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ABSTRACT 

Measured flow properties in two-dimensional wakes are compared with 

the values calculated using a mean flow closure and two different Reynolds 

stress closure turbulence models. The comparison shows that, for wakes with-

out recirculation, the three turbulence models predict similar values of 

mean velocity although the Reynolds stress models do, of course, provide a 

better representation of the individual stresses. For wakes with recircula-

tion the differences between the values calculated with each turbulence model 

are overshadowed by large discrepancies between measurements and calculations: 

the length of the recirculation zone is underestimated as is the rate of 

spread of the downstream wake. The turbulence models are examined term by 

term and the dissipation equation, which is common to all three models, is 

identified as the source of the error. The reasons for this error and an 

alternative approach are suggested. A new finite-difference procedure for 

the solution of the equations comprising the Reynolds stress closures is 

described. 

The transport equations for the single and joint probability distribu-

tions of scalars characterising a reacting system are derived and the unknown 

terms in the single probability distribution equation are modelled. Solutions 

of the modelled equation are presented and they demonstrate the influence 

of turbulent mixing and finite chemical reaction rates. These equations are 

employed to assess combustion models in current usage: the theoretical 

foundations of the models for diffusion and arbitrarily fuelled flames are 

consolidated while the model for premixed flames is found to be poorly based and 

an alternative is proposed. Calculations are made of premixed propane/air 

flames stabilised behind an annular V-gutter in a circular duct. The similar 

values of combustion efficiency and mean velocity pred.c'cA7ed by the eddy-break-

up model and the alternative proposal are in reasonable agreement with the data 

although the width of the flame is overestimated by approximately 30%. 
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CHAPTER 1 

INTRODUCTION  

1.1 The Flows Considered 

1.1.1 The Flow Behind Bluff Bodies. The investigation reported 

here was concerned with the turbulent flow occurring downstream of bluff 

bodies: both reacting and isothermal flows were considered. The flow 

behind a cone, which is a typical example of the isothermal case, is 

illustrated in figure 1.1 where three regions are distinguished. 

In the first region, upstream of the trailing edge of the cone, the main 

feature of the flow is the divergence of the streamlines caused by the 

presence of the obstruction. Except in the immediate vicinity of the 

cone, momentum transfer by molecular and turbulent agencies is negligible. 

Immediately downstream of the body a region of reversed flow occurs. 

While averaged streamline patterns have been measured, e.g. Chigier and 

Bear (1964), and are shown on the figure, a conception of the recirculation 

zone based on ordered flow patterns would be neglecting its essential 

chacteristics. A better picture, see Nicholson and Field (1949), is one 

of large eddies (possibly as large as the width of the body) passing to 

and fro across the averaged streamlines causing a great deal of mixing. 

In the third region the flow is a "free boundary-layer"; that is, a 

region where there is a predominant flow direction along which gradients 

of averaged quantities are small compared with their gradients in the 

normal direction. The wake caused by the bluff body decays and, as the 

velocity returns to its free stream value, the rate at which the wake 

spreads across the flow decreases. 

The wake described above is an idealisation of many practically 

occurring flows: the work performed on isothermal flows has relevance, 

therefore, to wakes behind aeroplanes, ships and buildings as well as to 
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wakes found inside engineering equipment. The flow behind inlet valves 

in internal combustion engines provides an example of the latter type of 

flow. The motivation for studying the flow behind bluff bodies was not, 

however, related to any of the above applications; rather, these isothermal 

flows were considered in order to provide an understanding of the hydro-

dynamics of the type of flow occurring in bluff body stabilised flames. 

• 

1.1.2 Bluff Body Stabilised Flames  

In a combustion system which is homogeneous on all scales, the rate 

of reaction is solely a function of the thermodynamic and chemical proper-

ties. However, the gross features of reacting flows often depend only 

weakly on the detailed chemistry and are principally determined by the 

flow structure. This is because the rate of reaction is controlled not 

only by the chemical kinetics but also by the mixing of fuel, oxygen and 

thermal energy, ultimately by molecular action. Thus, for example, in 

high Reynolds number turbulent diffusion flames where the molecular mixing 

is largely independent of Reynolds number so also are the (appropriately 

normalised) mean velocities, temperatures and reaction rates, Spalding 

(1975). In the following discussion of bluff body stabilised flames, 

which relies on the early experimental studies reported in sub-section 1.2.2, 

it will be seen that nixing by the mean flow and by turbulence are of 

central importance. 

Figure 1.2 is a sketch of a flame behind a V-gutter showing the pattern-

of streamlines and the location of the flame. In the region upstream of 

the trailing edge no reaction takes place because the flame is unable to 

propagate upstream faster than it is convected downstream by the flow. 

The flame is anchored by the recirculation zone which is a region of low 

flow velocity and high reaction rate; the high level of turbulence serves 

to supply the zone with fresh reactants and to mix them rapidly with hot 

Pp 



products. In exchange, the recirculation zone supplies the surrounding 

stream with hot products, hence initiating the flame which, as it passes 

downstream, spreads across the flow. 

The principal use of bluff body stabilised flames is in gas turbine 

afterburners and it was to this application that the investigation was 

directed. In designing a reheat system, the engineer's principal concern 

is with flame stability, combustion efficiency and pollutant formulation. 

These aspects of reheat performance are discussed below where the pre-

dominant flow and combustion phenomena, responsible for each, are 

identified. 

It is found that, for a given flame stabiliser and fluid composition, 

there is a flow velocity above which a flame cannot be stabilised. The 

existence of stability limits, at which the flame is said to "blow off", 

can be attributed to the failure of the recirculation zone to stabilise 

the flame as indicated above. In order to determine the mechanism 

responsible for this failure, consider the effect on a stabilised flame of 

an increase in flow velocity. The rate of supply of fuel to an elemental 

volume of the flow increases linearly with the velocity as does the rate 

of mixing. Consequently, providing that the rate at which the chemical 

kinetics can burn the fuel exceeds the rate of supply of energetic fuel 

and oxygen to the molecular scaLe, the reaction rate also increases 

linearly with the velocity. Thus, in this situation, the values of fuel 

concentration, temperature and density at any point in the flow are 

independent of the velocity. However, as the chemical kinetic rates are 

independent of the velocity, there is a value of flow velocity above which 

the molecular mixing rate exceeds the kinetic rate, resulting in lower 

reaction rates and, consequently, further increases in velocity result 

in decreased combustion and lower temperatures until the recirculation 
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zone is no longer able to sustain the flame. This simple model indicates 

that the phenomenon responsible for blow-off is an interraction between 

turbulence and chemical kinetics in the recirculation zone. 

The combustion efficiency is determined by the rate of reaction 

which, in a flame well within the stability limits, is in turn determined 

by the mean flow and turbulence mixing. In particular, as the recircula-

tion zone forms the base of the flame, the mixing in thiS region can be 

expected to play an important role in determining the combustion efficiency 

in all parts of the flow. 

In recent years, legislation has come into force in order to limit 

pollution emissions from aircraft engines: consequently, although the 

concentrations of pollutants, principally oxides of nitrogen, are so small 

as not to affect the performance of combustion systems, their minimisation 

is an objective of the design. The formation of oxides of nitrogen depends 

strongly upon the temperature of the combustion gases, Newhall and Shahed 

(1971), and a design which produces an even temperature distribution, 

rather than hot and cold regions, is more likely to be successful in 

minimising pollutant formation. 

In summary, flame stability, combustion efficiency and pollutant 

formation are of central interest in bluff body stabilised flames, and, to 

varying degrees, in most other combustion systems. The mean flow and 

turbulence fields have a controlling influence on the structure of the 

flame while the temperature field is a determining factor in pollutant 

formation. The recirculation zone, to which the flame owes its 

existence, is of particular importance and an interaction between 

turbulence and chemical kinetics in this region accounts for blow-off. 

ep 



1.2 Description of the Research Programme  

1.2.1 Preamble. 

The general objective of the research was to provide a quantitative 

description of bluff body stabilised flames; that is, to formulate 

theories or models which may be used to predict the behaviour of such 

flows. It is useful to enumerate here the criteria by which such models 

are to be judged; 

(i) detail - the amount of information provided 

(ii) accuracy 

(iii) generality 

(iv) economy 

Any model is unlikely to be superior to all other possibilities in all 

these respects and so a compromise is needed. For example, in the next 

sub-section where previous investigations are reported, it is seen that 

empirical correlations have been established between the blow-off velocity 

and the major flow parameters. Such correlations require a minimum of 

evaluation and are reasonably accurate but they only provide information 

about blow-off and are restricted to simple systems. On the other hand, 

the exact equations governing the flow provide a completely accurate and 

general description of every aspect of the flow but their solution is 

prohibitively uneconomical. 

In the next sub-section, where previous related work is reported, 

the approach of modelling and solving transport equations for the major 

flow properties is seen to represent a good compromise. A chronological 

account of the present research programme, which represents applications 

and considerations of this approach, is given in sub-section 1.2.3. It 

will be seen that existing theories were found to be unable to describe 

the flows to the required accuracy and, as a consequence, the major part 

0, 
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of the work was involved with quantifying the errors, diagnosing their 

sources and devising remedies. This being the case, the work proceeded 

toward the overall objective in stages and the detailed objectives of each 

stage, stated in sub-section 1.2.4, were largely determined by the findings 

of the previous stages. The work comprising each stage is presented in 

this thesis under subject heads rather than in chronological order; the 

lay-out of the thesis is described in the final sub-section of this 

Chapter. 

1.2.2 State of the Art  

In this sub-section, previous investigations of bluff body stabilised 

flames are reported in order to provide a picture of the state of knowledge 

at the start of the present work, 1972. The early works notably Longwell 

et al. (1949), Williams et al. (1949) and Longwell (1953),  were concerned 

with measuring the stability limits under various operating condition. 

From these data it was possible to correlate the blow-off velocity with 

the dominant flow parameters and to suggest tentative models of the 

mechanisms involved, see, for example, Childs (1960). In order to 

provide a better understanding of the mechanisms, Fetting et al. (1959) 

and Fillippi et al. (1962) studied the effects of altering the chemical 

composition of the recirculation zone while Winterfeld (1965) investigated 

the gross hydrodynamic features of the flows. These experimental investi-

gations provide, in part, a qualitative understanding of the flows and 

correlations between blow-off and the dominant flow variables. They do not, 

however, provide measurements of local properties such as species concen-

trations, temperature, velocity and turbulence properties. 

The works of Howe et al. (1963), Cushing et al. (1967) and Pein et a].. 

(1970) provide a small amount of information about the local chemical 

and thermodynamic properties in the flows but, due to experimental 
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difficulties, velocity and turbulence quantities remained unmeasured. 

In recognition of the important ',Ole played by the aerodynamics of the 

flow, Davies and Begr (1971), Chigier and Beer (1964), Carm.)dy (1964), 

and others undertook investigations of the velocity and turbulence fields 

in bluff body stabilised flame type flows but in the absence of combustion. 

These works provide valuable information but the uncertainties in measuring 

in recirculation zones with hot wires or pitot probes arid the absence of 

combustion limit their usefulness. More recently the technique of laser 

anemometry has been successfully applied to turbulent flames to measure 

both mean velocity and turbulence intensity, e.g. Durst et al. (1972a). 

However, while this method has great potential, results for bluff body 

stabilised flames obtained by 1972 were few, Durst et al. (1972b) and 

Durgo et al. (1973). 

On the theoretical front, since the late 19601s, significant advances 

have been made: these stem from the exploitation of digital computers to 

solve simultaneous partial differential equations. If the ability of 

computers were unbounded, the way forward would be simple; a set of 

equations representing the conservation of mass, momentum, energy and 

chemical species can be formulated which, with little uncertainty, describe 

the flow in every detail. The problem arises because this set of equations, 

applied to turbulent reacting flows, is too complicated to be solved by 

computers in the forseeable future. However, the engineer does not need 

to know every detail; the behaviour of turbulent fluctuations is not his 

concern. The approach appropriate to the engineer, and that adopted by 

many workers since the 1960's, is to solve a simpler set of equations 

from which ensemble averaged values of velocity, density, temperature and 

species concentrations can be determined. 

The exact equations for the ensemble averaged velocities contain, as 

unknowns, the Reynolds stresses which may be estimated through turbulence 
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models. Prandtl's (1925) mixing length hypothesis was soon replaced by 

turbulence models which solved transport equations for one or more 

turbulence quantities. Models which solved eqUations for the kinetic 

energy and another scale of turbulence proved particularly successful: 

Rodi (1972) applied one such model to free shear layers while wall 

boundary-layers were considered by Ng (1971) and Jones (1971). Hanjali6 

and Launder (1972) incorporated a shear stress equation into this model in 

order to predict asymmetric channel flow and Launder, Morse, Rodi and 

Spalding (1972) concluded this phase of development by solving equations 

for each of the normal stresses as well. A summary of these models is 

provided by Launder and Spalding (1972). It should be noted that all the 

above works were concerned with boundary layer flows: two-equation models 

were used in recirculating flows, e.g. Runchal (1971), but the predictions 

obtained were not compared with detailed experimental data and so their 

accuracy for these situations could not be determined. 

In addition to a turbulence model, a combustion model is required in 

reacting flows in order to close the set of equations. Temperature and 

species concentration fluctuations affect the density and reaction rates 

of species and, consequently, the turbulent structure; the role of 

combustion models is to account for these effects. Early investigations, 

e.g. Patankar and Spalding (1970) and McGuirk (1971), rather than employing 

a combustion model, ignored the effects of turbulence completely; this • 

was done, not in the belief that they were negligible but, for want of 

a viable alternative. In order to simplify tke analysis, idealised 

systems were considered; the two extremes of premixed and diffusion 

flames were considered separately with the common assumptions of a very 

fast single step irreversible reaction. Spalding (1971) proposed the 

"eddy-break-up" model for premixed flames which supposes the reaction 

rate to depend- on the local turbulence structure. This model was used 
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with success by, among others, Mason and Spalding (1973) but, as will be 

seen later, it rests on unsure foundations. The analysis of turbulent 

diffusion flames stems from the work of Toor (1962): the assumption of a 

very fast reaction rate implies, for diffusion flames, that fuel and oxygen 

do not coexist. This observation allows the species concentrations, 

temperature and density to be evaluated from the mixture fraction, the 

averaged equation for which requires only a modest amount of modelling. 

This model is not, however, complete because the condition of non-coexistence 

does not mean that the averaged concentration of either fuel or oxygen is 

zero everywhere. In fact, due to mixture fraction fluctuations,both 

species can exist at the same place but at different times. Spalding 

(1970) suggested a transport equation for the mixture fraction fluctuations 

which was incorporated into the diffusion flame model by Gosman and 

Lockwood (1973). 

This brief revue indicates the state of the art at the start of the 

present work: more recent advances are reported at appropriate points in 

the thesis. In summary, experimental investigations provided a qualitative 

understanding of bluff body stabilised flames although detailed measurement 

of local quantities were scarce. Turbulence models had been successfully 

used to predict boundary layer flows while work on combustion modelling, 

although in its infancy, suggested that reacting flows were amenable to 

this approach. 

1.2.3 Chronicle of the Research Programme  

On the basis of the past success of turbulence and combustion models, 

work commenced with the use of a computer program for two-dimensional 

recirculating flows incorporating the k- E, two equation, turbulence model 

and the eddy-break-up combustion model. This computer program, a precursor 

of that described by Runchal (1973),formed the basis of all the calculations 

C, 
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performed throughout this research. A literature survey, Pope (1973), 

showed that experimental data for testing the procedure was in short 

supply. However, some initial calculations revealed that, for both 

isothermal and reacting flows, the calculated length of the recirculation 

zone was significantly less than the measured value. In light of the 

importance of the recirculation zone in stabilised flames, a theoretical 

and an experimental programme were undertaken in an attempt to overcome 

this defect. 

At this time, the works of Launder, Morse, Rodi and Spalding (1972), 

Hanjalic and Launder (1972) and the results later reported by Launder, 

Reece and Rodi (1975) became available. They indicated that Reynolds 

stress closures provided a significant advantage over mean flow closures 

and, consequently, it was decided to incorporate a Reynolds stress model 

into the computer program. The modelled Reynolds stress equations had not 

been applied to recirculating flows before and it proved to be a difficult 

and time consuming task: the simplicity of the method  finally adopted 

belies the fact that, in rejecting unviable alternatives, it represents 

twelve months work. 

An experimental investigation was instigated with the objective of 

supplementing the data relating to isothermal flows behind flame stabilisers. 

In particular, it was intended to measure individual Reynolds stresses in 

order to test the new turbulence model. To this end, a rig was designed 

to study the flow of water around a disc baffle mounted centrally in a 

round tube which was to be measured by laser anemometry. 

Male these two tasks were in hand, partly due to the numerical 

difficulties being experienced with the Reynolds stress equations and 

partly in order to rectify an error made by Lumley (1970), the form of 

the effective viscosity hypothesis was considered. It was realised that 

the major advantage of a Reynolds stress closure could be obtained using 
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the two-equation model with an improved effective viscosity hypothesis. 

This work, Pope (1975), was successfully completed and is summarised in 

this thesis. The suggested effective viscosity hypothesis was not used 

in the calculations because, when it became available, the Reynolds stress 

model had been successfully incorporated into the program and results 

obtained. 

A comparison between experimental data for isothermal wake flows and 

the calculations performed with the Reynolds stress model revealed that the 

discrepancies, although marginally less than with the k-E model, were 

still prevalent. Thus, while this work on isothermal flows is useful in 

discovering and quantifying these errors, it did not provide a significantly 

better description of the flow. As more time had been spent on isothermal 

flows than was initially intended and as the existing data proved sufficient 

to test the model, the experimental programme was discontinued. The rig, 

which by this time had been constructed and was being commissioned, was, 

however, used for its initial purpose by Ms. H. Assaf, some of whose work 

is reported here. The author's contribution to the experimental programme 

is not included in this thesis. 

While the work on isothermal flows was in progress, the overall 

objective had not been forgotten: the preliminary calculations and 

theoretical considerations revealed that the eddy-break-up model was not 

physically realistic nor could it account for the interaction between 

turbulence and chemical kinetics which accounts for blow-off. At the,  same 

time, the model for diffusion flames was being refined by Lockwood and 

Naguib (1975a) and by Elgobashi and Pun (1974) on the basis of an assumed 

probability distribution for the mixture fraction. In an attempt to 

overcome the defects of the eddy-break-up model and to unify the models 

for premixed and diffusion flames, the probability approach, applied to 

the Navier-Stokes equations by Lundgren. (1967),was turned to the equations 
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of turbulent reacting flow. The outcome of this theoretical work was to 

provide a set of exact equations which clearly reflect the physical 

processes involved in turbulent combustion. In addition, closure,  

approximations for these equations were suggested resulting, principally, 

in a model for premixed flames which accounts for the interaction between 

turbulence and chemical kinetics. A degenerate form of this model was 

obtained by assuming high reaction rates and the result can be regarded 

as a more soundly based form of the eddy-break-up model. 

A further set of calculations were performed in order to assess the 

accuracy of eddy-break-up type combustion models. The calculation 

procedure embodied the k-e turbulence model as well as one of the 

combustion models and the predictions were compared with the data of 

Harrison (1973 and 1974). These data include velocity and combustion 

efficiency measurements in a premixed propane/air flame stabilised behind 

an annular V-gutter. 

Finally, prior to the preparation of this thesis, the implications of 

the theoretical and computational works performed were considered in order 

to assess the present status of turbulence and combustion modelling and, 

by highlighting the deficiencies, to suggest profitable areas for 

further research. 

1.2.4 Objectives  

The objectives of each aspect of the work described above were, in 

chronological order of their performance; 

	

i 	to develop and test a numerical algorithm for the 

solution of the equations comprising Reynolds stress 

closures; 

	

ii 	to formulate a more general effective viscosity 

hypothesis; 
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iii 	to calculate isothermal wakes with mean flow 

and Reynolds stress closures in order to assess 

their performance; 

	

iv 	to develop a theory of turbulent combustion 

incorporating the effect of finite reaction rates; 

	

v 	to calculate bluff body stabilised flames in order 

to assess the performance of combustion models; 

	

vi 	to reassess the theoretical foundations of turbulence 

and combustion models and thereby to identify 

profitable areas for further research. 

This research must be judged, not only by the success with which 

each of these objectives are achieved, but also by how far these 

achievements serve to fulfil the overall objective of providing a 

quantitative description of bluff body stabilised flames. 

1.2.5 Lay-out of the Thesis  

In the next four chapters the work is reported under the headings 

Turbulence Modelling, Combustion Modelling, Calculation Procedures and 

Calculations. This format, chosen to provide a coherent structure, allows 

each aspect of the work to be treated from beginning to end with a minimum 

of references to other parts of the thesis. However, the reader should 

bear in mind that the order of presentation does not reflect the order 

of performance and, consequently, several observations made in Chapters 2 

and 3 represent suggestions for further work rather than ideas to be 

explored later in the thesis. 

In Chapter 2 the turbulence models used in the calculations are 

introduced and the mean closure approach is discussed. These turbulence 

models are examined term by term and the effective viscosity hypothesis 

t. 
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and the dissipation equation are subjected to particularly close scrutiny. 

The modelling of turbulent reacting flows is discussed in Chapter 3 by 

reference to the probability distribution equations. A theory is developed 

from these equations and is used to assess the foundations of existing 

combustion models: in particular, in conjunction with a consideration of 

density fluctuations, a more soundly based form of the eddy-break-up model 

is proposed. 

In Chapter 4 the numerical procedures for the solution of the 

equations comprising the various closures are outlined and the novel 

features used for the Reynolds stress closures are described. The results 

of the calculations using these procedures are presented in Chapter 5 

where the performance of the models is assessed. 

The main findings of the work are summarised in the final chapter; 

the achievements are compared with the objectives and suggestions for 

further work are made. 
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CHAPTER 2  

TURBULENCE MODELLING 

2.1 Introductory Remarks  

In this chapter we are concerned with methods by which the average 

velocity,<U.>, may be determined at each point in a flow field. The 

exact equations for the average velocity, the Reynolds stresses and the 

kinetic energy of turbulence are derived and explained in this section. 

In section 2.2 the mean closure approach is considered and in the two 

subsequent sections the turbulence models used in the calculations are 

presented and assessed. The principal findings of this chapter are 

summarised in section 2.5. 

For a constant density and viscosity Newtonian fluid the instantaneous 

velocity, U., is given by the Navier-Stokes equation which is an expression 

of the conservation of momentum in each of the three coordinate directions, 

8U. 	au. 	8
2
U. ,m)  

p--1  + 
i 	

= p 	v' 
et ex

i ex
2 exj  

The continuity equation expresses the conservation of mass, 

au 
0 	 (2.2) 

An equation for <Ui> may be derived from equation 2.1 by decomposing the 

instantaneous quantities into their average and fluctuating components, 

j = < U > + u 

	

P = <P> + p' 
	

(2.3) 

ex. 
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Thus, substituting equation 2.3 into 2.1 and averaging yields, 

a<U.> 	8<11.> 	
2 <u.> 

p---2-- + p <U. 	, 	a<P> 	8 
at 	ax. 	2 	- 	p---< u u > 

6x 	
82C 	j (2.4) 

This equation for the averaged velocity is seen to be identical to the 

equation for U., equation 2.1, except for the inclusion of the last term 

which represents momentum transfer due to turbulent action,. In order 

that equation 2.4 may be solved the Reynolds stresses, <uuj > , must be 

determined; this is the principal role of turbulence models. 

- AB the Reynolds stresses form the main theme of turbulence modelling, 

it is appropriate at this stage to derive a transport equation for them: 

this is accomplished by subtracting equation 2.4 from equation 2.1, 

multiplying by uk, forming a second equation by commuting the suffickes 

k and j, adding the two equations and averaging the result. This 

procedure gives the Reynolds stress equation, 

u  
p at < Jule 	p<u >  ax <u • juk> =  

	

a<u., 	e<Uk>  
— - p<u u. > 	- p<uu. 

i x exi 
a-. 	

i> ax 

(A) 	 (B) 

axi
(p<uiu 

 J 
.u. 
K
> - u ax  <u4uk> + <p'u j> Sik  + <ptuk>Sij) 

(C)  

eu. 
.1- <10 --L1->+ <10 

exic 	
ax4 

(D)  

- 2p<.a.11 auk 
Bx
i 

ex
i 

(E)  

(2.5) 
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The terminology applied to the various terms is, 

A 	- change along an averaged streamline 

B - "production" due to Reynolds stress, velocity gradient interaction 

C 	- "transport" due to turbulence and viscosity 

D - "redistribution" or "pressure scrambling" 

E - "dissipation" due to viscous action 

The terms on the right hand side of equation 2.5 require further 

explanation, but first it is convenient to write the turbulent kinetic 

energy equation (k= 3< u u > ) ' 

at 
	ak 	,a<tre, 

P 	+ p<13 > 	- p<U U .> 	 
at i axi 	i ax. 1 

(A') 	(B') 

ak 	<„,u..›) - 8 	p <u u u.> - - 
ax. 	J 	ax. 	r 1. 
1 

(co) 

(2.6) 

au. 
- 	> 

ax. 

