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ABSTRACT

Chapter 1 contains an introduction to the problem of
discriminating between alternative statistical models, and reviews
previous work.

Chapter 2 is devoted to a comparison in the single sample case
between the asymptotic procedures proposed by Cox and by Atkinson.
General results are obtained on the consistency of the tests derived
from the two methods. The adequacy of the asymptotic results for
finite samples is investigated and some conclusions reached, through
examination of the terms which differentiate the two procedures.
Empirical results are also discussed. The two methods are used to
derive tests and for these, empirical simulated results are obtained
for the first four moments, the power and the significance level
attained. From the analytical and empirical results genheral
conclusions are given.

In Chapter 3 a generalization of Cox's method is used to derive
tests for regression models. The tests developed are generalizations
of those given in Chapter 2. The efficiency of the estiﬁators of
the regression coefficients when using a false model in relation to
the true model is investigated. An example of the choice of a
survival model for patients with a brain tumour is given. Finally,
it is shown that Cox's method can be generalized for dependent
observations forming a Markov process and some related applications

are suggested.
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Chapter 1

INTRODUCTION AND BACKGROUND

1.1 Preliminaries

Let y = (yl,...,yn) be independent observations from some unknown
distribution F. Suppose that it is desired to test the null hypothesis
Hf : F E‘yf, wherefyf is a family of probability distributions having
density f(y,g) against the alternative hypothesis Hg ¢ F Ef;g, where
3% is another family of probability distributions having density
g(y.8).

The familiesE;f and.Sg, are assumed separate, i.e. an arbitrary
member of one family cannot be obtained as the 1limit of menbers of

the other. Here o and B are unknown vector parameters indexing the

-

members of the families. This problem was first considered by Cox
(1961, 1962) who developed an asymptotic test for this situation based

on the maximum likelihood ratio.

If Hf is the null hypothesis and Hg'the alternative the test

statistic considered was

T%(C) - zf(é) —»zg(%) ~ E;{zf(g) - zg(gu)} , (1.1.1)

~

A

where o and B are respectively the maximum likelihood estimators of o

~ ~
A

and B, Zf(u) = log fly,a), zg(s) = log gl(y.B), B, is the probability

limit of B under Hf, Ea denotes the expected value under Hf and

~

dlog g(y,Ba)

~ o~

(1.1.2)

?
i
: O

B, 3p'

~

. s ¥ . .
Cox showed that under certain conditions Tf(C) 1s asymptotically normally

distributed with mean zero and variance

LR AR RN

~ -~ ~

\
PV Co s (1.1.3)

where
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When Hg is the null hypothesis and Hf is the alternative

hypothesis, the test statistic is, in an analogous notation,

T-g(c) =4 (B) - zf(a) - Ea{zg(g) - 2

} .
o (B . ; (ag) | (1.1.4)

~

f

~

which is asymptotically normally distributed with mean zero and

variance
LT} =V - }- ¢ .1,
VoI = Vglagle) ~ aelag) = GV, € (1.2.5)
where
3z (B) ag _(B)
= ' - & 1_,)l. 8%
Cs C°"B{£g(?) 2elag), —5g } Ve = Vg) g

~ ~ ~ ~ ~

Here ag is the probability limit of o under Hg‘
Another approach'suggested‘by Cox was based on the comprehensive

family of density functions which are proportional to

{f(y,a)}l'{g(g,g)}l—x

~

which reduces to Hf and Hg in the special cases when A = 1,0. This
approach was developed by Atkinson (1970). He derived a test based on
the score function for A. The distribution of the test statistic was
derived under the null hypothesis A=l (or A=O).énd for this a éonsistent

estimator for B (or a) was chosen. He has shown that under the null

hypothesis these tests statistics are asymptotically equivalent to Cox's

test statistics. The resulting test statistic is
% - N _ R ) _
ff(A) lf(?) zg(?&) E&{lf(g) lg(éa)} 3 (1.1.6)

~ -~

which under Hf is also asymptotically normally distributed with mean

zero and variance again given by (1.1.3). Here B. is a consistent

a
estimator Tor B . -

~

~

When HG is the null hypothesis and Hf the alternative, the test



statistic 1s

(a.) - B {2 (B) - 2 (a
T -3 B g . £ .8

~

Tg(A) = zg(%) -2 Y . (1.2.7)

vhich is asymptotically normally distributed with mean zero and
variance given by (1.1.5). Here o, is the estimator for o
"8 "

We can, therefore, consider

) =1 . 21
Tf(j) = T§(j) [Va{T§}] z ., Tg(j) = TZ(j) [VB{TZ}] 2 ,(1.1.8)

~ ~

for j = A,C, as approximately standard normal variates and perform
the tests in the following way. . A large negative value of Tf(.)
indicates a departure from Hf in the direction of Hg. A large
negative value of Tg(.) indicates a departure from Hg in the direction
of Hf. Large negative values or large positive values for both Tf
| and Tg would indicate that the sample 1s inconsistent with both'Hf and
Hg. A large negative value of one of Tf(.) and Tg(.) together with
a large positive value of the other would also indicate departure from
both models.

It is assumed that observations are to be used to test the null

hypothesis H,. and that it is required to have high power for the

hif
particular alternative hypothesis Hg. In addition to the answer to
the tests 1t 1s also useful to look at the numerical value of the log

~

likelihood ratio Zf(é) - zg(g), which is of direct interest in a pure
discrimination problem.

For the remainder of Chapter 1 some properties of the models
frequently used in later chapters will be considered. At the end of
the chapter some related work is reviewed.

In Chapter 2 the tests of separate families of hypothesis are
considered in the case of independent identically distributed observ-
ations and a comparison is made between the procedures proposed by

Cox and by Atkinson. General results are obtained on the consistency

of the tests derived from the two procedures. It is shown that under



the alternative hypothesis Atkinson's test is not always consistent.
The adequacy of the asymptotic results for finite samples are
investigated and some conclusions reached, through examination of
the terms which differentiates the two procedures.

Fmpirical results are also discussed. Cox derived test
statistics in the case of the lognormal distribution versus the
exponential distribution and for the complementary problem. Jackson
(1968) used Cox's method and derived tests for the case of the log-
normal distribution versus the gamma distribution and conversely.
Atkinson used his method and derived a test for the case of the
exponential distribution versus the lognormal distribution.
Atkinson's ‘method is used to derive new tests for the cases given
by Jackson and for the case of the lognormal versus the exponential
distributions. Further new tests are developed using both Cox's
and Atkinson's methods for the lognormal distribution versus the
Weibull distribution and conversely, and for the case of the gamma
distribution versus the Weibull distribution and conversely. For
the tests presented, empirical simulated results are obtained for the
first four moments, the power and the significance level attained.

From the analytical and empirical comparisons it is concluded
that generally Cox's method is expected to perform rather better than
Atkinson's method.

In Chapter 3 a generalization of Cox's method is usedto derive
tests for independent but not identically distributed observations.
The tests developed in this part are generalizations of those given
in Chapter 2 for the case in which the models contain regression co-
variates., The efficiency of the estimators of the regression
coefficient when using a false model in relation to the true model is
investigated. It is found that asymptotically the test statistics do
not depend on the design matrix and the design problem is separated

from distributional assumptions.
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An example of the choice of a survival model for patients with
a brain tumour 1is given.

Finally, it is shown that Cox's method can be genheralized to
the case of dependent observations forming a Markov process and some

applications are suggested.

1.2 Maximum likelihood estimation for survival models

In this section the distributions and the regression models are
presented for which tests'are developed later in Chapter 2 and 3.
Some results and properties of the maximum likelihood estimators are
given briefly. For a concise presentation the results for the survival
models are derived from those for the generalized gamma regression model.

The generalized gamma regression model can be written

z, 8) —bk Ky, 1P
b a e ™~ bk~-1 Vi
f(yi;a,b,k,e') = ??Ej. *-%- yi exp VT 5.8 (1.2.1)
~ ~i.,
ae

for y;>0, a,b,k>0 and 6' = (62,...,6m). It would be possible to
~ 7. 8
generalize the dependence on 6 in (1.2.1), for example by replacing a et

by h(zi,e) for some known function h( . ). The properties and fitting

of such models will not be explored here.

~

n
For n independent observations (yl,...,yn) we assume I Zij =0
n i=1
(j =1,...,n) and that lim-l T 2 z.=1intZ'Z is a bounded positive

n . ~1 L1 =y
n-re 1=1

definite matrix. Model (1.2.1) is log-linear in that x = log y can be

written
a -1 ~3,71 2
x = log -+ 26 + (Kb ~ + k“b {w - p(x)} ,
with
fw,k) = 1 exp{kw} expl{-e"} (1.2.2)
> r'(k) ’
where

P(x) = d{logl'(x)}/dx etc.
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3 _ 21
Let o = log & + y(k), o = kK *D 1 o q=x"2

;
and e = k? {w- y(k)}
(Prentice 197h). This parameterization allows the limiting case
as k»® to be mapped to the origin (q = 0) and the class to be

extended to negative q, still maintaining a regular estimation

problem. The model can then be written

x =a+ 120 +oe,
with ,
;‘_1_?1:[5; expla 2lae + ¥(a9)} = explae + $(a™ )N (a#0),
flesq) = 1
(2n) 2 exp{- 3 2} (q=0) .
) (1.2.3)

The model (1.2.3) is in the form of a conditional structural
model with an additional quantity q (Fraser, 1968, Ch. L). TFraser's
structural analysis could be used for inferences about (o,q). For
example the marginal likelihood function for q is formally proportional

to

®© o ~e0 X, = 0 — 2.0 dodf'd
ve T 5
121 o 5 (n+1)
) —00

—00

= s

and generally only the integral over o can be performed analytically.
Even for the simple case when q is known, approximations to simplify
the calculations were uséd by Préntice (1973). An alternative
approach would be via thé maximized rélative likelihood function
obtained by maximizing the likelihood function over (o,8) at specified
values of (o,q) but this does not take account of the uncertainty in
(d,e). Here instead in view of the purposes of this section the
classical maximum likelihood results obtained by Prentice (197hk) for
(1.2.3) are used.

From (1.2.3) the log likelihood function for data y = (yl,...,y )

n
is
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)

.
n n (log y.-0~2.0
[n logla|-nlogo-nlogr (q 2y - % logy. + I = "1*J -1
. 1 e g
) 1i=1 1=1
l n log y.—a—z.ew 1
-2y =2 1. -2

2(0,0,9,8"3y) = ﬁ +np(q “)g © - I exp -————37;—-—£— atv(q ) (q#0) »

" i=1 , )

n ;1 D
{tnlogo?-nlogv2m - T log y. - == & (log y-0-2.6)2 (q=0) »
i=1 r #%4a -
\

(1.2.4)
The expression for q#0 is differentiable with respect to «,0,0',q at =0,
and the maximum likelihood estimators of a,0,0' for g=0 can be obtained
from any of the two expressions in (1.2.4).
The information matrix corresponding to the maximum likelihood

estimators of (a,0,q,8') is

I(a,0,q)
1 oy ’
57'2 Z (1.2.5)
where
I R PR
Tla,0s0) = 11, Ty Ipgl o
i3 Taz Ia3
-2y 3 -2 - =2
_1 _ 1y (g ) 1 3 (g ), W' (g %) -2v_
I11 =0 122 = ;TFK~{§T-+ l], 133 = ‘EL—%F—“ +‘JL7§¥_‘{¢(Q )-q?)
: -2 - -2
_ g _2fv(gt) 1) 1 _ (g c) L.
T1p =52 I3 ® GE__{ér__ EFJ o> 123 thk_{%F_‘ 1] (1.2.6)

In Section 1.1 it was mentioned that in the later chapters tests are

derived for a null hypothesis H_, when high power is required for the

f
particular alternative Hg. The results (1.2.4), (1.2.5) and (1.2.6) arc

all that is needed to present the models to be used later. The para-
meterization most commonly used will be chosen and for these new paramcters
the corresponding information matrix is found by.a straightforward application
of the chain rule for derivatives to (1.2.5). Substitution of these new

parameters in (1.2.4) will give the log likelihood functions of the models

of interest. Trom these the maximuw likelihood estimators are obtainced.
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A Lognormal survival models

(i) /For q=0 and 6=0, (1.2.5) becomes

1/02 o)
I(0,039=0) = n
0 2/02
and,for the transformation a=o, and o = Vae,
l/oc2
I(al,ae) =n x
0 1/(202) (1.2.7)
c

The log likelihood function obtained from (1.2.4) and the maximum

likelihood estimates of (al,ae) are

. n n ‘
w) = - B - /o - R g )2
zL(al,ae,y) = - 5 logo, ~ nlogy2m .E logy; = 3 ‘E (logyi al) R
i=1 2 1=1
n n ~
- 2
X iEllogyi X iEl(logyi ai)
l - .__—__n s ae = n . (1.2.8)

The corresponding density function will be denoted by fL (y;al,ae).

(11) For q=0 and & arbitrary, (1.2.5) becomes

I{0,039=0) 0
I(a,o,63q=0) =

l 1
Q Ey'Z Z
and, for the transformation a=al, o = Vae and 8' = a',
I(al,ae) 0
I(al,ae,a') = -
0 Loy (1.2.9)

*2
By writing L' = (log yi,...,log yn), the log likelihood function

obtained from (1.2.4) and the maximum likelihood estimators of (al,ae,a')

are



. n
1. = .1 - J - .

RL(al,az,? ,X) 5 loge, - nlogvam 'E logy; ~ 34

n 1=1

|

Xloe;yi

oy = A=l ; = (z'2)" 'z 1 o, = l-(L—a 1—z;)1(L—& 1—2;)
n > 7 -~ e n . 1. .. ~ 1 ’

1

1k

M3

-0 ~-7.8)2
(ogy;-oy-2;2)%,

i=1

(1.2.10)

~ha A

The corresponding density function will be denoted by fL(yi;al,az,a').

B Weibull survival models

(i) Por gq=1 and 6=0, (1.2.5) becomes

1/02 1/02
I(a,0,9=1) = n
1/62 1/c2{y'(1)+1}
and, for the transformation o = log Bl +'£éll and 0 = B;l,
2
~ (.o -
85 ;w(z)
» Bl B
1(81,82) =n | . (1.2.11)
w(2) ¥r() + {w(2)}1?
B BS
.1 2 A

Here, the log likelihood function and the maximum likelihood

estimators of (81,82) are

n
2W(Bl’82’¥) = nlog82 - n82 logB1 + (82—1) .Z log vy -

n Bl
Ly.
i=y t

n

n 82
Y3
z B—— .
i=1 i=1{ 1
[ éz n T2
Ly. logy. L log vy.
R . i i . 1
B = 1=l _ 1=l .
2 n Bo n
Ly.
L. i =l l —
(1.2.12)

The corresponding density function will be denoted by fw(y ;81,82).
b

(ii) For q=1 and 6 arbitrary,

I(a,039=1)

I(a’o‘Be ;q.=l) =

(1.2.5) becomes

0

Ey-Z'Z
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and,for the transformation a:sl + Eéll , o= B;l and 0=b!,
2 -~ =
/ ng?, i(2) 2 0
I(B. .B..b') = |-np(2) @)L+ (2)}* N
1°°2 82 .
© 0 B,2'% (1.2.13)

The log likelihood function and the maximum likelihood estimators of

(Bl,BZ,P') are

82
n n Y3
2 (B ,B,,b";y) = nlogB, - nB.B, + (B-1) L logy: - I |[———| ,
LS RAC-RR A S L S e
n [y )%
o T |—<| 1logy "
82 z.b i I logy
n I3 Ay iz le~t) i=
z Zi -zl = 0, 82 = - 8
i=1" “is v n y. |2 n
e . . i
iB
L 1= 67
T x| - ne = 0, (1.2.14)
. 2iZ .
1=1‘e

The corresponding density function will be denoted by fw(yigsl,Bz,b‘).

It may often be convenient both in interpretation and in computation
to diagonalize the information matrix by a suitable parametrization.
If ¢ and 4 are location and scale parameters of a distribution, respectively,

one possible way of obtaining a diagonal information matrix (Huzurbazar,
I

1950) is to take the transformation 4 = w, and ¢ = 7., ~ —lg'ﬂ )

2 1 Ill 2

Iij denotes the (i,j)th element of the information matrix I(ec,d).

where

For the Weibull distribution, the transformation to obtain orthogonal

parameters and the resulting information matrix are:

0=1T2 s 0t=ﬂl"l’(2)"23
1
s 0
0 P (1)
"3

The relation of (ﬂl,ﬂ?) with the more usual parameterization (81,82) is
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1

Bl = exp {ﬂl - ¢(2)ﬂ2} and 82 =5 - With this new parameterization

log y has mean w, - m, and variance ﬂ%¢'(l) while with the usual

1
parameterization it has mean log Bl + g(l) and variance igéll .
2 2
Similar results can be obtained for the Weibull regression model.

C Gamma survival models

(i) For b=1 and =0 we first make the transformation

L 1 I I o

Ol

o = log Yl - log Y2 + ¢(Y2)Y; because o,

gand q are functions of k. Then (1.2.5) becomes

BB Y Y T
3 Y3 Y
—ff— Yl(1~Y3) E[\U(Yg"'l)}
2
Y Y Y V(y,)
-1 13/ _s3, .3 _ 2

I(Yl,Y2,Y3) = Yl(l v3) Ply,) - 21(2 + Y, ¥(yy*+1) v

Yo , vlvp) ' - ,

Fl{‘mgm} Wly,*1) - ; -f%[lwgtb (Y2+1)W2{¢(Y2+1)} ] |

and ,for b=Y3=l

-, -
£ 0
Yy
I(Yl,y2) = . . (1.2.15)
L 2]

The log likelihood function from (1.2.4) and the maximum likelihood

. estimators of (Yl’Y2) are

=

Y

Y n
2 2
% (Y1sYn»y) = -n log T(y,) +n y, log == + (y,-1) L logy, - == I y.,
ARG RS- L) 2 2 Yq 2 7. 1Y =t
n n
Y, =T log v, = Wly,) = log vy - =0 .
(1.2.16)

The corresponding density function will be denoted by fG(yi;Yl,Yg).

(ii) For b=l and O arbitrary, again we first make the transformations

-1 -3 -1 -3
o = - log Y, * w(yz)y3 , 0= Y2?Y3 » Q= Y2§ and 6=g.  Then

Yl



(1.2.5) becomes

17

/ .
. 0 _ _ -
Y,Y3 T4(1-75) Yo lwly,+1)} 0
o) 2y, 5 : w(y,)
1- - g | +1) - 0
Y3(1mvg) wlyp) - Tm Yly,+1) Y 0
| vlv,) 4 . )
] = — — — '
T(Y1 57 558") =n=v, (v, +1)} vy ,+1) Y Vg[lwgrp (v )4y, (o, #2) 321 O
2
YrY
Ol Ol O' _2__3_Z'Z
~ - - n
and ,for Y3=l
-EY 0 T
2 0
. l ~ -
I(yy5Y,58") = |0 n{yly,) - Y—} (1.2.17)
- 2
— o' Yo 2'21
The log likelihood function and the maximum likelihood estimators of
(Yl’Y2’§') are
n
1. = - - - -
25(r137558"5Y) nlog T(y,) + n v, log v, = n ¥y, + (v, l)iillog Vs
n Y-
i
-y Z .
2 4= Y1%%i8
e
n Ve Y n 3
z Z,]C—nel=0, I z! —= =o0'
i=1 %46 i= vt %8 -
e e
n
~ ~ ~ ‘E log yi
log v, - ¥(¥,) = v, - == ,
2 2 1 n (1.2.18)
The corresponding density function will be denoted by fG(yi;Yl,Yg,g).
D Exponential survival models
The exponential models are special cases of the Weibull (8, = 1) and

of the gamma (Y2 =

either of these.

2

1) models, therefore the results could be obtained from




(1)

/

(ii)

18

For o=q=1 and 6=0, (1.2.5) becomes I{c; 0=g=1) = n and for

‘a = log 6§ +P(1), we have

1(8) =;n; , ' (1.2.19)

The log likelihood and the maximum likelihood estimator of § are

e
o

On >
1]

)
o

Y- (1.2.20)

B S 1 1 n

n e

2 (8,y) =-n log § - d
- | i

the corresponding density function will be denoted by fE(yi;G).

For o=g=1 and 6'arbitrary, by taking the transformation

a=68 + P(1) and 6'=d, (1.2.5) becomes

n O' .
I(8,4') = ~ .
~ o' 7'Z (1.2.21)

~

The log likelihood function and the maximum likelihood estimators

of (§,4') are

n Y3
T . — — —
2p(8,a's y) =-nd - T —mm
1=l ~is
e
oy ; n ¥
)3 i 8 . i
i=1 “z.a ¢ 7 0, .E 23 Tz.a 9 ' (1.2.22)
e~1~ 1=1 e"l"

-~

The corresponding density function will be denoted by fE(y;G, ar).

