IRAISPORT OF A.JSORBED GASES THROUGH GRAPHITISED CARBON MEMBRANES

by

CHRISTOPHER LINLEY MURRAY

B.Sc., A.R.C.S.

A thesis submitted for the degree of Doctor of Philosophy in the University of London

ABSTRACT

Isothermal diffusion of n-paraffins (up to $n-C_{4} H_{10}$) and nonisothermal flow of $\mathrm{C}_{3} \mathrm{H}_{8}, \mathrm{n}_{\mathrm{H}} \mathrm{C}_{4} \mathrm{H}_{10}$ and neo $-\mathrm{C}_{5} \mathrm{H}_{12}$ through microporous carbon membranes compacted from Graphon, have been investigated. Adsorption isotherms have been determined for most of these hydrocarbons, to establish the relationship between gas and surface phase concentrations. Additionally, to complete a previous study, isotherms for $\mathrm{H}_{2}, \mathrm{Ne}, \mathrm{Kr}$ and Xe have been determined. Measurements have been made between 308.15 and 393.15 K .

Time-lags, L and permeabilities, K, have been determined for isothermal diffusion, and diffusion coefficients for the transient and steady-state flows derived. Empirical relationships between K and L, and the Henry law coefficient, polarizability and boiling point of the gas have been tested.

In the non-isothermal studies a flow apparatus involving a capacitance membrane manometer to monitor pressure was used, a temperature drop of 60 K being imposed on the carbor plug. From the steady-state pressure ratios, heats of transport, Q_{m}, have been obtained. Non-ideal values, unexpectedly found for non-sorbed gases, are discussed. A method has been developed for independently determining the thermo-osmotic flux in an open system, and hence an isobaric permeability, $B\left(T_{0}\right) / p_{0}$.

Analysis of $K, B\left(T_{o}\right) / p_{0}$ and $Q_{m} h_{i}$ been made in terms of gas and surface (or 'extra') flow components, using helium as a calibrating gas. For strongly sorbed hydrocarbons it is found that 'extra' flow can greatly exceed gas phase flow.

Pressure dependence of flow parameters has been investigated. K is found to be constant for CH_{4} and $\mathrm{C}_{2} \mathrm{H}_{6}$, decreases slightly with ingoing pressure in the case of $\mathrm{C}_{3} \mathrm{H}_{8}$ but with $\mathrm{n}^{-} \mathrm{C}_{4} \mathrm{H}_{10} \quad K$ decreases
markedly with increasing pressure. Similar behaviour is observed with $-B T_{o} / P_{o}$ and $-Q_{m}$, evidence for a maximum, occurring at progressively lower pressures with increasing adsorption, being found. This behaviour is related to the surface concentration of the adsorbate.

ACKNOWLEDGEMENTS

I would like to thank Professor R M Barrer and Mr R Ash for their sustaining encouragement and guidance throughout this work. Thanks are also due to the technical staff of the Chemistry Department for their help with the construction of the more specialised parts of the apparatus.

I also wish to express my deepest thanks to my father and mother for their continued help, support and advice throughout my education.

I am indebted to Mrs June Banks for many hours of patient and painstaking work in tcansforming an untidy manuscript into a very neat typescript.

Finally, I wish to acknowledge the award of a maintenance grant By the Science Research Council during the period 1970-1973.

table of contents

ABSTRACT 2
ACKAOLLEDGEMENTS 4
LIST OF TABLES 9
LIST OF FIGURES 11
CHAPTER 1 INTRODUCTION 14
CHAPTER 2 THEORETICAL AND REVIEW 20
2.1 Isothermal Transport 20
2.1.1 Flow through capillary tubes 20
2.1.2 Porous media 23
2.1.3 Flow through porous membranes 26
2.1.4 Transient-state flow 31
2.1.5 Experimental evidence for surfece diffusion 33
2.1.6 Mechanisms for surface diffusion 35
2.2 The Phenomenon of Thermal Transpiration 39
2.2.1 Thermal transpiration through capillaries 40
2.2.2 Thermal transpiration through porous media 44
2.2.3 Surface analogue of thermal transpiration 47
2.3. Thermo-osmosis 50
2.3.1 Theoretical treatment 51
2.3.2 Relationship with isothermal permeability 56
2.3.3 Relationship with isobaric permeability 61
CHAPTER 3 EXPERIMENTAL TECHNIQUE 65
3.1 Materials Used 65
3.1.1 Carbon 65
3.1.2 Gases 66
3.1.3 Membrane construction 66
3.2 General Features of the Apparatus 68
3.2.1 Pumping systems 68
3.2.2 Room temperature contrci 70
3.2.3 Liquid thermostats 70
3.2.4 Outgassing procedures 73
3.3 The Capacitance Manometer 73
3.3.1 Features 73
3.3.2 Operating principle 74
3.3.3 Equipment used 75
3.3.4 Operating technique 76
3.4 Adsorption Apparatus 78
3.5 Isothermal Flow Apparatus 79
3.5.1 Plug assembly 79
3.5.2 Experimental procedure for isothermal flow runs 80
3.6 Non-isothermal Flow Apparatus 82
3.6.1 P1ug assembly 82
3.6.2 Experimental procedure for thermo-osmotic runs 86
3.6.3 Experimental procedure for isobaric flow runs 88
3.7 Calibration and Accuracy 88
3.7.1 Mercury manometers 88
3.7.2 McLeod gauges 89
3.7.3 The capacitance manometer 89
3.7.4 Buffer volumes 91
3.7.5 Internal volumes 91
3.7.6 Thermometers 91
3.7.7 Thermocouples 92
CHAPTER 4 ADSORPTION : RESULTS AND DISCUSSION 93
4:1 Experimental Results 94
4.1.1 Surface area determination of Graphon 94
4.1.2 Isotherms above room temperature 98
4.1.3 Isotherms of n-butake 107
4.1.4 Experimental heats and energias of adsorption 107
4.1.5 Variation of $q_{s t}^{\prime}$ with coverage 111
4.2 Thermodynamics of Adsorption 115
4.2.1 Solution thermodynamics 116
4.3 Application of Adsorption Thermodynamics to Experimental
Data 120
4.3.1 $q_{s t}$ and ΔE for absolute sorption 120
4.3.2 Free energy and entropy of absolute sorption 122
4.3.3 Relationships between $K_{c}, \Delta E^{\theta}, \Delta S^{\theta}$ and 125polarizability
4.4 Correlation with Interaction Energy 127
CHAPTER 5 ISOTHERMAL TRANSPORT 135
5.1 Experimental Results 135
5.2 Helium Data and the Knudsen Regime 137
5.3 Hydrocarbon Permeability Data 146
5.3.1 Temperature dependence of L and K 146
5.3.2 Pressure dependence of L and K 147
5.3.3 Correlation of K with other parameters 156
5.4 Diffusion Coefficients 160
5.4.1 Temperature dependence of D_{s} and $D_{s s}$ 163
5.4.2 Concentration dependence of $D_{S S}$ 165
CHAPTER 6 THERMO-OSMOTIC TRANSPORT 176
6.1 Experimental Results 176
6.1.1 Preliminary work concerning thermocouples 176
6.1.2 Heat flow patterns 173
6.1.3 The temperature gradient 182
6.1.4 The approach to the thermo-osmotic steady-statel83
6.1.5 Thermo-osmotic pressure ratios and heats of 185
transport
6.1.6 Isobaric permeabilities 187
6.2 Discussion of Thermo-osmotic Results 190
6.2.1 The helium result 190
6.2.2 Deviations from the Knudsen 1imit 191
6.2.3 Hydrocarbon results 199
6.2.4 Heats of transport, Q_{m} 203
6.2.5 Surface and gas phase heats of transport 206
6.2.6 Surface thermal transpiration 210
6.3 Discussion of Isobaric Permeability Results 212
6.3.1 Derivation of $\mathrm{B}_{\mathrm{g}}\left(\mathrm{T}_{\mathrm{o}}\right) / \mathrm{p}_{\mathrm{o}}$ for a Knudsen gas 214
6.3.2 Isobaric flow for hydrocarbons 218
6.3.3 Isothermal and isobaric separation factors 219
CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS 222
APPENDICES
A Notation used to describe adsorbate concentration in 227
gas phase and surface phase flow
B Calibrations and standard volumes 230
C Adsorption isotherm data 231
D Isothermal flow results 247
E Isothermal permeabilities 250
REFERENCES 252

Table

Number
Page Number
3.1 Physical characteristics for two batches of Graphon 66
3.2 Membrane characteristics 68
4.1 Ag values for Graphon 96
4.2 Henry law coefficient, k_{s} / cm and $A_{g} k_{s} / \mathrm{cm}^{3} g^{-1}$ 108
4.3 $\Delta H^{\prime}, \Delta E^{\prime}$ and $q_{s t}^{\prime}$ for sorption by Graphon 109
4.4 Literature values of $q_{s t}^{\prime}$ for sorption of hydrocarbons 110by Graphon ($\mathrm{kJ} \mathrm{mol}{ }^{-1}$)$4.5 \Delta E$ and $\Delta E^{\prime} / \Delta E$ at 308.15 and 393.15 K .121
4.6 Energy, free energy and entropy of absolute sorption 123
4.7 Comparison of calculated and experimental entropies 124 ($\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$)
4.8 Parameters used in evaluating R_{1}, R_{2} and R_{3} 133
4.9 Values of $-\Delta E . z_{0}^{3}, A_{12}$ and R 133
$5.1 K$ and $K(M / T)^{\frac{1}{2}}$ for helium 145
5.2 Fractional surface coverage at several values of T and p 153
$5.3 . K_{s}$ and K_{s} / A for Graphon and Carbolac at 333.15 K 158
5.4 Diffusion coefficients in $\mathrm{m}^{2} \mathrm{~s}^{-1}$ 162
5.5 Arrhenius activation energies and pre-exponential factors 164
5.6 Limiting values of $10^{7} \mathrm{D}_{\mathrm{ss}}\left(\mathrm{m}^{2} \mathrm{~s}^{-1}\right)$ 170
6.1 Thermal conductivities, k, at 300 K for gases and 177 materials used in the membrane assembly
6.2 Thermo-osmotic results, $\left(p_{0} / p_{\ell}\right)_{\infty}$ and Q_{m} 186
6.3 Isobaric fluxes and permeabilities 189
6.4 Transmission probability ratios (α) for several systems 194
TableNumberPage -
Number
6.5 Values of α, γ and σ on carbon membranes 196
6.6 Values of p and θ at the membrane faces for propane 201when $T_{o}=393$ and $T_{\ell}=333 \mathrm{~K}$.
$6.7 \quad H_{g}^{\ominus}, Q_{g}$ and Q_{g}^{*} for $\mathrm{C}_{3} \mathrm{H}_{8}$ and $n-\mathrm{C}_{4} \mathrm{H}_{10}$ at $T_{0}=393 \mathrm{~K}$ 208
6.8 Q_{s}, Q_{s}^{*} and X for $\mathrm{C}_{3} \mathrm{H}_{8}$ and $n-\mathrm{C}_{4} \mathrm{H}_{10}$ at $T_{0}=393 \mathrm{~K}$ 208
$6.9 Q_{0}$ and $\left(p_{0} / p_{\ell}\right)_{\infty}$ for propane calculated by the theories 211of Hill and Clint.
6.10 Values of $10^{9}\left(-\mathrm{B}_{\mathrm{g}}\left(\mathrm{T}_{\mathrm{o}}\right) / \mathrm{p}_{\mathrm{o}}\right)$217
6.11 Values of $B_{s}\left(T_{0}\right) / p_{0}$ and $B_{s}\left(T_{0}\right) / B_{g}\left(T_{0}\right)$ ratios 218
6.12 Isothermal and isobaric permeability ratios 221

LIST OF FIGURES

Figure Page
Number Number
2.1 Variation of flow components with pressure 22
2.2 Variation of thermal transpiration pressure ratio 40 with d / λ
3.1 High vacuum pumping system 71
3.2 Silicone oil heating bath 72
3.3 Schematic diagram of Baratron equipment and head 77
3.4 Isothermal flow apparatus 81
3.5 Thermo-osmotic plug assembly 84
3.6 Miniature flange arrangement and connection of plug 85assembly to vacuum system
3.7 Non-isothermal flow apparatus 87
4.1 Nitrogen isotherm at 77.4K 95
4.2 Hydrogen isotherms 99
4.3 Neon isotherms 100
4.4 Krypton isotherms 101
4.5 Xenon isotherms 102
4.6 Methane isotherms 103
4.7 Ethane isotherms 104
4.8 Propane isothezms 105
4.9 n-Butane isotherms 106
4.10 Variation of $q_{s t}^{\prime}$ and- ΔE^{\prime} with n 112
$4.11 \mathrm{q}_{\text {St }}^{\prime}$ as a function of coverage, θ 113
4.12 Variation at 308.15 K of k_{s} and K_{c} with 126polarizability, α
4.13 Relation between $-\Delta E^{\theta}$ and α at 308.15 K 128
4.14 Relation between $-\Delta S^{\boldsymbol{\theta}}$ and $-\Delta E^{\ominus}$ at 308.15 K 129
Figure Page
Number Number
4.15 Variation of $R\left(=-\Delta E z_{0}^{3} / A_{12}\right)$ with $-\Delta E$ 132
5.1 $\quad p_{\ell}$ as a function of t at several values of p_{o} for 136n-butane at 308.15 K
5.2 Temperature dependence of time-lags at $p_{0} \simeq 10 \mathrm{cmHg}$ 138
5.3 Temperature dependence of permeabilities at $p_{0} \simeq 10 \mathrm{cmHg}$ 139
5.4 Pressure dependence of time-lags for $n-C_{4} H_{10}$ at several 140 temperatures
5.5 Pressure dependence of permeabilities at 308.15 K 141
5.6 Pressure dependence of permeabilities for n-butane at several temperatures
5.7 Mean free paths, λ, as a function of pressure at 144 308.15K
5.8 Flux as a function of concentration at 308.15K 151
5.9 $(K)^{s}$ as a function of θ, n-butane at 308.15 K 152
5.10 Pressure and total concentration profiles within the 157 membrane for n-butane
5.11 K L as a function of $\mathrm{A}_{\mathrm{g}} \mathrm{k}_{\mathrm{s}}$ 159
5.12 Correlation of D_{S} and $D_{S S}$ with $-\Delta E^{\prime} / R T$ 166
5.13 $D_{s s}$ as a function of adsorption uptake for n-butane 168
5.14 $\mathrm{D}_{\text {Ss }}$ as a function of θ 169
5.15 Correlation of $D_{s s}$ with $q_{s t}^{\prime} / R T$ for n-butane 172
5.16 Comparison of $D_{S S}$ with the Higashi model 174
6.1 Thermocouple outputs as a function of pressure 178
6.2 Heat flow lines and isothermal contours within the 181 plug assembly
6.3 The approach to the steady-state 184
$6.4\left(p_{0} / p_{\ell}\right)_{\infty}$ as a function of initial pressure 200
Figure PageNumberNumber
6.5 v_{ℓ} / v_{0} as a function of pressure 202
6.6 Pressure dependence of $-Q_{m}$ 204
6.7 Pressure dependence of isobaric permeabilities 213
6.8 $\Delta v / p$ as a function of pressure 215
6.9 Isobaric and isothermal permeability ratios between 220
n-butane and propane

CHAPTER 1

INTRODUCTION

> "The motion of gases through minute channels such as capillary tubes, porous plugs and apertures in thin plates, has been the subject of much attention during the last fifty years."

Reynolds, 1879

These words, expressed nearly one hundred years ago, are equally true today. Porous membranes are now used for a variety of separation processes ranging from the desalination of sea water to uranium isotope separation. In this work we are concerned with the diffusion of gases through high area microporous membranes in which a concentration gradient exists. The more significant developments leading to the work will now be out.lined.

Graham (1846) made the observation that effusion rates of different gases through stucco plates and apertures were inversely proportional to the square root of the gas densicy. In 1909 Knudsen found that the proportionality held for gases flowing through long tubes, provided that the tube diameter was small in comparison with the mean free path of the gas molecules. He proceeded to derive an expression for this so-called molecular streaming or Knudsen flow, in which the flux was proportional to the pressure gradient across the tube. Subsequent workers verified his expression for capillaries (Gaede, 1913; Clausing, 1932; Adzumi, 1937 a, b). Smoluchowski (1910) modified Knudsen's expression to take into account the fractions of diffuse and specular reflections contributing to the flow, in an attempt to bring the measured and calculated fluxes into closer agreement. Deviations from the
theoretical Knudsen permeability have been found at low pressures (Adzumi, 1939; Brown et. a1., 1946; Berman and Lund, 1958) and attributed to non-diffuse scattering.

Permeability has been determined over a range of pressures extending into the Poiseuille flow region, and a linear relationship between permeability and mean pressure was generally found. In some systems at low pressures minima have been observed which were less than the value for Knudsen flow (Klose, 1931; Huggill, 1952; Hanley and Steele, 1964, 1965). A two-term equation of flow (Adzumi, 1937b; Flood et al, 1952a) and a three-term equation (Weber, 1954; Barrer, 1963a) have been advanced to account for the permeability-pressure relationship.

When porous media are considered the situation becomes more complicated since a knowledge of the pore shape and diameter, and the pore size distribution are required for a complete analysis of the flow data. Frequently this is not available but several models have been proposed for the porous system. The cylindrical capillary model (Adzumi, 1937c; Barrer and Barrie, 1952) is probably the simplest, wherein it is considered that the medium can be represented by a bunch of parallel cylindrical capillaries. Another popular model is that of the Dusty Gas Theory (Mason, Evans and Watson, 1961). Here the porous medium is represented by a 'dust' consisting of giant molecules. The 'dust' and diffusing gas are then considered as a two-phase system. Lassettre (1956) used a similar model where the porous medium was considered as a bed of spheres and equations for permeability were derived which could account for diffuse and specular reflection.

Experimental work on the flow of gases through porous membranes is now quite extensive. Carman and co-workers studied diffusion and flow of gases through compacts of silica and carbon black (Carman, 1950;

Carman and Ma1herbe, 1950; Carman and Raal, 1951a,b). Ash and Grove (1960) used a porous ceramic and tested several equations of flow, whilst Hirsch (1961) fitted a three-term equation to flow through a Pyrex disc. These investigations did not reveal minima in the permeability-pressure curves but a flattening tended to occur at low pressures. Pollard and Present (1948) postulated that in capillaries an extra contribution to flow arises from long axial flights at very low pressures. Since a porous bed is tortuous with many kinks, then no long flights are possible and no minimum occurs.

In recent years the research group of Barrer has been concerned primarily with the flow of single gases and binary gas mixtures under conditions where there is no viscous flow component. Microporous membranes compacted from high area carbons have been used in these studies (Barrer and Strachan, 1955; Barrer and Gabor, 1959; Ash, Barrer and Pope, 1963a; Ash, Baker and Barrer, 1967; Ash, Barrer, C1int, Dolphin and Murray, 1973). Except for very weakly sorbed gases it was found that the permeability was enhanced by a condensed phase flow arising as a result of adsorption on the membrane surface (Barrer and Gabor, 1960; Ash, Baker and Barrer, 1967). Diffusion through membranes under such circumstances can be high1y selective, being closely related to the sorbability of the gas. Binary gas mixtures have been considered (Ash, Barrer and Pope, 1963b; Ash, Barrer and Lowson, 1973; Ash, Barrer and Sharma, 1976) and with a pair of gases where one is strongly sorbed and the other weakly sorbed, very high steady-state separation factors can be achieved.

From the experimental measurement of permeability, a time-lag can be derived which characterises the transient flow of gas into a membrane when initially exposed to the diffusing gas. The original proposals relating time-lags to a diffusion coefficient were made by

Barrer (1939) and Frisch (1957, 1958 and 1959) and experimental investigations have included those by Barrer and Grove (1951b), Barrer and Gabor (1959), Goodknight and Fatt (1961), Ash, Barrer and Pope (1963a) and Ash, Baker and Barrer (1968).

Under conditions where Knudsen flow occurs, the existence of a temperature difference between the ends of a capillary or the faces of a porous medium causes a flow of gas from the cold to the hot side. This is termed thermal transpiration and in a closed system flow continues until a pressure difference has built up which causes an equal and opposite flow of gas. This equilibrium state is characterised by a steady-state pressure ratio, $\left(p_{0} / p_{\ell}\right)_{\infty}$ where p_{0} and p_{ℓ} are the gas pressures at the hot (T_{0}) and cold (T_{ℓ}) faces respectively.

The effect was first predicted in 1872 by Neumann and then experimentally observed by Fedderson in 1873 on porous palladium and platinum membranes. Reynolds independently rediscovered the effect in 1879, coining the term thermal transpiration, and making measurements on porous stucco plates and meerschaum. Maxwell (1879) also discussed thermal transpiration and Knudsen (1910a) considered the effect in more detail, deriving from kinetic theory the value of $\left(T_{o} / T_{\ell}\right)^{\frac{1}{2}}$ (the Knudsen limit) for $\left(p_{o} / p_{\ell}\right)_{\infty}$; Reynolds had also suggested this value. Knudsen derived an expression for $\left(p_{o} / p_{\ell}\right)_{\infty}$ which allowed for the departure from the Knudsen limit with increasing gas pressure.

Liang (1951, 1953) and Weber (1936) produced more elaborate equations to describe the variation in (p_{0} / p_{ℓ}) with pressure. Their equations were generally applied to single capillaries, but even so it was frequently observed that the Knudsen limit was not achieved, even using inert gases (Miller, 1963; Hobson, Edmonds and Verreault, 1963; Edmonds and Hobson, 1965). Recently several workers have suggested that this is due to a kinetic theory defficiency in not allowing for interaction of gas molecules with the potential field of the capillary
wall (Wu, 1968; Sandler, 1972a; Siu, 1973) and for the degree of specular reflection varying with the gas velocity (Fumonds and Hobson, 1965; Miller and Buice, 1966).

Transport of gases in a temperature gradient through non-porous membranes, such as natural rubber, was investigated by Denbigh and Raumann (1952a,b), Crowe (1957) and Bearman (Bearman 1957; Bearman and Bearman, 1966). In these systems some transport occurred by sorption within the membrane matrix.

Thermal transpiration measurements in porous systems have been made on porous ceramic (Hanley, 1965; Hopfinger and Altman, 1969), on Vycor porous glass (Gilliland, Baddour and Engel, 1962), on ung1azed porcelain (Rastogi, Singh and Singh, 1969) and on microporous carbon membranes (C1int, 1966; Do1phin, 1971; Ash et al, 1973). The Dusty Gas Theory has been extended to accommodate thermal transpiration (Mason, Evans and Watson, 1963) and an expression derived to predict the behaviour of $\left(p_{o} / p_{\ell}\right)_{\infty}$ with pressure outside the region of molecular streaming.

For non-adsorbed, or very slightly adsorbed gases, $\left(p_{o} / p_{\ell}\right)_{\infty}$ is less than the Knudsen limit (Ash 2t al 1973), in line with the findings on capillaries. However, for more strongly sorbed gases a surface analogue of thermal transpiration can occur which substantially augments the gas f low and leads to very high values for $\left(p_{o} / p_{\ell}\right)$ and large heats of transport (Ash et al 1973).

When thermal transpiration occurs in an open system without allowing any pressure difference to build up, then an isobaric permeability can be measured (Gi11iland, Baddour and Enge1, 1962; Ash et al 1973). This may be more effective than isothermal flow in gas separation (Ash et al 1973).

The scope of this work was to investigate the transport of 1 cw
molecular weight paraffin hydrocarbons through microporous carbon membranes compacted from Graphon, a high area carion black. Flow under isothermal and isobaric conditions was measured as well as steady-state thermal transpiration ratios.

CHAPTER 2

THEORETICAL AND REVIEW

2.1 ISOTHERMAL TRANSPORT

2.1.1 Flow through capillary tubes

(i) Low pressure region, $\lambda \gg d$.

When the mean free path (λ) of gas molecules flowing through a capillary tube is much greater than the tube diameter (d), then molecular streaming or Knudsen flow can occur (Knudsen, 1909). From the kinetic theory of gases we can derive the following expression for Knudsen flow in a cylindrical capillary of radius r and length ℓ :

$$
\begin{equation*}
G=\left\{\frac{4}{3} r\left(\frac{2 R T}{\pi M}\right)^{\frac{1}{2}}\left(\frac{2-f}{f}\right)\right\} \pi r^{2} \cdot\left(\frac{p_{0}^{-p_{\ell}}}{\ell}\right) \tag{2.1}
\end{equation*}
$$

G is the steady-state energy flow per unit time; T and M are the temperature and molecular weight of the gas; p_{0} and p_{ℓ} are the pressures at cach end of the tube. The term in brace brackets is defined as a Knudsen permeability K_{k}. The factor (2-f)/f was not incluiled by Knudsen, but was adied by Smoluchowski (1910) to account for a fraction, f, of the molecules being diffusely reflected from the walls of the tube and a fraction (1-f) being specularly reflected. Specular reflections have a greater probability of being reflected in the direction of flow. If the Fick relationships can be applied, then

$$
\begin{equation*}
\frac{J}{A_{c}}=-D \frac{\partial c}{\partial x} \quad ; \quad \frac{\partial c}{\partial t}=\frac{\partial}{\partial x} D \cdot\left(\frac{\partial c}{\partial x}\right) \tag{2.2}
\end{equation*}
$$

where $c=c(x, t) ; \quad J=J(x, t) ; \quad D=D(c, x, t)$.
Here c is the concentration of the diffusing gas at point x and time t, D is a diffusion coefficient, $A_{c}\left(=\pi r^{2}\right)$ is the cross-sectional area of the tube and J is the gas flow rate or mass flux (moles per unit time).

In the steady-state of flow J will be constant and frequently D is found to be independent of c, x and t. Steady-state values of G and J can then be related as follows:

$$
\begin{equation*}
G=\operatorname{RT} . J \quad ; \quad G \frac{d c}{d x}=J \frac{d p}{d x} \tag{2.3}
\end{equation*}
$$

By identifying $d p / d x$ with $-\left(p_{0}-p_{\ell}\right) / \ell$, equation (2.1) can be written as :

$$
\begin{equation*}
\frac{J}{A_{c}}=-\left\{\frac{4}{3} r\left(\frac{2 R T}{\pi M}\right)^{\frac{1}{2}}\left(\frac{2-f}{f}\right)\right\} \frac{d c}{d x} \tag{2.4}
\end{equation*}
$$

Comparison of (2.2) and (2.4) allows the Knudsen permeability, K_{k}, to be identified with the diffusion coefficient, D thus;

$$
\begin{equation*}
\mathrm{D}=K_{\mathrm{k}}=\frac{\mathrm{G} \ell}{\pi r^{2} \cdot\left(p_{0}-\mathrm{p}_{\ell}\right)}=\frac{4}{3} \mathrm{r}\left(\frac{2 \mathrm{RT}}{\pi M}\right)^{\frac{1}{2}}\left(\frac{2-\mathrm{f}}{\mathrm{f}}\right) \tag{2.5}
\end{equation*}
$$

The characteristic of this type of flow is that it is determined solely by molecule-wall collisions, molecule-molecule collisions in the rarified gas being insignificant. It can be seen that for two gases flowing at the same temperature through the same capillary, $K_{1} / K_{2}=$ $\left(M_{2} / M_{1}\right)^{\frac{1}{2}}$, where subscripts 1 and 2 denote the different gases.
(ii) Intermediate flow, $\lambda \approx d$.

At higher pressures when λ is comparable to, or less than, the tube diameter, molecule-molecule collisions become more important in determining flow through the tube. Three components of flow can be recognised in this region (Weber, 1954; Barrer, 1963a):
(a) Self-diffusion in a pressure gradient. In the low pressure limit this is equivalent to molecular streaming, but decays asymptotically to zero as the pressure increases.
(b) Conduction flow arising from slipping of the gas layer adjacent to the tube wall. This rises from zero at low pressures to achieve a constant value et a high pressure.
(c) Viscous flow obeying Poiseuille's law and being a linear function of the mean pressure.

The total flow in this region is expressed by:

$$
\begin{equation*}
G=-\left\{\frac{1}{1+(2 \mathrm{r} / \lambda)}+\frac{\pi}{4} \frac{2 \mathrm{r} / \lambda}{[1+(2 \mathrm{r} / \lambda)]}+\frac{3 \pi}{64} \frac{\mathrm{r}}{\lambda}\right\} K_{\mathrm{k}} \cdot \mathrm{~A}_{\mathrm{c}} \cdot \frac{\mathrm{dp}}{\mathrm{dx}} \tag{2.6}
\end{equation*}
$$

where the first, second and third terms represent, respectively, selfdiffusion, conduction and Poiseuille flow.
(iii) High pressure region, $\lambda \ll d$.

At sufficiently high pressures self-diffusion and conduction flow are insignificant, Poiseuille or streamline flow predominating. This is the continuum region and the gas can be treated as a fluid in which molecul e-wall collisions are negligible compared with moleculemolecule collisions.

The contributions of the three components of flow to the permeability are shown below.

(i) Self-diffusion
(ii) Conduction
(iii) Poiseuille
(iv) Overall

Vamiation of flow components with pressure

Figure 2.1

In the intermediate region the permeability often goes through a minimum as the mean pressure ($\overline{\mathrm{p}}$) is increased (figure 2.1), see for example Knudsen, 1909; Adzumi, 1937 b and Hanley and Steele, 1964,
1965. The depth and shape of the miniman be related to the length, shape, and material of the capillary and to the nature of the flowing gas (Brown et al, 1946; Huggi11, 1952). Adzumi (1939) expressed the permeability as $K=a \bar{p}+\gamma b$ (a and b are constants, $\gamma=f /(2-f)$); he attributed the minimum to specular reflection.

Pollard and Present (1948) proposed that the minimum was due to an extra flow occurring as $\bar{p} \rightarrow 0$. This flow was due to axial flights of gas molecules down very long tubes, which suffered no collisions with the walls before leaving the capillary. As \& is reduced, the proportion of such flights diminishes and so does the depth of the minimum, Berman and Lund (1958) used very short capillaries and found no minima. In porous media no long axial flights are possible and again we find the absence of minima (Carman, 1950).

A model based on a multiply kinked ('vielfach geknickte') tube was developed by Hiby and Pah1 (1956). Its permeability was compared with that of an infinitely long tube - the permeability ratio was found to be 0.8 when $\ell / d=3$.

2.1.2 Porous media

The Knudsen permeability of a porous membrane is more diffirult to interpret than that of a capillary, as a membrane is composed of a large number of non-uniform pores which vary in length and diameter. The 'long' capillary situation can not occur, and the diffusing gas molecule will undergo many collisions with the pore walls whilst within the membrane. Pore dimensions are usually several magnitudes smaller than in capillary tubes and so the Knudsen regime can be observed at much higher pressures.

Several models for porous media will now be considered.
(i) Capillary models.

The porous medium can be represented by a bunch of parallel, single capillaries which are, in the simplest form of the modei, of
equal length and diameter. Adzumi (1937c) proposed the model but considered the pores to be of variable diameter and arranged as bunches of capillaries in parallel and in series. The model has been applied to streamline and intermediate flow through synthetic analcite crystals (Barrer and Grove, 1951a) and a porous ceramic (Ash and Grove, 1960), as well as to Knudsen flow through porous glass (Barrer and Barrie, 1952) and porous carbon membranes (Barrer and Strachan, 1955). More recently Nicholson and Petropoulos (1971) have developed a capillary network model in which the porous medium is represented by a number of voids linked by a three-dimensional cubic network of capillary tubes.

Barrer and Gabor (1959) related flow through a porous medium to flow through a reference capillary. To represent the pore radius of the medium, the concept of a hydraulic radius, r_{h}, was introduced (Blake, 1922; Kozeny, 1927).

$$
r_{h}=\frac{\sum \text { (cross-sectional area of pores) }}{\sum \text { (circumference of pores) }}
$$

For a medium composed of cylindrical capillaries, $r_{h}=r / 2$ where r is the capillary radius. r_{h} can be related to the porosity, ε, and internal surface area of the pores, A, by $r_{h}=\varepsilon / A$. When these relations are substituted into equation (2.5) (ignoring specular reflections) then we get (Ваrrer and Gabor, 1959):

$$
\begin{equation*}
K_{k}^{c y 1}=D_{g}^{c y 1}=\frac{8}{3} \frac{E}{A}\left(\frac{2 R T}{\pi M}\right)^{\frac{1}{2}} \tag{2.7}
\end{equation*}
$$

$D_{g}^{c y l}$ is the gas phase diffusion coefficient for Knudsen flow in a reference capillary of radius $2 \varepsilon / A$, where ε and A take on the values of the medium being considered.

For a real porous medium,

$$
\begin{equation*}
D=K \cdot D_{\mathrm{g}}^{c y 1}=\frac{8}{3} \frac{E}{A} K\left(\frac{2 R T}{\pi M}\right)^{\frac{1}{2}} \tag{2.8}
\end{equation*}
$$

where D is an experimentally determined diffusion coefficient and κ is a structure factor which allows for tortuosity and non-ideality of the porous medium. It has been considered to be equal to ε / k^{2} (Carman, 1950), where k is the tortuosity of the membrane (= path length of pores divided by the membrane length, ℓ).

Nicholson and Petropoulos (1973) have replaced the reference capillary of Barrer and Gabor by a reference pore considered to be a parallel sided narrow slit. They were then able to calculate an adsorption potential energy due to interaction of the gas molecule with the plane surfaces of the slit.
(ii) Dusty gas mode1.

Criginally proposed by Maxwell in 1860 , it was rediscovered independently by Deriagin and Bakanov (1957a,b) and by Mason (Mason et a1, 1961). The model considers the medium to be a uniform distribution of 'dust' particles, constrained to be stationary. When the 'dust' is visualized as giant molecules, then it is possible to treat the flow of gas through this medium from the kinetic theory, with gas pius 'dust' being considered as a two-component mixture.

From this model an expression analogous to equation (2.7) cin be obtained for the Knudsen Iimit, D_{k} in which ε / A is replaced by another constant, K_{o}, containing terms for the number density, n_{d}, and radius, r, of the dust particles, tortuosity and porosity of the medium and a diffuse scattering factor, $a_{1} . K_{0}$ is determined empirically and was expressed as:

$$
\left(\mathrm{K}_{\mathrm{o}}\right)^{-1}=\frac{128}{9} \cdot \mathrm{n}_{\mathrm{d}} \cdot \frac{\mathrm{k}}{\varepsilon} \cdot r^{2} \cdot\left(1+\frac{\pi \mathrm{a}_{1}}{8}\right)
$$

Some evidence was found that a_{1} was gas dependent, but for most gases $a_{1} \simeq 1$.

An equation for permeability in the intermediate region was also derived and the model could be extended to accommodate binary gas mixtures
(Mason and Malinauskas, 1964) and thermal transpiration (Mason, Evans and Watson, 1963).
(iii) Other mode1s.

Representation of a porous medium as a bed of randomly dispersed spheres of variable diameters was proposed by Weissberg (1963). Williams (1973) also advanced a random sphere model in which the spheres were small compared with the mean free path of molecule-sphere collisions, and where the spheres acted as scattering centres. Both Williams and Lassettre (1956) considered that reflections in the medium could be diffuse, specular or a mixture of both, and back scattering was also allowed.

Several models based on the Dusty Gas Theory (D.G.T.) have been developed. Johnson and Stewart (1965) used the D.G.T. for diffusion within each pore and obtained a total flow rate by integration over the pore size distribution. The model was extended by Feng and Stewart (1973) who introduced a term for surface diffusion as well as viscous flow and gas phase diffusion. They then considered a system of main pores with extensive cross-1inking and dead-end pore branches.

2.1.3 FZ(r) through porous membranes

The experimental technique employed for isothermal flow measurements in this work employed the following boundary conditions:

$$
\begin{array}{cc}
c(0, t)=c_{0} & =\text { constant for } t>0 \\
c(\ell, t)=c_{\ell}(t) & t>0, c_{\ell}(t) \ll c_{0} \\
c(x, 0)=0 & 0<x<\ell
\end{array}
$$

Here t denotes time and flow is in the direction of x-increasing between membrane faces bounded by $x=0$ and $x=2$. c represents the total concentration of diffusant in the gas and surface phase per unit volume of membrane. The flow rate was determined by observing the build up in pressure $p\left(\mathrm{Nm}^{-2}\right)$ in a calibrated volume $V\left(\mathrm{~m}^{3}\right)$ at $\mathrm{x}=\ell$. A steady-state energy flux $G\left(\mathrm{~J} \mathrm{~s}^{-1}\right)$, reduced to the temperature of the membrane, T (Kelvin),
was calculated from

$$
\begin{equation*}
G=\frac{d(p V)}{d t} \cdot \frac{T}{T_{R}}=V \cdot \frac{d p}{d t} \cdot \frac{T}{T_{R}} \tag{2.9}
\end{equation*}
$$

T_{R} (Kelvin) is the temperature of the calibrated volume.
A permeability, $K\left(m^{2} s^{-1}\right)$, was defined as the flux though unit membrane cross-sectional area, normal to the direction of flow per unit pressure gradient.

$$
\begin{equation*}
K=\frac{G \cdot \ell}{A_{c} \cdot \Delta p}=\frac{J \cdot \ell}{A_{c} \cdot \Delta c_{g}^{1}} \tag{2.10}
\end{equation*}
$$

Here J is the molar flux (mol s^{-1}) and Δc_{g}^{\prime} is the gas phase concentration drop (mol m m^{-3}) between the membrane faces.

If adsorption occurs within the membrane, then the permeability will be composed of a gas phase component, K_{g}, and a surface or 'extra', condensed phase flow component, K_{s}, related by

$$
\begin{equation*}
K=K_{\mathbf{s}}+\underset{\mathrm{g}}{K} \tag{2.11}
\end{equation*}
$$

In several systems surface flow has been found to be much larger than the gas phase flow while in some cases very strong adsorption has led to pore blockage. Transport can then only take place by surface diffusion and in a binary mixture, flow of a non-sorbed gas could be severely reduced (for example SO_{2} and H_{2}, Ash, Barrer and Pope, 1963 b).

It can be seen (equation (2.5)) that in pure gas phase Knudsen flow $K(M / T)^{\frac{1}{2}}$ is constant for non-sorbed gases. Hence K_{g} in equation (2.11) can be obtained from the relation

$$
\begin{equation*}
K_{g}=K^{\mathrm{He}} \cdot\left(\mathrm{M}_{\mathrm{He}} / \mathrm{M}\right)^{\frac{1}{2}} \tag{2,12}
\end{equation*}
$$

where M_{He}, M are molecular weights and K^{He} is the experimental helium permeability at the temperature of the K determination (Barrer and Gabor, 1959). Here helium is assumed to be a non-sorbed calibrating gas but this practice has been questioned by Hwang and Kammermeyer (1966a,b; 1967)
who claimed that helium exhibited sorption and surface flow. However Ash, Barrer and Lowson (1970) carried out an extensive investigation of the temperature dependence of K^{He} and on1y found a 3% variation in $K T^{-\frac{1}{2}}$ over the temperature range 77.6 to 573 K . Sandler (1972a) advanced a treatment of Knudsen diffusion taking account of the potential field interaction between the gas molecules and the pore walls and Nicholson and Petropoulos (1973) adopted a similar treatment. Sandler's approach does not yield an exact $T^{\frac{1}{2}}$ dependence of K, but the discrepancy is small and within experimental error. Insufficient evidence is available to adopt anything other than a $T^{\frac{1}{2}}$ dependence of K^{He}.

Barrer and Gabor (1959) defined a steady-state gas phase diffusion coefficient as

$$
\begin{equation*}
D_{g s}=K_{g} / \varepsilon \tag{2.13}
\end{equation*}
$$

where the factor ε allows for the fraction of A_{c} which exists as pores and is thus available for gas phase diffusion. Hence from. (2.12) we can write

$$
\begin{equation*}
\mathrm{D}_{\mathrm{gs}}=\mathrm{D}_{\mathrm{gs}}^{\mathrm{He}}\left(\mathrm{M}_{\mathrm{He}} / \mathrm{M}\right)^{\frac{1}{2}} \tag{2.14}
\end{equation*}
$$

Barrer and Gabor also defined a surface phase diffusion coefficie:ıt

$$
\begin{equation*}
D_{s s}=K_{s} / A k_{s} \tag{2.15}
\end{equation*}
$$

where k_{s} is the Henry law constant (m).
Besides the steady-state diffusion coefficients so far obtained, we can also determine D_{g} and D_{s}, diffusion coefficients for gas phase and surface phase :ransport pertaining to the transient state, when gas is first admitted to the membrane. These will be characteristic of diffusion not only in through channels, but also into dead-end blind-pores and crevices which may exist within the membrane. Consequently they may be expected to differ from D_{gs} or D_{ss}, which are concerned solely with flow through the membrane by as direct a path as possible.

The gas phase diffusion coefficient, D_{g}, can, in the absence of adsorption, be determined from the measured time-lag, L, by the relation

$$
\begin{equation*}
L=\ell^{2} / 6 D_{g} \tag{2.16}
\end{equation*}
$$

Here D_{g} is considered to be independent of concentration, c, x and t. Frisch (1957; 1958; 1959) established an expression for L when D_{g} was a function of c. Ash, Baker and Barrer (1968) derived an expression for L from the conservation of mass condition and independent of any assumed equation of flow. The treatment could be applied to diffusion according to Fick's equation where D was a function of c, x or t, or combinations of these.

If helium is again used as a non-sorbed calibrating gas, then D_{g} can be calculated from

$$
\begin{equation*}
D_{g}^{\mathrm{He}}=\frac{\ell^{2}}{6 L_{\mathrm{He}}} \quad ; \quad D_{g}=D_{g}^{\mathrm{He}}\left(\frac{M_{H e}}{M}\right)^{\frac{1}{2}} \tag{2.17}
\end{equation*}
$$

The fourth diffusion coefficient, D_{s}, can be obtained using an expression for L of a sorbed gas (Barrer and Grove, 1951b):-

$$
\begin{equation*}
L=\frac{\ell^{2}}{6} \cdot \frac{\left(1+A k_{s} / \varepsilon\right)}{\left(D_{g}+D_{s} A k_{s} / \varepsilon\right)} \tag{2.18}
\end{equation*}
$$

By substituting D_{g} from (2.17) in (2.18) and rearranging we obtain:-

$$
\begin{equation*}
D_{s}=\frac{\ell^{2}}{6 A k_{s} / \varepsilon}\left[\frac{\left(1+A k_{s} / \varepsilon\right)}{L}-\frac{\left(M_{H e} / M\right)^{\frac{1}{2}}}{L_{H e}}\right] \tag{2.19}
\end{equation*}
$$

Comparison with a cylindrical reference capillary can be made for the gas phase diffusion coefficients by evaluating the following structure factors:

$$
\begin{equation*}
K_{g}=\frac{D_{g}}{D_{g}^{c y 1}} \quad ; \quad \kappa_{g s} \quad=\frac{D_{g s}}{D_{g}^{c y 1}} \tag{2.20}
\end{equation*}
$$

The magnitude of the K^{\prime} s reflects the tortuosity and character of the main flow channels. If $k<1$ then tortuosity and bottlenecks are important. When $k>1$, then flow is greater than that predicted for a cylindrical capillary and some channels of radii greater than $2 \varepsilon / \mathrm{A}$ govern the flow.

It has been observed that the surface diffusion coefficients exhibit a temperature dependence (Carman and Raal, 1951a; Barrer and Barrie, 1952; Barrer and Strachan, 1955; Barrer and Gabor, 1960) and hence an Arrhenius-type relation can be obtained:

$$
\begin{equation*}
D_{S}=D_{0} \exp \left(-E_{S} / R T\right) ; D_{S S}=D_{O S} \exp \left(-E_{S S} / R T\right) \tag{2.21}
\end{equation*}
$$

E_{s} and $E_{s s}$ represent activation energies for surface diffusion in the transient- and steady-states.

The treatment so far has assumed that adsorption is in the Henry law region and hence that D_{S} and $D_{s s}$ are independent of concentration at constant temperature. Outside Henry's law two effects occur. With large amounts of sorption the thiskness of tise adsorbed layer may be such that partial blockage of pores occurs. This will have the effect of decreasing the number of 'through' pores and hence K_{g} calculated irom equation (2.12) will be too great and the derived K_{s} (equation (2.11)) will be too small. This effect will be strongly pressure depeident and the true situation will be between the extremes of $K_{g}=K^{\mathrm{He}}\left(\mathrm{M}_{\mathrm{He}} / \mathrm{M}\right)^{\frac{1}{2}}$ (no blockage) and $K_{g}=0$ (complete blockage, only surface flow occurs).

Secondly, if the isotherm is curved, then equation (2.15) must be replaced by (Ash, Baker and Barrer, 1967; Ash, Barrer, C1int, Dolphin and Murray, 1973):

$$
\begin{equation*}
K_{s}=\frac{\varepsilon}{c_{o g}} \int_{0}^{c_{o g}} \quad D_{s s} A\left(\frac{\mathrm{dc}_{s}{ }^{\prime}}{\mathrm{dc}_{\mathrm{g}}}\right)_{T} \cdot \mathrm{dc}_{\mathrm{g}} \tag{2.22}
\end{equation*}
$$

Here $c_{o g}$ is the gas phase concentration (moles per unit volume of porous
membrane) at $x=0$ and c_{g} is the concentration within the membrane such that c_{g} at $x=\ell$ is zero. Provided that $D_{s s}\left(d c_{s}^{\prime} / d c_{g}\right)$ is independent of c_{s}^{\prime} (the Gibbs excess concentration per unit surface area of carbon) then K_{s} will remain independent of $c_{S}{ }^{\prime}$, even if the isotherm is curved.

It may be noted that whereas K_{s} (and $D_{s s}$) will not be expected to be concentration dependent until blockage occurs, the time lag, L , will become pressure dependent as soon as the isotherm departs from Henry Law Iinearity. As the average pressure increases, the quantity of gas required to be adsorbed in the steady-state does not increase as rapidly. Hence a decrease in L is expected.

2.1.4 Transient-state flow

We have so far derived diffusion coefficients for the transient state, but the significance of the time-lag has not been discussed. Blind-pore character and time-lags were considered by Barrer and Gabor (1959) and Ash, Baker and Barrer (1968).

Blind (or dead-end) pores, cracks and crevices in porous media are irregularities which do not play any part in the steady-state flow. They are involved in the approach to the steady-state because flow occurs into them until sorption equilibrium and pressure equilibration with the adjacent through-stream has taken place. Subsequently they take no further part in flow.

Since blind pores need not have the same pore geometry and ε / A as through pores and may not be distributed uniformly, it can be expected that D_{s} and D_{g} will be time-dependent as well as being averages over the length of the membrane. Ash et al (1968) defined a time-lag, L_{1}, as follows:

$$
\begin{equation*}
\ell \cdot J_{\infty}\left(c_{o}\right) \cdot L_{1}=\int_{0}^{\ell} x \cdot c(x) \cdot d x \tag{2,23}
\end{equation*}
$$

where $c(x)$ is the adsorbate concentration (per unit volume of membrane) at $x ; c(x)=c_{o}$ at $x=0 . J_{\infty}\left(c_{o}\right)$ is the total molar flux through unit
cross-section under these conditions.
L_{1} may be compared with the measured time-lag, L, by the quantity, $\Delta\left(=L_{1}-L\right) . \Delta$ will reflect any progressive change in pore structure (x - dependence of D) and also time-dependence in D during the transient-state of flow. Ash et al (1968) derived the relation

$$
\begin{equation*}
2 \Delta J_{\infty}\left(c_{0}\right)=Q_{B}(0) \tag{2.24}
\end{equation*}
$$

where $Q_{B}(0)$ is the quantity of gas associated with flow solely into blind pores in the $+x$ direction through unit area of the ingoing face between $t=0$ and ∞. It can be used as a measure of the blind pore character. Ash et al also showed that the x - dependence of D can be minimised by constructing the membrane in a large number of equal increments.

If Henry's law adsorption occurs then :

$$
\begin{equation*}
Q_{B}(0)=\left(\varepsilon_{b}+A_{b} k_{s}\right) \cdot c_{o g}^{\prime} \cdot \ell \tag{2.25}
\end{equation*}
$$

where ε_{b} and A_{b} are the porosity and internal surface area associated with $\dot{i l}$ ind pore character and $c_{o g}^{\prime}$ is the value of c_{g}^{\prime} (the gas phase concentration) at $x=0$. Since we can write equation (2.10) as

$$
\begin{equation*}
K=\frac{J_{\infty}\left(c_{o}\right) \cdot \ell}{c_{o g}^{\prime}} \tag{2.26}
\end{equation*}
$$

then using (2.24) and (2.25) to eliminate $J_{\infty}\left(c_{0}\right)$ and $c_{o g}^{\prime}$ we get

$$
\begin{equation*}
K_{\Delta}=\frac{\ell^{2}}{2}\left(\varepsilon_{b}+A_{b} \cdot k_{s}\right) \tag{2.27}
\end{equation*}
$$

For a linear concentration gradient between $c(x)=c_{0}$ at $x=0$ and $c(x)=0$ at $x=\ell$, then $c(x)=c_{0}(1-x / \ell)$. Hence on integration equation (2.23) becomes:

$$
\begin{equation*}
L_{1}=\frac{\ell}{6} \frac{c_{0}}{J_{\infty}\left(c_{0}\right)} \tag{2.28}
\end{equation*}
$$

Using (2.25) for $J_{\infty}\left(c_{o}\right)$ and $c_{o}=c_{o g}^{\prime}\left(\varepsilon+A k_{s}\right)$ (see Appendix A) then (2.28) becomes:

$$
\begin{equation*}
K L_{1}=\frac{\ell^{2}}{6} \quad\left(\varepsilon+A k_{s}\right) \tag{2.29}
\end{equation*}
$$

Combining (2.27) and (2.29) we get:

$$
\begin{equation*}
K L=\frac{\ell^{2}}{6}\left[\left(\varepsilon-3 \varepsilon_{b}\right)+k_{s}\left(A-3 A_{b}\right)\right] \tag{2.30}
\end{equation*}
$$

Hence for a series of gases adsorbed according to Henry's law, a plot of $K L$ vs k_{s} should give a straight line from which ε_{b} and A_{b} can be determined.

2.1.5 Experimental evidence for surface diffusion

The presence of an additional component of flow in the Knudsen region, a surface flow of adsorbed molecules, is of interest in this work. First evidence for such a flow was provided by Volmer (1921) and Clausing (1930), while Wicke and Kallenbach (1941) observed an unusually high flow rate in counter-diffusion experiments on porous membranes. They attributed this to surface diffusion and identified three components of flow - viscous flow, Knudsen diffusion ant surface diffusicn.

Today there is extensive evidence for surface diffusion (or condensed flow) of a wide variety of sorbates on nany types of porous media. Carman has investigated permeability and surface diffusion of $\mathrm{SO}_{2}, \mathrm{CF}_{2} \mathrm{Cl}_{2}$ and n -butane on compacts of Linde silica and Carbolac I (Carman and Raal, 1951a, 1951b, 1954; Carman and Malherbe, 1950). Here adsorption was in the multilayer region. Large flow rates and maxima in diffusion coefficients have been observed by Flood et al (1952a-c) using activated carbon rods.

The magnitude of surface flow can often be considerably larger than the predicted gas flow (Gilliland, Baddour and Russell, 1958; Ash, Baker and Barrer, 1967). Extensive surface flow has been observed on micro-porous membranes when strong adsorption occurs. Ross and Good (1956) and Haul and Peerbooms (1958) have reported maxima in D_{ss} for
n-butane on Graphon at around monolayer coverage. Ash, Barrer and Pope (1963a) and Ash, Baker and Barrer (1967) found points of inflection or maxinum-minimum behaviour for $\mathrm{SO}_{2}, \mathrm{SF}_{6}$ and Ar at low temperatures where flow was almost completely in the surface phase. The strong adsorption led to extensive blockage of gas phase flow so that high separation factors were obtained for $\mathrm{H}_{2} / \mathrm{SO}_{2}$ mixtures (Ash, Barrer and Pofe, 1963b).

Surface flow has also been observed in the sub-monolayer region. In the transient state Barrer and Barrie (1952) found a limited amount of surface flow for the Henry law adsorption of NH_{3} and SO_{2} on Vycor porous glass. However in the steady-state, surface flow made only a very small contribution to the flow. In contrast with this behaviour Barrer, and Strachan (1955) and Ash et al (1973) have found appreciable surface diffusion on carbon membranes even within the Henry law range. Recently Patel and Butt (1972) observed a surface flux of propane on a molybdenum sulphide compact which contributed more than 30% to the total flux at $\theta \simeq 0.2$.

The influence of the nature of the membrane surface, and its energetic heterogeneity, has been investigated. Horiguchi et al (1971) have compared the permeabilities of several gases on membranes of Vycor and Graphon (the former being energetically heterogeneous and the latter energetically homogenecus). Both membranes gave similar adsorption isotherms and heats of adsorption. However the surface permeability on Graphon was more than twenty times that on Vycor, being up to five times the gas phase permeability, while on Vycor K_{s} was never more than 30% of K_{g}. Horiguchi thought that these marked differences could be attributed to surface roughness causing a decrease in mobility of adsorbed molecules on Vycor.