Production. B' in equation 2.6 is termed "the production of turbulent 

kinetic energy" and the name implies that it is positive. If an equation 

for the kinetic energy of the mean flow, 3<tri> 
2 

were derived the same 

term would appear but with the opposite sign. Thus, the term represents 

a transfer of energy between the mean flow and the turbulence. The mean 

flow is ordered while the turbulence is crInsi-random hence, from entropy 

considerations, it would be surprising if energy were extracted from the 

disordered turbulence and transferred to the mean flow. In fact, 
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measurements show that the "production" is invariably positive although 

there are regions in some flows where it may be negative: asymmetric 

channel and annulus flows provide common examples. The fact that 

production may at times be negative serves as a warning to theories 

based on a purely stochastic view of turbulence. The production of 

Reynolds stresses (term B in equation 2.5) generally has the same sign 

as the stress in question and hence tends to increase its-magnitude. 

Transport. 	The transport term in equation 2.5 is seen to be the 

derivative of a flux of Reynolds stress; the volume integral of the term 

is equal to the surface integral of the expression inside the derivative. 

In homogeneous turbulence the term is zero: in inhomogeneous turbulence 

the term serves to transfer Reynolds stresses from one part of the flow 

to another. 

Redistribution. 	This term is so called because, as it does not appear 

in the kinetic energy equation, it only serves to transfer energy from 

one component of the Reynolds stress tensor to another. The redistribu-

tion term is of central interest in turbulence modelling and will be 

discussed at length below. 

Dissipation. 	The dissipation of turbulent kinetic energy, e l  is 

identically positive: it represents the transfer of turbulence energy to 

thermal energy by viscous action. The partition of dissipation between 

the individual Reynolds stresses is a subject of controversy and will be 

discussed in section 2.4. 
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2.2 The Mean Closure Approach 

2.2.1 The Problem  

As a first step to determining the averaged velocity th' transport 

equation for <Ui> has been derived, equation 2.4. However, the Reynolds 

stresses appear as unknowns in this equation and the Reynolds stress 

equations contain more unknowns. The process of deriving transport 

equations for each unknown could be continued ad infinitum and yet the 

number of unknown quantities would ever increase. This unfortunate 

state of affairs is an inevitable consequence of the fact that in only 

considering averaged quantities a full description of the flow is not 

possible. This is the "closure problem" which, as is all too often 

forgotten, is inescapable. 

2.2.2 The Approach  

The above considerations have shown that the direct approach of 

deriving a closed set of equations from which the Reynolds stresses may 

be deduced is not possible. However, it is possible to close the set 

of equations at some level by forming "constitutive relations" for the 

unknown quantities; that is, by supposing that the unknown quantities 

are related to the known quantities by a given expression. A more formal 

statement of this approach serves to identify its important implications: 

exact transport equations are derived for the set of quantities 0 and 

these equations contain the set of unknown quantities IP . That is, 

Dela  

P Dt = Fa  (a) 	Ga  (I) (2.7) 

where ea  is any one of the set 0 and Fa  and Ga  are known functions. 

In order to close the set of equations 2.7 constitutive relations are 

proposed, 

= 	H
13 
 (1) 
	

(2.8) 

0, 
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As equations 2.7 are exact, the performance of a mean closure 

model depends almost entirely upon the constitutive relations which are, 

by nature, approximations. Let us recall the criteria, given in the 

Introduction, by which turbulence models are to be judged: the detail 

provided by the model is solely a function of the level of closure and 

is not influenced by the constitutive relations. However, the criteria 

of economy and generality require that the relations be simple and 

universally applicable. The success of the model depends, therefore, 

upon the accuracy that can be achieved with constitutive relations that 

are reasonably simple and universally applicable. 

Before considering the accuracy that can be expected from turbulent 

constitutive relations, a further restriction is imposed on the form of 

the relation: that boundary conditions for g alone are sufficient to 

determine the solution of equations 2.7 and 2.8. This restriction, which 

implies that Hp  makes no reference to boundary conditions except those 

for g, is the essence of a constitutive relation and yet, in general, it 

denies the possibility of complete accuracy. A relation not in keeping 

with this restriction would certainly go against the criterion of economy 

and its generality would be doubtful. All the constitutive relations 

used in the models described below are subject to this restriction. 

2.2.3 The Accuracy of Constitutive Relations  

Consider a region of turbulent flow within which equations 2.7 and 

2.8 are to be solved in a volume V. Clearly the constitutive relations, 

Ho, may only make reference to values of e within V so that if V tends to 

zero Ho  must relate the value of 1Pfs  within the infinitessimal volume to 

the values of 0 in the same region. Thus, in the limit, 1P o  at a point 

must be related to at the same point. As generality is required, 11)0  

must be related to local values of 0 irrespective of the solution domain. 
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The assumptions and arguments stated above require, for complete 

accuracy, 

(i) that the values of 0 within a flow domain are uniquely 

related to the values of 0 at the boundary, 

(ii) that the values of R  at any point are uniquely related 

to the values of 0 at that point, 

and (iii) that the proposed constitutive relations between 

IL)  and o are correct. 

The accuracy of a turbulence model depends, therefore, upon how closely 

these conditions are satisfied. The closures outlined in the next section 

will be discussed in section 2.4 by reference to these three conditions. 

2.3 Turbulence Models  

Three turbulence models were employed to obtain the results presented 

in Chapter 5. While none of these models is new, the two Reynolds stress 

closures employed have not been applied to recirculating flows before. 

The models are quoted here together with summary justification for the 

modelling given by the originators. In each case, attention is restricted 

to the high Reynolds number form of the model: only those terms that 

remain finite as the Reynolds number tends to infinity are retained. A 

critical discussion of these models is presented in the next section. 

The first model described is a mean flow closure; that is, a 

constitutive relation is proposed for the Reynolds stresses thus closing 

the mean momentum equation. It will be shown that two scaling parameters 

are needed to effect this closure and consequently transport equations 

are also solved for the kinetic energy of turbulence and its dissipation 

rate. These equations are also closed by modelling assumptions. The 
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remalning models are Reynolds stress closures: transport equations are 

solved for each non-zero Reynolds stress as well as for the dissipation 

rate of turbulent kinetic energy. The unknown terms in these equations 

are evaluated through relations based on known quantities. 

2.3.1 The Mean Flow Closure (Model I)  

Most turbulence models evolve rather than being the work of an 

individual. Thus, while the final form of the mean flow 'closure described 

here was proposed by Jones (1971), it stems from the works of Boussinesq 

(1877), Kolmogorov (1942), Prandtl (1945), Chou (1945) and Harlow and 

Nakayama (1967). 

The Reynolds stresses are related to the mean velocity gradients by 

an effective viscosity hypothesis, 

a(u.> 	a<u.> 
p<u.u. > = 2/3 pk 	p

eff 
(
8x.
I +---)-) 

1 3 	ij 	8x. 

The velocity gradient term appearing in equation 2.9 is the only 

possible linear combination of velocity gradients with the same tensor 

propOerties as the Reynolds stresses: both sides of the equation are 

symmetric and contract to zero. It will be noted that this expression 

is analogous to the stress-rate of strain relation for a laminar flow; 

the important difference is that the effective viscosity is a function 

of the flow rather than of the fluid. 

On dimensional grounds, at least two scaling parameters are needed 

to relate the Reynolds stresses to the rate of strain. These may be 

chosen as a velocity scale, v, and a time scale, T. One time scale may 

be deduced from the velocity gradients; 

(2.9) 

a(u.> a<u.> 
T= 	---2" 
M -- 8x. 	8x, 

however, as the macro time scale of turbulence, tit  = 	, has been 

(2.10) 
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found to be independent of Tm  in simple shear flows, Lumley (1970), 

the two scaling parameters must be independent of the mean velocity 

field. Various authors' proposals for the two scaling parameters are 

given by Launder and Spalding (1972). A convenient choice, and the 

one employed here, is that of k and E. Thus, 

p
eff 

= p C
1.1
k2/6 (2.11) 

With a knowledge of < u.uj> and E , the transport equation for k, 

equation 2.6, is closed except for the turbulent transport term, C'. 

This term is modelled, by analogy with laminar transport, as 

k 
p<uu.u> +<p'u.> = ff a 

1 	1
k 

	
ax  

Thus, the modelled kinetic energy equation reads, 

a<U.> 

	

Dk 	eleff Bk 	_ pE  = 	) P u 

	

P  Dt 	ax. 	ak 	ax. 	1 j axi  
1 

(2.12) 

(2.13) 

Jones' main contribution to this model was his proposed closure 

of the dissipation equation. However, like most previous attempts at 

this feat, the justification for the modelling was incorrect, the orders 

of magnitude of the exact and modelled terms differing in most cases, 

Rodi (1971). A full discussion of the modelling of the dissipation 

equation is given in the next section. The modelled form is, 

De 	a 	(lieff ac % 	
a<13.> 

P  Dt = ax. 	
E tr. c.--- O.., - p k  v., ,< u.u.> 7---11— + Ca2  0 A. 	E.1. 	1 j 	ox. 

1 E 1 	1 

	

. 	 . 

(2.14) 

The complete closure, model I, comprises the transport equations 

for k and CI equations 2.13 and 2.14, together with the expressions for 

the Reynolds stresses and effective viscosity, equations 2.9 and 2.11. 
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The values of the five constants, Cu, Cel, Cc21  ilk  and cE  , used in the 

calculations are given in table I together with the basis for their choice. 

2.3.2 The Reynolds Stress Closures (Models II and III)  

Again, the models presented here represent the suggestions of 

several authors, the specific models being assembled first by Launder, 

Reece and Rodi (1975). The terms in the Reynolds stress equations 

representing turbulent transport, dissipation and redistribution are to 

be modelled; the modelling of the redistribution distinguishing the two 

models. 

Launder et al. presented two modelled forms of the transport term. 

The one employed here, originally proposed by Daly and Harlow (1970), is 

a 	 k 	a p<uiu juk> = 	p — < u. u > 	< u .u,_ > ) 
ex. 	s 	a. 2, ax 	IC 

(2.15) 

The pressure-velocity correlation contribution is ignored. The modelled 

term is again of the gradient diffusion type but the magnitude of the 

diffusive coefficient depends upon the direction. The tensor properties 

of each side of equation 2.15 are the same, being second order tensors 

symmetric in j and k. However, if the term inside the derivative is held 

to represent the triple correlation then the tensor properties of the exact 

and modelled terms differ. Noting this defect, Launder et al. proposed a' 

more complicated model with the correct tensor properties which was not 

employed here because the simpler model was found to produce better 

agreement with experimental data. 

The dissipation term was modelled on the assumption that, at high 

Reynolds number, the small scale turbulence is isotropic. Thus, 

au. aU, 
2 u.< 	 > 

exi  exi  
2 

P E e 3 	jk (2.16) 
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As was mentioned above, this modelling is a subject of controversy and 

will be discussed in section 2.4. For the moment, suffice it to say 

that, if the dissipation is anisotropic, the neglected part has the 

properties of a redistribution term and hence the modelling of the 

pressure scrambling may be thought to include this term as well. 

The redistribution term is of paramount importance for, in 

conjunction with the production, it governs the level of,anisotropy of 

the Reynolds stresses. The fluctuating component of pressure appearing 

in the redistribution term may be eliminated by Green's theorem applied 

to the Poisson equation for p'. Thus, far from walls where the surface 

integral may be neglected, 

• • 	• 

____1- + 2(----.6-) - (---1) — > ----- 

	

au. 	a
2
u nu 	Bu. 	a<u > 	au 	au.  } d vol 2. 	, 

<Pt  axe >= >= i; 1<(ax 4:C ) -6-7-C7 -r  

	

j 	9,  m 	a 	
8xin 	

ex2' 	axi 	la - /I 
vol 

°ij,2 

where the terms with and without asterisks refer to the points x and 

respectively. The first term is modelled after Rotta (1951), 

°ij,l o
jill  = -C

01 
pq/k (< u.u.> - 2/3  k S  ..) I a 

This represents a tend towards isotropy at the rate of the turbulent 

time scale and has a magnitude proportional to the anisotropy. Both 

Reynolds stress models incorporate equation 2.18. 

If the flow were homogeneous, the mean velocity gradient appearing 

in(7313  ..,2  can be removed from the integral which then has dimensions of 

Reynolds stress. The term lends itself, therefore, to be modelled as 

a linear combination of velocity gradients multiplied by Reynolds 

stresses: Launder et al. propose two such models. The first, which is 

embodied in model II, is 

(2.17) 

(2.18) 
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oijI2  + reji,2  = 	CO2  (Pij  - 2/3 prsii) 

where P..j j 1  the production of < u.u> , is given by 

a<u.> 	a<u.> 

	

P.. 	- p < U. U. > 	- p <u
j 
 u,_> 

	

3.3 	axk 	4 ark  

(2.19) 

(2.20) 

and P, the production of kinetic energy, is equal to 3  Pii. The term 

tends to counteract anisotropy by diminishing the effects of anisotropic 

production. Equation 2.19 does not, however, satisfy one of the 

requirements of the exact expression. Launder et al. proposed a second 

closure which is in accord with this restrailA; 

0ij,2 + s
ji,2  = - (C

02 
+ 8)/11 (P.. - 2/3 P

ij
) 

a<u.> 
"> 

(3°Co2 - 2)/55 pk ax 	ax j) 

- (8G02 -2)/11 (1)- - M3 P (S13..) j  

aak, 	e<uk> 
where D.. = - p<u. u. 	— < 11 U.> 13 	1 x 	ax. 	j 	ax. 1 

Equation 2.21 is the closure employed by model III. 

Each unknown term in the Reynolds stress equation has now been 

modelled and the result reads 

D 
p 	u u 	

a<u.0 4> 
a 	(c p <u u. > 	 Pij - 

2/3 pc S.. Dt i j 	ax2,  s c 	axk  

(2.23) - Col  p e/k u> - 2/3 0ij) + (0ij,2  + oji,2) 
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the second part of the redistribution term being given by equation 

2.19 and 2.21 for models II and III respectively. 

The dissipation equation used with the two Reynolds stress models 

is the same as for model I, equation 2.14, except that the transport is 

modelled in a similar way to that of the Reynolds stresses. Thus 

na=a 	k 
P  Dt 	 IT ax. c 	< u.> 	.4. c 

1 	6 u. J ex. 	%Ca P p C62 
6 ) (2.24) 

Six constants appear in each model, C01, CO2, C61, C62, Cs  and C6: 

the values used in the calculations are given in table I. 

2.3.3 Wall Functions  

As the models described above are intended for flow regions with 

high Reynolds numbers, a special treatment is needed close to a wall. 

Rather than introducing low Reynolds number terms into the models and 

solving the equations up to the wall (a region of high variation of 

turbulent quantities), instead, the near wall region is approximated by 

Couette flow solutions based on the logarithmic law of the wall. 

Let the subscripts w and p refer to points on and near the wall 

respectively and y be the normal distance from the wall. The following 

normalised distance and velocity are defined: 

yp 
= p (kP 

1-1  
C 1) yp/ p 

1 n + 
u+ E.--  7 	Ey 

(2.25) 

(2.26) 

The wall shear stress is then given by, 

Tw 
,(a<u>)  
P‘ay 'w 

p u 
(2.27) 



fyp  
E dy = (cu 

k
p'  
) 3/2 u 

0 
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The value of 6 near the wall is prescribed by, 

c p  = (C k ) 3/2/K Yp 

	 (2.28) 

and the integral of a from the wall to yp, which is required for the 

kinetic energy and Reynolds stress equations, is given by 

(2.29) 

The flux of Reynolds stresses to the wall is zero. The wall law 

constants K and E take the values 0.4 and 8.8 respectively. 

2.4 Assessment of the Closures  

In this section we consider the success that may be expected of 

the closures described in the previous section. The detail provided by 

these models is satisfactory and they are quite general; also,it will be 

seen in Chapter 4 that they are adequately economical. The question 

that remains is: For a given situation, what accuracy may be expected? 

The answer lies in the closeness to which each model satisfies the three 

requirements enumerated in section 2.2.3. 

2.4.1 The Effective Viscosity Hypothesis  

The second condition applied to an effective viscosity hypothesis 

requires that the value of < u.u.
j 
 > at any point be uniquely related to 

the values of k,6 and aa.>
at the same point. However, as can be 

axe  

seen from equation 2.5, the Reynolds stresses may be trpnsported both by 

the mean and fluctuating velocities and so, for the condition to be 

satisfied, the flow must be such that the transport terms are negligible. 
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This implies that the velocity gradients and Reynolds stresses must be 

nearly homogeneous. Further, for a high Reynolds number nearly homogeneous 

flow, it is reasonable to assume that all macro-scales of turbulence are 

proportional and so the two scaling parameters, k and c , together with 

the velocity gradients are sufficient to determine the Reynolds stresses. 

As the restriction to near homogeneity ensures that the first condition 

is satisfied, it only remains to be considered whether the effective 

viscosity hypothesis, equations 2.9 and 2.11, is the correct relation 

between stress and rate of strain. 

In a nearly homogeneous shear flow, with a<Dri> /8x2  as the only 

non-zero velocity gradient, Champagne et al. (1970) measured 

all = .3 

a22 = - .18 

a33  = - .12 

al2 = .33  

where a.. = <u u> 	- 
2
/3 6 • • Ij 	i 	 13 

whereas, at best, equation 2.9 predicts 

all = a22 = a33 = 	, 	a12 = .33  

Thus, as the mechanism that causes the inevality of the normal stresses 

cannot be accounted for with the isotropic viscosity hypothesis, it must 

be concluded that the form of the relation is incorrect. Pope (1975) 

considered the possibility of a more general effective visocity hypothesis 

both for three dimensional flows and for flows expressible in two dimensional 

Cartesian coordinates. The main findings of this work are summarised here. 

By defining the following non-dimensional quantities, 
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a.. 
3 = 
	

3 	
- 2%36.. 1 
	 (2.30) 

cij 

& U.> 
= C ax  1  

j  

acIT .> 

ax. 
1 

(2.31) 

8<U.> 
wij  = 	k/c ( 	— ax. 	ax. (2.32) 

the problem may be reformulated as that of determining the tensor 

IL. such that 13 

a
ij 	13 = H.. (s, w). 	 (2.33) 

A consideration of the properties of the tensors, a, s and w , reveals that 

the most general expression for H..2.3  is a finite tensor polynomial in terms 

of all the linearly independent second order tensors, T.., with zero trace 
13 

that may be formed from s and w with coefficients, G, depending upon the 

invariants of s and w . Thus, 

H. = 	GX TX 13 	ij 

For simplicity the following abbreviated notation will be introduced: 

sw  = sik w j, slisw  = sik kl slm wad' etc. 

s
2 

= sikskj , {s2}  = sik ski' etc. 

i = j 
= 2 = 

13 	0, i j and i = j = a 
I = 63.3. 

(2.3'i) 

where,for two dimensional flows, a is the direction of invariance. 

(This is equivalent to considering the matrices associated with the tensors). 
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In this notation, for the general three dimensional case there are 

ten tensors, T, and five variants, 

T
1 

= 	s T2 = s w • to 

T3  = 	82 - I {s2  } /3 = w 2 	— 1[43 } /3 

T5  = 	ws2 -2 CU T6 = w2s + si)2 - 21 {sw2 }/3 

T7  = " sw
2 	

W
2 
8 w  T

8 
= sw s2 - s2to  s 

T9 = w282 	
s2w2 - 21 Is2  w21/3 

10 
T = WSW 2 2 - 6) 2s2  

2 	2 	, 	2 and 	w 1 { 
3

1 {w 5} 	{w
2  } 

 • 

For the two dimensional case there are three tensors and two invariants, 

T0  = 1/3 I - I2  

T
1 
= s 

T2 = sw - ws 

and {82} and {w 2}  . 

The significance of equation 2.34 is now seen to be that the Reynolds 

stresses are a known function of a finite number of known tensors and the 

same number of unknown scalars. The unknown scalars are in turn a function 

of a finite number of known invariants. For example, the task of formula-

ting an effective viscosity hypothesis for two dimensional flows has been 

reduced to that of determining three scalars which may be functions of 

only two invariants. The influence of the functions may be demonstrated 

by writing in full the values of a given by equations 2.33 and 2.34 for 

the two dimensional flow measured by Champagne et al. (1970). 
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a11 

a 
22 

a33 

= 

= 

= 

-2/6 G° 

-1/6 G° 

1/3 G° 

. 

• 

. 

• 

• 

• 

1 
alt = G x2 

4 G2 (.44_ 8<II1> )2 
aka / 

a<U> 2 4 G2 (WE -a-c 

a!3 = a23 = 0 

It is seen that G
1 

does not influence the normal stresses and that G° 

and G
2 
do not influence the shear stress. A finite value of G

2 
causes 

an and a22 to differ and G° enables a33 to depart from zero. Clearly 

if G
o 
and G

2 
are set to zero, as is the case in an isotropic viscosity 

hypothesis, then the observed differences between the normal stresses 

cannot be predicted. This inherent deficiency in isotropic viscosity 

hypotheses suggests that they will provide an inadequate closure for 

more complex flows, where more than one component of Reynolds stress is 

required to close the mean momentum equations. 

It has been shown that the general form of an effective viscosity 

hypothesis is equation 2.34 and that the values of G implied by the 

isotropic viscosity hypothesis are incorrect. As it has also been shown 

that in a homogeneous flow the Reynolds stresses are uniquely related 

to k,6 and a<ui> , it is not surprising to find that for this 
8x. 

situation the modelled Reynolds stress equations reduce to a relation, 

albeit implicit, between these quantities. Thus, the unknown functions, 

G, may be deduced from the modelled Reynolds stress equation: this was 

done for the case of two dimensional flows. As we wish to apply the 

model to flows that are only nearly homogeneous, it is desirable 
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to approximate the transport terms in the modelled Reynolds stress 

equations. Rodi (1972) suggested the following appro.rimgtion. 

(transport of <ujui>)== <14L.lc.>  (transport of k) = 2.p.= (1) - pE) 	(2.35) 

Substituting equation 2.35 into the Reynolds stress equation of model III, 

equations 2.21 and 2.23, yields, 

a = -g [bls + b2  (as + sa - 21 {as} /3) - b3  (aw - coa)] 	(2.36) 

Where b1 = 8/15 

b2  = (5-9CO2)/11 

b3  = (7002  + 1),/11 

g = (co.  + 	E - 1)-1  

By exploiting the tensor properties of T., the values of G appropriate to 

equation 2.36 may be deduced and lead to the proposed effective viscosity 

hypothesis, 

H = -2C [s + gb3  (s w -w s) + gb2  { s2  } (21 /3 - 12)] 

where 

2  {to  2 b32 g2 	g2 { s2 )-1 C p = 	big(1 

The choice of G1, and consequently Cp  , is of paramount importance 

as it dictates the predicted shear stress level. Figure 2.1 shows the 

variation of Cp  , given by equation 2.38, as a function of a and 0, 

where 

(2.37) 

(2.38) 

a = 0.{ 62} 

and S-2 
	

(4{w2} )1  
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This variation of C may be compared with previous suggestions 

indicated below. 

Model I 

Rodi (1972) 

Bradshaw et al. (1967) 

C-  = constant 

C = C.  (P/E) 

- 
Cp  a a 1  

(a a A/a may be considered as a tensor invariant expresgion of Bradshaw 

et al.'s hypothesis, al2  = constant). 

While the two latter expressions are in accord with the present 

proposal in that they predict a diminution of C with increasing a, 

none of the above expressions allows for any dependence of C 	upon 

the rotation invariant, Q . This omission is tantamount to assuming 

that the Reynolds stresses are materially indifferent; that is, to 

assuming that the Reynolds stresses are unaffected by solid body 

rotations. The use of this unfounded assumption is most likely 

responsible for the short-comings of these isotropic viscosity hypotheses 

in predicting flows with streamline curvature, see for example 

Bradshaw (1973). 

On the basis of the above considerations, the effective viscosity 

hypothesis of model I may be assessed as follows: 

(i) for nearly homogeneous flows the Reynolds stresses may be 

uniquely related to k,E and velocity gradients: that is, 

a constitutive relation for < u j
u.> is possible. 

(ii) the form of the relation is incorrect; the assumption 

that the principal axes of stress and rate of strain are 

coincident is not borne out by experiments. 

(iii) the lack of dependence of the dominant parameter, Cu , upon 

the rate of strain and rotation invariants suggests that 
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the model will become more inaccurate as the flow departs 

from homogeneity and plane shear respectively. 

2.4.2 The Dissipation Equation  

The dissipation equations of all three models, equations 2.14 and 

2.24, differ only in the turbulent transport term. Attention will be 

focussed here on the source term, SE  which is common to, all models. 

This term is possibly the most important part of the turbulence models: 

assuming that the viscosity hypothesis or the modelled redistribution 

term provide an adequate description of the Reynolds stresses, then the 

predominant unknown in the kinetic energy equation is the dissipation. 

Thus, the source term not only affects the dissipation but it has an 

important, though indirect, effect upon the kinetic energy. As these 

two quantities, k and E, serve to set the turbulent scales, an error 

in S 6  may be expected to produce considerable errors not only in k and E 

but also in the predicted velocity field. Rodi (1972), who solved 

equations for k and for the quantity k5/2/6, examined the influence of 

changing the constants in the model on the spreading rate of four free 

shear flows: while a 5% increase in C 
V 
 resulted in a 2.5% increase in 

the spreading rate, the same increase in the constants analogous with 

Cel and Cresulted in 14% and -8% increases respectively. This e2 

observed sensitivity of the spreading rate to changes in Se  confirms 

the important role played by the source term in governing the rate of 

change of the turbulent scales. 

