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ABSTRACT

Emphasis has been gi{fen in the past in the study of lee waves on situations
in which complete trapping occurs in the lower levels. More recently
research has been conducted into models in which waves which are not
completely trapped exist. This thesis describes some of the f)roperties
of a three layer stratosphere - troposphere model in which either type
may exist. A comparison is made with a two layer tropospheric model
when the stratospheric layer is very stable.

The object of this thesis is to investigate wave propagation in the
atmosphere in terms of a linear theory of mountain lee waves, for varying
degrees of stability in the troposphere and stratosphere.

Chapter one is a brief survey of some relevant theoretical work
on the lee wave problem. In Chapter two a simple tropospheric model
is considered, the waveguide problem. Chapter three is a lengthy dis-
cussion of the three layer troposphere-stratosphere model. When the
stratosphere is very stable, a similarity exists with thevwaveguide problem
of Chapter two. The fundamental properties of wave propagation into the
stratosphere are discussed, and some attention is directed to wave pro-
pagation in the troposphere. Finally, Chapter four compares the results
of this thesis with other predicted results, and with some lee wave obser-
vations. i

The work of this thesis was conducted at the Mathematics Depart-
ment, Imperial Collegé of Science and Technology, under the superviéion
of Dr. F.H.Berkshire between October 1973 and January 1976. The
author is indebted to him_.for his help and guidance. The author also

wishes to thank Mr. P. Newton for his help with the computer programming,



which was performed on the Imperial College CDC 6400 machine.
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CHAPTER ONE

INTRODUCTION

1. A Survey of Relevant Theoretical Work

When air ﬂovw's over a mountain ridge stationary atmospheri-c
waves are established which fall into one of three types.

1. Short waves of périod much smaller than half a day are gravity waves.
2. Longer waves of period comparable with a half day are gravity-inertia
waves.

3. The longest waves with periods much larger than this time interval
are planetary waves of the Rossby-wave type.

Mountains of small extent in the direction of flow will excite only
gravity waves, however, mountain ranges of continental scale will excite
all types of waves.’

The gravity-type waves were first examined by Lord Rayleigh
(1883) and Lord Kelvin (1886, 1887). Kelvin considered the stationary
waves produced on the surface of a running stream by either an elevation
or depression of the stream bed. Both authers realised the uniqueness
of the solution for speeds in excess of a critical velocity, but for speeds
below this velocity they observed that a train of gravity waves existed.
The authors considered a solution such that gravity waves should not
appear upstream of the obstacle.

| Atmospheric lee waves differ from lee waves on a running stream
since the fluid is of infinite extent, because the vertical stratification of

the basic flow is not abrupt. The first systematic observations of



ascending currents in the lee of hills were those sponsored by the

German Gliider Research Institute dating from 1928. However, the

most extensive field study appears to have been the 'Sierra Wave Project’
(Holmboeband Klieforth 1957) wherein lee-wave amplitude of 2, 000 metres,
and vertical currents of 25m/sec are reported. A survey of these and
other observations from both a theoretical and observational point of

view can be found in two technical notes by the World Meteorological
Organization, Queney et al. (1960) and J. M. Nicholls (1973). An account
of the damage caused locally in Sheffield by lee waves appears in
Aanensen (1965).

The earliest theoretical work dealing with lee waves in a Stl_‘-ati-
fied flow was ‘by Lyra (1943) and Queney (1947). Lyra used a Green's
function method to evaluate the flow over a small ridge of rectangular
cross-section, while Queney used a line disturbance on thé ground. The
results of these investigations give waves behind the ridge, with ampli-
tudes which decrease with height, and disappear for large distances
downstream. The type of solution in which the stability is constant will

be referred to as the Lyra tyne solution.

Scorer {1949} was the first author to introduce a multi-layered
atmosphere. He considered a two-layered atmosphere in each of which

the parameter

22:&%-9-'—' . (1.1)

8] 8}

was held constant. Here g is the acceleration due to gravity, U(z) is the
air velocity, and P is the static stability parameter of the atmosphere

defined by



Ol
= 1.2
B = 2
where 0 is the potential temperature. Primes are used throughout to
denote differentiation with respect to z. Scorer used the Fourier Trans-
form method and discovered that a wave occurred which did not decay

in the downstream direction provided.

T .
VIR AR (1-3)
Here ,@1 is the value of the parameter /Q, in the upper layer which

extends to infinity, while 9_2 is its value in the lower layer of depth h.
Scorer further noticed that two waves of differing wavelengths occurred
provided

£,%- 222>ff? | - | (1.4)
The. type of layered atmosphere which is divided into two strata, the
upper layer of which has infinite depth, in which ,Q is constant in both

layers, and such that 12, decreases with height is called the Scorer model.

£ is referred to as the Scorer parameter. Scorer did not recognize

that significant decaying waves also exist in his model, which decay
quickly downstream, but may increase in amplitude, and‘produce sub -~
stantial wave motion in the stratosphere. Their importance was recognized
by Berkshire and Warren (1970), among others. They discussed a two-
| layer model with the upper Scorer parameter greater than that near to
the ground. ,Q, was kept constant in both layers. This model ié sometimes
referred to as the Berkshire model, in which ;10 wholly trapped waves
occur, but wave activity nevertheless exists.
The three-layer model atmosphere has been discussed by various

authors. However, the equations involved are considerably more com-

plicated than its two-layer counterpart, and it is usually necessary to
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evaluate directly on the computer. Sawyer (1960) describes a method
for the evaluation of a continuously stratified atmosphere on the computer
using a finite difference method. A three layer model with an inter-
mediate layer of neutral stability (ﬁ, = 0) was discussed by Berkshire
and Warren (1970), and some of the models discussed in this thesis
can be considered aé an extension to this work for atmospheres in which
the intermediate layer has varying, non-zero, stability.

In Corby and Sawyer (1958) a four layer model is discussed and
compared with a two layer model. However, all except three waves
of long wavelength were of negligible amplitude. These three wave-
lengths were predicted by examining the corresponding two layer atmos-
phere. Two of these wavelengths were found by introducing a rigid 1lid
near to the tropopause, while the third was found by examining.the rele-
vant two layer unbounded Scorer model.

An important discussion in the study of lee-waves has arisen

because of the choice of upper boundary condition. Thehypothesis of

no upstream influence has been accepted by all writers on linearised

atmospheric lee-waves. These waves generated by an obstacle trans-
port momentum downstream. This momentum transport is compensated
by a downwind drag on the obstacle. Scorer (1949, 1953, 1954, 1956,
1958) chose a »solution. which was subsequently shown to yield negative
drag, and is consequently wrong. This solution requires the selection
of a square root which determines whether the momentum is transporvted
downstream or not, and will be referred to again in Chapter Three.

The lower boundary condition is determined by the shape of the

ground. We limit our discussions to those aspects of the lee-wave
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problem that fall within the lee-wave regime. This regime is determined

by the pararheter NH/U, where N(z) is the Brﬁnt-Vaisala frequency, and
H is a typical vertical length scale. The upper limit of the lee wave
regime is determined by the appearance of local density inversions and
flow reversals at some critical value. These ‘regions are designated

as rotors and tend to invalidate the lower boundary conditions. In other
words when a rotor is formed at ground level in the leeward of a hill,

the ground shape can be considered as incorporating the rotor. The lower

limit of the regime is determined as NH/U — 0, and corresponds to

potential flow over an obstacle.
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2. Linear Two-Dimensional Flows

In order to obtain tractable mathematical modéls of the stratified
flow over mountain barriers, certain assumptions have to be made about
the atmosphere. It was mentioned in section (1. 1) that the parameter
NH . L . :
= hich is in effect an inverse froude number must not be greater
than a critical value, in order for lee waves to exist.

The Richardson number is defined by

- 1 2
Ri(z) = (N(=)/U'(2)) (2. 1)
and in order for shear to be negligible we assume that Ri(z) >> 1. It
was discussed by Miles (1961) that a sufficient condition for stability

of the basic flow for very small disturbances is Ri(z ) > However,

i

no condition exists for finite amplitude disturbances.
A parameter involving rotational effects is the Rossby number,

which we define by
R = 5o

1
Here {) is the Coriolis parameter, and is such that E {i is the vertical

(2.2)

component of the ecarth's angular velocity. We assume that R0 >>1 so

that the earth's rotation may be ignored. The coriolis parameter is
-4 §ECT S

typically of the order 10 , and it is not an unreasonable assumption

for the lee-waves that will be considered in this thesis. However, for

lee-wave trains on a continental scale, such as in the Sierra Nevada,

rotation cannot be ignored. -
The - 'ﬂ@ yw is idealised as being isentropic, in which the

potential temperature of a fluid parcel remains constant. This assumption

neglects the effect of condensation, which is not always true in the
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atmosPheré since glouds sometimes accompany lee-waves. It is possible
to.incorporate condensation into the model by defining the Brunt freque ncy
in terms of the wet adiabatic lapse rate as in Miles (1969).

- An important assumption to be made is that the velocities of the
air motions are small compai‘ed with the velocity of sqund. This is a
reasonable assumption since the velocity of sound in air is about 330 m
sec“1 and U is about 10m se:c_l at a height of five hundred metres above
the ground. (Taken from Scorer 1949).

We proceed by deriving the relevant equation which describes

the flow along the lines of linearized perturbation theory. This is the

Helmholtz equation which for two dimensional flow is given by

2 |
3B_Z+ 2%, 2 + 2230, 2) = 0 (2.3)

The notation used is that x is the downstream coordinate, z is the
vertical coordinate with the ground taken to be at z = -1, and:? is a

modified streamline displacement related to the actual displacement by

: ;f‘5<z) > U(z) |
3} (x,2) = o ) ¥ x,2) (2. 4)
L )

Here p(z) is the air density at height z, and p(-1} is the air density at the
ground.

A drawback of the linearised perturbation theory is that we need
to relate the actual streamline displacement to the vertical perturbation

r

velocity w(x, z) by

)%5 G, 2) ' (2.5)

wix,z)=Ul(z

This implies that the streamline slope is small. However, Scorer (1955)

has derived (2. 3) without the assumption of small displacements, and
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indeed when U'/U is very small there is no restriction on the slope at
all. We assume that U'/U is small so that it is possible to investigate
the disturbances produced by a delta function mountain as discussed in

the next chapter.
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CHAPTER TWO

A TWO LAYERED TROPOSPHERIC MODEL WITH A RIGID LID AT THE

TROPOPAUSE

1. The Equations of Motion

In theoretical studies of the atmosphere attention has been given.
to layered stratorsphere—tr0posphere models consisting of two, three or
even four layers, in which the top layer is unbounded. 1t is of'important
theoretical interest to investigate whether the main characteristics
associated with these models are determined by tropospheric conditions
alone, and only modified by the stratosphere. One of the aim.s of this
thesis is to compare a three layer stratospheric model with a simpler
tropospheric model consisting of either one or two layers, the top surface
of which is a rigid lid situated at a finite height which designates the
upper limit of the atmosphere. In this chapter we consider a two layer
model, some attention will be given to a one layer model in Chapter
Three.

The main assumptions which we make about the flow are linearised
equations, isentropic and laminar flow,neglect of earth's rotation and
viscosity and consideration of a time independent problem. The flow is
two-dimensional, with x the downstream coordinate, z the vertical co-
ordinate., and the notation: |

basic unperturbed quantities (functions of height z only. )

P pressure

density

ol

(U, 0) velocity
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perturbation quantities

P pressure
p density
(u, w) velocity

We neglect products of perturbation quantities in comparison with the
products of unperturbed quantities.

The equations of motion are:

T)’U—%—i--FEU'w:_—%% (1.1)
— g Q¥ _-9p _, -
pUBX - az-gp (1'2)

The equation of continuity is:

5 QY 2wy Uge

A =l =
X+az)+ aX+pw 0 (1. 3)

We consider the entropy of a fluid parcel to remain constant. The equation

of state is thus

U 3 — u — |
§§+Wp—-cz( g—}%+Wp):o (1. 4)

A prime denotes that the quantity has been operated on by E% » g is the
gravitational acceleration, and c is the speed of sound in the fluid.
In the derivation of {1.2) the pressure p has been related to its
density p by the hydrostatic condition
B = -gp (1.5)
The quantities P, p, u can be eliminated from (1.1) to (1. 4) t§ obtain a

single equation in terms of w,
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vz [ c°-U dz

é_{ﬂ;é_ z[ ez XL gy +g)W] :

U(c“-U*) dz dx*

— 2
+ =81 2 oY wy +g)w] +'§U—a—l
g O (5 = ) =
_Uaz(pw)-g; G U'w) = 0 (1. 6)

For typical values in the atmosphere we make the approximation c? >yl

c? > lUU’ %,— , g > ‘UU'\ so that (1. 6) becomes

az az +_—é_'_ BVV gE un

(—}-{—z +'§'Z"2')W F-g;f(Uz-——-—)w:O (1.7)

Here B is the stability parameter defined by

p= - B _ & :90.. (1.8)

(o4

ol

as was introduced in section (1.1). The restoring force on a parcel of
air ilisplaced vertically a distance g is g pf , which me ans that
(gB) is the natural frequency with which it would oscillate if it were
frictionless, and did not become deformed, i.e. the Brunt-Vaisala fre-
gquency as introduced in Chapter one.

