STRUCTURAL STUDIES OF METALLIC COMPLEXES

A Thesis submitted for the degree of Doctor of Philosophy in the University of London

by

James Christopher McConway, M.Sc.

Chemical Crystallography Laboratory,

October, 1975.

Imperial College,

.

London, SW7 2AY.

Summary

6

This thesis describes the determination of the structures of six compounds using single-crystal X-ray diffraction methods. These comprise four organometallic complexes and two organic compounds. The four complexes were solved by the heavy atom method whilst the organic structures were solved using the symbolicaddition method. Almost all the calculations were carried out using the "X-ray 70" and "X-ray 72" crystallographic computer program systems and the data were measured on a Siemens A.E.D. four-circle diffractometer. All the structures are presented separately. The two organic structures were solved with a view to gaining experience of direct methods and are thus included in Appendices I, II.

Nickel (ethylethylenediamine) $_{2}(O_{2}N)^{+}BF_{4}^{-}$, $(C_{12}H_{32}BF_{4}NiO_{2})$, is monoclinic with unit-cell dimensions <u>a</u> = 11.338(1), <u>b</u> = 16.291(1), <u>c</u> = 11.934(1)Å, β = 112.015(8)^o, space group <u>P2₁/c</u> and <u>Z</u> = 4. Least-squares refinement, using 2382 independent reflections gave a final <u>R</u> of 0.053. The nitrite group was found to be a chelate although a metal 0 - N - 0 bridge was thought might occur from spectral measurements. Steric factors in nitrite co-ordination are discussed.

Cobalt (thiopyrimidine)₂ dichloride, $(C_8H_8N_4CoS_2Cl_2)$ is monoclinic with unit-cell dimensions <u>a</u> = 12.371(1), <u>b</u> = 8.3010(4), <u>c</u> = 14.185(1)A^o, β = 117.180(6)^o, space group <u>C2/c</u> and <u>Z</u> = 4. Least-squares refinement, using 1079 observed reflections gave a final <u>R</u> of 0.054. The pyrimidine-2-thiolato ligand is bidentate co-ordinative through both N and S atoms.

Hydridotris-(triphenylphosphine)ruthenium(II) Tetrafluoroborate, $(C_{54}H_{46}BF_4P_3Ru)$ is monoclinic with unit-cell dimensions <u>a</u> = 20.755(2), <u>b</u> = 12.784(1), <u>c</u> = 18.609(3)Å, β = 109.06(2)^o, space group <u>P2₁/c</u> and $\underline{Z} = 4$. Least-squares refinement, using 4658 observed reflections gave a final <u>R</u> of 0.039. This cation possesses an arene group which is π -bonded to the metal. Although the compound was originally obtained as a methanol solvate only ill-defined traces of the methanol could be located in the interstices of the structure.

Hydridophenoxybis(triphenylphosphine)ruthenium(II) Diphenol is monoclinic with unit-cell dimensions <u>a</u> = 20.221(1), <u>b</u> = 9.561(1), <u>c</u> = 23.744(2)Å, β = 106.24(1)^o, space group <u>P2₁/a</u> and <u>Z</u> = 4. Leastsquares refinement, using 4226 observed reflections gave a final <u>R</u> of 0.029. The two phenol molecules of solvation are hydrogen bonded to the phenoxy group. This compound also possesses a π -bonded arene to metal and is essentially similar to the ruthenium cation considered above. The two structures have been compared and the structural similarities discussed.

6

The structure of cambogin, $(C_{38}H_{50}O_6)$ a benzophenone derivative isolated from the roots of the plant <u>Garcinia Cambogia</u> has been solved by its dibrosylate derivative $(C_{50}H_{56}O_{10}Br_2S_2)$. The crystals are monoclinic, <u>a</u> = 10.140(2), <u>b</u> = 21.269(3), <u>c</u> = 12.378(2)Å, β = 105.84(1)^O, space group <u>P2</u>₁ and <u>Z</u> = 2. Least-squares refinement, using 2469 observed reflections gave a final <u>R</u> of 0.098. The absolute configuration has been determined. The present structure determination has been compared to the structure of its enantiomer isoxanthochymol isolated from different species of <u>Garcinia</u>. The mechanism of formation of both compounds \ll discussed.

The ketol bishydropulegone, $(C_{20}H_{34}O_2)$ is orthorhombic with unit-cell dimensions <u>a</u> = 10.8378(5), <u>b</u> = 14.3917(9), <u>c</u> = 11.7720(4)Å, space group <u>P2</u>₁2₁2₁ and <u>Z</u> = 4. Least-squares refinement, using 1676 observed reflections gave a final <u>R</u> of 0.047. The structure is compared extensively with the related deshydropulegone and the <u>nor</u> and <u>iso</u> series of the ketols have been compared.

Acknowledgements

The author is most grateful to his supervisor Professor D. Rogers for his stimulating guidance, invaluable assistance and encouragement throughout the past three years. I should also like to thank Dr. A.C. Skapski for his valuable supervision and discussions relating to Chapters V and VI.

It is also a pleasure to thank other members of the Chemical Crystallography Laboratory, especially Dr. A. Quick, for their help and constant discussions on many topics. I am grateful to Brian Seymour for his practical help and assistance and to Glyn Millhouse for his careful photography of the many diagrams.

I am indebted to Robert Young and Dr. Cole-Hamilton for the crystals analysed in Chapter V and VI respectively and to Ian Jeeves for his helpful assistance in the preparative chemistry of the thiopyrimidine complexes.

Finally, I thank the staffs of both Imperial College and London University Computer Centres for their co-operation in the use of the computer facilities.

and the second se

To Mida

CONTENTS

Title Page

. . .

30.00

.

,

۶,

4

Summary			2	
Acknowledgements				
Contents			6	
CHAPTER	I	GENERAL EXPERIMENTAL PROCEDURES	9	
		Preliminary Investigation of Crystal Diffractometer Data Collection	10	
		Procedure for setting a crystal on the A.E.D.	20	
		Processing of the A.E.D. output	24	
CHAPTER	II	CRYSTALLOGRAPHIC COMPUTING	26	
a.		General	27	
-		Least-squares refinement	34	
CHAPTER	III	STERIC FACTORS IN NITRITE CO-ORDINATION; CRYSTAL STRUCTURE OF THE COMPLEX NICKEL [ETHYLETHYLENEDIAMINE] 2NITRITE TETRA- FLUOROBORATE.	37	
		Abstract	38	
		Introduction	39	
		Absorption Spectra of the Nitrite Group. a) Infrared Spectra b) Electronic Spectra	40 44	
	X	General .	49	
		Experimental	51	
×		Solution and Refinement of the Structure	53	
		Discussion	55	
		Tables	60	

References

6

. .

••

Page

1

80

.

		Page
CHAPTER IV	STRUCTURE OF COBALT (THIOPYRIMIDINE) ₂ DICHLORIDE	82
	General Introduction	83
	Experimental	85
	Structural Solution	90
	Description of Structure and Discussion	91
	Tables	98
	References	112
CHAPTER V	THE CRYSTAL AND MOLECULAR STRUCTURE OF HYDRIDOTRIS(TRIPHENYLPHOSPHINE)RUTHENIUM(II) TETRAFLUOROBORATE	113
	Abstract	114
	Introduction	115
	Experimental	117
	Solution and Refinement of the Structure	117
	Description of the Structure and Discussion	120
	Tables	127
	References	1 57
CHAPTER VI	THE CRYSTAL AND MOLECULAR STRUCTURE OF HYDRIDOPHENOXYBIS(TRIPHENYLPHOSPHINE) RUTHENIUM(II) DIPHENOL	159
	Abstract	160
	Introduction	161
	Experimental	162
	Solution and Refinement of the Structure	163
	Description of the Structure and Discussion	165
	Tables	172
	References	203

		Page
APPENDICES	Introduction to Appendix I, II	206
APPENDIX I	THE CRYSTAL AND MOLECULAR STRUCTURE OF CAMBOGIN DIBROSYLATE	207
	Introduction	208
	Experimental	211
	Solution and Refinement of the Structure	213
	Absolute Configuration	216
	Description of the Structure and Discussion	217
	Steric Considerations and the Possible Mechanism of Cambogin and Isoxanthochymol	218
	Tables	235
	References	265
APPENDIX II	CRYSTAL AND MOLECULAR STRUCTURE OF THE KETOL BISHYDROPULEGONE	266
	Introduction	267
	Experimental	278
	Solution and Refinement of the Structure	278
	Discussion	281
	Tables	293
	References	306
APPENDIX III	STATISTICAL TESTS USED IN PROCESSING A.E.D. OUTPUT	316
APPENDIX IV	PHASE DETERMINATION FOR NON-CENTROSYMMETRIC STRUCTURES	319
	Phasem	322
	Multan	325
•		

•

CHAPTER I

General Experimental Procedures.

"Everything is simpler than you think and at the same time more complex than you imagine" ... Goethe.

ß

GENERAL EXPERIMENTAL METHODS AND PROCEDURES

Structural crystallography is ultimately concerned with the measurement of intensities of reflections from a single-crystal specimen since the intensity of an (hkl) reflection is proportional to the square of the corresponding structure amplitude. This may be accomplished by either photographic or counter methods. The latter technique is the more efficient and accurate method. All the data collected for the structures described in this thesis were collected personally using a Siemens four-circle off-line diffractometer. (A.E.D.; Automatische Einkristalle Diffraktometer).

Preliminary Investigation of a Crystal

The crystalline sample was first carefully examined under a polarising microscope. The object of this is to obtain as much information from the sample as possible by studying its directions of uniform extinction under crossed polars to enable one to choose from the sample a single crystal which is well-formed, with no apparent imperfections, and of a suitable size for X-ray photographs and data to be collected. Having selected a suitable specimen, it was first mounted on a glass-fibre with vacuum grease and either oscillation and Weissenberg or precession photographs taken. These initial photographs were taken in order to obtain the unit-cell dimensions and space group of the crystal and to confirm that the specimen is in fact a single crystal.

Diffractometer Data Collection

ntakin a

The A.E.D. is simply a four-circle instrument with a standard Eulerian arrangement of ω , θ , χ and ϕ circles (Figs I,II) . In normal use as in standard data collections, the instrument is operated as a

Fig. I

The central mechanism of the A.E.D. showing the Eulerian cradle arrangement.

Diagramatic representation of the Eulerian cradle of the A.E.D.

Fig. II

three-circle one with ω coupled to 2θ in a $\theta - 2\theta$ relationship. As a consequence of this mode of operation it utilizes normal-beam equatorial geometry, i.e. the reciprocal lattice vector co-incides with the intersection of the planes of the θ and χ circles when in the reflecting orientation with the plane of the χ circle bisecting the angle between the incident and diffracted beams. The three circles which determine the orientation of the crystal are designated the θ (or. ω) circle, the χ -circle which is carried on the θ -circle and whose axis is normal to the θ -axis, and the ϕ circle which is mounted on the χ -circle and carries the goniometer head supporting the crystal.

The instrument is an off-line instrument in that its operation is dependent on computers whilst it is not directly linked to any computer. In the automatic mode of operation, it is driven by a 'steering tape' which is a five-track punched paper tape produced by a computer, and the results are output in a similar way. All the operations of the A.E.D. can also be controlled manually, but this is usually only used for the preliminary setting-up of the crystal and the determination of accurate lattice parameters.

The design of the instrument is such that the ϕ -circle can be set at any angle between 0^o and 360^o. The range of the θ -circle extends only to 72.5^o, such that reflections at a Bragg angle greater than <u>ea</u>. 71^o cannot be measured. The χ -circle movement is also limited, its range being -5^o to 91^o, so that little more than a hemisphere of reciprocal space is accessible (Fig. III). This is not usually a problem since the collection of a hemisphere of reciprocal space is usually adequate even for a triclinic crystal. If for any reason more data are required, a crystal inverter can be used. These restrictions on the amount of data that can easily be collected for any one setting of a crystal, are more than compensated by

For the monoclinic case it was only necessary to collect one quadrant of the sphere of reflection minus half the zero layer.

Fig. III

the extra mechanical stability and rigidity of the machine, and by the absence of obscuration or collision problems which otherwise occur.

The three setting circles are each driven by a magnetic impulse motor, one pulse driving a circle through one bit or hundredth of a degree (or 0.02° for 20). When moving between reflections it slews at 10° per second. They may be driven either automatically, by paper-tape input or from the control desk which forms part of the paper-tape reader. Additionally, each circle can be de-coupled from its motor drive and set by hand. The three circles can be driven simultaneously thus saving time during data collection. During automatic operation, intensity measurements for each reflection begin and end at the α_1 peak, thus the angular circle increments calculated and specified on the steering tape are those which are required to move from the α_1 peak of one reflection to the next. Manually, each circle can be set accurately to the nearest 0.01°, but when automatic data collection is in operation one must be able to say with some confidence that the circles are in the correct angular positions for a particular reflection. This check is implemented by using a combination of coded digitiser drums and photocells such that 50 distinct positions within a range of 0.5° can be recognised. (Fig. IV; "A" is the metal digitiser drum, "B" is a bank of photocells and "C" is a row of lamps which is flashed when the drum is in the checking position). This means that positions which are exact multiples of half a degree apart cannot be distinguished, but as an error is unlikely to be more than a few bits this ambiguity is not important. If the check is successful and the coded signals from the photocells agree with the data specified on the steering tape, a single character indicating agreement is punched on the output tape. If the check finds that the circle position is incorrect, a search of <u>+</u>20 bits is automatically initiated. The circle

Fig. IV

Diagrammatic representation of the photocell arrangement utilised in the A.E.D. mechanism.

stops at the correct position if it lies within that range, otherwise the machine stops. An additional check which is done less often during data collection is to verify the absolute zero-positions of the three circles: this ensures that setting errors of 0.5⁰ or more have not occurred.

All the data collected for structure determination in this thesis was measured with a Na (TL) I scintillation counter and utilised $Cu-\underline{K}\alpha$ radiation at a take-off angle of 6.0° with a nickel β filter. The X-ray generator used with the A.E.D. has its own high voltage stabiliser, the kV being specified to \pm 0.1% for \pm 10% fluctuations in mains voltage. This stability determines the reliability and rate of accurate data collection. Collimators of diameter 0.4, 0.6, 0.8, or 1.0 mm have been used depending on the crystal size, bearing in mind that the beam has a homogeneous diameter of about 1.4 x the collimator size at the crystal position. This beam should bathe the crystal completely, but not be too wide so as to minimise the signal-to-noise ratio in the detector. The photomultiplier assembly is continuously cooled by water to ensure a constant amplification factor. The counter also has a collimation system, and is normally used with a circular aperture so that while the entire diffracted beam is accepted stray radiation is minimised.

All the intensity measurements have been done by integrating over a reflection peak using a θ - 2 θ scan. This process is conducted in 0.01° steps in θ (0.02 in 2 θ), but before the scan is made, a suitable measuring time per step is chosen by the A.E.D.'s own logic subject to a maximum acceptable time per step which is manually pre-set on a dial. For strong reflections the diffractometer controller logic uses the fastest scan rate and can attenuate the incident X-ray beam by utilising a succession of graded attenuator foils. The result is that, except for the weakest

reflections an approximately constant total count is achieved rather than adhere to a constant time. The main advantage of such a system is that it gives nearly constant statistical accuracy throughout the measurements. The advantages of a constant count, as distinct from a constant-time-per-reflection diffractometer experiment, have been discussed by Killean.¹

The integration procedure used for measurement of reflections throughout this work has been the "five-value" measurement, as illustrated in Fig. V. When the optimum measuring time per step has been selected at the Ka₁ peak, the reflection is scanned through $\Delta\theta_1$ (decreasing θ) and the count I₁ recorded. The background, I₂, on this low θ side of the peak is then counted, followed by a scan through $\Delta\theta_1 + \Delta\theta_2$ in increasing θ giving the count I₃, representing the entire peak. The background on the high- θ side of the peak, I₄, is then measured and finally the reflection is scanned back through $\Delta\theta_2$ to the Ka₁ peak, giving the count I₅. The $\Delta\theta_1$ and $\Delta\theta_2$ values are chosen so that the scans extend well into the background on either side of the peak. The counting times in this process have the relationship

 $(t_1 + t_5) = t_2 = t_3 = t_4$ where $t_1 \propto \Delta \theta_1$ and $t_5 \propto \Delta \theta_2$ and the net count is given by:-

 $I_{net} = \frac{1}{2} [(I_1 + I_3 + I_5) - (I_2 + I_4)]$

The total time for any complete scan is thus dependent on the selected measuring time per step and the $\Delta \theta_1$ and $\Delta \theta_2$ values chosen.

The five counts are punched onto the output tape, followed by two code digits; one indicating the attenuator used (if any) and the other the measuring time factor. The crystal alignment is checked by means of chosen control reflections every 200 reflections and in order to detect possible deterioration of the crystal or drift in the generator or detector a reference reflection is monitored every 25 or 50 reflections.

Procedure for setting a crystal on the A.E.D.

When a crystal suitable for data collection has been selected it is mounted on a quartz fibre with some "Araldite" adhesive, the fibre being set in a special brass "pip" with dental wax so that the fibre protrudes to a distance of 0.5 - 1.0 cm. Since the A.E.D. room is maintained at a constant temperature ca. 12° C., the crystal and goniometer head should be allowed to equilibrate in the room for at least twelve hours before any measurements are made.

The crystal must now be set accurately on the A.E.D. in such a way that the ϕ - axis corresponds to a real crystal axis. One needs at this stage to define a standard orientation, to which any crystal setting can be referred. The convention used on the A.E.D. is that the crystal rotates about its c - axis (i.e. $\chi = 0.0^{\circ}$ for the a*b* plane), the a* vector corresponds to $\phi = 0.0$ and the axes must form a righthanded set. If it is physically more convenient to set a crystal about another axis, the true orientation may be referred to this standard by means of a simple transformation so long as a right-handed set is chosen.

The crystal is first centred and brought to the centre of the three circles of the diffractometer with the aid of the attachable telescope. The a* and b* vectors (assuming standard setting) are initially located by setting the θ circle at angles corresponding to strong low-angle axial reflections and then scanning through ϕ until the reflection is detected. This enables the zero-position of the ϕ -circle to be set coincident with the a* vector. The crystal can then be set accurately by the use of horizontal half-shutters fitted in front of the detector.

The Stol goniometer head which was used during data collections has the extremely useful facility that the turret carrying the crystal mount can be rotated relative to the arcs, and can also be raised or lowered

to permit fine adjustments in centring. The turnet was therefore rotated to bring a* and b* approximately parallel to the arcs so that the easily recognisable axial reflections could be utilised for the alignment procedure. The arcs are then adjusted so that the ratios of the half-counts are the same for h00 and $\bar{h}00$ and for 0k0 and $0\bar{k}0$, both being approximately 1:2. If the half-to full-count ratio diverges significantly from this value, this is usually an indication that the crystal is not at the centre of the beam and a vertical height adjustment is necessary.

Once the crystal is set accurately, the accurate data required for the production of steering tapes must be obtained, i.e. accurate lattice parameters and integrating scan widths $\Delta \theta_1$ and $\Delta \theta_2$. For the accurate measurement of lattice parameters, the normal detection collimator (pin-hole type) is replaced by a "slit collimator". This has a vertical slit, approximately 0.2mm wide, which is put close to the scintillator to improve the resolution in θ .

Values of the cell parameters obtained from photographs were used to generate a list of approximate setting angles, using the program SEKO², in order to facilitate the task of finding reflections in the initial stages. A suitable hOO reflection at a fairly high θ value (ca. 60°+) is selected if available using preliminary photographs and is then located on the A.E.D. . The peak is then scanned so that the reflection profile is obtained and hence accurate values of θ for the <u>Ka1</u> and <u>Ka2</u> peaks. This process is then repeated for one or two more hOO reflections and thus a value of a* is determined. Values of b* and c* are obtained in a similar way. If the crystal symmetry is such that $\gamma * \neq 90^{\circ}$, its value can be obtained by scanning suitable axial reflections simultaneously in θ and ϕ . An initial $\theta-\phi$ scan on an hOO reflection gives the exact value of ϕ corresponding to a*, which can then be set to 0.00° . A further $\theta-\phi$ on an OKO reflection then gives the optimum ϕ -value

corresponding to γ^* .

Unless the crystal symmetry is low or the number of high-angle axial reflections is small, this procedure is sufficient to obtain accurate lattice parameters. Hence for triclinic crystals, or monoclinic mounted about a non-unique axis, θ -values for some off-axial reflections, in addition to axial ones, are refined by least-squares to give the cell parameters. This refinement is usually carried out using the program CEDI as a binary deck for submission to the I.C. 6400 computer via the instant turnaround service. In most cases, a dozen or more accurately measured reflections give rise to cell dimensions with standard deviations ca. 0.002 Å, an accuracy which is quite acceptable for calculating setting angles to the nearest 0.01⁰.

Estimation of the required integrating scan widths throughout the range of θ necessitates the profiling of certain appropriate reflections. For this purpose, the circular collection collimator is used and reflections are selected, using a preliminary Weissenberg photograph, for which the spread in θ for a given θ is the maximum over the whole range of ϕ (this allows for variations of spot size due to crystal shape). By choosing reflections which lie at fairly regular intervals throughout the range of θ , the integration angles, $\Delta \theta_1$ and $\Delta \theta_2$, can be tabulated as functions of θ .

The steering tapes can now be computed. The approximate number of reflections which will be generated is given by the formula

^NTOTAL = $\frac{4}{3}\pi \left(\frac{2\sin\theta \max}{\lambda}\right)^3$.V.f.

where θ max is the maximum value of θ to which data is to be collected, λ is the radiation wavelength, V is the volume of the unitcell and f is the fraction of the sphere to be collected. This formula applies to primitive unitcells and does not allow for space-group absences.

Finally reference and control reflections must be chosen and their frequency in the steering tapes specified. The reference reflection monitors the stability of the X-ray tube and counting equipment and checks that the crystal is not suffering X-ray damage or is decomposing. It is also used for scaling the data after collection and so is usually measured every 25 reflections, or every 50 if a high rate of data collection is used. The control reflections are used to check the setting of the crystal, and are usually the same reflections which were originally used to set the goniometer arcs. These controls are measured less frequently usually every 250 - 300 reflections, and both the full counts and those with half-shutters inserted are recorded. Both reference and control reflections should be strong so that they are measured quickly and accurately. The frequency of the zero-checks, that is when the circles are driven to their zero positions and checked, also has to be specified and is usually of the same frequency as the reference reflection.

Once the steering tapes are generated, the only remaining decision before commencing automatic data-collection is the choice of the maximum time per step. The choice is usually a compromise between a time fast enough to give a short period for data collection, and one long enough to give low statistical errors (1%) for all but the weakest reflections. In practice the most commonly used maximum stepping times are 0.24 and 0.6 seconds per step which produce respectively approximately 600 and 260 measurements per day for most crystals.

Once the steering tape has been engaged in the console tape reader and the A.E.D. controls set to the correct settings for automatic operation, the data collection should proceed to completion automatically. Barring machine breakdowns and tape changes, the diffracometer can then be left unattended; nevertheless it is advisable to check the output frequently so that immediate action can be initiated if the crystal orientation has changed.

Finally, before removing the goniometer from the A.E.D. it

is necessary to measure the crystal's shape and the orientation of its faces in preparation for an absorption correction. This is usually done by making scaled drawings of the crystal from different directions using the attachable calibrated microscope.

model and a clean so

Processing of the A.E.D. Output

During automatic data collection on the A.E.D. all the measured data are output on five-track punched paper tape. Thus, for every reflection including reference and controls, the title (hkg), the digitiser checks, the five counts and the measuring time and attenuator code numbers used are all recorded. During the course of the present work, all A.E.D. output tapes obtained have been processed using the computer program SODI which was written by Dr. P.G.M. Troughton in EXCHLF for use on the old ATLAS system and later rewritten by Drs. Fletcher and Stephens² in Fortran IV for use on the University of London and Imperial College CDC machines.

This program tests the digitiser checks, evaluates the net intensities, applies scale factors determined by the reference reflections to bring all the data onto a common arbitrary scale, and applies a Lorentz-polarization correction to produce a final list of Fo² values and $\sigma(F)$ values. The program also applies certain tests to check that the measurement has proceeded correctly. If the net count has a value less than 2.58 times its own standard deviation (i.e. below the 99% confidence limit, Appendix III;) a reflection is judged to be unobserved. In addition to the printout, the program outputs a computer card for each reflection, containing the Miller indices, the intensity and $\sigma(F)$ written in a format suitable for input to the X-ray system and the other programs used in structure solution and refinement.

References

- 1. R.C.G. Killean Acta Cryst., 1967, 23, 54.
- 2. S.R. Fletcher and F.A. Stephens, SEKO (Fortran version) specification (1971).

. .

. . .

- 2 K - 1 K - M - 1 - 2 M-

CHAPTER II

Crystallographic Computing.

"Men have become the tools of their tools"

... Thoreau.

.

CRYSTALLOGRAPHIC COMPUTING

This chapter gives a brief account of the computer programs utilised in the structure determinations described later in this thesis.

Almost all crystallographic calculations deal with large amounts of data and require millions of simple mathematical operations, so many in fact that one man however dedicated could never complete some of the individual least-squares or Fourier calculations by hand in a lifetime.

Thus programs need to be efficient and data handling made as convenient as possible. Program structure for most crystallographers usually requires hiding the difficulties of using the computer for a whole series of programs behind an easily understandable calling sequence. In this laboratory, there are two main divisions in the programs which are available.

The X-ray 70¹ system, which is a suite of programs linked together is available to perform the majority of the necessary calculations of the crystallographer. This system has been superseded by the X-ray 72² system which has extended the suite of programs and internal options available. After compilation of the program and its subsequent storage on disc or tape the program is executed simply by informing the operating system of the location of the primary program and providing a single block of data cards. The data cards have a four-level structure. Firstly the start and finish cards, then cards to pass information to the operating system, e.g., CRYLSQ to call a general crystallographic least-squares program, and finally the crystallographic data itself. These data are arranged in a series of data files that are added to and modified during the course of calculations so as to enable a whole series of calculations

to be performed in one job.

The advantages of this system are that one firstly has a uniformity of data-card input which makes for greater ease of handling and secondly one may save the data scratch files between runs and thus be able to keep a history of calculations made to date.

Additional programs exist to perform specialist tasks specific to this laboratory, e.g., SEKO and SODI³ (the diffractometer programs as discussed in Chapter I) and others to provide extra options not readily available within the X-ray program suites. There are often errors and ambiguities in standard packages and special cases are not always covered. There are slightly adapted versions of the standard program with provision for special cases, or special coding to circumvent an ambiguity, or even more simply to effect a different output layout or make adjustment to the size of the calculation. Plotting programs are also free-standing as they depend largely on the computer installation, its operating system and do not fit easily into a standard package. Other specialist programs written or modified within this laboratory are available and provide extra choice in the techniques of structure solution. e.g., NORMAL, MULTAN, ESORT, etc.

The X-ray links used during the present work are:-

DATRDN:- Written by J.M. Stewart, M.A. Jarski, B. Morosin and R.V. Chastain.

Process reflection data to give observed structure amplitudes which are stored on magnetic tape together with scattering factors, cell parameters and symmetry operations.

LOADAT :- Written by J.M. Steward and L. Plastas.

Loads atomic positions in binary data file. FC:- Written by J.M. Stewart and R. Braun.

Calculates structure factors with or without an anomalous

dispersion correction. Can also be used to calculate a fixed atom contribution.

- ORFLS:- Written by W.R. Busing, K.O. Martin and H.A. Levy and adapted for the X-ray system by J.M. Stewart *et al.* A full-matrix least-squares refinement program.
- BLOKLS: An adaptation of ORFLS using the block-diagonal matrix approximation.

CRYLSQ:- Written by F.A. Kundell.

General crystallographic least-squares program.

FOURR:- Written by D.F. High et al.

Uses structure factors from FC or least-squares output to calculate a variety of Patterson, Fourier, or difference Fourier syntheses in all symmetries.

BONDLA :- Written by D.F. High, J.M. Stewart and R.V. Chastain.

Calculates interatomic and intermolecular distances and bond angles with their standard deviations.

BONDAT :- Written by J.M. Stewart et al.

Calculates the positions of tetrahedral, trigonal or linearly bonded hydrogen atoms.

LSQPL :- Written by J.M. Stewart et al.

Calculates the best least-squares line or plane through a set of atoms and the deviations of these and other atoms from the line or plane.

MODIFY:- Written by J.M. Stewart.

Binary data file editing and generation of pseudo-data e.g. inputing of phase information for E map to solve a direct-method problem.

LISTFC:- Written by J.M. Stewart et al.

Outputs final structure factor lists in a format suitable for reproduction in theses and publications. Other programs used in the laboratory are:-

<u>ICABS</u>:- An absorption/extinction correction program originally written by Coppens *et al*⁴ and adapted by Dr. F.A. Stephens.

This program permits corrections to be applied to crystals of any shape provided that the indices of the bounding faces can be determined and the morphology is good enough to permit reliable measurement of the linear dimensions.

An absorption correction has to be applied to account for a reduction in intensity of both the incident and diffracted rays on passage through a crystal. Busing and Levy⁵ have suggested a three-dimensional numerical integration technique to evaluate this effect. This is essentially a 3-D numerical equivalent of Albrecht's graphical method. Grid intervals need to be optimised with regard to speed and accuracy of calculation and this is accomplished by means of trial runs on about 25 - 40 reflections chosen to cover the full range of absorption effects.

In this approach the path lengths are derived from the vector analysis method suggested by Coppens *et al*⁴. Other alternative methods of correction have been suggested by Howells⁶, Furnas⁷, J. de Menlenaer⁸ and North⁹. Some have been compared by Coppens *et al*¹⁰.

The transmission factor, A, for hkl reflection is given by:-

A(hk1) =
$$\frac{1}{v} \int_{v} \exp \left[\mu(r_{i} + r_{d})\right] dv$$

where r_i is the path length of the incident beam before being scattered by the volume element dv, and r_d is the path length after scattering. V is the volume of the crystal. μ is the linear absorption coefficient of the crystal for the wave length given and is defined as:-

$$\mu = \rho \sum_{i \in \mathcal{V}} w_{i} \mu m_{i}$$

where w_i is the relative weight of the i^{th} element in the crystal and μm is the mass absorption coefficient of the element. ρ is the density of the crystal. The integral is evaluated by a Gaussian integration, which

approximates it to the weighted sum of a number of terms. The crystal is described in terms of up to twenty bounding faces and the distance of each face from an arbitrary point usually near to the centre of gravity of the crystal. A grid of regularly spaced sampling points is set up and the components of the incident and diffracted beams for each reflection are then derived according to the vector analysis method of Coppens *et al.*⁴. These are used in a three-dimensional Gaussian integration technique where the transmission factor is obtained as the weighted sum over all the other points. The transmission factor becomes:-

$$A(hkk) = \sum_{r}^{n} a(r)$$

 $1 < N \leq 3200$ where W_r is the Gaussian weight of the rth point and a(r) is the transmission factor of the hkl reflection at that point.

ORTEP:- A thermal ellipsoid plot program written by C.K. Johnson and described in Oak Ridge National Laboratory Report ORNL - 3794. This program has been adapted by Dr. F.A. Stephens. It can be used to produce any type of crystal-structure illustration, including stereoscopic pairs.

NORMAL: - A program which can calculate E-values and punch out a specified number of the highest E's. (Output suitable for input to MULTAN or PHASEM).

ESORT:- Written by D.J. Williams.

This program sorts the E's into their respective parity groups ready for submission to Σ_2 program to give lists of triple interactions for hand generating of phases.

MULTAN:- Written by Main Germain and Woolfson.

A general program for generating sets of phases for direct method solution. Chooses possible best starting sets and generates phases.

PHASEM: - Written by Michael Drew, University of California.

A program for investigating phase relationships between

reflections in non-centrosymmetric space groups.

All the formulae used in this program are quoted by Karle and Karle $\stackrel{11}{}$. The prerequisites for using the program are a set of |E| values for a crystal.

There are two main sections in the program, the subroutines PHISUM and PHITAN, which use the formulae

and

$$\tan \phi_{\underline{h}} \approx ^{\underline{A}} / B$$
(2)

where

$$A = \sum_{\underline{h}'} |E_{\underline{h}'}E_{\underline{h}-\underline{h}'}| \sin (\phi_{\underline{h}'} + \phi_{\underline{h}-\underline{h}'})$$
$$B = \sum_{\underline{h}'} |E_{\underline{h}'}E_{\underline{h}-\underline{h}'}| \cos (\phi_{\underline{h}'} + \phi_{\underline{h}-\underline{h}'})$$

PHISUM takes as input a set of reflections whose phases are known either symbolically or numerically. By application of formula (1), the subroutine attempts to find the phases of other reflections from the known $\phi_{\underline{h}'}$, $\phi_{\underline{h}-\underline{h}'}$ values. Before a phase $\phi_{\underline{h}}$ is considered determined, the phase pairs $(\phi_{\underline{h}'} + \phi_{\underline{h}-\underline{h}'})$ must give the same value for $\phi_{\underline{h}}$ and the α value must be greater than some input value (See Appendix IV).

When formula (1) has been used to the utmost, the subroutine PHITAN is employed using the tangent formula (2). Use of this formula requires numerical values of all phases and the program allows symbols to be given differing values successively. Determination of phases for all <u>h</u> can thus be carried out from a small starting set of reflections, all with numerical $\phi_{\rm h}$.

The preceding has been a brief summary of the program systems available within the laboratory but has neglected one important problem, namely the handling of large amounts of data for input to these programs and systems. A structure which requires in excess of 4000 reflection data for solution is not uncommon and thus the standard deck for input to the computer may be ca. 4500 cards.

The system which I prefer is to use the UPDATE format of storing source card images on magnetic tape. The update facility allows the storage of source card images on magnetic tape or disc. Blocks of cards can be logically grouped under a deckname and within each deck the cards are numbered. The deck list numbers run down the right-hand side of the listing and are generated by UPDATE on the card images prepared for input to the assembler. Corrections can be made to the card image stored on tape by inserting new card(s) before or after a numbered card or by deleting card images. The 'Update' source deck can then be made available for input to the appropriate compiler or program. Two magnetic tapes are utilised in the process of creating and maintaining this program library and data system.

All computer calculations performed throughout the present work have been carried out on the Imperial College CDC 6400 and the University of London CDC 6400, 6600 and 7600 series computers. The UPDATE system is a CDC feature which provides the useful facility of storing data in a readily accessible manner in a binary format on permanent file or magnetic tape.

Least-Squares Refinement

Before considering the least-squares refinement of the transformation matrix for an arbitrarily-orientated crystal, it is best to discuss the least-squares refinement of cell parameters as this is a simpler illustration of the least-squares principle.

The method of 'Least-squares' was first postulated by Legendre and was placed on a logical foundation by Gauss and Laplace. Least-squares minimizes the sum of squares of the differences between observed and calculated values. The method finds many applications in crystallographic calculations.

Consider the following:

 $\underline{\mathbf{A}} \mathbf{x} = \underline{\mathbf{b}}$

where <u>A</u> is of the order m. n, <u>x</u> is vector of order n and <u>b</u> vector of order <u>m</u>; further m>n. Suppose in this case that <u>b</u> represents the intensity data and <u>x</u> the positional, thermal and scale parameters of the structure. We can define a residual vector <u>r</u> so that:-

 $\underline{\mathbf{r}} = \underline{\mathbf{b}} - \underline{\mathbf{A}} \underline{\mathbf{x}}$

If the data set represented by <u>b</u> and <u>A</u> contained equally precise and independent elements then the criterion that $r^{T}r$ should be as small as possible will yield the parameters <u>x</u>. Suppose now that <u>B</u> and <u>d</u> are of the same order as <u>A</u> and <u>b</u> but the data set has elements whose errors vary and are not independent, i.e.,

 $\underline{\mathbf{B}} \underline{\mathbf{x}} = \underline{\mathbf{d}}$

Then a matrix \underline{X} can be constructed such that $\underset{ij}{X}_{ij}$ is the expectation value of the product r_{ij} where r_{i} and r_{j} are the residuals of the equations i and j. \underline{X} is symmetric and positive definite and a matrix \underline{W} which is lower triangular of order m, can be chosen such that:-

 $\underline{W} \times \underline{W}^{T} = \underline{I}$ Now set $\underline{W} \cdot \underline{B} = \underline{A}$ $\underline{W} \cdot \underline{d} = \underline{b}$

. . .

The aim is to derive a set of 'normal equations' whose solution minimises $r^{T}r$, the sum of squares of residuals.

 $M = \underline{r}^{T} \cdot \underline{r} = (\underline{b} - \underline{Ax})^{T} \cdot (\underline{b} - \underline{Ax}) = \underline{b}^{T} \cdot \underline{b} - 2\underline{b}^{T}\underline{Ax} + \underline{x}^{T}\underline{A}^{T}\underline{Ax}$ The normal equations:-

 $\frac{\delta M}{\delta x} = -2b^{T}A + 2x^{T}A^{T}A$

 $\delta M_{/\delta x} = 0$ at the minimum of M with respect to all elements of \underline{x} so:-

$$\underline{\mathbf{A}^{\mathrm{T}}}\underline{\mathbf{A}} \ \underline{\mathbf{x}} = \underline{\mathbf{A}^{\mathrm{T}}}\underline{\mathbf{b}}$$

From the structure factor equations we get a set of non-linear observational equations.

Given a set of observable data $\phi_1 \dots \phi_n$, and an equivalent calculated set of f, based on the unknowns <u>x</u> by the non linear equation:-

 $f_i = f_i (x)$

If the measurements ϕ_i are independent and if each is estimated to be uncertain by $(\sqrt{w_i})^{-1}$, we minimise:-

 $M(\underline{x}) = \sum_{i=i}^{m} w_i (\phi_i - f_i(x))^2$

This M may have more than one local minimum so the solution may not be unique. Suppose we have an approximate solution \underline{X} we want to try and refine, and further this solution lies near to one particular local minimum so that $\underline{X} = \underline{X} + \delta \underline{x}$ where every element δx is small compared to \underline{X} then:-

$$M(\mathbf{x}) = \sum_{i=1}^{m} w_i \left[\phi_i - \left[f_i(\mathbf{x}_0) + \sum_{j=1}^{n} \frac{\delta f_i \delta \mathbf{x}_j}{\delta \mathbf{x}_j} + \frac{1}{2} \sum_{j=1}^{n} \sum_{k=1}^{m} \frac{\delta^2 f_i}{\delta \mathbf{x}_j \delta \mathbf{x}_k} - \delta \mathbf{x}_j \delta \mathbf{x}_k + \dots \right] \right]^2$$

From the assumption that δx is much smaller than x it would seem reasonable to ignore the terms δx_i . δx_k and all such higher terms so:-

$$M(\mathbf{x}) = \sum_{i=1}^{m} w_{i} \left[\phi_{i} - f_{i} (\mathbf{x}_{o}) - \sum_{j=1}^{n} \frac{\delta f_{i}}{\delta \mathbf{x}_{j}} \delta^{\mathbf{x}}_{j} \right]$$

Ignoring the cross terms this form is equivalent to the linear form and hence a set of normal equations can be generated.

References

- X-Ray '70 system; updated version of July 1970 of X-Ray '63 System of Programs, J.M. Stewart, University of Maryland Technical Report TR. 64 6.
- 2. X-Ray '72 system; updated version of ref. 10(1972).
- 3. P.G.M. Troughton, PhD Thesis (1970).
- 4. P. Coppens, L. Leiserowitz and D. Rabinovich, Acta Cryst., 18, 1965, 1035.
- 5. W.R. Busing and H.A. Levy. Acta Cryst., 10, 1957, 180.

A discussion of Gaussian Integration methods may be found in M. Morgenau, G.M. Murphy:- The Mathematics of Physics and Chemistry New York; Van Nostrand (1943). E. Whittaker, G. Robinson:- The Calculus of Observations, London and Glasgow; Black and Son, Ltd., (1962).

Gaussian constants are derived from P. Davis, D. Rabinovitz. J. Res. Nat. Bur. Stands., 56, 1956, 35.

- 6. R.G. Howells. Acta Cryst., 3, 1950, 366.
- 7. T.C. Furnas. The Single Crystal Orienter Instruction Manual, Milwaukee. The General Electric X-ray Corp., (1952).
- 8. J. de Metalenaer, M. Tompa. Acta Cryst., <u>19</u>, <u>1956</u>, 1014.
- 9. A.C.T. North, D.C. Phillips, F.S. Mathews, Acta Cryst., 22, 1957, 601.
- P. Coppens, J. de Mealenaer, H. Tompa. Acta Cryst., <u>A24</u> 1957, 601.
- 11, J, Karle and I.L. Karle, Acta Cryst., <u>1966</u>, <u>21</u>, 849.

- -

. . .
CHAPTER III

Steric Factors in Nitrite Co-ordination: Crystal Structure of the Complex [Ni (EtNH.CH₂CH₂NHEt)₂(O₂N)]⁺BF₄⁻

> "When a man writes from his own mind, he writes very rapidly. The greater part of a writer's time is spent in reading, in order to write; a man will turn over half a library to make one book."

> > ... Samuel Johnson.

Abstract

The preparations, electronic and infrared spectra are reported for the compounds $\operatorname{NiD}_2(\operatorname{NO}_2)X$ (X = BF₄ or CLO₄; D = NN'and NN-R₂-ethylenediamine, where R = Me or Et). The structure of the NN'-Et₂en complex has been determined from three-dimensional X-ray diffractometer data. The crystals are monoclinic, with unit cell dimensions: a = 11.338(1), b = 16.291(2), c = 11.934(1), $\beta = 112.015(8)^\circ$, space group $\underline{P2}_1/\underline{c}$ and $\underline{Z} = 4$. The structure was refined by least-squares to \underline{R} 0.053 for 2522 independent reflections.

The complex is monomeric with a chelating nitrite forming part of a distorted octahedral environment about nickel. The diethylethylenediamine molecules are arranged in <u>cis</u>-positions and there is an approximation to a diad axis in the cation. The steric factors leading to this geometry, as distinct from M-ONO-M bridging, are discussed.

Introduction

Structural studies of metal-nitrite complexes have shown the nitrite ligand to be unusually varied in its mode of co-ordination. This versatility which is perhaps the most interesting feature of this group as a ligand, arises from the number of lone pairs (one on the nitrogen atom and two on each of the oxygen atoms), which can be utilised in forming donor bonds to metal atoms. Furthermore, π -electrons can be donated or accepted by this ligand, thus assisting in the stability of the complex.

a na 14 k

· · ·

محيجة وتتواري والأشوق برا

an explore representation of a 20 M to any 15 m

The nitrite ion has frequently been characterised by infrared and electron absorption spectra. I have included a section explaining the spectral criteria normally employed in predicting the mode of co-ordination taking place.

These criteria have been utilised in the later structural section, however, the spectral results do not permit a reliable differentiation to be made between the presence of a type III bridge and a chelating nitrite group.

Absorption Spectra of the Nitrite Group

Infrared Spectra

The unco-ordinated nitrite group possesses a point-group symmetry C_{2v} , with three non-degenerate vibrational modes, all of which are infrared active. These are, v_s , the symmetric nitrogen oxygen stretches; v_{as} , the antisymmetric nitrogen oxygen stretches; and δ_{NO_2} the NO₂ deformation. (Fig. 1).

1) Free Nitrite Ion

The measurement of the infrared and Raman spectra of sodium nitrite, space group Immm, in the solid state and in H₂O and D_2^{0} solution by a number of workers , led to a general agreement on the observation of three peaks at 823 + 3 (medium, sharp), 1250 \pm 30 (very strong, broad) and 1326 \pm 2 cm⁻¹ (very weak, sharp). Further conclusion was made that the peak at 828 cm $\begin{bmatrix} 1 \\ u^{\text{wes}} \end{bmatrix}$ assigned as $\delta_{\rm NO_s}$, the band at 1326 cm⁻¹ assigned as v_s, based on the Raman polarisibility of an aqueous solution, of single crystals, the fluorescence spectrum; and the broad intense absorption centred at ~1250 cm as v_{ac} in agreement with the Raman spectra of an aqueous solution and a single crystal of sodium nitrite. The spectra of potassium nitrite, silver nitrite and barium nitrite are similar to that of sodium nitrite, the nitrite group is therefore apparently unusual in having v_s higher than v_{as} , resembling OF₂ and O₃, which is its isoelectronic compound. However, this can be accounted for by the presence of the two negatively charged oxygen atoms which result in the relatively large interaction constant.

In a metal complex the values of the v_s and v_{as} stretching frequencies of the nitrite group are quite characteristically different from their free-ion values depending on a particular type of co-ordination.

The fundamental vibrations of the free nitrite ion,

Figure 1 (b)

The value of deforming δ_{NO} appears, on the other hand, not to change significantly.

2) <u>Nitro Ligand</u>

Co-ordination via nitrogen in a nitrocomplex causes a quite different effect on its vibrational spectrum from oxygen coordination. The bonding via nitrogen tends to increase $v_{as'}$ significantly, whereas v_s is only slightly increased above its free-ion value. Thus, v_{as} is raised in the nitrocomplexes of Co(III) and Pt(II) to ~1400 cm⁻¹ while v_s remains virtually unaltered from its free-ion value at ~1330 cm⁻¹ ^{6,7}. The effect has been explained by the induction of a positive charge on the nitrogen atom, which causes a decrease in the negative charge on the oxygen atoms, hence the non-bonded interaction term between them, while the double-bond character of the nitrogen-oxygen bonds in increased.

A frequency at $\sim 600 \text{ cm}^{-1}$ in many nitrocomplexes of Co(III) and at 462 cm⁻¹ in K₂CdNi(NO₂)₆ has been assigned by Nakamoto *et al*⁸ as a wagging vibration ρ_{W} characteristic of the nitro co-ordination. The corresponding mode of vibration has not been observed in nitrocomplexes and compounds containing bridged nitrite groups.

3) Nitrito Ligand

As a monodentate ligand, oxygen co-ordination in nitritocomplexes causes the lowering of one stretching frequency towards that of a nitrogen-oxygen single bond, the other being raised towards that of a nitrogen-oxygen double bond. The v_{as} frequency is lowered whereas that of v_s is increased.

4) Chelating Nitrite Ligand

When both oxygen atoms of the nitrite group are employed for chelation, it is expected that there would be only a slight change in the bonding order of the nitrogen-oxygen bonds. A strong band is found at ~1200 cm⁻¹ and a medium one at ~1300 cm⁻¹ in the chelating nitrite groups in the solid compounds NiL₂(NO₂)₂ (where L = pyridine, 2-methylpyridine and quinoline), the bands are assigned as v_{as} and v_{s} respectively, which illustrates that both v_{as} and v_{s} are slightly reduced.

5) Bridging (-NO-) Ligand

For bidentate co-ordination using nitrogen and oxygen as a bridge, the nitrite group was found to have an appreciable increase in v_s but only a slight reduction in v_{as} . The nitrogen-oxygen stretching frequencies occur at ~ 1240 and ~ 1430 cm⁻¹ in each of the complexes of Ni(ethylenediamine) (NO2), Ni (N-methylethylenediamine) (NO2), and Ni (NH3) (NO2). It was interpreted that nitrogen and oxygen co-ordination in this type of bridging resulted in the slight lowering of v_{as} from its free ion value, and the raising of the mean of v_{s} and v_{as} . A similar spectral result was found in the compound (Ni(ethylenediamine), NO,)BF, which was confirmed by the X-ray crystallographic method to contain the bridging via nitrogen and oxygen of the nitrite group. Compounds of the family $\left[Co(NH_3)_3 - OH_Co-(NH_3)_3 \right]^{3+}$ possessing nitrite infrared frequencies at 1200 and 1500 cm⁻¹ were therefore deduced to possess this type of bridging.

6) Bridging (-0-) Ligand

Bridging via a single oxygen atom by a nitrite ion is expected to affect the infrared spectrum in a similar manner as a monodentate nitrito type of bonding when a single oxygen atom is co-ordinated. A very strong band of v_{as} at ~1020cm⁻¹ and a generally strong peak of v_s at ~1475 was found by Hitchman¹¹ to be a characteristic spectrum of a series of compounds NiL₂(NO₂)₂ (where L = isoquinoline, 3-methylpyridine, 4-methylpyridine and N,N-diethylethylenediamine) and NiL₂(NO₂)₂^{1/3C}₆H₆ (where L = pyridine and 3-methylpyridine). These bands were similar to those found for monodentate oxygen bonding.

As evidence from magnetic moments and electronic spectra suggested that the co-ordination number of each nickel ion in these complexes was six, implying bidentate co-ordination by the nitrite group, it was concluded by Hitchman¹¹ that the only bidentate nitrite bonding likely to have infrared frequencies similar to those of a monodentate nitrito co-ordination was bridging via a single oxygen atom.

where where we have a set of the second

The manner of bridging via a single oxygen atom was furthermore supported by the magnitude of the difference of v_{as} and v_{s} from their free-ion values, as the effect on the nitrite infrared spectrum of two nickel ions attached to a single oxygen atom of a nitrite group should be appreciably more than that produced when one nickel ion was bonded. The values of v_{as} and v_{s} at frequencies of ~1020 and ~1457 cm⁻¹ were between those observed for monodentate nitrito groups co-ordinated to Co(III) and Pt(IV).

Electronic Spectra

The analysis of the electronic absorption spectrum of a nitrite complex is relatively more difficult than its infrared spectrum.

The energies of the 'd - d' electronic transitions in a nitrite complex, as measured by the electronic absorption spectra, provides two significant items of information on the nature of the bonding in a nitrite complex.

The first is derived in conjunction with the magnetic susceptibility and often indicates the approximate symmetry of the ligand field, i.e. whether the complex is planar, tetrahedral or octahedral. Stoicheiometric consideration then leads to a conclusion that the nitrite group co-ordinates as a monodentate or bidentate ligand.

The second useful item of information generally provided by the

electronic spectrum is whether the nitrite groups are co-ordinated via nitrogen or oxygen. Nitrite groups co-ordinated via oxygen only nitrito, chelated, and bridged via a single oxygen atom group - are at the weak end of the spectrochemical series, whereas nitrite ions coordinated only or partly by nitrogen i.e. nitro and bidentate -NO- bridging are at the strong end. For example the oxygen-bonded nitrite groups have an energy of the 'd - d' electronic transition value of ~9,000cm⁻¹ when octahedrally co-ordinated to Ni(II), while those bonded via nitrogen have a corresponding value of ~13,000cm⁻¹.

1) Nitro- and Nitrito- Ligands

The nitro- and nitrito- groups can be readily distinguished from a study of the spectrochemical series. Jørgensen listed the following spectrochemical series in order of decreasing field strength: $CN^{-} > -NO_{2}^{-} > o$ -phenanthroline > ethylene-diamine > NH_{3} > pyridine > --NCS > H₂O > --ONO > OH > C1 > Br > I. The nitro- group is therefore a relatively strong ligand, while the nitrito- group is a fairly weak ligand. For transition metal ions, particularly of the first series, the 'd - d' bands in a nitro-complex will generally be of considerably higher energy than the corresponding ones in the analogous nitritocomplex. By comparing the electronic spectrum of a nitrite complex with those of similar compounds containing other ligands, the effective ligand field strength of the nitrito-groups, and hence their mode of co-ordination as a nitro or nitrito bonding can be deduced. For example, the energies of the first spin-allowed electronic transitions for the isomeric forms of (Co(NH₃)₅-ONO)Cl₂, (Co(NH₃)₅-NO₂)Cl₂ and two related compounds, (Co(NH₃)₅H₂O)Cl₃ and Co(NH₃)₆Cl₃, are 20600, 21900; 20600 and 21000 cm $^{-1}$ respectively 13 14.

The ligand-field splitting parameter, Δ values, for nitro and nitrito bonding, can be approximately obtained by the 'average environment' treatment as suggested by Jørgensen , In a nickel (II) complex, the partial energy level for the nickel ion, of symmetry d⁸, in an octahedral field may be considered. (Fig. 2). The six-co-ordinate nickel ions with spin-triplet ground states exhibit three main bands, for three spin-allowed transitions from the ground state ${}^{3}A_{2\alpha}$ to the three triplet states ${}^{3}T_{2g}$, ${}^{3}T_{1g}(F)$ and ${}^{3}T_{1g}(P)$ in 0_{h} ligand field symmetry. The first electronic transition ${}^{3}A_{2g}$ to ${}^{3}T_{20}$ approximates to Δ value, which is ~12,000 cm⁻¹ in a typical nitrocomplex Ni(N-ethylethylenediamine) (-NO2) and 10,360 cm⁻¹ in a typical nitritocomplex Ni(N,N'-diethylethylenediamine), (-ONO). By taking the \triangle value of the diamines as 11,500 cm⁻¹, it follows from the values in the two compounds that the Δ values of the nitro- group and of the nitritogroup are $\sim 13,000$ and 8,100 cm⁻¹ respectively. The corresponding values of NH_3 and H_20 are 10,800 and 8,500 cm⁻¹ respectively.

Similar values for the nitro- and nitrito- groups in the isomeric forms of $[Co(NH_3)_5(NO_2)]Cl_2$ were deduced when the difference in oxidation state of the metal ion was taken into account. The difference in ligand-field strength between the nitro- and nitrito- group is usually large enough for correct assignments to be generally made.

2) Chelating Ligand

The electronic spectra of complexes containing chelating nitrite groups indicates a relatively weak ligand nature of the chelating nitrite group. The compounds $NiL_2(NO_2)_2$ (where L = pyridine, 2-methylpyridine and quinoline), Ni(N,N,N',N'-

47 ·

С

tetramethylethylenediamine) $(NO_2)_2$, and Ni(N,N,N',N'-tetraethyl $ethylenediamine) <math>(NO_2)_2$, all of which were confirmed by the magnetic moment values of 2.9 - 3.3 B.M. to possess six-coordinate, paramagnetic nickel (II) imply the bidentate co-ordination of the nitrite group. The band maxima of these complexes suggest that the nickel (II) in each of them is surrounded by fairly weak ligands.

3) Bridging (-NO-) Ligand

The nitrite bridging via a nitrogen atom and an oxygen atom produces a high ligand field, as the nitrogen atom of the anion is involved in the co-ordination, and thus imposes relatively high energies of the band maxima on the electronic absorption spectrum.

The band maxima of (Ni(ethylenediamine) $_2(NO_2)_2)^{BF_4}$, whose structure has been confirmed by X-rays to contain -NO- bridging, are at ~20,200 and ~12,500 - 10,900 cm⁻¹.^{11 12} These band energies are very similar to those found for Ni(ethylenediamine) $_2(NO_2)_2$ and suggests that the Δ value of a -NO- bridging nitrite group is close to that produced by a nitro- group and is very high, suggesting a relatively strong ligand field around each nickel ion, whereas Ni(diamine)(NO₂)₂, known to contain chelating anions, has a fairly weak ligand field with bands at ~17,000 and 10,000 cm⁻¹ The nitrite ion is an expremely versatile ligand. As a monodentate ligand it can coordinate either via nitrogen forming a nitro-complex, or via oxygen, giving a nitrito complex. Alternatively it can use both oxygen atoms to form a chelate ring, or it can bridge two metal atoms as in I-III.

Although definite examples of bridges of types I and II have been demonstrated by X-ray structural studies , there are no proven examples of type III bridges.

Earlier work had shown that with nickel nitrite complexes the mode of nitrite coordination depended on the steric influences of other ligands present. In complexes of the type $\operatorname{NiD}_2(\operatorname{NO}_2)_2$ (where D = a substituted ethylenediamine), nitrite coordinated via nitrogen for ethylenediamine and N-monoalkyl-ethylenediamines¹⁷ but via one oxygen atom as the extent of substitution on amino and/or methylene hydrogens was increased¹⁸. Very heavily substituted diamines, such as NNN'N'-tetraalkylethylenediamines gave only $\operatorname{NiD}(O_2N)_2$ complexes in which the anions were chelating¹²

These observations suggested that the type I bridge, known to be present in Nien₂(NO₂)BF₄, would be less favoured as alkyl substitution on the diamine was increased, and that by a suitable choice of diamine, compounds of stoichiometry NiD₂(NO₂)BF₄, containing type III bridges might be obtained.

The structural study of Ni(EtNHCH₂CH₂NH.Et)₂(NO₂)BF₄ presented

here is part of a general study of the compounds $\text{NiD}_2(\text{NO}_2) \times (X = BF_4 \text{ or } ClO_4; D = NN'- \text{ and } NN-R_2-\text{en where } R = Me \text{ or } Et), with a view to studying steric factors in nitrite co-ordination.$

• • •

•

.

.

Experimental

Preparation

All the complexes except Ni(EtNHCH₂CH₂NHEt)₂(NO₂)BF₄ were prepared by the following method. A methanolic solution of nickel nitrite¹⁹ was refluxed with an equimolar quantity of hydrated nickel perchlorate (or tetrafluoroborate) after the addition of 2,2,-dimethoxypropane. This solution was then added dropwise and with stirring to a methanolic solution of the appropriate amount of the diamine. After concentration and cooling, crystals formed, and these were collected and dried <u>in vacuo</u>.

The compound Ni(EtNHCH₂CH₂NHEt)₂(NO₂)(BF₄) was obtained by a modification of the above procedure. A concentrated aqueous solution of nickel nitrite and nickel tetrafluoroborate was prepared by adding solid potassium nitrite (0.85g) to an aqueous solution of nickeltetrafluoroboratehexahydrate (3.4g) and filtering off the precipitated potassium tetrafluoroborate. This solution was then added dropwise, with stirring, to a methanolic solution of the diamine. Large green crystals of the complex separated after the solution had been cooled for several hours.

Microanalytical results are given in Table 1 along with relevant spectral data, and ligand abbreviations, Physical measurements were carried out as described previously.

X-Ray Studies

The dark green crystals of Ni(s-dieen) $_2(NO_2)(BF_4)$ were rather irregular in shape. They were stored in their mother liquor as they tended to powder on prolonged exposure to air. Crystals used for X-ray studies were coated with varnish. When examined under polarized light they were opaque so no useful optical information was obtained.

Preliminary photographs gave the Laue symmetry ^{2/}m, monoclinic, with the unique-axis, b, corresponding to one of the shorter dimensions

Complex 🌮	Colour	Characterisation Data Analytical Data (%) 🐓		Nitrite i.r. band	Electronic band frequencies	
		C	H	N		· ·
Ni(s-dimen) ₂ (NO ₂)(CLO ₄)	Dark purple	25•45 (25•25)	6.2 (6.4)	18.5 (18.4)	1300m, 1230s, 🎶	18,180;~14,900wsh;10,500; ~8300brsh
Ni(s-dimen) ₂ (NO ₂)(BF ₄)	Dark purple	26.3 (26.1)	6.2 (6.6)	19.1 (19.0)	1300m, 1215s, d	18,000;10,500 &
$Ni(a-dimen)_2 (NO_2)(CLO_4)$	Bright green	25•3 (25•25)	6.25 (6.4)	18.45 (18.4)	1295mw,1215vs,857ms	16,800;~12,500 _{wsh} ;10,050;
$Ni(a-dimen)_2 (NO_2)(BF_4)$	Bright green	26.5 (26.1)	6.3 (6.6)	19.3 (19.0)	1295mw,1217s,859m	16,650;~12,400wsh;10,000
$Ni(s-dieen)_2(NO_2)(ClO_4)$	Blue green	33•2 (33•0)	7.1 (7.4)	16.3 (16.0)	1315m [©] ,1210vs,861m, 829w	17,350;~12,500wsh;10,250 &
Ni(s-dieen) ₂ (NO ₂)(BF ₄)	Blue green 🋇	34.15 (34.0)	7.2 (7.6)	16.6 (16.5)	1295mw,1210vs,861m	17,400;~14,700wsh;~12,500wsh; 10,250 %.

Ligand abbreviations : s-dimen = NN'-dimethylethylenediamine; a-dimen = NN-dimethylethylenediamine; s-dieen = NN'-diethylethylenediamine.

- \diamondsuit Required values in parentheses.
- \Im When powdered; dark green when crystalline.
- \checkmark Amine bands in region of $\delta(NO_2)$.
- ✤ Assignment uncertain because of amine bands.
- \oint Reflectance spectra.
- & Asymmetric to lower energy.

TABLE

السر

of the crystal.

Preliminary unit-cell dimensions were:-

<u>a</u> =	11.34Å $\underline{D}_{m} = 1.42$
<u>b</u> =	16.30Å $\underline{D}_{c} = 1.44$
<u>c</u> =	11.94Å $\underline{U} = 2046Å^3$
β =	112° $\underline{Z} = 4$
The	systematic absences were:-
hkl	none
hOL	$\mathcal{L} = 2n + 1$
0k0	k = 2n + 1

Thus the space group is unambiguously determined as $\underline{P2}_1/\underline{c}$. Intensity data were collected for a crystal of dimensions <u>ca.</u> 0.2 x 0.2 x 0.3 mm³ mounted about the <u>b</u> axis on a Siemens off-line automatic fourcircle diffractometer.

Crystal Data

 $C_{12}H_{32}BF_4N_5NiO_2$, <u>M</u> = 433.9, Monoclinic <u>a</u> = 11.338(1), <u>b</u> = 16.291(2), c = 11.934(1) Å, β = 112.015(8)^o, <u>U</u> = 2043.6Å³, <u>D</u>_m (by flotation) = 1.42, <u>D</u>_c = 1.41, <u>Z</u> = 4, <u>F</u>₀₀₀ = 896, μ = 18.13.cm⁻¹ Space group <u>P2</u>₁/<u>c</u> from systematic absences : h01, 1 = 2n + 1, and OkO, k = 2n + 1.

CuKa radiation at a take-off angle of 6° , a nickel β filter and a Na(TL)I scintillation counter were used. The θ -2 θ scan technique was employed, with a 'five-value' measuring procedure²⁰ to give 2522 independent reflections measured to $\theta = 60^{\circ}$, of which 140 were judged to be unobserved.²⁰ The net count of the reference reflection did not vary significantly during the data collection (<u>ca</u>. 6 days). The data were scaled using the reference reflection and the Lorentz and polarisation corrections were applied.

Solution and Refinement of Structure

A three-dimensional Patterson map was computed from which the

nickel atom position was readily obtained. Least-squares refinement of this position gave $\underline{R} = 0.495$. A difference-Fourier synthesis calculated on the basis of this atom position, with a rejection ratio of 0.5, showed the positions of a further eight meaningful atoms and inclusion in least-squares refinement gave $\underline{R} = 0.38$. All the remaining atomic positions were then found including the tetrafluoroborate group, but owing to a large degree of disorder in this group it was excluded from the next refinement in order to redetermine its position $(\underline{R} = 0.277 \text{ without } BF_{h})$. The tetrafluoroborate group was then more accurately determined from the resultant difference-Fourier. Refinement of all the non-hydrogen atoms with isotropic temperature factors gave $\underline{R} = 0.184$. All atoms were then allowed to refine anisotropically to give R = 0.095. At this stage, the data were corrected for absorption effects, according to the method of Busing and Levy , using a 10 x 10 x 10 grid, with crystal pathlengths determined by the vector analysis procedure of Coppens et al . Further anisotropic refinement brought <u>R</u> to 0.087. An anomolous dispersion correction for nickel was then applied ($\underline{R} = 0.076$). Two misprocessed reflections and three reflections suffering from extinction were removed during the refinement procedure. When the hydrogen atoms, located from the latest difference-Fourier were included as a "fixed-atom contribution", R fell to 0.053. (Final R-factor of less thans: = 0.103). The scattering form factors used were those tabulated 24 by Cromer and Weber , and the real and imaginary parts of the anomalous dispersion correction were those given by Cromer. A final difference-Fourier was relatively featureless.

Tables 2 and 3 list the final coordinates of the non-hydrogen atoms and the coefficients of their anisotropic temperature factors respectively. The standard deviations have been obtained using the full-matrix least-squares refinement procedure ORFLS of X-ray 70. (See chapter II). The coordinates of the hydrogen atoms are given in Table 4. Structure amplitudes are listed at the end of the chapter.

54

Discussion

Compounds of the type Ni(diamine) $_2(NO_2)X$ (X = BF₄ or ClO₄) were readily obtained with a-dimen, s-dimen, and s-dieen. The electronic spectra of the solid compounds (Table 1) indicate the absence of type 1 bridges, as the spin-allowed d-d bands are at much lower energies than in the compounds Nien₂(NO₂)X. For these last, the two lowest energy bands were observed at <u>ca</u>. 20,000 and <u>ca</u>. 12,000 cm⁻¹. Whereas the corresponding bands in the spectra of the compounds described here are at 16,000-18,200 and 10,000-10,500 cm⁻¹ respectively. The absence of Type I bridging is supported by the nitrite band frequencies in the infrared (i.r.) spectra (Table 1), particularly by the absence of **a** N-0 stretch in the region 1390-1440 cm⁻¹. These results also show the absence of a single oxygen bridge (typeII).

However, the spectral results do not permit a reliable differentiation to be made between the presence of a type III bridge and a chelating nitrite group. Both types of nitrite coordination would be expected to affect the internal modes of the NO_2 group in a similar way. Moreover the only significant difference in the electronic spectra would be differences in the splittings of the orbital triplet levels between a <u>trans</u> NiN_4O_2 system for the chelating nitrite. As such differences are too ill-defined for diagnostic purposes, one of the series of complexes was chosen for X-ray study - the compound Ni(S-dieen)₂ $(NO_2)(BF_4)$.

The structural study showed that in this compound the nitrite group acts as a chelate and not a bridging group. The structure of the cation $[Ni(s-dieen)_2(0_2N)]^+$ is shown in Figure 3, the relevant bond lengths and angles are listed in Tables 5 and 6, and the molecular packing is shown in Figure 4 (drawn using the program ORTEP²⁷). Intermolecular contacts are listed in Table 7. The coordination about the nickel atom is distorted octahedral. Within each chelate ring formed by s-dieen both ethyl groups point upward towards the nitrite group. This arrangement allows the s-dieen molecules to occupy cis positions without undue steric strain whilst leaving sufficient room for the nitrite group to chelate. The atoms N_6 and N_{33} lie in the plane containing Ni, 0_1 , and 0_3 (deviations from the plane are 0.02 and 0.009 Å respectively, plane 2, Table 8). As expected, the constraint imposed upon the angle 0,-Ni-0, by the "bite" of the nitrite group, permits the angle N₆-Ni-N₃₃ to open out from an ideal octahedral angle of 90° to 101.8°. However, the departure from linearity for N3-Ni-N66 is quite small (angle N_3 -Ni-N₆₆ = 173.6°) and there is almost a diad relationship within the cation. The trans Ni-N bonds (to N_3 and N_{66}) are somewhat longer (2.15 and 2.16 Å) than those to $N_{33}(2.13$ Å) and $N_6(2.10 \text{ Å})$, and all are longer than the Ni-N bonds (2.09 Å) in Ni(tetmen) $(0_2N)_2^{\gamma_2}$. The angles at the nitrite group $(0_1 - N_2 - 0_3 \text{ and } 0_1 - Ni - 0_3)$ are quite similar to those of the tetmen compound, but the nitrite chelation is more symmetric [Ni-0, 2.10 and 2.12 Å compared with 2.07 and 2.15 Å, and 2.06 and 2.12 Å for the two nitrites in Ni(tetmen) $(0_2 N)_2^{12}$].

In conclusion, although the steric factors in Ni(s-dieen)₂(ONO)₂ are sufficient to favour nitrito-coordination as compared with nitrocoordination, they are insufficient in the range of compounds reported here to prevent the <u>cis</u>- chelation of the diamine required for nitrite chelation. In turn, the relatively small steric requirements of the chelating nitrite group facilitate this <u>cis</u>-arrangement of diamine coordination, as they permit any unfavourable diamine-diamine contacts to open out by distortion from octahedral geometry. The present results suggest that the type III bridging nitrite may be rather elusive, as the further increase in steric hindrance required to prevent a <u>cis</u>arrangement for the diamine would probably result in only one molecule coordinating to the metal ion.

Fig. 3

Structure of the cation Ni(ethylethylenediamine) $_2(0_2N)^+$.

TABLE 2

rikat nan ka

· ..

.

.

z. 1 . .

~ ~

-

Non-Hydrogen Atomic Positions

	x	У	z
Ni ⁺⁺	0.23274(6)	0.09381(4)	0.23013(6)
0 ₁	0.0491(3)	0.0877(2)	0.0961(3)
N ₂	0.0694(5)	0.1403(3)	0.0282(4)
៰៹៓	0.1808(3)	0.1686(2)	0.0734(3)
c,	0.3261(7)	-0.0756(4)	-0.0272(5)
c,	0.2647(5)	-0.0060(3)	0.0164(4)
N ₃	0.2960(3)	-0.0059(2)	0.1485(3)
c,	0,2513(5)	-0.0806(3)	0.1906(4)
c ₅	0.2814(4)	-0.0715(3)	0,3246(4)
N ₆	0.2172(3)	0.0018(2)	0.3473(3)
с ₇	0.0817(4)	-0.0158(3)	0,3333(5)
c ₈	0.0695(5)	-0.0738(3)	0.4271(5)
c ₁₁	0.6145(5)	0.1885(4)	0,2854(6)
C ₂₂	0.4740(5)	0.1678(3)	0.2317(5)
N ₃₃	0.4243(3)	0.1337(2)	0,3206(3)
C ₄₄	0,4220(5)	0.1942(3)	0,4122(4)
C ₅₅	0.3045(5)	0.2465(3)	0,3630(5)
N 66	0.1898(3)	0.1935(2)	0,3282(3)
C ₇₇	0.0747(5)	0,2456(3)	0,2737(5)
с ₈₈	-0.0430(6)	0.2053(4)	0.2798(6)
в	0.6458(6)	-0.0693(4)	0.3318(5)
F ₁	0.5537(4)	-0.1225(3)	0.2706(4)
F ₂	0.6912(7)	-0.0313(4)	0,2619(5)
F3	0.5957(3)	-0.0153(2)	0,3929(3)
F	0.7403(3)	-0.1109(2)	0,4148(3)

Table	3
	_

Anisotropic Thermal Parameters

	The anis	otropic	thermal	ellipsoid	has the fo	orm:-	
	ехр - (β	+11 ^{h²} +	β ₂₂ ^{k² +}	$\beta_{33} e^2 + 2 e^3$	${}^{3}12^{hk} + {}^{2}\beta_{1}$	L3 ^{hl} + 2β	23 ^{kl)}
Atom	β ₁₁	β ₂₂	^β 33	β ₁₂	β ₁₃	^β 23	
Ni ⁺⁺	855(8)	395(3)	823(7)	-5(4)	353(6)	35(4)	x 10 ⁵
0,	115(4)	68(2)	117(4)	-2(2)	31(3)	2(2)	$ x 10^{-4} $
N ₂	138(6)	71(3)	106(5)	7(3)	31(4)	10(3)	$\times 10^{-4}$
03	139(4)	60(2)	106(3)	2(2)	51(3)	11(2)	x 10 ⁴
C ₁	281(11)	78(4)	138(7)	12(5)	114(7)	-18(4)	$\times 10^{4}$
c_2	163(7)	59(3)	99(5)	0(3)	60(4)	-8(3)	$\times 10^4$
N ₃	108(4)	42(2)	84(4)	-4(2)	47(3)	-4(2)	$ x 10^{4} $
C ₄	128(6)	42(2)	126(5)	-5(3)	58(4)	-4(3)	$ x 10^4 $
c ₅	117(5)	46(2)	123(5)	6(3)	56(4)	14(3)	x 10 ⁴
N ₆	83(4)	42(2)	84(3)	-3(2)	37(3)	3(2)	$ x 10^{-4} $
с ₇	96(5)	57(2)	139(6)	-4(3)	61(4)	5(3)	$\times 10^4$
. C ₈	141(6)	57(3)	180(7)	-16(3)	98(6)	6(3)	$\times 10^4$
C ₁₁	131(6)	62(3)	245(9)	-26(3)	114(6)	20(4)	$ x 10^{-4} $
C ₂₂	128(6)	48(3)	143(6)	-12(3)	79(5)	-6(3)	$\times 10^{-4}$
N ₂₂	89(4)	40(2)	102(4)	-13(2)	45(3)	-3(2)	$ x 10^{-4} $
C ₆₆	130(6)	56(2)	107(5)	-20(3)	54(4)	-14(3)	$ x 10^{4} $
C ₅₅	156(6)	44(2)	137(6)	-12(3)	87(5)	-14(3)	$ x 10^{-4} $
N ₆₆	109(4)	43(2)	96(4)	9(2)	52(3)	6(2)	$ x 10^4 $
C ₇₇	163(7)	56(3)	128(6)) 32(4)	61(5)	10(3)	$ x 10^{-4} $
с ₈₈	131(7)	81(4)	232(9)	25(4)	76(7)	10(5)	x 10 ⁴
В	134(7)	47(3)	93 (6)) 8(4)	43(5)	4(3)	$ x 10^{-4} $
F ₁	162(5)	119(3)	327(7)) 3(3)	34(5)	-114(4)	x 10 ⁴
F ₂	698(7)	134(4)	327 (9)) 29(6)	340(11)	87(5)	x 10 ⁴
F ₃	157(4)	67(2)	195(4)) 27(2)	37(3)	-32(2)	x 10 ⁴
F ₄	180(4)	94(2)	157(4)) 46(2)	69(3)	17(2)	x 10 ⁴

ہ و

. .

