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ABSTRACT  

Chapter 1 contains an introduction to the problem of 

discriminating between alternative statistical models, and reviews 

previous work. 

Chapter 2 is devoted to a comparison in the single sample case 

between the asymptotic procedures proposed by Cox and by Atkinson. 

General results are obtained on the consistency of the tests derived 

from the two methods. The adequacy of the asymptotic results for 

finite samples is investigated and some conclusions reached, through 

examination of the terms which differentiate the two procedures. 

Empirical results are also discussed. 	The two methods are used to 

derive tests and for these, empirical simulated results are obtained 

for the first four moments, the power and the significance level 

attained. From the analytical and empirical results general 

conclusions are given. 

In Chapter 3 a generalization of Cox's method is used to derive 

tests for regression models. 	The tests developed are generalizations 

of those given in Chapter 2. 	The efficiency of the estimators of 

the regression coefficients when using a false model in relation to 

the true model is investigated. An example of the choice of a 

survival model for• patients with a brain tumour is given. 	Finally, 

it is shown that Cox's method can be generalized for dependent 

observations forming a Markov process and some related applications 

are suggested. 
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Chapter 1  

INTRODUCTION AND BACKGROUND  

1.1 Preliminaries  

Let y = (y1,...,yn) be independent observations from some unknown 

distribution F. 	Suppose that it is desired to test the null hypothesis 

Hf : F f' whereSf is a family of probability distributions having 

density f(y,a) against the alternative hypothesis Hg  : F G 5
g, 

where 

Tg  is another family of probability distributions having density 
g(y,0). 

The families,Yf and 5gs are assumed separate, i.e. an arbitrary 
member of one family cannot be obtained as the limit of members of 

the other. Here a and 8 are unknown vector parameters indexing the 

members of the families. This problem was first considered by Cox 

(1961, 1962) who developed an asymptotic test for this situation based 

on the maximum likelihood ratio. 

If Hf is the null hypothesis and Hg  the alternative the test 

statistic considered was 

. 	. 
T*f(C) = IIf  (a) - £g(8)  ($) - E,{2,f  (a) - P.. g 

 ($ )1 
 _ 	_a 

a 	- 

where a and $ are respectively the maximum likelihood estimators of a 

and $, 9.(a) = log f(y,a),($) = log g(y,$), $ is the probability 
g 	-a 

limit of $ under Hf' Ea denotes the expected value under Hf and 

slog g(y,$a) 

Ea 	= 	. 	 (1.1.2) 

Cox showed that under certain conditions T
f
(C) is asymptotically normally 

distributed with mean zero and variance 

V
a  (T*1 = V .(kf  (a) - 	($ 	f - C' V, 

a 	g a 	 i (1.1.3) 

where 
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f
(a) 	

-1 	
azf  (a)} 

C
f 
 = Cova 

 {2,
f 
 (a) - g 	as (0 ); 	, V

f 
 = Val as _a  

When Hg  is the null hypothesis and Hf 
is the alternative 

hypothesis, the test statistic is, in an analogous notation, 

T*(C) =
g 
 (0) - 9 (a) - E,{2, g (0) - 

f 
 (a

a 
)} 

f 	
B 	

_ 

which is asymptotically normally distributed with mean zero and 

variance 

R
{T*) = 	(0) - 

f 
 (a
0 
 )} - C' Vg Cg  , g 	g 	_ 	-g   

(1.1.5) 

where 
ak (s) 	 ,„ az(s) 

c
g 	B  

= covn{k_() — kf(ced, 	 1, v-s1  - v(3,  	. 

Here as  is the probability limit of a under Hg. 

Another approach suggested by Cox was based on the comprehensive 

family of density functions which are proportional to 

{f(y
,a)}X {g(

y ,0)}1X 

which reduces to H
f 

and Hg  in the special cases when X = 1,0. This 

approach was developed by Atkinson (1970). He derived a test based on 

the score function for X. The distribution of the test statistic was 

derived under the null hypothesis X=1 (or X=0) and for this a consistent 

estimator for 0 (or a) was chosen. 	He has shown that under the null 

hypothesis these tests statistics are asymptotically equivalent to Cox's 

test statistics. 	The resulting test statistic is 

. 
T*
f(A) = k,(a) - tg 

 (R.) - E.ft (a) - 2, g 
 (0 
a
)1 1  

f ,  
-a 	a 

(1.1.6) 

which under Hf 
is also asymptotically normally distributed with mean 

zero and variance again given by (1.1.3). Here 0„ is a consistent 
-a 

estimator for 0 . 
a 

When H is the null hypothesis and H, the alternative, the test 
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statistic is 

T*(A) = 56 
g 
 (3) - (a

"
) - 	g (0) - f(a )} -0 	0  

which is asymptotically normally distributed with mean zero and 

(1.1.7) 

variance given by (1.1.5). Here a, is the estimator for a0. 
0 -o 

We can, therefore, consider 

Tf(j) = Tf(j) [17a f fT*11 	T (j) = T*(j) pl
0 g
{T*}1 2  ,(1.1.8) 

for j = A,C, as approximately standard normal variates and perform 

the tests in the following way. . A large negative value of Tf(.) 

indicates a departure from H
f 
in the direction of Hg. A large 

negative value of Tg(.) indicates a departure from Hg  in the direction 

of Hf. Large negative values or large positive values for both Tf  

and Tg  would indicate that the sample is inconsistent with both Hf and 

Hg. A large negative value of one of Tf(.) and Tg(.) together with 

a large positive value of the other would also indicate departure from 

both models. 

It is assumed that observations are to be used to test the null 

hypothesis Hf and that it is required to have high power for the 

particular alternative hypothesis Hg. 	In addition to the answer to 

the tests it is also useful to look at the numerical value of the log 

likelihood ratio k
f 
 (a) - 

g
(0), which is of direct interest in a pure 

discrimination problem. 

For the remainder of Chapter 1 some properties of the models 

frequently used in later chapters will be considered. 	At the end of 

the chapter some related work is reviewed. 

In Chapter 2 the tests of separate families of hypothesis are 

considered in the case of independent identically distributed observ-

ations and a comparison is made between the procedures proposed by 

Cox and by Abkinson. 	General results are obtained on the consistency 

of the tests derived from the two procedures. 	It is shown that under 
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the alternative hypothesis Atkinson's test is not always consistent. 

The adequacy of the asymptotic results for finite samples are 

investigated and some conclusions reached, through examination of 

the terms which differentiates the two procedures. 

Empirical results are also discussed. 	Cox derived test 

statistics in the case of the lognormal distribution versus the 

exponential distribution and for the complementary problem. Jackson 

(1968) used Cox's method and derived tests for the case of the log-

normal distribution versus the gamma distribution and conversely. 

Atkinson used his method and derived a test for the case of the 

exponential distribution versus the lognormal distribution. 

Atkinson's method is used to derive new tests for the cases given 

by Jackson and for the case of the lognormal versus the exponential 

distributions. Further new tests are developed using both Cox's 

and Atkinson's methods for the lognormal distribution versus the 

Weibull distribution and conversely, and for the case of the gamma 

distribution versus the Weibull distribution and conversely. For 

the tests presented, empirical simulated results are obtained for the 

first four moments, the power and the significance level attained. 

From the analytical and empirical comparisons it is concluded 

that generally Cox's method is expected to perform rather better than 

Atkinson's method. 

In Chapter 3 a generalization of Cox's method is usedto derive 

tests for independent but not identically distributed observations. 

The tests developed in this part are generalizations of those given 

in Chapter 2 for the case in which the models contain regression co- 

variates. 	The efficiency of the estimators of the regression 

coefficient when using a false model in relation to the true model is 

investigated. 	It is found that asymptotically the test statistics do 

not depend on the design matrix and the design problem is separated 

from distributions.] assumptions. 
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An example of the choice of a survival model for patients with 

a brain tumour is given. 

Finally, it is shown that Cox's method can be generalized to 

the case of dependent observations forming a Markov process and some 

applications are suggested. 

1.2 Maximum likelihood estimation for survival models  

In this section the distributions and the regression models are 

presented for which tests are developed later in Chapter 2 and 3. 

Some results and properties of the maximum likelihood estimators are 

given briefly. 	For a concise presentation the results for the survival 

models are derived from those for the generalized gamma regression model. 

The generalized gamma regression model can be written 

z.0 -bk 
Y. _1_ 

	

kzlo 	(1.2.1) 
b 	e 

k 	Y. 	exp {[ f(y.;a,b,k,0') = 	
1bk-1 

 
a e-1-  • 

forY1 .>0, a,b,k>0 and 0' = (02'...,0m). 	It would be possible to 
zi0 

generalize the dependence on 0 in (1.2.1), for example by replacing a e"' 

by h(zi3O) for some known function h( . ). 	The properties and fitting 

of such models will not be explored here. 
n 

For n independent observations (y
1' 	

y n 
	

z. 1j  ) we assume I 	= 0 

	

1 n 	
1=1 

(j = 1,...,n) and that lim -1- 
.
E 	z. = limLZ'Z is a bounded positive 1  

-1 -1 	4..-..riom n- 	1=1 
definite matrix. 	Model (1.2.1) is log-linear in that x = log y can be 

written 

	

\ 	r X = log k 
 + 7.0 + 11)% kit)-1 	; + k -b-1 

	
{w - 1)(k)) , 

with 

f(w,k) = 	2 r(k) exp{kw} exP{-en 
	

(1.2.2) 

where 

4)(x) = dflogr(x)1/dx etc. 
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Leta= log 711' + 4/(k),a=k 2b-1,q= k 	and e = 	{w - ip(k)} 

(Prentice 1974). 	This parameterization allows the limiting case 

as k4o. to be mapped to the origin (q = 0) and the class to be 

extended to negative q, still maintaining a regular estimation 

problem. The model can then be written 

x = a + z0 + ae, 

with 

e__[q 2{cle  cg2)). exp{qe *(9. 2)).]  (goo),  
-2 	."'Y  

r(q. ) 
f(e;q) = 	

-
1 

(210 2  exp{- 	e2) 	 (q=0). 

(1.2.3) 

The model (1.2.3) is in the form of a conditional structural 

model with an additional quantity q (Fraser, 1968, Ch. 4). 	Fraser's 

structural analysis could be used for inferences about (a,q). 	For 

example the marginal likelihood function for q is formally proportional 

to 

	

CO m 	n 	x. - a - z.0 

f f 	I f 
1  

a 

	

-CO 	-CO 

dadO'd 
q 

a(n+1) 

and generally only the integral over a can be performed analytically. 

Even for the simple case when q is known, approximations to simplify 

the calculations were used by Prentice (1973). 	An alternative 

approach would be via the maximized relative likelihood function 

obtained by maximizing the likelihood function over (a,0) at specified 

values of (a,q) but this does not take account of the uncertainty in 

(a,0). 	Here instead in view of the purposes of this section the 

classical maximum likelihood results obtained by Prentice (1974) for 

(1.2.3) are used. 

From (1.2.3) the log likelihood function for data y = (y1,...,yn) 

is 
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/ -2 	n 	
n [log y.-a-z.0 

n loglql-nloga-nlogFkq ) - E log y. + E 	 
1=1 1=1 	1 1=1 	

a 
 

t(a,a,g,V;Y) 
n 	Wog y.

1
-a-z,01 

N  -2 +nipkq /q -  exp 	
 cvga- -2 	 2)1 

a i=1 

n1 n 
E log y.

1  - 
	E (log y-a-z.0)2 	(q=0) 
2a   1=1 	1=1 

(1.2.4) 

The expression for q00 is differentiable with respect to a,a,0',q at q=0, 

and the maximum likelihood estimators of a,a,01  for q=0 can be obtained 

from any of the two expressions in (1.2.4). 

The information matrix corresponding to the maximum likelihood 

estimators of (a,a,q,01 ) is 

where 

I(a,a,q) 

1 (1.2.5) 

ill 112 113 

I(a,a,q) = 112 122 123 

113  123  133  

=-c --1- ir 
) + 1), 133 = "c?2.- 

	

	31(11-42)  + 41(j  -2)(IP(q 2) -q2) q 
fib (a-2  

2(411(q 2) 	1 _ 1 1 	- 1  (Lll 1) . 	(1.2.6) a e 	7 a' 23 - aq  e 

In Section 1.1 it was mentioned that in the later chapters tests are 

derived for a null hypothesis Hf 
when high power is required for the 

particular alternative Hg. 	The results (1.2.4), (1.2.5) and (1.2.6) arc 

all that is needed to present the models to be used later. The para-

meterization most commonly used will be chosen and for these new parameters 

the corresponding information matrix is found by a straightforward application 

of the chain rule for derivatives to (1.2.5). 	Substitution of these new 

parameters in (1.2.4) will give the log likelihood functions of the models 

of interest. 	From these the maximum lilcelihood estimators are obtained. 

'11 

1 12 

= 

= 

!-' 

--2-  a 	' 

122 

I 	= 
13 
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A 	Lognormal survival models  

(i)!For q=0 and 0=0, (1.2.5) becomes 

	

-1/0.2 	0 

I(a,a;c1=0) = n 

0 	2/a2  

ands 
 for the transformation a=a1 

and a = /Ci- 
2' 

1/a2 	0 

I 	,a2) = n 

1/(2a) 
G (1.2.7) 

The log likelihood function obtained from (1.2.4) and the maximum 

likelihood estimates of(al'a2)  are 

Y 	-2-  

	

al,a2;Y) = -  loga2  - nlogi .- E logy. - 	E (logy.-a1  )2  
n 	 1 

i=1 	2a2 i=1 

n 	n 

' 

n 	 n 	i. 
E lo . 	E (logy -a.)2  

i=1 
logy 	- 	1=1 	i 1 ... 

(1.2.8) n 	, 	a2 - a1  = 
	

n 

The corresponding density function will be denoted by fL  (y;a1,a2). 

(ii) For q=0 and 0 arbitrary, (1.2.5) becomes 

Ti(a,a;q=0) 	0 

I(a,a,0;q=0 
1 

0 	Z'Z ,-- 	a --2-  

and, for the transformation 
a=al' 

a = IT and 0' = a', 
 ' 

±(al'a2 
I(a a2' 

 a') = 

0 

0 

1 vz 	 (1.2.9) a2 — 
By writing L' = (log .,...,log yn), the log likelihood function 

obtained from (1.2.4) and the maximum likelihood estimators of (a a a') 

are 



lit 

n 	n 1 t (a a a'.y) = - -11-  loga2 - nlogi-2777 - E logy. - 	E (logy.-a -z.a)2  L l' 2'.. '.. 	2 	 1 	. 	1 1 1„ 	' i=1 	2a2 1=1 
i  n 

E logy. 
 i=1 	 1 a1 - 	, a= (Z1 Z)- IZ L, a= 1  (L-a 1-Za)-1  (L-a 1-Za) 	(1.2.10) n 	, 	_ 	2 n . 1- ,- 	- -1- „ 

The corresponding density function will be denoted by fL1  (y..al'  a a'). 

B 	Weibull survival models  

(i) For q=1 and 0=0, (1.2.5) becomes 

I(a,a,q=1) = n 
1/a2 	1/0.2  

1/a2  1/a2{1p,(1)+1}1 

1P(  and, for the transformation a = log R1 	R + 1) and a = 021' 2 
:
2  
21 .4)(2) 

I 	,0 	= n 

T(2)  V(1) + fl)(2)}2  

1 	
02 
2 

0 

(1.2.11) 

Here, the log likelihood function and the maximum likelihood 

estimators of (61'  02  ) are 

62 n 	n yi  

tW (0l' 02' y) = nlog82 - n02 log1  + (02-1) E log y. - E ,-,-- i=1 	1 	i=1  01  

[  

. 	__ 	. 
n 81 	n 02 	n 	— -1  

6 E y. 	E y.1 	1 

	

log y. 	E log y. 
, 2 	i=1 1 	. 	i=1 	1 	i=1  
131 = n 	02 	n r3,2 	n 

E y. 
1=1 1  

(1.2.12) 

The corresponding density function will be denoted by fw(y;01,02). 

(ii) For q=1 and 0 arbitrary, (1.2.5) becomes 

1(a,a;q=1) 	0 
1(a,a,0;q=1) = 

0 	—2- z'z 

• 
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* 	_ 
and, for the transformation a=6 + ft  , a = 621  and 0=b', 1 	6

) 
2 

) 	022 	-n1P(2) 	0 

1(61' 62' b') = -niP(2) n
IP(1) + 

2
W2)}2  0 

... 	6 2 	2 

- 0 
	0 	27-117=- 

 

(1.2.13) 

The log likelihood function and the maximum likelihood estimators of 

(61' 62% b') are 

2 
n 

31 (6 a b"y) = nlog02  - n6162 + (62-1) Z1 
 log y. - 

1 1 I W 	'- 1= 	
+zb
i 	

' 
= t. 

n 	. 
Yi  

6 

E 	z! 
i=1,1 

n 

Y- 
= 

- ne 

°, 

0162  

E 

 

= 

15 2 

0, 

= 

E 

1=1 

log yi  E log Y. 
i=1 

[y. 

be_1_ 

z.b 
e 1- 

r2 

n 

1=1 

Yi 
6n 
c 

z.6 
e 	

I 

[yi  
E 

i=1 	 _z- 
(1.2.14) 

The corresponding density function will be denoted by f (y.0 	b'). 
W 	l' 2% 

It may often be convenient both in interpretation and in computation 

to diagonalize the information matrix by a suitable parametrization. 

If c and d are location and scale parameters of a distribution, respectively, 

one possible way of obtaining a diagonal information matrix (Huzurbazar, 

1950) is to take the transformation d = IT2 and c = n1 
1I12  --- 72' where 
11 

Iij  denotes the (i,j)th element of the information matrix I(c,d). 

For the Weibull distribution, the transformation to obtain orthogonal 

parameters and the resulting information matrix are: 

a =IT
2  a = 71 

- 4)(2)72 ' 

1(71,72) = 

1 
2 

0 

 

   

0 

  

The relation of (71'72) with the more usual parameterization 031'(32
) 1s 
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61  = exp {vi  - 11)(2)7r2} and O2  = 
1

. 	With this new parameterization 

log y has mean wi  - 1r2  and variance 1r221'(1) while with the usual 

1P(1)  parameterization it has mean log B + 	and variance 2 02 	

0(1) 

2 
Similar results can be obtained for the Weibull regression model. 

C 	Gamma survival models  

(i) For b=1 and 0=0 we first make the transformation 

 a = log y
1 
 - log y2 + (Y2)Y31,  a = 122 131  and q = 	because a, 1 

 

aand q are functions of k. 	Then (1.2.5) becomes 

2 

Y- 
	Y 

--T- 	3(1-y3) 	
- --2 

 ilp(y+1)) 
Y1 	Y1 	Y1  2 

	

y
3- 	

1P(12+1) 

Y3 	
y 	y2 	

4)(Y  ) I(y1,Y2,Y3) = n Ti
-1.(1 -y3) 	Cy2  ) - 2y 

 
—3- 1.- -- 2  

	

2 	Y 3 

12 	(Y2) 
741P(12+1)1 *(y24-1) --2- 1

3 	
y3 41+y

2 
 Ip(y

2 
 +1)+y2{4)(Y2+1))21 

and for b=y3=1 

0 

1(11,12) = 

0 	
(Y2)+t 

(1.2.15) 

The log likelihood function from (1.2.4) and the maximum likelihood 

estimators of (11,12) are 

tG(yi,y2,y) = -n log r(y2) + n y2  log 
la 	n 	72 n  

+ y 	
7 

-1) E log y. - — E y. 
Y1 	i=1 	1 	1 1. 	

1' 
=1 n 	 n 

E y. 	 E log y. 
_ 1=1 1  

11 - n 	, 

(1.2.16) 

The corresponding density function will be denoted by fG(yo1,,12). 

