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ABSTRACT 

Recently a new and powerful method known as dimen-

sional regularization
(1) 

has been invented which has the merit 

to regularizing all the divergences and preserving all the 

symmetries
(2) 
 (like gauge invariance) of field theories at 

every stage of the perturbation calculations. 	This method 

of dimensional continuation for theories containing scalar 

and vector particles(1,3) has been applied by numerous people 

for studying ultraviolet and infrared divergences
(4) 

 in 

several contexts. 	However, they have evaded discussing 

theories containing spinor particles, chiefly because of the 

complicated r-matrix algebra involved for arbitrary dimensions. 

In this thesis we have studied the problems associated with 

spinor fields(5) in considerable detail and have applied our 

work to the following cases. 

Firstly, we have examined the properties of bilinear 

currents J
(r) 

= 	r(r) IP) and their associated anomalies 

with particular reference to the Thirring Model in the two 

dimensional limit(6) By considering Lagrangians of the 

type E J
(r) 	

we have extended weak interaction theory to 
r  

arbitrary dimensions(); oddly enough we find two kinds of 

polar vector and also two kinds of axial vector among possible 

set of currents. 	One of these weak polar vector currents is 

not conserved except in four dimensions and undergoes a finite 

renormalization from quantum loops. 	Further on, we consider 

anomalous currents J
(4) =' r(4) 4. 	The interactions of 

(4) 
the type J(4)  (I) 	which are naturally evanescent

(8) 
because 



they•disappear in four dimensions, but lead to divergences 

on the basis of power counting, are proved to be non renor- 

malizable. 	Finally, we have examined supersymmetry in the 

two and four dimensional limits. 	In each instance we have 

adopted a dimension independent definition of the super-

symmetric Lagrangian and shown(9) the spinor Ward Identities 

to be anomaly free. 
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CHAPTER ONE 

INTRODUCTION 
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The infinities appearing in higher order terms of the 

perturbation approach to quantum field theory have always 

presented a problem. 	The normal procedure has been first 

to regularize the divergent integrals by some means or 

another in order to isolate the infinite part and then to 

rename this infinity by the technique of renormalization. 

Unfortunately, if this regularization is performed in the 

most naive way one can violate the original symmetries of the 

Lagrangian, e.g. one can get an infinite mass in the photon 

self energy which conflicts with gauge invariance. 	Recently, 

a new technique called(1) dimensional regularization has been 

invented which has the great merit of regularizing all the 

divergences and preserving all the symmetries(2)  (like gauge 

invariance) of the field theories. 	Besides the practical 

advantage of allowing us to manipulate our integrals with ease 

till the very end, it has the physical consequence of pin- 

(5,10) pointing the source of anomalous 	quantum corrections 

as we shall see in Chapter III. 

This method of dimensional regularization consists in 

setting up the theory in arbitrary dimensions (and if we wish 

to accommodate electromagnetism it is necessary to work in 

the even (2Z) dimensions from the very beginning) working out 

the Feynman integrals and then calculating them appropriately. 

The actual continuation to any dimension is a trivial affair 

in cases where only scalar or vector particles are involved(1,3) 

This has been applied by numerous people for studying ultra- 

(4) i violet and infrared divergences 	in several contexts. 
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However, they have purposely evaded discussing theories when 

spinors or abnormal parity objects arise because the 

generalization requires considerable care. 	In this thesis 

we have studied these problems which are all associated with 

spinor fields(6,7,8,9) 
 In Chapter II we shall give all 

properties of the generalized r-matrices, a brief resume of 

the properties of the Fierz reshuffling matrix for arbitrary 

11, Majorana conditions etc., i.e. we give the "kinematical 

framework on which the rest of the thesis is based. 

Chapter III is devoted first of all in studying the 

bilinear currents in 22. dimensions, viz. 

T 	4)09 (lot) cio =  
where r(r)  is the antisymmetric product of r-matrices 

(0 5 r 	2k); then we go on to discuss the Thirring model 

in arbitrary dimensions and evaluating its anomalies in two 

dimensions. 	It is the simplest example of an interaction 

Lagrangian formed out of these bilinear currents 

j/I 	(j(x)  FCIFt) \(,X
) 	0X)[1(11)(x)) (1.2) 

A, 

In calculating higher order corrections to these four-Fermi 

interactions one encounters fermion loops. 	By Fierz trans- 

formation these can be recast in the form of meson self-energy 

parts H
(
(r)
s) 
 (x) which we evaluate in section (3.1) of this 

chapter for later reference. 	Then in section (3.2) we dis- 

cuss in detail the Thirring model and show how to recover 

the Johnson-Hagen result
(12) 

in the limit 2. 	1 by using the 
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Fierz reshuffling matrix and the spinorial identities peculiar 

to two dimensions. 	In two dimensions we can define 

y
5 
 - r

(2). 	
The correct approach to extract the two dimen- 

sional axial anomaly"'" is to associate chirality with the 

set of dimension independent spinor transformations 

, IKL) 
`11  --> exp (di L 8 	rim.) (1.3) 

under which the kinetic energy term is not invariant. 	Hence 

. the usual PCAC identity contains anomalous terms: fax 

(1.4) 

=. 	r. 3 1-6"i 	9 q)(111.4 RI( 1-).4J 4(1.5)  

The extra terms on the right hand side do not exist in two 

dimensions. 	But it would be wrong to delete them for k = 1. 

The rules of dimensional regularization (DR) say that we have 

first to evaluate all the matrix elements and then take the 

limit 9, -÷ 1; specifically one discovers a transition from 

vector current to axial divergence in a fermion loop. 	The 

scaling anomaly(13)  is a similar affair which is also included 

in section (iii) of this chapter for completeness. 

We also recapitulate the procedure for extracting 

axial anomalies in four dimensions at the end of this chapter. 

Again the procedure which relies on a proper identification 

of y5  as r (4) , is a dimension independent(5) one. 
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In Chapter IV we apply DR to weak interactions (7) 

One of the problems -is to find the proper generalization of 

V-A theory to 2Z dimension.s before the final descent to Z = 2. 

Those computations which have appeared in the literature
(14) 

all assume that the only weak currents are of vector-pseudo-

vector type, viz. 

(i 	c 	)4/ co he.ye. 	v. 	
(1.6) 

the presumption being that there is a weak vector current, 

identical to the electromagnetic current, plus a (22,-1) 

index antisymmetric pseudovector weak current brought in by 

the parity-violating lefthanded neutrinos. 	On the other 

hand, from the work on anomalous PCAC identities(5) mentioned 

before one has learnt that the hadronic axial current consists 

instead of three-index antisymmetric tensor (the pseudo scalar 

mesons being associated by four-index tensors), a conclusion 

which seems to be at variance with the form(1) 

To reconcile these two view points we shall return to 

first principles and try to make a respectable guess at the 

structure of the four-Fermi weak Lagrangians for arbitrary 

integer it, without categorically tying ourselves solely to 

the currents (1). 	There are three useful guides for the 

appropriate choice of leptonic Lagrangian: 

(i) interactions should invalue ((lefthanded)) neutrinos; 

(ii) they must reduce to V-A form when t = 2 and 

(iii) the weak Lagrangian ought to be Fierz reshuffling 

invariant in 22 dimensions, a property which we know 

to be true for Z = 2. 



(The last criterion is perhaps not totally compelling and we 

later discuss the consequences of relaxing it.) 

Now on the basis of the classification of massless 

and massive particle states given in the 'kinematical' 

Chapter II one sees that neutrinos of the lefthanded variety 

have associated the projector 1(1-i r_1), the direct generali- 

zation of 1(1- iy5) in four dimensions. 	The next step is 

to exploit the properties of the Fierz transformation matrix(11)  

in order to find the crossing-invariant generalization of 

V-A theory. 	This we do in section 	and prove that 

4,t,„ o< k..(1) — K.(1) -I- 	.•.•*(-1)(PIC..(2t.0 	(1 . 7)  

\ , , 
rt.) 	4- 	Mt. • N y) 0--  NI) 	T 	CL, cr)* (1.8) 

The result is perhaps not so obvious and it leads to some 

unexpected consequences, the most important of which is the 

emergence of a new current,* r
(KLM) 

r
-1 i which is not con-

served but which yet reduces to a vector current in four 

dimensions: 	Naturally at the classical true level this 

current behaves innocuously as a vector current but at the 

next level of computing quantum loops we meet some curious 

renormalization effects. 

Having listed the leptonic effective Lagrangians for 

hadronic weak interactions in section (3.2) we elaborate on 

the renormalization of weak currents by evaluating the one-

loop corrections of the axial-currents and the extraordinary 
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new vector currents, in a particular model of strong inter- 

actions. 	We have the perplexing phenomenon of weak vector 

current undergoing renormalization and there is no natural 

way of eliminating this: one could cancel it off but then 

one is liable to destroy renormalizability of the initial 

Lagrangian as we show in the next chapter. 

In Chapter V we examine anomalous currents such as 

(1.9) 

in axial current Ward identities, currents which disappear 

for 16 = 2 but whose matrix elements yield the Adler-Bell- 

Jackiw anomalies
(10) 	

Interactions which fade away in four 

dimensions (or, stronger still, can not even be written downt) 

have been coined "evanescent" by Bollini and Giambiagi(8)  

It is the interplay of their vanishing and the divergence of 

Feynman integrals for 2, -* 2 which is responsible for the 

interesting finite corrections to classical Ward identities. 

Here we shall investigate a theory which has a primary 

evanescent interaction (unlike Bollini and Giambiagi")  we 

shall adhere to purely local field couplings in the Lagrangian 

itself), viz, 

aT 	G \T) C7 rtki. tAl 
	ti(LMN 	

(1.10) 

where 4) stands for the "pseudoscalar" field in 22, dimensions. 

(Such an interaction could have been used as a counter term 

to cancel off the Adler anomalies.) 	On the basis of power 

counting E. 	is singular as X-5 near 2, = 2, (signalled by 
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G having dimensions m
-1) and one would naturally argue that 

the divergences get worse in higher orders of perturbation 

theory. 	However, the interaction itself disappears at 2, 	= 2, 

so the question arises whether the theory is really infinite 

at all and if renormalizability is truly lost. 	We shall 

prove that the model is indeed non-renormalizable, but to 

arrive at this conclusion we need to go beyond the one loop 

level, i.e., the bad effects are at least of order h
2
. 	This 

means it is highly dangerous to cancel off anomalies in 

Lagrangian models without incurring difficulties with re- 

normalizability. 	One has to accept the anomalies for what 

they are and not remove them by hand. 

By this time it should be clear that the continuation 

of field theories away from four dimensions provides one of 

the clearest ways of regularizatioJ'
3
'
5
'
6
'
7
'
8
'
9)

and helps to 

clarify the role of anomalies in Ward identities. 	It is 

therefore quite natural to pursue the idea of dimensional 

continuation in connection with supersymmetries(15)  and to 

compare the consequences with more traditional regularization 

schemes. 	This will be the subject of Chapter VI. 	If we 

want dimensional continuation of supersymmetry to resemble 

the four dimensional version as set out in (6.1), we must 

limit ourselves to 2,4,10,12, .. dimensions. 	Put differently, 

we should replace n = 22, by n = 4(2k+1) and do a continuation 

in k down to k = 0 in all kinematic quantities. 	This is 

discussed in section (6.2) of this chapter. 	We set down 

the transformation laws for superfields in multispinor form. 

Then comes the critical decision of having to assign the 
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Lagrangian to a supermultiplet. 	There are two viable 

alternatives and we adopt the dimension independent definition. 

As immediate consequence of this choice is that the action 

is no longer supersymmetric (and the associated spinor current 

PE is not conserved) except for R. = 2. 	That is 

	

= anomalous looking terms. 	(1.11) 

By contrast to the previous situations however, the anomalous 

terms do disappear in four dimensions to all orders of h 

showing the spinor Ward identity is anomaly free, and this 

agrees with other methods of regularization16. 
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CHAP TER II 

KINEMATICAL FRAMEWORK 
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2.1 The Spinor Representation of S0(n)  

Generalisation of F-matrices to an arbitrary n-dimensional 

vector space can be achieved without many difficulties(5,6,11). 

We list some of the relevent properties beginning with the 

Clifford algebra, 

rm , 	rIN 	-_-_ 	2 rrk t.4 (2.1) 

Where the 	indices 	M,N 	run 	from 0, 	1, 	2,...to 	n-1. The metric 

of n 

TON = 

is 	appropriate 	to 	the 	S0(n-1, 	1) 	group, 	i.e. 

0 and nMN  = -dMN. 

When M 3 	1. 	This metric tensor 	7.1MN 
	can be 

n
oo 
 = 

used 

1, 

in 

the usual way of 	raising 	and 	lowering the indices, 

rM  = nMN  r
N
. 	There 	are 	some differences between 

e.g. 

even and odd 

dimensional spaces, but on the whole these are not very signi-

ficant to the later work: 

(i) When n = 22, is even, the F-matrices are of dimension 

2
2, 
x 2

t
. 	There will be a total of 22t-1 = n2-1 matrices 

obtained by multiplication and these form a complete set. 

