
DIGITAL FILTER STRUCTURES FROM CLASSICAL 

ANALOGUE NETWORKS 

By 

STUART SIMON LAWSON 

A THESIS SUBMITTED FOR THE Ph.D. DEGREE 
IN THE UNIVERSITY OF LONDON. 

DEPARTMENT OF ELECTRICAL ENGINEERING, 
IMPERIAL COLLEGE OF SCIENCE AND TECHNOLOGY, 
LONDON,S.W.7 

OCTOBER 1975- 



-2- 

A3STRACT  

decent investigations have shown that a class of digital filter 
structures exists that poseeeces mudh lower attenuation 

distortion than the conventional direct or cascade forms. 

These structures can be derived from classical analogue doubly-

terminated lossless networks by using a one-port wave variable 

description for circuit elements. The basic teChnique, due to 

Fettweis, consists of expressing the voltage-current relationship 

of an element in terms of incident and reflected waves and then 

applying the bilinear transformation to give the digital equivalent. 
. 	. 

These digital circuits are then interconnected with the aid of 

'Adaptors'. An adaptor is simply the digital realization of 

Kirchhoff's two laws for a parallel or series junction of n ports. 

The use of waves in the derivation of the digital filter structures 

has led to the term ''rave Digital ;Filters' being applied to them. 

In this thesis it is shown that, by considerinf,  each clement in 

the analogue network as a two-port, a true simulation can be 

achieved for the corresponding digital filter structure. In 

the new method, the adaptor, which is needed in the one-port 

description, is not required explicitly but is included as part 

of the equivalent wave-flow diagram. The relationship between 

the sensitivity of the attenuation to first-order multiplier 

variations and the analogue network element sensitivities is 

derived and it is shown that the multiplier sensitivities are 

not generally zero at points of maximum pseudopower transfer. 

A generalization of the Wave Digital filter concept of Fettweis 

is also examined by 	the relationship between the wave 

variables and the voltages and currents as a linear transformation 

on the _,BCD matrix of the LC two-Port. A particular transformatiOn 

is studied in detail and the associated signal-flow diagrams are 

derived. The sensitivity behaviour of structures derived using 

the general linear transformation is also studied and it is shown 

that their behaviour is similar to that of Wave Digital filters. 

We also consider in this thesis the computer-aided analysis of 

digital filter structures and present a new algorithm for 

analysis which has many advantages over conventional methods. 
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Conventions and Symbols  

Most symbols are defined in the text as they appear and because 

a symbol may be used in several different contexts, it is not useful 

to define them here. However, the few symbols and abbreviations 

that are used throughout the text are introduced below: 

	

Pck 
	Sequence of numbers,e.g. xn,x1  

Re(Z) 	Real part of a complex variable Z 

Im(Z) 	Imaginary part of a complex variable Z 

1ZI 	Absolute value of a complex variable Z 

Arg Z 	The phase of a complex variable Z 

The complex conjugate of Z 

	

Q 	Analogue angular frequency variable 

w or w 	Digital angular frequency variable 

p= E jQ 	Analogue complex frequency variable 

z=exp(jwT) 	Digital complex frequency variable 

dx 
	Partial derivative of a function y with 

respect to x 

S 
y
= 
 x pjy.  

- x y dx Sensitivity function of y with respect to x 

BP 	Band-pass 

BW 	Bandwidth 

DTLLN 	Doubly-terminated lossless ladder network 

ITA 	Invariant Transfer Admittance 

IVR 	Invariant Voltage Ratio 

LP 	Low-pass 

MAP 	Maximum available power 

SFD 	Signal-flow diagram 

S1-13 	Signal-flow graph 

UE 	Unit Element 

VSWR 	Voltage standing-wave ratio 

WDF 	Wave Digital Filter 

WFD 	Wave-flow diagram 
REEL CTANC. 	Reflec-tott 

Finally , the following symbol --010-- which is to be found in 

many figures represents a delay element with transfer function z
1 

and delay T seconds , unless otherwise stated . 

, xn  
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Chapter 1 

Introduction 

1.1 	Theory of Linear Tine-Invariant Discrete-Time i:otworks  

1.1.1 	Digital -;i7nals and Processors  

In normal analogue signal processing, the input and output signals 

of a system are continuous in time and the syster itself is 

constructed from analogue components. For example, if the system 

is an electrical network then the components may be resistors, 

inductors, capacitors, etc. It is the purpose of the work contained 

in this thebis to consider signal.processing where signals are 

expressed no longer in a continuous-time domain, but rather in a 

discrete-tine domain. By discrete-time domain, it is meant that 

the signals appear as sequences of regularly spaced nunbers. nth 

reference to a system that operates on such signals, the input signal 

shall be denoted by fxkj and the output signal by fyki , 1: being 

an integer indicating the discrete-time variable. The specific 

processing- operations that will be examined are of the filtering 

type with one input and one output. In Fig. 1.1 a block diagram 

of a digital signal processing system is shown. The digital signal 

processors that will be studied in this thesis shall be referred 

to as digital net.sorks or, less generally, as digital filters. 

The fundamental concepts of digital signal processing are summarised 

in this section. In addition, some aspects of digital filter 

realization and allied topics are examined, analysed and appraised. 

1.1.2 	Linearity and Tine-Invariance Cu  

A digital network is said to be linear if the response to an excitation 

ceixt:11 	xl-:2; is c4.1 	 f 1x21 ;there  - tyki/ is the response 
to en excitation ix,K1  and 1yk2J is the response to fxk2?, cc 

and, are scalar constants. 

A network is time-invariant if, given the response fykl to an 

excitation f-, the response to an excitation txk-m 3 is L 
, 

y,_k-m for all values of m. Alternatively, it can be said that 

for time-invariance, the output sequence, to a given input sequence 

does not depend on the instant of time when the input was applied. 

A time-invariant network consists only of time-invariant elements. 
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It is important to mention that linear networks need not be 

time-invariant. 

,:ausality 112. 

A network is causal if, for zero excitation, it gives zero response. 

That is, if 

+ brk 

and xic 	
0 V k <K 

then 
	0 V < K 

where ' 	means 'gives rise to' and 'V' means 'for all'. 

It is normally assumed, by convention, that K = 0. That is, the 

first member of 	} is xo. 

1.1.4 	Linear Difference 71,mations [1]  

Only linear time-invariant dij.tal filters will be considered and 

these filters may be described by a set of linear difference 

equations with constant coefficients [2]. An expression for the 

kth. output sample may be written as follows, 

1  

y 	 (1.1) 
	 an'' 

m=0 am 
	

n= i bY  

The iterati7e nature of the :lifference equation can be seen from 

eqn. (1.1). The kth. output depends on the q Previous values of y 

and the (p 4- 1) most recent values of x. The fain; and ibni 

are constants and are chosen according to the type of filtering 

required. 

In analogue network theory, a set of linear differential equations 

with constant coefficients corresponds to eqn. (1.1). 

By observing the form of eqn. (1.1) it is Obvious that it is 

necessary to be able to store certain previous values of x and y. 

A particular value of y will be required q times Whilst an x will 

be required (p T i) times. If T is the sampling period in seconds 
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then eon. (1.1) is used to calculate yk.  every T seconds. Clearly, 

the algorithm to evaluate I y1c1 usiri eqn. (1 .1) must take less 
than T seconds per sample. 

1 .1 .5 z-Transform  £33 

In analogue network theory, the Fourier and Laplace transforms 
are used to transform the differential equations of the linear 
time-invariant systen into algebraic equations, which are more 
convenient to manipulate. In addition, the variable t, time is 
replaced by p, the complex frequency.variable. A similar concept 
exists in digital filter theory. The one-sided z-transform of a 
se..menc..e.  IC 	.r(-^.) is defined as follows, •n 

oo 
X(2) = 	xn z-n 

0 

where z is the complex variable . 

The corresponding inverse z-transform is 

 = :t z) zn-1 dz 

(1.2) 

(1 .3) 

where j =4/7 and Jdenotes integration around any closed curve 
in the s-plane which cnclosc..,3 all the poles of .:(z) and the origin. 

The basic properties of the z-transform may be summarized as follows: 

Let Z [11.1-  :3] denote the z-transform of the sequence {x1j . 

Linearity: 	If Xi  ( z ) = Z [ixi  3.1 

and X2  (z) = z Rxa: 

then Z Peixik j 	 ,.• ) • + A x2IJ] = Qc X1 (z)  + 	2 (" 

Shifting: 	If Z[ixiji = X(z) . 

then Z[f k....m1.1= z-12X(z). 

where x-k=0  for k >0 
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If Z [ixdi = X(z) 

then Z [ fa-kx-k  = X (az ) . 

1.1.6 	Transfer 2unctions and ?ransient  3e:monf3es  [5] 

By applying the z-transform to eqn. (1.1) and letting 

X (z ) = Z [Exi:  

and 1(z) = G[Wyk 

it is found that 

where 

11(z) = 

Y(z) = H(z)X(z) 

a.. z-1  /1 + 	 b.z-i  
i=0 1 	j=1 

(1 .4) 

Eqn. (1.4) relates the z-trancforn of the output to that of the 

input. The transfer function H(z) is a rational function'in z-1  

and depends on the constant coefficients in the orij_nal difference 

equation. 

Consider the input sequence 

1 	n=0 
X
n 
 = 

.{ 
for 

Therefore, 

1(z) = H(z) 

and 

hn - 1 2TC j j H (z )zn-1  dz 	(1.6) 

f hni will be referred to as the impulse resoonse of the digital 

filter. 

(1 . 5 ) 
0 	n>0 

The z-transform of eqn. (1.5) is, on using eqn. (1.2), given by 

X(z) = 
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1.1.7 	.:tabilitv [l] 

The stability condition may be expressed in terms of ;I (z) or fhk 
. 

A clggital 4alt ,̂-. 4 s stable 4f and only if the poles of H(z) lie 

outside the unit-circle on the z-l-plane or inside the unit-circle 

on the z-plane. 

equivalently, stability is assured if and only if 

This condition imv.;lies that f j 

Lim hi, = O. 
k -Poo 

1.1.8 Digital Filter aealisations E1j 

It is now appropriate to consider the realization of transfer functions 

or difference equations. Three digital componants are required 

(a) the adder, (b) the multiplier and (c) the delay. They are 

defined as follows (Fig. 1.2): 

For two signals, x and y, at its input, the adder produces an 

output x + y. It is assumed that the adder has two inputs and one 

output. For an input sirnal x, the multiplier produces an output 

ax where ac is the value of the multiplier and is real. Finally, 

for an input signal xn, the delay produces the previous input 

signal xn-1  and after the sampling period of T seconds and a new 

input Signal, xn+1, produces xn  at its output. Thus if yn  is the 

output signal, then for y0.0 , 

(1.7 ) 

On applying the z-transform to eqn. (1.7), it is found that 

Y(z) = z-l x(z) 	 (1.8) 

Thus the transfer function of the delay element is z-1. 

H(z), as defined in eqn. (1.4), or equivalently the algorithm 

defined in eqn. (1.1) may now be realised. The structure appears 

in Fig. 1.3. 
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1.1.9 	Freluenc:,! ReG7)onse [3] 

If it is assumed that the input signal is a sampled complex 

exponential wave, 

i.e. x = e
jnwT 

n 
 (1.9) 

then. the solution yn  to eqn. (1.1) is also an exponential wave 

which can be represented as 

yn  = p(ejwT)ejrniT 
	

( . o ) 

Substituting for xn and y
n  fro' eqns. (1. 	and (1.10) into 

Q 
eqn. (1.1) gives immediately that 

F(ejw7) = 	I  a e-irwT  / (1 + 	 be-jswT) 	(1.11) 1 r  
r=0 	s=1 

Eqn. (1.11) is the same as H(z) in eqn. (1.4) with z replaced 

by ej47T. The frequency response is thereforeH e w( iT .) 

1.2 	Design of Digital Filters 

1.2.1 	Classification of Di7ital Filters [1] 

Returning to the difference equation of eqn. (1.1) it is clear 

that the order of the equation is (q + 1). Because of the recursive 

nature of this difference equation, that is yk  depending on y., j< k, 

the digital filters that are realized using eqn. (1.1) or 

equivalently eqn. (1.4) are called Recursive digital filter's. 

If bn 
= 0 for all n, then eqn. (1.1) gives 

y 	a k  	x3, 	( m 
m=u 

(1 .12) 

This equation defines the class of non-recursive digital filters. 

The corresponding z-transform is 

Y(z) = 11(z) X(z) 	(1.13) 

where 	il(z) = 	a z 
m=d m 
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The direct realization of eqn. (1.12) appears in Fig. 1.4. 

A recursive digital filter has feedback whereas a non-recursive 

digital filter has not (c.f. Figs. 1.3 and 1.4). Digital filters 

may be subdivided into another two classes: (a) FIR, finite 

impulse response, or (b) iia, infinite impulse response. All 

non-recursive digital filters have FIR but the reverse is not 

necessarily true. All IIR.digital filters are recursive, again 

the reverse is not generally true. 

1.2.2:-.„-iw,roxLiation and Do6i,-n [1] 

In classical digital filter theory, once the coefficients of the 

desired transfer function had been found by approximation, the 

desin was complete since the transfer function could be synthesised 

by inspection. The many different approximation methods have been 

adequately discussed in the literature and - it is not proposed to 

say any more on this topic. It is therefore appropriate to mention 

the three classical digital filter structures that realize H(z) 

in eqn. (1.4). The first is the direct form, the first variant of 

which was illustrated in Fig. 1.3. 11(z) may also be realized in 

the form shown in Fig. 1.5. Dy expressing H(z) as a product of 

2nd order rational functions in z
-1 , the cascade for m may be derived 

(Fig. 1.6). Finally, by expressing H(z) in the following way 

11(z) -2 

the parallel-form realization may be derived (Fig. 1.7). The 

structures in Figs. 1.3, 1.6 and 1.7 are canonical in the sense 

that a minimum number of adders, multipliers aad delays are used 

to realize eqn. (1.4)  in the'general case. 

1.23 Bilinear Transformation Method of Destga [5] 

The bilinear transformation is defined as follows 

p 	2 1 - z_1 p 	1+ z-
1 
1 f (1.14 ) 



where p = j-11 , is the analogue complex frequency variable and 

z-1 = e-jwT is the digital complex frequency variable, T is the 

sampling rate. It has the property of uniauely mapping the entire 

left-half plane of the p-plane into the outside of the unit circle 

in the z-1-plane. Thus, stable analogue filters map into stable 

digital filters. By this means, digital filters can be designed 

from a classical filter transfer function. It is important to 

note that the transformation in eqn. (1.14) distorts the w frequency 

scale, but the design procedure can take account of this. Once 

the analogue transfer function H(p), which corresponds to the 

desired. digital transfer characteristics, has been obtained, the 

bilinear tr<'rs orea.tion nay then be annlieci and the'resultin:; 

rational function in z-1 realized in any of three forms of section 

1.2.2. The coefficients of H(p) can be found by consulting standard 

filter design tables [63[7][8]. 

1.2.4 	Tre.7:uency  Transformation7; [9] 

For conventional analogue filter design, the coefficients of the 

rational function 11(p), or the element values of the possible 
realizations, are given in tables for normalized low-pass filters 

only. By normalized, it is meant that the cut-off frequency is 

1 radian per second and the source resistance (or load resistance) 

is 1 ohm. Any other type of filter may then be found by using one 

of the four basic transformations (a) Low-pass to Low-pass, (b) Low-

pass to High-pass, (c) Low-pass to Band-pass and 0) Low-pass to 

Band-stop [10]. To achieve realizable element values, impedance 

scaling may also be necessary [10]. .In digital filter design, 

an analogous theory has been developed £93. On referring back to 

the previous section, it can be seen that there are two alternatives . 

to the design of digital filters using the bilinear transformation. 

Having found the analogue normalized low-pass prototype from 

tables or otherwise, the frequency transformation may be performed 

either in the analogue or in the digital frequency domain. 

1.3 	Finite ...!ord Lenc-th 'effects in Digital Filters 

10.1 Principal Problems 

In analogue filters, a desired magnitude characteristic may change 

because of temperature, ageing and inaccuracies in component values. 
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These effects are non-e::istent or negli:ible in dir:ital filters. 

However, there is a problem caused by the obvious limitation to a 

finite word length. This restriction leads to three major 

problems 1.113: 

:luantization of the input signal fxj into a 

set of discrete levels. 

Representation of the filter coefficients 

(multipliers, by a finite number of bits, i.e. 

coefficient quantization. 

III: 	The accumulation of round-off errors committed 

at arithmetic operations, i.e. round-off noise. 

In addition there may be errors in processing analogae sicnals, 

that is errors in sampling and in reconstruction using A/D and 

D/A convertors [li]. 

1.3.2 	Tres of ',rith,-.etic [11] 

A binary representation will be assumed for the data. There are 

two basic types of arithmetic one may use in a digital filter 

(a) fixed-point and (b) floating-point. floating-point arithmetic 

is to be preferred because of the greater range of values possible, 

althou:;h it may only be feasible to 	for soft7:aro i;-it-1 filters. 

nixed-point arithmetic, on the other hand, is easier to implement 

in hardware form. After arithmetic operations, it is necessary.to 

round or truncate and this will introduce errors. These errors 

will be more severe in truncation. Furthermbre, fixed-point 

arithmetic introduces errors only in multiplication. 

1.3.3 	Coefficient luantization 

The quantization of the multiplier values in a digital filter will 

lead to distortion in the loss characteristic and in severe cases 

to instability as the poles move towards the unit-circle [i23. 

A suitable measure of this effect is the function ax/ as 	• 

*.;here A is the attenuation and oc is a particular multiplier [13]. 

Ideally, it would be desired to minimise the function L, .given by 

 

n/T 

0 

   

    

L = aA(w) 
amJ. 

2 

dw 	or an 
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equivalent function which takes account of the variation of 

aVaeci  with fre.!uency and for each cei . It is known that the 

effect of coefficient quantization is more pronounced for a high-

order filter when it is realized in direct form than when it is 

realized in parallel or cascade form [IL]. 

I.:5.4 	Round-Off ..I]rror [11] f203 

The round-off error, together with the coefficient quantization 

error, are the main sources of error. There are three factors 

which determine the style of the round-off error for a given' input 

signal, (i) the number of bits used for the data, (ii) the type 

of arithmetic used and (iii) the dirfital structure realizing the 

desired transfer function. 

It has been shown that the output round-off noise is usually, but 

not always, higher for a filter with fixed-point arithmetic than 

for a filter with floating-point arithmetic using the same number 

of digits 114]. This is because of the automatic scaling Provided 

by floating-point arithmetic. However, as was said in section 

1.3.2, fixed-point hardware is more economical to implement than 

floating-point hardware. 

1.3.5 	Ligilycles [11] 

Limit cycles or overflow oscillations may appear at the output of 

the digital filter even when there is no excitation. There are two 

types of limit cycles for fixed-point realizations (i) overflows in 

the registers caused by limited dynamic range and (ii) as a result 

of rounding after multiplication. It has been shown that (i) may 

be eliminated completely [15N16]. The second type of limit cycle, 

known as the deadband effect, has been extensively studied for 

first and second-order filters [17-][10]. The limit cycle effect 

is not significant in floating-point filters £19]. 

1.3.6 	Connection between Round-Off 1Toise and  Coefficient -:uantization 

In two recent papers, 2ettweis has shorn that a relationship exists 

between the round-off noise and coefficient quantization error in 

a filter realised with fixed or floating point arithmetic DADA." 

There are, however, certain conditions that must be satisfied: 
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1) The input signal must be sinusoidal. 

2) The output noise function 	 (v) measures the 

round-off error due to a single multiplier. 

3) The frequency of the output signal is the same 

as that of the input. 

and in addition for fi::ed-point filter3, 

So as to be able to compare the noise in different 

filters, it is assumed that the quantization - step 

of the signal parameter is the samo.for all 

filters and that the available dynamic rage is 

used to the same e::tent. 

1.5.7 	Sensitivit7 '11nctions.  

It has been observed that the differential sensitivity Plays an 

important part in the estimation of round-o2f noise and coefficient 

quantization error. This is because rounding, although a non-linear 

effect, is equivalent to small changes in the coefficients and the 

signals. for filterin, it is particularly useful to consider the 

loss function L defined as follows, 

" 	' L(w) = 20 Logio  1,( \i"(J)1  (1 .15) 

where G(w) is the transfer function of the digital filter at some 

frequency w and wo  is a reference frequency (e.g. d.c.). 

