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Abstract  

The notion that a strongly interacting particle may be 

thought of as a spatially extended object has recently gained 

much in popularity. For example, dual models imply one-dimen-

sional hadrons ('strings') whilst 'bag' models have maximally 

extended hadrons (i.e. three-dimensional). 

Particular emphasis has been placed on inserting this idea 

of spatial extension into the familiar framework of relativistic 

local quantum field theory. 

As a starting point it has been conjectured that hadron-

like properties may be evident even at the classical level. Con-

sequently much attention has been alotted to investigating field 

theories which admit potentially hadron-like solutions to the 

classical static field equations. The question then arises: 

what do the quantized versions of these classical solutions look 

like? 

Up to now most investigations have been concerned with setting 

up a systematic perturbative approach to the quantization problem. 

Unfortunately this is only applicable to the (phenomenologically 

uninteresting) case of weak coupling e.g. quark confinement in 

bag models is only achieved in the strong-coupling regime. 

The work contained in this thesis will be concerned with the 

development and application of techniques which are directly 

applicable to the problem of strong coupling. 

The principal method adopted is a generalized Hartree-Fock 

procedure. This approximation scheme is phrased both in terms of 

trial state functions and functionals as well as in an unconven- 



tional normal-ordering prescription. Moreover it is demonstrated 

that the latter two variational methods are in fact equivalent 

although superficially they are quite different. The applications 

we will be concerned with include a variety of bag models as well 

as an unconventional dual string model. 

Whilst our Hartree-Fock scheme is unsystematic in application, 

the requirement of self-consistency acts as a powerful constraint 

on possible ansatzs. In fact, due to this latter pointi the varia-

tional equations which result are generally quite intractable y  

although in certain circumstances useful qualitative results may 

be gleaned from them. We often find that classical intuition can 

be most misleading. 
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CHAPTER I 

INTRODUCTION 

AND 

MOTIVATION 



1.1 General Introduction  

One way to look at the structure of a proton is to use the 

theory of local currents. Here one is led to think of a hadron as 

a collection of quasifree point particles endowed with quark quantum 

numbers. This theoretical prejudice has achieved considerable success, 

we need only quote SU(6)(1) and deep inelastic experiments.(2)  

However in order to make this scheme self-consistent it is necessary 

to provide a convincing explanation for the hitherto unobservability 

of these fundamental constituents of hadrons (which we shall name 

"quarks"). This quark confinement problem has motivated the intro-

duction of a novel type of theory for describing hadrons. Here one 

imagines that all hadrons are, from the very outset, spatially ex-

tended objects. The dynamics of the theory then precludes the possi-

bility that the fundamental hadronic constituents will ever escape 

from their confining region. This category of quark confinement 

schemes has two main contenders, the so-called MIT(3) and SLAC(4) 

bag models of hadrons. 

Of course, whether or not such an intuitive starting point will 

be able to explain the complicated interactions of hadrons with 

themselves is questionable. Not surprisingly there exists an alternate 

view of hadrondynamics which has as its origin Veneziano's(5)  inspired 

guess for a scattering amplitude. Here the strong interactions are 

taken to illuminate us about the fundamental structure of hadrons. 

Incredibly, one finds that hadrons are to be regarded as strings evolv-

ing in space-time i.e. hadrons have a one-dimensional spatial 

extent. Unfortunately, this introduction of a geometrical shape 

is intrinsically connected to the appearance of quantum fluctuations 

which mess up the relativistic invariance of the theory except in an 
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anomalous (and model-dependent) number of space-time dimensions. In 

this formalism abelian charges appear in the guise of singularities 

in the geometrical structure thus giving rise to no problem of quark 

confinement. Finally we would like to point out that this theory may 

be set up in the language of field theory, albeit multilocal field 

theory. We will now go on to give a brief review of both the bag and 

string models. 

1.2 Dual Relatavistic Strings  

This phenomenon of unidimensionality of hadrons1 in the dual 

framework seems at first sight rather peculiar. Because of this 
1 

we will give a heuristic classical argument to motivate this viewpoint. 

Think of a hadron as a rotating d-dimensional object with uniform 

spatial extension R in all d-dimensions. The rest mass mo  of such an 

object will be determined by 

rn o 

whilst the angular momentum j will behave like 

(a) 

Eliminating R from these two equations yields the result 

(3) 

The experimental evidence of linear Regge trajectories then informs 

us that d=1. We will now go on to briefly discuss the more technical 
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aspects of dual string theory. 

Just as a point-particle traces out a world-line in space-time, 

so a string traces out a world sheet which may be described by four 

functions, each of two variables: 	Xu (1;)K) . The K variable is 
' 

taken to label the points on the string and hence has a finite range 

which we shall take to be 	E , ) 	. By analogy with the 

point-particle casel we are led to minimize the area of the world-

sheet in order to obtain the equations of motion for the string. To 

make sure the resulting dynamics is parametrization independent we 

write the action as
(6) 

P, 
k, 	I — 	 \cru 

TO':1 kjp. o 

X A 
v / 	• 	/ 

where 	n-  --"=" 	-- X X 
•}11( 	it. V' 	Y and is ‘7)4 is a funda- 

mental constant with the dimensions of (length)2; the dot (prime) 

means differentiation with respect to 7r (K) . The equations of 

motion which result from minimizing the action rein. C4) 	are 

non-linear but may fortunately be linearized 	by exploiting the 

two-dimensidnal topology of our 1:r-- 1‘ manifold. Anyway, we end up 

with one linear differential equation and some constraint equations. 

They are 

1,1•A 	›C_,kt CC, tC 

1. (-7 /) 	?cm  C7,1.1) 	CC 	> . orto 
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A simple consequence of eqns. (6) and (7 ) is that the end-points 

of a free string move with the speed of light. What about the zero- 

point energy of the string? By introducing a smooth cut-off 	it 

is possible to show that it goes like
(7) 

d—• 	 ckCA) 	 ES) 

IDy 

Here 	is the momentum of the string along the (x
o
+x
3
) direction , 

T- 
we 

usenullplanecoordinatesi.e.weworkinaparticulargauge-Tandd 

is the number of space-time dimensions. The cut-off independent 

term gives us a state with 

In other words a tachyon has appeared as a result of the quantum 

fluctuations. It also turns out that, in this gauge, the first 

excited state is purely transverse1 so that Lorentz covariance insists 

that its mass be zero. We therefore have 

This is the anomalous number of space-time dimensions referred to 

earlier. 

How do strings interact with the electromagnetic field? Take the 

gauge invariant interaction term to be 

r',17F' , -'' • ") (I 	 zb.V 

k 	''" a 	11; \ ) I .  r F• hil, 	 )A 
1. 

..1 
0 	v 
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with 
	jAv  

After a simple integration by parts we find 

) 	>(11 	4
,)-1

( X Cr, 
,/ 	 )1 

T. 

— 0 r 	r t , 	 L 	0 )) 

For a closed string 

We thus see that a closed string does not interact with a Maxwell 

field i.e. the closed string carries no charge. Physically, it is 

identified with the Pomeron (of Regge fame). For an open string, 

eqn. al) informs us that the "electric" charges reside at the 

endpoints of the string and are opposite in sign. We are thus lead 

to an abelian quark picture of a meson. We may also continue to develop 

this approach to include the interactions of strings with themselves. 

The Born term in the string-string scattering amplitude is just the 

Veneziano ansatz. 	The model we have just reviewed is called (rather 

unsurprisingly) the Veneziano model. The salient features of this 

model are that its mass spectrum contains a scalar tachyon together 

with a massless vector meson and the whole theory operates in a 

world 26 space-time dimensions! This problem of the mass spectrum 

is very reminescent of a similar problem in quantum field theory 

which is there neatly solved by implementing the Higgs mechanism. 

Because of this is may be useful to set up an analogue model for the 

dual relatavistic string in the familiar framework of local field 
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theory. This is because some insight into the physical origin of 

the all too manifest deficiencies of the string model may result. 

In fact Nielsen and Olesen(5)  have suggested that vortex-line 

solutions to Higgs-type field theories may be identified with the 

dual string. 

Interestingly enough the Higgs model turns out to be the simplest 

theory which allows sensible static vortex solutions. This result is 

primarily due to Derrick's theorem which states that any finite 

energy solution to a wide class of scalar field theories is unstable 

under coordinate dilations in any number of space dimensions greater 

than one. The proof of this theorem is quite simple and revolves 

around a simple scaling argument. Consider a general scalar Lagrange 

density of the form 

cfp 

where 'a' labels the members of a finite set of scalar fields and x 

is a D-dimensional position vector. The classical energy of an 

(allowed) static field configuration is 

E,, 

where 

2  

X 11, V 	) 	 \ 

T 
	3nd 

By definition, the set of static solutions to the field equations are 
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r-  r-  0)-7 
precisely those field configurations which make 	stationary. 

Consequently if we dilate all D space coordinates by a scale factor 

K 11  it then follows that 	LT' 	will be stationary with respect 

to variations in K at K=1. A simple change of integration variables 

shows that 

requiring that 

  

ic=1 
0 

  

    

yields the following inequality 
, 	r 

,,  
L 	- \ 	- / i---" 1..... 

 

provided 

e)  

monotonic increasing. Hence for 	we have shown that 

is sitting on top of a dilation maximum and is consequently unstable 

against small dilatory perturbations. 

Derrick's theorem looses its power when we consider infinite en-

ergy solutions. Consider, for example, the following complex Goldstone 

model. Here the Lagrange density is 

1 -, -- 
OV/ 

with 
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If m2  /0 then we have an infinitely degenerate ground state due to 

theI;(1) continuous symmetry. Associated with the spontaneous 

breakdown of this abelian symmetry is the presence of a massless 

Goldstone boson. Static vortex solutions are obtainable from eqn. (H) 

as can be seen by putting 

t 1 = and (tin (; ) 

and solving the corresponding field equations near to and far away 

from the origin. Unfortunately such solutions have infinite energy, 

due to the infinite range of the massless Goldstone particle. It 

should be noted that n in eqn. (7..0) must be nonzero in order to obtain 

vortex solutions. Obviously to obtain static vortex solutions of 

finite energy we must remove the massless agent of symmetry break-

down. This may be done by using the Higgs-Kibble mechanism. Here 

the massless vector field swallows the Goldstone boson and acquires 

mass and with it an extra degree of freedom. In conclusion we see 

that we are led to consider the Higgs model as the simplest prototype 

for the construction of static vortex solutions. Nielsen and Olesen 

picked the Higgs model for totally different reasons. Essentially 

they noticed that, in the static limit, the equations of motion 

obtained from the Higgs Lagrange density were formally the same as 

the Landau-Ginzburg equations of superconductivity.(9) This later 

pair of equations are well known to have vortex solutions-- the so-

called Abrikosov vortex-lines. Hence they knew before they started 

that the Higgs model has the desired vortex solutions. We will now 

/ / 
go on to present a brief resume of the so-called bag models of hadrons. 
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1.3 Bag Models  

We will motivate the introduction of bag models by considering 

a simple non-relativistic model1 which although invented some time 

ago is just as successful phenomenologically as the more recent and 

sophisticated models. It is due to P. Bogoliubov.(10)  The idea is 

to solve the Dirac equation for a quark whose mass is given by 

m -= 	r < 

M 	r 

and M will eventually be taken to infinity. The wave function has to 

be continuous at r=Ro
. By demanding that the system be spherically 

symmetrici we endow the quark with a total angular momentum of I. 

This potential obviously has the merit of quark confinement. By 

filling the bag with the required number of quarksi one calculates (for 

example) the proton magnetic moment to be 

This value is good to within 15%. The bag radius, Ro, is determined 

by the proton mass. However, even though this simple model for a 

hadron is successful phenomenologically, it suffers from two major 

setbacks. One is that the model is.nonrelativistic, the other 

being that the potential is given in a purely ad-hoc manner. 

The philosophy of the bag modellists is to correct these two 

deficencies. It turns out that the energy of a quark in our simple 

non-relativistic model is inversely proportional to the bag radius 

R. Consequently the system is really unstable. At this point 

one may make an apt analogy with cosmological models. Here we want 

the bag size to be constant in time, the exact opposite of what we 
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want the universe to be. The way to construct a static Einstein 

universe is to add the so-called cosmological term to the energy-

momentum tensor. It is precisely this feature which is introduced 

in the MIT bag  model(3), to which we now turn. 

To expound the philosophy of the MIT approach, we will (for 

simplicity) consider a massless scalar field confined to a region 

of space R. The energy-momentum tensor is taken to be 

c;. br7)  
) Lcv 	v 

• 

Here B is the "bag  constant" and has dimensions of (mass). Inside 

the region R, the scalar field obeys the massless Klein-Gordon equation 

and we have 

rex 
By integrating  eqn. (,tr) over the hypertube traced out by R we find 

" 
1-;  E ‘‘, 

where 	is the spacelike normal four-vector of the bag  surface, S 

• being  the spatial boundary of the bag. 

Hence if we want well-defined momenta we must have 

1\ Tj 	r 
	

on 
cm 

This condition will be satisfied if 

ri  



and 

r,- 
In this formalism, the bag surface /`k, 	J, 	is not a 

dynamical variable and because of this the canonical quantization of 

the model is very complicated. In fact, in three spatial dimensions, 

no general solution to the quantized bag equations has been found, 

although one situation of phenomenological interest has been worked 

out. Here one has a static and spherically symmetric bag. One finds 

that the spherical bag of finite radius is a stable configuration. 

So we see that the bag term induces stability and explains the intro-

duction of our potential, eqn. (21). In other words, a fully rela-

t vistic version of our earlier non-relat fistic model demands energy 

exchange between the bag and field. The spherical proton bag yields 

the result 	
,f 	 / 

On this note we shall end our brief discussion of the MIT bag and we 

will now go on to describe its main competitor, the SLAC 'shell'.
(4) 

In the SLAC approach the potential of eqn. (21) is generated in 

a more conventional manner by making use of the increasingly popular 

idea of spontaneous symmetry breakdown. To illustrate their methods, 

consider a field theory of massless quarks bound together by a scalar 

'glue' such that the quark-gluon interaction term is 

21. 