~ ~

Note from (1.2.18) and (1.2.22) that the estimators (Yl,g) and

~ A
(6,d) are the same.

Finally, there is a further property of the maximum likelihood

estimator which will also be used frequently later. This result is

useful in identifying the parameters on which the distribution of the

tests depends and therefore in determining the parameters to be changed

in the simulations of Chapter 2. From the considerations leading to
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(1.2.3), for 6=0 the model can also be written in the forms

e

L o x-o,
5 £( —3 qa) , (1.2.23)
f(x-a; o,9) . (1.2.24)

Tt can be shown that for models of the form (1.2.23) and (1.2.24) the
distribution of the maximum likelihood ratio depends only on q and

(0,a) respectively.

1.3 Some related literature

The problem of testing separate families of hypothesis as
mentioned in Section 1.1 was first considered by Cox (1961, 1962).
He developed the largeVSample procedure based on the likelihood ratio
and also described other approaches that could be used such as a
Bayesian approach and the use of more comprehensive models. In
subsequent papers, Walker (1967) applied these ideas to some time-—
series problems; Jackson (1968, 1969) investigated the adequacy of
Cox's asymptotic results for the tests involving the exponenfial and
the lognormal distributions and gave further tésts involving the
gamma and the lognormal distribution. Atkinson (1969, 19T0) derived
a general method based on the score function for the parameter of a
mixed model including both hypotherized distributions. This mixed
model has also been used by Cox and Brandwood (1959) and by Selby
(1968) who obtained results similar to Atkinson's using the Légrange
multiplier test.

Thomas (1972) gives a computer program for one of Cox's examples.
A simulation procedure useful when analytical results are cumbersome
or impossible is given by Williams (1970 and in his discussion of
Atkinson's 1970 paper).

Invariant and equivalent tests for someproblems of separate fomilies
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are given in Uthoff (1970, 1973), Starbuck (1975) and Quesenberry and
Starbuck (1975). Results treating more than two families is provided
by Hogg, Uthoff, Randles and Davenport (1972). Also, for location-
scale models, simulated results on the likelihood ratio test and other
statistics are given by Weibull (1971), Dumonceaux, Antle and Haas
(1973), Dumonceaux and Antle (1973) and Antle and KlimKo (1975). An
empirical comparison of several procedures for discrimination and of
testing separate families is reported by Dyer (1971, 1973, 197Lk).

For a likelihood approach to the discrimination problem, see
Lindsey (197Lka, 1974b) and for a Bayesian approach with reference to
normal regression theory see Lampers (1971), Zellner (1971, p.306) and
Box and Kanemasu (1973).

Estimation procedures and economic applications for the multi-
plicative models of Section 1.2 was studied by Teekens (1972).
References téuapplications in survival studies are Prentice (1973) and
Holt and Prentice (1974) and further references can be found in Gross
and>Clark (1975). The log-gamma and extensions were studied by

Prentice (197L4), Farewell and Prentice (197Lk) and Prentice (1975).
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. Chapter 2
SINGLE SAMPLE CASE

2.1 Introduction

It has been emphasised in Chapter(l that the problem of interest
is that of testing a hypothesis H agaiﬁst a hypothesis Hg which
specifies the type of departure from Hf thought to be of particular
importance. In this chapter, for y = (yl,...,yn), where the y. are
independent and identically distributed observations, the general
procedures of Cox and Atkinson are compared. Under the alternative
hypothesis the behaviour of the tests is compared through the concept
of consistency. The approach of the distribution of the test
statistics to the limiting normal distribution is investigated
through examination of the terms which differentiate the two
procedures. |

Tests of separate famiiies of hypothesis involving the probability
density -functions of Section 1.2, are developed. Empirical simulation
is then performed on these cases to investigate the adequacy of the
asymptotic theory for finite samples. The sample mean, variance,
coefficients of skewness and kurtosis are compared with fhose of a
standard normal distribution. Values are given of the power function
and significance level attéined at values t = -1.64 and t = -1.28, i.e.
corresponding to 5% and 10% one-sided probability of a standard normal
distribution. Comparison of power is made for values in which the
A and C statistics attained approximately same significance level.

Histograms of the test statistics under the null hypothesis are

presented to show the approach to normality.

2.2 Consistency of the tests

In the general discussion of Section 1.1, it was shown that
under the alternative hypothesis the statistics leading to (1.1.8)

are expected to have a negative mean. This 1s closely related to
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the notion of consistency of g test. A test of a hypothesis H

f

against a class of alternatives Hg is said to be consistent if,
when any member of Hg holds, the probability of rejecting Hf tends
to 1 as the sample size tends to infinity (Cox and Hinkley, 197k,
p.317).

Throughout, only the case of independent and identically
distributed observations and & and B scalar unknown parameters is
dealt with; the same argument applys to the non-homogeneous multi-
parameter case. Further, let f(y,o) > 0 and g(y,B) > O in the
same region, assume the usual conditions for limits and integration
to be interchanged, and finally that the expectatioﬁs involved in
what follows are defined. TFor n observations, (&,é) are the maximum

likelihood estimators of (a,B), B, is the probability limit of B when

H% is true. The log likelihood ratio is

R(a,B;y) = log Lf(a,y) - log Lg(B,y) R

where Lf(a;y) and Lg(B;y) are the likelihood functions for the separaté

models.

Suppose the null hypothesis is Hf and that Hg is the alternative;

from (1.1.1) and (1.1.6) we then have

A A

T?(C)/n ='% R(a,Bsy) -'{fﬁ(a,Ba;X) Lf(a,X)dy}éI . (2.2.1)
T?(A)/n = %’ R(&,Basg) - {IR(a,Bagy) Lf(a,¥)d¥}é1 . (2.2.2)

Under Hg we have, plim a=0y, plim B8=R and plim B“zBa , where in general

a B
B#Ba ; plim denotes limit in probability and we assume g and Ba to be
B
continuous functions. Considering only the terms of order n in

probability, in the expansion of the likelihood function, that is

Lf(a,g) = Lf(a,¥) + op(l),
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A

Lg(B,X) = Lg(B,sf) + Op(l),
\
Lg(B&’X) = Lg(BaB;X) + Op(l).

We have that the test statistics are asymptotically equivalent to

T;(C) - %'[E_R(“B’B;¥)} - f{—R(aB,B B;3:)} Lf(aB;X)dé] , (2.2.3)

o

+ 1 : . .
Tf(A) -3 [E—R(aB,BaB;X)} - f{—R(aB,BaB,X)} Lf(aB’X)di]' (2.2.h)

Since B is a consistent estimator of £ the true parameter value we

also have for n large

L A. L .
JBsy) T (Bsy)

- = - _>_l " . (2-2'5)
Lg(B&,sj) Lg(BaB,sj)

Further, the following relations hold:
f{—R(aB,B;X)} Lg(ﬁ,y)d{ >0 > f{_R(aB’B;X)} Lf(aB;X)dq . (2.2.6)

f{-R(aB,e;g)} Lologsy)ay > f{—R(dB,Bdsgg)} Lf(d6;¥)6¥ . (2.2.7)

S R . - g(z,B) = L i n(e .
plim - { R(aB,B,Y)} flog f(z’ug) g(z,B)dz = = s{ R(aB,B,X)} Lg(6,¥)d¥ .

(2.2.8)

We then have, from (2.2.3) and (2.2.7),
Tf(C) < - %‘[E—R(a8,83¥)} - f{~R(uB,B;¥)} Lf(as;y)dil.(2.2.9)
Inside the square brackets in (2.2.9) the first term has a positive mean

and combining (2.2.6) and (2.2.8) we see the full expression in

e, e - + . .
brackets to be always positive and so Tf(C) will always converge in
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probability to a negative value under any member of H .
. + . .
Now, applying the same argument to Tf(A), we need an inequality

analogous to (2.2.6) stating

S{-R(e,,B_ 3¥)} L (s,g)dg >_f{—R(aB,Bu v )} Lf(as,g)ag (2.2.10)

Brog- B - .
but this does not necessarily hold, since the left hand side is not
always positive. We then can conclude that for some parameter values,
T;(A) may converge to a positivé value and in thils case 1t will
provide an inconsistent test statistic.

If‘the roles of H

£ and Hg are interchanged, analogous conclusions

are obtained for the statistics T (.).

Example (2.2.1)
Consider the test of the hypothesis that the observations are
from an-exponential distribution against the alternative hypothesis

that they are from a lognormal distribution. Thus we have

the test statistics are (Cox, 1961 p.11T;

=———-1 — e
- () y(2ng,) =P B {3

— 2
(log y‘Bl)

o k]

(2.2.11)

Atkinson, 1970, p.337)

T(C) = B - B + L 10g L2 (2.2.12)
e TP T Py T2 %8 g L 2.2.12
20,

TT(A) = B,=B,~ + =— {B.~B_~ + (B B, ~)2} (2.2.13)
f 1 "lo 282& 2 “2o 1 "lo ’ T
where

~ . @ . , 0 . .n .~
o == Xy., B, == Elogy., B, = I (logy.-B )%,

n o 1 1 n 1=1 1 2 1=1 11

B1+2B,

= = U =

By, = log o + p(1), B, vr(1), a(Bl’Bg) e .

p(x) = {d log I'(x)}/ax, ecte.



If the alternative Hg’ 1.e. the lognormal holds, we have

\

- - ~ B ¥3B,
plim Bl=Bl, plim B =8> plim oa=e , (2.2.14)

plim B,~ = ¥'(1), plim B, = plim {y(1)+log a} =y(1)+B,+3B,.

By substituting (2.2.14) in (2.2.12) and (2,2.13), a simple calculation

gives

plim T;(C) =-% (log By = B, * 0.6567) , . (2.2.15)

B3 N g |
plim T;(A) = 8(])'%1) + Lt y)(éz)l(lgj (l) 82 + {ﬁ%—)— - l - \b(l)}

0.0759 B3 - 0.371k g, + 0.176k . (2,2,16)

The expression (2.2.15) is negative for all B while (2.2.16) is negative
only for g, in the interval (0.5401, 4,348L). Table 2,2.1 gives some
gimulations confirming the second result empirically,

T

Table 2.2.1 Probability limits and mean of Tf

A) under H
g

+
) MUTe () /1)

32=o.2 B,=0.5 82=o.8 82=h.o B,=5.0

20 0.1134 | 0.0292 | -0.0432 | 0.0205 | 0.3127

100 0.1092 | 0.0170 | -0.0641 { -0.0359 | 0.2600

200 0.108L | 0.01L40 | -0.06k4k { —0.0580 | 0.2281
plim T;(A) 0.1072 | 0.0117 | -0.0701 | =0.0916 | 0.2208
plim T;(C) ~0.5764 |-0.5182 | —0.3364 | -1.9570 | -2.7338

Results from 500 trials. Lognormal deviates obtained using

the Box-Muller transformation from unifTorm variates.
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It 1s interesting to note that

plim T;(C).i plim T;(A).
This is a general result and follows from (2.2.5). However, this
alone does not imply that Tf(C) has higher power than Tg(A) since

the variances under the alternative hypothesis are not equal,

2.3 TFinite sample comparisons : general discussion

The usefulness of any large sample result is to be assessed
by its application to the real problem of finite samples. It is
common practice in statistics to use a technique which has well
understood asymptotic properties, in the hope that the technique
will yield reasonable approximations for finite samples. Explicit
small sample results are usually presented by performing simulations on the
asymptotic theory, or by analytical methods when the underlying
distribution has some simple form.

The purpose of this section is to give a general, although very

qualitative, explanation of the simulation results on the behaviour

of the A and the C statistics, obtained in the next sections. First,
the approach to normality is investigated. For simplicity of
notation @ and B are assumed to be scalar. The statistics (1.1.1)
and (1.1.6) can be approximated by expansion of Ea{zf(a)} and

E&{zf(sa) around o, Qf(a) around o and of Qg(sa) around B and B; to

give
TH(C) = T, + U (2.3.1)

(2.3.2)

+3
L T
=
1
3
5

+
(el
o

+
)
|
=

& Y ’
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where T, [Cox, 1962, eq. (16)] is the sum of deviations of

‘log f(yi;a) - log g(y;EBa) from its regression on 9 log f(yi;a)/au,
and is of order Vn in probability, whereas the other terms are of
order 1 in probability.

Now, Tf is a sum of independent and identically distributed
random variables of zero mean and therefore quite generally a
strong central limit effect can be expected to operate, unless of
course, the individual components have a markedly badly behaved
distribution. The properties of Un depend on the particular
application but often it also will approach its limiting form

quite rapidly. In any case it affects both Tf(A) and T.(C). The

f
last term in (2.3.2), at least in some applications, may have a
markedly nonnormal distribution in samples of moderate size and it is
the poof behaviour of this term that accounts for the slower
convergence of the distribution of Tf(A). In particular for some
of the distributions investigated in this chapter azg(sa)/as requires
a large sample size to become relatively small.

The previous discussion was concerned with the approach to

normality of the distributions of T_.(C) and Tf(A); this is related

f
to the third and fourth order central moments. To comment on the
lower order moments a different argument will be used. The statistics

(1.1.1) and (1.1.6) can be written respectively as

T5(c) = 24a) - 2.(8) - By {2g0a) - 2 (83))
THA) = 2.(a) - 2,(8;) - By (2,(a) - 2. (85)). (2.3.4)

It has already been pointed out by Atkinson (1970, p.335) that when o
is estimated, both statisties in (2.3.1) will be biased, but that T}(A)
will be less biased. It then follows that the asymptotic variance

(1.1.3) is expected to be approached more rapidly for T?(A) than for T@(C)
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since in the theory the variance was calculated as if both statistiecs

\\

were unbiased.

There is a final comment on the adequacy of the normal approx-—

imations for the distribution of T.(.). The moments of the test

f

statistics were evaluated from expansions leading to (2.3.1) and

(2.3.2); where judged necessary, this can be refined by taking

further terms on the expansion. This can happen when for example

some terms deleted were not negligible.

If the roles of H, and Hg are interchanged analogous conclusions

f

are obtained for statistics T (.).

2.4 Tests for the lognormal and exponential distributions

A Test statistics and their distributions

The null hypothesis, H

and the alternative H_ that 1t is exponential, that is

E

H. : fL(X;ul,ue) against H

L E

HL’ the estimator § converges : in probability to

that 1s 6L is the mean of the lognormal distribution.

HL we have (Cox, 1961, 1962)

N

8
% = L
TLE(C) n log 6£ .

* 1 = -1 - -2
vy {TLE} n (e 1-a i

and after some calculation

8
N - —
TLE(A) n [Gi 1] R

is that the distribution is lognormal

fE(y;S), iy see Section 1.2. Under

(2.4.1)

Further, for

(2.4,2)

(2.4.3)
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~

- 0‘2
where Gi = exp {ul + 75}
change roles so that the null

Now, suppose that\ﬁi and Hy
distribution is exponential and the alternative is lognormal
Under HE’ the estimators “l and a2 converge in probability respeclively
to
g = P(1) + log § , Gyp = P' (1) (2.h.4)
that 1s % g and Gy are the mean and variance of the logarithm of a

random variable with an exponential distribution, where
For H_ we obtain (Cox 1961, 1962)

Pp(x) = {d log T'(x)}/ax, etc. B
~ a
EL 1 lE ZE

(2.4.5)

), er(1) } 0.283kn,

Vv {T% } =n {w'(l) -+ -
EEL 20 (1) hpr(1))2

and similarly (Atkinson, 1970)

WES (2.4.6)

R Lad 1 ~ ~
% = R g - - a2 -
T L(A) n {al om + S [a2 Onp * (dl o
2k
= ' (1).

where ap = v(1) + log § and o,

Then, asimptotically the statistics,

(2.4.7)

-

2 (i = A,C) ,

TLE(j) = To(3) v HTEN
A,C) , (2.4.8)

Nlwd

5 (§) VR HTE N (3

and (2.4,.8) under

have a standard normal distribution, (2.4.7) under iy

HE'
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B Fmpirical results

Now the empirical investigations for comparison between TLE(C)

and T._(A) and between TEL(C) and TEL(A) and on the adequacy of the

LE(

asymptotic results are discussed.

Results on the null distribution of TLE(C) and TL (A) and on

E
the distribution of TEL(C) and TEL(A) under the alternative were
obtained as follows. Random independent variates uy from a uniform
(0,1) distribution were generated. Then the Box-Muller transformation
was applied to obtain independent variates ti from a standard normal
distribution. Taking y; = exp»{dl + /E;'ti} gave independent variates
from a lognormal distribution. From the comments on (1.2.24) of
Section 1.2 only dl = 0 needed be considered since it follows that the
distribution of the test statistics in this case depends only on a, .
Some different values of de were considered. Then TLE(C), TLE(A),
TEL(C) and TEL(A) were calculated under the lognormal hypothesis HLf
For various sample sizes n, 500 trials were obtained and from these
were calculated (i) the first four moments of all tests, (ii) the
significance level attained by TLE(C) and TLﬁ(A) at t = -1.64 and

t = ~1,28, (iii) the power of T_ (C) and TEL(A) at t = ~1.64 and

EL
t = -1.28. .

Results on the null distribution of Tp (C) and T ;(A) and on the
distribution of TLE(C) and TLE(A) under the alternative were obtained
in an analogous wvay. Here the transformation y = ~§ log y; eave
independent variates from an exponential distribution. From the
comments on (1.2.24), it follows that the distribution of the tests
is independent of the paraméter §. TFor various sample sizes n, 1000
trials were obtained with &=1.

The results are sumarized in Tables 2.4.1 to 2.k.8.

The sampling moments of T

LE
those calculated by Jackson (1968). Also, results of Table 2.4.2 arc

(C) and TEL(C) are in agreement with

in agreement with Atkinson (1970, Tablec ).
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Results of Tables 2.4.1 and 2.4%.2 show that the mean and
variance of the A statiStics are in closer agreement with the
asymptotic values than are those of the C statistics. The
measures of skewness and of kurtosis of the C statistics are
however in closer agreement with the asymptotic values than are
those of the A statistics. This is to be expected in view of
the discussion of Section 2.3.

For o, = 0.2 in Table 2.4.4 the statistic TEL(A) shovs a
positive mean under the alternative hypothesis, which agrees with
the results of Section 2.2 about consistency of the test.

Two further points can be noticed from Table 2.4.1. For Oy

increasing it seems that the approach to normality becomes slower

for both statistics and that it affects TLE(A) more than T E(C).

L
For the latter case, the term which differentiates TLE(A) from
TLE(C) is
n al+%a2 n
T (y. - e ) . o, +30
2y (6r,y) = 5L el 9 (2.4.9)
38 "B 1Y & +38, T e e, ' St
(e )2 (e )2

It is well known that the sample mean is an inefficient estimator of

the mean of the lognormal distribution. The variance of § is of
o v
order (e 2)3 and, for large a,, the numerator in (2.4.9) will then

require a large sample size to become small.
When o, is increased, the adeguacy of the asymptotic results

for both TLE(A) and TLE(C) is now investigated, For this, higher

order terms are examined as explained at the end of Section 2.3.

The term

RO 2
5 (8 GL)

324_(83y) 5 - 8.)2
——— =2 I (2.14.10)

962 §

o o
2 . 2
has mean of order e “/n and variance of order (e )s/n2 and as before
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will not be negligible for large a Further terms could be

o
investigated, but (2.4.10) shows the magnitude and the importance

as 0, increases of the deleted terms. Fortunately values which

2
arise in practice seem to be quite often in the neighbourhood of
Uy = 0.5, and for these the results seem adequate.

For the purpose of power comparisons Table 2.4.7 shows that
except for o, = 2, the significance levels for both tests are of
about the same order. Thus, it is meaningful to compare the
power in Table 2.4.5 and it then follows that T 5
recommended. Whén the hypothesis HE changes roles with H

(C) should be

L’

Table 2.4.8 shows that the significance levels do not permit

comparison of the results for T__(A) and Tr (C) in Table 2.4.6.

EL L

However, from the results on the inconsistency of T__(A) in

BL

Section 2.2 only for certain values of oy TEL(A) could be recommended.
(c).