We now transform {l.7) from an equation involving the perturba-
tion velocity to the streamline displacement defined by

w(x,z):U(z)aa}; Fix, z) (1.9)

The limitations imposed by this equation were discussed in Section (1. 2).

It is more convenient to introduce the modified streamline displaceme nt

defined by 1
2 .l'
¥7) _| p(=z) U(z)
f(x,Z)—[B(_l ] U(-1) 'S(X,Z) (1.10)
so that (1. 9) becomes 1
TBen1® oy T
w(x, z) = U(-1) [ 3(2) ] 3% ﬁ(x,Z) | (1.11).



-17 -~

On substituting for w into (1. 7) we obtain a single equation in terms of

2

2 322 3% ”[gﬁ U, ls, z—z]')l _
ax{a—;g,)+a—;g‘3+3 g YR -ZR =0 (1.12)
Here R = - = = . & (log ) (1.13)

dz

o]

This parameter has the physical significance of being the Brunt Vaisala
frequency for incompressible flow divided by the acceleration due to

gravity. For the atmosphere it can be assumed that the coefficients of R and

R are negligible in comparison with the other terms involving S . It
was discussed in the previous chapter that the terms in ﬂ are referred

to as the Scorer parameter defined by

6 UL

2y _ ot -
,Q (z) = T G (1.14)

We assume that U(z) > 0 at all levels, so that no c¢ritical levels exist
at which E would be infinite.

On integrating (1.12) and substituting from (1. 14), we invoke the

condition that :)? = 0 at large distances upstream of the mountain and

we arrive at the Helmholtz equation given by:-
ba

2 TN 'AE Y o \'-'
-g-z-;j+ 5:\_,_3+ 223 =0 | (1.15)

The geometry of the model to be used {Fig. 1) has the zero of
the z coordinate at the tropopause, and the height is scaled with the
depth of the troposphere, so that the ground i;.s situated at z = -1. In all
the subsequent work, the length unit will be taken to be the tropopause
depth, which is of order 10 kilometres for the atmosphere, and this
length is used to non-dimensionalise all lengths, wavenumbers and ﬁ

parameters. In this chapter we consider a simple troposphere model
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which is split into two layers. ﬁ given by (1. 14) is considered to be
constant in each layer with a simple discontinuity at the interface, the
upper layer is denoted by the suffix 2, and the lower layer is denoted by
the suffix 3. (The reason for this notation is so that the equations can
be transferred to Chapter Three, where we will introduce a stratosphere

with suffix 1.) The axes are chosen so that the centre of the ridge is

at x = 0.
av)

We define the Fourier transform S of j by

— o e
B (x,z) = J dc e’ K (k,z) (1.16)
| - |
so that
Q0
,ll 1 r ‘k ——
$kz) = 5o j Cdx e ¥(x,z2) (1.17)
-00

Similar relations hold between the mountain shape f{x) and its transform

~ :
f(k). The significance of the parameter k is that it is the non-dimen-

sionalised wave-number, related to the wavelength, X\, vo‘f a mode by

2
A= k
| The lower boundary condition on 3 (x,z) is that the mountain
| 3 ~
shape should be a streamline. Thus j(k, -1) = f(k), and we can replace
% F(k,z) ~ - .
f(k, z) by -E:—(k——i-) f(kc), where F(k, z) satisfies the equation

F'' 4 ()% -k*)F=0 | (1.18)

On making the above substitution (1. 16) becomes

(e o)

g(x,z) = dic ei flk)

F(k,;-) (1.19)

-0
It is possible to rewrite (1. 19) in terms of a Green's function

G(x, z:, &). We define this function by
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00
ik(x-§&) _Fk,z)
. - 1.2
G(x,z; € ) = Re dk e Tk, -1) { 0)
o
so that its Fourier transform is given by
0o . ~ o
Gx,z; &) = g dk e 5 Glx, 2, k) (1.21)
-0
On applying Parsevals theorem, which can be written as
w .
4%, £(§) G(x, z; €,)
-
o)
~S ~J
= 27 dk f(k) G(x, z, -k) (1.22)
-
it is possible to rewrite (1.19) as
@
") 1
S (x,z) = = d€ £(£)G(x,2 g ) (1.23)
-0 ) ‘

If we consider the mountain shape given by a delta functioﬂ then f(x) = 6({x)

~ 1
and f(k) = o then the function G(x, z) where

G(x,z) = Glx; z; 0) _ (1.24)
can'be envisaged as w7 times the modified displacement. The function G (x, z)

is termed the infiuence funciion.

Throughout most of this thesis we will consider a delta function
mountain situated at the point (0, -1), all wavenumber disturbances are
excited equally. However, it is possible to excite certain waves unequally,
when a more realistic mountain profile is intrgduced. For example if

Ha? n 1
m then f(k) = > Ha exp (- I kl a). The small wavenumbers

f(x) =

are excited more than the larger ones, and in particular, the wavenumber

k, which is the inverse of the ridge half width a is stimulated the most.
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As mentioned earlier }2, is considered-to be constant in each
of the two layers. At the interface between the layers, there is an abrupt
change in the stability parameter, B, but both the density and fluid velocity
U are continuous. It is found that ¥(k,z) and 3—1%%’—2;) are continuous
across this interfaceatz = -h.
In the rigid lid tropopause modelrthe perturbation velocity vanishes
at the boundaries, so that (1. 18) must satisfy
Fk,-1)=0 (1.25)
Fk,0)=0 (1.26)
for discrete wavenumber solutions to (1. 18).

The solution to (1.18) must be of the form

F(k,z) o¢ sin ))Zz 0>z >-h y (1.27)
-sin ). h
F(k,z) & 2 sin V., (z+1) ‘ (1.28)
’ sin }j3(l-h) 3 _ ’
—hZz > -1

where the proportionality can include wavenumber k dependence. Since

(1.25) is satisfied the following equation is derived:-

tan })3(1—‘1) tan ) h
+ = =0 , (1.29)
Vs V2 |

. . 1/2
Here v_:(ﬁ'u “k“")l/(ifk< ,Q
. J . (1.30)

The parameter j takes the value 2 in the upper‘rlayer z >-h, and 3 in
the lower layer. This choice of square root is immaterial for this model
since reflection takes place from the rigid boundaries and wave motion
which is both upward and downward propagating will occur. However,

we choose it this way for consistency with the three layer unbounded
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atmospheric model of the next éhapter in which the choice of square
root is determined by the upper boundary condition.

Equation (1.19) and (1. 20) are not defined since F(k,~1) = 0 for
discrete wavenumbers k. Consequently thé integrand has singularities
at these points, and needs to be evaluated by deforming the contour of
integration into the complex k plane, see eg. Scorer (1949). A discussion
of :—g-(x, z) and the rela.ted influence function will be postponed to Chapter
Three where the function ]F(k, —1)‘ will be discussed in detail. We
consider equation (1.29) for the rest of this éhapter. This equation will

be referred to as the eigenvalue equation and if we take ,Q =0, it cor-

2

responds with equation 35 of Berkshire and Warren (1970).
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2. The Eigenvalues in the Troposphere

Equation (1. 29) is an eigenvalue equation which determines dis-
crete wavenumbers, k, which may exist in the troposphere. The reality
of k? with '.che boundary conditions of (1.25) and (1.26) will now be demon-
strated. We multiply the complex conjugate of (1.18) by F, and (l.18)
by FX, and on subtracting we derive the equation

d = dF F d

% .
F E ) 2 2 _ )
dz dz  © dz _j”k -k%) |F|*=0 (2. 1)

An asterisk is used to denote a complex conjugate in this section. On
integrating (2. 1) throughout the whole troposphere, since F and 3z are

differentiable near all the interfaces we obtain the equation

o
(K72 - 1 2) [ [Fl2dz| =0 (2.2)
-1

on utilising the boundary conditions. This implies that for non-identically
zero F, k° must be real.
For simplicity of presentation we consider the Scorer parameter

to decrease with height so that £3 > '€2’ and define two different type's

of real eigenvalue. An c¢xternal mode in a layer is one in which the
wavenumber, k, is greater than the Scorer parameter )?. , in that layer.

An internal mode in a layer is one in which the wave number, k, is less

than the Scorer parameter ,Q_ , in that layer.

Wavenumbers which are internal to the bottom layer, but external

s,

to the upper layer are Scorer modes, so that these may exist for

9—2 <k < Q_3. No convenient name exists for modes which are external
to the bottom layer and internal to the top layer, when Q 5 > £3.

“For wavenumbers greater than both QZ and ,@3, equation (1.29)
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can be written as

tanh p., (1-h) tanh sy h

+ =0 (2. 3)
B3 )

No real wavenumber solutions exist for (2. 3), consequently the largest
wavenumbers that may exist are those which are external to one layer
and internal to the other. In contrast, by Sturm Liouville analysis, it
is found that there is an infinite set of negative k?, i.e. imaginary wave-
numbers.

When Q3 > QZ’ the equation for Scorer modes becomes

tanh p, kb tan y3(1-h)

+
B Vs

=0 (2.4)

L

The first solution occurs in the range >

< l}3(1-h)< m, while the second

3
eigenvalue lies in the range —21 < })3-(1—}1) < 2w. In consequence, the

depth of the lower tropoggk#iy¢and the value of /Q in this layer determine

the number of Scorer modes that may exist. In particular if éf(l—h) >

then a Scorer type mode must exist satisfying (2.4), where

IR P ' (2.5)

£ 1% (1-h) >

NE!

, then a Scorer type mode may exist. This last result
was obtained by Scorer {1949), although in his model, the upper layer

was not bounded at the tropopause, and (1.29) is slightly modified.



- 24 -

3. A Discussion of the Effects of Varying the Upper Scorer Parameter

An important result can be found if we consider a variation in
QZ’ with h and 23 kept constant. In order for the eigenvalue equation
to be identically satisfied, (equation 1.29), the wavenumbers must depend
critically on this parameter. The equation which relates the change in
the Scorer parameter oV, éan be deduced from the definition (1.30)

as
R A A o

On dlfferentlatlng (3.1) and (1. 29) with respect to Q , and eliminating
d)jz
a2,

the following:-

d\)3 (1-h) 1 V h 5 tan Y):l

 the terms in between these two differentiated equations, we obtain

(sec X - = tanX) + (sec”® Y =~
dl, L Vs Vo Y
I tan Y
2 an _
+ 'vz—r (sec®Y - T ) =0 (3.2)
where l)g(]__ll) =X
’ (3. 3)
1)2h =Y J
For non zero real values of w, we use the relationship SIa W <1to
obtain
5 t
sec?w - X 50 (3.4)
W .

provided cos w # 0, at which values equation (.29) is singular. Equation
. dv

. . : 3. .
(3. 2) together with (3. 4) imply that dﬁ 1s negative, or that as QZ
' 2

increases for constant Q3 and h, the eigenvalues k, also increase.

The analysis is similar for wavenumbers greater than Q3, if
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we consider the effects of increasing 22 beyond the value 23. Equation
(3. 2) transposes into
s T p ., tamhX, '3 2o 1
7 (sech“X - 3 ) + —» (sech®Y —§tanh Y)
Lol *3 - "2
£.n
~2 h
- ——7 (sech?®Y - tanh? Y) =0 : (3-5)
F2
where }.L3(l-h) =X
(3. 6)
}.Lzh =Y
For non-zero values of w, the relationship
t
sech?w - ar’Vf]”"’<0 (3.7)

dp
holds. Consequently we deduce from (3. 5) that dﬁ is positive, and as -
2

’QZ increases the eigenvalues also must increase.
When k equals 23, thebanalysis fails. However (1.29) transforms
into -
oy h
tan )}2

Vs

+(1-h) =0 (3. 8)

and this is true conly for discrete values of 'QZ for constant h and k.
Moreover, if we change ‘QZ from such a soluticon by a small ambunt,
then no solution will exist for that particular value of h and k satisfying
(3. 8).

