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ABSTRACT 

This thesis is concerned with the development of efficient 

techniques for various computational requirements relating to linear 

circuit sensitivities. Attention is paid to the situations where the 

changes in component values cannot be assumed to be infinitesimal. 

Two efficient methods for predicting the effect on circuit response 

of simultaneous changes in a number (m) of components are examined. 

It is shown that the computational cost of predicting the effect of each 

set of component changes is approximately Gm, where Gm  is the cost of 

a Gaussian elimination of an m x m matrix. However, if the sets 

represent combinations of relatively few individual component changes, 

then systematic  exploration is shown to reduce the computational cost 

per set to the order of one. This remarkable saving in computational 

cost makes systematic exploration a powerful tool in computer aided 

circuit design. 

The use of systematic exploration leads to the discovery of an 

efficient method for the generation of multi-dimensional performance 

contours. The efficiency of the method makes it particularly suitable 

for interactive graphic display implementation. This is illustrated 

with a 3-dimensional example. 

For the situation where a number of components in a circuit 

exhibit the same form of functional dependance on a global variable 

such as temperature, the concept of tracking sensitivity is introduced. 

An algorithm for the computation of tracking sensitivity is devised. 

Rapid exploration of the effect is permitted by the small number of 

operations associated with each value of the global variable following 

an initial calculation. 
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For the prediction of manufacturing yield, a modelling technique 

based on the regionalization of a variable component space is combined 

with the computational technique of systematic exploration to provide 

a very efficient prediction of the spread in circuit performance 

due to spread in a number of components. Illustrative examples enable 

the new approach to be compared with the Monte Carlo technique. 

Finally, a method is proposed for design centering and tolerance 

assignment. This method, termed orthogonal silhouette method, is based 

on the fact that in a regionalized variable component space, all edges 

leading to a common vertex are orthogonal. Being compatible with 

systematic exploration, it enables design centering, in a space where 

the number of dimensions is large, to be performed with great accuracy 

and economy. 
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CHAPTER 1  

COMPUTER AIDED CIRCUIT DESIGN 

1.1 Introduction 

The traditional design process of an electronic circuit may 

be characterized by a simple block diagram as shown in Fig. 1.1. 

From available technology, design technique, and experience, the 

design engineer formulates a possible design to meet the specifi- 

cations. The design must then be analysed to find out if the 

specifications are met and if the proposed design is reasonable. 

Then, the next step is to construct a breadboard model and test 

the design experimentally. If all proves satisfactory, the designer 

can ask for the design to be laid out ready for a prototype 

construction. 

As electronic circuits have become increasingly complicated, 

designers have had to rely on more sophisticated design techniques. 

In recent years, engineers have turned with ever increasing 

attention to the use of computers for electronic circuit design and 

it has become common practice to simulate circuit designs, both 

discrete and integrated, on digital computers. An obvious example 

of the application of computer aided circuit design is for integrated 

circuit design, where simulation using discrete components may 

prove to be unrealistic at best, if not impossible in practice. 

As many copies of a circuit are to be manufactured in a modern 

mass production factory, the need to reduce the manufacturing cost 
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and predict the manufacturing yield are of great commercial significance. 

To arrive at a minimum cost design (i.e., one using maximum component 

tolerances) commensurate with minimum specification failure of the 

manufactured circuit, the process known as toleranced circuit design 

[1,2] must be invoked. The manufacturing yield may be determined 

from a statistical analysis of the circuit [3,45]  . Although the above 

processes are greatly beneficial to a better circuit design, they require 

a huge number of computational operations which can only be practically 

performed with the aid of a digital computer. 

The use of interactive graphic facilities [6,7,8] in computer 

aided circuit design enables the designer to exploit the computer's 

potential to the full. For this reason, throughout this thesis, the 

discussion of computer aided circuit design is within the context 

of an interactive graphic facility. 

1.2 A Typical CA CD Process  

The principal tools at the designer's disposal for a typical 

computer aided circuit design package are programs which perform 

ac,dc, transient, sensitivity and statistical analysis and other 

functions as shown in Fig. 1.2. Over many years, much research work 

has been done in improving and extending the functions within this 

package [ 8 . 

At the initial step of a computer aided circuit design, the 

devices such as transistors and operational amplifiers in the circuit 

are suitably simulated by models. These models must be able to 

describe the behaviour of the device embedded in its circuit environ-

ment. Once suitable device models are available, a circuit can be 

simulated on a digital computer. The circuit description for a 
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computer input can be highly user oriented and allow considerable 

freedom in the description of numerical values of the components, 

and the topology of the circuit [ 9 ] . A set of circuit analysis 

programs, which are usually based on nodal analysis can now produce 

the desired response measure which is then presented to the designer 

graphically or numerically. 

Having obtained the initial analysis result, the designer 

often wants to speculate and explore, and to ask 'what if?' questions: 

"What happens if I change these components by a large amount?". 

The change can be made either manually by the designer as in the 

process of exploring the effect of the change of one or a group of 

components dynamically as in the use of an interactive graphic 

facility, or automatically as in an optimisation or Monte Carlo 

process. Knowing the analysis result enables tolerances to be 

assigned to the variable components, or the circuit to be modified 

by the designer. 

For the above mentioned processes, sensitivity analysis is 

used for the exploration of a design with respect to component 

perturbation. For truly interactive computer aided design to be 

feasible, efficient methods for the computation of circuit sensitivity 

are required. Since a minimization of computational effort allows 

results to be returned promptly, the remaining chapters of this 

thesis will be devoted to the sensitivity analysis of a linear circuit. 

1.3 Device Modelling  

To facilitate the description of an electronic circuit for 

computer aided circuit design, complex devices such as transistors 
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and operational amplifiers must be represented with an acceptable 

degree of approximation. There are a number of ways to describe 

the electrical behaviour of a device. In terms of network analysis 

by computer, however, these different models can be grouped into 

five classifications: 

1. A numerical constant. 

2. An analytic expression. 

3. A table. 

4. A four terminal black box. 

5. An equivalent circuit. 

In performing an analysis, not all five models will be equivalent 

in terms of accuracy and computation. Usually, the equivalent circuit 

type model is chosen for computer aided circuit design. The reasons 

are: Firstly, the equivalent circuits are easily interpretable 

with the known circuit theory, which allows the designer to have 

better insight into the model. Secondly, many techniques which have 

proved themselves very useful in the field of circuit analysis and 

design can also be applied to the analysis and synthesis of models. 

Several points must be considered when representing an active 

device by an equivalent circuit: 

1. Operating region. If the device performs only over a 

small range of voltage and current, the parameters in the 

models may be regarded as approximately constant. 

2. Frequency range. When the analysis is over a limited 

frequency range, additional simplification may be made in 

representing the device. 
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3. Accuracy. Generally, in any analysis, the degree of 

accuracy required will greatly affect the complexity of 

the equivalent circuit used in the modelling. 

4. Measurability of parameters. Not only must numerical 

values for the circuit elements in the model be determined, 

but their dependence on electrical and physical conditions 

must be determined as well. 

One example of device modelling is illustrated in Fig. 1.3. The 

active device - a transistor - used in the different examples which 

follow is modelled using the hybrid-n circuit. The component values 

in this model are quoted in the manufacturers technical data of 

it-parameters for the device in question. 

Models which allow accurate analysis are normally very complex, 

and call for a large number of device measurements and calculations. 

Thus, to reduce the computing time involved in network analysis, and 

to gain insight into the behaviour of the device, it is necessary to 

employ models of reduced complexity. Therefore, one important aspect 

of device modelling is the problem of realizing maximum accuracy 

with minimum model complexity. The model simplification technique due 

to Villalaz et al [10] which allows the complexity of linear 

equivalent circuit models to be reduced to a minimum level is shown 

in Fig. 1.4. In this example, the equivalent circuit model of an 

operational amplifier'is simplified according to the particular 

application and to the tolerance on the circuit response. 

1.4 Basic Network Analysis Procedure  

The development of a general network analysis computer program 

must be based on the framework of a mathematical description, of the 
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general node (or loop) system of equations [11,12] 	Otherwise the 

program will be reduced to solving special cases and would consequently 

be of limited usefulness. 

Physically, a general branch of an electrical network may 

consist of four distinct electrical devices: 

1. A passive element. 

2. An ideal voltage source in series with the passive element. 

3. An ideal current source in parallel with the above combination. 

4. A voltage controlled current source in parallel with the 

above combination. 

The relative position and orientations of these electrical 

elements for a general branch are shown in Fig. 1.5. If we use the 

notation of that figure as definitions for voltages and currents, 

then the branch is described by 

ib 	yb(vb  - es)  - is 	cs 

where ib and vb are the branch current and branch voltage 

respectively, is  and es  are independent current and voltage sources 

and ics  is a voltage controlled current source. 

Equation 1.2 is obtained by forming all the branch equations into 

the matrix form 

Ib = Yb (Vb Es) - I 	I s cs (1.2) 

where Yb is a diagonal matrix and the remaining quantities are 

column vectors. On pre-multiplying equation 1.2 by the reduced 

incidence matrix A, [ 13] , the left hand side of the equation goes 

to zero, we get 

0 = A Yb (Vb - Es) - A Is 
	Al cs 	(1.3) 



This leads to an expanded version of the nodal analysis equation. 

A Yb A
t 
VN + A Gb A

t V . A Is + A Yb Es 
	(1.4) 

In this equation, VN  is the vector of nodal voltages, Gb  is the 

non-diagonal matrix of mutual conductances, and the term for the 

controlled current sources has been expressed explicitly as Gb A
t 
VN. 

If a comparison with the usual compact form of the expression for 

nodal analysis 

	

YN VN 	. 	IN 

is made, it is seen that 

YN VN 
= A Y

b 
At VN + A Gb A

t 
VN 

and that 

IN 	. 	A Is 	+ A Yb Es 

(1.5) 

(1.6) 

(1.7) 

Matrix equation 1.5 may be solved by one of the techniques 

which yield all or some of the nodal voltages depending on the 

method chosen. In the following work of the thesis, when computational 

cost is to be assessed, it is assumed that the Gaussian method [14] 

is used for the solution of linear equations and the Gaussian-Jordan 

complete elimination method [14] is used for the inversion of a 

matrix. 

1.5 Martaglputer  

In order to make interactive computer aided circuit design 

feasible, an effective communcation dialogue must be established 

between man and machine [15] 	In circuit design the natural 
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language of the engineer is the circuit diagram. Therefore, the 

communication language between man and machine should be graphical. 

Such communication is possible with an input-output device known 

as a graphics console. A man sitting at the CRT display could enter 

data (such as a circuit diagram) directly on the CRT face by using 

a light pen. These data are then converted into an internal form 

which is acceptable by the circuit analysis program residing in 

the computer. The circuit analysis program calculates the requested 

response, and outputs data which are in turn translated into pictorial 

form (Fig. 1.6). The designer views the graphic output and makes 

changes in his original circuit diagram. Then the process is 

repeated until a satisfactory design is achieved. The process can 

be analogous to an engineer making actual changes in his breadboard 

circuit and viewing the result on an oscilloscope. 

How does a designer "draw" his circuit on the face of the 

display scope using a light pen and programmed control buttons? 

In drawing a circuit on the scope face, the user should not have 

to label a resistor such as R R2 
	R

n 
and specify that R1 

is 

connected between nodes number 10 and 13. The user needs only 

pick a resistor light button, fetch it to the display surface, 

connect it to the appropriate nodes, and give the resistor a value. 

The computer is delegated the task of 

1. assigning node numbers to keep track internally of 

circuit data, 

2. keeping a list of which components are connected to 

which nodes, and the values and types of the components, 

3. assisting the composing of the circuit in step-by-step 

fashion. 
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Fig. 1.7 shows how a drawn circuit diagram appears on the face of the 

display scope and Fig. 1.8 is the response of the circuit found from 

the analysis. Fig. 1.9 is the computer print out description of 

the circuit. 
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Fig. 1.1. The design process. 
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Fig. 1.2. The principal functional blocks of a typical 

computer aided circuit design facility 
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Fig. 1.3(a). A Transistor 

Bo 	 

  

  

  

20011* 

   

   

E 

Fig. 1.3(b). Hybrid-it model of the transistor 

in common emitter configuration. 
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Fig. 1.4(a). Original operational amplifier circuit. 

Vout 

Fig. 1.4(b). Small signal equivalent circuit model 

of the operational amplifier, the heavy lines 

identifying the simplified model 
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+ V
b  

Yb 

R,L or C 

is 

acs 

	GD 	 

Fig. 1.5. A general network branch. 

Yb 	passive element. 

es 	ideal current source.- 

is 	ideal voltage source. 

i
Cs 

- voltage controlled current source. 

designer 

man-computer 
dialogue 

Fig. 1.6. Man-computer interaction in the process of 

computer aided circuit design. 



Fig. 1.7. A circuit diagram drawn on the 

face of the display scope. 

Fig. 1.8. The response curves of the 

drawn cireui t. 
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**** MINNIE CIRCUIT DATA **** 	DATE 1/ 4/1976 

11 NODES. 	18 BRANCHES. 	NODE 	4 IS INPUT. NODE 11 IS OUTPUT. 

**3****3****2****3****3****3****3****3*** 
3 	3 	3 	3 	3 
* 	* 	* 	* 	* 
* 	* 	* 	* 	* 
3 	82* 	C18 	3 	RII 
* 	R2* 	CIS 	* 	RII 
* * * * * 
83* 2 E R12 1 
R3* * E RI2 1 
* **2*** * * **11***11** 
1 C*+ 	2 EEE 8 C*+ 	1 
* C*+ 	* E * C*+ 	I 

**4****C4***1 ****1 ****1 ****T1** 	**2****C9***8****8****TI0* 	* 
4 	C4* 1 T1E*- C9* 8 TIE*- 	I 
* * E*- * 	E*- 	1 
**4*** * * * 	* 	* 
4 	4 1 5 8 	1 	817 
* 	* * * * 	0 	RI7 
* 	* * **5*** * 	**10** 	* 

15* 	118* R6* 5 	5 814 	1 	1 	E 
15* 	Re* R6* * 	* R14 	0 	0 	E 
* 	* * * 	* * 	* 	* 	* 

, 	E 	E E 87* 	C16 E 	R13 	C15 	EEE 
E 	E E 87* 	C16 E 	R13 	CI5 	E 
**EE** * * 	* * 	* 	* 	* 

E E E 	E E 	E 	E 
E E E 	E E 	E 	E 
**EE***EE***EE***EE***EE***EE***EE***EE***EE***EE***EE***EE***EE** 

E 
E 
* 

EEE 
E 
* 

BRANCH 	BETWEEN 	VALUE 	CONTROLLED 
NODES 	 BY NODES 

	

T 1 	1(B) 2(C) 5(E) 	888888 

	

R 2 	2 	3 	2. 200E+03 OHMS 

	

R 3 	1 	3 	1. 000E+05 OHMS 

	

C 4 	4 	1 	1.000E-05 FARAD 

	

15 	0 	4 	1. 000E+00 AMPS 

	

R 6 	0 	1 	2. 200E+04 OHMS 

	

R 7 	0 	5 	4. 700E+02 OHMS 

	

R 8 	0 	4 	5. 600E+02 OHMS 

	

C 9 	2 	8 	1. 000E-05 FARAD 

	

TIO 	8(8) 11(C) 10(E) 	888888 

	

811 	11 	3 	2.200E+03 OHMS 

	

RI2 	8 	3 	1.000E+05 OHMS 

	

8I3 	' 0 	10 	4.700E+02 OHMS 

	

R14 	0 	8 	2.200E+04 OHMS 

	

C15 	0 	10 	1.000E-04 FARAD 

	

C16 	0 	5 	1.000E-04 FARAD 

	

817 	0 	11 	1.000E+06 OHMS 

	

CIS 	0 	3 	1.000E-04 FARAD 

Fig. 1.9. Computer print out description of the drawn circuit. 



CHAPTER 2  

SMALL CHANGE SENSITIVITY 

2.1 Introduction  

Once an initial design has been completed, this design should 

be simulated to find the various factors affecting the performance of 

the circuit. One factor which determines the quality of the circuit 

is the effect on its output of a small change in any component value. 

The small change sensitivity of a component is defined as the 

normalized change in output for a normalized minute change in 

component value. 

Consider a network (Fig. 2.1(a)) with branches described by 

(1.1) which can be rewritten with the term for the controlled 

current source expressed as mutual conductance 	and and controlling 

voltage vb  

ib 	Yb(vb - es)  - is gm vb 
	(2.1) 

Differentiation of this branch equation with respect to a 

dimmy variable, X , provides the starting point of all the well 

known methods of small change sensitivity analysis. 

The differentiation of (2.1) has three possible results 

depending on what component X represents. 

1. If X is not a component of the branch under consideration 

( X 14 yb  and X y‘ gm) then the differential is 

ai
b 	

a vb 	av
b 

ax 112  Yb ax m  ax 

(2.2) 

29 
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2. If X is the branch admittance ( x = yb) then the 

differential is 

aib 	a vb  

ax - Yb 
avb  

+ g
in a x + (vb - es) (2.3) 

3. The last alternative is that in which x is the branch 

mutual conductance ( X = gm), then the differential is 

aib 	a vb 	avb = y 	+ gm  a X 	b a 	 a x 	vb 

Use of the Kronicker - Delta function, 

(5..==1 	if 	i = j 2.3 

if 	J ij 
= 0 

allows (2.2) to (2.4) to be expressed far more compactly as 

. 	 t 
aib 	ay'la 	av.1) .. Y 
	

+ g b 	m 
 a x ax 	a x 	

+ 6xy
b
(vb - es) 

t 
+ 

X g Vb 

(2.4) 

(2.5) 

Pre-multiplication of the generalized matrix form of the equation 

by the reduced incidence matrix, A, gives 

dvu] 	av 
A Y 	---= + A G 	

.v. 

b 	b 
---=1 

a x 	 . a x 

22 
 - A [SXYb 

(vb  - es) + xgm 
vbi 

which may also be rewritten as 

A Yb At 	(9-711  + A Gb At 	avN  
a x 	 a x 

= - A [ a
XYb 	0 

(v, - e 8 ) 6 xg b 

(2.6) 

`42.7) 
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The left hand sides of this equation are identical in form with 

(1.5). This fact means that (2.7) may be interpreted as a new network, 

topologically identical to the original and with the same component 

values, from which the voltage differentials of the original network 

may be found. These differentials with respect to a component X 

are equal to the nodal voltages of the new network when the network 

is driven by a suitably valued current source across the same 

component X . As shown by the right side of equation 2.7, this 

one current source, of value vb  - es, or vb, across X is the only 

independent source in the new network. The new network, shown in 

Fig. 2.1(b), is the auxiliary network proposed by J.V. Leeds [161 

Hence, by analysing one extra circuit, the sensitivities of all 

possible transfer impedances to one chosen component can be found. 

In a sensitivity analysis procedure, we normally require the 

sensitivity of one particular output to all the components. If 

the network under consideration is limited to the reciprocal set, 

then, using the principle of reciprocity [17] , the auxiliary 

network may be used to find all the component sensitivities with 

respect to one nodal voltage. Consider forcing the auxiliary 

network across the output port by a unit current source (Fig. 2.1(c)). 