It seems reasonable, therefore, in practice to use TEL
From a more practical point of view the statistics C are also
to be reéommended because the significance levels attained agree
more élosely to those of the standard normal, and this is what would
be hoped in a specific application.
Figures 2.4.1 to 2.4.4 present the histograms of the data of
Table 2.4.1 and 2.4.2 showing clearly the approach to normality and

the effects of increasing o,



Teble 2.5.1 Nl distribution of 'rm(c) and’t (A),

‘ w00/, ) u2{T3‘E(.)[RL} CoylT Yy B,(r o h )
n |Trel-)]0,=0.2 | a,=1.0{ a,x2.0 fa,20.2 [,=1.0 a,%2.0 {2,0.2 [0,=1.0 |u,=2.0 [3%0.2 [a,71.0 [a,22.0
20 c -0.116 | ~0.179 { ~0.210 | 0.629 | 0.%28 | 6,253} 0.481 | 0.856 | 0.971 | 3.601 | b4.283 | 4.717
A -0.113} -0.156 | -0,164 } 0.631 | 0.448 | 0.257 | 0,507 | 1.157 | 1.603 | 3.658 { 5.373 [ 7.171
sol ¢ [-0.108]-0.24k{-0.173 | 0.955 | 0.729 | 0.478 ] 0.332 | 0.799 | 1.018 | 3.301 | %.248 | L.g93
A -0.105 | -0.120 | -0.119 | 0.956 } 0.755 | 0.5%2 | 0.349 | 1.027 { 1.734 | 3.324 | 5.040 | 8,718
10 ¢ -0.071 | ~0.123{ =0.155 | 0.931 | 0.757 | 0.55% | 0.373 | 0.756 | 1.046 | 3.279 | k.co9 | 4.892
A -0.069 | -0.104 | -0.108 | 0.932 } 0.777 | 0.622 | 0.384 | 0.916 | 1.630 | 3.296 | 4.51L | 7.761
150 c -0.083{-0.100 [ -0.10% | 0.903 { 0.771 | 0.686 | 0.266 } 0.671 | 1.053 | 3.119 | %.025 | 4.910
A -0.081 | ~0.085 | ~0.057 | 0.903 | 0.783 | 0.788 | 0.275 | 0.798 | 1.645 { 3.129 | 4.L4%0 | 7.795
200 c -0.035 | -0.086 | -0.125 | 0.917 | 0.811 | 0.643] 0.120 | 0.49k | 0.883 | 3.056 | 3.419 k. L5y
A -0.034 } -0.072 } -0.088 } 0.917 | 0.820 | 0.68k | 0,127 | 0.592 | 1.252 | 3.062 | 3.618 5.852

Results from 500 trials.

Table 2.%.2 Full distrivation of T, (C} ana Tpy (A)-

n TEL(.) wy (T C)/HCY ue(TEL(.)/HE} *{A(TEL(.)/HE} 8,(Tgy Lo/}
20 c -0.kl 0.708 0.37h 3.6L5
’ A ~0.057 0.934 2,479 15.528
50 c -0.250 0.859 0.618 4.k20
A 0.092 1.092 2,430 17.708
100 c -0.167 . 0.933 0.37% 3.198
A 0.069 1.025 0.9€4 5.086
10 | ¢ -0.193 1,032 |, 0.7 3.736
A 0.603 1.080 ) 1,081 6.020
200 | ¢ -0.129 0,96k 0.388 3.340
A 0.037 1.009 0.775 4.095

Results from 1000 trials.

£e



Table 2.4.3 Distr;butxv:p'of TI.E(C) and TLE(A) ur'xder altcrnative Hp.

e

n 'I‘LE(.) ul(TLE(.)/lE) uz(TLE(.)/HE} ’1(TLE(°’/HE’ GC(TX.E{‘)/HE]
20 [ -0.823 0.157 0.80L 5.25L
. A -0.729 0.125 0.913 6.262
50 c -1.%64 0.12 . 0,530 . koot
A -1.292 0.100 - 0.43h L 533
100 c -2.156 0.151 0.331 3.886
A -1.90% 0.096 0.310 4,260
150 c ~2.668 0.171 0.207 3.908
A ~2.367 0.105 0.236 L.301
200 c =3.117 0.15% 0.261 2.200
A -2.762 0.083 0.218 3.3713
Results from 1000 trials, l
Table 2.4.4  Distributicon of TEI'.(C) and TEI.(A) under alternative B '
I ul('rn(.)/HL) "‘2“}::,"”“:,} 11(TLE(.)/HL) BQ(TLE('”HL)
=t -
<x2=0.2 az=1.0 02=2.0 a?=0.2 :2=1.0 02=2.0 c:,=0.2 02=1.0 a2=2.0 a2=0.2 u2=1.0 u2'2.0
20f ¢ - 5.283} -1.514 |-2.173 |} 1.157 | 0.188 | 2.661 |[-0.518 |-1.001 |-1.730 | 3.L0B | 5.668 7.662
A - 0.953] -0.644 [-1,382 { 0.031 | 0.567 { 0.986 |-1.026 -1.330 -0.612 | 4.713 | 5.722 | k.221
so| ¢ |- 7.875] ~2.275 [~3.858 | 1.210 | 0.531 | k.570 |-0.352 |-0.89% |-1.51% | 3.061 | 5.312 | 6.316
A 1.bu9) =1.34% J-2.781 | 0.083 | 0.760 | 1.630 | -0.840 [~0.940 [-0.843 | %.821 | 4.327 | 4.670
100 [ -11.093[ -3.218 {-5.692 { 1.130 { 0.641 | 6.471 {-0.288 [-0.862 {-1.k25 | 3.201 | 4.620 | 6.103
A 2.052) -2.019 {-k.3k2 | 0.039 | 0.978 | 2.483 {-0.767 |-0.856 | -0.835 | L.732 | L.187 | k.056
1501 ¢ -13.b10] -3.930 |-7.068 | 1.202 | 0.609 | 6.256 | -0.153 {~0.535 |~1.038 | 3.095 | 3.6LkL | L.L37T
A 2,488 -2.535 |-5.518 | 0.0b2 | 0.917 | 2.682 ) -0.583 {-0.590 {-0.748 | 3.757 | 3.231 | 3.955
200 c -15.505{ -b.5k9 |-8.226 { 1.142 | 0.657 | 6.563 ) -¢.218 |-0.437 |-1.061 | 2.923 | 3.556 | L.572
A 2.8%0) -2.952 {-6.474 | 0.042 | 0.984 | 2,034 [-0.328 {-0.618 [-0.660 | 2.833 | 3.uLk | 3.653

Results frea 500 trials,



Tatle 2.5.5 M1l : Lognormal; Alternative:exponentiel,Tests:

TLE(C). TLE(A). Pover at t w =1.64; t = -1,28,

) Power function
n T, .
LE SL=0.05 | SL=0.10,
20 c 0.011 | 0.105
A ©.003 0.036
0! ¢ 0.3%1 0.717
A 0.117 0.536
100 c 0.91% 0.982
A 0.826 0.969
150 | € 0.987 { 0.958
A 0.581 0.998
200 c 1.000 | 1.000
A 1.000 | 1.000

Fesults from 100 trials.

Teble 2.4.7  Kull: Lognormal; Alternative exponential.

Tests: TLE(C). TLE(A).
Cne side significant levels at t = =1.64; ¢ = =1.28.

Tadle 2,4,6 Null : fxponential; Alternative : Lognormal,
Tests : TEL(C)' TEL(A).

Significance Level

a Tu‘.(‘) SL=20.05 SL=C.10
@,=0.2 | @,21.0 [a,=2.0 | a,=0.2 ]a,=1.0 |a,=2.0
20 c 0.015 0.00% 0 0.056 ¢.018 c.oCh
A 0.016 0.002 o) 0.054 0.018 0
S0 c .052 0.01% 0 0.116 0.06L 0.02%
A 0.050 0.010 0 c.i% 0.05k 0.008
100 c 0.028 0.0! 0.004 0.03%6 0.048 0.020
A 0.028 0.018 0 0.0 0.042 0.014%
150 [ 0.048 0.018 0.006 0.100 0.054 0.03%4
A 0.048 0.015 0 0.100 0.048 0.020
200 [+ 0.035 0.004 0.008 0.102 0.076 0.030
A 0.036 0.022 | 0.002 0.102 0.062 | 0.026.

Results from SCO trials.

Power nt t % -1.64; -1.28,
) Pewer function
T Ty () 5L=0.05 5L=0.,10
a?=0.2 a.?=1.0 ug=2.() a2=0.2 u2=l.0 u2=2.0
20 C 1.000 } 0.372 } 0.55G | 1,000 | 0.598 | 0.674
A. s} 0,086 | 0.388 0 0.156 | 0.530
50 C 1.000 } 0.826 | 0.906 | 1.000 | 0.924 | 0.960
A 0 0.318 | 0.826 0 o0.k70 | 0.900
100 ¢ 1.000 { 0.994 | 0.98¢ | 1.000 | 0.998 | 0.998
A 0. | 0.638 ] 0.982 2 0.758 | 0.992
150 ¢ 1.000 | 1,000 | 1.000 | 1,000 | 1.000 | 1.000
A 0 0.830 | 1.000 0 0.928 | 1.000
200 C 1.000 | 1.000 | 1,000{ 1.000 { 1.000 { 1.000
A 0 0.928 | 1.000 0 0.972 | 1.000
Results from SO0 trials.
Table 2,4,8 Null: Exponential; Alternative lognormsl.
Tests: - TE!;(C)' 'I‘EL(A)-

One sided significence levels at ¢ = -1.64;

. Significance Level

n 7. (.)

EL §L=0.05 | SL=0.10

20 c 0.059 0.134
A 0.003 0.039
50 c 0.049 0.132
A 0.007 0.039
100 [ 0.049 -0.108
A 0.019 0.052
150 [ 0.066 0.125
A 0.026 0.078
200 [ 0.056 0.112
A 0.024 0.066

Results from 1000 trials.

t = ~1,28,

3
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FIGURE 2.4.L- Nuu. DISTRIBUTION OF T, A<} = LOGHORMAL vs EXPONENTIAL 1%5° 0.2 ) 500 eretd,
(nae Appeadis B o

FICURE 2.4.2 - NULL DISTRIBUTION OFT S \ » LOGHORMAL va umu:mm,q,.u SO0 trials,
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_FIGURE 244 - RULL DISTRIBUTION of T:é" - EXPONENTIAL va LOLHDRMAL , 1000 teuls (oe Aol ‘.
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2.5 Tests for the lognormal and gamma distributions

A Test statistics and their distributions

The null hypothesis, H_ is that the distribution is lognormal and

L
the alternative H, that it is gamma, that is H s fL(y, o 02) against
HG : fG(g, Yl, YQ); see Section 172f Under HL’ the estimators Yl and Y2
converge in probability to Yq1, and Yor, respectively, where
= 3 - = - = 1o _»
Yyp = exploy +deob, log vy~ Wvy) = log vyp - o) = i,
(2.5.1)
Thus, Y, converges to the mean of the lognormal distribution and the right

hand side of the equation for Y is the logarithm of the ratio of the

2L

arithmetic mean to the geometric mean of the lognormal distribution. Further,

for HL we have (Jackson 1968)

TfG(C) = n{log I'(y,) - vzw(vz) + Y, — log F(YEL) + YQL\P(YQL) = Yorlbs

%2 o3 (2.5.2)
' % = 2 _ _ __2 .5.
VplTEel = mvzp e L-%% -7
and after some calculation,
Yl
* = 2 S l o e
TH(A) = nvp {5 . (2.5.3)
: 1L
A " lh A~ : A A - :l_h
where YlL = exp{al + 202} and YZL gliven by log Y2L w(sz) 2&2.
Now, suppose that HL and HG change roles so that the null distribution

the estimators o

is gamma and the alternative is lognormal. Under HG’ 1

N

and o, converge in probability to

O = w(ye) - log — , toe = w'(ye) , (2.5.4)

respectively. That is % and O, are respectively the mean and variance

of the logarithm of a random variable with a gamma distribution. TFor HG

, we have (Jackson 1968)
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Q,
T* (C) = 2 10g —5 ,
GL 2 GEG
, Prer(y,) Y {wrr(y, )}
VolTg } =n f - 2 2, ~ 2, (2.5.5)
h{w'(Yz)}z Lyt (v,) 32 v, 0 (v, ) -1}

and after some calculations

-~

T* (A) = n

L -1y, (2.5.6)

%G

A

~

A Y A
= - 2 A=yt
where A= w(yz) log 7= 5 Gpq = ¥ (Yz) .

It should be noted f%om the relation

A

o =1P(‘;)‘106‘Y‘2‘=1P(Y”)-108'Y‘g£=0‘“
1 2 - 2L Y,2 T 16
Yl 1L

that for Y, = 1 ve obtain Yo, = 1 and that the expressions (2.5.1) to
(2.5.6) recover the corresponding expression of Section 2.h.

Finally, asymptotically the statistics,

-3 '
T aly) = TELy) [V {TE ] T (y = A,C) (2.5.7)
-1
Top (3) = T5 (3) V(T N % (G =4,0) (2.5.8)

have a standard normal distribution, (2.5.7) under HL and (2.5.8) under Hae

B Empirical results .

The empirical results for comparison between TLG(C) and TLG(A) and
between TGL(C) and TGL(A) and on the adequacy of the asymptotic results
are now discussed.,

Results on the null distribution of TLG(

C) and TLG(A) and on th;
distribution of T, (C) and T, (A) under the alternative, that is the
lognormal distribution, were obtained in a manner similar to Section 2.4,
Here again from (1.2.24) it follows that the distribution of the test
stétistics depends only on o,. For ul'= 0 and each different value of Gy

500 trials for various sample sizes were obtained.
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In a similar way the results on the distribution of TGL(C) and
TGL(A) and on the distribution of TLG(C) and TLG(A) under the alternative,
that is the gamma distribution, were obtained. Here random variates
from a gamma distribution were obtained from Uy independent uniform (0,1)
randoq;variates, as follows. For v, integer the transformation
y. = fz (—Yl) log u. gave independent variates from a gamma distribution

1 4=

with parameters Yy, and Y,. For Y, non-integer the method described by
2 2

1
Whittaker (1974) was used. Again, from the comments on (1.2.24) it
follows that the distribution of the test statistics depends only on Yoo

For v, = 1 and each different value of Yoo 500 trials for several sample

1
sizes were obtained.

For calculating the test statistics the functions I'(z), w(z), ¢'(z),
P'*'(z) and P'''(z) are needed. For these the approximations given in
Abramowitz & Stegun [1972, eq.(6.1,h1), (6.3.18), (6.k.12), (6.4.13) and
(6.4.14)] were used. Further, for any z the approximations were used
for z + 8 and I'(z) and w(n)(z) obtained from the relations T'(z+l) = zI'(z)
and w(n)(z+l) = w(n)(z) + (—l)nn!z_n—l. The approximations get better
as z increases and for values as small as z = 0.2, Pp(z) is correct up to
four decimal places and all others are correct up to at least nine decimal
places.

To solve the maximum likelihood equations and other equations for
calculating the test statistics, Newton's method was used; the iterations
were stopped when the equations differed from zero by less than 0,.001.

No problem of convergence was encountered.

The results are summarized in Tables 2.5.1 to 2.5.9.

Results of Table 2.5.1 and 2.5.2 generally agrees with the discussion
of Section 2.3 on the behaviour of the A and the C statistics. The A
statistics have a better agreement for the two first moments while the C

statistics have a better agreement for the skewness and kurtosis coefficients.
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Two further points can again be moticed from Table 2.5.1. Similarly
to Section 2.4, for a, increasing it seems that the approach to normality
becomes slower for both statistics and it affects TLG(A) more than TLG(C).

Here the terms which differentiate TLG(A) from TLG(C) are

3 n(Yl—e l 2)

L _ ~ A, = A .
3, MapYorsy) = Yor T = ’ (2.5.9)
(e L 2 2)2

o.+3a_ A
1272

8 A nle ;)

, ' o L %o
and one of the higher order terms is
2, (o =, s 2
Yl YlL 2 2 Y2 ~ . 'Sol
e Y1

For the same reason given for (2.h,9), it is required a large sample size
for_(2,5.9) and (2.5,10) to become relatively small. The mean and the
variance of (2.5.11) is of the same order as that of (2.4.10) and similarly
shows the magnitude and importance of the neglected terms.

For the parameter values of Tables 2.5.3 and 2.5.4 the means of the
tests TLG(A) and TGL(A) are negative and the tests are then consistent.

A general investigation on the consistency of these tests is not simple
and for TGL(A) it does not seem possible since the estimates are obtained
by iterative processes.

Exact comparison of the power of the A and the C statistics would
require the same significance level on both statistics for all parameter
values. Here instead an approximate argument was used. The power and
the correéponding significance level were compared at that parameter values
for which both distributions have a similar shape. Although no conclusion

can be inferred for values not used in the simulations, it would be expected
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that for values corresponding to shapes which are more dissimilar between
the two distributions, a higher power would be attained and a closer
agreement to the asymptotic significance level obtained.

For small values of o, for the lognormal density function and large
values of Yo for the gamma density function both have shapes similar to
that of a normal density function. For the power of TLG(A) and T (c),
Tables 2.5.7 shows that for ay = 0.1 and a, = 0.25 the significance levels
are about the same for A and C. Table 2.5.5 gives values corresponding
to Yo = 5.0 and Yo = 10.0 and i£ follows that there is not much‘difference
in the power of the two statistics. The difference could well be due to
the slight difference in the significance levels. Similarly, for the
power of TGL(A) and TGL(C), Table 2.5.8 shows that for y, = 5.0 and Y, = 10.0
the significance levels are about the same for A and C. It follows from
Table 2.5.6 for values ay = 0.1 and a, = 0.25 that again there is not much
difference of power between the two statistics and the difference could
be due to the slight difference in significance levels.

For other values of the parameter, the difficulties are overcome by
defining closeness in another way. Consider as the nearest alternative
to a particular member of Hf say, that member of Hg with parameter value
given by the probability limit of its maximum likelihood estimator when

that particular member of H_, is true. For example if o

£ = 0.21, we would

2
expect TLG(.) to have lower power for a gamma distribution with Yor, = 5.0

the solution of log Yy = W(Yy) = Qi?l

s that is equation (2.5.1). Similarly,
for Yo = 5.0 we would expect TGL(.) to have lower power for a lognormal
distribution with Oy = 0.22 the solution of U = V' (5.0), equation (2.5.4).
The example shows that the method agrees with the comparisons of power
previously made using the normal shape.

Consider a further comparison using this argument. For Yy = 2.0,

the 10% significance levels in Table 2.5.8 are not very different for

the A and the C statistics. The corresponding values for power comparisons
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of TGL(.) is oy = ' (2.0) = o._6h in Table 2.5.6 and allowing for the
slight difference in Table 275.8 the power in Table 2.5f6 does not seem
to be very different for A and C. Similarly, for a, = 0.54, the significance
levels in Table 2.5.7, except for n = 20 and n = 50, are not very different.
The corresponding value to look at in Table 2.5.5 is Yor, = 2.0 and the same
conclusion is reached. For these cases the further results of Table 2,5.9
seem to confirm the assumption of equal power.

Another point should be observed from Table 2.5.7 and 2?5.8, generally
the significance levels of the C statistics agrees more closely to those
of the standard normal. This is related to the faster approach to normality
of the staﬁistics C. From a practical viewpoint this provideé an argument
for C to be preferable.

Figures 2.5.1 to 2.5.6 present histograms of the data of Tables 2.5.1
and 2.5.2. They show the approach to normality and the effects of increasing
o

o* It is interesting to note that changes in Yo does not seem to have

much effect on the approach to normality of TGL(.).



