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IN MEMORY OF MY MOTHER

I used to dream and think of you
to keep you close.
So shall T do now,
to keep you alive.

And you shall never die!
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ABSTRAGCT

An analytical solution is developed to the problem of the
shear response of a homogeneous layer to an arbitrary horizontal
disturbance (acceleration, velocity or displacement) which includes
the effects of radiation and material damping.

. The main characteristics of the solution are:

a) It is exact and can be computed exactly.

b) It has in itself a consistent physical interpretation.

c) The final expressions for the layer response involve only the
shifting and scaling of the input disturbance, their computation
being, therefore, fast and simple.

d) Time-histories of acceleration, velocity or displacement are
readily obtained at any depth in the layer.

e) To obtain the input disturbance, deconvolution of the layer
motion may be performed with the same degree of accuracy and

simplicity as in the response problem.

The method of solution is based on the fact that the layer motion
obeys a phenomenon of propagation, and for the cases studied, the parﬁjal
differential equation which describes the problem analyfically is basically
a wave equation, i.e. it has a D'Alambert solution. It is shown that such
a solution may be obtained by means of the Laplace Transform with which
the response of the layer may be expressed in terms of travelling waves.

The problem of radiation is studied analytically and its effect
on the response is considered.

A visco-elastic constitutive law, in which the viscous component
is assumed to be a volumetric force takes care of material damping effects.

The formulation of a general case for multi-layered deposits

is made and discussed.



NOTATION
g(t) A prescribed displacement time-history
g(t) " " velocity " n
g(t) oon " acceleration " "
U(y,t) Absolute layer displacement at depth y at time t
ﬁ n " velocity n " mnoonon
Hf n " acceleration " n oo
gs(t) = U(0,t) Displacement time-history at the free surface of a deposit
gb(t) = U(h,t) Displacement time-history at the base of a deposit
grec(t) : Displacement time-history at rock outcrop
wg(p) - Displacement Layer Wave
wé(t) = .;J.g(t) Velocity " n
wg(t) = wg(t) Acceleration " n
G shear modulus
mass density
7 specific viscosity

= (G/'p)V2 shear wave velocity

n
|

a = G152/G2S1 Impedance ratio

B = 1-a Radiation coefficient
T+

k = 7 damping parameter
2[Gp

= %/ J1+k2 damping coefficient

~rri
|

TR (1-1" )/(1+ %) damping parameter

Yy=4 I-a 1+k2(1+§,) dissipation coefficient
1+t 1+k2(1-’,‘ )

TL undamped layer period

e the base of natural logarithms



'INTRODUCTION

The problem of the response of a soil deposit to a seismic
excitation is of particular importance in the engineering study of
earthquakes, as it has to be considered both in the process of design
of a specific structure, as well as in the general search for earthquake
parameters that may, from an engineering point of view, characterise
a seismic event.

A soil deposit disturbed by an earthquake motion at its base,
will not transmit the motion unchanged, but it will cause it to advance
in accordance with its material and geometrical characteristics;
consequently, the vibration to which a structure, founded on the deposit,
may be subjected as a result of the base movement will largely depend,
both in magnitude and in nature, upon the properties of the deposit,

The excitation for which the structure ought to be designed is, therefore,
the response of the deposit to the base motion, and not the base motion
itself.

It is also clear from the previous argument that records
obtained from an earthquake at different locations of a particular region
will show individual characteristics dictated by the geological conditions
existing at each particular site. If those records are to be compared
in order to study the general characteristics of the earthquake motion
in that area, the effeét of local geology has to be filtered from each
record. Thus, in studying a natural deposit subjected to an earthquake,
it is as importanﬁ a problem to determine the response of the deposit
for a given disturbance as it is to find the input disturbance from the
recorded motion of the deposit.

The analytical study of the dynamic response of a deposit
fundamentally involves firstly defining a constitutive equation for the

material in the deposit, then, establishing the equation of motion for the
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medium, and finally solving this equation for the conditions imposed at
the boundaries and the initial conditions of motion.

The simplest assumption regarding material behaviour is that of
linear elasticity, where the stresses developed in the material are
proportional to the strains which cause them, no matter how large these
are. It may also be assumed that this behaviour is valid up to a certain
level of stress and that when it is reached either the proportionality
constant between stresses and strains changes (bilinear model), or the
material yields, strain increasing while stress remains constant (elasto-
plastic model). Another approach would be to consider the material to be
visco~-elastic, that is to assume that stresses have an elastic component
proportional to the strain applied, and a viscous component proportional
to the time rate of strain (Voigt or Kelvin model). A discussion on the
different considerations made on the nature of the viscous constant is
found in Newmark and Rosenblueth (1971). Other rheological models to
represent the material behaviour may be found in Jaeger (1969) or Kolsky
(1963). Based on experimental evidence the stress-strain curve for a
material may be assumed to be a loop. The shape of this loop may be
defined by means of three parameters (Ramberg & Osgood 1943), or it may
also be supposed that such a shape corresponds to a hyperbolic relationship
(Hardin & Drnevich, 1972b).

Hysteretic models may be linearised by considering equivalent
properties, such as a constant of proportionality between stress and
strain given by the slope of the line joining the extreme points of the
actual loop shaped curve, and a damping coefficient froportional to the
ratio of the energy loss to the total elsstic energy, both in a cycle,
as originally suggested by Jacobsen (1930).

Once the material behaviour is defined by a constitutive law,
the equation of motion for the medium may be established from the condition

of dynamic equilibrium. For deposits formed b& homogeneous material, or



with properties varying regularly with depth, a second order partial
differential equation reéults which may be solved in a closed form.
Ambraseys, for example, presents the shear response of a layer, with
homogeneous material and surface loading (1960a), and with varying
rigidity (1959). Idriss and Seed (1968) provide a general form of

the equation of motion for horizontal deposits subjected to horizontal
seismic motion and review the work of gthérs.

For the case of layered dep05its; a differentiél equation of
motion is obtained for each layer, and the response of the deposit is found
by solving this system of equations simultaneously considering the
compatability of stresses and displacements at each interface, and the
boundary conditions at the surface and base of the deposit.

Alternatively, the whole deposit may be idealised as a series of
discrete masses interconnected, and then the equation of motion of tﬁe
deposit is given in é matrix form. Idriss and Seed (1967, 1968) preseﬁt
the formulation of this lumped mass analysis, and Papastamatiou (1971)
utilises this approach to illustrate the effect of radiation and plastic
yielding on the response of foundation materials.

Response of deposits whose geometry cannot be described by a
one-dimensional model may be given in a closed form in simple cases;
Ambraseys (1960b) is an example. More irregular deposits may be idealised
as an assemblage of elements interconnected at a finite number of nodal
points in a Finite Element analysis, used, for example, by Idriss and
Seed (1974). Also, the medium may be visualised as a lattice work of
one-dimensional linear elements (Streeter & Wylie, 1568).

The equation or equdions of motion for the deposit may be
solved by numerical integration techniques, either'directly or, if
possible, after the time and space variables in the equations have beeﬁ
separated (Modal Analysis). A review of integration techniqueé can be

found in Ayala-Milian (1973).



A Fourier analysis may also be used in the solution, using
for example, the expressions given by Kanai (1951) for a deposit formed
by horizontal visco-elastic layers under steady-state harmonic motion.
Roesset (1970), Herrera & Rosenblueth (1965), and Schnabel et al (1972)
use this kind of analysis in their studies; the last two references
consider frequency independent damping coefficients. Streeter et al (1974a)
have applied the method of characteristics, originally suggested by
Westergaard (1933), to wave propagation problems. Basically, this is a
finite difference method of integration suitable for the numerical solution
of hypérbolic partial differential equatioﬁs.

From a physical point of view, the dynamic response of a soil
deposit may be seen essentially as a phenomend>n of propagation. When
this consideration has been brought into the analytical formulation of the
problem, it has proved to be of great use simplifying both the formulation
itself and the numerical process involved, and obviously providing a general
understanding of the problem.

The boundary condition used by Papastamatiou (1971) to deal with
radiation, and the basic idea which gives place to the method of
characteristics (Westergaard (op. cit.), Newmark and Rosenblueth (1971)),
are but two examples illustrating the simplicity which may be attained by
considering the propagative nature of the response. We feel, however, that
full use has not been made so far of the physical meaning attached to the
soil response and its analytical implications.

We may state that if the motion of a deposit is the result of a
disturbance being propagated in it,vthen such a motion may be known at any
point in the deposit and at any instant if we know the disturbance and the
way in which this travels inside the medium. The analytical solution fo
the problem must reflect this situation, and therefore it should be

possible to find in this solution a clear relationship between excitation



and response in the time domain. A relationship which is obviously not
in terms of frequencies, modes, amplification.factors or spectra, but
which indicates a process performed on the disturbance to obtain the
response. |
The purpose of this thesis is to present this approach - a

time-history approach - to the resﬁonse of soil deposits for the simple
case of uni~dimensional propagation. The basic assumptions in the
thesis are as follows:-

a) Horizontal shear disturbances propagating vertically

b) Horizontal boundaries

c) Layers férmed by homogeneous material with properties constant

in time.

This work is divided into five chapters. The first of them
considers the problem of a linear elastic layer on a rigid base in order
to present, in the simplest of cases, a particular procedure of inversion
for the Laplace transform which enables us to obtain the layer respomnse
directly as a time-history.

The second chapter is concerned with the problem of radiation,
namely, the process of energy loss which takes place when the foundation
of the layer is assumed to be a deformable semi-infinite medium. A
closed form analytical solution is obtained following a time~history
approach.

In chapter three a model of damping compatible with wave
prOpagation'is introduced so that the effect of internal dissipation of
energy may also be included in our approach.

Chapter four combines the findings of the previous chapters; a
complete wave solution is given for an homogeneous layer, and the

formulation of a general case is made for multi-layered deposits, discussing



both the problems of response and deconvolution.
Finally, in chapter five, a general discussion is made of the
advantages and limitations of a time-history approach and conclusions

are drawn.



CHAPTER ONE

THE BASIC SOLUTION

Introduction

This chapter considers the problem of the response of an
homogeneous linear elastic layer subjected to an arbitrary shear motion
at its base. This problem in itself does not offer many possibilities
for its application, mainly, as the assumptions made for the behaviour
of the constitutive material of the layer are too simple as to idealise
adequately the behaviour of an actual soil deposit. It is simplicity,
however, which makes this problem appropriate to introduce some basic
concepts and discuss the general physical meaning of the analytical
expressions for the layéer response.

Hence, this chapter is intended to be a basic reference for
the whole of this thesis. Here, a particular procedure for inverting
Laplace transforms is presented, which will be used throughout this
work. Such a procedure, by making use of the operational properties
of the transformation, simplifies considerably the inversion problem
and enables the layer response to be expressed as a time-history
with a consistent physical interpretation. Also, it is in this chapter
where concepts such as‘Disturbance, Layer Wave and Response Motion
are defined and given a specific meaning which will be held all along
this study.

A brief review of the Modal Analyéis solution, which is
obtained by using a conventional procedure of inversion is included,
so that the advantages of the solution developed in this chapter may
be fully appreciated.

The complete mathematical development can be found in

Appendix Ta
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Formulation of the Problem

Consider an elastic layer of thickness h on a rigid base as

shown in Figure 1.1a. The material in the layer is characterized by a

mass density p and a shear modulus G, both constant with depth through-

out. If the base is given a displacement g(t), as the one produced by
an SH wave, a differential element dy will be stressed as shown in
Figure 1.1b.

U = U(y,t) denotes the absolute horizontal displacement of a

point in the layer at a depth y, at a time t.

The equation of motion 1.1 is obtained equating the net force

in an elemental mass with the product of that mass and the absolute

acceleration (dynamic equilibrium)

2

T (y,t) s= U (y,t)

where

§% - G/p, the shear wave velocity of the layer materialj;

(1.1

dots and dashes indicate derivations with respect to t and y respectively.

To fully specify the problem it will be considered that

throughout the movement the surface of the layer is free of stresses

and that there is no sliding between the base and the layer. Hence, the

solution sought, i.e. U(y,t), should satisfy the conditions:

U(h,t) = g(t)

U'(y,t)] y=0 = 0

Furthermore, it will be assumed that the motion starts from rest,

l.Ce
g(0)

5(6)] Uyt =0
t=0 t=0

U(y,0) = 0

The problem is thus represented by a second order partial differential

equation, and for the conditions given, it may be shown to be soluble.

