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Abstract  

In the last few decades field studies have shown that the Desert 

Locust swarms tend to accumulate in the lower levels of convergence 

because the temperature reduction of air masses above a certain 

height causeslocusts to sink. 

Accordingly, the aim of this exercise is to study by way of 

mathematical modelling the effects of falling speed upon particles 

(analogue of insects) travelling towards, into and out of the 

convergence zone. In chapters II and IV we use the method of 

potential flows into which a particle distribution is introduced. 

Using the equation of continuity, effects of downstream motion have 

been constructed. In chapter III we extend our model to include 

non—potential flows; however, the overall treatment, as far as the 

behaviour of particles is concerned, remains the same. 

From this work, we confirm the validity of our hypothesis that falling 

speed leads to higher downstream concentration. We have demonstrated 

from non—potential flows in chapter III that convergence acts as a 

concentrator, and that divergence acts as a disperser, of particles. 

From the steady distributionss  we are able to conclude that a falling 

speed greater than or equal to a 'critical' value will tend to concentrate 

particles in the lower levels of convergence zone. 
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Symbols  

velocity of sound 

coriolis acc
n
. vector 

gravity vector 

pressure 

scalar value of U 

p 	— 	density of air 

c 	— 	concentration of particits 

t 	— 	time 

U=(u„w) 	— 	flow velocity 

particle velocity 

falling speed 	_-non—dimensionalised 

x,y,z 	cartesian co—ordinates 

Chapter 3 defines its on symbols. 
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Chapter I  

The Desert Locust and Convergence Zone  

Section 1 : Introduction 

During the last one hundred years, we have accumulated and 

studied vast quantities of data on the feeding, breeding and 

migratory activities of many insects and other pests. Much 

attention has been focused upon, in particular the 'desert locusts' 

(one of the dozen or so species of Ortheptera, the so—called 

'swarming locust'), because the damage that they inflict upon 

agriculture is so enormous and paralysing, economically speaking. 

The extent of the area of their periodical invasion may actually 

amount to one—sixth or more of the land on earth and it comprises 

much of the Middle East, and North and Central Africa and South 

West Asia. (See the map on previous page). There are similarly 

behaving species in Australia and central South America.- 
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One of the reasons why they are a gargantuan menace is that 

they are capable of forming vast populations — a typical and 

dangerous manifestation of their behaviour-and migrating over vast 

distances. In a typical swarm there may be 35-70 million locusts 

in a square kilometre. Each adult weighs between two and three 

grams and can eat its own weight of food a day. So, a large 

swarm covering 400 square kilometres — amounting to more than 

15,000 million locusts — could very comfortably devour in a day a 

quantity of green material, which, if it were all to be human food, 

could provide for a day's supply for the entire population of 

England. Apart from causing the direct crop losses, locusts can do 

severe damage to rangeland, thereby adversely affecting production 

of meat from stock. 

Vast resources have been utilised to record field observations 

for the forecasting of day—to—day and seasonal movement of swarms 

to make the control of the pest possible. Also, there have been 

conducted laboratory experiments at the Centre for Overseas Pest 

Research (COPR), which have thrown light upon the necessity of 

maintaining the body temperature (which is generally the same as 

the surroundings) above a certain value in order to ensure that the 

efficiency of flight muscle performance does not wane. The 

experiments have also established that the average airspeed of the 

locust is found to be between 13 and 15 kilometres per hour. 

The extensive biographical analysis of the distribution of the 

desert locust has vividly revealed that migrations were not 

haphazard, but indicated definite seasonal patterns. In summer, for 

example, 'the locusts are found in a straddling belt across Africa 

from Senegal to Ethiopta, across South Arabian Peninsula 
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and on to India and Pakistan. As season changes, swarms from this 

area move along well—defined routes to the spring breeding areas 

and after breeding there, the resultant populations move back to 

the summer breeding areas to complete the cycle. These migratory 

routes do evidently coincide with the seasonal variations of positions 

of convergent wind systems, but more about that will be mentioned 

later. 

Before we proceed with the general discussion of the characterstic 

flight behaviour of the desert locust, one thing worthy of mention is 

the association of concentration of locusts with types of swarms. 

Depending upon the weather conditions and topography of the area, there 

are found to be two structures of swarms. One is known as a stratified 

swarm and the other as the cumuliformswarm (See Plates 1(a) and 1(b)). 

The former could range from a few metres to several tens of metres in 

vertical extent with volume concentration of the order of one to 

ten locusts per cubic metre)  while the latter, with the volume 

concentration of 0.1 to .001 (or less) locusts per cubic metres  

could range in vertical extent from above 100 metres to over a 

thousand met res. Maximum height could be attained with the topmost 

locusts flying within 150 metres of the upper limit of the dry 

convection from the ground. 

Section 2(i) 	Locust Flight Behaviour  

(a) Each airborne swarm is constituted of a number of groups of 

locusts with a common orientation clearly recognizable within each 

group and with the widest possible diversity of tracks between the 



fr, 

(a) A stratiform swarm of desert locusts, flying in air in which there was very little 
convection. (Photo by H. J. Sayer). 

(is) . A column of locusts carried temporarily by a thermal to heights to which they 
would not fly on their own. (Photo by H. J. Sayer). 



groups, giving an impression of a network of interlacing streams. 

It is possible that the diversity of tracks could be due to the influence 

of varying direction (and the strength) of the wind with height 

and the associated turbulence, which may be partly responsible for 

the spacing of the locusts also. Moreover, the photographic evidence 

supports that the direction of displacement of the whole swarm 

remains, more often than not, constant and roughly in the direction 

of the wind. A study of records for 49 cases under observation 

between 1951 and 1955 indicates beyond doubt that in 24 of the cases 

the direction of displacement was less than 10°  of that of the wind. 

(Meteorology and the Migration of Desert Locust. WMO report— 

Technical Note No.54). 

b) Much is known about an important mechanism called an 'edge effect', 

which may be partly responsible for maintenance of the cohesion of 

swarms. This effect, in which locusts on the edges direct their flight 

into the swarm, may also contribute to gregarization , producing 

high concentrations in front of a swarm following a wind whose value 

increases with height. The effects of gregarization would generally 

cause a downdraught effect making locusts sink. 	For example, a 

concentration of 2 locusts Im3  of air at, say 300°  K would 

increase the weight of air /m3 by that produced by cooling the 

air more than 1
o 

C. 	So, locusts in front land below and spend 

some time there until the conditions are favourable enough to join 

the hind part of the swarm. 

c) One other notable but controversial feature of the desert 

locust flight is the occurence of regular spacings between the locusts. 

According to some, this is maintained by interaction caused by emission 
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of sound by a flying locust, inducing an electrical response in the 

tympanal organ of the neighbouring locusts. The range of spacing of 

flying locusts in swarms and the continual cohesion of many travelling 

swarms (observed in the past) would thus be consistent with possible 

behaviour reactions operating to keep each locust within visual range 

of its neighbours, while perhaps avoiding the wakes and collision. 

d) What has just been mentioned in (c) however has not been 

conclusively proved. And there is another school of thought which 

advocates that such biological interaction is not always necessary 

and may not always work as far as the maintenance of the cohesion of a 

swarm is concerned. Accordingto this philosophy, the atmospheric 

conditions will also play a very significant role in the 

determination of the .structure forms, direction of 

movement, shape and, therefore, the size of a swarm, obviously 

affecting the spacings between locusts and the concentration distribution 

within the swarm. 

A three—fold explanation can be given to elucidate how this is 

possible. First, airborne swarms will fly about at random until 

their flight becomes 'organised when meteorological conditions exert 

influence upon them. Second, it is evidently clear that an inanimate 

particle cloud (of smoke etc.) will generally be dispersed or broken 

up when under the influence of convection currents or any other 

turbulence. Many insect pests such as aphids are affected in a 

similar way. An airborne swarm will, however, continually strive to 

ensure bodily cohesion in spite of potentially disruptive weather 

conditions. Nevertheless, there are recorded situations where swarms 

have been led to be broken up or dispersed. At any rate, in almost 

all cases where cohesion is maintained, it is expected that shapes 



and sizes of swarms and concentrations within the composite groups 

must continually vary. Let's go a little further. 

As Professor Scorer says, a small swarm would generally be bodily 

moved rather than be broken up or be dispersed when influenced by a 

large eddy. This does not necessarily imply that parts of an eddy 

will not affect the structure of the swarm. Also, a small eddy 

will not affect a large swarm in a significiant way. It could 

cause certain amount of diffusion but this iscomteracted by the 

edge effect, and when affecting a particular group of locusts 

(within the swarm) for some time, it could alter its direction of 

displacement and the spacing between locusts within it, perhaps, 

to an extent. 

Third, the effect upon swarms become much more pronounced when 

the size of a swarm is comparable to that of an eddy. In such 

cases, according to Professor Scorer, the shape and the size may 

alter, reducing or raising concentration distributions within the 

swarm. 

Moreover, to say that the swarms accumulate in the convergence 

zones is primarily due to their gregarious behaviour alone is to 

be unimaginative and decidedly irrational. Locusts sink because 

reduction of temperature of air masses leads to the loss of efficiency 

of their flight muscles. 

e) Dr. Rainey's Postulate  

Although the rainfall in much of the area connected with desert 

locust is scanty and extremely erratic, the locust swarms, time and 

again, have been observed to find these areas unerringly, so much so 

that their arrival with rainfall has been recognised as remarkable for 

a long time. 

Explanation of this was given by Dr. Rainey in 1951, then working 



— 10 — 

in close cooperation with W.M.0.; he put forward a hypothesis that 

bajor displacement of swarms occur downwind, into zones of convergence, 

and that swarms in general may be expected to collect in the vicinity 

of such areas'. 

This theory obviously and lucidly demonstrates a purposeful 

relationship between the distribution:and movement of swarms and the 

rainfall which is essential for successful breeding; for convergence 

is an intrinsic factor for the production of widespread, perhaps, heavy 

rainfall and, as the amount of water present in the eggs at the time 

of laying is less than half the amount required for the successful 

completion of embryonic cycle, water and moisture are absorbed from 

the sand or soil in which they are laid. Moreover, there is another 

extra—ordinary factor which nature takes into account: absent in 

the desert is the vegetation required by the 'nymphs'(young locusts) 

which they feed on voraciously. This need is automatically provided 

for by rainfall which almost literally causes the whole area to-- 

tics.50-rn 	in a matter of a few days. 

This idea has provided a tremendous impetus in revolutionizing 

the method of application of pesticide for locust control. The older 

methods, namely, spraying over crops, was like spraying on people in 

order to kill malabial mosquitoes. Grossly inefficient, it could 

easily introduce unwanted chemicals in large concentrations into 

soil, thereby hindering biological activities conducive to crop 

production in various ways. 

The modern method, on the contrary, cannot only reduce to nearly 

zero the quantities of these hideous agents entering into soil, but 

also eliminate chances of polluting the crops, 	as it could 

be utilised just as effectively in the barren or desert areas. This 

new much improved method, namely, spraying of airborne swarms, can be 
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made over a million times more efficient in terms of insecticide 

used than the old one. Furthermore, better timely manipulation 

of it during the occurrenceof certain atmospheric phenomena 

(convergence etc.) which would aggregate insects may enable the use of 

insecticides to be minimised. 