TARLE 2.5.1 Kull distribution of TLG(C) and T, (A},

(el )/Ey) LTI ¥y (Tpgle)/8y) Ba(Tpg(. /)
n {.) 5
L 8,20.1 | 8,=0.5 | 6,=2.0 4,=0.1 0,=0.5 | ;2.0 [ 8,70.1 | 8,=0.5 | 0,%2.0 [ 0,=0.1 | 6,=0.5 | &;=2.0
20 [ -0.002 | -0.,083 | -0.253 ‘o.no 0.592 0.264 0.%58 | 0.776 0.478 5.336 5.728 3.633
A 0.020 | -0.032 | ~C.16% 0.725 0.685| 0.278 0.813 1.838 1.603 6.288 | 11.048 7.171
50 c -0.11% |} -0.159 | -0.220 0. 892 0.863 0.471 0.304 0.316 0.567 3.211 3.292 3.673
A ~0.097 | -0.114 | -0.119 0.888 0.876 0.542 0.415 0.637 1,718 3.33% 3.860 8.318
100 c ~0.080 | -0.105 | -0.193 0.951 0.864 '0.535 . 0.173 0.548 0.680 2.975 3.465 3.782
A -0.067 { -0.07% | -0.108 0.9L47 0.890 0.622 0.248 0.778 1.630 3.023 3.931 7.761
NS0 c -0.049 | ~-0.094 | -0.1k1 0.830 0.836 0.652 0.078 0.263 0.708 2.725 2,970 3.833]
A -0.039 | -0.068 | -0.057 0.886 0.841 0.788 |. 0.132 0.420 1.644 2.750 3.168 7.795
200 c -0.047 | =0.122 } -0.155 0.981 0.899 0.622 0.397 0.427 0.609 3.358 3.464 3.718
A -0.037 | -0.098 | -0.088 0.984 0.909 0.791 0.460 0.595 | 1.252 3.464 3.787 5.852
Results from 500 trials,
TABLE 2.5.2 XNull distributicn of TGL(c)” and TGL(A).
ul(TGL( .) IHG} uz(TGL( . )/HG) yl(TGL( . )/HG) BZ{TGL( . )/Hc}
n TGL(‘)
¥,=0.5 | Y;=1.0 | Y,%10.0 | Y,50.5 | v,51.0 |¥,=10.0 | v5=0.5 | v,=1.0 | ¥,=10.0 | v;=0.5 | v,=1.0. {y,*10.9
20 c -0.298 | ~0.1%5 | -0.163 0.670 | 0.585 | 0.701 | .0.435 0.426 | o0.1%0 3.667T | 3.361 | 2.975
A -0.C89 | -0.07T | -0.143 0.737 0.€21 0.696 1.438 1.020 0.278 6.522 L1517 3.107
50 c ~0.152 { -0.102 | -0.18¢ 0.772 0.£01 0.845 0.306 0.683 0.111 3.129 3.732 3.343
A -0.073 | -0.042 0.169 0.805 0.E72 0.839 0.8771 1.13% 0.231 L.237 L.876 3.472
100 c -0.021 | -0.092 §-0.091 0.865 | 0.516 | 0.9%0 0.298 | 0.395 | 0.156 3.016 | 3.650 | 3.463
A 0.041 { -0.CkL { -0.077 0.919 0.552 0.991 0.709 0.797 .{ 0.2%2 3.882 L.101 3.158
150 c -0.076 | ~0.093 | -0.1kb 0.918 0.562 0.989 0.363 0.684 0.126 3,184 3.73% 3.476
A -0.022 | -0.052 } -0.133 0.958 | 1.c15 | 0.987 0.723 | 0.590 | 0.207 3.832 | L.771 | 3.523
200 c -C.Ck9 | ~0.002 {-0.120 1.001 1.c11 0.956 0.4357 0.448 | ~0.056 3.2€8 3.261 2.969
A 0.C02 0.036 | -0.111 1.05% 1.053 0.991 0.777 0.688 | -0.001L 3.872 3.747 2.973

Results froa 500 trisels.

i



TARLE 2.5.3 Distribution of T 4(C) and T, (A) under alternative K,.

W Tl ) /Hg) u{Ty (378 S GOV 8T, 5. ) /Hg)
n TLG(‘) - - .
¥5%0.5 | ¥,71.0 | v,m10.01 v570.5| vp=L.C| 1,720.0] v,20.5) v,=1.0 | y,=10.0 1,70.5] 1,71.0{ ¥,=10.0
20 c -0.597 ! -0.981 | -0.500 0.088 0.239 0.675 -0.101 | o.b17 -0.026 3.803 3.81% 2.858
A -0.337 | =-0.745 | -0.472 0.0L3 0.126 0,626 -0.15% | 0.91k -0.110 L.B6Y 5.621 2,84k
S0 c -0.987 | -1.708 | -0.81k 0.111 0.258 0.791 ~0.202 | -0.C64 ~0.008 3.299 3.507 3.340
A -0.509 | -1.291 { -0.782 0.065 0.096 0.734 -0.396| 0.259 -0.115 2.913 3.886 3.305
100 c -1.L14 | -2.507 | -1.26% 0.128 | 0.287 0.966 0.254 | 0.251 -0.051 3.22h 3.2ko 3.51k
A -0.683 | -1.906 | -1.225 0.0768 0.059 0.889 -0.159 | 0.L488 -0.062 2.603 3.817 3.547
.50 [ ~1.71T { -3.201 { =-1.Lkg2 0.123 0.282 0.968 0.045 | -0.207 -0.052 3.518 2.866 3.366
A 0.821 | -2,353 | ~1.453 0.081 0.085 0.900 -0.317 | -0.122 0.029 2.961 2.738 3.362
200 c ~1.979 { -3.658 | -1.751 0.124% | 0.295 0.979 0.258 { -0.055 |{, 0.C93 3.008 2.920 2,90k
A ~0.917 | -2.767 | -1.708 0.079 0.037 0.911 -0.057 { 0.0LS 0.150 2.831 3,131 } 2.919
Results from S00 trials,
TABLE 2.5.% Distributien of TGL(C) and TGL(A) under alternative I{L.’
) u {Tgr (/8 ) uplTgy (-1/H, 3 v, Tgy ()74, o B{Tg L/}
n (.
oL a,%0.1 | 6,70.5 § 0,22.0 | 0,20,1 | 0,70.5| ;2,01 @,=0.1} 6,=0.5 | e,=2.0 | 8,50.1 | a;=0.5| @,=2.0
20 c -0.656 | -0.953 | ~1.k13 { 0.680 | 0.586 0.59 -0.137} -0.150 | -0.292 | L.936 4,593 3.L57
A ~0.623 | -0.846 | ~1.102 | 0.624 0.428 0.249 0.184| -0.590 0.658 | 5.01h L.ga7 3.725
50 c ~0.876 | -1.5k1 | ~2.588 | 0.877 0.£79 1.027 -0,213| -0.025 [ ~-0.330 | 3.0%8 3.104% 3.339
A -0.8L6 | ~1.295 | ~1.992 [ 0.815 | 0.€hy 0.357 | -0.102] - 0.303 Q.451 | 2.97M1 3.150 3.128
oo | ¢ -1.267 | ~2.323 | -3.880 | 0.952 | 0.ELg | 1.160 | -0.139] 0©.336 | -0.573 | 2.899 | 3.245 [ 3.719
A ~1.233 | -2.128 | -2.991 | 0.885 0.¢58 0.353 -0.061| =-0.143 0.113 | 2.8%0 2.999 3.092
150 c -1.572 | -2.919 | -4.901 | 0.851 | 0.f22 1.470 -0.032{ -0.1235 { -0.693 | 2.752 2.866 3.992
A -1.536 { ~2.679 { -3.760 | 0.793 0.566 0.416 -0.023 0.031 | ~0.025 | 2.742 2.815 2.507
bo0 | € -1.81% | ~3.354 | ~5.683 | 0.955 | o0.500 | 1.327 | -0.367] -0.263 {-0.489 | 3.281 | 3.19% { 3.378
A =1.77% | -3.085 | -4.377 {0.835 {o0.€38 | o.393 | -c.303( -0.098 { -0.007 | 3.197 ! 3.058 | 2.93%

Results froa 500 trials.

Gh



TABLE 2.5.5 Bull: lognorzal; Alternative: gamra, Teste: ’I‘LG(C). Tm(A). - Pover at t = -1.65; ¢ = ~31,28.

POWER FUNCTION _
n 'rw(.) SL = 0,05 SL = 0,10
1,705 15%0.8 | v,=1.0} v,=2.0 Y5550 ¥,=10.0] ¥5%0.5] ¥,70.8| ¥,71.0 ¥,=2.0 ¥p=5.0| v,310.0
20 c 0.002 0.0L4 0.072 0.122 0.110 0.082 0.024 0.1L6 0.028 0.304 0.200 0.162
A o] [¢] 0.002 0.046 0.080 0.056 0 0.022 0.0L0 0.186 0.180 0.1L46
50 c 0.028 0.L8Y4 0.558 0. 444 0,266 0.156 0.176 0.82k 0.802 |- 0.6kk 0.k 0.300
A o] 0.022 0.122 0.350 0.220 0.148 0.00b 0.238 0.518 0.592 0.398 0.278
100 [+ 0.256 0.972 0.950 0.8LY 0.456 0.330 0.682 0.996 0.982 0.920 0.648 0.%76
A 0 0.472 0.802 0.796 0.436 0.316 0.022 0.938 0.974 0.912 0.628 0.468
150 c 0.602 0.998 1.000 0.9%6 0.668 0.438 0.902 1.000 1.G00 0.982 0.792 0.602
A 0.002 0.92% 0.998 0.930 |. 0.650 0.416 0.050 0.998 1.0C0 0.976 0.784% 0.596
1200 [+ 0.824 1.0C0 1.0c0 0.980 0.826 0.568 0.958 1.¢00 1.000 0.992 0. 890 0.650
A 0.008 0.996 | 1.co0 0.978 0.812 0.542 0.100 -1.000 1.000 0.590 0.890 0.67k
Results frox 500 trials,
TABLE 2.5.6 HNull: garma; Alternative: lognormal Tests: Tap(C)s T (A). Pover at t = -1.64; ¢ = -1.28.
POWER FUNCTION
n T () SL = 0.05 St = 0,10
@,=0.11 a,20.25] @,=0.5 @,=0.6L 6,=..0} 0,72,0 a,=0.1f a,=0.25 a,=0.5| 0,30.6l 2,21.0] @,=2.0
120 o 0.106 0.112 0.166 0.188 0.2:.8 0.260 0.20h 0.226 0.306 0.304 0.k18 0,544
A 0.088 0.086 0.056 0.094 o.otig 0.136 0.17% 0.188 0.236 0.234 0.286 0.3%0
50 c 0.19% 0.316 0.Luy 0.50b 0.6k 0.828 0.314 0.k46 0.620 0.668 0.786 0.912
A 0.186 0.286 0.3680 0.k3k 0.560 0.7%2 0.312 0.%10 0.566 | 0.618 0.Tha 0.878
100 [+ 0.238 0,568 0.754 0.828 0.992 0.986 0.490 0,702 0.870 0.926 0.980 0.996
A 0.326 0. 54k 0.728 0.792 0.9.6 0.682 0.L8Y 0.692 0,860 0.916 0.976 0.994
150 c 0.u72 0.720 0.928 0.95k C.992 1.000 0.618 0.846 0,968 0.986 0.938 1.000 |
A 0.462 0.720 0.518 0.9%6 0.5:38 1,000 0.£12 0.838 0.566 0.580 0.998 1.000
200 c 0.532 0. 846 0.970 0.588 0.938 1.000 0.688 0.910 0.998 0.598 1.000 1.000
A 0.550 | o0.736 o.5¢8 | o0.983 0.998 | 1.060 | 0.650 | 0.905 | 0.988 |} 0.998 1.050 | 1.000

Results from S5C0 trials,

.9'1



TABLE 2.5.T Null: lognormal; Alternative: gamma. Tests:"l‘w(c). 'l‘w(A). One~-side significance level at ¢ = ~1,6U; ¢ = -1,28,

BIGNIFICANCE LEVEL
n TLG(.) SL = 0.05 . Sy = 0,10
a,=0,1 | a,=0.25| a,=0.5 u2=o.6h 6,71.0} 8,=2.0 | a,=0.1 _az.—-o.zs a,=0.5 “2‘9'6[‘ 8,=1.0] 0,%2.0
20 o 0.022 0.020 0.012 0.004 0.€08 0.002 0.05k4 0.052 0.052 | 0.058 0.032 0.016
A 0.018 0.008 0.006 0.006 C [+} 0.048 0.0} 0.03k 0.030 0.012 0
50 c 0.040 0.060 0.048 0.024 0.C1k 0.006 0.102 0.128 0.116 0.078 0. 060 0.0LY
A 0.03L 0.050 0.032 0.012 0.col [o} 0.092 0.110 0.098 | 0.052 0.030 0
100 c 0.042 0.036 0.028 0.024 0.€20 0.01k 0.10k 0.092 0.086 0.084 0.068 0.032
A 0.038 0.030 0.02k 0.016 0.caB |- o 0.098 0.088 0.074 0.070 0.0k2 0.014
150 c C.0k8 0.038 0.032 0.0L0 0.C26 0.012 0.094 0.030 0.090 0.09% 0.076 0.054
A 0.040 0.034 0.026 0.028 0.C16 [o} 0.092 0.08L 0.070 | 0.080 0.048 0.020
200 [ 0.038 0.050 0.046 0.0k2 0.C26 0.018 0.088 0.116 0.088 0.082 0.088 0.046
A 0.036 0.0kY 0.038 0.030 o0.ca2 0.002 0.086 0.102 0.084 0.076 0.062 0.026

Results from 500 trials.

TASLE 2.5.8 Null: gamma; Alternative: lognormal. Tests: 'I‘GL(C), 'I‘GL(A). One-side significance level at ¢ = ~1.6L; ¢ » -1,28.

SIGYIFICAKCE LEVEL
a ‘I'GL(.) SL = 0.05 . SL = D.10
12=0.5 72=D.8 Y5101 Y,72.01 v,=5.0 ¥,°10.0 72=0.5 72=0.8 ¥,=1.0 12=2.o 72=5.O 1,=10.0

20 c 0.02k 0,018 0.016 0.028 0.020 0.038 0.060 0.066 0.0L6 0.068 0.068 0.086
A 0.004 0 0.00k 0.018 0.016 0.028 0.024 0.026 0.020 0,050 0.050 0.082
50 c 0.032 0.020 0.02h 0.030 0.03% 0.064 0.086 0.C6k 0.084 0.076 0.070 0.120
A 0,005 0.006 0.0c8 0.012 0.022 0,060 0.0u65 0.038 0.0ué 0.066 0.060 0.114
noo c 0.030 0.024 0.036 0.032 0.036 0.040 0.07% 0.072 | o.1o04 0.076 0.080 0.118
A 0.016 0.01h 0.022 0.028 | o0.028 0.038 0.048 | 0.050 0.084 0.070 0,078 0.108
pso c 0.036 0.050 0.02 0.03% 0.036 0.076 0.100 0.092 0.098 0.084 0.096 0.120
A 0.022 0.032 0.020 0.028 0.032 0.068 0.072 0.072 0.076 0.076 0.088 0.116
(200 c 0.043 0.0LL 0.02 0.046 0.032 0.060 0.086 0.096 0.084 0.050 0.655 0.138
A a.03% | 0.033 { 0.022 | 0.036 | 0.022 { 0.058 0.c80 { 0.082 | 0.068 | 0.08% | 0.078 | 0:s132

Pesults fro=m 500 trials,

Ly



TABLE 2.5.9 Pover and significence level at t = —0,84.

'

" Power st 20% SL 20% sL !
n Tests TGL( ) Tx,c( .) TGL( .) 'rm( )
. 0,=0.6k Y,=2.0 Y,=2.0 a,=0.
20 [ 0.562 0.556 0.160 0.12%
A 0.520 0.520 0.1k4b 0.11%
50 c 0.828 0.856 0.186 0.226
A 0.820 0.848 0.178 0.214
100 [ 0.978 0.970 0.190 0.216
A 0.976 0.968 0.182 0.210

Results from 500 trials,

8N
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FIGURE 2-54'2‘29 DIST&\g\;TIM OF T, L1~ LOGHORMAL ve GAMMA oty 500 trats,
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FIGURE 2.54- NULL DISTRIBUTION oF Tele) = GAMMA s LOWHOUWMAL, Ve 0.6 , 690 beuaa,
®) .

tan

FLGURE 2.5.5- MULL pisTRIBUTION OF T (1= CAMMA n LOWNORMAL, Y, 1.0 , 5o —

.

FIGURE 2.5.( - NULL DISTRIBUTION oF T (.)- GAMMA w [OCNORMAL, v;s 10.0 , 5o truia,
G -
(o Apresda B). _ -

T e RS gaEeRTy = --.4-110‘--4 .« § = ..‘---0-0;.‘

ny20 - " usSo 1100 . | nTZm

05 . . .
oA T W ko
1)

0.2

[

[ L o & 2 o ST s T e .:“:'f—:h.:raxr-.‘




51

2.6 Tests for the lognormal and Weibull distribubtions

A Test statistics and their distributions

Here the methods proposed by Cox and by Atkinson are used to derive
tests involving the lognormal and Weibull distribution.

First suppose the null hypothesis HL is that the distribution is
lognormal and the alternmative H, that it is Weibull, that is Hp s fL(z, o a2)

agalnst.HW : fW(X; Bl, 82); see Section 1.2. The expectations of the

log likelihood functions in relation to the null lognormal distribution

yield
’ p—t —— —_n . — — - -—n
E {2I(al,a2,¥)} = -3 log o, - n log V2t - n a“ =3
) Bg
3 =q - - - B e
EL{QW(Bl,Bz,X)} n log B, - n B, log B, + (82 l)al B exp{s2a1f7§ua}
Bl
(2.6.1)

To find BlL and B the probability limits under HL of Bl and 82 respectively,

2L®
recall Cox [1961, eq.(25)}, namely

. 0 log fW(X,BlL’BZL) _ ____Ei__.__. .7 (B 5 .y)} -0
1 - [} H ) - .
L 5(8,,85) 8(8,,8,) LW TLLT2L’y b
(2.6.2)
This gives a system of equations whose unique solution is
. 1 /“‘ ‘%
By = exp{al + 3 V), By = a0, (2.6.3)

B

. 2L . . . .
This shows that BlL 1s the 32 th moment of the lognormal distribution and

L

Bor, is the inverse of the scale of the normal distribution. Writing

L= (a.a el L & ; - p~{2_(o_.a .V} =

L (al,a2) and by notlglng that L( 1 2,¥) EL{ L( 1 2,¥) 0 we then
have

" ~

= Bp R, (B 585 5y) ) = 20(8,B5.7)

—

(@]

~
I

k.
Trw

~ "~ B ~ ~
N~ A 2 ~
n{82 log Bl - B log BlL - log-ggz ~ 01(52—3 )}s

2L 2L
(2.6.4)
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* = @ . - - -
Tha(8) = By (BypsBorsy)d = Ru(By7,857.y)
L—
. - g (@y)?
n [y,)"%L e
= .B_..: -n = = _;‘_ - 1n, (2-6'5)
i=1 { 1L exp{al(az) 2+ 1}

The asymptotic variance VL{T* } of these tests is required.

W First we
evaluate
BZ
_n or%2 _
IW=%+n -1 2n82La2 = 0.218281 n .
(2.6.6)
= S N5 Y SR N
€, =0 > CoL, = % {BQL az} >
and recalling the information matrix in (1.2.7) we have
v {1} = W - ¢} 7t (al,az)CL = 0.218281m, (2.6.7)

~L

Now, suppose that.HL and HW change roles, so that the null distribution

is Weibull and the alternative is lognormal. The expectations of the log

likelihood functions in relation to the null lognormal distribution yield

¥
Ew{zw(Bl,Bz;y)}= n log B, — mB, log Bl + (32~1)n —i;l-+ log Bl -n

2
62
{2 (a :y)} = - E-log o. - n log vor - n w(l) + 1o B
Bty tag 03y > 2 g B, g
n Y1) f¢ V(1) 2
- o+ - + e v
™ 62 8 log Bl 2ul 7 log Bl ay
2 2 2
(2.6.8)
To find Sy and a2W’ the probability limits under HW of o and Op> respectively,

the analogue to (2.6.2) is

3 _
3(ays0,) EW{QL(alw’uQW’Y)} =0,

whose unique solution is
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Vip) Y1)
Otlw = 82 + log Bl s Otzw = —-8-5—- . (2.6.9)

Thus, o and Opy BTE respectively the mean and variance of the logarithm

~ ~

of a random variable with a Weibull distribution. Writing W = (81,82),

we then have

o
~on 2
1 —
= n{sz(al lw) + 3 log o R (2.6.10)

T§L(A) = b (8 Bz,y) -2, (o 17°® W,y) Ew{ﬁw( ,Bg,y) o (o w,a w,y)}

!

~

Zooda e 1 - 2
= n[%2(al A * 2o {“2 oapptla e )93 . (2.6.11)

To evaluate the variance VW{TﬁL} of these tests, we have similarly

WL = 0.2834k n Cly=9 > Coy =0 (2.6.12)
and, with the information matrix in (1.2.11), we obtain
. -l .
* = - Ot =
Vi {TE Y = WL - C I (31,32) Cut 0.2834 n. (2.6.13)

It should be noted that for 82 known and equal to 1 the previous
results recover those of Section 2.h.
Finally, for j = A, C, the statistics

-1 oy =3
Tr(3) = Ty(3) WITg = s Mg (3) = T (§) [vdme M
(2.6.1h)

are asymptotically standard normally distributed under H_ and HW’ respectively.

L

B Empirical results

The empirical results for comparisons between T, (C) and TLW(A) and

Ly
between TWL(C) and TWL(A) and on the adequacy of the asymptotic results are

prescnted.
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;
LW(C) and TLW(A) and on the

distribution of TLW(C) and TWL(A) under the alternative, that is the

Results on the null distribution of T

lognormal distribution, was obtained as in Section 2.4. Here from the

comments about (1.2.23) it follows that the distribution of the test

statistics is independent of the parameter values oy and o, For
various sample sizes n, 1000 trials were obtained with a, = 0 and
a2 = 1.

Similarly, results on the null distribution of TWL(C)

(A) under the alternative, that

and TWL(A)

and on the distribution of TL (C) ana T

W W
is the Weibull distribution, were obtained. Again it follows from
(1L.2.23) that the distribution of the test statistics is independent of
the parameters Bl and 82. For various sample sizes n, 1000 trials were
obtained with Bl = 1 and 82 = 1, the standard exponential distribution.

The maximum likelihood estimator equation for 82 was solved using
Newton's method. The iterations stopped when the equation differed
from zero by less than 0.00L.