Let the gluonic potential 
Ne

f 	have several minima situated at 

Then expanding around the ith minimum generates a 

fermion mass 
t 

Hence by different choices of the potential we may generate different 

masses for the quarks, depending on the expansion point of the poten-

tial. For example, for the case of a potential with two minima one 

can have massless and very massive quarks. So, if in different 

regions of space, one solution is preferred to another then one is 

led to a natural explanation of quark confinement. To be specific, 
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consider a potential with two minima, situated at ;71: 	. If 

both g and tc, are large, then the corresponding quark mass will 

be large. Let us now look at the case where the vacuum expectation 

value of 
	

changes continuously from 1-4"0  to 	over a very small 

spatial domain. Cciptinuity of -:,f7" implies that the quark mass 

within this region be very small. Consequently the quarks will, for 

energy reasons, be contained within this (assumed spherically 

symmetric) shell. 

In this model free quarks can exist, albeit with very high mass. 

The phenomenological result for the proton magnetic moment is 

01) 
where M is the average'56 mass. This completes our brief survey of 

models for extended hadrons. We will now give a short description 

of the layout of the rest of the thesis, which will be predominantly 

concerned with the qualitative changes that quantization induces 

in strongly coupled field theoretic systems, such as bags and strings. 

In chapter two we give three examples of spatially extended 

systems (all described within the framework of local field theory). 

They are the Nielsen-Olesen dual vortex, the SLAC bag and the Creutz 

local field theory model for the MIT bag(11). Chapter three contents 

itself with a presentation of two general methods for dealing with 

the strong coupling problem in quantized field theory. These are the 

Wentzel-Tomonaga-Pauli finite mode approximation(12) and the Rosen 

Gaussian functional variational procedure(13) (which is also shown 

to be equivalent to Coleman's normal-ordering variational calcula-

tion(14) ). Chapter four contains various attempts at quantising 

the three systems encountered in chapter two. Chapter five contains 

the conclusion of this research programme. 
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CHAPTER II 

CLASSICAL ANALYSIS OF 

SOME SIMPLE MODELS OF 

SPATIALLY EXTENDED HADRONS 
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Preamble 

This chapter will be concerned with the classical discussion 

of three simple models of spatially extended hadrons. The first 

section deals with the Nielsen-Olesen dual vortex. Here we show how 

string-like solutions to Higgs-type field theories can come about. 

In the second section we present a quantitative and qualitative study of 

the SLAC 'bag'. In this case we show how shell-like field config-

urations naturally emerge from a detailed study ;of the equations of 

motion of the theory. The final section of this chapter deals with 

the Creutz local field theory model for the MIT 'bag', the aim being 

to construct a non-local bag state from a conventional local field 

theory (all manipulations being performed at the tree level). In this 

chapter we shall treat the words, classical and semiclassical, as 

synonymous. 

2.1 Classical Analysis of the Nielsen-Olesen 'dual' Vortex 

For reasons given earlier, Nielsen and Olesen decided to con-

struct a string-like solution to the Higgs model and to then identi-

fy this object (the so-called 'vortex solution') with a dual string. 

This section will be devoted to a detailed exposition of their 

ideas. To start off with, the Higgs Lagrange density is 

ipiL•-i-jea))4,r 
cc  lepr 	C4 	(s) 

where 

15vv 	ctrd 
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The equations of motion derived from eqn. (32) are 

k 	12 
n 

,1 - 
1_ 4. C.  

'-f2r. 	 N 

it ' 

We now look for vortex solutions to the above equations. Now as 

we are going to identify a vortex line with a dual stringl it seems 

sensible to require that the flux be quantized. This is because we 

can then attach a simple meaning to the tensor field F
Y
: the 

JA  
field F12 

measures the number of vortex lines going in the 3-direc- 

tion per unit square in the (12)- plane. It is simple to show that 

this is indeed the case. The flux 1. is given by 

)1/  k Cx) )(ilk 	(35) 

where 	r 
}of 

space. Writing 

is a two-dimensional surface element in Minkowski 

0-1  

we obtain from eqn. (34) the result 

11 	
)-A.N 

I 	V 1 

e 	 e 

(b) 

7) 

We now perform the integration in (35 around a closed loop which 
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does not contain any current. We find 

/,\\I 	) 
 It 

which has the general solution 

	 0 

with 

Hence the flux of vortex lines is quantised, the quantum being 

We will now show that the equations of motion (33) and (3+) 

permit a string like solution. Consider the static case with the 

gauge choice A0  =O. We look for a cylindrically symmetric solution, 

the axis of symmetry being the z-axis. We write 

C-) r A 	Pt(r) (39) 

   

where 
0 
	

is a unit vector along the z-direction. The flux is 

given by 

e 

so that 

    

   

1  GI -14(r) el-1) 
r dr 

   

  

Ti' dr 

  



— ci rd (L 
r r 	r / 	L I r 

r 1 	' 

r Cdr 
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With cylindrical symmetry about the z -axis the equations of motion 

(,2 ) and ( 	give (with n =1) 

—71  

No one has yet succeeded in finding an exact analytical solution 

to the above pair of equations. Consequently we will be content with 

a solution of the form 

HI) constant 	(for large r) 

If we take 	t 
	to assume a constant value everywhere then equation 

(q-) can be solved exactly. One obtains 

(r) ■■••■• 
(- 	('r. I .0 r 

z:r 

where C is a constant of integration which will be evaluated later. 

Equation (
yr
/;": ) has the asymptotic form 

4- ir 
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The corresponding value of the H field may be now evaluated using 

equation ( 	). One finds 

0 " 	' rt 

  

(i /V (!). e r 
tdCi ,;.. 

One sees that equation 	) is then approximately satisfied if 

ire 
provided that C

2 
and C

4 
are large enough to take care of deviations 

of A(r) from 1/er. 

We now define a characteristic length ,', by 

A 	1 	 f 	r-/ je- 
i'A --- 

	.....4. , , ___. .._____i ___ - ) ----- 
,-4 ,-• 	

_. 

From eqn. 	) we see that 	measures the region over which the 

H-field is appreciably different from zero. To compute the spatial 

variation of 	we note that eqn. ( 	) gives the minimum value 

of the potential. In other words 

c-L  

7  11.  

is the vacuum-value of the field 	. Consequently we decompose 

$ 
	as follows 

fi r-N 
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wherep(r) measures the fluctuations of jfl around its vacuum 

value. Substituting eqn. (51) into eqn. (`2-) gives us a 

Yukawa-type solution for large r 

j  

whilst for small r we have 

•-1 r (53) 

We now define another characteristic length K 

1 	 (S) 
C., 

Obviously K measures the distance that it takes before the A- 

field assumes its vacuum value. It is easy to see that 	and K 

must be of the same order of magnitude if we are to have a well-

defined vortex line. The vacuum state of our theory is defined by 

H=0 and 
	

) 	0 	. When the interactions are turned 

on the string manifests itself with a width given by /A 

In conclusion)we have demonstrated that the Higgs Lagrangian allows 

a string-like solution. The constant of integration C introduced in 

eqn. (45) can be evaluated by requiring that the flux §ir) == r r Igo) 
tends to zero for 	K<-‹ 	. Hence using the relation 

r) 	 I 	
<<1 

ewr 

(55) 

we find that 

C -el 
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Immediately, we are lead to ask: how does our 'string' move, 

as a consequence of the time-dependent field equations? The answer 

to this question is as yet unknowni although in the case of a 

sufficiently thin string of not too large curvature it is very 

plausible that the string will move roughly according to the equations 

of motion resulting from the Nambu action (eqn. ( t ) ). This is 

because the Nambu action is the only parametrization invariant action 

one can construct without using higher derivatives. 

The Lagrangian we have been discussing is the one used by 

Higgs to illustrate the so-called Higgs mechanism . He was able to 

show that,by picking an appropriate gauge,the theory could he re-

vealed for what it really was- namely a theory of massive scalar 

and vector mesons interacting with one another. The gauge choice 

he made was one where the phase of the charged scalar field became 

everywhere zero. Making this gauge choice and writing 

Cpl  

where 	 we immediately find that 

y cA 

e Li 

From the above we may read off the masses of the scalar (M
s
) and 
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vector (M) mesons 

% 
I 	, 

f .? 

C2 

The interesting point to be made now is that the Compton wavelengths 

of the above two mesons give the two characteristic lengths of the 

string i.e. 

Y 
	and 

We now need to tie this analysis up with the formal theory of the 

dual relatavistic string. According to the 'classic' paper of 

Goldstone, Goddard, Rebbi and Thorn(°7°  the energy density along 

the string is given by 

energy density = =7- q) 

-- T- (X I 	-11-4; 1 -  V12-)/-  

where \ 1 is the transverse velocity of the string. We are now in 

a position to make a classical evaluation of the functional dependence 

of the universal Regge slope '‘ on, the three parameters C2, C4 
and 

which appear in the Higgs Lagrangian. This may be achieved by simply 

calculating the energy density at rest for the vortex solution given 

earlier and comparing it to the energy density of the dual string 

given above (evaluated when the string is also at rest, of course). 

The magnetic energy-density along the vortex is given by 

Cm  rrerr) 2.11--r(Af -N -‘/N- C2- jr CuN, 
1 0 ki) 

("4 
r ' 



-22- 

and the later integral is of order unity. A crude estimate of the 

energy per unit length of the string due to the fluctuating scalar 

field I (I'. 1 

	
is given by a term whose order of magnitude is 

since C2 7C1  is the relevant energy density. Hence the comparison 

of the energy density of the stated vortex line with that of a static 

dual string yields the relation 

The characteristic length of a hadron is given in the dual formalism 

1 	 t 1  
by ,N .\ 	which in our vortex-line language becomes 

• (t) 

But in order to have strings at all we need to have this characteris-

tic length much greater than the width of our vortex state i.e. 

This implies that both 	and 	4 are both much greater than 
unity i.e. we have a strongly-coupled system. These last two 

requirements may also be compactly written as 

I y 2  1 	/ 

which means that the particles corresponding directly to the local 

• 
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fields have masses M
y 
and M

s 
much larger than typical hadron masses. 

Here the trouble starts. This is because we have arrived at a 

situation where both coupling constants in our theory are very big, 

which tends to make us suspicious of our considerationsl as they 

were based entirely on classical field theory. Another way of 

saying the same thing is by stating that the limit we have arrived 

at is superquantum-mechanical. This means that the typical action 

associated with our limit is much smaller than Planck's constant si 

This is at present unclear because we set = 1 in our analysis. 

To make a crude estimate of the typical action corresponding to 

our vortex state we assume that the width A of the vortex is of the 

same order of magnitude as the vortex length 	. We now have 
11 

Typical action= vortex line energy X characteristic time 

_,) 

in the strong coupling limit. 

So we see that from the view of the strong coupling limit, our typical 

quantum of action is very much smaller than Planck's constant. 

Hence our theory is 1 in fact,very far removed from its classical 

limit and is extremely quantum mechanical in nature. Following on 

from this,we see that the quantization of a vortex state such as we 

have been considering will be,in general,a very difficult problem. 
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2.2 Classical Analysis of the SLAC 'bag' 

Before proceeding directly to a purely mathematical analysis 

of the SLAC 'bag' we shall present the basic idea of their approach 

by considering a simple intuitive picture of a quark bound state. 

The basic idea is to show how the strong interaction of an elementary 

quark (fermion)-field with a self-coupled scalar field can lead to 

a low mass bound state. Consider a quark described by a wave function 

interacting with a neutral scalar field 	with the Hamiltonian 

4It d e■ 

...A. • 
I 	— 

4 t.1  

where are large dimensionless coupling constants and f 

has the dimensions of a mass. It is seen that the quartic self-

interaction term of the -field permits invariance of the theory 

under the discrete transformation 	. In the language 

of quantum field theory, eqn. ( 	) describes a theory with spon- 

taneous symmetry breaking, the scalar field having a non-vanishing 

vacuum expectation value. When in the vacuum state, T  takes on one 

of two values, +f. Small vibrations about one or other of these two 

Pr- 

	

\./ 	+ f. vacuum states are studie d by making the field translation 

It is seen that the small 	-vibrations have a mass 	-77 >.-7  rr- 
Ij 



while the small -vibrations have a mass . By 
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assumption, the bare quark mass is 

ti 
I i 

We consider the specific choice of Hamiltonian, eqn. 	I) as one 

within a wide class of renormalizable field theories exhibiting 

spontaneous breakdown. 

In order to develop an intuitive picture of nonperturbative 

solutions to the field equations obtained from eqn. ( 1) we will 

tackle this problem from the purely classical viewpoint. 

In the one-fermion sector, the charge 

has unit eigenvalue and we are solving a Dirac evation for the 

quark in the presence of a scalar potential 	. As is usual, the 

problem of negative energy states rears its head. To counter this!  

we simply specify that all the negative energy states (in the 

presence of the scalar potential) are filled. We can then focus our 

attention on the lowest positive energy eigenvalue. 

We now proceod classically with Q=1. By looking at the energy 

of wur system eqn. ( 1 ) we are led to expect that the quark 

wave-function and the field amplitude will tend to avoid one another 

as shown in fig.(1) . 

The significance of this high mass energy effect, eqn. ( I-) 

increases as the magnitude of the quark mass increases. Simultan-

eously, of course, there are other effects which work against the 
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formation of such a 'hole' into which the quark traps itself. These 

are the energies associated with the curvatures of the localized 

quark wave-function and the 	and the energy associated with 

the potential term H( 
2
-f
2
) extending over the volume where 	:1+ f. 