Hydrogen	atomic positio	ons; located from	difference-Fourier
	and	unrefined. x 10	3
	<u>a</u>	y	3
^H 11	429	-70	14
^H 12	300	- 135	-1
^H 13	300	-77	-125
H ₂₁	288	53	-14
H ₂₂	158	-12	-28
^H 31	400	-1	191
^H 41	151	-90	145
^H 42	301	-135	176
^H 51	250	-127	358
^H 52	384	-67	371
^H 61	269	22	441
^H 71	38	43	339
^H 72	34	-41	244
^H 81	116	-133	424
^H 82	120	-49	519
^H 83	-27	-88	418
^H 111	630	233	357
^H 112	666	133	322
^H 113	652	213	221
^H 221	422	224	195
^H 222	458	124	161
^H 331	481	82	365
^H 441	423	162	491
^H 442	505	232	435
^H 551	303	290	431

~

Та	b1	e	4
			-

.,4 .

.

•

~

,

Table 4 (Continued)

^H 552	303	280	284
^H 661	187	163	408
^H 771	90	303	321
^H 772	60	256	180
^H 881	-59	148	232
H ₈₈₂	-28	195	373
^H 883	-127	244	. 240

A.

TABLE 5

Bond lengths (Å) with estimated standard deviations in parentheses

$Ni^{++} - O_1$	2.099(3)	Ni ⁺⁺ - N ₃₃	2.132(3)
$Ni^{++} - O_3$	2.123(3)	Ni ⁺⁺ - N ₆₆	2.161(4)
Ni ⁺⁺ - N ₃	2.151(4)	$O_1 - N_2$	1.258(7)
Ni ⁺⁺ - N ₆	2.102(4)	$N_2 - O_3$	1.261(6)
$C_1 - C_2$	1.521(9)	$C_{11} - C_{22}$	1.515(7)
$C_2 - N_3$	1.481(6)	$C_{22} - N_{33}$	1.483(7)
$N_3 - C_4$	1.477(6)	$N_{33} - C_{44}$	1.479(7)
$C_4 - C_5$	1.513(7)	$C_{44} - C_{55}$	1.503(7)
C ₅ - N ₆	1.476(6)	$C_{55} - N_{66}$	1.484(6)
N ₆ - C ₇	1.509(6)	$N_{66} - C_{77}$	1.487(6)
$C_{7} - C_{8}$	1.511(8)	$C_{77} - C_{88}$	1.513(9)

- -

B - F ₁	1.342(7)
$B - F_2$	1.292(11)
B - F ₃	1.392(8)
B - F.	1.338(6)

TABLE 6

Selected Bond angles (°) with estimated standard deviations in parentheses

$$O_{1} - Ni^{++} - O_{3} \qquad 59.17(15)$$

$$N_{6} - Ni^{++} - N_{33} \qquad 101.78(13)$$

$$N_{3} - Ni^{++} - N_{66} \qquad 173.61(12)$$

$$O_{1} - Ni^{++} - N_{3} \qquad 91.31(14)$$

$$O_{3} - Ni^{++} - N_{6} \qquad 90.09(14)$$

$$O_{1} - Ni^{++} - N_{6} \qquad 99.59(14)$$

$$O_{3} - Ni^{++} - N_{33} \qquad 99.46(14)$$

$$O_{1} - Ni^{++} - N_{6} \qquad 158.62(15)$$

$$O_{3} - Ni^{++} - N_{6} \qquad 158.60(13)$$

$$O_{1} - Ni^{++} - N_{6} \qquad 95.05(14)$$

$$O_{3} - Ni^{++} - N_{6} \qquad 83.56(15)$$

$$N_{3} - Ni^{++} - N_{6} \qquad 83.67(14)$$

$$N_{3} - Ni^{++} - N_{66} \qquad 90.61(14)$$

$$N_{3} - Ni^{++} - N_{66} \qquad 94.79(15)$$

$$O_{1} - N_{2} - O_{3} \qquad 111.68(36)$$

Table 7

Intermolecular distances (A°) with values less than 3.5Å.

Symmetry operation

$$F_{4} - N_{6} = 3.229(5) \qquad C_{5} - F_{3} = 3.433(6) \\F_{4} - N_{66} = 3.166(5) \qquad N_{6} - F_{3} = 3.038(4) \qquad (1-x, -y, 1-z) \\C_{1} - F_{2} = 3.240(9) \qquad (1-x, -y, -z) \\(1-x, -y, -z) \\(1-x, \frac{1}{2} + y, \frac{1}{2} - z) \\(1-x, \frac{1}{2} + y, \frac{1}{2} - z)$$

Table 8

w really and a sector off the care of

Least-squares planes of selected atoms

The equations of the planes can be expressed in terms of Px + Qy + Rz = Sin direct space.

	<u>P</u>	<u>Q</u>	<u>R</u>	<u>s</u>	Atoms defining plane	Not defining plane
Plane 1	9.03	9.48	-5.39	1.79	Ni -0.040; 0(1) -1.032 N(2) 0.007; 0(3) 1.036 N(3) 0.052; N(66)-0.023	N(33) 1.569 N(6) -1.683
Plane 2	-6.07	11.35	7.69	1.40	Ni 0.021; 0(1) 0.031 N(2) -0.015; 0(3) -0.021 N(33) 0.009; N(6) -0.024	N(3) -2.112 N(66) 2.168
Plane 3	-5.89	11.65	7.49	1.44	Ni, O(1), O(3)	N(2) -0.014
Plane 4	8.71	2.93	3.37	3.08	Ni, N(3), N(6)	C(1) -0.548; C(2) -0.781. C(4) -0.478; C(5) 0.279. C(7) -1.280; C(8) -1.227.
Plane 5	2.23	10.19	-9.24	-0.65	Ni, N(33), N(66)	C(11) 1.301; C(22) 1.274. C(44)-0.237; C(55) 0.485. C(77) 0.783; C(88) 0.072.

Angles between planes

1 ^	2	84.3 ⁰
2 ^	3	1.5°

CHAPTER III

Comparison of observed and calculated structure amplitudes

The data are listed in groups of constant <u>h</u> and <u>k</u> and list values of <u>k</u>, $10|F_0|$ and $10|F_c|$. Reflections marked "*" were classified as unobserved.

-- --

.

. ••

	10	8 9	6 7	3	2	•	• •	10 11	9	7	6	4	3	1		11	10	9	7	5 6	4	1 3			11	9 10	7 8	6	4	1 2		10	8	4	
20	36 66	74 154	486 244	302 162	337 148	U141L	0 4 1	16 4 71	15*	87 338	323	40 205	71	77	0,3,L	15×	57	139	162	583 164	140	882 415	U121L	0.2.1	178	310	185 189	227	616	116 9	0,1,L	65	335	382	0,0,L
	50 58	73 166	491 245	324 173	370 152		, .	164 71	18	78	328	35 181	78	80		5	59	124	175	593 158	107	880 434			169	305	178 193	225	586	123 13		72	63	398	
1		10	8 9	6 7	45	3	1	n		10	ğ	7 8	6	4	3	1 2			11	9 10	8	6 7	5	3	2	0		11	10	8 9	6 7	45	3	1	
142 93	0,9,L	41	136 117	129	99 194	73 442	583	270	0,8,L	9 0	148	174	• 190	64 105	387	41 144		0,7,L	14*	97 15*	97	377 43	48	212	529	273	0,6,L	112	76	45 247	50 23 5	187 297	623	326	0,5,L
134 109		52	158 110	126	96 202	52 456	597	269		89	141	163 160	179	63 101	375	36 144			9	85 16	97	389 51	39	202	560	288 178		108	74	10 234	36 222	189 300	627	330	
12	n	·	6 7	4	23	1		8	ь 7	5	4	2	1	ņ		9	8	6 7	4	2	1		Э	8	7	5	' 3 4	2	° 0		10	8	6 7	45	3
114 80	77	0,14,L	95 72	43 45	106 29	115	0,13,L	53	48 67	76	44	200	223	640	0,12,L	151	88	49 170	36	69 140	87	0,11,L	21	102	182	237	25 81	314 372	698	0,10,L	91	92 64	95 21	99 207	25
105 95	55		96 71	47 57	116 12	119		54	43 51	73	38	168	222	560		145	83	50 166	26	73 133	94	,	18	107	184	246	7 85	366	713		92	91 55	85 17	203	22
7 8	-1 5 6	34	1 2	2 1	-4 -3	-6 -5	-7	-9 -8	-11	_11		10	8	、 4 E	2	-4 n	-6	-10 -8			ź	1		4	3	1	n		5	3	1 2		Б	4	3
156 48	110 357	232 473	842 37	757 1415	473 507	354 315	27	192 48	33 15*	77	1,1,L	194	365	66 445	110	85 299	376	195 553		1,0,1	49	26	0,17,L	159	14×	86 78	29	0,16,L	82	191 45	82 110	0,15,L	200	115	152
143 43	123	255 486	864 16	737	45 0 493	351 265	45	214	38 6	70		192	375	72	109	75 284	370	205 554			54	24		16 0	4	69	20		80	189 43	78 115	、 、	196	117	158
-9 -8	-11		11	9 10	7	5	4	2	-1 1	-2	-3	5	6	-8	-9	-10		10	11	89	7	5 6	3	2	1	-1	-3 -2	-n -4	-6	8 7	-10 -9	-11		10	9
170 148	80 95	1,4,L	15×	24	85 88	174 436	579	465	361	975	74	561	819	318	159	84	1,3,L	86	140	95 226	351	363 91	107	310	96	387	24 716	440	69	181 245	116 205	207	1,2,L	95	52
173 152	76		20	14	85 87	169 443	591	472	628 335	975	73	558 674	846	319	182	68		79	135	74 226	342	360 65	109	316	96	405	40 702	445	37	178 241	126 203	201		73 88	49

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44 167 15 -1 346 - 274 - 406 - 45 - 226 -	-1	0987654	1,9,L 75 238 284 64 119 76	69 233 284 54 133 60	4 5 7 8	59 241 41 39 15* 1,12,L	68 238 30 23 8	4 15 16 19 19 19 19	38 76 14* 1,15,L 101 118	36 78 1 104 115
1231	62 196 194 152	-11	15* 1,7,L 27	3		297 331 312 109 261	308 318 310 108 254	-0 -7 -5 -5 -3	120 33 46 109 111 105	40 42 101 108 87	-4 -3 -2 -1 0	87 85 81 82 15* 79	90 95 72 76 17 68
	342 241 254 96 49	-10 -9 -8 -7 -6	75 107 185 151 129	77 102 194 170 149	23456	138 334 321 14# 168	147 342 330 15 168	-2 -1 0 1 2	110 107 106 46 118	92 118 109 43 120	2 3 4 5	54 161 67 191	46 157 65 185
	36	-^4 -2 -1	42 321 445 613 64	42 335 453 532 54	7 8 9	15 108 73	26 110 74	3 4 5 6 7	41 68 103 178	32 61 111 177 117	-4 -3	1+16+L 96 46 58	102 36 75
· · · · · · · · · · · · · · · · · · ·	36 5 240 290	0123	461 435 311 217	481 449 322 224	-9 -8 -7	115 198 221	120 198 222	8	44 1,13,L	49	-1 0 1 2	64 68 25 103	55 54 34 101
3 3 3	25 831 130 1468 333	4 5 5 7 8	274 294 230 250 135	277 295 229 238 145	-6 -5 -3 -2	205 135 181 155 91	202 147 187 153 67	-8 -7 -5 -4	78 24 210 32 178	73 18 201 27 163	3 4	25 58 1,17,L	30 54
\$ 2 7 2 3	530 194 508 473 597	9 10 -	67 32 1,8,L	74 32	-1 0 1 2 3	239 51 111 278 64	228 37 125 280 63	-3 -2 -1 0 1	41 238 177 297 181	38 231 177 308 195	-2 -1 0 1	32 105 82 64	30 102 79 64
	52 219 171 295 72	-10 -9 -8 -7	15* 207 37 144 41	2 198 42 139 45	-4 5 6 7 8	89 170 86 53	81 181 70 46	23456	165 14* 113 18	176 2 120 13	-10 -8	2,0,L 226 227	212 217
¥ L	33 8	าร 14 12 12	238 310 40 145	249 314 53 142	9	31 1,11,L	29	5 7 5 7	25 195 25	25 192 25	-p4 - 2 4	500 1215 657 557	462 1261 563 584
> 4 2 3	82 108 29 157	0 1 2 3	222 147 117 53 457	230 136 140 51 465	-98-765	101 27 144 96 21	102 29 137 95 16	-7 -6 -5	83 95 49	84 94 55	5 8 10	158 15* 63 2,1,L	149 1 69
	41 106 85 408 91 250	4 5 6 7 8 9	25 194 14* 182 16 169	16 203 9 188 5 159	-4 -3 -2 -1 0 1	157 215 38 499 157 517	167 223 44 506 164 528	-4 -3 -2 -1 0	15* 142 36 15* 19 63	5 146 21 15 5 64	-11 -10 -9 -8 -7	118 49 197 287 45	125 47 189 290 73
96 751	90 443		. –		2 3	123 259	113 269	23	66 19	61 17	-φ,	245 199	247 199

Э

	2,1,L		7	90	- 68	-8	83	/3	3	563	568	-4	141	B
A	222	າບບ	8	1/8	176	-/	192	192	4	212	224	-3	52	26
	275	288	10	30	2-3 HQ	0°''	444	1.32	5	212	401	2	30	
-2	207	203	••		05	~4	890	862	1	, <u>2</u> .5 R1	10		132	144
-1	713	650		2,4,L		-3	740	750	8	140	144	í	253	263
0	168	147				-2	1199	1200	9	84	76	2	49	57
1	1125	1087	-11	15×	8	-1	344	323				3	14	6
2	11	36	-10	24	6	, O	488	499		2,9,L		4	35	30
4	128	110	9	190	199	5	265	296	10	163	165	5	58	67
5	576	556	-7	277	278	3	418	436	10	103	102	7	70	84
6	199	184	-6	620	621	4	192	195	-8	70	· 74	้อ่	76	69
7	249	240	-5	746	742	5	13*	0	-7	60	69	-		
8	172	176	-4	473	435	6	247	244	6	176	168		2,12.L	
.9	168	162	-3	784	778	7	64	95	5	308	302	-		
10	20	23	-1	903	521	0	59	60 53	-4	135	129	-9	93	95
	2,2,1		_1 0	63	921	10	30		-3	27	15 B1	0	53	50
			ī	134	159			••	-1	116	111	-6	35	36
-11	33	38	2	200	200		2,7,L		õ	360	361	-5	20	21
-10	141	133	3	337	344 `				1	14	9	4	51	34
-9	183	200	4	178	169	-11	85	91	2	- 312	311	-3	266	269
-0-7	407	400	5	325	319	-10	153	151	3	206	209	-2	185	172
-6	185	208	7	214	213	-8	51	135	5	226	228	 	207	200
_ <u> </u>	443	440	ė	37	33	-7	297	311	6	118	117	1	247	253
-4	824	837	9	103	104	-6	94	95	7	92	98	2	234	234
2	43	15	10	24	36	-5	106	135	8	69	64	3	210	213
1	1036	1053				-4	63	87	9	101	99	4	169	159
1	673	707		2,5,1		-3	184	191		2 10 1		5	129	130
4	315	305	-11	211	205	-1	90	107		2,10,1		7	50	-10
5	391	382	-10	154	146	ō	90	107	-10	90	86	•	15	5
6	203	202	-9	101	100	1	49	61	-9	19	25		2,13,L	
7	77	67	-8	27	16	2	169	160	-8	219	; 222			
8	15*	16	· -/	119	128	3	119	126	-7	59	52	-8	157	162
10	100	99 6	0	311	338		293	599	6	108	65	-/	36	124
10	120	0	-4	222	199	6	261	285	-4	240	239	-0	32	40
	2,3,L		-3	437	410	7	112	111	3	195	171	-4	26	33
			2	495	502	8	162	156	-2	178	166	-3	94	103
-11	33	23	-1	332	353	9	94	95	-1	59	71	-2	126	134
-10	170	1/4	1	196	194		201		0	547	543	-1	47	54
-5	14#	18	2	279	278		2,0,1		2	450	/8	1	103	100
-7	364	355	3	355	345	-11	50	45	3	148	143	2	55	45
-6	207	212	4	301	317	-10	15×	3	4	297	295	3	78	78
5	144	136	5	654	671	-9	303	300	5	183	175	4	65	55
-4	451	446	6	140	161	-6	54	46	6	15×	15	5	64	66
-3	255	250		240	247	-7	186	199	7	17	17	6	149	145
-e -1	61	65	a a	133	130	-0	333	129	0	53	48		2.14.1	
ō	164	151	10	46	53	-4	44	42		2.11.1			2,14,1	
1	399	360				-3	601	637				-7	88	88
2	159	174		2,6,L		2	411	396	-9	155	161	-6	58	54
3	168	173		20		-1	245	264	-8	90	98	-5	96	100
4 6	191	100	-11	126	112	U 1	/5 477	67 466	-7	86	94	-4	42	35
6	246	248	-9	95	87	ź	23	9	5	161	172	3	130	128
						-		-	-					

71

,

;

.

)

	2,14,L		7 6	459 464	457 453	3	514 285	535 204	-10	188	196	2	61 192	87 100
-2 -1 0 1 2	79 208 36 70 3 8	73 214 23 82 36	-5 -4 -3 -2 -1	84 244 1054 373 756	101 242 1048 343 719	5 6 7 8 9	139 286 16 67 18	151 289 16 65 35	9 7 5 -4	20 214 15 301 431 13	27 206 25 294 427 41	3 4 5 6 7 8	195 223 213 40 36 32	190 224 215 37 42 33
3 4 5	47 54 102	45 51 91	2 1 0	20 922 161	1 933 136	10	18 3+4+L	10	-3 -2 -1	410 71 19	402 59 16		3,9,L	
	2,15,L		34	566 73	566 75	-11	151	156	0	350 234	350 247	-10 -9	111 269	111 261
6 5	40 20	39 21	5 6 7	88 37	96 48	-10 -9	58 83 149	92 140	2 3 4	300 315 340	302 317 361	8 7 6	228 186 242	233 194 257
-4 -3	57 37	51 38	8 9	21 75	24 79	7 6	14 157	1 166	5	341 260	343 264	5 4	166 357	193 371
-2 -1	14* 33	13 36	10	15×	3	-5 -4	515 53	518 52	7 8	92 245	93 246	-3 -2	126 128	147 147
1	26 26	12 28 57		3,2,1	07	-3	260 89	256 67	9	23	17	-1	155 476	165 480
34	62 86	63 77	-11 -10 -9	124	117 209	-1 0 1	478 555 35	429 529 45	-11	31/16	20	2	384 444 259	436 264
•	2,16,L		8 7	144 129	106 142	23	690 508	687 505	-10 -9	108 31	96 39	3 4 5	331 101	332 96
-4	213	204	-6 -5	367 354	358 356	45	227 282	223 287	8 7	125 209	127 221	6 7	60 50	59 43
	179 36	169 30	-3 -2	274 68	293 64	5 7 8	60 198	418 60 185	5 4	271 324	268 301	8	154 3.10.L	4
0 1	65 85	65 82	-1 0	869 472	816 455	9	119	119	-3 -2	923 14	930 6	-10	58	60
2 3	73 37	72 30	1 2	99 172	54 143		3,5,L		-1 0	333 238	348 251	-9 -8	48 71	52 70
	2,17,L	•	3 4 5	365 357 322	352 335	-11 -10 -9	56 115 27	51 111 33	1 2 3	302 58 261	305 66 273	-/ -6	23 216 42	22 199 47
-1 0	14* 54	6 46	6 7	222 144	223 139	8 7	15 54	15 48	4 5	63 40	61 32	-4 -3	14ж 115	21 107
	3,0,L		8 9	49 84	40 78	6 5	227 562	202 585	6 7	199 39	195 33	-2 -1	70 152	69 148
-10	77 498	72 501	10	59 3.3.1	61	-4 -3 -2	338 1435 107	334 1493 101	9	. 88 15*	92	1	108 150 197	101 141 203
-6 -4	313 46	304 32	-11	97	95	ī- 0	270 254	285 240		3,8,L		34	28 57	36 56
-2	14 351	27 315	-10 -9	133 34	137 24	1 2	282 196	297 182	-11 -10	162 16*	164 25	5	78 98	86 93
4 6 8	375 428 188	362 445 186	8 7 6	313 108 784	319 114 796	34	575 119 157	130 177	-9 -8 -7	163 15 161	158 12	/	15 3.11.1	10
10	98	89	-4 -1 -1	84 750	99 762	6 7	15× 180	14 178	-6 -5	132 423	122 445	-9	167	174
• •	3,1,L		3 2	891 231	903 167	8 9	27 78	28 61	4 2	78 109	90 105	8 7	64 169	65 156
-11 -10	55 194 277	55 190 308	-1 0	214 159 202	198 183 168		3,6,L		-2 -1 0	55 57 67	51 43 69	-6 -5	14# 192 159	15 177 145
-8	331	326	ź	580	567	-11	118	109	1	144	153		123	170
_	3,11,L		0	108 46	116 36	4 5	180 266	182 290	7 -6	16 4 649	153 665	7 8	15* 74	8 62
----------------	-------------------	-------------------	-------------	----------------	----------------	-------------	-----------------------	------------------	----------------	--------------------	-------------------	-----------	------------	------------
-3 -2 -1	290 206 411	303 199 422	2 3 4	40 76 22	37 70 29	5 7 8	169 109 67	154 115 51	-5 -4 -3	596 354 334	600 371 341		4,7,L	
Ō	141	145	5	104	108	ğ	115	111	-2	382	357	-11	99	96 57
ź	183	203		3,15,L			4,2,L		-1 0	310 525	309 544	-10 -9	54 58	75
34	282 53	284 57	6	69	91	-11	201	213	1	373 450	389 477	8 7	73 242	67 228
5	28	22	-5	164	168	-10	66	52	3	63	69	6	97	60
7	74	81	-3	104	106	-9 -8	111	72	5	71	75		437	438
	3,12,L		-2 -1	79 109	63 109	7 6	447 165	456 145	6 7	205 113	217 112	-3 -2	12# 16	15
-9	77	79	0	15×	10	-5	354	348	8	41	34	-1	180	160
-8	81	68	2	95	97	-3	363	396	5	10	10	1	118	126
/ 6	61 61	82 56	3	34	33	2 0	311 535	268 474		4,5,L		2 3	381 197	383 209
-5 -4	97 32	69 49		3,16,L		1	591 247	599 208	-11	182	181	4	260 98	255 95
-3	121	118	-4	87	83	3	535	549	-9	52	46	6	93	84
-1	84	76	-2	21 15×	4	4 5	182	178	8 7	40 252	258	6	78 131	123
0	29 62	2 2 86	-1 0	32 75	36 76	6 7	43 95	49 93	6 5	89 424	107 446		4,8,L	
2	38 38	35	1	14*	4 50	8	16×	8	-4	54	57		00	01
4	148	153	~		55	5		20	~2	178	156	-10	42	41
6	202	208		4,0,6			4,3,L		-1 0	77 312	64 269	9 8	201 129	183 131
	3,13,L		10 8	230 496	237 491	-11 -10	16≭ 1∩4	23 91	1 2	203 379	202 363	-7 -6	113 101	107
	1.4%	17	-6	593 402	602	-9	173	170	3	358	362	-5	484	466
-7	15×	- 12	-2	629	609		176	175	5	226	201	-3	399	415
-19 -19	61 46	58 53	0 2	953 634	930 602	-6 -5	228 363	211 365	6 7	19 139	17 140	-2 -1	168 268	161 269
-4	171	170	4	345 59	342	-4	176	178	8	46	52	0	117	112
-2	315	310	8	49	51	-2	276	256		4,6,L		2	50	41
0	234	225		4,1,L		-1	843 579	804 544	-11	22	20	3	246 66	232 64
12	89 116	87 109	-11	58	66	1 2	348 599	295 592	-10 -9	115 87	106 83	5 6	31 22	23 9
3	52 92	61 77	-10	128 204	124 215	3	81 305	97 305	-8	102	95 131	7	62 38	60 30
5	66	79	-8	468	470	5	57	49	-6	510	532	0		33
0	1-444	0	-6	136	121	7	18 4 61	58	-4	480 379	488 379		4,9,1	
	3,14,L		-5 -4	132 51	121 49	6 9	187 43	189 46	-2 -1	695 140	669 143	-10 -9	76 114	76 115
-7	41 18	43	-3	225 166	199 137		4.4.1		Ö	584 19#	572	-8	86	86
-5	43	33	~1	140	128		00	~~	2	192	206	-6	24	21
-3	15** 65	63	1	287	280	-11 -10	83 43	90 48	34	117 39	117 28	5 4	91 218	98 207
2 -1	18 95	7 87	2 3	499 466	499 511	-9 -8	93 131	88 141	5 6	162 128	156 123	-3	134	122

ネート

_g		5 6	4	2	1	-1	-3 -2	-4	-р -р	-7	-9 -8	-10			6	5	4	2	1	Ō	-2	-3	-7	-6	-7	-9 -8	-10		'	6	5	3	2	Ō	-2 -1	-3	-5	-6	
95	5,11,L	82 141	119	268 51	308 121	61	167 107	16	49 14×	27	57	41		5,10,L	81	15*	46	144	182	81	28	24	212	352	180	169 243	93	5,9,L	128	15×	178	262	51	162	36 81	29	43	14%	5,8,L
94		85 131	116	256 58	301 129	45	159 104	3	43	24	53	37 104			82	21	54	193	187	77	36	17	211	353	168	159 234	84		191	3	175	255	306	162	43 81	22	47	Ο	
-2	745	Ē	~	1 2	1 0	-2	-4	-5	-6			3 ⊿	2	1	-1	-2	-6	-7			4	1	-1 0	-2	-3	-5 -4	-6	-8			-7	3	2	-1	-2	-3	-5		-8
29	29	5,15,L		31 16	18 31	76	15× 15	14*	47	5,14,L	62	14× 53	41	139	152 174	321	191	48	5,13,L		66	55 15×	23	20 188	21	73 20	35	45 57	511216	E. 12.1	31	152	56	254	35 125	145	245	2/8	54
26	138 33 345	178	20	45 23	30	76	3	5	39		01	11 61	40	142	149 174	325	192	55			69	58 10	19	23 188	13	70 24	28	47			24	151	290 54	243	127	133	231	273	45
	5 5 7	3 4 5	2	0 1	-1	-3	-5 -4	-6	-8 -7	-9	-10	-11		,	6 7	5	4	3	1	0	-1	-3	-4	-6 -5	-7	-9 -8	-10			6	4	0	-2	~6	-10 -8		•	1	-1
	83 27 59	244 46 81	145	501 41	423	500	175 139	152	451	372	17	86	6,2,L	120	32 126	332	44	53	56 14¥	64	519	232 190	41	15	144	201 80	88	113	6,1,L	36	208	1036	644	477	49 318		6.0.I	15* 14#	145
	36	235 26	125	442 35	451	528	170 1 3 1	112	437	367	4	89		160	40 128	323	45	52	55	58	506	197	32	12 45	130	200 62	92	104		17	191	995	607	469	332	07		19	126
3	1	-2 -1	-3	-5 -4	6	-8 -7	-10 -9	-11			7	5	4	3	1	o	-1	-2	-4	-5	-6	8 ~-7	9	-11 -10	• •		7	5	4	1	Ō	-2	-3	-5	-6	8	-10 -9	-11	
276	391 266	42 276	71	286 63	34	115	32 94	178	01916	6.5.1	20	64 23	76	179	108 40	247	192	403	343 375	109	281	29 284	225	164 105		6,4,L	45	41 145	43	55 318	458	31	. 382	53 163	100	288	129 23	64	6131L
280	395	60 294 189	72	287 65	39	111	36 81	174			10	55 20	63	174	58	252	190	415	349	111	288	17 274	227	161 88			44	40 141	40	52	449	17	350	46 165	113	294	131	58	
	-ρ -5	-6 7 5	-7	-9 -8	-10			6	-1	3	2	U 1	-1	-2	-4 -3	-5	-6	-7	-9 -8	-10	-11		5	5 6	4	2	ĩ	-1 0	~2	-4	-5	-7 -6	~8	-10	-11		7	6	4
~~	217	138 333 138	333	214 15*	32	116	6,8,L	137	117	243	223	148 120	18	121	428 409	37	94	56	45	109	18	6,7,L		40 131	17	55 15×	76	295 297	699	650 201	79	81 469	18	152 58	22	6,6,L	207	15×	26
	218	133 333 133	333	218 14	35	112		140	115	252 91	220	142	26	110	399	27	84	63	46	110	29		-20	44 128	3	47	54	268 289	693	642 178	62	98 459	21	134 37	17		200	231	25

えの

	5,8,L		-1	113	120	6	128	132	3	29	46	0	217	214
-3	275	261	1	55	5 65		7.1.L		4 5	22 51	24 52	1	34	41
-2	91	95	2	70	64				6	29	28	3	16*	5
~1	289	281	3	124	127	-11	25	25				4	150	161
1	207	222	4	10	27	-10	70	55		71416		5	94	90
ź	128	124		6,12,L		-9	159	144	-11	146	150		7.7.1	
3	107	95				7	290	282	-10	33	36		,,,,L	
4	65	51	-8	123	126	-6	180	172	-9	74	77	-11	62	68
5	8/	41	-/	161	154	-5	293	274	-8	83	77	-10	135	128
Ŭ	51		5	198	196		447	468	/	42	37	9	72	80
	6,9,L		4	108	85	-2 -2	198	188	-5	25	2	-7	33 18%	10
			-3	184	182	-1	183	199	-4	40	23	-6	212	208
-10	48	46	-2	211	186	0	68	75	-3	147	152	-5	140	145
9	92	95	-1	104	64 GG	1	166	145	-2	16	10	-4	349	345
-7	74	71	ĭ	27	24	3	322	305	- <u>-</u> -	115	105	-3	262	201
-6	94	106	2	54	56	4	99	97	ĭ	142	129	-1	141	153
~5	14*	2	3	54	42	5	51	46	2	53	48	0	221	225
-3	280	202		6.13.1		6	16×	9	3	65	56	1	115	116
-2	183	185		0,13,6			7,2,L		7	121	100	23	81 15*	80
-1	167	162	-7	23	24				6	117	119	4	51	43
0	226	218	6	86	77	-11	166	165				5	53	47
2	123	117	-5	46	41	-10	63	52		7,5,L				
3	68	72	-3	18	13	-8	188	183	-11	131	134		/181L	
4	91	87	-2	22	25	-7	198	193	-1D	15*	13	-10	14*	9
5	79	82	-1	32	21	-6	149	128	-9	132	131	9	84	85
	6.10.1		U 1	125	118	-5	17	27	-8	19	_6	8	36	37
			ź	137	129		182	172	6	95	99	~/	103	101
-9	79	86				-2	36	15	-5	437	441	~5	34	25
-8	335	336		6,14,L		-1	492	490	4	121	111	4	217	198
	345	341		58	54	0	117	86	~3	670	666	-3	202	218
~5	87	75	~5	90	89	2	89	84	-1	528	534	-2	39	45
-4	95	88	-4	66	66	3	235	231	ō	105	117	ō	86	94
-3	27	.22	-3	159	155	4	70	55	1	193	186	1	175	181
-1	48	45	2	84 50	40	5	2/7	274	2	21	16	2	15*	9
ō	285	285	ō	17	20	0	90	/9	3 4	49	54	3	159	160
1	35	35	1	14*	5		7,3,L		5	47	50	5	111	109
2	142	142		- 4 - 1					6	71	63	_		
3	20 65	59		6,15,L		-11	27	18		-			7,9,L	
5	57	56	-2	14*	9	~10	203	189		7,6,L		-10	151	1 46
	_		_		-	~8	275	263	-11	54	43	9	112	106
	6,11,L			7,0,L		-7	24	22	-10	127	120	8	357	354
<u>_</u> q	85	80	_10	60	71	-6	443	435	-9	95	80	7	185	189
-8	38	37	-10	16*	18	~4	345	337	-8	53 14x	47	-6	158	157
-7	58	58	-6	23	21	-3	219	216	-6	51	52		100	1/5
-6	51	.52	-4	157	183	-2	332	316	~5	135	157	-3	136	129
	120	124 84	-2	276	205	-1	228	218	-4	45	37	-5	135	130
-3	55	35	2	260	254	1	194	212		42 14#	5U 19	-1	90	63 57
-2	106	101	4	251	249	ž	40	30	-1	83	96	U	70	20

		7,9,L			7,14,L		-9	75	86	-7	109	117	1	98	115	
	1	134	130	-3	51	53	-8	29 77	24 87	-0	54 158	170	23	144	138	
	2	40	38	-2	50	44	6	49	37	-4	280	273			50	
	3	120	117				-5	91	111	-3	208	211		8,10,L		
	-	128	122		8,U,L		-4	76	85	-2	343	363	. 0	100	200	
		7,10,L		-10	82	67	-2	301	331	Ō	200	198	-7	102	95	
	-			-8	294	299	-1	33	54	1	57	47	-6	201	195	
·	y a	36	38	6	390 478	393	0	163	171	2	19	4	-5	98	97	
	7	31	34	-2	61	58	2	154	152	4	51	49	-7	40	25	
	~6	149	146	0	118	142	3	183	180				-2	19	34	
	-5	63	63	2	220	203	4	169	161		8,7,L		-1	63	58	
	-3	159	151	7	32	41	2	11	79	-10	67	70	0	129	117 68	
	ō	131	132		8,1,L			8,4,L		-9	15×	ő	ź	116	113	
	-1	63	68			_				-8	68	70				
		108	108	~11	16# 16#	14	-11	193	190	-/	31 15¥	37		8,11,L		
	ż	178	181	-9	16*	7	-9	137. **	131	-5	141	143	-7	14*	6	
	3	77	69	-8	47	56	-8	109	94	-4	98	93	-6	26	25	
		7.11.1		-/	77	66 60	7	213	208	-3	153	155	-5	30	25	
				-5	68	88	-5	228	226	-1	15×	14	-3	165	163	
	8	15×	14	-4	106	110	' -4	319	315	0	132	129	-2	56	52	
	/	176	1/6	-3	211	30	-3	113	101	1	63	61	-1	160	154	
	~š	113	104	-1	265	253	-1	149	153	3	116	122	1	123	121	
	-4	36	30	0	143	151	0	101	100	4	90	91				
	~) ~?	115 15#	110	1	12b 253	142 247	1	139 /	145		8.8.1			8,12,L		
	~1	15*	5	3	180	182	3	45	36		0,0,0		6	72	73	
	0	102	96	4	223	214	4	119'	111	-10	14*	13	-5	72	65	
	2	28	108	5	172	170	5	22	21	-9	146 16×	146	-4	158	156	
	3-	128	132		8,2,L			8,5,L		-7	175	182	-2	75	77	
		7.00			194	105		100		-6	173	177	-1	110	113	
		/ 1212		-10	154	132	-11	105	115 86	-5 -4	203	216	a	64	66	
	7	24	13	-9	288	298	~9	35	37	-3	109	109		9,0,L		
	-6	43	51	-8	146	153	-8	82	74	-2	244	276				
	-4	24	12	6	228	226	6	15# 74	57	-1	24 31	15	-10	20	84 16	
	-3	15*	1	-5	303	306	-5	114	127	1	102	90	6	163	160	
	~2	94	97	-4	177	165	-4	15*	3	2	15*	7	-4	45	37	
	- <u>-</u> _	148	153	-2	94	-100 97	-2	66	84	د د	95	84	-2	15# 25	19	
	1	77	80	-1	110	116	-1	92	88		8,9,L		ž	344	354	
	2	102	91	, o	172	169	0	54	53	~			4	214	219	
		7,13,L		2	177	167	2	57	52	-9	31	29		9.1.1		
	_			3	191	177	3	142	148	-7	38	42				
	-16 -1-	86 66	77 25	4	17	18	4	15*	3	-6	73	66	-11	15*	1	
	-4	138	124	9	104	1-1		8,6,L			38	38	-10	215	205	
	-3	24	19		8,3,L				=	-3	17	10	-8	182	178	
	-2	118	801 108	-11	35	32	-10	100	103	2	196	208	-7	395	398	
	ô	51	38	-10	16	4	-8	75	80	<u>_</u>	172	176				,
			•													

.

Ą.

~

-7 -6-5	-10 -9 -8	. –	0 1 2 3 4	-2 -1	የ ዓ ዓ	-7 -6	-10 -9 -8	-11	4	1 2 3	-2 -1 0	-4 -3	7 6 5	-11 -10 -9 -8		4 3 4	-1 0 1 2	-4 -3 -2	-6 -5	
15* 26 198	15* 63 39	9,4,L	245 24 126 19 24	86 26	40 164 202	19 273	203 128 142	88	58 5.3 J	96 97 162	179 137 64	144 41	15* 61 46	43 82 68 38	9,2,L	63 32	26 58 56 47	299 238 22	265 317	9,1,L
14 21 203	4 74 30		239 3 132 18 19	79 16	45 164 206	8 271	212 138 144	93	53	105 80 169	201 148 77	157 32	1 41 42	48 85 75 40		67 28	22 66 48	309 233 18	261 310	
	0 1 2	-2 -1	ዋ -	-9	ى	1 2 2	2 1 0	-14 -3	-7	-10 -9 -8		23	-1 0 1	-64 -47 -12	-8 -7 -6	-10 -9	3	0 1 2	-3 -2 -1	-4
9,8,L	113 21 15*	20 154	91 16 226 172 58 167	47	70 9,7,L	25 168	21 108 132	238 62	39 73	33 15* 15*	9,5,L	18 28	222 53 124	85 52 187 51	109 58 62	37 91	53 9,5,L	128 124 178	282 133 254	151
	102 17 2	2 155	87 11 219 175 59 170	46	/4	40 171	18 121 146	243 69	40 76	35 4 3	,	18 26	238 54 127	81 46 176 16	98 59 12	41 93	49	138 137 181	277 140 259	148
-9 -8 -7	-10	2	-10 -8 -6 -4 -2		-3	-5 -4		2 -1 0	-4 -3	-7 -Б -5		0 1	-3 -2 -1	-7 -6 -5 -4	8	2	-2 -1 0	-5 -4 -3	8 7 6	-9
40 23 76	10,1,L 40	59	22 149 266 316 67 95	10,0,L	16U 45	206 25	9,11,L	53 75	117 102	20 19 20	9,10,L	101 14#	15* 52 14*	126 195 67 143	9,9,L 137	33	114 117 44	62 15* 153	35 24 15*	15
46 10 78	38	68	18 160 283 343 59 83		155 33	193 20		51 79	119 104	8 3 21		99 10	0 64 10	129 196 65 157	130	34	126 121 50	72 14 144	44 7 9	13
-9	1 2	-1 0	7 6 5 4 3 7	9 8		1 2	-2 -1		-7 -6	-10 -9 -8		1 2	-2 -1	-6 -5 -4 -3	9 8 7	-10	1 2	-2 -1 0	-5 -4 -3	6
10,5,L 15#	25 56	81 185	190 38 92 27 35 82	160 100	10,4,L	16* 172	175 56 199	172 15*	19 54 20	15* 18 87	10,3,L	69 23	59 25 42	110 140 56 98	205 89 154	41	119 120	15# 61 70	21 15* 123	20
18	37 62	90 194	190 28 86 19 36	156 101		17 176	206 63 209	194 194	9 55	7 15 84		79 17	65 27 38	120 131 54 92	203 98 151	38	142 125	25 69 73	9 1 121	20
-6 -5	8 7	5	-4 -2 -2 -1 0	-	-5 -4 -9	7 6		-2 -1 0	-4	7 6 5	-8	1	-2 -1	ተ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ	9 8 7		1 0 1	-4 -3 -2	7 6 5	6
28 119	51 86	11,2,1	86 104 21 36 57	11,1,L	187 39 161	172 44	10,8,L	26 76	128 18	30 58 71	10,7,L 32	14×	197 26 164	210 46 45 28	65 140 48	10,6,L	156 71 107	24 147 34	16 86 70	15×
1 138	52 89		99 111 19 50		192 43 160	172 46	_	68 24 93	143 16	40 78 73	32	7	215 33	209 42 44 31	63 136 53		174 72 123	23 156 40	3 91 79	0

,														
	11,2,L		-1	47	51	-6	75	79		11.7.L			11,0,L	
			Ō	65	67	-5	26	23						
-4	18	18				-4	15*	10	-5	79	91	-8	163	170
-3	169	192		11,4,L		-3	103	103	4	99	99	6	152	158
-2	35	42				-2	65	58				-4	82	86
-1	173	183	-8	16	4	-1	130	142		10,6,L		-2	93	125
Ō	55	57	-7	87	85	-						0	105	116
-			-6	15×	2		11,6,L		-2	70	71			
	11.3.L		-5	46	56				-1	80	84		11,1,L	
1			-4	116	124	-6	86	93						
8	187	198	3	55	59	-5	19	30		10,9,L		-9	42	21
-7	63	61	-2	48	62	-4	36	31				-8	29	31
-6	70	71	-1	111	115	-3	49	58	-6	126	123	-7	120	118
-5	34	27	-			-2	14*	ī	-5	55	64	6	73	78
-4	15*	18		11,5,L		-		_	-4	129	125	5	184	185
-3	15×	1				1			-3	29	25			
-2	71	83	-7	121	121				-2	38	33			

l

, .

. -

.

.

•

. .

,

.

References

- A. Langseth and E. Walles
 <u>Z. Phys. Chem.</u>, <u>1934</u>, <u>27</u>, 209.
- 2. R. Newman, J. Chem. Phys., <u>1952</u>, <u>20</u>, 444,
- 3. R.E. Weston and T.F. Brodasky, J. Chem. Phys., 1957, 27, 683.
- M. Anbar, M. Halmann and S. Pinchas, J. Chem. Soc., 1960, 1242.
- 5. A. Tramer and J.P. Mathieu, <u>Compt. rend.</u>, <u>1959</u>, <u>247</u>, 392.
- J.P. Mathieu and M. Postollec, <u>Compt. rend. 1962</u>, <u>254</u>, 1800.
- 7. J.P. Mathieu, M. Postollec and H. Poulet, J. Chim. phys., 1963, 60, 1319.
- K. Nakamoto, J. Fujita and H. Murata, J. Amer. Chem. Soc., 1958, 80, 4817.
- G. Blyholder and A. Kittila, J. Phys. Chem., 1963, 67, 2147.
- 10. I.Nakagawa, T. Shimanouchi and K. Yamasaki, Inorg. Chem., 1964, 3, 772.
- 11. M.A. Hitchman, 1966 Ph.D. Thesis, University of London.
- 12. M.G.B. Drew and D. Rogers, Chem. Comm., 1965, 476.
- C.J. Jørgensen; "Absorption Spectra and Chemical Bonding in Complexes", Pergamon Press, Oxford.
- R.C. Brasted and C. Hirayama, J. Phys. Chem., 1959, 63, 780.
- M.G.B. Drew, D.M.L. Goodgame, M.A. Hitchman and D. Rogers, Chem. Comm., 1965, 477.
- D. M.L. Goodgame, M.A. Hitchman, D.F. Marsham, P. Phavanantha and D. Rogers, Chem. Comm., 1969, 1383.
- D.M.L. Goodgame and M.A. Hitchman, <u>Inorg. Chem.</u>, <u>1966</u>, <u>5</u>, 1303.
- D.M.L. Goodgame and M.A. Hitchman, <u>Inorg. Chem.</u>, <u>1964</u>, <u>3</u>, 1389.
- 19. D.M.L. Goodgame and M.A. Hitchman, Inorg. Chem., 1965, 4, 721.
- 20. A.C. Skapski and P.G.₩. Troughton, <u>Acta Cryst.</u>, <u>1970</u>, <u>B26</u>, 716.

- 20. A.C. Skapski and P.G.H. Troughton, Acta Cryst., 1970, B26, 716.
- 21. X-Ray '70 and X-Ray '72 Systems used for calculations. These are updated versions of the X-ray '63 system. J.M. Stewart, University of Maryland, Technical Report Tr 64 6.
- 22. W.R. Busing and H.A. Levy, Acta Cryst., <u>1957</u>, <u>10</u>, 180
- 23. P. Coppens, L. Leiserowitz and D. Rabinovich, Acta Cryst., 1965, 18, 1035.
- 24. D.T. Cromer and J.T. Waber Acta Cryst., 1965, 18, 104.
- 25. D.T. Cromer, Acta Cryst., <u>1965</u>, <u>18</u>, 17.
- D.M.L. Goodgame, M.A. Hitchman and D.F. Marsham, J. Chem. Soc. (A), 1971, 259.
- 27. C.K. Johnson, ORTEP, "A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations", Report ORNL 3794, 1965, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

CHAPTER IV

The crystal and molecular structure of Cobalt (thiopyrimidine)₂dichloride.

"A long time ago a noted specialist said that his secret of success as a physician was keeping the patient's head cool and his feet warm. And it is just now becoming generally known that 'a hot head' and 'cool feet' are enough to bring disaster to even a well man." ... 0. Byron Cooper.

COBALT THIOPYRIMIDINE DICHLORIDE

There has recently been considerable interest in the roles played by ambidentate ligands because such molecules may co-ordinate to the metal through either or both possible co-ordinating atoms; those containing nitrogen and sulphur have been of especial interest.

The complexing behaviour of an ambidentate ligand with a particular metal can often be predicted using either Ahrland, Chatt and Davies idea of class (a) or class (b) behaviour, or Pearson's extension of this idea to hard and soft acids and bases.⁵ These theories recognise the large difference between the co-ordination affinities of the first and second elements from Groups Vb, VIb and VIIb of the Periodic Table, i.e. N and P, O and S, F and CL. The class (a) acceptors form their stablest compounds with the first ligand atom of each group, whereas the class (b) acceptors favour the second (or subsequent) ligand atom. Most metals in their common oxidation states show class (a) behaviour while class (b) behaviour is shown by the heavier metals of group VIII.

In Pearson's notation, class (a) metals are 'hard' and class (b) metals 'soft'. Since ligand atoms of the first row such as N, O and F are also classified as 'hard' whereas P, S, and CL are 'soft' the general rule suggested is that 'hard' acids bind strongly to 'hard' bases while 'soft' acids bind strongly to 'soft' bases.

However, it has often been difficult to characterise unambiguously by physical methods the identity of the ligating atoms and to ascertain whether their co-ordination behaviour is determined by their steric or electronic properties e.g. the presence or absence of π -acceptor ligands. Electronic influences are important in such simple ligands as SCN, CN and NO₂⁻ and as the identity of the ligating atom can be readily inferred from simple infra-red criteria, these ligands have been extensively studied.

Even with simple ligands such as thiocyanate, where electronic effects are expected to be dominant, steric effects cannot be neglected. In NCS⁻ the ligand is linear when bonding through nitrogen but bent when co-ordinating through sulphur. The greater steric effect occurring in the latter case is shown in the related complexes $[Pd(dien)(SCN)]^+$ and $[Pd(C_2H_5)_4dien(NCS)]^+$

The greater steric hindrance brought about by changing dien to $(C_2H_5)_4$ dien results in a change of co-ordinating atom of SCN⁻ from sulphur to nitrogen in an attempt to relieve the steric strain. Additionally, sulphur co-ordination can be stabilised by the acceptance of electron density from non-bonding d-orbitals on the metal (d_{xz} , d_{xy} and d_{yz}) into empty sulphur d-orbitals.

With more complex ligands, simple criteria such as the change in frequency of a particular vibrational mode are not usually definitive and extremely careful use of spectroscopic techniques is generally necessary.

Metal-sulphur chromophores are of especial interest with a view to predicting how analogous biological molecules will co-ordinate.

The metal-sulphur bond has recently been studied by physical measurements in a group of related pyridine-thiols and in all cases the ligand was shown to be bound to the metal via the sulphur rather than the nitrogen atom.¹ [Bonding through the oxygen atom has also been . confirmed for the hydroxy analogues.¹] However, a recent X-ray study has demonstrated the existence of a chelating pyridine-thiolate anion which is to be expected on account of the loss of the proton.

The present work on the related Cobalt thiopyrimidine and hydroxypyrimidine dichlorides and their Iron analogues was carried out with a view to examine the behaviour of the thipyrimidine ligand (tautomers I and II).

Metal atoms may be expected to co-ordinate with this ligand through either one of the nitrogen atoms of resonance form I, or through the sulphur atom of form II (less likely in I). There was some experimental evidence (Table I) suggesting that in the Cobalt (thiopyrimidine)₂ CL₂ there is a distorted co-ordination and the ligand chelates to produce a four-membered ring. This has been demonstrated in the present structure determination. It was also found that the Cobalt and Iron thiopyrimidine chlorides were isomorphous. The hydroxy analogues of these complexes were prepared as it was hoped to obtain a crystallographic comparison but owing to the inherent disorder in all the crystal specimens prepared, despite having excellent morphologies, not even unit-cell information was obtainable. (The compounds were not isomorphous with their thiopyrimidine analogues).

Experimental

Preparation: A warm solution of Cobalt(II) dichloridehexahydrate (1 mmol) in ethanol (5cm³) was added to a hot solution of 2-pyrimidenethiol (2 mmol) in ethanol (10cm³). The mixture was then heated with stirring for <u>ca</u> 10 minutes after which time the ligand had dissolved and a green crystalline precipitate appeared. The solid was filtered from the hot solution under nitrogen, washed with ethanol (3 x 3cm³) and ether (2 x 3cm³)

Spectroscopic and Magnetic Data for Co(thiopyrimidine) $_2^{CL_2}$ and Co(hydroxypyrimidine) $_2^{CL_2}$

Co(Pym-2-SH) 2CL2

- 1. Magnetic moment µeff. = 4.62 B.M.
- 2. Electronic spectrum Bands Assignments 17.36 kk 15.75 kk ${}^{4}T_{1}(P) - {}^{4}A_{2}$ 10.64 kk 6.62 kk ${}^{4}T_{1g}(F) - {}^{4}A_{2}$

Implies a distorted co-ordination.

<u>Co(Pym-2-OH)2</u>CL2_

1. Magnetic moment \approx Unknown for lock of a suitable specimien. 2. Electronic spectrum Bands 16.45 kk ${}^{4}T_{1}(P) - {}^{4}A_{2}$ 6.90 kk ${}^{4}T_{1g}(F) - {}^{4}A_{2}$

These bands are consistent with tetrahedral co-ordination,

The spectry of the thiopyrimidine complex is shown in Fig.6 and is compared with the tetrahedral Co(quinoline)₂Cl₂. and dried in a vacuum over concentrated sulphuric acid.

The ligand (2-pyrimidine thiol) was obtained commercially and was purified prior to use by recrystallisation from an ethanol-water (1:1) mixture; melting point 228 - 230° C. Gravimetric analysis indicated the formula, $CoCl_2(C_4H_4N_2S)_2$

Found 7	5	l l	Calculat	ted 🖁
С Н 27.11 2.31	N 15.81	27.11	2,28	15.83

Crystals suitable for X-ray work and with a well developed morphology were grown from ethanol. They were dark green in colour and when examined under polarised light were opaque so no useful optical information was obtained.

The crystal chosen for data collection had the shape outlined in Fig. 1 and approximate dimensions 0.1 x 0.1 x 0.2 mm.³

Preliminary photographs gave the Laue symmetry as $^2/m$, monoclinic, with c-axis parallel to the elongated direction of the crystal.

Preliminary unit-cell dimensions were as follows:-

<u>a</u> =	12.30Å	$\underline{\mathbf{D}}_{\mathbf{m}} = 1.72 \text{g cm}^{-2}$
<u>b</u> =	8,25Å	$\underline{D}_{c} = 1.8 \mathcal{Q}_{cm}^{-3}$
<u>c</u> =	14.25Å	$\underline{\mathbf{U}} = 1288\underline{\mathbf{A}}^3$
β =	117 ⁰	$\underline{Z} = 4$
The	systematic	absences were:-
hkl		h + k = 2n
ROL		$\ell = 2n$

Thus the space group is either centrosymmetric <u>C2/c</u> or noncentrosymmetric <u>Cc</u>. From visual inspection of the intensity statistics the former is favoured although for <u>Z</u> = 4 in this space group the molecules must be situated in special positions.

The revised unit-cell dimensions obtained by least squares from

Morphology of the Cobalt(thiopyrimidine)2dichloride crystal.

 θ -scans for 22 reflections are:-

$$\frac{a}{b} = 12.371(1)^{\text{A}} \qquad \beta = 117.180(6)^{\circ}$$

$$\frac{b}{b} = 8.3010(4)^{\text{A}} \qquad \underline{U} = 1356.7^{\text{A}^{3}}$$

$$\underline{c} = 14.85/(1)^{\text{A}} \qquad \underline{D}_{\text{C}} = 1.73 \text{g cm}^{-3}$$

$$\mu abs = 97.25 \text{cm}^{-1} \text{for } Cu-K\alpha \text{ radiation}, \quad \overline{\lambda} = 1.5418^{\text{A}}.$$

Intensity data were collected using filtered Cu-Ka radiation to a θ -value of 70°, and altogether 1206 independent reflections were measured, of which 27 were judged as "unobserved" [I_{net} < 2.58 σ (I)].

- 5,0

Structural Solution

A three-dimensional Patterson map was computed which indicated that the Cobalt, Chlorine and sulphur atoms lay in positions indicating space group <u>C2/c</u>, the Cobalt atom being situated on a 2-fold axis. Least-squares refinement on these positions gave R = 0.313. A difference-Fourier synthesis calculated on the basis of these atomic positions revealed the positions of all the remaining non-hydrogen atoms. Isotropic refinement of these atoms gave R = 0.123. All atoms were then allowed to refine anisotropically to give R = 0.075. At this stage, the data were corrected for absorption. The correction was made according to the method of Busing and Levy using an $8 \times 8 \times 12$ grid, with crystal pathlengths determined by the vector analysis procedure of Coppens et al . Further anisotropic refinement, eliminating four misprocessed reflections and six low-angle reflections which suffered from extinction brought R to 0.058. An anomalous dispersion correction for cobalt and sulphur was then applied. When the hydrogen atoms, which were located from the latest difference map, were included as "fixed-atom contributions", R fell to 0.054. (R-factor of less-thans = 0.0%). The scattering form-factors used were those tabulated by 11 Cromer and Waber, and the real and imaginary parts of the anomalous dispersion correction were those given by Cromer!² The final difference-Fourier was featureless.

Tables 2 and 3 list the final co-ordinates of the non-hydrogen atoms and the coefficients for the anisotropic temperature factors respectively. The standard deviations have been obtained using the full-matrix least-squares refinement procedure ORFLS of X-ray 70. The co-ordinates of the hydrogen atoms are given in Table 4. Comparison of observed and calculated structure amplitudes are listed at the end of the chapter.

Description of the structure and discussion

The complex is monomeric and possesses a diad symmetry axis. The molecular structure is shown in Fig. 2 which is a view down the diad. Fig. 3 shows the molecular packing and indicates the hydrogen bonding present; Fig. 4 is a stereo pair diagram of the unitcell contents.

The pyrimidine - 2 - thistato - ligand is bidentate, co-ordinating through both the nitrogen and sulphur atoms. The Co co-ordination is distorted octahedral with the N atoms <u>trans</u>, and the pairs of CL and S atoms <u>cis</u>. The more important bond lengths and angles are shown in Tables 4 and 5 respectively. The Co - CL distance of 2.369Å and Co - N distance of 2.098 are within the expected range of values of octahedral Co - CL and Co - N bonds.

It can be seen that the drive to achieve octahedral co-ordination for Co(II) tolerates a considerable strain in the pyrimidine-2thiolate, notably at the Co-N-C and N-C-S angles. The values are $111.8(3)^{\circ}$ and $116.2(3)^{\circ}$ respectively, both being less strained than those in the Ruthenium pyridine-2-thiolato complex. ⁷(Fig. 5). The Co-S-C angle is $71.9(2)^{\circ}$ (cf. 80° in the Ru-pyridine 2-thiolato analogue) whereas one expects a value of 90° if the sulphur atom utilises pure p orbitals; values of $100 - 110^{\circ}$ are more usually found. Like the Ru complex, the angle which departs most from the ideal octahedral co-ordination geometry is the N-Co-S angle of Ca. $59.1(1)^{\circ}$ (cf. 67° in Ru analogue). The atom which deviates most from the ideal octahedral co-ordination geometry is thus the S-atom. Table 6 shows the shortest

inter-molecular non-bonded interactions. It is notable that the hydrogen of the SH group has moved and become participant in-a hydrogen bond between atom N 2 of the pyrimidine ring and the Chlorine atom; this is shown schematically in Fig 3. The intramolecular crowding is considerable and may account for the large degree of distortion from an octahedral environment of cobalt.

The pyrimidine 2-thiolato ligand considered here, the pyrimidine 2-thiolato ligand and the free pyridine 2-thiol molecule as reported by Penfold are compared in Fig. 5. It can be seen that the C-S bond length found here is the same as that in the pyridine-thiol molecule where it was considered due to a degree of double bond character resulting from the contribution of a third tautomeric form of the molecule, that of a α -pyridone. It was also postulated that this accounted for the large variations in bond lengths found within the ring of the pyridine-thiol molecule. In the present study, the bond lengths in the pyrimidine ring do not vary as much and this may be due to the presence of the extra nitrogen within the ring with a consequent more marked tendency toward aromatic delocalisation. It may. thus be concluded that; the C-S bond in this structure has a larger degree of double bond character than the corresponding pyridine-2 thiolato ligand found in reference 7.

The dihedral angle between the thiopyrimidine four-membered chelate ring and the pyrimidine ligand is 8.2° ; the deviations of the atoms from their respective planes are listed in Table 7. The distance between the planes of the pyrimidine rings related through the centres of symmetry is 3.21Å; this feature of the packing may be seen in the stereo-packing diagram (Fig. 4).

Fig. 3

Molecular packing in Co(thiopyrimidine)₂dichloride showing the hydrogen bonding between molecules,

Stereoscopic packing diagram of the complex of Cobalt(thiopyrimidine)₂dichloride,

Fig. 4

Comparison of the thiopyrimidine complex with the analogous

Figure 5

The absorption spectra of the Cobalt thiopyrimidine complex.

<u>Table 1</u>

Non-hydrogen atomic positions

ATOM	x	У	Z
co ²⁺	0.5	0.60309(15)	0.25
Cl	0.61317(10)	0.78926(15)	0.20592(9)
S	0.54799(11)	0.35239(17)	0.13107(11)
c,	0.4051(4)	0.4173(6)	0.0630(4)
с ₂	0.2446(4)	0.5680(6)	0.0617(4)
C ₃	0.1664(5)	0.5191(7)	-0.0398(5)
C ₄	0.2137(5)	0.4230(7)	-0.0895(4)
N ₁	0.3612(4)	0.5215(5)	0,1118(3)
N ₂	0.3294(4)	0.3739(5)	-0.0380(3)

Anisotropic thermal parameters.

The anisotropic thermal ellipsoid has the form exp - $(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}k^2 + 2\beta_{12}hk + 2\beta_{13}hk + 2\beta_{23}kk)$

ATOM	β ₁₁ ×10 ⁵	β ₂₂ x10 ⁵	^β 33 ^{x10}	β ₁₂ ×10 ⁵	^β 13 ^{x10⁵}	β ₂₃ x10⁵
2 † Co	512(9)	1437(20)	500(7)		219(7)	
Cl	474(10)	924(19)	400(7)	-37(10)	254(7)	-12(9)
S	417(10)	1049(21)	562(9)	66(11)	273(8)	-21(10)

	β ₁₁ x10 ⁴	β ₂₂ x10 ⁴	β ₃₃ x10 ⁴	β ₁₂ x10 ⁴	^β 13 ^{x10}	β ₂₃ ×10 ⁴
c ₁	44(4)	63(7)	46(3)	-9(4)	30(3)	-1(4)
с ₂	46(4)	91(8)	58(4)	14(5)	24(3)	5(4)
c ₃	50(4)	97(9)	64(4)	12(5)	15(4)	11(5)
с ₄	62(5)	90(8)	48(4)	-16(5)	18(3)	11(4)
^N 1	40(3)	80(6)	40(3)	4(4)	22(3)	-5(3)
^N 2	53(4)	82(6)	40(3)	-13(4)	26(3)	-4(3)

100

Table 3

Hydrogen atomic positions x 10^3

ATOM	x	У	Z
^H 2	210	637	98
^н з	78	553	76
^н 4	160	397	-164
^H 22	361	295	-118

.

.

. .

Bond lengths (A), with estimated standard deviations in parentheses.

Co - Cl	• .	2.369(2)
Co - S		2.960(2)
co - N ₁		2,098(4)

$N_1 - C_2$	1.343(6)
c ₂ - c ₃	1.429(8)
c ₃ - c ₄	1.385(10)
$c_4 - N_2$	1,341(6)
$N_2 - C_1$	1.404(6)
$c_1 - N_1$	1,388(8)
c ₁ - s	1.675(4)

~

. . .

Selected bond angles (°) with estimated standard deviations in parentheses. Others are shown in Fig. 5

Nomenclature used is that CL is the diad related atom to CL, S to S etcetera.

Cl		Со	-	CL ¹	98,58(7)
Cl	-	Co		S	89.36(5)
Сl		Co	-	N	105.26(14)
Cl	-	Co		1 N	99.10(13)
Cl	-	Co	-	s ¹	158.18(3)
S		Co	-	S .	90.65(6)
S	-	Co	-	ı N	93.39(14)
S	-	Co	-	ı N	59.12(13)
N	-	Co	_	1 N	142.32(17)

S	-	C1-	N ₁	116.2(3)
Co	-	N1-	C1	111.8(3)
C1	-	s -	Co	71.9(2)
S	-	C1-	N2	124.6(4)

 $C_0 - N_1 - C_2$ 129.9(4)

Selected Intermolecular non-bonded distances \hat{A}

$N_2 - C\ell$	3,191(5) Å	
N ₂ - S ₁	3,360(5)Å	$\int (1-x, 1-y, -z)$
s ₁ - H ₂	2,892 (7)Å	$(\frac{1}{2}+x, \frac{1}{2}+y, z)$
c ₁ - c ₄	3,289(8)Å	$(\frac{1}{2}-x, \frac{1}{2}-y, -z)$
с ² 1- н ₄	3,138(9)8	(3/2
Сl ₁ - н ₃	2.615(9)	$\int (2^{-x}, 7^{2-y}, -z)$

The bond $N_2 - Cl_1$ is a H-bond with the hydrogen almost symmetrically placed between the two atoms. Intermolecular $N_2 - H_{22} = 1.5$ Å.

S.

constructions of the second state of the

Deviations (Å) of atoms from plane of pyrimidine ring.

we are a some a set of a 3 to 30 the second

	Deviation Δ (mÅ)
(°c,	23
	0
dofining) C ₂	20
	-18
N,	-21
	-4
S	103
Со	-347

Deviations of atoms in distorted four-membered ring

	(Co	-26
Atoms	s	34
defining	C.	-67
piane		59

The dihedral angle between the normals to the above two planes = 8.24° . This tilt of the pyrimidine ring relative to the chelate ring is due to packing forces, the normal separation between the two rings being 3.21Å.

CHAPTER IV

Comparison of observed and calculated structure amplitudes

The data are listed in groups of constant <u>k</u> and <u>k</u> and list values of <u>h</u>, $10|F_0|$ and $10|F_c|$. Reflections marked "*" were classified as unobserved.

* <u>*</u>

	H,0,0		-8 -6	191 1536	182 1537	7 9	4 69 100	470 77	3 ⁻ 5	454 874	477 895	57	423 134	422 102
246	863 344 309	839 228 326	ተ የ	859 961 322	851 982 348	11 13	57 91	35 67	7 9	109 470	45 461		H,1,9	
8 10	539 123	561 78	24	999 720	1009 718		H+1+1		*1	H, 1,5	200	-13 -11	491 233	512 237
12	103 H,0,2	94	8	189	35 197	-13 -11 -9	143 259 1111	167 251 1101	-13 -11	67 361	58 372	-9 -7 -5	107 836 1010	85 819 895
-14 -12	367 155	364 156	-14	H+0+10 391	410	-7 -5	1119 393 501	1114 404 397	-9 -7	395 650 692	369 621 680	-3 -1	128 403	135 400
-10 -8	512 658	514 642	-12 -10	532 194	531 182	-1 3	429 454	414 385	-3 -1	632 381	564 452	35	137 291	125 296
٩ţ٥	1059 433	896 361	P P Y	270 251 504	232 220 499	5 7 9	971 383 556	892 379 580	5 7 9	285 69 63	280 34 56	7	101 H,1,10	95
4 6 8	1120 601 912	1148 642 938	-2 2 2	116 228 679	22 224 664	11	458 H.1.2	476		H,1,6		-13	110 471	96 464
10 12	573 104	59 5 81	4 6	798 442	801 409	-13	383	383	-13 -11	141 541	133 542	-9 -7	377 229	361 181
	H,0,4			H,0,12		-9 -7	332 529	310 437	-7 -7 -19	- 399 - 451 - 1236	458 1200	-1 -1	200 360	230 382
-14 -12 -10	239 417 659	219 419 676	-14 -12 -10	664 781 324	731 625 313	-5 -3 -1	494 843 420	493 832 433	-3 -1 1	790 509 586	635 574 585	1 3 5	504 360 300	509 337 272
ት ዓ ዋ	1435 1497 571	1446 1469 457	-19 -19 -19	93 210 819	36 145 814	1 3 5	385 719	416 753 1237	3 5 7	95 454 471	90 434 473		H,1,11	
-204	1439 137 473	1325 95	-2 0	82 456	30 461	7 9	860 105	886 88	ģ	166	147	-13 -11	130 84	123 46
6	182 355	179 349	4	426	422	11	90 H,1,3	91	-13	н,1,7 447	461	9 7 5	193 271 1101	166 274 1119
10	747 H1016	774	-12	H,0,14 424	450	-13 -11	293 364	324 364	-11 -9 -7	102 232 611	88 242 587	-3 -1 1	683 81 119	751 51 109
~14	222 80	214	10 8	300 89 817	282 48 780	-9 -7	608 1002	596 989 507	-5	232 547	221 517	35	304 137	304 133
-10 -8	125 1259	98 1243	-4 -2	491 304	504 296	-3	544 518	550 512	1 3	416 1044	439 1073		H,1,12	
ትትሳ	1737 1600 492	1/57 1606 393	2	59 184	24 183	5 7 9	513 550 302	485 545 318	5 7 9	299 108 189	297 79 1 75	-13 -11 -9	382 390 330	394 392 320
0 2 4	1105 698 106	1106 706 40	-10	H+0+16 223	219	11	200 H.1.4	210		H,1,8		-7 -5	238 187	217 174
6 8	501 80	484	-9 -9	85 207	50 220	-13	307	302	-13 -11	112 305	99 297	-5 -1 1	153 78	139 32
10	H,0,8	-100	-2	430 575	590	-11 -9 -7	500 676	698 509 681	9 7 5	265 601 1 36	257 574 138	3	215 H,1,13	201
-14 -12	398 459	416 481	3	H,1,0 1027	1067	-5 -3 -1	353 509 95	365 499 63	3 1 1	767 1067 425	816 1140 449	-13 -11	328 72	344 41
~10	560	554	5	236	260	1	376	291	3	105	75		•=	

.

106

.