The results are summarized in Tables 2.6.1 to 2.6.9.

Results in Table 2,6.1 and 2.6.2 agree with the discussion of
Section 2.3 about the first two moments and the coefficients of skewness

and kurtosis of the A and C statistics. For Table 2.6.1 one of the terms

which differentiate TWL(A) £rom TWL(C) depends on

By 1 Yy
3 2L, 1
o L (BT ,Bsy) =52 I — -1 . (2.6.15)
o8y WIALTTRLT - Byp g=1 | Bop,
B3,

A

g~
From the properties of the lognormal distribution yiéi//: 2L  has a
1L
lognormal distribution with a; = - 1 and a, = 1. Therefore, since for

large s the sample mean is an inefficient estimator for the mean of the
lognormal distribution it will be required a large sample size for (2.6.15)

to become negligible.
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For Table 2.6.2 the terms which differentiate TWL(A) from TWL(C)
depends on

—a-g— Q.L(al‘},agﬁ;y‘) = a—l— Izl (1og v, - °‘1€J . (2.6.16)

1 ~ 2W 1=1

) n 1 2
L (o o0, 05y) = - + L (logy. — a.n)2. (2.6.17)
d >ow’ DT S

a2 L 1W’ 2w’y 2a2w 2u2w 1=1 1 A

It is known that for the extreme value distribution, the efficiency of
the method of the moments in relation to maximum likelihood in estimating
the location parameter is about 95% and for the scale parameter is about
55%. Therefore, at least (2.4.17) will require a large sample size to
become negligible. -

Tables 2.6.3 and 2.6.4 show respectively that the tests T _(A) and

LW(
TWL(A) are consistent for all parameter values. This follows from the
fact mentioned earlier that the distributions of the tests are independent

of the parameters,

The following relation can be observed from Tables 2.6.1 to 2.6.h:

Yy (T (CY/H) = = vy (T (C) /B ), vy (T (C) /Hy) = = v (T (C)/H),

B, (T (CY/H) = B (T (C)/H), Bo(T (C)/Hy) = B, (Tp(C)/H ).

For the significance levels in Tables 2.6.T7 and 2.6.8 the C statistics
show a better agreement to the asymptotic values. This is related to the
approach to normality and would suggest that C is preferable. For power
comparisons, Table 2.6.9 gives further results and they seem to indicate
that there is not much difference of power between the A and the C statistics.

Figures 2.6.1 and 2.6.2 presents the histograms of the data of Tables

2.6.1 and 2.6.2.



mARLe 2.6,1 Kull distributiom of rm.(c) and Ty (A),
a 1T ) pugly,d/e) wol P () 1 vy (2 I/ ) Bo{Ty -0/Ep )
22 c -0.261 0.502 0.0%0 3.3327
A -0.118 0.503 1.665 L2366
50 ¢ -0.232 0.686 0.167 3,131
A -0.103 0.723 1.433 8.033 -
10 c -0.138 0.758 0.3229 3.197
A ~0.092 0,818 1.186 5.602
150 c -0.163 0.7689 0.298 2.867
~0.072 0.632 0.820 4.000
200 c -0.1%2 0.805 0.355 3.368
A -0.058 0.£82 1.088 5.511

Results from 1000 trisls.

TARIE 2.6.3 Distribution of T . (C) and T, (A) under alternative H,.
A} N

a | T |t e | aptrp ol |y (R () 8, (T Sml
20 ¢ -1.397 0.720 -0.492 3.k59
A -0.913 0.215 0.510 3.716
50 ¢ -2.419 1.003 -0.562 3.950
A -1.633 0.2€5 0.155 3.519
00 c ~3.5%84% 1.143 ~0.371 3.%06
A -2.LkLs 0.297 0.126 3.502
156 c -4.h36 1.256 -0.283 3.391
A ~3.028 0.324% -0.116 3.415
200 c ~5.119 1.257 0.395 3.344
A -3.522 0.1323 0.099 3.162

“TABLE 2.6.2  Null adstribution of T,;(C) and T (A),

a (T () (Tl A | wpl TG | vy (T (G MR | ep(Tn (3R
2] ¢ ~0.22% 0.555 0.492 ,3.459
A -0.08%4 0.€65 1.777 7.723
s0f ¢ -0.09% 0.918 ° 0,512 3.480
A -0.043 1.089 1.4C6 6.059
Ado c -0.078 0.884% 0.371 3.506
: A 0.011 - 0.957 0.96L 4,681
50 c -0.055 0.967 0.283 3.391
A 0.023 1,028 0.82% 4.335
" koo ¢ -0.067 D.968 0.395 3.3
A -0.001 1.016 0.815 L1l

. Resuits from 1000 trials,

TABLE 2.6.%  Distribution of T, (C) and %(A) wnder alternative -

B | Rple) | ey ng )R T () /H) vy (T (/) ] e, ()/E.)
20 c -1.213 0.387 -0.0%0 3.387
A -0.858 0.122 1.380 6.072
50 c -2.076 0.528 -0.167 3.1
A -1,b51 0.118 0.857 3.625
oo ¢ ~3.050 . 0.58% -0.329 3.197
A -2.120 0.10L 0.581 3.319
hso c -3.806 0.€08 " -0.208 2.867
A -2.631 0.098 0.ko7 3.027
1200 c -h.h‘33 0.670 -0.546 k.16%
. A -3.049 0.097 0.k70 3.137

Results froa 1000 trials,

Results from 1000

trials,

95




TABLE 2.6.5 Full: lognormalj Alternative:A Weibull, Tests: TLH(C)’ T.H(A). . TABLE 2,6.6 RNull: Weibull; Alternative: lognorml.Tca.ts. THL(C)' EVL(A).
kN . N

Power at t = -1,64; ¢+ » -1.28. K3 Power at t = ~1.64; ¢t = ~1.28
' ) ’
, POYER FUNCTION o : g - POWER FLUCTION
o Tyl e : ’ : o T, {.
e SL = 0.05 st = 0.19 o : . ¥L 8L = 0.05 SL = 0.10)
20 c 0.3k 0.506 ‘ ) : 20 ¢ 0.231 0.54T
A 0.0%5 0.217 S A 0 0.057
50 [ 0.TT2 0.837 - . 50 c 0.738 - 0.860
A 0.511 0.756 : A 0.330 1 . o
oo ¢ 0.974 0,986 . hoo c 0.973 0.956
A 0.94%0 ©0.977 o A 0.925 0.966
[L50 c 0.994 0.997 : . ’ .50 c 0.999 . 1.000
A 0.989 - - 0.996 . - A 0.996 . 1.000
00 ¢ 1.000 - 1.000 koo c 1.000 1.009
A 1.000 1.000 . A 1.000 1.000 .
Results from 1000 trials. : " Results from 1000 triels. . .
TABLE 2.6.7 HNull: lognormal; Alternative: Weibull.Testa: T (C), 'rwu'). TABLE 2.6.8 Null: Weibull; Alternative: lognormal.Tests: T, (C), T (A)-
One-aide significance levels at ¢ = -1.64; t = ~1.28, One-side significance level at t = -1.64; t = ~1.28.
SIGNIFICASCE LEVEL ) SIGNIFICANCE LEVEL
a T,..0.) - S Y .
L SL = 0.05 st = 0.10] - - L SL = 0.05 SL = 0.10
20 ¢ 0.022 0.072 - ' 20 c 0.016 0.062 ¢
A 0 0.010 A 0 0.060
50 c 0.043 0.106 o 50 c 0.023 . 0.078
A 0.001 - 0.042 . A 0.003 0.025
100 ¢ 0.0%0 0.093 o h0o co . 0.03 0.08k
A 0.0c8 0.051 . A 0.015 0.0LT
150 c 0.032 0.096 . 150 ¢ 0.045 0.087 o
A 0.009 0.053 . A 0.020 0.050 | - .
200 c 0.0k 0.101 Poo c 0.043 0.103
A 0.016 0.C67 A 0.020 0.076

fesults fron 1000 trials, Results from 1000 trials,

LS



TABLE 2.6.9 Pover.of TI"(.) and Tm'(.).

(significance levels in parenthesia)

n i Tests TLW(') ’ T’n’L(')

0 ¢ 0.262 (0.002) 0.863 (0.168)
A 0.187 (0.001) 0.811 . (0.1k1)

L0 c 0.415 (0.005) 0.928 (0.19%)
A 0.368 (0.00k) 0.899 (0.151)

50 c 0.777 (0.043) 0.738 (0.03k)
A 0.757 (0.042) 0.751 (0.036)

30 c 0.94%0 (0.030) . 0.996 (0.213)
A 0.945 (0.0335) 0.995 (0.186)

Results from 1000 trials.

8s
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2.7 Tests for the gamma and Weibull distribution

A Test statistics and their distribution

Here again the methods of Cox and of Atkinson are used to derive
tests involving the gamma and Weibull distribution. Suppose the null
hypothesis HG is that the distribution is gamma and the alternative Hw
that it is Weibull, that is H, : fG(z; Yl,yz) against H : fw(z; el,ez);
see Section 1,2, The expectations of the log likelihoods functions in

relation to the null gamma distribution yield

: Y Yo
EG{ZG(Yl,Ygsg)} = -n log T'(y,) +n v, log;f + (v,-1) n[w(Yz)—log;I}
-ny, (2.7.1)

_ Yo
EG{lw(Bl,BZ,X)} =n log B, = nB, log B, + (8,-1) n[w(yz)-log ;ZJ

g
__IL[E] 2 Iieytvy)
862 Yo rv,)
l .
To find BlG and BEG? the probability limits under HG of Bl and 62 respec-

tively, the analogue to (2.6.2) is

3 -

whose unique solutions (BlG’BEG) satisfy
g
2G

8 Y F(Bontys)
1 2G 1 2G '2
v(Bogtyp) —g— = wlv,) 5, By = [—~] —ny— - (2.7.2)
2G 2 BQG 2 1G Yo T(Yz)
. B2(} . . .
This shows that BlG is the BEGth moment of a gamma distribution.

Writing G = (v1,7,) and by noticing that %,(v,,v,57) = Ballalyysvp,y)) =0
4 & 4

we then have
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Tl ) = B lhy(BygaBagsy)} - Pyy(By 5B p3Y)

828 ~ ~ ‘ ~ gl Y2
n lOg Y - {B “log B “—Be lOg Bl + B “—82 w(Ye)'—log 7\_} ’
8 2G 1G 2¢

2 Yy
(2.7.3)
B a
n
| E 26G
% - ' ] - . SO s
T (A) = Ea{zw(BlG,egG,g)} QW(Blagﬁeé’X) e n . (2.7.14)
26
B A
16

For the asymptotic variance VG{TéW} of these tests we first evaluate

o ' 2 P(QBéG+Y2)P(Y2) : .
GW = n{w'(Ye){Yg-BeG} + - + 2{Y2—62G}{¢(82G+Y2)—w(Y2)} - 72—1},
{P(82G+Y2)}2
(2.7.5)
C1g =05 Cpg=n [{Ye’séc} vilvg) + wlBaghrp) = wlvp) - %] .
and with the information matrix in (1.2.15) we obtain
T(28,.*+Y,)T(Y,)
. _ _ 26" V2 2
VelT&) = OF = G I70{yy,7,)C = n{ 5
[P(82G+Y2H
1 { 2 L ' t 2
+ 382 =Y =B V' (Y,)=v, U (Y,)B } ] .
fr, v (r,)-1182, 26 Y2 P2g 2/ Yo 2/Psq
(2.7.6)

Now, suppose HG and HW changes roles so that the null distribution
is Weibull and the alternative is gamma. The expectation of the log

likelihood functions in relation to the null Weibull distribution yields
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Y1)
By

Ew{zw(Bl,Bg;g)} =n log 82 - nB, log Bl + (82—1) n{ + log Bl} -n,

(2.7.7)

¥
2
EW{RG(Yl,Y2§Z)} = -n log P(Y2)+n Y, log ;; + (Y2—l)n{ é;) log B }

Y
—-—gn 611"[1 +—B];-J .
Y1 o

To find Yiw and Yoy the probability limits under Hw of Y1 and y, respec-

tively, the analogue to (2.6.2) is

3 ‘ .
3(vyv,) By {"G(Ylw’”zw’i")} =2

whose unique solution satisfy
=6, rf1+ 2], 108 v, v(va) = 1o rfae2) - 2
Tiw = F1 B, 8 Yo V\Yoy/ = 08 B B, °

(2.7.8)

”~

This shows that Yy convergeé to the mean of a Weibull distribution, and
the righ hand side of the equation for You is the logarithm of the ratio
of the arithmetic mean to the geometric mean of the Weibull distribution.
Writing Wz (81,52), we then have

\

% — P - .. - 3
TWG(C) = Qw(Bl,stz) RG(Yl,stz) Ew{l ( l,BzaY) lG(Ylw,Y2W’z)}
= nHY A{w(Y A)-'l} - log T(y A) 2{ (Y ) = log Y2WH

owl oW . 2 1w

~

~ ~ A A ~ 'Y2
- [Yg{w(Yz)—l} - log Tly,) - Bz{w(y2) - log :—}] , (2.7.9)
1
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~

{zw(Bl,Be;g) - zG(Ylw,Yew;g)}

* — o - - . — il
TWG(A) = zw(Bl,Be,g) ZG(Yl‘;}aYz‘},z) E{,}
' ; Y
= n[{BQ—Y A} {w(Yg)-log':— - P(y A) + log v } + (y,my a{]
oW Y, oW W oW

For the asymptotic variance VW{TQG} of these tests we have

2

l+-—.

TrB.—Y 2 ( B]

WG = n[{—g——gﬂ 2 2

32 J Pr(1) + Y2w, {F[l.-’- —}-)}2— Y%W Tl | [ Yow™ .;ew]{w[ ]_V(l) ]
. "B
= (2.7.11)

Y RN
2W 1
o = O, c n [ - ___{w(l.i.__] - w(l)
:U‘/q 2w 32 62 62

and with the information matrix in (1.2.11) we obtain

‘ T|1+ 2
V. Tée. ._WG_ or 1(6 B ) ‘ _B__:...Y_Q_E | (1 + v2 .._.__.[___..B_Q.)___ 2 . 1
wlwef Sul 2%y = m B, v Youw T e, Yaw
1
T1lt — :
{ { 62]

o Bl 2} b b 2l

Hence, for J = A,C the statistics

.a
-2

N2, Tueld) = T (vdTe N8 (2.7.13)

o )
Tald) = TV e, W

are asymptotically standard normally distributed under HC and Hw, respec-
T
tively -
Finally, there is an observation to be made. In the application of

this section there is a parameter value in HG and Hw which gives the same
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probability distribution of the dataT For Y2=B2=l we have under HG’
thet B, =1, By.=v,, T (.) = 0 and Vo{T&,} = 0 and wnder H that

Yo = Bq» TﬁG(.) = 0 and VW{T%G} = 0, ﬁherefﬁre the asympﬁotic theory
is not applicable. For neighbouring parametiic falues, the value of n
required forlfhe asymptotic theory De reasonably applicable may be
large. An attempt was made to study tﬁis point when performing the

simulations.

B Empirical results

Now empiricai,results on the tests of this section is presented.
Bécause of the complexity to calculate the tests of this section only
a small simulation stuﬂy'wgs'attempted?

Results on the null distribution of TGw(c) and TGW(A)'and on the
distribution of TWG(C) and TWG(A) under the alternative, that is the
gamma disﬁributioh, vas obtained as in Section 2.5. Here, also, from
the comments. about (lf2f2h)vit foilows‘that the distribution of the ,1
test staﬁistiés'dcpends only on Yoo Random variates from a gamma distri-
bution were'obtained-by the methods describe&tin Section 2,5. TFor Yl =1
and different values of Yo 100 trials for sample sizes n = 50, 100, 200
were obtained. |

Similafly wéAobtained.ﬁhe results on the null d;stribu£ion of $WG(C)

and TWG(A)Vand on the distribution of TGW(C),and 7. (A) under the alterna-—

GW
tive, that is the Weibull distribution. Again from the comments on
(1.2.2h) it follows that the distribution of the test statistics depends
only on 827 Random variates.from a Weibull distribution were obtained by
thé trans formation y, = Bl(—log ui')l/62 vwhere u, are ﬁniform (0,1)
variates, Tor Bl = 1 and different values of 62, 100 trials for sample
sizes n = 50, 100, 200 were obtainéd.

The approximations of Section 2.5 ana the accuracy of the Newton

iteration described there was also used for the tests of this Scction,

The results are summarized in Tables 2,7.1 to 2.7.8., In view of
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the small scale it.is emphasized that no general conclusion will be made
apart from general observations?

It was pointed out in Section 2.5 and earlier in this section that
when the distributions have a similaf shape a large sample size is
expected to be réquired for the asymptotic rgsult to be adequate,

Further, the power function is expected to be'low. The choice of para—
mater values for the simulations was directed to investigate this point.
For values of Yo and 82 near ; both dehsity fqnctions should have a similar
shape. TFor a Weibull density function with 82 reasonably greater than 3.6,
there is no gamma density function which has a similar sharpe.

Only the‘resﬁlfs fof parameter values‘hcar‘l are presented in Tables
2.7.1 to 2.7.hf"'For values 1ess:than 0.8 and greater than 1.2 the adequacy
of the asymptotic results ﬁére increased,‘ |

Results of Tabies Q?Tfl and 2?7?2 do not show,muéh difference between
the A and C statistics? The reéults fbr the sample mean generally agree
with Section 2.3. |

For the parameter values in Tables 2.7.3 and Q?T?h, TGW(A) and
TWG(A) éeem to be consistent, although it doés not seem feasible to investi-
gate consistency analytically. In Table 2.7,& the large Qalue for the
kurtosis of T, (C) at yé = 0.8 suggests that for n = 50 the asymptotic
result is not adeguate.

The power of TGW(T) in Table 2.7,5 agrees with the comment about
the shape of the densitiesf For 82 near 1 the power is low as should be
expected? Table 2,7.6 also shows a low power for Y, near l? The further
low powers in Table 2.7,6 also agree with the comments about shépe,
since it 1s always possible to approximate the true gamma disfribution
by a Weibull distribution. )

Comparison of power between A and C could be made using the argument
of nearest alternative as in Scction 2.5. This was not attempted here

because the complexity of the equations and also because of the small
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scale of the simulations. Figures are also not pfovided.
The simulations of this section show that the results seem adequate
for samples of size greater than sbout 100 even for parameter values

as close to 1 as 0.8 and 1.2.



TASLE 2,T.1

¥ull distribution of TW(C) znd TW(A).

TABLE 2.7.2 Null distribution of TWG(C) and T\IG(A)'

. ™ -
ul{TG’J( -)/HG} ‘ UE(‘G‘J(')/‘HG} Yl{*c'«'(' )NG} BECTGW('),HG) . ul{TWG( ')/}’V) vQ{T'n'G( ’)/H'n'} Yl{TWG( ’)/H\J} BZ{TWG( . )/y\)
o T,:_‘.(-) n TWG(') T
15750.8 | v,72.2 1 7,50.8 |v,71.2 1,708 | v =1.2 1,70.8 | 1,=1.2 8,708 | £,=1.2 1 8,=0.8 | 8,=1,2 | 8,%0.8 | 8,=1.2 | £,70.8 | 8,=1.2
o | ¢ ~0.278 | -0.215 | 1.345 | 0.758 | -0.63% |-0.138 | 3.05% | 2.895 so | ¢ 0.157 | -0.056 | 0.777 | 0.81% | -0.199 | —o.xz2 | 2.872 | 2.935
0,088 | -0.05% | 1.126 | 0.773| -0.185 | 0.435 | 3.028 | 3.029 15T | -0.05 -7 : i . -7 93
: : A -0,0L8 0,104 2.759 0.796 0. 24k 0.149 2.909 2,662
1 | ¢ -0.077 | -0.225 | 0.910 | 0.883] -0.351 | -0.669 | 2,782 | 3.772 o | c 0.078 | -0.096 | o.e45 | 1.070 | 0.50 1.098 R
0.012 | ~0.085 | 0.938 | ©0.717] -0.163 | o0.08k | 2.735 | 3.082 : 0T . o 0T R3O0 |~ 3 g
: A -0,051 | 0.005{ o0.84s | 0,900 | 0.631 ) o0.L0c| 3.248 ) 3.081
20} ¢ 0.046 | -0.3%6 | 1.081 | 1,171 | -0,k29 | -0.217 | 2,760 { 2.757 200 i 0.06 011 L.20 1004 | —o.s10 | -0.80 2.9 .
0.091 | -0.221 | 1,072 | 1,038 ] ~0.243 | 0.327| 2.776 | =2.979 € -003 117 -203 . -5 0T 29T 3.3
A 0.0%5 | -0,049 1.185 0.910 | -0.421 | -0.LTk 2.797 2.787
Paslés frez 100 trials,
Results from 100 trials,
- W3IZ2.7.3  Distribution of T (c) end To(A) wmder alternative H . TABLE 2.7.4  Distribution of T,(C) snd T, (A) under altemnative 1,
7o) /0) | ko {0y () /H,) yl('rm(.)/aw} '32'{Tm(.)/§1.,,} uy (Tal )5} ua{T 0 () /HG) AR TARILIY) 8,{Tygle ) 1Hg)
n RS | T n T'JG(‘) -
B 52=9_a 32=1.2 §,=0.8 | 52=1.2 52-—-0.8 82=1.2 52=0.B 82=1.2 72=0.8 ¥,=1.2 y2=0.8 ¥5=1.2 72=0.B ¥,°1.2 72=0.B ¥,e1.2
50 c -0.485 | ~0.553 0.915 1.008 | -0.335 | -0.555 2.548 3.070 50 [+ -0.19k | -0.359 3.280 1.0L0 | ~4.69% | -0.99T | 36.1€0 3.981
~2.337 | -0.375 0.976 0.780 | ~0.059 0.130 2,637 2,747 A -0.17h | -0,19% 1.072 0.755 0.c08 | -0,190 2.562 2.874
100 | C ~0.733 | -0.€11 1.127 | 0.963] -0.892 | 0.186 [ 3.786 | 2.838 100 c -0.537 | -~0.386 | 1.065 | 0.903 | -0.510 | -0.473 | 3.591 3.049
-0.653 | -C.L86 1.047 0.860| -0.819 0.775 3.726 |- 3.875 A -o.poT -0.265 0.880 0.769 | -0.018 0.069 2.655 2.949
200 c -1.002 | -0.777 1.343 0.935 0.373 0.408 2.685 2,686 200 [+ -0.774 | -0.392 1.117 1.32L | -0.082 | -0.642 2.763 3.L0é
-1,966 | -0.675] 1.28k 0.816{ 0.459 | ©.727 ] 2.837 | 3.216 . A -C.715 | -0,261 | 1.012 | 1,113 | 0.1}6 | ~0.045 | 2.k95 | 2.716

Results fren 100 trials,

fesults from 100 triels.

