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IN MEMORY OF MY MOTHER 

I used to dream and think of you 

to keep you close. 

So shall I do now, 

to keep -you alive. 

And you shall never die! 
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ABSTRACT  

An analytical solution is developed to the problem of the 

shear response of a homogeneous layer to an arbitrary horizontal 

disturbance (acceleration, velocity or displacement) which includes 

the effects of radiation and material damping. 

The main characteristics of the solution are: 

a) It is exact and can be computed exactly. 

b) It has in itself a consistent physical interpretation. 

c) The final expressions for the layer response involve only the 

shifting and scaling of the input disturbance, their computation 

being, therefore, fast and simple. 

d) Time-histories of acceleration, velocity or displacement are 

readily obtained at any depth in the layer. 

e) To obtain the input disturbance, deconvolution of the layer 

motion may be performed with the same degree of accuracy and 

simplicity as in the response problem. 

The method of solution is based on the fact that the layer motion 

obeys a phenomenon of propagation, and for the cases studied, the pariial 

differential equation which describes the problem analytically is basically 

a wave equation, i.e. it has a D'Alembert solution. It is shown that such 

a solution may be obtained by means of the Laplace Transform with which 

the response of the layer may be expressed in terms of travelling waves. 

The problem of radiation is studied analytically and its effect 

on the response is considered. 

A visco-elastic constitutive law, in which the viscous component 

is assumed to be a volumetric force takes care of material damping effects. 

The formulation of a general case for multi-layered deposits 

is made and discussed. 
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NOTATION 

g(t) 
	

A prescribed displacement time-history 

g(t) 	 II 	11 
	velocity 
	

It 	It 

w(t) 	 It tl acceleration I, tt 

U(y,t) 
	

Absolute layer displacement at depth y at time t 

U 
	

II 	It 
	

velocity 
	It 	It 	It 	IT 	It 

U 
	

tt 	 ft 
	acceleration " 

	
It 	it 	tt 	If 

gs
(t) = U(0,t) Displacement time-history at the free surface of a deposit 

gb
(t) = U(h 10 Displacement time-history at the base of a deposit  

grec(t) 
	

Displacement time-history at rock outcrop 

Wg(t) 	Displacement Layer Wave 

W.(t) = W (0 Velocity 	It 	t1 

g(t) = W (t) Acceleration " 	tt 

G 
	shear modulus 

p 
	mass density 

specific viscosity 

S = (G/p)1/2 shear wave velocity 

a = G1S2/G2S1 Impedance ratio 

p = 1-a 	Radiation coefficient 
1+a 

k = 	damping  parameter 

2115f7 

= X/  171;2 damping  coefficient 

= (1-;)  )/(1+ 'j ) 	damping  parameter 

= µ 	1-a -1717k2(1+I  ) 
1+a 1171+7c2(1-3 ) 

dissipation coefficient 

TL 
	undamped layer period 

e 	the base of natural logarithms 



3 
INTRODUCTION 

The problem of the response of a soil deposit to a seismic 

excitation is of particular importance in the engineering study of 

earthquakes, as it has to be considered both in the process of design 

of a specific structure, as well as in the general search for earthquake 

parameters that may, from an engineering point of view, characterise 

a seismic event. 

A soil deposit disturbed by an earthquake motion at its base, 

will not transmit the motion unchanged, but it will cause it to advance 

in accordance with its material and geometrical characteristics; 

consequently, the vibration to which a structure, founded on the deposit, 

may be subjected as a result of the base movement will largely depend, 

both in magnitude and in nature, upon the properties of the deposit., 

The excitation for which the structure ought to be designed is, therefore, 

the response of the deposit to the base motion, and not the base motion 

itself. 

It is also clear from the previous argument that records 

obtained from an earthquake at different locations of a particular region 

will show individual characteristics dictated by the geological conditions 

existing at each particular site. If those records are to be compared 

in order to study the general characteristics of the earthquake motion 

in that area, the effect of local geology has to be filtered from each 

record. Thus, in studying a natural deposit subjected to an earthquake, 

it is as important a problem to determine the response of the deposit 

for a given disturbance as it is to find the input disturbance from the 

recorded motion of the deposit. 

The analytical study of the dynamic response of a deposit 

fundamentally involves firstly defining a constitutive equation for the 

material in the deposit, then, establishing the equation of motion for the 



medium, and finally solving this equation for the conditions imposed at 

the boundaries and the initial conditions of motion. 

The simplest assumption regarding material behaviour is that of 

linear elasticity, where the stresses developed in the material are 

proportional to the strains which cause them, no matter how large these 

are. It may also be assumed that this behaviour is valid up to a certain 

level of stress and that when it is reached either the proportionality 

constant between stresses and strains changes (bilinear model), or the 

material yields, strain increasing while stress remains constant (elasto-

plastic model). Another approach would be to consider the material to be 

visco-elastic, that is to assume that stresses have an elastic component 

proportional to the strain applied, and a viscous component proportional 

to the time rate of strain (Voigt or Kelvin model). A discussion on the 

different considerations made on the nature of the viscous constant is 

found in Newmark and Rosenblueth(1971). Other rheological models to 

represent the material behaviour may be found in Jaeger (1969) or Kolsky 

(1963). Based on experimental evidence the stress-strain curve for a 

material may be assumed to be a loop. The shape of this loop may be 

defined by means of three parameters (Ramberg & Osgood 1943), or it may 

also be supposed that such a shape corresponds to a hyperbolic relationship 

(Hardin & Drnevich, 1972b). 

Hysteretic models may be linearised by considering equivalent 

properties, such as a constant of proportionality between stress and 

strain given by the slope of the line joining the extreme points of the 

actual loop shaped curve, and a damping coefficient proportional to the 

ratio of the energy loss to the total elastic energy, both in a cycle, 

as originally suggested by Jacobsen (1930). 

Once the material behaviour is defined by a constitutive law, 

the equation of motion for the medium may be established from the condition 

of dynamic equilibrium. For deposits formed by homogeneous material, or 
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with properties varying regularly with depth, a second order partial 

differential equation results which may be solved in a closed form. 

Ambraseys, for example, presents the shear response of a layer, with 

homogeneous material and surface loading (1960a), and with varying 

rigidity (1959). Idriss and Seed (1968) provide a general form of 

the equation of motion for horizontal deposits subjected to horizontal 

seismic motion and review the work of others. 

For the case of layered deposits, a differential equation of 

motion is obtained for each layer, and the response of the deposit is found 

by solving this system of equations simultaneously considering the 

compatability of stresses and displacements at each interface, and the 

boundary conditions at the surface and base of the deposit. 

Alternatively, the whole deposit may be idealised as a series of 

discrete masses interconnected, and then the equation of motion of the 

deposit is given in a matrix form. Idriss and Seed (1967, 1968) present 

the formulation of this lumped mass analysis, and Papastamatiou (1971) 

utilises this approach to illustrate the effect of radiation and plastic 

yielding on the response of foundation materials. 

Response of deposits whose geometry cannot be described by a 

one-dimensional model may be given in a closed form in simple cases; 

Ambraseys (1960b) is an example. More irregular deposits may be idealised 

as an assemblage of elements interconnected at a finite number of nodal 

points in a Finite Element analysis, used, for example, by Idriss and 

Seed (1974). Also, the medium may be visualised as a lattice work of 

one-dimensional linear elements (Streeter & Wylie, 1968). 

The equation or equ&ions of motion for the deposit may be 

solved by numerical integration techniques, either directly or, if 

possible, after the time and space variables in the equations have been 

separated (Modal Analysis). A review of integration techniques can be 

found in Ayala-Milian (1973). 
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A Fourier analysis may also be used in the solution, using 

for example, the expressions given by Kanai (1951) for a deposit formed 

by horizontal visco-elastic layers under steady-state harmonic motion. 

Roesset (1970), Herrera & Rosenblueth (1965), and Schnabel et al (1972) 

use this kind of analysis in their studies; the last two references 

consider frequency independent damping coefficients. Streeter et al (1974a) 

have applied the method of characteristics, originally suggested by 

Westergaard (1933), to wave propagation problems. Basically, this is a 

finite difference method of integration suitable for the numerical solution 

of hyperbolic partial differential equations. 

From a physical point of view, the dynamic response of a soil 

deposit may be seen essentially as a phenomenrn of propagation. When 

this consideration has been brought into the analytical formulation of the 

problem, it has proved to be of great use simplifying both the formulation 

itself and the numerical process involved, and obviously providing a general 

understanding of the problem. 

The boundary condition used by Papastamatiou (1971) to deal with 

radiation, and the basic idea which gives place to the method of 

characteristics (Westergaard (op. cit.), Newmark and Rosenblueth (1971)), 

are but two examples illustrating the simplicitywhichmay be attained by 

considering the propagative nature of the response. We feel, however, that 

full use has not been made so far of the physical meaning attached to the 

soil response and its analytical implications. 

We may state that if the motion of a deposit is the result of a 

disturbance being propagated in it, then such a motion may be known at any 

point in the deposit and at any instant if we know the disturbance and the 

way in which this travels inside the medium. The analytical solution to 

the problem must reflect this situation, and therefore it should be 

possible to find in this solution a clear relationship between excitation 
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and response in the time domain. A relationship which is obviously not 

in terms of frequencies, modes, amplification factors or spectra, but 

which indicates a process performed on the disturbance to obtain the 

response. 

The purpose of this thesis is to present this approach - a 

time-history approach - to the response of soil deposits for the simple 

case of uni-dimensional propagation. The basic assumptions in the 

thesis are as follows:- 

a) Horizontal shear disturbances propagating vertically 

b) Horizontal boundaries 

c) Layers formed by homogeneous material with properties constant 

in time. 

This work is divided into five chapters. The first of them 

considers the problem of a linear elastic layer on a rigid base in order 

to present, in the simplest of cases, a particular procedure of inversion 

for the Laplace transform which enables us to obtain the layer response 

directly as a time-history. 

The second chapter is concerned with the problem of radiation, 

namely, the process of energy loss which takes place when the foundation 

of the layer is assumed to be a deformable semi-infinite medium. A 

closed form analytical solution is obtained following a time-history 

approach. 

In chapter three a model of damping compatible with wave 

propagation is introduced so that the effect of internal dissipation of 

energy may also be included in our approach. 

Chapter four combines the findings of the previous chapters; a 

complete wave solution is given for an homogeneous layer, and the 

formulation of a general case is made for multi-layered deposits, discussing 
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both the problems of response and deconvolution. 

Finally, in chapter five, a general discussion is made of the 

advantages and limitations of a time-history approach and conclusions 

are drawn. 
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CHAPTER ONE 

THE BASIC SOLUTION  

Introduction 

This chapter considers the problem of the response of an 

homogeneous linear elastic layer subjected to an arbitrary shear motion 

at its base. This problem in itself does not offer many possibilities 

for its application, mainly, as the assumptions made for the behaviour 

of the constitutive material of the layer are too simple as to idealise 

adequately the behaviour of an actual soil deposit. It is simplicity, 

however, which makes this problem appropriate to introduce some basic 

concepts and discuss the general physical meaning of the analytical 

expressions for the layer response. 

Hence, this chapter is intended to be a basic reference for 

the whole of this thesis. Here, a particular procedure for inverting 

Laplace transforms is presented, which will be used throughout this 

work. Such a procedure, by making use of the operational properties 

of the transformation, simplifies considerably the inversion problem 

and enables the layer response to be expressed as a time-history 

with a consistent physical interpretation. Also, it is in this chapter 

where concepts such as Disturbance, Layer Wave and Response Motion 

are defined and given a specific meaning which will be held all along 

this study. 

A brief review of the Modal Analysis solution, which is 

obtained by using a conventional procedure of inversion is included,• 

so that the advantages of the solution developed in this chapter may 

be fully appreciated. 

The complete mathematical development can be found in 

Appendix 1. 
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Formulation of the Problem  

Consider an elastic layer of thickness h on a rigid base as 

shown in Figure 1.1a. The material in the layer is characterized by a 

mass density p and a shear modulus G, both constant with depth through-

out. If the base is given a displacement g(t), as the one produced by 

an SH wave, a differential element dy will be stressed as shown in 

Figure 1.1b. 

U = U(y,t) denotes the absolute horizontal displacement of a 

point in the layer at a depth y, at a time t. 

The equation of motion 1.1 is obtained equating the net force 

in an elemental mass with the product of that mass and the absolute 

acceleration (dynamic equilibrium) 

U (y,t) = s2 U" (y,t) 

where 

S
2 

= G/p, the shear wave velocity of the layer material; 

dots and dashes indicate derivations with respect to t and y respectively. 

To fully specify the problem it will be considered that 

throughout the movement the surface of the layer is free of stresses 

and that there is no sliding between the base and the layer. Hence, the 

solution sought, i.e. U(y,t), should satisfy the conditions: 

U(h,t) = g(t) 	 (1.2) 

and 

u , (y,t) rio = 0 	 (1.3) 

Furthermore, it will be assumed that the motion starts from rest, 

i.e. 

g(0) 	= U(y,0) = 0 

g(t)1 ] 	U(y,t), 	= 0 
t=0 	t=o 

(1.5) 

The problem is thus represented by a second order partial differential 

equation, and for the conditions given, it may be shown to be soluble. 



The Solution Procedure  

The use of the Laplace Transformation for finding the 

response of the layer leads to an expression in the transformed 

domain which provides the relationship between the transforms of 

the input displacement and of the layer displacement. Such an 

expression has the general form: 

IT(Y,P) =
Og 

i(P) 

where p is the parameter of the transformation, and bars denote 

transformed functions. The meaning of T
og 

will now be discussed. 

Equation 1.6 has a mathematical meaning but not a physical 

one (BRACEWELL,1965). Therefore it is not proper to associate the 

parameter p with a frequency, nor to define T
Og 

as a transfer function. 

Rather, if U and R are referred to as transforms only, without 

attaching any physical meaning to them, then by the same nature 

of the Laplace Transformation T may be seen to be the transform 
og 

of an operation, namely, the Transfer Operation, which may be defined 

as the operational procedure performed upon the input to obtain the 

response. 