Section II (ii) 	Convergence  

The point is, should the direction of displacement of insects 

remain in the direction of the wind, they cannot fail to be driven 

towards the zones of convergence, in the lower levels of which they 

accumulate. 

Diag. la showing convergence in the 
region A and divergence in B. 

Diag. lb Motion of locusts 
x= initial position 
y= final position 
(high concentration) 
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One reason why the atmosphere may be an effective concentrator is that 

it is essentially flat; that is to say that its vertical motions 

are comparatively smaller in magnitude and more ephimeral in nature 

than horizontal motions. What happens, in particular, when insects 

reach the convergence zone is that they 'follow' the air lift and 

ride up to a height where they sense the temperature of the air is 

too cool to continue any further, so they start gliding down. 

According to Dr. Rainey, in the case of a small-scale 

thunderstorm with an inflow of air during the early stages from a 

distance of the order of 10 km, convergence of the order of 10-3 sec -1 

is found. This corresponds in straight flow to a lm s
-1 

decrease in 

wind velocity over a distance of 1 km and would double the number 

per unit area of airborne particles under consideration in 17 minutes. 

Some radar observations confirm that convergence is very much a 

responsible factor for the formation of high concentrations in swarms. 

There are, in addition to that, strong indications that convergent 

winds can, and do, bring insects together from solitary-living 

populations to form new swarms. All this provides a good case for 

more intensive study of wind fields in order to gain deeper insight into 

any quantifiable behaviour of locusts. 

A converging motion associated with an upward motion takes place 

when there is a net excess of inflow of air over outflow. On a broad 

synoptic scale, it occurs as a result of wind-making circulation of 

atmosphere, depending upon the pressure belts and other factors from two 

or more directions. In the case of a sea breeze the air masses from an 

area of high pressure are driven into areas of depressions or low pressure 

to produce an upward motion which terminates in divergence. The effects 

of friction at ground 
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level could determine how the winds move towards the convergence 

zone, thereby possibly altering the angle that the line of 

discontinuity makes with the ground. In low latitudes the earth 

moves faster than the air, and, therefore, the easterly winds are 

present in the trade wind belts. These regions are commonly called 

Inter—tropical Convergence Zone (ITCZ), in which trades converge 

towards the equator. 

On a small scale, convergence can take place when the air on 

the shore and inland becomes warmer, while the temperature variation 

of air over the sea remains small. This kind of heating creates 

pressure differences, setting up the motion. More technically, 

differential heating along coastlines causing temperature differences 

(between air on land and air on sea) creates a landward flow, setting 

up density gradients as the sea air moving into the warmer regions of 

the land is warmed. These horizontal density gradients combined with 

operation of gravity on the rising masses of warmed air (travelling 

from the sea) create vorticity and, hence, there is a converging 

motion. For instance, sea breeze fronts can develop if the large 

scale pressure systems produce only a weak wind—flow near the coast 

and a well—defined boundary is formed between the air flow from the 

sea and the air already existing over land. Hence, there is a strong 

convergence of the leading edge of the sea air as it advances. 

Examples of areas of convergence affecting regions invaded by the 

desert locust are the ITCZ between the trade winds and monsoons 

originating on the opposite sides of the equator, associated with 

'short' and 'long' monsoon rains of most of Africa and India; the 

westerly depressions which give the winter and spring rains in the 

Persian Gulf; and semi—permanent points between north—westerly 
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and south—easterly winds associated with winter rains of central and 

southern Red Sea. 

Section II(iii) 	Codteme's Contribution  

Before writing down and setting out from our assumptions, it is 

worthwhile mentioning a few things regarding Cocheme's contribution 

(1963 — Tehran); it was one of the very few mathematically deduced 

explanations of the air motion and its effects on the behaviour 

of locusts in quantified terms. 

His main assumption consituted taking convergence as negative 

divergence — a terminology common in physics and mathematics — 

which he defined in terms of the Cartesian and natural co—ordinates 

(non—dimensionalized). This helped him to visualize the process 

in the following two ways. 

The first entails the rate at which the air is leaving an area 

(fixed relative to the ground) in excess of that entering it, and 

yields an outflow out of a fixed area when integration (of divergence) 

with respect to time is carried out. The second deals with the 

rate of increase in area of a surface bounded by air particles 

moving with the stream. However, the integrations were not 

easy to carry out. So, Codltme' resorted to, in sofaras the first 

approach was concerned, the use of average divergence for periods 

of time or the assumption that instantaneous values are 

representative of conditions during this period. Once the inflow or 

contraction was estimated, he then went onto relate it quantitatively 

to the changes in concentration of airborne particles at a constant 

level. According to his calculations an 
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average convergence of one per day of effective 10 hours (about 

- 1N 
three units of 10-5  sec ) would bring about a concentration of 

about a thousand times the original concentration within a week. 

His analysis led him to conclude that the relationship between 

the downstream concentration and the original concentration can 

be expressed by an equation of continuity for particles at a 

constant level. Moreover, he makes two points which cannot escape 

our attention .(a) Since the fraction, locust transport/air 

displacement decreasesas' the wind increases the effects of converg-

ence on locust concentration must increase with the increased 

ageostrophy 	and constantly decreasing latitude. (b) A 

certain amount of convergence and corresponding ageostrophic 

displacement of air will be more effective at lower latitudes than 

at higher latitudes where such ageostrophy will correspond. to a 

movement of air along isobars and consequently higher wind speeds. 

At any rate, his derivation of equation of continuity to relate 

the final concentration to upstream original concentration is a 

decisively important step that may lead us to further realise 

that it may, though one of the basic equations in physics, hold 

good in describing the locust motion. 

Section III 	Philosophy of method  

With the exception
oP 
 the mathematical approach that Cochmeadopted, 

there is yet a general lack of sufficient quantitative information 

regarding locust behaviour in a converging airstream. The problem 

has been that very little or no consideration have been given to 

the methods of particle dynamics, based on the integration of the primitive 



— 16 — 

equation of motion. Our primary interest, therefore, is to 

model the effects of convergence, various patterns of which have been 

deduced to carry out our exercise. Most patterns are due to some 

powerful mathematical techniques that enable us to attain potential 

flows, but the flows discussed in Chapter 3 possess some essential 

features resembling atmospheric motions and, in that sense, they are 

realistic. We have to be satisfied with these rather simple flows 

owing to the common difficulty in attaining accurate mathematical 

description of atmospheric motions (such as convergence). 

We then proceed to work out idealised distributionsof concentrations 

as particles progress downstream towards zones of convergence from 

a-given area wher[•theinitial condition is specified. The assumptions 

we have made have been deliberately kept simple in order to bring 

out all their feasible effects on moving particles. This has meant 

excluding from consideration all features that the locusts may 

possess but are not mathematically quantifiable. Assumptions such 

as biological interaction, which some affirm to be the principle 

cause for regular spacings between insects occuring so commonly, 

have obviously been avoided for the same reason. 

The following assumptions have been made, upon which our models 

have been fundamentally based. First and foremost, we recognise, 

as did Cockeme, that the 	equation of continuity is the major 

requisite equation of motion that wLLl enable us adequately to gain 

insight into the particle motion tending to create a higher downstream 

concentration; this equation can be varified by elementary 

considerations. The second most important factor is the 

sink speed of particles travelling relative to the flow. Various 

forms of sinking speed will be used to find out their effects: first, a 



— 17 — 

constant value will be used and then a value directly proportional 

to the vertical component of the flow velocity. We have departed 

from this convention in Chapter III, Section I, where the sinking 

speed has been specified rather differently. 

The locusts- can normally fly with a horizontal velocity 

different from the flow. This is particularly true when the air 

stream is much too fast for them to follow. So, they fly upstream. 

The edge effect taking place at the leading edge is also an example 

of the locusts opposing the air streams; so the occuring horizontal 

speeds are different. However, the particles will be constrained 

to have the same horizontal velocity as the flow. 

These assumptions, together with the initial condition 

for concentration, specified in analytical terms, have been the 

main ingredients used to formulate this model. Retention of a 

certain degree of control over computer calculation was made possible 

especially, for all solutions in Chapter 2 which have been analytically 

expressible. But, owing to the complexity of the differential equations 

obtained in Chapters 3 and 4 the solutions could not be simply 

expressed and had to be evaluated using special computing methods 

for the solutions of differential equations. Two different computing 

methods were employed to ensure that the obtained results were 

correct, although overall direct control over computer calculation 

of results was not possible. 

Section IV Analysis of 	= constant  

We carry out a brief analysis for the falling speed )) = constant. 

Given below is the statement and the proof of a theorem in three 
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dimensions followed by a simple illustrative example for a two 

dimensional case. 

Theorem : Provided the falling speeds of particles travelling in a 

converging motion of air are all kept the same5the magnitude of 

concentration along a particle path remains constant. 

Proof : Consider the (x,y,z) frame of reference with z vertical, 

directed upwards. Let U = (a,v,w) be the velocity field vector 

pertaining to the flow and let Up  = U +V represent the particle ■ — 

velocity, where u, v and w functions of x, y and z, are the 

velocity components nihe x—, y—, and z— direction* respectively 

and // = (o,o,-1,) is a constant falling velocity of the particles 

relative to the flow. 

The equation of continuity for steady particle concentration 

is given by 

div (cc(x,y,z) 213) = o 	 (1.4.1) 

where c(x,y,z) denotes the particle concentration. 

Expanding (14.1) we get 

Do' 	u 	v aci +(w — 11 ) 	= _(div.: U — 21)Cf . (1.4.2) 
Dt 	ax 	a y 	a Z 	 aZ 

where D is the rate of change following a parcel of fluid. 

Dt 

As 1/ = constant 
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o 	• . 	 (1.4.3a) 
z 

and 

div U -2.1= o 	. . . 	 (1.4.3b) 

in the light of the relationship 

3)) 

div U 

c2  
• . • 

(1.4.4) 

because the right hand side expression gw/c2  can be regarded 

as being negligibly small for our purposes, where g and c are tite, 

acceltutoridue to gravity and the velocity of sound in air respectively. 

[For the proof of (1.4.4) see Appendix I]. 

Therefore the equation (1.4.2) reduces to 

Dc = u 	vac + (w — ) 	= o 
Dt 	ax 	ay 	Zz 

from which, given u(x,y,z) etc, we may obtain c in the form 

c(xl y,z) = constant (co ), 	'" 
	 (1.4.5) 

and 

f1(xy) = Cl 
(1.4.6) 
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using the differential equation relationship 

dx 	45r 	dz  

u(x,y,z) 	v(x,y,z) 
	

(w(x,Y,z)—)1) 

where co' c1 and c2 
are arbitrary constants due to integration 

and f1(x,y) and f2(x,z) together define particle paths. 

On eliminating co, cl  and c2  from (1.4.5) and (1.4.6), we 

find 

a(x,z) = F(f1(x,y), f2(x,z)), 

and since f1 and f2 are constants for all x, y and z,y(fl, f2) 

is also constant. 

Ekample, 

Let us take the two—dimensional flow used in 	section I 

of the next chapter to demonstrate this theorem. The velocity fields 

as given in (2.1.3) is 

U = (-2AUx,o, 2AU1'.) 

where A and U are constant. 