(1.2)

(1.3)

(1.4)

(1.5)
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The Solution Procedure

The use of the Laplace Transformation for finding the
response of the layer leads to an expression in the transformed
domain which proyides the relationship between the transforms of
the input displacement and of the layer displacement. Such an
expression has the general form:

Uy,p) = T &gp ‘ (1.6)
og

where p is the parameter of the transformation, and bars denote
transformed functions. The meaning of T; will now be discussed.
Equation 1.6 has a mathematical meaning but not a physical
one (BRACEWELL,1965). Therefore it is not proper to associate the
parameter p with a frequency, nor to define T;g as a transfer functidn.
Rather, if U and g are referred to as transforms only, without
attaching any physical meaning to them, then by the same nature
of the Laplace Transformation T may be seen to be the transform
of an operation, namely, the Transfer Operation, which may be defined
as the operational procedure performed upon the input to obtain the
response.
Hence, from the previous definition it may be implied that,
35 equation 1.6;%n operational relation, a convenient way of
inversion should involve finding a suitable expression for T; so that
the elementary properties of the Laplace Transformation may be applied
to the right hand side of 1.6. This brings not only simplicity to
the whole process of inversion, but in addition, expressions for the
layer motion obtained by this procedure may be easily interpreted in
physical terms. |

Furthermore, the transform of the Transfer Operation, T

may be defined uniquely for layer displacement, velocity, and acceleration;
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this can be done simply by associating to each one of them the corresponding

U (y,p) = Tog & (p) (1.7)
T (y,p) = Tog g (p) | (1.8)

Then, it can be claimed that no generality whatsoever has been lost by
assuming stationary initial conditions (equations 4.4 and 1,5);any non-
stationary condition may be introduced in the process of integration.+

Also, with this unique definition of ng, layer displacements,
velocities or accelerations may be obtained with the same operational
procedure, and in consequence, with the same degree of accuracy.

To illustrate these points, we may return to the layer
problem, where if the Laplace Transformation is applied to equations
1.1, 1.2 and 1.3 with the initial conditions 4.4 and 1.5 the following

relation is obtained in the transformed domain:

T (yp) = DRI § (o) (1.9)

which, after some manipulations may be written

_ _ p(h-y) w) [ 5 h
Tly,p) = [e § + e-% [2 ) S 'é(p)] (1. 10)
n=0

Equation (1.10) is readily suitable for the application of the Shifting

Theorem, which gives for the layer motion, as it may be easily shown:

+ . L . . cp s .

For engineering applications it is common to have the input as a
record of accelerations; hence, the use of equation(1.8)will provide
layer accelerations, and then velocities and displacements may be
obtained by integration. '
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U(y,t) = ;:JO (-n" g(t-tym) + éo (=" g(t—tynz) (1.17)
and therefore
Uly,t) = Zr;;o 0% plt-t )+ éo 0P ale-t ) (1.12)
Uly,t) = 121::’0 ()" é(t-tym) + f;’o (-)* 'gj;(t-tynz) (1.13)
where
b1 = (2n+1) %- %
and
tomo = (2n+1)%+:3s’-
-~

~

The Solution and its Interpretation

A few remarks are needed before discussing}the meaning of
expressions “1.11, 1.12 and 4.13. First, it should be considered that
the input disturbance g(t) is ALWAYS defined for positive times only,
and usually for a finite duration tg. Hence, the arguments of g in
the previous equations must satisfy the conditions:

t-t_ . 20 i=1,2 (1.14)

t-t . & ty i=1,2 (1.15)

These two inequalities provide the limits of the summations, and it may
#Ze;u”néerﬁz;énnlin the surmmations M . o

be seen that s ~ are FINITE even when the duration tg is infinite.
Furthermore, the number of terms involved in the computation of the
motion at any particular time may be seen to depend upon the properties
of the layer only. Therefore, the solutions found are not only exact,
but may be computed exactly as there is no problem of convergence.

Notice should also be taken that thé argument of g in thé
summations has dimensions of time. Consequently, equation 1.11, 1.12

and 1.13% as they stand, are suitable for the computation of time

histories of response at a given depth y. Should the variation
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of response throughout the layer at a particular timihbe of interest,
such an argument ought to be expressed as St - Yini® S° that ¢l -
has . dimensions of length.

What any of the solution equations shows is that the material
of the layer is a perfect transmitter in which the input disturbance
travels with a velocity S without being at all modified. When the
disturbance reaches the surface of the layer, it is reflected (in
consequence its amplitude is doubled). After this refléction, the
disturbance travels back towards the base, where a further reflection
takes place and a change of sign. As there is no dissipative mechanism,
this process contihues for ever.

Therefore, the motion of the layef at a specific depth y,
at an instant't, is simply the addition of the different points of the
disturbance which happen to be passing by y at that instant.

This argument is shown in Figure 1.3. There, a layer of
thickness h and shear wave velocity S is shown excited by a triangular
pulse, say of acceleration, of duration 3/2 h/s. The appearances of the
disturbance at the base, the middle depth and at the surface of the
layer are shown and so the resulting éccelerations at each one of these

levels.

The Layer Wave

Another way of looking at the solution equations may also be
noticed in Figure 1.3. If all the disturbances travelling upwards at
any level are considered as a whole, it can be seen that they form an
wave which has identical shape at all levels but is shifted in time from

one depth Yq0 to another Y5 by an amount Iyz-y1 /S, giving the

appearance of the complete wave travelling towards the surface with a

velocity S. Also, the disturbances travelling downwards form an identical
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wave, now appearing to travel towards the base of the layer with the
same velocity S. This wave shall be defined as the Layer Wave.
The analytical expression for the layer wave may be found

from equation 1.10 which may be written

P
T (y,p) = [e'ﬁ(h-y) + e*s(hﬂ’)]wg(p) (1.16)
where i)
V. (p) -Z cq)“‘anpa‘m
g = Tn=0 TV ° s glp) - (1.17)

Thus, after inversion:

[t/(2n/s)]

w(t) = (-1)" g(t-2nh/s) (1.18)
& n=0

where
wg(t) is the Displacement Layer Wave, and
[x] the largest integer less or equal to x.

Therefore, the layer displacement is, in terms of the layer wave:

o(y,t) = wg[t-(h-y)/s] + wg [ t-(h+y)/s] (1.19)

and similar expressions are found for velocities and accelerations.

The layer wave thus, characterises the response of the iajer
as it combines in a unique form the properties of the layer and the
input disturbance. Also, it simplifies considerably the numerical solution.
process as in fact, once this wave is determined, the response time-
history at any depth or the configuration of the layer at any time may
be easily obtained.

It should be stressed that it is the input disturbance that
actually travels inside the layer. The layer wave is-only an apparent

motion and it is more a convenient mathematical concept than a precise
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description of the physical phenomenon. For the purposes of this thesis,
disturbance shall be defined aé a prescribed history of acceleration,
velocity or displacement, and layer motion as the corresponding layer
response. The Layer Wave 1s a characteristic of this resﬁonse, and as
such it caﬁnot be prescribed since it is not known in advance. These
definitions that may seem trivial, will prove to be of great use in the
more complex problem of radiation.

It is to be noticed that the properties of the layer, both
material and geometric, are summarised in one parameter only when no
dissipative mechanisms are present. This parameter is the travelling
time h/s which takes a disturbance to propagate from the base of the
layer to its surface. This parameter may be expressed in a more
conventional form considering the time between two consecutive appearances
of a point of the disturbance, with the same sign and coming from the

same direction, at a particular depth. This time is the Layer Period,

TL, and it may be easily shown that
TL = Lh (1.20)
5

Deconvolution of Recorded Motions

Strong ground motion instruments are usually installed to
record surface accelerations. Therefore, in practical terms, records
from these instruments are layer accelerations }; (o,t) rather than
acceleration disturbance ‘€(t). It is then of interest to study the
problem of given the properties of a deposit and the recorded motion at
its surface, finding the original disturbance; or in other word;,
deconvolve the effect of the deposit from the recorded motion.

At the surface of the layer, y=0, and equation 1,9 for this

particular value of y may be written

Tlo,p) = ——— & (p) (1.21)
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The fact that 1.21 is an operational relation justifies writing it as

§® = cosh (@D T (o) (1.22)

A procedure of inversion identical to that previously followed to

find the layer motion, may be shown to lead to

g(t) =% [gs (t+h/s) + 8 (t—h/s)] (1.23)
where '

8 (t) = U (o,t), the recorded displacement.
Also,

g(t) =—;- [gs (t+h/s) + és (t-h/s)] (1.25)
and

) = < [‘g‘s (t+h/s) +E, (t—h/s)] (1.25)
If the value of U(o,t) in 1.19 is substituted, then

g(t) = wg(t) + wg (t-2h/s) . (1.26)
Similarly,

g(t) = Wé(t) + wé (t-2h/s) (1.27)

g(t) = Wg(t) + wg (t-2h/s) (1.28)
where

wé velocity layer wave

W. acceleration layer wave

¥ The notation wé, wg and not wg, Wg stresses the fact that the concept

of layer wave is valid to represent the layer response to a disturbance
irrespective of whether this disturbance is acceleration, velocity or
displacement. However, it may be seen that wé and Hg are the first

and second derivatives of Wg, respectively, and consequently Wé =W,
.

and Wee = W &
g g
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Comparison with Modal Analysis

Modal analysis solution to the layer problem expresses the
response of a layer as a combination of responses of one degree of

freedom systems. Such a solution has the form

.y, t) = Z, AOENENONS (1.29)
n=1 ! _
where,

Ur(y,t) layer displacement relative to the base movement

X, o (8) = - ;l“_n [Fg@) sinw (+-7) az (1.30)

Xn,g(t) is the response displacement of a one degree of freedom system
with frequency W to a disturbance g(t).

¢n(y) is the n-th modal shape of vibration of the layer, which, at a
particular y, defines the contribution of the single system with
frequency W, to the total reponse.

The long numerical process necessary to evaluate equation 1,29

has made usual practice to consider the alternative expression

N
omax™ T 5 g ) 8y Gy (1.31)
n=1

whére Sd is the displacement response spectrum and is simply the maximum
absolute value of 1.30. N is fixed such that ¢n(y) is less than a certain
percentage of ¢n_1(y).

It is evident that, because not all maxima are likely to occur
at the same time, expression 14,34 is only an upper boundary to the actual
maximum response at the depth y, and so, further assﬁmptions are necessary
to be made about the real contribution of each of the modes.

A review of the procedure followed to find 4,29 is necessary
to compare this solution with the one introduced in this Chapter. It

may be shown that the relationship in the transformed domain between the

input disturbance and the layer motion which leads to expression 1.29 is
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of the form

Ty, t) = cgsh(py/s) Z (p) (1.32)
P COSh(Ph/S)

where transformed layer displacements are related to transformed
accelerations disturbance.
Inversion of the fraction in the right hand side of (1.32)

following the Standard Bromwich Contour gives the expression

il cgsh(ph/s) ] - To(y’t) =t - EEZZ; (-1)"cos (n+%9ny/h X
p“cosh(ph/s) ST n=0

X (m%)'2 sin (n%)nst/h (t>0) (1.33)
where (sce page 1/ /ér 0’94}7/’4’“ o n )
il [?(p)] = f(t), the Inverse Laplace Transform of f(p).

Equation 1.3% is actually the departing point between the two

solutions. Modal analysis assumes

wn = (n + %) T % n=o,1,--- ) (1'34)
then, (1.33)1s written<”
Lyt = t-22 [, (ot osluy/s) sin Gut) (1.35)
=0 w 2
n

and convolution of To(y,t) with the acceleration disturbance g(t) gives

Uly,t) = glt) - [2 2 Z, (- 0050 ¥/8) iy (4-1)E(T) ar (1.36)
o~ h — n .
n=0 w 2
n
Finally, by reversing the order of the summation and integration
involved, and considering relative displacements, equation 1.29is
obtained; now'zfﬁs clear that:
1 o
B = 2 () oSlw ¥/E) (1.37)
Wy, h/s
Completeness of the modal analysis solution 1.29is difficult to prove

due to the fact that ¢n(y), though in itself independent of t, its
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interval of definition does depend on the time variable. Hence, the
last step taken to find 1.29 is far from being a rigorous procedure.

Two points which are not considered in Modal Anglysis but whichare
implicit in the time-history solution give to it its simplicity and
accuracy. The first point is that the summation in equation 1.33 1is
in fact the Fourier expansion of the sum of two perfectly defined
functions shown in Figure 1.4. (Notice that their interval of definition
depends upon y). Therefore To(y,t) in the same equation, may be shown
to be the sum of the functions fyq(t) and fyz(t)’ which are illustrated
in Figure 1.5a.

The consideration of this fact alone represents a great
advantage as, in the first place, all the terms of the summation have
been included, and therefore there is no problem of convergence. Also,
it is undoubtedly easier to work numerically with the final expressions
for fyq(t) and fyz(t) than with the trigonoﬁetric functions involved
in their Fourier expansion.

The secondpoint, hbwever, has more importént implications.