If eqn. (1.15) is differentiated with respect to any multiplier 

	

then.  7  with 	161= 	I a(wo) Ai (69 1.  7 

	

L 	20 	1 . a I Cri 

	

Doc 	Loge  1 0 	la  

For convenience, we shall Ilse the function Sa y' , defined as follows 

S 
IGI 	 cl 
oc 	1 al 	a ac 

which differs from 	2)13 
---- by a constant amount. 
ac< 

(1.16) 	• 
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Eqn. (1.16) is, of course, the classical definition of the relative 

sensitivity function [22j. Ue shall be interested, in addition to 

eqn. (1.16), in the following sensitivity function 

s  la-i_ 	 D 
1M F7

a Gi 
D (1.17) 

where D is any delay element. 	have used D, instead of z
-1

, to 

avoid confusion with the complex frequency variable. The delay 

sensitivity has no practical significance since delay elements 

are not subject to change. However, there are theoretical 

reasons and those will be e=lainei in Chapter 3. 

Finally, in most computational algorithms, and in particular 

those to be described in Chapter 3, it is S 	and S 	that are 04 
obtained. It is well known that 

s 'GI = Ref 3 a 	 (1.10 

but let us consider the following, 

G = IGI exp(j JT.) 	(1.19) 

where 4iis the phase of G. 

Then, on taking natural logarithms of both sides we have that 

LogeG = Loge  ICI + j.lE 	(1.20) 

Differentiate both sides of earl. (1.20) w.r.t. (1.T), then 

	

sG = SIGI 	
i T s  

wT 	wT 	wT 
(1.21) 

As all the functions in eqn. (1.21) are real, we have immediately 

that 

s
(GI 

= Re IS G  I 
wT 	wT 

(1 .22) 
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But 
	D = 

therefore 

= -jw-T 
	

(1.23) 
Tit T 

Combining eqn. (1.22) and (1.23) and noting that [22] 

Sy S Y  = S , we have 

sIGI 	
-JRe.fj 
 s  G / 

D 

or, equivalently, 

sIGI 	= j 	S G 	 (1 .24) 

1.4 	Low Sensitivity Property of Certain Cln.ssical Analog. ie Filters  

It is well known that ladder filters have low sensitivity to element 

variations in the stopband. Furthermore, doubly-terminated lossless 

filters can be designed so that, at frequencies of minimum loss, 

the source delivers maximum power into the load. At these points 

of maximum available power (:.:AP), the derivative of the loss with 

respect to any reactive component is zero. This fact, together 

with the proof, have been collectively referred to as 'Orchard's 

argument' [23]. It has led to the design of active filters by 

replacing the inductors in a doubly-terminated LC network by 

gyrators [24] and to Bruton's transformation and the concept of 

frequency-dependent negative resistance C251. 

Let us examine the property of zero sensitivity more fully. The 

maximum power available from the resistive voltage generator 

(Fig. 1.8) is V/4Rs 
 and would be delivered to RL, the load, if o  

the reactance network N was replaced by an ideal transformer 

which exactly matched R
L 
and 
/ 	

R
s  (Fig. 1.9). The voltage, V2, 

across RL  would then be Vo
2 
 RL/4Rs) 

Therefore at NAP points, the transfer function H(p) is given 

by the following expression, 

H(p) = V2/Vo  = .1d/RLARs 



or 	1111 2  = R„/4R 
	( .1 .25) 

It is easy to see that, on using  eqn. (1.25), 

1 
2 

(1 .26) 

and 	sIHI = 4 
R  

Now, in Fig. 1.8, let Zil = Ril + jLii  then the power PIN  into the 

filter is given by 

V2 R o 	11 
P
IN 

—  	2 . 	2 (R
s 
+ R

11 
) + X11 

(1 .27 ) 

As the network IT is lossless the power at the output, PL  is equal 

to Po. 

.Let x be a reactive element in N then, on using  the chain 

rule for differentiation, 

aPL 6PL 	ZPL 	-a0 

"b x 	aR11 	a x 	a x11 	x 	(1.28) 

Using  eqn. (1.27) we have that 

	

PL 	(R s2 	R  2 	x  2\v. 
1 1 	1 1  I  0  

= 

	

a 
 R

11 	+ R11 )2 	x11212  
(1 .29) 

and 
2 

•P L 	
—2R11 X11Vo 

a X11 	 f(R  • 	)2 	x  2 2 

	

s 	
11 
	11 5  

(1 .30) 

At points of maximum available power, R11 = Rs  and Xil  = 0 therefore 

eqns. (1.29) and (1.30) become 

-a PL 	PL 

R11 — X11 

and hence eqn. (1.28) gives finally that 
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?'' 
Fax - 0 	 (1 .32) 

Since the power at the output, PL  is given by the expression 

I 	, 
P  = 	12 /"L 

then eqn. (1.32) can be written as 

a I v  21  - ax (1.33) 

We have shown, therefore, that a doubly,-terminated lossless network. 

has the property of zero attenuation sensitivity at points of 

maximum available power [26]. Although the number of LIAP points 

in the passband of a filter is finite, we may be fairly certain 
that at other passband points, the attenuation sensitivity will 

be small, so Ion::: as the maximum passband deviation is small 

enough. This can be achieved for the classical filter designs, 

e.g. Chebyshev, ,Butterworth and Elliptic [26J. 

Three well known classes of doubly-terminated lossless network might 

be mentioned in conclusion. The first is the LC ladder which, in 

addition to zero I:A*1 sensitivity, has low sensitivity in the 

stopband. This is true also of a cascade of lossless transmission 

lines. However, the third class, that is the Lattice is known to 

have poor stopband performance. 

1.5 	Simulation of Doubl:z7Terminated Loss less 	Usino: Di- tzl 
Components 

In previous sections, it has been seen how digital filters may be 

• designed and the principal problems that exist in their realization. 

The question arises - can a digital filter structure be derived that 

imitates the behaviour of a low-sensitivity analogue network? A 

desired digital transfer function may be realized in many different 

ways and therefore it is apposite to askwhether one particular 

realization has the lowest coefficient quantization error and 

round-off noise. Consequently, if a doubly-terminated LC ladder 

filter is taken and the voltage and current relationships expressed 

in signal-flow graph form then it is certain that the unique 
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relationships are 1-)reserved and therefore that the low sensitivity 

Property is maintained [271. It is necessary to find some means 

of transforming the analogue frequency variable p to the 

corresponding digital freT 	i uency variable z in such a way as 

to preserve the transfer characteristics. A suitable transformation 

has already been introduced in section 1.2, that is 

p ♦(1) 1 - z
-

1 

1 -1- z
-1 

(1 .34) 

The factor 2/T has been dropPed for convenience but it is to be 

noted that there is a. constant multiplier of unity in eqn. (1.34) 

which has the dimensions of sec.
1
. The bilinear transformation 

of eqn. (i.34) has the property of mapping stable analogue transfer 

functions onto stable digital transfer functions [28]. The entire 

ju-axis is mapped onto the unit-circle in the z-plane and thus 

the frequency characteristic suffers a contraction from E0,00] in the 

p-plane to EC, n/TJ in the z-plane. This property has been referred 
to as 'warping' EA. It is always possible to adjust the cut-off 

frequencies in the analogue filter so that a specific cut-off may 

be obtained in the digital equivalent [5]. 

Before proceeding, it is important to mention the realisability 

condition for digital filters. As the classical design methods 

automatically satisfy this condition, there has not been a need 

to explain it previously. To ensure that a digital filter is 

realizable, it is necessary that every loop in the structure 

contains at least one delay element. If this rule is violated 

then it would be necessary to use the output signal of some part 

of the digital filter structure to compute itself. As arithmetic 

operations take a finite amount of time, this clearly would be 

impossible. 

As a simple example of the flow-graph method and why it leads to 

unrealisable structures, the doubly-terminated third-order all-
pole network shown in Fig. 1.10 was chosen. If the structure is • 
split into three two-ports and two one-ports as shown in. Fig. 1.11 

and if each two-port is expressed in terms of its .:BCD matrix 
then it is clear that 
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V, - V. 	= 	1,3 0 	s 

[1 	0 [ 791 [Vi  

pCi 	1 12 

[V2 [1 	pLI [ V3  

12 0 	1 1
3 

V. 	0 	
V41 

[Id = [pC2 	1 	1
4 

and 
	

74  = 143E  

Let V0, Vi , V2, V,3, V4, II , 12, 13  and 14  be the node variables 

in the signal-flow graph then the realization of the above 

equations is as shown in Fig. 1.12. It can immediately be observed 

that a delay-free loop e:,:ists through the variables V1 , V4, 14, 

and V.1 	If the bilinear transformation of eqn. (1.34) is applied . 

to the signal-flow graph, the branches V2I1 , V3I3  and V413  are 

transformed to branches of the form sho:m in Fig. 1.13. Thus many 

more delay-free loops are formed. ?or this reason, the voltage-

current approach to the simulation of analogue filters with digital 

components fails to yield realizable digital structures. If 

flow-graph reduction techniques were used [29]to eliminate the 

delay-;free loops then the ladder relationships would be destroyed 

and so possibly would the desirable low-sensitivity property. 

A solution to the problem of realizability has boen given by 

Fettweis [30]. Instead of voltages and currents, he considers 

wave variables and the resulting filters he has called 'wave digital 

filters'. These filter structures will be e::aminecl in the survey 

of the following section. 
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1.6 	cJurve7 of Liter7ture on ..ave 	Filters 

1.6.1 	asic Theor 

'Java digital filters are derived from classical analogue filters 

using three fundamental concepts: (a) Scattering parameters [99]/ 

(b) The bilinear transformation [28] and (c) Signal-Flow Graphs [2c1]. 

The basic theory has been described in references r302, [31], [321, [33] 

and [34] and a short account of the salient points will be presented 

hero. 

- Having observed that the direct approach using voltages and currents 

failed to give realizable structures, Fettweis considered waves as 

the basic variables in the signal-flow graph. He defined the 

incident and reflected waves 	Bk  at a port k in the following.  way 

A. = Vk  RkIk  

(1 .35) 
Bk = 	Rkik 

where R, is the port normalization resistance. It will be seal 

that, as a result of Rk  being arbitrary, any delay-free loons 

that may arise in the signal-flow di:1gram can be eliminated. The 

transformation defined in eqn. (1.35) is a variation of the 

scattering matrix formulation in microwave network theory [9]. 

Having defined the means by which equivalent digital filter 

structures may be derived, the result of applying am. (1.35) to 

the various elements in a doubly-terminated lossless analogue 

network will be e=mined. Fettweis treats such a network as a set 

of reactive and resistive one-ports and two-ports connected 

together by means of new elements called 'Adaptors'.. 

For an inductor, therefore, the voltage-current relationship is 

(Fig. 1.14) 

tj = (pL)I 	 (1 .36) 

On using eqn. (1.35) and (1.36) to eliminate V and I we find that 

= DI! - R 
A pL R 
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If we set R = L then 

2=1 
A p 1 

and on applying the bilinear transformation, which we have discussed 

in the Previous section, we find (Fig. 1.15) 

B = -z-  A 
	

(1 .37 ) 

The signal-flow Graph, or wave-flow diagra:a (,:F D) as Fettweis has 

called it, of eqn. (1.37) is nothing more than a delay element 

and sign inversion. 

_'or a capacitor, C, we may, in a similar way, find 

B = z-1 
	

(1 .38) 

where R has been set equal to 1/C. 

For a resis tive voltar;e source (AG. 1.16) we have 

Vo = V RsI 
	

(1.39) 

On eliminating V and I between elns. (1.35) and (1.39) we find that 

A = Vo 
	 (1.4c) 

where we have assumed R = as. 

The 'LTD of eqn. (1.40) is a '.wave-sourcel (Fig. 1..17). 

For a terminating resistance, RL, (Fig. 1.18) we have 

V = R I • L (1 .41 ) 

and on ::sing eqn. (1.35) with 2 = RL, we find that 

B = 0 	 (1.42) 

The 	of ein. (1.12) is a 'cave-.sink.' (Fig. 1.19). 
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:?or a lcssiess transissio::-line element or -Chit :10-lent (I:1) [35 ] 

(Fig. 1.20), the corresponding equations are as follows [30], 

B2 	
z-7A

1 

where we have assumed F.1  = R2  = Zo, the characteristic impedance. 

The JFD of eqn. (1.43) appears in Fig. (1.21). 

The port resistances are associated with particular ports and as 

we have.set them equal to the corresponding element values, some 

means of connecting ports with different port resistances is 

required. This may be thought of as a problem of =Aching. 

Lst us consider n ports with port resistances Ri , R2, ... Rn  

respectively. If the ports are connected in parallel we have 

(Fig. 1.22), by Nirchhoff's Law, 

On eliminating Vk  and 1k  between equations (1.35) and (1.44) for 

k = 1,2, ... n, we find that (30] 

DI( = "71o 

where Ao 	E oC, A, 

(1.45) 

and k 
= 2G

k
/(G

1 
+ G

2 
+ .. + ) G = 	xc 

11 

Note that al = 2, thus one multiplier may be eliminated. 

These equations define an 'n-port parallel adaptor'. It is 

represented schematically in Fig. 1.23. If the n-ports are connected 

in series then we have (Fig. 1.24) 

11  = 12 =
I3 ... = In  

and 	V
1 
+ V

2 
+ V

3 
+ 	4- Vn = 0 

Therefore, on eliminating 7k and Ill  as before, we find that [30] 
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_ 
k -o 
	 (1.47) 

where 	11 

A  

and 	
k 

= 	/ 	+ R• '' + 3n) p 	1 2 	n 

Again, we have Zi  g = 2. 
1 / 

These equations define an 'n-port series adaptor', shown schematically 

in Fig. 1.25. 

TO be 'able to desirm a diEital filter from any classical doubly-

terminated reactive networlc, it is necessary to have the ..!TD of 

two more circuit elements: the series-tuned circuit and the 

parallel-tuned circuit (Figs. 1.26 and 1.27). It is well known 

that a series-tuned circuit is equivalent to a cascade of two 

UE's with one end open-circuited (HE. 1.20 [30j. The 

characteristic impedances Z1  and Z2  of these UE's are Given by 

Z1  = L D 

Z
2 = (L + D)/LC 

where 	D = 1/C. 

A two-nort series adaptor is roluired between the two 7E's since 

Z
1 
/ Z

2' However it can be shown that a two-port series adaptor 

is the same as a two-port parallel adaptor and so it shall be 

denoted schematically as in Fig. 1.29 £307. The -,TFD of en open-

circuit is found simply by setting I = 0 in eqn. (1.35), then B = A. 

For a short-circuit, V = 0 and therefore B = -A. The corresponding • 

IFD of a series-tuned circuit can now be completed and is shown in 

Fig. 1.30. On realizing that a parallel-tuned circuit is a short-

circuited cascade of two UE's, the ":1-2D of Fig. 1.31 is apparent. 

An inductance could have been treated as a short-circuited Uli; and 

it still would have been possible to obtain the W2D of fig. 1.15. 

Similarly, a capacitance is equivalent to an open-circuited TiE . 

This is the principle of Richard's transformations [36]and was 

considered by Crochiere as an alternative method of deriving the 

elements of the have Digital Filter [32]. 
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In a paper published in 1970 independently of Fettweis, 3inham [37] 

described a similar concept to that of the .cave Digital Filter, but 

the work was never continued. 

1.6.2 	Design of Wave Digital -2ilters 

In the previous section, the 7TFD of the various elements, sources 

and connections necessary to realize a wide variety of filters 

were examined. To interconnect those 'buildin7-blochs' the 

following three points must be observed [301: 

It is necessary to 

I) Interconnect building-blocks port by port. 

II) For every pair of terminals connected the two corresponding 

waves must flow in the same direction. 

III) The resulting 7FD must be realizable, that is, every loop 

must have at least one delay. 

There are two classical analogue filters of interest, (i) the doubly-

terminated LC ladder and (ii) the doubly-terminated cascade of TIO's. 

Two typical examples appear in Fig. 1.32 and 1.33 respectively. 

When it is attempted to realise (i) in digital form, a problem 

- exists due to cascade connections of adaptors. Delay-free loops 

are formed which, of course, leads to unrealizability. Fettreis 

solved this problem DC] by introducing Unit aements at the source, 
or load, and applying Kuroda identities 13,8].. These enable any 

number of 	to be shifted through the two-port. The result 

of this procedure is to separate lumped elements by unit elements 

(Fig. 1.34). It is therefore possible to realize (i) in digital form 

since the UFD of a UE is a delay (Fig. 1.35). The lumped-distributed 

filters, of which Fig. 1.34 is an example, have been called 'Unit-

Element Filters' [38] and have importance in microwave theory [35]. 

The addition of unit elements adds to the complexity of the digital 

filter and methods have been derived which make more efficient use 

of them [39]. It may be asked whether unit elements are reauired 

at all since they were introduced only- to satisfy the realisability 

constraints? Indeed, it is possible by setting an appropriate 

adaptor multiplier to unity to avoid delay-free loons. This 

technique leads to digital filters whose elements bear a 



one to one relationship with the elements of the analo,:;ue filter [34]. 

The number of multipliers used is canonic in the sense that it is equal 

to the number of reactive components plus one, whilst the number 

of delays is equal to the number of reactive components. Thus for 

all-pole filters, the number of delays is equal to the filter's deTree. 

Consider now the second type of filter, that is the cascade of U's. 

The .:1]:11) of 2i. 1.33 appears in 2ig. 1.36 [30j. Such filters always 

have realizable -,;23 although transfer functions are restricted to 

the all-pole form. The number of multipliers is equal to one more 

than the number of unit elements. 

The desicn of a particular wave digital filter can be achieved either 

by using standard analo:ue filter tables [6][7][33[40] or by 

synthesisinz the desired analoo.le net,Torl: f1]1423.. ::any nractical 

examnles have been -riven in the literature, for lumped filters one 

nay refer to ref rrences £39] £43) [11 -11-5 M 61U7],for distributed 

filters to ffiej and for unit-element filters to 131C391[49]EA151). 

Recently, two papers were published on the realisation of wave digital 

filters from symmetrical lattice networks, quite independently. The 

first £52) uses the equivalence between the Lattice and the Jaumann 

structure to derive the appropriate wave-flow dia,:;rams. The second 153], 

which is a simpler approach, uses the fact that the transfer function 

of a oy -metrical ls,sttice (nr, be obtained 7'ren the refleotnces of 

the canonic imnedances. In either case, a new four-port adaptor 

called the 'Lattice ::.daptorT is derived. The corresponding equations 

are as follows (216. 1.37) 

B 	
2  " 

(:! 	) 
1 	3 	4 
B2 	+ ) 
2 	2 	 3 • 	4 

733 = Ai - 

B
4 
 = A

I  + A2 

with the constraints that 

A
3 
= s

1
B
3 

and 	A
4 = 

s
2
B
4 

(1.49) 

(1 .50 ) 

where 	it = 	R, is the reflectance of imnodance 
Z
k 
 R 
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Z„ k = 1,2 and = 	= 
 

In particular, with A, = 0 the transfer function ,2/.1.1  is found to be 

il(S2  - Si ), which is a simnler form. The main advantar-e  of using 

the lattice equivalent of a symmetrical ladder network is in the 

reduction of the number of components in the digital structure. 

However, as in the analogue equivalent, the digital lattice shows 

high storband sensitivity, although not as severe. In addition, 

only symmetrical networks which are ejually terminated can be used. 

::any practical filter examples may be found in references (39] and C53]. 

A method of designing wave digital filters from doubly-terminatcd • 

LC ladders with the advantage of a reduction in the number of delays 

has recently been described (34)1551. The method relies on the fact 

that multiplication or division of e=y impedance in the analogue 

network by the complex frequency variable r leaves the transfer 

function unchanged. This technique was first put forward by 

Bruton [25], originally for eliminating inductances so that an active 

'realisation of the analogue transfer function could be made with the 

same low sensitivity as the passive prototype. If every impedance 

is multiplied by n then resistances are transformed into inductances, 

capacitances into resistances, and inductances into new elements 

called 'superinductances'. If every impedanae is divided by p then 

resistances are transfored into cpacitances, capacitances into 

'surercapacitances' and inductances into resistances. The 7F.D's 

of these new analogue elements are derived in Ref. [553 and examnles 

may be found in aefs. (392 and 155]. 

Java digital filters have been realized on a Hewlett Packard 2100A 

ianicomputer in real time and for fixed-point and floating-point 

arithmetic. Experimental results are given in aeferences [5911504 
urthermore., descriptions of two different hardware realisations 

may be found in aefs. £391 and [467. In both cases, theoretical 

predictions have been confirmed. 

1.6,3 'Coefficient 'olantization Error and 'sound-off 30ise 

in 'Jaye Digital 25,ltcrs  

In the last two sections, the basic principles of designing digital 

filters from classical filter networks using waves have been reviewed. 
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?he main reason for using waves was to nreserve the low sensitivity 

of the analogue prototyne. _.re the filters we have described better 

than the conventional direct, cascade or parallel structures? The 

evidence from the literature is clearly affirmative. The coefficient 

quantization error, which is the easiest to measure, is smallest 

in Uave Digital Filters 1323 [4:i]C50][511 [861, at least for the 

examples examined. 

