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ABSTRACT

The partial-differential equations governing
flow and heat-transfer phenomena in curved ducts are
solved using a finite-difference calculation procedure.
Both laminar and turbulent flows are considered; and the
predicted distributions of flow variables are compared
with experimental data. Primary importance is given
to the computation of the developing regions of the
flow and temperature fields, which are three-dimensional
in nature. Predictions are also presented of the

fully-developed flow and temperature fields.

The study is limited to situations in which
the flow is predominantly along the axis of the duct, so
that there are no regions of flow 'recirculation'.
Such flow situations are divided in this thesis into
two distinct categories, parabolic and partially-
parabolic. The differential equations governing each
flow category are solved using distinctly different
calculation procedﬁfes, appropriate for the respective
flow category. The two calculation procedurés are
described in detail and their distinctive features are
pointed out. The calculation procedures are applied
to predict flow and heat transfer in ducts with mild

and strong curvatures.
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The calcuiation of turbulent flows is made .
'using a two-equation turbulence model. Two additional
partial-differential equations are solved for the
transport of the kinetic energy of turbulence ard its
volumetric rate of dissipation. The turbulent stresses
ére related to the mean-velocity gradients through a
écalar viscosity, calculated from the above turbulence
variables., Special practices are adopted for the
calculation of flow region adjacent to the walls; these
praétices consist of empirically prescribing the momentum
;nd heat fluxes for grid nodes adjacent to a wall, by

making a simple Couette-flow analysis.

Computations are made for flow and heat transfer
in mildly-curved ducts using the parabolic procedure;
and the results are compared with experimental data
reported in literature. Agreement in the case of laminar
flows has been good both for the developing and the
fully-developed regions of the flow and temperature
fields. For turbulent flows, however, the agreement
has not been as good as that for the laminar flow
situation. It is inferred that the turbulence model
presently employed incompletely accounts for the complex
turbulence-structure which occurs in the presence of

secondary flows, as in the present case,

A modest amount of experimental data is reported

for the turbulent flow in a rectangular-sectioned curved
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duct. The curvature of the duct was chosen to be large
so as to make the flow partially-parabolic. Predictions
are also made for the same flow situation and are
compared with experimental data. The predictions using
the partially—parébolic procedure display_gbod agreement
with experimental data, while the results using the
parabolic procedure are observed to be qualitatively at

variance with measurements, as expected.

The present study has been undertaken with
fhe primary objective of verifying the calculation
procedures for three-dimensional flow situations. The
flow phenomena in curved ducts have been studied from
this viewpoint; for this reason, detailed calculations

have not been made of the effects of various flow

parameters on the flow and heat-transfer characteristics.
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PREFACE

The work reported in this thesis describes my
research activities at Imperial College during the
period of October 1972 and June 1975, These research
activities centred mainly around the development and
" validation of finite—difference calculation procedures
to predict three-dimensional flow and heat-transfer
phenomena in curved ducts. The study was carried out
under a research contract with the Science Research

Council and was supervised by Professor D B Spalding.

Calculation of flow and heat-transfer phenomena
in curved passages is of significant importance to the
design of various industrial equipment. Curved passages
are used in heat exchangers, turbomachinery, aircraft
intakes and several other equipment. However, such
calculations are complicated because of the three-
dimensionality of the flows and also because they are

frequently turbulent.

Recently some success has been made at Imperial
College in developing generalised calculation procedures,
of finite-difference variety for three-dimensional flow
situations. Also, simultaneeusly, some progress has
been made in developing 'universally applicable'

turbulence models, to represent the turbulence structure.
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My primary aim in this study was to first test and later
develop further, the numerical procedure and turbulence
models currently available, to calculate the flow in

curved ducts,

I proceeded first to test the numerical
procedure to calculate the laminar flow phenomena in
curved ducts. I restricted my attention, throughout,
to flows which are steady and have no recirculation in
the-longitudinal direction., The latter restriction I
made to concentrate attention on flows which are
'parabolic' in nature. I performéd some calculations,
using the parabolic procedure of Patankar and Spalding
(1972), of the laminar flow and heat transfer in helical
coils. The computations agreed satisfaéforily with

experiments and thus encouraged further study.

I then proceeded to make calculations of the
turbulent flow in curved pipes. For these calculations,
the additional input needed was the turbulence model.
First, I made a few calculations using a mixing-length
hypothesis. These calculations, however, did not agree
satisfactorily with experimental data and thus warranted
a need for more-complex turbulence-models, On the
suggestion of Professor Spalding, I therefore attempted
to employ a two-equation kne turbulence model, This
particular two-equation model wds selected on the earlier

experiences of its greater universality in two-dimensional
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situations. The prédictions using the two-equation
turbulence model displayed better agreement with the
experimental data; but the agreement was not as good as
that observed fof laminar flows. It therefore appeared
that the turbulence model needs further refinements to
account for the complex turbulence structure in curved

pipes.

At this stage, I did not proceed further in
refining the turbulence model, but instead decided to
extend the study to predict flows in strongly-curved
ducts. In strongly-curved ducts,'the secondary flow
(flow in the cross-sectional plane) is much larger,;and
the pressure variations across the duct are éignificant
enough to invalidate the parabolic assumptions. The
flow is partially-parabolic and can not be computed using
the pa.ra.bolic.procedure° On Professor Spalding's
suggestion, I therefore attempted to devise a calculation
- procedure for economic handling of partially-parabolic
flows, the difference in this procedure from the parabolic
one being that account is taken now of the transmission of
downstream events upstream through the pressure. To this
end, I worked on two different calculation schemes. In
one procedure, two three-dimensional arrays were used for
the pressure while in the other, only one three-dimensional
pressure field was employed; the methods of calculation
were also somewhat different., I tested the merits of these

two procedures, in a few typical partially-parabolic flow
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-situations. These fests proved thét the one-pressure
method is superior, as it gave faster rates of convergence
of thé pressure field. I therefore selected the one-
pressure method, and employed it, later, to predict

flows in strongly-curved ducts, 1In this thesis, only

the one-pressure method is reported.

While the development of the partially-parabolic
procedure was in progress, 1 was also making plans to
#ndertake an experimental program to obtain data suitable
for the validation of the‘partially-parabo}ic procedure,

_ During this period, I came to know through Dr S V Patankar
and Professor J H G Howard that an experimental rig
existed at the University of Waterloo Canada, that would
suif my needs, vOn the invitation of Professor Howard, I
therefore visited the University of Waterloo and over a
period of four‘mohths; performed measurements of the

turbulent flow in a strongly-curved rectangular duct,

After my return to England, in February 1974,
I devoted my efforts to the application of the partially-
parabolic calculation procedure to predict the flow
situation studied experimentally., I made calculations also
using the parabolic procedure and compared both the
partially-parabolic and parabolic results with the
experimental data. These comparisons showed that the

partially-parabolic procedure is much needed to calculate
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accurately the flow.in strongly-curved ducts. 1In
addition to the above predictidns, I made a few
calculations using the partially-parabolic procedure of
the laminar flow in a strongly-curved circular pipe; but
these are not presentéd in this thesis because of some
doubts regarding the correctness of the experimental
data. The above-described tasks marked the end

of my research activities; in February 1975, I started

preparing the thesis.

I now wish to thank all those who provided me
with help and encouragement during the present study.
First and foremost, I thank Professor Spalding for
providing guidance, inspiration and encouragement to
maintain a good pace of research. 1 have profited
greatly from his suggestions and criticisms in several
disciplines of research., To have worked in association

with him, I consider it a privilege.

Throughout this study, Dr S V Patankar offered
a number of suggestions and helped me both in technical
_and non-technical matters. I acknowledge with feelings of
gratitude, the assistance and the homely atmosphere

provided by him and the members of his family.

It is my duty to thank several persons who
provided help during my experimehtal program, Professor

Howard, who proposed the idea of my going to Canada, has
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been very helpful in providing the necessary experimental
facilities and in making various suggestions during the
coﬁrse of the work. During the measurements

Dr V Parameswaran was actively associated with me and
helped me in a number of ways. I wish to thank him for
his help. The assistance provided by the laboratory
staff at Waterloo, in particular by Don Bartlett and by

Joe Verner, 1is also acknowledged.

Thanks are to Dr A D Gosman and Professor J H
Whitelaw for acting as members of my thesis committee
and for making a number of useful suggestions during the
meetings. The assistance provided by Miss Colleen King
and by Mrs ChristineMcKenzie in sorting the various
administrative matters is acknowledged. Thanks are to
Miss‘E M Archer for helping me in obtaining various

technical reports.

Last but not the least, I acknowledge with
deep respect the encouragement provided by my mother during
my stay abroad, andAin general, throughout my education

career,
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CHAPTER 1

INTRODUCTION

1.1 The proﬁlem considered

Fluid flow and heat transfer in curved ducts
have been the subject of considerable interest, owing
primarily to the applicability of this information to
the design of heat-exchangers, refrigeration equipment
?nd—turbomachinery. The flow pattern in a curved duct
differs from that in a straight one primarily through
exhibiting a 'secondary flow' in fhe cross-sectional
planes of the duct, as shown in Figure (1.1.1); this
secondary flow is generated as a result of the centrifugal
forces which act at right angles to the main flow
direction. Because of the enhanced 'mixing' caused by
the secondary flow, the rates of heat, mass and momentum
transfer in curved ducts are significantly higher than

the corresponding straight-tube values.

The present study describes the application
of a finite—differeﬁce solution procedure to the partial-
differential equations governing the three-dimensional
flow and heat-transfer phenomena in curved ducts. The
study has been restricted to flow situations which are
steady and are characterised by a predominant flow

direction along which there are no regions of flow
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'recirculation’'. The existence of a predominant flow
direction ensures that:
(a) flow prdperties are convected only from
upstream regions to downstream and not
vice vefsa; and that
(b) at moderate and large Reynolds numbers,
molecular actions, such as conduction,
diffusion and viscous action, along that
direction are small enough to be neglected.
These characteristics, simplify the equations governing
fhe flow and make them easier to solve. In the present
study, calculations have been made for both laminar
and turbulent flow situations; the predicted fesults
have been compared with experimental data and the
capabilities of the calculation procedure are assessed.
For turbulent flows, the additional 'stresses' due to
turbulence have been represented through a two-equation
turbulence model which comprised two additional partial-
differential equations for the transport of the kinetic
energy of turbulence and the volumetric rate of its

dissipation.

1.2 Practical relevance of the present flow geometry

Becausé of the high rates of heat and mass
transfer observed in curved ducts, many types of
industrial equipment employ this geometiy for their flow
passages; further, a few environmental and physiological

flows occur in passages which are curved in a somewhat



arbitrary manner. The ability to predict the detailed
nature of the transfer processes in curved ducts would
therefore lead to.improved design of the equipment and
to the better understanding of the natural phencmena.
A short list of vérious flow situations where curved

geometries are encountered is given below.

1) Flow passages of centrifugal compressors and
gas turbines;
2) Heating and cooling coils of heét-exchangers,
cryogenic and refrigeration equipment;
3) Intakes of jet aircrafti
4) Flow in bends of rivers and canals, where
the purpose is to estimate:
(a) the erosion of the banks due to the
secondary flow and
(b) the dispersion of the effluents in the
stream;
5) Physiological flow systems in which it is
desirable to understand the dispersion of a
chemical substance into the coiled blood-

vessels, the aorta being of primary importance.

1.3 Present method of calculation

The theoretical calculation of the flow and
heat-transfer phenomena in curved ducts involves the
simultaneous solution of a set of nonlinear partial-

differential equations describing the transport processes



in three dimensions. If the flow is turbulent, methods
also need to be devised to represent the additional
stresses arising from turbulence. Because of the
complicatéd nature of the equations it is impossible to
obtain exact analytical solutions which are of the 'closed

form' type.

In the present study, these equations have
been solved by finite-difference calculation procedures.
Two different calculation procedures have been employed;
éne to calculate the flow and heat transfer in mildly-
curved ducts and the other for similar calculations in
ducts with strong curvature. The two procedures are
somewhat similar but the equations which they solve are
distinctly different in their nature. The first set of
equations, labelled here .. parabolic, governs flow
processes which are entirely 'one-way'; in these, the
mechanisms of fransmitting the downstream events to
upstream namely, convection, diffusion and pressure
transmission are completely absent so that the flow
at any location is influenced solely by the events
occurring upstream of that location. The second set of
equations represents flow situations which are "partially-
parabolic" in nature, so that the events at a downstream
location are transmitted upstream but solely through the
mechanism of pressure transmission.. The two sets of
equations which are similar in their structure differ

in the manner in which the streamwise pressure gradient



is represented. The calculation procedure for partially
-parabolic flows is more general than that for parabolic

flows; it reduces to the latter in appropriate circumstances.

Both the above-mentioned calculation procedures
are based on a numerical algorithm called SIMPLE (SIMPLE
stands for Semi Implicit Method for Pressure-Linked
- Equations). Both procedures employ a marching integration
procedure along the predominant flow direction and
stofe velocities, temperatures etc. for only one cross-
sectibnal plane at any time. The two procedures however
differ in the following two'respeéts.

(a) In the partially-parabolic calculation
procedure, the pressure field is stored in a
three-dimensional array whereas in the
parabolic procedure only two dimensional
storage is required for the pressure field.

(b) The partially-parabolic procedure performs
several "marching-sweeps'" over the flow domain,
each time employing an improved guess for the
three-dimensional pressure field; the
parabolic procedure however, sweeps through

the flow domain only once.

Calcdlation of furbulent flows

In the present study, the calculation of
turbulent flows is made using a two—eQuétion turbulence

model. The turbulence model comprised two additional



equations for the transport of the kinetic-energy of
turbulence and for the volumetric rate of its dissipation;
the Reynolds stresses were related to the velocity
gradients through a "turbulent viscpsity" which was
defined in terms of the above-mentioned proﬁerties of

turbulence.

1.4 Main results

The present sfudy comprised both experimental
and.theoretical investigations. In the experimental
investigation, measurements were made of the flow in a
strongly-curﬁed duct with a view fo collecting data
suitable for validation of the partially-parabolic
calculation procedure. The theoretical investigation
comprised prediction of three different flow situations
and comparison of the theoretical solutions with
experimental data. The main achievements of the present
study and the conclusions thereof are summarised below.
(a) The parabolic calculation prdcedure has been

successfully applied to predict the laminar

flow and heat transfer in mildly-curved
circular pipes. The computed distributions

of mean velocity, static pressure, temperature

etc. display good agreement with experimental

data.
(b) The predictions for turbulent flow in a curved
pipe agree reasonably well with experiments

but the agreement has not been as good as



that observed for the case of laminar flows.
The turbulence model it is therefore concluded,
requires modifications to account for the
effects of secondary flow on the turbrlence
structure.

(c) A modest amount of experimental data has been
collected which has been useful in validating
the partially-parabolic calculation procedure.

(d) The partially-parabolic calculation procedure

| has been found to give good agreement with
experimental data in a strongly-curved duct.
The predictions obtained using the parabolic
procedure, on the other hand, are qualitatively
at variance with the measurements.

(e) The computing times required for the present
calculations have been modest. In comparison
with the parabolic procedure, the partially-
paraﬁolic procedure required larger computing

" times. |

1.5 Layout of the thesis

The remaining sections of the thesis which
describe the present study in more detail are arranged
thus: in Chapter 2, a review is made of the previous"
experimental and analytical'studies of the flow and
heat transfer in curved ducts. In Chapter 3 the
vartial-differential equations governing the flow

situations considered in the present study are described.



Chapter 3 describes a classification system for steady-
flow situations based on the physical nature of the flow.
The solution procedures are described in Chapter 4; and
Chapter 5 describes the present practices for tbhe
modelling of the turbulence phenomena. The details of
the experimental program are described in Chapter 6.

The test rig, the measuring devices and the procedure
adopted for making measurements are described; the

experimental data obtained thereof are then presented.

The application of the numerical procedures
to compute the various laminar and turbulent flow
"situations is explained in Chapters 7 and 8; the results
of the computations are presented and compared with
experimentai data. Chapter 9 summarises the main
contributions of the present.study and lists the
conclusions obtained thereof, along with a few suggestions
for future work. The last part of the thesis provides
a description of the nomenclature used, a list of the
references and two appendices. The appendices provide
'supplementary details regarding the derivation of the
governiﬂg differential equations and the data-reduction

procedure for the measurements described in Chapter 6.
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" CHAPTER 2

- PAST WORK

2.1 Introduction

Because of the practical importance of curved
ducts, several experimental and theoretical investigations
. have been made of the flow and heat-transfer phenomena
in curved ducts. The present chapter briefly reviews
the relevant knowledge, so as to relate the present work
to the earlier contributions. The chapter is divided
into two main parts. The first reviews those
investigations which, in particular, are concerned
with flow and heat transfer in curved ducts; in this
review, two flow-geometries are considered: (a) curved
pipes of circular cross-section; and (b) curved ducts
of rectangular cross-section., In the former geometry,
studies of both laminar and turbulent flows are
reviewed; while in the other attention is restricted
to turbulent flows. The second section of the chapter
reviews literature on generalised calculation-
procedures which are suitable for prediction of flows
in curved ducts. To this end, first the
procedures are reviewed from the computational view
point (i.é. mathematical forﬁulation, numerical

scheme employed, etc.); later the current status of the
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"turbulence-models" is reviewed. The chapter is

concluded by an evaluation of the available information
of flow in curved ducts and an outline of the areas

for future investigations.

2.2 Flow in circular-sectioned curved pipes

2.2.1 Experimental studies

Laminar flow

Measurements of the laminar flow and heat-
transfer phenomena in curved pipés have been quite
extensive; however, a 1arge‘proportion of these
measurements were restricted to the fully-developed
regions, where the patterns of flow and heat transfer
remain unchangéd along the axial direction of the duct.
In the investigations of the fully-developed regions,
the measurements were mostly made of the friction
factors and the overall heat-transfer rates; only in a
few cases (Adler (1934) Hawes (1932) and Mori and
Nakayama (1965)) have the distributions of velocity and
temperature been measured. The experimental apparatuses
and the techniques of measurement used in these
investigations have been ﬁearly the same, but the range
of flow parameters such as the Reynolds number, radius |
ratio of the coil ete. differed in each case. A revieﬁ
of the various experimental investigations in fully-
developed flow and temperature fields has recently been

made by Srinivasan et al. (1968).
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Experimental studies in the developing region
of flow and temperatufe fields have been relatively less
in number. Kulegan and Beij (1937) measured the
pressure drop in the developing flow field and rresent
an empirical relation for the axial variation of theA

friction factor.

The velocity-distributions in the developing
flow field have been measured by Austin (1971) and by
_leén (1971). In these investigations, the Reynolds number
of the flow and the_radius ratio of the coils have been nearly
the same; but the techniques for ﬁeasuring the velocity were
different. Austin measured the velocities using hot-
£ilm anemometry whereas Olson employed a pulsed-wire
technique. Measurements in the thermal entry region
have been reported by Dravid et al. (1971) for the thermal
boundary condition of axially-constant heat flux with
isothermal periphery; the wall temperatures and heat
transfer rateé were measured at several axial stations
and the heating was initiated only after the flow field
became fully-developed. An interesting observation
from this investigation has been that,in the thermal
entrance region, the wall temperature and and the Nusselt
number exhibit cyciic oscillations with distance along
the duct axis; the oscillations however diminish in
amplitude as the fully-developed state is reached.
Such oscillations have been attributed by Dravid et al.

to the convection effects of the secondary flow.
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Oscillations of this kind had already been more
tentatively reported by Seban and McLaughlin (1963), when
the thermal boundary condition was that of constant

heat flux around the periphery.

Turbulent flow

Measurements of turbulent flow in curved pipes
hdve dlso been largely restricted to the fully-
developed regions. The measured values of the fully-
developed friction factors and heat-transfer rates have
‘been expreésed in terms of empifical functions of the
flow parameters and the fluid properties. Ito (1959)
and Srihivasan et al, (1968) provide a review of such
correlations proposed by various investigators. The
distributions of velocity in the fully-developed
flow field have been méaéured by Adler (1934), Mori and
Nakayama (1967) and Hogg (1968); the latter two éuthors
also provide temperature distributions in the fully-
developed thermal field for constant-heat-flux boundary

conditions.

It has béen observed that,when compared with
laminar flows, turbulent flows are relatively less
affected by the curvatﬁfe of the duct; flow and temperature
fields are less distorted and the friction factors and
heat-transfer rates show relatively smaller increases

over the straight-pipe values.