The voltage, if , appearing across any component, X , is identically 

equal to the voltage that would appear across the output if the 

current source had been placed across the component in question. 

Therefore, if the auxiliary network is analysed when the output 

is being forced by a unit current source, then the sensitivity of 

the output voltage to any component is the product of the original 

component voltage and the auxiliary component voltage. 
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2.2 Tellegen's Theorem 

The restriction of the Leeds' technique to reciprocal networks 

was lifted by the introduction of the 'adjoint network' [18,19] . 

In order to examine the adjoint circuit theory in detail, the 

concept of Tellegen's theorem [20] must first be reviewed. 

t 	t 

Tellegen's theorem states that if 	12, 	 i
b 
are the.  

ft 	11 	 ft 

	

branch currents of a b-branch network N!, and vl, v2, 	, v
b 

are the branch voltages of another b-branch network N , where N 

and N have a common linear topology but may otherwise be different, 

then 

2: I  " 
i
a 
v
a 

= 0 	 (2.8) 

a 

where the summation is over all branches of the network. The 

sign convention adopted for branch voltage and current is such that 

tt 	 I n 

if N and N were identical, the product i
a
v
a 

would be the 

instantaneous power supplied to the branch. 

If some branches are, in fact, ports of the network, the 

products associated with the ports can conveniently be placed on 

the opposite side of the equality sign to yield 

1 n 	1 n 

ia Ira as 	ip vp 
a 

(2.9) 

where a and p now denote internal branches and ports respectively. 

Equation 2.9 is the theorem originally presented by Tellegen and 

has since been known as Tellegen's theorem. However, it is a 

special case of a more general form of the theorem. The general 

form of Tellegen's theorem was not found until 1970 when it was 

first introduced [21] . This form of Tellegen's theorem has been 
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shown to be of particular value in small change sensitivity 

computation. 

The generalized form of Tellegen's theorem is expressed in 

terms of "Kirchhoff operators". The purpose of these operators 

is to derive from one set of currents (or voltages) that obeys 

Kirchhoff's current (or voltage) law, another set of quantities 

that obeys the law. For example if the currents [ia(t)] obey 

Kirchhoff's current law, then so do their derivatives [dia(t)/dt] . 

Let A be a Kirchhoff current operator whose effect upon 

the set of branch currents i
a of a b-branch network is the 

generation of a new set of a b-branch "currents" A i
s that obeys 

Kirchhoff's current law. Similarly let A , a Kirchhoff voltage 

operator, operate upon the set of branch voltages va  to generate 
t 

a new set of branch "voltages" A va  that obeys Kirchhoff's voltage 

law. For a network with ports, it then follows immediately from 

this, that 

a 
At 	 A

tt 

	
. 	 AiAv 
	

(2.10) 

where i and v
P 
 are the port currents and voltages respectively 

and the indices a and p are over all the branches and ports of 

the network. Equation 2.10 is the generalized form of Tellegen's 

theorem. 

In many applications of the generalized form of Tellegen's 

theorem, it is simpler to apply what is called the difference form 

of the theorem. The difference form of Tellegen's theorem is 

obtained by interchanging the roles of A and A in (2.10) and 

by subtracting the result from (2.10): 

E At 	
I. 

 is 	va  — A i A v ). E (A iP  A vP  —A ip  A v 
cc- 

(2.11) 
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This form of Tellegens theorem has shown particular usefulness 

as a basis for the efficient computation of small change sensitivities. 

2.3 Adjoint Network 

Consider a network N containing linear reciprocal or non-

reciprocal two terminal elements described by their branch admittance 

ya. Let the branch voltages and currents of N be denoted by va and 

i
s respectively. Beside the original network, consider another 

adjoint network denoted as N. We impose the requirement that both 
N and IT have the same topology, but not necessarily the same 

component type in corresponding branches. This requirement is made 

so that Tellegen's theorem can be applied. If va  and is  denote 

branch voltages and currents in the adjoint network, we may rewrite 

the left side of equation 2.11 in which A selects the small 
“ 

variations in the actual network and A selects the adjoint network, 

to get 

14E: (bia  va is  bv a) a 
(2.12) 

If the circuit contains two terminal reciprocal components 

which are described by an admittance ya, then, substituting is  

E: 

 

and is with v a-  va  and v a-  v  a  respectively yields 

C. 
 v
a 
v
a 
(y
a 
- 3) +v

a  va 
 by

a] 	(2.13) 

Since the choice of the component types in the adjoint 

network is arbitrary, we may choose them in such a way so as to 

render (2.13) independent of all the b is  or b va  terms that are 

associated with nonsource branches. The reason behind this step 

is that for sensitivity calculations, we are interested in the 

variation of output response with respect to component variations 
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and not with respect to branch voltage or current variations. By 

setting ya  = ya  we get 

E v 
cc  v  a 

 by
a a 

(2.14) 

If the circuit contains multi-terminal non-reciprocal 

components, these components can be described by an admittance matrix 

Y
ap 

such that 

'a a :Er a 	Yap  vp  
ap 

Substituting (2.15) into (2.12) yields 

E[b(yccp  vp) va — Yap  70  b v
a
] 

ap 

(2.15) 

(2.16) 

or 

ap [b va  vp  (Ypa  Yap) Vp 	b Yap] 
	

(2.17) 

By setting Yap 	Y
Pa  
' [17] , we get 

ap 
	pa b  Yap 
	 (2.18) 

If a circuit contains two terminal reciprocal and multi-

terminal non-reciprocal components, we have the following general 

expression for (2.12) 

a va va b ya 
	v

a 
v
p 

b Y
ap 
	(2.19) 

Consider a two port network whose input port is forced by an 

independent current source and whose output voltage is of interest 
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to the designer. The full expression of equation 2.11 has now 

become 

1-21  v
a  va 

 by
a 

+ :E2 v
13  va 	P 

bY
ap 	

bv
P 	

(2.20) 
a 	ap 

If the adjoint network is analysed with a unit current 

source forcing the output port, (i = 1), the differential of the 

output voltage of the original circuit with respect to any component 

is the negative product of the original network component voltage 

and the adjoint network component voltage. Therefore we have 

b v 
—.2. 
b ya  v v a a (2.21) 

for two terminal components, or 

b v 
S

ap 
v 
P a 

(2.22) 

for multi-terminal non-reciprocal components. 

It can now be noted that, for non-reciprocal circuits, if the 

auxiliary network proposed by Leeds is substituted with an adjoint 

network, the small change sensitivity of one network response to 

all elements can also be found by the analysis of two circuits - 

the original and the adjoint - as illustrated in Fig. 2.2(a) - (c). 

The relation si'a  = ya  expresses the relationship for the branch 

impedance of the actual network and the adjoint network, and the 

relation Y
ap 
=Ypa  expresses the relationship for the admittance 

matrix describing the multi-terminal elements of the actual network 

and the adjoint network. 
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2.4 Engineering_Applications 

The small change sensitivity algorithm described in the previous 

section has been implemented within an interactive graphic circuit 

design facility [8]. The small number of operations associated 

with the calculation enables the designer to explore dynamically the 

small change sensitivities due to frequency variations. 

In the process of the interactive graphic circuit design, once 

the circuit has been input satisfactorily and displayed on the screen, 

the designer may activate the appropriate light button for the small 

change sensitivity display and indicate the components whose small 

change sensitivity is to be displayed. After a time lapse of 

roughly half a second*, the computer is ready to display the normal-

ized sensitivity of the voltage response to the component. 

Circles having radius proportional to sensitivity are now 

superimposed on component symbols indicating the magnitude of the 

sensitivity of the corresponding components. A light potentiometer 

appears on the right hand side of the screen (Fig. 2.3). The arrowed 

position indicates the frequency under which the sensitivities are 

evaluated. The display changes at roughly half second intervals as 

the pointer on the potentiometer automatically cycles through the 

frequency range of interest. 

In some situations, a quantitative display of information is 

needed. Upon giving the appropriate command, the circles are 

replaced by numerical values as shown in Fig. 2.4. 

By exploring the small change sensitivities of the components 

of a circuit, the following information may be obtained by the designer: 

* This figure is related to the size of the circuit. 



38 

1. A feel for which are the significant components in 

various parts of the frequency range of interest. 

2. The indication of components that might usefully be 

adjusted to improve circuit behaviour. 

3. The indication of approximate tolerance for components. 

4. The identification of any unduly sensitive components. 

The other uses of small change sensitivity include optimisation 

and worst case simulation etc. The problem of the use of small 

change sensitivity for the worst case simulation of a circuit will 

be treated in detail in the following chapters. 
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1 amp 

  

  

(b) 

 

  

(c) 
1 amp 

avout 

a  3rb 
= - v 

Fig. 2.1. Computation of small change sensitivity 

of a reciprocal network using auxiliary network 

technique. 
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(b)  
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1 amp 

Original 

Network 

(c) 
amp 

avout  - - vb gi 
ay 

b 

Fig. 2.2. Computation of small change sensitivity 

of a non-reciprocal network using adjoint 

network technique. 



Fig. 2.3. Graphical display of small change sensitivity 

information. Circles having radii proportional to 

the magnitude of sensitivity are superimposed on the 

symbols of the corresponding components. The running 

parameter - frequency - is indicated by the pointer 

on the light potentiomet.er. 

Fig. 2.4. Alternative means of representing sensitivity 

information. The circles on Fig. 2.3 are substituted 

by numerical values. 
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CHAPTER 3  

SINGLE PARAMETER LARGE CHANGE SENSITIVITY 

3.1 Introduction  

In the previous chapter, the efficient means for the 

computation of small change network sensitivity are described. 

The effect of a small change in the value of circuit components 

upon an output voltage has been shown to be amenable to simple 

description and its computation has been successfully implemented 

for a number of applications, [8,21,28] . However, in many 

cases, the changes in component values of a circuit cannot be 

regarded as infinitesimal. Therefore, efficient means are required 

to predict the effect of large element value changes. In response 

to this need, the problem of computation of large change sensitivity  

came to our attention. 

The principal relation of interest in a large change sensitivity 

analysis is that which exists between a change in the value of a 

component parameter and the corresponding change in circuit response, 

where the changes are not necessarily infinitesimally small. Two 

aspects of this relation are important: either a component change 

is given and the effect upon circuit response has to be computed, 

or the tolerance upon response is specified and the permitted 

change in component value is sought. 

A circuit model which is adequate for our initial discussion 

is shown in Fig. 3.1. A linear 2-port is excited at one port by 

a unit current source and generates at port 2 a voltage response 

42 



equal in value to the transfer impedance z21  (Fig. 3.1(a)). For 

simplicity, only one linear 2 or multi-terminal component is 

assumed to be subject to change. It is convenient to extract from 

the circuit the change Ay in the admittance of the 2-terminal 

component, thereby creating a new port [22] , denoted as port 3, 

in addition to those associated with the excitation and response 

as shown in Fig. 3.1(b). In Fig. 3.1(c) the change Aics  of a voltage 

controlled current source, as well as its controlling ports, are 

extracted from the 2-port, thereby creating two new ports (port 3 

and port 4) of the nominal value circuit N. 

The change iv in voltage response due to the change Ay in 

component admittance can, of course, always be determined by a 

fresh analysis of the entire circuit. But such an approach is 

prohibitively expensive, especially if the circuit is of reasonable 

size and if a number of values of component change are to be explored. 

Even if pivotal condensation is employed to obtain the admittance 

matrix of the 3-port (Fig. 3.1(b)), the additional effort involved 

in calculating the effect of connecting Ay is quite excessive. 

Fortunately, two simple alternative methods for computing 

Lv are available. In one, called the 'current source substitution 

method' [23] , the change in admittance Ay is simulated by a 

current source whose value is the current in Ay. The response to 

this current at port 2 is then the required value of Av. In the 

other, the impedance description of the circuit is permanently 

modified to take account of the new component value. We give the 

name 'matrix modification' to this latter method. 

In this chapter, we examine these two methods to assess their 

suitability both for the calculation of response when a component 

k3 
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change is known, and for the inverse problem of finding the component 

change permitted by a specified change in response i.e. for both 

forward and reverse tolerance analysis. 

Exposition of the theoretical basis of the two methods of 

large-change sensitivity analysis is considerably eased if a port 

description of the circuit is employed. Such a description will also 

be adopted in the description of the associated algorithm since, 

in addition to clarity of discussion, it allows the principal 

computation effort easily to be identified. 

The total cost of a computer calculation is virtually impossible 

to predict in detail, and we follow the common practice of assigning 

a cost of one to multiplication and division, and zero to addition 

and subtraction. Also, since many of the calculations involved 

are either a Gaussian elimination, or approximate very closely 

in cost to that of an integer multiple of Gaussian eliminations we 

shall denote the computational cost of such an elimination by 

Gx' where the subscript x indicates the dimension of the vectors 

involved. 

3.2 The Substitution Theorem  

Consider an arbitrary network which contains a number of 

independent sources. Suppose that, for these sources and for the 

initial conditions given, the network has an unique solution for 

all its branch voltages and branch currents. Consider a branch, 

say branch a. Let is  and va  be the current and voltage of branch a. 

Suppose that this branch is replaced by either an independent current 

source with current im, or an independent voltage source with voltage 
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v . If the modified network has an unique solution for all its 

branch currents and branch voltages, then these branch currents and 

branch voltages are identical with those of the original network. 

The above theorem, also known as the 'substitution theorem' 

[24] , allows us to replace any particular branch of a network 

by a suitably chosen independent source without changing any branch 

current or branch voltage. It applies to any network, linear or 

non-linear, time-varying or time-invariant. In the following section 

it will be seen how it could be employed to derive an efficient 

method to simulate large change in circuit component values. 

3.3 Current Source Substitution Method  

The first of two large-change sensitivity algorithms to be 

examined can be explained with reference to the circuit model of 

Fig. 3.1(a). The conceptual basis of the current source substitution 

method [23] is the replacement of the admittance Ay, or the voltage 

controlled current source Airs, by a current source whose value is 

identical with the current i3, initially flowing in Ay (Fig. 3.2(a)) 

or Ai (Fig. 3.2(b)), respectively. According to the Substitution 

Theorem described in the previous section, no disturbance is thereby 

occasioned to the voltages and currents in the circuit. With 

reference to Fig. 3.1(b) and (c), since the only change from the 

nominal circuit N is the connection of the current source i
3 
to 

port 3, and the circuit is linear, the voltage response at port 2 

due to this source acting alone is the required change Av in out-

put voltage. The presence of this additional current source in 

N is accommodated in the port matrix equation by the addition 

CS 



I - 
v1 z11 z12 z13 214 

as 

z21 z22 z23 

v
3 231 z32 

233 234 

v4  
_z41 242 243 244 

it  

0 

3 

	(3.3) 

0 

1+6 

of i
3 
to the 3rd element of the current vector, so that the port 

equation has the form 

Vp  s= Z I 
P P 

The above equation can be written in more detail as 

( 3 .1) 

vi 

v
2 

v
3  

z11 

z21 

_ 231 

z12 

z22 

232 

z13 

z23 

233_ 

it  

0 (3.2) 

for the two terminal components, or as 

for the multi-terminal components (Fig. 3.1(c)). Thus the new 

port voltages can now be computed by the matrix multiplication of 

the originally computed Z matrix with the new column vector I of 

the current sources. The column vector V yields not only the new 

value v2 of the response voltage, but also the voltage v3 
across 

the simulated admittance Ay or Li cs. The latter voltage v3 
can be 

expressed in terms of the original circuit excitation and the added 

current source i
3 
by 

(3.4) 
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Thus, for a given circuit and excitation, v
3 
varies only 

with i3, the added current source simulating the change in y or 

gm of the original circuit. For the multi-terminal components, the 

voltage v
4 

is found in the same way as 

1 
°4 	z41 

i
1 — z43 i3 

The value of the simulated admittance y is given by 

y v7
2 
 + i

3 

v
3 

1 
and for the new value of the mutual admittance gm, we found 

(3.5) 

(3.6) 

(3.7) gm 
	g

m 
v
4 
+ i3 
v4 

Substitution for v
3 
from (3.4) into (3.6) allows the value 

of i
3 
required in the simulation of the admittance y to be 

expressed as 

z31  
z
33 
+ 1 

AY 
13  (3.8) 

1 
Knowledge of the new value of the admittance y therefore, allows 

the current 1
3 
which is simulating the admittance change y 	y 

to be computed from equation 3.8. 

The value of i
3 
required in the simulation of the new mutual 

admittance gm  is given by 

3 z43 + 1 
Agin  

(3.9) 
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The new value of the response voltage v2  can be computed from 

(3.2) by simple matrix multiplication, without the need to formulate 

and invert a matrix describing the new circuit configuration. It 

may be preferable, in fact, to compute the change in response 

voltage directly from 

Av2 	
z
23  i3 	(3.10) 

or 

223 231  11v2 	 (3.11) z33  + 1 

for the two terminal components, and 

Av2 	223 i3 	(3.12) 

or 

a23 a41  Av2 	 (3.13) 
Z43 6,1gm  

for the multi-terminal components. 

In addition, equation (3.11) and (3.13) illustrates the 

possibility of applying the large-change sensitivity 'in reverse'. 

For example, if a certain amount of deviation from the nominal is 

specified for the response voltage, the corresponding allowed change 

in a single element can be evaluated. 

3.4 Matrix Modification Method 

The basis of the method to which we have assigned the name 

'matrix modification' is the fact that, if a matrix F is modified 

by the addition of the triple matrix product GHK, then the inverse 
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of the new matrix is related to that of F by the expression [25,56] 

(F + am) "1  = r-1  - r-1G (H-1  + xr-1G) "1  Kr-1 
	

(3.14) 

provided the indicated inverses exist and the dimensions are properly 

matched. Thus F and H are square matrices and G and K may be rect-

angular. The implication of this relation for our discussion is 

easily appreciated. With reference to Fig. 3.1(b) or (c), let 

Y be the nominal port admittance matrix of the circuit N (i.e., 

without 4 connected) and Z its inverse. The connection of an 

admittance Ay to port 3 is described by the addition of a matrix 

AYp  to Y 
P' 

	

Yp 	= Yp 	AYp  

where AY 	has the form 

(3.15) 

. 	. 

AY . 	. 	. (3.16) 

. 	. 	Ay 3 

3 

where only nonzero entries are shown explicitly. Thus 

AY 	= P Ay Qt (3.17) 

where P and Q are column vectors whose only nonzero elements are 

P
3 	

Q
3 

. 1, and t denotes transposition. Reference to (3.14) 
1 

enables the new port impedance matrix Z to be expressed in 

terms of its initial value Z by 



where 

	

Z • 	= 

	

7
-1 	

= 

[ zp P j t  

Qt Zp 

P 'Y 
- 	Z

P 
 P Qt  Z 

+ 	Qt  Zp P 

[z13, z23, z33] 

rz 	z32, z 	1 
L 	31' 	32' 	33j 
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(3.18) 

(3.19) 

(3.20) 

(3.21) 

Ay 

= 

For the simple case where only one component is subject to 

variation, equation 3.18 leads to an expression for the new value 

of the transfer impedance z21  

z21 = z21 - 
z23231  
z33  + (3.22) 

The preceding interpretation of the matrix modification 

procedure shows how it may be modified to include multi-terminal 

components. Since the discussion presumes the existence of both 

the port impedance and admittance matrices, multi-terminal components 

may always be represented in terms of voltage controlled current 

sources. Consider a port admittance matrix Y and assume that a 

dependent source is added to the network in which the current i
3 

in a branch across port 3 is controlled by a voltage v4  (Fig. 3.1(c)). 