First there is the vector matrices r,„ and then we have 

the <<spin>> matrices 

(KL) = Z i (rK, FL)  = 
i r

K 
F
L , K<L, 

The <<axial>> matrices 

r ( (1CLM) irK  rL  rM  , K<L<M 

the <<pseudoscalar>> matrices 

CCTK LM3 =. r, (lc 	rm 	 (2.2) 



1.1 

and in general, we define the antisymmetric product 

rt MI  Ma.  • • MIL) = 	Pm, Pm, • • • rm„.. 	 (2.3) 

up to a factor of i. 	The procedure terminates with 

r2...... 	 (2.4) 

The analogue of y5  in four dimensions. 	This anti- 

commutes with all the vector matrices: 

.LrLi  rm = 0 	cvAcl- (r..1) 	) 
	

(2.5) 

For short we shall denote all these matrices by r(r)' 

where r refers to the number of antisymmetric indices 

carried by r. 	Also there exists the generalization C 

of the charge conjugation matrix: 

n. C  
(2.6) 

and the generalized charge conjugation 

C c" 
(2.7) 

Where n
r = 1, -1, 1, -1, .... for T = 0, 1, 2, 3, 4, 5 .. 

(ii) When n = 2k+1 is odd the is still have dimension 2i  x 2k. 

( The vector set rm
2k+1) 
 consist of the vector matrices 

r(2t) (M = 0, 1, ..., 2k-1) appropriate to the even 

But we will see in next chapter that this choice of'y5 is not 
appropriate for anomalies. 



(2 1. 2) ro 	71 	1. X I. X • • • 

(2L+2) 
. .)(6"3)(6i- 
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( 
dimensional case as well as r(22,+1) E r 

-1
k) 

 ' 

We can realize these matrices as the direct product 

of Pauli matrices. 	In the generalized Weyl representation, 

with a Euclidean metric, we can write down a recurrence 

relation between the matrices. 	Thus, 

(2.8) 

and 

Thus 

and 

	

(2t+2) 	(2t) 
= rm.2, x 

(2,L+2) 	(2t) 

= rt1-2 X C3 

(20 
C 	= 	x icc xx2  

(2L-2) 
=C x643 

where 2 Kr1 	2L+d. 

(2 L+3) 

ri/L+2 

when 2, is odd 

when 2, is even. 
(2.9) 

We can readily pass to the pseudo Euclidean metric by inserting 

the necessary factors of i. 

From now on we shall suppose that the vector space is 

even-dimensional n = 2k, so that C exists. 	Dimensional 

regularization will correspond to continuation in Z. 	Clearly 

the product of an odd number of is has vanishing trace, i.e. 

2 Tr.(q " = 
	for 	odd 

and for the rest we have 

( 	f 

2 Tr. L rt4 r N ) 7: r61MN  
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2.1  Tr(rIK 11  mr; 
etc., of the special significance is the fact 

Tr. r., (r)n= 0 	unless ri.4 2i, 	(2.10) 

We define the normalization of other r—matrices by 

.t 	Dora ) 	r  
2 Ty. Cog.] 	 0%. — 

r.. EL 14N3 
2 Tr. 	r K3 

/..Lt. N] ) 
aLIJI(3 

(C) 
CAN] 

Et KLJ  

and in general 

E 	hik  • • • Ny3 
24  TY. ( CMS Ma . •• tA 1r) r 

r 3 rm.-N.0 

)=(-1)2-S .M 
(2.11) 

-t 	NS 
2 TY. Cr.mitAz•••TA-,-)r) 

2 TY. ( rE 

,C3 721 

N% 	ma 	NI.) 
1 N1z -EMI] 

	

cL Nt r  T42. 	r  3 ÷ K L. 0 tat o 	• .6 my] 

=0 

r NI—
T., 	Ivy) 

 

unless less 

9 

lot 	Na r  NY] 
itt.t41 bpii. 6  ti,f) 

5 11. 

(2.12) 

(2.13) 

and so on. 

We also list some of the formulae for the multiplication 
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rules, 

RI) r(i.) 6•■•• 
6•Mb 

(2.14) 

(This is also calculated in section 2.2 of Fierz metrix) 

C Pc , Pr).] ••••• 
.11■•■ 

(r40 

for "(seven 

for r  odd 	(2.15) 

Q.) , rcir, for r  even 

for r  odd 	(2.16) 

and the contraction formulae 

t4 

gr. N 	(54141%.3 	=  
6

An. 
• • • • 

tirt.] 

ric 14  IA, 	 01-n-) Tull  ma—M-13 

and 

rIC tAr'" t4n3 1 	7-- (-tit  ("9 	r) rt.titMe "Mn) 
	

(2.17) 

2.2 The Fierz Matrix 

The completeness of the r-matrices in the spinor space 

= 1,2,...2
t
) means that we can write 
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13 
8: Erg 2 	C r!rt) 	r`lr 

distinct r 
(2.18) 

For general matrices F and G the reshuffling theorem follows: 

Fick( 3 64r 	2L ft. 	
F rot) 	(m))(8 

10( 	ir 
(2.19) 

Suppose now that we consider spinor-spinor interactions 

expanded in terms of the 22,+1 kinematic covariants K( ) = 

r(r) x r(r) defined explicitly as 

Zr 
( rim 

(rEmN3 	rr-"143)E 
(2 :20) 

where the summation is taken over distinct r-matrices with 

no repetition. 

By reshuffling rule (2.19)we can equally well use the 

crossed kinematics covariants 

OE 
K 	 tic') )S4r(m) r (2.21) 

for the expansion. 	The linear relation between K and K is 

nr 	OS 
• t 	cs) Inctn) 

1-1") )(3 (1-4A.)1 

	

(s),Dti. 	2 

2t 	05 = 	cs,To (2.22) 
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whereC(s,r), the sr-element of the Fierz transformation 

in 2t dimensions, is fixed through the equation 

C 	Pc. 	vim] 

7-1 

 

nItIt 144-14.51 2 	 11 Nk• 	rZtitt4a.— t4":3 
clisfinctS 	 (2.23) 

By double reshuffling we may be sure that C2 = 1 and 

already know the boundary elements C(0,r) = 2-t. 

In order to determine the general element C
2t
(s,r) 

it is sufficient to pick a particular matrix r(r), e.g. 

r
0 

r1 	r
r-1 in (2.23). 	By summing over indices N which 

are and which are not included in r(r) one can arrive at the 

general formula 

cti 
C 
(LT, = 	 (-I) 

cti  

.t 	srttcy 
• = 1. 	2 (-1) 	(21. - 11-) 1  TL 

Cs-Rs)! (21-m-S +%) IA (T4-(01 
cti 

(2.24) 

Hence the reflection rules 

T1. 

C Cs,2L-It.) 	
rr 

	Os  C c s,10 
	

(2.25) 



17 

We can construct the matrices for 2,4,6,8,... from a knowledge 

of C(o,r) = 	C(1,r) = 2-Z(-1) 	(22-2r) and C(2,r) = 

2 (2(k-r)2  - t) 	 (2.26) 

so we might as well note them. 

Z. 

C 	( 1 I 
2 

2 
1 	I 

-2 0  .-4  4 	2 1  " 1  
c 	o -2. 0 C 

2. 0 - 
I 	i 	11 

1 	1 	1 	1 	1 

	

C 	-4 1 0 -2  4 6 

	

tc 	s-  -I -3 	c is- 

	

20 	b -4 0 4 a -2.o 
-c 	3 	1s 
4 	0 
-( 	1 	1  

	

.2 _ 	6 
_ 1  

1 	1 	1 	1 	1 

6 4 	0 2- -4 6 -8 
29 14 4 	-4 	11 111- 

-4 6 0 -6 4  / 

	

6 -10 0 6 0 -(o o 	70 

S'6 14 _4 -6 o 
2.8 -14 if 2 -4 2 4 -14 2ff 

2 0 -2 -4 -6 -2 

-1 	 -1 1 -1 
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So far as the Fierz transformation is concerned, inspection 

of C
2 
reveals that a vector is reshuffled into a scalar and a 

tensor (which equals the pseudoscalar in two dimensions) - 

in fact the Fierz invariants are K(0) - K(2), K(0) + K(1) - K(2) 

and K(0) - K(1) - K(2) with crossing eigenvalues 1, 1 and -1 

respectively. 

With no prior information about the origins of (2.24) 

the square property C
2 

= 1 would be far from obvious. 	If 

one wants to prove this from scratch the best avenue is first 

to construct a generating for the Fierz matrix (which yields 

other dividends besides). 	One readily checks that 

2i 	 • 

z • 
1+7. 

I c. 	Cm 2L 	S 
2 2.(-1 ) C cs,rL) co 2 

nis 
reproduces formula (2.24). Hence the representation 

(-1 ) SI C(so-) 

(2.27) 

S 	rt. (ci 	U+IV.L-Ttl 
del 17..z0 

(2.28) 

It becomes straightforward to verify now that 

Tecstr9ccrt.t )  = 
R 

S+2 2
-2t. 

SI  
 

(sL)s 
1(1-rz .(-1) (1-7)). :i .a 	L. 

2L—t c4-t 	 — [I+9Z 	(1-2.) 	 '— 
2:0 

(2.29) 
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The generating function (2.27) leads immediately to the re-

flection rules (2.25) and furthermore provides recurrence 

relations such as 

(201.) 	21. 	 2t 	 ( 2 C csoL) 	C cs'') + 2 	C s-4 ot-) 	C 
2. 
 C tt.) 

(2.30) 

(2(+2) 	 2( 	 M 21. 	 at 2  c 5,x+2) = C(sari) 	7Q-1) 	Cs-1 n..) 	C Cs.z ,R)I (2.30') 

which, if desired, can be used to build up matrices of larger 

dimension from those of smaller dimension. 

In the text (Chapter V) we will meet numerators of 

Feynman integrals of the type 1 
r(4) 

 1 r(4) 	r
(4) 

where K 

is an internal and p is an external momentum which are simpli-

fied as follows after symmetrical integration 

 -1 	(4)vo -c 	(20 	r 	(Li)  
=01 KI 	r(4)  ([ ro; 	(i) 

rt") t  t r,„)  1' 

 

C (co) 	 C Cleo) )-1-6-1  
+ C. C415) EColt0 C cl) 

-1 	n 
= 2 (4 K 

  

-1 	 1 ,(1 ))'\ 
2

L
(4t) e 	) 	(4,3) 1: fiLl) r 	-F C 	s)( 	1 	3) 

• 0), 

(2.31) 



20 

171) 1;9 if Coo C 	= 2 PI) roi) 
•••■■111/ 

• U, 17.4; 	-1-Evirto 
qt.& NJ r"1 +ak, not)] r".] 

2"r4 (41 2) (L& 17-1.41 $ r")+ c C(4.9[[iP, qui) 

) = 2 [k, 1-(!t4)] (C (4,1)1cti) +C•Clio) 1 + 
+C 09'0 CC ( ‘,$) — C 0,01 (2.31') 

2.3 Majorana Conditions  

On charge conjugation  

In the Weyl representation for instance the charge 

conjugation matrix is given by formula (2.9), i.e., 

C 
	

6'2  1 xra  x 	• • • •)( 	 when 9, is odd 

21. 
and C 	C2X1 Xe2XI X - ..X when 2. is even 

 

= C X 63 

 

(2.9) 

For example when 

C 

2 , C:. 	)( 

, C 	6"2  )t x tra.  

1:- (4  C 6.01x 63 etc. 
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we observe the following property 

t.i.13 
C =(_ 	 C (2.32') 

wherp (v) denotes the nearest integer equal to or above v. 

Beginning with 

f'm C = - rM  
C r['s 	 o]) 

etc. 

we establish the general formula 

ittrt,41) 

C rot)  C = (-1) 
(2.33) 

which can be recast in the index form 

1.11.L3 +.12: A.01-41) 

-= 	
(C Ilt))8/5 	(2.34) ri 

If ip and A are Majorana Spinors, they are defined by the self 

conjugacy relations 

= 91, 

(2.35) 
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(In the Majorana representation, this becomes a reality 

property.) 

- 	
(T42) +P? Li 

I'ro 	 (  

(2.36) 

A little table will help to provide a picture of these 

symmetry properties. 	Taking IP =0 it follows that some of 

the bilinears vanish identically. 

7., 	I 

2. Aims. 

EL 2 

4 dims 

ez..3 

G dims 

C= 4 

$1 dams. 

1..::T 

to darns,- 

L: 6 

12 cii-rn S. 

1- Cr  r Cy -r CT T cy  r 4--e "7 Gy 

0 I o 1 0 -t 0 -1 0 t ° 1  

1 -I 1 -1 I I I I 1 -I I  -1  
2 -1 

2 —1 2 I 2 I 2 _I  2  —I 

3 1 3 -I 3 -I 3 1 3 1 

4 1 4 --I 4 -t 4 1 ti I 
s-  1 S" 1 Ss  - I s%  -1 
6 I C I  6  -I 4 -I 

7  -r 7 t 7 ( 

8 -I g I 8 1 

9 -I cit  -, 
io /0 -) 

11 ) 
II. I 
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It is clear that to have 00 A 0 we must work in 

2,4,10,12,18,20 ... dimensions. 	Put differently, we should 

replace n = 2L by n = 4(2K+1) and do a continuation in K down 

to K = 0 in all our kinematic quantities in order to deal 

with Majorana Spinors. 	Having decided on these dimensions, 

the surviving antisymmetric bilinears involve the scalars CaS, 

the axials 

(Q3, - 	ru(LtA C 
the pseudovectors 

rcL4) c 	a (rEKLPAN3 C )04p 	
(2.37) 

and so on, similarly to four dimensions. 

As far as quadrilinears are concerned, note that not 

all of these are independent because of the Majorana re-

shuffling relation 

ty,o 5 rts, e 	- 24  /6 Pm Ptt) rcs, 0 -6 rte 
t 

A4vm11,444c 	 (2.38) 

Obviously one could amplify much more on these spinorial 

expansions but that will not be necessary in our work. 