A similar analysis can be applied to the differentials of (3. 1)

d))z dv3

and (l. 29) to obtain an equation in —5— , by elgminating . Itis
dj d
2 Z

d])2 dpz
found that 3 is positive and EE— is negative.
2, 5

The conclusion is that as we increase ﬂz from zero to a value

greater than QS’ keeping 123 and h constant, the real eigenvalues
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increase towards Q3, but less rapidly than the increases in 'QZ. A
Scorer mode becomes internal to both layers when the eigenvalue equation
(1.29) transposes into

tan § (1-h) = -h g (3. 9)

When Qz_increases to the value Q all the real modes are internal to

37

both layers and are found from the equation

sin}/ _ 0

3.10
N ( )

The solution of which is T) =nw, n=1,2,3,... These solutions will
be referred to as an index ordered set. The solution corresponding to
n = 1 is the first eigenvalue. When ’QZ increases b‘eyond ,Q?’, internal
modes become external to the lower troposphere for a solution of
tanS(1-h) = -hS (3.11)
where V) 2- V%= )7 [.2=s° (3.12)
As ’Q‘Z increases from zero, the imaginary poles approach the

origin. An eigenvalue is situated at the origin when (1. 29) transposes

~ into
tan th tan Q?’(l~h)
7 + : =0 (3.13)
~2 .Q3 :

When 22 increases beyond a value ,020 satisfying (3.13]}, a real eigen-
value increa ses in wavenumber from zero. The next imaginary pole
reaches the origin if we increase Q‘Z by approximately }£1 . To be precise,

when QZ has increased to the next solution of 7

tan X
X

=K ' -~ (3.14)

where ¥ = th »
tan ,Q3(1_h)

K = - - 3.15
I (3.15)



andK is a constant. This function is tabulated in the National Bureau of
-1
Standards (1964) for Kin the range -1 <K < 0 and K in the range

-1 < K< 1.0,

— T —



- 28 -

4. The Effects of a Variation in the Lower Tropospheric Depth

A result which is analogous to that derived in the last section can
be obtained if we allow the intermediate tropospheric depth h to vary,
keeping /QZ and 23 constant. The wavenumbers, k, depend on h, and

vary with a change in that parameter. We differentiate (1.29) and (3.1)

d])2

with respect to h, and after eliminating terms in , we obtain the

dh
relationship
r :
dl}3‘v ((1_h) (sec?X - tanx) +h\)3 (sec?y tanY)]
dh L "y, ‘ X e Y

tan®X 2 2 _
'mz[-azs -ﬁZ:l =0 (4.1)
ay

where X and Y are defined by (3.3). Consequently —EI{?L has the same
sign as Q32 - QZZ’ if QB is greater than ‘QZ’ the eigenvalues decrease,
when the depth of the upper tr‘oposphere layer, h, is increased, and

vice versa. A similar result is obtainable for Scorer modes in the

range QZ <k < QB'

The conclusion is that it is possible to tune the eigenvaluer model
by varying QZ or h, keeping all other quantities except k constant, in
order to produce cigenvalues at the origin which satisy (3.13), or eigen-
values which are neither internal or external in a given layer, i.e. k = ,g s

"which satisfies equation (3. 9) or (3.11).

There is a duality in equation (1. 29) wh;ch will be referred to
again in the next chapter. If we interchange QZ and h with Q3 and
(1-h), (1.29) is unchanged, and the eigenvalues are unaltered. We caﬁ .

deduce that by varying Q3 keeping 122 and h constant, the eigenvalues

change in a similar fashion as that described in section three. However,



- 29 -

there seems to be enough scope in considering only one of the tropospheric
Scorer parameters to vary, and in most of the numerical work of Chapter
Three Q3 is held constant, while graphs are drawn for a variation

in 9‘2 and h.
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FIG. 1 The two-dimensional (x, z) tropospheric model with an upper
layer between z = -h, and the tropopause z = 0, and a lowef
layer between z = -h, and the ground at z = -1. The x coordinate

is positive downstream measured from the centre of the ridge

in the lower troposphere.

TROPOPAUSE z = 0 ; RIGID LID

UPPER LAYER DEPTHh

0, , ,

DOWNSTREA M —>*

/s

CENTRE OF RIDGHE
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CHAPTER THREE

| A THREE LAYER TROPOSPHERE-STRATOSPHERE MODEL FOR

TWO-DIMENSIONAL FLOW CVER A MOUNTAIN

1. Introduction to Equations

Page 75 :
The model (Fig. l)Athat we consider in this chapter is structured

in the troposphere in the same way as that considered in Chapter Two.
The difference is the stratosphere which is modelled to extend to infinite
height from the tropopause at z = 0. For most of this chapter, the Scorer
parameter ’Ql is considered to be large compared with its value in the
troposphere. A discussion for Ql smaller than ,szand for a value
between ’QZ and 93 is given in section six of this chapter.

F is taken to be of the form

F=Acos Jz +B sin Yz | (1.1)

in the troposphere. In the stratosphere the conditicon for outward propa-
gating energy implies that F is given by
F=exp (iV) z) k < Ql

f
F = exp (~-n, z) k > £,

S
l' .
%— (1.2)
|
.
This choice of the branch of the square root is that required by the radia- _
tion condition at the upper boundary (see chaft@v1l.1). As in the tropo-
F .
spheric model of Chapter Two, F(k, z) and %—z—' (i, z) are considered
continuous at the interfaces at z =h and z = 0. When ’Ql >> £2 and
Ql >> £3, the zeros of ¥(k, ~1) are all complex, and F(k, z) does not

vanish at the ground for real wavenumbers.

The influence function for this model is given by
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oo
ikx F(k,z)
= e L Bl 1.
G(x,2z) = Re dk e &, 1) (1.3)
o
where F(k, z) takes the following form for the three layers
i\)lz
Fk,z)=e z >0 (1.42)
i})l
F(k,z) = cos Y 2z + sin))_z 02z>-h - (1.4b)
2 v/ 2 - =
v
| Va .
F(k,z) = cos Y. h cos Y _(z+h) + — sinV_h sin))_ (z+h)
2 3 ]}3 2 3
_S sin)) ,h cos])zh '
- 1\) cos]) (z+h) - —/— 31n]) (z+h)
UZ \)3
-1<z<-h : ’ (1.4c)
and F(k, -1) is found by putting z = -1 in (l.4c). Here
1
2 2,2 _
V= (L7 k7 for realk < ,QJ_
1 (1.5)
: 2 2,2
‘1)_:19_:1(k—Q_) for real k > Q
J J J J
In the following sections much attention will be given to the function
. . s1i j h i 1-h
‘FTk _1)‘2 = N 2. Q z)[_;fizgi_ cos]} ) + cos Y h.iﬁiziii__l.] ‘
X 2 )}2 2 Vi
( sz_ ngz)
+1 - 3 sin2v3(1-h> (1. 6)
V3 :
which has similar but contrasting properties for the two cases of QZ
greater or less than Q . The term S S— is called the amplitude
3 |F(e,-1)]

factor. P
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2. A Consideration of the Amplitude Factor for QZ < Q3 and 'Ql >>£2

In this section we consider the solution of the influence function

for large distances into the stratosphere. This expression is defined

b
Y o
' ikx F(k, z)
= d —_— .
G(x,z) = Re k e Fk, -1) (2. 1)
o
where in the stratosphere F takes the form
i"})lz :
Fk,z)=e z >0 : (2.2)

and at the ground F is obtained from the following

F(k,-1)= cos vzh cos v3(1-h) - ?1)-}3 _sih ‘;)Zh sin ))3(l—h)
3

[ [ sin ))Zh ' cos Vzh |
- ivllv ‘{ T cos V3(1—h)} + T sin 'V3(1-h) (2. 3)

~

We make the foll owing substitution

k= }, sin0 ?
X = r Ccos : (2.4)
Z = r sin @
so that \‘)l = JQI cos O and (2.1) transforms into
ir,’f sin{8+a)
Glr ey =me | | d0cose 1 (2.5)
A J F(k) )

L is the path in the complex O plane as shown in figure 2. Since ﬁl is
large, the poles of F(k, -1) are all complex, ahd by the method of stationary

phase (2.5) transposes into

1
2% 'Ql 2 . i(r ﬁ -Tr/4) .
) Qe / F,-1) (2. 6)

T

G(r, o) Re{ (
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where Kk = ,ﬂl cos @ . 2. 7)
The function F(kx, -1) deserves further consideration and its
properties will be analysed further. It is convenient to consider the

amplitude factor 1/ iF(kx, -l)l given by

’ 2

: i h i 1-h

iF(k,-l)‘zz ia ii){—?'——— cosv (1-h) + cos P h Si.i—}-)éf——)}
Vo 3 2 1%

5 .
+1 -53—; sin? y3(1-h) (2. 8)

when k is less than QZ’ and its corresponding form for /@2 <k< Q3

2
sinh p_h sin V3(1-h)
lF(k, -1)| 2 = iz —-—F-——“——— cos v3(l~h) + cosh p.zh _—)7;_—
2

. 2 .
+1 - '—%—2‘ sin? 1}3(1-11) O (2.9)
3

Here iz: Qla_ ,?22
. E32' sz

(2.10)

t

Examining !Fi instead of F introduces a phase factor which is a function
. | 2
of . The motion has a radial wavelength of -}E and the amplitude of the
1

solution is determined by the behaviour of 1/ !F! . The reciprocal of

(2.8) and (2. 9) is mostily small except near values which satisfy

tan Uzh tan \)3(,l-h)

+ =0 k <
V, Vs 22
| (2.11)
tanh p_h tan ), (l-h)
Z_ 3 =0 2,3 >k >f2
ko Vs '

These equations were discussed in Chapter Two and they determine the
real or imaginary modes that exist in a tropospheric model with a rigid-

lid at the tropopause. When this occurs (2. 8) contracts into
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| P, -1 =1 - -?V—:T sin® ), (1-h) (2.12)

which using (2.11) implies

! sin® vzh
T o S YTy e

Consequently the height of the beams of the amplitude factor is approximately
‘given by (2.13).

If we take £ equal to zero, which is equivalent to considering a
two strata atmosphere as first introduced by Scorer (1949), (2.9) trans-
poses into (2. 12). Consequently an important result is that for all wave-
numbers less than 22, the peaks of the amplitude factor created by our
three layer system have the same yalue as that produced by the Scorer

model with equal to Examples on the variation of of the
1 ¢4 P 1

x
amplitude factor are given in the numerical results section. The amplitude
factor for wavenumbers which do not satisfy the eigenvalue relationship
(2.11) is considerably smaller for this atmosphere than it would be for

the corresponding Scorer model.

By changing the upper tropospheric depth, h, it is possible to

There is a relationship between and Y/, which we obtain from (1.5
P 2 2

as _ _

Vii- VY, = 8 (2.14)
Onv differentiating (2. 14), (2.11) and (2. 13) with,respect to h and elirni‘nating
the terms in —3—1} we acquire the following equation for a max'ifnum in the

height of the amplitude factor beams:-

h tanvzh _ _
$2(—)7?+m1‘:3‘):1 | (2.15)
2 bz
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When '}/ 5 # 0 it can be alternatively written as

tan\) h Y, 2
—_— 1= & (2.16)
V., h T %h :
2
it is evident that (2. 16) always has a solution for Vzh between
v T < “)) h < nr + = where n is a positive integer and V *n" satisfies
2 2 2 2
tanvth}'E = vthx. An analysis of the derivative of (2.16) with resp.ect
to h reveals that there is exactly one solution for Vzh in each of these
ranges. The first of these solutions must satisfy
4,493 < ))Zh < 4.712.
. '-‘ H K Ul ] )
When Uzh is large 1)2 h tends to nw + =, and the beam is tuned to its

1
maximum height for h &2 (n + =)w. The square of the amplitude factor
g 2 > P

is then given by

1 $%h° .
=1+ 2.17
Fi, 1)) ° N (2. 17)
{(nt5)m)
to a good approximation. Equation (2. 16) can be rewritten as
' tanh p_h . :
. h 2
Fl - —5)=1 (2.18)
2 ' ' A
i N
for wavenumbers greater than 22. By a consideration of higher deriva-

tives of (2. 18) and (2. 16) it can be shown that thers is exactly one value
of h {and subsequently k) which either satisfies (2.18) or (2. 16) for
Y, h < Tork = ﬁ . When this maximum occurs at k = Q (2.18)

2 2 2 2’ :

33
h = = . (2.19)

resolves into

together with the eigenvalue relationship

tan {1-h)
$

Minima of the amplitude factor beams occur for values of h and k

= -h . , - (2.20)
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which satisfy

sin \)Zh

V2

=0 (2.21j

together with (2.11). There.is a minimum for h = 0 at which the beam

height is unity, and for h = 1. Further minima exist for solutions of
VZh = nw (2.22)

where n is a positive integer. (2.22) implies that minima may occur
for intermediate values of h, at all of which the amplitude factor has unit
height.

It was discussed in Chapter Two that the effect of increasing h
was to decrease the eigenvalues. We can now summarise the above
results. As h increases from zero, all the amplitude factor beams increase
from Unity. A beam which for small h is (;;1 Scorer mode, may produce
its highest peak for wavenumbers less than, greater than or equal to ﬁz.
The first beam has exactly one maximum, whether it is a Scorer or
internal mode, since when h equals one, ],)Zh which is an increasing
function with h, has only increased to w. The second beam will have one
minimum for a value cf h not equal to zero or one, and two maxima, at
least one of which is for a wavenumber which is internal to QZ' In
general the nth peak will have n maxima, at least (n-1) occurring for k
less than ’QZ’ and (nt+l) values of h which incl}lde zero and one, at which
the peak is a minimum.