(ii) For b=1 and 0 arbitrary, again we first make the transformations 

= 1
1 

- log Y2 + 11)(Y2 )Y
3

1 
 5 a = 12 

y
3 

, 	= y2 and e=ri. 	Then 

1=1 	1  log Y2  Cy2) = log yi  
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(1.2.5) becomes 

I--- 

	

	
_ 

Y 12 2 3 	Y3(1-Y3) 	-12(1P(12+1)) 	
0 

*(121-1)  

	

21, 
4- 
 y! 	1P(Y2) 

Y (1-1 3) 11)(y 2 ) --- 
2 	2 
' —2- 	 0 

3 

{11)(Y21-1)}21 13  
i(y ,y ,y ,g') =n- {Cy2+1)} 1P(12

+1) IP(Y ) 2 	1 r_. 
1 2 3 	 y

3 
-ir+V(Y2)+   

2 1213 0' 	Z'Z 0' 	0' n 

and for y
3
=1 

ny
2 0 

0 

i( y1,Y2 ,W) = 0 	nflgy ) - 2 y2  

0' y
2 
 Z'Z 

(1.2.17) 

The log likelihood function and the maximum likelihood estimators of 

(y1  ,y2  ,g') are 

n 

G(11,12,g1 ;y) = - nlog r(y2
) 	n y

2 
log y2 - n y1y2 	(12

-1) E logYi 
 
. 

1=1 

Yi 
Y2 E 	 

1=1 
e 

n Yi Y 1 0 , 	
n Yi 

E 	ne = 	E z! 	A  - 0' 5 

1=1 zi 	i=1  ...1 z.1g e e 
n 
E logyi  . 

,, 	... 	... 
log 12  - tp(y2) = yi 	i=1 	. 

n 	 (1.2.18) 

The corresponding density function will be denoted by fG(yoyi,y2,g). 

D 	Exponential survival models 

The exponential models are special cases of the Weibull ((32  = 1) and 

of the gamma (y2  = 1) models, therefore the results could be obtained from 

either of these. 
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(i) For u=q=1 and 0=0, (1.2.5) becomes I(a; u=q=1) = n and for 

is = log S W1), we have 

I(S) = 
	

(1.2.19) 
62 

The log likelihood and the maximum likelihood estimator of 15 are 

n 

n 	Y  
E y.  

" 	i  
6,y) = - n log ,5 	

1  
- 	E yi 	

= 1=1  

i=1 
(1.2.20) 

the corresponding density function will be denoted by fE(yi0). 

(ii) For u=q=l and O'arbitrary, by taking the transformation 

a = d + Ip(1) and 0'=d, 

n 

(1.2.5) 

0 

becomes 

I(O,d') = • 
0' Z' Z (1.2.21) 

The log likelihood function and the maximum likelihood estimators 

of (g,dt) are 

n 	y. 
St GS d'' y) = - n d - E E 	' 	d+z.d i=1 	-l- e 

n 
E 	 Y Yi 	i  

ne = 0, 	E z! 	- 0 

	

i=1 z.d 	z.d 

	

e„1„. 	1=1 e 

(1.2.22) 

The corresponding density function will be denoted by fE(y;(3, d'). 

Note from (1.2.18) and (1.2.22) that the estimators (y1 
 ,g) and 

A 

(S,d) are the same. 

Finally, there is a further property of the.  maximum likelihood 

estimator which will also be used frequently later. 	This result is 

useful in identifying the parameters on which the distribution of the 

tests depends and therefore in determining the parameters to he changed 

in the simu]ations of Chapter 2. 	From the considerations leading to 

1 
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(1.2.3), for 0=0 the model can also be written in the forms 
P■O 

1 	 —ce , q ) C 
,x

C 

f(x-a; c,q) . 

It can be shown that for models of the form (1.2.23) and (1.2.24) the 

distribution of the maximum likelihood ratio depends only on q and 

(a,q) respectively. 

1.3 Some related literature  

The problem of testing separate families of hypothesis as 

mentioned in Section 1.1 was first considered by Cox (1961, 1962). • 

Redeveloped the large Sample procedure based on the likelihood ratio 

and also described other approaches that could be used such as a 

Bayesian approach and the use of more comprehensive models. 	In 

subsequent papers, Walker (1967) applied these ideas to some time-

series problems; Jackson (1968, 1969) investigated the adequacy of 

Cox's asymptotic results for the tests involving the exponential and 

the lognormal distributions and gave further tests involving the 

gamma and the lognormal distribution. 	Atkinson (1969, 1970) derived 

a general method based on the score function for the parameter of a 

mixed model including both hypotherized distributions. This mixed 

model has also been used by Cox and Brandwood (1959) and by Selby 

(1968) who obtained results similar to Atkinson's using the Lagrange 

multiplier test. 

Thomas (1972) gives a computer program for one of Cox's examples. 

A simulation procedure useful when analytical results are cumbersome 

or impossible is given by Williams (1970 and in his discussion of 

Atkinson's 1970 paper). 

Invariant and equivalent tests for some problems of separate families 
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are given in Uthoff (1970, 1973), Starbuck (1975) and Quesenberry and 

Starbuck (1975). 	Results treating more than two families is provided 

by Hogg, Uthoff, Randles and Davenport (1972). 	Also, for location- 

scale models, simulated results on the likelihood ratio test and other 

statistics are given by Weibull (1971), Dumonceaux, Antle and Haas 

(1973), Dumonceaux and Antle (1973) and Antle and Klimto (1975). 	An 

empirical comparison of several procedures for discrimination and of 

testing separate families is reported by Dyer (1971, 1973, 1974). 

For a likelihood approach to the discrimination problem, see 

Lindsey (1974a, 1974b) and for a Bayesian approach with reference to 

normal regression theory see Lampers (1971), Zellner (1971, p.306) and 

Box and Kanemasu (1973). 

Estimation procedures and economic applications for the multi-

plicative models of Section 1.2 was studied by Teekens (1972). 

References to applications in survival studies are Prentice (1973) and 

Holt and Prentice (1974) and further references can be found in Gross 

and Clark (1975). The log-gamma and extensions were studied by 

Prentice (1974), Farewell and Prentice (1974) and Prentice (1975). 
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Chapter 2  

SINGLE SAMPLE CASE  

2.1 Introduction  

It has been emphasised in Chapter 1 that the problem of interest 

is that of testing a hypothesis Hf  against a hypothesis H which 

specifies the type of departure from Hf 
thought to be of particular 

importance. 	 are 

independent and identically distributed observations, the general 

procedures of Cox and Atkinson are compared. 	Under the alternative 

hypothesis the behaviour of the tests is compared through the concept 

of consistency. The approach of the distribution of the test 

statistics to the limiting normal distribution is investigated 

through examination of the terms which differentiate the two 

procedures. 

Tests of separate families of hypothesis involving the probability 

density functions of Section 1.2, are developed. 	Empirical simulation 

is then performed on these cases to investigate the adequacy of the 

asymptotic theory for finite samples. 	The sample mean, variance, 

coefficients of skewness and kurtosis are compared with those of a 

standard normal distribution. Values are given of the power function 

and significance level attained at values t = -1.64 and t = -1.28, i.e. 

corresponding to 5% and 10% one-sided probability of a standard normal 

distribution. 	Comparison of power is made for values in which the 

A and C statistics attained approximately same significance level. 

Histograms of the test statistics under the null hypothesis are 

presented to show the approach to normality. 

2.2 Consistency of the tests  

In the general discussion of Section 1.1, it was shown that 

under the alternative hypothesis the statistics leading to (1.1.8) 

are expected to have a negative mean. 	This is closely related to 
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the notion of consistency of a test. 	A test of a hypothesis Hf  

against a class of alternatives Hg  is said to be consistent if, 

when any member of Hg  holds, the probability of rejecting Hf tends 

to 1 as the sample size tends to infinity (Cox and Hinkley, 1974, 

p.317). 

Throughout, only the case of independent and identically 

distributed observations and a and S scalar unknown parameters is 

dealt with; the same argument applys to the non-homogeneous multi- 

parameter case. 	Further, let f(y,a) > 0 and g(y,0) > 0 in the 

same region, assume the usual conditions for limits and integration 

to be interchanged, and finally that the expectations involved in 

what follows are defined. 	For n observations, (a,0) are the maximum 

likelihood estimators of (a,0), a 
is the probability limit of R when 

H.  is true. 	The log likelihood ratio is 

R(a,0;y) = log Lf(a,y) - log L g(0,y) 

where L(a;y) and L 
g
(0;y) are the likelihood functions for the separate 

models. 

Suppose the null hypothesis is Hf 
and that Hg  is the alternative; 

from (1.1.1) and (1.1.6) 

T*(C)/n = 

T*(A)/n = 1 — 

we then have 

R(a,;Y) 	- (111(a,0 

[(a,0„;Y) 	(.1.13(a,0 
a - 

;Y) L (a,y)dyl„ f a  

;y) Lf 
 (a,y)dy), 

_ 	_ a 

, 	
(2.2.1) 

. 	(2.2.2) 

„ 	.. 
Under H we have, plim a=as,  plim 0=0 and plim s^-13a , where in general g 	0' 	a 0 
0A0a 

; plim denotes limit in probability and we assume as  and 0 to be 
0 

continuous functions. 	Considering only the terms of order n in 

probability, in the expansion of the likelihood function, that is 

Lf  (a y) = Lf  (a y) 	0 (1), 
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L g  (a,y) = L g
(0,y) + 0 (1), 

L (13.„y) = L (a;y) + 0 (1). 
g a- 	g 'to .. 	p 

We have that the test statistics are asymptotically equivalent to 

T;(C) = - 317; F-R(a0,13;y)1 - .1.{-R(ar3,13yy)} Lc(ctoy)da , (2.2.3) 

T4i(A) = - 3171--  F-R(av0a0;y)).  - f{-R(a(3 ,f3a  ;y)} Lf(ay)dd. (2.2.4) 

Since 0 is a consistent estimator of a the true parameter value we 

also have for n large 

L g  (0;y) = L g  (a;y) 

L (0.;Y) g(0a ;Y) 
g  -  

(2.2.5) 

Further, the following relations hold: 

f{-R(a05a.y)} L g (a Y)dY....  > 0 > A-R(a a.y)1 L f(a 'Y)dY 	(2.2.6) 

f{-R(a a.y)} Lf (a /3 'y)dy > A -R ;Y)) Lf 
 (a ;y)dy , 	(2.2.7) 

plim 1{- R(a 	'» flog ,a'Y = 	g(7""  
f(z 	) g(z,a)dz = 	f{-R 

,a12, 

We then have, from (2.2.3) and (2.2.7), 

;y)) L 
g 
 (a,y)dy 

(2.2.8) 

T;(C) < - 141--  F-R(a0,(3;y)) - f{-R(av5;y)} Lf(aoy)dil.(2.2.9) 

Inside the square brackets in (2.2.9) the first term has a positive mean 

and combining (2.2.6) and (2.2.8) we see the full expression in 

4  brackets to be always positive and so Tt,(C) will always converge in 



24 

probability to a negative value under any member of Hg. 

Now, applying the'same argument to Tf(A), we need an inequality 

analogous to (2.2.6) stating 

f{-R(a 	;y)} L (13,y)dy > f{-R(a 	;y)} L (a ,y)dy aa 	g 	aa 	f (2.2.10) 

but this does not necessarily hold, since the left hand side is not 

always positive. We then can conclude that for some parameter values, 

Tf(A) may converge to a positive value and in this case it will 

provide an inconsistent test statistic. 

If the roles of Hf and Hg  are interchanged, analogous conclusions 

are obtained for the statistics T (.). 

Example (2.2.1) 

Consider the test of the hypothesis that the observations are 

from an exponential distribution against the alternative hypothesis 

that they are from a lognormal distribution. Thus we have 

f(y,a) = a-1 e
-y/a 

g(Y,0) = , 2R
2
) exP 1 	

(log y-0 

2 	

)2 

(2.2.11) 

1 	; 

Yl  

the test statistics are (Cox, 1961 p.117; Atkinson, 1970, p.337) 

where 

2 +, 
Tf(C) = 	- 	- 	log 1 la 2 	^ 2a 

T+(A) = R -13 	
1 	

-C't 1 la 20 2a 	
2 	1 la 

(2.2.12) 

(2.2.13) 

n 	n 	, 	, n 1 	^ 	1 	 - 
a = — n 	1 E y., R1 	n 

= 	E log y., R2 
	1 = E (log y.-f31  )2'  . 	. 	1 	. 1=1 	1=1 	11 

R 1 - 2 0la = log a 	(1), 132a = 	a(Rl'(32) = ° 

ip(x) = {d log r(x)}/dx, etc. 
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If the alternative Hg, i.e. the lognormal holds, we have 

0
12 

plim 13
1
=01

, plim P.2=02' plim a=e (2.2.14) 

plim 2a 
 = V(1), plim Bl,a  =plim(*(1)+log al =tp(1)+B12. 

By substituting (2.2.14) 

gives 

plim T4-(C) = 

plim T-1-(A) = 

= 

The expression (2.2.15) 

2  (log 

S2 

in (2.2.12) 

02 

+ 

62 

is negative 

and (2,2.13), a simple calculation 

- B2 + 0.6567) 	
, 

1 + *(1) 	- *'(1) 	f 	2(1) 

(2.2,15 ) 

1 	,(1)1 
2 	Y  

(2,2,16) 

is negative 

4,(I)  

0.0759 

2V(1) 	'2 4.  

- 0.3714 02  + 0.1784 

for all B2  while 

12V(1) 

. 

(2.2.16) 

only for 02  in the interval (0.5401, 4,3484). 	Table 2,2.1 gives some 

simulations confirming the second result empirically, 

Table 2.2.1 Probability limits and mean of T+f(A) under Hg  

n 

+ 
Ak(Tf(A)/Hg) 

02=0.2 02=0.5 02=0.8 02=4.0 (2. 2=5.0 

20 0.1134 0.0292 -0.0432 0.0205 0.3127 

100 0.1092 0.0170 -0.0641 -0.0359 0.2600 

200 0.1084 0.0140 -0.0644 -0.0580 0.2281 

plim 4(A) 0.1072 0.0117 -0.0701 -0.0916 0.2208 

plim TI-f(0) -0.5764 -0.5182 -0.3364 -1.9570 -2.7338 
I 

Results from 500 trials. 	Lognormal deviates obtained using 
the Box-Muller transformation from uniform variates. 



Tf(C) = T
f 
+ Un 

T*(A) = T + u + (R - R-) f 	n 	a 	a 	30 

3 lg Oa) 
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It is interesting to note that 

plim T
+
(C) < plim T

f
(A). 

This is a general result and follows from (2.2.5). 	However, this 

alone does not imply that Tf(C) has higher power than Tg(A) since 

the variances under the alternative hypothesis are not equal. 

2.3 Finite sample comparisons : general discussion  

The usefulness of any large sample result is to be assessed 

by its application to the real problem of finite samples. 	It is 

common practice in statistics to use a technique which has well 

understood asymptotic properties, in the hope that the technique 

will yield reasonable approximations for finite samples. Explicit 

small sample results are usually presented by performing simulations on the 

asymptotic theory, or by analytical methods when the underlying 

distribution has some simple form. 

The purpose of this section is to give a general, although very 

qualitative, explanation of the simulation results on the behaviour 

of the A and the C statistics, obtained in the next sections. 	First, 

the approach to normality is investigated. 	For simplicity of 

notation a and S are assumed to be scalar. 	The statistics (1.1.1) 

and (1.1.6) can be approximated by expansion of E&O,f(a)) and 

E-aC9,f  (0 ) around a, f(a) around a and of 9.g(0a) around 0 and 0- to a 	 a 

give 
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where Tf, [Cox, 1962, eq. (16)] is the sum of deviations of 

log f(y.;a) - log g(y.;12. a
) from its regression on D log f(yi;a)/Da, 

and is of order In in probability, whereas the other terms are of 

order 1 in probability. 

Now, Tf  is a sum of independent and identically distributed 

random variables of zero mean and therefore quite generally a 

strong central limit effect can be expected to operate, unless of 

course, the individual components have a markedly badly behaved 

distribution. 	The properties of Un  depend on the particular 

application but often it also will approach its limiting form 

quite rapidly. 	In any case it affects both Tf
(A) and Tf(C). 

last term in (2.3.2), at least in some applications, may have a 

markedly nonnormal distribution in samples of moderate size and it is 

the poor behaviour of this term that accounts for the slower 

convergence of the distribution of Tf
(A). 	In particular for 	some 

of the distributions investigated in this chapter 812, g  (f3.a
)/as requires 

a large sample size to become relatively small. 

The previous discussion was concerned with the approach to 

normality of the distributions of Tf(C) and Tf(A); this is related 

to the third and fourth order central moments. To comment on the 

lower order moments a different argument will be used. The statistics 

(1.1.1) and (1.1.6) can be written respectively as 

Tf(C) = f(a) - 	(s) - E-a 
 {2,

f 
 (a) - 

ga  
(0-)} , 

T*(A) = f(a) -g(s-a 	a ) - E- {2 (a) - g0-a)). f  
(2.3.h) 

It has already been pointed out by Atkinson (1970, p.335) that when a 

is estimated, both statistics in (2.3.1t) will be biased, but that T1.(A) 

will be less biased. 	It then follows that the asymptotic variance 

(1.1.3) is expected to be approached more rapidly for V(A) than for r(C) 
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since in the theory the variance was calculated as if both statistics 

were unbiased. 

There is a final comment on the adequacy of the normal approx- 

imations for the distribution of Tf(.). 	The moments of the test 

statistics were evaluated from expansions leading to (2.3.1) and 

(2.3.2); where judged necessary, this can be refined by taking 

further terms on the expansion. This can happen when for example 

some terms deleted were not negligible. 

If the roles of Hf and H
g  are interchanged analogous conclusions 

are obtained for statistics T (.). 

2.4 Tests for the lognormal and exponential distributions  

A 	Test statistics and their distributions  

The null hypothesis, HL  is that the distribution is lognormal 

and the alternative HE that it is exponential, that is 

H
L 
 : fL  (y;al'  a2  ) against HE 

 : f
E 	see Section 1.2. 	Under 

HL, the estimator S converges in probability to 

BL  = exp fal  + 2  a21 , 

that is S
L 
is the mean of the lognormal distribution. 

H
L 

we have (Cox, 1961, 1962) 

T* (C) = n log 	, LE 	uL 

	

l a2 
	(1 

- ) {T* } = n 	a 	, 
L LE 	

e - 1- 2 	2 

(2.4.1) 

Further, for 

(2.4.2) 

and after some calculation 

T*LE (A) = n .6  - - 1) , , (2 .4.3) 
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where 
a
2 6- = exp 

{al 
+ 	. 

Now, suppose that HL and HE 
change roles so that the null 

distribution is exponential and the alternative is lognormal. 

Under HE, the estimators a1 and a2 
converge in probability respectively 

to 

°LIE = *(1) 	
log 6 , 	a

2E 
= 	(1) , 	 (2.4.4) 

that is alE and a2E are the mean and variance of the logarithm of a 

random variable with an exponential distribution, where 

0(x) = {d log r(x)}/dx, etc. 	For HE we obtain (Cox 1961, 1962) 

TEL (C) = n fa1 + log E 
	a 

a
2 

2E 

EL = n f0*  (1) - 32" + 11)"(1)  + IP'"(1) 	0.2834n, 
0t(1) 	4{01(1)}2  

(2.4.5) 

and similarly (Atkinson, 1970) 

1 	A TEL  (A) = n {a1  - alE 	2a 2E 	
2 - a2E  + (a1  - alE  )211 , 	(2.4.6) A 

2E 

where 	alE  " = .0(1) + log 6 and a2E  A  = 0'(1). 

Then, aslmptotically the statistics 

_1 
TLE(j) = TLE(j) VL - L F{T*E  }] 2  

TEL(j) = TLE(j) VEE [{T*L  }] 2  

(j = A,C) , 

(j = A,C) 3 

have a standard normal distribution, (2.4.7) under HL  and (2.4.8) under 

HE. 
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B 	Empirical results 

Now the empirical investigations for comparison between TLE(C) 

and TLE(A) and between TEL(C) and TEL (A) and on the adequacy of the 

asymptotic results are discussed. 

Results on the null distribution of TLE(C) and TLE(A) and on 

the distribution of TEL(C) and TEL(A) under the alternative were 

obtained as follows. Random independent variates ui  from a uniform 

(0,1) distribution were generated. 	Then the Box-Muller transformation 

was applied to obtain independent variates ti  from a standard normal 

distribution. Taking yi  = exp 1 
+ /IT t.} gave independent variates 2 

from a lognormal distribution. 	From the comments on (1.2.24) of 

Section 1.2 only al  = 0 needed be considered since it follows that the 

distribution of the test statistics in this case depends only on a2. 

