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ABSTRACT

Measured flow properties in two—-dimensional wakes are compared with
the values calculated using a mean Flow closuré and two different Reynolds
stress closure turbulence models. The comparison shows that, for wakes with-
out recirculation, the three turbulence models predict similar values of
mean velocity although the Reynolds stress models do, of course, provide a
better répresentation of the individual stresses. For wakes with recircula-~
tion the differences between the values calculated with each t;rbulence model
are overshadowed by large discrepancies between measurements and calculations:
the length of the recirculation zone is underestimated as is the rate of
spread of the downstream wake. The turbulence models are examined term by
term and the dissipation equation, which is commén to 21l three models, is
identified as the source of the error. The reasons for this error and an
alternative approach are suggested. A new finite-difference procedure-for
the solution of the ecuations comprising the Reynolds stress closures is
described.

The transport equations for the single and joint probability distribu—
tions of scalars characterising 2 reacting system are derived and the unknown
terms in the single probability distribution equation are modelled. Solutions
of the modelled equation are presented and they demonstrate the influence
of turbulent mixing and finite chemical reaction rates. These equations are
employed to assess combustion models in current usage: the theoretical
foundations of the models for diffusion and arbitrarily fuelled flames are
consolidated while the model for premixed flames is found to be poorly based and
an alternative is proposed. Calculations are made of premixed propane/air
flames stsbilised behind an annular V-gutter in a circular duct. The similar
values of combustion efficiency and mean velocity preclict ed by the eddy-break-
up model and the alternative proposal are in reasonable agreement with the data

although the width of the flame is overestimated by approximately 30%.
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CHAPTER 1

INTRODUCTION

1.1 The Flows Considered

1.1.1 The Flow Pehind Bluff Bodies. The investigation reported

here was concerned with the turbulent flow occurring downstrsam of bluff
bodies: both reacting and isothermal flows were considered. The flow
behind a cone, which is a typical example of the isothermal case, is
illustrated in figure 1.l where three regions are distinguished.
In the first region, upstream of the trailipg edge of the cone, the main
feature of the flow is the divergence of the streamlines caused by the
presence of the obstruction. Except in the immediate vicinity of the
cone, momentun transfer by molecular and turbulent agencies is negligible.

Immediately downstream of the body a region of reversed flow occurs.
While averaged streamline patterns have been méasured, e.g. Chigier and
Beer (1964), and are shown on the figure, a conception of the recirculation
zone based on ordered flow patterns would be neglecting its essential
chacteristics. A better picture, see Nicholson and Field (1949), is one
of large eddies (possibly as large as the width of the body) passing to
and fro across the averaged streamlines causing a great deal of mixing.

In the third region the flow is a "free boundary-layer'; that is, a
region vhere there is a predominant flow direction along which gradients
of averaged quantities are small compared with their gradients in the
normal direction. The wake caused by the bluff body decays and, as the
velocity returns to its free stream value, the rate at which the wake
spreads across the flow decreases.

The wake described above is an idealisation of many practically
occurring flows: the work performed on isothermal flows has relevance,

therefore, to wakes behind aeroplanes, ships and buildings as well as to

*



wakes found inside engineering equipment. The flow behind inlet valves

in internal combustion engines provides an example of the latter type of
flow. The motivation for studying the flow behind btluff bodies was not,
hovever, related to any of the above applications; rather, these isothermal
flows vere considered in order to provide an understanding of the hydro=-
dynamics of the type of flow occurring in bluff body stabilised flames.

.

1.1.2 Bluff Pody Stabilised Flames

In a combustion system which is homogeneoﬁs on all scales, the rate
of reaction is solely a function of the thérmodynamic and chemical proper-
ties. However, the gross features of reacting flows often depend only
wegkly on the detailed chemistry and are principally determined by the
flow structure. This is because the rate of reaction is controlled not
only by the chemical kinetics but also by the mixing of fuel, oxygen and
thermal energy, ultimately by molecular action. Thus, for example, in
high Reynolds number turbulent diffusion flames where the molecular mixing
is largely independent of Reynolds number so also are the (appropriately
normalised) mean velocities, temperatures and reaction rates, Spalding
(19?5). In the following discussion of bluff body stabilised flames,
vhich relies on the early experimental studies reported in sub-section 1.2.2,
it will be seen that mixing by the mean flow and by turbulence are of
central importance.

Figure 1.2 is a sketch of é flame behind a V-gutter showing the pattern
of streamlines and the location of the flame. In the region upstream of
the trailing edge no reaction takes place because the flame is unable to
propagate upstream faster than it is convected downstream by the flow.
The flame is anchored by the recirculation zone which is a region of low
flow velocity and high reaction rate; the high level of turbulence serves

to supply the zone with fresh reactants and to mix them rapidly with hot



products. In exchange, the recirculation zone supplies the surrounding
stream with hot products, hence initiating the flame vhich, as it passes
downstream, spreads across the flow.

The principal use of bluff body stabilised flames is in éas turbine
afterburners and it was to this application that the investigation was
directed. In designing a reheat system, the engineer's principal concern
is with flame stability, combustion efficiency and pollutant formulation.
These aspects of reheat performance are discussed below where the pre;
dominant flow and combustion phenomena, responsible for each, are
identified. |

It is found that, for a given flame stabiliser and fluid composition,
there is a flow velocity above which a flame cannot be stabilised. The
existence of stability limits, at which the flame is said to "blow off!,
can be attributed to the failure of the recirculation zone to stabilise
the flame as indicated above. In order to determine the mechanism
responsible for this failure, consider the effect on a stabilised flame of
an increase in flow velocity. The rate of supply of fuel to an elemental
volume of the flow increases linearly with the velocity as does the rate
of mixing. Consequently, providing.that the rate at which the chemical
kinetics can burn the fuel exceeds the rate of supply of energetic fuel
and oxygen to the molecular scale, the reaction rate also increases
linearly with the velocity. Thus, in this situation, the values of fuel
concentration, temperature and Aensity at any point in the flow are
independent of the velocity. However, as the chemical kinetic rates are '
independent of the velocity, there is a value of flow velocity above which
the molecular mixing rate exceeds the kinetic rate, resulting in lower
reaction rates and, consequently, further increases in velocity result

in decreased combustion and lower temperatures until the recirculation
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zone is no longer able to sustain the flame. This simple model indicates
that the phenomenon responsible for blow-off is an interyaction between
turbulence and chemical kinetics in the recirculation zone.

The combustion efficiency is determined by the rate of reaction

which, in a flame well within the stability limits, is in turn determined
by the mean flow and turbulence mixing. In particular, as the recircula-
tion zone forms the base of the flame, the mixing in this region can be
expected to play an important role in determining the combustion efficiency
in all parts of the flow.

In recent years, legislation has come into force in order to limit
rollution emissions from aircraft engines: consequently, although the
concentrations of pollutants, principally oxides of nitrogen, are so small
as not to affect the performance of combustion systems, their minimisation
is an objective of the design. The formation of oxides of nitrogen depends
strongly upon the temperature of the combustion gases, Newhall and Shahed
(19?1), and a design which produces an even temperature distribution,
rather than hot and cold regions, is more likely to be successful in
minimising pollutant formation.

In summary, flame stability, combustion efficiency and pollutant
formation are of central interest in bluff body stabilised flames, =and, to
varying degrees, in most other combustion systems. The mean flow and
turbulence fields have a controlling influence on the structure of the
flame while the temperature field is a determining factor in pollutant
formation. The recirculation zone, to which the flame owes its
existence, is of particular importance and an interraction betweén

turbulence and chemical kinetics in this region accounts for blow-off.



1.2 Descrivtion of the Research Programme

1.2.1 Preamble.

The general objective of the research was to provide a juantitative
description of bluff body stabilised flames; that is, to formulate
theories or models which may be used to predict the behaviour of such
flows. It is useful to enumerate here the criteria by which such models

are to be judged;

i) detail - the amount of information provided
- (i) accuracy
(iii) generality

(iv) economy

Any model is unlikely to be superior to all other possibilities in all
these respects and so0 a compromise is needed. For example, in the next

sub-section where previous investigations are reported, it is seen that

empirical correlations have been established between the blow=-off velocity

and the major flow parameters. Such correlations require a minimum of
evaluation and are reasonably accurate but they only provide information
about blow-off and are restricted to simple systems. On the other hand,
the exact equations governing the flow provide a completely accurate and
general description of every aspect of the flow but their solution is
prohibitively uneconomical.

In the next sub-section, where previous related work is reported,
the approach of modelling and solving transport equations for the major
flow properties is seen to represent a good compromise. A chronological
account of the present research programme, which represents applications
and considerations of this approach, is given in sub=-section 1.2.3. It
vill be seen that existing theories were found to be unable to describe

the flows to the required accuracy and, as a consequence, the major part

“r
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of the Qork was involved with quantifying the errors, diagncsing their
sources and devising remedies. This being the case, the work proceeded
toward the overall objective in stages and the detailed objectives of each
stage, stated in sub-section 1l.2.4, were largely determined by the findings
of the previous stages. The work comprising each stage is presented in
this thesis under subject heads rather than in chronclogical order; the
lay-out of the thesis is described in the final sub-section of this

chapter.

- 1l.2.2 State of the Art

In this sub=gection, previous investigaticns of bluff body stabilised
flames are reported in order to provide a picture of the state of kmowledge
at the start of the present work, 1972. The early works notably Longwell
et al. (1949), Williams et al. (1949) and Iongwell (1953), were concerned
with measuring the stability limits under various operating condition.

From these data it was possible to correlate the blow~off velocity with
the doninant flow parameters and to suggest tentative models of the
mechanisms involved, see, for example, Childs (1960). In order to

provide a better understanding of fhe mechanisms, Fetting et al. (1959)
and Fillippi et al. (1962) studied the effects of altering the chemical
composition of the recirculation zone while Winterfeld (1965) investigated
the gross hydrodynamic features of the flows. These experimental investi-
gations provide, in part, a quélitative understanding of the flows and
correlations between blow~off and the dominant flow variables. They do not,
however, provide measurements of local properties such as specles concen-
trations, temperature, velocity and turbulence properties.

The works of Howe et al. (1963), Cushing et al. (1967) and Pein et al.
(1970) provide a small amount of information about the local chemical

and thermodynamic properties in the flows but, due to experimental
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difficulties, velocity and turbulence quantities remained unmeasured.

In recognition of the important role played by the aerodynamics of the
flow, Davies and Beer (1971), Chigier and Beér (196L4), Carmody (1964),

eand others undertook investigations of the velocity and turbulence fields
in bluff body stabilised flame type flows but in the absence of combustion.
These works provide valuable information but the uncertainties in measuring
in recirculation zones with hot wires or pitot probes and the absence of
combustion limit their usefulness. More recently the technique of laser
anemometry has been successfully applied to turbulent flames to measure .
both mean velocity and turbulence intensity, e.g. Durst et al. (1972a).
However, while this method has great potential, results for bluff body
stabilised flames obtained by 1972 were few, Durst et al. (1972b) and
Durdo et al. (1973).

On the theoretical front, since the late 1960's, significant advances
have been made: these stem from the exploitation of digital computers to
solve simultaneous partial differential equations. If the ability of
computers were unbounded, the way forward would be simple; a set of
equations representing the conseryation of mass, momentum, energy and
chemical species can be formulated which, with little uncertainty, describe
the flow in every detail. The problem arises because this set of equations,
applied to turbulent reacting flows, is too complicated to be solved by
computers in the forseeable fgture. However, the engineer does not need’
to know every detail; the behaviour of turbulent fluctuations is not his
concern. The approach appropriate to the engincer, and that adopted by
many workers since the 1960's, is to solve a simpler set of equations
from vhich ensemble averaged values of velocity, density, temperature and
species concentrations can be determined.

The exact equations for the ensemble averaged velocities contain, as

unknowns, the Reynolds stresses which may be estimated through turbulence

“s



nodels. Prandtl's (1925)7mixing length hypothesis was soon replaced by
turbulence models which solved transport equations for one or more
turbulence quantities. Models which solved equations for the kinetic
energy and another scale of turbulence proved particularly successful:
Rodi (1972) applied one such model to free shear layers while wall
boundary=layers were considered by Ng (1971) and Jones (1971). Hanjalié
and Launder (1972) incorporated a sheaf stress equation into this model in
order to predict asymmetric channel flow and Launder, Morse, Rodi and
Spalding (1972) concluded this phase of development by solving equations
for each of the normal stresses as well. A summary of these models is
provided by Launder and Spalding (1972). It should be noted that all the
above works were concerned with boundary layer flows: two-equation model;
were used in recirculating flows, e.g. Runchal (1971), but the predictions
obtained were not compared with detailed experimental data and so their
accuracy for these situations could not be determined.

In addition to a turbulence model, a corbustion model is required in
reacting flows in order to close the set of equations. Temperature and
species concentration fluctuations affect the density and reacticn rates
of species aond, consequently, the turbulent structure; the role of
combustion models is to account for these effects. Early investigations,
e.g. Patankar and Spalding (1970) and McGuirk (1971), rather than employing
a combustion model, ignored the effects of turbulence completely; this
was done, not in the belief that they were negligible but, for want of
a viable alternative. In order to simplify the analysis, idealised
systems were considered; the two extremes of premixed and diffusion
flames were considered separately with the common assumptions of a very
fast single step irreversible reaction. Spalding (1971) proposed the
N"eddy~break-up" model for premixed flames which supposes the reaction

rate to depend on the local turbulence struciture. This model was used

“
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witﬁ success by, among others, Mason and Spalding (1973) but, as will be
seen later, it rests on unsure foundations. The analysis of turbulent
diffusion flames stems from the work of Toor (1962): the assumption of a
very fast reaction rate implies, for diffusion flames, that fuel and oxygen
do not coexist. This observation allows the species concentrations,
temperature and density to be evaluated from the mixture fraction, the
averaged equation for which requires only a modest amount of modelling.
This mpdel is not, however, complete bacause the condition of non-coexistence
does not mean that the averaged concentration of either fuel or oxygen is
zero everywhere., In fact, due %o mixturevfraction fluctuations,both
species can exist at the same place but at different times. Spalding
(19?0) suggested a transport equation for the mixture fraction fluctuations
which was incorporated into the diffusion flame model by Gosman and
Lockwoodv(19?3).

This brief revue indicates the state of the art at the start of the
present work: more recent advances are rerorted at appropriate points in
the thesis. In summary, experimental investigations provided a qualitative
understanding of bluff body stabilised flames although detailed measurement
of local quantities were scarce. Turbulence models had been successfully
used to predict boundary layer flows while work on combustion modelling,
although in its infancy, suggested‘that reacting flows were amenable to

this approach.

.1.2.3 Chronicle of the Research Programme

On the basis of the past success of turbulence and combustion models,
work commenced with the use of a computer program for two-dimensional
recirculating flows incorporating the k-~ ¢, two equation, turbulence model
and the eddy-break-up combustion model. This computer program, a precursor

of that described by Runchal (l9?3),fonmed the basis of all the calculations
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performed throughout this research. A literature survey, Fope (19?3),
showed that experimental data for testing the procedure was in short
supply. However, some initial calculations revealed that, for both
isothermal and reacting flows, the calculéted length of the recirculation
zone was significantly less than the measured value. In light of the
importance of the recirculation zone in stabilised flemes, a theorstical
and an experimental programme were undertaken in an attempt to overcome
this defect.

At this time, the works of Launder, Morse, Rodi and Spalding (1972),
Hanjalié and Launder (19?2) and the resulfs later reported by Launder,
Reece and Rodi (1975) became aveilable. They indicated that Reynolds
stress closures provided a significant advantage over mean flow closures
and, consequently, it was decided to incorporate a Reynolds stress model
into the computer program. The modelled Reynolds stress equations had not
been applied to recirculating flows before and it proved to be a difficult
and time consuming task: the simplicity of the method finally adopted
belies the fact that, in rejecting unviable alternatives, it represents
twelve months work.

An experimental investigation‘was instigated with the objective of
supplementing the data relating to igothermal flows behind flame stabilisers.
In particular, it was intended to measure individual Reynolds stresses in
order to test the new turbulence model. To this end, a rig was designed -
to study the flow of water around a disc baffle mounted centrally in a
round tube which was to be measured by laser anemometry.

While these two tasks were in hand, partly due to the numerical
difficulties being experienced with the Reynolds stress equations and
partly in order to rectify an error made by Lumley (1970), the form of
the effective viscosity hypothesis was considered. It was realised that

the major advantage of a Reynolds stress cliosure could be obtained using

-~
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the two-equation model with an improved effective viscosity hypothesis.
This work, Pope (1975), was successfully completed and is summarised in
this thesis. The suggested effective viscosity hypothesis was not used
in the calculations because, when it became available, the Reynolds stress
model had been successfully incorporated into the program and results
obtained.

A comparison befween experimental data for isothermal’wake flows and
the calculations performed with the Reynolds stress model revealed that the
discrepancies, although marginally less than with the k-c model, were
still prevalent. Thus, while this work on isocthermal flows is useful in
discovering and quantifying these errors, it did not provide a significantly
better description of the flow. As more time had been spent on isothermal
flows than was initially intended and as the existing data proved sufficient
to test the model, the experimental programme was discontiﬁued. The rig,
which by this time had been constructed and was being commissioned, was,
however, used for its initial purpose by Ms. H. Assaf, some of whose work
is reported here. The author's contribution to the experimental programme
is not included in this thesis.

While the work on isothermal flows was in progress, the overall
objective had not been forgotten: the preliminary calculations and
theoretical considerations revealed that the eddy~break-up model was not
physically realistic nor could it account for the interaction between
turbulence and chemical kinetics which accounts for blow-off. At the same
time, the model for diffusion flames was being refined by Lockwood and
Naguidb (1975a) and by Elgobashi and Pun (197L) on the basis of an assumed
probability distribution for the mixture fraction. In an attempt to
overcome the defects of the eddy-break-up model and to unify the models
for premixed and diffusion flames, the probability approach, applied to

the Navier-Stokes equations by Lundgren . (1967),was turned to the equations

]
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of turbulent reacting flow. The outcome of this theoretical work was to
provide a set of exact equations which clearly reflect the physical
processes involved in turbulent combustion. In addition, closure
approximations for these equations were suggested resulting, principaily,
in 8 model for premixed flames which accounts for the interaction between
turbulence snd chemical kinetics. A degenerate form of this model was
obtained by assuming high reaction rates and the result can be regarded
as a more soundly based form of the eddy-break-up model.

A further set of calculations were performed in order to assess the
accuracy of eddy-break-up type combustion models. The calculation
procedure embodied the k-g¢ turbulence model as well as one of the
combustion merls and the predictions were compared with the data of
Harrison (1973 and 1974). These data include velocity and combustion
efficiency measurements in a premixed propane/air flame stabilised behind
an annular V-gutter.

Finally, prior to the preparation of this thesis, the implications of
the theoretical and computational works performed were considered in order
to assess the present status of turbulence and combustion modelling and,
by highlighting the deficiencies, to suggest profitable areas for

further research.

1.2.4 Objectives

The objectives of each aspect of the work described ahove were, in

chronological order of their performance;

i to develop and test a numerical algorithm for the
golution of the equations comprising Reynolds stress
closures;

ii to formulate a more general effective viscosity

hypothesis;
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iii to calculate isothermal wakes with mean flow
and Reynolds stress closures in order to assess
their performance;

iv to develop a theory of turbulent combustion
incorporating the effect of finite reaction rates;

v to calculate bluff body stabilized flames in oxrder

to assess the performance of combustion modelé;

vi to reassess the theoretical foundations of turbulence

and combustion models and thereby to identify

profitable areas for further research.

This research must be judged, not only by the success with which
each of these objectives are achieved, but also by how far these
achievements serve to fulfil the overall objective of providing a

quantitative description of bluff body stabilised flames.

. 1.2.5 lay-out of the Thesis

In the next four chapters the work is reported under the headings
Turbulence Modelling, Combustion Modelling, Calculation Procedures and
Calculations. This format, chosen to provide a coherent structure, allows
each aspect of the work to be treated from beginning to end with a minimum
of references to other parts of the thesis. However, the reader should
bear in mind that the order of presentation does not reflect the order
of performance and, consequently, several observations made in Chapt;rs 2
and 3 represent suggestions for further work rather than ideas to be
explored later in the thesis.

In Chapter 2 the turbulence models used in the calculations are
introduced and the mean closure approach is discussed. These turbulence

models are examined term by term and the effective viscosity hypothesis
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and the dissipation equation are subjected to particularly close scrutiny.
The modelling of turbulent reacting flows is discussed in Chapter 3 by
reference to the probability distribution equations. A theory is developed
from these equations and is used to assess the foundations of existing
combustion models: in particular, in conjunction with a consideration of
density fluctuations, a more soundly based form of the eddy-break-up model
is proposed. _ ' p

In Chapter 4 the numerical procedures for the solution of the
equations comprising the various closures are outlined and the novel
features used for the Reynolds stress cloéures are described. The results
of the calcglations using these procedures are presented in Chapter 5
vhere the performance of the models is assessed.

The main findings of the work are summarised in the final chapter;
“the achievements are compared with the objectives and suggestions for

further work are made.
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CHAPTER 2

TURBULENCE MODELLING

2.1 Introductory Remarks

In this chapter we are concerned with methods by which the average
velocity, <U&>, may be determined at each point in a flow field. The
exact equations for the average velocity, the Reynolds stresses and the
kinetic energy of turbulence are derived and explained in this section.
In section 2.2 the mean closure approach is considered and in the two
subsequent sections the turbulence models used in the calculations are
presented and assessed. The principal findings of this chapter are
summarised in section 2.5.

For a constant density and viscosity Newtonian fluid the instantaneous
velocity,105, is given by the Navier-Stokes equation which is an expression

of the conservation of momentum in each of the three coordinate directions,

av, au, 2°v,
—d - —i.2E
it * Pl - (2.1)
‘i axi 3
The continuity equation expresses the conservation of mass,
Y
i _
= = O (2.2)

An equation for <Uj> may be derived from equation 2.1 by decomposing the

ingtantaneous quantities into their average and fluctuating components,

a
1

<U,> 4+ u

j J J

P =<P> + p (2.3)
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Thus, substituting equation 2.3 into 2.1 and averaging yields,

2
3<U_> a<u.> 9 <U.>
i . i 3> 3
3t t Pl suT ax.  Fax, <"i%° (2.4)
i ox; 3 i

This equation for the averaged velocity is seen to be identical to the
equation for Uj' equation 2.1, except for the inclusion of the last term
wvhich represents momentum transfer due to turbulent action. In order
that equation 2.4 may be solved the Reynolds stresses, <‘uiuj>-, must be
determined; this is the principal role of turbulence models.