We will illustrate these qualitative remarks by considering the 

simple potential of fig. I . We denote by D the thickness of the 

shell in which the -amplitude falls from +f to 0. The c -field effec-

tively vanishes inside a region of radius R. The contributions to 

the total energy eqn. (71 ) are 

t 74) 

1 V-. G 1 L 	1-11- 

Estimate (70 follows from the uncertainty principle and k 	is a 

shape-dependent number. Consequently the total energy of this 

configuration is given by 

44-2  ' 411" 

We now minimize this expression with respect to R and D to obtain 

the dependence of the lowest energy state on these parameters. Now 
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, 

 

/ ' 
/ 

whilst 

fs.  

I I 	I 

i.e. if the volume energy dominates over the surface energy. 

Consequently the lowest energy state is given by 

---= min E , 

In this particular case we note that 
r, 

which is consistent with a thin transition shell region in the 

strong coupling limit. Comparing this with eqn. 
, 
: 	we note that 

a localized bound state is formed if 	1+ 
/c t 	and 

by eqn. ( 	) we see that we are in the strong coupling regime. A 

more careful and systematic treatment of Hamiltonian ( 	shows us 
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that (classically) we have a thin shell model of a hadron where 

the y -field changes rapidly from +f to -f in a region of thickness 
-I 	, 

and with the quark confined to a thin shell centered 

--I 
at r=R with a spread of 	. In this case we find that the 

energy goes like j 	
.1. 

rather than the behaviour 	- found 

(") in eqn. ('' ). The more accurate solution is illustrated in fig. (A ). 

We have just seen how a heuristic semiclassical discussion of the 

Hamiltonian ( ; ) suggests the possible existence of bound states 

with masses much lower than the bare masses of the constituents. We 

will now show how such a semiclassical picture can emerge from a 

canonical quantum field theory. As our theory is a strong-coupling 

theory, a non-perturbative approach is essential. 

The equations of motion which result from eqn. ( 	) are (in 

the static limit) 

17z 	
•A rt 	I 

1/41 i vrt- 	-t 
to • 

OA) 

Here appears as a Lagrange multiplier because we have normalized 

/ 
our \ ' states to unity 

We now set about solving this coupled set of differential equations. 
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An exact solution has, up to the present time, not been found. 

However it is relatively easy to obtain the leading order solution, 

together with the order of magnitude of the small corrections, in 

the strong coupling limit. As we are looking for the lowest energy 

state, we expect the classical field -(x) and its source I '(x) 1 (x) 

to be spherically symmetric. The equations we are now lead to 

consider are 

s; (g,)  

I 	 j 

Following a procedure developed by Lee and Wick(15), we solve eqn. 

first by neglecting the 	source term and 
r 

So we are left with 

The solution to this equation is 

• I 	 .%i" 4.- 	I  ) ) 

Here one of the integration constants has been chosen so that -(x) 

assumes the value +f at large distances whilst the other constant, 



R, will be chosen later so as to minimize the total energy. It will 
be shown later that the two neglected terms cancel "on the average". 

The precise form of the Dirac wave function 	in the transition 

region depends on the relative magnitudes of 
	

and H. However 

the total energy of our state (together with the optimum choice of R) 

is governed by H alone. To clarify these statements we shall now 

consider the following two extreme cases: 

0 nci 	(.11) 	// 

	 7) 

11 	a 

In this case we may validly replace 1x) by a square well potential. 

Hence we are lead to solve the Dirac equation in the following potential 

The standard method for solving this problem starts by making the 

following decomposition 

• 

Fr ) 
	

isr • r 

	

_ _ 	+ • 

	) 	(71) 

—30-- 

) / / 

J Consistency of this form with eqn. (t) can only be achieved by taking 
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j = z (or 1 = 0). From now on we will restrict ourselves to the case 

1 = 0. The radial wave-functions 	and F
0 

satisfy the following 

equations 

11 

JR) 

The solutions to these equations in the limit 

-11 

t 
	 are 

A 

And 

4- 

 

In the above and the energy 

eigenvalue 

41,7••••••••■ 
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is determined by the requirement of the continuity of 

at r = R. The normalization condition determines 

' I 

. 7 
Jir 'Ili 

Note that the quark wave function 
k 
T is concentrated in the 

region r 	' R. By direct evaluation we find that 

These two quantities are only appreciably different from zero when 

they are near the transition region ,  see fig. (? ) 

We now have to consider the effect of including the source term. 

By requiring that the two neglected terms vanish on the average 

we obtain a condition for R. This condition comes about by multi-

plying eqn. (9' ) by and integrating with respect to r over 
U' 

the transition region. We find 

By making use of eqns.M303.) a iJ (19) we find that eqn. 



gives 
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which is independent of 	(as stated earlier). The value of R 

so obtained has the merit of minimizing the total energy. To see 

how this comes about we take the derivative of eqn. (71 ) with re- 

spect to R. We find 

. 	1 

Z 	 , 
	 Ooa) 

ti 
	

k‘i 	 01, 

4/7) 
Using eqn. (,:A.) we obtain 

—4  1o) 

Hence 
	

implies that 

I) - 
t 	00,f) 

1-  i 
p 

which is the same as eqn. (I") 

It turns out that in this case the Dirac wave-function 	is 
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still given by Ett75.0F) and MO ,v}ier) )r— R 
	-/2 -1 

. However 

in the transition region changes take place. In terms of the 

variables 	- where 

we see that eqns. (10i 
n 
 ) and ( Q  1%;) become 

r' 

; 

r 

For a solution which is +f outside the well (r, R) and -f inside 

the well (r ;R), we see that p = +1 at r = 0 and rapidly decreases 

away from the origin. Simultaneously 
	

(r) increases in an 

exponential fashion as r approaches the bag radius R. Because of 

these facts we only have to solve our set of equations away from the 

origin where they reduce to 

(WO 

The first equation can be solved immediately to give 



rl 

Ch 
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For the second equation to have a stable solution when ''-(x) changes 

sign we must have . Hence the quark energy eigenvalue 

is given by 

Note that the two functions ; i... vary much more rapidly than ., - (x). 
_I 	; . 
i-- 	•I 

The half-width half-width of ),.. is given by 	, 	
It 	which is to be 

‘.. 1  --i 
- compared to the half-width 	h 	found in the previously 

discussed case. Due to the smallness of the half-width it is valid 

to make the following approximation 

The \ equation can now be solved to give 

• • \ 

The normalization condition for the quark wave-function is 

)r 4 
015 

Also 
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The solutions just found are illustrated in fig. (1) and 

interestingly enough give the same value for R as that found 

previously. 

In conclusion, we have proven the important result that the size 

and energy of our bound states are determined by H alone. This 

result is independent of whether 	j \\ 	or 

. In fact this conclusion is valid in the 

intermediate range of parameters 
	

\ 4 //i 	as welli although 

now the detailed shape of the wave-function is sensitive to the 

value of 	 in the transition region i.e. as (x) changes from 

+f to -f. 

The extension of these ideas to multiquark states is straight 

forward. The energy functional for a system of N quarks or anti-

quarks is 

E 
( + 	 tt 	) i 	(1)-7) I 

(...:7" 1 

where the quark energies - are given by the solutions of the 

following Dirac equations 

Similarly, 	(x) is determined by 

r • ,.-,, \--,2 	, -> 
_ 	t 	• 
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Just by looking at these two equations,we see that the solutions we 

will obtain from them will be identical in structure to those 

obtained for the single quark system. By a generalization of our 

discussion of the single quark system,it is easy to show that the 

energy of a state filled with N quarks or antiquarks (all in the 

ground state) is given by 

where R
0 
 is the radius of a single quark state. 

Before ending this section we would like to point out that our 

treatment of fermion states in the SLAC bag has been somewhat lax. 

This is because we have treated the quarks as bosons due to the 

fact that fermion states have no classical counterpart. It turns 

out that this situation may easily be rectified by using coherent 

boson states and quasi-fermions. Through the use of these objects 

one may reduce the true quantum field theory problem to one of 

solving the classical equations of motion (
o
t),,,,) and ((‘'.̀r,:j). As this 

is essentially a technical point, we ,demote a discussion of these 

considerations to an appendix. 

2.3 Classical Analysis of the Creutz Model for the MIT 'bag'  

Starting from an explicitly local theory we will construct 

states of finite spatial extent. These states will become the 

states of the MIT 'bag' model when the parameters of the theory 
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take on a specific limiting form. The vacuum state of the local 

theory corresponds to the case where the field vanishes everywhere. 

However the theory also permits another state (metastable with 

respect to the vacuum) which is realised for some non-zero constant 

value of the field. In order to form the bag state we form the 

metastable state in a finite region of space.
(16) 

Well outside of 

this region the field will assume its stable value zero. Of course, 

there will be a transition region (or "skin") which smoothly connects 

up these two different regions. The field affects this connection 

in such a way that the energy per unit area of skin is minimized. 

Such a state is, of course, unstable by simple energetics. So, 

in order to stabilize our bag we fill it with other fields (the 

quarks) which we shall take to carry conserved quantum numbers. The 

coupling between the quark field and the bag is chcsen in such a 

manner that the effective quark mass is large outside the bag but 

zero inside. From this it follows that it is energetically preferable 

to create quarks inside the bag and not outside of it. Hence we 

realise quark confinement. The quark kinetic energy (which increases 

as the bag size decreases) balances those forces tending to make the 

bag collapse. We shall show that there exists a limit of the 

parameters of the theory such that the energy and thickness of the 

bag skin vanish whilst, simultaneously, all masses (except the 

interior quark mass) go to infinity. It is this limit which manufac-

tures the MIT bag model. In the discussion we will now present, a 

single charged scalar field will be taken to mimic the quarks, whilst 

a neutral scalar field will represent the (vector) gluons. It can 

be shown that this rather alarming approximation is valid a poster- 
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iori. 	The discussion we now present involves only classical 

unquantized systems, the extension to the quantized case being 

left to a later chapter. 

Our system is defined by the following Lagrange density 

where 

The parameters 
A 

and A. are all positive. In the 

above 	(x) is the real salar field which will produce the bag 

whilst i i(x) is the complex quark field. By implementing the 

following constraint 

 tj 
I.:4 

	1 
	

(k3)  

we see that 	has two minima. The lowest one is situated at the 
1 

. 
origin whilst the other sits at 	. The potential 

c 
1 

under constraint (1;(3 ), is shown in fig. 	. 

The energy density 	(x) corresponding to the Lagrange density 

of eqn. (I.)) is 

1 	 _f. 	I 111 2  2 

oe%  

t 	I j 

When the quark field , (x) is absent, the vacuum state (i.e. the 

state of lowest energy) is realised when 
	

) = 0 everywhere but 
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there also exists a metastable state characterised by 	(x) = 	. 

The equations of motion obtained from the Lagrange density of eqn. 

) are 

and 

14 TA.") - 
  k 	I  ) L  

/ 
The quark field ;(x) has a conserved current 	associated with it 

01  

1 	L_ 

and its associated charge 

t 

By varying the parameters 	and /, we shall obtain the MIT 

bag model. The dynamics of the MIT bag is governed by the following 

Lagranglan(3)  

rTh 	r-(Th A.otr. 
• •,) 	itNc 

r. ik 
N\ 1 kr v 

rs) 

I A  it+ 	I  
;,(/ 	I/ A;  



I 	g■ 	 ) ts... 

Here R(t) is the region of space referred to as the "bag" and 

R (t) is its complement. The field ' '(x) represents the quarks 

and corresponds to our field ; (x). The bag Hamiltonian resulting 

from L
bag 

is 
• • 

	

.1- 1....L. 	-4 A 1 	I 	' . , r ,./..1‘i i 1 	4 	I 

d 	 f -N 

r
,.. 

 

In order to obtain the theory given above in eqns. A) and (1, 0 

from our local theory we construct bag states which are characterised 

by the fact that 	(x) assumes the value inside the bag. The same 

field ; (x) adjusts itself outside the bag in a manner which minimizes 

the total energy of the system. Of course, it will be necessary to 

show that the spatial variation of i  (x) takes place only over a 

vanishingly small region of space (centred around the surface of the 

bag) by the parameters of our theory taking on a special limiting form. 

The possibility of particle creation due to the fluctuations of 7:'(x) 

about its average value inside or outside the bag is made negligible 

by making the effective mass of such excitations ( particles ) very 

large. The mass associated with the excitations of the quark field 

(x) is taken to be large outside of the bag although inside the 

bag the quarks will be massless and effectively free. We will now 

go on to make these qualitative considerations quantitative. 

The effective mass of quark excitations outside the bag is 
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The exterior 	mass gives us 

0.1 

whilst the interior : mass tells us that 

	

161, 	'A. I ■ f i  

	

t; 	ut 
U 

Because of the constraint we imposed earlier, eqn. (R3) , eqns. 

(U) and (i) are equivalent to the one condition 

(1 .7.f 17 'N. I 

As we will need a term in our Hamiltonian equal to L times the bag 

volume we will take 

	

V 4\ 	 547 Y 

' t• 

	

/ 	 r) 

We have also to adjust the parameters of our theory so that the 

thickness and energy of the bag skin tend to zero. We proceed to 

make a crude estimate of these quantities by using a simple varia-

tional procedure. To do this we approximate the skin shape by a 

simple linear form, knowing all the while that the "true skin" 

will have a lower energy content. Consequently, at a particular 

time, we consider a cross-section of skin with : (x) shown as in 

fig. t . 