Some different values of a2 
were considered. 	Then TLE(C), TLE(A), 

TEL(C) and TEL (A) were calculated under the lognormal hypothesis HL. 
•- 

For various sample sizes n, 500 trials were obtained and from these 

were calculated (i) the first four moments of all tests, (ii) the 

significance level attained by TLE(C) and TLE(A) at t = -1.64 and 

t = -1.28, (iii) the power of TEL(C) and TEL (A) at t = -1.64 and 

t = -1.28. 

Results on the null distribution of TEL (C) and TEL (A) and on the 

distribution of TLE(C) and TLE(A) under the alternative were obtained 

in an analogous way. Here the transformation y = -S log yi  gave 

independent variates from an exponential distribution. From the 

comments on (1.2.24), it follows that the distribution of the tests 

is independent of the parameter S. 	For various sample sizes n, 1000 

trials were obtained with 6=1. 

The results are summarized in Tables 2.4.1 to 2.4.8. 

The sampling moments of TLE(C) and TEL(C) are in agreement with 

those calculated by Jackson (1968). 	Also, results of Table 2.4.2 are 

in agreement with Atkinson (1970, Table 4). 
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Results of Tables 2.4.1 and 2.4.2 show that the mean and 

.- 
variance of the A statistics are in closer agreement with the 

asymptotic values than are those of the C statistics. The 

measures of skewness and of kurtosis of the C statistics are 

however in closer agreement with the asymptotic values than are 

those of the A statistics. 	This is to be expected in view of 

the discussion of Section 2.3. 

For a
2 = 0.2 in Table 2.4.4 the statistic TEL

(A) shows a 

positive mean under the alternative hypothesis, which agrees with 

the results of Section 2.2 about consistency of the test. 

Two further points can be noticed from Table 2.4.1. For a2  

increasing it seems that the approach to normality becomes slower 

for both statistics and that it affects TLE(A) more than TLE(C). 

For the latter case, the term which differentiates TLE(A) from 

TLE
(C) is 

. 	. 
n 	a

1
-4-2a

2% 	. 	. 
E (yi  - e 	) 	,, 	

i a
1
..1-cc

2. a 	 n(S - e 	)  
DS kE(6L'Y)  = i=1 - 1- 

 
a,-t-a„ 	Cil+Lcio  

(e 1 	c)2 	
(e -I- 	 )2 

(2.4.9) 

It is well known that the sample mean is an inefficient estimator of 

the mean of the lognormal distribution. The variance of (5 is of 

a2 order (e )3   and, for large a2' the numerator in (2.4.9) will then 

require a large sample size to become small. 

When a2 is increased, the adequacy of the asymptotic results 

for both TLE(A) and TLE(C) is now investigated. 	For this, higher 

order terms are examined as explained at the end of Section 2.3. 

The term 

a2k  ,- - 6 )2 	= E
0. , 

Y.) 	
6 ]2 

n 	 

362 	2 S 
(2.4.10 ) 

at 
	 a, 

has mean of order e/n and variance of order (e 2)6/n2  and as before 
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will not be negligible for large a2. 	Further terms could be 

investigated, but (2.4:10) shows the magnitude and the importance 

as a
2 increases of the deleted terms. Fortunately values which 

arise in practice seem to be quite often in the neighbourhood of 

a
2 = 0.5, and for these the results seem adequate. 

For the purpose of power comparisons Table 2.4.7 shows that 

except for a2  = 2, the significance levels for both tests are of 

about the same order. 	Thus, it is meaningful to compare the 

power in Table 2.4.5 and it then follows that T
LE(C) should be 

recommended. When the hypothesis H
E changes roles with HL' 

Table 2.4.8 shows that the significance levels do not permit 

comparison of the results fOr TEL(A) and TEL(C) in Table 2.4.6. 

However, from the results on the inconsistency of TEL(A) in 

Section 2.2 only for certain values of a
2 TEL(A) could be recommended. 

It seems reasonable, therefore, in practice to use TEL(C). 

From a more practical point of view the statistics C are also 

to be recommended because the significance levels attained agree 

more closely to those of the standard normal, and this is what would 

be hoped in a specific application. 

Figures 2.4.1 to 2.4.4 present the histograms of the data of 

Table 2.4.1 and 2.4.2 showing clearly the approach to normality and 

the effects of increasing a2. 



Table 2.4.1 Null distribution of TLE(C) andTLE(B). 

u1(TLE(.)/HL) U2{T:,E(.)/R0 Yl(TLE( • )/110 	• 82(TLE(.)/HL1 

n T 	(.) a2=0.2 a2=1.0 a2.2. 02=0.2 02=1.0 02=2.0 a2.0.2 a,=1.0 a2=2.0 n;=0.2 a2=1.0 02=2.0 

20 C -0.116 -0.179 -0.210 0.629 0.428 0.253 0.481 0.856 0.971 3.601 4.283 4.717 
A -0.113 -0.156 -0.164 0.631 0.448 0.257 0.507 1.157 1.603 3.658 5.373 7.171 

50 C -0.108 -0.144 -0.173 0.955 0.729 0.478 0.332 0.799 1.018 3.301 4.248 4.893 A -0.105 -0.120 -0.119 0.956 0.755 0.542 0.349 1.027 1.714 3.324 5.049 8.318 
100 C -0.071 -0.123 -0.155 0.931 0.757 0.554 0.373 0.756 1.046 3.279 4.009 4.892 A -0.069 -0.104 -0.108 0.932 0.777 0.622 0.384 0.916 1.630 3.296 4.514 7.761. 
150 C -0.083 -0.100 -0.104 0.903 0.771 0.686 0.266 0.671 1.053 3.119 4.025 4.910 

A -0.081 -0.085 -0.057 0.903 0.783 0.788 0.275 0.798 1.645 3.129 4.440 7.795 
200 C -0.035 -0.086 -0.125 0.917 0.811 0.643 0.120 0.494 0.883 3.056 3.419 4.454 A -0.034 -0.072 -0.088 0.917 0.820 0.684 0.127 0.592 1.252 3.062 3.618 5.852 

Results from 500 trials. 

Table 2.4.2 Null distrihation of TEL(C) and TEL(A). 

n (. (.)/HE  1 (.)/HE} yiTEL(.)/H,1 B TEL(Any 

20 C -0.441 0.708 0.374 3.845 
A -0.057 0.934 2.479 15.528 

50 C -0.250 0.859 0.618 4.430 
A 0.092 1.092 2.43o 17.708 

100 C -0.167. 0.933 0.374 3.198 
A 0.069 1.025 0.964 5.086 

150 C -0.193 1.032 0.477 3.736 
A 0.003 1.080 1.081 6.020 . 

200 C -0.129 0.9E4 0.388 3.340 
A 0.037 1.009 0.775 4.095 

Results from 1000 trials. 



Table 2.4.3 Distribution of TLE(C) and TLE(A) under alternative RE. 

n T 	(.) LE u 	IT 	(.)/1 ) 1 	LE 	E u IT 	(4/H ) 2 	LE 	E 'I IT 	(JAI ) 1 	LE 	E 0., , 	MP( ) , - E 	E 

20 C -0.823 0.157 0.804 5.254  
A -0.729 0.125 0.913 6.262 

50 C -1.464 0.142 0.530 4.098 
A -1.292 0.100 0.434 4 .593 

100 C -2.156 0.151 0.331 3.856 
A -1.904 0.096 0.310 4.260 

150 C -2.668 0.171 0.207 3.993 
A z..2.367 0.105 0.236 5 .301 

200 C -3.117 0.144 0.261 3.200 
A -2.762 0.083 0.218 3.373 

Results from 1000 trials. 

Table 2.4.4 Distribution of TEL(C) and TEL(A) under alternative 

n TLE(.) 
U1ITEL(.)/RL} 112

(TELMA!L) 11(TLE( ')/111.)  112(TLE( ' )/HL)  

02=0.2 a9=1.0 a2.2. 02=0.2 32=1.0 a2=2. a2=0.2 02=1.0 a2.2.0 a2.0.2 a2.1.0 32.2.0 

20 C - 5.283 -1.514 -2.171 1.157 0.488 2.661 -0.518 -1.001 -1.730 3.408 5.668 7.062 
A - 0.953 -0.644 -1.382 0.031 0.567 0.986 -1.026 -1.330 -0.611 4.713 5.722 4.221 

50 C - 7.875 -2.275 -3.858 1:210 0.531 4.570 -0.352 -0.894 -1.514 3.061 5.312 6.316 
A 1.449 -1.344 -2.781 0.043 0.760 1.630 -0.840 -0.940 -0.843 4.821 4.327 4.670 

100 C -11.093 -3.218 -5.692 1.130 0.641 6.471 -0.288 -0.862 -1.425 3.201 4.620 6.103 
A 2.052 -2.019 -4.342 0.039 0.978 2.483 -0.767 -0.856 -0.835 4.732 4.187 4.056 

150 C -13.410 -3.930 -7.068 1.202 0.609 6.256 -0.153 -0.535 -1.038 3.095 3.644 4.437 
A 2.488 -2.535 -5.518 0.042 0.917 2.682 -0.583 -0.590 -0.748 3.757 3.231 3.955 

200 C -15.505 -4.549 -8.226 1.142 0.657 6.963 -0.218 -0.437 -1.061 2.923 3.556 4.572 
A 2.850 -2.952 -6.474 0.042 0.984 2.934 -0.328 -0.618 -0,660 2.833 3.444 3.653 

Results fro= 500 trials. 
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Table 2.4.5 Null : Lognormal; Alternative;exponential.Tests: 

TLE(C), T,,,(A).  Power at t - -1.64; t -1.28. 

n TLE(.) 
Power function 

SL=0.05 SL 0.10,  

20 C 
A 

0.011 
0.003 

0.105 
0.036 

50 C 0.341 0.717 
A 0.117 0.536 

100 C 0.914 0.982 
A 0.826 0.969 

150 C 0.987 0.998 
A 0.981 0.998 

200 C 1.000 1.000 
A 1.000 1.000 

Results from 1000 trials. 

Table 2.4.T Null: Lognormal; Alternative exponential. 
Tests: TLE(C), TLE:(A). 
One side significant levels at t s  -1.61; t 	-1.29. 

n TL-(.) 

Significance Level 
sl...0.0s SL=C.10 

02=0.2 a2=1.0 a2=2.0 a2=0.2 a2=1.0 a2=2.0 

20 C 0.016 0.004 0 0.0c6 0.018 0.004 
A 0.016 0.002 0 0.054 0.018 0 

50 C 0.052 0.014 0 0.116 0.064 0.024 
A 0.050 0.010 0 0.114 0.054 0.008 

100 C 0.028 0.0:8 0.004 0.096 0.048 0.020 
A 0.028 0.018 0 0.0Q4 0.042 0.0111 

150 C 0.048 0.018 0.006 0.100 0.051 0.034 
A 0.018 0.016 0 0.100 0.048 0.020 

200 C 0.036 0.0n4 0.006 0.102 0.oT6 0,020 
A 0.026 0.022 0.002 0.102 0.062 0.026. 

Results from 500 trials.  

Table 2.4.6 Null : Exponential; Alternative : Lognormal. 
Tests : TEL(C), TEL(A). 
Power at t • -1.64; -1.28. 

'n. . TEL(.) 
Power function 

sL=0.05 sL=0.10 

a2=0.2 02=1.0 a,=2.0 02=0.2 0,=1.0 a2=2.0 

20 	C 1.000 0.372 0.556 1.000 0.598 0.674 
A. 0 0.086 0.388 0 0.156 0.530 

50 	C 1.000 0.826 0.906 1.000 0.924 0.960 
A 0 0.318 0.826 0 0.470 0.900 

100 	C 1.000 0.994 0.986 1.000 0.998 0.998 
A 0 	. 0.638 0.982 0 0.758 0.992 

150 	C 1.000 1.000 1.000 1.000 1.000 1.000 
A 0 0.830 1.000 0 0.928 1.000 

200 	C 1.000 1.000 1.000 1.000 1.000 1.000 
A 0 0.928 1.000 0 0.972 1.000 

Results from 500 trials. 

Table 2,4.8 Null: Exponential; Alternative lognormal. 
Tests: - T (C) TEL(A).  
One sided significance levels at t - -1.64; t - -1.28. 

n TEL(.) 

Significance Level 

SL=0.05 SL.0.10 

20 C 0.059 0.134 
A 0.009 0.030 

50 C 0.049 0.132 
A 0.007 0.039 

100 C 	' 0.049 0.108 
A 0.019 0.052 

150 C o.o66 0.125 
A 0.026 0.078 

200 C 0.056 0.112 
A 0.024 0.066 

• 

Results from 1000 trials. 
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2.5 Tests for the lognormal and gamma distributions  

A 	Test statistics and their distributions  

The null hypothesis, HL  is that the distribution is lognormal and 

the alternative HG  that it is gamma, that is HL  fL(y, al, a2) against 
A 	A 

HG  • fG  (y Yl' Y2' )* see Section 1.2. Under HL' the estimators Y1 and Y2 

converge in probability to 11L and y2L respectively, where 

11L  = exp{a1  + 2a2} 	log 2L 41(Y2L) = log Y11, - a1 = ia2' '  

(2.5.1) 

A 
Thus, yl  converges to the mean of the lognormal distribution and the right 

hand side of the equation for 121,  is the logarithm of the ratio of the 

arithmetic mean to the geometHc mean of the lognormal distribution. Further, 

for HI,  we have (Jackson 1968) 

A A A A 

T1G(C) = n{log r(12) - y21P(y2) + y2  - log r(Y22,) 	Y2 1)(Y2i,)  

a2  
2 [e  a2 	2 	(2.5.2) 

VL{TLG}  = n  ' 
y
2L 

	
t
22 

2 ' 

and after some calculation, 
A 

Y, 
T* (A) = n y 	1 % 
LG 	2L yLL 

A 	A 

(2.5.3) 

where ylZ = exp{a1  + 1;a2} and y22,  given by log Y '2L 	11)(Y2L) =2a2.  

Now, suppose that HL and HG change roles so that the null distribution 
A 

is gamma and the alternative is lognormal. Under HG, the estimators a
1 

A 
and a2 converge in probability to 

a 	= 11)(y ) - log - 	, 1G 	2 	Y1 a2G = q't(Y2) 	' (2.5.4) 

respectively. That is a1G and a2G are respectively the mean and variance 

of the logarithm of a random variable with a gamma distribution. For HG  

we have (Jackson 1968) 
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T* 	(C) GL 	2  
n 

= n 

and after some calculations 

TGL(A) = (A) = n 

A 

a 2 

Y2{*"(Y2 )}2  
(2.5.5) 

(2.5.6) 

log 	, a 
2G 

40 "(12 ) 

14{V (i2 )}2  

412 

14.14) 1  (Y2 )}2{i2AY2 )-1} 

11 	, 
2G 

A 

A 	 Y2 where ala = 11)(Y2 	
Y 

) - log 7.— , a2a = *'(y2 ) . 

It should be noted fr
1  
om the relation 

A 	 A 	 Y A  
al  = )(Y2) - log Y2 = IfJ(y2Z) - log y2L  = ala 

1 11 	 1L  
that for y2 = 1 we obtain y2L = 1 and that the expressions (2.5.1) to 

(2.5.6) recover the corresponding expression of Section 2.4. 

Finally, asymptotically the statistics%  

LG(i) = T*  ( ) 	LL  {T*G  }:1 4 	(y = A, 	, 

1 

	

TGL(j) = Ta,(j) VGGL1]2 	(j = A,C) , 

have a standard normal distribution, (2.5.7) under HL  and (2.5.8) under HG. 

B 	Empirical results  

The empirical results for comparison between TLG(C) and TLG(A) and 

between TGL(C) and TGL(A) and on the adequacy of the asymptotic results 

are now discussed. 

Results on the null distribution of TLG(C) and TLG(A) and on the 

distribution of TGL(C) and TGL(A) under the alternative, that is the 

lognormal distribution, were obtained in a manner similar to Section 2.4. 

Here again from (1.2.24) it follows that the distribution of the test 

statistics depends only on a2. For a1  = 0 and each different value of a2, 

500 trials for various sample sizes were obtained. 



ho 

In a similar way the results on the distribution of TGL(C) and 

T
GL
(A) and on the distribution of TLG(C) and TLG(A) under the alternative, 

that is the gamma distribution, were obtained. Here random variates 

from a gamma distribution were obtained from ui  independent uniform (0,1) 

random variates, as follows. For y2  integer the transformation 
I2 

1 
=E(-ylogu.gave independent variates from a gamma distribution 
1=1 	1 

with parameters yl  and y2. For y2  non-integer the method described by 

Whittaker (1974) was used. Again, from the comments on (1.2.24) it 

follows that the distribution of the test statistics depends only on y2. 

For y
1 

= 1 and each different value of y2' 500 trials for several sample 

sizes were obtained. 

For calculating the test statistics the functions r(z), 11)(z), 11)1(z), 

11)"(z) and 11)1 "(z) are needed. For these the approximations given in 

Abramowitz & Stegun [1972, eq.(6.1.41), (6.3.18), (6.4.12), (6.4.13) and 

(6.4.14)] were used. Further, for any z the approximations were used 

for z + 8 and r(z) and IP(n)(z) obtained from the relations r(z+l) = zF(z) 
(n)(z+1) *(n and IP 	(), z) + (-1)

n
n:z

-n-1. 
 The approximations get better 

as z increases and for values as small as z = 0.2, ip(z) is correct up to 

four decimal places and all others are correct up to at least nine decimal 

places. 

To solve the maximum likelihood equations and other equations for 

calculating the test statistics, Newton's method was used; the iterations 

were stopped when the equations differed from zero by less than 0.001. 

No problem of convergence was encountered. 

The results are summarized in Tables 2.5.1 to 2.5.9. 

Results of Table 2.5.1 and 2.5.2 generally agrees with the discussion 

of Section 2.3 on the behaviour of the A and the C statistics. The A 

statistics have a better agreement for the two first moments while the C 

statistics have a better agreement for the skewness and kurtosis coefficients. 



Two further points can again be moticed from Table 2.5.1. Similarly 

to Section 2.4, for a2 increasing it seems that the approach to normality 

becomes slower for both statistics and it affects TLG(A) more than TLG(C). 

Here the terms which differentiate TLG(A) from TLG(C) are 

A 	A 

a
1
+La

2) 
n(y -e 

3  o 	 A  1  
8y1 -G'Y L'Y2L'5"-)  = I 2L 	l A  

(e 
	2)2 

A A 

a +l 1 2a  2 A  
n(e 	-Y a 	1)  

(Y 	I 'Y) - 	A 	A 3),  G
2 

1L' 
al+a2 e  

and one of the higher order terms is 

A A 	 A 

( 1 	

32Z  (I Y )Y) \2. 	G 	n A2 11:YlL  2.  
1 11,1  2 2 312  

1 	Y1 

(2.5.10) 

(2.5.11) 

For the same reason given for (2.4.9), it is required a large sample size 

for (2.5.9) and (2.5.10) to become relatively small. The mean and the 

variance of (2.5.11) is of the same order as that of (2.4.10) and similarly 

shows the magnitude and importance of the neglected terms. 

For the parameter values of Tables 2.5.3 and 2.5.4 the means of the 

tests TLG(A) and TGL(A) are negative and the tests are then consistent. 

A general investigation on the consistency of these tests is not simple 

and for TGL(A) it does not seem possible since the estimates are obtained 

by iterative processes. 

Exact comparison of the power of the A and the C statistics would 

require the same significance level on both statistics for all parameter 

values. Here instead an approximate argument was used. The power and 

the corresponding significance level were compared at that parameter values 

for which both distributions have a similar shape. Although no conclusion 

can be inferred for values not used in the simulations, it would be expected 

(2.5.9) 
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that for values corresponding to shapes which are more dissimilar between 

the two distributions, a higher power would be attained and a closer 

agreement to the asymptotic significance level obtained. 

For small values of a2 for the lognormal density function and large 

values of y2  for the gamma density function both have shapes similar to 

that of a normal density function. For the power of TLG(A) and TLG(C), 

Tables 2.5.7 shows that for a2 = 0.1 and a2 = 0.25 the significance levels 

are about the same for A and C. Table 2.5.5 gives values corresponding 

to y2  = 5.0 and y2  = 10.0 and it follows that there is not much difference 

in the power of the two statistics. The difference could well be due to 

the slight difference in the significance levels. Similarly, for the 

power of TGL(A) and TGL(C), Table 2.5.8 shows that for 12  = 5.0 and y2  = 10.0 

the significance levels are about the same for A and C. It follows from 

Table 2.5.6 for values a2  = 0.1 and a2  = 0.25 that again there is not much 

difference of power between the two statistics and the difference could 

be due to the slight difference in significance levels. 