"As the Reynolds strésses form the mai; theme of turbulence modelling,
it is appropriate at this stage to derive a transport equation for them:
this is accomplished by subtracting equation 2.4 from equation 2.1,
multiplying by s forming a second equation by commuting the sufficies
k and j, adding the two equations and averaging the result. This

procedure gives the Reynolds stress equation,

a<U0> a<U >
9 S = - —dZ k
p 3% <u, uk? + p<Ui> ax <uauk> = = puyu > Bxi p<uiua> axi
(a) ()
-2 (<u > - th—— <ww > 4+ <pfu> &, + <p'u>d )
axy 1955 ox, 3k i "% 3
(c)
ou,
+ <p! a—n-]- >4 <p! :——}-{-uk- > (2-5)
" 3 '
(v)
) 9
- 2p<—~i ._EE>
axi axi
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The terminology applied to the various temms is,

change along an averaged stireamline
- ‘"production" due to Reynolds stress, velocity gradient interaction
"transport" due to turbulence and viscosity

- ‘Yredistribution" or "pressure scrambling"

5 © o W >
|

- "digsipation" due to viscous action

The terms on the right hand side of equation 2.5 require further
explanation, but first it is convenient to write the turbulent kinetic

energy equation (k= 1< ugug> ),

U,> -
) &k _ _ —
Pt * Py ox, ©  PMY T
p 8
(at) (')
- %-x— G <wguuo -y _g_}_;_ + <p'uy) (2.6)
i i

(c*)
ou,
- v ()2 >

(&*)

Production. B! in equation 2.6 is termed "the production of turbulent
kinetic energy" and the name implies that it is positive. If an equation
for the kinetic energy of the mean flow, 3 <Uj> 2, vere derived the same
term would appear but with the opposite sign. Thus, the term represenis
a transfer of energy between the mean flow ard the turbulence. The mean
flow is ordered while the turbulence is quasi-random hence, from entropy
considerations, it would be surprising if energy were extracted from the

disordered turbulence and transferred to the mean flow. In fact,

%
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measurements show that the "production" is invariably positive although
there are regions in some flows where it may be negative: asymmetric
channel and annulus flows provide common examples. The fact that
production may at times be negative serves as a warning to theories
based on a purely stochastic view of turbulence. The production of
Reynolds stresses (term B in equation 2.5) generally has the same sign

as the stress in question and hence tends to increase its-magnitude.

Transport. The transport term in equation 2.5 is seen to be the
derivative of a flux of Reynolds stress; the volume integral of the term
is equal to the surface integral of the expression inside the derivative.
In homogeneous turbulence the term is zero:. in inhomogeneous turbulence
the term serves to transfer Reynolds stresses from one part of the flow

to another.

Redistribution. This term is so called because, as it does not appear

in the kinetic energy equation, it only serves to transfer energy from
one component of the Reynolds stress tensor to another. The redistribu-
tion term is of central interest in turbulence modelling and will be

discussed at length below.

Dissipation. The dissipation of turbulent kinetic energy, e, is

identically positive: it represents the transfer of turbulence energy to
thermal energy by viscous action. The partition of dissipation between
the individual Reynolds stresses is a subject of controversy and will be

discussed in section 2.k,
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2.2 The Mean Closure Approach

2.2.1 The Problem

As a first step to determining the averaged velocity the transport
equation for <Uj> has been derived, equation 2.4. However, the Reynolds
stresses appear as unknowns in this equation and the Reynolds stress
equations contain more unknowns. The process of deriving ffansport
equations for each unknown could be continued ad infinitum and yet the
nunber of unknown quantities would ever increase. This unfortunate
state of affairs is an inevitable consequence of the fact that in only
considering averaged quantities a full description of the flow is not
rossible. This is the "closure problem" which, as is all téo often

forgotten, is inescapable.

2.2.2 The Approach

The above considerations have shown that the direct approach of
deriving a closed set of equations from which the Reynolds stresses may
be deduced is not possible. However, it is possible to close the set
of cquations at some level by forming "constitutive relations'" for the
unknown quantities; that is, by supposing that the unknown quantities
are related to the known quantities by a given expression. A more formal
statement of this approach serves to identify its important implications:
exact transport equations are derived for the set of quantities g and

these equations contain the set of unknown quantities ¥ . That is,

Dey .
P = Fa(g_) +Ga@) . (2.7)
where g, is any one of the set g and F, and G, are known functionms.
In order to close the set of equations 2.7 constitutive relations are

proposed,

wﬁ = E (2) (2.8)
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As cquations 2.7 are exact, the performance of a mean ¢losure
model depends almost entirely upon the constitutive relations which are,
by nature, approximations. Let us recall the criteria, given in the
Introduction, by which turbulence models are to be judged: the detail
provided by the model is solely a function of the level of closure and
is not influenced by the constitutive relations. However, the criteria
of economy and generality require that the relations be simple and
universally applicable. The success of the model depends, therefore,
upon the accuracy that can be achieved with constitutive relations that
are reasonably simple and universally applicable.

Before considering the accuracy that can be expected from turbulent
constitutive relations, a further restriction is imposed on the form of
the relation: that boundary conditions for g alone are sufficient to
determine the solution of equations 2.7 and 2.8. This restriction, which
implies that H‘3 makes no reference to boundary conditions except those
for g, is the essence of a constitutive relation and yet, in general, it
denies the possibility of complete accuracy. A relation not in keeping
with this restriction would certainly go against the criterion of econonmy
and its generality would be doubtful. All the constitutive relations

used in the models described below are subject to this restriction.

2.2.3 The Accuracy of Constitutive Relations

Congider a region of turbulent flow within which equations 2.7 and
2.8 are to be solved in a volume V. Clearly the constitutive relations,
HB’ may only make reference to values of g within V so that if V tends to

Zero HB must relate the value of wB within the infinitessimal volume to

the values of g in the same region. Thus, in the limit, WB at a point

must be related to. g at the same point. As generality is required, V

B

nust be related to local values of g irrespective of the solution domain,
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The assumptions and erguments stated above require, for complete

accuracy,

(1)  that the values of g within a flow domain are wniquely

related to the values of g at the boundary,

(i1) that the values of y at any point are vniquely related

to the values of g at that point,

and (iii) that the proposed constitutive relations between

¥ and g are correct.

The accuracy of a turbulence model depends, therefore, upon how closely
these conditions are satisfied. The closures outlined in the next section

will be discussed in section 2.4 by reference to these three conditions.

2.3 Turbulence Models

Three turbulence models were employed to obtain the results presented
in Chapter 5. While none of these models is new, the two Reynolds stress
closures employed have not been applied to recirculating flows before.

The models are quoted here together with summary justification for the
modelling given by the originators. In each case, attention is restricted
to the high Reynolds number form of the model: only those terms that
remain finite as the Reynolds number tends to infinity are retained. A
critical discussion of these models is presented in the next section.

The first model described is a mean flow closurej that is, a
constitutive relation is proposed for the Reynolds stresses thus closing
the mean momentum equation. It will be shown that two scaling parameters
ere needed to effect this closure and consequently transport equations
are also solved for the kinetic energy of turbulence and its dissipation

rate. These equations are also closed by modelling assumptions. The

“
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remaining models are Reynolds stress closures: transport equations are
solved for each non=-zero Reynolds stress as well as for the dissipation
rate of turbulent kinetic energy. The unknown terms in these equations

are evaluated through relations based on known quantities.

2+.3.1 The Mean Flow Closure (Model I)

Most turbulence models evolve rather than being the work of an
individual. Thus, while the final form of the mean flow ‘closure described
here was proposed by Jones (1971), it stems from the works of Boussinesq
(1877), Kolmogorov (1942), Prandtl (1945), Chou (1945) and Harlow and
Nakayama (1967).

The Reynolds stresses are related to the mean velocity gradients by

an effective viscosity hypothesis,

a<Ui> a<Uj>

puju, > = 2/3 pk 855 = Merr (axj +

o ) (2.9)
The velocity gradient term appearing in equation 2.9 is the only
possible linear combination of velocity gradients with the same tensor
propgerties as the Reynolds stresses: both sides of the equation are
symmetric and contract to zero. It will be noted that this expression
is analogous to the stress-rate of strain relation for a laminar flow;
the important difference is that the effective viscosity is a function
of the flow rather than of the fluid.

On dimensional grounds, at least two scaling parameters are needed
to relate the Reynolds stresses to the rate of strain. These may be
chosen as a velocity scale, v, and a time scale, 7. One time scale may

be deduced from the velocity gradients;

c . (6<Ui> a<Ui> _%
= tox, d
S B

(2.10)

however, as the macro time scale of turbulence, Tt = k/c , has been

*
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found to be independent of T_ in simple shear flows, Limley (1970),
the two scaling parameters must be independent of the mean velocity
field. Various authors' proposals for the two scaling parameters are
given by Launder and Spalding (1972). A convenient choice, aad the
one employed here, is that of k and €. Thus,

_ 2
Myge = 0O ke (2.11)

With a knowledge of < uiuj> and ¢ , the tramsport equation for k,
equation 2.6, is closed except for the turbulent transport term, C'.

This term is modelled, by analogy with lamirnar transport, as

Hesf 3k o
1 = - om————— ———m— -
% p <uiujuj> +<p'up> o ox, (2.12)

Thus, the modelled kinetic energy equation reads,

<U>
Dk 3 Heff ak
p—= = ( ) u, > - pe (2.13)
Dt axi °k 1 3 axi

Jones'! main contribution to this model was his proposed closure
of the dissipation equation. However, like most previous attempts at
this feat, the justification for the modelling was incorrect, the orders
of magnitude of the exact and modelled terms differing in most cases,
Rodi (1971). A full discussion of the modelling of the dissipation

equation is given in the next section. The modelled form is,

u 0<U.>
2= (22 L £ cuus —L 4

t Qxi o axi

o

:;) (2.1’-})

!

p

o

The complete closure, model I, comprises the transport equations
for k and €, equations 2.13 and 2.1k4, together with the expressions for

the Reynolds stresses and effective viscosity, equations 2.9 and 2.11.
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The values of the five constants, Cu, cel’ 082, d and O uged in the

calculations are given in table I together with the basis for their choice.

2.3.2 The Reynolds Stress Closures (Models II and III)

Again, the models presented here represent the suggestions of
several authors, the specific models being assembled first by Ilaunder,
Reece and Rodi (1975). The terms in the Reynolds stress equations
representing turbulent transport, dissipation and redistribution are to
be modelled; the modelling of the redistribution distinguishing the two
models. |

Launder et al. presented two modelled forms of the transpor; term.

The one employed here, originally proposed by Daly and Harlow (1970), is

2 _ 2o ok 3
axi p<uiujuk> - ox; (cs Pe<W%> 3% y <u:juk>) (2.15)

The pressure=velocity correlation contribution is ignored. The modelled
term is again of the gradient diffusion type but the magnitude of the
diffusive coefficient depends upon the direction. The tensor properties
of each side of equation 2.15 are the same, being second order tensore
gymmetric in j and k. However, if the term inside the derivative is held
to represent the triple correlation then the tensor properties of the exact
and modelled terms differ. Noting this defect, Launder et al. proposed a’
more complicated model with the correct tensor properties vhich was not
employed here because the simpler model was found to produce better
agreement with experimental data.

The dissipation term was modelled on the assumption that, at high

Reynolds number, the suall scale turbulence is isotropic. Thus,

= % pe %k (2.16)
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As vas mentioned above, this modelling is a subject of controversy and
will be discussed in section 2.4. For the moment, suffice it to say
that, if the dissipation is anisotropic, the neglected part has the
properties of a redistribution term and hence the modelling of the
pressure scrambling may be thought to include this term as well.

The redistribution term is of paramount importance for, in
conjunction with the production, it governs the level of .anisotropy of
.the Reynolds stresses. The fluctuating component of pressure appearing
in the redistribution term may be eliminated by Green's theorem applied
to the Poisson equation for p'. Thus, faf from walls where the surface

integral may be neglected,

2 U>‘
au. a< um) aui o) d vol

0
i 3
) axj> * 2(‘c)x =) <(ax2 oxy X -y

(2.17)

i
<p' '_3 >= %1; <(ax %

vol

%53,1 %54,2

where the terms with and without asterisks refer to the points x and y
respectively. The first term is modelled after Rotta (1951),

4+ o

41 T ~C_, pe/k (< uus> = 2/3k 65 ..) (2.18)

%15,1 ij

This represents a génd towards isotropy at the rate of the turbulent
time scale and has a magnitude proportional to the anisotropy. Both
Reynolds stress models incorporate equation 2.18.

If the flow were homogeneous, the mean velocity gradient appearing
in 913,2 can be removed from the integral which then has dimensions of
Reynolds stress. The term lends itself, therefore, to be modelled as
a linear combination of velocity gradients multiplied by Reynolds

stresses: Launder et al. propose two such models. The first, which is

embodied in model 1I, is

€
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055 0% 0550 = ~Cp (B -2/3 Pgyy)

vhere Pij’ the production of < uiuj> y 18 given by

[}

<VU.> 3<Ui>
Pi;j = = p< uiuk>—_Laxk - p <ujuk> o,

and P, the production of kinetic energy, is equal to % P... The term

(2.19)

(2.20)

tends to counteract anisotropy by diminishing the effects of enisotropic

production. Equation 2.19 does not, however, satisfy cne of the

requirements of the exact expression. Launder et al. proposed a second

closure which is in accord with this restraink;

055.2% %52 = ° (c92 + 8)/11 (pij -2/3 P 513)
*U.> =<U>
i i

- (3¢, - 2)/55 ok (5= + 5—b)

- (8062 - 2)/11 CDij -2/3 P aij)

U U >

where D.. = - pcu.u> ¥ - p<uu> > k

1j 4 Y %, i'K X

Equation 2.21 is the closure employed by model III.

Each unknown term in the Reynolds stress equation has now been -

modelled and the result reads

<u.u>

P BT Uy 5 (c P <112uk> 3 ) + P,

ij

2
Cp ¢ &/k (Cwuo> = 3k, 0) + (o), 5

/3 pe 85

* o5,

)

J

(2.21)

(2.22)

(2.23)
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the second part of the redistribution term being given by equation
2.19 and 2.21 for models II and III respectively. |

The dissipation equation used with the two Reynolds stress models
is the same as for model I, equation 2.14, except that the transport is

modelled in a similar way to that of the Reynolds stresses. Thus

De _ 3 k ey, £ ,
Pt = (c.pz< U3 vy o)t § Ceg PP Cepe)

Bxi 3

Six constants appear in each model, cgl’ Cga, Cel, cea' Cs and C.:

the values used in the calculations are given in table I.

2,3.3 Wall Functions

As the models described above are intended for flow regions with
-high Reynolds numbers, a special treatment is needed close to a wall.
Rather than introducing low Reynolds number terms into the models and
solving the equations up to the wall (a region of high variation of
turbulent quantities), instead, the near wall region is approximated by
Couette flow solutions based on the logarithmic law of the wall.

Let the subscripts w and p refer to points on and near the wall
respectively and y be the normal distance from the wall. The following

normalised distance and velocity are defined:
+ P aY
= k C
Y., = P ( P i ) Yp/ H

1 +
u = & In
3 B

The wall shear stress is then given by,

o+

<U > N
o= &) - 2 2
W oy ‘w Y +
P u P

(2.24)

(2.25)

(2.26)

(2.27)
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The value of £ near the wall is prescribed by,

ep = @F1) ey, (2-28)

and the integral of e from the wall to yp, which is required for the

kinetic energy and Reynolds stress equations, is given by

p .
edy = (¢ % k_) 32 ¢ (2.29)
Hop D
(o]

The flux of Reynolds stresses to the vall is zero. The wall law

~constants k and E take the values O.4 and 8.8 respectively.

2.4 Assessment of the Closures

In this section we consider the success that may be expected of
the closures described in the previous section. The detail provided by
these models is satisfactory and they are quite gemeral; also,it will be
seen in Chapter 4 that they are adequately economical. The question
that remains is: For a given situation, what accuracy may be expected?
The answer lies in the closeness to which each model satisfies the three

requirements enumerated in section 2.2.3.

2.4.1 The Effective Viscosity Hypothesis

The second condition applied to an effective viscosity hypothesis
requires that the value of <'uiuj> at any point be uniquely related to

the values of k, ¢ and a<Ui>

at the same point. However, as can be
axj

seen from equation 2.5, the Reynolds stresses may be transported both by
the mean and fluctuating velocities and so, for the condition to be

satisfied, the flow must be such that the transport terms are negligible.

®
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This implies that the velocity gradients and Reynolds stresses must be
nearly homogeneous. Further, for a high Reynolds number nearly homogeneous
flow, it is reasonable to assume that all macro-scales of turbulence are
proporiional and so the two scaling parameters, k and ¢ , together with
the velocity gradients are sufficient to determine the Reynolds stresses.
As the restriction to near homogeneity ensures that the first condition
is satisfied, it only remains to be considered whether the effective
viscosity hypothesis, equations 2.9 and 2.11, is the correct relation
between stress and rate of strain.

- In a nearly homogeneous shear flow, Qith & U> /ax2 as the only

non~zero velocity gradient, Champagne et al. (1970) meésured

23 % 3

. o where aij = <uiua> /k=-5/3 Gij
33

815 = 35

whereas, at best, equation 2.9 predicts

81 = 8p < 833 = 0 . 8y = P

Thus, as the mechanism that causes the inequality of the normal stresses
cannot be accounted for with the isotropic viscosity hypothesis, it must
be concluded that the form of the relation is incorrect. Pope (1975)

considered the possibility of a more general effective visocity hypothesis

both for three dimensional flows and for flows expressible in two dimensional

Cartesian coordinates. The main findings of this work are summarised here.

By defining the following non-dimensional quantities,
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- -2 ' z0)
aij - <uiuj >/k /3 61j ] (2')01
6<Ui> B<Uj>
3 i
" 3<Ui> 3<Uj>
i3 = % k/€ (axj - axj_ ) ' (2'32)

the problem may be reformulated as that of determining the tensor

Hﬁj such that

34 = Hﬁj (8, w)e. , (2.33)

A consideration of the properties of the tensors, a, s and u, reveals that
the most'general expression for Hij is a finite tensor polynomizl in terms
of all the linearly independent second order tensors, Tij’ vith zero trace
that may be formed from s and w with coefficients, G, depending upon the

invariants of 8 and w . Thus,

55 13 (2.34)

For simplicity the following abbreviated notation will be introduced:

BWw = By ukj’ BuBW = Bik ® k1 Sim “’mj’ etec.

2 _ -4 _
8 = sikskj y {87} = Biye Bley? etc.
I 1\, 2 l’i=j#a
o= 8 s ' = § . =
1J 2 W 0,ifjemdiz=j=a

vwhere,for two dimensional flows, o is the direction of invariance.
(This is equivalent to considering the matrices associated with the tensors).

%
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In this notation, for the general three dimensional case there are

ten tensors, T, and five variants,

Tl = B T2 = B =wH
P = -1 62/ L R P W,
P = ws® - 5% ® - w2§ + w? - 2 (0 1/3
T7 = (nswa - masm T8 = 8w 52 - szm s
- - wis® + s%na - 21'{52 ma}/B
PO, 22 22

and (8%}, W2}y 16 + (W8 » {0287 -

For the two dimensional case there are three tensors and two invariants,

© = Ys1-31,
Tl = s
T2 = BW = ws

end {s°} and {w 2} .

The significance of equation 2.3L4 is now seen to be that the Reynolds
stresses are a known function of a finite number of known tensors and fhe
same number §f unknown scalars. The unknown scalars are in turn a function
of a finite number of known invariants. For example, the task of formula-
ting an effective viscosity hypothesis for two dimensional flows has been
reduced to that of determining three scalars which may be functions of
only two invariants. The influence of the functions may be demonstrated
by writing in full the values of a given by equations 2.33 and 2.34 for

the two dimensional flow measured by Champagne et al. (1970).

©
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.all = -1/6 c° B N N :;:l> )2
ay, = -1/6G° . e . 43 6® (ki -:}:{-’i )2
B3 = W36 |

o = 26 KL sz .
a13 = a23 = 0

It is éeen that Gl does not influence the normal stresses and that G°
and G2 do not influence the shear stress. A finite value of G2 causes
a1 and 8y to differ and G° enables a33 to depart from zero. Clearly
if G° and G2 are set to zero, as is the case in an isotropic viscosity
hypothesis, then the observed differences between the normal stresses
cannot be predicted. This inherent deficiency in isotropic viscosity
hypotheses suggests that they will provide an inadequate closure for
more complex flows, where more than one component of Reynolds stress is
required to close the mean momentum equations.

It has been shown that the general form of an effective viscosity
hypothesis is equation 2.34 and that the values of G implied by the
isotropic viscosity hypothesis are incorrect. As it has alsc been shown
that in a homogeneous flow the Reynolds stresses are uniquely related

tok,e and O<%i> , it is not surprising to find that for this
ox

J

gituation the mﬁdelled Reynolds stress equations reduce to a relétion,
albeit implicit, between these quantities. Thus, the unknown functions,
G, may be deduced from the modelled Reynolds stress equation: this was
done for the case of two dimensional flows. As we wish to apply the

model to flows that are only nearly homogeneous, it is desirable

*
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to approximate the transport terms in the modelled Reynolds stress

equations. Rodi (1972) suggested the following approximation.
<uiu o> <uiu >
(transport of'<uiuj>)=’-—iél- (transport of k) = -—TEJL- (P - pe) (2.35)

Substituting equation 2.35 into the Reynolds stress equation of medel III,

equations 2.21 and 2.23, yields,

a = =g [bys + b, (as + sa - 2T {as} /3) = by (aw < wa)l | (2.36)
where b, = 8/15
' b, = (5-9c_,)/11
b =

3 (7002 + 1)1

-1
(c%1 + P/pe -1)

1
n

By exploiting the tensor properties of T, the values of G appropriate to
equation 2.36 may be deduced and lead to the proposed effective viscosity
hypothesis, A

H

=20, [s + b5 (su-us) + gb, {7} (21 /3 - 1) (2.37)

where

=
|

3 b,6(1 - 2102} 'b§ & - 2/3v2 ¢ {2} )t (2.38)

The choice of GT, and consequently C, » is of paramount importance
as it dictates the predicted shear stress level. Figure 2.1 shows the
variation of C, , given by equation 2.38, as a function of ¢ and &,

where

Gla2) )t

m

t

(40P )2
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This variation of %1 may be compared with previous suggestions

indicated below.

Model I %i = constant
Rodi (1972) ¢ = ¢ (p/e)
Bradshaw et al. (1967) Cuétd-l

(a o s/c may be considered as a tensor invariant expression of Bradshaw
et al.'s hypothesis, a, = constant).

While the two latter expressions are in accord with the present
proposal in that they predict a diminution of C11 with increasing o,
none of the above expressions allows for any dependence of Cn upon
the rotation invariant, @ . This omission is tantamount to assuming
that the Reynolds stresses are materially indifferent; that is, to
assuming that the Reynolds stresses are unaffected by solid body
rotations. The use of this unfounded assumption is most likely
responsible for the short-comings of these isotropic viscosity hypotheses
in predicting flows with streamline curvature, see for example
Bradshaw (1973).

On the basis of the above considerations, the effective viscosity

hypothesis of model I may be assessed as follows:

(1) for nearly homogeneous flows the Reynolds stresses may be
uniquely related to k, € . and velocity gradients: that is,

a constitutive relation for < uiuj> is possible.

(ii) the form of the relation is incorrect; the assumption
that the principal axes of stress and rate of strain are
coincident is not borne out by experiments.

(ii1) the lack of dependence of the dominant parameter, C.

U
the rate of strain and rotation invariants suggests that

, upon



the model will become more inaccurate as the flow departs

from homogeneity and plane shear respectively.

