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ABSTRACT

A number of intermetallic compounds and solid solution alloys
have been studied by x-band paramagnetic resonance. One system,
LaNis- Gd, has also been investigated by magnetic susceptidility and
electrical resistivity measurements,

The EPR behaviour of (La1_x§dx)N15 has been studied at various
concentrations from x = 0,003 to x = 1. In the low concentration
(x< 0e1) regime negative paramagnetic g-shifts were observed (L g =
-0,128 for x = 0,005), the g-shift reducing &s the concentration was
increased., The temperature dependence of the g-value and the linewidth
have been analysed in terms of the onset of megnetic order in contrast
to the previous interpretation of dynamic effects in the EPR bottle~
neck.

A Faraday magnetic susceptibility balance was constructed and
has been used to study the magnetic properties of LaNiS- Gd. The
apparatus is capable of measurements ranging from 2K to room bemper-
ature, in fields up to 8.5K0e and with a force resolution of one
millidyne,

Compounds with Gd concentrations greater than x = 0.1 show
ferromagnetism, deviations from the Curie-Weiss law setting in at
temperatures well sbove the ordering temperature. Resistivity meas-
urements show a sharp maximum in the region of the ordering temper-
ature. These effects have been interpreted in terms of an extenslve
region of short range order.

The linewidth and g-value have been measured for the high
concentration cdmpoupdsi A minimom in the linewidth was cobserved at
temperatures well above the Curie temperature. In compounds with Gd

concentrations greater than 50at.% a double resonance has been



obgerved between certain temperature limits.

The compound LaAlz- Gd has been investigated at concentrations
at which spin glass ordering is believed to occur. A temperature
dependent linewidth and g-shift was observed, the latter becoming
negative in the paramagnetic region. Solid solutions of Y-Gd and Sc-Gd
have been examined at spin glass concentrations. The EFR measure-

ments for the zbove alloys are consistant with the spin glass model.
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INTRODUCTION

Magnetism in alloys has been an intriging problem for many years,
the basis of which is the formation of magnetic moments and how, once
formed, they interact. This work will be concerned with the consequ-~
ences of the latter - the onset, type and properties of the magnet-
ically ordered state.

‘ Ordering mQy occur in a variet& of ways, depending on the inter-
actions present, the two most well known being ferromagnetié and antie
ferromagnetic. Recently a new phase has been recognized, known as a
magnetic or spin glass state, the magnetic behaviour of which is still
not fully understood. A spin glass phase occurs in a system with
spatially random moments and competing exchange interactions.

Chapter 1 deals with the formation of a local moment, chapter 2
and chapter 3 with the interaction of local moments and magnetic
ordering,

The object of this work is to investigate the magnetic behaviour
of certain metallic systems which contain atoms with well defined
magnetic moments (Cd>* and Mn2') and correlate the results with the
magnetic ordering in the systems. The major part of the investigation
was on the intermetallic compound LaNiB- Gd which was of interest
because of the dynamics of the Gd local moment and the magnetic
ordering process. The remainder of the work was mainly on systems
believed to be spin glasses (Y- and Sc<Gd and LaAl,- Gd). Finally, the
electron paramagnetic resonance (epr) of PdPt - Mn was investigated.

The intermetallic compounds and solid solution alloys studied in
this work were examined by the technique of epr. This technique has
been widely used for studying the dynamics of local moments and

recently for investigations of magnetic ordering. The theory of



magnetic resonance is given in chapter 4.

Additional magnetic information was obtained from electrical
resistivity and magnetic susceptibility measurements. The experimental
techniques for all the above measurements are described in chapter 5,
together with a detailed account of the construction of a Faraday
magnetic susceptibility balance,

In chapter & the results are presented and discussed.
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CHAPTER 1

THE THEORY OF LOCALIZED STATES IN METALS.

In this chapter a brief outline of the theory of magnetism in
dilute alloys is presented. There are many detailed reviews of the
dilute alloy prob}em from the mainly experimental ( Heeger (0%1), Daybell
and Steyert (02),Wohlleben and Coles (03), Rizzuto (OL) and Gruner (05) )
to the theoretical ( Kondo (06) and Fisher (07) ), therefore a detailed
discussion is unecessary here,

Transition metal (3d) atoms dissolved in a metallic host show a
variety of elecﬁrical and magnetic behaviour (02). Any theory attempting
to explain these properties must answer two fundamental questions: “what
conditions lead to the formation of a local moment?" énd what are the

implications of the interaction between the local moment and the

\conduction electrons?", The first question has been investigaied by

Friedel (08) and then later by Anderson (09). The second question

assumes a moment and has been attacked by the use of the s-d exchange
Hamiltonian (10) (11). Under certain conditions this model can be derived
from Anderson's theory.

1.1 Formation of a moment.

Friedel used the theory of resonant scattering to treat the problem
of local moment formation. Anderson and aléo Wolff (12) treated the same
problem mathematically, but based their ideas on those of Friedel. The
essence of the problem is that the conduction electrons of the metallic
host interact with the d-electrons of the transition atom impurity to
produce a local impurity state with a finite energy widthQ,

The potential intfoduced into the matrix by the impurity atom acts
as a scattering centre, if this potential is not quite strong enough to

create a bound state then a "virtual® bound state (VBS) is produced.
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This state may have -the same energy as the host conduction electron
states, if so then an admixtﬁre of states occurs to give rise to new
states, This produces a broad region in space and energy with an energy
width A , hence a lifetime Tp = /A and an excess electron density
af[lfD(r). This is known.as a virtusl bound state. The screening

condition is given by the Friedel sum rule (8b),

2
Z= ﬁ%( 21 + 1 )81(‘EF) G006 0620000300000 0080s000S ]

where Z is the excess charge of the impurity compared with the matrix
and & l(EF) are the phase shifts at the Fermi surface.

Using the concept of a VBS Friedel was able to explain the residual
resistivities of the first row transition metals in aluminium. He assumed
that each d-shell gives rise to only one VBS with room for ten electrons.
On substituting different atoms from the series Ti to Zn into the
aluminium matrix the VBS is successively éilled. As the actual position
of the VBS relative to the Fermi energy is decided by the number of 3d
électfons on the impurity atom, then for a given number of 3d electrons
the VBS will fall at the Fermi level and hence give rise to an enhanced
scattering, therefore maximizing the residual resistance (08).

For covper based alloys, a mechanism for allowing the VBS to become
spin split and produce a double resonant peak in the density of states
had to be found. Rlandin and Friedel (13) derived a condition for the
instability of the non-magnetic state,

2 Eex/o 1(EF) '
where E_ is the average value of some effective exchange amd/UJﬂEF) is
the density of states for the VBS at the Fermi surface. The parameter Eex
needs some explanation. In Friedel's original work, the mechanism which
splits the spin-up and spin-down energies was assumed to be some sort of
atomic exchange (Hunds rules), although no detailed calculations were

performed. Eex was usually taken as a more or less empirical splitting
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(a) ' (b)

-\ —E

Fo(E) PA(E) ) Pr(E)

PIG,1 a. The density of states distribution for a free electron gas .
with the addition of a virtual bound state, (non-magnetic).

b, The density of states distribution in the magnetic case
(after reference 9).
E, =By + Ulnyy , E_=Ey+ U(nd,Q
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factor. Subsequently it was associated with the exchange self energyr
of the localized state i.e. the Coulomb repulsion of opposite spin
electrons on the same local orbital, this approach came mainly fron
Andersen (09).
| He considered the impurity as a localized extra orbital embedded
in a free electron sea with energy Ed’ relative to the Ferml energy.
Assuming a localized moment exists with an electron of say, spin-up,
then if a .spin down electron aittempts to occupy the same level,it will
see the full Coulomb repulsion U between it and the d-electron already
on the localized orbital. Hence it could only occupy an energy level
of value Ed+U, assumed to be empty by the initial condition that a
moment exists and hence is above the Fermi level. The localized level
is broadened and shifted due to the s~d mixing (see later), this pushes
the high energy tail of its energy distribution above the Fermi level
so that it is partially emptied; Therefore the number of localized
spin-up electrons may be effectively less than one (see Fig. i).