In the developing region of the turbulent flow field

Hawthorne (1951) presents the contours of stagnation
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pressure at several axial positions in a 180 degree
bend; the inlet velocity distribution for these
experiments varied linearly from zero at the bottom of
the pipe to a maximum in the region-close to the top
wall. The measurements indicated that the secondary
flow field in the bend dévelops in an oscillatory
manner with a period of oscillation, in this case,
approximately equal to 180 degrees. Squire (1954)
made measurements similar to those of Hawthorne (1951)
but, in his case, the flow field at inlet was that of
_a fully-developed, turbulent pipe-~flow. The oscillatory
nature of the secondary flow field was also suggested
by these measurements. Further measurements in the
developing flow have been reported by Detra (1953) and
by Rowe (1966). The.dimensions of the test section
and the experimental apparatus in Rowe's experiments
were the same as those employed in the experiments of
FSquire (1954){ but Rowe's measurements aléo included
the distributions of the flow aﬁgles. The thermalf
entrance region in the turbulent flow in bends has been
studied by Ede (1966, 1963, 1966). Measurements have
been made of the rates of heat transfer in 90 and 180
degree bends for the constant-heat-flux boundary-
condition. So far, no measurements have been made of
the temperature distributions in the thermal entrance

region.
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Measurements have also been made of the flow
in 'S' shaped ducts and in ducts with sinusoidal
variations in curvature; such measurements have been
reported by Horlock (1956) and more recently by Rowe
(19266) and by Fisﬁ (1970). It has been observed in
these investigations that the reversal of curvature
increases the émount of secondary flows. Both Horlock
(1956) and Rowe (1966) attribute this increase to the
augmentation of the streamwise vorticity which is

generated by the curvatufe of the duct.

2.2.2 Theoretical studies

In this section the previous theoretical.
studies in curved circular pipes are reviewed. For the
reader's convenience, the various studies are

categorised under three main headings, as follows.

Inviscid solutions

The applicability and methods of inviscid-
 flow analyses to calculate the flow in curved ducts have
been reviewed by Hawthorne (1965, 1966). The objective
of the inviscid-flow analyses has been to seek solutions
to the equations of motion in whidh terms representing
the effects of viscosity have been omitted. For the |
inviscid equations governing the flow in curved pipes,
it has not been possible to obtain exact solutions for

all ranges of curvature; hence, approximate solutions
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have been obtained, from the assumption of small shear.

. In this, it is assumed that the stagnation pressure
contéurs undergo negligible distortion around the bend.
This approximation which is often referred to as the
'secondary-flow' approximation, was first émployed by
Squire and Winter (1951); they showed that, for such an
approximation, the 'secondary' vorticity in the flow
increases linearly with the bend angle. The same
app;oximation was used in subsequent calculations by
Detra (1953) and by Rowe (1966). Detra calculated the
distribution of stagnation pressure at the exit of 21°
and 42° bends and compared the reéqlts with measurements;
the agreement was satisfactory; but difficulties were
ehcountered in prescribing the correct distribution of
the inlet-vorticity. The computations oerowé (1966)
were made for the developing flow in 180 degfee bends and
in 'S' shaped ducts. The computed distributions of
stagnation pressure agreed satisfactorily with
experiméntal data upto 45 degrees of the bend angle;

but after this distance, the calculations displayed

substantial discrepancies with the measurements.

Inviscid calculations of the oscillatory
nature of the secondary flow field have also been
presented, by Hawthorne (1951). The oscillatory nature
of the secondary flow field was demonstrated through the
solution of an equation for the angular displacement of

the stagnation-pressure contours. The calculated period
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of the first oscillation in a 180° bend agreed
satisfactorily with the measured value. Hawthorne's
analysis was also later extended to calculate the
osciliatory nature of the flow in ducts with rejeated

reversals of curvature (Horlock (1956)).

Analysis of fully-developed flows

A number of theoretical studies have been made
in Which the complete equations governing the fully-
developed flo& in curved pipes have been solved either
by analytical techniques or by finite-difference methods.
Of these stﬁdies, we first review, those for laminar
flows. The first calculations of laminar fully-developed
flow in curved pipes were made by Dean (1927); Dean
employed a perturbation technique to analyse the
secondary flow field as a deviation from the Poiseuille
flow. His solution is however applicable only to flows
in which the Dean number, defined as K = Re/a/R is
smaller than about 17. For Dean numbers which are
sufficiently large (<80) solutions of a different
type have been propdsed, by Adler (1934), Barua (1962).
and Mori and Nakayama (1965). In these three solutionms,
a 'boundary-layer approximation' was made; first the
flow cross-section was divided into a viscous, near-wall
region and an inviscid core; equatidns were then solved
separately for each flow region; and the flow conditions

at the boundary of the two regions were matched. Using
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a similar approach, Mori and Nakayama (1965) also
calculated the fully-developed thermal field; and
obtained expressions for the distribution of temperatures
and heat-transfer rates. These authors analyséL the

. temperature field for two different thermal boundary
conditions,ﬂxse’being the constant-wall-temperature

condition and the constant heat-flux cohdition.

The above-mentioned boundary-layer approximation
is however valid only in flows with Dean number greater
>thah about 80. In the intermediate fange of Dean numbers,
i.e. between 17 and 80, neither the analysis of Dean
(1927) nor that based on the boundary-layer concept gives
correct solutions to the equations. Solutions for flows
in this intermediate range of Dean numbers have been
obtained by McConalogue (1969), using Fourier-series

expansions.

Solutions to the differential equations governihg
fully-developed flow and temperature fields have also
.been obtained using finite-difference numerical-schemes
(Truesdell and Adler (1970), Austin and Seader (1973),
Akiyama and Cheng (1971), Kalb and Seader (1972),
Tarbell and Samuel (1973) and Greenspan (1973)). The
schemes proposed by the abeve researchers differ in
(a) the dependent variables employed in the

governing equations; and
(b) the way the finite-difference form of the

differential equations is derived.
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Numerical solutions of the temperature equation have been
presented by Kalb and Seader (1972) and by Tarbell and
Samuels (1973).

For the turbulent, fﬁlly—developed flow in
curved pipes, two theoretical solutions have been reported
(Ito (1959) and Mori and Nakayama (1967)); both solﬁtions
were based on the boundary-layer concept, akin to that
adopted for calculating laminar flows. Numerical studies
of the turbulent heat-transfer ih curved pipes have not

been reported yet.

Analysis of the developing region

Only a few theoretical solutions of the equations
governing the developing flow and temperature fields
have been reported. Singh (1974) calculated the
development of the flow field, using a method based on
asymptotic expansions. Solutidns to the governing
equations were obtained for two different inlet-
conditions: (a) a'uniform inlet pressure and (b) a
ﬁniform axial-velocity at the inlet. Yao and Berger
(1975) analysed the developing flow field, using
a method which was an extension of the method of
Barua (1962) for the calculation of fully-developed

flow field. Neither Singh (1974) nor Yao and Berger (1975)
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presented any comparisons with experimental data. The

- thermal entrance region has been studied theoretically
by Dravid et al. (1971) and by Tarbell and Samuels (1973).
Both assumed the flow field at the start of the thermal
entrance region to be fully-developed; and solved only
the temperature equation, using finite-difference methods.
Dravid et al.assumed the flow field to be that calculated
by the analysis of Mori and Nakayama (1965) whereas
Tarbell and Samuels obtained their velocity field from

a numerical computation. Both theoretical solutions
éatisfactorily predicted the osciilatory development of
the wall temperatures and Nusselt humbers_observed in the
experimental investigation of Dravid et al (1971) and of

Seban and McLaughlin (1963).
Theoretical calculations taking into account
the effects of viscosity, have not been yet made for the

turbulent developing flow in curved pipes.

2.3 Turbulent flow in rectangular-sectioned

curved ducts

2.3.1 Experimental studies

Measurements of the turbulent flow in bends of
rectangular cross-section have been ma&e by Joy (1950);
Eichenberger (1953) and Squire and Winter (1951). 1In
these inVestigations, the contours of stagnation pressure

were measured at several axial positions along 90 and 180
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degree bends. The conditions at the inlet were such
that the stagnation pressure varied linearly from zero
at the bottom wall to its maximum at the centre of the
duct, the flow being nearly symmetrical about the central
plane of curvature. The flow patterns observed have
been similar to those observed in circular bends. A few
experimental investigations have also been reported in
‘which the primary interest has been to study the three-
dimensibnal turbulent boundary—layer which developed on
the top : and bbttom walls of the curved duct (Gruschwitz
(1935), Francis (1965), Vermeulen'(1971)). In these
investigations, the measurements were confined to regions
close to the bottom wall and the variations of flow
variables normal to the bottom wall were measured at
several locations in the flow field. Recently Young,
Jerie and Howard (1972) and Young (1973) presehted
distribufions of the overall flow-field in a curved
rectangular duct whose outer wall was varied in an
arbitrary manner so as to create a zero axial pressure-
grédient along the centre line of the duct. They also
made measurements of the velocities and flow angles in
the region close to the bottom wall to study the three-

.dimensional boundary layer.

2.3.2 Theoretical studies

Calculations of the flow in rectangulér curved
ducts have been mostly restricted to the boundary-layer

region close to the bottom wall of the duct. 1In these
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’calculations it is assumed that the properties of the
boundary layer are the same at all the locations in the
direction of the duct width; and thus the characteristics
of the complete flow are inferred from studying the
properties of the boundary layer at selected locations
along the duct widtﬁ. The calculation of this three-
dimensional boundary-layer is made by one of the
following two types of methods*.
(a) Integral methods in which the mémentum—
integral equations are solved to produce
integrated properties of the boundary layer
at various locations on the surface;
(b) : Differential methods, in which the time-mean
equations of motion are numerically solved
to produce flow properties at discrete locations

across the thickness of the boundary layer.

Calculations of flow in rectangular curved
ducts have also been méde using inviscid-flow analysis;
(Squire and Winter (1951), Eichenberger (1952), Stuart
aﬂd Hetherington (1968)); in these the viscous effects
in the flow are neglected and thus no account is made

of the effects of turbulence. The analyses of Squire

%

A review of the calculation methods proposed for three-
dimensional boundary layers is given in Patel and Nash
(1972).
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and Winter (1951) and Eichenberger (1952) are based on
approximate solutions such as those discussed in
Sec. (2.2.2), while Stuart and Hetherington (1968) propose

a finite-difference solution to the inviscid equations.

2.4 Generalised calculation procedures

In the above two sections, the eiperimental
and theoretical investigations in curved ducts were
reviewed. The solution procedures proposed in these
‘theoretical studies however have limited applicability
in the sense that they are restricted only to the
calculation of flows in curved ducts. In this section,
a review is made of more-general calculation procedures
for analysis of three-dimensional flow situations. Such
Vcalculation procedures comprise two distinct aspects:
(a) the solution procedure for the governing equations;

énd (b) the mathematical modelling of the turbulence

phenomena., These aspects are reviewed below separately.

Solution procedures

Generalised solution procedureé for the equations
governing two- and three-~-dimensional flows have been,
because of the complexity of the equations, only of the
finite-difference variety. One such calculation procedure

for two-dimensional 'parabolic' flows was reported by
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Patankar and Spalding (1967). Gosman et al (1969)
later, reported a method applicable in two-dimensional
elliptic flows (i.e. flows with recirculation). Among
other calculation procedures for two- and three-
dimensional steady and unsteady flows are those of
Harlow and Welch (1965 ), Chorin (1968) and>Amsden.and
Harlow (1970).

A procedure for calculation of three-dimensional
'parabolic' flows was reported by‘Gosman and
Spalding (1971); subsequently a somewhat different
calculation procedure for the same flow problem was
reported by Caretto et al (1972). Later, Patankar and
Spalding (1972) developed a calculation procedure for
the same flow problem;'but this procedure employed a
more efficient numerical algorithm. The numerical
scheme of Patankar and Spalding was also subsequently
extended (Caretto et al (1972) to three-dimensional
recirculating flows (also referred to as elliptic flows)).
Several application studies of the latter two procedures
have also been made e.g. (Sharma (1974); Tatchell (1975)).
A calculation scheme for an intermediate class of flows,
termed partially-parabolic, was proposed by Spalding
(1971); it is this proposal which is developed further
and applied in this thesis to predict the flow in

strongly-~curved ducts.
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‘Two recent reviews of existing calculation
procedures for steady, three-dimensional boundary layers
are also available. They are due to Patankar (1971)

and Nash and Patel (1972).

Turbulence models

Research on the nature of turbulence aﬁd on
the calculation of the turbulent strésses is quite
extensive. Methods proposed for calculation of the
‘turbulence -stresses date back‘td'Prandtl's (1925) mixing-
length hypothesis in which the Reynolds stresses are
related to the velocity gradients through a prescribed
length-scale distribution. Subsequent research in
modelling the turbuience phenomena has led to the
development of one, two- aﬁa multi-equation turbulence-
models; each of these differ in their degree of complexity
by the number of additional différential equations solved
for the turbulence variables. The current status of
such turbulence models has been reviewed by Launder ‘and
Spalding (1972), Harlow (1973), Mellor and Herring (1973)
and Launder and Spalding (1973). In the latter, Launder
and Spalding also discuss,in particular, the applicability
and performance of a two-equation turbulence-model in
which the additional equations solved are for the kinetic-
energy of turbulence and for its dissipation-rate. They
show, through comparison of predictions with experimental
data, that such a turbulence model gives fesults which

are satisfactory while also being economical from the
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computational view-point. Based on the recommendation
of Launder and Spalding (1973), the two-equation
turbulence-model has also been applied in the present

study.

2.5 Status of existing information

The status of existing information, bbth
experimental and theoretical, on the flow and heat-
transfer phenomena in curved ducts may be summarised
as follows: )

1) Studies of fully—developéd laminar flow and
heat-transfer phenomena in curved pipes have
been made in sufficient detail to provide
adequate information for the design of
equipment involving such flow processes.

2) For turbulent flows, the experimental data
on mean flow and heat transfer are adequate
to test the predictidn procedures and the
turbulence models; but information on the
structure of turbulence is lacking. Such
information is needed to understand and to
correctly represent the effects of curvature
on the turbulence structure.

3) Measurements of the developing flow and

.

temperature fields have been only few; it is

therefore necessary to obtain additional data

in order to test the calculation procedures

over a wider range of flow parameters.
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4) Calculations of the developing flow, with
. the viscous forces included in the equations,

have only just begun. Calculations of
turbulent flows with the effects of turbulence
incorporated into the equations have not been
reported.

5) The calculatidn of turbulent flow in
rectangular-sectioned curved ducts has been

] attempted from a restricted view-point and
needs to be extended to the prediction of the
overali flow field; for this, further
experimenfal information is needed of the
overall distributions of the velocities and

pressures over the flow field.

2.6 Concluding remarks

In the preéent chapter, a brief réview has
been made of the available experimentalland theoretical
information of the flow and heat-transfer phenomena
in curved ducts; studies in ducts of circular and
rectangular cross-section have been reviewed separately.
The available experimental and theoretical information
has been evaluated and the areas where further studies

.

need to be undertaken are outlined.
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CHAPTER 3

MATHEMATICAL DESCRIPTION OF THE FLOW SITUATIONS

3.1 Introduction

The present chapter ﬁnd the next two describe
the details of the theoretical calculations made in
this thesis. These chapters are provided for the sake
of’completeness; and to some extent they review
information already reported before, such as the
calculation method and the turbulence model. First,
in this chapter, the mathematical equations which
govern the transport of mass, momentum, energy etc.
in the various flow situations considered in this
thesis are stated. These equations have been derived
from the general form of the Navier-Stokes equations
by the neglect of terms of small order of magnitude.
The solution procedure for these equations is described
in the next chapter; and the subsequent chafter is then
devoted to the description of the turbulence model used

in the present study.

"The present chapter is arranged thus: first
a classification system for steady-flow situations is
introduced; in this, steady-fiow situations are divided,
from a computational view-point, into three distinct
categories: elliptic, partiallY—parabolic and fully-

parabolic. The distinctive features of each flow-
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category are pointed out and the differences in their
mathematical nature are stated. The classification
system is then applied to identify the flow phenomena

in :curved ducts, based on the curvature of the auct.

The partial-differential equations solved in the present
investigation are then stated for three different flow
geometries considered in this thesis. The equations

are stated in a form common to both laminér and turbulent
flow situations. Finally, the auxiliary information
necéssary to complete the mathematical formulation of

the problem is listed.

3.2 "~ Classification of steady-flow situations

It has been useful (ref. Gosman et al (1969))
in numerical fluid dynémics to classify steady-fiow
phenomena into two main categories: elliptic and
parabolic. Strictly speaking, all flows except wholly
éupersonic ones are elliptic; this means that
perturbations of conditioﬁs at any point in the flow
can influence conditions at any other point. The
mechanisms of these-interactions are usually:-

(1) convection (i.e. downstream transmission
along stream lines);

(ii) conduction, diffusion and viscous action
(i.e. dissemination in all directions by
molecular inter-mixing);

C(iii) pressure transmission (e.g. the tendency of

a fluid in a subsonic flow to move out of the
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way of a downstream obstacle before reacting

it).

In parabolic flows, mechanisms (ii) and (iii)
are weak enough to be ignored; and the flow configuration
is free from "recirculation" so that mechanism (i)
transmits effects only in one direction. Many boundary-
layer, duct flow and jet phenomena are of this parabolic
kind; for the Reynolds number is high enough to render
the.molecular actions to be insignificant in the
streamwise direction; and the conditions of the flow

provoke no sharp curvatures of the streamlines.

There is however, also another category of
steady flows which lies in between the elliptic and
parabolic categories. This category, studied extensively for
the first time in this thesis, represents flows which
are characterised by:»

(a) absence of recirculation, so that mechanism
(i) (convection) operates only in a single
(downstream) direction;

(b) high Reynolds number, so that mechanism (ii)
(molecular action) is significant only normal

to the streamlines and

(c) significant curvature of the streamlines,

rendering mechanism (iii) (pressure
transmission) the dominant transmitter of

influences in an upstream direction.



- 31 -

Examples of such flows include flow in strongly-curved

ducts, flow in ducts with distributed resistances etc.

The consequences of the above classification

’ afe reflected through simplifications which are achieved
in the governing differential equations for each

flow category. These simplifications are explained

below with reference to the differential equations
governing a éteady, three-dimensional, incompressible

flow in the (x, y, z) coordinateksystem; the equations
given below represent an elliptic flow situation; they
will be later simplified to obtain those which describe

parabolic and partially-parabolic situations.

Mass Conservation

) 3 . 9 e~
3x (PU) *+ 55 (pv) + - (pw) = 0 (3.2.1)
Transport of:
X-momentum
9T 3T
3 2 3 - -, Tixx Xy
Ay (puu) + 5y (puv) + == (pwu) 5% T Tox. T Iy
asz
57 Su
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y-momentum
3T 0T
9 9 9 = - 3p yx vy
Ay (PUV) + 5y (pvv) + == (pwv) 5y + Tox + 3y
3T 7
+ _KYZ_ + SV
(3.2.3)
z-momentum
. 9T 9T
9 9 9 = _ 9 zX zy
ax (PUW) * 35 (pvW) + 55 (pww) = - o + —2= + —35
T
Z7
Yozt Sw
(3.2.4)
Scalar. property, ¢
8d 3d
'i —a— i = @,X (D,y
5% (pud) + 5y (pve) + w2 (pwd) 5% * 3y
?)J(I> ”
+ .._a_}_ + S(D
(3.2.5)

In the above equations, u, v and w
respectively represent the components of the velocity
along the x, y and z directions. p represents the
density and p is the pressure f;eld. The 't's represent
the stresses in the.fluid; and can be expressed in

terms of a viscosity and the velocity gradients. The
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'J's represent the fluxes of the entity ¢ and can
also be represented by gradient-type laws. The terms
S

S s and s¢ stand for additional sources or sinks

u’ v’ “w

of the corresponding property which is being transported.

In the above.eQuations, the terms on the left
hand side represent the transport of flow properties
by convection along the three coordinate directions.
The mechanism of diffusion is represented by terms
containing the shear stresses 't', and the 'J' fluxes.
The mechanism of pressure transmission'which exists
only for the transport of momentum is represented by

the pressure-gradient terms.

The equations for partially and fully-
parabolic* flow situations can be now obtained from
those given above by omitting the terms representing
the mechanisms that are weak enough to be ignored. For
partially-parabolic flows, the simplification consists
of neglécting the diffusion fluxes along the predominant
flow-direction. Fof a flow which is predominant along

the z-direction, we can therefore write that

= = =J = 0 (3.2.6)

*The term 'fully-parabolic' is synonymous with the term
'parabolic'; it is introduced in this thesis, wherever
necessary, for more clear distinction from the term
'partially -parabolic’.
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Equations for a partially-parabolic flow situation
are obtained by substituting (3.2.6) into equations
(3.2.2) to (3.2.5).