Hence, from the previous definition it may be implied that, 

as equation 1.6tan operational relation, a convenient way of 

inversion should involve finding a suitable expression for T
rog 

so that 

the elementary properties of the Laplace Transformation may be applied 

to the right hand side of 1.6. This brings not only simplicity to 

the whole process of inversion, but in addition, expressions for the 

layer motion obtained by this procedure may be easily interpreted in 

physical terms. 

Furthermore, the transform of the Transfer Operation, T
og 

may be defined uniquely for layer displacement, velocity, and acceleration; 

(1.6) 
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this can be done simply by associating to each one of them the corresponding 

input, i.e. 

U (YIP) = Tog  g (P) 
	

(1.7) 
rT 

U  (Y,P) = Tog 7 (P) 
	 (1.8) 

Then, it can be claimed that no generality whatsoever has been lost by 

assuming stationary initial conditions (equations 1.4 and 1.5);any non-

stationary condition may be introduced.  in the process of integration.+  

Also, with this unique definition of Tog, layer. displacements, 

velocities or accelerations may be obtained with the same operational 

procedure, and in consequence, with the same degree of accuracy. 

To illustrate these points, we may return to the layer 

problem, where if the Laplace Transformation is applied to equations 

1.1, 1.2 and 1.3 with the initial conditions 1.4 and 1.5 the following 

relation is obtained in the transformed domain: 

(YIP) - cosh(. 
U 	cosh p h 5) 

	
(p) 
	 (1.9) 

which, after some manipulations may be written 

h  
17(Y,p) = [e 5 	+ e 5 	[ n0(_,on .. 	

(P) 	( 1. 10) 
2,.(h-y) 	2,.(h+y) 

Equation (1.10) is readily suitable for the application of the Shifting.  

Theorem, which gives for the layer motion, as it may be easily shown: 

+For engineering applications it is common to have the input as a 
record of accelerations; hence, the use of equation(1.8)will provide 
layer accelerations, and then velocities and displacements may be 
obtained by integration. 

03 



U(y, t) = 
n= 

(-1)n  g(t-tyn1) + 
(„.1)n g(t-tyn2)  

n=0 

13 

and therefore 

fJ(y,t) = L 	n=0 (-1)n  g(t-tyn1) + 	(-1)n  g(t-tyn2) 
n=0  

= n a (-1 )n  g(t-tyni) + o (-1)
n  .g(t-t yn,) c 

where 

, h y 
t
yn1 	= (2n+1) — - S 

and 

h y 
t 2 
	

= (2n+1) 
73" 
 + 

(1.12) 

(1.13) 

The Solution and its Interpretation  

A few remarks are needed before discussing the meaning of 

expressions '1.-11, 1.12 and 1.13. First, it should be considered that 

the input disturbance g(t) is ALWAYS defined for positive times only, 

and usually for a finite duration td. Hence, the arguments of g in 

the previous equations must satisfy the conditions: 

t - t yni 	i=1,2 
	 (1.14) 

and 

t -t 	47 td yni  
i=1,2 	 (1.15) 

These two inequalities provide the limits of the summations, and it may 
nurn6er

' 
 hem/ 117 /he summakon-r /I 

be seen that 	are FINITE even when the duration td is infinite. 

Furthermore, the number of terms involved in the computation of the 

motion at any particular time may be seen to depend upon the properties 

of the layer only. Therefore, the solutions foundare not only exact, 

but may be computed exactly as there is no problem of convergence. 

Notice should also be taken that the argument of g in the 

summations has dimensions of time. Consequently, equation 1.11, 1.12 

and 1.13 as they stand, are suitable for the computation of time 

histories of response at a given depth y. Should the variation 
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to 
of response throughout the layer at a particular times  beof interest, 

such an argument ought to be expressed as St o- v -tni' so that 

has dimensions of length. 

What any of the solution equations shows is that the material 

of the layer is a perfect transmitter in which the input disturbance 

travels with a velocity S without being at all modified. When the 

disturbance reaches the surface of the layer, it is reflected (in 

consequence its amplitude is doubled). After this reflection, the 

disturbance travels back towards the base, where a further reflection 

takes place and a change of sign. As there is no dissipative mechanism, 

this process continues for ever. 

Therefore, the motion of the layer at a specific depth y, 

at an instant t, is simply the addition of the different points of the 

disturbance which happen to be passing by y at that instant. 

This argument is shown in Figure 1.3. There, a layer of 

thickness h and shear wave velocity S is shown excited by a triangular 

pulse, say of acceleration, of duration 3/2 h/s. The appearances of the 

disturbance at the base, the middle depth and at the surface of the 

layer are shown and so the resulting accelerations at each one of these 

levels. 

The Layer Wave  

Another way of looking at the solution equations may also be 

noticed in Figure 1.3. If all the disturbances travelling upwards at 

any level are considered as a whole, it can be seen that they form an 

wave which has identical shape at all levels but is shifted in time from 

one depth y1, to another y2  by an amount ly2-y1  I/S, giving the 

appearance of the complete wave travelling towards the surface with a 

velocity S. Also, the disturbances travelling downwards form an identical 
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wave, now appearing to travel towards the base of the layer with the 

same velocity S. This wave shall be defined as the Layer Wave.  

The analytical expression for the layer wave may be found 

from equation 1.10 which may be written 

,P) = 	e - 
	(h-y)  + e s - 	(h+Y ) 	171 (p) [ 	s  

(1.16) 

where 

7 (p) 	= (-1)n e- 	h 2np 
s 
 i(p) 

(1.17) 

Thus, after inversion: 

[t/(2n/s)] 

W (t) 	= 	(-1)n  g(t-2nh/s) 
n=0 

where 

(1.18) 

W (0 is the Displacement Layer Wave, and 

Ix] 
	

the largest integer less or equal to x. 

Therefore, the layer displacement is, in terms of the layer wave: 

II(y,t) = W j t-(h-y)/s 	-+ 	Wg 	t-(h+y)/s] 
	

(1.19) 

and similar expressions are found for velocities and accelerations. 

The layer wave thus, characterise;the response of the layer 

as it combines in a unique form the properties of the layer and the 

input disturbance. Also, it simplifies considerably the numerical solution 

process as in fact, once this wave is determined, the response time-

history at any depth or the configuration of the layer at any time may 

be easily obtained. 

It should be stressed that it is the input disturbance that 

actually travels inside the layer. The layer wave is only an apparent 

motion and it is more a convenient mathematical concept than a precise 
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description of the physical phenomenon. For the purposes of this thesis, 

disturbance shall be defined as a prescribed history of acceleration, 

velocity or displacement, and layer motion as the corresponding layer 

response. The Layer Wave is a characteristic of this response, and as 

such it cannot be prescribed since it is not known in advance. These 

definitions that may seem trivial, will prove to be of great use in the 

more complex problem of radiation. 

It is to be noticed that the properties of the layer, both 

material and geometric, are summarised in one parameter only when no 

dissipative mechanisms are present. This parameter is the travelling 

time h/s which takes a disturbance to propagate from the base of the 

layer to its surface. This parameter may be expressed in a more 

conventional form considering the time between two consecutive appearances 

of a point of the disturbance, with the same sign and coming from the 

same direction, at a particular depth. This time is the Layer Period, 

TL, and it may be easily shown that 

T
L 
= 4h 
	

(1.20) 

Deconvolution of Recorded Motions  

Strong ground motion instruments are usually installed to 

record surface accelerations. Therefore, in practical terms, records 
•• 

from these instruments are layer accelerations U (o,t) rather than 

acceleration disturbance.g(t). It is then of interest to study the 

problem of given the properties of a deposit and the recorded motion at 

its surface, finding the original disturbance; or in other words, 

deconvolve the effect of the deposit from the recorded motion. 

At the surface of the layer, y=0, and equation 1.9 for this 

particular value of y may be written 

17(o,p) 
	1 	

(p) 
	

(1.21) 
cosh(p 
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The fact that 1.21 is an operational relation justifies writing it as 

E (p) = cosh (p 13.-) 	U (o,p) 
	 (1.22) 

A procedure of inversion identical to that previously followed to 

find the layer motion, may be shown to lead to 

g(t) = 2 igs  (t+h/s) + gs  (t-h/s).] 	(1.23) 

where 

g
s 
(t) = U (o,t), the recorded displacement. 

Also, 	
g(t) = 2 [ gs  (t+h/s) + as  (t-h/s)] 

	
(1.24) 

and 

= 2 igs  (t+h/s) + "gs  (t-h/s) 

If the value of U(o,t) in 1.19 is substituted, then 

g(t) = W 	+ Wg  (t-2h/s) 	. 

Similarly, 

g(t) = w.(t) 	W. (t-2h/s) 

w(t) = g(t) + 	(t-2h/s) 
6 

where 

(1.25) 

(1.26) 

(1.27) 

(1.28) 

W. velocity layer wave 

U. acceleration layer wave 

The notation W., U. and not W 
g 
 , W

g 
 stresses the fact that 

g g  
of layer wave is valid to represent the layer response to 
irrespective of whether this disturbance is acceleration, 
displacement. However, it may be seen that W. and U. are 

the concept 

a disturbance 
velocity or 
the first 

and second derivatives of W , respectively, and consequently W.
g 
 = W 

g
, 

and W« = W . 
g g 



Comparison with Modal Analysis  

Modal analysis solution to the layer problem expresses  the 

response of a layer as a combination of responses of one degree of 

freedom systems. Such a solution has the form 

where, 

00 

Ur(y,t) = 
	0 (y) Xn,g 

(t) 
n=1 n  

(1.29) 

U
r
(y,t) layer displacement relative to the base movement 

Xn,g 
(t) = - 	ft  g(L) sin wn (t-r ) dt 	 (I.30) 

wn 
X(t) is the response displacement of a one degree of freedom system 
n,g 

 

with frequency Wn  to a disturbance g(t). 

0n (y) is the n-thmocW_ shape of vibration of the layer, which, at a 

particular y, defines the contribution of the single system with 

frequency wn  to the total reponse. 

The long numerical process necessary to evaluate equation 1.29 

has made usual practice to consider the alternative expression 

Ur max(Y) = 	On  (y) Sd  (wn) 	 (1.31) 

n=1 

where Sd 
is the displacement response spectrum and is simply the maximum 

absolute value of 1.30. N is fixed such that 0n(y) is less than a certain 

percentage of On-1(y). 
It is evident that, because not all maxima are likely to occur 

at the same time, expression 1.31 is only an upper boundary to the actual 

maximum response at the depth y, and so, further assumptions are necessary 

to be made about the real contribution of each of the modes. 

A review of the procedure followed to find 1.29 is necessary 

to compare this solution with the one introduced in this Chapter. It 

may be shown that the relationship in the transformed domain between the 

input disturbance and the layer motion which leads to expression 1.29 is 
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of the form 

IT(y,t) 	cosh(py/s)  

p2cosh(ph/s) 
7 CO (1.32) 

where transformed layer displacements are related to transformed 

accelerations disturbance. 

Inversion of the fraction in the right hand side of (1.32) 

following the Standard Bromwich Contour gives the expression 

1 [cosh(ph/s)  

pcosh(ph/s) 	sn 
- To(y,t) = t - 

2h 

n=0 )

n
cos kn+-  A11 vmY/ 

, 	, 
2 x 

1 x (n  2)-2 sin (n-i-- 
2
)nst/h 	(t> 0) (1.33) 

2  

where 	 (see ibve ill /Cr o fe47,44.1 of /7 ) 

L 1  [f(p)] = f(t), the Inverse Laplace Transform of -1(p). 

Equation 1.33 is actually the departing point between the two 

solutions. Modal analysis assumes 

(n +i)n-37; 	n=0,1,... 	(1.31+) 

then,(1.33)is written,.  

To(y,t) = t - 2 	( 	cos(wny/s) sin (wnt) 

n=0 	w 2 
n 

(1.35) 

and convolution of T
o
(y,t) with the acceleration disturbance g(t) gives 

t s 7' ,...)n cos(w'rly/s) 

	

U(y,t) = g(t) - jo  2 ii- L..., k I   sin wn(t- 1 )g( 7 ) dr (1.36) 
n=0 	w 2 

n 

Finally, by reversing the order of the summation and integration 

involved, and considering relative displacements, equation 1.29 is 

obtained; now i/is clear that: 

on(y)  = 	cos(wn  y/s) 	 (1.37 ) 
wn h/s 

Completeness of the modal analysis solution 1.29is difficult to prove 

due to the fact that On(y), though in itself independent of t, its 
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interval of definition does depend on the time variable. Hence, the 

last step taken to find 1.29 is far from being a rigorous procedure. 

Two points which are not considered in Modal Analysis but which are 

implicit in the time-history solution give to it its simplicity and 

accuracy. The first point is that the summation in equation 1.33 is 

in fact the Fourier expansion of the sum of two perfectly defined 

functions shown in Figure 1.4. (Notice that their interval of definition 

depends upon y). Therefore To(y,t) in the same equation, may be shown 

to be the sum of the functions f
5r1 

 (t) and fy2(t), which are illustrated 

in Figure 1.5a. 

The consideration of this fact alone represents a great 

advantage as, in the first place, all the terms of the summation have 

been included, and therefore there is no problem of convergence. Also, 

it is undoubtedly easier to work numerically with the final expressions 

for f
YI 
 (0 and fy2(t) than with the trigonometric functions involved 

in their Fourier expansion. 

The second point,  however, has more important implications. 

This point, which has already been mentioned, is the operational nature 

of the relationship between the transforms of the input disturbance and 

the response. In the Modal Analysis solution, it may be seen that, once 

T
o
(y,t) is obtained, the layer response is given by equations 

U(y,t) = ft  To(y,t-1) 	z) dT 

tr • U(y,t) = j T o(y,t-1) If (z ) di 0  

U(y,t) = 1.0t  To(y,t-z)  "e (1 ) dl 
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T (y,t) and To
(y,t) are shown in their closed form, in Figures 1.5b 

and 1.5c respectively. It may be seen that To(y,t) consists of two 

series of shifted ramp functions, while To(y,t) is given by two series 

of shifted step functions and To(y,t) by two series of pulses. Therefore, 

the convolution integrals in equations 1.38, 1.39 and 1.40 may be shown 

to be operations performed upon.g(t). Equation 1.38 implies double 

integration and shifting; 1.39 integration and shifting; and (1.40) 

shifting only. 