The Coulomb interaction which splits the local orbital into

spin-up and spin-down states has the form Un d‘L’wrhere n, and By

anr
are the number operators for the electrons with spin-up and spin-down
on the localized level and U is the Coulomb integral given by the

expressions:
2
2 e 2 .
J"‘?a“"*nn ’512‘@&"2)‘ 0t 44T,
The Hamiltonian given by Anderson to describe the local impurity-

conduction electron system for the case of orbital non-degeneracy is

given by the following equations:
H= ZEknkd+ZEd Tgg T Uhgaligy
%3 G
EZ:V (Gksc * Cdsckd vee 2

the first term is the band energy, the second is the unperturbed energy
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of the d-state and the last is the s~d interaction term, the so-called
admixture energy. Solutions of the sbove Hamiltonlan in the Hartree-Fock
(HF) approximation have been obtained by many authors (09); (06), (14).
The following is a summary of the results.
The energy width of the local state is given by a straight
forward application of the Golden Rule,
A=\ 2 PE) e 3

where P(EF) is the density of states of the host evaluated at the

Fermi surfacé and \Vak\a is the average of the squared modulus of the
admixture matrix element. The density of states of the local level is

Lorentzian in form and is given by,

1 A2
E e - s s e ssBroeT eI ERLEE S E O
/36() T((E_Ed)z-e-l}z . k

To preserve charge neutrality then

<ndd>=SEF P as®)E

- 00
which is equal to the total number of d-electrons introduced by the

impurity. This is effectively a self-consistency condition which leads
to the following two regimes:

(1) Non-magnetic (nd,t) = <nd¢> : AR,

(2) Magnetic  {mg% X {ny S Wan>1.

The tranition between these two limits should be smooth owing

to the local nature of the problem.

The Anderson Hamiltonian may be generalized to include the effects
of orbital degeneracy (15) (16). If the orbital quantum number of the
localized states is 1 then the condition for the appearance of magnetism
is (U + 223)/ O > 1 for spin magnetism and (U - J)/AXD>1 for orbital
magnetism, J is the exchange integral. The existance of the intra;atomic

exchange integral J helps the formation of a spin moment but opposes
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the formation of an orbital moment (17 ). The results can be summarized

on a phase diagram as shown in Fig.2 .

1
Eq-Ey M NM
]
Y "A/T

FIGC.2  Regions of magnetic (M) and non-magnetic (NM) behaviour.

12 The s-d exchange,

In this section we shall be mainly interested in the magnetic
region of the phase diagram in Fig. 2. The s=-d exchange interaction

is given by the equation (11) (18)

Hsd=-JSd§°§ ....C'C.O...'l'.t..OO..;OOQOOO.G... 5

where S is the impurity spin and s is the conduction electron spin.

There are two contributions to J sq® 20 antiferromagnetic covalent
/

5

X

admixture (19) and a much smaller direct ferromagnetic s-d contribution,
the overall coupling being antiferromagnetice.
The impurity is not perfectly localized, therefore HS g cannot be

represented as an isobtropic zero range interaction. J_, must be wave

sd
vactor dependent and also possess the symmetry of the resonant

scatterer (20), hence

J(k-k) = Jeff P,(cos O )

where © is the angle between k and X and Pl(cos f ) is the Legendre

-~

polynomial,
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The Hamiltonian in expression (5) assumes that the impurity
has a well defined spin. This corresponds to U/AN > 1 in the Anderson
model (the strong magnetic limit). Schrieffer and Wolff (3L) have
transformed the Anderson Hamiltonian for the case of weak s-d couéling
(magnetic limit) into a form similar o equation (5). This links the

s-d exchange model with the parameters of the Anderson model:

2
;- 2|Nyl < 0
eff " E (Byo + U )
Bar = Bq = B¢

The s-d Hamiltonian was used by Kondo (18) in an attempt to
explain the anomalies found in the susceptibility, resistivity and
specific heat of some dilute alloys. For example, the resistance min-
imum found in dilute CuFe (02); Daybell (21) and Van Den Befg (22) re-
view in detail the experimental properties of such alloys. Essentially
Kondo analysed the interaction of an impurity with spin s=¢ with the con=-
duction electrons by the use of scattering theory taken beyond the first
Born approximation. He found the cross section acquired a logarithmic
singularity as the temperature tends to zero. The magnetic contribution
to the resistance is given by _

r, - er( 1 + N(O)Jln(kBT/D) + eee )

where ¢ is the impurity concentration, r the first Born scattering term,
J is the s=-d exchange, N(0O) is the density of states and D is a constant
of the order of Efc This logarithmic term in the resistance combined with
the phonon contribution, which is proportional to the temperature,
explains the resistance minimum found in some dilute alloys. Experimental
results (23) (24) show that the logarithmic behaviour appears in a
number of other properties.

The divergence of the scattering cross section with decreasing

temperature indicates that below a certain temperature -

-
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the Kondo temperature = the second order term is larger than the first
order one and the convergence cf the Born series is in doubt. The Kondo

temperature is given by
kTK = D e-1/ J N(0)

for J<0,the antiferromagnetic coupling case. The divergence is a result
of the.internal degree of freedom of the impurity which couples
successive collisions, introducing indirect correlations between conduct-
ion electrons. This means that a many-body quasibound state is formed

by the local moment and the conduction electrons. Below the Kondo temp-
ature the magnetic moment disappears and any complete théory must explain
this.

The exact ground state at T = O is still unclear. Nagaoka (25) (26)
derived a self consistent solution below TK and'suggested that a long-
range antiparallel spin polarization cloud would build up in the
conduction electron gas, thus reducing the effective spin, with complete
cancellation resulting at T = Q. Various authors have extended Nagaoka's
original idea (L41) (42). From the recent work of Wilson»(27) it now seems
likely that the ground state at T = Q is a non-magnetic singlet. é%}sugg- 77
ested that the low temperature properties could be obtained from the lim- |
iting case of strong antiferromagnetic effective exchange coupling (J3) D)
between the impurity and the conduction electrons. The ground state is
then a singlet in which the internal degree of freedom is frozen. This
singlet may be polarized resulting in interactions amongst the conduction
electrons. This gives a model similar to the local spin fluctuation theory.

Experimentally below Ty (specific to each alloy system as it -
depends on JN(O) ) the impurity beccmes non-magnetic in the sense that
the measured susceptibility has little or no temperature dependence (29)

(02). Therefore two regions can be defined, the high temperature region
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(T)»TK) where the impurity is magnetic and the low temperature region
(1< TK) where the impurity is non-magnetic, the transition between the
two phases should be graduel with no critical points (30).