2.4 Current Algebra  

Let us now consider the current algebras following 

from the generalization to 2t dimensions of the equal time 

commutator 
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x) kii(t► 9.) 	-=. 
(2.39) 

Firstly, we define the currents for t ¢ 2: 

To) = TN r- 	 a true vector, 

I(%) 	TcmN3 	Y ri.ms-, 

T(3) = 	m N PJ 	T r[,t461/41/ 
an <<axial>> vector 

(2.40) 

]-(„= 	 kp 
pseudoscalar, . 

•tb 	,11) 

11 	 n 

0.1'1) 	r-Nc4, 
e <<pseudoaxial>> vector say 

the true pseudovector 

and finally 

1-(q) ---- q F.' 
are all distinct from one another. 

We shall now work out the equal time commutation re- 

lations for the currents. 	We know that the time component 

,+ 
of the vector current, IP Yo  Y5  Y'is equal. to 	Y5  Y. 

it will be sufficient to consider the currents 

j  (x) = 4) ( x) f 	qicx ) 

Hence 

(2.41) 

in general, and the equal time commutation relations 

20 jet.)ct,x) ► j„) (i t  Q)] 	kl)(%)[r(11) 	ro) ii)(0)Scy()2.42) 
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To simplify this we need the commutation relations of r-

matrices which are obtained from 

[ A ,CD] = A (Li ill - A c D, (11 1- 

(2.43) 

Starting with y = s = 4 (the time components of axial 

vectors), we obtain therefore 

[ jEK1 44f43 (t) LC)  

) LPP KS] et" Q)  J  

c?.1) L ILKp1Ltrt1mk 1Ns1 +1LI(P3l-mtook53 

leading us to new currents j
(AB)'(LMNPQR) beyond the 

vector and the axial vector set. 	In fact, commuting these 

six-index currents produces new currents with eight and ten 

indices, and so on until the procedure ends when the number 

of indices exceeds 2k. 	Therefore we have to take r = s = 

even in (2-42). 

To generalize the classification of algebra in arbitrary 

22, dimensions, we first work out the algebra in 2,4 and 6 

dimensions. 

2 dimensions  

The only even r-matrices are r(0) 	= r (0) = l' r(2) 	r( _1) 
 

spin matrix. 	Hence the trivial commutators 17, pi th 

(r(o)' 	= (r(o)' r(2)) 	(r(2)' r(2)) = 
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The projectors are (1 ± r_1) which are in the Weyl represen-

tation given by the (2 x 2) matrix of the form 

(1 + 

(1,_ r..1) 	
0 n 
	 (2.45) 

Since the spinor in 2-dimensions has two components, each 

projection operates on only one component and the complete 

algebra is given by U(1) x U(1). 

4-dimensions  

The even F -matrices are 

(  PO) = 1 ) ro.) : 54  -. 4 11, rorl i ro Lrort i nr1.,r1.cs,r1r. 
A. 	1 

6' 

(2.46) 

and 
	it„ = r 1 = i n 

The commutators are 

go) 	k.10) 	rio) • 1;4 	= [ rko) 	1.1) 	= rem, Cy) 	0 

and 	[ rkz) (7.1.1 I 	[rr 	re re 

=16v 	rf — 	rr rd• 16.r 	r, r, i;)  

Thus commuting two spin currents we get a spin current. 

It is obvious that (2.46) can be generated by the 

elements of the group 

1. l 	, C r_, 	 (2.47) 
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The projectors are (1 + i r_i) which in the Weyl represen-
tations are given by the (4 x 4) matrix 

+ 	)(lir) 	(2.1(21  0  \ 
o I 	) 

0 	 

	

where both 2 x 2 matrices are unitary, 	Hence (2.47) is 

summarised by the genera.tors (1 + i r_1), (1 + i r_1)f and 

(1 - i r-1), (1 - i r-1  )a each forming a U(2) group separately; 

hence the complete algebra is U(2) x U(2). 

In this particular example the U(1) x U(1) subalbegra 

of 1, r_1  is closed. 

6-dimensions  

Here the even r-matrices are 

110  Tz- 1 ) 	2.) 	= 	PO PC 	ri 

CZ to 	ri-N4 PQ 	and 	r- r-1 	ri 14 rr 

The commutation relations for them are 

LQQ) , t 3 	, 	, fir), 	0 

z 

Ert%), nt-1) 	= Lrp rtLmr9] 

(7414- re I. pAN 	16? it 1731- rit N 	KLN 	IDestrn. 	ft";.)  

P(4) 	fl,) 
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Finally (r(4), r(4)) 	r(2) + r(6)  as we've already seen. 

Hence the set (2.48) can be generated by the elements of the 

group 

I) 6.3.4N , 	Cr.4 N 

Similarly to 2 & 4 dimensions, the projectors are (1 + r _1) 

in 6-dimensions which can be written in the Weyl representation 

as (8 x 8) matrices. 	It follows that the complete algebra 

in this case is U(4) x U(4). 

Thus the complicated current algebra for large P, 

certainly closes. 	The precise classification of this algebra 

in 2k dimensions is U(2t-1) x U(2
k-1

). 	In any case it con- 

tains the physically relevant current subalgebra U(N) x U(N) 

generated by the space integrals

11-1 
F it) = S "11  Ltd.() 	Lt, X) 

with 

F 	f k-kt, 	1.1 13 A kit' tt, x A:4X 

[Fv, Fv ] 	[Fv, F i4 	[e, 	I 

The crucial point is that even for massless fermions; although 

A .A  
F= 0, F 4 0, because the fermion kinetic energy is not 

invariant under 'chiral transformation as we shall see. 
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2.5 Classification of Particle States  

We present here a resume of the classification of 

particle states in 2k dimensions with particular attention 

paid to the massless limit. 	We begin with the generalization 

of the Poincare group SO(22-1, 1)A T(29) generated by the 

linear momentum operators P
L 

and the angular-momentum operators 

J
MN 

which satisfy the usual commutation rules, 

[PM , 	= O, 

N PL. 	C1NL Pm 	mt. PN ) 

[ JNN 1 4T9 G, 	L (-11.41) Jpick + lmq 	p 

— fk4 P 7t4 — 1ij %TM P) 

Because of the changed dimensionality we can define (2.-1) sets 

of Pauli-Lubanski <<spin>> operators W
(r) 

14(3) or WEAKAN3 = PLJ TtAt43 

W(T) or WC-JW*1-Mt4 ) 	PC-J'IPLL- IMND 1 	" I  

W 21.-i or 	W CMI  "t • -MIL-I) 	PL m 3ma.I.A3 

(2.57) 

all of which are translationally invariant 

(P 	W
(r)

) = 0, 	T = 3,5, .., 2t-1, 

and whose squares W(r) W
(r) 

are casimir operators of the in- 
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homogeneous group like P
2
. 

To understand better the significance of the W, suppose 

first that we are dealing with P
2 
> 0 vectors. 	In that case 

we can induce all momenta from a frame where P is at rest: 

P 	The little group is SO(22-1) and is generated by 

all the spatial JKL; the W(r)  have one index equal to zero 

for rest states and are given by direct products of the spatial 

J. 	In fact since an SO(22-1) representation is described by 

Z-1 casimirs, these invariants are precisely related to the 

"(O. 	The remaining i2(t-1) labels needed to specify the 

state vector fully correspond to picking out particular W 

components and subcasimirs. 

Next we take P
2 
= 0. 	Here we only permitted to induce 

our vectors from a frame in which the momentum has 0 and 3 

A 
components: p = (E,0,0,E,0,...,0) say. 	Now the little group 

is the Euclidean group in 2Z-2 dimensions, SO(21Z-2) A T(2t-2); 

the rotation generators are Jkz, k,Z = 1,2,4,..., 29,-1, and 

the translation generators are Jk0 - Jk3. 	Again these 

Euclidean operators are just what the 
W(KLM) reduce to on 

such a momentum eigenvector, the higher W
(r) 

being direct 

products of P and J. 	In practice one is only interested in 

the finite-dimensional basis wherein the translations are 

trivially represented; in these circumstances the little 

group is effectively SO(22.-2) with its Z-1 casimirs and further 

1(2.-2)(t+1) labels for designating the weights. 	In particular 

one has 

MI  Mx  • ..M1L-13 = 	.11 1 	•m" 	 (2.58) 
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where A is the SO(22.-2) casimir of degree t-1. 	In four 

dimensions, of course, A has the significance of helicity. 

The finite-dimensional spinor representation of 0(22.-1,1) 

holds special interest because it is the direct generalization 

of the four-dimensional Dirac spinor. 	For massive particles 

the <<Dirac equation>> (r.p-m)u = 0 serves to cut down the 

k-1 
number of degrees of freedom from 2 to 2- 	and these cor- 

respond to the spinor representation of the little group 

0(22.-1). 	However for massless particles therefore is the r_l 

invariance of the equation which breaks up u instead into left 

- and right-handed 2
2"-1 

compnent spinors: 

= 1(1 - i r_du 

and 
	

u = 1(1 + i r-1)u 

corresponding here to the little group SO(2Z-2). 	In fact 

when m = o the Hamiltonian u
+ 

ro r.p u can be re-expressed as 

10 A u+ r_i u, where A is the 0(2Z-2) casimir, represented 

spinorially now by 

i X 1 X ' '•'x 6' , 	x 

with eigen values + 1. 	The other commuting W
(r) 

operators 

which serve to remove the degeneracy in the classification of 

neutrino states have a similar structure, viz. 

-[C XI X •••• x 

l x!s, . x-••x i 	etc. 
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For P along the z-axis the W(z)  eigenvalues are given by 

diagonal matrices like 

I X 6's 	. • 

e.g. in 4 dimensions by 
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CHAPTER III 

ONE LOOP CALCULATIONS IN SPINOR THEORIES 
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3.1 Generalized. Self-Energies  

In calculating higher-order corrections to four-Fermi 

interactions one encounters fermion loops. 	By Fierz trans- 

formation these can be recast in the form of meson self- 

energy parts 

S) 

( X  ) 	< T UP(x) rol.) TOO Tco) ris' i)(0)] > 

which we now proceed to evaluate for later reference.- For 

the moment let us be as general as possible by supposing the 

fermion is massive. 	Fixing y 	s for definiteness we have 

to evaluate the momentum-space integral 

Trui—t-0 
•Leti*( cl-"t) Tr (1"cm,..m,-U+hi) '''4%..14s3(k+/fc-tAvi) 

ou)2̀ 	len') [0'-o l.—  
Introducing a Feynman parameter a in the usual way and utilizing 

(2.23) one arrives at 

9.O 
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sn-ENI.... Ns) t  
I 	mi  • • • my] L. K 

1 clo“-Ir• (111-2—) 
0 Drill— I(.444  I TL) " 

CC :Ns) 
1 	OC.m, • • •m,)  

IcIT)N1 ..,lay] 	r(2 	 r  c 2.7,,L. 
0 L  

leLit 0 -00 ]21- 

j.N —Ns] L.  Nit- Kt  • • • Ns] 	2 041 1st) k 	a • • tina r■L  
( 3 .1) °Chit tArc ) 

The results for r= 1 and -r  = 3 have been given previously(1,5). 

In particular, we observe that when the fermion mass is zero 

is diagonal in the number of indices: 

7'41 —mo (k) Pty-t)t1,  f 
OA) 0 

sack 

 

-147-v. .-44) ]I-L 

Coy (RI - 'Nlit") 
144- " 

(—I 	 [N) (2. L-11--  I) 	(11(  gr.mi  

(3.2) 

The vector self-energy complies with the gauge in-

variance 

MN 	7r(2.-9e9- 	do( 	to 
..._ 

 
I  0 

=7- MN 	Kr4  IT (K19 
I 	10- 

(3.3) 

and its x-space transform can be usefully expressed in the 

form 
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a. IT" r*  ( 
t  (%() 	1)(2. c -0-  ( ebN,.../r4a2.) D2.0, 

(3.3') 

corresponding to the Fourier transform 

esq[4.K.xiTrc0)2/1(2.(2,x 1- 

)
2 

(3.3") 

where the massless causal propagator is (see Appendix) 

aa 

)(x) = r 	xt+191 747rL  
(3.4) 

In the two-dimensional limit IIMN 	(1114N - KM KN/K
2
)/7,- is 

finite: 	For future reference we also remark that near k = 1 

(i—i) 	61C-X2-449/13X2-  17: — L ])00,/fln, 	
(3.4') 

Two dimensional accidents  

From the Fierz transformation in two dimensions it is 

clear that a Feynman diagram like Figure 2b will vanish in 

two dimensions; 	this intuitive guess is substantiated by a 

careful passage to t = 1 only because the vector self-energy 

happens to be finite in this limit and multiplies a fading 
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Fierz matrix factor C(1,1) = 2
1-2,

(1-0. 	We can anticipate 

many happy simplications for the Thirring model therefore. 