The go#erning differential equations for a
fully-parabolic flow are the same as those for a
partially-parabolic situation but for additional
simplification in the treatment of the pressure field.
For fully-parabolic flows, the absence of pressure
transmission imﬁlies that there ére no sharp curvatures

of the streamlines and thus the streamwise pressure-
ap
92

therefore %% can be calculated without reference to

gradient, is nearly uniform over the cross-stream;
the momentum balances in the x- and y-directions. The
3 '9p ap ap ;
independence pf Nz from A% and 3y results in the
decoupling of the z-direction momentum equation from
the other two momentum-equations; and equation (3.2.4)
can be recast in the following form:

35 asz

3 3 S _
3x (PUW) + = (pvw) + 7 (pWw) = - =2 + —=

+ ”E%X + Sy

(3.2.7)

The quantity p may be interpreted as an average pressure

over the x-y plane; p is constant in the x-y plane but
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varies along the z-direction depending on the flow
situation considered. The above-mentioned decoupling
of the momentum equations presents a simpler solution

task, as shall be seen in Chapter 4.

3.2.1 Classification of flows in curved ducts

Flows in curved ducts may also be classified

as ., elliptic, partially-parabolic and parabolic. The
factor that influences this classification most is the
‘curvature of the duct. If the curvature of the duct is
so large as to cause flow recirculation, the flow
situation is necessarily elliptic. Flows in 90° elbow
bends are one example of flows in this category. In
ducts with curvature too small not to cause recirculation,
the flow may be a combination of both'partially-
parabolic and fully-parabolic flow-regions. The
partially-parabolic regions for flows in curvea ducts
are usually only at the entrance and at the exit. The
influence of these regions on the rest of the flow
depends on (a) the curvature of the duct; (b) the
cross-sectional shape of the duct; and (¢) the state
of the flow, laminar or turbulent. Although it is
difficult to define a precise value of the curvature
ratio distinguishing parabolic and partially-
parabolic flows, as an approximate criterion,
it may be stated that the flow in ducts with a radius

ratio (R/a) greater than 15 is parabolic to a large
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extent; and thus it can be accurately calculated by
using a calculation procedure designed to handle

parabolic flows,

3.3 Governing partial-differential equations

For later convenience, in this section the
partial-differential equations governing the flow and
heat-transfer phenomena in the various flow situations
combuted in this thesis are stated. The flow situations
.énd the coordinate systems in which they have been
mathematically described are shown in Figure (3.3.1).

The flow geometries have been (a) a curved circular pipe;
(b) a curved rectangular-sectioned duct and (¢) a
curved rectangular—sectioned diffuser; the coordinate
systems in which these flow situations have been
presented are respectively (a) the (r, 6, ¢); (b) the
(x, ¥, ¢); and (c) a quasi-orthogonal system represented
by the coordinates (n, ¢, £). The three sets of
equations described below have been derived from the
generalised form of the Navier-Stokes equations assuming
the flow to be incompressible and predominant along the

¢ direction. The equations stated below are

thus partially-parabolic; their parabolic form

can be easily derived by rewriting the longitudinal

momentum equation using a p pressure field.

Since the equations for the three momenta and for other
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Fig., (3.3.1(a)): Coordinate system for a curved,
circular pipe.
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Fig. (3.3.1(b)): Coordinate system for a curved, rectangular
duct.,
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Fig. (3.3.1(c)): Coordinate system for a curved diffuser.
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scalar flow-properties have similar structure, they
have all been represented below by a single equation for
a general variable ¢; the individual equations can

easily be obtained and are given in Appendix Al.

(a) Curved circular pipe: (r, 0, ¢)
Continuity:
Ju 1 3v u W 1 1 . -
T T tr R3¢ +tgu cosf - R vV sind =.0
{3.3.1)
Transport of a general flow-property, &
3% vad wod | _ 1 3 rad
P 5 * 758 YRag ) T Se T T ar (Ts 37 )
+ EiI>--( 30 cosb ks sind )
R r 20
) 3%
* 736 Ty 736 ) (3.3.2)
(b) Curved rectangular-sectioned duct: (x, y, ¢)
Continuity
du , 3v ., w, 3w 3.3.3
3 T3y "R T Reg 0 (3.3.3)
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Transport of &

23 32
* X (FQ )

ugsd 20 29 ) =
X

—

(5% *Vay 'V Ree

r

+ 232, 9 (r, 232,
R 9y

9% ¥ By
(3.3.4)

(¢) Curved, rectangular-sectioned diffuser: (n, g, &)

Continuity:

0 ' : (3.3.5)

_ 4 3 . 1 ) ¢
30 = g + A _ (r@ a9 ) + - (I‘ = )
an - 2 32; o] C

l (yy-vg)

T (3.3.6)
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The nomenclature used in the above sets of equations

is the same as that used earlier, for equations (3.2.2)
to (3.2.5). u, v and w represent the three veloéity—
components along the three coordinate-directions; ¢

is a general flow-variable which represents all scalar
flow properties and also the three velocity components,
u, v and w; S@ contains all the additional terms
representing the source or sink of ¢ ; it includes
pressure gradients, body forces, heat fluxes etc. T

®
.is an exchange coefficient which relates the diffusion

or temperature
fluxes to the velocity, gradients; for turbulent flows
it represents the combined laminar and turbulent
exchange coefficient and is calculated from the
turbulence model. The expressions for the source terms
and the exchange coefficients appearing in fhese

equations can be obtained from the equations given in

Appendix Al.

In the above coordinate systems, the one
represented by (n, ;, g£) is only quasi-orthogonal; and
the equations preséﬁted for this coordinate system
imply a few more approximations, in addition to those
because of the predominant flow direction. It is
postulated that the errors introduced by these
approximations are small for the diffuser angle (2.50)

studied in the present thesis.
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Auxiliary information

In addition to the set of equations described

‘above, the mathematical specification of the flow

situation also requires the following information.

(a)

(b)

(c)

(d)

Initial conditions, i.e. initial values of
dependent variables corresponding to the
position along the predominant flow direction
(i.e. ¢) at which solutions to the set of
equations are begun.

Exit conditions, i.e.\conditions at the outlet
of the duct, either as a specified pressure-
distribution or as a specified distribution

of axial-velocity; these conditions are
necessary only for the calculation of
partially-parabolic flow situations.

Boundary conditions, i.e. conditions of all
the dependent variables at the four boundaries
of the cross-sectional plane, as a function
of ¢.

Auxiliary relationships, which allow the
density, diffusion coefficients, sources and
sinks in each of the equationé to be computed
inﬂterms of the dependent variables of these\

equations, over the entire flow field.

The manner in which the auxiliary information

is incorporated in the solution procedure will be

described in Chépter 4.
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Summary

The contributions of the present chapter may

be summarised as follows:

1)

2)

3)

4)

Three categories of flow situations have

been defined which are distinct from a
computational view point‘; they are: elliptic,

partially-parabolic and parabolic. The

physical nature of the flow in each of the
above categories has been discuséed and the

differences in the gerrning equations have

been pointed out.

The nature of the flow phenomena in curved

ducts has been examined from the view point

of the above classification.

The partial-differential equations governing

the transport of mass, momentum and energy

etc. have been stated for three different

flow geometries.

The auxiliary information necessary to complete

the mathematical specification is listed.

The calculation procedures for solving the

above sets of parabolic and partially-parabolic

equations will be described in the following chapter.
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CHAPTER 4

SOLUTION PROCEDURE

4.1 Introduction

The purpose of this chapter is to provide the
details of the solution procedures for the equations
governing three-dimensional parabolic and partially-
parabolic flows. The calculation procedure described
-here for parabolic flows is thaf reported earlier by
Patankar and Spalding (1972); the details of this
procedure are thus given here only for the sake of
completeness and for the reader's convenience. The
partially-parabolic procedure, however has been a
development of the present investigation; and is

described here for the first time.

The two calculation procedures are quite
similar in their approach; they share several important
features but differ_in the manner in which they
calculate the pressure field. The partially-parabolic
procedure employs a single pressure field common to all
the three momentum-equations whereas the parabolic
procedure employs two separate pressure fields - one fér
the solution of the lateral momentum-equations and
the other for the longitudinal-momentum equation.

Since the calculation steps in fhe two procedures are

similar, only one procedure is described here in detail.
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From the view-point of ease in understanding, the
partially-parabolic procedure is presented -in detail; the
parabolic procedure is later explained only briefly,

by outlining its distinctive features.

Both calculation procedures comprise the
following main steps.
(a) Subdivision of the flow domain into smaller
| regions by a finite-difference grid;
_(b) integration of the differential equations
over the finite-difference 'cells'; and
(c) solution of the algebraic equations obtained

from the integration of step (b).

The details of these steps are described below.

4.2 Calculation procedure for partially-parabolic

flows

The present section describes the calculation
procedure to solve the differential equations governing
a partially-parabolic flow situation. This calculation
procedure has been é development over the parabolic
calculation procedure of Patankar and Spalding (1972);
thus a number of important details described below have
already been reported earlier; and are reproduced heré
for sake of completéness of the description. The main
features of the partially-parabolic calculation

procedure are as follows,
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4.2.1 The finite-difference grid

The finite—différence grid consists of
orthogonal, intersecting grid lines, disposed over the
flow domain along directions parallel to the three
qoofdinate—axes. The intersections of these grid lines,
usually called _ 'grid nodes',form reference locations
for identifying the discrete values of the flow
variables. The spacing between the grid lines is not
stipulated to be uniform but can be varied to locate
more grid nodes in regions of steep variations of the
flow variables. The finite—difference grid is chosen
after experimentation witﬁ finer and coarser grids so
as to make the results of the computations substantially

independent of grid-fineness.

4.2.2 Location of flow wvariables

Figure (4.2.1) sﬁows the manner in which the
flow variables are arrayed in the finite-difference
grid. The pressure and the scalar properties such as
enthalpy, concentration etc. are stored at the grid
nodes while the velocity-components are placed midway
between adjacent grid nodes. The 'staggered-grid'
system adopted here has the following advantages:

(a) the velocity components are conveniently
located for calculating the convective fluxes
of flow properties stored at the grid nodes;

(b) the calcﬁlation of mags balance over a region

surrounding a grid node is made easy because
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the velocities normal to the boundaries of
this region are located directly on the
boundaries;

(c) the pressures are stored so as to make it
easy to calculate the pressure gradients

that affect the velocity components.

The dotted enclosures shown in the figure describe
ﬁhe—manner in which the variables héve been grouped
for the purpose of identification; the variables
enc}osed by these dotted lines aré denoted by the
same subscript. (It is necessary to note here the
slight difference in the practices for grouping

the velocities in the xX-y plane and in the y-z plane.)

4,2.3 " Control volumes for integration

The 'control volumes' represent regions,
over which the partial-differential equations are
integrated to obtain their finite-difference form.
These control voluﬁés are different for each flow
variable. Figure (4.2.2) shows the control volumes
for the velocity components and for a general variable,
¢. The boundaries of these control volumes are
defined as follows. For variables located at the grid
nodes, the boundaries of the control volumes, in all the

three directions, lie half-way Eetween two grid nodes; thus
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the interfaces of the control volumes always pass

- through locations at which the normal-velocities are
stored. The control volumes for velocity-components
are defined in a similar way, but the above practice

is adopted only along those directions which are
perpendicular to the velocity; <for the direction_along
the velocity, the edges of the control volume pass
through the grid nodes which lie on either side of the
velocity.

4,2.4 ‘Location of flow variables near the boundaries

The staggered grid system explained above
for locating the velocity-components presents a few
difficulties in calculating the flow variables situated
adjacént to the boundaries of the flow domain. To
overcome these difficulties, slightly different
practices are édopted for locating the near-boundary
velocities. Figure (4.2.1) illustratés the location
of the velocities near the boundaries. The new
practice consists of altering the locations of the
velocities normal to the boundaries from their staggered
positions to locations directly on the boundary. The
new locations of the near-boundary velocities also modify
the control volumes for the'variables situated near

the boundary; these changes are shown in Figure (4.2.3).
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4.2.5 Discretisation of the differential equations

The discretisation procedure described below
is the same as that described in Patankar and Spalding
(1972) except that it is now recast in a slightly
different manner to suit the partially-parabolic
equations. Since the transport equations have a
generalised form (ref. Chapter 3), the procedures for
their discretisation are identical; thus the steps in
the discretisation procedure are explained below with

-reference to the differential eQuation for a general
variable ¢. The equation considered is the partially-

parabolic form of (3.2.5), written as

2 (pus) + & (pve) + 2 (owe) = & (r, 3
(1) (2) (3) (4)
' 3 38
+,é_§(r® By) + S5 (4.2.1)
(5 (6)

The symbols in the above equation have the same

meanings as in equation (3.2.5).

Assumptions.

To discretise the various terms of (4.2.1) a
few assumptions are first made regarding the variation
of ¢ over the grid spacings. These assumptions have
been earlier validated in the various application-studies
of the parabolic procedure and are thus also adbpted

here. The assumptions are:



(a)

(b)
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For terms represénting convection along the
X and y-directions (i.e. terms (1) and (2)),
the value of ¢ is assumed to vary linearly
between.grid nodes. This implies thac for
an interface which is midway between two
grid nodes, the value of % that is convected
across the interface is the arithmetic mean
of the ¢ values at the grid nodes. However,
this value of ¢ is later modified in
circumstances when the convective flux is
much larger compared to the diffusive flux
ih the same direction. .This modification,
called the "high-lateral-flux modification"
removes certain difficulties associated with
the central-difference scheme (for details
of this modification, refer Spalding (1971);
or Patankar and Spalding (1972)).

For convection in the z-direction (represented
by term (3)), it is assumed that the value

of ¢ which is convected is equal to its
upstream value, ¢y, The variation of ¢y

in the x-y plane is assumed to be step wise,
i.e. @U is constant over the dotted region
shown in Figure (4.2.2) but changes suddenly

at its edges, to the values at the neighbouring

nodes.
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(c) For diffusion in the x-y plane, the
variation of ¢ is assumed to be linear;
but is also altered later, by the high-

lateral-flux modification.

The integrated equation

Equation (4.2.1) is now integrated over the
control volume for the ¢ variable; and in the integrated

form it may be expressed as follows.

X _ X y _ y -
L o] LW @w + Ln @n Ls @S + FP @P FU @U

(1) (2) (3)
_ X 'm X
= TS0 (25-05) = T,° (9p-0y)

(4)

TV (g=tp) - T (2p-0g)

(5)

Ax Ay Az + é o, AX Ay Az

* o,P °P

Se U

(6) (4.2.2)

In the above equation, the symbols L, T and F stand

for the following expressions:
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LS = (by Az) (o),

L, = (&y bz) (pu)y

Lny = (Ax Az) (pv)n

LY = (bx Az) (pv)g

TX = T, ( Ag%z )e (4.2.3)
wa = PW ( Agiz )W

Tny = Pn ( Agéz )n

F = (DW)U Ax Ay ; Fp = (pW)p Ax Ay

where the subscripts E, W, N, S, P and U refer to the
grid nodes E, W, N, S, P and U; the subscripts e, n, s, w
refer to the corresponding locations, shown in Figure
(4.2.4); and the dimensions Ax, Ay, Az, §x and §y are as

defined in Figure (4.2.4). The values of @e, ) ¢

W, n’

@S represent the flow properties convected from the
interfaces normal to the x and y directions; they are
expressed as a linear combination of the values on

either side of the interface, thus;
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= X b 4
o, = 25 o, + (1 - £%) o
I e X
@w = fw @P + (1 fw ) @w
(4.2.4)
_ e V- 2 |
?n = 7 ot (1 £,7) p
= y _ sy
¢S fs @P + (1 fS ) ¢S

. . . X X y y
with the interpolation factors fe , fw , fn , fs

- having the following meaning:

£ X = (Gx)e
e 2Ax%
£ X = (Gx)w
w 248x (4.2.5)
8
eV - (8y),
n 2Ay
8
.V - (8y)
s 2Ay

The expression forAFP may be obtained by integrating

the continuity eqﬁation;and is as follows:
F, = F, -L*+1%_ LY + LSy ' (4.2.6)
The last two terms in (4.2.2) represent the contribution

due to the source terms; they have been obtained by

expressing s, of (4.2.1) in a linearised form so that
¢
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Sg S@,U 5,p @P (4.2.7)

where the subscripts U and P refer to the upstream

1 |
and the 'current' values. SQ,U and S@,P are volume-
averaged values of the source terms and are prescribed

after integrating the corresponding expressions over

the ¢ control—Volume.

The expressions (4.2.4) to (4.2.7) when
substituted into (4.2.2) give the following

expression for ¢

P:
o, = A" op + AL o+ A oy + ag’ o + p?
: (4.2.8)
where,

Ap = Ap/AL

Ay = A&/A%

Ay = Aﬁ/Aé

Ag = Aé/Aﬁ

B = BYA
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and,
Ay = T X - L%
Ay = TS5+ (1 -2 LK
| Aﬁ = Tny - fny Lny
.Aé = Tsy - fsy) Lsy
B = TR bx Ay bz + Fy QU
Aﬁ = Aﬁ + Aﬁ + A& + Aé - Sy p Ax Ay Az
(4.2.9)

Equation (4.2.8) represents the final form of the
finite-difference equation for the differential
equation (4.2.1) and describes the general structure
of the finite-difference equations solved by the

solution scheme, to be described in Sec. (4.2.6).

Equations for the'Velocity components

The finite-difference equations for the
velocity components are obtained in a manner similar
to that of (4.2.8), by integrating each momentum-
equation over the control volume for the appropriate
velocity-component (shown in Figure (4.2.2)). The

finite-difference equations so obtained for the
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velocity components are:

up = A ug + Ay uy * Ayt uy * Ag ug + B

+ D! (pPp-py) (4.2.10)

+ DV (Pp-Pg) (4.2.11)
= A W w W w w
wP AE wE + AW wW + AN wN + AS Wg + B
+ D" (py-pp) (4.2.12)

The A and B coefficients in the above equations have
similar meanings to those in (4.2.9); the subscript
D (eqn. (4.2.12)) refers to the value at the

\' w

downstream location. The new symbols Du, D", D" are

defined as follows.

pY = -aAy Az/A'Pu
p¥ = -ax Az/A%V (4.2.13)
DY =-Ax Ay/Abw

where the A's have the same meaning as in (4.2.9).
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The continuity equation

The discretised form of the continuity
equation is derived by making a mass balance over the

control volume shown in Figure (4.2.2); and is expressed

as follows:
c? {(ow)g - (pwp} + €7 {(ov)y - (p¥)p}

¥ c""'{(pw)P - (pw)yy} = 0 (4.2.14)

where the quantities Cu, c’

and C" represent the areas
of the cell faées normal to the corresponding
velocity—compohents. It may be interesting to note
that equation (4.2.14) can also be obtained by

substituting a Value.of ® equal to unity in equation

(4.2.2).

4.2.6 ‘The solution procedure

Main features

The aim of the solution procedure described
here is to seek a simultaneous solution of the
finite-difference equations expressed by egquations
(4.2.8), (4.2.10) to (4.2.12) and (4.2.14). The
unknowns in these equations are the three velocity-
components u, v and w, the bressure and the scalar
flow-properties. Since the three momentum equations

are coupled through the unknown pressure field it has
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been necessary to émploy an iterative procédure for

_their solution in which the pressure field is guessed,and

is corrected so as to bring the velocities in |

.conformity;: with the continuity equation. Tha

equations being nonlinear, this correction procedure

necessitates more than one iteration. The main
features of the present solution procedure are as
follows:

1) The solutioﬂ procedure employs a guess and
correct procedure for the calculation of the
correct pressure-field. Several 'sweeps'
are méde through the flow domain and the
pressure field is corrected each time,

2) The flow variables are calculated by
'marching' through the flow domain, along
the predominant flow direction; in this
marching, the flow variébles at any longitudinal
station are calculated solely from values
at an upstream location.

3) The finite-difference equations are solved
by a tridiagonal matrix algorithm (TDMA),
along lines in the x and y directions; in
this, when the equations are solved along
lines of constant-x, the values of the
variables at adjacent y-locations are kept

fixed; and vice versa.

4) The pressure field is stored as a three-

dimensional array and is 'updated' in each
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marching of the flow domain. All other
variables and the coefficients are stored
at any time as two-dimensional arrays along

cross-sectional planes.

Sequence of calculation steps

The sequence in which the calculation steps
are executed is as follows.

1) : Thé pressure field which is stored in a
three-dimensional array is assigned guessed
values at the start of the integration.

2) Using the guessed vélues of the pressure
field, the momentum equations in the x, y
and z directions at a downstream station
are solved; the coefficients in the equations
are evaluated on the basis of flow properties
at the upstream longitudinal-station. The
sequence of the calculations has been to solve
first for the u and v velocities and then
for the w-velocity which is situated ahead
of the éross—stream plane containing the u
and v velocities. |

3) The pressure field is corrected to bring
the velocities in confoermity with the
continuity equation. These corrections are
applied for one cross-stream plane at a time,

and aré calculated as follows:
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(a) The pressure and velocity fields are first

expressed as

p = p* + p
1
u = u*¥ + u
(4.2.15)
K]
v = vk + v
]
w = wF¥ + w

‘where the primed quantities represent the
corrections to the approximate (starred)
values.