æ

_	H,1,13		-2	369 121	251 29	-10 -8	151 395	113 339	-10 -8	846 749	848 734	_	H,2,14	
-9-7-19-19-1	411 210 249 501 232	411 204 259 534 227	2 4 6 8	260 346 419 341	160 371 432 360	<u>ה</u> ה ה ה ה ה ה ה ה	153 1226 730 596 753	91 1242 777 650 797	6 4 2 0 2	589 117 683 230 237	582 82 735 236 215	-12 -10 - 8 - 6	263 68 258 296 343	285 56 265 287 363
1 3	58 265	16 236	12	507 H.2.2	526	6 8 10	795 263 147	800 255	4 6	180 229	155 219	-2 0	146 295	154 292
	H,1,14		10		170	10		1,5		H,2,10			H,2,15	
-13 -11 -9 -7 -5 -3	75 69 305 646 248 118	47 19 298 633 269 92	-12 -10 -8 -6 -4 -2 0	177 147 197 106 1048 1775 1237	139 173 116 1005 1816 1312	-14 -12 -10 -8 -6	62 408 182 168 657	48 424 176 160 617	-14 -12 -10 -8 -6 -4	338 41# 513 578 275 202	376 17 522 563 260 192	-12 -10 - 1 0 - 1 0 - 1 0 - 1 0 - 1 2 - 1 0 - 1	186 177 117 119 78 72	165 152 81 95 71 66
-1 1	208 Hulu15	208	2 4 6 8	801 644 497 192	649 641 512 200 -	-2	151 605 614 404	199 635 630 381	-2 0 2 4	379 411 130	404 426 135 195	U	173 H,2,16	195
-11 -9 -7	434 105 368	444 108 380	10 12	205 71 H,2,3	212 78	4 6 8	83 362 292	82 362 295	6	40 H,2,11	9	-10 -8 -6 -4	41 360 71 164	47 363 79 168
-5 -3 -1	45 248 52	38 269 34	-14 -12 -10	65 144 197	23 118 180	-14 -12	H,2,7 374 474	375 468	-14 -12 -10 -8	265 159 290 673	294 156 274 659	-2	92 H,3,0	118
-11 -9 -7	42 223 113	18 213 106	-β-64-02	265 719 1251 390 545	258 711 1263 451 587	-10 -8 -6 -4 -2	867 412 327 237 213	865 391 257 186 243	-6 -4 -2 0 2	425 815 402 491 267	420 848 422 488 257	1 3 5 7 9	637 754 912 249 643	662 769 907 232 646
-5 -3	162 145 H,1,17	153 139	4 6 8 10	349 156 167 73	351 146 146 19	0 2 4 6	319 408 530 526	348 421 530 518	4	105 H,2,12	85	11	87 H:3:1	93
7 5	56 31*	64 23	-14	H,2,4 142	152	8	519 H,2,8	502	-14 -12 -10 -8	154 170 173 276	180 177 176 265	-13 -11 -9 -7	306 244 342 462	300 227 318 473
D	H,2,0 368	376	-12 -10 -8	3 45 213 605	350 221 566	-14 -12 -10	50 80 677	67 66 658	-6 -4 -2	68 42* 97	54 11 100	-5 -3 -1	1172 969 127	1 153 952 15
2 4 6 8	693 542 479 44 104	656 565 476 37 128	-64-40 v	196 1225 643 218 152	163 1183 648 195 135	-8 -4 -2 -2	174 249 349 584 177	166 231 331 618 201	0 2 4	367 214 126	360 211 130	1 5 7 9	156 682 573 247 325	76 708 565 236 316
12	324 H,2,1	341	4 6 8	256 430 46	265 432 16	2 4 6	242 278 305	226 286 300	-12 -10	150 67	155 11	**	H,3,2	510
-12 -10	354 665 685	332 662 677	10	253 H,2,5	258	8	352 H,2,9	341	- 9 4 4 7	195 171 132	180 158 119	-13 -11 -9	382 202 332	396 195 321
p p p	1314 1623	1307 1613	-14 -12	158 349	137 333	-14 -12	93 550	58 560	-2 2 2	383 383	586 358	-/	013	696

	H+3+2		-9	601	599	-3	368	374		H,3,16			H,4,4	
-5	144	126	-5	354	373	-1	460 547	560	-9	30×	2	-12	524	548
-3 -1	495 608	487 566	3	1158	1186	3	49	36	-7	197	204	-10	465	452
ī	35	6	1	420	423	2	121	30	5	204	199	-6	336	336
3	1158	1174	3	566	562		H+3,11			H,4,0		-4	181	91
7	479	475	7	43	41	-13	240	265	2	776	837	-2	89	33
9	234	230	9	40	17	-11	158	140	4	1091	1125	Ź	470	426
11	190	101		H,3,7		y 7	355	357	8	285	252	4 6	396 674	394 694
	H,3,3					-5	287	277	10	87	84	8	303	288
-13	262	264	-13	200 44 7	439	-3	254 484	263 489	12	108	101	10	237	224
-11	371	359	-9	814	816	1	264	259		H,4,1			H,4,5	
-9 -7	219	149	5	298	238	35	189	173	-12	232	251	-12	38	10
-5	727	722	-3	522	539				-10	146	145	-10	62	24
-5	131	172	-1	278	289		H)3)12		8 6	406	403	-8 -6	771 678	766 657
3	223	234	3	308	310	-13	32*	16	-4	492	436	-4	643	647
7	132	92	5 7	193 532	184 521	-11	192 675	▶186 676	-2	85 722	77 חלל	-2 n	696 54	688 34
9	177	159				-7	250	242	4	370	379	ž	331	347
11	58	22		H+3+8		5	460 184	463 203	6 8	53 349	33 362	4	138	147 240
	H,3,4		-13	259	282	-1	41*	10	10	121	110	ĕ	104	90
-13	461	473	-11	84	49 22	1 3	55 33ж	38		H,4,2			H,4,6	
-11	614	609	-7	266	248									
-7	149	161	-3	822	858		H13113		-12	422	422	-12	194 758	182
-5	99 224	99	-1	770	800	-13	46	12	-8	409	394	-8	333	327
-1	101	68	3	169	151	-11	333	335	0 4	94 561	544	-0 -4	1172	1217
1	630	638	5	109	94	-7	403	366	-2	163	151	-2	773	812
5	468	993 463		3 4 *	9	5 3	131 53	109	4	84 812	63 850	2	311	339 150
7	701	699		H,3,9		-1	369	364	6	792	808	4	236	217
3	120	120	-13	110	86	1	400	451	10	63	31	8	161 210	203
	H:3:5		-11	583	591		H,3,14							
-13	222	213	-7	319	285	-11	121	122		H 1713			H,4,/	
-11	587 268	582	-5	88 433	8 455	-9	340	343	-12	71	62	-12	232	242
-7	83	18	-1	711	744	-5	224	215	-10	416	391	-10	374	379
-5	664 896	644 936	1	331	338	-3	77	86	-6	226	227	-6	1026	1025
1	233	261	5	228	213	1	69	68	-2	181	183	-2	151	126
3	248	280	7	230	225		11.2 15		0	257	286	0	367	375
7	561	573		H,3,10			113119		4	71	12	4	224	216
9	78	26	-13	102	94	-11	55 180	9 167	6	95 291	84 252	6	199	192
	H+3+6		-11	104	93	-7	276	273	01	464	483	9	204	200
-13	132	139	-9 -7	43* 195	12 188	-5 -3	117 59	92 61					H 1418	
-11	408	406	-5	404	392	-1	79	45				-12	67	25
	H,4,8			H,4,13		5	209	140		H,5,7			H,5,12	
---	---	---	--	---	---------------------------------------	--	--	---	-----------------------------------	--	--	--	--	--
-10 -18 -16 4	85 131 174 404	27 99 182 408	-12 -10 -8 -6	330 243 95 227	352 240 99 229	/ 9	216 538 H,5,3	20 8 559	-13 -11 -9 -7	153 414 60 369	169 427 51 370	-11 -9 -7 -5	151 49 72 352	129 19 23 341
0 2 4 5	597 219 265 104	603 197 259 82	-4 -2 0	228 87 140	224 91 154	-11 -9 -7 -5	243 202 304 399	242 204 305 391	5 3 -1 1	465 83 211 17 8	458 90 212 177	-3 -1 1	512 114 201	495 81 195
	H,4,9			H14114		-3 -1	581 589	695 607	35	41* 328	25 316		H,5,13	
-12 -10 -8 -6	38* 294 243 320	2 299 234 318	-10 -19 -19 -19 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10	265 457 424 124 108	266 443 416 99 78	1 3 5 7 9	163 38* 181 195 318	121 33 170 192 329	7 -13	217 H,5,8 281	224	-11 -9 -7 -5 -3	239 143 42 141 60	245 149 36 145 42
-2 2 2	203 347 67 420	298 350 44 407	Ų	117 H,4,15	111	-11	H,5,4 69	32	-11 -9 -7 -5	146 108 500 763	157 85 480 773	1-	277 H,5,14	270
4 5	390 81 H,4,10	385 70	-10 -8 -6 -4	96 98 69 320	84 101 50 320	-9 -7 -5 -3	402 1029 389 549	393 1013 391 507	-3 -1 1 3	347 312 275 531	348 288 264 512	-9 -7 -5 -3	85 51 305 389	76 13 293 371
-12 -10	196 277	183 260	-2	343 H,5,0	326 .	-1 1 3	390 995 429	399 1034 431	5	269 H,5,9	262	-	H,6,0	
vohbhd	91 155 181 124 607 484	47 129 157 98 599 479	3 5 7 9 11	143 139 357 385 338	142 96 357 385 348	5 7 9	144 69 279 H,5,5	125 10 274	-11 -9 -7 -5 -3	246 383 395 93 191	251 375 398 89 194	0 2 4 5 8 10	132 125 277 83 366 402	131 107 283 51 369 421
4	100 H.4.11	48		H,5,1		-13 -11	28× 132	25 139	-1	43* 319	36 298		H,6,1	
12 10 8	352 201 115	353 209 118	-11 -9 -7 -5	389 138 194 708	391 134 183 565	-9 -7 -5 -3	159 612 286 164 482	160 611 266 164 490	3 5	156 169 H,5,10	167	-10 -8 -6	393 561 399	406 555 400
יף ל אם מע	99 517 267 239 126 3 8 5	101 518 254 229 105 372	-3 -1 3 5 7	321 640 376 454 232 74	311 533 388 473 230 73	1 3 5 7 9	480 159 307 142 160	479 160 305 148 161	-11 -9 -7 -5 -3 -1	152 159 334 646 95 61	132 151 331 553 35 39	-2 0 2 4 6 8	66 456 297 465 167 346	8 469 292 456 172 355
	н,4,12		9 11	198 88	191 84		H,5,6		1 3	268 303	248 292	10	389	412
-12 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10	157 424 580 52 197 91 189 63	142 413 573 12 195 76 181 11	-11 -9 -7 -5 -3 -1	H,5,2 100 582 509 235 165 352	81 566 486 233 174 367	-13 -11 -9 -7 -5 -3 -1 1 3	100 62 261 585 469 215 220 413 615	66 53 250 581 449 225 240 417 510	-11 -9 -7 -5 -3 -1	H,5,11 109 214 163 152 272 203	111 227 158 153 259 198	-10 -10 -10 -10 -10 -10 -10 -10 -10 -10	H,6,2 122 180 833 472 454 181 108	108 162 831 463 468 173
1			1 3	928 541	971 564	5 7	109 58	53 19	1	253 225	238	-		- 37

8 O T

6	2 4	የተለባ	-12 -10 -8		6 8	0 2 4	የዋላ	-10	12	6 8	024	ቀ ተ የ	-10 -8		4 6 8	-2 2 2	ዋ ዋ ዋ	-10	8	4 6	
247	260 361	172 81 446	171 115 87 327	H,6,5	82 101	630 700 266	275 77	182 142 493	H+6+5	96 97	550 576 243	229 199 4 95	151 289	H,6,4	66 451 99	185 750 590	634 444 116	H+6+3 111	139	236 49	H,6,2
221	247 345	529 173 69 451	166 108 67 329		78 107	644 713 257	261 70	193 121 473	160	79 96	556 581 234	220 194 509	153 298	_	53 464 81	201 768 600	638 428 109	106	131	219 7	
10 8		4 y 0 y	-10 -8 -6		0 2	-16 -12 -12	-10 -8	4	02	ት ት ት	-10 -8	4	2 2	-6 -4	-12 -10 -8		2 4 6	-4 -2 0	-8 -6	-12 -10	
65 38	H16112	226 121 102	102 71 408	H,6,11	96 136	317 283 98	177 417	205 H:6,10	138 94	750 374 334	129 160	206 H,6,9	43 257 84	429 57	230 270 113	H,6,8	527 509 56	173 314 311	259 173	69 61	H,6,7
78 18	-	207 135 95	112 63 402		75 122	308 278 74	175 423	192	139 78	766 364 327	130 140	194	8 245 · 58	433 9	246 260 77		520 506 47	171 322 291	251 160	48 9	
-9	7	-1 1 3 5	-9 -7 -5 -3	0	7	1 3 5	-3 -1	-9 -7		5 7 9	-1 1 3	-7 -5	-9	9	3 5 7	1	-4 -2	-8 -6	-	-4 -2 0	-6
H,7,4 257	221	209 176 242	231 121 167	H1713	61 U.R.C	511 293 114	651 40×	88 40*	H1712	254 224 105	91 459 434	85 403 341	H,7,1 64	31*	152 184 93	H,7,0 605	332 290	204 68	H,6,13	315 290 303	114
267	197	368 199 160 224	216 90 150	77	60	524 296 125	733 654 8	87 5		246 217 87	26 465 434	46 397 328	38	13	156 182 93	619	330 266	220 57		294 269 276	105
-3 -1 1	-7 -5	-9	-3 -1 1 3	-7 -5	-9	5	-1 1 3	-7 -5 -3	-9	5	-3 -1 1 3	7 5	-9	5	-1 1 3	-7 -5 -3	-9	5 7	1 3	5 3 1	-7
194 262 218	131 170	H,7,9 68	40* 172 101 266	179 154	359	116 H,7,8	221 197 179	173 186 385	219	274 H,7,7	523 223 39*	522 604	H,7,6 55	197	271 82 78	167 288 278	H,7,5 253	224 32	184 40%	130 563 365	331
175 273 200	109 151	31	11 161 93 277	202 147	379	98	207 171 166	163 173 366	212	278	534 223 23	521 622 184	52	178	256 61 34	145 279 280	244	226 28	180 10	142 568 368	330
-6 -4 -2	8	4 5	4 yo y	-8 -6		4 6	-2 0 2	ዋ ተ ዓ ተ ዓ	-	6 6	0 2 4	-	7 5 3		-3 -1	7 5	1	5 3 1	-9 -7		3
105 112 170	140	315 142 H:8:3	190 60 59 110	63 254	H,8,2	775 299	202 74 340	271 96 346	H+8+1	292 139	100 198 93	H,8,0	55 65 29*	H,7,12	74 125	115	72 H.7.11	118 37* 302	413 307	H17,10	140
108 79 160	161	318 136	194 42 20 100	48 261		796 298	187 53 320	293 90 337	0.5.5	303 158	85 194 77	·	70 84 7		·32 96	92 107	68	129 13 305	434 317		114

	ц.я.	3		LL.O.E										
	(1,0)	5		11010			H1819		E	265	200	1	162	176
(144 2 72	158 48	-8 -6	38 180	22 178	-6 -4	132 45	141 25		205 449 79	260 456 40		H,9,6	
4	1 195	172	-4	179	174	-2	375	371	ī	98	111	5	41	12
6	5 427	438	-2	226 70	222 45	0	423	419	3	65 164	36	-3	215	211
	н,8,	4	2	48	40		H.8,10		~	10-1	100	-1	160	140
			4	116	118					H.9.3		-	1,5	1.10
-6	3 53	59				-6	29×	19					H,9,7	
6	5 105	98		H,8,7		-4	69	77	-5	137	139			
	120	115	-			-2	72	67	-3	409	433	5	286	296
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		112	-8	126	124				-1	36×	0	-3	71	50
	222	ົ 30	-0	44	23		H,9,0		1	307	314	-1	55	32
2	102		-4	54/	341				3	44	35			
F	102	183	- <u>~</u>	267	262	1 2	111	114					H,10,0	
-		100	2	46	54	5	302	300		H;9;4		<u> </u>	108	100
	н,8,	5	-	.0	5,		502	503	-5	171	155	2	120	120
				H,8,8			H,9,1		-3	391	384	4	37	13
6	235	231							-1	346	335		H,10,1	
-6	85	61	8	139	145	-5	132	137	1	73	66			
-4	374	377	-6	190	202	-3	84	85	3	124	, 101	-2	75	71
	350	354	-4	90	79	-1	112	93			1	0	99	112
	470	04 /05	-2	244	233	1	407	421		H,9,5				
4	54 54	42	<b>U</b>	205	284	3	373	383	-				н,10,2	
		-16	e	32	7-4	2	3U45	4	-5	138	132	_		
							H.Q.2		 1	344	20	-2	159	148
							10312		-1	111	110	U	¢10	2U9

,

,

•

#### References

- 1. Kennedy B.P. and Lever A.B.P., Canadian Journal of Chemistry, 1972, 50, 3488
- Akber Ali M and Livingstone S.E., Co-ord. Chem. Rev., 1974, 101.
- 3. Weiss V.R. and Venner M., <u>Z Physiol. Chem.</u>, <u>1969</u>, <u>350</u>, 118 - 96.
- 4. S. Ahrland, J. Chatt and N.R. Davies,, Quart. (Rev., <u>1958</u>, <u>12</u>, 265.
- 5. R.G. Pearson, J. Amer. Chem. Soc., 1963, 85, 3533.
- 6. F. Basolo, W.H. Badeley and J.L. Burmeister, Inor. Chem., <u>1964</u>, <u>3</u>, 1202.
- S.R. Fletcher and A.C. Skapski, J.C.S. Dalton, <u>1972</u>, 635.
- B. D. Rogers, <u>Acta Cryst.</u>, <u>1957</u>, <u>10</u>, 180.
- 10. P. Coppens, L. Leis erowitz and D. Rabinovich, Acta Cryst., 1965, 18, 1035.
- 11. D.T. Cromer and J.T. Waber, <u>Acta Cryst.</u>, <u>1965</u>, <u>18</u>, 17, 104
- 12. D.T. Cromer, Acta Cryst., 1965, 18, 17.
- R. Zannetti and R. Serra, Gazz. Chim. Ital., 1960, 90, 328.
- V.F. Duckworth, D.P. Graddon, N.C. Stephenson and E.C. Watton, Inorg. Nucl. Chem. Letters, 1967, 3, 557.
- 15. N.S. Gill, R.M. Nuttall, D.E. Scaife and D.W.A. Sharp, J. Inorg. Nucl. Chem., <u>1961</u>, <u>18</u>, 79.
- R.F.M. Clark and C.S. Williams, <u>Inorg. Chem.</u>, <u>1965</u>, <u>4</u>, 350.
- 17. L.F. Lindoy, S.E. Livingstone and T.N. Lockyer, Australian J. Chem., <u>1967</u>, <u>20</u>, 471.
- 18. B.R. Penfold, Acta Cryst., <u>1953</u>, <u>6</u>, 707.

#### CHAPTER V

The Crystal and Molecular Structure of

Hydridotris(triphenylphosphine)ruthenium(II) Tetrafluoroborate.

"Achievements ordinarily follow in due course when a person, after planning his work, works his plan." ... Elsie Bouman.

#### Abstract

The crystal structure of the title compound  $[RuH(\eta-PhPPh_2)$  $(PPh_3)_2]^+BF_4^-$  has been determined from three-dimensional X-ray diffractometer data, and refined using least-squares techniques to <u>R</u> 0.039 for 5138 independent reflections. Crystals are monoclinic with unit-cell dimensions

<u>a</u> = 20.755(2)Å, <u>b</u> = 12.784(1)Å, <u>c</u> = 18.609(3)Å,  $\beta$  = 109.06(2)°, space group <u>P2₁/c</u> and <u>Z</u> = 4.

The complex cation is mononuclear and the metal atom has a co-ordination consisting of two  $\sigma$ -bonded triphenylphosphine groups, a hydride hydrogen, and a phenyl ring of the third triphenylphosphine bonded as an arene to the metal. Ru-P bond distances for the two  $\sigma$ -bound triphenylphosphine groups are 2.312Å and 2.331Å respectively and the P-Ru-P angle is 98.7°. The six Ru-C distances are in the range 2.244-2.324Å, and the centroid of the  $\pi$ -bonded ring is 1.777Å from the ruthenium atom. Ru-H is ca 1.67Å.

Although the compound was originally obtained as a methanol solvate only ill-defined traces of the methanol could be located in the interstices of the structure.

#### Introduction

Owing to the importance of catalysts in homogenous hydrogenation of alkenes, further catalytic studies have been undertaken by Wilkinson and co-workers. Previous work on the protonation of hydridoacetotris(triphenylphosphine)ruthenium(II) by fluoroboric acid¹ has been extended and our present X-ray study complements the chemical work.

The action of fluoroboric or other non-complexing strong acids on several ruthenium phosphine complexes, notably  $\operatorname{RuH}_2(\operatorname{PPh}_3)_4$ ,  $\operatorname{RuH}(\operatorname{CO}_2\operatorname{Me})(\operatorname{PPh}_3)_3$  and  $\operatorname{Ru}(\operatorname{CO}_2\operatorname{Me})_2(\operatorname{PPh}_3)_2$ , in methanol solution gives labile red solutions that under hydrogen become yellow-orange and catalyse the homogeneous hydrogenation of alkenes.¹ The proper characterisation of these species proved difficult due to the low solubility but it seemed that they were cationic. Sanders² has shown that in the interaction of tritylhexafluorophosphate with  $\operatorname{RuH}_2(\operatorname{PPh}_3)_4$ a similar red salt is formed,  $[\operatorname{RuH}(\operatorname{PPh}_3)_4]^+\operatorname{PF}_6^-$  which on standing in dichloromethane slowly gave a yellow salt  $[\operatorname{RuH}(\operatorname{PPh}_3)_3]^+\operatorname{PF}_6^-$ . It was proposed that one of the phenyl rings of one triphenylphosphine group was  $\pi$ -bonded to the metal.

During additional work by Wilkinson and co-workers on the species produced in the protonation, the title  $\pi$ -complex has been made.

The initial red species in methanol and acetone is  $[RuH(PPh_3)_3S]^*$ where S = solvent. The methanol solution ages in the absence of excess triphenylphosphine to yellow  $[RuH(PPh_3)_2(H_2O)_2(MeOH)]^*$  but in the presence of excess PPh₃ forms the stable  $\pi$ -bonded  $[RuH(\eta^6-C_6H_5PPh_2)$  $(PPh_3)_2]^*$  which is the subject of the present study. These complexes share a common feature in that they obey the eighteen electron or rare gas rule.

Owing to the great stability of this ionic title complex it

is catalytically inactive in the hydrogenation of alkenes. We have determined the X-ray crystal structure of this complex in order to confirm the presence of the  $\pi$ -bonded model in the present system and support the ³¹P n.m.r. in characterising the complex.

Preliminary details of the title structure have been reported.

#### Experimental

Pale yellow needles of the salt  $[RuH(PPh_3)_3]BF_4$  were crystallised from methanol. On heating a suspension of  $RuH(CO_2Me)$  $(PPh_3)_3$  with a large excess of fluoroboric acid in methanol, the compound was obtained on cooling.³

#### Crystal Data

$$\begin{split} & C_{54}H_{46}BF_{4}P_{3}Ru(O_{1}?), \quad \underline{M} = 975.8, \text{ Monoclinic, } \underline{a} = 20.755(2), \\ & \underline{b} = 12.784(1), \ \underline{c} = 18.609(3), \ \beta = 109.062(8), \ \underline{U} = 4666.8 \text{Å}^{3}, \\ & \underline{D}_{m} = 1.40(\text{by flotation}), \ Z = 4, \ \underline{D}_{c} = 1.39\text{gcm}^{-3}, \ \underline{F}(000) = 1952. \\ & \text{Cu-K}\alpha \text{ radiation, } \lambda = 1.5418\text{\AA}; \ \mu(\text{Cu-K}\alpha) = 42.2\text{cm}^{-1}. \\ & \text{Space group} \\ & \underline{P2}_{1}/\underline{c} \text{ from systematic absences; } \text{hO}\&, \ \& = 2n+1; \ \text{OkO, } k = 2n+1. \end{split}$$

The needles are elongated about the <u>c</u>-axis. A crystal of size ³ ca 0.05 x 0.05 x 0.18mm was selected and mounted about its <u>c</u> axis. X-ray intensity data were collected on a Siemens four-circle diffractometer using Cu-Ka radiation at a take-off angle of  $6^{\circ}$ , a Ni  $\beta$ -filter and a Na(TL)I scintillation counter. The  $\theta$ -2 $\theta$  scan technique was employed, using a'five-value' measuring procedure. A total of 5138 independent reflections were measured (to  $\theta = 60^{\circ}$ ) of which 480 were judged to be unobserved. Lorentz and polarisation corrections were applied and at a later stage the data were corrected for absorption. This correction was calculated according to the method of Busing and Levy⁶ using a 10 x 10 x 10 grid with crystal pathlengths determined by the vector analysis procedure of Coppens *et al*⁷.

#### Solution and Refinement of the Structure

The structure was solved by Patterson and Fourier methods. The Crystal Structure Calculations System'X-ray 70' and its updated version of 1972⁸ were used for the calculations which were carried out on the Imperial College CDC 6400 and the University of London CDC 6400, 6600 and 7600 series computers.

A three-dimensional Patterson synthesis gave a quite easy solution for the ruthenium atom and a few cycles of least squares gave the standard agreement factor R = 0.548. Subsequently, the three phosphorus atoms were found ( $\underline{R} = 0.375$ ) and on the next difference Fourier sixteen meaningful carbon positions were found (R = 0.356). All the atoms were then located and isotropic refinement gave R = 0.183. When all the expected non-hydrogen atoms were allowed to refine anisotropically, there still remained a residual peak in the difference Fourier map and it was suspected that this could be residual methanol solvent ( $D_m = 1.40$ ,  $D_c = 1.39$ ). This position was then assigned to be that of an oxygen atom with a partial occupancy of half an atom. Addition of this atom and refinement as previously gave R = 0.055. The hydride hydrogen was now clearly visible in a difference Fourier synthesis together with the phenyl hydrogens. Addition of the phenyl hydrogen atoms as a fixed-atom contribution with isotropic temperature factors of their parent carbon atoms reduced R to 0.041.

Towards the end of refinement, a weighting scheme of the type suggested by Hughes⁸ was utilised where w = 1 for F<F*,  $\sqrt{w} = F^*/F$  for F>F, with  $F^* = 39.7$  being the final value. The application of this weighting scheme had little effect on <u>R</u> but decreased the estimated standard deviations by ca 15%.

The full procedure for optimising the hydride position was then applied using  $\lambda^{-1}$ Sin $\theta$  cut-offs of 0.25, 0.35, 0.45 and 0.56Å⁻¹. An optimum value of Ru(1) - H(1) of 1.67Å was obtained. The final <u>R</u> obtained = 0.039 and the final difference Fourier was relatively featureless with a maximum electron-density peak of 0.6e/Å³ which was part of a small ripple around the ruthenium atom.

Atomic scattering factors used were those of Cromer and Waber¹¹ except those for hydrogen which were obtained from Stewart *et al*¹².

The correction for the effects of the real and imaginary parts of the anomalous dispersion correction for ruthenium and phosphorus were made using the tabulated values after Cromer.

Table 1 lists the fractional co-ordinates of the non-hydrogen atoms with their estimated standard deviations (obtained from CRYLSQ of X-ray '70 and are thus a slight underestimate of the true deviations). Table 2 contains the coefficients in the expression for the anisotropic Debye-Waller factor :-

 $\exp[-2\pi^{2}(U_{11}a^{*2}h^{2} + U_{22}b^{*2}k^{2} + U_{33}c^{*2}\ell^{2} + 2U_{12}a^{*b*hk} + 2U_{13}a^{*c*h\ell} + 2U_{23}b^{*c*k\ell})].$ 

The unrefined co-ordinates of the hydrogen atoms are given in Table 3. Observed and calculated structure amplitudes are listed at the end of the chapter.

#### Description of the Structure and Discussion

Figure 1 shows the structure of the cation. The central metal atom may be considered to have a distorted tetrahedral coordination if the centre of gravity of the η-bonded phenyl ring is considered as a single co-ordination position. The remaining phosphorus atoms of the two σ-bonded triphenylphosphines together with the hydride hydrogen complete the co-ordination about the metal. The more important bond lengths and bond angles are quoted in Tables 4 and 5 respectively.

The two cis Ru-P distances [Ru(1)-P(1)2,312A and Ru(1)-P(2)2.331Å] are similar and of the order expected for normal cis P-bonded triphenylphosphines, The range of literature values for Ru-P bonds vary between 2,2-2,45Å; the long end of the range being usually associated with trans influences and steric effects [a value of 2,425Å is found in Ru(NPEt₂Ph)Cl₃(PEt₂Ph)¹⁴/₂ which shows a predominant trans effect] whilst the shorter end may be considered characteristic of the apical third Ru-P bond in five co-ordinate complexes usually 15,16,17 The distances to associated with two longer Ru-P trans bonds, which the present structural values are more directly comparable may be considered to be those of Ru-P (cis to P) which are intermediate in the range; e.g. a mean of 2.326Å in  $Ru(pyS)_2(PPh_3)_2^{18}$  and 2.346Å in  $Ru(HCS)_{2}(PPh_{3})_{2}^{19}$  The P(1)-Ru(1)-P(2) angle is 98.68(4)⁰ whilst the P(1)-Ru(1)-H(1) and P(2)-Ru(1)-H(1) are  $81^{\circ}$  and  $76^{\circ}$  respectively. The stereochemistry may thus be regarded as quasi-tetrahedral or distorted octahedral whichever one may prefer. This almost symmetrical placement of the hydride hydrogen relative to the two metal-bonded P atoms is expected and the reduction in angle may be explained by the presence of a large flat arene ring close to the Ru atom which pushes the other three ligand atoms together to give less than tetrahedral





Atoms are numbered in sequence around each ring in the order  $C(\underline{m}1) - C(\underline{m}6)$ , where <u>m</u> is the number of the ring. Atoms  $C(\underline{m}3) - C(\underline{m}6)$  have been omitted for the sake of clarity. angles between them. The metal-carbon (arene) bond lengths average 2.269Å whilst the distance of the ruthenium atom to the calculated centre of the arene ring is 1.777Å. These values may be compared to the mean metal-carbon distance of 2.208Å in the structure of  $(\pi-C_5H_5)$  $Ru(BPh_4).^{20}$  The distance of the Ru atom from the plane through the six atoms of the arene ring is 1.701Å. In this latter structure, the packing constraints are less severe (no bulky triphenylphosphine groups) thus the ring is more strongly bonded to the metal than in the present case. Additionally the present value of 1.777Å is rather  $\frac{1009eF}{1009eF}$  than the value of 1.726Å in  $(C_6H_6)Cr(CO)_3^{22}$  confirming this steric effect.

It is also notable that the carbon-carbon bond lengths in the arene (average = 1.411Å) are greater than those in the unbound rings (average = 1.384) which indicates the drift of the  $\pi$ -cloud towards the ruthenium atom with a consequential slight decrease in bond order around the ring. The corresponding values in  $(\pi - C_5H_5)Ru(BPh_4)^{20}$  are 1.408Å and 1.379Å respectively and thus confirm a similar effect present in the structure. The above values compare quite well with that of 1.401Å observed in the planar ring of bis(hexamethylbenzene)ruthenium(0). The arene ring of the present structure is almost planar, the largest deviation from the plane of all six carbons being 0.017Å. The plane of  $(\pi-C_5H_5)Ru(BPh_4)^{20}$  is also nearly planar (max. deviation is 0.011Å) and compares reasonably well with the present structure. In the case of the complex  $Rh[P(OCH_3)_3]B(C_6H_5)_4$ , the  $\eta$ -phenyl ring is not planar and may best be described as boat-shaped with two of the carbon atoms tilted out of the plane of the best four atoms away from the Rh atom. (deviations: C(51) 0.093Å and C(54) 0.060Å). There is some considerable variation in the bending at the C(ml) carbon atoms of the phenyl rings in that each phosphorus atom lies reasonably close to two of its three rings (max. deviation = 0.098Å) whilst the third ring deviates to nearly twice this distance from the plane (max. deviation = 0.185Å). The deviations shown

at P(3) are significantly greater than those of P(1), P(2). This is probably a crystal packing effect. The planarity of the phenyl rings are shown in Table 6 together with the distances of the respective phosphorus atoms from the planes.

The position of the hydride hydrogen has been optimised and the Ru(1)-H(1) bond length of 1.67Å agrees very well with that of 1.68Å in RuH(CO₂Me)(PPh₃)₃, ¹⁵1.68Å in RuHCL(PPh₃)₃ ¹⁶ and of 1.67Å in RuH(napthy1) [2-bis(dimethylphosphino)ethane].

The mean P-C distance of 1.834Å is similar to that found in many transition-metal complexes. However, there are small variations between these bonds, and the bond angles at phosphrus, which may be related to the degree of distortion from ideal tetrahedral geometry at P. This mean value can be compared to the means obtained in  $RuH(CO_2Me)(PPh_3)_3^{-1}$ 1.841Å;  $RuHCL(PPh_3)_3 - 1.841Å^{16}$  and in  $Ru(PPh_3)_2(pyS)_2 - 1.845Å^{18}$ . P-C (phenyl) distances are appreciably shorter in a less distorted tetrahedral environment found in the benzyl-triphenylphosphonium ion²⁶ where the mean P-C (phenyl) distance is 1.790Å. The present structure has mean values of 115.7° for Ru(1)-P-C and of 102.3° for C-P-C valence angles respectively which may be considered as normal for this type of complex. Means of 116.4° and 101.5° are reported in the related structure of  $RuH(CO_2Me)_{15}^{15}$ (PPh_2)₃.

Fig. 2 shows a view of the Ru-atom and the arene ring in projection. It is notable that the alignment of the Ru(1)-H(1) is in the same direction as P(3)-C(91).

The molecular packing is shown in the stereoscopic view (Fig. 3) which was drawn using the ORTEP program.²⁷ Although the present structure has been compared with its most directly related structures, there still remains another structure which deserves mention; the structure of the triclinic complex Mo(PMe₂Ph)₃( $\eta$ -PhPMe₂)²⁸ is of interest (although it has not been determined very accurately) in that it also displays  $\pi$ -bonding

# Fig. 2

A view normal to the plane of the arene ring showing the alignment of the hydride hydrogen with the P(3)-C(91) vector.



ŕ

of a phenyl ring as an arene to a metal as in the present structure. The metal-carbon (arene) bond lengths average 2.28(2)Å which is considerably shorter than one might have anticipated from a comparison with the value of the mean  $\pi$ -cyclopentadienyl Mo-C bond lengths of 2.37Å in  $(\pi$ -C₅H₅)Mo(CO)₃(C₂H₅). The arene ring in this structure is nearly planar with little variation in C-C bond length (mean value of 1.43Å).

The complex cation in the present structural study is inherently stable thermodynamically owing to its achievement of a rare gas configuration. It seems that the Ru-atom strives to obtain this energetically favourable state and will thus bind with any six electron donor system to form a stable complex.

# <u>Fig. 3</u>

A stereoscopic view of the unit-cell showing the packing of the molecules.





#### Table 1.

. . . . .

- 1 78 - Negr

Fractional co-ordinates of non-hydrogen atoms with estimated standard deviations in parentheses.

All ring carbon atoms are numbered C(mn) where <u>m</u> is the ring number and <u>n</u> is the atom number in the ring; <u>n</u> is such that C(ml)is attached to the P atom and other ring atoms are numbered in succession such that C(m4) is <u>para</u> to C(ml). The  $\pi$ -bonded phenyl ring is C(9n).

	<u>x</u>	<u>y</u>	<u>z</u>
Ru(1)	0.24136(2)	0.16770(3)	0.24150(2)
P(1)	0.14874(5)	0.05966(9)	0.22744(6)
P(2)	0.24010(6)	0.16796(10)	0.11580(6)
P(3)	0.40391(6)	0.10245(10)	0.39084(6)
C(11)	0.0641(2)	0.1173(4)	0.2115(2)
C(12)	- 0.0087(2)	0.0529(5)	0.2044(3)
C(13)	- 0.0554(3)	0.0967(7)	0.1924(3)
C(14)	- 0.0641(3)	0.2041(8)	0.1867(3)
C(15)	- 0.0100(3)	0.2668(6)	0.1919(3)
C(16)	0.0542(3)	0.2242(5)	0.2043(3)
C(21)	0.1646(2)	- 0.0106(4)	0.3180(2)
C(22)	0.1263(2)	0.0070(4)	0.3652(3)
C(23)	0.1430(3)	- 0.0442(5)	0.4358(3)
C(24)	0.1966(3)	- 0.1125(5)	0.4578(3)
C(25)	0.2348(3)	- 0.1291(4)	0.4112(3)
C(26)	0.2200(2)	- 0.0779(4)	0.3429(3)
C(31)	0.1265(2)	- 0.0416(4)	0.1539(2)
C(32)	0.0919(2)	- 0.0073(4)	0.0802(2)
C(33)	0.0792(2)	- 0.0788(5)	0.0191(3)
C(34)	0.0999(3)	- 0.1803(5)	0.0323(3)
C(35)	0.1326(3)	- 0.2147(4)	0.1052(3)
C(36)	0.1456(2)	- 0.1467(4)	0.1663(3)
C(41)	0.1613(2)	0.2081(5)	0.0425(3)
C(42)	0.1361(3)	0.1629(6)	- 0.0290(3)
C(43)	0.0757(5)	0.2026(12)	- 0.0806(5)
C(44)	0.0412(5)	0.2814(13)	- 0.0618(8)

/Continued .....

C(45)	0.0641(4)	0.3257(8)	0.0079(6)
C(46)	0.1251(3)	0.2876(6)	0.0602(3)
C(51)	0.3015(2)	0.2643(4)	0.1045(2)
C(52)	0.3701(2)	0.2390(4)	0.1317(2)
C(53)	0.4188(2)	0.3110(4)	0.1299(3)
C(54)	0.3994(2)	0.4101(4)	0.1007(2)
C(55)	0.3321(3)	0.4350(4)	0.0729(3)
C <b>(56)</b>	0.2826(2)	0.3628(4)	0.0740(3)
C(61)	0.2681(3)	0.0522(4)	0.0771(3)
C(62)	0.2872(4)	0.0624(6)	0.0117(4)
C(63)	0.3104(5)	- 0.0247(8)	- 0.0176(5)
C(64)	0.3147(5)	- 0.1188(7)	0.0160(6)
C(65)	0.2959(4)	- 0.1308(5)	0.0809(5)
C(66)	0.2733(3)	- 0.0446(4)	0.1103(3)
C(71)	0.4617(2)	0.1929(4)	0.4581(2)
C(72)	0.4465(3)	0.2953(5)	0.4696(3)
C(73)	0.4916(3)	0.3563(5)	0 <b>.5249(3)</b>
C(74)	0.5533(3)	0.3131(6)	0.5704(3)
C(75)	0.5685(3)	0.2128(6)	0.5597(3)
C <b>(76)</b>	0.5231(2)	0.1514(4)	0.5048(3)
C(81)	0.4469(2)	0.0840(4)	0.3190(2)
C(82)	0.4272(3)	- 0.0034(5)	0.2734(3)
C(83)	0.4620(4)	- 0.0276(5)	0.2218(3)
C(84)	0.5149(4)	0.0333(6)	0.2192(4)
C(85)	0.5335(3)	0.1201(6)	0.2637(4)
C <b>(86)</b>	0.4998(3)	0.1465(4)	0.3138(3)
C(91)	0.3334(2)	0.1921(4)	0.3447(2)
C(92)	0.2750(2)	0.1854(4)	0.3684(2)
C <b>(93)</b>	0.2197(2)	0.2529(4)	0.3373(3)
C(94)	0.2219(3)	0.3314(4)	0.2848(3)
C(95)	0.2795(3)	0.3368(4)	0.2606(3)
C <b>(96)</b>	0.3349(2)	0.2678(4)	0.2904(2)
B(1)	0.7291(4)	0.1277(6)	0.2451(4)
F(1)	0.6805(2)	0.0636(3)	0.2011(2)
F(2)	0.7496(3)	0.0917(5)	0.3174(3)
F(3)	0.7856(3)	0.1303(6)	0.2275(4)
F(4)	0.7060(3)	0.2247(4)	0 <b>.2433(4)</b>
0 <b>(1)*</b>	0.8948(5)	0.0063(7)	0.3444(6)

*o* ,

* Probably a trace of the solvated methanol; the occupancy factor of this atom was fixed at one half.

~

1 · · · · ·

• --- •

and the second second

· - -

128

347 8⁷14

### Anisotropic thermal parameters

	10 ⁴ <u>U</u> 11	10 ⁴ <u>U</u> 22	10 ⁴ <u>U</u> 33	10 ⁴ <u>U</u> 12	10 ⁴ <u>U</u> 13	10 ⁴ <u>U</u> 23
Ru(1)	430(2)	534(3)	331(2)	16(2)	132(1)	-4(2)
P(1)	401(6)	602(7)	389(6)	70(5)	135(5)	54(5)
P(2)	532(7)	742(9)	358(6)	-140(6)	142(5)	0(6)
P(3)	526(7)	641(8)	414(6)	53(6)	100(5)	36(6)
	10 ³ <u>U</u> 11	10 ³ <u>U</u> 22	10 ³ <u>U</u> 33	10 ³ <u>U</u> 12	10 ³ <u>U</u> 13	10 ³ <u>U</u> 23
C(11)	50(3)	80(4)	44(2)	16(3)	17(2)	5(2)
C(12)	42(3)	106 <b>(</b> 4)	69(3)	7(3)	20(2)	4(3)
C(13)	56(3)	165(7)	77(4)	5(4)	26(3)	5(4)
C(14)	66(4)	163(7)	71(4)	48(5)	17(3)	-3(4)
C(15)	78(4)	124(5)	70(4)	49(4)	11(3)	-3(4)
C(16)	64(3)	92(4)	61(3)	30(3)	16(2)	4(3)
C(21)	47(2)	66(3)	42(2)	-1(2)	15(2)	3(2)
C(22)	61(3)	72(3)	49(3)	-6(2)	20(2)	2(2)
C(23)	84(4)	89(4)	49(3)	-15(3)	31(3)	13(3)
C(24)	78(4)	91(4)	52(3)	-13(3)	10(3)	23(3)
C(25)	61(3)	82(4)	65(3)	÷12(3)	7(3)	27(3)
C(26)	50(3)	75(3)	54 (3)	2(3)	12(2)	15(3)
C(31)	39(2)	62(3)	51(2)	-4(2)	19(2)	-3(2)
C(32)	42(2)	85(3)	41(2)	-6(2)	11(2)	7(2)
C(33)	56(3)	89(4)	51(3)	-4(3)	16(2)	1(3)
C(34)	59(3)	92(4)	65(3)	· -7(3)	19(3)	-17(3)
C(35)	67(3)	65(3)	81(4)	-2(3)	25(3)	-10(3)
C(36)	57(3)	68(3)	57(3)	1(2)	17(2)	-1(3)
C(41)	56(3)	130(5)	50(3)	-32(3)	6(2)	28(3)
C(42)	100(5)	179(7)	46(3)	-77(5)	-3(3)	29(4)
C(43)	117(7)	302(16)	59(4)	-138(9)	-21(5)	64(7)
C(44)	64(5)	318(19)	133(10)	-44(7)	-5(5)	132(12)
C(45)	61(4)	219(10)	133(7)	2(5)	17(4)	95(7)
C(46)	52(3)	152(6)	87(4)	-3(3)	14(3)	54(4)
C(51)	56(3)	68(3)	33(2)	-11(2)	13(2)	1(2)
C(52)	58(3)	71(3)	47(2)	-6(3)	22(2)	2(2)
C(53)	52(3)	78(4)	57(3)	-7(3)	21(2)	-6(3)
C(54)	65(3)	74(4)	52(3)	-17(3)	21(2)	-1(3)

8

abor to restant

.

Ň	10 ³ <u>U</u> 11	10 ³ <u>U</u> 22	10 ³ <u>U</u> 33	10 ³ <u>U</u> 12	10 ³ <u>U</u> 13	10 ³ <u>U</u> 23
C(55)	74(3)	66(3)	64(3)	-8(3)	20(3)	10(3)
C(56)	56(3)	76(4)	54(3)	-4(3)	14(2)	9(3)
C(61)	88(3)	86(4)	59(3)	-36(3)	46(3)	-33(3)
C(62)	177(7)	128(6)	89(4)	-78(5)	93(5)	-57(4)
C(63)	234(10)	148(8)	154(7)	-107(7)	150(8)	-94(7)
C(64)	186(8)	124(7)	221(10)	-88(7)	156(8 <b>)</b>	-112(7)
C(65)	113(5)	97(5)	156(6)	-43(4)	91(5)	-68(5)
C(66)	67(3)	81(4)	81(3)	-24(3)	42(3)	-30(3)
C(71)	58(3)	71(4)	44(2)	-3(2)	18(2)	4(2)
C(72)	79(3)	78(4)	48(3)	-7(3)	9(2)	÷4(3)
C(73)	108(5)	89(4)	64(3)	-20(4)	25(3)	-10(3)
C(74)	75(4)	137(6)	57(3)	-38(4)	22(3)	-18(4)
C(75)	54(3)	138(6)	58 <b>(3)</b>	-14(4)	16(3)	-7(4)
C(76)	50(3)	101(4)	53(3)	0(3)	12(2)	3(3)
C(81)	60(3)	74(3)	41(2)	16(3)	10(2)	3(3)
C(82)	72(3)	88(4)	54(3)	24(3)	10(3)	-1(3)
C(83)	100(5)	103(5)	64(4)	36(4)	19(3)	-9(3)
C(84)	100(5)	119(6)	72(4)	41(4)	38(4)	21(4)
C(85)	90(4)	116(5)	77(4)	20(4)	44(3)	22(4)
C(86)	73(3)	86(4)	61(3)	10(3)	28(3)	13(3)
C(91)	53(2)	59(3)	34(2)	0(2)	8(2)	-6(2)
C(92)	56(3)	72(3)	35(2)	4(3)	16(2)	-1(2)
C(93)	64(3)	78(4)	51(3)	4(3)	24(2)	-17(3)
C(94)	73(3)	68(3)	60(3)	16(3)	14(3)	-6(3)
C(95)	· 75(3)	61(3)	51(3)	0(3)	12(2)	-7(2)
C(96)	61(3)	53 ( <b>3</b> )	39(2)	1(2)	11(2)	-1(2)
B(1)	88(5)	78(5)	90(5)	-11(4)	15(4)	2(4)
F(1)	87(2)	93(2)	114(3)	-9(2)	-4(2)	0(2)
F(2)	267(7)	239(7)	97 (3)	-138(6)	-13(4)	32(4)
F(3)	120(4)	277(7)	242(7)	-54(4)	93(4)	-69(5)
F(4)	151(4)	97(3)	269(7)	-16(3)	26(4)	-18(4)
0(1)	144(8)	83(6)	122(7)	-7(5)	18(6)	<del>-</del> 7(5)

Fractional co-ordinates of the hydrogen atoms. Except for H(1), these are numbered according to the carbon atom to which they are attached.

	x	<u>y</u>	Z
H(1)	0.276	0.053	0.231
H(12)	0.015	- 0.025	0.208
H(13)	- 0.096	0.050	0.189
H(14)	- 0.110	0.236	0.178
H(15)	- 0.017	0.344	0.186
H(16)	0.094	0.272	0.208
H(22)	0.086	0.057	0.349
H(23)	0.115	- 0.031	0.470
H(24)	0.208	- 0.149	0.508
H(25)	0.275	- 0.180	0.427
H(26)	0.250	- 0.089	0.310
H(32)	0.067	0.037	0.034
H(33)	0.054	- 0.036	- 0.027
H(34)	0.091	- 0.231	- 0.011
H(35)	0.147	- 0.290	0.114
H <b>(3</b> 6)	0.168	- 0.153	0.222
H(42)	0.161	0.103	- 0.043
H(43)	0.059	0.169	- 0.134
H(44)	- 0.002	0.303	- 0.101
H(45)	0.037	0.385	0.020
H(46)	0.142	0.322	0.112
H(52)	0.384	0.167	0.153
H(53)	0.468	0.292	0.150
H(54)	0.435	0.463	0.100
H(55)	0.318	0.507	0.051
H(56)	0.233	0.382	0.053
H(62)	0.289	0.122	- 0.023
H(63)	0.312	0.034	- 0.052
H(64)	0.322	- 0.195	0.029

. . . . . . . . . .

/Continued .....

	<u>×</u>	У	<u>z</u>
H(65)	0.304	- 0.207	0.096
H(66)	0.259	- 0.053	0.157
H(72)	0.402	0.327	0.437
H(73)	0.480	0.430	0.534
H(74)	0.586	0.358	0.610
H(75)	0.613	0.183	0,592
H(76)	0.535	0.077	0.498
H(82)	0.389	- 0.050	0.277
H(83)	0.446	- 0.090	0.187
H <b>(84)</b>	0.540	0.012	0.183
H(85)	0.573	0.164	0.260
H(86)	0.514	0.210	0.347
H(92)	0.274	0.132	0.407
H(93)	0.178	0.245	0.352
H(94)	0.183	0.382	0.265
H(95)	0.282	0.390	0.222
H <b>(96)</b>	0.376	0.273	0.273

Selected bond lengths (Å), with estimated standard deviations in parentheses.

Ru(1) - P(1)	2.312(1)	Ru(1) - C(91)	2.245(4)
Ru(1) - P(2)	2.331(1)	Ru(1) - C(92)	2.244(4)
Ru(1) - H(1)	1.67	Ru(l) - C(93)	2.256(5)
Ru(1) - C*	1.777	Ru(1) - C(94)	2.324(5)
		Ru(l) - C(95)	2.290(5)
Mean Ru - C	2.269	Ru(1) - C(96)	2.254(4)
where C* is	the centroid of	E the $\eta$ -bonded photon	enyl ring.
P(1) - C(11)	1.837(5)	P(2) - C(61)	1.822(6)
P(1) - C(21)	1.841(4)	P(3) - C(71)	1.833(4)
P(1) - C(21) P(1) - C(31)	1.841(4) 1.830(4)	P(3) - C(71) P(3) - C(81)	1.833(4) 1.848(5)
P(1) - C(21) P(1) - C(31) P(2) - C(41)	1.841(4) 1.830(4) 1.827(4)	P(3) - C(71) P(3) - C(81) P(3) - C(91)	1.833(4) 1.848(5) 1.836(4)

Mean phenyl C - C bonds.

Ring		Ring	
C(l <u>n</u> )	1.381	C(5 <u>n</u> )	1.379
C(2 <u>n</u> )	1.381	C(6 <u>n</u> )	1.381
C(3 <u>n</u> )	1.389	C(7 <u>n</u> )	1.382
C(4 <u>n</u> )	1.377	C(8 <u>n</u> )	1,380

Overall mean

1.381

 $\eta$ -bonded ring C(9<u>n</u>), individual values.

Overall mean			1.411
C(93) - C(94)	1.412(8)	C(96) - C(91)	1.408(6)
C(92) - C(93)	1.401(6)	C(95) - C(96)	1.411(7)
C(91) - C(92)	1.421(7)	C(94) - C(95)	1.409(9)

Selected bond angles (°), with estimated standard deviations in parentheses.

P(1) - Ru(1) - P(2)	98.68(4)	Ru(1) - P(1) -	C(11)	119.62(17)
P(1) - Ru(1) - H(1)	81	Ru(1) - P(1) -	C(21)	107.12(13)
P(2) - Ru(1) - H(1)	76	Ru(1) - P(1) -	C(31)	120.35(15)
P(1) - Ru(1) - C*	127.92(4)	Ru(1) - P(2) -	C(41)	117.60(19)
P(2) - Ru(1) - C*	128,95(4)	Ru(1) - P(2) -	C(51)	109.63(13)
H(1) - Ru(1) - C*	125	Ru(1) - P(2) -	C(61)	119.69(17)
	Ru(1) - C*	— P(3)	89.64(2)	
	Mean Ru - P -	C (rings 1 to (	6)	115.67
C(11) - P(1) - C(21)	102.7(2)	C(51) - P(2) -	C(61)	100.2(3)
C(11) - P(1) - C(31)	99.7(2)	C(71) - P(3) -	C(81)	102.2(2)
C(21) - P(1) - C(31)	105.4(2)	C(71) - P(3) -	C(91)	99.8(2)
C(41) - P(2) - C(51)	102.2(2)	C(81) - P(3) -	C(91)	103.9(2)
C(41) - P(2) - C(61)	104.8(2)			
	Mean C - P - C	C (rings 1 to 9)	)	102.32

Planarity of groups of atoms in the molecule and distances (A) from calculated least-square planes. Equations of the planes are expressed as  $\underline{Px} + \underline{Qy} + \underline{Rz} = \underline{S}$  in direct space.

				Atoms defining plane	Not defining
<u>P</u>	<u>Q</u>	<u>R</u>	<u>s</u>		plane
-2.95	0.81	18.24	3.75	C(11) 0.010; C(12)-0.008; C(13)-0.001 C(14) 0.008; C(15)-0.006; C(16)-0.004	P(1) 0.005
10.06	9.67	4.78	3.08	C(21)-0.011; C(22)-0.001; C(23) 0.009 C(24)-0.007; C(25)-0.006; C(26) 0.014	P(1) 0.076
20.07	2.97	-7.73	1.21	C(31) 0.014; C(32)-0.008; C(33)-0.003 C(34) 0.008; C(35)-0.002; C(36)-0.009	P(1) 0,194
1 <b>3.9</b> 0	8.45	-10.02	3.57	C(14) 0.007; C(42)-0.009; C(43) 0.004 C(44) 0.001; C(45) 0.001; C(46) 0.000	P(1) 0.029
-5.59	4.19	17.56	1.25	C(51) 0.009; C(52)-0.003; C(53)-0.005 C(54) 0.007; C(55) 0.000; C(56)-0.008	P(2) 0.147
16.50	2.63	5.22	4 <b>.</b> 96	C(61)-0.001; C(62)-0.001; C(63)-0.001 C(64) 0.000; C(65)-0.003; C(66) 0.003	P(2) 0.043
-14.31	-3.79	15.81	-0.09	C(71)-0.008; C(72) 0.003; C(73) 0.000 C(74) 0.001; C(75)-0.005; C(76) 0.009	P(3) 0,098
<b>9.</b> 10	-7.11	9.76	6.58	C(81) 0.006; C(82) 0.003; C(83)-0.012 C(84) 0.011; C(85)-0.002; C(86)-0.007	P(3) 0.185
3.86	8.27	11,88	6.96	C(91) 0.006; C(92) 0.006; C(93)-0.017 C(94) 0.016; C(95)-0.003; C(96)-0.007	P(3) 0.085 Ru(1)-1.776

# Deviations (Å) of atoms from plane

#### CHAPTER V

### Comparison of observed and calculated structure amplitudes

The data are listed in groups of constant <u>k</u> and <u>k</u> and list values of <u>h</u>,  $10|F_0|$  and  $10|F_c|$ . Reflections marked "*" were classified as unobserved.

83 214 868 452 947 101 190 861 474 535 295 774 443 569 294 783 1168 629 931 306 492 202 78 482 201 57 -2 -1 0 1 2 H.O.0 N101N3456789 6 7 8 645 913 306 ***** 2598 1205 2238 2781 1181 2404 1575 2269 733 973 427 1285 g 1520 898 112 1142 862 929 433 805 921 91 H+1+0 H+1.5 2298 729 957 441 1262 1398 773 H,0,5 422 820 142 1402 391 791 154 922 -12 -11 -10 -9 1487 139 185 114 231 571 623 768 1539 154 198 140 202 601 611 779 483 639 384 283 411 429 447 685 1398 1996 786 1028 730 1430 2044 789 676 110 3043 203 1871 824 1117 1268 300 1380 140 1111 11 \$75579797012345678 1056 1377 52 1167 439 1113 1294 56 1088 416 1078 785 H.0.2 H.1.3 657 156 2926 171 1810 11 12 772 945 180 789 986 195 707 397 -11098765432101234567890 1066 158 708 342 81 618 54 180 329 213 233 289 1684 212 451 528 374 477 32 1684 248 482 482 359 570 329 1742 1439 688 H.1.1 346 1677 1357 571 2588 344 2529 1173 1287 1086 468 284 1018 504 923 441 294 982 1272 322 56 608 332 2431 1101 1428 883 253 54 418 399 282 1167 735 746 679 2431 411 929 1309 94 276 774 199 317 302 1116 710 696 556 2235 328 897 H1018 H+1+6 2954 708 1457 1323 3110 751 1440 1352 219 305 333 946 235 320 460 764 1449 262 1135 301 1137 631 2188 1628 459 831 1496 250 1245 301 1186 641 2208 1651 948 201 1171 884 540 768 -12 -11 1098765452-0-N340 314 74 975 542 973 468 -10 -9 1139 1316 874 1176 1357 354 1686 1462 165 774 571 1021 540 1014 39# 491 703 310 1655 1541 182 837 571 1041 552 1035 502 -8 -7 952 546 992 450 1007 605 2314 602 478 585 H.1.4 644 2349 H1014 975 371 1047 1054 386 1097 192 1138 234 1076 604 700 416 295 1434 3893 1869 252 1120 642 711 418 255 1574 4046 1908 470 614 819 168 792 324 1182 52 11 885 535 526 786 860 519 836 149 767 342 1210 32 H.1.2 994 299 776 788 1424 136 1427 286 1139 352 63 2635 1787 31 1043 371 1648 263 -11-10-87-5-5-4-3 356 121 2750 1828 48 1064 350 1604 277 H, Q, 10 308 693 794 1332 162 1364 255 43# 1141 112 873 511 744 893 1145 158 916 552 744 878 _g 1010 2009 664 145 78 1160 H.1,7 625 107 17 672 -12 -11 645 

÷,

-10 _9	274 597	314 578	7 6	979 260	982 281	10 11	1042 850	1037 886	-9	629 741	637 770	23	604 392	662 357
-8	324	372	-5	785	759		H.2.2		-7	579	545	4 5	860 206	882 184
-6	89	91	-3	1051	1039		117272	•	-5	1322	1265	6	552	598
-5	660	650	-2	373	389	-12	843	851	-4	545	558	7	62	81
-4	1138	1090	-1	470	513	-10	230	125	-3	400	339		H.2.7	
-2	43	27	ĭ	522	493	-ğ	162	128	-1	707	625			
-1	1385	1366	2	750	790	-8	95	105	0	250	185	-11	79	76
0	956	946 540		H.1.11		-7	643 777	641 ene	1	287	219	-10	421	370
2	220	185				P 5	797	778	3	322	367	-8	811	810
3	371	409	-7	197	191	-4	1841	1777	4	286	335	-7	395	425
- 4	152	183	-6	117	122	-3	1797	1716	5	877	874	-6	1482	1479
ŝ	213	184		270 196	190	-1	2291	200	7	65	46	-4	450	486
-			-3	948	936	ō	185	142	ė	284	293	-3	720	658
	H,1,8		-2	46*	5	1	357	418	9	54	27	-5	2098	2075
	1 1 9 1	1215	-1	183	156	2	1950	1894		4.2.5		-1	282	1407
-10	174	143		H1210		4	448	476		11212		1	917	877
-9	1125	1142	-			5	746	756	-12	513	521	2	699	735
-8	406	380	•	1387	1501	6	765	822	-11	911	882	3	519	530
-6	36*	1390	2	586	585	8	975 665	672	-10	177	154	5	784	784
5	1093	1069	3	634	635	ş	144	156	-8	88	21	6	769	787
-4	209	203	4	1366	1481	10	249	259	-7	211	207			
-3	1155	1059	5	482	441		4.2.3		-0	108	516		H+2+0	
-1	1745	1760	7	796	826		17210		-4	2027	1995	-11	54	66
0	1124	1138	8	203	216	-12	435	430	-3	939	972	-10	704	742
1	1131	1153	.9	350	398	-11	270	242	-2	129	58	-9	195	174
3	851	854	11	260	290	-10	204	194		594	579	-7	84	53
4	845	885				-8	1025	1028	ī	835	825	-6	470	488
5	1117	1130		H+2+1		-7	265	275	2	1098	1120	-5	505	522
	H. 1.9		-12	874	<b>G10</b>	-6	1493	1447	3	378	404	-3	7/5	257
	1111		-11	491	474	-4	113	71	5	420	434	-2	952	948
-10	218	238	-10	1019	1057	-3	488	517	6	533	545	-1	242	253
9	629	632	9	700	713	-2	2176	2124	7	449	451	0	626	595
-7	587	590	-7	609	605	-1	2999	30/8	0	1303	1-03	2	1319	1339
-6	480	508	-6	1635	1644	ī	833	806		H.2.6		3	87	99
-5	205	170	-5	167	147	2	872	887		155	1.45	4	604	624
-3	943	793	-4	3045	3180	3	1225	1269	-12	161	194	2	-+++-3	4//
2	845	837	-2	1805	1784	5	137	142	-10	56	46		H,2,9	
-1	1203	1242	-1	38	86	6	128	87	-9	675	674			
, o	1083	1116	0	2929	2973	7	712	727	8	122	142	-10	770	752
2	846	882	2	224	202	g	648	663	-6	739	719	-8	1582	1579
3	126	110	3	1580	1652	10	588	626	-5	36*	8	-7	114	69
4	516	534	4	757	794				-4	410	406	-6	245	250
	H.1.10		5 £	394	743		H+2+4		-3	1485	1412	<b>^</b>	314	318
			7	809	781	-12	43	20	-1	582	569			

910 889 904 1041 538 1016 926 877 967 1057 560 1011 304 235 288 426 38* 151 179 102 824 139 266 174 276 1021 1012 859 401 520 48 420 288 214 278 H.2.9 414 100 559 206 105 775 139 250 1003 1013 872 375 513 21 421 160 211 640 794 115 108 88 137 207 537 783 98 87 110 5 6 7 · ቀሳ ቀ ካ ካ ካ ካ o 1807 754 684 386 1826 04101ND 549 374 603 689 9 10 H.3.7 347 1162 777 1813 359 1144 789 1829 297 1523 70 1140 286 867 382 1139 679 1480 659 701 588 -11 H.3.2 H+4+0 495 326 391 4772 3937 2052 466 4275 466 711 16533 24500 8312 5352 3623 8520 8520 8523 143 H,2,10 859 808 1262 443 1726 676 1205 686 622 276 171 1454 73 720 939 398 6244444-0-688 420 377 325 106 172 851 620 34 190 504 501 448 430 409 93 836 1613 664 1203 699 569 274 843 387 1116 97 191 883 614 64 1477 674 735 H,3,5 10 170 -110987654321012345678 465 375 556 267 1384 469 949 527 759 520 211 899 921 477 559 573 257 1365 441 882 553 732 473 191 885 899 H+4+1 H.2.11 342 243 845 825 600 153 71 746 110 434 1021 726 1768 57 1769 162 860 369 457 1028 735 1760 52 1762 159 862 327 726 89 H+3+8 ካቲሪ 131 604 115 454 740 755 41 439 924 319 182 429 139 379 128 774 90 491 578 694 16 H+3+0 474 766 450 423 362 593 1293 1293 130 84 112 474 797 440 436 365 569 1315 123 54 105 1 N 3 4 5 6 7 8 9 0 1 11 H.3.3 76 1853 128 1309 353 928 1191 613 283 270 640 621 275 681 599 846 316 191 451 136 366 95 1818 139 1273 347 858 1148 598 257 -11098765477410123456789 455 1350 599 365 434 1365 633 342 1800 657 1175 441 611 60 1081 647 1168 482 577 53 1024 444 706 1321 309 37 337 337 863 431 331 498 H,3,6 H.3.9 H+3+1 382 354 203 187 1414 500 1291 1095 1107 483 2453 511 1350 47 169 155 920 113 1390 535 1241 960 843 721 1160 491 891 1030 88 1344 542 1196 920 804 700 1128 488 891 1027 ıō -11 1335 542 1255 1123 1043 514 2430 441 1426 41 179 186 868 786 1327 347 186 199 300 351 539 450 346 659 1012 1146 17 190 H.4.2 48 308 370 563 454 321 706 1044 1173 42 -11 41* 331 575 824 39 447 288 964 49 342 552 789 39 447 256 955 867 330 492 H1314 H+3+10

-11

140

· .

.

	H1412		-	H1415			H1418		я	630	649	6	193	/92
-1	281	284	-10	695 352	711	9 8	76 427	79 416		H1512			H.5.5	
ĭ	367	400		630	681	-7	216	186	-9	638	658	-9	541	509
	624	575	-7	956	922	-6	630	645	-8	369	377	-8	185	194
3	759	757	-6	212	228	-5	427	402	-7	1032	1038	-7	432	423
4	680	691	-5	414	414	-4	486	485	6	695	685	-6	522	504
5	293	285	-4	734	754	3	40×	6	-5	1627	1602	-5	567	527
6	901	939	-3	38×	52	-2	153	167	-4	742	769	-4	39×	40
7	100	89	-2	93	26	+1	197	192	-3	1851	1787	-3	211	211
8	366	380	-1	196	195	0	782	794	-2	937	907	-2	275	274
9	490	479	0	289	339	1	42*	31	-1	1265	1212	-1	143	154
			1	225	217	2	253	239	0	211	213	U	420	426
	H1413		2	514	567	3	280	265	1	931	933	1	. 287	2/8
			3	238	233				2	283	251	ć	158	160
-11	480	490	4	974	956		H1419		3	321	354	2	102	102
-10	157	156	2	706	590		165	106	7	350	953		961	971
	117	110	5	74	56		1134	1131	á	1007	1033	-		•••
	787	,aī		74	90	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	764	737	ž	248	248		H.5.6	
<u> </u>	1721	1708		4.4.6		-4	1200	1201	á	805	837			
	494	465				-3	767	737	-			-9	597	596
-4	443	424	-10	67	72	-2	716	714		H,5,3		-8	644	624
-3	184	171	-9	474	454	-1	683	690				-7	1581	1549
-2	252	270	-8	334	332	0	1028	1015	-9	42*	24	-6	296	276
-1	351	364	-7	97	92	1	845	842	-8	194	187	-5	1273	1245
0	216	194	6	583	606				-7	754	777	-4	139	122
1	47	48	-5	553	537		H1510		-6	284	270	-3	699	652
2	730	748	-4	217	234				-5	1014	1011	-2	46	224
3	37*	22	-3	402	371	1	1115	1115	-4	39#	12	1	231	234
4	724	779	2	288	293	2	194	162	~3	240	450	ų,	1044	1023
2	665	679	-1	394	3//	3	1131	1220		-00	-00	5	83	1023
5	1305	1380	, v	613	027 445		1460	1400	-1	340	225	2	1091	1090
		212		1533	1545	2	163	153	1	290	756	4	505	488
0	£13	237	ź	301	385	ž	1184	1185	2	310	314	•		
	U.A.A		4	642	624	Á	411	407	3	331	331		H.5.7	
		-	5	733	733	ğ	507	506	4	1050	1041			
-11	251	253	5	622	624	-	-		5	571	610	-8	639	638
-10	435	444					H1511		6	820	844	-7	727	726
-g	179	179	-	H1417					7	74	75	-6	207	189
-8	405	414			عر	-9	877	869				-5	387	367
-7	415	403	-10	875	657	-8	114	133		H1514		-4	137	103
-6	152	144	-9	1288	1226	7	598	619	~		600	~2	004	532
-5	95	62	-8	1348	1367	6	374	407	-9	630	034		416	20
-4	1027	975	-7	293	240	-5	1031	1023		490	439	-1	590	553
-3	396	399	~2	1700	1084		1007	1074		46	26	1	555	547
	942	821	-5	1070	1001	-3	100/	10/7	-0	873	848	÷	425	421
- <u>-</u>	110	872	-3	733	730	-1	561	576	-4	114	111	3	660	659
1	1103	1096	-2	451	511	·	568	567	-3	630	631	-		
2	385	367	-1	366	342	ĩ	973	962	-2	854	816		H1518	
3	626	624	ō	823	844	- Ž	442	403	-1	487	474			
4	253	255	ī	219	233	3	605	613	0	187	194	-7	1151	1110
5	690	656	Ź	1689	1664	4	38×	37	1	804	798	-6	257	252
6	51	53	3	207	201	5	75	36	2	83	76	-5	1316	1235
7	642	641	4	1417	1422	6	613	587	3	764	757	-4	403	374
8	456	456				7	140	165	4	424	405	-3	915	844
						8	460	463	5	714	717	-2	461	405

• •

. .

· ·

. .