2.4.2 The Dissipation Equation

The dissipation equations of all three models, equations 2.1k and
2.24, differ only in the turbulent transport term. Attention will be
focussed here on the source term, S. , which is common to, all models.
This term is possibly the most important part of the turbulence models:
assuming that the viscosity hypothesis or the modelled redistribution

term provide an adequate description of the Reynolds stresses, then the

predominant unknown in the kinetic energy equation is the dissipation.
Thus, the source term not only affects the dissipation but it has an
important, though indirect, effect upon the kinetic energy. As these
two quantities, k and ¢, serve to set the turbulent scales, an error
in S ¢ may be expected to produce considerable errors not only in k and
but also in the predicted velocity field. Rodi (1972), who solved
equations for k and for the quantity kS/é/é, examined the influence of
changing the constants in the model on the spreading rate of four free
ghear flows: while a 5% increase in C y resulted in a 2.5% increase in
the spreading rate, the same increase in the constants analogous with
C

and C _,, resulted in 1l¢ and -8% increases respectively. This

el 2
observed sensitivity of the spreading rate to changes in S€ confirms
£he important rdle played by the source term in governing the rate of
change of the turbulent scales.

Before assessing the modelling of the source term, the mechahism
of the dissipative process will be considered. Dissipation is defined

as the negative source term in the kinetic energy equation associated

with viscous processes, i.e.

ou,
e = B < ._302:>
p axi

£
<

(2.39)
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If the Reynolds number of a flow were increased by decreasing p , it
would be found that, below some value of |i,¢ remained constant. Thus,
vhile equation 2.39 defines € , it is not very useful conceptually. In
order to obtain a more meaningful definition of € the spectral energy

equation ig considered,

oF () .2
DEG) ~ p() R0 5 - B s (2.10)

where E(K) is the .energy per unit wave number, K, and P(c) is the
production spectrum. The next two terms represent the gain of energy due
| to transport in position and wave number spaces respectively; the final
term is the dissipation spectrum. Integration of equation 2.40 with

respect to K from zero to infinity gives the kinetic energy equationj

from the definition of E(x),

w
Kk = JE(K) dKk (2.42)
A .
2
e = fH%- E(k) dk (2.42)
[+]

The nature of the spectral energy equation is such that, at high
Reynolds numbers, the dissipation term is only significant at high wave
numbers whereas the other terms (except the transport in wave number
space) are only significant at low wave numbers, see for example Tennekes
and Lumley (1972). Consequently, wave numbers K , amd Kk (Kl<k 2) may

be chosen such that

.00

f E(X) da& < Y (2.43)

1l
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[« o]
plk) - %;T L (%) de < v (2.44)
Ky R
Ko |
and sz E(k) dc < v (2.45)
o .

where v is an arbitrarily emall number. Thus, integrating the spectral
energy equation between K and infinity yields

F‘K(K'L) =] «2 .“;JE(K) dk = e.\ o (2.46)
" .

Hence, dissipation may be regarded as the flux of energy through wave

number space in the region 3 < Kk < Ky

The advantage of the conception of dissipation given by equation

2.46 over its definition, equation 2.39, is twofold: first, the objective
of finding an expression for &€ which is independent of u is achieved
and, secondly, FK(Ki) pertains to lower wave numbers than does € .

The significance of the second point is that changes in FK(Ki) may be

attributed to changes in E(k) in the range O<k<x the same range

o<U.>
Bxi . The

physical implications of formulating a constitutive relation for the

1’

that is influenced by known quantities such as< uiuj> and

source of dissipation now become apparent: at a given point in space,
changes in §<0<l) must be assumed to be uniquely related to changes in
EG<) vhich in turn must be uniquely related to known quantities.

It wvas stated above that changes in Fk(K 1) could be attributed to
changes in E(c) and so the first assumption appears reasonable. However,
as the flux of energy in wave number space is not instantaneous, a change

in E(k) will not have an immediate effect upon Fk(Kl). The characteristic

b
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time scale of the energy transfer is T_ and consequently, as T, is not

t t

small compared with the time scale of the mean flow, changes in FK(Kl)
at a point are due to changes in E(x) within a significant volume around
the point. Thus, in order to satisfy the first assumption, ihe flow
should be such that the behaviour of E(x) within a volume may be

determined from its behaviour at a point: this implies either homogeneity

or gome form of similarity, that is

E(k) = E* (x*) k3/2 T, ' (2.47)
where k* = K(k%Tt) ig the normalised wave number and E*, the normalised

. energy spectrum, is not a function of x. The full transport equat;on for
BE(<) may not be written in self similar form because U » appearing in the
last term, is independent of the turbulent scales. However, as the low
wave nunber part of the spectrum is independent of this term, the rest

of the equation may take similar form providing that all the quantities
are homogeneous when normalised by the scaling parameters which in turn
must change at a constant rate. Thus, in these circupstances, the source
term can be related to local quantities and indeed it follows directly

that the dissipation equation must have the following form:

2

De _ € ‘
PHT = PE— X comst. (2.18)

The condition of similarity is~seen to be sufficient for a constitutive
relation for S_. to be possible; it only remains to determine the éon-
stant in equation 2.48. Ae the normalised Reynolds stresses and rates of
strain are also constant their invariants may be used to complete the
constitutive relation; further, as the conditions of similarity imply
that the rates of strain determine the Reynolds stresses, only the rate

of strain invariants need pe considered. The dissipation equation
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incorporated in the models presented in section 2.3 was developed and
tested in two-dimensional, near-equilibrium boundary-layer and free
shear flows where only one velocity gradient was significant. Thus, it
is not surprising that the source term was modelled as a linear function
of the only non-zero independent invariant of the rate of strain tensor.
Since, in general, there are five independent invariants there is clearly
scope for extending the modelling to more general situations. Bradshaw
(1973) and Priddin (1975) have criticised the form of the dissipation
equation in particular relation to flows with streamline curvature and
such flows will be poorly represented by the present source term. In
this context, the rotation invariant, #{wa} s is of particular inﬁerest:
in a two-dimengional shear flow without streamline curvature it is equal
to the rate of strain invariant, {92} o« Thus, the dimensionless
parameter ({wz} + {52} ) /'({wz} -'{82} ), which is unity for solid
body rotation, zero for parallel shear flow and -1 for plane strain, may
be introduced into the dissipation equation to account for streamline
curvature without altering its performance in parallel shear flows.

Equation 2.48 is a direct consequence of the conditions for
similarity: the significance of the preceding discussion is that
similarity is not only a sufficient condition for a constitutive relation
for § _ to be possible but it is also a necessary condition. It must be
conceded, therefore, that any modelled dissipation equation, closed by
quantities pertaining to low wave numbers, has no foundation in non-
similar flows. Few flows, and none of practical impoftance, are exactly
similar; it is important, therefore, to assess the degree of non-
similarity in various types of flow and to estimate the possible error in
their calculation due to the inappropriate dissipation equation.

In shear flows, such as boundary layers, jets and wakes, the

Reynolds stresses and velocity gradients normalised by the scaling
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parameters are approximately homogeneous; the values of <uiuj> /k and
P/p ¢ vary slowly across the flow. In addition, for boundary layers and
for free ghear flows that exhibit profile similarity, the rate of change
of the scaling parameters is constant. Thus, these flows display approxi-
mate similarity and can be expected to be fairly well represented by a
turbulence model incorporating the dissipation equation.

For more complex flows, such as the flow behind a bluff body, neither
of these properties may be assumed. In order to estimate the magnitude of
the changes in the scaling parameters, consider the turbulent time scale,
Tt = k/€ in a plain jet with centre-line velocity Ub and half width y%.

. Applying the effective viscosity hypothesis of model I to this sitgation

T, may be deduced.

t
o<U.>
. _ k 2 L. 2 2
1= P/pe =G (G —-—ale )= C T (%Uo/y%) (2.49)
J .
thus; Ty = a? (2 ﬁ%)z 7 3y, (2.50)

0

A physical interpretation of equation 2.50 is that the time taken for

energy to pass from the lowest to the highest wave numbers of the

energy spectrum is equal to the time taken for a particle on the centre=-

line to pass seven half-widths downstream. This observation highlights

the difficulty of relating the source of dissipation to local quantities.
The rate of change of T, may be estimated by taking the Lagrangian

derivative of equation 2.50;

g

t = %Uo _g;x_ (C}_l-% 2%.%) = (Cu'%+ 1) -g;i = W42 (2051)
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(The value of g;i is taken as .103, a value obtained by several workers,
" gee Rodi (1972): the multiplier, %, indicates that the derivative is
taken at the half width.) It is interesting to note that, assuming
diffusion to be negligible and that production is equal to dissipation,

the modelled dissipation equation gives,
— = - C = -1}5 (2'52)

As in general T is large compared with the mean flow time scale and
DTtZDt is not small compared with unity, T, will not change at an agproxi-
mately constant rate in rapidly changing flows such as those behind bluff
bodies. Consequently it must be concluded that calculations of such flows
will probably be subject to an error due to the irapplicability of the
dissipation equation: the magnitude of the error is difficult to estimate
but calculations, presented in Chapter 5, suggest that it is large.

The expected failure of the dissipation equation in rapidly changing
flows is attributable to the impossibility of relating the source of
dissipation to local quantities: neither< uiuj > nor acUi >/dx j provide
sufficient information about changes in the energy spectrum. An
alternative approach is to solve a modelled equation for E( ) and to
determine k and € from equations 2.41 and 2.46. This approach is
attractive because it introduces additional information and obviates the
need for a dissipation equation: the unknown terms, P(K), Fx(K) and FK(K),
may be expected to be well approximated by functions of the known quantities
even in rapidly changing flows. The disadvantage is one of economy: the
additional independent variable, , increases the dimensionality of the

solution space by one and consequently the computational effort needed to

solve the equations, although not prohibitive, is increased considerebly.
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2.4.3 The Redistribution Term

Equaticn 2.17 provides an exact expression for the pressure-velocity
gradient correlation in terms of velocity alone. The appearance of a
volume integral in this expression immediately calls in question the
validity of modelling the term by local quantities. In order to assess
the possible error in the modelling for inhomogeneous flows, the behaviour
of gij,z is considered as the flow departs from homogenei?y. The two point
correlation may be expressed as the sum of a symmetric and an anti-

symmetric part,

<u@ w G+ =R, G +R, 1 (2.53)
where R, (x, r) = R (x, -r) ' (2.54)
énd R & p) = Ry (x, -r) (2.55)

Thus, expressing the averaged velocity gradient as a Taylor's series
and neglecting third order terms, the second part of equation 2.17 may

be written as,

2
2n __ iy J 0B &
p. 1ij,2 0% ) or.ory |r|

m j 1l
' vol
. 3 <8<Uf> 3 ) ale Sg;
axn 0xX ox n arl |r|
} J vol _
xU> : aZR! dr
- () r im = (2.56)
axn axm n ar‘_i ar:L | r|
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For homogeneous flows, the derivatives of velocity gradients and of the
volume integrals are zero as is the anti~symmetric part of the correlation,
R'. Thus, while the first term is non-zero even in homogeneous turbulence,
the remaining terms are each products of two quantities, both of which are
zero for homogeneous flows: that is, all the second order terms are
identically zero. (Rotta (1951) came to the same conclusion but assumed

R' to be zero). The significance of this finding is that the first term,
which is essentially a local quantity, may be expected to represent gij,z
even as the flow departs from homogeneity: however, near walls, where the
surface integral cannot be neglected and where high derivatives of the
mean velocity are significant, this may not be the case. Thus, in spite

of the volume integral, it is reasonable to assume that e;: 5 can be

3,2

related to local quantities. The nature of Bij 1 is less well understood
b ]

but, as it pertains to smaller length scales than does 2; 3
3

j,2° it can also

be expected to be locally determined.

The specific form of 0; employed in model III, equation 2.21, is

Js2
a direct result of assuming the first volume integral in equation 2.56 to
be linearly proportional to Reynolds stresses. The same result was
obtained by Naot et al. (1973) who assumed a function for the two point
correlation. As the modelling of this term appears to be soundly based
‘both mathematically and physically there is little point in considering
more complex forms until the present model is found to be deficient. The
expression for eij,a used by model II, equation 2.19, vhich may be regarded
as a truncated form of equation 2.21, has the advantage of simplicity and
consequently economy. The resulting loss of accuracy may be estimated from
the calculations presented in Chapter 5.

The first part of the redistridbution term is considered in conjunction

with the anisotropic part of dissipation. Both terms, if finite, have the

effect of redistributing Reynolds stresses even in the absence of mean
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rates of strain. Launder et al. followed Rotta (1951) in suggesting a

modelled form_of gij,l

latter contention is supported by Iumley (1970) who argued that the

and assumed the dissipation to be isotropic. The

anisotropic part of the dissipation tensor decreases as the square root
of Reynolds number. . Ribeiro (1975), on the other hand, by a multi-linear
modelling of the two point joint probability distribution concluded that
gij,l is zero and that the dissipation is significantly anisotropic.
Measurements of dissipation by Townsend (1954) and Uberoi (1957), though
difficult to perform, support Ribeire's thesis.
As far as forming a closure is concerned, the source of the redistri-

.butive effect is immaterial. Measurements of the decay of anisotroPic
grid turbulence could serve to quantify this effect but the data of

Uberoi (1957), Uberoi (1963) and Tucker and Reynolds (1968) present a
confused picture, there being little agreement between the three similar
investigations. This being the case, the physical basis of the modelled
term must remain unsatisfactory until the experimental and theoretical

tools that are applied to small length scales become more convincing.

2.4.4 The Turbulent Transport Terms

The remaining terms represent turbulent tramsport and are all modelled
as simple gradient diffusion. As turbulent transport is zero in homogeneous
flows, its modelling may be expected to have a minor influence on the
prediction of the gross features of an inhomogeneous flow. This contention
is supported by Rodi (1972) who found that a 5% decrease in the diffusive
constants resulted in only a O.l4% increase in the spreading rates of free
shear flows. There are, however, flows in which the diffusion of Reynolds
stresses is important: ILaunder et al. (1975) predicted the asymmetric
channel flow of Hanjalic and Launder (1972) using models II and III.

The prediction of model III are very close to the data while those of

model II, although reasonable, are less accurate. Thus, simple gradient

*
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diffusion provides an adequate representation of the turbulent transport
vhich is the predominant feature of this flow. It is to be expected,
therefore, that the models will not be found lacking due to the closure

of the turbulent transport terms.

This chapter has been concerned with presenting and assessing methods
of determining the Reynolds stresses in order to close the mean momentum
equatioﬁs. The three turbulence models used in the calculations were a
mean flow closure, model I (equations 2.9, 2.11, 2.13 and 2.14) and two
Reynolds stress closures, models II and III (equations‘2.19, 2.21, 2.23
and 2.24). The wall functions presented in sub-section 2.3.3 and the
values of the constants given in table I complete these closures.

A consideration of the mean closure approach revealed that the
accuracy of the models depends upon the satisfaction of the three conditions
enunerated in sub-section 2.2.3. The three models were examined in light of
these considerations and the isotropic viscosity hypothesis and the
dissipation equations were found to be particularly suspect. While an
effective viscosity approach is valid in nearly homogeneous flows, the
isotropic viscosity hypothesis fails to reflect experimental observations.
An improved effective viscosity hypothesis was proposed (equations 2.37 and
2.38) which has the advantages of providing a realistic model of the
whole of the Reynolds stress tensor and accounting for the effects of
streamline curvature. The form of the dissipation equation was found to
be appropriate to similar flows only. The lack of dependence of the
source of dissipation on the rotation invariant may also account for the
poor behaviour of the models in similar flows with significant streamline
curvature. For non-similar flows it was concluded that the dissipation

is without physical foundation and that considerable inaccuracies may be

%
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incurred. A model based on the spectral energy equation was suggested

as a possible means of overcoming this defect.
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CHAPTER 3
COMBUSTION MODELLING

3.1 Introductory Remarks

The previous chapter was concerned with devising methods for
describing en inert isothermal flow field: the principal aim was %o
determine the average velocity, < Ui>' We are concerned hgre with
determining not onlj <Ui> but also the averaged values of chemical and
thermodynamic quantities which characterige a turbulent reacting flow:
the determination of the temperature, <T>, the density, <p> , and the mass
'fraction of chemical species, <m 0‘>, forms thg principal objective 9f
combustion meodelling.

A practical combustion system may contain many complexities: the
fuel may take the form of liquid droplets or sclid particles and the
reaction may proceed through literally hundreds of radicals; soot formation
and significant heat transfer by radiation are common. Even if the flow
were laminar it would be difficult, therefore, to formulate a closed set
of equations to describe the flow; the reaction rates in particular are
subject to large uncertainties. As a first step to understanding such
complex systems, the restricted case of single phase, gaseous,adiabatic
flows in which the Reynolds number is high and the Mach number is low is
considered here. Bluff body stabilised flames, furnace flames and the
flow in gas turbine combustion chambers are, to varying degrees of approxi=-
mation, encompassed by these restrictions. In some circumstances the gross
features of such turbulent flames are found to be independent of thev
detailed chemistry involved, see for example Spalding (1975). There is
reason to believe, therefore, that a theory of turbulent combustion,
based upon instantaneous equations which contain some uncertainties, may

nevertheless be successful.
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The difference between a turbulent reacting flow and an inert isothermal
flow may be attributed to two agencies; the effect of the reacticn on the
turbulence and the effect of the turbulence on the reaction. The former
is due to changes in the viscosity and more especially in the density due
to the reaction: this aspect of the problem has been considered by Favre
(1969), Bilger (1975) and Bray (1973 and 1974). 1In section 3.4 the
influence of density variations is considered, employing tpe approach
advocated by Favre énd Bilger. The second effect, that of the turbulence
on the reaction, is of prime concern here and presents the most serious
obstacle to formulating a closed set of averaged equations which describe
the flow. In the next section, the probability approach, which hasybeen
applied to the Navier-Stokes equations by ILundgren (1967) and others, is
applied teo the equations of turbulent reacting flows. The resultant theory
provides a useful mathematical and conceptual framework on which an under-
standing of the mechanisms involved in turbulent combustion can be built.
Further insight is gained by applying the theory to idealised situations,
for which solutions of the equations are presented. It is appropriate to
mention that since Lundgren's (1967) work, several other authors, notably
Dopazo and O'Brien (1973), have exploited the potential advantages of this
and allied approaches to turbulent reacting flows: a recent review of such
works is provided by Murthy (1974). Consequently, the theory developed in
section 3.2, although independent of these works, is not entirely novel:
however, the level of closure chosen in sub-section 3.2.2 distinguiches
the present work. In section 3.3, where the present theory is compared
with combustion models currently in use, the physical foundations of these
models are.examined.

In the context of the prediction of bluff body stabilised flames, the
theory of section 3.2 offers the potential advantage over existing models

of obviating the need to assume very rapid reactions. However, as the
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epplication of the theory to idealised situations showed that its
quantitative performance is suspect and as the incorporation of the
proposed theory in a solution procedure for practical flow situations is
beyond the scope of the present work, the assumption of rapid reactions
was retained. Thus, the calculations of bluff body stabilised flames,
reported in Chapter 5, were performed witk a degenerate form of the theory
incorporating the assumption of rapid reactions. Calculations were also
made with thé eddy-brezk-up model for comparison purposes and the details
of the two models are given in section 3.5.

"The principal findings of this chapter are summarised in section 3.6.

3.2 A Theory of Turbulent Combustion

In this section a theory of turbulent combustion is presented in
whicﬁ assumptions are made in order to produce the simplest set of
equations that retain the essence of the problem. As some of these
assumptions are unrealistic, they are best regarded as axioms: the
contention that the resultant axiomatic theory reflects the physical
situation ig supported by the observation that the gross features of
turbulent flames are often independent of their detail structure,
Spalding, (1975). Thaf is, a simple set of equations is comsidered and
is expected to display the same gross behaviour as do the complex set of
equations which represent the system in every detail.

A reacting system can be characterised by the mass fraction of each
chemical species, the temperature and the pressure: an equation of state
relates these quantities to the density. Both the mass fractions and the

temperature are assumed to obey the transport equation

dpa,, . ?a
3 - 8 '
FT -3;; (pUi GOL) - axi g axi) * 8 a(g-’ P) (3.2)

w*



-~ 56 -

The last term in equation 3.1 implies that the source of the scalar is
not a function of the velocity field. This is always true when e,

represents a mass fraction but, when ¢

o Tepresents temperature, kinetic

heating must be negligible. The molecular transport of the scalars is
assumed to be of the simple gradient diffusion type with equal coefficients.
While such an assumption would undoubtedly lead to errors if a laminar
flow were predicted with equation 3.1, the discussion of section 2.4.2
indicates that the details of molecular transport are irrelevant to the
behaviour of a high Reynolds number flow.

- The further assumption of low Mach number is made to remove the

. dependence of Sa and p upon fluctuations of pressure. Thus,

S 4 (2,P) S {2 <P>)

s, (3.2)

and p (2,P)

p (9,|<P>)

p (2) (3.3)

Providing the source terms and the equation of state are knowm,
equationsg 2.1, 2.2, 3.1 and 3.3 form a closed set. An equation for
<oa> may be derived from equation.3.1 by decomposing oa into its

average and fluctuating values,

o, , <ga> + g'a (3.4)

There results,

N IR
3. 9 - 9 T oy 8 __ <« ' >
d P><hy> * ox, <pUi><g oo C ox. ( ax ) ax. [pUiJ a
, : - i i i
K- )
5T <P ea>+ <Sa(9_, > (3.5)

(where [pU,] = pr:L - <pUi>)
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The principal unknown term in equation 3.5 is the average reaction rate,
<Sa (a) >; the average density, <p(g_)>, is also unknown. As these
averaged quantities may be highly non-linear it is incorrect to assume

that

g, (@ = 5, (o) (5.6)

Indeed, it will be shown below that in some circumstances <S,(g)> is
independent of §,. The main objective of the theory is to overcome the
difficulty of modelling such non-linear terms and to this end the

probability distribution of g is considered.

3.2.1 The Joint Probability Distribution Egquation

First, probability is mathematically defined and some useful
consequences of the definition are shown. The instantaneous probability
of o, plo,), is defined such that the probability of o, being in the

range

~ ~

8,08, *+ dc;a is p(é‘a) de"a.

Clearly, the instantaneous value of p(é’a)d,éa is either zero or unity

and so p(sa) may be identified as the Dirac delta function:

p(ea) é(ga -0

o

) (3.7)

where 5(1 is the new independent variable representing probability space.

From this definition it follows that for any good function, h,

f w(5,) p(5,) 45, = nlo,) (3.8)

p=le o

and consequently,

<h(e,)> = f h(z,) < p(3 )> a5 (3.9)

- 00
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The joint probability of a set of n scalars, g = (el, 0y oc- Gn)' is
defined as the product of the individual proabilities of each scalar.

ple) = TT »e) = TTe (5,~9,) , (3.10)

a=1 o=l

Again, from the definition of p(3) it follows that

f h(e) ple) do = nle) (3.11)

- 0O

and consequently

(o]

<hn (gP =f b(@) < p(g)> d& o (3.12)
Thus, it is seen that with a knowledge of <p(”g)> the average reaction
rate, <Su(g)>, can be determined from equation 3.12.

de further results vhich will be used extensively below are

® n
~m a -~ - - _
J %u 552 [p(ga) h("a)] dﬂu = 0, m<n
= o
= (-1)" m!/(m-n)j{ g(m-n) p(3 h(3 ) d5 , ncm (3.13)
a a a a —
and
RG)=Ls(G -0) = Soa 2 @ - o) ___a_"aaé(a::"%)___aﬁgap(am)
; co : o . o ' o
' . | (3.14)

From equation 3.14 it is evident that a transport equation for p(5 )

ap(3 ) @
may be deduced by multiplying equation 3.1 by -~ —a—,er—'i— + Further, by
n S a

multiplying the resulting equation by TTp('Ea Q and summing for all o, a

Y=1
Y#o
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transport equation for p(z) is obtained, namely

n Gl
L top@1 +L-pup(@ =-  E-@¢ -——-?3;- +5_ ()3 (3.15)
o%y 2 9%

After manipulation, equation 3.15 may be averaged to give the joint

probability distribution equation

P(._) t < P(_)> + P(_) 2 < Ui> p@)> = ‘

. ) - o -
EA {1‘3;; < p(@)> - (@) <p(8) u;>}

(4) (B)

n n o4 G aie
- _—{<P(_)> 5 (._) z %; «p@)r = % >} (3.16)
a—- = 1 1

(c) (D)

The terminology applied to the various terms is as follows,

A - transport in x-space by laminar diffusion
B

- transport in x-space by turbulent convection

c - transport in g-space due to the source terms
D ~ transport in‘érspace by molecular action

The laminar diffusion term, which is neéligible at high Reynolds number,
contains no unknown correlations. The turbulent convection term contains
the unknown correlation < p(3) u,> vhich represents a flux of < p(3)> in
x-space. V¥hile this correlation is unfamiliar, it is directly analogous
to more common terms like <g' u, > and its behaviour is expected to be

similar. The most notable feature of equation 3.16 is that the term in
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Sa contains no unknowns, eand so there are no problems of modelling as
was the case with <Sd(§)>° The term,<p(§)> sa(g) represents a flux of
<pQ§)> in probability space due to the source.