The weak resistance minimum found in AlMn and AlCr (31) started a
new approach to the local moment problem. The physical parameters of
these alloys indicate that they are a borderline case between the
magnetic and non-magnetic regions in the Anderson sense (U+lJ/n¥K 1),
therefore a good starting point for a theoretical description is the
non-magnetic Anderson model. Rivier and co-workers (32) (33) developed
such a theory by the use of local spin fluctuations. |

1.3 Local Spin Fluctuations.

Essentially the question of thevexistence of a moment is a matter
of time. For example, if the fluctuations in the spin density are
sufficiently slow on the time scale of a given experimental probe then
there appears (for that experiment) to be a moment (03). The effect of
any ;éinite lifetime is unobservable if ¥ sf<ﬁ / kT3 therefore as long
as kpT> 4 /% op the impurity behaves like a well defined local moment.

(4 g¢ s kmown as the local spin fluctuation (LSF) lifetime,

£

This can be pictured as a process whereby many thermal fluctuations
occur in the time occupied by one spin fluctuation, hence a thermal
average moment appears. If the impurity spin fluctuates at a rate which
is greater than that produced by thermal fluctuations, the impurity
appears non-magnetic. The boundary between the two regions defines the
ISF temperature;

Tep =B/ kpTope

The theory of local spin fluctuations as developed for dilute alloys by
Rivier et al (}3) links ¥ s and the parameters of the non-degenerate

Anderson model

-1
?sfl”“'U/AK)
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The theory of LSF is capable of explaining the disappearance of
the impurity moment at low enough temperatures and also the simple power
laws which are observed for many physical properties (35) (36). For
example, the resistance and specific heat below T_, are given by (05) (37)

r=r (1= 722 /3 )

C, = 5rikgt (1= t%)
where t = (T /Tsfj. For the high température region (T>>Tsf)'there are
no quantative results.

This type of ISF theory is essentially different from that of
Lederer and Mills (38) and others (39). In the Rivier theory the electron
must scatter into the extra d-orbital before an interaction with the
local spin takes place. Whereas in the Lederer and Mills theory the
conduction electron-ISF interaction is a direct resulﬁ of the impurity
scattering. Typical applications of the latter are transition metal
impurities in transition metal hosts, PdNi (38) and PtNi (40) are good
examples, |

The situation may now be summarized. In the magnetic fegion (in
the Anderson sense, U/AN>1), the s~d Hamiltonian can be used giving
Kondo type effects and a characteristic temperature TK' Anomalies in
resistance and specific heat appear when passing through the Kondo
temperature. In the non-magnetic region local spin fluctuation theory is
- more appropriatej this also gives rise to a characteristic temperature
Tsf' The question that now ariseé is, are the two theories different
aspects of the same model?

Strictly the s~d model is valid only in the magnetic region and
the LSF theory in the non;magnetic region. Both models give character-
istic fluctuation times. In the spin fluctuwation model it is of?

vhich is determined by the d-d correlations at the impurity site. In
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the s=-d model it is the s=d correlation time T K If these character~
istic times are independent with Tfsg"fk,an alloy should behave

differently from one with T )’2;f. The first case would correspond to

K
a Kondo type system and the second to a LSF alloy. Conversely if T of
and.ZfK are identical, even though the models are formulated differ=-
ently, the nature of the transition and the low temperature state
should ‘be similar for all systems. The evidence seems to point to the
second situation énd has been summari%ed by Gruner (05). He compared
CuFe which is usually analysed on the basis of the s-d model with AlMn
usually interpreted by LSF theories, and found that there~was little

significant difference between the two alloys on experimental grounds.
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CHAPTER 2

INTERACTIONS BETWEEN MOMENTS.

The previous chapter essentially dealt with a localized magnetic
moment in the single ion impurity limit. In this limit,the impurities
are assumed to be sufficiently far apart that interactions amongst
them are completely negligible, The present chapter is concerned with
the interactions between local moments, the consequences of which are
magnetically ordered states.

2.1 The RKKY and other interactions.

This interaction is an indirect coupling of local moments via the
conduction electrons, originally developed by Rudermann and Kittel (01)
in comnection with nuclear magnetic resonance in metals and subsequently
adapted by Kasuya (02) and Yosida (03) for local moments in metals.

The interaction with the conduction electrons takes place via an
exchange coupling of the type given by equation (1.5), for rare-earth
atoms (hf shell) then,

Hop = = (R, - Ed) T P £

alternatively working in k-space gives,

Hsfg— Jsf(q) §q'§-q @B s 0 e s rset s st T RIS RNS 1b

where in equation (1a) R, is the position of the ionic spin S and Ej is
the position of a conduction electron with spin s. The effect of the
ionic spin~may be calculated using perturbation theory (Oh) (05), from
which it isAfound that the spin polarization induced in the conduction
electrons is long range and oscillatory in nature. The polarization
produced by a spin at site rs will interact with a spin at site Ej’ giving
an effective coupling which may be written in the form of an Helsenberg

exchange Hamiltonian (see section 2),

Hex=-2j(5ij) §i¢_s_j B e s s s semrrsP R s et st s BsrsEEOES 2
* ixg
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'rij = E.’L = Ej'
Mapping this into the manifold of states of total angular momentum
gives:

Hex = —(g - 1) i;ja(gij) g’i.ij esccernsnssncegcnens 3
The exchange parameter in equations (2) and (3) can be expressed in
terms of the generalized susceptibility X (q) and the Fourier transform

of the s<f exchange constant,

j(Eij) - %Jif(g’)’)((g) eig.}:ij es0sccesscccsser ,.I.

In the RKKY approximation J_.(q) = J_ where J_ is a constant.
This assumption is clearly a crude approximation and leads to a
divergence in the spin density as r tends to zero, Many authors (03)
(06) have attempted to overcome this problem with varying degrees of
success (see for review Freeman (07)). Using the RKKY approximation
it can be shown'(Oh) that

2.2
9Kz Jo
j(zij) = Ef f(2kf\£ij\) G0 eNse et et stastsesanee 5

where h
£(x) = ( sin x = x cos x )/ x".

This interaction is of a long range oscillatory type which
decreases as cos(Zkfr)/r3 for large r. Because of this long range
oscillatory nature, the coupling is capable of explaining the variety
of spin structures foumd in the heavy rare earth elements (08). The
interaction represented by expression 2 is Heisenberg in form, therefore
classical molecular field theory (see section 2) may be applied to
obtain the paramagnetic Curie temperature © X

k

2 ,
e ¢ 2 £(2k,r, )

713
Ep inj

where G = (gJ - 1)2 J{J + 1) which is known as the de Gennes factor.
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Clearly the paramagnetic Curie temperature should be proportional

to the de Gennes factorj this is found to be approximately obeyed (09).
The lattice sum :Z;:E(Zkfrij) varies for different crystallographic
structures and ha:gbeen evaluated by several authors (10) (11) (12) to
interpret the magnetic properties of certain systems.

The s-f exchange parameter Jsf(q) must be positive if only diagonal
exchanée integrals are considered. From resonance experiments on rare-earth
aluminium compounds (13) and PdGd alloys (14) the value of the exchange
parameter (for q = 0) obtained from the g-shift was found to be negative.
This implies that the conduction electron polarization is antiparallel to
that of the local moment. This negative exchange has been attributed to
the effect of covalent mixing bebween'the conduction electron and local
moment, orbitals (15); this is the so-called inter-band mixing effect.

It was first recognized by Anderson and Clogstoﬁ (che 1, sect. 2) and
discussed in detail by Watson et al (15). Recently there have been a

- number of different models proposed to explain the effective negative
coupling (e.g. ref. 16); these will be discussed in the last chapter

in relation to the negative g-shifts found in LaNiS- Gd.

The generalized susceptibility.