If we consider the Scorer parameters and the 'upper tropospheric
depth as constant, (2.13) may be used to compare the height of the different

beams produced by the model. Equation (2.13) transforms for
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wavenumbers greater than ’QZ’ into

sinh® u_h
—_r -1 2 2.23)

This is a positive and monotonically increasing function with k such that.

1

mg =1+ q‘;zhz, and the beams with larger wavenumbers have

taller peaks. This is true also for 0 <k < /QZ when ﬂzh < . Equation'

(2.13)is a positive and monotonically increa sing function with k such

. ,
that 1< lw <1+ ¢°n?2 | If th > theg it is possible in the

range 0 <k < QZ’ for beams with smaller wavenumbers to have taller
peaks than beams with larger wavenumbers. These beams will not be
as tall as those for QZ <k< £3.

When k > 23, no beams exist, and the amplitude factor is every-

where small. The amplitude factor ];‘I given by (2.9) with 'v3 replaced
by i Mg is a monotonically decreasing and positive function with k for
Q3 <k < Ql'

To summarize this section the amplitude factor exhibits several
high level beams in the stratosphere outside of which little lee wave
activity exists. The height of the beams is greater than or equal to one,
the height obtainablie for the lyra one layer model, and is less than that
obtainable with ﬁl = ’QZ except at the peak of the beams which are
approximately determined by the waveguide. The physical interpretation
for the wave field is that bits of the lyra solutio’n are left intact by the’
waveguide, some are amplified. The wave activity is in discrete direc-

tions due to fundamental wave properties of the waveguide.
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3. A Consideration of the Amplitude factor for /QZ greater than _23

and f, > [,

In this section consideration is given to the amplitude factor, when
the Scorer parameter piecewise increases with height in three layers.
It was discussed in section two that for large distances into the strato-
sphere, the influence function evaluation depends critically on the ampli-

1
tude factor '—iT

| o 0y
L
G(r,a) ~Re 1 ( ) () : (3.1)
i T re, -l P
where F(5, 1) = P (e)| i, -1)| , (3.2)
and kK = ,01 cos a¢. P(a)is a phase factor dependent upon @. For
21 >> JQZ > E?’, (2. 8) transposes into
2
sin \)Zh sin P, (1-h)
Fk,-1){° = 2 (———— cos V., (1-h) + cos h ————— )
| | I V2 3 1)2 Vs
SZ
+1 4+ = sinz))3(1-h) : (3. 3)
3
where N
g2 = kza _ 1232 . (3.4)

Equation (3. 3) implies that the amplitude factor is small except near
the wavenumbers satisiying the eigenvalue relationship
tan Uzh tan V3(1-h)

+ =0 (3.5)
VY, Vs

As earlier described, the lee waves exist in bgams which propagate far
into the stratosphere at zngles given by (2. 7). When a wavenﬁmber satis-
fies (3.5), the square of the amplitude factor is given by
2_. 2
. l S “sin Vzh -6
=l - :
Fa, -0 vV, |

A comparison of (3. 6) and (3. 3) shows that the amplitude factor



at the peak of the beam is the same in the three layer atmosphere as it
is in the two strata model with fl = QZ (the Berkshire model, 1970),

and is everywhere less than the amplitude factor produced for the lyra

atmosphere except when (3.4) is satisfied with Vzh =nw. n=1,2,3...
when the peaks have unit height.

Using (3.5) and (3. 6) we obtain the following:-

1 cos Vzh
[F(k, -1)] - Cos V; (L-h)

(3.7)

It is an important property of (3.5) that if ﬂZ is interchanged with Q3
and h with (1-h) the éigenvalues remain the same,

If we establish the same interchanges in (3.7) we obtain

1 cos vs(l—h)
kF(k, -l)l " cos V,b

(3. 7a)A

which is the reciprocal of (3.7). Consequently the peaks of the beams
with QZ greater than ,03 are the reciprocal values of a configuration
with 103 greater than /gz'

When QB <k < QZ’ we can rewrite (3. 6) using (3.5) as

1 1
Fe - T8 3-8
l T I + =% sinh®s_(l-h)

3

This function is a monotonically decreasing function for increasing k.
7 .
Thus beams for wavenumbers begween E.’; and 12 have successively

smaller peaks for increasing wavenumbers. The beams in this range

1 1
1 f ————r < ——— . s
all have values o IF(k:‘l)ta 1+S‘°‘(l—h) For 0<k < ﬁ?, the
‘ 1 1 .
beams have values of lF(k, ’1)12 > 1+S‘2(1—-h)3 . No procesmon.of

decreasing peaks exists for this range of k. The peak with the longest

wavelength may be greater or less than the next peak provided k < ,@3.
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No beams may exist in the amplitude factor for wave4vyppersshorter
than ’QZ’ and this function monotonically decreases.

It was discussed in section two of this chapter that it was possible
to tune the beams to reach a maximum when the upper troposphere depth
h was varied keeping the Scorer parameters constant. A similér equaL—
tion can be derived to tune the beams to a rﬁinimum. When (3. 3) satis-~

fies (3. 5) we obtain -
SZ

Vs

}F(k, _1)i =1+ sin® 1)3(1-11) | (3.9)

We differentiate (2.14), (3.5) and (3. 9) treating h as the variable (k must

. . ) . ay :

also be considered to vary), and eliminate the terms involving a—; between
these equations to derive the condition for a minimum beam as

tan 1)3(1_11)'

3
v3

(1-h) _ 1 _
- v32 =3 (3-10)

There is a direct analogy between (3.10) and (2. 15) if we sﬁbstitute EZ
for 23 and (1-h) for h. The minimum just defined transposes into the
equation for a maximum beam which was discussed in the last section.

As we decrease h from one, the function 1-h) increases,
3

and for large ’{23’ several minima will exist. The solutions to (3. 10)
satisfy
* K , T
{1~ - —
V3 {1-h) < 1)3(1 h) <nw+3 (3.11)

where n is a positive integer, and \)3X(1—h)x<'is defined by
b4 *H * . . . X
tan \)3(1-h ) = VB (L-h). The first solution exists in the range
4.493 < V3(1-h)<4.712 _ (3.12)
and is unique. When v3(1—h) is large, the solutions to (3.11l)are close
T : | '
to nmw + > With this approximation the minimum amplitude factors are

obtainable from
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(n + l)Tr
n o+ =
2
1 | (3.13)
lF' lia 2 2
(n+z w2 + §(1-h)
For wavenumbers larger than £3, (3. 10) becomes
(1-h) tanh 93(1—-}1) -_ 1
- - 3 = — (3.14)
M3 S _
3

One solution exists for (3. 14) or for (3. 10) when \)3(1-h) < g- “Alterna-

tively the minimum can exist at k = Q3 when (3. 14) reduces to the special
3r——
form (1-h) = \/-S-z- together with the eigenvalue relationship

tan Sh
S

+ (1-h) =0 (3.15)
The maxima of the beams (unity), occur when \}3(1-—h) = nmw,
where n is a positive integer,and for h=0o0orh =1. As we decrease h
from one to zero, the beams will oscillate between the values deter rrﬁned
by (3.13) and unity. The beam with the largest value of k will generate
one minimum, the next beam will pr oduce two, and in general the nth
beam creates n minima, where all except the first must be for wave-

numbers less than ﬁ3.
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4., The Effect of Varying the Middle ScorerAParameter on the Amplitude'

Factor Beams when /Ql >> QZ

It was discussed in section two of this chapter that when Ql is
very large the beams produced by the amplitude factor occur very near
to the wavenumbers determined by the eigenvalue equation

tan \}3'(1-}1) tan})h
+—= =0 (4.1)

Vs Vs

At these wavenumbers, the square of the amplitude factor is obtained

from

(4.2)

when ‘QZ is smaller than _]?3. In this section the behaviour of the beams
will be discussed when 'QZ is varied. This variation will create a change
in the wavenumbers: satisfying (4.1). All the other parameters are keth
constant. The zeroes of the differential of (4. 2) are equivalent to the
turning points of (4. 2), these certainly occur when sin )}Zh = sin V3(1 -h)=0
i. e. \jzh = nw, where n is a positive integer. At these points, the ampli-
tude factor is unity. When QZ is smaller than _)’23, this solution corres-
ponds to a minimum in the amplitude factor beams. However, the oppos-
ite is true for JQZ larger than ﬂ3. The other turning points can be

obtained by differentiating with respect to ’QZ

sin?® )}3(1:}1)
1} z (4. 3)
; _

When QZ is smaller than Q3, the maximum in the amplitude factor

|:F(1<,-J1)|2 =1 - 8?2

beams occurs when
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tanv3('1-h) 1.— V32 (tan \)Zh ) (4.4)
v?)(l"h) ) - ’VZZ VZh ! o

If 9_2 is larger than Q3, V(4. 4) determines the minima.
Since the analysis falls neatly into two parts, we will begin by
considering JQZ to be smaller than £3. Equation (4.4) can be rewritten

using (4.1) as

tan vzh ‘u 5 2

_— - 1- (4.5)
Vb T-h) $24Y),°

the solutions of which determine the maxima of the amplitude factor

beams. The eigenvalues of (4.5) satisfy
nr < Vb < )}2"}3‘ (4. 6)
where tan vthx = vthx and n is a positive integer. The first root
lies in the range 3. 142 < vz'h < 4. 49.
~ An analysis of the derivative of (4.5) reveals that the solutims

of (4. 6) are unique between successive integer values for n. When k is

greater than ﬁz (4. 5) transforms into

tanh ;J.zh p.za
=1+ 5 (4. 7)
t - -
T (1-h) $%p,

No roots occur for this expression. This implies that as ,@2 increases
from zero towards 93, the amplitude factor beams for wavenumbers
greater than '€2 decrease monotonically, provided ﬁl >> fz and
ﬁ >> Q . When i equals f , the eigen\'ralues‘ satisfying (4.1) take
1 3 2 3 _
the form /= nw, the first beam in the amplitude factor occurs for n = 1.
It was shown in Chapter Two that the wavenumber roots of (4.1} increase

more slowly than )?2 as this parameter is changed. Consequently, the
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greatest value obtainable for \)2 is \) » provided 'QZ is not greater
than 23. The ‘term ])Zh is thus always less than m, when h is less
than unity, for the first beam. |

: If Qs(l—h) is greater than w, (the condition that a beam exists

Afor real wavenumbers when )22 equals zero) the first beam will mono-
tonically decrease in height, and grow in wavenumber as ’QZ increases
from zero to £3 in both the ranges when the beam is internal and external
to ’0‘2' When Qs(l—h) is greater than 2w and h is larger than a half,
the s'econd beam will generate one minimmn;maximum pair for inter-
mediate values of 22 between zero and Q3. In the range for which

QZ is less than k, the beam will monotonically decrease in height. If
h is less than a half, the second beam will monotonically decrease as

QZ approaches ﬂs. In general when Q3(1—h) is greater than mm, the
mth beam will decrease monotonically if h < -11;1 as QZ approaches Q?,.

. . . . .. ) .. n n+tl
There will be n intermediate beam maxima-minima pairs if — <h <——
m

m ?
and there are m-1 of them for values ,G » such that 0 < 2 < Q
Zm 2m 3

. m- ’ 1 - ;
ifh > All beams decrease as », TOWS from zero, until they
attain a minimum, which occurs for wavenumbers less than ’42' At a
minimum, the amplitude factor has the value one.

When QZ is greater than ’QS’ the minima of the amplitude factor
beams are furnished by sclutions to (4.4), which using (4. 1) transforms

into

tan \)3(1_}1) \)3?