In any other dimension but two the argument could not be 

pushed through. 	There exist a number of purely spinorial 

identities peculiar to two dimensions which are vital for 

summing the 2. .4- 1 perturbation series. 	The general identity 

rfq 	= 	2(.• riLt4N] 
	

(3.5) 

reduces in two dimensions to 

rAr r,, (3.5') 

providing we do not close the fermion lines between which 

this matrix acts (or if we do so, providing the'fermion loop 

integral converges). 	Letting S(p) =(p.F)-1  stand for the 

massless fermion propagator, another general identity is 

Sco r 1 Scp-K) = 	+ 	 s yks.. 
2t: pLK" 	scK) s(P-9/p2- 

(3.6) 

and it collapses into the two dimensional form 

S00 riot S (P"10= K tl 	le's) S CP'-19 _ S C ))/k 

(3.6 ') 

Y
o  (1 	In view of 1(3.5') , because r(  ) 	Y 5 E pv 	pv 5 	'' 

an equivalent way to express (3.6') is 
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S(P) rt. so)-K) = soc)irvs(P-K) — sc*ri,s09 
(3.6") 

Rules (3.5'), (3.6') and (3.6") are absolutely crucial in 

summing the perturbation graphs(12)  for the Thirring model 

and in proving that  behaves like a free field(17) 

3.2 Perturbation Theory for the Thirring Model  

We shall now focus on the lowest-order quantum loop 

corrections to the Thirring model in 2k dimensions: 

T(4-hi)kii-q3CPrs',440(.4-) PN T) 
(3.7) 

in an effort to understand the miracles which make the per- 

turbation graphs summable in the limit 	1. 	We will 

essentially be repeating the calculations of Mueller and 

Trueman(12) except that instead of introducing regulator fields 

and nonlocal interactions we shall be relying on k-continuation. 

The simplest calculation, that of Hmm(x) = i<T(J M(x) j m(0))>, 

has already been done in lowest order and is stated in (3.3). 

Higher-order corrections to H 	amount to summing the bubble pv 

graphs because other diagrams give zero at k =i after Fierz 

reshuffling; it is not hard to see that the complete sum is 

7e-w(K) e/ i rkv 	Kikkyo--t ) 
For our second task let us evaluate the second-order fermion 

self-energy: 	the two graphs depicted in Fig. 1(a) and (b) 

(the latter being zero at k=1). 	For general k they add up to 
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/0)) = L51(1)61'1001( Po) go,091.7-((:), 	c(„Tot, 
tq 

• 

since II is diagonal and vectorial and since C(1,1) = 2
2.-1(l-k) 

we get 

1D + 	L)] CL2t 	riN (1"1- KM
Kt4/ ) Pfq  .Troe) 

J(2.•1` 	( As 	) 
(3.8) 

Fig. 1 - Fermion self-energy graphs in order g
2 

Now one of the important consequence of DR is that 
fd25t, K, 

fand 	 (Appendix A) can be consistently set equal to zero 
K 

 

(which incidentally explains why E vanishes to order g). 

Therefore, 

suo 1(?) so)) , 
= 52-+ tZ  	C2 521  e -T-( KD  

K ch +A) • 

If we put 2, = 1 at once, E(K
2) 	Tr  and we recognize the Fourier 

transform of g
2 
D(x) S(x)/7, the free massless scalar and spin 

propagators being 
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Dcx) 	t:E.y4N 3 

S ex) 7:- 	Dcx) 	x/2.x( xt_is) 

However if we reserve 2 3 1 till the very end and make use of 

(3.3") we deduce that 

S ic x) :7- 	-r(\li(x)'1'(0)) 

= L S C >0 D + 92t2L-1- 	-L)) 	Yo() 
(e2t-i) 	-t• • • • 	. 

(3.9) 

The Johnson Hagen answer is recovered
(12) 

by recalling the 

limit formula (3.4') so that 

f(x) 	C. s (x)D t: 91)00 .. -7 

Summing over higher-order graphs in the manner of Mueller 

and Trueman (which simply corresponds to dressing internal 

vector lines with bubbles) one ends up with 

C. S100 = t, So() -e.xp 	b(x)/(n+9)] 

(3.10) 

Consider next the vector Green's function 

<T00 Je "c t) kl3o) 
which also receives two first order contributions (Fig. 2(a) 

and (b). 	Following the same line of reasoning which led to 

eq. (3.8) we obtain the momentum-space amplitude 
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Tm(1. K) .7: 5 [2"' + 2.0-0 I S (1))(11"- 114  KN/i;) 11,1  

C9 El + 2"0 -91 TPA') rmig K [S(P-10 - S yo. 
(3.11) 

Fig. 2 - Vertex corrections in order of g
2 

Taking its Fourier transform we get the x-space Green's function 

C 	 N ,s 	-L)] (t-t) rEtKor, 	[D z-x) - 13.(7.-1)] SO(-01  

and as 9 -4- 1 we can recognize this as the first-order term 

in the complete answer 

(3.12) 

which comes by summing the bubble graphs and dressing the 

fermions. 	To close this section let us sketch how one may 

work out the four-point Green's function 

(T [Too kT)cv) 9)00 q) (V)] ), 

Up to order g
2 
we have to contend with six diagrams as well 

as their crossed versions (Fig. 3(a) to (0). 	The main thing 



and pseudoscalar 
&N. 

(a.) 
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to expose is how vector exchange can be replaced by scalar 

Fig. 3 - Fermion-fermion scattering in order g
2 

exchange through a judicious use of (3.6'). 	For instance, 

in lowest order 
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S(t) so3-K) esuoirsocK) 
= 3 le/ City + Errrs ) [sol-K) - s(P) 

D Ka 	frA+  erA ieg  ) Es 	V+ K)]/ 1(4  

5 [s(p-K) apoj (1® + -Tic Oic)Lscv)- s(Voc)/ 

(3.13) 

Together with its crossed version amplitude (3.13) has the x-

transform 

is(-rt). 

D(x.- )0 	)01-J)+1(1)-1s (x-1) sott.li) 

In order g2  diagrams 3(b), (c) and (d) have already been dis-

cussed and it is easy to see that 3(c) and (f) have cancelling 

ultraviolet characterics as It .4- 1; both lead to the amputed 

amplitude. 

(Q-A)2‘t  

= c t rm gcti) Pr4 	(rNs (p+13,-.co r 

r" 	P 4K-v 	r 
ect, rm sm RI Q qs(p-i.v..q,) s(14-1)iKiti,)) rN 

if we drop all 
r(MLN) 

 terms. 	By persistently applying (3.6), 
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the Green's function can be expressed as linear combinations 

of integrals like 

( 6D Ts ic 	(1-24$ 
J(QA-) t 	$2 	-1,)11  

S (1)-K) - SCP-$)] .c) Es 04+14) — scv+coi 
which are in turn recognizable as Fourier transforms of mixed 

terms 

0 I - irge-rc) boe-)e) Doc-3) so e--0 
All this is just to indicate how the general sum of eikonal 

graphs
(4) 

can be performed. 	With dressed fermions, the 

complete Green's function is 

€xl)P.9(101-i,50 -is-C1+ 5/2c)-1 1 . 

, [Dot- x') 	 ÷ D(1-11) 	. 

S oc-n 	S(xf-Y) 	
(3.14) 

a result which otherwise appears rather mysterious. 

3.3 Anomalies  

In two dimensions one identifies y5  with the spin 

tensor r0 r1 (although its charge parity is negative). 	The 

correct approach to extract the two dimensional axial anomaly(17) 
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is to associate chirality with the set of spin transformations 

* 	exp ( i6KL  r (KJ41  and to take the 2., -4- 1 limit of the 

axial Ward Identity. 	Thus, under an infinitesimal <<chiral>> 

transformation, the charge in 442... , expressed in the two ways 

= 	6e"  Q7V 	
-i- 

+ 	kT (PM, PE.K1.-3 'I/  r° 	) 

e+ 
seKL -4 (kp rim 3 rE.KV) 	) I  

yields the PCAC relation 

(, 	1 11. 	= 	 tPfrmic(1,1T‘pq.  
(3..15) 

The anomalous terms on the right-hand side of (3.15) are 

non existent in two dimensions. 	But it would be wrong to 

delete them(5) for 9, = 1 owing to fermion loop corrections. 

Specifically, there is a transition from vector current to 

axial divergence 

Kt: 6c.ofrt.3 k1 l q)- rf,.4 	 rckq,,P riviT 

 
where the (* 1')

2 
 anomalous term can be disregarded because 

tadpole graphs are necessarily involved. 	In momentum space 

the calculation devolves to the product of an integral which 

diverges as 9 	1 and a trace which disappears as 9, -4- 1. 
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KcKirom = 4) 	Tr. [( 2/is+A I Go 1 /1 rm c /0 +,9] 
(2xj" 	( 1)-F K )2  102  

— 2(1-9 f.,, 	 I 

1-(2)01- Lsv(Kivi kL — 11 1,1.  km ) 	06( rci-o  
0  [0-0((a- orL  

(3.17) 

If we were to introduce electromagnetism elpr.Alp into the Thirring 

model, one would interpret (3.17) as an anomalous PCAC 

equation 

/44  
i‘rs 	e 

in lowest order. 	Summing the higher-order bubble graphs, 

the effect, as usual, is to replace it by Tr 	g. 	It is per- 

haps important to stress that no other anomalous amplitudes 

such as <LaiK Nt r  ) ,v 	r  1)› survive the limit 9, 4 1 
k 	1 	L)  I, 	M 

because the fermion loop integrals are finite and multiply 

zero kinematic traces. 	As we are discussing the Thirring 

model in the context of dimensional continuation we might as 

well show how the scaling anomaly too can be consistently 

determined from the trace of the stress tensor 

ONN 	(1- 0 3 (CP Pm+) CCP rm  4i) 

= 	9. ( L-0 4.IN-r. 	 (3.18) 
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which does not vanish except when Q = 1. 	The anomalous 

scale dimension of if) can be obtained from pair of relation 

 

= 2.(L-1) L <Y(x)Ski.t. d"s 4p(0) (3.18') 

which is written in perturbation theory as 

	

, 	ft.' celz 

	

2ct-oi, <q)(9.1 fa  cP 	.e. 	kpto) > 

c3ficer 
..-,.. 21,-0 ,.. ,(1/Lx) a-i-  Z ci.24z e.J 	-). Co) ) 

q Z 	I:  I kr Ct2 LZ 2.0 t-I) < LP (x)  ki 53 €.4 	kP0)  

2(t-0 , 5'c') 
 

Now we define the dilation current 

D
m 

= OM XN 

and the divergence of the dilation current is 

aM D = O
m 

E D 

where 

itD,41 = (x.3 - 2d)ip 

With the help of this relation we can write (3.18') as 
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2(t-1) 	s< (x) 	(x.17  _ 2,a) S'cx) 
a9 

(3.19) 

Having already seen that near 2, = 1 

51(x) = SCK) U. 1+251(t-1) ecx) 

we can proceed to the two-dimensional limit 

Li hi 	2  ( 	 Cx..) 	Lim g 	L -1) 2  (x) sot) 
CSI 

31" soc) 
2_7c)- 	 (3.20) 

giving the anomalous scale corrections of g2/472, to this 

order. 	If we sum the higher-order bubble graphs, the 

total scale dimension is amended to 

(3.21) 

which could in fact have been immediately deduced from the 

nonperturbative answer (3.10) as did Wilson18. 	Since a 

change of gauge alters the scale dimension without affecting 

S-matrix elements, Mueller and Trueman have questioned the 

physical significance of d. 

Now we sketch briefly the method of extracting anomalies 

in four dimensions. 	There are in fact many anomalous matrix 

elements which can be obtained by the same principle, but we 
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discuss in detail the cases of the <AVV> and <AAA> anomalies 

like the previous case of anomaly in two dimensions. 	We 

start with the dimension independent definition(5) of 

Y5 = r(4)' 	This has been tested by several authors as the 

correct way to extracting anomaly. 	Once the question of 15  

has been settled we can write down (see Section 2.4), the 

axial current as 

r
(KLM) 

* 

and pseudoscalar as 

r(KLMN) 

As our previous two dimensional anomaly, we again associate 

chirality with the set of transformations 

exp(i (KLMN) r
(KLMN)

)4/. 

Thus under this infinitesimal <<chiral>> transformation, the 

change in the Lagrangian can be expressed in two ways which 

gives the PCAC relation 

.6E.K 	FILM r4 	= 21AL q [ID( LI■4 	te 

22 A 	
r 

 DcL.tA r.4") 

where the extra term on righthand does not exist in 4 dimensions. 

It should be noted that even for m = 0 the kinetic energy is 

not invariant under these chiral transformations. 	In fact 

because of this we meet a new overall-pseudoscalar current 

which is precisely the axial vector anomaly and can be obtained 
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by calculating the closed fermion loops coupling to other 

two vector currents. 	That is if we calculate a triangle 

Feynman graph with two vertex coupling to two vectors and 

the third one with (2P+K) 
J r  
'(JKLMN) (<AVV> anomaly) we  

obtain the same Adler anomaly in the limit 2, 	2. 	The 

contribution from the new current is 

TM I 1.4 N 	(K • 141) 

C,  el 	cc" 1) 	1[CP-1151— 0'3 Dol— 14A1-] EC 15+  "11  "v3  • -- 4.1 (2.4)  L 	(2.)t )11.. 

■ 
. 	((2-/f-FA-At, f4r7K1 	ig t ) 1-

PA 
PM +tm) E(45+40 tw 

‘
ji  

This integral can be very much simplified in this case 

because we are only interested in anomalies. 	We drop all 

(K-g l , r (4) 	terms (we will see why in Chapter V), and consider 

the fermion to be massless. 	In fact, we can also drop all 

K's in the denominator because we are only interested in the 

divergent part of the integrand. 	We find 

Er pct.]  retz el,  Tr, 0.115 	if(  Gi I-1,4  Al.) 
4 I, 

(2.23) 

Using the symmetrical integration and Fierz transformation 

C 
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formula, the above trace can be further reduced to 

Lec(1,2)  cep  102 f7  Ty (rC1.4(#rt-11E. 