The generalized susceptibility )((q) in expression (L) is the
response of a free electron gas to the application of a magnetic field.
In the Hartree-Fock approximation (17), X (q) = XpF(q/Zkf)
where :K.p is the Pauli susceptibility and

Fx) = 5+ 2(1 = %) dog((x + 1) / (x = 1)),

If the coulomb correlation U which acts in an atomic cell to separate
electrons of opposite spin is taken into account then the susceptibility
is enhanced (18). The X (q = 0) susceptibility is enhanced by a factor
(1 - W(E,) )™"s Pure palladiun is a typical exchange enhanced metal (19)
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with UN(Ef)2= 0.9. Some compounds such as LaRuz, NiBGa and LaN15 are
also enhanced metals. When GN(Ef) %» 1 then band ferromagnetism appears
(18)} this condition is known as the Stoner criterion.

The Blandin - Caroli interaction.

The RKKY interaction is useful for rare earth alloys where the
localized state is either completely empty or completely full, In terms
of scattering theory the phase shift 5 1_of the conduction electrons
produced by the impurity potential at large distances is either 0 or W,
For a 3d transition metal impurity (Mn in Cu) a virtual bound state is
produced which gives rise to phase shifts that are not all equal to 0
or M, The coupling between virtual bound states was first ccnsidered
by Friedel and Blandin (20).

The scattering of an electron by a spin dependent potential implies
that electroné of opposite spin will behave differently. Thus the long
range perturbation in the electron density is different for the two spin
directions. This gives rise to a long range spin polarization and hence
a coupling between the spins (21) (22)
cos(2kfR) s,

— £ 55
(kR)

H«
where R is the distance between spin 81 and spin 82.

Caroli (23) essentially generalized the above arguements to include
the scattering process whereby an electron is first scattered by one
impurity and then by another a distance R from the first. Because of the
initial scattering by the first impurity, the wave function of the
scattered electron is modified. Hence when this electron is scattered by
the second impurity the admixture matrix element Vak(which determines the
energy position and the width A of the impurity state) has to be
recalculated using the new electren wave functione This effectively

changes the energy and width of the second impurity. Thus in this model
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2 mechanism for altering the width from that appropriate to the single
impourity limit is available,

The spin polarization for the Caroli model can be calculated (235
{24) and leads to an effective coupling between magnetic moments at large
B, given by

H = - J(R)S,.S,

xcos(2kR + ¢)

J(R) 3
(kR )

shere o and yQare constants depending on the phase shifts. This has the
same form as the RKKY interaction (at large R) but the magnitudes are
@ifferent. For example, Blandin caleulated (A using both Caroli and RKKY
mechanisms for the CuMn system and found that the former was two orders
of magnitude greater than the latter (21).

Short range interactions.

There are four main interactions between virtual bound states in
metals. The direct exchange interaction, RKKY, indirect exchange via s-d
mixing (both considered above) and d-d covalent admixture. The first
interaction above is assumed to be relatively small compared with the others
and the following two are essentially long range. The only short range
interaction is the last, which will now be considered.

For the case of a pair of neighbouring atoms in a metal with non-
degenerate localized orbitals the d-d covalent mixing gives rise to two
wirtual bound states. The coupling is dependent on the relative positions
of the two virtual bound states with respect to the Fermi energy. There-
fore both ferromagnetic and antiferromagnetic alignments are possible.
This may be thought of as the metallic analogue of super and double
axchange in insulatoré (25).

Moriya (26) analysed the more realistic situation of d-d covalent

admixture between two adjacent five-fold degenerate impurity orbitals,
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He found that the effective exchange varied with the number of localized
electrons. For impurity atoms with nearly half filled d-shells the
coupling tends to be antiferromagnetic while increasing the number of
d-electrons makes ferromagnetic coupling more likely. Moriya used this
model to account for the ferromagnetism of Fe, Co and Ni and the anti-
ferromagnetism of the elements Cr and Mn.

Finally the work of Kim (27) on the finite concentration Anderson
model will bé discussed. He considered how the width of a localized state
is altered by the presence of other impurities. The exist;nce of other
impurities changes the density of states of the ith impurity at the Fermi
surface from Ni°(o) to Ni(o). If a single impurity does not have a local
moment it may obtain one if it has a given number of impurity neighbours.

This can be described by the condition:
)
UiNi (0)(1 and UiNi(O)>/1 tssecrosvsetorser s 6

The reverse situation may also occur; CulNi (28) is an example of the
former and AuV of the latter (29).

Kim showed how the conditions above, for an impurity level near
the Fermi surface, can be written in terms of the change of width of
the impurity state from A io to By = AN .1° + 3&1. He then analysed
6A 52 this coqtained three terms, the indirect interaction term A\ 11 s
~ the direct transfer tern A 12 and a cross term AiB . Usua;lly alloy systems
fall into two classes, either ‘é’A 11‘ >>’éﬁiz‘or ‘SA;‘« \:Slﬁiz\in
which case Kim showed that the .cross term may be neglected. He used the
above model to analyse the exberimental properﬁies of the system
Co(Rh, _Pd ) (30).
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2,2 Magnetic Order

Any system which has spontaneous long range ordering of the
direction of the magnetic moment it possesses, at a given temperature,
is said to have a magnetically ordered phase. The ordering may take
one of several forms, for instance, parallel alignment of magnetic
moments (ferromagnetism), antiparallel alignment {antiferromagnetism)
or complex arrangements depending on the crystal structure {ferri and
helimagnetism),

To produce any type of spontaneous ordering interactions between
the moments must occur. The interaction most commonly assumed to take
place is the Heisenberg exchange, given by the Hamiltonian

Hex=.iz>]jJ<gi-gj)_S_i._s_j. ceteeentrenreeraresiocnans T
for an atom of spin §i at 31 coupling with an atom of spin §j at gﬁ.
The solution of this Hamiltonian is very difficult (17) and
approximations have to be made. The simplest/ is to consider one spin
only and replace the others by an effective field. This is the
classical molecular field theory approximation.

Molecular field theory (MFT) first introduced by Weiss (31) long
before the use of the Hamiltonian in expression 7, is a phenomenological
theory based on the assumption that the molecular field, Hm’ which acts
on each atom is Just proportional to the magnetization of the whole

crystal,hence the total field acting on a given atom is

H=H +’XM (I AR NEBENENEENREEREEEENERNNENEREEEES LR X XX ] 8

ap
where Hap is the applied magnetic field and Ais the molecular field
constant. The link with the Heisenberg Hamiltonian can be made by
considering only one spin §i and replacing the reméining spins by an
average value <§j> whence the Hamiltonian becomes

i = -ii;%(zi- B,) <§j> S
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From the MFT assumption we yish to replace the interaction by

an effective molecular field, Hm? therefore Hex becomes:

By = -8Mp S;eHpe
Using the last two equations it is simple to obtain an expression for
the molecular field constant A = I / NFZ , where}’:i is the average
molecular moment and J -;Z%J(Bi- Ej). If the applied magnetic field
is taken along the z-axis then the one atom Hamiltonian is given by
H,= -g}gBSiZH, the solutions of this are well known (32). By using
the methods of statistical mechanics the magnetization, specific heat
etc. can easily be found (33) (34).

Molecular field theory predictions for the transition temperature
and specific heat are incorrect, The transition temperature being too
high and the specific heat showing a finite discontinuity and no high
temperature "tail". The reason for this is that short range order which
~ is present above the critical temperature is neglected. Therefore as we
approach the critical temperature MFT breaks down. Even so this theory
has been successful in describing the overall properties of magnetic

systems (Curie-Weiss law, magnetization curves etc.) (33).