The modified port admittance matrix has the form of .(3.16) with 

• 

. 

AY = 

• Agm 

3 

(3.23) 

1 
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where again only nonzero entries are shown explicitly. Hence 

AYp  = P gm Q
t 	 (3.24) 

where P and Q are column matrix with zero entries everywhere except 

that P
4 
	= Q

3 
	= 1. 

Z 	to be written as 

Z 	= 

with 

7
-1 	= 

[Z P P i 

Qt  

This 

Z 

1 

- 

+ 

permits the modified port impedance matrix 

7 	
Z
P 
 P Qt  Zp 	 (3.25) 

Qt  Zp P 	 (3.26) 

	

[z13' z23, z1+3] 	
(3.27) 

	

z42, zio] 	 (3.28) 

Ag m 

t 	
= 

= 

For the simple case where only one gm  is subject to variation, 

equation 3.25 leads to an expression for the new.value of the transfer 

impedance z21  

z23  z41  
Z21 = z21 	2

43 
 4. 1 

Ag
m 

(3.29) 

It is interesting to note that (3.22) and (3.29) are in 

agreement with (3.11) and (3.13) derived from consideration of the 

current source substitution method. Thus, for computing the 

effect of changes in a single component there is little justifica-

tion for differentiation between the two methods or their associated 
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(equal) costs. The same conclusion applies to the inverse problem 

of computing Ay if Av is specified. 

Nevertheless, there is an important conceptual distinction 

between the basis of the two methods. In the matrix modification 

method the admittance change can be permanently absorbed into the 

circuit (Fig. 3.3(a),(b)), and the result is one or all of the port 

parameters describing the new circuit. By contrast, what the 

substitution current source method provides is a source which, when 

applied to the nominal circuit, causes the same change in circuit 

response as does the admittance change Ay. Here the new circuit 

description is not directly to hand: the effect of (say) a further 

excitation current could not be deduced simply by connecting it 

and the substitution source simultaneously to the nominal circuit. 

3.5 Computational cost  

The advantage of the method of large-change sensitivity 

analysis described above is easy to establish. Without it, deter-

mination of the effect of large parameter changes could involve an 

analysis of the nominal circuit followed by as many similar analyses 

as there are parameter changes. If we follow the practice of assign-

ing a cost of one to multiplication and division, and zero to addition 

and subtraction then, for each new component value, the cost of 

computing Lv2  is two, in addition to the cost of one incurred in the 

initial calculation of the product z23z31  or z23z41. The latter 

cost quickly becomes insignificant if more than a few values of 

component change are explored. 

Base on the efficient methods described above, two schemes 

for the computation of the effect of large changes in component value 
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are proposed. Fig. 3.4 outlines these two schemes and itemizes 

the associated computational costs. If only one parameter is subject 

to change, then, at each frequency, pivotal condensation of the 

circuit's nodal admittance matrix Yn to obtain the 3 x 3 port 
 

admittance matrix Y , followed by matrix inversion to yield the port 

impedance matrix Z , provides the impedances appearing in (3.11) or 

(3.22), from which Avg  is computed. This approach is indicated by a 

solid line in Fig. 3.4. The alternative approach indicated by a 

dashed line may be more economical if it is not known, beforehand, 

which parameter is liable to change. 

The computational costs of the schemes of Fig. 3.4 are compared 

in Table3.1with two straightforward methods. One (column A) refers 

to a repeated nodal analysis for each new parameter value. The 

other (column B) employs an initial pivotal condensation to obtain 

the port description of N (Fig. 3.1(b) or (c)) and then, for each 

parameter change, a Gaussian elimination (Fig. 3.4 Note 1)): this 

method, whether used in connection with one or more variable 

components, is referred to throughout this and the next chapter 

as the reference method. The three rows of the table indicate the 

costs incurred once, K times and KL times if the effect of L 

different values of each of K separate components is to be computed: 

in each case, a single variable parameter is assumed to return to 

* For simplicity, the situation in which ports share one or more 

nodes are not considered here. Also, in assessing computational 

cost, we do not exploit any symmetry of the matrices involved. 
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its nominal value before another parameter is varied . Progression 

to the right over the table shows an increasing "once only" or "K only" 

cost, and a decreasing "per component change" cost, a situation which 

is necessary if the effect of many large changes in one or more 

components is to be explored economically. Clearly, on the basis 

of the costs shown, only one change in one parameter is sufficient 

for the new methods of large-change sensitivity analysis (columns 3,4) 

to be substantially more efficient than a repeated analysis of the 

entire circuit. Choice of one of the two schemes of Fig. 3.4 will 

depend not only upon a priori knowledge of the number of parameters 

likely to be varied but also on other considerations such as storage 

and the means by which the designer interacts with the program. 

To illustrate the savings that can be incurred by using the 

new methods, Fig. 3.5 shows some actual costs predicted from 

Table 3.1. 

3.6 Engineering Applications  

An advantage of the efficient approach to large-change 

sensitivity analysis has been exploited to good effect in an inter-

active graphic circuit design facility [ 8 ] . Identification of a 

variable component in a linear circuit causes the appropriate imped-

ances (i.e., those appearing in (3.11 or 3.22)) to be generated. 

* In the case of the current source.substitution method, if a variable 

parameter is held at a new value, the admittance matrix Yn  must, of 

course, be reformulated before the effect of a new variable para-

meter can be computed. For the matrix modification method, the 

new value of the variable parameter can be absorbed into the circuit 

by modifying three additional elements of the matrix Z . 
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The calculation of Av2 is then so simple that it is possible for the 

designer to move his light-pen continuously over a light-potentiometer 

(Fig. 3.60  right) to indicate component variation and, within about 

half a second , to see on the screen the new response curve (Fig. 3.6). 

Such a rapid display of the effect of component variation allows the 

designer to gain insight into the significance of that component by 

a process of dynamic exploration rather than repeated trial-and-error. 

* This figure is related to the number of points characterizing 

the response curve. The circuit of this example is illustrated 

in Fig. 1.9. The variable component is R11. 
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A 

Repeated nodal 
analysis of 
complete circuit 

B 

Reference method 
(Fig.3.4 Note 1) 

C 

Scheme of 
Fig. 3.4 

D 

Scheme of 
Fig. 3.4 

(dashed line; 

Once-only 
initial 
calculation 

Preparatory 
calculation 
repeated K times 

Calculation for 
each component 
change 
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`Table 3.1 

Approximate costs associated with four different methods 

of computing the effect, on a circuit's transfer impedance, 

of single component changes 
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(b) v+Av 

    

(c ) 

 

  

Pig. 3.1. Linear 2-port, one of whose 2-terminal 

or multi-terminal components is liable to change. 
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v+Av 

(b) 

v+A v 
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Fig. 3.2. Simulation of component change by current source. 



59 

(a) 

v +Av 

(b) 

Pig. 3.3 Absorption of component change by matrix-

modification method. 
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Fig. 3.4. Approximate cost of computing the effect of changes in one component on the transfer 

impedance of an (n 1)-terminal circuit. Values in brackets indicate costs. Note 1 -

this path is associated with a straightforward analysis of a 3-port by Gaussian elimina-

tion. Note 2 - arrows indicating repeat calculations associated with L different 

values of the same component, and with K different components, do not apply to the 

reference method. 
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Fig. 3.5. Plots illustrating some actual computational 

costs predicted from Table 3.1. 



Fig. 3.6 (a) • Interactive display associated with dynamic 

exploration of the effect of a component on circuit 

response. Component change is simulated by moving 

an activated light-pen along the light-potentiometer 

shown at right. The new (dotted) response curve is 

displayed on the same graph as the (full) nominal 

curve. 

Fig. 3.6(b). Another new response curve is displayed in 

less than a second after the component has been 

adjusted to a new value. 

- -------~----~---.- --- ----.-- --------------.. --~-~--------~~~ ~~-------~~ ~.-
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CHAPTER 4  

MULTI-PARAMETER LARGE-CHANGE SENSITIVITY 

4.1 Introduction  

The effect of simultaneous changes in more than one component 

parameter is frequently of interest. The circuit designer may, 

for example, be adjusting a group of parameters with the object 

of achieving a desired circuit response. Or the changes may be 

automatic, as in a Monte Carlo statistical circuit analysis or an 

optimization algorithm. The need to examine the consequence of 

change in the physical properties (e.g., temperature or doping 

level) of a circuit also involves the exploration of simultaneous 

parameter changes. A final example, and one which will illustrate 

many of the points discussed in this chapter, is the calculation 

of performance contours [ 1] ; for a given tolerance on circuit 

response, a performance contour describes the permissible simult-

aneous variation in two or more component parameters, and provides 

valuable information for the circuit designer. 

It is clear that there is a need to examine alternative 

efficient algorithms for calculating the effect of large change 

in a number (more than one) of component parameters, and to 

compare their cost with that of repeated straightforward circuit 

analysis. Such an examination is the purpose of this chapter. 

An important conclusion - that systematic exploration of the effect 

of component change is economically potentially attractive - forms 

the subject of many illustrative examples which will be described 

63 
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in the following chapters. Finally, the implementation of multi-

parameter large-change sensitivity analysis within an interactive 

graphic computer-aided circuit design facility will be illustrated 

with an example. 

4.2 Simultaneous Component Changes  

Consider now the situation in which m components in a circuit 

are subject to simultaneous change. The corresponding changes in 

admittance at a given frequency are denoted by Ayl, 	,Aym. It 

is again convenient to extract these admittance changes from the 

circuit, thereby creating m new ports numbered 1, 	,m (Fig. 4.1(a)) 

in addition to those denoted by 0 and 0 and associated, respectively 

with excitation and response. The effect upon the transfer impedance 

z 00  of this set of simultaneous component admittance changes is to 

be computed. 

One very straightforward approach, of course, is to update the 

(m 2)-port's admittance matrix (at no cost) to account fdr the 

component admittance changes, and then carry out a Gaussian elimina-

tion to find the new transfer impedance. The cost for each set of 

m component changes is Gm+2, as is the initial cost of finding the 

circuit's nominal transfer impedance. 

It is against this reference that we now examine the substi-

tution current source and matrix modification methods. In the 

latter case, however, we shall broaden our discussion to consider 

the sequential connection of the members of a set of admittance 

changes, for this will later be seen to offer the possibility of 

greater computational economy. 
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4.3 Substitution Current Source Method 

The apparent simplicity of this method diminishes rapidly 

as the number of simultaneously variable parameters increases. 

Basically, this is because the admittance simulated by a current 

source is the ratio of its current and voltage: whereas its 

current is defined, its voltage is a function of all the sources - 

(including those simulating component changes) connected to the 

circuit. It followed that if m component changes are simulated 

by m current sources, then the voltage across each source, and 

hence the admittance simulated, is a function of the other 

.substitution current sources as well as the circuit's independent 

excitation. Thus, broadly speaking, the values of the m substi-

tution current sources can be found only by the solution of m 

equations in m unknowns [27,28,29] . We shall now proceed 

to establish the computational cost with more precision. 

Let the (m + 2)-port circuit N of Fig. 4.1(a) be described 

by a port admittance matrix Y , and let the changes Ayi, 	;Aym 

in the m component admittances be simulated, respectively, by 

m current sources i1/m 
(Fig. 4.1(b)). Such a simulation 

requires that 

vI 
• 
. 
• 
• 
. 
• 
. 
V 

1 0 

1 

it  

• 

• 

• 

• 

• 

• 

• 

La 

(4.1) 

1y1 

0 1 
Aym  

Denote the nominal circuit's port impedance matrix by Z 1  and that 

partition of Z appropriate to the m newly created ports by Z.  
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When the circuit is excited by the substitution current sources as 

well as the original excitation at port 0, the voltages generated 

across the substitution sources are given by 

Z20 

il- 

i m_ 	z mp 

v1 

v 

m 

Combination with (4.1) yields 

zio 	1 

• AY1  I0   
• 

• 

0 

1 
Liym  0 

m0_ 

+ [ Zm  

 

• 

• 

• 

1 

• 

z'is  (4.3 ) 

 

   

    

where Is  is the vector of substitution current sources. Thus, 

once Zm has been found (by inversion of Y ) at a cost of about 

3%4.2, the values of the m substitution current sources can be 

found in two steps: 1. calculation of the reciprocal of each 

admittance change at a total cost of m, and 2. Gaussian elimina-

tion at a cost of G.  The matrix product Z m  Is  then yields the 

change in port voltages. If only Av 	is of interest, the cost is 

m. This approach is illustrated in Fig. 4.2, where it is assumed 

that the starting point is the nominal circuit's nodal admittance 

matrix Y. If there are L sets of values of the same m components, 

the calculation of I
s at a cost of Gm + m, and of Iv 0  at a cost 
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of m, must be repeated L times. If K different groups of components 

are known beforehand to be of interest - as may well be the case in 

truly interactive design - then a more economical alternative may be 

that which is indicated by the dashed lines in Fig. 4.2. 

The computational costs are itemized in the first two columns 

of Table 4.1: The second column is the more appropriate if the 

variable parameters are initially unidentified or if K is large. 

The final column refers, for purposes of comparison, to a straight- 

forward method which is identical in form to that employed as a 

reference in the previous chapter (column B of Table 3.1); it involves 

updating the (m + 2)-port's admittance matrix (at no cost) to account 

for component admittance changes, followed by Gaussian elimination 

at a cost of G 2 to find the transfer impedance (see Fig. 4.2) 

Table 4.1 shows that no very clear advantage can be associated with 

the substitution current source approach. 

4.4 Matrix Modification Method  

Consider a 2-port in which three 2-terminal components are subject 

to simultaneous change. New ports are created in parallel with these 

components (Fig. 4.3) and the relevant admittance changes £y1, 6372, 

and 1y
3 
simulated by the connection of identical admittances externally 

to these ports. First, however, we consider the connection of Ay3  

alone , so that ports 1 and 2 are left on open circuit. 

* A single direct application of the Householder relation (3.14) to 

simultaneously account for all component changes is far more costly 

than the straightforward method used as a reference in Section 4.3 

(see Table 4.1, column 3). Therefore, no further reference to the 

"once only" application of (3.14) will be made. 
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With reference to (3.17), this connection is described if P and 

Q are the vector* (00001)t  and tly = Ay
3. 

Equation (3.18) then 

becomes 

0 
0 

Z = 	- 7-1  Zp 	
[00001] Zp  0 

1 

where, from (3.19), 

7-1 	1 Z33 + 13; 

(4.4) 

(4.5) 

(note that z33 lies 
on the fifth row and column of Z ). A cost of 

unity is associated with the calculation of 7 . The matrix product 

Z P Q
t 
Z on the right of (4.4) is 

Z03  

zo3  

z13  [z30z30z31z32z33] 	(4.6) 

z23  

z33 

Examination of (4.4) shows that if division by 7 precedes calcula-

tion of the product (4.6) then determination of the new port impedance 

matrix Z involves a total computational cost of 1 + 5 + 52 = 31. 

The matrix so obtained describes the result of absorbing the 

* The first two elements of P and Q refer to the input and output 

ports designated 0 and 0, respectively. The remaining elements 

are numbered 1, 2, 3. 
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. admittance Ay
3 
within the original circuit and leaving port 3 on open 

circuit. In the general case of m variable components, the calculation 

of Z to account for the connection of one component in the set of m 

is.therefore 1 + (m + 2) + (m + 2)2. Starting with the matrix Z 

the process just described is repeated in turn for the remaining 

externally connected admittances Ay1  and iy2. The cost for each 

is the same as for Ay3. Thus, for m variable components, the cost 

of computing the new port impedance matrix is easily seen to be 

m [(m + 1)2  + m + 3] , which exceeds 3Gm. 

Considerable economy can be achieved if it is acknowledged that 

all but two of the (m + 2) ports are artificially created, and that 

it may only be the 2 x 2-port impedance matrix of the original 

which is of interest. In this case, when modifying the matrix Z to 

account for the connection of, say, £y3, row 3 and column 3 need.not 

be computed, and can be omitted when updating to account for £y1  and 

Ay2  (Fig. 4.3(b), 4.4). If this ecnonomy is practiced successively  

as the admittance changes are sequentially absorbed within the circuit, 

the total cost of computing the new 2 x 2-port impedance matrix is 

about Gm+1. Moreoever, if only a single transfer impedance (say zoo) 

of the original 2-port is of interest, then further economy can be 

practiced by eliminating row 0 and column ;4 at the outset (Fig. 4.4); 

the total cost is then approximately Gm. 

These economies can also be achieved if the circuit contains 

voltage-controlled current sources: each requires the creation of 

two new ports, one across the controlling voltage and the other 

* If more than one value of Ay3  must be explored, the product (4.6) 

would be calculated before division by y so that, after a computa-

tional cost of (m + 2)2, each value of Ay
3 

involves a cost of one 

(to find 7 ) plus (m + 2)2. 
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across the controlled source. Rows associated with controlled ports, 

and columns with controlling ports, can be eliminated at the outset. 

Similarly, during matrix modification to account for change in a 

current source at port G controlled by a voltage at port H, row G 

and column H need not be computed, and can be omitted from the new 

port impedance matrix (See (3.23)). 

The matrix-modification approach is illustrated in Fig. 4.5 

(full lines), where the computational costs are those associated with 

the economies described in the previous paragraph. If more than one 

group of components is known beforehand to be of interest, the 

alternative algorithm (dashed line) may be more economical. To 

summarize the costs involved, we make use of the summary (Table 4.1) 

originally prepared for the current source substitution method, 

because the only change necessary is the omission of the cost 2m 

in row 3, columns 1 and 2. 

4.5 Comparison of Methods  

It appears that there is little to choose between the two methods 

and the reference method if the effect of simultaneous changes in m 

components is to be computed. Two comments are, however, appropriate. 

First, one possible advantage of the matrix modification method is 

that the new circuit description is available after one or more 

admittance changes have been absorbed: this is not the case with the 

current source substitution method. The second comment.is relevant 

when each of m potentially variable components is varied sequentially 

rather than simultaneously, as might well happen during interactive, 

manual exploration by designer. Following each component change, the 
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new circuit description costs only m + 3 + (m + 2)
2 to compute, which 

is about 3/m times the cost of the current source substitution method 

and the reference method. In other words, the matrix modification 

method does not exact a penalty if the individual component changes 

take place one at a time. 

An alternative approach to large-change multiparameter sensitivity 

analysis described by Singhal et al [30] is based on a multi- 

linear expression [31] for transfer impedance in which the numerator 

and denominator both contain all possible simple multiples of the 

variable admittances, each multiple being associated with a different 

* 
.coefficient . However, the author does not identify the computational 

cost of computing the numerator and denominator coefficients (step 4), 

a cost which appears to be sufficiently high to render the method 

unattractive. Even if the cost were negligible, the cost of 

evaluating the multi-linear expression is greater than for the methods 

just reviewed, a conclusion which is supported by Gadenz et al [27] . 