Modal analysis disregards these operational considerations, 

and consequently it complicates unnecessarily the numerical solution 

process and brings in serious problems of convergence, particularly 

in the evaluation of accelerations. 
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CHAPTER TWO 

EXTERNAL MECHANISM OF DISSIPTATION - RADIATION 

Introduction  

It was mentioned in the first chapter that the model of an 

elastic layer on a rigid base was not realistic enough to represent the 

response of actual soil deposits subjected to earthquake disturbances. 

The main criticism which may be made of the solution obtained in Chapter 

one is that the layer response, though finite in magnitude, continues 

indefinitely, whatever the duration of the input disturbance, as the 

model does not take into consideration any dissipative mechanism. 

The incorporation of a dissipative mechanism in the response 

of the layer, without changing the one-dimensional nature of the problem, 

may be achieved either by proposing a more complex constitutive relation 

for the material in the layer, or by considering the base of the soil 

deposit to be deformable and not rigid. The first of these alternatives 

provides an internal mechanism of dissipation, usually termed as Damping, 

while the second defines an external dissipative process, known generally 

as Radiation. 

A mathematical formulation considering internal damping 

involves the solution of an equation different to the one seen in the 

previous chapter. On the other hand, the formulation of the radiation 

problem, though it involves a more complex solution, implies simply a 

modification of one of the boundary conditions. Therefore, it may be 

said that, while consideration of internal damping constitutes a different 

problem, the inclusion of radiation is merely an extension to the model 

previously studied; and as such, it is of convenience to deal with it 

first. 



This chapter, therefore, considers the problem of the response 

of an elastic layer on a semi-infinite elastic base which is disturbed 

by an arbitrary shear motion. A definition of the mechanism of 

radiation for a disturbance is given, which helps to formulate the 

problem and solve it analytically without additional assumptions on 

the nature of the disturbance at infinity. 

The solution is followed by an interpretation in physical 

terms and a discussion. 

Definition of the Problem  

The concept of radiation is difficult to work with if a precise 

definition of its meaning is not provided. 

It is clear that such a definition is merely a matter of 

convenience for the purposes of this thesis as radiation effects are 

nowadays generally considered in the dynamic response of soil deposits 

(PAPASTAMATIOU, 1971; ROESSET, 1970; SCHNABEL et al., 1972; etc.). There 

is, however, no analytical model available which can be explained 

unrestrictedly in physical terms and, at the same time, provide an 

exact solution to the radiation problem. Hence, the search for a 

specific conception is justifiable. 

Before attempting any definition (which will determine the 

mathematical formulation of the problem and its capability to be inter-

preted), consider the two elastic layers shown in Figure (2.1), founded 

on a rigid base. The material in the upper deposit has a mass density 

p, a shear modulus G, and therefore a shear wave velocity S = (G/p)1/2 

The layer of thickness H is characterised by a mass density ps, rigidity 

modulus G , and shear wave velocity S
s = (G s  /p s)

1/2 

Let the upper deposit be referred to as the OBJECT MEDIUM and 

the subjacent layer as the BASE MEDIUM. 
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A disturbance g(t) applied to the base of the system at a time 

t=0, will travel upwards and reach the interface of the two media after 

an interval H/S
s
. There, part of the disturbance is transmitted to the 

object medium while another part is reflected back to the base medium. 

The conditions which should satisfy the response motions of the base and 

object media at the interface, define alone the amounts of the disturbance 

which are either transmitted or reflected. 

Let C
To

g(t) be the disturbance transmitted to the object 

medium and C
Ro 
 g(t) the one reflected, and considerc

To 
g(t) only. 

Once this disturbance is inside the object medium, it travels unaltered 

for an interval 2h/s after which reaches again the boundary between the 

two layers. There, it is split once more,C
T1 
 g(t) remaining in the 

object medium, and CR1  g(t) sent back to the base medium. Hence, 

considering only disturbances which remain in the object medium, it may 

be seen thatCTi g(t) splits into Ct2  and CR2:Cit2  intoCT3 an.d CR3, and so 

forth, until after sufficient reflections there is no disturbance present 

in the object medium. 

Therefore, it may be said that, by the generation at the 

interface of disturbances which are radiated to the base medium, the 

presence of the original disturbance g(t) in the object medium has been 

gradually dissipated. This phenomenon is what is understood in this 

thesis as RADIATION. 

Four points are to be stressed from the previous statement: 

1) The radiation phenomenon is associated to a disturbance arriving to 

the object medium from the base medium. 

2) The phenomenon takes place only at the interface. 

3) Radiation is related to disturbances remaining in the object medium. 

4) What occurs to the disturbances which are radiated away into the 

base medium is of no concern to the problem of radiation. 
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From these remarks it may be said that the occurrence of the 

radiation phenomenon is independent of whether the base medium is 

finite or infinite. An infinite base medium presents the problem of 

radiation once, but a finite medium does not rule out radiation; in 

this case, the phenomenon simply occurs as many times as disturbances 

arrive from the base medium to the interface. 

. A proper mathematical formulation for the response of the 

object medium considering the base medium semi-infinite is not possible, 

unless an assumption (difficult to justify in physical terms) is made 

on what occurs at infinity. On the other hand, the case of a finite 

base medium offers no difficulty at all to be formulated, and if a 

proper method of solution is used, it is possible to isolate the 

radiation problem, it is to determine the response of the object medium 

to the disturbance which arrives first at the interface, without 

including the effect of further disturbances arriving from the base 

to the object medium. 

Such an approach to the radiation problem has the advantage 

that, for an earthquake disturbance, the problem of propagation is 

separated completely from those of attenuation and source mechanism, as 

the original disturbance considered is prescribed on its first arrival 

at the interface of the elastic media. 

Mathematical Formulation and Solution Procedure  

Consider the elastic deposit on a semi-infinite elastic medium 

shown in Figure (2.2). Material properties for the deposit are those of 

the object medium previously described, while the elastic semi-space is 

characterised by the properties of the base medium. 

A shear displacement disturbance g(t) travels upwards in the 

base mediarri producing absolute displacements U
s
(y,t) in the base medium 

and U(y,t) in the upper deposit. The motion U(y,t) is required. 



The equation governing the motion of the deposit may be 

shown to be 

U(y,t) = s2 U"(y,t) 	0 	y -4- h 

The surface of the deposit is free of stresses. Therefore 

Uqy,t)] 	= 0 
y=0 

It is assumed that there is no sliding at the interface of the 

two media; i.e. 

U(h,t) = Us(h,t) 

(2.1) 

(2.2) 

(2.3) 
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and 	G Uqy,t).] 	= G
s 
 U' 

s 
 (y,t)] 

-y=h 	y=h 

Where U
s
(y,t) is the absolute horizontal displacement of a point in 

the elastic semi-space at a depth y, at a time t. Hence, 

is(y,t) = Ss
2  Us 

 "(y,t) 
	

y h 	(2.5) 

Furthermore, it will be assumed that the motion starts from rest, i.e. 

g(0) = U(y,0) = Ers(y,0) = 0 	 (2.6) 

• 
g(0) = U(y,t)1 	= U(y,t)1 	= 0 s  

t=0 	Jt=0 
(2.7) 

Equations (2.1) to (2.7) constitute the formulation of the radiation 

problem, but for the disturbance g(t) which remains to be defined. 

The condition 

U
s
(h+H,t) = g(t) 
	

(2.8) 

defines the disturbance arriving to the interface for the first time 

as g(t) and makes it possible to solve the system of two partial 

differential equations implied in the formulation. 

On the other hand, the introduction of such a condition makes 

the base medium finite and hence, further disturbances from the base 

are to appear at the interface. The solution procedure should then be 

able to disregard the effect of such disturbances. 



33 

The use of the Laplace Transformation for the solution of the 

problem formulated above leads to a system of two ordinary linear 

differential equations in y, being the transforms of U and Us  the 

unknowns of the system. These equations are easily integrable and 

their solution may be expressed in terms of two constants of integration 

only if the conditions at the surface of the deposit (y=0) and at the 

imposed base of the semi-space (y=h+H) are applied. The value of such 

constants is then found by the application of the conditions at the 

interface of the two media. 

It may be shown that the expression for the transform of the 

displacement at any point of the deposit obtained from this procedure 

is 

u (y,p) = 
cosh 	y i(p) 	(2.9) 

   

a-  - sinh 1-311 	 S sinh 	+ cosh 213. cosh 0  o/m 	 s 	 Ss 

	

OA y 	h 

where U(y,p) is the transform of the absolute horizontal displacement 

at any depth in the elastic deposit, and 

ao/m = G Ss = 	Gp 

G
s
S 	G p 

s s 

(2.10) 

is the impedance ratio of the deposit to the semi-space. 

The expression for Fs, the transform of the displacement 

response of the semi-space, has been of use to find U; in what follows, 

it is irrelevant. 

Equation (2.9) may be written 

2  ii y ) 	e- u(y,p) - 2 e 	(1+e-   
(2.11) 

2 2. h 	 2 	2 h P H 	- P- 	 2 P  H  ao/m(1-e 	S ) (1-e 	Ss ) + (1+e 	S ) (1+e 	Ss ) 
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According to the concept of transfer operation, the factor 
P H 

e Ss  in the numerator of the right hand side of (2.11) indicates 

that the disturbance g(t) appears in the solution shifted an interval 

H/Ss, that is, the time taken by the disturbance to arrive from the 

depth y=h+H to the base of the elastic deposit. Therefore, to omit 

this factor is equivalent to considering that the time origin is the 

time of the first arrival of the disturbance to the base of the elastic 

deposit. And, once made this consideration, the thickness H of the 

base medium may be made infinite so that no other disturbances from 

the base are considered in the solution. 

Hence, if the right hand side of (2.11) is multiplied by 
p H + 

e Ss  and then limits are taken when H tends to infinite, the 

expression 

-&(h-y) 	-2 2  y 
II(y,p) = 	2 e 	(1+e 	S  )  

	

a
o/m 	S 

(1-e 2 2. h) + (1+e -2 2- h) 

 

E(p) (2.12) 

   

is obtained, which shows the relationship between the transforms of 

the input disturbance and the displacement of the deposit IN THE 

RADIATION PROBLEM. 

The inversion procedure indicated in Chapter ONE may be 

shown to lead to the expressions: 

U(y,t) =  2 	21 (-1)n  C/m g(t-tyn1)  1+ao/m n=0 	n=0 

If(y,t) = 	2  (-1)n  11://11(t-tyn1) + 
1+ao/M n=0  n=0 

1r(y,t) = 2 	L (-1)n  130n/mV(t-tyni) + 
1+a
o/m n=0 n=0 

(-1)ne/mg(t-tyn2) (2.13) 

(....,6ncenik(t-tyn2) (2.14) 

(-1)n  Pc1)1/W(t-tyn2) (2.15) 
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where 

130/m 	1 - ao/m 

+ ao/m 

is the RADIATION coefficient, and 

t
yn1 

= (2n+1) h - z 
s s 

t
yn2 

= (2n+1) h + 
s 

as previously defined. 

(2.16) 

The Solution - Interpretation and Discussion  

It may be seen from equations (2.13) to (2.15) that the general 

form of response of the elastic layer has not been altered by considering 

the effect of radiation. Each one of these equations shows that a 

disturbance in the base medium is scaled by a factor 2/(1+mo/th) when it 

arrives at the elastic interface. Then, this modified disturbance travels 

with a velocity S toward the surface of the stratum, where it is reflected 

backwards, being therefore doubled at that particular level. The 

disturbance continues to travel towards the base where it is again 

reflected, but now with opposite sign and multiplied by a factor
o/m 

Hence, unlike the case of a rigid substratum, the disturbance is not 

cancelled out at the base when reflected; which explains why the response 

motion at this depth cannot be prescribed, as it is neither equal to g(t) 

nor to 2/(1+cco/m) g(t). 

After the reflection at the base, the amount of disturbance left 

in the upper stratum, travels again towards the surface and the whole 

process of reflection and scaling down of the amplitude is repeated time 

after time. In consequence, as the solution shows, the response motion 

at any depth of the upper stratum at a time t, may still be visualised 

as the superimposition of the different points of the disturbance, now 
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with different amplitudes, passing by that depth at that time. 

It may be noticed that the velocity of propagation in the 

upper stratum is S as before. Thus, it will still take a time h/s for 

a disturbance to travel from base to surface of the upper stratum; and 

consequently it may be concluded that radiation DOES NOT change the 

layer period, which remains 

T
L 
 = 4 h 
	 (2.17) 

Notice also, that the initial disturbance in the upper stratum is 

2/(1+ao/m) g(t), a fact which indicates that the amplitude of the 

original disturbance g(t) is magnified when passing from a harder 

medium to a softer one (ao/m  (1) or diminished in the opposite case, 

ao/m  >1. Dissipation of the disturbance, however, does always take 
mada/us of 

place as theradiation coefficient, ofm is for both cases less than 

unity. Furthermore, it may be seen that am/o 
the impedance ratio of 

the base medium to the object medium is 

1 
(2.18) 

am/o = a
o/m 

 

hence, from (2.16) the corresponding radiation coefficient is 

1 
13m/o = 

1 - 
ao/m 	

I3o/m (2.19) 

   

which implies an equal rate of dissipation for both impedance ratios 

a
o/m and  am/o . This, together with the fact that 

2 

 

= 1 po/M 1+cco/m 

indicates that the solution to the radiation problem when the material 
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properties of the object medium are those of the base medium and vice 

versa, is obtained by substituting  - 130/m  for pozm  in the solution 

equations (2.13) to (2.15). 

A more general definition of impedance ratio and radiation 

coefficient may now be given as follows: 

a = 

a
o/m 

ao/m
< 1 (2.21) 

1 
cco/m 	I  cto/m 

=
m/o 

13o/m cco/m 	1 (2.22) 
13  = 

-13o/m = Pm/o lo/m > 1  

Figure (2.3) shows graphically the relation between a and 13. 