Ferromagnetism,

In this type of order the exchange between neighbouring spins is
ﬁositive, therefore the alignment of the spins is parallel in the ground
state, The low lying excitations of the system are not single particle
spin flips but collective modes wherz each spin is at a constant angle
compared with that of its neighbour (35). These excitations are called
spin waves and can be quantized in a manner similar to that of lattice
vibrations, the quantum of spin wa&e energy being the magnon (36) (37).
Spin wave theory has been used to/explain various properties of ferro-
magnetic systems below the transition temperature.

When approaching the critical temperature from the high
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temperature side series expansion methods of evaluating the therﬁoa
dynamic properties have been widely used (38) (39). In this method
the partition function,

7= ;exp( ~E / kT )
where Ei is the energy of the ith excited state, is expanded into a
series of powers of (1 / kBT). The coefficients of the first few terms
can be obtained using either the Heisenberg or Ising (the Ising model
considers only components of the spin operators in some fixed direction,

say z and hence H__ = ~-J2,S ) Hamiltonian, hence the susceptibility,

P> izsjz
specific heat and energy of a ferromagnetic crystal at temperatures
above the Curie point can be estimated.

~In the region around the critical point correlations between
spins must be accounted for, as mentioned above, neglecting this leads
'to the failure of molecular field theory. The appearancerof short range
spin correlation on the high temperature side of the critical temperature
manifests itself in a non-zero value of the static pair correlation |

function (34)

l:l(T) =< sozsrz> / s(s + 1)

r=0,1,2,3;....
for a reference spin and its neighbours at varying distances, r. The
factor 35(S + 1) is a normalization constant. As the temperature
approaches the critical temperature (Tc) then the correlation length
(the range of the correlation function) increases until at Tvac it
becomes very long range (3L). The pair correlation function is a

convenient measure of the short range order present in a system.
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Antiferromagnetic and Helical Ordering.

If the exchange constant in expression (7) between nearest
neighbours, is negative then the minimmm energy will occur if the
spins are aligned antiparallel. This is antiferromagnetic order.
Molecular field theory can be applied by assuming two sublattices with
nearest and next nearest neighbour interactions (32). This leads to the
well kmown result that the high temperature susceptibility is Curie-
Wiess like,with a negative Curie temperature © , and

©/ 1y =~ +a) /(- 4)

for the ratio of © to the critical temperature T the Neel temperature,
where A and A are the molecular field constants for the nearest and next
nearest neighbours. The inadequacy of MFT applies equally to anti-
ferromagnetism and methods have been devised (similsr to those for
ferromagnetism mentioned above) to overcome its limitations(hO) (33)
(39).

The first direct evidence that spin structures of this type
existed was obteined by neutron diffraction work on Mn0 (1) The
diffraction patterns above and below the Neel temperature were obtained
and the extra peaks associated with the long range antiparallel
ordering of spins,

Given the'ﬁeisenberg Hamiltonién, to findwihe spin structure for
a given system it is necessary to minimize the energy with respect to

the crystal structure. Changing expression (7) to Fourier components

gives
8 e S .
H %J(q)_g_g_g
J(q) = %;Jn exp-ig.R .«
This exchange energy must now be minimized subject to the condition
'§:§q4§ -q = (constant), Under this condition the minimum energy is
q

obtained by taking that q for which J(q) has a highest maximum,



Denoting this q by Q the energy is then (33) (L2)
E = -NS2J(Q) '« seeseccersnrscnsanacsnnscncssasceess 10
Therefore to find the magnetic structure present J(Q) must be'evaluated.
The value of g at which the maximum occurs will essentially define
the spin structure, for q = O, the coupling is positive for all
neighbours, hence a ferromagnetic structure. If q =g(gc_ + g+ _z_) for
a simpie cubic structure of lattice spacing a, then the coﬁpling
alternates between positive and negative from one lattice position to
the next giving antiferromagnetic order. An interesting situation
arises when Q does not fall at one of these values. When'this happens
& helical arrangement occurs, the period of which is generally
incommensgbate with that of the iabtiée (L42), Helical structures have
been experimentally confirmed by neutron éiffraction.studies (43) (lbL).
In the molecular field approximation the critical temperature for

a system having complex ordering is given by the following:

TN = gﬁig_i_ll J(Q)
3k

The paramagnetic temperature is

o =26E*1) 50
P 3k,

The situation as outlined above is complicated by the fact that
magnetostriction and anisotropy effects must be included when
minimizing the energy. Magnetostricticn and planar anisotropy are
generally large at low temperatufes and fall off sharply as the
temperature increases (LlL). For hexagonal close packed structures (rare
earth eleménts) the exchange interaction favours helical ordering,
while magnetostriction and anisotropy favour ferromagnetic coupling.

Therefore as the temperature dependences vary for the different

contributions to the free energy there will ususlly be a phase
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transition from helical to ferromagnetism, for example Dy (L45) (L6)
has a Curie temperature of 85K and a Neel temperature of 175K.

2.3 Spin Glasses,

A metal with a moderate concentration of magnetic impurities
distributed at random, which interact via a potential that oscillates
as a function of the separation of the impurity spin and shows no long
range order, but has its spins frozen in random orientations below a
certain temperature, is known as a spin glass (47) (48). The meaning
of moderate concentration in the above, is that the concentration is
such that the impurities have statistically independent‘positions. The
absence of long range order is a consequence of the randomness of the
impurity spin position and the osciliatory nature of the potential. In
a metallic system the potential is assumed to be of .the RKKY type.

Physically the impurity spins when cooled to a low temperature
in zero applied field are "frozen"” into the local molecular field.
“These local fields have ardistribution of magnitudes and directions
such that the average magnetization of a region, comprising of a few
tens of impurity atoms, is zero. Even though there is no long range

order there will be a critical temperature, T__, at which the spins

sg
begin to lock. At T = O and in zero applied field each moment is
frozen in the direction of the local field at its particular site.
Cooliné the spin glass in a large applied field through the critical
temperature will give a bias to the molecular field distribution,
hence remnant magnetization effects will be obéerved (48) (L9)e

The unusual electrical and magnetic properties of CuMn, Aghn
and AuFe in the regime 0.5 to 10 atomic percent impurity lead to the
concept of a spin glass. These systems being typical spin glasses have

been extensively studied and show the following properties:



(a) At low temperatures the resistivity increases monotonically
with temperature rising initially as A(c)T> 2 with A(c) depending
weakly on concentration {50) (51). A smooth maximum occurs in the
gradient of the resistivity close to the spin glass temperature,
(b) The zero field magnetic susceptibility has a sharp cusp at ng.
The application qf a small magnetic field is sufficient to round off
the cusp (52) (53) (54). The high temperature paramagnetic
susceptibility obeys the Curie~Weiss law with a positive inbtercept on
the temperature axis. Spin glass alloys also show marked intrinsic
thermo-remnant effects. |

(¢) Thespecific heat has a broad maximum at the spin glass
temperature. The low temperature specific heat being linear in
temperature and concentration independent (57).

(&) The magnetization (M/c) and specific heat (Cp/c) can be
represented by universal functions of H/c and T/c where ¢ is the
concentration and H the applied magnetic field (5l).

By using a model in which the local molecular field at a given
magnetic impurity is represented by a distribution function P(H), the
properties of a spin glass may then be found., Using this idea the
initial studies by Marshall (55) and Klein and Brout (56) with the
indirect Ising model for the interacticns between the magnetic
impurities explained reasonably well the observed low temperature
specific heat and magnetic susceptibility., At that time the cusp in
the zero field magnetic susceptibility had not been observed. Later
work using a more realistic Heisenberg exchange produced similar
results (58),

The cusp in the susceptibility of AuFe found by Cannella and
Mydosh (52) presented difficulties owing to the absence of long range

order in a spin glass system. Adkins and Rivier (59) generalized the
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local molecular field theories in an attempt to explain this anomaly,
They defined a local order parameter which because of the infinite
range of the (RKKY) interaction between the spins is a collective
feature of the system, long range order being averted by the random
position of the spins together with the oscillatory nature of the
interaction. The disappearance of the local order is essentially a
collective effect, hence there will be a unique transition
temperature and a cusp in the susceptibility.