Before assessing the modelling of the source term, the mechanism 

of the dissipative process will be considered. Dissipation is defined 

as the negative source term in the kinetic energy equation associated 

with viscous processes, i.e. 

eu. 
< 	

n 
> 

p 	ax. (2.39) 
Pt 
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If the Reynolds number of a flow were increased by decreasing p it 

would be found that, below some value of p,c remained constant. Thus, 

while equation 2.39 defines 6 , it is not very useful conceptually. In 

order to obtain a more meaningful definition of E the spectral energy 

equation is considered, 

8F (K) 	2  DEW = pp 	F (K)  _ __ 	
- 

plc E
(
c)  

Dt 	" 8x x.' 8K 	P i I 
(2.40) 

where E( K) is the energy per unit wave number, K, and P(K ) is the 

production spectrum. The next two terms represent the gain of energy due 

to transport in position and wave number spaces respectively; the final 

term is the dissipation spectrum. Integration of equation 2.40 with 

respect to K from zero to infinity gives the kinetic energy equation; 

from the definition of E(K), 

E(K) d K 
	 (2.41) 

0 

jr 	2 
E(K) dK 
	

(2.42) 

The nature of the spectral energy equation is such that, at high 

Reynolds numbers, the dissipation term is only significant at high wave 

numbers whereas the other terms (except the transport in wave number 

space) are only significant at low wave numbers, see for example Tennekes 

and Lumley (1972). Consequently, wave numbers 

be chosen such that 

K
1 	2 

and K (K
1 2 
<K ) may 

E(K ) dK<  y 	 (2.43) 
K1 
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K  p(K) Fx.(K)axi 1   (2.44) 

and 
	

3 

(K2 	
K2 E(K) di( < y 
	 (2.45) 

where y is an arbitrarily small number. Thus, integrating the spectral 

energy equation between K1 and infinity yields 

i 

w 

FK( K.J.) = 	K 2  -Dp  E( K) d K = 6 

Ki. 

(2.46) 

Hence, dissipation may be regarded as the flux of energy through wave 

number space in the region K < K < K
2' 1 

The advantage of the conception of dissipation given by equation 

2.46 over its definition, equation 2.39, is twofold: first, the objective 

of finding an expression for 6 which is independent of p is achieved 

and, secondly, Fic(K1) pertains to lower wave numbers than does c . 

The significance of the second point is that changes in F K(K.1) may be 

attributed to changes in E(K) in the range O<K<Ki, the same range 

ea .> 
that is influenced by known quantities such as< u.u.> and. The exi  

physical implications of formulating a constitutive relation for the 

source of dissipation now become apparent: at a given point in space, 

changes in Fic(Ki) must be assumed to be uniquely related to changes in 

E(K) which in turn must be uniquely related to known quantities. 

It was stated above that changes in Fic(ic 1) could be attributed to 

changes in E(c) and so the first assumption appears reasonable. However, 

as the flux of energy in wave number space is not instantaneous, a change 

in E(c) will not have an immediate effect upon Fic(K1). The characteristic 
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time scale of the energy transfer is T
t 
and consequently, as T

t 
is not 

small compared with the time scale of the mean flow, changes in Fic(Ki) 

at a point are due to changes in E(K) within a significant volume around 

the point. Thus, in order to satisfy the first assumption, the flow 

should be such that the behaviour of E(K) within a volume may be 

determined from its behaviour at a point: this implies either homogeneity 

or some form of similarity, that is 

E(K) = E* (K*) 0/2  Tt 	 (2.47) 

where K* E K(klT
t
) is the normalised wave number and Es, the normalised 

energy spectrum, is not a function of x. The full transport equation for 

E(K) may not be written in self similar form because p , appearing in the 

last term, is independent of the turbulent scales. However, as the low 

wave number part of the spectrum is independent of this term, the rest 

of the equation may take similar form providing that all the quantities 

are homogeneous when normalised by the scaling parameters which in turn 

must change at a constant rate. Thus, in these circumstances, the source 

term can be related to local quantities and indeed it follows directly 

that the dissipation equation must have the following form: 

Dc  
P  Dt 

2 
=o k  xconst. (2.48) 

The condition of similarity is seen to be sufficient for a constitutive 

relation for S to be possible; it only remains to determine the con-

stant in equation 2.48. As the normalised Reynolds stresses and rates of 

strain are also constant their invariants may be used to complete the 

constitutive relation; further, as the conditions of similarity imply 

that the rates of strain determine the Reynolds stresses, only the rate 

of strain invariants need be considered. The dissipation equation 
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incorporated in the models presented in section 2.3 was developed and 

tested in two-dimensional, near-equilibrium boundary-layer and free 

shear flows where only one velocity gradient was significant. Thus, it 

is not surprising that the source term was modelled as a linear function 

of the only non-zero independent invariant of the rate of strain tensor. 

Since, in general, there are five independent invariants there is clearly 

scope for extending the modelling to more general situations. Bradshaw 

(1973) and Priddin (1975) have criticised the form of the dissipation 

equation in particular relation to flows with streamline curvature and 

such flows will be poorly represented by the present source term. In 

this context, the rotation invariant, -{w2} , is of particular interest: 

in a two-dimensional shear flow without streamline curvature it is equal 

to the rate of strain invariant, { 2} . Thus, the dimensionless 

parameter 01)2} + {132} ) / ({w2} - {s2} ), which is unity for solid 

body rotation, zero for parallel shear flow and -1 for plane strain, may 

be introduced into the dissipation equation to account for streamline 

curvature without altering its performance in parallel shear flows. 

Equation 2.48 is a direct consequence of the conditions for 

similarity: the significance of the preceding discussion is that 

similarity is not only a sufficient condition for a constitutive relation 

for S to be possible but it is also a necessary condition. It must be 

conceded, therefore, that any modelled dissipation equation, closed by 

quantities pertaining to low wave numbers, has no foundation in non-

similar flows. Few flows, and none of practical importance, are exactly 

similar; it is important, therefore, to assess the degree of non-

similarity in various types of flow and to estimate the possible error in 

their calculation due to the inappropriate dissipation equation. 

In shear flows, such as boundary layers, jets and wakes, the 

Reynolds stresses and velocity gradients normalised by the scaling 
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parameters are approximately homogeneous; the values of <u.1u.> /k and  3 

Pip E vary slowly across the flow. In addition, for boundary layers and 

for free shear flows that exhibit profile pimilarity, the rate of change 

of the scaling parameters is constant. Thus, these flows display approxi-

mate similarity and can be expected to be fairly well represented by a 

turbulence model incorporating the dissipation equation. 

For more complex flows, such as the flow behind a bluff body, neither 

of these properties may be assumed. In order to estimate the magnitude of 

the changes in the scaling parameters, consider the turbulent time scale, 

Tt  = WE, in a plain jet with centre-line velocity U0  and half width yi. 

Applying the effective viscosity hypothesis of model I to this situation 

T
t 
may be deduced. 

aa.> 
= Pipe = C 	

8x 
---1 )" = 	Tt2 (illo/Yi)2  

P  

thus; 	Tt = °171i 
(2 

U
) = 7 yUo  
0 

 

A physical interpretation of equation 2.50 is that the time taken for 

energy to pass from the lowest to the highest wave numbers of the 

energy spectrum is equal to the time taken for a particle on the centre-

line to pass seven half-widths downstream. This observation highlights 

the difficulty of relating the source of dissipation to local quantities. 

The rate of change of Tt  may be estimated by taking the Lagrangian 

derivative of equation 2.50; 

DT
t 

= ..0 
	(c 4  2 	

V 
= (c 	1) 

Dt 	o dx P 	 dx 	
.42 	(2.51) U

0 
 



(The value of 	is taken as .103, a value obtained by several workers, 
dx 

see Rodi (1972): the multiplier, i, indicates that the derivative is 

taken at the half width.) It is interesting to note that, assuming 

diffusion to be negligible and that production is equal to dissipation, 

the modelled dissipation equation gives, 

DTt 
Dt = C E2  - C d 	.45 	 (2.52) 

As in general Tt  is large compared with the mean flow time scale and 

Dybt is not small compared with unity, Tt  will not change at an approxi-

mately constant rate in rapidly changing flows such as those behind bluff 

bodies. Consequently it must be concluded that calculations of such flows 

will probably be subject to an error due to the inapplicability of the 

dissipation equation: the magnitude of the error is difficult to estimate 

but calculations, presented in Chapter 5, suggest that it is large. 

The expected failure of the dissipation equation in rapidly changing 

flows is attributable to the impossibility of relating the source of 

dissipation to local quantities: neither< u.u. > nor erli
i
>/ax

j 
provide 

sufficient information about changes in the energy spectrum. An 

alternative approach is to solve a modelled equation for E(i) and to 

determine k and 6 from equations 2.41 and 2.46. This approach is 

attractive because it introduces additional information and obviates the 

need for a dissipation equation: the unknown terms, P(K), Fx(K) and F 

may be expected to be well approximated by functions of the known quantities 

even in rapidly changing flows. The disadvantage is one of economy: the 

additional independent variable, K, increases the dimensionnlity of the 

solution space by one and consequently the computational effort needed to 

solve the equations, although not prohibitive, is increased considerably. 
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2.4,3 The Redistribution Term  

Equation 2.17 provides an exact expression for the pressure-velocity 

gradient correlation in terms of velocity alone. The appearance of a 

volume integral in this expression immediately calls in question the 

validity of modelling the term by local quantities. In order to assess 

the possible error in the modelling for inhomogeneous flows, the behaviour 

of 0.. , is considered as the flow departs from homogeneity. The two point 
13'4  

correlation may be expressed as the sum of a symmetric and an anti-

symmetric part, 

u.(x) u 	+ r) > =Rim  (A, r) + RIim 	r 
m 

where 	R. (1., 	= R. (2i, -r) 

and 	R! 	= -R'. (x, -r) 3XL1 - 

(2.53) 

(2.54) 

(2.55) 

Thus, expressing the averaged velocity gradient as a Taylor's series 

and neglecting third order terms, the second part of equation 2.17 may 

be written as, 

a< 	jr a2Ri  dr 2n 0  m 
P. ij12 	axm 	ar.ari ICI 

vol 3  

fdr 
a<uf a + 
axM ax TT'  ar1  

vol 

a 	 — 

	

k tri> 	
8 	I 	aR. 	dr 

+ 
ax 	m 
n ax ' 

) 
ax. 	n ar1 Irl 

vol 

	

( tr
l
> 	82R' 	dr 

im 
Oxn 'axm 	

( rn ar.j 
 ar
1 	

Irl 
(2.56) 

vol 
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For homogeneous flows, the derivatives of velocity gradients and of the 

volume integrals are zero as is the anti-symmetric part of the correlation, 

R'. Thus, while the first term is non-zero even in homogeneous turbulence, 

the remaining terms are each products of two quantities, both of which are 

zero for homogeneous flows: that is, all the second order terms are 

identically zero. (Rotta (1951) came to the same conclusion but assumed 

R' to be zero). The significance of this finding is that the first term, 

which is essentially a local quantity, may be expected to represent 0ij,2  

even as the flow departs from homogeneity: however, near walls, where the 

surface integral cannot be neglected and where high derivatives of the 

mean velocity are significant, this may not be the case. Thus, in spite 

of the volume integral, it is reasonable to assume that 0ij,2  can be 

related to local quantities. The nature of oij,l  is less well understood 

but, as it pertains to smaller length scales than does oij,2, it can also 

be expected to be locally determined. 

The specific form of0ij12  employed in model III, equation 2.21, is 

a direct result of assuming the first volume integral in equation 2.56 to 

be linearly proportional to Reynolds stresses. The same result was 

obtained by Naot et al. (1973) who assumed a function for the two point 

correlation. As the modelling of this term appears to be soundly based 

both mathematically and physically there is little point in considering 

more complex forms until the present model is found to be deficient. The 

expression for 0ij,2  used by model II, equation 2.19, which may be regarded 

as a truncated form of equation 2.21, has the advantage of simplicity and 

consequently economy. The resulting loss of accuracy may be estimated from 

the calculations presented in Chapter 5. 

The first part of the redistribution term is considered in conjunction 

with the anisotropic part of dissipation. Both terms, if finite, have the 

effect of redistributing Reynolds stresses even in the absence of mean 
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rates of strain. Launder et.al. followed Rotta (1951) in suggesting a 

modelled form of eijo.  and assumed the dissipation to be isotropic. The 

latter contention is supported by Lumley (1970) who argued that the 

anisotropic part of the dissipation tensor decreases as the square root 

of Reynolds number. Ribeiro (1975), on the other hand, by a multi-linear 

modelling of the two point joint probability distribution concluded that 

oijel is zero and that the dissipation is significantly anisotropic. 

Measurements of dissipation by Townsend (1954) and Uberoi (1957), though 

difficult to perform, support Ribeiro's thesis. 

As far as forming a closure is concerned, the source of the redistri-

butive effect is immaterial. Measurements of the decay of anisotropic 

grid turbulence could serve to quantify this effect but the data of 

Uberoi (1957), Uberoi (1963) and Tucker and Reynolds (1968) present a 

confused picture, there being little agreement between the three similar 

investigations. This being the case, the physical basis of the modelled 

term must remain unsatisfactory until the experimental and theoretical 

tools that are applied to small length scales become more convincing. 

2.4.4 The Turbulent Transport Terms  

The remaining terms represent turbulent transport and are all modelled 

as simple gradient diffusion. As turbulent transport is zero in homogeneous 

flows, its modelling may be expected to have a minor influence on the 

prediction of the gross features of an inhomogeneous flow. This contention 

is supported by Rodi (1972) who found that a 5% decrease in the diffusive 

constants resulted in only a 0.4% increase in the spreading rates of free 

shear flows. There are, however, flows in which the diffusion of Reynolds 

stresses is important: Launder et al. (1975) predicted the asymmetric 

channel flow of Hanjalic and Launder (1972) using models II and III. 

The prediction of model III are very close to the data while those of 

model II, although reasonable, are less accurate. Thus, simple gradient 
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diffusion provides an adequate representation of the turbulent transport 

which is the predominant feature of this flow. It is to be expected, 

therefore, that the models will not be found lacking due to the closure 

of the turbulent transport terms. 

2.5 Summary  

This chapter has been concerned with presenting and assessing methods 

of determining the Reynolds stresses in order to close the mean momentum 

equations. The three turbulence models used in the calculations were a 

mean flow closure, model I (equations 2.9, 2.11, 2.13 and 2.14) and two 

Reynolds stress closures, models II and III (equations 2.19, 2.21, 2.23 

and 2.24). The wall functions presented in sub-section 2.3.3 and the 

values of the constants given in table I complete these closures. 

A consideration of the mean closure approach revealed that the 

accuracy of the models depends upon the satisfaction of the three conditions 

enumerated in sub-section 2.2.3. The three models were examined in light of 

these considerations and the isotropic viscosity hypothesis and the 

dissipation equations were found to be particularly suspect. While an 

effective viscosity approach is valid in nearly homogeneous flows, the 

isotropic viscosity hypothesis fails to reflect experimental observations. 

An improved effective viscosity hypothesis was proposed (equations 2.37 and 

2.38) which has the advantages of providing a realistic model of the 

whole of the Reynolds stress tensor and accounting for the effects of 

streamline curvature. The form of the dissipation equation was found to 

be appropriate to similar flows only. The lack of dependence of the 

source of dissipation on the rotation invariant may also account for the 

poor behaviour of the models in similar flows with significant streamline 

curvature. For non-similar flows it was concluded that the dissipation 

is without physical foundation and that considerable inaccuracies may be 

ce 
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incurred. A model based on the spectral energy equation was suggested 

as a possible means of overcoming this defect. 
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CHAPTER 3  

COMBUSTION MODELLING  

3.1 Introductory Remarks  

The previous chapter was concerned with devising methods for 

describing an inert isothermal flow field: the principal aim was to 

determine the average velocity, < U1>. We are concerned here with 

determining not only <Ili> but also the averaged values of chemical and 

thermodynamic quantities which characterise a turbulent reacting flow: 

the determination of the temperature, <T>, the density, <p> , and the mass 

fraction of chemical species, <m a>, forms the principal objective of 

combustion modelling. 

A practical combustion system may contain many complexities: the 

fuel may take the form of liquid droplets or solid particles and the 

reaction may proceed through literally hundreds of radicals; soot formation 

and significant heat transfer by radiation are common. Even if the flow 

were laminar it would be difficult, therefore, to formulate a closed set 

of equations to describe the flow; the reaction rates in particular are 

subject to large uncertainties. As a first step to understanding such 

complex systems, the restricted case of single phase, gaseous,adiabatic 

flows in which the Reynolds number is high and the Mach number is low is 

considered here. Bluff body stabilised flames, furnace flames and the 

flow in gas turbine combustion chambers are, to varying degrees of approxi-

mation, encompassed by these restrictions. In some circumstances the gross 

features of such turbulent flames are found to be independent of the 

detailed chemistry involved, see for example Spalding (1975). There is 

reason to believe, therefore, that a theory of turbulent combustion, 

based upon instantaneous equations which contain some uncertainties, may 

nevertheless be successful. 
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The difference between a turbulent reacting flow and an inert isothermal 

flow may be attributed to two agencies; the effect of the reaction on the 

turbulence and the effect of the turbulence on the reaction. The former 

is due to changes in the viscosity and more especially in the density due 

to the reaction: this aspect of the problem has been considered by Favre 

(1969), Bilger (1975) and Bray (1973 and 1974). In section 3.4 the 

influence of density variations is considered, employing the approach 

advocated by Favre and Bilger. The second effect, that of the turbulence 

on the reaction, is of prime concern here and presents the most serious 

obstacle to formulating a closed set of averaged equations which describe 

the flow. In the next section, the probability approach, which has been 

applied to the Navier-Stokes equations by Lundgren (1967) and others, is 

applied to the equations of turbulent reacting flows. The resultant theory 

provides a useful mathematical and conceptual framework on which an under-

standing of the mechanisms involved in turbulent combustion can be built. 

Further insight is gained by applying the theory to idealised situations, 

for which solutions of the equations are presented. It is appropriate to 

mention that since Lundgren's (1967) work, several other authors, notably 

Dopazo and O'Brien (1973), have exploited the potential advantages of this 

and allied approaches to turbulent reacting flows: a recent review of such 

works is provided by Murthy (1974). Consequently, the theory developed in 

section 3.2, although independent of these works, is not entirely novel: 

however, the level of closure chosen in sub-section 3.2.2 distinguishes 

the present work. In section 3.3, where the present theory is compared 

with combustion models currently in use, the physical foundations of these 

models are examined. 

In the context of the prediction of bluff body stabilised flames, the 

theory of section 3.2 offers the potential advantage over existing models 

of obviating the need to assume very rapid reactions. However, as the 
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application of the theory to idealised situations showed that its 

quantitative performance is suspect and as the incorporation of the 

proposed theory in a solution procedure for practical flow situations is 

beyond the scope of the present work, the assumption of rapid reactions 

was retained. Thus, the calculations of bluff body stabilised flames, 

reported in Chapter 5, were performed with a degenerate form of the theory 

incorporating the assumption of rapid reactions. Calculations were also 

made with the eddybreak-upmodel for comparison purposes and the details 

of the two models are given in section 3.5. 

The principal findings of this chapter are summarised in section 3.6. 

3.2 A Theory of Turbulent Combustion  

In this section a theory of turbulent combustion is presented in 

which assumptions are made in order to produce the simplest set of 

equations that retain the essence of the problem. As some of these 

assumptions are unrealistic, they are best regarded as axioms: the 

contention that the resultant axiomatic theory reflects the physical 

situation is supported by the observation that the gross features of 

turbulent flames are often independent of their detail structure, 

Spalding, (1975). That is, a simple set of equations is considered and 

is expected to display the same gross behaviour as do the complex set of 

equations which represent the system in every detail. 

A reacting system can be characterised by the mass fraction of each 

chemical species, the temperature and the pressure: an equation of state 

relates these quantities to the density. Both the mass fractions and the 

temperature are assumed to obey the transport equation 

apoa a 	ao 

at (pui 0a) = 	(r 	) 	s cc (e, 
8x 	8x 	8x 

(3.1) 
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The last term in equation 3.1 implies that the source of the scalar is 

not a function of the velocity field. This is always true when e a  

represents a mass fraction but, when ea  represents temperature, kinetic 

heating must be negligible. The molecular transport of the scalars is 

assumed to be of the simple gradient diffusion type with equal coefficients. 

While such an assumption would undoubtedly lead to errors if a laminar  

flow were predicted with equation 3.1, the discussion of section 2.4.2 

indicates that the details of molecular transport are irrelevant to the 

behaviour of a high Reynolds number flow. 

- The further assumption of low Mach number is made to remove the 

dependence of Set  and p upon fluctuations of pressure. Thus, 

(3.2) s a (t2,P) = s ci.(01 <P >) = s a co 

and p (1,P) = p (•,<P> ) = p (a) 

Providing the source terms and the equation of state are known, 

equations 2.1, 2.2, 3.1 and 3.3 form a closed set. An equation for 

<0a> may be derived from equation 3.1 by decomposing 
0
a 

into its 

average and fluctuating values, 

ea  = <0 > + o'
a 

There results, 

a<0 > 
a <p><(p

a
> + a  <plEf.><o 	- a 	a 

at 	ax. 	X. 	ax
i 	

8x. 	a 

	

1 	
<[0.3 0' > 

(3.3) 

(3.4) 

8 - at  < pieta> + <Soc(o) > 

(where CpUi3 = piti  - < p'Cli  > ) 

(3.5) 
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The principal unknown term in equation 3.5 is the average reaction rate, 

‹E;ce(o) >; the average density, <p(0)>, is also nr -nown. As these 

averaged quantities may be highly non-linear it is incorrect to assume 

that 

<Sa  (a)> = Sa  (<0>) 

Indeed, it will be shown below that in some circumstances <Sa(E)> is 

independent of Al. The main objective of the theory is to overcome the 

difficulty of modelling such non-linear terms and to this end the 

probability distribution of o is considered. 

(3.6) 

3.2.1 The Joint Probability Distribution Equation  

First, probability is mathematically defined and some useful 

consequences of the definition are shown. The instantaneous probability 

of ow  p(ea), is defined such that the probability of e a  being in the 

range 

ect< sa<o ct  + de ct  is po) 1:16-a  

Clearly, the instantaneous value of p(ii is either zero or unity 
a a 

and so p(sc4) may be identified as the Dirac delta function: 

P(-  a)E ga - 0 ) a (3.7) 

where oa is the new independent variable representing probability space. 

From this definition it follows that for any good function, h, 

h(oa) p(;a) d'604  = h(ea) 
	

(3.8) 

and consequently, 

(3.9) 
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The joint probability of a set of n scalars, o E (011 02 	011), is 

defined as the product of the individual proabilities of each scalar. 

n 	 n 

P(s) = 	= l a (ea-Ta) 
a=1 	a=1 

(3.10) 

Again, from the definition of p(j) it follows that 

h(i) p(i) 	= h() 	 (3.11) 

and consequently 
co 

<h CO> = 	h(i) < 
	

(3.12) 
_co 

Thus, it is seen that with a knowledge of <p( )> the average reaction 

rate, <8(1)>, can be determined from equation 3.12. 
a 

Two further results which will be used extensively below are 

n .0 
el  --°--- [p(s) h(i3)] d6

a 
= 	0, m < n a _n 2,0

a 
• 

= (-1)n  m!Am-n):01 o-(m-n),N.. 
a 	

pa
a
)hka 

a
) d0a,  n< m  — 

CO 

(3.13) 

and 

80 a (6 - o ) 	Boa  aga - 0,) 	ao ap(6 ) a  22.  (-0 ) = a  SO - es ) = 8t 
	--.2...,...._-Lg- at a 	at 	a 	a 	. Bo 	- - Ot 33a 	at ao a 	 a 

(3.14) 

From equation 3.14 it is evident that a transport equation for p(a) 
aP(6 ) 	a  

may be deduced by multiplying equation 3.1 by -
aa 	

. Further, by 
a 

multiplying the resulting equation by 1p(0) and summing for all a, a 
Y =3. 
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transport equation for p(;) is obtained, namely 

ae 
a

a1 
[PP(6)) 2-- 0.1)(Z) = - 

: 
if (6) [ a ex

i 	
— 8x. - 8x. 

+ s (0)3 
r't (3.15) 

After manipulation, equation 3.15 may be averaged to give the joint 

probability distribution equation 

P( 2- < p( )> p(41) a < IL> p()> 	= at 	ax. 

a 	a 
8 	{ 	< P(0.-)> - P(ii) < p(6) u.> } 

8 	-- xi 	xi 

(A) 	(B) 

• a 
f<PC.,6)> S

• (j) + E 

• 

a <PCOT 
ao 	a A 

	

a=1 a!a - 	ax- Ox. > } (3.16) 

The terminology applied to the various terms is as follows, 

A 	- transport in x-space by laminar diffusion 

B - transport in x-space by turbulent convection 

C 	- transport in a-space due to the source terms 

D - transport in 6-space by molecular action 

The laminar diffusion term, which is negligible at high Reynolds number, 

contains no unknown correlations. The turbulent convection term contains 

the unknown correlation < p(i) ui> which represents a flux of < p(0> in 

x-space. While this correlation is unfamiliar, it is directly analogous 

tomorecommontermslike<E0u.>and its behaviour is expected to be 

similar. The most notable feature of equation 3.16 is that the term in 

ae 
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S
a 

contains no unknowns, and so there are no problems of modelling as 

was the case with <S (6)>. The term <p(0)> S
a
(&) represents a flux of 

a 

<p()> in probability space due to the source. 