This point, which has already been mentioned, is the operational nature
of the relationship between the transférms of the input disturbance and
the response. In the Modal Analysis solution, it may be seen that, once

To(y,t) is obtained, the layer response is given by equations
t ' .. :
U(y,t) = [ T (y,t-2) &°(z) a1 (1.38)
° t ° LK )
U(yst> = ./; TO(Yat-z> g (I ) di (1'39)

U(y,t) = fot .'fo(y,t-t) () 4 (1.40)
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>io(y,t) and.&;(yyt) are shown in their closed form, in Figures 1.5b
and 1.5c respectively. It may be seen that To(y,t) consists of two
series of shifted ramp functions, while io(y,t) is given by two series
of shifted step functions andzfo(y,t) by two serieé of puises. Therefore,
the convolution integrals in equations 1.38, 1.39 and 1.40 may be shown
to be operations performed upon ‘g(t). BEquation 1.38 implies double
integration and shifting; 1.39 integration and shifting; and (1.40)
shifting only. |

Modal analysis dispegards these operational considerations,
and consequently it complicates unnecessarily the numerical solution

process and brings in serious problems of convergence, particularly

in the evaluation of accelerations.
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CHAPTER TWO

EXTERNAL MECHANISM OF DISSIPTATION - RADIATION

Introduction

It was mentioned in the first chapter that the model of an
elastic layer on a rigid base was not realistic enough to represent the
response of actual soil deposits subjected to earthquake disturbances.
The main criticism which may be made of the solution obtained in Chapter
one is that the layer response, though finite in magnitude, continues
indefinitely, whatever the duration of the input disturbance, as the
model does not take into consideration any dissipative mechanism.

The incorporation of a dissipative mechanism in the response
of the layer, without changing the one-dimensional nature of the problem,
may be achieved either by proposing a more complex constitutive relation
for the material in the layer, or by considering the base of the soil
deposit to be deformable and not rigid. The first of these alternatives
provides an internal mechanism of dissipation, usually termed as Damping,
while the second defines an external dissipative process, known generally
as Radiatibn.

A mathematical formulation considering internal damping
involves the solution of an equation different to the one seen in the
previous chapter. On the other hand, the formulation of the radiation
problem, though it involves a more complex solution, implies simply a .
modification of one of the boundary conditions. Therefore, it may be
said that, while consideration of internal damping constitutes a different
problem, the inclusion of radiation is merely an extension to the model
previously studied; and as such, it is of convenience to deal with it

first.
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?

This chapter, therefore, considers the problem of the response
of an elastic layer on a semi-infinite elastic base which is disturbed
by an arbitrary shear motion. A definition of the mechanism of
radiation for a disturbance is given, which helps to formﬁlate the
problem and solve it analytically without additional assumptions on
the nature of the disturbance gt infinity.

The solution is followed by an interpretation in physical

terms and a discussion.

Definition of the Problenm

The concept of radiation is difficult to work with if a precise
definition of its meaning is not provided.

It is clear that such a definition is merely a matter of
convenience for the purposes of this thesis as radiation effects are
nowadays generally considered in the dynamic response of soil deposits
(PAPASTAMATIOU, 1971; ROESSET, 1970; SCHNABEL et al., 1972; etc.). There
is, however, no analytical model évailable which can be explained
unrestrictedly in physical terms and, at the same time, provide an
exact solution to the radiation problem. Hence, the search for a
specific conception is justifiable.

Before attempting any definition (which will determine the
mathematical formulation of the problem and its capability to be interf
preted), consider the two elastic layers shown in Figure (2.1), founded
on a rigid base. The material in the upper deposit has a mass density
p, a shear modulus G, and therefore a shear wave velocity S = (G/p)1/2.
The layer of thickness H is characterised by a mass density g rigidity
modulus Gé, and shear wave velocity S, = (GS/bS)1/2.

Let the upper deposit be referred to as the OBJECT MEDIUM and

the subjacent layer as the BASE MEDIUM.
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A disturbance g(t) applied to the base of the system at a time
t=0, will travel upwards and reach the interface of the two media after
an interval H/SS. There, part of the disturbance is transmitted to the
object medium while another part is reflected back to the base medium.

The conditions which should satisfy the response motions of the base and

object media at the interface, define alone the amounts of the disturbance

which are either transmitted or reflected.

Let CTOg(t) be the disturbance transmitted to the object
medium and CRO g(t) the one reflected, and considerCTog;(t) only.
Once this disturbance is inside the object medium, it travels unaltered
for an interval 2h/s after which reaches again the boundary between the
two layers. There, it is split once more,Gqu(t) remaining in the
objgct medium, and Cpi g(t) sent back to the base medium. Hence,
considering only disturbances which remain in the object medium, it may

be seen thatGqu(t) splits intoCy,and C intoC_, and CR}’ and so

r2’ Opo T3
forth, until after sufficient reflections there is no disturbance present
in the object medium.

Therefore, it may be said that, by the generation at the
interface of disturbances-which are radiated to the base mediuﬁ, the
presence of the original disturbance g(t) in the object medium has been
gradually dissipated. This phenomenon is what is understood in this
thesis as RADIATION.

Four points are to be stressed from the previous statement:

1)  The radiation phenomenon is associated to a disturbance arriving to
the object medium from the base medium.

2)  The phenomenon takes place only at the interface.

3) Radiation is related to disturbances remaining in the object medium.

L) What occurs to the disturbances which are radiated away into the

base medium is of no concern to the problem of radiation.
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From these remarks it may be said that the occurrence of the
radiation phenomenon is independent of whether the base medium is
finite or infinite. An infinite base medium presents the problem of
radiation once, but a finite medium does not rule out radiation; in
this case, fhe phenomenon simply occurs as many times as disturbances
arrive from the base medium to the interface.

. A proper mathematical formulation for the response of the
object medium considering the base medium semi-infinite is not possible,
unless an assumption (difficult to justify in physical terms) is made
on what ogcurs at infinity. On the other hand, the case of a finite
base medium offers no difficulty at all to be formulated, and if a
proper method of solution is used, it is possible to isolate the
radiation problem, it is to determine the response of the object medium
to the disturbance which arrives first.at the interface, without '
including the effect of further disturbances arriving from the base
to the object medium. |

Such ah approach to the radiation problem has the advantage
that, for an earthquake disturbance, the problem of propagation is
separated completely from those of attenuation and source mechanism, as
the original disturbance considered is prescribed on its first arrival

at the interface of the elastic media.

Mathematical Formulation and Solution Procedure

Consider the elastic deposit on a semi-infinite elastic medium
shown in Figure (2.2). Material properties for the deposit are those of
the object medium previously described, while the elastic semi-space is
characterised by the properties of the base medium.

A shear displacemeﬁt disturbance g(t) travels upwards in the
base medrurm producing absolute displacements Us(y,ﬁ) in the Base medium

and U(y,t) in the upper deposit. The motion U(y,t) is required.



The equation governing the motion of the deposit may be
shown to be
Tly,t) = 5% 0(y,t) 0Of£yfhn (2.1)

The surface of the deposit is free of stresses. Therefore’

U'(y,t)] -0 (2.2)
y=0

It is assumed that there is no sliding at the interface of the
two media; i.e.

U(h,t) = U_(h,t) (2.3)

and G U'(y,t)].y:h = G U's(y,t)] . (2.4)

Where.US(y,t) is the absolute horizontal displacement of a point in
the elastic semi-space at a depth y, at a- time t. Hence,

X 2 "
US(Y1t) = SS US (Y,t) Yy 2h (205)

Furthermore, it will be assumed that the motion starts from rest, i.e.

g(0)

g(0)

Ww] = T w] =0 (2.7)

Equations (2.1) to (2.7) constitute the formulation of the radiation
problem, but for the disturbance g(t) which remains to be defined.
The condition

Us(h+H,t) = g(t) | (2.8)

defines the disturbance arriving to the interface for the first time
as g(t) and makes it possible to solve the system of two partial

differential equations implied in the formulation.

U(y,0) = Us(y,o) =0 (2.6)

On the other hand, the introduction of such a condition makes

the base medium finite and hence, further disturbances from the base
are to appear at the interface. The solution procedure should then be

able to disregard the effect of such disturbances.
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The use of the Laplace Transformation for the solution of the
problem formulated above leads to a system of two ordinary linear
differential equations in y, being the transforms of U and Us the
unknowns of the system. These equations are easily integrable and
their solution may be expressed in terms of two constants of integration
only if the conditions at the surface of the deposit (y=0) and at the
imposed base of the semi-space (y=h+H) are applied. The value of such
constants is then found by the application of fhe conditions at the
interface of the two media.

It may Be §hown that the‘expression for the transform of the

displacement at any point of the deposit obtained from this procedure

is
R -
U (3,p) = cosh gV 2(p) (2.9)
o 7 sinh ¥n  sinh PE , cosh Bn cosh BH
o/m S S S S
5 5
0 £ y £ h

where ﬁ(y,p) is the transform of the absolute horizontal displacement

at any depth in the elastic deposit, and

T = @GS, = [Gp : (2.10)
G S Gp
S S S

~is the impedance ratio of the deposit to the semi-space.

The expression for ﬁg, the transform of the displacement
response of the semi-space, has been of use to find U; in what follows,
it is irrelevant.

Equation (2.9) may be written

- E{h~') - 2 - RH_
T(y,p) = =25 ~ e %Y)He %2 I s (241

22y 2 2 -2 B 2 2
cro/m(‘l-e 25 h) (1-e 2 Ss ) + (1+e 2 sh) (1+e 2 S )




3h

According to the concept of transfer operation, the factor
e %gH in the numerator of the right hand side of (2.11) indicates
that the disturbance g(t) appears in the solution shifted an interval
H/Ss, that is, the time taken by the disturbance to arrivé from the
depth y=h+H to thé base of the elastic deposit. Therefore, to omit
this factor is equivalent to considering that the time origin is the
time of the first arrival of the disturbance to the base of the elastic
deposit. And, once made this consideration, the thickness H of the
base medium may be made infinite so that no other disturbances from
the base are considered in the solution.

Hence, if the right hand side of (2.11) is multiplied by
e " %éH and then limits are taken when H tends to infinite, the
expression

- 2(v-y) 2Ly

Ulysp) = 2 e (14e 3 ) g(p) (2.12)
(xo/m('l-e-2 g-h) + (1+e -2 g_h)

is obtained, which shows the relationship between the transforms of
the input disturbance and the displacement of the deposit IN THE
RADIATION PROBLEM.

The inversion procedure indicated in Chapter ONE may be

shown to lead to the expressions:

n n
Uyt = 2 ] G g et ) s L 0" et o) (2.13)
: o/m n=

: _ n._.n. nn glt-t_ ) (2.14)
Uyt = _2 [, COTBEG-t D ] (- Ok B Tm2

o/m n=0 n=0

_ n n .. ) n n..

T(y,t) = 1; Z D7 g gt )+ ) (-0) B (bt 5)  (2.15)

o/m n=0 n=0
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where

Bo/m = 1= o /m (2.16)

1 + ao/m

is the RADIATION coefficient, and

t = (2n+1) h - b
ynl s s
t = (2n+1) h + b
yn2 s s

as previously defined.

The Solution - Interpretation and Discussion

It may be seen from equations (2.13) to (2.15) that the general
form of response of the elastic layer has not been altered by considering
the effect of radiation. BEach one of these equations shows that a
disturbance in the base medium is scaled by a factor 2/(1+a0/m) when it
arrives at the elastic interface. Then, this modified disturbance travels
with a velocity S toward the surface of the stratum, where it is reflected
backwards, being therefore doubled at that particular level. The
disturbance continues to travel towards the base where it is again
reflected, but now with opposite sign and multiplied by a factor ﬁo/m'
Hence, unlike the case of a rigid substratum, the disturbance is not
cancelled out at the base when reflected; which explains why the response
motion at this depth cannot be prescribed, as it is neither equal to g(t)
nor to 2/(1+ao/m) g(t).

After the reflection at the base, the amount of disturbance left
in the upper stratum, travels again towards the surface and the whole
process of reflection and scaling down of the amplitude is repeated time
after time. In consequence, as the solution shows, the response motion
at any depth of the upper stratum at a time t, may still be visualised

as the superimposition of the different points of the disturbance, now
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with different amplitudes, passing by that depth at that time.

It may be notiéed that the velocity of propagation in the
upper stratum is S as befofe. Thus, it will still take a time h/s for
a disturbance to travel from base to surface of the upper stratum; and
consequently it may be concluded that radiation DOES NOT change the
layer period, which remains

T = Lkh _ (2.17)
L 5

Notice also, that the initial disturbance in the upper stratum is

2/(1+ao/m) g(t), a fact which indicates that the amplitude of the

original disturbance g(t) is magnified when passing from a harder

medium to a softer one (ao/m {1) or diminished in the opposite case,

ao/h1>1' Dissipation of the disturbance, however, does always take
modvfus a/

place as th?(radiation coefficient Bo/m is for both cases less than

unity. Furthermore, it may be seen that « the impedance ratio of
m/o

the base medium to the object medium is

%o = (2.18)

do/m

hence, from (2.16) the corresponding radiation coefficient is

1 .
Bm/o = 1- % -7 Bo/m ‘ (2.19)
1+ 1
%o/m

which implies an equal rate of dissipation for both impedance ratios

ao/m and am/o o This, together with the fact that

2

. 1+ B /m (2.20)
o/m

indicates that the solution to the radiation problem when the material



proﬁerties of the object medium are those of the base medium and vice
versa, is obtained by substituting - Bo/m for Bo/m in the solution
equations (2.13) to (2.15).
A more general definition of impedance ratio and radiation
coefficient méy now be given as follows:
- _

ao/m ao/m<‘1 (2.21)

1
| ao/m - am/o “oﬁm>‘1
Bo/m “o/m 41 (2.22)

—Bo/m - Bm/b ®o/m >1
Figure (2.3) shows graphically the relation between o and B.