As the condition (1.4.3a) naturally holds when we write 

AU )) = constant 

and as (1.4.3b) modifies to 
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div U = o 

for a two—dimensional flow, (1.4.2) becomes 

Do' = —2x al + (2z —1/)-- = 0 	 (1.4.7) 
Dt 	ax 	 az 

Integration yields the solution 

c(x,z) = F(x(2z —V )) 

where the variable 

x(2z 	= constant 
	 (1.4.8) 

describes the particle paths and is obtained by integrating 

dx 	dz  

—2x 	(2z—)/ ) • 

If we define the initial distribution of concentration at x = 1 

by way of example as 

cs (1, z ) = z2  exp (—z2  ) 

the solution satisfying (1.4.7) is 

(x, z ) = 	V+ (2z — )x 12  exp- V-F(2z — 	2/4 	. (1.4. 9 ) 

for all x and z and )1.< 2 z. 
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The concentration distributions for the values of the falling 

speed V. 2  and V = 1 are shown in 	Fig. 1 and 2 on the page/2.. 

Besides fulfilling our objective - substantiating that concentration 

along particle paths is constant - they bring out one main feature. 

The horizontal line, z = VA, divides the particle motion into 

two regions : the upper, in which the particles move upwards 5and 

the lower, in which they are constrained to a downward motion. The 

lower region is divided into two sub-regions; and only the particle 

motion in the sub-region bounded by the axes and the contour 6 = o 

and the line z = V A is observed to be directed towards the 'corner' 

formed by the axes of reference. A few people have commented that 

some contribution to accumulation of particles in the convergence zone 

is made by those travelling beloW a certain height. The lower region 

(and especially the upper sub-region in the lower region) we believe 

would match vaguely with this. 

One implication of this theorem is that downstream accumulation 

of particles is not possible. We musty  therefore, of necessity choose 

not to take the falling speed V as a constant but rather as a function 

of height or of some other form. The falling speed as a function 

of height is crudely in accordance with the locust behaviour in that 

the h igher the locusts ascend (above a certain height) the greater 

the falling speed with which they have to respond in order to avoid 

being carried higher up and dispersed by divergence. 
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Chapter II  

Particle Motion in Potential Flows  

We concentrate on simple potential flows in this chapter, 

as in the Chapter 4. In such flows the velocity distribution 

is entirely determined by a linear equation signifying the absence 

of vorticity (i.e. the flows are irrotational) and the equation 

of conservation of mass. This linearity is a special characteristic 

ofixtviational flows which allow the employment of several powerful 

mathematical techniques. 

Section I Flow in a corner and steady concentration 

Using one of the well-known techniques, namely, complex transformation, 

a stream function -ye- (x,z) of flow is evaluated. The complex 

analytic function, W = f(Z), satisfying the Cauchy-Riemann condition 

determines a mapping of Z-plane in the W-plane, i.e. the streamlines 

of the fluid motion in the Z-planes maps into the straight lines 

111,1. constant parallel to the real axis in the W-plane. 

For a flow in a corner, the complex potential is 

UW(Z) = AUZ2  . 

Therefore, the velocity potential denoted by 0(x,z) and the 

corresponding stream function le(x,z) are given respectively by 

0(x,z) 	= 	AU(x2  - z2) 	 (2.1.1a) 

and 

er(x,z) = 	2AU xz 	• 	• 	 (2.1.1b) 
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where A is a constant describing tLe transformation, U is a constant 

velocity of the flow in the W—plane with a direction parallel to the 

real 'xis and 

Z = x iz 

Assuming that the flow velocity U is defined in the conventional 

sense U grad  0  we have 

U = (-2AUx, 0, 2AUz) 	• 	 (2.1.2) 

Diagram 3a Sketches of 
	

Diagram 3b. Flat flow in 
streamlines* = const 
	

W—plane. 
and equipotential lines of 
the flow 

The mechanism operating on this motion can be better understood 

by considering an element of fluid PQRS (as shown in the diagram) 

whose sides are parallel to the axes. We notice from the velocity 

' vector (2.1.2) that the horizontal velocity which is the same for 

all points on QE D  depends on x only, while the vertical 

velocity which remains constant for all points on PQ depends on 

z alone. This means that the horizontal velocity decreases, 



+ (2–n) z 
ax 	 a z 

na 	(2.1.4) –2xa 
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producing horizontal contraction in the element PUS as it 

progresses towards the z-axis and, as a resultjproducing vertical 

expansion, bringing about an ascending motion. 

We now choose the particle falling speed as proportional 

to the vertical component of the flow velocity, 

i.e. L/
= nw AUnz 

2 

This is conveniently dependent upon height. Hence, the particle 

velocity becomes 

U 	(-2AUx, o, (2–n) AUz).  • • 	 (2.1.3) 

Substituting this into the continuity equation (1.4.1) we get 

( — E-2AUxo* (x,z)] + — [(2–n) AUz cskx,z )] = o 
ax 	z 

which reduces to 

By the method of characteristics (see Appendix II) the equation (2.1.4) 

is equivalently represented by the 	relationskLp 

dx 	dz 	da — — 
–2x (2–n)z ncs 
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Integration yields 

b(x,z) = Ab x
—n/2 

and 1 

  

2—n x2  z  
O 

where Ao and Bo are arbitrary constants of integration. These two 

equations can be linked by means of putting Ao  as a function of Bo, 

i.e. 

1 
— Ao = f(x2  z 2 n).  

Thus, the general solution for concentration is given by 

1 

C(X,Z) = X—n/2 
	1 

f(x2 z  2—n) (2.1.5) 

Let a hypothetical distribution of particle concentration be 

given by a function 

cl(a,z) = X exp (—z) 

defined at some distance a away from the z—axis. When we substitute 

x = a in (2.1.5) and compare it with the initial concentration 

given above we obtain 

1 

f (ai z2—n) — [X/a—n/2] exp (—z) 

where X is constant. 

* It is values of Bo which determine the position of particle 

trajectories— — — incorporated with distributions of concentration 

(see Fig. 4, 5 and 6). 
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1 

If R = 	z2 —n  

2—n 
so that 	z = (R/a) 

then 

f(R) = (Va_n/2) exp  [—(Riai)2—n] 

when R is substituted in terms of x and z. 

2—n 
2 

f(x,z) 	(x/a—n/2) 	exp [—z(x/a) 	] 

Therefore (2.1.5) renders the solution 

—n/2 	2—n 

a(x,z) = X(x/a) 	exp [—z(x/a) 2  1 

(2.1.5a) 

• • . 	 (2.1.6) 

When n = o in the last equation 

a(x,z) = X exp [—z(x/a) ]l  

and so,we have an example of a situation where constant concentration 

along a particle path occurs, with a constant value X of 

concentration forming on the axes. But when n > o, there is a 

downstream increase with an infinite concentration resulting on 

the z—axis owing to the factor (x/a
)n'2 in (2.1.6). On the 

x—axis, the distribution would be 

x(x/a)—n/2,  

Since it is evident that the number of cases we can consider 
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from (2.1.6) is limited we define another inial distribution 

c(a,z) = z2  exp (-3z) 
	

(2.1.7) 

at x = a, which has a minimum at z = o and a maximum at z = 2/3. 

One main reason for selecting an exponentially decreasing factor 

has been to maintain the low—level concentration comparatively higher, 

at leastat the outset to match the conditions of a flying swarm. 

Using (2.1.5) and (2.1.7) we determine f(x,z) in the 

same way as the function (2.1.5a) and hence, 

4=11 	2—n 

a(x,z) =z2(x/a) 2 	exp {-3z(x/a) 	} (2.1.8a) 

For convenience we choose a = 3. 

4=11 	2—n 

Therefore 	1(x,z) = z2(x/3) 2 	exp —3z(x/3) 	.• • - (2.1.8) 

The restriction 

c(x,z) = 
(2.1.9) 

2—n  

when z(x/3) 2  > 2 

has been applied to the solution (2.1.8). 

By varying n, it is now possible to discuss three distinct 

cases: 

We shall introduce them separately, before making any comparison 
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and discussing any common features. 

Case I 

(a) First of all, taking n = o amounts to arriving at a situation 

where the particles would be travelling with the flow-andltherefore, 

no downstream growth in concentration is expected. This is 

another example where concentration along particle paths remains 

constant (see Fig. 3 page 31 ). 

(b) Second, choosing n = 1 for study in the range o < n < 4/3, 

the distribution (see Fig. 4 page 31 ) 

, 	, 
(5(x, z ) = z2  (x/ 3 )2  exp k•-•3z (x/3 	) 	, (2.1.10) 

is obtained from (2.1.8). According to this distribution, the 

progressive growth in concentration gets closer and closer to 

z—axis (though without touching it) as the particles ascend higher 

and higher. The particles obviously get carried up to infinity and 

there would be no tangible accumulation in the convergence zone, 

in spite of the downstream increase. 

Case II 	 4 3n 

n = 4/3. This is a critical case in that the factor (x/3) 2  

vanishes from the equation (2.1.8) which consequently reduces to 

1 

1(x,z) = z2  exp [-3z(x/3)3] 
	

(2.1.11) 

the concentration contours for which are given in the Fig. 5(Page 32 ).  



I 
I 

I 

I 
I 
I 

I 
I 
I 

I 



I 



-33— 

In this case we obtain maximum concentration on the z—axis, 

which has a value equal to the square of height. Again, though 

there is a certain downstream increase, there is comparatively low 

accumulation in the convergence zone. 

Case III  

For any value of n between 4/3 and 2.0, the function 15(x,z) 

becomes infinite for x = o. For the purpose of our analysis we 

have chosen n = 12, which renders the following equation from (2.1.8): 

c(x,z) = z2(x/3)4  exp [-3z(x/3)4  ] 
	

(2.1.12) 

the contours for which can be seen in the Fig. 6 (page 32. ). This 

is the only case 	which can be said to have downstream accumulation 

in the convergence zone, although infinitely large. 

If we, nevertheless, consider first a particle moving along 

a trajectory (dotted lines in the Figs. 4, 5 and 6) 4.0 	0.75 fp 
whose rate of ascent decreases (with increasing n) between its 

intersection of contours o = 0.06 and a = 0.12, we can at least 

understand quantifiably the effects of successively increasing falling 

speed. (Between the points of intersection, the horizontal distance 

traversed in all cases would be the same.) For example, in 

case I(b) (Fig 4), the particle, in order to double the 

concentration, rises a vertical distance of unity above the point of 

intersection between the trajectory in question and the contour 

o = 0.06, while in the cases II and III there are corresponding 

decreases in the height to which the particle rises before the 

concentration is doubled (see Figs 5 and 6). 
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Also, when n . 2, we have a case with particles travelling 

horizontally, the effect of which is to bring about infinite value 

of concentration on the z—axis, and (2.1.8) becomes 

a(x,z) =z2(x/3)-1  

And, when n = ai (2.1.8) would be written as 

0.(x, z) =z2(x/P3)
-7
/
4 

exp[-3z(x/3)--3/
4
] 

according to which for any value of n > 2, we would have zero 

concentration on the axes, which is only due to the manner of specificationarr. 