4! 	x)1t ( 
w. 

because the anticommutator of K's and r's does not survive 

the trace. 	After integration (see appendix) and taking the 

limit £ -4- 2 with C(1,2) 	1(k-2), then 

[LTKI-3 
TMN (") 

 

Ci Pg.] 	1 0 
e.9-  • L M N gS3 

 

In 4-dimensions this corresponds to T (Kew) Lir itoJef 
which is the famous axial anomaly. 	This calculation amply 

confirms the interpretation we have given to axial vectors 

and pseudoscalars in the context of DR. 	It means that one 

can now study interactions involving 0 and 1
+ 

currents with 

some degree of confidence and compute overall abnormal ampli- 

tudes. 	Now we shall examine the triple axial anomaly(5) 

> 
due to the spinor loop which is the only other anomaly peculiar 

to this simple model, (no internal SU(n) indices involved in 

the current). 

When we take the divergence at one of the axial vertices, 

the Ward identity, 
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t V") h°11 I  kE. H rI7 [./1 

[(4,40_,A A„.,7, 	_ 

- r 	Ch—  
m) [(Ai-g)--111] raDa7K-, t cJk.r 

means that we shall have to cater for (i) the usual pseudo- 

scalar-axial-axial (PAA) vertex; 	(ii) two self-energy like 

graphs due to contraction of propagators plus (iii) the 

anomalous term involving the antisymmetric product of five 

matrices. 	It is not too difficult to carry out the per- 

turbation calculation in spite of the profusion of indices 

if we recognize that the four dimensional limit Z -4- 2 is to 

be taken at the end and that the anomaly emerges as the product 

of an integral which diverges in this limit multiplied by a 

kinematic term carrying a tracing factor (2.-2) which vanishes 

in this limit. 	Kinematic factors like d( 	which  which have 
(JKLMN) 

no place in four dimensions can be disregarded. 	These im- 

portant technical aspects of DR are well substantiated by 

detail computation. 	For sake of simplicity we shall set 

K
2 

= K12  = 0 to demonstrate the workings: 

(i) The <PAA> vertex is described by the tensor element, 

* 
These graphs also occur in the <VVA> anomaly but happen to 

give a zero answer for arbitrary Z. 	This is not true in the 
triple axial case. 
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4 r x i( TL MN 	C l<1  

cetp dx.ty 
C r.+ (2.K.141 	-yr12-)1

• 

• TY [ 	x- he( 1-1) ÷144) 	,41 141 3 1...k,ikx +4'1 +mi. 

• fEL,414 .)  A6 + 	(1-)9 4/y +KA} r ttfr 7 1() 

and the trace gives rise to the typical kinematic 

terms 

E L L! 	pl N im p t413 
EHIa lc) 

Kr-LK Li. 	M N s 
does not exist in four dimensions and multiplies a 

finite integral 

(L-2) ,S4  cep pi-0314.1K. I(' `A I 	oty Go-x-y) 

while the latter factor multiplies the integral 

Iti(a - t) (7-4%)- ickxcty 	+ zy -1) (9,K. K/ xy 

which supplies the traditional answer when ft -4- 2. 

and 

• The former factor 
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(ii) The self-energy integrals boils down to 

Litt 7 IC) 

I  LLNI N)L1-1  he 

— 	[ 1.L_,,, N)  EZ Li m f,,,13  r Etii7iq]. 

. 	alep 	(.3-t) ID-yt  
C2N)21 	Q?1- rro-y2-  

and must be added to the 

(iii) Anomalous integral associated with the new vertex 

rEvii7KD 
In fact the sum of (ii) and (iii) yields the <AAA> 

anomaly 

PH 1-31c)  r(3-0 clx dy (2x 21 -I) G(I-x-1), Kr.L. 	r4MM P  NI  

which is one third of the <VVA> anomaly. 

Following work of Akyeampong and Delbourgo19, Kee has 

worked out all the anomalies and these include the overall 

normal anomalies, where normal objects are defined to be 

(letting P stand for parity). 

(-1) J .p = 1 

and the abnormal objects are defined to be 

(-1)j.P = -1 
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The definition of normal amplitudes is 

EJ. 
(-1) 	1.11 Pi  = 1 

and that of abnormal amplitudes is 

EJ. 
(-1) 	1 .11 Pi  = -1 

These extra normal anomalies contribute a term in the 

divergence of axial vector current, in addition to the abnormal 

Bardeen
19 

term, i.e., 

ZIA  4./4 	2014_1  + Abnormal + Normal. 

This means that even for normal amplitudes like <A A > 
v 

Av 	<2m P, 
P1, A IA L KAA ( 

Other anomalous normal terms are 

<PP > 1111") /A-1" 

11( ve4 	1g hi.9 6T0- 

p l Ar s> 
pf  p vi, > 

C K 1. 

wl 	KI ),11-1T 1-  f. 
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P ' 	r 

/".= 1 4  (3 K%-.4- Ki 2+ 3 K le . 6 hi's)] 0.2.. 

where K refers to the momentum carried by the pseudoscalar 

field P' having the anomalous kinetic interaction and K' 

refers to the other unnatural leg of the three-point vertex. 
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CHAP TER IV 

WEAK INTERACTIONS 
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4.1 The Weak Leptonic Lagrangian  

The two basic properties enjoyed by the usual four-

Fermi current-current interaction 

oc, 	- cies) kr2  -r/A0 
(4.1) 

are 

(i) left-handedness of the 2-component lepton spinors; 

(ii) Fierz-transformation invariance of the Lagrangian, 

Le. 

kto.)‹ k713 -rt Cr- tic  )% "Plifi(1- 1: les- ) tr4t - 

(4.2) 

Since we have no prior knowledge about the structure of weak 

interactions in arbitrary dimensions (256) let us for the 

present assume that characteristics (i) and (ii) are retained 

for all Q. 	Property (i) means (see section 2.5) that the 

lepton fields have 2
Z-1 
 components and are represented by the 

spinors 1(1-i r_ptp, where, according to eq. (1.6), r_1  is 

the obvious generalization of y5  to 22, dimensions. 	To 

investigate requirement (ii) we have to know something about 

Fierz reshuffling
(6) 

which we have shown in section (2.2). 

From eq. (2.21) K(r) E rfm
.
..M 	

X r(M1 — " Mr)  stand for 
1r)  

the 22,+1 parity-conserving kinematic covariants pertaining to 

one channel, the covariants in the crossed channel 11(r) are 

from (2.22) is 

n. 

K(s ) 	C s,Y) K 	 (2.22) 



59 

where C(s,r) is defined by eq. (2.23) and (2.24). 

In the case of weak interactions there is the minor 

modifications that we should be dealing with the parity-

violating left-handed covariants K_(r) as defined by eq. (1.8). 

By crossing, for s odd, we obtain 

cs) = 2 /-1,-; rte) El ') RI) r(5)(1- r..)o r`rt) 

----- 	cs,y) r,),)  (1 _ 	0 r(ro 
model 

C CS/ r1-) 	( h.•) . 	 (4.3) 

n. odd. 

Thus Fierz reshuffling for these particular covariants involves 

just the odd-odd entries in C (up to r, s = k-1 by reflection 

symmetry). 	We now are in a position to prove that the sum 

(1.7) is crossing invariant. 	We make use of the represen- 

tation (2.27), then, from (4.3) and (2.27). 

(--1 )1 	1(..(s) 
S cock 

OM% 
11..1 

s 
St  rt. octet. 

21- 
((l '-'1}n (1+Z) 	 k. (to 

7-= 
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$ oda 
= 	2 	(t)lic ;a) _ elcti 	). 

,oact 

1 
[(I-7) (14-,z) )1,  0 

10.-9 =_- (-0 	(-1 	k_oo 

k..(17-) 

toad. 
Showing that the sum (1.7) is a crossing eigenvector with 

eigenvalue (-1)11. 

Finally taking note of the anticommutativity of spinor 

fields we conclude that the appropriate weak four-Fermi inter-

action in 2Z dimensions is 

- 
ki4 oc 	Ti 	(1--  Lr-1)4),„ 4°, r 	r-1) Tz, 

rt. odd 
(-1 Itfiz  

- 1- 	r cl- 	Ytt 

it 	
(K4 

(4.5) tad a  
In particular the leptonic Lagrangian, with correct 

normalization, written in current-current form, is 

w  = 4-2 	I I J-Ami 
rtOclol 
	 (4.6) 

with 

- 14_1 
(4.7) 
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At the tree graph level, which may be the only sensible 

way to look upon the four-Fermi C.le we observe that in the 

limit 2, = 2 there occur two currents which are replicas of 

one another, namely 

4; 	- 	 and 

Tto . 12._ 	ki" 	K TN Tr-) ( 1 - irc) 

(The same currents arise in 

(4 .8) 	• 

R o cl 

the weak-intermediate-boson variant of weak interactions.) 

Such repetitions of V-A in J
(1) 

and J
(3) 

for t = 2 are un-

interesting in themselves if we stick to the Born diagrams. 

However as soon as we calculate higher-order quantum loops 

differences begin to'show up. 	Indeed for 	2 the currents 

a true vector, 

a true pseudovector, 

an <<axial>> vector and 

The < < pseudoaxial >> > vector, say, 

(4.9) 

In fact J
N 

is the only are all distinct from one another. 

truly conserved current; the pseudovector current is conserved 

in the zero-mass fermion limit when chiral transformations 
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* 	exp(O r_1)* become an exact symmetry of the theory; 

but the axial and pseudoaxial currents are not at all conserved 

as one knows from our work.on anomalies5 '
6 
 in Chapter III. 

We shall retrun to the consequences of this extraordinary 

fact shortly. 

4.2 Effective Hadronic Weak Lagrangian  

It is a good idea to list of all the 22,-dimensional 

forMs of the Lagrangians responsible for the weak semileptonic 

decays before we come to the question of quantum loops. 	The 

baryons are represented by 29, 
component spinors and we have 

to bear in mind that pseudoscalar mesons are 4-index tensors. 

Beginning with the semi-leptonic baryon decays B 	B' 2:13, the 

straight generalization of (4.6) and (4.8) is indicated, and 

we should include in (4.7) the hadronic-current contribution 

baY,OK 
R 	rLil. ( 1  - 	1-11 	B 

before renormalization. 	Naturally one expects radiative 

corrections due to current nonconservation to be significant, 

so one should modify the effective hadronic currents to 

To) 	2..  

To) ---> 	rLicL.F.43(9s 	511-3 P-1) F1 )  

etc., 

(4.10) 
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where gr  are coupling constant renormalizations. 	The vector 

current is of course conserved so gi  = 1; one would also be 

inclined to suppose that 
g2R.-3 is unrenormalized at unity 

since the associated pseudoaxial current looks vectorial in 

four dimensions and is conserved in that limit. 	That however 

is contrary to the rules of DR which stipulate that all 

perturbation calculations have to be performed before going 

to the four dimensional limit. 	In fact we shall prove later 

that g2t._3  differs from 1 by a finite amount, calculable in 

any given model of the strong interactions. 	Thus we have 

the bizarre fact that the weak vector current is renormalized 

and 

5A 1 144 	+ 514,-1 
- 	

-I- 	 24,-3 

 

5k/ (4.12) 

We shall enlarge upon this curiosity in the next section, 

. but for the present let us carry on writing effective Lagrangian 

for purely leptonic and semileptonic decays, P 4 2,; and 

P 	v respectively. 	The effective weak currents J
(r) 

which. couple the mesons to the lepton currents turn out to be 

P r 

Pt 
	

P
TKL1.4) 

/h4  

vector, 

pseudovector, 

axial vector, 

(4.13) 
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4.3 One Loop Renormalizations  

Let us suppose that strong interactions are renormaliz- 

able in four dimensions. 	The Yukawa meson-baryon coupling 

ct 	 [Mi. 
mQ 

(4.17) 

can serve as a suitable model for the purpose of the following 

discussions. 	Using the propagators 

cp..„.•No  
(-10 

<R(l) 	> Afi-m) 
we can enquire about the nature of one-loop renormalizations 

of the weak currents. 	Before we plunge into an analysis of 

the vertex parts let us treat the wave function renormalization. 

The fermion loop contribution to the meson self-energy parts 

(see Fig. 0) is given in e.g. (3.2) for massless fermions. 

To determine the associated wave function renormalization 

constants yr) we note that in the vector sector (r = 1) 

according to (3.3), 

N1 0,) 	e. r(1-0 	 dD( 	KNO/k) 

(1A )L 	 K/ot CI -90) I  

0 

whereas in the pseudovector sector (r = 2k-1) we meet the 

(3.3) 

dual 
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N NE - - 	 'i • mo-1 

—11 is4N (
K) 
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because r-1  chirality is a good symmetry for m = o. 
On the 

    

other hand the axial vector sector is obtained by putting 

r = 3 in eq. (3.2), that is 

it 	1&)  cr7o (. 	
2, et  ro-t) TT. C M N3 

C "1. ) 

1 

f " t(t-2) 
(t-') c r kc  Lc5.'114-) / e.  

and dual pseudoaxial self-energy (r = 2t-3) is its image: 

	

CI3K) „ 	 ,0414 • • • 	pN4 	t  

	

H-1 Cl Tic) `") 	ES7Kg -14L t 	 fr, 
_Tr, E Lm 
H 	14.D " • 

Thus for m = o, Z
(I) 
 (1) = Z

(1) 
 (22,-1) 

i.e. vector = pseudovector renormalization 

and 
	

Z (3) = Z (29.-3) 

axial = pseudoaxial renormalization 

(4.18) 
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HoweVer the difference between vector and axial renormalizations 

7L? (2t-1) 	2(i)( 

40,4 	2e.,1"(t-2-)r1(1-e) 	do(  

(2—K) t 	[—K'occ 1,0 	1-1- 
0 

(4.19) 

is finite and non vanishing: 	The explanation for the 

difference between vector and pseudoaxial renormalizations 

is the same one that is offered when one meets anomalous Ward 

identities, viz. because the pseudoaxial current is only con-

served in four dimensions, we have the product of a kinematic 

factor which vanishes as 2, 4 2 and a singular factor (2-2)
-1 

due to the divergent quantum loop. 	The same discrepancy  k.5) 

between axial and pseudovector renormalizations was observed 

some time ago, but is not so striking because the axial 

current will not in general be conserved for m # o. 