The similarity in form and interpretation between the solution
equation (2.13) to (2.15) and the corresponding equations in Chapter One
suggests the consideration of a Layer Wave in the radiation problem.

It may be shown that when radiation is considered, the displacement
Layer Wave is given by

[t/(2n/s)]

W (8 = (ep) (-0)" 8" g(t-2nh/e) (2.33)
n=0

with similar expressions for velocities and accelerations. Hence,
equation (2.13) may be written

Uly,t) = W [t-(h-y)/s] + wg [t-(h+y)/s ] (2.24)

an expression which is identical to (1.19) and indicates that using
the concept of Layer Wave, the radiation problem may be reduced to one

which is equivalent to that of an elastic layer on a rigid base.
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Deconvolution of Recorded Motions

It may be seen from equation (2.12) that the relation between
the transforms of the displacement at the surface of the deposit and

of the disturbance g(t) is

En

- s _
U,p) = & e . g(p)
T+at 2P 5
1B e B
' ' ~ R —
hence, glp) = jiﬁ.[ e E-h +Be s h ] U (0,p) (2.25)
n

Inversion of (2.24) is shown to give the relation

g(t) = (m)[ g_ (t+h/s) + B g_ (t-h/s) ] (2.26)

t]
I
where gs(t) = U(o,t).

Similar expressions are found for velocities and accelerations.

In a similar fashion, the expression for the response at the

interface in terms of the motion at the surface may be proved to be

g, (t) = 1 [gs (t+h/s) + & (t-h/s)] (2.27)
where gb(t) =T (h,t).

Therefore, considering the definition of Layer Wave given in equation (2.23),

it is possible to write

g, () = 2 wg (t-h/s) o (2.28)
g(t) = 1 (1+a)[w (t) +Bp W (t-2h/s)] (2.29)
> g g
and gb(t) = wg(t) + wg(t-zh/s) (2.30)

with similar expressions for velocities and accelerations.
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Reference Motion

The solution found in this chapter does not include the case
of a rigid base, as this is not a particular case of the formulation
which has been made. The response which is obtained by considering in
qquation'(2.13) an impedance ratio equal to zero, corresponds to the
problem in which there is no upper layer, (G=p=0); and hence, under
these conditions, such an equation provides the motion at the surface
of a semi-infinite elastic medium, a motion which is twice the input
disturbance.

Comparing the response of a layer for the conditions of an
elastic and a rigid base, the fact that for an elastic base tﬁe initial
disturbance in the layer differs in amplitude from the original disturbance
in the base, may lead to confusion, as depending on which of these
disturbances is considered to be the reference motion for the comparison,
the response of the layer on a rigid base may or may not be the largest.

It is possible to include the condition of a rigid base in
the solution found and to avoid all ambiguity if the reference motion for
all cases is considered to be the motion grec(t) which would be recorded
at the free-surface of the base medium. It is clear that, g(t) being the
original disturbance in the base, |

(t) = 2 g(t) (2.37)

Erec
for an elastic base; or

(t) = g(t) (2.32)

Erec
for a rigid one.
The layer response given in equations (2.13) to (2.15) may thus

be expressed as

n.n n
U(y,t) :?:_a Z_/ DB gree (bt ) +ZJ (-1 Brec(t-tymp)  (2.33)
n=0 n=0
d _ n_n - . _
G = 1 L 0 T Bt 0 s L 0™ gt (et ) (3

T+a n=0
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Tly,t) = 1 Z -1 Bn°g°rec(t-tym) P ), DTt g (bt ) (2.35)

T n=0 n=0

and the expression for the displacement layer wave in terms of grec(t)

is thus
[t/(2n/s)]
n._.n
HONE 110‘ Z 0" g%g ., (t-2n h/s) (2.36)
n=0

with similar expressions for velocities and accelerations.
The previous equations may be used for the evaluation of the

response of a layer on either an elastic or a rigid base.
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CHAPTER THREE

INTERNAL MECHANISM OF DISSIPATION - DAMPING

Introduction

During the motion of a soil deposit, friction among particles,
material heterogeneity and other factors contribute to dissipate into
heat the energy supplied to the deposit by a disturbance. The combined
action of these factors is usually termed as damping or internal friction.

Experimental research on the dynamic behaviour of actual soils
(HARDIN & DRNEVICH, 1972 a and b) shows that under cyclic loading the
stress-strain relationship may be considered to be a loop, which makes
the existence of damping evident. The nature of damping, however, is
not yet well understood as to attribute to it a specific material property,
nor to propose a satisfactory theory for its explanation. Therefore,
in general, the inclusion of damping in the analytical model of a
vibrating system is made in a way "which is most expedient in the
mathematical solution of the problem rather than on purely physical
considerations." (VAISH & CHOPRA, 1973).

Some models, briefly reviewed in Appendix 3, have been proposed
to consider the effect of damping in the response of a layer. However,
these models, which are suitable either for a Fourier analysis or a
modal type of solution, camnot be used to obtain a weve- form. * solution
such as those given in the previous chapters.

This chapter includes the effect of damping in the layer
response by adding to the equation of motion that has been used until now,
a viscous force, proportional to the time rate of deformation in an
elementary volume. Damping here, is thus related to a volumetric force

and not directly to the constitutive equation of the material.
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This assumption, which is compatible with findings from
experiments about the dependance of damping on effective mean principal
stress, void ratio, degree of saturation, etc. (HARDIN & DRNEVICH opp.cit),

enables the layer response to be expressed in a time-history form.

Equations of Motion

* Consider the layer of thickness h shown in Figure (3.1) on a
rigid foundation. The material in the layer has as properties a mass
density p, a shear modulus G, and a specific viscosity 7 . A horizontal
displacement g(t) of the base produces, at a depth y, an absolute
displacement U(y,t).

Assuming that the net force acting in an elementary volume
of material is equal to the elastic force G U"(y,t) dV plus a viscous
force proportional to the time rate of deformation in that volume 4V,

the equation of motion of the layer is given by

*

Tly,8) = & T(7,t) + UF,b) (3.1)
where,

2 @ .

S =3 and A =-Z (3.2)
The surface of the layér, y=0, is free of stresses; therefore

U'(y,t)] =0 (3.3)

y=0 '

and there is no sliding between the base and the layer; i.e.

Uh,t) = g(t) (3.4)
Furthermore, the motion is considered to start from rest, i.e.

U(y,0) = B(y,t)] =0 (3.5)

=0

and

g(0) = é(t)] =0 (3.6)

t=0

* Jor & c/arl,ﬁ-ca/fon y Fhe ua/:‘dn? and Conseguences 4/ Fhe Jasd deem in this
e’uaﬁon see discussion on /yﬂ 49.
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Solution

The application of the Laplace Transform to equation (3.1)
and its boundary conditions gives a relationship between the transforms
of the absolute displacement of the layer and of the disturbance
displacement g(t), which may be shown to be

2,\p 2 2 .
e o= 1o g b [e (kv 14k )E-y + 1 o~ (ke VK )ﬁ'y] g(p)  (3.7)

U(y,p) =
1w o2 1+k2§h
where
p= 1- k/\/:;c2 (3.8)
1+ k/ 1+k2
k= ] = A (3.9)
24 Gp 2s
The denominator in (3.7) may be written as
2 hod .
{1 + gm2 W 1k %h] -1 Z, (-1)" pt e 14 «Eh (3.10)

n=0
and then, it is possible, by the sole use of the shifting theorem of
the transformation, to find the expression for U(y,t), which may be

shown to be

U(y,t) = Z, D™ U gle by ) e [ 0P n glt-t ) (G3.11)

n=0 n=0 yne
where
= t 4= (h-y) | (3.12)
y s
t = (ens) VxS Bl 1l L (3.13)
yn1 s 5
_ 2h 2% ’
and tyn2_ (2n+1) v 1+k = + vk < (3.14)
_ _ £ . ‘.
both (ty tyn1) and (ty~tyn2)’ should satisfy the inequalities
L < s _
0= (ty - tyni) Td i=1,2 (3.15)
where T is the duration of the input motion g(t).
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Expressions similar to (3.11) relate the layer velocity and acceleration

to the corresponding base disturbance.

Properties of the Solution

Equatién (3.11) shows that the inclusion of an internal
mechanism of dissipation brings both a decrease in the amplitude of
the layer response, and an increase in the layer period.

It may be noticed from the argument of g(t) in the previous
equation, that the actual velocity with which a disturbance is propagated
inside the layer is
S, = _8 (3.16)

d
Viu?

and consequently, the layer period will now be

_ _ 2
Tpg = 4B = A" T (3.17)
S
d
where,
T, = 4.% is the undamped layer period, and
T damped layer period.
Ld

From the relation between these two periods, it is possible to define

a damping coefficient for the layer. If it is considered that

2n = [13° 2t (3.18)
TLd TL

where f is the layer damping coefficient, then it is found from
(3.17) that

F= x (3.19)

[

which may be seen to be independent of frequency.
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The decrease in amplitude of response is given by the parameter

L, which is related to the damping coefficient by the equation

po=1-F (3.20)
1+§ '

The parameter | appears in equation (3.11) multiplying the disturbance
g(t) every time it reaches the surface of the layer. Thus, it may be

seen that during an interval T ., the amplitude of the disturbance at

‘ Ld
any depth is reduced by a factor d, such that
2
d= p (3.21)
Hence, d may be used to evaluate the damping coefficient from a

vibrational test. It may be shown that

Foa-Vd = 1-p (3.22)
1+1f8 1+

From equation (3.21) and the definition of logarithmic decrement

for a viscous damping, one may see that

3= 21 5 = log_ 2 (3.23)
1~ d -
which gives place to the following relation
-tk
p=ebh | (3.24)

A layer wave may also be considered to express the layer response given
in (3.11). It may be shown that for a damped motion, the displacement

layer wave is given by

[t/2h/s 4

(=)™ u" g(t-2n quka %-. (3.25)
n=0

Wg(t) =

The layer displacement may be written

Uly,t) = W [ty-(h-y)/sd] + 1 wg[ b~ (h+y) /8, ] (3.26)

with similar expressions for layer velocities and accelerations.
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Finally, as in the radiation problem, the previous solution
may be deconvolved easily to find the input motion. An identical
procedure to the one presented in the previous chapters leads to an
expression for the original disturbance g(t) in terms of £he motion
recorded at the surface of the layer. Such an expression may be proved
to be

glt) = 1_ { g [ t-kh/s + «ﬁﬁczh/s] + 1 g [ t-kh/s- ﬁ:kzh/s_]} (3.27)
1+

where

gs(t) = U(o,t) .

Similar expressions relate input velocities and.accelerations to the
corresponding responses at the surface.

As is the case with the other analytical models for damping,
the solution in this chapter accounts fbr the energy loss inside the 1ayer;
but it does not provide a Ereciée description of the damping phenomenon
in physical terms.

One may see from equation (3.11) that the amplitude of the
input disturbance is not decreased continuously as'it travels inside the
layer but only when it reaches the layer surface. The application of
(3.11) is thus confined to bounded media where continuous reflections of
the disturbance propagated in the medium ensures the action of thé
internal dissipative mechanism.

In practical terms, this presents no serious restrictions to
the use of this model of damping for the study of actual soil deposits
of limited thickness; and advantages such as an explicit time-history
form of solution for any arbitrary inpﬁt, expedience in computation, and
an easily measurable damping coefficignt, together with the fact that
there is no satisfactory theory of damping (EWING et al 1957), fully

Justify the use of the model proposed.
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It may be thought that the apparent discontinuous decrease
in amplitude of the disturbance which occurs every time.the wave reaches
the surface is due to the initial assumption of considering the damping
term in the equation of motion to be a volumetric force. "However, this
is not the case. Had it been assumed, for example, that the damping

term were derived from a constitutive equation such as,

T = Gdu + ,0u (3.28)
oy ot

a solution identical in form to (3.11) would have been obtained.
The solution corresponding to the positive sign in (3.28) is unacceptable
as in this case the response increases with time; and for the negative

sign, the final equation is identical to (3.11) but for the time t

y

which in this case is defined as

t =t -k (h-y) (3.29)

y s
Also, if one considers the equation of motion

L L Z 2 2 2

Uly,t) + 2 S U(y,t) + §° K U(y,t) = 8% U(y,t) (3.30)
with the boundary conditions

Uy, =0 (3.3

y=0 ' '
and U(h,t) "= g(t) (3.22)
the layer displacement U(y,t) may be shown to be given by .
U(y,t) = e~kq(b-3) ZJ -n" .uqan g[t- h-y + 2n g] +
=0 s s
-k, (h '
PR ) qym " s[t-hw+ b (3.33)
=0 S s
where
-k, h '
by =e 1 (3.34)

It may be seen that in equation (3.30), the terms 2k S U and k12U,

1

which account for the internal dissipation of energy, have been considered

in the equilibrium of an elementary volume wi thout being directly related
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to the constitutive equation of the material; thus acting as volumetric
forces. The solution (3.33) however, shows a continuous decrease in
amplitude of response, though not an increase in the layer period.