	H+5+8		-4	307	301	-3	169	142	0	96	83	10	947	951
-1	96 1	984	-3	297	220 48	-1	255	244	5	1601	158	12	251	259
·ā	50	34	-1	296	271	ō	243	236	-		120	13	437	458
1	877	851	ŏ	310	305					H,7,5		14	74	64
			1	40×	2		H1710					15	420	409
	H+6+0		2	370	361				-3	503	476	16	279	285
_			3	40×	19	1	1049	1064	-2	572	533	17	245	257
0	1061	991	4	893	915	2	372	367	-1	243	242	18	102	102
1	43	70	5	207	197	3	1643	1631	o	463	464	19	343	333
2	901	929	. 6	406	412	4	127	79				20	96	103
2	900	955				5	1007	1025		H+U+U				
5	277	254		H1014			H.7.1	•	13	1128	1106		H+U+D	
6	1064	1109	-8	910	920	•			14	738	40	-23	445	423
ž	340	400	-7	587	568	-5	530	524	15	90	97	-22	142	147
			-6	762	765	-4	205	206	16	136	139	-21	346	334
	H+6+1		-5	446	443	-3	328	323	17	460	477	-20	345	332
			-4	843	809	-2	253	237	18	121	108	-19	335	344
-8	498	485	-3	41*	18	-1	201	212	19	428	412	-18	602	593
-7	272	262	-2	192	192	0	40*	19	20	263	248	-17	534	537
~p	275	268	-1	769	722	1	720	697	21	422	409	-16	105	94
-2	297	129	ų,	830	817	2	203	209	22	50*		-15	661	651
	205	150	2	313	367	3	151	220		H.O.2		-14	447	463
	202	177	5	192	217	т а	240	232		HIUIZ		-13	120	37
-1	328	314	4	851	838	-	673	EJE	-22	347	326	10	809	833
Ō	117	109	5	693	692		H.7.2	-	-21	347	331	11	530	527
1	325	313	-						-20	448	423	12	231	250
2	683	644		H1615		-6	177	190	-19	50×	4	13	643	638
3	150	171	_			-5	1126	1074	-18	122	114	14	410	415
4	99	86	-7	322	330	-4	43×	32	-17	73 ·	60	15	166	151
5	238	258	-6	177	187	-3	1060	1040	-16	558	561	16	141	129
2	400	483	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	373	352	-2	42*	12	-15	301	284	17	152	143
,	94	4/		197	174	-1	270	202	-14	411	408	18	224	201
	H.6.2		-2	764	770	ų,	1170	1167	-13	650	695		<b>U.O.O</b>	
			-1	73	49	2	240	242	13	726	739		H,010	
-8	963	980	ō	310	301	3	672	700	14	165	139	-23	364	351
-7	43*	30	1	197	213	4	288	296	15	411	394	-22	410	399
-6	1464	1439	2	43*	63				16	84	82	-21	210	211
-5	42*	43	3	291	290	•	H17,3		17	643	616	-20	297	301
-4	1254	1210	4	80	86				18	66	63	-19	215	206
-3	97	64				5	669	637	19	280	277	-18	826	816
~~~	123/	1175		H,6,6		-4	450	431	20	85	74	-17	564	561
-1	503	420	. 6	.207	1266	-3	364	341	21	360	342	-16	141	117
ĭ	164	174	-9	527	452		155	120		u.n.4		-15	209	100
2	1058	1063		945	927	- <u>1</u>	42%	165		H:017		-13	300	1020
3	295	291	-3	173	190	ĩ	391	387	-23	363	341	-12	785	864
4	645	685	-2	939	929	· 2	41*	11	-22	467	454	6	1385	1434
5	891	924	-1	190	146	3	303	300	-21	343	325	7	78	47
6	713	720	0	820	807				-20	336	325	8	998	1002
			1	42*	46		H1714		19	356	332	9	673	675
	H+6+3		2	1187	1168	-			-18	354	362	10	228	226
	200	-				-5	533	502	-17	166	159	11	733	742
_7	200	210		H1017		-4	158	142	-16	247	256	12	217	210
-6	466	403		5 0	40	-3	b/1 104	5 44	-15	249	243	13	245	252
-5	41#	19		90	-0	-2	036	207	-13	201	672	14	91	90
-		A-4			00	-1	220	347	-13	221	316			

238 296 124 227 284 110 H.0.8 18 19 20 166 138 148 152 123 135 455 28 234 161 472 3488 495 277 333 647 279 487 43 532 444 272 437 20 21 22 601 50* 238 152 471 408 501 504 159 283 483 514 514 254 457 254 16 17 96 402 95 H.1.4 H.1.1 H+0+10 -221 -210 11234567890 20 261 236 432 685 344 213 473 393 211 71 303 263 221 428 695 337 204 457 373 203 49 203 203 290 138 219 174 226 205 205 223 218 205 223 2187 2888 205 223 2187 264 -221-229-129-165134151167189-23 112 140 50* 419 236 536 274 1087 122 731 993 100 115 113 118 26 403 244 538 107 321 H.O.18 -17 H.0.14 -16154 13121 109 87 65 4 3 2 0 0 1 2 3 4 117 434 469 441 623 377 311 535 198 463 248 1117 136 743 1042 1153 884 130 380 442 131 374 411 109 457 358 684 218 935 304 882 109 329 687 н,1,5 65 21 346 218 567 330 295 310 358 310 583 310 274 299 1435 274 205 $\begin{array}{c} 118\\ 336\\ 201\\ 25\\ 367\\ 655\\ 334\\ 305\\ 304\\ 581\\ 774\\ 80\\ 99\\ 303\\ 32\\ 278\\ 66\\ 125\\ 418\\ 184 \end{array}$ 32 112 302 947 472 614 922 693 624 298 315 233 444 448 765 -2329 -2219 -2299 -187 -15430 111 12314 1516 1718 294 948 476 611 384 160 324 643 320 295 247 460 752 153 461 271 108 357 480 745 152 397 20 649 152 361 152 H,1,2 328 402 154 88 545 52* 687 478 915 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13 312 391 159 543 543 543 543 699 934 433 1429 66 834 253 429 151 324 483 H+0+12 95 358 H+0+20 859 4122 1653 494 7515 14349 7515 1441 313 8788 1142 2053 1142 2053 1142 2053 -22 -21 -20 -19 -18 -17 96 325 54 200 67 229 134 343 534 395 346 49* 334 47 224 67 262 143 363 9 411 348 24 279 240 432 133 659 51* 253 353 47* 13 14 15 16 17 18 . H+0+16 50* 410 102 147 150 438 49* 757 50* 312 60 644 10 735 851 547 860 871 690 303 487 68 50* 287 75 642 53* 727 205 816 H,1,6 21 230 178 246 294 980 237 244 691 525 152 235 171 246 291 975 224 266 677 530 148 -23 -22 -21 -20 -19 10 11 12 13 14 426 326 307 50 663 239 1143 231 1066 350 H.1.3 -22 -21 -20 11 12 13 14 15 16 827 845 431 127 486 85 157 383 226 255 413 112 476 90 172 382 219 238 H.1.0 656 311 462 96 797 867 322 382 430 47 332 374 446 63 14 15 16 17 865

51* 175 52* 194 259 H.1.6 H, 1, 9 1011 1213 467 446 41 307 28 157 **-**9 348 141 232 79 277 159 16 17 18 330 143 219 58 304 50* 159 76 186 H, 1,7 2503 11238 1354 185977 3674 3894 32285 8240 1355 187 187 187 242 178 730 257 134 376 235 185 691 376 318 521 495 318 521 495 318 521 700 75 495 318 702 495 312 170 242 H.1.13 182 47 48 358 101 172 560 254 296 179244 18468191 6911691 69192476 2883277 2824766 27528 3161 10112477 3569 1178155 48× H.1.15 161 55 52* 170 376 237 481 \$4* 362 291 -20 176 3355 229 229 238 24 24 298 85 185 5577 372 298 85 5577 329 10 136 5566 109 2569 2569 2569 -187.654321109874547210123456789 H.1.10 245 69 92 456 51* 786 248 742 203 1027 208 464 622 190 H+1+12 $\begin{array}{c} -2210\\ -21098\\ -1709\\ -1103\\ -1103\\ -112\\ -1103\\ -112\\ -1103\\ -112\\ -12$ 226 544 192 98 464 8 801 257 763 202 202 469 569 616 638 616 638 616 471 27 423 34 292 87 191 225 54 104 74 385 143 416 242 472 82 336 207 575 48× 1137 126 71 523 316 71 523 3165 183 201 117 H-1-8 328 439 1630 3411 5196 5724 3276 1010 2689 1010 2689 417 404 88 417 404 88 4175 336 432 169 423 353 512 324 585 421 974 270 788 1010 277 135 $\begin{array}{c} -232\\ -221\\ -209\\ -188\\ -17\\ -16\\ -15\\ -14\\ -132\\ 6\\ 7\\ 8\\ 90\\ 11\\ 12\\ 13\\ 14\\ 15\\ 17\\ 17\end{array}$ 186 119 638 605 465 465 425 425 304 4 504 4 H.1.14 -21 -20 -19 -18 -17 -16 -17 -16 -15 -14 -13 -12 -11 -10 108 475 257 273 359 456 232 593 194 418 92 490 271 270 362 487 232 601 412 442 83 450 68 401 155 H,1,16 H.1.11 426 149 -19 -18 52* 13 -22 47*

H.1.16 282 194 236 377 394 453 427 214 198 357 70 466 334 136 357 240 H.2.0 H+2+3 301 206 240 390 403 467 610 325 200 432 292 200 114 571 427 73 168 83 137 163 193 145 577 444 64 180 74 117 12 13 14 15 16 17 18 19 565 549 459 457 459 457 4359 527 4359 527 4359 527 4359 527 4359 527 4359 527 4359 527 5356 5325 5356 53 -17 13 14 15 16 17 18 19 20 21 178 205 448 377 454 357 243 7 183 356 195 160 349 493 1791 481 743 483 743 239 3380 105 164 75 347 184 333 94 511 193 477 523 3371 169 113 181 220 429 387 459 55* 238 50* 178 H,2,6 207 368 463 145 330 56 249 H,2,1 525 445 524 552 274 436 276 3418 170 236 136 36 37 24 437 523 661 170 37 263 9 417 224 140 285 335 428 170 285 127 125 $\begin{array}{r} -22\\ -219\\ -180\\ -17\\ -165\\ 123\\ 123\\ 145\\ 15\\ 16\\ 17\\ 189\\ 20\\ 21\\ \end{array}$ H+1+19 н.2.4 251 125 279 289 77 59 * 121 139 140 224 135 262 126 292 72 107 121 152 136 196 1876 220 99 129 2597 296 271 208 5466 365 308 55 290 235 290 235 468 186 56 113 240 204 306 272 219 5170 345 308 259 16 3097 217 50 193 $\begin{array}{r} -22\\ -21\\ -20\\ -19\\ -18\\ -17\\ -16\\ -15\\ -14\\ -13\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\end{array}$ H.1.17 H.2.2 H1217 190 181 75 222 49* 81 $\begin{array}{r} -22\\ -21\\ -20\\ -19\\ -18\\ -17\\ -16\\ -15\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ \end{array}$ -23 -21 -20 -19 -18 -17 -16 277 266 303 221 499 209 229 299 621 486 949 486 280 263 303 2504 293 290 478 947 465 10002 5359 891 307 457 1964 103 H,1,20 158 335 91 116 161 221 100 348 114 86 163 346 103 137 172 232 102 360 122 91 322 H,2,5 -154 -132 -127 89 101 1234 15 16 120 148 172 52* 457 406 161 671 48* 466 314 -23 -22 -21 -19 -18 -17 -16 -15 -14 -13 9 545 355 889 310 441 204 82 97 449 406 152 689 20 451 297 H+1+18 -17
145

	H.2.7			H.2.10		8	323	323	-10	276	246		H.2.15	
17	318	318		50	EG	9	473	471	-9	61	42			
18	201	199	-21	118	118	11	201	202	-8	347	321	-20	334	343
	_	-	-20	196	198	12	119	137	-6	596	556	-19	259	284
	H1218		· -19	89	83	13	148	142	-5	161	124	-17	220	237
	0E	07	-18	138	142	14	48*	8	-4	836	805	-16	423	427
-22	51*	27	-16	373	202		4.2.13		-3	175	188	-15	106	119
-21	240	248	-15	82	84		n,2,12		-1	722	715	-14	713	738
-20	172	174	-14	337	348	-22	110	123	ō	381	371	-12	559	299
-19	159	149	-13	194	201	-21	113	115	1	121	93	-11	56×	43
-17	54X	501	-12	3/6	390	-20	151	155	2	490	493	-10	515	516
-16	499	499	-10	580	609	-18	294	223	د 4	266	52	9	182	149
-15	61	52	-9	148	150	-17	58	72	5	515	515	-7	691	101
-14	262	270	2	497	516	-16	292	314	6	312	309	-6	793	768
-12	575	585	3	400	406	~15	53*	72	7	369	363	-5	157	140
6	362	355	5	703	697	-13	74	47 68	8	355	367	-4	647	634
7	379	392	6	71	56	-12	59	55	10	102	92	-3	507	491
8	224	206	?	403	394	-11	280	283	11	262	257	-1	581	608
10	153 54x	158	8	130	124	-10	89	82	12	47×	30	Ō	749	759
11	72	55	10	59	56		471	125	-	0.0.14		1	358	367
12	183	190	11	74	61	-7	346	329		H12117		2	208	201
13	278	272	12	211	211	-6	427	418	-21	100	86	4	367	371
14	274	265	13	282	278	-5	289	284	-20	183	188	5	386	392
16	48*	26	15	157	133 248	-4	492	484	-19	172	173	6	562	561
17	270	264			2 10	-2	160	154	-17	51%	35/	7	313	314
				H,2,11		1	181	158	-16	340	340	ğ	416	406
	H1518					0	50×	28	-15	52×	15	-		
22	508	503	-22	297 20x	299 25	1	111	107	-14	164	180		H,2,16	
-21	210	210	-20	207	210	ŝ	198	187	-13	63X	75	_10	E0.4	
-20	452	443	-19	92	95	4	273	275	-11	214	196	-18	384	386
-19	252 .	255	-18	397	404	5	337	354	-10	327	341	-17	50*	26
-17	148	145	-16	283	105	5	54	75	-9	269	299	-16	310	321
-16	301	293	-15	120	123	é é	330 53X	224	-8	161	515	-15	54*	12
-15	226	208	-14	686	691	ğ	113	120	-6	337	323	-13	226	237
-14	942	929	-13	152	147	10	53×	30	-5	676	667	-12	168	188
-12	755	762	-12	794 670	787	11	155	159	-4	317	309	-11	120	111
-11	272	290	-10	792	772	13	130	144	-3	85	101	-10	312	313
4	800	785	-9	270	262		1.15	4-1-1	-1	336	333	-9	461	101
5	588	555	-8	131	123		H.2.13		Ō	448	465	-7	298	274
7	507	593	-7	55	48	~			1	54×	2	-6	411	399
ė	289	297	-2	651	523	-20	108	125	2	493	501	-5	236	231
9	960	954	-1	640	640	-19	52*	42	4	223	228	-4	231	221
10	268	259	0	65	56	-18	230	242	5	209	211	-2	77	65
12	518	519	1	744	742	-17	316	330	6	53*	32	-1	341	342
13	293	289	3	249	231	-15	251	239	7	58	25	<u>o</u>	304	310
14	50×	38	4	170	176	-14	394	368	ġ	183	179	1	350	359
15	383	374	5	99	82	-13	215	210	10	86	77	5	260	247
16	52*	71	6	133	142	-12	785	791			-	4	199	204
				345	345	-11	120	121				5	312	315

÷

H,2,16 377 707 357 396 374 711 341 404 16 17 53* 112 52 107 660 397 421 661 396 54# 236 285 115 179 271 162 83 470 130 12 13 14 15 16 17 18 -123456789012 260 289 66 200 278 138 76 467 120 175 91 177 85 7 8 H. 3.5 H.3.8 131 505 459 828 H,2,17 H,3,2 -20 -19 137 503 457 864 721 365 169 * 421 57 173 207 228 152 77 210 307 93 98 505 67 474 53* 251 30 422 78 163 77 -19 110 5241 451 293 276 340 392 358 511 216 263 345 -18 53*** 58 265 393 164 74 264 299 264 245 164 228 115 549 291 293 324 388 345 512 189 258 319 525 497 -19 129 27 39 265 423 180 -18-17-15-154-132-129101112131141516-187 -1154 -1215 -154 -1215 -1215 -1234 -1234 -11234 -17 -18-176-176-116-51# 223 117 156 -15 -14 -13 106 146 182 44 537 295 533 365 390 560 293 640 348 386 230 172 58 218 305 88 85 485 50 57 119 284 259 86 54* 555 244 337 335 571 254 320 339 H+3+11 -19 -18 -17 151 446 80 515 82 381 171 $\begin{array}{c} \textbf{364}\\ \textbf{1389}\\ \textbf{569}\\ \textbf{573}\\ \textbf{572}\\ \textbf{573}\\ \textbf{1905}\\ \textbf{5372}\\ \textbf{1905}\\ \textbf{5372}\\ \textbf{1905}\\ \textbf{5373}\\ \textbf{414}\\ \textbf{439}\\ \textbf{5587}\\ \textbf{3410}\\ \textbf{5325}\\ \textbf{540}\\ \textbf{53257}\\ \textbf{4631}\\ \textbf{175}\\ \textbf{5582}\\ \textbf{53257}\\ \textbf{4631}\\ \textbf{175}\\ \textbf{5582}\\ \textbf{53257}\\ \textbf{3731}\\ \textbf{5582}\\ \textbf{53257}\\ \textbf{3731}\\ \textbf{5582}\\ \textbf{53257}\\ \textbf{3731}\\ \textbf{5582}\\ \textbf{53257}\\ \textbf{53257}\\$ 231 503 24 257 411 415 H.3.6 H.3,3 -209 - 107 - 198 147 54* 375 96 125 285 243 93 118 142 26 387 115 286 259 59 121 276 75 8 237 236 677 181 н.з.9 H,2,18 353 781 182 441 93 182 548 173 757 356 547 337 153 58 190 444 704 285 787 977 555 977 555 925 174 755 925 175 324 221 430 $\begin{array}{c} -19\\ -18\\ -17\\ -16\\ -15\\ -14\\ -12\\ -12\\ -12\\ -10\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ \end{array}$ 335 322 185 352 313 186 **ግ ዋ 7 ቀ ኮ** ዋ 175 769 348 653 341 140 59 725 282 804 41 998 439 460 577 535 175 172 109 62 107 279 55* 71 52* H+3+0 524 315 532 489 976 581 926 178 767 14 327 322 322 422 233 49* 258 190 63 87 265 357 110 13 14 15 16 17 18 222 4 256 214 56 70 120 639 162 709 56* 563 H.3.4 H1317 -19 -18 -17 166 53* 259 595 678 182 24 322 195 574 277 301 238 177 -20 -19 -18 -17 -15 -15 -14 -13 -12 6 7 8 9 251 710 692 461 512 570 547 1024 797 117 707 710 H+3+1 360 445 359 184 567 272 318 -19 446 355 -15 -15 -14 -13 -12 9 10 11 12 13 14 -18 -17 -15 -15 -15 -12 -12 -12 11 12 667 495 557 542 989 н, 3, 10 н. 3.12 982 392 1199 518 1005 54* 224 90 87 146 381 51* -18 -17 -15 -15 -14 -13 236 292 60 108 247 294 18 110 131 214 97 88 145 377 18 -19 -18 -17 -16 -15 -14 -13 398 1230 529 574 777 189 187 171 505 174 523 186 134 701 692 772 571 ıŏ

178 70 261 127 171 121 137 154 74 248 113 154 534 158 489 H+3+12 537 159 503 62 75 1953 1954 175 311 4754 113 4754 168 132 52 77 200 162 52 193 122 150 247 306 51 340 117 477 6 151 120 13 14 15 16 17 13 14 15 256 219 305 292 217 247 35 302 149 31 55 21 450 137 H+3+17 -110987654321 401 271 596 330 145 51 55 507 150 150 150 150 140 51 140 51 150 161 161 270 503 360 413 400 455 504 419 688 213 H.4.6 H+4+3 71 381 68 395 188 271 197 542 197 168 199 245 36 -19 407 390 449 495 427 684 236 -19-17-176-1474 524 620 85 475 120 372 312 50 113 270 115 361 610 222 427 477 531 611 72 469 102 379 102 379 102 379 117 55 117 3628 212 425 -1876543217890112345180 363 94 293 91 200 552 52* 160 261 148 300 247 54* 36 87 30 118 161 96 23 149 H1410 518 302 324 55* 50 290 145 H.3.15 508 292 327 61 277 146 12 13 14 15 16 17 18 H+3+13 H14,4 110 3799 209 433 5695 1659 313 7222 105 376 659 313 7722 274 105 376 490 298 410 599 410 599 410 375 299 96 376 197 433 313 435 668 688 170 617 307 H, 4, 7 H.4.1 52** 141 57* 246 258 906 49* 206 206 206 206 206 208 51* 162 363 54* 83 208 -19-17-176-1137 230 267 204 205 204 204 204 204 204 204 36 204 36 204 36 204 36 204 36 204 36 205 36 5 $\begin{array}{c} -18 \\ -17654321 \\ -1156789011234 \\ 111234 \\ 111234 \end{array}$ 432 500 394 753 1652 161 454 512 529 515 53* -18-17-16-154-12-12-11112131415161718431 485 406 749 116 650 393 158 475 500 556 301 521 1 79 257 368 97 592 510 521 50 515 302 296 630 H,3,16 89 71 102 55* 201 55* 151 199 147 318 105 218 90 67 90 4 50 184 123 188 135 322 114 213 H, 4,5 H, 4,2 -19 278 294 436 150 583 609 389 381 67 295 281 249 285 429 149 581 579 372 364 29 313 280 H. 4.8 -18 -17 -15 -15 -14 -12 -12 -11 8 9 10 56* 265 154 272 244 141 482 435 -19 -18 -17 -16 -15 -14 -13 -12 10 11 73 10 264 167 264 252 133 510 427 183 69 90 104 431 261 497 -19 -18 -17 -16 -15 -14 -13 -12 191 77 112 463 260 521 H. 3. 14 -16 -15 -14 -13 100 58 205 105 72 224

59 55* 301 500 58* 142 98 58* 256 179 -3 -2 57 H.4.8 54774101N3456789 427 35 431 395 73 423 2-10-1207450 273 366 53* 281 522 255 306 225 81 100 58 251 383 23 505 271 231 2312 222 75 86 434 53* 448 395 100 434 53* 140 55* 88 352 91 577 13 145 102 49 264 -11 -10 4 5 6 7 8 9 10 11 12 13 334 402 346 411 88 H.5.0 392 353 386 91 178 246 159 343 432 185 480 290 485 283 557 234 430 467 321 12 13 14 15 16 17 566 240 431 467 332 246 172 326 432 184 160 122 5 75 316 60 H, 4, 15 11 $\begin{array}{c} 102\\ 272\\ 135\\ 584\\ 5254\\ 511\\ 473\\ 1734\\ 4512\\ 477334\\ 4505\\ 4764\\ 180\\ 50752\\ 478\\ 180\\ 50752\\ 481\\ 9\end{array}$ н,5,1 н.4.11 H**, 4**,9 201 336 391 55* 525 258 485 H.4.13 -18-17-154-1254-121-120111123415617167200 353 391 507 92 521 348 90 276 183 191 317 322 141 127 510 3665 136 461 143 123 711 4823 1251 4829 913 196 913 196 516 143 223 $\begin{array}{c} 238\\ 511\\ 368\\ 595\\ 1450\\ 819\\ 712\\ 1371\\ 12438\\ 894\\ 1807\\ 524\\ 135\\ 219\\ 110\\ \end{array}$ -1987-1654 -17654-1721 -1-1-1098234567890 1112 497 58* 82 4634 3212 9454 432 212 9456 471 9271 9357 77 3355 3355 458 1374 87 512 359 100 274 191 183 300 308 128 123 335 284 601 419 405 407 407 315 315 315 3517 3517 356 356 356 518 518 356 518 518 н, 4, 16 H.5,2 175 203 270 438 171 332 399 476 292 315 280 214 68 168 213 192 233 427 166 329 387 466 277 319 253 253 58 469 423 $\begin{array}{c} -18 \\ -17 \\ -15 \\ -132 \\ -122 \\ -110 \\ 9 \\ 112 \\ 134 \\ 15 \\ 17 \\ 17 \\ 17 \\ 16 \\ 17 \end{array}$ 51 522 207 177 59 53 534 55 259 534 553 534 559 541 402 579 544 579 544 H.4.10 201 255 143 238 181 244 129 236 178 203 470 516 477 516 176 435 556 H.4,14 4,12 117 323 524 211 195 54 469 77 575 72 184 108 87 314 42 505 218 165 79 456 90 553 71 163 89 н. 231 95 52* 96 208 55* 521 74 206 393 51* 205 490 542 71 724 167 208 537 405 165 537 -17654321109876 97-215 98 16 107 187 54 487 82 198 н. 4. 17 223 579 391 396 551 172 256 584 401 408 553 148 H.5.3 306 -18 -17 304 2

<u>____</u>

103 502 934 355 727 711 363 504 182 544 423 304 480 932 368 743 713 380 498 183 539 435 288 645 601 572 415 397 262 554 4646 3492 549 549 549 549 549 355 310 596 569 534 366 366 255 196 357 385 362 305 305 305 137 119 431 69 276 276 237 413 268 90 337 133 133 H.5.3 15 75 50 234567890112 19994101N34567890 Ph4341012345578 89 385 58 46 255 79 249 218 406 257 61 346 141 130 H.5.6 -16-154-132-1109011112341516177 189 201 74 545 320 422 218 72 537 306 408 179 332 81 319 166 134 239 153 -18 -17 312 343 356 338 187 357 247 717 4518 367 450 466 347 -16543221 -14324 -121056789011234 193 337 62 316 52* 184 133 82 245 143 H15,9 188 386 2024 2246 573 627 186 527 186 527 186 527 186 523 527 101 497 101 398 185 392 187 210 250 259 9 H, 5, 13 H+5+11 57* * 241 54 98 103 447 * 105 49 115 549 275 205 205 205 205 2320 343 113 51 236 18 379 108 70 107 405 8 446 114 14 335 377 235 270 216 3200 241 131 -16 244 283 2841 561 564 566 205 556 205 557 75 H.5.4 -17654131211098745472410123456789 24689274127925510 55510521942697777992092492492492492976 32697777992492492492492492492492492976 267 340 311 438 203 226 359 281 367 361 175 222 230 475 306 -187 654 321 107 8 9 0 1 1234 5 252 342 319 439 228 357 273 55 375 375 375 247 214 290 474 307 H1517 $\begin{array}{r} 172\\ 359\\ 143\\ 270\\ 127\\ 55\\ 155\\ 205\\ 338\\ 196\\ 553\\ 207\\ 138\\ 207\\$ -18-17-154-154-121-109456789011123112113187 384 146 271 132 48 153 128 330 217 49 350 520 520 520 520 520 530 239 34 180 156 301 243 550 288 116 H.5.5 75 55* 91 268 223 477 82 51 295 258 339 331 137 438 142 -18-17-15-14-12-12-10789011112314H.5,14 11 68 337 55* 379 81 506 58* 810 222 778 128 541 300 412 58* 485 349 362 56 493 776 210 738 120 523 292 397 32 471 H.5.10 563 H.5.8 -187 -175 -154 -132 -121 -109 87 -6 241 451 * 36* 111 259 279 384 55* 646 230 859 472 229 449 567 121 259 273 388 17 604 232 802 449 H,5,12 450 107 434 75 206 544 426 461 129 572 463 101 436 92 213 92 340 397 453 125 539 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 381 390 161 599 134 480 114 718 50* 890 52 387 403 151 608 134 495 75 711 17 852 76 -17 -16 -15 -14 -12 -12 -11 -10 -9 -8 -7

949 51* 252 56* 83 125 175 251 4 113 128 178 370 109 189 -14 -13 -12 -11 364 100 169 529 664 843 660 194 11 12 13 14 15 H.5.14 H+6+1 145 1048 265 685 72 951 406 1034 272 56* 260 55* 245 103 53* 449 112 385 386 -17-16-154-122-110-10-110-112-110-112-112-110-112-12142 380 377 707 87 948 395 .57 851 696 221 1630 128 1101 296 278 593 481 58* 432 271 H, 6, 4 1130 237 1182 410 659 557 369 682 1620 135 1099 300 268 597 476 252 1200 428 669 576 370 660 520 423 239 579 282 250 152 68 177 212 56* 56* 3125 1125 4495 3240 225 2405 2260 225 225 225 21509 225 21509 -18 H.5.15 -16543210967890112345122 129 461 264 365 445 464 908 261 271 325 733 186 731 186 732 131 492 129 493 419 386 24 359 412 255 412 265 394 265 392 265 392 432 59* 369 420 169 414 57* 251 455 290 393 269 438 237 H.6.7 н.6,9 H+6+2 555 502 121 522 1150 1252 247 1254 247 1257 506 188 66 53 502 255 91 14 114 43 66 36 219 79 342 80 -17 -16 -15 -14 -13 -12 -11 -10 470 302 451 107 788 443 313 448 111 762 206 775 287 614 516 73 368 293 423 279 128 837 263 597 513 112 8 134 74 242 427 110 250 136 H,5,16 H,6,5 27 579 409 546 413 422 480 -11 -97 8 9 10 11 2 13 4 15 16 57* 104 54* 118 268 89 19 ተለ። ትለ። ትላ። ትላ። ት 58× 577 417 $\begin{array}{c} -18\\ -17\\ -16\\ -15\\ 43\\ -12\\ -12\\ -10\\ -9\\ -10\\ -9\\ -5\\ 67\\ 8\\ 9\\ 10\\ 112\\ 13\\ 13\\ \end{array}$ 37 108 55 111 252 137 39 295 638 88 89 345 296 424 245 367 143 135 157 112 32 114 216 559 427 52* 321 648 99 89 67 519 197 107 62 17 365 406 262 349 403 247 139 255 225 329 136 103 79 130 27 Õ 50* 317 125 52* 180 190 79 56* 172 H.6.3 9 320 120 15 182 207 86 43 156 H.5.17 55× 55× -18 -17 -16 -15 -14 -13 -12 54* -6 H,6,8 H+6+0 55* 87 375 460 50* 181 50* 181 423 153 54 255 -608 56* 458 11 627 1 456 -17 -16 -15 -14 -13 -12 -11 -10 559 582 9 675 184 599 224 430 -11 -10 -9 11 12 13 14 15 16 17 184 H+6+10 200 631 240 1000 318 611 252 965 312 H.6.6 214 425 490 364 484 350 -9 -10 -9 7 8 9 -17 -16 -15 248 391 268 -18 -17 -16 -15 246 399 263 351 395 347 403 -9 -8

	H,6,10		-13	57×	51	` -1	58*	28	6	162	156		H.7.4	•
-14	518	515	-11	55*	-135	1	381	383	á	382	191	-17	04	00
-13	528	521	-10	324	317	2	413	410	ă	125	117	-16	100	109
-12	535	527	-ğ	127	125	3	355	351	10	175	171	-15	263	283
-11	116	94	8	608	588	•			11	123	121	-14	116	1203
-10	519	513	-7	97	103		H.6.15		12	302	281	_13	337	123
_ <u>_</u> 9	91	79	-6	422	401				13	300	310	-12	220	241
-8	653	642	-5	272	270	-12	60×	56	14	239	224	-11	63	61
-7	619	597	_4	94	89	-11	203	197	15	264	255	-10	122	133
-6	1006	969	-3	522	508	-10	137	143				_q	576	555
-5	414	406	-2	420	423	-9	186	180		H.7.2			363	110
-4	487	475	-1	59	50	-8	238	238				-7	750	675
-3	893	873	0	398	394	-7	179	183	-16	264	269	-6	117	166
-2	205	190	1	166	174	-6	59	32	-15	173	170	3	221	224
-1	385	365	2	147	141	5	75	96	-14	167	174	4	435	451
0	820	812	3	295	297	-4	90	97	-13	551	554	5	398	386
1	156	147	4	205	202	-3	130	152	-12	57×	67	6	129	136
2	619	602	5	289	271	-2	59×	64	-11	748	708	7	499	496
3	231	220	ē	95	87	-1	57*	22	-10	281	275	e	64	34
7	158	138		237	248	0	155	139	-9	717	682	9	130	138
2	447	435				1	162	143	-8	91	120	10	220	215
2	702	105		H10173					-1	760	721	11	210	213
<i>.</i>	2/3 66¥	205	_16	167	160		H+D+10		2	14/	151	12	411	428
· 8	237	245	-14	57*	190	~	241	276	5	417	427	13	79	57
-	207	272	-13	260	248	-9	592	230		120	855	14	216	235
	8.6.11		-12	57%	32	-7	410	300	8	120	105			
			-11	58	35		602	577	10	203	554		H:/.5	•
-16	147	140	-10	79	95	-5	353	331	11	72	, 11 , 13	-17	100	170
-15	56×	13	-9	77	69	-ā	479	494	12	565	565	-16	102	110
-14	189	184	8	354	369	-3	243	237	13	201	175	-15	264	260
-13	58×	67	7	55×	5	-			14	372	385	-14	139	122
-12	235	235	-6	122	130		H+7+0		15	70	50	-13	166	176
-11	281	303	5	59×	25							-12	156	153
-10	68 ·	69	4	149	144	6	175	155		H,7,3		-11	82	85
-9	295	308	-3	261	275	7	565	561	-			-10	251	241
-8	57*	73	-2	269	273	8	305	317	~17	146	128	-9	153	159
-/	62	85	-1	79	80	9	810	809	-16	235	245	-8	302	303
	230	209	0	106	93	10	384	383	-15	176	183	-7	428	406
->	294	268	1	126	136	11	592	607	-14	_52*	8	-6	57	60
	57	40	2	169	151	12	187	160	-13	301	288	-5	591	559
	199	130	3	118	128	13	237	247	-12	54#	32		429	413
_1	127	285		507	20	14	777		-11	53*	11	1	116	131
-î	128	130		00	/0	15	200	204	-10	55	41	2	211	197
1	108	114		4.6.14		10	277	279	-3	240	513	3	97	108
ż	132	133		110144	-		4.7.1		-0	371	223		198	100
3	55×	13	-13	195	185					380	346	5	232	200
4	56×	6	-12	464	462	-16	305	295	4	283	299	ž	166	167
5	128	129	-11	128	128	-15	349	347	5	89.	94	á	504	606
6	105	130	-10	677	663	-14	57*	3	5	499	512	ă	157	160
7	56×	46	-9	121	114	-13	412	405	ž	103	108	40	283	262
8	53×	32	-8	733	718	-12	118	106	8	125	116	11	96	87
			-7	109	89	-11	444	444	9	67	55	12	119	134
	H •6•1 2		6	401	366	-10	336	314	10	63	51	13	224	214
			-5	372	351	-9	210	186	11	241	226			•
-16	403	425	-4	554	553	-8	356	333	12	98	62			•
-15	57*	23	-3	313	299	-7	313	293	13	56×	29			
-14	458	448	-2	698	699	6	132	131	14	79	50			

· · ·

3

.

1

· .

151

•

8 9 10 11 H,7,6 383 56* 58* 248 365 32 50 255 56* 158 306 535 234 394 56* 158 287 301 70 6 7 301 55 237 478 97 336 200 213 162 328 549 238 373 13 169 <u> የ</u>ትሪካ ነ ነ ነ 232 461 320 229 203 303 467 293 294 H,7,12 н,7,8 398 93 388 394 104 395 $\begin{array}{c} 218\\ 210\\ 218\\ 210\\ 161\\ 247\\ 948\\ 827\\ 191\\ 4220\\ 834\\ 122\\ 9170\\ 717\\ 5840\\ 475\\ 401\\ 442\\ 4424 \end{array}$ -16 $\begin{array}{c} 2375\\ 2257\\ 2251\\ 161\\ 2300\\ 401\\ 1230\\ 401\\ 154\\ 159\\ 2526\\ 4790\\ 356\\ 441\\ 105\\ 5822\\ 371\\ 615\\ 2822\\ 371\\ 240\\ \end{array}$ н 7,15 127 326 60* 58* 220 142 57* 280 96 H,7,10 276 107 379 58* 253 426 415 292 470 115 155 80 85 77 241 ለሴኔሌቴሌ 124 330 20 55 227 157 18 57* 363 237 266 771 181 297 450 234 751 124 414 516 334 527 65 3250 175 250 175 151 -16 372 2211 696 257 765 148 267 373 373 374 431 200 721 94 602 3394 612 600 3388 611 283 1800 2833 1800 283318 280 64 226 421 426 302 470 118 157 78 72 246 н,8,0 102 591 155 354 * 322 115 363 332 614 177 300 297 124 78 1011234 15 109 551 164 318 62 298 112 376 349 635 188 616 495 604 386 401 254 H.7.13 118 186 58* 103 197 40 370 34 434 73 230 29 151 52 151 52 292 1 129 142 267 200 H,7,7 299 113 78 363 ** 435 60 435 60 226 57* 145 61 288 57* 134 149 208 162 306 -17 283 353 236 $\begin{array}{c} 317\\ 154\\ 290\\ 204\\ 172\\ 80\\ 358\\ 124\\ 558\\ 124\\ 558\\ 124\\ 558\\ 352\\ 87\\ 355\\ 58\\ 352\\ 76\\ 289\\ 135\\ 337\\ 42\\ 516\\ 375\\ 516\\ 375\\ \end{array}$ 203 181 103 365 298 146 577 146 577 106 565 90 370 100 H.7.11 H.8.1 H.7.9 543211099799799797979701N34 90 *** 58* 170 65 122 63 101 7* 520 1 578 *** 56* 140 291 426 -154321109876543410123 $\begin{array}{r} 312\\ 165\\ 97\\ 297\\ 438\\ 427\\ 594\\ 123\\ 445\\ 8562\\ 557\\ 396\\ 739\\ 109\\ \end{array}$ 105 709 296 459 -1543210909879479470 388 222 136 197 31 438 213 438 213 90 581 580 580 5384 132 294 92 16 50 172 50 116 516 516 516 516 34 424 34 73 737 307 63 421 217 142 182 430 218 580 116 441 54 873 268 576 196 395 242 769 218 85 509 386 576 168 132 296 116 146 65 263 136 341 65 602 373 H,7,14 145 480 178 267 60* -11 -10 -9 -8 -7 -6 131 471 190 261 38

147 549 307 308 156 H.8.1 415 ** 482 1990 1566 164 4853 5664 4853 566 4853 566 1109 3844 317 15 234 211 428 141 552 159 86 495 2380 568 715 398 348 313 157 564 310 341 147 215 555 72 555 173 184 2403 310 239 477 29 1842 403 331 49 164 331 159 777 159 427 427 481 427 588 409 346 588 409 346 588 401 320 604 218 4-32-1012345678901123 -11 60* 182 341 709 166 762 155 425 469 487 74 439 254 346 605 765 511 249 222 193 407 231 10112134 342 600 747 481 257 217 212 392 248 161 467 51 537 84 569 71 565 190 328 391 200 328 391 477 571 266 409 215 240 238 807 472 558 421 345 193 388 395 343 26 349 378 435 365 н,8,2 23 127 360 263 589 326 589 226 56* 124 362 270 514 93 285 317 335 H.8.4 253 294 354 163 79 254 306 311 134 595 406 856 856 856 856 856 850 821 484 484 167 231 192 231 192 231 81 250 830 258 302 412 258 302 411 103 H.8.10 н.8.8 390 * 397 * 397 * 397 * 397 * 397 * 397 * 397 * 397 * 397 * 397 * 397 * 397 * 397 * 398 * 397 * 398 * H,8,6 344 4100 3822 237 308 4607 308 4607 308 4607 308 4607 264 352 52 2492 202 $\begin{array}{c} 2 19 \\ 608 \\ 426 \\ 139 \\ 5511 \\ 352 \\ 426 \\ 352 \\ 548 \\ 4201 \\ 452 \\ 558 \\ 416 \\ 595 \\ 511 \\ 149 \\ 64 \\ 266 \\ 292 \\ 511 \\ 149 \\ 266 \\ 190 \\ 317 \end{array}$ 317 187 205 51 447 516 253 447 516 284 185 181 258 285 95 1854 1114 2263 1854 1422 237 3991 1457 5991 3152 3155 278 881 1926 4161 926 717 52* 942 84 387 330 531 167 68 190 960 498 248 57* 403 -1543211098765434410123456789 -1-1-1-1-289 184 138 105 74 376 376 376 375 5313 295 246 93 9 4 497 171 377 91 448 197 179 157 139 229 H.8.3 191 295 H.8.11 -1543211099749 55* 354 72 474 100 315 258 485 54* 518 52* 365 65 455 316 258 495 13 510 75 57* 286 59* 377 181 237 131 56**6** 11 253 -13 -12 -11 -10 -9 -8 -7 -6 287 15 373 184 253 117 571 H1815 H.8.9 -16 -15 -14 -13 -12 -11 162 390 302 198 193 159 391 291 H,8,7 449 59* 615 87 -15 -14 -13 -12 -11 441 27 616 103 -15 -14 -13 -12 350 389 315 351 402 318 190

H.8.11 н,9,0 305 71 54 55 66 53 98 126 58 167 131 156 98 306 62 32 201 34 50 12 108 141 56 184 129 157 73 111 56* 180 166 225 58* 72 177 64* 59* 118 78 121 38 101 126 163 32 16 133 33 110 40 29 106 56 3210123456789011 0123456789 14 171 181 225 15 61 89 181 79 67 42 32-01234567890112 72 172 431 306 256 226 165 349 234 410 271 130 198 317 54* 179 75 124 137 72 55* 61* 285 145 161 315 31 195 43 161 152 664 67 182 1400-0040 73 170 431 304 248 214 152 62 373 225 412 12345678901123 10 H,9,7 382 449 547 60* 57* 198 57* 160* 721 1615 58* 595 427 640 313 285 420 313 285 427 640 313 285 427 640 313 285 148 338 311 373 H,8,12 163 109 395 451 203 547 1 638 222 174 45 727 172 1020 460 580 580 5287 721 420 673 329 283 179 343 331 388 H.9.5 н.9,1 211099799799792 277 77 358 127 114 57* 77 103 173 260 150 150 143 57* 56* 274 844 135 102 288 172 249 145 8121 228 H,9,3 $\begin{array}{c} 381\\ 424\\ 2858\\ 177\\ 5123\\ 292\\ 306\\ 1271\\ 6\\ 496\\ 816\\ 490\\ 255\\ 102\\ 2254\\ 1302\\ 1302\\ 2254\\ 1302\\$ 258 258 1944 2911 1944 2911 1944 2911 1944 2911 1945 29111 1945 2911 1945 2911 1945 2911 1945 2911 1945 29 432110987454371012345678901123 $\begin{array}{c} 129\\ 556\\ 495\\ 215\\ 191\\ 716\\ 2243\\ 257\\ 2543\\ 257\\ 2543\\ 257\\ 2543\\ 257\\ 2543\\ 255\\ 916\\ 1659\\ 2211\\ 3295\\ 365\\ 941\\ 1559\\ 2311\\ 3293\\ 395\end{array}$ -143211098765432101234567890112 H18113 57* 207 343 169 314 59* 301 262 348 58* 219 131 15 226 81 343 172 313 313 265 350 31 228 141 109874547470-H.9.8 598** 100 128** 167 16555998 201 155 5655998 201 157 246 12210987999999999 111098799999999 52 43 1024 19 17 156 3 3 0 19 16 87 9 23 9 23 9 23 9 23 9 н,9,6 57* 25 83 75 17 129 87 174 354 122 154 113 100 25 43210987954791 85 71 58* 102 138 72 174 340 134 145 148 82 58 н,9,2 H.9.4 ----H.8.14 1432109879**5**4 93 60* 127 61* 172 158 66 113 53* 112 99 21 58 154 69 172 131 61 91 42 101 127 60** 59 64 174 56** 146 91 56** 56* -143-1210987654 151 29 66 72 37 182 18 130 99 42 80 70 275 82 307 74 165 <u>ቁ</u>ጉዋትዋ የሳ 82 65 274 79 298 82 170

465 368 187 262 124 455 384 192 276 130 н,9,8 185 10 1011 410 197 312 153 450 356 356 358 174 399 193 323 147 486 375 373 173 200 40 145 265 140 259 64 263 23 92 18 134 123 30 146 595 152 595 152 256 152 575 85 125 58 125 58 125 58 7 59* 88 71 H, 10, 4 н,9,9 152 59* 184 159 143 102 331 202 433 59* 432 59* 432 59* 137 93 160 * 160 * 220 58* 565 389 299 176 516 529 521 529 521 569 479 283 260 479 283 264 334 H,9,12 557 387 55 269 269 269 701 524 314 514 579 642 276 201 2276 345 59* 123 109 117 86 128 59* 180 58* 9979999970-52 52 116 125 113 72 110 34 183 49 H, 10, 2 182 * 59 * 139 592 140 187 92 140 188 243 4416 441 123 * 130 581 156 180 177 1422 900 1555 1525 1527 177 87 2422 4405 130 34 379 138 229 5 379 1771 180 -1210987-6543210123456789011 H+10+7 255 276 * 357 357 * 388 103 * 628 559 * 12 312 397 259 3160 386 247 292 42 361 35 394 102 496 548 423 425 267 335 H,9,13 57* 367 122 -6-59 384 124 н, 10, 0 H,9,10 H,10,5 194 586 598 448 215 163 79 411 61* 316 171 79 10112 174 586 52 452 201 161 69 430 70 317 167 83 61** 110 143 237 88 56* 151 627 88 88 58 58 58 135 110 136 117 57 242 87 6 137 736 137 736 116 4 138 21 97 145 220 338 295 3516 3516 3516 351 321 521 321 54 565 3521 2455 3521 2452 321 54 233 154 233 214 335 222 306 2237 459 21 364 5 397 22 365 311 153 397 256 311 153 256 252 252 252 398 H, 10,3 203 392 422 73 211 105 234 77 4635 291 153 4645 291 155 462 105 362 130 2193 201 386 28 428 208 100 228 446 115 238 195 117 388 1275 177 10,8 н, 323 74 60 206 89 389 256 389 256 166 192 2135 138 57* -11 343 69 39 37 201 97 393 36 257 47 186 210 224 169 136 36 H+10+1 216 573 239 393 158 244 593 412 691 66 679 196 550 255 593 227 361 141 218 63 386 657 56 640 182 544 H,9,11 124 418 260 394 58* 219 57* 388 118 440 253 417 9 221 14 390 н.10.6 -12 -11 -10 -9 -8 137 346 60* 147 127 356 4 160

•

H, 10, 9 59# H.11.4 H-11.7 273 133 364 260 443 150 188 140 286 167 365 129 56 169 27 123 355 246 142 212 136 262 175 366 123 62 159 72 269 140 233 61* 299 293 75 501 293 75 501 319 93 237 117 148 60* 247 332 59* 217 62* 487 195 348 344 209 363 199 326 120 257 150 236 159 302 103 529 308 103 529 308 104 51 159 16 251 287 58* 245 70 257 151 233 125 225 57* 177 12,2 343 220 30 490 351 216 385 216 338 115 4744474701ND 291 32 247 49 246 144 229 125 240 42 178 62× 369 51× 373 62× 414 58× 472 156 364 214 56 376 8 386 61 418 25 481 153 365 230 6444440-0040 H, 11,8 59* 344 60* 484 91 400 245 256 241 H+ 10+ 10 H.11.2 H,12,3 33 355 9 508 95 410 268 273 265 58** 426 101 236 104 343 275 173 58 282 223 320 230 304 89 282 196 58* 59* 98 57* 90 228 57* 105 63* 130 124 201 243 113 83 61* 148 161 145 220 62* -10987654321012345678 116 174 257 116 74 55 154 178 142 240 46 418 81 247 95 345 276 175 353 292 513 353 292 513 4 326 319 117 304 217 86 101 23 80 234 11 97 47 141 H. 11.5 58** 200 144 329* 113 76 59* 113 76 59* 246 57 170 56* 170 50* 106 298249444410-101406 1 207 145 327 98 50 59 237 185 237 185 127 196 H,11,9 222 263 113 245 230 278 123 266 ካተሪስታ 12,4 H, 10, 11 57* 199 252 79 208 58* 347 130 22 213 94 260 90 218 18 352 160 59* 324 101 266 82 224 141 360 106 280 99 248 156 H,12,0 60* 435 62* 378 195 435 3 443 55 381 212 448 H+11+3 211 70 305 58* 256 237 284 106 190 206 87 315 245 269 101 178 277 256 298 270 172 43 97 H,11,6 H+11+0 144 157 61* 221 59* 392 113 472 62* 463 116 275 113 338 145 164 78 218 39 418 90 476 475 114 304 131 335 207 588 74 293 57* 347 93 446 12,5 201 614 90 300 18 346 113 439 н 178 56* 125 82 124 63 H. 12. 1 181 3 142 79 125 89 73 60* 250 121 60* 59* 147 72 60* 124 61* opto-opto-wate 84 27 256 135 22 23 140 61 59 276 239 78 286 248 157 56* 65 89 H.11.1 12,6 165 169 305 58* 305 58* -10 -9 -8 -7 169 176 293 323 19 -3 -2 -1

References

- R.W. Mitchell, A. Spencer and G. Wilkinson, J.C.S. Dalton, 1973, 846.
- 2. J.R. Sanders J.C.S. Dalton, <u>1973</u>, 743.
- 3. R.J. Young, G. Wilkinson, J.C.S. Dalton, IN PRESS.
- 4. D.J. Cole-Hamilton, R.J. Young and G. Wilkinson, J.C.S. Dalton (to be submitted).
- 5. J.C. McConway, A.C. Skapski, F.L. Phillips, R.J. Young and G. Wilkinson, J.C.S. Chem. Comm. 1974, 327.
- W.R. Busing and H.A. Levy, <u>Acta Cryst.</u>, <u>1957</u>, <u>10</u>, 180.
- 7. P. Coppens, L. Leiserowitz and D. Rabinovich, Acta Cryst., 1965, 18, 1035.
- "X-ray '70" Updated version of the "X-ray '63" system of programs; J.M. Stewart, University of Maryland Technical Report TR 64 6 Edited by J.M. Stewart, F.A. Kundell, and J.C. Baldwin.
- 9. E.W. Hughes, J. Amer. Chem Soc., 1941, 63, 1737.
- 10. S.J. La Placa and J.A. Ibers, J. Amer. Chem Soc., 1963, 85, 3501; Acta Cryst., 1965, 18, 511.
- D.T. Cromer and J.T. Waber, Acta Cryst., 1965, 18, 104.
- R.F. Stewart, E.R. Davidson and W.T. Simpson, J. Chem. Phys., 1965, 42, 3175.
- 13. D.T. Cromer, Acta Cryst., 1965, 18, 17.
- F.L. Phillips and A.C.Skapski, J.C.S. Chem. Comm., <u>1974</u>, 49.
- 15. A.C. Skapski and F.A. Stephens, J.C.S. Dalton, <u>1974</u>, 390.
- 16. A.C. Skapski and P.G.H. Troughton, Chem. Comm., <u>1968</u>, 1230.
- 17. S.J. La Placa and J.A. Ibers, Inorg. Chem., <u>1965</u>, <u>4</u>, 778.
- S.R. Fletcher and A.C. Skapski, J.C.S. Dalton, <u>1972</u>, 635.

- 19. R.O. Harris, L.S. Sadavoy, S.C. Nyburg and F.M. Pickard, J.C.S. Dalton, 1973, 2646.
- 20. G.J. Kruger, A. L du Preez and R.J. Haines, J.C.S. Dalton, 1974, 1302.
- 21. a) M.J. Nolte, G. Gafner, L.M. Haines, Chem Comm., 1969, 1406.
 - b) M.J. Nolte and G. Gafner, Acta Cryst., 1974, B30, 738.
- 22. B. Rees and P. Coppens, Acta Cryst., 1973, B29, 2515.
- 23. G. Huttner, S. Lange and E.D. Fischer, Angew. Chem, Internat, Edn. 1971, <u>10</u>, 556.
- 24. S.D. Ibekwe, B.T. Kilbourn, U.A. Raeburn and D.R. Russell, Chem. Comm., 1969, 433.
- 25, U.A.Gregory, S.D. Ibekwe, B.T. Kilbourn and D.R. Russell, J. Chem Soc, (A), 1971, 1118.
- 26. A.C. Skapski and F.A. Stephens, J. Cryst., Mol Struct., 1974, 4, 77.
- C.K. Johnson, ORTEP thermal ellipsoid plotting program.
 Oak Ridge National Laboratory, Tennessee, 1965, Report ORNL 3794.
- 28, R. Mason, K.M. Thomas and G.A. Heath, J.Organometal, Chem., 1975, 90, 195.
- 29, J. Rajaram and J.A. Ibers, <u>Inorg. Chem.</u>, <u>1973</u>, <u>12</u>, 1313.

CHAPTER VI

The Crystal and Molecular Structure

of Hydridophenoxybis(triphenylphosphine)ruthenium(II) Diphenol A Complex with a Phenoxy Group Co-ordinated to Ruthenium as a π -Bonded Arene,

Abstract

The crystal structure of the title molecule has been determined from three-dimensional X-ray data by Patterson and Fourier methods, and refined using least-squares techniques to R = 0.029 for 4520 independent reflections. X-ray intensity data were collected on a Siemens four-circle diffractometer using Cu-Ka radiation. Crystals are monoclinic with unit-cell dimensions

> $\underline{a} = 20.331(1)$ Å, $\underline{b} = 9.561(1)$ Å, $\underline{c} = 23.744(2)$ Å, $\beta = 106.24(1)$, Space group <u>P2₁/a</u> and <u>Z</u> = 4.

The complex is monomeric and the metal atom has a co-ordination consisting of two σ -bonded triphenylphosphine groups, a hydride hydrogen and a phenoxy ring bonded as an arene to the metal. Ru-P bond distances for the two triphenylphosphine groups are 2.314Å and 2.303Å respectively and the P-Ru-P angle is 97.3°. Five of the six Ru-C distances are in the range 2.246 - 2.301Å, whilst the sixth is considerably longer 2.482Å. The six membered ring is markedly non-planar. The Ru-H distance has been optimised (1.54Å) and is rather shorter than expected.

The two phenol molecules of solvation are hydrogen bonded to the phenoxy group.

Introduction

The title compound has been prepared by the action of excess phenol on RuH₂(PPh₃)₄ in toluene.¹ This was done as part of an investigation into the catalytic behaviour of Ruthenium complexes by Professor Wilkinson and co-workers.

The infra-red and nuclear magnetic resonance spectra of the complex show certain unusual features which are best accounted for by postulating that the phenoxy group is not bound to the ruthenium through the oxygen atom, but rather as an arene through the π -electron cloud of the phenyl ring.

In a complex of this kind, the phenoxide moiety may be considered as being a resonance hybrid of a uninegative five electron donor containing a carbon-oxygen double bond (I) or as a neutral six electron donor with the negative charge localised on the oxygen atom (II).

This present X-ray investigation, which complements our previous studies on the cation $[RuH(\eta^6-C_6H_5PPh_2)(PPh_3)_2]^+$ was carried out to confirm that π -bonding of the phenoxide ring, which had not been previously crystallographically characterised, although it may occur in Rh(PPh_3)_20Ph², is occurring, and to ascertain the contributions of the two canonical forms,

Experimental

Hydridophenoxybis(triphenylphosphine)ruthenium(II) crystallises from the solution obtained by the reaction of excess phenol on RuH₂(PPh₃)₄ in toluene as a phenol solvate. Suitable crystals were obtained and the unit-cell dimensions and space group were determined from preliminary Weissenberg and oscillation photographs.

Crystal Data

 $C_{54}H_{48}O_{3}P_{2}Ru, M = 907.9$, Monoclinic

<u>a</u> = 20.331(1)Å, <u>b</u> = 9.561(1), <u>c</u> = 23.744(2)Å, β = 106.24(1)°, <u>U</u> = 4431,3Å, <u>D</u>_m = 1.36g.cm⁻³ (by flotation), <u>Z</u> = 4, <u>D</u>_c = 1.36g.cm⁻³ <u>F(000)</u> = 1880. Cu-K\alpha radiation, λ = 1.5418Å; μ (Cu-K\alpha) = 39.94cm⁻¹. Space group <u>P2</u>₁/<u>a</u> from systematic absences: hOl, h = 2n + 1; OkO, k = 2n + 1.

The needles are elongated about the <u>b</u> axis. A crystal of size ca, 0,21 X 0,27 x 0,08mm, was selected and mounted about the b axis on a Siemens off-line automatic four-circle diffractometer using Cu-Ka radiation at a take-off angle of 6° , a Ni β -filter and a Na(TL)I scintillation counter. The θ -2 θ scan technique was employed, using a 'five-value' measuring procedure. A total of 4520 independent reflections were measured (to $\theta = 50^{\circ}$), of which 294 were judged to be unobserved, i.e. I < 2.580(I). The net count of the reference reflection measured at every 50 reflections did not deteriorate significantly during the entire data collection (ca. 13 days), The data were converted to a common arbitrary scale by use of the reference reflection and Lorentz and polarisation corrections were applied. The data were corrected at a later stage for absorption effects and this was done according to the method of Busing and Levy using a 10 x 10 x 10 grid with crystal pathlengths determined by the vector analysis procedure of Coppens et al,

Solution and Refinement of the Structure

The structure was solved by Patterson and Fourier methods. All calculations were carried out using the Crystal Structure Calculations Systems "X-ray"70" and its updated version "X-ray '72" ⁵ using either the Imperial College CDC. 6400 or the University of London CDC. 6400, 6600 and 7600 computers.

A three-dimensional Patterson synthesis gave a straightforward solution for the ruthenium atom, and three cycles of least-squares gave the standard agreement factor <u>R</u> 0.45. From subsequent difference-Fourier syntheses all the remaining 59 non-hydrogen atoms were located, and anisotropic refinement gave <u>R</u> 0.082. Correction for absorption and refinement as previously gave <u>R</u> 0.051. Addition of the phenyl, phenoxy and phenolic hydrogen atoms, obtained from the latest difference-Fourier map, as a fixed-atom contribution with isotropic temperature factors of their respective parent atoms, reduced <u>R</u> to 0.035. The hydride hydrogen and one of the two phenol - OH hydrogens were also found; the hydride hydrogen was later optimised using the full procedure of La Placa and Ibers.

At this stage of refinement, after inclusion of all atoms save the one unlocatable hydrogen-bonded-hydrogen a weighting scheme of the type suggested by Hughes⁷ was used, where w = 1 for $F < F^*$, $\sqrt{w} = \frac{F^*}{F}$ for $F > F^*$, with $F^* = 85$ being the final value. The application of the weighting scheme reduced <u>R</u> to 0.029. The hydride hydrogen was at this stage redetermined and optimised; <u>R</u> remained unchanged.

Atomic scattering factors used were those of Cromer and Waber except those for hydrogen which were obtained from Stewart *et al*⁹. The correction for the effects of the real and imaginary parts of the anomalous dispersion correction for ruthenium and phosphorus 10 were made using the tabulated values after Cromer. Table 1 lists the fractional co-ordinates of the non-hydrogen atoms with their estimated standard deviations. (These are obtained from the CRYSLQ program of X-ray '70 and are thus a slight underestimate of the true deviations). Table 2 contains the coefficients in the expression for the anisotropic Debye-Waller factor:-

exp
$$[-2\pi(U_{11}a^{*2}h^{2} + U_{22}b^{*2}k^{2} + U_{33}c^{*2}l^{2} + 2U_{12}a^{*}b^{*}hk + 2U_{13}a^{*}c^{*}hl + 2U_{23}b^{*}c^{*}kl)],$$

while the unrefined co-ordinates of the hydrogen atoms are given in Table 3. The observed and the calculated structure amplitudes are listed at the end of the chapter.

Description of the Structure and Discussion

Figure 1 shows the molecular structure of the complex as well as the relative orientation of the two hydrogen-bonded phenol solvate groups. The central metal atom may be considered to have a distorted tetrahedral co-ordination, as in the structure discussed in the previous chapter, if one considers the η -bonded phenoxy ring as a single co-ordination position. The two σ -bound triphenylphosphine groups and the hydride hydrogen complete the co-ordination about the metal. The more important bond lengths and bond angles are quoted in Tables 4 and 5 respectively.

The two cis Ru-P distances $[Ru(1)-P(1) 2.314\text{\AA} \text{ and } Ru(1)-P(2) 2.303\text{\AA}]$ are similar to those in the structure of $RuH(PPh_3)_2(\eta-Ph,P,Ph_2)^+$, (A), $[Ru(1)-P(1) 2.312\text{\AA} \text{ and } 2.331\text{\AA}]$ discussed in Chapter V, and the previous comparisons made there to the values of 2.336\text{\AA} in $Ru(PyS)_2(PPh_3)_2^{14}$ and 2.346\text{\AA} in $Ru(HCS)_2(PPh_3)_2^{12}$ hold true. The P(1)-Ru(1)-P(2) angle is 97.32° (98.68° in A) and the P(1)-Ru(1)-H(1) and P(2)-Ru(1)-H(2) angles are 77° and 86° respectively.

The metal-carbon (arene) bond lengths average 2.309Å although the Ru(1)-C(71) distance is significantly longer, being 2.482Å. The mean Ru-C distance excluding C(71) and C(74) is 2.268Å which is comparable to the value of 2.269Å in the previous structure determination (A). The arene ring is markedly non-planar (Table 6) and thus two centroids of the ring were calculated, one using all the six atoms and the other using the four atoms C(72), C(73), C(75), and C(76).

The distances of ruthenium to the calculated centroids are 1,829Å and 1.789Å respectively. It is again notable that the carbon-carbon bond lengths in the arene (mean of 1.415Å) are greater than those in the unbound phenyl rings (mean of 1.384Å). These values are equivalent to those found in the previous structure (A) for which the corresponding values are 1.411Å and 1.384Å respectively. This again indicates the

Atoms are numbered in sequence around each ring in the order $C(\underline{m}1)-C(\underline{m}6)$, where \underline{m} is the number of the ring. Atoms $C(\underline{m}3)-C(\underline{m}6)$ have been omitted for the sake of clarity.

drift of the π -electron cloud towards the ruthenium atom with a consequential slight decrease in bond order around the ring. The arene ring is not planar and is boat-shaped with atom C(71) being significantly out of plane (0.185Å^O) from the plane of C(72), C(73), C(75), C(76) whilst C(74) deviates considerably less (0.052Å) from this plane.

The bond distances and bond angles around the arene ring demonstrate this bending of the phenoxy ring. C(71)-C(72) and C(71)-C(76)are longer than the other four C-C bonds within the ring, (1.438Å and 1.431Å respectively as compared to a mean of 1.406Å for the four distances) whilst the valence angles inside the ring are reduced at the apical positions $[C(72)-C(71)-C(76) = 114.4^{\circ}; C(73)-C(74)-C(75) = 117.8^{\circ}]$. The planarity of the phenyl, phenoxy and phenol rings are shown in Table 6 together with the distances of particular atoms from the best planes.

The position of the hydride hydrogen has been determined and the Ru(1)-H(1) bond length of 1.54Å is shorter than the expected value of 1.67-1.68Å as quoted in Chapter V. This hydrogen position was optimised using $\sin\theta^{-1}\lambda$ cut-off values as previously; a diffraction ripple of ca 0.4e/Å³ was situated near the hydrogen peak and may be the cause of this experimentally short value.

The mean P-C distance of 1.839Å is similar to that found in many transition metal complexes and is a very good agreement with the previously determined mean value of 1.834Å in structure A. The angular distortion at P is similar to that encountered in the structure of $\operatorname{RuH(PPh}_3)_2 (\eta-Ph,P.Ph_2)^+$, A. Mean values of 116.3° for Ru-P-C and of 101.8° for C-P-C valence angles can be compared with the corresponding values of 115.7° and 102.3° in A. A further comparison of these values with those found in $\operatorname{RuH(CO}_2\operatorname{Me})(\operatorname{PPh}_3)_3^{13}$, of 116.4° and 101.5° respectively demonstrates the similar distortions experienced at the phosphorus

atoms in these structures.

Fig. 2 shows a composite view of structure A and the title compound viewed normal to the arene ring. There is a great similarity between the two, and the alignment of P(3)-C(91) in A and C(71)-O(70)in the same direction as Ru-H in the present structure is notable and is suggestive of some weak interaction between these atoms,

The intermolecular packing is shown in the stereoscopic 14 view (fig. 3) which was drawn using the ORTEP program.

A least-squares planes calculation shows that the six phenyl and the two phenol rings are satisfactorily planar; the maximum deviation for all the planes is 0.015Å. The π -bonded phenoxy ring is distinctly non-planar as has been previously discussed. The planarity of this π -bonded arene-ring can be compared to those found in other structures. The structures of $[RuH(PPh_3)_2(n-Ph.P.Ph_2)]^+$, (A), as discussed in Chapter V; $Rh[P(OCH_3)_3]_2 B(n-Ph-BPh_3)^{15}$, (C), and $(\pi-C_5H_5)Ru(n-Ph-BPh_3)^{16}$, (D), are comparable and the results of this are of significant interest.

The least-squares planes of both the $C(\underline{m}1)-C(\underline{m}6)$ and $C(\underline{m}2)$, $C(\underline{m}3)$, $C(\underline{m}5)$, $C(\underline{m}6)$ planes have been calculated for all these structures and are tabulated in Table 7. The present structural determination has been identified as (B) in the scheme for ease of reference.

It is notable that the π -bonded arene in structures A and D are almost planar, the maximum deviations being 0.017Å and 0.011Å respectively for the planes calculated on all six atoms. B is the most distorted plane of all while plane C is in an intermediate category.

A further comparison may be drawn between the metal-arene plane distance experienced in the three ruthenium structures A, B and D. The corresponding values based on planes of all six atoms are 1.776Å, 1.826Å and 1.701Å respectively whilst the values based on the four atom plane are 1.771Å, 1.789Å and 1.690Å. The bond order in

Fig. 2

A superimposition diagram of the present structure with that presented in the previous chapter. The orientation is such that the arene ring is in the plane of the paper. The present structure is in bold style.

The mirror image of the present structural co-ordinates were used to plot the above diagram to achieve a suitable comparison with the earlier structural study. reducing strength of metal-arene bonds is D > A > B. The position of D in this respect may be accounted for if one considers that the steric factors in this structure are at a minimum with no bulky triphenylphosphines to cause intermolecular crowding. The phenoxy group experiences less delocalisation than one would encounter in a phenyl ring owing to the presence of the electron withdrawing oxygen atom and as a consequence the metal-arene bonds in B are the longest.