We have, therefore, by considering this flow and steady 

distributions achieved what we set out to do, although the region 

in question is unbounded which is why large concentrations are carried 

up to infinity. In addition to this, dealing with a steady distribution 

does not provide a picture of how concentrations develop in time. 

We therefore examine the movement of a given distribution at some 

initial time to' using the same flow. 

Section II Unsteady concentration in a Flow in a Corner  

Using the same flow velocity field and falling speed as in the 

last section, we derive a similar equation of motion given by 

ad + div 	(U d(x,z)) 
t 	 —P 

(2.2.1) 

which now becomes 

Zia 	2x air 	(2—n)z 	nir 	(2.2.2) 
at 	ax 	az 
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AU in (2.1.3), being used here, is taken as unity. 

This equation is reduced by the method of characteristics to 

dt 	dx 	dz 	do = — =  
	

7 
1 –2x (2-n)z no 

from which a set of equations 

a(x,z,t) = Ae
nt  

0 
 

1 

xl z2–n B  

1 
and x2  e 

O 

is obtained by integration, where Ao, Bo and Co are arbitrary 

constants. By writing Ao as a function of Bo and Co we 

get the general solution 

1 
1 

a(x,z,t) 	e
nt f(x2 z2–n  X2 e

t 
) „ (2.2.3) 

Let the initial distribution whose development in time we want 

to examine be defined by 

a(x,z,o) = 1+x 	exp [1–z ] 	 (2.2.3a) 

at the time t = o. 

One noticeable feature of this distribution, unlike the one 

specified in the last or the next section, is that it is specified 



.5(x, z, -t ) _ ent + z e
2t 

2(n-1)t 	
exp [ 1 - z e

(n-2)t
] 	(2.2.5) 

1 +x e 
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over 	the whole 

Comparing 

1 

region 

it with 

1 N x-) 

and, therefore, is more realistic. 

(2.2.3), 	we have 

1+z 	• 	• (1 	 (2.2.4) , 1 	2-n f(x2 z = 	exp 	- z) 	• 	• 

1 

Assuming P 2-n x2  z 

1 
and Q = X2  

so that z = (P/Q)
2-n 

(2.2.4) can be written in terms of P and Qf  

i.e. 

f(P,Q) = 1  (P/CO2-n  

1 + Q2  

which becomes 

1 + z e(n-2)t f(x,z,t) - 2t 
1 +x e 

 

exp (1 - 
(p/Q)2-n) 

exp [ 1 - z e (n-2 )t 

when P and Q are substituted back, with Q this time put in terms 

of x and t. 

Therefore (2.2.3) is now rendered as 

for all x, z, and t. 

Of the three cases possible for n less than 2, we shall only 

study two cases which should provide us with adequate evidence of the 

effects of the increasing falling speed of particles on its concentration. 







r 

• 
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Case 1 0 < n < 1. 

One obvious advantage of having an explicit solution like (2.2.5) 

is that we can easily examine its behaviour by going 

backward or forward in time as much as we like. We have taken a step 

back to see how the distribution we specified in (2.2.3a) has 

developed in the first place. We have taken the falling speed to be 

1/. w/4 (i.e. n .i;), when the concentration a(x,z,t) takes the 

form 

-t  
c(x,z,t) - 	

+ z e 
 

1 + x et  
exp [1 - z e

3/2t
] (2.2.6) 

The Fig. 7a, 7b and 7c (on page 37 ) have been obtained for 

t = —3, t = -2 and t = -1 respectively. The Fig 7a contains 

a very sparse, low-level, nearly horizontally uniform concentrations 

in the vicinity of x-axis along which there lie successively but slowly 

decreasing maximum values with increasing x. It appears that 

convergence displaces these concentrations to new heights in one unit 

of time, as shown in Fig. 710. By this time, the maximum concentrations 

on the z-axis have increased by over 60 per cent. The strength of the 

convergence effects are however not apparent until we take a look at 

the distribution for t = -1 (Fig 7c), when tilted contour lines of 

constant concentration begin to appear with larger gradients in the 

vicinity of the vertical axis, indicating greater vertical displacement 

of that area than elsewhere. The concentration in the corner lihs 

increased by *times the corresponding value in the Fig. 7a. 

These effects become more pronounced with time particularly after 

t = o which gains more than 41- times the maximum concentrations at 



t t 
] (5(x,z) = 

z + e 
2t 	

exp [1 — z e—  j 	• 
1 +x e 

(2.2.7) 
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t = —3. As concentrations progress towards convergence zone and move 

away from it, its contours become steeper and get closer and closer 

and a very rapid horizontal piling up effect takes place. When five units 

of time have elapsed, that is at t = 2 (see Fig 10), the contours are 

very nearly vertical,and maxima, slowly decreasing with height, occur on 

the z—axis, whereas those existing on the x—axis are decreasing very 

swiftly. It is, in fact, true to say that acy varies much more slowly in 

all distribbtions drawn for positive time tht for negative times and 

Wax varies slowly for negative time than for positive time. The 

maximum concentration values obtained for t = 3 (Fig 11) are twenty 

times that for t = —3. 

Case II  

The falling speed of the particles here is ).) = -w (i.e. n = 1) 

and the equation (2.2.5) takes the form 

Again commencing from the distribution at t = —3 (Fig 12a) where 

the concentration is sparse but almost uniformly distributed, we are 

reminded to realise how prominent a role the particle falling speed 

plays in forming 	those cumuliform swarm—type vertical columns of 

distribution in the vicinity of z—axis. The concentration ascends 

higher and higher with time. The contour lines assume rather similar 

position to those discussed in the Case I, and this time the maximum 

concentration produced become more pronounced when t = 2 (Fig 15) 

and t = 3 (Fig 16), when 150 times and over 400 times the maximum 

concentration produced for t = —3 are achieved respectively. 

The Figures 12a, 12b, 12c, 13, 14, 15 and 16 show the contours for 

the times interval t — 3 to t = 3. 
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Section III Steady Concentration in a Convergence—Divergence zone. 

From the last two sections we have seen that although concentrations 

produced downstream are higher, the fact of the matter is that the flow 

pattern we have used carries the concentrations away to infinity. 

Moreover, it is not even a crude representation of an atmospheric flow 

pattern; the converging motions, as mentioned in Chapter I, invariably 

are accompanied by diverging motions above. We, therefore, devote this 

section to working out downstream concentrations moving (with constraint 

similar to those used before) in a flow containing convergence and 

divergence. 

Employment of the well—known Schwarz—Christofell transformation enables 

us to evaluate the stream function of the fluid motion shown in the 

sketch below. 

Diagram 4  Sketch of stream linesIle. const and equipotential lines 4) 
with divergence occuring akthvez = n/2 in the z—plane flow 
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The transformation is given by 

W(Z) = cos h (7111,(a) 

or simply 

W(Z) = cos h (z) 

when the 'strip' in which the entire motion occurs has a width a =L.  

The potential function 

	

0 (x,z) = U cosh x cos z 	 (2.3.1a) 

and the stream function 

	

(x,z) = U sinh x sin z 	. - 	(2.3•lb) 

obtained from the transformation above form the basis of the flow. 

As U .-grad  0, 

the flow velocity is 

U = (- U sinh. x cos z, o, U cosk_ x sin z) 

where U is a constant velocity in the w-plane. 	A quick glimpse 

at this velocity vector informs that the behaviour of this motion is 

more complicated than that of the motion in the last two sections. 

Each point in the fluid along a line, say, KL of rectangular parcel 

KLMN (see the diagram 4 ) possesses a velocity which is function 

of both x and z. 	 The flow in the lower half 

of the region commences at infinity, decelerates to zero velocity at 

x = o and 	rises to the upper half to diverge and to 
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return to infinity with infinite velocity. 

Supposing that the particle falling speed is 

= nw = nU cosh x sin zi  

then the particle velocity is 

U = (—U sink x cos z, o, (1—n) U cosh x sin z) 

and the resulting equation of continuity for steady concentration is 

— tanh x 	+ (1—n) tan z 	= na goo 
	 (2.3.2) 

ax 	 az 

which is equivalent to stating (by characteristics) 

do' 	dz 	dx 
no 	(1—n)tan z 	—tanh x 

This yields by integration 

c(x, z ) = Al/sinh nx 

and 

1 

sinh x (sin z)
1—n = El 

5 

from which,- writing Al  as a function of34the general solution 
-`/ 

1 
c(x, z ) = 	1 

n 	g(sinh x (sin z)1-11) 	(2.3.3) 
sin  h x 



] sin z exp [-sin z 
sin hnm 	cos4 z 

(2.3.4) 
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is obtained,. where Al  and B1  are constants of integration. 

Let the initial distribution specified at a distance n away 

from the z-axis be defined by a function 

Using this and the general solution (2.3.3), g(x,z) is 

worked out to get the solution 

sinzsincsinh u  
(x, z) = 	 n 	

exp 

h sin x 	

-sin z(sinh  
[1 - sin2z(sinh2xisinhir)1-n]2  

(2.3.5) 

for all x and z. 

An original and inte sting feature of this solution is what may 

be called a 'zero-line', a curve along which there is no concentration 

and whose position solely depends on the values of n in the denominator 

[1 - (sin hex/sin h2701-11  sin2z]2  

of the exponential power. 

This means that it is all right to suppose that no flux is fording 

a zero-line, and that for the purpose of our analysis, consideration 

of motion in the region bounded by the axes and a zero-line should alone 

be adequate to meet our requirement effectively for the aggregation of 

particles as they move downstream. The zero-line accompanies concentration 

contours for the three cases discussed below. 

Case I  The range in which this case occurs is 0 < n 2. For all n 
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in this range, the concentration forming on the z-axis is zero and the 

position of maximum concentration which varies with the values of n 

moves closer to z-axis as n increases. For example, when n = o, 

maximum concentration is located at x = u. But when n = 1/4 (which 

we have chosen to show what a typical distribution looks like in 

this case), it has moved to the line x = n/2 and when n = 2 (see 

the next case) it actually is displaced to reach the z-axis. 

For n = 1/4 

sin z sin 11: 	exp 
x 	- sin z (sinh x/sin h n)3/4  

(1(x z) -  3/2 	(2.3.6) 
sin 3/4  h n 	- sin2z(sin h x/sin hn) 	]

2  . 
 

the distribution of which is shown in the Fig. 17 (page 49 ). The 

highest downstream values of concentration at this juncture exceed 

the original values by 0.05 or there is about 12 times increase over 

the original values. 

Case II This is a critical case where 

sin z 
c(x,z) - 

sin hen 
exp 

,-1- 
-sin z (sin h x/sinh.n)2 

(1 - sin2z(sin hx/sinh _n)]2  
• (2.3.7) 

The Fig. 18 (page 49 ) indicates the appearance on the z-axis of 

concentration, the maximum value of which is six times the upstream 

original maximum. 

Case III The range of consideration is 2 < n < 1. Takinga typical 

value n = 3/4, the distribution (see Fig 19) given by 
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sin z 	-sin z ( sin hx/sin 1t)1/4  (x, z ) - exp 	 3.8 
, 1/4

)  

	

sinh x 	h 	[1 - sin2z( sin h Vein h 1021 

is illustrated. This case explicitly demonstrates the consequences 

of increasing n above the critical value; for infinite concentration 

results on the z-axis; this 	 is mainly due to the 

behaviour of the equation (2.3.5) and could have been avoided, and 

it is not necessarily due to the falling speed. 