It may thus be suggested that a discontinuous décrease may
be due to the aséumption that damping is viscous in nature only. However,
an irrefutable proof to substantiate this argument cannot be provided;
mainly because the other analytical models which consider a viscous
damping (see Appendix 3) do not have a solution which may be easily
expressed as a time-history, and it is only in this type of solution
where the complete form of the response motion may be visualised.

If, for example, a modal solution corresponding to the equation
of motion (3.1) is considered the poles of (3.7) have to be found.
By making the denominator of (3.7) equal to zero, it may be seen that

the poles of U(y,p) are given by

p= 1 , %[iA(Zn-"I) Tl + loge 1] J N=1,2400e (3.35)
214k

If the undamped frequency of the n-th mode of vibration is defined as

wn = (2n-1) n=1,2,eee (3.36)

=2
h

roj=

then, from (3.22), (3.24) and after some manipulations, (3.35) may be

written

p= -§w_+ 7-%° Wi N=1,2,e.. (3.37)

Hence, (3.37) ensures that in the subsequent convolution integral the
term

e_g%Jt_T)
will appear, giving the impression that the amplitude of response

decreases continuously in time.
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Relation between Dissipative Mechanisms

Although different in nature, radiation and damping produce
similar effects on the response at the surface of the layer. The layer
displacement, for example, at the surface y=0, when damping i1s considered

is given, from (3.11), by

w00, = (o) [, <D™ WP g[t vk h - (e IR R] (3.38)
n=0 S 5

While the displacement at the same surface for the case of radiation,

considering the same reference recorded motion, is

U0,y = 2 ﬁZ:’o SCHLECIRERC RS (3.39)

where « is the impedance ratio and B is the radiation coefficient.

For purposes of comparison, the term k h/s in (3.38) is
irrelevant, as it is independent of n and indicates simply a different
time origin for the responses.

If the value of p is made equal to the radiation coefficient B,
or what is the same, the damping coefficient ? to the impedance ratio «,
then, it is found that; as

2 = 1+8 - (3.40)

14+ a

expressions (3.38) and (3.39) are identical but for the different
velocities of propagation g and S/”J1+k2. The value of “l+k2 does not
differ from unity more than 10%, even for values of damping coefficient’

as high as 0.4, Thus, for most practical cases,

1 2 q

and hence, it may be said that

U (O,t)D : U(o,t)R (3.41)

and similarly for velocities and accelerations.
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Figures (3.3) to (3.10) show the validity of this simplificatory
consideration. Each of these Figures presents in the left hand side
the accelerationat the surface of a layer on a rigid base (no radiation)

with a given undamped period T., for a given value of'g. The surface

L’
acceleration for the layer with the same period TL’ now with an
impedance ratio a, equal to the value of f, but without damping, appears
on the right hand side of the Figure.

Responses have been computed for the same reference motion
at the base of the layer, which is the North-South component of the
earthquake recorded at Port Hueneme on 18/3/1957, whch is shown in
Figure (3.2).

Notice that differences between the responses are more
pronounced as either the dissipation coefficient (a or § ) or the layer
period increases.

A point worth mentioning is that in both dissipative mechanisms
the radical 4Gp appears as an important parameter. Both k, from which
the damping coefficient is obtained, and «, the impedance ratio, are
dependent on the value of this ra&ical; which suggest that VEB may be
a measure of the dissipative capacity of the material in the layer.
However, the inability to produce a model for damping based only on

physical considerations, makes any conclusion on the influence of this

radical on the material behaviour, merely speculative.
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CHAPTER  FOUR

GENERAL WAVE SOLUTION

Introduction

The main elements involved in the response of an elastic
layer have been discussed in the previous chapters, and to provide a
general equation for the layer motionj; it is, considering both radiation
and material damping, requires no further assumptions than those which
have already been made. The analytical process to arrive to such a
general solution, though it deals with more complex expressions, does
not present any problem which had not been previously discussed.

There is, however, a special interest for dealing with the
general case in a chapter of its own, and it is to show that a solution
in an wave form is one of the main characteristics of the layer response,

rather than a mere convenient way of expressing it.

General Formulation

The homogeneous elastic layer of thickness h shown in Figure
(4.1) has material properties G, p and q and is placed on a semij
infinite elastic base of shear modulus GS and mass density Pge A
horizontal displacement disturbance g(t) travelling upwards in the
base, produces absolute horizontal displacements Us(y,t) at a depth
vy inside the base (y > h) and U(y,t) at a depth y inside the layer
(y £ h). The displacement U(y,t) is required.

The equation of motion for the layer is (Chapter Three):

Uly,t) = SAUM(y,b) + AT (y,8) (L. 1)

where

G
p
and A = rl
p
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At the surface of the layer, y=0

U‘(y,t)] = 0 (4.2)
y=0

while at the interface y=h, (Chapter Two)

U(h,t) = US(h,t) (4.3)
and G U'(y,1)] yn = G U (v, )] y=h (b

US, satisfies the equation

- 2 "
Us(y,t) = 80U (y,t) (4.5)

where

The disturbance is defined (Chapter Two) as:

Us(h+H,t) = g(t) (4.6)

which enables us to solve the problem uniquely. Limits, however,
should have to be taken once the disturbance g(t) arrives for the first
time to the interface, as it was pointed out in Chapter Two.

As before, it will be assumed that all motion starts from
rest, i.e.

U(y,0) = U_(y,0) =g(0) =0 (4.7)

= é(t)] =0 (4.8)

and fJ(y,t)] =T (3,5)
t=0

t=0 S ] t=0

The Wave Solution

The Laplace Transformation shall be used to solve the problem
described by equations (4.1) to (4.8).

If equation (4.1) is transformed, it may be shown that an
ordinary differential equation in y is obtained, and that the general

solution of such an equation is:
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2_12 _ 2R
Ae(ﬁk-k)sy + Be(kark)sy

ﬁ-(y’p) = (1‘*-9)
where
A
ko= 35
and A = A(p) and B=B(p) are to be found from the conditions

at the boundaries.
Before entering into the process of determining A and B, it
may be seen that inverting (4.9) in the form described in Chapter One,

a general expression for the layer displacement is found of the form:

U(y,t) = wAg[t+( ﬁkz-k)y/s] +‘ng [ ¢ ﬁTk2+k)y/s] - (4.10)
whefe, clearly
. -1
Wpg(t) = L [A(p)] - (4.11)
W (8) = ol [3(m] (4.12)

are the inverse Laplace transforms of A and B respectively.
Therefore, the layer displacement may be interpreted as
being the superimposition of the two travelling waves wAg and ng'
Notice that this conclusion has been reached by considering

only the general solution to the equation of motion, consequently the

previous interpretation is generally valid, irrespective of the

conditions at the boundaries. Notice also, that for layer velocities

and accelerations as

U (y,p) P E (y,p) '(l+. 13)

) -

U (y,p) p° U (3,p) o (4. 14)

an identical interpretation can be made.
Once Ahe geners! wave poture 9/ Fhe response  pos been
estodirshecs <., what remains of the solution process is to find the

actual expressions for the waves appearing in équation (4.10). Such



67

expressions are obtained from the consideration of the boundary conditions.

Free Surface

From equation (4.2), back to the transformed domain, the

following condition at the free boundary y=0 is obtained:

ﬁ'(y,p)} o =0

Hence, from the first derivative of U(y,p) in (4.9) it may be showm

that
B = paA (4.15)
where
\‘1+k2 -k
u, = ——————————— (4-16)

tiia + k

A and B being the transforms of the waves wAg and ng equation (4.16)
k]

implies that these waves have identical form and differ in magnitude

only by the constant g. Therefore, it may be concluded that for a

layer with a free surface, there is only one wave characteristic of

its displacement response, and (4.10) may be written

U(y,t) = wg[ t+( 1+k2-k)y/s] + L wg [t-(k+ 1+k2)y/s] (4.17)

where,

wg(t) = wAg(t) (4.18)

the displacement layer wave.

FElastic interface

From equations (4.3) and (4.4) the conditions which are to

be satisfied at the elastic interface, y=h, in the transformed domain

are
Tlh,p) = T_(n,p) | | (4. 19)
d G U , = (i ' .
an (3.9) | N G, U ()] . (4.20)
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Following an identical procedure to the one used to obtain

equation (4.9), ﬁg(y,p) may be shown to be given by

Us(y,p) = CeS’ + De 5 y2 h (4.21)

Therefore, (4.19) and (4.20) may be be written

(4f1x>—k) B 1 kA B {’— h - lg- h
Al e 5 sune S I=ce™ +De °s (4.22)
| (J1k>-k) 2n ({T724k) Bn By -2y
A ( 1+k2-k) e 5 | n({1HHK) e 5 _¢e’s -De S5
(4.23)
where o = G Ss (h.24)
sa_ : : '

The expression forvA = A(p) may now be determined from equations (4.22),
(4.23) and the resultant equation from transforming (4.6). Once this
expression for A is found, it has to be multiplied by e’ %S and then
its limit taken for H tending to infinity. (Chapter Two).

All this somewhat tedious algebraic process may be avoidea
if consideration is given to the wave form of equation (4.21). It may
be seen that what was said of the eXpression for.ﬁ(y,p) is also valid
for T_(y,p). Thus, C and D are the transforms of the two travelling
waves which characterise the responée displacement of the elastic base.

The exponentials which multiply € and D in (4.21) indicate
that C corresponds to an wave propagating upwards in the base medium,
while D is related to an wave travelliﬁg downwards.

The reason for defining g(t) as in (4.6) was to ensure that

the first disturbance arriving to the elastic interface from the base

medium were g(t). This, may also be ensured if it is stated that

Ce °s = g(p) (4.25)
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with the advantage that (4.25) also ensures that no other disturbance
will arrive to the layer from the base medium,

The previous statement thus implies a semi-infinite base,
but it does not imply that either the response motion of fhe base or
- .the value of D may be known. However, as the base response 1is not
required and as D may be easily eliminated (ng_made zero, which
would imply a rigid base!) from equations (4.22) and (4.23) a solution
for the layer motion may be obtained. Therefore, adding (4.22) and
(4.23) term by term, and considering (4.25) it may be shown that for

a semi-infinite base

alp) = 28 (p) (4.26)
{12 2
[14—(1(414—1{2-[()18( 1+k"-k) gh + L [1-d({1+k2+k)] e"(‘{ 1+k"+k) ‘g—h

Equation (4.26) may be inverted following the procedure described in

Chapter One, and it is then found that

W () = 2 Z(-1)nyng [ t-(2n+1) NETIC YRR h/s ] (4.27)
& )
14t (1+k“-k) -
where
Y =U 1—a(11+k2+k) (4.28)
4 (Y 17k%=k)
And as,
QN L e am) ]
and
w.g-(t) = 1! [ oPa(m) ]

. . 2 .
performing the derivative process implied by p and p~, on the input

disturbance, it is obtained that
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wé(t) Z( ) R g [ t+k b/s-(2n+1) NEWiC h/s] (4.29)
‘1+oc(1ﬁ:k -k)

and

wé.(t) 2 Z( )y g [ t+k h/s-(2n+1) ST h/s ] (4.30)

1+a(vq:k -k)
In order to include in the solution the case of a rigid base, (4.27),
(4.29) and (4.30) may be expressed in terms of the motion recorded at
the free surface of the base medium, as it was seen in Chapter Two.

Thus, following general expressions may be given:

nn 2
Wy oo (B) = 1 i 0"a [tk h/s-(20+1) Y14k b/s]  (4.31)
1+ (Y14k“=k)
where

Grec(t) is either grec(t), & (t), or" ec(t), a motion

rec &r

recorded at the free surface of the semi-infinite base.
i i 1

wGrec(t)’ depending of the meaning of Grec(t), may stand for the layer

wave of either displacements, velocities or accelerations, and

U(y,t) = wGrec

[t+(-f?:k2—k)y/s] + 1 wGrec [t—(-J1+k2+k)I/S] (4.32)

where

U(y,t) is U(y,t), U(y,t) or U(y,t) according to the layer wave considered.

Deconvolution of Recorded Motions

It has been shown that in order to evaluate the response motion
of a layer, it is required to obtain the layer wave from the input
disturbance. It is now of interest to consider the problem of finding the
input disturbance from the layer wave, so that a wave approach may be used
to deal with the deconvolution of response motions.

From equation (4.26) it is possible to express the transform

of the input disturbance in terms of the transform of the layer wave, i.e.
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(1+k%-k) En ~({1k°+k) 2 n
s e s ] A (h.33)

glp) = 1+a(3!1+k2-k)[ e + ¥
2

and, after inversion

g(t) = 1+a({1'?k2_k)[ A [t+(Tkr)n/s] + v wg[t-(\f1—+k2+k)h/s]} (4.34)
2

with similar expressions for velocity and acceleration disturbances.