The final tefm in equation 3.16 poses the greatest problem to
understanding as it pertains to the microscale. However, its role may be

demonstrated by integrating its moments to form a source term in equations

for <aY> and <gY' 2>,

o<e_ > .
Bt = esecoe 0 X
- (3.17)
<’ 2 N aQ’Y 2
e -2 @) 1D e
de. 2
= sesvee -2F< (J) > (3'18)
| oxy

Equation 3.17 indicates that the term does not influence the value of

<eY>: the same conclusion may be reached without reference to a

particular diffusion hypothesis. As the source term in equation 3.18 is
identically non-positive, the effect of molecular action is to reduce the
value of <e'$ >, While this result does depend upon the specific form of
molecular diffusion, the irreversibility of dissipative processes guarantces
that the source is-non-positive. Unfortunately, a satisfactory closure
approximation has not been found for this term. However, the probability

distribution of a single scalar is more amenable to analysis and is

examined further.

3.2.2 The Single Probability Distribution Equation

Clearly, the transport equation for the probability distribution of

a single scalar is given by equation 3.16 with n=l. As the potentially
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non~linear density is seen to produce no problems and the treatment
given below is essentially demonstrative, for simplicity, the density
will be assumed constant and equal to unity: +the laminar diffusion temrm,
vhich makes no contribution at high Reynolds number, is also ocmitted.
Thus, the transport equation for < p(6)> reads,

2=p(s)> = gxi <p(3) u;> - = (<(8)> 5(3) + & ¢ <p(6) r€e- ) >} (3.19)

As was mentioned above, the probability velocity correlation is similar to

terms such as <e'ui>. Consequently, it can be modelled in an analogous

manner &s

<p(z) u> = - kz/é gx < p(3)> (3.20)

The molecular action term contains the expression
3o 2.
() =p(E)r () >
i

)2
X5
fluctuations on the microscale while p(z) is dominated by large fluctua-

which is the correlation of two quantities: T ( pertains to small

tions associated with the macroscale. It appears, therefore, that the

two quantities are uncorrelated. Thus,

a(8)=< »(3) > <r( ) > : (3.21)

- 2
And, following the conventional modelling of <F(%§—) >
i

6(5) = ¢, <p(3)> £ < 0'® > (3.22)
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The modelled form of equation 3.19 then becomes

D . 3 2, @ N
-p'g<p(e)> = = ©C, ke '5;;<p(o)>

- 'g'é {<p(3)> s(3) + CZ-E- < 0@ 2 e p(8)>} (3.23)

This equation will be examined for inert flows (S(3) = 0): Integrating

the equation to form equations for <o > and <ra'2 > produces

D _ 3 2, 8<e> :
pE<e> = o G K/ i (3.24)
i 1
D %= 2 ¢ kz/ 2 0% 42 -}-{-2- (a—- )2 2C 212
Dt ? - axi 1 € axi 1l e axi <> 2 k< >
(3.25)

These equations are seen to be identical to those used by, for example,
Iockwood and Naguib (1975a) and, for consistency with these authors, the
constants Cl and C2 take values of 0.127 and 0.925 respectively. While
the consistency of equation 3.23 with previous models is encouraging, it
provides no check on the behaviour of the equation in probability space
and hence the modelling of G in particular is not validated. To this end,
the decay of the probability distribution in a stagnant, homogeneous flow

is considered. Equation 3.23 reduces to

2
at = <p(3)> = - ('a'2 ﬁ'< o'2> -a:?d?( 5)> (3.26)

vhich has a solution

2
<pGyt)> = (3,70 exp [ 4 (Bs =) ) (3.27)

vhere 3(t) = <z'2> 3 = 80 exp { - C2 -E- (¢t - to)} (3.28)
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That is, for this situation, an initially Gaussian probability distribution
remains Gaussian while its standard deviation decreases exponentially at a
rate proportional to the turbulent time scale. Similarly, a steady,
stagnant flow in which <g¢> varies linearly with x yields the following

solution of equation 3.23:

~ A -1 : E - <p> 2
<p(e,x)> (6v2r)™" exp { -3 (_a_) } , (3.29)

o«

where

(2 25> ch)él /2 (3.20)

Cl axi axi
Again, the probability distribution is Gaussian with a standard deviation
proportional to the gradient of < > multiplied by the turbulent length
scale. These solutions of the modelled probability distribution equation
are in accord with intuition and thus support the modelling assumptions.
However, in spite of the good performance of the model for the situations
considered above, it will be shown that modelling G by equation 3.22 is
not appropriate to more general situations.

Consider the probability distributicn ghown on figure 3.1l. The main
features of this distribution may be realised in turbulent reacting flows;
the distribution is bounded at ;1 and 54 vhere there is a delta function.
In the region Bl'<5 <54, <p(3)> may not be zero because this would imply
<% <p, may occur in which

2 3
<p(2)> is arbitrarily small. From consideration of the definition of G,

infinite gradients of ¢; however, a region @

for the general probability distribution outlined above, the followiné

properties of G may be deduced.

(1) G? O
(11) a =oror5<51
' and ; 2 ;h
(11) 22 < Ofor b, < § <,

., 0o
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2
The third condition is required because, if 2:% were positive, negative
g
values of <p(3)> would occur. Further, by integrating equation 3.19 twice

with respect to ¢ it is seen, from the other terms,that
(iv) G is finite and continuous.

It is apparent that, for the probability distribution of figure 3.1,

. the model for G given by equation 3.22 violates all the conditions except
for the first. These four conditions are sufficient to suggest a modelled
form of G: condition (iv) requires that G be an integral function of the
potentially discontinuous and infinite <§(6)> while condition (ii)

suggests the form

¢(z) = ¢, ﬁ- 5 2(3) (3.31)
where 6 = <g'2> E] R
P -
5() = f g @20 < plov) > aa‘g @) < p(o%)> do* (5.32)
(%] %]
_m 3

and g is any continuous function with g(O) = 0,

Conditions (i) and (iii) require that g be non-negative and that its
second derivative be non-positive. Thus, equations 3.3l and 3.32 form

a model for G which is consistent with the four conditions imposed by the
exact expression. However, a function g cannot be chosen that results in
the desired Gaussian behaviour for the idealised flows considered above.
It must be concluded, therefore, that the modelling of G is not
completely satisfactory although predictiocns based on it can be expected
to be qualitatively correct. In the absence of experimental data, the

choice of

g(y) = 1n (14y) . (3.33)
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used in subsequent calculations was based on an intuitive appraisal of
the shape of <p(5)> for various functions for g. The more obvious
choice of g(y) = y results in unrealistic multi-model distributions.
With the revised closure approximation for G the modelled equation
becomes |

%g<p(?:)> = a_x_ cy /e Lm <p(a)>

oA 0x; ‘

S RGO OZEAS T. YO (3.34)

The equation for <g'23 which results from integrating this
equation is no longer consistent with that employed by Lockwood and

Naguib and so C., may not be evaluated directly. The value 4.5 used in

2
subsequent calculations does, however, predict approximately the same

values of < e'%.

3.2.3 Applications of the Theory

In order to study the probability distributions predicted by the
modelled equation,a steady, homogeneous, isotropic flow was considered

in which equal quantities of fluid with values of Bl and o, were

2

homogeneously introduced and an equal amount of the resulting mixture
was withdrawn, the residence time being Ty The form of equation 3.34

appropriate to the situation is

N TR A %55
35 (5-5,) + 46-6,0 -<p(8)> = =— & C > (3.35)
1 2 T 2 ..,.72
. ' t . %o
The time scale ratio, TR/tt, (TtE k/c) is of great physical significance
for it determines the degree of mixing. Equation 3.35 was solved

numerically for various values of the time scale ratio and the resulting

distributions of < p(z)> are shown on Figure 3.2, It is seen that two

“
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limiting cases exist.
as  T/T, » 0, <p(5)> +3 [5(5-3,) + 6(5-5,)] (3.36)
as  T/T, > =, < p(a)> > 8(5-<0>) (3.37)

These two results are an inevitable consequence of the restrictions imposed
on the modelling of G. The real test of the modelling is the predicted
values of <p(5)> for intermediate values of the time scale ratio. In

the absence of experimental data the predictions can only be appraised
intuitively: there is no feature of the predictions that is contrary to
expectations.

The behaviour of the modelled equation with a finite source term is
studied by considering a similar situation to that described above. In
this case, a one step reaction takes place between homogeneously premixed
fuel and oxidant to form a single produckt. o represents the mass fraction

of product which lies in the range Elﬁ_ o <o The reactants are added

2.
to the system at E:El and the resultant mixture is withdrawn. For this

situation equation 3.34 becomes

5 (3-8,) - <p(B)>] = & [<p(3)> 5(5) + fﬁ B (5)1 (3.38)
s\e-g, <p\B)l) = %5 <p\s)> 'e Tt 3 \P .

i

TR

The specific form of the reaction rate will not be defined at this point
except to set it to zero at E:El and E:Ea and positive for El< 2 <éé.
E=E2 corresponds to a situation where all the reactants have reacted,
hence S(EZ) = 0: at E:El where there are pure reactants, in a typical
premixéd flame, the temperature is too low for reaction to take place,
thus S(El)=0. The time scale of the reaction, Tk,is taken as the

inverse of the maximum value of S(E), and the normalised reaction rate,
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s*(s), is given by

52() = 1 5(s) (3.39)

Equation 41 may now be written in the form

i3 % 7~
~ o~ ~ - a R ~ ~ ~ R aH <)
S(e-el) -<p(a)> = v [—TK < p(8)> s*(3) + C,0 —Tt _-(—zas ] (3.40)

The averaged reaction rate may be obtained from equation 3.40 by multiplying

by % and integrating
<s(oP = (<o> = By )5 | (3.10)

The form of the sdlution of equation 3.40 will be demonstrated for the
nine situations characterised by each of the time scale rations being
either zero, finite or infinite. These solutions are more clearly demoa-~
stfated by taking the definite integral of equation 3.40:
8 T T ~
f 5(-o)) - <p(3)> @5 = = < p(3)> 54(8) + 5 Cpo W) (5.4

K 2 oo

0

Inspection of equation 3.42 reveals two important ccnclusions.

First, a trivial solution, given by

<p('é)> = G(B-”él) ;$ <> = 'él; < S(o) > =0, ’(3.43)

exists regardless of the values of the time scale ratios. (For this

- golution, each term in equation 3.42 is zero). Secondly, a necessa.:t'y
condition for another solution to exist is that both time scale ratios

be non~zero., If 'L'R/'L‘K isg zero, <S(e) > is zero and hence equation 3.41
becomes the trivial solution. Physically, fluid at 0=0, is introduced

tending to decrease <g > as the mixing term cannot alter the value of

<p> the result is a tendency toward the trivial solution. If 'L'R/'tt is

*
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zero, the fluid introduced at E=El has no way to pass to higher mass
fractions since <p(5)>S‘(5) at 5=51 is zero. This observation highlights
the importance of the process referred to as back-mixing whereby, hot
combustion products mix with cold reactants, raising their temperature
until reaction is possible. Thus, the five situations characterised by
combinations of time scale ratios in which one or both is zero result in
the trivial solution only.

The first situation of practical interest is that in which TR/Tt > @
which TR/TK remains finite. In order that the mixing term in equation
3.42 remains finite 3 must tend to zers. Thus, the probability
distribution will tend to a single delta function which, clearly, is

centred on <g > i.e.

<p(a)> = §(3 - <o) (3.44)

The averaged reaction rate is given by

<S(e)> =‘{ s(3) <p(8)> a8 = s(<e>) (3.45)

and hence, from equation 3.4l

<@ > 61 + S* (<o >) TR/TK (3.46)

It is seen that in this situation, which corresponds to a perfectly

stirred reactor, equation 3.6 is valid, i.e.

<S(e)> = sfeo>

It should also be noted that equation 3.46 may have one or more than one
solution; one being the trivial solution. As an extension of this
situation it is seen that as TR/TK tends to infinity also, in order to
satisfy equation 3.46, <g > must take a value such that S*(<g>) is close

to zero. Thus, in the case where both time scale ratios are infinite
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a solution is given by
<ple)> = &(5,-5) (3.47)

that is, all the reactants are converted into products.

The final case for which an analytic solution is presented is that
in which TR/TK tends to infinity while TR/Tt remains finite. It is for
this situation that the eddy-break-up model of Mason and Spalding (1973)
is intended. The form of the solution is again found by examining 3..42
and noting that the reaction rate term can remain finite only by <p(3)>

being comprised of delta functions at 51 and 62:

oGP = asled) + (1-a) 5053, G

Substituting <o > given by equation 3.48 into equation 3.4l gives

<S(g) >

(1-a) (5,-5,) / 7y | (3.49)

Now, if equation 3.42, with <p(5)> given by equation 3.48, is evaluated

at the limit as @ tends to & there results

1+
' T
_ _ _R 1lim " o= R . 1lim aH§62
(l a) = 'E; §+51+f p(e)> S (e) + 02 ‘;; 8 5+51+ ¥ (3.50)

As the limit of the first term is zero, equations3.49 and 3.50 may be

combined to give

< S(a)>

max o>a.

20/, 58 Lim gg g ©(3.51)
14

where

8o = 3 (6,7%;) (3.52)

is the maximum value that o may obtain. The notable result is that, as

TR/TK tends to infinite, the averaged reaction rate remains finite and
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is independent of both tR/TK and S*(5). As is implied by the name of
the eddy-break-up model, the reaction rate is directly provortional to
the rate of back-mixing. ZEvaluating the 1limit of the differential, the
averaged reaction rate is given by

~ "~

]
<sle)>= 206/1, £— In(1+—"2 (3.53)
max

Comparing this result with the eddy-break-up model

’ <é(g)> = Cggy ?(,/1:t | . (3.54)

& relation for the eddy-break-up "constant" is obtained;

"~

8 ngax
Cogg = 36, 2 (1 + z ) (3.55)
max :

The variation of CEBU with S/Qmax is shown on figure 3.3 and should

be compared with the values of .53 and 1.0 used by Mason and Spalding (1973)
and Khalil et al. (1975) respectively. It appears that Cony

by equation 3.55 is too large, however, the assunption of very fast

given

chemistry in the flow situations of the above authors may not be completely
valid. It may certainly be expected that near complete combustion the
reaction rate will be very rapid but, at the cold end of the probability
distribution the reaction rate will still be small. Thus, in this

The

situation a delta function may be expected at s=o0., but not at o=¢

2 1’
effect of finite rate chemistry over a region of probability space is to
decrease the averaged reaction rate and hence to make the effective eddy-
break-up constant smaller than that predicted by eguation 3.55. ¥hile
this is a possible explanation of the discrepancy between the constants

and while the influence of finite but large reaction rates should be borne

in mind, the calculations preéented in Chapter 5 reveal the same dis-

crepancy; consequently, it must be conceded that this result of the
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theory is quantitatively incorrect.

It is worth noting that had the function, g, been chosen as g(y) =y

then the theory would predict the eddy-break-up model with CEBU = 02;
the value of C2 appropriate to the new function, g, would, of course, be

different from that quoted above.

In cach of the above cases, where one or both of the time scale ratios
tend either to zero or infinity, it has been shown that the probability
distribution is known a priori. The solution of the probability distri-
bution equation is, therefore, unnecessary. However, these situations are
idealised and in practice both time scales are finite, it is for situations
of this type that the probability approach is intended. Equation 3.40 was
solved numerically for various values of one time scale ratio vhile the
other was held at unity. Figure 3.L shows the predicted reaction rate
against TR/TK for TR/Tt = 1 and figure 3.5 shows the reaction rate against

'I:R/'l:t for TR/EK = 1. The normalised reaction rate was given by
525) = W(o,ay) (mby) (5,m0)72 (5.56)

In both cases the predictions follow the expected trends but there

is no basis for a quantitative assessment of the model's performance.

3.2.4 Conclusion on the Theory

The starting point of the theory was the transport equations for the
scalars characterising the chemical and thermodynamic aspectes of the‘flow,
equation 3.1. From these equations, without any physical input (save the
exclusion of pressure fluctuation influence), the joint probability
distrifution equation was deduced, equation 3.16. This equation overcomes

the problems ascociated with the non~linearities in the density and the
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source terms. The joint probability is seen to be transported in posi-
t«m spac 51 Lawmmn o Al st anndd kﬂlszé avel mmran Hoos oy clign cand w Probeds -
ub£3 space by the source term and by turbulent mixing on the microscale.
It is the interrelation of the two latter agencies that accounts for the
influence of turbulent mixing on the average reaction rate: if the
reaction rate is very high in some region of probability space then

the averaged reaction rate depends upon the rate at which the averaged
probability is transported to that region.

The simplified case of the single probability equation was
considered further: a model for the term representing turbulent mixing
on the microscale was suggested and was used to predict an idealised
combustion system. While the modelling is not completely satisfactory,
the predictions can be expected to be qua(witatively correct. These
predictions demonstrate the interrelation of the reaction rate and the
micromixing for different time scale ratios of the system.

The achievements of the theory are threefold;

(i) the joint probability distribution equations provide a
useful mathematical and conceptual picture of the behaviour of turbulent
reacting flows, _

(ii) the modelled single probability distribution equation can be
solved to predict any combustion system characterised by a single scalar,
and (iii) the assumptions and inaccuracies in existing models may be
Judged by reference to the results of the theory.

The third point forms the subject of the next section.

3.3 A Criticism of Existing Models

In recent years combustion models have been developed for incorpora-
tion into flow solution algorithms. We are concerned, in this section,
with comparing the present theory with such models that are in current

use. These models may be divided into three classes depending upon the



nature of the flame being considered. Mason and Spalding (1973) developed
the "eddy-break-up'" model for use in premixed flames. Khalil, Spalding
and Whitelaw (1975) also used this model for some of their calculations.
Diffusion flames have been studied with a model based on probapility
distributions by Elgobashi and Pun (1974) and lockwood and Naguib (1975a).
The third class of flame, that which is neither premixed nor diffusion,
has been studied by Khalil, Spalding and whiteiaw (1975) ana by Lockwood
and Naguib (1975b).

Many of the assumptions and equations are common to all the models:
the qombustion is supposed to proceed by a single step irreversible

reaction,
1 kg. fuel + s kg. oxidant *(1+s) kg. products (3.57)

The transport equation for the mass fraction of each species is given by
equation 3.1: the averaged form of this equation, equation 3.5, is

modelled as, for example,

"
<p>2-<m > 2 eff 3 _ < >4 <g

>
Dt fu Bxi Oru axi fu fu

(3.58)

vhere Men? Box and mpr are the mass fractions of fuel oxidant and products

respectively. An equation for the average mixture fraction, «f>,

P T ' (3.59)

may be deduced from equation 3.58,

D . _ B Meff 3<f>
i R - (.60)

It may be noticed that in formulating these transport equations, the
influence of density fluctuations has been ignored; consequently, attention
is focussed here on the other aspects of the models. The influence of

density fluctuations is discussed in the next section.
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In erder to determine the temperature an equation for the enthalpy,

<h> is solved.

= % |
h =mg, Hy, +TI Cpa(T)ma (3.61)
where Hfu is the heat of reaction, Cp the gpecific heat and the summation

is for all species. The form of the enthalpy equation is the same as that

for <f x there is no source term. Equation 3.61 may be rearranged to

give,

(o, m) = (n-mg B)) (16 (1) m ) (3.62)

With a knowledge of the temperature,the denéity may be obtained from the

gas law
p (T, my) = PRT Zm /i (3.63)
o

where R is the universal gas constant and W the molecular weight. A
further equation that is used by each model is that for the fluctuations

of the scalars;

ga = < 9'2 > (3.64)
Dg H g 2
g _ 0 eff "p 9<e>y _ <> £
<p> Dt - axi Og axi + Cgl ueff (axi ) cgz P K 80 (3065)

For an arbitrarily fuelled system the equations for <m, >,<f> and < h >

fu
could be solved if <Sfu>’ <T(h,ma)> and <p(h,md)> were known. The
models for premixed and diffusion flames exploit the restrictions of their
respective systems to facilitate or avoid the determination of these unknown

quantities and to reduce the number of transport equations that need be

s0lved.
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2e3.1 Premixed Flames

Mathemafically, a homogeneously premixed flame is characterised by
the boundary and initial conditions of <f > being constant (and equal to

<f°>). The solution of equation 3.60 then becomes trivial,

<B = <f > (3.66)

and consequently, from equation 3.59, all the mass fractions may be

related to <m_ > by,

fu
] <m > = 5(<mfu >- <f°>) ' _ (3.67)
<mpr > = 1-<m,>-<m > (3.68)

Thus, the transport equation for <f > need not be solved. The closure

is-completed by modelling the unknown terms as,

€ 3
<Sfu> = -<p>l—£' CEBU 8fu (3‘69)
<T _(h, mfu)> = Tkhy <mg, > (3.70)
and  <p (T, mg )> = p &T><my>) (3.71)

The eddy-break-up model, equation 3.69, was discussed in section
34243 where the theory gave a similar result. There are two points,
however, that require further comment. TFirst, the assumption of a very
high reaction rate may not be valid in practical situations; Runchal (1973),
Khalil et al. (1975) and others have taken the reaction rate as the

minimum of that given by the eddy-break-up model and that given by

<8p> = Sy @mfu> L<T>) - (3.72)
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The fact that the eddy-bfeak—up model predicts a higher wvalue than does
equation 3.72 (which represents an upper bound) confirms that, in parts
of the flow, the assumption of very fast reaction breaks down.

The second point relates to the value ascribed to Bru® If the
assumption of very fast reaction is consistently applied, Beu must take
its highest possible value: however, in this model, a transport equation
for Bru is solved, equation 3.65. Further, equation 3.65 is appropriate
to fluctuations of scalars without sources and so, when it is applied to

Bey? 2 term, of order of magnitude <p> g%u < S is neglected. These

fu”’
twé points indicate that the eddy-break-up model as a whole is far
removed from the physical situation it is supposed to represent.
Nevertheless, it has been used by its originators and others to produce
some useful results and it contains the valuable assertion that the
averaged reaction rate scales with the turbulent time scale.