The main advantage of wave digital filters is shorter multiplier 

wordlength. In digital filter in using z:oftware on a digital computer, 

the wordlcngth is usually fixed _nd therefore one is interested in 

the best algorithm under these conditions. Jaye digital filters 

would therefore be more useful in hardware situations, where the 

arithmetic would generally be fixed—point, and because of their 

low quantization error, could be realized with multipliers e:ival 

to powers of two [46]. 

1.:e round—off noise has also been studied extensively for wave 

digital filters, both for fixed—point and floating—point arithmetic. 

In the floating—point case, practical filter examples have shown a 

clear superiority for wave digital filters over conventional 

structures [32]f44]. However, in the fixed—point situation the 

arguments vary [443[513, although, as has been said, the per:ormance 

of wave digital filters is such that multipliers e2ual to powers 

of two may be used in certain circumstances [46]. 

Pinally, the problem of limit cycles, or overflow oscillations, 

in wave digital filters has been examined E573. It was found that 

those parasitic effects can be avoided by very simple means. 

1.6.4 	Sensitivity 	of 'Java Digital Alters  

It has been shown that the attenuation sensitivity is useful in 

estimating the error due to coefficient quantization and, in particular' 

circumstances, to measure the round—off noise [13]1-211. ?o derive the 

sensitivity properties of wave digital filters, there are two 

approaches (i) direct, using the correspondence between the multiplier 

variables and the analogue elements, and (ii) using the concept of 

pseudopower (33M58]. 
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The direct approach 	been ade in Refs. L83 and [501. In 

these references, it was shown tht the attenu_Ition sensitivity 

was zero at points of !iaximum available pseudonower (11.::.T). This 

Property, of course, holds in the doubly-terminated lossless netxor 

from which the digital filter was derived. However, the conclusions 

of Renner and Gupta are quite misleading and will be discussed in 

a moment. ..Sefore this, however, the concept of pseudopower will be 

Tor an p. -. or-ue net7or, the real  power 2 is defined as follows [10], 

Plc = 	 f 
* (1.51 ) 

where 1: denotes the hth. port and denotes complex conjugate. 

Let us now express 	in terms of ..'-_, and a using e.)a. (1.35) then 

Pk  = 	ae 	+ 3  _) 	(A1*4, - 3t) 	/ 

or, 

Pk 	r 12 	13  1 2 
	

(1 .52) 

since Re k - y Bk  = 0 
1Z at 

and 	1/2k  is real. 

For wave digital filters, Pk  in eon. (1.52) is called the 

'oteady-stae pseudopower' at the kth. port. The constant, V can 

be drowned from earl. (1.52). Fettweis has shown that the digital 

filter equivalents to the passive analogue comnonents (i.e. resistance, 

inductance, capacitance, 	transformer' etc.) are 'pseudopassive', 

that is P 	0 for Re(p).?. 0 where p = 	is the complex 

frequency. In addition, inductance, capacitance, 	have P = 0 for 

p = jw and therefore are called ipseudolossless' or 'pseudoreactive'. 

In addition adaptors were shown to be pseudoreactive. To derive the 

sensitivity properties, both Fettweis and Renner and Gupta (3321483(501 
used the following transfer function (Tic. 1.33) 

G(z) = Rs 	B2 
	

(1.53) 
R
L  Vo • 
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which corre:-.0onds to the forward transmission coefficient in 

classical networl: theory [10]. Howcw,x, the actual transfer function 

is B2/V0, that is the output signal then can be detected for an 

input Vo  is 32. Uoin- tho for7ula for. G(z) in enn. (1.53), it was 

shown that at points of =0 

at 

 

(1.54) aa 

where 	- Loge  la(wT )1 and oc is any multiplier. 

.As has been said, the.  actual transfer function G(z) is given by 

A, s 	32 
G(z) = v.- 	(1.55) 

and therefore, combining eqns. (1.53), (1.54) and (1.55) we find 

that, at 1,1AP points, [59] 

where 

"?:L 1 	d': -17c K 0( 
= :417:/aL  

(1 .56) 

Thus the attenuation sensitivity of interest is given by eln. (1.56) 

and is not zero in general. It was shown that the expression on 

the right-hand side of eqn. (1.56) depends only on the multiplier 

values and therefore gives a flat loss to the attenuation, which in 

practice can be ignored f593. However, the output round-off noise 
A, 

is dependent on - !‘./3c< 	and therefore it is of interest to find ways 

of reducing it [59]. By observing the form of eqn. (1.56) it is 
, 

clear that a.1[Doc will be zero if sL is independent of od . 

There are three cases for which this is true [59], (a) by realizing 
a transfer function as a reflectance, in which case because the 

input and output sii:nals refer to the same port, the port resistances 

are the same, (b) by realizing a transfer function in lattice form 
[521[53] and (c) by realizing as a particular type of unit-element 

structure. The disadvantages of (a) and (1) lie in the increased 

stopband sensitivity whilst for (c) we have an increase in the number 

of delay elements. 

The non-zero nature of the attenuation sensitivity has also been 

examined by Long [44] using the concepts of pseudopower and 
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pseudopassivity. In the present study, the attenuation sensitivity 

will be derived without using these concepts, by using the functional 

relationship that exists between the analogue filter and the 

corresponding wave digital filter. 

Finally, it has been shown by Fettweis that wave digital filters 

arc stable for wide ranges -of their multiplier values (35]. 

1.6.5',c)m.e Other Properties of Jaye Digital Filters  

Consider Fig. 1.38 in which for a signal input, Ai  = Vo, the 

required output signal is 32  if A2  = 0. It is known that the 

output signal 31  is complementary to 77J2. in the sense that1503 

° 	211 = 1 11 	10 2  - 2  (1 .57) 

There S11 = 31/Vo 

and 	S21 = 32/'To 

Eqn.(1.57) is valid for equally terminated reactive networks only. 

Thus if S21  has a lowpass characteristic, S11  will have a high-pass 

characteristic. Similarly if S21  has a band-pass characteristic, 

then Sii  has a band-stop. These arguments arply equally to the 

case when A2  is the input, Al  = 0 and 32  is the complementary 

output to-1' 	has been said previously, taking the output - 
from the same port as the input signal gives good passband 

performance but the stopband sensitivity is high. Therefore a 

wave digits.l filter may be used as a low- and a high-pass filter 
simultaneously 

Fettweis has made a detailed study of the significance of Bordewijk's 

concept of Inter-Reciprocity in wave digital filter theory (60]. 

He has derived theorems that are similar to Tellegen's theorem 
for analogue networks. It was shown that, of the many types of 

transposition of a given network, two were of interest (a) 'intrinsic 

transposition' and (0) 'elementary transposition'. Intrinsic 

transposition corresponds to transposition in the classical sense, 

that is only networks consisting of non-reciprocal elements are 

affected. Since classical doubly-terminated lossless networks 

are reciprocal, intrinsic transposition has no effect E60]. 

Elementary transposition corresnOnds to flow reversal, that is 
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reversing the signal direction in each branch. Mth types of 

transposition yield structures with the same number of multipliers 

and tr:znsfer function as the original. Thus the concept of 

inter--rec'iproc'ity night be useful in `finding structures with lowor 
levels of round-off noise and parasitic oscillations E603. 

1.7 	Survey of Literature  on Other  ow-ensitivit7 Di7ital 
-.3 -tructures 

The in:port:Ince of the structure of e. digital filter with regard to 

the problem of round-off noise and coefficient quentisation errors 

has been emphasised by Jackson C203. In the previous. section, one 

method for the reduction of noise was 6:mmined in which the known . 

low-sensitivity behaviour of certain analogue networks was preserved 

in the digital realisation. ..;e shall briefly review some other design 

techniques who::: aim was to reduce the round-off noise. 

1.atra and Merwood have derived recursive digital filter structures 
using the continued fraction expansion well known in passive 

.synthesis [61][62][63]. Similar work has been done independently 

by Constantinides (61A. These structures do resemble ladders in 

appearance but their sensitivity performance is poor [41]. 

In another paper, Constantinides (651 has elmmined the synthesis 

of Fla transfer functions as ladders using the continued fraction 

expansion. These structures, although recursive, have finite impulse 

response. This work has been continued in les. [661E673. 

Gray and Markel have presented a new type of digital structure 

synthesised using orthogonal polynomial expansions E6ag697.  ,u is 

claimed that, in the case of.narrow bandwidths and clustered 'soles, 

the round-off noise properties are better than those of any of the 

conventional structures. 

Another promising structure has been investigated by Long (44). Its 

signal flow graph is of the same general form as that of a passive 

ladder; r -L'hese structures, called multiple-feedback or leapfrog, 

have been used to design active ac filters. They have been shown 

to exhibit lower sensitivity in the passband than the conventional 

method of cascading nscond-order sections. however, as has been 

seen, one cannot design a realL;able digital filter from an analogue 
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filter using the signal-flow graph based on voltages and currents. 

Log's solution was to match the coefficients of the desired 

transfer function to the coefficients of the transfer function of 

the di -cital leap-frog structure. This lea to a set of non-linear 

simultaneous equations, which were then solved givin7 the raluired 

design [44]. The noise performance in the fixed-point case was 

then discussed. It was found that the round-off noise, for a 

low-pass realization, was similar to that of the conventional 

cascade and that of the wave digital filter. atrthernore, even 

better Performance was observed in the c,_.,se of narrow band filters. 

7owevri the bandnass leapfro7 realization showed considerably poorer 

performance than the corresponding cascade or wave filter 

realization. 

Bruton has suggested that the following transformation could be 

used to derive digital filter structures from doubly-terminted 

lossless ladders E271[70], 

2 	'PT\ p 4 7 sinh (---) 2 (1 .58) 

He begins with the simal-flow graph of the ladd:r in the lean-

frog form, as Long has done, and then applies the transformation 
in eqn. (1.58) to every freijuency depen:d7mt branch. The resulting 

digital structure is then realizable, that is no loops without 

delay are formed. The bilinear transformation 

2 	, 'LT% 
p 	tan-̂- ( ) 2 

(1 .59) 

if used in a similar way to ecin. (1.58) would, as has been hown, 

lead to unrealizable structures. 

may write 0::21. (1.53) as follows, 

2 	wT 
sin 

2 	2 (1 .60) 

where A is the analogue frequency, w is the digital frequency 
and T is the sampling rate. Thus the maximum frequency 11-0  which 
naps onto the discrete-time domain is 2/T. The'corresponding discrete 

frequency is 7r/2. Therefore, only the filter characteristic from 

0 to 2/T can be transferred into the digital range. The size of T 
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is limited by the hardware that is being used. If z is written 
nT 

for e-  in eqn. (1.5L,), then the trahslormatioh may be written as 

(z2 - z•-'2) 
T 

1 	1 - z-1 or P 77 
z 

(1.61) 

(1 .62) 

Consider a pole pi  of the analogue prototype, this is transformed 

by eqn. (1.62) into two noles which satisfy the following quadratic 

e.itt_ttion in z `, 

1 
" -- Z 	 2 1 P .lz 	- 	= 0 (i .63)• 

If of and ,8 are the two poles then 

61/3 = -1 	 (1 .64) 

The stability condition for digital transfer functions may now be 

applied to eqn. (1.64). It is required that both oc and /7 

should lie outside the unit circle but this is impossible since 

the product of their moduli is equal to unity. Thus filters 

designed using the transformation given by eqn. (1.58) are unstable. 

1.8 	Approach Taken in this Thesis 

There is now 	oxtensive literature on 7ave Digital alter theory 

and many papers have been published verifying the low noise 

properties which are a consequence of simulating doubly-terminated 

LC ladders or UL cascades. The work done up until now has 

concentrated on an approach in which each lumped element is 

treated as a one-port and structures are built up by Connecting 

the signal-flow graphs of these elements with adaptors. An adaptor 

is simply a means of connecting n ports with unejual port 

normalization resistances in parallel ow in series. The adaptor 

is necessary in the one-port approach because the port resistance 

has been set equal to the corresponding element value, thus 

constraining the one free parameter. Similarly, the two-port 

iff.i has both of its port resistances set equal to the characteristic.  

impedance. In this thesis, each arm of the ladder, excluding 

terminations, will be considered as a two-port with unequal port 

resistances and the corresponding wave-flow diagrams ('JFD) will be 
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B1 

 

- V - I 
k -k k 

(1 .65) 

derived. It will then be possible to cascade successiveT'D 

without the use of the adaptor concey)t. This is a consejlence 

of allowinG the port resistances to vary independently. Similarly, 

the port resistances of the U will also be allowed to vary 

independently and it will be seen that diaital filter structures 

can be derived from distributed prototypes without using ad:?.ptors. 

It turns out, in fact, that the appropriate adaptor is included in 

the 	of a particular element. Thus a new approach to the desiGn 

of nave DiGital filters is being suGGested - the 'Two-.7. ort APproachc 

The concept that is beina proposed assumes only the transfovmation 

from voltages and currents to incident and reflected waves and the 

bilinT:ar transformation. It is not necessary to consider -71ichard's 

transformations and unit elements if a lumped network equivalent 

is reuired. further, the two-port approch enables more general 

transformations to be studied. :,11 the literature has concentrated 

on the following, 

but it may be of interest to consider, for a two-port, the followinG 

transformation (99], 

A = n V + p 
1 	- 11 1 	12I  1 

	

31 = P21'1 	P2211 

and A2 = (111 V2 	(11212 

B2 = c121179 	(12212 

and to e=mine the conditions on p. 	and— to ensure that 
i3 	iJ 

realizable networks are formed. 

The wor in this thesis is divided as follows: 

In Chapter 2, the varios n2D, necessary for the simulation of 

lumped and distributed filters, are derived. Chapter 3 is concerned 

with the desin of digital filters from doubly-terminated lOssless.  

ladder networks. In addition, the attenuation sensitivity 

characteristic is derived using the correspondence between the analogue 

and digital elements and the low coefficient quantization error is 
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confire:1 by exa.iple. In Chapter 4, the design of digital filters 

imitating the behaviour of doubly-terminated losslecs transmission 

line networks is described and the sensitivity properties are 

derived. 1lie ,eneral trc_nsforatio lonez1 in e:ins. (1.Ct',) 

(1.67) is examined in Chapter 5. Conditions are given that are 

necessary to ensure that the derived structures are realizable 

and, ir.ledd, imitate the classical prototype. In Chapter 6, a 

particular transformation is studied in detail. The appropriate 

signal-flow graphs are derived and several filter examples are 

given. _'our other transformations are studied in Chapter 7 and 
the corresponding flow-graph:33.re derived. 

Com:uter-aided analysis of digital filters is the subject of 

Charter O. A new algorithm for the fast analysis of arbitrary 
digital filter structures is :resented and e=mplos are given 

showin-,  its superiority over the conventional techniques. 

In Chapter 9, other avenues of research are suggested in the 
field of -Jaye Digital Tilters that may be fruitful. 

Some of the work in this thesis has been presented as conference 

papers. The ideas of Chapter 2 together with the design method 

of Chapter 3 appear in [71]1-96J. The sensitivity analysis of 
Chapter 5 appears in (723. The concept discussed in Chapter 4 
is the subject of [73]. The general two-port transformation 

of Chapter 5, and in particular the tival formulation of 
Chapter 6, appear in (74]. Finally,. the new analysis algorithm 

of Chapter 8 is to be found in [75]. 

At the same conference as (713 uas presented, Stramy and 

Thyagarajan (763 gave a Paper containing very similhr results. 
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Fig. 1.1 	Digital Signal Processor 

Multiplier Delay 

Fig. 1.2 	The three basic digital filter components . 
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Fig. 1.3 	The first direct realisation of H(z) . 
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0 

Fig. 	1.4 	Direct Realisation of Non-Recursive Transfer Function . 

Fig. 1.5 	The second direct realisation of H(z) 	' 
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H 

	 V 

Fig. 1.6 	Cascade of second-order sections 	( Each box represents a 
2nd. order non-recursive transfer function). 

--I 

Fig. 1.7 1.7 	Parallel form realisation 	( Each box renresents a 
2nd. order non-recursive transfer function ) . 
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Fig. 1.8 .Doubly-terminated lossless network . 
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Fig. 1.9 	Doubly-terminated lossless network at a point of maximum 
available power . 

Fig. 1.10 Doubly-terminated third-order all-pole network . 
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Fig. 1.11 	The network of Fig.1.10 partitioned into three 2-ports and 
two 1-ports . 
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Fig. 1.13 	Signal-Flow Graph of Typical Digital Branch . 
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Fig. 1.14 Inductance,L . Fig.1.15 Wave-Flow Diagram(WFD) of 
Inductance . 

Fig.1.16 Resistive Voltage Source . 	Fig.1.17 WFD of Fig.1.16 . 

Fig. 1.18 Load Resistance 'RI, 	Fig.1.19 WFD of Fig.l.18 . 
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Fig.1.25 n-port series adaptor . 
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Fig. 1.20 Unit-Element (UE) . 	Fig.1.21 410.) of Unit Element . 
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Fig.1.23 n-port parallel adaptor . 
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Fig. 1.22 Parallel Connection of n ports . 
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Fig.1.24 Series Connection of n ports . 
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Fig.l.26 Series-Tuned Circuit . 	Fig.1.27 Parallel-Tuned Circuit . 
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Fig. 1.23 Unit-Element equivalent of Series-Tuned circuit . 

Fig. 1.29 Two-port adaptor . 

Fig.1.30 Wave-Flow diagram of a series-tuned circuit . 
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Fig.1.31 Waye-Flow diagram of a parallel-tuned circuit . 
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Fig.l.32 	Doubly-terminated LC ladder network . 
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Fig.l.33 	Doubly-terminated cascade of commensurate transmission-lines . 
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Fig.1.34 	Unit-element filter equivalent of Fig.l.32 . 

Fig.l.35 	Wave-Flow Diagram of Fig.1.34 

-2 

Fig.1.36 	Wave-Flow Diagram of Fig.l.33 
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Fig.1.37 	4-Port Lattice Adaptor . 

=0 

Fig.1.38 Wave Digital Filter viewed from its ports . 
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Chapter 2  

The Two-Port AnProach  

	

2.1 	Introduction: Principal Tdea of the Arnroach. 

In the apr,‘roach of Pettusis [30] , each two-terminal network element 

is treated as a one-port and the corresponding wave-flow diagrams 

are interconnected using adaptors. In the procedure discussed in 

this section, the constituent elements of a general ladder network 

are considered as two-ports. In addition, the port resistances 

are taken to be unequal. This enables us to interconnect such 

elements directly and thus avoid the necessity of introducing 

the concept of the 'adaptor'. Conceptually, the two-port 

approach is more direct although the digital filter structures 

derived using either method have similar properties. 

In this chapter, we derive the Wave-Plow Diagrams (WFD) corresponding 

to the circuit elements that are necessary to realise doubly-

terminated, loccle:m ladder or tranzmission-line networks. 

	

2.2 	Scattering,  Prnters for a Passive Two-Port  

Ne begin by stating some well-established results from classical 

analogue network theory (99] . Given a passive two-port we may 

describe its behaviour at the two ports by the .BCD parameters 

in the form, 

V1 	IA B1 [V21 

I1 	C D I
2 (2.1 ) 

Ue have assumed that both I1 and T2  flow into the network and - 
therefore any negative signs arising when cascading such networks 

are included in B and D. 

The relationship between the incident and reflected waves and the 

voltages and currents for the same network (Fig. 2.1) can be 

written in matrix form as 

1 	R1  	{  

1 -R11 (2.2) 
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B2 

r21 1 	

R2 1 	-R2  
'2 

f 12  (2.3) 

From the above equations we obtain the following directly, 

where 

A l  r P y 	d. 	[ A2 
B

1  B2 2 (2.4) 

4- (A + CR1  + BG2  + Dal  G2 ) 

= 2 (A + CR1  - BG2   
= 1 ( A - C 	± BC-2  - DIti  C-2  ) 

. 	= 	- CR1  - 13G2 	DR1  G2 ) 
and G2= 1 /12  

In Fig. 2.1, we have assumed that AI  and A2  are input variables 
and B1 and B2 

arc output variables. This corresponds to the 

classical definition [99], although we are by no means tied to 

it. Thus, we could consider the transformation 

[

Ak 
	-Rk 	717 	; k = 1,2. 

B1:1 	1 	Rk 	Ik 

which, in effect, has reversed the roles of the variables A. 
and Bk  in eqns. (2.2) and (2.3). 