The similarity in form and interpretation between the solution 

equation (2.13) to (2.15) and the corresponding  equations in Chapter One 

suggests the consideration of a Layer Wave in the radiation problem. 

It may be shown that when radiation is considered, the displacement 

Layer Wave is given by 

[V(2h/s)] 

Wg  (t) 	(i+p) 	(-1)n an  g(t-2nh/s) 
n=0 

(2.33) 

with similar expressions for velocities and accelerations. Hence, 

equation (2.13) may be written 

U(y,t) = Wg  [t-(h-y)/s] + Wg  [t-(h+y)/s] 
	

(2.24) 

an expression which is identical to (1.19) and indicates that using  

the concept of Layer Wave, the radiation problem may be reduced to one 

which is equivalent to that of an elastic layer on a rigid base. 
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Deconvolution of Recorded Motions  

It may be seen from equation (2.12) that the relation  between 

the transforms of the displacement at the surface of the deposit and 

of the disturbance g(t) is 

h - s 
170,p) = 4 

1+a 	2Ph P 
1+p e 

hence, 	(p) 	= 1+a 	eL h + 13 	s 	17-  (0,p) 
	 (2.25) 

4 

Inversion of (2.24) is shown to give the relation 

g(t) = 1 (1+a)[ gs  (t+h/s) + 0 gs  (t-h/s) 
	

(2.26) 

where 	gs(t)  = U(0,t). 

Similar expressions are found for velocities and accelerations. 

In a similar fashion, the expression for the response at the 

interface in terms of the motion at the surface may be proved to be 

gb(t) = 1 [gs  (t+h/s) + gs  (t-h/s)] 	(2.27) 

where 	gb(t) = U (h;t). 

Therefore, considering the definition of Layer Wave given in equation (2.23), 

it is possible to write 

g
s
(t) = 2 Wg  (t-h/s) 	 (2.28) 

g(t) 	= 1 (1+a) { W (t) + p W (t-2h/s)] 	(2.29) 
2 

and 	gb(t)  = W 	+ W (t-2h/s) 
	

(2.30) 

with similar expressions for velocities and accelerations. 

i(p) 
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Reference Motion  

The solution found in this chapter does not include the case 

of a rigid base, as this is not a particular case of the formulation 

which has been made. The response which is obtained by considering  in 

equation (2.13) an impedance ratio equal to zero, corresponds to the 

problem in which there is no upper layer, (G=p=O); and hence, under 

these conditions, such an equation provides the motion at the surface 

of a semi-infinite elastic medium, a motion which is twice the input 

disturbance. 

Comparing the response of a layer for the conditions of an 

elastic and a rigid base, the fact that for an elastic base the initial 

disturbance in the layer differs in amplitude from the original disturbance 

in the base, may lead to confusion, as depending  on which of these 

disturbances is considered to be the reference motion for the comparison, 

the response of the layer on a rigid base may or may not be the largest. 

It is possible to include the condition of a rigid base in 

the solution found and to avoid all ambiguity if the reference motion for 

all cases is considered to be the motion g (0 which would be recorded rec 

at the free-surface of the base medium. It is clear that, g(t) being the 

original disturbance in the base, 

grec(t) = 2 g(t) 	 (2.31) 

for an elastic base; or 

grec(t )  = g(t) 
	

(2.32) 

for a rigid one. 

The layer response given in equations (2.13) to (2.15) may thus 

be expressed as 

U(y,t) = 1 	(-1)ne Erec(t-tyn 	+ 	(-1)11131-113.
rec

(t-tyn2) 	(2.33) 
1+a n=0 	n=0 

• • 
c 	yn n 

 gre  U(Y,t) = I 	(-1)
n 
 Pn Ere (t- t l

) + 	(-1)n 
n=0 1+a n=° 

t-tyn2) (2.34; 
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•• 
U(y,t) = 1 

1+a 

n n 	+ 	(-1)n  On  (-1) p g
rec

(t-tynl) 	grec
(t-t

yn2
) (2.35) 

n=0 	 n=0 

and the expression for the displacement layer wave in terms of grec(t) 

is thus 

[t/(2h/s)] 

W (t) = 	1 
1,,,a 

(-1)n  13n  g r (t-2n h/s) 	 (2.36) 

n=0 

with similar expressions for velocities and accelerations. 

The previous equations may be used for the evaluation of the 

response of a layer on either an elastic or a rigid base. 
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CHAPTER THREE 

INTERNAL MECHANISM OF DISSIPATION - DAMPING  

Introduction  

During the motion of a soil deposit, friction among particles, 

material heterogeneity and other factors contribute to dissipate into 

heat the energy supplied to the deposit by a disturbance. The combined 

action of these factors is usually termed as damping or internal friction. 

Experimental research on the dynamic behaviour of actual soils 

(HARDIN & DRNEVICH, 1972 a and b) shows that under cyclic loading the 

stress-strain relationship may be considered to be a loop, which makes 

the existence of damping evident. The nature of damping, however, is 

not yet well understood as to attribute to it a specific material property, 

nor to propose a satisfactory theory for its explanation. Therefore, 

in general, the inclusion of damping in the analytical model of a 

vibrating system is made in a way "which is most expedient in the 

mathematical solution of the problem rather than on purely physical 

considerations." (VAISH & CHOPRA, 1973). 

Some models, briefly reviewed in Appendix 3, have been proposed 

to consider the effect of damping in the response of a layer. However, 

these models, which are suitable either for a Fourier analysis or a 

modal type of solution, cannot be used to obtain a ,wane-form. solution 

such as those given in the previous chapters. 

This chapter includes the effect of damping in the layer 

response by adding to the equation of motion that has been used until now, 

a viscous force, proportional to the time rate of deformation in an 

elementary volume. Damping here, is thus related to a volumetric force 

and not directly to the constitutive equation of the material. 
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This assumption, which is compatible with findings from 

experiments about the dependance of damping on effective mean principal 

stress, void ratio, degree of saturation, etc. (HARDIN & DRNEVICH opp.cit), 

enables the layer response to be expressed in a time-history form. 

Equations of Motion  

Consider the layer of thickness h shown in Figure (3.1) on a 

rigid foundation. The material in the layer has as properties a mass 

density p, a shear modulus G, and a specific viscosity 7 . A horizontal 

displacement g(t) of the base produces, at a depth y, an absolute 

displacement U(y,t). 

Assuming that the net force acting in an elementary volume 

of material is equal to the elastic force G U"(y,t) dV plus a viscous 

force proportional to the time rate of deformation in that volume dV, 

the equation of motion of the layer is given by 

2 U(y,t) = SU"(y,t) + % U(y,t) 

where, 

y=0 

and there is no sliding between the base and the layer; i.e. 

U(h,t) = g(t) 

Furthermore, the motion is considered to start from rest, i.e. 

u(y,o) = U(y,t)} 	= 0 	 (3.5) 
-tt) 

and 

g(0) 	= g(t)1 	= 0 
JJ to 

(3.6) 

* tir a dorJAc.S1012 0/ 	liafrcbt, Jnei trinseqoeHcel 	ihe la.sti ken) in MU 

29a  elaahon see 	49 cliscu.r3ron 0,75,/ 

S
2 =G 	

and X = 
p 	 p 

The surface of the layer, y=0, is free of stresses; therefore 

Uqy,t)) 	= 0 

(3.2) 

-(3.3) 

(3-4) 
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Solution  

The application of the Laplace Transform to equation (3.1) 

and its boundary conditions gives a relationship between the transforms 

of the absolute displacement of the layer and of the disturbance 

displacement g(t), which may be shown to be 

U(y,p) = e 

	

r--2,L 	
5:2)2s- 

R(p) (3.7) 
- F1C.2)12  h 	+ e  (-k+ -v 1+k )s 	e-(k+ F-1  

where 

 

1+ g e-2-1714c2 S h 

 

p = 1 -  k/ 1+k2  

1 + ici4.1177-0 

k= 	7 	= x 

2 11G; 	2s 

The denominator in (3.7) may be written as 

(3.8) 

(3.9) 

1 4. p. e-2,11112 	 h 	-1 	 d (-1)n lin e 	
s

-2n-11-i-k2  Eh 
[ (3.10) 

n=0 

and then, it is possible, by the sole use of the shifting theorem of 

the transformation, to find the expression for U(y,t), which may be 

shown to be 

U(y,t) = 	(-1)n pn g(t y -t y1
)+ p L (-1)n  pn  g(t -t 	) (3.11) y yn2 n=0 	 n=0 

where 

ty  = t + — (h-Y) 

tyn1= (2n+1) 1+k2  L ITT-k2  X s 	s 

and 	tyn2= (2n+1) 1+k2  11 + IIZ.2  z s 	s 
both 	(ty-tyni) and (ty-tyn2), should satisfy the inequalities 

0 	(t y  - t yni) 	
Td 
	i=1,2 
	(3.15) 

where 	T
d 	

is the duration of the input motion g(t). 
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Expressions similar to (3.11) relate the layer velocity and acceleration 

to the corresponding base disturbance. 

Properties of the Solution  

Equation (3.11) shows that the inclusion of an internal 

mechanism of dissipation brings both a decrease in the amplitude of 

the layer response, and an increase in the layer period. 

It may be noticed from the argument of g(t) in the previous 

equation, that the actual velocity with which a disturbance is propagated 

inside the layer is 

Sd  =  S  

vr44t2 

and consequently, the layer period will now be 

T
Ld = 4 h = 111+k

r--2 
TL 

d 

where, 

(3.16) 

(3.17) 

T
L  = 4 h is the undamped layer period, and 

damped layer period. 
TLd 

From the relation between these two periods, it is possible to define 

a damping coefficient for the layer. If it is considered that 

2n = 47-73
2 

2n 
TLd 	TL 

(3.18) 

where ' is the layer damping coefficient, then it is found from 
(3.17) that 

5= k (3.19) 

    

r-- 1+k2  

which may be seen to be independent of frequency. 

S 
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The decrease in amplitude of response is given by the parameter 

p, which is related to the damping coefficient by the equation 

g = 1-f 	 (3.20) 

1-14 

The parameter p appears in equation (3.11) multiplying the disturbance 

g(t) every time it reaches the surface of the layer. Thus, it may be 

seen that during an interval TLd  the amplitude of the disturbance at 

any depth is reduced by a factor d, such that 

d = 112 
	

(3.21) 

Hence, d may be used to evaluate the damping coefficient from a 

vibrational test. It may be shown that 

f = 1- 	1-g 

uira 	1+g 

From equation (3.21) and the definition of logarithmic decrement 

for a viscous damping, one may see that 

a = 2n 	= log 1 
2 e 

(3.22) 

(3.23) 

which gives place to the following relation 

p e-nk 
	

(3.24) 
A layer wave may also be considered to express the layer response given 

in (3.11). It may be shown that for a damped motion, the displacement 

layer wave is given by 

(t/2h/S
d 

W (t) = 	(,1)n n / g ( t - 2n N/1+ct2 11). 
n=0 

The layer displacement may be written 

(3.25) 

U(y,t) = W
g 
 [t 

Y 
 -(h-y)/S

d
] +pW 

g 
 [t 

 Y 
(h+y)/Sd] 
	

(3.26) 

with similar expressions for layer velocities and accelerations. 
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Finally, as in the radiation problem, the previous solution 

may be deconvolved easily to find the input motion. An identical 

procedure to the one presented in the previous chapters leads to an 

expression for the original disturbance g(t) in terms of the motion 

recorded at the surface of the layer. Such an expression may be proved 

to be 

g(t) = 1 f g
s 
 [t-kh/s + -FIT-k2h/s] + [.L 

gs L 
 t-Ich/s- FE-k2h/sil (3.27) 

1+1.1. 

where 

g (t) = U(0,t) . 

Similar expressions relate input velocities and accelerations to the 

corresponding responses at the surface. 

As is the case with the other analytical models for damping, 

the solution in this chapter accounts for the energy loss inside the layer, 

but it does not provide a precise description of the damping phenomenon 

in physical terms. 

One may see from equation (3.11) that the amplitude of the 

input disturbance is not decreased continuously as it travels inside the 

layer but only when it reaches the layer surface. The application of 

(3.11) is thus confined to bounded media where continuous reflections of 

the disturbance propagated in the medium ensures the action of the 

internal dissipative mechanism. 

In practical terms, this presents no serious restrictions to 

the use of this model of damping for the study of actual soil deposits 

of limited thickness; and advantages such as an explicit time-history 

form of solution for any arbitrary input, expedience in computation, and 

an easily measurable damping coefficient, together with the fact that 

there is no satisfactory theory of damping (EWING et al 1957), fully 

justify the use of the model proposed. 
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It may be thought that the apparent discontinuous decrease 

in amplitude of the disturbance which occurs every time the wave reaches 

the surface is due to the initial assumption of considering the damping 

term in the equation of motion to be a volumetric force. However, this 

is not the case. Had it been assumed, for example, that the damping 

term were derived from a constitutive equation such as, 

	

= G au + 3u 	 (3.28) 
ay 	1 1* at 

a solution identical in form to (3.11) would have been obtained. 

The solution corresponding to the positive sign in (3.28) is unacceptable 

as in this case the response increases with time; and for the negative 

sign, the final equation is identical to (3.11) but for the time ty  

which in this case is defined as 

ty  = t - k (h-y) 

Also, if one considers the equation of motion 

U(y,t) + 2k1 S U(y,t) + S2  14 U(y,t) = S2  U"(y,t) 

with the boundary conditions 

uri(y,01 	= 0 
J y=0 

(3.29) 

(3.30) 

(3.31) 

and 
	

U(h,t) 	• = g(t) 
	

(3.32) 
the layer displacement U(y,t) may be shown to be given by 

= e-ki(h-y) 	(-_,n 2n U(y,t) 	1) 	g{ t- h-y + 2n b.] + 
n=0 

e-kl(h+y) (...1)n 1112n gi 
 t_ h+y + 2n h 1 

n=0 	 s 

where 

= e
-k

1
h  

(3.33) 

(3.34) 

It may be seen that in equation (3.30), the terms 2k
1
SU and k

1  2
U 

which account for the internal dissipation of energy, have been considered 

in the equilibrium of an elementary volume without being directly related 
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to the constitutive equation of the material; thus acting as volumetric 

forces. The solution (3.33) however, shows a continuous decrease in 

amplitude of response, though not an increase in the layer period. 