Ash et al (1973) embarked on a similar comparison using membranes compacted from two carbon blacks, Carbolac, a somewhat energetically heterogeneous material of high surface area, and Graphon, a more energetically
homogeneous carbon of lower area. It was found that surface diffusion coefficients for Graphon were comparable'with or greater than gas phase diffusion coefficients whereas for Carbolac the $\mathrm{D}_{\text {s }}$ were always considerably smaller than D_{gs}. Ash et al related this behaviour to the greater surface uniformity of Graphon, so that translational freedom gave long surface mean free paths of adsorbed molecules. On Carbolac, the rougher surface texture allowed less translational freedom and shorter surface mean free paths. Carbolac was also found to have a higher activation energy for surface diffusion which was consistent with lower mobility. Although K_{s} / K_{g} for a given gas was greater for Carbolac than Graphon, the surface permeability per unit area of surface was very much greater on Graphon.

Sandler (1972b) proposed a method for determining surface diffusion coefficients without the use of helium as a calibrating gas. Flov measurements in the presence of a pressure and a temperature gradient were used, together with thermal transpiration measurements.

It is also possible to obtaln surface diffusion coefficients independent of gas phase permeability measurements. Haul (1950) used a direct weighing technique for diffusion of organic vapours into porous silica and carbon sorbents. Radioactively labelled SO_{2} was employed by Pope (1967) to determine a 'true' surface diffusion coefficient at high sorbate concentrations. Finally, by the use of Spin Echo N.M.R., Boddenberg et al (1970) were able to determine surface self-diffusion coefficients for Ar, $\mathrm{C}_{6} \mathrm{H}_{12}, \mathrm{C}_{6} \mathrm{H}_{5}$ on a silica compact. 2.1.6 Mechanisms for surface diffusion
(i) Hydrodynamic flow model

The driving force for surface flow is considered to be proportional to the spreading fressure gradient, $d \phi / d x$, a two-dimansional analogue of pressure gradient. Viscous flow occurs with the adsorbed
film moving as a whole over the surface with a velocity u. A characteristic of this flow mechanism is that no separation or 'unmixing' occurs when binary gas mixtures are used, and it is more correctly termed 'condensed' flow. Fick's law (equation(2.2)) takes the form where $D=D(c)$ and hydrodynamic flow is thought to become important at high sorbate concentrations ($\theta \geqslant 1$).

For adsorption on a porous medium Babbitt (1950; 1951) expressed the flow by the equation:

$$
\begin{equation*}
C_{R} \cdot u=-d \phi / d x \tag{2.31}
\end{equation*}
$$

$C_{R}\left(g^{-1} \mathrm{~cm}^{-2}\right)$ is a coefficient of resistance and an empirical constant. ϕ, the spreading pressure, is the force per unit surface area which must be applied to prevent the adsorbed flim. from spreading; it can be obtained from isotherm data.

Gilliland et al (1958) used Babbitts equation and obtained an expression for the 'condensed' flux in the steady-state:

$$
\begin{equation*}
\frac{J_{s}}{A_{c}}=-\frac{\rho_{a p p} \cdot A_{g} \cdot R T}{K \cdot C_{R}} \frac{\left(\varepsilon_{s}^{\prime}\right)^{2}}{p} \frac{d p}{d x} \tag{2.32}
\end{equation*}
$$

c_{s}^{\prime} is the concentration of adsorbed molecules per unit surface area of membrane; $\rho_{\text {app }}$ is the apparent density of the membrane and k is a structure factor. If C_{R} is independent of pressure then we can integrate from $x=0$ to $x=\ell$, yielding:

$$
\begin{equation*}
\frac{J_{s}}{A_{c}}=\frac{\rho_{a p p} \cdot A_{g} \cdot R T}{\ell \cdot K \cdot C_{R}} \int_{0}^{p_{o}} \frac{\left(c_{s}^{\prime}\right)^{2}}{p} \cdot d p \tag{2.33}
\end{equation*}
$$

The integral here can be evaluated from the isotherm data. Assuming Fick's equation to hold, Gilliland proceeded to derive an expression for a surface diffusion coefficient, $D_{s s}$:

$$
\begin{equation*}
\frac{J}{A_{c}}=D_{s s} \cdot \frac{\rho_{\text {app. }} A_{g}}{K} \cdot \frac{\Delta c_{s}^{\prime}}{\ell} \tag{2.34}
\end{equation*}
$$

where Δc_{s}^{\prime} is the surface concentration difference between the plug faces. A good correlation over the concentration range $\theta=0.1$ to the capillary condensation region was claimed.

Flood et al (1952c) had previously adopted a similar approach and concluded that viscous flow of a compressed gas and flow of a liquid film could not be distinguished, but pure diffusive flow was thought to be small. When multilayer adsorption or capillary condensation occurred, the controlling flow mechanism was laminar viscous flow of a liquid film. Popielawski (1967) also favoured a two-dimensional viscous flow mechanism in cases of strong sorption.
(ii) Activated diffusion mechanism

At sub-monolayer concentrations a random walk or activated diffusion model appears to give the best interpretation of surface diffusion. The adsorbed molecules are localised at particular sites and flow occurs by a series of adsorption-desorption steps between sites. Since the hopping molecules are more likely to be re-adsorbed at vacant sites than at occupied ones, a net flux of adsorbed molecules occurs in the direction of decreasing surface concentration. For small surface concentrations the flow obeys Fick's equation having a constant D. The mechanism was first advanced by Wicke and Kallenbach (1941) and supported by Kammermeyer (1958) and the research groups of Carman (Carman and Kaal, 1951a; Carman and Malherbe, 1950) and Barrer (Barrer and Strachan, 1955; Ay1more and Barrer, 1966; Ash et al, 1973).

Kruyer (1953) suggested that for random walk the diffusion coefficient could be expressed as :

$$
\begin{equation*}
D_{s s}=D_{o s} \exp (-E / R T) ; \quad D_{o s}=\frac{1}{2} \alpha^{2} / \tau_{m} \tag{2.35}
\end{equation*}
$$

where a represents the mean jump distance of a molecule on the surface
and τ_{m} is its mean residence time on a particular site (cf. equation (2.21)). Activation energies (E) for surface diffusion indicate that localised adsorption occurs. Diffusion coefficients for this type of mechanism are obtained from equation (2.15) in the Henry law range and equation (2.22) outside it.

Diffusive flow is distinguished since (a) on energetically homogeneous surfaces and at low surface concentrations $D_{s s}$ should be independent of concentration; (b) flow of binary gas mixtures leads to separation of the components; (c) independent migration is found;
(d) D_{ss} is strongly temperature dependent.
(iii) Other models

Metzner and co-workers (Smith and Metzner, 1964; Weaver and Metzner, 1966) have derived a general equation for surface transport by a hopping mechanism in which the actual trajectory and path of the molecule is considered in detail. Both the jump distance, a, and jump frequency, F, may vary with surface concentration. The formula obtained was:

$$
\begin{equation*}
\frac{J_{\mathrm{s}}}{\mathrm{~A}_{\mathrm{c}}}=\frac{\mathrm{A}_{\mathrm{g}} \rho_{\mathrm{app}}}{2 \pi \mathrm{k}^{2}}\left[\mathrm{~F}\left(\frac{\partial a^{2}}{\frac{\partial \mathrm{p}}{}}\right)_{\mathrm{T}}^{2}+\frac{\pi a^{2}}{2} \cdot\left(\frac{\partial \mathrm{~F}}{\partial \mathrm{p}}\right)_{\mathrm{T}}\right] \frac{\mathrm{dp}}{\mathrm{dx}} \tag{2.36}
\end{equation*}
$$

Roybal and Sandler (1972) used this equation to derive a mathematical model for surface diffusion.

A novel statistical mechanical treatment, recently developed by Lee and 0^{\prime} Connell (1972), used a single model to predict both adsorption isotherms and surface diffusion coefficients for partially mobile sorbents on homogeaeous surfaces. The model was applied to the data of Ash, Baker and Barrer (1967) and Yope (1967) for the flow of SO_{2} and SF_{6} on Graphon. Reasonable agreement was found below $\theta=1$.

Horiguchi et al (1971) evaluated several models for surface diffusion including hydrodynamic, diffusive and Metzner's model. A Fick's law
diffusive mechanism was found to give the best fit to sub-monolayer experimental data.

2.2 THE PHENOMENON OF THERMAL TRANSPIRATION

Following Reynolds discovery of thermal transpiration, Knudsen (1910a) showed that when $\lambda \gg d$, molecular streaming in a temperature gradient gave rise to a pressure gradient in a closed system. From kinetic theory he obtained the molecular collision frequency, per unit area, Z, as

$$
\begin{equation*}
Z=p /(2 \pi m k T)^{\frac{1}{2}} \tag{2.37}
\end{equation*}
$$

where m is the molecular mass and k is the Boltzmann constant. When a capillary or porous membrane connects two vessels of different temperatures T_{0} and $\mathrm{T}_{\ell}\left(\mathrm{T}_{\mathrm{o}}>\mathrm{T}_{\ell}\right)$, then a state of equilibrium will be set up such that no net flow occurs through the capillary. In this state the collision frequencies on each capillary entrance must be equal (assuming diffuse reflection to occur within the tube) and so:

$$
\begin{equation*}
\frac{p_{o}}{(2 \pi m k T)^{\frac{1}{2}}} \quad=\frac{p_{\ell}}{\left(2 \pi m k T_{\ell}\right)^{\frac{1}{2}}} \quad ; \quad\left(\frac{p_{0}}{p_{\ell}}\right)_{\infty}=\left(\frac{T_{0}}{T_{\ell}}\right)^{\frac{1}{2}} \tag{2.38}
\end{equation*}
$$

Hence a pressure gradient is set up to oppose the flux due to the temperature gradient.

When $\lambda \ll d$, then we are in the viscous flow region and no transpiration will be expected, hence $p_{0} / p_{\ell}=1$. In the intermediate region, $\lambda \backsim d$, a smooth transition in $\left(p_{o} / p_{\ell}\right){ }_{\infty}$ will occur between the limits of unity and $\left(T_{0} / T_{\ell}\right)^{\frac{1}{2}}$. This is illustrated in figure 2.2; it is generally considered that the limits are achieved at $\lambda \geqslant 10 d$ and $10 \lambda \leqslant d$.

Variation of thermal transpiration pressure ratio with d / λ

Figure 2.2

In the transition region, a 'thermal creep' mechanism has been postulated for the thermal transpiration effect (Kennard, 1938, p 330; Williams, 1971). A steady creep of gas occurs along the surface from the cold region to the hot region and an equilibrium is set up with a viscous back flow. Kennard suggested that 'creep' was caused by a preferential back scattering of obliquely impinging molecules, and this was greater for a molecule travelling from a hot to cold region than for one travelling from cold to hot.

Although a $\left(p_{0} / p_{\ell}\right)_{\infty}$ value of $\left(T_{0} / T_{\ell}\right)^{\frac{1}{2}}$ (the Knudsen limit) can be obtained for apertures (Edmonds and Hobson, 1965), a satisfactory explanation of why the Knudsen limit is rarely achieved for capillaries, even though $\lambda \gg d$, has not yet been proposed.
2.2.1 Thermal transpiration through capizlaries

Several theories and equations have been proposed to describe the behaviour of the pressure ratio in the transition region. The effect of overall gas pressure, temperature difference, capillary diameter, the internal surface of the capillary and the nature of the gas have all been considered. The more important treatments will now be considered.
(i) Weber's equation

A semi-empirical formula was proposed by Weber, Keesom and
Schmidt (1936) and investigated by van Itterbeck and de Grande (1947), Los and Fergusson (1952), and Miller (1963). The formula proposed by Weber et al, which they applied to He, Ne and O_{2}, was:-

$$
\begin{equation*}
\frac{d p}{d T}=\frac{p}{2 T} \cdot \frac{1}{k_{1} y^{2}+k_{2} y+\mu} \tag{2.39}
\end{equation*}
$$

where $y=d / \lambda$ and $k_{1}(\simeq \pi / 128), k_{2}(\simeq \pi / 12)$ and μ are semi-empirical constants which vary with the gas. The equation can be expressed in an integrated form as :

Here B, C, D, m, $m^{\prime}, m^{\prime \prime}$ are constants which could be calculated from the semi-empirical constants k_{1}, k_{2} and μ. n is obtained from the temperature dependence of gas viscosity (n) in $\left(\eta_{0} / \eta_{\ell}\right)=\left(T_{0} / T_{\ell}\right)^{\frac{1}{2}+n}$.

Besides being cumbersome to operate since k_{1}, k_{2} and μ must be obtained for each gas, both Los and Fergusson and ifiller found it necessary to modify the equation to obtain a fit for the transition curve of such simple gas molecules as $H_{2}, \mathrm{~N}_{2}$ and Ar. Hence Weber's equation ias found very limited application.
(ii) Liang's equation

An empirical formula with only one adjustable parameter was proposed by Liang (1951, 1952), covering the entire pressure regime, from the low pressure limit to continuum flow. This was much simpler to use than Weber's equation, and is generally employed in preference, when thermal transpiration effects have to be estimated eg. in pressure measurements at low tamperatures and pressures (Rosenberg, 1956). In its original furm Liang's equation used N_{2} as a stanfard with which to compare
the transition curve. He subsequently proposed another foria (Liang, 1953, 1955) in which helium was used as the standard, since with helium the effect can be more easily observed at higher pressures. The form of this equation was:

$$
\begin{equation*}
\left(\frac{p_{o}}{p_{\ell}}\right)_{\infty}=\frac{\alpha_{H e}\left(\phi_{g} X\right)^{2}+\beta_{H e}\left(\phi_{g} X\right)+1}{\alpha_{H e}\left(\phi_{g} X\right)^{2}} \frac{\beta_{H e}\left(\beta_{g} X\right)+R_{m}}{\left(\beta_{H}\right.} \tag{2.41}
\end{equation*}
$$

where $R_{m}=\left(T_{l} / T_{o}\right)^{\frac{1}{2}}, X=p_{o} . d$ and ϕ_{g} is a pressure shifting factor for the gas; for helium $\phi_{H e}=1$. Once $\alpha_{H e}$ and $\beta_{H e}$, empirical constants, have been determined accurately from helium measurements, then we are left with an equation containing one adjustable parameter, ϕ_{g}. Cquation (2.41) can also be written as:

$$
\begin{equation*}
\frac{\Delta p}{p_{o}}=\frac{1-R_{m}}{\alpha_{H e}\left(\phi_{g} X\right)^{2}+\beta_{H e}\left(\phi_{g} X\right)+1} \tag{2.42}
\end{equation*}
$$

This equation predicts a maximum at $\alpha_{H e}\left(\phi_{g} X\right)^{2}=1$ when Δ is plotted against p_{o} and this was investigaied by Bennett and Tompkins (1957). They also tried to allow for a temperature dependence of ϕ_{g} (Liang assumed that $\alpha_{H e}, \beta_{H e}$ and ϕ_{g} were independent of temperature), and reported poor agreement with the experimental transition curve at large tube diameters.

(iii) Dusty Gas Theory

This theory, originally proposed as a model for transport phenomena in porous media (section 2.1 .2), has recently been applied to thermal transpiration and extended to include capillaries (Mason, Evans and Watson, 1963). When diffuse flow and viscous back flow were sonsidered a differential approximation for capillaries was obtained as:

$$
\begin{equation*}
\frac{\Delta p}{p_{0}}=\frac{\frac{1}{2}\left(1-R_{m}^{2}\right)}{[1+(\pi / 12) y]\left[1+\frac{1}{8}(y)\right]} \tag{2.43}
\end{equation*}
$$

This has the same basic form as Weber's and Liang's equations (cf equations (2.42) and (2.43)) and gave a reasonable prediction of experimental transition curves, even at relatively large pressures where viscous back flow is significant. A maximum in $\Delta \mathrm{p} / \mathrm{p}_{\mathrm{o}}$ is again predicted: the Knudsen limit of $\left(\mathrm{T}_{\mathrm{O}} / \mathrm{T}_{\ell}\right)^{\frac{1}{2}}$ is assumed.
(iv) Departure from the Knudsen 1imit

Experimental verification of Liang's equation was carried out by several workers. It was soon reported that the expected Knudsen limit of $\left(T_{0} / T_{\ell}\right)^{\frac{1}{2}}$ for the thermal transpiration pressure ratio was frequently not achieved, even when $\lambda \gg d$ (Takaishi and Sensui, 1963). Miller (1963) using the Weber equation found similar behaviour. It was observed that $\left(p_{0} / P_{\ell}\right)_{\infty}$ was a function of the tube diameter, the closest approach to $\left(T_{0} / T_{\ell}\right)^{\frac{1}{2}}$ being achieved at low d (Podgurski and Davis, 1961; Hobson et al, 1963; Edmonds and Hobson, 1965). It is interesting to note that Liang (1955) indicated that thermal transpiration can be expected to be a function of the capillary tube since the accummodation coefficient of the surface plays a part in the flow mechanism.

Thus several factors appear to be important in determining the pressure ratio. The influence of the length of the tube and its entrance geometry were considered by Hobson and co-workers, and Siu (1973). Surface roughness and the microscopic nature of the capillary surface has also been investigated (Hobson et a1, 1963; Hobson, 1969; Siu, 1973). It became evident that the kinetic theory treatment, which corisidered gas molezules to be hard spheres which do not interact with the surface, was inadequate.

Treatments by Siu (1973), McCormick and Kuščer (1972) and Cha and McCoy (1972) considered the nature of the molecule-surface collision. Their treatments invoked energy and momentum acconmodation coefficients for the surface reflection, and they allowed for deviations from the Maxwe11 distribution of molecular velocities. It was realised that
molecules travelling from a hot region 50 a cold one could differ from molecules travelling in the other direction in regard to their proportion of specular and diffuse reflections. An equation was developed for the pressure ratio which could account for the non-Knudsen limit:

$$
\begin{equation*}
\left(\frac{p_{0}}{P_{\ell}}\right)_{\infty}=\left(\frac{T_{0}}{T_{\ell}}\right)^{\gamma} \quad ; \quad \gamma=\frac{1}{2}-f(\sigma) \tag{2.44}
\end{equation*}
$$

σ is the degree of specular reflection (0 for complete diffuse reflection; 1 for complete specular reflection). The form of $f(\sigma)$ varied with the treatments of Siu, McCormick and Cha. γ (and hence σ) were determined empirically and varied with the gas.

Another approach (Edmonds and Hobson, 1965; Miller and Buice, 1966) adopted the transmission probability theory of Clausing (1932), and produced the simple result:

$$
\begin{equation*}
\left(\frac{P_{0}}{P_{\ell}}\right)_{\infty}=\left(\frac{T_{0}}{T_{\ell}}\right)^{\frac{1}{2}} \frac{W_{\ell}}{W_{0}} \tag{2.45}
\end{equation*}
$$

where W_{0} is the transmission probability for a molecule travelling from hot to cold and W_{ℓ} for one travelling from cold to hot. If specular reflection occurs which is greater for a hot molecule striking a colder surface than for a cold molecule striking a hotter surface, ther $\mathrm{F}_{\mathrm{o}}>\mathrm{W}_{\ell}$ and a lower pressure ratio is obtained.

Wu (1968) produced an equation for ($\mathrm{p}_{\mathrm{o}} / \mathrm{p}_{\ell}$) from general kinetic theory, but allowed for a deviation of the velocity distribution function from ciassical theory. He introduced a geometric factor, I, as a measure of this deviation.

In Chapter 6 the implication of specular reflections and departure from classical kinetic theory will be considered in more detail.

2.2.2 Thermal transpiration through porous media

When we turn our attention to porous media we find that a physical definition of a membrane is rather more difficult than for a capillary.

Some of the uncertainties were considered in section 2.1.2. In addition when Knudsen flow in a temperature gradient occurs in porous media an adsorbed film is frequently present which could itself exhibit a temperature gradient flow. The interpretation of the diffuse - specular nature of molecule - wall collisions is also more complicated.
(i) D.G.T. model

Mason, Evans and Watson (1963) extended the Dusty Gas Theory (D.G.T.) for a porous medium to thermal transpiration. They derived an expression (2.46) for the total flux (J tot) under thermal transpiration conditions which applied to the entire pressure range and allowed for viscous backflow close to the high pressure limit.

$$
\begin{equation*}
J_{\text {tot }}=-\frac{p_{k}}{R T}\left[\left(1+\frac{B_{o} p}{n D_{k}}\right) \frac{d \ln p}{d x}-\left(\frac{\alpha_{Q} n_{d}^{R T}}{p+2 \alpha_{Q} n_{d} R T}\right) \frac{d \operatorname{lnT}}{d x}\right] \tag{2.46}
\end{equation*}
$$

Here D_{k} is the Knudsen diffusion coefficient (section 2.1.2), η is the gas viscosity, α_{Q} represents a thermal diffusion factor and B_{o} is a geometric tortuosity factor (proportional to ε / k, where k is the tortuosity). The term involving $B_{o} p / \eta D_{k}$ allows for viscous flow. An equation representing the transition curve in the steady-state ($J_{\text {tot }}=0$) was obtained as

$$
\begin{equation*}
\frac{\Delta p}{\bar{p}}=\frac{\left(1-R_{m}^{2}\right)\left(\alpha_{Q} n_{d} R \bar{T}\right)\left(\eta D_{k} / B_{o}\right)}{\left(\bar{p}+2 \alpha_{Q} n_{d} R \bar{T}\right)\left[\bar{p}+\left(\eta D_{k} / B_{o}\right)\right]} \tag{2.47}
\end{equation*}
$$

where $\bar{T}=\frac{1}{2}\left(T_{0}+T_{\ell}\right)$ and $\bar{p}=\frac{1}{2}\left(p_{0}+p_{\ell}\right)$. This equation predicts a maximum in Δp at :

$$
\begin{equation*}
(\overline{\mathrm{p}})_{\max }=\left[2 \alpha_{Q} \mathrm{n}_{\mathrm{d}} \mathrm{RT}\left(\eta D_{k} / B_{o}\right)\right]^{\frac{1}{2}} \tag{2.48}
\end{equation*}
$$

which can be related to the isothermal Knudsen permeability. Mason et al also suggested using equation (2.47) to predict the thermal transpiration curve from permeability measurements, and this approach has
been adopted by Hopfinger and Altman (1969).
In the Knudsen jimit the viscous flow component does not occur and so (2.46) becomes:

$$
\begin{equation*}
J=-\frac{p_{k}}{R T}\left[\frac{d \ln p}{d x}-\left(\frac{\alpha_{Q} n_{d} R T}{p+2 \alpha_{Q} n_{d} R T}\right) \frac{d \ln T}{d x}\right] \tag{2.49}
\end{equation*}
$$

In the steady-state $J=0$ and the Knudsen limit for $\left(\mathrm{p}_{\mathrm{o}} / \mathrm{p}_{\ell}\right)_{\infty}$ of $\left(T_{0} / T_{\ell}\right)^{\frac{1}{2}}$ can readily be obtained from (2.49).

Another interpretation of a porous medium was given by Lassettre who derived theoretical expressions for the permeability of a porous bed of spherical particles (Lassettre, :1956). He considered that a fixed proportion of diffuse and specular reflections occurred and he extended the treatment to mass and heat transport in a temperature gradient (Lassettre, 1958).
(ii) Experimental evidence.

Until recently the only published data on thermal transpiration through porous media was that of Reynolds (1879) and Knudsen (1910b) who used stuccoplates, meerschaum, and plugs of powdered magnesia and asbestos.

Following Mason's publication in 1963 several workers attempted to verify his equation and commenced investigations of thermal transpiration and permeabilities on the same membrane. Hanley (1965) used a porous ceramic while Hopfinger and Altman (1969) used both porous ceramic and Millipore filters - materials of well characterised porosity and tortuosity.

From measurement of isothermal permeability as a function of p, for H_{2}, $\mathrm{He}, \mathrm{Ne}, \mathrm{Kr}, \mathrm{CO}_{2}$ and SO_{2}, Hanley obtained B_{o} and D_{k}, from which ($\alpha_{Q}{ }^{n_{d}}$ RI) could also be deduced knowirg the membrane porosity and tortuosity and the gas viscosity. Using equation (2.48) he then predicted the shape of a $\Delta \mathrm{p}$ vs p_{o} (or $\ln \Delta \mathrm{p}$ vs $1 \mathrm{np} \mathrm{o}_{\mathrm{o}}$) curve and compared this with the
experimental curve. He found good agreement between theory and experiment except (a) at low pressures, where he considered that second order temperature effects and pressure gradient contributions become important and (b) for appreciably adsorbed gases. He also found that the geometric factor, B_{o}, varied slightly with the gas.

Hopfinger carried out investigations in the intermediate range, $\mathrm{d} / 10<\lambda<10 \mathrm{~d}$, using H_{2}, He, Ar and CO_{2}, and found that the D.G.T. gave a satisfactory explanation of the transition curve when $\lambda>d / 10$. Like Hanley he found that B_{o} was gas dependent and was a function of ε / k^{2} ($k=$ tortuosity) rather than ε / k. Consistent deviations were found in both the low and high pressure limits, the latter being due to significant viscosity effects. The experiments were not sufficiently accurate to distinguish between experimental error and deviations from the Knudsen limit.

Recently Ash et al (1973) have carried out a high precision study of thermo-osmotic transport through carbon membranes, in tine Knudsen flow regime ($\lambda \gg 10 \mathrm{~d}$). For non-sorbed gases the limiting value of $\mathrm{p}_{0} / \mathrm{P}_{\ell}$ was less than the Knudsen limit, $\left(\mathrm{T}_{0} / \mathrm{T}_{\ell}\right)^{\frac{1}{2}}$ and varied with the gas, ($\left.p_{0} / p_{\ell}\right)_{a}$ being in the order $\mathrm{Ne}<\mathrm{He}<\mathrm{H}_{2}$.

2.2.3 Surface analogue of thermal transpiration

Hi 11 (1956) realised that when adsorption occurs within a capillary, then a surface analogue of thermal transpiration can occur. This surface flow in a temperature gradient will augment the gas phase flow, thus causing p_{0} / p_{ℓ} to exceed the Knudsen limit of $\left(T_{0} / T_{\ell}\right)^{\frac{1}{2}}$, at low pressures. The flow is a diffusive one caused by a gradient in surface concentration within the membrane.

Using the approach of Sears (1954) Hill derived a steady-state transport equation for \dot{n}, the number of moles transported per second in the x direction per unit cross-section.

$$
\begin{equation*}
\dot{\mathrm{n}}=-2 \pi r \mathrm{D}_{\mathrm{ss}} \frac{\mathrm{dc}_{s}^{\prime}}{\mathrm{dx}}-\frac{8}{3}\left(\frac{\pi r^{3}}{(2 \pi m k)^{\frac{1}{2}}}\right) \cdot \frac{\mathrm{d}\left(\mathrm{p} / \mathrm{T}^{\frac{1}{2}}\right)}{\mathrm{dx}} \tag{2.50}
\end{equation*}
$$

where c_{s}^{\prime} is the surface concentration, r is the tube radius, m is the molecular mass and $\mathrm{D}_{s \mathrm{~s}}$ is a surface diffusion coefficient. The first term represents surface transport and the second gas phase transport. The expression reduces to the Krudsen limit when $\dot{\mathrm{n}}=0$. and there is no surface transport.

It can be seen that the surface flow component depends on c_{s}^{\prime} and this is obtained from the adsorption isotherm. Hill considered specific cases of mobile and localised adsorption. Clint (1966) modified Hill's expression and included $D_{s s}$ in the integration w.r.t. x. His equation will be considered further in Chapter 6.

Lassettre and Brooks (1961) used Hill's approach and applied it to surface flow and thermal transpiration in a porous medium. In the steady-state $\dot{\mathrm{n}}=0$, hence either (i) gas and surface fluxes become zero or (ii) they are equal but opposite (countercurrent flow). We have already seen (section 2.1.6) that at low surface concentrations a diffusive, random walk, mechanism exists for surface transport and this leads to separation of gas mixtures. At higher coverages when a hydrodynamic mechanism operates surface flow is non-separative. However if, in this latter case, flow is in a temperature gradient and at low pressures, then Lassettre and Brooks suggested that the flow could still be separative since the adsorbed surface phase would be in equilibrium with the gas phase where separative Knudsen flow would operate. Tf.esituation is analogous to distillation under reflux - in this case the countercurrent surface flow is the reflux and separation occurs in the gas phase flow. Repetitive fractionation is now possible. The countercurrent argument has been used more recently by Ash, Barrer, Clint,Dolphin and Murray (1973).

Sandler (1972b) attempted to relate the thermal transpiration flux (J_{TT}) and pressure ratio with the isothermal fluxes for surface diffusion (J_{s}) and Knudsen gas flow (J_{g}). He used the D.G.T. to ob tain J_{g} and J_{TT} and assumed that in the Knudsen flow regime the total flux $J_{\text {tot }}$ was the sum of J_{s}, J_{g} and $J_{T T}$. When the steady-state pressure ratio was achieved then $J_{\text {tot }}=0$ and he deduced the relationship.

$$
\left(\frac{p_{0}}{p_{\ell}}\right)_{\infty}=\left(\frac{T_{0}}{T_{\ell}}\right)^{R} \text { where } R=\frac{\alpha_{L}}{1+\left(J_{s} / J_{g}\right)}
$$

α_{L} is an empirical constant having the value of $\frac{1}{2}$ in the Knudsen limit. If $\Delta \mathrm{T}\left(=\mathrm{T}_{\mathrm{o}}-\mathrm{T}_{\ell}\right)$ is not very large then J_{s} and J_{g} can be considered to be constant.

The limitations of this approach are that (i) it assumes the ideal Knudsen limit, $\alpha_{L}=\frac{1}{2}$; and (ii) although allowing for flow of a condensed film in isothermal surface diffusion, it takes no account of surface flow in a temperature gradient which will be significant if $J_{s} \neq 0$. The form of R predicts that in the presence of adsorption a reduced thernal transpiration ratio will be oitained because of the pressure gradient causing a surface back flow. In fact recent work with strongly sorbed gases on carbon membranes (Ash et al 1973) has shown that $\left(p_{o} / p_{\ell}\right)_{\infty}$ is actually increased.

Gilliland et al (1962) used a hydrodynamic approach. He considered that for dilute films the driving force for surface flow in a temperature gradient was a function of the gradient in :

$$
\phi / T^{\frac{1}{2}} \quad \exp \left(E_{s s} / R T\right)
$$

A surface flow rate, J_{s}, was obtained as:

$$
\begin{equation*}
\frac{J_{s}}{A_{c}}=-\frac{\rho_{a p p^{\prime}} A_{g}}{k^{2} \cdot C_{R}} \frac{\left(c_{s}^{\prime}\right)^{2}}{\bar{T}}\left[\Delta H+\frac{\phi}{2 c_{s}^{\prime}}\left(\frac{2 E_{s s}}{\mathrm{RT}^{\bar{T}}}-1\right)\right] \frac{\mathrm{dT}}{\mathrm{dx}} \tag{2.51}
\end{equation*}
$$

where \bar{T} is the mean temperature, $E_{s s}$ is an activation energy for surface flow and ΔH is the enthalpy of adsorption. Other parameters are defined in section 2.1.6.

Since $\Delta H<0$ and $E_{s s}>0$, then this equation predicts that surface flow can be from 0 to ℓ or vice - versa, depending on the relative magnitudes of $\Delta \mathrm{H}$ and $\bar{\phi}_{\mathrm{c}_{\mathrm{s}}^{\prime}}\left(\frac{2 \mathrm{E}_{\mathrm{SS}}}{\mathrm{RT}}-1\right)$.

Wright (1971) treated surface thermal transpiration by considering the stochastic theory of Brownian motion in a temperature gradient. He deduced expressions for the surface flux in terms of gradients in (i) surface concentration, c_{s}^{\prime}; (ii) temperature and (iii) spreading pressure, ϕ. The interrelation between c_{s}^{\prime}, ϕ and $p_{e q}$, the gas phase pressure in local equilibrium with the surface, was:

$$
\frac{\partial \phi}{\partial x}=-c_{s}^{\prime} \cdot \frac{Q}{T} \cdot \frac{\partial T}{\partial x}+R_{T} \cdot \frac{c_{s}^{\prime} \cdot}{p_{e q}} \frac{\partial p_{e q}}{\partial x}
$$

where Q is an equilibrium heat of adsorption.
Experimental evidence for surface thermal transpiration has been provided by Hanley (1965), who obtained some curious results for strongly sorbed gases. Hopfinger and A1tman (1969) also obtained anomalous thermal transpiration results which could have been due to surface flew. However they worked in the intermediate (slip flow) pressure region and viscous back flow could occur.

Ash et al (1973) on the other hand, working i:n the Knudsen regime have found pronounced enhancement of ($\left.p_{0} / p_{\ell}\right)_{\infty}$ for strongly sorbed gases, the degree of enhancement increasing with the degree of adsorption.

2.3. THERMO-OSMOSIS

Thermo-osmosis is the mass transport of a fluid through a diaphragm under the influence of a temperature gradient. It is closely associated
with thermal transpiration (section 2.2) but can occur outside the Knudsen flow regime and is exhibited by liquids as well as by gases on both porous and non-porous membranes. In this section we are concerned with the thermodynamics of the process, heats of transport associated with thermo-osmotic flow and the relationship with isothermal and isobaric permeabilities.

2.3.1 Theoretical treatment

The approach used here is based on non-equilibrium thermodynamics (Denbigh, 1951) and makes use of the Onsager reciprocal relationship (Onsager, 1931) ; it has been presented more fully by Ash and Barrer (1963) and Ash, Barrer, Clint, Dolphin and Murray (1973). Similar treatments have been used by Denbigh and Raumann (1952a) and Bearman (1957) for solubility and flow through a rubber membrane, by Hanley and Steele (1965) for gas flow through a bundle of steel capillaries, and by Siu (1973) for flow through a single capillary.

If we denote mass flow by subscript 1 and heat flow by subscript 2 , then for the total mass and heat fluxes (J_{1} and J_{2}) through a membrane per unit cross-section we can write:

$$
\begin{align*}
& J_{1}=J_{1}^{s}+J_{1} \mathrm{~g} \tag{2.52}\\
& J_{2}=J_{2}^{\mathbf{s}}+{J_{2}}^{\mathrm{g}}+{J_{2}}^{\mathrm{i}} \tag{2.53}
\end{align*}
$$

Here $J_{1}{ }^{\mathbf{S}}$ denotes the extra mass transport caused by the presence of an adsorbed phase and J_{1}^{g} is the gas phase mass transport which would occur in the absence of adsorption. $J_{2}{ }^{\mathrm{s}}, J_{2}{ }^{\mathrm{g}}$ and ${J_{2}}^{\mathrm{i}}$ are heat transport due to extra flow, gas phase flow and heat flow through the particles ($J_{1}{ }^{\mathbf{i}}$ does not occur as the membrane constituent particles are considered to be non-porous).

We can now invoke non-equilibrium thermodynamics and write:

$$
\begin{align*}
& J_{1}=\left(L_{11}^{s} \mathrm{X}_{1}+\mathrm{L}_{12}^{\mathrm{s}} \mathrm{X}_{2}\right)+\left(\mathrm{L}_{11}^{\mathrm{g}} \mathrm{X}_{1}+\mathrm{L}_{12}{ }^{\mathrm{g}} \mathrm{X}_{2}\right) \tag{2.54}\\
& J_{2}=\left(\mathrm{L}_{22}^{\mathrm{s}} \mathrm{X}_{2}+\mathrm{L}_{21}{ }^{\mathrm{s}} \mathrm{X}_{1}\right)+\left(\mathrm{L}_{22}{ }^{g} \mathrm{X}_{2}+\mathrm{L}_{21}{ }^{g} \mathrm{X}_{1}\right)+\mathrm{L}_{22}{ }^{\mathrm{i}} \mathrm{X}_{2} \tag{2.55}
\end{align*}
$$

The fluxes are assumed to be linear functions of the driving forces X_{1} and X_{2}, and the L 's are proportionality coefficients. L_{12} is a cross-coefficient which allows for a coupling effect of the heat driving force on the mass flow (L_{21} refers to mass driving force on heat flow). Expressions for the driving forces are:

$$
\begin{equation*}
X_{1}=-T \operatorname{grad}(\mu / T) ; X_{2}=-\frac{1}{T} \operatorname{grad} T \tag{2.56}
\end{equation*}
$$

which for flow in one dimension become :

$$
\begin{equation*}
X_{1}=-T \frac{\partial(\mu / T)}{\partial x} ; X_{2}=-\frac{1}{T} \frac{\partial T}{\partial x} \tag{2.57}
\end{equation*}
$$

The Onsager reciprocal relationship is expressed by :

$$
\begin{equation*}
L_{12}{ }^{s}=L_{21}{ }^{s} \text { and } L_{12}{ }^{g}=L_{21}{ }^{g} \tag{2.58}
\end{equation*}
$$

Several special cases will now be considered which simplify considerably equations (2.54) and (2.55).
(i) isothermal transport, $\mathrm{X}_{2}=0$ and $J_{2}=0$

$$
\begin{align*}
J_{1}^{\text {iso }} & =L_{11}^{s} x_{1}+L_{11}^{g} x_{1} \\
& =-\left(L_{11}^{s}+L_{11} g\right) \frac{\partial \mu}{\partial x} \tag{2.59}
\end{align*}
$$

(ii) No net flow of heat, $\mathrm{X}_{2}=0$ but $J_{2} \neq 0$

$$
\left(\frac{J_{2}}{J_{1}}\right)_{X_{2}=0} \frac{L_{21}^{s}+L_{21}^{s}}{L_{11}^{s}+L_{11} g}
$$

$$
\begin{equation*}
=\frac{\mathrm{L}_{12}{ }^{\mathrm{s}}+\mathrm{L}_{12} \mathrm{~g}}{\mathrm{~L}_{11}^{\mathrm{s}}+\mathrm{L}_{11} \mathrm{~g}} \tag{2.60}
\end{equation*}
$$

This ratio represents the energy transported per mole of gas when there is no net flow of heat.
(iii) Thermo-osmotic steady-state. In this condition there is no net flow of mass through any cross-section within the membrane i.e.
$J_{1}=0$. From equation (2.54), using (2.57) we get

$$
\begin{equation*}
\frac{\partial(\mu / T)}{\partial x}=-\left(\frac{L_{12}{ }^{s}+L_{12}^{g}}{L_{11} \mathrm{~S}+\mathrm{L}_{11} \mathrm{~g}}\right) \frac{\partial \mathrm{T}}{\partial \mathrm{x}} \cdot \frac{1}{\mathrm{~T}^{2}} \tag{2.61}
\end{equation*}
$$

Integrating from $x=0$ to $\ell:$

$$
\begin{equation*}
\left(\frac{\mu}{T}\right)_{\ell}-\left(\frac{\mu}{T}\right)_{0}=-\int_{\ell}^{T}\left(\frac{L_{12}^{s}+L_{12} g}{L_{11} s+L_{11} g}\right) \cdot \frac{\partial T}{T^{2}} \tag{2.62}
\end{equation*}
$$

From classical thermodynamics we have the relationships :

$$
\begin{align*}
& \mu=\mu^{\ominus}+\operatorname{RT} \ln a=\mu^{\ominus}+\operatorname{RT} \ln p \tag{2.63}\\
& \hat{H}_{\mathrm{g}}^{\ominus}=-\mathrm{T}^{2} \cdot \frac{\partial}{\partial T}\left(\frac{\mu^{\ominus}}{\mathrm{T}}\right) \tag{2.64}
\end{align*}
$$

where ' a ' is the activity, μ^{\ominus} is the standard chemical potential and $\mathrm{H}_{\mathrm{g}}^{\boldsymbol{\theta}}$ is the standard gas enthalpy. By differentiation of (2.63) we obtain :

$$
\begin{equation*}
\frac{\partial(\mu / T)}{\partial T}=\frac{\partial\left(\mu^{\ominus} / T\right)}{\partial T}+R \frac{\partial \ln p}{\partial T} \tag{2.65}
\end{equation*}
$$

Substituting from (2.64) and integrating from $x=0$ to ℓ gives

$$
\begin{equation*}
\left(\frac{\mu}{T}\right)_{\ell}^{-}\left(\frac{\mu}{T}\right)_{0}=-\int_{T_{0}}^{T_{\ell}} \frac{H^{\theta}}{T^{2}} \cdot d T+\int_{P_{0}}^{P_{\ell}} R d \operatorname{lnp} \tag{2.66}
\end{equation*}
$$

Equation (2.62) can now be written as

$$
\begin{equation*}
-\int_{\ell}^{T_{0}} \frac{H_{g}^{\theta}}{T^{2}} \cdot d T \quad-\quad R \ln \left(\frac{p_{0}}{p_{\ell}}\right)_{\infty}=-\int_{\ell}^{T_{0}}\left(\frac{L_{12}^{s}+L_{12}^{g}}{L_{1} 1}+L_{1}^{g}\right) \frac{d T}{T^{2}} \tag{2.67}
\end{equation*}
$$

which can be rearranged to give

$$
\begin{equation*}
R \ln \left(\frac{p_{0}}{p_{\ell}}\right)_{\infty}=\int_{\ell}^{T_{0}}\left(\frac{L_{12}^{s}+L_{12}^{g}}{L_{11}^{s}+L_{1} \frac{g}{1}}-H_{g}^{\Theta}\right) \frac{d T}{T^{2}} \tag{2.68}
\end{equation*}
$$

We now define a heat of transport, $Q_{0}\left(=Q_{o}\left(T_{o}\right)\right)$, as

$$
\begin{equation*}
Q_{0}=\frac{L_{12}^{s}+L_{1}{ }_{2}^{g}}{L_{1}^{s}+L_{1} g}-H_{g}^{\theta} \tag{2.69}
\end{equation*}
$$

It can be seen from relation (2.60) that Q_{o} is the amount by which the total energy transported per mole when there is no net flow of heat exceeds the standard enthalpy of the gas.

By differentiating (2.68) w.r.t. T_{o} at constant T_{ℓ} and substituting Q_{0} under the integral we obtain:

$$
\frac{\partial}{\partial T_{o}}\left[\begin{array}{ll}
R & \left.\ln \left(\frac{p_{0}}{p_{\ell}}\right)_{\infty}\right]_{\ell}=-\frac{Q_{0}}{T_{o}^{2}} \tag{2.70}
\end{array}\right.
$$

which can be rearranged to give

$$
\begin{equation*}
Q_{0}=R \frac{\partial}{\partial\left(1 / T_{0}\right)}\left[\ln \left(\frac{p_{0}}{p_{\ell}}\right)_{\infty}\right]_{\ell} \tag{2.71}
\end{equation*}
$$

Thus Q_{o} can be obtained as a function of T_{o} from plots of $\ln \left(p_{o} / p_{\ell}\right)_{\infty}$ versus $1 / T_{0}$. It has been found (Ash et al 1973) that through microporous carbon membranes Q_{o} was always negative and i ts magnitude decreased with increasing T_{0}.

If the heat of transport is assumed to be independent of temperature, then we can obtain a mean integral heat, Q_{m}, from (2.68):

$$
R \ln \left(\frac{p_{0}}{p_{\ell}}\right)_{\infty}=-Q_{m}\left[\begin{array}{cc}
1 & \frac{1}{T_{2}} \tag{2.72}\\
T_{0}
\end{array}\right]=-Q_{m} \frac{\Delta T}{T_{0} T_{\ell}}
$$

where $\Delta T=T_{o}-T_{\ell}$
For an ideal Knudsen gas which is non-sorbed, only gas phase flow occurs and so equation (2.69) reduces to

$$
\begin{equation*}
Q_{0}=\frac{L_{1} g^{g}}{L_{1} g}-H_{g}^{\theta} \tag{2.73}
\end{equation*}
$$

Kinetic theory predicts that $Q_{0}=-\frac{1}{2} \mathrm{RT}{ }_{\mathrm{o}}$ (Kennard, 1938), however deviations from this ideal value have been found. Clint (1966) and Ash et al (1973), on the basis of experimental observations, proposed that

$$
\begin{equation*}
Q_{0}=-\beta \cdot R T \tag{2.74}
\end{equation*}
$$

2
The factor β probably arises from limitations of the kinetic theory treatment which neglects interaction of gas molecules with the attractive potential of the pore walls (Sandler, 1972b).

Experimental measurements of thermo-osmosis have been confined to a small number of membrane systems. Denbigh and Raumann (1952b) studied the flow of $\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ vapour through a natural rubber membrane whilst Bearman and Bearman (1966) used butyl- and gum-rubber membranes with inert gases. In these systems transport by solution in the membrane was possible and Q_{0}, calculated from (2.72) and assumed to be independent of T, was quite different from the ideal gas value, and could be positive ($\mathrm{He}, \mathrm{Ne}, \mathrm{H}_{2}$) or negative (more strongly sorbed gases).

Haniey and Steele (1965) measured the flow of He , Ne and Ar through a bundle of stainless steel tubes over a wide range of pressures. After correction for temperature and pressure dependence, limiting values of $-Q_{0}$ were obtained which were less than $\frac{1}{2} \mathrm{RT}_{0}$. Argon most closely approached this ideal value but he and Ne gave significantly smaller
values of Q_{0}. As d / λ increased and the-slip flow region was entered, then Q_{0} decreased. Hanley (1966) found similar behaviour for the flow of $\mathrm{He}, \mathrm{Ne}, \mathrm{Kr}, \mathrm{CO}_{2}$ and SO_{2} through a porous ceramic membrane.

Rastogi, Singh and co-workers studied thermo-osmosis through porous unglazed porcelain as a function of pressure and temperature, up to $\Delta T=130 \mathrm{~K}$. They worked with $\mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{~S}$ and $\mathrm{C}_{2} \mathrm{H}_{4}$ in the intermediate pressure regime. At high pressures Q_{m} tended to zero, but even at the lowest pressures used the ideal value of $-\frac{1}{2} R T_{0}$ was not achieved (Rastogi, Singh and Singh, 1969; Singh, 1971). Thermo-osmosis of binary, ternary and quaternary gas mixtures have also been studied (Rastogi and Rai, 1974; Rastogi, Rai and Yadava, 1974) but again the measurements were outside the Knudsen regime. They did, however,show that:

$$
\begin{equation*}
Q_{m}=\sum c_{i} \cdot\left[Q_{m}\right]_{i} \tag{2.75}
\end{equation*}
$$

where Q_{m} and $\left[Q_{m}\right]_{i}$ are mean heats of transport for the mixture and the pure component $i . c_{i}$ is the mass fraction of component i.

Thermo-osmosis in the Knudsen regime has been studied by Ash et al (1973) for H_{2}, He , Ne, Ar and Kr , through carbon rembranes of Carbolac and Graphon, and also for $\mathrm{D}_{2}, \mathrm{Xe}$ and N_{2} through Graphon and $\mathrm{CO}_{2}, \mathrm{CH}_{4}$, and $\mathrm{C}_{3} \mathrm{H}_{8}$ through Carbolac. T_{ℓ} was held at a constar.t value and T_{0} varied between 320.65 and 393.15 K . For H_{2}, D_{2}, He and $\mathrm{Ne},-Q_{0}$ was always below the value for a Knudsen gas and increased with increasing T_{0}. When strcnger adsorption occurred, especially on Carbolac, $-Q_{0}$ could be much greater than $\frac{1}{2} R T_{0}$ and decreased sharply with increasing T_{0}.

2.3.2 Relationship with isothermal permeability

(i) Theoretical

The Fick equation can be expressed in several ways thus:

$$
\begin{equation*}
J=-\mathrm{D} \cdot \frac{\mathrm{dc}}{\mathrm{dx}} \quad ; \quad J=-\mathrm{L}_{11} \frac{\mathrm{~d} \mu}{\mathrm{dx}} \tag{2.76}
\end{equation*}
$$

It should therefore be possible to relate the phenomenological confficients to diffusion coefficients. Using equation (2.63) we can write (2.76) as:

$$
\begin{equation*}
J=-\mathrm{L}_{11} \mathrm{RT} \frac{\mathrm{~d} \operatorname{lna}}{\mathrm{dc}} \cdot \frac{\mathrm{dc}}{\mathrm{dx}} \tag{2.77}
\end{equation*}
$$

and hence we can make the identification:

$$
\begin{equation*}
\mathrm{D}=\mathrm{L}_{11} \cdot \mathrm{RT} \cdot \frac{\mathrm{~d} \ln \mathrm{a}}{\mathrm{dc}} \tag{2.78}
\end{equation*}
$$

If ' a ' is proportional to c, then (2.78) becomes

$$
\begin{equation*}
\mathrm{D}=\mathrm{L}_{11} \mathrm{RT} \frac{\mathrm{dlnc}}{\mathrm{dc}}=\frac{\mathrm{L}_{11}}{\mathrm{c}} \cdot \mathrm{RT}=\ell_{11} \mathrm{RT} \tag{2.79}
\end{equation*}
$$

Here we have defined a mobility coefficient, ℓ_{11} as L_{11} / c. Sirsilar relationships can be obtained then we consider gas and surface fluw (Ash et al, 1973) :

$$
\begin{equation*}
c_{g} \ell_{11}^{g}=L_{1}{ }_{1}^{g} ; c_{g}^{\ell}{ }_{12}^{\mathrm{g}}=\mathrm{L}_{12}{ }_{2}^{\mathrm{g}} ; \mathrm{c}_{\mathrm{s}}^{\ell}{ }_{11}^{\mathrm{s}}=\mathrm{L}_{1} \stackrel{\mathrm{~s}}{i} ; \mathrm{c}_{\mathrm{s}}^{\ell}{ }_{12}^{\mathrm{s}}=\mathrm{L}_{12}^{\mathrm{s}} \tag{2.80}
\end{equation*}
$$

Q_{0} can be expressed as (from (2.69)) :

$$
\begin{equation*}
\mathrm{C}_{0}=\frac{1}{\left(\mathrm{~L}_{11}^{s}+\mathrm{L}_{1} \mathrm{~g}\right)}\left[\left(\frac{\mathrm{L}_{12}^{s}}{\mathrm{~L}_{11}^{s}}-H_{g}^{\theta}\right) \cdot \mathrm{L}_{11}^{s}+\left(\frac{\mathrm{L}_{12}^{g}}{\mathrm{~L}_{11}^{g}}-H_{g}^{\theta}\right) \cdot L_{1}^{\mathrm{g}}{ }^{\mathrm{g}}\right] \tag{2.81}
\end{equation*}
$$

Making use of (2.80) allows (2.81) to be written as:

$$
Q_{0}=\left(\frac{\ell_{12}^{s}}{\ell_{11}^{s}}-H_{g}^{\theta}\right) \cdot \frac{c_{s} \ell_{11}^{s}}{c_{s} \ell_{11}^{s}+c_{g} \ell_{11}^{g}}+\left(\frac{\ell_{12}^{g}}{\ell_{11}^{g}}-H_{g}^{\theta}\right) \cdot \frac{c_{g}^{\ell}{ }_{11}^{g}}{c_{s} \ell_{11}^{s}+c_{g} \ell_{1}}
$$

Heats of transport pertaining to surface and gas phase flow can be identified as:

$$
\begin{equation*}
Q_{3}=\left(\frac{\ell_{12}^{s}}{\left.\frac{\ell_{11}^{s}}{\ell_{11}}-H_{g}^{\ominus}\right) ; Q_{g}=\left(\frac{\ell_{12}^{g}}{\ell_{1}^{g}}-H_{g}^{\ominus}\right)}\right. \tag{2.83}
\end{equation*}
$$

If we define the quotients $\ell_{1}{ }_{2}^{\mathrm{g}} / \ell_{1} \stackrel{\mathrm{~g}}{1}$ and $\ell_{12}^{\mathrm{S}} / \ell_{11}^{\mathrm{S}}$ as Q_{g}^{*} and $Q^{*}{ }_{\mathrm{S}}$, isothermal heats of transport for gas phase, and 'extra' flow respectively (cf. equation (2.60)) then we can write:

$$
Q_{g}=Q_{g}^{*}-H_{g}^{\theta} ; Q_{s}=Q_{s}^{*}-H_{g}^{-\theta}
$$

For an ideal monatomic gas $H_{g}^{\ominus}=5 / 2 R_{o}^{\prime T}$ hence $Q_{g}^{*}=2 R T_{o}$ and for an ideal diatomic gas $H_{g}^{\Theta}=7 / 2 \mathrm{RT}$ and so $\mathrm{Q}_{\mathrm{g}}^{*}=3 R T_{\mathrm{o}}$. Interpretation of these heats is given by Ash et al, 1973.

The remaining factors in (2.82) can be related to isothermal permeability measurements and this will now be shown.

From equations (2.10) and (2.11) we can write:

$$
\begin{equation*}
J=K_{\mathrm{s}} \cdot \frac{\Delta c_{\mathrm{g}}^{\prime}}{\ell}+K_{\mathrm{g}} \cdot \frac{\Delta c_{\mathrm{g}}^{\prime}}{\ell} \tag{2.84}
\end{equation*}
$$

where J is now the flux per unit cross-sectional area.
Using (2.13) and (2.15) this can be written as

$$
\begin{equation*}
J=-D_{s s} \cdot \frac{d c_{s}}{d x}-D_{g s} \cdot \frac{d c_{g}}{\frac{d x}{d x}} \tag{2.85}
\end{equation*}
$$

where c_{s} is the Gibbs excess concentration per unit volume of porcus medium and c_{g} is the gas phase concentration per unit volume of porous medium (see Appendix A for inter-relation of $c_{s}, c_{s}^{\prime}, c_{g}$ and c_{g}^{\prime}).