4.6 Systematic Exploration 

For multiple sets of simultaneous changes, a further and often 

dramatic reduction in computational cost is possible if one condition 

holds. Namely, if each variable component can only assume one of a 

limited number of values, and if each set of m component values is 

* For three variable parameters, the expression has the form 

a000 + a100
y1  + a010

y2 + a001y3 
 + a110

y1y2 

k21 
a101Y1Y3 a011y2y3 alllY1Y2Y3 

b 	+b y +b y +b y +b yy 
000 	100 1 	010 2 	001 3 	110 1 2 

+b yy+b yy+b yy 
101 1 3 	011 2 3 	111 1 2

y  3 
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some combination of these individual component values. Under these 

circumstances, systematic exploration [32] of the different sets 

can be achieved at reduced cost. 

This additional saving is made possible by a fact already 

discussed in Section 4.4: that if a component value is temporarily 

held constant, there is no further need to consider the port with 

which it is associated, and the port can be suppressed merely by 

eliminating the corresponding row and column from the port impedance 

matrix. In this way, only a smaller impedance matrix need be modified 

according to (4.4). More importantly, however, the longer a component 

can be held constant in value, the lower will be the cost of account-

ing for changes in the remaining components. Thus there is a 

computational advantage in rearranging the sequence in which the 

effect of the sets is computed. Firstly, the sets should be so arranged 

in sequence that one of the components changes as infrequently as 

possible. Then, within each group of sets throughout which the afore- 

' mentioned component is constant in value, a fresh rearrangement into 

groups is effected so that a new component changes as infrequently 

as possible. This procedure is repeated as many times as there are 

components. Calculation of the effect of the component sets in the 

resulting sequence, while taking advantage of the computational savings 

associated with port suppression, is referred to as systematic 

exploration. 

With reference to Fig. 4.3(a) suppose that, for each of C values 

of Ay
31 
 B predetermined values of Ay2 

are to be explored, and that 

for each value of Ay2, the effect of A predetermined values of Ayi  

on the transfer impedance zoo is to be calculated. First, of course, 

since only zoo is of interest, row 0 and column 0 of the port 
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impedance matrix are immediately deleted, yielding a 4 x 4 matrix 

(the unshaded part of Fig. 4.4) which we shall denote by Z4. System-

atic exploration of the effect of the sets of component combinations 

then proceeds as follows. Initially, the first value of Ay3  is 

absorbed. This involves the calculation of 7, the deletion of row 
and column 3 of Z4, and the calculation of a new 3 x 3 impedance 

matrix z
3 according to (4.6) and (4.4). Similarly, for the first 

value of Ay2, a new 2 x 2-port impedance matrix (row 0,1; columns 

• 0,1) is calculated from Z3. Finally, the same procedure is applied 

for each value of Ayl: first, the produce z3t 1210 ((4.6)) is computed; 

then, for each Ayl, the constant 7 is found at a cost of one and the 

ratio of z tbizio and 7 ((4.4)) also at a cost of one to determine the 

new z14. After all values of Ay, have been considered, the next 

value of Ay2  is absorbed, as before, by operating upon the 3 x 3 

matrix Z3, a matrix which would continue to be stored until Ay
3 

took on its second value. Thus the lower bound to which the "per-

set" cost can asymptote is the remarkably low figure of one ; this 

is the cost of computing, for each Ayl, the ratio (z it, iz10)/7. 
Some appreciation of the savings offered by systematic exploration 

can be gained from the computational costs shown in Table 4.2,which 

refers to the 3 component example of Fig. 4.3; in each case, the 

starting point is the impedance matrix (Z in Fig. 4.5) describing 

the original circuit with an additional port across each variable 

component. In case X, each of the 1000 possible combinations of 10 

values each of the 3 variable components is independently evaluated 

by the matrix modification method. In case Y, the effect of the 

same combinations is explored systematically. The "per-set" cost 

shows a dramatic reduction. 

* This asymptote is obtained if the values of 1/Ay are computed at 

the outset and stored for subsequent use. 
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In the preceding examples, the first admittance considered 

(Ay
3
) was the most expensive to absorb and, for ease of exposition, 

was associated with the last row and column of the impedance matrix 

(Fig. 4.4). Similarly, the last admittance absorbed (Ay1) involved 

the least recurring "per-component" cost, and was associated with. 

the first of the rows and columns pertinent to the variable components.' 

Thus although it is the order in which ports are suppressed that 

determines the cost of their suppression, it is convenient to 

(artificially) associate the cost of suppression with the port's 

row/column position in the impedance matrix. 

As a general rule, the component whose value changes least 

frequently as the component sets are explored in sequence should 

be associated with the most expensive port, and vice versa. For 

the situation, like case Y, in which the number of values which each 

change can assume is equal, and all possible combinations of those 

values must be explored, it does not matter, of course, which of 

the components changes least or most frequently, provided the sets 

are ordered for systematic exploration as described earlier. But 

the assignment of components to ports would matter, for example, 

in the situation in which the number of values which a component 

can assume varies from one component to another. Case Z of Table 

4.2, like cases X and Y, concerns the systematic exploration of 

1000 combinations of 3 components, but the combinations are those 

of 4 values of Ay3, 10 values of Ay21  and 25 values of Ayl. The 

order in which the changes are accounted for (Ay3, Ay21  Ayi; see 

Fig. 4.6) is such that the least fluctuating component (with 4 value 

changes) is associated with the most expensive port, the next least 

fluctuating component (with 40 value changes) with the next-to-most 
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expensive port, and so on. The cost per set is below that of case Y 

although it cannot, of course, fall below 1. 

The substitution current source method does not appear to lend 

itself to efficient systematic exploration, since a component value 

held constant does not imply that the corresponding substitution 

current source remains constant in value. The method of Singhal 

et al [30] can be shown to be less efficient than matrix modification 

for systematic exploration. 

4.7 Engineering Applications  

The efficient approach to multi-parameter large change sensitivity 

has proved to be a very useful tool in computer aided circuit design. 

Two examples can be given of the manner in which circuit design can 

benefit from the. method of systematic exploration. One is the genera-

tion of multidimensional performance contours. A two-dimensional 

performance contour describes how two component values may vary 

simultaneously - all others retaining their nominal value - without 

causing the circuit response to move outside a specified tolerance 

region. Both Butler El ] and 'Carotin [2 ] justified the use of such 

contours in economic circuit design, and Calahan [14] indicated 

that their display was the best method of communicating large-change 

sensitivity data to the designer who must decide parameter tolerance 

tradeoffs. Clearly, it is possible to extend the concept beyond two 

dimensions, and an efficient way of so doing is the technique of 

systematic exploration. First, for each frequency of interest, the 

values of m - 1 of the m variable components are explored systematically 

by the matrix modification method. Then, for each set of m - 1 changes, 
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the corresponding value of the mth  is found by the inverse of (3.11). 

The calculation and display of three-dimensional contours has already 

been implemented within an interactive graphic medium [ 8] and will 

be treated in detail in the following chapter. 

Systematic exploration can also be exploited in a new and 

efficient approach to statistical circuit analysis [4,5,46] . To 

obtain the benefit of systematic exploration, the probability 

distributions of the component values are first quantized and then 

appropriately discretized. In this way, a reasonable approximation 

to component value distribution is obtained within the constraint of 

the limited values set required by systematic exploration. Then, the 

details of the individual trials are so ordered as to ensure that, in 

the calculation of response change, each component change can be held 

constant for as many trials as possible. The problem of the applica-

tion of systematic exploration to statistical circuit analysis will be 

one of the main subjects of Chapter 7 of this thesis. 

One interesting example is the implementation of the matrix 

modification method within the interactive graphic circuit design 

facility to allow one-at-a-time adjustment of up to five parameters. 

This example will now be described in detail. 

In the course of interactive graphic circuit design, once the 

circuit has been input satisfactorily and displayed on the screen, 

the designer may activate the appropriate light button for the multi-

parameter large sensitivity display. He then indicates a group of up 

to 5 components whose simultaneous changes in values are to be explored. 

At the same time, numbers from 1 to 5 are assigned to these components 

sequentially as they are being indicated. 

After a time lapse needed for the formation of the 7 x 7 impedance 

matrix according to the scheme shown in Fig. 4.5, the circuit gain and 
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phase response curves are now displayed on the screen with solid 

curves representing the nominal response, and dotted curves representing 

the deviated response due to the simultaneous variations of the 5 

components. A light potentiometer appears on the right hand side of 

the screen. Above the potentiometer, there are 5 dim light buttons 

labelled 1, 2, 3, 4 and 5. Each of these light buttons represents 

one of the 5 components which has been assigned to the same number 

(See Fig. 4.9(a)). 

The designer may now start the exploration by varying the value of 

one of the 5 components. For instance, if variable component number 3 

is going to be first explored, the light button labelled 3 is activated 

by the designer with the light pen and becomes bright. The arrowed 

position of the potentiometer now indicates the value of component 

number 3 under which the deviated response curves are evaluated. 

By moving the pointer of the potentiometer with the light pen, the 

value of component 3 can be adjusted to any desired value. With 

reference to Fig. 4.7(a), it can be noted that for each new value 

of component number 3, only two operations are needed for the evaluation 

of the new value of ztt o. This enables the new dotted response curves 

to be displayed roughly half a second after the pointer has been 

moved to a new position. 

After the exploration of component number 3, the designer may keep 

component number 3 at the last value of the exploration and start the 

exploration of another component, say, component number 5. To do 

these, the light button labelled 5 is activated by the designer 

(Fig. 4.7(b)). On the receipt of this command, all elements of the 

* This figure is related to the number of points characterizing the 

response curve. In this example the number of points is 20. 

To compute the circuit gain, zo  should also be updated. 
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7 x 7 matrix are now modified to absorb the change of component 

number 3 into the matrix (or, the circuit). As indicated in section 4.5, 

this process would require 50 operations . After the time lapse of 

approximately 7 seconds+, light button labelled 5 becomes fully lit 

and light button labelled 3 becomes dim indicating that the arrowed 

position of the potentiometer is now the value of component number 5. 

Component number 5 is now ready for exploration (Fig. 4.7(c)). For 

each new value of component number 5, roughly half a second time 

lapse is needed before the new curve is displayed on the screen. At 

this stage, the computational cost for each value of component number 

5 is identical to that of the preceding exploration of component 

number 3. Having finished the exploration of component number 5, 

the exploration of another component may be attempted by repeating 

the above procedure. 

The circuit example of a filter shown in Fig. 4.8 has been 

chosen for illustration. The effect on the pass band response of the 

simultaneous changes of the five components (indicated by superimposed 

arrows) is to be studied. By using the above mentioned interactive 

graphic facility, the designer is able to adjust the 5 components 

dynamically to obtain an optimum response, as if he was adjusting 

the actual circuit and watching the response curve displayed on the 

screen of an oscilloscope. Fig. 4.9(a) and Fig. 4.9(b) show the 

output response curves of this circuit as two different components 

are being explored. 

This figure is obtained by eliminating column ;4 of the matrix. 

This figure is related to the number of points characterizing 

the response curve. In this example, the number of points is 20. 

The computer used is a PDP-15 without floating point processor. 
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Current Source Substitution Method 

Reference 
Method 

Fig. 4.2 
Fig. 4.2 

(dashed line) 

Once-only 
calculation 

Preparatory 
calculation
repeated K times 

Calculation for 
each set of 
component changes 

_ 

Gn-G2(m+2)+3Gm+2 

Gm + 2m 

3Gn 

- 

GM + 2m 

m+2  

Gn-G2(m+2) 

G
m+2 

Table 4.1 

Approximate costs associated with different methods of 

computing the effect, on a circuit's transfer impedance, 

of simultaneous changes in m components. The table is 

equally valid for the matrix modification method (Fig. 4.5) 

if the entries 2m are omitted from row 3, columns 1 and 2. 
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number of 
values of 

COMPUTATIMAL COST 

1000 per Ay
3 	

Ay
2 	

Ay1 combinations set 

X Matrix modification 10 	10 	10 23,000 23 
(Fig. 4.5) 

Y Systematic exploration 10 	10 	10 1,669 1.67 

Z Systematic exploration 
with ordering 

4 	10 	25 1,300 1.30 

Table 4.2 

Computational costs associated with systematic and non-systematic 

exploration of the effect of simultaneous changes in three components. 

The cost of case Z can be expressed as 

(32) {4 + 4 x 32} + 4(22) + {10 + 40 x 22} + 40(12) + {25 + 1000 x 121 

where normal brackets correspond to the calculation of equation (4.6) 

and curly brackets to the calculation of 7 and the modification 

expressed by (4.4). 



81 

16y, 	d  AY  
1 A 

i2 V2 V1  
0 0 0 0 0 

0 
amp 

1--  
p 

(a) 

<31>1 4:0_02.i 
raD-Lrn  

V 1 	V2 	 V m 
00 0---g.-0  0 	0--C)  6 

Q 

1amp 

(b) 

Fig. 4.1. The use of substitution current sources to simulate 

simultaneous changes in a number of components. 
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Fig. 4.2. Use of substitution current source method to compute effect, on circuit's 

transfer impedance, of simultaneous changes in m components. Arrows indicating 

repeat calculations associated with L different values of same set of components, 

and K different groups of components, do not apply to the reference method. 

Computational costs, some approximate, are indicated in parentheses. 
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Fig. 4.3. Relevant to the matrix-modification method of 

predicting effect of simultaneous component changes. 
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Fig. 4.4. Identification of rows and columns of port impedance 

matrix which can be discarded during sequential calculation 

of effect of component changes (see Fig. 4.3). 
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Fig. 4.5. Matrix-modification method of computing effect on circuit's transfer impedance 

of simultaneous changes in m components. Arrows indicating repeat calculations 

associated with L different values of same set of components, and K different 

groups of components, do not apply to reference method. Computational costs, 

some approximate, are indicated in parentheses. 
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stages. (a) Component No.3 is being explored. (b) Switching 

from component No. 3 to No.5. The current value of component 

No.3 is absorbed into the circuit. (c) Component No.5 i6 
ready for exploration. 
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Fig. 4.8. A bandpass filter containing variable (arrowed) 

components and its nominal response curves (pass-band). 



Fig. 4.9(a). Interactive display associated with dynamic 

exploration of the effect of simultaneous change of 

a group of 5 components. The one-at-a-time component 

change is simulated by activating the light-button 

which represents the corresponding component, and 

moving an activated light-pen along the light-poten

tiometer shown at right. 

Fig. 4.9(b). Another new (dotted) response curve is 

displayed on the same graph as the (full) nominal 

curve, after the 5 components have been adjusted 

to a new set of values. 



CHAPTER 5  

TOLERANCED CIRCUIT DESIGN 

5.1 Introduction 

The fact that all components exhibit a spread in value requires 

the specification of circuit performance to be phrased in terms of 

an allowed tolerance region about a nominal value. In recent years, 

interest has been shown in numerical techniques capable of assign-

ing maximum tolerances to the components of a circuit, subject to 

the performance remaining within specified limits. The reasons for 

doing this can be seen from a typical cost tolerance relationship 

of a manufactured component (Fig. 5.1). For a given specification, 

the wider the tolerance on each component of a circuit, the smaller is 

its unit cost. As more and more circuits are being designed for 

increasingly large production runs, the need for toleranced circuit 

design to become part of a computer aided circuit design package has 

been recognized. 

At present, successful tolerance assignment algorithms are 

based on the technique by which the permitted tolerance on circuit 

output performance can be projected into the component space. If 

. the changes in a component value are small, the technique described in 

Chapter 2 which permits the efficient computation of small change 

sensitivity may be used. With this method, either component change 

or performance change may be specified and the other computed; there-

fore the permitted tolerance on the circuit performance can easily 

99 
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be projected into the component space at a very low computation 

cost. However, the simplifying assumptions underlying this technique 

do not extend to the situation in which changes in component value 

are large. 

If only one component undergoes a large change, the projection 

of permitted tolerance on circuit performance into the admittance 

plane of a particular variable component is a straightforward task, 

since bilinear relationship between the output voltage and the 

variable admittance may be used. However, if the number of components 

which undergo large change is greater than one, the projection becomes 

increasingly costly as the number of variable components increases [33] 

In this chapter, an efficient method for the projection of 

permitted tolerance on circuit performance into a multi-dimensional 

component space will be proposed. As a result of the projection, 

a multi-dimensional performance contour is generated in the variable 

component space. The implementation of this efficient method within 

an interactive graphic circuit design facility will be illustrated 

with an example. 

5.2 Bilinear Relation  

In order that the tolerance on circuit output voltage can be 

efficiently projected into the component space, an explicit expression 

between a change in output voltage and the resulting change in the 

admittance is needed. Referring to the circuit model in Fig. 3.1(a)-(c), 

consider equations (3.4), (3.6) and (3.10) again. We get 
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Y' 	yv3 
	+ 3 (5.1) 

(5.2) 

(5.3) 

(5.4) 

V3 

	

Av2 	= 	z23 i3 

	

v
3 	= 	z31 	z33 i3 

Rewriting (5.2) so that 

	

i3 	Avg/z23  

and substituting for i
3 

in (5.1) and (5.3) and then for v
3 
in 

b 
(5.1) leads to the following/linear relationship between the new 

admittance value y and the corresponding change in response 

voltage A v2: 

y 
a + b A v2 
c + d A v2 

(5.5) 

z 

z- 
where 	a = Y z31 	‘J 

_ 	4. 	) 
23 	23 

f..31  
z23  

Using equations (3.5), (3.7) and (3.12) a similar expression 

can be derived for a new mutual admittance value gm. 

Z31 2 d CC 

gm 
a + b A v2 
c + d Avg 

(5.6) 



where 

= 
gm z41 m 41 

C = z41 

b 	 z43 	1 ) 
= 	

(g 

z23 	z23 

= 

z23 
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Equations (5.5) and (5.6) represent a special case of the 

conformal transformations [34135] . A transformation is said to 

be conformal if it preserves the sense as well as the magnitude of 

angles. 

To ensure that the bilinear transformation is conformal, the 

condition be - ad 0 must hold (theorem on the conformal correspon-

ence of two domains). If ad = be,y is a constant independent of 

v2 and thus the entire 0 v2-plane is mapped onto the same point 

in the admittance plane. If b = -c, the transformation is 

involutionary, i.e., y and A v2  may be interchanged. Critical points, 

i.e., points where the transformation is not conformal, are A v2  = -c/d 

and t v2 	co . The inverse of the bilinear transformation is also 

a bilinear transformation. 

If a region in the v2-plane with a circumference C is 

mapped on to the y- plane to give another region with circumference 
N 
, then the interior of C is mapped either onto the interior or 

the exterior of C. The latter situation will occur if, and only if, 

the pole of the function (5.5) or (5.6) is situated in the interior 

of C. 

The bilinear transformation maps circles into circles. Straight 

lines are included here since they represent circles with infinite 

radii, but it is not implied that straight lines are necessarily 

transformed into straight lines. Those circles in the y- plane which 
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correspond to circles passing through the point A v2  = - c/d 

(whose image is y = 00) are straight lines. 