The quantity._. parametrizes the thickness of the skin. In 

r , -N 
	

-. 
the following we shall take 	jA 	)2:A -.7. 1 A'71- although •,.. ) 	i  

later on we shall argue that the presence of 'Y doesn't in fact 
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alter things. The energy per unit area of our skin is 

1 	j 
, 

s 	Vin, 
(LT 

'11" 	./■,/ 

%. • 

Minimizing this expression with respect to 	yields 

is ( I:1 V-+ 
 

r 

L 

So in order to have 	min and Es,min both vanishingly small 

we require that 

4-o) 

Note that conditions (11:1, 	and ( 
	

are equivalent. 

Inside the bag we want the quarks (the , -particles) to become 

effectively free. Now even though the 	excitations in the bag 

have a large mass they can still produce an effective coupling 

between the quarks in much the same way as massive intermediate 

vector bosons produce effective four-fermion couplings at low 

energy in theories of weak interactions. To avoid this taking 
p   

place we require the term 	ist 	7  r to become 

insignificant inside the bag and as the variations in 	(x) are 

parametrized by 	,.. 	we are led to impose the following 

constraint 

• 

A 
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Finally we come back to the behaviour of 	(x) in the vicinity of 

the skin. Note that by combining eqns. (W) and (1,,) we see 

that 

ill — 	/1 	\- -1 	A 
`i/o 	flu 	P(- 

(1 +5) 

Now as conditions (in), (l4) and (144) imply that the right-hand 

side of eqn. WO goes to zero in the limit we are considering we 

see that unless the 	field has important contributions coming from 

momenta large compared to the external gluon mass then the 

quarks will effectively be blind to the thickness of the gluon 

transition region. We still have to make sure that the quark- 

gluon interaction term does not alter the properties of the skin. 

This forces us to demand that 

• . 	0 ) 	) 
' , 101 	 Ito 

This condition will be satisfied if 

On) 
■4\ir) 

Now the right-hand side of the above inequality goes to infinity in 

our limit by condition (.H) and sincei( ) vanishes on the skin in 

this same limit, condition ( () will be automatically satisfied. 

In conclusion, we are led to the following set of conditions 
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necessary for bag formation in our model 

/A 

Conditions (,1- 1 ) and ( 1,t ) tell us that 	which means that 

only a small numerical shift in the gluon field is needed in order 

to produce the bag state. By parametrizing 	and , in the 

following manner 

 

(here R
1 
and R

2 
are two positive but otherwise arbitrary constants) 

1--  the above conditions, eqns. 0?) - (1)  , ), may be compactly written as 

< -11 < t4 (i55? 
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We see that as the limit 	is taken the two minima of the 

gluon potential 	/, rapidly approach one another whilst all the time 

they are separated by a barrier of ever increasing height. The 

difference in height between these two minima is given by the bag 

constant 1 . 
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CHAPTER III 

STRONG COUPLING METHODS 

IN 

QUANTUM FIELD THEORY 
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Preamble  

In this chapter we will give a general discussion of two 

superficially distinct variational approximation schemes which 

share the merit of taking into partial account the nonlinearity 

of the theories we are dealing with. Because of this latter 

.fact, it is hoped that the methods we give here are superior 

to the naive semiclassical tree approximations used in the 

first half of this thesis. 	For example, our techniques can 

accommodate an infinite mass renormalization. It will become 

apparent that the two methods of approximation are equivalent 

when we consider the ground states of systems. Both techniques 

are phrased in the Schrodinger picture version of quantum 

field theory. However we shall first discuss a more primitive 

strong coupling scheme (due originally to Pauli, Tomonaga and 

Wentzel) which happens to lend itself naturally to a finite 

mode approximation. 
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3.1 The Wentzel-Tomonaga-Pauli Approximation Scheme 

To illustrate the WTP approximation procedure
(12.) 

we will 

take a simple model field theory defined by the following Lagrange 

density 

(_t  •-• 	• (t 	(1: 	tfi 

It is plainly seen that the theory exhibits spontaneous breakdown 

of the discrete symmetry 	/ 	. We now choose a set of 

(orthonormal) functions f
n
(x) which will be taken to describe the 

various modes of vibration of the field i(x). As the whole 

purpose of this approximation scheme is to describe possible bound 

states of our system we expect that some of the f
n
(x) already 

represent bound state wave functions. Decomposing the 	field 

up into its constituent modes of vibration yields 

f )  

where the amplitudes qn(t) describe the time dependence of the 

system and the c-number 	is just the vacuum expectation value of 

the field 

(153) 
/ 

To second-quantize our system we require that 

where 

  

  

 

rr; 



-t 

() 

"free" Hamiltonian 

• 1-  

i 

where 

Il 
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Obviously eqn. (WI) may be realised by the following substitu- 

tions 

t rr, 

ni 

1 
; 	1 

The Hamiltonian corresponding to the Lagrange density of eqn. 

is 

; t 	 b3 
+ 

We now substitute eqn. (IS/) into eqn. (1b2). We construct the 

( 
, _J ,) ,1 (as) 

I 1 

- 

r' 1: 
7 \. 	I 

infinite spatial volume 

lb 
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By subtracting out the vacuum energy 

We can define the following zeroth order Hamiltonian 
. - 

The interaction Hamiltonian Hint is given by the difference 

• 1 	-• 
.1k it 

and it originates from the kinetic energy part 

r - 	 fj 3 -  

and the self-coupling term 

- 1:1 74- 

Clearly Hint  contains cross terms of the an u s up to the fourth 

order whilst all "diagonal" products have been included in 

H
(n) 
o 

 



-52- 

The WTP strong coupling approximation states that if the 

coupling constant 	is sufficiently large, we may treat Hint  

as a (presumably small) perturbation on the (hopefully more 

manageable) H. The eigenstates and eigenvalues of Ho  correspond 

to (approximate) physical meson states and their rest masses. 

The lowest energy state is the vacuum and the first excited state 

corresponds to one physical meson state. All the other excited 

states, which are stable under the approximation Hint = 0, can 

decay into physical mesons by the perturbation Hint provided 

such decay processes are allowed by total energy-momentum and total 

angular momentum conservation laws. 

We now have to decide how to choose our set of orthonormal 

functions. Here we shall use a variational principle. In other 

words, we shall introduce variational parameters 	into the 

, 	• j- 	x ; 	) 
it 21 	- 	

. The parameters A
N
(n)  and 	(n)  in the 

zeroth order Hamiltonian H
(n) 

now depend on the ,.. Consequently, 

the eigenvalues EN( si) and eigenvectors (in the rock space) of 

Ho
(n)  

also depend on 	. Hence by minimizing EN((
j
) with respect 

to the 	's, approximate upper bounds on the total energy E
N 

(with corresponding values of the \ . 's) can be computed. In 

practice, of course, the inclusion of only one or two modes is 

sufficient to cause computational hardship. 

In the next chapter we shall use this approach to quantise 

the MIT bag in a single mode approximation. 	It is seen that, 

rather than extending the approximation piecemeal (i.e. mode by 

mode), it is necessary to adopt more realistic approximation 

schemes that take the infinity of field modes directly into account, 

and it is to two such (equivalent) approximation schemes that we 

now turn. 



-53- 

3.2 Rosen's Functional Variational Scheme 
(13) 

Before presenting Rosen's functional variational scheme, 

we shall first make some general comments on the functional 

formulation of Schrodinger picture quantum field theory. 

Obviously, this formulation is equivalent to the field mode 

representation that we have just considered. 

An abstract quantum field-theoretic state IT/ may be 

realized by a wave-functional. 	For a field theory involving 

the field operator (kX), the wave-functional (in the Schrodinger 

picture) is a functional of a c-number 41)(21 and of the time t: 

( 7 ) 

 

The action of the operator iiX) on 111,7is realized (in the so- 

\71) - 	1  
called field representation) by multiplying IA1) 	by WS): 

1-‘ x)IT7 ) CP - ( I 7 

The only other independent operator in the theory is the canonical 

momentum IF t) . 	The action of this operator on 11/ / is 

realized ... 	 (continued overleaf) 
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by functional differentiation 

-7- y 
INCA)  

Finally, the inner product is defined by functional integration 

11 j  i 
• r 	r Li78) 

More precisely, we are introducing eigenstates of 	(x) at 

some fixed time. When these states are denoted by 	, the 

wave function 	_ 	is simply (as the time is fixed, we shall 

suppress it) 
- r 

(17 

Energy eigenstates satisfy the Schrodinger equation 

A 

where 

development 

7 -,r  

in 

) 

time 

- 	is the Hamiltonian 

is given by 
Eta  

j)-  

density. 	The 

Lr. 	) 

A direct solution of the functional integro-differential equation 

is of course impossible. Let us consider the variational principle 

which can be used to derive eqn. (1g0). We demand that 

be stationary with respect to arbitrary variations of the wave 
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rs  

functional 
	

J 	. This procedure yields the exact, 

but intractable, eqn. (120. To make some progress we shall 

now make a Rayleigh-Ritz-type of ansatz for the ground-state 

functional? of the form 

;"... 	I 

4 Acij t. 

where the function f (x , y) is a symmetric distribution 

We now compute the normalized expectation value of H in the trial 

state, eqn. (1g3), and we require this quantity to be stationary 

against arbitrary variations in 	(x) and f (x , /). 

Define 

ETIT 

We require 

This variational procedure gives us a set of coupled equations 

for i (x) and f (x , y). Note that 	(x) is just the expecta- 

tion value of the field ; (x) in the trial state 

i.e. the approXimate local vacuum expectation value of 	(x) 

is 	(x). The energy functionality E 	can be easily 
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EST, . 
 

X  

L 	 71- 
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evaluated. Firstly, we define the symmetric function g (x , y) 

by the following orthogonality relation 

SY)- 9(2c 

 

‘••■•',/ 
\ 

 

.••■••••■•• 

It then follows that if 

  

r I I 

 

where 

• 

behaves like an effective potential. For clarity we shall now 

restrict our attention to a specific form for 	1  , we shall 

take 

A direct functional computation then yields 

T 
	 lz) 

 

I  



(.:',) 	 ...., 	.--• 
, . 	■,, 	 v 

. 	1 	, 
(., 

, 	, 	,\,...7,.. 	_t 	7, 	,,- i -,-.. 	-, 	r 	N 
-1: ' 	- 	1 	, 	I 	'IL 	` `. 	r 	 :,. 	' 	re, 	-7 ‹,-,--1 --,, .......  . 	, 

""-- 	r 	''"'• 	
‘, 	.... 	- ; 	.... _ 

, 	.4.. 	( 	' 	- 	- - 	'1` 	--- ..' 	) 	LI . 	- 

r 

-57— 

.04 

Upon differentiation we obtain 

and 

 

t 't  1, _„. 

	

(1:71C: 	

r 

	

' 	 0 
(j1+) 

Varying E 
r-77 	

with respect to 	t (x) and f (x , y) gives 

the following 'equations of motion' 

‘>: 
fi 

1,4 

and 

p. 

/ 

( 1%  

It goes without saying that eqns. (M) and MO are essentially 
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insoluble (remembering that we are here interested in the case 

of strong coupling so that the usual linearization methods become 

inapplicable). However, one solution which is immediately 

obtainable is the one corresponding to the physical vacuum 

(which is, as usual, assumed to be spatially homogeneous and 

isotropic). In this case g (x , y) only depends on 	SO 

that the unique solution of eqn. (196) can be found by using a 

Fourier convolution. We find 

I 

where 
2 

9 ) 
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3.3 Coleman's Fock Space Variational Scheme 

This section introduces a rather clever variational scheme, 

due originally to Coleman(I,) 	In a world of only one spatial 

dimension, the application of the principle is straightforward 

and causes no trouble. Unfortunately in three spatial dimensions 

this is not the case, due to the fact that a certain amount of 

technical 'fiddling' is required (a fact that tends to obscure 

the main points of the argument). Consequently we shall here 

present Coleman's variational scheme in a world of only one spatial 

dimension, leaving the extension of the scheme to the case of 

three dimensions till afterwards. 

Operators in the Schrodinger picture are given as functions 

of the field 
	

(x) and the canonical momentum density 

where x represents the spatial coordinates only. If we define 

the operators a (k , m) by the following mode decompositions 

i t  

and 

where 

Ehen the normal-ordered Schrodir,,Ltr operator corresponds to the 

operator rearranges pith all the a's on the right and all the 



city 

0° I) 

raoz 

off t.) e-. 

with 

a
+
's on the left. 

Because this prescription does not inform us what value 

m is to assume we will not specify it and we will denote by Nm 

the normal-ordering operation defined by the mass m. 

We now turn our attention to the following Hamiltonian den- 

—60— 

Now Wick's theorem tells us that, for a free field of mass m, 

and for any space-time function J(x) 
1 

7 
'.../ 

	, 
-,I.r.  t, 'I 4 A - 

LA 
i L.A) i 	k.) 	. L-  

r I-
N  A • , , 	rl:1_,-)-4'2>■ 12/ ;1(i) 

 

(203J  

where , 	is the free-field two-point Wightman function. For 

small spacelike separation 

in C, rii2 X2 	D( X2) 
(z04- 

where c is a numerical constant and 

A, 	 205 A -  

We regularise the theory by replacing 

A (Y, 	(A) I J  

A Li ( X , m) by 

A A ( . 	, 	, 
J.L. 	,; bi 1 	2 ob i 

where t, is a large mass, the cut off. This form has the merit 

of being nonsingular at the origin, 
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Now 

Wp) 
nr=0 	

Ex.) 

7g) 

But Wick's theorem informs us that 

■ 

tz 
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r---, 

Using eqn. (a03) with J a '--- function yields 
,-4 A "' ■ '' f . .1.,'' 7.- 	 :): 

i liS k l'' 
II 2 C I 

nel ) 
11 i C 

r , 
2 8 ) 

Although this result has been derived in the interaction picture, 

it is also true in the Schrodinger picture because of the fact 

that it only involves fields at the same time. 

We will now prove the following useful result. Given an 

arbitrary scalar polynomial potential 

14 

!

2ogJ  

then 
	

A A C 

A
A

(Xpri .2) 



Consequently 

Vr-L N 
1 

2. 