It may thus be suggested that a discontinuous decrease may 

be due to the assumption that damping is viscous in nature only. However, 

an irrefutable proof to substantiate this argument cannot be provided; 

mainly because the other analytical models which consider a viscous 

damping (see Appendix 3) do not have a solution which may be easily 

expressed as a time-history, and it is only in this type of solution 

where the complete form of the response motion may be visualised. 

If, for example, a modal solution corresponding to the equation 

of motion (3.1) is considered the poles of (3.7) have to be found. 

By making the denominator of (3.7) equal to zero, it may be seen that 

the poles of 1.1(y,p) are given by 

p = 1 	s + (2n-1) n i + loge 
p 

[  2 IT -- 	 n=1,2,... 	(3.35) 

20+k 

If the undamped frequency of the n-th mode of vibration is defined as 

W
n 

= (2n-1) n s 	 n=1,2,... 	(3.36) 
2h 

then, from (3.22), (3.24) and after some manipulations, (3.35) may be 

written 

p= 	w 
n 	

W
n 
i 	n=1,2,... 	(3.37) 

Hence, (3.37) ensures that in the subsequent convolution integral the 

term 

e 
-iW

n
(t -T) 

will appear, giving the impression that the amplitude of response 

decreases continuously in time. 
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Relation between Dissipative Mechanisms  

Although different in nature, radiation and damping produce 

similar effects on the response at the surface of the layer. The layer 

displacement, for example, at the surface y=0, when damping is considered 

is given, from (3.11), by 

U(0,t)
D 

= (1+p) L (-1)n  pn  g[ t + k h - (2n+1)- 5-17c2  h] (3.38) 
n=0 

While the displacement at the same surface for the case of radiation, 

considering the same reference recorded motion, is 

U(0 ,t)
R 
= 	2 Li  (-1)" I3n  g [ t - (2n+1) h 

1+cc n=0 
(3.39) 

where a is the impedance ratio and p is the radiation coefficient. 

For purposes of comparison, the term k h/s in (3.38) is 

irrelevant, as it is independent of n and indicates simply a different 

time origin for the responses. 

If the value of p is made equal to the radiation coefficient 0, 

or what is the same, the damping coefficient to the impedance ratio a, 

then, it is found that, as 

2 	= 1 + p 
	

(3.4o) 
+ a 

expressions (3.38) and (3.39) are identical but for the different 

velocities of propagation s and S/1/1+kr---2 
 . The value of 1+k2  does not 

differ from unity more than 10%, even for values of damping coefficient 

as high as 0.4. Thus, for most practical cases, 

(--- . 
l+k2  = 1  

and hence, it may be said that 

U (0,0D  = U(0,t)R 	 (3.41) 

and similarly for velocities and accelerations. 
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Figures (3.3) to (3.10) show the validity of this simplificatory 

consideration. Each of these Figures presents in the left hand side 

the acceleration at the surface of a layer on a rigid base (no radiation) 

with a given undamped period TL, for a given value of . The surface 

acceleration for the layer with the same period TL' 
now with an 

impedance ratio a, equal to the value of 	but without damping, appears 

on the right hand side of the Figure. 

Responses have been computed for the same reference motion 

at the base of the layer, which is the North-South component of the 

earthquake recorded at Port Hueneme on 18/3/1957, whch is shown in 

Figure (3.2). 

Notice that differences between the responses are more 

pronounced as either the dissipation coefficient (a or I ) or the layer 

period increases. 

A point worth mentioning is that in both dissipative mechanisms 

the radical Fp appears as an important parameter. Both k, from which 

the damping coefficient is obtained, and a, the impedance ratio, are 

dependent on the value of this radical; which suggest that VG; may be 

a measure of the dissipative capacity of the material in the layer. 

However, the inability to produce a model for damping based only on 

physical considerations, makes any conclusion on the influence of this 

radical on the material behaviour, merely speculative. 
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CHAPTER 	FOUR 

GENERAL WAVE SOLUTION 

Introduction  

The main elements involved in the response of an elastic 

layer have been discussed in the previous chapters, and to provide a 

general equation for the layer motion; it is, considering both radiation 

and material damping, requires no further assumptions than those which 

have already been made. The analytical process to arrive to such a 

general solution, though it deals with more complex expressions, does 

not present any problem which had not been previously discussed. 

There is, however, a special interest for dealing with the 

general case in a chapter of its own, and it is to show that a solution 

in an wave form is one of the main characteristics of the layer response, 

rather than a mere convenient way of expressing it. 

General Formulation 

The homogeneous elastic layer of thickness h shown in Figure 

(4.1) has material properties G, p and 1 and is placed on a semi-

infinite elastic base of shear modulus G
s 
and mass density p

s
. A 

horizontal displacement disturbance g(t) travelling upwards in the 

base, produces absolute horizontal displacements Us(y,t) at a depth 

y inside the base (y h) and U(y,t) at a depth y inside the layer 

h). The displacement U(y,t) is required. 

The equation of motion for the layer is (Chapter Three): 

U(y,t) = SaP(Y,t) + X U' (y,t) 	(4.1) 

where 

S2 	G 
p 

and 	= 
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At the surface of the layer, y=0 

Uqy,t)1 
J 

while at the interface 

= 
y=0 

y=h, 

0 

(Chapter Two) 

(4.2) 

U(h,t) = U (h,t) (4.3) 

and 	G U'(y,t)1 y=h  

Us, satisfies the equation 

= Gs  U's(y,t)] y=h  (4.4) 

us(y,t) 

where 

= ss
2 

Ull(y,t) (4.5) 

S 2 	G = 	S 
Ps  

The disturbance is defined (Chapter Two) as: 

Us(h+H,t) = g(t) (4.6) 

which enables us to solve the problem uniquely. Limits, however, 

should have to be taken once the disturbance g(t) arrives for the first 

time to the interface, as it was pointed out in Chapter Two. 

As before, it will be assumed that all motion starts from 

rest, i.e. 

U(y,0) = Us(y,0) = g(0) = 0 
	

( 4.7) 

and U(y,t)1 	= U (y,t)] 	= g(t)1 	= 0 
t=o 	s 	t=o 	J t=o 

(4.8) 

The Wave Solution  

The Laplace Transformation shall be used to solve the problem 

described by equations (4.1) to (4.8). 

If equation (4.1) is transformed, it may be shown that an 

ordinary differential equation in y is obtained, and that the general 

solution of such an equation is: 
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IT(Y,P) 	A eC 	
y 	-( 	-fk2  s 	B e 	+k)s  y 

where 

(4.9) 

k _ 
- 2S 

and 	A = A(p) and B=B(p) are to be found from the conditions 

at the boundaries. 

Before entering into the process of determining A and B, it 

may be seen that inverting (4.9) in the form described in Chapter One, 

a general expression for the layer displacement is found of the form: 

r-- 	 r--  II(y,t) = WAg 
[ t+( 1+k2  -k)y/s] + W

Bg  1 t-( 11+k
2  +k)ils 

where, clearly 

WAg (t) = L 1  [A(p)] 

WBg(t) = L 1  1B(p)] 

(4.10) 

( . ) 

(4.12) 

are the inverse Laplace transforms of A and B respectively. 

Therefore, the layer displacement may be interpreted as 

being the superimposition of the two travelling waves WAg  and WBg. 

Notice that this conclusion has been reached by considering 

only the general solution to the equation of motion, consequently the 

previous interpretation is generally valid, irrespective of the 

conditions at the boundaries. Notice also, that for layer velocities 

and accelerations as 
"r• 

U (YIP) = P U (YIP) 	 (4.13) 

and 

U (YIP) = p2  U (Y,P) 
	

(4.14) 

an identical interpretation can be made. 

Once /he jener.,7/ afacte 4.7,1-e-)re c/ /he resloo fli e has been 

esAw46-6/2ec,-_, what remains of the solution process is to find the 

actual expressions for the waves appearing in equation (4.10). Such 
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expressions are obtained from the consideration of the boundary conditions. 

Free Surface  

From equation (4.2), back to the transformed domain, the 

folluwing condition at the free boundary y=0 is obtained: 

(y,p)1 	= 0 
J y=0 

Hence, ftom the first derivative of IT(y,p) in (4.9) it may be shown 

that 

B = g A 
	

(4.15) 

where 

= 
I17W - k 

6Ti2  + k 
	 (4.16) 

A and B being the transforms of the waves Wile  and WBs,  equation (4.16) 

implies that these waves have identical form and differ in magnitude 

only by the constant p. Therefore, it may be concluded that for a 

layer with a free surface, there is only one wave characteristic of 

its displacement response, and (4.10) may be written 

U(y,t) = Wg[ t+(-1770-k)y/S] + p Wg  [t-(k+ .-F74-k2)y/s] 
	

(4.17) 

where, 

Wg(t) = WAg
(t) 
	

(4.18) 

the displacement layer wave. 

Elastic interface  

From equations (4.3) and (4.4) the conditions which are to 

be satisfied at the elastic interface, y=h, in the transformed domain 

are 

and 

IT(h,p) = ic(h,p) 

G Tqy,p)1 	= 	Gs s y,p) 
y=h y=h 

(4.19) 

(4.2o) 
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Following an identical procedure to the one used to obtain 

equation (4.9), rfs(y,p) may be shown to be given by 

EL  
Us(y,p) = C eSsY  + D e Ss

y 
 

Therefore, (4.19) and (4.20) may be be written 

y h 	(4.21) 

(1Ric2-k) Eh 2) p -(k-PfiTi-c 	E h 	- 
S 
 h 

A { e 	+ g e 	= C eS  + D e s 	(4.22) 

(Jk2-k) 	
S 	S  

it 	CF-70+ 12-13. 	h 	- h 
a A ( 1+k 	e 	- 11(4717k2+k 	. = C es - D e s 

(4.23) 

where 	a = G Ss 
	

(4.24) 
S Gs 

The expression for A = A(p) may now be determined from equations (4.22), 

(4.23) and the resultant equation from transforming (4.6). Once this 

expression for A is found, it has to be multiplied by eP  II- and then Ss  

its limit taken for H tending to infinity. (Chapter Two). 

All this somewhat tedious algebraic process may be avoided 

if consideration is given to the wave form of equation (4.21). It may 

be seen that what was said of the expression for IT(y,p) is also valid 

for T (y,p). Thus, C and D are the transforms of the two travelling 

waves which characterise the response displacement of the elastic base. 

The exponentials which multiply C and D in (4.21) indicate 

that C corresponds to an wave propagating upwards in the base medium, 

while D is related to an wave travelling downwards. 

The reason for defining g(t) as in (4.6) was to ensure that 

the first disturbance arriving to the elastic interface from the base 

medium were g(t). This, may also be ensured if it is stated that 

+ 
Ss C e 	s 	= g(p) 
	

(4.25) 
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with the advantage that (4.25) also ensures that no other disturbance 

will arrive to the layer from the base medium. 

The previous statement thus implies a semi-infinite base, 

but it does not imply that either the response motion of the base or 

the value of D may be known. However, as the base response is not 

required and as D may be easily eliminated (not made zero, which 

would imply a rigid basel) from equations (4.22) and (4.23) a solution 

for the layer motion may be obtained. Therefore, adding (4.22) and 

(4.23) term by term, and considering (4.25) it may be shown that for 

a semi-infinite base 

A(p) = 2  g (p)  

[1+a(-F-Ti2-10]e(4717c2-k) Ilh 2 L s + 4 L1 -a(;717i+k)] e-(;17i2+k) 

(4.26) 

Equation (4.26) may be inverted following the procedure described in 

Chapter One, and it is then found that 

W (t) = 	2 	Z(-1)n.yrig [ t-(2n+1) TiTk2h/s+k h/s 

1+04(417i2 -k)  

where 

(4.27) 

And as, 

and 

Y = P 1 -a(4717i2+k) 
1+a( 1+k2-k) 

g(t) = L -1  [p A(p)] 

14.(t) = L 1  rp2A(p)] 

(4.28) 

performing the derivative process implied by p and p
2, on the input 

disturbance, it is obtained that 
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W.(t) = 	2  

1+a(11+k -k) 

n n. 
g t+k h/s-(2n+1)-F1+12  h/si 	(4.29) 

and 

W-(t) = 	2 	L(..1)117nv. [t+k h/s-(2n+1) ,riTo h/s 	(4.30) 

In order to include in the solution the case of a rigid base, (4.27), 

(4.29) and (4.30) may be expressed in terms of the motion recorded at 

the free surface of the base medium, as it was seen in Chapter Two. 

Thus, following general expressions may be given: 

W
Grec

(t) = 	1  r rec [ t+k h/s-(2n+1) -F171-k2  h/s] (4.31) 
i+cc(  

where 

Grec
(t) is either grec(t), rec(t), 

or  g'rec(t); a motion 

recorded at the free surface of the semi-infinite base. 

(t)'   
depending of the meaning of Grec(t),  may stand for the layer w

Grec  

wave of either displacements, velocities or accelerations, and 

r-- 	 r-- 
U(y,t) = WGrec

Et+( lt1+k2  -k)y/s] + µ WGrec L 
rt-(l+k2  +k)y/s] 	(4.32) 

where 

U(y,t) is U(y,t), U(y,t) or U(y,t) according to the layer wave considered. 

Deconvolution of Recorded Motions  

It has been shown that in order to evaluate the response motion 

of a layer, it is required to obtain the layer wave from the input 

disturbance. It is now of interest to consider the problem of finding the 

input disturbance from the layer wave, so that a wave approach may be used 

to deal with the deconvolution of response motions. 

From equation (4.26) it is possible to express the transform 

of the input disturbance in terms of the transform of the layer wave, i.e. 
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(IFTk2-k) E. h 	-(1117-k2+k) 2.h 

g(p) = 1+a( 1+k2-k) 	e 	s + y e 	
s 	1 

A(p) 	(4.33) 

[ 

and, after inversion 

I 

g(t) = 1+a( 1+k2-k) 	W
g 
 [t+(4171-1c2-k)h/s] + y W 

g
[t-(417Fk2+k)h/sq 

2 

(4.34) 

with similar expressions for velocity and acceleration disturbances. 