In the present discussion, therefore, we are interested in 
expressing the reflected waves B1, B2 in terms of the incident 

waves Al' A2. Let us define the relationship as f011ows, 

	

L

B1 	[S
11 S12] 	 Al 

	

B2 	S21 	S22 	A2 

By rearranging eon. (2.4) into the form of eqn. (2.5) we 

find that 

(2.5) 
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s11 = g/f 
S12 = 
S21 = ///i 

•-22 = eg 
e t 	 f where  

Ly 
= -R G . 

'1 2 

Thus far, we have introduced only basic ideas abort scattering 

parameters (99]. In the next sect-_on, we shall use ean. (2.5) 

to derive the wave-flo7 dia-rsms "or  series. and shunt eloinents. 

Before doing so, it is necessary to examine different general wave-

flow.  diagrams representing eqn. (2.5) and the problems associated 

with their intercon-ection. 

The wave-flow diasram (*IFD) of ean. (2.5) is illustrated in 

Fig. 2.2. 

Fig. 2.3 illustrates two WFD of the scattering narameter equation 

for two different networks. Interconnection between these implies 

that 

B2
(1) 
 = A1

(2)  

A2
(1) 
 = B1

(2)  

Interconnection is shown by broken lines. It is apnarent from 

Fig. 2.3 that if we cascade several elements together, loops will 

be formed by the S
22
(1) 

transmittance and the S
11 

transmittance of 

the second and subsenuent elements. A similar argument can be 

applied to each element in turn. Such feedback loops may contain 

no delay, a situation that is not acceptable due to the realisability 

condition discussed in Chapter 1. Therefore to avoid delay-free loops, 

it is necessary to ensure that either each S
11 or each S22 

transmittance has no delay-free path. This is equivalent to saying 

that the .transmittance S
11 (or S22) has a factor, z

-1 
or that the 

constant term in its numerator is zero. 
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2.3 	Derivation of ¶ave-Flow Dian-rams for Series Elements  

2.3.1 Introduction  

A series impedynce Z has ABCD matrix given by, in our notation, 

Substituting for A, B, C and D into eqn. (2.4) and 

the following expressions, 

(2.5) gives 

Sll 	= (R2 - R1 4- z)  / (R2 R1 z)  

S12= 2R1  / (R2 + Ri  +Z) 
(2.6) 

S21 = 2R2  / (R2  + Rf + Z) 

S22= (R1 - R2 	Z)  / (R2 R1 Z)  

It is important to note that the following constraints apply to 

eqn. (2.6), 

S11 + S12 = 1 

S21 + S22 = 1 
(2.7) 

These will be useful in simplifying the wave-flow diagrams, for 

if we combine eqn. (2.5) with eon. (2.7) then 

B1 = S11 (A1 - A2) + A2 
B2 = S22 (A2 - A1 ) + Al 

Thus we need only realise S11  and S22  to define the series impedance 

Z- The eqn. (2.8) could have been written in three other ways because of 

the constraints in eqn. (2.7). However, as the realizability 

conditions, mentioned in the last section,.inVolve only S11  and S22 
it was preferable to eliminate S12  and S21' 

We have established the relationship between the incident and 

reflected craves of a series impedance. If the bilinear transformation 

1 - Z-1  

1 + z 1 - 
	 (2.9) 

I 
= e  jwT . is applied kz 	) the wave relationshins are then taken into 

the z-domain of digital networks [281 
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R
1 
 + R 

S
22 
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7 3.2 Series  7es4 nce, R. 

Let Z = R in eqn. 2.6 then 

P - R 

	

-, 	1  +R  

S11 - 	  P + R +R 

	

-7 	- 1 

Ri  -?2  + R 

S22R + R
1 
+ R and 

To avoid delay-free loors, the constant term in the numerator of 

S11 or S29 
 must be zero and hence we have two cases 

Case T: 

We set R, - Ri  + R = 0 ; the constant term in the 

numerator of Sli. This produces the following 

R1  = R2  + R 

811 = 0 

S22 =  	
= ig , say 

R2  + R 

By combining erns. (2.11) and (2.8) the corresponding wave-

flow dia,gram (7FD) is derived as it appears in Fig. 2.A. 

Case II: 

The alternative case to the one above is to set to zero the 

constant term in the numerator of S22 

i.e. R
1 
 - R„ + R = 0 

that is R
2 

= R
1 	

R 

The FD for this case appearS in Fig. 2.5. 

bc,say 

2.3.3 Series inductance, L 

For an inductance in the series-arm we have Z = pL. Substituting. 

this value into eqn. (2.6) and applying the bilinear transformation 

p 	1 - z-1 we have the following 'relationships 

1 - z -1 
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-1 
oC 1 

± oc _ 

511 = 
1 + cx z

-1 

and S22 

oC 3 
 ÷ OC z 

— 
1 + 	--1 

(2.13) 

°.(1 = (R9 - R1 	L)  / (22 4- R1 	L)  
where 	a2 = (R2  + R1 

 - L) / (R2 
+ R1 + L) -  

gx3  = (R2  - R1  - L) / (2 + Ri  + L) 

We also note that these constants are not independent in that 

(1 +0C2  = 1 + 
a3 

It is anrarent that to avoid. the poSsibility of delu-free loops 

we must set either cz1 	0 or d3 = 0. Thus, again, two cases arise. •  

Case I: o 1  = 0 

This condition implies that R1 = R2 
 + L* and therefore we have 

-1 oc,z 
S11 

1 + o42z
-1 

—c< 3 
1 4. DC2z

-1 

and oc
2 	1 + 04

3 
=a "2 1' 

S27 

(2.14) 

Moreover it is observed that S11 = -S22z
-1
. The canonic 

realisation structure obtained by combining eqns. (2.8) and 

(2.14) appears in Fig. 2.6. Note that the realisation 

structure is canonic in both multipliers and delays. 

Footnote: 

*The bilinear transformation we have used here, should be written 

p 	). 	- z-1  )/(1 + z-1  ) 
where the contant, (1 has dimensions of angular frequency, that is 
sec.-1  (see Chapter 1) . Thus the expression R1 = R2  + L only 
annears dimensionally incorrect. In fact, it could be written 
R1  = R2 + (1).L where the constant (1) has dimensions of time. We 
may apply this argument to all frequency dependent elements (e.g. 
capacitors, tuned-circuits, etc.). 



Cr.se IT:  OC7i " 0 

In this case we have 

112 = n1 	L  

and the scattering parameters become 

S11 = 	c< 
1
/ (1 + (X.

2  z
-1  
 ' 

(2.15) 
-1 
/
I / 	-1\ 

) S22 = - oc 	cPC
2
z 1 z  

and 	0C.9 = 1 —a1. = 

:rthernore, we observe that 

= -S11z
-1  

S22 

The realisation structure obtaned. by using erins. (2.15) in 

conjunction with eqn. (2.8) appears in Fig. .2.7. 

2.3.4 Series Capacitance, C 

For a capacitance in the series-arm, we have Z = 1/pC = D/p where 

D = 1/C. en annlying the bilinear transformation to Z we find that 
1 + z-1 

Z =1 - z1 	D 	 (2.16) 

Compare this with the expression for a series inductance and we 

note immediately that z
-1 

is replaced by -z
1 and L by D. Thus to 

obtain the WPD of a series 	 aci 	all we need. do is to alter 

the corresponding WFD of a series inductance by adding to the delay 

branch a sign inversion.*-  Alternatively, we may proceed as for a 

series inductance. 

Substituting D/p for Z in egn. (2.6) and annlying the bilinear 

transformation Produces the following results, 

.AN/. 
S11 	(: OC 	4. c4....2; 	)/(1 4. 04

2
7, -1) 1 

2.17) 
\ 	 \ 

S22  = 	QC 
3 

+ oc 1 z-1 /,  + «2z ) 

Footnote: 

*This Process is compatible with the Low-Pass to High-Pass 
transformation as expected (9]. 
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oc = (7.2  - R1  + D) / (Ro  + pi  + D) 

oc, = (D - R2  - Ri  ) / (it, + 	+ 
oe, = (D - R_ + R1  ) / (P + 1 

 +D)  

.and in adition ce, +043  = 1 +c<2  

To avoid ar.,1 ^7-fr,,:e loors there are two possibilities, 

C...so 7: 0(1 = 0  

This condi ti. on 7i-yen p. = it. + D 

an:1  = 	_z 	 1611 	oc -1 / (i + 	) ac  

s - o( 3 / ( 1 	z 2 

to7ether rith oc,)  =0C3  - 1 = -P-2/71 . 

7ote also t1- at 

The WFD for this caso ap;ears in Fig.  

Case 1T:047 = 0 

This case gives R-f  = R1 + D 
6. 

for which 

S11 = 	04
1/(1 + oc 2z-1) 

-1 S22 = 	oc 1 	/ (1 + e< 	) 

• 

and 	'42 	- 1  =  
-1 Furthermore S22 = S11 z  • 

The ¶FD corresponding to this case is shown in Fig. 2.9. 

2.3.5 Parallel-Tuned Circuit in Series-Arm  

For a parallel-tuned circuit in the series-arm (Fig.. 2.10), 
1 	\ 	 • 	-1 

a = 1/(pc + 	). Let p be replaced by (1 - -1 ) / (1 + z ) • then 
OL 
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Z = 
	 LD (1 -z 

-21 

( L + D ) + 2(D - L) z-1  + (L + D) z 
-2 

SubstitutinG for Z in eqn. (2.6) Gives 

S1 	
a 	c<

1 
= 	-2 	+64 3  1 + 

1 +0( 	+ ot,.. 
4 	

-2 z 1- 	z 

z-1 	z-2  

7 

S 	= 
c< 3 + ce'') z-1  + cc,  Z ...9 

22 	
_ 

1 + 12e
4-
z-1  -1-cC z-2  

(2.20) 

(2.21) 

also we note that 0(1 +ex 5 
= 1 + 

where 

et 	 2 • = 	• - 11, ) ( L + D) + LD  1 

at2 	
2 (D - L) (R, - Ri) 

`43 
= f (P,,)  - R1) (L + D) - LD 

ee4 	2 (D - L) (22  + 1),1  ) 
 

ot5  = 1(12  + 	(L D) 	LD 

DTINOM (112  + 	) (L + D ) + LD 

If the realisability condition is applied, we must have either 

oc1  = 0 orcX
3 

= 0. 

Case I: c41 

In this case we ha re 

R1 = 112 + 
LD 

L D 

a Z 	4- OC_ Z-9 9 

1 +04 4  2-1  • 1.ct z-2 5 

3 +0C2 z
-1 

and 

S11  

S = 22  

1 

(2.22) 

-1 	- 2 1 + 	z 	-1-oe z 
4 	5 
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also 	oc 5  

a2 
, T

(R2 — I'1  ) 

,D - L.  (R2 	R1) - D 	L i  

For the pu-rnose o4' dcriv±ng the corresnonding 	con?ide,- 

	

/ 	1\ 
51 1 	-z-1  k 	+ az-.  ) 2 

-  S22
-1 % ( oC3  + oc,,z 

D - 
D + L 	then we have Let 

(2.23) 

	

, 
	z---)- S11 

1 +pz 	
- m (2.24) 

S ,, 
 

Let us choose ce5 
 any /6 as the independent set of multipliers in the 

above equaticns so that 

a2= p(a5-1) 
a
3
= a

5
-1 

a4=(a5+1) 
Using these values of ce2,4043'ail , (eqn. (2.25) ) in association 

with eqn. (2.22) we obtain the following relationships 

- ( 	- 1 ) (1 + fB z-1  ) 
S22 - 

1 4. 
Q(1 

 4.0 5)z-1 i- o
5z
-2  

(1 - 	5 ) (1 + 	z-1  

(1 + 	+ 	5z-1  ( 	+ z-1  

= 	(1 - 	5) 
	

(2.26) 
(1 + ex 5

2) 

Finally eqns. (2.24-) and (2.26) together with (2.8) derive the UFD 

of Fig. (2.11). The 11FD has been realised with two multipliers and 

two delays, i.e. it is canonic in both tyres of elements. 

(2.25) 

Footna+e: 

T v . (.2.24-) ve? reseh 	1-IieIoW-Pass 	o 	band s a.rs.  1)-a/f/i„„„a.L6,,,t  qj. 
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Case TI: oC = 0 

In this case -..re Imve 

L1) 
112 	R1 	L + D 

alto 	9
11 
 = ( 041+ cc2

z-1  (1 + oc
4
z-1  + 0(

5
z-2  ) 

and 	522 	- (c< 	041z9)AI+ ocz-l-Focr-z ) 2 	4 	2 

} (2 .27 ) 

In addition, 

= 1 -a5 
■ 

1.1') 
(D 	, 	 1 
'D + L • ( 
	

7.2 ) 

oc 	 tap 5 	t  

011 

04 

Now consider 
-1 	-2 

S22 	c<2z  ÷ "1z  

	

S11 	04
1 
+ 0,4

2
z-1 

Let 

	

9 	
04,2 	

- D L  

	

D + L 	
then 

	

z
-1 C, S22 	n:Li 

z-1 	- T 	(2.29) 

	

S
1 1 	= -  1 + /3 

Again, we eyrress the 711lltipiiers in terms of 04
5 

and p . Thus • 

al= 1-a5 

a2= P(1-m5)  

a4= P(11-a5)  

(2.30) 

Using these values and ein. (2.27) we derive tha following 

(1 —0c 5)(1 	z-1 ) 
S

11 / 	 \ 
+ 3 	) a

5
z v3 + z ) 

—
0c51  

- 1 + 04 5T 
(2.31 ) 



+D 3  - c<4  = 1 

c.4 1 = ( 	- 
ap  = 2 (D - L) 

(R, 	+ 

0,< It  = 	+ D - 

where 

and L 

1. 

.4- P + L 1. D) 1 

4g_ 

m7'e 	enn 	chtci.red 	(2.0, (2.29) and (2.31). Tt 

i irlIstrete in Pi:. 2.12. 

2.3.6 '3,1--iee-mline:7 Cimlnit in Seriee-Arm  

in thin cs,? ('-1 7. 2.13) we Tv= iJy c9sca(le a serier; L 'rith the 

anproprf_ate 	fl -11 1 , in alition, we Trust ar1j..1-3t the --)or; 

rist-ice7 at the inte-corn-ction (see section 7.6.5). 7.1=ever, 

7e 	sce 	c-Yrs".,-!ri,, 	 a 

sevin:7 in the 	7her cf aidern rlay he 7ade. The i..7-ynce 9  in 

sL 	 1 
+ 	.'ter 	1211-7 ne2.r 

, 	..1 
+ D) + 	 z • 	(L 	z 

1 - 	• 

Substitutin: for 7 in 	(2.6) 'ives 

(n 7n) 

-1 z 2 v S11 = 	 2( 0(
1
+ oC

2
z 	oc„ 	+ 04

2
z-1+ cX. 	) 4-  

( ') ;7 ) 
- • 

-1 ( 04_÷ 
2 	1 z +oc z-2 )/(1+0c2z-1+ oc4z-2 ) .)  

S22  

If the -re:Ji.-7ehi1itv condition ie ^.pplieg, we have eit'heroC = 0 

oroC3 - 0. 

Case I. c? = 0 I: 

For this case we have 

= R2  + L + D 

and hence, 

S11 
	v`2 _- agz

1 )R1+a- z-1+ o 4  Z 2  

2.34) 

S
22 

= (oc +Z-1 )/(1+0<2z 3 	 -1+ oc4z 
' 

")  
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71.1.-"th 

- 
oe, = (D — L) /R1  

043  (D L) 

= 

How define 	= pC2/oe3  = (D - L) 	(D + L) 

then 	c< 2 = /9(1 "4)  
and 	De = 1 + oG 

3 	4- 
so 4-1"t 4" T 	(/3+ r.L -1 )  

(1 + 8 z -1 ) 

;then 	
( 1 + oc 4)  i 

S1 1 1 + oc
4

T 

and 	 (1 + 	4) S22 1 + oe 4T 

(2.35) 

(2.36) 

Fro-' the7e relation7hi,"7 we have the reluirod 7PD which 1r7e3.rs 

in Pi 77. 2.14. 

C17se. TT:lX7 = 

In this case, we find that 

R2 = Ri 

also 
. 

S11 
	

oc
2
-1 
 )/(1+ ce2  7,-1  + ex.4  7,-2  ) 

-1 	4.2
-1 	-2. ) S22 	(0 2z +oe z-2)/(1+0z + 04 z • 

22 	 4 

of 1 - oC 4 = 1 . 

ce1 = 	+ D) /P 

°<2 = (D 	L) /112 

a  = -R1 /R2 

and 

also 

Furthermore, 

.37) 

(2.38) 

1 

We may define 

then 

and 
* Footnote 

s11 = (1 +a 4)/(1 +oc4T) 

(2.39) 

1-0 b a.,-74--( -.stop 

and T = 
z-1 f 	-1 \ 

)  

1 + fl Z 

S22 = (1 +ce )T/(1 +0(
4
T) 

?kis txprtss.ion rffnesehtr 
4
i-1,e 	ow_ro_s."-  

tk-arESforHic.iDn r 	, 



(2.40) 
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The realisation obtained by cogbining ems (2.39) and (2.8) is 

illustrated in Fig. 2.15. 

2.1 	Derivation  of 7:Tave-Flcw Diagrams for ShUnt Elements  

2.1.1 Trtroduction 

A shunt admittance Y has ABCD matrix given, in our notation, by 

B, C and D in eqns. (2.4) and (2.5) gives 

(G1 -G2  -Y) / (G1 	G2 	Y  

209  / (G1 	G2 
+ Y) 

2G1 	/ (G1 
+ G2 

+ Y) 

(02 - G1 	Y)  / (01 -I-  '02 

It is important to note that 

S21 - S11 
= 1 

S12 - S22 = 1 

These will be useful in simplifying the wave-flow diagrams for if 

we combine eqn. (2.5) with (2.41) then 

B1 = (S11A1 +S22A2' + 
A2  )  

B2  = (311 1̀1 	3222)  '1 2'1 

2 Again we have eliminated S12 " 	
from pqn d S21 	- • (2.5) as the  

realizability condition involves Si , and S7,)  only. 

We shall proceed to derive the wave-flow diagrams of the shunt 

elements necessary to realiSe the digital equivalent of a ladder 

structure. The procedure adopted is similar to that taken in 

see. 2.3. 

2.4.2 Shunt Resistance, R 

Let Y = 1/R = G in eqn. (2.40) then 

S
11 

= (G
1 	G2 - G) / (G1 + 2 

+ G) 

S22 = (G2 - G1 - G) / (G1 
+ G

2 
+ G) 

(2.43)• 

Substituting for A, 

the following, 

311 = 

S12 = 

S21 = 

322  = 

(2.42) 

To avoid the delay-free loops, the numerator of S
11  or. S?? must 

be zero thus, as before, we have- two cases. 
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Case I:  

Let Gi  = G2  + G 

then S11 
= 0 	

(2.44) 
and S22 = 	

-G 	=re , say 
G2  + G 

The WFD may be obtained by combining eqns. (2.42) and (2.44) 

and is shown in Fig. 2.16. 

C.I.pez. TT:  

Let G2 = G1 
 +G 

then Si  = 	
G1  + G 
	= c , say 	

.5) 
and S22 = 0 

The ¶FD may be obtained by combining eqns. (2.42) and (2.45) 

and is shown in Fig. 2.17t  

2.4.3 Shunt Caracitance, C 

For a capacitance in the shunt arm we set Y = pC. This 

substitution in eq.n. (2.40) and the use of the bilinear transform-

ation produces the following 

s
1 	

(c<
1 
 + cx,...z-1 )/(1 +cc2

z-1  ) 
 

and 	S22 = -) +a1  z
-1 )/(1 +a2z-1) 

where 	041 	=(G1 — G2 
- C) / (G1 + G2 

+ C) 

042 	= (G1 	G2 - C)  / (C1 	G2 	C)  

D43 	= (G1 - G2 	C)  / (G1 	G2 	C)  

and 	0.e2 +0(
3 

= 1 + 

To avoid delay-free loops there are, as before, two possibilities, 

namely 	= 0 or 41.43  = 0 which gives rise to two different cases. 

Case T. cod = 0 I: 	1 

• This condition gives the following 

G1 
 = G2 + C 

/ S11 
= 

443z
-1

/ (1 	oc2Z-1  ) 

S22  = 	3/ (1 4. ct 	)2 

(2.47 ) 

(2.46) 
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and c:<, = 1 - at_ = (19/C11 . 

It is further observed that 

-1 S11 = - S22z 

The :i7D for this case annears in Fig. 2.18. 