If a circle in the A v2-plane is given by its centre point p 

and its radius r, then the centre point 15 and the radius of of 

the corresponding circle in the y- plane can be computed by the 

following expressions 

by + a - d* r2 S  
d p + and r (5.7) 

where 

be - ad 	c S 	 and I p + — I 	r (5.8) 
idp+c1 2  - Idr1 2  

The inequality condition means that the pole of the bilinear function 

(5.5) or (5.6) lies inside or outside the circle in the A v2-plane, but 

not on it. d* is the complex conjugate value of d. 

5.3 Simple Tolerance Region  

The projection of permitted tolerance on circuit output voltage 

into a one dimensional component space using the bilinear relation-

ship can be illustrated by a simple example. It was assumed that 

a circuit and its single circular tolerance reKion on the output 

voltage plane had been proposed and that it was required to find 

the allowed tolerance on one of the network components. Assume that 

all other components remain fixed at their nominal values. 

In view of the bilinear nature of the relation between the 

change in response voltage A v2  and the resulting change in admittance 

of the variable component, the corresponding region in the admittance 
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planewill then also be circular. Therefore, in order to transform 

the circular tolerance region from the v2-plane onto the y-plane, only 

three points on the circumference of the circular region need to 

be calculated. In general, the centre (p) of the resulting circle 

will not be coincident with the nominal value of the admittance. The 

inside of the tolerance region in the v2  plane will be transformed 

into either the inside or outside of the circular region in the 

admittance plane. The region on the admittance plane resulting from 

this projection indicates how far the admittance of a component is 

allowed to deviate from the nominal, subject to the output voltage 

remaining within the specified tolerance region. Fig. 5.2 shows the 

transformation of such a simple tolerance region from the v2-plane 

onto the y-plane. This transformation constitutes the basic technique 

for the computation of performance contour [32,8] and the scheme 

for the elimination of redundant model complexity [10] . 

5.4 Complex Tolerance Region 

1. Multiply defined specifications 

In many of the practical cases, the circuits with which we 

are dealing have a scalar performance criterion which is usually 

represented by a circle C on the complex output voltage plane. For 

example, the scalar performance criterion could be the magnitude or 

phase angle of the output voltage of a circuit. 

If the performance of a circuit only has a single criterion, one 

performance measure C0 
 and an allowable degradation A C from nominal 

are specified. Two circles (Co  t A C) mark the boundaries of a 

tolerance region separating acceptable circuits from the unacceptable 

* Note that the v
2
-plane is the same as the A v

2
-plane except for 

a displaced origin. 
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ones. Therefore, in order to establish the tolerance region on the 

admittance plane, more than one circle on the output voltage plane 

has to be transformed onto the admittance plane. 

Fig. 5.3 shows the two circles representing the upper and lower 

tolerance limits of the magnitude of an output voltage on the complex 

voltage plane. The two circles Ivo' ± ANTI are then transformed 

onto the admittance plane of the variable component. The area between 

these two transformed circles (shaded area) constitutes the tolerance 

region on the admittance plane. 

In many cases, the performance of a circuit is evaluated by a 

number of performance criteria. For example, in the case of an 

amplifier, the phase and magnitude of the output voltage may be the 

desired performance criteria, in the case of a filter, the insertion 

loss at several frequencies will be specified. The tolerances 

associated with all these criteria must be considered. By projecting 

the tolerance regions associated with the different criteria onto the 

same admittance plane, we obtain an area shared by all the resultant 

individual tolerance regions. This is the tolerance region for all  

criteria, and it will possess a character such that within this region, 

the admittance of a component is allowed to deviate from the nominal 

without forcing the output voltage to move outside the specified 

tolerance region for all criteria. Fig. 5.4 shows that, as a result 

of projecting the tolerance regions of phase and magnitude onto the 

admittance plane, the tolerance region for both of these two criteria 

(shaded area) is established. 

2. Region of acceptability 

Theoretically, within the tolerance region, any complex 

admittance value of a variable component would result in satisfactory 
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circuits. However, on practical considerations, when a component is 

assumed variable, its value can change, and not its type. Taking this 

consideration into account, for the tolerance region on the admittance 

plane, only the intersection on the corresponding real or imaginary 

axis indicates how far a component value is allowed to deviate from 

the nominal without producing unsatisfactory circuits. For example, 

if the tolerance region cuts both the real and imaginary axes on 

the complex admittance plane, and the component is a resistor, only 

the section of the positive real axis within the tolerance region 

is the actual permitted tolerance region of the particular component. 

The actual permitted tolerance region in a component space may also 

be termed the region of acceptability, the contour of which is 

denoted the performance contour [ 1 	. In Fig. 5.3 and Fig. 5.4, 

assuming that the component is an inductor, the heavy line within 

the tolerance region is the region of acceptability of the variable 

component. 

From the above discussion, it can be noted that the dimension 

of a region of acceptability is equal to the number of variable 

components. Therefore, the projection of the tolerance region 

(single or multiple criteria) from the output voltage plane into a 

multi-dimensional component space to form a region of acceptability 

now becomes practical. A multi-dimensional region of acceptability 

describes how a number of components of a circuit can vary simultan-

eously around their nominal values, all the other components being 

kept constant, without the circuit response being forced outside 

its tolerance. The concept of a multi-dimensional region of 

acceptability is best illustrated by a two dimensional, two criteria 

example. Consider the circuit shown in Fig. 5.5. If the designer's 
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specification calls for the deviation of the magnitude of the output 

voltage to be limited to within t 10% at 30 Hz and 300 Hz, and L and 

C are assumed variable, then, the region of acceptability shown in 

Fig. 5.6 is bounded by four lines. Each of these is the locus of 

all points producing circuits exactly satisfying one of the 

specifications. 

5.5 Performance Contours 

1. Computational method 

In order to characterize the region of acceptability in a 

variable component space, the contour of the region (i.e., the 

performance contour) must be computed. So far, different methods 

for the computation of performance contours have been proposed 

[1,33] . However, due to the fact that all of these methods are 

based on either the repetitive analysis of a circuit or the 

substitution current source technique, the computational cost has 

been very high indeed. This is especially true when a multi-

dimensional performance contour has to be computed. 

As a result of the discussion of the previous chapter, an 

efficient approach to the computation of m-dimensional performance 

contours can be formulated. Briefly, it can be stated as follows; 

first, for each frequency of interest, the values of m - 1 of the 

m variable components are explored systematically by the matrix 

modification method. Then, for each set of these m - 1 component 

changes, the corresponding values of the m
th component are found 

by the inverse calculation expressed by (5.5) or (5.6). A more 

detailed description of the algorithm will now be presented. 
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In the following description of the computational procedure of 

a 3-dimensional performance contour we refer to Fig. 4.3(a); the 

three admittance changes Ayll  Ay2  and Ay3  will correspond, respectively, 

to the x-axis, y-axis and running parameters (z-axis) of the family 

of 2-dimensional performance contours. 

The steps in the computational procedure are: 

a) For the 5-port of Fig. 4.3(a) the port impedance matrix 

at each frequency is obtained by one of the schemes indicated in 

Fig. 4.5 

b) A value is assigned to the component whose change 43  from 

nominal may be regarded as temporarily fixed, and the port impedance 

matrix appropriately modified. If the transfer impedance of the 

original 2-port is the only circuit response for which tolerances 

have been specified, then only a 3 by 3 matrix need be computed and 

retained (see Fig. 4.4). 

c) The first of a sequence of values is assigned to the 

component whose admittance change is denoted by Ay2, and the port 

impedance matrices modified. If the situation is as stated in b) 

above, then only a 2 by 2 matrix need be computed and retained for 

each frequency. 

d) For each value of Ay2, equation (5.5) allows the range of 

gyi  permitted by the tolerance on transfer impedance to be determined. 

If the tolerances of the magnitude of the complex transfer impedance 

at a number of frequencies are considered,for each frequency, three 

values of Av2 are selected and transformed according to (5.5) in order 

to establish the upper or lower boundary of the tolerance region in 

the Ay1  plane. By a simple construction the corresponding maximum and 

minimum component values can be found, thereby yielding two points 
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on the performance contour relevant to each frequency. Fig. 5.3 

illustrates this part of the computational procedure for the situation 

in which the component is an inductor. 

e) Step b) through d) are repeated for a new frequency. 

f) By appropriate comparisons, too detailed to be described 

here, two most significant points are selected to characterize the 

boundary of the performance contour for all frequencies. 

g) Steps b) through f) are repeated for a new value of Ay3. 

2. Properties 

In a computer aided design, 2 or 3-dimensional performance 

contours has found their uses in many places. This is because a 

2 or 3-dimensional performance contour can be visualized when it is 

displayed graphically, and the shape of a performance contour can 

reveal some important properties of a circuit. Here are some 

properties associated with 2-dimensional performance contours: obviously 

they can easily be extended to 3-dimensional cases. 

a) If the performance criterion is singularly sensitive to 

one of the two components constituting the performance contour, the 

performance contour will contain the line (dotted) shown in Fig. 5.7(a). 

This line, in fact, is the x or y axis and is unbounded at either 

end. 

b) If the performance criterion is singularly sensitive to the 

product of the two components consituting the performance contour, 

the performance contour will contain the curve shown in Fig. 5.7(b). 

This curve is not bounded at either end. 

c) If the performance criterion is singularly sensitive to the 

ratio of the two components consituting the performance contour, the 



101 
performance contour will contain the 450  line shown in Fig. 5.7(c). 

This line is not bounded at either end. 

The proof of the above properties and the others may be found 

in [ 1] . 

5.6 Engineering Applications  

In view of their reported value in circuit design, and their 

relative ease of interpretation when presented graphically, it was 

decided that the provision of 3-dimensional performance contours 

should be added to an existing interactive graphic circuit design 

facility [ 8 ] . 

The above procedure was programmed for PDP-15 computer with 

VT-15 interactive display, and is illustrated here by an example. 

The circuit of interest (Fig. 5.5) and its nominal component values 

are easily defined by a light-pen and displayed on the screen. 

Similarly, light-pen activation of suitable Command buttons and 

parts of the displayed circuit diagram permit the easy definition 

of the variable components (L, C and R), the response of interest 

(v), and the tolerance upon this response at various frequencies 

CI 10% of magnitude at 30 and 300 Hz). The resulting display is 

shown in Fig. 5.8. On cue, a new performance contour appropriate 

to the next value of the running parameter (R) is displayed. 

Fig. 5.9 shows a sequence of performance contours corresponding 

to five values of the resistance R. Clearly, a number of different 

methods could be devised to display the information embodied in 

Fig. 5.9. 
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Fig. 5.1. Typical cost vs. tolerance relationship 

of a manufactured component. 
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Fig. 5.3. Transformation of a complex tolerance region 
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ID . 	 IOC . 	 IK 

5D . 

Fig. 5.5. A circuit and its nominal response curves relevant 

to the illustration of performance contours. 
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AL 

Fig. 5.6. Performance contour appropriate to the variable 

components L and C of the circuit of Fig. 5.5. 
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A P1  

AP 2 ( a  ) 

( b ) 

Fig. 5.7. Graphs illustrating some important properties of 

performance contours. P
1 
and P2 are the two variable 

components. 



Fig. 5.8. Displayed performance contour appropriate to the 

variable components Land C of the circuit of Fig. 5.5 
(see Fig. 5.6). 
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Fig. 5.9. Sequence of performance 

contours for the circuit of 

Fig. 5.5, each associated with 

a given value of R. The square 

outline defines ! 5q% changes 

in the components. Upper and 

lower extremities of the vert

ical potentiometer define + 2~ 

and - 2q% variations in R 

respectively. 



CHAPTER 6 

TRACKING SENSITIVITY 

6.1 Introduction 

The design of integrated circuits, as well as many discrete 

circuits, must accommodate simultaneous variations in component 

values as a result of change in some environmental (global) 

variables such as temperature, time (ageing) or radiation. In 

such cases, a number of component values exhibit the same form of 

functional dependence upon the global variable and for this reason 

the term 'tracking sensitivity' [36] is employed. In investigating 

and attempting to compensate for this dependence, the designer would 

clearly be assisted by some efficient means of computing its effect 

upon circuit behaviour. It is additionally useful, particularly 

within an interactive graphic circuit design facility, if the 

computation is efficient enough to permit dynamic exploration of 

the effect, so that its compensation may more easily be achieved. 

So far, several efficient methods for the evaluation of 

differential and large change sensitivity have been discussed. In 

order to compute the effect of the global variable on the circuit 

response, large change sensitivity algorithms may be used. However, 

due to the fact that the global variable usually has an effect 

on nearly all the components of a circuit, the number of variable 

components is proportionally very large. In addition, the nature 
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of this particular kind of components variation does not make itself 

suitable for systematic exploration*. The large change sensitivity 

algorithms so far developed are not efficient enough for such a 

purpose. In the method proposed in this chapter, the bulk of the 

calculation is independent of the global variable and is carried out 

initially; the additional calculation for each value of the global 

variable then involves only a small number of operations. The 

application of this approach, within the context of highly inter-

active computer aided design, is illustrated by an example. 

6.2 Parametric Circuit Description 

Consider a linear nonreciprocal two-port containing resistors, 

capacitors, inductors and voltage-controlled current sources, whose 

property of interest is its transfer impedance zoo. To simulate 

the effect of component variation induced by change in the global 

variable, the single-frequency admittance of each component is 

described by the following expression: 

Yi = YiN (1 1- K  i) 	(6.1) 

Of the two coefficients t . and K, the former is 'local' to the ith 

component, whereas the latter, K, is 'global' and common to all 

* If the effect on circuit performance of a number of values of 

the global variable is to be explored sequentially, for each new-

value of the global variable, the variable components will have a set 

of new values which is totally different from the preceding set. 

Therefore, no advantage can be taken by holding any one of the 

variable components temporarily constant during the exploration. 
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components. For example, the effect of ambient temperature 

(characterized by K) upon components having a range of temperature 

coefficients (characterized by 	is capable of simple description. 

yiN denotes the nominal value of admittance. 

If all components in a circuit are so described, the entire 

circuit can be described by the sum of two nodal admittance matrices, 

viz: 

Y
N 	

K Y
v 
	 (6 .2) 

Here, the subscripts N and V denote the nominal and variable 

parts of the admittance matrix. The single dimensionless scalar 

constant K can be extracted as shown because it is common to all 

components. A value of zero for K corresponds to the nominal 

circuit. 

6.3 Algorithm 

The problem of computing the tracking sensitivity of a circuit 

can be stated as follows: Given a single-frequency nodal admittance 

description of a circuit in the form of (6.2), determine the transfer 

impedance zoo for each of a number of values of K. 

The transfer impedance zoo of interest is an element of the 

circuit's impedance matrix Z which is the inverse of Y: 

z = (YN  K Yv)-1  

-. [ (I K Yv  YN1) IN] -1  

(6.3) 



where I is the unit matrix. Writing Y
-1 
 = Z, equation 6.3 

becomes 

Z 	ZN (I + K YV ZN)
-1 
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(6.4) 

We now factorize the matrix Y
V ZN 

of (6.4) into a product [37] 

of three matrices, V A V-1, where V is the eigenvector matrix of 

YV ZN and A is a diagonal matrix whose diagonal elements are the 

eigenvalues (41, 42, 	411) of the matrix Y. ZN. Thus, equation 

6.4 can be written as 

Z 	ZN (I +KVAV-1)-1  

ZN [1,/ (I + K A) V-1  } -1 

ZN V (I + K A)-1 V-1  

(6.5) 

1  
1 + K4n 

where P = ZN  V. If 2;40 is the only transfer impedance of interest, 

the relation appropriate to its calculation is seen from (6.5) to be 

P 

 

0 

  

0 

a1 	d2 	
an  

z 0 1 + KX1 	1 + KA2 1 + KXn 
(6.6) 
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where 

ar 	P r (IT-1)r0 	
r 	(1, 2, ..., n) 

and n indicates the size of the nodal impedance matrix. Fig. 6.1 

shows the scheme of this algorithm. 

6.4 Eigenvalues and Eigenvectors  

We know that what are spoken of as the eigenvalues of a matrix 

are the zeros of its characteristic polynomial; i.e., the roots of . 

the equation 

all-  X a12 	aln 

21 	a22-h 	a2n 

IA - A IJ = 

and 	 ann- X  

(..1)n xn 
	An-1 	= 0 '1 	'n (6.7) 

In fact, the coefficients pi  are, but for sign, the sume of all 
th principal . order minors of the determinant of the matrix A. The 

direct computation of the coefficients pi  is extremely awkward and 

requires a huge number of operations, particularly when the size of 

the matrix A is large. 

The determination of the components of an eigenvector requires 

the solution of a system of m homogeneous equations in n unknowns; 
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in order to compute all the eigenvectors of a matrix one must solve, 

generally speaking, n systems of the form 

(A — X. I) X. = 0 	 (6.8) 

where Xi  = (xii, x2i, 	xni) is the i
th 

eigenvector of the matrix A. 

It is thus perfectly natural that special computational .artifices 

that simplify the numerical solution of both problems before us should 

have made their appearance. In response to this need, an efficient 

iterative method which makes possible the direct determination of 

the eigenvalues of the matrix without resorting to the characteristic 

polynomial has been developed. By using it, the eigenvalues and 

eigenvectors can be obtained at a low cost. 

The steps of the proposed iterative method [39,40,41] for the 

finding of eigenvalues and eigenvectors of a general complex matrix 

are as follows : 

1. Reduce the matrix to Hessenberg form by similarity 

transform or Householder method. 

2. Find eigenvalues of the Hessenberg form matrix by 

QR iterations. 

3. Find eigenvectors by Wielandt inverse iteration. 

4. Recover eigenvectors of input matrix. 

The scheme of the above procedure has been shown in Table 6.1. 

The time chart shown in Fig. 6.2 shows the real time expenditure of 

this method as it is implemented on a CDC 6800 computer. It is 

important to note that, for symmetrical matrix (i.e. passive circuits), 

by using a more efficient algorithm, the time expenditure can be 

greatly reduced if the eigenvalues and eigenvectors are to be found. 

* See Appendix for details. 
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Since the timing graphs are made with log scale against log scale, 

the graphs have a tendency to straighten out for large matrix orders 

and tend towards an asymptote as the cost term involving the highest 

power of the matrix order becomes dominant. In most of the cases, 

this term is a cube, giving a terminal slope of three if both log 

scales are to the same base. 

6.5 Computational efficiency 

At a single frequency, and following the formation of YN  and 

YV, one matrix inversion is required for the generation of ZN. Then, 

the major computational effort can be divided into two parts. 

The initial calculation (which must be repeated if a new 

choiceofthecoefficientsis made) comprises: 

1. One n by n matrix inversion (of IT) which requires n3 

multiplications. 

2. Two n by n matrix products (YV ZN  and ZN  IT) which requires 

2n3 multiplications. 

3. Determination of the eigenvectors and eigenvalues of an 

n by n matrix (Yv  ZN). The computational cost of this 

step is illustrated in Table 6.1. For large matrix orders, 

the cost 'approximates to 11n3. 

4. n multiplications to generate the coefficients a
r (r = 1,...,n) 

5. 2n divisions to arrange (6.6) into a form such that least 

computational effort is required for the computation of 

z 0 for a new value of K. 