All distributions on pages 41 	and 51 
	are accompanied 

by the paths of particles, indicated by dotted lines. 
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Chapter III  

Consideration of Non—potential Flows  

Preamble: We have learnt that there is a major disadvantage, insofar 

as our purpose is concerned, in the inherent properties of the flows 

employed in the last chapter. The velocity becomes infinitely large 

at infinity where concentrations are carried, 	This calls for a 

modification in the velocity field structure so as to have a realistic 

flow with finite velocity at infinity. 

Therefore, one principal assumption that has been made in this chapter 

in order to create a compressible flow of a fluid having a coefficient 

of expansion due to heating is that there is a heating field, the effects 

of which is to expand the fluid, setting up temperature and density) 

gradients and lowering the pressure in the region towards which the 

air masses from the surrounding displace themselves. Depending upon the 

extent of the region being heated, three kinds of motions in reality 

could ensue. 

First, heating on a small scale could set up convection currents. Second, 

on a very large scale, baroclinic waves can develope with horizontal 

pressure gradients, a good example of which is a mid—latitude cyclone 

where there is a continuous heating over long periods. On an 

intermediate scale a situation similar to a sea breeze developes. The 

motion, therefore, is produced by temperature differences between the 

air masses in the heated region and their surrounding, by the operation 

of gravity on themland by release of potential energy and its conversion 

to motion. 

To commence from a density distribution to work out the velocity 

field of the flow by integration of equations of motion would usually 

be much too cumbersome and difficult, if not impossible. Even if the 

integration were possible, there is no guarantee that the resulting 
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velocity field would give a desirable pattern of motion. On account 

of this, the problem has been dealt with by a method of guesswork 

to form an -76...ustic.  _ velocity field rendering a converging motion 

accompanied by divergence above. This is more than guesswork4in a 

sense, for careful consideration has also been given to retain fair 

distributions of vorticity and its rate of change to match them with 

the atmospheric situations in reality. 

In addition to that, the density distributions obtained from our 

specified velocity fields actually agree with some of the situations 

related to the occurrence of convergence in which density distributions 

of air masses involved could greatly vary. For instance, convergence, 

in the vicinity of zone of which there may be rainfall, may constitute 

totally different densiti es of air masses from that in which there 

is a cold downdraaght or Pain cooling the air virtually at any level. 

The latter situation may be typical of an ephtmeral thunderstorm in 

which locations of relatively higher densities could occur dUe to 

cooling, and is capable of supporting the density distribution obtained 

for the flow used in the second section of this chapter. 

Another basis from which to start may have been to define the pressure 

fields. However, as Professor Scorer points out, consideration of 

"motion producing pressure gradients and new pressure gradients 

producing more new motion" is unprofitable because "the pressure 

fields and the velocity fields develop simultaneously". But one is not 

the cause of the other, and vorticity distribution alone 

provides a strong indication of how the motion will evolve. 
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Section I A Flow with max. horizontal velocity on the x—axis  

Let us define non—dimensional cartesian co-ordinates x = 1o x' and 

z = 1o z' and a non—dimensional velocity vector U = UoU'. 

Throughout this work Uo will be taken to be lm sec 
1 
 and 

1o to be 103m , Henceforth we will drop the primes and write x, z 

and U for the non—dimensional quantities. 

We shall use the same axes of reference as before. Assuming the 

velocity vector as U = (u,o,w), the vorticity vector 14 is defined by 

tJ = (ot 	o) and, hence, its rate of change by 

_ u
t  +wfl  

Dt 	x 	z 

where 1) .17;14.  (72  being a Laplacian operator and -r* being a 

stream Danction),71 x  and T1 z 
 are partial derivatives with respect 

to x and z respectively, and D/Dt denotes the rate of change 

following a parcel of fluid. 

We embark upon this exercise by specifying the velocity field U of 

the flow given by 

U = (—ko (1—z) e z  sir* (1—e j, olkoze
—(x+z)

cosh(1 — e x))... (3.1.1) 

which satisfies the equation of continuity and where ko  is taken to 

be 3 in our examples. 

The following are the profiles of horizontal and vertical components 

of U; the length of arrows may be supposed to make reference to the 

magnitudes. 
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Diag 5a The horizontal vel. profiles 
	Diag 5b profiles of the 

of the flow at x.1 and at x=5. 	vertical velocity of the flow. 

It is observable from (3.1.1) that a desirable feature of the 

horizontal velocity is that it retains finite values at large distances 

away from the convergence zone. Its maximum occurs at x = co at 

the lowest level of the incoming flow and would have a value of 3.53. 

But as the magnitude of the horizontal velocity at x = 5 would 

have a value of 3.49 1  which differs very slightly from the value at 

x .0o , we shall resort to the consideration of downstream motion 

from x = 5. 

This kind of velocity structure with its greatest value to be found 

at the lowest level of the flow implies the absence of friction, and, 

consequently, of the possibility of any boundary layers. Its vertical 

variation is such that its values decrease to zero at z = 1 and 

then increase (with the reversed flow) up to a height z = 2.0 

where it is about 1/7 of the maximum values, before diminishing 

away rapidly with height to zero at infinity. 

As far as the vertical velocity is concernedAincreases from zero 

on the x—axis with height up to z = 1, then slowly dies away. 

On the line z = 1, it obtains successively decreasing maxima for 

all non—negative x varying from 1.141 at x = o to 0.0114 at x = 5 

and tending to zero as x — Da . 
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In physical units this amounts to a flow progressing towards the 

convergence zone with the maximum horizontal velocity at x=5 of 

• 3.49 m Sec-1 on the x—axis and entering into the divergence 

zone with maximum vertical velocity of 1.141 m Sec 1 at the 

point (x=0, z=1), reading 1 unit in x— and z—direction as lkm. 

One could envisage situations in reality where horizontal and 

vertical velocities three or four times the values used in this 

exercise are found. 

The differential equation 

dz 	dx 

w 	u 
•• • (3.1.2a) 

renders the stream function 

	

^I^(x,z) = 3 ze—z  sinh (1—e—x) 
	

(3.1.2) 

which is as shown in the Fig 20(a). 

The corresponding vorticity distribution is given by the function 

IL = 3ze (x+z) 	x) 	x 	x... 	—  cosh (1—e 	— e 	sinh (1—e ,)+ 3(2 —z)e—z  Binh (1 —e x) 

The variation of vorticity enables us to look at the mechanism of 

the flow. 

The rate of change of vorticity 

	

= —4.5(2 —z+z2) 	sinh 2(1 —e x) 
Dt 

—2(x+z) 

	

+ 9(z—z2) e 	(2 — cosh 2(1—e—x)), 
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which, in agreement with what we want, decreases to zero at 

both horizontal and vertical infinite distances. In the corner, there 

is a positive rate of change which accounts for the overturning 

of the air as it rises. 

Linking the rate of change of vorticity with the density p of 

air is the equation 

-22Q = p- grad (log 	 (3.1.3) 
Dt 

which when integrated with respect to x yeilds the equation 

p(x, z) = exp [11121dx  +c 
g 

where c is a constant of integration. 

Hence, 

p(x, z ) = exp c — 9 	e 

f 	

— 2z 
[co   eh 2(1—e x) + z(1—z)e—; 

2g 

(2e x  + sinh 

If the flow at infinity has a value p = 1.0, then from the equation 

above c is calculated to be 

c = 9 e-2z cosh :(2) , 
2g 

Therefore 

z = Exp{-9L r cosh:2(1—e—x)—cosh (2)+z(1—z)e—x(2e—x+sinh 2(1—e—xi} 
2g 

...(3.1.4) 
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Putting vorticity, its rate of change and associated density in 

physical units, their distri butions have been worked out as shown 

by Figs 20(b), 20(c), 20(d) on page 59. 

The density distribution is undoubtedly reminiscent of a situation 

where a certain amount of cooling takes place within the convergence zone. 

Calculation I(i) Steady concentration  

Let the falling speed, relative to the flow, of the particles 

introduced at the line x = 5 be defined by 

zw 
= 

Z 	co  

• (3.1.5) 

where co is a constant. It may be noted that this specification 

marks the departure from our usual definition of the falling speed 

of particles whose motion in all other flows employed in this thesis 

has been examined. This function behaves in such a way that the 

greater the height to which the particles ascend the larger the 

falling speed and, eventually, when 	00 , 	—w. This 

combination of height (as (3.1.5) can be written as Il= w/(1+co/z)) 

and the flow velocity may represent an improved specification because 

the locusts may respond to height as well as to the flow velocity 

tending to carry them up. 

The particle velocity becomes 

U 	( —3(1 —z)e—z 	o, 
3c 	

z e—(x+z)cosh(1—e—x)) 
z+c  

• • • (3.1.6) 

The resulting vertical velocity of particles increases with co  and 

it is zero when co = 0. We shall therefore decrease co to increase 





(x-Fz) 

—(1—z)e_ 	
d co zezsinh (1—e—x  cos h (1--ex) 

(z+co ) 	 D7- 
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the falling speed. 

Substituting (3.1.6) into (1.4.1), we have the partial differential 

equation 

(2co — z2+ z(1—c o  ,Ze-(x+z) cosh (1—e—x) 	. 
(z + co )2 

(3.1.7) 

By computer methods this equation has been solved, with the initial 

condition 

1(x,z) 	z. e-4z 	 (3.1.8) • • . . 

on the line x=5 and 

c(x,z) 0 

for all 

z e—z  sin h(1—e—x) > 0.425 

From this formulation three cases have been worked out for decreasing 

values of co. The Figs. 21, 22 and 23 illustrate downstream 

increases in the steady concentration a, starting values being the 

same in all cases on the line x=5. It is apparent that most of the 

higher values of concentration at divergence level are found to 

exist in an area bounded by the conour line o = 0.125, which marks 

the region of maximum divergence velocity. As co  decreases, the 
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contour c = 0.125 'sinks' in the convergence zone but remains almost 

fixed in position in the divergence zone, with higher concentration 

resulting in the convergence and in its vicinity. The zero—line 

curve (i.e where d=0) has been obtained by using the second part 

of the initial condition. 

When c.1, the maximum concentration, c = 0.210, forms near the 

point (x=0.4,- z=1.4) which is about twice the upstream original 

maximum (see Fig 21, P 61 	). The next case (Fig 22, p 63 ) 

confirms that the downstream increase, which, in fact, moves 

down towards convergence zone and closer to z—axis, amounts to 

approximately five times the upstream maximum value on the line x=5. 

It is in the last case (Fig 23, p 64 ) when n = 1/4 that we 

witness a significant growth in concentration in the convergence 

zone, The maximun concentration c = 1.293 is 14 times greater than 

upstream maximum value on the line x=5. 

In all the cases we have discussed, the particles do get very close 

to the z—axis without touching it. Should we want any deposition 

on the z—axis we would have to put c0.0, i.e. when the particles 

are moving horizontally. Indeed, when co  is given a negative value, 

all particles would be constrained to a downward motion. Consequently, 

maximum concentration would develop on the z—axis and possibly on 

the x—axis as well. 