'(b) The corrections to the velocities are related
to thée pressure corrections by substituting
(4.2.15) in the momentum equations. The
expressions for the velocity components are
written in a simplified form as

. a
Ug =Yg * Dy (P - Pp)

.f.
— * u ' '
up = up + Dp” (pp - Py )

* v t 1
v * DN (pN - Pp ) (4.2.16)

+See footnote on next page.
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. v ‘ _ '
vp *Dp (Pp - Pg)

* w .
Wp = Wp - DP (pP ) (4.2.16)

_ * W 1 T+
Wy = Wy +DU pP

(c) The relations expressed above are then
substituted in the finite-difference form of
the continuity equation (4.2.14); the coefficients
for pb are collected and rearranged to obtain
the following expression for pﬁ.
| S P | S P
Ap” Pp = Ag” Pgp * AyT Py * Ay Py
- +App'+ﬁ1 )
S S P (4.2.17)
1.
The complete expressions for these velocities are
of the following form:
_ * u 1 ) u *
up = up *+Dp” (Pp - Py ) * A (U - ug ) 4
u * u * u % )
Ay Qg - uy ) v AT (U - ug ) AT (ug - ug )
by dropping the last four terms we get the expressions
described by (4.2.16).
T In deriving this expression and the one following it,
. ot —
it has been assumed that Pp =Py = 0.
T+t

Although w; is not calculated along with up, Vp and
Wp, it is affected by a change in the pressure at

P; hence the expression for wk].
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where, pb , pw , pﬁ , pé are corrections to
the pressures at the nodes N, S, E and W;

and the 'A's represent the products of the 'D'
coefficients and the cell areas Cu, cV and
cV, Thé quantity mp expresses the mass
imbalance over the region surrounding the

grid node P and is given by
. * * * *
m, = C% {(pu' )y - (pu)p} + €V Lpv )y - (pv )g}
* * ’
- cV {(pw )p = (oW )y} (4.2.18)
and

b _ p p p p p p
AP AE + Aw + AN + AS + AU + Ap

(4.2.19)

(d) Equation (4.2.19) which has the same form as
(4.2.8) is solved in the same manner as the
momentum equations are solved; and the pressure
and velocities are thereafter corrected
accordingly. However, while correcting the
pressures it has been found beneficial to

under-relax the corrections so that

P = P + ap'
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where p' is the correction calculated from
the equation and o is a value between 0 and 1;
o usually has a value around 0.5.

The equations for variables such as ewnthalpy,
kinetic-energy of turbulence etc. are solved so
as to provide distributions appropriate to the
downstream station.

Steps 2, 3 and 4 are repeated at all the
downstream locations in the flow domain.

Such sweeps through the flow domain,
consisting of steps 2, 3, 4 and 5 are repeated
several tiﬁes, each timé using a more-correct

guess for the pressure-field; the procedure

"is terminated when the corrections to the

pressure field have become smaller than a
preassigned value. On the last sweep, the
distributions of the velocities, shear stresses

as are required are printed out.

Details of the TDMA sweeps

The TDMA éweeps by which the finite-difference
equations are solved are described below in somewhat
more detail. These sweeps are performed as follows.
First, for the x-direction sweep, equation (4.2.8) is
.w}itten as
+FB)

+ A, O

b ! %
@P AE @E + AW ] + (AN QN,U S

S,U
(4.2.20)
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The expression in the parenthesis is calculated

from the upstream values; and equation (4.2.20) is
solved by an elimination procedure. The superscript |
denotes the values obtained from this first phace of
solution. In the second phase, the y-direction sweep is
made in a similar manner; the equation now solved is
p N N s 8 + (A og + Agog +B)

(4.2.21)

where, the quantities in the parenthesis represent those

obtained from the x-direction sweép.

In order to reduce the errors in the solution
of the equations, the TDMA sweeps are usually repeatgd
a number of times, depending on the equation under
consideration. For the momentum equation, it has been
found sufficient, from the viewpoint of accuracy, to perform
only one TDMA sweep in each direction. For the pressure-
correction equation however, it has been advantageous
to make at least three such sweeps along the x and y
directions, The sequence in which these x and y
direction sweeps are made is however, arbitrary;
nevertheless, it is advantageoué from accuracy view point
to alternate this sequence, as the flow domain is swept

through.
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4.2.7 - Incorporation of the auxiliary information

Boundary conditions

The boundary conditions for the equations described
by (4.2.8) are normally of two types. They are such that
either the value of the variable is specified at the
boundary or a preScription is made, indirectly, of the
gradient of the variable normal to the boundary. For
example, at stationary, impervious walls, the velocities
aré zero; but at planes of symmetry, their gradients
norﬁal to the boundary are zero. The incorporation of
éither type of boundary condition, into the calculation
procedure‘is easy; and is achieved by modifying either
the source terms or the exchange coefficients in the
finite-difference equations for the near-boundary
variaﬁles. The boundary conditions for the pressure-
correction equation are also prescribed in a similar
manner . Thus,at boundaries where the velocities are
fixed, the gradients of the pressure—corrections normal
to that boundary are made zero; and when the values of
the pressure themselves are prescribed, such as that at
a free-stream boundary, the corrections to the pressure
at that boundary are put to zero. As for other variables,
the incorporation of either condition is straightforward .

\

Other auxiliary information’

Other auxiliary information to be specified
consists of: (a) the exchange coefficients (I''s) and

(b) the source terms in the individual equations,
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These are prescribed as follows. The exchange coefficients
are calculated from the physical conditions of <ithe flow.
For laminar flows, the I''s are made equal to the

molecular diffusion coefficients and are prescribed as a
function of the fluid temperature; for turbulent flows,
~the exchange coefficients are calculated in conjunction
with the turbulence model employed. The turbulence model
empioyed for the present computations is described in
Chapter 5. The source terms which usually represent the
effects of body forces, chemical feaction, turbulence etc.
are prescribed to theé calculation procedure as values
averaged over the appropriate control voiumes; and are
evaluated partly from the values of variables at the
upstream. This partial use of upstream values of the
soufce terms has been,in several earlier instances

(see Sharma (1974), p. 208) beneficial in promoting stability
of the numerical scheme; and is therefore adopted also

in the present procedure.

4.2.8 Summary of the entire caiculation procedure

The main steps in the partially-parabolic

calculation procedure may now be summarised as follows:

1) The flow domain in which the distributions of
velocity, temperature are to be calculated is
divided into smaller flow.regions, by a finite-

difference grid.
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2) The partial-differential equations governing
the transport of various flow variables are
integrated over finite-difference 'cells'
and are expressed as algebraic equaticns.
 The auxiliary information consisting of
boundary conditions, source terms and the
exchange coefficients is incorporated into the
algebraic equations. .

3) The finite-difference equations are then

k -solved by making repeated sweeps through the

flow domain; at any longitudinal station in the
£low domain, the variabies are calculated solely
from the values of the variables at the upstream
station. 1In each sweep, the guessed three-
dimensional pressure field is corrected for the

simultaneous satisfaction of the momentum and

continuity equations.
4) The procedure is terminated when the corrections
to the pressure field have become smaller than

a certain preassigned value.

4.3 Calculation procedure for parabolic flows

4.3.1 Introduction

This section describes the calculation procedure
for parabolic flows. This procedure has been earlier

reported by Patankar and Spalding (1972); and is
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described here only for the sake of completeness. The
parfial—differential equations solved by this procedure
are those expressed by equations (3.2.1) to (3.2.7). _The
distinctive features of the parabolic procedure in
comparison with the partially-parabolic procedure are
(a) v the pressure field, like all other variables,
" is stored in a two-dimensional array; and
(b) all variables are calculated in one single
SWeep through the flow domain; and no
iterations are made.
&n the following sub-sections, the details of the
parabolic procedure are explained.in thé same manner as
those for the partially-parabolic procedure. However,
only the differences between the two procedures are
described in detail; and the common features are only

briefly mentioned.

4.3.2 A reminder of the parabolic concept

Pafabolic flows, which have been defined in

Chapter 3, are fundamentally one-way processes; i.e.
influences travel 6h1y from upstream to downstream and
>99£ vice versa. Thus in these situations, diffusion and
also pressure_transmission are negligible along the
predominant flow direction; and convection exerts
influence only along the flow direction. The difference
between the governing equations for parabolic and

partially-parabolic flows is that for parabolic flows,

the pressure field in the longitudinal momentum equation

is simplified and is represented by a value p
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which is constant over a cross-sectional plane. The

longitudinal momentum equation for parabolic flows is

given by:
a2 Couw) + R (ovw) + L (oww)
= 9T 9T
__ 3B, Yax , gy
3z * Thx T 3y ¢ Sw

(3.2.7)

The use of such a p pressure field prohibits any down -
stream events to be transmitted upstream. It is
economical to be employed because it permits a 'once-
through' marching procedure through the flow domain. The
use of a p field does not introduce large errors in the
solution when there are no sharp curvatures in the

stream lines.

4.3.3 The finite-difference grid

The finite-difference grid, the location of
the flow variables and the definition of the control
volumes in the parabolic calculation procedure are the
same as those explained earlier except for one difference

which is that the w-velocity in the parabolic procedure

is no longer staggered between two grid nodes but instead
is placed directly at the grid nodes where also the
pressures are stored! Because of this néw location of

the w-velocity, the control volumes are defined in a

+Late1y,Spa1ding (1975) has suggested that the w-velocity in

parabolic procedure can also be considered as staggered,
the above difference is based on the method as reported
in (1972).
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slightly different manner. The differences which are

only in the y-z plane are shown in Fig. (4.3.1). The

two cross-stream planes at the sides of the control volume
are labelled as upstream and current, and are separated

by the step size in the z-direction.

4.3.4 The finite-difference equations

The finite-difference equations for the
parabolic procedure are derived in the same manner as

explained in Sec. (4.2.6); they are:

. u u u u
Up = Ap” Up + Ay ug + Agm up + Ag™ ug
b4
u u
+ DP (pP - pw) + B (4.3.1)
R v v v
Vp = Agp Vg t Ay Vy t Ay vyt Ag vg
v v
+ DY (p, - pg) + B (4.3.2)
W w w w
Wp = Ap" Wp + A" W o+ AT Wy + AT wg
w - - .
+ DP (pP pU) + B , (4.3.3)
R o ® o o
ep = At o + A% o + A% o+ A% oy + BY (4.3.4)

The above equations are identical to those derived in
Sec. (4.2.6) except for equation (4.3.3) which differs

from its counterpart because of the underlined term.
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4.3.5 Solution procedure

The finite-difference equations for a parabolic
flow present a simpler task for their solution. Since
the longitudinal momentum equation is not couple¢d with
the other two momentum equations, it can now be solved
independently, provided the coefficients and the pressure
gradient term are correctly prescribed. Thus iteration
is restricted to the cross-stream planes, so thatball
variables can be calculated by a single 'sweep' through
the>flow domain; in this sweep sevefal forward steps
‘are taken along the longitudinal direction;and at each
forward step the flow variables are calculated for the
cross-sectional plane at that location; the pressure
fields p and p are first guessed and later corrected for
the satisfaction of the continuity equation. The present
procedure, which incorporates the above features, is
comprised of the following calculation steps.

1) The pressure.field 'p' at any longitudinal
station and the value p at an adjacent

downstream location are assigned values.

2) The three momentum equations expressed by
(4.3.1) to (4.3.3) are solved to get a first
approximation to the velocity field at the
1ongitudinai station; the 'A' coefficients
in the equations are calculated from upstream
values of the flow variables,

3) The mean .pressure p, and the axial velocities,

are thereupon corrected by reference to
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continuity and the linearised longitudinal
momentum equation, so as to ensure that the
mass flow rate through the cross-sectional
‘plane is the same as the true flow rate
through the duct, m, computed from inlet and
boundary conditions. The expression for this
pressure-correction is deduced as follows:

we first write
P=Dp +D . (4.3.5)
= w W=t
and w, = wp + D Pp (4.3.6)
Since 'it is desired that

ELpwp Ax Ay = m (4.3.7)
wheré Ax, Ay are the cell areas nofmal to the
w—veiocities and the summation is carried over
all cells in the cross-stream plane, we get,
by substitution of (4.3.6) into (4.3.7)

' rX pwp* Ax Ay

= m - (4.3.8)
LZ p DV Ax Ay -

hng ' - -
Pp 1is assumed to ‘be uniform over the cross-

section.

The w-velocity field and the p pressure-field

are thereafter corrected accordingly.
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The cross-stream velocities are corrected for
the local satisfabtion of the mass-continuity,
A pressure-correction equation is derived in a
way similar to that of (4.2.17) but now the
w-velocity field is kept fixed at the value
calculated in step 3. This pressure correction
equation which has the same form as (4.2.17) is

also written as
p.' _ AP D p
Appp = Ag pp * AyT py + Ay Dy
+ AP p. +m (4.3.9)
. S S P . ) -

However, the present value of APp is different

from that defined by (4.2.19); in the present

case, it is given by the expression

ApP = AP + AP + AP AL (4.3.10)
The difference between (4.2.19) and (4.3.10)
is the abéence'of terms AUp and ADp in equation
(4.3.10). These terms connect the downstream
regions with the upstream ones and are
absent in (4.3.10) as a consequence of the

fully-parabolic nature of the flow.

Another important aspect to note is that the

pressure field calculated in this step
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corresponds to an upstream station whereas the

p field calculated in step 3 is at the current
longitudinal station; this difference is
conceptually important but as such hatc no specific
bearing'on the calculation scheme.

5) The pressure field p and the velocity fields
u and v are accordingly corrected.

6) The equations for the general flow variables
such as enthalpy etc. are solved as to provide

~new distributions appropriate to the current
longitudinal station.

7) A forward step is taken and calculation steps
1 to 6 are repeated at the new longitudinal
station. The process of taking forward steps
and calculating the flow variables is repeated

till the end plane of the flow domain is reached.

4.4 Some improvements to the partially-parabolic

calculation procedure

In this section, three modifications are
suggested to the pdrtially-parabolic calculation procedure
described in Sec. (4.2). The objective of making these
modifications is to procure faster rates of diminution of
the pressure-corrections. These modifications have been
successfully tested for the calculation of flow in curved
ducts; but need further testing before being recommended

for a permanent inclusion into the calculation procedure.
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The first two modifications described below are the
author's contributions, while the third was originally

suggested by Spalding (1974).

1) Under-relaxation of the variables

While describing the calculation steps for the
partially-parabolic procedure, it was mentioned that the
pressure-corrections were under-relaxed before they were
applied to the pressure field. A similar under-relaxation
procedure has also been adopfed for the calculation of
flow variables themselves. The procedure consists.of
under-relaxing the variables calculated at any longitudinal
station with their values at the upstream locatibn.

Thus, @P is calculated by the relation
@P = q QP,O + (1 - a) QP,U (4.4.1)

where the '0' referé to the value calculated with no
under relaxation (o=1) and the subscript U refers to the
value at the upstream. o is the under-relaxation factor,
usually of a value close to 0.5. It is however important
to note here that the above under-relaxation, although
will promote convergence, will give incorrect solutions
when convergence is obtained. This is because of the |
'weighting' done by the valﬁeé at the upstream location.
It is therefore necessary to remove this modification

before final solutions are obtained, by making o=1.
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2) Bulk-correction to the pressure field

This improvement consists in making an
additional correction to the pressure field by reference
£o the ihtegral mass~balance over the cross-seciional
plané. The correction which is analogous to the correction
of the p pressure field in the parabolic procedure, is
also derived in a similar manner. This correction is

applied to the pressure (pD) at the downstream plane

and is calculated from an expression similar to (4.3.8),

thus:

' _ LZ p wp Ax Ay

= (4.4.2)
LZ p D" Ax Ay
where the symbols have the same meaning as in (4.3.8).
The pressures and velocities are also corrected

. accordingly. It is necessary to mention that this
correction, as in the parabolic procedure, is applicable

only for the calculation of confined flows.

3) Upstream shifting of pressure corrections

In the céiculation procedure described earlier
in Sec. (4.25, the downstream influences travel upstream
at a rate which is only one cross-stream plane per
iteration of the flow domain. This rate of transmissién
of downstream events is slow; and it necessitates

a large number of marching sweeps through the
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flow domain before the downstream events are made to
influence the upstream flow. The present modification

is designed to overcome this disadvantage. The

procedure is.to apply parts of the pressure corrections
calculated at any longitudinal station also to the
pressures at the upstream locations. Thus,

+8 Pp (4.4.3) -

(py) = (py)
n o

ew 1d

where Py is the pressure at a tyéical upstream plane

and p% is the pressure correction calculated at the
'current' longitudinal station. B is a 'reduction factor!
which depends on the dimensions Ax, Ay and the proximity
of the upstream plane; B diminishes in a somewhat
geometric way with distance between the upstream plane
and the plane where the pressure-correction is

calculated. The formula for B is derived in Appendix A2,

The experiences of using the present modification
have been encouraging; savings in computer time to the
extent of 25 percent have been observed using this

modification.

4.5 Summary

In the present chapter, two calculation
procedures have been described for the calculation of

parabolic and partially-parabolic flow situations. The
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procedures are based on finite-difference methods and
share several important features. The calculation
procedures are general and are flexible to be applied
to calculate various physical flow situations, governed

by different boundary-conditions.

The results of the computations made using
the above calculation procedures will be presented in

Chapters 7 and 8.
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CHAPTER 5

MATHEMATICAL MODELLING OF TURBULENCE

5.1 Introduction

This chapter outlines the mathematical
probleﬁ of turbulent flows and describes the way in
which the effects of turbulent motion have been
mathematically represented in.the present study.
First, the equations governing turbulent flows are
stated; these equations are derived by time-averaging
the equations governing the instantaneous transport
of the flow variables. The additional terms which
arise because of the turbulent motion are mathematically
represented using a two-equation turbulence-model.

In this turbulence model, the additional terms are
related to the gradients of the corresponding flow
property through an eddy viscosity; this viscosity

is allowed to vary from one location in the flow
domain to the other; but, at any point, it is assumed
to be isotropic. The distribution of the eddy
viscosity is calculated from the value of two
turbulence variables, for which a pair of partial-
differéntial transport equations is solved. The two
variables in the present turbulence model are the

kinetic -energy of turbulence k, and its rate of
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dissipation, €.

The kve turbulence model was first put
forward by Harlow.and Nakayama (1968) and has been
subsequently used by many authors (e.g. Jones and Launder
(1972), Launder et al (1972) Sharma (1974) zrn:tchell (1975)):
A full account of the model is given by Launder and
Spaldihg (1973). The following description
reproduces some of that account for completeness and

draws special attention to a few novelties that have

been introduced.

5.2 The mathematical problem

The present approach to calculate turbulent
flows is to solve the equations which govern the
transport of mean-flow variables; these equations are
obtained by time-averaging the fransport equations
for the instantaneous values of the flow variables.
Mathematically, this means expressing a general

variable ¢ as
=3 + 0 (5.2.1)

1
where ¢ is the time-averaged value and ¢ is the

fluctuating component; and time-averaging the
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resulting equations after substitution of the above
relation. The time-averaged equation governing the
property ¢ in a steady, uniform density flow may be

expressed as follows.

—

3 = =y _ 3 -
P 3;; (u; @) = 54 - 5;; (Jg)y = P 55— (uy @)
, | : (5.2.2)

where the bars denote the average values and the primes

denote the fluctuating components. us is the velocity

in the i®® coordinate direction; and the repetition

of the subscript 'i'implies summation over all values
1.

of i . E; denotes the source of ¢; and (JQ)i is the

th

molecular-diffusion flux in the i coordinate

direction; p represents the fluid density.

The mathematical problem of turbulence lies

in evaluating the 'turbulent fluxes', expressed by

. —_T .
pS%— (ui ® ) in terms of the known variables of the
i .

equafions. A relation of the following form is

+The summation convention is introduced here for sake
of brevity. In the next sections, the nomenclature
used earlier in Chapter 3 will be reintroduced.
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therefore sought:

u. Q = f (ﬁi’ %) (5.2.3)

The manner in which the above functional relationship

is expressed in the present study is explained below.

5.3 The kve turbulence model

} In this turbulence model, the turbulent
fluxes are related to the gradiehts of the flow
properties through a viscosity which, at any location
in the flow, is assumed to be isotfopic. The
distribution of this viscosity over the flow domain is
calculated from two turbulence variables; for which
a pair of partial-differential equations is solved.
The two variables in the present turbulence-model
are the kinetic;energy of turbulence k,_and its rate
of dissipation, €. The quantity k is defined as

follows

k:%(n +v' v w ) (5.3.1)

t t
and w are the fluctuating components of

1
where u , v
the three velocity-components u, v and w. The
turbulent viscosity is calculated from the values of

k and € through the following formula
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W = pC —+— (5.3.2)

where My is the scalar eddy viscosity; p is the density

of the fluid and Cu is a constant.