Following the initial computation, the calculation for each value 

of K comprises only n multiplications to calculate zoo  according 

to (6.6). 
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The computational effort (n) associated with each value of K 

is small enough to permit dynamic exploration of the effect of K 

on transfer impedance. That is, it is possible to calculate and 

display the new frequency response curve essentially instantaneously 

as K is varied manually. 

6.6 Exact Method  

Basically, the initial computations of the tracking sensitivity 

of a circuit involve the computation of the coefficients of the 

characteristic polynomial of a matrix. In the algorithm proposed above, 

this problem has been transformed into that of finding eigenvalues 

and eigenvectors of a matrix whereby the well developed efficient 

iterative computer routines can be used. In some rare occasions, 

the diagonalization of a matrix may not be possible. As it happens, 

an exact method was later proposed [38] . In this method, Leverriers 

method in D.K. Faddeevs modification [42] has been used for the direct 

computation of the coefficients of the characteristic polynomial and 

the adjoint of a matrix simultaneously. The algorithm of this method 

will now be described. 

Instead of expressing Z in the form of equation 6.4, Z may be 

written as 

z 	(1 / K) ZIT  [ (1 / K) I - (- Yv  ZIT) ] -1 
	

(6.9) 

Define (1 / K) 1,1 X and - Yv  ZN  A, so that we have 

Z = X ZN (X I - A)-1 
	

(6.1o) 

Use Leverriers' algorithm to evaluate, simultaneously, Adj (X I - A) 

and Det (X I - A) as follows: 
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A  , qi= - tr Al 	, B1,L?'. A + q I A1= A 	 1 

A 	IA 1  , q2= - •-. tr A2 	, B2= A2  + q2I A2= A B1 	4 

• • • . . • 

A An-1= A  Bn-2 , qn_1=A  (n_-1 i)  tr An-1 	B1  - A 	+ q I • n- n-1 n-1 

An A Bn-1
q A 	A tr An 	Bn= An + qn I = 0 n
= - — 1 n 

The quantity all  + a22  + 	+ ann  is called the trace of the 

-matrix A, and is denoted by tr A. The last identity, Bn  0, 

provides a numerical check on the algorithm. Then it is well known [56) 

that 

Adj(X I - A) = an-1 I + Xn-2 B1 + 	+ h Bn-2 + Bn,1 

and 	Det(X I - A) = in + ql  0-1 + 	+ qn-1 	qn 

Hence 

ZN + Bl K + B2 
K2 + 	+ Bn-1 Kn-i] Z = 

1 + ql  K q2  K2 + 	+ qn  Kn 

(6.11) 

(6.12) 

(6.13) 

and n  
E[zN i 	i jo  + [B1 	K + 	+ [Bn_1] 

j=1 	j zoo  = 
1 + qi  + q2  K2+ 	+ qn Kn 

a0  + al  K + a2  K2 + 	+ an-1 
Kn-1 

 

1 + q K + q2 
K2 + ... +qn Kn 

(6.14) 
1 
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where 

n 

ar 	N ] 	[13 r 	(r 	Q, 1, ..., n-1); (B0 	I). 

J=1 	
oi 	. 

JP/  

Here, and throughout, n denotes the size of the nodal admittance matrix 

Y. Note that ar and qr may be evaluated before substituting values 

of K. 

At a single frequency, and following the formation of YN  and Yv, 

one n by n matrix inversion is required for the generation of ZN. 

Thereafter, the major computational effort of this method can also 

be divided into two parts. The initial calculation (which must be 

repeated if a new choice of the coefficients t 	is made) comprises 

1. One n by n matrix multiplication (of Y 	which requires 

n3 multiplications. 

2. Computation of the coefficients of the characteristic 

polynomial of an n by n matrix (- YY  ZN) by Leverriers 

algorithm which involves (n - 1) matrix multiplications, 

i.e., (n - 1) n3 multiplications. This figure tends 

towards an asymptote of n4 for large matrix orders. 

3. (n - 1) inner products, i.e. (n2  - n) multiplications to 

generate the coefficients ar ( r = 1, 2, ..., n-1). 

Following this, the calculation for each value of K requires 

a total of (2n - 1) multiplications to evaluate the numerator and 

denominator polynomials, followed by one division - a total of 2n 

operations. This takes twice as much computational effort as that 

required by the previous method. The scheme for the computation of 

tracking sensitivity using the exact method is shown in Fig. 6.3. 
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6.7 Engineering applications  

The advantage of the efficient approach to tracking sensitivity 

analysis has been exploited to good effect in the interactive graphic 

circuit design facility L8 ] with the global variable designated 

as ambient temperature of the components. 

In the process of the interactive graphic circuit design, once 

the circuit has been input satisfactorily and displayed on the screen, 

the designer may activate the appropriate light button for the 

tracking sensitivity display. He then indicates the components which 

are susceptible to temperature variations and, at the same time, 

specifies the corresponding temperature coefficients of these 

components. After a time lapse needed for the computation of the 

eigenvalues and the eigenvectors and relevant coefficients for a 

number of discreted frequencies composing the response curve, the 

computer is ready to display the effect on the voltage response of 

the temperature variations. 

The magnitude and phase response curves are now displayed on 

the screen with solid curves representing the nominal response, and 

dotted curves representing the deviated response due to temperature 

variations. A light potentiometer appears on the right hand side 

of the screen. The arrowed position indicates the temperature under 

which the deviated response curves are evaluated. Due to the small 

number of operations associated with each value of the global 

variable (temperature), following the initial computation, new dotted 

response curves are displayed roughly half a second after the pointer 

on the potentiometer has moved to a new position, manually or 

automatically. 

The circuit example of a transistor amplifier shown in Fig. 6.4 

has been chosen for illustration. The effect on the output response 



120 

of ambient temperature variation of this circuit is to be investigated. 

All components of this circuit are assumed susceptible to temperature 

variations and assigned with the appropriate temperature coefficients. 

Fig. 6.5(a) and Fib. 6.5(b) show the output voltage response curves 

of this circuit at two different ambient temperatures. The rapid 

display of the new response curves under the new temperature enables 

the designer to explore the temperature effect dynamically. 
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Method 

Work per 

iteration 

Convergence 

properties Cost Achievement 

Householder 5/3 n3  matrix --*-

Hessenberg 

11%1R-iteration 4 n2 cubic approx. 

8 n3  
find all 

eigenvalues 

of Hessenberg 

matrix 

Wielandt 

inverse 

iteration 

1 
7 n2  in two 

passes 

n2 

• 

finds all 

eigenvector 

given an 

eigenvalue 

Eigenvector 

recovery 

n3 recover all 

vectors after 

Householder 

reduction to 

tridiagonal 

Table 6.1. 

Approximate costs associated with the four steps of 

computing eigenvalues and eigenvectors by iterative 

method. 
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Fig. 6.1. Scheme for the computation 

of tracking sensitivity 
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MATRIX ORDER 

Fig. 6.2. Timing chart showing the real time expenditure 

of the iterative method for the computation of all 

eigenvalues and eigenvectors of a complex, real or 

symmetric matrix. 
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Fig. 6.3. Scheme of the exact method. 
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Fig. 6.4. A transistor amplifier subjected to temperature 

variation and its nominal response curves. 
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Fig. 6.5(a). Interactive display associated with dynamic 

exploration of the effect of temperature variation on 

circuit response. Temperature variation is simulated 

by moving an activated light-pen along the light

potentiometer shown at right. The new (dotted) 

response curve ,is displayed on the same graph as the 

(full) nominal curve. 

Fig. 6.5(b). Another new response curve is displ~ed in 

less than a second after the temperature has been 
varied to a new value. 
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CHAPTER 7 

STATISTICAL CIRCUIT ANALYSIS  

7.1 Introduction 

Circuits are manufactured from components of specified 

tolerances. Therefore, in the final stages of circuit design, 

it is necessary to test the 'realistic' circuits to ensure that 

the design requirements are met. A popular technique of testing 

the 'realistic' circuit is the computation of worst-case circuit 

performance. Although worst-case analysis has been widely used in 

the past, it is known to be unnecessarily conservative in setting 

component tolerance limits, and its use can result in increased 

production costs. On the other hand, a statistical analysis [43,44] 

sometimes known as Monte Carlo analysis, helps to assure both 

acceptable manufacturing yield and minimum production costs. 

Basically, the computational approach used in a Monte Carlo 

analysis is to evaluate the performance of a simulated circuit 

many times, introducing at each iteration random variation of a 

specific probability distribution to the component values. The 

performance values are collected to form histograms of the frequency 

and cumulative distributions of the data. The process is continued 

until the distribution is an adequate representation of the 

anticipated statistical behaviour of the circuit. 

In a Monte Carlo analysis, the statistical performance is 

directly measured by applying random variations with known distri-

butions to the circuit components. For this reason, the estimates 

of performance are more realistic than those obtained by worst case 
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analysis in which only the extreme values are used in evaluating 

performance . Although Monte Carlo analysis has all the advantages 

mentioned previously, they are usually outweighed by the computational 

cost of acquiring sufficient data to determine distributions that are 

representative of the entire population. Therefore, alternatives 

which are far less costly, even if approximate are being sought. 

In this chapter, we examine one statistical technique known as 

'regionalization' [4,45] , and show how a further and often very 

considerable increase in efficiency can be secured by invoking the 

concept of an idealized statistical model [ 45 and exploiting the 

technique of systematic exploration [321 . The feasibility of the 

new approach, as well as its relevance to highly interactive 

computer-aided design, is illustrated by an example. 

7.2 Monte Carlo Analysis  

The structure of a Monte Carlo analysis is given in Fig. 7.1. 

The function of the blocks will now be described. 

1. Input of circuit data. 

The circuit and initial data are supplied to the computer 

through a suitable computer dialogue and subsequently may be modified 

by the designer. The variable components of the circuit to be 

investigated are characterized by their nominal values and probability 

distributions, the latter including tolerance limits. Components 

without tolerances may be considered as constants or as components 

with zero tolerances. 

It should be noted that although a worst case may generally be 

assumed to occur at a set of extreme values, a set of extreme values 

will not necessarily result in a worst case. 
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2. Random variable sources. 

Random number generators are generally used in a Monte Carlo 

analysis as the sources of random numbers. Initially, the distri-

bution of a random number generator in a computer is uniform in 

shape. Gaussian and other distributions may be obtained by re-

shaping the uniform distribution into the shape required. 

The random numbers initially generated in a computer are so 

scaled that the variates are in the range -1 to +1. For Gaussian 

or other distributions, it is necessary to rescale the range so that 

unity corresponds to a selected number on the abscissa of the 

distribution and the distribution may be truncated outside a specified 

range. Fig. 7.2(a) shows the initial uniform distribution of the 

random number generator of a PDP-15 computer and Fig. 7.2(b) shows 

the Gaussian distribution obtained by reshaping the initial distri-

bution. In this example, the Gaussian distribution has been truncated 

and normalized so that 20 corresponds to unity. 

3. Perturbation of component values. 

The variations in component values are a function of 

tolerances and the random distribution. The perturbed value n  for 

each component is computed according to 

n 	n o  (1 + kx) 

where n
0 
 is the nominal component value, k is the specified tolerance 

and x is the normalized random number. The set of perturbed values 

for all variable components is then used directly in the computation 

of the circuit performance. Fig. 7.2(b) also shows the relationship 

between the component deviation and the normalized deviation of 

the Gaussian distribution. 
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4. Evaluation of circuit performance. 

The effect of the component tolerances on the circuit 

performance is evaluated by analysing the circuit for each set of 

variable component values. As it happens, the analysis algorithm 

has to be performed repeatedly as many times as the number of trials 

in a Monte Carlo analysis. Therefore, this block is the major comput-

ational time consumer of the whole process and should be made as 

efficient as possible in order that the computational cost of a 

Monte Carlo analysis is kept to a minimum. 

5. Data process and display. 

The various values of circuit performance obtained from the 

repeated analysis are accumulated and processed to form frequency 

and cumulative distribution histograms. The frequency distribution 

contains the relative occurrence of samples in each class interval 

of the selected range, while the cumulative distribution contains 

the proportion of the samples that are found below each value of 

the performance deviation. 

The frequency or cumulative distribution histogram is 

displayed graphically or printed on paper. The abscissa of the display 

represents the performance deviation, and is labelled with its minimum 

and maximum values. The ordinate of the frequency distribution is 

normalized with respect to the maximum class interval count. This 

normalization was chosen so that the maximum amplitude is always 

unity and not a function of the total number of samples. Therefore, 

the variance of distributions obtained for different component 

tolerances can be compared without renormalization of the peak 

values. The cumulative distribution is normalized with respect to 

the total count and it enables one to determine rapidly what percentage 

of the designs produce acceptable values of the performance deviation. 
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6. Man-machine interaction. 

In a Monte Carlo analysis, the end product is the frequency 

or cumulative distribution histogram whose use in the prediction of 

manufacturing yield can only be justified when the distribution is an 

adequate representation of the anticipated statistical behaviour of 

the circuit. Therefore, it is crucial for the designer tcitenminate 

the analysis at the right time in order that a reasonably good repre-

sentation of the circuit's statistical behaviour can be obtained at 

low computational cost. If interactive facilities are provided for 

a computer aided circuit design, the distribution histogram may be 

monitored and updated as the Monte Carlo analysis is in progress. 

By so doing, the designer is able to stop the computation immediately 

when he is satisfied with the result 3 ] . 

7.3 Regionalization  

In the Monte Carlo analysis described in the preceding section, 

the simulated circuit is re-analysed for each set of perturbed 

component values. Usually, the number of trial vectors for a Monte 

Carlo analysis is very large, so that the computational cost of 

this method is very high indeed. For a linear circuit with m variable 

components, even if the large change sensitivity algorithms described 

in Chapter 4 are used, each trial would normally involve approximately 

the cost Gm+2 
for Gaussian elimination, or Gm 

for the current 

substitution method. In view of the excessive cost, alternatives 

which are far less costly, even if approximate, are being sought. 

In view of its proven high efficiency in sensitivity analysis, 

it was decided that systematic exploration should be used to increase 

the efficiency of a statistical circuit analysis. In order for 

systematic exploration to be applied to statistical circuit analysis, 
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each variable component should assume one of a limited number of 

values and each set of m variable component values should be a 

combination of these. To this end, the technique termed 'regional-

ization' L4,45] is invoked. 

Briefly, the concept of regionalization can be illustrated by a 

simple example. Consider a circuit in which two toleranced components 

of values x
1 
and x2 are subject to spreads defined by continuous 

probability distribution functions (PDF) P and P
x2 

respectively: 
xl  

the two PDF's and the 2-dimensional variable component space may 

appear as in Fig. 7.3(a) whose Monte Carlo samples are represented 

by points. By regionalization, the two distributions of the two 

variable components are quantised into 5 class intervals, and the 

data within each of the 5 class intervals are discretized to the 

centre of their own class interval. As a result, each variable 

component can now assume one of a limited number (5) of values and 

each set of 2 variable component values is a combination of these. 

This fact may be geometrically interpreted as: The variable 

component space is regionalized into 25 regions and all points that 

may exist in a region are modelled by a single point, as illustrated 

in Fig. 7.3(b). 

In general, regionalization has the following two important 

features: 

1. The variable component space is partitioned into a finite 

number of non-overlapping regions. In order to perform the partition, 

the individual frequency distributions of the variable components 

must be quantised into a finite number of class intervals. As a 

result of quantisation, the variable component space is now partitioned 

into M regions where 
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M 	Qi.Q2. 	.Q. 	 (7.1) 

In the above expression, m is the number of the variable comp-

onents of the circuit and Qi  (i = 1,..,m) is the number of class 

intervals into which the individual frequency distribution of the 

.th variable component is quantised. If the Q1  of the variable 

components are identical, the number of regions can be computed by 

the equation 

M = gm 	 (7.2) 

2. All points (i.e., trial vectors) that may exist in a 

region are modelled by a single point. In order to do so, the random 

data within each class interval of a quantized distribution are 

discretized to an unique value within the corresponding class interval. 

As a result, each region is characterized by an unique set of m values 

denotedx.(i = 1,...,m). This set of values may also be called the 

coordinates of the point which represents the region. The point, 

denoted p, can be expressed as 

, 	it 
p = kx px 	' x ) 

1 2' 	m (7.3) 

7.4 Linear Circuits and Systematic Exploration 

1. Processing of trial vectors. 

Systematic exploration requires that, for statistical 

circuit analysis, the trial vectors should be generated and processed 

before the circuit analysis takes place. The procedure for 

processing trial vectors is as follows: 
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a) According to the probability distributions specified for 

the variable components, -the random number generators generate a 

number, t, of trial vectors before the analyses of the circuit 

takeplace.TWetrialvectors,denotedT.,can be expressed as 

T j  = (x x 	Ix ) 1j1  2j' 	mj (7.4) 

where j = 1,...,t, and where X..ij  are perturbed normalized variable 

component values. After all trial vectors have been generated, an 

m by t matrix is formulated (Fig. 7.4(a)). This matrix is denoted 

X..ij and each column represents a trial vector in a statistical 

analysis. 

b) By regionalization, the randomly generated trial vectors 

Tarerepresentedbyasinglepoint Pj  within their associated 

regions. The pointsPj  . can be expressed as 

, 	
) Pj 	xii,x

I  
2i  , 	,x mj (7.5) 

wherej=1"..,t,andwherexij  are the coordinates of the 

pointpj.Asaresult,thetrialvectorsinmatrixX..1,mre 

replacedbyp4thereforel anewmatrix,denotedLij 
 is formulated 

(Fig. 7.4(b)). 

c) The columns of the matrix X..ij 
 are then ordered into a 

sequence which is best suited for systematic exploration. Briefly, 

the columns of the matrix are so ordered that row 1 undergoes 

the least number of changes and, for each value in row 1, row 2 

undergoes the least number of changes, and so on to the last row. 

* In fact, steps a) and b) can be combined in a statistical analysis 
1 

process.Therefore,onlyX..is actually generated and stored. 
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As a result of this operation, matrixXij  is transformed into 

another matrix denoted X.j  as shown in Fig. 7.4(c) and this matrix 

is the starting point of the systematic exploration. 

It is important to note that, by regionalization, a certain 

amount of repetition inPj  . (trial vectors) would exist in the matrix 

X... The repetition will increase as the number of trials grows 

bigger or as the variable component space is partitioned into fewer 

regions. By ordering the trial vectors for systematic exploration, 

the identical trial vectors would automatically be grouped together 

(an unique trial vector is a group of its own). After one of the 

trial vectors of each group has been investigated, the rest of the 

trial vectors of this group can be bypassed without the need for 

any computational effort. Consequently, the number of trial vectors 

is effectively reduced. To account for the repetitive trial vectors, 

the number of trial vectors of each group is counted and used to 

multiply the statistics obtained from the investigation of a single 

trial vector of the same group. Since each group of identiCal trial 

vectors belongs to an unique region in the variable component space, 

the number of trial vectors of each group may also be termed the 

weight of a region.  

2. Computational efficiency. 

Consider a linear 2-port containing a number of components 

of which m variable components are subject to change. Let a port be 

created across each variable component (Fig. 4.1(a)), thereby defining 

an (m + 2)-port circuit described, at a single frequency, by a port 

admittance matrix Y or its inverse, the port impedance matrix Z . 