The final term in equation 3.16 poses the greatest problem to 

understanding as it pertains to the microscale. However, its role may be 

demonstrated by integrating its moments to form a source term in equations 

for <01,› and <0' 
2
>, 

8<0 > 
 	0 

 	- 2r< 

CO a rk  2 
< P(e) r(71) > dg 

"i  
CO 

80 	2 

(3.17) 

(3.18) 

 	- 

et 

8<o' 
2
> 

at 

exi  

Equation 3.17 indicates that the term does not influence the value of 

<0 >: the same conclusion may be reached without reference to a 

particular diffusion hypothesis. As the source term in equation 3.18 is 

identically non-positive, the effect of molecular action is to reduce the 

value of <0'
2 >. While this result does depend upon the specific form of 

molecular diffusion, the irreversibility of dissipative processes guarantees 

that the source is non-positive. Unfortunately, a satisfactory closure 

approximation has not been found for this term. However, the probability 

distribution of a single scalar is more amenable to analysis and is 

examined further. 

3.2.2 The Single Probability Distribution Equation  

Clearly, the transport equation for the probability distribution of 

a single scalar is given by equation 3.16 with n=1. As the potentially 

Np 
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non-linear density is seen to produce no problems and the treatment 

given below is essentially demonstrative, for simplicity, the density 

will be assumed constant and equal to unity: the laminar diffusion term, 

which makes no contribution at high Reynolds number, is also omitted. 

Thus, the transport equation for < p(6)> reads, 

2 
= ax  <p(g)  u > -am 	ax 	ax {<p(a)> s(a) + 1L- cp(a) 41—) >1 (3.19) 

As was mentioned above, the probability velocity correlation is similar to 

terms such as <e'u.>. Consequently, it can be modelled in an analogous 

manner as 

<p(73) u.> = - C
1 
 k2A ax. < p(B)). 

i 
(3.20) 

The molecular action term contains the expression 

2 
G(76) E---<P(e)r (ax.) > 

which is the correlation of two quantities: r (22-)2  pertains to small 
ax. 

fluctuations on the microscale while p(;) is dominated by large fluctua-

tions associated with the macroscale. It appears, therefore, that the 

two quantities are uncorrelated. Thus, 

2 
G(6)=< p(b) > ‹r(ax:) > 

2 
And, following the conventional modelling of ‹r(4-) > , 

i 

(3.21) 

G(-6) = c2 <P(e)> 	
< 0,2 > 	 (3.22) 

pD 
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The modelled form of equation 3.19 then becomes 

14:‹Pco> = a  ax. 	Cl k2/e :x <p(6)> 

- aQ  {<p(6)> SCO 
C2 k  0,2> 	< P(6)>) 

This equation will be examined for inert flows (S(e) = 0): Integrating 

the equation to form equations for <0 > and <0
,2 

> produces 

D 	= 2-- Cl k2/ 8<0>  1- -t- < 0 > 	axi a xi  

(3.23) 

(3.24) 

ka 

Dt 
< 12> 

- axi 
  Cl k

2A 	<0,2> + 2C1 
6  
--- (a  

	

8x. 	8x. 

	

3. 	 3. 

2 
<0>) — 2C2  k<  0/2>  

(3.25 ) 

These equations are seen to be identical to those used by, for example, 

Lockwood and Naguib (1975a) and, for consistency with these authors, the 

constants C
1 

and C
2 

take values of 0.127 and 0.925 respectively. While 

the consistency of equation 3.23 with previous models is encouraging, it 

provides no check on the behaviour of the equation in probability space 

and hence the modelling of G in particular is not validated. To this end, 

the decay of the probability distribution in a stagnant, homogeneous flow 

is considered. Equation 3.23 reduces to 

a \ 	 E 12 B2 — <pkoi> 	- c — < 0 > 	<p(-6)> at 	2 k 	-2 
00 

(3.26) 

which has a solution 

<p(6, t)> 	= (4-77) -1  exp 	(6  -- 	2  :b)} 
0 

(3.27) 

Where go E <0,2> -= so  exp - C2 	(t - to)} 
	(3.28) 
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That is, for this situation, an initially Gaussian probability distribution 

remains Gaussian while its standard deviation decreases exponentially at a 

rate proportional to the turbulent time scale. Similarly, a steady, 

stagnant flow in which <0> varies linearly with x yields the following 

solution of equation 3.23: 

2 
< 	= (6'1G)-1  exp { 4 (i <0) } 

• 
(3.29) 

where 
C2 B<0> a<o> 	3/2 (-6- a 	) k /c 1  xi  oxi  (3.30 ) 

Again, the probability distribution is Gaussian with a standard deviation 

proportional to the gradient of < 0> multiplied by the turbulent length 

scale. These solutions of the modelled probability distribution equation 

are in accord with intuition and thus support the modelling assumptions. 

However, in spite of the good performance of the model for the situations 

	

considered 	above, it will be shown that modelling 	G by equation 3.22 is 

not appropriate to more general situations. 

Consider the probability distribution shown on figure 3.1. The main 

features of this distribution may be realised in turbulent reacting flows; 

the distribution is bounded at 0
1 and 04 

where there is a delta function. 

In the region 73, <CI <elf, <p(-6)> may not be zero because this would imply 

infinite gradients of 0; however, a region 0
2 
<0 <03 may occur in which 

<p(0)> is arbitrarily small. From consideration of the definition of G, 

for the general probability distribution outlined above, the following 

properties of G may be deduced. 

(i) G 3  0 

(ii) G = 0 for 0 E 0
1 

and ; %;
4 

(iii) a2G < 	0 for 62 < 6 <0 
80 



-64- 

if a5 wereThe third condition is required because, f — were positive, negative 

values of <p(a)> would occur. Further, by integrating equation 3.19 twice 

with respect toe it is seen, from the other terms,that 

(iv) G is finite and continuous. 

It is apparent that, for the probability distribution of figure 3.1, 

the model for G given by equation 3.22 violates all the conditions except 

for the first. These four conditions are sufficient to suggest a modelled 

form of G: condition (iv) requires that G be an integral function of the 

potentially discontinuous and infinite <p(13)> while condition (ii) 

suggests the form 

G(;) = C2 	a 11(6) 

where 	a = <0'2> 	1  

a 	 co 

H(;) = 	g  (0-0• 	 • ) < p(e 	g) > do 	< p(0*)> do'` 
e 	0 

(3.31) 

(3.32) 

and g is any continuous function with g(0) = 0. 

Conditions (i) and (iii) require that g be non-negative and that its 

second derivative be non-positive. Thus, equations 3.31 and 3.32 form 

a model for G which is consistent with the four conditions imposed by the 

exact expression. However, a function g cannot be chosen that results in 

the desired Gaussian behaviour for the idealised flows considered above. 

It must be concluded, therefore, that the modelling of G is not 

completely satisfactory although predictions based on it can be expected 

to be qualitatively correct. In the absence of experimental data, the 

choice of 

g(y) = In (1+y) 	(3.33) 
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used in subsequent calculations was based on an intuitive appraisal of 

the shape of <p(0> for various functions for g. The more obvious 

choice of g(y) = y results in unrealistic multi-model distributions. 

With the revised closure approximation for G the modelled equation 

becomes 

---<pkoi> = 
a 	8 

<P(6)> Dt 	8xi Cl 	8x. 

- 	{s(g) <PM> + C2 k 	(8)1 
ae 

(3.34) 

The equation for <012> which results from integrating this 

equation is no longer consistent with that employed by Lockwood and 

Naguib and so C2  may not be evaluated directly. The value 4.5 used in 

subsequent calculations does, however, predict approximately the same 

values of <0'2>. 

3.2.3 Applications of the Theory  

In order to study the probability distributions predicted by the 

modelled equationl a steady, homogeneous, isotropic flow was considered 

in which equal quantities of fluid with values of sl  and e2  were 

homogeneously introduced and an equal amount of the resulting mixture 

was withdrawn, the residence time being TR. The form of equation 3.54 

appropriate to the situation is 

H( i53(a-a ) + U 	
Tu 	82  

-62)) - < P(6) > = 	f3 C2 	-2
6)  

a© 
(3.35) 

The time scale ratio, TR/Tt, (TtE x/E) is of great physical significance 

for it determines the degree of mixing. Equation 3.35 was solved 

numerically for various values of the time scale ratio and the resulting 

distributions of < p(;)› are shown on Figure 3.2. It is seen that two 
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limiting cases exist. 

as TR/Tt 	0, < p(0> 	[6 (6-B1) + 6(g-62)3 
	

(3.36) 

as TR/Tt  c° < 13(;)› 	6(6-<0>) 
	

(3.37) 

These two results are an inevitable consequence of the restrictions imposed 

on the modelling of G. The real test of the modelling is the predicted 

values of <p(0> for intermediate values of the time scale ratio. In 

the absence of experimental data the predictions can only be appraised 

intuitively: there is no feature of the predictions that is contrary to 

expectations. 

The behaviour of the modelled equation with a finite source term is 

studied by considering a similar situation to that described above. In 

this case, a one step reaction takes place between homogeneously premixed 

fuel and oxidant to form a single produck. 0 represents the mass fraction 

of product which lies in the range gl<  0 < 	 The The reactants are added 

to the system at 0=0
1 

and the resultant mixture is withdrawn. For this 

situation equation 3.34 becomes 

c,6 
TR [6(-6-B1 	86 ) - <p(B)>] = 	[<p(6)> S(6) 	Tt 	

(6)] (3.38) 

The specific form of the reaction rate will not be defined at this point 

except to set it to zero at 0=0, and 0=02  and positive for il< 6 

0=02 
corresponds to a situation where all the reactants have reacted, 

hence S(s2) = 0: at
1 

where there are pure reactants, in a typical 

premixed flame, the temperature is too low for reaction to take place, 

thus S(01)=0. 	The time scale of the reaction, T is taken as the 

inverse of the maximum value of SW, and the normalised reaction rate, 
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S*(a), is given by 

S*(;) = Tk 	 (3.39) 

Equation 41 may now be written in the form 

a Tv 
6G;—;1) <13(6)›  = 	CT"  < P(B)> S*(—) C 	TR ala)- 

K 	° + 2 — 	3  
Tt 8° (3.40 ) 

The averaged reaction rate may be obtained from equation 3.40 by multiplying 

by 0 and integrating 

<s(0)> 	(<0a - 	 (3.41) 

The form of the solution of equation 3.40 will be demonstrated for the 

nine situations characterised by each of the time scale rations being 

either zero, finite or infinite. These solutions are more clearly demon-

strated by taking the definite integral of equation 3.40: 

100 

f 1 
6"3—Ci 	<P

/
ver> dm = TR < p(0> s*(a) 

Tt 	aa (3.42) 

Inspection of equation 3.42 reveals two important conclusions. 

First, a trivial solution, given by 

<pC0> = (S(-6--151) ; <c3 > = "ol; < S(o) > = 0 , 	3.43) 

exists regardless of the values of the time scale ratios. (For this 

solution, each term in equation 3.42 is zero). Secondly, a necessary 

condition for another solution to exist is that both time scale ratios 

be non-zero. If TR/Tic  is zero, <5(0) > is zero and hence equation 3.41 

becomes the trivial solution. Physically, fluid at 0=01  is introduced 

tending to decrease <03 as the mixing term cannot alter the value of 

<a> the result is a tendency toward the trivial solution. If TR/Tt  is 
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zero, the fluid introduced at 0=0
1 

has no way to pass to higher mass 

fractions since <p(o)>S*(o) at 0=0
1 
is zero. This observation highlights 

the importance of the process referred to as back-mixing whereby, hot 

combustion products mix with cold reactants, raising their temperature 

until reaction is possible. Thus, the five situations characterised by 

combinations of time scale ratios in which one or both is zero result in 

the trivial solution only. 

The first situation of practical interest is that in which TR/Tt  " 

which TR/Tic  remains finite. In order that the mixing term in equation 

^ 
3.42 remains finite o must tend to zero. Thus, the probability 

distribution will tend to a single delta function which, clearly, is 

centred on <0 > i.e. 

< p(^0> = d(B - <la>) 

The averaged reaction rate is given by 

<S(0)> = f s(g) <p(B)> de = s(<0>) 

and hence, from equation 3.41 

(3.44) 

(3.45) 

<0 > = 	151  + s* (<0 >) TR/Tic 	 (3.46) 

It is seen that in this situation, which corresponds to a perfectly 

stirred reactor, equation 3.6 is valid, i.e. 

<s(0) > = s(<0 >) 

It should also be noted that equation 3.46 may have one or more than one 

solution; one being the trivial solution. As an extension of this 

situation it is seen that as TR/TK  tends to infinity also, in order to 

satisfy equation 3.46, <0 > must take a value such that S*(<0>) is close 

to zero. Thus, in the case where both time scale ratios are infinite 
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a solution is given by 

< p(i) > = a (6-20 
	

(3.47) 

that is, all the reactants are converted into products. 

The final case for which an analytic solution is presented is that 

in which TR/Tic  tends to infinity while TR/Tt  remains finite. It is for 

this situation that the eddy-break-up model of Mason and Spalding (1973) 

is intended. The form of the solution is again found by examining 3.42 

and noting that the reaction rate term can remain finite only by <p(B)> 

being comprised of delta functions at Zi  and B2: 

<P(15)> = a (3(75--62) + (1-a) 15(7642) 
	

(3.48) 

Substituting <o > given by equation 3.48 into equation 3.41 gives 

<3(0) > = (1-a) (a2-6.1) / TR 	 (3.49) 

Now, if equation 3.42, with <p(&)> given by equation 3.48, is evaluated 

at the limit as s tends to 6-1+ there results 

Tv „ 	.15.1 6  lim 
(1-a) 	= 	< p(6)> S*(6) + C 

K 	ul+ 	2 Tt  0+01+  aa 

As the limit of the first term is zero, equations 3.49 and 3.50 may be 

combined to give 

lim < S(0)> = 2 C2/T o 0max0 	ai 

where 

max = 

is the maximum value that 0 may obtain. The notable result is that, as 

TR/ K tends to infinite, the averaged reaction rate remains finite and 

(3.50) 

(3.51) 

(3.52) 
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is independent of both TB/Tic  and B*(0). As is implied by the name of 

the eddy-break-up model, the reaction rate is directly proportional to 

the rate of back-mixing. Evaluating the limit of the differential, the 

averaged reaction rate is given by 

< s(0) > = 	c2frt  
^2 	2 a 

In (1 + m ax )  
max 

(3.53) 

Comparing this result with the eddy-break-up model 

<5(°)›  = CEBU 23/Tt 	 (3.54) 

a relation for the eddy-break-up "constant" is obtained; 

20 
In 
(1 
 + 	 ") EBU 	C2 max 

a • 
(3.55) 

The variation of CCU  with a/amax  is shown on figure 
3.3 and should 

be compared with the values of .53 and 1.0 used by Mason and Spalding (1973) 

and Khalil et al. 	(1975) respectively. It appears that 	given 

by equation 3.55 is too large, however, the assumption of very fast 

chemistry in the flow situations of the above authors may not be completely 

valid. It may certainly be expected that near complete combustion the 

reaction rate will be very rapid but, at the cold end of the probability 

distribution the reaction rate will still be small. Thus, in this 

situation a delta function may be expected at 0=02  but not at 0=01. The 

effect of finite rate chemistry over a region of probability space is to 

decrease the averaged reaction rate and hence to make the effective eddy-

break-up constant smaller than that predicted by equation 3.55. While 

this is a possible explanation of the discrepancy between the constants 

and while the influence of finite but large reaction rates should be borne 

in mind, the calculations presented in Chapter 5 reveal the same dis- 

crepancy; consequently, it must be conceded that this result of the 
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theory is quantitatively incorrect. 

It is worth noting that had the function, g, been chosen as g(y) = y 

then the theory would predict the eddy-break-up model with Cmu  = C2; 

the value of C
2 

appropriate to the new function, g, would, of course, be 

different from that quoted above. 

In each of the above cases, where one or both of the time scale ratios 

tend either to zero or infinity, it has been shown that the probability 

distribution is known a priori. The solution of the probability distri-

bution equation is, therefore, unnecessary. However, these situations are 

idealised and in practice both time scales are finite; it is for situations 

of this type that the probability approach is intended. Equation 3.40 was 

solved numerically for various values of one time scale ratio while the 

other was held at unity. Figure 3.4 shows the predicted reaction rate 

against TR/Tic  for ytt  = 1 and figure 3.5 shows the reaction rate against 

TR/Tt  for TR/tic  = 1. The normalised reaction rate was given by 

s*(;) = 14201) (;-;1) (;2.4;1)-2 	 (3.56) 

In both cases the predictions follow the expected trends but there 

is no basis for a quantitative assessment of the model's performance. 

3.2.4 Conclusion on the Theory  

The starting point of the theory was the transport equations for the 

scalars characterising the chemical and thermodynamic aspects of the flow, 

equation 3.1. From these equations, without any physical input (save the 

exclusion of pressure fluctuation influence), the joint probability 

distribution equation was deduced, equation 3.16. This equation overcomes 

the problems associated with the non-linearities in the density and the 
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source terms. The joint probability i
t s/

seen   to be transported in DOSi- 
juw, srcm,z- 11.- (474...4- 044,4- 5-6 cl4A-61.  '" I'1"4.2-  "'"4" 	 ('"'"6-v*E-f- 	`444-4. -4:`1"3"- j4A  space by the source term and by turbulent mixing on the microscale. 
It is the interrelation of the two latter agencies that accounts for the 

influence of turbulent mixing on the average reaction rate: if the 

reaction rate is very high in some region of probability space then 

the averaged reaction rate depends upon the rate at which the averaged 

probability is transported to that region. 

The simplified case of the single probability equation was 

considered further: a model for the term representing turbulent mixing 

on the microscale was suggested and was used to predict an idealised 

combustion system. While the modelling is not completely satisfactory, 

the predictions can be expected to be quat Itatively correct. These 

predictions demonstrate the interrelation of the reaction rate and the 

micromixing for different time scale ratios of the system. 

• The achievements of the theory are threefold; 

(i) the joint probability distribution equations provide a 

useful mathematical and conceptual picture of the behaviour of turbulent 

reacting flows, 

(ii) the modelled single probability distribution equation can be 

solved to predict any combustion system characterised by a single scalar, 

and (iii) the assumptions and inaccuracies in existing models may be 

judged by reference to the results of the theory. 

The third point forms the subject of the next section. 

3.3 A Criticism of Existing Models  

In recent years combustion models have been developed for incorpora-

tion into flow solution algorithms. We are concerned, in this section, 

with comparing the present theory with such models that are in current 

use. These models may be divided into three classes depending upon the 
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nature of the flame being considered. Mason and Spalding (1973) developed 

the "eddy-break-up" model for use in premixed flames. Khalil, Spalding 

and Whitelaw (1975) also used this model for some of their calculations. 

Diffusion flames have been studied with a model based on probability 

distributions by Elgobashi and Pun (1974) and Lockwood and Naguib (1975a). 

The third class of flame, that which is neither premixed nor diffusion, 

has been studied by Khalil, Spalding and Whitelaw (1975) and by Lockwood 

and Naguib (1975b). 

Many of the assumptions and equations are common to all the models: 

the combustion is supposed to proceed by a single step irreversible 

reaction, 

1 kg. fuel + s kg. oxidant -)-(1+s) kg. products 	(3.57) 

The transport equation for the mass fraction of each species is given by 

equation 3.1: the averaged form of this equation, equation 3.5, is 

modelled as, for example, 

P 
< 	eff 8 <m 

fu
> + ‹S

fu> Dt P > 	
< mfu 

> 	
8x. a 	ax. 1 fu  

(3.58) 

where mfu' mox and  mpr  are the mass fractions of fuel oxidant and products 

respectively. An equation for the average mixture fraction, <f>, 

f = mfu - m /S ox 

may be deduced from equation 3.58, 

Ileff 8<f> 
<P> 	 - <P> Dt 	8x.1  of  ox. 

(3.59) 

(3.6o) 

It may be noticed that in formulating these transport equations, the 

influence of density fluctuations has been ignored; consequently, attention 

is focussed here on the other aspects of the models. The influence of 

density fluctuations is discussed in the next section. 
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In order to determine the temperature an equation for the enthalpy, 

<11›, is solved. 

h Em H +TE C (T) m  fu fu 	a 	p a 	a  (3.61) 

where Hfu is the heat of reaction, Cp  the specific heat and the summation 

is for all species. The form of the enthalpy equation is the same as that 

for <f a there is no source term. Equation 3.61 may be rearranged to 

give, 

T(h, ma) = (h - m..1  H ) ( E C (T) m )-1  fu 	a  Pa 	a (3.62) 

With a knowledge of the temperature,the density may be obtained from the 

gas law 

p (T, ma) = 	T E m,/W,} -1 	 (3.63) a  " 

where R is the universal gas constant and W the molecular weight. A 

further equation that is used by each model is that for the fluctuations 

of the scalars; 

g E < 0
2 

> 

Dgel 	ago 	
, 	2 Peff  

<P>  Dt 	+ C P 	("125>) 	C < > 6  

	

ex. a ax. 	gl off 'Bx. 	g2 P  K go 

	

1 g 1 	1 

(3.64) 

(3.65) 

For an arbitrarily fuelled system the equations for <mfel<f> and < h > 

could be solved if <Sfu>  <T(h,m
a
)> and <p(him

a  )> were known. The 

models for premixed and diffusion flames exploit the restrictions of their 

respective systems to facilitate or avoid the determination of these unknown 

quantities and to reduce the number of transport equations that need be 

solved. 
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3.3.1 Premixed Flames  

Mathematically, a homogeneously premixed flame is characterised by 

the boundary and initial conditions of <f > being constant (and equal to 

<f>). The solution of equation 3.60 then becomes trivial, 

<15 = <f
o 
> 	 (3.66) 

and consequently, from equation 3.59, all the mass fractibns may be 

related to <mfu> by, 

ox 
<in > = 8(<m

fu 
 >- < f 

0 
> ) (3.67) 

<B2 > = 1 -<mfu> -<m > 	 (3.68) pr 	ox 

Thus, the transport equation for <f > need not be solved. The closure 

is completed by modelling the unknown terms as, 

6 

	

<s > 	C 

	

fu 	k EBU -fu (3.69) 

< T (h, mfu)> = T(<h >, <mfu >) 	 (3.70) 

and <p (T, mfu) > = p T >, <mfu> ) 	 (3.71) 

The eddy-break-up model, equation 3.69, was discussed in section 

3.2.3 where the theory gave a similar result. There are two points, 

however, that require further comment. First, the assumption of a very 

high reaction rate may not be valid in practical situations; Runchal (1973), 

Khalil et al. (1975) and others have taken the reaction rate as the 

minimum of that given by the eddy-break-up model and that given by 

< S
ft> = Sfu(<mfu>  ' < T> ) 
	

(3.72) 
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The fact that the eddy-break-up model predicts a higher value than does 

equation 3.72 (which represents an upper bound) confirms that, in parts 

of the flow, the assumption of very fast reaction breaks down. 

The second point relates to the value ascribed to gfu. If the 

assumption of very fast reaction is consistently applied, gfu  must take 

its highest possible value: however, in this model, a transport equation 

for gfu  is solved, equation 3.65. Further, equation 3.65 is appropriate 

to fluctuations of scalars without sources and so, when it is applied to 

gfu, a term, of order of magnitude <p> gfu  < Sfu>, is neglected. These 

two points indicate that the eddy-break-up model as a whole is far 

removed from the physical situation it is supposed to represent. 

Nevertheless, it has been used by its originators and others to produce 

some useful results and it contains the valuable assertion that the 

averaged reaction rate scales with the turbulent time scale. 

The error in approximating the temperature and density by equations 

3.70 and 3.71 depends upon the situation. If the mean specific heat is 

constant then the temperature, given by equation 3.62, is a linear 

function of h and mfu  and hence equation 3.70 is valid. The density, on 

the other hand, varies approximately as the inverse of temperature. Thus, 

if the temperature is bounded by T1< T <T2, the error in equation 3.71 is 

given by, 

0 > P<T> - <p(T)> 
— < p(T)> 

T
1 
- T

2 
T
2 

+ T
1 

(3.73) 

Taking Ti  and T2  to be 700°K and 2000°K, values typical of the flows 

reported in Chapter 5, it is seen that the density may be underestimated 

by as much as 50%. Bearing in mind that changes in density have a major 

effect upon the hydrodynamics, this possible error is a serious one. 

Equation 3.71 represents the lower bound of density and implies that the 

probability distribution of mfu  is a delta function centred on < mfu
>: 
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the probability distribution consistent with the assumption of a very 

high reaction rate is 

<A(mfu)> = (m2-m1)-1.  {(m2-<mfe) gm1-mfu)  + (<mfu> - m1) gm2-<mfu>)} (3.74) 

where m1 and m2 
are the minimum and maximum values that mru  may take. 

The corresponding expression for density is 

<mfu >- m1  m2 n- <mfu>  
<P(mfu  )> - m2  m1 	m2  - m P(m1) + 	1 P (m2) (3.75) 

which represents the upper bound. Thus, the average density lies between 

the values given by equation 3.71 and equation 3.75 and, for consistency, 

the latter expression is preferable. 

A major criticism of this model is that it is restricted to situations 

where the assumption of very high reaction rates is valid: if the 

assumption were valid then the form of the eddy-break-up model would be 

appropriate and the temperature and density could be evaluated, without 

error, by way of the probability distribution, equation 3.74. What is 

needed, then, is a model that predicts the average reaction rate and 

probability distribution when the reaction rate is not high. The theory 

propounded in the last section lends itself to this end. 