Case II: ot 3 = 0  

This condition yields the followinr.,,. relationships, 

G2 = G1 C 

S11 = '4 1/(1 +°4 2 °1)  

S2 2 
= 	

°( 

, z-1 /0 

1 	
two 

°C 2 = 1 +°4 1 = G1 /a2 
also 	S22 = - S11 

-1 

The T;TFD for this case an-ears in Fin-, 2.19. 

2.4.4 	Shunt Inductarcet_L 

For an inductance in the shunt arm we have Y = 1/pI, = 

On apnlying the bilinear transformation to Y we find that 
-1 

1 z  f, 
Y= 

1 - z1  

(2.48) 

(2.49) 

On comnarinr7 this with the exnression for a shunt canacitance, we 

immediately see that z
-1 

is replaced by -z
-1 

and C by r . 
Thus to obtain the ¶FD of a shunt inductance we need only alter 

the corresnondin WFD of a shunt canacitance by adding to the 

delay branch a sign inversion. Alternatively, we may proceed as 

follows. 

Substituting for Y from eqn. (2.49) into eqn. (2.40) gives 

S11 = (c 	
-,1 )/(1 + 042z-1 ) 1 	) 

(2 .50) 
and S22 = (ot3+ ce1 z-1  )/(1 + 04,2z-1  ) 



where 

G<1 = (G1 - G2 - r  ) 	(G1 ± 	+ r ) 
04 2  = 	- CT1  - G2) / (Gi  + G2  + 	 ) 

a 3  = (02  - 	r' ) / (oi 	02  +15  ) 
and 	o4

1
+ c)( 9 + a 3 = - 

To avoid delay-free loops there are two possibilities. 

Case T:4241 = 0  

This condition gives the following 

1 
= G2 + r 

S 11  = 04 	 ) 
11 	3 	 2 

S22 = cg 3 / (1 +a2z 1  ) 

oe 2 = -(1 -i-oc) = - G2/01 • 

(2.51) 

,-.0alisat4 on a-7,-,earn 4 
	2.9n. 

Case II: c.(•5 = 0 

This condition implies that 

G2 = 01 + r 

S11 = p( 1 / ( 1 ± C<
2
z-1) 

S
22 

= o<
1z

-1  /(1 + 042z
-1
) 

0(2 = - (1 + c4
1 	= - G1/02 

The WFD for this case is shown in Fig. 2.21. 

2.4.5 Series-Tuned. Circuit in Shunt-Arm  

(2.52) 

For a series-tuned circuit in the shunt-arm (Fig. 2.22) we have 

Y = 1 / (pL + 	) 

 

Applying the bilinear transformation we have that 

c 	z-2) 

 

(2.53) 

 

(C P ) + 2 ( r - c) 	(c r )z 
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Suhstj_tutin,,7  for Y in e-n. 	.40) ~rives 

S11 = (oe -!-- cx2 z
-1  + ex_

)
z-2)/(1+ o

4-
''
-1 
 +ocrz--2) 

1' 	 3 

(2.54) 

s22  = ( 3+ oc2z-1  + a 1  )/(11- 4z 

where c<1 (G — 2)(C + r) 	/D7TION, 

0t2 = f 2 (G1  - G2) (r — a) 

oe 3  = (Gi  - 	) 	+r) +r I / , 

«4  = 2 (G1  + G2) ( - a) I /DVION, 

oc 5 = ga
1 

+ G2)(C +r ) - C/' l /DT;311011, 

Y'',N 0 T. 	= ( G + G2 ) (a + 	) 
	c p 

and 
	

1 4. 49C1 = GC3 4' oc5. 

If the realizability condition is annlied, we must hove either 

06 = 0 or a
3 
 = 0. 

Case I:°11 = 0 

In this case we have 

C P  
G = G2 

+ 
1 	C + 

and 

S11 = 

S22 = 

coe  
\ 2- 	

)/(1-1-- 4
7,-11-04

5
z-2) 

• 	(2 .55 ) 
-1 

- 	+0c 	)/(1 + z + z-2 ) 
3 2-

'" 	
4 5 

Fbrthermore, 
G 

oc. 

p4 2 - ( 	)(1 P + C 
P - C. 

+ 

_ . 2\ 
TV ; 

G
2) 

; 

1 	
oc 

3 = 

= 1 - 	= G
2 

} (2.56) 

	

4 = (--ci)(1 	, , 	04  5 	oc3 G Gi 	
1 

Let us consider dividinr;- S11  by S22  using  eqn. (2.55), then, 

	

Sll 	
060z-1  + a 3z-2 

= 	 

	

-S22 	ole
3  + oG z 

-1  

Lot' ff =a
2

//oe 3 --.. (r — .c)/(r+ C) 	then 



= 
22  1 + od

4
z -1 + oC

5
z
-2  

•••■••■•■•• 

322 	z
-1
(
)3 

+  

311 =
- 
	1 +13 z-1  

and 	ee5 - 1 

311 = 1 + oC 5  T 

= 
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p + z  ) 
1 + '3 z 

- T 	(2.57) 
S22 

Expressing all multipliers in terms of 005  and /3 , we have 

cl6  2 = 	5 )  
a 3 = 1 - da 

5 

oe
-r 

= 19(1 	04 5) 
and hence 	 -1 

oC5  - 1)(1 + 	z ) 

( a; 5  - 1) 
1.717-0;,1  T (2.59) 

The UFD in Fig. 2.23 may he derived by using eon. (2.42) 

with eons. (2.57) and (2.58). 

Case II: 047 = 0 

In this case we have 

G = G + C  - 2 	1 	C + r 

S = 9 	 —1 
kl +1 	Z OC( p 

together with 	-1 
e4+ c4 Z 

1 	-) c - - 

S 2-7  = 	- 1 + 1 1 	1 + 	' oc5z ocil.'''  

( oc2z-1  + 041 z-2) 
and 	S 

J

(2.59) 

c 
where 	go4 1 = 	

1 - 1 ; oc 2  = (-11-7-6) 1  - 1  ) 
2 	 2 

G1  
oc4 = ( 	+C  r 	 )(i -F —G., 2 ) ; cx 5 = +a1 

In a simflar way to that used in Casel we can show that if 
-  

r c then 



• -1 	• 	-2 -0(2z + oc3z 
S11 

1 +oC
2z

-1 
+oc4z-2 (2.63) 
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The ;OFD may be derived by using eon. (2.42) together with 

eqn. (2.60) and is shown in Fig. 2.24. 

2.4.6 Parallel-Tuned Circuit in Shunt-Arm  

In this case (Fig. 2.25) we may simply cascade a shunt L with the 

appropriate shunt C. However, by considering the tuned-circuit as a 

whole, a saving in additions may be made. 

The admittance Y is pC + 1 pL 
bilinear transformation, we have 

and after applying the 

(C +P )+2(f' - C)z-1  +(c + p)z-2  
1 - z-2 
	

(2.61) 

On substituting for Y from eqn. (2.61) into eqn. (2.40) we find that 

	

-1 	-2 
°41 °42z   cc-z  

1 + o42z 1  + oC4z-2  

	

-1 	-2 
3 	- cc2z 	°cis  

S22 =  
1 + oc2z

-1 
 + oc

4
z-2 

S11 = 

(2.62) 

where 
ec i  = (Gi  - G2  - C -11)/(G1 	C2 	C -14-1)  

j/(G1 + G2 
+ C +r) 

°G  2 = 2  ( Pr c)  

°d3 = (C-2  - G1  - C - /' )/(G1  + G2  + C +P) 

vc4 = ( /7 	C 	G2)/(G1 -I- G2 	C  

and 	 oel +oc 3  +0(4 = -1 

If the realizability condition is applied we have either 

0(1 = 0 or oc3 = 0 

Case I: eci  = 0 

We have, in this case, 

G
1 = G2 + C + P  

and thus 



-73— 
„ — o4 

''22 — 1 ± •11; —1 + et.
4

z-2 	 2.6j) 

where oG =  2 - 	if 

°C3 = 	r + c)/G1  , 

'4 -(12/Q1 

and 	c'e  3 + °64 = -1 

Letting )8 = - oc 2/0e3  = ( f/ - C)/( + c) 

and T = z-1 L 	 z-1 ) 	, it is not too difficult 
I   1 8 

-1 

to show that 	oc _T 
S11 = 

1 0(
4
T 

2.64) 
o<3 

and 	S22 = 1 + (PG 

The WFD is then obtained using the values of Si/  and S72 
from eln. (2.64) in eqn. (2.42). The WFD is shown in 

Fi-07. 2.26. 

Case II: at7 = 0  

In this case, we find that 

G2 = G1 + C + r' 

together with 

311 

S22 

= 

= 

(°‘ 1 	-°42
-1  
z 	) / 

-2 (_ c.(2z-1 	-i-ca z 
1 

(1 

) 

+oc2
-1  z 	+0(.7,-2\ 

4 	' 

/ (1 	+oe z-1 	4-cx. z- 2 	4 

where 

.e l  = — (c 	) /c2  • 

c'e2 = 	( r 	c )  /G2 
,„4  4  = 	— Gi  /G2  

and 	oe.1 + oc
4 

= -1 

(2.65) 

Again, by letting /1 = —0e2/6 i  = 

11 
and T = 

1 + 	z 
easily show that 

- C 
P 

we can 
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S11 = 

  

1 +a T 

 

(2.66) 

  

1 +c< T 

The 77D obtained by combining eqns. (2.42) and (2.66) ls 

illustrated in Fig. 2.27. 

Derivation of Uave-.71o,* Dia-,ramo for a Losqless  
7Tomont 

Consider the ,general 

voltage and current 

where 

[ 
V1 

A 

B 

C 
D 

equations 

 . 
= 	cos 

= 	j sin 
= 	-cos 

lossless-line 

= 	-jsin(pl)Zo  

can be 

731 
C 	D 

, ]. 

(ig 1 )17o 
/1 

element 

V2 

written 

of Fig. 2.20. 	The 

as follows 	[10] 

(2.67) 

and where 
ig = 

zo = 	is the characteristic i -̂,nedance, 

Y = 1/Zo 
1 is the line length and .a is the lumned frequency 

variable. 

On substituting- the above values for A, R, C, D into .e.qn. (2.4) we 
find that 

oc = 4-1(1 - R1 G2)cos A 	j (R1  Yo G2Z0) sin A / 

/9 = I- 1(1 	R1 G2)cos 	j (Ri Y0 	G2Z0) sin A I 
(2.68) 

1' = z 1(1 	Ri  G2  )cos A - j (1/1 Y0 	Ggo) in A 

[(1 — IZ1  G 2) cos A - j (111 Y0  - yo) sin A J 

where 	0 = 1 = cyr 

and 	= jiTc. 

and 	S22 	
- (1 +9(4) T 

2.5 
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frm en n. ('7.(;c0 th ,t 

S 	04- 

and 	X .= /3*  

*:!here * denotes c=n]ox conjugate. 

NOTT consider the substitution 

Z2  = cos A j sin 9 
z = exp(juT) 

(2.70) 

On e:luatin,7 real and  imaginary parts we see that 

= 	 (2.71) 

vrTrtIle cf o-r. (2.70) we have 

• 

cos A = z' 	z 	 (2.72) 

and 2j sin A = Z1  - z-' 

and therefore, on replacir3. cos A and sin A in eqn. (2.6e) we 
find that 

QC = 	( 1 - R G2  + R1 Y0  - a, 0  
, 

▪ (1 - R1  G2 - R1 GA) Z 

p = 	+ 1-11 G2 + R1 YO G2Zo ) 
 z+ 

▪ (1 + R1 G2 	RI Y0  Gilidz - 

where y and cr are related to oc and 1g according to 
eqn. (2.69). 

(2 .73) 

The scatterinr; parameters defined in eqn. (2.5) may now he derived as 

S11 = 	= 	P 

R1 a9l P 

S21 	1  

- p0? 



(2.75) 
z --Z 

z-2  

in eon: (2.75) then 

(2.76) 

s 

(1 1 -PG -RY +GZ )±(1 "I 1 = 	-1 2 	R1Yo 	9 0, 	- tr r?  4- 	"  , 
- (.47  ) z  t/DEMOM o 

S12  = 	4 R4 r1,275:  / D17,7^!: . 

= 4 z 	D7707 

anfl S22 = 	[(1 	R1 G2R1 Yo 	GAD) 	(1 	R1(12 	R1Yo 
+ G2Z0) z-1  ,/D7707.I 

where 

= (1 + R G + R 	+ G 
'1 2 	1 *- o 

-:1 
(1  + R1 G2 - R1 Yo - G2Zo )z . 

q
21

as wate. no=-1Flihie in ti,e IC 

case, the realizability condition still holds on Si ., nr.:3 S22  and 
innlies either that 1 - R1 	- R1  Yo + G27,0  = 0 or that 
1 - R1 G2 + 21 Yo 	112Zo = 0 

rasa T: 1 	R, G, - R, Y + G„7, = 0 
o 

This cfIrdition imniies th.p_t 

1 + G77c  
R - 	 = Zo  

Cr9 YO 

Lettin R1  = 7o  in ein. (2.74) gives the followin[:, 

S11 _ R2 - Zo 	z-1 

11 - R2 + Zo 

2Z0 
S
12 	R2 + Zo  

222 S21 = 	 
R2 + Zo 

= -  -  R9 - 70  

R2 Zo 

= R2 - Zo  K1 	142 + Zo 

S11 
= y z -1 

1 
S12 

= (1 - K1 ) z 

, S21 	- (1 4- 	) z 

S22 = - K1 

We can realise these aqns. using one multiplier. and two 
de-H.7s. 977.2e WFD arrears in T.oir,. 2.29. 

Sn2 
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TT: 1 - P:Il 4. 71V - 007.0  

This condition 	thrt 

1  ± RlY0  = 0 

Ri + Zo  

or R„)  = o 

Yo 

Letting Ro  = 7,, in can. (2.74) gives the followin7, 
= 	Zo  

11 	R1 + Zo  

S
12

=  n1 	1 

R1 + Z0 . (?.77 ) 
S21 = 	

27,0  	 z-' 
Ri -4- 70  

S22 = 	R1 - Zo z-1 

al zo 

R — z On lattinf, 2 =
i 	o  in 	(2.77) we have finally that 

01 + ,c  

911 

S12 	(1 	x2) z—' 

s
21 

= 	— K2) z ` 

S22 = K2 z
-1 

(2.78) 

The realisation of these equations using one multiplier and 

two delays annears in Fig. 2.30. 

Note that if Ki  = 0 in ean. (2.76) or if K2  = 0 in 

eqn. (2.78) the corresponding WY.) simplifies to that of 

the unit el anent [71] . 

2.6 	Sources, Terrlinatic , and Interconnections  

2.6.1 	Tntrndrcticln 

In the previous sections we have discussed the two-port approach 

with regard to lossless lumped or distributed elements. We have 

allowed the port resistances Ri and R2 to vary independently where 

the obvious choice would have been to set Ri = R2. However, 

when we consider sources and terminations, which are one-port 

elements, there is only one port resistance, R, to vary. Again, 

the obvious choice for R is the value. of the corresponding element. 

In this section we shall allow R to remain variable and consider 

special cases. 
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2.5.2 '?e7  hive 	e 

The resistive voltage source is shown in Fig. (2.31) and its 

envations are as follows, 

A = 

B = V-RI 
	

(2.79) 
Vo  = V + RsI 

79 wish to eliminate V and I and thus obtain a relationship 

between B and A. In matrix form we may write eqn. (2.79) as 

Al 

B = [1 _Rd 
	

(2.80 

gether with 

vc, 	Rs] [v 	 (2.81) 

• vo  =, 1 	ns, r 	Ai 

Li 	—R. j 	LB] 
(2.82) 

On simplifying eqn. (2.82) we find that 

2R 	- R A = 	Vo  + ' R s 	B 
R + Rs 	Rs  + R 

(2 .83) 

Let 
- Rs, + R 

R - R 	
then 

A = (1 	)1/0  + 	B 	(2.84) 

The wave-flow diagram is shown in Fig. 2.32. The eon. (2.84) is 

the general expression but it is useful to consider the following 

cases, as the delay-free -oath from B to A may cause problems when 

elements are interconnected together. 

(i) If R = Rs  then /3= 0 and A = Vo  which.is 

the 'wave-source' given by Fettweis in 

[30] , (Fig. 2.33). 

(ii) For an ideal voltage source, Rs  = 0 and 

hence /6)  = -1 so that A = 2V0  - B (Fig. 2.34), 

a condition given in [30] 

2.6.3 	Resistive Current Source 

The resistive current source, which is illustrated in Fig. 2.35, 

can he defined as follows, 
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A = V+RI 

B = V-RI 
	

(2.85) 
It)  = GsV + I 

On eliminating V and I between the three equations, we find that 

Now let 

Let 

2 	G - Gs   A - (5 1 ,E;) I0 + 	 
G+ G B s  

E = Io/Gs  then 

A - 	 E + 	 
2Gs 	G - Gs B  

G + Gs 	G + Gs  

oG= 	 
G - Gs 

= R5 
	

then 
G + Gs 	Rs RR 

(2.86) 

A = (1 - oc) E + otB 	(2.87) 	• 

The form of eqn. (2.87) is similar to that of eqn. (2.84). Again 

several important cases arise, 

If R = Rs then ol = 0 and. A = B, which is 

a wave-source. 

For an ideal current source, Gs  = 0 then, 

on using eqn. (2.86), we find that C303 

A = 2 R Io  + B for which the 

WFD appears in Fig. 2.36. 

2.6.4 	Terminatinp: Impedance 

Let us consider an impedance Z, shown in Fig. 2.37, whose. 

properties can be written as follows, 

A =V+RI 

B = V - R I' 
	

(2.88) 
V = Z I 	. 

Thus on eliminating V and I between the three equations we find 

that 

Z R  
A 

- 

Z + R (2.89) 

Again several important cases arise, .however we shall concern 

ourselves at present with the terminating resistance, RI. 



[ 

and 	V1  

II  

T'rn 	PT, 	1 

B = r A 	 (2.90) 

where 	= (RL - R) / (RL R) 

If R = RL then r= 0 and B = 0, which ropresents the 'wave-

sink' referred to by Fettweis inE30] . 

2.6.5 Tnterconneetions 

Consider the interconnection of two ports with port resistances 

R1 and R2 (Ag. 2.58). The equations defining the interconnection 

are as follows 

K = 1,2 	(2.91) 

(2.92) 

We may eliminate Vk  and Ik, K = 1,2 between erns. (2.91) and 

. (2.92) to obtain [50] . 

where 

B1 = A2 + a (A2 A1) 

B2 
= Al  + cd (A2  — Al  ) 

a = 1 	) 	(71 	112)  

Fettweis calls this structure a 'two-port adaptor'. In the 'Jaye-

Flow Diagrams derived using the two-port approach, the port 

resistances Ra, Rb of a particular element are related by a 

linear expression of the form Ra  = Rb + g or Rb = Ra  + g where 

0 depends on the element value (s). We may thus say that either 

Ra  or. Rb is arbitrary, but'once one of them is defined, so also is 

the other. Thus at any interconnection we may be certain that 

either R1 or R9 is arbitrary and therefore we may set R1 = R2. 
This substitution in emn. (2.93) gives Bl = A2 and B2 =.A1, that 

is a direct connection. We may summarise this by saying that two 

ports may be directly connected so long as their appropriate 

port resistances are equal. 
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2.7 	Discussion 

Let us look at the number of discrete components necessary for 

the realisations given in this chapter. The FD of a series L 

(or C) and a shunt C (or L) each require 1 delay and 1 multiplier 

which is the minimum. The number of adders used is 5 and it is 

known that an equivalent structure using adaptors can be realised 

with 4 adders [34] . It is not difficult to show that the WFD 

of the reactive elements derived in this chanter can also be 

realised with only 4 adders. For example, let us consider a 

series inductor L with a1 - 0. The corresponding equations are 

as follows (see section 2.3.3), 

 

B1 = S11 (A1 - A2) + A2 

B2 = 322 (A2 - A1) + Al 

322 = (1 -°2) / (1  + c'4  2z-1) 

311 = - S22z-1  

(2.94) 
where 

and 

 

Now from eqn. (2.94) we see that 

• B1 = 322z-1  (A2 - A1) 	A2 

= (B9 Ai) A9 	
(2.95) 

As S11 + S12 = 1 and S21 4-  S22 = 1 we can write the 

scattering: equations as follows 

B1  = (1 - S12) Al  + S12A2 

B2 = S21 Al + (1 7 s21) A2 

where S21 =GqS12 

Therefore 132 =oc.2S1,) (A1 - A2) + A2 

c42  (A1 - Bl) + A2 

(2.96) 

(2.97) 

We may now realise eons. (2.95) and (2.97) with only 4 adders 
(Fig. 2.39). 