The equivalent Fickian expressions to (2.85) in terms of phenomenological and mobility coefficients are:

$$
\begin{align*}
& J=-\mathrm{L}_{11}^{\mathrm{s}} \cdot \frac{\mathrm{~d} \mu}{\mathrm{dx}}-\mathrm{L}_{1} \stackrel{\mathrm{~g}}{\mathrm{l}} \cdot \frac{\mathrm{~d} \mu}{\mathrm{dx}} \tag{2.86}\\
& =-c_{s} \ell_{11}^{s} d \mu-c_{g}^{\ell}{ }_{1} \stackrel{g}{1} \cdot d \mu \tag{2.87}\\
& \overline{d x} \quad \overline{d x}
\end{align*}
$$

If K_{s} and K_{g} are assumed independent of concentration, then gas phase components of (2.84) and (2.87) can be equated:

$$
\begin{equation*}
K_{\mathrm{g}} \cdot \frac{\Delta c_{\mathrm{g}}^{\prime}}{\ell}=-\mathrm{c}_{\mathrm{g}} \ell_{1 \mathrm{I}}^{\mathrm{g}} \cdot \frac{\mathrm{~d} \mu}{\frac{\mathrm{dx}}{}} \tag{2.88}
\end{equation*}
$$

and using (2.63) for μ with $p=c_{g}^{\prime} R T$ and putting $c_{g}=\varepsilon c_{g}^{\prime}$, $\Delta c_{g}^{\prime} / l=-d c_{g}^{\prime} / d x$, gives:-

$$
\begin{equation*}
K_{\mathrm{g}}=\varepsilon \ell_{1}{ }_{1}^{\mathrm{g}} \mathrm{RT} \tag{2.89}
\end{equation*}
$$

Similarly by equating 'extra' flow components we can obtain

$$
K_{\mathrm{s}}=\varepsilon R T \cdot \frac{c_{s}}{\mathrm{c}_{\mathrm{g}}} \cdot \ell_{11}^{\mathrm{s}}
$$

and so K can be expressed as:

$$
K=\varepsilon R T\left[\begin{array}{c}
\ell_{1} \dot{g}+\frac{c_{s}}{c_{g}} \ell_{1} \tag{2.91}\\
\frac{s}{1} \\
\hline
\end{array}\right]
$$

Thus using relations (2.83) and (2.91), equation (2.82) can be written as:-

$$
\begin{equation*}
Q_{0}=Q_{s} \cdot \frac{K_{\mathrm{s}}}{K}+Q_{g} \frac{K_{\mathrm{g}}}{K} \tag{2.92}
\end{equation*}
$$

A similar comparison of equations (2.85) and (2.87) yields:

$$
\begin{align*}
& D_{g s}=R T \ell_{1} \frac{g}{1} \tag{2.93}\\
& D_{s s}=R T \ell_{1.1}^{s} \cdot \frac{d \ln c_{g}}{d \ln c_{s}} \tag{2.94}
\end{align*}
$$

We have shown therefore that isothermal permeabilities may be related to thermo-osmotic heats of transport. The above relationships were investigated experimentally by Ash et al (1973) where from Q_{o} and permeability data Q_{g} and Q_{s} were derived, the latter assuming upper and lower limits to $Q_{g} . \quad Q_{g}^{*}$ and Q_{s}^{*} were also derived, as weli as values for $\ell_{1}{ }_{1}^{\mathrm{g}}, \ell_{1}{ }_{2}^{\mathrm{g}}, \ell_{1}{ }_{1}^{\mathrm{s}}$ and ℓ_{12}^{s}. It was shown that Q_{s} is always negative and $\mathrm{Q}^{*}{ }_{s}$ positive.

2.3.3 Relationship with isobaric permeability

The effectiveness of thermo-osmotic flow can be measured by an isobaric permeability. When thermo-osmosis occurs in an open system, flow takes place through the membrane unchecked by the build-up of a pressure difference which occurs in a closed system. Under such circumstances the pressures at $x=0$ and $x=\ell$ will be the same and there will be a constant flux throughout the length of the membrane. Since there is a temperature gradient within the membrane, then the surface or gas phase flux will vary slightly with x, and so to keep the flux constant then a pressure profile must exist within the membrane.

Experimentally isobaric flow is observed by having a closed system but with a horizontal mercury slug forming a barrier between the reservoirs at T_{o} and T_{ℓ}. The slug will move under a minute pressure gradient thus maintaining substantially equal pressures at T_{0} and T_{ℓ} (Gilliland et al, 1962). Alternatively we can arrange to have large volumes at T_{0} and T_{ℓ}, and use a sensitive differential pressure transducer to measure $\Delta \mathrm{p}\left(=\mathrm{p}_{\mathrm{o}}-\mathrm{p}_{\ell}\right)$; since $\Delta \mathrm{p}$ is small then $\mathrm{p}_{\mathrm{o}} \simeq \mathrm{p}_{\ell}$. The only reported measurenents of isobaric fluxes are due to Gilliland et al (1962) who measured the isobaric flow of ethylene and propylene through a Vycor memb rane.

A quantity, $B\left(T_{0}\right)$, can be defined as the energy transported at T_{0} by isobaric flow through unit membrane cross-section in unit time and under unit temperature gradient,

$$
\begin{equation*}
\text { ie } B\left(T_{0}\right)=R T_{0} \cdot J_{B}\left(T_{0}\right) \cdot \ell \tag{2.95}
\end{equation*}
$$

$\overline{\Delta T}$
where $J_{B}\left(T_{0}\right)$ is the isobaric flux (mol s^{-1}) per unit cross-section and $\Delta T=T_{0}-T_{\ell}$. The isobaric permeability is then defined as $B\left(T_{0}\right) / p_{0}$ (and under isobaric conditions $\mathrm{p}_{\mathrm{o}}=\mathrm{p}_{\ell}$):

$\mathrm{B}\left(\mathrm{T}_{0}\right)$	RT	$J_{B}\left(T_{0}\right) . \ell$
P_{0}	P_{0}	$\Delta \mathrm{T}$

This expression can be compared with the isothermal permeability (equation (2.10)) which can be written as:

$$
\begin{equation*}
K\left(T_{0}\right)=J_{I}\left(T_{0}\right) \cdot \frac{\ell}{\Delta c_{g}^{\prime}}=R T_{0} \cdot J_{I^{\prime}}\left(T_{0}\right) \cdot \frac{\ell}{\Delta \mathrm{p}^{\prime}} \tag{2.97}
\end{equation*}
$$

where $J_{I}\left(T_{o}\right)$ is the isothermal flux per unit area at a temperature of T_{G} and $\Delta \mathrm{P}^{\prime}$ is the pressure difference across the membrane in the isothermal experiment.

A relationship between the thermo-osmotic steady-state pressure ratio, $\left(p_{o} / p_{\ell}\right)_{\infty}$, and the isobaric permeability can also be derived.

From equations (2.54), (2.57) and (2.80) we can write

$$
\begin{align*}
& J_{1}=-\left(c_{s} \ell_{11}^{S}+c_{g} \ell_{1}{ }_{1}^{g}\right) T \cdot \partial(\mu / T)-\left(c_{s} \ell_{12}^{s}+c_{g} \ell_{1}^{g}\right) \cdot 1 \cdot \partial T \tag{2.98}\\
& \partial \mathrm{x} \quad \mathrm{~T} \quad \partial \mathrm{x}
\end{align*}
$$

Making use of relations (2.91), (2.64) and (2.65) and (2.69) and (2.20) we can express (2.99) as:-

$$
\begin{equation*}
J_{1}=-\frac{K_{\mathrm{C}}^{\prime}}{\mathrm{RT}^{2}}\left[\mathrm{RT}^{2} \frac{\partial \ln \mathrm{p}}{\partial T}+\mathrm{Q}_{0}\right] \quad \frac{\partial T}{\partial \mathrm{x}} \tag{2.100}
\end{equation*}
$$

Puttir.g $p=c_{g}^{\prime}$ RT we get:

$$
\begin{equation*}
J_{1}=-\frac{R}{\mathrm{RT}}\left[\frac{\partial \mathrm{p}}{\partial \mathrm{~T}}+\frac{\mathrm{PQ}_{0}}{\mathrm{RT}^{2}}\right] \quad \frac{\partial \mathrm{T}}{\partial \mathrm{x}} \tag{2.101}
\end{equation*}
$$

which, after manipulation, becomes (for fixed T_{ℓ}):

$$
\left.J_{1}=-\left[\begin{array}{ll}
K & \cdot \exp \left(-\int_{\mathrm{RT}}^{T}\right. \tag{2.102}\\
\mathrm{T}_{\ell} & Q_{0} \mathrm{dT} \\
\mathrm{RT}^{2}
\end{array}\right)\right] \underset{\mathrm{dx}}{\mathrm{~d}}\left[\mathrm{P} \cdot \exp \left(\int_{\mathrm{T}_{\ell}}^{\mathrm{T}} \frac{Q_{0}}{\mathrm{RT}^{2}} \cdot \mathrm{dT} .\right)\right]
$$

For constant J (we now omit subscript 1), we can integrate from 0 to ℓ and from x to ℓ to give the equations:

$$
\begin{equation*}
J=\frac{\mathrm{p}_{\mathrm{o}} \exp \left(\int_{\mathrm{T}_{\ell}}^{\mathrm{T}_{0}} \frac{Q_{0}}{\mathrm{RT}^{2}} \cdot \mathrm{dT}\right)-\mathrm{p}_{\ell}}{\int_{0}^{\ell}\left[\frac{\mathrm{RT}}{K} \cdot \exp \left(\int_{\mathrm{T}_{\ell}}^{\mathrm{T}} \frac{\mathrm{Q}_{0}}{\mathrm{RT}^{2}} \mathrm{dT}\right)\right] \mathrm{dx}} \tag{2.103}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{P}(\mathrm{x}) \cdot \exp \left(\int_{T_{\ell}}^{T} \frac{Q_{0}}{R T^{2}} \quad \mathrm{dT}\right)-P_{\ell} \tag{2.104}
\end{equation*}
$$

and $J=$

$$
\int_{\mathrm{x}}^{\ell}\left[\frac{\mathrm{RT}}{K} \exp \left(\int_{\mathrm{T}_{\ell}}^{\mathrm{T}} \frac{\mathrm{Q}_{\mathrm{O}}}{\mathrm{RT}^{2}} \cdot \mathrm{dT}\right)\right] \mathrm{dx}
$$

Therefore substituting J from (2.103) for $J_{B}\left(T_{0}\right)$ in equation 2.96 and putting $\ell / \Delta T=-d x / d T$ we get:-

Under isobaric conditions $p_{0}=p_{\ell}$ and the thermo-osmotic steady-state quantities can be found from equations (2.68) and (2.69):
$\exp \int_{T_{\ell}}^{T_{0}} \frac{Q_{0}}{R T^{2}} \cdot d T=\left(\frac{P_{\ell}}{p_{0}}\right)_{\infty} ; \exp \int_{T_{\ell}}^{T} \frac{Q_{0}}{R T^{2}} \cdot d T=\left(\frac{p_{\ell}}{P(x)}\right)_{\infty}$

Therefore,

$$
\begin{equation*}
-\frac{\mathrm{B}\left(\mathrm{~T}_{\mathrm{o}}\right)}{\mathrm{p}_{\mathrm{o}}}=\frac{\mathrm{T}_{\mathrm{o}}\left[1-\left(\mathrm{p}_{\ell} / \mathrm{p}_{\mathrm{o}}\right)_{\infty}\right]}{\left.\int_{\mathrm{T}}^{\mathrm{o}} \mathrm{~T}_{\ell}\left[\frac{\mathrm{T}}{\mathrm{~T}}\left(\frac{\mathrm{p}_{\ell}}{\mathrm{p}(\mathrm{x})}\right)_{\infty}\right] \mathrm{d}_{\infty}\right]} \tag{2.107}
\end{equation*}
$$

This treatment was derived by Ash et al (1973). There it was also shown from experimental data that the isobaric permeability was often more effective than the isothermal permeability in producing differences in ratios of flow rates between each of two gases through the same membrane. However, with real binary mixtures cross-coefficients are likely to be important ie the presence of a second gas will affect the flow of the first gas. For sorbed gases $-\mathrm{B}\left(\mathrm{T}_{\mathrm{o}}\right) / \mathrm{p}_{\mathrm{o}}$ was found to decrease with increasing temperature, but for non-sorbed gases (He, Ne and H_{2}) a slight increase was found.

A study of isobaric and isothermal permeabilities has also been made by Gilliland, Baddour and Engel (1962). They used the Knudsen permeability for $K\left(T_{0}\right)$ at a temperature of T_{0}, and an expression due to Kennard (1938, p 330) for $B(\bar{T}) / \mathrm{p}_{\mathrm{o}}$ (valid for small $\Delta \mathrm{T}$), where \bar{T} is the mean temperature of the membrane:

$$
\begin{equation*}
\frac{B(\bar{T})}{P_{0}}=\frac{4}{3} \cdot \frac{\varepsilon}{A} \cdot\left(\frac{2 R}{\pi M \bar{T}}\right)^{\frac{1}{2}} \tag{2.108}
\end{equation*}
$$

It then followed that:

$$
\begin{equation*}
\frac{\mathrm{B}(\overline{\mathrm{~T}})}{\mathrm{p}_{0}}=\frac{K\left(\mathrm{~T}_{0}\right)}{2\left(\overline{\mathrm{~T}} \mathrm{~T}_{0}\right)^{\frac{1}{2}}} \tag{2.109}
\end{equation*}
$$

However this expression neglects any surface contribution to both the isothermal and isobaric flows. Gilliland then considered surface flow, caused by a gradient in spreading pressure and derived expressions for the surface flow rate under a pressure gradient at constant temperature (isothermal) and under a temperature gradient at constant pressure (isobaric). A surface isobaric permeability, $B_{s}\left(T_{o}\right) / p_{o}$, was then derived
using equation (2.51) and (2.95), and this could be obtained entirely from adsorption isotherms and isothermal permeabilities. The equation predicted a maximum in $\mathrm{B}_{\mathrm{s}}\left(\mathrm{T}_{\mathrm{o}}\right) / \mathrm{p}_{\mathrm{o}}$ as a function of pressure, and experimental measurements with $\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{3} \mathrm{H}_{6}$ at several temperature. gradients and pressures suggested that this was the case.

The pressure distribution within the membrane may also be derived.
In the steady-state we can equate the fluxes in equations (2.103) and (2.104), then making the substitutions from (2.106) with a linear temperature gradient, $d T / d x$, and with $p_{o}=p_{\ell}$ for isobaric transport, we obtain:-

$$
\begin{equation*}
\frac{\left(\frac{\mathrm{p}_{\ell}}{\mathrm{p}_{\mathrm{o}}}\right)_{\infty}^{-1}}{\int_{\mathrm{T}_{\ell}}^{\mathrm{T}}\left[\frac{\mathrm{~T}}{K}\left(\frac{\mathrm{p}_{\ell}}{\mathrm{p}(\mathrm{x})}\right)_{\infty}\right] \mathrm{dT}}=\frac{\left(\frac{\mathrm{p}(\mathrm{x})}{\mathrm{p}_{\ell}}\right) \cdot\left(\frac{\mathrm{p}_{\ell}}{\mathrm{p}(\mathrm{x})}\right)_{-\infty}^{-1}}{\int_{\mathrm{T}_{\ell}}^{\mathrm{T}}\left[\frac{\mathrm{~T}}{K}\left(\frac{\mathrm{p}_{\ell}}{\mathrm{p}(\mathrm{x})}\right)_{\infty}\right] \mathrm{dT}} \tag{2.110}
\end{equation*}
$$

Here $\left(p_{\ell} / p_{o}\right)_{\infty}$ can be determined from steady-state thermo-osmotic measurements and the integrals can be evaluated graphically knowing T, K and $\left(p_{\ell} / p(x)\right)_{\infty}$ for several values of x at fixed T_{ℓ}.

The profiles of $p(x) / p_{\ell}$ versus x / ℓ obtained by Ash et al (1973) are almost parabolic with a maximum close to $x / \ell=0.5$. The value of $p(x)$ at the maximum differred from p_{ℓ} by about 5% for a ΔT of 85 K for strongly sorbed gases $\left(\mathrm{CO}_{2}, \mathrm{Xe}\right)$ and by less than 1% for $\mathrm{Ar}, \mathrm{H}_{2}$.

Kennard (1938, p330) derived an equation predicting a pressure maximum to occur at around the plug centre. Gilliland et al (1962) using this equation found a pressure maximum which exceeded the external pressure p_{ℓ}, by 0.5% for non-sorbed gases and by less than 1.5% for sorbed gases.

It is interesting to note that Hill (1956)derived a pressure gradient for the thermo-osmotic steady-state which departed from linearity. He plotted $\left[\left(p_{0}-p\right) / x-\left(p_{0}-p_{\ell}\right) / \ell\right]$ as a function of x / ℓ (with $p_{o} / p_{\ell}=2$) and and predicted a maximum to cccur close to $\mathrm{x} / \ell=0.5$.

CHAPTER 3

EXPERIMENTAL TĖCHNIQUE

3.1 MATERIALS USED

3.1.1 Carbon

The membranes used in this study have been constructed from Graphon, a graphitised carbon black supplied by the Cabot Corporation, Massachusetts, U.S.A. The carbon is formed initially by burning natural gas in an oxygen deficient atmosphere adjacent to a system of steel channels in which the carbon is deposited.

This 'channel black' so produced (designated Spheron 6) is then heated in an induction furnace in the absence of air to $2700-3200^{\circ} \mathrm{C}$. This has the effect of burning off any chemisorbed oxygen and residual hydrogen and partially ordering the carbon crystallites into approximately spherical capsules. A uniform carbon surface with a high degree of homogeneity is produced. The preparation is described in more detail by Schaeffer, Smith and Polley, 1953.

X-ray studies (Biscoe and Warren, 1942; Houska and Warren, 1954) and electron microscopy (Ha11, 1948) have been used to investigate the microscopic nature of carbon blacks, and the process of graphitisation. Spheron 6 consists of crystallites of approximate dimension 1.3 nm by 2.0 nm by 2.0 nm . These parallel layer groups have a graphite-type structure with parallel, equidistant layers. The layers are randomly oriented around the layer normal and the layer separation is slighty larger than in graphite. Individual particles of Spheron 6 are about 30 nm in diameter and consist of clusters of parallel layer groups On heating to about $900^{\circ} \mathrm{C}$ the layers in the crystallites begin to grow. If heating is continued to $3000^{\circ} \mathrm{C}$ the layers become sufficiently mobile that they can rotate with respect to one another and thus take up the true graphite structure, but with ABC... as well as ABA... layer
sequences. This rearrangement and partial ordering, known as graphitisation, is accompanied by a sharp change in the X-ray diffraction pattern from the broad, inextensive pattern in Spheron 6 to the true graphite pattern which occurs in Graphon.

The principal characteristics for several samples of Graphon are summarised in table 3.1. Graphon was chosen for this work (Ash, Baker \& Barrer, 1967) because of its energetic homogeneity, its uniform and non-porous surface, large surface area and high surface fluxes.

TABLE 3.1

Physical characteristics for 2 batches of Grophon

Property	Units	S6-D4	S6-D5
Area, N_{2} B.E.T.	$\mathrm{m}^{2} \mathrm{~g}^{-1}$	89.7	87.4
Helium density	$\mathrm{g} \mathrm{cm}^{-3}$	1.97	1.97
Crystallite height	nm	4.3	5.6
Crystallite width	nm	8.7	7.6
Ash	$\%$	0.08	0.08
Volatiles	$\%$	0.06	0.13
pH	-	10.6	10.3

3.1.2 Gases

The hydrocarbons $\left(\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{3} \mathrm{H}_{8}, \mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}\right.$ and neo- $\mathrm{C}_{5} \mathrm{H}_{12}$) were 99.9% pure and supplied in $500 \mathrm{~cm}^{3}$ glass bulbs by the National Physical Laboratory, Teddington. All other gases $\left(\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{He}, \mathrm{Ne}, \mathrm{Kr}\right.$ and Xe) were B.O.C. Grade X gases, of purity $>99.99 \%$, supplied in one-iitre bulbs filled to atmospheric pressure and sealed with fragiie glass septa. The rases were used without further purification.

3.1.3 Membrane construction

For thermo-osmotic transport to occur, the membrane should have a pore diameter, d, such that $\lambda>10 d$ where λ is the mean free path of the gas. At pressures used in this study d should be less than 20 nm
(section 5.2), hence the membrane porosity, based on a theoretical po:e diameter of $4 \varepsilon / A$, should be in the region of 0.4_{4} (void volume per unit plug volume).

In these membranes the required porosity was achieved by compressing the uniform particles of Graphon in a stainless steel cylinder between close-fitting hardened-steel plungers (Barrer and Gabor, 1959). This resulted in a network of fine tortuous channels between points of contact of the smooth carbon particles.

A Denison T 42 press, capable of exerting a force of 15000 lb . wt., was employed. The membranes were made jin eight equal increments, each increment being compressed to the same pre-determined porosity (calculated from the density and weight of carbon, and the volume to which it was compressed). This incremental construction produced a membrane having uniform properties without severe variations in porosity and degree of compaction near the ends (Ash, Baker and Barrer, 1968). The force used to form the plug was in the vicinity of 3000 lbs . wt. spread over the cross-sectional area of the plug (a pressure of about $1.5 \times 10^{9} \mathrm{~Pa}$), resulting in a membrane which waz physically hard and had a complete and tenacious contact with the walls of the steel cylinder.

This same cylinder was then attached to the high-vacuum apparatus via glass-Kovar metal seals or Cajon U1tra Torr vacuum unions. Prior to this however, steel plungers were screwed up to the faces of the plug to prevent any swelling which might occur with strongly sorbed gases (Carman and Raal, 1951b). Thermocouples were mounted in the face of each plunger and the plug assembled as described in sections 3.5.1, 3.6.1 and elsewhere (Clint, 1966; Ash, Barrer, Clint, Dolphin and Murray, 1973).

Two plugs have been used in this study, designated N and 0
with reference to Ash et al, 1968 and Ash et al, 1973. Plug N was also used by Clint (1966) and Dolphin (1971); plug 0 was constructed for this investigation. The characteristics of these microporous membranes are given in table 3.2 .

Adsorption isotherms, which were needed to interpret the isothermal and non-isothermal data, were obtained using Graphon pellets of a porosity similar to that of the plug. The pellets were made by compression, as above,but in a split cylindrical holder (Barrer and Gabor, 1960). This could be dismantled after construction and various sections of plug placed in an adsorption bulb.

TABLE 3.2

Membrane characteristics

Property	Units	Membrane	
		N	0
Weight of carbon	g	1.551	1.523
Number of increments	-	8	8
Length, \&	cm	4.21	4.19
Cross-section area, A_{c}	cm^{2}	0.324	0.327
Porosity, ε	$\mathrm{cm}^{3} \mathrm{~cm}^{-3}$	0.423	0.434
Area, A	$\mathrm{m}^{2} \mathrm{~cm}^{-3}$	98.0	96.1
($\varepsilon / \mathrm{A})$ *	nm	4.32	4.52
*A and ε / A calculated	$A_{g} \text { of } 86$	$\mathrm{m}^{2} \mathrm{~g}^{-1}(\mathrm{~s}$	$\text { on } 4.1$

3.2 GENERAL FEATURES OF THE APPARATUS

3.2.1 Pumping systems

Three distinct high vacuum rigs with four high vacuum pumping lines were employed. Although differing in some details, several features were common to each system.

All high vacuum apparatus was constructed from Pyrex glass with wide bore tubing ($15-20 \mathrm{~mm}$ diameter) being used whenever possible to increase the pumping speed. Right-angled taps were used in preference to straight-through taps as they had a longer leak path. Apiezon N
grease was used throughout.
A high vacuum of 10^{-5} Torr was achieved by the use of a threestage mercury diffusior pump backed by a two-stage gas-ballast rotary oil pump. The latter was generally an Edwards 2SC2OA model, capable of an ultimate vacuum of 10^{-3} Torr (although a newer, direct drive model, the EDM2, was used on the non-isothermal rig). For the adsorption and isothermal transport rigs, the three- stage mercury diffusion pump was backing a large-scale, single-stage mercury pump to give a faster pumping speed.

A non-return value and oil trap were incorporated above the oil pump to prevent oil being sucked back inta the apparatus in the event of a power failure. Another safety feature was a 'Truflo' flow warning switch inserted in the vater outlet from the diffusion pump condenser. This device would cut off the electricity supply to the diffusion pump heater if the water pressure fell below a pre-determined value. A 5 litre buffer volume on the low vactur. side of the mercury pump permitted pumping to be continued when the oil pump was switched off for maintenance.

The cold trap inserted between the high vacuum manifold and the pumps minimised mercury contamination of the system and helped achieve a better vacuum by reducing the vapour pressure of mercury, water vapour or other condensable vapours which might be present. The trap was designed to have maximum molecular conduction giving minimum reduction in pumping speed (Dushman and Lafferty, 1965, p200). In the nonisothermal flow apparatus two cold traps in series were used to ensure that any traces of mercury vapour, which could condense in the capacitance manometer, were excluded from the system.

A Pirani vacuum gauge was incorporated into the high vacuum manifold of each rig. This was an Edwards G5C-2 head with model 8-2
control unit covering the range $1-10^{-4}$ Torr. Calibration was
carried out using a McLeod gauge (also incorporated into the adsorption and isothermal rigs).

The oil in the rotary pumps was renewed every six months, but to prevent undue oxidation and contamination of the oil an auxiliary rotary pump was used to lower McLeod gauges and manometers and for the initial evacuation of the apparatus.

A schematic diagram of the high vacuum pumping system is shown in figure 3.1.

3.2.2 Room temperature control

The laboratory was equipped with two Temkon air-conditioning units which maintained an ambient temperature of $23 \pm 1^{\circ} \mathrm{C}$. Airflow within the laboratory was good, a regional variation of only $\pm 0.5^{\circ} \mathrm{C}$ being found, despite many local sources of heat.

3.2.3 Liquid thermostats

The temperature of the adsorption sampe and the isothermal plug were controlled by immersing the sample in a bath of silicone fluid, DC 550. Although differing in size, these baths were similar in construction (figure 3.2). The heating wire was controlled from a Variac so that its heat output could be adjusted to keep the bath several degrees below the required temperature. Fine temperature control was then obtained by the use of an auxiliary heater (a lamp bulb or low wattage immersion heater) operated through an electronic relay controlled by a contact thermometer regulator. Temperature control of $\pm 0.05^{\circ} \mathrm{C}$ was obtained. For outgassing purposes the baths could be heated up to $200^{\circ} \mathrm{C}$ without the oil smoking.

In the non-isothermal flow apparatus a bath of Shell Thermia $0 i 1$ 23 was used as a heat sink to control the temperature at the cold end of the plug. Copper cooling coils attached to the cold water supply were used to maintain a temperature close to ambient temperature.

Figure 3.1

Figure 32

3.2.4 Outgassing procedures
 The adsorption sample and plugs N and O were outgassed in a similar fashion. When the carbon had been in contaci with the atmosphere, before being used again, it was pumped at room temperature until the pressure had fallen to 10^{-4} Torr. The temperature was then increased in $50^{\circ} \mathrm{C}$ steps until $200^{\circ} \mathrm{C}$ was reached. Pumping was continued for 12 hours at each temperature.

For adsorption and isothermal measurements, the sample was generally outgassed overnight at $200^{\circ} \mathrm{C}$ between runs. However for the hydrocarbons $\mathrm{C}_{3} \mathrm{H}_{8}$ and above, outgassing for 24 to 36 hours at $200^{\circ} \mathrm{C}$ was found to be necessary. In non-isothermal flow experiments the plug was only outgassed when the gas was changed.

3.3. THE CAPACITANCE MANOMETER

3.3.1 Features

During recent years, several high precision capacitance membrane manometers have become available. There is now a wide selection of such instruments covering the pressure range from ~ 0 to 1000 mmHg , and capable of measuring an absolute or a differential pressure. This type of manometer was used in the non-isothermal flow apparatus, replacing mercury manometers and McLeod gauges.

The advantages of these devices are many. A true pressure is measured, independent of the gas nature and composition. This pressure is the force per unit area on the diaphragm in the sensing head. The instrument is robust and the head can withstand an over-pressure of one atmosphere. Readings can be taken rapidly and are calibrated directly in mmg. An output proportional to the pressure can be obtained and fed into a potentiometric recorder thus providing a continuous, instantaneous record of pressure. Sensing heads of an all-welded construction are available thus eliminating ' 0 ' rings and
allowing corrosive gases to be handled. Contamination of the vacuum system is negligible and units are also available which can be baked at $450^{\circ} \mathrm{C}$.

The manufacturers claim a high accuracy and linearity for their equipment with reproducibility of 0.005% and an accuracy of $0.03-0.1 \%$ of the reading.

Several papers have recently appeared in the literature where the performance of capacitance manometers has been compared favourably with conventional gauges. Utterback and Griffith (1966) were concerned with pressures in the range 10^{-4} to 3×10^{-3} Torr and Bromberg (1969) covered the range 10^{-4} to 1 Torr. Both found capacitance manometers to be convenient and reliable with deviations from linearity of less than 0.3\%. They were superior to a McLeod gauge which had an appreciable mercury streaming error to the cold trap and the range of gases for which it can be used is restricted. Gascoigne (1971) measured pressures in the range 0.1-500 Torr and checked the calibration of the instrument.

3.3.2 Operating principle

The pressure sensing head is in essence a transducer which relies on the pressure difference between two chambers to produce a deflection in the tensioned metal diaphragm separating them. This deflection causes a capacitance change to occur between the diaphragm and two fixed electrodes mounted in the chambers on either side, one capacitance being increased and the other decreased. These capacitances are incorporated into a bridge circuit, which is inicially zeroed with both chambers connected to the same pressure. The bridge is balanced by a decade unit until a null out-of-balance signal is obtained.

Calibration of the instrument is such, that the decade reading gives the pressure in mmHg directly, and only minor calibration
corrections have to be applied. When the head is used as an absolute gauge, one chamber is connected to a high vacuum (10^{-5} Torr) and the other chamber to the system whose pressure is to be determined.

3.3.3 Equipment used

The instrument chosen for this work was the MKS Baratron Type 170 Pressure Meter manufactured by MKS Instruments Inc. of Burlington, Massachusetts, U.S.A. This model was available in modular form and with many options. The following modules were chosen:

(i) 170M-7: Electronics unit and power supply

This provided excitation to the sensing head and power for the head heaters. It also converted the head signal to a proportional D.C. output of 10 V full scale and by the use of a precision voltage divider circuit allowed four ranges of amplification to the signal (X1, X10, X100, X1000).
(ii) 170M-29: Five-place, manual-balance digital offset unit

This unit was used in the bridge balancing operation and consisted of three decade switches plus a vernier potentiometer. The decades were adjusted until the meter or D.C. output read zero (i.e. the bridge was balanced), whence the dial reading gave the pressure directly in maHg.
(iii) 170M-26: 5-inch precision mirror scale meter

The input to this meter was the out-of-balance signal taken from the electronics unit.
(iv) 170M-34: Head-selector unit

This allowed three heads to be used with the same electronics unit. It provided a power supply for the heaters in each head so that all three could be ready for immediate use. It also contained zero and quadrature adjustment potentiometers for each head. The zero control compensated for any capacitance changes of the head at zero differential
pressure, whilst the quadrature controt allowed for any high resistance or stray capacitance which was 90° out of phase with the bridge signal. The exaitation signal was channelled from the electronics unit to the headselected and the head signal fed back to the $170 \mathrm{M}-7$ unit.
(v) Head Sensor: Type 145AH

This is an all-welded differential head and in use was thermostatted at $50^{\circ} \mathrm{C}$. The heads were attached to the vacuum system via Cajon VCR couplings connected to $\frac{1}{4}$ inch outside diameter Kovar metal-glass seals. The Cajon couplings incorporated an aluminium gasket seal.

A block diagram of the system is shown in figure 3.3 . Three heads were used; one, with a range of 10^{-5} to 1 mmHg , for the isothermal flow studies; the remaining two, each with a range of 10^{-2} to 1000 mmHg , to monitor pressures at the hot and cold sides of the plug during thermo-osmotic runs.

The indicator module and heads were factory calibrated against air dead-weight standards and were supplied with calibration data. In addition a system check facility was also incorporated taking the form of a relay in the head, operated from the electronics unit, which shunted the sensor bridge circuit. When activated it simulated a test pressure and the D.C. output obtained was a function of the head, indicator module and interconnecting cables. This permitted a check of the entire system.

3.3.4 Operating technique

In normal operation the reference port, P_{R}, of all three heads was attached to a high vacuum line reserved solely for this purpose, so that absolute pressures were measured. However, it was also possible to use one of the 1000 mm heads as a differential gauge to monitor the pressure difference, $\Delta \mathrm{p}\left(=\mathrm{p}_{\mathrm{o}}-\mathrm{p}_{\ell}\right)$, between the hot and cold sides

of the plug in thermo-osmotic experiments. Since the other 1000 mm head could still be used to measure p_{ℓ}, then p_{0} could also be obtained. This had certain practical advantages to which reference will be made below.

The $170 \mathrm{M}-7$ unit furnished a D.C. output, which was linear with pressure, of 0 to ± 10 volts full scale on each range selected. By attaching this output to a potentiometric chart recorder, the build up in pressure could be followed as a function of time for any one head. By suitable range selection the pressure could be followed over 100%, $10 \%, 1 \%$ or 0.1% of the full head range.

When the digital offset unit was used in conjunction with the D. C. output, by pre-setting a particular pressure on this unit, the pressure build-up above a certain value could be followed, using a more zensitive range. Also, by centre zeroing the recorder, pressure fluctuations about a mean could be continuousiy monitored.

The digital offset unit balances the A. L. bridge by supplying a voltage from an accurate voltage divider. The latter consists of 3 multi-tap ratio transformer decade switches and a vernier potentioneter from which the last two figures in the pressure reading are obtaired. In practice it was found that at the top end of its range, the vernier potentiometer gave readings about 2 to 4% lower thar that expected (by comparison with the next decade). It was thus found to be more accurate in taking a pressure reading to interpolate the last two figures from the recorder trace of the D.C. output, with the three decades balanced and the range multiplier on the most sensitive range.

3.4 ADSORPTION APPARATUS

All adsorption isotherms were determined volumetrically on a rig designed and constructed by C1int (1966). This was a standard volumetric adsorption apparatus (see for example Young and Crowel1, 1962,
p 284). It incorporated a twofold adsorption system and all
connections between adsorption bulbs, gas burettes and manometers were constructed from 3 mm bore capillary tubing to keep the dead volume to a minimum. The samplo of Graphon pellets used weighed 7.164 g .

Isotherms were determined at eight temperatures between 308.15 and 393.15 K and the dead volume in the sample bulb was calibrated at each temperature with helium (see Appendix B).

Water at 300 K was circulated through the gas burette jacket and during a run the room temperature in the immediate region of the rig was monitored. Thus the volume of gas in the apparatus, parts of which were at three distinct temperatures, could be corrected to a standard temperature.

Manometers were constructed from Veridia $10 . \mathrm{mm}$ precision bore tubing and corrections made for: (i) fluctuations in mercury density with temperature and the corresponding changes in height of the mercury column; (ii) variation of capillary depression with pressure (Gould and Vickers, 1952).

To determine the surface area of the Graphon pellets used in these adsorption studies, a nitrogen isotherm was determined at liquid nitrogen temperature and a B.E.T. analysis performed. The dead space at this temperature was again cilibrated with helium and corrections for the non-ideality of nitrogen applied (Emmett and Brunauer, 1937).

3.5. ISCTHERMAL FLOW APPARATUS

The plug assembly and high vacuum grid used in this part of the study were similar to those described in detail, elsewhere (Clint (1966); Dolphin (1971)).

3.5.1 Plug assembly

Isothermal permeability and time-lag studies were performed on plug N using the lower straight-chain paraffins. Minor modifications
were made to the assembly in an attempt to improve and resolve the temperature difference between the internal and external thermocouples (Clint, 1966). These included renewing the 34 s.w.g. copper-constantan thermocouples and inserting a layer of 40 mesh copper gauze between the plug and plunger. It was hoped that this would have the effect of improving the thermal conductivity between plug and plunger and at the same time allowing gas to circulate freely between them.

The temperature of the plug was controlled by immersion in a silicone oil bath which could be raised to $200^{\circ} \mathrm{C}$ for outgassing. The external thermocouples and electrical windings were protected by using a silicone rubber compound to seal any gaps where oil could seep in.

3.5.2 Experimental procedure for isothermal flow runs

In the determination of isothermal fluxes and time-lags , gas at
a known pressure, P_{0}, is admitted at time zero to one side of the outgassed membrane. The build-up of pressure, p_{ℓ}, in a known volume at the other side of the membrane is measured as a function of time and hence the total flux can be obtained. So that the ingoing pressure, g_{0}, was essentiaily constant, a buffer volume of $3 \mathrm{dm}^{3}$ was used on the ingoing side. In order that the pressure difference across the plug may be approximated to the ingoing pressure, a large calibrated buffer volume was used on the outgoing side and the pressure measured on a McLeod gauge. This buffer could be varied from $1954 \mathrm{~cm}^{3}$ to $9645 \mathrm{~cm}^{3}$ to cope with widsly differing fluxes.

In practice the fall in p_{o} was less than 0.5% during a run and the final value of p_{ℓ} was less than 0.3% of p_{o}, so that $\Delta p \approx p_{o}$ to within 0.8%, and in a plot of Δp versus t no detectable deviation from linearity was found. The time scale of the experiments, over which measurements were made to obtain a significant linear portion of the $\Delta p-t$ plot, varied from 90 minutes for helium to over 6 hours for n-butane.

Figure 3.4

The essential features of the apparatus are shown in figure 3.4. A gas line (not shown) was also required and a Toepler pump was used to control the admission of gas to the ingoing buffers.

3.6 NON-ISOTHERMAL FLOW APPARATUS

For this section of the work, a new plug, 0 , was constructed having a porosity similar to plug N, but with a thermocouple arrangement of slightly different design. The apparatus was novel in that capacitance membrane manometers were used in place of McLeod gauges and mercury manometers.

3.6.1 Plug assembly

The plug holder and heating coils were as described by Ciint (1966). The heat source was an electrical winding set into an annular groove in a copper block which was screwed onto the top of the plug holder. Temperature control of this block (and hence of the hot face of the plug) was achieved using a thermistor (Type F23, supplied by I.T.T. Electronics) mounted in a hole in the block. This was incorporated into an A.C. bridge circuit in which the resistance of the thermistor was balanced by a decade resistance box. The off-balance current was amplified and used to activate a relay which shunted a series resistance in the heater circuit. Another copper block was screwed onto the bottom of the plug holder and acted as a heat sink when immersed in a constant temperature bath.

A double layer of Electrothermal heating wire was wound onto the plug holder and was used to heat the plug during outgassing. Two co-axial steel cylinders were enclosed between the top and bottom copper blocks and asbestos wool insulation was packed between them. These cylinders acted as guard-ring insulation for the flow of heat from top to bottom blocks. External thermocouples were not incorporated into this assembly since experience with plug N had shown that, provided
there was sufficient asbestos rope lagging around the assembly, an apparent linear temperature gradient was readily obtained.

Hardened steel plungers were again used to constrain the plug. Two thermocouples were mounted in the face of each plunger, one in the centre and one at the edge. These were sheathed and insulated thermocouples specially constructed by Spembly Ltd., Andover, Hants. The conductors were 0.09 mm diameter nickel chromium - nickel aluminium with mineral insulation enclosed in a stainless steel sheath of external diameter 0.5 mm . The hot junction was exposed and supported in a bed of silicone rubber. Compensation leads and incorporated cold junction were also supplied. The assembled plug is shown in figure 3.5.

Feedthrough of the thermocouples into the vacuum system yas achieved by soft soldering the stainless steel sheath into smali holes drilled in the upper flange of a miniature vacuum f : tting as shown in figure 3.6. The fitting was constructed in stainless steel and was silver soldered onto the end of the plug holdar. Argon arc welding was rsed to attach the side-arn, aiso of stainless steel ($\frac{3}{8}$ inch O.D.; $\frac{1}{d}$ inch I.D.). Vacuumrtight seal of the flange was effected by knife edges biting into a copper gasket.

The whole assembly was attached to the vacuim system via Cajon Ultra Torr unions forming a vacuum-tight seal between the stainless steel side-arm and the glass tubing of the vacuum line (figure 3.6). The principal advantages of this design of system over that of Clint (1966) are:-
(i) Two thermocouples, mounted directly in the face of the plug, are used. Hence any radial temperature gradient could be observed.
(ii) The hot junctions were of very small dimensions, so that the temperature over a very small region could be measured. In Clint's

Figure 3.5

Figure 3.6 Miniature Flange Arrangemert and
design the temperature measured was probably an average over the face of the plunger.
(iii) The sheathed thermocouples were relatively robust and the sheath could withstand the temperatures involved in soft soldering. Also the sheath was electrically insulated, so no electrical shorting occurred and the delicate glass bead insulation of Clint's design avoided.
(iv) By simply unscrewing the Cajon unions, the whole plug assembly could be removed, complete with thermocouples. If another plug assembly was made, this could be attached in a matter of minutes.

3.6.2 Experimental procedure for thermo-osmotic runs

Gas was admitted from the gas line to both sides of the plug. The required temperature gradient was then set up by adjustment of (i) the bridge resistance balancing the hot block thermistor; and (ii) the temperature of the heat sink bath. The degree of temperature control was optimised by suitable choice of the top-block heater voltage and $b \times f f e r$ resistance (for T_{0}), and for T_{l}, the oil bath heater voltage and rate of flow of water through the cooling coils. The pressure of gas in the system was carefully adjusted by expansion of gas from the calibrated expansion volume and by the use of freezing limbs to transfer gas from the gas line to the bulb. A schematic diagram of the rig is shown in figure 3.7.

The pressure was monitored (usually overnight, using the Baratron D.C. output fed into a recorder) until sorption equilibrium had been obtained (indicateu by a constant pressure). This could take up to 12 hours especially with n-butane.

At zero time the hot and cold sides were isolated and the pressures of each side, P_{o} and p_{ℓ}, were monitored as a function of time. For the Graphon membrane 0 , a steady value of $\left(p_{0} / p_{\ell}\right)_{\infty}$ was achieved

after about 60-70 hours. To ensure an accurate value of $\left(p_{o} / p_{\ell}\right)_{\infty}$ the ratio was monitored for a further 50 hours and the equilibrium values averaged.

As a variation of this technique it was possible to monitor $\Delta \mathrm{p}\left(=\mathrm{p}_{\mathrm{o}}-\mathrm{p}_{\ell}\right)$ on one head and p_{ℓ} on the other. $\left(\mathrm{p}_{\mathrm{o}} / \mathrm{p}_{\ell}\right)$ could still be calculated, but between manual readings following $\Delta \mathrm{p}$ on the recorder permitted a visual check on the approach curve to equilibrium.

3.6.3 Experimental procedure for isobaxic flow runs

A further advantage of being able to monitor $\Delta \mathrm{p}$ was that it enabled an isobaric permeability to be calculated. It was observed that initially, over the first hour of a thermo-osmotic run, the plot of Δp versus t was approximately linear. Δp is initially so small that flow through the plug is very nearly isobaric. During this time the change in P_{ℓ} was between 0.5 and 2.0% (being dependent upon the gas), hence from the initial slope of this plot, $d \Delta p / d t$, the flux, $d n / d t$, and hence an isobaric permeability, could be obtained. The optimum chart speed and recorder range settings depended on the flowing gas, pressure and temperature gradient, but for each such set of conditions, 3 to 5 isobaric plots were obtained and the limiting slopes averaged to obtain the isobaric flux. This isobaric run was performed immediately prior to starting a chermo-osmotic run, when sorption equilibriun had been established in the plug.

3.7 CALIBRATION AND ACCURACY

3.7.1 Mercury manoneters

The mercury used was triple-distilled, treated with acidified dilute potassium permanganate solution and then with dilute nitric acid. It was thoroughly washed with distilled water until the washings were neutral and was then dried by heating to $80^{\circ} \mathrm{C}$ on a sand bath in a fume cupboard.

Precision bore tubing of the manometer was cleaned prior to filling by washing with a strong detergent (Decon 90) then with distilled water and finally with redistilled AnalaR acetone. The tubing diameter and surface tension of clean mercury were used in calculating the capillary depression correction (Gould and Vickers, 1952).

The height of the mercury column was measured to an accuracy of $\pm 0.004 \mathrm{cmHg}$ using a cathetometer supplied by Precision Instruments Ltd.

3.7.2 McLeod Gauges

Veridia precision tubing of 2 mm bore was used for the capillary. It was checked for uniformity of diameter by measuring the length of a weighed mercury slug at various sections of the capillary. Both carillary limbs of the gauge were constructed from the same length of Veridia tubing.

Volumes of the McLeod gauge bulbs were calculated from the weight of water the bulb contained at a known temperature and water density. Before assembly the gauges were cleaned and filled with clean mercury as described in section 3.7.1. A cathetometer was used to measure the height of the mercury column and the estimated accuracy in pressure was $\pm 0.5 \%$.

Calibration data for the gauges used in this workare given in Appendix B. Gauge D2 was used to measure outgoing pressure in the isothermal flow work, while D1 and D3 were used as reference gauges. 3.7.3 The capacitance manometer

The sensing heads and control unit were furnished complete with calibration data. To avoid possible mercury contamination of the heads no calibration reference manometer was employed. If a coldtrapped McLeod gauge had been used, this itself would have introduced errors due to mercury streaming (Carr, 1964; Utterback and Griffith,

1966; Bromberg, 1969). The accuracy of the Baratron has been established by these workers and the 1 mm head has been shown to be superior to a McLeod geuge.

However evidence has been produced to indicate that a thermal transpiration error can occur for the 1 mm head due to a difference in temperature between the thermostatted head and the vacuum system (Bromberg, 1969; Baldwin and Gaerttner, 1973). It was concluded that the thermal transpiration error was dependent upon the geometry of each installation. In this work the 1 mm head was used only for monitoring purposes and since thermal transpiration will not occur at the higher pressures measured by the 1000 mm heads, then no exror will be introduced. When the 1 mm head is used at a later date for isothermal studies, this possible source of error should be investigated.

Gascoigne (1971) has investigated the calibration of Baratron instruments. The heads he used were found to be out of calibration when received and on re-calibration he found drifts in sensitivity and linearity of 0.3 to 1.0% due to temperature fluctuations. However the heads used in this work were thermostatted, unlike Gascoigne's, and so temperature fluctuations would not be expected to be important. Fluctuations in pressure with temperature changes were observed, but these vere commensurate with pressure changes expected due to remperature fluctuations in a closed system.

Since the two 1000 mm heads agreed with one another within 0.2%, then Gascoigne's evidence on calibration is not applicable in our case. In use the heads ware calibrated against one another to improve accuracy and reproducibility.

It is also worth considering the zero-drift over a long period, which with the Baratron model 77 was appreciable. However the 170 system with 145 model head was much more stabie. A drift of $\pm 0.05 \mathrm{mmHg}$
over a week was typical. To improve the accuracy of the measurements, the zero and quadrature controls were adjusted every week or at the start of a run. It was observed that due to different outgassing rates of the chambers in the head, the zero position at nil differential pressure changed noticeably with absolute pressure. To avoid introducing errors when a head was used as a differential gauge, the zero and quadrature were adjusted at the pressure at which the measurements were to be made.

The manufacturers quoted accuracy, including non-linearity and drift of head and control unit was about $\pm 0.2 \%$.

3.7.4 Buffer volumes

These were calibrated by weighing the amount of water at known temperature required to filj them, and were known with an accuracy of $\pm 0.2 \mathrm{~cm}^{3}$. Volumes of small sections and gas burettes were calibrated similarly, but using mercury. Appendix B gives the volumes of buffers and standard volumes used in this work.

3.7.5 Internal volumes

Vojumes of internal sections of the apparatus were determined by heliur expansion from known calibrated volumes, such as a gas burette, buffer volume or McLeod gauge bulb. In the adsorption apparatus the sample bulb dead volume was calibrated at the temperature of each isotherm.

The Baratron was used as the pressure measuring device in the non-isothermal flow apparatus. This gave noticeably more reproducible salibrations than did the mercury manometer in the isothermal flow apparatus.

3.7.6 Thermometers

A set of thermometers, ($0-50 ; 50-100 ; 100-150$ and $150-200^{\circ} \mathrm{C}$) were supplied by Messrs Sugden Powell Ltd. These were of the total
inmersion type with 0.1° divisions and were furnished with a works certificate (calibrated against N.P.L. thermometers). This set of thermometers was used as a laboratory stanard to calibrate thermometers used elsewhere in the laboratory which could be read to $\pm 0.05^{\circ} \mathrm{C}$.

3.7.7 Thermocouples

The laboratory standard thermometers were used to obtain the temperatures corresponding to the thermocouple e.m.f.'s, when inmersed side by side in a constant temperature oil bath (Barber, 1971). Calibration points were taken every 5° in the range $25-120^{\circ} \mathrm{C}$. A curve of e.m.f. differences between observed e.m.f.'s and those calculated from standard tables (British Standards Institute, 1952 and 1961) was plotted. To obtain the temperature corresponding to an observed e.m.f., the difference plot was used in conjunction witn the standard tables. E.m.f.'s were measured to $\pm 1 \mu \mathrm{~V}$ on a Precisinn Potentiometer, model P10-7 manufactured by the Croydon Precision Instrument Company. It was used with a 2 volt stabilised power supply and an electronic null detector, both supplied by the same company. A Tinsley standard cadmium cell was used to standardise the instrument. The potentiometer had a resolution of $0.1 \mu \mathrm{~V}$, although this accuracy was not required in practice.

CHAPTER 4

ADSORPTION : RESULTS AND DISCUSSION

Adsorption isotherms for the gases used in this study and the calculation therefrom of Henry 1 aw constants, and of heats and energies of adsorption are required to enable the isothermal flow and nonisuthermal flow measurements, described in subsequent chapters, to be fully interpreted. Whenever a gas is in contact with an active surface (such as Graphon) there exists the possibility of physical adsorption occurring, the extent of which depends on the gas and the surface and distribution of material between them. This distribution, represented in certain cases by the Henry law constant, in turn depends on the temperature and pressure of the gas, and is of importance where surface flow occurs, as in this work. The extent of sorption will give information on the degree of filling of pore space which, in turn, can give an indication of possible pore blockage.

Isotherms were measured using a conventional volumetric adsorption apparatus (C1int, 1966), constructed so as to keep dead volumes to a minimum. For the majority of isotherms a sample of Graphon of weight 7.164 g was used, but for the very weakly sorbed gases, H_{2} and Ne , a 24.274 g sample was used.

In the results which follow v, the uptake of gas by the adsorbent is expressed in cm^{3} S.T.P. g^{-1} and p, the equilibrium pressure, in cmHg reduced to 273.15 K . The temperature of the isotherm, T , is given in Kelvin and $A,{ }_{g}$, the surface area per gram of adsorbent, in $m^{2} g^{-1}$. These are units conveniently employed in dealing with volumetric apparatus involving relatively small gas uptakes and using mercury manometers.

4.1 EXPERIMENTAL RESULTS

4.1.1 Surface area determination of Graphon

A nitrogen isotherm was determined at 77.4 K , the normal boiling point of liquid nitrogen. This was fitted to the B.E.T. equation (Brunauer, Emmett and Teller, 1938) using the commonly accepted value for the surface area of the nitrogen molecule viz 0.162 iım 2 (Emmett and Brunauer, 1937; Davis, DeWitt and Enmett, 1947).

The overall isotherm was of type II in the Brunauer classification, with a sharp 'knee' near monolayer coverage and is shown in figure 4.1, (experimental data points are tabulated in Appendix C). Absence of capillary condensation and of hysteresis, indicated a non-porous adsorbent. Data were fitted to the B.E.T. isotherm, equation (4.1), by plotting $p /\left(p_{o}-p\right) v$ against relative pressure, p / p_{o}.

$$
\begin{equation*}
\frac{p}{\left(p_{0}-p\right) v}=\frac{1}{v_{m} \cdot c}+\frac{(c-1)}{v_{m} \cdot c} \cdot \frac{p}{p_{0}} \tag{4.1}
\end{equation*}
$$

Here v and v_{m} are uptake and monolayer uptake respectively; p and p_{o} are the vapour pressure and saturated vapour pressure respectively, and c is a constant, related to the heat of adsorption. The B.E.T. plot was a good straight line in the $\mathrm{p} / \mathrm{p}_{\mathrm{o}}$ range 0.01 to 0.18 and had a slope of $0.0505\left(\mathrm{~cm}^{3} \text { S.T.P. } \mathrm{g}^{-1}\right)^{-1}$ with intercept, $1 / \mathrm{v}_{\mathrm{m}} \cdot \mathrm{c}$, of 4.58×10^{-5} $\left(\mathrm{cm}^{3} \text { S.T.P. } g^{-1}\right)^{-1}$. From these figures a value of $19.80 \mathrm{~cm}^{3}$ S.T.P. g^{-1} was calculated for v_{m} and the surface area, A_{g}, was found to be $86.2 \mathrm{~m}^{2} \mathrm{~g}^{-1}$.