Recently another theory, similar to the above, has been put
forward by Edwards and Anderson (60). They showed that by defining a
definite ground state in which the spins are aligned in a given
direction, although this direction may be random, that a transition
to this state is sufficient to cause a cusp in the susceptibility.
From their theory it would seem that all random magnetic impurity
systems with oscillatory interactions should show spin glass l
behaviour at some impurity concentration. The order parameter is
defined as q = { 55 .§£ ;) taken over a long time period where and P
are different time indices. Below ng, q#Oandat T=0 q=1.
Local ordering is unecessary in this theory for a spin glass trans-
ition to occur.

Rivier and Adkins (50) explained the resistance behaviour of
spin glasses in terms of elementary excitations in the system. As a
spin glass has no well defined long range order any spin-flip excit-
ation on an impurity can only diffuse away and not propagate as a mag-
non. Therefore the low temperature elementary excitations are long
wavelength spin diffusion modes. Using this model Rivier and Adkins

3/2

derived the low temperature T resistivity term.
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CHAPTER 3

THE ONSET OF MAGNETIC ORDER.

In this chapter we shall discuss how various magnetic alloys
and intermetallic compounds behave near the onset of magnetic order
and the way in which magnetic resonance can give valuable information
about this behaviour,

3.1 Behaviour near the critical point.

A parameter which is common to all physical systems having phase
transitions is the order parameter which is non-zero below the critical
temperature and zero above it. In a magnetic system the order parameter
is the zero field magnetization M(0), which is a measure oi:' the align=
ment throughout the crystal of the magnetic moments. The variation of
the order parameter with temperature is defined by using critical
exponents.

To define a critical exponent consider a function F(&) where

€=(T-1)/1,
is a dimensionless variable. Then the limit

A = lim WF(e) / Ine

' é&€=0

is called the critical exponent associated with F(¢). The expression
Fle) = Aé?‘does not usually hold and a more general relation including
correction terms is often used,

Flg) = Aé?‘(1 +B + ...) y>o.
The notation usually employed is F(€)~ éA (o1).

Critical exponents may be obtained from experimental data,
provided Tc is known, from the slope of log-log plots since from the
above A = a(1n F(€ ))/d(1n € ). For a magnetic system, the magnetiz-
ation is given by M(0,T)~(- é)ﬂ or M(0,T) = B(- 6)Fg (1+....), 1< T,

Similarly for the isothermal susceptibility , the specific heat and the
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critical isotherm, critical exponents can be defined;

.1
,XT =0e (1 + ¢s4) T)Tc
o, 4
Cv = A& (1 + ..‘) T)Tc
H = D | M(H,T=T )15 T=T
= e e

‘where A, B, C and D are constant coefficients. Behaviour of a ferro-
magnet near @he Curie point as predicted by classical molecular field
theory is given in terms of the critical exponents in Table 1, together
with observed values.

To investigate the properties of a ferromagnet above Tc, using
& better approximation than molecular field theory, then series
expansion methods are used (see Ch. 2)., For temperatures around T,
cluster (constant-coupling) approximations are used which take into
account the interactions between magnetic moments (02) (03)., In this
method the interactions among the spins within a given cluster are
treated exactly and the remaining spins averaged. Thié approach leads
to the result that short range order.appears at T;>Tc and a definition
of a short range order parameter ('Si.Sj‘) for nearest nsighbours. This
varies between 1 and O as the erystal passes from a completely ordered
to a completely disordered state. The\properties”pf a ferromagnetic
_ system are summ;rized in Fige. 1. Predictions of the clustér method
are quite good; the critical exponent of the magnetization is 5 = 3(0l)
and the Curie temperature is lower than that predicted by molecular
field theory. Unfortunately one of the main features determining
critical behaviour, the dimensionality of the lattice, is not taken
into account.

Recent treatments of the magnetic phase transition have used the

static pair correlation function., Thermodynamic quantities can be

T il



Table 1.
o B ¥ 6
MFT 0 0.5 1 3
Observed
Values - 003"0024 101"1 -l‘, h.2

T/T c 1.0
< »(a)
< >(b)
< ¥(c)
FIiG. 1 The thermodynamic  properties of a ferromagnetic material.

M is the magnetization or long range order parameter,” is
the short range order parameter and X is the susceptibility.
(a) Is the range of validity of the cluster approximation,
(b) the series expansion methods and (c) the spin wave model,
(after Martin (41)).

L1
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[(m) = {s,,8.Y /356 + 1)

related to rﬂr. For example E; =<Sozs Z;)is proportional to the
spontaneous magnetization and may be thought of as a long range order
parameter. The susceptibility in terms of thé pair correlation function
is given by the following:

')(T/c=1+rr(T) eeeeecnereenenenncnnesecreenses 1

where C is the Curie constant. For purely paramagnetic systems Yﬁr(T)=O
for all r, hence expression 1 reduces to the Curie law. The susceptibility
and other properties can therefore be determined by analysis of the
correlation function (01) (05), although in many cases this is far from
straightforward., In fact exact solutions have only been obtained for the
two dimensional Ising model.

3.2 Resistivity near T .

To investigate the details of the magnetic interaction near the
ordering temperature in conducting materials, transport properties are
very useful due to their sensitivity to spin interactions. This can be
readily seen from the wide variety of resistivity anomalies displayed
by the pure rare earth metals (06) and many intermetallic compounds (07).

Two general types of behaviour have been obéerved in the temper-
ature dependence of the resistance for ferromagnetic materials:

1. A monotonic temperature dependence of the resistivity in the vicinity
of T, typical examples are nickel (08) and iron (09).

2. A resistivity temperature dependence with a maximum in the neighbour-
hood of Tc’ for example Gd(cw-axis) (10) and GdNi, (11).

These anomalies have been explained in terms of a reduction in the
spin disorder scattering of the conduction electrons as the ordering
process takes place (12) (13) (14). Spin disorder scattering gives a

term in the resistivity proportional to 1 =~ {(§>]2 / S(s + 1) which
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is essentially jusé a measure of the spin disorder present at a given
temperature. Below Tc the decrease in the resistivity will be prop-
ortional to the square of the spontaneous magnetization.

The anomalies in the vicinity of the critical temperature are
usuelly characterized by the temperature derivative of the resistivity
dp/dT and the data fitted to a power law dp/dT = Aé-’)\ where A is
a constant. The resistivity due to spin scattering can be obtained
from the relaxation time 'C associated with the scattering from spin

fluctuations,

LP=n/ ne? T
where n is the density of conduction electrons and m is the effective
mass at the Fermi surface (17). The relaxation time may be analysed

in terms of the static spin-spin correlatlon function {- (T), giving (1)
P = [ f3f‘('r)dq
’ o

where B is a constant and kf is the wave vector at the Fermi surface.
De Gemnes and Friedel (12) and Kim (15) using essentially the
: ™
molecular field (Ornstein-Zernike (01)) approximation for ' q(T)

showed that the resistance is given By the following

Pa=Po T8(1-€£1n(1+2/e*6)) Ceeneneans . 2

vhere ¥ is a temperature indebendent~parameter.which depends on the
 details of the model for Pq. Expression 2 is valid for T>T . In the

MFT approximation rj;(T) = Q/(}kz + q2) where K is the inverse of the
correlation length and C isia normalization constant. From their results
they explained the second type of critical behaviour in the region of

the ferromagnetic transition. Kawatfa et al (19) have fitted expression 2
to their data on GdNi2 with reasonable success. Essentially the de Gennes-
Friedel approximation considers only long range critical fluctuations in

the spin-spin correlations,.