The error in approximating the temperature and density by equations
3.70 and 3.71 depends upon the situation. If the mean specific heat is
constant then the temperature, given by equation 3.62, is a linear
function of h and m

fu and hence equation 3.70 is valid. The density, on

the other hand, varies approximately as the inverse of temperature. Thus,

if the temperature is bounded by Tlf T-<T2, the error in equation 3.71 is
given by,
T, -T
p<T> = <p(T)> 1 72

Teking Ty and T, to be 200°K and 2000°K, values typical of the flows
reported in Chapter 5, it is seen that the density may be underestimated
by aé much as 50%. Bearing in mind that changes in density have a major
effect upon the hydrodynamics, this possible error is a serious one.

Equation 3.7l represents the lower bound of density and implies that the

probability distribution of me, 18 2 delta function centred on < mfu>:
*»
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the probability distribution consistent with the assumption of a very

high reaction rate is
<p(mfu)> = (mz--ml -l'{(m2—<mfu?) 5(ml-mfu) + (<mfu> - ml) 6(m2-<mfu>)} (3.74)

where my and m, are the minimum and maximum values that M 2T take,

. The corresponding expression for density is

m, = <m, > <m >= m
_ 2 fu fu 1
<plmg, > = ey p(m) + T om P (m,,) (3.75)

which represents the upper bound. Thus,“the average density lies between
the values given by equation 3.71 and equation 3.75 and, for consistency,
the latter expression is preferable.

A major criticism of this model is that it is restricted to situations
vhere the assumption of very high reaction rates is valid: if the
aésumption were valid then the form of the eddy~break-up model would be
appropriate and the temperature and density could be evaluated, without
error, by way of the probability distribution, equation 3.74. What is
needed, then, is a model that predicts the average reaction rate and
probability distribution when the reaction rate is not high. The theory
propounded in the last section lends itself to this end.

Applying the assumptions and restrictions made for premixed flames
to the theory leads to the conclusion that all quantities can be expressed
as functions of P h and <P >only. Further, as h is nearly homogeneous
in premixed flames, only a small error is incurred by assuming that, for

any quantity, o,

gwﬁg1h<P9 = e@ﬂ“<h>,<P9 (3.76)

(Equation 3.76 is exact if the incoming fuel/air stream has a wniform

temperature and if all confining surfaces are adiabatic). Thus, the
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system may be characterised by the single scalar, mfu’ and so the solution
of the single probability distribution equation for <p (afu) > provides
the required closure. That is, the modelled tramsport equation for
<p(ﬁfu)>, which takes account of finite reaction rates, can be solved and
the values of the average mass fractions, density and temperature can be

obtained from

oo

fu' h! <P % > =f <P(mfu)> Q(Elm, <h>’ <P>) dﬁfu (3'77)

J oo

<@ (m

In-considering this approach to model premixed flames the objection
can be raised that the inclusion of the additional independent variable,
afu‘ increases the dimensionality of the soiution space by one and,
consequently, reduces the economy of the solution procedure a great deal.
It would be glib to retort that simple answers to complicated problems
should not be expected. Rather, it is to be hoped that the solution of
the probability equations, as a research exercise, will indicate which of
the many possible simplifications to the equaéion are approﬁriate and,
hence, lead to a more economical procedure. In this context, the work
of Bray and Moss (1974) is worthy of comment. These authors proposed a
closure based on an assumed probability distribution expressed in parametric
form: these parameters are functions of <mfu? and gfu for which modelled
transport equations were suggested. While this model was not deduced from

the probability equations, such a route could be chosen and the number of

parameters could be increased to provide more accuracy and generality.

3.3.2 Diffusion Flames

The model for diffusion flames is based upon the assumption that
fuel and oxygen are not co-present. For most situations this assumption
is justified; the fuel and oxygen streams are separated by a hot flame

front and so, at any interface between fuel and oxygen, the temperature

“
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is sufficiently high for the reaction to be very rapid. With this
assumption, from the definition of the mixture fraction the following

relations are obtained,

*

=
1}

0 for £ <O 5 m f for £ >0
fu —
(3.78)

0 for £ >0

fu

m - fg for £ <O m
ox ox

-e

Also, if the inlet temperatures of the two streams are uniform then h

is given by

b= b+ (b, =-h ) (£-£ )/ (£, -£.) - (3.79)

where the subscripts 'ox' and 'fu' indicate the inlet values of the

quantities in the oxygen and fuel streams respectively. Clearly, as

the mass fractions and enthalpy are known functions of f so also are

the temperature and density. Thus, the values of meys Pox? P and T are

all known functions of f: however, as these funciions are non-linear,

the values of <m_ >, <mox>’ <p > and <T> are not directly related to<i =
Elgobashi and Pun (1974) and Lockwood and Naguib (1975a) overcame

this problem by assuming a probability distribution for f. Thus, for

example,

o}

<2(£) > =L <pled T (3) af  (3.80)

The probability distribution was assumed to be a 'clipped-Gaussian',

that is
£ 1, and £ <€ ,< p(f)> = o,
S E<ty < p(E)> = N(E) = (o2 ™ exp (-3 (1)) (3.81)
ox - N ’
<p(f, )>= 8(f-£ ) N(f) af
and <p(f1.u)> = §(f ffu) n(f) ar
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The two parameters in this distributien, ¢ and U, can be determined
from <f >and gy for which transport equations are solved. The clipped~-
Gaussian is probably the most physically realistic distribution that can
be expressed in terms of two parameters: the limiting cases of

<f >%§u and g% /(ffu~fox) +0 are accounted for correctly. However, the
determination of g and U and the subsequent evaluation of the integrals,
such as equation 3.80, entails a considerable amount of computational
effort. Khalil et al. (1975) and Gosman and Lockwood (1973) used a
simpler form of ‘<p(§) > which, though physically less plausible, recguires

a minimm of computational effort,

<p(f) > = 38 (F-£)+2s6( - 1) O (e82)

where %ﬁ <f24 g% (3.83)

In situations where the assuaption of rapid reaction is valid, the
only uncertainty in the model is the determination of <p(})>. If the
theory of the previous section were applied to these situations, rather
than assuming a probability distribution, a transport equation for <p(f)>
would be solved. However, as the equation for<p(f)> is computationally
expensive to solve and the uncertainty in its modelling is no less than
that in the assumption of a clipped-Gaussian distribution, this approach
is not advocated. The comparison of measurements with the predictions of
Elgobashi and Pun (1974) and Lockwood and Naguid (1975a) is favourable
and suggests that their model provides a good description of diffusion

flames.

3.3.3 Arbitrarily Fuelled Fla~es

The assumptions made at the beginning of this section lead to the

conclusion that an arbitrarily fuelled flame can be characterised by Moyt
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f and h. In the case of premixed and diffusion flames it was shown that
either mfu or £ is redundant: further, for both situations, it was argued
that the influence of enthalpy is adequately accounted for by its average

value, that is,

< g(m h) > = < g(m <h>) > (3.84)

gur T
Thus, the single probability distributions <p(?nfu)> and <p(f)> provides
a complete description of premixed and diffusion flames respectively. For
arbitrarily fuelled flames, while equation 3.84 can again be employed to
remove the dependence on h, both Moy and f must be retained. Consequently,
a knowledge of the joint probability < p(ﬁfu;f)> is required to provide a
complete description of this situation. (In fact, the joint probabiiity
<p(ﬁ§r’f) >, which contains the same information, will be considered).
Before considering the model of Lockwood and Naguib (1975b) the fheory
of the previous section is applied to this problem. This is done for two
reasons; first, the theory makes the physical assumptions more precise
and comprehensible and secondly, a model, similar to that of Lockwood and
Naguib, was independently derived from the theory. The assumption of a
very high reaction rate is again made: this denied the co-presence of the
fuel/air mixture and products for premixed flames and of fuel and air in
diffusion flames. For arbitrarily fuelled flames the consequence is that
fuel, air and products may not co-exist. Thus, the joint probability

<p(ﬁpr,f)> may be expressed as the sum of three single probabilities,
<p(mpr,f) <p (£)> sld ) +
(no products)
< pa(f) > 5(1 + 581 - mpr) +
(no fuel)
£ > l - £ - n .
< p3(f) s -t mpr) (3.85)

“ (no oxygen)
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...

A eketch of such a distribution is shown of figure 3.6. It is seen that
§p2(§)> is zero for positive f and <p3(f)> is zero for negative f;
Thus, the two distributions may be summed to form one distribution without

loss of information,

<p, (£)> =< p2(§)>+< p3(f)> (3.86)

The subscript 'A' stands for 'activated species', a term introduced by
Lockwood and Naguib to indicate that, in this region, the energy is
sufficient for reactions to be rapid.

- The problem of determining the joint probability has now been reduced
" to that of determining two single probabilities: averaged quantities may be
evaluated through,

< > I fom < olFm )> af ao
e(f,mpr) _( e(f,mpr) p(f,mpr) af dm

-0 -0 pr

?fm 6(£,0)< p, (£)>+ ofF, 1 + sE)< p,(£)> + o(f, 1-2)< p3(5)> af

-0

S 0@ 9@ 4 o ®) 5,07 @ (3-82)

The last equality serves to define o, and o,. The behaviour of <pl(f)>

A.
~and <pA(f)> is unknown and so, for want of a better assumption, their

shapes are presumed to be the same, that is,

L -a)tp(®) > = A a(8)> = <p(E)>  (3.88)

where A, the mass fraction of activated species, is given by

-

A = \[w <pA(§)> af | (3.89)
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There is no direct evidence either to support or to refute the assuzption
of equation 3.88 but at least it satisfies the required mathematical
restrains: the integrals of each term are identically unity ~nd for the
limiting cases of A = 0 or 1 the equation ig correct. It is seen, from
equation 3.88, that only< p(f)> and A need be determined. As there is
no difference between the quantity f in this situation and in diffusion
flames, the same modelling of« p({)> may be used; that is< p(f)> is
assumed to be a clipped-Gaussian given by equation 3.5!, based on the
values of <f~> and Epe

The theory of the last section lends itself well to the task of
formulating a transport equation for the novel quantity A. From the
definition of the various single proobabilities, an alternative definition

of A is,

— ™ m C
A = J j <p(mpr,i‘)> d mpr af (3.50)
- o+
Thus, writing the joint probability equation, equation 3.16, for< p(ﬁpr,f)>
and integrating between the limits indicated by equation 3.90 leads to an

exact transport equation for A,

-g'{.: <PA>A + %;‘ <pA><Ui> A= - 'g—x- <p w;A>
- P 1 .
i . om_,
B a6 ) A (3.91)
m_, o+ Pr P i :
P
vhere < Py > %[ <g$f)> P (f) af (3.92)

00

The final term in equation 3.91, which will be denoted by SA’ is familiar;
it is the expression from vhich the reaction rate in premixed flames was
deduced in sub-section 3.2.3.. The same modelling applied to the present

term gives,

€
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- - [od ™ ) ~ 3
S, = C, <p > Sk (1-4) [<P(;ﬂpr) > Q(E!pr/:Pr/ d Bon (3.93)
The form of this expression is more comprehensible if the fumction g(y)

is chosen as g(y) = y: it was noted above that this choice leads to

the eddy-break-up model in premixed flames. Hence,

Sy = Cy<pp el (Q-Akm >/ | (3.9%)
Modelling the turbulent transport term in the normal way, the modelled
equation for A is,

C L2
[0 0 il k- 3A Sl-AZ
- — = m— O <p > = XL <p >efk == , .95
ST PR+ o <U><p >A o7 Ci<p — + C <p >e/k . < npr>(3 95)

The proposed closure for arbitrarily fuelled flames is now complete.
To summarise, transport equations may be solved for <>, B and A and the
values of <f > and 8¢ used to determine the clipped-Gaussian probability
distribution, <p(})>. Averaged quantities may then be determined through

equations 3.87 and 3.88 by

<p(f, mpr)> = J <p(¥)> [(1-4) o, (f) + AgA(;‘)J af (3.96)
This closure may be compared with that of Lockwood and Naguib (1975b):
while these authors suggested determining averaged quantities thiough
equation 3.96 they did not explicitly assume the equality of the activated
and unactivated probability distributions, equation 3.88. The principal
difference between the two closures is Lockwood and Naguib's alternative

proposal,

S, = Cu<p>e/k [A(l-A)l% (3.97)
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However, although this modelled source term has a different form from
equation 3.94, it is, in fact,; almost identical. Thus, the two closures
are, to all intents and purposes, the same and the subsequen’. discussion
applies equally to them both.

The first point to note is that the closure is compatible with the
models for diffusion and premixed flames; if A is everywhere unity,
characterising a diffusion flame, then the closure is idehtical to that
described in sub-section 3.3.2. If, on the otiher hand, <f5 is uniform
then the closure reduces to that of sub-section 3.3.1 with the assumption
of<é very high reaction rate; equation 3.94 becomes equation 3.74 and
the transport equation for A becomes an equétion for <mpr > with the
source term given by the eddy-break-up model. To a large extent, thereiore,
the closure for arbitrarily fuelled flames may be assessed by reference
to the criticism of the models for premixed and diffusion flames. In
particular, it must again be conceded that in some situations the assumption
of very high reaction rates is inapplicable. For example, the closure will
provide a poor representation of a diffucion flame which has lifted off
the burner, vhere the reaction rate is a controlling factor. On the other
hand, as demonstrated by Lockwood and Naguib, a premixed jet burning in air

is predicted accurately by the closure.

3.4 The Effect of Density Variations

The last two séctions were concerned with the effect of turbulence on
the reaction rate: here, the influence of the reaction on the mean flow
and the turbulence is considered. The chemical and thermodynamic properties
of the fluid affect the welocity field through the density and viscosity
which appear in the continuity and momentum equations. The discussion of
sub=section 2.4.2 indicates that, at high Reynolds number, the flow field

is independent of the magnitude of the viscosity and, consequently, attention

%
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is focussed on the influence of density variations. Density variations
may be caused by temperature gradients, species concentration gradients
or by the compressibility of the fluid: in combusiion systems all the
three agencies may act together, causing the density to vary by as much
as an order of magnitude.
The principal difficulty in formulating a closed set of averaged
equations for variable density flows is caused by the appearance of density

in the term representing convection,

Dp_3p . D

Dt "3t oy, Pl .. , (3.98)

Bray (1973) derived the exact transport equations for mean velocity,
species concentration and turbulent kinetic energy by decomposing the

instantaneous quantities in the normal way, i.e.

Ui = <Ui> + ui
p = <p> + p! (3.99)
6 = <o> + o

In addition to the terms arising in constant density flows, five density
fluctuation correlations result from the decomposition of the convective
term; namely, <p'ui>, <p'uiuj>, <p'uiujuk>,< plo'> and <p'uig>. Bearing
in mind that the density may vary by an order of magnitude, none of these
correlations may be neglected; indeed, it is shown in the next section
that, in one of the flows calculated in Chapter 5, <§> <g> may be six
times greater than <pg> §j that is, <p's'> is approximately 80% of <p><g>
but of opposite sign. Further, the modelling of these correlations is
hindered by the paucity of turbulence measurements in reacting flows
vhich are also insufficient to provide a direct test of any proposed

model.
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An alternative approach, which overcomes some of these probiems and
results in a simpler set of equations, is to decompose the instantaneous
quantities in terms of their mass averages. This approach, which was
proposed by Favre (1969), is best demonstrated by means of the Favre

joint probability distribution, introduced by Bilger (1975):

F @)z s | < 0@D) 6(ed) ope-6> 5 db . (3.100)

°
T is seen to be the joint probability of the velocity, U, and the set of

scalars, g, weighted with the density. The mass averaged mean quantities
and correlations (indicated by overbars) are given by the moments of the

joint probability distributionj

7, zﬂ; G 5 @
., ” T @3 b4l a3 (3.100)

STT H PR 0,9,)6.-3,) 0, et

It should be noted that, with mass averages thus defined, terms like Ezr and
;ZT' are identically zero: an alternative definition of mass averages, see
for example Libby (1972), does not lead to this property.

It is readily shown that transport equations for the moments of'E
are virtually identical to those for constant density flows, Bilger (1975).
The only differente is that correlations containing the divergence oflg" -
do not vanish and that terms involving molecular transport adont a
slightly different form. Unlike the averaged equations based on the normal
decomposition of U, p and g, no correlations with p' occur. Thus, for
example, the continuity relation and the equations for T, and GETETT

(excepting viscous terms) are given by their constant density equivalente
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with ui' replacing ug and overtars replacing averaging brackets,< > .
The fact that the exact expressions pertaining to rolecular action adopt
a slightly different form is of no consequence since it was argued in
sub-section 2.4.2 that, at high Reynolds number, the microscale is
determined by the macroscale which does retain tae saze form. The
fact that the divergence of the velocity vector, u'', is not zero is more
gerious for it indicates that ui‘ behaves differently from L However,
the only manifestation of this different tehaviour in the Reynolds
stress equations is that the pressure-rate-of-stirain ter: does not
contact to zero; that is, the kinetic enérgy eguation has the additional
source term, p'&u{'/axi.

It appears, fhen, that the practice of mass averaging not only
produces & simpler set of equations but also, as the iransport ecuations

for all the moments of are essentizlly the sezme as iheir constant densit

oy

counterparts, the same modellirg assumptions may be cade. This contention

is supported by the calculations of Libby (1972) and by Bilger (1575).

Thus, the terms ui'e", uikg" and %ui'u%'ug' may be modelled by the

simple gradient diffusion hypothesis,

N C B a5
u{'g" =z - -G-H — Ex—' etCey (3-102)
6 € i

!

while the isotropic viscosity hypothesis must be slightly modified to

take account of the divergence of U ;

_ = Sﬁg éﬁi 20y,
1t 1 - - | —— - ——— L
wffult = 2/3k8;, -G = (axj AL 555 (3.103)

The modelling of the additional temm p'aui'7ax{ is zore difficult;
Livby (1972) suggested a modelled form for inert flows with sigpificant

Fach numbers while Bray (1574) suggested that, in low Hach numdber reacting
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flows, the analagous term, <p' aui/ax£> , is negligible. In view of
the lack of experimental data, the eiisting deficiencies of the turbulence
model arnd of Bray's sﬁggestion, the term will be neglected here.
With these modelling assumptions, equations for E, k and ; and

any one of the combustion models described in the previous section form
a closure, save for the determination of <p > and < 8> . As <p’
and <Sa> are related to <g> , rather than to _;_, a relation for <g >
must be obtained. Since all the combustion models assume a drobability
distribution for g, <@g > may be determined without further modelling
assumptions. For example, for premixed flames, it follows from the
definition of g that

<m

fu > = lE}u + <p(5fu) >(1 - p(E‘fu)/<p> ) Efu dﬁfu (3'104)

The advantage of mass averaging is seen to be that a closed set of equstions,
from which <g > may be determined, is obtained without modelling velocity-
density correlations. While these correlations must be modelled in order
to extract information about the unweighted velocity field, any inaccuracy
in such modelling does not propagate through the system of equations.

The mean velocity was the only‘measured function of the velocity
field in the reacting flows calculated in Chapter 5. It should be noted
that the technique of laser anemometry, which is well suited to combustion
situations, measures the unweighted velocity: the precise quantities
measured by hot wires or Pitot probes, which were used to perform these
measurements, are less certain. Assuming that the unweighted velocity
was measured, in order to compare the measured and calculated velocities

<U;> must be determined. Bray (1974) suggested the following form of

modelling,



- 90 -
< Ui> = 'ﬁ; - <P'ui? / <p>

2

- fhg‘i 1  o<p> |
= .Ui + dp -_é'.-<T'> o, (3.105)

vhere aé is of order unity. This modelling? which may be exmected to
be of the right order of magnitude, predicts <p'ui> to be negligibly
small compared with <p> <Ui> in the flows calculated in Chapter 5.
Consequently, the term will not be- discussed further save to emphasise
that the modelling of <p'ui> and other velocity-density'correlations
has no influence oﬂ the calculated values of ﬁ;, k and <g> .

In conclusion, the close similarity between the transport equations
fof mass averaged quantities in reacting flows and the equations for
constant density flows suggests that the same modelling may.be applied
to each. Consequently, a closed set of equations is obtained without
modelling velocity-density correlations. The only additional modelling
required is in relating unweighted guantities to their mass averaged
values. Any inaccuracy in this modelling for ome guantity does not

affect the other quantities.

3.5 The Combustion lodels Emnloved

In Chapter 5 calculations of bluff-body stabilised flames are
presented: the details of the two combustion models used are described in
this section. The calculations pertain to the combustion of a premixed,
uniform temperature, propane/air mixture downstream of an annular V-gutter
in a circular duct,

The first model, Model A, comprises the closure outlined in sub-
section 3.3.1 together with the k-e turbulence model: the inflﬁence
of density fluctuations is ignored. This represents the standard form
of the eddy-break-up model used by Mason and Spalding (1973), Khalil et al.

(1975) and others in which the probability distribution of Moy

to be a single delta function centred on <m,u? . Hodel B may be regarded
s

is assumed

%
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as an exitension of model A in the light of the considerations of this
chapter; the reaction rate and probability distribution are determined
from the theory of section 3.2 with the assumption of rapid reaction.
The effects of density fluctuations are accounted for in the manner
described in the previous section, that is, transport eguations are solved
for the mass averaged quantities. Before the two combustion models are
described in more detail, the determination of the distributions
p(ﬁfu< P >) and T(ﬁfu), which are common to both, is described below.

In section 3.3, only three "species", fuel, oxygen and products,
were considered: here, the nitrogen in tﬂe gir is accounted for arnd the
products are assumned to comprise of carbon dioxide and water. In spite of
this, because the incoming stream is homogeneously premixed and the

reactants are assumed to combine in fixed proportions by,
CsHS + 502 > 3 CO2 + L H20 )

the mass fractions of each species can again be related to My

My, = (mN2)Q

mo, = fmoz)o - 5((mg ), - w. ) Woafwfu (3.106)
Moo, * Hlmpydy = mgy) wcoa/' "

1,0 * (g, = mpy) 'r;;o/ tu

where W, and (m a)o are the molecular weight and inlet mass fraciion
of species o . TFurther, due to the known composition of the inlet siream,

the values of (mfu)o and (MNZ) are related,
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(MN2)° = 3.3 (Moa)O (3.107)

and (MN2)° + (Moa)o + (mfu)o = 1 C (3.108)

Consequently, the mass fraction of each species can be expressed as a

linear algebraic function of P and (mfu)o'

In the flows calculated in Chapter 5, the temperature of the inlet
stream is uniform and the heat transfer to the walls is snall compared
wvith the heat release due to combustion. Consequently, the enthalpy is
uniform and equal to its inlet value, ho' Thus, the temperature and

density distributions are related to ey through equations 3.62 and

3.63 by;
Pig,) = (o, -y, M) (2 Cpy (T) my(E. ) )7 (3.109)
plng ) = <P>{R2G,) T m,G )M, (3.110)
o

The values of R and H, are taken as 8.3143 kJ/kg mole °K and

L.63747 x 10* kJ/kg respectively (Gordon and McBride (197 )

For each of the five species, the specific heats are determined from a
fourth order poiynomial in temperature; the coefficients are taken from
the data assembled by Gordon and McBride (1971).