For other values of the parameter, the difficulties are overcome by 

defining closeness in another way. Consider as the nearest alternative 

to a particular member of Hf  say, that member of Hg  with parameter value 

given by the probability limit of its maximum likelihood estimator when 

that particular member of Hf  is true. For example if a2  = 0.21, we would 

expect TLG(.) to have lower power for a gamma distribution with Y2L = 5'0  

the solution of log 12L 	11)(Y2L) 
	0.21, 

 1, that is equation (2.5.1). Similarly, 

for y2  = 5.0 we would expect TGL(.) to have lower power for a lognormal 

distribution with a2G  = 0.22 the solution of a2G 
= V(5.0), equation (2.5.4). 

The example shows that the method agrees with the comparisons of power 

previously made using the normal shape. 

Consider a further comparison using this argument. For y2  = 2.0, 

the 10% significance levels in Table 2.5.8 are not very different for 

the A and the C statistics. The corresponding values for power comparisons 
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of TGL(.) is a2G  = V(2.0) = 0.64 in Table 2.5.6 and allowing for the 

slight difference in Table 2.5.8 the power in Table 2.5.6 does not seem 

to be very different for A and C. Similarly, for a2  = 0.54, the significance 

levels in Table 2.5.7, except for n = 20 and n = 50, are not very different. 

The corresponding value to look at in Table 2.5.5 is 121, = 2.0 and the same 

conclusion is reached. For these cases the further results of Table 2.5.9 

seem to confirm the assumption of equal power. 

Another point should be observed from Table 2.5.7 and 2.5.8, generally 

the significance levels of the C statistics agrees more closely to those 

of the standard normal. This is related to the faster approach to normality 

of the statistics C. From a practical viewpoint this provides an argument 

for C,to be preferable. 

Figures 2.5.1 to 2.5.6 present histograms of the data of Tables 2.5.1 

and 2.5.2. They show the approach to normality and the effects of increasing 

a2. It is interesting to note that changes in y2  does not seem to have 

much effect on the approach to normality of TGL(.). 



TABLE 2.5.1 Null distributionof TLG(C) and TLG(A). 

(0 
Pl(TLG(')/aL P

2
(Tu( .)/EL Yl(TLG(')/HL) 82(TLa(0/EL) 

02=0.1 02=0.5 02=2.0 02-0.1 020.5 0z 2.0 02=0.1 02=0.5 02=2.0 a20. 02=0.5 02.2.0 

20 C -0.002 -0.083 -0.253 0.710 0.592 0.264 0.458 0.776 0.478 5.336 5.728 3.633 
A 0.020 -0.032 -0.164 0.725 0.686 0.278 0.813 1.838 1.603 6.288 11.048 T.171 

50 C -0.124 -0.159 -0.220 0.892 0.863 0.471 0.304 0.316 0.567 3.211 3.292 3.673 
A -0.097 -0.114 -0.119 0.886 0.876 0.542 0.415 0.637 1.714 3.334 3.860 8.318 

100 C -0.080 -0.105 -0.193 0.951 0.864 0.536 0.173 0.548 0.680 2.975 3.465 3.782 
A -0.067 -0.074 -0.108 0.947 0.890 0.622 0.248 0.778 1.630 3.023 3.931 7.761 

150 C -0.049 -0.094 -0.141 0.890 0.836 0.652 0.078 0.263 0.708 2.725 2.970 3.833 
A -0.039 -0.068 -0.057 0.886 0.841 0.788 0.132 0.420 1.644 2.750 3.198 7.795 

200 C -0.047 -0.121 -0.155 0.981 0.899 0.622 0.397 0.427 0.609 3.358 3.464 3.718 
A -0.037 -0.098 -0.088 0.984 0.909 0.791 0.460 0.596 1.252 3.464 3.787 5.852 

Results fro= 500 trials. 

TABLE 2.5.2 Null distribution of Ta(C) and TGL(A). 

PlTGL(')/liGI p2 {TGL 	• (.)/40  } 71(TGL(.)/HG 02{TGL(.)/EG} 
n TGL(.) 12=0.5 12=1.0 12.10.0 '12=0.5 12=1.0 12.10.0 12.0.5 11e1.0 y2.10.0 12 	.5 12.1.0. 12.10.0 

20 C -0.198 -0.145 -0.163 0.670 0.585 0.701 0.435 0.426 0.140 3.667 3.361 2.975 
A -0.089 -0.077 -0.143 0.737 0.621 0.696 1.438 1.020 0.278 6.522 4.757 3.107 

50 C -0.152 -0.102 -0.136 0.772 0.601 0.845 0.306 0.663 0.111 3.129 3.731 3.343 
A -0.073 -0.042 0.169 0.805 0.672 0.839 0.877 1.134 0.231 4.237 4.876 3.472 

100 C -0.021 -0.092 -0.091 0.865 0.516 0.990 0.298 0.395 0.156 3.016 3.650 3.463 
A 0.041 -0.044 -0.077 0.919 0.552 0.991 0.709 0.797 0.252 3.882 4.701 3.498 

150 C -0.076 -0.093 -0.144 0.918 0.562 0.989 0.363 0.684 0.126 3.184 3.734 3.476 
A -0.022 -0.052 -0.133 0.958 1.C15 0.987 0.723 0.990 0.207 3.832 4.771 3.523 

200 C -0.049 -0.002 -0.120 1.001 1.011 0.996 0.457 0.448 -0.056 3.268 3.261 2.969 
A 0.002 0.036 -0.111 1.054 1.053 0.991 0.777 0.688 -0.001 3.872 3.747 2.973 

Results from 500 trials. 



TABLE 2.5.3 Distribution of TLG(C) and TLG(A) under alternative Ro. 

n TLG  (.) 
ul(TLG(.)/BG  u2ITLG(XI!0)  12{TLG( ' )/110 	• 

82(TIA(.)/11G ) 

y2=0.5 121.0 y2=10.0 y2=0.5 y2=1.0 y2=10.0 y2=0.5 y2=1.0 y2=10.0 12=0.5 12=1.0 y2=10.0 

20 C -0.597 -0.981 -0.500 0.088 0.239 0.675 -0.101 0.417 -0.026 3.803 3.814 2.858 
A -0.337 -0.745 -0.471 0.048 0.126 0.626 -0.159 0.914 -0.110 4.864 5.621 2.844 

50 C -0.987 -1.708 -0.814 0.111 0.258 0.791 -0.202 -0.064 -0.008 3.299 3.507 3.340 
A -0.509 -1.291 -0.782 0.065 0.096 0.734 -0.396 0.259 -0.115 2.913 3.886 3.305 

100 C -1.414 -2.507 -1.264 0.128 0.287 0.966 0.254 0.251 -0.051 3.224 3.240 3.514 
A -0.683 -1.906 -1.225 0.078 0.099 0.889 -0.159 0.488 -0.062 2.603 3.817 3.547 

150 C -1.717 -3.101 -1.492 0.123 0.282 0.968 0.045 -0.207 -0.052 3.518 2.866 3.366 
A 0.811 -2.353 -1.453 0.081 0.085 0.900 -0.317 -0.122 0.029 2.961 2.738 3.362 

200 C -1.979 -3.658 -1.751 0.124 0.295 0.979 0.258 -0.055 .0.093 3.008 2.920 2.904 
A -0.917 -2.767 -1.708 0.079 0.087 0.911 -0.067 0.045 0.150 2.831 3.131 2.919 

Results from 500 trials. 

TABLE 2.5.4 Distribution of TGL(C) and TGL(A) under alternative 
• 

(.) 
ul  Tm(.)/RL) u {TGL(0/HL) ' (.)/RL} e2(TGL(')/141.) 

02=0.1 02 .5 a2 2.0 02=0.1 02=0.5 02=2.0 02=0. 02=0.5 022.0 02=0.1 a2=0.5 =2.0 

20 C -0.656 -0.953  -1.413 0.680 0.586 0.591 -0.137 -0.150 -0.292 4.936 4.593 3.457 
A -0.623 -0.846 -1.102 0.824 0.428 0.249 0.184 -0.590 0.658 5.014 4.927 3.725 

50 C -0.876 -1.541 -2.588 0.877 0.679 1.027 -0.213 -0.025 -0.330 3.048 3.104 3.339 
A -0.846 -1.395 -1.992 0.815 0.649 0.357 -0.102 0.303 0.451 2.971 3.150 3.128 

100 C -1.267 -2.323 -3.880 0.952 0.649 1.160 -0.139 0.386 -0.573 2.899 3.245 3.719 
A -1.233 -2.128 -2.991 0.885 0.598 0.353 -0.061 -0.143 0.113 2.890 2.999 3.092 

150 C -1.572 -2.919 -4.901 0.851 0.622 1.470 -0.032 -0.135 -0.693 2.752 2.866 3.992 
A -1.536 -2.679 -3.760 0.793 0.586 0.416 -0.023 0.031 -0.025 2.742 2.815 2.907 

200 C -1.814 -3.354 -5.683 0.955 0.500 1.327 -0.367 -0.268 -0.489 3.281 3.194 3.378 
A _1.774 -3.085 -4.377 0.035 0.133 0.393 -0.03 -0.09 -0_007 3.197 3.058 2.935 

Results from 500 trials. 



TABLE 2.5.5 Null: lognormal; Alternative: ganna. Tests: TLG(C), T(A). .Pover at t -1.64; t -1.28. 

POWER 	FU4CTION 

n TLG  (.) SL - 0.05 SL . 0.10 

72.0.5 y2.0.8 ye1.0 y2=2.0 y2.5.0 y2.10.0 y2.0.5 y2=0.8 y2=1.0 y2=2.0 Y2=5.0 y2=10.0 

20 C 0.002 0.044 0.072 0.122 0.110 0.082 0.024 0.146 0.028 0.304 0.200 0.162 
A 0 0 0.002 0.046 0.080 0.056 0 0.022 0.040 0.186 0.180 0.146 

50 C 0.028 0.484 0.558 0.454 0.266 0.156 0.176 0.824 0.802 0.644 0.414 0.300 
A 0 0.022 0.122 0.350 0.220 0.148 0.004 0.238 0.518 0.592 0.398 0.278 

100 C 0.256 0.972 0.950 0.844 0.456 0.330 0.682 0.996 0.982 0.930 0.648 0.476 
A 0 0.472 0.802 0.796 0.436 0.316 0.022 0.935 0.974 0.912 0.623 0.468 

150 C 0.602 0.998 1.000 0.946 0.668 0.438 0.902 1.000 1.000 0.982 0.792 0.602 
A 0.002 0.914 0.998 0.930 0.650 0.416 0.050 0.998 1.000 0.976 0.784 0.596 

200 C 0.824 1.000 1.000 0.980 0.826 0.568 0.968 1.000 1.000 0.992 0.890 0.690 
A 0.008 0.996 	' 1.000 0.978 0.812 0.542 0.100  1.000 1.000 0.990 0.890 0.674 

Results frcr. 500 trials. 

TABLE 2.5.6 Null: gamma; Alternative: lognormal. Tests: TGL(C), TGL(A). Pover at t • -1.64; t -1.28. 

(.) 

POWER 	FUNCTION 

SL . 0.05 8/. . 0.10 

02=0.1 02=0.25 02=0.5 a2=0.64 52=:..0 o2=2.0 02.0.1 02=0.25 22.0.5 0:„.0.64 02=1.0 02.2.0 

20 C 0.106 0.112 0.166 0.188 0.2A 0.360 0.194 0.226 0.306 0.304. 0.418 0.544 A 0.068 0.086 0.096 0.094 0.0118 0.136 0.174 0.188 0.236 0.234 0.286 0.360 
50 C 0.194 0.316 0.454 0.504 0.634 0.828 0.314 0.446 0.620 0.668 0.786 0.912 A 0.186 0.286 0.380 0.434 0.560 0.742 0.312 0.410 0.566 0.618 0.750 0.878 

1100 C 
A 

0.338 
0.326 

0.568 
0.544 

0.754 
0.728 

0.828 
0.792 

0.912 
0.9:.6 

0.986 
0.582 

0.490 
0.58.4 

0.702 
0.692 

0.870 
0.860 

0.926 
0.916 

0.980 
0.976 

0.996 
0.994 

150 C 0.472 0.730 0.928 0.954 0.992 1.000 0.618 0.846 0.968 0.986 0.998 1.000 A 0.562 0.720 0.918 0.946 0.943 1.000 0.612 0.838 0.966 0.980 0.998 1.000 
2D0 C 

A 
0.552 
0.550 

0.846 
0.76 

0.970 
0.900 

0.988 
0.922 

0.938 
0.938 

1.000 
1.000 

0.688 
0.650 

0.910 
0.90 

0.998 
0.938 

0.998 
0.298 

1.000 
1.000 

1.000 
1.000 

Results from ;CO trials, 



TABLE 2.5.7 Null: lognormal; Alternative: gamma. Tests: TLG(C), TLG(A). One-aide significance level at t - -1.64; t -1.28. 

(.) 

SIGNIFICANCE 	LEVEL 

SL . 0.05 SL . 0.10 

02=0. 02=0.25 02=0.5 020.64 a2=1.0 022. 02=0. =0.25 02=0.5 02=0.64 02=1.0 02=2.0 

20 C 0.022 0.020 0.012 0.014 0.008 0.002 0.054 0.052 0.052 0.058 0.032 0.016 
A 0.018 0.008 o.006 o.006 C o 0.048 0.044 0.034 0.030 0.012 0 

50 C 0.040 0.060 0.048 0.024 0.014 0.006 0.102 0.128 0.116 0.078 0.060 0.044 
A 0.034 0.050 0.032 0.012 0.004 0 0.092 0.110 0.098 0.052 0.030 0 

200 C 0.042 0.036 0.028 0.024 0.C20 0.014 0.104 0.092 0.086 0.084 0.068 0.032 
A 0.038 0.030 0.024 0.016 0.018 0 0.098 0.088 0.074 0.070 0.042 0.014 

150 c c.048 0.038 0.032 0.040 o.c26 0.012 0.094 0.090 0.090 0.094 0.076 0.054 
A 0.040 01.034 0.026 0.028 0.016 0 0.092 0.084 0.070 0.080 0.048 0.020 

200 C 0.038 0.050 0.046 0.042 0.026 0.018 0.088 0.116 0.088 0.082 0.088 0.046 
A 0.036 0.044 0.038 0.030 0.022 0.002 0.086 0.102 0.084 0.076 0.062 0.026 

Results from 500 trials. 

TABLE 2.5.8 Null: gamma; Alternative: lognormal. Tests: Tct(C), TGL(A). One-aide significance level at t = -1.64; t ■ -1.28. 

n TCL(.) 

SIGgIFICANCE 	LEVEL 	- 

SL . 0.05 • SL - 0.10 

12 .5 12=0.8 12=1.0 12=2.0 12=5.0 y210.0 12=0.5 12=0.8 12=1.0 12=2.0 v2=5.0 y2=10.0 

r 

20 C 0.024 0.018 0.016 0.028 0.020 0.038 0.060 0.066 0.046 0.066 0.068 0.086 
A 0.004 0 0.004 0.018 0.016 0.028 0.024 0.026 0.020 0.050 0.050 0.082 

50 C 0.032 0.020 0.024 0.030 0.036 0.064 0.086 0.064 0.064 0.076 0.070 0.120 
A 0.006 0.006 0.008 0.012 0.022 0.060 40.046 0.038 0.046 0.066 0.060 0.114 

No C 0.030 0.024 0.036 0.032 0.036 0.04o 0.074 0.072 ' 0.104 0.076 0.080 0.118 
A 0.016 0.014 0.022 0.028 0.028 0.038 0.048 0.050 0.084 0.070 0.078 0.108 

.50 C 0.036 0.050 0.028 0.034 0.036 0.076 0.100 0.092 0.098 01.084 0.096 0.120 
A 0.022 0.032 0.020 0.028 0.032 0.068 0.072 0.072 0.076 0.076 0.088 0.116 

200 C 0.043 0.044 0.028 0.046 0.032 0.060 0.086 0.096 0.084 0.090 0.086 0.138 
A 3.o24 0.023 0.0.;2 0.036 0.022 0.058 0.080 0.082 0.068 0.084 0.078 0:132 

Results from 500 trials. 



TABLE 2.5.9 Foyer and significance level at t -0.84. 

" Bower at 20% SL • 20% Si. 

n Tests T
CL
(.) T

LC
(.) TCL(.) 714(") 

02=0.64 122 = .0 Y
2
.2.0 °2'°* 5  

20 C 0.562 0.556 0.160 0.124 
A 0.520 0.520 0.144 0.114 

50 	' C 0.828 0.856 0.186 0.226 
A 0.820 0.848 0.178 0.214 

100 C 0.978 	• 0.970 0.190 0.216 
A 0.976 0.968 0.182 0.210 

Results from 500 trials. 
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2.6 Tests for the lognormal and Weibull distributions  

A 	Test statistics and their distributions  

Here the methods proposed by Cox and by Atkinson are used to derive 

tests involving the lognormal and Weibull distribution. 

First suppose the null hypothesis HL  is that the distribution is 

lognormal and the alternative Hw  that it is Weibull, that is HL  : fL(y, al, a2) 

against Hw  : fw(y; 01, 02); see Section 1.2. The expectations of the 

log likelihood functions in relation to the null lognormal distribution 

yield 

	

L(alla2;y)} = - 	log a2  - n log 17-TT - n al  - 	, 

R2  2 
kW (al'  a2  ;y)} =n log R2 -  n 02  log 01  + (02-1)al  - n  exp 2a1+7,Ta2} 

0
02 

(2.6.1) 

To find 01L  and 02L, the probability limits under HL  of 0, and 02  respectively, 

recall Cox [1961, eq.(25)], namely 

E.
(D.  log fW(Y.'1311,2L)13  

	

E {9, (0 	0 ' %Y)} = 0. 
“P'1'132)i 	a031'R2P L W 1L 2L 2L 

(2.6.2) 

This gives a system of equations whose unique solution is 

R1L 
 = exp{a + IT} 

1 	2 	02L 
= 22• 
	(2.6.3) 

This shows that 011

02,L 
is the 2L

th moment of the lognormal distribution and 

02L 
is the inverse of the scale of the normal distribution. Writing 
A A 	 A A 

L = (al,a2) and by noticing that 21(al,a2,y) - Ei,{9-L(a1,a2;i)}  = 0 we then 

have 

A A 

nw(C) 
= Eil{kW(311AL;Y )}  Y31 5132 'Y)  

A 	 A 	

1321, 

A A  Ao 
= n{02 log 1  - 02L  A  log 1L 	

7-, - log 	, 	( 
2 

(2.6.4) 
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T*LWL (A) = E"{kW 

n  
= 	E 
1=1 

(01L' 

. Y1 

02L' 
.y)} - 

0 " 2L 
- n = 

P.W 
(0
1L'  02L 

"' y) 
 

.., 	1 
n 	(c(2)--  
E 	y 
. 1 	t =1 

F-7.- 
[ 1L exp{a1(a2) 

1 
2  + 

n. 	(2.6.5) 
i} 

The asymptotic variance VL {TLW  } of these tests is required. First we 

evaluate 

132 a  

LW = 2 — 	
2L 2 

+ n e 	- 1 - 2/1f32La2 
= 0.218281 

(2.6.6) 
C
1L 

= 0 	C2L 2 - 
n  (322L 
	

1 = 	, 
' 	- 	a2 

and recalling the information matrix in (1.2.7) we have 

VL{Ttw} = LW - CL 
-1 (a , )CL  = 0.218281n 	(2.6.7) 

	

Now, suppose that HL  and 	change roles, so that the null distribution 

is Weibull and the alternative is lognormal. The expectations of the log 

likelihood functions in relation to the null lognormal distribution yield 

r1)  
Ew{tw(01,02;Y)}= n log 02  - n02  log 0, + (02-1)n 	+ log 0, - n , 

	

(a a .y)) = - P- log a2 - n log 	n 2 	
{1P(1)  

132 
+ log 

1 

1 a 	45(1)  +log 0 -1' 1q.  
11)4)  +ft(1) 

 +log f311 -al
2 

A2 	( 02  "2 

(2.6.8) 

To find alw  and a2w, the probability limits under Hw  of al  and a2, respectively, 

the analogue to (2.6.2) is 

	1 E {t (a 	a 	y)} = 0 , 
3(al'a2

) W L IW' 2W', 

whose unique solution is 

2 
n 

2a 
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41(1) 	V(1)  a - 	+ log 	2W 01 ' 	a = 
1W 62 	132  • 2 

(2.6.9) 

Thus, a1W 
and a

2W
. are respectively the mean and variance of the logarithm 

A A A 
of a random variable with a Weibull distribution. Writing W E (31,02), 

we then have 

TWL(C) = kW (0l'2 ;Y)-9,L  (al'  a2  ,y)-EW
"{kW 

 (0 R .y)-kL (a
1W' a2W' 

.y)1 

= n{P. (a -a 1 	log 
2 

2 1 1W 	a A 5  
2W 

(2.6.10) 

(A) = W  (0 	'Y)-2,L (a1W'  a2W' A *Y)-E^{9,W  (0 0 'Y)-kL (a1W' a2W' *Y)) W 

= n 
[I  
62  (a1 -a1W 

") + 2 a
2W 
1,„ {;2 -a

2W  
"+(a1 -a

1W  )2) . 	(2.6.11) 

To evaluate the variance VWW  {T*L  } of these tests, we have similarly 

WL = 0.2834 n , Cam  = 0' C
2W 
 = 0 , 	(2.6.12) 

and, with the information matrix in (1.2.11), we obtain 

WL = 	
- C'W I-1 (Rl' R2  ) CW  = 0.2834 n. 