To explain the first type of anomaly Fisher and Langer (1)
included in their analysis of rﬂq(T) short range spin correlations
and deduced that d P /AT é-“just. abovs Tc for sufficiently small & ,
where & is the specific heat critical exponent. With their theory
they were able to explain the anomaly found in Ni. However, this
approach is only valid for kf)>Kn. Kasuya and Kondo (18) have linked
the two approaches by noting that the de Gemnes-Friedel approximation
has the qualitatively correct asymptotic behaviour for & greater than
a given 1imit,6l. For relativély small kf de Gennes-Friedel type
anomalies - O increasing with decreasing T near Tc - should occur (18).
Therefors depending on kf and € either type 1 or type 2 behaviour may
result.

The above theories are based on the assumption that the moment
is well localized and that the conduction electrons are contained in a
single band. This is rather unrealistic for metals such as nickel but
the qualitative features should be similar., For examples of the collect-~
ive band model see the review by Mott (16).

Unfortunately the situation néar the critical temperature may be
complicated by other factors, for example anomalous lattice expansion.
This leads to an extra term iﬁ the temperature dependence of the resist-
ivity which is proportional to the thermal expaﬁéion coefficient (20).

Below the ordering température tﬁe magnetic scattering is due to
spin waves. For simple ferromagnets the spin wave resistivity is prop-

2 while for magneﬁically anisotropic materials there is

ortional to T
also an exponential term, 0O _ = cr? e"AE/kBT where A E is the
spin wave excitation energy (21) (22).

Materials which do not order ferrcmagnetically show a wide vare

iety of resistivity behavicur. When such a system becomes magnetically
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ordered the conduction electrons move in a combined potential of the
lattice plus that of the exchange field. If the exchange field has a
symmetry different from that of the lattice then new superzone
bounderies will appear within the Brillouin zone. The exchange field
of ten has complex symmetry especially in materials>which order
helically. Cogling through the Néel temperature will produce a
reduction in the spin disorder scattering and also a change in the
configuration of the electrons due to the superzone bounderies. The
change in the electron structure will effectively increase the resist-
ance above the value which would be found in a ferromegnet.

Coles (08) suggested that to a first approximation the resist-
ivity in an antiferromagnet may be written in the form,

= ( Py * Py * PT )F

where Pa’ P

b
spins, atomic disorder and thermal disorder respectively and F is &

and PT represent the perturbations due to the disordered

factor depending on the conduction electron configuration which
includes the electrons effective mass and the density of states to
which they can make transitions.

Using the same basic idea a number of authors have explained
the electrical resistivity anomalies in the heavy rare earth metals
(23) (24) (25).

3.3 Magnetic resonance and order.,

The theory of paramsgnetic resonance will be presented in the
next chapter. Here the main points of interest are how the effects of
magnetic order influence the observed resonance signal and the type of
resonance obtained in an ordered systen.

Below the critical temperature in a ferromagnet a resonance is
gbserved (26) but it is shifted from the simple Lamor frequency.

Kittel (27) showed that this is due to the resonance frequency
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depending on the shape of the sample through the demagnetization
corrections. The field inside a ferromagnetic sample is different
from the applied field because the magnetization produces a reverse
field inside the specimen which is known as the demagnetization field.
The macroscopic demagnetization field Hd is determined by

div B = div(H, + LM) =0,
then it follows from curl ;=0 that’

V2@ 2 LMAT M evevererneenecoisossessessenes 33

.a.nd V¢=-Hd P |

Hence by calculating ;ﬁ the demagnetization field may be found.If gfis
the field inside the specimen and H is the applied field then Hd =H - gf
and it is usual tc write
B = - NX
where N is the demagnetization factor which depends on the shape of the
sample through the potential yﬁ in equations 3. Clearly for ferromagnetic
samples the maénetization and hence the demagnetization fields are large.
The demagnetization factors can only be calculated for a number of
simple shapes where the internal field is uniform and parallel to the
applied field..For example, an infinite cylinder with the applied field
along the axis of the cylinder has N_ = Ny = %,Nz =0 (28).
Magnetocrystalline anisotropy occurs in most materials. The
anisotropy can be expressed as a direction dependent term in the energy
of spontaneous magnetization. For a cubic crystal where O<1, 0(2, and
X 3 are the direction cosines of the magnetization relative to the
principal cubic axis then ,
E=K + K (x§o5 + &5} + o5ad) « ...
Kittel (27) showed how this term may be included into the resonance

Hamiltonian.
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The resonant frequency of a ferromagnetic crystal, including

the last two effects, is given by the equation (27) (29),
2 _ w2
we=Y¥ (H°+(Ny—Nz)M+a.| JH + (N-N,)M+a,) ...k

where Nx’ Ny and Nz are the demagnetization factors defined by

i i . . .
Hx Hx - Nxﬂx etce, Hx being the internal field in the x-direction
and 3y and a, are expressions which take account of the magnetic
anisotropy energy. For a sample of simple geometry expression L reduces

considerably. For example, an infinite disc with the applied field

perpendicular to the disc has Nx = Ny = 0 and Nz = 1 therefore
L, = S (H - Lrem).

This assumes that the anisctropy constants are small.

From a microscopic point of view the demaénetization effects
arise because of the dipole-dipole interaction between the magnetic
moments, This may be included into the Hamiltonian by a dipolar
coupling term. Similarly the anisotropy can be trgated as a quadru-
polar coupling between épins (29).

The linewidth of a ferromagnetic resonance has many contributions
and is not clearly understood. The underlying processes for a metallic
system include, the coupling to the conduction electrons, scattering by
impurities and Tattice defects and direct magnoﬁiﬁhonon interactions.

" Therefore the linewidth is of-interest“mainly as a guide to the

general temperature behaviocur of a system. The resonant field and line-
width as a function of temperaéure are shown in Fig. 2, for a metallic
system.

In the paramagnetic region, the width of the resonance from
dipolar broadening can be obtained from second moment calculations,
This broadening is inhomogensous in nature, the line comsisting of a

spectral distribution of individual rescpant lines combined into one
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overall line. The célculatad wridth is uzually far broader than the
observed value. Van Vleck (30) showed that this discrepancy was due
to exchange narrowing of the line.

The effect of exchange narrowing is to change the line shaps
from Gaussian to Lorentzian. The total intensity remains constan?;
therefore the result is a narrowing of the line. In the absence of
any exchange, the effective field acting on a particular spin is a
combination of the external field and the local dipolar field of ﬁhe
neighbouring spins. Since each spin is in a slightly different
environment the distribution of resonant frequencies gives rise to a
broadening of the absorption line (dipolar broadening). The effect of
the exchange interaction is to make the local dipolar field less
effective in broadening the line. -

This occurs because of.changes in the orientation of the magnetic

moment at a rate of J/h, introduced by the exchange interaction, cause

the dipolar field to fluctuate at this frequency. Only fields that

Fige 2 The linewidth and resonant field as a function of temperature
for a polycrystalline ferromagnet,

w =2>’(H0 + H,)

z”/,’ g
' ~——

OH

S —
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remain constant over a reriosd of tims lovg compared with the relax-
ation time (Tz) can broaden the line. Therefore provided the
fluctuations introduced by the exchange are sufficiently fast, then
a narrowing occurs. Exchange narrowing should be even more pronounced
in the ferromagnetic region. There are other mechanisms adding to the
linewidth in the paramagnetic regime (unresolved fine structure etc.)
especially in metels (see ch. l4).