The two solvate phenol molecules are hydrogen-bonded to the phenoxy group, the 0-0 H-bond distances being 2.672Å and 2.736Å respectively. The hydrogen atom of the former H-bond $(O_{70} - O_{90})$ was readily locatable in the difference-Fourier synthesis but the second hydrogen atom could not be located. The fact that it is attached to the solvate molecule rather than to the π -bonded ring is demonstrated by the C-0 bond lengths. These are 1.367 and 1.363Å in the phenol molecules compared to 1.277Å in the phenoxy group. The C-0 distances in the two phenol molecules are unexceptional and may be compared to 1.36 and 1.35Å in p-Nitrophenol¹⁷ and 1.36, 1.37Å in o-Aminophenol hydrochloride. On the other hand, C=0 double bond lengths found in related aromatic systems are 1.22Å in p-Benzoquinone¹⁹ and 1.23Å in Tetrahydroxy-p-benzoquinone dihydrate.

The distance of 1.277Å found in the phenoxy group in this structure, and the marked non-planarity of the arene ring show that the resonance form I plays an important role in this molecule.

Fig. 3

A stereoscopic view of the unit-cell showing the packing in the molecules.

Table 1

Fractional co-ordinates of non-hydrogen atoms with estimated standard deviations in parentheses.

All ring carbon atoms are numbered $C(\underline{m}n)$ where \underline{m} is the ring number and \underline{n} is the atom number in the ring; \underline{n} is such that $C(\underline{m}l)$ is attached to the P or O atoms, and other ring atoms are numbered in succession such that $C(\underline{m}4)$ is <u>para</u> to $C(\underline{m}l)$. The π -bonded phenyl ring is $C(7\underline{n})$.

	x	У	Z
Ru(1)	0.20697(1)	0.18435(3)	0.23376(1)
P(1)	0.28697(5)	0.19437(10)	0.18112(4)
P(2)	0.27458(5)	0.27876(10)	0.31978(4)
C(11)	0.2473(2)	0.1411(4)	0.1045(2)
C(12)	0.2312(2)	0.2322(4)	0.0574(2)
C(13)	0.1975(3)	0.1819(6)	0.0016(2)
C(14)	0.1800(2)	0.0437(5)	-0.0072(2)
C(15)	0.1962(2)	-0.0475(5)	0.0391(2)
C(16)	0.2303(2)	0.0001(4)	0,0948(2)
C(21)	0.3630(2)	0.0824(4)	0.1967(2)
C(22)	0.3829(2)	0.0005(4)	0.2470(2)
C(23)	0.4412(2)	-0.0821(5)	0.2579(2)
C(24)	0.4796(2)	-0.0844(5)	0.2180(2)
C(25)	0.4593(2)	-0.0073(5)	0.1673(2)
C(26)	0.4014(2)	0,0755(5)	0.1562(2)
C(31)	0.3201(2)	0,3694(4)	0,1736(2)
C(32)	0.3885(2)	0.4041(5)	0.1815(2)
C(33)	0.4071 (3)	0.5426(6)	0.1751(2)
C(34)	0.3587(3)	0.6454(5)	0.1613(2)
C(35)	0.2908(3)	0.6139(5)	0.1530(2)
C(36)	0.2720(2)	0.4766(4)	0.1603(2)
C(41)	0.2384(2)	0.2372(4)	0,3811(2)
C(42)	0.2201(2)	0.1001(4)	0,3888(2)
C(43)	0.1919(2)	0.0646(5)	0.4337(2)
C(44)	0.1811(3)	0.1663(6)	0.4708(2)
C(45)	0.1981(3)	0.3019(6)	0.4639(2)

ուսությունությունը է հերջությունը է ու ու որ են երջությունը ու որդերում է։ Հրուսներ ֆանսութանի առերադատերությու Հրու

C(46)	0.2271(2)	0.3384(5)	0.4193(2)
C(51)	0,2850(2)	0.4699(4)	0.3260(2)
C(52)	0.3354(2)	0.5312(4)	0.3717(2)
C(53)	0.3425(2)	0.6759(5)	0.3751(2)
C(54)	0.2995(3)	0.7588(5)	0.3330(2)
C(55)	0.2494(3)	0.7009(5)	0.2885(2)
C(56)	0.2426(2)	0.5573(4)	0.2849(2)
C(61)	0.3642(2)	0.2229(4)	0.3489(2)
C(62)	0.4151(2)	0.2889(5)	0.3301(2)
C(63)	0.4826(2)	0.2468(6)	0.3496(2)
C(64)	0.5002(2)	0.1344(7)	0.3873(3)
C(65)	0.4510(3)	0.0672(5)	0.4062(2)
C(66)	0.3830(2)	0.1109(5)	0.3873(2)
0(70)	0.0897(1)	-0.0938(3)	0.2219(1)
C(71)	0.1035(2)	0.0342(5)	0,2149(2)
C(72)	0.1101(2)	0.1366(5)	0.2605(2)
C(73)	0.1128(2)	0.2807(4)	0,2493(2)
C(74)	0.1155(2)	0.3297(5)	0.1943(2)
C(75)	0.1209(2)	0.2309(5)	0.1524(2)
C(76)	0.1185(2)	0.0858(4)	0.1633(2)
0(80)	0.0211(2)	-0.0933(5)	0.3060(2)
C(81)	0.0544(2)	-0.1620(5)	0.3564(2)
C(82)	0.0295(3)	-0.1373(7)	0.4043(3)
C(83)	0.0616(3)	-0,2051(8)	0.4565(3)
C(84)	0.1157(4)	-0.2898(7)	0.4596(3)
C(85)	0.1378(4)	-0.3094(6)	0.4101(3)
C(86)	0.1074(3)	-0.2456(6)	0.3580(3)
0 (90)	0.1120(2)	-0.3024(3)	0.1547(1)
C(91)	0.0819(2)	-0.2964(5)	0.0957(2)
C(92)	0.1046(3)	-0.3889(5)	0.0604(2)
C(93)	0.0771(3)	-0.3862(6)	0.0007(2)
C(94)	0.0275(3)	-0.2922(7)	-0.0251(2)
C(95)	0.0036(3)	-0.2008(6)	0.0096(3)
C(96)	0.0302(2)	-0.2029(5)	0.0706(2)

Table 2

Anisotropic thermal parameters.

ATOM	<u>U</u> 11x10 ⁴	$\underline{v}_{22} \times 10^4$	<u>U</u> 33x10 ⁴	$\underline{U}_{12} \times 10^4$	<u>U</u> 13 ^{x10⁴}	<u>U</u> 23 ^{x10⁴}
Ru (1)	248(2)	296(2)	293(2)	2(1)	93(1)	12(1)
P(1)	296(5)	304(6)	302(5)	9(4)	101(4)	30(4)
P(2)	335(6)	298(6)	327(6)	-12(4)	120(4)	~ 9(4)
	$\underline{v}_{11}^{1} \times 10^{3}$	$\underline{v}_{22} \times 10^3$	<u>U</u> 33 ^{x10³}	$\underline{v}_{12} \times 10^3$	$\underline{\mathbf{U}}_{13} \mathbf{x} 10^3$	<u>U</u> 23 ^{x10³}
C(11)	33(2)	36(2)	27(2)	-3(2)	12(2)	-5(2)
C(12)	52(3)	43(3)	33(3)	-3(2)	11(2)	5(2)
C(13)	77(3)	69(4)	31(3)	-7(3)	9(2)	7(3)
C(14)	64(3)	72(4)	37(3)	-16(3)	14(2)	-16(2)
C(15)	62(3)	46(3)	55(3)	-11(2)	25(2)	-15(2)
C(16)	49(3)	38(2)	40(3)	-1(2)	18(2)	-3(2)
C(21)	29(2)	32(2)	35(2)	0(2)	11(2)	-2(2)
C(22)	42(2)	34(2)	38(2)	4(2)	11(2)	-2(2)
C(23)	49(3)	43(3)	45(3)	15(2)	5(2)	2(2)
C(24)	33(2)	46(3)	69(3)	8(2)	10(2)	-10(3)
C(25)	37(2)	55(3)	58 (3)	5(2)	24(2)	-3(3)
C(26)	39(2)	53(3)	46(3)	3(2)	21(2)	6(2)
C(31)	39(2)	34(2)	27 (2)	-5(2)	11(2)	1(2)
C(32)	41(3)	55 (3)	41(3)	-13(2)	7(2)	6(2)
C(33)	54(3)	73(4)	47(3)	-35(3)	3(2)	5(3)
C(34)	83(4)	43(3)	43(3)	-21(3)	11(3)	1(2)
C(35)	76(4)	35(3)	58 (3)	-4(3)	25(3)	1(2)
C(36)	52(3)	33(3)	50(3)	-5(2)	23(2)	1(2)
C(41)	29(2)	39(2)	31(2)	-1(2)	10(2)	3(2)
C(42)	45(2)	41(3)	36(2)	-5(2)	11(2)	2(2)
C(43)	53(3)	54(3)	45(3)	-16(2)	9(2)	9(3)
C(44)	60(3)	89(4)	43(3)	-17(3)	25(2)	4(3)
C(45)	71(3)	74(4)	52(3)	-9(3)	37(3)	-13(3)
C(46)	53(3)	48(3)	47(3)	-4(2)	24(2)	-6(2)
C(51)	39(2)	30(2)	41(2)	-5(2)	17(2)	-4(2)
C(52)	50(3)	39(3)	51(3)	-5(2)	13(2)	-5(2)
C(53)	63(3)	43(3)	61(3)	-15(2)	27(3)	-15(3)
C(54)	85(4)	29(2)	63(3)	-2(3)	39(3)	2(3)

C(55)	78(3)	35(3)	56(3)	4(3)	19(3)	5(2)
C(56)	58(3)	36(2)	45(3)	0(2)	12(2)	2(2)
C(61)	34(2)	37(2)	28(2)	-3(2)	8(2)	-8(2)
C(62)	41(3)	52(3)	51(3)	-3(2)	18(2)	-7(2)
C(63)	39(3)	80(4)	76(4)	-5(3)	24(3)	-11(3)
C(64)	37(3)	93(4)	84(4)	13(3)	7(3)	-18(4)
C(65)	55(3)	62(3)	57(3)	17(3)	1(3)	-1(3)
C(66)	41(3)	48(3)	41(2)	3(2)	4(2)	-6(2)
0(70)	48(2)	50(2)	47(2)	-18(1)	15(1)	-1(1)
C(71)	22(2)	51(3)	35(2)	-8(2)	8(2)	1(2)
C(72)	25(2)	58(3)	39(2)	-3(2)	16(2)	2(2)
C(73)	26(2)	49(3)	57(3)	7(2)	18(2)	-4(2)
C(74)	29(2)	45(3)	62(3)	11(2)	9(2)	10 (3)
C(75)	23(2)	60(3)	36(2)	3(2)	2(2)	12(2)
C(76)	27(2)	50(3)	35(2)	-6(2)	6(2)	-2(2)
0(80)	80(3)	109(3)	96(3)	-7(2)	23(2)	11(3)
C(81)	56(3)	74(3)	42(3)	-29(3)	-5(3)	26(3)
C(82)	58(3)	106(5)	89(5)	-12(3)	23(3)	17(4)
C(83)	103(5)	150(6)	65(4)	-56(5)	29(4)	0(4)
C(84)	122(6)	102(5)	75(4)	-35(4)	-7(4)	39(4)
C(85)	108(5)	66(4)	106(5)	17(4)	4(4)	13(4)
C(86)	66(3)	54(3)	88(4)	8(3)	0(3)	4(3)
0(90)	85(2)	59(2)	48(2)	4(2)	15(2)	3(2)
C(91)	51(3)	48(3)	49(3)	-11(2)	14(2)	2(2)
C(92)	68(3)	52(3)	58 (3)	6(3)	16(3)	1(3)
C(93)	75(4)	79(4)	57(4)	6(3)	14(3)	-10(3)
C(94)	75(4)	99(5)	53 (3)	10(4)	-1(3)	-8(3)
C(95)	58(3)	88(4)	74(4)	14(3)	-9(3)	-2(3)
C(96)	46(3)	63(3)	67(3)	-2(3)	14(3)	-11(3)

<u>Table 3</u>

Fractional co-ordinates of the hydrogen atoms. Except for H(1), H(900), these are numbered according to the carbon atom to which they are attached.

	x	У	Z
H(1)	0.249	0.049	0.252
H(900)	0.100	-0.200	0.174
H(12)	0.245	0.337	0.064
H(13)	0.185	0.249	-0.033
H(14)	0.155	0.008	-0.049
H(15)	0.183	-0.151	0.032
H(16)	0.242	-0.070	0.130
H(22)	0.354	0.002	0.276
H(23)	0.456	-0.143	0.296
H(24)	0.524	-0.144	0.227
H(25)	0.487	-0.013	0.137
H(26)	0.387	0.135	0.118
H(32)	0.425	0.326	0.192
H(32)	0.458	0.570	0.181
H(34)	0.373	0.747	0.157
H(35)	0.255	0.692	0.142
H(36)	0.221	0.453	0.156
H(42)	0.228	0.022	0.361
H(43)	0.179	-0.038	0.439
H(44)	0.159	0.140	0.504
H(45)	0.191	0.377	0.493
H(46)	0.239	0.442	0.414
H(52)	0.368	0.469	0,403
H(53)	0.380	0.721	0.409
H(54)	0.305	0.866	0.335
H(55)	0.217	0.766	0.258
H(56)	0.205	0.515	. 0.251
H(62)	0.402	0.371	0.301
H(63)	0.520	0.299	0.336
H(64)	0.551	0.102	0.402
H(65)	0.464	-0.018	0.435
H(66)	0.346	0.059	0.402
H(72)	0.113	0.105	0.303
H(73)	0.113	0,351	0.282

1	7	7
---	---	---

H(74)	0.114	0.436	0.186	
H(75)	0.126	0.264	0.113	
H(76)	0.128	0.015	0.133	
H(82)	-0.013	-0.071	0.400	
H(83)	0.042	-0.181	0.493	
H(84)	0.139	-0.346	0.498	
H(85)	0.183	-0.373	0.416	
H(86)	0.123	-0.259	0.319	
H(92)	0.144	-0.461	0.080	
H(93)	0.096	-0.452	-0.028	
H(94)	0.006	-0.290	-0.070	
H(95)	-0.035	-0.126	-0.011	
н(96)	0.012	-0.132	0.098	

• · · ·

.

.

,

• •

Table 4

Selected bond	lengths (Å) with	n estimated standard dev	viations
in parentheses.			
Ru(1) - P(1)	2.314(1)	Ru(1) - C(71)	2.482(4)
Ru(1) - P(2)	2.303(1)	Ru(1) - C(72)	2.279(4)
Ru(1) - H(1)	1.54	Ru(1) - C(73)	2.246(4)
$Ru(1) - C_{C+}$	1.829(4)	Ru(1) - C(74)	2,301(4)
Ru(1) - $C_{c*}^{0.71-76}$	1.789(4)	Ru(1) - C(75)	2.258(3)
01		Ru(1) - C(76)	2.289(3)
Mean Ru(1) - C	2.309(4)	excluding C(71), C(74)	2.268(4)
where C	is the centre	of gravity of the π -bo	onded phenyl
ring and C_{c+} is the cen	-76 tre of gravity c	of atoms C(72), C(73), (C(75) and
C(76) only.			
P(1) - C(11)	1.844(4)	P(2) - C(41)	1.849(4)
P(1) - C(21)	1.832(4)	P(2) - C(51)	1.841(4)
P(1) - C(31)	1.831(4)	P(2) - C(61)	1.837(4)
М	ean P - C	1.839(4)	
Mean phenyl C - C l	bonds :-		
Ring		Ring	
C(1 <u>n</u>)	1.383	C(4 <u>n</u>)	1.382
C(2 <u>n</u>)	1.386	C(5 <u>n</u>)	1,383
C(3 <u>n</u>)	1.384	C(6 <u>n</u>)	1.383
М	ean C - C	1,384	
Mean phenol and ph	enoxy C - C bond	ls :-	
	Ring		
	C(7 <u>n</u>)	1.415	•
	C(8 <u>n</u>)	1.385	1 000
	C(9 <u>n</u>)	1.379 / ^{mean}	1.382
π -bonded ring C(7n), individual va	lues :-	
C(71) - C(72)	1.438(6)	C(74) - C(75)	1.398(6)
C(72) - C(73)	1.407(6)	C(75) - C(76)	1.414(6)
C(73) - C(74)	1.403(7)	C(76) - C(71)	1.431(6)

Table 4 (continued)

14 N - 4

Phenol and phenoxy C - O bonds :-

C(71) - O(70)	1.277(5)
C(81) - O(80)	1,367(6)
C(91) - O(90)	1.363(5)

Hydrogen bonds :-

- -----

- -

0(70)	H(900) - 0(90)	2.672(5)
0(70)	H(800) - 0(80)	2,736(4)

 \cap

Table 5

Selected bond angles (⁰), with estimated standard deviations in parentheses. (Atom nomenclature as for table 4).

$$P(1) - Ru(1) - P(2) 97.32(4)$$

$$P(1) - Ru(1) - H(1) 77.$$

$$P(2) - Ru(1) - H(1) 86.$$

$$P(1) - Ru(1) - C_{C*} 128.3(1)$$

$$P(1) - Ru(1) - C_{C*} 128.3(1)$$

$$P(2) - Ru(1) - C_{C*} 128.8(1)$$

$$H(1) - Ru(1) \div C_{C*} 122.$$

$$H(1) - Ru(1) - C_{C*} 122.$$

Ru(1) - P(1) - C(11)	110.01(13)
Ru(1) - P(1) - C(21)	123.22(14)
Ru(1) - P(1) - C(31)	115.09(14)
Ru(1) - P(2) - C(41)	110.12(11)
Ru(1) - P(2) - C(51)	119.16(12)
Ru(1) - P(2) - C(61)	120,17(13)
Mean Ru(1) - P - C [rings (1 <u>n</u>) - (6 <u>n</u>)]	116.30(13)

C(11) - P(1) - C	(21)	98.6(2)
C(11) - P(1) - C	(31)	103.1(2)
C(21) - P(1) - C	(31)	104.0(2)
C(41) - P(2) - C	(51)	102.2(2)
C(41) - P(2) - C	(61)	102.2(2)
C(51) - P(2) - C	(61)	100.3(2)
Mean C - P - C [rings $(1n) - (6n)$]]	101.8(2)

 π -bonded ring $(7\underline{n}):-$

0(70) - C(71) - C(72)	122.2	C(72) - C(73) - C(74)	121,2(4)
0(70) - C(71) - C(76)	123,4(4)	C(73) - C(74) - C(75)	117,8(4)
C(72) - C(71) - C(76)	114.4(4)	C(74) - C(75) - C(76)	121.4(4)
C(71) - C(72) - C(73)	121.6(4)	C(75) - C(76) - C(71)	121.4(4)
Table 6

Planarity of groups of atoms in the molecule and distances (Å) from calculated least-squares planes. Equations of the planes are expressed as Px + Qy + Rz = S in direct space.

ï_

				Deviations (A) of atoms from plane
				Atoms defining plane Not defining plane plane
<u>P</u>	<u>Q</u>	R	<u>s</u>	
18.98	-0,50	1.88	2.45	C(71)-0.099; C(72) 0.060; C(73) 0.018 0(70)-0.283 C(74)-0.058; C(75) 0.016; C(76) 0.063 Ru(1) 1.826
19.05	-0.21	1.73	2.52	C(72)-0.001; C(73) 0.001 C(75)-0.001; C(76) 0.001 C(74)-0.052 Ru(1) 1.789
19.67	-1.77	-10.34	3.54	C(11)-0.008; C(12) 0.002; C(13) 0.004 P(1)-0.115 C(14)-0.004; C(15)-0.002; C(16) 0.008
8.97	7.30	7,83	5,38	C(21) 0.015; C(22)-0.010; C(23)-0.004 P(1) 0.027 C(24) 0.011; C(25)-0.005; C(26)-0.008
-3 .37	1.54	23.28	3.54	C(31)-0.007; C(32) 0.001; C(33)-0.009 P(1) 0.011 C(34) 0.002; C(35) 0.002; C(36) 0.012
15.74	-1.56	8.81	6.73	C(41) 0.002; C(42)-0.005; C(43) 0.003 P(2)-0.034 C(44) 0.001; C(45)-0.004; C(46) 0.002
-16.87	0.39	18.19	1.31	C(51)-0.003; C(52) 0.003; C(53) 0.002 P(2)-0.016 C(54)-0.006; C(55) 0.006; C(56)-0.001
-1.26	5,99	18.12	7.20	C(61) 0.002; C(62)-0.007; C(63) 0.008 P(2)-0.078 C(64)-0.004; C(65)-0.002; C(66) 0.003
11.62	7.41	2.32	0.26	C(81)-0.001; C(82) 0.004; C(83)-0.005 0(80) 0.004 C(84) 0.003; C(85)-0.000; C(86)-0.001
15.12	6.36	-6.57	-1.29	C(91) 0.012; C(92) -0.002; C(93) -0.009 0(90) 0.041 C(94) 0.009; C(95) 0.001; C(96) -0.011

Table 7

Planarity of the π -bonded arene six-membered rings of related named structures and distances (Å) from calculated least-squares planes. Equations of the planes are expressed as $\underline{Px} + \underline{Qy} + \underline{Rz} = \underline{S}$.

- A Structure of $[RuH(PPh_3)_2(\eta-PhPPh_2)]^+$
- B Structure of [RuH(PPh₃)₂(η-PhO)].(PhOH)₂
- C Structure of $Rh[P(OCH_3)_3]_2$ (n-Ph-BPh₃)
- D Structure of $(\pi C_5H_5) \operatorname{Ru}(\eta \operatorname{Ph-BPh}_3)$

Deviations (Å) of atoms from plane

Atoms defining plane Not defining plane

	<u>P</u>	<u>Q</u>	<u>R</u>	5				
A(i)	3.86	8.27	11.88	6.96	C(91) 0.006; C(94) 0.016;	C(92) 0.006; C(95)-0.003;	C(93)-0.017 C(96)-0.007	P(3) 0.085 Ru(1)-1.776
A(ii)	3.76	8.32	11.86	6.94	C(92) 0.007; C(95) 0.007;	C(93)-0.007 C(96)-0.007		C(91) 0.002 C(94) 0.031 P(3) 0.068
						•••		Ru(1)-1.771
B(i)	18.98	-0.50	1.88	2.45	C(71)-0.099; C(74)-0.058;	C(72) 0.060; C(75) 0.016;	C(73) 0.018 C(76) 0.063	0(70)-0.283 Ru(1) 1.826
B(ii)	19.05	-0.21	1.73	2.52	C(72)-0.001;	C(73) 0.001		C(71)-0.185 O(70)-0.409
					C(75)-0.001;	C(76) 0.001		C(74)-0.052 Ru(1) 1.789
C(i)	11.57	5.83	-0.03	12.37	C(51) 0.056; C(54) 0.046;	C(52)-0.039; C(55)-0.027;	C(53)-0.013 C(56)-0.023	Rh(1)-1.867 B(1) 0.372
C(ii)	11.52	5.91	-0.03	12.32	C(52)-0.007;	C(53) 0.007		C(51) 0.093 C(54) 0.060
					C(55)-0.007;	C(56) 0.007		B(1) 0.422 Rh(1)-1.841
D(i)	2.03	-4.56	13.08	6.60	C(41) 0.010; C(44) 0.010;	C(42)-0.011; C(45)-0.010;	C(43) 0.001 C(46) 0.000	Ru(1)-1.701 B(1) 0.135
D(ii)	2.03	-4.85	13.08	6.59	C(42)-0.005;	C(43) 0.005		C(41) 0.017 C(44) 0.015
					C(45)-0.005;	C(46) 0.005		Ru(1)-1.69 B(1) 0.141
	Angl	es betw	een pla	nes;	A(i) - A(ii)	0.4		
					B(i) - B(ii)	1.81		
					C(i) - C(ii)	0,45 ⁰		
					D(i) - D(ii)	0.00		

CHAPTER VI

Comparison of observed and calculated structure amplitudes

The data are listed in groups of constant <u>k</u> and <u>l</u> and list values of <u>h</u>, $10|F_0|$ and $10|F_c|$. Reflections marked "*" were classified as unobserved.

	H,0,-23		4	686	668	6	1297	1305	4	1612	1628		H,0,-2	
2	Cac	e • 0		218	137		207	227	6	2467	2410	_		
2	295	200		299	298	10	230	216	8	2541	2575	2	2033	1965
2	205	200	10	712	500	12	13/8	1385	10	1946	1982	4	342	290
0	329	317	12	290	299	17	943	930	12	965	986	5	670	599
0	110	152	14	101	404	10	1260	1254	14	916	936		962	950
	H. 0		10	102	10-4	10	922	993	10	110	123	10	1242	1254
	1101-22			H+016			H.O11		20	539	500	12	1438	1420
2	364	333		H101-10					20	228	520	19	612	609
4	98	99	2	814	788	2	600	602		H.O6		10	141	154
6	408	441	4	1051	1029	4	661	657				10	474	1.77
ē	922	922	6	983	961	6	372	375	2	199	225		H-0-1	
10	758	750	8	853	844	8	183	245	4	1205	1142			
12	451	425	10	309	311	10	1164	1143	6	1390	1340	2	679	647
			12	59×	33	12	685	688	8	1374	1389	4	334	334
	H,0,-21		14	468	521	14	225	228	10	312	289	6	462	452
			16	740	757	16	473	468	12	167	188	8	1200	1173
2	1047	1021	18	837	853	18	297	295	14	242	264	10	1063	1053
-4	519	505							16	98	142	12	722	721
6	73	102		H,0,-15			H,0,-10		18	297	287	14	749	751
8	454	436	_			-			20	365	372	16	303	293
10	825	810	2	1460	1444	2	1209	1216				18	579	567
12	559	554	4	601	601	4	292	332		H,0,-5				
			6	128	116	6	690	/16	-				H+0+0	
	H+U+-20			305	323	8	94	107	2	3199	3194	-		
2	502	670	10	420	403	10	943	930	4	3361	3552	2	2786	2050
2	293	570	12	346	353	12	1188	11/6	6	3279	3355	4	845	850
2	100	044	15	104	104	14	777	700	10	29/0	1903		701	1044
2	700	785	10	127	26	10	1010	1030	10	1002	767		7179	2157
10	555	550	10	0.5~	20	10	1015	1050	14	368	337	10	1778	1767
12	495	469		H.O14			H.D9		16	520	530	14	475	471
14	249	259		1101-1					18	752	752	16	633	506
• •			2	1391	1338	2	228	219	20	651	630	18	300	306
	H,0,-19		4	934	943	4	272	242						
			6	1255	1245	6	1035	1020		H.O4			H.O.1	
2	203	224	8	819	803	8	2749	2792		_				
4	487	469	10	55×	45	10	1434	1462	2	1081	1095	0	467	404
6	310	315	12	638	626	12	380	397	4	1463	1418	2	597	529
8	464	437	14	1030	1017	14	138	138	6	111	141	4	107	185
10	565	560	16	1213	1203	16	110	103	8	692	656	6	729	733
12	750	748	18	890	912	18	941	941	10	1462	1481	8	1493	1456
14	771	779				20	627	640	12	735	769	10	230	203
16	403,	423		H,0,-13					14	680	676	12	840	817
			_				H+O+-8		16	189	212	14	572	558
	H,0,-18		2	1444	1412	_			18	218	226	16	430	412
~			4	297	316	2	1246	1234	20	289	293	18	317	304
2	238	240	5	538	490	4	120	189						
4	364	5/2		331	321		802	794		H+0+-3			HIUIZ	
8	094	540	10	900	404	.8	208	700	2	E 77	515	•	2107	2241
ŝ	505	604	14	340	306	10	20	243	Ž A	201	2727	2	1055	130-11
10	244	227	16	587	320	14	568	590	ب ع	683	693	2 4	1099	107
14	63#	45	10	120	135	19	737	734	8	665	674	- -	2145	2028
16	317	324	10	100	100	20	212	231	រព័	797	805	8	173	213
	~	I		H.D12		-0			12	368	356	10	1393	1388
	H+0+-17						H.O7		14	580	595	12	1415	1375
			2	1506	1465				16	564	566			
2	938	935	4	998	983	2	955	905	18	824	836			
-						-								

									,					
	H,0,2		4	1508	1494	10	846	851	2	501	519		H,1,-20	
			6	1805	1773	12	277	288	4	281	288			
19	652	643	8	1332	1302				6	219	217	1	594	609
10	500	558	10	383	379		H.O.13					2	347	335
18	307	314	12	80	108	_				H,0,20		3	755	767
			14	243	244	0	1812	1835				4	133	138
	H+U+3		16	842	843	2	174	247	. 0	335	342	5	287	311
~	0.05	202				4	579	583	2	574	587	6	111	125
5	235	290		H+U+8		5	341	333	4	946	981	7	64	75
2	1080	1101	~			8	687	682				8	466	-467
e e	554	506	2	290	264	10	955	926		H,0,21		9	251	237
ě.	471	457	4	307	1007	74	5/3	553	-			10	748	715
10	703	703	6	1518	1477		U. 0 14		u u	5/6	296	11	432	418
12	1276	1251	Ř	1058	1051		H10114		2	014	84/	12	/41	/18
14	485	482	10	135	180	0	860	884		u.n.22		13	7/3	409
16	613	603	12	73	101	ž	167	174		110122		14	000	034
18	725	705	14	163	168	4	209	210	•	405	400		4.1.10	
			15	523	498	ธ่	531	632		-30	-130		H111-13	
	H,0,4					ě	781	772		H.123		1	50	60
				H1018		10	574	550				2	289	328
٥	163	220				12	376	371	2	425	402	3	122	133
2	121	170	0	254	309				3	302	320	4	86	91
4	454	467	2	1206	1238		H,0,15		4	47*	37	5	51*	59
6	403	403	4	1607	1631				5	110	114	6	255	260
8	1929	1951	6	694	689	0	666	923	6	312	301	7	239	244
10	1347	1317	8	255	258	2	320	342	7	233	227	8	868	852
12	695	679	10	389	392	4	244	258	8	453	429	9	161	155
14	192	183	12	226	234	6	79	79	9	68	79	10	367	341
10	274	5/	14	1034	1011	8	777	779				11	161	155
10	199	130				10	662	640		H,1,-22		12	237	231
	U.O.5			H*0*10								13	52*	28
	HIUIS		•	673	505		H,U, 15		1	134	145	14	149	145
0	3166	3121	ŭ	514	000	~	70*	- 0	2	339	350	15	102	103
ž	2669	2546	4	1615	1521	ų,	104	50	3	344	339			
4	1720	1714	5	609	513	2	574	510	4	472	426		H,1,-18	
5	1334	1359	Ř	861	842	Ē	849	910	2	154	162	•	945	
8	1299	1283	10	432	447	ĕ	625	640	2	67	102		515	504
10	367	373	12	462	451	10	365	339	Ŕ	373	367	2	121	720
12	868	855	14	365	352	-0	005	000	ă	51x	40	4	300	404
14	405	395			052		H+0+17		10	436	418	5	152	167
16	731	733		H.0,11					11	88	'ân	6	52	20
						0	856	905	12	692	692	7	80	92
	H,0,6		0	357	397	ž	280	294				B	719	721
			2	842	870	4	114	115		H.121		9	73	111
0	936	685	4	950	975	6	278	249				10	548	534
2	717	672	6	71	102	8	822	821	1	57	38	11	172	166
4	448	410	8	191	203				2	239	246	12	698	688
6	636	644	10	395	362		H, O, 18		3	49*	19	13	511	508
.8	1560	1531	12	810	799				4	68	77	14	797	815
10	295	330	14	/69	743	0	549	592	5	404	409	15	526	534
12	4/5	454				2	526	540	6	679	672	15	517	51 6
177	155	5/		H,U,12		4	707	706	7	476	459			
10	190	140	•	1463	1.405	ō	854	863	8	705	685		H, 1,-17	
	H.O.7		0	1405	1495	8	260	263	.9	190	188	-		-
			4	730	7/5		N.0 10		10	219	702	1	48*	55
n	502	485	5	576	575		H+0+19		12	210	412	2	225	261
ž	1356	1370	Ă	735	721	n	202	234	13	70	712			
							eve	201						

•

	H,1,-17			H,1,-14		16	55×	51	10	304	300	2	449	425
2	179	170	•	205	200	17	50*	38	11	346	320	3	6/9 71	654
4	687	658	2	390	988	10	29 50¥	55	12	1090	1022	7	300	243
5	87	90	3	96	93	19	20-	50	14	749	763	5	1029	1076
6	1087	1065	4	1091	1055		H-1-11		15	47*	80	7	211	202
7	53*	92	5	197	198				16	567	584	Á	1533	1528
8	861	849	ē	383	383	1	72	80	17	264	262	g	401	424
9	90	93	7	69	71	ž	868	885	18	274	279	10	1391	1414
10	187	177	8	221	199	3	111	138	19	372	359	11	498	502
11	193	186	9	475	456	4	956	96 6				12	966	967
12	54×	67	10	449	451	5	293	315		H,1,-8		13	327	320
13	383	404	11	673	666	6	1105	1082				14	558	566
14	240	228	12	481	476	7	450	468	1	1252	1223	15	160	172
15	312	302	13	363	352	8	771	788	2	136	140	16	314	317
10		4/0	14	192	183	a	312	325	3	131	108	17	502	506
17	524	63	15	205	200	10	180	107	2	824	/96	18	212	517
	¥-116		17	90 53¥	70	13	185	192	5	1973	1991	19	734	716
	M111-10		18	93~	107	13	170	150	7	269	2601	20	734	100
1	379	376	10	30	10,	14	905	914	á	1248	1259		H.15	
ź	699	690		H:1:-13		15	165	171	ğ	118	147			
3	538	540				16	1010	1033	10	1127	1179	1	1347	1277
4	964	973	1	320	331	17	574	582	11	250	231	2	1784	1696
5	47*	32	2	1232	1241	18	611	622	12	665	692	3	1304	1295
6	178	180	3	784	774	19	143	158	13	44*	33	4	754	770
7	96	104	4	1843	1829				14	375	380	5	67	56
8	339	334	5	964	953		H+1+-10		15	111	105	6	386	393
9	77	73	6	1543	1515		_	_	16	261	257	7	35*	7
10	404	426	7	471	471	1	693	675	17	386	388	8	194	195
11	321	305	8	432	453	2	69	109	18	800	803	9	825	833
12	644	638		615	613	3	586	562	19	334	323	10	376	393
13	368	361	10	45*	40	4	305	318	20	741	/3/	11	331	907
15	205	224	12	204	709	2	220	400		4.1.27		12	414	410
15	300	201	13		300	27	318	318		HI1)-/		14	132	161
17	51*	23	14	726	728	Á	983	969	1	1552	1409	15	276	268
			15	79	72	ă	384	362	2	194	201	16	243	242
	H.115		16	1187	1206	10	505	529	3	166	236	17	190	186
			17	360	356	11	520	492	4	1122	1097	18	49×	20
1	513	503	18	870	895	12	632	652	5	334	287	19	108	102
2	1082	1061	19	150	152	13	232	258	6	963	939	20	449	432
3	1030	995				14	266	256	7	1649	1620			
-4	1036	1004		H.112		15	314	308	8	555	506		H,1,-4	
5	400	393				16	52*	65	.9	304	300			
6	1121	1098	1	298	297	17	294	305	10	358	373	1	391	412
7	312	316	2	1016	989	18	406	406	11	282	2/4	2	551	244
8	/18	/12	3	549	503	19	325	221	12	459	70	د ام	547	507
10	140	101	2	419	300		<i>U</i> . 1		10	102	202	5	79	907
11	74	84	a l	397	352		m,1,-9		15	118	131	Ā	1388	1425
12	48*	61	ž	428	66	1	794	789	16	60	116	7	364	360
13	302	292	â	870	843	2	204	163	17	370	373	8	1751	1785
14	420	415	9	763	772	3	58	101	18	235	216	9	513	531
15	269	273	10	651	654	4	1568	1564	19	371	371	10	1389	1392
16	807	807	11	512	497	5	471	471	20	321	316	11	259	277
17	75	79	12	235	248	6	683	656				12	191	187
18	798	789	13	142	156	7	1242	1250		H+1+-6		13	171	171
			14	80	94	8	352	356	-			14	531	528
			15	59	48	9	85	60	1	1384	1312	15	109	110

	H,1,-4		8	81	118	0	159	160	16	427	421	12	338	328
16	612	614	10	997	1014	2	1461	700	17	410	388	13	258	257
17	180	182	11	822	837	3	939	890	10	515	920	15	51%	77
18	600	590	12	1101	1109	4	858	817		H.1.5		16	425	413
19	421	416	13	425	421	5	475	414						
	H.1		14	1048	1040	6	175	194	o,	496	512		H.1.8	
	n,1,-J		16	328	228	á	937	913		1535	1463	~	~.~	
1	363	292	17	149	145	â	738	737	3	634	615	1	510	820
2	1151	1159	18	230	228	10	339	332	4	370	358	2	2331	2337
3	541	483	19	167	158	11	57	72	5	75	57	3	1086	1104
4	1362	1372				12	847	853	6	963	945	4	1698	1701
6	33*	0001		H+1+0		13	45*	51	7	665	656	5	639	647
7	325	313	1	385	375	15	228	220		467	1353	5	872	477
8	807	827	ž	426	395	16	494	466	10	1035	1026	é	769	764
9	271	301	3	1777	1774	17	374	366	11	88	99	Š	100	95
10	541	570	4	3005	3040	18	540	536	12	775	782	10	268	268
11	652	657	5	1688	1676				13	49×	53	11	140	159
13	1269	1283	5	953	923		H+1+3		14	340	330	12	259	233
14	603	502	Ŕ	726	725	0	1708	1641	15	1/4	183	13	55	72 5 1 A
15	484	473	ğ	454	458	1	541	583	17	75	79	15	250	243
16	606	616	10	50	37	ź	346	337	• *			16	394	381
17	48×	28	11	306	294	3	683	889		H,1,6				
18	69	64	12	206	213	4	598	586	_				H.1.9	
19	-68	67	13	45*	41	5	253	298	0	1368	1339	-		
	H.12		14	493	68	7	J/2	388	1	1/0	193	0	293	279
			16	392	373	á	680	677	3	305	333	2	283	200
1	125	75	17	273	259	ē	585	564	4	1573	1583	3	341	325
2	518	524	18	431	411	10	1665	1647	5	755	767	4	942	935
3	408	450	19	145	151	11	235	238	6	1543	1540	5	260	263
4	114	156				12	1048	1060	7	558	562	6	1330	1350
2	490	5/6		H+T+T		13	230	230	3	1504	1468		283	292
7	501	458	D	2710	2688	15	266	278	10	444	436	ä	564	559
8	564	586	ī	848	809	16	318	293	11	387	383	10	520	511
9	515	563	2	2263	2283	17	179	179	12	346	338	11	216	207
10	425	428	3	1370	1320	18	153	162	13	395	383	12	211	223
11	239	243	4	1203	1141				14	480	465	13	57	_ 39
12	42*	10	2	924	295		H1114		15	3/4	366	14	221	510
14	816	822	7	382	377	n	1289	1194	17	435	420	19	190	194
15	147	162	Ś	119	147	ĭ	570	551	• •		,20		H+1,10	
16	657	652	9	322	336	2	2456	2432		H+1+7				
17	269	263	10	1765	1755	3	68	108	_			0	851	868
18	540	519	11	878	880	4	1022	1051	, o	181	181	1	628	624
19	374	363	12	1936	1532	5	443 666	655	2	330	308	2	335	350
	H. 1 1		14	033	654	ž	268	290	3	127	121	4	1054	1076
			15	49	48	Ś	306	309	4	650	647	5	183	188
1	647	653	16	400	394	9	41*	22	5	560	542	6	890	894
2	2701	2810	17	155	167	10	333	323	6	801	813	7	133	103
3	480	505	18	349	357	11	628	617	7	144	161	8	164	160
4	459	1001	19	110	101	12	506	3/3	9	218	228	9 10	135	200
, F	114	36		H.1.2		14	683	678	10	601	593	11	54	57
ž	336	357				15	395	385	11	369	362			

	H,1,10		0	386	436	2	453	473		H,2,-21		9	145	154
			1	225	217	3	60	42				10	153	145
12	353	339	2	715	744	4	110	106	1	651	628	11	113	110
13	115	147	3	167	188	5	73	76	2	256	221	12	54*	32
14	508	493	- 4	178	179	6	500	532	3	541	545	13	51×	29
15	320	308	5	293	309	7	345	348	4	267	230	14	51×	28
			6	376	372	8	486	500	5	495	486	15	387	397
	H.1.11		7	172	183				6	151	171	16	234	234
			8	672	664		H+1+19		7	327	336			
0	402	394	9	84	81				8	457	457		H,2,-17	
1	158	156	10	692	684	0	443	45 1	9	219	229			
2	116	139	11	356	350	1	61	89	10	627	629	1	727	713
3	294	287	12	678	680	2	418	418	11	256	258	2	598	593
4	442	460				3	49×	55	12	448	454	3	760	778
5	429	420		H+1+15		4	566	584				4	461	429
6	815	822	_			5	77	87		H,2,-20		5	585	572
7	695	691	o	927	956	6	537	566				6	157	140
8	709	714	1	197	204				1	51*	70	7	200	217
9	485	482	2	231	254		H,1,20		2	439	438	8	273	258
10	597	585	3	77	71				3	51×	31	9	352	353
11	181	182	4	143	150	0	635	664	4	247	252	10	485	476
12	114	103	5	168	155	1	149	143	5	490	478	11	305	289
13	118	118	6	186	190	2	165	161	6	136	102	12	471	462
14	207	197	7	230	228	3	175	185	7	750	744	13	593	599
			8	249	255	4	96	96	8	453	446	14	491	500
	H,1,12		9	81	73	5	56	67	9	212	210	15	439	425
_			10	497	502				10	347	340	16	279	265
Ū.	695	729	11	51*	35		H+1,21		11	270	258			
1	88	131				_			12	267	250		H,2,-16	
2	1012	1064		H,1,16		0	482	504	13	222	218			
3	42*	63	_			1	49×	55	14	205	197	1	129	110
4	680	680	0	636	672	5	779	795				2	659	654
5	314	302	1	300	308	3	241	242		H,2,-19		3	496	500
ь	177	190	2	741	770							4	956	964
7	98	91	3	223	254		H,1,22		1	575	557	5	534	545
8	362	350	4	49*	51	-			2	61	106	6	1010	891
.9	56	64	5	319	322	0	473	475	3	882	866	7	70	126
10	394	399	6	480	489	1	152	164	4	500	4/0	8	777	750
11	293	281		283	278				2	/82	//9	9	70	104
12	520	497	8	668	648		H,2,-23		6	156	165	10	195	199
13	54*	59	, y	379	385					56	4/	11	106	115
			10	658	666	7	215	207	, B	564	558	15	524	1/
	H11113					2	230	220		140	121	13		131
~				H+1+1/		p b	1//	189	10	360	370	14	190	1/0
	1100	1138	~			/	74	00	11	307	300	12	0.07	2//
1	88	94	Ů,	1/1	1/9				12	460	4/2	10	213	2742
ž.	54	29	1	235	257		M121-22		13	050	005	17	J20	257
3	324	326	2	80	85			40	17	308	290			
4	817	802	3	49*	56	1	50*	49	15	684	6/2		M121-13	
5	417	418	7	628	65/	2	82	80						
6	607	597	5	129	119	3	130	131		H+2+-18		1	014	
1	356	369	5	4/6	4//		105	155			400	ź	354	340
8	459	477	7	83	68	5	109	1//	ĩ	440	720	ي ا	228	222
9	63	77	8	456	450	6	117	103	2		20	4	434	
10	544	540	9	56	67	7	631	629	3	338	338	5	305	297
11	233	234				8	515	522	4	284	593	<u> </u>	720	
12	287	282		н,1,18		9	529	515	2	244	22/	2	361	395
			-			10	269	565	6	688	663	đ	201	
	H1114		<u>o</u>	585	595	11	253	254		409	110	Э	J61	218

	H,2,-15		5	837	861		H.29		15	205	208	10	147	87
			6	788	771				16	325	313	11	908	917
10	200	196	7	682	673	1	263	267	17	588	578	12	594	611
11	604	596	8	398	403	2	581	563	18	466	467	13	943	966
12	284	276	9	198	209	3	561	576	19	490	480	14	398	398
13	655	651	10	66	58	4	481	475				15	474	474
14	381	381	11	68	88	é.	418	435		4.2.5		ĨĒ	260	25.7
î E	547	EAE		422	404	2	510	-39		1121-0		10	200	231
10	140	120	12	433	727	9	012	005				17	91	8/
19	1-10	128	13	222	391		1295	1286	1	101	168	18	50×	21
17	115	106	14	825	815	8	1735	1748	2	217	241	19	199	190
18	79	76	15	617	612	9	1036	1063	3	801	788			
			16	812	808	10	890	911	4	851	810		H,2,-3	
	H,2,-14		17	385	398	11	555	546	5	922	942			
			18	393	386	12	485	494	6	574	553	1	362	321
1	57	68	19	302	282	13	76	82	7	523	503	ē	655	612
2	1129	1090	•••			14	264	278	ė	285	262		325	301
ñ	637	618		H. 2		1.	204	202	ă	212	206	2	1710	1664
4	772	776		1121-11		19	237	232		170	207		10712	1027
2		//0		6		10	205	230	10	1/0	10/	2	13/1	1241
2	934	924	1	633	597	19	534	539	11	397	401	6	936	959
ь	803	801	2	595	590	17	586	585	12	68	95	7	711	747
7	781	771	3	268	243	18	321	316	13	455	467	9	1162	1138
8	439	404	4	606	604				14	77	101	9	531	517
9	610	615	5	338	331		H,2,-8		15	270	259	10	654	657
10	169	164	6	177	173				16	173	167	11	890	895
11	275	286		324	346	1	1672	1651	17	437	449	12	127	145
12	282	264	à	646	560	5	333	210	10	160	101	17	222	222
12	431	207	Š	77.	376		333	313	10	102	101	13	232	202
13	731	~03			//0	3	/5/	743	18	22	90	17	2/3	390
17	501	222	10	604	606	4	649	612				15	4/*	58
15	6/4	678	11	373	393	5	1553	1591		H,2,-5		16	624	630
16	740	747	12	315	317	6	480	469				17	221	230
17	502	500	13	267	275	7	484	475	1	394	374	18	354	347
18	558	557	14	167	171	8	102	96	3	640	615	19	546	544
			15	451	439	9	197	213	4	486	396			
	H.213		16	365	377	10	588	605	5	800	792		H.22	
			17	61	- iii	11	620	630	ā	1472	1406			
	006	000	10	242	247		464	476	2	1102	1040		1550	1619
-	300	400	10	272	27/	16	107	100	á	1192	+272		1990	1210
2	1	722	19	320	368	13	103	100		277	230	4	2295	2372
3	144	142		_		14	482	503	9	833	858		905	895
4	602	604		H,2,-10		15	444	442	10	919	949	4	168	207
5	68	87				16	404	422	11	799	799	5	46	70
6	344	328	1	423	454	17	625	639	12	704	708	6	120	131
7	305	301	2	362	364	18	81	74	13	653	647	7	490	485
B	272	250	3	479	526	19	334	330	14	165	176	8	419	404
ă	651	645	4	655	660				15	49 %	48	ā	551	558
10	207	102	, 2	777	700		4.27		16	626	543	10	449	ممم
10	207	193			752		ni2)-/			220	224			
11	648	648		328	359				16	330	337	11	32/	315
12	127	132	~ ~	748	754	1	/6		18	261	2//	12	923	821
13	611	605	8	300	291	2	209	213	19	566	206	13	1127	1113
14	64	61	9	398	400	3	412	384				14	489	470
15	54×	53	10	164	80	4	226	178		H,2,-4		15	403	389
16	56	64	11	560	546	5	1008	1001				16	378	366
17	193	182	12	290	290	Ā	1112	1137	1	250	312	17	81	97
18	243	245	13	87	123	7	1318	1339	2	2072	2035	18	52	14
- 0	2-10	2-2	14	602	616	á	1283	1334	-	1028	GRA	10	227	221
			17	762	764	2	1203	1004	2	1110	1117	*8	66.1	564
	u>2>-15		15	/03	/07		270	204	7	11/6	1166		u. a	-
			16	618	621	10	881	920	2	1140	1190		H+4+-1	
1	385	372	17	798	830	11	584	599	6	7/5	160	-		
2	750	719	18	410	421	12	538	542	7	1148	1145	1	763	779
3	597	620	19	538	532	13	385	373	8	445	420	2	1864	1806
-		~ * *					102	105	~	1000	1015			

	H,2,-1		16	216	215	11	261	262	10	268	268	12	329	315
3	1093	1132	17	269 342	255 322	12 13	615 65	601 87	11 12	64 240	74 230	13 14	54* 344	27 326
4	648	621				14	376	372	13	468	460			
5	427	428		H1212		15	221	218	14	338	334		H.2.11	
7	873	903	1	93	176	17	52×	30	. 16	434	411	0	397	415
8	411	408	2	1345	1368							1	617	639
10	781 444	/84	3	2116	2148		H,2,5			H,2,8		2	1170	1200
11	190	215	5	220	198	1	1671	1624	0	230	32.4	3	399	410
12	238	226	5	237	137	ź	1310	1250	1	759	761	5	47*	299
13	179	185	7	457	446	3	1040	1079	2	155	106	6	345	342
14	108	552	8	765 164	798	4	1617	1580	3	236	204	7	245	251
16	165	166	10	1044	1026	5	659	65 1		713	/4U 070	8	249	242
17	169	170	11	643	631	7	92	125	6	990	980	10	201	217
18	364	345	12	639	650	8	563	558	7	708	703	11	460	447
19	331	322	13	585	581	9	41*	28	8	322	311	12	358	343
	H.2.0		14	367	709	10	221	230	19	676	665	13	590	589
			16	136	133	12	223	200	10	352	443	1-4	201	294
0	2873	2776	17	305	317	13	844	858	12	54	55		H.2.12	
1	2807	2821	18	158	142	14	593	573	13	78	58			
23	1315	1287				15	848	830	14	293	303	0	441	426
4	773	801		H1213		10	511	494	15	102	99	1	117	118
5	843	824	0	944	870		284	500		H.2.9		3	930	932
6	233	213	1	1683	1694		H,2,6					4	758	748
7	684	644	2	882	832	•			0	982	1020	5	760	771
ğ	584	138	3	520	387	U	396	377	1	214	273	5	898	868
10	891	890	5	1578	1571	2	385	341	3	748	765	Ŕ	369	720
11	758	772	6	135	147	3	819	822	4	971	986	ğ	821	816
12	863	885	7	677	686	4	286	317	5	497	517	10	747	739
13	761	773	8	234	221	5	431	417	6	593	609	11	644	634
15	274	265	10	73	203	7	499 550	514	, A	548	288	12	11.4	122
16	269	266	11	227	239	é	633	625	ğ	68	79	10	114	132
17	93	88	12	624	615	9	597	585	10	54	24		H,2,13	
18	55	46	13	745	751	10	516	519	11	52	83	_		
	4.2.1		15	705	690	11	380	377	12	307	303	1	1000	671
			16	401	387	13	143	145	14	462	458	2	844	892
0	794	741	17	449	434	14	73	71	15	273	252	3	525	522
1	383	369	18	367	363	15	116	121				4	94	99
2	1002	962		11.2.4		16	100	105		H,2,10		5	93	123
4	364	330		7,217			H.2.7		0	773	785	7	121	122
5	1580	1570	0	317	341				1	4 3≭	35	é	315	285
6	333	302	1	552	560	0	1047	1057	2	347	327	9	529	544
7	1365	1355	2	255	257	1	177	240	3	557	581	10	527	523
g	2/9	252	3	872	1128	2	1106	1096	4	990	1133	11	448 607	449
10	212	184	5	234	233	4	1409	1404	é	485	485	*6	007	980
11	139	121	6	604	628	5	767	794	ź	484	487		H.2.14	
12	509	504	7	208	186	6	968	946	8	237	236	_		
13	421	431	8	846	854	7	492	505	9	562	568	O,	411	423
15	468	465	10	1045	1050	g	182	191	10	827	821	1	//	91

- ,

	H,2,14		6 7	424 295	430 288	4 5	54 2 36	44 223	13 14	374 65	369 92	15 16	5 6 4 50×	572 14
2 3	63 404	78 410		H,2,19		6 7	52 51×	48 34	15 16	464 52*	456 42	17	194	200
4	187	182				8	58	70					H,3,-13	
5	419	443	0	435	460	9	379	374		H+3+-16				
6	297	298	1	286	290	10	373	364				. 1	625	511
7	536	536	5	412	413	11	706	699	1	795	792	2	412	432
8	621	615	3	382	391	12	218	207	2	66	58	3	1386	1324
. <u>a</u>	300	299	4	55	20	13	692	686	. 3	648	633	4	1950	104
10	317	306	5	49*	49				4	362	350	5	1350	1332
11	354	345	0	334	337		H+3+-18		5	381	384	b,	253	243
	N. 2. 16			4.9.90			210	217	2	2/5	200		108	105
	112115			112120			313	57	é	135	128	<u> </u>	367	350
n	220	220	n	283	285	3	52*	50	ğ	781	782	ากั	49	52
1	661	692	ĭ	65	98	4	212	202	10	465	472	11	49*	24
2	361	350	ž	408	432	5	283	263	11	711	712	12	383	376
3	491	499	3	328	340	6	221	221	12	256	274	13	380	383
4	176	157	4	534	537	7	386	353	13	785	780	14	262	269
5	168	179				8	176	169	14	315	293	15	738	750
6	391	387		H.2,21		9	495	489	15	694	686	16	457	460
7	110	118				10	66	67	16	97	104	17	714	736
8	420	414	0	400	421	11	355	374				18	289	274
9	316	308	1	400	432	12	151	172		H.315				
10	363	346	2	329	333	13	88	84					H-312	
						14	5 0 *	20	1	382	369			
	H,2,16			H+2+22					2	312	312	1	178	211
_			_				H,3,-18		3	864	851	2	638	639
0	163	152	0	398	399				4	459	419	3	432	416
1	158	165				1	964	965	5	765	759	4	259	234
2	119	149		H,3,-22		2	250	225	5	723	715	5	132	138
3	277	268	-	205	300	3	/14	/02		683	204	5	190	203
2	1/5	203	ź	509	323		227		ŝ	213	204		141	107
2	195	103	د 4	215	<u>500</u> ⊿7	5	79	73	10	213 40x	203	ä	769	759
7	130	207	5	302	201	7	03	72	11	52%	13	10	152	143
é	371	364	é	126	115	Á	134	121	12	87	93	11	529	533
ă	347	346	7	73	81	ă	467	468	13	570	566	12	178	170
•	•••		â	241	232	10	431	447	14	54*	56	13	76	122
	H,2,17		-			īī	607	617	15	798	803	14	52×	31
				H.3,-21		12	169	172	16	329	317	15	80	73
0	610	637				13	743	748	17	661	662	16	50×	28
1	483	514	1	260	259	14	97	85				17	223	227
2	602	603	2	51×	39	15	745	737		H.314		18	223	213
3	445	465	3	250	262									
4	177	177	4	122	129		H,3,-17		1	634	628		H,3,-11	
5	53	53	5	432	415				2	256	26 6			
6	471	460	6	93	101	1	186	194	3	449	427	1	427	456
7	153	154	7	437	418	2	302	302	4	48	50	2	584	575
8	411	405	8	229	212	3	155	141	5	439	445	3	1216	1209
			9	653	643	4	244	237	5	67	48	4	1/9	189
	H,2,18		10	464	480	5	574	5/0		163	153	2	1150	1143
~		30	11	421	417	5	203	2003	, and a second se	233	230 E1A	2	1193	1123
ų	204	300		u.a20			293	203	10	503	214	<u></u>	451	1100
2	401	426		A131-20		2	130	138	11	620	625	a	546	5.45
-	452	454	•	671	666	÷	87		12	227	220	10	47	21
4	494	474	2	58	76	11	62	101	13	576	568	11	47*	41
5	406	425	3	699	692	12	53*	17	14	109	115			
-									- ·					

	H,3,-11		6	385	400		н,3,-5		15	948	930	12	237	243
			7	1556	1565				16	56	38	13	346	337
12	492	498	8	512	532	1	552	581	17	253	251	14	326	311
13	429	426	9	1279	1265	2	777	741	18	62	52	15	380	373
14	619	636	10	600	602	3	510	548				16	140	113
15	791	789	11	600	624	4	594	546		H,3,-2		17	496	480
15	322	319	12	272	289	2	Pa5	685	•	205	105	18	101	164
10	102	153	13	245	200	2	110	279		205	195		u.a.1	
10	CEL	720	15	480	494	á	172	170		140	155		H1311	
	4.310		16	67	70	ğ	669	650	4	401	396	0	983	1002
	11707 10		17	619	621	10	655	654	5	549	607	ĭ	1080	1122
1	76	104	18	87	85	11	579	619	5	111	123	2	355	341
2	119	119	19	930	923	12	45×	55	7	870	913	3	1296	1303
3	116	118				13	615	620	8	385	369	4	1006	1018
4	713	689		H,3,-7		14	62	73	.9	764	791	5	277	264
5	388	397		AF A		15	720	720	10	308	312	5	267	266
2	1104	315	1	854	836	10	12	473	12	122	114		200	313
6	497	477	2	191	026	19	46%	732	13	133 45 x		ä	1036	1043
ä	732	741	4	398	55	19	87	ań.	14	47*	39	10	123	163
10	410	418	5	711	719	10	0.		15	121	94	11	874	889
11	708	713	6	81	83		H.34		16	251	258	12	349	339
12	161	167	7	732	714				17	465	457	13	803	789
13	283	281	8	378	358	1	94	76	18	93	91	14	524	525
14	137	149	9	231	229	2	506	464				15	399	406
15	145	144	10	175	170	3	179	168		H+3,-1		16	360	348
16	231	244	11	488	492	4	231	257				17	51*	24
17	396	391	12	4/	57	5	495	52/	1	809	752	18	49*	10
18	199	181	13	369	388	5	780	700	ź	1546	1533		H.3.3	
	u.z0		15	355	350	á	1228	1263	4	1511	1502		1,5,2	
	HI31-3		16	207	220	ğ	1853	1859	5	1161	1129	0	165	126
1	1039	1000	17	389	385	10	379	363	6	241	246	ī	839	853
ž	119	110	18	54	43	11	285	307	7	1192	1194	2	453	442
3	869	869	19	54	79	12	141	130	8	206	230	3	2179	2189
4	57	71				13	293	294	9	728	756	4	276	243
5	1160	1170		H,3,-6		14	180	169	10	229	241	5	1213	1193
6	41×	36				15	51*	65	11	957	980	5	1040	38
7	848	841	1	949	932	15	279	284	12	103	115		473	1040
8	41*	477	4	328	307	19	293	426	14	435	425	ä	300	101
10		4//	2	147	184	10	506	505	15	882	875	ň	451	444
11	150	151	5	381	410	10	200	505	15	352	358	11	54	42
12	276	277	ő	92	102		H,3,-3		17	135	127	12	613	603
13	351	338	7	1201	1210				18	94	108	13	497	502
14	426	436	8	851	870	1	1325	1345				14	359	347
15	691	687	9	1161	1183	2	67	91		H,3,0		15	801	803
16	176	186	10	845	864	3	1288	1293				16	235	215
17	542	536	11	870	871	4	377	386	1	456	464	17	546	528
18	248	246	12	89	90	5	537	515	2	35*	190		H.2.1	
19	531	527	13	168	190	5	= 00 = 00	-+	2	359	110		H1313	
	u 7. o		15	/4 /4	52	é	414	394		1285	1305	0	1354	1326
			15	55	50	g	1724	1718	à	75	76	ĭ	1415	1403
1	608	627	17	572	583	10	295	308	7	770	793	ź	364	344
ź	215	184	18	368	388	11	1057	1083	8	234	237	3	904	- 950
3	602	574	19	684	674	12	180	155	9	136	159	4	228	197
4	265	284				13	1202	1219	10	145	132	5	207	205
5	966	964				14	110	96	11	251	234	6	563	540

	H1313		3	1328	1387	5	· 574	595	12	229	231		H,4,-19	
7	83	89	4	462	472 1161	5 7	469 915	477		4.3.13			680	e 7.0
8	302	318	6	368	381	8	400	394		110110		2	274	277
.9	528	533	7	614	625	. ĝ	957	944	0	45×	50	3	756	734
10	411	423	8	237	235	10	183	192	ī	67	58	4	169	180
11	600	600	9	284	276	11	296	284	2	101	84	5	311	298
12	411	411	10	272	269	12	206	190	3	444	441	ē	175	183
13	563	560	11	367	360	13	216	213	4	77	84	7	212	208
16	353	412	12	140	143	14	249	223	5	966	979	8	329	335
16	192	181	13	885	864				6	147	152	9	478	479
17	49*	39	15	831	813		H,3,10		7	801	798	10	_53*	_29
-			16	141	140	0	601	720	8	363	361	11	/3/	731
	H.3.4				* 10	1	772	700	10	173	114	12	53*	35
				H,3,7		2	278	279	10	112	11-4		u.a10	
0	1077	1056				3	751	745		H.3.19			11-10	
1	798	836	0	234	261	4	500	513				1	205	205
2	504	509	1	669	671	5	169	187	0	179	181	2	138	126
3	1994	2037	2	304	301	6	431	412	1	417	444	3	100	99
4	803	784	3	98	81	7	105	110	2	259	251	4	147	142
2	1515	1538	4	1073	1072	8	519	497	3	436	465	5	417	408
7	928	135	2	524	527	. 9	63	71	4	203	508	6	49×	28
ś	165	162	7	201	200	10	249	247	5	333	336	7	323	312
ğ	324	313	é	534	528	12	322	300				8	176	198
10	94	89	ğ	515	513	13	472	102		H13120		, č	95	107
11	203	200	10	96	89	14	52%	53	n	76	78	11	190	190
12	46×	37	11	610	603				ĭ	509	506	12	80	102
13	553	547	12	134	133		H,3,11		2	122	119	13	52*	35
14	180	167	13	135	125				3	208	208			
15	1017	1008	14	305	300	0	233	241					H141-17	
10	- ≝01	442	15	209	225	1	46×	43		H.3.21				
17	561	558				2	432	451	-		-	1	1147	1149
	H.3.5			H1318		3	414	417	0	297	318	5	166	156
			п	503	67Q	2	724	101	1	205	₽79	3	958	930
0	685	651	1	1185	1176	, in the second se	147	151		H. A21			151	128
1	771	775	2	126	140	7	1033	1042		11-11-41		5	183	100
2	266	229	3	1351	1380	8	72	74	2	48×	25	7	155	166
3	275	326	4	166	205	9	973	967	3	517	509	8	144	145
4	104	39	5	709	735	10	56×	36	4	93	98	ġ	413	391
5	290	276	6	344	355	11	488	461	5	385	381	to	89	90
6	300	282	7	356	356	12	50×	17	6	155	149	11	917	920
	855	855	8	622	606	13	288	280	7	75	_75	12	53×	24
8	40∠ 350	407	10	3/8	380				8	224	233	13	882	865
10	416	416	11	106	100		H:3,12					14	53×	22
11	501	496	12	52×	32	•	554	554		8,4,-20				
12	405	402	13	766	739	1	803	808	,	00	76		H1-11-10	
13	166	172	14	136	136	2	268	275	ż	66	66	1	74	53
14	110	114	15	527	512	3	627	631	3	57	62	ź	223	232
15	53×	19				4	139	147	4	282	298	3	401	386
16	52*	28		H,3,9		5	215	212	5	323	316	4	413	440
			-			6	139	165	6	113	111	5	868	844
	H1316		o	529	483	7	337	339	7	579	565	6	87	74
~	550	606	1	654	641	8	61	52	8	54×	56	7	510	506
1	1178	1190	4	174	180		330	321	.9	398	410	8	155	155
2	716	708	4	412	402	11	- JO1 - 531	520	10	504	10			
-			- - -		TUE	- 1		231	71	JJ/				

	H,4,-16		11	399	402	11	132	118	9	1207	1240	5	412	.415
			12	183	197	12	248	260	10	317	326	2	1012	1001
9	135	130	13	471	482	13	557	568	11	704	606	á	179	1001
10	57	11	14	317	324	14	252	- 20	12	230	236	ő	170	100
11	181	165	15	328	338	15	549	641	13	230	235		11/2	1150
12	538	7	16	110	115	16	65		10	242		10	144	170
13	449	459	17	132	136	17	701	703	12	273	270	11	1030	1024
14	72	58	. .	102	100		701	703	19	217	219	12	145	139
15	494	491		U.A. 13					10	190	151	13	888	892
		101					H1 71-9		17	028	621	14	159	148
	H. 415			800	807		45.5		19	67	62	15	665	6 62
	119.49-475			039	031	1	455	452				16	118	137
1	093	070	5	101	4007	4	44*	2		H,4,-6		17	347	347
÷.	302	3/2	3	1091	1091	3	/26	717				18	49*	20
2	607	147 694		53*	19	4	376	365	1	453	471			
4	517		2	9/1	969	2	601	586	2	284	273		H, 4, -3	
	210		9	207	205	5	392	377	3	745	764			_
ē	291	291	<i>.</i>	10/1	1064		952	981	4	401	411	1	679	657
2	231	201	8	180	193	8	266	269	5	798	802	2	639	615
~	97	88	9	644	630	9	1099	1116	6	220	201	3	61	71
S.	351	352	10	115	108	10	593	594	7	708	709	4	65	29
, a	494	4/8	11	48*	36	11	514	543	8	92	78	5	895	930
10	311	309	12	302	324	12	331	334	9	857	857	6	62	59
11	870	856	13	771	789	13	195	207	10	353	365	7	902	911
12	73	86	14	269	273	14	181	190	11	255	258	e	354	355
13	839	837	15	649	661	15	52*	57	12	191	184	9	867	885
14	157	158	16	137	150	16	49×	50	13	494	503	10	329	316
15	703	691	17	536	533	17	528	526	14	281	277	11	399	408
16	50*	38				18	233	237	15	815	824	12	47*	19
				H,4,-11					16	422	427	13	221	215
	H141-14						H, 4, -8		17	328	311	14	50	54
			1	490	450				18	197	205	15	162	161
1	530	515	2	395	401	1	884	852				16	61	67
2	348	344	3	81	66	2	512	505		H.45		17	440	455
3	863	869	4	243	208	3	839	843				18	493	15
4	221	228	5	302	313	4	1044	1001	1	776	767			
5	732	730	- 6	47*	46	5	1144	1115	- Ž	107	58		H.42	
6	161	172	7	799	813	6	334	349	3	146	165			
7	709	708	8	237	217	Ĩ	834	837	4	77	95	1	1145	1136
8	91	102	9	974	979	8	128	124	5	822	837	ē	889	872
9	474	472	10	269	260	9	135	132	6	948	949	3	1169	1168
10	50×	30	11	475	476	10	118	104	7	1001	1032	4	605	587
11	177	171	12	49*	36	11	164	170	Ŕ	42*	6	6	524	505
12	204	228	13	240	271	12	132	121	ă	891	905		750	766
13	474	475	14	48%	18	13	213	227	10	52	40	7	620	620
14	292	277	15	53	36	14	513	522	11	921	928	é	108	184
15	437	450	16	183	164	15	524	526	12	189	201	ă	875	905
16	275	296	17	665	563	16	380	403	13	430	434	เกี	330	360
		200		20-	200	17	435	472	14	79	-0-	10	1174	1194
	H.413			H. 410		16		54	16	145	151	12	100	1107
				11 13 - 40		10	02	04	15	197	212	12	102	
1	488	481	1	1026	1023		4.4.7		17	466	450	10	317	300
2	268	268	5	508	627		A1-1-7		10	-10.5	700	1-1	906	110
3	257	266		1173	1165	1	634	600	10	00	/3	15	025	011
4	163	180	3	364	364	5	116	70		N. A		10	206	2000
5	50x	37		1032	1040	í.	177	166		H • • • • • •		12	200	200
ě.	504	602	2	1032	244	2	110	102		1163	1124	18	-40*	11
7	377	370	5	1190	1100		110	52	ž	1153	1131			
é	470	490	4	1102	1100	2	090	049	4	536	219		H141-1	
ă	425	407	ŝ	-07-	691	5	1201	1100	J A	5/3	009		201	
10	718	710	10	264	272		1501	1199	2	27/	249	1	291	200
10	10	/30	10	407	212	8	205	208	5	245	245			

	H,4,-1			H,4,2			H,4,5		2	68 315	39 313	10	59 500	71 609
234	94 201 459	69 236 461	0 1 2	122 1115 293	77 1156 217	0 1 2	821 661 457	801 679 456	94 5 5	220 637 310	225 658 322	12	58 H,4,12	44
5	177	205	3	536	562	3	1828	1868	7	827	835			
6	324	323	4	406	399	4	82	104	8	256	259	0	246	254
2	1068	1090	5	734	738	5	1265	1289	9	767	758	1	242	262
8	186	192	6	173	173	5	461	453	10	51	47	2	47*	19
10	259	366		301	9/4	<u> </u>	115	555	11	102	115	2	531	237
11	350	300	8	135	665	9	62	115	13	379	350		927	518
12	45*	19	10	234	246	10	237	233	14	163	166	6	202	217
13	246	252	11	639	643	11	298	281		_		7	966	980
14	181	191	12	187	185	12	453	464		H,4,9		8	343	35 6
15	249	245	13	739	741	13	696	686	-			9	883	862
16	79	70	14	151	158	14	376	397	, o	457	472	10	79	82
17	517	931	15	345	333	15	1090	1051		304	3/0	41	502	500
	H.4.0		17	-79- 60	<u>60</u>		H.4.5		3	908	937		H.4.13	
									4	208	203			
0	401	368		H14.3		0	699	675	5	792	790	0	95	94
1	1349	1361				1	849	867	6	52	30	1	788	812
2	730	731	0	892	843	2	126	54	2	406	415	2	56	.92
3	1159	1174	1	1018	1034	3	402	397	8	380	385	3	422	425
4	408	386	2	1129	1134		334	338		102	190		67	 79
e e	349	346	4	224	207	6	153	144	11	565	576	5	50*	34
ž	442	465	5	1693	1724	7	589	578	12	53×	41	7	51*	25
8	237	227	6	283	267	8	123	125	13	554	538	8	108	109
9	627	660	7	900	905	9	556	539				9	383	399
10	152	141	8	503	514	10	49*	16		H.4.10		10	73	90
11	986	975	.9	232	219	11	228	239		E 77	669		U. A. 1A	
12	875	997	10	102	142	13	165	162	ÿ	143	133		H17117	
14	133	122	12	91	92	14	54*	39	2	68	69	0	169	165
15	694	678	13	491	501	15	108	113	3	549	559	1	49	17
16	164	170	14	55	41				4	137	110	2	50×	29
17	69	63	15	812	803		H1417		5	961	974	3	405	414
			16	49*	20	•	204	202	5	1/5	1/8		140	147
	H)4)1			u.a.a		1	294	202	ģ	570	680	5	361	375
n	66	61				2	136	120	ğ	692	677	ž	908	932
1	994	996	0	311	303	3	1235	1271	10	182	186	8	152	178
2	393	408	1	795	842	4	52	26	11	658	676	9	647	637
3	1369	1353	2	463	481	5	1025	1056	12	72	60			
4	351	319	3	622	518	b,	432	414	13	284	200		H14113	
5	1314	1221		127	132	, ,	205	211		H.4.11		0	63	64
7	804	798	6	66	38	ğ	142	122				ĭ	799	826
8	255	271	7	356	343	10	241	229	0	46×	3	2	222	234
9	124	160	8	115	88	11	225	212	1	529	532	3	262	273
10	266	264	9	508	521	12	249	253	2	60	73	4	225	226
11	349	355	10	158	182	13	636	614	3	330	348	2	332	338
12	228	229	11	063	10	14	174	104		161	167	7	300	297
14	131	140	13	376	377		H.4,8		6	178	192	8	142	141
15	509	498	14	74	74				ž	56*	54			
16	72	61	15	143	138	0	322	321	8	59	70			
17	671	653	16	112	116	1	741	756	9	54×	59			

	H,4,16			H,5,-18		14	56	52	2	278	277	5	829	839
0 1 2	54* 244 243	42 258 262	1 2 3	1048 432 451	1056 415 452	1	H,5,-14 640	639	34 5 6	554 528 805	976 544 937 804	6 7 8 9	211 491 345 326	210 499 345 323
3	138	143	4	227	196	2	53×	68	7	734	725	10	79	114
4	/4	65	5	368	357	3	569	539	8	181	184	11	308	303
6	435	400	57	235	212	4	93	89	9	873	871	12	60	.52
7	488	497	Ŕ	125	124	5	203	205	10	50*	39	13	88	100
			ğ	165	175	ž	448	446	12	51*	63	15	489	508
	H+4+17		10	395	382	ė	404	394	13	570	592	16	291	286
_			11	685	677	9	294	283	14	192	178	17	362	343
0	233	233				10	263	251	15	529	517			
2	706	714		H151-17		11	586	595	16	324	320		H,5,-7	
ŝ	627	653	1	94	68	12	220	220		N.510			876	974
4	212	222	2	131	118	14	247	250		H191-10		2	709	687
5	114	90	3	50×	77	15	263	249	1	211	215	3	1161	1133
6	72	94	4	51×	57				2	147	124	4	610	585
			5	408	406		H,5,-13		3	105	119	5	811	799
	H, 4, 18		5	133	133		<i></i>	45.5	4	49*	19	6	293	295
0	135	132	é	104	178		107	172	5	222	715	~	426	411
1	157	182	ğ	78	93	3	909	908	7	819	814	Ğ	239	23/
ż	53	49	10	81	83	4	374	374	8	283	287	10	148	156
3	424	, 441	11	323	339	5	828	817	9	419	431	11	189	177
4	193	203	12	150	135	6	538	532	10	103	126	12	487	489
5	401	423				7	411	397	11	315	335	13	614	632
	H. 4. 10			H+0+-10		8	131	135	12	59	59	14	676	693
	111111		1	787	774	10	167	166	14	325	304	15	420	410 E14
0	92	67	2	700	705	11	48×	17	15	150	157	17	282	281
1	686	704	3	504	474	12	59	63	16	280	274			
2	· 69	83	4	389	375	13	209	204					H,5,-6	
3	407	418	5	281	277	14	67	69		н,5,9				
	u. a. 20		5	290	296	15	357	363		B+C	001	1	607	589
	1,7,20		Ŕ	93	90		4.512		2	551	601	4	143	145
0	88	70	ğ	396	392		11721 12		3	871	897	4	219	222
1	323	365	10	386	356	1	208	209	4	382	371	5	449	464
			11	727	725	2	87	78	5	1287	1281	6	590	584
	н,5,-20		12	205	205	3	323	325	6	320	329	7	449	478
^	757	247	13	874	682	4	51#	11	7	//8	787	8	502	511
5	329	305		H. 5 15		5	530	601	a	555	668	10	345	732
6	269	258				7	873	878	10	48×	27	11	917	920
			1	207	214	B	606	596	11	85	115	12	193	202
	H,5,-19		2	242	257	9	587	574	12	97	95	13	196	213
			3	466	456	10	601	602	13	489	504	14	51×	6
1	129	121	4	53*	60	11	238	242	14	185	165	15	246	256
4	130	163	5	243	226	12	509	507	15	220	210	10	410	25
4	87	75	7	545	540	14	516	523	10	220	213	17	712	-11
5	170	175	ė	183	172	15	126	131		H,5,-8			H151-5	
6	248	235	ģ	141	165	16	49 ≭	32						
7	335	331	10	52*	35				1	258	246	1	957	949
8	128	124	11	53*	24		H,5,-11		2	186	173	2	430	432
3	100	100	13	35	93	•	765	742		247	256	د	433	463
				00	30	1	100	176	-	677	200			

.

	H151-5		2	154	153	4	183	193	6	509	501	11	482	493
4	390 344	383 346	3 4 5	50 54	71 663	2 6 7	172 555	196 179 537	/ 8 9	577 187 135	567 177 147	12 13	104 53*	99 60
6 7	70 228	65 202	67	283	309	8	336	333	10	98	116		H.5.8	
8	76	73	8	742	735	10	444	445	12	197	202	0	372	379
19	575	573	.9	320	339	11	767	777	13	599	596	1	854	866
11	840	955	10	215	226	12	100	117	14	507	511	2	314	323
12	373	370	12	237	783	13	/81	/84	15	872	865	3	785	811
13	494	489	13	375	376	15	158	168		H.5.5		7	220	229
14	716	721	14	50×	42	16	119	135				5	161	161
15	769	773	15	129	133				D	942	944	7	436	443
10	3/6	367	16	162	165		H,5,2		1	606	622	8	82	80
11	710	411		₩.5. _1		0	26.2	340	2	614	504	.9	53*	41
	H,5,-4					1	809	823	4	197	179	10	199	192
			1	477	518	ž	452	450	5	81	50	12	457	452
1	347	338	2	131	166	3	1081	1116	6	106	112	13	595	595
2	41*	39	3	1068	1095	4	1020	1003	7	226	243			-
4	115	126	- 4	311	327	5	1308	1304	8	66	77		H,5,9	
5	593	600	, 6	23 3 41%	237	7	419 504	432 501	10	170	188		701	201
6	361	357	7	711	725	é	199	187	11	153	177	1	201	201
7	1098	1089	8	522	524	9	166	168	12	418	407	ź	53	42
8	540	515	9	587	609	10	509	512	13	100	111	3	331	326
.9	778	815	10	548	542	11	203	199	14	54×	56	4	235	236
10	338	331	11	889	901	12	52*	65				5	798	807
12	50%	45	13	197	882	14	200	278		H1510		67	482	472
13	270	283	14	257	243	15	626	633	n	177	191	8	902 664	660
14	61	41	15	359	361				ī	1058	1067	ğ	646	642
15	278	282	- 16 -	. 75	74		H+5+3		2	327	334	10	503	498
16	74	83				-	-		3	970	981	11	494	487
17	319	316		H1910		0	731	717	4	242	248	12	291	289
	H.53		1	136	127	2	1380	310	5	1259	1251		U. 6. 10	
			ź	392	384	3	1079	1082	7	473	497		H15110	
1	436	459	3	332	349	4	102	103	ė	106	116	0	50×	69
2	172	190	4	629	633	5	209	213	9	49*	15	1	176	205