	(2.6.13) 

It should be noted that for 02  known and equal to 1 the previous 

results recover those of Section 2.4. 

Finally, for j = A, C, the statistics 

TLW(j) = TLW  (j) 	L  {TLW}] 
	

' TWL (j)  WL
(j) 

 [VWW T*L  } 2  

(2.6.14) 

are asymptotically standard normally distributed under HL  and Hw, respectively. 

Empirical results 

The empirical results for comparisons between TLw(C) and TLW(A) and 

between TWL(C) and TWL(A) and on the adequacy of the asymptotic results are 

presented. 
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Results on the null distribution of T
LW(C) and TLW(A) and on the 

distribution of TLW(C) and TWL  (A) under the alternative, that is the 

lognormal distribution, was obtained as in Section 2.4. Here from the 

comments about (1.2.23) it follows that the distribution of the test 

statistics is independent of the parameter values al  and a2. For 

various sample sizes n, 1000 trials were obtained with a
1 = 0 and 

a2 =1. 

Similarly, results on the null distribution of TwL(C) and TwL(A) 

and on the distribution of T
LW(C) and TLW(A) under the alternative, that 

is the Weibull distribution, were obtained. Again it follows from 

(1.2.23) that the distribution of the test statistics is independent of 

the parameters 01  and 62. For various sample sizes n, 1000 trials were 

obtained with 61  = 1 and 62  = 1, the standard exponential distribution. 

The maximum likelihood estimator equation for 62  was solved using 

Newton's method. The iterations stopped when the equation differed 

from zero by less than 0.001. 

The results are summarized in Tables 2.6.1 to 2.6.9. 

Results in Table 2.6.1 and 2.6.2 agree with the discussion of 

Section 2.3 about the first two moments and the coefficients of skewness 

and kurtosis of the A and C statistics. For Table 2.6.1 one of the terms 

which differentiate TWL  (A) from TWL  (C) depends on 

(32i, n  
56 (6 	"Y) al3

1 
W 1L' * =6 • 1L 11 

(2.6.15) 

   

2L .  From the properties of the lognormal distribution y
1 	2L has a 

lognormal distribution with al  = - z  and a2  = 1. Therefore, since for 

large a2, the sample mean is an inefficient estimator for the mean of the 

lognormal distribution it will be required a large sample size for (2.6.15) 

to become negligible. 
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For Table 2.6.2 the terms which differentiate TWL(A) from T
WL
(C) 

depends on 

Da 9.,L (a1W 
",a2W% 	a ".y) = 1„ E (log y. - a1W  

1 .  
1 	2W 1=1 

(2.6.16) 

n 
9, (a 	a 2W'y) 	E (log y. - a

1W  
^)2. (2.6.17) Da

2 
L 1W' 	2a 2W 2a 2w i=„1   

It is known that for the extreme value distribution, the efficiency of 

the method of the moments in relation to maximum likelihood in estimating 

the location parameter is about 95% and for the scale parameter is about 

55%. Therefore, at least (2.4.17) will require a large sample size to 

become negligible. 

Tables 2.6.3 and 2.6.4 show respectively that the tests TWL(A) and 

TWL(A) are consistent for all parameter values. This follows from the 

fact mentioned earlier that the distributions of the tests are independent 

of the parameters. 

The following relation can be observed from Tables 2.6.1 to 2.6.4: 

il(Tur(C)/HL) = - yl(TwL(C)/HL), yi(TwL(C)/Hw) = - yi(TIN(C)/N), 

62(TLw(C)/HL) = a2(TwL(C)/HL), 132(TwL(C)/Hw) = 132(Tim(C)/HL). 

For the significance levels in Tables 2.6.7 and 2.6.8 the C statistics 

show a better agreement to the asymptotic values. This is related to the 

approach to normality and would suggest that C is preferable. For power 

comparisons, Table 2.6.9 gives further results and they seem to indicate 

that there is not much difference of power between the A and the C statistics. 

Figures 2.6.1 and 2.6.2 presents the histograms of the data of Tables 

2.6.1 and 2.6.2. 



TABLE 2.6.1 Null distribution of TLW(C) and T.. (A). 

n TLw(.) v1(T1 	(•)/2.1,1 1,2(TI,w(.)/R.16) yi(T/m(,)/FIL) a2ITI3(.0/HL) 

23 C -0.261 0.502 0.090 3.337 
A -0.118 0.503 1.665 8.366 

5o C -0.232 0.686 0.167 3.131 
A -0.103 0.723 1.433 8.033 	• 

1:0 C -0.198 0.758 0.329 3.197 
A -0.092 0.818 1.186 5.602 

15o C -0.163 0.769 0.298 2.867 
A -0.072 0.832 0.880 4.000 

200 C -0.142 0.805 0.355 3.368 
A -0.058 0.882 1.088 5.511 

Results from 1000 trials.  

-TABLE 2.6.2 Bull distribution of Twt(C) and TwiL(A). ' 

n TwL(.) µ1{TiW(0/HW) p2(TwL(.)/11w) y1(TwL(.)/11w) 02{Tv1(.)/Rw) 

20 C -0.224 0.555 0.492 .3.459 
A -0.084 0.665 1.777 7.723 

50 C -0.094 0.918 	' 0.512 3.48o 
A -0.043 1.089 1.406 	- 6.059 	.. 

100 C -0.078 0.884 0.371 3.406 
A 0.011 0.957 0.964 4.481 

150 C -0.055 0.967 0.283 3.391 
A 0.023 1.018 0.824 4.335 

200 C -0.067 0.968 0.395 3.344 
A -0.001 1.016 0.815 4.111 

Results from 1000 trials. 

TABLE 2.6.3 Distribution of TLW(C) and TLW(A) under alternative Br  

n 
- 

( 	) TLW• °J. {TLW• ( 	)/4 ) u2 (TLW 	' (.)/rW  ) Y1 (TLW 	4 (0/1{. ) B2  (TL4. ( .)/11/1) 

20 C -1.387 0.720 -0.492 3.459 
A -0.913 	. 0.215 0.510 3.776 

5o C -2.419 1.003 -0.562 3.950 
A -1.638 0.265 0.155 3.519 

.10;, C -3.534 1.113 -0.371 3.406 
A -2.445 0.291 0.126 3.502 

150 C -1.436 1.256 -0.283 3.391 
A -3.038 0.324 -0.116 3.415 

200 C -5.119 1.257 0.395 3.344 
A -3.522 0.323 0.099 3.162 _, 

TABLE 2.6.4 Distribution of Tim(C) and Twt(A) under alternative Et. 

a TWL  (.) ul(TwL(.)/RL) u2(TwL(.)/11L) yi(Tia,(.)/BL) 82(T., 	(•)/g.) 

20 C -1.213 0.387 -0.090 3.387 
A -0.858 0.122 1.380 6.072 

50 C -2.076 	. 0.528 -0.167 3.131 
A -1.451 0.118 0.857 3.625 

100 C -3.050 0.584 -0.329 3.197 
A -2.120 0.104 0.581 3.379 

150 C -3.806 0.608 -0.298  2.867 
A -2.631 0.098 0.407 3.027 

200 C -4.433 0.670 -0.546 4.164 
A -3.049 0.097 0.470 3.137 

Re=ults from 1000 trials.  Results from 1000 trials. 



TABLE 2.6.5 Null: lognormal; Alternative: Weibull.Tests: Tu(C), T.,w(A). 	TABLE 2.6.6 Null: Weibull; Alternative: lognorral.Tests. TwL(C), TilL(A). 

. Power at t -1.64; t ■ -1.28. Power at t = -1.64; t * -1.28 

n TLW(.) 
POWER FUNCTION 

SL - 0.05 SL = 0.10 

20 C 0.344 0.506 
' 	A 0.045 0.217 

50 C 0.771 0.887 
A 0.511 0.756 

p.00 C 0.974 0.986 
A 0.940 0.977 

150 C 0.994 0.99T 
A 0.989 0.996 

200 	: C  1.000 1.000 
A 1.000 1.000 

Results from 1000 trials. 

n TSI (.) L 
POWER FUNCTION 

SL - 0.05 SL • 0.10 

20 C 0.231 0.447 
A 0 0.057 

50 C 0.738 0.860 
A 0.330 . 	0.751 

100  C 0.973 0.996 
A 0.925 0.986 

150 C 0.999 1.000 
A 0.996 1.000 

200 C 	. 1.000 1.000 
A 1.000 1.000 

Results from 1000 trials. 

TABLE 2.6.7 Null: lognorral; Alternative: Weibull.Tests: Tui(C). Tim( 

One-side significance levels at t a  -1.64; t -1.28. 

n TLW(.) 
SIGNIFICANCE LEVEL 

SL - 0.05 SL . 0.10 

20 C 0.022 0.071 
A 0 0.010 

5o C 0.043 0.106 
A 0.001 0.042 

100 C 0.040 0.093 
A 0.008 0.051 

150 C 0.032 0.096 
A 0.009 0.053 

200 C 0.041 0.101 
A 0.016 . 	0.067 

TABLE 2.6.8 Null: Weibull; Alternative: lognormal.Tests: Ths(C), Tim(A). 

One-side significance level at t -1.64; t -1.28. 

a TWL(  • ) 
SIGNIFICANCE LEVEL 

SL .. 0.05 SL = 0.10 

20 C 0.016 0.062 
A. 0 0.000 

50 C 0.023 0.078 
A 0.003 0.025 

100  C. 0.034 0.034 
A 0.015 0.047 

150 C 0.045 
• 

0.087 
A 0.020 0.060 

200 C 0.043 0.103 
A 0.020 0.076 

Results from 1000 trials.  Results from 1000 trials. 



TABLE 2.6.9 Power of T/V.) and TwL(.). 
(significance levels in parenthesis) 

n Tests TLW(.) TW  (.) L 
. 	. 

30 C 0.262 	(0.002) 0.863 	(0.188 ) A 0.187 	(0.001) 0.811 	(0.141) 

40 C 0.415 	(0.005) 0.928 	(0.194) 
A 0.368 	(o.004) 0.899 	(0.151) 

50 C 0.777 	(0.043) 0.738 	(0.034) 
A .0.757 	(0.042) 0.751 	(0.036) 

90 C 0.940 	(0.030) 0.996 	(0.213) 
A 0.945 	(0.035) 0.995 	(0.186) 

Results from 1000 trials. 
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2.7 Tests for the gamma and Weibull distribution  

A 	Test statistics and their distribution  

Here again the methods of Cox and of Atkinson are used to derive 

tests involving the gamma and Weibull distribution. Suppose the null 

hypothesis HG  is that the distribution is gamma and the alternative Hw  

that it is Weibull, that is HG  : fG(y; yl,y2) against Hw  : fw(y.; al,(32); 

see Section 1.2. The expectations of the log likelihoods functions in 

relation to the null gamma distribution yield 

, 	Y2 
G(Yi,Y2;y)) = -n log r(y2) + n 12  logT

2  + ky2 1) /14)(y2)-10.--) 
1 	1 

	

- n y2  , 	(2.7.1) 

Y2 
EG{kw(al,a2,y)} = n log a2  - na2  log al  + (a2-1) n(gy2)-log T1-1 

m  (y3.12 r(a2+y2) 

	

2 Y2J 	r(Y2) 	• 
R 

To find a1G and a2G' 
the probability limits under HG of a1 and a2 respec-

tively, the analogue to (2.6.2) is 

a  E {k (a 	a 	y)} = 0 
3(aa2) G 	W 1G' 2G', 

whose unique solutions (a
1G'2G

) satisfy 

,) 
1 	2G 	[Y1) 

132G 
 r(P2G+12)  

*2G+Y2) 	a2G 
= V)(12)01G = 	r(Y2) 	• 2 

(2.7.2) 

a2 This shows that a1G
G  is the a2Gth moment of a gamma distribution. 

A A 	 A A 

Writing G E (y,,y2) and by noticing that 32G(y1
,y2;y:) 	EA{QG(yi,y2,y,)} = 0 

1 

we then have 



[F(2132G412)r(12)  

[ "2G+Y 2 )1 2  
G = GW - CG I-1(y1,y2)CG  = n 
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A A 

Taw(C)  = Ê
G
N(f31G'132G; )1  

A 

= n log A 	{0 Alog 0 A-0, log 0 	fa .—a&y2)-10g7.j] , 
[ a 

 
A 2G 	A 	A 	 A 	

Y21 

02 	
2G 	1G ' 	2G 	Y1 

 

(2.7.3) 
RA n 

E yi
2G 

T*  (A) = E42,w GW 	G' 2G', j 	W 	' 	' 
13 .y)1. - k (0 . 0 A*Y) - A 	

n . 	(2.7.4) 1=1  

G 	1G' 2G - 2G 
0  
1G 

For the asymptotic variance VG{TGW}  of these tests we first evaluate 

2 112°2G+Y2)F(Y2)  + 2{y2-0 GYti)(02eY2)-tii(Y )} Y2-1), GW  = nfr(Y2){Y2- 2G 	„(„ )1  
`2G Y21)2  

(2.7.5) 

C1G = 0, C2G = n [{Y2 02G} V(12) + CO2G-FY2) 	V)(12) - 	. 

and with the information matrix in (1.2.15) we obtain 

1  
{3132G Y2-qG 411(Y 2 )-12 IPt(72 )132G1 I 

.[ Y2 T (12 ).-11qG 
(2.7.6) 

Now, suppose 11G  and Hw  changes roles so that the null distribution 

is Weibull and the alternative is gamma. The expectation of the log 

likelihood functions in relation to the null Weibull distribution yields 
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),02;y)} = n log 02  - n02  log 01  + (02-1) 	t32(1)  4. log  f3 1 
	n  ' 

(2.7.7) 

	

2 	/ 	% .C(1) , E {2, (y y .y)} = -n log r(y2)+n y2  log — + ky2-11n W G 	 Y1 	"2 	JJ 

2 - 
Y
-
1 

n 13 r(1 + ) 1 	02 

A 

To find ylw  and 12w, the probability limits under Hw  of yl  and y2  respec-

tively, the analogue to (2.6.2) is 

2(y1y2) Ew {2'Glw, oe.0 = 

whose unique solution satisfy 

y1W = 01 [1 + 	' 	' log Y2W 	' -11)(Y
2W 

 = ) 	loa r(1 + 1) - (1)  
p.
2 	 22 

(2.7.8) 
A 

This shows that y1 converges to the mean of a Weibull distribution, and 

the righ hand side of the equation for y214  is the logarithm of the ratio 

of the arithmetic mean to the geometric mean of the Weibull distribution. 

Writing W = (01,02), we then have 

A A 	 A 

T171G(C) = kw(01,02;y,) - tG(y1,12;y) - E.19-14(31,62;y) 	tG(Ylw,Y2w;y)p 

Y A 

= ni{y AI (Y A)-1} - log r(y A) - 2{1g 	
Y 

y .) - log 21) 
2W 2W 	2W 	2W  1W 

- [;%,2{11)(i2)-1),  - log r(y2) - 
A 	

12 11,(y2) - log 741 , 	(2.7.9) 

Y l 



63 

T;G(A) = Zw(61,62;Y) 	ZG(Y A,Y A;Y) - EA{tw(61,62;y) - kG(Ylw,Y2w;y,)/  
1W 2W "' 

I A 
= 4{132-y AI {IgY2)-log 2 - 11)(y 	+ log

Y
2W  + (Y

2
-Y 

" 2W  Y1 	
2W 1W 	2W 

(2.7.10) 

For the asymptotic variance V WG* of these tests we have 

, 2 	 21 

WG = n[r2121 * 	
62  

1(1) + y2  	- 1 + 2 y2w- 73— * 1+ -13-7- , , , 
Y211( [1 

(2.7.11) 

= 	= C 	0 	C 	[ 1W 	' 	2W 62 
1 T3 Td: {4,r 

2 	+ 	(1)}1 

and with the information matrix in (1,2.11) we obtain 

r[14- y  2 	R2  T2'21  t t,‘ + -2 	 y2  - 1 2 2W l' 2 	2 
v fir*  } WG 	c,  I-1( 3 	)c 	n 	*'(1) 	y ar  

WG 	ftlq 
ril+ -1) R2 

+ 2[12w- 41(*(1+ —11-*(1)} vti)  fl- 12W  e(*11+ .1P-*(1)V] 62 	2 	2; 

(2.7.12) 

Hence, for j = A,C the statistics 

TGw(i) = T&I(J)[vG{T 
1 	 1 
2 	 2 T (j) = T (j)( V {T' WG 	WG 	W WG (2.7.13) 

are asymptotically standard normally distributed under HC  and Hw, respec-

tively. 

Finally, there is an observation to be made. In the application of 

this section there is a parameter value in HG and HW which gives the same 

A 

A 

2W frri+ 1).12 2 	2 
I 

R2 

2 



probability distribution of the data. For y2=02=1 we have under Hc, 

that B2G],'1G=Y1' T(.) = 0 and VG{TM = 0 and under 	that 

y1W = 
	, TWG (.) = 0 and VWW  {T*G  } = 0, therefore the asymptotic theory 1  

is not applicable. For neighbouring parametric values, the value of n 

required for the asymptotic theory be reasonably applicable may be 

large. An attempt was made to study this point when performing the 

simulations. 

B 	Empirical results  

Now empirical.results on the tests of this section is presented. 

Because of the complexity to calculate the tests of this section only 

a small simulation study was- attempted. 

Results on the null distribution of TGW(C) and TGW(A) and on the 

distribution of TWG(C) and TWG(A) under the alternative, that is the 

gamma distribution, was obtained as in Section 2.5. Here, also, from 

the comments. about (1.2.24) it follows that the distribution of the 

test statistics depends only on y2. Random variates from a gamma distri-

bution were obtained by the methods described in Section 2.5. For yi  = 1 

and different values of yo, 100 trials for.sample sizes n ='50, 100, 200 

were obtained. 

Similarly we obtained the results on the null distribution of TWG(C) 

and TWG
(A) and on the distribution of TGW(C) and TGW(A) under the alterna-

tive, that'is the Weibull distribution. Again from the comments on 

(1.2.24) it follows that the distribution of the test statistics depends 

only on Bo. Random variates from a Weibull distribution were obtained by 
1/B2 

the transformation yi  = B1(-log ui) 	where u. are uniform (0,1) 

variates. For B1 = 1 and different values of B2' 
100 trials for sample 

sizes n = 50, 100,200 were obtained. 

The approximations of Section 2.5 and the accuracy of the Newton 

iteration described there was also used for the tests of this Section. 

The results are summarized in Tables 2.7.1 to 2,7.8. In view of 
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the small scale it is emphasized that no general conclusion will be made 

apart from general observations. 

It was pointed out in Section 2.5 and earlier in this section that 

when the distributions have a similar shape a large sample size is 

expected to be required for the asymptotic result to be adequate. 

Further, the power function is expected to be low. The choice of para-

mater values for the simulations was directed to investigate this point. 

For values of y2  and 02  near 1 both density functions should have a similar 

shape. For a Weibull density function with
2 
 reasonably greater than 3.6, 

there is no gamma density function which has a similar shape. 