In the realisation of tuned-circuits we have used 2 delays and 2, 

multipliers which again is the minimum. The number of adders 

used is 7 which is a saving on the method of Fettweis (30] . 
However, Crochiere[77] has realised a tuned-circuit using only 

6 adders and this seems a minimum. Finally, the transmission- 
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line element has been realised using 1 multiplier and 2 delays. 

We shall see in Chanter zt that we can combine the 2 delays 

together to form a delay of twice the duration without 

affecting the amplitude response of a network. The number of 

adders used was 3 and this number seems a minimum [30][1,8] . 

In this chanter we have been concerned only with the elements of 

a filter and their corresponding Wave—Flow Diagrams. In the 

next two chanters we shall see how we may connect WFD together 

to nrednee strilr!til-rr: that are nrrnable of signal—Al.te-r.ing. 
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V1 
Al  	

B1
2  B ----> 

< 	A21 VR 
< 	 2 

Fig. 2.1 General repres6ntation of a two-port network N . 

S
21 Al 	B2  

S11 S11 	
S
22 

Fig. 

to 
Al 

(1 S
11 

 

B 

A2  

of general two-port . 

(2) A, 	S(2) 	Bu'  21 	.2 

B1 	S12 
2.2 	Wave-Flow Diagram (WFD) 

S(1) 	O.) 	1 
21 2- — +.- 

(1) 
S
22 

2 2 

(2) S11 
(2) S22 

(9 
S(1
12 S12 1 

Fig. 2.3 WFD of interconnection of two general two-ports 

 

	0 B2 R2=R1 
	a=R /R2  

Fig. 2.,5 WFD of Series Resistance with S22=0 . 

Fig. 2..4. 	WFD of Series Resistance with S11=0 . 

-83- 

Al  O 
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A2 
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1=R2

-4.D 

a2=R2/R, 

R2 
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Fig. 2.8 
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Al  

R
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WFD of Series Capacitance with a1=0 . 
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B2 Al  0 	 

R
1  

1 

Fig. 2.6 
A
l 

R2 
R1=R2+1, 

a2 =R2/21 

WFD of Series Inductance with a1
=0 . 

if
2 

2 \-1 
2=R1

Al 

a2=R1/R2 

A2  

Fig. 2.7 WFD of Series Inductance with a3=0 . 

B1 	
A
2 

. Fig. 2.9 	WFD of Series Capacitance with 



R2 

R2=R1+ (LD/(L+D)) D=1/C 

a5.R1/p2_ 13=() -L)/(D+L) 

A2 1 

L 

Fig. 2.10 Parallel-Tuned Circuit in Series Arm . 

-87- 

A 
01  

R1=R24. (LD/(L+D)) 	[3.(D-I)/(D+L) 
a5=R2/R1 D=1/C 

R2 

A°  2 
Fig. 2.11 WFD of Fig. 2.10 for Case I . 

Fig. 2.12 WFD of Fig. 2.10 for Case II . 
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0 	 

 

L 

rm-ra Ft' 

 

C 

	H 	 

  

0 	 

Fig. 2.13 Series-Tuned Circuit in Series Arm . 

R1=R2+L+D a4=R2/121  p=(D-L)/(D+L) 

R2 

B1 	
A2 

Fig. 2.14 WFD of Fig. 2.13 for Case I . 

A 
oB2  

R
I  

R2=R1
+1,4D 	a4

=R
1/R2 

=(D-L)/(D+L) 
	<-0 

Fig. 2.15 	WFD of Fig. 2.13 for Case II . 
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Al 
 

R
1  

B
1  

Fig. 2.17 WFD of Shunt Resistance with S22=0 . 

Fig. 2.16 WFD of Shunt Resistance with S11=0 



G1 =32+0 
or 2 CI2/G1 

G2=G1+0 
c42=G1 /G2 

-.90- 

R1  R2 

  

°A2 

  

  

Fig. 2.18 :IT'D of Shunt Capacitance with 041 =0 . 

°4-e(  
Fig. 2.19 	of Shunt Capacitance th oe3=0 

A 

               

13
2 

           

G1 = s2+ r 
a 2=;2/r,'1 

   

               

             

            

R1  

           

           

           

               

               

1<  

            

A2 	< 

              

Pig. 2.20 ";FD of Shunt Inductance with o41 =0 . 

O 	 

	  0 
A2 

B2 
'7Z 

A 
0-- 	 

G =G1  + r 2  of 2-G1  /G2 
ni  

13 

rt2 

A2  

g. 2.21 :IFD of Shunt Inductance with =0 . 



R 
2 

a5=G1/02 
G2=G1+ (Cr/(C+r)) 

p=(P-C)/(r÷C) 

A 
0 1>  

R1  

B1 

Fig. 2.24 WFD of Fig. 2.22 for Case II . 

o . 
A2 

-91- 

0 

C 

	a 

Fig. 2.22 	Series-Tuned Circuit in Shunt Arm . 

A B2 

R
1  R2 

P=(r-c)/(r+c) G1= G2  + (crv(c+M) r=1/1, 

B1  
--c 

2 
Fig. 2.23 	WFD of Fig. 2.22 for Case I . 



	0 

G1=G2 + C + r 	p.i-(r-c)/(P-Fc) 

1 

•	 
B1  

B2 

0 

A2 

R1  R2 

R1  

Fig. 2.26 WFD of Fig. 2.25 for Case I . 

A 
G2=G1 + C + P 

.cc=G1/G2 

3=(P-c)/(P+c) 

	< A2 
Fig. 2.27 WFD of Fig. 2.25 for Case II . 

Fig. 2.25 Parallel-Tuned Circuit in Shunt Arm . 
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0 

  

Al --÷R 	
Rte---A2 

V 	o 1 	1 	Z  B 1 	 B2 

Fig. 2.28 Representation of a transmission-line element . 

	>ED—I"' B2 

k1=(R2-Zo )/(R2+Zo ) 
• 

R2 

Fig. 2.29 	WFD of Fig. 2.28 for Case I . 

	I 	 

.k2=-(n1-Zo)/(121+Zo
) 

R1  R2=Zo 

B1°-( U 	 FT-4--o A2  
Fig. 2.30 WFD of Fig. 2.28 for Case II . 

Rs 

Fig. 2.31 Resistive Voltage Source . 

V 
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Fig. 2.32 WFD of Fig. 2.31. 	Fig. 2.33 WFD of Fig. 2.31 
with R=Rs . 

2V D 

Fig. 2.34 W1D of Fig. 2.31 with Rs=0 . 

A 

   

A 

   

      

      

  

V 

   

   

Fig. 2.35 Resistive Current Source . 	Fig. 2.36 WFD of Fig. 2.35 with 
I 
	 Rs= ao 

V 

Fig. 2.37 Terminating Impedance Z . 
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I1 o--> 

A
1 
 -÷ 

R
1  

B2 

Fig. 2.38 Interconnection of two ports . 

B1 	
A2 

Fig. 2.39 WFD of Series Inductance with a1=0 realized with 
4 adders only . 

vi  
2 

R2 
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Chnnter 3  

Desirm and SensitivitIr Aral:-sis of 'lave Di-ital Filters Imitating 

Doubl?r-Terninate3 Lossioss ladder networks. 

3.1 	Design 'Proc.:011-e 

Having established, in the last chapter, the wave-flow diagrams of 

the passive components and sources, we are new in a.position to 

consider their interconnection to for a eomrlete ladder net-Tork. 

We h!,ve seer 11  .„t we 7a,- directiv cennect two-rsrts 	long P_s their 

arprorriate po-t norrel:zetion resistances are e:lual. For each 
,7,1H,N11J: 	-,ret7ro alternativo derivations, (-) 

?!elay-free path flowing only from bottom to for of the ToD ond 

(b) with a delay-free path only from ton to bottom. Realizable 

networks may be constructed therefore so long as all the constituent 

elements belong to (a) or (h) but not both. There are thus two 

alternative ligitnl. structures sin-l-ting theannlogus network. 

These are sho'm in Fig. 3.1. Tt should he noted that it is 

necessary to Cecose the appropriate wave-flow diagrams for the 

voltage source 	the load resistance so as to avoid dele- 

free looms. These may occur as inter-oloment loops or across 

the overall structure through the successive S 12 and Sol paths. 

If we begin our design procedure at the source-end, the port 

resistance at the input of the first LC element is constrained 

to he the sorrce resistance. All subsenuent nort resistances 

in the LC filter are then also defined by virtue of the linear 

constraints on the port resistances and the element values. 

Since the value of the port resistance at.the ;output of the last 

LC element is not generally the same as that of the termination, 

ire must use the general ':IFD for the load resistance.' Similar 

arguments apply to the design from the load-end but in this 

case we must use the general WFD for the voltage source. 

Before considering an emample of the design procedure, let us 

look at the transfer functions obtained with the digital 

structures of Fig. 3.1. 
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(a) 
	

D-s4 n from the load-end 

The transfer function of a doubly-terminated two-nort is ¶iven 

by [10] 

R (P )  - 	t 	7s (r2 - 27L) 
	

(3.1 ) 
where (11, = 1/211, and A, B, C and D are the network parameters 

determined by assuming the nort currents to be entering the 

network. In Fig. 3.1 (a), the equivalent ratio H(p) is defined 

in terms of wave variables as B2/Vo. The overall wave equations 

describing the two-port are as follows 

B1 = S11A1 S1')A2 

739  = S91A1 S221'-2 

with the terminal conditions A2 = 0 

and 	= (1 - ct)7,r0  + of 1.11 

	

where 	oG = (Rs - Ri ) 	(as 	Ri ) 

from 	c".7 	" 

H(p)  _ (1 -:d) 

- 	s11) 

It has been establiched that in general (see section 2.2) 

= Sip 
= I/p 

where 

s1 

S21 

(3.2) 

(3.3) 

, 
/3 = 	( • 	nn 

÷ (A — cRi  

D'sL 
1BaL 

On co:1-Chininfr: 	(3.2) and (3.3).7e 1-iave 

A 
A 	I 

H(1))  - 	e.%( 
2E1 

Rs  cCRI - D1?1 CIL) 	al (A - ncl) 
2 

Rs  (C - D2L) 	(L - EGO 

	

(3.4) 

Comparing (3.1) and (3.4) we finally have 

H(P) = 2 H (p) 
	

(3.5) 

Footnote 
* The condition Ap = 0 represents the scattering equation for a 
terminating resistance where the value of the appropriate port 
resirfarce 1126 been sot e-ual to that of the element (see section 
2.6.4). The other condition renresents the scattering equation 
for a resistive voltage source in its most general form (see 
section 2.6.2). 
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1 	-  
As the bilinear transformation, p 	leaves the level of the 

transfer function unaltered E51 we may conclude therefore that the 

transfer function of the digital filter is twice that of the 

bilinearly transformed analogue filter. The multiplicative constant, 

2, being  the result of the transformation from voltages and currents 

to wave variables. 

(b) 
	

Desirm from the source-end 

In Fig. 3.1 (b), the transfer function H(p) is defined as B2/Vs. 

The wave equations describing  the two-port are as follows, 

B1 - 311A1 + S1.24 

B2 = S21A1 s22A2 

with the terminal conditions A2  = 8 B2  and Al  = Vo  where 

)3= (RL "' R2) / (RL  + R2) from which we find that 

H(p) = 	S21  

1  -P22 

Recalling  eqns. (2.4) and (2.5) we have from eqn. (3.6) the 

following  

(3.6) 

  

 

RL  + R2  

  

  

 

R2 
1 	RI.  

(A 	BGL) + Rs  (C - DGL) 

 

(3.7) 

Comnaring  eqns. (3.7) and (3.1) gives finally that 

„ 	 R2 
H(p) = (1 + 	) H (p) 	(3.8) 

• 

Thus we have shown that the transfer function of a wave digital 

filter will differ from that of the original analogue filter 

bilinearly transformed by a constant multiplicative factor of 

(1 + 2/14.). 

Finally, let us look at the transfer function of a 'Fettweis-type' 

wave digital filter shown in Fig. 3.1(c). We have immediately 

that 
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A 	B? 

H (P) = Vo = S21 

1 	2  
but 	S21 = (A + CR3  - BGL + DR3GL) 

and on comparing with eqn. (3.1) we have always 

H (p) = 2 H (p). 

3.2 A Filter Rxamnle 

 

For a simple non-trivial example a third-order Chebyshev 

normalized filter with 0.1dR Pass band rinple and equal 

terminations was chosen, the component values of which are 

.shown in Fig. 3.2 (6] . 

Let us decign a wave digital filter from the source-end, that 

is we need to use elements that have been realized with a 

downward delay-free path (or, equivalently, S22 divisible by 

The design equations are as follows (Fig. 3.3), 

R1 = R = 1 

G1  = 1/R1  = 1 

G2 	G1  + C1 
 = 2.0316 

oc i  = G1  /G2  = 0.4922 

R2  = 1/G2  = 0.4922 

R, = R
2 
+ L = 1.6396 

oc2 = R2/R3 
= 0.3002 

G
3 

= 1/R
3 
 = 0.6099 

G
4 

= G
3 + C2 = 1.6415 

= G3/G4 
= 0.3716 

R = 1/0
4 	

0.6093 

cc4  = (RL  - R4) / (RL  + R4) = 0.2429 

The complete WFD is illustrated in Fig. 3.4. As a check on 

the validity of the method, the transfer function, G(3.), of the 

third-order digital filter structure of Fig. 3.4 was derived, 

into which was substituted the multiplier values found from 

the design procedure. It was found that 



and 

• 

a3p3  + a2p2  + alp +.a0  
H(p) = 	RI  
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0(z) = K 	(1 + z-1 )3  
1 + biz-1  + b2z-2 	h3z--5  

where 

b1 = P1 + P2 + P3 P 4 

b2 	 p 1 
P2 4-  °Li a2  + P5 6'44  if3ff4 

b3  = oc1a2,1 c<4/33 

,B1 

2 

/33  

P4 = "4 3 + ac3°‘4 - 1  

/35 = 1  - 2°42 + °41°4  2 

K =oL oc 1 	.2 

°4  3 - 1̀(  4 + "34'44 

= 2 1 ± 2 2 _ 1 2 _ 1 
= 1 - 20c1  oc i ac 2  

(3.9) 

On substituting for c4 i ,cc, G.C 3  and oc
4 

we have 

b1  

b
3 

and K 

= 0.3614 

= 0.4644 

= -0.0073 

= 0.1829. 

The transfer function was then derived for the original LC filter 

as given in Fig. 3.2 and the bilinear transformation applied to 

it. It was found that 

where 	a3 = ROL C1 C2L 

a2 = (C1  Rs+ C2RL)L 
al  = L + RsRL (01 + C2) 

and 	ao  = Rs  + RL  

1  - z-1  and after applying the transformation p1 + z-1 we obtain 

the expression 
(1 + 

G' (z) = 
K'  1 + biz-1  + b2z-2  + 

where 	bi = (a2  + ao  - (a3  + a1 ))/b' 

= (3 (a3  + ao) - (a2  + al ))/N 

bi 	= (3 (ao  - a3) + (a1  - a2))/bt; 

(3.10) 
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b' = ao 

+ a, + a2 
+ a_ 

and 	K' = RL/b 

On substituting for Rs, RL, L, Cl and C2 we have 

b = 0.3614 

b2 = 0.4643 

b3 = -0.0073 

and K' = 0.1136 

Thus G(Z) and G'(Z) differ, as expected, only in the constant 

multiplicative factor. 

The design procedure we have illustrated in this section is quite 

systepatic so that ladder filters of any size may be transformed 

• to equivalent digital filters. With the aid of filter design.  

tables 167(8) it is an easy matter to calculate the digital 
multiplier values and hence the digital circuit required. 

3.3 	The Derivation of MAP Sensitivity Characteristics  

1.3.1 Introduction 

It has been shown that [33][50], as a result of preserving the 

relationships between the incident and reflected waves, the property 

of low attenuation distortion in the passband of a doubly-terminated 

lossless ladder is transmitted to the digital filter. In this 

section, we continue the discussion by examining the implications 

of Orchard's argument £233 when applied to Wave Digital Filters . 

and apply it to the problem of finding an expression for the 

first-order attenuation sensitivity to multiplier variations in 

terms of the analogue comnonent sensitivities. The significance 

of this eroression is then discussed for Fettweis Wave Digital 

Filters and for those designed with the Procedure in section 3.1. 

It is further shown that the multiplier sensitivities are not at 

their expected zero value at the—points of maximum pseudo-power 

transfer (NAP). This fact becomes significant when we consider the 

accumulation of round-off noise [13][213 . 

3.3.2  Sensitivity of the Attenuation to Multiplier Variations.  

In this section, we shall derive an expression for the sensitivity 

without the use of concepts such as pseudo-power and pseudb-

losslessness described by Fettweis (33] and explained in Chapter 

Further, the transfer function we shall use is not the same as 

that used by Fettweis in [333. It was felt that the ratio of 
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outnut to innut, namely B2/V0, as the most logical choice whilst 

Fettweis used the function 	B9 4( RI  
Vo  RL  

Consider a doubly-terminated lossless ladder with elements 

Rs, RL, L1 , L2, .... Lm, Cl, C2, 	Cn, that is a total of 

N = m + n + 2 eleTents. The transfer function V out/V in 

we shall denote by IT(p).. 

Suppose now that the wave digital filter is derived from the 

analogue filter shove and let its multiplier values be denoted 

by Oc,-, 	0(11_1 . It is clear that, as a result of the 

desinnrocess,anymultinliervalueoc=oc-is a function of 

the original nassivo variables. The transfer function of this 

digital filter will be denoted by G (z). It has been shown, 

in section 3.1, that if we apply the bilinear transformation 

71 

r7 
	,(-) 	7n,n-Ln t e -,,nr.1114-4,nr• r.nnl 

1 + 
A 

rational function in z-1  as G(z) then 

0(z) 	K r,  (z) 	 (3.11) 

where K is independent of z but may depend on the ne;sive 

components. 

Therefore for any multiplier 	oCK 	, we have from con. (3.11) 

S IB  + 	S
G = s 	+ S 	(3.12) 

ock 	ock 	
ot
k. 

where Sy 
	X a v 

X y 
is the relative sensitivity function E221. 

Hence we may state immediately the following 

A 

G (z) 	= 	H(p)1 

and therefore it follows that * 

1 —7,-1 
P = 

1 	z -1  

Footnote: 

* H(p) is a function of the passive component variables in 
addition to being a function of the complex frequency variable 
n. 7,- shall refer to this flinction, for convenience, as H. 
Similarly, we shall drop the variable z from the functions G(z) 

A 
and G(z). 
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or 

G 
S 
ock 

A 

S 
X 

= 

s 
oc
k 

H 
x 

r 	- 

- 

1 - z-1  
1 + z-1  

Z-1 
— 

1 Z-1  

where x is a passive component. 

We know that each multiplier is a function of the passive 

cooDent values. We shall assure for the moment that we may 

express each Passive variable as a function of the multiplier 

- variables (in the next section, we shall see that this 

assumption cannot be made in the case of delay elemonts). We' 

can therefore write, by virtue of the chain rule of differentiation 

of function of. several variables (75], 

-aH _ BEI 	DH 	N7 a  H 
ac 

a ak  - a RI,  a ak 	a L Oak 	L, YU a ak  
DE -s P 	P 	q 	(3.13) 

?R.  Dock  

ocL, 
On multiplying both sides of eqn. (3.13) by 	we obtain, 

H 	H 	H 	H 

	

R
s 	 L 	C RL  

q  (3.14) S 	= S
R S oc + S 	S 	+ D L 3 ot P  +D Ei s od k Rs 	k 	RL °4  k 	

f 	
p 	k i C

q
cg
k 

The sensitivity invariant for a transfer function H(p) is given 

b7 E79.1, 

S
R 
 + S 	

s 	
+ 	s L = 0 

s  
7 q P  

(3.15)'  

Thus we may eliminate one term from eqn. (3:14). Let us choose 
. S H  in which case eon. (3.14) becomes Rs  

H 	H 	RL 	,_- 	L 	R 
S04 k = S 	• (S 	- S 3  ) + YiSli  (S P  - S 5) - 	- RI  oc k 	oc k 	f  Lp  .4 k 	04 k  

, C 	R 	(3.16) 
+ ES H  (S q  + 5 s) 

oc  
$ 	q 	k 	04 k  

Noting,  that S zY  = S Z  +S Y 	and 	s  z-/y.  . s z_ s y 
x 	x 	x 	x 	x 	x 

we find that eqn. (3.16) can be written as follows, 

H = 8  H s  RL/Rs 	H 	Lp/RS ya_ 
0 H 
	

C
qRs S 	+ S 	So4  - + 	S "k 	RL °6k 	

L 
r 	p 	k 	

Cq CACk 	(3 * 1  7 ) 
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We are particularly 'interested in the attenuation function - Log  I 

and the sensitivity function associated with it, namely 

(HI 
= Re S 1 . On taking  the real part of eqn. (3.17) and ock  

noting  that expressions like 	are real functions we 
"'Kk 

obtain the result, 

C R 
IILlas 	s  LP/Rs ZS" S qs 	(3.18) s  IHI = S 	S L of 	 'ck RL ock 	p k c'ck 	

q 

We arr, no7 in a position to arply Orchard's ar:ument (see 

Chapter 1) to eqn. (3.18) at points of maximum rower transfer. 