3	266	287	5	1055	1053	6	44*	18	10	625	635	2	383	379
4	207	727	7	480	485	2	190	181	11	275	264	3	224	241
ā	- ธีก	65	Ŕ	562	573	<u>a</u>	177	707	12	370	302	. 6	139	126
7	702	723	ğ	177	199	10	68	85	14	464	452	6	54%	130
8	370	360	10	459	459	11	596	603				7	343	341
9	1087	1096	11	200	194	12	462	459		H.5,7		8	69	32
10	450	447	12	249	247	13	558	550	-	40.0		9	235	237
12	401	700	13	2/9	290	14	58	120	Ų	498	507	10	83	59
13	792	791	15	231	249	19	124	129	2	194	179	11	304	2/1
14	369	361	16	362	348		H,5,4		3	218	203		H.5.11	
15	500	511							4	59	63			
16	150	148		H,5,1		0	247	242	5	472	482	0	239	267
17	291	289	~		- 4 4	1	767	804	6	145	154	1	192	204
	H.52		U	315	314	2	1280	*35	7	142	155	2	224	224
			2	536	529	4	849	841	0	532	530	د ۵	430	495
1	1182	1177	3	949	964	5	1456	1488	10	148	157	4	579	O

H,5,11 H,5,16 10 11 93 53* 93 41 378 49* 315 315 209 461 9 10 12 12 13 14 376 27 308 308 215 444 н,6,-8 901 366 460 182 67 47* 665 920 554 718 104 573 678 927 565 725 111 535 961 369 468 181 53 5 801 627 772 459 526 402 173 143 100 277 220 278 405 307 777 605 789 525 397 153 140 101 288 220 254 417 301 1112345 1112345 7 8 9 10 H,6,-15 624 363 368 H,6,-11 96 250 52* 258 383 90 594 475 74 258 33 249 368 132 593 455 н,5,12 H.5,17 247 476 209 545 535 515 413 197 319 413 482 160 288 111234 127 52* 159 169 255 166 192 50* 52* 214 254 149 87 178 167 255 172 198 125 270 45 49 208 255 344 10 H,5,18 H.6.-7 H+6,-14 266 52* 687 537 280 717 548 267 1 2 3 205 48 456 781 420 697 396 521 381 54 61 124 195 142 453 782 417 696 396 512 106 393 51 75 134 1112345 564 499 243 522 181 555 293 55 120 99 250 11123 83 291 476 240 500 174 538 290 66 128 102 274 H+5+13 н,5,19 н,6,-10 87 56 324 362 829 519 854 381 578 90 39 371 844 527 832 398 593 535 912 941 565 717 916 342 609 459 201 279 180 509 878 919 586 702 912 331 H,6,-18 105 262 163 431 52* 265 161 420 68 608 480 19 69 208 298 H+6+-13 н,6,-6 H, 5, 14 253 51# 238 578 170 638 303 294 420 495 215 240 34 62 224 580 169 11123 H,6,-17 709 471 174 452 256 * 64 282 263 568 568 568 568 705 449 196 251 265 277 263 211 652 652 652 602 614 1112345 281 227 397 294 231 407 284 160 35 206 139 608 596 500 200 121 69 373 114 599 693 497 186 121 68 364 106 162 52* 206 125 H+6+-9 307 293 409 503 510 299 565 478 559 296 272 574 284 72 134 226 514 287 552 475 558 289 464 271 569 H, 5, 15 H,6,-16 189 301 423 418 502 366 379 206 299 421 445 499 365 362 54* 139 339 203 215 361 144 318 H.6,-12 171 347 194 215 343 183 319 460 727 977 474 829 453 724 944 461 834 277 H.6.-5 66 135 207 126 131 2

315 758 165 53* 388 165 62 374 12 13 14 H,6,-5 307 747 614 496 769 362 307 372 730 717 769 921 576 504 141 52* 430 272 278 729 713 768 900 568 513 149 D 9 10 11 12 13 14 15 46× н,6,9 510 763 270 897 463 526 357 571 381 479 264 890 475 517 334 578 382 479 78 504 71 452 81 763 96 78 102 417 90 518 93 468 87 782 89 78 89 428 H.6.2 318 728 705 244 105 469 167 114 474 145 420 354 416 O 723 703 265 115 463 162 106 473 162 424 369 420 213 394 241 63 440 282 276 11 12 13 14 H,6,-1 77 50× 70 32 151 207 139 471 594 424 859 398 456 424 859 398 456 186 52* 187 51* 173 208 173 476 536 435 536 435 866 9 459 203 277 52 н,6,6 н,6,-4 н, 6, 10 553 379 570 57 396 144 164 196 303 663 53* 191 D1234567890112 584 385 574 51 407 138 231 641 67 195 243 241 486 541 586 878 726 1 2 3 4 5 6 7 8 9 10 11 12 3 4 5 10 11 12 3 4 5 10 11 12 3 14 15 861 714 210 125 533 161 383 651 539 923 689 400 248 238 494 545 588 760 652 580 452 441 401 131 188 H.6.3 769 686 573 467 458 166 390 659 835 384 1185 636 824 347 1209 810 701 792 344 396 240 337 438 1011234 660 549 928 694 415 430 H,6,0 736 Н,6,11 10112345 725 889 206 109 284 297 520 361 373 375 542 214 413 178 698 781 333 364 402 255 323 427 H,6,7 882 185 453 195 237 107 199 236 101 127 395 311 195 82 28 542 515 451 446 610 210 74 126 56* 360 306 532 510 451 435 449 526 220 51 127 63 352 282 н**, 6, -**3 278 300 519 347 377 376 529 226 425 120 397 323 219 81 54* 231 213 296 166 499 144 514 259 524 657 361 593 263 550 671 361 595 . н,6,4 D1234567891011213 433 511 758 87 523 59 413 193 150 777 218 403 77 416 505 750 97 521 60 428 194 163 777 221 405 H,6,12 12 333 133 529 281 679 542 679 349 162 543 305 678 542 688 183 98 178 85 H, 6, 1 H, 6, 8 420 587 450 427 601 467 841 599 790 684 433 231 220 51* 534 225 773 792 358 362 668 52 30 533 217 781 783 360 352 657 Н, Б, -2 582 798 675 451 224 224 ė 680 411 355 98 688 421 358 110 156 H, 6, 13 168 1 171 H,6,5

...

	H,6,13		8	123	131		H,7,_9		11	52×	42	7	141	169
~	505		э	266	300				12	376	376	8	414	422
<u> </u>	505	483				1	286	270	13	52	46	9	183	189
3	112	113		H,7,-13		2	751	728				10	319	303
4	250	264				3	522	531		H,7,-5		11	244	261
5	53×	31	1	54×	41	4	834	813				12	53×	49
5	85	109	2	763	735	5	446	443	1	85	76	13	124	115
7	52*	22	3	172	191	6	802	802	2	744	743			
			4	963	941	7	485	498	3	160	167		H.71	
	H,6,14		5	199	196	8	545	547	4	203	203			
			5	661	540	9	175	167	5	292	289	1	214	215
0	136	158	7	53×	62	10	157	170	6	60	66	ž	690	703
1	421	44 7	8	294	298	11	156	163	7	227	245	3	63	59
2	79	101	9	106	100	12	160	161	8	51*	36	4	435	441
3	405	426	10	52*	31	13	98	93	9	145	138	5	260	257
4	436	436						-	10	495	504	ā	48*	9
5	266	260		H,7,-12			H,7,-8		11	229	222	7	612	616
6	532	551							12	534	531	à	532	521
			1	52×	7	1	96	96	13	175	161	ě	367	401
	H, 6, 15		2	407	401	2	149	140				10	1011	1011
			3	72	57	3	247	236		H.74		11	262	255
0	607	647	4	56*	15	4	696	693				12	740	734
1	455	447	5	56×	38	5	264	275	1	569	590	13	533	527
2	441	421	6	418	409	6	604	590	2	148	135		340	
3	53×	82	7	86	87	7	94	97	3	155	162		H.7.0	
4	204	218	8	470	470	ė	552	539	4	169	176			
5	224	232	9	87	76	9	51*	49	5	144	141	1	101	89
			10	486	477	10	720	727	6	691	693	ž	611	601
	H.6.16		11	52*	45	11	50*	44	7	71	68	3	49%	67
						12	360	366	ė	1020	1037	4	455	459
0	53×	17		H,7,-11		13	54	33	ā	134	127	5	242	232
1	53×	30							10	538	546	ñ	276	292
2	158	180	1	419	423		H,7,-7		11	ร์กัส	34	ž	265	257
3	239	257	2	743	714				12	275	277	Ŕ	344	344
			3	685	684	1	57*	51	13	209	205	ğ	281	272
	H,6,17		4	788	759	ž	694	668				10	52*	63
			5	452	454	3	257	235		H,7,-3		11	52*	32
0	593	625	6	720	708	4	441	443				12	332	338
1	512	530	7	503	506	5	170	186	1	100	114	13	52#	55
			6	489	483	ē	86	110	ž	555	579			
	H,7,-15		9	348	353	7	52*	61	3	205	222		H.7.1	
			10	201	197	8	149	154	4	316	330			
1	50×	12	11	289	284	9	51*	30	5	252	245	0	606	786
2	224	209	12	142	135	10	50	55	6	59	66	ī	166	164
3	286	288				11	52*	32	7	467	482	2	738	749
4	515	500		H,7,-10		12	422	420	8	224	222	3	137	141
5	156	140				13	115	117	9	560	568	4	612	620
6	544	522	1	140	118				10	714	706	5	63	51
7	190	173	2	414	405		H,7,-6		11	123	120	6	69	69
8	297	278	3	173	167				12	683	672	7	173	185
			4	196	176	1	662	670	13	454	448	9	627	635
	H,7,-14		5	188	185	2	54*	24				9	52*	42
			6	345	320	3	53*	18		H.72		10	716	716
1	87	78	7	299	295	4	594	598		-		11	207	195
2	487	490	8	378	370	5	49×	45	1	337	331	12	732	736
3	58	52	9	102	90	6	452	469	ź	48×	36	-		
4	464	463	10	475	475	7	91	101	3	71	81		H.7.2	
5	53×	49	11	207	203	8	814	807	4	194	200			
6	76	75	12	356	342	ē	51*	43	5	49×	28	0	429	419
7	59×	31				10	834	863	6	453	452	-		

	H.7.2			H,7,6		5	100	128		H,8,-10		10	215	198
1 2	312 751	316 741	0	337 554	347 559	7	53×	535	1	54× 584	37 560		Н,8,-5	
3	214	206	ź	531	518		H,7,11		ã	58*	53	1	400	400
4	675	666	3	617	643				4	847	823	5	180	168
5	128	116	4	779	772	•	393	305	5	249	267	2	364	364
6	469	462	5	492	498	1	113	107	ŝ	670	647	3	422	430
7	231	232	ã	902	PDR	5	373	386	ž	185	102		150	149
Ŕ	432	425	7	215	208		144	140	- · · /	435	420	2	152	L-10
ă	68	60	é	E15	527	<u>ح</u>	103	124	0	-35	760	5	125	019
10	227	218	ă	134	133		250	251		N.R. 0			135.	120
11	110	124	10	62	67	2	535	663		1101-9			200	703
12	259	265	.0	92	07	0	530	903	1	431	447	10	500	656
+6	230	200		4.7.7			H.7.12			-51	40	10	570	220
	4.7.3						H1//12		2	170	166		H.O. A	
	111111		n	268	375	~	636	641	2	330	215		H101-4	
n	1003	1082	Ÿ	76	275	U I	535	15		330	212		214	
ų.	195	170	-	221	355	÷	217	222	5	676	207	1	214	211
5	552	660	2	107	112	5	21/	~~~~	5	6/9	029	2	077	802
2	315	318	2	210	207	2	200	284		53*	671	2	104	117
4	310	230		267	207		147	207	2	220	0/1		/38	172
5	250	230	-	101	203	5	147	100	9	228	ుండ	2	201	329
Ē	190	174	ÿ	265	120		H 7 12					5	69	- 12
2	109	1/7		205	200		H11112			H101-0			507	519
~	476	426		120	292	~	100	202		20.4			101	148
8	120	130	10	128	102	, v	100	202	1	204	204		52*	22
.0	135	130	10	-100	-100	1	2/6	237	2	7/4	-100	10	-1-1-3	443
10	420	710				2	214	43	2	211	207			
**	425	124		H1/10		3	204	35	7	214	500		H101-3	
12	732	- 21	~	760	702	~	205	249	2	245	279		.	
			Ų.	702	783				5	303	360	1	346	350
	H = / = 4		1	249	203		H, /, 14			103	103	2	55*	23
~			2	/18	/44	-	0.05		8	22*	48	3	420	712
ų.	200	202	2	101	90	U	3/0	3/4		214	22	2	4//	4/5
-	1020	1024	2	049	0.27	1			10	89	/~	2	9/	6/
2	10.20	1024	2	600	600	2	200	599				ę	441	
2	1146	1140	2	000	100					HI01-/			22/	222
2	11-+0	1148		177	121		H)/)15				74	8	512	161
2	409	705		1/2	101	~	60	72		56-	27		1/0	101
5	264	255	9	224	07	U	02	73	2	197	170	10	603	000
	564	550		4.7.0			11.0.10		2	103	281		U.R . D	
õ	222	557		H1118			H101-15		2	300	201		1101-2	
	504	00	~		222		115	101	-	470	460		264	757
10	50*	20	ų	232	223		115	434	9	7/0	507		207	272
*1	504	29		105	20	2	534	10	<i>.</i>	075	05	2	700	709
	11.7.5		2	102	100	2	714	604	ö	307	202	3	244	251
	11/15		J 4	475	447	2	64¥	23	10	545	574		557	582
~	873	813	2		273	-	660	645	10	5-10		-	209	221
1	62J	62	2	513		0	000	0-55		H.B		7	457	457
5	154	100	27	225	774		H. R					á	214	305
2	157	160	é	822	237		1101-11		•	95	QR	ĕ	40*	74
4	103	175	0	022	000	•	250	245		416	202	10	549	630
2	547	541		4.7.10			273 55¥	64	2	74	32	10	0-0	200
2	27/	103		H1/110		2	60	67	3	444	431		H.81	
2	254	103	•	775	701	2	105	170		163	175			
	471	253	U 1	168	140	2	577	1/3	2	67	80	1	116	. 00
8	151	147	4	346	267	2	300	393	2	62	51	2	413	300
10	217	316	2	5-10	377	ŝ		202	<u> </u>	270	266	2	-13	
11	317	310	2	401	401					134	136			
11	C10	513	~						3	107	100			

	H,8,-1			H1813		3	134 485	131	3	235	220	5	93 489	117
3	70 509	69 605	0	452	445	5	91	100	5	153	151	0		-05
- -	203	47		E 10	51	2		221					H1311	
ě	=77	E73	5	04	513		03	03	-	H131-9		<u> </u>	500	400
7	50*	24	4	646	636		U.e.e		•	370	202	1	300	204
á	389	376	5	51¥	550		11010			200	203	÷	520	504
ă	63%	60	é	662	669	n	140	136	2	195	107	5	200	264
10	430	429	2	72	72	1	54X	42	ے م	373	369	3	300	
	100	14.0	Á	435	442	5	55%	19	5	110	118	5	141	140
	H.8.0		ă	124	122	3	234	237	-			-		+ 10
						4	152	140		H.94			H.9.2	
n	871	842		н.8.4		5	104	110						
1	65	70				ā	601	622	1	114	106	0	145	145
2	654	641	Ó	821	828	-			ž	52#	26	1	95	92
3	49*	33	1	247	240		H.8.9		3	225	207	Ž	261	258
4	350	344	2	495	484				4	197	196	3	118	120
5	70	63	3	270	274	0	404	414	5	424	406	4	380	366
6	72	77	4	426	430	1	417	432	6	422	415	5	55	67
7	83	72	5	59	86	2	467	466						-
8	507	525	6	89	77	3	317	299		H191-3			H,9,3	
9	157	153	7	347	341	4	509	510						
10	544	547	8	307	310	5	268	278	1	336	334	0	463	440
			9	218	224				2	384	382	1	421	409
	H,8,1						H 18-1 0		3	350	337	2	622	610
				H1815			_	_	4	364	366	3	352	361
0	132	113	_			O,	131	121	5	337	328	4	149	158
1	134	142	D	577	573	1	114	133	6	130	133	5	98	89
2	379	369	1	88	89	2	132	121						
3	48*	33	2	/64	/61	3	74	58		H, 9, -2		-	H,9,4	
4	621	607	3	126	121	4	286	398		5 .5 W	~~	-	AC 7	
5	50*	40	4	743	746				1	50*	62	<u>u</u>	45/	460
b,	489	482	5	234	249		H18111		4		68	÷.	121	118
~	51*	303	5	4/2	460	~	204	205	3	776	340	4	2/9	270
8	381	383		224	35	U U	301	306	2	235	240	3	301	5/1
10	103	120	8	300	210		130	410		591	500	-	001	201
10	/0	90		4.0.6		£		419	0	910	200		U.Q.E	
	H.8.2			11010			H.8.12			H.91			H1313	
	111076		ń	434	413							D	191	179
n	669	666	1	56	16	n	95	101	1	341	337	ī	114	119
1	241	227	2	269	256	-			ź	474	461	2	406	391
2	570	570	3	221	230		H,9,-7		3	341	331	3	129	136
3	150	167	4	101	103				4	203	196			
4	480	495	5	66	53	1	55×	51	5	253	260		H,9,6	
5	130	154	6	316	309	2	313	303	6	134	120			
6	175	183	7	102	90	3	128	131				0	432	418
7	202	202				4	362	360		н,9,0		1	84	78
8	159	162		H.8,7								5	623	624
9	159	169					н,9,-6		1	158	159			
			0	251	248				2	64	70		H,9,7	
			1	189	201	1	125	143	3	218	229	~	- - -	-
			5	418	421	2	82	108	4	412	405	U	54*	12

References

- D.J. Cole-Hamilton, R.J. Young, G. Wilkinson, J.C.S. Dalton (in press).
- 2, W. Keim, J.O.M.C., 1968, 14, 179.
- W.R. Busing and H.A. Levy, <u>Acta Cryst.</u>, <u>1957</u>, <u>10</u>, 180.
- 4. P. Coppens, L. Leiserowitz and D. Rabinovich, Acta Cryst., 1965, 18, 1035.
- 5. 'X-ray 70' system of programs, J.M. Stewart, University of Maryland Technical Report. Tr 64 6 Edited by J.M. Stewart, F.A. Kundell and J.C. Baldwin,
- 6. S.J. La Placa and J.A. Ibers, J. Amer. Chem. Soc., <u>1963</u>, <u>85</u>, 3501; <u>Acta Cryst., 1965</u>, <u>18</u>, 511.
- 7. E.W. Hughes, J. Amer. Chem. Soc., 1941, 63, 1737.
- D.T. Cromer and J.T. Waber, <u>Acta Cryst.</u>, <u>1965</u>, <u>18</u>, 104.
- 9. R.F. Stewart, E.R. Davidson, and W.T. Simpson, J. Chem. Phys., 1965, 42, 3175.
- 10. D.T. Cromer, Acta Cryst., 1965, 18, 17.
- S.R. Fletcher and A.C. Skapski, J.C.S. Dalton, 1972, 635.
- 12. R.O. Harris, L.S. Sadavoy, S.C. Nyburg and F.M. Pickard, J.C.S. Dalton, 1973, 2646.
- A.C. Skapski and F.A. Stephens, <u>J.C.S. Dalton</u>, <u>1974</u>, 390.
- C.K. Johnson, ORTEP ellipsoid plotting program. Oak Ridge National Laboratory, Tennessee, 1965, Report ORNL 3794.
- 15. (a) M.J. Nolte, G. Gafner, L.M. Haines, Chem. Comm., 1969, 1406.
 - (b) M.J. Nolte and G. Gafner, Acta Cryst., 1974, B30, 738.

- 16. G.J. Kruger, A.L. du Preez and R.J. Haines, J.C.S. Dalton, 1974, 1302.
- 17. P. Coppens, G.M.J. Schmidt, Acta Cryst., 1965, 18, 654 1965, 18, 62.
- 18. A.F. Cesur, J.P.G. Richards, Z. Kristallogr., 1965, 122, 283.
- 19. J. Trotter, Acta Cryst., 1960, 13, 86.
- 20. H.P. Klug, Acta Cryst., 1965, 19, 983.

APPENDICES

APPENDIX I, II

The following two structural investigations were undertaken as exercises to gain practical experience of "direct methods" as a technique of structure determination. This was done in order to implement in a practical way the theory studied during my M.Sc degree in Crystallography and the dissertation on "Phase Probability and Image-Seeking Methods", which was undertaken as part of that degree and thus to broaden my experience of crystallographic techniques.

The first compound studied was Cambogin $(C_{38}H_{50}O_6)$ extracted from the roots of the plant <u>Garcinia Cambogia</u> Desr (Guttiferae). Both Cambogin and its dibrosylate were crystallised from methanol with material supplied by Professor Govindachari. Preliminary photographs were taken on both substances to ascertain in each case the probable difficulty of structural solution. It was decided to use the dibrosylate $(C_{50}H_{56}O_{10}B_{12}S_2)$ to determine the absolute configuration of the molecule by utilising the anomalous dispersion contribution of the bromine and sulphur atoms and this has been successfully achieved. Concordant structure solutions were obtained by both heavy-atom and direct-method techniques; the Patterson map was readily solved and its solution was later confirmed by the directmethod solution.

The structure of the ketol (C₂₀H₃₄O₂) supplied by Professor Pascual Vila was also solved by direct methods using the powerful phase-expansion procedure of the program MULTAN.

APPENDIX I

The crystal and molecular structure

of Cambogin dibrosylate.

"Nothing is really work unless you would rather be doing something else." ... Sir James Barrie.

<u>Appendix I</u>

Introduction

A large number of xanthones and complex xanthone derivatives e.g. morellin², and 3,8-linked biflavonoids, e.g. morelloflavone (fukugetin), have been isolated from <u>Garcinia</u> (Guttiferae).

Xanthochymol (I), isoxanthochymol (IIa) and its presently confirmed enantiomer, Cambogin (IIb), are all derivatives of maclurin (III) modified in the A ring by the substitution of five prenyl groups.

The mass spectra of both isoxanthochymol and cambogin demonstrate the presence of a dihydroxybenzoyl group, two C_5H_9 groups and one $C_{10}H_{17}$ group. Using these results and U.V. and N.M.R. data, and making the assumption that the biogenetic precursor of these compounds is maclurin (III) in which the catechol group is unchanged and the phloroglucinol unit has become the target of attack by five "active isoprene" groups, Karanjgoakar *et al*⁵ proposed the part structure IV for isoxanthochymol⁵. This was confirmed and completed (IIa) by an X-ray study of its dibrosylate.⁵

Scheinman *et al*⁶ had earlier demonstrated the significance of maclurin in xanthone biosynthesis by a statistical analysis of xanthones in higher plants. It is now clear that prenylation of both rings A and B of maclurin is involved in the biosynthesis of morellin, whereas prenylation of ring A alone is involved in the biosynthesis of xanthochymol, isoxanthochymol and cambogin.

General

The structure of cambogin, a benzophenone derivative isolated from the roots of the plant <u>Garcinia Cambogia</u> has been solved via its dibrosylate derivative. Cambogin was isolated by Drs. Pai and Rao of the Chemistry Department of Presidency College, Madras. Preliminary studies by these workers based solely on spectroscopic data for lack

of material suggested that either of the two structures (V or VI) were likely, though some variant of the isoxanthochymol skeleton was also 7 possible.

Since it proved difficult to differentiate between these structures by chemical means, samples of cambogin and its di-p-bromobenzene-sulphonate were sent to this laboratory for further study through the kind intermediacy of Professor Govindachari.

The gem-dimethyl group close to the dihydroxybenzoyl group is more hindered in structure VI than in V, but inspection of models shows that it does not seem to be overcrowded even in VI. In the nuclear magnetic resonance spectrum of cambogin (Fig. 1), it appears that none of the four tertiary methyl groups present in the molecule is significantly shielded. This evidence which is negative would also not dismiss any variant of isoxanthochymol, since the dihydroxybenzoyl group is not rigidly attached and its shielding effect on the methyl groups may be small. Additionally, the evidence for the presence of a geranyl side chain on the chromane ring and the position of the γ - γ - dimethylallyl group was derived solely from mass spectral data and a supposed biogenetic route. The proposed structures were therefore far from certain.

After the structure of cambogin had been determined from threedimensional data (see later experimental section) it proved to have the same structural skeleton as isoxanthochymol whose stereochemistry, though found by X-rays, was not fully defined in ref. 5. This seemed rather strange in the light of the melting point and optical rotary measurements (Table I);

Table I

Comparative Data for Cambogin and Isoxanthochymol

	mpt.	$[\alpha]_{D}^{25}$ (1% in EtOH)
isoxanthochymol	218 - 225 ⁰ *	+179.2
cambogin	242 - 244 ⁰	-212.6°

* depressed by at least 5° on admixture with cambogin

Nuclear Magnetic Resonance Spectrum of Cambogin.

the $[\alpha]_D^{25}$'s are opposite in sign but not equal, whilst the mpt's are quite different. This suggested that the compounds were epimers rather than enantiomers. The two starred centres (*) in IIa indicate the two possible epimeric positions which were not defined in ref. 5.

A direct comparison between the two structures was not immediately possible as no crystallographic data or co-ordinates had been published for isoxanthochymol.⁵ Reference to Dr. Palmer, who did the X-ray work, elicited the surprising result that the two compounds had the same space group, almost identical cell parameters and closely corresponding atomic co-ordinates. In view of the opposite signs of $[\alpha]_D$ for these substances, (see Table I) it appeared that the two compounds must be enantiomeric, but from the lack of agreement of the numerical values of the mpt's and optical rotations it seems likely that the specimen of isoxanthochymol, while probably chemically pure, is not so optically homogenous as that of cambogin.

It thus remained to determine the absolute configuration of the two species. The absolute configuration of cambogin has been confirmed (see experimental section) and fortuitously it had the same configuration as the arbitrary heavy-atom and direct methods solution. Quite by chance, too, isoxanthochymol had been solved in the enantiomeric configuration, thus both sets of co-ordinates quoted represent the true chiralities. Dr. Palmer considered that his data, which were collected from three crystals, despite being refined to <u>R</u> 0.09 suggest but are not strong enough to prove that isoxanthochymol has the enantiomeric configuration. The specimens which he studied had decomposed, so the m.pt., $\left[\alpha\right]_{D}^{25}$ and chirality could not be checked.

Experimental

Preliminary data for cambogin and its dibrosylate are compared in Table 2. The crystals of the dibrosylate were colourless rectangular blocks.

Table 2

Comparative table of preliminary results of cambogin and its dibrosylate.

<u>Cambogin</u> :	$C_{38} H_{50} O_6; \underline{M} = 602$
Orthorhombic;	a = 11.1Å, $b = 14.52$ Å, $c = 20.7$ Å
Space group	$\frac{P^2}{2} \frac{1^2}{1^2} \frac{1^2}{1^2}; \underline{Z} = 4; \underline{Dc} = 1.2g \text{ cm}^{-3}$

Intensity data for a 24-hour Weissenberg were discernible to $\theta \simeq 50^{\circ}$, though larger crystals than the specimen examined were available. There would probably be enough data for a direct-method solution, but the presence of 44 non-hydrogen atoms would make the possibility of success unsure.

Cambogin dibrosylate:	$C_{50} \stackrel{\text{H}}{_{56}} O_{10} \stackrel{\text{Br}}{_{2}} S_2; \underline{M} = 12.4 \text{Å}$
Monoclinic;	<u>a</u> = 10.64Å, <u>b</u> = 21.0Å, <u>c</u> = 12.4Å, β = 105°
Space group	$P_{1}^{2}; Z = 2; Dc = 1.29g \text{ cm}^{3}$

Intensity data for a 24-hour Weissenberg ran to $\theta \simeq 45^{\circ}$. Nevertheless this compound was thought preferable as it poses a straight heavy-atom solution and also the presence of bromine and sulphur atoms enables the determination of the absolute configuration which is required. This compound was recrystallised in this laboratory from methanol owing to the deterioration of the crystal samples in transit. The specimens used were coated with picture varnish.

Crystal data

 $C_{50} H_{56} O_{10} Br_{2} S_{2}, \text{ mpt. } 104^{\circ}, [\alpha]_{D} = -107.75^{\circ}$ (C = 0.8 in EtOH) <u>M</u> = 1040.9, monoclinic, <u>a</u> = 10.140(2), <u>b</u> = 21.269(3), <u>c</u> = 12.378(2), B = 105.84(1), <u>U</u> = 2568.2 Å³, <u>D</u>_m (by flotation)=1.36g cm,³ <u>Z</u> = 2, <u>D</u>_c = 1.34g cm⁻³, <u>F</u>(000) = 1136.

Optical activity and systematic absences uniquely indicated space group P2₁ (NO. 4). Cu-K α radiation ($\overline{\lambda}$ = 1.5418Å); μ (Cu - K α) = 38.7cm⁻¹

The crystal chosen for intensity measurements was a rectangular block <u>ca</u> 0.25 x 0.25 x 0.50 mm³ mounted about <u>b</u>. Intensities were measured on a Siemens off-line automatic four-circle diffractometer with filtered Cu -Ka radiation (See Chapter I). A total of 3268 independent reflections (to $\theta = 55^{\circ}$) were measured by means of the $\theta - 2\theta$ scan technique with the five-value measuring procedure. Of these, 799 reflections were judged to be unobserved, i.e. I < 2.58 $\sigma(\underline{I})$. The net count of the reference reflection measured as a reference every 50 reflections deteriorated by approximately 20% during the data collection (ca. 8 days). The data were converted to a common arbitrary scale by use of the reference reflection and Lorentz and polarisation corrections were applied.

Solution and Refinement of the Structure

The structure was solved by both direct methods and the heavyatom method.

Initially, the largest four-hundred |E| values were calculated using the free standing program NORMAL. All |E|'s greater than 1.7 were then sorted into their various parity groups for input to the program SIGMA which gave lists of all Σ^2 interactions of each reflection encountered amongst the input reflection data. The program listed the interacting reflections, the $E_1 x E_2 x E_3$ value and the probability of the relationship. Three origin and one enantiomorph defining reflections were chosen using the criteria explained in Appendix IV.

h	k	l	Е	Phase
2	0	1	2.71	0
1	0	4	2.75	0
0	1	2	3.28	^π /2
1	6	1	2.69	
1	5	2	2.43	Υ.
3	3	ī	2.69	

a

Ъ

С

The starting set input to the PHISUM subroutine was identical to that of the hand calculation and it was successful in assigning 124 consistent relationships from the 179 starting terms with |E| > 1.7. The symbolic phases a,b,c were each given values ranging in steps of 250 millicycles from 125 to 875mc, the enantiomorph fixing reflection 161 being restricted to values between 0 to π . Owing to this enantiomorph restriction only 2 x 4 x 4 combinations were required to be computed.

The sum with the lowest R_{Karle} (0.205) and the highest $\langle t_{\underline{A}} \rangle$ (0.921) and $\langle \alpha \rangle$ (109.3) was from starting values of a = 125mc, b = 125, c = 125. The corresponding E-map computed from these numerical phases clearly showed the positions of the bromine and sulphur atoms and some forty other meaningful atomic positions. Isotropic refinement in CRYLSQ, using phases based on these positions gave <u>R</u> = 0.29. Comparison of these atomic positions with the heavy-atom solution confirmed the results of this exercise. Looking back at this direct-method solution with the heavy-atom solution as a model, it would have been possible to find an additional six atoms from the E-map although their relative peak heights were much lower than that which one would expect for a carbon atom. A three-dimensional, origin-removed Patterson was calculated whilst the above direct-methods calculations were still taking place. One bromine was easily located with the aid of the Harker section $V = \frac{1}{2}$ of the map, but, owing to the overlap of some Harker peaks and the occurrence of a number of strong non-Harker peaks on the Harker section, the second bromine was more difficult to find. The x and z co-ordinates of the first Br atom were found and its y co-ordinate was arbitrarily fixed at 0.25. The second Br's y co-ordinate was calculated using the Br(1) - Br(2) intervectors with the fixed y-value for Br(1). Their y co-ordinates differed substantially, (Ca. 0.32b = 6.8Å). It is notable that the presence of this second bromine atom at such a height separation is convenient insofar as it breaks the pseudo-plane of symmetry normally encountered in P2, when only one heavy atom is p**re**sent.

After assignment of the bromines, tentative assignments of the sulphurs were made. Three cycles of isotropic least-squares refinement of Br and S atoms gave $\underline{R} = 0.41$. The remaining non-hydrogen atoms were located from successive difference syntheses, and three cycles of isotropic refinement of all these atoms gave $\underline{R} = 0.147$. Some six misprocessed reflections and three low-angle reflections suffering from extinction were removed. Anisotropic refinement on all atoms brought \underline{R} to 0.106. Some twenty-four hydrogen atoms were then found from the corresponding difference-synthesis and allowance for these as a fixed atom contribution brought R to 0.098. (No further H-atoms were located).

At this stage, an absorption correction was applied according to the method of Busing and Levy⁸, with crystal path lengths determined by the procedure of Coppens *et al.*⁹ Further anisotropic refinement increased <u>R</u> to 0.102 and despite checks on the measurements of the crystal and assignment of the crystal faces no error could be found. It was decided to ignore this correction as no significant improvement could be seen in the standard deviations of the atoms.

Absolute Configuration

The method used was that suggested by Ibers and Hamilton, the commonly named "R-factor-ratio test". Two sets of structure factors were computed using the latest positional co-ordinates with Δf " for both bromine and sulphur being +<u>ve</u> and -<u>ve</u> respectively. The results gave <u>R</u> = 0.093 and 0.099 respectively for all data, but when the centric hOL data were excluded, the respective <u>R</u> values were 0.0895 and 0.0952. The ratio R-/R+ = \mathcal{M} is thus 1.064 which, by reference to Hamilton's Tables, indicates very strongly that the absolute stereochemistry is depicted by Fig. 3.

The refinement was carried out for 3268 reflections and 577 parameters. Hence there were 2691 degrees of freedom.

The statement, "The second absolute configuration is correct" is a one-dimensional hypothesis since it involves changing only the signs of all the y co-ordinates. To extrapolate to 2691 degrees of freedom, the Hamilton formula can be used:

$$\mathcal{R}_{1,2691,0.005} \approx 1 + \frac{120}{2691} \left(\mathcal{R}_{1,120,0.005} - 1 \right)$$

The value of $\mathcal{P}_{1,120,0.005}$ obtained from Hamiltons tables for the 0.005 level of significance (the lowest listed) is 1.034.

$$\mathcal{R}_{1,2691,0.005} \simeq 1 + 0.0445 \times (1.034 - 1) \simeq 1.0015$$

whence

Hence:

 $\mathcal{R}_{1,2691,0.005}^{-1 \simeq 0.0015}$

As this value is very much smaller than $(\frac{R}{R+} - 1) = 0.064$ it follows that the probability that the structure corresponds to the mirror image of the structure whose co-ordinates are given in Table 3 is << 0.005 and so can be strongly rejected. All the diagrams of
Cambogin shown in this chapter depict the correct absolute configuration.

Description of the Structure and Discussion

The molecular structure is shown in Fig. 3 and the corresponding packing diagram in Fig. 4. Tables 3 and 4 list the final co-ordinates of the non-hydrogen atoms and the coefficients for the anisotropic temperature factors. The standard deviations have been estimated from block-diagonal matrix refinement and are, therefore, a slight underestimate of the true deviations. Tables 5 and 6 list the final co-ordinates of the enantiomer and the coefficients for the anisotropic temperature factors supplied by Dr. Palmer. Table 7 lists the co-ordinates of the 24 hydrogen atoms in cambogin obtained from the latest difference-Fourier: these are unrefined.

Fig. 5a, 5b compares the numbering schemes used by us for cambogin and by Dr. Palmer for isoxanthochymol. Fig. 6, 7, and 8, 9 show the bond lengths and angles for the two structures with estimated standard deviations. Least-squares planes and dihedral angles for both molecules have been calculated; least-squares planes are tabulated in Tables 8 and 9 whilst dihedral angles are shown in Figs. 10 and 11.

Detailed discussion of the differences between these two structures will be deferred to a full paper later, but first impressions suggest that they may be due in part to lack of homogeneity in the isoxanthochymol specimen. The much greater susceptibility of isoxanthochymol to X-ray damage reported by Dr. Palmer may also point in the same direction. The matter cannot be pressed very far, however, in view of the limited accuracy of both determinations - again due in part to radiation damage. However despite this limitation it has been possible successfully to determine the absolute configuration of cambogin.

Comparison of observed and calculated structure amplitudes are listed at the end of the chapter. Steric Considerations and the possible Mechanism of formation of Cambogin and Isoxanthochymol.

Previously, the two asymmetric positions marked with stars in IIa were only considered with respect to whether cambogin and isoxanthochymol were enantiomers or epimers. If one considers the stereochemistry at these two centres one can gain insight into the possible biogenesis of these compounds.

In cambogin (VII) Prenyl σ is in the equatorial position with respect to a boat-shaped ring C. This ring is doubtless constrained in this conformation by the need to arrange σ equatorially (principally to relieve congestion between prenyls ν and σ). The presence of the ether oxygen (instead of methylene) has also helped by removing the hydrogen-methyl steric interaction which would otherwise have resisted the boat configuration. However, had prenyl σ been β -oriented in VII (or α in VIII) it would have gone equatorial and thus allowed ring C to become a chair, which is energetically slightly more favourable.

Prenyl τ is axial to a chair-shaped ring D. In this case the efforts of τ to become equatorial by flipping the ring to a boat are strongly resisted by the eclipsed interactions between both methyls and the adjacent two substituent C-C bonds. It is thus evident that a marked reduction in strain could result from changing τ to the β -orientation in VII(α in VIII). So one is tempted to look at these steric factors in relation to the possible biogenesis of these compounds.

Karanjgoakar *et al*⁵ suggested that isoxanthochymol is formed via some intermediate akin to Compound X. The analogous precursor of cambogin is, therefore, IX. These part-structures have only one dissymmetric centre (starred) at which the prenyl λ can be α or β . At the other side of the ring there are two identical prenyls. IX and X are therefore enantiomers. When prenyl λ is β as in IX it will orient itself equatorially and so tilt the carbonyl bridge to the β -side of the plane of the remainder of ring B. It then follows that the β -oriented prenyl μ will bridge to the hydroxyl to form ring C, and the α -oriented prenyl ν bridges the hexenone ring B to form ring D, thus forming the nucleus of cambogin.

However, when prenyl λ is $\alpha\text{-oriented}$ as in X it deflects the carbonyl α , so this time it is the β -oriented prenyl μ which cyclises across ring B and the α -prenyl ν which bridges to the hydroxyl to form the nucleus of isoxanthochymol. As the addition of the remaining prenyls σ and τ was thought to be performed simultaneously with these closures (and the geometry of their attachment is consistent with this assumption), it would give rise to versions of VII and VIII that were exact enantiomers. Thus the existence of these two enantiomers seems to substantiate the proposed mechanism of Karanjgoakar et al and traces them back to the simpler enantiomers IX and X. It is rather easier to understand that different members of the Garcinia might produce these stereo-selectively, though it should be borne in mind that in the present state of our knowledge we cannot be sure that they do so homogeneously. The query mentioned earlier as to the homogeneity of the isoxanthochymol specimen is relevant here, and we cannot at present rule out the possibility that the work up procedures may have interfered with the chirality ratio and helped to produce crystals of the major constituent through spontaneous resolution.

219

Fig. 2

Schematic Diagrams

of molecular formulae referred to in text.

1 - X

<

Position of attachment of isoprene units

он

A

но

Isoxanthochymol

Molecular Structure of Cambogin Dibrosylate.

•

Stereoscopic packing diagram of Cambogin Dibrosylate.

Comparison of the numbering in Cambogin and Isoxanthochymol.

. Ap

228

231

Cambogin dibrosylate

Figure 11

Isoxanthychymol Enantiomer

Cambogin enantiomer.

Fractional co-ordinates of non-hydrogen atoms

Estimated standard deviations in parentheses.

ATOM	x	У	Z
Br(1)	0.4063(3)	0.25	0.4252(3)
Br(2)	0.4483(3)	-0.0670(2)	0.6571(4)
S(1)	0.7302(5)	0.1170(3)	0.1203(5)
S(2)	0.9027(6)	0.0534(3)	0.6015(7)
C(11 1)	0,505(2)	0.221(2)	0.353(3)
C(21 1)	0.559(2)	0.244(1)	0.282(2)
C(31 1)	0.640(2)	0.218(1)	0.211(2)
C(41 1)	0.650(2)	0.152(1)	0.211(2)
C(51 1)	0.594(2)	0.117(1)	0.286(2)
C(61 1)	0,521(2)	0.148(2)	0.356(2)
0(1)	0.763(1)	0.1604(9)	0.034(1)
0(2)	0.681(1)	0.0604(7)	0.067(1)
0(3)	0.843(1)	0.0951(6)	0.240(1)
C(12 1)	0.908(2)	0.142(1)	0,307(2)
C(22 1)	0.976(2)	0.177(1)	0.254(2)
C(32 1)	1.054(2)	0.223(1)	0.331(2)
C(42 1)	1.060(2)	0.228(1)	0.479(2)
C(52 1)	0,990(2)	0.193(1)	0.532(2)
C(62 1)	0.916(2)	0.1466(9)	0.452(2)
C(13 1)	0,574(2)	-0.036(1)	0.642(2)
C(23 1)	0.636(3)	-0.052(1)	0.541(3)
C(33 1)	0.741(3)	-0.030(1)	0.528(3)
C(43 1)	0.782(2)	0.021(1)	0.612(2)
C(53 1)	0.737(2)	0.042(1)	0.709(2)
C(63 1)	0.635(3)	0.014(1)	0.723(2)
0(4)	0.964(2)	0.018(1)	0.532(3)
0(5)	0.966(2)	0.081(1)	0.728(2)
0(6)	0.847(1)	0.1113(6)	0.506(1)
0(7)	1.199(1)	0.3078(8)	0.505(1)
0(8)	1.030(2)	0.3643(7)	0.668(1)
0(9)	1.069(1)	0,2361(8)	1.029(1)
0(10)	1.279(1)	0.2011(7)	0.753(1)
C(1)	1.140(2)	0.275(1)	0.554(2)
C(2)	1.145(2)	0,280(1)	0.707(2)

• ••

and the second

: 1

C(3)	1.082(2)	0.3256(9)	0.750(2)
C(4)	1.070(2)	0.3259(8)	0.895(2)
C(5)	1.154(2)	0.380(1)	0.984(2)
C(6)	1.275(2)	0.369(1)	-0.016(2)
C(7)	1.318(2)	0.301(1)	1.017(2)
C(8)	1.226(2)	0.2498(9)	0.950(2)
C(9)	1.215(1)	0.2402(9)	0.798(2)
C(10)	1.119(2)	0.2663(9)	0.960(1)
C(11)	1.271(2)	0.184(1)	1.027(2)
C(12)	1.241(2)	0.129(1)	0.924(2)
C(13)	1.306(2)	0.1362(9)	0.813(2)
C(14)	1,260(3)	0.094(1)	0.691(2)
C(15)	1.429(2)	0.134(1)	0.852(3)
C(16)	1,273(2)	0,065(1)	1.003(2)
C(17)	1.191(3)	0.056(1)	1.087(3)
C(18)	1,217(3)	0.035(1)	1.224(3)
C(19)	1.349(3)	0,008(2)	1.275(3)
C(20)	1.129(3)	0.027(1)	1,304(3)
C(21)	1.316(2)	0.398(1)	0.871(3)
C(22)	1.439(2)	0,404(1)	0,913(2)
C(23)	1.518(2)	0.373(1)	0.884(3)
C(24)	1,501(3)	0.320(2)	0.784(3)
C(25)	1.640(2)	0.383(2)	0.947(4)
C(26)	1.146(2)	0,375(1)	1,138(2)
C(27)	1,108(3)	0.446(1)	01927(2)
C(28)	0,944(2)	0.337(2)	0.885(2)
C(29)	0,874(2)	0.280(1)	0.830(2)
C(30)	0.791(2)	0.279(1)	0.7L9(3)
C(31)	0.722(2)	0.221(1)	0,661(3)
C(32)	0.763(3)	0,331(2)	0,608(4)

Cambogin enantiomer.

Anisotropic thermal parameters

<i>*</i> .	$\underline{U}_{11} \times 10^3$	$\underline{U}_{22} \times 10^3$	<u>U</u> 33 ^{x10³}	$\underline{U}_{12} \times 10^3$	^U 13 ^{×10³}	³ U ₂₃ ×10 ³
Br(1)	125(3)	256(5)	98(2)	44(3)	6(2)	-59(3)
Br(2)	136(3)	132(3)	127(3)	-40(2)	13(2)	23(2)
S(1)	97(4)	82(4)	61(3)	4(3)	3(3)	-13(3)
S(2) ·	107(5)	101(5)	107(5)	6(4)	15(4)	50(4)
	<u>U</u> 11 ^{x10²}	<u>U</u> 22 ^{x10²}	<u>U</u> 33 ^{x10²}	<u>U</u> 12 ^{x10²}	<u>U</u> 13 ^{x10²}	² <u>U</u> 23 ^{x10²}
C(11 1)	6(2)	38(6)	14(3)	2(30	3(2)	6(3)
C(21-1)	9(2)	12(2)	10(2)	6(2)	-3(1)	-7(2)
C(31-1)	9(2)	9(2)	10(2)	-1(1)	-3(1)	-1(1)
C(41-1)	10(2)	8(1)	C6(1)	0(1)	-1(1)	0(1)
C(51·1)	16(2)	9(2)	7(1)	-5(2)	3(2)	0(1)
C(61 1)	8(2)	31(4)	4(1)	-2(2)	0(1)	-1(2)
0(1)	15(1)	14(1)	5(1)	-2(1)	2(1)	3(1)
0(2)	14(1)	8(1)	8(1)	-1(1)	-1(1)	-3(1)
0(3)	8(1)	7(1)	9(1)	1(1)	-1(1)	-1(1)
C(12 1)	7(1)	9(2)	6(1)	-3(1)	1(1)	1(1)
C(22 1)	17(2)	11(2)	3(1)	-4(2)	0(1)	1(1)
C(32 1)	12(2)	12(2)	6(1)	-1(2)	4(1)	1(1)
C(42 1)	8(1)	9(1)	3(1)	-1(1)	2(1)	1(1)
C(52 1)	7(1)	9(1)	4(1)	1(1)	1(1)	1(1)
C(62]1)	7(1)	6(1)	7(1)	-1(1)	2(1)	-1(1)
C(13 1)	15(2)	6(1)	5(1)	0(1)	-2(1)	-1(1)
C(23 1)	22(4)	7(2)	7(2)	-1(2)	-6(2)	0(1)
C(33 1)	14(2)	10(2)	8(2)	-4(2)	4(2)	1(2)
C(43 1)	9(1)	9(2)	5(1)	-1(1)	2(1)	1(1)
C(53 1)	10(2)	6(1)	9(2)	-3(1)	1(1)	1(1)
C(63 1)	21(3)	6(2)	7(1)	4(2)	2(2)	2(1)
0(4)	20(2)	13(2)	25(3)	11(2)	14(2)	10(2)
0(5)	16(2)	22(2)	8(1)	-8(2)	-5(1)	5(1)
0(6)	10(1)	7(1)	7(1)	-1(1)	2(1)	2(1)
0(7)	14(1)	13(1)	5(1)	-5(1)	2(1)	2(1)
0(8)	18(2)	6(1)	7(1)	4(1)	2(1)	1(1)
0(9)	11(1)	12(1)	5(1)	-1(1)	0(1)	1(1)
0(10)	9(1)	10(1)	6(1)	0(1)	2(1)	0(1)

C(1)	7(1)	11(2)	5(1)	-1(1)	0(1)	1(1)
C(2)	6(1)	9(1)	5(1)	0(1)	1(1)	-1(1)
C(3)	9(1)	5(1)	7(1)	2(1)	1(1)	1(1)
C(4)	12(2)	4(1)	4(1)	-2(1)	2(1)	-1(1)
C(5)	11(2)	7(1)	7(1)	0(1)	3(1)	0(1)
C(6)	7(1)	9(1)	7(1)	0(1)	3(1)	-2(1)
C(7)	12(2)	9(2)	4(1)	-1(1)	-1(1)	-1(1)
C(8)	8(1)	7(1)	4(1)	-2(1)	1(1)	0(1)
C(9)	6(1)	8(1)	7(1)	0(1)	2(1)	0(1)
C(10)	8(1)	8(1)	4(1)	-3(1)	2(1)	-1(1)
C(11)	12(2)	7(1)	6(1)	2(1)	2(1)	1(1)
C(12)	13(2)	7(1)	6(1)	0(1)	0(1)	0(1)
C(13)	9(2)	5(1)	6(1)	1(1)	1(1)	-1(1)
C(14)	23(3)	9(1)	6(1)	1(2)	4(2)	-1(1)
C(15)	8(2)	11(2)	14(2)	0(2)	0(1)	2(2)
C(16)	14(2)	9(2)	9(2)	2(2)	1(2)	4(1)
C(17)	16(3)	9(2)	13(2)	0(2)	2(2)	8(2)
C(18)	16(3)	9(2)	13(2)	-3(2)	1(2)	-3(2)
C(19)	16(3)	21(4)	11(2)	-6(3)	-5(2)	6(2)
C(20)	17(3)	15(3)	9(2)	-2(2)	6(2)	-2(2)
C(21)	11(2)	10(2)	11(2)	-4(2)	3(1)	2(1)
C(22)	9(2)	8(2)	10(2)	-2(1)	5(1)	0(1)
C(23)	9(2)	12(2)	10(2)	-3(2)	4(1)	-3(2)
C(24)	22(3)	13(3)	12(2)	-2(2)	5(2)	-2(2)
C(25)	15(3)	16(3)	17(3)	-2(2)	1(2)	1(3)
C(26)	14(2)	13(2)	5(1)	-5(2)	4(1)	-4(1)
C(27)	21(3)	6(2)	8(2)	-2(2)	2(2)	0(1)
C(28)	7(1)	9(2)	9(1)	0(1)	.1(1)	-1(1)
C(29)	7(1)	9(2)	11(2)	-2(1)	1(1)	-1(1)
c(30)	11(2)	9(2)	10(2)	1(1)	0(1)	-1(1)
C(31)	11(2)	10(2)	18(3)	-2(1)	-3(1)	-3(1)
C(32)	17(3)	11(2)	16(3)	-2(2)	-2(2)	5(2)

<u>Table 5</u>

Isoxanthochymol enantiomer.

Fractional co-ordinates of non-hydrogen atoms Estimated standard deviations in parentheses.

ATOM	x	У	Z
BR(1)	0.6618(2)	-0.1149	-0.0538(2)
BR(2)	0.4252(2)	0.2013(2)	-0.0968(2)
S(1)	0.6020(4)	0.0045(2)	0.4031(3)
S(2)	0.1238(3)	0.0689(2)	0.2318(3)
0(1)	0.727(1)	0.0300(8)	0.464(1)
0(2)	0.582(2)	-0.0330(6)	0.459(1)
0(3)	0.5074(8)	0.0634(4)	0.3463(7)
0(4)	0.2414(8)	0.0471(4)	0.3443(7)
0(5)	0.038(1)	0.1145(6)	0,2651(9)
0(6)	0.070(1)	0.0107(5)	0.1828(9)
0(7)	0.5078(8)	0.2597(5)	0.6968(8)
0(8)	0.7560(8)	0.1541(4)	0.7780(7)
0(9)	1.0371(8)	0.1906(5)	0.5649(7)
0(10)	0.664(1)	0.3167(5)	0,5237(9)
C(1)	0.643(1)	-0.0830(7)	0.081(1)
C(2)	0.546(2)	-0.1019(8)	0.133(2)
C(3)	0.535(1)	-0.0783(8)	0.233(1)
C(4)	0.619(1)	-0.0294(7)	0.283(1)
C(5)	0.720(1)	-0.0073(6)	0.232(1)
C(6)	0.730(1)	-0.0325(7)	0.136(1)
C(7)	0.456(1)	0.1001(6)	0.420(1)
C(8)	0.312(1)	0.0934(6)	0.412(1)
C(9)	0.256(1)	0.1300(7)	0.479(1)
C(10)	0.335(1)	0.1722(7)	0,553(1)
C(11)	0.479 (1)	0.1794(6)	0.558(1)
C(12)	0.532(1)	0,1437(6)	0.4891(9)
C(13)	0.216(1)	0.1056(6)	0.150(1)
C(14)	0.284(2)	0.0713(7)	0.090(1)
C(15)	0.354(2)	0.101(1)	0.019(1)
C(16)	0.345(2)	0.165(1)	0.007(1)
C(17)	0.277(2)	0.1983(9)	0,064(1)
C(18)	0.212(1)	0.1708(8)	0.140(1)

C(19)	0.559(1)	0.2260(6)	0.6371(9)
C(20)	0.710(1)	0.2320(6)	0.6446(9)
C(21)	0.799(1)	0.1946(6)	0.7130(9)
C(22)	0.955(1)	0.2021(6)	0.724(1)
C(23)	0.967(1)	0.2208(6)	0.6138(9)
C(24)	0.897(1)	0.2804(6)	0,564(1)
C(25)	0.744(1)	0.2801(6)	0.0575(1)
C(26)	0.820(1)	0.0899(6)	0.805(1)
C('27)	0.930(1)	0.0838(7)	0.740(1)
C(28)	1.027(1)	0.1395(7)	0.769(1)
C(29)	1.018(1)	0.2561(8)	0.807(1)
C(30)	0.979(1)	0.3225(7)	0.766(1)
C(31)	0.978(1)	0.3334(7)	0.645(1)
C(32)	1.136(1)	0.330(1)	0.639(1)
C(33)	0.925(2)	0,3988(7)	0.601(1)
C(34)	0.703(2)	0.0459(8)	0.755(2)
C(35)	0.868(2)	0.0891(8)	0.930(1)
C(36)	0.859(2)	0.3505(8)	0.809(1)
C(37)	0.911(2)	0.3577(8)	0,935(1)
C(38)	0.885(2)	0.3254(8)	1.017(1)
C(39)	0.779(2)	0.271(1)	0,998(2)
C(40)	0.963(3)	0.337(1)	1.143(2)
C(41)	1.007(2)	0.0197(8)	0.766(2)
C(42)	1.108(2)	0.0103(8)	0.691(1)
C(43)	1.229(2)	-0.0154(9)	0.724(2)
C(44)	1.311(2)	-0.023(1)	0.640(2)
C(45)	1.288(3)	-0.037(2)	0.830(3)
C(46)	0.887(1)	0,2890(7)	0.440(1)
C(47)	0.829(1)	0.2361(7)	0.3678(9)
C(48)	0.711(1)	0.2306(7)	0.293(1)
C(49)	0.604(2)	0.280(1)	0.263(2)
C(50)	0.680(2)	0.1688(9)	0,223(1)

Isoxanthochymol enantiomer.

Anisotropic temperature factors.

ATOM	B11	B22	B 3 3	B ₁₂	B ₁₃	B ₂₃
BR(1)	7.1(1)	8,3(1)	7.0(1)	1,26(9)	1.60(8)	-2,48(9)
BR(2)	6.08(9)	17.0(2)	6,8(1)	-4.9(1)	0.77(7)	3.1(1)
S(1)	6.0(2)	6.7(2)	5.2(2)	3.3(2)	1.3(2)	-0.0(2)
S(2)	2.8(1)	5.0(2)	5,3(2)	-0.9(1)	0.3(1)	0.4(1)
0(1)	6.8(7)	13.8(11)	9.1(8)	5.5(8)	-2.5(6)	-6.3(8)
0(2)	15.9(12)	7,6(7)	9.2(8)	6.5(8)	8.5(8)	4.6(6)
0(3)	3.7(3)	4.2(4)	4.9(4)	1.0(3)	1.9(3)	-0.3(3)
0(4)	3.8(4)	4.2(4)	4.5(4)	-0.8(3)	1.0(3)	0.0(3)
0(5)	3.7(4)	7.7(6)	7.6(6)	1.6(4)	1.9(4)	-0.6(5)
0(6)	5.4(5)	5.1(5)	6.8(5)	-2.5(4)	-0.4(4)	-0.3(4)
0(7)	2.6(3)	6.8(5)	6.8(5)	0.0(4)	2.1(3)	-2.1(4)
0(8)	3.2(3)	5.2(4)	5.1(4)	0.3(3)	1.6(3)	0.7(4)
0(9)	3.2(3)	6,7(5)	5.4(4)	1.4(4)	1.1(3)	-0.9(4)
0(10)	3.3(4)	5.0(5)	8.5(6)	1.0(4)	2.5(4)	1.9(5)
C(1)	3.4(6)	5.6(7)	7.9(9)	0.7(6)	0.5(6)	1.1(7)
C(2)	4.8(7)	5.7(8)	9,3(10)	-1.1(6)	2.2(7)	-2.0(8)
C(3)	4.5(7)	6.2(8)	7.8(9)	-0.2(6)	2.8(6)	-0.6(8)
C(4)	3.5(6)	5.0(7)	5.9(7)	2.1(5)	0.7(5)	-0 .0 (6)
C(5)	3.8(6)	4.3(6)	6.1(7)	-0.4(5)	1.9(5)	-1.1(5)
C(6)	3.3(6)	6.1(8)	5.8(8)	-0.2(6)	0.7(5)	0.6(6)
C(7)	2.0(4)	4.7(6)	4.4(5)	0.3(4)	0.6(4)	-0.5(5)
C(8)	2,9(5)	4.7(6)	3,9(5)	-0.8(5)	0.7(4)	-0.4(5)
C(9)	1.3(4)	5.7(7)	7.4(7)	-0.1(5)	1.6(5)	-1.2(6)
C(10)	1.8(5)	5.7(7)	6.7(7)	0.0(5)	1.5(5)	-0.5(6)
C(11)	2.1(4)	4.2(6)	4.7(6)	-0.3(4)	0.8(4)	-0.2(5)
C(12)	1.6(4)	4.1(6)	4.4(5)	-0.2(4)	1.2(4)	-0.1(5)
C(13)	2.9(5)	4.5(6)	4.5(6)	-0.9(5)	0.7(4)	-0.3(5)
C(14)	6.1(8)	4.6(7)	7.9(9)	-0.2(6)	2.9(7)	0.0(7)
C(15)	5.8(9)	10.5(14)	5.7(8)	0.2(9)	1.9(7)	-0.7(9)
C(16)	4.4(7)	9.8(13)	4.5(7)	-2,3(8)	-0.6(6)	2.0(8)
C(17)	6.7(9)	6.2(9)	6.4(8)	-2.3(8)	-0,7(7)	1.5(8)
C(18)	5.4(7)	6.2(9)	4.3(6)	$-2\frac{1}{2}6(6)$	-1.0(5)	0.7(6)

C(19)	1.9(4)	4.9(6)	3.8(5)	0.0(4)	0.8(4)	0.6(5)
C(20)	1.5(4)	4.2(5)	4.2(5)	0.0(4)	0.5(4)	-0.2(5)
C(21)	2.2(4)	5.1(6)	4.1(5)	-0.5(5)	0.7(4)	-0.8(5)
C(22)	1.4(4)	4.5(6)	5.9(6)	-0.1(4)	0.2(4)	-1.0(5)
C(23)	2.0(4)	4.5(6)	3.7(5)	-0.8(4)	0.5(4)	-0.9(5)
C(24)	2.5(5)	3.8(6)	5.3(6)	-0.7(4)	1.7(4)	-0.4(5)
C(25)	2.1(5)	4.9(6)	3.9(5)	-0.2(5)	0.9(4)	-0.4(5)
C(26)	4.0(6)	3.8(6)	4.6(6)	-0.2(5)	0.3(5)	0.6(5)
C(27)	4.1(6)	4.5(7)	8.2(9)	0.8(5)	2.4(6)	0.4(6)
C(28)	3.8(6)	5.6(7)	5.6(7)	1.2(6)	0.7(5)	0.4(6)
C(29)	2.0(5)	6.8(9)	6.1(7)	-0.7(5)	0.4(5)	-1.7(6)
C(30)	3.9(6)	4.8(6)	6.0(7)	-0.4(5)	1.9(5)	-1.2(6)
C(31)	3.6(5)	4.9(6)	4.2(6)	-1.1(5)	1.7(4)	-0.4(5)
C(32)	3.1(6)	11.8(12)	6.7(8)	-4.5(7)	2.7(6)	-2.9(8)
C(33)	7.0(9)	3.9(7)	7.3(8)	-0.5(6)	1.6(7)	0.1(6)
C(34)	6.4(9)	5.8(8)	9.6(11)	-1.3(7)	3.2(8)	0.3(8)
C(35)	7.7(10)	6.7(9)	6.9(9)	2,5(8)	2.7(8)	2.4(7)
C(36)	6.2(8)	5.7(7)	6,3(8)	-0.3(6)	3.3(7)	-2.0(6)
C(37)	5.9(8)	6.5(8)	5.0(7)	-1.2(7)	2.1(6)	-1.3(6)
C(38)	7.1(9)	6,2(8)	6.9(9)	-0.9(7)	3.2(7)	-1.8(7)
C(39)	8.4(11)	9.0(12)	10,1(12)	-4.4(10)	5.2(10)	-1.7(10)
C(40)	14.6(19)	9,3(13)	6.4(10)	-1.5(13)	3.3(11)	-2.0(9)
C(41)	7.0(9)	5,0(8)	9.2(11)	2.8(7)	2.2(8)	1.7(8)
C(42)	8.8(11)	6.1(9)	5.6(7)	3.2(8)	1.4(7)	-0,3(7)
C(43)	5.7(9)	5.8(9)	9.3(11)	-0.5(7)	1.8(9)	-0.9(8)
C(44)	9.2(12)	8.9(12)	11.2(13)	-1.9(11)	6.1(11)	-1.8(11)
C(45)	7.1(12)	15.0(23)	14.7(22)	3.8(14)	3.8(14)	-4.3(19)
C(46)	4.5(6)	5.2(7)	5.0(6)	-1.0(5)	2,5(5)	-0.3(5)
C(47)	4.1(6)	5.6(7)	3.0(5)	0.1(5)	0.3(4)	0.1(5)
C(48)	5.4(7)	5.4(7)	5.1(7)	-1.0(6)	1.7(6)	0,9(6)
C(49)	6.6(10)	8,8(12)	9.8(12)	3.1(9)	0.1(9)	-0.5(10)
C(50)	9.9(12)	7,9(11)	4,7(7)	-4.1(10)	0.8(7)	-1.6(7)

Fractional co-ordinates of hydrogen atoms $(x10^3)$ obtained from the latest difference-Fourier.

ATOM		X	У	Z
H21	1	546	292	· 268
Н31	1	685	247	165
Н51	1	603	70	292
н61	1	478	122	408
H22	1	972	170	153
H32	1	1102	251	287
H52	1	989	200*	632
H23	1	596	-83	468
н33	1	783	-51	465
Н53	1	774	78	773
Н63	1	603	32	798
2			•	
H61		1360	357	5
H71		. 1367	286	1120
H17		1133	98	1030
H112		1250	179	1120
H141		1267	48	715
н143		1293	110	62Ò
H162		1350	71	1050
H2O3		1147	12	1405
H251		1653	417	900
н262		1150	333	1175
H271		1100	452	825
H282		933	381	850

Cambogin molecule

Mean planes through various groups of atoms of the cambogin structure. The displacements $(\stackrel{O}{A})$ of atoms from their planes. Atoms which do not define the plane are grouped below the atoms defining the plane.

` :	A	B	
C(13 1)	-0.009	C(11 1)	0.012
C(23 1)	0.046	C(21 1)	-0,030
C(33 1)	-0.056	C(31 1)	0,032
C(43 1)	0,034	C(41 1)	-0,020
C(53 1)	0,001	C(51 1)	0,002
C(63 1)	-0,156	C(61 1)	0+005
Br(2)	0.042	Br(1)	-0.163
S(1)	-0.000	S(1)	-0 108
0(6)	1 575	0(2)	1 409
0(0)	1,575	0(3)	1,400
<u>(</u>	<u>c</u>]	<u>D</u>
C(12 1)	0.020	C(22 1)	0.010
C(22 1)	-0.010	C(32 1)	-0,010
C(32 1)	0,008	C(52 1)	0,010
C(42 1)	-0,019	C(62 1)	-0,010
C(52 1)	0,029		
C(62 1)	-0,028	C(12 1)	0.057
		C(42 1)	-0,055
0(3)	-0,124	0(3)	-0.052
0(6)	-0,004	0(6)	0.031
C(1)	-0,005	C(1)	-0.080
0(7)	0,012	0(7)	-0,079
C(2)	-0,025	C(2)	-0,119

Table 8 (continued)

	E]	F	G	-
C(2)	-0,054	C(2)	-0,019	C(2)	-0,104
C(10)	0,013	C(3)	0.096	C(3)	0.092
0(9)	0,025	C(4)	-0.084	C(4)	0,113
C(6)	0.016	C(8)	0.075	C(10)	-0.331
		C(9)	-0.067	C(8)	0,287
C(13)	1.172			C(9)	-0,054
C(4)	1,288	C(10)	-0.601		
C(5)	1.339	0(9)	-1,525	0(9)	-1,139
C(9)	-1.227	C(7)	1,600	C(7)	1,860
C(8)	-1,167	C(16)	2.867	C(6)	1.741
C(7)	-1.239	C(5)	1.397	C(5)	1,675
ļ	H]	<u> </u>	Ţ	
C(9)	-0.081	C(8)	0.063	0(10)	0,056
C(8)	0.079	C(7)	-0,060	C(13)	-0.055
C(3)	0.082	C(4)	-0.061	C(8)	-0.052
C(4)	-0.080	C(5)	0,058	C(11)	0.051
C(2)	-0.041	C(10)	0,631	C(9)	-0,346
C(10)	-0.591	C(9)	-1.303	C(12)	-0.731
C(7)	1.610	C(2)	-2,019	C(16)	-0.762
C(5)	1.409	C(3)	-1.522	C(14)	-0,935
				C(15)	1.318

Table 8 (continued)

(i) Equations of the planes may be expressed in direct space as Px + Qy + Rz = S

`.`·				
Plane	P	<u>Q</u>	R	<u>s</u>
A	-4.47	14.02	-5,43	-6,56
В	6,99	1.85	6.44	6.2
с	-8.33	15.00	-0.31	-5,55
D	-8.49	14.63	-0.42	-5.81
E	-8,83	14.33	0.09	-5,98
F	8.61	15.02	-0,61	13,65
G	8,18	14.94	0.75	14.18
н	8,57	15.03	-0,48	13,72
I	-5.28	-5.43	9.64	1.27
J	10.99	6.87	0.74	15,94

(ii) Selected angles between planes ($^{\circ}$)

Plane C	Plane D	1,49	Plane D	Plane G	88,12
c	F	89,98	D	H	88,65
c	G	89,51	н	I	69.60
c	Н	89,97	н	J	27,00
E	F	88,68	I	J	79.8

Isoxanthochymol molecule

Mean planes through various groups of atoms of the isoxanthochymol structure.

The displacements (Å) of atoms from their planes.

Atoms which do not define the plane are grouped below the atoms defining the plane.

-	A	1	<u>B</u>
C(1)	-0.010	C(16)	-0,006
C(6)	0.001	C(17)	0,014
C(5)	-0,001	C(18)	0.018
C(4)	0,008	C(13)	-0,003
C(3)	-0.018	C(14)	-0,017
C(2)	0.019	C(15)	0,022
Br(1)	0.017	Br(2)	-0,109
S(1)	0.064	S(2)	-0,128
0(3)	1.662	0(4)	1,372
	<u>c</u>	·	D
C(8)	0,005	C(9)	0.016
C(9)	0.011	C(10)	-0,016
C(10)	-0.012	C(12)	0,016
C(11)	-0,004	C(7)	-0,016
C(12)	0,020		
C(7)	-0.020	C(8)	0.014
		C(11)	-0,012
C(4)	-0,866	0(4)	-0,072
D(3)	0.030	0(3)	0,039
C(19)	-0,004	C(19)	-0,022
0(7)	0,018	0(7)	-0,003
C(20)	-0.038	C(20)	-0,061

Table 9 (continued)

	<u>E</u>		F	G	
C(20)	-0,000	C(20)	-0.026	C(20)	-0,108
C(23)	0,001	C(25)	0.092	C(25)	0.084
0(9)	-0,001	C(24)	-0.057	C(24)	0.122
C(30)	0.000	C(22)	0.068	C(23)	-0.321
		C(21)	-0.057	C(22)	0.275
C(25)	1,261			C(21)	-0,051
C(24)	1,290	C(23)	-0,593		
C(31)	1,238	0(9)	-1,503	0(9)	-1,116
C(21)	-1,166	C(29)	1,560	C(29)	1,811
C(22)	-1,239	C(30)	2,237	C(30)	2,452
C(29)	-1.287	C(31)	1,372	C(31)	1.640

	H	- - -	Ľ	$\overline{\mathbf{J}}$			
C(21)	-0.076	C(22)	0,048	0(8)	0,054		
C(22)	0,073	C(29)	-0.048	C(26)	-0,054		
C(25)	0,074	C(24)	-0,047	C(22)	-0.053		
C(24)	-0,072	C(31)	0.047	C(28)	0,053		
C(20)	-0,054	C(23)	0.659	C(21)	-0.341		
C(23)	-0,580	C(21)	-1,370	C(27)	-0,728		
C(29)	1.571	C(20)	-2.053	C(41)	-0.837		
C(31)	1.387	C(25)	-1.589	C(35)	1.345		
				C(34)	-0,998		

Table 9 (continued)

(i) Equations of the planes may be expressed in direct space as Px + Qy + Rz = S

Plane	<u>P</u>	<u>Q</u>	R	S	
A	-5.41	14.27	-4.33	-5,00	
В	6,63	1.77	6.74	2,63	
С	-0.40	14.88	-8.36	-2.19	
D	-0.43	14.79	-8.40	-2,23	
E	-0.48	13,53	-9.01	-3,01	
F	-0,53	15,15	8,51	8,65	
G	0.80	15,11	8,07	9.38	
Н	-0,37	15,17	8.46	8,76	
I	9,70	-4,91	-5,33	4.37	
J	0,74	7.04	10,96	10,11	

(ii) Selected angles between planes (°)

Plane	С	Plane D	0.36	Plane D	Plane G	89,35
	С	F	89,97	D	н	89,71
	С	G	89,69	н	I	71,17
	С	H	89,96	н	J	26.88
, ,	D	F	89,71	I	J	80,10

APPENDIX I

Comparison of observed and calculated structure amplitudes

The data are listed in groups of constant <u>h</u> and $\underline{\ell}$ and list values of <u>k</u>, $10|F_0|$ and $10|F_c|$. Reflections marked "*" were classified as unobserved.