Applying the assumptions and restrictions made for premixed flames 

to the theory leads to the conclusion that all quantities can be expressed 

as functions of m
ru' 

h and <P >only. Further, as h is nearly homogeneous 

in premixed flames, only a small error is incurred by assuming that, for 

any quantity, 0, 

0(m fu' h' 
<P 	= 0(mfu' <h > , <P 
	

(3.76) 

(Equation 3.76 is exact if the incoming fuel/air stream has a uniform 

temperature and if all confining surfaces are adiabatic). Thus, the 
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systeramaybeduu.acterisedbythesinglesaalar,m_,and so the solution 

of the single probability distribution equation for <D (;fu)> provides 

the required closure. That is, the modelled transport equation for 

<p(ifu)>, which takes account of finite reaction rates, can be solved and 

the values of the average mass fractions, density and temperature can be 

obtained from 

<121 (mfu, h, <P > = 	<P(mfu 	
<h>, <P>) dirifu 	(3.77) 

_00 

In considering this approach to model premixed flames the objection 

can be raised that the inclusion of the additional independent variable, 

mfu
, increases the dimensionality of the solution space by one and, 

consequently, reduces the economy of the solution procedure a great deal. 

It would be glib to retort that simple answers to complicated problems 

should not be expected. Rather, it is to be hoped that the solution of 

the probability equations, as a research exercise, will indicate which of 

the many possible simplifications to the equation are appropriate and, 

hence, lead to a more economical procedure. In this context, the work 

of Bray.  and Moss (1974) is worthy of comment. These authors proposed a 

closure based on an assumed probability distribution expressed in parametric 

form: these parameters are functions of <mfu 
 > and g

fu 	
for which modelled 

transport equations were suggested. While this model was not deduced from 

the probability equations, such a route could be chosen and the number of 

parameters could be increased to provide more accuracy and generality. 

3.3.2 Diffusion Flames  

The model for diffusion flames is based upon the assumption that 

fuel and oxygen are not co-present. For most situations this assumption 

is justified; the fuel and oxygen streams are separated by a hot flame 

front and so, at any interface between fuel and oxygen, the temperature 
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is sufficiently high for the reaction to be very rapid. With this 

assumption, from the definition of the mixture fraction the following 

relations are obtained, 

mfu = 0 for f <0 	mfu  = f for f >0 

mox  = - fs for f <0 ; 	mox  = 0 for f >0 

Also, if the inlet temperatures of the two streams are uniform then h 

is given by 

h = hox  + (hfu  - hox) (f - fox)  / (ffu - fox)  

(3.78) 

(3.79) 

where the subscripts 'ox' and 'fu' indicate the inlet values of the 

quantities in the oxygen and fuel streams respectively. Clearly, as 

the mass fractions and enthalpy are known functions of f so also are 

the temperature and density. Thus, the values of m,lu  m ox, p and T are 

all known functions of f: however, as these functions are non-linear, 

the values of <mfu  > <m ox 
 >, <p > and <T> are not directly related to <f 

Elgobashi and Pun (1974) and Lockwood and Naguib (1975a) overcame 

this problem by assuming a probability distribution for f. Thus, for 

example, 

<T(f) > 	<p(i")> T (I) di 
	

(3.80) 

The probability distribution was assumed to be a 'clipped-Gaussian', 

that is 

f> ffu  and f <fox  ,< p(f)> = 0 

fox < k <ffu 	< PM>  = N(f) = (a&)-1  exP (4 (1:-;2)2  ) (3.81) •  
f f ox 

	

< p(fox)> = 6(k-fox) 	N(i) di 

and < p(f
fu
)> 	6(i-ffu) 

	
w 
	

N(f) di 

fu 
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The two parameters in this distribution, a and p, can be determined 

from <f >and gf  for which transport equations are solved. The clipped-

Gaussian is probably the most physically realistic distribution that can 

be expressed in terms of two parameters: the limiting cases of 

<f >-'fiki and  4 Affu-fo) 	are accounted for correctly. However, the 

determination of a and P and the subsequent evaluation of the integrals, 

such as equation 3.80, entails a considerable amount of computational 

effort. Khalil et al. (1975) and Gosman and Lockwood (1973) used a 

simpler form of <pa) > which, though physically less plausible, requires 

a minimum of computational effort, 

<p(f) > = 	o 	- f+) (3.82) 

Where 	f 	= <f>4. it 
	

(3.83) 

In situations where the assumption of rapid reaction is valid, the 

only uncertainty in the model is the determination of <p(f)>, If the 

theory of the previous section were applied to these situations, rather 

than assuming a probability distribution, a transport equation for <p(f)> 

would be solved. However, as the equation for<p(f) > is computationally 

expensive to solve and the uncertainty in its modelling is no less than 

that in the assumption of a clipped-Gaussian distribution, this approach 

is not advocated. The comparison of measurements with the predictions of 

Elgobashi and Pun (1974) and Lockwood and Naguib (1975a) is favourable 

and suggests that their model provides a good description of diffusion 

flames. 

3.3.3 Arbitrarily Fuelled Flames 

The assumptions made at the beginning of this section lead to the 

conclusion that an arbitrarily fuelled flame can be rlinracterised by mfu, 
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f and h. In the case of premixed and diffusion flames it was shown that 

either m
fu 

or f is redundant: further, for both situations, it was argued 

that the influence of enthalpy is adequately accounted for by its average 

value, that is, 

< cl(mfu" f h) > = < 0(m fu, f < h>) > 
	 (3.84) 

Thus, the single probability distributions <p(infu)> and <PM> provides 

a complete description of premixed and diffusion flames respectively. For 

arbitrarily fuelled flames, while equation 3.84 can again be employed to 

remove the dependence on h, both mfu  and f must be retained. Consequently, 

a knowledge of the joint probability <p(thfu,f)> is required to provide a 

complete description of this situation. (In fact, the joint probability 

pr,f) >, which contains the same information, will be considered). 

Before considering the model of Lockwood and Naguib (1975b) the theory 

of the previous section is applied to this problem. This is done for two 

reasons; first, the theory makes the physical assumptions more precise 

and comprehensible and secondly, a model, similar to that of Lockwood and 

Naguib, was independently derived from the theory. The assumption of a 

very high reaction rate is again made: this denied the co-presence of the 

fuel/air mixture and products for premixed flames and of fuel and air in 

diffusion flames. For arbitrarily fuelled flames the consequence is that 

fuel, air and products may not co-exist. Thus, the joint probability 

<p(i
pr  ,r)> may be expressed as the sum of three single probabilities, 

< p(th-prei)> = < pl(i)> s(thpr) 

(no products) 

< p2(i) > 6(1 + Si - 	+ 

(no fuel) 

< p
3
(E)> S (i —) 

pr 

(no oxygen) 

(3.85) 
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A sketch of such a distribution is shown of figure 3.6. It is seen that 

,,  
<p2(f)> is zero for positive f and <p3

(f)> is zero for negative f. 

Thus, the two distributions may be summed to form one distribution without 

loss of information, 

< PA  (i)> E  P2(i)>+< P3(i)› 
	

(3.86) 

The subscript 'A' stands for 'activated species', a term introduced by 

Lockwood and Naguib to indicate that, in this region, the energy is 

sufficient for reactions to be rapid. 

The problem of determining the joint probability has now been reduced 

to that of determining two single probabilities: averaged quantities may be 

evaluated through, 

<0(f,. ) „for 	) < P(i,111  )› di  
Pr 	, 	pr 	pr 	6 Pr 

oci,oy 0)4 o(f, 1 sk)< p2(?)> ea, 	p3(?)> di 

=: 	<P1(i)›  + 0A(i) <PAW> di 	(3.87) 

The last equality serves to define 01  and 0A. The behaviour of < pi(il>  

and <pA(f)> is unknown and so, for want of a better assumption, their 

shapes are presumed to be the same, that is, 

(1 - A)-1  <p1(f) > = A-1  <p(f)> = <p(?)> 
	(3.88) 

where A, the macs fraction of activated species, is given by 

co 
A E f 

- co 
PA(1)> di (3.89) 
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There is no direct evidence either to support or to refute the assumption 

of equation 3.88 but at least it satisfies the required mathematical 

restrains: the integrals of each term are identically unity rind for the 

limiting cases of A = 0 or 1 the equation is correct. It is seen, from 

equation 3.88, that only< p(f)> and A need be determined. As there is 

no difference between the quantity f in this situation and in diffusion 

flames, the same modelling of<  p(?)>  may be used; that is'< p(?)> is 

assumed to be a clipped-Gaussian given by equation 3.61, based on the 

values of <f> and gf. 

The theory of the last section lends itself well to the task of 

formulating a transport equation for the novel quantity A. From the 

definition of the various single probabilities, an alternative definition 

of A is, 

m m 

A 	
w 	0+ 

<p(Mpr,r)> d Epr 	 (3.90) 

Thus, writing the joint probability equation, equation 3.16, for< p(mpr  ,?)> 

and integrating between the limits indicated by equation 3.90 leads to an 

exact transport equation for A, 

<p u.A> <PA>jri>. A = - 

	

at <PA>A 	:x. 	ax. 	1 
3. 

am lim 	a 	, N / rr 
---m• <Plm 	l'---e..- 

2
>' - + 	Pr) 	ax. mph  o+ ampr 	1 pr 

% 
where < p

A > E <pA(f)> PA (?) a 
-co 

(3.91) 

(3.92) 

The final term in equation 3.91, which will be denoted by SA, is familiar; 

it is the expression from which the reaction rate in premixed flames was 

deduced in sub-section 3.2.3.. The same modelling applied to the present 

term gives, 
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S
A 

= C2 A <p > c/k (1-A) <226; ) > g 	) d pr 	pi pr 	pr (3.93) 

The form of this expression is more comprehensible if the function g(y) 

is chosen as g(y) = y: it was noted above that this choice leads to 

the eddy-break-up model in premixed flames. Hence, 

	

S = C2  <p > 	(1-A)< m >/m pr 

	

2 A 	pr pr (3.94) 

Modelling the turbulent transport term in the normal way, the modelled 

equation for A is, 

k2 8A a 	a 	a 	c <p >c/k 13.72-11, m >(3.95) Bx. 	2 A 	m  - pr at <PA>A 	-677. <U1-><PA>A  = 8x. Cl<PA>  1 	1 	_ 	pr 

The proposed closure for arbitrarily fuelled flames is now complete. 

To summarise, transport equations may be solved for <f>, gf  and A and the 

values of <f > and gf  used to determine the clipped Gaussian probability 

distribution, <p(f)>. Averaged quantities may then be determined through 

equations 3.87 and 3.88 by 

r- 
<0(f, mpr)> = 	<IOW> [(1—A) el  (f) AeA(f)3 di 

	
(3.96) 

This closure may be compared with that of Lockwood and Naguib (1975b): 

while these authors suggested determining averaged quantities through 

equation 3.96 they did not explicitly assume the equality of the activated 

and unactivated probability distributions, equation 3.88. The principal 

difference between the two closures is Lockwood and Naguib's alternative 

proposal, 

S
A 

= C
A<p >E/k CA(1-A)31 
	

(3.97) 
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However, although this modelled source term has a different form from 

equation 3.94, it is, in fact, almost identical. Thus, the two closures 

are, to all intents and purposes, the same and the subsequen'; discussion 

applies equally to them both. 

The first point to note is that the closure is compatible with the 

models for diffusion and premixed flames; if A is everywhere unity, 

characterising a diffusion flame, then the closure is identical to that 

described in sub-section 3.3.2. If, on the other hand, <f> is uniform 

then the closure reduces to that of sub-section 3.3.1 with the assumption 

of a very high reaction rate; equation 3.94 becomes equation 3.74 and 

the transport equation for A becomes an equation for <mpr  > with the 

source term given by the eddy-break-up model. To a large extent, therefore, 

the closure for arbitrarily fuelled flames may be assessed by reference 

to the criticism of the models for premixed and diffusion flames. In 

particular, it must again be conceded that in some situations the assumption 

of very high reaction rates is inapplicable. For example, the closure will 

provide a poor representation of a diffusion flame which has lifted off 

the burner, where the reaction rate is a controlling factor. On the other 

hand, as demonstrated by Lockwood and Naguibi  a premixed jet burning in air 

is predicted accurately by the closure. 

3.4 The Effect of Density Variations  

The last two sections were concerned with the effect of turbulence on 

the reaction rate: here, the influence of the reaction on the mean flow 

and the turbulence is considered. The chemical and thermodynamic properties 

of the fluid affect the velocity field through the density and viscosity 

which appear in the continuity and momentum equations. The discussion of 

sub-section 2.4.2 indicates that, at high Reynolds number, the flow field 

is independent of the magnitude of the viscosity and, consequently, attention 
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is focussed on the influence of density variations. Density variations 

may be caused by temperature gradients, species concentration gradients 

or by the compressibility of the fluid: in combustion systems all the 

three agencies may act together, causing the density to vary by as much 

as an order of magnitude. 

The principal difficulty in formulating a closed set of averaged 

equations for variable density flows is caused by the appearance of density 

in the term representing convection, 

DP$_ 	0  + 	pu.0  
Dt - at 	ax. 	1 (3.98) 

Bray (1973) derived the exact transport equations for mean velocity, 

species concentration and turbulent kinetic energy by decomposing the 

instantaneous quantities in the normal way, i.e. 

+ 1 	 1 u. 

P = <P > 	PI 	 (3.99) 

0 = <0 > + 01  

In addition to the terms arising in constant density flows, five density 

fluctuation correlations result from the decomposition of the convective 

term;namay2 <wu_>I <pru.u.>,<ptu.uju. >,< pf ot> and<ptu.0>. Bearing 

in mind that the density may vary by an order of magnitude, none of these 

correlations may be neglected; indeed, it is shown in the next section 

that, in one of the flows calculated in Chapter 5, <p> <0> may be six 

times greater than <pe> ; that is, <plot> is approximately 80% of <o><0> 

but of opposite sign. Further, the modelling of these correlations is 

hindered by the paucity of turbulence measurements in reacting flows 

which are also insufficient to provide a direct test of any proposed 

model. 
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An alternative approach, which overcomes some of these problems and 

results in a simpler set of equations, is to decompose the instantaneous 

quantities in terms of their mass averages. This approach, which was 

proposed by Favre (1969), is best demonstrated by means of the Favre 

joint probability distribution, introduced by Bilger (1975): 

74-  f< 	C01-; ) 6(P-0> A cli5 
	

(3.100) 

p is seen to be the joint probability of the velocity, LT, and the set of 

scalars, o, weighted with the density. The mass averaged mean quantities 

and correlations (indicated by overbars) are given by the moments of the 

joint probability distribution; 

Uj  

cr
a 

= 

a 

= 

p @.,;) 
- 

p C.1,o) 

p Q1,0) 

II. di! d0 

crn doa - - 

	

01.-U. 	(© - 0 
1 	1 	a 

) 
a 

dU 11-6 
- 

, 	etc. 

(3.101) 

u!'0" 

It should be noted that, with mass averages thus defined, terms like u!' and 

01  are identically zero: an alternative definition of mass averages, see 
a 
for example Libby (1972), does not lead to this property. 

Moe 

It is readily shown that transport equations for the moments of p 

are virtually identical to those for constant density flows, Bilger (1975). 

The only difference is that correlations containing the divergence of u" 

do not vanish and that terms involving molecular transport adopt a 

slightly different form. Unlike the averaged equations based on the normal 

decomposition of U, p and 0, no correlations with p' occur. Thus, for 

ommple,u.iecorrumuuyrelauonandtheequauonsfm.Tand uPu!' 
3 	I j 

(excepting viscous terms) are given by their constant density equivalents 
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withu!'replacingu.and overbars replacing averaging brackets,< > . 

The fact that the exact expressions pertaining to molecular action adopt 

a slightly different form is of no consequence since it was argued in 

sub-section 2.4.2 that, at high Reynolds number, the microscale is 

determined by the macroscale which does retain the same form. The 

fact that the divergence of the velocity vector, u", is not zero is more 

serious for it indicates that u!' behaves differently from ui. However, 

the only manifestation of this different behaviour 	in the Reynolds 

stress equations is that the pressure-rate-of-strain tern does not 

contact to zero; that is, the kinetic energy equation has the additional 

source term, p'aulyaxi. 

It appears, then, that the practice of mass averaging not only 

produces a simpler set of equati.ons but also, as the transport eouations 

for all the moments of are essentially the same as their constant density 

counterparts, the same modelling assumptions may be made. This contention 

is supported by the calculations of Libby (1972) and by Bilger (1975). 

Thus, the terms uro", 	E" and 2,1uPut'ut' may be modelled by the 
`1 JJ 

simple gradient diffusion hypothesis, 

  

Cu  k2 B; 

G
o 

— ax. 
E  

etc., 	(3.102) u!' 0" MO 

while the isotropic viscosity hypothesis must be slightly modified to 

take account of the divergence of U ; 

09, 
2  u!,  ul,  = 2/3 7 si j  — 	— 1‹: (-67— 	— 2/3 	csi j) 

'j 
(3.103) 

The modelling of the additional term p'av1:77x7 is more difficult; 

Libby (1972) suggested a modelled form for inert flows with significant 

Mach numbers while Bray (1974) suggested that, in low Mach number reacting 
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flows, the analagous term,<p' BuiAx? , is negligible. In view of 

the lack of experimental data, the existing deficiencies of the turbulence 

model and of Bray's suggestion, the term will be neglected here. 
.... -- 

With these modelling assumptions, equations for U, k and c  and 

any one of the combustion models described in the previous section form 

a closure, save for the determination of <p > and < Sa> . As <p>  

and <S a
> are related to <e? , rather than to 0, a relation for <0 > 

must be obtained. Since all the combustion models assume a Probability 

distribution for 0, <0> may be determined without further modelling 

assumptions. For example, for premixed flames, it follows from the 

definition of 0 that 

<mfu > = 712fu + f <PGfu) >(1 P(ilfu)ftP> ) 
	

(3.104) 

The advantage of mass averaging is seen to be that a closed set of equations, 

from which <0 > may be determined, is obtained without modelling velocity-

density correlations. While these correlations must be modelled in order 

to extract information about the unweighted velocity field, any inaccuracy 

in such modelling does not propagate through the system of equations. 

The mean velocity was the only measured function of the velocity 

field in the reacting flows calculated in Chapter 5. It should be noted 

that the technique of laser anemometry, which is well suited to combustion 

situations, measures the unweighted velocity: the precise quantities 

measured by hot wires or Pitot probes, which. were used to perform these 

measurements, are less certain. Assuming that the unweighted velocity 

was measured, in order to compare the measured and calculated velocities 

<U.i> must be determined. Bray (1974) suggested the following form of 

modelling, 
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< > = Ui -<P'ui>< P > 

Cu 1.1._ 1 	a< P>  
< p > 1 

(3.105) 

where a is of order unity. This modelling, which may be erected to 

be of the right order of magnitude, predicts <ptui> to be negligibly 

small compared with <p <111> in the flows calculated in Chapter 5. 

Consequently, the term will not be.discussed further save to emphasise 

thatthemodellingof<p/u.>and other velocity-density correlations 

has no influence on the calculated values of IT, k and <g> . 

In conclusion, the close similarity between the transport equations 

for mass averaged quantities in reacting flows and the equations for 

constant density flows suggests that the same modelling may be applied 

to each. Consequently, a closed set of equations is obtained without 

modelling velocity-density correlations. The only additional modelling 

required is in relating unweighted quantities to their mass averaged 

values. Any inaccuracy in this modelling for one quantity does not 

affect the other quantities. 

3.5 The Combustion Models EMployed  

In Chapter 5 calculations of bluff-body stabilised flames are 

presented: the details of the two combustion models used are described in 

this section. The calculations pertain to the combustion of a premixed, 

uniform temperature, propane/air mixture downstream of an annular V-gutter 

in a circular duct, 

The first model, Model A, comprises the closure outlined in sub-

section 3.3.1 together with the k-E turbulence model: the influence 

of density fluctuations is ignored. This represents the standard form 

of the eddy-break-up model used by Mason and Spalding (1973), Khalil et al. 

(1975) and others in which the probability distribution of mfu  is assumed 

to be a single delta function centred on <m, > . Model B may be regarded 
.Lu 
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as an extension of model A in the light of the considerations of this 

chapter; the reaction rate and probability distribution are determined 

from the theory of section 3.2 with the assumption of rapid reaction. 

The effects of density fluctuations are accounted for in the manner 

described in the previous section, that is, transport equations are solved 

for the mass averaged quantities. Before the two combustion models are 

described in more detail, the determination of the distributions 

p(rifu< P >) and T(rifu
)
' 

which are common to both, is described below. 

In section 3.3, only three "species", fuel, oxygen and products, 

were considered: here, the nitrogen in the air is accounted for and the 

products are assumed to comprise of carbon dioxide and water. In spite of 

this, because the incoming stream is homogeneously premixed and the 

reactants are assumed to combine in fixed proportions by, 

C3H5  + 50
2 	

3 CO
2 

4 H2O 
' 

the mass fractions of each species can again be related to mfu; 

m
N2  n (mN2)o 

m0 2 = Ola C
2 	

5((mfu)o mfu) WO2
/Wfu 
	(3.106) 

n  3((mfu)o mfu) WCO214fu 
• 

mH
2
0 = 4((mfu)o mfu) W  0114  H

2 
fu 

where Ili a  and (m )o are the molecular weight and inlet mass fraction 

of species a. Further, due to the known composition of the inlet stream, 

the values of (nfu)o and (MN ) are related, 
2 



= 3.31 (H0 )0  
2 

and 	(MN2 
 )o 	(1402)o im  (m 1 

). (MN
2 
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Consequently, the mass fraction of each species can be expressed as a 

linear algebraic function of mfu  and (mfu)0. 

In the flows calculated in Chapter 5, the temperature of the inlet 

stream is uniform and the heat transfer to the walls is small compared 

with the heat release due to combustion. Consequently, the enthalpy is 

uniform and equal to its inlet value, 110. Thus, the temperature and 

density distributions are related to mfu  through equations 3.62 and 

3.63 by 

• T(ffifu) 	(h0  - Mfu  Hfu) (E cpc, (T)  ma(Efu) )-1  

P(mfu)fu) = <P 
	T(mfu) E ma(ra fu)/War

1  

The values of R and Hfu are taken as 8.3143 kJ/kg mole 
°K and 

4.63747 x 104  kj/kg respectively (Gordon and McBride (1971)1 

For each of the five species, the specific heats are determined from a 

fourth order polynomial in temperature; the coefficients are taken from 

the data assembled by Gordon and McBride (1971). 

Model A.  Transport equations are solved for <U.>, k, 6,< mfu > and 

gfu. The reaction rate is modelled by the eddy-break-up model as, 

<Sfu > = -<p>6/1c CEBU gfu 

and the closure is completed by determining < p> and< T > by, 

(3.111) 



E (m2 - 7iNI)/(m2 m1) 

<mfu > = m2 - (m2 -7:na) 71 1  - (1  - 7)(1  - PA)} -1  

<p > = P1 
	- 	(1 - P2/P1)1 -1  
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< p >. = 	p( 

<T > = T(<mfu >) 

Model B. Transport equations are solved for Tv  k, 6 and m,u  and 

the form of these equations is identical to those for the unweighted 

quantities. In contrast to model A, the probability distribution is 

taken as a double delta function, equation 3.74. The values of < mfu>, 

<p> and <T >, which are determined from this probability distribution, are 

most easily expressed in terms of the mass averaged combustion efficiency; 

T 	= T2 	(T1  - T2) 	- (1 - 7)(1 - p2/p1)) -1 	(3.117: 

where m1 and m2 
are the minimum and maximum fuel mass fractions and 

pi, p2, T1  and T2  are the corresponding densities and temperatures. It 

Should be noted that, for smalln , these relations give, 

<p > <n> = p1/p2  <P n > 

As p1/p2  is approximately equal to six in one of the flows calculated in 

Chapter 5, it is seen that the neglect of density-mass-fraction 

correlations is totally inconsistent with the assumption of rapid reaction. 

The reaction rate given by the theory of section 3.2, equation 3.53, 

does not take density variations into account: in the absence of any 
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evidence to the contrary, it is assumed that, the expression for G(0), 

from which the reaction rate is deduced, may be modified to incorporate 

density variations as 

o co 1 	- 	 1  -- 
G(0) = C2  --- Fs 	e (e) p(e)  ) g(° - ott ) do* 	e(e) p(o*) g(o. 

0 

  -- , ) do* 
—  k 	 co 	 . 0 

rz 
where 0 is equal to ko" 

2  ) . This leads to the reaction rate of fuel 

used by model B; 

kn (1+1/CrT(1-7)33  (p2/p3. )4/ 17 <Sfu 	- C2  <p >— (m2-m1) 

(1 - (1-6) p2/pl) (3.119) 

The constants CEBU and C2 
were evaluated so as to maximise the agree-

ment between the calculated and measured combustion efficiencies. Their 

values, 1.1 and 1.0 respectively, differ significantly from the value of 

CEBU -.53suggestedbygasonandSpalding(1973)and- - C2  4.5 used 

in section 3.2. These differences will be discussed in Chapter 5. 

3.6 Summary  

This chapter has been concerned with modelling the averaged equations 

of turbulent reacting flow. The joint probability distribution equations 

have been derived and have been shown to provide a useful mathematical and 

conceptual picture of the behaviour of reacting systems. For premixed 

flames, the modelled single probability distribution equation offers the 

potential advantage over existing models of obviating the need to assume 

rapid reactions: however, the quantitative performance of the particular 

model proposed is suspect. The application of the theory of section 3.2 

to arbitrarily fuelled flames produced a model similar to that of Lockwood 

(3.118) 
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and Naguib (1975b) and clarified its physical foundation. 