At these points, 

	

IHI 	1HI 

	

S
L 	

= 	S C 	= 0 	and 

	

P 	q 

	

JHJ 	11 	RL/Rs 

	

S ock 	= 	ssac 	(3.19) 

	

RL 	k  

and further for a well-designed filter we might also expect 

eqn. (3.19) to hold approximately at other points in the passband. 

Taking  the real part of eqn. (3.12) we have 
A 

	

S ex k 	
= 	Sock 	+ 	Sock  

S. 	(3.20) + ak   

and on substituting  for Sot from eon. (3.19) into eqn. (3.20) 

we obtain the expression 

vq. RL/Rs  
Sock = 	%k 	S  11L S c<k 

111 
It was shown in Chapter 1 that S RL

1 
 = 

thus 

(3.21) . 

RL/Rs  
+ 2- Sock  

RL/R, We shall now discuss the terms Sc,ic  and 5041, 	for 

different wave realizations. We shall consider Fettweis type 

realizations and refer to them as having  been designed using  

Method A. In addition, we shall consider the Wave Digital Filters 

discussed in section 3.1. These will be referred to as having  

thus 

[GI 

Sc4k (3.22) 
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been designed using Method B. 

For the sake of argument, we shall use a general odd-order 

low-pass filter with zeros at infinity (Fig. 3.5). 

I: Method A designed from source-end  

In this case, K =. 2 (see section 3.1) and therefore 

eon. (3.22) becomes 

RL/R, 
S ack (3.23) 

Consider the 7D of a digital filter (rig. 3.6) designed 

from the analogue network of. Fig. 3.5. The necessary 

design enuations are as follows £34) 'see Chapter 1) 

041  = 

pct = r3/r5.  

0(3  = g5/g7  

°44 = r7/r9 

°42n-1 = 2G4n-3/6  

c2n = 2g 	/g 4n-2 

Where 	= 
-4n-3 

+ g
4n-2 

+ g
4n-1 

and R
s 
 = r1  , R_=r 4n-1. 

Elimination of all internal nort resistances from these 

ecuations procluees the fellowin7 e-mression for the ratio 

of termination resistances 

RL = 0(1  0(1 	 

Rs 	0.(2 OC4 
	"2-3 c<24-I  (3.24) 
	 ̀1211-2.(.2-  aln- I - Of.tri) 

Hence we have 

/GI 	L s 
R /R Jr 	- 	for p even (/ 2n) 

S 	= yS 	= 

+(2—  c' 23a )  / (2—  2n-1  °C2n) for 77)  oC P 	0( 	 = 2n-1 

2n-1 °"2n)  2n/ (2—  c' 	( 	for n = 2n 

for p odd (4 2 n-1) 

(3.25) 



1 
2 	for p even (/ 2n) 

+(c42n-2)/(2 -°C2n -1 -c42n) 
 

for p = 2n-1 

k 	c<21 (2 0'2n-1-  °(2n) 
	

for p = 2n 

(3.27) 
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II: TTethed A designed from load-end 

For this case K = 2 also, and therefore eqn. (3.23) 

applies. 

The WFD of the digital filter designed using this method, 

from the network of Fig. 3.5, appears in Pig. 3.7. 

The necessary design equations are as follows, 

oe
1 = C /C- I 

ce2 = 5/r 5 

	

0C
2n-2 

= r 	/r 4n-5 4n-3 

"42n-1 = 2g
4n-3

/g 

a4  2n 	= 2g4n_2/g 

where 	g = C g4n-2 4-'64n-1 

and R1, = r1 ' Rs  = r4n-1 

Elimination of all internal port resistances from these 

expressions yields the following result 

RZ 	
oCace4  	- 06,1-)  - c?..2  ) 	(3.26) 

R
s() a3 	.'21)-3 a211-f 

which is seen to be the reciprocal of eqn. (3.24). It 

follows therefore that 

1 

	

- 2 	for p odd (/ 2n-1) 

III: Method B designed from source-end  

For this realisation (Fig. 3.8) it has already been shown 

that 

K = 1 + r2n  
RL 	 (3.28) 
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where r2n  is the port resistance of the load. 

Moreover, we have the desipn expressions, 

c41 = 61 /62 

oe2 = r2/r3 

043  = 2 4 
• 

. 	• 
• 

°42n-1 = q2n-1/g2n 

and 	042n = (RL .r2n)/(itL r2n) 

also 	Rs = r1 

On eliminating all internal Dort resistances we 

find that 

R L 	= 	3 	• • 	°,/. 2 n -1 ( I  4  a .2.n) 
Rs 	4'2 cgs.. • 	c12,1-2 	- 0(.2") 

As a consequence of this we obtain 

(3.29 ) 

/Rs  
S 

= 	

-1 
c< D 	

a 
2n 	

04 2 	/(1 -( 2n ) for 	
= 2n 

	

2 	

for n even(/ 2n) 	(3.30) 

• 

Now consider the followinp expression, 

RL r2n 
4) 2n 
	

RL r  2n 

from whirh -le ray dedUce that 

1 - 04 2n 	2n 
(3.31 ) RL 

- 

1 + oC 2n 

Therefore on combininp: egns. (3.28) and (3.31), we find 

that 

K 

- 1 

 +° 2n 
2 

Hence 

0 

S 	= oe °gyp 	2n  
1 +a 2n 

p / 2n 

p = 2n 

(3.32) 

1 	for p odd 
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Combining cans. (3.22), (3.30) and (3.32) gives. the 

following, 

for p odd 

S IGI = 
,c p  

for p even (J 2n) 	(3.33) 

0(.2  /0 	2  -0( for p = 2n 

1 - 2 - 

2n1 	2ni
)  

IV: Frothed T desic,ned from load-end  

For this realization (7i7. 3.9) it has been Shown that 

K = 2 and therefore eon. (3.23) applies. The design 

• equations are as follows, 

oft = g1/62. 

042  = r2/r3 

042n-1 	 .21a-1/02n 

and a2n =  (Rs - r2n - )/(1s  r2 ) 	also LL = r1 

On eliminating all internal port resistances we find that 

RL 	= 	°C.2'4-4 	 a2A-.2  (1- C121-1)..  ( 3.3A ) 
Rs    042 	01- 0(2 ,,) 

It is noted that the right-hand-side of eqn. (3.34) is 

the reciprocal of eqn. (3.29) and therefore we have 

immediately that 

1 
- 2 	for p odd 

s lal for p.even (4 2n) 	(3.35) 
oC  

-c<2n/(1 -c  L) 	
for p = 2n 

Finally, in this section .let us examine those sensitivities 

that are not equal to ± 2. 

We may consider I and II together as the corresponding 

absolute values of sensitivity are equal. We have that 

sIGI 	= 2  (2 -°42n )  
2n-1 	2 - 2n-1 -.2(2n 

and 
IGI  
	2

-2n a 2n 
2 - oe 2n-1 - c'‹ 

• 
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We would like these sensitivities to be as small as Possible. 

Consider, for example, the values of oC 2n..1  and o4 21, that 

minimise the sun of squares of the moduli sensitivities. That 

is we wish to find positive o4211_1  and oC 2r  such that 
1 2-   

M = SI2  S2-9 
	

S°1  
is a minimum where Si = 	and S2 

2n-1 	= -'42n 

• By observing the form of H, namely 

2 
°4 2n 

- 2 of 2n 2) 

127174k2n-1 - 2n)2 

we may en_sily deduce that 2n and cr2n-1 ot 	should be as close to -  
zero as is possible. 

IG/ 
In III the sensitivity of interest is 	

'e2n 	°42n/(1 -c42n)  

and this may be made small by ensuring that 04 211  is small. 
/1  Finally, in IV where S

IG/ = -
0(2n/0 -ol2n 

) 
2n  

we may again be certain of low sensitivity if a2n  is small, 

ideally, of course, we should like oC2n  to be as close to zero 

as is possible. 

The general conclusion of this section is that the sensitivity 

of attenuation characteristic to multiplier variations is not 

generally zero at points of maximum power transfer (HAP). 

Although the results have been derived for an all-Pole low-Pass 

filter it is an easy matter to extend the ar7ument to cover all 

LC ladder filters. :Tor a tuned-circuit (see Cha:)ter 2), one of the 

multipliers is a ratio or port resistances and therefore the 

method of this section may be applied. The second multiplier 

is a function. only of the L and C in the tuned-circuit and 

therefore, by virtue of eqn. (3.22), the attenuation sensitivity 
is zero at HO ?points. 

3.3.3 	Sensitivity of the Attenuation to Del.ey T-lemert Vartions  

Although, as we have shown, the first-Order sensitivities to 

multiplier variations are not generally zero at HAP, we shall see 

that the sensitivities to delay variations are zero, except in the . 

case of timed-circuits. In practice, however, we can be certain- 
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that the delay element will not contribute to deviations in the 

attenuation characteristic and therefore sensitivities to such 

elements are only of theoretical interest. 

Consider first a series inductor L whose imredance Z = pL. 

Let the transfer function of the analo'rJe network be H(p) and 

that of the derived di2ital filter be G(z) then 

G (z) a VH(p) 	_ z-1 
D 7  1 	7-1  

and 7_ in inderendent of frequency. 	(3.36) 

Tie are inte-n-A.ed 	S 	where D 	delay nln-ent 

nrsec'nt-,d 	L. -o-e r_rt:Heul-..2l7, we we-al'? 1 ".1-- to  

an e-,-prc--:sion or 2 	. 	It is -Impoy.t--t 	t•r-0, s12-1,o,75h 

D =z-1 	it 's reno:.sery e ,l'st";::'-^ 1-sest.:zen a rrt'culr 

delay b-;:nch nnd the di:-.-;"tn 1  comnly_ frequency.  1Tariable. If we 

now arply the bilinear transformation to an im7odance Z =pi, then 	4. 

1 - 771  pL 
1 + 	

L = 
1 - D,. 
	 L, say  1 	Do 

Yotico that Do  is not nneessarily the sare as D in the sense 

that there :nay be a !11actenal relationship between D and Do  such 

that, althou=7h D = 1. This is important az we shall Do 	'a Jo  

cee presently. For exarirle consider 

D = Do + (z-1  - Do) Do  

	

':71-'en 	Do  = Z 1 , 70 11.a7r: D , Dc 

?T) 1 	z-1  - 2D0  •a Do 
-1 

	

and when 	Do = z , aDo  
• 

To find the relation shin between D and Do, we need to derive the 

FTPD of the series inductor L in terms of the transformation 

r 	. 	
1 - Do 

and find the relationship between the actual realised 
1 + Do  

delay branch and Do. In this case, it is easily Shown that 

D = Do  but we shall see in the case of tuned-circuits that this is 

not renerally so. 

= 1 -z 



-112- 

As pL is the independent variable and Do  and D are dependent 

we can write 

G D Do  
SpL 

= S D  S  Do  PL 

However, as G = KH when D = Do  eqn. (3.38) becomes 

SH

as 

= S 	s o 
pL 

(3.38) 

(3.39) 

1 - Do  
P _ 	 

1 + D 	
. it follows that 

o  

Do 	- p 	 1.11. 

	

S 	= 	= 	= - jsinwT 
P 	1 . - P2 	1 +.12.4  

tat i where _a = tan — is the analogue frequency variable 2 

= j S 	
s 1 +112 }= jcosecwT S 

-L 	2J1 	(3.40) 	• 

We are interested in S VID
A 
 which may be written as j 1m S - 

(see Chapter 1).,  

Therefore eqn. (3.40) yields finally the result 

EGI
9  

+ 
41 j 	

IF-I 	
2 	= jcosecuT S ICI 	(3.41) 

Thus at :a? points 7:e may apply Orchard's arc-Li:tont to S
IFT! 
 and 

find that 

	

S 
	

0 

Tn a similar way, we can derive equivalent exnressions for a 

series capacitor, a shunt inductor and a shunt capacitor. 

Let us now consider a series-tuned circuit in the shunt-arm. 

Then the imnedance Z is given by the expression 

= pL + 
pC 

Here we have two delay elements D1  and D2 which are related 

	

to 	and to 1/pC. 7e may write generally that 

and hence 
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G 	s  Di , 	DL 
S - = 	 S 	S 

- 77, 	D2 	DL 

s  D1 s  Dc 	D 
and 	= s 	 r_,  9  

C 	Di 	D. 	
D0 

D, 	Dr) 	. P 

1 - DI  
where rL 

1 + DL  

1 - Dn  
and nC 

1 + Dc  

h-ve therefore a rot of ,,:jr-Ifitaneous eiro.tior.s ir S D 	and 

q 	7rd 	7!olut7:on 	7-21re  

    

j3 

Y I 

 

TT 

T 
q • 

 

 

IT 
S - 

C 

(3.17) 

    

     

     

rhere 	o= s  Di s 	DL  , 	s - S DL  

=- 	D1 	D- D, 	De  
S - 

De  r 	g - s 
De  

mhils 	l'nvn chewn th7-A- a r.oi 	it hetrenn the LC 

censitivitics and the delay sensitivities. To f4_710 the 

rolationshins between Di, D2 and DL and. Dc we need to derive 

the 7=0D of the series-tuned circuit in the twnt arm usin7 

the transformations 

1 - Dc  nL 	and nC 
1 + DL 	1 + Dc  

It :is found that, (see Appendix I) 

D1  
(DL  ± Dn)  

1 .1- 	(DL - Dc) 

- 4 	Dc) + DT, De  

1 	(DL - De) (3.44 ) D1 D2  = 

It is easily checked. that, when DL  = Dc  = 	then D1 = z-1  = D2. 



= 1.7 (I 	z ) DL 

D 
and 	

2 	+ z ) 
Dc  

Now D S T. = 

S D2  

=-jsinwT 	(3.47) 
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If we obtain D2 
by the ratio of these last two equations 

then 

--I (DT - Dr.) + DL  Dc  D2 = 	' - 
+ (DL De) 

It is easily shown that, on using first eqn. in (3.44) and 

eqn. (3.45), 

S D1 4- (i _ z -1 ) 
D L 

D1 	= 	(-1 +. -1) 
De 

(3.45) 

(3.46) 

therefore on substituting from eqns. (3.46) and (3.47) into 

eqn. (3.43) we have 

 

- r1 - 

-T  D2 
r 

s  

	(1 + z) -( - z) 	L S 

-(1 + z-1) 	(1 - z-1) S H 

= k 

e 

 
where k = ÷ cosec-2  wT. 

IGI 
Ile may therefore write the follo.t.anf,,, since S DI G 

J Di 

(3.48) 

and 

H  IA , 
m  s 11/G1 = jk { sinuT ( 

!
L

I 
S 	+ S ' •) + k1 + costa) i S 

	

1 	 c  

+(coswT-1)..23- S 1.1 c 

• ICI 	 \ 
S 	jk 	sinwT (S 	+ S 	- (1 + coswT) 	S 

.u2 

+ (1 - come2) 	s 

where 	1 = art; H. 
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and therefore at NAP nts. we have 

	

S D1 	jk 
	

cosuT) 	S -CT  - (1 - coswT) f 

3.49) 
and S= s 

	

D? 	D1  

Thus we have seen that for a series-tuned circuit the attenuation 

sensitivity to delay variation is not generally zero at points of 

maximum nower transfer. Tn a similar manner one can derive the 

corresponding formulae for the other tuned-circuits where the 

.basic problem is one of finding the relationship between D1, D2 

and DL and Dc  and solving &in. (3.42).' It is noted that 

eons. (3.42) and (3.43) hold for any tuned-circuit element. 

Furthermore, these equations cannot be used at zero frequency 

since when w = 0, k = i-cosec2wT = °10  . However, at zero 

frequency all sensitivity functions are real and therefore 

Di 	D = 	G  S 	= 0, for any delay element. 
i 

If we had used the ecuivalence between a tuned-circuit and an 

appropriately terminated cascade of two unit elements, then 

it is easy to see that there is a one to one correspondence 

between DL and D1 and between Dc  and D2. Thus if we use the 

wave-flow diagram for a tuned-circuit derived by Fettweis 

we can be certain that the attenuation sensitivity to delay 

variation is zero at points of maximum pseudopower transfer. 

However, uach wave-flow diagrams use more adders than those 

discussed in sections 2.3 and 2.4 [77] and therefore, as delay 

sensitivity is of theoretical interest only, the latter structure 

is to be preferred. 

34 	Sensitivity 2xamnle' 

In this section, a third-order normalized Chebyshev filter with 

0.1dB passband ripple and equal terminations is analysed, first 

in its analogue form then in its direct digital form and finally 

in each of three different wave realisations. 

(a) 
	

Analogue filter 

The network is shown in Fig. 3.10 and the element values 

were taken from reference [6] . The filter was analysed 
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at 19 frequency points and the amplitude characteristic 

(Fig. 3.11) was plotted against 2 tan 
-1.A_ 	so that 

it may be compared with the amplitude response of the 

digital equivalent. In addition the attenuation sensitivity 

was plotted for each component against 2 tan 
-11

1 (Fig. 3.12). 

(b) 	Direct Synthesis Dic,ital Filter 

1 - z 1  
On applying the bilinear transformation D 	4 to 

1 + z-' 
the analogue transfer function H()) we obtain 

G (z) = K 	(1 4.- z-1)3  

(1 b -1  h 
1 z 	+ + -2z--  + b3,3 3) 

where 

K = 0.1136 

bi = 0.3614 

b2 = 0.4644 
and b3  = -0.0073 

The signal-flow graph of G(z) appears in Fig. (3.13). 

The attenuation sensitivity was plotted for each multiplier 

( 	bl, b2 and b3) over the entire frequency spectrum 

(Fig. 3.14). 

(c) P-thc A  dedrned from the source-end 

The have-Flow Diagr.1ra is shown in Fig. 3.15 	the desi7n 

equations are as follows: 

rt  = Rs, g2  = ci , r4  = L, g6 = 02, r7  = RL  

g = gi  + g2  = 2.0316 

0(1  = g1  /g3 	= 0.4922 

r5  = r5  +,r4  = 1.6396 

042  = r3/r5  = 0.3002 

g  = g5 	06  07  = 	2.6415 

a3 = 2g5/g = 0.4618 

04
4  = 2g

6
/g = 0.7811 

The wave digital filter with the multiplier values above 
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was then analysed and its attenuation sensitivity was 

Plotted over the frequency srectrum to each of the 

multipliers (Fig. 3.16). 

(d) Method 13 designed from the source-end 

The wave-flow diagram is shown in Fig. 3.17 and the design 

equations are as follows: 

r1 = Rs 

62 = g1 	+ C1  ' = 2.0316 

ol.1  = gig., = 0.4922 

r3  = r2 4- L = 1.6396 

04
2 r2/r3  = 0.3002 

c).A...  b = g3 + C2 = 1.6415 

r. /, oC 3 - 
'3' '4 	

= 0.3716 
 

'744 = (RL  - r4) / ('IL + r4) = 0.2429 
1 - 

Similar analysis to (c) was performed and results are to 

be found in Fig. 3.18. 

(e) 1.1etho(1_ 	R from the lead-end. 

equations are `Phe WFD is shorn in Fig. 3.19 and the design 

as follows: 

r1 	
= 	FtT  

g2 = g1 	C2 	= 	2.0316 
 

G41 = g1/62 	= 	0.4922 

r3  = r2 + L 	= 	1.6396 

'42 r2/r3 	0.3002 

g
4 

= g3  + 1 	1.6415  

3 63/64 	
0.3716 

c4 = (Rs  - r4) / (Rs  + r4) = 0.2429  

Similar analysis to (c) was performed and results are to 

be found in Fig. 3.20. 
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The most important observation to be made is. that for wave 

digital filters, the attenuation sensitivities are approximately 

constant in the passband. This confirms the argument made by 

Orchard [23]. The consequence of almost constant sensitivities 

is low distortion [593, that is for small changes in the multiplier 

values we have a constant shift of the attenuation curve. In 

the examples at the end of this chapter, we shall see this more 

clearly. However, non-zero sensitivities are significant with 

.regard to round-off noise [133[21] and we shall look at this in 

a later chapter. 