	1•K•~10		1	40×	59	4	93	69	2	46	24	8	110	105
			2	40*	41	5	42*	19	3	88	93	. Š	49	67
1	50	56	3	39×	34	6	66	62	4	88	85	10	53	80
5	59	55	4	40*	35	7	140	119	5	42*	31	11	134	141
4	54	71	2	394	20	8	85	83	6	75	58	12	105	100
-	302	25	5	394	65		41×	45	7	70	56	13	76	62
a a	41	43	2	39*	20	10	94	66	8	62	63	14	42*	37
7	39*	17	0	09	65		51	21	.9	45	46	15	51	55
•				7.810		16	99	10	10	40*	50			
	2.610			10			4. K 9			8.4.0			31/1-0	
			0	39*	- 8		11111			0111-0		0	156	199
0	152	141	ī	39×	14	0	170	149	n	57	42	Ĭ	154	159
1	83	76	2	48	33	ī	164	155	ĭ	97	86	5	79	22
2	104	71	3	39×	5	2	53	36	2	41*	28	3	189	151
3	57	57	4	68	58	3	125	137	3	84	53	Ă	115	96
4	40*	29	5	46 ×	28	4	43≭	58	4	42×	31	5	224	224
5	139	124				5	70	46	5	90	68	8	78	53
5	62	58		8,K,-10		6	100	89	6	4 4×	45	7	75	53
4	39*	58	_			7	178	161	7	75	59	8	130	127
8	48	35	Ů,	37*	21	8	43*	28	8	41*	14	8	165	180
	2 4 10		1	38*	25	9	156	139				10	133	118
	2161-10					10	41*	23		9,K,-9		11	148	148
0	44	73		1141-8		11	57	28	•			12	87	79
1	79		•	145		14	40*	33	Ů,	43*	67	13	52	51
5	40*	36	Ÿ	142	110		E Y O		1	42*	20	14	43*	25
3	40%	38		40*	25		2141-8		Ę			19	41*	
4	40*	Ř	2	110	127	•	66		2	428	40			
6	39*	36	4	44	50	ų,	00	74	7	438	1/		*********************	
6	55	79	5	41×	53	5	70	29	5	412	76	•		1.8.8
7	79	55	ă	121	111	2	121	65	0	- 1 1-	40	Ŷ	449	144
ė.	101	110	7	110	104	4	109	116		1.4.9			194	100
-			à	51	52	5	45	40		2741-0		2	100	78
	4,K1-10		ā	74	78	ธ์	156	153	n	217	208	4	70	R.4
			10	39×	42	5	74	69	ĩ	51	53	Ś	128	144
0	60	67	11	40*	22	8	94	100	ž	67	68	ě	133	82
1	56	38				ē	54	30	3	223	232	7	137	115
2	70	59		2,K,-9	•	10	42×	54	4	126	112	8	85	72
3	60	57				11	41×	27	5	43*	14	9	74	85
4	40×	40	0	103	119				6	70	58	10	45×	- 64
5	4 0*	15	1	74	72		6,K,-9		7	101	110	11	81	97
6	39*	24	5	175	175				8	68	72	12	95	77
7	60	64	3	84	97	0	42×	33	9	263	253	13	89	71
8	46	59	4	103	109	1	41*	29	10	56	86	14	59	40
			2	123	127	2	42*	14	11	43*	28			
	2141-10		5	54	45	3	168	128	12	82	82		5,K,-8	
•	40.4	20		00	~3	4	43*	30	13	/9	86	•		
÷	40*	15	8	40*	31	2	102	79	14	*6*	- 28	, i	438	27
-	43	10		70	20	9	105	22				1	105	149
5	41%	20	10	73	76		417	20		£17,1-0		2	171	144
4	39*	48	12	52	66	ä	123	20 82	n	185	166	ے ام		53
5	39*	63	46	96		10	412	16	1	43×	405		43¥	40
ă	39*	27		3.89		11	56	43	2	97	94	5	139	144
7	38×	23					20		3	133	160	7	155	157
•			D	41*	70		7.K9		4	83	73	Á	188	185
	6+K+-10		ĩ	119	110				, 5	97	89	ă	159	120
			ź	66	79	0	102	101	6	111	100	1Õ	44×	ŝ
0	40×	3	3	41×	24	ī	43×	54	7	76	70			-

	5.K8		5	43×	62	10	78	81	9	123	153	11	49	20
• •			3	61	36	11	344	328	10	49	41	12	44×	23
11		35	4	44*	13	12	86	67	11	167	178	13	42*	11
13	63	50	2	101	78	13	121	94	12	100	88		o	
14	61	22	7	477	20	14	62	/5	13	43*	21		9.K/	
• •	U 1		Ŕ	428	35	15	32 47¥	20	14	100	22	•	60	-100
	6.K8		ğ	42%	22	17	43%	23	15	43 2	52	0	71	
			10	42%	29	.,	724	28	10	~5~	93	2	119	1.44
0	43×	11		-			3.87			5.×7		3	123	124
1	44×	38		10,K,-8						0,11-1		4	443	19
2	138	113				0	51	84	0	136	131	5	47	29
3	44 X	23	0	55	41	1	153	131	1	87	92	6	77	91
4	44 X	44	1	90	75	2	48	67	2	267	238	7	68	38
5	164	161	2	99	76	3	86	67	3	118	146	8	48	31
5	59	32	3	82	62	4	56	73	4	173	130	9	44 x	- 34
	173	1/2	4	43*	29	5	66	63	5	92	89	10	44*	- 14
8	214	182	2	60	54	5	63	76	5	42*	53	11	43*	10
10	92	50	2	424	18		207	187	7	174	163	12	44	49
11	44%			767	-	8	122	120		120	119		10 4 7	
12	76	40		11.8.29		10	239	246	10	22	79		10+K+/	
13	68	57		11101-0		11	230	45	11	70	60		477	37
			0	42%	37	12	201	187	12	45	30	1	55	26
	7,K,-8		ī	41*	12	13	114	91	13	54	64	2	433	60
			Ž	83	47	14	174	169	14	130	95	3	44%	32
C	44 *	10				15	78	69	15	53	57	4	45×	74
1	106	74		1,K,-7		16	59	36				5	44	25
2	57	42				17	68	55		7.K7		6	44 *	31
3	45×	46	0	48	29							7	77	- 38
4	218	195	1	209	226		4,K,-7		0	209	221	8	56	25
5	145	117	2	134	145	_		-	1	196	185	9	43×	22
5	57	54	3	82	65	0	39	38	2	237	216	10	43×	15
	60	49	2	262	256	1	182	169	3	176	161			
0	04	- 78 53	2	217	220	4	~~~	49	7	199	176		11,6,-/	
10	40	23	2	107	33	3	100	30	5	104	130	•	50	- 40
11	57	34	é	215	224	5	116	100	ž	103	127	U I	20	70
12	43x	24	ă	147	147	ñ	56	44	á	151	128	5	94	63
13	41*	37	10	165	166	7	181	166	ġ	66	49	3	57	18
			11	262	256	8	222	197	10	76	91	- Ā	44*	26
	8, K,8		12	128	118	9	43*	19	11	80	73	5	45×	49
			13	46×	32	10	90	98	12	52	50	6	87	
0	88	92	14	69	65	11	138	147	13	78	69	7	56	34
1	60	50	15	64	80	12	62	56	14	55	56		_	
2	52	40	16	69	65	13	108	98	15	41×	13		1, K, -6	
3	125	103	17	63	50	14	49	55				_		
4	44*	51				16	43×	23		8,K,-/		ò	54	53
2	419	40		2181-7			E		•	779	335	4	87	73
2	64	32	•	176	105		5111-1		ÿ	2/0	233	2	332	410
6	54	40	ų	340	122	0	45	10	5	154	161		275	274
ă	76	74	2	145	157	ĭ	74	70	3	131	145	5	135	110
10	71	66	3	1	17	5	283	257	Ā	85	58	Ã	56	64
11	42*	4	4	198	203	š	60	45	5	103	95	ž	150	134
	-	•	5	257	257		198	194	6	56	48	8	378	351
	9, K, -6		6	58	49	5	109	112	7	119	110	9	220	228
	🗗		Ź	151	153	6	92	91	8	72	45	10	184	201
0	131	135	8	101	87	7	184	190	9	62	71	11	56	- 45
	= 7	64	•	202	207	•	143	112	10	70	77			

252

:5
2	0	•	10	17	16	15	14	12	11	10	9	8	7	6	5	4	3	2	U 1	~			18	17	16	15	12	12	11	10	9	8	7	2	4	3	ź	1	~		18	17	16	15	13	12			
165	349 197	4,K,-6		115 43*	61	87	46*	195	195	276	41*	91	139	77	204	137	209	85	102		З,К,—Б		43×	100	45*	108	257	44 %	181	230	170	144	78	118	345	243	182	150	163	2, K, -6	95	52	44 *	57	130	• 74		1,K,-6	
154	372 209		74	101 41	31	68	51	190	189	286	48	62	137	82	201	153	221	79	201	150			13	69	32	109	226	32	167	247	179	125	182	337	354	259	183	152	122		82	61	31	52	10/	65			
	16 17	14 15	13	11	10	ŝ	ś	5	5	4	3	2	1	0			10	18	17	15	14	13	12	11	10	g	8	Ę	5	4	3	ž	ĭ	n			18	17	15 16	14	12	11	, 10	ě	ś	5	5	- 4	
	45# 80	109 122	46*	79 45×	63	200	124	178	102	118	39×	170	253	83		6,K,-6		55	115	55	46 *	93	136	46×	137	43*	23/ 175	187	40*	229	249	257	60	37*	5, K, -6		43*	76	46×	46×	125	71	126	161	41#	276	280	77	
	50 65	115 103	38	25	44	227	127	175	124	130	24	177	275	68			••	41	104	72	48	106	139	24	116	77	170	202	65	247	255	232	56	82			26	83	53	11	126	45	115	162	19	273	262	66	
•		13 14	12	10	.9	8	7	5	4	3	2	1	0				15	14	13	11	10	9	8	7	6	5	د 4	2	1	o	_		10	15	14	13	12	11	9	8	7	5	4	3	2	0	_		
125	10,K,-6	54 42×	111	45*	61	45×	59	140	62	117	97	44 x	64		9,K,-6	•••	44*	111	45*	45*	92	102	78	44*	66	108	95	113	153	77		8,K,-6		23 44×	79	96	46*	75 46*	119	47	55 169	121	59	181	195	41*		7,K,-6	
125		53 26	70	99	79	68	34	139	74 66	132	83	39	103			-	ŝ	87	12	21	97	72	67	20	96	104	62	203	143	40			••	12	81	95	42	31	129	44	158	154	56	162	207	39			
	20	17 18	16	14	13	12	11	10	5	7	5	5	4	3	ź	ī	0			5	4	3	ž	ĩ	0			9	8	7	6	5	4	2	1	Ö			12	11	10	8	7	6	5	3	2	1	
2.6.5	48	47× 69	160	209	124	129	103	196	297	460	202	197	171	400	603	378	310		1.K5	45	65	53	65	79	44*		12.66	44 *	44×	77	46*	96	46×	97	45*	46*		11,K,-6	44 X	83	45*	45*	46×	128	00 45x	45*	59	96	
	37	53 72 35	154	192	106	118	139	186	290	455	189	219	173	433	528	420	314			46	52	19	49	16	5			25	21	54	10	90	15	22 80	12	34			39	49	11	30	57	80	23	5	68	75	
10	9	57	5	34	2	1	0			19	18	17	16	15	14	13	12	11	10	8	7	6	5	4	3	2	1	ņ			20	19	18	17	15	14	13	12	10	ĕ	7	6	5	4	3	1	O,	-	
238	243	262 49	87	213	133	341	269		4.KE	96	55	96	84	77	206	215	46	214	260	37#	111	249	236	373	211	295	320	107	3. 55		73	44×	46×	141	201	233	109	207	133	315	264	66	340	306	531	415	732		
219	260	271 76	94	207	109	340	311			69	59	80	77	82	191	199	34	208	241	42	97	225	216	402	233	292	309	325			68	45	24	1-0	195	227	103	212	158	319	283	68	310	312	541	453	773		

. .

12 13 14 15 16 17 18	4,K,-5 44* 45* 162 47* 65 99 110 47	33 44 146 60 86 102 71 42	234567890 11112	251 257 41* 100 99 208 139 83 83 49 64	253 246 60 111 80 192 133 51 72 53 50	23456789 10112	45* 108 51 65 47* 82 47* 52 47* 47* 45*	24 132 59 4 15 59 4 15 80 57 380 57 27	19 20 1 2 3 4 5	109 51 2.K4 372 147 429 708 350 102	90 55 188 401 727 314 121	7 8 9 10 11 12 13 14 15 15	351 244 231 266 192 128 142 53 114 80 168	356 270 208 281 183 137 127 65 108 80 158
0 1 2 3	275 70 70 91	334 66 83 94	13 14 15 16 17	170 137 47* 92 45*	149 115 18 73 35	13 0 1	45* 11,K,-5 46* 95	45 16 79	7 8 9 10 11	427 114 349 530 245 178	415 151 385 529 241 164	18 19 20	49x 65 68 5,K,-4	68 58
456789	151 120 345 118 199 70	138 97 369 117 194 81	0 1 2 3	8•K•-5 147 307 100 55	113 323 120 68	234567	47* 46* 57 47* 115 47*	25 21 46 40 84 26	12 13 14 15 16 17	207 186 168 224 89 68	196 163 157 198 56 65	0 1 2 3 4 5	264 517 195 127 204 205	280 548 231 132 233 244
10 11 12 13 14	124 64 194 113 46#	126 78 207 105 49	4 5 5 7 8 9	93 75 43* 122 45*	85 73 4 102 61	8 9 10 11	49 46* 46* 45*	28 30 29 12	18 19 20	138 48* 47* 3,K,-4	126 14 10	6 7 8 9 10	125 240 65 163 132	120 270 45 178 105
16 17 18 19	46* 46* 69 72	24 41 71 61	10 11 12 13 14	110 92 104 54 47*	106 86 124 60 35	01234	47# 46# 78 46#	16 23 28 9	0 1 2 3 4	299 373 478 73 297	344 405 501 122 336	12 13 14 15 16	161 95 101 49* 73	140 108 92 67 78
0 1 2 3	44 87 102 324	22 70 98 320	15 16 0	64 9.K5 43*	38	4 5 6 7	45* 57 45* 50	23 33 18 38	5 7 8 9 10	564 180 148 79 172	580 158 144 74 190	17 18 19	87 47× 6.K4	74 26
4 5 6 7 8 9	64 191 62 111 190 171	39 206 67 109 197 163	123456	74 173 101 113 134 100	78 157 93 102 125 84	0 1 2 3 4	115 473 206 461 396	170 450 173 512 418	11 12 13 14 15 16	448 150 188 182 166 76	143 154 179 156 51	0 1 2 3 4 5	322 361 149 72 100 190	367 395 160 60 124 175
10 11 12 13 14 15	107 102 72 153 55 109	71 91 112 136 64 86	7 8 9 10 11 12	49 61 95 105 65 45*	63 56 85 104 55 15	5 6 7 8 9 10	174 139 434 107 377 271	162 154 406 126 366 269	17 18 19 20	95 97 65 68 4,K,-4	72 94 71 52	6 7 8 9 10 11	369 67 162 42* 43* 80	402 89 184 72 48 54
16 17 18	105 46* 44* 7,K,-5	101 25 5	13 14 15	46# 54 83 10•K•-5	46 50 59	11 12 13 14 15 16	40* 110 274 85 101 93	57 100 261 77 114 98	0 1 2 3 4	384 441 280 215 494	403 459 334 219 538	12 13 14 15 15 15	102 100 57 77 53 78	92 121 53 65 42 73
0 1	43 75	60 41	0 1	101 65	100 52	17 18	110 48*	102 51	5	479 185	515 192	18	130	100

ويهمونا المراجع والأردار الطبية والاستطلابينية المعادية والمعاصر الأراسيان الروا

-

254

·

•

.

.

يعظيهم يربره تبعشنا

* **48*** 61 94 97 114 50* 61 59 6,K,-4 178 147 55 479 499 498 51 48 124 62 60 76 12 13 14 15 22 55 67 91 802 473 403 6247 403 6247 403 626 4073 115 2506 311 157 93 568 48 17 18 19 20 111234567890 150 155 154 71 43 31 73 51 79 43 20 8258 8258 4575 411 8519 4519 3519 3519 3519 3519 488 857 58 8575 58 47× 7.4 155 265 2134 74 148 79 85 70 113 59 48 *** 10.K.-4 168 237 167 147 107 152 1512 152 1512 267 16 274 18 274 18 4, K, -3 110 72 105 78 161 108 98 78 69 91 102 48* 46* 114 73 121 108 142 85 79 60 407 96 86 96 18 16 34 175 377 402 273 288 309 115 211 48 45 179 128 172 68 55 11234567890 169 463 509 414 333 287 318 324 106 217 58 155 1848 151 78 66 44 7.K .-3 174 212 105 138 195 123 452 150 162 150 150 150 150 150 150 49 1722 923 1200 141 112 61 500 1452 1043 247 345 18 2, K, -3 472 586 5319 238 80 287 95 359 135 290 1237 213 53 84 70 47* 5285 3249 3153 3441 10749 1387 40 57340 11, K, -4 8,K,-4 101234567 266 160 125 51 269 27 261 164 32 24 5,K,-3 314 60 247 181 261 128 133 138 309 131 96 59 98 58 80 99 98 58 499 47* 10112345167189 8, K, -3 1011234567 182 155 155 154 157 139 40 57 139 40 57 142 12, K, -4 47* 48* 52 475 475 475 40 46* 21 12 44 9 32 6 31 8 3, K .- 3 231 738 490 269 333 232 692 402 323 422 305 219 160 196 178 228 190 a, K.-4 99 140 46 98 119 46* 144 97 66 86 127 40 120 104 38 163 80 60 54 13, K, -4 6,K,-3 35* 122 389 108 286 65 129 324 233 175 193 155 210 194 46* 46* 46* 26 11 170 379 85 344 76 156 9, K, -3 1.4.-3 46× o O

	9,K,-3		5	71 73	47 45	01	450 243	444 240	13 14	121 150	122 128	2	131 184
12	304 177	318 165	7	50 63	37 36	2 4	453 470	418 488	15 16	268	251	· 4	64
3	46×	63 142	9	48×	21	5	316	309	17	164	187	é	45*
5	68	85		13.K3		7	371	399	19	128 51×	38	8	257 103
5	111 85	114	0	491	10	8	45	58	20	87	54	9	191
8	99	94	1	47*	3	10	304	303		6.K2		10	160 49×
10	107 50×	108	3	46*	16	11	139 226	109	п	457	440	12	51×
11	65	80		1, K, -2		13	147	154	1	473	488	14	51×
13	49*	27	0	822	730	14 15	180 53	170 51	2	340 84	385 82	15 16	60 60
14	72	48 77	1	185	176	16	86	96	4	510	546	17	50×
16	47*	17	5	872	875	18	51*	96 48	5	155	187		9,K,-2
	10,K3		5	534 295	592 282	19 20	77 150	81	7	185	245	~	-
~		F F	7	177	157	20		410	9	161	157	1	74
1	103	102	9	346 114	379 102		4, K, -2		10 11	156 265	147 250	2	88 278
2	99 72	105	10	150	139	0 1	490	551	12	253	260	4	125
4	104	99	12	144	163	2	350	539 370	13	48* 205	225	5	47# 108
5	57 100	50 105	13 14	260 268	238	3	175	162	15 16	49*	23	7	145
7	97	112	15	46*	50	5	168	236	17	120	100	9	74
8	124 96	89 98	16 17	47× 62	14 78	6 7	579 223	658 283	18	50× 49×	38	10	138
10	50×	10	18	100	109	Ś	504	500	20	50	53	12	50*
11	50* 49*	27	19 20	62 75	40 59	9 10	258 287	241 306		7.K2		13	73
13	50*	57		0 K 0		11	160	158	-			15	50×
14	90	34		2111-2		12	164	106	1	412	411 192	16	50
	11,K,-3		0	174	111	14	77	84	2	128	122		10,K,-2
o	89	72	3	475	416	16	174	169	4	49	63	o	48 ×
12	52× 50×	46 63	45	580 255	629 251	17	105	110	5	230	214	1	89 49¥
3	71	54	6	430	366	19	50×	15	7	257	262	3	191
5	51* 91	55 83	8	222 825	244 852	20	4 9*	17	8	65 169	63 189	45	66 98
5	81	80	.9	315	332		5,K,-2		10	139	133	6	66
8	50*	26	11	37*	56	0	40	15	12	137	130	8	158
9 10	70 69	57 49	12	40× 94	75 102	1	174	200	13	50×	35	9	53
11	99	53	14	132	100	ว็	202	171	15	92	64	11	65
12	47*	14	15 16	45× 289	26 292	4 5	396 724	441 76 2	16 17	117 51#	120	12	68 70
	12, K, -3		17	82	69	6	47	72	18	50×	32	14	49×
0	57	35	18 19	71 93	67 90	78	329 256	340 260	19	48×	14		11.62
Ĩ	68	32	20	51×	59	.9	141	144		8,K,-2		~	
3	50×	34 44		3,K,-2		10	186	167	0	136	118	1	76 134
4	50×	33				12	140	152	1	152	158	~	

	11, K, -2		8	335	337		5,K,~1		10	206	184	6	127	105
2	49*	26	10	230	531 251	n	858	936	11	123	141	7	51*	13
3	59	36	11	38×	32	ĩ	133	158	13	51*	33	ğ	142	119
4	142	111	12	152	161	2	464	527	14	53×	33	10	128	107
2	51*	50	13	133	124	3	155	110	15	152	138	11	51*	24
7	132	97	15	301	29		284	298	16	52#	33	12	75	79
ė	51	25	16	125	143	5	327	342	18	72*	29 58	13	51	18
9	76	62	17	98	87	7	281	285	19	59	39	4 1	50	2.3
10	82	66	18	65	77	8	78	57					11,6,-1	
11	49*	36	19	114	113	. 9	60	72		8.K1		-		
12	50	-0	20	204	19	10	187	218	0	97	02	0	88	64
	12,K,-2			3, K, -1		12	273	262	1	201	225	2	53*	35
_		-				13	47#	11	ž	130	176	3	75	65
Ģ	49*	2	0	205	274	14	112	83	3	166	142	4	67	46
2		20	1	229	570	15	160	160	4	277	237	5	55	48
3	49*	-3	5	216	191	17	131	128	5	159	151	7	115	104
4	120	93	6	272	294	18	62	75	7	136	146	á	80	57
5	49*	44	7	339	400	19	64	63	8	73	74	9	78	56
5	67 50¥	31	8	129	166	20	50×	62	9	112	93	10	49*	59
á	48*	15	10	3/8	423		5 K		10	157	145	11	49*	21
ğ	47*	39	11	106	112		01(7-1		12	82	105	12	90	47
		-	12	128	123	0	641	678	13	113	90		12, K, -1	
	13,K,-2		13	141	128	1	282	283	14	116	106			
•	40	12	14	190	180	2	271	278	15	91	60	0	71	66
1	47*	24	15	104	109	3	275	29/	10	524	25	1	51*	32
ž	66	47	17	84	85	5	239	238	±/	04	50	5	50*	35
			18	96	118	6	382	408		9, K, -1		4	52*	33
	1,K,-1		19	77	63	7	228	266	_			5	118	69
n	375	255	20	99	88	8	108	110	0	65	72	6	50*	19
3	686	763		4.61	4	រព័	163	148	2	63	82	, ,	50%	38
4	1716	1604				11	201	227	3	151	139	0		
5	745	776	0	515	471	12	4 7×	31	4	97	80		0.4.0	
5	286	314	1	607	654	13	57	80	5	61	72	_		
á	115	121	4	775	720	14	111	123	5	494	101	2	1044	1110
ğ	136	148	4	121	135	16	64	60	á	123	124	- -	993	975
10	409	443	5	101	120	17	52*	51	ğ	61	31	ĕ	245	239
11	385	396	6	621	667	18	75	47	10	52*	36	10	727	756
12	259	282	7	291	313	19	51*	65	11	52*	44	12	270	294
14	124	137	ä	120	228	20	53	48	12	100	99	14	51	53
15	107	133	10	322	320		7.K1		14	75	35	18	135	115
16	56	39	11	52	50				15	53	27	20	52	43
17	122	93	12	127	133	0	337	338	16	88	69			
18	51*	34	13	274	277	1	93	103					1.6.0	
20	58	55	19	49*	23 62	4	221	220		10, 6, -1			53	120
	20		16	223	201	4	330	331	0	53	50	5	555	547
-	2.K1		17	122	105	5	224	215	1	53	29	7	192	219
_		6	18	70	89	6	246	265	2	87	67	8	146	144
3	874	859	19	182	177	7	167	182	3	168	118	.9	242	244
6	112	202	20	23	פי	ä	103	110	1 2	51*	20	10	200	304

÷ 4

	1.8.0		n	129	108	12	51%	43	6	62	e 1		+200	1 400
			1	651	650	13	104	111	7	65	61	7	1389	0271
11	100	88		266	200	14	101	100	ź	202	261	2	200	220
15	100	01	2	200	233	15	101	100	2	203	220	2	330	374
12	104	31	3	200	230	15	230	227		90	93		5/0	539
13	194	215	7	502	207	10	94	<u></u>	10	134	127		242	246
14		101	2	100	224	17	87	/5	11	73	70	9	357	394
15	123	129	6	437	459	18	52*	35	12	53×	27	10	345	354
16	109	108	7	161	165	19	52×	48	13	106	85	11	216	239
17	160	152	8	257	264				14	79	41	12	248	249
18	87	58	9	570	595		7,6,0		15	50×	33	13	43×	14
19	130	139	10	207	220							14	102	125
20	51×	13	11	124	124	0	243	238		10,6,0		15	250	245
			12	67	76	1	250	253				16	89	125
	2,6,0		13	108	58	2	45×	71	0	51×	43	17	51×	41
			14	53	75	3	131	133	1	86	90	18	98	83
0	220	110	15	211	199	4	166	140	2	115	104	19	53×	31
3	359	304	16	110	135	5	329	301	3	52*	45	20	52×	37
4	742	783	17	95	110	6	356	354	4	153	110			
5	393	480	18	134	143	7	82	93	5	52×	53		1,6,1	
6	177	214	19	92	61	8	48×	8	6	77	61			
7	125	172	20	53×	65	9	136	144	7	178	164	0	670	587
8	245	257				10	140	138	8	52*	39	2	841	830
9	222	252		5, K, D		11	243	207	ĝ	76	64	3	633	429
10	290	320				12	309	285	10	75	59	4	1302	1220
11	91	90	0	157	134	13	105	98	11	53*	47	5	1112	1088
12	295	316	1	186	223	14	87	98	īž	88	75	ñ	1363	1441
13	150	136	ž	229	239	15	53*	55	13	50*	28	ž	249	200
14	192	196	3	344	386	16	83	55			20	Å	507	506
15	169	156	4	478	490	17	83	79		11.6.0		ă	260	279
16	54	49	5	133	162	18	50*	Ř				10	350	244
17	100	97	ã	143	161		20	•	n	528	17	11	258	365
18	75	74	ž	405	518		8.4.0		1	62%	16	13	300	202
10	172	162	Å	100	187		01.010			150	311	13	140	147
20	528	32	ā	56	BB	n	45×	30	2	54#	36	14	44*	70
			10	88	88	1	201	261	Ā	148	131	15	45 *	34
	3.6.0		11	142	143		187	103			28	16	137	138
	0,10		12	247	210	2	56	47	ã	533	47	17	50	100
n	226	165	13	204	206	Å	40	47	7	E 1 ¥	16	10	63	75
1	308	365	14	170	182	5	226	217	é	118		10	111	67
5	558	514	15	59	55	é	143	135	ă	170	57	20	66	57 57
Ā	220	250	16	53*	6	2	49%	31	10	52*	45	20	05	0.5
5	135	167	17	04	70	é	124	106	11	493	21		3.4.1	
ě	506	743	18	en .	98	ä	203	211		-10/1	2 1		61011	
7	338	444	10	04	en	10	130	133		12.8.0		0	1660	1774
é	273	207	20	50%	16	11	123	135		121(10		1	1178	1205
ŏ	320	361	20	2014	12	12	123	104	0	51 X	17	5	1072	085
10	38*	37		6.4.0		12	101	109	1	100	70	2	731	769
11	114	144		01410		14	55	103		76	51	<u>م</u>	712	743
12	170	172	0	555	626	15	96	01	5	52¥	49	5	1203	1220
12	220	376		200	206	15	517	53	3	E11	40	Ě	654	694
10	229	220		200	200	17	£3	57		101	70		350	370
1-1	70	29	2	273	207	17	04	57	5	101	20		260	373
10	/4	40	2	123	121		0.4.0		9	204	30	a	430	31E 474
10	214		7	231	237		31110			734	23		251	204
1/	150	149	2	3//	399	~	40-	10		0 × 1		10	321.	
19	132	125	ē	244	2/1	U	48*	10		01611		11	213	200
19	57	60	7	143	165	1	214	193	~	503	A - A	12	233	241
20	53*	39	9	126	112	2	216	1/0	Ų	507	4/4	13		
			9	276	267	3	80	49	1	93	83	14	240	207
	4,K,U		10	391	390	4	74	89	2	260	223	15	118	122
			11	311	319	5	49*	17	3	1474	1362			

	2.6.1		2	516	515	15	116	111		11.6.1		13	174	174
			3	76	108	16	54*	39	-			14	141	167
16	269	285	4	512	564	17	55×	51	0	56×	42	15	179	188
17	69	41	5	479	493	18	51*	13	1	55×	35	16	96	114
18	63	50	6	135	119				2	99	57	17	154	112
19	54*	3	7	267	264		8,K,1		3	55×	30	18	92	89
20	54*	13	8	197	195				4	55×	23	19	56×	22
			9	107	117	0	47×	20	5	53×	22	20	86	53
	3.6.1		10	216	231	1	240	207	6	55*	27			
			11	241	225	2	122	135	7	74	77		2, K, 2	
0	445	406	12	48×	47	3	68	81	8	119	69			
1	338	284	13	55	62	4	123	114	9	53×	6	0	841	734
2	473	456	14	126	126	5	435	403				1	1299	1244
3	390	418	15	55×	72	6	102	105		12.6.1		2	575	560
4	503	444	16	113	135	7	118	129				3	423	380
5	492	471	17	103	91	8	64	63	0	52*	4	4	484	451
6	539	576	18	54×	23	9	91	76	1	77	60	5	368	410
7	544	563	19	53×	33	10	103	109	2	52*	24	6	414	455
8	616	633	20	51*	17	11	162	135	3	64	47	7	521	501
9	135	118				12	199	184	4	64	55	8	308	276
10	309	327		6, K, 1		13	68	82				9	525	561
11	93	118				14	54×	8		0, K, 2		10	351	348
12	72	59	0	342	295	15	53×	19				11	191	217
13	118	109	1	547	563	16	67	50	0	196	176	12	200	193
14	141	115	- Ž	162	180				1	2036	1731	13	202	177
15	81	109	3	178	179		9,6,1		2	631	589	14	49*	28
16	52*	34	4	335	337				3	663	594	15	99	124
17	142	122	5	154	197	D	54	30	4	325	182	16	61	84
18	87	95	ā	270	277	ĩ	126	136	5	600	541	17	56×	50
10	Rq	100	ž	248	252	ā	183	190	6	140	202	18	57×	81
20	68	58	Å	46*	23	3	51*	27	7	926	893	19	127	121
20	00	20	ă	95	84	4	161	151	ė	168	204	20	82	77
	4.8.1		10	310	333	5	130	114	ā	469	458			
			11	91	82	ē	142	146	1ñ	291	274		3.6.2	
•	150	166	12	225	242	7	71	74	11	382	353			
1	105	100	13	137	141	Ŕ	105	86	12	241	230	0	198	207
- 5	637	608	14	71	73	ă	62	58	13	115	135	1	648	790
2	651	620	15	88	85	10	56*	42	14	147	153	2	166	177
4	318	360	16	56*	22	11	55*	65	15	65	46	3	680	702
	200	189	17	55%	35	12	56*	61	16	188	180	4	837	853
2	200	207	10	64X	35	13	55x	30	17	239	205	5	550	550
<u> </u>	200	280	10	52*	31	14	52*	13	18	77	78	6	399	435
<u> </u>	400	415	10			15	52*	34	19	86	97	7	404	413
ä	337	301		7.8.1				•••	20	73	59	ė	323	284
10	234	109		/ /// 1 2			10.6.1					ā	304	342
11	£31 50	190	•	137	137		107.071			1.6.2		10	269	283
15	150	170	ş	207	207	•	167	123				11	226	231
12	100	1/5	2	100	170	1	56%	31	n	1549	1484	12	178	190
13	93	222		100	101	5	149	114	ĭ	1948	1793	13	64	40
14	290	233	3	107	-00	ā	55x	âs	2	897	690	14	114	80
12	100	90		205	204	4	64	51	2	398	340	15	137	1 42
16	544	07	2	209	417	Ē	72	62	4	557	484	16	70	71
17	224	00	5	99	250	5	54¥	42	ŝ	1184	1192	17	44	72
18	554	22		209	209	2	557	21	é	170	117	18	65	47
19	54*	31	ğ	187	1/5	6	557	27	2	170	381	19	55x	30
20	89	63	.9	231	213	ğ	50*	42	6	305	355	50	641	54
			10	524	23	10	75	20	, e	170	157	20	2	
	5,5,1		11	136	112	10	244	20	10	561	675			
-			12	55*	60	11	00	23	10	201	279			
0	291	245	13	177	166	12	244	21	11	207	2/0			
1	330	375	14	63	75				12	1/0	190			

	4.6.2		12	144	147	10	89	86	3	112	123	15	85	71
1	201	246	13	88	49 79	11	57 55×	46	4 5	525 681	502	16	65 57×	63 60
ž	582	630	15	55×	56	13	54*	40	6	177	198	18	78	59
3	234	265	16	56×	60				7	585	589	19	67	71
4	260	294	17	54*	29		10, K, 2		8	542	531	20	54*	31
6	142	200	18	- <u>-</u> 25	41	0	07	03	.9	107	111		4.4.3	
7	42*	54		7.8.2		1	66	73	10	333	352		41413	
8	377	385				2	55×	19	12	224	220	0	382	424
9	219	217	O	368	378	3	77	75	13	87	61	1	424	453
10	159	161	1	57	70	4	93	56	14	71	82	2	218	188
12	160	100	4	72	48	5	57#	48	15	75	66	3	393	428
13	124	97	4	101	74	7	63	73	17	87	63	5	96	73
14	168	140	5	294	290	8	65	58	18	58×	49	6	242	299
15	65	64	6	211	189	9	73	57	19	56×	32	7	215	204
16	86	79	7	104	116	10	58	30	20	73	60	8	175	176
18	103	74	ä	171	92	11	55*	44		3.4.3		9	254	235
19	73	62	10	219	202		11.6.2			21113		11	54	47
20	53×	41	11	94	83				O	495	524	12	112	109
			12	56×	42	0	55×	34	1	412	424	13	201	194
	5,K,2		13	56×	50	1	117	78	2	626	619	14	79	
n	108	103	14)	55*	35	2	56%	38	3	137	709	15	136	125
ĭ	173	202	16	132	106	4	55*	15	5	430	445	17	55*	19
2	529	548	17	54×	29	5	65	53	6	879	900	18	56×	31
3	165	166				6	54*	19	7	580	597	19	58	56
4	178	200		8,K,2		7	54×	37	8	279	279			
ŝ	120	126	n	166	170		0.4.3		10	389	391		51613	
7	94	118	ĭ	177	148		01(10		11	140	149	o	75	85
8	235	253	2	52*	61	0	961	760	12	112	129	ī	89	81
9	55	66	3	119	153	1	472	404	13	75	76	2	279	294
10	183	167	4	251	243	2	546	452	14	53*	82	3	353	372
12	133	127	5	217	48	3	202	301	15	134	120		460	132
13	59	46	7	54*	17	5	488	487	17	158	137	6	314	331
14	201	207	8	111	105	6	511	478	18	64	50	7	312	309
15	64	70	9	62	62	7	185	213	19	56×	23	8	166	167
16	87	89	10	83	84	8	389	414	20	55×	13	.9	280	275
18	56*	32 46	12	57#	66	10	346	360		3.8.3		10	126	124
19	55×	34	13	55×	40	11	100	117		37.073		12	98	113
-			14	56×	30	12	143	167	0	804	808	13	71	94
	6,K,2		15	54*	46	13	49	60	1	296	304	14	56×	22
•	477	15		0 4.3		14	260	248	2	372	399	15	125	101
1	266	258		31112		16	56	84	4	414	388	17	56*	55
2	283	260	0	169	169	17	73	103	5	285	250	18	55×	55
3	309	302	1	98	99	18	67	50	6	374	384			
4	184	195	2	158	141	19	56×	35	7	167	194		6,K,3	
5	208	228	3	78	63	20	56×	22	8	268	292	•	314	321
7	48*	40	5	56#	50		1.6.3		ນດັ	401	424	1	272	274
8	165	177	6	126	107		1.111.10		11	192	190	ź	62	35
9	132	130	7	206	178	0	699	708	12	51×	52	3	300	281
10	139	116	8	72	83	1	698	513	13	146	106	4	159	175
11	96	86	9	85	65	2	285	254	14	14/	155			

	6, K, 3		4	71	72 102	4	332 437	355 410	16 17	113 59*	103 35	10 11	78 71	46 65
5	176	181	6	164	145	6	661	695	18	57*	10	12	.59×	.71
6	120	120	7	56×	17	7	214	211	19	56×	17	13	137	137
7	187	193	8	63	30	8	112	.99				12	53	
8	52×	46	9	56×	34	.9	132	159		41614		15	56*	26
8	57	49	10	101	104	10	130	12/	~	475	470	10	20-	63
10	144	114	11	56	36	11	212	237	1	307	441		7.K.4	
11	223	251	12	69	38	12	67	76	5	171	158			
15	55%	29		10.8.3		14	69	86	3	404	390	Q	177	192
13	148	42		101413		15	107	101	4	295	282	ī	190	177
177	57%	51	0	58	12	16	91	83	5	112	83	2	114	128
16	56*	34	ī	65	68	17	112	95	6	338	361	3	56*	55
17	54*	53	2	57*	43	18	58*	39	7	193	190	4	88	104
	•		3	130	115	19	5 6 *	18	8	299	322	5	68	202
	7, K, 3		4	57×	50	20	56×	41	9	99	35	5	221	203
			5	54*	23		- × A		10	354	390	Ŕ	168	145
0	138	136	5	55*	34		21817		12	136	136	ğ	60*	58
1	95	99		554	25	0	638	665	13	66	65	10	124	121
2	220	220	0	53%	71	ĭ	164	221	14	85	76	11	57*	19
<u>ح</u>	177	185	3	55	•	2	334	366	15	76	73	12	58×	57
5	52*	32		11,6,3		3	256	243	16	58×	21	13	57*	54
6	184	179				4	383	388	17	58×	51	14	58*	24
7	126	132	0	54×	24	5	423	431	18	57*	18		0 V 4	
8	189	191	1	72	49	6	440	460					01414	
9	112	100	2	60	45	7	55	353		21117		n	71	56
10	143	144	3	54*	34	8	201	192	0	369	384	ĭ	88	78
11	74	01		0.4.4		10	249	250	ī	111	109	2	88	96
12	/0 55×	30		01014		11	140	141	2	176	154	3	113	111
14	57%	42	0	287	210	12	145	139	3	358	371	4	99	87
15	56#	51	ī	351	348	13	54×	39	4	192	206	5	189	181
16	54*	9	2	695	620	14	91	89	5	153	157	5	58*	8
			3	445	467	15	57*	44	5	77	79		5/4	74
	8, K, 3		4	423	350	16	60×	42	6	67	27	ã	64	50
			5	118	84	1/	122	72	ä	302	303	10	68	59
o,	137	137	5	298	23/	10	57%	1	10	93	118	11	90	84
1	55*	.5/	, ,	130	121	20	55*	46	īī	58×	81	12	67	- 44
2	152	157	ä	215	223		50		12	57*	7			
4	231	214	10	321	319		3, K, 4		13	59×	38		9,K,4	
5	70	68	11	160	187				14	58*	23	~	- O ¥	44
6	187	182	12	85	64	0	676	678	15	84	90	, U	20~	88
7	57×	51	13	171	158	1	415	432	10	507	13	5	60x	77
8	57×	28	14	224	221	2	107	127	17	50	10	3	57#	17
9	61	56	15	50*	23	3	515	533		5.K.4		4	58	55
10	56*	44	10	20	73 83	5	82	81				5	62	58
11	.5/*	105	18	82	81	ă	294	287	0	64	81	6	90	90
12	121	105	19	58*	58 /	7	100	97	1	52*	62	7	67	65
14	54*	46	20	56×	48	8	309	302	2	132	132	8	58*	53
•						9	264	264	3	290	291		504	27
	9, K, 3			1,6,4		10	196	206	4	131	371	10	24*	21
						11	155	188	5	139	126		10.4.4	
0	201	162	Q	1052	1000	12	79	84	7	130	69			
1	56×	49	1	576	533	13	126	117	á	99	80	0	55×	17
2	55*	35	2	646	609	15	58×	33	ē	59	52	-		
					~~~~									

	10, K, 4		4	138	148		5, K, 5		4	60×	40	18	70	58
			5	431	470				5	60×	36			
1	65	77	6	529	536	0	176	173	6	61×	60		2,K,6	
2	77	56	7	348	384	1	270	274	7	<u>59*</u>	57			
3	60	44	8	145	150	2	137	120	8	106	77	0	112	99
4	55×	23	9	170	167	3	109	118	ğ	67*	46	ī	294	308
5	55×	11	١Õ	65*	28	4	129	120	10	663	Ř		152	163
-			11	109	õõ	, e	64	- 20	10	50	•	ĩ	1 E 3 Y	74
	0.1.5		13	100	124	2	162	164	•	0. 4 6		3	267	
	0,,,,,,		12	130	*27	9	152	104		31415			207	220
~	000	000	13	294	22	<u> </u>	05	99	_			2	524	402
Ů,	205	238	14		69	8	191	166	0	58×	52	6	55×	53
1	322	343	15	59×	23	9	116	125	1	96	101	7	218	217
2	305	319	16	60×	44	10	60×	66	2	73	68	8	94	102
3	316	303	17	58×	19	11	59×	15	3	101	87	9	211	210
4	330	336	18	95	73	12	104	75	4	58×	60	10	107	92
5	69	90				13	107	106	5	84	80	11	61×	32
6	237	240		3, K, 5		14	105	96	6	56*	19	12	158	162
7	275	293				16	57#	64	•	20		17	65	55
à	145	150	0	246	26.2	ié	673	60		0.4.6		14	en x	24
ă	225	225	ş	443	440	10	97-	50		01110		; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	107	37
	200	202							-	C.0.4		19	10,00	00
10	295	202	Ę	.03			01112		Ů,	50*	15	10	294	67
11	116	131	3	1/9	191	-			1	63	69	17	59*	49
12	168	1/5	4	249	254	0	73	89	2	252	243		_	
13	217	209	5	125	127	1	138	149	3	83	81		3,6,6	
14	57*	26	6	316	316	2	114	120	4	417	377			
15	65	65	7	239	255	3	146	149	5	53	49	0	87	90
16	59×	33	8	69	61	4	329	326	6	139	135	1	279	284
17	79	87	9	110	131	5	102	108	7	247	254	Ż	65	47
18	85	78	ıō	193	206	Ā	243	253	Å	Q4	110	3	64*	12
10	74	63	11	231	234	ž	60*	220	ă	200	306	Ā	50 S	ŝ.
*3		45	12		100	6	60×	24	10	60	63		176	104
	1.4.6		15	55	100	2	504	27	10	90	02	2	1/2	107
	11//15		13	513	/0	, a	-00 <b>-</b>	79	11	85		9	284	
			14	D14	66	10	508	209	12	134	115		322	332
Ū.	248	244	15	59×	44	11	59*	56	13	61*	63	8	110	127
1	161	182	16	79	64	12	58*	14	14	256	227	9	93	104
2	214	200	17	86	67	13	58×	38	15	115	132	10	144	147
3	375	385	18	56×	18	14	56×	6	16	66	66	11	95	83
4	87	104							17	71	67	12	100	118
5	91	88		4, K, 5			71615		18	57*	35	13	70	77
6	213	238										14	6Ö*	33
7	163	154	0	99	105	0	90	97		1,6,6		15	5 <u>9</u> *	28
8	132	134	ī	241	240	ĩ	60*	66				16	56*	32
ă	178	166	2	173	163		96	85	0	111	92			
10	160	102		205	207	5	67	77	Ŭ	106	108		A	
10	109	192	2	200	207			105		100	207		71010	
11	80	80		10/	191	7	111	105	4	399	39/	~	60	~
12	00	50	2	590	306	2	<b>P1</b>	5/	2	213	204	Ų	02	03
13	152	145	6	88	95	5	6U*	35	4	329	325	1	184	208
14	73	59	7	219	222	7	61×	66	5	163	166	2	60	59
15	103	85	8	226	216	8	60×	57	6	279	305	3	117	131
16	60×	21	9	129	140	9	59×	66	7	203	226	4	173	181
17	85	112	10	116	132	10	59×	68	8	366	390	5	297	296
18	58 <b></b> *	39	11	104	101	11	57*	52	9	60	43	6	67	74
19	56*	23	12	102	101	12	56×	18	10	163	148	7	60×	28
			13	50x	16				11	104	107	Å	60	67
	2.×.F		14	108	63		9.4.6		12	201	94	ă	144	146
	61/15		16	100	53		61719		13	79	68	10	72	372
~	400	502	12			~	507	12	2.2	60	104	10	175	127
ů.		503	10		01	ÿ	20*		17	50-	104	14	137	170
1	174	209	17	574	14	1	59*	29	15	004	02	14	02	23
5	84	97				2	104	92	16	6U#	18	13	83	94
з	263	281				3	96	93	17	59×	35	14	60×	24

ų,

	4, K, 6			0,K,7			3, K, 7			7, K, 7			3.K.8	
15	57* 5+K+6	57	0 1 2	85 72 180	91 64 168	0 1 2	203 210 176	202 225 168	0 1 2	59* 112 59*	79 116 75	0 1 2	109 62* 81	112 26 85
0 1 2	159 126 166	183 148 176	3 4 5 6	241 181 78	236 195 90	3 4 5 6	164 100 224 189	168 98 229 192	3 4	90 57* 0,K,8	74 17	3 4 5 6	93 61* 102 78	78 42 94 92
3456	75 59* 131 83	61 46 138 89	7 8 9 10	330 252 172 115	321 249 152	7 8 9 10	204 60* 72 60*	201 44 42 40	0	79 60×	60 47	7 8 9	94 62* 62*	99 18 57
789	60* 182 69	24 194 72	11 12 13	206 69 125	212 57 133	11 12 13	59× 87 59×	29 99 27	34 5	215 274 184	206 251 188	11	58× 4,K,8	80 51
11 12 13	61* 59* 67	66 34 63	15 16	60* 58*	90 44 9	14	6/ 4,K,7	70	6 7 8 9	132 63* 123 61*	121 63 120 25	0 1 2	122 82 83	110 97 83
14	56* 6,K,6	39	0	1,K,7 55*	51 124	0 1 2 3	229 97 242	269 91 249	10 11 12	161 62* 62*	176 47 23	345	62× 98 61×	78 99 62
0 1 2	202 162 212	216 192 223	12134	229 132 56*	232 142 81	5456	246 60* 61*	249 9 24	14	69 1,K,8	53	0 7 8 9	93 59* 58* 58*	36 40 33
54 5 6	93 60* 67	92 39 64	5 6 7 8	59* 131 269	50 137 267	8 9 10	61* 61* 130 70	57 73 130 86	0 1 2	62* 255 61*	38 234 42	o	5, <b>K,8</b> 90	93
7 8 9 10	80 76 72 58×	82 65 65 47	9 10 11 12	61* 194 130 62*	41 191 130 48	11 12	60* 58* 5.K.7	54 39	3 4 5 6	78 61* 242 83	81 36 244 75	1 2 3	59× 68 58×	19 56 52
11 12	58* 57*	18 21	13 14 15	64 99 59*	64 99 62	0	60* 212	11 218	7 8 9	289 139 125	282 137 114	5	58* 94	45 113
0	103 79	92 62	10	2,K,7	60	4 7 4 5	62* 62* 62*	35 21 <b>38</b>	10 11 12 13	63* 61* 63 90	35 18 86 101	0	0,K,9 105 62×	89 49
2345	148 98 165 69	158 86 157 78	0 1 2 3	57* 72 139 201	3 98 140 198	6 7 8	89 85 60* 70	81 89 12 53	0	2,K,8	18	2345	62* 137 157 62*	68 143 161 22
6 7 8 9	63 58* 59* 58*	64 5 61 34	4 5 6 7	106 200 68 179	114 185 100 196	10 11	83 57# 6.K.7	72 31	1 2 3 4	63* 90 157	68 81 156 108	6 7 8 9	62× 61× 69	15 64 86
•	8, K, 6	E7	8 9 10	90 172 99	94 157 110	0	80 108	93 107	567	65 62* 68	56 22 67	10 11	81 58×	78 29
1	58×	37	12	117	105	2	66 61×	93 53	8	80 134	105 132		1,K,9	
2345	55× 73 65 102	22 58 73 81	13 14 15	60* 60* 58*	3 53 38	45678	60* 60* 63 81 57*	27 18 56 76	10 11 12	62* 61* 94	51 65 101	0123	61# 76 62# 153	53 73 33 125

	1,K,9			2, K, 9		8	86	97	6	57*	38	6	58×	28
5 6	131 61≭	144 79	0	60* 67	21 55		3,K,9			O,K,10			1,K,10	
7 8 9 10	92 62* 102 58*	119 76 84 28	234567	83 61* 60* 106 83 60*	93 64 22 86 103	01 234 5	60* 59 79 58* 72	46 50 91 22 70	0 1 2 3 4	59* 152 59* 59* 125	7 134 30 67 148	0 1 2 3	59* 58* 112 58*	51 39 112 52

### References

- 1. I.Carpenter, M.D. Locksley and F Scheinmann Tetrahedron, 25, 1507 (1969).
- G. Kartha, G.N. Ramachandran, H.B. Bhat, P. Madhavan Nair, V.K.V. Raghavan and K. Venkataraman Tetrahedron Letters, 459 (1963).
- 3. C.G. Karanjgoakar, P. Madhavan Nair and K. Venkataraman, Tetrahedron Letters, 687 (1966).
- 4. M. Konishima, Y. Ikeshiro and S. Miyahara Tetrahedron Letters, 4203 (1970).
- C.G. Karanjgoakar, A.V. Rama Rao, K. Venkataraman, S.S. Yemal and K.J. Palmer Tetrahedron Letters, 1973, 4977 - 4980.
- 6. H.D. Locksley, I. Moore and F. Scheinmann Tetrahedron, 23, 2229 (1967).
- 7. Personal Communication from Dr. Govindachari.
- 8. W.R. Busing and H.A. Levy, Acta Cryst., 1957, 10, 180.
- 9. P. Coppens, L. Leiserowitz, and D. Rabinovich Acta Cryst., 1965, <u>18</u>, 1035.
- 10. W.C. Hamilton Acta Cryst., 1965, <u>18</u>, 502.

# APPENDIX II

Crystal and molecular structure of the ketol bishydropulegone.

"We learn wisdom from failure much more than from success. We discover what will do by finding out what will not do; and he who never made a mistake never made a discovery." ... Samuel Smiles.

## Introduction

The structure determination of the ketol bishydropulégone  $(C_{20}H_{34}O_2)$  was undertaken as part of a larger research study within this laboratory of reductive dimerization products of <u>R(+)</u>-pulegone.

The ketol chosen for the structural study was one of four sent here for preliminary investigation. All the ketols are orthorhombic  $\underline{P2}_1 \underline{2}_1 \underline{2}_1$  and their respective unit-cell dimensions are given in Table 1. Bishydropulegone (m.p.102°,  $[\alpha]_D + 85°$ ) was chosen because it had quite short unit-cell lengths and the intensity data on an overnight Weissenberg photograph were visible to  $\theta = 55°$ . The measured density was  $1.1g.cm^{-3}(\underline{D}_c = 1.11$  for  $\underline{Z} = 4$ ), thus it posed a straightforward non-centrosymmetric  $\underline{P2}_1 \underline{2}_1 \underline{2}_1$  direct method problem.

The structure of the related deshydropulegone (C₂₀H₂₈0) has been determined by a colleague, Dr. A. Quick, in this laboratory and thus it has been compared quite extensively with the present structure.

These two structures, together with two earlier X-ray studies of related compounds (one of which has been shown to be incorrectly named) and the published chemical and physico-chemical data of the five ketol dimers, have permitted a Scheme to be drawn up which defines the absolute stereochemistries of all the key compounds in the family. In particular, in the nor (normal) and <u>iso</u> series of isomers the methyl group at C12 is <u>cis</u> and <u>trans</u> respectively relative to the hexanone ring and the gem-dimethyl groups; this is a reversal of the earlier arbitrary assumption made by Pascual *et al*³. It is notable that one of the bonds in the five-membered ring is abnormally long in all four structures due to severe steric interactions.

Professor Rogers is to be thanked for the contribution <u>re</u>. chemical comments on the interconversions of the ketols and provision of background information.

14,15

# <u>Table 1</u>

346 A.M.M.

•

Preliminary Comparative data for Four Ketols.

All crystals were ortho	rhombic, space group $\underline{P}_{12}^{2}_{12}^{2}_{1}$ .
Bishydropulegone (nor):	m.p. 102 [°] C; [α] _D + 850 [°] ;
	prismatic needle-shaped crystals
	Intramolecular H-bonding occurs.
$\underline{a} = 10.84 \overset{\circ}{A}$	Intensity to $\theta \simeq 55^{\circ}$ (on one day
$\underline{b} = 14.40 \text{\AA}$	Weissenberg photograph).
$\underline{c} = 11.78 \underline{A}$	-
Ketol IV (iso):	m.p, 115 [°] C; [α] _p = -99,3;
	Needle-shaped crystals
	Intramolecular H-bonding occurs.
a = 11.86Å	
b = 8.57Å	$\theta \simeq 45^{\circ}$
c = 17.13Å	
Harries-Roeder Ketol (n	or): m.p. 118 ⁰ C; [a] _p + 59,9 ⁰ ;
	Needle-shaped crystals,
$a = 6.85^{\circ}$	$\theta \simeq 45^{\circ}$
b = 8.29Å	
c = 34.26Å	
Isobishydropulegone,(is	o): m.p. 138 ^o C; [α] _D + 61 ^o
a = 12.34Å	θ ≃ 45 [°]
b = 18,14Å	
c = 29.4Å	

The reductive dimerization of (+)<u>R</u>-pulegone (I) carried out under various conditions has produced a number of compounds. The first, reported by Harries and Roeder¹¹(1899), was for long regarded as a diol, and the existence of others in impure forms was indicated by the work of Law¹²(1912) and Müller¹³(1921), but the matter was not pursued.

Recently Pascual and his co-workers have extensively explored the chemistry of the immediate products and numerous derivatives and have reported them in a series of papers. They recognized the Harries-Roeder compound as a ketol and have isolated and characterized four others which occupy a key position in these studies. Comparative data are given in Table 2. They have shown through an elaborate series of chemical correlations that the five ketols and their derivatives fall into two isomeric series called <u>nor(mal)</u> and <u>iso</u>, whose absolute stereochemistries can be represented by IIa or IIb. In paper III Pascual, for the purposes of argument, arbitrarily assigned these two stereochemistries to the <u>iso-</u> and <u>nor-</u> series respectively, but in his latest paper(X) he has produced n.m.r. evidence for reversing the assignment. Meanwhile two X-ray studies were undertaken on bromoderivatives in order to make the assignment unambiguously.

The first "was of dibromodehydrobispulegone (mpt.  $188-9^{\circ}$ ,  $\left[\alpha\right]_{D} = -92.9^{\circ}$ ) whose structure (IV) (<u>C</u> in the Scheme given later), therefore, identifies IIa with the <u>nor</u> series. (Unfortunately this X-ray result was presented without either drawing this conclusion or inferring the absolute configuration from the <u>R</u> configuration at C(12).) The second ¹⁵ was published while the present study was in progress. It described the structure of a compound that was identified by name only as monobromodehydrobispulegone. However, its structure (V, <u>D</u> in the Scheme) - again reported without drawing the distinction - indicated that it was in the other series and a check with Prof. Pascual, who supplied the compounds, confirmed that it was wrongly named: it was

Cable 2	le 2	Ъ1	a	ľ
---------	------	----	---	---

The five  $C_{20}H_{34}O_2$  Ketols

Name	Series	mpt.	[α] _D Ι	intramolecular		Referen	ces
Harries-Roeder ketol	nor	118 ⁰	" °و.,7	Yes	11	(14/11)	H
Bishydropulegone	nor	102 ⁰	+85 ^{°0}	Yes	1	(5/1)	F
Isobishydropulegone	iso	138 ⁰	+61 ⁰	No	1	(6/1)	<u>K</u>
4th ketol	iso	115 ⁰	-99,3 ⁰	Yes	6	(1/VI)	L
5th ketol	nor	147 ⁰	+70,3 ⁰	No	7	(1/VII)	Ģ

* This indicates the first or most significant reference to the Compound in Pascual's series of papers. Thus this compound is designated 14 in paper II of the series and was first characterised in reference 11. Its stereochemistry is depicted as <u>H</u> in the Scheme.

in fact monobromodeshydro<u>iso</u>bispulegone (mpt,251^o dec.;[ $\alpha$ ]_D =+54,2). Brief details of this correction have been submitted to Acta Crystallographica.

In the present study, the structure of the ketol bishydropulegone  $(C_{20}H_{34}O_2)$  has been determined [the second ketol in Table 2 (VII , <u>F</u> in the scheme)] and is compared with the structure of deshydrobispulegone  $(C_{20}H_{28}O, \text{mpt. } 120^{\circ}, [\alpha]_{D} = +16.4^{\circ}; \text{ VI, } \underline{A} \text{ in the Scheme})$  which was determined by Dr. A. Quick. To facilitate comparison with the earlier X-ray structures we have adopted the same numbering scheme as was used in IV though this differs from that used by Pascual et al (see III). The two new structures were known to be in the nor-series, so the stereochemistries found provide further evidence for identifying IIa with the nor-series. As Pascual et al have isolated the achiral compounds, 8,10 VIIIa and VIIIb, it is clear that the distinction between the two series is best drawn, not by defining the chirality at C(9) (our numbering), but by noting the relative orientation of the methyl group at C(12) (C(5') in Pascual's numbering) and the gem-dimethyls with reference to the 6-membered spiro-ring B: they are cis in the nor-series and trans in the iso-series.

It is now possible to combine the chemical and physico-chemical results with those of the X-ray studies to produce a comprehensive and consistent stereochemical Scheme(see adjoining page), which agrees with but goes beyond Pascual's latest assignments. Models of the eight possible ketol isomers shown in the Scheme suggest that three ( $\underline{E}$ ,  $\underline{M}$  and probably  $\underline{J}$ ) are almost certainly too overcrowded to exist. This restriction, taken with the data in Table 2 relating to the relevant series and the presence or absence of intramolecular hydrogen bonding, identifies stereoformulae  $\underline{G}$ ,  $\underline{K}$ ,  $\underline{L}$  in the Scheme with the compounds shown in Table 2. The remaining two hydrogen-bonded ketols ( $\underline{F}$ ,  $\underline{H}$ ,) in the <u>nor</u>-series are distinguished by the X-ray results of the structure presented here, ( $\underline{F}$ ).



To avoid further confusion substances are identified in this Scheme by their mpt. and  $[\alpha]_D$  and by both letters and numeric references as explained at the foot of Table 2. The arrows indicate some of the more significant known reactions and relationships, and Roman numerals beside an arrow indicate in which of Pascual's papers the reaction is reported. It is believed that in all the interconversions between the ketols (at least) the bond C(5) - C(9) ruptures to give a keto-enol, but is later rejoined. Some of the conversions deserve comment.

1) The acid or base catalysed equilibrium between isomers  $\underline{F}$  and  $\underline{K}$  is strongly biassed toward  $\underline{F}$ . In this case the keto-enol preserves the configuration at C4 and rings A and B. The bias in favour of  $\underline{F}$  is undoubtedly due to the presence of the hydrogen bond which will inhibit rupture of C(5) - C(9) and may well tend to form in the keto-enol even before these atoms rejoin. Of the four possible ways they may rejoin  $\underline{E}$  and  $\underline{J}$  can be ruled out as being too crowded.

2) The transition from <u>L</u> to <u>G</u> in the presence of  $POCl_3$  at low temperatures follows a similar path and again the major component of the equilibrium is the hydrogen-bonded <u>L</u>. <u>M</u> is too sterically hindered to be formed.

3) The transition from <u>L</u> to <u>H</u> by refluxing in xylol suggests that the latter is the thermodynamically more stable isomer. Examination of models of the two isomers shows no obvious reason for this difference: both contain ring A in a boat form and similar amounts of congestion. However, models of the keto-enol intermediate just prior to fusion to form either <u>L</u> or <u>H</u> reveal interesting steric factors in favour of <u>H</u>, in whose precursor the ketone  $\pi$ -orbital is angled downward to make a good overlap with the  $\pi$ -orbital on C(9), whereas in the precursor of <u>L</u> it is angled upward and the overlap is poor. It is also much less easy to proximate these atoms to produce <u>L</u> because of collisions between the oxygens and between the methyl-carrying ends of rings A and B, and also

due to the intervention of the hydrogen on C(4) between the rings in the precursor of <u>L</u>.

4) The 100% conversion from <u>H</u> to <u>F</u> in alcoholic KOH involves epimerization at C(4) - possibly via a di-enol, which would entail loss of distinction between rings A and B. The driving force in this case seems to be the conversion of ring A from boat to chair and the release of some congestion. The conclusion seems to be that <u>F</u> (bishydropulegone) is the thermodynamically most stable of the ketols, though the energy differences are probably quite small.

Individual features of the present crystal structure will be discussed later and compared with the three related structures, but it is evident that, even in the ketol <u>F</u> where congestion is greatest, the length of C(5) - C(9) is not abnormal, so it does not appear to be under strain. However, C(8) - C(9) is in all four structures exceptionally long (<u>A</u> 1.615, <u>F</u> 1.603, <u>C</u> 1.69, <u>D</u> 1.69Å) and C(7) - C(8) is also somewhat long. The five-membered ring is, therefore, under considerable strain which provides the driving force, but rupture when it does occur takes place under electronic influences along the path between the two oxygen atoms.



I III







IIЪ

 $\sim$  indicates that either stereochemistry ( $_{lpha}$  or  $_{eta}$ ) is possible .

anda son die warde warde officielity for ander sold and definition of the second second product of the sound business



VIIIa



VIIID

i







• ہ







VII

## Experimental

The crystals were colourless blocks.

#### Crystal Data

 $C_{20}H_{34}O_2$ , <u>M</u> = 306.5, orthorhombic, <u>a</u> = 10.8378(5), <u>b</u> = 14.3917(9), <u>c</u> = 11.7720(4)Å, <u>U</u> = 1836.1Å³, <u>D</u>_m = 1.11 g.cm⁻³ (by flotation), <u>Z</u> = 4, <u>D</u>_c = 1.108 g.cm⁻³, <u>F</u>(000) = 680. Space group P2₁2₁2₁(no. 19) uniquely from systematic absences. Cu-<u>K</u>\alpha radiation ( $\overline{\lambda}$  = 1.5418Å).  $\mu$ (Cu-<u>K</u>\alpha) = 5.38cm⁻¹.

A crystal ca. 0.35 x 0.4 x 0.4mm³ was mounted along its <u>a</u>axial direction and data were measured on a Siemens off-line automatic four-circle diffractometer, with filtered Cu-Ka radiation. A total of 1783 independent reflections (to  $\theta = 65^{\circ}$ ) were measured by use of the  $\theta$ -20 scan technique and the 'five-value'measuring procedure.¹⁶ Of these, 107 reflections were judged to be unobserved, i.e. I < 2.58  $\sigma(I)$ . The net count of the reference reflection measured after every 50 reflections, did not alter significantly during the data collection (<u>ca</u>. 3 days). The data were scaled by use of this reference and Lorentz and polarisation corrections were applied. No absorption corrections were applied.

## Solution and Refinement of the Structure

The structure was solved by direct methods using two distinct routes. Initially, hand iteration was utilised but difficulty was experienced in the phase expansion procedure due to the fact that, though several starting sets were tried, the best had not been chosen. The program MULTAN, which chooses the most likely starting set, was then applied to a list of 202 reflections having normalised structure factors  $|E| \ge 1.48$ . Phases were computed from a starting set of seven reflections three of which determined the origin (0 4 7, 5 11 0, and 7 6 0) and one the enantiomorph (1 11 3).

#### Table A

#### Starting set of reflections from MULTAN

Values in brackets are those phases assigned during tangentformula run with highest overall figure of merit (FOM).

h	k	L	E	Phase	
5	11	0	3.11	90 ⁰	Origin
0	4	7	2.22	360 ⁰	defining
7	6	0	2.09	90 ⁰	reflections
1	11	3	3,21	(29 ⁰ )	Enantiomorph fixing
0	12	.2	2,39	360 ⁰	Fixed value.
4	12	0	3.89	(360 ⁰ )	
6	1	9	3,02	(129 ⁰ )	
Abso	lute	figure	of merit =	0.7462	* Inconsistent with parities
Comb	oined	figure	of merit =	2,0524	of origin defining reflect-
RESI	D		3	25,99,	ions.

The E map, calculated from the phase solution with the highest combined figure of merit (2.0524), gave plausible positions for some sixteen of the non-hydrogen atoms in the structure. The remaining six atoms were obtained from the difference-Fourier map calculated on the basis of the known atomic positions. The solution refined with isotropic temperature factors to  $\underline{R} = 0.135$ ,  $\underline{R} = \Sigma | \underline{F}_{0} - \underline{F}_{C} | /\Sigma \underline{F}_{0}$ , and a difference-Fourier map computed at this stage showed no major unassigned peaks. The structure was then refined anisotropically, reducing  $\underline{R}$  to 0,102, and from the corresponding difference-Fourier all the 34 hydrogen positions were found. These were assigned temperature factors that were isotropic equivalents of their parent atoms. When all these atoms were included in the full-matrix least-squares procedure of ORFLS,  $\underline{R}$ dropped to 0.078. Two misprocessed reflections were removed, Subsequent refinement reduced  $\underline{R}$  to a final value of 0,047. It was not found necessary to use other than unit weights throughout the refinement procedures. A final difference map showed no significant peaks. Atomic 18 scattering factors were taken from Cromer and Waber, except those for hydrogen which were taken from Stewart, Davidson, Simpson.¹⁹ Fig. 1 shows the atom numbering used. Tables 3 and 4 list the final co-ordinates of the non-hydrogen atoms and their anisotropic temperature factors. The co-ordinates of the hydrogen atoms are given in Table 5 and the observed and calculated structure factors are listed at the end of the chapter.

The bond lengths in all four X-ray structures are compared in Table 6, the angles in Table 7, and some of the intramolecular distances in Table 8. The torsion angles are shown in fig. 2, supplemented by Table 9. Table 10 gives the details of the best planes and deviations of atoms from these planes and mutual inclinations of the planes for the structures bishydropulegone and deshydropulegone.

Throughout the tables, the numbering shown in V has been adopted for structure  $\underline{D}^{15}$ . It differs from the published numbering in that  $C_{16}$ ,  $C_{17}$ , and  $C_{18}$ ,  $C_{19}$  have been interchanged. This has been done so as to keep  $C_{16}$ ,  $C_{18}$  on the same side of the plane of rings A and C as the carbonyl and to permit torsion angles to be compared.

### Discussion

The conformation of the bishydropulegone(F)molecule is shown in Fig. 3. It differs from deshydropulegone(A) chiefly from the character of the ring A which is aromatic in A and saturated in F although the addition of the hydroxyl group in F has greatly increased the overcrowding. Both the present structure F and the structure determination by Dr. A. Quick of A have been refined to similar fairly high levels of accuracy. It is thus possible to compare and discuss the differences with some confidence. The other related structures C and D were not determined very accurately, consequently it is not possible to compare these so effectively. (For C, 329 visually estimated intensities, no absorption correction or allowance for hydrogen atoms, refined to R = 0.161; for D, 692 photometer estimated intensities, no absorption correction or allowance for hydrogen atoms, refined to R = 0.107). Compound C differs from A only in that it possesses a gem-dibromo group, thus comparisons between A and C are limited by the accuracy of the C structure determination.

As expected the aromatic ring (A) in deshydrobispulegone ( $\underline{A}$ , VI) has a mean bond length of 1.388Å, mean bond angle of 120.0° and mean deviation of its atoms from the best plane of 0.007Å (See Table 10a, Plane A). Its immediate substituent atoms also lie close to this plane. In this compound ring C has an envelope conformation with C(8) lying 0.449Å out of plane on the  $\beta$  side. This deviation has the effect of slewing both the gem-dimethyl at C(7) and ring B away from the gemdimethyl on C(8) toward the  $\alpha$  side. Newman diagrams for these twists are shown in Fig. 4. Ring B has a shape and dimensions typical of a cyclohexanone ring. (See later).