Consider next the fermion self-energy due to the inter- 

action (4.17), as depicted in Fig. 4. 	Again, the fermion 

wave function renormalization constant 	can for simplicity 

be determined by setting the fermion mass equal to zero. 

r")  
I Yi  ) 

() 

Fig. 4 	 Fig. 5 
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r")  1(, 	P-K)  
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Ico -L. 5 - 3 ct/f K 
(2,X)1-4' 

 

(1)-K) 
2  ( K t r) 

 

By standard procedures outlined in Appendix A this can be 

reduced to the parametric integral 

o 	,t5 31c(si  r(t.t) 	0(4 

ci#R)L 	0 ( roL)Ci -o()} 

(4.20) 

Near four dimensions, 

C ( sto  

Finally we can turn to the vertex part of Fig. 5 which we 

shall evaluate at zero momentum transfer 

/\ 	(1)) 	L 	GeeK 	11(S) (/-4)1) v-,k) r(s) 

	

((- N) 	gy p-)4 (4.1.1.,..) 

(4.21) 

The - 
(r)  
r) are logarithmically infinite at it = 2 and have each 

to be renormalized by a vertex factor, say Z 
g
(r). 	Clearly, 

since the vector vertex satisfies Ward identity 
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Am  co 
'a P M' 

the vector renormalization constant equals the fermion wave 

function renormalization 

'Z.5
CI) 	7.(1) 

but there is no reason in general to expect similar equalities 

for the remaining constants; in our zero-fermion mass model 

however it happens that 

S 
( 24,- 1) 	(-1)  

Of all the other vertex parts the pseudoaxial is the most 

intriguing and it can be deduced from the parametric integral 

representation of eq. (4.21): 

Aot, P) 	32  	04 clo( 	ro- Rsiff rbvic rts' 
cLIA) 1 	 [(141-- 

PIA'C 
 -90 34  0 

,11••■11 
C (119C(sfri) 17tt) (2.-c) 

(du1-r04) C1-4) 
Thus 

%A 	 =- -1(144 C(4-3)C(S• 2 (-1) 
—>2 

D 2N1-") 	ciL dk 
Lin ) t. H%. ? )0 ,:01 (4.22) 

L'‘.1 
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The anomalous finite difference between vector and pseudo-

axial vertex renormalizations is 

	

C 	7,j - 	- 3 ) 

	

A 
	3 (C CI, t)C,C S, I ) C ( I ,24.-3)C(s 24- 3) ) 

32 7C2  ( 4. - 2.) 
(4.23) 

and for values up to s = 4 equal to 

_L E 	s% S2  - 	 3 	
2- 

5 	s 41.1 
3 	1  

(4.23') 

A similar difference arises between pseudovector and axial 

vertex renormalizations: 

7.9(3) 	Zo)(24-1) 

151(CCIP 3) CCS,3) C(1/ 21-0C(Solt-0) 

(4.23") 

Altogether the one-loop current coupling renormalizations in 

(4.11) follow from the formula 

1-  _1 

5/1.. 	(7L) 20  (  
4) 
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since all bare couplings are normalized to unity. 	If the 

renormalized couplings gr  truly refer to weak interactions 

we can disregard differences between yr) as being of order 

-ee2 and therefore small (remember however that Z() is not r- 

independent and we need only concern ourselves with the 

strong corrections to Zg  and Z 	Besides the expected 

result gl  = 1 connoting absence of vector - current renorma-

lization, we have the unexpected result 

51.1-3 = 1 Asa + Es  — Ssa 	Es  + 11 Es  
3 3  72.. `i 

as the one-loop renormalization of the other weak vector 

current. 	The axial and pseudovector renormalizations are 

infinite if s is even because (4.17) violates r_1 chirality, 

but finite if s is odd. 	For instance a vector nodel (s = 1) 

gives 

J2.e, 	91 	 )3  .=. 	
52  7C1- 

 1 

while an axial vector strong interaction (s = 3) gives 

924-1 = 5, = 1 

In each of these cases 

v  = 
	9, + 924-3 

3 
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because of r
-1 

chiral symmetry. 	In more general circumstances 

when every current (with the exception of the pure vector) is 

nonconserved we anticipate that g2,_3 0 1 and 
	

g3.  

However the previous discussion shows how and why g
2k-3

-1 

and g3-g2R_1  are finite and calculable to any order in per-

turbation theory - when the strong interactions are renormaliz-

able the differences depend only on the magnitude g and charac-

ter of the strong coupling. 

Apart from certain conformal anomalies
20 
 in quantum 

gravity, the renormalization of this weak vector current is 

the first unconventional result to come out of DR and one may 

wonder how it can be avoided. 	One possibility is to contrive 

a cancellation of 
g2k-3-1 

 with a counter-Lagrangian, but this 

can surely be dismissed as being too artificial, rather ugly, 

and possibly dangerous in view of the conclusions to come in 

Chapter V. 	A second possibility is to reject the Fierz 

invariance requirement and to return to the vector and pseudo- 

vector currents, * PN t  and i i  rN  r_i 	this too seems 

fraught with difficulties for the simple reason that hadronic 

contributions to axial currents must satisfy anomalous PCAC 

identities (even if the anomaly cancels in toto); the pseudo-

vector i 4  rN P _1 tp is potentially incapable of yielding any 

anomaly (since r_l  - invariance is an exact symmetry of zero 

mass fermions) is contrast to the axial i T
(KLM) 

* and its 

partner i 
	

r(KLM) F-1 4; therefore even if we abandon the 

notion of Fierz symmetry of of  we are obliged to consider at 

least these four kinds of vector current and their attendant 

renormalizations. 	One final possibility is to cancel off 
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the anomalous renormalizations altogether (by increasing the 

number of fermion fields, including V+A interactions, etc.) 

in the accustomed manner which ensures the renormalizability 

of unified gauge theories. 

4- 
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CHAPTER V 

THE NONRENORMALIZABILITY OF EVANESCENT COUPLINGS 
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5. 

In this chapter we shall investigate a theory which 

has a primary evanescent interaction which is given in (1.10), 

and we shall prove that the model is non-renormalizable. 

To arrive at this conclusion we will need to go beyond one- 

loop level. 	The basic reason is as follows: at one-loop 

level the divergent Feynman integrals contain a pole term 

(Z-2)-1  and these multiply a factor (Z-2) which must be present 

for all form factors associated with kinematic terms that 

survive the 4-dimensional limit (because r. , 0 as t -* 2). 

The product of these yields a polynomial in external momenta 

and masses at four dimensions. 	At the next, two loop level 

we may encounter double integrals which contain second order 

poles (9„-2)-2 but only a single factor (Z-2) in the numerator, 

signifying a divergence. 	(Another way of stating this is to 

note that the 1-loop polynomial suffers a further divergent 

integration with no further compensating zero from 	I). 	As 

these divergences get progressively worse in higher orders of 

G there is no hope of renormalizing the theory. 	The final 

result, that evanescent couplings with bad powercounting 

characteristics, are non-renormalizable after all, is useful 

in restricting the class of Lagrangian models that are viable 

in the context of DR. 	Let us substantiate these statements 

by giving a few details of our investigation. 	For our free 

Lagrangian we shall take a massive IP and a massless boson 

•C 	tfkLmt4 
o 	 twLmo 	( ':1— K1)`11  

(5.1) 
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in order to simplify some of the Feynman integrals without 

affecting the ultraviolet behavious in question. 	We also 

once again write down our interaction Lagrangian
I 

from 

(1.10) 

LHN 

I rti-t-trq) 

(1.10) 

The fact that Ilo  can lead to ghost mesons in some of the (I) 

components will not concern us unduly, since none arise when 

-+ 2. 	The classical tree graphs evidently give zero identi- 

cally in the 4-dimensional limit, so the first interesting 

results occur at the one-loop level. 	In momentum space the 

vertex factor arising from (I
I in a perturbation development 

is {20 + 	rKLMN} where p and p and p+k stand for the incoming 

and outgoing fermion momenta. 	These have to be combined with 
N
1
...N

4 	
N . ..N 

• the propagators s(p) = i(0 - m)-1 and D 	= i 81,4
1 	4

/rk
2 

— M1 144 	“1...-
m
4 

by the standard Feynman rules. 	As we shall be interested 

in kinematic terms produced from Feynman graphs which survive 

the passage to 4-dimensions one can set external momenta equal 

to zero at each vertex. 

We may now determine some simple one-loop diagrams. 

Boson self energy 

To order G
2 
retaining the part which survives four 

dimensions 
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(k) 
im, 

	

(129) T.a4 	 P'..  (i10.tAtvm7 

P2Pri2K(i2+ 192 rnlj 
Introducing a Feynman parameter a, shifting the integral, 

and dropping all {V, r(4)} terms, the usual manipulations 
lead us to 

= 
• • "t) 	1-  

2 PC3- 0 L  ..m Cmi 	 t) 	(/ 

Koc( 1-4 	 t°L 

t 2 
,›

-v? 	
G2  (1,4.4- 10 ifYi 	-3v fri 4) S* L' .. . .N1,44)0 w  

(5.2) 

As promised the quartic divergence has disappeared owing to 

the vanishing trace. 

Fermion self energy  

Since we shall presently take this graph to be part 

of a larger graph the integral to be evaluated is 

( 	_ 	 2` 	12.5+g 	 -4) (24+A rk 	 0 	j  

(9.)+ k f^ 11121 1(1" 

The calculation of the numerator here (as well as that of the 

vertex part to follow) is greatly facilitated by the methods 

set out in section (2.2).. 	Using (2.31) and (2.31') the final 

answer is a polynomial in i: 
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r(a-L)(1(-00.(,-3) f do& 
a 

(En3(t-o-oko+,)3,-,„kjvoi(,4)-yn.voi,) t:' 

((-9 r-(2.-0041.{(1-4)/i5  km) p1oi.(1-4) _ r,1 

LCA51-1-rn)CP'+1  m"9 

Vertex part 

.. 1,4  Cn. P) I 

12.f. k 
(2.4-r(  

Qr.!, • No} (444 +w, t2„<, 	v+,4+,,,a)(,)4, 	-No) 

LC V+ 	- m1 	e [04- k )1.  - mti 

If we are only interested in kinematic terms which survive 

31, -4- 2. 	Combining denominators with Feynman parameters and 

using simplification methods outlined in the eq. (2.31) and 

(2.31') we end up with 

C 	= x 17.14,. 	± VL,g, 1?/4. 
(5.4) 

where the form factors X and Y tend to 
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Y/440&- oc CP1-+ 011'9 
(5.4') 

for four dimensions. 

Other one-loop graphs  

The systematics should by now be obvious. 	Every one- 

loop graph is divergent due to the momentum factor in the 

vertex, but this is cancelled by a zero caused by the dis- 

appearance of X 
	

Always we are left with a polynomial in 

external momenta whose degree increases with G - as it must 

from simple dimensional analysis. 

We may now wonder if this phenomenon carries over to 

higher loops and if all Feynman diagrams are finite. 	The 

answer is "no" and is most simply illustrated by examination 

of the vacuum graphs. 	The simplest two loop graph (convenient- 

ly treated in x-space) does indeed happen to be finite, but 

this is only an accident due to the masslessness of our boson. 

Thus 

z = "'Tx Tr rE.m...1-14 
( g 

Retaining the most singular terms in the integrand and dropping 

all a
2 
D terms upon rotation to Euclidean space, 

1st al x ( 
6% 	 r6,„ 	D (L-2) 

 01.1/x 21  2 IL 	(e.-1) )3/x4 
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192 (L-2)qt  SOX V/x 
0,6 

G12 ot2.) L- aro.  
Co)  

which is ultraviolet finite as 2, -4- 2. 	Another way of seeing 

this is to work in momentum space, carry out the fermion 

loop integral, obtaining Tr.(a polynomial at 2, = 2), and then 

working out the integral 

Sce-eic TrMrHt, C 
K 

Li  

In DR this is zero for polynomial R. 	However had we chosen 

to give the mesons a mass p we would instead have obtained 

the divergent answer G
2
(p

2
)
22,-1

/(2.-2). 

The problem is much clearer at the three loop level. 

Consider first the vacuum diagram of figure 6. 	If we carry 

out the meson loop integrations first we are left with 

°`' 	fa
1,  

t- P Tr (I(1)CA"^)-  ZIP) (X-m)-
1) 

and since E(p) is finite near 2 = 2 (see eq. (5.3)) this final 

integral is bound to diverge near four dimensions. 	A more 

relevant example is the meson-meson scattering diagram of 

\ 

	

	 S" \ 3 

F j. G 

I  

6 	 \ 4 

F, I 7 



if
. 	ex, Getkc  sck(5-4-1<61(1..141) 

/ I M4 (,t( t 1<%-) ks kt) "tiCks 14.4  1 1(3  k4) 	, 1, 
kc  kc 
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Carrying out the fermion loop integration first 

But M
4 is a finite polynomial in K near k = 2. 