The partial-differential equations governing
the transport of the k and €, after making simplifications.
for.the predominant nature of the flow, are represented,

as follows+:

dk

ok ok Ak, _ 9
plugy + vy P wap) =g (Tp 3%
3 ok
+ 35 (I‘k Fy) + G - pe (5.3.3)
o€ o€ de, _ 9 J€E 9 de
Pz * Vg v W) = ax Ty 3x) * oy Tk 39)
e e2
+ ClI{_ . G—Csz (5.3.4)

*These'équations have been obtained through a straight-
forward extension of their two-dimensional form, as
described in Launder and Spalding (1972).

Equations described here are for the (x,y,z) system;
equations for the coordinate systems (r,0,¢), (x,v,9)
and (n,7,£) are given in Appendix Al.
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where G represents the generation of turbulence energy;
Pk and Pe-represent the diffusion coefficients for k

and € respectively; and Ci, C2 are constants in the

turbulence model.

The three constants in the turbulence model

%k
have been assigned the following values

Cq C2 C

(5.3.5)
1.47 | 1.92 | 0.09

The 'effective' exchange coefficient

It is now easy to obtain the value of the
effective exchange coefficient which relates the
combined molecular and turbulent fluxes to the gradients
of the flow variables; it may be expressed by the
following relation:

112 Wy

r = + (5.8.6)
eff,d 02,¢ Gt,@

where the subscript ¢ denotes the values for the variable
9; ui and u, are the laminar and turbulent viscosities;

and gy and O represent the laminar and turbulent

*
based on Launder and Spalding (1973).
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Prandtl/Schmidt numbers.

The value of o is dependent on the meclecular
properties‘of the fluid; and is equal to unity for the
velocities and for k and €. The value of 0£ on the
other hand, is a property of the turbulence phenomena;

and is assigned the following values:
o =0 =0 = Ut,k'= 1.0;

(5.3.7)
= 1.0

Q
]
=
w
Q
|

where the subscript T denotes the value for the

transport of temperature.

5.4 Treatment of near-wall regions

Special practiceé are_needed to compute the
near-wall region, for the following reasons. In the
central region of the flow, the gradients of flow
properties are usually not very steep; a moderately
fine finite-difference grid yields accurate solutions.
However, close to solid walls the variations of flow
properties are much steeper, thus necessitating an
extremely fine grid for their accurate computation.
Also, the present form of the turbulence model is
valid only for fully-turbulent flows; modifications

are required to make it apply to regions where the
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"Reynolds number of turbulence (= pkil/ul where

YTy e
R o= kg/e) is low (or alternatively when y+ = XE—E—
: 2
is less than 11.5, where y = the distance from the

: wall;.rw = wall shear stress).

- There are two methods for accounting the
near-wall regions in numerical methods for
computing turbulent flows; the wall-function method,
and the method of modelling.the_10W-Reynolds—number
phenomena. In the present study the wall-function
approach is adopted chiefly because of its economy
from the view points of both computer storage and

computer time,

Wall functions have been proposed and used
earlier by several authors including Wolfshtein (1969),
Runchal (1969) and Ng and Spalding (1972). 1In a
recent review Launder and Spalding (1973) described
the wall functions which have been proved to be
satisfactory in two-dimensional situations. It is
these wall functions, with their appropriate extension
to three dimensions, that have been employed in the

present study. The practices adopted are as follows.

The first feature of the method is to locate
- all the finite-difference grid nodes (except for those

representing the wall values) in the fully-turbulent
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region. Thus the point P adjacent +to a wall is
located sufficiently far from the wall for the local
turbulent Reynolds number (pkiz/uz)P to be much greater
than unity. It is then assumed that ﬁ logarithmic
velocity-profile prevails in :the region between the

wall and the node P, the expression being

3
q E y, (TPp)y
..__._..—.P T = ;L_ 1n ( P L (5.4.1)
b K U
(1/0)y 2

where the subscript P indicates that the values are
those at grid node P; and the subscript W indicates the

values at the wall. is the distance of P from the

Ip
wall and x and E are the log-law constanté_ (¢ = 0.4187
and E = 9.8 from Patel (1965)) dp is the resultant

velocity at P and is assumed to be parallel to the wall

shear-stress (this latter assumption is made in the

present extension to three dimensions).

The shear stress in the fluid layer between
P and W is then related to the kinetic-energy of
turbulence by considering that, in the uniform-shear-
stress layer, the generation and dissipation of k are

nearly in balance; this leads to the relation

(5.4.2)

where Cu is the constant (= 0.09) in the turbulence
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model. By the use of (5.4.2) in conjunction with

(5.4.1), the shear stress is expressed by the

relation
pxCy i kP% dp v
Tp 7 . I I (5.4.3)
E ypCy® pkp
1n { }
"o

The rate of dissipation of kinetic energy,
€p near the wall is fixed by reference to the
pequirement that the 1ength'sca1e varies linearly
with distance from the wall; the corresponding

expression for €p is then given by
e, = CF k, My (5.4.4)
p = “u ¥p/Vp + 4

'kP being the near-wall kinetic energy of turbulence.
The quantity kP is calculated from the regular

balance equation but with following changes. Fifst,
diffusion of energy is set equal to zero; the generation
term in the kinetic-energy equation is then modified

to account for the value of wall shear-stress

calculated from (5.4.3). The dissipation term is

also modified in the light of (5.4.4) and is assigned

an average value over the control volume for the

near-wall node; thus
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— dy (5.4.5)

Thé wall functions for the transport of
temperature (or enthalpy) are derived in a manner
similar to (5.4.3). The near-wall variation of
temperature is also assumed to be logarithmic, the

expression being,

CP(T_TW)TW__l Ey Vigp
J

. = = | 0, (5.4.6)
where, Ty is given by (5.4.2); and Jh represents the
heat flux from the wall. tp stands for the specific
heat of the fluid; and the symbol T represents
temperature. The terﬁ PT (absent in equation (5.4.1))
represents the additional resistance caused by the
laminar sublayer to the transport of heat and is of
the following functional form (from Patankar and
Spalding (1970)).

Op o -0.25

Py = 9.24 (2L - 1)(6—"—23) (5.4.7)
t,T t,T
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5.5 Summary and concluding remarks

In the present chapter, the details of the
turbulence model employed in the present calculations
of turbulent flows have been described. In this
turbulence model two additional equations are solved
for the transport of the kinetic-energy of turbulence,
k and its dissipation rate, €. The turbulent fluxes
are related to the gradients of the time-averaged flow
properties through an exchange-coefficient. This
éxchange coefficient is assumed to be isotropic and
is calculated from the distributions of k and e.
Special practices are adopted for the treatment of
near-wall regions., The fluxes of momentum and heat
for grid nodes adjacent to a wall are not calculated
from usual gradient laws but are empirically prescribed

based on a simplified analysis.

The results of the computations employing
the calculation procedures described in Chapter 4
and the present turbulence model will be presented in

Chapters 7 and 8,
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CHAPTER 6

THE EXPERIMENTAL PROGRAM

6.1 Introduction

An experimental investigétion of the
turbulent flow in curved ducts was undertaken to collect
dafa suitable for validation of the partially-parabolic
proéedure. The distributioné of mean velocity and
static pressure in the developing flow field of a
strongly-curved duct have been meaéured.. The height
and the width of the duct were respectively 0.304 m and
1.22 m; and the duct curved through 90 degrees with a
centre~line radius equal to 2,52 metres. Two different
configurations of the duct shape have been studied.

In the first configuration, the cross-sectional
dimensions of the duct were kept constant throughout
the flow domain; in the second, the outer wall of the
duct was made to diffuse outwards by 2.5 degrees. The
measurements in the central region of the duct were
made using a three-hole pitot static probe whereas in
- the region close to the bottom wall, a single hole
total-head fube was employed. The flow Reynolds.
number based on the average velocity and hydraulic
diameter of the duct (4 x area /perimeter) was about

7 x 10°.
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The measurements described in this chapter
have been made in an existing experimental set-up at
the University of Waterloo, Canada. In the following
sections, first a brief description is giveh_about the
experimental apparatus and the measuring dévices; the
details concerning the design and fabrication of the
apparatus however, have been omitted from the present
description as they can be obtained from Jerie (1971).
The "experimental procedure is outlined and the scope
of the present measurements is stated. Later the
experimental data are presented and analysed; in this
chapter, only a selected amount of data are presented;
the complete set of experimental data will be described

in Chapter 8 where they will be compared with the

predictions.
6.2 Description of the experimental apparatus
6.2.1 General layout

A schematic layout of the experimental
apparatus employed in the present investigation is
shown in Figure (6.2.1). Figure (6.2.2) shows the
overall view of the apparatus. It consisted of a
blower, settling chamber, a 6 m. long straight duct
and a 90° curved duct, all connected in series in the
above sequence. The blower was driven by a 20 h.p.
A.C. motor and was connected to the settling chamber

through flexible rubber bellows which prevented the



9.1 CONTRACTION SECTION

TEST SECTION
VIBRATION [SOLATOR ASPECT RAT!IO CHANGE
AIR INLET/ 3om

: . . 5-08m
£ ; / E |-22m
b Kt ' ; 0
= ) E Il 2 90

1 1 EE{Ej]f N ) 3a
= iy | . 7 5
P ’ 76

.R y
INLET DUCTING (2 SECTIONS) L 252m 8

SETTLING CHAMBER
| i
PLAN OF THE APPARATUS

FAN

SIDE VIEW
FROM "A"

FLOW DEFLECTOR

| 1-305m

]

A A v

/S 7/

7777 77 7

ELEVATION

Fig. (6.2.1): Schematic layout of the experimental apparatus.



Fig. (6.2.2): Overall-view of the apparatus.
(i) Blower, (ii) Plenum chamber,
(iii) Straight section, (iv) Curved duct.
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vibrations of the motor from being transmitted to the
test section. The settling chamber was 1.22 m. long
and 1.83 m. square in cross-section and contained
honey-combs and wire screens to smoothen the non-
uniformities in the flow from the blower. The exit of
this settling chamber was 0.61 m. square in cross-
section and provided an area reduction of 9:1. The
complete set-up was supported on apgle—iron frameworks
which contained provisions for levelling. The amount
.of air supply to the teét sectioﬁ was controlled
either by varying the opening of the inlet vanes; or
by using different combinations of pulley drives
connecting the motor and the blower. The present
apparatus was cépable of producing a maximum average-
velocity of 22.5 m/sec in the test section; the
corresponding Reynolds numbef, based on this velocity
and the hydraulic diameter (4 x area/perimeter) of

the test section, is 7.05 x 105.'

6.2.2 The test section

Thé test section in which measurements were
made is shown in Figure (6.2.3). The test sectién
was rectangular in cross-section with a width and
height respectively equal to.1.22 m and 0.304 m. It
was curved in the horizontal plane, with a centre-line
radius of 2.52 metres. The top and bottom walls and

the inner side wall of this test section were firmly



View of the test section,

(6.2.3):

Fig,
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connected to each other but the outer wall was allowed
to be freely positioned. The inner side wall was

made of a transparent material so as to permit flow-
visualisation and to ease the task of positioning

the probes. The bottom wall was made of 6 mm. thick
plywood and was supported by a wooden framework. On
this bottom wall static-pressure taps were provided

at 24 eQually—spaced axial positions; each axial
position contained nine taps which were placed at 5 em
intervals on either side of the duct centre-line. The
top wall was constructed of eight wedges of equal size
and was clamped to a wooden framework on the top of
the duct. During the measurements the top wall wedge
corresponding to the location of measurements was
‘unclamped and replaced by the traversing gear to which
the measuring devices were fixed. The outer wall of the test
section was made of plastic and was manoeuvred by long
metallic—screws; the desired variation in the duct
width was achieved by advancing or retracting these
metallic screws. The maximum permissible width in the
preéent test section was limited to 1.42 m, the

nominal width being 1.22 m.

6.2.3 The traversing mechanism

The mechanism employed to traverse the pitot
probes to the desired location in the flow field is

shown in Figure (6.2.4). The main component in this



Fig. (6.2.4): The traversing mechanism, —
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mechanism is the traversing gear to which the probes

were attached through a miniature chuck. This traversing
gear was supported on two horizontal steel shafts which
in turn, were fixed to an aluminium platform. The
aluminium platform was made of the same dimensions as

. * the top-wall wedges} and could be conveniently
positioned on the top wall by replacing the corresponding

top-wall wedge.

The above-mentioned arrangement permitted
movement of the probe along the three coordinate
directions (x,y,¢) shown in Figure (6.2.5). The
movement normal to the bottom wall (i.e. the y-direction)
was achieved by a lead screw mechanism which formed an
~integral part of the traversing gear. fhe total
vertical traverse permitted by this mechanism was 33 cm.
‘The vertical pésition of the probe was measured on a
vernier scale to an accuracy of 6.05 mm. The movement
in the horizontal direction (i.e. along the x—coordinate)
was obtained by sliding the traversing gear on the steel
shafts. The horizontal position of the probe was
measured by a simple tape-scale device to an accuracy
of 2.5 mm. For movement in the direction along the
bend the aluminium platform ditself was unclamped from
one position and was placed at the other. This
aluminiﬁm platform also contained three traversing

slots, where the traversing gear could be fixed. The
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positions available for traversing are shown in Figure

(6.2.5).

In addition to the vertical movement, the
traversing gear also provided angular rotation to the
probe about the veftical axis. The rotation of the
probe which was employed to align the probe with the
flow direction was read on a vernier scale to an
accuracy qf 0.1 degree.

6.2.4 Measuring devices

In the present investigation, the measurements
were made using Pitot probes. Two different probes
were employed and are shown in Figure (6.2.6).
~Probe (a) was a direction - sensitive probe and was
.empléyed'for measurements in the central region of the
-duct. This prébe contained four pressure-sensing holes;
three of these were located on the nose while the
fourth, which measured the static pressure, was
displaced slightly away from the nose. Of the three
holes located on the nose, the central one was employed
in the measurement of the total pressure; the other
two, called the directional holes, were used in aligning
the probe with the flow direction. The directional
holes were drilled at an angle of 40 degrees to the
stagnation point. Probe (b) which is referred to as

the 'total ~-head tube' was much smaller in size than
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Probe (a) and was used in measuring the flow variables
in the region close to the bottom wall. Probe (b)
comprised only one pressure-sensing hole; and for this
reason, the flow angles with this probe were measured
using the bisection method. Probe (b) did not have

any provision for measuring the static pressure.

The pressure outputs from the pitot-probes
were measured using a pressure tpansducer and an
integrating digital-voltmeter. The transducer convefted
the pressure signal to a voltage which was then read
on the voltmeter; the integration time on the volt-
meter was set to 1 sec. The voltages were read to an
accuracy of .00l volts in a nominal value of 3 volts
for the present values of velocities. For measurements
.With probe (b) a time-delay circuit (time constant
= 10 seés) was also used in addition to the integrating
circuit of the digital voltmeter;'this additional
device was necessary because of the large turbulence-

levels in the near-wall regions.

6.3 Calibration of measuring devices

The measuring devices used in the present
experiments were already calibrated, for aécuracy and
consistency, in a recent investigation by Young (1972).
For this reasdn, no .calibration tests were made in the

present investigation;but instead, the recommendations



- 109 -

of Young (1972) were followed. The recommended
corrections to the measured values, in all instances,
have been small; they are listed in Appendix A3 and
have been applied to the experimental data during the

data-conversion process.

6.4 Experimental procedure

The procedure‘for measurements was simple
andfstraightforward. It involved systematic and
ﬁatient traversing of the probes from one end of the
flow domain to the other and redofding the various
pressure outputs in the form of voltages which were
ihdicated on the digital voltmeter. The traversing
and the data recording were done manually; and no
. automatic devices were employed. The following two
preliminary checks were first made to ascertain the
correctness of.the experimental gpparatus. |
1) The experimental apparatus was ensured to be

levelled along both its length and width;

the heights of its supporting frameworks
- were accordingly adjusted wherever necessary.
2) " Second, a féw measurements were made to
examine the symmetry of the flow about the
central hérizontar plane of the duct. These
preliminary measurements indicated some
asymmetry which could be partially removed
by making all top-wall wedges to be in flush

with each other.
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For the measurements reported in this thesis, the
maximum difference between flow angles measured at
two symmetrically placed locations was 0.7 degreés in
a nominal flow angle of 20 degrees; asymmetry in the

mean velocity was about 2 percent.

The final measurements comprised two identical
sets of measurements in the same test section but

witﬁ differing positions of the outer wall. For the
first set, the width of the duct was kept constant at

a value equal to 1.22 m throughouf the flow domain.

In the second, the outer wall was displaced uniformly
outwards to provide a diffuser angle.of 2.5 degrees.

- For each of the above flow configurations 8 axial
sfations along the duct were chosen to represent the
flow field. Of these the first one was placed in the
straight section, at a location 1.22 m. upstream of

the curved duct. The others were dispersed in the
curved duct at intervals of 11.25 degrees, the first
being at the 0 degrees position. At each axial station,
first, measurements were made of the flow in the central
region; the mean velocity, the flow angle and the

static pressure were measured at a total of 108
locations which were disposed over the cross-sectional
plane in a manner shown in Figure (6.3.1). The
measurements were made using the Pitot directional

probe; the shaded areas shown in Figure (6.3.1) were
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not traversed due to obstructions caused'by the side
supports of the traversing mechanism. Later, attention
was focussed oo the flow region close to the bottom

wall of the duct; and the distributions of mean velocity
and flow angle normal to the bottom wall were measured
-at a distance of 61 cm from the inner side wall. A

total of 12 readings were taken in a vertical distance

of 15 mm, the first measurement being with the probe
touching the bottom wall of the duct. These measurements

were made using the total-head tube.

In addition to the above measurements of the
mean flow, measurements were also made of the distributions
of wall static-pressure; these measurements were made
using the pressure taps situated on the bottom wall of
the duct. The wall static pressures provided an
estimate of the radial and axial pressure gradients;
and in addition, also acted as a check on the
corresponding values measured by the pitot directional
probe. A few auxiliary variables such as the barometric
pressure, the dry-bulb and wet-bulb temperatures of the
room air were also measured, at frequent time-intervals

during the experiment.

( Contd. )
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6.5 Data conversion

The data-conversion procedure consisted of
obtaining the distributions of velocities and static
pressures'from the 'raw' experimental data which were
measured in the form of output voltages of the
transducer. The first step in this procedure was to
apply corrections to the data to account for the errors
due to imperfections in the measuring devices. These
errdrs which were determined from the calibration
iests have in general been small; and are summarised
in Appendix A3. In addition, corrections were also
made to account for the effects of the displacement of
the pressure centre of the pitot probe. These
corrections consisted in increasing the heights of the
measurement location by an amount equal tol.15 times
the diameter of the probe (as recommended by McMillan
'(1957)). For the measurements with the total-head tube
this amounted to a correction of .16 mm to the heights
of the measurement points; similar correction for the

pitot directional probe was 1.35 mm.

The remaining data-conversion procedure
consisted of converting the corrected output-voltages
to the corresponding pressures and calculating the
distributions of the desired flow variables. The
velocities measured. along the flow direction were

resolved into two components, one along the longitudinal
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direction and the other along the transverse direction
.(i.e. along x); and the velocities were non-dimensionalised
with the vectof velocity at the centre of the cross-
section. The static pressures were similarly interpreted in
terms of non-dimensional pressure coefficients,

defined as

cp = (p - py)/5 0Q° (6.5.1)

ﬁhere, p is the static pressure ét any location and

Po is the value at the 0° position; Q is the vector
velocity at the centre of the cross-sectional plane and
p is the density. The value of the skin friction was
also calculated, from the total pressure measured with
the total-head probe resting on the bottom wall (i.e.
as a Preston tube). The procedure adopted for these

calculations has been that recommended by Patel (1965).
All the calculations described above have
been made on a IBM 370 computer at the University of

Waterloo, Canada.

6.6 Presentation of experimental results

In this section; a few results are presented
which describe the general flow-pattern observed in
the present flow situation. The complete data

obtained in the present investigation will be presented
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in Chapter 8 where they will be compared with the

predictions from the calculation procedures.