It is not unreasonable to affirm that there may be a 'large' 

mathematical gap between co  = 1/4 and co  = 0, insofar as the 

difference in the degree of their effects upon downstream growth 

in particle concentration is concerned. 
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Calculation I(ii) Unsteady concentration  

We now proceed to solve for an unsteady case and ascertain what 

the effects of this kind of flow are. In this calculation and in 

Calculation I(ii) of the next section, we shall commence with the 

same initial distribution which will enable us to compare the 

downstream effects of the two flows. 

The differential equation which we shall solve is 

- 	- (l-oe-zsinh (1-e x) (1—n)e ("z)cosh (1—e—x)m4LL 

3 at 	 ax 	 az 

— = no.  (1—z) e (x+z) cosh (i-e X) (3.1. 9) 

taking the particle falling speed as being proportional to the 

vertical component w of the flow, 

i.e. 	= 3n7e (x)cosh (1 —e —X) 
	

(3.1.10) 

The function expressing our initial distribution at t=0 is 

— 6zifA  o(x,z) ze l+x) • (3.1.11) 

defined in the area bounded by the ellipse 

[2 '112 
0.75 

[
z-0.25 ]2  = 1  
0.5 

• . 	• (3.1.12) 

and the line z = 0.05, 
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elsewhere the concentration being defined as zero. 

By computing, we obtain three cases having downstream distributions 

(p 	) for subsequent times: the one above (Fig 24) is for a case 

where 1) = w/4; the middle one (Fig 25) is for 	= 3w/4; and the 

below (Fig 26) is fort/. w, i.e. when the vertical velocity of 

particles is zero. We find that the nature of the flow pattern plays 

a cardinal role in relation to the downstream displacement behaviour 

of the swarm as a wholes Since the horizontal velocity increases 

as z •decreases, in all these cases, the swarm is distorted in such 

a way that its base contracts, but the swarm as a whole is elongated. 

In the first case, by the time 1000 units of time have elapsed, the 

maximum concentration produced in the lowest parts of the swarm is 

increased by about 20 times along the particle paths1  and is about 

13 times the maximum upstream concentration at t=0. In a further 

1500 units of time when the swarm has ascended a little the concentration 

increases 75 times along the particle path in question, and is 50 
times the maximum concentration at t=0. 

The next distribution (Fig 25 ) enables us to conclude that there 

is a mart. rapid rise in downstream concentration at the leading 

edge in the lowest parts, as the falling speed increases to J = 3 w/4. 

The maximum increases found in 2500 units of time along a particle 

path, whose starting point at t=0 is where o = 0.0086, are over 

300 times the original, and in a further 1000 units of time at the 

point (x = 0.004, z = 0.252), it will have become 500 times over 

the original. 

When the particles are constrained to travel horizontally, the 
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downstream distribution is very similar to the previous two cases, 

apart from the fact that the elongated shape becomes still 

narrower. The concentration rise of nearly 500 times greater than 

upstream value (/ = 0.0086) occurs in 2500 units of time, which is 

achieved for V = 3w/4 (Fig 26 ) in t = 3500 units. 

Downstream motion of the swarm reveals that 	/fax decreases with 

increasing x and'/Az decreases with increasing z. 
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Section II A flow with max. b,-,rizontal velocity away from x–axis  

In this section also two calculations have been attempted: the 

first has dealt with a steady case and the second has assessed a 

time–dependent particle concentration distribution in a steady flow. 

Again we employ all the same non–dimensional variables as in the 

Section I. 

Let the flow velocity field U be defined by 

2koz 
U 	 ko 	(1+2z(0.5–z) )e–(0.5–z)2  
u 	

0, 	 
(x244)3/2  2 (x244 )2  

e
–(0.5 –z)2 

)—(3.2.1) 

which satisfies the equation of continuity and where 1(0  is fixed 

at 5.294. 

Given below are the profiles of horizontal and vertical components 

of U, which lucidly illustrate an important improvement over the 

structure of the velocity field defining the flow used in the last 

section and is undoubtedly a more realistic representation of velocity 

fields occuring in the atmospheric flows. 

z 

 

2 

velocity of flow. profile of flow at x=1 and x=5 
Diag 6a The horizontal velocity 	Diag 6b Profiles of vertical 
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The sructure of the incoming flow is such that its horizontal 

velocity increases from non-zero values on the x-axis to maximum 

values at z = 0.35. Then it decreases with height to zero on the 

line z = 1, above which divergence takes place. Its successively 

increasing maxima are found on the line z = 0.35, varying from 

zero at the z-axis to 2.79 at x = 5 and tending to 2.90 as 	00 . 

In fact, the incoming flow is such that it can be thought of as 

having a boundary layer due to friction up to a height of first 0.35km 

(takinglunit in the x-and z- direction as 1 km). 

The vertical velocity increases from zero on the x-axis to a maximum 

valueson the line z= 1 , then swiftly diminishes in the divergence 

zone with height. Its successively decreasing maxima (on the line 

x = 1) vary from the value 1.031 at x = 0 to .052 at x = 5. On 

account of the finite values occuring at x = op , we again resort 

to consideration of downstream motion from x = 5. 

The stream function (See Fig 27(a) p 72 	) calculated using 

(3.1.2a) and (3.2.1) is 

le (x,z) = ko 
X Z e.

-(0.5 -z)2 

2 x2+4)2  

Differentiating this equation partially with respect to x and z, 

the corresponding vorticity distribution 

7 	(x21-6x) 
- 	x[1-3z+2z(0.5-z)2] 	e-(0.5-z)2 

4 2  

is evaluated and differentiation of it renders its rate of change 
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2 

2-4 	
k
o 

 
12x3 	r 	N1 	r 	( 	Ni 

L1-1-2 /0.5 —zjj+2xL1+4z20.5 —z)4e 2(°.5 —3)2  
Dt 	(x2+4)2 	(x244)2  

And using the equation (3.1.3) for the density p, the following 

is obtained: 

k 2 	„  
P(x,z) = ExPr 	[z[1+2z(0.5—z)i [ 4 

	1.5 

g 	 (x2+4)3 	(x2+4)2  

1  [l+422(0.5—z)]] e'-2(0.5—z)2 
2(x21-4) 

Putting vorticity lot its rate of change 214. and the associated 
Dt 

density p of the flow in physical units, their distributions 

represented respectively by the Fig2 27(b), 27(c) and 27(d) have 

been worked out. 

The vorticity distribution constituting three divisions made by the 

lines z = 0.3 and z = 1.675 is such that the middle division 

contains positive vorticity whereas the other two contain negative 

values. ,Expected vorticity on the x—axis implying the presence of 

friction responsible for boundary layers exist. The situation which 

the rate of change of vorticity depicts may be produced by cooling 

due to rain in a thunderstorm. Hence, values comparable to those 

in the convergence zone also exist in the divergence zone wherein 

relatively larger values of density are found. 

Writing the particle falling speed relative to the flow as 

V = nw, 
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the actual particle velocity is designated by 

—k 
o 
)( 	.1 e 	

,0, —(0.5 —z)2 2k0 	e  (1 —n)z 	—(0.5—z)2  2 	 ) 1.)  = 	r L1+2z(0.5 —z)J 
2(x2+4)2 	 (x244)3/2  

• • • (3.2.2) 

where n is the constant of proportionality. 
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Calculation II(i) Steady concentration  

Using this particle velocity vector, we work out distributions 

for steady concentrations. By equation of continuity, we have 

2ko(1—n)z  -- — k 	 [1+2z(i—z)] e—(1  z)2  cs 
° 2(x4+4r- 	 dx (x2+4) 	e 

a—z )2 3ci 
 az 

2nk_c 	[1+2z(2 z)]  e 	--- (3.2.3) 
L' 	(x2+4  )--,/ 

which can be written as 

dx 	dz 	dc 

x 	r 	)1 ,1+2z1-z„ 	2 z(1-n) 	2nc 	[1+2z&-z)] 

2(12+4) 	(x2+4)312 	
(x2+4)312  

by the method of characteristics. 

Integration ensures the relationship between c, x and z. 

Thus: 

z e z)2 

1—n 
x2 	2 ) 

x2+4 

= R • • • (3.2.4 ) 

-n 
x2 2 

c(x,z) = A, ( 	 • . . 	(3.2.5) 
'-' x244 
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where A
b and R are arbitrary constants of integration. Hence 

elimination of R and Ao, simply by writing Ao  as a function 

of R, 

i.e. 	Ao 	g(R) = g(z e ‘2  

1-n 

x2 	2  

x244 
) 

renders the general solution 

1-n 
-n 

x2 	) 2 	, 
e 
 _a_z)2 ( x2 	) 	)2 

cs (x,z) 	( 	g(z 	• • • • • 
x244) 	 x244 

(3.2.6a) 

Celecting the function 

1-n 
2 

g(R) - 
R(l+R)  exp L  

r-(1.25) 	R  
1+R2 	(1 -2R)2  

where R(x,z) is as defined in (3.2.4), we arrive at the solution 

1-n -n 
2  a(x,z) - (3' 	)2 R(l+R) 	exp 	

-(125)2 R 

x2+4 	1+R2 	(1-2R)2  
• (3.2.6) 

where .11 is as given by (3.2.4). 

This expression has been obtained with a view to studying three 

possible cases. It was specified thus in order to have finite 

concentrations far upstream and to avoid infinite concentration on 

the z-axis, when x = 0 is put into the equation (3.2.5). 

Beginning with n=0, we find a steady growth in downstream concentration 

as n increases. When n = 0, the distribution (Fig 23, p77 ) 
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First we put 	n = 1/4 in (3.2.6) which becomes 

1/8 
x2  

21 0221) [ -(l 
 

25)3/8  R 
c(x, z) - 	( 	) exp 

x2+4 

where 

1 +R2  (1-2R)2  

R = Z e 
(12 
	

( x2 )3/8 

x2+4 
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obtained is indicative of a situation in which downstream development 

of higher concentration is non-existent and all the material is carried 

up and away from the convergence zone. 

Two other cases occur in the range O( l< 2. 

From the distribution (Fig 29,p 77 ) for this case we find a small 

downstream increase in the convergence zone and it is one and two third 

times the original upstream maximum. Second, 

(3.2.6) we have the critical case with 

when n = —2  1 	• l n 

C(X, Z ) - ( x2  '51/4 R(l+R)  exp [-(1.25)1/4  R1  .  
J 

x2+4 	1 +R2 	(1-2R )2  

where 

R = ( 	x2 )1/4  z e (-z )2 

x2  +4 

. , . 	(3.2.8) 

J 

Contours given on the page 79 	(Fig 30) show that the downstream 

increases become relatively large, with maximum values forming on 

the z-axis which are six times the original maximum at x=5. 
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Any value of n greater then -1- produces infinite concentration on 

the z—axis which from the point of view of locust densities is 

undesirable. A typical value of n = 3/4 has been chosen to show a 

distribution (Fig 31) of this case. 

It is possible that this 'earlier occurrence' of infinite concentration 

on the z—axis may be mainly due to the initial distribution and not 

due to the particle falling speed alone. 
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Calculation II(ii) Unsteady concentration  

Here again we conduct a calculation similar to falculation 00 in 

the previous section to assess the development of downstream 

concentration in a 'typical' swarm moving with a flow designated 

by the velocity field (3.2.1). 