Only the results for parameter values near 1 are presented in Tables 

2.7.1 to 2.7.4. For values less than 0.8 and greater than 1.2 the adequacy 

of the asymptotic results we:re increased. 

Results of Tables 2.7.1 and 2.7.2 do not show much difference between 

the A and C statistics. The results for the sample mean generally agree 

with Section 2.3. 

For the parameter values in Tables 2.7.3 and 2.7.4, TGU(A) and 

T
WG
(A) seem to be consistent, although it does not seem feasible to investi-

gate consistency analytically. In Table 2.7.4 the large value for the 

kurtosis of TWG
(C) at y2 

= 0.8 suggests that for n = 50 the asymptotic 

result is not adeauate. 

The power of TGW(.) in Table 2.7.5 agrees with the comment about 

the shape of the densities. For 02  near 1 the power is low as should be 

expected. Table 2.7.6 also shows a low power for y2  near 1. The further 

low powers in Table 2.7.6 also agree with the comments about shape, 

since it is always possible to approximate the true gamma distribution 

by a Weibull distribution. 

Comparison of power between A and C could be made using the argument 

of nearest alternative as in Section 2.5. This was not attempted here 

because the complexity of the equations and also because of the small 
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scale of the simulations. Figures are also not provided. 

The simulations of this section show that the results seem adequate 

for samples of size greater than about 100 even for parameter values 

as close to 1 as 0.8 and 1.2. 



TABLE 2.7.1 Null distribution of TGw(C) and Tow(A). 

TG4(.) 
ur{Tcumpid 	, v,(Taw(. 41G1  yitTc44.)/1d s t 	(.)/HG) 

12-0.8 Y 2'1.2 12=0.8 y2=1.2 y2=0.8 12=1.2 12=0.8 12=1.2 

50 C -0.278 -0.215 1.345 0.758 -0.634 -0.138 3.054 2.895 
A -0.058 -0.054 1.126 0.773 -0.185 0.435 3.028 3.029 

100 C -0.077 -0.225 0.910 0.883 -0.351 -0.669 2.742 3.772 
A 0.012 -0.085 0.938 0.717 -0.163 0.044 2.735 3.082 

200 C 0.046 -0.346 1.081 1.171 -0.429 -0.217 2.760 2.757 
A 0.091 -0.221 1.072 1.038 -0.243 0.327 2.776 2.979 

Pes".0.ts fre= 100 trials.  

TABLE 2.7.2 Null distribution of TwG(C) and TwG(A). 

TwG(.) 
y i lTwG(.)/Rw) v2fTw0( )/Rw) TICTwG( 	)/H14 ) $2{TwG(0/11,.} 

"2 =0.8 $ =1.2 2 I 	52  =0.8 $ .1.2 2 B =0.8 82=1.2 42.0.8 B2*1.2 

50 C -0.157 -0.056 0.777 0.814 -0.199 -0.422 2.872 2.935 
A -0.048 0.104 0.759 0.796 0.244 0.149 2.909 2.662 

100 C -0.078 -0.096 0.845 1.070 0.507 -1.098 3.171 4.811 
A -0.051 0.005 0.844 0.900 0.631 0.400 3.248 3.081 

200 C -0.063 -0.117 1.203 1.004 -0.510 -0.807 2.977 3.351 
A 0.045 -0.049 1.185 0.910 -0.421 -0.474 2.797 2.787 

Results from 100 trials. 

TAB=  2.7.3 Distribution of TG4(C) and Ta4(A) under alternative Hy.  

1  

Tal4f. 
ulITG,;(.)/Ew) 	1 	u2(TG.4( 	)/H.,) Yl(TG.4(.)/Hy) ( c4(.)/Hwl 

52=0.8 
' 

52=1.2 I 	:2=3.8 1  521.2 52=0.8 s2=1.2 82.0.8 02=1.2 

50 C -0.485 -0.553 0.915 1.008 -0.335 -0.555 2.548 3.070 
A -0.397 -0.375 0.976 0.780 -0.059 0.130 2.637 2.747 

100 C -0.733 -0.611 1.127 0.963 -0.892 0.186 3.786 2.898 
A -0.693 -0.466 1.047 0.860 -0.819 0.775 3.726 3.875 

200 C -1.002 -0.777 1.343 0.936 0.373 0.408 2.685 2.686 
A -1.966 -0.675 1.284 0.816 0.459 0.727 2.837 3.216 

TABLE 2.7,4 Distribution of TwG(C) and TwG(A) under alternative HG. 

n TwG(.) 
1{TWG( ') /HG}  U21 TWG( )/HG)  Yl{T„(')/HG) {T 	(.)/H } 2 	WG 	G 

=0.8 12=1.2 y2=0.8 y21.2 12=0.8 y21.2 =0.8 2=1.2 

50 C -0.494 -0.359 3.280 1.040 -4.699 -0.997 36.160 3.981 
A -0.174 -0.194 1.072 0.765 0.008 -0.190 2.562 2.874 

100 C -0.537 -0.386 1.065 0.903 -0.510 -0.473 3.591 3.049 
A -0.407 -0.265 0.880 0.769 -0.018 0.069 2.655 2.949 

200 C -0.774 -0.392 1.117 1.334 -0.082 -0.642 2.763 3.406 
A -0.715 -0.261 1.012 1.113 0.116 -0.045 2.495 2.716 

Results from -00 trials. 	 Results from 100 trials. 



TABLE 2.7.5 Null: Canna; Alternative: Weibull. Tests: TGw(C), TVA) Paver at t = -1.64; t = -1.28. 

n Tom(.) 

POWER 	FUN CT-ION 

SL = 0.05 SL = 0.10 

82=0.6 820.8 821.2 82=2.0 82  -3.6 825.0 820.6 82=0.8 82=1.2 822.0 82=3.6 8
2
=5.0 

50 C 0.340 0.120 0.130 0.350 0.580 0.670 0.420 0.240 0,220 0.470 0.720 0.800 
A 0.330 0.120 0.080 0.220 0.400 0.430 0.420 0.200 0.140 0.400 0.610 0.680 

100 C 0.460 0.170 0.130 0.620 0.300 0.890 0.590 0.260 0.260 0.710 0.910 0.960 
A 0.460 0.170 0.110 0.530 0.730 0.820 0.590 0.250 0.170 0.680 0.860 0.930 

zoo C 0.730 0.340 0.180 0.830 0:990 1.000 0.870 0.440 0.340 0.870 1.000 1.000 
A  0.720 0.320 0.120 0.760 0.960 1.000 0.870 0.440 	' 0.260 0.860 0.990 1.000 

Results tram 100 trials. 

TABLE 2.7.6 Null: Weibull; Alternative: gamma. Tests: TwG(C); TwG(A). Foyer at t = 	t = -1.28. 

P OWEA 	FUNCTION 
n 'G(.) SL = 0.05 SL = 0.10 

Y2=0.6 '' 	-8  12=1.2 =2.0 	i y2=5.0 =10.0 12=0.6 12-0.8 =1.2 122.0 =5.0 12=10.0 

50 C 0.180 0.170 0.100 0.200 	0.320 0.490 0.270 0.230 0.160 0.310 0.500 0.690 
A 0.160 0.100 0.060 0.110 	0.130 0.260 0.260 0.180 0.120 0.240 0.390  0.550  

100 C 0.260 0.110 0.120 0.290 	0.6)0 0.820 0.400 0.250 0.180 0.420 0.770 0.920 
A 0.260 0.060 0.070 0.220 	0.5'20 0.760 0.3$0 0.190 0.140 0.370 0.740 0.860 

200 C 0.410 0.220 0.140 0.520 	0.930 0.980 0.550 0.340 0.210 0.640 0.960 1.000 
A 0.400 0.200 0.100 0.450 	j 	0.850 0.980 0.540 0.310 0.160 0.610 0.960 0.990 

Results frc= 100 trials. 



TABLE 2.7.7 Null: gamma; Alternative: Weibull. Tests: 76w(C). T (A). One-side significance level at t -1.64; t -1.28. 

' 

n  Tom(.) 

 SIGNIFICANCE 	LEVE,L S 

SL = 0.05 SL = 0.10 

12=0.6 	I ly2. =0 8 y2=1.2 y2=2.0 	125.0 y2=10.0 y2=0.6 	ly2=0.8 y2=1.2 y2=2.0 y2.5.0 y2=10.0 

50 C 0.080 	0.110 0.080 0.040 	0.0(0 0.050 0.120 	0.200 	0.120 	0.080 0.130 0.120 

A 0.060 0.070 0.020 0.020 0.010 0.020 0.110 0.120 0.090 0.040 0.070 	0.060 

100 C 0.030 0.060 0.070 0.070 0.0-0 0.020 0.070 0.110 0.100 0.080 0.150 	0.140 

A 0.060 0.040 0.020 0.040 0.0(0 0.020 0.060 0.090 0.060 0.080 0.100 0.070 

200 C 0.050 0.060 0.140 0.060 0.0-0 0M0 0.100 0.100 0.190 0.110 0.140 0.140 

A 0.030 0.050 0.070 0.060 0.0(,0 0.030 0.090 0.070 . 0.170 0.110 0.100 0.110 

Results from 100 trials. 

TABLE 2.7.8 Null: Weibull; Alternative: gamma. Tests: TwG(C). TWA(A). One-aide significance level at t • -1.64; t • -1.28. 

n TGW  (.) 

• SIGN/EI0AN.CE 	LEVELS 

SL = 0.05 SL = 0.10. 

B2=0.6 02=0.8 	j821.2 02=2.0 02=3.6 02=5.0 02=0.6 82=0.8 02=1.2 =2.0 =3.6 02=5.0 

50 C 0.050 I  0.070 	0.060 0.030 0.330 0.030 0.110 0.100 0.120 0.100 0.120 0.110 
A 0.040 0.030 0.010 0.010 0.310 0.010 0.110 0.070 0.090 0.080 0.060 0.040 

100 C 0.020 0.030 0.080 0.070 0.350 0.050 0.080 0.100 , 0.120 0.120 0.140 0.130 
A 0.020 0.020 0.050 0.030 0.120 0.020 0.060 0.090 0.090 0.100 0.100 0.100 

200 C 0.070 0.090 0.120 0.080 0.370 0.070 0.140' 0.140 0.130 0.140 0.140 0.130 
A 0.050 0.080 0.670 0.050 0.150 0.050 0.130 0.140 0.130 0.130 0.120 0.120 

Results from 500 trials. 
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2.8 Concluding remarks  

From the results about consistency, Atkinson's test should be 

used only after verifying that under the alternative hypothesis of 

interest it leads to consistent tests. 	It may be difficult to 

check this, as was the case in Sections 2.5 and 2.7. 

Under the null hypothesis the C statistics should be expected 

to be preferable on the basis of skewness and kurtosis. 	Therefore, 

from a practical point of view, the C test are generally recommended 

because corrections for lower order moments are considerably more 

easily obtained. 

Comparison of power, although very approximate, does not suggest 

much difference on the power between the A and C statistics, except 

for the test of Section 2.14. 	However, because of the approach to 

normality, the significance levels attained by the C statistics agree 

more closely with the asymptotic values than those for the A 

statistics. 	Again, this also recommends the C statistics. 
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Chapter 3  

NON-HOMOGENEOUS SAMPLE CASE  

3.1 Introduction  

In this chapter generalizations of the test statistics to deal 

with non-identically distributed and with dependent observations are 

considered. Because of the conclusions about the comparisons made in 

Chapter 2 only Cox's statistics will be discussed. First, test statistics 

are developed for the regression models of Section 1.2. The resulting 

statistics are generalizations of those of Chapter 2 and the empirical 

results can be thought of as calculated from the regression models under 

the average set of covariates-, that is z = 0. It is found that the form 

of the test statistics does not depend on the covariates; therefore, 

asymptotically the test statistic is independent of the estimators of 

the regression coefficients. An illustration is given of the choice of 

the regression model for survival data of patients with brain tumours. 

An attempt is made to answer the often asked question: What are the 

consequences of using one model when another is true? The efficiency of 

the estimators of the regression coefficients when using a false model 

in relation to the true model is investigated. The matrix of covariances 

for these efficiency comparisons is always of the form (ZiZ)-1  times a 

constant. Thus asymptotically the design problem is separated from distri-

butional assumptions. 

Finally, it is shown that the results on the test statistics can be 

extended for separate families of hypothesis about Markov processes. 

Some problems are suggested. 

3.2 Tests for the lognormal, the  gamma and the exponential regression 

models  

First, suppose the null hypothesis HL  is that the model is the log-

normal regression model and the alternative HG 
is that it is the gamma 



a 

YlL = al
log 	L 41(12L)  = 	' 

y2  - 
2 	

a
2 = a' . 	(3.2.3) 

These results show that g  is a consistent 

y2L is similar to the single sample case. 
A A A  

noticing  that 2, (al,a2,2,;y) zA{Yal,a2 L 
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regression model, that is, HL: fL(yi,a,,a2,1) against HG: fG(Yi,Y1,121C); 

see Section 1.2. The expectations of the log  likelihood functions in rela-

tion to the null lognormal distribution yield 

E {2, (a a a!;y)} = - 21  log  a2 
- n log  VT.T7 - n a - 

L 	, 	2 	1 	2 ' ( 8.2.1) 

ELfR,G(yi,y2,g';y) 1• = -n log  r(y2) + n y2  log  y2 	n 1211  + n(y2-1)al  

2  
- y2 .E exp{a +z.a + — -1  - z.g} 1 	2 .3.. 	1 	-1. 1=1 

To find Y 'lL' Y2L and gL  the probability limits under HL  of y , 

respectively, recall Cox [1961, e.g.(32) and (33)], namely 

A 

and g  

E 
a log 	v 	) 

fG(Y'ilL'12L'f'  
v 	..0 .  

" )). = 0. (3.2.2) 9(y,,y2,g'PE  {St (Y 'Y LG1L2L'a°1  

The derivatives in relation to yl,  y2 and g 
 respectively, gives a system 

of equation whose unique solution is 

A 

estimator of a, while 11L and 
A A A A 

Writing  L E (al'  a a) and by 

,a',y)} = 0, we then have 

104 n n, 
T* 	= EA 	(y 	,y 	,g';y) 	- 	(y 	.!.7.!\;;J) 	. 
LG 	2L 	G 1 	2 '; 1 • 

= n flog r(12)  - y2  Ip(y2) + 12  - log  F(y A) + y A  11)(y j-y 	. 
2L 2L 2L 2L 

(3.2.h) 

A 	 A 	A 	 A 
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Now, the asymptotic variance VLL  {T*G } of this test is required. First 

we evaluate 

a
2 LG = 1 + 1e - a2 	2 - 11 12L  - y2L a2} 

(3.2.5) 

C = 0 1L 	C2L 
1 = 0 2a2 ' - 

C 
 3L 	' 

and recalling the information matrix in (1.2.9) and on writing 

C
L  = (C1L' C 

	C' )' we have 

2 

= LG - CL I -1(a ,a2  ,aT )CL  = n y2  e 
2 	2 	

(3.2.6) -1-a2- 	. .   

Now, suppose that H
L 

and HG change roles so that the null model is 

the gamma regression model and the alternative is the lognormal regression 

model. The expectations of the log likelihood functions in relation to 

the null gamma distribution yield 

EGf2G(yl,y2,g';y)} = -n log r(y2) 	n y2  11)(y2) - nfrY2)-log Y2  + Yi} -n Y2, 

EGf2L(al,a2,a';y} = - 	log a2- n log/W - +(y2)-log y2  + yil - 2  1.1)1(y2) 

(3.2.7) 

n 1 	 2 
._  
2 	E [a1 -a +za. - {11)(y2  )-log y2  + y1 	- 

z
1  

+ .gIl . 
.  a2 i=1 

To find a1G' a2G and  aG'  the probability limits under HG of a1, a2 and a 

respectively, the analogue to (3.2.2) is 

(1:x a -1-7TT EG-{9" a(a1G'a2G'aG>Y)} = 2 



whose unique solution is 

alG = 11 -F  1P(12) 	
log y2, a2G = IPT(Y2)' 2G = 	• 

	
(3.2.8) 

A 

Here, a is seen to be a consistent estimator of g and the result on a 1G 
A A . A 

and a2G 
is similar to the single sample case. Writing G E (y1 

 ,y g) 
A A 

and by noticing that tG  (y1 
 ,y
2 
 ,g,y) EAUG (Y1G ,Y2G', V)} = 0, we have aG  

G 
A 

A A A 	 a  

	

, 	
log 

n 
2 T* = 	, 	a;y)} - 	(a 	. 	= — 	A  

GL 	L(a 1G a  2G'...G 	L 	
a 2'a'y) 	a2G' (3.2.9) 

Similarly, for the variance VG {TGL}' 
 we first evaluate 

*"t(Y2)  1 Y2 ft(Y2)  
2 

GL = n {y2  tiii(y2
) + 	+ 	+ 

4{V(Y2)}2 2  V(Y2
) 121 

(3.2 .10) 

4)"(Y2)) 
C1G = 0, C2G = n fY2  V(Y2) - 1 + 	

) 
	' 
	2  , 

2 

and recalling the information matrix in (1.2.17) and by denoting 

C
G 
  = (C1G' C2G'- C3G

' ) we have 

= GL - 	= 
1P"'  (y2) 	Y2{1P"(y2))2 	1 

4W(Y2))2  4W(Y2))2{Y21W(y2)-11 

  

(3.2.11) 

Finally, the statistics T*LG 	G and T*L 
 standardized by the:.r variances, 

are asymptotically standard normally distributed under HL 
and 11G' respec-

tively. 

Llfcial case - exponential regression model 

Now, the tests involving the lognormal and the exponential regression 

model are presented. It is useful to recall the relation 
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A 	A 	A 	A 

a 1 = y
1 
 Igy

2
) - log  y

2 
= y A +4(y A) -log y A  = a A. 
1L 2L 	2L 7G 

First, suppose one wants to test the null hypothesis 

HL: f(yi;a1,a2,?') against the alternative hypothesis HE: fE(y5:05,d1 ). 

The expressions (3.2.3), (3.2.4) and (3.2.6) become respectively 

a2 — 
L= 
	

2 1 	'  
d
L 
 = a 

' 
(3.2.12) 

(3.2.13) 

(3.2.114) 

A  
T* = ni6 - 

A 	2 ) a 
LE 	1 2 ' 

2 

V * 	
a2 	2 - a L{T LE = e - 	

a 

2 	2 

When HE  is the null hypothesis and HL  is the alternative, we have similarly 

that expressions (3.2.8), and (3.2.11.) become 

(3.2.15) 
"lE 

= 6 + tP(1) 	a2E 
V(1) , ar  = d , 

4%  

TEL  =n n a 
EL 	

[ 

1 

A 

\(1) 	
l 	2  

2 og  „ 
2E 

A 	A A 

(E (6,d')) , (3.2.16) 

{TEL } = 0.2834n . 	 (3.2.17) 

Again, T*
LE 	E 

and TEL, standardized by their variances,. are asymptotically 

standard normally- distributed under. H
L 
and HE, respectively. 

3.3 Tests for the lognormal and the Weibull regression models 

Here, the null hypothesis HE  is that the model is the lognormal 

regression model and the alternative Hw  is that it is the Weibull regression 

model, that is HE: fL(y Oal,a2,a t ) against Hw: fw(Yi01,2,1)1);  see Section 

1.2. The expectations of the log likelihood functions in relation to the 

null lognormal distribution yield 
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ELL (a 
 a2' a'.y)} 	

2 
- log a2  - n log ig — na  ' 	 1 2 

(3.3.1) 

n  
,02' b';y)1 = n log 2 - n0102 + n(02-1 )al 	E [ex+1  +z.a .  i=1 

2 	
a2 S a 

2 

	

0 	1 1 - z.b)] 2  

A A 
To find 131L' 2L 

and bL,  the probability limits under HL  of (3
1' 132 

and 

b, respectively, the analogue to (3.2.2) is 

	,E{k (s 	s 	b i .y)} = 0 ' 
((3l'2'b') 	W IL' 2L'A.L'. 

whose unique solution is 

2 	1 
= a + 	= 	, b = a . L 1 2 ' 2L AT— 	 L 

2 

(3.3.2) 

A 
These show that b is a consistent estimator of a and 131L and R2L 

are 
A A A 

similar to the single sample case. Writing L E ' a2'' 
a) we have 

TLW 
* = E„,{kW 	b 1L' 	 v)} - £ 

-  
A 

= 41'3'2 	- 	A 	A - log f32  

2L 1L 	A 
2L 

A 
,I0T;Y) 

;11( 2- All. 2L 
(3.3.3) 

For the variance VL {TLW  } we first have similarly to (2.6.6) that 

LW = 0.218281n, {C,L,C2L,C
3L

) = 0' 

and similarly to (2.6.7) 

{T*LW 
} = 0.218281n . 