, =1 -~z (4- 8)
Vs hS +V32

where S? = ﬁza_ £32 (4.9)
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We assume that as QZ increases beyond £3, the assumption Ql >> EZ
is still valid. These roots exist for nm < \)3(l-h) < v3x(1-h)x where

n is a positive integer and \) (1 h). satisfies tan x = x. The first solu-

3

tion exists for 3. 14 < \_)3(1-}1)’ < 4.49. A consideration of the derivative
of (4. 8) reveals that there is only one eigenvalue in each of these ranges

described above. No solution satisfies (4. 8) for wavenumbers in the
range Q3 <k < ,?2

As Q7 increases beyond 23, at which the beams have unit height,
all the beams decrease until they attain a minimum, if any, for which
k is less than Q3. Since k increases with ZZ’ the largest attainable

value of v3 = v = nw, when ﬂz equals Q and V3 decreases mono-

3’
tonically to zero, with grbwing ’QZ' If Q3 is greater than w, (the condi-

tion for the first beam to exist for a real wavenumber when ,02 equals

Q3), the first beam will decrease monotonically with increasing Q

The second beam if )?3 > 2w, will decrease mOnétonically if (1-h) <—%

3

1
and will generate a minimum-maximum pair if (1-h) >~ whenSh = 2,

(the condition for the sccond eigenvalue to have become larger than /43),

Fal

this beam will shrink with increasing 'QZ' In general if ,a3 >mm, the

A ‘ 1
mth beam will shrink nionotonically as )QZ increases if (1-h) < gyl If

n n+l . . .. . . .
— < (1-h) < S there will be n maxima-minima pairs in the beam size,
m

-1
before sh = mw. When (1-h) > mm , there are m-1 maxima-minima

z2_2
pairs, for the beam for values ﬁZm’ such that ‘93 < '[Zm < mh;r + £32_

1f ﬂ >t Q the beam height shrinks with growing j?z.
When the wavenumber,k, is greater than ,t? (4. 3) transforms

into



- 47 -

1
+S2 z
3
which is a decreasing function as k increases. Consequently, if ﬁ
is greater than ha + ﬂ , the firstm beamé increase in size from

the first to the last, provided Ql >> ’QZ'

In order to complete the analysis, the case when '[2 equals 23

will be discussed. The solution of (4. 1) take the form 7Y}/ = pmw, where p

is a positive integer. The derivative of (4.2) with respect to ﬂ has

sin Vz Slnv (1-h)
a zero when ﬂZ = 23 if = 0= ——————— . Consequently, the

Vo V3
solution is Vzh = nw, together with v (1-h) = mw where m and n are

positive integers. Consequently we derive the following constraints on

these integers as

h == (4.11)
p
and
(1-h) = = , (4.12)
p
adding we obtain
ntm=p | (4.13)

Equation (4.13) implies that p > 2, so the lirst beam height cannot have
a turning point. That is, as ’QZ is increased from zero to a value greater
than Q?’, the first beam monotonically decreases in height. The second

beam, p = 2, has a point of inflexion if ’Q?: is greater than 2w, and n

1
equals 1. This occurs when h = > - In general the Ith beam has a point
1 2 -1 1
of inflexion at QZ: jz3whenh=f- ,I—-I—i—- Whenh:é-, and

m .
93 > mw, where m is even, the —Z—even numbered beams will have a

point of inflexion at ’QZ = ﬁ?’ at which the amplitude factor beams have

a height of unity.
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Lastiy, if we treat Q3 as the variable Scorer parameter then
(4. 4) is the condition governing the turning points and the analysis is
identically to that already discussed.

The conclusion of this section is that, provided ’252 << ’Ql’ as
QZ increases from zero to a value much greater than ,23, the beams
grow in wavenumbers and decrease in sizé except for a set of minimum-
maximum pairs, the number of which is one less than the index of the
beam. The value of h which is chosen determines whether these pairs
occur when QZ is less or greater than _23. For particular values of
h, a point of inflexion occurs when ﬂz is equal to £3, at which the
number of minima-maxima pairs is two fewer than the beam index.

Numerical examples appear in section six of this chapter. Figures 3

and 8 show examples on the variation of 22.
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5. A Discussion of the Amplitude Factor when Sis large Compared

with i

for CqmplethQSS of resuLes

In this section,the Scorer parameter, , in the upper tropo-

2

spheré is taken to be almost as large as its value in the stratosphere,

whereas it is considerably smaller in the lower troposphere. The ampli-

1
tude factor, ——I— , 1s given by 5

r sin\)zh sinys(l-h)“

-1)!2— cos \)3(l—h)+cos\) h
Vz 2 v
3
SZ
+1+ == sin® Y, (1-h) (5.1)
Vs 3

when S? is large compared with iz, the amplitude factor beams will

occur near to wavenumbers, k, which satisfy

sin \)3(1 -h
=0 o (5.2)
Vs
at which \)3(1—11) = nw (5. 3)
This is the condition for k to be an eigenvalue for a model with a rigid
lid at the mid tropoépheric depth, h. It is assumed that the lower tropo-~
sphere has finite thickness, so thath is not equal to one, and n is a
positive integer.

When (5. 2) is substituted into (5.1}, the value of the beam ampli-

tude is acquired from

i 2 2 sin” VZh'

,F(k,-l,[ = I T +,l (5. 4)
If the Scorer parameters are held constant and the intermediate thick-
ness, h, is varied, the positions of resonance of the beams may be

found by differentiating (5.4) and (5. 3). The condition for turning points

is
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. 2sin\)zh cos\)zh U \)32 | -sinvzh. v3z
i V2 V2 N ”-"h)Vz) v, (-h)y,

(5.5)

Since £2 is smaller than Ql’ Of is non zero. A resonant beam will

sin vzh 1 :
—T— = 0, at which = equals one, its maximum value
2

occur when ‘Fl
for the chosen Scorer parameters. When this occurs \)Zh = mm, where
m is a positive integer. This resonance occurs when k is an eigenvalue

for a model with rigid lids at the mid troposphere and the trépopause,

and the air motion is confined between the ground and first lid, and between

the two lids.

The minima of the beams occur when

2
tan Vzh ) _ (l—h) \)2 . (5 6)
VP RS | |

for non zero h. Condition (5. 3) implies that VZh is an increasing function

with h, and using this equation, (5. 6) can be written as

tan JJ 2h
Vzh

(1-n)°

- U= pEr | (5.7)

(
\)2-‘1

There is exactly one solution to (5. 7) in the range

Y, h"< Y,h<prtD (5. 8)

H K o _ . . .
where \)2 h satisfics tan x = x, zero being the first solution.

The condition for real wavenumbers satisfying (5. 3) is that the

largest value that h may take, hx, is given by

h':l-l—— (5. 9)
3

consequently the solutions of (5. 7) have a restriction on the values vzh

may take which is
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nw

05 Vs fo0-90 .10

When h equais zero a beam maximum exists siﬁce r]:l:l- eqﬁais one when
(5.3) is satisfied.v

1f the intermediate thickness, h, is kept constant, and QZ is
varied over a range for which S? >> i’ 2, (5.4) and (5. 3) are the relevant
equations. By differentiating both these equations, with respect to 22, '
the condition for turning points is found to be

0= 0,

sin vzh sin Uzh cos vzh sin }/_h

(- + 2(h - }) (5.11)
V2 V2 L V,© V23

Since QZ is greater than 'Q3, 22 cannot equal zero, and the stipulation
for beam resonance becomes
vzh = mT ' — ‘ (5.12)

where m is a positive integer. A minimum in the beam amplitude occurs

when
+ )
tan vzh ho ,  fan 2h 5. 13)
- S Vi - (5.
Y 3 \")2 D VZ
2 o~
Roots of (5.13) lie in the range
nw < Y h < ‘uz”‘hx (5.14)
where vzx k" satisfies tanx = x. The first root is in the range
3.14 < Vzh <.4.49. There is exactly one root in each

range determined by (5. 14). -

A consequence of (5. 3) is that for constant h, the eigenvalues, k,
for which this theory is valid, remain unchanged as EZ varies. It is
evident from Fig. 8 that the comparison with a model w;th a rigid lid at

z = -h is sound for values of ’QZ which are considerably smaller than 'Ql’

provided the upper troposphere has small thickness.
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6. Some Numerical Results and the Influence of Complex Poles

Figures 3 to 13 are plots of the amplitude factors against wave-
number, k. Amplitude factors greater than one are produced when 'QZ
is smaller than 93. .In figure 3, the effect of increasing QZ from} 3.16
to 4. 74 is to produce a shorter, sharper beam with smaller area under
the curve. These values of 'Ql and 23 wer e chosen to compare with
Berkshire thesis 1970, Berkshire and Warren 1970, and Sawyer 1960.
For such a value of ’Ql’ the beam maxima coincide to a good approxima-
tion, to the wavenumbers, k, determined by (2.11), when EZ is lesé
than Q3. This equation specifies the wévenumbers for infinite 21.-
(The r-igid lid model as discussed in Chapter 2). In the example ,(?2 = 3.16,
the actual beam wavenumber is 1. 99, whereas that for infinite El is
1.989. When QZ is larger than 523, the beams have heigl';t less than
unity. When 'QZ = 9.48, the Beam wavenumbers are still close to where
they would be for infinite JQ . The beam on the right, associated with
the complex pole with the smallest imaginafy part has the sharpest peak.
The beam at k = 8. 87 i3 external to ’QS’ and agrees with the theorefical
result for large Ql’ that it is the shortest. A broad beam for small
wavenumbers corresponds to theGamowpole with the large imaginary
part. A comparison between EZ = 18.96 and ’@2 = 7001/2 reveals there
is little difference. The beams for ’QZ = 18; 96 have almo‘st negligible

amplitude. The sharpest 'beams’' for f = 18. 96 are still close to the

2
. . pe s ] 1/2

value one would obtain for infinite _,01. For = 700 , the beams

are at 5.25, 12.05, 15.45, 17.49 and 18. 60 whereas those for infinite

{ | are at 6.16, 12.21, 15.49, 17.49 and 18. 60.
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Figure five portrays that the effect of increasing h is to decrease
the wavenumber k. The beams which are internal to /QZ are considerably
broader than those which are external, the beam for small values of h
is at its broadest when it is close to the value k = 0. A comparison
between the case h = 0 (as in Berkshire thesis 1970) and h = 0.4 reveals
that the beam for larger wavenumbers changes by a relatively small
amount i.e. between k = 6. 72 and k = 6. 244, but more than trebles in height.
Equation (2. 15) predicts that the beam is ‘tallest for a value of h given by
h = 0.57.

In figure six it can be seen that the effect of changing Ql from
5.5 to 7001/2 changes the beam number and height very little. When

Ql = 5.5, the bearmn wavenumber is 2. 06, whereas for the case Ql = 0,
the beam wavenumber is 1.99. This implies that the stratospheric beams‘

of lee wave activity at clevation o given by k = ’Ql cos o tends to a more

horizontal direction and has disappeared when )21 = 1.58. In the case

Ql = 1.58, there is a.trapﬁed tropospheric mode. The effect of decreasing
Ql in this case is to produce leakage into the stratosphere which is not
specifically confined to beams. An interesting feature is that the beam
height for a particular value cf k, is the same as the amplitude in the

case ,El = 22 = 3.16. The sharp increase in amplitude for larger
wavenumbers in fhe example ’21 = 3.16 is produced by the real Scorer

pole at(3.670,0)which is situated on the lower Riemann sheet. However,

the stationary phase approximation is not valid for such srﬁall_ values of

@ when k is close to Ql'

In figure seven it can be seen that as h increases from 0.2 to 0.4,
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the beam moves quickly from k = 3. 82 towards k = 0 and disappears.
When h = 0 the Gamow pole which produces this beam is a tr‘0pospheric
Scorer edge wave given by k = (5. 573, 0). A second beam appears when
h 22 0.54 atk = Ql' For a range of values of h this beam is very tall,
but it decreases quickly from 11, 85 when h = 0. 65 to 2. 73 when h = 0. 8.
When h equals one, the beam has unit height and is given by k &2 0. 34.
Figure eleven is similar except the beam produced whén h = 0. 65 influences
a greater range of wavenumbers. Physically this implies that when
A’QZ = 3.16, and h = 0 there are two trapped tropospheric r_nodes and no
stratospheric beams. As h increases, a beam in which lee wave activity
can exist appears at a low elevation in the stratosphere, and one of the
trapped modes disappears. This beam increases its elevation and has
virtually disappeared when h = 0. 4. For higher values of h there is another
stratosPherric beam whose elevation is nearly horizontal when h = 0. 54,
and is nearly vertical whenh = 1. 0.

In figure eight, as ,422 increases from zero the sharp beam mono-
tonically decreases from 4. 11 when EZ = 0.0 to one when 22 = 551/2.

The beam wavenumber changes less rapidly from k = 6. 393 to k = 6. 72.

As ’-QZ increases beyond Q the beam monotonically decreases and has

3’
disappeared when ’QZ = 12. 64. This agrees with the theory of section
four, which concludes that when Ql >> QZ’ /Q3, as ﬁz increases the
first beam monotonically decreases. The setond beam is in agreement
with the same theory until QZ 22 12.64. The beam decreases mono-

tonically as ﬂz increases from zero to Q3. As ;ZZ increases beyond

Q3, there is one maxima-minima pair until 22 > 12. 64.
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When 9_2 is less than 23, there is close agreement bet ween the
1/2 e
wavenumbers for Q'l = 700 and those for infinite Ql' When QZ = 3.16,
the beam wavenumbers for infinite Q‘l are 6.428 and 1. 682 whereas
1/2 :
those for 1= 700 are 6.430 and 1.71. There is less agreement when
QZ > Q3; for the case QZ = 9.48 the beams are at 7. 30 and 5. 22,
whereas when le is infinite the wavenumbers are 7.38 and 5.19. As
Q'Z further increases there is little comparison between this model and
the case of infinite Ql' When fz = 12. 64 there is only one beam.
However, as QZ increases beyond 22 = 12.02 (the value at which the
beam attains unit height), the comparison with the model with ﬁ L & fz
and 9,2 >> Q3 becomes more applicable. The theory (discussed in
part five) concludes that a stationary beam is present at k = 5. 90, as
QZ varies. The values at which the amplitude factor is one are ’QZ = 12. 02
and QZ =21.76. The case of ’QZ = 22.12 is nearly identical with the
1/2
case Q‘l = 700 / and has not been drawn.