A discussion of the influence of density variations indicated that 

a closed set of equations for mass averaged quantities can be obtained 

without modelling velocity-density correlations. While these correlations 

must be modelled in order to determine Unweighted quantities, any inaccuracy 

in the modelling for one quantity does not affect other quantities. 

The two combustion models employed to perform the calculations reported 

in Chapter 5 are described in section 3.5. The first, model A, represents 

the standard form of the eddy-break-up model in which fluctuations are 

ignored: the probability distribution of the fuel mass fraction is assumed 

to be a single delta function. Model B incorporates the effects of 

fluctuations by solving for mass averaged quantities and assumes a double 

delta function probability distribution. The reaction rate employed, 

equation 3.119, is based on the theory presented in section 3.2. 
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CHAPTER 4 

CALCULATION PROCEDURES  

4.1 Introductory Remarks  

In the last two chapters, a variety of turbulence and combustion 

models were introduced which, together with the momentum and continuity 

equations, form a closed set of equations. These equations were solved 

numerically to produce the results reported in Chapter 5; the numerical 

procedures used are described and discussed in this chapter. 

It could be said that numerical procedures are of secondary importance 

in the study of turbulent flows; providing they give a true solution of the 

equations, their constitution is of no great importance. If present 

computational powers were limitless and inexpensive this would be the case 

but, as things stand, an improved numerical procedure results in a saving 

in computer expense and allows calculations to be made of more complex 

flows or with more complex models. Thus, to a large extent, the ability 

to test models is limited by the capabilities of existing computers and 

computational techniques. As the testing of hypotheses is an integral 

part of the scientific method, the development of turbulence and combustion 

models depends upon relating theories to experimental observations through 

a solution procedure. Consequently, the three components, modelling, 

computational procedures and experimental results, are of equal importance 

and a limitation on any one of them handicaps the advance of knowledge. 

Indeed, it is not unreasonable to speculate that, had Chou, Kolmogorov 

and their contemporaries had today's computational tools, the present 

state of knowledge would have been attained fifteen years ago. 

All the flows considered are two-dimensional and steady: that is, 

all averaged quantities can be expressed as functions of only two spatial 

coordinates and their values do not vary in time. This being the case, 
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the principal role of the calculation procedure is to solve the transport 

equations constituting the closure in only two independent variables. 

These equations, which are elliptic, can be written in the common form, 

a 	a 
i 	

ael 

J 
p U 0 = 	

i 
F. 	+ s

o ax.1 	aX l aX i 	. 

where 0 represents any one of the quantities <U.? , k, e, <uiui>,<mfu> 

gfu  or their mass average equivalents and the source, So, and the 

diffusivity, r.., depend upon the quantity in question. Henceforth, for 

brevity and in order to retain the common form, the averaging symbols are 

wittechnus, LaPpearinginequation li.lrepresentsiLif 0 is a mass 

averaged quantity and <Ui> if 0 is unweighted. 

The direct solution of the set of simultaneous equations 4.1 is 

hindered by the facts that no equation exists for the pressure and that 

the continuity relation is not included. Thus, as well as solving equations 

4.1 explicitly for (I), the calculation procedure must also determine the 

pressure and ensure that mass is conserved. 

The results reported in Chapter 5 were obtained using two different 

calculation procedures: the procedure for the reacting flows, for which 

model I was used, is outlined in the next section. The principles on which 

this scheme is based have been reported in the open literature by Patankar 

and Spalding (1973) and the specific details are given by Runchal (1973). 

It was found that significant changes to this procedure were necessary in 

order to solve the equations comprising the Reynolds stress closures. The 

principles of the new procedure for these equations, described in section 

4.3, are applicable not only to flows characterised by two-dimensional 

elliptic equations but also to three-dimensional flows. As a result, a 

means is provided for testing and using Reynolds stress closures in more 

complex flows than the two-dimensional boundary-layer type flows previously 

ae 
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considered. The performance of the procedures is discussed in section 

4.2 The Basic Procedure  

As mentioned above, the details of this numerical scheme are given 

by Runchal (1973). The purpose of this section is to present an outline 

of the principal features of the procedure used for reacting flows and 

to introduce the nomenclature that will be used in the next section. 

Most of the flows calculated, when considered in polar-cylindrical 

coordinates, have no variation in the circumferential direction while the 

others may be expressed in two-dimensional Cartesian coordinates. In 

order that the equations have the same form in the two different coordinate 

systems, the coordinates are defined as follows: in polar-cylindrical 

coordinates, x is the axial direction and r=y is the radial direction. 

In Cartesian coordinates, x and y are the mutually orthogonal directions 

and r is equal to unity. Thus, for example, in both systems, 

D 2 m = 8
2
0 +1 2  lr  IS 1 

8x2 r 8y ay (4.2) 

In this coordinate system, with U and V denoting the velocities in the 

x and y directions, the general transport equation, equation 4.1 becomes, 

-a- 	
r ay 

(pUo) + 	(r pVco) - ex  
a (r  22) _ 1 a (rr 22.) s ax x 8x 	r ay 	y ay 	

o  (4.3) 
• . 	- 

In the Appendix, this equation is written in full for each of the 

variables. 

A finite-difference method is used to solve equation 4.3. Figure 

4.1 shows part of a finite-difference grid where the values of o are 

assumed known at the nodes P, N, S, E and W. Equation 4.3 is integrated 

over the indicated control volume to give, 
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x+ 	
rx+ 

	1Y+ acm [14  r(pUe - r ax  --.) dy 	+ r 	(pVo - ry fn dx 	= 
x 	 Y1  

x 	Jx 	JY - 	-   

iy x 

y_ 

r So dx dy 

(4.0 

and the following finite-difference approximations are then made: 

- 

Yi. 	 Y.1. 
rpUe dy 	= i (op  + 0E) (pU)x 	rdy = Cx  (op  + 0E) 	(4.5) 

+ 	+ 
x+ 	Y_ 

 

of  - P (r ) 	+ 
rdy = D 	(o- - op) 	(4.6) xE  - xp  x x 	x+ 

X4. 	Y_ 

ao rrx 	dy 

y_ 

Y+ 	r  y+  x+  

Xp 	 xp r S
o 
dx dy = (S ) 	r dy dx = (So) ) 	Vol 

x 	
x  

(4.7) 

and similarly for the integrals with respect to x and for the lower limits 

of the integrals. The values of (pU)x  , (rx)x  etc., if not known at the 

required locations, are determined by linear interpolation. Thus, with 

AE 	Dx - Cx 
	 (4.8) 

Aw 	Dx 
+ C

x etc., 
	 (4.9) 

substituting equations 4.5 to 4.9 into equation 4.4 gives 

op EA = E (oA) + (S0  )x 
 Vol 
	

(4.10) 

where the summation is over N, S, E and W. This equation provides a 
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relationship between the value of e and its neighbours but, in some 

circumstances, its physical implications are unacceptable. If, for 

example, Cx  is positive and greater than Dx  then Aw  will be negative 

and so equation 4.10 implies that an increase of ow  causes a decrease in 

. Gosman et al. (1969) suggest a modification to equations 4.8 and 

4.9 in order to overcome this implausibility, i.e. 

if ICx  I > Dx 	, 	AE  = 	10x  1 - C
x+ 
	 (4.11) 

if I  Cx  I > D 	
AW = 
	

I + Cx 	etc. 	(4.12) 

The physical interpretation and justification of these modifications which 

are used in both procedures, are given by Gosman et al. (1969). 

If the pressure is known, then equation 4.10, written for each 

variable at each grid node, forms a closed set of algebraic equations. 

However, there is no guarantee that the resultant velocity field would 

satisfy the continuity equation. The two problems of determining the 

pressure and conserving mass are overcome by adjusting the pressure field 

so as to satisfy continuity. The procedure for adjusting the pressure 

requires a specific justaposition of the velocity and pressure nodes, see 

figure 4.2. The mass flow, G, through each face of the cell centred on Pp, 

is approximated by, 

G
x + 

G
y+ 

= i(pp + PE)  UE 

= i(pp + pN) VN 

fr+  
r dy 

Y_ 

-x  
r dx 

= 

= 

B_ A+ 	,. 	UE .i. 

B
Y+ 

(p)
y 	

V
N 

(4.13) 

(4.14) 

and similarly, 
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Gx 	Bx  (p)x p 
	 (4.15) 

G = B (p) V 
Y_ 	Y_ 	P 

(4.16) 

Now, the continuity relation requires that E G = 0 and the pressure field 

is changed by an amount P* so that the corresponding changes in (p) and U, 

(p*) and U*, result in changes in G, G*, such that 

EG + EG* = 0 	 (4.17) 

The change in density is given, through the equation of state by, 

	

(1)*)x = ;(1):3 	Ox 	 (4.18) 

and the change in velocity is approximated by linearising the finite 

difference equation for U, equation 4.10, 

	

U* = (p* p*) 	Vol  
P 	W 	P (xp-xvi) E A 

= (Pi*, - P;) DUp 	 (4.19) 

Consequently, neglecting second order terms, 

G* = Bx  [(p*)x  Up + (p)x  U; 
■••• 	 MM. 

= - iBx  Up (t)x  (Pi; + P)  - Bx  (p)x  DUp  (Pv*, - P;) 

= - Cx 	P (P* + P*) - D
x  (PW 	P * - P*) W  (4.20) 
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Thus, defining finite-difference coefficients, A, as before (equations 

4.8 and 4.9) an equation for P* is obtained: 

P*  EA = E (P*A) 	E G 
	

(4.21) 

The non-linearity of the finite difference equations requires that 

they be solved iteratively: equation 4.10 is solved for 7 and V and then 

equation 4.21 is solved for P*. The pressure, density and velocities are 

then incremented by P*, p*, IT* and V. Equation 4.10 is then solved for 

all the other quantities. This procedure is repeated until all the 

equations are satisfied simultaneously and the mass sources, E G, are zero. 

The above description of the procedure is not comprehensive: details 

of other features, such as under-relaxation, the treatment of boundaries 

and the solution of the finite-difference equations, can be found in the 

original source, Runchal (1973). However, the information given about the 

coordinate system, the disposition of the grid nodes and the finite-

difference approximations is sufficient for the reader to appreciate the 

remainder of this chapter. 

4.3 The Re -nolds Stress Closure Procedure  

The necessity of modifying the basic procedure for the Reynolds stress 

closures is caused, not by the form of the Reynolds stress equations, but 

by the different form taken by the momentum equations. In the case of the 

mean flow closure, where the isotropic viscosity hypothesis is employed, 

the gradient of the Reynolds stresses appearing in the momentum equation 

may be written as 

au. 	au 
a 	a _ 	p<u.u.> = 

	(Leff 
 --1) +{ .2.__ (u 	

) - 2/3 , 
ak , 	(4.22) ax. 	1 j 	ax. 	8x. 	Bx. (Leff ax .I 	' ''' ox.I  

•• 
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The first term on the right hand side, which is predominant, is 

incorporated into the basic procedure by setting rx  = ry = off in 

equation 4.3 and the final term forms part of the source. The same 

treatment cannot be applied to the Reynolds stress closures because 

they do not provide an explicit relationship between stress and rate 

of strain. Consequently, the whole of the Reynolds stress gradient 

term is included in the source and the diffusivities are set to zero. 

If the basic procedure were applied to the Reynolds stress closure, 

the set of finite-difference equations would differ from those appropriate 

to model I in two important aspects: the interlinkage between stress and 

rate of strain would be removed from the velocity equations and the shear 

stress <uv > would be determined at different locations. Consider first 

the way in which the term - ax p<uv >, appearing in the V-velocity 
e 

equation, is treated by the basic procedure incorporating the isotropic 

viscosity hypothesis; 

a - 	p<uv> dx = [p<uv>]x  - [p<uv>]x  
x 

(vp-vw)(vE-vp) 
	I 	

X 
+ (r_)x  (, _x  )  + s,  

	

X .. X \Xp  Xw/ 	
-E p 

(4.23) 

where S' represents the contribution of velocity gradients other than 

alf 
. The last equality in this equation is used in the implicit part of 

ex 

the finite-difference equations and provides the interlinkage between 

stress and rate of strain: an increase in V causes [p<uv>]
x 

to decrease 

and Cp<uv% to increase and, consequently, the whole expression 

decreases causing V to tend to its original value. Also, the appearance 

of VE and V in equation 4.23 provide a linkage between V and its 

neighbouring values. 
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By way of contrast, consider the form taken by equation 4.23 when 

the values of <uv> are determined explicitly from the isotropic 

viscosity hypothesis at the pressure nodes. This is analogous to applying 

the basic procedure to the Reynolds stress closures since, assuming the 

transport of <uv> to be small, the value of <uv> , which would be 

calculated at the pressure nodes, is largely determined by the local 

velocity gradients. In this case, assuming for simplicity a grid with 

equal spacing, dx, and homogeneous diffusivities,r , 

r r I [p<uv>.]
x  - [p<uv>]x  = 46x k2 

WW 
 + V

WWN + WWS
) 

+ • 

2 (2Vp  + VN + Vs) - (2 VEE  + VEEN  + VEEs)} + S' 	(4.24) 

This expression does not compare favourably with equation 4.23 because it 

is a less accurate approximation of the exact term and, in addition, it 

provides no linkage between V and its neighbours, VE  and V. The latter 

defect, that only alternate grid lines are linked, explains why the author's 

attempts to solve the Reynolds stress closures by the basic procedure 

failed; the values of the velocities and Reynolds stresses, rather than 

converging to their correct values, diverged with successive iterations. 

In order to overcome these difficulties, a new procedure was developed 

which calculates the equation for <uv> on a different grid, see figure 

4.3. With this juxtaposition of grid nodes, the terms 
ax 

 p<uv> in the 

a V-equation and 1  
- ay — rp<uv> in the U-equation can be evaluated without r  

interpolation and the velocity gradients au and  elf  , which have a pre- 

dominant 	

ax 

dominant effect on the shear stress, can be determined directly at the 

<uv> nodes. Consequently, the new procedure obviates the need for 

interpolation and, although the interlinkage of stress and rate of strain 

cannot be retained within the velocity equations, it will be shown that 
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the <uv> and velocity equations are coupled in a stable manner. A 

small increase in <uv> from its correct value results in increases in 
P 

and V
P 
 and decreases in Us 

 and Vw,  , causing Way and WeL to increase P  

at the <uv> node. The effect of these increased velocity gradients is 
P 

to decrease, through the source term in the <uv> equation, the value of 

<uv> towards its correct value. 

For an inert, isothermal flow, the new procedure entails the 

solution of the equations for U, V and <uv> on their respective grids and 

of the equations for <u
2>, <v2> , <w2> , 6 and P* at the pressure nodes. 

The formulation of the finite-difference equations is straightforward and 

the details are not reported here. The approximations made are generally 

the same as in the basic procedure but, for axisymmetric flows, they are 

modified near the axis to take account of the information that, 

as r 0, <uv> a r 

and as r 4- 0, <v2> - <w
2
> a r

2 

For example, equation 4.5, written for <uv>, is altered to give, 

Y+ 	

+ 
r p U < >dy 	= 	r2 p U 	x dy r p 	I 

+ 1: 

(<uv> + <uv >E) 	Y+ 2 
= 	 (pU)x  ir  r dy

r 
P o 

(4.25) 

(4.26) 

(4.27) 

With these modifications consistently applied, no problems were encountered 

near the axis of symmetry in spite of the fact that, as r tends to zero, 

two of the terms in the <um > equation become infinite. 

A quantitative assessment of the new procedure is given in the 

next section. 
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4.4 Discussion of the  Procedures 

The basic procedure described in Section 4.2 is well established; 

it has been tested and used by several authors, e.g. Runchal (1973) and 

Khalil, Spalding and Whitelaw (1975). The procedure is coded as a 

Fortran program which, on a CDC 6600 digital computer, has storage and 

time requirements of 17,000 + 32/ (grid node) words and .0006 sec/ 

(iteration x grid node x equation) respectively. The combustion calcula-

tions reported in Chapter 5 were obtained by this procedure, solving eight 

equations on a 24 x 25 grid. It was found that 450 iterations were 

required to achieve a converged solution and hence the time taken was 21 

minutes. These statistics are discussed below where they are compared 

with those of the new procedure. 

Since the new procedure described in Section 4.3 differs significantly 

from the basic procedure, tests were carried out to ensure that, for any 

grid size below some limit, the solutions were the same. Figure 4.4 shows 

calculated values of mean axial velocity and the corresponding normal 

stress along the centre-line of a wake behind a disc in a uniform free 

stream. The results show that the numerical accuracy is reasonable even 

with a 14 x 14 grid. The calculated values of velocity and Reynolds 

stresses at other locations in the field showed similar accuracy. The 

size of the grids used with this procedure to perform the calculations 

reported in Chapter 5 varied, depending upon the complexity of the flow 

in question; the flows with recirculation, Carmody (1964) and DuAo and 

Whitelaw (1974), were calculated on a 30 x 30 grid to ensure that no 

significant error could be attributed to numerical inaccuracy. 25 x 16 

and 30 x 30 grids was used for the essentially boundary-layer type 

flows of Chevray and Kovasznay (1969) and Chevray (1963) respectively. 

The large grid, used for the latter case, was necessary because the solu-

tion domain was extended a considerable distance into the free stream. 
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The Fortran program for this procedure, which included the facility 

of solving the same scalar equations for reacting flows as the basic 

procedure, had storage and time requirements of 16,000 + 20/(grid node) 

words and .0003 sec/(iteration x grid node x equation). The number of 

iterations required to obtain a converged solution was found to depend on 

the complexity of the flow; for the flow of Carmody (1964) 600 iterations 

were needed while for the simpler flow of Chevray (1968) only 200 

iterations were required. The resultant time requirements for these two 

calculations were 27 and 9 minutes respectively. 

A comparison of the storage and time requirements of the two procedures 

shows that the new procedure is more economical in both respects. This 

fact is solely attributable to programming efficiency because the additional 

grid and the complicated source terms in the Reynolds stress equations 

inevitably leads to an increase in computational effort. For a 20 x 20 

grid, the new procedure requires 24,000 words and 1 sec/iteration to 

calculate an isothermal flow with one of the Reynolds stress closures. This 

performance may be regarded as satisfactory but the number of iterations 

required, which is approximately the same for both procedures, causes the 

total time requirement to be, at least, twenty times that of analogous 

parabolic procedures. In spite of this shortcoming, which urgently requires 

investigation, the new procedure is no more expensive of computer time 

than the basic procedure and, as will be seen in the next Chapter, has been 

successfully employed to calculate recirculating flows with Reynolds stress 

closures. 
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CHAPTER 5  

CALCULATIONS  

In this chapter, the results of calculations of isothermal and 

reacting flows are reported. The next section is concerned with isothermal 

wake flows calculated with each of the three turbulence models described 

in section 2.3. These calculations, which were performed with the procedure 

of section 4.3, are compared with experimental data in order to assess the 

accuracy of each model. These results have been reported elesewAere, Pope 

and Whitelaw (1976) but, as they are central to the present work, they 

are presented and discussed here. Section 5.2 is concerned with reacting 

flows: the two combustion models described in section 3.5 are used in 

conjunction with the procedure of section 4.2 to calculate premixed 

propane/air flames stabilised behind an annular V-gutter. A comparison 

with experimental data allows an assessment of the combustion models and 

of the assumptions on which they are based. 

5.1 Isothermal Flows  

In this section the calculations of isothermal wake flows are reported. 

Each of the four flows considered (described below) was calculated with all 

three turbulence models described in section 2.3: this allows a comparison 

of the three models as well as an assessment of their performance by 

reference to the experimental data. The flows considered and the available 

experimental data are described in the next sub-section. As the same sets 

of equations are solved to calculate each of these flows, the calculations 

are distinguished solely through the applied boundary conditions which are 

also described in the next sub-section. In sub-section 5.1.2, where the 

results of the calculations are presented, it is seen that the boundary 
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conditions for some of the flows are not known with certainty. Con-

sequently, test calculations are also reported by which the error in the 

predictions due to uncertainties in the boundary conditions may be 

assessed. In the final sub-section the results are discussed and con-

clusions are made about the performance of the turbulence models. 

5.1.1 Description of Flows Considered  

A literature survey, Pope (1975), of experimental information 

relating to near-wake flows, with and without recirculation , showed that 

available data was in short supply. The papers by Chevray (1968) and 

Chevray and Kovasznay (1969) pertain to the wake downstream of an ellipsoid 

and of a long, thin, flat plate respectively: in both cases, the region 

of recirculation immediately downstream of the body was negligibly small 

but, as the axial velocity gradients were of the same order of magnitudes 

as the radial gradients, the solution of the equations in elliptic form 

is appropriate. Carmody (1964) reported similar measurements downstream 

of a disc and, in this case, the region of recirculating flow was extensive 

and encompassed by the measurements. The recent measurements of Durao and 

Whitelaw (1974) and Durao (1975) are also helpful in this connection since 

they relate to the wake downstream of an annular jet: they were obtained 

using a laser-Doppler anemometer, rather than the hot wires of previous 

authors and this helps to remove any bias which might result from the 

consideration of hot-wire data alone. 

The measurements of Chevray included values of mean axial and radial 

velocities and all the non-zero Reynolds stresses at various locations 

downstream of his ellipsoid. The values of each dependent variable except 

dissipation were available at the trailing edge of the ellipsoid which was 

chosen as the inlet plane of the solution domain. The dissipation at 

inlet was assumed to be equal to the production of turbulent kinetic energy. 
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Chevray and Kovasznay measured the mean axial velocity and the 

Reynolds stresses, <u
2 
>, <v2> and <uv>  , downstream of a thin, plane plate. 

The measurements at the trailing edge, which was again chosen as the inlet 

plane of the solution domain, show fully developed turbulent boundary-layer 

profiles. Consequently, the inlet value of the normal velocity was assumed 

to be zero while values of <w
2
> were taken from the boundary-layer data 

of Klebanoff (1954): again, the dissipation was equated to the production 

of turbulent kinetic energy. 

The measurements of Carmody are also extensive and are particularly 

relevant to blunt body stabilised flames in that they were performed 

downstream of a disc (or radius R) in a free stream (with velocity 10. 

The separated nature of this flow provides a greater test of the present 

turbulence models than the flows of Chevray and Chevray and Kovasznay but 

it should be remembered that it also presents a more formidable measurement 

problem. The measurements of axial velocity were obtained with a Pitot 

tube and, as a result, static pressure was also measured: the reported 

values of < u2> and< uv > were obtained using hot wires. In the recircula-

tion zone, the high turbulence intensity and the steep velocity gradients 

undoubtedly cause significant errors in the measurements: also, the 

disturbance of this reversed flow region due to the presence of the measuring 

probes introduces uncertainties. For these reasons, the measurements 

downstream of the recirculation zone can be expected to be more accurate. 

The inlet plane of the solution domain was taken coincident with the 

disc where the values of axial velocity were taken from the data. The 

radial velocity quoted by the author was evaluated from the continuity 

equation and consequently is subject to a large error. The values used 

were obtained by solving for the flow upstream of the disc, assuming it to 

be inviscid, using the measured axial velocity as a boundary condition. 

The validity of this approach was confirmed by the observation that, at 



the inlet plane, the dynamic head, calculated from the measured axial 

velocity and pressure and the predicted radial velocity, was nearly 

constant. The inlet values of the normal stresses were set at .002 U2E 

while the dissipation was set through the length scale with 3/R = .03. 

These nominal free-stream values may be expected not to influence the 

calculations very much as in the region immediately downstream of the 

disc, a great deal of turbulence is produced. 

The measurements of Durao and Whitelaw (1974) pertain to an annular 

jet; the inner radius of the jet being 0.72 times the outer radius, R. 

Close to the outlet of the jet a region of reversed flow occurred in 

the vicinity of the centre-line thus initiating a take which decayed 

further downstream. The outer region of the flow resembled a decaying 

jet and, for x/R> 100 where the wake has vanished, the measurements show 

self-preserving jet profiles. Upstream of the nozzle there was a 

contraction thus ensuring that the turbulence intensity at exit was 

small. The value of the mean velocity components at the jet outlet are 

not reported but further measurement, Durao (1975), indicated that the 

axial velocity is uniform and that the radial component is negligible. 

These measurements served as boundary conditions for velocity while the 

turbulence quantities were prescribed with the same nominal values as 

those for the flow of Carmody. 

The wall functions, described in sub-section 2.3.3, are used 

adjacent to the discs of Carmody and Durao and Whitelaw thus completing 

the specification of boundary conditions at the inlet plane. The boundary 

conditions for the other three sides of the rectang0Pr solution domain 

are common to all the flows. A plane or axis of symmetry is located at 

y=0 where the symmetric quantities, U, k, 6, <112>, <v
2> and <w2> , have 

zero normal gradients; V and <uv> , being anti-symmetric, are zero. 

The "free-stream" boundary was located sufficiently far into the free- 

stream to make the resulting calculations independent of its location. 
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Turbulence quantities were ascribed nominal values while the axial 

velocity took its known free-stream value, Us; the radial velocity 

boundary condition is specified, therefore, through the continuity 

relation. For all the flows considered, far downstream of the inlet 

plane, the flow becomes boundary-layer like in nature; that is, U>> IVY 

and normal gradients are far larger than those in the axial direction. 

In these circumstances the equations become parabolic and., hence, the 

out-flow boundary condition, ax = 0 (for all quantities), which is only 

approximately correct, results in a negligible error upstream. The 

outflow boundary was located sufficiently far downstream of the last 

axial position of interest to ensure that no error was incurred due to 

these boundary conditions. 