These results compare favourably with the previously published data on this system. Literature values for A_{g} determined by the B.E.T. procedure cover the range 78.3 to $39.7 \mathrm{~m}^{2} \mathrm{~g}^{-1}$ (table 4.1) and the value determined in this work is within this range. That the surface area varies from batch to batch can be seen from the manufacturers'

TABLE 4.1
A_{g} Values for Graphon

Adsorbate	$\frac{\text { Temperature }}{\mathrm{K}}$	$\frac{A_{g}}{m^{2} g^{-1}}$	References
Ar	90.0	78.9	Plug
Ar	90.0	79.7	Powder $\}$ Ash, Baker and Barrer, 1967
Ar	77.4	78.3	Powder $]$
N_{2}	77.4	80.3	Joyner and Emmett, 1948
N_{2}	77.4	82.2	Isirikyan and Kiselev, 1962
N_{2}	77.4	84.0	Schaeffer, Smith and Polley, 1953
N_{2}	77.4	85.0	Beebe, Polley, Smith and Wendell, 1947
N_{2}	77.4	85.9	Corrin, 1951
N_{2}	77.4	85.2	This work
N_{2}	77.4	87.4	Cabot technical data sheet sample S6D5
N_{2}	77.4	89.0	Pope, 1967
N_{2}	77.4	89.4	Atkins, 1964
N_{2}	77.4	89.7	Cabot technical data sheet, sample S6D4

quoted areas for samples S6D4 and S6D5. Variation amongst experimenters might also be expected owing to variations in temperature and adsorbate, values of N_{2} area etc.

It is known that areas obtained by the B.E.T. procedure using argon tend to give iow A_{g} values and so it may be thought that the true area is larger than that determiued by Ash, Baker and Barrer (1967). These workers did demonstrate, however, that no significant difference in surface area was found between powder and compressed plug. This justified the assumption that nc change in particle shape occurred on compression and that the Graphon particles behaved as hard, inelastic particles.

The value of A_{g} is clearly dependent on the chosen area of the adsorbate molecule, the value of 0.16 祭 m^{2} for N_{2} being that calculated for a spherical molecule in a close-packed liquid. Corrin (1951), using this area for N_{2} at 77.4 K , calculated the surface area of a standard anatase sample. He then proceeded to evaluate the apparent area occuried
by an Ar molecule at 77.4 K and by a pentane and a pent-1-ene molecule at 293 K by carrying out B.E.T. measurements for each adsorbate on the same anatase sample. A_{g} for several carbon blacks was then determined by adsorption of each adsorbate and using the appaicent area per molecule based on the anatase area. Internal consistency of better than 2% was found between $\mathrm{Ar}, \mathrm{N}_{2}$ and pentane, and it is interesting to note that the area used for the Ar molecule was $0.166 \mathrm{~nm}^{2}$ as opposed to $0.144 \mathrm{~nm}^{2}$ based on a close-packed liquid. This supports the view that areas determined by Ar adsorption tend to be low.

More recently, Pierce and Ewing (1964) have suggested that areas of graphites determined by N_{2} adsorption are also too low. They measured the surface area of a uniform graphite and found that while the areas determined by adsorption of benzene, n-hexane, and ethyl chloride agreed with one another, agreement with N_{2} areas could only be obtained when a value of $0.20 \mathrm{~nm}^{2}$ was taken for the N_{2} cross-section. They postulated that the N_{2} molecules were localised, being centred over a hexagonal graphite lattice site. Thus the nitrogen molecules are not close-packed but each molecule occupies four hexagonal units, giving a theoretical area of $0.21 \mathrm{~nm}^{2}$.

Inspection of the nitrogen isotherm reveals a hump between v values of 28 and $42 \mathrm{~cm}^{3}$ S.T.P. g^{-1}, i.e. between monclayer and second layer coverage, centred at approximately $v=34 \mathrm{~cm}^{3}$ S.T.P. g^{-1} $\left(\theta=v / v_{m}=1.7_{2}\right)$ and $p / p_{0}=0.37$. This behaviour has been reported in the literature (Beede, Millard and Cynarski, 1953; Joyner and Emmett, 1948; Corrin, 1951) for N_{2} and Ar on Graphon at low temperatures. It occurs just before the theoretical completion of the second molecular layer and has been attributed to lateral interactions between adsorbed molecules in the second layer. Beede et al (1953) and Joyner et al (1948) investigated the nump in more detail and found peaks in a plot of the differential heat of adsorption against coverage, occurrirg just beiore
completion of the first and second layers. While both peaks are attributed to lateral adsorbate - adsorbate interactions, only the second shows in the isotherm since the first peak occurs in a very steep section of isotherm. Beebe et al (1953) also found some evidence for a third peak, close to the completion of a third layer.

4.1.2 Isotherms above room temperature

Isotherms for hydrogen, neon, krypton, xenon, methane, ethane and propane were determined at each of eight temperaturesin the range 308.15 K to 393.15 K and at equilibrium pressures up to 50 cmHg . n -Butane isotherms were determined at $308.15 \mathrm{~K}, 373.15 \mathrm{~K}$ and 393.15 K . The experimental data are given in Appendix C and individual isotherms are plotted in figures 4.2 to 4.9. The isotherms of H_{2} and Ne are not very reliable since uptakes involved were very small, in some cases being within the limits of experimental error. Isotherms for H_{2} and the inert gases were determined primarily $亡 0$ allow isothernal and non-isothermal flow data collected by Dolphin (1971) to be more fully interpreted. The hydrocarbon isotherms were measured for this investigation since comprehensive isotherm data at the temperatures used in the flow experiments were not available in the literature. From the limiting slope of the isotherm at low coverage $(d v / d p)_{p \rightarrow 0}$. Henry law constants k_{s}, were determined:

$$
\begin{equation*}
k_{s}=\frac{\text { Gibbs excess surface concentration }\left(m o l \mathrm{~cm}^{-2}\right)}{\text { gas phase conceniration }\left(m o l \mathrm{~cm}^{-3}\right)}=\frac{c_{s}^{\prime}}{c_{g}^{\prime}} \tag{4.2}
\end{equation*}
$$

$$
\begin{equation*}
=\left(\frac{d v}{d p}\right) \cdot \frac{76}{A_{g}} \cdot \frac{T}{273.15} \cdot 10^{-4} \tag{4.3}
\end{equation*}
$$

where k_{s} is in $c m$ and units of other parameters are as previously stated.
Sorption of hydrogen, neon, krypton and methane did not depart measurably from Henry's law over the pressure range investigated, while

Figure 4.2
Hydrogen Isotherms

Figure 4.3
Neon Isotherms

Figure 4.4
Krypton Isotherms

Figure 4. 5
Xenon Isotherms

Figure 4.6
Methane Isotherms

Figure 4.7
Ethane Isotherms

Figure 4.8
Propane Isotherms

Figure 4.9
n-Butane Isotherms
departure for xenon and ethane was only slight. Propane and n-butane on the other hand, gave isotherms which were noticeably concave towards the pressure axis.

Given in table 4.2 are the values of $A_{g} k_{s}$ and of k_{z} (taking A_{g} as $86.2 \mathrm{~m}^{2} \mathrm{~g}^{-1}$), those for xenon and ethane being obtained from the limiting slope of the isotherm below 5 cmig . The propane values were obtained using that portion of the isotherm below 2 cmHg and are consequently of low precision. n-Butane gave isotherms having no detectable Henry law region.
k_{s} values for H_{2} and Ne were erratic and so, for the purpose of comparison, smoothed values have also been presented in table 4.2 . These were interpolated from the best straight line plot of $\log _{10} \mathrm{~A}_{\mathrm{g}} \mathrm{k}_{\mathrm{s}}$ versus $1 / \mathrm{T}$.

4.1.3 Isotherms of n-butane

At 308.15 K -butane gave a type II isotherm with a fairly rounded 'knee', but was well suited to B.E.T. analysis (figure 4.9). Apparent monolayer uptake was found to be $7.88 \mathrm{~cm}^{3} \mathrm{~S} . \mathrm{T} . \mathrm{P} . \mathrm{g}^{-1}$ and assuming an A_{g} of $86.2 \mathrm{~m}^{2} \mathrm{~g}^{-1}$ (nitrogen B.E.T.) the area occupied by the n-butane molecule was found to be $0.407 \mathrm{~nm}^{2}$. This compares well with the value of $0.397 \mathrm{~nm}^{2}$ obtained by Beebe, Biscoe, Smith and Wendell (1947) at 273 K , but is somewhat lower than the area suggested by Wynne-Jones (1958) of $0.47 \mathrm{~nm}^{2}$ at 273.15 K . The v_{m} value agrees well with Beebe's value of $7.83 \mathrm{~cm}^{3}$ S.T.P. g^{-1} and with the determination of Ross and Good (1956) which gave 7.57 and $7.75^{\circ} \mathrm{cm}^{3}$ S.T.P. g^{-1}.

4.1.4 Experimental heais and energies of adsorption

When Henry's law was obeyed, a heat of adsorption (ΔH^{\prime}) and an energy of adsorption (ΔE^{\prime}), defined in equations (4.4) and 4.5), could

TABLE 4.2

Henry Law Coefficients, $\mathrm{k}_{\mathrm{s}} / \mathrm{cm}$ and $\mathrm{A}_{\mathrm{g}} \mathrm{k}_{\mathrm{s}} / \mathrm{cm}^{3} \mathrm{~g}^{-1}$

be calculated from plots of $\ln (v / p)$ and $\ln \left(A_{g} \cdot k_{s}\right)$ against T^{-1}.

$$
\begin{align*}
& \Delta H^{\prime}=-R\left(\frac{\partial \ln (v / p)}{\partial T^{-1}}\right)_{V}=R T^{2}\left(\frac{\partial \ln (v / p)}{\partial T}\right)_{V} \tag{4.4}\\
& \Delta E^{\prime}=-R \frac{d \ln (v T / p)}{d T^{-1}}=R T^{2} \frac{d \ln \left(A_{g} k_{s}\right)}{d T}=R T^{2} \frac{d l n k}{d T} \tag{4.5}
\end{align*}
$$

Where it has been possible to determine k_{S}, then ΔH^{\prime} and ΔE^{\prime} have been calculated in this way and are given in table 4.3. Good straight lines were obtained and the slopes $\left(\partial \ln (v / p) / \partial T^{-1}\right)_{v}$ and ($d \ln \left(A_{g} k_{s}\right) / d T^{-1}$) were evaluated by a least mean squares analysis. However in the case of H_{2} there was a considerable scatter of results, and with Ne , the points were so scattered that no reliable values of ΔE^{\prime} or ΔH^{\prime} could be determined.

TABLE 4.3
$\Delta H^{\prime}, \Delta E^{\prime}$ and $q_{s t}^{\prime}$ for sorption by Graphon

Ads orbate	$\frac{-\Delta H^{\prime}}{k J \operatorname{mol}}$	$\frac{-\Delta E^{\prime}}{\mathrm{kJ} \mathrm{mol}^{-1}}$	$\frac{q_{s t}^{\prime}}{\mathrm{kJ} \mathrm{mol}^{-1}}$	$\frac{\left(-\Delta E^{\prime}\right)^{*}}{k J ~ m o l ~}{ }^{-1}$
H_{2}	7.7	4.8	-	-
Kr	13.5	10.5	-	-
Xe	17.6	14.7	18.05	15.2
CH_{4}	13.5	10.7	13.6 +	-
$\mathrm{C}_{2} \mathrm{H}_{6}$	20.0	17.1	20.6	17.7
$\mathrm{C}_{3} \mathrm{H}_{8}$	24.7	21.7	25.0	22.1
$\mathrm{n}_{-} \mathrm{C}_{4} \mathrm{H}_{10}$	-	-	30.7	27.8
$\begin{aligned} & *-\Delta E^{\prime} \text { obtained from } q_{S t}^{\prime} \text { using eqn. (4.9) } \\ & \dagger \quad q_{\text {St }}^{\prime} \text { obtained from }-\Delta E^{\prime} \text { using eqn. (4.9) } \end{aligned}$				

TABLE 4.4
Literature Values of $\mathrm{q}_{\mathrm{st}}^{\prime}$ for Sorption of Hydrocarbons by Graphon (kJ mol ${ }^{-1}$)

Adsorbent	Adsorbate				Method	References
	CH_{4}	$\mathrm{C}_{2} \mathrm{H}_{6}$	$\mathrm{C}_{3} \mathrm{H}_{8}$	$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$		
Graphon	13.6	20.5	25.0	30.7]		This sorle
"	-	-	-	36.0	¢ $\begin{aligned} & \text { Adsorption } \\ & \text { Isotherms }\end{aligned}$	Beebe, Biscoe et al, 1947
"	-			34.3]		Ross and Good, 1956
\because	-			33.0		Chirnside and Pope, 1964
11	-	23.5	35.1	51.0	Chromatography	Di Corcia and Samperi, 1973
H_{2}-treated Graphon	-	19.7	24.7	30.7 J		Di Corcia and Samperi, 1973
Theoretical	14.6	20.1	27.2	34.4		La1 and Spencer, 1974

With the more strongly adsorbed gases, $\mathrm{Xe}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{3} \mathrm{H}_{8}$ and $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$, it was possible to evaluate the isosteric heat of adsorption, $q_{s t}^{\prime}$, defined by equation (4.6).

$$
\begin{equation*}
q_{s t}^{\prime}=-R\left(\frac{\partial 1_{n} \underline{p}}{\partial T^{-1}}\right)_{v}=R T^{2} \quad\left(\frac{\partial 1_{n p}}{\partial T}\right)_{V} \tag{4.6}
\end{equation*}
$$

This is derived at constant uptake or surface coverage, and the limiting value of $q_{s t}^{\prime}$ as v tends to zero can serve to evaluate ΔE^{\prime} where the isotherm is too curved, even at low uptakes, to evaluate Henry law constants. Thus from equation (4.3).

$$
\begin{equation*}
\ln A_{g} \cdot k_{s}=\ln v+1 n T-1 n p+c \cdot n s t a n t \tag{4.7}
\end{equation*}
$$

therefore $R T^{2}\left(\frac{\partial \ln A_{g} k_{s}}{\partial T}\right)_{V}=R T-R T^{2}\left(\frac{\partial \ln p}{\partial T}\right)_{V}$
or

$$
\begin{equation*}
\Delta E^{\prime}=R T-q_{s t}^{\prime} \tag{4.9}
\end{equation*}
$$

Values of ΔE^{\prime} calculated in this way, as well as the limiting value of $q_{s t}^{\prime}$, are given in table 4.3 for those gases where deviation from the Henry law was found. The mean of the isotherm temperatures, 348.5 K , was used in this expression.

When Henry's law is obeyed it can be shown from equation (4.4) that $q_{s t}^{\prime}=-\Delta H^{\prime}$. Examination of table 4.3 shows that this was observed to within 2.5%.

In the series of hydrocarbons studied there was found to be a linear relationship between $-\Delta E^{\prime}$, or $q_{s t}^{\prime}$, and n, the number of carbon atoms in the molecule, as shown in figure 4.10. From this plot the average increment in $q_{s t}^{\prime}$, per $-\mathrm{CH}_{2}-$ unit was found to be 5.4 kJ mol ${ }^{-1}$. This behaviour agrees approximately with the theoretical treatment of Lal and Spencer (1974), where interaction energies between various hydrocarbon molecules and the surface of a graphite lattice were calculated by a Monte Carlo method. They found $q_{s t}^{\prime}$ to be linear with n in the range 2 to 6 and the theoretical increment in $q_{s t}^{\prime}$ per $-\mathrm{CH}_{2}-$ unit was $7.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$ within this range. Experimental values have been obtained in the range 4 to $8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and span the increment found in this work. Elkington and Curthoys (1969) for example found an increment pe: carbon atom of $4.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$ on Sterling MTD4.

Values of limiting isosteric heats of adsorption compared with those given in the literature are shown in table 4.4. Reasonably good agreemen L_{l} is found, especially with the values obtained by Di Corcia and Samperi for hydrogen-treated Graphon, and the theoretical heats calculated by Lal and Spencer.

4.1.5 Vamiation of q_{s}^{\prime} with coverage

Additional information concerning the adsorbent surface can be obtained by evaluating $q_{s t}^{\prime}$ at various degrees of surface coverage. In

Figure 4.10 Variation of $\mathrm{q}_{\mathrm{st}}^{\prime}$ and $-\Delta \mathrm{E}^{\prime}$ with n

Figure 4.11
figure $4.11 q_{s t}^{\prime}$ has been plotted against $\theta\left(=v / v_{m}\right)$, the fraction of monolayer coverage. v_{m} was based upon a carbon area of $86.2 \mathrm{a}^{2} \mathrm{~g}^{-1}$ and experimental areas per molecule of $0.202,0.225,0.357$ and $0.407 \mathrm{~nm}^{2}$ for $\mathrm{Xe}, \quad \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{3} \mathrm{H}_{8}$ and $\mathrm{n}^{-\mathrm{C}} \mathrm{C}_{4}{ }_{10}$ respectively.
$q_{s t}^{\prime}$ for xenon and, more noticeably, for ethane is found to decrease with increasing coverage. This can be attributed to initial preferential uptake on more energetically sorbing surface sites, followed by adsorption on less energetically sorbing sites. $q_{s t}^{\prime}$ thus falls and indicates some degree of energetic heterogeneity of the Graphon surface.

As θ for Xe and $\mathrm{C}_{2} \mathrm{H}_{6}$ is very small (less than 0.05), each adsorbate molecule is effectively isolated from its neighours and energetic heterogeneity can readily be detected. However, with the larger, more strongly adsorbed molecules, $\mathrm{C}_{3} \mathrm{H}_{8}$ and $\mathrm{n}^{-\mathrm{C}} \mathrm{C}_{4} \mathrm{H}_{10}$, θ is much greater. The ad-molecules approach one another more closely and lateral interactions become possible, thus tending to increase $q_{s t}^{\prime}$. Figure 4.11 reveals an increase in $\mathrm{q}_{s t}^{\prime}$ for $\mathrm{C}_{3} \mathrm{H}_{8}$ and $n-\mathrm{C}_{4} \mathrm{H}_{10}$ and from the propane results it would appear that lateral interactions begin to occur after $\theta=0.1$. Any heterogeneity in the region up to $A=0.04$ would not be noticed since this corresponds to part of the isotherms at very low pressure where few data points are available. The apparent sharp rise in $q_{s t}^{\prime}$ to $\theta=0.02$ is likewise explained by the inadequate precision of measurements at low p. The $n-C_{4} H_{10}$ results are less accurate, $q_{s t}^{\prime}$ being determined from isotherms at only three temperatures. Ross and Good (1956) detected adsorbate - adsorbate interactions by a rise in $q_{s t}^{\prime}$ for $C_{3} H_{8}$ on Graphon reaching a maximum at $\theta \cong 0.7$ and falling to a value corresponding to the heat of liquefaction at $\theta=1.0$. However they detected little increase in $q_{s t}^{\prime}$ below $\theta=0.4$.

Although Graphon is commonly taken to be a graphitised carbon black having a substantially energetically homogeneous surface, there
is evidence in the literature as well as in this work, of a small
amount of energetic heterogeneity. From adsorption measurements with N_{2} and Ar , Beebe et al (1953) also suggested some physical heterogeneity of the surface, and Graham (1957) likewise deduced a small amount of geometric heterogeneity from N_{2} isotherms at 77.5 and 90.3 K and at, very low coverage. By measurement of the initial curvature of the isotherm he found that strong adsorption took place on 1.25% of the surface sites, and suggested that these sites occurred where an ad-molecule was in contact with a geometric irregularity eg a step or kink site. $q_{s t}^{\prime}$ for such sites was calculated to be $16.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ as opposed to $8.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for the bulk of sites. This suggested two-fold bonding eg. an ad-molecule located between two parallel sheets. From the N_{2} isotherm at 77.5 K he calculated v_{m} to be $18.80 \mathrm{~cm}^{3}$ S.T.P. g^{-1}, composed of v_{m} (strong) of 0.23_{4} and v_{m} (weak) of $18.5_{7} \mathrm{~cm}^{3}$ S.r.P. g^{-1}. (Compare v_{m} of 19.80 cm^{3} S.T.P. g^{-1} found in this work). He also pointed out that approximately 1% of surface sites on Graphon were involved in hydrogen bonding (due to the presence of OH groups): these sites were less energetic than normal and so did not affect the isotherm. Isirikyan and Kiselev (1962) also deduced some heterogeneity of Graphon from isotherms and $q_{s t}^{\prime}$ of nitrogen, benzene and n-hexane.

More recently Di Corcia and Samperi carried out adsorption studies on several carbon blacks, including Graphon, at very low surface coverage, using gas-solid chromatography. They worked principally with the lower alkanes and found that treating the carbon with hydrogen at $1000^{\circ} \mathrm{C}$, besides removing chemical impurities, such as chemisorbed oxygen, also removed geometric irregularities. This was manifest by a decrease in $q_{s t}^{\prime}$ after treatment.

4.2 THERMODYNAMICS OF ADSORPTION

In order to derive exact and useful heats of adsorption and
thermodynamic quantities from adsorption isotherms, a model must first be assumed for the adsorbate - adsorbent system.

Three treaiments have been proposed (Young and Crowe11, 1962):
(i) Equilibrium is considered to exist between the gaseous adsorbate, the adsorbent and the adsorbed particles. Exact thermodynamic quantities are obtained, but they are of limited usefulness.
(ii) Solution thermodynamics (Everett, 1950; Hill, 1952). The adsorbent atoms and the adsorbed particles are considered to form a single, independent phase, having the properties of a solution; equilibrium exists between this phase and the gas phase.
(iii) Inert adsorbent (Everett, 1950). The solid adsorbent is considered to be thermodynamically inert and equilibrium is established between gaseous adsorbate and an adsorbed phase.

Solution and inert adsorbent (or adsorption) thermodynamics are the most frequently used, and the thermodynamic relationships derived from each are identical. However the physical interpretation of the quantities involved differs and depends on the assumptions made in the treatment.

Clint (1966) has reviewed solution and adsorption thermodynanics with particular ref乞rence to adsorption in the Henry 1 aw and sub-monolayer range. Essential points in the solution thermodynamic treatment will now be given.

4.2.1 Solution thermodynamics

Equilibrium is assumed to exist between the solution, having a mole fraction of adsorbate $x_{s}=n_{s} /\left(n_{s}+n_{a}\right)\left(n_{s}\right.$ and n_{a} are the number of moles of sorbate and adsorbent respectively), and the pure gas phase. Changes in temperature, pressure and composition are considered to bring about infinitesimal changes in chemical potential of sorbate in the condensed phase (d_{s}) and in chemical potential of the pure gas phase $\left(\mathrm{d} \mu_{\mathrm{g}}\right)$.

Since the system is at equilibrium, then $d \mu_{g}=d \mu_{s}$ and it can be shown that

$$
\begin{equation*}
-\tilde{S}_{g} d T+\tilde{V}_{g} d p=-\bar{S}_{s i} d T+\bar{v}_{s} d p+\left(\frac{\partial \mu_{s}}{\partial x_{s}}\right)_{p, T} d x_{s} \tag{4.10}
\end{equation*}
$$

where S represents entropy and V, volume, subscripts $g{ }_{\mathrm{g}}$ and refer to gas phase and adsorbed phase, and - and ~ denote partial and total molar quantities.

At constant composition $\mathrm{dx}_{\mathrm{s}}=0$ and it follows that a Clausius. Clapeyron type of equation c an be deduced:

$$
\begin{equation*}
\left(\frac{\partial p}{\partial T}\right)_{x_{s}}=\frac{\bar{S}_{s}-\tilde{S}_{g}}{\bar{V}_{s}-\tilde{V}_{g}}=\frac{\bar{H}_{s}-\tilde{H}_{g}}{T\left(\bar{Y}_{s}-\tilde{V}_{g}\right)}=\frac{\Delta \tilde{H}}{T\left(\bar{V}_{s}-\tilde{V}_{g}\right)} \tag{4.11}
\end{equation*}
$$

where H represents enthalpy and $\Delta \bar{H}$ is a partial molar heat of adsorption, regarded as the partial molar heat of solution of a gas in a solution of composition $n_{s}+\mathfrak{n}_{a}$.

In applying equation (4.11) to adsorption isotherms, difficulties arise in (i) deciding the meaning of constant x_{s} and (ii) in interpreting \bar{v}_{s}.

Assuming n_{a} to be constant, then constant x_{s} implies constant n_{s}, the number of moles of sorbate in the condensed phase. A physical interpretation of the condensed phase is now required. If it consists solely of the adsorbent and the experimentally measured surface excess, $A_{s} c_{s}^{\prime}$ (where c_{s}^{\prime} is the Gibbs excess number of moles of sorbate per unit area arising as a result of adsorption and A_{s} is the surface area of n_{a} moles adsorbent), then $n_{s}=A_{s} \cdot c_{s}^{\prime}=n_{s}^{\prime}$. Hence we obtain

$$
\begin{equation*}
\left(\frac{\partial p}{\partial T}\right)_{x_{s}}=\left(\frac{\partial p}{\partial T}\right)_{n_{s}}=\left(\frac{\partial p}{\partial T}\right)_{c_{s}^{\prime}}=\frac{\Delta \tilde{H}}{T\left(\bar{V}_{s}-\bar{V}_{g}\right)} \tag{4.12}
\end{equation*}
$$

However, a more realistic interpretation of the condensed phase is
obtained by considering it to comprise the n_{a} moles of adsorbent and the number of moles of sorbate in a uniform layer surrounding it. n_{s} will now consist of the surface excess, $A_{s} c_{s}^{\prime}$, and also the number of moles of gaseous adsorbate which would be included in this surronding layer if the gas phase was continued unchanged right up to the adsorbent surface. If V_{S} is the volune of this surface phase ther

$$
\begin{equation*}
n_{s}=A_{s} c_{s}^{\prime}+V_{s} / \tilde{V}_{g}=n_{s}^{\prime}+V_{s} / \tilde{V}_{g} \tag{4.13}
\end{equation*}
$$

When sorption occurs to any appreciable extent ($\theta>0.1$, say) then $A_{s} c_{s}^{\prime}$ is large compared with V_{s} / \tilde{V}_{g} and it is then usually a good approximation to neglect this term and hence $n_{s}=n_{s}$.

Where the extent of adsorption is small, however, e.g. H_{2} and Ne at room temperature, the extra moles occurring in V_{S} due to sorption will be so small as to be commensurable with $\mathrm{V}_{\mathrm{S}} / \tilde{\mathrm{V}}_{\mathrm{g}}$ and so must be allowed for in calculating n_{s}. An estimate must thus be made of the sorption volume, V_{s}. One simple approximation (Clint 1966; Dolphin 1971; Ash, Barrer, Clirt, Dolphin and Murray, 1973) has been to consider this sorption volume as consisting of a layer, one molecular diameter in thickness, δ, surrounding the adsorbent. i.e. $V_{s}=A_{s} \delta$.

We must now consider the meaning of $\overline{\mathrm{V}}_{\mathrm{s}}$ defined by (4.14).

$$
\begin{equation*}
\bar{v}_{s}=\left(\frac{\partial V_{c}}{\partial n_{s}}\right)_{T, p, n_{a}} \tag{4.14}
\end{equation*}
$$

where $V_{c}=V_{s}+V_{a}=$ volume of the condensed phase. If V_{c} is considered to be constant, then at any submonolayer coverage, addition of sorbate to the sorption volume will increase its concentration but V_{s} and V_{c} will remain constant. Hence $\overline{\mathrm{V}}_{\mathrm{s}}=0$ and equation(4.11) can be written as

$$
\begin{equation*}
\left(\frac{\partial p}{\partial T}\right)_{x_{s}}=\left(\frac{\partial p}{\partial T}\right)_{n_{s}}=-\frac{\Delta \bar{H}_{T}}{T \tilde{V}_{g}} \tag{4.15}
\end{equation*}
$$

For a perfect gas $\tilde{\mathrm{V}}_{\mathrm{g}}=\mathrm{RT} / \mathrm{p}$ and so

$$
\begin{equation*}
\left(\frac{\partial p}{\partial T}\right)_{n_{s}}=-p \frac{\Delta \bar{H}}{R T^{2}} \text { or }\left(\frac{\partial \ln p}{\partial T}\right)_{n_{s}}=-\frac{\Delta \bar{U}}{R T^{2}} \tag{4.16}
\end{equation*}
$$

This can be compared with $q_{s t}^{\prime}\left(=\operatorname{RT}^{2}(\partial 1 \mathrm{np} / \partial T)_{n_{s}^{\prime}}\right)$. When $n_{s}=n_{s}^{\prime}$, then $q_{s t}^{\prime}=-\Delta \bar{h}$.

However, without making any assumptions about $\overline{\mathrm{V}}_{\mathrm{s}}$, from equation (4.12) we can define an isosteric heat for absolute sorption as

$$
\begin{equation*}
q_{s t}=R T^{2} \cdot\left(\frac{\partial \ln p}{\partial T}\right)_{n_{s}}=-\frac{\Lambda \bar{H}}{\left(1-\bar{V}_{s} / \tilde{v}_{g}\right)} \tag{4.17}
\end{equation*}
$$

$q_{s t}$ refers to the absolute adsorption of n_{s} moles whereas $q_{s t}^{\prime}$ refers to the adsorption of the Gibbs excess uptake, n_{s}^{\prime}. Barrer and Papadopoulos (1972) derived a relationship between $q_{s t}$ and $q_{s t}^{\prime}$ as :

$$
\begin{equation*}
\frac{q_{s t}^{\prime}}{q_{s t}}=\frac{\left(\partial n_{s}^{\prime} / \partial T\right)_{p} \cdot\left(\partial n_{s} / \partial p\right)_{T}}{\left(\partial n_{s} / \partial T\right)_{p} \cdot\left(\partial n_{s}^{\prime} / \partial p\right)_{T}} \tag{4.18}
\end{equation*}
$$

For an ideal gas this becomes:

$$
\frac{q_{s t}^{\prime}}{q_{s t}}=\left\{1+\frac{v_{s}}{R T}\left(\frac{\partial p}{\partial n_{s}^{\prime}}\right)_{T}\right\} \div\left\{1-\frac{p V_{s}}{R T^{2}}\left(\frac{\partial T}{\partial n_{s}^{\prime}}\right)_{p}\right\}
$$

Using the relations $n_{s}^{\prime}=A_{s} \cdot c_{s}^{\prime}$ and $V_{s}=A_{s} \cdot \delta$ this can be rearranged to :

$$
\begin{equation*}
\frac{q_{s t}^{\prime}}{q_{s t}}=\left\{1+\frac{\delta}{R T}\left(\frac{\partial p}{\partial c_{s}^{\prime}}\right)_{T}\right\} \div\left\{1-\frac{p \delta}{R T^{2}}\left(\frac{\partial T}{\partial c_{s}^{\prime}}\right)_{p}\right\} \tag{4.20}
\end{equation*}
$$

By manipulation it can be shown that in the Henry law range

$$
\begin{equation*}
\left(\frac{c_{s}^{\prime}}{T}\right) \cdot\left(\frac{{ }^{\partial} T}{\partial c_{s}^{\prime}}\right)_{p}=-\frac{R T}{q_{s t}^{\prime}} \tag{4.21}
\end{equation*}
$$

and by substituting this relationship into equation (4.20) we obtain

$$
\begin{equation*}
q_{s t}=\frac{q_{s t}^{\prime} \cdot k_{s}+R T \delta}{k_{s}+\delta} \tag{4.22}
\end{equation*}
$$

This expression can be used to evaluate aheat of adsorption, $\triangle E$, referring to absolute sorption. By analogy with equation (4.9) we can define ΔE as $\Delta E=R T-q_{s t}$, hence we obtain the relation

$$
\begin{equation*}
\Delta E=\left(\frac{k_{s}}{k_{s}+\delta}\right) \cdot \Delta E^{\prime}=R T^{2} \frac{\partial \rho^{\prime}\left(k_{s}+\delta\right)}{\partial T} \tag{4.23}
\end{equation*}
$$

A study of equations (4.22) and (4.23) will reveal that, in magnitude, $q_{s t}^{\prime} \geqslant q_{s t}$ and $\Delta E^{\prime} \geqslant \Delta E$, equality occurring when $k_{s} \gg \delta$. This corresponds with strong adsorption in which the number of sorbed molecules is far greater than the number of sorbate molecules which would have been present in the sorption volume in the absence of sorption.

4.3. APPLICATION OF ADSORPTION THERMODYNAMICS TO EXPERIMENTAL DATA

4.3.1 q_{st} and $\Delta \mathrm{E}$ for absolute sorption

Experimental data (tables 4.2 and 4.3) can be used to demonstrate the effect of finite sorption volume and to obtain energies for absolute sorption, ΔE. In table $4.5 \Delta E$ has been calculated at the highest and lowest temperatures used in this study. For H_{2} the smoothed k_{s} values have beer: used and the values chosen for δ were the molecular diameters which have been assumed to be independent of temperature. The ratio $\triangle E^{\prime} / \Delta E$ is also given and data for Ar and N_{2} measured by $\mathrm{R} J$ Dolphin (197i) are included for comparison purposes.

It can be seen that for the least strongly adsorbed gas, hydrogen, and to a lesser extent, $A r, \Delta E$ is significantly different from ΔE^{\prime}. The same behaviour should be observed with $N e$ if sufficiently accurate rata were available; this has been demonstrated on Carbolac (Ash et al 1973). Although ΔE^{\prime} j.s an average, applicable to the temperature range 308.15 to 393.15 K , from the isotherms $\log (\mathrm{v} / \mathrm{p})$ versus T^{-1} was a straight line in all cases and revealed no detectable curvature which would indicate temperature dependence. The effect of temperature on ΔE can be con'sidered by evaluating $\triangle E$ at the extremes of the temperature range.

Adsorbat			303.15K			393.15K		
	$\frac{10^{8} \delta}{\mathrm{~cm}}$	$\frac{-\Delta \mathrm{E}^{\prime}}{\mathrm{kJ} \mathrm{mol}}{ }^{-1}$	$\frac{10^{8} \mathrm{k}^{\text {c }}}{\text { cmi }}$	$\frac{-\Delta \mathrm{E}}{\mathrm{kJ} \mathrm{mol}^{-1}}$	$\frac{\Delta E^{\prime}}{}{ }^{\prime}$	$\frac{10^{8} \mathrm{k}_{\mathrm{s}}}{\mathrm{cm}}$	$\frac{-\Delta \mathrm{E}}{\mathrm{kJ} \mathrm{mol}^{-1}}$	$\frac{\Delta E}{}{ }^{\prime}$
H_{2}	$2.50{ }^{(1)}$	4.8	5.37	3.25	1.48	3.57	2.83	1.70
$\mathrm{N}_{2}^{(4)}$	$4.0{ }^{(1)}$	8.9	29.4	7.83	1.14	13.9	$6.9^{1} 1$	1.29
$\mathrm{Ar}^{(4)}$	$3.8{ }_{2}{ }^{(2)}$	7.8	26.8	6.83	1.14	13.6	6.10	1.28
Kr	$4.0{ }_{4}^{(2)}$	10.5	74.4	9.96	1.05	30.5	9.28	1.13
Xe	$4.5{ }_{6}{ }^{(2)}$	14.7	330.	14.5	$1.0{ }_{1}$	93.2	14.0	1.05
CH_{4}	$4.2{ }_{9}{ }^{(2)}$	10.7	70.8	10.1	1.06	29.3	9.33	1.15
$\mathrm{C}_{2} \mathrm{H}_{6}$	$4.9{ }_{6}{ }^{(3)}$	17.1	508.	16.9	$1.0{ }_{1}$	119.	16.4	1.04
$\mathrm{C}_{3} \mathrm{H}_{8}$	$5.6{ }_{8}{ }^{(3)}$	21.7		21.7	1.00	424.	21.4	1.0_{2}
(1) Barrer and Ruzicka, 1962.								
(2) Parsonage and Staveley, 1959								
(3) Hirschfelder, Curtiss and Birí, 1964.								
(4)	from As	$\text { et al, } 1$	73, but	using A_{g}	86.2	g^{-1}		

Owing to the decrease of k_{s} with increasing temperature, $\Delta E^{\prime} / \Delta E$ departs more from unity at higher temperatures where δ is a larger fraction of \mathbf{k}_{s}. This is again more noticeable for weakly sorbed molecules where ΔE^{\prime} is smallest.

Dolphin (1971) attempted to calculate the volume of the adsorbed layer more rigorously by identifying δ with \bar{z}, the average perpendicular distance from the centre of the sorbed molecule to the centre of the surface layer of sorbent atoms. \bar{z} was calculated at each of the isotherm temperatures and an increase of 1% for H_{2} and 4% for Xe was detected from 308.15 to 393.15 K . Although more refined, the assumptions made are equally arbitrary and the results no more useful than those obtained herc. This treatment gave very little distinction between different
gases, \bar{z} at 308.15 being 0.45 nm for H_{2} and 0.48 nm for Xe .

4.3.2 Free energy and entropy of absolute sorption

An equilibrium constant, K_{c}, can be obtained for the adsorption process, equilibrium existing between adsorbed molecules in the sorption volume and those in the gas phase. Since the total concentration of molecules in the adsorption volume is $c_{s}^{\prime}+\delta c_{g}^{\prime}$ moles cm^{-3} or $\left(c_{s}^{\prime}+\delta c_{g}^{\prime}\right) / \delta$ moles per unit sorption volune (see Appendix A), then K_{c} is given by

$$
\begin{equation*}
K_{c}=\frac{c_{s}^{\prime}+\delta c_{g}^{\prime}}{\delta} \cdot \frac{1}{c_{g}^{\prime}}=\frac{k_{s}}{\delta}+1 \tag{4.24}
\end{equation*}
$$

As we are concerned with the dilute (Henry law) range, then activity coefficients are unity and K_{c} cen be identified with the thermodynamic equilibrium constant. Hence, if δ is assumed independent of temperature, we can write:

$$
\begin{equation*}
\Delta E^{\theta}=R T^{2} \frac{d 1 n K_{c}}{d T}=\frac{R T^{2} d 1 n\left(k_{s}+\delta\right)}{d T} \tag{4.25}
\end{equation*}
$$

On comparing this with equation (4.23), one can see that

$$
\begin{equation*}
\dot{\Delta E^{\theta}}=\Delta E \tag{4.26}
\end{equation*}
$$

The following standard thermodynamic relationships will also hold

$$
\left.\begin{array}{rl}
\Delta A^{\theta} & =-R T 1 \eta K_{c} \tag{4.27}\\
\Delta S^{\theta} & =\left(\Delta E^{\theta}-\Delta A^{\theta}\right) / T
\end{array}\right\}
$$

Thus from a knowledge of k_{s} and δ (and hence ΔE), the standard thermodynamic free energies and entropies for absolute sorption can be calculated at a given temperature.

Values of these properties, evaluated at 308.15 and 393.15 k are shown in table 4.6. The standard fret energies and entropies can be seen to increase in magnitude with increasing molecular weight in the series of inert gases or paraffins. At higher temperatures $-\Delta S^{\theta}$ is smaller, presumably owing to a greater degree of mobility of the adsorbed species.

Further information on the nature of the adsorbed species may be obtained by comparing ΔS^{θ} with calculated entropies based on statistical thermodynamics. When a freely rotating gas molecule possessing three modes of translational energy becomes adsorbed on a surface, an accompanying entropy change will occur owing to loss of translational modes and gain of vibrational modes. If the adsorbed molecule has the properties of a two dimensional gas i.e. if it has two translational modes and one vibrational mode relative to the adsorbent surface, then in the Henry lay range the entropy change, ΔS_{1}^{\oplus}, will be given by (Barrer and Rees, 1961):
.TABLE 4.6
Energy, Free Energy and Entropy of Absolute Sorption

Gas	308.15K			393.15K		
	$\frac{-\Delta \mathrm{E}^{\theta}}{\mathrm{kJ} \mathrm{mol}}{ }^{-1}$	$\frac{-\Delta A^{\theta}}{k J ~ m o l}{ }^{-1}$	$\frac{-\Delta S^{\ominus}}{J \mathrm{~mol}^{-1} \mathrm{~K}^{-1}}$	$\frac{-\Delta \mathrm{E}^{\theta}}{\mathrm{kJ} \mathrm{mol}}{ }^{-1}$	$\frac{-\Delta \mathrm{A}^{\ominus}}{\mathrm{kJ} \mathrm{mol}}$	$\frac{-\Delta S^{\ominus}}{J \operatorname{mol}^{-1} \mathrm{~K}^{-1}}$
H_{2}	3.25	${ }^{2.9} 2$	1.1	2.83	2.92_{2}	(-0.?)
$\mathrm{N}_{2}{ }^{*}$	7.83	5.44	7.7	6.91_{1}	4.91	5.1
Ar ${ }^{*}$	6.83	5.34	4.8	6.10	4.93	3.0
Kr	9.96	$7^{7.6} 1$	7.6	9.28	$7 . \mathrm{O}_{2}$	5.7
Xe	14.5	11.0	11.3	14.0	10.0	10.2
CH_{4}	10.1	7.34	8.9	9.33	6.73	6.6
$\mathrm{C}_{2} \mathrm{H}_{6}$	16.9	11.9	16.3	16.4	10.5	15.0
$\mathrm{C}_{3} \mathrm{H}_{8}$	21.7	15.8	19.1	21.4	14.1_{4}	18.5
* Data from Ash et al (1973)						

$$
\begin{equation*}
\Delta S_{1}^{\Theta}=R \ln \left[\left(\frac{10^{3} \cdot \mathrm{RI}}{2 \pi \mathrm{M}}\right)^{\frac{1}{2}} \cdot \frac{\mathrm{e}^{\frac{1}{2}}}{v \delta}\right]+\frac{1 \mathrm{R}}{2} \tag{4.28}
\end{equation*}
$$

Here $e=2.30259, M$ is the molecular veight of the sorbate and v is a mean vibration frequency of the adsorbed molecule. v can be estimated empirically using the expression (Hil1,1952):

$$
\begin{equation*}
\frac{v}{v^{*}}=\left(\frac{\Delta \mathrm{E} \cdot \mathrm{M}^{*}}{\Delta \mathrm{E}^{*} \cdot \mathrm{M}}\right)^{\frac{1}{2}} \tag{4.29}
\end{equation*}
$$

where * denotes a reference molecule of assigned frequency, an argon atom having $\nu^{*}=1.0 \times 10^{12} \mathrm{~s}^{-1}$ and $\Delta \mathrm{E}^{*}=-6.27 \mathrm{~kJ}$ mol ${ }^{-1}$ being chosen. More localised adsorpticn could occur, with the loss of two translational modes and the gain of two vibrational modes (ΔS_{11}^{ℓ}) or - complete localisation could take place with loss of all translaticnal energy and gain of three vibrational modes $\left(\Delta S_{1 I \prime}^{\ominus}\right)$. These antropies will be related according to:

$$
\begin{equation*}
\Delta S_{1}^{\ominus}=\frac{1}{2} \Delta S_{11}^{\ominus}=\frac{1}{3} \Delta S_{I I}^{\ominus} \tag{4.30}
\end{equation*}
$$

TABLE 4.7

Comparison of calculated and experimental entropies ($\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$)

Gas	308.15K				393.15K			
	$-\Delta S_{1}^{*}$	$-\Delta S_{11}^{*}$	$-\Delta S_{11}^{\ominus}$	$\frac{\Delta S_{11}^{\theta}-\Delta S^{\ominus}}{\Delta S^{\theta}-\Delta S_{1}^{\theta}}$	$-\Delta S_{1}^{*}$	$-\Delta S_{11}^{\ominus}$	$-\Delta S_{\text {III }}^{\ominus}$	$\frac{\Delta S_{11}^{\theta}-\Delta S^{\theta}}{\Delta S^{\theta}-\Delta S_{1}^{*}}$
$\mathrm{N}_{2}{ }^{\text {a }}$	${ }^{4.7} 7$	9.55	14.2	0.6	3.23	6.47	9.70	0.7
Ar*	3.76	${ }^{7.5} 1$	11.27	2.7	2.33	4.65	$6^{6.9} 8$	2.5
Kr	5.75	11.50	17.3	2.2	4.53	9.06	13.6	2.8
Xe	8.41	16.8	25.2	1.9	7.26	14.5	21.8	1.5
CH_{4}	6.38	12.8	19.1	1.5	5.07	10.15	15.2	2.4
$\mathrm{C}_{2} \mathrm{H}_{6}$	9.73	19.5	29.2	0.5	8.59	17.2	25.8	0.3
$\mathrm{C}_{3} \mathrm{H}_{8}$	11.9 \%	23.8	35.8	0.7	10.83	21.7	32.5	0.4
* Data from Ash et a1 (1973)								

In table 4.7 these entropies have been tabulated for 308.15 K and 393.15 K . No figures are given for H_{2}, since $\Delta \mathrm{E}$ was insufficiently accurate to determine a reliable value of v. Comparison $c a n$ be made with the experimental entropies, $\Delta S^{\boldsymbol{\theta}}$, given in table 4.6 . It can be seen that adsorption is largely mobile since $\Delta S^{\boldsymbol{\theta}}$ for all sorbates lies between ΔS_{1}^{θ} and ΔS_{11}^{θ}.

The quotient $\left(\Delta S_{11}^{\ominus}-\Delta S^{\ominus}\right) /\left(\Delta S^{\ominus}-\Delta S_{1}^{\ominus}\right)$ allows comparison to be made between the sorbates, which fall into two groups. Ar, $\mathrm{Kr}, \mathrm{Xe}, \mathrm{CH}_{4}$ (spherical, non-polar molecules) are more mobile than $\mathrm{C}_{2} \mathrm{H}_{6}: \mathrm{C}_{3} \mathrm{H}_{8}$ and N_{2} (linear or dumbell-shaped molecuies). $\mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{3} \mathrm{H}_{8}$ are more strongly sorbed, while N_{2} possesses a quadrupole, and these factors could contribute to a reduced surface mobility. However, part of this increase in $-\Delta S^{\epsilon}$ for dumbell-shaped molecules could be due to loss of rotational modes.

Similar calculations have been carried out for Carbolac (Ash et al 1973) where it was found that ΔS^{\ominus} lay between $\Delta S_{I I}^{\theta}$ and $\Delta S_{\text {III }}^{\theta}$ indicating more localised adsorption with adsorbates behaving as oscillators. This behaviour reflects the greater energetic heterogeneity of the Carbolac surface, whilst Graphon is more energetically homogeneous and has greater mobility oñ ad-molecules.

4.3.3 Relationships between $K, \Delta E^{\theta}, \Delta S^{\theta}$ and polarizability

It has been established that the Henry law constant increases rapidly with gas properties related to the condensability of the adsorbate (Dolphin, 1971). Hence the equilibrium constant for absolute sorption, K_{c}, might be expected to show similar trends. Figure 4.12 shows the dependence of $\log \mathrm{k}_{\mathrm{s}}$ and $\log \mathrm{K}_{\mathrm{c}}$ (at 308.15K) on the polarizability, α (values of α are shown in table 4.8). It would appear that, with the exception of $\mathrm{C}_{3} \mathrm{H}_{8}$, there is a linear relationship between $\log k_{s}$ or $\log K_{c}$ and α at temperatures in the region of 300 K and for the limited range of gases studie. In the case of H_{2}, where k_{s} is

Figure 4.12
Variation at 308.15 K of K_{s} and K_{c} with polarizability, a
substantially different from $k_{s}+\delta, \log K_{c}$ (referring to absolute sorption) gives a better fit than $\log \mathrm{k}_{\mathrm{s}}$ (concerned vith Gibb's excess sorption) thus demonstrating the importance of correcting for sorption volume when dealing with weakly sorbed gases.

As a linear relationship was alsc found between $-\Delta E^{\theta}$ and α (figure 4.13) then from equation (4.27) it follows that ΔA^{θ} can be expressed as a linear function of ΔE^{θ} (through the dependence of $\log K_{c}$ and ΔE^{θ} on α). Hence at constant temperature a linear relationship should exist between ΔS^{Θ} and ΔE^{\ominus}. Similar behaviour has been observed in other systems (Frank, 1945; Everett, 1950; Barrer and Rees, 1959, 1.961) and is again demonstrated here (figure 4.14).

4.4 CORRELATION WITH INTERACTION ENERGY

The interaction energy, $\varphi(r)$, between a sorbate molecule and an atom of sorbent has frequently been expressed using the Lennard-Jones 6-12 potential:

$$
\begin{equation*}
\varphi(r)=-A_{12}\left[\frac{1}{r^{6}}-\frac{r_{o}{ }^{6}}{2 r^{12}}\right] \tag{4.31}
\end{equation*}
$$

where r is the distance between centres of sorbate and sorbent atoms, r_{o} being the value at equilibrium (when $\partial \varphi(r) / \partial r=0$). A_{12} is the dispersion energy constant.

To obtain the total energy of interaction, E, of one adsorbate molecule with the entire surface (an infinite, plane solid), a de Boer and Custers (1934) integration is performed with the result:-

$$
\begin{equation*}
E=-\frac{\pi A_{12} N}{6}\left[\frac{1}{z^{3}}-\frac{r_{0}^{6}}{15 z^{9}}\right] \tag{4.32}
\end{equation*}
$$

N is the number of adsorbent atoms per unit volume of solid and z is the perpendicular distance from the centre of the gas molecule to the plane containing the centres of the first layer of adsorbent atoms.

Figure 4.13
Relation between $-\Delta E^{\ominus}$ and α at 308.15 K

Figure 4.14 Relation between $-\Delta \mathrm{S}^{\ominus}$ and $-\Delta \mathrm{E}^{\ominus}$ at 308.15 K
z_{o} is the value of z at the minimum of the potential energy well at $E=E_{\text {min }}$, when $\partial E / \partial z=0$, and can be shown to be

$$
\begin{align*}
z_{0} & =\sqrt[6]{(0.2)} r_{0}=0.7647 r_{0} \tag{4.33}\\
\text { Hence } E & =\frac{-\pi A_{12} N}{6}\left[\frac{1}{z^{3}} \frac{-z_{0}^{6}}{3 z^{9}}\right] \tag{4.35}
\end{align*}
$$

and $\quad E_{\min }=\frac{-\pi A_{12}{ }^{N}}{9 z_{0}{ }^{3}}$
r_{0} can be obtained from the expression $r_{0}=r_{1}+r_{2}$ where r_{1} and r_{2} are the van der Waals radii of carbon atom and sorbate molecule respectively. r_{1} was taken to be half the graphite interlamellar spacing ($\mathrm{r}_{1}=0.167_{5} \mathrm{~nm}$) and half the molecular diameter (table 4.5) was used for r_{2}.

Several expressions have been proposed for A_{12} by London (1930), Slater and Kirkwood (1931) and Kirkwood and Müller (Kirkwood, 1932; Müller, 1936) which are given by equations (4.36), (4.37) and (4.38) respectively.

$$
\begin{align*}
& A_{12}^{L}=\frac{3}{32 \pi^{2} \varepsilon_{0}^{2}} \cdot \frac{\alpha_{1} \alpha_{2}}{\left(1 / I_{1}+1 / I_{2}\right)} \tag{4.36}\\
& A_{12}^{S K}=\frac{3}{64 \pi^{3} \varepsilon_{0}^{2}} \cdot \frac{\mathrm{eh}}{\mathrm{~m}^{\frac{1}{2}}} \cdot \frac{\alpha_{1} \alpha_{2}}{\left(\alpha_{1} / n_{1}\right)^{\frac{1}{2}}+\left(\alpha_{2} / n_{2}\right)^{\frac{1}{2}}} \tag{4.37}\\
& A_{12}^{K M}=-\frac{3 \mathrm{mc}^{2}}{8 \pi^{2} \varepsilon_{0}} \cdot \frac{\alpha_{1} \alpha_{2}}{\left(\alpha_{1} / X_{1}+\alpha_{2} / X_{2}\right)} \tag{4.38}
\end{align*}
$$

Where ε_{0} is the permittivity of a vacuum, c is the velocity of light in a vacuum, h is Planck's constant, e and m are the charge and mass of an electron; α, X and I represent polarizability, diamagnetic susceptibility and ionisation potential, subscripts 1 and 2 referring
to the carbon sorbent atom and gas molecule respectively. The quantities used should be expressed in S.I. units.

To test the validity of equation (4.35) as a model for the energy of adsorption, ΔE, the ratic R,

$$
\begin{equation*}
R=-\frac{\Delta E z_{\mathrm{o}^{3}}^{3}}{A_{12}} \propto-\frac{\Delta E}{E_{\min }} \tag{4.39}
\end{equation*}
$$

was calculated for some of the gases used in this study from the three expressions for A_{12} given above. If $E_{\min }$ is a good approximation to ΔE, then R will remain substantially constant and independent of the gas. The ratios R_{1}, R_{2} and R_{3} shown in table 4.9 were obtained using the London, Slater-Kirkwood and Kirkwood-Müller expressions respectively, the relevant gas parameters being given in table 4.8 , and ΔE at 308.15 K being used.

Using the Kirkwood-Müller expression, R_{3} is approximately constant for the gases $\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{Ar}, \mathrm{Kr}, \mathrm{Xe}$ and CH_{4}, but shows a large scatter. However, $\mathrm{C}_{2} \mathrm{H}_{6}$ and higher paraffins gave significantly larger values of R. Similarly, anomalous behaviour of hydrocarbons was observed in R_{1} and R_{2}, but R_{2} showed a slight, and R_{1} a pronounced, tendency to increase with molecular weight. This behaviour is illustrated graphically in figure 4.15 where R^{\prime} s are plotted against ΔE (the data for $A r$ and N_{2} being taken from Dolphin, 1971). The relative constancy of R, especially for Kirkwood-Müller, supports the model and indicates that physical or chemical heterogeneity is essentially absent from the carbon. This contrasts with the behaviour of Carbolac (Ash et al, 1973) where R increased several-fold from H_{2} to Xe . This was attributed to energetic heterogeneity of the carbon surface, giving rise to anomalously high energies of adsorption with strongly sorbed molecules, thus ensuring $\Delta E>E_{\text {min }}$ for molecules such as xenon.