Model A. Transport equations are solved for <Ui>’ k, g,< Moy > and

Byt The reaction rate is modelled by the eddy~break-up model as,

i

<8, = -<p>e/k Copy 81y (3.111)

and the closure is completed by determining < p> and< T > by,



- 93 -

<p> = pkng ) - (3.112)

<T > = Tkng ) (3.113)

Model B. Transport equations are solved for Ei’ K, € end m, and

fu
the form of these equations is identical to those for the unweightad
quantities. In contrast to model A, the probability distribution is
taken as a double delta function, equation 3.74. The values of < m_ >,

<p > and <T >, which are determined from this probability distribution, are

most easily expressed in terms of the mass averaged combustion efficiency;

n = (w, -mg ) (o, - m) (5.114)
<mg > = my = (my =W )WL (=T - py/p)t (3.115)
<p> = p {2-(-71) Q-p/p) -1 (3.128)
T o= T, -T)A - (.1 -MQA - p /) -1 (3.117.

vhere my and m, are the minimum and maxicum fuel rass fractions and
P1y Poo Tl and T2 are the corresponding densities and temperatures. It

should be noted’ that, for smalln , these relations give,
<p><m> = py/p, <P N>

As pl/b2 is approximately equal to six in one of the flows calculated in
Chapter 5, it is seen that the neglect of density-meseg-fraction
correlations is totally inconsistent with the assumption of rapid reaction.

The reaction rate given by the theory of secticn 3.2, equation 3.53,

AN

does not take density variations into account: in the absence of any

o
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evidence to the contrary, it is assumed that, the expression for G(;),
from vhich the reaction rate is deduced, may be modified to incorporate

density variations as

[4] e+
o - 1 _ P 1 — * -
G(o) = Cs Er'ﬁ o2 (2*) plo*) g(*—2) do* p2(a*) T(o*) g(&— 2) do*
k © 6 o~ o]
. - @
(3.118)
~ 1
vhere g is equal to (6" ). This leads to the reaction rate of fuel
usg@ by model Bj
'E-' — — - — — .
< S w < Do % - % 3
8., >==C,%p = (mymmy ) T (1) 20 (142/D0 (=) (p,/p, )2/
- - (3.119)
(1 (1=my 92/91)

The constants CEBU and C2 were evaluated so0 as to maximise the agree-
ment between the calculated and measured combustion efficiencies. Their
values, 1.1 and 1.0 respectively, differ significantly from the value of
Copg = +53 suggested by Hason and Spalding (1973) and C, = 4.5 used

in section 3.2. These differences will be discussed in Chapter 5.

3.6 Summary

This chapter has been concerned with modelling the averaged equations
of turbulent reacting flow. The joint probability distribution equatioﬁs
have been derived and have been shown to provide a useful mathematical and
conceptual picture of the behaviour of reacting systems. For premixed
flames, the modelled single probability distribution equation offers the
potential advantage over existing models of obviating the need to assume
rapid reactions: however, the quantitative performance of the particular :
model proposed is suspect. The application of the theory of section 3.2
to arbitrarily fuelled flames produced a model similar to that of Lockwood

“
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and Naguib (1975b) and clarified its physical foundation.

A discussion of the influence of density variations indicated that
a closed set of equations for mass averaged quantities can be obtained
without modelling velocity-density correlations. While these correlations
must be modelled in order to determine unweighied gquantities, any inaccuracy
in the modelling for one quantity does not affect other guaniities.

The two combustion models employed to perform the cal?ulations reported
in Chapter 5 are described in section 3.5. The first, model A, represenis
the standard form of the eddy-break-up model in which fluctuations are
ignored: the probability distribution of the fuel mass fraction is assumed
to be a single delta function. Model B incorporates the effects of
fluctuations by solving for mass averaged quantities and assumes a double
délta function p¥obability distribution. The reaction rate employed,

equation 3.119, is based on the theory presented in section 3.2.
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CHAPTER 4

CAiCULATION PROCEDURES

4.1 Introductory Remarks

In the last itwo chapters, a variety of turbulence and combustion
models were introduced which, together with the momentum and continuity
equations, form a closed set of equations. These equation; were solved
numerically to produce the results reported in Chapter 5; the numerical
procedures used are described and discussed in this chapter.

It could be said that numerical procedures are of secondary importance
in the study of turbulent flows; providing they give a true solution of the
equations, their constitution is of no great importance. If present
computational powers were limitless and inexpensive this would be the case
but, as things stand, an improved numerical procedure results in a saving
in computer expense and allows calculations to be made of more complex
flows or with more complex models. Thus, to a large extent, the ability
to test models is limited by the capabilities of existing computers and
computational techniques. As the testing of hypotheses is an integral
part of the scientific method, the development of turbulence and cozbustion
models depends upon relating theories to experimental observations through
a solution procedure. Consequently, the three components, modelling,
computational procedures and experimental results, are of equal importance
and a limitation on any one of them handicaps the advance of knowledge.
Indeed, it is not unreasonable to speculate that, had Chou, Kolmogorov
and their contemporaries had today's computational tools, the present
state of knowledge would have been attained fifteen years ago.

A1l the flows considered are two-dimensional and steady: that is,
all averaged quantities can be expressed as functions of only two spatial

coordinates and their values do not vary in time. This being the case,

b
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the principal role of the-calculation'procedure ig to solve the transport
equations constituting the closure in only two independent variables.

These equations, which are elliptic, can be written in the common form,

3 (i) oo -
—pU, g = — T.. =2~ +8 (4.1)
Qxi i §xi 1] §xj o

> <m_ >
2 b

vhere o represents any one of the quantities <Ui> s Ky €4 <usu fu

J
8¢y OF their mass average equivalents and the source, Sg, and the
diffusivity, Fjd’ depend upon the quantity in question. Henceforth, fer
brevity and in order to retain the common-form, the averaging symbols are
omitted. Thus, Ui appearing in equation 4.1 represents'ﬁi if ¢ is a mess
averaged quantity and <Ui> if o is unweighted.

The direct solution of the set of simultaneous equations 4.1 is
hindered by the facts that no equation exists for the pressure and that
fhe continuity relation is not included. Thus, as well as solving equations
4.1 explicitly for ¢, the calculation procedure must also determine the
pressure and ensure that mass is cohserved.

The results reported in Chapter 5 were obtained using two different
calculation procedures: the procedure for the reacting flows, for which
model I was used, is outlined in the next section. The principles on wvhich
this scheme is based have been reported in the open literature by Patankar
and Spalding (1973) and the specific details are given by Runchal (1973).
It was found that significant changes to this procedure were necessary in
order to solve the equations comprising the Reynolds stress closureé. The
principles of the new procedure for these equations, described in section
4,3, are applicable not only to flows characterised by two-dimensional
elliptic equations but also to three-dimensional flows. As a result, a

means is provided for testing and using Reynolds stress closures in more

complex flows than the two-dimensional boundary-layer type flows previously
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considered. The performance of the procedures is discussed in section

L.k,

4,2 The Basic Procedure

As mentioned above, the details of this numerical scheme are given
by Runchal (1973). The purpose of this section is to present an outline
of the principal features of the procedure used for reacting flows and
to introduce the nomenclature that will be used in the next section.

Most of the flows calculated, when considered in polar-cylindrical
cdordinates, have no variation in the circumferential direction while the
others may be expressed in two-dimensional Cartesian coordinates. In
order that the equations have the same form in the two different coordinate
systems, the coordinates are defined as follows: in polar-cylindrical
coordinates, x is the axial direction and r=y is the radial direction.

In Cartesian coordinates, x and y are the mutually orthogonal directions

and r is equal to unity. Thus, for example, in both systenms,

2
2 _ 2 1l 3 L)
Vee = _axa i (r —-y) (4.2)

In this coordinate system, with U and V denoting the velocities in the

x and y directions, the general transport equation, equation 4.1 becomes,

8 1o 8 (r B82y_12 30y _
ox (pUz) + r ady (r pVg) ax v x ax) r o (rr ) =5 ' (4'3)

y Uy oy o
In the Appenéix, this equation is written in full for each of the
variables.

‘A finite-difference method is used to solve equation 4.3. Figure
L.1 shows part of a finite-difference grid where the values of ¢ are

assumed known at the nodes P, N, S, E and W. Equation 4.3 is integrated

over the indicated control volume to give,

“
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_ X_ _ J_ J_Ux_
(h.4)
and the following finite-difference approximations are then made:
v, Y, :
rpUz dy =3 (ap + oE) (PU)X+ rdy = Cx+ (ep + GE) (4.5)
Y. X, y_ ‘
Yy Y _
+ O = O +
-] = E__Py(r = -
u(~ Ty 2 W % - % ( x)x rdy = Dx+ (eE eP) (4.6)
y_ X, J.
Yo [*4 e %4 ‘
r§ dxdy = (S"’)”P rdy dx = (sg) % Vol (4.7)
y_ YX_ y_ Jx_

and similarly for the integrals with respect to x and for the lower limits

of the integrals. The values of (pU)x . (I'x)x etc., if not known at the
: + +
required locations, are determined by linear interpolation. Thus, with

A, = D - C_ , (4.8)
+ +
A, = D + C_ etc., - (&9)

substituting equations 4.5 to 4.9 into equation 4.4 gives

o IA = z (eA) + (s‘a)xp Vol , (l+.10)v

where the summation is over N, S; E and W. This equation provides a
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relationship between the value of ep and its neighbours but, in some
circumstances, its physical implications are unacceptable. If, for
example, Cx is positive and greater than Dx then Aw will be negative
and so equa;ion 4,10 implies that an increas; of o, causes a decrease in

LR Gosman et al. (1969) suggest a modification to equations 4.8 and

4.9 in order to overcome this implausibility, i.e.

if |cx+| > Dx+ N S, |cx+| -cx+ (4.11)
if |C_ | >D. . A, = G| +0  ete. (4.12)

The physical interpretation and justification of these modifications which
are used in both procedures, are given by Gosman et al. (1969).

If the pressure is known, then equation 4.10, written for each
variable at each grid node, forms a closed set of algebraic equations.
However, there is no guarantee that the resultant velocity field would
satisfy the continuity equation. The two problems of determining the
pressure and conserving mass are overcome by adjusting the pressure field
s0 88 to satisfy continuity. The procedure for adjusting the pressure
requires a specific justaposition of the velocity and preesure nodes, see

figure 4.2. The mass flow, G, through each face of the cell centred on Pp,

is approximated by,

Y4
~ 3 =
Gx+ = 2(pp + pE) QE_I‘- r dy = Bx+ (p)x+ U5 | (4.13)
y_ - ;
.x+
o~ V. dx = B V. 1
Gy+ %(pp + py) Vy T v, (p)y+ - (4.14)
X

and similarly,

®



Gx_ = - Bx_ (p)X- Up
G = = B \')
y_ Y_ (p)y_ P

(4.15)

(4.16)

Now, the continuity relation requires that X G = O and the pressure field

is changed by an amount P* so that the corresponding chanées in (p) and U,

(p‘) and U*, result in changes in G, G*, such that

IG + g+ 0

The chenge in density is given, through the equation of state by,

* = A(p=* *
(p )x- ?(PP + Pw) ( )
and the change in velocity is approximated by linearising the finite

difference equation for U, equation 4.10,

Vol
L 2 * _ Px
Up_(Pw P3) =B
=(P;J-P§)DUP

Consequently, neglecting second order terms,

ay = B [(p*)x_ U, + (p), T3]

- %Bx U (aP)x

-

- C, (Plg + P;;) - D_ (P‘ - P‘)

: A -
(Pp + P‘;) Bx_ (p)x- DU, (Pg PI;)

(4.17)

(4.18)

(4.19)

(4.20)



Thus, defining finite-difference coefficients, A, as before (equations

4.8 and 4.9) an equation for P* is obtained:

PPIa = % (P*a) -~ z G : (4.21)

The non~linearity of the finite difference equations requires that
they be solved iteratively: equation 4.10 is solved for U and V and then
equation 4.21 is solved for P*. The pressure, density and velocities are
then incremented by P*, p*, U* and V*. Equation 4.10 is then solved for
all the other quantities. This procedure is repeated until all the
equations are satisfied simultaneously and the mass sources, I G, are zero.

The above description of the procedure is not comprehensive: details
of other features, such as under-relaxation, the treatment of boundaries
and the solution of the finite-difference equations, can be found in the
original source, Runchal (1973). However, the information given about the
coordinate system, the disposition of the grid nodes and the finite-
difference approximations is sufficient for the reader to appreciate the

remainder of this chapter.

4.3 The Reynolds Stress Closure Procedure

The necessity of modifying the basic procedure for the Reynolds stress
closures is caused, not by the form of the Reynolds stress equations, but
by the different form taken by the momentum equations. In the case of the
nean flow closure, vhere the isotropic viscosity hypothesis is employed,
the gradient of the Reynolds stresses appearing in the momentum equation

may be written as

oU, oU.
9 - d A} 2 i 2/ 3k
- — p<u. u.,> = — (u ) +{ —— (U .—.) - 3 — (4.22)
?xi 1] ?xi eff axi aki eff axj ?xj
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The first term on the right hand side, which is predominant, is

incorporated into the basic procedure by setting Px = Fy = ueff in

equation 4.3 and the final term forms part of the source. The sane
treatment cannot be applied to the Reynolds stress closures because
they do not provide an explicit relationship between stress and rate
of strain. Consequently, the whole of the Reynolds stress gradient
term is included in the source and the diffusivities are set to zero.

If the basic procedure were applied to the Reynolds stress closure,
the set of finite-difference equations would differ from those appropriate
to model I in two important aspects: the interlinkage between stress and
rate of strain would be removed from the velocity equations and the shear
stress <uv >would be determined at different locations. Consider first
the way in which the term --%; p<uv >, appearing in the V-velocity

equation, is treated by the basic procedure incorporating the isotropic

viscosity hypothesis;

X
+

a .
= % P<uv> dx-[p<uv>JX- - [p<uv>]x+

(vv

(v -v,)
= (1), 152:2;7 + T—_:EBT (4.23)
- b

where S' represents the contribution of velocity gradients other than

%%-. The last equality in this equation is used in the implicit part of

the finite~-difference equations and provides the interlinkage between

stress and rate of strain: an increase in Vp causes [p<uv>3x to decrease

and I:p<uv>:]}c to increase and, consequently, the whole expression
+

decreases causing Vp to tend to its original value. Also, the appearance

of VE and Vw in equation 4.23 provide a linkage between Vﬁ and its

neighbouring values.
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By way of contrast, consider the form taken by equation 4.23 when
the values of <uv> are determined explicitly from the isotropic
viscosity hypothesis at the pressure nodes. This is analogous to applying
the basic procedure to the Reynolds stress closures since, assuming the
transport of <uv> to be small, the value of <uv> , which would be
calculated at the pressure nodes, is largely determined by the local
velocity gradients. In this case, assuming for simplicit§ a grid with

equal spacing, dJx, and homogeneous diffusivities,T ,

; [p<uv>JX- - [p<uv>]X+ = 46 { (2 V Wi VWJN + VWWS)

2(2v +V +v)-(¢v +V

N —_— EES)} + 87 (4.24)

This expression does not compare favourébly with equation 4.23 because it
is a less accurate approximation of the exact term and, in addition, it
provides no linkage between Vb and its neighbours, VE and Vw. The latter
defecf, that only alternate grid lines are linked, explains why the author's
attempts to solve the Reynolds stress closures by the basic procedure
failed; the values of the velocities and Reynolds stresses, rather than
converging to their correct values, diverged with successive iterations.

In order to overcome these difficulties, a new procedure was developed

vhich calculates the equation for < uv> on a different grid, see figure

L.3. With this juxtaposition of grid nodes, the terms 2 p<uv> in the

ox
V-equation and-i-%; rp<uv> in the U-equation can be evaluated without
interpolation and the velocity gradients %g and %% y which have a pre-

dominant effect on the shear stress, can be determined directly at the
<uv> nodes. Consequently, the new procedure obviates the need for
interpolation and, although the interlinkage of stress and rate of strain
cannot be retained within the velocity equations, it will be shown that

%
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the <uv> and velocity equations are coupled in a.stable manner., A

small increase in <uv>p from its correct value results in increases in

Ub and Vp and decreases in U_ and Vw, causing 3U/3y and 3V/2z to increase
at the <uv§p node. The effect of these increased %elocitﬁ g}adients is
to decrease, through the source term in the <uv> equation, the value of
<uv>p towards its correct value.

For an inert, isothermal flow, the new procedure en%ails the
solution of the equations for U, V and <uv> on their respective grids and
of the.equations for <u2>, <v2> ’ <w2> s ¢ &nd P* at the pressure nodes.
The formulation of the finite-difference equations is straightforward and
the details are not reported here. The approximations made are generally
the same as in the basic procedure but, for axisymmetric flows, they are

modified near the axis to take account of the information that,

as r*0, <uv> ar (4.25)

and as r » O, <v2> - <w2> o r2 (4.26)
For example, equation 4.5, written for <uv>, is altered to give,

v+ i,

2 <Luv>
x+ r'p |x+

(<uv>_ + <uvs.) o .
= % L E (p0),, ° dy (4.27)
T . + ) -

With these modifications consistently aéplied, no problems were encountered
near.the axis of symmetry in spite of the fact that, as r tends to zero,
two of the terms in the <uv 5 equation become infinjte.

A quantitative assessment of the new procedure is given in the

next section.

%



- 106 -

L, 4 Discussion of the Procedures

The basic procedure described in Section 4.2 is well established;
it has been tested and used by several authors, e.g. Runchal (1973) and
Khalil, Spalding and Whitelaw (1975). The procedure is coded as a
Fortran program which, on a CDC 6600 digital computer, has storage and
‘time requirements of 17,000 + 32/ (grid node) words and .0006 sec/
(iteration x grid node x equation) respectively. Tke combustion calcula-
tions reported in Chapter 5 were obtained by this procedure, solving eight
equations on a 24 x 25 grid. It was found that 450 iterations were
required to achieve a converged solution and hence the time taken was 21
minutes. These statistics are discussed below where they are cémﬁared
with those of the new procedure.

Since the new procedure described in Section 4.3 differs significantly
from the basic procedure, tests were carried out to ensure that, for any
grid size below some limit, the solutions were the same. Figure k4.4 shows
calculated values of mean axial velocity and the corresponding normal
stress along the centre-line of a wake behind a disc in a wniform free
stream. The results show that the numerical accuracy is reasonable even
with a 14 x 14 grid. The calculated values of velocity and Reynolds
stresses at other locations in the field showed similar accuracy. The
size of the grids used with this procedure to perform the calculations
reported in Chapter 5 varied, depending upon the complexity of the flow |
in question; the flows with recirculation, Carmody (i1964) and Durao and
Whitelaw (1974), were calculated on a 30 x 30 grid to emsure that no
significant error could be attributed to numerical inaccuracy. 25 x 16
and 30 x 20 grids was used for the essentially boundary-layer type
flows of Chevray and Kovasznay (1969) and Chevray (1963) respectively.
The large grid, used for the latter case, was necessary because the solu-

tion domain was extended a considerable distance into the free stream.

*
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The Fortran prégram for this procedure, which included the facility

of solving the same scalar equations forreacting flows as the basic
procedure, had storage and time requirements of 16,000 + ZQ/(grid node)
words and .0003 sec/(iteration x grid node x equation). The qumber of
iterations required to obtain a converged solution was found to depend on
the complexity of the flow; for the flow of Carmody (1964) 600 iterations
were needed while for the simpler flow of Chevray (1968) only 200
iterations were required. The resultant time requirements for these two
calculations were 27 and 9 minutes respectively.

- A comparison of the storage and time requirements of the two procedures
shows that the new procedure is more economical in both respects. This
fact is solely attributable to programming eifficiency because the additional
grid and the complicated source terms in the Reynolds stress equations
inevitably leads to an increase in computational effort. For a 20 x 20
gfid, the new procedure requires 24,000 words and 1 sec/iteration to
calculate an isothermal flow with one of the Reynolds stress closures. This
performance may be regarded as satisfactory but the number of iteratioms
required, which is approximately the same for both procedures, causes the
total time requirement to be, at least, twenty times that of analogous
parabolic procedures. In spite of this shortcoming, which urgently requires
investigation, the new procedure is no more expensive of computer time
than the basic procedure and, as will be seen in the next Chapter, has been
successfully employed to calculate recirculating flows with Reynolds §tress

closures.
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CHAPTER S

CALCULATIONS

In this chapter, the results of calculations of isothermal and
reacting flows are reported. The next section is concerned with isothermal
wake flows calculated with each of the three turbulence models described
in section 2.3. These calculations, which were performed ;ith the procedure
of section 4.3, are compared with experimental data in order to assess the
accuracy of each model. These results have been reported elesewhere, Pope
and Whitelaw (1976) but, as they are central to the present work, they
are presented and discussed here. Section 5.2 is concerned with reacting
flows: the two combustion models described in section 3.5 are used in
conjunction with the procedure of section 4.2 to calculate premixed
propane/air flames stabilised behind an annular V-gutter. A conmparison
with experimental data allows an assessment of the combustion models and

of the assumptions on which they are based.

5.1 Isothermal Flows

In this section the calculations of isothermal wake flows are reported.
Each of the four flows considered (described below) was calculated with all
three turbulence models described in section 2.3: this allows a comparison
of the three models as well as an assessment of their performance by
reference to the experimental data. The flows considered and the available
experimental data are described in the next sub-section. As the same sets
of equations are solved to calculate each of these flows, the calculations
are distinguished solely through the applied boundary conditions which are
alsc described in the next sub~-section. In sub-section 5.1.2, where the

results of the calculations are presented, it is seen that the boundary
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conditions for some of the flows are not known with certainty. Con-
sequently, test calculations are also reported by which the error in the
predictions due to uncertainties in the boundary conditions may be
assessed. In the final sub-section the results are discussed and con=-

clusions are made about the performance of the turbulence models.

5.1.1 Description of Flows Considered

A literature survey, Pope (1973), of experimental information
relating to near-wake flows, with and without recirculation , showed that
availabie data was in short supply. The papers by Chevray (1968) and
Chevray and Kovasznay (1969) pertain to the wake downstream of an ellipsoid
and of a long, thin, flat plate respectively: in both cases, the region
of recirculation immediately downstream of the body was negligibly small

but, as the axial velocity gradients were of the same order of magnitudes
as the radial gradients, the solution of the equations in elliptic form

is appropriate. Carmody (1964) reported similar measurements downstream
of a disc and, in this case, the region of recirculating flow was extensive
and encompassed by the measurements. The recent measurements of Durdo and
Whitelaw (1974) and Durao (1975) are also helpful in this connection since
they relate to the wake downstream of an annular jet: they were obtained
using a laser-Doppler anemometer, rather than the hot wires of previous
authors and this helps to remove any bias which might result from the
consideration of hot-wire data alone.

The measurements of Chevray included values of mean axial and radial
velocities and all the non-zero Reynolds stresses at various locations
downstream of his ellipsoid. The values of each dependent variable except
dissipation were available at the trailing edge of the ellipsoid which was
chosen as the inlet plane of the solution domain. The dissipation at

inlet was assumed to be equal to the production of turbulent kinetic energy.
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Chevray and Kovasznay measured the mean axial velocity and the
Reynolds stresses, <u2 > <v2$ and <uvs , downstream of a thin, plane plate.
The measurements at the trailing edge, which was again chosen as the inlet
plane of the solution domain, show fully developed turbulent boundary-layer
profiles. Consequently, the inlet value of the normal velocity was assumed
to be zero while values of <w2 > were taken from the boundary-layer data
of Klebanoff (1954): again, the dissipation was equated to the production
of turbulent kinetic energy.

The measurements of Carmody are also extensive and are particularly
relevant to blunt body stabilised flames in that they were performed
‘downstream of a disc (or radius R) in a free stream (with velocity Uﬁ).