Figure (6.6.1) shows one typical plot for
the variation of longitudinal-direction velocity (i.e.
along the ¢-direction) for various angular positions
along the curved duct; these velocities have been
measured in the constant-area duct at a height of 1 cm
from the bottom wall. The velocities have been non-
.dimensionalised with the vector Qelocity at the centre
of the cross-sectional plane. From this figure it can
be seen that the velocity profiles are distorted with
their maximum towards the inside of the curved duct;
and the flow field is distorted even before it enters
the curved duct. Figure (6.6.2) presents the
development of the transverse velocities in the constant-
area duct at a location 61 cm. from the inner side-
bwaIl; and Figure (6.6.3) shows the development of the
radial pressure gradient in the same situation. It
has beén observed that, in the flow region presently
investigated, the static pressure is nearly constant
along lines normal to the bottom wall; the values
" plotted in Figure (6.6.3) are the average values

normal to the bdttom wall.

Figures (6.6.4) and (6.6.5) show the results

of the measurements in the near-wall region. In these
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figures, the variation of velocity normal to the bottom
wall is plotted for a location 61 cm. from the inner
side wall. The coordinates are chosen to suit the
verification of a logarithmic variation, of the

following form:

W . . Ey Q/cf/2
Q\/-c‘f - E 1Oge( v ) (6.6.1) .
z
where we = the component of velocity in the direction
of wall shear-stress,
T
c = skin-friction coefficient = ¥
f 5
1 pQ
Q = velocity at the centre of the cross-
sectional plane,
o] = the density,
y = the normal distance from the bottom wall,
v = kinematic viscosity,
K and E = constants in the logarithmic law.

The dots in the above figures represent the
experimental results; and the straight lines represent
the best logarithmic fit to the experimental points.
The straight lines were obtained by chosing a value
of the skin friction, Ce in (6.6.1),s0 that they
contained the maximum number of -experimental points.

The values of skin friction calculated from Figures
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(6.6.4) and (6.6.5) are shown in Figure (6.6.6).

The results presented above lead to two
main conclusions. First, iti;bserved that the flow
in a strongly-curved duct is partially—parébolic in
nature. This is seen through the significant
influence of the downstream events on the flow at the
0° position. Second,'it may be concluded that in the
region close to the bottom wall, the variation of
velocity is 1ogarithmic with disfance from the bottom
wall; a large proportion of the experimental points
have been observed to lie on the 'best-fit' straight

lines.

6.7 Concluding remarks

In the present chapter, the details of the
experimental program have been described. The test
rig, the measuring devices have been briefly described
and the sequence and scope of measurements were outlined.
The experimental results show that the flow is
partially-parabolic in nature and is considerably
influenced by the transmission of downstream events
through the pressure field. The present experimental
rgsults also provide proof to\the existence of a
logarithmic variation of the frictional component of
velocity with distance from the bottom wall. This
information adds support to the assumptions made in

deriving the wall functions explained in Chapter 5.
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CHAPTER 7

PREDICTION OF FLOW IN MILDLY-CURVED DUCTS

7.1 Introduction

The flow and heat-transfer phenomena in
mildly-curved ducts have been predicted using the
parabolic calculation procedure described in Sec. (4.3),
Computations have been made of the developing
and fully-developed flow and temﬁerature fields in
curvéd pipes of circular cross-section. Both laminar
and turbulent flow situations have been studied and
the predictions have been compared with experimental
data. For calculation of turbulent flows the
Reynolds stresses have been modelled, using the two-
eduation turbulence-model, explained in Chapter 5.

In this chapter, the results of these computations
~are presented, in two separate sections. In the first,
the predictions of laminar flow and heat transfer are
presented and their agreement with experimental data
is examined. From these comparisons, the validity

of the 'parabolic' assumptions and the accuracy of

the calculation procedure are ascertained. Later,

the results of the turbulent-flow calculations are
presented and compared with ekperimental data. The
results presentéd in this chapter have also been

reported earlier by the aufhor in Patankar, Pratap
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and Spalding (1974 and 1975).

7.2 Prediction of laminar flows

7.2.1 Computational details

The physical situation considered for the
present computations is illustrated in Figure (7.2.1).
The flow situation has been mathematically represented
in the (r,8,¢) coordinate system by the equations
described in Chapter 3. Because of the mild curvature
6f the duct, the flow was assumed to be parabolic.
The fluid properties namely viscosity, density and
specific heat have been assumed, in the present
computations, to be uniform throughout the flow domain.
The computations were started at the 0° position of
- the bend with the inlet conditions prescribed-to be
those of a fully-developed pipe flow. Because the
flow is symmetrical about the diameter in the plane
of curvature (plane AA), the finite-difference grid
in the present computations covered only a semi-
circular sector of the cross-section, as shown in
Figure (7.2.2). The boundaries of this flow domain
comprised the two radial lines on the horizontal
diameter, a semicircular region of small radius
at the centre, and the pipe wall. The first three
ﬁoundaries were considered as planes of symmetry; and
the gradients of variables normal to the boundary

were prescribed to be zero. The finite-difference
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grid in the cross-sectional plane pqssessed 15
intervals in the r-direction and 11 intervals in the
e—diréction. That the 15x11 grid gave sufficient
accuracy was confirmed by repeating the computations
with finer and coarser grids; the results of one such
'grid-independency test' (along r-difection) are
shown in Figure (7.2.3). The forward-step dependency
was tested by repeating the computations with émaller
and larger stép sizes; a step size was then chosen

which was small enough not to affect the solution.

The developing flow solufions were obtained
by the mafching procedure with small forward steps.
However, when only the fully-developed flow was to
be computed very large forward steps were taken and
the velocities were under-relaxed at each step. The
fully developed computations, starting with a uniform
velocity profile, usually needed about 140 steps for
- convergence of the solution. The computer time needed
for each forward step was of the order of 0.28 secs on

a CDC 6600 computer.

7.2.2 The developing region

Figures (7.2.4) to (7.2.6) display the
development of the axial-velocity field along the
¢p-direction and comparisons with experimental data of

Austin (1971). Thefagreement is.quite good considering
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the fact that the inlet velocity-profiles in the
experiment were not exactly parabolic., Figure (7.2.7)
shows the development of the secondary flow field
along the ¢-direction. The predictions indicate that
the secondary velocities develop in a damped oscillatory
manner in which the amplitude of the oscillations is
greatly diminished after the first oscillation.
Because of lack of experimental data, the present
oscillatory behaviour could not be compared with
results of Austin (1971); but it is qualitatively

" in conformity with some other measurements such as
those of Hawthorne (1951) and Squire (1954) for
turbulent flow in curved pipes. The secondary velocities
‘(e-components) plofted in Figure (7.2.7(b)) at two
typical locations in the cross-section show that the
period of first oscillation is about 75 degrees.
Figure (7.2.8).shows the radial variation of static
pressure plotted for various angular positions in the
¢-direction. Close examination of this plot shows
that the static-pressure distribution also develops

in an oscillatory manner but attains a uniform value
much'quicker than the secondary velocities. Figure

(7.2.9) shows the development of the friction factor

(f = %gf . g ) and comparison with the empirical
pw )
av

relation of Kulegan and Beij (1936); the agreement is
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seen to be satisfactory. Figure (7.2.10) shows the
development of the temperature field for the condition
of axially-constant heat flux with isothermal periphery.
The flow field for these computations was prescribed
to be fully-developed at the entrance of the
temperature field in accordance with the experimental
coqditions reported by Dravid et al. (1971). The
Prandtl number of the fluid was varied linearly from

' (p in radians)
6 at the inlet to 4 at location where (R¢/a)[§qua1S'250.
The calculations reproduce the oécillatory development
of the temperature field which has been observed in
the experiments; but the predictions show a quicker
damping of the oscillations. Figures (7.2.11) and
(7.2.12) show the effect of Prandtl number on the-
nature of these oscillations. It is seen that the
oscillations are more pronounced at larger Prandtl
numbers. ' A dimensionless wavelength A of the first
oscillation, defined as the distance (R¢/a) between the
point at which a line parallel to the bulk temperature
line is tangential to the first maximum and first
minimum in the wall-temperature curve is compared with
experimental results for various Prandtl and Dean
numbers. The present computations confirm the
experimental results of Dravid (1971) that the Prandtl\
number, in the range studied (0.7 - 15.0) has little
effect on the wavelength A. The values of the

wavelength X for a few Dean numbers are shown in Table (7.2.1).
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Table 7.2.1

Dean number A

| A\ -/
(K=Reva/R) Computed Measured
225.0 51.0 52.5
447.0 ' 71.0 75.0
800.0 73.0 100.0
7.2.3 The fully-developed region

The computations of flow and heat-transfer
characteristics in fully-developed regions have also
been compared with experimehtal data of various authors.
Figure (7.2.13) compares the present predictions of

the fully-developed velocity profiles with those of

Adler (1934) and Mori and Nakayama (1965). Figure
(7.2.14) compares the corresponding friction factors
with data of various authors (from Ito (1969)). The
agreement of the predicted velocity profiles and friction
factors with experimental data is good. The computed axial-
velocity profiles at various angular planes are shown

in Figure (7.2.15), and Figure (7.2.16) displays the
effect of Dean number on the axial-velocity profiles.

It can be seen'that the velocity peak is shifted towards
the outside as the Dean number is increased. Consistent
With the angular variation of the velocity profile is
also the variation of the friction factor along the

periphery of the cross-section, as shown in Figure (7.2.17);
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the friction factors at the outside are considerably

higher than those at the inside.

The fully-developed temperature field has
been computed under the conditions of_axially—uniforﬁ
heat‘flux and is compared in Figure (7.2.18) with the
experimental data of Mori and Nakayama (1965). The
comparison shows good agreement in the outside half
of the plane; but there are significant differences in the
inside region. To investigate the reason for this
discrepancy,further comparisoﬁs of the predictions
have been made with the theoretical solutions of
Akiyama and Cheng (1971); from (7.2.19) it is seen
that the present calculations of peripheral variations
in Nusselt number are in good agreement with Akiyama and
Cheng's results for the Dean numbers they considered.
It is also seen from Figure (7.2.20) that the inside
heat-transfer coefficient approaches half thé straight
tube value at a Dean number of about 300 and then
increases slowly to the straight tube value at a Dean
number of 1200; these observations which are in
agreement with the solutions of Akiyama and Cheng (1971)
disagree with the experimental findings of Mori and
Nakayama which show much steeper temperature-gradients
on the inside, 1In view of }hé comparisons in Figures
(7.2.19) and (7.2.20), it appears that the temperature

profile of Mori and Nakayama (1965) may be in error,
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either owing to inaccuracy in measurement or imperfection
in setting up the stated temperature boundary-conditions,
However, despite the discrepancy in temperature profile
the agreement in the mean Nusselt numbers seems to be
good,as can be seen from Figure (7.2.21(a)). Further
comparisons of the predicted fully-developed Nusselt
numbers have been made with the experimental results of
Dravid et al. (1971) and are shown in (7.2.21(b)); the
agreement is satisfactory. In Dravid's experiments

the Prandtl number varied from 6‘to 4 over the

. developing region. Since the comparison in Figure
(7.2.21(b)) is for the fully-developed condition, the
computations were based on a uniform Prandtl number of

4, which was appropriate to the outlet condition.

Figure (7.2.22) illustrates the effect of Dean number

on the temperature profiles along plane AA; the effect
is observed to be the same as that on the velocity
profiles. The effect of Prandtl number on the heat-
transfer rates is shown in Figure (7.2.23). It is seen
that the peripheral variation of the heat-transfer

rates:is larger for fluids with high Prandtl numbers.

7.2.4 Discussion

The predictions presented above show good
agreement with experimental data and thus validate

the accuracy of the calculation procedure. The good
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agreement observed in the predictions of the developing
flow-field also proves that the flow in mildly-curved
ducts is parabolic in nature. The flow phenomena
observed in the present flow situation may be described
as follows: The curvature of the duct gives rise to
centrifugal fqrces which act at right angles to the
main flow direction; in order to balance the centrifugal
forces, pressure-gradients along the cross-stream
directions are set up with the high-pressure zone at

the outside of the curvature. Aé a consequence of

these cross-stream variations in the pressure field,
secondary velocities are generated, which distort the
primary (axial) velocity field, the distortions
increasing with‘the Dean number., The secondary flow
pattern which consists of two symmetrical vortices in
the cross-sectional plane is shown in Figure (7.2.1(b)).
The secondary flows have two main consequences: Firstly,
they cause an increased 'mixing' in the flow, thereby
enhancing the friction factors and the rates of heat and
mass transfer over their straight-tube values. Secondly,
because of the distortions in the velocity field, the
friction factors and heat transfer rates vary
significantly over the periphery, the ratio of outside‘
to inside values being as large as 4. Also, as a
consequence of these secondary flows, the heat-transfer
rates increase with Reynolds number compared with the

case of the laminar flow in straight pipes where the
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heat-transfer rates remain constant at a value depending
on the thermal boundary condition. The secondary flow
is thus the chief distinguishing feature of the flow

phenomena in curved pipes.

The development of the flow and temperature
fields in curved pipes has been observed, both
experimentally and theoretically, to be oscillatory.
Squire and Winter (1951) explain the oscillations
in the flow field to be a result“of the changes in the
kind (sign) of streamwise vorticity which is produced -
as the flow passes around the bend. Hawthorne (1951),
shows using an inviscid analysis that the peiiod of
first oscillation is approximately equal to 2.36 7 /§E7§

which for the present radius ratio of %

= 29.1 gives a
value of 110 degrees. Compared with this value, the
present computations, which include the effects of
viscosity, give a period of first oscillation of about
75 degrees. However, the inlet conditions assumed in
Hawthorne's theory have been somewhat different than
those employed in the present computations and because
of this fact, some difference may be expected between
the two solutions. The oscillations in the development
of the temperature field however, are not a result of
the oscillations in the secondary flow; this is

because, in the present computations, the flow field

has been prescribed.to be fully-developed at the start
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of computations. Therefore these oscillations can be
due to the secondary flow itself which provides the
mechanism for convecting colder temperatures fqom the
central core to the near-wall regions. A detailed
explanation, of this kind, has been given earlier,

by Dravid et al. (1971).

7.3 Prediction of turbulent flows

7.3.1 Computational details

The success achieved in the prediction of
laminar flows in curved pipes encouraged the author to
extend the application of the parabolic procedure to
predict the turbulent flow and heat transfer characteristics
in curved ﬁipes° The computations have been made in
a manner similar to the laminar flow computations; but
for the turbulent flow calculations two édditional
differential equations have been solved for the transport
of the turbulence kinetic-energy and the volumetric
rate of its dissipation. The details of the practices
adopted in representing the turbulence structure have

already been described in Chapter 5.

The finite-difference grid, as in the case
for laminar flows, covered only a semi-circular sector
of the cross-section; and possessed 14 intervals in the
r-direction and 11 intervals in the 06-direction. The

forward-step size was fixed, after tests for grid
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independency of the results to be 0.1 degrees. The
computer time for the calculation of turbulent flow
was of the order of 0.45 secs per forward step, on a

CDC 6600 computer.

7.3.2 The developing region

Figure (7.3.1) provides a comparison of the
predicted velocity-head contours with the experimental
data of Rowe (1966) for a 180° pipe bend. The Reynolds

number of the flow was 2.36 x 10°

and the ratio of bend
radius to pipe radius was 24. Comparisons are made for
various angular positions along the bend, the inlet
being a fully-developed turbulent pipe-flow. It is
seen that,both for the predictions and the experiments,
the velocity head is distorted with the velocity
maximum shifted to the outside of the bend. The
agreement with experimental data has been satisfactory
although it is not as good as that observed for laminar
flows. Figures (7.3.2) and (7.3.3) present the
predicted development of the secondary flow field for
the above flow situation. It is seen that, as in the
laminar-flow case, the development of secondary flow-
‘field is oscillatory; but the present period of
oscillations is somewhat larger than that for laminar
flows. For the present radius ratio of 24, the period
of oscillations has been observed to be about 135 degrees

which is in close agreement with the measured value of
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150 degrees by Squire (1954). The development of the
temperature field in a 180° bend has been calculated for
the boundary condition of constant heat flux and the
results are compared in Figure (7.3.4) with experimental
data of Ede (1963). The flow field at thevinlet was
prescribed to be that of a fully-developed turbulent
pipe-flow. The agreement with experimental data is
satisfactory. The heat transfer rates and the wall
temperatures in case of turbulent flows also display
oscillations in their developmenf but the amplitude of
these oscillations is less than that observed in the

laminar flow situation.

7.3.3 The fully-developed region

Figure (7.3.5) displays the comparison of
fully—devéloped axial-velocity profiles along the
diametrical planes AA and BB (ref. Fig. (7.2.1)) with
experimental data of Hogg (1968) and Mori and Nakayaﬁa
(1967). In Figure (7.3.5(c)), results are also presented
for calculations using a form of the mixing-length
hypothesis. It can be seen that the two-equation
turbulence-model yields superior predictions. The fully-
developed secondary velocities along plane BB are
compared in Figure (7.3.6) wi@h the experimental data of
Hogg (1968); the agreement is good for both the Reynolds
numbers. Figure (7.3.7) shows the fully-developed

friction factors compared with the empirical relation
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of Ito (1959); also shown in Figure (7.3.7) are the
computed friction factors for turbulent flow in straight
circular pipes. The agreement with experimental data is
quite satisfactory in case of straight pipes but for

" the case of curved pipes, the magnitude of the friction
factor is under-predicted, the maximum difference
between the experimental and computed values being

about 8 percent. Figure (7.3.8(a)) shows the fully-
developed axial-velocity profiles at various angular
positions along the bend; it is observed that the
angular variation of the velocity, in case of turbulent
flow, is smaller than that observed for laminar flows.
The peripheral variation of the friétion factor is

also observed to be smaller, as shown in Figure (7.3.8(a));
the ratio of friction factors ét outside to those at
inside is about 2 whereas for laminar flows it was

about 4.

Computations have also been made of the fuily-
developed temperature field for the boundary condition
of constant heat flﬁx around the periphery. Figure
(7.3.9) and (7,3010) show results of computations made
in coils of radius ratio of 104 and comparison with
experimental data of Seban and McLaughlin (1963). The
agreement is observed to be éood both in the peripheral
variation of the Nusself number and in its average value,

However, some discrepancies have been observed when the
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predictions at lower values of radius ratio have been.
compared with experimental data. Figures (7.3.11)

shows the computed temperature profiles (non-
dimensionalised with inside wall temperature) in coils
with radius ratio of 25.9 and comparison with experimental
data of Hogg (1968). The agreement is satisfactory in
the inside region but discrepancies exist in the outside
region. The Nusselt numbers, shown in ‘Figure (7.3.12),
also seem to be under—predicted.in the outside region,
The discrepancies in the computed heat transfer rates
and the friction factors suggest that the turbulence
model presently used needs further refinements to
account for the effects of curvature on the turbulence

structure.

7.3.4 Discussion

Fpom'the experimental and theoretical results
presented above for turbulent flbws, it is observed
that the effects of curvature on turbulent flows are
smaller than those observed for laminar flows. Thus,
the distortion of the velocity-profile is less than
that observed for laminar flows; and consequently the
magnitudes of friction factors and heat-transfer rates
vary less over the periphery. For example, the turbulent
friction-factors (Figure (7.3.7)) vary only half as
much as that observed in Figure (7.2.17) for the laminar

flow case. The development of secondary flow-field
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in turbulent flows is also oscillatory; the period of
first oscillation is in good agreement with the
experimentally observed value. The development of the
temperature too is oscillatory but the oscillations
are small; in the present computations, the inlet flow
was preséribed to be the fully-developed sfraightupipeA
flow; and thus the oscillations now observed are also

partly due to the development of the flow field.

The agreement between £he present computations
and the experimental measurements is satisfactory; the
velocity contours have been predicted to be distorted
and the friction factors have been observed to be
larger than the straight-pipe values. However, their
quantitative agreement is not as good as that observed
for laminar flows; hence it is probable that the
furbulence model is the source of what discrepancies
exist., DPossible modifications to the turbulence model
that may be considered in future studies are:

(1) - to discard the effective-viscosity approach
and to solve differential equations for each
individual shear stress; or

(ii) to employ an intermediate approach, such as
that proposed by Launder (1971) where the
differential equ;tions for turbulent shear-
stresses are approximated by algebraic

equations.
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Of these, the second one is somewhat easy but the

first possibility, namely the use of Reynolds-stress
models will involve considerable development effort and
validation over simpler three-dimensional fiow situations
before their being applied to predict the present flow

situation.

7.4 Concluding remarks

The parabolic calculation procedure has been
éuccessfully applied to predict the three-dimensional
flow and heat—transfef phenomena in mildly-curved
circular pipes. For laminar flows, the agreement
between predictions and the corresponding experimental
data has been observed to be good. For turbulent flows
however, the agreement is not as good as_that observed in the
predictions for laminar flow-situations. It is concluded
that some modifications need to be made to the turbulence-
model to account for the effects of secondary flow;

possible approaches have been outlined.