(3.3.4) 

(3.3.5) 



77 

Now, HL  and 	changes roles so that the null model is the Weibull 

regression model and the alternative is the lognormal regression model. 

The expectations of the log likelihood functions in relation to the 

null Weibull distribution yield 

,132,12,I 3Y)) = n log 02  - n0 + n(11,-1){P + 
c 	

n 
2 

(3.3.6) 

Ew L(al ,a2 ,2,y;y.)1 = - 7  log a2- n loges - 	+ 11)(1)1 "")  
1 2 	2a p.

2
2  

2 

n 
- 	E fa + z.a - (13 + 2111  + z.b)1

2  
. 

	

-̀a2 1=1 1 	1 2 	 1. 

A A 

To find aim, a2W  and aW
, the probability limits under Hw  of al, a2  and a 

respectively, the analogue to (3.2.2) is 

t 	. 	 E {2, (a 	a 	a. .y)) = 0 
D(a a a' W L 1W' 

l' 2'
Y   

whose unique solution is 

= B 	11(1) 	(1)  
a iw 	1 	0.2 ' a2W 	f3 	aW 	12 • 

(3.3.7) 

Again, a is a consistent estimator of b and the result on a1W 
and a2W 

A 	A i1/4 

is similar to the single sample case. Writing W E ((3102,b1 ) we then 

have 

A A A 	 A A At 

= 2,14(R1,02,b' ;y) - kL(ai,a2,a;y) - E„,{k_(31,132,12 1 ;y,...) - QL(aiw,a2w,;y... )) 
W 

(3.3.8) 
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For the variance V. WL we have similarly to (2.6.12) that 

WL = 0.2834n ; 	(C1W' C2W CT ) = 0 . W (3.3.8) 

and similarly to (2.6.13) 

{T*
W 	

= 0.2834n . 	 (3.3.10) L 

Finally, the statistics T* 	W W and T*
L 
 standardized by their variances 

-L  

are asymptotically standard normally distributed under HL  and H
W' 

respectively. 

3.11 Tests for the gamma and the Weibull regression models  

Suppose the null hypothesis HG  is that the model is the gamma 

regression model and the alternative that it is the Weibull regression 

model, that is HG: f(yi;y1,y2,g') against f(yi01,132,10 1 ); see Section 1.2. 

The expectations of the log likelihood functions in relation to the null 

gamma distributions yield 

EG.{9,G(y1,y2,g';y)} = -n log r(y2) + n y2  tgy2) - n{*(y2)-log y2 	yl} - n y2, 

tw(31,132912';)} = n log 132  - n 132131 	-1) idigy2)-log y2  + yi) 

r°2-11/2)   'l  [ 	
52 

13 	
exy 	-z.b)] 	. 

1 	1 2 1=1 L  
r(Y2)12  

(3.4.1) 

A A 

To find 131G' 2G and  bG'  the probability limits under HG of 13 2 
and b 

respectively, the analogue to (3.2.2) is 

N1,132;1) 	EG{'Q'W1G' 13 
	;y 	= 0 2G',G 

whose unique solution is given by 



= GW} n  r
(2132P2)r(Y2)  

fr(°2G))2  
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1 	r( 2G+y2) log 	4)( 2G+Y2) 1  g RIG = y1  - log y2 	R2G 	r(Y2) 2G = 1
)(12) 	b 	. 

 

(3.4.2) 

Again, b is a consistent estimator of g and the results on (3
1G and 

02G are similar to the single sample case. 
A A A A 

Writing G E (yi,y2,g) we have 

T* = EA  fk 	b"y)} - (0 	b"Y) 
G GW 	W 1G' 2G'_G'. 	W 	2/- - 

N 
= nilog 

3 

2G 
- (S 

 2G 3 
1G
A  - 

A
3 2

A
3 11 + 	

2G 
0
A 

2{1(y
A  
2) log y2-y1}{ 2-y

A  
i  • (3.4.3) 

2 	
) 	)]  

For the variance VGG  {T*W  } we have similarly to (2.7.5) that 

r(2f3 +y-)r(y2) 2G e  GW = n{q)' Y y 0 

	

(-2)(- 2-  2G)2 	fr(a, 	1 	4- 2(Y2- 2G)111"2G+Y2)-11)(Y2)1  - 
'2G+Y2)J2  

(3.4.h) 

C1G = 0, C2G = n[(12-02G)V(Y2) 	*(02G+Y2) - )(12 	' ) - 1] 	C3G = 0 . _ 

and recalling the information matrix in (1.2.17) and by denoting 

C' = (C1G' C2G'... C3G 
 ) we have similarly to (2.7.6) 

1  3(32 - 
y thl(v. )_11f32 	2G 	Y2 

'12' ' 2G 

2 
2G 1/)1(Y2) 	Y2V(Y2)(32GI] 

(3.4.5) 

Now HG and H changes roles so that the null model is the Weibull 

regression model and the alternative is the lognormal regression model. 
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The expectations of the log likelihood functions in relation to the 

null Weibull distributions yields 

Ew{kw(812822I4y)} = n log 82  - n 8281  + n(62-1481  + 11)1  - n,  
2 

ky 	,g%y)} = -n log r(y ) + ny
2 log (y2-1) 

1)(1)1  

( 	

n 
_ y 	J-- +1 E exp P. +z.b-y wig}  2 	13

2 	1 1.. 1 ...1- i=1 

A 

To find 11W'  1214  and gw, the probability limits under Hw  of yl, '2 and g 

respectively, the analogue to (3.2.2) is 

	 E fk D(1 ,y 	W G(y  1W 	
, 

,y 	= 0 
1 2  

-whose unique solution - is given by 

- 8+  log rk2=  +1), Igy2w)-log y2w  = 411  log r(-2= +1), gw  = b . 
82 

YlW - 
1 S2  

2 	 . 

(3.4.7) 

Here also, g is a consistent estimator of b and the results on 	andd 12W 

are similar to the single sample case. 

Writing W = (131,  f32, 1D) we have 

A A N 
TWG  = kw(81,82,ny) - ZG(Y 2Y2 - 	w  w 

,W,y) 	E„-(34,((31,(32,b 1 ;)-2..G(ylw,y2w,y)} 

= 
 ni

ry 	)-11-log r(y A)-(32Wy A)-log y 	+ y "ft 
2W 	2W 	2W 	2W IW • 

A 	A 	A 	A 

[1(2 WY2  )-11 - log r(12)  -82flgy2) - log y2 + 11  '  (3.4.8) 

1 

For the variance VW W  
{r11:

L 
 } we have similarly to (2.7.11) that 
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rPL +1
J ) 	12 - 1 + 2 WG = n[112:21 2  (1) + "2  '2W ;62 	fr V 4-1)y 	2W 

2 

Y2W1{ 	1 -0--  W 0
2 

0 1+ ) 2 - (1)11, 
 

(3.4 .9 ) 

Clw 	0, 0214 	
2 - 	2 	2 	_ 

{01t +1) 	4,(1)}], c3W = 0  , 

and recalling the information matrix in (1.2.12) and by denoting 

CI 	(C1W' C2W'.. 
C' ) we have similarly to (2.7.13) 
3W 

ril+ TP] 
= nir272212  

	

0 (1) + 2 	
2 	,2 _ 

2 {rii+ 2_112 '2W 

12.2 

1 	1 	-1. + 21y2w- ii21{0(14- -A,L1 1P(1)} 1p1(1) {17 T-2W  {IP (1+  7-2.H)"}}2.1 
2 	2 	2 

(3.4.ao) 

Again, the statistics T*GW 	W 
and T*G 

 standardized by their variances 

are asymptotically standard normally distributed under HG  and HST  

respectively. 

3.5 Example 

An illustration of the previous results will now be given. Table 

3.5.6 -)res fts survival data on 93 malignant tumour patients as collected 

by the Brain Tumor Study Group at the M.D. Anderson Hospital and Tumor 

Institute, University of Texas. All patients received surgery and were 

randomized according to a chemotherapeutic agent (Mithramycin) and conven-

tional care (Control) during the recovery period from surgery. The tumours • 

were classified by their position in the brain. Other covariates recorded 

were, age, duration of symptoms (headache, personality change, motor 
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deficit, etc.), sex, level of radiation. A further description is given 

by Walker, Gehan, Laventhal, Norrel & Mahaley (1969). 

Corresponding to each patient a vector of covariates z = 
(z1,..  ''z10) 

 

was defined, where zz
2'
z
3'
z
4 
and z

5 
represent age, duration of symptoms, 

sex, treatment and radiation, respectively. The remaining 
z6'z7,z8'z9 

and 

z
10 

are indicators of the position of the cancer cells with a one variate 

corresponding to each of frontal, temporal, parietal, occipital and deep 

BG/T. 

For the choice of a suitable model the simplest models were first 

tried, that is, the exponential regression and the lognormal regression. 

For these it was found that TLE = -2.813 which is significant at a level 

a = 0.0025, which points to a departure from the lognormal regression in 

the direction of the exponential regression. Interchanging the roles of 

H
L 
and HE, T

EL 
= -2.909 was found, which is significant at the level 

a = 0.0019 and points to a departure from the exponential regression in 

the direction of the lognormal regression. This would mean that neither 

model fit the data well. To verify this point these models were tested 

against some alternative simple models. 

First, departures from the exponential regression in the direction 

of the gamma and the Weibull regression were tested. For this, the 

asymptotic normal distribution of the maximum likelihood estimator of the 

shape parameter of the gamma and the Weibull models or equivalently the 

asymptotic x2  distribution of the maximum likelihood ratio were used. 

The results are summarized in Table 3.5.1 and show that assuming a 

Weibull or a Gamma model the null hypothesis of an exponential regression 

model is rejected. 
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TABLE 3.5.1 Testing for exponential regression 

M L E Likelihood Ratio 

Alternative Normal Significance Significance 
Deviate Level -21og X=x2  Level 

Gamma 3.982 0.000035 26.765 <0.00001 

Weibull 5.084 <0.00001 31.267 <0.00001 

Note the rough agreement of the square of the normal deviates in 

the first column with the x2  deviates in the third column. Also, note 

that the null hypothesis of exponential model was rejected more strongly 

by the Weibull test. 

Following this the lognormal regression against the gamma and the 

Weibull regression was tested. It was found that TLG 
= -3.119 which is 

significant at a = 0.0009 and TGL  = 1.016 which is significant at 

a = 0.1539. The first test rejected the lognormal in favour of the 

gamma model and the second suggested a reasonable agreement with the 

gamma model. For the Weibull regression the results were, TLW 
= -3.699 

with significance a = 0.00011 and TwL  = 0.137 with a = 0.4443, the 

former rejected the lognormal in favour of the Weibull and the latter 

suggested a good agreement with the Weibull model. Again, it can be 

seen that the lognormal regression was rejected more strongly when compared 

with the Weibull regression. 

The tests between the gamma model and the Weibull model gave 

TGW = -2.436 with a = 0.0073 which points a departure from the gamma 

in the direction of the Weibull model. The converse TWG 
= 0.967 with 

a = 0.166 suggests a good agreement of the Weibull model with these data. 

Finally, in view of the above results it is concluded that the 

Weibull model should be used for further analysis of the data. The 

result of these test statistics are summarized in Table 3.5.2. 
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TABLE 3.5.2 Results of the tests of separate families of hypothesis 

Test 

Observed Estimates of Probability Limits 

Normal 
Deviate 

Significance 
Level 

Constant 
Term 

Shape Regression 
Coefficients 

TLE 

TEL 

TLG 

T
GL 

TLW 

T 
WL 

T
GW 

TWG 

-2.813 

-2.909 

-3.119 

1.016 

-3.699 

0.137 

-2.436 

0.967 

0.00248 

0.00191 

0.00090 

0.15386 

0.00011 

0.44433 

0.00734 

0.16602 

6
L 

= 5.196 

a
lE
= 4.557  

11L 
	5.196  

a
1G

= 4.890 

13
2L
= 5.281  

a1W= 4.906 

(3
1G

= 5.244  

y
1W

= 5.132 

a
2E

= 1.645 

y
2L= 1.777 

a2G  0.533 

132L=  1.277 

a
2W= 0.570 

f32G=  1.560 

y
2W

= 2.367 

d. = a 
L 

a. = d 
E 

g,. _ 
"I, - a  

a, = g 
-G.  

b. = a 
-L 

a, = b 
-W 
b, = g 
-G. 

1,1 

gA = I 
..'  

For an ordering of the models according to their goodness in fitting 

the data, first comes the Weibull and then successively the gamma, the 

lognormal and lastly the exponential regression model. This is also the 

ordering from the maximum of the log likelihood functions. Table 3.5.3 

gives the maximum of the log likelihood functions, Table 3.5.4 the log 

likelihood ratios and Table 3.5.5 the results of the maximum likelihood 

estimation. 
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TABLE 3.5.3 Maximum of the log 

likelihood functions... 

t. 

Model t. 

Legnormal - t
L  

-563.9347 

Exponential - IE  -570.4434 

Gamma - 1
G 

-557.0608 

Weibull - tW  -554.8098 

• TABLE 3.5.4 Log likelihood 

ratios - X 	. 

Log likelihood 
ratios 

Observed 
X
() 

t
E

t
L 

= X
EL 

- 6.5083 

L
E
-t
0 = AEC -13.3826 

IL
E
-I.

W 
= ).

EW -15.6337 

t
L
-4
G 

= AL4  - 6.8739.  

t
L
-L

W 
= 1

LW 
- 9.1250 

t
G
-LW . XCW - 2.2511 

TAME 3.5.5 Maximum Likelihood Estimates for the Models. 

Model 
Constant 

erm 
Shape Regression Coefficients 

lognormal 

. 
al  

4.8896 
(0.051) 

n2 

0.6137 
(0.090) 	' 

..... 

a'... [-0.0065 
- 	(0.008) 

0.0057 
(0.002) 

0.1111 
(0.197) 

0.0583 
(0.172) 

0.2883 
(0.064) 

0.3778 
(0.357) 

0.5877 
(0.354) 

. 

0.3419 
(0.371) 

0.8351 
.(0.428) 

-0.457) 
(0.509) 

Exponential 

i 
5.1338 
(0.100 

- 5„. [-0.0019 
' 	(0.011) 

0.0075 
(0.002) 

-0.0588 
(0.252) 

0.1164 
(0.220) 

0.2556 
(0.082) 

0.5001 
(0.456) 

0.5375 
(0.452) 

0.7472 
(0.473) 

0.7474 
(0.559) 

-0.52163 
(0.649) 

Gamma 

71 

5.1338 
(0.070) 

. 
Y2  

2.1999 
(0.301) 

g'" [-0.0019 
- 	(0.007) 

0.0075 
(0.001) 

-0.0588 
(0.170) 

0.1164 
(0.118) 

0.2556 
(0.055) 

0.5001 
(0.307) 

0.5875 
(0.305) 

0.7472 
(0.319) 

0.7474 
(0.377) 

-0.52187 
(0.438) 

Weibull 

. 
01   

5.2461 
(0.061) 

. 
02 

1.6989 
(0.137) 

b'= [0.0017 
- 	(0.006) 

0.0085 
(0.001) 

-0.1125 
(0.148) 

-0.1231 
(0.130) 

0.2305 
(0.048) 

0.5185 
(0.268) 

0.5312 
(0.266) 

0.4349 
(0.278) 

0.6551 
(0.329) 

-0.55817 
(0.382) 

Numbers in parentheses are the standard error given by each model. 



zl  z2  z 3  zh  z 5  

Frontal 

15 57 9 0 1 1. 
20 6o 9 1 1 0 

22 6o 32 0 1 1 

25 53 50 1 0 0 

32 57 8 1 1 2 

41 67 27 1 1 0 

49 57 8 0 0 0 

51 56 6o 1 1 0 

56 68 37 0 1 3 

59 36 15 1 1 0 

71 6o 22 1 1 1 

97 48 23 0 0 0 

119 48 187 1 0 0 

121 57 23 0 0 

131 59 19 1 1 0 

162 50 37 1 0 3 

181 45 41 1 0 1 

214 42 39 1 1 2 

231 53 38 1 0 3 

259 44 99 1 0 0 

264 53 42 1 1 2 

281 66 43 1 1 2 

316 58 153 1 1 3 
347 57 8o 1 1 2 

359 55 57 1 0 1 

410 68 14 1 1 2 

484 50 84 1 0 0 

522 52 86 1 1 3 

1760 27 253 1. 1 3 

Parietal 

12 56 56 0 0 2 
18 39 3 1 1 1 

34 72 13 1 0 0 

37 55 19 1 0 0 

57 59 14 0 1 3 

64 56 19 1 1 0 
82 45 25 1 1 1 

107 71 43 1 0 0 

108 50 18 1 0 0 

132 49 42 1 0 0 

134 60 44 1 0 2 

136 22 31 0 1 0 

143 52 21 1 1 

'234 Go 40 0 0 

243 51 39 0 1 

255 53 40 1 1 3 
275 56 41. 0 

298 51 49 1 0 0 

400 36 1 0 3 
L 
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TAUS 3.5.6 Data for Clinical Trial collected by the "Brain Tumor Study 
Oroup",.M.D. Anderson Hospital and Tumor Institute, 

University of Texas: 
(Y)-days of survival; (z1)-age in years; (z2 )-duration of 

symptoms in weeks; (z3)-sex'; (z4 )-treatment**; (z 5 )- X-rays*** 

• 

Y z1  z2  z3  z4  1z5  

Temporal 

10 46 7 1 0 0 
46 52 14 1 1 0 

61 71 12 1 1 0 

62 46 23. 0 1 2 

85 43 22 0 1 0 
129 59 24 1 1 3 
135 35 82 0 1 0 

144 41 22 1 1 0 

145 55 23 1 1 3 

162 66 26 0 0 0 

164 53 78 0 1 0 

177 48 49 1 1 0 
/94 57 347 1 0 0 
200 42 312 1 0 3 

204 57 43 1 1 3 

210 65 50 1 0 0 
252 31 39 1 0 3 

253 47 48 1 0 3 

255 70 48 1 0 2 
272 55 41 a 1 0 
274 47 42 1 1 2 

297 54 50 1 0 3 

325 56 59 1 0 3 

345 52 76 1 1 3 
385 59 59 1 0 3 
466' 4u 14u u 4 1 

495 53 90 0 0 1 
526 59 87 1 0 2 
669 47 121 1 1 , 2 

Occiptal 

79 40 15 1 1 0 
102 52 47 1 0 1 
147 45 23 1 1 0 
162 64 30 0 1 0 
272 30 41 1 0 3 
479 58 71 1 0 3 
475 57 71 1 0 2 
NTT) En:m1C,1.1 ,71iliThnl,Imin 

42 40 73 1 0 0 
51 Go 76 1 0 3 
54 40 10 1 0 0 
72 53 13 0 1 2 

Othrn 

21 52 24 1 0 

U,
  

c
,  

.,
..
 

0
 0
 

30 5 4  14 1 1 

135 40 32 1 0 

253 73 G2 1 1 

357 45' 54 0 0 

. # 0-F"mnln, 
" 0-C“ntr“1, 

tea 	than 3)04) rndn, 2-Leon than 5000 min 
3-000 ur 

A6oth,r 3 vt,[,.ohi ntill 	nut voru ric,t iurliv0'4 in thin t41.1., and 

tn 
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3.6 Efficiency of the false regression model  

In previous sections of this chapter tests of separate families of 

hypothesis for models containing regression covariates were considered. 

It can be seen [e.g. expression (3.2.3)1 that the estimators of the 

regression coefficients are always consistent, independently of distribution 

assumptions. Here, the consequences of using the wrong model are 

investigated by comparing the properties of these estimators. First some 

general results and the notation are presented. 

Let y = (y1, ..., yn) be independent but not identically distributed 

observations, each with probability density function f(y.; a', z.) under 
..d 

H
f
r where z. are known covariates and a, are vector of unknown 
' 	-1 	

(3 
 

parameters, with p and q components, respectively. Assume that for each 

model, a, and 131  are the constant terms, a2  and (32  the shape and the 

remainder of the elements of a and R are the regression coefficients. 