In the deconvolution problem, it is assumed that the response 

motion at the surface of the layer is known and the disturbance g(t) is 

required to be found. Thus, if (4.34) is used, the only further step 

involved in the deconvolution process is to determine the Layer Wave in 

terms of the surface motion; a simple task, as from (4.32) it may be 

seen that 

W (t) = 1 	g 
	 (4.35) 

1-141 

where 	g
s
(t) = U(0,t) 
	 (4.36) 

It may now be concluded that in an wave formulation both the response 

and the deconvolution problems involve an identical procedure of solution, 

which consists of first determining the Layer Wave and then by shifting 

and scaling such a wave, obtaining either the response motion or the 

input disturbance. However, as the expression for the Layer Wave is 

much simpler in terms of the surface motion than in those of the input 

disturbance, the problem of deconvolution is always simpler than that 

of finding the response. 

2 
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Wave Formulation for Multi-layered Deposits  

Considering still the assumption that the motion of a deposit 

is primarily the result of upward propagation of shear waves, and thus 

keeping the response problem one-dimensional, a more realistic 

representation of an actual soil deposit is achieved if it is considered 

to be formed by a series of horizontal strata, with different material 

properties, but each stratum homogeneous. 

For deposits idealised in such a manner, it is easy to extend 

the theory presented in this chapter in view of the fact that the wave 

nature of the response only depends on the type of the differential 

equation of motion, as has been shown. 

Consider the deposit shown in Figure (4.2) which is assumed 

to be formed by a series of n homogeneous horizontal strata. The 

material in the i-th layer, of thickness hi, is characterised by a 

shear modulus Gc:, a mass density p;  and a specific viscosity 7i. 

The deposit is founded on a rigid base which is given an 

arbitrary horizontal displacement g(t). Such a disturbance produces 

a motion at any depth inside the i-th layer, which, accordingly to 

what has been shown in previous chapters, is described analytically 

by the equation 

U. (y,t) = S. 2  U". (Y,t) + X. U 1(y,t) 	(4.37) 

HI. 	4 y 11
1
.. 

where 	= Gi 
Pi 

X. = 7 , 

Pi 

and Hi  = 	hi  

J=1  

Transforming equation (4.37) it is found that for each of 

the strata 
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Ui(y,p) = Ai  e 
S 

0-T7c.
1
2-k.) 	y 	-( 47115i2 	2 +ki) s  y  

1  + B. e 	
1  1 (4.38) 

where k.= X. 
1 	1 

2S. 1 

Therefore, the response displacement at any depth inside the 

i-th layer may be considered to be the superimposition of two waves 

travelling  with a velocity S 	
1 , one upwards and downwards the 

other, i.e. 

Ui(y,t) = W .[t i
2y/S 	+ W 	rt - 4717i.

2
y/S.1 

J Ag1 y 	BgiL y 	1  

where, 

WAgi 	= L-1 [A1(p) 

WBgi(t) = L
-1 [ Bi(p)  

= t-k.y/S. 
1 

ty  

(4.39) 

(4.4o) 

(4.41) 

As the deposit is formed by n strata, it is thus required to 

find the expression for 2n wave transforms in order to determine the 

motion at any depth in the deposit. The boundary conditions imposed at 

the interface between layers, and at the surface and base of the deposit, 

provide 2n-1 homogeneous and one non-homogeneous equations in the unknowns 

A. . and B.. Therefore, it is always possible to determine these unknowns 

uniquely. 

The conditions imposed at the boundaries are given by: 

at the interface y = Hi  

U.(H.,t) = U.
11  

(H.,t) 
+1  (4.42) 

and Gi  U'i(y,t)1 	= G. 	U' 	(y 
i+1 . 1+1 ' 

J   y=Hi 	y=Hi  

(4.43) 

at the free surface of the deposit, y = 0 

(y 
I ' 1j 	

= 0 

y=0 

(4.44) 
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and at the base of the deposit 

Un 
(Hn

,t) = g(t) (4.45) 

It may be seen from equations (4.42) and (4.43) that expressions may be 

foundwhichrelatethelgavetransformslii_o andB.
1+1 

 of the i+1-th 

layer, with those of the immediate upper layer i. It follows then that 

it is possible for the wave transforms of any stratum to be expressed in 

terms of those of the surface layer, namely, Al  and B1. 

Also,frmicondition(4.44)therelationshipbetweenB.and A. 

'is easily found; and in so doing the wave transforms of any layer i may 

be given as the product of Al  and a certain coefficient; i.e. 

A. = CA
(i)  

	

Al 	
i=1,2,3,....,n 	(4.46) 

(i) 
B. = CB Al 	i=1,2,3,....,n 	(4.47) 

Finally, from the condition at y=lin, the base of the deposit, it is 

found that Al  and the transform of the input disturbance are related by 

the expression 

(4.48) 
C (n)ep(1-5n)Hn/sn c  (n) -p(1+5n)Hn/sn  
A 	B 

The effect of radiation may be considered by assuming the n-th 

layer to be an elastic semi-space. The time origin would, in this case, 

be set at the time of the first arrival of g(t) to the depth 
Hn-1, 

and 

then limits would be taken for hn tending to infinity, as discussed in 

Chapter Two. Proceeding in the way described above, it is found that 

the expression relating Al  and g(p)for the case of radiation is: 

A
1
= i(p) 	 (4.49) 

CA
(n) 

 e
pH
n
/S
n 
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and CB(i)  It may be shown that the coefficients CA(1) 	are given by 

the recurrent relations 

CA (1) = 1. 

CB
(1)  

PI 

CA
(i+1) 	

e 	
Pti+1 	(i) = 	(1+4.adi A  C 	+ (1-adi

)e 2pH 

 
(l+g. ) 1+1 

(4.5o) 

(4.51) 

S 	
CB (i)1 j (4.52) 

. 	. 

CB
(+1)e-213Hi+1/Sdi+1 = e

p(t 1+1-2h  1+1/S  di+1)  (i) 

(1+11i4.1) 

-2PH1./Sdi 	(i)1 ,4.„. 
(gi+1+cc 	B J "1  

where, 

= k. 

2 
1 

I•  = 1 • ; 
1+11 

(-1T-7-1;. 2+k.)G. S. adi = 	1111+1  

(-IT+17 2+k. )G. S. 1+1 	1+1 1+1 1 

S. Sdi  = 	1  Siti  = (1-Ti) 	- (1- ci+i) 
2 	 Sdi S  1 	 di+1 

It is clear from the previous discussion, that the fundamental step involved 

in obtaining the motion of the deposit is finding the wave WAl(t), whose 

transform is Al. If such a wave is known, the motion at any depth may 

be easily obtained by a process which involves only shifting and scaling, 

as will be seen later. One may say then that W
A1
(t) is a characteristic 

of the motion of the deposit, and despite the obvious complications brought 

forth by different material properties, the claim that a wave form of 

solution is feasible for a multi-layered deposit is thus justified. 
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As it is the case for a single layer, the degree of simplicity 

in the process of evaluating the motion at any depth inside a multi-

layered deposit, very much depends on whether the surface or the base 

motion of the deposit is known; or in other words, on whether one is 

dealing with a problem of deconvolution or response. 

When the surface motion of the deposit is known, 
WA1(t) is  

readily found as 

is(P) = U1(0,P) = (1+g1)A1  

then, 

(t) = 	1 	g 	 (4.54) 0+177.1  s 

WB1(t), as indicated by equation (4.51) is obtained simply by multiplying 

the previous expression by 	The The waves in the subsequent layers are 

then obtained progressively following the operational procedure described 

by the inverses of equations (4.52) and (4.53); i.e. 

W
A 	(t ) = 	1 	I (1+giadi) WA.(t) + (1-adi) WB.(ti,)] 	(4.55) i.+1  o (1+11i.+1) 	1 

and 

WB. (toi+1)= 	1 	[ (g
1
. 	. +1 1 di)W  A.(t-2h1+1/S  di+1) + 1+1 	(1. 

. i+1 	1 

+(4.56) 
1 

where, 

t.' = t - 2H./S 1 di 

t01 '. = to 	i - 2H/S . di 

i=1,2,... n 

i=1,2,... n 

One may notice that by adding (4.55) and (4.56) the motion at the base 

of the i+1-th layer is obtained; the time origin, to  = 0, being the time 

of the beginning of the motion at that particular level. Also, if hill, 

where it appears in (4.56) is replaced by y-Hi  and the resulting wave is 

added to the one obtained from (4.55), as it stands, then the motion at 

the depth y (y inside the layer i+1) is found with a time origin set now 
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at the start of the motion at that depth. The relationship between 

t and t
o is thus not required, as equations (4.55) and (4.56) are 

related to local times. 

In the response problem, with or without radiation, despite 

the fact that the waves in the base layer are related to a known disturbance, 

each one of these waves is not known, and one may see that they cannot be 

determined but after the surface waves are known. Hence, in this kind of 

problem, one has to work out either equation (4.48) or (4.49) by 

progressively using (4.52) and (4.53). Once the expression for Al  is 

found,ithastobeinvertedandageneralexpressionforthewaveld.(t) 
"1 

is obtained. From then on, motion at any depth is evaluated by the 

process of deconvolution defined by (4.55) and (4.56). 

Derivation of a general expression for the characteristic wave 

WA  (t) is beyond the scope of this thesis. However, it may be proved that 

such an expression for a deposit of N layers will be given by a multiple 

series with 2N-1 indices, which, although it appears to be appallingly 

complicated, may be evaluated merely by progressive shiftings and scalings 

of the input motion. 
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FIG. 4.1 
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CHAPTER 	FIVE 

GENERAL DISCUSSION AND CONCLUSIONS  

Before entering into a discussion on the advantages and 

limitations of the method of solution proposed, it would be desirable, 

as an introduction to such a discussion, to verify the results which 

are obtained for simple cases. 

To this effect, consider the profile of a certain site shown 

schematically in Figure (5.1). There, two horizontal soil deposits 

of thickness hl and h2 are shown on a rock formation. The deposits 

may be assumed to be homogeneous, and their relevant material properties 

are found to be G
1, p1,1 1, and G2, p2  and 12, respectively. The 

bedrock material has a shear modulus GB, a mass density pB, and it is 

assumed that the rock formation is semi-infinite. 

All these properties are summarised in an undamped layer 

period TL, a damping coefficient f, and an impedance ratio a for each 

one of the deposits. 

In the event of an earthquake, consider the problem of 

determining the acceleration time-histories at the surface of both 

deposits and at the rock outcrop, assuming that there is only one 

strong-motion instrument, installed at the surface of layer 1, from 

which a record of acceleration has been obtained. In other words, 

the problem of obtaining grec (t) and 
 42(  t)  ' 

knowing   Wsl(t).  

The problem involves, first to deconvolve the given record 

s1(t) to find the reference motion'grec(0, and then, evaluate the 

response at the surface of layer 2 for such a motion. 

Some numerical examples have been worked out. The results 

obtained are shown in Figures (5.2) to (5.12). Each of them shows the 

datum acceleration, 
;1(t)  in the lower left hand side corner of the 

figure; the response acceleration, ;2(0, in the upper left; and in 
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the lower right hand side corner, the reference motion .d'rec(t). 

The properties of both layers are also shown in each figure. A 

simple input motion, the N-S component of Port Hueneme Earthquake 

18/3/57, has been chosen for all the examples, to facilitate a visual 

comparison. 

The first point to verify is whether departing from a known 

motion at the surface of a layer with known properties, we arrive at 

the very same motion after first deconvolving it, and then with the 

base motion obtained evaluating the response at the surface of the 

layer. Cases 1 to 4, shown in Figures (5.2) to (5.5), where both 

deposits have been given identical properties, show that .41(t), the 

input motion, and.42(t), obtained after both deconvolution and 

response, are identical. 

Case 5 illustrates the situation when both deposits and the 

bedrock are formed of the same material; thus, the impedance ratio for 

both deposits is equal to one, and the three motions'
.es2(t), 

and  .4ec (0 are the same, as shown in Figure (5.6) 

Cases 6 and 7 consider the first deposit to be of the same 

material as the rock formation. Hence, the datum acceleration g 

is equal to the reference motion g rec and only'es2  is different, as 

it is shown in Figures (5.7) and (5.8). 

For the remaining cases arbitrary layer properties were given. 

In Case 8, layer 1 is a strong deposit, as indicated by a high impedance 

ratio and a short layer period. Also, this period is not near to the 

predominant one of the datum motion, which is around 0.5 sec. Then, 

as one may see in Figure (5.9), the motion at the rock outcrop does 

not differ much from .41. Layer 2 is a weaker layer whose period 
coincides with the predominant of the original record. The maximum 

acceleration at the surface of this layer is twice as much as the 

maximum of the reference motion. 
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Figure (5.10) illustrates the case of two deposits with 

identical material properties, but one, layer 2, twice as thick as 

the other. One may see that the maximum accelerations at the surface 

of both deposits are almost the same, but the motions are rather 

different. Also from this Figure, we may see the reference motion 

corresponding to a surface record which has been deconvolved for a 

layer period which is equal to the predominant period of the surface 

motion. 

It is interesting to point out that the only operations 

involved in the computation of time-histories, by means of the wave 

solution, are additions and multiplications and that the layer response 

is evaluated point by point (see Appendix 2). The numerical process 

does not involve the computation of any series at all, as it is the case 
45 

of a modal analysis, nor /the validity of the solution 	restricted to 

the interval of definition of the input disturbance, as in a Fourier 

analysis. The layer response may be obtained for durations as short or 

as  long as one wishes, and in all cases with identical accuracy. 

Another advantage is that with the wave solution we may 

obtain the layer response at certain specific times without the need 

of computing the complete time-history. 