Figures ter and twelve enable us to compare and contrast the.
behaviour of the modes which are internal and external to EZ’ as ,Q 1
varies. As 'Ql decreases the sharp stratospheric beam in figure ten
becomes broader and taller as its elevation decreases, until it becomes
a trapped tropospheric mode when Elx 6.5. The broad beam when

/2. . : :
Ql =700 is replaced by an almost uniform amplitude factor when
Ql = 1.58. We can conclude that stratospheric lee waves are not confined
to beams when Ql is small, but leakage into the stratosphere is sub-
stantial at all elevations.

1f we naively thought that the modified Scorer modes for ﬂz < k <ﬂ3

are the only significant feature we would have anticipated a lyra type
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solution for k < i}_ 5 in the amplitude factor diagrams. This is not the
case when Ql > QZ’ but it is the case when ’Ql < RZ provided a Gamow
pole is not significantly near to k = 'Q'l'

In figure .13 we see that introducing a thin layer of thickness 0.1
between the stratosphere and lower troposphere substantially reduces
the height of the beams from one to less than 2/3. A similar changé occurs
when h is large. A thin layer with a smaller Scorer parameter near the
ground corisiderably reduces the magnitude of the beams which radiate
into the stratosphere. When h = 0. 8 the three beams are each less than
1

> whereas for h = 1.0 each beam has unit height. Beams of nearly unit

height exist for a range of intermediate values of h and k which nearly

satisfy
tan \)Zh tanv3(1—h)
+ =0 (6.1)
V2 V3
together with sin th =0.. (6.2)

The cases of h = 0.3 and 0.55 are near examples to where the
amplitude factor is unity. These occur ath = 0.28 at which k = 5. 987
and h = 0.52 at which k = 3. 542.

Figure 14 reveals that when i}l = 70_01/'2, the Gamow poles are
all complex. These poles are singularities of the amplitude factor, rbl;] ,
in the first quﬁdrant of the k plane. Poles also exist in the third quadrant
which are the negative vaiues of those in the fiifst, however, we do ﬁot
consider these further. The approximation that k® is real is least valid

for wavenumbers close to zero, at which h = 0.385. By comparison,

the locus of the pole for Ql = 1000 is much closer to the axes as h varies.
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It can be seen irom the amplitude factor diagrams that a pole close to

the real axis produces a sharp peak, whereas a complex wavenumber
which has a larger imaginary part generates one which is considerably
broader. This is most particularly noticeable for poles as they pass
near the origin. It may be conjectured from figures 14 and five that

the tall amplitude factor beam has its tallest peak when the corresponding
pole is closest to the real axis. This, however, does not occur. The
pole is closest to the real axis whenh = 0.49, whereas the peak is tallest
for h = 0.57.

An interesting feature of the Gamow poles of figures14, 15 and
16 is the existence of loops as h varies. The number of these is one
less than the index of the pole. When QZ = 12. 64, the second pole
becomes considerably more trapped for values of h close to 0.28 where
k = (6.003, .165) and when h = 0.51 where k = (3. 690, .731). In this
case the poles have their least imaginary part very close to the values
of h for which the amplitude factor has its highest beams (0. 28 and 0. 52).
We may conjecture that provided the imaginary part of the complex pole
does not vary slowly (as in the case J o= 4, 74) the amplitude factor beam
maxima occur close to where the Gamow pole has its smallestimaginary
part.

A remarkable result from ﬁgur‘e seventeen is that as h tends to
zero, and the model becomes the lyra model, rthe Gamow poles remain
finite for a remarkable time. When h = 0.1 the leading pole is at
(7.249, .395), whil¢ when h = 10—4 it has become (8.252, .852). There is

fairly close agreement with the poles of figure eighteen for small values
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of h. When ’QZ = 3.16, the leading pole is at (7. 604, . 616) while for
h=1x 10-4, the Gamow pole is at (8. 162, .827).

As h varies between zero and one, the model of figure 19 changes
from a Scorer type two layer model in which the leading poles are both
real, to a Berkshire type two layer model in which all the poles are
complex. When h = .04 one of the Scorer poles disappears, aﬁd reaﬁpears
~as a Gamow pole in the complex plane. The second pole - becomes a
comple}é Gamow pole for h.= 0.59. This produces high beams in the
amplitude factor diagram, figure eleven, for a range of values of h near
h = 0. 65.

We observe from figure 21 that for a small range of values of h
there is a Gamow pole close to the real axis. For the particular case
h = 0.3, a broad beam occurs near the branch point ﬁl in the amplitude
factor diagram figure ten. The Scorer pole which remains real longest,
as h increases, falls through the branch point and remains a real pole
on the lower Riemann sheet disappearing to infinity when h = 1. No beams
are éroduced by this pole, only a disturbance for wavenumbers near
k = Ql for a discrete range of h. Compare with figure 6 for the case

B, = L, =316 n-0.8

An interesting observation from figures 23, 24, 25 is that as the
interface disappears between the stratosphere and upper troposphere,
poles disappear to infinity while others remé'in finite. These poles
are clearly a consequence of this interface. Figure twenty-five enables
us to compare the model with large Ql’ with that for infinite ll.
When Ql = 7001/2, the Gamow pole for the first beam is at (6.482, .014)
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and is close to its position for infinite Ql However, the second pole
is sifcuated at (2.423, .293) and has not reached its terminal position.

When Q = 100. 0, the Gamow pole is situated at (2. 383, . 079) and is
changing less rapidly as Q‘l varies.

An examination of figure 24 reveals that the beam close to k = 5. 90
is associated with the second pole, as ’QZ increases from 12. 64 to ﬂ-l'
The real part of this pole varies between 5. 82 and 6. 20. When ’QZ |
approaches J{ll’ the first and third complex poles disappear to infinity
through the branch cut at k = ﬁl, onto the lower Riemann sheet. The
value at which the real part of the second and third complex poles are
equal is approximately 17. 0.

The conclusion to be drawn for the model in which ’Ql > QZ' > Q?’
is that the theory for infinite ’Ql can be extended to cases where jg >
is nearly as large as ’Ql' provided the tropospheric depth h is large..
When h is small, the theory of a r-igid lid at the mid troposphere can be
extended to values of ’QZ which are considerably smaller than Ql'

In figure 26 the maximal wave amplitude for a non zero 22
upper troposphere is presented for the first downstream wave at approxi-
mately z = 10. The position of this maximum was found to vary between
x = 1.0 and x = 2. 04, A large resonance occurs ath = 0. 365, which is
close to 0. 388 the value at which the eigenvalue for infinite El’ is at
k = 0. The smaller resonance at h = 0. 72 is fairly close to where the
amplitude factor beam crosses k = ﬁz ath = 0.68. A comparison should

be made with QZ = 0, which was plotted in Berkshire 1970, as a maximal

wave amplitude in the vicinity of x = 2, z = 10.
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Contours of G(x,z)are presented for this model for both resonances,
and h = 0,15 which is fairly close to where one wavelength is a simple
multiple of the other. The high level stratospheric waves have an ampli-
tude which has not decreased substantially from its value just above the
tropopause. In the upper stratosphere the contours are tilted at about
the séme angle as they are just above the tropopause. The troposphere-
stratosphere inter face is clearly defined on the low level contours, since
their direction changes there, from being nearly vertical in the troposphere.
Tropospheric wave amplitudes are considerably greater than those in the
stratosphere. In figure 35 the maximal wave amplitude for the first
tropospheric wave is 10. 61, while the value atx = 0.82, z = 0.14 is 2. 24,

For small values of z, ‘ the residue theory of Berkshire 1975 is
valid, and the low level contours could have been obtained directly from
a calculation of polg residues. However, these contours for G(x,z) were

obtained by direct computer evaluation of the integrals concerned.
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7. The Quasi Wave Drag Integral

The wave-drag integral (see e.g. Sawyer 1959) is represented

I=- puwdx (7.1)

-00

This can be rewritten in terms of the modified displacement "’S as

e ) —_— —
I=p(-1) U(-1)2 2y Q———dx (7.2)
bx )z
, -
— S 1/2
where 'S = :? P U(z) : :
73 (7. 3)
-1) U(-1)

The modified displacement 5 is related to the influence function by

CO .

3-2 a3¢3) G2, ¢ ) » (7.4)
-co

where
(Mo Eon) k)
. F(k,z) ik (x- :

G = Re L i | (7.5)

O

On using Parseval's theorem, and the properties of Fourier transforms,

we obtain the formula

{ —
R
= - - '7’_'.297;-. ;vL
I p(-1) U{(-1)" 2w i J IF(]“:"“
-0

BF (k, z)
dz ‘ (7.6)

where a bar denotes the complex conjugate.

&

Equation (7. 6) can be readily evaluated when there are no real

zeros of IF(k,-l)’ as. ?

If( ] Ty _A__kz)

. 2
I=4wp(-1)U(-1)" Im IF( —li 5

(7.7)

%Y
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which can be written as

p(-1) U(-1)?
™

I= Q | (7. 8)

Here Q is termed the quasi wave drag. For the three layer model of this

chapter for flow over a delta function mountain, so that f(x) = 6(x), and

— 1
flk) = 5, 1,
kY,
Q= dk T/ (7.9)
|F @, -1)] ®
(o]
_ ' sin J)h
2 _ 2_ 2 _— -
where |F(k,-1)|? = ( [, Qz ) 7 cos V(1-h) + cos V,h
— 2 2 2
sin V), (1-h) (152- 1,5
—_— +1 - 5 sin \)3(1-h) (7.10)
V3 Vs
It is clear from the numerical evaluation of ﬁl_r)—l , the amplitude

factor, that a complex pole near the real axis greatly increases the value
of the quasi drag integral. In figures 41 - 50, Q has been computed and
plotted against h for various values of Ql’ ﬁz and £3. Some cases of

Ql less than 23 are included. In these examples, for certain values
of h, real poles of {7. 10) exist and equation (7. 8) is modified by a pole
residue contribution. This contribution will not be discussed in this
thesis.

In figure 41 when fz > [3 maxima occur for certain values of

h. For the case ’QZ = 9.48 and ﬂz = 12, 64, these values are close to
where a loop occurs in a complex pole whoserimaginary part is small.
This also occurs when a beam of near unit height exists for the amplitude
factor. When EZ = 9. 48, an amplitude factor beam has unit height

for h = 0.40. The maxima in the wave drag integral occur for h = 0. 44.
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The drag also has maxima for values of h close to zero and at h = 1, at
which beams of unit height occur for the amplitude factor..

In figure 41, for v‘alues of fQZ smaller than ,€3, the inaxirna iI}
the wave drag integral curves occur close to where they exist when
‘QZ =1.58. As ’QZ increases, the maxima become less resonant, until
when QZ = 6. 32,. the maxima have become very much less pronounced.
It was discussed in Berkshire thesis 1970 that the maxima in the quasi
wave drag curves for QZ = 0 occur when (2.11)is satisfied for k close

to zero. This condition becomes

tan f?’(l-h)
e +h =0 (7.11)
{5 .

1/2 |
When ﬂ?) = 55 / , the values of h satisfying (7.11) are h = 0. 745 and
h = 0. 309.
It is possible to conjecture that for fz non zero and less than
Q3, that the maxima in the quasi wave drag curves occur near to where
~ :
they would occur for Kz = 0, however, the resonances become blunter
for increasin f For the case ,é’ = 4. 74, the maximal wave ampli-
g XZ. 2 - y — L1l p
tude peaks do not coincide with the Quasi—wave drag peaks. Hence it
is reasonable to assume a difference in form between them.
A comparison between figure 41 and 43 reveals that if the values
: . .
of QZ and ’}Q3 are interchanged for constant ’Vl’ the drag is larger for
Q?) greater than 'EZ’ provided h and 1-h are interchanged. This holds
true for all values of h, except those close toh = 0 andh = 1.

In figures 49 and 50, we see that the position of the maxima are

2 1/2 . -
not altered very much by reducing _21 from 7001/ to 55 / . When fl
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is smaller than Q3, the sharp increase in the quasi wave drag is caused
by a Scorer pole dropping through the branch poinf at k = 21. The
actual drag for these cases is n’iod‘ified by pole residues. However, for
h greater than 0. 77, no Scorer poles exist, and a direct comparison can
be made, as Ql .varies, in the quasi wave drag curves. It was not
possible to evaluate the sharp drag maxima as accurately as the blunt
maxima for an interval of . 001 between successive values of h. Con-
sequently in table two, three of the drag maxima have no decimal values.