- 186 -~

CHAPTER 8

PREDICTION OF FLOW IN STRONGLY-CURVED DUCTS

'8.1 Introduction

The flow phenomena in strongly-curved ducts
are different from those in ducts with mild curvature
because of their substantial elliptic effects in the
pressure field. These elliptic effects make the flow
partially-parabolic; and require‘for their computation
a different numerical scheme. In the present chapter,
the partially-parabolic procedure described in Sec. (4.2)
is employed to compute the flow in the geometrical
situation described in Chaptef 6. A sketch of this
geometry is provided in Figure (8.1.1). The flow was
turbulent; and the turbulent stresses were modelled using -
a two-equation (kne) turbulence-model, the details of
which have already been described in Chapter 5. The
computations covered both the geometrical configurations
experimentally studied, namely the constant-area duct
and the diffuser. The computed distributions of static
pressure and mean velocity are compared in this chapter,
with experimental data and also with the calculations

using the parabolic procedure.
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8.2 Computational aspects

The flow domain in which computations have been
made consisted of the 1.22 m, long straight section and
the 90 degrees of the curved duct; because of the
. symmetry of the flow, only one half of the height has
been considered° The finite-difference grid possessed
17 nodes in the x direction and 14 in the y direction;
the grid was non-uniform with more nodes in the near-
wall regions. In the longitudinal direction, 10 stations
were placed in the straight section and 24 in the curved
section, the latter with an approximate spacing of about
5 degrees. The computations were confirmed, by
experimentation with finer and coarser grids to be

substantially independent of grid fineness.

The partially-parabolic procedure converged in
50 sweeps of the flow domain; and the necessary computing
time on a CDC 6600 computer was about 15 minutes. In
the parabolic 'scheme only one sweep of the flow domain
was necessary; but it was necessary to reduce significantly_
the forward step size (to ~ 0.2 degrees) in order to
make the computafions numerically-stable. The computing

time in the parabolic case was about 5 minutes.
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8.3 Prescription of inlet and exit conditions

The flow conditions at the inlet plane to the
calculation domain were prescribed ﬁased on experimental
measurements at the location 1.22 m. upstream of the
curved duct. Figure (8.3.1(a)) shows the inlet profiles
for the longitudinal-direction velocity (w) measured at
the above location; the transverse velocities at the
same location were observed to be negligibly sméll and
the static pressure was uniform over the cross-sectional
plane. The inlet-values of kinetic energy of turbulence
weré prescribed based on measurements of the.intensity
of turbulence (w'/w) along the axial-direction; Figure
(8.3.1(b)) shows the variation of turbulence intensity
with distance from bottom wall at one location in the
‘inlet plane (from Young (1972)). The inlet values of
dissipation of kinetic energy were calculated assuming
a dissipation 1ength—sca1e distribution similar to the
ramp function for the mixing length in two-dimensional
boundary layers (Patankar and Spalding (1972), p. 20).
The sensitivity of the predictions to the prescription
of the inlet values of turbulence kinetic-energy and its
dissipation rate was however, observed to be only small.
The boundary condition at the exit was prescribed to be
that of the uniform pressure, corresponding to the
physical condition of free discharge into the atmosphere.
These inlet and exit conditions were the same for both

the geometrical configurations,
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8;4 Results for constant-area case

Figures (8.4.1) to (8.4.4) showlthe predicted .
development of the longitudinal velocity and comvarisons
with experimental data. The comparisons have been made
at diffefent values of normal distance (y) measured from
the bottom wall. The velocities have been non-dimension-
alised with the total velocity at the centre of the cross-

sectional plane. Figures (8.4.5) to (8.4.7) display the
development of transverse-direction velocity, along the
curved duct; the predictions using the parabolic and
the partially-parabolic procedures are compared wifh.
measurements. Figure (8.4.8) illustrates the
distribution of static pressure in the curved duct. It
has been observed both from the experiments and the
computations that for regions farther thanvlo cm from
the side walls, the static pressure is constant along the
y-direction; the values plotted here are thus the mean
values along the y-direction. The velocities and static
pressures presented above are also represented in Figure
(8.4.9) as contours of total pressure (= p + -g-( u2+v2+w2)).
In Figure (8.4.10), comparisons are presented for the
longitudinal variation of the static pressure along the
duct centre-line; it is referred to its value at the 0°
position and is non-dimensionalised with the velocity-
head corresponding to the total velocity at the centre
of the 0° cross-sectional plane. Figure (8.4.11)

presents the predicted variation of skin friction
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coefficient (ZTw/sz where t = wall shear stress;

Q= total‘velodity at the centre of the cross-sectional
plane and p is the fluid density) at several angular
positions along the bend. It is observed that the
skin-friction coefficient in the inside region is larger
compared with its outside value. From the above results
it is seen that the flow situation presently considered
is partially-parabolic in nature; and the computations
using a partially-parabolic calculation procedure display
good agreement with experimental.data; but when the flow
is treated as fully-parabolic, the results are in 4
disagreement. The origin of the elliptic effects in the

pressure field will be discussed in a later section.

8.5 Results for the diffusing-area case

Computations of the flow in a curved diffuser
were made in aﬁ identical manner; except that in these,
the width of the duct was varied‘along the ¢-direction;
and a different coordinate system (n,Z,£) was employed.
The inlet and exit conditions for these computations
were the same as those for the constant-area case, as
presented in Sec. 8.3. The results of the computations
for the diffuser are presented in Figures (8.5.1) to
(8.5.9). It is observed that these results do not differ
significantly from those for constant-area duct; this
may be because of the small diffuser angle (2.50)

considered in the present study.
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8.6 Discussion

The comparisons presented'above show that the
flow in strongly-curved ducts is partially-parabolic in
its nature; that is the flow is significantiy influenced
by the effects of the transmission of downstream events
through the pressure field. The origin of the elliptic
effects can be better understood by examining the flow |
situation in somewhat more detail. As described in
Sec. (7.2.4), the flow in a curved duct is associated
with créss—stream variatiohs in the pressure field
which are generated as a result of the centrifugal
forces acting on the fluid. The consequence of these
cross-stream pressure-variations are two fold: Firstly,
they give rise to transverse velocities, i.e, velocities
along the x and y directions, ﬁs shown in Figure (8.6.1)
(in the present case, because of large width of the duct,
the y-direction velocities are confined only to the
regions near the side walls and are negligible elsewhere).
Second, the cross-stream variations accelerate certain
regions of flow relative to the other by creating
differential amounts of longitudinal pressure gradients
over the cross-section. The elliptic effects arise
because of this later consequence. It is through the
variations in the longitﬁdinal pressure gradients that
events at a downstream station are transmitted to upstream
regions. The flow region which is most influenced by

these downstream effects is that where the cross~stream
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pressure variations are changed rapidly; in the present
case this happens at the inlet of the curved duct. In
éhis region, the flow from the straight section is
suddenly accelerated on the inner side and retarted on
the outer side as it encounters the pressufe variations
in the curved duct. The profile of longitudinal velocity
is hence distorted, with a velogity maximum at the inside,
even before the flow enters the curved duct. The flow
pattern produced in the straight section continues to
develop further in the curved duét; and is influenced
then by the centrifugal forces. The effect of the
centrifugal forces is to drive the fluid outwards to
shift the maximum to the outside; but the extent to which
they overtake the inlet effects depends on the curvature
of the duct, the state of flow (laminar or turbulent), and
the ductAlength provided for the flow development. 1In
strongly curved ducts, since the radial pressure
variations are large the distortion of the flow field

at 0° of the bend is substantially large; and therefore
the effects of the inlet ellipticity prevail over a

large region of the flow domain. In mildly-curved ducts, on
the other hand, the cross-stream pressure gradients are
relatively small; and the effects of the inlet elliptic;ty

are quickly dominated.

The need for a partially-parabolic calculation
procedure depends on the length of flow region influenced

by the elliptic effects in the pressure field. From
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Figures (8.4.8) and (8.5.8) it may be .seen that

after about 20 degrees of the bend, theré are no large
changes in the cross-stream pressure—gradients: this
means that the region after about this distance in the
curved duct is parabolic; and can safely be computed
using the parabolic procedure, provided the starting
conditions for the marching integration are prescribed.
correctly. In mildly-curved ducts since the flow field
at the 0° position is relatively unaffeéted it is safe
to assume that the flow at the ob location is the same
as that in the straight pipe; such an approximation will
not give correct results for flow in strongly-curved
ducts, as has been evident from the present calculations.
The partially—pérabolic nature of the flow in strongly-
“curved ducts is also evident from the contours of total
pressure which show regions of equal total-pressure on
the inside and outside. The static pressure at the
outside is higher than that at inside but since the
velocity is smaller, the total pressures at inside and
at outside are neérly the same. But in mildly-curved
ducts it is the opposite; the regions of high velocity

and high static pressure are both at outside.

Two aspects of the present calculations need
further discussion. First, the conditions at the exit.
In the present computations, the exit boundary was
prescribed to be of uniform pressure i.e. with no

variations across the duct cross-section., But in
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reality, the pressure field is not changed suddenly to
the atmospheric conditions; but some variations will be
present at the end of the test section. Since thése
variations were not measuréd at present, a uniform-
pressure was prescribed at the exit. The effect of this
wrong prescription of exit-boundary condition is however
small on the calculations made in regions away from the
exit. In the present calculations comparisons with
experiments upto 67.5° of the bend have been good; but
since no comparisons have been méde farther than this
position the precise extent of region influenced by the.
exit—bbundary condition is not known. 1In any case, it is
possible in the present calculation procedure also to
prescribe a desired variation of exit pressure without

additional difficulty.

Second,.thé present calculations using the
partially4parabolic procedure;ﬁlthough show good
agreement in axial-velocity profiles,under-predict the
transverse velocities by about 10-15 percent. It may be
recalled that a similar discrepancy betwifn predicted
and measured values was also observed igzézse of turbulent
flow in mildly-curved pipes (Sec. 7.3). The discrepancies
observed earlier and in the calculations of the present
chapter are probably due t&ithe turbulence-model currently
used. From a few measurements of Vermeulen (1971) in a

curved duct, it appears that the turbulent viscosity for

flow in.curved ducts is not isotropie as has been assumed
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in the present turbulence model; for the viscosity in
the transverse directions was observed to be about half
of that in the longitudinal direction. It may therefore
be necessary to discard the effective viscosity approach
for calculation of flow in curved ducts; and employ

more complex turbulence models; aiternatively,-it is
also possible to make empirical modifications to the

kve model, based on experimental findings.such as that

of Vermeulen (1971).

8.7 Concluding remarks

The computations reported in this chapter
have shown that for the calculation of flows in stroﬂgly—

curved ducts, the partially-parabolic procedure is

greatly superior; it gives good agreement with experimental

data, whereas the fully-parabolic procedure is even
qualitatively at variance with the measurements, From
the view point of economics, the partially-parabolic
procedure 1s however, about three times more expensive
than the parabolic one; but when compared with a fully-
elliptic procedure, it is significantly cheaper, not

least in computer storage.
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CHAPTER 9

CONCLUDING REMARKS

9.1 Main results of the preSent study

The main achievements of the present study

and the conclusions thereof may be summarised as

follows:

1) - The parabolic calculation procedure has been

i successfully applied to predict the laminarx
flow and heat transfer in mildly-curved
circular pipes. The computed distributions
of mean velocity, static pressure, temperature
etc. displayed good agreement with experimental
data.

2) The capabilities of the two-equation (kve)
turbulence-model to predict the turbulent
flow in curved ducts have been assessed.
Predictions for turbulent flow and heat
transfer in a 180° bend agreed reasonably
well with experiments but the agreement has
not been as good as that observed for the
case of laminar flows. The turbulence model,
it is concluded, therefore requires

modifications to account for the effects

of secondary flow on the turbulence-structure.



3)

4)

.- 222 -

A calculation procedure has been developed
for economical handling of partially-
parabolic flow situations. 1In this
procedure, account is taken of the
influences of downstream events which
travel upstream via the pressure field.
The distinctive features of this procedure
are:
(a) it stores the pressure field as a
three-dimensional array; and
(b) it performs several marching sweeps
through the flow ddmain |
In each sweep, the guessed pressure field
is corrected so as ultimately to satisfy
the momentum and continuity equations over
the complete flow domain. The procedure
has been successfully validated for
turbulent flow in a strongly-curved
rectangular duct. The predictions using
this procedure have been observed to be in
close agreement with experimental data; the
results from the parabolic procedure, on the
other hand, were at qualitative variance
with measurements.
An experimental program has been successfully
completed; measurements have been made of

the distributions of velocity and pressure
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for turbulent flow in a strongly-curved

duct. The data obtained from this
investigation have been useful in

validating the partially-parabolic calculation
procedure. Further, the measurements made
close to the bottom wall of the duct have
suggested that, in this region, the

component of velocity along the wall-shear-
stress direction varies in a logarithmic
manner with distance from the wall,

The computing times required for the present
calculations have been modest. The partially-
parabolic procedure has been observed to be
more economical than a fully-elliptic
procedure; but in comparison with the
parabolic procedure, the partially-parabolic
procedure requires computing times three

times as large.

Suggestions for future work

The present investigation suggests a few

areas where further research is needed to improve

the present capabilities to predict flows in curved

ducts; these areas are as follows.

1

First, it shall be beneficial from view
point of economy if the convergence rate of

the partially-parabolic calculation
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procedure can be further improved. At this
stage, the author is not aware of any
specific improvements to the procedure,
except those discussed in Section 4.7; but

it is recommended that in future studies

concerning the partially-parabolic calculation

procedure, attention may be focussed also on
this aspect.

A second observation from the present study
is concerned with the turbulence model
currently employed to predict flows in
curved ducts. It appears from the present
calculations that turbulence models based
on the concept of.turbulent viscosity do
not completely represent the turbulence
structure in curved ducts. Further testing
of the turbulence model needs to be made

to establish that the present conclusions
are sound, by predicting other experimental
data in curved ducts and in similar flow
situationé (e.g. flows with rotation,
buoyancy etc). 1If the present conclusions
are firmly proved, it is necessary then to
develop either more-complex turbulence-
models, such as the Reynolds-stress models,
or to devise empirical modificatioﬁs to the

current two-equation turbulence model.
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Both these refinements to the turbulence
model will need some experimental information
on the turbulence structure in curved ducts
which, at the moment is lacking; it is
therefore also necessary to make

measurements of the turbulence structure

in curved ducts.
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NOMENCLATURE

Meaning

coefficient in the discretised
equation,

radius of pipe.

coefficient in the finite-

difference equation; represents

contribution from upstream and

source terms.

cell areas for calculating mass
fluxes.

constants in the turbulence model.
specific héat°

coefficient of skin friction
(ty/% 0Q7).

coefficients of pressure gradient
terms.

diameter of pitot probe.

constant in the log law.
coefficient in the discretised
equation.

friction factor (dp/dz / 3pwo );
also interpolation factor in

Eqn. (4.2.4).

generation of turbulence energy.

th

flux of ¢ in the i direction,

Location of
first appearance

Eqn, (4.2.8)

Sec., (2.2.2)

Egn., (4.2.8)

Egn. (4.2.14)

Eqns. (5.3.2-5.3.4)

Eqn. (5.4.6)

Eqno (606.1)

Eqns., (4.2.10-4.2,12)

Eqn., (5.4.1)

Eqn. (4.2,.3)

Sec. (7.2.2)

Eqn. (5.3.3)
Egn. (3.2.5)
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Meaning
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‘ Loéation of

“first appearance

Dean number;

kinetic-energy of turbulence.

convection coefficients in the
derivation of the discretised

equation,

residual mass source,

_total mass into the flow domain

through inlet and boundaries.

P function in the wall functiqns
for the energy equation.

pressure,

average pressure field, used in the
parabolic procedure.

total velocity at the cenfre of

the cross-sectional plane,

total velocity at a point.

radius of curvature.

coordinate in the cylindrical
polar system, |

source/sink term,

temperature; also used to répresent
diffusion terms, in equation
(4.2.2). - "

the three velocity components.
coordinates in the cartesian

system,

Sec,

Sec,
Eaqn,
Egn.
Eqn.

Eqn.

Eqn.
Ean.

Eqn,

Eqn.

Eqn.
Eqn.
Eqn,
Eqn.
Eqn;

Eqn.

(2.2.2)
(5.1)

(4.2.2)
(4.2.18)

(4.3.7)

(5.4.6)

(3.2.2)
(3.2.7)
(6.6.1)
(5.4.1)
(3.2.8)
(3.2.8)
(3.2.2)
(5.4.6)

(3.2.1)

(3.2.1)
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Meaning

non-dimensional distance used in

a relation u+=f(y+) to express the
velocity-variation,

distance from wall to the inter-
face of the near-wall control

volume,

Greek symbols

n,%,%&

relaxation factor,

reduction factor; defined by
equation (A2.).

difference of

dissipation rate of turbulence

kinetic~energy.

exchange coefficient.

density of fluid.

coordinates in the (n,z,f )system,
coordinate in the cylindrical-
polar system,

coefficient of viscosity.

constant in the logarithmic law

for variation of near-wall-velocity.
kinematic viscosity. ~
dimensionless wavelength,

general flow variable.

Location of

first appearance

Sec;

Eqgn.

Sec.

Egn.

Fig,

Sec,
Egn.

Egn.
Egn.

Egn.

Egn.

Eqn.
Egn.
Sec.

Egn.

(5.3)

(5.4.5)

(4.2.6)

(4.4.3)
(4.2.4)

(5.1)
(3.2.9)

(3.2.2)
(3.2.12)

(3.2.8)
(5.3.5)

(5.4.1)
(6.6.1)
(7.2.2)

(3.2.5)
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Subscripts

av

.cl

eff

new
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Meaning

coordinate in the (r,06,¢) and
(x,y¥,¢) systems,
shear stress.

Prandtl/Schmidt number,

‘average over the cross section;

also denotes peripheral average
in Fig. (7.2.21),

centre line,

downstream,

east grid-node; also east
boundary in eqn. (3.2.12).
east interface.

effective value.

frictional component.
kinetic-energy of turbulence.
laminar value.

mean value; average of outside
and inside,

north grid-node; also north
boundary in eqn. (3.2.12).
north interface ‘

new value,

inlet,

Location of

first appearance

Eqn., (3.2.8)

Eqn. (3.2.2)

Eqn. (5.3.6)

Fig., (7.2.3)

Fig. (7.3.5(a))

Egqn. (4.2.12)

Eqn. (4.2.2)

Eqn. (4.2.2)

Ean. (Al.2,15)

Eqn., (6.6.1)
Eqn. (5.3.3)

Eqn. (5.3.5)
Fig., (7.2.21)

Eqn., (4.2.2)
Eqn. (4.2.2)
Eqn., (4.4.3)

Fig, (8.4.9)
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Location of

Symbol Meaning first appearance
old old value. Eqn. (4.4.3)
P at point P. Egn. (4.2.2)
r ' r coordinate direction, Eqn., (Al.2.2)
S south grid node; also south

boundary in egqn. (3.2.12), Eqn. (4.2.2)
s south interface. Eqn. (4.2.2)
T temperature. Eqn. (5.3.6)
t Aturbulent, . Eqn. (5.3.5)
U upstream. Sec. (4.2.5)
u u velocity. 4 Eqn. (3.2.2)
v v velocity. Egn. (3.2.3)
w west grid node; also wall, Egn, (4.2.,2)
w | w velocity; also west interface

in egn. (4.2.2), Eqn. (3.2.4)
X,y,2 coordinate directions. Eqn. (3.2.2)°
] general vafiable° Egn. (3.2.5)
€ dissipation rate of kinetic;

energy of turbulence. Eqn. (5.3.4)
) coordinate. ' Eqgn. (Al.2.2)

n,z,& coordinates, ' Eqn. (Al.4.6)



_237_

Superscripts

Symbol Meaning

o) pressure correction,
u,v,w velocity components.
X,y coordinate directions,
*

approximate value.
denotes corrections in Chapter

and fluctuating component in

-Chapter 5 and elsewhere.

" Location of

" first appearance

Eqn.
Eqgn,
Eqgn,

Eqn,

Eqn,

(4.2.17)
(4.2.10-4.2.12)
(4.2.2)
(4.2.15)

(4,2,15)
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APPENDIX Al

THE GOVERNING DIFFERENTIAL EQUATIONS

Al.l Introduction

In this appendix, the partial-differential
equations governing the steady, three-dimensional
incompressible flow and heat-transfer phenomena in
curﬁed ducts are described in their full form. The
équations are expressed in the three coordinate systems
mentioned in Chapter 3, namely the'(r,6,¢), the (x,y,9)
and the (n,z,£) systems. The equations stated here are
identical for laminar and turbulent flow situations
except that for turbulent flows, the shear stresses are
calculated from an 'effective' exchange-coefficient
which is the sum of the laminar and turbulent exchange-
coefficients; élso, for laminar flows the equations for
the kinetic—enefgy of turbulence and its dissipation rate
are not solved. The following sets of equations are
stated in their partially-parabolic form; if their
parabolic form is desired, only the longitudinal
momentum equation needs to be rewritten using a P pressure

field.

