 DU  v 	

(A2.2.5) 
=  

, 	w 	t 
wP 	= - DP  pU

i 	
(A2.2.6) 

and 
	

wU 
	= DU

w 
 pUt 	 (A2.2.7) 
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The above expressions follow from the 

linearised momentum equations derived in sec. (4.2). 

The quantities Du, Dv, D are the coefficients which 

link the velocity-changes to the pressure corrections. 

A mass balance is now made for the control 

volume shown in Figure (A2.1). The mass-balance 

equation, incorporating the velocity-changes, is 

written as 

1 
Az Ay (uE  - uu  ) + Ax Az (vs  - vu  ) 

+ Ax Ay (wp  - wu  ) = m 	 (A2.2.8) 

where Ax, Ay, Az are the dimensions of the control 

volume. The expressions for velocity changes 

are now substituted into the above equation; and the 

• 
following expression for p 

'I 
 is obtained. 

I I pp 	Ax Ay Dpw  
(A2.2.9) 

 

(Ay 'Az) (DEu  + Duu  ) + Ax. Az(DN V + 

+ (Ax Ay) (DEW  + Duw) 

Or, in short, 

I 

PU = o PP 
	 (A2.2.10) 
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Where, 

AxAy Dpw  
a = 	  (A2.2.11) 

(Ay Az) (DEu  + Duu) + (Ax Az) (DNv  + Duv) 

+ (Ax Ay) (Dpw  + Duw) 

The quantity 13 in the above expression 

represents the fraction of pp  which is applied to the 

pressure at U to compensate for the mass imbalance th. 

It can be seen easily that the corrections 

made at U will also now introduce new mass imbalance 

at UU; and will therefore necessitate pressure 

corrections at UU. The corrections at UU will in turn 

effect other upstream locations; and therefore it turns 

out that all upstream pressures need to be adjusted to 

compensate for the effects of pp  . However, since the 

value of 13 reduces in a geometric way with distance 

from the point P, it is usually necessary to consider 

only about 5 or 6 planes, at any time. For a location 

'n' planes upstream of P, the appropriate correction is 

calculated from the following relation.  

Pn =Sn Pn-1 = 	Pn-2 = 131°6'2°3 *°° 13 n'PP 

(A2.2.12) 
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where the 'Vs have the expression given in (A2.2.9) 

It is necessary to note that the values of Du, Dv  and 

Dw used in the expression for (3 need to be approximated 

by the corresponding values at the location P; this 

approximation is necessary because the coefficients 

Du, Dv, D are not stored in a three-dimensional 

array; and are available for only one cross-sectional 

plane at any time. 

The modification described in this appendix 

was tested in the calculation of two different partially-

parabolic flows situations. In both flows, it has been 

observed that the present modification gave savings 

in computer time to the extent of 25 percent. 
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APPENDIX A3  

CORRECTIONS TO THE EXPERIMENTAL DATA 

This appendix lists the various corrections 

applied to the experimental data obtained in the present 

investigation. These corrections have been obtained by 

calibrating the measuring devices against standard 

instruments. The calibration experiments from which the 

present corrections have been derived were performed by 

Young (1972). The various corrections applied to the 

present experimental data are as follows. 

Correction to the measured angles  

For measurements with pitot-directional 

probe = 0.5°. 

For measurements with total-head 

probe = 005°. 

Corrections to static pressure measured by the 

pitot-directional probe  

Correction for blocked static-holes. 

It was observed (Young (1972)) that the static 

pressure measured by the pitot-directional 

probe was in slight error when compared 

against that measured by a standard pitot 

static probe. This discrepancy was attributed 

to the blockage of one of the static-pressure 
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holes (total 8 in number) on the pitot-

directional probe. The correction to this end 

to the measured static pressure was 0.02796 

lbf/ft2  in a nominal value of 1 lbf/ft2° 

(b) 
	

Correction for displaced position of the  

static pressure holes 

It may be seen, from the construction of the 

probes that the location where the static 

pressure is measured is slightly different 

from that where the total pressure is measured. 

For this reason, in calculating the velocity, 

the measured static pressure was corrected to 

be appropriate to the location where the total 

pressure was measured. This correction is 

given approximately by the relation 

0.85 	dp 
AP - 12 ° dx (A3.1) 

dp where UR is the pressure gradient along the 

transverse direction (x). The nominal value 

of this correction was 0.12 lbf/ft2. 
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3) 	Displacement correction to the Pitot tube height  

The pitot-tube heights were corrected to 

account for the displacement of the pressure centre of a 

pitot probe, when it is placed in a shear flow. This 

correction was calculated from the following relation 

(McMillan (1957)): 

Ah = 0.15 d 	 (A3.2) 

where, 

Ah is the correction to the pitot tube height 

and d is the diameter of the pitot tube. 

4) Correction to the wall static pressure  

The wall static pressures were observed to be in 

slight error; the necessary correction was - .00822 lbf/ft2 

in a nominal value of 1 lbf/ft2.. 

5) Corrections due to temperature effects on  

the transducer  

Following correction was recommended by the 

manufacturer, to compensate for the effect of room 

temperature T on the voltage output of the transducer. 

For 35o  F < T < 75o F 	correction (in volts) 

= .03894 - .0005125 * T 

Fbr 75°  F < T< 135°  F 	correction (in volts) 

= .008 - .0001 * T. 