Figure 4.15 Variation of $R\left(=-\Delta E z_{0}^{3} / A_{12}\right)$ with $-\Delta E$

Parometexs Usea in Evaluating R_{1}, R_{2} and R_{3}

Species	n	$\frac{\mathrm{z}_{0}}{\mathrm{~nm}}$	$\frac{10^{16} \alpha}{C^{2} v^{-1} \mathrm{~mol}}{ }^{-1}$	$\frac{10^{18} \mathrm{I}}{\mathrm{~J}(\text { molecule })^{-1}}$	$\frac{-10^{10} x}{m^{3} \mathrm{moi}^{-1}}$
H_{2}	2	0.224	0.538	2.63	0.50
N_{2}	10	0.281	1.162	2.50	1.51
Ar	8	0.274	1.090	2.53	2.45
Kr	18	0.283	1.647	2.24	3.52
Xe	18	0.302	2.681	1.94	5.41
CH_{4}	8	0.292	1.73	2.10	2.19
$\mathrm{C}_{2} \mathrm{H}_{6}$	14	0.318	2.900	2.05	3.44
$\mathrm{C}_{3} \mathrm{H}_{8}$	20	0.346	4.34	1.78	5.09
$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$	26	0.381	5.49	1.70	7.22
Carbon	8	-	0.684	1.80	2.87

TABLE 4.9

Values of $-\Delta \mathrm{E} . \mathrm{z}_{\mathrm{o}}{ }^{3}, \mathrm{~A}_{12}$ and R

Gas	$-\frac{10^{25} \Delta \mathrm{E} \cdot z^{2}}{\mathrm{Jm}^{3}}{ }^{3}$	$\begin{gathered} 10^{54} \mathrm{~A}_{12} \text { in } \\ \mathrm{Jm}^{6}(\mathrm{~mol})^{-1}(\text { atom carbon })^{-1} \end{gathered}$			$\begin{gathered} 10^{-29} \mathrm{R} \text { in } \\ \text { (atom carbon) } \mathrm{m}^{-3} \end{gathered}$		
			$\mathrm{A}_{12} \mathrm{SK}$	$\mathrm{A}_{12}{ }^{\mathrm{KM}}$			R_{3}
H_{2}	0.37	0.79	1.25	1.63	0.46	0.29	0.22
N_{2}	1.75	1.67	3.47	4.60	1.05	0.51	0.38
Ar	1.41	1.58	3.11	6.37	0.00	0.46	0.22
Kr	2.25	2.26	5.23	9.31	1.00	0.43	0.24
Xe	4.00	3.44	7.46	14.6	1.16	0.54	0.27
CH_{4}	2.52	2.31	4.31	6.72	1.09	0.58	0.38
$\mathrm{C}_{2} \mathrm{H}_{6}$	5.43	3.82	7.34	10.7	1.42	0.74	0.51
$\mathrm{C}_{3} \mathrm{H}_{8}$	8.97	5.35	10.8	15.8	1.67	0.83	0.57
$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$	15.4	6.60	13.7	21.9	2.33	1.12	0. 70

Several limitations are, however, imposed on this treatment.
(i) Since no allowance has been made in the calculation of A's for adsorption of asymmetric molecules (with non-isotropic α^{\prime} s), spherically
symmetrical molecules should be chosen, ic Ar, Kr, Xe and CH_{4}. No allowance is likewise made for the quadrupole moment of \mathbb{N}_{2} which might cause favoured orientations of the admolecule thus increasing $-\Delta E$. R is therefore likely to be too high. (ii) The calculated $E_{\text {min }}$ will be greater than ΔE by E_{o}, the zero-point energy of the adsorbed molecule. This effect will increase with temperature as the adsorbed molecule acquires more vibrational energy. (iii) The deBoer and Custers integration assumes an infinite plane solid. This clearly does not exist in a real adsorbent where crevices, steps etc occur on the surface. These surface defects can give rise to very high energies of adsorption and account, in part, for energetic heterogeneity. $E_{\text {min }}$ would not be a good approximation to $\triangle E$ in sueh a case. Since a small amount of heterogeneity has been detected on Graphon (section 4.1.5) then ΔE might be expected to be larger than predicted by the model especially for smaller molecules which could penetrate the crevices. Since this behaviour is not observed, then the heterogeneity must be too small to manifest itself in this treatment.

CHAPTER 5

ISOTHERMAL TRANSPORT

5.1 EXPERIMENTAL RESULTS

Isothermal flow measurements of $\mathrm{He}, \mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{3} \mathrm{H}_{8}$ and $n-\mathrm{C}_{4} \mathrm{H}_{10}$ through Graphon membrane N have been made in the temperature range 308.15 to 393.15 K . The effect of varying the ingoing pressure, P_{O}, from 5 to 20 cmHg for the hydrocarbons and from 5 to 50 cmHg for helium has also been investigated.

In chapter 3 the experimental procedure to measure flow through the membrane from $d p_{\ell} / d t$, the rate of build up of pressure in a fixed, known volume, V, was described. Plots of P_{ℓ} versus t, with V kept constant, are shown in figure 5.1 for n-botane at 308.15 K and several values of p_{0}. Extrapolation of the straight line part of the curve to cut the t axis gives the outgoing adsorption time-lag, L. It can be seen that L varies with p_{o}, but this behaviour is not typical of all gases. The more weakly sorbed gases $\mathrm{He}, \mathrm{CH}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{6}$ show no change in L with p_{0} and for a given gas the extrapolated curves of p_{ℓ} versus t cut the t axis coincidentally.

The permeability, K, is obtained from $d p_{\ell} / d t$ using equations (2.9) and (2.10). If p is expressed in cmHg , t in minutes, ℓ in metres, Ac in m^{2} and V in m^{3}, then the flux is given by:

$$
\begin{equation*}
J=\left(\frac{\mathrm{d} \mathrm{p}_{\ell}}{\mathrm{dt}}\right) \cdot \frac{1}{10^{2}} \cdot \frac{\mathrm{~V} 1.354 \times 10^{4} \times 9.81}{\mathrm{R} \mathrm{~T}_{\mathrm{R}} 60} \tag{5.1}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{G}=\left(\frac{\mathrm{d} \mathrm{p}_{\ell}}{\mathrm{dt}}\right) \cdot \frac{1}{10^{2}} \cdot \frac{\mathrm{~V} 1.354 \times 10^{4} \times 9.81}{60} \cdot \frac{\mathrm{~T}}{\frac{T_{\mathrm{R}}}{}} \tag{5.2}
\end{equation*}
$$

where J is the total molar flux (mole s^{-1}) and G is the corresponding

Figure 5.1 $\quad P_{1}$ as a function of t at several values of P_{0} for n-butane at $308 \cdot 15 \mathrm{~K}$
energy flux ($\mathrm{J}_{\mathrm{s}}{ }^{-1}$) reduced to the membrane temperature, $\mathrm{T} . \mathrm{T}_{\mathrm{R}}$ is ambient temperature. The permeability $K\left(\mathrm{~m}^{2} \mathrm{~s}^{-1}\right)$ is thus given by

$$
\begin{equation*}
K=\left(\frac{\mathrm{d}_{\ell}}{\mathrm{dt}}\right) \cdot \frac{1}{60} \cdot \frac{\ell}{\mathrm{P}_{\mathrm{O}}} \cdot \frac{\mathrm{~V}}{\mathrm{~A}_{\mathrm{c}}} \cdot \frac{\mathrm{~T}}{\mathrm{~T}_{\mathrm{R}}} \tag{5.3}
\end{equation*}
$$

Values of L, G and K are tabulated in Appendix D for each gas at every temperature and pressure used, and are presented graphically in figures 5.2 to 5.6 .

In the absence of a viscous flow component it has been suggested that the gas phase permeability, K_{g}, can be obtained Erom that of helium, $K^{\text {He }}$, using the relationship for Knudsen fiow of an ideal gas:

$$
\begin{equation*}
K_{\mathrm{g}}=K^{\mathrm{He}}\left(\mathrm{M}_{\mathrm{He}} / \mathrm{M}\right)^{\frac{1}{2}} \tag{2.12}
\end{equation*}
$$

Helium is assumed to be non-adsorbed and thus has no surface flow component, K_{s}. For a sorbed gas in the absence of pore blockage K_{s} can be obtained from

$$
\begin{equation*}
K=K_{\mathrm{s}}+K_{\mathrm{g}} \tag{2.11}
\end{equation*}
$$

Using equations (2.12) and (2.11) the K_{s} and K_{g} components of K have been obtained and these, together with the ratio K_{s} / K_{g}, are tabulated in Appendix E.

5.2 HELIUM DATA AND THE KNUDSEN ZEGIME

In the analysis above we have assumed that Knudsen flow conditions prevail in the gas phase and that helium can be used as a non-sorbed calibrating gas. This must now be shown.

The average pore diameter, d, based on the hydraulic radius of the membrane, was 17.0 nm (section 3.1.3). The commonly accepted criterion for Knudsen flow is that λ, the mean free path of gas molecules, be greater than 10 d , ie in this case $\lambda>170 \mathrm{~nm}$. In figure 5.7λ has been evaluated at 308.15 K (the least favourable temperature) and plotted

Figure 5.2 Temperature dependence of time-lags at $\mathrm{P}_{\mathrm{o}} \cong 10 \mathrm{~cm} \mathrm{Hg}$

Figure 5.3 Temperature dependence of permeabilities

Figure 5.4 Pressure dependence of time-lags for $n-\mathrm{C}_{4} H_{10}$ at several temperatures

Figure 5.5 Pressure dependence of permeabilities at 308.15 K

Figure 5.6 Pressure dependence of permeabilities for n-butane at several temperatures
against pressure, p, for each gas studied using the expression

$$
\begin{equation*}
\lambda=\frac{\mathrm{kT}}{2^{\frac{T}{2}} \cdot \pi \cdot \delta^{2} \cdot \mathrm{p}} \tag{5.4}
\end{equation*}
$$

Here δ is the molecular diameter given in table $4.5,0.2 .89 \mathrm{~nm}$ being taken for He and 0.659 nm for $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$ (Parkinson and Gray, 1972) and k is Boltzmann's constant. The condition $\lambda=10 \mathrm{~d}$ is shown on figure 5.7 and it can be seen that the criterion $\lambda>10 \mathrm{~d}$ is met for He at pressures of up to 50 cmHg and for the paraffins at 10 cmHg or below. As the majority of measurements were made at a p_{o} value of 10 cmHg then the criterion is met. If the average pressure $\left(p_{o}+p_{\ell}\right) / 2$ is used to characterise the membrane then the situation is even more favourable.

A further check on the absence of viscous flow was obtained by determining $K^{\text {He }}$ for several pressures in the range 5 to 50 cmHg (plotted as $K M^{\frac{1}{2}}$ versus p_{o} in figure 5.5). No significant pressure dependence of $K^{\text {He }}$ in this range was found, which accords with the predictions of the Knudsen equation. Thus in the gas phase, Knudsen flow is likely to prevail.

Now if helium is to be used as a non-sorbed calibrating gas, then $K(M / T)^{\frac{1}{2}}$ must be a constant as predicted by equation (2.5) for pure gas phase knudsen flow. The presence of adsorption and flow of the mobile adsorbed phase leads to an increase in K and consequently in $K(M / T)^{\frac{1}{2}}$, which is more pronounced at lower temperatures ie at greater adsorption. Figure 5.3 shows $K(M / T)^{\frac{1}{2}}$ versus T for helium as weli as for the hydrocarbons. It will be seen that for helium, $K(M / T)^{\frac{1}{2}}$ is substantially constant, whereas for all the hydrocarbons adsorption and surface flow occur since $K(M / T)^{\frac{1}{2}}$ increases with decreasing temperature, the deviation being more pronounced for the larger molecules.

Careful examination of the helium results shows a very slight increase in $K(M / T)^{\frac{1}{2}}$ with temperature (table 5.1). From a logrithmic plot

Figure 5.7 Mean free paths, λ, as a function of pressure at 308.15 K
K was found to be proportional to $\mathrm{T}^{0.57}$. This behaviour is similar to that found by Ash, Barrer and Lowson (1970) and the effect is in the opposite direction to that expected of surface flow due to adsorption ie $\left.K^{(} M / T\right)^{\frac{1}{2}}$ is found to increase with temperature. Consequently it was concluded that no adsorption or surface flow of helium occurs. In subsequent evaluations of K_{g}, the K^{He} values used were 'smoothed' ones obtained from a plot of K versus $\mathrm{T}^{\frac{1}{2}}$ or $\log K$ versus $\log T$ evaluated by a statistical least mean squares analysis. Both approaches gave the same smoothed values, $\langle K>$ in table 5.1.

TABLE 5.1
K and $K(M / T)^{\frac{1}{2}}$ for He Zium

T/K	308.15	320.65	333.15	343.15	353.15	363.15	373.15	393.15
$10^{6} \frac{K}{m^{2} \mathrm{~s}^{-1}}$	1.611_{1}	1.641	$1.68{ }_{1}$	1.707	1.744	${ }^{1.769}$	1.797	1.84
$\frac{10^{7} K^{\frac{1}{2}} \mathrm{~T}^{-\frac{1}{2}}}{\mathrm{~g}^{\frac{1}{2}} \mathrm{~m}^{2} \mathrm{~s}^{-1} \mathrm{~mol}^{-\frac{1}{2}} \mathrm{~K}^{-\frac{1}{2}}}$	$1.83{ }_{5}$	$1.83{ }_{3}$	$1.84{ }_{2}$	1.843	$1.85{ }_{6}$	1.857	1.86_{1}	1.86
$10^{6} \quad \frac{\langle K\rangle}{\mathrm{m}^{2} \mathrm{~s}^{-1}}$	${ }^{1.60} 8$	1.646	$1.68{ }_{2}$	$1.71{ }_{1}$	1.739	1.767	1.795	1.85

Sandler (1972a) proposed that slight deviations of helium from the Knudsen permeability model could be attributed to the neglect by that model of any interaction between an impinging gas molecule and the surface, where rigid sphere collision was assumed. The interaction will modify the scattering pattern which in turn will vary with the kinetic energy of the impinging molecule ie with temperature. Using the Lennard-Jones 6-12 potential for interactions between atoms and the Dusty Gas Theory expression for K, Sandler derived the temperature dependence of K given by equation (5.5)

$$
\begin{equation*}
K=C_{1} \frac{T^{7 / 6}}{S+T^{1 / 2}} \tag{5.5}
\end{equation*}
$$

where S is a generalised Sutherland constant and C_{1} is a proportionality constant.

A plot of $\mathrm{T}^{7 / 6} / \mathrm{K}$ versus $\mathrm{T}^{1 / 2}$ was made and proved to be a good straight line. From the slope and intercept of this line C_{1} war. calculated as $2.94_{4} \times 10^{-8} \mathrm{~m}^{2} \mathrm{~s}^{-1} \mathrm{~K}^{-4 / 6}$ and S as $-2.9 \mathrm{~K}^{1 / 2}$. Interpolated values of K were identical with those given in table 5.1.

5.3 HYDROCARBON PERMEABILITY DATA

Experimental permeability results obtained for the hydrocarbons are tabulated in Appendices D and E. Selected results are also shown in figures 5.2 to 5.6 , demonstrating the dependence of L and K on membrane temperature and on ingoing pressure, p_{o}. In figures 5.4 to 5.6 the curves for $\mathrm{C}_{3} \mathrm{H}_{8}$ and $\mathrm{n}^{-\mathrm{C}_{4}}{ }^{\mathrm{H}} 10$ are based on subsequent experimental work carried out by Dr A V J Edge of the Physical Chemistry Laboratories, Imperial College. He used the same experimental apparatus but made measurements down to 1 cmHg and up to 60 cmHg . The resulte of the present work coincide with his findings and provide the justification for the curves drawn, whereas based solely on the results of this investigation less extensive lines could be drawn.

From Appendix E it will be observed that the surface flow component of permeability, K_{S}, ranges fror being comparable to the theoretical gas phase permeability, $\mathrm{K}_{\mathrm{g}},\left(\mathrm{CH}_{4}\right.$ and $\left.\mathrm{C}_{2} \mathrm{H}_{6}\right)$ to being an order of magnitude greater (n-butane at 308.15 K). The ratio of surface flux to gas phase flux is represented by $K_{\mathrm{s}} / K_{\mathrm{g}}$ and is tavulated in Appendix E .
5.3.1 Temperature dependence of L and K

Both L and K are affected by temperature, diminishing with increasing membrane temperature (figures 5.2 and 5.3). At constant temperature and pressure they also depend on the adsorbate, increasing very rapidly with the molecular weight of the species. For the weakly
sorbed gases, CH_{4} and $\mathrm{C}_{2} \mathrm{H}_{6}$, the percentage fall in L from 308.15 K to 393.15 K is much larger than that in K, indicating perhaps a greater temperature sensitivity of L than K. However, for $C_{3}{ }^{H} 8$ and, more especially, $\mathrm{n}^{-\mathrm{C}_{4}} \mathrm{H}_{10}$, the temperature dependence is much greater, both K and L encountering a fall in magnitude of $50-70 \%$ between 308.15 K and 393.15 K .

The time-lag, L, arises because of the finite time required for gas to permeate through the membrane. When gas is first admitted to the membrane the pores are free of adsorbate: Hence the initial flux of gas is used up in filling the pore space, including dead-end pores, and establishing adsorption equilibrium with the surface. At higher temperatures the diffusing gas molecules will be more mobile and have a higher kinetic energy. Less gas will also be required to establish sorption equilibrium and hence a reduction in L can be expected. This has been observed in this work and elsewhere (Clint, 1966; Dolphin, 1971). For a Knudsen gas $K(M / T)^{\frac{1}{2}}$ should be constant and K would be expected to increase slowly with temperature. As figure 5.3 shows $K(M / T)^{\frac{1}{2}}$ is always greater than the helium value, hence for all the hydrocarbons studied some sorbed phase flow occurs, the magnitude of which increases with decreasing temperature. This temperature dependence of K is entirely due to the surface flow component, K_{s}, and reflects the influence of temperature on sorption equilibrium as founc in the isotherm measurements. At higher temperatures there will be a lower adsorbate concentration on the membrane surface and thus the K_{s} component, due to transport by hopping of adsorbed molecules, will be reduced.

5.3.2 Pressure dependence of L and K

Figures 5.4 and 5.5 show the pressure variation of L and K, where observed, in the range 5 to 20 cmH , Both parameters gave similar behaviour and the following general observations can be made.

No significant change in K or L was observed for the slightly sorbed gases, CH_{4} and $\mathrm{C}_{2} \mathrm{H}_{6}$, where sorption is within the Henry law range. The constancy of K also indicates the absence of any viscous flow. At higher pressures propane appears to show a slight decrease in both K and L at 308.15 K (this observation being reinforced by Dr Edge's measurements) but at higher temperatures variations in K and L were too small to ascribe any significance to then.

Horiguchi, Hudgins and Silveston (1971) investigated diffusion in the $\mathrm{C}_{2} \mathrm{H}_{6}$ /Graphon system. At $50^{\circ} \mathrm{C} K_{\mathrm{s}}$ was substantially constant up to 30 cmHg but at $25^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ a slight but noticeable decrease in K_{s} with increasing pressure was observed. At $0^{\circ} \mathrm{C} K_{\mathrm{s}}$ decreased linearly by 22% when the mean pressure was increased from 0 to 70 cmilg. The limiting values of K_{s} at zero pressure were found to be $2.10 \times 10^{-6}, 1.45 \times 10^{-6}$ and $1.07 \times 10^{-6} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ at 0,25 and $50^{\circ} \mathrm{C}$ respectively. That no significant pressure dependence of K_{s} at 308.15 K was observed in this work is compatible with Horiguchi's work as here we investigated a change in mean pressure only from 5 to 10 cmHg which would give an extremely small change in K_{s}.
n-Butane, however, exhibits a marked increase in K and L at diminishing pressure, tending to a flat maximum close to $p=0$. This effert is most noticeable at lower temperatures (figure 5.6) and could not be observed at 393.15 K . Dr Edge has found similar behaviour with iso-butane and also with propane at a lower temperature (273.15K) while Horiguchi observed this behaviour with propylene at 273.15 and 298.15K. Ash, Barrer and Sharma (1976) in a study of hydrocarbon flow between 195 and 373 K through a Carbolac membrane, obtained permeabilities for $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{3} \mathrm{H}_{8}, \mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$ and neo-C C_{5}, which were found to decrease with increasing equilibrium uptake and hence with increasing pressure. For the more weakly sorbed CH_{4}, K was independent of uptake.

The behaviour of I can be understood by considering the adsorption isotherms. Within the Henry law range equal pressure increments give rise to equal increments in the amount of gas adsorbed and so L might be expected to be independent of p. This would correspond with low pressures and high temperatures. Outside the Henry law range, adsorbents with isotherms having curvature towards the p-axis (as encountered in this work) will require progressively less adsorbate, per unit pressure increment, until the isotherm flattens out close to monolayer coverage. Thus in regions of isotherm curvature, less sorbate is required to establish equilibrium with the membrane surface than would be required if the Henry law was obeyed, and hence L decreases.

The pronounced pressure dependence of the n-butane permeability was an unexpected result in this work. From the magnitude and temperature dependence of K we have already ascertained that a substantial part of K is due to surface flow. It is again this component, K_{s}, which is responsible for the pressure dependence. Any pressure dependence of K_{g} is more likely to lead to an increase in K owing to the onset of Poiseuilie and conduction flow at higher pressures as predicted by Weber (equation 2.6). It is conceivable that K_{g} could be reduced or eliminated completely by the presence of extensive adsorption causing pore blockage in the region of pore constrictions within the membrane. However n-butane at 308.18 K shows a 29.6% drop in K between 5.1_{8} and $18.2_{1} \mathrm{cmHg}$. Since the theocetical value of K_{g} represents only 6.6% of K at the initial pressure, then it is clear that even complete blockage cannot explain all this fall in K. Ash et al (1976) investigated flow of a binary gas mixture (helium and a hydrocarbon) through a Carbolac membrane. They found that the membrane was very substantially blocked to helium flow as sorption of the hydrocarbon approached monolayer coverage.

However, permeability here is defined as the molar flux per unit
cross-section per unit gradient in gas phase concentration, c_{g}^{\prime}. A permeability could equally well be defined in terms of a gradient in surface concentration, c_{s}^{\prime}, or total adsorbate concentration, c $\left(=A c_{s}^{\prime}+\varepsilon C_{g}^{\prime}\right)$.

Figure 5.8 demonstrates the dependence of flux, J, on the concentrations $c_{g}^{\prime}, c_{s}^{\prime}$ and c, all at $x=0$, for propane and n-butane at $308.15 \mathrm{~K} . \mathrm{CH}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{6}$, obeying the Henry law, showed a linear dependence on concentration and so are not plotted here. It can be seen that departure of J from linearity is very slight for $\mathrm{C}_{3} \mathrm{H}_{8}$. \quad n-Butane on the other hand, whilst showing a decrease in $\mathrm{d} J / \mathrm{dc}_{\mathrm{g}}^{\prime}$ with increasing c_{g}^{\prime}, exhibits a pronounced increase in $\mathrm{d} J / \mathrm{dc}_{\mathrm{s}}^{\prime}$ and $\mathrm{d} \tilde{J} / \mathrm{dc}$ with increasing c_{s}^{\prime} and c. Thus a permeability defined in terms of c_{s}^{\prime} or c is found to increase rapidly with increasing surface coverage, whereas K in terms of a c_{g}^{\prime} gradient decreases. This behaviour can be related to the marked isotherm curvature in this pressure region, and the similarity between the dependence of J on c_{s}^{\prime} and on c is due to the major contribution by adsorbed molecules to c.

The permeability (K) defined by equation (5.6) has been evaluated for n-butane at 308.15 K and is shown in figure 5.9.

$$
\begin{equation*}
(K)^{\mathrm{s}}=\frac{J_{\mathrm{s}}}{i_{\mathrm{c}}} \cdot \frac{\ell}{\Delta c_{\mathrm{s}}^{\prime}} \tag{5.6}
\end{equation*}
$$

where

$$
J_{s}=J-K_{g} \frac{\Delta c_{g}^{\prime} \cdot A_{c}}{\ell}
$$

It will be observed that $(K)^{\mathrm{s}}$ is approximately coustant up to $\theta=0.3$, but then iacreases rapidly in an exponential fashion.

It is perhaps relevant at this stage to consider the mechanism by which surface diffusion occurs, (in section 2.1 .6 several mechanisms were discussed). Whilst no single mechanism can be universally applied,

Figure 5.8 Flux as a function of concentration at 308.15 K

Figure $5.9 \quad(K)^{\mathrm{s}}$ as a function of θ for n-butane at 308.15 K
it is thought that at low sorption ($0 \ll 1$) flow behaviour is best explained by a process of activated diffusion whereby transport occurs by a series of adsorption/desorption stsps. Under conditions of higher sorption, as monolayer coverage is approached and exceeded, the hydrodynamic mechanism prevails with flow of a 'condensed' film across the surface.

Table 5.2 gives values of θ at several temperatures and pressures derived from adsorption data (chapter 4). Adsorption for CH_{4} and $\mathrm{C}_{2} \mathrm{H}_{6}$ is clearly small and so the adsorbed layer will be very dilute. Activated diffusion will operate, diffusion being by a series of random jumps. Because of the diluteness of the film, there will be no hindrance to diffusion by neighbouring ad-atoms and the mean free path for ad-atom collisons (λ_{s}) will be much greater than the active site spacing. Thus in this dilute Henry law region suface flux will be proportional to the surface concentration gradient and hence proportional to the pressure gradient. Since K is flux per unit pressure gradient, then it will remain constant with respect to pressure as is observed with CH_{4} and $\mathrm{C}_{2} \mathrm{H}_{6}$.

TABLE 5.2
Fractional surface coverage at severai T and p

	θ Adsorbate K			
CH_{4}	308.15	0.0004	0.0038	0.0077
	393.15	0.0001	0.0012	0.0024
$\mathrm{C}_{2} \mathrm{H}_{6}$	308.15	0.0035	0.033	0.065
	393.15	0.0006	0.0065	0.013
$\mathrm{C}_{3}{ }^{\mathrm{H}} 8$	308.15	0.029	0.27	0.50
	320.65	0.020	0.18	0.35
	393.15	0.0037	0.035	0.072
$\mathrm{n}_{8} \mathrm{C}_{4} \mathrm{H}_{10}$	308.15	0.19	0.86	1.00
	373.15	0.024	0.21	0.38
	393.15	0.015	0.13	0.25

When adsorption approaching a monolayer occurs on the membrane surface (as was found here with n-butane at 308.15 K) the surface density of ad-atoms will be high, λ_{s} will be much smaller and few empty sites will be available to accommodate molecules migrating by a series of hops. Self encounters of migrating molecules will occur reducing surface mobility and transport by activated diffusion will be severely restricted. Thus a sharp drop in flux due to activated diffusion might be expected as the surface becomes filled and θ increases, although the activity correction and isotherm shape may mitigate the reduction in flux (Barrer and Jost, 1949).

However, as the monolayer is formed, it is likely that a hydrodynamic mechanism begins to take over, whereby a concerted flow of the first ad-layer occurs as a $2-$ dimensional liquid.

The behaviour of n-butane found here indicates that the pressure range 0 to 1.5 cmHg (or $\theta<0.3$) corresponds to a dilute film where K and $(K)^{\mathrm{S}}$ are approximately constant. Limiting values can be obtained as θ tends to zero. Above $5 \mathrm{cmHg} K$ falls corresponding to a curved section of the adsorption isotherm and (K) begins to rise. This latter effect must be due to formation of a loosly bound highly mobile layer. Since no sharp discontinuity in K is observed at $\theta=1$ then a gradual change in diffusive mechanism must take place from site hopping in a dilute film (θ very small) to 1 iquid-type diffusion i_{n} the first monolayer.

The sensitivity of the pressure dependence of K upon temperature (figure 5.6) can readily be rationalised in terms of site coverage. At higher temperatures θ, for a given pressure, becomes smaller (table 5.2) and so a higher pressure is required to observe a fall in K. Since the relative magnitude of K_{s} is smaller and isotherm curvature less pronounced, then the fall in K is less steep. Highor pressures than were used in this work must be employed to observe a significant fall in K at the
higher temperatures. However at such high pressures the condition $\lambda>10 d$ will begin to break down and Poiseuille flow could occur in the gas phase leadin n_{E} to an increase in K.

Throughout this discussion the gas pressure and surface concentration have been related through isotherm data using the ingoing pressure, P_{o}, as being characteristic of the entire membrane. Clearly some pressure profile must exist within the membrane between the faces $x=0$ and $x=\ell$, respectively at p_{0} and nearly zero pressure. In the Henry's law range the pressure will fall in a linear manner between these faces. However, one may enquire whether the choice of p_{c} to characterise the membrane is correct. $p_{0} / 2$ (the average pressure within the membrane) has been suggested by Weber (1954). The choice of P_{o} represents the most adverse condition, ie $i f \lambda>10 d$ for p_{o}, then this condition is valid within the entire membrane. The use of p_{0} is also suggested by analogy with the presence of bottlenecks. Since a narrow bottleneck can reduce flow through the entire membrane, then the region of greatest adsorption, causing greatest resistance to gas phase migration, will affect the flux throughout the membrane. Since this region corresponds to the ingoing surface, then p_{o} is a reasonable characteristic pressure.

Ash, Baker and Barrer (1967) have suggested that K remains independent of p so long as $d c_{g}^{\prime} / d x$ is constant with x, ie if a linear pressure gradient is maintained within the membrane. even if p_{o} lies outside the Henry law. This theory was tested in the folloving manner.

From the experimentally measured J values at various pressures a master p lot of J against $c(a t x=0)$ was constructed using isotherm data to evaluate c (the total concentration per unit volume of porous medium). This has been done in figure 5.8c. Vaìues of c as a function of $x / 8$ were then obtained when D is a function of concentration only using the relation:

$$
\begin{equation*}
\left(\frac{x}{e}\right)_{c}=\frac{J\left(c^{*}\right)-J(c)}{J\left(c^{*}\right)} \tag{5.7}
\end{equation*}
$$

where $J\left(c^{*}\right)$ is the flux corresponding to p_{o} and $J(c)$ is the interpolated flux at another value of p and $c\left(<c^{*}\right)$. Isotherm data weia then used to relate p to c and hence to x / h. Plots of pressure and total concentration profile within the membrane could then be constructed.

In this work profiles were virtually linear except for n-butane (figure 5.10) where significant deviations from linearity can be observed.

5.3.3 Correlation of K with other parameters

(i) Dolphin (1971) and Ash, Barrer, Clint, Dolphin and Murray (1973) demonstrated that inert gases and other slightly sorbed adsorbates gave smooth correlation curves when $K M^{\frac{1}{2}}$ (at constant temperature) was plotted against properties related to the condensability of the gas such as boiling point, T_{B}, and polarizability, α. The plot of $K M^{\frac{1}{2}}$ versus αT_{B} also proved to be a straight line in their work. In this study a smooth curve was obtained for each relationship, but the curves for these appreciably sorbed gases did not agree with those of Dolphin who used the same adsorbent. Also the αT_{B} plot was not a straight line. The least sorbed hydrocarbon, CH_{4}, did however fall on the correlation curves obtained by Dolphin.
(ii) Similar poor agreement was found when the data from this work were fitted to the plot of $K M^{\frac{1}{2}} T^{-\frac{1}{2}}$ versus k_{s} (Ash et al, 1973). Although methane came close to the reported curve, the points for $\mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{3} \mathrm{H}_{8}$ fell well below it; no k_{s} values were determined for $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$. This poor agreement could be due to :-
(a) the difficulty of obtaining k_{s} values for these hydrocarbons since the isotherms were appreciably curved except at very low uptakes where few data points were available.
(b) the increasing amount of surface flow (especially for $\mathrm{C}_{3} \mathrm{H}_{8}$)

Figure 5.10 Pressure and total concentration profiles
within the membrane for n-butane
and the departure from Henry's Law adsorption in the pressure range used.
(iii) Good correlations have been obtained between the product $K L$ and $A_{g} k_{s}$, and the straight line obtained agrees well with that reported for the inert gases by Ash et al (1973). There it was shown theoretically that $K L$ and k_{s} are related for gases sorbed according to the Henry law by:-

$$
\begin{equation*}
K L=\frac{1}{6} \ell^{2}\left[\left(\varepsilon-3 \varepsilon_{b}\right)+k_{s}\left(A-3 A_{b}\right)\right] \tag{2.30}
\end{equation*}
$$

where ε_{b} and A_{b} are the porosity and area associated with blind-pore character and $A=A_{g}(1-\varepsilon) \rho$. This correlation is shown in figure 5.11.
(iv) It is of interest to compare the permeability results of Graphon, a substantially energetically homogeneous carbon, with those of Carbolac, a carbon having a degree , of energetic heterogeneity. Some permeability data for $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{3} \mathrm{H}_{8}$ on Carbolac have been reported (Ash et al 1973) and are here compared with the results on Graphon.

Table 5.3 compares K_{s} and $K_{\mathrm{s}} / \mathrm{A}$ for the two carbons at 333.15 K . K_{s} values are several times greater on Graphon than on Carbolac and the extra flux generated per unit area of surface (as given by K_{s} / A) is at least an order of magnitude greater on Graphon. However K_{s} / K_{g} is greater on Carbolac because of the very much smaller gas phase permeability and greater sorption.

TABLE 5.3
K_{s} and $K_{\mathrm{s}} / \mathrm{A}$ for Graphon and Carbolac at 333.15 K

Figure $5.11 \quad K L$ as a function of $\mathrm{A}_{\mathrm{g}} \mathrm{k}_{\mathrm{s}}$

The smaller mobility of adsorbed atoms on a heterogeneous surface, Carbolac, compared with this mobility on a homogeneous surface could be due to the energetically sorbing sites on the Carbolac surface. These bind ad-atoms very strongly and retard progress of a molecule diffusing by a series of adsorption-desorption steps since a greater activation energy is required. Other factors, such as pore size and surface irregularities, are also involved. Gilliland et al (1974) and Horiguchi et al (1971) have also compared permabilities of energetically homogeneous and heterogeneous materials (Graphon and Vycor glass). They found K_{s} to be much greater for the homogeneous sorbent even though the membranes were of similar surface area, had a similar extent of adsorption and energy of activation for surface diffusion.

Onset of pressure dependence in K occurs more readily for Carbolac than Graphon, marked pressure dependence on Carbolac occurring for $\mathrm{C}_{3} \mathrm{H}_{8}$ at 320.65 K (compare with figure 5.5). This arises from the stronger sorption on Carbolac (owing to highly energetic surface sites), isotherms of. $\mathrm{C}_{3} \mathrm{H}_{8}$ having a high degree of curvature and departing from the Henry law.

5.4. DIFFUSION COEFFICIENTS

In chapter 2 the following diffusion coefficients for gas phase and surface phase flow in the steady-state were defined

$$
\begin{align*}
\mathrm{D}_{\mathrm{gs}} & =\frac{K_{g}}{\varepsilon}=\mathrm{D}_{\mathrm{gs}}^{\mathrm{He}}\left(\frac{\mathrm{M}_{\mathrm{He}}}{\mathrm{M}}\right)^{\frac{1}{2}} \\
\mathrm{D}_{\mathrm{ss}} & =\frac{K_{\mathrm{S}}}{\text { A. } \mathrm{k}_{\mathrm{s}}}
\end{align*}
$$

These coefficients are only valid within the Henry law range and rely on the values of K_{g} obtained for helium, used as a non-sorbed calibrating gas.

Diffusion coefficients, D_{g} and D_{s}, characteristic of the transient flow can be obtained from:

$$
\begin{equation*}
D_{g}^{\mathrm{He}}=\frac{\ell^{2}}{6 \mathrm{~L}_{\mathrm{He}}} ; \quad \mathrm{D}_{\mathrm{g}}=\mathrm{D}_{\mathrm{g}}^{\mathrm{He}}\left(\frac{\mathrm{M}_{\mathrm{He}}}{\mathrm{M}}\right)^{\frac{1}{2}} \tag{2.17}
\end{equation*}
$$

and $D_{s}=\frac{\ell^{2}}{6 A k_{s} / \varepsilon} \cdot\left[\frac{\left(1+A k_{s} / \varepsilon\right)}{L}-\frac{\left(M_{H e} / M\right)^{\frac{1}{2}}}{L_{H e}}\right]$
Both D_{g} and D_{s} depend on the accuracy of the time-lags for helium and the gas. Since the L_{He} obtained in this work were too small to be measured accurately, the $L_{H e}$ used in calculating D_{g} and D_{s} were those obtained by Dolphin (1971) using the same membrane but a different experimental rig where he took great care to measure L_{He} as accurately as possible. The $K^{\text {He }}$ values were those of this deternination.

Comparison can be made with $\mathrm{D}_{\mathrm{g}}^{\mathrm{cy1}}$, the diffusion coefficient for gas phase, Knudsen flow for a cylindrical capillary model.

$$
\begin{equation*}
\mathrm{D}_{\mathrm{g}}^{\mathrm{cy1}}=\frac{8}{3} \frac{\varepsilon}{\mathrm{~A}}\left(\frac{2 \mathrm{RT}}{\pi M}\right)^{\frac{1}{2}} \tag{2.7}
\end{equation*}
$$

The structure factors K_{g} and K_{gs}, equation (2.20), then give an indication of the closeness of D for gas phase flow in the real, tortuous medium to D in the straight cylindrical channel having ε / A equal to ε / A in the actual medit:m:

$$
\begin{equation*}
{ }^{\mathrm{K}} \mathrm{~g}=\frac{\mathrm{D}_{\mathrm{g}}}{\mathrm{D}_{\mathrm{g}}^{\mathrm{cy1}}} \quad ; \quad \mathrm{K}_{\mathrm{gs}}=\frac{\mathrm{D}_{\mathrm{gs}}}{\mathrm{D}_{\mathrm{g}}^{\mathrm{cy1}}} \tag{2.20}
\end{equation*}
$$

The diffusion coefficients are given in table $5.4 ; \mathrm{K}_{\mathrm{g}}$ was found to be 0.73 and $k_{g s}$ was 0.52. Slight differences in D^{\prime} s for helium from those reported by Ash et $a 1,1973$ arose from the different value of A_{g} (and hence A) obtained in this work. It did not prove possible to obtain k_{s} values for n-butane and so no D_{s} or $D_{s s}$ values could be obtained by this analysis.

TABLE 5.4
Diffusion coefficients in $\mathrm{m}^{2} \mathrm{~s}^{-1}$

Gas	Property	T/K							
		308.15	320.6	333.1	343.1	353.15	363.1	373.1	393.15
He	$10^{6} \mathrm{D}_{\mathrm{g}}^{\mathrm{cyl}}$	7.35	7.50	7.65	7.76	7.87	7.98	8.09	8.31
	$10^{6} \mathrm{D}_{\mathrm{g}}$	5.40	5.51	5.61	5.69	5.78	5.86	5.94	6.10
	$10^{6} \mathrm{D} \mathrm{gs}$	3.80	3.89	3.98	4.05	4.11	4.18	4.24	4.37
CH_{4}	$10^{6} \mathrm{~L}_{\mathrm{g}}^{\mathrm{cyl}}$	3.67	3.75	3.82	3.88	3.93	3.99	4.04	4.15
	$10^{6} \mathrm{D} \mathrm{g}$	2.70	2.75	2.80	2.84	2.89	2.93	2.97	3.04
	$10^{6} \mathrm{D} \mathrm{gs}$	1.90	1.94	1.99	2.02	2.05	2.09	2.12	2.19
	$10^{6} \mathrm{D}$	1. 39	1.63	1.67	1.81	2.00	2.18	2.15	2.89
	$10^{6} \mathrm{D}$ ss	1.08	1.16	1.29	1.37	1.47	1.60	1.62	1.74
$\mathrm{C}_{2} \mathrm{II}_{6}$	$10^{6} \mathrm{D}_{\mathrm{g}}^{\mathrm{cyl}}$	2.68	2.74	2.79	2.83	2.87	2.91	2.95	3.03
	$10^{6} \mathrm{D} \mathrm{g}$	1.97	2.01	2.05	2.08	2.11	2.14	2.17	2.22
	$10^{6} \mathrm{D}$ gs	1.39	1.42	1.45	1.48	1.50	1.52	1.55	1.60
	$10^{7} \mathrm{D}$	2.78	3.09	3.43	3.87	4.30	4.62	5.09	5.78
	$10^{7} \mathrm{D}_{\text {ss }}$	2.24	2.55	2.96	3.26	3.58 -	3.86	4.26	5.13
$\mathrm{C}_{3} \mathrm{H}_{8}$	$10^{6} \mathrm{D}_{\mathrm{g}}^{\mathrm{cyl}}$	2.22	2.26	2. 30	2.34	2.37	2.41	2.44	2.50
	$10^{6} \mathrm{D} \mathrm{g}$	1.63	1.66	1.69	1.72	1.74	1.77	1.79	1.84
	$10^{6} \mathrm{D}$ gs	1.15	1.17	1.20	1.22	1.24	1.26	1.28	1.32
	$10^{7} \mathrm{D}$	1.07	1.23	1.45	1.66	1.80	2.07	2.29	2.64
	$10^{7} \mathrm{D}_{\text {ss }}$	0.898	1.07	1.24	1.40	1.51	1.72	1.85	2.27
$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$	$10^{6} \mathrm{D}_{\mathrm{g}}^{\mathrm{cyl}}$	1.93	1.97	2.01	2.04	2.07	2.10	2.12	2.18
	$\begin{aligned} & 10^{6} \mathrm{D}_{\mathrm{g}}^{\mathrm{g}} \\ & 10^{6} \mathrm{D}_{\mathrm{gs}} \end{aligned}$	1.42	1.45	1.47	1.49	1.52	1.54	1.56	1.60
		0.997	1.02	1.04	1.06	1.08	1.10	1.11	1.15

All diffusion coefficients are found to increase with increasing temperature. This can readily be ascribed to increasing mobility of ad-atoms when they possess greater thermal energy. As would be expected D is found to decrease with increasing molecular size. The structure factors are both less than unity implying that tortuosity and bottlenecks play an important part in regulating the values of the diffusion coefficients.

Some comparisons with literature values can be made. Horiguchi et al (1971) obtained limiting $D_{s s}$ of $2.8 \times 10^{-7}, 4.1 \times 10^{-7}$ and $5.1 \times 10^{-7} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ at $273.15 \mathrm{~K}, 298.15 \mathrm{~K}$ and 323.15 K respectively for ethane on a Graphon membrane ($A_{c}=0.709 \mathrm{~cm}^{2}, \ell=1.47 \mathrm{~cm}, \varepsilon=0.51, \mathrm{~K}_{\mathrm{gs}}=0.31$). From table 5.4 it would appear that these values are approximately twice as great as would be expected from this work. Horiguchi's work however covered the mean pressure range 5 to 700 Torr and in his calculation of $D_{s s}$ (expressed as $D_{s s} \varepsilon / k_{g s}$) used the isotherm slope rather than the limiting slope, k_{s}. He also found a slight pressure dependence of D_{ss} even at $50^{\circ} \mathrm{C}$.

5.4.1 Temperature dependence of D_{s} and $D_{i s}$

In chapter 2 we saw that energies of activation for surface diffusion in the transient and the steady-state can be obtained from Arrhenius plots in accordance with:

$$
\begin{equation*}
D_{s}=D_{0} \exp \left(-E_{s} / R T\right) ; D_{s s}=D_{o s} \exp \left(-E_{s s} / R T\right) \tag{2.21}
\end{equation*}
$$

Plots of $\log _{10} D_{S}$ and $\operatorname{lof}_{10} D_{S S}$ versus T^{-1} can therefore yield E_{S} and $E_{s s}$ from the slope and D_{o} and $D_{o s}$ from the intercept. Table 5.5 presents activation energies and standard diffusion coefficients obtained in this way. The energy of adsorption for each adsorbate is also given (chapter 4).

TABLE 5.5
Arrhenius activation energies and pre-exponential factors

	$\frac{E_{s}}{\mathrm{~kJ} \mathrm{~mol}^{-1}}$	$\frac{\mathrm{E}_{\mathrm{ss}}}{\mathrm{kJ} \mathrm{mol}^{-1}}$	$\frac{10^{6} \mathrm{D}_{\mathrm{o}}}{\mathrm{m}^{2} \mathrm{~s}^{-1}}$	$\frac{10^{6} \mathrm{D}_{\mathrm{os}}}{\mathrm{m}^{2} \mathrm{~s}^{-1}}$	$\frac{-\Delta \mathrm{E}^{1}}{\mathrm{~kJ} \mathrm{~mol}}$
CH_{4}	7.3	6.0	23.3	11.2	10.7
$\mathrm{C}_{2} \mathrm{H}_{6}$	9.2	9.7	9.9	9.8	17.1
$\mathrm{C}_{3} \mathrm{H}_{8}$	11.6	10.9	9.5	6.1_{7}	21.7

It can be seen that for all adsorbates the activation energy is at least twice the thermai energy available (RT) but less than $-\Delta \mathrm{E}$ '. The surface molecules are therefore quite strongly bound and activated diffusion must take place for surface phase migration. Adsorption does not lead to two-dimensional gas behaviour, which would imply temperature insensitive diffusion coefficients, and sorption is too sinall for the hydrodynamic flow model of Babbitt $(1950,1951)$ to operate.

Recent papers by Horiguchi (1971) and Gilliland (1974) have examined the hydrodynamic model and the activated diffusion model for surface diffusion using published experimental data for a variety of adsorbate/ adsorbent systems. Only for strong adsorption ($\theta \geqslant 1$) could agreement be obtained between experimental results and the hydrodynamic model. However the activated diffusion model (equation (2.21)) gave a reasonable fit of the ezperimental data where $\theta<1$.

The activation energy $E_{s s}$ was interpreted as $b q$ where q is a heat of adsorprion. b was found to be about $\frac{1}{2}$ for most gases on carbon blacks (Sladek (1974) found 0.45 and Horiguchi 0.57) whe: correlated against the isosteric heat. In this investigation the correlation gave bas 0.44, 0.47 and 0.44 for $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{3} \mathrm{H}_{8}$ respectively. Both Horiguchi and Gilliland assumed that the correlation

$$
\begin{equation*}
D_{s s}=D_{o s} \exp \left(-\frac{b q}{\mathrm{KI}^{I}}\right) \tag{5.8}
\end{equation*}
$$

was valid for all gases on a given surface ie that $D_{o s}$ and b are
universal constants. In this work it was fourd that b was approximately constant but that $D_{\text {os }}$ varied considerably in the $q_{s t}$ correlation. However if ΔE^{\prime} was used in the correlation, a swooth curve was obtained When $\log D_{s s}$ or $\log D_{s}$ was plotted against $-\Delta E^{\prime} / R T$ (figure 5.12) for methane, ethane and propane.

5.4.2 Concentration dependence of D

In cases where the Henry law was not obeyed, even in the very low pressure region of the isotherm, the analysis which leads to $\mathrm{D}_{\mathrm{ss}}=K_{\mathrm{s}} / \mathrm{Ak}$ is no longer valid. It can be shown that

$$
\begin{equation*}
K=\varepsilon\left(\frac{\ell}{\Delta c_{g}}\right)\left[-D_{s s}\left(\frac{\partial c_{s}}{\partial c_{g}}\right)_{T}-D_{g s}\right]\left(\frac{\partial c_{g}}{\partial x}\right)_{T} \tag{5.9}
\end{equation*}
$$

and assuming a linear gas phase concentration gradient

$$
\begin{equation*}
\frac{K}{\varepsilon}=D_{\mathrm{Ss}}\left(\frac{\partial c_{\mathrm{S}}}{\partial c_{\mathrm{g}}}\right)_{\mathrm{T}}+\frac{K^{\mathrm{He}}}{\varepsilon}\left(\frac{\mathrm{M}_{\mathrm{He}}}{\mathrm{M}}\right)^{\frac{1}{2}} \tag{5.10}
\end{equation*}
$$

Now $\left(\partial_{c_{s}} / \partial c_{g}\right)$ can be obtained from isotherm data and so we get

$$
\begin{equation*}
\ddot{u}_{s s}=\frac{273.15}{\rho(1-\varepsilon) 76} \frac{\left[K-K^{H e}\left(M_{H e} / \mathrm{M}\right)^{\frac{1}{2}}\right]}{T}\left(\frac{\partial_{p}}{\partial v}\right)_{\mathrm{T}} \tag{5.11}
\end{equation*}
$$

$D_{\text {ss }}$ can now be determined as a function of v at each temperature for which K, K^{He} and isotherm data are known. This analysis can also allow for any variation in K with pressure (and v) by interpolation of K from a plot of K versus v.

It has been pointed out (Ash et al, 1973) that for permeability data where extensive adsorption occurs, partial or total blockage of pore space might take place resulting in a complete absence of a K_{g} component. Hence $K_{s}\left(=K-K^{\mathrm{He}}\left(M_{H e} / M\right)^{\frac{1}{2}}\right)$ in equation (5.11) should be replaced by K when complete gas phase blockage occurs. Internal calibration with helium in the presence of the adsorbed gas should be carried out to estimate the precise degree of blockage, but in the absence of such data

Figure 5.12 . Correlation of D_{s} and $D_{s s}$ with $-\Delta E^{\prime} / R T$
maximum and minimum values of D_{ss} can be obtained by using K and K_{s} respectively. In practice, owing to the large value of $K_{\mathrm{s}} / K_{\mathrm{g}}$ for gases. where this analysis is necessary, maximum and minimum values differ by only 5-10\%.

The above analysis was carried out for n-butane at 308.15 K , taking account of the variation of K with v and with calculation of maximum and minimum $D_{s s}$ values. The resulting curves of $D_{s s}$ versus v are displayed in figure 5.13. Permeability data at 373.15 and 393.15 K were also analysed using K_{s} and taking account of the very slight pressure dependence of $D_{s s}$ (figure 5.14). As θ was less than 0.4 , no blockage was thought to occur, and so K_{s} was used in equation (5.11). Analysis at intermediate temperatures was not possible as isotherm data was not available.

A similar analysis was attempted for propane. However above 320.65 K the isotherms were nearly straight lines in the pressure region concerned so that accurate values of changes in the tangential slope were difficult to obtain and the slopes were nearly constant. $D_{\text {ss }}$ versus v at 308.15 and 320.65 K is shown in figure 5.14 ; no pressure dependence of K was detected and as θ was less than $0.5, K_{s}$ was used.

Limiting values of $D_{S S}$ at $v=0$ were obtained by extrapolation in figures 5.13 and 5.14, and are quoted in table 5.6. The values obtained for propane were found to be higher than those obtained from the limiting Henry law coefficient, the discrepancy being caused by a relatively sharp isothera curvature at low pressure. Limiting values obtained for n-butane required the use of permeability data obtained by Dr Edge to calculate $D_{s s}$ at low values of v (and hence p).

Figure $5.13 \quad \mathrm{D}_{\mathrm{ss}}$ as a function of adsorption uptake for n-buiane

Figure 5.14

TABLE 5.6
Limiting values of $10^{7} \mathrm{D}$ ss $\left(\mathrm{m}^{2} \mathrm{~s}^{-1}\right)$

		T / K		
	308.15	320.65	373.15	393.15
$\mathrm{C}_{3} \mathrm{H}_{8}$	0.99	1.17	-	-
$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$	0.45	-	1.10	1.30

In general the $D_{s s}$ versus v curve is of a near exponential form implying increased surface diffusion at greater surface concentration. At low θ the adsorbed species are strongly bound but become much more mobile as θ approaches unity. This behaviour is more pronounced on a heterogeneous surface where mobility increases very rapidly as the weaker adsorption sites become occupied (eg propane on Carbolac, Ash et al 1973). The behaviour found in figures 5.13 and 5.14 , using equation (5.11), arises largely because the isotherm slope decreases with increasing v. When monolayer coverage is approached the isotherm might be expected to flatten out, possibly exhibiting a broad point of inflection and having a sigmoidal shape. If this were the case, then (dp/dv) would reach a high constant value in the flat inflection region before decreasing sharply as a second molecular layer begins to form. $D_{\text {ss }}$ would then exhibit a sharp maximum close to $\theta=1$ when plotted against v.

Ross and Good (1956) studied the surface diffusion of n-butane on a Graphon membrane $(\varepsilon=0.54)$ at 303.15 and 314.85 K at surface coverages up to $\theta=1.3$. They found a steady increase in $D_{s s}$, as observed here, reaching a maximum value at $\theta=1$ after which $D_{S S}$ became constant or had a slight tendency to decrease. $\mathrm{D}_{\text {s }}$ values obtained by Ross and Good are illustrated in figure 5.13 and give excellent agreement with the diffusion coefficients obtained in this work.

As in the previous section equation (5.8) can be used to correlate $D_{s s}$ and $q_{s t}^{\prime}$ by plcting $\log D_{s s}$ against $q_{s t}^{\prime} / R T$ but now, because of the
variation of both $D_{s s}$ and $q_{s t}^{\prime}$ with θ or p, a set of data points occurs at each temperature. Gilliland et al (1974) did this for CO_{2} and SO_{2} on Vycor, as well as correlating the data of Pupe (1961) for SO_{2} on Carbolac and of Carman and Raal (1951a) for $\mathrm{CF}_{2} \mathrm{Cl}_{2}$ on silica. Good linear relationships were obtained.