5.1.2 Presentation of Results  

The closed sets of equations provided by each of the three turbulence 

models and the above boundary conditions were solved by the numerical 

scheme described in section 4.3: the results of these calculations are 

presented here. 

The flow of Chevray (1968). The calculated profiles of U/UE  are shown 

on figures 5.1 and of <uv 	on figure 5.2. The figures show the 

results of calculations obtained with each of the three turbulence 

models and demonstrate the effect of a 20% decrease in the initial values 

of c and a doubling of the initial values of V. The experimental data 

are indicated on the figures for comparison purposes. 

It can be seen from figure 5.1 that each of the three models results 

in values of mean velocity which are virtually the same except in the 

vicinity of the symmetry axis where small differences occur. In general, 

the non-dimensional calculated velocity values are lower than the 

measurements: the comparison suggests that the mixing is too low in the 

vicinity of the symmetry axis and that this suppresses the development of 
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the wake. However, the calculated shear stress is greater than the 

measured values thus refuting this supposition and suggesting instead 

that the measurements do not satisfy the axial momentum equation. The 

discrepancy could stem from the measured values of V used as inlet con-

ditions in the calculations: these values are undoubtedly subject to a 

possible error which could be as large as a factor of two. For this 

reason, the calculations were repeated with initial V-values which were 

twice the measured values. As can be seen, the U-profiles at downstream 

locations became larger than the measured values. 

The comparison between measured and calculated values of non-

dimensional shear stress, shown on figure 5.2, again shows that all models 

result in similar trends to the measurements. In the upstream region the 

shear stress predicted by model I is far less than that predicted by the 

Reynolds stress models. This reflects the fact that model I takes no 

account of the convection of the individual stresses. Once again, the 

influence of the initial V-profile is large and does not allow any 

quantitative assessment of the ability of the three models to predict 

shear stress. 

The Flow of Chevray and Kovasznay (1969). For this flow, the uncertainty 

in the V-velocity at the trailing edge (assumed zero) and hence its 

influence can be expected to be significantly less than in the data of 

Chevray (1968). Consequently, this flow can be expected to provide a more 

reliable test of the turbulence models. Figure 5.3 allows a comparison 

between measured and calculated values of the mean axial velocity: shear 

stress values are shown on figure 5.4; and normal stresses on figure 5.5. 

As was the case with the flow configurations of Chevray, the three 

models result in calculated values of mean velocity which are virtually 

identical. On this occasion, however, the agreement between measurements 

es, 
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and calculations is excellent. The predictions of shear stress are 

adequate and, once again, they do not allow any model to be identified 

as a clear improvement over any other: this is made particularly clear 

by the differences which result from a 20% increase in the assumed initial 

values of E . The agreement between the measurements and calculations of 

figures 5.3 and 5.4 is certainly sufficiently good to provide confidence 

in the initial values used for the calculations. The differences between 

the measured valuesof< u
2 > and < v2 > and those calculated with each of 

the models is, therefore, particularly significant. It can readily be 

seen that model III provides calculated values which are in good agreement 

with experiment; model II is slightly less satisfactory and model I, 

which predicts < u
2 > = < v2 >, is inadequate. The influence of the 

assumed initial 6 profile does not alter this conclusion. 

Then oci190 	Unlike the two flows considered above, the 

flow of Carmody contains a significant region of reversed flow: the 

results presented here represent the first calculations of such flows with 

Reynolds stress closures. Figures 5.6 and 5.7 present comparisons between 

measured and calculated mean values: figure 5.6 is concerned with growth 

rate and centre-line velocity and figure 5.7 with normalised velocity 

profiles at downstream locations. Figure 5.8 is concerned with shear-

stress profiles and figure 5.9 with normal-stress profiles. 

The results shown on figure 5.6 show that, with the inlet conditions 

stated above, none of the models results in values of the half-width or 

of the centre-line velocity which are in close agreement with the 

measurements. The differences resulting from the three models and from 

a doubling of the inlet value of dissipation is small compared to those 

resulting from an 80% decrease in the values of the inlet radial velocity 

or from an augmentation of the turbulence close to the baffle tip. The 

decreased velocity corresponds to that suggested by Carmody while augmenting 
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the turbulence close to the baffle tip by setting WIGE  = v1/1JE  = wi/VE  = .14 

and 1/R = .4 for 1.0 <y/R <2.0 (i.e. 0 <II/Us  < .95) is intended to 

simulate a thick shear layer in that region. Such a shear layer is not 

indicated by the data nor is it likely to exist: it does, however, 

represent an upper bound of the uncertainty in the boundary conditions of 

turbulent quantities. As can be seen from figure 5.6, the decrease in V 

(from a maximum of .74 HE) and the increase in turbulence intensity have 

large influences on the predicted growth rates and centreline velocity 

distribution. The poor agreement between the measurements and the 

prediction with V decreased confirms that the present estimate is more 

reliable. The predictions with the higher turbulence intensity at inlet 
dy 

increase the spreading rate, d-7.4. , from .025 to .05. However these 

values must be compared with the experimental value of .1 and the difference 

cannot reasonably be attributed to uncertainties in the boundary conditions. 

The two Reynolds stress models fare better than model I in the recirculation 

zone but, bearing in mind experimental difficulties in this region and the 

sizeable discrepancies downstream, no model may be distinguished as being 

better than the others. 

The shear stress results of figure 5.8 demonstrate differences 

between the results of the three models but, once again, the influence of 

V and turbulence initial conditions are larger than those of the models. 

Clearly the augmented initial turbulence intensity and model III lead to 

results which are in remarkably good agreement with experiment and 

particularly in the downstream region where the measurements are more 

accurate. The normal stress results of figure 5.9 allow the same tentative 

conclusion as figure 5.8. In addition, however, the measurements reveal 

unexplicable behaviour in the upstream region and must be considered 

suspect. Also, models II and III will always be more successful for the 

calculation of normal stresses since they are not made equal in plane shear 

flqw as with model I. 
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The flow of Durao and Whitelaw (1974). Figure 5.10 shows measurements 

and predictions of the centre-line velocity and the velocity profile 

at x/R = 0.6. The predictions of centre-line velocity are virtually 

the same for each turbulence model and show similar discrepancies to  

those encountered with Carmody's data. The length of the recirculation 

zone is again under-predicted. The almost constant predicted value of 

U /V further downstream is due to a balance between the .decay of the t in 

wake (tending to increase the velocity) and the spreading of the flow 

(tending to decrease the velocity). Further measurements by Durao (1975) 

show that the wake decays more quickly than is predicted, thus accounting 

for the different shapes of the two curves. 

The predicted velocity profiles are again virtually the same for 

each of the turbulence models and show a significant discrepancy as 

compared with the measurements. 

5.1.3 Discussion  

The previous section shows that significant discrepancies exist 

between measurements and predictionswLid,  may be attributed both to 

inaccurate measurements, leading to erroneous boundary conditions, and 

to deficiencies in the turbulence models. 

An approach which would overcome the first problem is to increase 

the size of the solution domain so that known boundary conditions may be 

applied upstream of the body. This approach is, in principle, advantageous 

but may present difficulties in practice. The correct representation of 

the boundary-layer flows around the solid body requires a finite-difference 

grid with a comparatively larger number of nodes. This is expensive in 

terms of computer time and may still not allow calculated values of flow 

properties, at the downstream plane of the solid body, which are more 

precise than the presently available measurements. The present calculations 

quantify the precision with which the flow around the solid body must be 
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calculated and, at the same time,they indicate that the uncertainties in 

the boundary conditions are insufficient to explain the large discrepancies 

between calculated and measured quantities. 

Two particular defects, which result from the turbulence models, 

are evident in the prediction of the recirculating flows. The length 

of the region of recirculation is underpredicted as is the rate at which 

the wake decays. The same defects have been observed by VasiliC (1975) 

who used model I to predict the two-dimensional flow over a thin obstruc-

tion mounted normal to a plane surface. Also, in connection with the 

present investigation, Assaf (1975) measured and predicted (using model I) 

the flow behind a disc mounted on the centre-line of a confining, round 

tube. The results, shown on figure 5.11, again demonstrate the same short-

comings of the turbulence model. 

In order to understand the more serious defect, the underprediction 

of the spreading rates  it is necessary to consider the nature of round 

wake flows, a useful discussion of which is given by Rodi (1972). Far 

downstream, round wakes have the potential of displaying profile-

similarity; that is, as lytTE÷ 1, appropriately normalised mean quantities 

and the spreading parameter, S = Us/(U.;,-U)dyi/dx, may become independent 
J.J 

of x.x. Rodi (1972) considered nine sets of experimental data and concluded 

that round wakes do display profile-similarity. However, unlike all other 

commonly encountered free shear flows, the profiles of mean quantities and 

in particular the spreading parameter are strongly dependent upon the way 

in which the flow is initiated. Of particular interest here are the 

values of S for the flows measured by Chevray (1968) and Carmody (1964) 

which are S = .105 and S = .8 respectively. The reason for the non-

uniqueness of profile-similar round wakes may be attributed to the fact 

that they are weak-shear flows; that is, the effect of local velocity 

gradients upon the Reynolds stresses is up to an order of magnitude less 

O. 
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than the effect of dissipation. The consequences of these observations 

for the turbulence models are twofold. First, as convection is a 

dominant factor, unless the flow around the recirculation zone is 

predicted accurately, the downstream predictions are unlikely to be 

correct: secondly, the dissipation equation will govern the spreading 

rate almost entirely. 

Although the discrepancies in the predictions of the recirculation 

zones are not as great nor as well substantiated as that of the 

spreading rate, the above arguments indicate that great precision is 

required in the recirculation zone if the wake is to be correctly 

represented. In the recirculation region the Reynolds stress models 

offer the potential advantages over a two equation model that the 

differential transport of Reynolds stresses is permitted and that the 

use of the isotropic viscosity hypothesis is obviated. The effect of 

allowing for the differential transport of the Reynolds stresses is 

difficult to assess. Certainly, the gross features of the flows con-

sidered here are not dependent on this transport in contrast to asymmetric 

channel flow or annular pipe flow for example. However, the results 

demonstrate that the Reynolds stress closures are necessary to represent 

the different magnitudes of the stresses and that they result in slightly 

better predictions of mean velocity. This advantage might also be 

obtained with a mean flow closure incorporating the more realistic 

effective viscosity hypothesis described in sub-section 2.4.1. 

While the Reynolds stress closures have a slight advantage over model 

I, the differences between the predictions obtained with the various models 

are negligible compared with the discrepancy between the predictions and 

the experimental data. This observation suggests that the discrepancy is 

caused by the common factor in the different models, namely, the dissipation 

equation. The findings of sub-section 2.4.2 support this supposition: it 
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was concluded that any dissipation equation, closed by quantities per-

taining to low wave numbers, has no foundation in non-sirrilar flows. The 

recirculation zone and the evolving flow immediately downstream of it 

are distinctly not similar and, consequently, the dissipation equation is 

particularly suspect in these regions. For these reasons, it is the 

author's firm belief that the dissipation equation is responsible for 

the large discrepancies and, further, that complex, rapidly evolving 

flows cannot be represented by closures of the level employed here. On 

the other hand, the finding of sub-section 2.4.2 also indicate that 

a closure based on the spectral energy equation can, in principle, 

represent such flows since the energy spectrum contains information 

about the evolution of the turbulence structure. Such an approach, 

although computationally more expensive, can be expected, therefore, 

to remedy the observed discrepancies in the calculation of flows behind 

bluff bodies. 

5.2 Reacting Flows  

In this section calculations of bluff body stabilised flames are 

reported. A literature survey, Pope (1973), revealed that there was a 

paucity of experimental data of local properties in these flows: while 

bluff body stabilised flames were widely studied in the 1950's, the main 

objective of these works was to determine the blow-off velocity and, 

consequently, local properties were not measured. The more recent works 

of Harrison (1973) and Harrison (1974) do, however, provide a complete 

set of measurements of mean velocity and combustion efficiency for a 

propane/air flame stabilised behind an annular V-gutter in a circular 

duct. The flows measured by Harrison are more fully described in the 

next sub-section where the boundary conditions for the calculations are 

given. The calculations were performed with the two combustion models 

0, 
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described in section 3.5 and it is noted that, with the applied boundary 

conditions, model A provides an ambiguous closure: the reasons for this 

and the remedy employed are also stated in the next sub-section. The 

results of the calculations, which are presented in sub-section 5.2.2, 

are discussed in sub-section 5.2.3 where it is seen that the calculations 

performed, albeit for only one class of flow, are sufficient to compare 

the two combustion models and to assess the validity of the assumptions on 

which they are based. 

5.2.1 Description of the Flows Considered  

The test rig used by Harrison, which was the same for both investiga-

tions (Harrison (1973) and Harrison (1974)), comprised a 30°  included 

angle, annular, V-gutter mounted centrally in a circular duct: the inner 

and outer radii of the annulus were 52.0 mm and 75.0 mm respectively and 

the duct radius, R, was 101.6 mm. Propane was injected into the air stream 

3.5 m upstream of the V-gutter which resulted in the fuel/air ratio being 

uniform to within 5% at the plane of the gutter. Downstream of the gutter, 

the duct continued for 1.05 m and was cooled by water jets in order to 

minimise the distortion due to thermal stresses. 

The axial velocity was measured by means of a 3.2 mm diameter 

cylindrical pitot probe: calibration tests showed that the dynamic head 

was proportional to 0.53 times the pressure difference across the probe. 

The accuracy of this method of measuring the velocity depends upon the 

accuracy with which the density can be determined and also upon the probe 

Reynolds number and the turbulence intensity. The two last dependencies 

indicate that the measurements may be particularly suspect in the recircu-

lation region where the presence of the probe may also affect the flow. 

These possible inaccuracies should be borne in mind although they are not 

cited below as reasons for discrepancies between calculations and 

measurements. 
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In order to determine the chemical composition of the flame, gas 

samples were taken through a 3.2 mm diameter probe. The gases were 

analysed for carbon dioxide and carbon monoxide using the I.R.G.A. 

technique and the concentration of hydrogen was assumed to be half that 

of carbon monoxide. The fraction of unburnt fuel was deduced from an 

analysis of the sample after complete combustion over hot copper oxide. 

The concentrations of oxygen and nitrogen could then be obtained with the 

assumption that they were the only remaining species. Hence the combustion 

efficiency, defined on the basis of oxygen consumption, was determined 

directly while the density and temperature were deduced from the equation 

of state and from the assumption of uniform enthalpy respectively. It may 

be noted that a basic assumption of both combustion models is that the 

reaction proceeds directly to carbon dioxide and water and consequently 

denies the existence of carbon monoxide and hydrogen. Consequently, in 

the models, the density and temperature are uniquely related to the 

combustion efficiency whereas this is not the case for the experimental 

procedure. In this connection it is unfortunate that the measured carbon 

monoxide concentration was not reported and consequently the error incurred 

by the models through its neglect cannot be estimated directly. 

Calculations were performed for four of the experimental tests which 

were distinguished by different inlet values of velocity, fuel/air ratio, 

temperature and pressure; the conditions for each test are shown in 

Table II. 

Table  II. Test Conditions  

Test 	II. (m/s) 
	

fuel/air Equivalence 	T°K 	P (bar) 
W2Er patio 

1 111.0 0 720 0.572 

2 107.0 .05 .783 720 0.591 

3 85.8 .0333 .522 720 0.862 

4 36.2 .047 .736 300 0.828 
.., 
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The calculations of test 1, in which there is no combustion, provide 

another check on the performance of the turbulence model while the three 

tests with combustion allow the models to be assessed under the different 

conditions indicated in the table. 

In contrast to the calculations of isothermal flows reported in the 

previous section, the solution domain for these flaws extended from 1.25 

duct radii upstream to 3.1 radii downstream of the trailing edge of the 

gutter. Thus, the gutter was encompassed by the solution domain, a 

measure which overcomes the previously encountered problems associated 

with inlet boundary conditons. The boundary conditions for velocity, fuel 

and pressure at inlet were taken as uniform with values appropriate to 

Table II while the turbulence quantities were set by, 

k = .003 U2  

= .03R ; s= C k3/2/ Z 

gfu = 0 

The values of k and 6  represent nominal free stream values while gfu  is 

identically zero owing to the absence of combustion products. The boundary 

conditions for the centre-line and outlet plane were the same as for the 

isothermal calculations and the wall functions, described in sub-section 

2.3.3, were employed at the duct wall. For <mfu> and g,„12  the zero 

normal gradient boundary condition appropriate to impervious walls was 

applied. The boundary conditions applied over the perimeter of the V-gutter 

were zero slip velocity and zero transport of scalars: this represents the 

treatment advocated by Runchal (1973). 

The application of these boundary conditions to the equations 

appropriate to model A leads to an important, though novel, observation; 

namely, the boundary conditions are insufficient to produce a unique 
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solution. This mathematical point is best demonstrated by considering 

the hypothetical case in which the density is uniform and consequently 

the velocity and turbulence fields are independent of <mrn> and gfu. 

The homogeneity of the equations for <mfu> and gfu ensure that, if 

one solution is given by <mfu>1  and (gfu)11  an infinity of solutions 

are given by 

<mfu > = <tri fu  >. 	- akin m > - <mfu>1) in 	fu  

/ 
fu 	a 2  kgfu)1 

where <m > in is the inlet boundary condition on ‹m > and a isen fu 	 fu 

arbitrary positive number. These solutions include negative values of<mfu> 

which, by definition, is a non-negative quantity. The infinity of 

solutions for this situation is directly analogous to the more familiar 

ambiguity in Poisson's equation with zero gradient boundary conditions. 

In practical situations, in which the density is not unifrom, if a unique 

solution were to exist it would result from the direct influence of density 

on the turbulent transport terms and from the indirect influence of density 

upon the velocity and turbulence fields. While density variatons play an 

important role in turbulent combustion, it would be unrealistic to suppose 

that they alone dictate the level of the scalar fields. 

The reason that this defect in model A has gone unnoticed is probably 

that most solution procedures, for reasons of stability, relax the reaction 

rate term in such a way that the combustion efficiency can never exceed 

100%. This measure not only guarantees plausible solutions but also, by 

destroying the homogeneity of the equations, overcomes the non-uni.,lueness 

problem. That is, in addition to the applied boundary conditions, the 

value of <mfu>  is effectively specified at one or more points within the 

solution domain: thus, as with Poisson's equation, the additional restraint 

on the equations provides a unique solution. The same treatment was used 
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in the present calculations and the observation that, for every flow, 

100% combustion efficiency was predicted at some point (namely the apex 

of the V-gutter) confirms that the solution depends upon this inhomogeneity 

for its uniqueness. The predictions of Mason and Spalding (1973) did not 

suffer from this problem since the homogeneity of the equations was 

destroyed by the non-uniform boundary conditions imposed on <mit> and 

gfu at 	
the inlet plane of their solution domain. The fact that the 

flows calculated here and those calculated by Khalil et al. (1975) had 

homogeneous boundary conditions, while Mason and Spalding used 

inhomogeneous boundary conditions, may account for the different value 

of CEBU  used by these authors. 

5.2.2 Presentation of Results  

The calculated mean velocity profiles for test 1 are shown on figure 

5.12 together with the available experimental data: x denotes the axial 

distance downstream of the trailing edge of the gutter and y represents 

the radial distance from the centre-line. The results for this test, in 

which there was no combustion, allow an assessment of the accuracy of the 

turbulence model for the given flow geometry. The discrepancies observed 

for the isothermal flows reported in the last section are again apparent; 

the profiles at x/R = 0.25 indicate the position of the end of the 

predicted recirculation zone whereas at the same location the measurements 

show significant negative velocities. The profiles at x/R = 1.25 demon-

strate that the predicted recovery of the minimum velocity is far less 

than that measured, the calculated velocity deficit being twice the 

measured value. Thus, these calculations confirm that the turbulence model 

results in the prediction of a too short recirculation zone and a too slow 

rise in minimum velocity. 

The calculated combustion efficiency, temperature and velocity profiles 

fore  tests 2, 3 and 4 are shown on figures 5.13 to 5.21: the solid lines 
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represent the calculations using model A and the dashed lines represent 

those using model B; the available experimental data are indicated on 

the figures for comparison. In section 3.5 it was stated that the reaction 

rate constants, CCU  and 02, were chosen so as to produce agreement 

between calculated and measured combustion efficiencies; this was done by 

reference to the maximum combustion efficiency for test 2 at x/R = 2.25. 

It is seen that for all the tests the two combustion models predict 

similar values of combustion efficiency; the major differences occur for 

x/R < 0.25 where model A consistently predicts higher values. A comparison 

between the calculations and measurements indicates that for each test 

and at each location the predicted width of the flame exceeds the measured 

value. For test 2, the predicted and measured values of maximum combustion 

efficiency are in good agreement except at the first location, x/R = 0.05, 

where the former exceeds the latter. For tests 3 and 4, the disagreement 

at the first location is less pronounced but the subsequent profiles, 

0.25 < x/R < 1.25, show the maximum measured combustion efficiency to be 

greater than that calculated. 

As expected, the calculated temperature profiles mirror the combustion 

efficiency profiles; a minor exception to this observation is test 4 where 

it is seen that model A predicts slightly higher temperatures than does 

model B. The reason for this is that the low inlet temperature of test 4 

results in higher maximum to minimum temperature and density ratios than do 

the other tests, thus accentuating the different ways in which the two 

models evaluate temperature. A comparison between measured and calculated 

temperatures shows that there is a large discrepancy; for example, the 

maximum temperature predicted at x/R = 0.05 for test 4 is 1600°K which may 

be compared with the measured value of 2099°K and the calculated adiabatic 

flame temperature of 1750°K. While the presence of carbon monoxide can 

cause the temperature to exceed the adiabatic flame temperature, an excess 
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of 350°K cannot reasonably be expected. Rather, it appears that the 

gas aralysis is subject to a considerable error since the fuel air ratio 

obtained from it is up to yo% higher than the known value, based on the 

air and propane mass flow rates. The error, which is sufficient to account 

for the discrepancy, denies the usefulness of considering further the 

comparison between the predicted and calculated temperature. It is to 

be hoped that the error is systematic and consequently the combustion 

efficiency, being a normalised quantity, is unaffected by it. 

The profiles of mean axial velocity reflect not only the influence 

of Reynolds stresses but also the acceleration due to the expansion of 

the gasses caused by combustion. In particular, the measured profiles 

at N/A = 2.25 for test 4, in which there is a 1:6 expansion, show a velocity 

maximum downstream of the gutter rather than the minimum experienced in 

isothermal flows. The velocity profiles predicted by the two models are 

virtually the same, the slight differences being greatest for test 4. It 

was shown in sub-section 3.3.1 that models A and B determine the lower 

and upper bounds of density, respectively, and the difference between the 

predicted velocity profiles reflects this fact. A comparison between 

predictions and measurements shows that the disagreement is no greater than 

for isothermal flows; the predicted length of the recirculation zone is 

again shorter than that measured and far downstream, at N/A = 2.25, it is 

evident that rate of wake recovery is underestimated. Bowever, at 

intermediate locations, 0.75< x/R < 1.25, the agreement is quite good and 

certainly better than for the isothermal flow, test 1. 

5.2.3 Discussion  

In discussing the results presented in the last sub-section, attention 

will be focussed on the prediction of combustion efficiency: the probable 

error in the temperature measurement does not allow firm conclusions to be 

made and, bearing in mind the limitations of the turbulence model, the 
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velocity predictions are adequate. The success of the models in 

predicting combustion efficiency may be judged from the figures; the 

error in the maximum combustion efficiency decreases with distance and, 

at most, is 30%. The width of the flame is consistently overpredicted by 

10-40% although the precision of the measurements does not allow an 

accurate measure of this defect. 

These achievements and defects of the models may be used to assess 

the assumption on which they are based: sub-sections 3.3.1 and 5.2.1 

indicate that, in spite of its equal performance, model A is based on 

contradictory and implausible assumptions and consequently only model B 

will be considered. Two basic assumptions in the model, which are, subject 

to doubt, are that the reaction rate is rapid, and that the reaction only 

involves fuel, oxygen, carbon dioxide and water. For a given high Reynolds 

number flow it follows, irrespective of the detailed modelling or the 

composition of the fuel, that the predicted combustion efficiency is 

solely a function of the minimum to maximum density ratio and that if 

this is unity, < Sfu> is symmetric about n = 1/2. The first of these 

deductions is demonstrated by the calculations; tests 2-4 have minimum 

to maximum density ratios of .327, .408 and .166 respectively and the 

predicted combustion efficiency is seen to increase slowly with increasing 

density ratio. The experimental data is seen to follow the same trend 

except for test 2 in the vicinity of the gutter (x/R <  0.75). This 

exception can be explained by the invalidity, for this test, of the 

assumption that carbon dioxide and water are the only products: test 2 is 

distinguished by a combination of a high inlet temperature and high 

equivalence ratio, conditions conducive to the formation of carbon monoxide. 

While this is the probable explanation, it would, of course, be more 

satisfactory to have direct evidence. For tests 3 and 4, on the other 

hand, the near 100% combustion efficiency measured at >VA = 0.25 indicates 
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that the carbon monoxide concentration is negligible at this location 

and probably, therefore, downstream of it. 

The exmerimental data suggests that the assumption of a high reaction 

rate is valid; hydrocarbon reactions rates increase approximately 

exponentially with temperature (see, Kretschmer and Odgers (1972)) and 

consequently, if the assumption were not valid, the low inlet temperature 

of test 4 would cause the combustion efficiency to be considerably lower 

than for the other tests. As indicated above, the slightly lower combustion 

efficiency may be explained in terms of the lower density ratio. Although 

conclusive evidence is not available, it appears, therefore, that for 

tests 3 and 4 the two basic assumptions are valid and so the deficiencies 

in the predictions stem from the details of the modelling. 