	Hence the 

final integration produces a pole term (t-2)-1 

The inescapable conclusion then is that the higher 

graphs diverge in general. 	Because these diagrams are 

associated with higher powers of G they require ever increas-

ing numbers of subtractions and the theory is therefore non- 

renormalizable. 	We can thus class all theories with evanes- 

cent interactions and coupling constants having dimensions of 

inverse mass powers as undesirable in spite of appearances. 

More importantly, this means that if we start with a re-

normalizable theory and happen to  meet anomalous currents  

in the context of Ward identities, we should never attempt  

to cancel them off with evanescent counter Lagrangians. 
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6.1 The Four Dimensional Theory  

The concept of the combination of fermions and bosons, 

known as supersymmetry (possibly supergauged) has come into 

existence very recently. 	The origin of this symmetry can 

be traced back to dual model; the theory works in 2 dimensions 

and 'takes the form of a local symmetry where it plays a vital 

role in the elimination of ghosts. 	More. recently, Wess and 

Zumino took a decisive role in formulating a global Fermi- 

Bose symmetry in 4-dimensional space time. 	Afterwards, Salam 

and Strathdee systematized this 4-dimensional supersymmetry. 

They were led to consider a superfield gx,0) defined on an 

8-dimensional space which is the extension of ordinary space-

time X (p = 0,1,2,3), to include a 4-dimensional space whose 

points are labelled by the anticommuting Majorana spinor 

e
a(a = 1,2,3,4). 	The action of the Poincare' group on the 

space X and e is given by 

V —.7 A/4v  X.) .4- 6/A. 

ed 	;12( ") efs 
where a(A) denotes the Dirac s'pinor representation of the homo- 

geneous Lorentz transformation A. 	In particular, space 

reflections are associated with the mapping 

The action of a supertranslation on the space X and 0 

is defined by 
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where the parameter ea  must of course be an anticommuting 

Majorana spinor. 	This larger group comprising the Poincare 

group and supertranslations leaves invariant the interval 

x /- 	)(2. . 	The expansion of the scalar superfield 

terminates at 04  and is given by 

4)(k/e) 	Ac t E5L1100 +114,- 69 Foo 4_147  §-rsec.,c)+ 

+ 77 	A.,a(x) 	* 	e e;) % 00 -4- 	(E-50).4.  1(x) 

where the coefficients A,F, G , Av  and D are ordinary Bose 

fields, and tp and x are Fermi fields. 	The behaviour of 

these components under the action of the Poincare' group and 

parts is clear: A,F and D are scalars, G is a pseudoscalar, 

A is an axial vector, IP and x are Dirac spinors, all up to 

an overall intrinsic parity factor. 	These components are 

complex in general. 	However, it is possible to impose a 

reality condition on the superfield, 

x, ) * 	C , e) 

where the complex conjugation is understood to reverse the 

order of anticommuting vectors. 	The important thing to 

notice in the expansion of the superfield that the expansion 

stops at 0
4 

which is due to anti.commutivity of 6. 	This 

superfield is reducible. 	In particular one can project out 

chiral irreducible fields for which 
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111. 

.■1•111 	

°S.  A *. 	 i X + =:.. ''' 4 11+  

..p. 	%Ir.... 	ti" E F74.-A .1.. ..-_-_. 	-1- c. 	s.) A -t- f 
and the resulting superfields can be compactly expressed as 

c131+ 	e)( 	 -T -4 5 irTc  .3— 
axt,  

ek+ 	+ kif+ 	+ -1-4.  (1 t crc) F+ (x)] 

with the expansion now terminating at 02 because 0 are two 

component spinors. 

We shall not bother to spell out the transformation 

. properties and the rules for combining supermultiplets but 

will immediately proceed to the generalization to 2Z-dimensions 

'which is obvious. 	Then we shall determine the transformation 

rules for all dimensions. 

In its simplest formulation, superspace can be charac- 

terisedbynspacetimeparameters 	= 0,1,..., 2k-1) 

and 2
9., 

spinor parameters 0
a(a = 1,2,..., 2

R.
). 	A Majorana 

constraint 0
a 

= Caa els  is normally invoked to make the spinors 

essentially real, and if we wish to do this for all k it is 

sufficient to work in even dimensions (Z integral) where in 

the charge conjugation matrix C exists. 	The generalised 

superfield expansion for Z > 2 is then given by 
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,0) :-- A(x) -I- er'ti),(x)-P -Ii 6°̀  a r 	(4)  

i- '&51  b (9' 61#  )1C4(17")/3 I.  

40.  + -j--  6 e o e' 6 beo<ors) . 	
.e 

'IL' 51( p(3 
6 r 66  6 e71  ro‹pne-m) s  1 

.t. . . . 
(6.1) 

R, 
and terminates at 0

2 
 . 	This superfield is reducible and by 

projecting out the left or right handed components 

a+ )0 _ 	+ c ro 	•• 2 	 - 2 
we can pick out the irreducible chiral fields, 

Iwo 
•■■■ exl)(7,t4  e 	r-le ) . 

• 

A±  6; 
L + 	6°' 

G 

.-0( -13 r  
+ 9, et coy) • . 7c4p-Y1 (6.2) 

with the expansion now terminating at 02 
L-1 	

An infinitesimal 

supertransformation is given by 

(6.3) 
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where 

and 

bck -1- (46 )bc 66' 

(c 59X)cl 

S O 

_0( 
e [ 	 -1-verixc,(0,112,1. 

eP eT 	Dutr)/31  +4 (-5(  3  (V 
8" -4 71-  0  /C4(1)1'6Dt• • • 

(6.3') 

ot 	 p 	/ —1(5 cSc)LA +6 qi'k  +0 e rtcY ) .1  2 

÷ 	ã E5r.YE0<(1,0 /.1! + • 	'1 
The component field changes are then as follows 

EA 

0(Far) 	(Sc 0e(3  - 

(A ‘) 
6 	

v iEss-  r.(07- )) DEopircl-D 	 J I 

for the reducible field components, and 

-a( 
EA't 	e+ 41•C 
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t 	+ 
C*k = 	F 	• coko-) 	Vc/y3  A lf  ) 

Fc-to 	(Xuto((t-c) - L (/4.4C)tokr T7 ) • • 

(6.5) 

for the chiral field components. 	It is clear that n and x 

vanish only in four dimensions. 

6.2 The Theory for Arbitrary Dimensions  

The two dimensional model of Supersymmetry is rather 

curious in the sense that we have to take the spinor super-

field to construct the Lagrangian because the scalar super- 

field does not give us right type of Lagrangian. 	Let us 

examine the two dimensional case of the supersymmetry: 

similarly to (6.1) the expansion of the scalar superfield is 

given by 

ctcx,e) 	A + 	.+ 1,:(60) F 
(6.6) 

where the coefficients A and F are Bose fields, and IP is the 

Fermi field. 	The behaviour of the component fields under 

the action of an infinitesimal supergauge transformation is 

easily deduced from (6.3'). 

b--4)otte ) 	l 	cfr 
( 6 . 7 ) 
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by substituting the expansion (6.6), we get 

EA 

( 5 

F 

 

-k (6.8) 

The Lagrangian of the scalar superfield is given by - 

(AY F 	144. ;2' Et+ 
21e 

— 	( A2+ 2.6 tf/ 4E5 e) P — (60)0> 
4 a!ae  

%BMW 

*me. FA 12: 
(6.9) 

which is quite unacceptable since it contains no kinetic 

energy terms. 

To construct a sensible Lagrangian we have to take the 

spinor superfield 

A ca( + 65 P toy 	( e ) Fe_ 

(6.10) 

and impose the covariant condition (see Appendix C 

for the algebra). 
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(6.11) 

which yields after comparison 

Fc-4/6A )4 2 

Tc4 r 	ficit  

(6.12) 

(6.12') 

We substitute (6.12) and (6.1) into (6.10) we obtain 

C6 (si) 	A-)04 

(6.1S) 

Thus the Lagrangian (6.9) is given by 

A0( 
 Fo4 — 1 `ids  el(1  (4(3 

2— 
 

which has the proper form of a free Lagrangian. 

In the four dimensional case however, it is well 

known that the scalar superfield will do for constructing 
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acceptable free Lagrangians and these read 

p).% ck .t) 

= [YeA)1 +CD 13 )111-  Llti/ 	_ 

[2 FA - 2qB -1-m•Pkii] 
The question is how one is to proceed in higher dimensions 

using the scalar superfield (scalar because we shall be 

interested in the 4-dimensional limit). 	Let us return to 

(6.1) - (6.5). 	From section (2.3) we observe that in 6,8, 

14,16,... dimensions the Majorana bilinear 50 (among others) 

vanishes identically. 	Therefore if we want our theory to 

resemble to four dimensional versional as far as possible 

we must limit ourselves to 2,4,10,12,... dimensions. 	For 

• such dimensions one could re-expand the multispinors appearing 

in (6.1) to (6.5) in terms of r-matrices but this is an 

unimportant detail. 

The discussion so far has been perfectly straight- 

forward and required little ingenuity. 	But we now come to 

the first (and only) critical decision: to what member of 

the supermultiplet must one assign the Lagrangian? 	There 

are two viable alternatives: (A) The Lagrangian is taken 

as the last term in the relevant 0 expansion i.e. the term 

Z1-i  
of order 02 	in (6.1) or the term of order 0 	in (6‘2). 

(B) The Lagrangian is contained in the 84 term of expression 

(6.1) and the 82 term of expansion (6.2), exactly as in four 
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dimensions. 	If we adopt alternative (A) the action is 

given by 

	

_ 	c- 3 

	

j[(ISD) k(f) tcp 	V(4.±)] ateX 

with the number of 8 derivatives varying with Z. 	Because of 

this the Lagrangian alters its degree of polynomi.qity in the 

component fields derivatives with Z, so that in fact the 

theory changes its character with the dimension. 	(In fact 

the kinetic energy includes cp(D2)2t-24).) 	This change of 

theory is contrary to the spirit of DR, and in any case 

conflicts with the dimension-independent procedUre necessary 

to extract the axial anomaly
5
. 	Thus we advocate alternative 

(B) whereby the action is 

S 	ccEL)L -bp k(cf) 	v(11.) 06 
(6.1Y) 

. and the kinetic energy properly contains 2 derivatives of 

the scalar fields. 

6.3 Ward Identities  

An immediate consequence of this dimension-independent 

choice is that the action is no longer supersymmetric. 	In 

particular if we extract the Lagrangian as the Lorentz 

invariant part of superfield products, 
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TE r  
CApier) 	r Coca-) 

( 6 

where D' and F' (see appendix for detail) are composed of 

the original superfield component products in the usual way, 

then our finds from (6.3) and (6.4) that 

047, 
fEL 01,.4x 	(c 	ot x(( cirE   ic.kreS'ep 

7 v   -1- 	t•-co(pr) 	c.key) -) 
(6 .A1) 

(Again n' and x' refer to those particular component field 

products which are generated for the super transformation.) 

Therefore if J
Pa 
 is a spinor current whose time-component 

space-integral defines the spinor generator, we obtain the 

spinor Ward identity, 

114 	 c 	'Yr 	e)1  coy TN.) 	'<Pe) cov3 6) 

It looks anomalous in so far the r.h.s. of (6.1%) contains 

terms which are not present in 4 dimensions. 	For example 

in the 43 supersymmetric model, 



i'+'(5 DiL(51/4 

) 	' 
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the offending terms on the right of (6.1'7') are 

eV 
4  

	

Z., 'NJ - 	- 	r- t 	 d 1  r' 4.   + 	 t t  
rw - 

2 	.1. 	1  / r 	1. 	2 	, 1, r t , [3 A l..  y,,,,,..) +6A - c.FI ktir- i- Fc en T°'• -fr 

'Y' 	t 6 T t 1 u "t: rqi 1  
+ FETA) V'e—  J — 	ck Tr 	Tr 

with an analogous but more complicated expression for 

1 

n(caiyos).  

In the event, ones immediate reaction is to conclude 

that Ward identity will lead to anomalous corrections. 

However, the effect does not stand up to more careful scrutiny. 

It is indeed true that all J differs from zero, but the 

difference (6./8) gives matrix elements with kinematic factors 

which vanish in 4-dimensions irresRective of the loop order 

to which we work - in marked contrast to the axial and scaling 

anomalies where the anomalous terms in the Ward identities 

survive the four-dimension limit at the quantum level. 	The 

final result is that the spinor current Ward identity is 

anomaly-free, in spite of first appearances. 	Reassuringly, 
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agrees with the Pauli-Villars approach (Wess and Zumino
16 

 ) 

and the kinetic regularization method (Iliopolous and 

16 
Zumino ) 
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Conclusion  

In this thesis we have seeked to provide an account of 

the use of DR techniques to various problems in the spinor 

field theories and gain some insight into the obstacles that 

must be surmounted in the dimensional continuation. 	One of 

the important lessons we have learnt during the course of our 

work is that the limit to integer four dimensions must be left 

to last. 	This remark is at its most powerful when we take 

the divergence of the axial vector current in arbitrary 

dimensions: this modifies the PCAC law by giving an anomalous 

term on the right which does not exist in four dimensions, but 

is precisely the axial vector anomaly when we descend to four 

dimensions. 	We might be tempted to get rid of such anomalies 

by adding local evanescent interactions (which disappear in 

four dimensions). 	However the work of chapter V has shown 

that to remove them in this way is liable to make the theory 

non renormalizable. 	Another crucial point about the whole 

analysis is that we have always stuck to dimension free 

definitions of our Lagrangians and currents. 	This point 

has been exemplified in chapter VI dealing with supersymmetry 

where we have checked the absence of the spinor anomaly by 

the dimensional continuation method. 	In all these aspects 

we have verified the utility of DR by its success in provid-

ing a beautifully elegant regularization technique and in 

bringing to light any possible anomalies in Ward identities. 