It can be seen that for the cases presented earlier in the chapter 

usually p = q but in one case p = q - 1. Let a and a denote the maximum 

likelihood estimator of a and f3, respectively. Recall that under H f' 

converges in probability to 13a  and write 

2  F = 
1
E
1 
 log f(ye; al, z) ,Fa 

	Du
= j-F,F 	- 	 F 

a'a 3a
'Da =  

with an analogous interpretation for G, GS  and Ga,a. Here Fa  is a (p x 1) 

vector, Fata  is a (p x p) matrix and further 

Da ° Da 
P 	P , 

a  

kDR 7 

is a (p x q) matrix. 

Under 11f' 
(a, 13) is asymptotically multivariate normally distributed 

with variance--covariance matrix, given by Cox 11963, expressions(h0) to 03)1 , 



E
f(FaG(3 1)  

A A 

Covf(a,0) = {Ef(Faia)}-1  

V
f 	

= - {E
f(Fa'a)1-1 

-{E (Fa,a)}-1  

(3.6.2) 

(3.6.3) 

namely 

  

E
f
(G

P.10.
) , (3.6.1) 

  

E
f
(F
aG131 ){Ef(Fa,a)} 1= 

aR 
a 

as 
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Vf 	= {Ef13'13
)}-1  E

f  (G G ) {Ef 
 (G 	)}-1 
	

(3.6.h) 

These expressions are calculated at (a,(3 ) the mean vector of the 
a 

asymptotic normal distribution. The subscripts f, mean that the 

expectations, etc. are claculated under Hf. 

Now, the true model is f(y.;a,z.) but g(yi,f3,zi) was supposedly 

used. In the problems considered, for a regression coefficient a. say, 

it can be seen from previous sections, that the following relation holds 

AO 

Therefore (3.6.3) and 3.6.4) are of primary interest for comparison 
A 

between R. and a.. Similarly it would be useful to comment on the 
0 	0 

corresponding elements of 

P(-3/H ) = {E (G 	)} 1 
	

(3.6.5) 

the probability limit of the false estimator of the variance-covariance 

matrix of R, which is used when it is not known that the model is wrong. 

The efficiency of the false model will be measured by the ratio of 

the determinants 

1/  
A 	IV (CC)1 im  
V 	f  Eff(, /H

f
) - 	,, 	1 / 

IVf(ipl 'm  

(3.6.6) 

and will provide insight into the result of using a false model. Here 

a* and ‘3* are vectors of regression coefficient estimator with m 

(= p - 2 or p 	1) components. The efficiency (3.6.6) is defined for m> 1. 
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Finally, a simplification brought about by our parametrization of 

the z.'s is pointed out. All models studied are log-linear (Section 1.2); 

it then follows (Cox & Hinkley, 1968) that 

Ef (G0'0 
 ) = ,  f(GG 0'

) = 	5 
0 B 	• 	 [! ! 

E
I 

A 0 

0.11 	 0 	D 

where A and C are square matrices correpsonding to expected value of 

derivatives corresponding to the general mean and the shape or scale of 

log yi. The submatrices It and D are the corresponding matrices for the 

regression coefficients. Consequently for the elements of (3.6.4) 

corresponding to regression coefficients, only B and D need be determined. 

For convenience, some expressions needed to evaluate (3.6.4) are 

given. With the notation of Section 1.2 it follows 

n 	y. 	32 	2 n 
	Y. 

:11) kW(S  '2'12;Y)  = 2.E +zb ' 3100b 9'W(131'132'1.̀°;?.r. )  = 	 ' 
1=1 	1 -i- 	 1=1 	1 -1- 

e 

3 	 32 
k (i Y ,g"y) = 	E ! 	

Yi 	 Yi 

3g G l' 2   
 t (y y g;y) 

Y2i.2. 1 y 	' Bgi3g G 	= Y2.' 	+z  
1 -1- 1=1 	e

'1 

n 
1 	2  k  (a  a ,a ,y)= — E (log y.-a -z.a), 	 St. (a a al W) =-.Z'Z — . 

3a L l' 2'.. 	a2 i=1 	1 1 _1_ 	8a as L l' 2', 	a2 .,.. --.• 	
- 

(3.6.7) 

A 	Lognormal regression model 

Suppose the correct model is fL(yi;a1;a2,a'). From (1.2.9) the 

asymptotic variance of a is 

vL  (a) = (Z1Z)-lag ' 
	 (3.6.8) 

The consequences of using the other models is discussed 

(Ai) False model - Weibull regression 	fw(yi;131,13202') 

By recalling the probability limits in (3.3.2), we have 
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2  W ELabW 	tW 	a 
= Z'Z e-1 ' E

L 
{ 	
Db 3iDb 	} = - Z'Z a

2 2 

From (3.6.4), (1.2.13) and (3.3.2) 

VL 
 (b) = (Z'Z)-1  (e-1)a2  , p(b/HL  ) = (Z'Z)-la2 ' 

and the efficiency (3.6.6) becomes 

Eff(b/HL) = ell  = 0.58 . 

(3.6.9 ) 

(3.6.10) 

It can be seen from (3.6.9) that the variance of b. is 72% higher 

than its stated estimate. 

(Aii) False model- gamma regression - fG(yi;l1,Y2,) 

Recalling 	the probability limits in (3.2.3) 

a
2 	9 	

t } 
2 

ELG Bg',tG} = 	(e 	- 1)y2 	E { 	= - Z'Zy2L  212 L ag'Dg G 

From (3.6.4), (1.2.17) and (3.2.3) 

(g) = (Z'Z)-1  (ea2  - 1) , P(/ 	= (Z'Z)-ly2L L  

and the efficiency (3.6.6) becomes 

ct 
Eff(g/H ) 

L 
e
u2
-1 

(3.6.11) 

(3.6.12) 

It is easy to see that (3.6.12) is always less than one and that 

it decreases rapidly as a2  increases. The values in Table 3.6.1 

illustrates this point. 

TABLE 3.6.1 - Eff(g/HL) 

a2 0.2 0.5 1.0 2.0 0.614 

Eff 0.90 0.77 0.58 0.27 0.72 

It is also interesting to observe that (3.6.12) approaches 1 when 

a2 0. This is because as a2 tends to zero the lognormal distribution 

approaches a normal distribution. For a normal distribution with 
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mean exp{za}, the maximum likelihood equations for a are the same 

as those for the gamma regression given in (1.2.18) or equivalently 

in (1.2.22). 

Because the equation (3.2.3) for 12L cannot be solved analytically, 

the only comment that can be made from p(g/HL) is that the stated 
A 

estimate will only be in agreement with VL  (g) for a2 
also satisfying 

a2  = 1og(y2L  4- 1). 

(Aiii)False model - exponential regression - fE  (y.0,d). 

The same arguments could be applied to obtain the results 

in this case. Here instead it is simpler to recall that the 

maximum likelihood equations (1.2.22) for d are the same as those 

in (1.2.18) for g. The expressions for this case are identical to 

those in (Aii) with Y2 = 12L = 1. 

B 	Weibull regression model 

Now the correct model is f (y.• W 1" 

variance of b is 

VW 
 (b) = (Z'Z)-1 1  

2 

From (1.2.13) the asymptotic 

(3.6.13) 

(Bi) False model - lognormal regression-fL(yi;a1,a2,a1 ). 

Recalling the probability limits in (3.3.7). 

	

2 	 R2 

EWaL 
	'2 	3 	'2  

aalL 
= ZIZ 	' EW{Dai@a.L = 	 'Z ,2 

(1) 

From (3.6.4), (1.2.9) and (3.3.7) 

V  VW(a) = (ZIZ) -1  (1)
-1 (1) 

z2  5 13(A"w) = (Z'Z) 

and the efficiency (3.6.6) becomes 

(3.6.14) 

Eff ( a/IL ) = el  = 0.61 . 
W 	1)(1) 

(3.6.15) 

Here, p(a/H ) shows that a correct estimate of the variance of a 

the least square estimator of o-, is even. 
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(Bii) False model - gamma regression-fG(yi;yi,y2;d). 

Recalling the probability limits in (3.4.7) we have 

a2 
E.4E kG s, 	= Z'Z yECA2 E

W
{ 	
Dg'agG

} = - Z'Z y2  2W • 

where 

[CV] 2 = 
r(2/i32 	+1) 1 

{r(/0.2+1)}2 

  

is the square of the coefficient of variation of a Weibull 

distribution with shape parameter 132. 

From (3.6.4), (1.2.17) and (3.4.7) 

V (g) = (ZIZ)-1  (cv]2 	) = (z,z)-1 1  VW(g) 	 YT1,w) 	y
2W 

and the efficiency (3.6.6) becomes 

(3.6.16) 

Eff (g/Hw ) = 

{ 3-  [R2CV] 
(3.6.17) 

Table 3.6.2 gives the efficiency and other values of interest. 

TABLE 3.6.2 - Eff (g/1114) 

Y2W 
[CV] 2  Eff 

0.4 0.266 9.865 0.63 

0.6 0.468 3.091 0.90 

0.8 0.712 1.589 0.98 

1.2 1.333 0.699 0.99 

2.0 3.131 0.273 0.92 

3.6 8.931 0.094 0.82 

5.0 16.612 0.052 0.76 

1.699 2.365 0.365 0.95 

It can be seen that the efficiency is high for (32 near 1 as would 

be expected and seems to decrease for (32  far from 1. These results 

onY2W'  [CV] 
2  and p(g/HW 

 ) suggests that according to whether 132 	lor 2 	] 

an underestimate or an overestimate of Vw(t ) is given respectively. 
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(Biii) False model- exponential regression - f
E  (Y.0,d). 

Similarly to (Aiii), the results can be obtained by taking 

y2  = 12W in the expression obtained in (Bii) for the gamma 

regression. Here p(d/H...w) also suggests that not always V (d) 

is overestimated or underestimated. 

C 	Gamma regression model  

The correct model is fG(yi;y1,12,1i). From (1.2.17) the asymptotic 

variance of g is 

V 	= (Z'Z)
-1 

-1- • VG 
 
{g} 

(ci) False model- lognormal regression - fL(yin.,a2,a). 

Recalling the probability limits in (3.2.8) 

(3.6.18) 

3 	3 	1 	a2 
E
GL Da' 

2.
L 

= Z'Z 	{3a 
	 k

L 
} = 	ZZ 

1P'(
1  

q
Y2) 

' 	1Da 	
Y ) 2  

From (3.6.4), (1.2.9) and (3.2.8) 

V (a) = (Z1 Z)
-1 	

P(a/HG  ) = (7.1 Z)
-1 

 IP' 	
' 	

(3.6.19) G 	(Y 	, 2) 	(Y2)  

and the efficiency (3.6.6) becomes 

1  
Eff(a/H ) G 	[y 	] 	• 

2 2 (y) 
(3.6.20 ) 

It can be shown that the efficiency approaches 1 when y2  increases. 

This is because as 12  increases the gamma distribution approaches 

a lognormal distribution. For y2  tending to 0, the efficiency tends 

to zero. For y2  = 2.1999 	, the efficiency is 0.71; further 

values are presented in Cox & Hinkley (1968). 

Here, p(a/HG) shows that a correct estimate of the variance of 

a., the least square estimate of a., is given. 

(cii) False model - Weibull regression-fw(yi,131,(32,b). 

Recalling the probability limits in (3.1.2) 
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D'Db 

2 
EGiTD  zW ab'W} = Z'Z 622G  [C1]2 	EG { 	abW 	2 } =-Z1 Z (32  ' 	G ' 

where 

[CV] 2  = 
r(2132P2)r(Y2) 1 

jr(132G+12)12 

is the square of the coefficient of variation of Y 
2G  , Y with a 

gamma distribution with shape parameter y2. 

From (3.6.4), (1.2.13) and (3.4.2) 

VG(b) = (Z'Z)-1  [C' 	2G]2'  p(12/HG) = (ZI Z)
-1 
 /7-2— 	(3.6.21) 

2G 

and the efficiency (3.6.6) becomes 

1
1   Eff(b/HG) = 	[2G/CV] 

2 

2 
(3.6.22) 

Table 3.6.3 gives the efficiency and other values of interest 

TABLE 3.6.3 - Eff(b/H ) G 

12  62G [CV 2  l Eff 	1  

0.4 0.534 0.807 0.89 

0.6 0.718 0.892 0.96 

0.8 0.870 0.951 0.99 

1.2 1.115 1.039 0.997 

2.0 1.482 1.142 0.96 

5.0 2.370 1.304 0.86 

2.2 1.560 1.161 0.95 

The efficiency is high for 12  near 1 as would be expected and seems 

to decrease for y2 far from 1. These results for [CV]2  and p(b/H ) G 

suggests that according to whether y2  < 1 or y2  > 1, an overestimate 

or an underestimate of WG(6) is given respectively. 
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(Ciii) False model—exponential regression - 
.6  

Again, from the comments on the maximum likelihood equation, 

the efficiency is 1 for this case. Here p(d/HG) = (Z'Z). It can 

be seen that with s2 = 2W = 1 in (Cii) the results for the 

exponential regression model are also obtained. 

D 	Exponential regression 

The correct model is f
E 
 (y.0,d). From (1.2.21) the asymptotic 

variance of d is (Z'Z)-1. The results for the case of using the 

lognormal regression can be obtained from(3.6.14) and (3.6.15) with 

02 = 1 or from (3.6.19) and (3.6.20) with y2 = 1. When the model used 

is the gamma regression the efficiency is 1 and the other results can 

be obtained from (3.6.16) and (3.6.17) with 02  = Y2W  = 1. For the 

Weibull case the asymptotic efficiency is 1 and the results are obtained 

from (3.6.21) and (3.6.22) with y2  = (32G = 1.  

E 	Concluding remarks  

The last entry of the tables in this section correspond to values of 

the example in Section 3.5. The results show that for the true Weibull 

model the efficiency of the lognormal model is 0.61 and the efficiency 

of the gamma and the exponential regression model is 0.95. 

From the results on the variances it can be seen that optimizing 

Z'Z, consequently optimizes the asymptotic variances of the estimators. 

This means that asymptotically the distributional assumption has no 

importance for the design problem. The small sample consequences have 

not been investigated. 

3:7 An extension for Markov processes. 

A possible extension for dependent observations is now discussed. 

Let y = (y1, ..., yr14.1) be an observation from a Markov process with 

joint probability density function under Hf  and under H 
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f (y a) H f (y. /y.,a) 	, g(y ,0) 	g(y.4.1  ../yiR) , . 	1+1 	1 	i1  
11 

respectively, where a and are unknown parameters. Here f1 (y
l' 

 a) and 

g(y
1
,0) specify an initial distribution, which is assumed to be the 

same as the final stationary distribution, whereas f(yi41/yi,a) and 

g(yi.1.1/yi,6) are one step transition probabilities. Assuming for convenience 

of notation a and to be scalar and using a notation analogous to that 

of Section 3.6, write 

Fi(a) = log f(yi+,/yi,a) , F1(a) = as Fi(a) , Fic-ea(a) = 	Fi(a) 

with a similar interpretation for G1(0), G1
0
(0) and Gi  (0). Also, denote 
 00 

the log likelihood functions under H
f 

and Hg  respectively, by 

n . 	 n 

f
(a) = log f

1
(y,a) + E F1(a)  , 	(6) = log g1 

 (y,0) + E Fl(a) , 
i=1 	 1=1 

and the maximum likelihood estimators of a and S respectively, by a and 0. 

The terms log fl(yi,a) and log g1(y1,0) can be omitted (Billingsley 

1961, p.4) since the initial effects are unimportant as n becomes large. 

Assume that under Hf'a 
is the limit in probability of 0, that 

f(yi+,/yi,a) and g(yi_ta/yi,) satisfy the regularity conditions given by 

Billingsley(1961, p.5,6) which ensures that the log likelihood functions 

can be expanded in the usual way. Further assume that the central limit 

theorem and the law of large number apply to Fi(a) and G1(0). These 

conditions are sufficiently general to cover autoregressive problems and 

Markov chain. 

The test statistic of the null hypotheses Hf 
against the alternative 

hypotheses Hf  is based on 

Tf = tf  (a) - z (0) 	E^{tf  (a) - Q (Rs)} . 
	( 3.7.1) 
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The asymptotic variance of Tf  is obtained by arguments analogous to the 

independent case, that is expansion of Ea{tf(a)} and Ejt{2f(fia)} around 

a, kf(a) around a and if(act) around 13 lead to 

DA.
f
(a) 

Covc{2,f(a)-2,0(Ra), as  ) 
V{T* f} = Va  {2,  (a)-2,ga)) 	V{2,(a)} a f   

Since we have assumed the central limit theorem applies to the log 

likelihood functions, it follows that T. is asymptotically normally 

distributed with mean zero and variance rewritten as 

E{ E {Fi(a)-G±0a 	a )iF(a)} Ea{  
V iT1 = V { E [FI(a)-G1(a)1} 1=1  
a f 	a 	 n  

i=1 	 va{ E Fi(a)} 
1=1 

(3.7.2) 

Apart from the fact that in (3.7.1) and (3.7.2), F1(a) and G1(Ra) are 

transition probabilities, these expressions differ from the independent 

case only by the fact that the expectations and variances are calculated 

with the stationary distribution as the initial distribution. 

In the absence of specific application only some realistic examples 

were these results could be applied are mentioned. The first is a 

generalization of the problem with quantal response studied in Cox 

(1962, 78); see also Atkinson (1970, 59) and Thomas (1972). 

Supposez.=-(X5Y-)(1=15-111)isobserved,wheretheVstake 

thevalue0orl,X.ranges over 1, 	k and some time elapses between 

theobservationofX.andY—WithinthehypothesisthatZ.is a Markov 

chain, it is desirable to test the hypothesis Hi, against Hg, where each 

of the hypotheses specify a different form of dependence of p(yi4.1/yi) on 

the variable x.. The only difficulty here, could be computationally since 

the maximum likelihood estimates would have to be obtained by iterative 

methods. 

A second example would be for the choice of the functional form of 

regression models when the error is generated by an autoregressive process. 
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A Bayesian solution for this problem is given by Lempers (1971). Williams 

(1970) has done some simulations on the likelihood ratio for one such 

problem. Incidentally, he noticed that the distribution of the likelihood 

ratio was the same as in the independent case. 

Another problem related to dependent variables is to know whether 

the results of Section 3.2, 3.3 and 3.4 with some modifications could 

be applied when some of the zits are lagged values of the dependent 

variable. Properties of the least square estimators obtained by treating 

the models as regression models have been given by Durbin.(1960). 

Unfortunately few results are available on maximum likelihood estimation 

for autoregressive problems with non-normal errors. However it is 

plausible to expect maximum likelihood estimators to have better properties 

than those of the least square estimators when the errors are not normal. 

In.  this case perhaps, the results could be applied, but this has not been 

investigated yet. 
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APPENDIX  

A 	Derivative of vectors and matrices 

Let x and a be (pxl) vectors, f be a scalar function of x and F 

a (qxl) vector function of x. 	The following derivatives are defined: 

9x
3  

. (at x) = a , 

3x. 

a 
dx 

. f(x) = 	• • 
• 

Ox 

	 . f(x) = Dx'ax 

ax 
 . F(x) = k . 	a
X 

. F (xq . 
d 

B 	Scale of figures  

The coordinates for the graphs of Chapter 2 were chosen so that 

the area under each curve is one. 	For comparisons the corresponding 

results from the standard normal distribution are presented in Table B.1. 

For the comparison a transparency from Figure B.1 can be useful, and it 

is provided in the envelope. 
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Table B.1 Frequency and ordinate high of N(0,1) 

z Range % 
Ordinate  
Hight 

-3.09 - -2.33 0.76 0.009 0.01316 

-2.33 - -1.64 0.69 0.040 0.05797 

-1.64 - -1.28 0.36 0.050 0.13889 

-1.28 	-0.84 0.44 0.100 0.22727 

-0.84 	-0.39 0.45 0.150 0.33333 

-0.39 	0 0.39 0.150 0.38462 

0 	0.39 0.39 0.150 0.38462 

0.39 	0.84 0.45 0.150 0.33333 

0.84 	1.28 0.44 0.100 0.22727 

1.28 	1.64 0.36 0.050 0.13889 

1.64 	2.33 0.69 0.040 0.05797 

2.33 - -3.09 0.76 0.009 0.01316 

0.998 
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