The transfer impedance z140 between the original ports 0 (input) 

and it (output) is the circuit property of interest. Each set of m 
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component values constituting a trial can be simulated by the 

connection of appropriate admittances in,y to the newly created ports. 

The calculation of z it o for each trial can therefore be obtained 

by the appropriate modification of the (m + 2) x (m + 2) port 

admittance matrix Y at negligible cost, followed by Gaussian 

alimination at a cost of Gm+2. If the number of variable components 

is sufficiently less than the number of circuit nodes, the cost 

Gm+2 can be less than G. This method of analysis will be adopted 

as a reference for purposes of comparison with the more efficient 

approach employing systematic exploration now to be exploited. 

For a given number m of variable components, each of which can 

assume any of Q values, the circuit data describing t trials were 

generated randomly. Thus, for 400 trials in which five variable 

components could each assume any of seven values, a 5-row 400-column 

matrix containing a random distribution of the integers from 1 to 7 
, 

(xii) was generated after the trial vectors had been processed. The 

number of value changes in each row then determines the total cost 

C of computing zi40 for all trials (See Section 4.6). For some values 

of m and t, the full curves of Fig. 7.5 show the saving t Gm+2/C in 

computational cost over the reference method as a function of Q, 

and the broken curves indicate the saving t Gm(C solely by the 

discretisation of component values and the ordering of trials. 

Particularly for low Q, it is clearly possible to obtain a useful 

economy in computation. 

3. Example. 

The effect of regionalization was tested by means of a Monte 

Carlo analysis of a bandpass filter (Fig. 7.6) at a single frequency 
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(800 Hz). The five (most sensitive) components so indicated were 

assumed variable according to a truncated Gaussian probability 

distribution ( a = 2.5%, limit = 5%). For 1000 trials, Fig. 7.7 shows 

the frequency distribution and cumulative distribution of the 

insertion loss for no regionalization, other than that inherent to 

the computer, and with Q equal to ten and six. For the regions 

where the insertion loss deviation is less than -3 db, the maximum 

discrepancy between the three cumulative distributions is 3% at a 

horizontal resolution of 100. In this example, the sample data have 

been discretized to the centre of the class intervals of each 

individual distribution. These results appear to indicate that 

regionalization of component space need not lead to a misleading 

result. The example also shows that an acceptable prediction of 

trials can be obtained at low cost. 

7.5 Idealized Statistical Model  

1. Definition. 

In a conventional statistical circuit analysis, the performance 

of a simulated circuit is evaluated repeatedly introducing at each 

iteration random variation of a specific probability distribution to 

the variable components. Repetition continues a) within the limits 

of available computational resources or b) until what is deemed 

to be satisfactory approximation to the anticipated statistical 

behaviour of the circuit has been obtained. Special attention 

should be given to conditions a) and b), since they are fundamental 

to most approaches to statistical analysis; typically, a) is 

concrete, whereas b) is somewhat ill-defined. If the number of 

analyses is limited, an evenly regionalized variable component 
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space with the number of samples set equal to the permitted number 

of analyses may constitute a satisfactory sampling model for a 

statistical circuit analysis. Referring to the example shown in 

Fig. 7.3(b), the evenly regionalized two dimensional variable 

component space may be considered as a satisfactory sampling model 

for a statistical circuit analysis with a limited number of analyses 

of 25 if the regions are properly weighted. 

Two method are available for the assignment of weights, and are 

conveniently described in the context of this 2-variable example. 

In one, points in the (xilx2)-plane are generated by a random 

process according to the probability distributions of the individual 

variable components, denoted P and P respectively, and any stated xl 	x2  

interdependence, until what is judged to be a sufficient number has 

been obtained (Fig. 7.3(a)). The points in each region are then 

counted to find the weight to be associated with the point repre-

senting the region (Fig. 7.3(b)). In the second method proposed, 

the weights are computed directly from the component probability 

distributions without recourse to a random number generator. 

Referring to Fig. 7.8(a), if the two components are independent, 

the weight of point (x1  2 ,x2  [3 ]) is set equal to the product 

Px [2 ] tor1 x Px [ 3 ]bx2. The resulting representation of the 1 	2  
variable component space by points whose weights are so generated 

will be called the idealized statistical model [ 5,46 ] of the 

circuit (Fig. 7.8(b)). 

2. Properties. 

In general, the idealized statistical model appears to have 

the following features when compared with the conventional Monte 

Carlo model of Fig. 7.3(a). 
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a) With proper choice of regions, the statistical information 

content of each analysis can be increased, so that the number of 

analyses can be reduced. In conventional Monte Carlo analysis, 

points tend to cluster around the nominal, which is not usually the 

area of greatest interest. With the idealized statistical model, 

confidence in the prediction of the statistical behaviour of a 

circuit can to some extent be controlled. For example, the prediction 

of manufacturing yield can be made pessimistic by locating the repre- 

sentative point at the /worst' vertex of its region. 

b) The preceding example and other experiments suggest that 

a relatively even sampling of the variable component space is likely 

to yield a satisfactory approximation to the anticipated probability 

density function of the performance of the circuit, even when Q 

is at a low value. The higher the value of Q, the better is the 

approximation. 

c) Analysis associated with the regionalized variable component 

space permits a mapping of the relation between circuit failure and 

component combination [45] 	The mapping of failures into an 

idealized statistical model also permits identification of an 

approximation to the region of acceptability [ 1 ] . Such results 

are valuable for the insight they provide, and for the assistance 

they can render in tolerance assignment and design centering. 

d) As the number (m) of variable components and the number (Q) 

of quantization levels increase, the number of regions (Qm) - and 

hence the computational cost - increases quite rapidly. Nevertheless, 

by using systematic exploration, the cost can be remarkably low for 

linear circuits. 
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3. Example. 

To examine the computational effort and the effect of the 

quantization inherent in an idealized statistical model, an algorithm 

based on systematic exploration was implemented within an interactive 

graphic circuit design facility. 

For the circuit example of Fig. 7.9, the components indicated 

as being subject to spread were each assumed to be described by a 

truncated Gaussian PDP (c m 0.5%, limit = ± 1%). At a frequency of 

36.16 KHz conventional Monte Carlo analyses
* 
 were carried out for 

reference purposes. At the same frequency an idealized statistical 

circuit model was analysed for a number of values of Q. 

The frequency distribution and cumulative distribution of 

output voltage, as predicted by Monte Carlo analyses of different 

sample sizes, is illustrated in Fig. 7.10 to 7.13. The frequency 

distribution and cumulative distribution of output voltage, as 

predicted by the analysis of idealized statistical models of different 

Q values, is illustrated in Fig. 7.14 to 7.17. The computing time 

associated with the analysis and the construction of the hietogram 

is indicated in each case. 

* Each sample of the Monte Carlo analysis involved a conventional 

analysis of the complete circuit of Fig. 7.9. No advantage was 

taken of the fact that, since only four components were variable, 

a smaller circuit could be subjected to repeated analysis (see 

reference [32] ). Nevertheless, this advantage is not sub-

stantial for the illustrative example: it can be calculated that 

the ratio of the 'per-trial' computational cost for the straight-

forward Monte Carlo analysis, the repeated analysis of a smaller 

circuit, and the analysis based on systematic exploration is, 

approximately, 161:65:1. 
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In order to make a comparison between the results obtained, from 

the Monte Carlo analysis and the results obtained from the analysis of 

idealized statistical models, the cumulative distribution curve obtained 

from the 5000-sample Monte Carlo analysis (requiring 4600 seconds ) is 

superimposed on all other cumulative distribution curves for reference 

purpose. It is interesting to note that for Monte Carlo analysis, 

even for the 1000-sample analysis (requiring 920 seconds), the resultant 

cumulative distribution curve is not yet a good approximation to the 

reference curve. On the other hand, the cumulative distribution curves 

of the idealized statistical models exhibit good general agreement with 

regard to shape, and involve much less computing-time: from 3 seconds 

for Q = 3 to 304 second for Q = 10. A similar conclusion can be 

drawn if a comparison between frequency distribution curves is made. 

In Fig. 7.18, frequency distributions predicted by Monte Carlo analyses 

of 3 different sample sizes and by idealized statistical models of 

3 different Q values are brought together for ease of comparison. 

For the analysis of an idealized statistical model, any dis-

crepancy
+ resulting ffom a low Q value must, of course, be weighed 

against the remarkable difference in computing times. For Q = 3, 

the result can be presented essentially immediately following its 

request, can provide the designer with some feel for the general 

nature of the cumulative or frequency distribution curve. In highly 

interactive circuit design, the availability of such a curve on demand 

could be of great value. 

The above results provide very strong evidence that the concept 

These times refer to a PDP-15 without floating point processor. 

+ This discrepancy, in fact, can be smoothed to a certain extent 

by interpolation [53] . 
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of an idealized statistical model based on regionalization, combined 

with the technique of systematic exploration, offers considerable 

potential for the low-cost yield analysis of linear circuits. 

7.6 Worst Case Simulation  

As a result of regionalization, a certain amount of discrepancy 

is introduced into the resultant probability distribution of a 

statistical analysis. The lower the number of regions into which 

the variable component space is regionalized, the higher the 

discrepancy could be. If the variable component space is separated 

into a reasonably large number of regions then, by using the central 

point to represent a region, a relatively unsophisticated interpola-

tion would lead to a good approximation to the anticipated performance 

probability density distribution. 

However, if the variable component space is separated into a 

very small number of regions, interpolation may not-produce a highly 

accurate result. In such a case, it may well be preferable to locate 

pj  within a region in such a way that the representation of the 

region by pj  would lead to a pessimistic rather than optimistic 

effect on the circuit statistics. The reason is that a pessimistic 

prediction would produce an unnecessary conservative and expensive 

design. However, such a design is reliable, whereas an over optimistic 

result would produce unreliable circuits. 

Aschemewhichpositionspoint. pj  to a vertex of a region to 

produce a pessimistic effect on the statistics of circuit performance 

will now be described. The approach is based on the assumption that 

for each variable component, within each class interval of its 

quantised distribution, the sign of small change sensitivity remains 
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unchanged for the whole interval and is not affected by the large 

changes of the other variable components. The steps of the procedure 

are as follows: 

1. By quantisation, each individual frequency distribution of 

the variable components is quantised into Qi  class intervals 

(Fig. 7.19(a)). 

2. The nominal Z matrix is updated to absorb the effect of 

the large change (mid-point of a class interval) of one variable 

component alone, and then the sign of small change sensitivity of 

this component at the corresponding mid-point is computed. The 

procedure repeats until the signs of small change sensitivity at 

all mid-points of all individual frequency distribution have been 

computed (Fig. 7.19(b)). 

3. The sign of small change sensitivity is used as an indicator 

for the discretization. As a rule, the random data are discretized 

to the right hand side edge of a class interval if the sign of the 

small change sensitivity at the mid-point is positive, or to the 

left hand side edge of a class interval if the sign of the small 

change sensitivity at the mid-point is negative (Fig. 7.19(c)). 

The procedure is performed only once at the outset before 

discretization. It should be noted that in the above procedure, 

when the sign of small change sensitivity of a component is computed, 

only the large change of this component itself is taken into 

consideration and this might not be realistic enough to produce 

a pronounced pessimistic effect on the statistics of the circuit 

performance. If a more definite pessimistic effect has to be 

guaranteed when the sign of small change sensitivity of a component 
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is computed, not only the large change of the component itself 

but also the large changes of the rest of the variable components 

have to be accounted for. In such a case, a higher computational 

cost will be incurred . 

7.7 Mapping of Failures  

By regionalization, the variable component space is separated 

into a limited number of regions, the mapping of failures into it 

becomes an easier task. With pi  denoting a trial vector, z0 

is the response. It is assumed that zitof can be classified 
rj 

as a success or failure by some rule. If we let z-140/ denote a 
rj 

circuit failure, any region whose trial vector pi  generates a 

zikot can be marked. As it happens, the failures have been mapped 
rj  

into the variable component space. 

By developing failure regions in a regionalized variable 

component space, the following information is obtainable by a file 

retrieval procedure: 

1. The trial vector that produced the corresponding failure. 

2. The total number of failures produced after all trial 

vectors have been analysed. 

For an idealized statistical model, every region with nonzero 

probability density is assigned a nonzero weight. Therefore, after 

its trial vectors have been analysed, the variable component space 

* If the worst vertex is determined by direct comparison of circuit 

response at different vertices, using systematic exploration, 

the maximum computational cost is 8 per vertex for each region 

[54] . 
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can be considered to have been thoroughly investigated. As a result, 

the mapping of failures into an idealized statistical model can 

provide not only numerical information but also geometrical information 

- the generation of a reionaareionatiait. 

There are four significant points about this approach for the 

generation of the region of acceptability. 

1. The approach does not rely on first or second-order approx-

imations. No attempt is made to approximate measures of performance. 

2. The only approximation made for the approach is the region, 

alization of the variable component space. The larger the number of 

regions into which the variable component space is separated, the 

better is the approximation. 

3. The regions which constitute the region of acceptability 

are weighted. 

4. By superimposing failures of different specifications into 

one area, the approach can accommodate multiple specifications. 

The regionalized region of acceptability and its ability to 

accommodate multiple specifications can be illustrated with a simple 

example. Consider the two component voltage divider shown in 

Fig. 7.20(a) where R1 R2 
. 1. The transfer function T is given by 

T = 1/(R1/R2 
+ 1), T 0.5. The input resistance R is given by 

R = R1 + R2
, R . 2. The two resistors are assumed variable according 

to two truncated Gaussian probability distribution (6 = ± 10%, 

limit . ± 20). Suppose the design specifications call for 

0.46 :5_ T 	0.53 and 1.85 5 R 	2.15. Then the regions in the 

idealized statistical model where the first specification is not met 

are shaded and the regions where the first specification is met but 

the second specification is not are cross-hatched. It is important 
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to note that in order to mark the regions where the second specification 

is not met, only the unshaded regions generated by the analysis of the 

first specification need to be investigated. In this way, a great deal 

of computational cost can be saved if multiple specifications have 

to be handled. Fig. 7.20(b) shows the marked idealized statistical 

model of this example: 

So far, statistical circuit analysis is an open-loop structure 

in the sense that for specified probability distributions of variable 

components, only the probability distributions of the performance of 

the circuit is found. The inverse problem - that of using the result 

of a statistical circuit analysis for the desensitization of a circuit 

- has not been given sufficient attention. By modelling the variable 

component space with an idealized statistical model and mapping the 

failures into it, .a weighted region of acceptance is established in 

the variable component space after a statistical analysis has been 

performed. A region of acceptability can be used for desensitizing 

a nominal design, specifying tolerances, recognizing the need for 

tuning etc.... In this way, the loop around statistical circuit 

analysis can be closed. 
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(a)  

(b)  

(c)  

Fig 7.19. Scheme for worst case simulation. 
(a) Quantisation of distribution. 

(b) Computation of sign of small change 

sensitivity at the midpoints. 

(c) Discretization according to the 

signs in (b). 
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CHAPTER 8  

EPILOGUE  

In the previous chapters, different methods have been 

proposed for the efficient computation of sensitivities of 

electronic circuits. According to the nature of a particular 

problem, an appropriate method may be chosen for maximum 

computational efficiency. Out of the sensitivity analysis methods 

proposed in this thesis, the systematic exploration combined with 

.the concept of regionalization has been shown to be able to solve 

a number of different problems in computer aided circuit design 

with remarkable efficiency and, therefore, deserves more attention 

in future research projects. To conclude the discussion, some 

problems encountered in the course of the development and appli- 

cation of the sensitivity analysis methods in this thesis are 

reviewed here, and some possible solutions are also outlined. 

1. The computation of small change sensitivity after large  

changes in circuit component values  

In chapter 7, the problem of computing small change sensitivity 

following large changes in circuit component values arose when the 

sign of small change sensitivity is used as an indicator in the 

worst case simulation process. The small change sensitivity associated 

with the variable components can, of course, be computed by making 

a completely new analysis of the circuit. In view of the formidable 

computational cost required by such an approach, a more efficient 

method must be found. One comparatively efficient method was 

proposed by Sud [47] . However, in this method, if there are 

• 
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m components subjected to large changes then, in order to compute the 

set of small change sensitivities associated with the m variable 

components, a Gaussian elimination of up to a maximum (m x m) 

matrix is needed for each set of large component changes, and the 

computational cost is still quite high. Fortunately, if the Z 

matrix of a circuit is updated to accommodate the effect of large 

changes in component values, such as in the case of systematic 

exploration, the small change sensitivities associated with the m 

variable components are the by-products of the process. Therefore, 

they can be obtained at a very low computational cost, as will 

now be demonstrated. 

Consider the circuit model of Fig. 4.3(a). If the circuit 

is excited by current sources which are equal to unity, according 

to Chapter 2, the small change sensitivity of a variable component, 

say y3, is -z30 z 03  where 
z30 

 and z ik 3  are two elements in the 

reduced port matrix shown in Fig. 4.4. As we modify the matrix 

to account for the effect on 200  of a new change in y3, very little 

additional computational effort is required to modify z30 
and 2

03 

to account for the effect of a new change in y3  as well. After 

230 and z 03  have been modified, the new small change sensitivity 

is available. 

It should be noted that in the worst case simulation method 

described in chapter 7, the effect on small change sensitivity of 

large changes in component values was limited to the case where only 

one component is assumed to have large change as the sign of small 

change sensitivity is computed. Therefore, this process can be 
, * 

performed at the outset . In some cases, for a more realistic worst 

* In this case, the number of signs to be stored is Qi  + Q2  + 	+ gibe 
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case simulationl  the effect of simultaneous large changes on a 

small change sensitivity has to be accounted for. In such a case, 

each set of changes has its corresponding set of small change 

sensitivities; therefore, they are best computed as the sets of 

changes are being connected to the circuit. This simulation of 

a worst case is more realistic, but at the same time, higher compu-

tational cost will be incurred. A low cost realistic worst case 

simulation has to be found. 

2. Tracking sensitivity and nonlinear coefficiency  

In the algorithm proposed for the computation of tracking 

sensitivity, a parametric circuit description yi  yo  (1 + K ti) 

was invoked. Of the two coefficients t
i and K, the former is 

th 
'local' to the i component, whereas the latter K is 'global' 

and common to all components. For example, t i  represents the 

th linearized temperature coefficients of the i component and K is 

the temperature. Usually, the temperature coefficient can be approx-

imated by a constant. However, it may be useful if the algorithm 

can be developed to accommodate nonlinear ti without undue reduction 

in efficiency so that the simulation would be more realistic. 

3. Statistical circuit analysis and worst case simulation 

Statistical circuit analysis has become an important part of 

computer aided circuit design because of its ability to predict the 

manufacturing yield. However, the prediction is accurate only when 

the number of circuits produced and the number of simulated circuit 

analyses are both very large. A large number of simulated circuit 

analyses can be achieved by a computational effort which is under 

the control of the designer whereas the number of circuits produced 
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by the manufacturer is fixed by the production scheme. One problem 

needs to be considered; if the number of circuits going to be produced 

is moderate, how could a statistical analysis be applied in such a 

case? 