V(j-- \ a 
A re-) ittq3 

Using the following identity (well-known from the functional 
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formalism of quantum field theory) 
A ) 	A 2 

2 
(Th 

we may rearrange the r.h.s. of eqn. (2f3) to give 
2. A 

7,,hr-7  A 	It4 	e 
t\i e 	g472  Vi•-(4,) 

nn 

Hence, finally we may write, using eqn. (RH.) 

6 
A c\ A  

t,1 	e 2 	\O)-1 

Hence, given a Hamiltonian density 

) 	A_ 
)2  + )7() 	r4c;  + V 	(217 

we know how to normal order V ((- ). The remainder of 

is straightforward to normal order since it is just a quadratic 

form in the fundamental fields, 	(x) and -4-(x). From eqns. 

WM and (Roc) it is easy to see that 

(218) 
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Consequently 
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Pt 

 (r' 	LL 
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,4  
tt c  -- 

where 
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Hence 

'<tt 14 cc 

We will now proceed to apply these results to the specific po-

tential 

(22o) 

Eqn. 0.10 allows us to write 

r 	••••• 

I 4 
(v3)3) 



rabl 

) 

(2216) we have 

12 \ 
'r, 	r - 	; 

V 	fi 
2. 	•-2 

) ( f  

S'1"  

, 	(r22  , , 
° 

r 
) 
V  

To gain some insight into our variational scheme let us first 

consider the following Hamiltonian density 

,t,tp 
— 	cr. 

This is just a free- field Hamiltonian density, normal-ordered 

with respect to a mass which is not necessarily equal to 

We now attempt to find the ground state of this theory by 

using the Rayleigh-Ritz variational method. We will use as trial 

states the vacuum states appropriate to a free field of mass 

These states are defined by 

(a25 

The computation is made trivial by renormal-ordering. Using eqn. 

From this, and eqn. (ZVI) 

whence 

The right hand side of this equation, considered as a function of 

, assumes its minimum value when 	is 	. This is, of course, 

the correct result. 

We will now perform the same computation for the theory of 

eqn. (229 	Here the previously discussed variational scheme 
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has to be generalised slightly in order to allow for the intro-

duction of spontaneous symmetry breaking.
at)  We now write 

(22L; 

where 	is to be determined and 	(x) has the usual decomposi- 

tion into a and a+ as in eqn. (194). 

The trial ground state is denoted by 	and we assume 

that 

(239 

Evaluating 
1 

• i (23i) 

and imposing the two stationarity requirements 

leads, respectively, to the following two equations 

Z33 

and 

ti 
ti  

It is interesting to note the following identity 

A 

r- 
235 

1 



rk,  

where 

1 

and 
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which follows directly from eqns. (2-1 0 and (73)). How are 

these equations related to eqns. (h5) and (19)? 

To answer this question, we will extend Coleman's approx-

imation scheme to n spatial dimensions. The main ideas of the 

scheme are already implicit in the previously discussed 1 + 1 

dimensional model. 

Assume we are given a Lagrange density of the form 

1 

where r( 	) is some polynomial in the scalar field 	. We 

may write (compare with eqn. (R) ) 

r 236 
\- 

(237) 

(2 3g) 

(2 3 1) 

where 

A 
I, 

77- f h 	",\71/t 
' 1 	riCT) 

The variational equations are 

A) 

{71-71 ftil 
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Consequently, eqn. (R4) informs us that 

44 	1 

( C) lv 

2A-5 ) 
• • 

.=11 

B) 
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• 1 	! 

 

But 

1;( 11- 	 (743) 

Whilst 1 	■ 	;., 

'. IA ___ ... 	. 
ril  ',-, L .  

----, 
,......_3  

  

i.e. 

Eqn. (R+I) corresponds to eqn. (115), whilst eqn. (WO is Rosen's 

definition of m
2. The main point is that Rosen uses 	and 

	

as variational parameters and m
2 
 is defined in terms of 	. 

Coleman, on the other hand, has m and 	as variational parameters 

and ,L 	is defined in terms of m
2
. Hence we see that (for 



(.24? 
with equivalent expressions for the canonically conjugate fields 

the ground state only!) the two variational schemes are compu-

tationally equivalent. This is a rather remarkable result (in 

my opinion). 

Hence we have found two simple and equivalent ways for 

deriving the Hartree-Fock vacuum equations. It turns out that if 

we have a theory which involves fermions, Coleman's method is 

preferable (as it circumvents canonical quantisation difficulties). 

Consider now the theory of eqn. (71 ), where we have a scalar 

field 	(x) which exhibits spontaneous symmetry breakdown and a 

fermion field 	(x). We expand the Schrodinger picture fields 

(x) and :(x) as 

1 'it • 

? f1. 1 

4- 	t. ) 7  

(z 4f 
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(x) and 
	

(x). The parameters 	and , are not 

specified, and can be chosen freely. 

We define the normal ordering operation 
	

by 

inserting these expressions in the Schrodinger picture Hamiltonian 

density (71) and rearranging with all a's, b's on the right, 

and all a
+,

s, d
+
's on the left, etc. It follows that 



tf  

r '1.  

where 

-;* 

The Hartree-Fock trial vacuum 1, N)1)-7 is defined by 
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(.0 1,( )  -•f I 

bCr; 14 • +- '1` 

The energy density 

t_ • 	- 

25Z 

of the Hartree-Fock vacuum may now be worked out and the set of 

variational equations deduced. 	In the next Chapter we shall do 

this for the SLAC bag in an attempt to understand its quantization. 
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CHAPTER IV 

QUANTUM ANALYSIS OF 

THE MODELS OF 

CHAPTER II 
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Preamble  

In this chapter we shall examine the application of the 

strong coupling quantisation approaches of Chapter III to the 

hadron models of Chapter II. 

We first consider heuristic arguments that indicate the 

probable instability of the Goldstone vortex (in the strong 

coupling limit). 	These arguments, whilst suggestive, are 

not quantitative in any useful manner. To be more concrete, 

we then consider a single mode approximation to the quantisation 

of the Creutz model for the MIT bag. Again, our prejudices 

about strong coupling are confirmed. As stated earlier, the 

intractability of the finite mode quantisation scheme becomes 

apparent. We reserve the most realistic quantisation approach 

(the relativistic Hartree-Fock scheme due to Coleman and Rosen) 

for the most realistic classical model, the SLAC bag (which has 

been discussed in detail previously). 	This approximation 

scheme, which has the merit of accommodating the infinite number 

of degrees of freedom of the system, still yields the same 

qualitative conclusions that the more naive approaches led us to. 
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4.1 The Quantum Description of a Zero-Width 'Dual' Vortex  

In this section we will examine the effects that quantiza-

tion induces in a simple model for a 'dual' vortex.
(18) 

Two arguments will be given for the probable dynamical insta-

bility of the zero-width (Goldstone) vortex. The first approach is 

based on a somewhat heuristic path-integral argument whilst the 

second is comparatively more rigorous (it involves the canonical 

quantization of a scalar field in the Schrodinger picture via a 

mode decomposition of the field). Fortunately these two very 

different methods yield corroborative results. It is important 

to note that we are unable to extend our basic arguments to include 

the case considered by Nielsen and Olesen, namely the Higgs vortex. 

This is due to the limitations inherent in the techniques we use. 

The basic difficulty we encounter is in trying to canonically 

quantize a local gauge theory with spontaneous symmetry breaking. 

We end up with a Hamiltonian which is nonpolynomial in the fields. 

This makes it difficult to even use a finite mode decomposition of 

the fields for any useful purpose. 

Consequently to make any progress at all we have to abolish the 

gauge field from the Higgs model i.e. we are lead back to the 

Goldstone model. As stated earlier the total energy corresponding to 

a static vortex solution is not well-defined due to the presence 

of the Goldstone boson. For this reason we only consider the vor-

tex proper to be liable to quantitative treatment. Outside of the 

vortex region our techniques yield no information. This approx- 

imation is fairly reasonable since near the origin ,sr) 	0 

so that as a first step we may ignore the presence of the electro- 



-- 	I 	1 -\\ 
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Furthermore, defining 	by c  can be written 
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magnetic field. Consequently the solutions we obtained for the 

scalar field near the origin in the Higgs model are essentially 

unaffected upon removal of the electromagnetic field. 

To be specific we now consider the theory of a complex 

scalar field 1 with global 
	

symmetry described by the follow- 

ing density 

Defining 'radial' and 'angular' fields 
	by 

(a. 9. \ - ' 

becomes 

) 

- 2/' 
a-± 	(Y1  

; 

That is, we have the well-known fact that the radial field 

acquires mass m by virtue of the spontaneous symmetry breakdown 

of the vacuum. Moreover, m sets the scale of the coupling constant 

for the self-interacting 	field. 
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Classical vortex-line solutions to the Lagrangian 	can 

easily be found. In cylindrical coordinates r, H and z, the equa- 

tions of motion derived from 	permit the following static 

solution 

L_ 
• • 

f()) 
,,)•• 

and r
n 

is defined to be the first zero of J
n 
(mr). One can easily 

show that for small r (i.e. r r )fr1 may be approximated by 
n 

n;  

The Hamiltonian for the classical fields n and ' satisfying (N-i) 

and 	?) is 

rc, - n1 \ L 	
"`I ' 	

0o) 

which gives the vortex-line an energy per unit length 

(57) 

(which is independent of m for large values of 11). Anyway, in 

the infinite mass limit (which corresponds to infinite coupling 

or zero vortex width) the Hamiltonian and Lagrangian densities 

of the static vortex-line of equations (--,) and 	) both behave 

like two-dimensional delta-functions. These infinitely thin 

classical vortices are now taken to be candidates for relatavistic 

dual strings. 

We now wish to quantize our theory. In other words we are 



1 ' I  

By changing variables from 	and 

becomes 

r 

7 

t 

to 'n and 

7)1  

t . 
where 

. 
I,  AI, 1. 
i 3 

The trick is to compare the amplitude 

with the amplitude for 
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interested in computing the relative probability amplitude 

I 	I i n 
	 for the configuration of the 

complex 	field to change from I 
	at time 	to 

i 
	at time t. The noncovariance of this amplitude presents 

no difficulties of interpretation since we shall have in mind a 

situation in which 	- 	is a classical static vortex-line 

solution. That is, we shall watch the vortex from the frame in 

which it is initially at rest. 

Now we can express 

as a path integral 

and the whole system is contained in a volume V. We emphasize that 

is a pure quantum effect arising from the Jacobian of the 

variable change. 

the free fields', and 
	

which are in turn governed by the Lagrangs., 

1 '-- 



in the same way that 	is, the path 

will not contain a term 

single complex field 

integral for 

-76- 

which has the same values of t,, and m as does eqn. 	In 

order to examine the large m limits of . and 

with the scaled field 	, defined by 

we work 

in terms of which 

1 
	.r, 'S,4 

and 

Now if 
	\ 	

is bounded in some sense as . 	then both 

and 
	

have the same trivial limiting form as 

It can be seen that 	gives the equation of motion 	and 

it is in this sense that infinitely massive classical fields do 

not occur. Unfortunately the quantum correction term 

has a somewhat more ambiguous limiting form, namely 

I L 

•-• 

Since the Lagrangian density 	is not derivable from a 



I 

Gov r.„-  10 	
r 

„ 
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in the action. However the effect of 	in the infinite mass 

limit is only to displace the 	' integration and by doing so 

introduce a multiplicative phase 

V 

which will have no effect on probabilities. Thus we are lead to 

expect that in the infinite mass limit the modulus of the ratio 

of the two relative probability amplitude;,' tends to unity i.e. 

It is apparent that the argument just given is extremely crude. 

Because of this we will now look at the quantisation problem from 

another point of view-- that of the canonical quantization of 

our theory in the Schrodinger picture. It is reassurring that 

the physical results obtained by these two different methods are 

in fact in concord. 

For orientation, consider a cylinder of length L and radius R. 

We wish to find a complete orthonormal basis for describing the 

possible excitations of our field which is to be confined within 

the boundaries of the cylinder. It is easy to demonstrate that 

the following set of functions fulfils our needs 
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\ ' 
where , 	is the volume of the enclosing cylinder and we have set 

The orthonormality and completeness relations are respectively 

\(4-, 	(z 
ii , ( r) fa74) L 

( ) — tl) 
f 	 toNifi 

whilst 	

1;1 

r-r  

whilst each 	-I 	satisfies 

-1' f t 	v 

This basis is in fact a little too general because we will now 

restrict our analysis to 2 	dimensions by ignoring the z-depen- 

dence. This is a small change to make considering the violent 

truncations of our theory that our approximation scheme will 

require. We are now in a position to quantize our theory using 

canonical methods, all the time working in the Schrodinger 

r, 
picture. We write the Schrodinger field - 	

4
as 

- -e 

0 	 / 	 \ 

V77) 

where has an expansion into its radial (k) and angular (m) 

modes as follows 

Fi 
	 is 
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The functions f 	constitute an orthonormal set and can be taken 
k,m 

to be 

( r ) 
r ri —

,  

m 	) 

and A is now the crossectional area i.e. A = R
2 
 whilst the IL 

rirn 
form a set of self adjoint operator coefficients. If the initial 

field configuration is that of a classical vortex 	labelled 

by n (by which we mean that the state of the system , 

is an eigenstate of 	at time t
o 
with eigenvalue , ,) then as 

a first approximation we may restrict ourselves to considering 

only coherent excitations i.e. we will only quantize those field 

modes with the same value of n. For this case 

I C. 	(11 (r 

- • r 

In terms of",1 the Lagrangian (c51) reads 



Drir),Ticr)1 —c r— ri) 
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The momentum conjugate to is  
; 

As usual, the Hamiltonian may now be constructed and is given by 

FO  Or P ckriFiar) 'dnqt.  Cr) — E9T/k 	MT) 
I  

Or explicitly 

rs:',c) 
irzfr) 

=c) Rirr4 riF  
6 	L --r 

77  '2. 	v2, 

--/— 1 	M 

r - 	\ 

2. 