We can conclude that the parameter /Q is the important quantity

3
in determining the maxima in the quasi wave drag curves, when ’Ql is
greater than }23. Equation (7. 11) determines wherg these occur for large
/21 and zero QZ' - The effect of changing the value of )?2 (provided it
is less than ,Q3), and the effect of varying ,@_1 (provided it is not less
than ,03) only shargen or blunt these characteristics, but do not sﬁbf
stantially alter theil; position.

Lastly, if we consider the parameter ,(71 to bé infinite, the model

" has real eigenvalue wavenumber solutions given by (2.11). The drag

integral (7. 9) can be evaluated in terms of pole residues to give

V. ¢ .2 sin ) (1-h)
Q= io ’ / [1 + 5;‘2 (""'-—\‘)‘3';—— cos v3(1-h) + h coszl_}s(l-h))]

(7.12)
where the summation for wavenumbers k, is forr real wavenumbers
satisfying (2. li). For QZ = 0 equation (7.12) 'is modified by putting
VZZ =-k%and §°= }23?‘.

Figures 44to 47 represent a comparison between the quasi wave

| 1
drag as determined by (7.12) and that evaluated for [1 = 700 /2 from
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equation (7.9). As no error function to (7.12) was readily evaluable,
when an eigenvalue wavenumber solution k changed from real to imaginary
it was discounted from (7.12). In these regions where there is a dis-
continuity in the drag, there is a discrepancy from the actual quasi wave

. 1/2 . . -
drag for /Ql = 700 . However, when no pole is close to the origin,
there is good agreement with the computed curves, for 'gZ = 1.58 and

= 6.32, and it may be

QZ = 3,16. There is less agreement for fz

1/2 .
supposed that Ql = 700 / was not a sufficiently large value for the -
approximation of real poles to be made.

Ath = 1, equation (7.12) reduces to
Q=1 n? (7.13)

sin '\)2

2
values of ,QZ which were used in figures 44 to 47 this gives Q the value

where N is the number of zeros of in0<k< 22' For the four

0, 31.03, 31.03 and 155.15 ath = 1.



TABLE 1
POSITION OF IMPORTANT GAMOW POLES.IN RELATION TO AMPLITUDE FACTOR BEAMS FCR
FIGURES 3 TO 13

Fig. 3 ,Q1=7001/2 J. =852 y_o08

3
Q 5 K, k?_ k3 Beam wavenumbers| Amplitude factors
3.16 |(1.997, 0.104) - - 1.99 - - 2.71 - .-
4, 74 {(3.867, .069) - - 3. 86 - - 1.96 - -
9.48 |(8.878, .053) (6.805, .266)| (1.348, 2.819)| 8.87| 6.78 - 0.59] 0.67} -

Closest wavenumber to k

(1.430, 13.909) v 18.601{17.49(15. 45 0.06{ 0.08 }|0.10

4

18.96
12,05 5.25 - 0.16| 0.32 -

k

'7001/2 (3.246,13. 387) No Beams

_.99—



Fig. 5 21 - 70072 ﬁz - 4.74 23 - 551/2

h k) kz Beam wavenumbers| Amplitude factors
0.2 | (6. 634, .024) | (3.413, .235)] 6.633 3,39 |1.67 | 1.46
0.3 | (6.482, .014) | (2.423, .293)| 6.482 | 2.395 | 2.50 1. 65
0.4 | (6.244, .009) | (. 794, 1.115)}| 6.244 - 3. 61 -

0.8 | (3.867, .069) - 3,86 - 1.96 -

rig. 6 0=316 [ =552 n-o.8

2 ~3
-Ql kl kz Beam wavenumbers Amplitude factors
1 ' '
700 /2 (1.997, .104) - 1. 99 - 2. 71 -
1 ' '
55 /2 (2.100, . 366) - 2.02 - 2.72 -
5.5 (2.201, .490) - 2. 06 - 2.73 -

—L9 -

A At branch point
3.16 (3.670, 0.0) - : 3.16 - 4.41 -

Lower Riemann sheet

1.58 - (1.450,2.123) - No beams - -




Fig. 7 Q. =55 fQ =316 [ _ 551/2

1 2 3
h kl k2 Beam wavenumbers |Amplitude factors
0.2 - (3.892, .524) - 3,82 - 2.35
0.3 - (2,477, .835) - 2.26 - 2.32
0.4 - (1.196, 2.431) - No beams - -
0.65] (4.491, .027) - 4,490 - 11. 85 -
0.8 (2.201, .490) - 2. 06 - 2.73 -

_89_



‘Case not
drawn

rig. 8 [, = 700'/2 2, = 55 /2 n-o.3
QZ kl k k3 Beam wavenumbers | Amplitude factors
0.0 (6. 396, .006)| (1.062, .341) - 6. 393 1.00 | 4.11 2.48
3.16| (6.430, .009)| (L.738, .283) - 6.430 1.71 3.33 2.07
4.74| (6.482, .014) | (2.423, .293) - 6.482 2.40 2.50 1. 65
9.48 1 (7.383, .244) | (5.249, .342) - - 7.30 5.22 0.26 0. 86
12. 64 |(10, 138, .543)) (5.992, .171) | (1.148, 3.737) - 5.98 - 0.99
15.80 (6.205, .367) | (3.846, 3.219) - 6.10 - 0. 64
18. 96 - (5.832, .299) {(9.593, 3.171) - 5.79 - 0. 84
%_@.12 - (5.931, .187) - - 5. 91 - 1.0
25.28 - (5.934, .202) - - 5.91 - 0. 96
1
700 /2 N - (5.922, .189) - 5.90 - 1.0

_6.9 -



Fig. 9 lessl/z l, =44 ;23=551/2

h kl kZ Beam wavenumbers| Amplitude factors
0.2 | (6.726, .062)| (3.886, .725)| 6.722 : 3.75 2.77 1.59
0.3 | (6.531, .038)| {2.895, .934)( 6.530 : 2.63 3.9 1.69
0.8 | (3.941, .285) - 3.88 - 1.96 -

1
Fig. 10 [ =4.74 23=55/2 h=0.3

Ql ki kZ k3 Beam wavenumbers | Amplitude factors

1.58 - - (1.955; 3.561) No beam

3.0 . - (3_. 599, 0 Y1 (2.583, 3.617) {value at b’_i,fl’(}ﬁh point 2 01

1, 74 - (4. 041, 1.235) - - 3,72 - 2. 01
5.5 - (3. 368, 1.‘177) - - 3.02 - 1.77
551/2 (6.531, .038)| (2.895, .934) - 6.530 2.63 3.95 1. 69

1
700 /2 (6.482, .014)| (2.423, .293) - 6. 482 2.40 2.50 1. 65




Fig. 11 0 =55 [ -aa f =552
&) 2 3

h kl k2 Beam wavenumbers | Amplitude factors
0.2 - (4. 420, . 727) - 4.30 - 2.00
0.3 - (3. 386, 1.177) - 3.02 - 1.77
0. 4 - (2. 631, 2.219) - No beam - -
0.65| (5.082, .080) - 5,077 - 6. 63 .
0.8 | (4.095, .475) 3.92 - 1.97 -
Fig. 12 J, =414 ,Q3=551/2 h= 0,4

-Ql kl < k3 Beam wavenumbers Amplitude factors
1.58 |, - | - (1.434, 4.036) No beam |
3,0 - (3.251, 0 )| (1.822, 4.008)] - Atbra;“:g point 2. 71
4. 74 - (3.317, 3.017) - No beam
5.5 - (2. 631, 2.219) - No beam

1 |
551/2 16,274, . 028)] (1.961, 1.811) - 6.273 - 5,177 | -

1/2
700726, 244, .009)| (. 794, 1.115) - 6. 244 - 3. 61 -




Fig.

13

Q =551/2

3
h k kz k3 k4 Beam wavenumbers Amplitude factorg
0.1 {(6.737, .147) | (4.228, .902)} (1. 383, 5._528) (1.141, 9.680)| 6.71 3.99 0. 63 0. 65 -
0.3 |(10.138, .543)| (5.992, .171)] (1.148, 3.737)| (1.110, 8.749) - 5.98 - 0.99 -
0.4 |(11.039, .282)] (6.223, .478)| (3.199, 1.969) | (. 759, 7.884) '{10.94 | 6.04 |2.44 . 012 .54 | .61
0.55{(11.697, .128)| (8.547, .565)| (3.659, .801) 7(1.220, 7.023)|11. 68 8.30 {3.48 . 03 .13 1.95
0.8 [(12.148, .049)|(10.556, .213)| (7.306, .645) | (l.454, 5; 076) {12.14 |[10.54 |7.20 w27 .33 | .45

_ZL -



DETAILS OF QUASI WAVE DRAG CURVES AGAINST h
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TABLE 2_

) 1/2 1/2 A
Fig. 41 and 42 'Ql =700 " 23 = 55 .as ZZ varies
ﬂz Drag Maxima h
1.58| 207.44| 231.58 0.283 .722
3.16{ 201.97} 192.25 0.293 .709
4.74) 190.52 7 142.16 0.311 . 683
6.321 169.457 185.19 0. 329 .713
9. 48 126. 04 0. 439
11. 06 162.24 0.530
12. 64 190. 95 0.509
. _ oo0l/? _essl/2
Fig. 43 L = 700 ﬂz - 55 £, =9.48
Drag Maxima h
298.76  258.51  317.41 . 045 . 418 . 770
1/2 1/2
Fig. 48 ﬂ, = 55 / X, =55 / as ,é) varies
1 3 ~2
ZZ Drag Maxima h
1.58 | 182.71 | 229.30 271 L7117
3.16 | 175.12 ] 195.30 274 . 707
4.74 | 162.17 | 163.46 277 | . 693
6.32 1 146.02 | 153.04 . 274 . 697




_ 74 -

]
Fig. 49 /QZ =3.16 £3 = 55 /2 as "gl varies
’Ql Drag Maxima h
3.16 115. 146. .298 | .766
5.5 127. 63| 196.06 | .253 | .706
551/2 175.12| 195.30 | .274 | .707
700872 201.97| 192.25 .293 | .709
: 1/2
Fig. 50 L, =474 £3 - 551/2 45 [1 varies
jl Drag Maxima h
4.74 ] 114.87 | 169. 239 | . 725
5.5 118.37 | 169.47 .240 | . 697
1/2
551 /2| 162,17 | 163.46 277 | . 693
00 /2 | 190,52 | 142.16 311 | . 683
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Fig. 1 The taree layer model in which each stratum is characterised

by a Scorer parameter ﬁ

| DIRECTION OF FLO\;/
[ STRATOSPHERE
- 0
I, UPPER TROPOSPHERE
h |
0. LOWER TROPOSPHERE
T .

-1 > X

2 |
MOUNTAIN



- 76 -

Fig. 2 The path of integration of G in the complex 0 plane for the

method of stationary phase. There is a branch point at 0 =

1=

and a saddle point a.t0=’-§- - a.

SADDLE PONT BRANCH POINT

Q * e 2
er
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x

Some high level coniours of G(x, z) for 2} = f?OOL/Z, )ez =4, 7<,

23 _s3l/2

(@3]

no= 0. 15, ‘

There are nine contours, the lowest is at -1. 5
and the interval is 0.4. The dominant Gamow poles are at (3.712, .25%)

and (6. 681, .033)
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Fig. 29. Some high level contours of G(x, z) for 11 = 7001/2,

1/2
22 = 4. 74, £3 _551/2 1 - 0.365. Eleven contours are drawn, the
lowest is -3. 0 with an interval of 0. 6. The dominant complex poles are

at (. 339, .011) and (1.365, .581).
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Fig. 30. A three dimensional representation of the contours of G(x, z)
for figure 29. S
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o . 1/2 oy
Fig. 31. Some high level contours of G(x,z) for ‘21 = 700 . ,ez =4, 74,
_1/2 . , . .
23 = 55 , h = 0,45, Nine coniours are drawn, the lowest is ~1.2, with

an interval between contours of 0.3. The dominant Gamow poles are at

(. 572, 1.848) and (6. 083, .008).
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Fig. 32. A three dimensional representation of the contours of G(x, z)

!
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for figure 31. .
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g | 1/2
- "Fig. 33. Some high level contours for G(x, z) for ﬂl = 700 / , ﬂz = 4. 74,
1/2 | | . -
,Q?) = 55 . h - 0. 72. Seven contours are drawn, the lowest is at -0, 9.

There is an interval of 0. 3 between contours. The important Gamow poles

Care at (. 485, 2.628) and (4.416, .032).
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34

Fig.