Basically, if the number of circuits to be produced is small, 

an accurate prediction of manufacturing yield is almost impossible, 

even if the prediction is obtained from the analysis of a very large 

number of simulated circuits or a statistical model. On the other 

hand, a purely worst case analysis may be unnecessarily conservative 

in setting component tolerance limits and its use result in increased 

production costs. In such a case, a hybrid approach - a statistical 

analysis mixed with a certain degree of worst case simulation - could 

be the solution. 

By modelling the variable component space with an idealized 

statistical model, and carrying out worst case simulation within each 

region, a mixing of worst case simulation into the result of a 

statistical analysis is now feasible. By controlling the sizes of 

the regions into which the variable component space is partitioned, 

the degree of worst case simulation can be controlled. A question 

now exists: How can we establish the relationship, in terms of 

relative quantity, between the statistical analysis and worst case 

simulation according to the number of the circuit produced? Some 

research work in this respect remains to be done. 

4. Yield track  

An example of mapping failures into a two dimensional variable 

component space has been illustrated in chapter 7. The result of 

the mapping is the generation of a regionalized region of accept-

ability in the variable component space. However;  if the number of 
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variable components is greater than two, the mapping of failures into 

the variable component space is no longer a straightforward task. 

This is because a variable component space with a high dimensionality 

is practically impossible for the designer to visualize, let 

alone to map failures into it. It is for this reason that an 

alternative method must be devised. 

An alternative method of mapping failures resulting from a 

number of analyses of simulated circuits is now described. In this 

method, the failures are mapped on a segmented track - termed 'yield 

track'. The mapping procedure is as follows: 

a) A set of m segmented tracks are used to represent the 

-value fluctuations of the m variable components. Each segment of 

a track is registered to represent a particular perturbed value of 

a variable component. An m = 2 example is illustrated in Fig. 8.2. 

In this example, each variable component is assumed to have eight 

different values. 

b) The tracks are so aligned such that in the second track, 

the eight segments which represent the eight values of the second 

component repeat within each duration of segment of the first track. 

This procedure is repeated as many times as there are segments for 

the rest of the tracks. As a result, the number of segments on the 

last track is equal to the number of all combinations of the changes 

of the variable components. 

o) Then, another segmented track whose number of segments is 

equal to the last track is laid alongside and aligned with the last 

track. This track, termed yield track, is used for the recording of 

failures. If a set of changes (the segments in line with a segment 

on the yield track) generates a failure, the corresponding segment 
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on the yield track is marked. In Fig. 8.2, the yield track assoc-

iated with the two variable components is also shown. 

The computation of yield tracks for linear circuit could be 

highly efficient since systematic exploration can be applied. Yield 

track has found its applications in the following two important 

aspects of computer aided circuit design. 

5. Isolation of uncorrelated variable components  

From the information recorded on the yield track, the region-

alized region of acceptability of any combination of the variable 

components (from 2 to m) can be generated without any arithmetical 

operation. It is because of this property that all possible two 

dimensional regions of acceptability of any combination can be 

generated and examined at high speed. By observing the shapes of 

these regions, the uncorrelated pairs of variable components can 

be identified , the isolation of uncorrelated variable components may 

now be a feasible task. As a result of this, the number of variable 

components m, whose effect of simultaneous change must be considered, 

can be reduced to a minimum. 

6. Design centering and tolerance assignment  

The aim of design centering is to fit the biggest possible 

hypercube (i.e., region of possibility) into the region of accept-

ability. This presents no particular difficulties for a two 

dimensional problem, since a two dimensional region of acceptability 

can be displayed graphically and the finding of the largest square 

inside it can be carried out automatically by a computer or manually 

by the designer with reasonable accuracy. However, the problem of 

* The identification could be based on the properties of performance 

contours described in Section 5.5. Further research works in this 

respect may be needed. 



• 
	 173 

design centering becomes increasingly difficult if a high dimensional 

problem has to be tackled. This is due to the fact that depiction 

of a high dimensional region of acceptability is an impractical task - 

we are trapped by "the curse of dimensionality". 

So far, different methods have been proposed for tackling the 

dimensionality problem [1,2,49] . However, in view of the costs and 

approximations associated with those methods, better methods are 

still being sought. The use of a yield track to record failures, 

combined with the concept of the regionalized region of acceptability 

may enable a solution to be found. 

The method proposed here is based on the fact that in a region-

alized variable component space, all edges leading to a common 

vertex are orthogonal. Therefore, the hypercube within a region of 

acceptability can be characterized by observing its orthogonal 

silhouettes in m orthogonal directions, where m is the number of 

dimensions of the variable component space. This concept is best 

illustrated by a two dimensional example; in Fig. 8.1, assuming that 

a 3 x 3 square is to be fitted into the depicted region of acceptability. 

By observing the region of acceptability in the directions of the A 

axis and the B axis, the feasible centres of the square can be determined. 

Based on the same concept, the feasible centres can also be 

determined by examining the yield track alone without the need of 

depicting the region of acceptability as illustrated in Fig. 8.1. In 

this approach, the observation of the region of acceptability in 

different directions is simulated by transposing track A and track B 

to generate a new yield track. The ability to find feasible centres 

without depiction of the region of acceptability is the most important 

property of this method. It is because of this property that this method 



174 

- termed orthogonal silhouette method - can be extended to handle 

problems of any number of dimensions. 

The procedure of fitting the biggest hypercube into a region 

of acceptability is as follows, illustrated by the two-dimensional 

example shown in Fig. 8.2(a) and (b). 

a) Each segment of the yield track in Fig. 8.2(a) is examined 

automatically by the computer for success and failure, successes 

being noted. Each successful segment corresponds to a region inside 

the region of acceptability. The size of this smaller region is the 

initial size of the square which can be fitted. 

b) The 2 segments adjacent to each success segment are examined. 

If they are both successes, then the centre segment is noted as a 

protocentre for a larger square, whose side length is three times 

that of the initial square. 

c) Tracks 1 and 2 are transposed and a new yield track is 

generated (Fig. 8.2(b)). Those segments already identified as pro-

centres will be in a different position along the new yield track 

and will have different pairs of adjacent segments. If both segments 

of each pair is a protocentre, then, the centre segment is identified 

as a feasible centre of the larger square. 

d) If there are more than one of these centres, the above process 

must be continued by expanding the range of checking for successes to 

4 segments (2 adjacent segments for each side) and so on, until a 

minimum number of centres has been achieved. 

The advantages of the above method are as follows: 

a) For the above process, no arithmetical operation was required, 

and therefore, the computational cost has been kept to a minimum. 

b) The method does not assume any particular shape for the 

region of acceptability, the only approximation being the region- 
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alization of the variable component space. 

c) If the hypercubic is regionalized and weighted (i.e., an 

idealized statistical model), a controllable trading between yield 

and tolerance is feasible. 

d) It can be adapted to find centres of hyper-rectangle of 

various aspect ratios so that the problem of tolerance assignment 

[50,51,52] can be tackled. 

e) Most important of all, the method is easily expanded to 

handle the multi-dimensional problem. 
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APPENDIX  

THE CALCULATION OF EIGENVALUES  
AND EIGENVECTORS OF MATRICES  

1. The Fundamental Equations  

Let A be a square matrix of order n. Its eigenvalues 

X 1,, An 
are the solutions of the determinantal equations, 

called the characteristic equation 

(1) 

Corresponding to each distinct eigenvalue Xi, there exists 

at least one solution of the system of linear equations 

1 	)C I) X. = 0 	 (2) 

This solution Xi = ( x11 , . x21, 	, xrd.  ) is an eigenvector 

of A. Here we shall be interested in the most widely used process 

for the calculation of all of the eigenvalues and eigenvectors of A. 

2. Some Useful Matrix Results  

It will be useful to present briefly some parts of the matrix 

theory which form the back-ground to this appendix. The following 

results are of interest. 

1. A matrix is said to be orthogonal if 

a. a. = 0 -2 

a. a. = 1 
-a -2 

i 

(5) 
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where the vector a. is the ith column of A. It should be noted -a 

that inverse of an orthogonal matrix can be obtained without 

calculation since AtA = I according to (3) and hence A-1 . A
t
. 

2. The eigenvalues of a real symmetric matrix are real. 

The eigenvectors corresponding to distinct eigenvalues are orthogonal. 

3. If a matrix of order n has n distinct eigenvalues then 

there are n linearly independent eigenvectors which can form a 

base for the space of vectors. An arbitrary vector can then be 

expressed in terms of the eigenvectors, 

n 

z = E a. X. 3. 3. 
	 (4) 

i=1 

where Xr (r = 1, 2, 	n) are the linearly independent eigenvectors. 

an eigenvector corresponding to the eigenvalue 

. then A X. = N.. X. and Ak X. = X. X.. Thus, the effect of Xi 	3. 1 	a. 

successive multiplication of an eigenvector by the matrix A is 

to successively multiply the vector by the scalar Xi. 

5. Two matrices, A and B are said to be similar if a non-

singular matrix P exists such that B = P-1 A P. It is easy to see 

that similar matrices have the same eigenvalues, since if 

AX = 	X 

Then 

PI 
 
AX 

	
X 
	

(5) 

and, if 

X . P Y 	(6) 



then 

P-1  A P Y 
	

X Y 	 (7) 
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The eigenvectors of A can be found from the eigenvectors of B 

by the relation X = P Y. 

6.IfX.is an eigenvector of a matrix, then any scalar 

multiple of this also is an eigenvector. It will sometimes be 

convenient to normalize the eigenvector. This can be done in two 

ways. One method of normalization is to divide all the elements 

of a vector by the largest element so that vectors have unity as 

the largest element. Alternatively, each element could be divided 

by the sum of the squares of the elements of the vector in which 

case vectors have unit length. 

3. Householder's Method  

This method uses orthogonal transformations to reduce a 

symmetric matrix A to a form in which the only nonzero elements are 

on the main diagonal and the two diagonals directly above and below 

it as shown in Fig. 1. This form of matrix is known as tridiagonal 

matrix. 

all 

a12 

0 
. 

• 
. 

a12 

a22 

a23  

	

0 	 

a23 

. 	. 
• . 

• . 

0 

. 

. 
0 

. 
a 
n-1,n 

• 

0 	an-1,n ann 

Fig. 1. A symmetric tridiagonal matrix. 

0 
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There are (n - 2) steps in this reduction. In the kth step 

zeros are introduced in the kth row and kth column without destroying 

the tridiagonal elements and the zeros introduced in the previous 

steps. 

Let V be a vector such that 

Vt  V = 3. 	 (8) 

Then it is easy to show that the matrix 

P = I - 2 V Vt 
	

(9) 

is orthongonal and symmetric. In particular we choose Vk  to be a 

vector whose first k - 1 components are zero so that 

ut 	 ( 	( 
= 	0, 0, 	w n  , vkk)  , Vk

k+1) 
 y sed., V(11)] 	(10)  

Then with 

Pk = I - 2 V V
t 

k k 
(n) 

we define 

Ak = Pk Ak-1 Pk 	
k = 2, 	n 1 	Al = A (12) 

Now suppose that the current symmetric matrix Ak-1 
= [aid 

has zeros in its first k - 2 rows and columns except for the 

tridiagonal elements: 
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mwe 

a11 	a12 	0 	  0 

a12 	a22 	a23. 	0 	 0 .. .  . 	.. 	•• 	• 
0 	a23 	•... 	. ... 	. . 	• 

• . 	• 
• . 	

• •.. 	
.. 

	

•• 	
. .. 	• 0 ... 	.. 	. 

• .. 	•• 	.. 	' -: ... 	". 	.  . .. 	• .. 	• 	. 
• .•. 	. • ... 	. 	.  . 	. 

	

... .... 	.. 	. • • 

	

... 	... 	
.• . 	. 

. - 	 • • 	• . 	. 	• 	.  
' 	

. 	.. 	. . 	. 	. •. 	.. 
,k-l• 0 	 0 . 	. 	.. 

• . 	•• 	ak -2,k-2 ak-2 ...  . 	. . 	. 	.. 	• a • .•. . k-2,k-1 ak-1,k-1 	 ak-1,n  . 	. . 	• 
. - • • . 	. 	•• 0 	• - • .. 	• '  . . ' 	'.. . 	. 	. 	. 	. 	• 

• 

. 

	 • 	• 	•• 	• . 	. 	. 	. 	. 	. . 	. 	. 	. 	• .. . • . 	• 	. 	.. 	. . . 	. 	•   
0 	0 	 0 	ak-1,n 	 ann 

The matrix Pk has the form 

Ak -1 
row 
k-1 

(13) 

1 
. 

o . . 	• 	 . 
:• 	. 	 . 

. . . 	.• 	. . 	 . . • . • . 	 . • .. . 	. 	. 	 - • . 	. 	 . 
• 
. 
• 
• 
• 0 1-2 [v(k)] 2 	 -2v(n)v(k) • 

• k 	k k 
• • 	• 	.. 
. ' 	. 
• . 	. 	. 	. . 	. 	• • . 
' 	• 	. • .  . 	. 	• 	•  • . 	. 	. 	. . 	.  
• .  
0 	

 

	

• 

• 0 -2v(n)v(k) 	• 1_2[11(1 2 
k k 	k 

I - 2 Vk Vt  k 
row 
k 

(10 

• • 

Using (12) - (14) we may verify that Ak has zeros in the 

positions shown as zero for Ak-1 in (13). Our object is to choose 

the n k 1 numbers vfck), 	vfcn)  to satisfy (8), so that the 

n k off-tridiagonal elements in row (column) k - 1 of Ak are zero. 
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We define 

n 

S = E 2  ak -1,j 
j=k 

and then let 

[i4ck)]2 	= 	[ 	1.  (ak..1,11 Nrs ) ] 

and 

vi(cj)  = + ak-1,  ./(2 v(k)  )I E) 	j = k + 1, 	n - 	j 	k 	 (17) 

- where the plus or minus sign will be chosen below. The motivation 

for (16) and (17) may be found in the algebra leading to the proof 

that the desired n k elements in the k 1 row (column) of Ak 

are zero and that (8) is satisfied. Proceeding as above at each 

step we arrive at a tridiagonal matrix An-1. 

The accuracy of this method depends naturally on the accuracy 

of the matrices Pk' and these in turn depend upon the accuracy of 

the components of (10). The key to making this accuracy as great as 

possible is to make the magnitude of v(k) as given by (16) as great 

as possible because it is a divisor in (17). Therefore we choose 

the sign in (16) so as to maximize the magnitude of v(k) and then 

use the same sign in (17). 

At each stage it would appear that two square roots are required 

- one for -NS and one for  [ v(k)] 2 	. However, by arranging 

the calculation properly, the latter of these two need not be 

calculated. 

The approach to nonsymmetric matrices will be similar in the 

sense that we shall perform a series of transformations on the matrix A 

(15)  

(16)  
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in order to reduce A to a matrix B with the same eigenvalues as A 

but whose eigenvalues are more easily calculable. If Householder's 

method is applied to a nonsymmetric matrix A, the result is a Hessenberg 

matrix as shown in Fig. 2. 

b
11 	b12 	0 	 0 

. 	. 

b21 b22 b23 
. 	• 

. 
. 	. 	. 	. 
. 	. 	. 	• • 
. 	• 	. 	0 
. 
. 	. 	bn-1,n . 

tint 	 bnn 

Fig. 2. A matrix in lower Hessenberg form. 

Such a matrix is said to be in supertriangular or, more 

commonly, in lower Hessenberg form whereas the transpose of such a 

matrix is said to be in upper Hessenberg form, whose eigenvalues are 

more easily calculable than that of a full matrix. 

4. The QR Iteration 

. The QR-algorithm is today recommended for the solution of 

eigenvalue problems in general, real, or complex matrices if more 

than very few eigenvalues are desired. This method making use of 

orthogonal transformations tends to be numerically stable. 

The basis of this method is to decompose an arbitrary matrix A 

into a product QU where Q is orthogonal and U is upper triangular . 

Francis (1961), the originator of this method used R as a mnemonic 

for right triangular. 
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The assurance that this can be accomplished is contained in a theorem 

which states that for an arbitrary real matrix A, there exists an 

orthogonal matrix Q and upper triangular matrix U such that A = QU. 

Suppose now we form the similarity transform Q
t 
A Q of the 

matrix A. We have 

Qt  A Q = Qt  (Q U) Q=  U Q 
	

(18) 

Hence, if we decompose A and then multiply the factors in the 

reverse order, we obtain a matrix similar to A. In the QR 

algorithm this process is repeated indefinitely. If we rename the 

original matrix Al, then the algorithm is defined by the equations 

	

A , 	Q8-1 U8-1 	As 

	

8-1 	Us-1 s-1 (19) 

clearly A
s 
is similar to As-1  and hence by induction, to Al. It 

can be shown that under certain restrictions 

xi  X 

A2 

Qs --* I 	
and 	U --* A

s 
--* 

0 n_ 

as s 	co (20) 

It is, of course, true that the decomposition of A into QU 

is in general quite time consuming [requiring 0(n3) operations] . 

But if A is tridiagonal, the QR transformation can be done quite 

rapidly. Moreover, we may show that, if A is symmetric and tri- 
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diagonal, then so is every As. Of more importance is the result 

that, if A is in upper Hessenberg form, in which case the number of 

• , 
operations required to decompose A into QV is 0(n2), then every A

s 

is in the upper Hessenberg form. 

With the best devices to speed up convergence, the QR algorithm 

has cubic convergence even in the presence of multiple eigenvalueS. 

5. Wielandt inverse iteration 

The universally accepted method to find eigenvectors when the 

eigenvalue is already known is Wielandt inverse iteration. We perform 

the following iteration for each eigenvalue approximation X : 

(A - X I )4 = 
	

= 1, 2, 4r11,4, 
	(21) 

with zo  some arbitrary vector. Generally two iterations will be 

sufficient. The iteration is performed by forming LU decomposition 

of (A - X I) using Gaussian elimination. It should be noted that 

the triangular decomposition of a Hessenberg matrix is particularly 

simple since, speaking in terms appropriate to Gaussian elimination, 

there is only one non-zero multiplier at each stage of the reduction. 

1 	 1 
There are 7-2- n

2 
 multiplications in all compared with 3 n3  for a 

full matrix. 

Generally, Wielandt inverse iteration is done on the reduced 

matrix (tridiagonal or Hessenberg) and the true eigenvectors are 

recovered subsequently. This recovery scheme depends on the reduction 

employed, but costs generally much more than the usage of Wielandt 

iteration, and less than usage of Wielandt iteration would have done 

on the original matrix. 
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If the approximation to the eigenvalue X of (21) is too good, 

the determination of zs  can lead to a singular problem. This is 

detected by the necessity to pivot on a zero in the solution of the 

linear equations (21). The problem is resolved by introducing a delib-

erate "round error" at this point, and proceeding. This does no harm 

to the solution, it only results in a scaling of the eigenvector in 

question, which may subsequently be removed. 

Varah [55] describes a test to determine if the choice of 

right-hand sides in the inverse iteration was appropriate or not. He 

also describes a strategy for constructing alternate right-hand sides, 

in the event that a particular choice proved to be a poor one. These 

procedures might be useful for obtaining independent vectors of 

multiple roots. 
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