The separated nature of this flow provides a greater test of the present
turbulence models than the flows of Chevray and Chevray and Kovasznay but
it should be remembered that it also presents a more formidable measurement
problem. The measurements of axial velocity were obtained with a Pitot
tube and, as a result, static pressure was also measured: the reported
values of<:u2:> and<uv> were obtained using hot wires. In the recircula-
tion zone, the high turbulence intensity and the steep velocity gradients
undoubtedly cause significant errors in the measurements: also, the
disturbancé of this reversed flow region due to the presence of the measuring
probes introduces uncertainties. For these reasons, the measurements
downstream of the recirculation zone can be expected to be more accurate.

The inlet plane of the solution domain was taeken coincident with the
disc where the values of axial velocity were taken from the data. The
radial velocity quoted by the author was evaluated from the continuity
equation and consequently is subject to a large error. The values used
vere obtained by solving for the flow upstream of the disc, assuming it to
be inviscid, using the measured axial velocity as a boundary condition.

The validity of this approach was confirmed by the observation that, at
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the inlet plane, the dynamic head, calculated froz the measured axial
velocity and pressure and the predicted radial velocity, was nearly
constant. The inlet values of the normal stresses were set at .002 UZE
while the dissipation was set through the length scale with 1/R = .03.
These nominal free-stream values may be expected not to influence the
calculations very much as in the region irmediately downstream of the
disc,y a great deal of turbulence is preduced. .

The measurements of Durao and Whitelaw (197L4) pertain to an annular
jet; the inner radius of the jet being 0.72 times the outer radius, R.
Close to the outlet of the jet a region of reversed flow occurred in
the vicinity of the centre-~line thus initiating a wake which decayed
further downstream. The outer region of the flcw resenbled a decaying
jet and, for x/R> 100 where the wake has vanished, the measurements sth
self-preserving jet profiles. Upstream of the nozzle there was a
contraction thus ensuring that the turbulence intensity at exit was
small. The value of the mean velocity components at the jet outlet are
not reported but further measurement, Durao (1975), indicated that the
axial velocity is uniform and that the radial component is negligible.
These measurements served as boundéry conditions for velocity while the
turbulence quantities were prescribed with the saze nominal values as
those for the flow of Carmody.

The wall functions, described in subesection 2.3.3, are used
adjacent to the discs of Carmody and Durao and Whiielaw thus completing
the'specification of boundary conditions at the inlet plane. The boundary
conditions for the other three sides of the rectangular solution domain
are common to all the flows. A plane or axis of symmetry is located at
y=0 where the symmetric quantities, U, k, €, <u2>, <v2> and <w2> , have
zero normal gradients; V and <uv> , being anti-syzmretric, are zero.

The "free~stream' boundary was located sufficiently far into the free-

stream to make the resulting calculations independent of its location.
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bTurbulence quantities were ascribed nominal values while the axial
velocity took its known free-stream value, UE; the radial velocity
boundary condition is specified, therefore, through the continuity
relation., For all the flows considered, far downstream of the inlet
plane, the flow becomes boundary-layer like in nature; that is, U>> |V]|
and normal gradients are far larger than those in the axial direction.
In these circumstances the equations become parabolic and, hence, the
out-flow boundary condition, %% = 0 (for all quantities), which is only
approximately correct, results in a neglizible error upstream. The
outflow boundary was located sufficiently far downstream of the last

axial position of interest to ensure that no error was incurred due to

these boundary conditions.

S5.1l.2 Presentation of Results

The closed sets of equations provided by each of the three turbulence
models and the above boundary conditions were solved by the numerical
scheme described in section 4.3: the results of these calculations are
presented here.

The flow of Chevray (1968). The calculated profiles of U/UE are shown

on figures 5.1 and of‘<uv:/U2E on figure 5.2. The figures show the
results of calculations obtained with each of the three turbulence
models and demonstrate the effect of a 20% decrease in the initial values
of € and a doubling of the initial values of V. The experimental data
are indicated on the figures for comparison purposes.

It can be seen from figure 5.1 that each of the three models results
in valges of mean velocity which are virtually the same except in the
vicinity of the symmetry axis where small differences occur. In gereral,
the non-dimensionai calculated velocity values are lower than the

measurements: the comparison suggests that the mixing is too low in the

vic;eity of the symmetry axis and that this suppresses the development of
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the wake. However, the calculated shear stress is greater than the
measured values thus refuting this supposition and suggesting instead
that the measurements do not safisfy the axial momentum equation. The
discrepancy could stem from the measured values of V used as inlet con-
ditions in the calculations: these values are undoubtedly subject t§ a
posgible error which could be as large as a factor of two. For this
reason, the calculations were repeated with initial V-values which were
twice the measured values. As can be seen, the U-profiles at downstream
locations became larger than the measured values.

‘The comparison between measured and calculated values of non-
dimensional shear stress, shown on figure 5.2, again shows that all models
result in similar trends to the measurements. In the upstream region the
shear stress predicted by model I is far less than that predicted by the
Reynolds stress models. This reflects the fact that model I takes no
account of the convection of the individual stresses. Once again, the
influence of the initial V-profile is large and does not allow any
quantitative assessment of the ability of the three models to predict

shear stress.

The Flow of Chevray and Kovasznay (1969). For this flow, the uncertainty

in the V-velocity at the trailing edge (assumed zero) and hence its
influence can be expected to be significantly less than in the data of
Chevray (1968). Consequently, this flow can be expected to provide a more
reliable test of the turbulence models. Figure 5.3 allows a comparisoﬁ
between measured and calculated values of the mean axial velocity: shear
stress values are shown on figure 5.4; and normal stresses on figure 5.5.
As was the case with the flow configurations of Chevray, the three
models result in calculated values of mean velocity which are virtually

identical. On this occasion, however, the agreement between measurements
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and calculations is excéllent. The predictions of shear stress are
adequate and, once again, they do not allow any model to be identified

as a clear improvement over any other: this is made particularly clear
by the differences which result from a 20% increase in the assumed initial
values of ¢ . The agreement between the measurements and calculations of
figures 5.3 and 5.4 is certainly sufficiently good to provide confidence
in the initial values used for the calculations. The differences between
the measured values of < u2 > and < v2 > and those calculated with each of
the models is, therefore, particularly significant. It can readily be
seen that model III provides calculated vaiﬁes which are in gcod agreement
with experiment; model II is slightly less satisfactory and model I,
which predicts < u2 > =< va >, is inadequate. The influence of the

assumed initial e profile does not alter this conclusion.

The flow of Carmody (1964). Unlike the two flows considered above, the

flow of Carmody contains a significant region of reversed flow: the
results presented here represent the first calculations of such flows with
Reynolds stress closures. Figures 5.6 énd 5.7 present comparisons between
measured and calculated mean values: figure 5.6 is concerned with growth
rate and centre-line velocity and figure 5.7 with normalised velocity
profiles at downstream locations. Figure 5.8 is concerned with shear-
stress profiles and figure 5.9 with normal-stress profiles.

The results shown on figure 5.6 show that, with the inlet conditions
stated above, none of the models results in values of the half-width or
of the centre-line velocity which are in close agreement with the
measurements. The differences resulting from the three models and from
a doubling of the inlet value of dissipation is small compared to those
resulting from an 80% decrease in the values of the inlet radial velocity
or from an augmentation of the turbulence close to the baffle tip. The

decreased velocity corresponds to that suggested by Carmody while augmenting

“
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the turbulence close to the baffle tip byisetting u'/UE = v'/UE = w'/UE = .14
and 1/R = .4 for 1.0 <y/R<2.0 (i.e. O <U/U5 < .95) is intended to

simulate a thick shear layer in that region. Such a shear layer is not
indicated by the data nor is it likely to exist: it does, however,

represent an upper bound of the uncertainty in the boundary conditions of
turbulent quantities. As can be seen from figure 5.6, the decrease in V
(from a maximum of .74 UE) and the increase in turbulence intensity have
large influences on the predicted growth rates and centreline velocity
distribution. The poor agreement bet@een the measurements and the

prediction with V decreased éonfirms that the present estimate is more

reliable. The predictions with the higher turbulence intensity at inlet -
dy.

increase the spreading rate, i

, from .025 to .05. However these
values must be compared with the experimental value of .1 and the difference
cannot reasonably be attributed to uncertainties in the boundary conditions.
The two Reynolds stress models fare better than model I in the recirculation
zone but, bearing in mind experimental difficulties in this region and the
gsizeable discrepancies downstream, no model may be distinguished as being
better than the others.

The shear stress results of figure 5.8 demonstrate differences
between the results of the three models but, once again, the influence of
V and turbulence initial conditions are larger than those of the models.
Clearly the augmented initial turbulence intensity and model III lead to
results vhich are in remarkably good agreement with experiment and
particularly in the downstream region where the measurements are more
accurate. The normal stress results of figure 5.9 allow the same tentative
conclusion as figure 5.8. In addition, however, the measurements reveal
unexplicable behaviour in the upstream region and must be considered

suspect. Also, models II and III will always be more successful for the

calculation of normal stresses since they are not made equal in plahe shear

flqy as with model I.
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The flow of Durdo and Whitelaw (1974). Figure 5.10 shows measurements

and predictions of the centre-line velocity and the velocity profile
at x/R = 0.6. The predictions of centre=line velocity are virtually
the same for each turbulence model and show similar discrepancies to
those encountered with Carmody's data. The length of the recirculation
zone is again under~predicted. The almost constant predicted value of
U{/Uin further downstream is due to a balance between the .decay of the
wake (tending to increase the velocity) and the spreading of the flow
(tending to decrease the velocity). Further measurements by Durio (1975)
show that the wake decays more quickly than is predicted, thus accounting
. for the diffsrent shapes of the two curves.

The predicted velocity profiles are again virtually the same for
each of the turbulence models and show a significant discrepancy as

compared with the measurements.

5.1.3 Discussion

The previous section shows that significant discrepancies exist
between measurements and predictionswhich may be attributed toth to
inaccurate measurements, leading to erroneous boundary conditions, and
to deficiencies in the turbulence models.

An approach which would overcome the first problea is to increase
the size of the solution domain so that known boundary conditions may be
applied upstream of the body. This approach is, in principle, advantageoﬁs
but may present difficulties in practice. The correct represeﬁtation of
the boundary-layer flows around the solid body requires a finite-difference
grid with a comparatively larger number of nodes. Thnis is expensive in
terms of computer time and may still not allow calculated values of flow
properties, at the downstream plane of the soiid body, which are more
precise than the presently available measurementis. The present calculations

quantify the precision with which the flow around the so0lid body must be

%
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calculated and, at the same time,they indicate that the uncertainties in
the bounaary conditions are insufficient to explain the large discrepancies
between calculated and measured quantities.

Two particular defects, which result from the turbulence models,
are evident in the prediction of the recirculating flows. The length
of the region of recirculation is underpredicted as is the rate at which
the wake decays. The same defects have been observed by Vasilig (1975)
who used model I to predict the two-dimensional flow over a thin obstruc-
tion mounted normal to a plane surface. Also, in connection with the
present investigation, Assaf (1975) measured and predicted (using model I)
the flow behind a disc mounted on the centre-line of a confining, round
tube. The results, shown on figure 5.11, again demonstrate the same short-
comings of the turbulence model.

In order to understand the more serious defect, the underprediction
of the spreading rate, it is necessary to consider the nature of round
wake flows, a useful discussion of which is given by Rodi (1972). Far
‘downstream, round wakes have the potential of displaying profile-
similarity; that is, as Ui/UE-* 1, appropriately normelised mean quantities
and the spreading parameter, S = UE/(UE- é)dy%/ﬂx, may become independent
of x. Rodi (1972) consldered nine sets of experimental data and concluded
that round wakes do display profile-similarity. However, unlike all other
commonly encountered free shear flows, the profiles of mean quantities and
in particular the spreading parameter are strongly dependent upon the way
in which the flow is initiated. Of particular interest here are the
values of S for the flows measured by Chevray (1968) and Carmody (1964)
which are S = .105 and S = .8 respectively. The reason for the non-
uniqueness of profile=similar round wakes may be attributed to the fact
that they are weak-shear flows; that is, the effect of local velocity
gradients upon the Reynolds stresses is up to an order of magnitude less

%
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than the effect of dissipation. The consequences of these observations
for the turbulence models are twofold. First, as convection is a
dominant factor, unless the flow around the recirculation zone is
predicted accurately, the downstream predictions are wnlikely to be
correct: secondly, the dissipation equation will govern the spreading
rate almost entirely.

Although the discrepancies in the predictions of the recirculation
zones are not as great nor as well substantiﬁted as that of the
spreading rate, the above arguments indicate that great precision is
required in the recirculation zone if the wake is to be correctly
represented. In the recirculation region the Reynolds stress models
offer the potential advantages over a two equation model that the
differential transport of Reynolds stresses is permitted and that the
ugse of the isotropic viscosity hypothesis is obviated. The effect of
allowing for the differential transport of the Reynolds stresses is
difficult to assess. Certainly, the gross features of the flows con=-
sidered here are not dependent on this transport in contrast to asymmetric
channel flow or annular pipe flow for example. However, the results
demonstrate that the Reynolds stress closures are necessary to represent
the different magnitudes of the stresses and that they result in slightly
better predictions of mean velocity. This advantage might also be
obtained with a mean flow closure incorporating the more realistic
effective viscosity hyvothesis described in sub-section 2.4.1.

While the Reynolds stress closures have a slight advantage over model
I, the differences between the predictions obtained with the various models
are negligible compared with the discrepancy between the predictions and
the experimental data. This observation suggests that the discrepancy is
caused by the common factor in the different models, namely, the dissipation
equation. The findings of sub-section 2.4.2 support this supposition: it

%
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was concluded that any dissipation equation, closed by quantities per-
taining to low wave numbers, has no foundation in non-sginilar flows. The
recirculation zone snd the evolving flow immediately downstrzam of it

are distinctly not similar and, consequently, the dissipation equation is
particularly suspect in these regions. For these reasons, it is the
author's firm belief that the dissipation equation is responsible for

the large discrepancies and, further, that complex, rapidly evolving
flows cannot be represented by closures of the level employed here. On
the other hand, the finding of sub-section 2.4.2 also indicate that

a closure based on the spectral energy equation can, in principle,
represent such flows since the energy spectrum contains information
about the evolution of the turbulence structure. Such an approach,
although computationally more expensive, can be expected, therefore,

to remedy the observed discrepancies in the calculation of flows behind

bluff bodies.

5.2 Reacting Flows

In this section calculations of bluff body stabilised flames are
reported. A literature survey, Pope (19?3), revealed that there was a
paucity of experimental data of local properties in these flows: while
bluff body stabilised flames were widely studied in the 1950's, the mein
objective of these works was to determine the blow-off velocity and,
consequently, local properties were not measured. The more recent works
of Harrison (1973) and Harrison (1974) do, however, provide a complete
set of measurements of mean velocity and combustion efficiency for a
propane/air flame stabilised behind an ennular V-gutter in a circular
duct. The flows measured by Harrison are more fully described in the
next sub=-section Qhere the boundary conditions for the calculations are

given. The calculations were performed with the two combustion models



- 120 -

deescribed in section 3.5 and it is rnoted that, with the applied boundary
conditions, model A provides an ambiguous closure: the reasons for this
and the remedy employed are also stated in the next sub-section. The
results of the calculations, which are presented in sub-section 5.2.2,

are discussed in sub-section 5.2.3 where it is seen that the calculations
performed, albeit for only one class of flow, are sufficient to compare
the two combﬁstion models and to assess the validity of the assumptions on

which they are based.

5.2+.1 Description of the Flows Considered

The test rig used by Harrison, which was the same for both investiga=-
tions (Harrison (1973) and Harrison {1974%)), éomprised a 30° included
angle, annular, Vegutter mounted centrally in a circular duct: the inner
and outer radii of the annulus were 52.0 mm and 75.0 mm respeciively and
the duct radius, R, was 101.6 mm. Propane was injected into the air stream
3.5 m upstream of the V-gutter which resulted in the fuel/zir ratio being
uniform to within 5% at the plane of the gutter. Downstream of the gutter,
the duct continued for 1.05 m and was cooled by water jeis in order to
minimise the distortion due to thermal stresses.

The axial velocity was measured by means of a 3.2 ma dizmeter
éylindrical pitot probe: calibration tests showed that the dynamic head
was proportional to 0.53 times the pressure difference across the probe.
The accuracy of this method of measuring the velocity depends upon the
accuracy with which the density can be determined and also upon the probe
Reynolds number and the turbulence intensity. The two last dependencies
indicate that the measurements may be particularly suspect in the recircu-
lation region where the presence of the probe may also affect the flow.
These possible inaccuracies should be borne in mind although they are not
cited below as reasons for discrepancies between calculations and

measurements.

‘
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In order to determine the chemical composition of the flame, geas
samples were taken through a 3.2 mm diameter probe. The gases were
analysed for carbon dioxide and carbon monoxide using the I.R.G.A.
technique and the concentration of hydrogen was assumed to be half that
of carbon monoxide. The fraction of unburnt fuel was deduced from an
analysis of the sample after complete combustion over hot copper oxide.
The concentrations of oxygen and nitrogen could then be obtained with the
assunption that they were the only remaining species. Hence the combustion
efficiency, defined on the basis of oxygen consumption, was determined
directly while the density and temperature were deduced from the equation
of state and from the assumption of uniform enthalpy respectively. It may
be noted that a basic assumption of both combustion models is that the
reaction proceeds directly to carbon dioxide and water and conseguently
denies the existence of carbon monoxide and hydrogen. Conseguently, in
the models, the density and temperature are umiquely related to the
combustion efficiency vhereas this is not the case for the experimental
procedure. In this connection it is unfortunate that the measured carbon
monoxide concentration was not reported and consequently the error incurred
by the models through its neglect cannot be estimated directly.

Calculations were performed for four of the experimental tests which
were distinguished by different inlet values of velocity, fuel/air ratio,

temperature and pressure; the conditions for each test are shown in

Table II.
Table II. Test Conditions
Test U, @/s) °  fuel/air -Equivalence ™k P (bar)
g tio A
1 nio 000 T 0~ 0 720 0.572
2 107.0 .05 .783 720 0.591
3 85.8 .0333 .522 7220 0.862

<736 200 0.823
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N
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The calculations of test 1, in which there is no cocbustion, provide
another check on the performance of the fturbulence model while the three
tests with combustion allow the models to be assessed under the different
conditions indicated in the table.

In contrast to the calculations of isothermal flows reported in the
previous section, the solution domain for these flows extended from 1l.25
duct radii upstream to 3.1 radii downstream of the trailing edge of the
gutter. Thus, the gutter was encompassed by the solution domain, a
measure which overcomes the previously encountered prodlems associated
with inlet boundary conditons. The boundary conditions for velocity, fuel

- and pressure at inlet were taken as uniform with values appropriate to

Table II while the turbulence quantities were set by,

k = .003 U2
2 = JO3R; € = Cuk3/2/9,
gf\.l = O

The values of k and € represent nominal free streaa values while 8ra is
identically zero owing to the absence of cozbustion products. The boundary
conditions for the centre=-line and outlet plane were the saze as for the
isothermal calculations and the wall functions, described in sub-section
2.3.3, were employed at the duct wall. For <mg > and g, the zero
normal gradient boundary condition appropriate to impervious walls was
applied. The boundary conditions applied over the periceter of the V=gutter

were zero slip velocity and zero tramsport of scalars: this represents the

treatment advocated by Runchal (1973).
The application of these boundary conditions to the equations
appropriate to model A leads to an important, thoush novel, observation;

namely, the boundary conditions are insufficient {0 produce a unique

b
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solution. This mathematical point is best demonstrated by considering
the hypothetical case in which the density is uniform and consequently
the velocity and turbulence fields are independent of <Wep and Bey®
Tﬂe homogeneity of the equations for <me> and By, enSUTE that, if
one solution is given by <ma>y and (gfu)l,'an infinity of solutions

are given by

<mfu>in - a(<mfu>in -<mﬁ1>l)

| a2 PN

" where <Mme>in is the inlet boundary condition on <mfu> and a is an
arbitrary positive number. These solutions include negative values of<mfd>
which, by definition, is a non-negative quantity. The infinity of
solutions for this situation is directly analogous to the more familiar
ambiguity in Poisson's equation with zero gradient boundary conditions.

In practical situations, in which the density is not unifrom, if a unique
solution were to exist it would result from the direct influence of density
on the turbulent transport terms and from the indirect influence of density
upon the velocity and turbulence fields. While density variatons play an
important role in turbulent combustion, it would be unrealistic to suppose
that they alone dictate the level of the scalar fields.

The reason that this defect in model A has gone unnoticed is probably
that most solution procedures, for reasons of stability, relax the reaction
rate term in such a way that the combustion efficiency can never exceed
100%. This measure not only guarantees plausible solutions but also, by
destroying the homogeneity of the equations, overcomes the non-unicueness
problem. That is, in addition to the applied boundary conditions, the
value of < mfu> is effectively specified at one or more points within the

solution domain: thus, as with Poisson's equation, the additional restraint

on <the equations provides a unique solution. The same treatment was used
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in the present calculations and the observation that, for every ilow,

100% combustion efficiency was predicted at some point (namely the apex

of the V-gutter) confirms that the solution depends upon this inhomogeneity
for its uniqueness. The predictions of Mason and Spalding (1973) did not
suffer from this problem since the homogeneity of the equations was
destroyed by the non-uniform boundary conditions imposed on <mfu? and

Bru at . the inlet plane of their solufion domain. The fact that the
flows calculated here and those calculated by Khalil et al. (1975) had
homogeneous boundary conditions, while Mason and Spalding used
inhomogeneous boundary conditions, may account for the different value

of C

ERU used by these authors.

5.2.2 Presentation of Results

The calculated mean velocity profiles for test 1 are shown on figure -
5.12 together with the available experimental data: x denotes the axial
distance downstream of the trailing edge of the gutter and y represents
the radial distance from the centre-line. The results for this test, in
which there was no combustion, allow an assessment of the accuracy of the
turbulence model for the given flow geometry. The discrepancies observed
for the isothermal flows reported in the last section are again aprparent;
the profiles at x/R = 0.25 indicate the position of the end of the
predicted recirculation zone whereas at the same location the measurements
show significant negative velocities. The profiles at x/R = 1.25 dezon-
strate that the predicted recovery of the minimum velocity is far less
than that measured, the calculated velocity deficit being twice the
measured value. Thus, these calculations confirm that the turbulence model
results in the prediction of a too short recirculation zonre and a o0 slow
rise in minimum velocity.

The calculated combustion efficiency, temperéture and velocity profiles

for tests 2, 3 and 4 are shown on figures 5.13 to 5.21: the solid lines
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represent the calculatiQns using model A and the dashed lines represent
those using model B; the available experimental data are indiceted on

the figures for comparison. In section 3.5 it was stated that the reaction
rate constants, CEBU and 02, were chosen so as to produce agreement
between calculated and measured combustion efficiencies; this was done by
reference to the maximum combustion efficiency for test 2 at %x/R = 2.25.

It is seen that for all the tests the two combustion models predict
similar values of combustion efficiency; the major differences occur for
%/R < 0.25 where model A consistently predicts higher values. A compariscn
between the calculations and measurements indicates that for each test

and at each location the predicted width of the flame exceeds the reasured
value. For test 2, the predicted and measured values of maximum cozmbustion
efficiency are in good agreement except at the first location, x/R = 0.05,
where the former exceeds the latter. For tests 3 and L4, the disagreement
at the first location is less pronounced but the subsequent profiles,

0.25 < x/R < 1.25, shov the maximum measured combustion efficiency %o be
greater than that caleulated.