In bishydropulegone (F, VII) a distinctly different geometry is

obtained. Ring A is a typical slightly flattened chair-shaped cyclohexane ring with mean bond length 1.523Å, bond angle 111.0°, and torsion angle 56.0°. Fusion with a five-membered ring has not distorted it much, though the common bond, C(4)-C(5) 1.495Å, is distinctly and significantly short. The substituent atoms, C(15), C(7), C(9) are all equatorial, whereas O(22) is axial. Ring C again has an envelope conformation, but this time it is C(5) which deviates (0.634Å) to the  $\alpha$  side. The consequences are that the two gem-dimethyl groups are nearly exactly eclipsed (the torsion angle C(4)[C(7)-C(8)]C(9)is only  $4.0^{\circ}$ , and see the Newman diagram Fig. 4). It also deflects ring B to the  $\beta$  side of the molecule, thus making room for the hydroxyl group (which is intramolecularly hydrogen-bonded to O(21) at 2.643Å). The four atoms in ring C are very closely coplanar ( $\overline{\Delta} = 0.006Å$ , Plane C, Table 10b) and their plane is nearly parallel (5°) to the plane of C(2), C(3), C(5), C(6) in ring A (Plane B, Table 10b).

There is little difference between the details of ring B in the two compounds. Mean values of the Csp³-Csp³ bond lengths, bond and torsion angles are:-

A	1,535Å;	110 <b>.5°;</b>	53 <b>,</b> 0 ⁰
F	1.534 ;	110.6 ;	52,3

The mean of the  $Csp^3-Csp^2$  bond lengths do, however, differ (<u>A</u> 1.547, <u>F</u> 1.510Å), and so do the C = O bonds (<u>A</u> 1,210Å, <u>F</u> 1.227Å) but the latter is to be expected as a result of the hydrogen bonding.

These general conformational differences can be traced in Table 8 which gives a selection of the intramolecular nonbonded contacts, and this Table gives some idea of the general overcrowding and particularly the multiple contacts made by O(22).

There are certain features of ring C that require some attention. First, bond C(5)-C(9), which in the ketols is believed to rupture to form the keto-enol, has in <u>A</u>, VI a value 1.520(5) A typical of  $Csp^3-Csp^2_{ar}$ , whereas in the ketol it is 1.564(4)^A. This is slightly, but just significantly longer than a normal  $Csp^3-Csp^3$  bond and is to be expected in view of the general overcrowding in the ketol. The lengths of C(4)-C(7) show a similar difference, but they are not significantly different from standard values doubtless due to the presence of one hydrogen among the six terminating atoms. On the other hand, the lengths of the other two bonds, C(7)-C(8) and C(8)-C(9) (especially) are elongated. Thus

-	F	A	<u>c</u>	D
C(7)-C(8)	1.577(5)Å	1.587(5)Å	1,68Å	1.63(3)Å
C(8)-C(9)	1.603(4)&	1.615(5)Å	1,69Å	1,69(3)Å

The latter is consistently and severely stretched in all four structures, though no great significance should be attached to the lengths in C, D, because of the low accuracy of those studies. The bond length C(7)-C(8)can be regarded as slightly but significantly stretched in the two more accurate structures. The greater stretching for both bonds occurs in <u>A</u> and this is almost certainly a consequence of the strained sp² angles at C(4) and C(5) and the relative shortness of the three bonds flanking those angles compared with the less strained sp³ angles in <u>F</u>.

An examination of the Newman diagrams about C(7)-C(8) (Fig. 4) bend shows that the longer  $\bigwedge(in \underline{A})$  is associated unexpectedly with the less eclipsed orientation. Likewise the difference between the two values of C(8)-C(9) does not correlate with the non-eclipsed angles in fig. 5. One is inclined, therefore, to attribute these large stretches mainly to the multiple contacts between C(8)-C(9) on the one hand and the ring B atoms C(10), C(11), C(13), C(14), on the other (see Table 8). In <u>F</u> there is additional contact between C(18) and O(21) because of the slewing of ring B. This is also revealed in a more marked flattening

of ring B in <u>F</u> near the spiro junction (one of two torsion angles flanking  $C(9) = 45.5^{\circ}$  in <u>A</u>,  $42.3^{\circ}$  in <u>F</u>). It is also noteworthy that the nonbonded distance C(7)-C(9) is the same in both structures (2.527 in <u>A</u>, 2.525Å in <u>F</u>,) so, as the bond angle at C(8) is limited by the ring constraints, the bonds C(7)-C(8) and C(8)-C(9) are necessarily long. A comparison of bond lengths, and valence angles for ring B is shown in Fig. 6.

A further interesting effect is that certain sp³ angles are consistently small that might well have been expected to be splayed.

Thus:

	A	<u> </u>
C(16)-C(7)-C(17)	106.4 ⁰	105.5°
C(4)-C(7)-C(8)	102.3 ⁰	105.2 ⁰
C(18)-C(8)-C(19)	106.1°	103.4 ⁰
C(7)-C(8)-C(9)	104.2 ⁰	105.2 ⁰
C(10)-C(9)-C(14)	106.7 ⁰	107 <b>.3⁰</b>
C(4)-C(9)-C(8)	101.6 ⁰	101.3 ⁰

i.e., in each case the angles included between, say, the gem-dimethyls and the angle between the other two bonds are small, whereas the other four angles at the same  $sp^3$  atom show no such trend. The same trends were detected though less reliably in the two earlier studies.

A stereoscopic packing diagram of the bishydropulegone structure is shown in Fig. 7, drawn using the structure illustration program ORTEP (as referred to previously). Only Van der Waals contacts occur in the structure.





•

ە 1444.يىلىسىمى ئىم تىدىدىغا مىسى مەشىمىلىكىكىكىلىكىلىكىلىدىدىدىنى بىرىدىدىغۇر ئىگ بەللىكىلىمىيىسىرى بىڭ

۲

# Fig, 3

Molecular Structure of the ketol bishydropulegone.



<u>Fig. 4</u>

l



 $\Delta = <39.7^{\circ} >$


Incomplete data available











Comparison of the bond lengths  $(\overset{\circ}{A})$  and valence angles  $(\overset{\circ}{})$  in ring B for both deshydropulegone and bishydropulegone.





# Atomic co-ordinates of non-hydrogen positions with estimated standard deviations in parentheses.

ATOM

c ₁	0.8196(3)	0,5760(3)	0,4312(3)
c ₂	0.7448(4)	0,6636(3)	0.4222(4)
c3	0,6213(4)	0.6485(2)	0,3592(3)
c ₄	0.5499(3)	0,5722(2)	0,4203(3)
c ₅	0,6218(3)	0,4837(2)	0,4264(2)
с ₆	0,7464(3)	0.4979(3)	0,4877(3)
с ₇	0.4191(3)	0,5447(2)	0,2778(3)
с ₈	0.4047(3)	0,4387(2)	0,4088(3)
с ₉	0,5278(3)	0,4125(2)	0.4772(2)
c ₁₀	0,5157(3)	0.4284(2)	0.6081(2)
c ₁₁	0,4587(3)	0,3497(3)	0.6781(3)
c ₁₂	0,5189(3)	0,2581(3)	0.6548(3)
c ₁₃	0,5033(3)	0,2373(2)	0,5267(3)
c ₁₄	0,5666(3)	0,3128(2)	0.4596(3)
C ₁₅	0,9407(4)	0,5910(4)	0,4967(4)
с ₁₆	0.4050(4)	0,5644(3)	0.2484(3)
c ₁₇	0,3257(4)	0.6098(3)	0.4373(4)
c ₁₈	0,3936(4)	0,3750(3)	0.3021(3)
с ₁₉	0,2847(3)	0.4194(3)	0.4741(3)
с ₂₀	0.4676(4)	0.1762(4)	0.7247(4)
0 ₂₁	0,6541(3)	0,2905(2)	0.3993(2)
0 ₂₂	0,6511(2)	0,4587(2)	0,3091(2)

. . . .

# Table 4.

Anisotropic thermal parameters

ATOM	^U 11 ^{×10³}	U22 ^{x10³}	U ₃₃ ×10 ³	^U 12 ^{×10³}	U ₁₃ ×10 ⁵	³ U ₂₃ ×10 ³
с ₁	61(2)	83(3)	50(2)	-29(2)	-2(2)	4(2)
c2	92(3)	64(2)	72(3)	-34(2)	5(3)	3(2)
c3	85(3)	48(2)	70(2)	-3(2)	-1(2)	11(2)
с ₄	62(2)	46(2)	43(2)	1(2)	2(2)	-2(2)
с ₅	47(3)	50(2)	33(2)	-2(2)	3(1)	-2(1)
с ₆	49(2)	69(2)	45(2)	-11(2)	-2(2)	7(2)
с ₇	55(2)	59(2)	50(2)	12(2)	-5(2)	1(2)
с ₈	38(2)	61(2)	44(2)	4(2)	-2(1)	-5(2)
c ₉	41(2)	50(2)	34(2)	-1(1)	3(1)	-1(1)
с ₁₀	59(2)	63(2)	35(2)	-9(2)	1(2)	0(2)
c ₁₁	57(2)	88(3)	42(2)	-16(2)	1(2)	10(2)
C ₁₂	53(2)	80(3)	70(2)	-17(2)	-12(2)	34(2)
с ₁₃	59(2)	49(2)	76(3)	-6(2)	1(2)	9(2)
с ₁₄	46(2)	51(2)	56(2)	-1(2)	-2(2)	3(2)
с ₁₅	69(3)	140(4)	72(3)	-49(3)	-7(2)	8(3)
с ₁₆	94(3)	87(3)	63(2)	9(3)	- 22(2)	22(2)
с ₁₇	68(3)	77(3)	109 (4 )	30 (2)	8.(3)	-4 (3 )
с ₁₈	63(2)	70(2)	57(2)	-8(2)	-9(2)	-14(2)
с ₁₉	40(2)	86(3)	73(2)	6(2)	3(2)	9(2)
с ₂₀	93 (3)	113(4)	89(3)	-35(3)	-14(3)	54(3)
0 ₂₁	73(2)	60(1)	91(2)	15(1)	30 (2 )	2(1)
0 ₂₂	58(1)	62 (1)	37 (1)	0(1)	.9 (1)	-2(1)

Fractional co-ordinates  $(x10^3)$  for the hydrogen atoms in the ketol, bishydropulegone (<u>F</u>,VII) with standard deviations in parentheses.

ATOM	x	<u>y</u>	<u>z</u>
H(11)	852(3)	548(2)	353(3)
H(21)	787(3)	718(2)	385(3)
H(22)	711(5)	695(3)	500(5)
H(31)	645(3)	621(2)	209(3)
H(32)	575(3)	700(3)	351(3)
H(42)	540(3)	595(2)	499(3)
H(61)	791(3)	427(2)	492(3)
H(62)	727(3)	522(2)	566(3)
H(101)	600(3)	439(2)	636(2)
H(102)	480(2)	491(2)	619(2)
H(111)	464(4)	368(3)	751(3)
H(112)	366(3)	336(2)	659(2)
H(12)	607(3)	256(2)	666(3)
H(131)	537(3)	173(2)	508(3)
H(132)	407(3)	234 (2)	508(3)
H(151)	1004(4)	642(3)	456(4)
H(152)	917(4)	618(3)	562(3)
H(153)	1000(5)	531(4)	495(4)
H(161)	475(3)	533(2)	203(3)
H(162)	310(4)	525(3)	229(4)
H(163)	415(4)	636(2)	234(3)
H(171)	343(3)	689(2)	405(3)
H(172)	241(4)	597(3)	404(4)
H(173)	340(5)	589(4)	510(5)
H(181)	467 <b>(3)</b>	388(2)	259(3)
H(182)	386(3)	306(2)	325(2)
H(183)	316(4)	368(3)	269(4)
H(191)	273(3) ·	345(2)	485(3)
H(192)	292(3)	469(2)	545(3)
H(193)	215(3)	448(2)	429(3)
H(201)	497(7)	80(5)	700(5)
H(202)	469(4)	199(3)	791(3)
H(203)	387(5)	161 (3)	726(4)
H(221)	660 <u>(</u> 4)	396(3)	325(3)

Comparison of bondlengths (Å) in the four structures.

		<u>F</u>	A	~ <u>C</u>	~ <u>D</u>
C(1)-C(2)		1,502(6)	1.375(5)	1.42	1.35(3)
c(2)-c(3)		1,546(6)	1,389(6)	1,39	1,38(3)
C(3)-C(4)	Ring A	1.523(5)	1.393(5)	1.40	1,42(3)
C(5)-C(6)		1.545(5)	1.396(5)	1.39	1.34(3)
C(6)-C(1)		1,528(5)	1.393(5)	1.40	1.44(3)
c(4)-c(5)人		1.495(4)	1.380(5)	1.41	1,33(3)
C(4)-C(7)		1,555(5)	1,517(5)	1.46	1,42(3)
C(7)-C(8)	Ring C	1.577(5)	1,587(5)	1.68	1.63(3)
C(8)-C(9)		1.603(4)	1,615(5)	1,69	1,69(3)
c(9)-c(5)	Į.	1,564(4)	1,522(5)	1.48	1.51(3)
C(9)-C(10)	1	1.564(4)	1,555(5)	1.62	1,58(3)
C(10)1C(11)	•	1,531(5)	1,541(6)	1.68	0.61(3)
C(11)-C(12)	Ring B	1.497(6)	1,513(6)	1,59	1,53(3)
C(12)-C13)		1,546(5)	1.531(5)	1.60	1,52(4)
C(13)-C(14)		1.508(5)	1,519(5)	1.46	1,53(4)
C(14)-C(9)		1,510(5)	1.547(5)	1.48	1,45(3)
C(1)-C(15)		1,537(6)	1,503(6)	1,44	1,62(3)
C(7)-C(16)		1,557(5)	1.557(6)	1.60	1,57(4)
C(7)-C(17)		1,547(6)	1.531(6)	1.62	1,504(3)
C(8)-C(18)		1,560(5)	1.537(6)	1.67	1.62(3)
C(8)-C(19)		1.537(5)	1.546(6)	1.60	1,56(3)
C(12)-C(20)		1.541(7)	1.546(6)	1,52	1,50(4)
C(14)-O(21)		1.227(4)	1,210(4)	1,27	1,19(3)
C(5)-O(22)		1.462(4)			

Comparison of bond angles (°) in the four structures.

Angle	F	<u>A</u>	<u>C</u>	<u>D</u>
C(2)-C(1)-C(15)	112,2(4)	120.4(3)	126	121(2)
C(6)-C(1)-C(15)	109.1(3)	120,3(3)	122	119(2)
C(2)-C(1)-C(6)	111,6(3)	119,3(3)	112	120(2)
C(1)-C(2)-C(3)	112.5(3)	121.6(4)	120	122(2)
C(2)-C(3)-C(4)	108.3(3)	118.7(3)	126	118(2)
C(3)-C(4)-C(5)	111.8(3)	120,4(3)	111	119(2)
C(3)-C(4)-C(7)	119.7(3)	127,8(3)	121	
C(5)-C(4)-C(7)	105.9(3)	111.7(3)	113	116(2)
C(4) -C(5) -C(6)	111,5(3)	120,1(3)	122	125(2)
C(4)-C(5)-C(9)	103.7(3)	112.6(3)	111	114(2)
C(6)-C(5)-C(9)	118,5(3)	127.3(3)	127	
C(1)-C(6)-C(5)	110.3(3)	119.7(3)	126	117(2)
C(4)-C(7)-C(8)	105.2(3)	102,3(3)	106	102(2)
C(4)-C(7)-C(16)	111.0(3)	108,0(3)		
C(4)-C(7)-C(17)	107.3(3)	113,0(3)		
C(8)-C(7)-C(16)	113,2(3)	111.9(3)		
C(8)-C(7)-C(17)	114.7(3)	115.1(8)		
C(16)-C(7)-C(17)	105,5(3)	106,4(3)	109	104(2)
C(7)-C(8)-C(9)	105,2(3)	104,2(3)	109	102(2)
C(7)-C(8)-C(18)	112,9(3)	112,4(3)		
C(7)-C(8)-C(19)	112,0(3)	109,8(3)		
C(9)-C(8)-C(18)	109.3(3)	115,5(3)		
C(9)-C(8)-C(19)	114.3(3)	108,8(3)		
C(18)-C(8)-C(19)	103.4(3)	106,1(3)	103	111(2)
C(5)-C(9)-C(8)	101.3(2)	101,6(3)	98	99( <b>2)</b>
C(5)-C(9)-C(10)	109.6(3)	109.0(3)		
C(5)-C(9)-C(14)	112.9(3)	110,2(3)		
C(8)-C(9)-C(10)	113,1(3)	116.9(3)	117	,
C(8)-C(9)-C(14)	112.8(3)	112.3(3)	104	
C(10) - C(9) - C(14)	107,3(3)	106,7(3)	112	

	F	A	<u>c</u>	D
C(9)-C(10)-C(11)	117.1(3)	115.7(3)	109	113(2)
C(10-C(11)-C(12)	112,2(3)	109.1(3)	109	110(2)
C(11)-C(12)-C(13)	107.6(3)	108,5(3)	111	108(2)
C(11)-C(12)-C(20)	114,7(3)	111,5(3)	109	114(2)
C(13)-C(12)-C(20)	109,5(3)	109.8(3)	120	113(2)
C(12)-C(13)-C(14)	108.8(3)	112,5(3)	111	108(2)
C(9)-C(14)-C(13)	119,1(3)	118,4(3)	129	117(2)
C(9)-C(14)-C(21)	122,9(3)	122.2(3)	117	124(2)
C(13)-C(14)-O(21)	117,9(3)	119.3(3)	113	119(2)
C(4)-C(5)-O(22)	106.1(2)			
C(6)-C(5)-O(22)	106.5(2)			
C(9)-C(5)-C(22)	109.9(2)		·	

Selected intramolecular distances (Å)

C(3)-C(16)	2.94	3.32
C(3)-C(17)	3,38	3.09
C(16)-C(18)	2,80	2,90
C(17)-C(19)	2,81	2,88
C(18)-C(14)	2,79	2,96
C(19)-C(10)	2,96	2.89
C(15)-C(13)	> 3,50	3.27
C(19)-C(11)	3.21	3,50
C(19)-C(14)	3.42	
C(16)-C(14)	> 3,50	3.48
C(18)-C(10)	> 3.50	
C(6)-C(10)	3.04	3.04
C(6)-C(14)	3,32	3.30
C(6)-C(21)	3,32	3.34
C(18)-C(21)	3,28	3,32
0(22)-0(21)	2,64 (H-Bond)	
0(22)-C(1)	2,87	
0(22)-C(3)	2,81	
0(22)-C(7)	2,92	
0(22)-C(8)	2,93	
C(22)-C(14)	2,90	
0(22)-C(16)	3,15	
0(22)-C(18)	3.04	

	F	A
C(2)[C(3)-C(4)]C(7)	177.8	-176,9
C(7)[C(4)-C(5)]C(6)	-169,8	
C(3)[C(4)-C(5)]C(9)	-173,1	
C(3)[C(4)-C(7)]C(8)	150.1	-161.2
C(3)[C(4)-C(7)]C(16)	27.4	
C(3)[C(4)-C(7)]C(17)	-87.4	
C(5)[C(4)-C(7)]C(16)	-100.0	-97.8
C(5)[C(4)-C(7)]C(17)	145.2	144.5
C(4)[C(7)-C(8)]C(18)	-115,1	-152,8
C(4)[C(7)-C(8)]C(19)	128.7	89.4
C(16)[C(7)-C(8)]C(9)	125,3	89.5
C(16)[C(7)-C(8)]C(18)	6,2	-37.3
C(16)[C(7)-C(8)]C(19)	-110,0	-155.1
C(17) [C(7)-C(8)]C(9)	-113,6	-149.8
C(17) [C(7)-C(8)]C(18)	127.3	84.4
C(17) [C(7)-C(8) ]C(19)	11.1	-33,4
C(7) [C(8)-C(9) ]C(10)	89,5	
C(7) [C(8)-C(9) ]C(14)	-148.6	-93.4
C(18) [C(8)-C(9) ]C(5)	93,9	148.1
C(18) [C(8)-C(9) ]C(10)	-149,0	
C(18) [C(8)-C(9) ]C(14)	-27,0	30.3
C(19) [C(8)-C(9) ]C(5)	-150,9	-92,8
C(19) [C(8)-C(9) ]C(10)	-33,7	
C(19) [C(8)-C(9) ]C(14)	88,2	149,5
C(4) [C(5)-C(9)] C(10)	-77,4	
C(4)[C(5)-C(9)]C(14)	163,1	-
C(6)[C(5)-C(9)]C(8)	166,4	·
C(6)[C(5)-C(9)]C(10)	46.8	42,2
C(6)[C(5)-C(9)]C(14)	-72,2	
C(5)[C(9)-C(10)]C(11)	-162,8	-167.3
C(8)[C(9)-C(10)]C(11)	85.1	
C(5)[C(9)-C(14)]C(13)	165,5	
C(8) [C(9)-C(14) ]C(13)	-80,4	-86.7

# Table 9 (Continued).

F	A
-8.8	
105.2	
-129.7	-135,1
60.6	
-57,3	
74.7	
-70,9	
169,5	
50.0	
	<u>F</u> -8.8 105.2 -129.7 60.6 -57.3 74.7 -70.9 169.5 50.0

301

A

## Table 10a

Mean planes through various groups of atoms of the deshydropulegone (A) structure.

The displacements (A) of atoms from their planes.

Atoms which do not define the plane are marked by an asterisk(*)

B

Plane A

C(1)	-0.008	C(4)	0,082	C(4)	0,025
C(2)	0,009	C(5)	0.034	C(5)	-0,025
C(3)	0.000	C(7)	-0,160	C(7)	-0.013
C(4)	-0.011	C(8)	0.173	C(9)	0,014
C(5)	0.012	C(9)	-0.130	C(8)*	0,449
C(6)	-0,002				

D

E

∼**F** 

<u>C</u>

C(1)	0 632	C(0)	0 160	C(0)	0 21/
0(1)	0,032	(9)	0,100	0(9)	0.314
C(2)	0.079	C(10)	-0.231	C(10)	-0,285
C(3)	0,029	C(11)	0.290	C(11)	0.133
C(4)	-0,055	C(12)	-0;272	C(12)	-0,324
C(5)	-0,061	C(13)	0,211	C(13)	0,358
C(6)	-0,034	C(14)	-0.157	C(14)	0.096
C(7)	-0.183			C(20)	0.021
C(8)	0,271			C(21)	-0,312
C(9)	-0,078				

G

C(10)	-0.038
C(11)	0.038
C(13)	-0.039
C(14)	0,039
C(9)*	0,589
C(12)	-0,710

### Table 10b

Mean planes through various groups of atoms of bishydropulegone  $(\underline{F})$  structure.

The displacements  $(\overset{\circ}{A})$  of atoms from their planes.

Atoms which do not define the plane are marked by an asterisk(*)

Ā	<u>A</u>		B
C(1)	-0.223	C(2)	0,006
C(2)	0.234	C(3)	-0.006
C(3)	-0,241	C(5)	0.006
C(4)	0.251	C(6)	-0.006
C(5)	-0,236	*	
C(6)	0.216	C(1) *	-0,645
4		C(4)	0.674
C(15)	0,285	C(15)	-0,595
C(7)	-0,039	C(7)*	0.852
C(9)*	0,217	C(9)*	0,726
0(21)*	-1.695	0(21)*	-1,390
0(22)*	-1.459	0(22)*	-1,180
<u>c</u>			D
C(4)	-0,0163	C(9)	-0,131
C(7)	0.025	C(10)	0,154
C(8)	-0.024	C(11)	-0,242
C(9)	0.016	C(12)	0,294
C(5)*	-0,634	C(13) C(14)	-0,272 0,198
C(3)*	-0,649		
C(6)*	-0,509	0(21)*	0.645
C(10) [*]	1.469	0(22)*	0,919
C(14)*	-0.741	C(20)*	-0,043
C(16) [*]	-1.152	C(5)*	0.710
C(17) [*]	1.313	C(8)*	-1,624
C(18) [*]	-1.321		
$c(19)^{*}$	1 101		

Table 10b (continued).

-

-	<u> </u>	F	-
C(10)	-0,021	C(9)	0.009
C(11)	0.021	C(14)	-0,029
C(13)	-0.021	C(13)	0,009
C(14)	0.021	C(21)	0,011
C(9) [*]	0.730		
C(5)*	-0,109	0(22)*	-0.553
C(12)*	0.836	C(5)*	0,325
0(21)*	-0.366	H(221)*	-0,377
0(22)*	0,602		*.

G	H	<u>1</u>
C(15)	C(5)	C(9)
C(1)	C(6)	C(12)
C(4)	0(22)	C(20)
C(2) [*] 1,250	C(4) [*] 1,257	c(13) * -1,134
C(3) [*] 1,242	C(9) [*] -1,134	C(14) [*] -1,220
C(15) [*] -1.253	C(7) [*] 1.016	C(11) [*] 1,277
C(6) [*] -1,253	C(8) [*] -0,551	C(10) [*] 1,224
C(7) [*] -0.243	0(21)* -2,611	C(4) [*] 0,943
0(22)* -1,244	C(16) [*] 1.679	C(5) [*] -0,122
	C(17) [*] 1.754	C(7) [*] 0,888
	C(18) [*] -1,117	C(8) [*] 0.208
	C(19) [*] -1.004	0(21)* -2,256
		0(22)* -1,394

4

# Table 10b (continued).

(i) Equations of the planes may be expressed in direct space where  $\underline{Px} + \underline{Qy} + \underline{Rz} = \underline{S}$ .

Plane	<u>P</u>	्र	R	<u>_S</u>
A	-2,26	4.42	10,93	5,63
В	-5,34	3.88	9,74	2,71
С	-4,47	4,05	10.20	4.16
D	10,45	0,23	3,11	7.23
Е	9,50	-2.82	5.17	6,86
F	7.00	1,54	8.90	8.57
G	-0.07	13,90	-3,06	6,63
н	-0,11	13,92	-3,00	5,39
I	-4,07	9,26	7.85	5,42

(ii) Angles between planes (°)

------

Plane A	plane <u>B</u>	17.46	plane <u>C</u>	plane <u>E</u>	87,91
А	С	12,35	. D	E	16.57
А	G	86.77	D	I	79.86
В	С	5,12	Е	F	28,70
В	F	70,32	E	I	80,63
В	G	87,23			
В	н	86,85			

#### References

- (1) I.F. Camps, A. Esquefa, H. Ferrer, F. Magrams, J. Pares, J. Pascual and J. Sust, <u>An Real Soc. Espanola Fis. Quim.</u>, <u>1961</u>, <u>Ser. B -Quim.</u>, <u>62</u>, 798.
- (II) J. Bartual, J. Ferrer, J. Pascual and M. Vendrell, An. Real Soc. Espanola Fis. Quim., 1966, Ser. B-Quim., 62, 829.
- (III) J. Bartual, F. Camps, J. Pares and J. Pascual, An. Real Soc. Espanola Fis. Quim., 1968, 64, 157.
- 4. (IV) J. Bartual, F. Camps, J. Ferrer, J. Pascual and J. Roque, An. Real Soc. Espanola Fis. Quim., <u>1970</u>, <u>66</u>, 375.
- 5. (V) J. Bartual and J. Pascual, An. Real Soc. Espanola Fis. Quim., 1970, 66, 693.
- 6. (VI) J. Bartual, J.M. Font, E. Forne, J. Pascual and J. Roque, An Real Soc. Espanola Fis. Quim., 1970, 68, 90.
- 7. (VII) J.M. Font-Cistero and J. Pascual. An. Real Soc. Espanola Fis. Quim., <u>1974</u>, <u>70</u>, 90.
- 8. (VIII) In Press, An. Real Soc. Espanola Fis. Quim.
- 9, (IX) P, Camps, F. Munoz and J. Pascual, Real Academica Ciencias Exactas, Fisicas y Naturales, Homenaje al Prof. LORA TA-MAYO, MADRID, 1975, p.341.
- 10. (X) E, Forne and J, Pascual, J. Chem. Soc., in press.
- 11. C. Harris and G. Roeder, Ber., 1899, 32, 3357.
- 12. H.D. Law, J. Chem. Soc., 1912, 101, 1029.
- 13. H. Müller, Frdl., <u>1921</u>, <u>14</u>, 1439.
- 14. A. Perales, S. Martinez-Carrera and S. Garcia-Blanco, Acta Cryst., 1969, B25, 1817.
- 15. J.M. Franco, S. Martinez-Carrera and S. Garcia-Blanco, Acta Cryst., 1974, B30, 415.
- 16. F.H. Allen, D. Rogers and P.G.H. Troughton, Acta Cryst., 1971, B27, 1325.
- 17. G. Germain, P. Main and M.M. Woolfson, Acta Cryst., 1971, A27, 368.
- 18. D.T. Cromer and J.T. Waber, Acta Cryst., 1965, 18, 104.
- R.F. Stewart, E.R. Davidson and W.T. Simpson, J. Chem. Phys., 1965, 42, 3175.

į

#### APPENDIX II

## Comparison of observed and calculated structure amplitudes

The data are listed in groups of constant <u>h</u> and <u>k</u> and list values of  $\underline{k}$ ,  $10|F_0|$  and  $10|F_c|$ . Reflections marked "*" were classified as unobserved.

238 43 327 59 86 11* 21 17 37 33 72 21 10* 10* 24 9* 53 70 114 86 52 240 27 31 155 22 50 9* 0,0,L 6 1 239 31 327 64 84 3 18 13 38 70 120 236 236 236 149 248 248 50 6 40 78 22 11 1 30 10 12 13 10* 10* 1011213 82 61 141 69 78 54 149 82 6 8 10 1,1,4 471 255 270 169 109 125 20 56 79 50 48 465 249 264 158 111 128 12 58 84 57 54 0,1,L 0.13.1 558 457 435 17 35 28 33 25 35 72 568 464 23 38 25 36 27 36 76 19 29 121 35 10* 34 11 0.5.L 21 44 122 40 17 34 14 119 13 79 85 142 42 59 28 33 25 8 33 25 ** 116 80 91 148 40 54 17 31 25 15 3 11123 0,9,L 9* 78 102 41 119 30 120 47 85 40 64 101 72 106 34 129 24 125 40 86 38 65 1,2,L 0,14,L 120 236 137 328 105 118 31 127 42 10* 46 110 223 133 321 103 121 30 134 39 7 53 101123 0,2,L 47 50 11* 50 42 48 9* 49 44 48 47 42 7 352 472 148 205 174 278 34 19 139 151 44 16 342 469 149 194 159 268 25 17 145 162 46 19 0,6,L 0,10,L 172 332 232 47 116 58 110 94 69 16 11* 13 173 336 229 48 119 53 102 71 17 10 15 127 221 115 179 38 38 77 24 106 10* 25 133 233 119 175 36 47 75 27 114 28 0,15,L 16 38 20 30 9* 13 34 13 25 6 1,3,L 9* 58 57 384 306 180 394 108 203 98 59 17 31 22 101123 59 381 289 173 377 105 106 106 14 32 23 0,3,L 269 271 212 318 9* 79 47 70 127 68 52 87 0,16,L 268 208 313 12 80 39 83 126 73 53 95 10* 17 53 22 13 11 33 17 0.7.L 0,11,L 222 15 241 82 184 16 34 17 42 36 38 41 123 84 125 102 51 21 10 217 12 240 73 80 189 6 31 19 42 36 46 26 124 83 126 108 49 26 10 1.0.L 541 453 81 350 134 78 35 74 84 581 452 72 338 118 70 41 71 95 1,4,L 160 213 310 158 150 162 214 303 152 156 0,4,L 257 155 156 0,12,L 260 163 154 158 148 0,8,L 1

	1,4,1			1,8,L			1,12,L		5	97 129	99 127		2,4,L	
7 8 9 10 11 12 13	110 59 142 104 21 44 27	115 62 147 108 16 45 31	C 1234567	100 109 101 155 45 123 73 57	102 114 97 158 50 125 75 60	01234567	54 171 74 14 76 75 11* 40	66 175 81 10 89 76 5 37	7 8 9 10 11 12 13	25 133 46 18 13 17 9*	23 136 53 2 6 17 2	01234567	58 479 100 133 365 196 117 224	67 492 89 139 344 190 116 222
0123	625 264 218	671 280 227	9 10 11 12	133 49 41 13 41	135 48 42 10 40	9	28 1,13,L	27	023	258 526 143	265 524 142	9 10 11 12	51 49 94 83 25	50 47 96 81 27
545670	197 100 161 21	123 178 98 151 21	0	1,9,L 14 108	19 113	1234	11* 52 35 49	5 57 40 52	756 780	180 133 215 22	172 131 221 24	13	307	308
9 10 11 12	48 83 83 24 11	52 85 83 23 11	234567	118 52 52 80 14	121 46 54 89 16	5 6 7 8	52 27 29 28	54 27 26 26	10 11 12 13	106 36 16 34 10	107 39 23 38 9	234567	450 340 145 194 121	457 333 137 191 115
13	- 17 1,6,L 70 173	70 177	8 9 10 11	197 58 69 27	200 55 68 28	0 1 2 3	1,14,C 10* 42 45 27	3 36 46 18	0 1 2	2,2,L 362 334 114	381 334 108	8 9 10 11 12	32 73 21 39	110 19 77 19 39 44
123456	310 334 246 153 62	317 323 242 150 63	0 1 2	1,10,L 11 173 188	7 179 198	145 57	41 21 32 32	40 20 30 24	-3 4 5 6 7	125 441 402 334 160	117 424 388 328 153	13	10 2,6,L 294	10
7 8 9 10 11	35 91 49 31 22	31 87 47 31 24	-34567	97 93 112 74 126	95 93 109 79 126	0 1 2	1,15,L 10* 76 46	5 60 38	8 9 10 11 12	99 70 76 57 10*	91 70 76 56 17	2 3 4 5 6	468 206 100 97 39	467 211 93 88 39
12 0	14 1,7,L 28	13	8 9 10 11	70 32 26 33	72 . 32 27 34	34 56	18 48 26 11	15 44 25 5	13	31 2,3,L 196	35 207	7 8 9 10 11	68 126 46 67 24	69 127 45 62 22
1 2 3 4	271 151 98 135	280 152 101 129	0	1,11,L 52 117	53 123	0	1,16,L 79 10*	49 6	1234	249 203 361 260	246 188 354 253	12	45 2,7,L	50
5 6 7 8 9	182 90 88 90 78	160 91 83 86 77	23456	205 299 42 63 31	209 309 46 68 32	3	22 17 2,0,L	61 20 15	5 6 7 8 9	149 194 73 166	200 137 197 64 167	1 2 3 4	178 158 125 62 79	150 150 124 67 70
10 11 12	66 36 18	64 38 21	7 8 9 10	22 25 44 10	17 25 42 11	123	26 377 231	34 368 225	10 11 12 13	133 20 19 29	131 22 19 31	5 6 7 8	23 · 71 93 97	18 70 91 92

8 9 10 2.7.L 40 20 **2**6 39 17 27 105 38 110 227 28 111 81 11* 52 24 31 110 36 109 224 28 114 88 13 56 26 34 12 13 42 12 45 15 47 73 40 63 16 21 45 74 36 54 12 22 7 9 10 11 12 60 36 11 12 62 42 3,4,1 2,12,1 2,8,L 140 124 282 106 103 80 154 278 82 31 37 43 141 121 264 103 86 150 280 17 83 27 42 50 74 102 28 83 38 19 25 10* 9* 75 105 19 80 41 17 19 17 19 3,8,L 26 65 30 88 121 106 102 70 60 67 25 21 34 58 38 114 99 72 55 27 21 11 63 55 124 91 82 161 128 92 18 50 625 1258 1656 1365 1365 256 40 3, 1, L 8* 234 602 133 97 362 66 88 89 47 52 21 35 19 0 1 2 3 4 5 6 7 8 9 10 11 2 3 10 11 2 3 230 616 128 101 371 65 86 98 51 51 20 38 18 2,13,1 95 54 27 13 36 23 31 44 83 52 34 36 23 31 41 3,5,L 2,9,1 275 610 194 180 173 168 71 102 104 59 48 24 3.9.6 112 291 601 188 166 170 168 72 101 104 62 53 25 32 45 120 26 53 50 140 38 28 28 26 25 47 118 55 45 142 30 45 28 28 0 1 2 3 4 5 6 7 8 9 0 1 10 11 140 21 92 132 157 76 83 112 11 26 142 19 97 137 128 159 82 84 108 12 24 2,14,1 3,2,1 27 31 38 44 60 52 24 205 357 47 83 152 16 129 87 111 78 37 29 30 36 46 47 21 131 192 339 31 92 145 13 128 87 113 83 41 34 2,10,1 3.6.L 3,10,L 82 125 52 102 105 51 48 77 19 34 146 149 160 111 88 29 78 63 39 43 40 D1234567890 10 78 130 55 108 111 51 52 73 15 34 136 138 146 96 84 277 64 36 54 277 64 54 277 73 87 57 123 125 43 92 31 33 44 68 91 68 126 126 126 126 96 28 35 45 2,15.L 33 23 36 11 9* 49 25 17 35 11 5 45 3,3,L 169 211 205 142 191 89 84 278 145 113 167 207 196 139 193 83 89 281 149 115 ,11,L 2,16,L 3.7.1 3,11,L 34 16 60 23 11 45 88 114 82 119 49 59 88 114 89 124 47 62 1 2 3 255 178 28 126 79 83 45 114 51 88 54 116 51 249 178 35 137 86 3,0,L

	3,11,L			4,0,L		7	151 293	154 294	3	82 39	86 31	5	37	45 33
56780	38 34 43 14	42 39 42 14	0 1 2 3	58 269 574 463	61 275 571 456	9 10 11 12	81 61 48 33	82 54 46 37	- 5 6 7 8	114 117 103 100	109 114 104 96	789	40 54 13	55 12
10	10	6	4 5	379	103		4,4,L		9 10	45 36	47 39		4,12,L	
	3,12,L		6 7 8	208 26	202 24	0	33	35	11	28	23	0	266 112	250 114
o	13	18	9	103	105	2	206	192	_	4,0,1		3	27	24
2	112	106	10	11* 89	93 93	3 4	152 148	142 143	0 1	43 64	44 65	45	68 32	6 <b>6</b> 32
3	13 39	14 45	12 13	12 33	9 34	5	144 232	143 227	2	119	121	6 7	40 17	36 19
5	36	35		4.1.1		7	57	55	4	85	86	8	11	11
7	49	48	_			9	111	106	6	95	97		4,13,L	
9	48	50	1	150 236	161 235	10	134 21	134 22	7	126 67	121 65	o	80	81
	3,13,L		2	544 298	544 294	12	17	17	9 10	43 54	42	1	63 48	63 52
n	11#	11	4	262	257		4,5,L		11	10	7	3	16	21
ĭ	61	54	6	180	183	Q	88	92		4,9,L		5	38	38
ź	85	37 90	8	222	230 217	1 2	131 171	119 176	ο	42	38	6 7	78 24	76 23
4	67 45	66 40	9 10	21 112	18 117	3	219 96	225 86	1	58 19	58 20		4.14.1	
6 7	11 57	7	11	80 37	81	5	116	102	3	44	49		10*	
ė	26	25	13	gж	1	7	75	73	5	57	56	1	12	14
	3,14,L			4,2,L		8	118 44	118 47	5	127 86	132 86	23	21 15	18 18
o	25	20	٥	201	205	10 11	40 39	41 39	8	50 16	48 17	45	40 9×	30
1	33 48	32	1	146	145	12	30	30	10	50	45	6	35	29
3	10*	11	วิ	234	213		4,6,L			4,10,L			4,15,L	
5	39	35	45	108	100	ο	133	132	o	36	38	O	35	21
6 7	56 66	51 59	6 7	76 113	76 109	1 2	240 174	240 168	1 2	101 33	103 35	1 2	10* 40	6 35
	3.15.1		8	262	261	3	173	167	3	79	82	3	11	19
_		-	10	104	108	5	48	50	5	33	29	-	20	<i>76</i>
1	14 48	35	11 12	14 50	15 53	7	68 64	61 59	5	81 46	81 50		4,16,L	
2	32 10×	27 9	13	34	43	89	69 77	69 74	8	82 32	86 29	0	9* 18	3
4	75	66		4,3,L		10	76	75	10	33	30	-	== = 0 1	
2			D	50	51	12	36	36		4,11,L			5701L	
	3,16,L		12	136 110	133 107		4,7,L		D	31	29	1 2	588 215	583 202
0	9* 17	1 11	3 4	166 261	162 245	o	15	25	1 2	119 111	114 115	3	235 139	221
27	40 41	27	5	130	116	1 2	236	243	34	106	106	•	100	100
-	•••		-			-								

5.0.L 5,4,L 9× 27 11* 33 33 24 13 29 32 33 23 16 47 44 58 29 34 9 10 11 12 45 43 58 28 36 12** 213 114 80 45 23 12 12 6 7 8 9 10 11 12 18 269 196 136 210 68 73 90 68 82 11 35 22 264 194 130 216 69 72 90 72 79 74 5.8.L 10112 214 114 79 47 24 18 10 25 41 47 59 51 125 55 13 27 39 45 9 86 50 123 51 9 5,2,1 13.L 104 139 60 96 35 156 75 13 10[#] 32 105 137 136 51 101 39 35 156 74 16 7 40 10* 24 14 20 30 11 22 5 22 17 23 28 5 20 20 5,1,L 9* 68 354 236 137 66 161 117 77 23 10* 32 65 430 343 220 129 73 160 116 78 21 10 32 5,5,L 5,9,L 54 22 40 55 78 163 57 31 18 9* 289 129 169 162 98 102 72 58 22 16 112 303 136 156 160 79 94 97 19 70 63 24 14 56 20 49 60 83 164 63 32 18 13 5,14,L 38 14 27 43 29 34 10 26 38 21 6,3,L 9* 116 56 119 81 102 137 69 95 63 10* 111 62 51 119 79 104 143 72 94 65 6 5.2.1 5,15,L 250 112 152 82 70 103 235 104 120 83 94 94 239 101 149 78 70 105 237 107 119 81 98 4 5,10,L 10 29 48 6 24 37 1 2 3 118 63 77 63 11* 25 30 62 33 5,6,L 117 76 61 77 27 29 61 32 64 128 25 24 117 28 35 22 42 11 56 125 29 125 27 114 25 5 45 6,0,L 57 89 101 61 32 11* 105 26 11** 105 11** 10** 18 10112 65 86 96 30 105 4 34 20 6,4,L 13 118 231 44 70 59 152 45 79 32 26 101 118 225 41 756 146 794 24 24 5,3,L 11,L 99 42 10 35 16 41 22 37 105 45 18 35 24 60 40 21 35 55 41 64 162 127 59 230 86 72 42 26 54 41 59 37 160 125 232 86 70 44 33 5,7,L 10* 40 57 37 82 48 64 23 48 88 88 28  $\begin{array}{c}11\\43\\54\\84\\61\\38\\0\end{array}$ 6,1,L 6,5,L 178 153 94 105 38 147 164 148 93 114 34 149 143 18 103 61 142 8 100 55 5,12,L 11* 13 

6.5.L 7:0,L 7,4,L 51 32 46 51 54 30 49 50 128 106 126 55 44 39 16 17 7.9.L 131 107 129 55 40 36 18 12 86 64 104 52 10 9* 6 7 8 9 10 138 119 59 84 123 22 52 92 28 21 7,1,L 87 67 103 51 9 6 129 120 60 82 119 20 48 94 31 22 64 58 14 41 79 98 80 46 63 10* 19 70 57 17 42 78 98 71 45 63 4 22 101 11 6,10,1 11* 17 12 78 90 81 90 26 31 14 6,11,L 8 12 74 100 79 97 27 32 12 6,6,L 83 58 31 18 77 67 12 15 7,10,L 131 243 147 77 57 63 41 42 165 24 33 24 6,7,L 185 24 35 151 29 74 66 67 42 24 35 129 74 66 67 42 22 131 244 147 74 54 60 38 41 14 33 29 88 63 28 20 76 64 11 18 7,5,L 136 33 93 41 57 99 63 79 42 55 36 7,2,L 101 140 35 90 42 65 103 64 80 41 55 34 176 159 126 60 63 22 52 26 16 47 182 165 131 62 63 23 43 26 13 44 30 23 22 60 28 60 21 43 33 24 20 56 29 60 19 37 31 11 63 11* 33 24 57 26 36 10 59 4 31 20 53 20 53 10 27 37 154 31 70 63 69 43 5 21 7,6,L 6,12,L 133 159 73 129 50 79 176 12 45 26 15 7,3,L 97 84 89 182 11* 51 28 18 10* 38 7,7,L 0 1 2 3 4 5 6 7 8 9 10 1 11 133 157 65 125 53 72 181 12 181 12 41 29 19 96 88 85 192 7 53 24 19 39 11* 26 31 19 22 48 22 34 15 31 14 25 49 20 30 11* 26 69 21 18 30 14 29 12,L 24 67 19 18 27 12 26 6,8,L 95 36 29 35 114 94 69 20 39 62 6,9,L 10 102 39 24 43 112 99 60 10 39 62 13,L 10* 13 32 25 28 25 28 25 24 14 33 28 22 24 22 63 171 66 34 52 71 21 10* 39 27 70 170 28 55 70 19 2 30 26 21 66 133 123 71 143 654 35 43 25 54 40 131 121 67 141 67 44 32 43 40 29 19 38 34 38 29 15 37 29 14+L 7,13,L 10 31 35 36 16 21 26 32 47 124 83 139 46 127 82 143 10** 17 43 27 16 33 23 7,8,L 

7,13,L 8 9 10 32 15 53 37 11 52 11* 48 11* 26 9* 45 8 23 7 11* 56 39 54 72 69 45 31 18 63 92 47 89 60 11 11 25 93 55 91 11 12 21 58 37 58 59 72 20 17 4.L 8,4,L 9* 14 13 9,1,L 87 131 169 71 97 125 29 43 41 17 8,5,L 86 135 169 68 101 126 33 42 37 18 91 76 59 39 16* 19 10* 48 49 9.2.L 88 70 50 37 20 21 12 46 46 8,0,L 8,9,L 9,6,L 248 51 40 44 11* 46 11* 23 56 38 247 54 39 42 13 49 13 27 67 35 27 21 38 35 10* 11 30 95 21 39 37 12 41 60 75 60 35 21 42 31 46 67 64 38 18 39 33 200 74 102 101 66 50 44 31 8,10,L 98 96 32 87 243 46 204 70 41 104 98 62 51 48 31 9,7,L 8,1,L . 69 30 25 42 32 28 19 12 27 24 42 32 29 14 14 48 35 35 36 32 14 47 37 38 33 37 32 13 188 133 16 95 16 55 46 11* 23 27 190 126 20 96 20 56 47 12 22 32 9,3,L 8,6,L 8,11,L **,8**,L 10* 67 56 14 20 22 174 83 42 14 27 44 37 33 23 88 111 72 91 63 66 105 15 13 9,4,L 176 91 39 12 18 46 34 34 18 60 53 15 16 93 110 72 92 64 68 111 16 10 70 51 10* 28 38 38 48 72 5 3 6 5 4 1 4 5 4 3 4 5 8,2,L 70 129 41 62 47 99 44 55 25 73 30 57 49 103 44 45 53 23 8,12,L 14 33 64 9* 12 28 59 5 9,9,L 8,7,L 25 22 36 28 46 37 30 27 32 31 49 34 105 143 101 72 73 24 23 39 23 112 149 107 70 73 26 24 35 24 130 112 50 68 55 63 74 32 15 131 110 51 70 56 65 71 34 21 8,13,L 8,3,L 33 24 134 104 45 115 70 97 133 107 45 118 65 95 10,L 9,0,L 12** 151 63 11* 10* 10* 38 157 60 12 4 36 1 2 8,8,L 9,5,L

	9,10,L			10,3,L		4	46	52	2	28	31		11,8,L	
3 4 5	20 18 9*	20 18 10	0 1 2	68 69 11*	71 69 9	5	31 10,8,L	32		61 26 59	58 21 57	0 1 2	9* 10 48	3 10 47
-	9,11,6		34	52 78	46 81	D	11*	16	_	11,3,L		_	12,0,6	
_			5	89	85	1	37	34	~			~	95	DE
1	10# 41	14 35	7	25	52 23	23	21 36	33	1	16	20	1	26 10	13
2	46	40	8	24	23	4	28	26 34	23	37	36	2	23	20 30
2		21		10,4,L				5.	4	32	30	4	15	17
	10,0,L		O	11*	2		10,9,1		5	39	28 35		12,1,L	
ò	34	34	1	16	16	0	39	33		11.4.1			10%	7
2	152	120	3	80	81	2	29	25		111-416		1	62	59
3	11*	1	4	23	24	3	17	16	0	11*	4	2	19	20
4	29	30	5	25	29	4	9	11	1	61	59	3	19	17
5	90	87	6	47	43		10.10.1		~ 2	27	26	4	22	17
5	46 35	49		20	20		10,10,1		4	58	55		12.2.1	
Ŕ	26	22		10.5.1		0	39	35	5	21	21			
•	20			10.2.1		ī	11	11	6	38	36	0	10×	3
	10,1,L		0	83	85	2	52	44				1	10*	_6
			1	65	67					11,5,L		2	53	50
0	74	82	2	45	46		11,0,L			40	40	3	37	34
1	59	53	3	37	39	•		0	1	40	40			
2	22	23	7	45	43	5	110	70	2	00	57		12.3.1	
4	26	29	6	38	37	3	59	50	3	10×	5			
5	28	29	7	30	33	4	10*	3	4	45	47	0	19	20
6	27	27				5	33	33	5	37	36	1	58	50
7	16	11		10,6,L		6	28	29				2	56	54
8	32	32		100	101	7	39	39		11,0,1		ç	39	-74
	10.2.1		1	105	105		11.1.L		0	10*	6		12,4,L	
	10,2,2		2	35	37				1	37	37			
0	11*	3	3	31	32	0	46	48	2	47	46	Q	52	50
1	91	86	4	23	24	1	65	62	3	19	18	1	24	20
2	81	80	5	24	21	2	11*	6		24	24	2	12	23
3	45	42	5	10	10	2	50	57	5	14	15	2		-1
- <del>4</del>	80 40	01 44		27	23	5	45	48		11,7,L			12,5,1	
5	99	99		10.7.6		ő	40	40						
7	51	53							0	19	14	0	41	39
8	19	18	0	51	48		11,2,L		1	13	15	1	16	. 20
			1	42	38	~			2	13	14	2	19	1/
			2	37	40	0	14	19	4	28	27			
			2	21	22	1	10	10		-0				

# APPENDIX III

Statistical tests used in processing A.E.D. output.

#### Statistical tests used in processing A.E.D. output

It may be shown that, when counting X-ray quanta from a fully stabilised, smoothed-output tube, using a proportional or scintillation counter, the counting rate values follow a Poissonian distribution if the number of counts is large, and the standard deviation for a counting rate of n p/s is $\sqrt{n}$ .

From a well known statistical theorem the Nanauces of the sum or difference of several quantities are both equal to the sum of the Nanauces of the separate quantities. Hence for a five-value measurement on the A.E.D., the standard deviation of  $[I_1+I_3+I_5-(I_2+I_4)]$  may be taken as  $(I_1+I_2+I_3+I_4+I_5)^{\frac{1}{2}}$ .

Now  $I_{net} = \frac{1}{2} \left[ I_1 + I_3 + I_5 - (I_2 + I_4) \right]$  and hence its standard deviation may be taken as

> $\sigma(I_{net}) = \frac{1}{2}(I_1 + I_2 + I_3 + I_4 + I_5)^{\frac{1}{2}}$ Similarly

 $\sigma (\mathbf{I}_{1} + \mathbf{I}_{5} - \mathbf{I}_{3}) = (\mathbf{I}_{1} + \mathbf{I}_{3} + \mathbf{I}_{5})^{\frac{1}{2}}$ 

It may be shown that, for quantities obeying a Gaussian law, there is a 99% probability that a value will lie within  $\pm$  2.58 standard deviations of the mean value, a 90% probability for  $\pm$  1.64 standard deviations, a 50% probability for  $\pm$  0.67 standard deviation. Thus if the overall peak count, I₃, obtained by the five-value measuring routine is acceptably near equality with the sum of the two half-peak counts, (I₁+I₅) we should have

# $| I_1 + I_5 - I_3 | < Q(I_1 + I_3 + I_5)^{\frac{1}{2}}$

where Q takes one of values given above. Similarly, if the reflection count is significantly above background, we should have

$$I_{net} > Q \sigma (I_{net})$$

Experience has shown a value of 2.58 for Q to be satisfactory for both tests.

counts

$$\frac{I_1^2 + I_5^2}{I_1 I_5} < 4$$

is not very stringent, as it allows  $I_5$  to vary between about 0.27 $I_1$  and 3.7 $I_1$ . This fairly generous latitude is necessary, however, since in some cases a peak may be genuinely asymmetrical, e.g. due to absorption in irregularly shaped crystals.

Intensity scaling, and Lorentz-Polarisation correction for A.E.D. output.

In the expression

$$F_o^2 = K.(Lp)^{-1}.I_c$$

the scale factor K is calculated as follows. Let  $R_1$  and  $R_2$  be the  $I_0$  values for the reference reflection at the beginning and end of the block of data containing the reflection for which K is required, and let R be the arbitrary value set for the  $I_0$  of the reference reflection during SODI input. The values  $R_1$  and  $R_2$  may be converted to R by means of scale factors  $K_1$  and  $K_2$  such that

$$K_1 R_1 = K_2 R_2 = R$$

The value of K to be used for all reflections in the block between  $R_1$ and  $R_2$  is the arithmetic mean of  $K_1$  and  $K_2$ .

The Lorentz factor, L, for a diffractometer used in normalbeam equatorial mode is

$$L = (\sin 2\theta)^{-1}$$

and for unpolarised radiation, the correction factor, p, is

$$p = \frac{1}{2}(1 + \cos^2 2\theta)$$

hence,

$$Lp = \frac{1}{2} \frac{(1 + \cos^2 2\theta)}{(\sin 2\theta)}$$

#### APPENDIX IV

Phase determination for

non-centrosymmetric structures.

"Some people never learn anything because they understand everything too soon."

... Alexander Pope.

#### APPENDIX IV

#### Phase Determination for Non-centrosymmetric Structures

In general, phases can be anywhere between 0 and  $2\pi$  radians. The rules for selecting the initial phases for non-centrosymmetric space groups are that three phases, the parities of which are linearly independent, may be chosen arbitrarily and one other may be designated in the range 0 to  $\pi$  to fix the enantiomorph.

The  $\Sigma$ 2-type formula,

The program PHASEM includes provision for calculation of the reliability index  $\underline{R}_{L}$ ,

$$R_{k} = \frac{\sum_{h} |E_{\underline{h}}|_{o} - |E_{\underline{h}}|_{c}}{\sum_{h} |E_{\underline{h}}|_{o}}$$

and output of tangent-refined phases in a form suitable for direct calculation of E-maps using the X-ray 70 system. The value of  $R_k$  has been found to give a good indication of the consistency, and hence the correctness of a particular set. (The set of normalised structure factors greater than 1.7 being usually used.) The tangent formula is capable of refining phases which are found approximately, using the  $\Sigma 2$  formula and extending the list of known phases once

the phases of a number of them are approximately known numerically. A rough guide is that if a phase is initially within about  $\pi/4$  radians from its value, then the tangent formula is capable of refining it.

The usual difficulty in direct methods is the problem of defining a unique origin and the choice made is fundamental to the entire procedure.

Non-centrosymmetric structures can exist in two enantiomorphic forms, which both give the same intensity distribution. There is thus an ambiguity of  $\pm^{\pi}/2$  radians in the origin set, and so it becomes necessary 'to fix' the enantiomorph. This procedure is simple for space group  $P2_12_12_1$  because when an origin is chosen, it is uniquely defined, whereas in  $P2_1$  there is no such restriction. A series of rules have been derived which are useful in specifying the origin and enantiomorph-defining reflections for both primitive^{1,2} and centred³ space groups.

In the space group  $P2_12_12_1^2$ , any one-or two dimensional reflection has a phase of 0 or  $\pi$ , or  $\pm^{\pi}/2$ , depending on its parity. This occurs because all three projections are centrosymmetric. It is thus a relatively simple matter to choose three zonal reflections which are linearly independent analogous to the centrosymmetric case. The sign of each phase (0 or  $\pi$ , or  $\pi/2$ ), can be arbitrarily fixed. Hence, for ketol bishydropulegone

> h k l E  $\phi$  Parity 5 11 0 3.11  $\pi/2$  uu0 0 4 7 2.22 0 Ogu 7 6 0 2.09  $\pi/2$  ug0

where g and u denote even and odd parities respectively. The phases of reflections of type guO, uuu, and ugu are linearly dependent on these three and are formed by combining them in pairs. The three zonal parity groups Oug, Ouu, and uuO are not linearly dependent 321

on these three starting origin-defining reflections and can all be assigned an arbitrary phase of  $\pm \pi/2$ . This ambiguity may be resolved by the choice of a suitable fourth reflection which can combine with any of the others in the starting set to give linearly dependent phases with no ambiguities. The fourth reflection chosen by MULTAN in the case of the ketol was the 1 11 3(E = 3.21),/which a phase of  $\frac{1}{L}/2$  was recommended.

For space group P2₁, the enantiomorph may not be defined in this manner although restriction of a symbolic phase between 0 and  $\pi$ radians is all that is necessary to fix it. The origin set must be of the type  $h_1 0 \ell_1$  and  $h_2 0 \ell_2$  and  $h_3 1 \ell_3$ , where  $h_1 0 \ell_1$  and  $h_2 0 \ell_2$  are two different terms from the parities g0u, u0g and u0u.

The basic set of starting phases, together with the symbolic phases used should be associated with large E values and capable of entering into a large number of  $\Sigma$ 2-type relationships, so that the phase expansion process goes well with a large propagation of phases. This problem of obtaining the best starting set comprising reflections which interact well with the reflection data is sometimes difficult and elusive. It was for this reason that the computer program MULTAN was used to obtain the best starting set using the powerful CONVERGENCE routine⁴.

#### General Procedure for Phase determination

The program PHASEM written by M.G.B. Drew⁵ was used. A set of normalised structure factors greater than 1.7 is used as input data. The first part of the program calculates the phases of these input reflections throughout the sphere of reflection, since all the reflections in the sphere must be used in the phase determining formulae.

* Prof. Rogers has subsequently shown that the MULTAN choice is wrong: in this case it should have been 0 or T. A simple set of algorithms is used for this purpose :-

$$\phi_{hk\bar{\ell}} = \frac{\pi}{2} [1 + (-1)^{rh+sk+t\ell+1}] - \phi_{hk\ell}$$
  
$$\phi_{h\bar{k}\ell} = \frac{\pi}{2} [1 + (-1)^{uh+vk+w\ell+1}] - \phi_{hk\ell}$$

 $\phi_{\overline{h}kl}$  is then fixed by these two algorithms. Examples of generating integers illustrate the technique.

> r P2,2,2, 1 1 0 1 1

When h is reversed,  $\phi_{\overline{hkl}}$  is set equal to  $-\phi_{hkl}$  : As a consequence, phases of  $-\phi_{hkl}$  and  $\pi + \phi_{hkl}$  can occur in the  $\overline{h}$  region.

All combinations of  $\underline{h}'$  and  $\underline{h}-\underline{h}'$  for a given  $\underline{h}$  are now listed; these are computed using the  $\Sigma$ 2-type relationship. A choice of origin and enantiomorph defining reflections can now be made, together with three symbolic phases. Employment of the  $\Sigma 2$  formula 1 in a symbolic addition process then enables the phases of a number of reflections in the list to be uniquely determined in terms of symbols. Occasionally a phase will be determined absolutely. An  $\alpha$  value may be defined :

$$\alpha_{\rm Drew} = \frac{\alpha}{2\sigma_3 \sigma_2^{-3}/2}$$

where

 $\alpha = \frac{2\sigma_3}{\frac{3}{2}} |E_{\underline{h}}| (A^2 + B^2)^{\frac{1}{2}} \text{ and } \sigma_n = \sum_{j=1}^{N} Z_j^n \qquad Z_j = \text{Atomic Number of the jth atom in}$ 

init cell containing N atoms.

with

$$A = \sum_{\underline{h}'} |E_{\underline{h}}, E_{\underline{h}-\underline{h}'}| \sin (\phi_{\underline{h}'} + \phi_{\underline{h}-\underline{h}'})$$

 $B = \sum_{\underline{h}'} |E_{\underline{h}'}E_{\underline{h}-\underline{h}'}| \cos (\phi_{\underline{h}'} + \phi_{\underline{h}-\underline{h}'})$ 

and

For equal atom structures,  $\alpha_{Drew}$  reduces to  $\alpha_1 N_{12}$ . Phase indications are only accepted if their variance is less than about 0.5 square radians. (Variance is the square of the standard deviation). It has been experimentally determined that this limiting value usually corresponds

323

to an  $\alpha$  limit of about 2.5°. If this lower limit is taken for  $\alpha$ , then  $\alpha_{\text{Drew}}$  becomes  $1.25N^{\frac{1}{2}}$  (as an approximate guide). Thus, during the process of symbolic addition, if a triple product  $E_{\underline{h}}E_{\underline{h}}, E_{\underline{h}}-\underline{h}$ , has a value less than this, the phase indication will be rejected.

The tangent formula,

$$\tan \phi_{\underline{h}} \simeq A/B$$

is now utilised to find the best set of phases corresponding to numerical values of the symbols. e.g. if a symbol can range between O and 1000 millicycles, four different sets in steps of 250 millicycles from 125 mc. are tried: (125, 375, 625, 875 mc.) Thus for three symbols, there are numerous solutions corresponding to the combinations of symbols tried.

During the procedure of tangent refinement, each phase must satisfy two conditions to be introduced into the set. Firstly, its  $\alpha$  value must be greater than the preset minimum, and additionally its consistency index t_h, defined as

$$\mathbf{t}_{\underline{\mathbf{h}}} = \frac{(\mathbf{A}^2 + \mathbf{B}^2)^{\frac{1}{2}}}{\sum_{\mathbf{h}'} |\mathbf{E}_{\underline{\mathbf{h}}'} \mathbf{E}_{\underline{\mathbf{h}}-\underline{\mathbf{h}}'}|}$$

must be greater than its preset value. This value is a measure of how well the sum of the contributing phases  $(\phi_{\underline{h}}, + \phi_{\underline{h}-\underline{h}})$  agree with each other. The value usually chosen is within the range 0<t<1.0 although preset values of between 0.25 and 0.40 have been experimentally found to be satisfactory. The number of terms introduced in each cycle can also be varied (this enables a small number of consistent phases to be added at each cycle).

The best set of phases thus obtained is the one with the lowest  $R_k$  index and the highest  $\langle \alpha \rangle$  and  $\langle t_h \rangle$  values. An additional measure of consistency was introduced into this program by Drew and is provided by the  $R_{Drew}$  which is defined as
$R_{\text{Drew}} = \frac{\frac{\sum |E_{\underline{h}}| (1 - t_{\underline{h}})}{\underline{\underline{h}} - \underline{\underline{L}}}}{\frac{\sum |E_{\underline{h}}|}{\underline{\underline{h}} - \underline{\underline{L}}}}$ 

The program calculates  $R_D$ ,  $\alpha$  and  $t_{\underline{h}}$  values and thus the set of phases with the lowest <u>R</u> value and the highest  $<\alpha>$  and  $<t_{\underline{h}}>$  values is probably, though not necessarily, the correct solution.

Cards can then be punched and an E map calculated using these phases.

## MULTAN

In the paper by Germain, Main and Woolfson, details are given of the "CONVERGENCE" method for obtaining the best possible starting set of phases. It does this by testing the effectiveness of using particular sets of origin and enantiomorph-fixing selections and by selecting additional reflections.

A modified tangent formula was introduced which included a weighting scheme.

$$\tan \phi_{\underline{h}} = \underbrace{\sum_{\underline{h}'} W_{\underline{h}} W_{\underline{h}-\underline{h}'}}_{\underline{\underline{h}'} W_{\underline{h}} W_{\underline{h}-\underline{h}'}} | \underbrace{E_{\underline{h}} E_{\underline{h}-\underline{h}'}}_{\underline{\underline{h}'} W_{\underline{h}} W_{\underline{h}-\underline{h}'}} | \underbrace{E_{\underline{h}} E_{\underline{h}-\underline{h}'}}_{\underline{\underline{h}'} U_{\underline{h}} W_{\underline{h}} W_{\underline{h}-\underline{h}'}} | \underbrace{E_{\underline{h}} E_{\underline{h}-\underline{h}'}}_{\underline{\underline{h}'} U_{\underline{h}} U_{\underline{h}-\underline{h}'}} | \underbrace{Cos(\phi_{\underline{h}} + \phi_{\underline{h}-\underline{h}'})}_{\underline{\underline{h}'} U_{\underline{h}} U_{\underline{h}} U_{\underline{h}-\underline{h}'}} | \underbrace{E_{\underline{h}} E_{\underline{h}-\underline{h}'}}_{\underline{\underline{h}'} U_{\underline{h}} U_{\underline{h}} U_{\underline{h}-\underline{h}'}} | \underbrace{E_{\underline{h}} E_{\underline{h}-\underline{h}'}}_{\underline{\underline{h}'} U_{\underline{h}} U_{\underline{h}-\underline{h}'}} | \underbrace{Cos(\phi_{\underline{h}} + \phi_{\underline{h}-\underline{h}'})}_{\underline{\underline{h}'} U_{\underline{h}} U_{\underline{h}} U_{\underline{h}} U_{\underline{h}} U_{\underline{h}} U_{\underline{h}-\underline{h}'}} | \underbrace{Cos(\phi_{\underline{h}} + \phi_{\underline{h}-\underline{h}'})}_{\underline{\underline{h}'} U_{\underline{h}} U_$$

where  $\underline{W}_{\underline{h}}$  is the weight associated with the phase  $\phi_{\underline{h}}$ . Each weight is computed from

$$W_{\underline{h}} = \tanh \sigma_{3}\sigma_{2}^{-3/2} | \underline{E}_{\underline{h}} | (\underline{T}_{\underline{h}}^{2} + \underline{B}_{\underline{h}}^{2})^{\frac{1}{2}}$$
$$= \tanh (\alpha_{\underline{h}/2})$$
$$a_{\underline{h}} = 2\sigma_{3}\sigma_{2} | \underline{E}_{\underline{h}} | (\underline{T}_{\underline{h}}^{2} + \underline{B}_{\underline{h}}^{2})^{\frac{1}{2}}$$

where  $\alpha_{h}$ 

325

In the CONVERGENCE routine of MULTAN, the values of  $<\alpha_{\underline{h}}^{2>\frac{1}{2}}$  are evaluated for each reflection (from a consideration of the number of interactions each reflection is involved/with regard to the entire reflection data). The lowest value of  $<\alpha_{\underline{h}}^{2>\frac{1}{2}}$  is then sought. The reflections corresponding to these values are then removed from the data and their computer program code numbers and the values of  $<\alpha_{\underline{h}}^{2>\frac{1}{2}}$ are listed. This process is continued with the proviso that the origin and enantiomorph fixing reflections are never removed from the system. Ultimately, the process 'converges' on the four starting reflections.

As a guide to the best phase sets MULTAN calculates the "absolute figure of merit (FOM) for each phase set. It is defined by

FOM = 
$$\frac{\sum_{h=1}^{\infty} \alpha_{h} - \sum_{r} \alpha_{r}}{\sum_{e} \alpha_{e} - \sum_{r} \alpha_{r}}$$

where  $\Sigma \alpha_{\underline{h}}$  is the sum of the calculated  $\alpha$ 's,  $\Sigma \alpha_{\underline{r}}$  is the value of  $\Sigma \alpha_{\underline{h}}$  assuming random phases and  $\Sigma \alpha_{\underline{e}}$  is the sum of the estimated  $\alpha$ 's. The value of FOM for a correct set of phases is expected to be about 1.2.

MULTAN additionally calculates a quantity termed the RESID which is equal to  $R_{Karle}$  when all the  $\Sigma$ 2-type relationships are used. RESID should be a minimum for the correct phase set.

In the structure determination of bishydropulegone, the MULTAN program was used to determine the best starting set of origin-defining and enantiomorph-fixing reflections. The choice of enantiomorph-fixing reflection is restricted to those parity groups which are independent of the starting set and not defined by them.

The origin-defining set was the 5 11 0, 0 4 7 and 7 6 0 reflections which were assigned phases of  $\pi/2$ , 0 and  $\pi/2$  respectively ;

Thus;-

π/2	5	11	0	uu0
0	0	4	7	Ogu > gug
π/2	7	6	0	ug0
				(1111)

It may thus be seen that one must seek a suitable term among u0u, Qug and Quu parities which will give  $\Delta \phi$  sums of  $\pm \pi/2$ . Thus either Oug or Ouu parities of reflection may be used for this purpose.

The routine FASTAN within the MULTAN program chooses an enantiomorph-fixing reflection from the input data in a manner which will constrain the choice to these two parity groups, but if it cannot find a suitable reflection within these parity groups it will then release this restriction and choose a general reflection. In the bishydropulegone structure determination, the 1 11 3 reflection of parity uuu was chosen in the starting set with the highest FOM and lowest RESID values. One could thus say that the constraining of this particular reflection with a value of  $\pi/2$  was incorrect, although if it had been of quite a different value, the RESID value would have been much higher and the absolute FOM much lower. The result of this would have been that this particular starting set would not have been chosen.

See footnote to p. 322.

## References

- 1. H. Hauptman and J. Karle Acta Cryst., <u>1956</u>, <u>9</u>, 45.
- J. Karle and H. Hauptman, <u>Acta Cryst.</u>, <u>1956</u>, <u>9</u>, 635.
- 3. J. Karle and H. Hauptman, Acta Cryst., 1961, 14, 217.
- 4. G. Germain and M. M. Woolfson, <u>Acta Cryst.</u>, <u>1968</u>, <u>B24</u>, 91.
- b) G. Germain, P. Main and M.M. Woolfson, Acta Cryst., 1970, <u>B26</u>, 274.
- c) G. Germain, P. Main and M.M. Woolfson, Acta Cryst., <u>1971</u>, <u>A27</u>, 368.
- 5. M.G.B. Drew, D.H. Templeton and A. Zalkin, Acta Cryst., 1969, B25, 261.
- 6. J. Karle and I.L. Karle, Acta Cryst., 1966, 21, 849.
- 7. Laboratory manual describing the program PHASEM.

329

流差

"So little done, so much to do." ... C.J. Rhodes.