By equation of continuity (for unsteady particle concentration), we 

have 

2)c k 
	1 [1+2z(0.5—z)] e—(0.5—z)2 ad 

a t 	° 2 (x2+4 	 a x 

+ 2k (1—n)z e—(°*5—z)2  aa 	2nako 	r 
L1+2z(0.5—z)] e—(C).5—z)2  

(x2+4)312 	az (x2+4)312 

• • • (3.2-9) 

which is solved in conjunction with the initial condition defined by 

(3.1.11) and (3.1.12). 

The computed results are shown in the Figs 32, 33, and 34 on the 

page 	82 • Fig 32 has been drawn for n=1/4 (wp  = 3w/4),,  Fig 33 

for n = 3/4 (w = w/4)and Fig 34 for n=1 (w = 0). Generally 

speaking, in all the cases presented here the downstream shape of the 

'swarm' becomes much protruded in the middle at the leading edge; 

this is attributable to the nature of the flow whose horizontal velocity 

is such that its maximum values lie on the line z = 0.35. Following 

any particle path enables us to understand in respect of the first 

two cases the effects of convergence and divergence. It is observed 
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that the concentration keeps on growing along a particle path until 

it reaches the divergence zone (above the line z = 1), where it slowly 

begins to diminish. This tru ly is demonstrative of convergence as a 

concentrator and divergence as a disperser. 

In Fig 32 the estimated downstream distributions for 1000 and 2500 

units of time indicate only a small rise in the downstream concentration. 

Indeed, the strip of concentration, bounded by the lines z = 0.05 

and z = 0.1 of the initial distribution at t = 0, remains longer in 

the convergence zone (partly owing to the structure of velocity 

distribution) than the rest of the 'swarm' and in doing so produces 

in 3500 units of time twice the maximum concentration found at the 

leading edge when t = 0. 

The effects of the falling speed, however, are found to become much 

more pronounced in the next case (Fig 33) for n = 3/4. Here, 

approximately the lower half of the initial distribution (in the elliptic 

region) remains in the convergence zone for a much longer period, and 

if the particle path, starting from the point where concentration is 

0.0131 at the leading edge at t = 0, is followed, about six 

times that original value is produced 2500 units of time, and if this 

path is followedforafurther 1000 units of time a staggering increase 

amounting to 16 times over that original value occurs at the point 

(0.043, 0.592). Possibly even higher values occur during the same 

amount of time along a particle path whose starting point is still 

at a lower level. 

Next distribution (Fig 34) gives an indication of the difference in the 

degree of effects of falling speeds 11=. 3w/4 andli= w, but apparently 

these effects become observably more pronounced when the 'swarm' enters 
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the region bounded by the axes and the lines z = 1 and x = 1. A 

distribution drawn in this region for t = 2500 units shows an 

increase in values 10 times over the maximum found at t = 0. As 

it further advances towards z—axis, concentration rises with immense 

rapidity. 
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Chapter IV More Potential Flows  

Section I Particle Concentration in a Flow with a tilted Interface  

Differential heating along coastlines is one example where a front may 

be produced with a well—defined boundary between the air flowing from 

the sea and the air already existing over land. The boundary becomes 

tilted when the cold air on the one side descends and the warm air on 

the other ascends, the angle of tilt being dependent upon the strength 

of convergence etc. 

In this section, therefore, we have considered a flow pattern similar 

to a motion on one of the sides of a front with a tilted boundary, 

Owing to the fact that an analytical description of a flow incorporating 

an interface (as well as providing a desirable distribution of vorticity 

etc.) is very difficult, we have undertaken to work with a potential 

flow, where the line of interface has been taken to be at 60°  to 

horizontal in order to simplify mathematics. 

The velocity potential 

(x,z) = U0  x(x2  — 3z2) 

obtains the velocity field 

U = (-3Uo
(x2  — z2), 0, 6Uoxz) 	 (4.1.1) 

as U = —grad 0. For convenience we have taken Uo 
1/3. 

It is observed from the diagram below that the flow commences 

asymptotically at infinity with infinite value and is parallel 

to x—axis. On entering the convergence zone it rises to diverge above 

the line z = x (i.e. the line on which the horizontal component of 
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velocity has a zero value)and returns to infinity so that it is asymptotic 

to the line z = fix, which is represented in the diagram by an 

axis 	z 

Dig. 7: Sketch of streamlines -\/...:-.C.04-st• 
Assuming the particle falling speed to be 

1, = nw 
	

(4.1.2) 

the particle velocity Up is 

U, = (—(x2—z2)0, 0, 2(1—n)xz) 
	

(4.1.3) 

Of the seven calculations we have so far attempted, three have been 

devoted to working out time—developing distributions, which have 

enabled us to understand better the particle behaviour in the convergence 

zones
especially. Consequently we have decided not to carry out any 

calculation in this chapter for steady concentration, but to focus our 

attention straight away to the consideration of time—developing dist-

ributions. 

Hence, substituting (4.1.3) into eauation of continuity for unsteady 

particle concentration, we have 
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- (x2-z2) a 	+ 2(1 —n)xz 	= 2n6x 
	

(4.1.4) 
t 	 z 

which we have solved (using computer methods) for two values of n, 

with the initial condition at t = 0 given by 

6(x,z) 	
14100z exp[—(x+3z)] 
	

(4.1.5) 
14x 

defined in the area bounded by the inequalities 3<x<4.5and 0<z<0.5, 

elsewhere the concentration being taken as zero. 

Case I  

For this case we have chosen to consider the falling speed Lf= w/4, 

when (4.1.4) becomes 

(x2-z2) 	+ 1.5 xz 2= = 0.5m5 
dt 	c)x 	bz 

• (4.1.6) 

the solution for which has been graphically plotted in the Fig 35 (p 87 ) 

for regular time . intervals. 	The initial condition at t=0 is such 

that its maximum c = 0.155 is found at z = 0.30 on the line x = 3 

which forms the front edge of a 'swarm', as it were, moving towards corner of 

convergence zone. In 0.3 units of time, the swarm as a whole has been 

displaced just over one unit towards 	the corner 	and horizontal 

contraction and vertical stretching have altered the shape in such a 

way that its location is just below the line z = x above which 

outflow 	occurs. The maximum concentration occurs at the leading edge 

at the height z = 0.8. When the swarm has been displaced for a further 

time t = 0,3, a very elongated stretch has been produced because some 
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of the upper part of the swarm enters the outflow 	zone where 

the vertical component of velocity becomes large. 

As a result, the downstream maximum values have been found to increase 

noticeably gradually; when t = 0.6, the maximum is even less than 

twice the upstream maximum at t = 0. Any further downstream motion 

would transport much of the concentration away from the inflow region 

in which only lowest parts of the swarm may remain for longer periods 

of time to produce higher concentration. 

Case II 

This case has been studied for n = 3/4 in (4.1.2) when (4.14) reduces to 

iss — (x2—z2) OE + 0.5 xz o 	1.5 x 
at 	Ox 	Oz 

(4.1.7) 

The initial distribution on Fig. 36 at t = 0 is the same as that in 

the Case I. Generally speaking, the effects of raising the particle 

falling speed 	are decidedly stronger : it takes longer for the 

distribution to reach the outflow region; and resulting concentration is 

higher. We have constructed successive downstream distributions for 

t = 0.3, t = 0.6 and t = 1.0, all of which are located still in 

the inflow region, with the exception of the topmost part of the 

distribution at t = 1.0. 

Following a particle path starting at the point (3.0, 0.25) where 

o = 0.153, an increase of 2-1- times can be noted at the leading edge when 

t = 0.3. By this time, too, the hind—edge values have increased by 

3 to 32-times those at the hind—edge of the initial distribution. 

Following the same particle path a further 0.3 units of time, it is 

found that the concentration is 5 times greater than that of the maximum 

value at t = 0. 
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When the 'swarm' has progressed further downstream the dimunition of 

area of distributionand therefore a very rapid growth in concentration, 

are observed. Indeed, when t = 1, 9 to 91- times original maximum 

values can be noted. However at the hind edge, 13 to 15 times their 

original counterparts have been achieved. 

Although we have 	succeeded in calculating these interesting 

distribution, one inevitable problem cannot escape our attention: due 

to the nature of the flow, the whole swarm would be digributed over a 

large area as soon as it enters the outflow region and would get carried 

up to infinity. 
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Section II : A Calculation using a flow past an obstacle. 

We have by now considered several suitable flows ( simulating 

certain patterns of atmospheric convergence) to ascertain the effects 

of falling speed of particles on their concentration as they move 

towards, into and out of the convergence zone. There is, however, one 

kind of flow pattern that still remains to be employed: a flow past a 

vertical obstacle of finite height (which for our calculation will be 

taken to be 3) as shown in the diagram below. This flow is obtained 

by mapping the points B, C and D of the W-plane on to the points of 

the z-plane such that B and D map on to 0 and C on to Ct, thereby 

creating an obstacle C/O of height h. 

        

        

        

c  
1,e 	'of 	4_1  //ell , 

Diag 8b W-plane flat flow Diag 8a Streamlines of a flow past an 
obstacle of height h. 

The relationship between the flow in the two planes is found by solving 

the differential equation 

dZKW = 	, 
dw 	:(w2 -1)2  

which in fact is due to Schwarz-Christoffel transformation. Using the 
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initial condition that Z = 0 when W = ± 0 and Z = ih when W = 0, 

we arrive at the equation 

, 
W( Z ) 	z2  + h2)2  / h 

where Z = x + iz is a complex number. 

Assuming that the complex potential is denoted by 

U. W = p(x,z) + we(x,z) 

we calculate the velocity field potential 

1/4 
¢(x, z) = Uo [(,24h2_ 2 )2 4x2z2] cos tan 

	

t 	-1 , 2xz 

h 	 x24h2-z2  

which on differentiating obtains the velocity 

U = (U,O ,W ) 

(- 1  [A CosQ + B sinQ], 0, 1  [B cosQ + A sinQ]) • • • 	(4.2.1) 
P,  

where 	P = [(x2  + 9 - z2)2 4x2 z2 ] 3/4 

= tan-1 (2xz Q
x2+9-z2 

• (4.2.2) 
A = x(x2  2+9 

and B = z(9-x2-z2) 
• 1 

taking U0  = h = 3 

J 
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This velocity field is such that its values are finite everywhere on the 

plane, with the exception of the value at C' where it is infinity. It 

is because of this value at C' that the computer methods break down 

and it is not possible to study the motion of the particles outside 

right—hand quadrant. 

Taking the falling speed V to be proportional to the vertical component 

of flow velocity, the particle velocity Up is given by 

u 	(u 0 w ) 
p 	P 	P  

[A cos (Q)+B sin(Q)], 0, (1—n) [B cos (Q)+A sin(Q)] 
	1 

P 

(4.2.3 ) 

where n is the constant of proportionality. 

For unsteady particle concentration, the equation of continuity 

+ div (U, c(x,z,t)) = 0 
at 

becomes 

aa +u  3a  +w c) 	— 	cs 
ct 	P  ax 	P az 	az 

• • 	 (4.2.4) 

where u and w are given in (4.2.3). 