It would be expected that a typical paramagnetlc resonance signal
would be cobserved until c¢lose to Tc as the temperature is lowered.‘With
a ferromagnetic resonance, obeying equation lj, below the Curie temper-
ature. The shift in the resonant field (g-value) observed just above
Tc can be fitted to the form of the magnebtization using demagnetization
factors appropriate for the system (31). In this work the g-shift in
low concentration, less than 10at.%, Gd in LaNiS is interpreted in
this way.

On approaching the Curie temperature in metallic systems the
linewidth shows a strong broadening just above the critical temper-
ature. This is due to a number of factors., Most experiments are
usually performed on powders where the demagnetization factors are
unknown and some average value has to be assumed. The linewidth will
therefore be an envelope of shifted lines and broader than expected
for a specimen of simple geometry. The presence of short range ordér
above the Curie temperature may be expected to broaden the line, at
least for s-state ions. No complete theory has yet been produced
which correctly predicts the change in linewidth above Tc.

There will also be an inhomogeneous broadening in polycrystalline
samples from magnetocrystalline anisotropy. This gives rise to a width

AH_ of the form (29)
AH_ ot K, / M



where K1 is the first order anisotropy constant and MS is the sat-
uration magnetization. The linéﬁidth in a series of iron alloys has
been interpreted in this way by Bagguley {32).

The situation in materials that order antiferromagnetically is
rather different. Keffer and Kittel (33) give the condition for
resonance in a uniaxial or cubic antiferromagnetic crystal with the

static applied field parallel to the axis:
E Y
- 2
W, = ¥H + X(He (H+ H) )

where He is the exchange field and HK is the aniscotropy field. Usually
He>> HK therefore,
W, = 8H * ¥( 2HH )%.
o o =- e

The shift in the resonant field given by (ZHKHS)% is
sufficiently large for typical values of HK and He that the resonance
is shifted well oubside the range of a 3Jcm paramagnetic resomance
spectrometer below the Neel temperature;hence no signal is observed.
On approaching TN the linewidth broadens considerably and generally
a minimum occurs at a temperature several times that of TN. Taylor
and Coles (3ly) have reported a line broadening at more than 101, for
the metallic compounds Gd36 and Gd22n17. This has been attributed to
the effects of short range order in these alloys although there is no
fundamental undersﬁanding of why this should be so.

Kawasaki (35) attempted to describe the linewidth of an antie
ferromagnet in the vicinity of the Neel temperature taking into account

the short range order. He found
AH & (T - )P

where p = 1.66. Experimentally Maxwell and McGuire (36) and Battles (37)

have reported work on the antiferromagnets Cr203, MnO, MnTe and MnS.
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They reported valuss of p in the range .75 to 1.2, Recently Taylor and
Coles (31) found values of p in the range 0.7 to 1.6 for thé Gd~B and
Gd-Zn systems but due to experimental uncertainties it is doubtful
how significant these values are,

Electron paramagnetic resonance in conjuncbtion with magnetization
measurements is useful in elucicdating the magnelic phase diagram.
Bagguley et al (32) have made measurements on a single crystal of Gd-Y
and obtained information about the magnetic ordering of the system. They
studied six alloys in the range 6% to 64% Gd, measurements being made
from Y to 29§'K at both\9.5 GHz and 35 GBz.’I; the low concenbtration
regime (6 and 28%) resonance in the spiral phase with g = 2,02 # 0,02
was observed. The g=value in the paramagnetic region for these alloys
was g = 1,95 *+ 0,02 suggesting that the anisotropy is virtually zero.

. For the 64% alloy which has no spiral phase a ferromagnetic resonance
was observed below 210 K, From this they deduced the ferromagnetlic
anisotropy constants. The intermediate concentration regime, between
30 and 60%, gave complex behaviour due to metamagnetic transitions.

As can be seen from the examples above epr is sensitive to the
local spin enviromment. This is particularly striking in the work on
spin glasses, for example CuMn., This system is a spin glass which
eventually becomes a defective antiferromagnet (38) at high Mn concent=
rations, The system was first investigated by Owen et al (39) who
observed resonance in a range of alloys from 0.07% to 11.1% Mn at a
few fixed temperatures (2, 4.2, 77 and 295K). They noticed that the
resonant field shifted to low field below the ordering temperature
and that the line at L.2K was greatly altered if the sample had been
cooled in an applied field.

| Later Griffiths (40) investigated these eflects fully. He

examined two alloys, the 4 and 15 atomic percent Mn through the
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temperature range 2 to 295 K., In these two alloys the transition
temperature is believed to be (from a maximum in the initial suscept-
ibility {40) ) 20 and 55K respectively. In the 4% alloy cooled in zero
field a maximum in the plot of signal amplitude (A + B) against
temperature was observed at approximately }3K. Slightly higher at 50K
the linewidth showed a weak minimum and the resonant field began to
shift (Griffiths' Fig. 1). Similarly the 15% a2lloy had a peak in
(§j+-B) at 115K and a minimum in the linewidth at 135K, Field cooling
the samples changed the subsequent character of the resonance
behaviour. CuMn is a spin glass system and as such field cooling
effects would be expected, although a detailed explanation of
Griffiths' results has not yet been given,

From the above remarks it is clear that magnetic resonance is
very sensitive to the effects of spin correlations above the ordering temp-
erature. This is also demonstrated in this work, where the effect of the
onset of magnetic order is observed in a number of compounds. The epr
linewidth in a metallic system shows the effects of short range order
but due to the lack of a proper theoretical desciption of the processes
involved no quantitative information can be obtained. Experimental work
on single crystals of simple geometry would remove uncertainties aboub

demagnetization factors and anisotropy effects.
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CHAPTER )y

THE THECRY OF MAGNETIC RESONANCE

When an atom of total angular momentum J is placed in an external
magnetic field the 2J + 1 energy levels are split by the Zeeman
interaction (01). Magnetic resonance is the phenomenon of inducing
transitions among the 2J + 1 levels, an outline of which will be given
in this chapter. The first sections deal with the quantum mechanics of
a particle with spin in a magneﬁic field which forms a basis f&r the
description of resonance effects in insulators. The last sections
consider the resonance of magnepic impurities in metals.

k.1 Fundamental Theory.

Consider a particle having spin S, then we can define a vector
& such that S = sh g where _c_j_f = (O'x, Gy’ dz) are the Pauli spin
matrices., Assuming the particle has a magnetic moment operator given by

where 2{ is the gyromagnetic ratio, then the application of a magnetic
field H will give rise to the interaction Hamiltonian "

R =-pl

If H is a static field parallel to the z-axis then the Hamiltonian

is

R o= —fHHS,  eenemenrmnrenrenenieniiiiny 2
and the energy of a sbationary state is

E, = ~XRHm, m =S, S=1, coe , =Se  eeevees 3
To induce transitions betwesen the 25 + 1 levels an oscillatory magnetic
field is needed in a plane normal to H. There will be an additional
perturbation due to the oseillating field described by the Hamiltonian,

= «( Y f; +H IAY

assuming that H is in the z-direction. Changing to an exponential
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notation and using the relation.f*+ =f{x,: illy gives

I
W - ".g'(}ae'iwt +P_.eiwt)- L

It is a well known result from time depe