. A three dimensional representation of the contours of G(x, z) for
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Fig. 35. Some low level stratosphere and troposphere contours for G(x, =
for 21 = 7001/2, ZZ = 4, 74, £3 - 551/2, h = 0.15. The tilt in the
direction of the contours in the lower 'stratosphere is about the same as
that in the upper stratosphere. Note the difference in the scale of thé
axes exaggerates the tilt. In the troposphere the direction is nearly
vertical. There are twenty contours, the lowest is at -9. 0, with an

interval between contours of 1. 0. Note the highest contour is 10. 0.0

/
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A three dimensional representation of the contours of G(x, z)

36.
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Fig. 38. A three dimensional re'presentation of the contours of G(x, z) for

figure 37.
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‘ 1/2
Fig. 39. Some low level contours for G(x,z) for [ = 700 / , 122 = 4, 74,

1
_1/2 .
Q3 = 55 , h =0,72. There are twelve contours, the lowest is at -9. 0,

with an interval of 1.5.
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Fig. 40. ‘A three dimensional representation of the contours of Gx,z) for
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CHAPTER FOUR

A DISCUSSION OF THE ADAPTATION OF SOME REALISTIC ATMOS-

PHERIC PROFILES INTO LAYERS IN WHICH THE Q, PARAMETER

IS CONSTANT

1. Introduction

In this chapter we investigate some atmospheric profiles which
have been observed and recorded on occasions when either a field study
was in progress (section four), or when high winds caused considerable
damage to ground structures, in regions close to the lee slopes of moun-
tainous terrain (section two and three). It is of considerable inmterest to
investigate whether these actual observed profile; of stability and wind
speed (and hence the J (z) profile), can be approximated by a more tract-
able model in which the Scorer parameter, ﬂ, , 1s constant in layers.

If this is realistically feasible, then it is possible to predict which wave-
lengths can be expected under typical atmospheric conditions, and whether
a critical wavelength which is in resonance with the mountain range will
be produced.

An important feature of all three examples is the lee wavelength
size which may be of order 40 Km. Another feature is the rate at which
the waves decay downstream, so that only the front range lee slopes
receive the full force of the gales.experienced on critical days. The
Rocky mountain range produce an almost two dimensional flow bpbattern
in Colorado, although it is true that individual mountains and valleys in

the range will produce distortion. This is slightly less true in Sheffield,
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which is situated near the southern end of the Pennine chain. It is
possible that edge effects distort the lee-wave picture which is discussed

in the next section.
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2. Gales in Yorkshire 1962

We consider as a first example gales which were present in
Yorkshire, especially Shefﬁelci, in 1962. Gales were present throughout
the entire country in February, however, two gales on the twel fth and
sixteenth were particularly se\‘rere to the east of the Pennines in the
industrial West Riding. These gales were excpetionally strong in the
vicinity of Sheffield on these two days. On the firét day the winds averaged
about 35 knots, with gusts of 69 Rnots, and on the second day gusts reached
84 knots. The gales were classed by C.J. M. Aanensen 1965 as being
the once in fifty years case. However, wind speeds in other parts of
the country away from the Pennine chain experienced gales which were
considerably less severe than Sheffield.

The profiles of potential temperature and wind speed in the un-
disturbed airstream are shown in fig. 1, which i; figure 31 in C.J. M.
Aanensen. It is fortuitous that except for a shear layer near the ground,
the velccity profile is nearly constant for all'z. The condition thatU' (z)/U(z)
is small was a necessary assumption in Chapter cne ip deriving the theory
of Chapter two.

The gale of 12th February was less severe in the damage it caused
than its counterpart on the 16th, when nearly two thirds of all the buildings
in Sheffield had damage of one sort or anothgr. In figure two, the 22
profile is presented up to a height of 18 Km. (This a‘ppeared as ﬁg.v 32
in C. J. M. Aanensen. ) The significant features of this ,Qz profile are
the pronounced maximum in the lower troposphere, the smaller values

in the upper troposphere, and the assumed high-level stratospheric
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values. We investigate the waves generated by two reduced three layer
models in which the ,Q, parameter is constant in each layer. These
models are shown in figure two.

It must be noted that these parameters have dimensions of length
h)or 1ength—l, | { ﬂ,), and it is necessary to non-dimensionalise these
quantities, taking the height of the tropopause as a unit length. These
values are shown in t.ables one and two. The first profile considers the
tropopause to be at 14 Km with an intermediate tropospheric depth of
4 Km from the ground.

The lee wavenumbers are found by evaluating solutions to equation
(1. 6) of Chapter three which appear in the first quadrant of the complex
wavenumber plane. A lee wavelength of 23. 23 Km was obtained by this
method. This is in good agreement with the calculation of Aanensen who
predicted a lee-wavelength of 22.1 Km.

Aanensen's result was that an even longer wavelength of 38 km
existed on 12th February when the ,?, profile was quite similar to that
shown in figure two. A significant question can be asked which is: how
sensitive is this model to small changes in the parameters? Figure
three shows the locus of the principal Gamow pole for a change inh of
about lOo/o. The importance of this figure is the increase of the irna;ginary
part of the wavenumber which contributes to tfhe decay rate of the wave,
as h increases. Whenh 25 0.7, corresponding to a lee-wavelength of
22.1 Km, the imaginary part of the wavenufnber is about 1/7 of its. value .
when h = 0. 79 which corresponds to a lee-wavelength of 38 Km. This

suggests that shorter wavelengths of the type observed on February 16th .
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will persist with greater intensity for distances downstream of the
Pennines.

A second profile was taken to match the observed X,z profile.
This is also shown in figure two. The tropopause is taken to be at 13 Km,
and the tfopospheric interface at 2. 8 Km. A wavelength of 25.63 Km
was computed for this model. Figure four shows the change in the Gamow
pole as h changes by about 100/0. Once again it was found that when
h = 0. 76, which corresponds to a lee-wavelength of 22. 1 Km, the imaginary
part of the Gamow pole is about 1/7 of its value when h = 0. 86 which
produces a wavelength of 38 Km.

The conclusion is that two differing models of an atmospheric
profile predict results which are close to those observed to the east of
the Pennines. The models also reveal how sensitive the parameters

are to changes in the tropospheric profile.
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3. Gales in Boulder 1972

Boulder, Colorado has many features in common with Shefﬁéld.
It is situated to the east of the continental divide which forms part of the
Rocky Mountain chain, and is prone to strong, often hurricane force,
winds. These winds usually substantially decrease only a few miles
further downstream in the flat plane region near Denver.

On 11th January, 1972, a particularly severe windstorm hit
northervn Colorado and southern Wyoming. Peak gusts of over 100 mph
were recorded in several districts of Boulder by anemometers. Luckily
the development of this storm coincided with the readiness of two in-
strumented aircraft to fly over the windstorm region.

One of the aeroplanes took off on 2 mission to explore the lowest
10, 000 feet of the atmosphere in the early afternoon, while the other
took off at 5 pm. and explored the middle and upper t'rOpOSphere. The
resulting potential temperature field was plott.ed in Klemp and Lilly (1975)
and Lilly and Zipser(1972). The significant feature of the temperature
field is the existence of a heiavily damped wave which has been comparéd
with a hydraulic jump.

In figure five the ,@ proﬁleris drawn as it was recorded on 11th -
January. 'I"he three layer approximation of constant ﬂ, in layers is
also presented on this figure. It was found that two wavenumbers of
importance existed in this layered model which were:

1. A nondecaying real S‘corer mode of wavenumber 10.249 with a wave-
length of 6. 74 Km. This is in good agreement with the observed result.

2. A heavily damped wave with a much longer wavelength of 48. 10 Km.
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The details of both these modes are summarised in table three.

Figure six reveals how sensitive the Gamow pole is to small
changes in the depth of the lower trOposbphrere, for the constant Scorer
parameter values. As h changes from 0.55 to 0. 62, the wavelength
changes from approximately 15 Km to 138 Km. However, the Gamow
pole imaginary part increases rapidly over the same' range of h, and it
is doubtful that the waves produced by this mode will have many oscilla-
tions, and éan resemble a hydraulic jump, depending on whether the
wave is in phase with the mountain or out of phase. A compariéon of the
hydraulic jump theory and the darﬁped wave theory is discussed in Klemp
and Lilly (1975). It was concluded that the dominant feature of the long

downdraft region was caused by heavily damped waves.
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4. The Colorado Lee-Wave Program 1968

A significant study of the lee-wave phenomenon was conducted at
the National Centre for Atmospheric Research over a period of two
winters. The zenith of this was reached in February 1968 when a joint
flight prograrn collected data on lee-waves and associated turbulence
phenomena from the surface to 70, 000 feet above the Rocky Mountain
terrain. The most significant result of the program was to find large
amplitude standing gravity waves in the stratosphleric. levels.

Figure seven shows the atmospheric profile for ,Q, recorded on.
February 15th, 1968. We approximate the profile by a two layer tropo-
sphere, and a stratosphere which is very stable. One wotld expect
the wavenumbers for this ,2 profile to be near the real value obtained
when fl is- infinite (the rigid tropopause model of Chapter two). The
principal wavenumber is k = (3. 654, 0.063) while the eigenvalue for the
rigid lid case is 3.631. This gives rise to a wavelength of 18.23 kilo-
metres. It would appear that this result is in some error, as Vergeiner
(1971) and Lilly and Toutenhoofd(1969 have obtained a value of about 14 Km.

In figure eight the effect of changing the mid tropospheric depth
by about 100/0 1is investigated. The Gamow pole changes less than its
counterpart of section three, and in figure eight, the wavelength varies
between about 17. 3 km and 19.5 km. This suggests that an error may
be introduced by taking Ql to be this large in figure seven as the atmos-
pheric profile above 13 Km is undetermined. However, the significance
of our investigation is that a long wavelength does exist in the simplified

model of the atmosphere.



- 133 -

5. Conclusion

The three examples which have been described in sections two,
three and four, reveal that long wavelengths of twenty or thirty km, can
exist in an atmosphere with considerable amplitude close to the leeward
slopes of the mountain ridge. These lee waves, when we identify them
with their model counterpart, consist of waves internal to all three
layers. In many cases these dominant wavelengths are critically depen-
dent on the atmospheric parameters, so that a small change in the tropo-
spheric profiie can produce a large change in the lee-wavelengths. A
significant feature of these waves is that they fail to penetrate to any
great distance downstream of the mountain range, since their decay rate
is large, and the most that can realistically be expected is two strips of
land in whi ch high surface winds exist, with a strip of relative calm in
between. Such was the case of section two, as J..*eported by C.J. M.
Aanensen 1965. However, this second region of stronger winds was much

less pronounced than the first.

S

A further consideration must be given to the mountain shape.
Only wavelengths which are nearly multiples ofresonant wavelengths
will be excited to a large amplitude. In Sheffield (section two) a basic
wavelength close to twenty km was observed to cause devastating damage
on February 16th, whereas damage to a lesser extent was caused some
days earlier by a wavelength which was nearly"twice this size. It is
reasonable to suppose that on a day which produces lee-wavelengths in

between these two resonances, that their effects will be quite small,
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TABLE 1
DIMENSIONALISED VALUES OF PARAMETERS FOR MODEL INTRCDUCED

IN FIG. 2

Wavelength ﬁl 2 > ,Q 3 Tropopauseih(above
: ' ground)

23.23 Km /0.5 Km"l /0. 05 Km“l /0.3 Km'l 14 Km 4 Km

NON DIMENSIONALISED VALUES

Wavenumber Z 1 /gz £3 Tropopause h
(3.387, .035) | Sqrt(98.0) | Sqrt(9.8) Sqft(58. 8) 1 0.714
TABLE 2

DIMENSIONALISED VALUES OF PARAMETERS FOR MODEL IN FIG. 2

A (above
Wavelength ﬁl Z > £3 T ropopause ground)
-1 — - - '
25,63 Km |/0.5 Km J0. 075 Km ! J/0.4 Km 1 13 Km 2.8 Km.

NON DIMENSIONALISED VALUES

'Wavenumber ’Ql £2 23 Tropopause h

(3.187, .115)| /84.5 | J/12.665 | J67.6 1 0.785




TABLE 3

DIMENSIONALISED VALUES OF PARAMETERS FOR MODEL OF FIG. 5

. {(above
Wavelength /21 22 23 Tropopause ground)
-1 -1 -1 .
6. 74 Km and | 0. 68 Km 1.755 Km 1.1 Km 11 Km 4.4 Km
18.10 Km
NON DIMENSIONALISED VALUES
'Wavenumber ’Ql ’QZ ,23 Tropopause h
(10.249, 0) 7.48 1.93 12, 1 1 0.6
and

(1.437, 0.374)

TABLE 4

DIMENSIONALISED VALUES OF PARAMETERS FOCR MCDEL OF FIG. 7

Wavelength j{L 22 Q?) | Tropopause | h (above ground)
|
-1 -1 -1
18.21 Km 1.0 Km 0.2 Km 0.5 Km % 6 Km 5.76 Km
NON DIMENSIONALISED VALUES
! ! i
Wavenumber l ,@l ﬁz 83 Tropopause h

(3. 654, 0.063)

10.6

.12

5.3

1
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Fig. 7. The Q profile for the conditions of Feb. l5th; 1968 in Coloradc,

together with an approximation to the atmospheric profile.
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