The right—hand side expression is such that 

31) 1 	r  
LBw

P 
 — AB sin (Q) + 	cos(Q)] + C sin(Q) — D cos(Q)] 

5: = 	

1 
P 	P411  

where P and Q A and B are as defined in (4.2.2) and 

1 
P 
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c = 2xz 

and D . 9 - x2 - 3z2. 

The equation (4.2.4) is solved by computer methods in conjunction with 

the initial condition 

c(x,z) = z e —6z / (1-Ex) 
	

(4.2.5) 

at time t = 0, defined in an area bounded by an ellipse 

(311.402 	ize-1/4N )2 

3/4 	
k 

2 

1 (4.2.6) 

elsewhere the concentration being zero. 

The function (4.2.5) has been chosen to give its distribution a kind of 

swarm—like appearance, in which higher values of concentrations are 

found at the leading edge. 

Here, we examine two oases for n = 1/3 and n = 2/3 to find out 

the downstream behaviour of particles. 

Case I  

The distribution on the page 96 (Fig 37) is a case where n 1/3 

i.e. w = 2w/3. Successive downstream distributions are constructed 

at regular time interval t = 2.5. As the 'swarm' progresses towards 

the convergence zone, the area of confinement slowly becomes narrower and 

taller, and there is a small but obervable rise in concentration. 

When t = 7.5 the upper half of the swarm becomes 'tilted' towards 

z—axis by the effects of the flow pattern, and nearly twice the original 

upstream maximum is obtained. It would have been interesting to ascertain 





-97- 

what kind of further contribution is made with time. However, owing to 

the fact that at the top of the vertical axis (at z = 3.0) the 

velocity is infinite and therefore the computing methods break down. 

Case II  

Starting with the same swarm at t = 0, we find that when n = 2/3 

(or wp = w/3), twice and three and a half times the maximum upstream 

values are obtained when t =5.0 and t = 7.5 respectively. This time 

the downstream motion of particles is such that there is a perceptible 

horizontal contraction (see Fig. 3.8p 96 ). 
When n = 1 the particles are moving horizontally and concentrative 

effects expectedly become very strong. There is perhaps a large 

mathematical gap between n = 2/3 and n = 1 insofar as the degree of 

effects are concerned. 
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Chapter V  

Summary and Conclusion  

Taking the falling speed )) to be constant at the end of 

Chapter I has been a significant step in the construction of 

our model in that it has served to demonstrate the need for some 

other specification in order to achieve downstream accumulation. 

Keeping. 1) equals constant would also cause a cloud of particles to 

divide into two parts; the lower part being such that the particles 

in it would be constrained to move downwards, furnishing us with a 

situation where the particle behaviour may in reality contribute to 

the growth of downstream concentration in the lower levels of convergence. 

In Chapter II, wherein the potential flows have been employed, the 

falling speed 1j has been proportional to the vertical velocity of 

the flow which in 	Section I and II has worked out to be 

proportional to height. 	Section I has seen construction of steady 

distributions, but the effect of this falling speed has become more 

apparent when a time—dependent analysis is conducted in 	Section II,  

where the distribUtions in the vicinity of x—axis at t = —3 have been 

our starting .point. 

Achievement of vertical columns, similar to those occuring in the 

cumuliform swarm, of exceedingly high concentration in the vicinity 

of the z—axis in six units of time has been a feature of the flow in 

a corner illustrative of its potentially transpertive properties. A 

convergence — divergence flow has been used in 	Section III, where 

steady distributions for various values of 	falling speed have 

been evaluated. 

The third chapter has involved development and use of our own flows — 
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which are almost potential flows (see their properties an the p 59 

and 72 ) with reasonably realistic velocity distributions. The 

contours constructed for steady concentration in both parts of this 

chapter have provided reasonably good indications as to the downstream 

effects of raising particle falling speed, however, the time—developing 

distributions of particles in each flow has given better insight into 

how concentration would grow in any part of a 'swarm' in the convergence 

zone. The time taken for a swarm to reach divergence zone has been 

found to be entirely dependent upon the value of falling speed. A 

fleeting glimpse at the downstream distributions reveals alteration 

of shape of the swarm as it progresses downstream; this is mainly 

attributable to the nature of the flow. It has been found that the 

concentration increases with the falling speed, and that it continues 

to increase along particle paths until the divergence zone is reached 

when the rate of growth begins to diminish. 

Two situations hitherto not considered have been dealt with in Chapter 

IV, which contains two sections: the first entails the construction 

of time—developing distributions of particles moving under a constraint 

of falling speed relative to the flow incorporating&line of interface 

inclined at 60°  to horizontal. Though this angle is too large, there 

are inflow and out flow regions which have been useful in demonstrating 

that falling speed produces aggregation. The distributions have indicated 

also a very swift upward transport of the swarm as soon as it enters 

the outflow region; this is only counteracted by increasing the falling 

speed. 

Owing to the nature of this potential flow, only the flow in the corner 

would be considered most relevant for our purposes, as other regions would 

be accompanied by large values of velocity. Therefore, assessment of 
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of concentration in the inflow region has alone been considered to 

be adequate and of some value. 

Only one side of the flow in 	Section II, which is representative 

of a flow over a finite vertical wall, has been considered and again 

time-dependent distribution have been constructed to assess quantitatively 

the relationship between downstream concentration and falling speed. 

We can now hereby conclude from the results of the second, third and 

fourth chapters that particles moving under constraint of falling 

speed (not equal to constant) will generally give rise to higher 

downstream concentration and that the whereabouts of the production 

of higher concentration within a swarm may partly depend upon a 

velocity field structure of flow, as we saw in 	Chapter III. Also, 

particles moving closest to the x—axis would be most likely to rise 

to concentration in the vicinity of the interface or vertical axis. 

The constructed time—dependent concentration distributions related to 

Chapter III affirm how influencial wind fields can be in the determination 

of downstream shape of swarms. In the light of this work, it is also 

possible to appreciate Cochme's treatment in respect of his use of the 

equation of continuity for particles airborne at a constant level. 

It should be pointed out, however, that Cochme' considered the 

horizontal aspect of atmospheric motion (on a large scale) and, in 

that sense, he concerned himself mainly with horizontal motion of 

particles and its effects. We have gone a little further and 

assessed the implication of vertical motion. Superimposition of our 

work onto his may enable us to produce a three—dimensional picture 

of the behaviour of locusts and, in that sense, our work complements 

Cochmdls work. 
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Recommendation  

The falling speed is one of the observable features of the Desert 

Locust flight behaviour in the convergence zone responsible for high 

concentration; : because the locusts begin to hover and glide down when 

temperature reductions of air masses above a certain height render 

their flight muscles inefficient to continue further flight. And it 

is true that a cloud of particles may assume a behaviour similar to 

our particles when under similar constraints. It should however be 

pointed out that there may be several intervening (possibly interdep- 

endent) factors which come into play when a locust swarm is airborne. 

We must, in the light of this fact, recognise the limit of interpretation 

of our results insofar as the production of downstream aggregation of 

locusts is concerned. Nevertheless we can emphasise the existence of a 

relationship between the falling speed and resulting downstream concentration. 

In addition to this, the approach we have adopted to carry out this 

work may represent one of the significant starting points that may form 

a basis for further mathematical ideas and models eventually leading to 

a practical model applicable to locust problem. It is evident, therefore, 

that a vast amount of work, mathematicaland_ otherwise, needs to be done. 

For further successful modelling, we need to understand better how 

factors such as the weight of an insect, its body temperature contribution 

to its surroundings, the temperature of air masses, the edge—effect and 

the biological interactions (between neighbouring insects) operate 

upon and affect the movement of individual locusts and of a swarm as 

a whole. 

Also, these factors must be quantifiable if they are to take part in a 

mathematical model. In fact, at least three of the above—mentioned 

factors can be treated as mathematical variables (which may be dependent 

upon some other fundamental variables such as height, range of spacings 
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between insects etc.), The weight of an insect (which is responsible 

for its sinking) can be easily included; the edge-effect, according to 

Dr. Rainey, may be treated as 'surface tension' effect on the edges and 

therefore a modified mathematical expression could be found to 

designate it; and the temperature of air masses may be readily available 

from the formulation of a velocity field. The temperature contribution 

of the body of insect to its surrounding which adds to its bouyancy 

and biological factors can also be included to complete the picture of 

the locust flight behaviour. 

In our model, we applied the falling speed throughout the regions 

considered and this needs rectification, for the locusts maintain their 

upward flight steadily until they find their flight muscles operating 

with inefficiency. Moreover, 1) = constant may be applicable to locust 

behaviour in the light of factors discussed such as its own weight 

which produces a downdraught effect when concentration / unit volume 

gets very high. 

As far as the improvement in the specification of the flow fields- is 

concerned, inclusion of coriolis forces and some other factors (turbulence 

etc.) may be taken into account when solving the equation of motion. 

Further extension can be made by evaluating time-developing two-and 

three-dimensional flows, both of which are extremely complicated. 

Then, a number of models can be formulated to describe a variety of 

situations in which locust swarms are confronted during insecticide 

spraying operations. 

Then it will be possible to suggest amelioration in spraying techniques, 

requirement of, the possible reduction in, the size of droplets, and 

concentration strength of pesticides for better control and anti-

locust strategy. 
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Appendix I 

To prove that div U 
c2 

In adiabatic motion 

= 	 2. e2  

Dt 	Dt 

The equation of continuity is 

= —p div U 
Dt 

and the equation of inviscid motion in the atmosphere is 

DU 1 --Eracip+g+Uxf 
Dt 	p  

so that taking the scalar product with U we have 

22a . 	+ (U.grad)p 
Dt at 

DU =  
at — 

pU 	
+p 

U.g 

= 	e (12/2) gw ] 
at 	Dt 

(1)  

(2)  

(3)  

(4)  

Combining this with (1) and (2) we obtain 
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div U 	
1 & 5E 4  1

[D (q2/2) gw] 

pct 	c2 Dt 
( 5 ) 

The terms on the r.h.s. of this equation represent the divergence due 

to change in pressure and therefore contain the velocity of sound, for 

this is one of the quantities by which we can represent the elastic 

properties of air. 

The kinetic energy of the parcel is due to the bouyancy of the parcel 

and therefore 

-D— (2 q2 ),---gTiX is much smaller than gw, where gbT w  is the rate 
Et 

of change of potential energy of the parcel moving upwards. 

Therefore in steady state, 

v = 
c2. 
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Appendix II  

Let us consider a differential equation 

3z 	8z A — n — = C 
x ay 

where A, B and C are function of x, y and z. 

Comparing this equation with 

dz dx +!Z dy = dz 
ax 	by 

we obtain simultaneous equations 

dx_ 	dz = = 
A B C 

which entail that the tangent to a certain curve at the point (x,y,z) 

has direction-cosines proportional to (A,B,C), and that 0(u, v) = o 

represents a surface through such curves, given that u = const. and 

v = constant are particular integrals of simultaneous equations. 

If A,B and C are constants, we thus get a straight line, or rather 

a doubly infinite set of straight lines as one such line goes through 

any point of space. If A,B and C are functions of x,y and z, we get 

a system of curves, anyone of which may be considered as generated by 

moving a point which continuously alters the direction of motion. The 

lines of electrostatic force is such a system. 
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