In the deconvolution problem, it is assumed that the response
motion at the surface of the layer is known and the disturbance g(t) is
required to be found. Thus, if (4.34) is used, the only further step
involved in the deconvolution process is to detérmine the Layer Wave in

terms of the surface motion; a simple task, as from (4.32) it may be

seen that
w(t) = 1 g (%) , (4.35)
g 1+ &
where gs(t) = U(o,t) (4.36)

It may now be concluded that in an wave formulation both the response

and the deconvolution problems involve an identical procedure of solution,
which consists of first determining the Layer Wave and then by shifting
and scaling suchva wave, obtaining either the response motion or the
input disturbance. However, as the expression for the Layer Wave is

much simpler in terms of the surface motion than in those of the 1nput
disturbance, the problem of deconvolution is always simpler than that

of finding the response.
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Considering still the assumption that the motion of a deposit

is primarily the result of upward propagation of shear waves, and thus

keeping the response problem one-dimensional, a more realistic

representation of an actual soil deposit is achieved if it is considered

to be formed by a series of horizontal strata, with different material

properties, but each stratum homogeneous.

. For deposits idealised in such a manner, it is easy to extend

the theory presented in this chapter in view of the fact that the wave

nature of the response only depends on the type of the differential
equation of motion, as has been shown. N

Consider the deposit shown in Figure (4.2) which is assumed
to be formed by a series of n homogeneous horizontal strata. The
material in the i-th layer, of thickness h;, is characterised by a
shear modulus G;, a mass density p; and a specific viscosity 7;.

The deposit is founded on a rigid base which is given an
arbitrary horizontal displacement g(t). Such a disturbance produces
a motion at any depth inside the i-th layer, which, accordingly to
what has been shown in previous chapters, is described analytically
by the equation

2

= : " 1
T (r,t) =820 (7,8) + A, U (5,0)

where S5.° =

(=]
| &
e |

>)
e
0]
o
il o

i
and H. = h.
LT 7,

=1

Transforming equation (4.37) it is found that for each of

the strata

(L.37)
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2 )3) - 2 D
_ ( Tk, -k.) s, y ( T+ +k, ) 5, y
Ui(y,p) = A e +B; e (4.38)
where k, = A,
1 =
2S

Therefore, the response displacement at any depth inside the
i-th layer may be considered to be the superimposition of two waves
. . . 2
travelling with a velocity si/W/1+ki , one upwards and downwards the

other, i.e.

U (y,t) = wAgi[ty +-J?1E;2y/si] + W [ty - 1+kizy/si] (4.39)
where,
Wpgi(® = I [A,®] (k. 40)
ngi(t) = L—q[ B; () ] (4.b)
t = t-k, ¥/8;

As the deposit is formed by n strata, it is thus required to
find the expression for 2n wave transforms in order to determine the
motion at any depth in the deposit. The boundary conditions imposed at
the interface between layers, and at the surface and base of the deposit,
provide 2n-1 homogeneous and one non-homogeneous equations in the unknowns
Ai and Bi' Therefore, it is always possible to determine these unknowns
uniquely;

The conditions imposed at the boundaries are given by:
at the interface y = H,

1
Ui(Hi,t) = U, ., (Hi,t) ) (4.42)

1+1

y=Hi y= i

! !
and G, T i(y,t)] G, , U i+1(y,t)] (4743)
at the free surface of the deposit, y = 0

LANERD ] = 0 (b il
y=0
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and at the base of the deposit

U (B ,t) = g(t) (L.45)

It may be seen from equations (4.42) and (4.43) that expressions may be

found which relate the wave transforms Ai+ and Bi+ of the i+1=th

1 1

layer, with those of the immediate upper layer i. It follows then that
it is possible for the wave transforms of any stratum to be expressed in
terms of those of the surface layer, namely, A1 and B1.
Also, from c&ndition (4.44) the relationship between B, and A,

'is easily found; and in so doing the wave transforms of any layer i may

be given as the product of A1 and a certain coefficient; i.e.

_ (1) .
A, = C, A, i=1,2,3,00004,n (4. 46)

(1)
Bi = CB A1 i:1,2,3,o--.,n ("“.Ll'?)
Finally, from the condition at y:Hn, the base of the deposit, it is
found that A1 and the transform of the input disturbance are related by

the expression

A, = £(p) (1.48)
CA(n)ep(1-§n)Hn/sn . cB(n)e-p(1+§n)Hn/sn '

" The effect of radiation may be considered by assuﬁing the n-th
layer to be an elastic semi-space. The time origin would, in this case,
be set at the time of the first arrival of g(t) to the depth Hn—1’ and
then limits would be takeﬁ for hn tending to infinity, as discussed in

Chapter Two. Proceeding in the way described above, it is found that

the expression relating A1 and g(p)for the case of radiation is:

A1 = g(p) ' (L.L9)
¢ () pH /S
A

e nn
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It may be shown that the coefficients CA(l) and CB(l) are given by
the recurrent relations
(1) _
Cy = 1. (%.50)
; _
(i+1) - PYiaq (i) =208, /545 (1)
c, - e [ (g )6, 7+ (1mxg e Cq ] (4.52)
: Z1+u. ) ) ’
i+
o (i+1)e'2PHi+1/sdi+1 _ ep(tim'zhim/sdim)[( e e ),
B = i 417 Hi%317%
(1+ui+1) )
-2pH./S .. .
: i/ 7di (i)
ooy qrgy) e 0] (4.53)
where,
e ? T+5;
1
2
o, = (VGG S, .
di
2
(ke 44 0G5 48
S.. = 53 H 2t
di ;0 t.=(1-5) i - (-5 ) 4
> i 1 5= i+1 5
—\{1+ki di di+1

It is clearrfrom the previous discussion, that the fundamental step involved
in obtaining the motion of the deposit is finding the wave WA1(t), whose
transform is A1. If such a wave is known,vthe motion at any depth may

be easily obtained by a process which involves only éhifting and scaling,

as will be seen later. One may say then that WA1(t) is a characteristic

of the motion of the deposit, and despite the obvious complications brought

forth by different material properties, the claim that a wave form of

‘solution is feasible for a multi-layered deposit is thus justified.
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As it is the case for a single layer, the degree of 51mpllclty
in the process of evaluatlng the motion at any depth inside a multi-
layered deposit, very much depends on whether the surface or the base
motion of the deposit is known; or in other words, on whether one is
dealing with a problem of deconvolution or response.

When the surface motion of the deposit is known, qu(t) is
readily found as

g (p) = ﬁH(O,p) = (4 A,

then,

W () = 1 g (1) | (1.54)
A1 (‘1+u1 s

wB1(t)’ as indicated by equation (4.51) is obtained simply by multiplying
the previous expression by e The waves in the subsequent layers are
then obtained progressively following the operational procedure described

by the inverses of equations (4.52) and (4.53); i.e.

W (t) = 1 (1+u o..) W, (£) + (1—a 1) Vg (t D) (4.55)
Ai+’l ° z1+ui+15 [ di 1 ]
and
] —
wBi+1(to i+1)_(7:E§I;T [ (ui+1 u1ad1)wA (t- 2h1+1/sd1+1 +
+ (g e dl)wB (b;'-2h; /S35,0]  (b56)

where,

ti' = t - ZHi/Sdi i=1,2,oon n

tleo= ot - 2Hi/sdi i=1,2,¢e. n

One may notice that by adding (4.55) and (4.56) the motion at the base

'of the i+1-th layer is obtainedé the time origin, to = 0, being the time
of the beginning of the motion at that particular level. Also, if h 1
where it appears in (4.56) is replaced by y—Hi and the resulting wave is

added to the one obtained from (4.55), as it stands, then the motion at

the depth y (y inside the layer i+1) is found with a time origin set now
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at the start of the motion at that depth. The relationship between
t and t_ is thus not required, as equations (4.55) and (4.56) are
related to local times.

In the response problem, with or without radiation, despite
the fact that thé waves in the base layer are related to a known disturbance,
each one of these waves is not known, and one may see that they cannot be
determined but after the surface waves are known. Hence, in this kind of
problem, one has to work out either equation (4.48) or (4.49) by
1 is

found, it has to be inverted and a general expression for the wave WA (t)
1

progressively using (4.52) and (4.53). Once the expression for A

is obtained. From then on, motion at any depth is evaluated by the
process of deconvolution defined by (4.55) and (4.56).

Derivation of a general expression for the characteristic wave
wAi(t) is beyénd the scope of this thesis. However, it may be proved that
such an expression for a deposit of N layers will be given by é multiple
series with 2N-1 indices, which, although it appears to be appallingly

complicated, may be evaluated merely by progressive shiftings and scalings

of the input motion.
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CHAPTER FIVE

GENERAL DISCUSSION AND CONCLUSIONS

Before entering into a discussion on the advantages and
limitations of the method of solution proposed, it would be desirable,
as an introduction to such a discussion, to verify the results which
are obtained for simple cases.

To this effect, consider the profile of a certain site shown
schematically in Figure (5.1). There, two horizontal soil deposits
of thickness h1 and h2 are shown on a rock formation. The deposits
may be assumed to be homogeneous, and their relgvant material properties

are found to be Gq, pq,q 11 and G and.qz, respectively. The

2" P2
bedrock material has a shear modulus GB' a mass dengity PR and it is
assumed that the rock formation is semi-infinite.

Ail these properties are summarised in an undamped layer
period TL’ a damping coefficient f, and an impedance ratio o for each
one of the deposits.

In the event of an earthquake, consider the problem of
determining the acceleration time-histories at the surface of both
deposits and at the rock outcrop, assuming that there is only one
strong-motion instrument, installed at the surface of layer 1, from

which a record of acceleration has been obtained. 1In other words,

the problem of obtaining 'g'rec(t) and 'g'sz(t) , knowing 'g's,](t).

The problem involves, first to deconvolve ‘the given record
}isq(t) to find the reference motion'grec(t), and then, evaluate the
response at the surface of layer 2 for such a motion.

Some numerical examples have been worked out. The results
obtained are shown in Figures (5.2) to (5.12). Each of them shows the

datum acceleration,'§$1(t) in the lower left hand side corner of the

figure; the response acceleration, ggz(t), in the upper left; and in
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the lower right hand side corner, the reference motion.@}éc(t).

‘The properties of both layers are also shown in each figure. A
simple input motion, the N-S component of Port Hueneme Earthquake
18/3/57, has been chosen for all the examples, to facilitate a visual
comparison. |

The first point to verify is whether departing from a known
motion at the surface of a layer with known properties, we arrive at
the very same motion after first deconvolving it, and then with the
base motion obtéined evaluating the response at the surface of the
layer. Cases 1 to 4, shown in Figures (5.2) to (5.5), where both
deposits have been given identical properties, show that §%1(t), the
input motion, and'ééz(t), obtained after both deconvolution and
response, are identical.

Case 5 illustrates the situation when both deposits and the
bedrock are formed of the same material; thus, the impedance ratio for
both deposits is equal to one, and the three motions,'é;1(t),'§ga(t),

and grec(t) are the same, as shown in Figure (5.6)

Cases 6 and 7 consider the first deposit to be of the same
material as the rock formation. Hence, the datum acceleration'é's1
is equal to the reference motion'é}ec;~and only'éga is different, as
it is shown in Figures (5.7) and (5.8).

For the remaining cases arbitrary layer properties were given.

In Case 8, layer 1 is a strong deposit, as indicated by a high impedance
ratio and a short layer period. Also, this period is not near to the
predominant one of the datum motion, which is around 0.5 sec. Then,
as one may see in Figure (5.9), the motion at the rock outcrop does
not differ much from'ggq. Layer 2 is a weaker layer whose period
coincides with the predominant of the original record. The maximum
acceleration at thé surface of this layer is twice as much as the

maximum of the reference motion.
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Figure (5.10) illustrates the case of two deposits with
identical material properties, but one, layer 2, twice as thick as
the other. One may see that the maximum accelerations at the surface
of both deposits are almost the same, but the motions are rather
different. Also from this Figure, we may see the reference motion
corresponding to a surface record which has been deconvolved for a
layer period which is equal to the predominant period of the surface
motion.

It is interesting to point out that the only operations
involved in the computation of time-histories, by means of the wave
solution, are additions and multiplications and that the layer response
is evaluated point by point (see Appendix 2). The numerical process
doesrnot involve the computation of any series at all, as it is the case
of a modal analysis, nor[;Le validity of the solution resfricted‘to
the interval of definition of the input disturbance, as in a Fourier
analysis. The layer response may be obtained for durations as short or
as long as one wishes, and in all cases with identical accuracy. -

Another advantage is that with the wave solution we may
obtain the layer response at certain specific times withoﬁt the need
of computing the complete time-history.