Therefore, from a numerical point of view, the solution 

proposed presents a considerable advantage over other available methods 

both in accuracy as well as in efficiency and simplicity in the 

computational algorithm. These considerations alone, fully justify the 

use of this type of solution. It must be said, on the other hand, that 

a great deal of time and effort has been spent, rewardingly, on the 

numerical solution of wave propagation problems. Nowadays, standard 

works are available (Idriss et al., 1973; Schnabel et al., 1972; 

Streeter et al., 1974b; Chen, 1975 etc.) which provide the response of 
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soil deposits for less restricted conditions than those we have considered, 

regarding both the material behaviour as well as the geometry of the 

deposit. Hence, an extension to the model which we have used, with 

more relaxed assumptions, would be necessary in order to make the 

applicability of the wave solution comparable to that of others found 

in the literature. 

This extension should not be difficult, at least on what 

is concerned with the material behaviour. An equivalent linear analysis 

such as that suggested by Idriss and Seed (1968) may be easily implemented 

to the wave solution. In this case, the fast computation of our 

proposed solution should prove to be invaluable in the iterative 

process implied in finding soil properties compatible with the effective 

strains, and it also offers the possibility of considering different 

values of these properties at different stages of the motion. 

It is difficult to assess at this stage the practicality of 

a wave solution in a closed form for two and three dimensional problems. 

However, it should be possible to obtain such a solution for simple 

boundary conditions. 

The major advantage of the method of solution used in this 

thesis is that it relates directly the time-history of the response 

with that of the input disturbance, namely, the relationship between 

excitation and response for a deposit in the time domain is found. 

This gives to the solution a close mathematical form and makes it 

capable of being interpreted in simple physical terms; thus providing 

a description rather than a mere numerical evaluation of the response 

phenomenon. In this sense, the application of the solution obtained 

goes far beyond the limitations imposed by simplistic assumptions as 

it enables us actually to visualise the physical problem, to have a 

better understanding of it, and hence, to establish judgements of 

general nature which may prove to be of great value. 
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For example, using the time-history approach we were able to 

give a definite explanation, and under the most simple considerations 

(Chapter One), to the slow convergence, using a modal solution, in 

the evaluation of responses from corresponding inputs (accelerations 

from accelerations, etc.) It was shown that it obeys the condition 

that the sum of participation coefficients is at its limit a series of 

pulses. We mention that this explanation is definite, as this is the 

case for all problems of wave propagation, irrespective of whether or 

not energy dissipation is considered. On this evidence, it may be 

suggested to improve convergence in modal analysis, to relate layer 

displacements and velocities to acceleration disturbances. 

The simple formulation of the radiation problem made in 

Chapter Two may also be seen as an application of a time-history approach. 

There, as the meaning of the expression for the layer response in the 

transformed domain was known in terms of an operation upon the input 

disturbance in the time domain, it was then possible to make the 

necessary modifications to a model of two finite layers in order to 

consider the foundation layer infinite and the disturbance acting at 

the base of the upper layer. 

After this formulation, the solution given in that chapter 

was also obtained following an approach suitable to express the layer 

motion directly as a time-history. This solution analytically verifies 

the expression for the displacement at the surface of the layer given 

by Newmark and Rosenblueth (1971), which, as they report, has been 

confirmed experimentally in the case of a shallow alluvial formation 

resting on rock by Takahasi and Hirano (1941). Also, it came to be 

clear, from the physical interpretation of the solution, that the period 

of the motion of the layer is not altered by including the effect of 

radiation. This conclusion which was arrived at so easily in the time 
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domain, is very difficult to visualise using other types of solution 

where the layer frequencies are related to the roots of a transcendental 

equation or the layer response is given an interpretation in the 

frequency domain. 

When an internal mechanism of dissipation, or damping, is 

considered in the layer response, it is perhaps the case in which the 

simplicity of a time-history approach can be more appreciated. From 

the solution that was found for a model of damping compatible with 

wave propagation, we may conclude that the effect of damping may 

be taken into account in a time-history approach, simply by increasing 

the layer period and gradually decreasing the amplitude of the 

travelling disturbance. 

Reflecting on this conclusion we may see that the model used 

represents, in essence, the case of material damping. Firstly, the 

damping coefficient is independent of the frequency content of the 

disturbance; whatever it is, both the layer period and the decrease in 

amplitude are given by the properties of the layer only. Secondly, 

the increase in layer period, as it is closely related to the travelling 

time h/s, may also be seen as a decrease in the value of shear modulus. 

Considering that both shear modulus and damping coefficient 

are defined in terms of a loop-shaped stress-strain relationship (Hardin 

& Drnevich, 1972a,b) the decrease in modulus for increasing damping 

holds true for actual cases. The model proposed, thus, may be considered 

as a linear approximation to material damping. This model is suitable 

to be refined in order to relate more realistically both material 

properties, using, for example, the design equations proposed in the 

previous references. 

Other models which have been proposed to consider the effect 

of damping (Appendix 3), as we mentioned in the pertinent chapter, cannot 

be used in an wave solution, simply because the equations of motion which 
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they give place to are not, in a strict sense, wave equations. However, 

in the case of a modified Voigt model, such as the one used by 

Schnabel et al. (1972), and which also resembles actual material 

damping, an approximate wave solution may be obtained by considering 

an equivalent increase in layer period and decrease in amplitude 

(Appendix 3). 

Figure (5.13) shows the response of a layer of period 0.1 sec. 

for the well-known Port Hueneme record. The time history in the right 

hand side was computed for 10% (Schnabel) damping using a frequency 

analysis. In the left hand side of the Figure, it is shown the time 

history obtained from an wave solution in which only the equivalent 

increase in layer period has been considered with no decrease in 

amplitude whatsoever. A better approximation, certainly, is achieved 

when such a decrease is taken into consideration; however, we wanted 

to stress the effect of the change in period which might be thought to 

be irrelevant. 

The capability of the wave solution to be interpreted in 

physical terms indeed gives to it an advantage over solutions obtained 

either by modal or frequency analysis, as the meaning attached to these 

solutions can only be given in terms of mathematical entities and not 

physical ones. 

This is well understood in the case of the former, of which 

it may be said that it basically intends to relate the response of .a 

continuous medium to that of a series of single degree of freedom 

systems. But, on the other hand, frequency analysis is thought to 

have a more direct physical interpretation, and this may lead into 

an erroneous conception of the response phenomenon. 
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We must stress that it is not intended to challenge the 

validity of such an analysis. In fact, the layer responses obtained 

from it are identical, in most practical cases, to those computed using 

a,  wave solution, as it maybe seen in Figures (5.14) to (5.16), where 

the acceleration time-histories evaluated using both approaches are 

shown for three simple cases. (At this point, it is pertinent to 

remark that while the frequency or Fourier solution required in each 

case, for a record of N points a number of operations proportional to 

N log2N to obtain the frequency image of the input (Cooley & Tukey, 

1965) then N/2 complex products and finally another N log2N operations 

to retrieve the response in the time domain, the wave solution needed 

only N real additions and multiplications for the whole process). 

The point that we like to emphasise is that frequency (or 

Fourier) analysis does not provide a clear description of the physical 

problem in the time domain, and that even from a frequency point of 

view, a better understanding is achieved by using a wave solution. 

A Fourier analysis based on the sum of harmonics (see Appendix 

4) indicates that an harmonic input of frequency 4f produces a layer 

response of the same frequency, but dephased and with different amplitude. 

Physically, this is only true, and partially, in.the case of sustained 

vibrations, and when the frequency of the input is lower than that of 

the deposit; conditions both which are implied in this kind of analysis. 

If the input is of finite duration, though harmonic and of only one 

frequency, its representation is no longer a point in the frequency 

domain, but a continuous function. Hence, to obtain the response of 

the layer for such an input using a Fourier analysis, it would require 

that for each point of such a function, we compute the change in phase 

and amplitude. 
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It is clear from the above that the frequencies to which the 

interpretation of the Fourier solution refers are those of the 

steady-state motions which added up represent the input motion in an 

interval, and not the frequency of this motion. Such an interpretation 

is therefore concerned with mathematical entities, and it has no sense 

if it is taken out of its context of a relationship between ordinates 

of Fourier spectra. 

Fourier analysis must be seen, in a rigorous treatment, as 

the application of the Fourier transform to solve the equation of motion 

of the deposit.(Appendix 4), and if the relationships between Fourier 

and Laplace transforms are considered (see Papoulis, 1972 for example), 

one certainly arrives to a solution identical to the one proposed in 

this thesis. 

The wave solution then, if we are interested in a frequency 

analysis, may also be seen as the convolution of the input motion with 

a series of pulses whose amplitudes and the separation between them 

depend exclusively on the properties of the layer. This series, 

that for the case of no dissipative mechanisms present in the response 

is illustrated in Figure (1.5c), is the response of the layer to an 

impulse disturbance, and therefore, its Fourier transform is the 

frequency transfer function of the layer (Appendix 4). From regarding 

the transfer function in this way an important practical point is 

evident, and this is that although such a function is independent of 

the input motion, it is not so of the duration of motion considered. 

For a transient motion of duration Td, the actual transfer function of 

the layer will be the convolution of the function H(f), the Fourier 

transform of the series of pulses mentioned above, with the function S(f) 

= Td sin(it Td f) 
n Td f 

which is the transform of a time window of width Td and unit height, as 

is shown in Figure (5.17). 
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We may then see that the problems that may be faced with a 

frequency analysis are not in the computation of responses for a given 

input, where both the transfer function and the frequency image are 

evaluated for the same time interval; but in the use of the transfer 

function separately. 

In the wave solution, rather than considering the response 

of a layer to an impulse as a separated function, the whole process 

of convolution with the series of pulses which represent this response 

has been taken as an operation on the input motion. This, which makes 

no difference 05/4p.-zu-  /he .ersciAliobri)/nedep.re conce,-iieci, indeed, it 

helps to visualise the layer response as a phenomenon of propagation, 

as convolution of any function with a pulse simply shifts the function 

to the position of the pulse. 

We may therefore conclude, to end this discussion, that a time-

history approach to the motion of a deposit leads to a simpler and more 

efficient numerical algorithm for the computation of this motion; but far 

more important, it provides both a clear understanding of the process 

involved in the analytical solution to the problem, and a consistent 

physical interpretation to this solution. In this way, such an approach 

enables us to assess the validity and limitations of our analytical model, 

and also to have a general notion, as good as our model, of the physical 

phenomenon. 
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APPENDIX 1 

SOME MATHEMATICAL NOTES ON THE SOLUTIONS 

The function f(p) is the Laplace transform of f(t) if 

, 
"T(p) 	4; e -11" f(t)dt 	 (A1.1) 

Among the properties of the transformation defined above which are 

constantly used in this thesis are: 

n— (a) L 	f(n)(t)] = p f(p)-p
n-1  f(0)-pn-2f(1)(0)- ....f

(n-1)
(0) (A1.2) 

where 

f(n) 	= do f(t) 

dt
n.  

and the symbol L 	] denotes the Laplace Transform of the function 

inside the square brackets. 

(b) L [ f(t-b) ]= 	e bP  f(p) 	 (A1.3) 

By the use of (A1.1) the partial differential equation of motion 

is transformed into an ordinary one, while (A1.3) enables us to avoid, for 

the case of wave propagation, the complicated process involved in the 

inversion formula of the transformation, i.e. 

c+ooi 	pt 
f(t) = 	1 f. f(p) e 	dp 

2n i  c-ool 
(A 1 . 4) 

With reference to the equations presented in Chapter One, 

applying (A1.2) the equation of motion (A-1) is transformed into 

2 daT(y,P) - p_ u(y,p) = 0 	(A1.5) 

dy2 	S2 



(11y) 	s (h+y) 
T 	

e  2  
F(Y,P)= 	 (p) 	s 	

+ e 
-22h  

1+e s 

(A1.9) 
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which has a general solution 

ri(5r,p) =Ae
t
s
E 
 Y  + Bes" 

v 
 (A1.6) 

After using the transforms of the boundary conditions it is found 

that 

A = B = 	1 	g(p) 	 (A1.7) 
P h 	h 

e +e 

  

and hence, +2 

1:(y,p) = e s 	+ e s  	g(p) (A1.8) 
+2  h 	h 
e 	+ e 

  

INVERSION  

For an wave solution, (A1.8) may be written 

and as 

(1+x)-1 = 	xn 

n=0 

r -2-(h-y) 	-£(h+y) 	 n -2n 
7(y,p) =Le s 	+es 	 (-1) e 	s 2  h  g(p) (A1.10) 

n=0 

which, using (A1.3) alone, gives in the time domain 

U(y,t) = W [t-(h-y)/S] + W t t-(h+y)/S 	(A1.11) 

where 

W(t) = Z (-1)n  g(t -2n h) 	(A1.12) 
n=0 

For a modal solution, the inversion formula (A1.4) is used 

to obtain U(y,t). The right hand side of that equation equals the sum 

of residues at the poles of the expression to be inverted multiplied by 

ept. 



109 

Equation (A1.8) may be written, in terms of an acceleration 

disturbance, as 

Tr(y,p) 11 cosh(py/s) 	g(p) 
2 cosh(ph/s) 

(A1.13) 

which may be seen as the product of a function U1(y,p) enclosed in the 

square bracket, and the transform of the acceleration disturbance. The 

displacement U(y,t) may thus be obtained by convolution of 	and the 

inverse of U
1
(y
'
p) which is found using the inversion formula. 

Hence, for 71(y,p) its poles are found to be at 

p = 0 
	

(A1.14) 

and 	cosh E h = 0 ; i.e. 

p = + (2n+1) n s i 	 (A1.15) 
2 h 	n=0,1,2,... 

The residue at p=0, a double pole, is found from the expression 

Rest  _n)  = 1 Lim 	d 511(y,p) ept  
12 p 0 di ' 

and it may be shown that 

= t 	t > 0 	(A1.16) Res(p=0) 

The residues at the single poles in (A1.15) may be evaluated with the 

formula 

p t 

P(Po) e  Res 	= (A1.17) 

 

dp Q(p) 1 
j p=po  

where P(p) and Q(p) are the numerator and denominator of TI(y,p) respectively. 

Adding the residues found from (A1.17) to (A1.16), it may be shown that 

U1(y,t) = t - 2s L (-1)n  cos(wn y/s) sin wnt 
n=0 	w2n 

(A1.18) 
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where 	Wn = (2n+1) it 
s 
1.7 

Finally, convolution of tyy,t) with 'g(t) gives the displacement 

Tyy,t), i.e. 