The canonical commutation relations read 

These commutation relations are satisfied by the following realisa-

tions 

A ,... 	
• n 

— (1  
11  Cr) 

Discarding the centrifugal term derived from 

(as it makes no contribution in the limit we are considering) we 

end up with the following Hamiltonian 



A 

11 z_ A 

ll  ti 
of functions f 	is complete and orthonormal. 

ts, 

and 

k 41  

We find (upon 

Consequently we may 

4 

f 

neglecting the centrifugal term as before) 

rewrite our Hamiltonian functional operator 

which acts on 	as a partial differential 

which now acts on 	_ operator 

r 

As our approximation scheme involves stripping the field 

down into its proper modes it is now necessary to rewrite the 

above expression in terms of the q's and f's of eqn. (\: ). This 

has the effect of changing functional differential operators into 

partial differential operators. 

As before we decompose the ',(r) field into the field mode 
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operators 

where the set 

Correspondingly our state functional becomes a function of the 

  

Ln   H ! 

One can easily show that 



'2 

nth 	 _ 
(j) 

r) 7-01 

re 

'Tri 171., 

where 

and 	rip, 
	+ 	rinrn 

We immediately see from the above that the 
nm 

term is not in 

general diagonal. Hence even when the interaction is turned off 

the modes are still coupled. This difficulty is easily overcome by 

constructing a new set of operator coefficient functions which do 

diagonalize the
m
. As an example we may take a plane wave basis 

which definitely diagonalizes the 	The relationship between 

the qkm  and the plane-wave basis qk  
1 
k2 

is found to be 

Yk  = T'os, n Ca 

where qk 	qkn  and kl  = k sin , 	whilst k
2 
= k cos 

In terms of the new coefficients (i.e. after diagonalisation) 

the Hamiltonian takes the form 	 -7-,

r  --4- TA\ - '' 	
..z. 	

--- 	(- ntility \;"tt )'1'• ---7,- 	 - n1 	 4 -- 4_ -- 1  ..1 	--i 	
JA --,/ 

trs,  ( •-■—: ..N•>, 
...4_ / D; \ / 	J) 	( 7  \N 	( To ( P  ' \ ' ( • 01  . \ 

--- 
- te,  -. ./ n)r(1)1')` 	 C7 	? 

rwilic j".(1 -7.1Y1 '`) .1" '11-7 	CR 

`,.. 
and the Q

1 
are suitable linear combinations of the 	 _k 2  

	

J 	1 



To investigate the dynamics of this system in the large mass 

limit we will first of all consider the extreme situation where 

we quantize just one mode (Q, say). The extension of this argu-

ment to a finite number of degrees of freedom is transparent and 

the extension to an infinite number of degrees of freedom plaus-

ible. 

For one mode the effective Hamiltonian is taken to be 

Q.- 

)') 	(Q19 
/ 

where, without loss of generality (since cubic terms in Q are 

relatively suppressed in the large r  ‘limit) we have taken the 

interaction term to be a perfect square and is proportional to 

 

Rather than compute 
/ T 

LiS ) 	
directly 

from eqn. 016 as a perturbation series in 

(and therefore as a series in the singular distribution of 

eqn. (310))it is more convenient to work in a less singular 

coherent state basis. 
} 	/ 

That is, if 	is a coherent state with frequency 

o,
,  
labelled by \ at time t we compute '' 	1'N -N)  

A_. 

Expanding in powers of V gives 
//". 

7  ti A -1 C7  
v 

,R 
I 	 ) 	 (al?) 

(2' 
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where 

and 

and so on. 

To compute we need to evaluate 

i.e. the matrix element of the potential 

between the two coherent states 

A correctly normalized coherent state has the representation 

and • 

f 

so that 

are;  

) 	
)\ 

4 ' e 
1 

(k/  )2 	IF  2  
-77 1- 	- 

We need to evaluate 	
I YI-13° 	where 

cx. 00 



-85- 

and 

\Irsi,' 	7  3a22)  

One may show by direct integration that 

I. 	
rk 

'`■6, j \i  
4- 14(3 L8 -1-o) 1 	( 

1 
2 

c t\( in) J 
(303\; ■ 

where 	 and 

'7 2  )1 0  77:7 j 3  

whilst 	 and 

It is now straightforward to show that (via a long and tedious 

calculation) 

°L) b0>W)  1". (
{-

wif-01̀ ) 

/- 

Whilst for the sake of interest 

t t€ 1  ( 304 

) 

)60 
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By explicit calculation of further terms it becomes apparent 

that eqn. (304) generalises to 

If, by the 

I 

limit we mean that rapidly oscillating terms 

are neglected in eqn. (30 ) then the effect of 

the interaction in the single mode approximation is just to change 

the phase of the free field amplitude. If we generalise the above 

to a finite number of interacting modes we get the same result 

i.e. in the sense that rapidly oscillating terms are neglected. 

cA) — 

)
0 t-  I 	) b:> 

) 0(0)3 
(r,3o7) 

for some real k. 

It is plausible that the effect of extending this quantisation 

scheme to an infinite number of modes will do no more than intro- 

duce an (infinite) phase. Although this is not proven the argu- 

ment of the main text indicates that we should not expect any- 

thing serious to go amiss. The probability interpretation of 

eqn. (\11) would thus be unaltered. 

Before concluding this section we will now briefly review 

the properties of a free field - , of mass m given by the --dependent 
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part of 
	

eqn. 	. The extension of our analysis to 

include the massless field 	is straightforward and will be omitted 

here. Let us expand 

• 

('N n 	satisfying 

in terms of real orthonormal field modes 

L.77. • - 
as 

The functional probability amplitude KI r The functional probability amplitude 1! p(X)) 	Oi I(h,) tn, o 	
then 

becomes a function of the 

( t 

\ 4r4 ) 4.- i 'von ) c
f
i?" 

n 
:1 	n L 4,) 	74 ) 	-r rn )-2 .2 

where, if 	-I- :---,'L- 1- 	u 1-1,:l ri  

41 -).L I 4;an 
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t '1(1 /14 I 

with 

r L,3 o)  

FLTY-° 	
— I 
 -111tt)r) 

We see from eqn. (310) that if the harmonic oscillator is at q 
on 

at time t
o
, then for almost all subsequent times, the 

oscillator can be anywhere with equal probability. In particular 

at times , 
(for all integer m) 
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the oscillator is at q 
oni 

 - q
on 

respectively. It follows that, 

for a free field with a specified configuration 	at time t
o
, 

for almost all t thereafter any field configuration"" is equally 

likely. This is true for arbitrarily large mass, with the 

proviso that the probability distribution is not well-defined in 

the limit 	( 

In conclusion it seems that we have a situation where, what-

ever the initial configuration of the interacting fields '; and /./
A 
 , 

eqn. (25I), in the large mass limit a vortex-line configuration 

is no more likely than any other configuration (at almost all 

subsequent times). In particular, if the initial configuration is 

a classical vortex-line it is instantaneously annihilated by quantum 

fluctuations. 



is defined by the following Lagrange density 
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4.2 A Simple Quantum Treatment of the Creutz Model for the M.I.T. Bag  

In this section we attempt to consider the quantized version 

of the Creutz model for the M.I.T. bag, previously discussed in 

chapter two (section 3). For our present purposes we shall make 

two modifications to the previously discussed model. They are: 

a) to replace the dynamical charged quarks by a fixed (in space 

and time) neutral source (the reason for this will become apparent 

later) and 

b) instead of performing our manipulations in three spatial 

dimensions, we shall instead work in only one. This is because 

static solutions to such field theories as we have been led to 

consider (namely, scalar field theories) are unstable against 

perturbations which dilate the coordinates in any number of spatial 

dimensions greater than one (Derrick's theorem; see chapter one 

for details). Now with respect to quantization we immediately see 

that we are going to have problems due to the fact that our system 

is (infinitely) strongly coupled. Consequently some sort of 

variational principle for dealing with the quantized system will have 

to be employed. We shall, in fact, use a one-mode version of the 

Wentzel-Tomonaga-Pauli strong coupling approximation scheme. 

Our model, which exists in a space-time of 1 + 1 dimensions, 

where 

311 
 

as in eqn. (WO. 

The quark dynamics has been replaced by the source term J(x). 
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318 
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Taking the spirit of the mode decomposition to its extreme, we 

assume that the gluon field 	(x) may be well (qualitatively) 

represented by a simple-minded one-mode-of-vibration approximation 

oia‘ 

The function f(x) is arbitrary and for static field configurations 

(which will concern us here) the function q(t) simply becomes a 

constant parameter q. 

Let us define the quantity Q in the following manner 

3 I 3 N  

We shall now choose f(x) and J(x) to have box-like shapes. 

We have 

otherwise 

and 

315 
otherwise 

The edges of the gluon-box have to be 'smooth' in order that the 

term in the energy involving 	can be made vanishingly small. We 

now define 1'1 by 316 

Considering the case of 1145 1, we find that the total energy H' 

of our system can be written as 



7  7 

where I Condition (Da) will be satisfied if 
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when the gluon field vanishes everywhere, the total energy H' 

assumes the value E
o 

moo.
)  .•■••■■•■ 

( 

We will now show that (classically, at least) it is possible 

for the energy of our system to take on a value less than E
o 
for 

a nonvanishing value of 
	

The 'potential' U of our system is 

where all the q-dependence has been inserted into V. Now for 

q =, to become a global minimum of 	requires that 

31 
■ 

which will be satisfied if 

■3z 3 

as can be seen by completing the square. This inequality is easily 

seen to be satisfied in the 'bag formation' limit, previously 

discussed in chapter two (section three). 

A similar analysis can be performed for the case 



variational trial state 

T(12- 74-  k) 	) 

of the form 
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The general dependence of L.i(q) on L is shown in fig. 	). The 

size of the source L
o 

plays an important dynamical role as it 

tells us the preferred size of the gluon distribution. The gluons 

fill out exactly that region of space occupied by the quarks. 

Hence, classically, the bag exists and is energetically stable, in 

the sense that the bag 'radius' R is happiest when it is nonzero 

and finite and equal to L
o
. We see that the source term acts 

as a stabilizer and prevents our gluon field system from shrinking 

to a point. 

We now turn to a rough quantum theoretic version of our 

classical system. Emphasis will be placed on the form the energy 

takes on as a function of the 'running variable' 	. To quantize 

our system, we implement the following substitutions 

. 

• 	

1 
iC 

 

L J1 
0 

We now compute the expectation value of H' (eqn. (317) ) in a 

The constant N is the normalization factor, so that 

(3R5 

3 6 

The energy of this state will be minimized with respect to the 
-7- 

two variational parameters 	and a
2 
(we only insist on stationarity 
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for variations in L) in order to obtain a rough upper bound 

on the true ground state energy of our system. 

From eqns. (317) and (KO), the total energy operator is 

6'41;--. 
r 

And 

*-7  
14-  ) 	,) 

where 

1 WI,r-''' 	) 	1.,--1 .i''' (171-- 2  -1,— ,/)C2:*■ r i -r.'  WI 1 l t 141 ,. 	I 	f) i 	I/ 

-I-  A 01PX + t)4:-,C 1  X + 'S(' LX2  --,--- 1  
,--) I ,  -7.4 	1 - 1 --•::\ ) • -  

 ,,  

I - A  • 	 .."--. im t  r 	■ 	T5- 	S■? --;)S r it- 
3 Z g 

clnct 	 (-4\ 
1 	 ( 

Stationarity requires that 

\ 

■••••• ( 3 a 

Minimization, with respect to q and x, is achieved if 

Written out in full, the first three equations of eqn. (3a1) 

are (in consecutive order from the left): 
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' 	t 	9 

(33,) 
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The inequalities 

fied provided that 

r-- 

will both be satis- 

 \ 

9 / r\ 
1  Nr3 

3 
The final inequality of eqn. (330) is rather complicated to write 

out in full and anyway turns out to be easily satisfied a poster-

iori. 

Before proceeding to attempt to solve eqns. (331) - (333) 

in the Creutz limit (eqn. 	) we take time off to make a few 

general comments. If, instead of using our modified Creutz La-

grange density (eqn. (31!) ), we had stuck to Creutz's original 

choice 

' 
It 
	

1 	.; 

35 
then our trial state (corresponding to eqn. (3,7(S) ) would have 
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looked something like 

The energy of our system in this trial state would have been 

parametrized by six (potentially independent) variables. We 

would than have six simultaneous (and highly 'mixed') stationarity 

equations to solve as well as a host of minimisation conditions 

to satisfy as well. So, in order to reduce the number of variation- 

al variables to a more manageable level it is necessary to dis- 

regard the quark degree of freedom by replacing it by a source 

term. It is important to stress that in the strong coupling 

regime there is no reason whatsoever for assuming that the ground 

state of the whole system is simply the product of the ground 

states of the constituent systems (i.e. the notion that the vacuum 

state is nonseparable). This is why the term associated with the 

parameter c
2 
(which causes alot of computational trouble) cannot 

be dismissed. Another point is that because of the fact that 

eqns. (331) - (333) are highly 'mixed', a straightforward solution 

is ruled out-- instead we must seek a self-consistent solution. 

We now restrict our attention to the specific case n = 1. 

Using this fact we may compound equations (332) and (333) to give 

us an L-independent equation which turns out to be 

1 

3 3 7 
After some tedium it is possible to convince oneself that the 

leading order self-consistent solution to eqns. (331) and (33/) is 
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■ 

3 3 g 

Here we have used the fact that we wish to keep relation:(I56) 

intact. These solutions imply that 

What do these results mean? Equation (33g) tells us that the 

width and displacement from the origin of our Gaussian trial state 

become vanishingly small in the bag formation limit of 

Also the vacuum expectation value of the -field has undergone 

a finite renormalization. 