Therefore, from a numerical point of view, the solution
proposed presents a considerable advantage over other available methods
both in accuracy as well as in efficiency and simplicity in the
computational algorithm. These considerations alone, fully justify the
use of this type of solution. It must be said, on the other hand, that
a great deal of time and effort has been spent, rewardingly, on the
numerical solution of wave propagation problems. Nowadays, standard

works are available (Idriss et al., 1973; Schnabel et al., 1972;

Streeter et al., 1974b; Chen, 1975 etc.) which provide the response of
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soil deposits for less restricted conditions than those we have considered,
regarding both the material behaviour as well as the geometry of the
deposit. Hence, an extension to the model which we have used, with
more relaxed assumptions, would be necessary in order to make the
applicability of the wave solution comparable to that of others found
in the literature. | |

This extension should not be difficult, at least on what
is concerned with the material behaviour. An equivalent linear analysis
such as that suggested by Idriss and Seed (1968) may be easily implemented
to the wave solution. In this case, the fast computation of our
proposed solution should prove to be invaluable in the iteratife
process implied in finding soil properties compatible with the effective
strains, and it alsoloffers fhe possibility of considering different
values of these properties at different stages of the motion.

It is difficult to assess at this stage the practicality of
a wave solution in a closed form for two and three dimensional problems.
However, it should be possible to obtain such a solution for simple
boundary conditions.

The major advantage of the method of solution used in this
thesis is that it relates directly'thetime—histopy of the response
with that of the input disturbance, namely, the relationship between
excitation and response for a deposit in the time domain is found.
This gives to the solution a close mathematical form and makes it
capable of being interpreted in simple physical termS} thus providing
a description rather than a mere numerical evaluation of the response
phenomenon. In this sense, the application of the solufion obtained
goes far beyond the limitations imposed by simplistic assumptions as
it enables us actually to visualise the physical problem, to have a
better understanding of it, and hence, to establish judgements of

general nature which may prove to be of great value.
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For example, using the time-history approach we were able to
give a definite explanation, and under the most simple considerations
(Chapter One), to the slow convergence, using a modal solution, in
the evaluation of responses from corresponding inputs (accelerations
from accelerations, etc.) It was shown that it obeys the condition
that the sum of participation-coefficients is at its limit a series of
pulses. We mention that this explanation is definite, as this is the
case for all problems of wave propagation, irrespective of whether or
not energy dissipation is considered. On this evidence, it may be
suggested to improve convergence in modal analysis, to relate layer
displacements and velocities to acceleration disturbances.

The simple formulation of the radiation problem made in
Chapter Two may also be seen as an application‘of a time-hisfory approach.
Thefe, as the meaning of the expression for the layer response in the
transformed domain was known in terms of an operation upon the input
disturbance in the time domain, if was then possible to make the
necessary modifications to a model of two finite layers in order to
consider the foundation layer infinite and the disturbance acting at
the base of the upper layer.

After this formulation, the solution given in thaf chapter
was also obtained following an approach suitable to express the layer
motion directly as a time-history. This solution analytically #erifies
the expression for the displacement at the surface of the layer given
by Newmark and Rosenblueth (1971), which, as they report, has been
confirmed experimentally in the case of a shallow alluvial formation
resting on rock by Takahasi and Hirano (1941). Also, it came to be
clear, from the physical interpretation of the solution, that the period
of the motion of the layer is not altered by including the effect of

radiation. This conclusion which was arrived at so easily in the time
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domain, is very difficult to visualise using other types of solution
where the layer frequencies are related to the roots of a transcendental
equation or the layer response is given an interpretation in the
frequency domain.

When an internal mechanism of dissipation, or damping, is
considered in the layer response, it is perhaps the case in which the
- simplicity of a time-history approach can be more appreciated. From
the solution that was found for a model of damping compatible with
wave propagation, we may conclude that the effect of damping may
be taken into account in a time-history approach, simply by increasing
the layer period and gradually decreasing the amplitude of the
travelling disturbance.

Reflecting on this conclusion we may see that the model used
represents, in essence, the case of material damping. Firstly, the
damping coefficient is independent of the frequency content of the
disturbance; whatever it is, both the layer period and the decrease in
amplitude are given by the properties of the layer only. Secondly,
the increase in layer period, as it is closely related to the travelling
time h/s, may also be seen as a decrease in the value of shear modulus.

Considering that both shear modulus and damping coefficient
are defined in terms of a loop-shaped stress-strain relationship (Hardin
& Drnevich, 1972a,b) the decrease in modulus for increasing damping
holds true for actual cases. The model proposed, thus, may be considered
as a linear approximation to material damping. This.model is suitable
to be refined in order to relate more realistically both material
properties, using, for example, the design equations proposed in the
'prévious references.

Other models which have been proposed to consider the effect
of Hamping (Appendix 3), as we mentioned in the pertinent chapter, cannot

be used in an wave solution, simply because the equations of motion which
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they give place to are not, in a strict sense, wave equations. However,
in the case of a modified Voigt model, such as the one used by

Schnabel et al. (1972), and which also resembles actual material
damping, an approximate Wa§e solution may be obtained by considering

an equivalent increase in layer period and decrease in amplitude
(Appendix 3).

Figure (5.13) shows the response of a layer of period 0.1 sec.
for the well-known Port Hueneme record. The time history in the right
hand side was computed for 10% (Schnabel) damping using a frequency
analysis. In the left hand side of the Figure, it is shown the time
history obtained from an wave solution in which only the equivalent
increase in layer period has been considered with no decrease in
amplitude whatsoever. A better approximation, certainly, is achieved
when such a decrease is taken into consideration; however, we wanted
to stress the effect of the change in period which might be thought to
be irrelevant.

The capability of the wave solution to be interpreted in
physical terms indeed gives to it an advantage over solutions obtained
either by modal or frequency analysis, as the meaning attached to these
solutions can only be given in terms of mathematical entities and not
physical ones.

This is well understood in the case of the former, of which
it may be said that it basically intends to relate the response of a
continuous medium to that of a series of single degree of freedom
systems. But, on the other hand, frequency analysis‘is thought to
have a more direct physical interpretation, and this may lead into

an erroneous conception of the response phenomenon.
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We must stress. that it is not intended to challenge the
validity of such an analysis. In fact, the layer responses obtained
from it are identical, in most practical cases, to those computed using
a- wave solution, as it may be seen in Figures (5.14) to (5.16), where
the acceleration time-histories evaluated using both approaches are
shown for three simple cases. (At this point, it is pertinent to
remark that while the frequency or Fourier solution required in each
case, for a record of N points a number of operations proportional to
N log N to obtain the frequency image of the input (Cooley & Tukey,
1965) then N/2 complex products and finally another N 1og2N operations
to retrieve the response in the time domain, the wave solution needed
only N real additions and multiplications for the whole process).

The point that we like to emphasise is that frequency (or
Fourier) analysis does not provide a clear description of the physical
problem in the time domain, and that even from a frequency point of
view, a better understanding is achieved by using a wave solution.

A Fourier analysis based on the sum of harmonics (see Appendix
L) indicates that an harmonic input of frequency &/ produces a layer
response of the same frequency, but dephased and with different amplitude.
Physically, this is only true, and partially, in the case of sustained
vibrations, and when the frequency of the input is lower than that of
the deposit; conditions both which are implied in this kind of analysis.
If the input is of finite duration, though harmonic and of only one
frequency, its representation is no longer a point in the frequency
domain, but a continuous function. Hence, to.obtain the response of
the layer for such an input using a Fourier analysis, it would require
that for each point of such a function, we compute the change in phase

and amplitude.
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It is clear from the above that the frequencies to which the
interpretation of the Fourier solution refers are those of the
steady-state motions which added up represent the input motion in an
interval, and not the frequency of this motion. Such an interpretation
is therefore conéerned with mathematical entities, and it has no sense
if it is taken out of its context of a relationship between ordinates
of Fourier spectra.

Fourier analysis must be seen, in a rigorous treatment, as
the application of the Fourier transform to solve the equation of motion
of the deposit (Appendix 4); and if the relationships between Fourier
and Laplace transforms are considered (see Papoulis, 1972 for example),
“one certainly arrives to a solution identical to the one proposed in
this thesis.

The wave solution then, if we are interested in a frequency
analysis, may also be seen as the convolution of the input motion with
a series of pulses whose amplitudes and the separation between them
depend exclusively on the properties of the layer. This series,
that for the case of no dissipative mechanisms present in the response
is illustrated in Figure (1.5¢), is the response of the layer to an
impulse disturbance, and therefore, its Fourier transform is the
frequency transfer function of the layer (Appendix 4). From regarding
the transfer function in this way an important practical point is
evident, and this is that although such a function is independent of
the input motion, it is not so of the duration of motion considered.
For a transient motion of duration Td, the actual transfer function of
the layer will be the convolution of the function ﬁzf), the Fourier

transform of the series of pulses mentioned above, with the function Ekf)

sin(x Td f)

S(f) = Td —Td T )

which is the transform of a time window of width Td and unit height, as

is shown in Figure (5.17).
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We may then see that the problems that may be faced with a
frequency analysis are not in the computation of responses for a given
input, where both the transfer function and the frequency image are
evaluated for the same time interval; but in the use of the transfer
function separately.

In the wave solution, rather than considering the response
of a layer to an impulse as a separated function, the whole process
of convolution with the series of pulses which represent this response
has been taken as an operation on the input motion. Tﬂis, which makes
no difference a:/ar or Fhe cesulds obtsined sre conceshecs | indeed, it
helps to visualise.the layer response as a phenomenon of propagation,
as convolution of any function with a pulse simply shifts the function

to the position of the pulse.

We may therefére conclude, to end this discussion, that a time-
history approach to the motion of a deposit leads to a simpler and more
efficient numerical algorithm for the computation of this motion; but far
more important, it provides both a clear understanding of the process
involved in the analytical solution to the problem, and a consistent
physical interpretation to this solution. In this way, such an approach
enables us to assess the validity and limitations of our analytical model,
and also to have a general notion, as good as our model, of the physical

phenomenon.
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APPENDIX 1

SOME MATHEMATICAL NOTES ON THE SOLUTIONS

The function f(p) is the Laplace transform of f(t) if

T(p) = j:e‘Pt £(t)dt (A1.1)

Among the properties of the transformation defined above which are

constantly used in this thesils are:

(a) L [ f(n)(t)] = pn?(p)-pn‘1f(o)-pn‘2f(1)(o)- e £V 0y (a1.2)
where

@) = @ 2t

dtn.

and the symbol L[ ] denotes fhe Laplace Transform of the function

inside the square brackets.
: “bp
(b) L[ £(t-b) J= e ™ £(p) (41.3)

By the use of (A1.1) the partial differential equation of motion
is transformed into an ordinary one, while (A1.3) enables us to avoid, for
the case of wave propagation, the complicated process involved in the

inversion formula of the transformation, i.e.

c+o0i pt

£((t) = _ 1 f f(p) e dp (A1.54)

—~ ° C=001
2n 1

With reference to the equations presented in Chapter Ome,

applying (A1.2) the equation of motion (A-1) is transformed into

iy, - p° Ty = 0 ' (A1.5)
2 2 |

dy S



which has a general solution

- 2 g
U(y,p) =A es Y 4+ Bes?

After using the transforms of the boundary conditions it is found

that

A=B-= 1 g(p)

and hence,

_ -2
U(y,p) = ¢ + e g(p)
2y Ry
S s

e + e

INVERSION

For an wave solution, (A1.8) may be written

[e'g- (h=y) '1;- (h+y)

ves )

E(y ,P)= -E(E)
- )

1+e s

and as

(1+x)-1 = 2{; -0 &
n=0

= = -2n
Ty = Le 29 4 o 50 ] 7 nyre 5E )

n=0
which, using (A1.3) alone, gives in the time domain
U(y,t) = W [t;(h-y)/s] + W [ t-(hey)/5 ]
'whefe

w(t) = Z, (-1)" g(t-2n b)
n=0 s

108

(A1.6)

(A1.7)

(A1.8)

(A1.9)

(A1.10)

(A1.11)

(A1.12)

For a modal solution, the inversion formula (A1.4) is used

to obtain U(y,t). The right hand side of that equation equals the sum

of residues at the poles of the expression to be inverted multiplied by

ePt.
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Equation (41. 8) may be written, in terms of an acceleration

disturbance, as

T(y.p) =[ 1 coshl /)} Z(p) | (A1.13)
7P [ ;cozh(p}J:S

which may>be seen as the product of a function ﬁ}(y,p) enclosed in the

" square bracket, and the transférm of the acceleration disturbance. The
displacement U(y,t) may thus be obtained by convolution of ‘g(t) and the
inverse of ﬁ}(y,p) which is found using the inversion formula.

Hence, for ﬁ}(y,p) its poles are found to be at

p=0 - ' (A1.14)
and coshph = 03 i.e.
8
p=+(n+) nsi (A1.15)
2h n=0,1,2,.e¢

The residue at p=0, a double pole, is found from the expression

and it may be shown that

Res t t >0 (41.16)

(p=0)
The residues at the single poles in (A1.15) may be evaluated with the

formula

p t
P(po) e ©

d% Q(p) }

Res

(A1.17)

(p=p_)
| =P,
where P(p) and Q(p) are the numerator and denominator of ﬁa(y,p) respectively.