The adsorbents described by Gilliland were energetically heterogeneous and consequently $q_{s t}^{\prime}$ decreased markedly with increasing θ. When a more homogeneous adsorbent is used, as in this work, $q_{s t}^{\prime}$ is approximately constant, increasing slightly at high θ where lateral interactions are possible, and the correlation is less good. Figare 5.15 demonstrates this - a series of curves, approximately perpendicular to the main $\log D_{s s}$ versus $q_{s t}^{\prime} / R T$ line, occurs. This increase in $D_{s s}$ at constant temperature reflects the dependence of $D_{o s}$ on θ. On a heterogeneous sorbent this behaviour is masked by the simultaneous decrease in $q_{s t}^{\prime}$ at larger θ which compensates for the increase in $D_{s s}$ and enables a straight line to be drawn through the experimental points. Horiguchi attempted to correlate a very wide range of published data in this way, including $\mathrm{C}_{2} \mathrm{H}_{6}$ on a Graphon membrane at $273.15,298.15$ and 323.15 K . He found similar behaviour to that shown in figure 5.15.

Several models have been proposed to allew for a gradual change in flow mechanism from activated diffusion (valid at low coverage where $D_{\text {ss }}$ is independent of θ) to one where $D_{s s}$ varies with θ as the monolayer is approached.

Barrer and Jost (1949) showed how $D_{\text {ss }}$ could remain independent of θ at relatively high surface concentrations. They obtained an expression for $D_{s s}$ as :

$$
\begin{equation*}
D_{s s}=D_{o s}(1-\theta) \cdot \frac{d \ln p}{d \ln \theta} \tag{5.12}
\end{equation*}
$$

$D_{\text {os }}$ is the diffusion coefficient at $\theta=0$ and $(1-\theta)$ is the probability that there is a vacant site available for the diffusing molecule to

Figure 5.15 Correlation of $D_{s s}$ with $q_{s t}^{\prime} /$ RT for n-butane
jump into. dlnp/dlnθ is the activity correction which allows for the effect of the sorption isotherm on surface concentration. For a Langmuir-type isotherm $d \operatorname{lnp} / d \ln \theta=1 /(1-0)$ hence the two opposing effects of surface concentration and isotherm shape cancel out and $D_{s s}$ is predicted to be constant.

In this work a marked increase in $D_{s s}$ occurs as $\theta \rightarrow 1$. Higashi et al (1964) attempted to explain this type of behaviour using the random walk diffusive model. He assumed that when a diffusing molecule encountered an occupied site it immediately bounced off and continued its journey until it found an unoccupied site where it was re-adsorbed. Thus, in this model, the effective mean jump distance appears to be lengthened by the presence of neighbouring ad-atoms and the diffusion coefficient is thereby increased. He obtained the relation (cf equation (5.8)):

$$
\begin{equation*}
D_{s s}=\frac{D_{O S}}{1-\theta} \exp \left(-\frac{E_{S S}}{R T}\right) \tag{5.13}
\end{equation*}
$$

$D_{o s}$ is independent of θ.
Horiguch: fitted this equation to literature data on Graphon and found fair agreement up to $\theta=0.6$. At higher values of $\theta, D_{s s}$ is predicted to be larger than the experimental values, and the relationship clearly breaks down at $\theta=1$, since $D_{s s}$ is then predicted to become infinite.

Figure 5.16 tests equation (5.13) for propane and butane when θ dependence of $D_{s s}$ was found. In all cases the Higashi model provided for a more rapid increase in $D_{s s}$ with θ than was found by experiment.

Yang et al (1973) suggested a modification to allow for interaction between a sorbed molecule and an impinging one and for a finite residence time of the molecule on an occupied site. Their suggestion replaces 1 - θ in equation (5.13) by :

$$
\begin{equation*}
1-\theta+\frac{v_{1}}{v_{2}} \cdot \exp \left[\frac{-\left(\Delta \mathrm{E}_{1}-\Delta \mathrm{E}_{2}\right)}{\mathrm{RT}}\right] \tag{5.14}
\end{equation*}
$$

where ΔE is an activation energy and v is the oscillation frequoncy of an adsorbed molecule. Subscripts 1 and 2 refer to nolecules adsorbed on unoccupied and occupied sites respectively. This relation provides for finite values of $D_{S S} / D_{\text {os }}$ at $\theta=1$.

Using $\Delta \mathrm{E}_{1}-\Delta \mathrm{E}_{2}=8.8 \mathrm{~kJ} / \mathrm{mol}$ and $v_{1} / v_{2}=1.5(314.83 \mathrm{~K})$ or
1.0 (303.15K) Yang fitted the n-butane/Graphon data of Ross and Good. Reasonable agreement appears to be obtained, but this model merely shifts the point at which $D_{s s}$ becomes infinite to a slightly larger value of θ, which will be both gas and temperature dependent. No attempt at allowing for an alternative surface diffusion mechanism above $\theta=1$ was made.

In figure 5.16 a the theoretical curves of the Higashi model and the Yang modification are shown, the latter using $\Delta \mathrm{E}_{1}-\Delta \mathrm{E}_{2}=8.8 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$ and $v_{1} / v_{2}=1.0$. Both models correctly predict the general shape of the $\mathrm{D}_{\mathrm{ss}} / \mathrm{D}_{\text {os }}$ versus θ curve for n -butane at 308.15 K and a good fit is obtained between $\theta=0.6$ and $\theta=0.9$. However, both models break down above $\theta=0.92$ and at low θ there is a discrepancy between theoretical curve and experimental data which is larger at lower temperatures (figure 5.16b).

CHAPTER 6

THERMO-OSMOTIC TRANSPORT

6.1 EXPERIMENTAL RESULTS

The thermo-osmotic investigations employed a membrane of similar shape and porosity to that used in the isothermal fiow studies, but a temperature gradient was maintained between the membrane faces.

The membrane was exposed to gas at a constant pressure and when sorption equilibrium had taken place then the gas reservoirs either side of the membrane were isolated. Since the condition $\lambda>10 \mathrm{~d}$ was met, then some thermo-osmotic transport occurred and a pressure difference began to build up between the membrane faces.

From the initial build-up of pressure an isodaric permeability was determined. The approach to a constant pressure gradient was followed and from the steady-state pressure ratio, a heat of transport was determined.

6.1.1 Preliminary work concerning thermocouples

The previous menbrane design used in these laboratories (Clint, 1966; Dolphin, 1971) employed thermocouples set into the face of the restraining plungers to record face temperatures, T_{0} and T_{ℓ}. Since these plungers were in light contact with the plug, an insulating layer of gas probably existed between thermocouple junction and plug face.

Clint investigater the effect of vrying the gas pressure on the response of these thermocouples. Whilst thermocouple output remained constant at pressures in excess of 10 cmHg , at low pressures (ca. 1 cmHg) T_{0} (the hot face temperature) increased significantly and T_{ℓ} (the cold face temperature) fell. This behaviour was attributed to a reduction in the gas thermal conductivity at low pressures.

The plug assembly in this work (Graphon membrane 0 , see section 3.6.1) was designed to reduce, and to allow estimates of,
the uncertainties in T_{o} and T_{ℓ} by (i) using thermocouples with hot junctions actually pressing into the plug faces and (ii) recording any temperature variation across the face by having a thermocouple at the centre and edge of each face. Four temperatures were therefore measured : $T_{o}^{c}, T_{o}^{e}, T_{\ell}^{c}, T_{\ell}^{e}$, superscripts c and e referring to centre and edge respectively.

Propane is typical of the gases used in the thermo-osmotic work in having a low thermal conductivity (table 6.1). A careful study was therefore made of the thermocouple outputs for constant temperatures of heat source and sink when the propane pressure was increased from high vacuum to 30 cmHg . Thermocouple output was found to remain constant above 2 cmHg , an improvement on Clint's findings where with He and Ne , gases of greater thermal conductivity than $\mathrm{C}_{3} \mathrm{H}_{8}$, a constant output was not obtained below 5 cmHg and experiments were only conducted at pressures considerably in excess of this value.

TABLE 6.1
Thermal conductivities, k , at 300 K for gases and
materials used in the membrane assembly

Material	k	Ref
$\mathrm{Wm}^{-1} \mathrm{~K}^{-1}$		
Porous carbon $(\varepsilon=0.47)$	1.75	1
Copper	400.	2
Stainless steel	25.	1
Helium	0.151_{1}	2
Neon	0.04_{8}	2
Methane	0.03_{4}	2
Ethane	0.02_{1}	2
Propane	0.01_{8}	2
n-Butane	0.01_{6}	2
(1) Perry and Chilton, 1973		
(2) Weast, 1970		

Figure 6.1 Thermocouple outputs as a function of pressure

Figure 6.1 shows the pressure variation below $2 \mathrm{cmHg}: \mathrm{T}_{\mathrm{o}}^{\mathrm{c}}$ and $\mathrm{T}_{\mathrm{o}}^{\mathrm{e}}$ are reasonably constant being within 1 degree of one another and increasing by less than 2 degrees in the pressure range studied. $\mathrm{T}_{\ell}^{\mathrm{e}}$ is also substantially constant, decreasing by about 1 degree between 30 cmHg and vacuum. However T_{ℓ}^{C} decreases by 7 degrees in this range and differs from T_{ℓ}^{e} by 8 degrees or more.

The behaviour of T_{o}^{c}, T_{o}^{e} and T_{ℓ}^{e} is a substantial improvement over Clint's thermocouples where T_{o} could rise by 20 degrees and T_{ℓ} fall by 10 degrees between 10 cmHg and vacuum, and this improvement can be attributed to the more intimate contact of thermocouple with plug face. In the former design, as the gas pressure becomes small the number of thermally conducting species is reduced and so the plunger-mounted thermocouple becomes progressively more insulated from the plug. Heat loss from the upper plunger and heat transmission to the lower plunger will be reduced thus accounting for the apparent temperature changes. In practice the actual face temperature will not change to the same extent since lateral heat transmission will occur from the steel plug holder; in the present design the actual face temperature is measured.

The output from T_{l}^{c} was at variance with the other thermocouples since (i) it recorded a lower temperature than $\mathrm{T}_{\ell}^{\mathrm{e}}$ and (ii) its pressure dependence resembled the Clint system. A possible explanation for this would be provided if the thermocouple had not been mounted correctly but had 'lodged' at some point in the plunger before it made contact with the membrane face. It would thus be surrounded by gas and susceptible to the same low pressure effects as found by C1int.

6.1.2 Heat flow patterns

Consideration of the pattern of heat flow within the plug is instructive. The membrane system can be thought of as an insulating material (the Graphon membrane) embedded in a conducting matrix (the steel plug holder and plungers, and the copper blocks acting as heat
source and sink). In a steady-state of temperature, heat flow lines must run parallel to the plug axis in the end blockeand, away from the plug ends, in the holder/plug combination. Near the plug ends, however, heat flow lines tend to diverge, more heat per unit cross-section passing through the plug holder (a good conductor) than through the plug (a poor conductor - see table 6.1).

A hypothetical visualisation of this is shown in figure 6.2a whilst in figure 6.2 b the corresponding equal temperature contours are shown. In these diagrams the plug diameter has bcen exaggerated, gas pockets have been ignored and the steel/copper assembly has been considered as a uniform matrix.

The implication of this is that within the body of the plug a linear temperature gradient will exist parallel to the axis, but near the plug ends this axial temperature gradient will not be linear and the plug will also possess a radial temperature gradient. The effect of this radial gradient predicts that $T_{0}^{c}>T_{o}^{e}$ and $T_{\rho}^{C}<T_{\ell}^{e}$, and this is observed at very low pressures.

An estimate of the magnitude of this effect can be made by comparing at various points the temperatures in the plug holder with those within the plug at the same point. To simplify the calculation we assume that (i) a constant heat flow rate per unit cross section exists wirhin the holder and the plug; (ii) a linear temperature gradient exists in the plug holder and (iii) no radial heat transfer occurs between holder and plug.

We consider a 'composite plug' composed of the Graphon membrane and those sections of the plungers between the bottom of the heat source and the top of the heat sink ie the'plug' runs from x_{1} to x_{4} in figure 3.5. For a steady heat flow

$$
\begin{equation*}
-\left(\frac{Q}{t}\right)^{Q}=\left(\frac{d T}{d x}\right)_{i} \cdot k_{i}=\text { Constant } \tag{6.1}
\end{equation*}
$$

Figure 6.2 Heat flow lines and isothermal contours within the plug assembly

where Q is the quantity of heat per unit cross-section conducted in time t through the 'composite $p l u g ' ; k_{i}$ is the thermal conductivity of the $i^{\text {th }}$ component and $(d T / d x) i$ is the temperature gradient across this component. Ignoring any gas layers present the 'composite plug' is in three sections, viz steel/carbon membrane/steel.

Using the data in table 6.1 and the following temperatures and distances :-

$$
\begin{array}{lll}
x_{2}-x_{1} & =0.846 \mathrm{~cm} & \mathrm{~T}_{2}=120^{\circ} \mathrm{C} \\
\mathrm{x}_{3}-\mathrm{x}_{2} & =4.177_{7} \mathrm{~cm} & \mathrm{~T}_{3}=65^{\circ} \mathrm{C} \\
\mathrm{x}_{4}-\mathrm{x}_{3} & =0.94_{0} \mathrm{~cm} &
\end{array}
$$

simultaneous equations were set up which gave $\mathrm{T}_{1}=120.7_{8}^{\circ} \mathrm{C}$ and $T_{4}=64.1_{3}{ }^{\circ} \mathrm{C}$. If these temperatures at X_{1} and X_{4} were the same in the plug holder, then with the linear gradient, temperatures corresponding to x_{2} and x_{3} in the plug holder will be $\mathrm{T}_{2}=112.7{ }^{\circ} \mathrm{C}$ and $\mathrm{T}_{3}=73.0_{6}{ }^{\circ} \mathrm{C}$.

This simple calculation predicts that at the hot face the plug holder will be 7.2_{6} degrees below the membrane temperature and 8.0_{6} degrees above it at the cold face. This iype of behaviour was in fact observed by Clint when he attached thermocouples to the outside of the plug holder; Gilliland et al (1962) have also found similar discrepancies.

Some radial heat flow must occur and this wiil reduce the size of the effect but there is a tendency for the centre of the membrane face to differ in temperature from the edge in contact with the steel holder. However the similarity of $\mathrm{T}_{\mathrm{o}}^{\mathrm{c}}$ and $\mathrm{T}_{\mathrm{o}}^{\mathrm{e}}$ indicates that such an effect is much smaller than predicted by these calculations.

6.1.3 The temperati:re gradient

Previous non-isothermal measurements on Graphon (C1int, 1966; Dolphin, 1971) involved inert gases with T_{ℓ} maintained at 308.15 k whilst To varied from 320.65 K to 393.15 K , and at a pressure of approximately 20 cmHg.

In this work, because of the slightly different plug construction, T_{ℓ} could not be maintained as low as 308.15 K hence 333 K was used. All runs were conducted with T_{0} of 393 K to observe a large thermo-osmotic flow. The preserre deprndence of the thermo-osmotic steady-state pressure ratio and isobaric permeabilities were also determined.

The face temperatures were taken to be averages of centre and edge values. Eor T_{0} very little uncertainty is involved since T_{o}^{c} and T_{o}^{e} agreed within 0.5 degrees, $b u t$, as previously discussed, T_{ℓ}^{c} was lower than $\mathrm{T}_{\ell}^{\mathrm{e}}$. Since $\mathrm{T}_{\ell}^{\mathrm{c}}$ was not correctly located, then $\mathrm{T}_{\ell}^{\mathrm{e}}$ may be a better choice to characterise T_{ℓ}. However in the following calculations average temperatures have been used. Any radial gradient which may exist across the membrane face has been shown to have a minimal effect on the steadystate pressure ratio (Ash, Barrer, Clint, Dolphin and Murray, 1973) for long membranes such as were used here.

6.1.4 The approach to the thermo-osmotic steady-state

The experimental technique employed in obtaining steady-state pressure ratios, $\left(p_{0} / p_{\ell}\right)_{\infty}$, was described in section 3.6.2. Typical approach curves to the steady-state are shown in figure 6.3 for $\mathrm{C}_{3} \mathrm{H}_{8}$, $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$ and neo- $\mathrm{C}_{5} \mathrm{H}_{12}$. Also shown is the theoretical steady-state pressure ratio for a Knudsen gas, $\left(T_{o} / T_{\ell}\right)^{\frac{1}{2}}$. Pressure ratios achieved for these strongly sorbed gases are greater than this limit, demonstrating the influence of transport involving the sorbed phase.

Several workers have fitted this approach curve to an equation of the form:

$$
\begin{equation*}
\frac{m_{\infty}-m_{t}}{m_{\infty}-m_{0}}=\exp (-k t) \tag{6.2}
\end{equation*}
$$

m has been variously interpreted as

$$
\begin{array}{lll}
\text { (i) } & \ln \left(p_{o} / p_{\ell}\right) & ; \text { Denbigh and Raumann (1952a) } \\
\text { (ii) } & p_{o}-p_{\ell}(=\Delta \mathrm{p}) & ; \text { Crowe (1963); Knudsen (1910b). } \\
\text { (iii) }\left(p_{o} / p_{\ell}\right) & ; \text { C1int (1966). }
\end{array}
$$

A detailed study of the approach curve has been made for
$\mathrm{C}_{3} \mathrm{H}_{8}$ at 20 cmHg , where p_{0} and p_{ℓ} were continuous ly monitored for 40 hours. Each interpretation of m was tested and found to fit the approach curve in its initial stages. However at large t deviations tended to occur such that $\log \left[\left(m_{\infty}-m_{0}\right) /\left(m_{\infty}-m_{t}\right)\right]$ was larger than predicted from the linear initial stage. $\operatorname{Ln}\left(p_{o} / p_{\ell}\right)$ gave the best fit, being valid up to 30 hours, followed by Δp (up to 20 hours) and (p_{o} / p_{ℓ}) (up to 10 hours). These findings contradict Clint's work where $\mathrm{p}_{\mathrm{o}} / \mathrm{p}_{\ell}$ gave the best fit and where a deviation at low t was found, analogous to a 'time lag'.

However there are several important differences between the experimental methods of Clint and this work. (i) Clint used Guggenheim's method to predict a value of m_{∞}, whereas it was directly measured in this work. (ii) The time required to establish ($\left.p_{0} / p_{0}\right)_{\infty}$ was much shorter using a Graphon membrane and most of the approach curve was continuous $1 y$ monitored. (iii) Baratron sensors of high accuracy and stability were used in this work. They entailed smaller dead volumes and no volumchanges were involved.

6.1.5 Thermo-osmotic pressure ratios and heats of transport

Thermo-osmotic steady-state pressure ratios $\left(\mathrm{p}_{0} / \mathrm{p}_{\ell}\right)_{\infty}$ were obtained for $\mathrm{He}, \mathrm{C}_{3} \mathrm{H}_{8}, \mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$ and neo- $\mathrm{C}_{5} \mathrm{H}_{12}$ at a nominal T_{o} of 393 K and T_{ℓ} of 333K; they are given in table 6.2, together with the pressures at which they were obtained.

Thermo-osmotic results, $\left(\mathrm{p}_{\mathrm{o}} / \mathrm{p}_{\ell}\right)_{\infty}$ and Q_{m}

An integral heat of transport, Q_{m}, can be derived from a single steady-state pressure ratio as described in chapter 2 , from the relation:

$$
\begin{equation*}
R \ln \left(\frac{P_{0}}{P_{\ell}}\right)_{\infty}=-Q_{m}\left[\frac{1}{T_{\ell}}-\frac{1}{T_{0}}\right]=-Q_{m} \frac{\Delta T}{T_{0} \cdot T_{\ell}} \tag{2.72}
\end{equation*}
$$

Values of Q_{m} calculated in this way are also tabulated in table 6.2.

6.1.6 Isobaric permeabilities

In chapter $2 B\left(T_{0}\right)$ was defined as the energy flow through the membrane at constant pressure, p, caused by unit temperature gradient through unit cross-section in unit time.

$$
\begin{equation*}
\text { ie } B\left(T_{0}\right)=R T_{0} \cdot \frac{J l}{\overline{\Delta T}} \tag{6.3}
\end{equation*}
$$

where J is the flux in mol s^{-1} per unit cross-section in the $+x$-direction. The ratio $B\left(T_{0}\right) / P_{o}$ can therefore be obtained while P_{o} and P_{ℓ} are still nearly equal, and plotted against pressure. It has been found in this work that if a sufficiently sensitive diaphragm gauge is used to record $\left.\Delta p i=p_{0}-p_{\ell}\right)$ as a function of time in thermo-osmotic measurements, then in the initial stages $\Delta \mathrm{P}$ is linear with t . Flux J (and hence $B\left(T_{0}\right) / \mathrm{P}_{0}$) can therefore be evaluated from the limiting rate of increase of pressure difference ie from ($d \Delta p / d t)_{t \rightarrow 0}$ (see section 3.6.3). The only previous measurements of $B\left(I_{0}\right) / p_{o}$ have involved the use of a lubricated mercury slug in a horizontal capillary connecting both sides of the membrane, where an isobaric flux was obtained from the rate of travel of the slug (Gilliland et al, 1962).

If the reservoirs at the hot and cold sides of the plug have volumes V_{0} and V_{ℓ}, and contain gas at a pressure of P_{0} and P_{ℓ} at time t, then

$$
\begin{equation*}
P_{0}=p+n \cdot \frac{R T_{R}}{V_{0}} \text { and } P_{\ell}=p-n \cdot \frac{R T_{R}}{V_{\ell}} \tag{6.4}
\end{equation*}
$$

where p is the initial pressure, ($=p_{0}=p_{\ell}$) at isobaric equilibrium before isolating the reservoirs at the hot and cold sides, T_{R} is the reservoir temperature and n is the number of moles which have passed from cold to hot side after t seconds. The pressure difference, Δp, will be given by:

$$
\begin{equation*}
\Delta \mathrm{p}=\mathrm{p}_{0}-\mathrm{p}_{\ell}=\mathrm{nRT}\left[\frac{\mathrm{v}_{0}+\mathrm{v}_{\ell}}{\mathrm{v}_{0} \cdot \mathrm{v}_{\ell}}\right] \tag{6.5}
\end{equation*}
$$

Hence by differentiation with respect to t and substitution in (6.3) we get:

$$
\begin{align*}
& J=-\frac{d n}{d t} \cdot \frac{1}{A_{c}}=-\frac{1}{A_{c}} \cdot \frac{V_{o} V_{\ell}}{V_{o}+V_{\ell}} \cdot \frac{1}{R_{R}} \cdot \frac{d \Delta p}{d t} \\
& B\left(T_{0}\right)=-\frac{T_{0}}{T_{R}} \cdot \frac{\ell}{\Delta T} \cdot \frac{1}{A_{c}} \cdot \frac{V_{o} V_{\ell}}{V_{o}+V_{\ell}} \cdot \frac{d \Delta p}{d t} \tag{6.6}\\
& \frac{B\left(T_{0}\right)}{P_{o}}=-\frac{T_{o}}{T_{R}} \cdot \frac{1}{P_{0}} \cdot \frac{1}{\Delta T} \cdot \frac{1}{A_{c}} \cdot \frac{V_{o} V_{\ell}}{V_{o}+V_{\ell}} \cdot \frac{d \Delta p}{d t}
\end{align*}
$$

If p_{o} (the initial equilibrium pressure, $=p_{\ell}$) is expressed in cmHg, ℓ in $\mathrm{m}, \mathrm{A}_{\mathrm{c}}$ in $\mathrm{m}^{2}, \mathrm{~V}$ in m^{3} and t in minutes, then J (mol $\mathrm{s}^{-1} \mathrm{~m}^{-3}$), $B\left(T_{0}\right)\left(N^{-1} K^{-1}\right)$ and $B\left(T_{o}\right) / p_{o}\left(m^{2} s^{-1} K^{-1}\right)$ are given by:

$$
\begin{align*}
& J=-\frac{V_{0} \cdot V_{\ell}}{V_{0}+V_{\ell}} \cdot \frac{22.138}{A_{c} \cdot R \cdot T_{R}} \cdot \frac{d \Delta p}{d t} \\
& B\left(T_{0}\right)=-\frac{V_{0} \cdot V_{\ell}}{V_{0}+V_{\ell}} \frac{T_{0}}{T_{R}} \frac{\ell}{\Delta T} \frac{22.138}{A_{c}} \cdot \frac{d \Delta p}{d t} \tag{6.7}\\
& \frac{B\left(T_{0}\right)}{p_{0}}=-\frac{V_{0} \cdot V_{\ell}}{V_{o}+V_{\ell}} \frac{T_{o}}{T_{R}} \frac{1}{P_{0}} \frac{\ell}{\Delta T} \frac{1}{A_{c}} \frac{1}{60} \cdot \frac{d \Delta p}{d t}
\end{align*}
$$

For the present membrane (plug 0) the physical parameters in the working equation, (6.7), are :
$\ell=0.0418_{7} \mathrm{~m} ; \mathrm{A}_{\mathrm{c}}=3.27 \times 10^{-5} \mathrm{~m}^{2} ; \mathrm{V}_{\mathrm{o}}=81.4 \times 10^{-6} \mathrm{~m} ; \mathrm{v}_{\ell}=153.9 \times 10^{-6} \mathrm{~m}^{3}$.

The parameters $J, B\left(T_{0}\right)$ and $B\left(T_{0}\right) / p_{o}$ were deternined for He, $\mathrm{C}_{3} \mathrm{H}_{8}, \mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$ and neo- $\mathrm{C}_{5} \mathrm{H}_{12}$ in the pressure range 1 to 60 cmHg for the fixed values of T_{0} and T_{ℓ} used in the thermo-osmotic work. Results obtained are tabulated in table 6.3; each value of J (and hence of $B\left(T_{0}\right)$ and $B\left(T_{o}\right) / p_{o}$) represents the average of between 3 and 5 determinations at each pressure.

TABLE 6.3

Isobaric fluxes and permeabilities

Initial pressure cmHg	$\frac{\left.<T_{0}\right\rangle}{\mathrm{K}}$	$\frac{{ }^{<T_{Q}>}}{K}$	$\frac{-10^{5} J}{\mathrm{~mol} \mathrm{~s}^{-1} \mathrm{~m}^{-2}}$	$\frac{-10^{4} \mathrm{~B}\left(\mathrm{~T}_{0}\right)}{\mathrm{Ns}^{-1} \mathrm{~K}^{-1}}$	$\frac{-10^{8} B_{\left(T_{o}\right) / p_{o}}}{\mathrm{~m}^{2} \mathrm{~s}^{-1} \mathrm{~K}^{-1}}$
Helium				\cdots	
*	391.8	333.6	-	-	0.215
Propane					
2.45	393. 0	${ }^{333 .}{ }_{0}$	0.648	0.148	$0.45{ }_{2}$
5.69	393. 3	333.0	1.53	0.348	0.460
12.09 .	393. 0	333.0	3.43	0.779	0.486
20.51	392.8	333.0	6.07	1.38	$0.50{ }_{7}$
31.56	393.0	333.0	9.58	2.18	0.520
40.31	393. 3	333.0	12.3	2.80	0.52_{4}
61.67	$392 \cdot 8$	333.0	19.2	4.38	$\mathrm{O}^{0.53} 4$
n-Butane					
2.41	$3^{392} .8$	332.4	2.98	$0.67{ }_{5}$	2.11
11.09	392.7	${ }^{332} \cdot 3$	14.1	3.19	2.16
20.89	392.8	333. ${ }_{1}$	23.9	5.46	1.97
40.04	$392 \cdot 8$	332.3	33.3	7.45	1.41
neo-Pentane					
25.70	393.4	332.9	28.6	6.49	1.90
$*_{:} B\left(T_{0}\right) / p_{0}$ is the average of 8 permeabilities in the range $25-50 \mathrm{cmHg}$					

6.2 DISCUSSION OF THERMO-OSMOTIC RESULTS

The thermo-osmotic steady-state pressure ratios of table 6.2 are quite different from the ratio ($\left.T_{0} / T_{\ell}\right)^{\frac{1}{2}}$ expected for Knudsen flow of an ideal gas. For T_{o} of 393 K and T_{ℓ} of $333 \mathrm{~K},\left(\mathrm{~T}_{\mathrm{o}} / \mathrm{T}_{\ell}\right)^{\frac{1}{2}}$ is 1.086. Hydrocarbon ratios are well above this figure and tend to vary with pressure, whilst the helium ratio is below it and independent of pressure. For the helium result the considerations given in chapter 5 concerning the Knudsen pressure regime are equally valid here, since the plug used, 0 , is of very similar pore dimensions to N. Hence we are still concerned with a pressure region where the mean free path of the gas is large compared with the mean pore diameter ($4 \varepsilon / A$).

6.2.1 The helium result

The low value of $\left(p_{o} / p_{\ell}\right)_{\infty}$ obtained here accords with the findings of other workers. Ash et al (1973) found consistently low values for non-sorbed and weakly sorbed gases ($\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}, \mathrm{Kr}$ and H_{2}) through membranes of Graphon and Carbolac with T_{o} between 320 and 393 K . They also calculated heats of transport, Q_{0}, from equation (2.71) which were found to be less than the value of $-\frac{1}{2} \mathrm{RT}_{\mathrm{o}}$ predicted for an ideal gas transported by molecular streaming (Kennard, 1938). This led them to propose the empirical relationship

$$
\begin{equation*}
Q_{0}=\beta\left(-\frac{1}{2} R T_{0}\right) \tag{6.8}
\end{equation*}
$$

where β was found to vary with the gas and membrane, but was independent of T_{0} and T_{ℓ}.

On both Graphon and Carbolac Ash et al found β to be 0.72 , In this work, based on the single point determination of an integral Q_{m}, β was found to be 0.63 for each of the helium results. It is instructive at this point to consider the values of Q_{0} obtained from equations (2.71) and (2.72) to see how closely they will agree with $-\frac{1}{2} \mathrm{RT}_{\mathrm{o}}$ for an ideal gas. With T_{ℓ} of 333 and T_{o} adopting several values between 343
and $393 \mathrm{~K}, Q_{0}$ and Q_{m} were calculated from (2.71) and (2.72) assuming that $\left(\mathrm{p}_{\mathrm{o}} / \mathrm{p}_{\ell}\right)=\left(\mathrm{T}_{\mathrm{o}} / \mathrm{T}_{\ell}\right)^{\frac{1}{2}}$. It was found that the heat from (2.71) agreed with $-\frac{1}{2} \mathrm{RT}_{\mathrm{o}}$ within $20 \mathrm{Jmol}^{-1}$, the experimental error arising from the accuracy of the tangents which must be drawn. For the integral heat Q_{m} however, systematic deviations will always occur, which will be larger at high values of $\Delta T\left(=T_{0}-T_{\ell}\right)$. The approximate relationship (6.9) was derived

$$
\begin{equation*}
Q_{0}=Q_{m}-2.2 \Delta T \tag{6.9}
\end{equation*}
$$

where Q_{o} is the differential heat ($\mathrm{J} \mathrm{mol}^{-1}$) from (2.71) and Q_{m} is the integral heat. Thus even at T_{o} of 393 K the deviation from Q_{o} is only $132 \mathrm{~J} \mathrm{~mol}^{-1}$, whereas Q_{m} is $604 \mathrm{~J} \mathrm{~mol}^{-1}$ lower than the Knudsen value of $-\frac{1}{2} \mathrm{RT}_{\mathrm{o}}\left(=-1634 \mathrm{~J} \mathrm{~mol}^{-1}\right)$.

6.2.2 Deviations from the Knudsen Iimit

Several papers inave recently been published, pointing out the limitations of the kinetic theory in treating thermal transpiration and attempting to explain why ideal gas values of $\left(p_{0} / p_{\ell}\right)_{\infty}$ and Q_{0} are not obtained, even for helium, in capillaries and porous media.

Edmonds and Hobson (1965) obtained the Knudsen thermal
transpiration limit of $\left(T_{0} / T_{\ell}\right)^{\frac{1}{2}}$ for apertures under high vacua and with $T_{o}=295 \mathrm{~K}$ and $T_{\ell}=77.4 \mathrm{~K}$. However with capillary tubes $\left(\mathrm{p}_{0} / \mathrm{p}_{\ell}\right)_{\infty}$ was always less than the limit, but most closely approached it at small tube diameters and with heavier gas molecules.

They applied the following elemei:tary transmission probability theory to thermal transpiration to account for the discrepancies. Assuming a Maxwellian distribution of velocities in the gas phase, then the number of molecules incident on the capillary or membrane entrance, per unit area and in unit time, will be given by (Knudsen 1910a):

$$
\begin{equation*}
z=\frac{1}{4} \rho \bar{c} \tag{6.10cf2.37}
\end{equation*}
$$

where ρ is the molecular density $(=p / k T)$ and \bar{c} is the average molecular velocity, $(8 \mathrm{kT} / \pi \mathrm{m})^{\frac{1}{2}}$.

Because of differing temperatures and molecular velocities at T_{0} and $\mathrm{T}_{\ell}, \mathrm{Z}$ will have different values at $\mathrm{x}=0$ and $\mathrm{x}=\ell, Z_{o}$ and Z_{ℓ} respectively.

$$
\begin{align*}
& Z_{0}=\frac{1}{4} \rho_{0} \bar{c}_{0}=\frac{p_{0}}{\left(2 \pi m k T_{0}\right)^{\frac{1}{2}}} \tag{6.11}\\
& Z_{\ell}=\frac{1}{4} \rho_{\ell} \bar{c}_{\ell}=\frac{p_{\ell}}{\left(2 \pi m k T_{\ell}\right)^{\frac{1}{2}}}
\end{align*}
$$

Transmission probabilities, W, (Clausing, 1932) are now introduced. These represent the fraction of molecules striking one face which eventually leave the capillary (or membrane) at the other. W_{o} indicates molecules travelling from 0 to ℓ and W_{ℓ} those from $\&$ to 0 .

In an isothermal situation $W_{0}=W_{\ell}$ but for the steady-state in thermal transpiration $\ddot{Z}_{0} . W_{0}=Z_{\ell} . W_{\ell}$. Substituting from (6.11) we get, for the steady-state condition:

$$
\begin{equation*}
\left(\frac{\mathrm{p}_{0}}{\mathrm{p}_{\ell}}\right)_{\infty}=\left(\frac{\mathrm{T}_{0}}{\mathrm{~T}_{\ell}}\right)^{\frac{1}{2}} \cdot \frac{W_{\ell}}{\mathrm{W}_{0}} \tag{6.12cf2.45}
\end{equation*}
$$

W_{l} / W_{o}, which we call α is a measure of the departure Erom the Knudsen gas limit. It can be related to the factor β proposed by Ash et al (1973), in the following way. We substitute for ($\left.p_{o} / p_{\ell}\right)_{\infty}$ from (6.12) into equation (2.68) and using the relation (2.69), differentiats w.r.t. T_{0} at constant T_{ℓ}. Then writing Q_{0} as $\beta\left(-\frac{1}{2} R T_{0}\right)$ we get

$$
\begin{equation*}
\frac{\mathrm{d} \ln \alpha}{\mathrm{~d} \ln T_{0}}=\frac{\beta-1}{2} \tag{6.13}
\end{equation*}
$$

Thus, it is the temperature dependence of the departure of the steadystate pressure ratio from the Knudsen expression which accounts for
the non-ideal value of Q_{0}. Since B is constant and independent of T_{0}, then on these carbon menbranes departure from ($\left.T_{0} / T_{l}\right)^{\frac{1}{2}}$ is more marked at higher T_{0}, and the size of the tempexature dependence of α determines the departure of Q_{0} from $-\frac{1}{2} R T_{0}$.

In table 6.4 values of α obtained on several porous membranes and capillary tubes are presented, together with λ / d and the temperatures used. It can be seen that even for tubes having a high $\lambda / d, \alpha$ is less than unity and is smaller for wider tubes. The value of α obtained in this work is compatible with that obtained by Clint on Carbolac and agrees with the observation that both carbon plugs have very similar β values. It can also be observed from Clint's work that α decreases as ΔT or T_{0} increases and that α is in the order $\mathrm{H}_{2}>\mathrm{He}>\mathrm{Ne}$ ie H_{2} is most nearly ideal. Berman and Lund (1958) obtained isothermal transmission probabilities ($W_{2 \ell}$ and $W_{o o}$) through capillaries, porous metal and sintered glass. For T_{0} of 300 K , T_{ℓ} of $100 \mathrm{~K}, \mathrm{~W}_{\ell \ell} / \mathrm{W}_{\mathrm{oo}}=0.971$ is obtained for Ne and H_{2}, a value comparable with empirical α values (see table 6.4).

Edmonds and Hobson went on to consider the effect of the nature of the reflections within a capillary on the transmission probabilities. They proposed that if each wall collision took place by complete specular reflection (forward velocity retained after reflection), by complete diffuse or cosine reflection (random re-emission after collisicn) or by a fixed proportion of both (independent of molecular velocity), then $W_{\ell}=W_{o}$. However they postulated that 'hot' molecules striking a colder surface had a greater degree of specular reflection than a cold' molecule striking a warmer sirface. Hence $W_{o}>W_{\ell}$ and so $\alpha<1$, as is experimentally observed.

Miller and Buice (1966) advanced a model for thermal transpiration, involving transmission probabilities from Monte Carlo calculations and varying degrees of specular reflection. α was predicted to be nearer

TABLE 6.4
Transmission probability ratios (α) for
several systems

System Gas	λ / d	$\frac{T_{0}}{K}$	$\frac{\mathrm{T}_{\ell}}{\mathrm{K}}$	α	Ref
Porous Plug Air	-	373	290	0.974	(1)
Magnesia Plug H_{2}	6.4×10^{1}	521.7	295.1	0.992	(2)
Graphon Plug \{ He	7.83×10^{1}	391.7	333.6	$0.97{ }^{5}$	(3)
$\varepsilon / \mathrm{A}=4.52 \mathrm{rma}\left\{\begin{array}{l}\text { He }\end{array}\right.$	1.65×10^{2}	392.5	324.9	0.971	(3)
He	1.70×10^{3}	352.9	308.2	$0.98{ }_{1}$	(4)
H_{2}	1.27×10^{3}	352.9	308.2	0.994	(4)
Carbolac Plug $\quad \mathrm{Ne}$	$7.3{ }_{2} \times 10^{2}$	320.7	308.2	0.991	(4)
$\varepsilon / \mathrm{A}=0.471 \mathrm{~nm} \quad \mathrm{Ne}$	7.44×10^{2}	333.2	308.2	0.983	(4)
Ne	7.95×10^{2}	352.9	308.2	$0.97{ }_{0}$	(4)
[Ne	8.23×10^{2}	378.0	308.2	$0.95{ }_{6}$	(4)
Glass tube, \{ He	$1.1_{5} \times 10^{5}$	295.	77.4	$0.96{ }_{6}$	(5)
2.1 nmm diameter ${ }^{\text {a }}$ (Ne	$2.5{ }_{2} \times 10^{3}$	295.	77.4	$0.95{ }_{5}$	(5)
Glass tube, \{ He	1.39×10^{4}	295.	77.4	0.877	(5)
19 mm diameter $\{$ Ne	2.79×10^{2}	295.	77.4	0.877	(5)
(1) Reynolds, 1879					
(2) Knudsen, 1910a					
(3) This work					
(4) Clint, 1966					
(5) Edmonds and Hobson	1965				

urity for shorter tubes (small length/diameter ratios) and for small degrees of specular reflection. As specular reflection increases, then W_{0} and W_{g} diverge more. They postulated that it was the initial reflection of the molecule from the reservoir into the tube which largely determined W. Hence it was T_{0} and T_{ℓ} which were important in governing $\mathrm{p}_{0} / \mathrm{p}_{\ell}$, whereas any gradients within the tube were of minor significance. The work of Hobson et al (1963) suppcrts this view since $\left(p_{0} / p_{\ell}\right)_{\infty}$ was found to be sensitive to the position of the temperature discontinuity ie to small changes in entrance geometry. Edmonds et al (1965), by having very wide reservoirs at the tube entrance, removed these variations and
obtained values of α closer to unity.
Wu (1968) considered that the classical kinetic theory of
Maxwell and Knudsen when applied to thermal transpiration was only valid for near-Maxwellian distributions; it does not allow for a microscopic description of the system. He developed an identical expression to equation (6.12) but W was replaced by I, a geometric factor measuring the deviation of the velocity distribution from classical theory. If I is constant throughout the system then the Knudsen limit is obtained. In practice it varies with the geometric arrangement eg the capillary entrance.

Several workers have proposed mathematical models for thermal transpiration which derive the result:

$$
\begin{equation*}
\left(\frac{P_{0}}{P_{\ell}}\right)_{\infty}=\left(\frac{T_{0}}{T_{\ell}}\right)^{\gamma} \tag{6.14cf2.44}
\end{equation*}
$$

γ has been interpreted as follows:-

The parameter σ pertains to the nature of the gas-surface collision. For complete diffuse reflection (or perfect energy accommodation) $\sigma=0$ and the Knudsen limit is obtained. In (ii) and (iii) $\sigma=1-a$ where \mathbf{a} is a tangential momentum accommodation:coefficient. Equation (6.14) was developed for long tube models ie where $\ell \gg \lambda \gg d$, and as the amount of specular reflection increases ($\left.p_{o} / P_{\ell}\right)_{\infty}$ diverges from the Kiudsen limit, but is predicted to be independent of $\ell . \quad \gamma$ can be related to the β
measured by Ash et al (1973), by substituting (6.14) into (2.70) for ($\left.\mathrm{P}_{0} / \mathrm{P}_{\ell}\right)_{\infty}$ and using $\beta\left(-\frac{1}{2} R T_{o}\right.$) for Q_{o}. When the differentiation is carried out w.r.t. To we get

$$
\begin{equation*}
\gamma=\beta / 2 \tag{6.15}
\end{equation*}
$$

We can thus evaluate α, γ and σ of Siu, McCormick and Cha for lightly sorbed gases on carbon membranes. Table 6.5 presents data for $\mathrm{He}, \mathrm{H}_{2}$ and Ne on Graphon and Carbolac, the Graphon results being obtained in this work whilst the Carbolac results are the work of Clint (1966). For ideal Knudsen gas behaviour, $\alpha=1, \gamma=0.5$ and $\sigma=0$.

TABLE 6.5

Values of α, γ and σ on carbon membrones

Gas	$\frac{\mathrm{T}_{\mathrm{o}}}{\mathrm{~K}}$	$\frac{\mathrm{T}_{\ell}}{\mathrm{K}}$	$\left(\frac{P_{o}}{P_{\ell}}\right)_{\infty}$	α	γ	σ		
						Siu	McCormick	Cha
Graphon								
He	391.7	333. 6	1.0566	0.975	0.342	0.29	0.27	0.19
He	392.5	324.9	${ }^{1.066} 8$	$0_{0.97}^{1}$	0.342	0.29	0.27	0.19
Carbolac								
He	320.7	308. 2	1.0127	0.993	0.317	0.34	0.31	0.22
He	333. 2	308. 2	${ }^{1.027} 8$	$0.98{ }_{8}$	0.352	0.27	0.25	0.17
He	352.9	308. 2	1.0496	0.981	0.357	0.26	0.24	0.17
H_{2}	320.7	308. 2	1.0177	0.998	0.441	0.11	0.10	0.063
H_{2}	333.2	308. 2	1.036	0.997	0.457	0.077	$0^{0.07} 3$	0.045
H_{2}	352.9	308. 2	$1.064{ }_{2}$	0.994	0.459	0.074	0.070	0.043
H_{2}	378.0	308.2	1.098_{8}	$0_{0.99}$	0.461	0.070	0.066	0.040
Ne	$320 \cdot 7$	308. 2	1.011_{3}	0.991	0.283	0.40	0.37	0.28
Ne	333.2	308. 2	1.021_{8}	0.983	0.277	0.42	0.38	0.29
Ne	352.9	308. 2	$1.038{ }_{6}$	0.970	0.279	0.41	0.38	0.28
Ne	378.0	308. 2	1.058_{8}	0.956	0.280	0.41	0.37	0.28

σ, which can be considered to be the fraction of specular reflections,
is less than 0.5 and for a fixed temperature gradient is in the order Ne>He:- H_{2}, tending to decrease with increasing T_{0}. The order of γ (and hence β) shows the oppositetrends to σ and the treatments of Siu, McCormick
and Cha give different values for σ, in the order
σ (Siu) $>\sigma$ (MeNormick) $>\sigma$ (Cha).
An apparent contradiction occurs here, since γ increases (σ decreases) as α decreases. Now increasing γ indicates a decreasing amount of specular reflection whilst decreasing α represents an increase in $W_{o}-W_{\ell}$ which Edmonds and Hobson attribcted to differing degrees of specular reflection acting on W_{o} and W_{ℓ}. However it can be shown by manipulation that $d \gamma / d T_{o}$ can be positive or negative depending on the relative magnitude of $\frac{1}{\alpha} \frac{\mathrm{~d} \alpha}{\mathrm{dT}}$ and $\frac{\gamma-\frac{1}{2}}{\mathrm{~T}_{\mathrm{o}}}$, both of whick are negative. Siu pointed out that it was the temperature dependence of σ, scattering being dependent on incident velocity or thermal energy, which was responsible for differing $W^{\prime} s$ and departure from the Knudsen limit.

No account has so far been taken of back scattering, which has been found to be large for molecules impinging at low angles (Siu 1973). Back scattering would tend to decrease both W_{ℓ} and $W_{0} . ~ S i u^{\prime} s$ model could take account of preferential back scattering by allowing σ to adopt negative values.

The microscopic nature of the reflecting surface, which would give rise to back scattering, has not been considered. Hobson (1969) leached a Pyrex capillary to produce a 'rough' surface and found that the ideal Knudsen limit could be obtained at low pressures. He concluded that atomic roughness forced all reflections to be diffuse with no specular reflection so $W_{\ell}=T_{o}, \sigma=0$. Siu (1973) used a model having a rough interior surface but allowed specular reflection to take place.

We have thus seen that when $\lambda \gg \mathrm{d}$ classical Knudsen gas behaviour is not necessarily to be expected, even for helium. Transmission probability theory has been advanced to account for the discrepancies, but calculation of W^{\prime} s will be a complex task involving gas temperature, surface temperature, the microscopic nature of the surface, nature of surface
reflections, impact angles and entrance geometry. Non-Maxwellian distribution of molecular velocities could also be important.

When we consider a porous carbon membrane, even more uncertainties are introduced. The precise microscopic nature of the capillary paths is uncertain, but they probably consist of 'long' capillaries ($\ell \gg \lambda$) which link larger caverns or voids, and they will be cxtensively kinked. Entrance geometry is likely to be very irregular on a microscopic scale, a multitude of different entrance geometries existing. One might think that because of this rough and irregular nature, complete randomisation and diffuse reflection would occur, and the Knudsen limit be obtained. In practice this is not so as table 6.5 demonstrates. The most probable explanation is that of Edmonds \& Hobson, viz that differing degrees of specular reflection occur for the initial reflections from the gas reservoirs at different temperatures. This will cause a deviation from the Knudsen limit, the magnitude of which increases with increasing ΔT, as is experimentally observed.

The presence of an adsorbed film presents further complications, since this will modify any surface reflections and can itself exhibit a temperature gradient flow. Adsorption might be expected to lead to random re-emission and diffuse reflection since the impinging molecule has a finite residence time on the surface and will therefore lose any 'memory' of its incident direction. The presence of an adsorbed film will also present an irregular surface to any non-adsorbed species present.

In the present experimental arrangement the gas gaps which exist between the heat source and sink, and the membratie could be instrumental in reducing ΔT below that which is measured thereby reducing the actual value of $\left(T_{0} / T_{\ell}\right)^{\frac{1}{2}}$. The thermal conductivity of the gas could also be important (Gilliland, Baddour and Enge1, 1962).

6.2.3 Hydrocarbon results

($\mathrm{p}_{0} / \mathrm{P}_{\ell}$) has been obtained for $\mathrm{C}_{3} \mathrm{H}_{8}, \mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$ and neo- $\mathrm{C}_{5} \mathrm{H}_{12}$ on Graphon for a fixed temperature gradient (table 6.2). Information concerning temperature dependence of $\left(p_{o} / p_{\ell}\right)_{\infty}$ is not available, but such measurements have been made elsewhere for sorbed gases on Graphon and Carbolac membranes (Clint, 1966; Dolphin, 1971; Ash et a1, 1973). There it was shown that sorbed gases exhibited a steady-state pressure ratio greater than the Knudsen limit, and they exceeded this limit to an extent which depended both on the gas and on $\Delta T\left(=T_{0}-T_{\ell}\right)$. As ΔT increased (at constant T_{ℓ}), then ($\left.p_{0} / p_{\ell}\right)_{\infty}$ also increased owing to the greater mobility of the sorbed phase at higher temperatures.

In this work, however, the pressure dependence of the thermo-osmotic pressure ratio was examined and the results are shown in figure 6.4. All gases exhibited a greater $\left(p_{0} / p_{\ell}\right)$ than the Knudsen limit and at a constant pressure $\left(p_{o} / p_{\ell}\right)$ increased as the molecular weight of the hydrocarbon increased.

It is evident that a maximum occurs when $\left(p_{o} / p_{\ell}\right)_{\infty}$ is plorted against pressure, P_{o}, and that the position of this maximum is moved to progressively lower pressures as the gas becomes more strongly sorbed. Such behaviour has not been observed before on carbon membranes.

If we ignore the gas phase transport, then one might expect that the surface analogue of thermal transpiration (giving rise to $\left(p_{0} / p_{\ell}\right)_{\infty}$ $>\left(T_{0} / T_{\ell} j^{\frac{1}{2}}\right)$ could be related to the surface concentration gradient, ie to part of the driving force for surface flow. A, the fraction of monolayer coverage obtained from adsorption isotherm data, can be considered to characterise the surface concentration. Now this will vary between $x=0$ and $x=\ell$ due to (i) the temperature gradient and (ii) the pressure gradient. If we have the isotherm data then we can calculate v (the adsorption uptake) and θ at each end of the plug, ie at T_{o}, p_{o} and at

Figure $6.4 \quad\left(p_{0} / p_{1}\right)_{\infty}$ as a function of initial pressure
T_{ℓ}, P_{ℓ}. Table 6.6 gives the values of p and θ at the plug faces in the steady-state for propanc. Unfortunately n-butane isotherm data were not available at the required temperatures.

TABLE 6.6

Values of p and θ at the membrane faces
for propane when $T_{0}=393$ and $T_{\ell}=333 \mathrm{~K}$.

$\frac{p_{0}}{c m H g}$	θ_{393}	$\frac{p_{\ell}}{c m H g}$	θ_{333}	$\frac{\theta_{333}}{\theta_{393}}$
6.3_{8}	0.02_{3}	$5.5{ }_{2}$	0.07_{4}	3.2_{2}
22.57_{7}	0.07_{7}	19.3_{3}	0.24_{4}	3.1_{7}
44.7_{7}	0.14_{6}	37.9_{7}	0.44_{1}	3.0_{2}

It is clear that a considerable driving force is available for surface transport, since this elementary analysis reveals a 3.2 -fold increase in surface concentration between 393 and 333 K for propane: it is likely to be even greater for n-butane.

We can take this analysis a step further and speculate that the steady-state pressure ratio, $\left(p_{o} / p_{\ell}\right)_{\infty}$, may be a function of the ratio of surface concentrations at $x=\ell$ and $x=0$, ie v_{ℓ} / v_{0}. In figure 6.5 the ratio v_{ℓ} / v_{o} is plotted as a function of pressure, p, for propane and n-butane at several pairs of T_{o} and T_{ℓ} for which isotherms had been measured (chapter 4). For simplicity v_{o} and v_{ℓ} have been evaluated at the same pressure instead of taking actual pairs of p_{0} and p_{ℓ}.

The ratios obtained for $n-C_{4} H_{10}$ are found to fall very sharply with increasing pressure whilst a broar maximum is observed for $\mathrm{C}_{3} \mathrm{H}_{8}$. The very different behaviour of these two gases arises as a result of the isotherm shape and differences in shape between T_{0} and T_{ℓ}. Figurc 6.5 paralle1s the experimental pressure dependence of ($\left.p_{0} / p_{\ell}\right)_{\infty}$ (figure 6.4), while a gas obeying the Henry law is predicted to have a constant value of v_{ℓ} / v_{o}.

It should be noted however that (i) no n-butane isotherm was

Figure 6.5
v_{l} / v_{0} as a function of pressure
measured at 333 K and so the isotherm used for T_{ℓ} in figure 6.5 was at 303 K , the nearest temperature available; (ii) ($\mathrm{p}_{\mathrm{o}} / \mathrm{p}_{\ell}$) ${ }_{\infty}$ also includes a contribution from gas phase flow; (iii) actual values of p_{o} and p_{ℓ} were not used, v_{0} and v_{ℓ} being obtained at the same pressure.

The observation of a maximum in figure 6.4 for the n-butane result but not for propane is attributable to the very much smaller degree of adsorption in the case of $\mathrm{C}_{3} \mathrm{H}_{8}$. At a given temperature and pressure θ for $\mathrm{n}_{-} \mathrm{C}_{4} \mathrm{H}_{10}$ is about four times greater than for $\mathrm{C}_{3} \mathrm{H}_{8}$, thus any maximum in ($\left.p_{0} / p_{\ell}\right)_{\infty}$ will not be observed at the low pressures used here. In the case of $\mathrm{n}-\mathrm{C}_{4}{ }^{\mathrm{H}} 10$ the maximum occurs at about 11 cmHg ; a similar degree of surface coverage on propane would require a gas pressure of 40-50 cmHg. Figure 6.4 indicates that a shallow maximum could very well occur around 60 cmHg .