L9



TIBLE 2.T.5. Rull:'Gma; Alternative: Weibull. Tests: TGV(C)' TGW(A) Pover at. t = -1.6%; ¢t = ~1,28,

FOWER FUNCTION

n | Tll) SL = 0,05 ’ : SL = 0.10
62=0.6 62=0.8 82=l.2 82=2.0 82_=3.6 8,=5.0 52=o.6 82=0.5 B8y=1.2 82=2.0 82-3.6 82=5.0
50 c. 1 o.3%0 0.120 0.130 0.350 0.%80 0.670 0.k20 { 0.2%0 0,220 | 0.U70 0.720 0.800
A 0.330 0.120 0.080 0.220 0.400 0,430 0.k420 0.200 0.1%0 0.k00 0.610 0.680
100 ¢ 0.460 0.170 0.130 | o.620 0,0 0.890 0,550 0.260 0,260 0.720 { 0.910 0.950
0.460 0.170 0,110 0.530 | o.730 | 0.820 0.590 0.250 0.170 0.680 | 0.860 0.930
200 c 0.730 0.3%0 0.180 0.830 ' 0.990 1.000 0.870 | o.kko [ 0.3k 0.870 | 1.000 1.000
0.720 0.320 0.120 0.760 0.960 1.000 0.870 0.4%0 0.260 0.B850 0.930 1.000

Results frcm 100 trials,

TABLE 2,76 Nulls Weibull; Alternative: gama. Testa: T.(Ch; T,..(A). Pover at t = ~L.64; t = =1.28. -

89

POWER FUNCTION
a | T.() SL = 0.05 ’ SL = 0,10

72'0.6 72=0.5 1,=1.2 72=2.0 ! 72=5.0 ¥,710.0 Y2=O.6 Y2=0.8 Y5722 | 7,72.0 | 7,%5.0 72=10.0

50| € 0.180 o.'17o 0.100 | 0.200 0.320 | o.k90 0.270 | 0,230 0.160 0.310 | 0.500 0.690
0,160 0.100 0.060 0.110 0.1 0.280 0,260 0.180 0.120 0.2%0 0.390 0.550

100 c 0.260 0.110 | 0,120 0.2%0 0.620 0.820 0.%00 0.250 0.180 0,420 0.770 0.920
0.260 0,080 0.070 0.220 0.520 0.760 0.380 0.150 0.1%0 0.370 0.7%0 0. 862

200 c 0.%10 | 0.220 0.140 | 0.520 | 0.930 0.980 0.550 0.3%0 | 0,210 0.6%0 0.9¢0 | 1.000
0.400 0,200 | 0,100 0.%50 0.830 0,980 0,5%0 0.310 0.1680 0.610 0.960 0.550

Peguits frea 100 trials,




TABLE 2,T.7 Null:s gamzma; Alternative: Weibulle Tests: ’G‘W(‘C)' TGW(A)' One-side significance level at ¢ = -1.6!‘;@ = =1,28,

SIGNIFICANCE LEVELS
n fro(.) SL = 0,05 SL = 0,10
0.6 lv.o= - - - = = -
72—0.6 |72 0.8 72=l.2 1, 2.0 !*2 5.0 Y2=10.O Y, 0.6 72=0.8 Y5 1.2 |7, 2.0 y2=5.o Y, 10.0
50 c 0.080 | 0.110 | 0.080 0.0k0 ! 0.0¢0 0.050 0.120 0.200 | 0.120 | 9.080 0,130 ' 0.120
A 0,060 0.070 0.020 0,020 0.0l0 0.020 0.110 0,120 0.090 0.0L0 0.070 ° 0.C60
. : S

100 ¢ 0,030 | 0.060 0,070 0,070 0.070 | 0.020 0,070 | 0,110 | 0.100 0.080 0.150 . 0.1ko
0.060 0.0ko 0.020 0.0L0O 0.060 0.020 0.060 0.090 0.060 0.080 0.100 : 0.070
200 c 0,050 0.060 0.1L0 0.060 0.070 0,080 0.100 0,100 0.190 0.110 0.1k 0.1%0
0.030 | 0.050 0.070 | 0.060 0.060 0,030 0,090 | 0.070 |' 0.170 } 0.110 0,100 0.110

Results from 100 trials.

TABLE 2.7.8 Null: Weibull; Alternative: garms, Tests: Twc(c). TH(A). One-side significance level at t = ~1.64; ¢t = -1.28

SIGRIFICANCE LEVELS

n ':-GJ(.)_ . SL = 0.05 SL = 0,10
82=O.6 £,=0.8 |B,=1.2 {8,=2.0 32=3.6 8,250 92=o.6 8,=0.8 8,°1.2 |8,=2.0 82=3-6 8,%5.0
50 c 0.056 | 0.070 | 0.060 | 0.030 { 0.330| ©.030 | 0.110 | 0.100 | 0.120 | 0.100 | 0.120 | o0.110
A o.cx0 | 0.030 | 0.020 | 0,010 { 0.,010{ 0.010 | 0.110 | 0.070 | 0.090 0.080 | 0.060 | 0.0k
00} C 0.020 | ©.030 | 0.080 0.0710 | 0.350] o©.050 | ©0.080 | 0.100,| 0,120 0.120 | 0.1%0 | 0.130
0.020 | 0.020 0.050 0.030 | 0.220| o0.020 | 0.060 | 0.090 | 0.030 0.100 { 0.100 | 0.100
200 ¢ 0.070 | 0.0% | 0.120 | 0.082 0.370| 0.070 | ¢.1ko| 0.1k | o0.130 | o.1h0 | o0.1%0 | 0,130
0.C50 | 0.080 | 0.C70 | 0.050 0.350| o0.,050 | 0.130 | ©.1%0 | 0.130 { 0.130 | 0.120 | 0.120

69
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2.8 Concluding remarks

From the results about consistency, Atkinson's test should be
used only after verifying that under the alternative hypothesis of
interest it leads to consistent tests. It may be difficult to
check this, as was the case in Sections 2.5 and 2.7.

Under the null hypothesis the C statistics should be expected
to be preferable on the basis of skewness and kurtosis. Therefore,
from a practical point of view, the C test are generally recommended
because corrections for lower order moments are considerably more
easily obtained. |

Comparison of power, although very approximate, does not suggest
much difference on the power between the A and C statistics, except
‘for the test of Section 2.k. However, because of the approach to
normality, the significance levels attained by the C statistics agree
more closely with the asymptotic values than those for the A

statisties. Again, this also recommends the C statisties.
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Chapter 3

NON-HOMOGENEQOUS SAMPLE CASE

3.1 Introduction

In this chapter generalizations of the test statistics to deal
with non—identically distributed and with dependent observations are
cOnsideredf Because of the conclusions sgbout the comparisons made in
Chapter 2 only Cox's statistics will be discussed? First, test statistics
are developed for the regression models of Section 1.2? The resulting
statistics are generalizations of those of Chapter 2 and the empirical
results can be thought of as calculated from‘the regressién models under
the average set of covariates, that is E = 9. It is found that the form
of the test statistics does not depend on the covariates; therefore,
asymptotically the test statistic is independent of the estimators of
the regression coefficientsf An illustration is given of the choice of
the regression model for survival data of patients with brain tumours.

An attempt is made to answer the often asked question: What are the
consequences of using one model when another is true? The efficiency of
the estimators of the regression coefficients when using a false model
in relation to the true model is investigated, The matrix of covariances
for these efficiency comparisons'is always of the form (z'2)"! times a
constant., Thus asymptotically the design problem is separated from distri-
butional assumptionsf

Finally, it is shown that the results on the test statistics can be
extended for separate families of hypothesis about Markov processes.,

Some problems are suggested,

3.2 Tests for the lognormal, the gamma and the exponential regression

models
First, suppose the null hypothesis HL is that the model is the log-

normal regression model and the alternative HC is that it is the gamma
T
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ad s . ’ t H . 1y .
regression model, that is, H: fL(yi’al’az’f ) against H,: fG(yi’Yl’Y2’§ )3
see Section 1.2. The expectations of the log likelihood functions in rela-

tion to the null lognormal distribution yield

Il
—E H] (302.1)

= -1 - /or ~
L{R (al,ag,a,y)} =~ 5 log o, ~ n log V21 - n &

1. = - s — + | -
EL{zG(Yl,Yg,g ,g)} n log T(Yz) + n anlog Yo T mYYq n(y, l)al
n 0!2
~Ys iil exp{“1+f Ei- R ST fi§} ‘

To find YlL’ Y2L and gL the probability limits under H of Y and g

1’Y2
respectively, recall Cox [i961, e.g.(32) and 33)], namely

9 log T (y,y Y ;gv)
G 22'1n'on’ oL 9
E = o) = o, (se,
L{ 3y »7,.8")" } a(yl,yz,gn)|EL{2G(Y1L:Y2Ls§LaZ)} 0. (3.2.2)

The derivatives in relation to Yis Yo and g respectively, gives a system

of equation whose unique solution is
Y = +__§ log v.,— ¥(y ) = -2 .g' = at! , (3.2.3)
1L 1 2 ° 2L oL 2 ° L

These results show that g is a consistent estimator of a, while Yqg, and

N A N N N
Yor, is similar to the single sample case. Writing L = (al,a2,a) and by
noticing that % (ul, 2, ) EA{Q (u o, ,8 a',y)} = 0, we then have
L
T* = BEa{0n (v 0V e8lsy) ) = 2 ($ \~¢">¢*:w)
.G £ G 1L oL L Gyl rtp o,

n {log T(Ye) =Y, w(Yz) * Y, - log Py o) + v & 0ly -y A} .
o1 2L 2L 2L,

(3.2.4)
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Now, thec asymptotic variance VL{TiG} of this test is required. TFirst

we evaluate

(3.2.5)

Cp, =05 Cpp, = n{Y2 2a2} s L3790 s

and recalling the information matrix in (1.2.9) and on writing
= 1
Cp, = (CqqsCop,C3p)s e have
B o a?
Vo{T* } =16 - ¢! T Mo ,0.,a')C. = n y2|e ~1-a,- —= (3.2.6)
L LG ~L 12722, 2 2 2 2 : v

Now, suppose that HL and HG change roles so that the null model is
the gamma regression model and the alternative is the lognorﬁal regression
model. The expectations of the log likelihood functions in relation to

the null gamma distribution yleld
1. - - - — —
EG{zG(Yl,Yz,g ,g)} n log F(Yg) * ny, w(vz) n{w(vz) log v, * ‘Yl} n Yy

tep b o= = 8 - 5 - . ¢ S
EG{QL(al,a2,§ ,y} 5 log @~ n log/2m n{¢(Y2) log v, + yl} 5 U (ye)

(3.2.7)

1 2 2
~%a. F [affi% - {‘“(Yz)'log Yo FYy Y 515}] .

>
>

To find alG’ a2G and ag» the probablllty limits under H of a o, and a

1° 72
respectively, the analogue to (3.2.2) is

3

19 f),

G,V)} =0

d).}“{IL (OL

ala 162%20°8
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whose unique solution is

T A w(Yg) = 108 Yoy Oy = w'(Yz), 8, = & - (3.2.8)

~ ! .
Here, a is seen to be a consistent estimator of g and the result on %G

and %on is similar to the single sample case. Writing G = (Yl’Yg’g)

a & )
and by noticing that QG(Yl,Yz,%,Z) Eé{lG(YlG,YgG,§G3{)} = 0, we have

>

% = 1. - . = = -,
ToL Ea{lL(ulG’GZG’gG’{)} 20y 05.85y) = 5 log o (3.2.9)

Similarly, for the variance VG{TEL}’ we Tirst evaluate

() v o0 (y,)
GL = n {YS prly,) + — +-% y B - Yz} ,
b{pr(y,) )2 P y,)
2 2
(3.2.10)
, j vt y,) ‘
- = ' - e =
C1g =0 Cyp=n {Yz Vi) -1+ v (y,) } » 6= 90
and recalling the information matrix in (1.2.17) and by denoting
1 = 1
C (ClG’CQG’SSG)’ we have
, . v (y,) vo{ut ' (y,) )2
% = - T ' = = -
VG{TGL} CL EGI '(Yl’Y2’§ )¢ +

= n
") M () P ey (1,)-1)
(3.2.11)

Finally, the statistics'TiG and TéL standardized by thelr variances,

are asymptotically standard normally distributed under HL and HG’ respec-

tively.

Special casc - exvonential regression model

Now, the tests involving the lognormal and the exponential regression

model are presented. It is useful to recall the relation

h YIS



A ~
o, =y, *U(v,) -~ log v, =y ~*+ ¥y a) ~logy a= o a.
oo 2 2 1 or, oL 16

First, suppose one wants to test the null hypothesis

. - 1 3 - 3 2 . . 1
I f(yi,al,ag,% ) against the alternative hypothesis By fE(yi,S,g ).

The expressions (3.2.3), (3.2.4) and (3.2.6) become respectively

%o
LT tE o T (3.2.12)
. i
A A 2 .

* - — —— ——
TLE n[& oy 2] 5 | (3.2.13)

o oy a%_-

* = — — o —— R

VL{TLE} n[e 1-a, 2] . : (3.2.1h)

When HE is the null hypothesis and HL is the slternative, we have similarly

that expressions (3.2.8), and (3,2.11) become

Og = 8§ + ¥l ? s Opp = v(1) , ap = a, (3.2.15)
o N (;’2 N AA
TEr, ~ n[é = 18+ 9(1)} + 5 dog ;’j] , (B = (8,a9) (3.2.16)
oF
VE{TEL} = 0.283n . | , (3.2.17)

Again, TiE and TEL’ standardized by their variances, are asymptotically

standard norrally distributed under HL and HE’ respectively.

3.3 Tests for the lognormal and the Weibull regression models

Here, the null hypothesis H_ is that the model is the lognormal

L

regression model and the alternative Hy is that it is the Weibull regression
W R .. ' . . . ). o Qo 1

model, thet is I, : fL(yi,al,aQ,% ) against Hy fw(yi,Bl,Bg,E ); see Section

1.2. The expectations of the log likelihood functions in relation to the

null lognormal distribution yield
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1. = 4 - - -1
EL{QL( 12028 ,Z)} 5 log @y, = n log v2m - noy = 3,

(3.3.1)

n ¢
E, {2w( 1,82, Z)} = n log B, = nB, B, + n(Bg—l)ocl - il[exp{al+3ig

i
8
B.o 2
22
T B EIE}] ’

~ EaS
To find R B,.. and b_, the probability limits under H_ of Bl, 82 and

11,* "2L L0 ‘ L
b, respectively, the analogue to (3.2.2) is

_—_T]Tl E{Q‘ 1L382L’ Lsy)} (‘3 L]
whose unique solution is
oo 1
B.. =0 +=—=, B == _ b =g, (3.3.2)
1L 1 2 2L J&; .wL -

These show that b is a consistent estimator of a and BlL
. ~ A ~

similar to the single sample case. Writing L = (al,ag,a), we have

and B2L are

T* = E, {z (

I lL,BQL’ Ef)} L (Bl,BQ,b ;V’)

L
{A ~ 82 ~ >~ ( )
= BB B ~ B FS 108 —_— = (B "B A]} . 303-3
21 Topar S U

For the variance V {T } we first have similarly to (2.6.6) that

v = 0.218281n, (ClL=CeL’S§L) =0 (3.3.4)
and similarly to (2.6.7) -
v_{T¥ } = 0.218281n . (3.3.5)

L TIW



T

Now, H_ and Hw changes roles so that the null model is the Weibull

L
regression model and the alternative is the lognormal regression model.

The expectations of the log likelihood functions in relation to the

null Weibull distribution yield

By hyy(88550"5y)} = n 1og 6, = nByBy +n(B, 1){81~+ B, J ~ "
(3.3.6)
) . ' 1
EW{Z (o, ,0.,a"5y)} = - = log &~ n log/2m ~ n{B_+ b o' (1)
L %% 3 2 2 1B, [ »
2 24,8
) 22
2
n
- §%~ % {al + zia - [Bl + iéll + Zib)} .
2 i=1 ~ i 2 v
To find alW’ %o and fW’ the probability limits under HW of al, oy and g
respectively, the analogue to (3.2.2) is
0 E {2 (o, 0.8 ;7)) =0
5(a; 0,8 ) WL oW’ ow B3y o
whose unique solution is
G T BT Yoy '&57—~ I (3.3.7)

2 2

~

Again, a is a consistent estimator of b and the result on %y and %o

~ A N =&

is similar to the single sample case. Writing W = (61’82’3') we then

have
A ) ~ a a A ) .

3% = Ta — - - T LY - .

Tis = By(BroBpel 3y) = 2plog,0p,23) = Baltg (885,00 5y) = 2p(eyypy.agy))
-~ ES ¢

= n{f o, - O . T log 2 . (3.3.8)

201 W 2 o .

U
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For the variance Vw{TﬁL} we have similarly to (2.6.12) that

WL = 0.283kn ; (Clw°cew°§&) =0 . (3.3.8)

and similarly to (2.6.13)

vw{TéL} = 0,283hn . (3.3.10)

Finally, the statistics T{w and T%L standardized by their variances

are asymptotically standard normally distributed under HL and HW’

respectively.

3.4 Tests for the gamma and the Weibull regression models

Suppose the null hypothesis H_ is that the model is the gamma

G
regression model and the alternative that it is the Weibull regression
model, that is Hy: f(yigyl,Yg,g‘) against f(yi;Bl’Be’E'); see Section 1.2.
The expectations of the log likelihood functions in relation to the null

gamma distributions yield

’ 1. - -1 - -
EG{RG(Yl,Y2,§ ,z)} n log T(Ye) oo, ¢FY2) n{w(Yg) log v, + Yl} DY

EG{RW(Bl,Bg,B';z)} = n log 82 -n 8281 + (82-1) n{w(Yg)—log Ty Yl}

bl
r(8.+v.) =n g (3.h.2)
2 2 2
—— I exp{y,+z.g-B,~2z.b} .
B . 1418 71 Ji.
rly)v,>
2’2
To find BlG’ B2G and EG’ the probability limits under HG of Bl, 62 and ?

respectively, the analogue to (3.2.2) is

3

) '.. =
a(B],Bgib‘)'LG{QW(BlG’BeG’EG’Z)} 0

whose unique golution is given by
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Moec™a) e ) - s iy
Bow = v, — log v, — log s WIB_ ~tY,) - = Ply > b, Tg,
16 1 2 Bza r(ye) 26 '2 32G 2 e TR

~N
Again, b is a consistent estimator of g and the results on B, and

~

are similar to the single sample case.

B2G

N L3 ~

~ .
Writing G = (Yl’YE’g) we have

{

% = t. - A 2 1.