Adding the residues found from (A1.17) to (A1.16), it may be shown that

Uy(y.8) = ¢ - 28 [, " cos(;’n y/e) sinwt  (a1.78)
n=0 wn
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where Wo= (@) n s (A1.19)
2 h 020,1,2,ees
Finally, convolution of U1(y,t) with E(t) gives the displacement
U1(y,t), i.e. .
n \ t . '
U(y,t) = g(t) - 3%. 2{} (-1 cos(Zn z/s),é sin Wn(t-l')g(z)dz
n=0 Y n (A1.20)
The series i
[eo]
S,(y,t) = 2b Z (D" cos [ (2n+0F y/b] sin [(2n+Dn/2 2 t]
2
ST n=o j_(2n+1)2

n

may be written

S,(y,t) = Z ('-1)nsin[(2n+1)§(y+st)]_ in (-1 sin[(2nr ) E(y-st)]

sﬁz n=0 (2n+1)2 sna n=0 (2n+1)2

(a1.21)

The two series in (A1.21) are the Fourier series representation of the
functions F1(t) and Fa(t) shown in Figure (1.4). To prove it, consider

first the fact that both F1 and F., are periodic functions, and that in a

2

cycle they are defined as

_ a7 R T ¢ E
F,]’a('[) = 5 5 5 (A1.22)
AL T 3m
-3 (@-m) 2 2
where T =3y + t
5
and T = 2n = 4h , the period of the functions.

s

Consider now the Fourier series of F, 2(1 ); i.e.
: b}

@
F‘I,E(Z) =a + Z, [ a cos me + bm sin me} (A1.23)
m="1
where wm =mW = m2g
T

As the function in (A1.22) is an odd functionj i.e.
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(1)

F (-7) 1.2

1,2

1}
[
=

it follows that for all m:

a = 0
m

Also, F, 2(I ) has half-wave symmetry; hence, for all even m:
*

b =0
m

For an odd m:

sin m i

bm=1,&,F1,2(2') sin W T 4t = 2
T 2 2

m

m:1,3,5,¢¢..

or, considering the value of sin mn/2

(m-1)/2
b = 2 (-1) (A1.24)
m 2
nm
Hence, o (m=1)/2
R, (1) =2 L (=1 sin W7 (A1.25)
T m="1 2
m
m=1,3,5,7,-..0
Finally, if the substitution n = m-1 is made, and considering the
"2
relationship between m, W, and 4h , and after some manipulations, it is
8
found that
N 51 LA 4
Fq (1) =t Z (0" sin[ 2o+ (A1.26)
, - (2n+1)2
T n=0

which proves our initial statement regarding the series in (A1.21).
Now, as the Laplace transform is defined for positive t only,
it should be understood that the series in (A1.21) are each multiplied

by a unit step function H(t), defined as

H(t) = (o t <0

(1 t2o0

and hence, for a particular y, the functions F1(t) and Fa(t) should be
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considered with the time origin as it is indicated in Figure (1.%4)

The ramp function R(t) is defined
R(t) = 0 t £ 0
t t2 O

and it may be shown that

t t A
fo R(t-T)f(7) 4 fo fo £(7)ar ar

also,

d R(t) = H(t)

dt
hence, ,/: H(t-T)f(7 ) 4T = j: f(7) 4t
Furthermore,

d H(t) = 8(¢t)

dt

and fo’c S(t-1)f(T) aTt = (7T )

(A1.27)

(A1.28)

(A1.29)

(A1.30)
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APPENDIX 2

NUMERICAL COMPUTATION OF THE LAYER WAVE

The computation of the layer wave, and hence of the layer
response can be carried out in a fast and simple way when the
corresponding disturbance is given as a set of values equally spaced
in time.

In general, the expression for the layer wave, for a .

disturbance g(t), is of the form:

W, (5,) = k, ZEJ (- 1), g(t-2nk.) (A2.1)
n=0

1 k2 and k3 are constants.

Let g(t) be a set of N points 8; 9 such that

where k

5 = s[ G- ™) $21,2,000e N (he-2)

where At is the time interval between two of those points.

The disturbance g(t) may be divided into NS segments of NPS
points each, as it is shown schematically in Figure (A2.1). NS and NPS
are such that '

NPS = 2k (A2.3)

and NS x NPS N (A2.4)
The layer wave may now be computed, also in segments of

NPS points as it is shown in Figure (A2.2). The first of these segments,

SW1, is obtained by multiplying the first segment of g(t), S1, by the
constant k1. SW2 is then computed as

swa = k, 8, -k, SW, : (A2.5)
and in general,

SWy =k, 85 - ky SW;_, : (A2.6)

For j > NS; i.e., once the disturbance has ceased,

Sy, = -k, SW, (A2.7)
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FIG. A2.1
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APPENDIX 3

SOME ANALYTICAL MODELS CONSIDERING DAMPING

Voigt's Solid
| The equation of motion
o Uly,t) = G UM(y,t) + 0 T (y,t) (A3. 1)
is derived from considering a constitutive equation for the maferial

in the layer given by

[ [G +7]§_] U'(y,t) (A3.2)
which corresponds to a Voigt's solid (Kolsky, 1963) where the increase
in strength during dynamic loading is assumed to be proportional to the
time rate of deformation.

Considering the same reference system which has been used

throughout the thesis, the general expression for the layer displacement

in the domain of the Laplace Transform may be shown to be

T(y,p) =Ae® J1+Xb +Be ° V1+Ap (A3.3)
where Sazg, and A = F_]_
p G

A and B are functions of p élong.

If no further assumptions are made on the nature of the material
constants, the general solution of (A3.3) in the time domain does not have
a D'Alambert form, as the presence of p in the radicals preventé the use
of the Shifting Theorem. The equation of motion (A3.1) is thus not a.
wave equation.

Papastamatiou (1971) gives a modal solution for equation (A3.1)
and Kanai (1951) provides the solution of (A3.1) for steady state motion.
Schnabel et al. (1972) present a Fourier analysis to evaluate the layer
response to an arbitrary motion, based on Kanai's solution and assuming

a complex shear modulus independent of frequency.
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For this additional consideration, an equivalent wave solution
may be obtained and therefore the complexity of a Fourier analysis may be
avoided. Substituting iw for p in (A3.3), and then making W equal to

2B, it is obtained that

+iwz( 1 ) 'iWZL;l__)
U(y,iw) = A e s 4;:5;5 + Be S1s2ip (A3.4)

where B is the critical damping ratio considered in the previous
reference. For the conditions that y=0 is a free surface and that at

y=h the motion is g(iw), we arrive at

71%-(a+bi)(h—y) _ig(a+bi)(h+y)

ﬁ(y,iw) = e + e g(iw) (A3.5)
-2w -2iw§_a
1+e s e

1/2

where a and b are the real and imaginary parts of (1+2iB)~ ,

respectively.
The expression for the layer wave in the time domain is related
to the inverse transform of the denominator in (A3.5). This denominator

may be written

D(iw) = 1 + ™ e'ZiWE a (A3.6)

in which the relationship

W=2n =28 s

T Th.
was considered to obtain the exponent - nb.
Substituting now p for iw in (A3.6), we get
_ -xb -2ph a ‘
D(p) =1+ e e s (A3.7)

A comparison of the previous expression with equation (3.7)

in the main body of the thesis, once the relation given in equation (3.24)
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is considered, indicates that an equivalent wave solution for Schnabel's

model may be obtained if the damping coefficient F is made equal to

5 = k = (A3.8)

a
{;:k2 b

VISCOUS DAMPING PROPORTIONAL EITHER TO THE ABSOLUTE OR TO THE RELATIVE

PARTICLE VELOCITY.

The equations of motion:

Tly,8) + kU(y,t) = S2U'(y,t) (A3.9)

and

Wyt + k[ 0G0 - 3] = LG (0310

Consider the effect of damping to be proportional either to the absolute
particle velocity, (A3.9), or to the velocity relative to the base motion
g(t), (A3.10). Modal solutions may be obtained for both equations, but
none of them is a. wave equation. This may be seen from the general
expressions for the layer displacement in the transformed domain, which
may be shown to be

+ 2 - ( 2
L p +kp %- p +kp

Uly,p) =Ae® + Be (A3.11)

corresponding to (A3.9), and

+y 2 -y 2
S VP +k1p S VP +k1p

T(y,p) =A e + Be + k132 glp) (A%.12)

p+k1

for equation (A3.10).
The radicals in the previous expressions are functions of the

parameter p of the transform, and thus, the shifting theorem is not applicable.
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APPENDIX 4,

Frequency Analysis Solution to the Wave Eguation

In a linear system such as that of a layer whose equation of
motion is an wave equation, the total response of the system to a
series of excitations is equal to the sum of responses to each particular
excitation acting independently. This property of a linear system is
used in frequency analysis.

Consider a disturbance g(t), which in an interval 04 t4 Ty

as it is well known, may be represented as a series of harmonics, i.e.

Z; +iwnt —iwnt
g(t) = & a e + bn e (ALk.1)
= L+ L
0 £ttt Td
where w=2nm (AL.2)
n —
Ta

The response of a layer to an harmonic motion of frequency W may be shown

to be
+iw t —iwnt
¢(y,wn) [an e + bn e ] (AL.3)
+iw k _riwnk
Ae Y ,Be y (AL. L)

U(y,wnt)

where ¢(Y,wn)

where k depends upon the material properties of the layer, and A and B
upon the boundary conditions.

It follows, from the previous equation that the total response
of the layer to the disturbance g(t), within the same interval in which
it is defined, is given by

+iw t —iwnt ]

U(y,wt) = é;ﬁ g(y,wn) [an e * 4B e (Ak.5)

Lt L
0Lt £ Td

In a more rigorous formulation a frequency analysis solution should be

seen as the result of using the Fourier transform to solve the differential

equation of motion as follows:
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The relationship between the input disturbance g(t) and the layer response

may be expressed as

U(y,t) = jj:h('r) g(t-1)az (AL.6)

where h(t) is the response of the layer to an impulse function §(t).

The frequency response of the layer is given by the Fourier transform of

h(t) (Trifunac & Udwa ‘dia, 1972), that is

-2nift
f— 0
B(£) = [ n(t) e at

Hence, if the Fourier transform of (AL.6) is taken, it follows that

U(y,f) =1 (£) g (£) (AL.7)

where

1}
Oqg
~
ct
~r
[¢]
=

g(f)



121

APPENDIX 5

FARTHQUAKE LAYER SPECTRA

The use of maximum ground acceleration or standard response
spectra for design purposes is not always recommended as, according to
field evidence, both are far from being a good measure of the damaging
potential of an earthquake (Ambraseys 1975). A more sensible approach
to the design of important structures, as it is suggested in the previous
reference, would be to consider a suitable number of real or artificial
time-histories selected in accordance with the source parameters of the
design earthquake, and then make a full dynamic analysis.

We may think, however, of response spectra as indexes which
provide a general idea and a rough estimate (usually over-conservative
in the case of accelerations) of the response of actual structures. For
the case of a soil deposit, this estimate is too scant, in view that even
for the simplest possible situation, namely, an homogeneous layer, its
motion may be seen as the response of various simple oscillators .combined
rather than of only one of them.‘

We may thus take the response of this simplest case as a more
indicative index of the behaviour of a deposit. Hence, instead of
considering a standard response spectrum, we may think of a layer response
spectrum or simply layer spectrum, which, say for acceleration, may be
defined as

5,, (T) = max I.U:(Y,t)
ALL l,d,$ TL

1%, '

where

U(y,t) : Acceleration time-history at depth y of
Tp%§

an homogeneous layer of period T

I impedance

ratio «, and damping coefficient g .
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S,. (T.) the corresponding layer spectrum
AL L
K’a,s
A=bky =3 relative depth
ST H

L
S shear wave velocity
H layer thickness

The expedience in the computation of the layer response using a
time-history approach makes the evaluation of layer spectra feasible, and
even more important, the values which are obtained using this approach
are the actual maxima of the response for the corresponding layer
characteristics. ﬁence, an immediate application for these spectra would
be to check the accuracy of maximum values obtained from a simplified
modal analysis (equation 1.31).

Also, in the case of an earthquake recorded at the outcrop of a
rock formation, as this record, under the assumptions of this thesis,
represents the input earthquake disturbance for any deposit founded on
that formation, layer spectra computed for A = O would give us the maximum
ground response for that particular record. An average of the values
obtained for different events recordedﬂat the same location would provide
the expected maximum ground response.

Again we insist on the index nature that should be given to these
values, both layer spectra and expected maxima, and on their limitations
for design.

Acceleration layer spectra have been computed for six actual
earthquake records, which are illustrated in Figures (A5.1) to (A5.12)
followed by their standard response spectra. Layer spectra are shown in
Figures (A5.13) to (A5.24). The name of the record taken as reference
motion and the depth at which maxima were computed are indicated in the

upper part of the figures.
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Four graphs, each one corresponding to one damping coefficient
are shown in each-figure. The six curves in each graph are the
acceleration layer spectra (in percent of g) computed for values of
impedance ratio «, from 0.0 to 0.5 in steps of 0.1. The upper curve

in each graph obviously corresponds to zero impedance.
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