On the basis of the simple argument presented here, one might expect that when the steady-state is achieved the flux from T_{0} to T_{ℓ} due to the pressure difference $p_{0}-p_{\ell}$, would be equal in magnitude to the combined molecular fluxes from T_{ℓ} to T_{o} caused by (i) gas-phase thermal transpiration and (ii) sorbed-phase thermal transpiration coupled with a surface concentration difference between $x=0$ and $x=\ell$.

6.2.4 Heats of transport, Q_{m}

The calculation of Q_{m} was desciibed in section 6.1 .5 and results presented in table 6.2. The helium result has already been discussed in detail.

The hydrocarbons considered here undergo extensive adsorption on the membrane surface and so ideal Knudsen gas values of Q_{o} are not to be expected, and are considerably in excess of the $-\frac{1}{2} R T_{0}$ value of -1634 $J \operatorname{moi}^{-1}$ and of the helium result of $-1030 \mathrm{~J} \mathrm{~mol}{ }^{-1}$. This extra heat of transport arises from the transport of adsorbed molecules and is associated with the considerable heat of adsorption of the hydrocarbon. - m_{m} exhibits a strong pressure cispendence, in parallel with the

Figure 6.6 Pressure dependence of $-Q_{m}$
maximum in $\left(p_{o} / p_{\ell}\right)_{\infty}$ also observed, and this is depicted in figure 6.6. These maxima, at high surface concentrations (but still submonolayer) have not been observed under these conditions before. However maxima in $\Delta \mathrm{p}\left(=\mathrm{p}_{\mathrm{o}}-\mathrm{p}_{\ell}\right)$ and non-ideal values (gentrally low) of ($\mathrm{p}_{\mathrm{o}} / \mathrm{p}_{\ell}$) D_{∞} and Q_{0} have been reported when transpiration has occurred in the intermediate pressure region where λ / d is close to unity. Under such conditions transpiration occurred, but was accompanied by slip or viscous flow and the condition $\lambda>10 \mathrm{~d}$ (for Knudsen behaviour) was not met.

Examples of such work include the flow of inert gases through stainless steel tubes (Hanley and Steele, 1965; Steele and Hanley, 1971), through porous ceramics (Hanley, 1966; Hopfinger and Altman, 1969), Millipore filters (Hopfinger and Altman, 1969) and unglazed porcelain (Rastogi, Singh and Singh, 1969). These membranes had pore diameters of about 1000 nm and were investigated at between 2 and 10 cmHg .

In the slip regime $(\lambda / d=4)$ it was found that Q_{0} was a function of pressure and temperature but as $\lambda / \mathrm{d} \rightarrow \infty$ these dependencies disappeared. As p increased, Q_{0} decayed asymptotically from $-\frac{1}{2} R T_{o}$ at $p=0$. Steele and Hanley (1971) endeavoured to isolate Q_{0}^{\prime}, the temperature and pressure independent part of Q_{0} by postulating the relationship:

$$
\begin{equation*}
Q_{0}=Q_{0}^{\prime}-\alpha \frac{\Delta p}{p}-\beta \frac{\Delta T}{T} \tag{6.16}
\end{equation*}
$$

Bearman and Bearman (1966) working on rubber membranes found a temperature dependence of Q_{0}. However at constant $\Delta T, Q_{o}$ was independent of p, although the diffusion mechanism was partly by solution in the rubber.

Rastogi et al (1974) used a membrane of unglazed porous porcelain to investigate heats of transport for binary, ternary and quaternary systems. They found the heats to be additive, viz

$$
\begin{equation*}
Q_{m}=\sum c_{i}\left[Q_{m}\right]_{i} \tag{6.17}
\end{equation*}
$$

where c_{i} is the mass fraction of the $i^{\text {th }}$ component and $\left[Q_{m}\right]_{i}$ is its heat. Knudsen behaviour was not found for the individual components $\left(\mathrm{O}_{2}, \mathrm{CO}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}\right)$.

The question therefore arises, are the effects of slip flow being manifested at the higher pressures in this work? From figure 5.7 we can see that $\lambda / d=10$ (the commonly accepted limit for pure thermal transpiration) occurs close to 15 cmHg for propane and n-butane, so that above this pressure one might expect a steady decrease in Q_{m} or p_{0} / P_{ℓ}. However this is a gas-phase phenomenon whereas here values are obtained for $\left(p_{0} / p_{\ell}\right)_{\infty}$ and Q_{m} which are dominated by surface transport. If the decay of gas phase thermal transpiration was significant, then we should certainly have observed a reduction in-Q for $\mathrm{C}_{3} \mathrm{H}_{8}$ at 60 cmHg where $N / d=2.2$, but in fact $-Q_{m}$ is still tending to increase.

Gas phase thermal transpiration therefore makes a minor contribution to Q_{m} since no decrease is obtained where, with purely gas phase flow, we would be entering the slip flow regime. The pronounced reduction in Q_{m} for $n-C_{4} H_{10}$ is attributed to a reduction in the driving force for the surface analogue of thermal transpiration. This could be due to the adsorbate surface concentration difference between the membrane faces actually decreasing as $\theta \rightarrow 1$. There is also a possibility of a changeover to hydrodynamic flow (see section 5.3.2). Some fall in Q_{m} may be observed at very low pressures when gas phase transport could be comparable with surface transport.

6.2.5 Surface and gas phase heats of transport

A treatment of non-isothermal transport in terms of non-equilibrium thermodynamics has been derived by Ash and Barrer (1963) and Ash et al (1973); this aproach was outlined in chapter 2.

It was shown that the heat of transport can be analysed into components pertaining solely to extra or surface $f l o w\left(Q_{s}\right)$ and to gas phase flow $\left(Q_{g}\right)$, related by

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{o}}=\mathrm{Q}_{\mathrm{s}} \frac{K_{\mathrm{s}}}{K}+\mathrm{Q}_{\mathrm{g}} \frac{K_{\mathrm{g}}}{K} \tag{6.18}
\end{equation*}
$$

K, K_{s} and K_{g} are the overall permeability, surface and gas phase permeabilities under isothermal conditions at T_{0}. Further, the relations (6.19) can also be derived:-

$$
\begin{align*}
& Q_{\mathrm{g}}=\mathrm{Q}_{\mathrm{g}}^{*}-\mathrm{H}_{\mathrm{g}}^{*} \tag{6.19}\\
& \mathrm{Q}_{\mathrm{s}}=\mathrm{Q}_{\mathrm{s}}^{*}-\mathrm{H}_{\mathrm{g}}^{*}
\end{align*}
$$

where Q_{g}^{*} and Q_{S}^{*} are molar heats of transport under isothermal conditions in the gas phase and by extra flow respectively, $\mathrm{H}_{\mathrm{g}}^{\ominus}$ is the ideal gas enthalpy.

In chapter $5 \mathrm{~K}, \mathrm{~K}_{\mathrm{s}}$ and K_{g} were given for $\mathrm{C}_{3} \mathrm{H}_{8}$ and $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$ on plug N . Although a different membrane (p lug 0) is used for the thermo-osmotic measurements, they both have very similar porosities and other physical parameters.

If the gas is only slightly sorbed, then Q_{g} will adopt a value close to that of a non-sorbed gas, but this will be less than the Knudsen limit (see section 6.2.2). However for the hydrocarbons used in this study extensive adsorption occurs, which could cause gas phase blockage at constrictions within the membrane. This would decrease the gas phase transport and therefore reduce the amount of heat transported by the gas. If complete blockage occurred, then we would have no gas transport and $Q_{g}=0$. This situation is probably the case for strongly sorbed gases on Carbolac membranes, where the pores are much narrower than in Graphon (Ash et a1, 1973). Thus, if $-\frac{1}{2} \mathrm{RT}_{\mathrm{o}}$ and zero are taken as upper and lower limits for Q_{g}, the exact value being undetermined, then from the measured Q_{o} an estimate of the magnitude of Q_{s} can be made.
$\mathrm{H}_{\mathrm{g}}^{\Theta}$ can be obtained from standard tables of gas enthalpies (Rossini, et $a 1,1947$) and so estimates of both Q_{S}^{*} and Q_{g}^{*} can be made. Values of
H_{g}^{\ominus} as well as limiting values of Q_{g} and Q_{g}^{*} are given in table 6.7.for $\mathrm{C}_{3} \mathrm{H}_{8}$ and $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$ for T_{0} of 393 K . In table $6.8 Q_{s}$ and Q_{s}^{*} are given for a T_{0} of 393 K and at several pressures, due account being taken of the pressure dependence of isothermal permeabilities (Note: Q_{m} values, rather than precise Q_{0} values, were used in the calculations). No analysis was possible for neo $-\mathrm{C}_{5} \mathrm{H}_{12}$ since isothermal permeability data were not available.

TABLE 6.7
$\mathrm{H}_{\mathrm{g}}^{\ominus}, \mathrm{Q}_{\mathrm{g}}$ and $\mathrm{Q}_{\mathrm{g}}^{*}$ for $\mathrm{C}_{3} \mathrm{H}_{8}$ and $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$ at $\mathrm{T}_{\mathrm{o}}=393 \mathrm{~K}$

Gas	$\frac{\mathrm{H}_{\mathrm{g}}^{\text {e }}}{\mathrm{kJ} \mathrm{mo1}^{-1}}$	$\frac{-Q_{\mathrm{g}}}{\mathrm{kJ} \mathrm{mo1}^{-1}}$	$\frac{+Q_{\mathrm{g}}{ }^{\text {g }}}{\mathrm{kJ} \mathrm{mol}}{ }^{-1}$
$\mathrm{C}_{3} \mathrm{H}_{8}$	22.5_{9}	1.64	$20.9{ }_{5}$
		0	22.59
$\mathrm{nC}_{4} \mathrm{C}_{10}$	$\begin{gathered} 30.0_{4} \\ " \end{gathered}$	1.64	28.40
		0	30.0_{4}

TABLE 6.8
Q_{s}, Q_{s}^{*} and X for $C_{3} H_{8}$ and $n-C_{4} H_{10}$ at $T_{0}=393 \mathrm{~K}$

	$-Q_{m}$	$Q_{g}=-\frac{1}{2} R T_{0}$		$Q_{g}=0$		X
		$\frac{-Q_{S}}{\mathrm{~kJ} \mathrm{~mol}^{-1}}$	$\frac{+Q_{s}^{*}}{k J \mathrm{~mol}^{-1}}$	$\frac{-Q_{\mathrm{s}}}{\mathrm{~kJ} \mathrm{~mol}^{-1}}$	$\frac{+Q_{s}^{*}}{\mathrm{~kJ} \mathrm{~mol}^{-1}}$	
Propane						
5.69	2.61	$3^{3.1} 8$	19.4	4.15	18.4	0.75
20.83	2.81	3.50	19.1	4.47	18.1	0.73
40.25	${ }^{2.9}{ }_{8}$	3.78	18.8	4.75	17.8	0.72
61.30	3.0_{5}	3.89	18.7	4.86	17.7	-
n-Butane						
2.42	$6^{6.9} 7$	8.47	21.6	8.93	21.1	0.57
11.33	7.49	9.13	20.9	9.59	20.5	0.55
20.76	7.20	8.76	21.3	$9.2{ }_{1}$	20.8	0.57
39.51	6.51	7.84	22.2	8.32	21.7	0.6

It can be seen that $-Q_{s}$ for $\mathrm{C}_{3} \mathrm{H}_{8}$ is twice $-\mathrm{Q}_{\mathrm{o}}$ for the ideal Knudsen gas and for $n-\mathrm{C}_{4} \mathrm{H}_{10}$ it is five times as great, thus surface
transport clearly dominates the flow. The behaviour of Q_{s} with pressure parallels that of Q_{m}, as would be expected. Q_{s}^{*} is positive and its variation with pressure exhibits the opposite trends to $-Q_{s}$. It is larger for $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$ than for $\mathrm{C}_{3} \mathrm{H}_{8}$.

Barrer and Gabor (1960) considered extra isothermal flow to occur by surface transport, accompanied by evaporative flights across the crevices and side pores; during these flights the extra flow is in the gas phase. Thus the surface $f l u x, J_{S}$, can be divided into the fraction occurring in the gas phase, $\mathrm{Y}_{\boldsymbol{N}} \mathrm{S}_{\mathrm{s}}$, and that remaining on the surface, ($\left.1-\mathrm{X}\right)_{J_{S}}$
(Appendix A), Q_{s} can be similarly expressed in terms of the heats due to the extra flow in the gas phase and on the surface.

Ash et al (1973) analysed equation (6.18) in this way by expressing Q_{s} as :

$$
\begin{equation*}
Q_{s}=(1-X)\left(\tilde{H}_{m}+\Delta \tilde{H}\right)+X Q_{g} \tag{6.20}
\end{equation*}
$$

where \tilde{H}_{m} is the molar enthalpy required by adsorbed molecules for surface migration, and $\Delta \tilde{H}$ is the integral heat of adsorption. By making the approximation $\tilde{H}_{m} \simeq-\frac{1}{3} \Delta \tilde{H}$ and taking the limit where $Q_{g}=0$ then (6.20) becomes

$$
\begin{equation*}
Q_{s}=(1-X) \cdot \frac{2}{3} \cdot \Delta \tilde{H}=Q_{0} \frac{K}{K_{s}} \tag{6.21}
\end{equation*}
$$

Hence X, the fraction of the extra flow in the gas phase can be very approximately obtained and the values for 393 K are included in table 6.8 , $-q_{s t}^{\prime}$ bei:ng used for $\Delta \bar{H}$.

For $\mathrm{C}_{3} \mathrm{H}_{8}$, $\sim 73 \%$ of the extra flow is estimated to occur by evaporative flights in the gas phase. This compares well with the values given by Ash et al (1973) on Graphon viz ~91\% (Ar), -87\% (Kr) and -73% (Xe). However one might have expected a value for $\mathrm{C}_{3} \mathrm{H}_{8}$ smaller than for Xe in view of the much greater extent of sorption.

The butane fraction consisted of $55-60 \%$ in the gas phase and this appears'to have a minimum value at around 10 cmHg , in line with the
maximum in transport properties related to surface flow ($\mathrm{p}_{\mathrm{o}} / \mathrm{p}_{\ell}, \mathrm{Q}_{\mathrm{o}}$ etc) which also occurs at approximately 10 cmHg .

6.2.6 Surface thermal transpiration

Several treatments of thermal transpiration through porous media have been advanced and extended to accommodate surface transport. These are reviewed in sections 2.2.2 and 2.2.3. The treatment due to Hill (1956) will now be considered further.

Clint (1966) extended an expression derived by Hill (equation (2.50)) for the steady-state transport due to surface flow (see section 2.2.3):

$$
\begin{equation*}
\dot{\mathrm{n}}=-2 \pi \mathrm{r} \cdot \mathrm{D}_{\mathrm{ss}} \cdot \frac{d c_{s}^{\prime}}{\mathrm{dx}}-\pi r^{2} \frac{\mathrm{~d}\left(\mathrm{D}_{\mathrm{gs}} \mathrm{~g}_{\mathrm{g}}^{\prime}\right)}{\mathrm{dx}} \tag{6.22}
\end{equation*}
$$

where $\dot{\mathrm{n}}$ is the number of molecules per second passing through unit cross-section in the x direction.

If Fick's law is written as:

$$
\begin{equation*}
J=-\frac{\partial}{\partial x}\left(D_{s s} c_{s}^{\prime}\right)-\frac{\partial}{\partial x}\left(D_{g s} c_{g}^{\prime}\right) \tag{6.23}
\end{equation*}
$$

then Clint demonstrated that for this postulated equation, including $\mathrm{D}_{s s}$ in the integration w.r.t. x , yields the result

$$
\begin{equation*}
Q_{o}=-\frac{1}{2} R_{o}\left[\frac{K_{\mathrm{g}}}{K}\right]_{T_{\mathrm{o}}}+\left(\Delta H+E_{\mathrm{ss}}\right)\left[\frac{K_{\mathrm{s}}}{\frac{K}{K}}\right]_{\mathrm{T}} \tag{6.24}
\end{equation*}
$$

where ΔH is the heat of adsorption and $E_{\text {ss }}$ the activation energy for surface diffusion. K, K_{g} and K_{s} are the isothermal permeabilities at T_{0}. This expression allows for varying contributions to Q_{0} from gas and surface transport.

Hill's treatment predicted that for a heat of transport duc entirely to surface flow

$$
\begin{align*}
Q_{0} & =-\frac{1}{2} R T_{0}+\Delta E-\text { mobile adsorption } \tag{6.25}\\
& =+\frac{1}{2} R T_{0}+\Delta E-\text { localised adsorption } \tag{6.26}
\end{align*}
$$

where ΔE is the energy of adsorption.

The equivalent expressions to equations (6.24) to (6.26) for the steady-state pressure ratio ($\mathrm{p}_{\mathrm{o}} / \mathrm{p}_{\ell}$) are respectively equations (6.27) to (6.29) as follows:

$$
\begin{align*}
& \ln \left(\frac{p_{0}}{p_{\ell}}\right)_{\infty}=\int_{T_{\ell}}^{T_{0}}\left\{\frac{1}{2 T}\left[1+\frac{K_{s}}{K}\right]-\frac{K_{s}}{K} \frac{\left(\Delta E+E_{s s}\right)}{\mathrm{RT}^{2}}\right\} d T(6.27) \\
& \left(\frac{\mathrm{p}_{0}}{\mathrm{p}_{\ell}}\right)_{\infty}=\frac{\exp \left(-\Delta \mathrm{E} / \mathrm{RT}_{\ell}\right)}{\exp \left(-\Delta \mathrm{E} / \mathrm{RT}_{0}\right)} \cdot\left(\frac{\mathrm{T}_{0}}{\mathrm{~T}_{\ell}}\right)^{\frac{1}{2}} \tag{6.28}\\
& \left(\frac{\mathrm{p}_{0}}{\mathrm{p}_{\ell}}\right)_{\infty}=\frac{\exp \left(-\Delta \mathrm{E} / \mathrm{RT}_{\ell}\right)}{\exp \left(-\Delta \mathrm{E} / \mathrm{RT}_{0}\right)} \cdot\left(\frac{\mathrm{T}_{\ell}}{\mathrm{T}_{0}}\right)^{\frac{1}{2}} \tag{6.29}
\end{align*}
$$

Equation (6.27) may be evaluated from isothermal data (chapter 5) by a graphical integration.

Heats of transport and $\left(p_{o} / p_{\ell}\right)_{\infty}$ have been calculated by each of the three expressions for propane on Graphon, at $T_{0}=393 \mathrm{~K}, \mathrm{~T}_{\ell}=333 \mathrm{~K}$ and 10 cmHg pressure. Table 6.9 presents the values obtained, together with $-\frac{1}{2} \mathrm{RT}_{0}$ and the experimental values. It can be seen that both surface transport models of Hill lead to a gross overestimate of ($\left.p_{o} / p_{\ell}\right)_{\infty}$ and $-Q_{0}$, whereas Clint's model, allowing for varying proportions of surface and gas phase transport leads to a better approximation, but is sti. 11 an overestimate.

TABLE 6.9
Q_{0} and $\left(\mathrm{p}_{\mathrm{o}} / \mathrm{p}_{\ell}\right)_{\infty}$ for propane calculated by the theories of Hill and Clint

	$\left(\frac{P_{0}}{F_{\ell}}\right)_{\infty}$	$\frac{-Q_{0}}{\mathrm{~kJ} \mathrm{~mol}^{-1}}$
Knudsen gas flow	1.09	1.64
Experimental value	1.16	2.67
Clint	1.75	9.11
Hill; mobile adsorption	3.69	23.7
Hill; localised adsorption	3.12	20.5

6.3 DJSCUSSION OF ISOBARIC PERNEABILITY RESULTS

Isobaric permeabilities weie determined at several pressures for the temperature gradient $T_{0}=393 \mathrm{~K}$ and $T_{\ell}=333 \mathrm{~K}$ (table 6.3); the pressure dependence is depicted in figure 6.7. The behaviour is similar to that observed for $\left(P_{0} / p_{\ell}\right)_{\infty}$ and Q_{0} (see sections 5.2 .3 and 6.2.4). Helium, undergoing only gas phase flow, has a constant value of $-B\left(T_{o}\right) / p_{o}$ while the value for $\mathrm{C}_{3} \mathrm{H}_{8}$ increases with pressure, flattening out at approximately 50 cmHg . n-Butane exhibits a high value initially, possibly reaching a maximum in the region of 5 cmHg , but falls rapidly above 15 cmHg to 60% of its initial value at 40 cmHg .

Dr A.V.J. Edge of these laboratories has studied the pressure dependence of $\mathrm{B}\left(\mathrm{T}_{0}\right) / \mathrm{p}_{0}$ for $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$ and neo- $\mathrm{C}_{5} \mathrm{H}_{12}$ in the pressure range 1 to 60 cmHg . The $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$ and neo- $\mathrm{C}_{5} \mathrm{H}_{12}$ measurements of this work lie close to the curves he obtained. He found neo-pentane exhibited a maximum in $-\mathrm{B}\left(\mathrm{T}_{\mathrm{o}}\right) / \mathrm{P}_{\mathrm{o}}$ of $3.2 \times 10^{-8} \mathrm{~m}^{2} \mathrm{~s}^{-1} \mathrm{~K}^{-1}$ at about 2 cmHg , but decreased more steeply than n-butane, reaching half its maximum value at 37 cmHg . iso-Butane was intermediate between $\mathrm{C}_{3} \mathrm{H}_{8}$ and $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$, reaching an apparent maximum of about $1.14 \times 10^{-8} \mathrm{~m}^{2} \mathrm{~s}^{-1} \mathrm{~K}^{-1}$ at 15 cmHg , followed by a gradual decrease in- $B\left(T_{0}\right) / P_{0}$.

In this work no pressure dependence was observed for helium, although it was studied only between 25 and 50 cmHg . At low pressures the flux obtained was too small to be detected with any accuracy by the Baratron sensor, since background noise, caused by environmental temperature fluctuations, was severe. An average $-B\left(T_{o}\right) / p_{0}$ of $0.215 \times 10^{-8} \mathrm{~m}^{2} \mathrm{~s}^{-1} \mathrm{~K}^{-1}$ was obtained for He. This is very similar to the 'theoretical' value obtained from isothermal work (see below).

The pressure dependence of the isobaric permeability due largely to a 'surface' component can also be related to the driving force for thermo-osmotic flow. In section 6.2.3 this driving force was considered

Figure 6.7 Pressure dependence of isobaric permeabilities
to be due to the surface concentration difference ($\Delta v=v_{2}-v_{o}$) between the membrane faces. In a steady-state of isobaric flow Δv will be proportional to the isobaric flux and hence $\Delta v / p$ should be proportional to the isobaric permeability (equation 6.3).

Using the same isotherm data as before, figure 6.8 shows the dependence of $\Delta v / p$ on p. Comparison with the experimental. findings depicted in figure 6.7 is favourable (although different values of T_{o} and T_{ℓ} had to be used for $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$ in figure 6.8 due to lack of isotherm data at 333K). A sharp fall in $\Delta v / p$ is observed for $n-C_{4} H_{i O}$ whilst $\mathrm{C}_{3} \mathrm{H}_{8}$ has a much smaller variation with pressure.

Gilliland et al (1962) measured the isobaric permeability of ethylene and propylene on a Vycor membrane and found maxima with pressure as observed in this work. As the mean temperature was reduced, the magnitude of isobaric flow increased and the pressure dependence was more pronounced with the maxima being moved to lower pressures. Gilliland used a hydrodynamic mechanism for surface flow and derived an expression for the isobaric surface permeability which could predict the maximum observed.

6.3.1 Derivation of $\mathrm{B}_{\mathrm{g}}\left(\mathrm{T}_{\mathrm{o}}\right) / \mathrm{p}$ ofor a Kiudsen gas

An expression to derive an isobaric flux from limiting nonisothermal pressure ratios and isothermal permeabilities was derived by Ash et al (1973) and given in chapter 2, viz

Figure $6.8 \quad \Delta v / p$ as a function of pressure

For solely gas phase flow we write $J=J$, and for weakly sorbed gases $Q_{0}=\beta\left(-\frac{1}{2} \mathrm{RT}_{\mathrm{o}}\right)$. Substituting this relation in (2.103) and evaluating the integrals w.r.t. T we get :-

$$
\begin{equation*}
J_{\mathrm{g}}=\frac{\mathrm{p}_{0} \mathrm{~T}_{0}^{-\beta / 2}-\mathrm{p}_{\ell} \mathrm{T}_{\ell}^{-\beta / 2}}{\int_{0}^{\ell}\left(\frac{R^{\prime} \Gamma^{1-\beta / 2}}{K}\right) \mathrm{dx}} \tag{6.30}
\end{equation*}
$$

Now the isothermal permeability, K, can be obtained from $K={ }_{k s}{ }_{\mathrm{s}} \mathrm{g}_{\mathrm{g}}^{\mathrm{cyl}}{ }_{\varepsilon}$ where $\mathrm{D}_{\mathrm{g}}^{\mathrm{cy}}$ is given by equation (2.7). Hence the remaining integral can be. evaluated , giving

$$
\begin{equation*}
J_{g}=\frac{8 \varepsilon^{2} \kappa_{g s}}{3 \mathrm{~A} \cdot \ell}\left(\frac{2}{\pi R M}\right)^{\frac{1}{2}} \frac{p_{o}^{T_{o}^{-\beta / 2}-p_{\ell} T_{\ell}^{-\beta / 2}}}{\mathrm{~T}_{\ell}^{1(1-\beta)}} \tag{6.31}
\end{equation*}
$$

In isobaric flow $p_{o}=p_{\ell}$, hence from equation (6.3) $B\left(T_{0}\right) / p_{0}$ becomes:

$$
\begin{equation*}
\frac{B_{g}\left(T_{o}\right)}{p_{0}}=\frac{8 \varepsilon^{2} \kappa_{g S}}{3 A} \cdot\left(\frac{2 R}{\pi M}\right)^{\frac{1}{2}} \cdot \frac{T_{0}}{\Delta T} \cdot \frac{T_{o}^{-\beta / 2}-T_{\ell}^{-\beta / 2}}{T_{\ell}^{\frac{1}{2}(1-\beta)}} \tag{6.32}
\end{equation*}
$$

where $\mathrm{B}_{\mathrm{g}}\left(\mathrm{T}_{\mathrm{o}}\right) / \mathrm{p}_{\mathrm{o}}$ is the isobaric permeability due to gas phase flow only. Several simplifications are now possible. For an ideal Knudsen gas $\beta=1$, hence we obtain:

$$
\begin{equation*}
\frac{\mathrm{B}_{\mathrm{g}}\left(\mathrm{~T}_{\mathrm{o}}\right)}{\mathrm{p}_{0}}=\frac{8 \varepsilon^{2} \mathrm{~K}_{\mathrm{gs}}}{3 \mathrm{~A}}\left(\frac{2 \mathrm{R}}{\pi M}\right)^{\frac{1}{2}} \quad \frac{\mathrm{~T}_{0}}{\Delta \mathrm{~T}}\left[\frac{1}{\mathrm{~T}_{0}^{\frac{1}{2}}}-\frac{1}{\mathrm{~T}_{\ell}^{\frac{1}{2}}}\right] \tag{6.33}
\end{equation*}
$$

Equation (6.33) can be re-expressed in terms of $K_{g}\left(T_{o}\right)$, the isothermal gas phase permeability at T_{0} :

$$
\begin{equation*}
\frac{\mathrm{E}_{\mathrm{g}}\left(\mathrm{~T}_{0}\right)}{\mathrm{p}_{0}}=K_{\mathrm{g}}\left(\mathrm{~T}_{0}\right) \cdot \frac{\mathrm{T}_{0}^{\frac{1}{2}}}{\Delta T}\left[\frac{1}{\mathrm{~T}_{0}^{\frac{1}{2}}}-\frac{1}{\mathrm{~T}_{\ell}^{\frac{1}{2}}}\right] \tag{6.34}
\end{equation*}
$$

This can be manipulated to give

$$
\begin{equation*}
\frac{\mathrm{B}_{\mathrm{g}}\left(\mathrm{~T}_{\mathrm{o}}\right)}{\mathrm{p}_{\mathrm{o}}}=-\frac{1}{2} \frac{K_{\mathrm{g}}\left(\mathrm{~T}_{0}\right)}{\mathrm{T}_{0}}\left\{\frac{2 \mathrm{~T}_{\mathrm{o}}}{\left(\mathrm{~T}_{0}^{\frac{1}{2}}+\mathrm{T}_{\ell}^{\frac{1}{2}}\right)} \frac{1}{\mathrm{~T}_{\ell}^{\frac{1}{2}}}\right\} \tag{6.35}
\end{equation*}
$$

If ΔT is small, ie $T_{0} \simeq T_{\ell}$, then the term in brace brackets reduces to unity and so we get

$$
\begin{equation*}
-\frac{B_{g}\left(T_{o}\right)}{P_{o}}=\frac{1}{2} \frac{K_{g}\left(T_{o}\right)}{T_{o}} \tag{6.36}
\end{equation*}
$$

Thus we have three expressions for $\mathrm{B}_{\mathrm{g}}\left(\mathrm{T}_{\mathrm{o}}\right) / \mathrm{p}_{\mathrm{o}},(6.32),(6.33)$ and (6.36), and we can apply these to heljum. The values obtained are shown in table 6.10, the last colum being based on the experimental helium value of $-2.15 \times 10^{-9} \mathrm{~m}^{2} \mathrm{~s}^{-1} \mathrm{~K}^{-1}$.

TABLE 6.10
Values of $10^{9} \times\left(-\mathrm{B}_{\mathrm{g}}\left(\mathrm{T}_{0}\right) / \mathrm{P}_{\mathrm{o}}\right)$

Gas	Eqn. (6.32)	Eqn. (6.33)	Eqn. (6.36)	Expt.
He	2.09	2.86	2.35	2.15
$\mathrm{C}_{3} \mathrm{H}_{8}$	0.63	0.86	0.71	0.65
$\mathrm{C}_{4} \mathrm{H}_{10}$	0.55	0.75	0.62	0.56
$\mathrm{C}_{5} \mathrm{H}_{12}$	0.49	0.67	0.55	0.51

Very good agreement is found between the experimental $\mathrm{B}_{\mathrm{g}}\left(\mathrm{T}_{\mathrm{o}}\right) / \mathrm{P}_{\mathrm{o}}$ for helium and that derived from equation (6.32). This equation makes use of experimental isothermal permeability data for a real tortuous medium but it shoulr be noted that a different membrane (N) was used in that work although it had a very similar length, area and porosity to plug ' 0 '. Allowance is also made in (6.32) for departure from Knudsen gas behaviour in the form of β. When no allowance was made for β (equation (6.33)) the ratio between experimental and calculated values was 0.75 , very close to the value of $\beta(0.72)$. Equation (6.36) also gives an isobaric permeability close the experimental $B_{g}\left(T_{o}\right) / p_{0}$, even though the approximation, $\Delta T+0$, was not a good one ($\Delta T=58.2 \mathrm{~K}$). This approximation has been used by Gilliland et al, 1962 .

6.3.2 Isobaric flow for hydrocarbons

It is now possible to divide $B\left(T_{0}\right) / p_{0}$ for the hydrocarbons $\mathrm{C}_{3} \mathrm{H}_{8}$ to neo- $\mathrm{C}_{5} \mathrm{H}_{10}$ into gas and 'surface' phase components (compare equation (2.11)):

The gas phase isobaric permeabilities, $\mathrm{B}_{\mathrm{g}}\left(\mathrm{T}_{\mathrm{o}}\right) / \mathrm{p}_{\mathrm{o}}$, given in table 6.10, rely on the relationship $B_{g}\left(T_{o}\right) / p_{o} \propto M^{\frac{1}{2}}$ (cf section 5.1), and can be derived from the helium values (obtained from equations (6.32), (6.33) and (6.36)). Using the $B_{g}\left(T_{o}\right) / p_{o}$ values given in the last colum of table 6.10, then $B_{s}\left(T_{o}\right) / p_{o}$ and $B_{s}\left(T_{o}\right) / B_{g}\left(T_{o}\right)$ can be obtained from equation (6.37) and are presented in table 6.11. It is assumed that for gas phase flow in the absence of blockage $\mathrm{B}_{\mathrm{g}}\left(\mathrm{T}_{\mathrm{o}}\right)$ is independent of pressure.

TABLE 6.11
Values of $B_{s}\left(T_{0}\right) / p_{0}$ and $B_{s}\left(T_{0}\right) / B_{g}\left(T_{o}\right)$ ratios

$B_{S}\left(T_{0}\right) / D_{g}\left(T_{0}\right)$ represents the relative efficiency of surface to gas phase transport for isobaric flow at a fixed pressure. For the strongly sorbed gases, $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$ and neo- $\mathrm{C}_{5} \mathrm{H}_{12}$, large values were found for this ratio, especially at low pressures. However as the degree cf site filling increases and a monolayer is approached, the effectiveness of isobaric surface transport is reduced. Propane however has a much more dilute surface $f i l m$ and $B_{s}\left(T_{o}\right) / B_{g}\left(T_{o}\right)$ is found to increase with increasing pressure; here the surface concentration of adsorbate is small and so increasing sorption merely increases the concentration of species participating in isobaric transport.

Gilliland (1962) found that for $\mathrm{C}_{2} \mathrm{H}_{4}$ on Vycor, $\mathrm{B}_{5}\left(\mathrm{~T}_{0}\right) / \mathrm{P}_{0}$ and $\mathrm{B}_{\mathrm{g}}\left(\mathrm{T}_{\mathrm{o}}\right) / \mathrm{P}_{\mathrm{o}}$ were of similar magnitude, however for $\mathrm{C}_{3} \mathrm{H}_{6}, \mathrm{~B}_{\mathrm{s}}\left(\mathrm{T}_{\mathrm{o}}\right) / \mathrm{B}_{\mathrm{g}}\left(\mathrm{T} \mathrm{T}_{\mathrm{o}}\right.$; could be as large as six. The values chtained here on Graphon can be considerably greater than this owing to the more effective surface flow.

6.3.3 Isothermal and isobaric separation factors

The comparative effectiveness of isothermal transport and isobaric transport as a means of gas separation can be observed by comparing, for a given pair of gases at a fixed T_{0}, the ratios of isobaric and isothermal permeabilities. Table 6.12 presents the permeability ratios for $\mathrm{C}_{3} \mathrm{H}_{8}$ and $\mathrm{n}_{-} \mathrm{C}_{4} \mathrm{H}_{10}$ at 393.15 K (isothermal) and T_{0} of 393 K and T_{ℓ} of 333K (isobaric). Figure 6.9 shows how the permeability ratios behave with pressures up to 40 cmHg .

These ratios, predicted separation factors, indicate that in the pressure/temperature range studied for this gas pair, isobaric flux is 2-3 times more effective than isothermal in gas separation. Very similar behaviour was observed by Ash et al (1973) for various pairs of inert and permanent gases on Graphon and, less effectively, on Carbolac. An isothermal ratio of 1.7 and an isobaric ratio of 3.5 have been found by Gilliland (1962) for $\mathrm{C}_{2} \mathrm{H}_{4} / \mathrm{C}_{3} \mathrm{H}_{6}$ on Vycor. However, it should be

Figure $6.9 \quad$ Isobaric and isothermal permeability ratios between n-butane and propane
remembered that these permeability ratios from single-gas studies are only predicted separation factors. In a binary gas mixture crosscoupling is likely to occur, ie the flow of gas A could be influenced by the presence of gas B (and vica-versa), thus leading to quite different separation factors.

TABLE 6.12
Isothermal and isobaric permeability ratios

$\frac{\mathrm{p}}{\mathrm{cmHg}}$	$\begin{gathered} \frac{10^{6} k}{m^{2} s^{-1}} \\ \mathrm{C}_{3} \mathrm{H}_{8} \quad{ }^{n-C_{4} \mathrm{H}_{10}} \end{gathered}$		$\frac{-10^{8} \mathrm{~B}\left(\mathrm{~T}_{\mathrm{O}}\right) / \mathrm{p}_{\mathrm{O}}}{\mathrm{~m}^{2} \mathrm{~s}^{-1} \mathrm{~K}^{-1}}$		Permeability Ratio, $\mathrm{n}_{-\mathrm{C}}^{4} \mathrm{H}_{10} / \mathrm{C}_{3} \mathrm{H}_{8}$ Isothermal Isobaric	
5	1.50	2.22	0.462	2.15	1.48	$4.6{ }_{5}$
10	1.50	2.22	0.479	2.18	1.48	4.54
15	1.50	2.20	0.493	2.11	1.47	4.28
20	1.50	2.20	0.50	2.00	1.46	3.96
25	1.50	2.18	$0.51{ }_{2}$	1.84	1.46	3.60
30	1.50	2.17	0.519	1.68	1.45	3.24
35	1.50	2.15	0.52_{4}	1.53	1.43	2.92
40	1.50	2.13	0.528	1.41	1.42	2.66

It is also found that $B_{s}\left(T_{o}\right) / B_{g}\left(T_{0}\right)$ is greater than K_{s} / K_{g} at the same pressure (compare the values in table 6.11 with Appendix E). Thus surface flow is proportionally much greater under isobaric conditions than under isothermal ones.

Since the iscbaric flux decreases at high pressures as $\theta \rightarrow 1$, then isobaric separation will be best achieved at pressures corresponding to the $-B\left(T_{0}\right) / p_{0}$ maximum of the most stronsly sorbed component,

CHAPTER 7

CONCLUSIONS AND RECOMENDATIONS

Isothermal permeabilities and time-lags have been determined for the series of n-paraffins CH_{4} to $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$ at several temperatures and pressures. It has been shown that a considerable extra flow, due to the presence of a mobile adsorbed film, occurs and that this increases with the molecular weight of the hydrocarbon. At 308.15 K a marked decrease in $n-C_{4} \mathrm{H}_{10}$ permeability and time-lag occurred with increasing pressure; the $\mathrm{C}_{3} \mathrm{Hi}_{8}$ permeability also varied with pressure, tending to reach a shallow maximum at a higher pressure.

The variation with pressure becomes more pronounced as the extent of adsorption (and therefore of extra or surface flow) increases, ie for more condensable gases and at lower temperatures, and is due to the extra flow component. The pressure dependence of the permeability was found to be closely related to the isotherm shape. For gases sorbed according to Henry's law no pressure dependence is observed, since equal pressure increments produce equal increments in adsorbate surface concentration. However for n-butane, not obeying the Henry 1 aw, equal pressure increments produce progressively smaller increments in surface concentration. Since a gradient in surface concentration is one measure of the driving force for isothermal surface flow, then K_{s} and K (flux per unit increment in pressure) are found to decrease.

The relationship between K and isotherm shape was furtiner demonstrated by evaluating a permeability defined as the flux per unit increment in surface concentration, c_{s}^{\prime}. This was found to increase with increasing sorption.

Diffusion coefficients have been evaluated for gas phase and for extra flow; they were found to increase with increasing temperature,
implying an increasing mobility of surface ad-atoms with temperature. For $n-C_{4} \mathrm{H}_{10}$ (and for $\mathrm{C}_{3} \mathrm{H}_{8}$ at 308.15 K) the diffusion coefficients were evaluated at several degrees of surface coverage, taking account of the departure from the Henry law. Approximately constant values of D_{ss} were found at low θ (<0.3), but at high θ especially as $\theta \rightarrow 1$, a significant increase in $D_{s s}$ occurred.

Both the increase in $D_{s s}$ and in K (evaluated with respect to c_{s}^{\prime}) as $\theta \rightarrow 1$ indicates greater surface mobility at high θ and as the monolayer is approached. It was concluded that for gases adsorbed outside the Henry law a random walk diffusive flow mechanism occurs at low θ, but as $\theta \rightarrow 1$ a second mobile layer becomes adsorbed and there is a possible changeover to hydrodynamic flow, accompanied by an overall increase in adsorbate mobility and surface flux.

A linear relationship between $K L$ and k_{s}, observed by Dolphin (1971), has been tested for this series of hydrocarbons. A good linear relationship was obtained confirming this observation.

In the non-isothermal work thermo-osmotic steady-state pressure ratios, $\left(p_{o} / p_{\ell}\right)$, integral heats of transport, Q_{m}, and isobaric permabilities, $\mathrm{B}\left(\mathrm{T}_{\mathrm{o}}\right) / \mathrm{P}_{\mathrm{o}}$, have been obtained for $\mathrm{He}, \mathrm{C}_{3} \mathrm{H}_{8}, \mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$ and neo- $\mathrm{C}_{5} \mathrm{H}_{12}$. Nonideal values for $\left(p_{0} / p_{\ell}\right)_{\infty}$ and $-Q_{m}$ which were lower than the ideal Knudsen gas values $\left(\left(T_{0} / T_{\ell}\right)^{\frac{1}{2}}\right.$ and $\frac{1}{2} R T_{0}$ respectively) were found with helium. The departure from ideality, which has been observed before in these laboratories (Ash, Barrer, C1int, Dolphin and Murray, (1973)), was attributed to differing degrees of specular reflection for 'hot' molecules travelling from T_{o} to T_{ℓ} as compared with 'cold' molecules travelling from T_{ℓ} to T_{0}. Several models for thermal transpiration, takirg account of specular reflection, have been tested for helium, neon and hydrogen and the apparent degree of specular reflection, α, calculated, α was found to be less than 0.5 and was related to the factor β (Ash et al, 1973).

Non-isothermal flow measurements were conducted using an apparatus which incorporated a Baratron prossure transducer. This capacitance membrane manometer was found to be both reliable and stable in use and ideally suited to these studies. A method was develoned using this manometer which allowed an isobaric permeability to be determined from the initial portion of the approach curve to the thermoosmotic steady-state.

For the hydrocarbons, where $\left(p_{o} / p_{\ell}\right)$ was found to be much larger than the Knudsen limit, a pronounced pressure dependence in ($\mathrm{p}_{\mathrm{o}} / \mathrm{p}_{\ell}$) ${ }_{\infty}$, Q_{m} and in the isobaric permeability, $B\left(T_{o}\right) / P_{o}$, has been found. This behaviour was very similar to the pressure variation of K and in the case of $-B\left(T_{o}\right) / P_{o}$ a maximum appears to occur at low pressures.

Extra flow was again found to play an important role in these non-isothermal studies and the driving force for flow was considered to be due in part to the gradient in surface concentration. The gas phase adsorbed phase concentration relationship is important and the departure of the adsorbate from Henry lav adsorption substantially affects these thermo-osmotic parameters. At high pressures it was found that the surface concentration difference per unit pressure between the membrane faces exhibited a similar variation with pressure as $-B\left(T_{0}\right) / p_{0}$.

Both K and $B\left(T_{0}\right) / P_{o}$, (isothermal and isobaric permeabilities) have been divided into gas phase and surface (or extra) flow components. The ratio of surface to gas phase isobaric permeability could be very large and was generally greater than the corresponding isothermal permeability ratio. It was also found that for a given pair of gases the ratio of isobaric permeabilities was greater than the corresponding isothermal permeability ratio. Isobaric flow is therefore likely to be the more efficient means of separating binary gas mixtures, if the membrane was used as a gas separation device.

Further work could usefully be carried out in the following areas:
(i) The range of hydrocarbons studied here should be extended and both isothermal and non-isothermal measurements made for other hydrocarbons which exist in the gas phase at ambient temperature. With the addition of heaters more condensable gases could be investigated and it would be especially interesting to study cyclohexane where the graphite ring in Graphon could act as a template for adsorption.
(ii) Isothermal work should be carried out below ambient temperature where pressure dependence in K may be observed for the less condensable gases such as propane and ethane.
(iii) Membrane 0 and the capacitance manometer can be used for isothermal studies where the Baratron feature of continuous pressure recording could be used to determine isothermal permeabilities without tedious measurements using a cathetometer.
(iv) In the non-isothermal work a more extensive study should be carried out to establish whether maxima in the thermo-osmotic parameters are observed with propane when measurements are made at much higher pressures. Measurements made at very low and very high pressures with $n-C_{4} \mathrm{H}_{10}$ would also be interesting.
(v) Non-isothermal flow measurements should be made in which T_{0} is varied at a fixed T_{ℓ}, thus enabling Q_{o} rather than Q_{m} to be obtained. Any variation in the pressure dependence of Q_{0} as the temperature gradient is changed could then be observed.
(vi) Of very great interest is the behaviour of gas mixtures, both isothermally and non-isothermally. Separation of hydrocarbon mixtures should be possible by iscbaric as well as by isothermal flow. If a pressure region for flow measurements is selected corresponding to a permeability maximum for one of the components and a lower permeability for the other component, then enhanced separation may be possible. The
permeability maximum could thus be a useful tool, or variable parameter, in selecting an area for optimum separation of a given mixture of gases. However the effect of cross-coupling of individual gas flows needs to be considered.
(vii) Construction of a wider, shorter plug is of interest since a much greater flux will be generated and hence gas separation will be more rapid. Also an improvement in the temperature gradient may be possible by the use of a plug-holder having a narrower wall.
(viii) The pressure-dependent phenomena found in this work require a quantitative explanation and a more rigorous relationship with the adsorption isotherm should be developed.

From measurement of adsorption isotherms a Henry law coefficient, k_{s}, can be obtained as

$$
\begin{equation*}
k_{s}=\frac{c_{s}^{\prime}}{c_{g}^{\prime}} \tag{4.2}
\end{equation*}
$$

Here c_{s}^{\prime} is the Gibbs excess surface concentration in moles per unit area of membrane surface. $\quad c_{g}^{\prime}$ is the gas phase concentration ($=p / R T$) in moles per unit volume of gas phase.

If c is the total concentration of adsorbate within the membrane (moles per unit volume of membrane), ε is the membrane porosity (void volume per unit volume of membrane) and A is the internal surfacearea of sorbent, per unit volume of membrane, then we can write:

$$
c=\varepsilon c_{g}^{\prime}+A c_{s}^{\prime}
$$

Defining $c_{s}\left(=A c_{s}^{\prime}\right)$ as the Gibb's excess concentration per unit volume of membrane and $c_{g}\left(=\varepsilon \quad c_{g}^{\prime}\right)$ as the gas phase concentration per unit volume of membrane, then we write

$$
c=c_{s}+c_{g}
$$

An alternative expression for c can be written:

$$
c=c^{s}+c^{g}
$$

where c^{s} is the absolute concentration of adsorbate material within the sorption volume, A δ, per unit volume of membrane and c^{g} is the gas phase concentration, per unit volume of membrane, in the pore space excluding the adsorbed layer (of thickness δ and volume A δ): The concept of absolute sorption is discussed further in section 4.3.

The various concentrations may be related by:

$$
\begin{aligned}
& c^{s}=A\left(c_{s}^{\prime}+\delta c_{g}^{\prime}\right) \\
& c^{g}=(\varepsilon-A \delta) c_{g}^{\prime}
\end{aligned}
$$

Expressions for the flux, J, can be formulated in terms of either $c_{s}^{\prime}, c_{g}^{\prime} ; c_{s}, c_{g}$ or c^{s}, c^{g}, and similarly for permeabilities (K, K_{s}, K_{g}) and diffusion coefficients ($D, D_{s s}, D_{g s}$).

It has been common practice to divide the total mass flow into two components, J_{s} and J_{g}, which are considered to be due to flow entirely on the surface and entirely in the gas phase.

Barrer and Gabor (1960) pointed out that in a compacted carbon membrane we have very tortuous pores with bottlenecks and crevices. Consequently surface flow through a 'pore' can not be continuous because of the very nature of the membrane. Molecules in the surface phase must undergo evaporative flights, in the gas phase, while crossing crevices and discontinuities in the surface. Thus besides an equilibrium between adsorbed and gas phase molecules, there is an additional interchange of sorbed molecules between the surface and gas phase. The ratio of local gas phase to local surface phase flux will fluctuate as transport occurs through the membrane.

The surface flux or more correctly 'extra' flux, J_{s}, can therefore be divided (at any cross-section normal to the flow) into that part, J_{s}^{\prime}, which is entirely in the surface, and the remainder $J-J_{s}^{\prime}$, which is in the gas phase.

$$
\text { ie } J_{s}=J_{s}^{\prime}+\left(J_{s}-J_{s}^{\prime}\right)
$$

This could be alternatively expressed as:

$$
J_{s}^{\prime}=(1-\mathrm{X}) J_{\mathrm{s}} \text { and }\left(J_{\mathrm{s}}-J_{\mathrm{s}}^{\prime}\right)=\mathrm{X} J_{\mathrm{s}}
$$

where X is the fraction of 'extra' flow which is in the gas phase.
Ash, Barrer, Clint, Dolphin ar.d Murray, (1973), used this treatment
and considered that the two components of extra flow would have different diffusion coefficients, D_{1} (surface phase) and D_{2} (gas phase).

Hence we can write $D_{s s}=D_{1}+D_{2}$ and therefore

$$
-D_{s S} \frac{d c_{s}}{d x}=-D_{1} \frac{d c_{s}}{d x}-D_{2} \frac{d c_{s}}{d x}
$$

$$
\text { and } \frac{\operatorname{din} D_{s s}}{d T}=\frac{E_{s s}}{R T^{2}}=\frac{d}{d T}\left\{\ln \left[D_{01} \exp \left(-E_{1} / R T\right)+D_{02} \exp \left(-E_{2} / R T\right)\right]\right\}
$$

where D_{01} and D_{02} are Arrhenius constants and E_{1} and E_{2} are activation energies pertaining to J_{s}^{\prime} and ($J_{\mathrm{s}}-J_{\mathrm{s}}^{\prime}$).

A third subdivision of J has been proposed by Ash, Barrer and Sharma (1976). Helium is used as an internal calibrating gas to evaluate a gas phase flux of the sorbable gas, $J_{g}^{\prime \prime}$, in the presence of its mobile adsorbed film, which restricts the pore volume available to the gas. The remainder of the f1ow, $J_{s}^{\prime \prime}\left(=J-J_{g}^{\prime \prime}\right)$, is the extra flow associated with the mobile adsorbed film.