However, in weak interactions we are not totally satisfied 

with the method, for we have seen that in generalizing the 
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current-current form of the weak Lagrangian to arbitrary 

dimensions we get two kinds of polar vector and two kinds  

of axial vector among the possible set of currents. 	One 

of these weak polar vector currents is not conserved except 

in four dimensions and undergoes a finite renormalization 

from quantum loops. 	The renormalization of this weak vector 

current is the first unconventional result to come out of 

DR and one may wonder how it can be avoided. 	One possibility 

is to cancel it off with a counter Lagrangian but this seems 

very artificial and beset with renormalization difficulties. 

A second possibility is to reject the Fierz invariance require-

ment and to return to the vector and pseudovector currents, 

* rN i  and i* rN r-1 *; 

this too confronts us with the same difficulty, for the simple 

reason that hadronic contributions to axial currents must 

satisfy anomalous PCAC identities so one cannot avoid intro- 

ducing * rKLM * and its curious companion 	r
KLM 

r-1 *. 

Perhaps the best way to restore polar vector current conser-

vation is to double the fermions and reverse the sign of their 

abnormal current interactions with mesons. 

Finally let us see what new problems suggest themselves 

in spinor field theories. 	(i) First, one might repeat the 

work done on Dynamical Rearrangement of symmetry as applied 

say to the Nambu-Jona-Lasinio
25 
 model. 	In this model of 

massless four fermi interaction, despite the invariance of 

the Lagrangian under the y5  transformation i 	* exp(ia y5)* 

the chiral symmetry is dynamically broken and the physical 
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fermion mass is non zero through the existence of a bound 

nucleon antinucleon pair with pseudoscalar properties. 	Now 

the same problem could be tackled by DR. 	Here the Lagran- 

gian is not in any case invariant under the generalized chiral 

transformation p 	exp(i e (4)r (911), once we adopt the dimensional 

independent definition of 15  E r (4) . 	Also the invariant cut 

off A2 characteristic of the conventional approach is replaced 

by pole terms 1in_4)in the amplitudes. 	(ii) A second 

interesting problem might be the nature of gauge theories in 

arbitrary dimensions. 	Pure vector gauge theories like quantum 

electrodynamics, invariant under the gauge transformations 

,G4 

Am 	Am - 61-1 	) 
generalize readily'to arbitrary dimensions. 	But as soon as 

we extend the gauges to include chiral transformations we 

should expect a set of bosons 

= W 	. . ')W (2k-1) 3) 	LMN' 	W(5) WLMNOP' 	.) (2k-1) 

associated with the gauge transformations 

ickzo 

WLMN 	1•41-MN 	 14 kLrAN 

The Lagrangians for these models have to be constructed. 

(iii) A third problem of interest might be an investigation 

infinite dimensional unitary representations of the 0(n-1, 1) 

group in the limit n -4- 4. 	Here we have to concentrate on 
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those representations which are characterised by two Casimir 

labels to obtain a correspondence with 0(3,1) limit. 

(iv) Finally it would be interesting to generalize our work 

from the Dirac representation 

[1;4 , 	.7; 	2 11 ,4N  

to the Kemmer representation: 

PM (3N pL 	pNpm  = pm gN L+ N 
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Appendix - A 

On 22,-Dimensional Integrals  

1. 
2. 0-1  

CX) 	 01L-I 

S 21-3 

6%1-2 
• • ae, 

(A.1) 

with 0 < (31  4 	, except 0  < 	< 27c 	. 
If f(x) depends only on IL .....:. J e+ 	4X 	one may perform 

the integration over , angles using 

Sinẁ e de MINE. 
M110. frc 	om+1/2.  

r(m-E1/2) (A.2) 

leading to 

fL-■ c1.2tX -1(x) 	1 +cx)(/1,7-)   cirt.7-  
P(L) 

similarly 

(A.3)  

SCk) CO) ak<1. 
(A.4)  

In particular the volume element can also be written as 

.1'cL2LID 

.t-i 	2t-3 
cit(1(si:t4k ) orS (CiLt')Clef (A.  ) 

r(1-0 



M AI 

at. 
(A.7) 

100 

where all other angles are integrated over 

     

P-4(  

p(t+p) Racp-t) 
(4A-)1- 	ro()(t62)::51' 

     

     

   

This gives us a very important result 

 

  

0 (A.6) 

  

for all a < k. 	That means the total volume element and the 

massless tadpole.graphs are to be interpreted as zero in DR 

for k = 2. 

We also list some the symmetric integration relations: 

ci2L 4- f((Kt) lc, K, 
(2,v)1 

and 

C 1‹.9 	km  km  
(et  K 

4-)1‘ 
iLm I Pst -+ 711  LP elm 	elLGe MP 

2t (21.4.2.) 

(le-) 144 
(2101' 

NM.* 

(A.8) 



f = r(7,1+,,,,+-47,,,,) 11-61Y■ E(1 -YI -1).- --YR) k%I" 
	• 

74-1 	'lliq - 
" N  

0 CAA 	. 	AA  )(min 14110.,0114(A.9) 

The Fourier transform of a function is defined by 
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These integrals can be easily evaluated with the help of 

(A.5). 

The general Feynman parametrization of integrals is given 

by 

Rni) roll) •  • • roiN)  
A A 
Any nA  

• • • 	A z 	14 

	

r(x) LT: 
C (1,21 K 	-1 Kx 

FC 1‹) 
(2,7)11  

K.x 
F .‘Clc) 	c1.25( 	P(x) 

(A.10) 

In particular 

L4-2 -CIA.X 	I te.) 	 (k4 c4)  

(2,r)I  (---)(2) (+°' 	r(- 
(A.11) 

while the boson self-energy part in the Thirring model is 

given by the invariant function 
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1T( KL) 	P(.2-t)  f 
On)24. 

0 
(-1< ) 211 (2-0/(2.x) 

and thus its Fourier transform is 

do( 

Ktot (j-A) 1" 
• r(k) • no 

r( ) 

1. 

(A.12) 

K 	( 	k* 

tc.-) t 	1. 
_ 2(1.-0 l)2 cx) 

(A.12') 
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Appendix - B 

The Propagators  

The two point Green's can be expressed in terms of 

one homogeneous and one inhomogeneous function which are 

given by 

<01 E 9(x), T(0) (0> z , .Pkx) 

<0 I T [1(x) , (c)(0)1 0 > 	A, 09 
(B.1)  

A few other propagators are given by 

<01 (J7 (x) cf(o) 10 > _ A+ (x) = boo Accx) t e6.x)4Ne(x)  

+ 11  <01 (i) (0) (ycx) 1 0 	4- cx)=. g(X) 6:(X) e(-x) Aco9 

<01 Ick[ 1(x) CF(0) 10> 	d Fp) 	e cx) o9 

v.x) 	( 0) -31 c) , 	s (x) 	(--x) 46.09 

(B.2)  

The Green's functions e(x) A( x) and Ac
(x) can be easily con-

tinued to arbitrary 12, but those involving with 0(x) lose 

their invariant significance in the continuation. 

One can show that the propagators are biven by 

(X),6,(X) 	(7\ 0(x1)/yyl)(:.1  

12404' 4)--t7/ 

and 
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c. Acoo = I 
OA' 	) 	)) 

( ?dot 	%T..7e.) 	KI.L irt -)0") 60(1) 

-er )t  
, 
( pveCtiiklict) 	 40.) 

.1x1- 	2. 	 1-e 
(b 

In the zero-mass limit (propagators are denoted by D)we have 

&(x) Do() 	061)  

	

274-' 	r (2-t) 

and 

Dc  (x) e 	r((-1) (-)(1-+I*6 
(B.4) 

which carry all the light cone singularities since as 

generalized function
(21) 

with t integer ?. 2 

6041) (e)(-7 	—> S(t-z) (xl• 

and 

_x1. 	P(4-1) 
■-4 

t-1) (B.5) 

The four dimensional case
(22) 	

= 2 is familiar to everybody. 

The generalized functions (B.3) and (B.4) can be continued 



oa 

0 	X — X 4 IE  

af 	C(X') 	oe) 
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to other !C-values giving us the Sonine-Gegenbauer .  dispersion 

integral 

which is initially defined in the region 

Re 	> 0 	
and 	g`e t < 2 

Let us then note the propagators in two dimensions (t = 1) 

6,(x) 	(xN 	 610(1) 
2, 

i Ac(x) = Ko (o4,/(—)<‘-+ 
(IN (-  	bc  (0) (B.6) 

47; 
and the propagators in the vicinity of four dimensions (2. = 2), 

i(x)l.MY) 	`6"111" f (w1ej6+((-1-))11,(:4 -(0)± 
4A- 4e. 

+ 1.2.)( 210lh44) 	\(‘ 1,t,or) 	+ Of t-t-11 ( 
ttA 4)(%-  

bA ao 
	( L

1C1 —1 

t
.g(x1) 	1 4 -1-1 6(Yt)  114 (IA Al EN19)4. 
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i•  4j x) x) =_  im 

1-+ie ) {k% 11- Y --14 4-) . 

2.T4  (--xl-f-i0 1 } t  

KA  

+ (4-2') k0 ( M sl(—X-L-niq ) 

t.+C)
4-11 

vin 4 (--)e 

x . 2 ( 	. 	LI  + 	2 ) . if 

. [be-- (6) 1K 

(B.7) 

It is these next to leading behaviours of propagators which 

are partly responsible for the anomalies in quantum loop 

corrections. 

Equal Time Commutators 

The continuation of time-ordered products to arbitrary 

dimensions is simple because we encouter just the invariant 

functions of ( 
2 
 - ic). 	We adopt the BJL definition 	of of 

the equal time commutator between two fields, viz. 

(tit: 0  ±) 	T EA (x) B(o)] 

This may be used to calculate the matrix elements to 

any order in perturbation theory from the products of causal 
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Green's functions. 	For free scalar fields it gives the 

same result as obtained by the definition of Gelfand-Shilov, 

i.e., 

<01C% ° (ft 0)10> = 401[(folo i  ,1. 910)11 0 
=0 

but 

<o f CT (0),q)(0)] 10) 	r(4-1) 
7o at L 2_Nt 

1;144 arti(-AVE(4-0(xL,J 

(B .8) 

*These results rather clear in momentum space. 	In k- 

continuation method we. do not separate the points in field 

products provided 2k is away from an integer point. 	Hence 

the Schwinteger terms can be calculated in the context of 

DR. 	For example, the commutator of two e.m. currents to 

order e2 is 

<oil-V.400./1qm] lb> 
.= et 2 [22M Ac  fDN Ac —  1,4t4D4c. 	'Ill.-AC.1-  

(— X%-  + 	
(B .9) 

xt4 XN- 
7r2t 
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and by B.J.L. recipe it follows that 

<01 EL to IL L ()) ) 1 0 > 

and 	<°I EjY (X ) r  jr (0) 	 — 
	 (B.9) 

at equal times because the time ordered products are even in 

t. 

On the other hand, 

• (011:4(3,0) 1 4(0111> 
2 ( 

Lim 	L.F14 11 2 	t.  X y 

t -z) 0  1a+  r ku+ 1' ) 

ti 

= 	 2• 	 s.21-1 I -I 

T c No) 	212.0' 

(B.10) 

by using the Gelfand-Shilov representation24  for spatial 

6-function. 

Thus the Schwin 	• ger   term   is   interpreted   as   02)t-1 multiplying 

the spatial derivative, rather than an infinite constant 

multiplying it. 

, 2,k-1 In momentum space, it is proportional to k 
r
kk ) 

rather than k
r
(A2), where A is a cut-off in the conventional 

point separation method. 	In a way this conclusion is rather 

obvious. 	DR does not tolerate the occurrence of cut-off 

terms A
2 
which must therefore be replaced by m2 or external 

momentum factors. 



6-  
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Appendix - C 

The Supersymmetry Algebra in 2-dimensions  

The r-matrices in two dimensions are defined to be 

( 	= 0 
U I  

( 0 — I 
t 	0 

and 

The projectors are given by 

t 	) 	( 	) 	( 0 
0  0 

The charge conjugation matrix C is defined to be C = t 6  :=-7-1  
which has the properties 

n. 

C rt. C 	rr  
C l's C 	T; 

The differential operators Da  are defined in (5.3') satisfy 

the anticommutation relation 

t Do( I 	)4()  
Hence from (C.1) 

(C.1) 
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or 	
b -r, () 	 (C.2) 

and 

(C—  Tr  jYt , 
or (C.2') 

With the help of (C.2) and (C.2'), the product of two D's 

can be expressed as 

bo4 	# )0y 	co DD 
	

(C.3) 

Products of three D's are comprised in the formula 

(C.4) 

Finally the product of four D's is 

(C.5) 

Projectors can also be formed out of D's. 	These are 

nonlocal, 

c AL) 	
(C.6) .11" 

And the mass term in supersymmetric Lagrangian is given by 

4:( 	 Ike  
+ A- Cci rrc ity) — 	IV * 13 ] (C.7) 
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