Finally a note on the 	limit. By inserting eons. (335) 

and (331) into eqn. (3V), we are led to the result that the minimum 

value of E is realised at some non-zero value of , , say 	. 

The exact value of , r  is 'model-dependent', in that it depends 

on the particular values assigned to the 'arbitrary' parameters 

of eqn. (455), 	The fact that the limit 	-/ 

cannot be exactly taken is only due to the presence of the intrinsic 

quantum fluctuations of our system. The important point is that 

the classical role of L
o 
has been completely usurped! If it 

were not for the uncertainty relations, the energetically preferred 

configuration would be the one with L = 0 (as opposed to the 

classical situation where L = L
o 
was the ideal state of affairs). 

Hence, at least within the context of our crude approximation 

scheme, the quantized version of our classical bag is energetically 

unstable and essentially prefers to contract down to the minimum 
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possible size. Hence we have the result that the source term is 

not sufficient to bring stability to our quantized bag. 



4.3 Quark Trapping in the Quantised SLAC Bad 

In this section we attempt to determine whether or not the 

semiclassical results of section 2.2 are maintained in a more 
(19 

realistic quantization scheme than that described in the appen- 

dix . 

Before going into any detail, let us first explain why we 

might expect strong coupling effects to be large. Consider a 

quark field 	interacting with a scalar field 	via 

the Hamiltonian 

1 	. 	... r (----- -- 
G 

2 

4-  X--  }- 

(340) 
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This is the prototype quark trapping Hamiltonian of section 2.2. 

r - 
1 	, 

the normal vacuum being unstable. 

From the detailed analysis of section 2.2, we know that 

semiclassical bags can exist. At large distances the semiclassical 

field must attain one of the stable vacuum values. Because 

of the existence of two inequivalent stable vacua it is possible 

for 	to take values + f outside the bag and - f in the interior, 

giving rise to a potential well which traps the 	field. 

By definition, in the semiclassical approximation the stable 

vacua are always . In more realistic approximation 

schemes this is not necessarily so. For example, in a self-

consistent Hartree-Fock approximation for the scalar field alone 

it happens that, in the strong coupling limit, it is the normal 

vacuum 
	that becomes stable. 

If this were true for the Hamiltonian (340) we would expect the 

quark trapping to fail because the 	field will now merely give 

a penetrable barrier. 

We shall first briefly consider the vacuum stability for the 

Hamiltonian (340) and then examine its consequences for quark 

trapping. We shall find that there are domains of coupling 

constant strengths for which the semi-classical bags are destroyed 

by quantum effects. Equally, there are domains of coupling 

strengths for which quark trapping plausibly exists. 

Consider the energy density E of the vacuum in the theory 

given by the Hamiltonian (34C). We assume that with respect 

The stable semi-classical vacuum corresponds to 
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to the vacuum the mass of the ̀ i n field   is M, that of the i  field 

, and 	• In the Hartree-Fock approximation, obtained 

most easily by normal ordering (as described in chapter three), 

it is straightforward to see that 	 q 
,___N

) ' 
f 

4  
) 	, L.-,— 	- . 	 ) 	_J 1  

\CI04): -41  

( 3 + ) ) 

where 	 I 

(R) 	
• - . -- . • 	1 '"--- " • 7 , . , 7,5 	

\ ( 

Oh [ 

tl 
Varying with respect to 

1/ 

E occur when 

2 
c) 	L_ Lt) 

1144 	r't 
y 	•j 

(3 4.0 

Inserting eqn. (3Th into eqn. (3+5) gives the following two 

solutions 

A. Normal Vacuum 

2 	II cl2 	ClIc) 

rk-1 (34-6) 

(347 
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) 

,/ 
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B. Abnormal Vacuum 

(341) 

(35o'  

:412  L ) 

1LICr---Y2)2 	3-4:-2 (u) 

In solving these two sets of equations we will consider the follow-

ing domains of coupling constant strengths. 

a. Solutions for 

The coupling strength 	does not occur in the equations 

for the normal vacuum. Observing that 

we see that when ,t11 •  
' I t 

last term in eqn. (341) to give 

• 

we can neglect the 

From eqn. (353) we see that E loses its dependence on 	and the 

quark field drops out of the problem, which now becomes the much 
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simpler one of the stability of the 	vacuum. The equations 

to be solved are now (347) and (35Z) . Eqn. (352.) has been 

discussed in detail in ref. a0  . The solutions to these equations 

are then inserted into the energy difference 

L-C)Ati, D) oi 	EL,A,N) 

At sr 	1-4 (1.1bA) --  
3 .54 

where 	is the difference of the vacuum fluctuation integrals 

(bracketed first terms in eqns. (313) and (351) ). 

For three spatial dimensions (although not for less) there 

is some ambiguity in the definition of the infinite integrals since 

their infinite parts cannot be simultaneously eliminated in the two 

phases represented by eqns. (31-1) and (352). The two obvious tactics 

are to replace integrals by their finite parts(a1 ) or to regu- 

) 
larise. 	Whichever is adopted, we reach the same result that 

for 	r 	, 	\ and the normal vacuum is stable. 

b. Solutions for 
	t „/ 

Again there is ambiguity over the definition of infinite inte-

grals. We shall replace them everywhere by their finite parts 

with a single subtraction point 

finite part of g (written 	1-  f. 
become 

t•., 
. Denoting the 

) by 	the equations 

' -tni 	1  
) 	( 355 ?-e= 
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and 
\ - 

l 357\' 

(implying infinite renormalisation of f
2). We see that the main 

hope for the abnormal vacuum to remain stable is in the second 

integrand of eqn. (350 becoming large. This would automatically 

---. - 
happen if 	were independent of 	, implying a dependence of 

1 

the subtraction point i  on i  as 	.AT  i,,--_. 

for finite . . Eqn. (355) then has the unique solution 

35s 

In turn eqn. (357) has the unique solution 

tt 
0 

and eqn. (3 t) the solution 

‘i  3 6 o 

(with the additional possibility that 

The energy difference is now easily seen to be 

 



F  

12. 
1.4t 	ri 	rd 1 	 2 

the abnormal vacuum 

remains stable. 

r.-,-/N11.1  
Thus, in the limit 	

-/> N>4 
 

for which, 

becomes 
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n + 1 + 

-71-1 
if 

t't  

We are only stating  the obvious when we stress that the 

above manipulations are very crude. However, taking  them ser-

iously we are led to the conclusion, for the reasons mentioned 

earlier, that we would expect quantum bags to exist for 

/ 
, but not for 

c' • • 	1 

It is, of course, more compelling  if we can replace such 

plausibility arguments by detailed calculations. In the following, 

we shall consider the latter case in detail, to show explicitly 

how quantised bags fail to occur when 4 	, even 

though classical bags exist. 

The first case of interest is 	 1" 

as we have just seen, the normal vacuum 

stable. For this domain, the quantum effects of the quark field 

become negligible. Taking this cue (which will be justified later), 
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we shall also neglect quark quantum effects in the Hartree-Fock 

approximation for quark trapping. 

A straightforward way to do this is to replace the Hamilton- 

ian density 	of eqn. (31) by the simpler 

( 3 b3 

where 
	

is now a two-component non-relatavistic spinor and 

• A 'r,7 
is the orbital angular momentum. 

gives the identical static 

classical field distribution for the one-quark state to that of 

the SLAC Hamiltonian (M. We observe that the classical equa- 
1 

tions for the static one-quark state arising from are f.2 

It can be seen that 

) 	!: • S:71*' (364\\ 

(.3b5 

where 	is the Lagrange multiplier associated with the constraint 

• - 	3 b 115'  ,\ 	• 	i■ 
; 

Requiring 	to be purely radial 
	

_ 1 - 
	forces 	to have 

the form 

 

r 
3b7 
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where k is a constant spinor satisfying 	u = I. Inserting 

this form for 	/ in eqn. (365) gives 

r  3  b 
/ 

The normalisation condition becomes 

) 	L 	) 
with 

' - 	) 

for real 	. 	Equations (30), (30) and (364), using 

eqn. (37e), are identical to the equations for the static one- 

quark state obtained from 	of eqn. (7) ). In chapter 

two (section one), a detailed solution to these equations was 

found when 	 • 

In displaying the Hartree-Fock approximation it is most 

convenient to work in the Schrodinger picture field representation 

( 	,'"" 	). Following Rosen
03)

, we 

take the one-quark state functional to have the form 



1 

- 

where 

inverse to 

r X "'.7 W.) 1\ 

is the distribution 

J - 
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Ni), (x L._ 	 2 1 

I  h -4 	tAr) i -- -. _I - -  i- LA ,' ;..A) ',11_,) --7 , 	 .\ s . 	.._ .. „ . . . 
( +C) — 4  c 	x 	-, -1 ...., 	1  

c ) 1 v 	v i Li — ,) - A ____ .1-1  (371) 

In eqn. (371), 	is the non-relatavistic quark vacuum  

1. 	 A 	 1.  and 	 and 	_ , . 	■  

are c-number distributions to be determined by variational method. 

The normalisation constant 	is chosen so that 

In this single quark state we have 

(372)  

(373)  

Cac) 	-------- <1'7  I () cP co) 	fC f  

It immediately follows that the energy of the one-quark state 

is 
rr 
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Varying E with respect to 	Clh 	and 
q 

gives the coupled 

equations 

X \ 
3 i; 

/ 	I 

V I L  

377 

(s) rx x 11  
L-- 	I -- 

F14(Ai 

/ 

/ 

■ 
37 g 

3 7 

where 	is the Lagrange multiplier associated with the constraint 

3 % c  

We now go on to consider approximate solutions to these equations. 

We first observe that the quark field equation (379) has the 

same form as the classical equation ("3,3), and can be solved in 

a similar fashion. We look for bag-like solutions to these equations 

centred on the origin 	. That is, we are only 

interested in those solutions for which v i,/ 	falls off fast for 

large 	r _) x 	Now, as 	K7c: 	we must have 

, the 'true' vacuum value. Thus, for 

large distances the 	equation (written in the form of eqn. 

(3b3) ) becomes 



" 3  

---- 

( ) \J, 	-F 
3 °4 

-109- 

	

012q0 	
_2, r) 

) t), 

	

r2 	
\. 

 
331 

LSD • 

(tr 
We see that eqns. (n) can only have bag-like solutions if 

3 2_ \ 

That is, we can only have quark trapping for the abnormal stable 

vacuum. 

Of course, in the r 	limit, equations (371) and (37g) 

must be equivalent to the vacuum stability equations discussed 

earlier. That they are so is trivial to see. For example, consider 

the abnormal vacuum solution 	 as 

f' 	9'9 	, in which limit , 

Eqns. (371) and (37q) are solved as 

X U 

,J 	 ■L'-'1-7/1 

Observing that 	is independent of x, eqn. (M4) becomes 

more familiar if we write it as 

-, ,t 	--- -rrt Lo / 	-J 	..-i.Z 	 ,/ ./__. ..., 
3  

■),, J 
T ) i  \/ 

- ; c 
-I-  1 1 

2-1i `3 b 

with . Eqns. (3?4) and (3gb) are just 
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the Hartree-Fock mass equation of (35A). That is, we have re- 

produced the abnormal vacuum equations 
.r 

in the 	limit. 

We have already said that in this limit, for H 

normal vacuum becomes stable, and so from the previous argument 

quark trapping will not occur. We will not reproduce the details 

of the proof of normal vacuum stability, since it is computa-

tionally tedious. We now show the absence of quark trapping direct-

ly and simply by approximately solving eqns. (31/), (378) and 

(371) in the limit H 	1. 
/ 

We adopt the WKB approximation to eqn. (3/'), that(  

( 3 g ) 

(34-a), (311) and (350) 

.' 1, the 

where 

Li-1 ) 

. 	 r 2 ;Th 	 r, 
Defining 	

A 	
by 7 1k2) 

we can rewrite eqn. (3q7) as 

"2 

- r ;---ri  .., y 0 —1- r A ! 
- 	1,--  -;,, 2. ,- 7 ) 	r2 r . )' , 	_ . _ . 	, 1 	, 	t 	• - 

.. 	 L---  / ...-4 

( 3 1  ) 
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Suppose that a 

as 	11 —I? 

also as 	5,0 . 

fie . 
 

bag solution exists. Then 

Similarly, from eqn. (3,0) we will have 

Thus 	and 	, are related by 

rJ  

This enables us to eliminate , to give 

I ? 1 

For large H, eqn. (313) can be solved to give 
C39-3 ; 

Eqn. 077) now becomes 

To solve eqn. (310) we first absorb the infinite part of the integral 

into the definition of f
2 
(infinite 	mass renormalisation) as 

r 0) r '  7 	 (  

I • L +A 
(371) 

where 	is related to some arbitrary subtraction point. 
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whence eqn. (310) be comes 

) 	■ 	) 	I , _X 
)1 	 J 

\Air 

1 1-17 • ) v \ 
( 395 

Comparing  eqn. (395) to eqn. (314) we see that for large H the 

potential has effectively changed from 

( 3 9 6 ) 

reversing  sign. (Note that for small H, 	( 	, 
•-• 

whence eqn. (390) and eqn. (34) become identical). This suggests 

very strongly that the stable vacuum is now 	. (The 

value of H at which the effective potential changes sign depends 

on both f and , i.e. on the renormalised 	mass and the 

subtraction point). In particular, the prototype equation 

39 9, 

with solution 

r i 

3 97 

for the quark trapping  potential would be replaced by 

0 



-113- 

\ The solution to eqn. (400) Is(17 )  

401 \ I 

which tends to zero as 	I 	ucl' (i.e. instead of a potential 

well we have merely a potential barrier). This, however, contra- 

dicts our initial assumption that 	- , 
	for large r. 