APPENDIX B

Calibrations and standard volumes
(i) Adsorption sample bulb calibrations

T_{T}	$\left(\frac{300 \mathrm{~V}_{1}}{\mathrm{~T}_{\mathrm{T}}}\right) / \mathrm{cm}^{3}$	$\mathrm{~V}_{1} / \mathrm{cm}^{3}$		
	A	B	A	B
77.4	47.9_{8}	-	12.3_{8}	-
308.15	12.2_{1}	40.0_{8}	12.5_{4}	41.1_{7}
320.65	11.8_{0}	38.4_{9}	12.6_{2}	41.1_{3}
333.15	11.4_{2}	37.0_{8}	12.6_{8}	41.1_{8}
343.15	11.1_{2}	36.0_{6}	12.7_{2}	41.2_{5}
353.15	10.8_{2}	35.0_{8}	12.7_{4}	41.2_{9}
363.15	10.5_{4}	34.1_{4}	12.7_{6}	41.3_{2}
373.15	10.2_{7}	33.2_{2}	12.7_{8}	41.3_{1}
393.15	9.78_{8}	31.5_{0}	12.8_{3}	41.2_{8}

T_{T} is the isotherm temperature and V_{1} is the volume of gas in the adsorption bulb at that temperature.
System A refers to burette 46 and 7.164 g sample of Graphon System B refers to burette 55 and 24.27 g sample of Graphon
(ii) McLeod gauge calibration

Gauge	$\frac{\mathrm{V}}{\mathrm{cm}^{3}}$	$\frac{10^{5} \cdot \mathrm{k}}{\mathrm{mm}^{-1}}$
D1	304.3	1.032_{4}
D2	301.1	1.043_{4}
D3	295.1	1.064_{6}

$\mathrm{V}=$ gauge volume; $\mathrm{k}=\pi \mathrm{r}^{2} / \mathrm{V}$ where r is the capillary radius. (iii) Buffer volumes at $25^{\circ} \mathrm{C}$

Buffer	$\frac{\text { Volume }}{3}$
E	1112.0
X	325.8
α	1056.4
β	2271.0
γ	5409.6
ε	${ }^{1070}{ }^{\circ}$
ζ	2314.2
η	3214.2
θ	3311.6

APPENDIX C
Adsorption isotherm data
p denotes equilibrium gas pressure (cmHg) v denotes uptake (cm^{3} S.T.P. g^{-1})

Hydrogen isotherms

$T=308.15 \mathrm{~K}$	$\mathrm{~T}=320.65 \mathrm{~K}$		$\mathrm{~T}=333.15 \mathrm{~K}$		$\mathrm{~T}=343.15 \mathrm{~K}$		
p	V	p	v	p	v	p	v
1.33	0.0005	1.80	0.0008	2.32	0.0003	2.37	0.0007
1.80	0.0009	3.75	0.0021	4.01	0.0015	4.13	0.0016
2.25	0.0011	6.95	0.0036	7.68	0.0032	7.08	0.0027
2.69	0.0015	11.83	0.0062	13.22	0.0057	12.36	0.0048
3.79	0.0018	14.47	0.0075	17.08	0.0074	17.95	0.0068
6.37	0.0034	18.74	0.0099	21.60	0.0095	22.81	0.0088
7.72	0.0042	25.51	0.0133	24.89	0.0108	26.59	0.0102
7.72	0.0042	28.56	0.0147	29.64	0.0129	32.35	0.0124
10.27	0.0052	31.71	0.0165	35.06	0.0154	37.21	0.0142
14.02	0.0073	36.02	0.0184	40.15	0.0176	41.70	0.0158
17.51	0.0091	40.59	0.0207	44.79	0.0195	47.94	0.0183
20.96	0.0110	46.96	0.0241	50.68	0.0223		
24.89	0.0130					38.01	0.0144
34.00	0.0179	37.30	0.0196	40.96	0.0179	27.70	0.0106
37.25	0.0198	27.24	0.0144	29.91	0.0139	19.61	0.0074
42.38	0.0225	19.49	0.0101	21.31	0.0097	11.37	0.0041
48.26	0.0256	12.17	0.0063	12.86	0.0059	7.99	0.0027
		6.37	0.0031	6.69	0.0031		
39.11	0.0207						
28.74	0.0155						
17.39	0.0094						

Hydrogen Isotherms

$\mathrm{T}=353.15 \mathrm{~K}$	$\mathrm{~T}=363.15 \mathrm{~K}$		$\mathrm{~T}=373.15 \mathrm{~K}$		$\mathrm{~T}=393.15 \mathrm{~K}$		
p	v	p	v	p	v	p	v
2.52	0.0006	2.17	0.0002	1.82	0.0004	2.29	0.0003
5.43	0.0019	3.84	0.0011	3.26	0.0010	4.20	0.0011
8.53	0.0027	6.92	0.0020	5.86	0.0018	6.69	0.0016
11.80	0.0039	12.27	0.0040	10.52	0.0035	12.12	0.0034
15.09	0.0054	17.33	0.0056	16.25	0.0052	16.75	0.0048
18.66	0.0064	22.23	0.0077	22.65	0.0076	21.75	0.0060
23.09	0.0078	27.02	0.0093	27.37	0.0092	26.39	0.0076
27.99	0.0098	32.53	0.0113	32.70	0.0111	32.29	0.0096
33.94	0.0119	37.90	0.0132	38.25	0.0128	38.54	0.0109
38.22	0.0132	41.78	0.0146	43.26	0.0145	43.71	0.0124
42.78	0.0148	48.05	0.0166	45.79	0.0155	49.36	0.0137
50.51	0.0169						
		37.44	0.0133	35.84	0.0124	38.76	0.0112
40.14	0.0133	26.92	0.0099	25.64	0.0090	27.56	0.0081
29.00	0.0105	18.99	0.0064				
20.48	0.0064	11.18	0.0038				
12.53	0.0039	5.69	0.0013				
6.37	0.0018						

Neon Isotherms

$T=308.15 \mathrm{~K}$		$\mathrm{T}=320.65 \mathrm{~K}$		$\mathrm{T}=333.15 \mathrm{~K}$		$\mathrm{T}=343.15 \mathrm{~K}$	
p	v	p	v	P	v	p	v
3.37	0.0006	2.83	0.0006	3.49	0.0005	2.92	0.0004
6.25	0.0010	5.55	0.0009	6.33	0.0007	5.97	0.0006
10.67	0.0020	9.58	0.0019	11.01	0.0017	10.45	0.0014
14.97	0.0023	14.71	0.0026	15.23	0.0024	14.48	0.0017
18.74	0.0033	18.46	0.0035	19.25	0.0028	18.44	0.0022
23.76	0.0041	24.13	0.0046	24.41	0.0036	23.97	0.0028
28.95	0.0052	29.94	0.0057	29.32	0.0045	29.39	0.0035
33.23	0.0060	35.18	0.0066	34.90	0.0053	34.39	0.0041
37.38	0.0067	39.85	0.0072	40.35	0.0056	39.95	0.0053
40.85	0.0072	45.34	0.0082	48.37	0.0066	47.74	0.0063
44.35	0.0082	50.56	0.0089				
48.76	0.0086			38.40	0.0050	37.53	0.0052
		40.72	0.0070	27.87	0.0038	27.14	0.0040
38.98	0.0070	29.80	0.0047	19.82	0.0025	19.19	0.0025
20.49	0.0037	21.21	0.0032	11.62	0.0015	12.50	0.0016
14.50	0.0027					6.38	0.0007
7.64	0.0012						

Neon Isotherms

$\mathrm{T}=353.15 \mathrm{~K}$		$\mathrm{T}=363.15 \mathrm{~K}$		$\mathrm{T}=373.15 \mathrm{~K}$		$\mathrm{T}=393.15 \mathrm{~K}$	
p	v	P	v	p	v	p	v
4.81	0.0005	4.46	0.0004	4.02	0.0003	5.18	0.0007
8.61	0.0007	8.19	0.0005	7.52	0.0004	8.87	0.0007
11.95	0.0012	11.41	0.0010	10.51	0.0008	12.49	0.0015
15.27	0.0016	14.63	0.0013	13.44	0.0011	16.18	0.0018
19.94	0.0021	19.30	0.0015	18.54	0.0013	21.28	0.0022
25.21	0.0026	24.81	0.0022	23.68	0.0018	27.20	0.0030
30.31	0.0029	30.05	0.0027	29.21	0.0022	33.19	0.0036
36.06	0.0034	36.22	0.0033	35.35	0.0028	39.87	0.0040
41.61	0.0041	41.19	0.0038	40.64	0.0030	45.61	0.0042
48.60	0.0049	48.90	0.0041	48.04	0.0033	51.78	0.0049
38.51	0.0042	38.15	0.0033	37.07	0.0028	41:72	0.0023
27.69	0.0030	27.53	0.0026	26.57	0.0021	29.65	0.0027
19.56	0.0019	19.39	0.0020	18.70	0.0010	20.70	0.0016
12.08	0.0011	11.38	0.0013				
		5.77	0.0005				

Krypton Isotherms

$\mathrm{T}=308.15 \mathrm{~K}$		$\mathrm{T}=320.65 \mathrm{~K}$		$\mathrm{T}=333.15 \mathrm{~F}$		$\mathrm{T}=343.15 \mathrm{~K}$	
p	v	p	v	P	v	p	v
1.96	0.0146	2.22	0.0128	1.28	0.0057	2.12	0.0093
2.96	0.0229	3.38	0.0192	1.93	0.0091	3.22	0.0145
4.42	0.0339	5.09	0.0307	2.76	0.0134	4.61	0.0210
6.17	0.0494	7.19	0.0442	4.31	0.0210	6.76	0.0300
8.39	0.0640	9.87	0.0605	6.54	0.0330	10.24	0.0459
9.67	0.0737	13.47	0.0824	9.31	0.0468	14.80	0.0657
13.65	0.1039	19.24	0.1181	12.80	0.0606	19.72	0.0859
18.70	0.1400	25.79	0.1561	19.32	0.0952	25.24	0.1094
23.99	0.1789	31.39	0.1900	23.46	0.1154	30.08	0.1306
29.44	0.2193	36.39	0.2190	29.42	0.1427	35.91	0.1554
33.29	0.2469	43.09	0.2580	33.65	0.1628	40.97	0.1760
37.68	0.2780	48.78	0.2921	38.24	0.1867	47.12	0.2017
44.57	0.3267			43.13	0.2116		
50.14	0.3661	37.66	0.1942	48.69	0.2396	35.54	0.1503
		24.87	0.1468			23.09	0.0960
38.75	0.2820	16.35	0.0911	36.50	0.1767	15.15	0.0584
25.98	0.1893	2.13	0.0052	23.98	0.1140	6.63	0.0225
17.08	0.1185			15.78	0.0711		
3.60	0.0190			2.97	0.0079		

Krypton Isotherms

$\mathrm{T}=353.15 \mathrm{~K}$	$\mathrm{~T}=363.15 \mathrm{~K}$		$\mathrm{~T}=373.15 \mathrm{~K}$		$\mathrm{~T}=393.15 \mathrm{~K}$		
p	v	p	v	p	v	p	v
2.27	0.0081	2.60	0.0075	2.96	0.0076	2.58	0.0048
3.49	0.0140	4.02	0.0135	4.57	0.0132	4.02	0.0094
5.39	0.0217	4.01	0.0156	7.08	0.0210	6.24	0.0147
7.70	0.0311	6.19	0.0217	10.34	0.0303	8.76	0.0209
10.74	0.0431	8.96	0.0310	15.00	0.0433	12.42	0.0297
14.80	0.0583	11.95	0.0409	22.02	0.0639	18.29	0.0437
20.54	0.0793	17.42	0.0593	27.50	0.0802	21.87	0.0516
26.61	0.1025	22.57	0.0763	31.70	0.0933	27.33	0.0652
31.32	0.1194	28.13	0.0952	36.90	0.1094	32.35	0.0795
36.69	0.1386	32.76	0.1115	43.70	0.1313	36.86	0.0884
41.89	0.1580	37.03	0.1247	48.87	0.1450	41.79	0.1006
47.27	0.1780	37.03	0.1249	49.29	0.1454	49.72	0.1197
		43.35	0.1475				
32.35	0.1201	50.44	0.1708	35.24	0.1006	35.86	0.0886
21.03	0.0751			22.95	0.0661	23.21	0.0577
13.77	0.0451	36.85	0.1263	14.80	0.0395	14.89	0.0350
		24.27	0.0835			5.05	0.0127
		15.65	0.0530				

Xenon Isotherms

$=308.15 \mathrm{~K}$	$\mathrm{~T}=320.65 \mathrm{~K}$	$\mathrm{~T}=333.15 \mathrm{~K}$	$\mathrm{~T}=343.15 \mathrm{~K}$				
p	V	p	v	p	V	p	V
1.62	0.054	2.84	0.071	1.89	0.035	1.45	0.023
2.31	0.078	4.14	0.104	2.76	0.055	2.15	0.036
3.21	0.106	5.91	0.146	4.04	0.078	3.10	0.052
4.13	0.135	7.64	0.188	5.34	0.104	4.26	0.070
6.20	0.197	11.15	0.269	6.78	0.130	5.45	0.089
8.92	0.282	16.44	0.392	9.66	0.182	7.62	0.121
12.45	0.389	23.17	0.548	14.32	0.270	11.38	0.180
15.98	0.495	26.99	0.635	19.95	0.372	16.52	0.259
18.95	0.583	31.65	0.741	26.34	0.486	20.12	0.313
24.50	0.748	34.50	0.803	30.61	0.567	24.55	0.379
28.37	0.862	39.83	0.922	34.48	0.630	30.65	0.469
34.37	1.039	46.22	1.063	41.31	0.742	35.70	0.544
40.20	1.208	51.02	1.171	47.09	0.844	39.71	0.603
47.42	1.417					47.33	0.715
		40.15	0.927	34.64	0.626		
36.49	1.101	28.55	0.665	24.02	0.437	34.39	0.524
26.09	0.795	19.19	0.449	16.09	0.292	23.73	0.364
18.14	0.556	12.91	0.304	8.19	0.146	15.76	0.241
10.61	0.329	5.61	0.131	2.90	0.045	7.64	0.116
4.16	0.129	3.83	0.088			2.62	0.035

Xenon Isotherms

$\mathrm{T}=353.15 \mathrm{~K}$	$\mathrm{~T}=363.15 \mathrm{~K}$	$\mathrm{~T}=373.15 \mathrm{~K}$		$\mathrm{~T}=393.15 \mathrm{~K}$			
p	V	p	v	p	V	p	V
1.81	0.023	1.17	0.012	1.62	0.015	2.03	0.014
2.69	0.038	1.75	0.020	2.46	0.025	3.15	0.023
3.91	0.054	2.61	0.030	3.64	0.037	4.69	0.035
5.43	0.074	3.69	0.042	5.16	0.052	6.80	0.050
6.56	0.088	4.85	0.056	6.72	0.066	10.53	0.077
9.88	0.134	6.88	0.077	10.15	0.100	15.92	0.116
14.38	0.193	10.17	0.114	14.27	0.138	20.92	0.152
20.01	0.265	14.10	0.159	19.62	0.188	25.12	0.180
24.16	0.321	18.91	0.212	24.80	0.238	30.93	0.222
29.15	0.383	23.65	0.266	30.39	0.293	35.76	0.251
35.81	0.467	30.56	0.340	34.87	0.335	40.66	0.286
38.86	0.506	35.25	0.390	39.25	0.377	45.17	0.316
47.15	0.608	39.98	0.442	42.43	0.407	49.74	0.348
		44.29	0.488	49.29	0.469		
35.16	0.458	49.63	0.544			36.95	0.258
23.56	0.310			36.11	0.345	24.47	0.169
15.83	0.208	37.75	0.417	23.89	0.229	15.84	0.104
7.40	0.098	25.38	0.285	15.80	0.150	6.35	0.036
2.43	0.031	16.69	0.186	6.97	0.064	2.91	0.010
		7.51	0.083	3.25	0.026		

Methane Isotherms

$T=308.15 \mathrm{~K}$		$T=320.65 \mathrm{~K}$		$T=333.15 \mathrm{~K}$		$T=343.15 \mathrm{~K}$	
p	v	p	v	p	v	p	v
1.80	0.0127	1.80	0.0103	1.50	0.0062	2.12	0.0095
2.70	0.0194	2.71	0.0161	2.25	0.0111	3.23	0.0137
3.77	0.0274	3.85	0.0228	3.22	0.0157	4.67	0.0196
6.44	0.0462	7.77	0.0462	6.21	0.0298	8.35	0.0352
9.61	0.0691	11.73	0.0693	9.35	0.0452	12.72	0.0531
13.44	0.0962	16.57	0.0974	13.45	0.0643	18.17	0.0752
18.21	0.1298	20.73	0.1210	19.37	0.0923	23.30	0.0968
25.17	0.1790	25.75	0.1509	27.72	0.1318	28.58	0.1190
29.89	0.2119	30.85	0.1809	32.49	0.1537	34.99	0.1455
35.52	0.2518	36.79	0.2159	37.27	0.1760	40.60	0.1698
40.45	0.2868	43.39	0.2540	42.47	0.2014	46.52	0.1935
45.61	0.3230	49.12	0.2860	48.72	0.2311		
						32.39	0.1395
32.30	0.2318	35.59	0.2110	35.74	0.1730	21.22	0.0923
21.60	0.1574	23.74	0.1423	23.62	0.1161	13.82	0.0647
14.23	0.1043	15.51	0.0941	15.38	0.0769	4.87	0.0265
6.91	0.0520	8.71	0.0554	5.97	0.0324		

Methane Isotherms

$\mathrm{T}=353.15 \mathrm{~K}$	$\mathrm{~T}=363.15 \mathrm{~K}$		$\mathrm{~T}=373.15 \mathrm{~K}$	$\mathrm{~T}=393.15 \mathrm{~K}$			
p	V	p	v	p	V	p	v
1.74	0.0067	2.93	0.0077	2.70	0.0078	2.15	0.0040
2.63	0.0104	4.47	0.0137	4.15	0.0122	3.31	0.0074
3.84	0.0141	6.58	0.0199	6.10	0.0174	4.87	0.0108
6.36	0.0240	9.89	0.0309	8.57	0.0244	8.16	0.0186
9.74	0.0358	15.18	0.0473	13.20	0.0372	12.64	0.0282
14.03	0.0505	21.88	0.0681	19.17	0.0539	18.44	0.0410
18.59	0.0673	26.79	0.0842	24.46	0.0694	23.41	0.0530
24.42	0.0880	33.16	0.1048	29.77	0.0843	28.86	0.0649
29.25	0.1054	38.06	0.1210	34.94	0.0991	34.00	0.0768
34.50	0.1247	43.00	0.1367	40.32	0.1143	39.30	0.0892
40.10	0.1458	48.63	0.1551	45.77	0.1291	46.44	0.1040
45.35	0.1654						
		34.04	0.1104	31.16	0.0900	31.14	0.0713
31.47	0.1174	22.13	0.0747	20.23	0.0601	20.15	0.0463
20.60	0.0791	14.35	0.0480	13.09	0.0396	12.99	0.0296
13.32	0.0534	6.14	0.0218	6.12	0.0197	5.18	0.0119
7.02	0.0303			2.56	0.0086		

Ethane Isotherms

$\mathrm{T}=308.15 \mathrm{~K}$	$\mathrm{~T}=320.65 \mathrm{~K}$	$\mathrm{~T}=333.15 \mathrm{~K}$		$\mathrm{~T}=343.15 \mathrm{~K}$			
p	v	p	v	p	v	p	v
1.95	0.100	1.81	0.069	1.30	0.037	1.55	0.036
2.60	0.132	3.16	0.119	1.80	0.053	2.30	0.052
3.23	0.163	4.36	0.162	2.37	0.068	3.23	0.075
4.94	0.243	6.00	0.220	3.54	0.100	4.31	0.099
6.63	0.322	7.73	0.279	4.99	0.140	6.49	0.148
8.30	0.398	11.14	0.396	6.52	0.180	9.32	0.210
10.68	0.506	15.39	0.541	9.58	0.260	12.47	0.278
14.38	0.675	19.82	0.690	13.52	0.364	16.83	0.373
17.94	0.837	23.72	0.822	17.89	0.477	22.38	0.491
22.01	1.020	29.28	1.007	22.40	0.592	26.65	0.581
27.42	1.261	34.91	1.194	29.46	0.772	33.18	0.719
31.31	1.436	39.83	1.357	35.33	0.920	38.97	0.838
36.24	1.654	47.73	1.614	41.51	1.077	43.87	0.939
41.16	1.870			46.82	1.210	47.56	1.015
46.72	2.111	37.92	1.294				
		27.56	0.949	35.32	0.923	35.48	0.766
37.11	1.692	19.22	0.666	25.17	0.664	24.62	0.537
27.54	1.267	12.33	0.432	17.20	0.456	16.73	0.368
19.54	0.910	6.28	0.222	10.15	0.273	8.51	0.190
13.47	0.630			4.95	0.133	4.10	0.089
7.20	0.344						

Ethane Isotherms

$\mathrm{T}=353.15 \mathrm{~K}$		$T=363.15 \mathrm{~K}$		$\mathrm{T}=373.15 \mathrm{~K}$		$\mathrm{T}=393.15 \mathrm{~K}$	
p	v	p	v	p	v	p	v
1.00	0.018	1.48	0.023	1.63	0.022	2.16	0.020
1.90	0.037	2.20	0.036	3.32	0.045	3.25	0.030
2.54	0.049	3.23	0.052	6.08	0.082	4.59	0.043
3.67	0.070	4.41	0.071	8.98	0.119	7.82	0.074
4.96	0.094	5.59	0.090	12.54	0.165	11.75	0.112
8.37	0.157	8.20	0.130	17.32	0.226	16.66	0.158
12.11	0.224	11.27	0.177	23.71	0.306	22.57	0.213
16.37	0.300	16.01	0.249	28.93	0.371	28.74	0.270
20.98	0.382	23.20	0.357	34.37	0.439	35.95	0.337
28.41	0.512	31.82	0.485	40.41	0.513	42.77	0.399
35.69	0.638	37.77	0.571	45.29	0.572	48.42	0.448
41.59	0.739	43.88	0.662				
48.26	0.855	49.75	0.744	32.47	0.414	34.93	0.326
				22.02	0.282	22.95	0.214
36.06	0.642	36.99	0.562	14.52	0.185	15.12	0.138
24.76	0.445	25.18	0.387	6.95	0.086	7.47	0.065
16.67	0.299	16.80	0.259				
7.13	0.126	7.81	0.122				
3.33	0.054						

Propane Isotherms

$T=308.15 \mathrm{~K}$	$\mathrm{~T}=320.65 \mathrm{~K}$		$\mathrm{~T}=333.15 \mathrm{~K}$		$\mathrm{~T}=343.15 \mathrm{~K}$		
p	v	p	v	p	v	p	v
0.68	0.189	0.67	0.132	1.41	0.184	1.38	0.143
1.29	0.339	2.32	0.410	1.97	0.252	2.95	0.287
2.26	0.571	5.73	0.968	5.56	0.665	6.50	0.601
3.65	0.900	9.68	1.608	10.93	1.270	10.06	0.911
5.70	1.394	14.83	2.419	15.28	1.751	14.49	1.290
8.05	1.955	18.94	3.029	18.76	2.136	21.61	1.894
11.61	2.780	25.70	3.948	21.79	2.456	25.05	2.175
14.55	3.421	29.68	4.427	25.26	2.807	29.79	2.557
19.37	4.351	36.71	5.149	31.37	3.400	33.23	2.816
23.12	4.969	39.89	5.427	33.54	3.594	36.86	3.082
27.59	5.591	45.99	5.900	36.62	3.859	43.63	3.550
31.66	6.060			40.43	4.167	48.14	3.838
35.06	6.403	38.68	5.318	45.43	4.541		
40.33	6.845	31.13	4.575			40.30	3.315
45.63	7.218	24.30	3.758	38.07	3.972	31.24	2.648
		16.33	2.639	30.11	3.267	23.35	2.015
38.09	6.663	8.30	1.363	23.03	2.565	13.68	1.196
30.58	5.939			15.20	1.721	6.86	0.601
24.05	5.104			8.45	0.962		
14.98	3.505						
9.18	2.212						

Propane Isotherms

$\mathrm{T}=353.15 \mathrm{~K}$		$T=363.15 \mathrm{~K}$		$T=373.15 \mathrm{~K}$		$T=393.15 \mathrm{~K}$	
p	v	p	v	p	V	p	v
1.20	0.100	1.48	0.096	1.10	0.058	2.45	0.083
2.58	0.201	3.48	0.213	3.77	0.186	4.49	0.149
4.92	0.367	6.41	0.377	7.86	0.372	9.60	0.306
9.46	0.680	. 10.32	0.590	12.67	0.583	17.69	0.548
15.59	1.093	15.79	0.883	17.22	0.783	22.84	0.696
20.28	1.410	21.09	1.164	20.32	0.916	32.12	0.964
24.79	1.706	25.36	1.387	25.59	1.141	38.13	1.130
30.04	2.045	31.47	1.700	30.30	1.338	42.83	1.258
33.80	2.277	36.19	1.935	35.14	1.538	48.87	1.427
37.68	2.512	42.54	2.247	39.49	1.714		
44.44	2.905	47.64	2.491	45.77	1.963	37.79	1.114
				48.65	2.077	26.79	0.801
36.26	2.422	38.58	2.053			18.40	0.555
27.62	1.879	28.75	1.554	39.51	1.708	9.15	0.280
20.33	1.396	20.66	1.128	28.94	1.267		
11.02	0.767	9.79	0.542	20.48	0.901		
				8.11	0.357		

n-Butane Isotherms

$\mathrm{T}=308.15 \mathrm{~K}$		$\mathrm{T}=373.15 \mathrm{~K}$		$T=393.15 \mathrm{~K}$	
p	v	p	v	p	v
0.13	0.198	1.17	0.226	1.05	0.128
0.36	0.546	3.03	0.545	1.65	0.196
0.63	0.951	6.35	1.087	2.63	0.301
0.90	1.347	8.43	1.418	5.14	0.554
1.42	2.036	11.38	1.866	9.05	0.937
2.58	3.517	15.38	2.443	13.28	1.346
2.79	3.731	19.30	2.930	16.58	1.646
4.95	5.322	23.70	3.437	20.98	2.034
9.93	6.754	27.60	3.838	24.87	2.362
15.55	7.478	30.73	4.109	26.81	2.509
19.54	7.836	35.99	4.499	29.73	2.721
23.36	8.117	43.24	4.949	34.14	3.021
29.51	8.487	49.57	5.286	39.55	3.359
39.17	9.022			45.90	3.714
44.84	9.359	40.97	4.790		
		31.86	4.123	37.21	3.185
36.13	8.897	24.15	3.403	28.74	2.583
27.46	8.389	11.00	1.794	21.42	1.994
20.39	7.895			9.23	0.870
15.39	7.465				
9.03	6.574				

Nitrogen Isotherm at 77.4 K

P	v	p	v.
0.034	0.26	23.96	30.75
0.032	0.55	25.38	31.90
0.034	1.06	27.85	33.83
0.038	1.81	29.72	35.23
0.041	2.84	33.02	37.46
0.050	3.97	35.96	39.26
0.051	5.32	40.22	41.88
0.058	6.74	42.89	43.65
0.065	8.58	47.25	46.92
0.072	11.10		
0.101	14.07	39.64	41.57
0.245	16.86	32.21	36.98
1.13	19.01	26.81	33.08
4.26	20.64	22.65	29.75
5.68	21.13	18.69	26.88
8.26	22.00	14.77	24.65
9.48	22.43	11.07	23.03
11.63	23.25	7.96	21.89
13.53	24.06	5.62	21.11
15.08	24.80	4.02	20.55
16.69	25.67	2.93	20.13
18.26	26.57	2.21	19.80
20.30	27.93	1.75	19.54
21.86	29.09	1.45	19.31

APPENDIX D

Isothermal flow results
He?ium

$\frac{\mathrm{T}}{\mathrm{~K}}$	$\frac{\mathrm{p}_{\mathrm{o}}}{\mathrm{cmHg}}$	$\frac{\mathrm{L}}{\min }$	$\frac{\mathrm{L}^{*}}{\min }$	$\frac{10^{5} \mathrm{G}}{\mathrm{~J} \mathrm{~s}^{-1}}$	$\frac{10^{6} K}{\mathrm{~m}^{2} \mathrm{~s}^{-1}}$
308.1_{5}	. 5.14	0.48	0.911	0.86	1.62
	10.53	0.42		1.75	1.61
	12.63	0.82		2.12	1.63
	15.45	0.72		2.57	1.61
	20.04	0.21		3.33	1.61
	30.21	0.32		5.02	1.61
	39.33	0.43		6.55	1.61
	49.48	0.36		8.22	1.61
320.6_{5}	10.50	0.40	0.893	1.78	1.64
333.15	10.47	0.40	0.877	1.82	1.68
343.15	10.42	0.29	0.86	1.84	1.71
353.15	10.39	0.48	$0.85{ }_{1}$	1.87	1.74
363.15	10.35	0.50	0.839	1.89	1.77
373.15	10.29	0.39	0.820	1.91	1.80
393.15	10.26	0.37	0.807	1.96	1.85
	thed v	obta	by Dol	R.J.	

Isothermal flow results

Methane

T	$\frac{\mathrm{p}_{\mathrm{o}}}{\mathrm{cmHg}}$	$\frac{\mathrm{L}}{\min }$	$\frac{10^{5} \mathrm{G}}{\mathrm{Js}^{-1}}$	$\frac{10^{6} \underline{x}}{\mathrm{~m}^{2} \mathrm{~s}^{-1}}$
308.15	10.01	2.60	1.62	1.56
	10.08	$2.6{ }_{1}$	1.60	1.54
	18.31	$2.6{ }_{2}$	2.96	1.57
	18.38	2.63	2.97	1.57
320.65	10.05	2.35	1.57	1.51
333.15	10.02	2.25	1.54	1.49
343.1 ${ }_{5}$	9.93	2.13	1.51	1.47
353.15	9.92	2.0_{1}	1.50	1.47
363.15	9.90	${ }^{1.9} 0$	1.48	1.45
373.15	9.86	1.89	1.47	1.44
393.15	9.81	1.65	1.44	1.42

Isothermal flow results
Ethane

T K	$\frac{\mathrm{p}_{\mathrm{o}}}{\mathrm{cmHg}}$	$\frac{\mathrm{L}}{\min }$	$\frac{10^{5} \mathrm{G}}{\mathrm{J} \mathrm{s}} \mathrm{s}^{-1}$	$\frac{10^{6} \mathrm{~K}}{\mathrm{~m}^{2} \mathrm{~s}^{-1}}$
308.1_{5}	10.16	11.9_{8}	1.78	1.70
320.6_{5}	10.11	10.3_{3}	1.66	1.59
333.1_{5}	10.05	8.9_{0}	1.56	1.50
343.1_{5}	10.00	7.8_{O}	1.49	1.44
353.1_{5}	10.03	6.96	1.45	1.40
363.1_{5}	9.93	6.3_{5}	1.39	1.36
373.1_{5}	9.90	5.7_{2}	1.36	1.33
393.1_{5}	9.86	4.8_{5}	1.30	1.27

Propane

Propane				
$\frac{\mathrm{T}}{\mathrm{~K}}$	$\frac{\mathrm{P}_{\mathrm{o}}}{\mathrm{cmHg}}$	$\frac{\mathrm{L}}{\min }$	$\frac{10^{5} \mathrm{G}}{\mathrm{~J} \mathrm{~s}^{-1}}$	$\frac{10^{6} K}{m^{2} s^{-1}}$
308.15	5.10	37.8	1.48	2.80
	10.13	38.5	2.95	2.82
	19.80	37.2	5.75	2.81
320.65	5.02	31.2	1.27	2.45
	10.02	31.5	2.55	2.47
	19.92	30.9	5.09	2.47
333.15	9.91	25.8	2.26	2.21
343.15	10.10	21.9	2.11	2.02
353.1 ${ }_{5}$	10.01	19.7	1.95	1.89
363.15	9.96	16.7	1.79	1.75
373.1_{5}	10.07	14.8	1.71	1.65
393.15	5.00	$12.5{ }_{3}$	0.78	1.51
	5.03	12.37	0.78	1.50
	10.04	$12.1{ }_{8}$	1.55	1.49
	20.07	11.56	3.09	1.49
n-Butane				
308.1_{5}	5.18	89.8	3.44	6.44
	9.78	-	5.62	5.57
	9.95	77.2	5.68	5.53
	18.21	64.5	8.53	4.53
320.65	9.96	70.7	5.04	4.90
333.15	5.09	64.2	2.36	4.49
	9.94	61.3	4.34	4.23
	18.17	54.9	7.26	3.87
343.15	9.93	54.1	3.85	3.75
353.15	5.09	48.3	1.78	3.39
	9.96	48.8	3.45	3.36
	18.29	44.3	6.06	3.21
363.15	9.98	41.5	3.06	2.97
	18.31	39.9	5.51	2.91
373.15	5.18	36.4	1.44	2.68
	9.96	35.8	2.75	2.67
	18.24	35.2	4.97	2.64
393.15	5.22	27.3	1.20	2.22
	9.97	27.9	2.29	2.22
	18.15	27.5	4.15	2.21

APDENDIX E

Isothermal permeabilities

$\frac{\mathrm{T}}{\mathrm{K}}$	$\frac{10^{6} K_{g}}{\mathrm{~m}^{2} \mathrm{~s}^{-1}}$	$\frac{10^{6} \mathrm{~K}}{\mathrm{~m}^{2} \mathrm{~s}^{-1}}$	$\begin{array}{r} K_{\mathrm{s}} \\ K_{\mathrm{g}} \\ \hline \end{array}$	
Methane				
308.15	0.80	0.76	0.95	
320.65	0.82	0.69	0.84	
333.15	0.84	0.65	0.77	
343.15	0.85	0.62	0.73	
353.15	0.87	0.60	0.69	
363.15	0.88	0.57	0.65	
373.15	0.90	0.54	0.60	
393.15	0.92	0.50	0.54	
Ethane				
308.15	0.59	1.11	1.9	
320.65	0.60	0.99	1.7	
333.15	0.61	0.89	1.5	
343.15	0.62	0.82	1.3	
353.15	0.63	0.77	1.2	
363.15	0.65	0.71	1.1	
373.15	0.66	0.67	1.0	
393.15	0.67	0.60	0.90	
$\frac{2}{\mathrm{~K}}$	$\frac{\mathrm{p}_{\mathrm{o}}}{\mathrm{cmHg}}$	$\frac{10^{6} K_{g}}{\mathrm{~m}^{2} \mathrm{~s}^{-1}}$	$\frac{10^{6} K_{s}}{\mathrm{~m}^{2} \mathrm{~s}^{-1}}$	$\frac{K_{\mathrm{s}}}{K_{\mathrm{g}}}$
		Propane		
308.15	5.10	0.48	2.32	4.8
"	10.13	"	2.34	4.9
"	19.80	"	2.33	4.9
$320.6{ }_{5}$	5.02	0.50	1.95	3.9
"	10.02	"	1.97	3.9
"	19.92	"	1.97	3.9
333.15	9.91	0.51	1.70	3.3
343.15	10.10	0.52	1.50	2.9
353.15	10.01	0.52	1.37	2.6
363.1_{5}	9.96	0.53	1.22	2.3
373.15	10.07	0.54	1.11	2.1
393.15	(Average)	0.56	0.94	1.7

Isothermal permeabilities

$\frac{\mathrm{T}}{\mathrm{K}}$	$\frac{\mathrm{P}_{\mathrm{o}}}{\mathrm{cmilg}}$	$\frac{10^{6} K}{m^{2} s^{-1}}$	$\frac{10^{6} K_{s}}{\mathrm{~m}^{2} \mathrm{~s}^{-1}}$	$\frac{K_{s}}{K_{g}}$
		n-Butan		
$\begin{gathered} 308.1_{5} \end{gathered}$	5.18	0.42	6.02	14.3
	9.78	"	5.15	12.3
"	9.95	"	5.11	12. 2
"	18.21	"	4.11	9.8
320.65	9.96	0.43	4.47	10.4
333.1$\#$	5.09	0.44	4.05	9.2
	9.94	"	3.79	8 8.6
"	18.17	"	3.43	7.8
343.15	9.93	0.45	3.30	7.3
353.15	5.09	0.46	2.93	6.4
	9.96	1	2.90	6.3
"	18.29	"	2.75	6.0
363.1_{5}	9.98	0.46	2.51	5.5
	18.31	"	2.45	5.3
373.15	5.18	0.47	2.21	4.7
	9.96	"	2.20	4.7
11	18.24	"	2.17	4.6
393.15	5.22	0.49	1.73	3.5
	9.97	"	1.73	3.5
"	18.15	"	1.72	3.5

REFERENCES

ADZUMI, H., 1937a, Bul1. Chem. Soc. Japan, 12, 285.
ADZUMI, H., 1937b, Bull. Chem. Soc. Japan, 12, 292.
ADZUMI, H., 1937c, Buil. Chem. Sor. Japan, 12, 304.
ADZUMI, H., 1939, Bul1. Chem. Soc. Japan, 14, 343.
ASH, R., BAKER,R.W. and BARRER, R.M., 1967, Proc. Roy. Soc. A., 299, 434.
ASH, R., BAKER, R.W. and BARRER, R.M., 1968, Proc. Roy. Soc. A., 304, 407.
ASH, R. and BARRER, R.M., 1963, Trans. Farad. Soc., 59, 2260.
ASH, R., BARRER, R.M., CLINT, J.H., DOLPHIN, R.J. and MURRAY, C.L., 1973, Phil. Trans. Roy. Soc. Lond. A., 275, 255.

ASH, R., BARRER, R.M. and LOWSON, R.T., 1970, Surf. Sci., 21, 265.
ASH, R., BARRER, R.M. and LOWSON, R.T., 1973, J.C.S. Farad. I., 69, 2166.
ASH, R., BARRER, R.M. and POPE, C.G., 1963a, Proc. Roy. Soc. A., 271, 1.
ASH, R., BARRER, R.M. and POPE, C .G.,1963b, Proc. Roy. Soc. A., 271, 19.
ASH, R., BARRER, R.M. and SHARMA, P., 1976, J. Membrane Sci., 1, 17.
ASH, R, and GROVE, D.M., 1960, Trans. Farad. Soc., 56, 1357.
ATKINS, J.A., 1964, Anal. Chem., 36, 579.
AYLMORE, L.A.G. and BARRER, R.M., 1966, Proc. Roy. Soc. A., 290, 477.
BABBITT, J.D., 1950, Canad. J. Res., 28A, 449.
BABBITT, J.D., 1951, Canad. J. Phys., 29, 427, 437.
BALDWIN, G.C. and GAERTTNER, M.R., 1973, J. Vac. Sci. Tech., 10, 215.
BARBER, C.G., 1971, The Calibration of Thermometers, London: H.M.S.O.
BARRER, R.M., 1939, Trans. Farad. Soc., 35, 628.
BARRER, R.M., 1963a, Appl. Mat. Res., 2, 129.
BARRER, R.M., 1963b, Canad. J. Chem., 41, 1768.
n̄arRer, R.M. and BARRIE, J.A., 1952, Proc. Roy. Soc. A., 213, 250.
BARRER, R.M and GABOR, T., 1959, Proc. Roy. Soc. A., 251, 353.
BARRER, R.M. and GABOR, T., 1960, Proc. Roy. Soc. A., 256, 267.
BARRER, R.M. and GROVE, D.M., 1951a, Trans. Farad. Soc., 47, 826.
BARRER, R.M. and GROVE, D.M., 1951b, Trans. Farad. Soc., 47, 837.

BARRER, R.M. and JOS', W., 1949, Trans. Farad. Soc., 45, 928.
BARRER, R.M. and PAPADOPOULOS, R., 1972, Proc. Roy. Soc. A., 326, 315.
BARRER, R.M. and REES, L.V.C., 1959, Trans. Farad. Soc., 55, 992.
BARRER, R.M. and REES, L.V.C., 1961, Trans. Farad. Soc., 57, 999.
BARRER, R.M. and RUZICKA, D.J., 1952, Trans. Farad. Soc., 58, 2253.
BARRER, R.M. and STRACHAN, E., 1955, Proc. Roy. Soc. A. = 231, 52.
BEARMAN, R.J., 1957, J. Phys. Chem., 61, 708.
BEARMAN, M.Y. and BEARMAN, R.J., 1966, J. Phys. Chem., 70, 3010.
BEEBE, R.A., BISCOE, J., SMITH, W.R. and WENDELL, C.B., 1947, J. Am. Chem. Soc., 69, 95.

BEEBE, R.A., MILLARD, B. and CYNARSKI, J., 1953, J. Am. Chem . Soc., 75, 839 .

BEEBE, R.A., POLLEY, M.H., SMITH, W.R. and WENDELL, C.B., 1947,
J. Am. Chem. Soc., 69, 2294.

BENNETT, M.J. and TOMPKINS, F.C., 1957, Trans. Farad. Soc., 53, 185.
BERMAN, A.S. and LUND, L.M., 1958, Proc. 2nd U.N. Int. Conf. on Peaceful Uses of Atomic Energy, 4, 359.

BISCOE, J. and WARREN, B.E., 1942, J. App1. Phys., 13, 364.
BLAKE, F.C., 1922, Trans. Am. Inst. Chem. Engnrs., 14, 415.
BODDENBERG, B., HAUL, R. and OPPERMANN, G., 1970, Surf. Sci., 22, 29.
BRITISH STANDARDS INSTITUTE, 1952, R.S. 1827, London.
BRITISH STANDARDS INSTITUTE, 1961, B.S. 1828, London.
BROMBERG, J.P., 1969, J. Vac. Sci. Tech., 6, 801.
BROWN, G.P., Di NARDO, A., CHENG, G.K. and SHERWOOD, T.K., 1946, J. App1. Phys., 17, 802.

BRUNAUER, S., EMMETT, P.H. and TELLER, E., 1938, J. Am. Chem. Soc., 60, 309.
CABOT, Technical Data Sheet.
CARMAN, P.C., 1950, Proc. Roy. Soc. A., 203, 55.
CARMAN, P.C. and MALHERBE, P. le R., 1950, Proc. Roy. Soc. A., 203, 165.
CARMAN, P.C. and RAAL, F.A., 1951a, Proc. Roy. Soc. A., 209, 38.
CARMAN, P.C. and RAAL, F.A., 1951 b , Proc. Roy. Soc. A., 209, 59.
CARMAN, P.C. and RAAL, F.A., 1954, Trans. Farad. Soc., 50, 842.

CARR, P.H., 1964, Vacuum, 14, 37.
CHA, C.Y., and McCOY, B.J., 1972, J. Chem. Phys., 55, 3273.
CHIRNSIDE, G.C. and POPE, C.G., 1964, J. Phys. Chem., 68, 2377.
CLAUSING, P., 1930, Ann. d. Physik (5), 7, 489.
CLAUSING, P., 1932, Ann. d. Physik (5), 12, 961.
CLINT, J.H., 1966, Ph.D. Thesis, University of London.
CORRIN, M.L., 1951, J. Am. Chem. Soc., 73, 4061.
CROWE, C.M., 1957, Trans. Farad. Soc., 53, 1413.
CROWE, C.M., 1963, Trans. Farad. Soc., 59, 2515.
DAVIE , R.T. Jr., DeWITT, T.W. and EMMETT, P.H., 1947, J. Phys. Chem., 51, 1232 .

DeBOER, J.H. and CUSTERS; J.F.H., 1934, Z. Phys. Chem. B., 25, 225.
DENBIGH, K.G., 1951, The Thermodynamics of the Steady State, London : Methuen.
DENBIGH, K.G. and RAUMANN, G., 1952a, Proc. Roy. Soc. A., 210, 377.
DENBIGH, K.G. and RAUMANN, G., 1952b, Proc. Roy. Soc. A., 210, 518.
DERIAGIN, B.V. and BAKANOV, S.P., 1957a, Sov. Phys. Doklady., 2, 326.
DERIAGIN, B.V. and BAKANOV, S.P., 1957b, Sov. Phys. - Tech. Phys. : 2, 1904.
DiCORCIA, A. and SAMPERI, R., 1973, J. Phys. Chem., 77, 1301.
DOLPHIN, R.J., 1971, Ph.D. Thesis, University of London.
DUSHMAN, S. and LAFFERTY, J.M., 1965, Scientific Foundations of Vacuum Technique, 2nd Edn., New York : John Wiley.

EDMONDS, T. and HOBSON, J.P., 1965, J. Vac. Sci. Tech., 2, 182.
ELKINGTON, P.A, and CURTHOYS; G., 1969, J. Phys. Chem., 73, 2321.
EMMETT, P.H. and BRUNAUER; S., 1937, J. Am. Chem. Soc., 59, 1553.
EVERETT, D.H., 1950, Trans. Farad. Soc., 46, 453, $942,957$.
FEDDERSON, W., 1873, Pogg. Ann., 148, 308.
FENG, C. and STENART, W.E., 1973, Ind. Eng. Chem. Fundam., 12, 143.
FLOOD, E.A., TOMLINSON, R.H. and LEGER, A.E., 1952a, Canad. J. Cheni., 30, 348.

FLOOD, E.A., TOMLINSON, R.H. and LEGER, A.E., 1952b, Canad. J. Chem., 30, 372 .

FLOOD, E.A., TOMLINSON, R.H. and LEGER, A.E., 1952c, Canad. J. Chem., 30, 389 .

FRANK, H.S., 1945, J.Chem. Phys., 13, 493.
FRISCH, HL., 1957, J Phys. Chem.., 61, 93.
FRISCH, H.L., 1958, J. Phys. Chem., 62, 401.
FRISCH, H.L., 1959, J. Phys. Chem., 63, 1249.
GAEDE, W., 1913, Ann. d. Physik (4), 41, 289.
GASCOIGNE, J., 1971, Vacuum, 21, 21.
GILLILAND, E.R. BADDOUR, R.F. and ENGEL, H.H., 1962, A.I.Ch.E.J., 8, 530.
GILI.ILAND, E.R., BADDOUR, R.F., PERKINSON, G.P. and SLADEK, K.J., 1974, Ind. Eng. Chem. Fundam., 13, 95.

GILLILAND, E.R., BADDOUR, R.F. and RUSSELL, J.L., 1958, A.I.Ch.E.J., 4, 90.
GOODKNIGHT, R.C. and FATT, I., 1961, J. Phys. Chem., 65, 1709.
GOULD, F.A. and VICKERS, T., 1952, J. Sci. Instruments, 29, 85.
GRAHAM, D., 1957, J. Phys. Chem., 61, 1310.
GRAHAM, T., 1846, Phil. Trans. Roy. Soc. Lond., 136, 573.
HALL, C.E., 1948, J. Appl. Phys., 19, 271.
HANLEY, H.J.M., 1965, J. Chem. Phys., 43, 1510.
HANLEY, H.J.M., 1966, Trans. Farad. Soc., 62, 2395.
HANLEY, H.J.M. and STEELE, W.A., 1964, J. Phys. Chem., 68, 3087.
HANLEY, H.J.M. and STEELE, W.A., 1965, Trans. Farad. Soc., 61, 2661.
HAiLL, R.A.W., 1950, Angewandte Chemie, 62, 10.
HAUL, R.A.W. and PEERBOOMS, R., 1958, Naturwiss., 45, 109.
HIBY, J.W. and PAHL, M., 1956, Z. Naturforschung, 11a, 80.
HIGASHI, K., ITO, H. and OISHI, J., 1964, J. Nucl. Sci. Tech., 1, 298.
HILL, T.L., 1952, Adv. in Catalysis, 4, 211.
HILL, T.L., 1956, J. Chem. Phys., 25, 730.
HIRSCH, E.H., 1961, J. App1. Phys., 32, 977.
HIRSCYFELDER, J.O., CURTISS, C.F. and BIRD, R.B., 1964, Molecular Theory of Gases and Liquids, New Ycrk : John Wiley.

HOBSON, J.P., 1969, J. Vac. Sci. Tech., 6, 257.

HOBSON, J.P., EDMONDS, T. and VERREAULT, R., 1963, Canad. J. Phys., 41, 983. hopfinger, e.J. and altman, M., 1969, J. Chem. Phys., 50, 2417. HORIGUCHI, Y., HUDGINS, R.R. and SILVESTON, P.L., 1971, Canad. J. Chem. Eng., 49, 76.

HOUSKA, C.R. and WARREN, B.E., 1954, J. App1. Phys., 25, 1503.
HUGGILL, J.A.W., 1952, Proc. Roy. Soc. A., 212, 123.
HWANG, S.T. and KAMMERNEYER, K., 1966a, Canad. J. Chem. Eng., 44, 82.
HWANG, S.T. and KAMMERNEYER, K., 1966b, Separation Sci., $1,629$.
HWANG, S.T. and KAMMERMEYER, K., 1967, Separation Sci., 2, 555.
ISIRIKYAN, A.A. and KISELEV, A.V., 1962, J. Phys. Chem., 66, 205.
JOHNSON, M.F.L. and STEWART, W.E., 1965, J. Catalysis, 4, 248.
JOYNER, L.G. and EMMETT, P.H., 1948, J. Am. Chem. Soc., 70, 2353.
KAMMERMEYER, K., 1958, Ind. Eng. Chem., 50, 697.
KENNARD, E.H., 1938, Kinetic Theory of Gases, New York : McGraw-Hill.
KIRKWOOD, J.G., 1932, Phys. 2., 33, 57.
KLOSE, W., 1931, Ann. d. Physik (5), 11, 73.
KNUDSEN, M., 19.09, Ann. d. Physik (4), 28, 75.
KNUDSEN, M., 1910a, Ann. d. Physik (4), 31, 205.
KNUDSEN, M., 1910b, Ann. d. Physik (4), 31, 633.
KOZENY, J., 1927, S.B. Akad. Wiss., Wien , Abt. IIa., 136, 271.
KRUYER, S., 1953, Proc. Acad. Sci. Amst. B., 56, 274.
LAL, M. and SPENCER, D., 1974, J.C.S. Farad. II., 70, 910.
LASSETTRE, E.N., 1956, American Atomic Energy Commission Research Report, K - 1258.

LASSETTRE, E.N., 1958, American Atomic Energy Commission Research Report, K - 1403.

LASSETTRE, E.N. and BROOKS, A.A., 1961, American Atomic Energy Commission Research Report, K- 1464.

LEE, C.S. and 0^{\prime} CONNELL, J.P., 1972́, J. Col1. Intf. Sci., 41, 415.
liang, S.C., 1951, J. App1. Phys., 22, 148.
liang, S.C., 195\%, J. Phys. Chem., 56, 660.

LIANG,S.C., 1953, J.Phys. Cherı., 57, 910.
LIANG, S.C., 19ラ5, Canad. J. Chen., 33, 279.
LONDON,F., 1930, Z. Phys., 63, 245.
LOS,J.M. and FERGUSSON,R.P., 1952, Trans. Farad. Soc., 48, 730.
MASON,E.A. , EVANS,R.B. III. and WATSON, G.M., 1961, J. Chem. Phys., 35, 2076.
MASON, E.A., EVANS, R.B. III. and WATSON, G.M., 1963, J. Chem. Phys., 38, 1808 .

MASON, E.A. and MALINAUSKAS, A.P., 1964, J. Chem. Phys., 41, 3815.

MAXWELL, J.C., 1860, Phil. Mag. (4)., 20, 21.
MAXWELL, J.C., 1879, Phil. Trans. Roy. Soc. Lond., 170, 231.
McCORMICK, N.J. and KUŠČER, I., 1972, Phys. Fluids, 15, 1567.
MILLER, G.A., 1963, J. Phys. Chem., 67, 1359.
MILLER, G.A. and BUICE, R.L. Jr., 1966, J. Phys. Chem., 70, 3874.
MüLler, A., 1936, Proc. Roy. Soc. A., 154, 624.
NEUMANN, C., 1872, Ber. d. Könige Sächs. Akad. d. Wiss., 24, 49.
NICHOLSON, D. and PETROPOULOS, J.H, 1971, J. Phys. D., 4, 181.
NICHOLSON, D. and PETROPOULOS, J.H., 1973, J. Coll. Intf. Sci., 45, 459.
ONSAGER, L., 1931, Phys. Rev., 37, 405; 38, 2265.
PARKINSON, C. and GRAY, P., 1972, J.C.S. Farad. I., 68, 1065.
PARSONAGE, N.G. and STAVELEY, L.A.K., 1959, Quart. Rev., 13, no.4.
PATEL, P.V. and BUTT, J.B., 1972, Chem. Eng. Sci., 27, 2175.
PEIRY, R.H. and CHILTON, C.H., Eds., 1973, Chemical Engineers Handbook, 5th Edn., New York : McGraw - Hill.

PIERCE, C. and EWING, B., 1964, J. Phys. Chem., 68, 2562.
PODGURSKI, H.H. and DAVIS, F.N., 1961, J. Phys. Chem., 65, 1343.
POLLARD, W.G. and PRESENT, R.D., 1948, Phys. Rev., 73, 762.
POPE, C.G., 1961, Ph.D. Thesis, University of London.
POPE, C.G., 1967, Trans. Farad. Soc., 63, 734.
POPIELAWSKI, J., 1967, J. Catalysis, 7, 263.
RASTOGI, R.P. and RAI, A.P., 1974, J. Phys. Chem., 78, 2693.
RASTOGI, R.P., RAI, A.P. and YADAVA, M.L., 1974, Indian. J. Chem., 12, 1273.

RASTOGI, R.P., SINGH, K. and SINGH, H.P., 1969, J. Phys. Chem., 73, 2798.
REYNOLDS, O., 1879, Phil. Trans. Roy. Soc., 170, 727.
ROSENBERG, A.J., 1956, J. Am. Chem. Soc., 78, 2929.
ROSS, J.W. and GOOD, R.J., 1956, J. Phys. Chem., 60, 1167.
ROSSINI, F.D., PITZER, K.S., TAYLOR, W.J., EBERT, J.P., KILPATRICK, J.E., BECKETT, C.W., WILLIAMS, M.G. and WERNER, H.G., 1947, Selected Values of Properties of Hydrocarbons, Washington: U.S. Dept. of Commerce, N.B.S. Circular 471.

ROYBAL, L.A. and SANDLER, S.I., 1972, A.I.Ch.E.J., 18, 39.
SANDLER, S.I., 1972a, Ind. Eng. Chem. Fundam., 11, 424.
SANDLER, S.I., 1972 b, A.I.Ch.E.J., 18, 856.
SCHAEFFER, W.D., SMITH, W.R. and POLLEY, M. H., 1953, Ind. Eng. Chem., 45, 1721.
SEARS, G.W., 1954, J. Chem. Phys., 22, 1252.
SINGH, H.P., 1971, Indian J. Chem., 9, 52.
SIU, M.C.I., 1973, J. Vac. Sci. Tech., 10, 368.
SLADEK, K.J., GILLILAND, E.R. and BADDOUR, R.F., 1974, Ind. Eng. Chem. Fundam., 13, 100.

SLATER, J.C. and KIRKWOOD, J.G., 1931, Phys. Rev., 37, 682.
SMITH, R.K. and METZNER, A,B., 1964, J. Phys. Chem., 68, 2741.
SMOLUCHOWSKI, M., 1910, Ann. d. Physik (4), 33, 1559.
STEELE, W.A. and HANLEY, H.J.M., 1971, Trans. Farad. Soc., 67, 3484.
TAKAISHI, T. and SENSUI, Y., 1963, Trans. Farad. Soc., 59, 2503.
UTTERBACK, N.G., and GFIFFITH, T. Jr., 1966, Rev. Sci. Inst., 37, 866.
VAN ITTERBEEK, A, and De GRANDE, E., 1947, Physika, 13, 289.
VOLMER, M. and ESTERMAN, J., 1921, Z. Physik, ㅍ, 13.
WEAST, R.C., Ed., 1970, Handbook of Chemistry and Physics, 51st Edn., Cleveland : The Chemical Rubber Co.

WEAVER, J.A. and METZNER, A.B., 1966, A.I.Ch.E.J., 12, 655.
WEBER, s., 1954, Mat. fys. Medd. Kong. Dansk. vid. sels., 28, no 2.
WEBER, S., KEESOM, W.H. and SCHMIDT, G., 1936, Comm. Kam. Onnes. Lab., Leiden, 22, no 246 a-d.

WEISSBERG, H.L., 1963, J. Appl. Phys., 34, 2636.
WICKE, E. and KALLENBACH, R., 1941, Kolloid. Zschr., 97, 135.

WILLIAMS, J.C. III., 1971, J. Vac. Sci. Tech., 8, 446.
WILLIAMS, M.M.R., 1973, J. Phys. D., 6, 759.
WRIGHT, P.G., 1971, Trans. Farad. Soc., 67, 2551.
WU, Y., 1968, J. Chem. Phys., 48, 889.
WYNNE-JONES, W.F.K., 1958, Proc. Colston. Symposium : The Structure and Properties of Porous Materials, p35, London : Butterworths.

YANG, R.T., FENN, J.B. and HALLER, G.L., 1973, A.I.Ch.E.J., 19, 1052.
YOUNG, D.M. and CROWELL, A.D., 1962, Physical Adsorption of Gases, London : Butterworths.