The modelling of the molecular mixing term, G, and the reaction rate 

deduced from it are particularly suspect; the failure of C to predict 

Gaussian probability distributions in homogeneous inert flows and the 

difference between the value 02  = 4.5 obtained in Chapter 3 and the value 

C
2 

= 1.0 used in the calculations indicate that the modelling is a poor 

representation of the physical situation. Further, the modelled reaction 

rate is the predominant influence on the predicted combustion efficiency 

and is capable of producing the observed deficiencies. The overprediction 

of the width of the flame suggests that the reaction rate is too large at 

low combustion efficiencies while an increase at high efficiencies would 

improve the predicted maximum. These suggestions, together with the 

observation that < Sfu> is symmetric about -a= in constant density 

systems, indicate that density variations cause <Sfu> to be asymmetric. 

While such a_ jmJetry is provided by the reaction rate term employed by 

model B, it is evident that the basic term and the modelling of its 

dependence upon density variations are quantitatively incorrect. The 

strong dependence of <Sfu> upon density variations is unfortunate for 

it means that the effects of turbulence on combustion cannot be studied 

independently of the effects of combustion on turbulence. 
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CHAPTER 6  

CLOSURE 

In the first section of this chapter, the main findings of the work 

are summarised; this allows the achievements to be compared with the 

objectives and the present capability of predicting turbulent reacting 

flows to be assessed. On this basis, in section 6.2, the'remaining 

problems are identified and an approach to overcome them is suggested. 

6.1 Summary and Conclusions  

6.1.1 The Reynolds Stress Closure Procedure  

It was found that the incorporation of the Reynolds stress equations 

into the basic solution procedure results in numerical instabilities which 

stem from the lack of linkage between adjacent grid nodes. A new procedure 

has been developed which overcomes this problem by solving the shear stress 

equation on a separate grid. 

Test calculations show that, for simple flows (e.g. the wake behind a 

disc), grid independent solutions are obtained with a 20 x 20 grid: for 

such a calculation, the computer program requires 24,000 words storage and 

1 sec/iteration on a CDC 6600. The number of iterations required to 

obtain a converged solution was found to depend on the complexity of the 

flow and on the number of grid nodes; for the flow of Carmody (1964), 

600 iterations were required for a 30 x 30 grid resulting in a computer 

time requirement of 27 minutes. Although this time requirement appears 

excessive, as compared with parabolic procedures, it is not a result of 

solving the Reynolds stress equations. Indeed, the new procedure is 

more economical than the basic procedure in all respects. Thus, the 

objective of developing a numerical algorithm for Reynolds stress 

closures has been achieved without increasing the computation expense 

of the solution procedure. 
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6.1.2 The Calculation of Isothermal Wakes 

Four wakes, two with significant regions of reversed flow, have 

been calculated with a mean flow closure, model I, and with two Reynolds 

stress closures, models II and III. By comparing the results with 

experimental data, the ability of the turbulence models to represent 

such flows has been assessed. It was found that the boundary conditions 

applied at the inlet plane, which in some cases were not.known with 

certainty, had a significant influence on the calculations. However, 

test calculations show that the resultant uncertainties in the predictions 

are insufficient to affect the conclusions summarised below. 

The mean velocity, calculated with all three models, is in excellent 

agreement with the data of Chevray and Kovasznay (19:S9) and the shear 

stress is also predicted well. Consequently, the relative merits of the 

models may be assessed by the values of normal stresses predicted by each: 

model III provides calculated values which are in good agreement with 

experiment, model II is slightly less satisfactory and model I, which 

predicts equal normal stresses, is inadequate. A comparison between 

calculated and measured velocity for the flow of Carmody (1964) reveals 

significant defects in all the models which are confirmed by the prediction 

of other wake flows with recirculation. The calculated length of the 

recirculation zone is 30% less than that measured and the spreading rate, 

21. , is underpredicted by a factor of four. The first defect is equally 
dx 

apparent for the flows of Durao and Whitelaw (1974) and Assaf (1975) and, 

to a lesser extent, so also is the second. The Reynolds stress models 

fare slightly better than model I but the improvement is small compared 

with the discrepancy with the data. The inaccurate prediction of the 

velocity field in these flows does not allow a meaningful comparison of 

the predicted Reynolds stresses although, as is evidenced by the flow of 

Chevray and Kovasznay, models II and III clearly provide a better 
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representation of the normal stresses. 

While the application of Reynolds stress closures to near-wake flows 

does not provide a significant improvement over model I, this series of 

calculations has served to fulfil the objective of assessing the 

performance of the turbulence models in these flows. 

6.1.3 Turbulence Modellinm 

The three turbulence models have been examined term by term in the 

light of a consideration of the implications of the mean closure approach. 

As a result, the limits of validity of the modelling have been determined 

and neglected influences have been identified. 

It was shown that the isotropic viscosity hypothesis is incapable 

of representing the Reynolds stress tensor even in simple situations 

although the effective viscosity approach is valid for nearly homogeneous 

flows. An improved effective viscosity hypothesis, based on model III, 

has been proposed: as well as providing a realistic representation of the 

Reynolds stress tensor, it has the advantage of accounting for the influence 

of streamline curvature. 

The modelling of the second redistributive term, 01j,2, in model III 

is well-founded: several authors, using different approaches, have arrived 

at the same result and, as has been shown above, the modelling remains 

valid as the flow departs from homogeneity. The first redistributive 

term, oijill was considered in conjunction with the anisotropy of dissipa-

tion. The two terms have the same properties and, although neither 

theoretical arguments nor experimental evidence have determined their 

respective roles unequivocally, the modelling can be expected to be of 

the right form. The calculations of the data of Chevray and Kovasznay 

(1969) confirm this supposition and demonstrate the loss of 	 r!t - 

resulting from the truncated form of 0ii,2 used by model II. 

•„ 
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The turbulent transport terms were not examined in detail because, 

it was argued, their magnitude is insufficient to account for the large, 

observed discrepancies between calculations and experiment. 

By a process of elimination, because of its controlling influence 

on the scale of turbulence and on theoretical grounds, the modelling of 

the source term in the dissipation equation, SE, has been identified as 

the principal deficiency of the turbulence models. It has been shown 

that the modelled form of Se 
is only appropriate to similar flows: even 

in these situations, the simplicity of the detailed modelling and the lack 

of dependence on streamline curvature suggest that its generality is 

suspect. For non-similar flows, such as those behind bluff bodies, the 

inapplicability of the dissipation equation stems from the inadequate 

representation of the turbulence structure by single-point closures. A 

two-point closure, based on the energy spectrum, has been suggested as an 

alternative approach which has the potential of representing non-similar 

flows. 

6.1.4 Combustion Modelling  

The probability approach of Lundgren (1967) has been applied to the 

equations of turbulent reacting flows. The joint probability distribution 

equations provide a clear picture of the mechanisms involved: the mean and 

fluctuating velocities transport the joint probability in position space 

and transport in probability space is caused by the source and by mixing 

on the microscale. The key to understanding turbulent reacting flows lies 

in the interrelation of the two latter effects. The term representing 

microscale mixing has been modelled for the single probability distribution 

equation and solutions of this equation have been obtained for a simplified 

premixed combustion system. While the modelling is not completely 

satisfactory, the solutions, which can be expected to be qu alitatively 
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correct, demonstrate the interrelation of the reaction rate and microsoale 

mixing as a function of the time scales of the system. Consequently, to 

an extent, the objective of developing a combustion model inorporating 

the effects of finite reaction rates has been achieved. While the joint 

probability equations can, potentially, account for finite reaction rates 

in any combustion system, the difficulty in modplii,,g the microscale 

mixing term has prevented this potential from being realised. 

Combustion models in current usage have been assessed by reference 

to the probability distribution equations. The theoretical foundations 

of the models for diffusion and arbitrarily fuelled flames, Lockwood and 

Naguib (1975a and 1975b), have been consolidated while the eddy-break-

up model has been found to be poorly based. A variant of the eddy-break-

up model, model B, has been proposed which is consistent with the assumption 

of a very high reaction rate. The influence of density variations, which 

is virtually ignored by the above models, has been considered and the 

practice of mass averaging has been shown to decrease the problems of 

modelling that it poses. 

6.1.5 The Calculation of Bluff Body Stabilised Flames  

Calculations have been made of premixed propane/air flames stabilised 

behind an annular V-gutter in a circular duct. The predictions, obtained 

with the k-c turbulence model and both models A and B, have been compared 

with the measurements of Harrison (1973 and 1974). The similar values of 

combustion efficiency predicted by both combustion models are in reasonable 

agreement with the data although the width of the flame is over-predicted 

by approximately 30%. The agreement between the measured and calculated 

velocity fields is surprisingly good, bearing in mind the deficiencies 

of the turbulence model in isothermal flows. It can be concluded from 

these results that the basic assumption of a very fast single step 
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reaction is applicable to these flows and, consequently, the inaccuracy in 

the predictions stem from the detailed modelling rather than from the form 

of closure adopted. 

6.2 Su9gestions for further work 

Future theoretical investigations of turbulent reacting flows should 

endeavour to increase the accuracy and generality of turbulence and 

combustion models. Present models appear to be capable of representing 

simple flows and reacting systems where the assumption of a very fast 

single step reaction is valid and so the refinement of the detailed 

modelling, by reference to experimental data, can be expected to increase 

the accuracy. In particular, the isotropic viscosity hypothesis, the 

source of dissipation, the reaction rate in eddy-break-up type models 

and the treatment of density fluctuations are probable sources of 

inaccuracy and are worthy of further investigation. 

In order to represent many flows of engineering importance, the 

generality of the models must be increased: for example, the flow in 

gas turbine combustion chambers is complex and the reaction does not 

proceed rapidly to produce carbon dioxide and water. The inability of 

the turbulence models to represent such complex flows has been attributed 

to the inapplicability of the dissipation equation and, consequently, the 

development and use of a two-point closure, as described in sub-section 

2.4.2, is an important area of further work. The probability approach 

has the potential of accounting for finite rate multi-stage reactions and 

the next step towards realising this potential is the modelling of the 

joint probability distribution equation. 	As this equation is 
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computationally expensive to solve, a model based on transport 

equations for the free parameters in an assumed joint probability 

distribution (see sub-section 3.3.1) may prove to be a good compromise 

between accuracy and economy. 
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TIOMICLATURE  

A 	mass fraction of activated species 

Ap,ANIAsIAE,Aw 	finite-difference coefficients 

a. 	normalised Reynolds stress tensor 

B11132,B3 	derived constants in modelled Reynolds 

b1,b2,b3 	
stress equations (model III) 

CEBU 	
eddy-break-up constant 

Cgi,Cs2 	constants in g-equation 

C 	specific heat 

Cs, Ce,CalCe2 	constants in modelled Reynolds stress 

CC
02 	

equations 

Cu 	effective viscosity constant 

C
1,
C
2 	

constants in modelled probability distribution 

equations 

E(K) 	energy spectrum 

F (K) 	flux of spectral energy in Position space 
xi  

F
K
(K) 	flux of spectral enerr.v in wave number space 

f 	mixture fraction 

G coefficient in general effective viscosity hypothesis 

G( ) 	molecular action term in probability distribution 

equation 

g function in effective viscosity hypothesis 

gfu 	
mean square fuel concentration fluctuations 

g) 	functions in modelled probability 

R(cc) 	j 	distribution equation 
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H
fu 
	heat of formation of fuel 

h 	 enthalpy 

1,12 	 unit matricies in 3 and 2 dimensions 

k 	kinetic energy of turbulence 

m
a 	mass fraction of species a  

KZ) 	clipped-Gaussian probability distribution 

P 	pressure 

PIP.. 	production of kinetic energy and Reynolds stress 
13 

P(o) 	probability distribution of e 

Pt 	pressure fluctuation 

R..
13 	

two-point correlation tensor 

r 	radius 

SE 	source in dissipation equation 

Sa  (2) 	source of species a 

stoichiometric coefficient 

s., 	normalised rate of strain tensor 1J 

T 	temperature 

T..3.3 	tensor function in effective viscosity hypothesis 

t 	 time 

U.,u.
3. 	

velocity and fluctuating velocity vectors 
 

Ulu 	velocity and fluctuating velocity in 

V,v 	orthogonal coordinates 

{r  1, 

x,y,z 	orthogonal coordinates 

diffusive coefficient 

6(6) 	Dirac delta function 

d.. 	Kronecker delta 
13 

dissipation of kinetic energy of turbulence 
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combustion efficiency 

K wave number 

✓ u 	laminar and effective viscosities 
2  eff 

p 	density 

a 	rate of strain invariant 

ak°10 (/g' clfu 	
effective Prandtl-Schmidt numbers 

't 	
turbulent time scale 

T
R 	

residence time 

Tk 	
chemical kinetic time scale 

O scalar quantity 

o., 	o.. 13,1 13,2 

S.2 

redistribution terms 

rotation invariant 

ij 
	 normalised rotation tensor 

Subscripts  

A 	activated species 

fu, ox, pr 	fuel, oxygen and products 

N,S,E,W,p 	grid node locations 

Conventions 

<0> , o' 	mean and fluctuating component of 0 

OMR 

0, 0" 

	

mass weighted mean and fluctuating comronent of o 

O <0'2  > 2 

0 
	independent variable in probability space 

(Chapter 2) trace of a matrix 

(Appendix)- term to be omitted in Cartesian 

coordinates. 
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APPDIX 

Modelled Eouations in Two-Dimensional Cartesian and Polar Cylindrical 
Coordinates  

The modelled equations are stated here in the form in which they are 

solved by the numerical procedures. In addition to the coordinate system 

introduced in section 4.2, an additional convention is used to permit the 

expression of the equations in a common form; namely, terms in curled 

brackets, { } , are only appropriate to polar cylindrical coordinates. 

Further, for brevity, the convective and diffusive terms are denoted by 

122.2  and D(0) where, Dt 

D22 D0U0  + 1 ,BpVr0,  

	

Dt 	ax 	r ay 

D (0) = 	(u 	12) + 2-- 4- (r 	. 2) 

	

1 	ax eff 	r By 	eff By 

and D (o) = 2- (p h <u2> 22i) .1. 1 L. (r  p k <1,2>  12) 

	

2 	ax c 	ax r ay 	E 	Oy 

+ 	(n 	a 	1 a 	k 
ax 6 	

n 	
ay (r p 7 <UV> Le) OX (A.3) 

D
1  is the diffusion model used by model I and D2 is that employed by both 

Reynolds stress closures. The right hand sides of equations A.1 and A.2 

are incorporated implicitly in the finite-difference equations as are the 

first two terms in equation A.3: the final two terms in this equation are 

added to the source. 

For all calculations performed, the continuity relation is, 

Dt 
	0 	 (A.4) 

tC  
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A.1 Equations for Combustion  Calculations. 

The calculations of reacting flows were performed with the basic 

procedure, described in section 4.2, incorporating the k-r turbulence 

model, model I. Model A solves transport equations for the unweighed 

mean values of U, V, k, 6, mfu  and gfu  while model B solves for their 

mass averaged values, excepting gfu. 

• plj = D1
(OA- 2-(-1 	E.) +la (r P 	22) - 3 	+ 2/3 pk) * 	(A.5) 

Dt 8x eff ax ' r ay 	eff 8x 	8x 

Dt 	
Alb + fa r 	av 

• pV = D1(V) + 	(P 
8x eff By' r `By 	eff 8y/

)  

y 
(P 2/3 P k) 	2 Peff  Vir 

D (1,/  
Dt P" = 	'ale 	- P6  

Dt• pc = D1 (E/cr c 	k ) + (C P - CE2 pE) 

Dt• p  mfu = D1  (nfu
/ofu) + Sfu  

(A.6) 

(A.?) 

(A.8)  

(A.9)  

am, k2  ramfu.2 	_U 2 
Dt• P efu = D, 

(13, 	) + C p 	- C p g 	(A.10) 

	

g 	gi 6 	ax 	ay 	g2 k fu 

	

eff = CP p k2/ 6 
	 (A.u) 

P rap.. 4.  n2 4. 2013)2 4. 2(21)2 4.  2 V/r}23 
'eff L`ay 	8x1 	`8.1(1  

(A.12) 

* The lower case p is used to denote pressure in order to avoid confusion 
with the production of kinetic energy, P. 
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The determination of the density, p, and the reaction rate of fuel, 

Sful 
is described in section 3.5. 

A.2 Equations for Isothermal Calculations  

The isothermal flows were predicted with all three turbulence models. 

The Reynolds stress closures necessitated the use of the new procedure 

described in section 4.3 which was used even in conjunction with model I. 

This procedure solves the momentum equations in their exact form, 

D 	a 	2 	a 
Dt P"  8x P‹u 	

1 	r p<uv> - r ay 	 ax 

a 	aio 

Dt PV = - ax  p<uv> 	8y 	8y p<uv> - 1 — 	r p<v
2  > - 	+ {p<w2  >/r} 

Model I. The Reynolds stresses are given by, 

p<uv> = EL) 
Peff (8y 8x' 

au 
p<u2> = 2/3 pk - 2peff ax  (A.15) 

ay p <v2> = 2/3 Pk - 2ueff By 

p<w
2> = 2/3 pk - {2perf V/r} 

The effective viscosity is given by equation A.11 and the equations 

solved for k and 6  are identical to equations A.7 and A.8.. 

The production of kinetic energy is given by, 

P = - p Guv>02 E) ,2 eu ay ax 	<" >77 2 ay + <v > —ay  + {<W2> V/r} ) 	(A.16) 
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Relinolde,  Stress Models. The two Reynolds stress closures differ only 

 

in the redistribution term: their common form is, 

2 >j  1 + P  < u2>  = D 2 C ( 8 < u 	11 +  Ril 2/3 P  

Dt P - 17 2, = D
2 
 (C

s 
 < v2  + P22 

 + R
22 	— 

- 2/3 o 
' 

{ 2 p Cs  <we> (<v2> - <w2> )/r2  

\ D p<w2> = D2 (Cs  <w2> ) + P
33 

+ R
33 

- 2/3 PEDt (A.17) 

D Ert  - p<uv> 

+ {2 p C k < w2 >(<v2> <w2>)/1,2} 8 E 

= D2 (Cs <uv>) + P
12 

 + 12  - {p Cs  <w2> <uv> /r2  

Dt P 6 	= D2 (CE) + k  (C P C62 pE 

where 

au 	 12) P11 	= - 2 p (.(u2> 	+ <uv > 
ax 	ay' 

= - 2 p (<1r2> 	+ <uv> 22 	ay 	ax 

P33 	
= —{2 p <w2> V/r} 

P12 	= - p (<v2> 27- + <112> 811  - {<uv> V/r }) ay 	ax 

(A.18) (A.18)  

(A.19)  
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The redistribution terms for each model are, 

 

Model 2 

  

2ii = - Gel 	(<1/2>  - 2/3 k) Co2 (P11 - 2/3 P)  

R22 = 	Col .F ("2>  - 2/3 k) Co2 (P22 - 2/3 P)  

R33 = - C01 	(<,(2> - 2/3 k) - Co2 (P33 — 2/3 p) 

-R12 = 	Col k <uv> - C P12 

Model 3  

(A.20) 

Ru. = 

- 

Col k L"." (<u2>2> — 	k) B1 	- 2/3 P) 

au 	I 	8U 	av - 2B pk 	+ 23 kp<u2  > 	+ p<uv> — + 1/3 P) 2 Dx 3 ax 	ax 

R22 C01 k 22= (<v2> - 2/3 k) - B1 (P22 - 2/3 P) 

av 
' 2 av 	< > 22 • -/.3 p) - 2B p k — + 233  kp<v > -57 + p uv ay  4- 2 	ay (A . 21) 

R
33 

= — C01  2-7= (<w2> — 2/.3 k) - B1 (P33 - 2/3 P) 

< 2>v  
2B2 pk V/r1 + 2B3 

({ pw  } + 1/3 P) 

1112 = 

- C

ol .F<uv  > El ID12 

- B2 pk 	+ L7-1) B 	(<u2> alr  4. <v2> aV  <uv>. 	Ea) 
ay ax 	3 P 	dy 	8x 	-Bx 8r" 

where, 

B1 
= (CO2  + 8)/11 

B2 = (30 CO2  - 2)/55 (A.22) 

43
3 

 = (8 Co2 - 2)/11  
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Table I Values of Constants  

Model I II III A B Origin 

C 

a c 

C el 

C e2 

Col 

C02 

Cs 

C c 
C gl 

Cg2 

a 
g 

om fu 

CEBU 

C2 

0.09 

0.9 

1.3 

1.45 

1.90 

1.45 

1.90 

2.5 

0.4 

0.25 

0.15 

1.45 

1.90 

1.5 

0.4 

0.25 

0.15 

0.09 

0.9 

1.3 

1.45 

1.90 

2.8 

2.0 

0.7 

0.7 

1.1 

0.09 

0.9 

1.3 

1.45 

1.90 

0.7 

1.0 

a 

a 

a 

b 

b  

b 

b 

b 

b 

c 

c 

c 

c 

d 

d 

a - Launder, Morse, Rodi and Spalding (1972) 

b - Launder, Reece and Rodi (1975) 

c - Elgobashi and Pun (1974) 

d - Optimisation, see sub-section 5.2.2 
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Figure 3.6 Joint probability distribution, equation 3.85: 

<p(isri ,n> against 1pr and f. pr  
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Figure 5.12 Test 1, U against y/R. 



0.0 	0.2 

14/R.2.25 

0.4 	0.6 

0.6 	0.8 0.4 
'UR 

0.6 0.4 0.6 
Y/R 

0.0 	0.2 

X/R.1.75 

D4o 

"040 
0 

O 
00.60 

0 

0 

0 

0.20 0 

0 
0.4 

0. 
0.0 	0.2 

X/R.0.05 

0.6 
Y/R 

I- 
"0.80- 2 0 

0  
E0.60 

0.40- 

0 

0.0) 	 

1  0.0 	0.2 

X/R.0.75 

0.20- 	0 
0 

Z1 4o 

"0.80 

N 
0 
g0.60 

0.40 

0.20 

0-40- 

Figure 5.13 Test 2, 11 against y/R. 

Iry  

y140 

U. 
"0 .80 
0 

0 
E0.60 

0.40 

0.20 

0.0 
0.4 0.2 0.6 0.0 0.8 

Y/R 

O 

=1 .00 

U. 

X/R.I.25 

i .00 

Cal 

"0.80 
0 
ti 

0  
,S0.60 

0.40 

0.20 

0. 

0.4 0.6 0.2 0.6 
Y/R 

0.0 

X/R.0.25 

0 

0.8 
Y/R 

- 177 - 



2250. 

-178- 

0.8 0.0 	0.2 

X/R.0.25 
T/R 

;-2250. 	000 

2000. 

1750. 

1500. 

1250. 

1000 

750 

0.4 0.6 0.8 
T/R 

2000. 

1750. 

1500. 

1250. 

1000 

750. 

0.0 	0.2 

X/R.1.25 

= 
.1250. 

2000.- 

1750.- 

1500.- 

1250.- 

IUD,  

750.c7 

0.0 	01.2 

X/R.0.75 

1  
0.8 

T/R 
1 	1  

	

.4 	0 

	

0.4 	0.6 

^ . 
;:7 2250. 

00 

0.0 	0.2 	0.4 	0.6 

X/R.O.05 

0.8 
T/R 

2000. 

1750. 

1500. 

1250. 

1000 

750.  

O 

O 

O 

0.0 	0.2 

X/R.1.75 

0.4 	0.6 	0.8 
T/R 

0.0 	0.2 	0.4 

X/R.2.25 
T/R 

0.6 	0.8 

Figure 5.14 Test 2, T against y/R. 

., 

Y 
2250. 

Y 
-2260. 

2000. 

1750. 

1500. 

1250. 

1000 

750 

2000. 

1750. 

1500. 

1250. 

100 

750 



0 
0 

1 	1  

	

.4 	0 

	

0.4 	0.6 	0.8 

X200. 

0.0 	01.2 

X/R.0.05 

- 179 - 

150.- 

0.0 	0.2 

X/R.1.25 

             

             

  

- 

         

           

        

° 
0 

    

            

            

150. 

100. 

          

           

           

50.0- 

         

             

0.0- 

         

             

0.0 	01.2 

X/R.0.75 

   

0.4 	01.6 

    

       

   

0.8 
T/R 

   

             

U) 

5200.- 	0 

100.- 

50.0- 

0.0 

C.4 0.6 0.8 
T/R 

0 0 
0 0 0 

O 
200 - 

150.- 

100.- 

50.0- 

0.0- 

5200. 

150.- 

100.- 

50.0- 

0.0- 

0 

0 0 
0 

0.0 	01.2 

X/R.1.75 

1 	1  

	

.4 	0 

	

0.4 	0.6 0.0 	0.2 

X/R.2.25  
0.8 

T/R 
0.8 

T/R 
0.4 	0.6 

Figure 5.15 Test 2, U against y/R. 
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Figure 5.16 Test 3, 11 against y/R. 
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Figure 5.17 Test 3, T against y/R. 
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Figure 5.18  Test 3, U against y/R. 
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Figure 5.19 Test 4, TI against y/R. 
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Figure 5.20 Test 4, T against y/R. 
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Figure 5.21 Test 4, U against y/R. 
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