 
Thus, for H 	1 quark trapping does not occur when H 	G

4 
 . 

Only for small H, when the potential has not changed sign, can 

trapping occur, but this would not correspond to realistic hadrons. 

We will now make some comments on the Hartree-Fock-like 

approximation scheme when self-consistent quantisation of the quark 

field is also taken into account. From our earlier investigations 

on the self-consistent vacuum we see that such quantization must 

be included in the strong quark coupling limit G
4 

- H 	•1. , 

We don't know which approximation scheme for one-quark states 

reduces to the equations (355), (35b) and (357) in the large distance 

limit. However, assuming separability on the lines of eqn. (371) 

we would expect the following equations for 	and 

(defined as expectation values in the one-quark state as in eqn. (37),) ). 

\ 
a) The 	•' field equation will retain the simple form 

+ ,--tcq 1  ••,/, 7-7--  f._.—  /.../ 	03, ) 
v 	 i 

1:, 	
____I  

This is a consequence of the fact that the Hartree-Fock approximation 

does not alter the degree of polynomial field equations. 



to will be unaltered. That is, assuming I 

r 	, the effective 	self-interaction potential 

(eqn. (31h) ) will be replaced by _T, 	(eqn. (311) ). 

as 
r 

In 
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r7 
b) Since 	;,_ 	(eqn. (31i1) ) is the second derivative (with 

respect to 	of the Hartree-Fock effective potential, and the 

field couples linearly to the quark field, eqn. (372) relating 

- 

consequence, having eliminated 

(previously eqn. (315) ) will become 

\„‘ 

where S(x , 2) will be determined by 

	

, the 	equation 

	

,„. 	• A, (4 oJ 

1 	N.,. 
I 

i 	 . .., 

It follows that S will depend on 	, on the lines of 

0 4- 

where the expression for S has to match with the large distance 

identification 

4 t\ 

L 	Fi 

C 0o5 

with 

In the case H 	1 the term in S on the right hand side of 

eqn. (4-C3) becomes negligible and we have the relatavistic variant 

of eqn. (-)15), justifying the approximation of the previous analysis 

4 in this coupling strength domain. For 	H , 	1 this term cannot 



( 4- 7 ) 
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be ignored. In fact, 	will dominate 

In consequence, we have no contradiction with the initial assump- 

tion that , 	at large distances. We are, however, totally 

unable to suggest the nature of the solution to the new 	eqn. 

So far we have only considered quark trapping for single-quark 

states. In this context the classical quark is 'trapped' in the 

region where the classical 	field has flipped from its vacuum 

value. Realistic hadrons must be multiquark states. In chapter 

two we briefly reviewed the main semiclassical results for multi-

quark states. We shall now briefly consider the multiquark 

Hartree-Fock states for the particular case 
4 
 ,, H. As in the 

previous analysis, we assume that, in this domain of coupling 

strengths, we can use the non-relatavistic quark Hamiltonian of 

eqn. (3t3).  Restricting ourselves to N quark states we see that the 

N-quark Hartree-Fock state 
	

has the form 

 

, 

1 

 

iLo  

(4-c6 

It immediately follows that the Hartree-Fock energy functional 

becomes 

L. 



1"-  7" • 

L. L„.  

,•• 

( i 	 • 	-) 	et: 

• 
ie • A 

(+0g) 
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wherethequarkenergies—.are determined by 

and 

(, 	
• 

1 q)  

(denoting g(x, x) by g). The equation relating 

is eqn. (378), as before. 

The analysis of the preceding paragraphs goes straight through 

as before, giving the result that for H 	1 the effective 

potential changes signs to give (to order H
-1
) 

I 	1 	tr', '-q 	A 1 • ,1 
( 

I' 	
+ 1 D 

I  (assuming 	
fl_ 	). Again we would s' 

have no bag-like solutions. 

The relatavistic Hartree-Fock like approximation would again 

generalise in a similar way, justifying the above comments for 

A4 N-  ,H. For 4 H multiquark trapping is again plausible, 

although detailed solutions are unattainable. 

We will end this section with a conclusion and summary of the 

results obtained. We have considered quark trapping in the basic 

Hamiltonian (340) of the SLAC bag. We argued that quark trapping 

requires the stability of the abnormal vacuum, and examined vacuum 

stability in the Hartree-Fock approximation. We reached the 

anticipated conclusions that, for relatively weak quark coupling 

4 
(H 	1) the abnormal vacuum is unstable, stability being 
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restored in the strong quark coupling domain ( 	/, 	'1). 

In consequence, we do not expect quark trapping in the rela-

tively weak quark coupling situation. To domonstrate explicitly 

how quark trapping fails in this case we have examined single quark 

states (in an equivalent classical theory with non-relatavistic 

quarks), also in the Hartree-Fock approximation. Quark trapping 

fails in this case because, in some sense, the Hartree-Fock 

effective potential reverses sign when H, 	1. Plausible inferences 

for a relatavistic approximation only confirm this simpler model. 

For the strong quark coupling situation (
4
, /  H,, 1) we 

are unable to provide a detailed solution. Nonetheless, our expec-

tations from the simple vacuum stability arguments are reinforced. 
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CHAPTER V 

CONCLUSION 
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In this thesis we have examined the effects that quantization 

induces on well-defined classical field configurations. We often 

found that the corresponding quantum fluctuations completely anni-

hilated the classical configuration. 

The approximation schemes we adopted all used a variational 

principle of one kind or another. Consequently we were not able to 

judge how far we should believe our results. Hence, it is important 

to test our techniques on (nontrivial) exactly soluble field theory 

models. Some progress in this direction has already been made.
(25) 

The extension of our methods to encompass gauge fields is also a 

major problem for the future. But, in my opinion, the major hurdle 

to jump is that of the nonseparability of the vacuum for strongly 

coupled field systems. Nonetheless, I feel that this particular 

area of research appears most promising. 
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APPENDIX 
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Derivation of the Classical Field E uations from a Variational Principle 

In this appendix we will show how we may translate the theory 

of the SLAC bag (which is phrased in the language of quantum field 

theory) into the mathematically more amenable language of classical 

field theory. 

Consider the model Lagrange density 

cf^ 	C)Jk Cr  — 	P).2  + 	I., Nd 14 	6.) \V  

(411) 

Here 	6-. X.) 	and 	y c x) 	are scalar and spinor 

fields respectively whilst f is a constant parameter endowed with the 

dimensions of mass and 	et H > c) 	are dimensionless ) 

coupling constants. 



waves 

where .717:  
ti 	
i

0-  

and rr 

.,\ 

9 C71 2. 
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In the variational scheme we will employ we will only need to 

 
consider the system eqn. (+-1

1
) at a fixed time t, which we shall 

take to be t = 0. 

We now go on to expand out the two field operators, 6-  and T , 

in terms of a normal mode Fock space basis. 

For the scalar field we choose an expansion in terms of plane 

The above system may now be quantized by imposing the usual equal-

time commutation relations appropriate to a scalar field 

r 	C ) 	--"z 	 —lc ') 0.13) L. — 2 

where 
• 

'\ 
For the fermi field 

Ol  
j 
 ,r)e. 

 ) !1 	we do something a little different. 

Here we expand out 
1 	

in terms of the eigenfunctions of the 

Dirac equations in an external potential (which will be specified 

later when we come to do the actual variation calculation) 

\I I 	L U CLO 4- 
7 r,,  • 

J r X i .-■••• 

The positive and negative energy eigenfunctions ri 	and 

n ().■ 	satisfy the following orthonormality conditions 
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ti 

's` 	

, x
n 	V CA .1 

+11 

rY) 

C2i)ro  

The non-vanishing equal-time anti-commutation relations are 

P C)x. 	ytcxf,; c 	sN(3)
(_x. 	x 

gnit 	1 m  D
t 

rn 

We are now in a position to construct the Hilbert space of states 

for our system (at time t = 0) by applying the three types of 

It 	e -r 
A "particle" creation operators 	L' 

) 	ni 5 	n 	to the 
translationally noninvariant no-particle state I Li / which 

is characterized by 

0L> r E n  0, > = 	oL> C,  

(4: 7 
Of course it is possible to relate this expansion to the one in 

terms of plane waves and a translationally invariant no-particle 

state 	1 -
F'
/ . Such a change of basis states is well-known 

and has been dubbed the Bogoliubov-Valatin transformation. For 

example, the relation between the two no-particle states 	-,..../ 

and 1 t'-')F,> 	is given by 

where N is a normalization factor. We now come to the problem of 
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deciding how to properly define the Hamiltonian of eqn. (id), 

this is because the meaning of a product of field operators at 

the same space-time point is ambiguous and has to be properly 

defined. In other words we need a renormalization procedure 

to purge our theory of its inherent ultraviolet divergences. As 

the theory, eqn. (,1), is a strongly coupled theory 	the 

invention of a 	sensible renormalisation programme for it is a 

formidable problem. Here we will content ourselves by defining 

our Hamiltonian by a naive normal-ordering prescription. This 

normal-ordering prescription has the drawback that it depends on 

the particular expansion chosen for the field operators. In the 

following we shall ignore these differences in normal-ordering 

prescriptions. Hence the Hamiltonian we are working with is accur-

ate only in the so-called 'tree' approximation. To be specific, we 

shall ignore the difference in energy between a theory with H 

normal-ordered in the basis (`F4) as constructed for the one-ferm-

ion sector and a theory normal-ordered relative to a translation-

ally invariant (trial) vacuum state. 

After these preliminaries we shall now go on to construct a 

trial state for our system. What motivating principle can we use 

to make a good ansatz for the trial state? Intuitively, we would 

expect the 	-field to develop a position-dependent expectation 

value which is peaked in the environment of the fermi source. 

How do we describe such a situation mathematically? Fortunately 

boson coherent states give a mathematical realization of the 

intuitive picture discussed above. The boson coherent states 
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we shall employ are defined by 

Sci' 	;)1)1 DL> 
tAC;,) 0,__ 	OH 9 

It is easy to see that the unitary operator 	,, acts as a trans- 

lation operator in u -space, i.e. 

u r 

V) 1 L ' — ._ +3 
(1-q  

It follows directly from eqn. (1-ao) that if -, Pr: is any poly- 

nomial function of 	which is normal-ordered term by term 

relative to the localized no-particle state then 

C2 9 I  
I (2\ 1 , 

We see from eqn. (4- I) that the tree approximation rule for taking 

the expectation value of a function of -- in a boson coherent 

-rX , 	 9(-•)( state is to replace 	by the c -number amplitude 

In a similar way we shall also want to replace the fermion field 

operator .A by an arbitrary c--number Dirac spinor wave- ' 	, 

function when we evaluate the expactation value of the energy 

operator H in our trial state. In the case of a trial state of 

fermion number one, one can do this by using 

g-t-  1 a L> 
where B

n
+ 
 is the operator which creates a fermion in the nth 

excited state and 1 	is the localized no-particle state 

referred to earlier eqn. (417) . It is straightforward to 



is given by 
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show that the expectation value of an operator bilinear in the 

fermion field and normal-ordered relative to 

„t, 
)' LA) i 	i  (A): . •7 

tink-  CA) 	CLC 
ri 	• 

T7 

The arbitrary wave-function / -1 r)0 is to be self-consistently n  

determined by a variational calculation. 

We are now in a position to implement our energy variational 

principle. Firstly, we compute the energy of our system, eqn. 

in a trial state which we guess tobe 

on ;--Ds 	 9) 2 0 ° L_ N? 

where u(g) creates the coherent boson state whilst B
o

+ 
creates 

a ground-state fermion. The important point, that will be made 

explicit later, is that this procedure reduces the quantum field 

theory problem to a classical form. Anyway, assuming that we 

normal-order the Hamiltonian of our system term by term relative 

to 	, we can evaluate the energy in our trial state, 

eqn. (4;14-). The result is 

ins qh±- ; H a nEccr-z- 

" 	- 
)1,91 - -- 

z 
( 



r- • v 
, v 
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Here all zero-point energies have been dropped. Up to now we have 

said nothing about the expansion basis 	LI . The ) n 
idea behind the variational principle is that the best choice of 

, (-v.\ 
the trial state is realised when the corresponding forms for 	A 

and ' 	minimize the total energy. Obviously this procedure 

will only make sense if the energy operator is positive-definite 

for all g and 	As is well known, the Dirac part of eqn. (45) 

does not satisfy this requirement. To circumvent this difficulty 

we shall proceed as follows: given any form for 

we solve the Dirac equation exactly 

	

We then take the lowest positive eigenvalue 	_ . 	. This 
frim 

only makes sense because the solutions for the positive and 

negative energy portions of the energy spectrum are clearly 

separated (there is no Klein paradox for our system). 

The energy E of our system is given by 

,--.■ , 	,— i 	, )2- 	11 r,  2 t-- 2 \ 27_1_  f  r. .., 
,,-_-_- -- \ d -> ,  	- - I ..1. 	+ ti. ( 	- 4-  ; 	) 	( I ) 

 
/ f 

'''\ i 

provided that we normalise the Dirac spinor 'to unity, i.e. 

A 

We now require that E be a minimum with respect to an arbitrary 

variation of 	. It is straightforward to show that by 
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imposing the condition 

on eqn. (.27), we end up with the following equation of motion 

for 	a c2s), 

v 1  C2C) 	4 1_ rz) )(./  

(1F-  3 0) 
Here we have used the fact that 

--) 

(44-- 7,  1 
Note that E(g) appears as a Lagrange multiplier enforcing the 

normalization condition, eqn. (tV). Evidently eqns. (i-M and 

(4-a6) are just the classical equations of motion of our system 

(compare with eqns. Cc) and ( ,) ), which is the desired re- 

sult. 
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FIGURES 
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