As expected, the calculated temperature profiles mirror the combustion
efficiency profiles; a minor exception to this observation is test k4 where
it is seen that model A predicts slightly higher temperatures than does
model B. The reason for this is that the low inlet temperature of test &4
nesults in higher maximum to minimum temperature and density ratios than do
the other tests, thus accentuating the different ways in which the two
models evaluate temperature. A comparison between measured and calculated
temperatures shows that there is a large discrepancy; for example, the
maximum temperature predicted at %/R = 0.05 for test 4 is 1600°K which may
be compared with the measured value of 2099°K and the calculated adiabatic
flame temperature of l?50°K. While the presence of carbon monoxide can

cause the temperature to exceed the adiabatic flame temperature, an excess
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of 350°K cannot reasonably be expected. Rather, it appears that the
gas analysis is subject to a considerable error since the fuel air ratio
obtained from it is up to 30% higher than ihe known value, based on the
air and propane.mass flow rates. The error, which is sufficient to account
for the discrepancy, denies tﬁe usefulness of considering further the
comparison between the predicted and calculated temperature. It is to
be hoped that the error is systematic and consequently the combustion
efficiency, being a normalised quantity, is unaffected by it.

The profiles of mean axial velociiy reflect not only the influence
of Reynolds stresses but also the acceleration due to the expansion of
the gasses caused by combustion. In particular, the measured profiles
at x/R = 2.25 for test 4, in which there is a 1:6 expansion, show a velocity
maximum downstream of the gutter rather than the minimum experienced in
isothermal flows. The velocity profiles predicted by the two models are
virtually the same, the slight differences being greatest for test 4. It
was shown in sub-section 3.3.1 that models A and B determine the lower
and upper bounds of density, respectively, and the difference between the
predicted velocity profiles reflects this fact. A comparison between
predictions and measurements shows that the disagreement is no greater than
for isothermal flows; the predicted length of the recirculation zone is
again shorter than that measured and far downstream, at x/R = 2.25, it is
evident that rate of wake recovery is underestimated. However, at
intermediate locations, 0.75< x/R< 1.25, the agreement is quite good and

certainly better than for the isothermal flow, test l.

S.2.3 Discussion

In discussing the results presented in the last sub=~section, attention
will be focussed on the prediction of combustion efficiency: the probable
error in the temperature measurement does not allow firm conclusions to be

made and, bearing in mind the limitations of the turbulence model, the

*»
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velocity predictions are adequate. The success of the models in
predicting combustion efficiency may be judged from the figures; the
error in the maximum combustion efficiency decreases with distance and,
at most, is 30%. The width of the flame is consistently overpredicted by
10-40% although the precision of the measurements does not allow an
accurate measure of this defect.

These achievements and defects of the models may be used to assess
the assumption on which théy are based: sub-sections 3.3.1 and 5.2.1
indicate that, in spite of its equal performance, model A is based on
contradictory and implausible assumptions and consequently only model B
. will be considered. Two basic assumptions in the model, which are subject
to doubt, are that the reaction rate is rapid, and that the reaction only
involves fuel, oxygen, carbon dioxide and water. For a given high Reynolds
number flow it follows, irrespective of the detailed modelling or the
composition of the fuel, that the vpredicted combustion efficiency is
solely a function of the minimum t{o maximum density ratio and that if
this is unity, <8, > is symmetric sbout n = 1/2. The first of these
deductions is demonstrated by the calculations; tests 2-4 have minimum
to maximum density ratios of .327,-.408 and .166 respectively and the
predicted combustion efficiency is seen fo increase slowly with increasing
density ratio. The experimental data is seen to follow the same trend
except for test 2 in the vicinity of the gutter (x/R< 0.75). This
exception can be explained by the invalidity, for this test, of the
assumption that carbon dioxide and water are the only products: test 2 is
distinguished by a combination of a high inlet temperature and high
equivalence ratio, conditions conducive to the formation of carbon monoxide.
While this is the probable explanation, it would, of course, be more
safisfactory to have direct evidence. For tests 3 and 4, on the other

hand, the near 100% combustion eificiency measured at x/R = 0.25 indicates
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that the carbon monoxide concentration is negligible at this location
and probably, therefore, downstream of it.

The experimental data suggests that the assumption of a high reaction
rate is valid; hydrocarbon reactions rates increase approximately
exponentially with temperature (see, Kretschmer and Cdgers (1972)) and
consequently, if the assumption were not valid, the low inlet temperature
of test 4 would cause the combustion efficiency to be consideradly lower
than for the other tests. As indicated above, the slightly lower cozbustion
efficiency rmay te explained in terms of the lower density ratio. Altzough
conclusive evidence is not available, it appears, therefore, thait for
- tests 3 and 4 the two basic assumptions are valid and so the deficiencies
in the rredictions stem from the details of the modelling.

The modelling of the molecular mixing term, G, and the reactiorn rate
deduced frox it are particularly suspect; the failure of G to Tredict
Gaussian protability distributions in homogeneous inerf flows and the

difference between the value C, = 4.5 obtained in Chapter 3 and the value

2

C2 = 1.0 used in the calculations indicate that the modelling is a poor
representation of the physical situation. Further, the modelled reaction
rate is the predominant influence Qn the predicted combustion efficiency
and is capable of producing the observed deficiencies. The overprediction
of the width of the flame suggests that the reaction rate is too large at
low combustion efficiencies while an increase at high efficiencies would
improve the predicted maximum. These suggestions, together witax the

observation that < S, > is symmetric about n= % in constant density

fu

systems, irdicate that density variations cause <3S to be asyrmetric.

>
fu
While such asymmetry is provided by the reaction rate term emploryed by
model B, it is evident that the basic term and the modelling of its

dependence upon density variations are quantitatively incorrect. The

strong dependence of <:Sﬁ1> upon density variations is unfortunate foxr

it means that the effects of turbulence on combustion cannot be siudied

independently of the effects of combustion on turbulence.
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CHAPTER 6

CLOSGRE

In the first section of this chapter, the main findings of the work
are summarised; this allows the achievements to 59 compared with the
objectives and the present capability of predicting turbulent reacting
flows to be assessed. On this basis, in section 6.2, the'remaining

problems are identified and an approach to overcome them is suggested.

6.1 Summary and Conclusions

6.1.1 The Reynolds Stress Closure Procedure

It was found that the incorporation of the Reynolds stress equations
into the basic solution procedure results in numerical instabilities which
stem from the lack of linkage between adjacent grid nodes. A new procedure
has been developed which overcomes this problem by solving the shear stress
equation on a separate grid.

Test calculations show that, for simple flows (e.g. the wake behind a
disc), grid independent solutions are obtained with a 20 x 20 grid: for
such a calculation, the computer program requires 24,000 words storage and
1 sec/iteration on a CDC 6600. The number of iterations required to
obtain a converged solution was found to depend on the complexity of the
flow and on the number of grid nodes; for the flow of Carmody (196L),

600 iterations were required for a 30 x 30 grid resulting in a computer
time requirement of 27 minutes. Although this time requirement appears
excessive, as compared with parabolic procedures, it is not a result of
solving the Reynolds stress equations. Indeed, the new procedure is
more economical than the basic procedure in all respects. Thus, the
objective of developing a numerical algorithm for Reynolds stress
closures has been achieved without increasing the computation expense

of the solution procedurec.
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6.1.2 The Calculation of Isothermal Waokes

Four wakes, two with significant regions of reversed flow, have
been calculated with a mean flow closure, model I, and with two Reynolds
stress closures, models II and III. By comparing the results with
experimental data, the ability of the turbulence models to represent
such flows has been assessed. It was found that the boundary conditions
applied at the inlet plane, which in some cases were not known with
certainty, had a significant influence on the calculations. However,
test calculations show that the resultant uncertainties in the predictions
are insufficient to affect the conclusions summarised below.

The mean velocity, calculated with all three models, is in excellent
agreement with the data of Chevray and Kovasznay (1959) and the shear
stress is also predicted well. Consequently, the relative merits of the
models may be assessed by the values of normal stiresses predicted by each:
model III provides calculated values which are in good agreement with
experiment, model II is slightly less satisfactory and model I, which
predicts‘equal normal stresses, is inadequate. A comparison between
calculated and measured velocity for the flow of Carmody (1964) reveals
significant defects in all the models which are confirmed by the prediction
of other wake flows with recirculation. The calculated length of the

recirculation zone is 30% less than that measured and the spreading rate,

;%i s is underpredicted 5y a factor of four. The first defect is equally
apparent for the flows of Durdo and Whitelaw (1974) and Assaf (1975) and,
to a lesser extent, so also is the cecond. The Reynolds stress models
fare slightly better than model I but the improvement is s:all cobpared
with the discrepancy with the data. The inaccurate prediction of the
velocity field in these flows does not allow a meaningful comparison of

the predicted Reynolds stresses although, as is evidenced by the flow of

Chevray and Kovasznay, models II and III clearly provide a better
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representation of the normal stresses.

While the application of Reynolds stress closures to near-wake flows
does not provide a significant improvement over model I, this series of
calculations has served to fulfil the objective of assessing the

performance of the turbulence models in these flows.

6.1.3 Turbulence Modelling

The three turbulence models have been examined term by term in the
light of a consideration of the implications of the mean closure approach.
As a result, the limits of validity of the modelling have been determined
and neglected influences have been identified.

It was shovm that the isotropic viscosity hyvothesis is incapable
of representing the Reynolds sitress tensor even in simple situations
although the effective viscosity approach is valid for nearly homogeneous
flows. An improved effective viscosity hypothesis, based on model III,
has been proposed: as well as providing a realistic representation of the
Reynolds stress tensor, it has the advantage of accounting for the influence
of streamline curvature.

The modelling of the second redistributive term, 23,2 in model III
is well-founded: several authors, using different approaches, have arrived
at the same result and, as has been shown azbove, the modelling renains
valid as the flow departs from homogeneity. The first redistributive
texrm, %; 3

Jsl

tion. The two terms have the same properties and, although neither

s was considered in conjunction with the anisotropy of dissipa-

theoretical arguments nor experimental evidence have determined their

respective roles unequivocally, the modelling can bte expected to be of
the right form. The calculations of the data of Chevray and Kovaszray
(1969) confirm this supposition and demonstrate the loss of ace Lraey -

resulting from the truncated form of ¢ used by model II.

ij,2

*
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The turbulent transport terms werec not examined in detail because,
it was argued, their magnitude is insufficient to account for the large,
observed discrepancies between calculations and experiment.

By a process of elimination, because of its controlling influence
on the scale of turbulence and on theoretical grounds, the modelling of
the source term in the dissipation eguation, Se' has been identified as
the principal deficiency of the turbulence models. I{ has been shown
that the modelled form of SE is only approoriate to similar flows: even
in these situations, the simplicity of the detailed modeliing znd the lack
of dependence on streamline curvature suggest that its generality is
suspect. For non-similar flows, such as those behind bluff bodies, the
inapplicability of the dissipation equation stems from the inadeguate
representation of the turbulence structure ty single~-point closures. A
- two-point closure, based on the energy spectrum, has been suggested as an
alternative approach which has the potential of representing non-similar

flows.

6.1.4 Combustion Modellinge

The probability approach of ILundgren (1957) has been applied to the
equations of turbulent reacting flows. The joint probability distribution
equations provide a clear picture of the mechanisms involved: the mean and
fluctuating velocities transport the joint probabilitiy in position space
and transport in probability space is caused by the source and by mixing
on the microscale. 'The key to understanding turbulent rezcting flows lies
in the interrelation of the two latter effects. The term representing
microscale mixing has been modelled for the single probability distribution
equation and solutions of this equation have been obtained for a simplified
premixed combustibn system. Wnile the modelling is not completely

satisfactory, the solutions, which can be expected to be qualitatively
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correct, demonstrate the interrelation of the rezction rate and microscale
mixing as a function of the time scales of the system. Consequently, %o
an extent, the objective of developing a combustion model in-orporatins
the effects of finite reaction rates has been achieved. VWhile the joint
probability equations can, potentially, account for finiie reaciion rates
in any combustion system, the difficulty in modelling the microscale
mixing term has prevented this potential from being realised.

Combustion models in current usage have been assessed by reference
to the probability distribution equations. The theoretical foundations
of the models for diffusion and arbitrarily fuelled flames, Lockwood and
Naguid (1975a and 1975b), have been consolidated while the eddy-brezk-
‘up model has been found to be poorly based. A variant of the eddy-break-
up model, model B, has been proposed which is consistent with the assumption
of a very high reaction rate., The influence of density variations, which
is virtually ignored by the above models, has been considered and the
practice of mass averaging has been shown to decrease the problems of

modelling that it poses.

6.1.5 The Calculation of Bluff Body Stabiliszed Flares

Calculations have been made of premixed propzne/air flames stabilised
behind an annular V-gutter in a circular duct. The prediciions, obtained
with the k-€ turbulence model and both ﬁodels A and B, have been compared
with the measurements of Harrison (1973 and 1974). The similar values of
combustion efficiency predictied by both combustion rodels are in reasonable
agreement with the data although the width of the {lame is over-predicted
by approximately 30%. The agreement between the reasured and calculated
velocity fields is surprisingly good, bearing in mind the deficiencies
of the turbulence model-in isothermal flows. It can te concluded from
these results that the basic assumption of a very fast single step

e
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reaction is applicable to these flows and, consequently, the inaccuracy in

the predictions stem from the detailed modelling rather than from the form

of closure adopted.

6.2 Suggestions for further work

Future theoretical investigations of turbulent reacting flows should
endeavour to increase the accuracy and generality of turbulence and |
combustion models. Present models appear to be capable of representing
simple flows and reacting systems where the assumption of a very fast
sinéle step reacticn is valid and so the refinement of the detailed
vmodelling, by reference to experimental data; can be expected to.igcrease
the accuracy. In particular, the isotropic viscosity hypothesis, the
source of dissipation, the reaction rate in eddy-break-up type models
and the treatment of density fluctuations are probable sources of
inaccuracy and are worthy of further investigation.

In order to represent many flows of enginéering importance, the
generality of the models must be increased: for example, the flow in
gas turbine combustion chambers is complex and the reaction does not
proceed rapidly to produce carbon dioxide and water. The inability of
the turbulence models to represent such complex flows has been attributed
to the inapplicability of the dissipation equation and, consequently, the
development and use of a two-point closure, as described in sub-section |
2.4.2, is an important area of further work. The probability appro=ch
has the potential of accounting for finite rate multi-stage reactions and
the next step towards realising this potential is the meodelling of the

joint probability distribution equation. As this equation is
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computaticnally expensive to solve, a model based on transport
equations for the free parameters in an assumed joint prcbzbility
distribution (see sub-section 3.3.1) may prove to be a good compramise

between accuracy and economy.
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NOMENCLATURE

mass fraction of activated species

finite-difference coefficients
normalised Reynolds stress tersor

derived constants in modelled Reynolds

stress equations (zode1l ITI)
eddy=-break-up constant

congtants in g=equation

specific heat

constants in modelled Reymolds siress
equations

effective viscosity constant

constants in modelled vprobability distribution
equations

energy spectrum

flux of spectfal enercy in position space

flux of spectral enerzy in wave number space
mixture fraction

coefficient in general effective viscosity hypothesis
molecular action term in probability distribution
equation

function in effective viscosity hyrothesis

mean square fuel concentration fluctuations

functions in modelled probability

distribution equation
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Hfu heat of formation of fuel
h | - enthalpy
I,I2 unit matricies in 3 and 2 dimensions
k . kinetic energy of turbulence
m, mass fraction of species g
N(z) _ clipped-Gaussian probability distribution
P pressure '
P’Pij | ' production of kinetic energy and Reynolds stress
p(z) probability distribution of o
Pt pressure fluctuation
4 two-point correlation.tensor
T radius
S source in dissipation equation
So(2) source of species g
8 stoichiometric coefficient
sij normalised rate of strain tensor
T temperature
Tij tensor function in effective viscosity hypothesis
t time
Ui’ui velocity and fluctuating velocity vectors
U,u Z velocity and fluctuating velocity in
V,v : orthogonal coordinates
Wow J(
XsY 12 orthogonal coordinates
T diffusive coefficient
§(3) Dirac delta function
6ij' Kronecker delta

€ dissipation of kinetic energy of turbulence



n
K
u’ueff
P
o

Subscripts
A

fu, ox, pr

N,S,E,¥,p

Conventions

<> 4 o'

Q>

Q

{1}

~-144 ~

combustion efficiency

wave number

laminar and effective viscozities
density

rate of strain invariant

effective Prandtl-Schmidt numbers

turbulent time scale

residence time

Achemical kinetic time scale

scalar quantity
redistribution terms
rotation invariant

nermalised rotation tensor

activated species
fuel, oxygen and products

grid node locations

mean and fluctuating component of g

mass veighted mean and fluctuating comrorent

1
12 =
<g >e

independent variable in probability space

(Chapter 2) trace of a matrix

(Appendix)- term to be omitled in Cartesgizn

coordinates.

of 3
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APPEINDIX

Modelled Eouations in Two=Dimensional Cartesian and Polar Cvlindricsl
Coordinates

The modelled equations are stated here in the form in vhich they are
solved by the numerical procedures. In addition to the coordinate system
introduced in section 4.2, an additional conveniion is used to permit the
exoression of the equations in a common form; namely, terms in curled
brackets, { } , are only appropriate to polar cylindrical coordinates.

Further, for brevity, the convective and diffusive terms arz denoted by

Dpo and D(g) where,

Dt
ikl 2 (1)
D (0) = %:E (ors %ﬁ) *% -"2-37 CRT '?75') (a.2)
md Dylo) = = (pEDH) 4t Lol

8 K.eup 22y, 1 2 (o ok oy e
+ 2= (b g <ww ay)+r ay(rpe<uv> ==) (A.3)

Dl ig the diffusion model used by model I and D2 is that employed by both
Reynolds stress closures. The right hand sides of equations A.l and A.2
are incorporated implicitly in the finite~difference equations as are the
first two terms in equation A.3: the final two terms in this equation are

added to the source.

For 211 calculations performed, the continuity relation is,

D
5 = O (A.4)
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A.l Eguations for Combustion Calculations.

The calculations of reacting flows were performed with the basic
procedure, described in section 4.2, incorporating the k-¢ turbulence
model, model I. Model A solves transport equations f{or the umweighed

mean values of U, V, k, €, P and 8su vhile model B solves for their

mass averaged values, excepting Bra®

%? PU = Dl(U).+ ax( eff ax) (r ueff 3x) ax (P M 2/3 pk) : (A.E)
D N . D 1
57 PV =D (V) + 5% (Mepp 3y)+ ( effa) -
- %y- (p+ 2/3 pk)-12 Mers v/r } (A.6)
o7 ok =D (/o) + P - pe (a.7)
Jpee=Dy (o) + £ (cyq P - C_, pe) (a.8)
D
BT P Mgy = Dy (mgfon) #8, (a.9)
2 om &
D k fuy2 2042 €
Vg = Gu e k% € (A.11)
. V)2 aU\2 VN2 ~y
P o= Uep ( o) el v 2lE)t 4 2 /53 (a.12)

* The lover case p is used to denote pressure in order %o avoid confusion
with the production of kinetic energy, P.



- 147 -

The determination of the density, p, and the reaction raie of fuel,

Sfu, is described in section 3.5.

A.2 Equations for Isothermal Calculations

The isothermal flows were predicted with all three turbulence rmodels.
The Reynolds stress closures necessitated the use of the new procedure
described in section 4.3 which was used even in conjunction with model I.

This procedure solves the momentum equations in their exact form,

D S IS - I -

o PU = om PU> = F 3y T Puv> - (h.13)
D -

sTeV = - 2 s - L2 .ot - -g‘l;- + {p<w2>/r} (A.14)

ox r oy

Model I. The Reynolds stresses are given by,

_ au , v
pUV> = = Uegr (ay * ax)
2 oU
pa > = 2/3 pk apeff o% (A°15)
2 ov
p<v > = 2/3 pk - aueff oy
pcu®s = 2/3 pk - {2y .. V/r}
Hefs
The effective viscosity is given by equation A.1ll and the equations
solved for k and € are identical to equations A.7 and A.8 -
Z " - The production of kinetic energy is given by,
o 2U v 2 & 2 o 2
P=- [o] (<U.V>("‘a'§ + 'a—;:') + A >’&' + Vs e+ {(H > V/I‘} ) (A-16)

oy

~ ~
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Reynolds Stress lMedels. The two Reynolds stress closures differ only

in the redistribution term: their common form is,

D peu?s

D pev?s

- D 2
DT P<W >

33

12

_ 2 2/ o
= D, (CB<u >)+P11+R11- /3 p <

2 2
= D, (cs<v >)+P22+R22- /3 pc

- {2p Cs-}-é<w2> (<v?> -<wa>)/r2}

2 2, .
= D, (Cs < >)+P33+R33- /3 pE

+ {2p Cs-}-;- < W >(<v2> - <w2>)/r2}

k_ 2 2
- - 2 <™ > }
DZ(cs <uv>) + P12 + R12 { Cs = <w > <uv /<]

- >4 -
- D2 (CEE) *x (csl P c€2 pe)

- 2, v 8y
= -2 p (<u> < >ay)

2, aV aVv
— - o> YYX S YT e
= 2p(v ay+ uva)

~

= —{2p <> V/r}

25 90
= =-p (% >-g-§+<u%%-{<uv> V/r })

~ ~

(4.17)

(4.18)

({x.19)
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The redistribution terms for each model are,

Model 2

By

33
By,

Model 3
Ry

33

f2

]

- cel

..2_'32

- {ZB2 pk V/r} + 2B

£ (cus = 2/3 k) - c, (B, - 2/3P)

£2 (% - 2/5 k) - C, (B,, = 2/3P)
%(q%-z/sk)-cz (P55 - 2/5 P)

% <uv> = C_, P,

S (> - 2/3%) - B (p, - 2/5P)

it g’i + 23, (p<u>> P_U. + p<uv> - ~+1/5P)

£ (<v2> = 2/3 x) -
ok X a: + 23 (p<v2>-g-Y-

%E (<> = 2/3 k) =

3

- .L‘:<” >.."
Cop & W= E Py,

-B2

au
pk (ay +

(¢, +8/m

(30 082
(8 ce2

- 2)/11

-~

- 2)/55

3

({e

< w2 >V
Tr

o w2 2
ax)+B p (<u ay+<v

B, (P22 - 2/3 P)

B (P33 - 2/3 P)

}+1/3P)

2>

-

-~

v
X

+

oU
+ p<uv” Fri 1/3 F
st 3y /3 B)

<

U
> [
uv “3

(A.20)

(a.21)

aV.

1)

3y

(A.22)
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Table I Values of Constants

Model I II I1I A B Origin
c 0.09 0.09 0.03 a
0 0.9 0.9 C.9 a
oc 1.3 1.3 1.3 a
Coy 1.45 1.45 1.45 1.45 1.45 b
082 1.90 1.9 1.90 1.90 1.90 b.
Cel 2.5 1.5 b
CGa 0.4 O.k b
Cs 0.25 0.25 b
C. 0.15 0.15 b
cgl 2.8 ¢
C82 ' 2.0 c
cg | 0.7 c
Gmfu 0.7 0.7 c
Crry 1.1 d
02 1.0 da

a - Launder, Morse, Rodi and Spalding (1972)
b - Launder, Reece and Rodi (1975)
¢ - Elgobashi and Pun (1974)

d -~ Optimisation, see sub-gection 5.2.2
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.Figgge 3.3 Reacting homogeneous flow:
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CEBU against é/gmax
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