G
- B a ,
2G_ a~ A A " ~N F
=n log = (B ~ B ~ = BB ] + [B ~—B ]{w(Y )"log YA~Y }] . (3-h-3)
- B, 2¢ 16 .24 26 ° 2 21 |

For the variance Vé{Téw} we have similarly to (2.7.5) that

r(2p,.+v,)T(v,)

G = n{v? (1) (r,78,0) + + 21,80 By, )u(v, )} = 7,1,

'{P(BZG+Y2)}2
(3.4.1)

Cig=0s Cpy = n[}Ye—BQG)w'(Ye) + (B, - w(Ye) - %} » Cag =0

and recalling the information matrix in (1.2.17) and by denoting

gé = (ClG,CzG,SéG) we have similarly to (2.7.6)
, r(28,.+v,)T(y,)
VG{Téw} = n[_ : ¢ 2 ) 2
{r(Byg)}
‘ 1 2 Y T - 2 .
¥ {382G Yo 7 B () Yew'(Yz)Bee}]

v (v,)-183,

(3.4.5)

Now HG and HW changes roles so that the null model is the Weibull

regression model and the alternative is the lognormal regression model.
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The expectations of the log likelihood functions in relation to the

null Weibull distributions yields

. Y)Y = - - () _
DW{R‘W(Bl’BQ’?’X)} n log B, = n B8, + n(B2 l){Bl + B, n,

By {2a(vys7,:857)} = —n log T(y,) + Y, log Yo~ mo¥pyy *+ (v5m1) n{sf él)}

2
(3.4.6)
J {l n '
' - v, |+ l] T exp{s +z.b-y —z.g} .
. ~» ~ ~
To find Yiwe Yoy and %W’ the probability limits under HW of Yl’ 72 and %
respectively, the analogue to (3.2.2) is
——-——3__—-_.. E 2’ ( ! [} ) = O
5(v157p28) G 1w Y ow &Y z
whose unique solution is given by
- NN _ 16D I _
Yoy = Byt Loe r[sg +l) s Wlygy)=log vy B, ¢ r(sz +l]’ =P
(3.4.7)
Here aiso, g is a consistent estimator of b and the results on Yiw and Yoy
are similar to the single sample case.
Writing W = (Bl’Bg’b) we have
= 2 (818,00 57) = 25(¥: 708" sy) = Bafe Hy)-n !
T = i B1aBosl"s) = Ao(YypagTay) = Baly(By,Boub sy =26 y oy gyp3y)
= 1’1("\( Ay 5p)=13-10g T(y )-8 {0y .)-log v o + ¥ ,\}:l
- 2W 2w C2W - oW AT
- [ptutim) - 2o 1) Bli3) - 208 T, ¢ 1)) (k)

T'or the variance VW{T{;}I} we have similarly to (2.7.11) that



BA=Y iy} 2 r[éi +l] Y
2 ' 2W 2 2 —u2 - 2W *1'-"-—1
e H B, J vra) + gy > Yow [Yew B H“’[“B) “(l)H’
1 2 2
s ] |
2
(3.4.9)
o =o, o =-n e f (1 - p(1) C.. =0
w =% S TRy 1B, WMis, Vil Gy = 0
and recalling the information matrix in (1.2.12) and by denoting
Ofy = (CyypsCopysClyy) We have similarly to (2.7.13)
2
rii+ =
Bo=Y ) 2 [ B]
e Y o= 2 M 2 2 -2 .
Vw{TxfIG}‘nH B ] v vy , " Yow Tt
L Po : 1
e )
3 | o))
{ Y o) | 1 '() 1 Yoy [ 1) (1) ?
s Bl )y e 2 e ]
an B, B, v'(1) - B, .82
(3.4.10)

Again, the statistics Téw and T%G standardized by their variances
are asymptotically standard normally distributed under HG and HW

respectively.

3.5 Example

An illustration of the previous results will now be given. Table
37576 presgéts survival data on 93 malignant tumour patients as collected
by the Brain Tumor Study GrouPAat ‘the M.D. Anderson Hospital and Tumor
Institute, University of Texas. All patients received surgery and were
randomized according to a chemotherapeutic agent (Mithramycin) and conven-
tional care (Control) during the recovery period from surgery. The tumours
were classified by their position in the brain. Other covariates recorded

vere, age, durstion of symptoms (headache, personality change, motor



deficit, etec.), sex, level of radiation. A further description is given
by Walker, Gehan, Laventhal, Norrel & Mahaley (1969).
Corresponding to each patient a vector of covariates z = (zl,...,zlo)

was defined, where Zl’ZQ’ZS’Zh and z_ represent age, duration of symptoms,

5

sex, treatment and radistion, respectively. The remaining 26220228 3%g and
Z1p 2re indicators of the position of the cancer cells with a one variate
corresponding to each of frontal, temporal, parietal, occipital and deep
BG/T.

For the choice of a suitable model the simplest models were first
tried, that is, the exponential regression and the lognormal regression.
For these it was found that TLE = -2.813 which is significant at a level
o = 0.0025, which points to a departure from the lognormal regression in
thg direction of the exponential regression. Interchanging the roles of
HL and HE’ TEL = =-2.909 was found, which is significant at the level
¢ = 0.0019 and points to a departure from the exponential regression in
the direction of the lognormal regression. This would mean that neither
model fit the data well. To verify this point these models were tested
against some alternative simple models.

First, departures from the exponential regression in the direction
of the gamma and the Weibull regression were tested. For this, the
asymptotic normal distribution of the maximum likelihood estimator of the
shape parameter of the gamma and the Weibull modéls or eguivalently the
asymptotic 2 distribution of the maximum likelihood ratio were used.

The results are summarized in Table 3.5.1 and show that assuming a
Weibull or a Gamma model the null hypothesis of an exponential regression

model is rejected.
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TABLE 3.5.1 Testing for exponential regression
MLE Iikelihood Ratio
Alternative Normal Significance SigniTicance
Deviate Level -2log A=x? Level
Gamma, 3.982 0.000035 26.765 <0.00001
Weibull 5.084 <0.00001 31.267 <0.00001

Note the rough agreement of the square of the normal deviates in

the first column with the y2 deviates in the third column. Also, note

that the null hypothesié of exponential model was rejected more strongly

by the Welbull test.
Following this the lognormal regression against the gamma and the

Weibull regression was tested. It was found that T

G = -3,119 which is

significant at o = 0.0009 and T, = 1.016 which is significant at

GL
o = 0,1539. The first test rejected the lognormal in févour of the

gamma, model and the second suggested a reasonable agreement with the
gamma model. TFor the Weibull regression the results were, TLw =
0.44h3, the

-3.699

with significance a = 0,00011 and TWL

former rejected the lognormal in favour of the Weibull and the latter

= 0,137 with o =
suggested a good agreement with the Weibull model. Again, it can be
seen that the lognormal regression was rejected more strongly when compared

with the Weibull regression.
The tests between the gamma model and the Weibull model gave

Toy = ~2-436 with @ = 0.0073 which points a departure from the gamma

in the direction of the Weibull model.

The converse T, = 0.967 with

WG

o = 0.166 suggests a good agreement of the Weibull model with these data.
Finally, in view of the above results 1t is concluded that the

Weibull model should be used for Turther analysis of the data., The

result of thesc tesi statistics are summarized in Table 2.5.2.
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TABLE 3.5.2 Results of the tests of separate families of hypothesis

Observed Estimates of Probability Limits

Test s e ) .

Normal |Significance| Constant Shape Regression

Deviate Level Term Coefficients
T m -2.813 | 0.002L48 5L = 5,196 di =a
Tpr, -2.909 | 0.00191 oy = 4.557 Uop™ 1.645 aé =d
Tra -3.119 | 0.00090 Yi1© 5.196 e 1.777 gﬁ -
Tar, 1.016 | 0.15386 o 6= 4 .890 oo™ 0.533 %é =g
T ~-3.699 | 0.00011 Bor = 5.281 Bor™ 1.277 ?ﬁ = a
Tur, 0.137 | 0.4h4433 oy L4.906 oo™ 0.570 ?ﬁ = ?

- ) = = = .
Toy 2.436 | 0.0073k Big 5.2k Bog 1.560 ?é g
T 0.967 0.16602 Yoy 9-132] y,= 2.367 &y = X

For an ordering of the models according to their goodﬁess in fitting
the data, first comes the Weibull and then successively the gamma, the
lognormal and lastly the exponential régression model. This is also the
ordering from the maximum of the log likelihood functions. Table 3.5.3
gives the maximum of the log likelihood functions, Table 3.5.h the log

1ikelihood ratios and Table 3.5.5 the results of the maximum likelihood

estimation.
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TABLE 3.5.3 Maximum of the log TABLE 3.5.4 Log likelihood
likelihood functions ~ ratios - x( )y

L. '
Log likelihood Ohaerved

Moded L ratios A( )

Legnormal  ~ g ~563.9347 Lty = Ay, ~ 6.5003
Exponential = £p -570. L3y Lomhy *® A ~13.3826
Ganma = %4 | ~557.0608 Lemhy = Apy ~15.6337
Weibull = ¢, } -554.8098 L7 = g - 6.8739
!.L-—!.H = ALW - 9.1250
‘c"’w = Aoy - 2.2511

TABLE 3.5.5 Maximum Likelihood Estimates for the Models,

Model Co;i:gnt Shape : Regression Coefficicnts
o o % ~ .
lognoroal’ 4.8896 |0.6137 |a'= [-0.0065 0.0057 0.11k1 0.0583 0.2883 0.3778 0.5877 0.3:i5 0.8351 -0.4575]
(0.081) [o.0%0) 1 - (0.008) (0.002) (0.197) (0.172) (o0.06k)} (0.357) (0.354) (0.371) .(0.k38) (0.509)
8| .
Exponential | 5.1338 - a'= [-0.0019 0.0075 -0.0588 0.116% 0.2556 0.5001 0.5875 O0.7¥T2  0.74TY -0.5210]
(0.20k) - (o.011) (0.002) (0.252) (0.220) (0,082} (0.456) (b.452) (0.L73) (0.559) (0.649)
T Y2
Gamza 5.1338 |2.1999 | g'= [-0.0019 0.0075 -0.0588 ©0.1164 0.2556 0.5001 0.5875 0.78T2  0.7u7T% -0.5218]
(o.070) {(0.301) | * (0.007) (0.001) (0.170) (0.148) (0.055) (0.307) (0.305) (0.319) (0.377) (0.438)
By 82
Weibull 5,246 11.6989 | v'= [0.0017 0.0085 -0.1125 -0.1231 0.2305 0.5185 ~ 0.5312 0.43%9  0.6551 -0.5581)
(o0.061) [(0.137) | (0.006) (0.001) (0.148) (0.130) (0.0L8) (0.268) (0.266) (0.278) (0.329) (0.382)

Numbers in parentheses arc the standard error given by each motel.
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TABLE 3.5.6 Data for Clinical Trial collected by the "Brain Tumor Study

Oroup",.M.D. Anderason Honpital and Tumor Inatitute,

Univeraity of Texas: . .

{Y)=days of survival; (zl)-ugc in years; (12)-duration of
symptoms in veeks; (13)—uex'; (zh)-treatment"; (zs)- X-raystes

!4 ‘1 z, 13 %), :5 Y zl z, 23 z, z5
Frontal Tenporal
15 | 57 gl o011, 10 | 46 7121010
20 | 6o 9{1i1]o0 szl ww]rlr)o
22 | 60 o011 61| T2 12]1{1]o0
25{53 t50{1{0|0 62| 4% | 21 lo}1]| 2
2|s7| 8laj1]2 es|us | 22]ala]o
b1 | 67 27T 1 1} O 129 | 59 28 by 1] 3
b9 | 57 g8ioj0|o0 135 | 35 82 i ocjl]o0
51 | s6 60t 1] 1410 PR 'S 22{1]2r]a
56 | 68 31{a| 213 W5 55 1 2311113
59136 | 15! 1| 110 162 66 | 26 joj0] o0
it éo 2211111 164 | 53 Mi{of{1]0-
97 | 48 231 01010 177 48 o frf{r]o
219 | 48 {1871 1| O] O w9kt ST (3T{1]0f0
121 { ST 23; 1| 0t 0O 200 42 32104 3
59 | w1y 1fo zov | 57| v3alafa]a
162 | 50 37: 1) 01} 3 210 | 65 sal1{0]|0
wrfus sl af ol 252 31| ®l1tol|3
21k | b2 39} 1} 1] 2 253 ) %1 ) 821} 0! 3
231 | 53 381 1] o] 3 2551 70 ] 81|02
250 { 44 | 99| 1] o] O 21255 majoj1fo0
264 | 53 ba | 2 272 274 | 47 2 {1j1¢2
281 | 66 | 43§ 1{ 1} 2 2971 5% | s0]1[ 0} 3
361 58 {153] 1t 1] 3 3250 56| 591f0} 3
3w {57 | 80} 17 1} 2 WS} 52 611 a1]3
359§ 55 571 1 01 1 385} 59 5911 0] 3
k10| 68 WL 1) 1y 2 nob'] BU p LU [ U L) 3
484 | s0 gBh| 1] of o 495 | 53 0l ol o
522 | 52 86!l 1] 1| 3 5261 59 8711y 0| 2
160§ 27 |253( 1 1| 3 669 w7 {121 ] 1] 1] 2
"Parietal Oceiptald
12 ] s6 56 0] 0 2 91 40 15 1f{1]0
18| 39 3] 1 1] we| 521 y7|1}o}2
3% [ 72 1311 o] o Wyl 51 231|210
371 55 19| 1f 0 0 162 | 6k 3ofel 1o
571 59 14y 0f 1} 3 2721 30 Li{1y70( 3
6k | 56 19 1 1] 0 L9 | 58 TL{1] a0} 3
82 | b5 2514 1 1] 1 k751 57 71]1lol>2
1071 11 L3y o0 0 { Deep Bazal Cannl in/Thalnmug
103 | 50 181 o] o La | ho 7311} ajo
132 1 9 L2t 1) o o 51| 6o i1y 0] 3
134 | 60 Ky, 1] o} 2 s4 | La i1l ol o
136 } a2 3t) of 11 o 121.53 17 ]ola1l 2
143 | 52 281 11 0 Others
“23k | GO Wwl o of 2 21 ) 52 28| 1yo0t0
2u8 | 51 3w o 1} 3 20 | sk 1] 1fo0
255 1 53 hol b 11 3 135 | %o 21|03
215 | 96 Bl L oo 293 1 13 6111 v 3
2968 | 51 bo{ 1 of o M7l Us P skiol o] 3
Log | 34 gs {8 o] 3
R
. ® O~Fepnln, l-rnle
2% O-Conteal, P-trenbeent
£40 Q-noue, 1=irte than 3000 radn, 2~lenn than 5000 rada
3-5000 ur e IS

Aoothiar 3 patleatn atilD alivs and vers ngt fueluded in thin table and

Co tin mlviain,
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3.6 EBfficiency of the false regression model

In previous sections of this chapter tests of separate families of
hypothesis for models containing regression covariates were considered.

It can be seen [e.g. expression (3.2.3)] that the estimators of the

regression coefficients are always consistent, independently of distribution

assumptions. Here, the consequences of using the wrong model are
investigated by comﬁaring the properties of these estimators. First some
general results and the notation are presented.

Let y = (yl, e Yy ) be independent but not identically distributed

observatlons, each with probability density function f(y., o', zi) under
MA%(% )fi,,:l)w\duu%, - -

Hfr where z. are known covariates and u, 8 are vector of unknown

~

parameters, with p and q components, respectively. Assume that for each

model , al and Bl are the constant terms, a2

remainder of the elements of a and B are the regression coefficients.

-~

and 82 the shape and the

It can be seen that for the cases presented earlier in the chapter

~

usually p = 4 but in one case p =q — 1. Let o and B denote the maximum

likelihood estimator of a and B, respectively. Recall that under Hf,
B8 converges in probability to Ba and write

~

n

= - .9 _ _92
F= % lOg f(yu OL: %i) 5 Fa - 9 F ] FOL'(! 3 ') F
i=1 - o - - o
with an analogous interpretation for G, GB and GB'B' Here F is a (px1)
vector, F , is a (p ¥ p) matrix and further
f
3 9
Bal Bul
3B
% .
5| cee g seep s
i 3 3
By qu
o0 ¢ "' ® Jo
. P : D)

is a (p x 4) matrix.
Under Hf, (g, @) is asymptotically multivariatc normally distributed

with variance-covariance matrix, given by Cox [1961, expressions(lo) to (h:

01,



namely
28,
Ef(FgGB,) = - ;;1 Ef(GB,B) , (3.6.1)
- 26
Cov_(a,8) = {E.(F, )V E(F o WEF , )} e - (E.(F , )} L=
.. ' ala T a R Y ala T a'a da
(3.6.2)
. -1
Vf((l) - = {Ef(Fa'OL)} H (3.6.3)
v i -1 : -1
Vf(B) = {Ef(GB.B)} Ef(GBGB.) {Ef(GB,B)} (3.6.h)

These expressions are calculated at (a,B&) the mean vector of the
asymptotic normal distribution, The subscripts f, mean that the

expectations, ete., are claculated under Hf.

Now, the true model is f(yi;a,zi) but g(yi,B,zi) was supposedly

used, In the problems considered, for a regression coefficient aj say,

it can be seen from previous sections, that the following relation holds
B. = a. (3 #1,2) .

Therefore (3.6.3) and 3.6.4) are of primary interest for comparison

between Bj and aj. Similarly it would be useful to comment on the

corresponding elements of

~

B : -1 |
ple/n.) = {E,(G_,.)} s (3.6.5)
S

~

the probability limit of the false estimator of the variance—covariance

matrix of B, which is used when it is not known that the model is wrong.

The efficiency of the false model will be measured by the ratio of

the determinants

A v (&%)ll/m
Eff(E*/nf) =-—ii—=—-—f- : (3.6.6)
v ()] /™

and will provide insight into the result of using a false model. Here

a* and R% are vectors of regression coefficient estimator with m

-~ -~

(=p =2 o0or p~- 1) components. The efficiency (3.6.6) is defined for m > 1.
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Finally, a simplification brought about by our parametrization of
the zi's is pointed out. All models studied are log-linear (Section 1.2);

it then follows (Cox & Hinkley, 1968) that

A O c o0

) = » Ep(GeGgy) =
£ BB BB' o ol

where A and C are sguare matrices correpsonding to expected value of

derivatives corresponding to the general mean and the shape or scale of

log ;- The submatrices B and D are the corresponding matrices for the

regression coefficients. Consequently for the elements of (3.6.4)

corresponding to regression coefficients, only B and D need be determined.
For convenience, some expressions needed to evaluate (3.6.4) are

given. With the notation of Section 1.2 it follows

n Y- ' 82 n ¥

9 1 2 i

-— & (B ,B y) = B L z! 5 (B b"y) = «B82 ¥ glz, |————o
2 ? a 'a ~ ,u . ~ 1o . L

9~ 12220 —l ~1 Bl+g P b b W 21_1 i~1 e81+51P

yi 32 n Y.

n
9 1
— (Y 57 9g|§y) =Y, L z! > (Y sY ag:y) = =y, L z1%.,
8~ G 1> '2°% % 2i=l”1 yl+z g ag ag G 1’'2 2i p~ie i Yl+z g
n
9 O - _32 sz L
Ja. ’Q’L(al:QQS% ’Z) = o .E (lOg yi al Z. a)’ |8a L(alga2aa ay) Z'Z o .
- 2 1=1 ~ -~ 2
(3.6.7)
A Lognormal regression model
Suppose the correct model is fL(yi;al;aE,a'). From (1.2.9) the
asymptotic variance of a is
V. (a) = (22) e (3.6.8)
L. 2 ° ' i

The consequences of using the other models is discussed

(Ai) TPalse model — Weibull regression = fw( 81,82;b')

By recalling the probability limits in (3.3.2), we have
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EL{g%-zw E%T'Qw} = 717 Sé? , EL{3§¥%§'QW} = - 217 éé--
From (3.6.4), (1.2.13) and (3.3.2)

V() = ()7 (e, , plb/m) = (2 ey, (3.6.9)
and the efficiency (3.6.6) becomes

Eff(b/HL) = E?" = 0.58 . | (3.6.10)

It can be seen from (3.6.9) that the variance of bj is T2% higher

than its stated estimate.

(Aii) False model — gamma regression - fé(yi;Yl,YE,é)

Recalling the probability limits in (3.2.3)

E"ij 2 g ol = 2% (em2 - 1)v2 B el g} = - yANAY
L'9g "G B8g' 2L° "L 3g'sg G 2L
From (3.6.4), (1.2.17) and (3.2.3)
. -1 %2 . -1 '
—_ - = t
Vi (g) = (2'2) = (e 1) , p(g/HL) (2'2) Ty, (3.6.11)
and the efficiency (3.6.6) becomes
~ a2 :
Eff(g/H_) = . (3.6.12)
w L 0o
e =1

It is easy to see that (3.6.12) is always less than one and that
it decreases rapidly as Op increases. The values in Table 3.6.1

illustrates this point.