Al .2 The (r,0,¢) coordinate system

The partial-differential equations governing

flow and heat-transfer phenomena in a flow situation
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described by the (r, 6, ¢) coordinate system are as

follows:
Continuity:
au v u aw (u cosB - v sing) _ -
5r T to6 Tt Reg T R =0 (Al.2.1)
r—-momentum:
2 9t aT
2u ,yvdu v, wdu _ _ 3p rr , 1 _ 10
p (u ar Ty 96 r * R 3¢ r * ar * r 96
2
W
- cosf8 ) .
- 66 1.
r r rr
T T
rr ro _. )
+ = cosf - - sind
(Al.2.2)
0-momentum:
2 9T 9t
v L, 19V L uw WOV, w S ) ¢ or 66
Pty T YR TR Sin®) T T Y

2 Tor
+ T T + = cosé

r6
- —=— sinb

Too
R

(A1.2.3)
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¢-—momentum:

oW vV oW Wow w R
p (u 3 + Y] + R56 + R (u cosb - v sinf))
_ oT
o op L Ter . Tor , Tor Too . 90
Rag *ar Fr PR~ S0 T o
(Al.2.4)

Kinetic-energy of turbulence (k):

o9k vk, woky _ 3 -~ 8k, . lp - 3K
P (usr+F38 * R 35 = 37 Cleftigy) *tEleffkgy

1 ok ok .
+ B (P,eff',k’ﬁ cosd ’Feff,km sind)

3
+ —— (Topp 38 ) +G-pe

r 96 a0
(A1.2.5)
Rate of dissipation of k(e):
€ vV 0€E W o€ 3 o o€ 1 0E
P (W3r* 36 TRog - or (lefte ) T Fleff,e 5y
0E
+ g (Tetf,e3T cos® -Tepf e 755 SLnd)
* —2— ( &y +c g ¢, e
2 ‘Terr,e 36 1k 2 "k
r 96 ?
(Al1.2.6)
Energy,h: .
%h o, v oh ,wdh _ 3 shy 9 2h
o (Vg *¥55 *R3) - ror Flers,n 3w * T2 (Ters,n 59
cTesfin an oh
+ . - L]
———ﬁf— (ar cos9 56 sing)

(A1.2.7)



_241_

The shear stresses in equations (Al.2.2) to (Al.2.4)
are expressed below, after they have been simplified

by the neglect of gradients in ¢-direction.

- su | o
Tor = 2 1 T (A1.2.8)
T = p (L Y,y Ty, (A1.2.9)
ro rab r r :
- v u
Toe = 2u (;35 + r) . (A1.2.10)
= w _w '
T¢r = (ar R cose) (A1.2.11)
- oW W
T¢e = u (rae t R siné) (Al.2.12)
where p = U for laminar flows (Al1.2.13(a))
W= Hgpp T (Ug + ut) for turbulent flows (Al.2.13(b))
- . 2
and Hy = Cu p k%/¢e (Al.2.14)

The effective exchange coefficient for transport of a

variahle,.? is

Tetf, o

= 2 st ‘ (A1.2.15)

where the subscripts £ and t refer to the laminar and

turbulent values and the subscript 'eff' refers to the
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effective value, The expression for the generation of

kinetic energy of turbulence is expressed ‘as follows:

2 2 2

3 - 5U U 3U
r 6
G=1u, |2 {5 *+(me *+ () + _g?: U, aee
r .
U. 3U. U SU.  sU. 2 sy, 2
..._6_(___1‘_-}-__2)}-}-(___]:.-}-___6_) +(__¢)
T ra3f ar ra6 or or
20, 2 Uez U¢2 . 20,
*ime Tzt =g tg Uy (gmp sind
r R
3U
- ¢
ar‘cose)

(Al.2.16)

The terms which were treated in the form of source
terms, from viewpoint of the computational procedure,
can be obtained by subtracting, from the above equation,

terms represented by the following equation:

div (G%) = div (Feff grad ¢) (A1,2,17)
where G is the mass velocity vector;
o is the dependent variable of the equation;

reff is the effective exchange coefficient;
and the divergence and gradient operators have the

following expressions in the present coordinate system:
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V. oV v 3V V, cosb - V, sind

. _ % 2, .1 3 1
le v - ar + rae + r + R3¢ + ( R )

(A1.2.18)
where V=V, i+ V, j + Vgk ;

and i, j, k are the unit vectors along r, 6, ¢ directions.

_ 30, 30 120 |
grad ¢ = n T + 756 + 7 5% (Al1.2.19)
Al.3 The (x,y,¢) coordinate system

The governing differential equations for the
(x,y,9) coordinate system have been derived in a similar
‘manner as those in Sec. (Al.2); the equations in the

(x,¥,¢) system are:

Continuity:
du , dv 13w o u_
% + §§ + T + R 0 (Al1.3.1)
xX~-momentum:
2 9T 3T T
3u 3w wou _wo,_ _dp, “xx, “xy, Txx
P U * Ve YR " W) x ¥ % 5y T R

(A1.3.2)
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y-momentum:

oT 0T T
v v , wdvy _ _ 9p yXx yy . JX
P (ugg + Vs * g3y ay T hx T Ty TR
(A1.3.3)
¢—momentum:
-(uaﬂ+ﬂ+vﬂ+ﬂéﬂ)— ap +3T¢x
P 3% © R 3y " R 3¢ R34 3%
9T
— %y . 2
+ 5y + R T¢X (Al1l.3.4)

Kinetic ‘energy of turbulence (k):

ok ok ok, _ o ok ok

3 .
p(uay + Vae W gse) = 33 (errksy) * 3y Uert,k5y)

1 3k

Rate of dissipation of k (eg):

de , 2 4, e, D T TR v
o (Wgx +V gy * ¥V Rse) T ax (lerred® * oy (Rrr,esy)
P 19e . ©1f Cy pe

eff,e R3x ¥V K ¢~ T %

(Al.3.6)
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The expressions for the shear stresses, after neglect
of terms representing gradients in ¢-direction are

as follows:

T = 22U = (A1.3.7)

XX ox

_ Ju av, _
TXY = 4y a—y-' + _3X) = TYX (Al1.3.8)
T = 21; 8v (A1.3.9)
vy : oy o

= oW _ W
T¢X = 1 (ax R) .(A1.3.10)

ow

= -— Al.3.11

Ty = M (53 ( )

-The expressions for p are the same as in (Al.2,13) and

(Al.2,.14).

The term G, which represents the generation

of turbulence kinetic-energy, is given by the following

expression:
2 2 2 2
_ au? | v au, av,? ow
2 2 2
ow 2 oW . W u ’

The divergence and gradient operators for the present

coordinate system have the following forms:
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% 9V g 193 V3
dlvﬁ— T +W +R—ﬁ— +-R— | (Al1.3.13)
grad ¢ = 22 4 a—f,’ ¥ I?% | (A1.3.14)

The expression for V is the same as that described in

(A1.2.18).

Al.4 The (n,r,£) system

The governing differential equations in the
(n,z,&) coordinate system were derived by transforming

the equations of (Al.3) using the following transformations:

X=Xy
n = ~—

g~ Xy

Y s 1.4.1
- A-o
4 Yy -V ( )
£E = ¢

The subscripts N, S, E and W refer respectively to the
North, South, East and West boundaries in the x-y plane
of the calculation domain, as illustrated in Figure
(3,202(0))° In the above transformation, the coordinates
n and ¢ are mutually orthogonal for all values of £; and
planes of constant-{ are approximated as planes of
constant-¢. The velocity components u and v are defined

as before, to be normal to the y-z and x-z planes



respectively, i.e, to be aligned with the n and ¢

coordinates,

The w-component of velocity however,
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is

defined to be along the grid lines joining two adjacent

(n ~ ¢) planes and thus is not exactly normal to the

constant-¢ direction.

above satisfy the following relationships:

9
ox

2
)

<

2
3¢

9.
an
9
an

9
an

L]
o
R = i)

e
<=3

Q

LU
X

+

+

- J14
?C 3% T
2, 2z
3% " dy
_g—o_a—z;.-*-
aC o)

?
9

[+ %4
m‘“’

[s%]
m|°’

. 35
oX

. 38
ay

. 2%
3¢

The coordinates (n,z,E) defined

(Al.4.2)

These relations and the definitions of n, ¢, & given in

(Al.4.1), when substituted in the equations for a (Xx,y,%)

system result in the following set of differential

equations, which govern the three-dimensional flow in a

curved difffuser of rectangular cross-section.

Continuity:

ou _
an

aw %y
on “R9g

wa

+n

9
RAE

( XE—XW) ) }

(YN"'Ys))}

(Al.4.3)



n—-momentum:

! du-
—— — {u
(xE—xw) on

-
&

Q2
oY

¥ (yy~-¥g)

+
)%
b
|
| %o
1

z-momentum:

1 oV
e (Xg-xy) on {u
1 v
 o—_—
(Tyvg) 3% 7
w ow -
+ 7 3F =

{u -
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-w (RBE

1 ] 1 aTnn
(XE_XW) 3n (XE_XW) Bn
1 aTnn nn
(yy~-vg) 9% R
(Al.4.4)
X
W 3
v (&35 * ey (Fpxw))}
9y
S d
w (§§$ T (yy-vg))}
1 sp, 1 Ty
(yN—yS) (8 (XE_XW) Bn
8
! 'ty , Tn
(yy~vg) 92 R

(Al1.4.5)
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¢-momentum:

p | —1 3

w 3
| Ggmy a0 7 ¥ (Rag T mag (i)

-w (§§$ + E%E (YN~YS))}

+ W8 L uw | 9p 1 aT£n+ 1 ey
R 93¢ R R3E (Xg-xy) M (yy-vg) 9¢
2
4 —=
R “&n
(A1.4.6)

~Kinetic. energy of turbulence (k):

P S
X
1 dk - W 9
p T§£:§%7 o {u-w (§§$ +n EY) (XE- W))}
3y
1 9k S d
* gy 3¢ VTV (Rag ¢ Res Onvs))d

3k 1 3 Yeff 3k
tWorr | = = ( )
Rog v~ Y2 on * ¢ an
(XE xw) k
o1 kX (“eff ok y
- .23t ‘To. g
(yy-vg) k
u
(x Ex ) gff % e * G- e
E "W k n

(A1.4.7)
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Rate of dissipation of k (g):

9xX
1 J€E W d
| gy on U TV (EEg Y M R (xpmxy))]

, ’y
1 9€E S d
+ — —— -—
v ot V7V (Eme * ¢ ey Iy V)
TN I B Jeis 2,
9E 2 9n 5] n
(xE—xW) £
1 3 Meff 3¢
+ == (22 £5)
2
(Yy-vg) 0t T g 0%
se  Cq€ Cy pe

(Al.4.8)

The expressions for the shear stresses can be
derived in a similar way by transforming equations
(A1.3.7) to (Al1.3.11), which thereupon result in the

following expressions.

Tan = 2y ez 0 (Al.4.9)

1 ju 1 av
= p{(—t—y M, 1 9V, 1.4,
g T My T T G W Ton (Al.4.10)
1 oV
_ v 1.4.
Tir T M Gvg) or) | (Al.4.11)
_ 1w w ' (A1.4.12)
Tgn T W ¢ (xp—%y) O R ¥
T, = 1 CLAY - (AL.4.13)

gr -0 yvg) 3¢
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The generation of kinetic-energy of turbulence, G is

transformed into the following form:

2 2
1 u 1 v 1 au
G=yp 2 { (7)) + ———5 (57) } + (== T
t (x.—x )ﬁ on (Y- )2 og ExE xw5 an
E ¥y NYs
L__av® 1 w1 (%ﬂ>2
- 2
(yy-vg) 9t (yyvg)?  °° .
1 2w aw w2 2 u?

(Al.4.14)

The expressions for the divergenée and gradient

operators for the (n,z,E) coordinate system are as

follows:
div V = (XE}XW) { a;}._ iZ? (;ig + ﬁgg (2p-%y))}
* (YN}Ys) t ix? - ix? (gzg ve ﬁ%f (yy-¥s))?}
+ % é;? + %% (A1.4.15)
grad ¢ = T§£%§§7 %% {1 —_%;g - E%E (XE-XW)}
¥ ?§§%§57 7 - %%% - ¢ g (v}
+ % %% (A1.4.16)
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APPENDIX A2

A MODIFICATION TO THE PARTIALLY-PARABOLIC

CALCULATION PROCEDURE

s

A2.1 Introduction

In this appendix, a modification to the
calculation procedure for partially-parabolic flows is
described. This modification, suggested by Spalding
(1974), has been observed to improve the rate of convergence
(i.e. rate of diminution of the pressure-corrections)
of the calculation procedure. In this modification parts
of the pressure-corrections éalculated at a downstream
location are applied to the pressure field at the
upstream stations, the purpose being to compensate for
the mass imbalances caused by the downstream pressure-

corrections. Details of this modification are as follows.

A2.2 Details of the modification

The central idea in the modification is to
apply parts of the pressure corrections calculated at any
location to all upstream stations. The reason for
correcting the upstream pressures is as follows. 1In the
unmodified procedure, the equation for pressure corrections
was derived by assuming that the pressure field at
adjacent cross-sectional planes remains unaltered; and

t
thus Py and Pp in equation (4.2.8) were put equal to
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zero. This assumption was necessary to make the
. . . . ]
pressure-correction equation two-dimensional so as to

reduce the necessary computer-storage.

However this practice, although ﬁdvantageous
has two shortcomings. First, since the corrections made
at any downstream location distu¥b,the mass balance at
the upstream locations, and since pU' is assumed to be
zero these imbalances are not compensated° Second,
the influences of the downstregm events are not quickly
disseminated upstream; for the influences travel only at
the rate of one plane per sweep through the flow domain.

Both these disadvantages decrease the rate oi convergence

of the calculation procedure.

The present modification is introduced to
overcome the above defects. The aim is to compensate
the mass imbalances at the upstream locations without
changing the existing practices for calculating the
pressure-corrections, i.e. without changing the two-
dimensional form of the pressure-correction equation.
This is achieved by once again correcting the upstream
pressures, the amounts of which are calculated in the

following manner.

Consider the control volume shown in Figure

(A2.1). In this diagram, the point P is the location

%
By two-dimensional it is meant that the corrections are
calculated for one cross-sectional plane at any time.
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N
N ¥
V,
3 W N
i

N
AY
uu U P bU #
| .

4
1 |
AZ — te— AX
1___.2 1——~>x
y-z plane .  X-y plane

where a pressure-correction pL is just applied. The

grid node U is situated one plane upstream of P; and
the nodes N, S, E and W are neighbours to U in the
same cross-sectional plane. .UU is located one plane

further upstream to U.

The'pressure correction pé applied at P alters
the velocity wU; and thus introduces a mass imbalance
at U. The expression for this mass imbalance, m, is

given by:

p Pp Ax.Ay . (A2.2.1)
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where Ax and Ay are the areas of the control volume
normal to the w-velocity and DY is the coefficient
linking the veiocity change to the pressure change. The
purpose of the present analysis is to obtain éxpressions'
for correcting the upstream pressures so aé annihilate
the mass imbalance ﬁ; the way these expressions are
derived is as follows. First, it is assumed that the
pressures at locations N, S, E, W and UU remain unchanged;
i.e. no.corrections are made at these locations to
counteract the effects of pp'. Thus the mass imbalance

m is assumed to be corrected solely by changing the
pressure at U, If the correction to this pressure is

t

. .
denoted by Py the expressions for the velocity changes

may be expressed as follows.

' - _ tr u
Up = Py DE (A2.2.2)
. = p. DU (A2.2.3)
U U U
vy = - p. D.Y (A2.2.4)
N U N
' _ " v
VU = pU DU (A2.2.5)
1 _ _ w 11 _
wp = DP Py (A2.2.6)
1 _ W " 2
and Wy = DU Py (A2.2.7)
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The above expressions follow from the
linearised momentum equations derived in sec. (4.2).
‘The quantities Du, DV, DV are the coefficients which

link the velocity-changes to the pressure corrections.

A mass balance is now made for the control
volume shown in Figure (A2.1). The mass—balance
equation, incorporating the velocity-changes, is

written as

|

| I 1] ]
Az Ay (uE - Uy ) + Ax Az (vN - Vg )

t 1
+ Ax Ay (Wp ‘— vy ) =n : (A2.2.8)

where Ax, Ay, Az are the dimensions of the control
volume. The expressions for velocity changes
are now substituted into the above equation; and the

following expression for pU" is obtained.

' w
LAl - pp ° AX Ay DP (Az‘z.g)

(Ay Az) (DEu + DU“) + Ax Az (DNV + Dy¥)

w w
+ (8x Ay) (Dp" + Dy")

Or, in short,

]
py = 8. Pp (A2.2.10)
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Where,

AxAy DPW

(Ay Az) (DEu + DU“) + (Ax Az) (DNV + DY)

B =

(A2.2.11)

w w
+ (Ax Ay) (Dp + DU )

The guantity B in the above expression
1
represents the fraction of Pp which is applied to the

pressure at U to compensate for the mass imbalance m.

It can be seen easily that the corrections
made at U will also now introduce new mass imbalance
at UU; and will therefore necessitate pressure
corrections at UU. The corrections at UU will in turn
effect.other upstream locations; and therefore it turns
out that all upstream pressures need to be adjusted to
compensate for the effects of pp'. However, since the
value of B reduces in a geometric way with distance
from the point P, it is usually necessary to consider
only about 5 or 6 planes, at any time. For a location
'n' planes upstream of P, the appropriate correction is

calculated from the following relation.

1" 1" 1" 1

Pp = By Pug = Bh1 ¢ By o Pyg = ByeByeBg ove ByePp

(A2.2.12)
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where the 'f's have the expression given in (A2.2.9)

It is necessary to note that the values of Du, DV and
D" used in the expression for B need to be approximated
by the corresponding values at the location P; this
appfoximation is necessary because the coefficients

Du, DV, D" are not stored in a three-dimensional
array; and are available for only one cross-sectional

plane at any time.

The modification described in this appendix
was tested in the calculation of two different partially-
parabolic flows situations. In both flows, it has been
observed that the present modification gave savings

in computer time to the extent of 25 percent,
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APPENDIX A3

CORRECTIONS TO THE EXPERIMENTAL DATA

This appendix lisfs the various corrections
applied to the experimental data obtained in the present
investigation. These corrections have been obtained by
calibrating the measuring devices against standard
instruments. The calibration experiments from which the
present corrections have been defived were performed by
Young (1972). The various corrections applied to the
present experimental data are as follows.

1) Correction to the measured angles

(2) For measurements with pitot-directional
probe = 0.5°,
(b) For measurements with total-head

probe = 0.5°,

2) Corrections to static pressure measured by the

pitot-directional probe

(a) Correction for blocked static-holes.

It was observed (Young (1972)) that the static
pressure measured by the pitot-directional
probe was in slight error when compared
against that measured by a standard pitot
static probe. This discrepancy was attributed

to the blockage of one of the static-pressure



(b)
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holes (total 8 in number) on the pitot-
directional probe. The correction to this end
to the measured static pressure was 0.02796
lbf/ft2 in a nominal value of 1 lbf/ftz.

Correction for displaced position of the -

static pressure holes

It may be seen, from the construction of the
probes that the location where the static
pressure is measured is slightly different
from that where the total pressure is measured.
For this reason, in calcﬁlating the velocity,
the measured static pressure was corrected to
be appropriate to the location where the total
pressuré was measured. This correction is

given approximately by the relation

_ 0.8 dp
Ap - 12 o dX . (Asol)
dp

where Ix is the pressure gradient along the
transverse direction (x). The nominal value

of this correction was 0.12 lbf/ftz.
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3) Displacement correction to the Pitot tube height

The pitot-tube heights were corrected to
“account for the displacement of the pressure cencre of a
pitot probe, wheh it is placed in a shear flow. This
correction was calculated from the following relation

(McMillan (1957)):

AR = 0.15 d S (A3.2)
where, _

Ah is the correction to the pitot tube height

and d is the diameter of the pitot tube.

4) Correction to the wall static pressure

The wall static pressures were observed to be in

slight error; the necessary correction was - ,00822 lbf/ftz

in a nominal value of 1 1bf/ftZ..

5) Corrections due to temperature effects on

the transducer

Following correction was recommended by the
manufacturer, to compensate for the effect of room
temperature T on the voltage output of the transducer.
For 35° F <T <75° F correction (in volts)

= ,03894 - ,0005125 * T
For 75° F <T<135° F  correction (in volts)

= ,008 - .0001 * T,