(A1.19) 

igy,t) = g(t) - 2s Zi  (-1)n  cos(wn y/s) .esin W 
n
(t-r )g(Z)dZ 

h n=0 	w2n   (A1.20) 

The series 

S1(y,t) = 2h L (-1)n  cos [(2n+1)2 MI] sin [(2n+1)n/2 h t]  2 S11 
n=o 	1 (2n+1)2 

TE 
may be written 

CO 

S1(y,t) = 4h nsin t (2n+1)h(y+st)i 4h nsin[(2n+1-.(y-st)] 

sn2  n=0 (2n+1)2  sn2 n=0 (2n+1)2  

(A1.21) 

The two series in (A1.21) are the Fourier series representation of the 

functions F1(t) and F2
(t) shown in Figure (1.4). To prove it, consider 

first the fact that both F1 and F2 
are periodic functions, and that in a 

cycle they are defined as 

[ 

F1,2(7)  = 	i1  1  

1 _ —
2 (7-n) 

(A1.22) 

n <t <3n 
2 	2 

 

where 7 = 	+ t 

and 	T = 2n = 4h , the period of the functions. 

Consider now the Fourier series of F12(7); i.e. ,  

co 

F12
(7 ) = a0  + 	[ •aM  cos 1401  Z + bm sin Wm 

M=1 

(A1.23) 

where W
m 
= mW = m 2n 

T 

As the function in (A1.22) is an odd function; i.e. 



F1,2 (- Z ) = - F1,2(1  ) 

it follows that for all m: 

am = 0 

Also, F12(7 ) has half-wave symmetry; hence, for all even m: 

bm 	0 

For an odd m: 

bm  = 1 4 F1,2( ) sin Wm7 dZ = 2 sin m n 
2 

nm 

m=1,3,5,.... 

or, considering the value of sin mn/2 

(m-1)/2 
b = 2 	(-1) 
m 	2 

nm 
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(A1.24) 

Hence, 
(m-1)/2 

F
12(T ) = 2 L (-1) 	sin Wm  (A1.25) 

 

m=1 
m2 

 

m=1,3,5,7,•••• 

Finally, if the substitution n = m-1 is made, and considering the 
2 

relationship between it, W, and 411 , and after some manipulations, it is 

found that 

F1 2( ) = 4h 	
(-1)n  sin[(2n+11q 

,  
2 

(2n+1)2  Tit n=0 

(A 1 . 26 ) 

which proves our initial statement regarding the series in (A1.21). 

Now, as the Laplace transform is defined for positive t only, 

it should be understood that the series in (A1.21) are each multiplied 

by a unit step function H(t), defined as 

H(t) = 	0 	t 0 

1 t 0 

and hence, for a particular y, the functions F1(t) and F2(t) should be 
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considered with the time origin as it is indicated in Figure (1.4) 

The ramp function R(t) is defined 

R(t) 	= 0 

{ 

t 4 0 

t t ?' 0 

and it may be shown that 

4; R(t -t )f(t) d 	= ft  IX  f(1 )cir d% of  o 

also, 

d R(t) = H(t) 
dt 

hence, 	4; H(t_ )f(Z ) dr = 4; f(i) dl 

Furthermore, 

d H(t) = 6(0 
dt 

and 	ft  (t- )f( r) dZ = f( 'Z ) 

(A1.27) 

(A1.28) 

(A1.29) 

(A1.30) 



APPENDIX 2 

NUMERICAL COMPUTATION OF THE LAYER WAVE  

The computation of the layer wave, and hence of the layer 

response can be carried out in a fast and simple way when the 

corresponding disturbance is given as a set of values equally spaced 

in time. 

In general, the expression for the layer wave, for a 
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disturbance g(t), is of the form: 

Wg(to) = k1 L (-1)
nk2n  g(t-2nk ) 3 

n=0 

where k1, k2 and k3 
 are constants. 

Let g(t) be a. set of N points gi, such that 

gi  = g E (i-1) x At 	
i=1,2,.... N 

(A2.1) 

(A2.2) 

where At is the time interval between two of those points. 

The disturbance g(t) may be divided into NS segments of NPS 

points each, as it is shown schematically in Figure (A2.1). NS and NPS 

are such that 

NPS = 2k
3 
	 (A2.3) 

At 

and 	NS x NPS = N 	 (A2.4) 

The layer wave may now be computed, also in segments of 

NPS points as it is shown in Figure (A2.2). The first of these segments, 

SW1, is obtained by multiplying the first segment of g(t), S1, by the 

constant k1. SW2  is then computed as 

SW2 
= k1 

S
2 
- k2 

SW
1 	

(A2.5) 

and in general, 

SWi  = k1  Si  - k2  SWi-1 	 (A2.6) 

For j > NS; i.e., once the disturbance has ceased, 

SWj  = - k2  SWi_i 
	

(A2.7) 
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APPENDIX 3 

SOME ANALYTICAL MODELS CONSIDERING DAMPING  

Voigt's Solid  

The equation of motion 
• • 

which corresponds to a Voigt's solid (Kolsky, 1963) where the increase 

in strength during dynamic loading is assumed to be proportional to the 

time rate of deformation. 

Considering the same reference system which has been used 

throughout the thesis, the general expression for the layer displacement 

in the domain of the Laplace Transform may be shown to be 

tar 1  ) 	( 1 )  
17(y,p) =Ae s 	1-]gyp +Be s.14473,7 

where 	S2  = G , and 
p 	G 

(A3.3) 

A and B are functions of p 

If no further assumptions are made on the nature of the material 

constants, the general solution of (A3.3) in the time domain does not have 

a D'Alambert form, as the presence of p in the radicals prevents the use 

of the Shifting Theorem. The equation of motion (A3.1) is thus not a,  

wave equation. 

Papastamatiou (1971) gives a modal solution for equation (A3.1) 

and Kanai (1951) provides the solution of (A3.1) for steady state motion. 

Schnabel et al. (1972) present a Fourier analysis to evaluate the layer 

response to an arbitrary motion, based on Kanai's solution and assuming 

a complex shear modulus independent of frequency. 

p U(y,t) = G U"(y,t) + 1 U"(y,t) 	(A3.1) 

is derived from considering a constitutive equation for the material 

in the layer given by 

= G + 	I Uqy,t) 	 (A3.2) 
at 
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For this additional consideration, an equivalent wave solution 

may be obtained and therefore the complexity of a Fourier analysis may be 

avoided. Substituting iw for p in (A3.3), and then making Xw equal to 

213, it is obtained that 

+iwy( 	1 ) 	-iwy.f 1 ) 
U(y,iw) = A e s 47172ii + B e 	8575i 	(A3.4) 

where p is the critical damping ratio considered in the previous 

reference. For the conditions that y=0 is a free surface and that at 

y=h the motion is g(iw), we arrive at 

(a+bi)(h-y) 	-127-(a+bi)(b+Y) 

U(y,iw) = e 	
+ e 	g(iw) (A3.5) 

 

-2w-2iwh hb 	— a 1 + e s 

  

where a and b are the real and imaginary parts of (1+24)- 112  

respectively. 

The expression for the layer wave in the time domain is related 

to the inverse transform of the denominator in (A3.5). This denominator 

may be written 

D(iw) = 	e-nb e-2iwh a 	 (A3.6) 

in which the relationship 

w = 2n = 2n s 
T TIT 

was considered to obtain the exponent - nb. 

Substituting now p for iw in (A3.6), we get 

-nb -2ph a 
D(p) = 1 + e 	e (A3.7) 

A comparison of the previous expression with equation (3.7) 

in the main body of the thesis, once the relation given in equation (3.24) 
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is considered, indicates that an equivalent wave solution for Schnabel's 

model may be obtained if the damping coefficient T is made equal to 

= 	= a 

17-17it2 	17 
(A3.8) 

VISCOUS DAMPING PROPORTIONAL EITHER TO THE ABSOLUTE OR TO THE RELATIVE  

PARTICLE VELOCITY.  

The equations of motion: 

U(y,t) + k U(y,t) = S2  U"(y,t) 	(A3.9) 

and 

[ • U(y,t) + k1  L U(y,t) - g(t)] = S2  U"(y,t) 	(A3.10) 

Consider the effect of damping to be proportional either to the absolute 

particle velocity, (A3.9), or to the velocity relative to the base motion 

g(t), (A3.10). Modal solutions may be obtained for both equations, but 

none of them is a wave equation. This may be seen from the general 

expressions for the layer displacement in the transformed domain, which 

may be shown to be 

U(y,p) = A e 6  

	

t.51  71c; 	—21 
+ Be s 

	

	(A3.11) 
+kp 

corresponding to (A3.9), and 

+z.  

	

p +k
1
p 	s 11 	 1p 

	
2 

U(y,p) =Ae s 	+ B e 	+ k1  S g(p) (A3.12) 

p+k
1 

for equation (A3.10). 

The radicals in the previous expressions are functions of the 

parameter p of the transform, and thus, the shifting theorem is not applicable. 



+iw t 	-iw t 
U(y,wt) = 	0(y,w

n
) an e n  + B

n 
e n  J 

n=1 
(A4.5) 
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APPENDIX 4. 

Frequency Analysis Solution to the Wave Equation  

In a linear system such as that of a layer whose equation of 

motion is an wave equation, the total response of the system to a 

series of excitations is equal to the sum of responses to each particular 

excitation acting independently. This property of a linear system is 

used in frequency analysis. 

Consider a disturbance g(t), which in an interval 0 z t.4 Td, 

as it is well known, may be represented as a series of harmonics, i.e. 

+iw
n
t 	-iwt 

g(t) = 	a
n 
e 	+ b

n 
e 

n 	
(A4.1) 

n=1 
0 4 t Td  

where 	w
n 

= 2n it 	 (A4.2) 
Td  

The response of a layer to an harmonic motion of frequency wn  may be shown 

to be 
+iw t 	-iw t 

U(y,wnt) = 0(y,wn) Ean e n  + b
n 

e n  

+iw
n y 
kk 

where 	O(Ylwn) = A e 
	+ B e 	n y  

(A4.3) 

(A4.4) 

where k depends upon the material properties of the layer, and A and B 

upon the boundary conditions. 

It follows, from the previous equation that the total response 

of the layer to the disturbance g(t), within the same interval in which 

it is defined, is given by 

Oft _4 T
d 

In a more rigorous formulation a frequency analysis solution should be 

seen as the result of using the Fourier transform to solve the differential 

equation of motion as follows: 



120 

The relationship between the input disturbance g(t) and the layer response 

may be expressed as 

II(y,t) = e h(7 ) g(t-l)dI 
	

(A4.6) 

where h(t) is the response of the layer to an impulse function 6(t). 

The frequency response of the layer is given by the Fourier transform of 

h(t) (Trifunac & Udwa'dia, 1972), that is 

-2nift 
Ti(f) = f+c°  h(t) e 	dt 

Hence, if the Fourier transform of (A4.6) is taken, it follows that 

IT(y,f) = h (f) g (f) 	 (A4.7) 

where 
-2nift 

g(f) 	= f+eg(t) e 	df 
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APPENDIX 5 

EARTHQUAKE LAYER SPECTRA  

The use of maximum ground acceleration or standard response 

spectra for design purposes is not always recommended as, according to 

field evidence, both are far from being a good measure of the damaging 

potential of an earthquake (Ambraseys 1975). A more sensible approach 

to the design of important structures, as it is suggested in the previous 

reference, would be to consider a suitable number of real or artificial 

time-histories selected in accordance with the source parameters of the 

design earthquake, and then make a full dynamic analysis. 

We may think, however, of response spectra as indexes which 

provide a general idea and a rough estimate (usually over-conservative 

in the case of accelerations) of the response of actual structures. For 

the case of a soil deposit, this estimate is too scant, in view that even 

for the simplest possible situation, namely, an homogeneous layer, its 

motion may be seen as the response of various simple oscillators .combined 

rather than of only one of them. 

We may thus take the response of this simplest case as a more 

indicative index of the behaviour of a deposit. Hence, instead of 

considering a standard response spectrum, we may think of a layer response 

spectrum or simply layer spectrum, which, say for acceleration, may be 

defined as 

 

SAL  (TL) 
xox,I 

max I U(y,t) 	I 

where 
• • 

 

 

u(7,t)Twal. : Acceleration time-history at depth y of 

an homogeneous layer of period TL, impedance 

ratio m, and damping coefficient 
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SAL (TL) 
 X,a,1 
	the corresponding layer spectrum 

X = 	= z 	relative depth 
ST
L 

H 

S 
	shear wave velocity 

H 
	

layer thickness 

The expedience in the computation of the layer response using a 

time-history approach makes the evaluation of layer spectra feasible, and 

even more important, the values which are obtained using this approach 

are the actual maxima of the response for the corresponding layer 

characteristics. Hence, an immediate application for these spectra would 

be to check the accuracy of maximum values obtained from a simplified 

modal analysis (equation 1.31). 

Also, in the case of an earthquake recorded at the outcrop of a 

rock formation, as this record, under the assumptions of this thesis, 

represents the input earthquake disturbance for any deposit founded on 

that formation, layer spectra computed for X = 0 would give us the maximum 

ground response for that particular record. An average of the values 

obtained for different events recorded at the same location would provide 

the expected maximum ground response. 

Again we insist on the index nature that should be given to these 

values, both layer spectra and expected maxima, and on their limitations 

for design. 

Acceleration layer spectra have been computed for six actual 

earthquake records, which are illustrated in Figures (A5.1) to (A5.12) 

followed by their standard response spectra. Layer spectra are shoWn in 

Figures (A5.13) to (A5.24). The name of the record taken as reference 

motion and the depth at which maxima were computed are indicated in the 

upper part of the figures. 
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Four graphs, each one corresponding to one damping coefficient 

are shown in each figure. The six curves in each graph are the 

acceleration layer spectra (in percent of g) computed for values of 

impedance ratio a, from 0.0 to 0.5 in steps of 0.1. The upper curve 

in each graph obviously corresponds to zero impedance. 
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