TABLE 3.6.1 - Eff(é/HL)

Oy 0.2 0.5 1.0 2.0 0.621Y)

Eff | 0.90 | 0.77 | 0.58 1 0.27 | 0.72

Tt is also interesting to observe that (3.6.12) approaches 1 when
a, > O. This is because as ap tends to zero the lognormal distribution

approaches a normal distribution. TFor a normal distribubion with



(Aiii)False model — exponential regression - T

B

9l

mean exp{gg}, the maximum likelihood equations for a are the same
as those for the gamma regression given in (1.2.18) or equivalently
in (1.2.22).

Because the equation (3.2.3) for Y, cannot be solved analytically,
the only comment that can be made from p(%/HL) is that the stated
estimate will only be in agrcement with VL(é) for o, also satisfying

o, = 1og(Y2L + 1),

e(yy38 ,9') .

The same arguments could be applied to obtain the results
in this case. Here instead it is simpler to recall that the
maximum likelihood equations (1.2.22) for 9 are the same as those

in (1.2.18) for g. The expressions for this case are identical to

those in (Aii) with Yo = Yy, = 1.

Weibull regression model

Now the correct model is fw(yi;Bl,Bg,B). From (1.2.13) the asymptotic

variance of b is

(Bi)

v.(b) = (z'2)7L -glz . (3.6.13)
~ 2

False model - lognormal regression~fL(yi;ul,ae,a').
Recalling the probability limits in (3.3.7).

2 82

8
d ) 2 3 2
E {-— % 2}—ZZ-~—,E{—-————2}=—Z'Z, .
e o B Hay 7ML E )
From (3,6.1;), (1.2.9) and (3.3.7)
— ¥y vy
Vw(a) = (z'z) * (zl) , a/Hw (z'2) -1 (}) (3.6.1L4)
(32 ?2
and the efficiency (3.6.6) becomes
Eff(;/uw = :{7%—)« = 0.61. (3.6.15)

A

Here, p(é/Hw) shows that a correct estimate of the variance of aJ,

the least square cstimator of aj, is given,
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(Bii) False model - gamma regression~fG(yi;Yl,Yz;é).

Recalling the probability limits in (3.4.7) we have

9 - 2 2 - _ 2
Blag ag o og" bet = 22 gy IO S, Byl 'ag et = 7 BB gy
where
r(?/82+1)
[cv]2 = T -1
r( /32+1)}2

is the square of the coefficient of variation of a Weibull
distribution with shape parameter 82.
From (3.6.4), (1.2.17) and (3.4.7)

ve(e) = (22 (o012, p(g/m) = (2'2)7 - (3.6.16)

and the efficiency (3.6.6) becomes

Eff(g/Hw) = TB;EX;]_Z— - (3.6.17)

Table 3.6.2 gives the efficiency and other values of interest.

'TABLE 3.6.2 -Eff(g/Hw)

2

32 Yoy [ov] Eff
0.4 0.266 - 9.865 0.63
0.6 0.468 3.091 0.90
0.8 0.712 1.589 0.98
1.2 1.333 0.699 0.99
2.0 3.131 0.273 0.92
3.6 8.931 0.00kL 0.82
5.0 16.612 0.052 0.76
1.699 2.365 0.365 0.95

It can be seen that the efficiency is high for 32 near 1 as would
be expected and scems to decrease for 52 far from 1. These results
onﬁng, [CV]2 and p(g/Hw) suggests that according to whether 82 < lor 82 > ]

an underestimalte or an overestimate of VW(G) is glven respectively.
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(Biii) False model ~ exponential regression - fE(yi;G,d).
Similarly to (Aiii), the results can be obtained by taking

Y, = Y, in the expression obtained in (Bii) for the gamma

2 2W

regression. Here p(d/Hw) also suggests that not always VW(d)

is overestimated or underestimated.

C Gamma regression model

The correct model is fG(yi;Yl,Yz,ﬁ). From (1.2.17) the asymptotic

variance of g is

1

vilgl = (7'2) éL-- (3.6.18)

2
(Ci) TFalse model~- lognormal regression - fL(yi;al,az,d).

Recalling the probability limits in (3.2.8)

3 ) 1 32 o 1
*L a7 » Blogreg b} = - 22 v

EG{5§

L} =77
L Y
(Yg) Yo)

From (3.6.4), (1.2.9) and (3.2.8)

Vla) = (29) ™ wp L plady) = (22 ey, (3.6.19)

7o 2

and the efficiency (3.6.6) becomes

1

R, ='f;ggz;;;r (3.6.20)

Eff(a/H

It can be shown that the efficiency approaches 1 when Yo increases.
This is because as Y5 increases the gamma distribubtion approaches
a lognormal distribution. For Yo tending to O, the efficiency tends
to zero. For Yy = 2.1999 ", the efficiency is 0.7T1l; further
values are presented in Cox & Hinkley (1968).

Here, p(é/HG) shows that a correct estimate of the variance of

~

aj, the least square estimate of aj, is given.

(cii) False model - Weibull regression—fw(yi,81,82,6).

Recalling the probability limits in (3.4.2)



oL

E (-2 g ) =122 82 [cV]12 , B (—— 22 9.} =-2'7 g2
G 8b W ab' » By 9b'ob "W oG °
where (
. T(28,47,)T(Y,)
(2 = oG 12 2’ _ 4
{r(s )32

ogtYo

_ Boo
is the square of the coefficient of variation of Y 2G, Y with a

ganma distribution with shape parameter Y,.

From (3.6.4), (1.2.13) and (3.4.2)

~

oLl = 2 2 PR R |
VG(?) = (2'7) [CV/BQGJ R p(B/HG) = (2'2) Eg; (3.6.21)
and the efficiency (3.6.6) becomes
) 11 = ol .
Eff(P/HG) = Y, [BZG/CV] (3.6.22)

Table 3.6.3 gives the efficiency and other values of interest

TABLE 3.6.3 -Eff(b/HG)

2 -
Yo Bog [cvi Eff
0.4 0.53h 0.807 0.89
0.6 0.718 0.892 0.96
0.8 0.870 0.951 0.99
1.2 1.115 1.039 0.997
2.0 1.482 1.1k2 0.96
5.0 2.370 1.30h 0.86
2.2 1.560 1.161 0.95

The efflclency is high for Y2 near 1 as would be expected and seems

to decrease for Y. far from 1. These results for [CV]1?2 and p(b/H )
2

suggests that according to whether Yo < 1 or Yo > 1, an overestimate

or an underestimate of WG(B) is given respectively.
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(Ciii) False model —exponential regression - fE(yi;G,g).
Again, from the comments on the maximum likelihood equation,
the efficiency is 1 for this case. Here p(d/HG) = (2'2). It can

be secen that with 82 = B_..=1 in (Cii) the results for the

2W

exponential regression model are also obtained.

D Exponential regression

The correct model is fE(yigﬁ,d). From (1.2.21) the asymptotic
-1
)

variance of 4 is (Z'%

~

. The results for the case of using the
lognormal regression can be obtained from(3.6.14) and (3.6.15) with

B, = 1 or from (3.6.19) and (3.6.20) with Y, = 1. When the model used
is the gamma regression the eéfficiency is 1 and the other results can

be obtained from (3.6.16) and (3.6.17) with B, = Yoy = 1. Tor the
Weibull case the asymptotic efficiency is 1 and the results are obtained

from (3.6.21) and (3.6.22) with Y, = B.n = 1.

2G

5 Concluding remarks

The last entry of the tables in this section correspond to values of
the example in Section 3.5. The results show that for the true Weibull
model the efficiency of the lognormal model is 0.61 and the efficiency
of the gamma and the exponential regression model is 0.95.

Prom the results on the variances it can be seen that optimizing
7'7, conseguently optimizes the asymptotic variances of the estimators.
This means that asymptotically the distributional assumption has no
importance for the design.problem. The small sample conseguences have

not been investigated.

3.7 An extension for Markov processes .

A possible extension for dependent observations 1s now discussed.
Let y = (yl, e yn+1) be an observation from a Markov process with

joint probability density function under Il and under Hg
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n n
£ (v, ) izl £ (y5 40V 5 alyg,8) izl a(y; 41 /v;8)

respectively, where ¢ and B are unknown paramcters. Here fl(yl

g(yl,B) specify an initial distribution, which is assumed to be the

’a) and '

same as the final stationary distribubion, whereas f(yi+l/yi,a) and
g(yi+l/yi,8) are one step transition probabilities. Assuming for convenience
of notation a and B to be scalar and using a notation analogous to that

of Section 3.6, write

iy ST R i, 92
F ((1) - log f(yi+l/yi3a) 2 Fa(a) - aa r (Ci) s F(la(a) = T)—CTZ F (04)

-

with a similar interpretation for Gl(B), GE(B) and GEB(B). Also, denote

the log likelihood functions under Hf and Hg respectively, by

n . n
g .(a) =log £.(y,a) + £ F(a) , 2 (B) =log g, (y,8) + = F
f 1 =1 2 1 i=1

A A

and the maximum likelihood estimators of a and B respectively, by o and 8.

The terms log fl(yl,a) and log gl(yl,B) can be omitted (Billingsley

1961, p.l4) since the initial effects are unimportant as n becomes large.
Assume that under Hf, Ba is the limit in probability of é, that

f(yi+l/yi,u) and g(yi+l/yi,8) satisfy the regularity conditions given by

"Billingsley (1961, p.5,6) which ensures that the log likelihood functions

can be expanded in the usual way. Further assume that the central limit
theorem and the law of large number apply to Fi(a) and Gi(B). These

conditions are sufficiently‘general to cover autoregressive problems and

Markov chain.

The test statistic of the null hypotheses H_, against the alternative

iy
hypotheses Hf is based on

A

™ = 1a) - zg(é) - Bylagla) - 0 (8)) . (3.7.1)
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The asymptotic variance of Te is obtained by arguments analogous to the
independent case, that is expansion of E&{Qf(a)} and E&{Qf(Ba)} around

o, Qf(a) around o and % (Ba) around B lead to

T
9% (a)
L,

oa

Covi{& (a)-2 (B_);
. _ Va7 g o’?
V{T%} = Vd{zf(a) Qg(ﬁa)} Vd{zf(a)}

Since we have assumed the central limit theorem applies to the log

likelihood functions, it follows that T? is asymptotically normally

distributed with mean zero and variance rewritten as
| 20 v rod i i
| on . Ea{iél[F (a)-G (Ba)]Fa(a)}
¥ = - - = - -
v, (1% V“{‘El[F (a)-G"(a)]} —
1= v { £ F o)}
o,
1=1

(3.7.2)
Apart from the fact that in (3.7.1) and (3.7.2), Fi(a) and Gi(Ba) are
transition probabilities, these expressions differ from the independent
case only by the fact that the expectations and variances are calculated
with the stationary distribution as the initial distribution.

In the absence of specific application only some realistic examples
were these results could be applied are mentioned. The first is a
generalization of the problem with quantal response studied in-Cox
(1962, 98); see also Atkinson (1970, 99) and Thomas (1972).

Suppose ?i = (Xi,Yi) (i =1, ..., n) is observed, where the Y's take
the value O or 1, Xi ranges over 1, ..., kX and some time elapses between
the observation of Xi and Yi. Within the hypothesis that %i is a Markov
chain, it is desirable to test the hypothesis Hf against Hg, where each

of the hypotheses specify a different form of dependence of ply /yj) on

J+l
the wvariable Xj' The only difficulty here, could be computationally since
the maximum likelihood estimates would have to be obtained by iterative
methods.

A second example would be for the choice of the functional form of

regression modecls when the error is generated by an autoregressive process.
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A Bayesian solution for this problem is given by Lempers (1971). Williams
(1970) has done some simulations on the likelihood ratio for one such
problem. Incidentally, he noticed that the distribution of the likelihood
ratio was the same as in the independent case.

Another problem related to dependent variables is to know whether
the results of Section 3.2, 3.3 and 3.4 with some modifications could
be applied when some of the gi's are lagged values of the dependent
variable. Properties of the least square estimators obtained by treating
the models as regression models have been given by Durbin. (1960).
Unfortunately few results are available on maximum likelihood estimation
for autoregressive problems with non-normal errors. However it is
plausible to expect maximum likelihood estimators to have better properties
than those of the least square estimators when the errors are not normal.
In this case perhaps, the results could be applied, but this has not been

investigated yet.
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APPENDIX

Derivative of vectors and matrices

Let x and a be (pxl) vectors, f be a scalar

a (g*1) vector function of x.

(@) e
I_BT
ox.
i
5+ flx) = £(x) ,
9
90X
| D]
52 532 7]
Dxlaxl Bxlax
L f(X) =
0x'9x - -
32 .. 32
9xX_oX 90X _9X
O P
9 = |9 9.
X F(f) B [;x : Fl(x)’ " Fq(f

B Scale of figures

The coordinates for the graphs of Chapter 2

the area under each curve is one.

function of x and F

~ ~

The following derivatives are defined:

were chosen so that

For comparisons the corresponding

results from the standard normal distribution are presented in Table B.1l.

For the comparison a transparency from Figure B.l can be useful, and it

is provided in the envelope.
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Table B.1  Frequency and ordinate high of N(0,1)

2 Range % Oﬁg;gg‘ce

-3.09 - -2.33 0.76 .009 0.01316
-2.33 = -1.64 0.69 .0ko 0.05797
-1.64 - -1.28 0.36 .050 0.13889
-1.28 -0.8L 0.u4k .100 0.22727
-0.8%  -0.39 0.45 .150 0.33333
-0.39 0 0.39 .150 0.38h62
0 0.39 0.39 - .150 0.38462
0.39 0.84 0.45 .150 0.33333
0.8%4 1.28 0.4h .100 0.22727
1.28  1.64 0.36 .050 0.13889
1.64 2.33 0.69 .0ho 0.05797
2.33 - -3.09 0.76 .009 0.01316

.998

FICURE-DB.4- Histogram from H(0,1)

0.4

0.3

0.1
[ %Y

.

32039
b=0.94
C=1.23

ds L4k
£=309

Q 3 =< <L bcdTe

¢e=13




101




102

REFERENCES

Abramowitz, M. and Stegun, I.A., eds., (1972) - Handbook of Mathematical
Functicns, eight printing, Dover.

Antle, C.E. and Klimko, L.A., (1975) - Choice of models for reliability
studies and related topics III, ARL 75-0133, Aerospace Research
Laboratories, Wright-Patterson ATB, Ohio.

Atkinson, A.C., (1969) - A test for discriminating between models.
Biometrika 56, 337-347.

Atkinson, A.C., (1970) - A method for discriminating between models
(with discussion), J.R. Statist.Soc. B, 32, 323-353.

Box, G.E.P. and Kanemasu, H., (1973) -~ Posterior probabilities of
candidate models in modéi discrimination, Technical Report 322,
Department of Stdtistics, University of Wisconsin.

Coi, D.R. and Brandwood, L., (1959) ~ On a discriminatory problem
connected with the worké of Plato, J.R. Statist.Secc. B, 21,
195-200.

Cox, D.R., (1961) - Tests of separate Tamilies of hypothesis, Proc. lth
Berkeley Symp., 1, 105-123.

Cox, D.R., (1962) - Further results on tests of separate families of
hypothesis, J.R. Statist.Soé. B 2k, Lo6-h23.

Cox, D.R. and Hinkley, D.V., (1968) - A note on the efficiency of least-
square estimates, J.R. Statist.Soc. B 30, 28k-289.

Cox, D.R. and Hinkley, D.V., (197h) - Theoretical Statistics, Chapman
and Hall.

Dumonceaux, R., Antle, C.E. and Haas, G., (1973) - Likelihood ratio test
for discrimination between two models with unknown location and
scale parameters, Technometrics 15, 19-27.

Dumonceaux, R. and Antle, C.E., (1973) - Discrimination between the

lognormal and the Weibull distribution, Technomctrics 15, G23-926.



103

Durbin, J., (1960) - Estimation of parameters in time-scries regression

models, J.R. Statist.Soc. B 22, 139-153.
¥ Dyer, A.R., (1971) - A comparison of classification and hypothesis

testing procedures for choosing between competing families of
distributions, including a survey of the goodness of fit tests.
Technical Memorandum.No. 18, Aberdeen Research and Development
Center,.Aberdeen Proving Group, Maryland.

FParewell, V.T. and Prentice, R.L., (1974) - Extension and applications
of the log-gamma regression model, unpublished.

Fraser, D.A.S., (1968) - The Structure of Inference, New York, Wiley.

Gross, A.J. and Clark, V.A., (1975) - Survival Distributions
Reliability Applications in thevBiomedical Sciences, New York,
Wiley.

Hogg, V.R., Uthoff, V.A., Randles, R.H. and Davenport, A.S., (1972) - On
the selection of the underlying distribution and adaptive estimation,
J. Am. Statist. Ass., 6T, 597-600.

Holt, J.D. and Prentice, R.L., (1974) - Survival analysis in twin studies
and matched pair experiments, Biometrika, 61, 17-30.

Huzurbazar, V.S., (1950) - Probability distributions and érthogonal
parameters, Proc. Camb. Phil. Soc., 46, 281-28k4,

Jackson, 0.A.Y., (1968) - Some results on tests of separate families
of hypothesis, Biometrika, 55, 355-363.

Jackson, 0.A.Y., (1969) - Fitting a gamma or log-normal distribution
to fibre-diameter measurements on wool tops, Appl. Statist., 18,
T0-T75.

Lempers, F.B., (1971) - Posterior Probabilities for Altérnative Linear
Models, Rotterdam University Press.

Lindscy, J.K., (19Tha) - Comparison of probability distributionms,
J.R. Statist. Soc., B 24, 38-47.

Lindsey, J.K., (1974b) - Construction and comparison of statistical

models, J.R. Statist. Soc., B 2h, h18-425.



10k

Prentice, R.L., (1973) - Exponential survival with censoring and
explanatory variables, Biometrika, 60, 279-288,

Prentice, R.L., (197T4) - A log-gamma model and its maximum likelihood
estimation, Biometrika, 61, 539-5hh.

Prentice, R.L., (1975) - Discrimination among some parametric models,
Biometrika, 62, 607-61k.

Quesenberry, C.R. and Starbuck, R.R., (1975) - On optimal tests for
separate hypotheses and conditional probability integral
transformation, Mimeograph Series No. 985, Institute of Statistics,
University of North Carolina.

Selby, B., (1968) - A new approach to tests of separate families of
hypothesis, Bell Telephone Technical Memorandum.

Starbuck, R.R.; (1975) - Optimal tests for separable famiiies of
hypothesis, Mimeograph Series No. 978, Institute of étatistics,
University of North Carolina.

Teekens, R., (1972) — Prediction Methods in Multiplicative Models,
Rotterdam University Press.

Thomas, D.G., (1972) — Tests of fit for one-hit vs two-hit curve,
(Statistical algorithm, AS-50), Appl. Statist. 21, 103-112.

Uthoff, V.A., (1970) - An optimum test properfy of two well-known
statistics, J. Am. Statist. Ass., 65, 1597-1600.

Uthoff, V.A., (1974) - The most powerful scale and location invariant
test of the normal versus the double—exponential, Ann. Statist., 1,
170-17h.

Walker, A.M., (1967) - Some tests of separate families of hypothesis
in time series problems, Biometrika, 54, 39-68. (Correction,
Biometrika, 57, 226). |

Wélker,M.D., Gehan, E.A., Laventhal, C.M., Norrell, H.A. and Mahaley, M.S.,
(1969) - The evaluation of Mithramycin (NSC-24599) in the treatment of
anaplastic glimas, Presented at the Fourth International Congress of

Neurological Surgery, New York (Scptember 20-27).



105

Weibull, W., (1971) - Outline of a theory of powerful selection of
distribution functions, Technical Report - AFML-TR-T1-52,
Air Force Material Laboratory, Wright-Patterson, Air Force Base,
Ohio.

Whitteker, J., (1974) - Generating gamma and beta random variables
with non-integral shape parameters, Appl. Statist., 23, 210-21h.

Williams, D.A., (1970) - Discrimination between regression models to
determine the'pattern of enzime syntheses in synchronous cell
cultures, Biometrics, 28, 23-32.

Zellner, A., (1971) - An Introduction to Bayesian Inference in

Econometrics, New York, Wiley.

* Dyer, A.R., (1973) = Discrimination procedures for separate
families of hypotheses, J. Am. Statist. Ass., 68, 970-974,

# Dyer, A.R., {1974) = Hypothesis testing procedures for
separate families of hypotheses, J. Am, Statist. Ass., 69,

140-145,

S
Y 54 ax ] er [ ) o~ P s P . -
plisinisler, Py, (3951) -~ Statisticsl Infswence far larkov

-
T oy o v oy TV T emin e 3 -es e RN R -
R e W3 DB o, UALVETER ST O s 1L03 20 Irasgy