Ls a concluding note to this section, let us use the expressions 

derived in section 3.3 to calculate the attenuation sensitivities 

and compai.e the results to those found by analysis. The comparison 

may be made by examining Fig. 3.21 where the required agreement 

is clearly shown. 

3.5 	Example 1: 3rd order Elliptic Low-Pars 'Niter showing 

attenuation curve end  sensitivity characteristics. 

Let us consider a network example that may verify the various 

formulae derived in this chapter. A third-order normalized low-

pass elliptic filter wi.th 0.177E3 passband ripple was chosen [73 

(Fig. 3.22). Tt was decided to design a wave digital filter using 

the two-port approach from the source-end- The wave-flow block 

dia7ram appears in Fig. 3.23 and the design equations are as 

follows: 

Rs  = RL  = 1, L, = L3  = 1.1672, L2  = 0.029, C2  = 1.1231 

R1 
= R

s 	
L1 

= 2.1672 

= Rs/R1  = 0.461425 

G2  = Gi  + C2r2 	= 1.5491 

C2 +r2 

. 4.4
2 

= G1 
/G2 

= 0.297867 

0e
3 

= (r2 - 02)1 ( P 2 + 02 
= .93691 5 

R3  = R2  + L3  = 1 .812736 
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oc
4 	

R -2 	= 0.356112 

De 5  =(RL - R3) / (RL  + R3) = - 0.288949 

The complete UFD annears in Pi:". 3.2A. The diTital network was 

then analysed and Fig. 3.25 shows the nominal attenuation curve, 
Fir,. 3.26 shows the multiplier sensitivities and Fig. 3.27 shows 

the delay sensitivities. Let us now comnare the al' sensitivities 

found by analysis with those using the formulae of this chapter. 

These sensitivities have been tabulated in Fig. 3.28 and the 
required agreement may be seen. Several points arise and they 
are as.follows: 

1(.0 1. The sensitivity sa. 3 is seen to tend to infinity 

at the zero of transmission (Fig. 3.26). This is 

not serious since oc
3 

is derived from the tuned.-

circuit and at resonance, the tuned-circuit becomes 

a short-circuit. 

IGi 2. The sensitivities Sd 2 and 5.: d 3  are zero at the 
first n'+1)  point (i.e. w = 0) 'but not at the second 

point. This is a consequence of eon. (3.49) together 
with the fact that at zero frequency, all sensitivity 

functions are real and as S 	= jimS 	we have 

S in  = 0. 
di 	di 

di 

.6 	77amnle TT: 5ti-or"!-r 	Iow-Pens Tit ter showing 

effects of coefficient nuentizstion  

Let us now consider a Wave Digital filter using the two-port 

approach for the purnose of examining the effects of reducing the . 

multiplier wordlength. In practical realisations, it is desirable 

to have as small a wordlength as possible and we shall see that for 

wave di7ital filter structures we may reduce  the number of bits 
representing the multiplier value to as little as three without 

a serious decay in the attenuation curve. 

Consider a fifth-order normalized elliptic low-pass filter with • 

0.099d73 nassband rinnle. The element values were taken from 

Reference [9] and the network Is shown in Fig. 3.29. The wave-

fie,: block diagra7 appears in Fig. 3.30 and the design equations 
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are as follows: 

Rs  = RL  = 1, C1  - 1.08x.77, C2  = 0.06E09, L2  = 1.29869, 

C3  = 1.80288, CA_  = 0.18583, L4  = 1.15805, 05  = 0.98556. 

= Gs 
 + C1 	- 

= 2.08877 

a1  = GS/  ' G1 	= 0.478751 

R
2 
= R1 + L2D2 	

= 1.67193 
L2 + D2 

4242  = R1  /R2 	= 0.286346 

0(3  = (D - L2) / (D0  + L2) = 0.837513 

G3  = G2  + C3  = 2.400991 

= G2/03  = 0.249110 

R4  = R3  + LADA ; 	= 1.369464 
L4 + D4' 

01
5 
 = R3 - /r)

4 
 = 0.304129 

e = (D4 - L4
) / (D4 

 + L4) = 0.645819 

G
5 
 = G4. 	'5 + 	= 1.715772 

7 = G4  /G5  = 0.425588 

as = (G5 - GL) / (05 + GL) = 0.263561 

The complete :1 1D anuears in 	3.31. The dirital network was 

then analysed at 50 frequency points, first for the nominal 

multiplier values above, then for the multiplier values rounded 

to 3 decimal places and finally to 1 decimal place. The analysis 
is shown in granhical form in Fig. 3.32 and confirms the prediction 

of a constant shift in the resnorne with little distortion. 

.7 

	

	Example ITT:  6th order Mlintle :Rand-Pass Toilter shoinp  

effects of coefficient rmantization. 

As a further example of the effects of reducing the multiplier 

wordlength, let us take the third-order. 	Low-Pass Filter 

of Example I (Fig. 3.22) and apply to it the Low-Pass to. Rand-

Pass transformation (101 The resulting filter, which is of the 

6th order, anpears in Fig. 3.33. The bandwidth was chosen to be 

0.1 HZ. and the centre frequency to be 1 HZ. The wave-flow 
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block diagram appears in Fig. 3.34 and the design equations 

are as follows: 

Rs  = RL  = 1, L1  = L4  = 11.672, C1  = C4  = 0.085675 

L2  = 0.79126, C2  = 2.1845, L3  = 0.45778, C3  = 1.26380. 

R1 = Rs + L1 + D1 = 24.344016 

oel  = -RS/R1  = - 0.0410779 

°(2 = (D1 	L1 )  / (D1 + L1 )  = 

• 

= G +
C7 +"2  07  + = 0.841699 

C2 r 2 

04
3 	

G12  = 0.0488035 

04
4 = (P2 

- C2) / (//2 + C2) = -0.266999 

	

G3 = (1.2 + C3 	3 	
1.642511 

r 

	

3 	3 

04 	G 5 	2 ) = 0.512509 

6 = ( P 3 - C3) / ( P 3  + c3) = 0.266992 

R
4 

= R
3 
+ L

4 
+ D

4 = 23.9529145 

do<
7 
= R3/R4 

= 0.0254206 

a8 = (D
4 
- L

4
) / (D

4 
+ L

4
) = 

oc9 = (RL - R4) / (RL + R4) = - 0.919849 

We have used the TTFD's for a series-tuned circuit in the series-arm 

and for a parallel-tuned circuit in the shunt-arm. Note that, 

as a result of the fact that L1 C1 = L4
C
4 

= 1, the number of 

multipliers is reduced frOm nine to seven. The complete WFD 

appears in Fig. 3.35. The digital network was then analysed at 

50 fre'Jnr.?ney points over the whole snectrum (0,7/T) and then at 

21 points in the passband only. The analysis is shown in graphical 

form in Fig. 3.36 for the following cases (i) nominal multiplier 

values &(ii) multipliers rounded to 3 decimal places. 



3.8 	Conclusions 

In this chanter we have seen how, with the aid of analogue filter 

design tables, to design wave digital filters using the two-port 

approach. The examples given were of normalized filters but this 

does not imply a restriction, since any classical LC ladder filter 

has a wave digital equivalent. 

A theoretical approach has been presented in which it was shown that 

wave dir7ital filters do not possess the property of zero first-order 

attenuation sensitivity to multiplier variations at points of 

maximum Power transfer. The theory was extended to cover the exact 

.behaviour at these points. It was found that the multiplier 

sensitivities were approximately constant in the nassband which 

implies a constant shift in the attenuation curve. This has 

significance with regard to round-off noise. 
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Fig. 3.1 WFD of DTLLU designed (a) from the load , (b) from 
the source and (c) using Fettweis theory . 

s=1 	L=1.1474 
	r-a-Tr6-21' 	 

Vo  Cr) 	
C1=1.0316=0 

21  

Fig. 3.2 3rd. Order Chebyshev filter . 

Fig. 3.3 Wave-Flow Block Diagram of Fig. 3.2 



a =0.4922 
a1=0.3002 
az2=0.3716 
ai
4=0.2429 

Fig. 3.4 Complete Wave-Flow Diagram of Fig. 3.3 
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 v oe 
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r2  yap 

a1 a
2 a2n1 a2n -1 

.
A
1
= 

4n-3 

-z z  
3.5 designed using method A from 

z 
source . 

r6  

Fig. 3.7 WFD of Fig. 3.5 designed using method A from 

Fig. 3.8 WFD of Fig. 3.5 designed using method B from source . 

n 

r3  

a
3 

a2  
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L
m 
	1

2 

Fig. 3.5 General Odd-order Low-Pass Filter with zeros at infinity . 

Fig. 3.9 WFD of Fig. 3.6 designed using method B from load . 
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R =1 
	L=1.1474 

L=1 

Fig. 3.10 3rd. Order Chebyshev Filter . 

1 

Fig. 3.13 Signal-Flow graph of Direct Synthesis Digital Filter . 

Fig. 3.15 	WFD of Fig. 3.10 designed using method 'A from source 

Fig. 3.17 WFD of Fig. 3.10 designed using method B from source . 
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0.74 
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0.74 

0.73 

o .72 

0.71 

o. 7 

C.6 

0. 1 

o 7r 	 27r 	37r 
3 	 3 

	wT 

Fig. 3.11 Amplitude characteristic of third-order Chebyshev analogue 
filter plotted against a warped frequency axis . 
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3.12 	Attenuation sensitivity with respect to first-order 
element variations for a 3rd.order Chebyshev analogue 
filter . 

1, 

A2  

■ •1 

c'q 4. 
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0 

6 
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• 

Fig. 3.14 Attenuation sensitivity in direct form structure . 
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Fig. 3.16 	Attenuation sensitivity in Wave Digital Filter of 
Method A (from source) . 
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Fig. 3.18 	Attenuation Sensitivity in Wave Digital Filter 
of Method B(from source) . 
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r r2 r3  
a1  a2 a

3  

1 

Fig. 3.19 WFD of Fig. 3.10 designed using method B from load . 

L,=1.1672 	L =L 

1.0 

 

1.0 

 

0 	 

 

C2=1.1231 

  

    

Fig. 3.22.  Example I:Third-Order Elliptic Filter . 

R
1 
	R2 

a1 
	

a21 a3 
	

aLF 

Wave-flow block diagram of Fig. 3.22 . 

'2 



I- 
3 

1 

I 

SIN 

-133- 

Fig. 3.20 	Attenuation sensitivity in Wave Digital Filter of 
Method B (from load) . 
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Method 

a. 

a1 	a
2 1 

a_ a4 

A (from source) Observed 0.5 -0.5 0.805 0.516 

Predicted 0.5 -0.5 0.8050 0.5153 

B (from source) Observed 0.5 -0.5 0.5 0.06 

Predicted 0.5 -0.5 0.5 0.C.27C 

B (from load) Observed -0.5 0.5 -0.5 -0.253 
Predicted -0.5 0.5 -0.5 -0.2581 

Fig..3.21 Table comparing attenuation sensitivities found by. 
analysis and those found using the formulae of sec-
tion 3.3.2 . 



1=0.461425 

m
2=0.297867 

a3=0:936915 
a4=0.356112 

a.5=-0.288949 

Fig. 3.24 WFD of Fig. 3.23 showing element values . 

B2 
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..... ,...,:, 	:1;: 	

- 	:H.. 	•.•I:I,•I 	: 	.:: :L•.: 	..:::::: 	:::::i.::. ;:::,:1;:: 	L,1,:i 	:, 11:I; I-i  ::::' 	 •:71 
,-' 

.::, 	..... 
.777 :-• 	TT; 	 •: 	' '••' 	•.I.: 	• ••:• • 	:;.::; 

.■ 	 • '  ::::. 	•i:: :':. -,:i. 

-, :ii: 	':::' :Li ::.. '''•"; I. 
. 	. 	. 	 ..  

.::;•:. 	• 

. ! 
. 	: : : : 	: 	. 	• 	' !!:!: 

• . .. 

...... 	. 
• • 	• 

. 	. 

. 	: 

...... 

.. ' . 	. Ito 

:!!

▪ 	

.•:::: 

.. , 	., .., 	, , 	.:_,.:T!..;• 	"1:,:ji 
... 	, 	!.. , 	....... .. 	. . . . ,... 	. , 	..,; 	.: .  
..... 	:: 	't : : tI 	. ' ' 	..  :  . : I -.:' 	: : . t : ; ' 	, 	• : • : 	- 	! t: : 	- 	! - : - 

:-....:',I. 	I..... 

...... 

..... ;.:. 

- 30 

1.1 

2o 

. 	.. • . : 

.14 

„.. . 

... ••` ..... 
..... 	..... ; 	::!. 	„.. 

.;:. 
"::: 	 IT 

. r:- 	- 	-.::: 	:7 • 

..• 

12 ▪ ..... 

, 	; 	.... 

:" 	.. 	. 

• 
: 	: 	: 	" 	• 	I : 	 . 

:.• 	
ITT. 	.. -7:777 71-777 

0 

. 	.. 

•02 

• ; 1 : 	 .. 	. I. " 	. 

j- • 

..910 40 /0 20 



i• 



Fig.3.27 	First -orddr attenuation sensitivities to deley element variation for Exam le 
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A3I  a 

Observed Predicted 

a
1  

-0.5 -0.5 

a
2 

0.5 0.5 

a3  2.55 x 10-17 0 

a4 
-0.5 -0.5 

a5  0.091097 0.091097 

d
1 

-2.12 x 10 5 0 

d2 
0.4426 0.444 

d
3 -5 -0.4453 -0.444 
d
4 

-2.59 x 10 0 

The multiplier sensitivities are valid at both MAP points . 
The delay sensitivities are valid at the second MAP point only , 
i.e. wT=1.432566 . At the first point i.e.wT=0 all delay 
sensitivities are zero . . 

Fig. 3.28 Table of comparison for attenuation sensitivities in third-
order elliptic filter . 
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L =1.29869 	L,=1.15805 

02=0.06809 1 C4
=0.18583 

=1.802 J ---C1=1.08877 

0 	 

5=or:985561.o 

<I0 

1.0 

Fig. 3.29 Example II: 5th. Order Elliptic Low-Pass Filter . 

R [ 	R58 
 

<  a7 _„I 

Fig. 3.30.  Wave-Flow Block Diagram of Fig. 3.29 

C1
=0.085675 cii=c1  

°-------- 	r   

L =L 	L =11.672 
J 6-Cr 

3 L2=0.7912p 	
=0.45773  

--1 • 0 

   

C3
=1.26380 C2=2.1 

  

    

Fig. 3.33 Example III: 6th.Order Elliptic Band-Pass Filter . 

c̀ 3'ati- 
R 2 

  

S'°6 
007,a8  

Fig. 3.34 Wave-Flow Block Diagram of Fig. 3.33 . 
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m1=0.478751 
a2=0.286346, 
m3=0.837513 

a4=0.249110 
a5=0.304129 

a6=0.645819 

a7=0.425588 

a8=0.263561 

           

           

           

           

           

           

           

           

           

           

           

           

Fig. 3.31 Complete Wave-Flow Diagram of Fig. 3.30 . 



d2 	 8 Attenuation curves for Example II showing effect of multiplier rounding . Fig.3.32 
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a1=-0.0410779 

a„.P= 0.0488035 
m4=-0.266999 

m
5
= 0.512509 

a6= 0.266992 

a
7
=-t0.0254206 

a9=-0.919849 

Fig. 3.35 Complete Wave-Flow Diagram of Fig. 3.34 . 
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Chanter 4 

Desirn and Sensitivity Analysis of Wave Dirital Filters Imitatl.nf,  
.Doubl -Terminated Lossless Transmission-Line Netuon1rn. 

Cnntents: 

	

4.1 	Desirn Procedure. 

	

4.2 	The Derivation of. P&P rlensitivitv Characteristics. 

	

4.3 	Exarrele I: 3rd.Order IP Filter. 

	

4.4 	Example II: 7th.Order LP Filter. 

	

4.5 	Discussion. 

	

4.6 	Conclusions. 
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Chanter 4 

Desirn and Sensitivity Analaysis of "aye Dirrital 'Filters Tmitatin,  

Donbly-"erminated  Lonsless  Transmission-Lire Iretworks. 

4.1 	Desin-n Procedure 

The distributed nrototvne we shall use in this chanter is made un 

from a cascade of conmensnrate stenned-imnedance transmission 

lines [35] terminated at both ends by resistances. The basic 
network element necessary, the losslens transmission line or 
unit element, was described in Chanter 2. The network made nn 

from .n sections of this tyne an-nears in Fig. 4.1 and the transfer 

function will be of the form (803 

1% z - G (z) = 
Nly ( -1  z ) (4.1) 

where Hn  (z-1 ) is nn nth-decree nolv 	 -1  =i  

is one-way delay of lines and n is the lurmed-element cornier 

frequency variablP, mhus we are restricted to all-nole filters 

and tables for such filters can be fonnd in references [401,Ce13 

and F82). 

Let us now consider the dir-ital equivalent of 	. 4.1. In the 

two-nort annroaeh to the renresentation of transmission lines 

adonted in charter 2, we have for a line three naranetors 

(111, 112 , z0), tT7c,  of which ( Ri, 7,0) or (Rn, 70 ) are constrained 

and the other free. Thus the free pnrnmeter ray be chosen to 

facilitate interconnection. There are, therefore, two different 
digital confirrurations for a 'riven distributed nrototvne as was 

the case for LC filters. The wave-flow diarram on desirnincr 

from the source annears in Fin-. 4.2, whilst that on designinn-

from the load annears in Fig. 0.3. Tt is to be noted that the 

two delays of z 2  in each section may be conbined to form a delay 

z-1  (32)(50). The effect of this comhination is to nroduce ir 

the transfer function a factor of z-Y in the odd-order case. 

This factor has no effect on the marnitude resnonse and causes 

a linear shift in the nhase resnonsn. 
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The values of the multipliers in the 'Jaye Digital. Filter of 

Pig. 4.2 are 

oc i  = (R, - z1 ) / (Rg  + 71) 

cek = (z1--1 	zk)  / (zk-1 	zld K  = 2'31"'n  

(74 11 + 1 = (R- zn) / (RI  + zn) 

and in the Wave Digital. Filter of Fir]. 4.3 

oco 	(Rs - z1 ) / (Rs + z1) 

aC 	 (7-k 	- 	) / (7 	) 	. = 1,2' ' . n-1 	(!t 7) 
k 	'+1 	" 

7 
k 	' 	+ -k+1 	k  

(RL 	Z n'  
) ./ (aL  + n) 

where Z
k is the kth Characteristic Imnedanne. 

There are -t-To types of distributed filter of interest (a).T:uarter-

Wave transformers and (h) calf-Wave Filters LP23. The advantage 

of (b) over (a) lies in the fact that the imnedances of snceessive 

stens alternately increase and decrease, usually oseillatin7 

about 	whereas the impedances in (a) increase monotonically 

from unity often to extremely lar7e values, possibly10 20 

or more TAO]. We shall concentrate on the Falf-'Nave Filter and, 

in Particular, the tables of Levy [40] for equi-rinnle magnitude . 

responses. The amnlitude function for a Chehvshev enui-rinple 

resnonse is given by the ex-nression 

IN
_  1 

 1 + h -T. 	) 
n sin 0o 

(4.4) 

w/lrr'e 91  denoted the Chehyshev Ainction of the first kind fAnjof 
T 

desree n, 9 = 4131 	and A is the cut-off rarameter. A tynical 
0 

resnonse is illustrated in Fig. 4.4. Levy has tabulated the 
characteristic 5mnedances for values of n from 2 to 91, for 

values of Ibpduidth (wi) = A.A0/7r and for values of Voltase 

Standing "aye Ratio (vs'-m) = 1 + 2h2  24/ h2  + h4  . 

4.21 
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Thus having chosen the desired filter characteristics i.e. the 

values of n, BW and TTJR, the tables will yield the n 

characteristic imnedances. For odd-order filters Tge shall have EA01, 

R
s = RL  = 1 

= Zn-k+1 

whereas for even-order filters, 

Rs = 1 RL 
= VS? R 

and 	7 Z 	= VTIR. n-k+1 

A.2 	TheDerivation of 7:,p Sensitivity Characteristics 

4 ? 1 	Tntroaunti.or 

We shall  use Orchard's ar-unent P'3] to show•that, for '!Tave Di7ital. 

Filters imitating distributed filters, the first-order attenuation 

sensitivity to multinlier variation is non-zero at noints of 

. maximum pwrer transfer. The method used here is similar to thot 

used in section 3.3. ret us first state Orchard's argument again 

For any lossless netork oneratin- between resistive 

terminations, the first-order attenuation sensitivi.tY to 

variations in each of the reactive comnonents is zero at noints 

of n°x1mum nower transfer. Clearly, a netTTOrk consistin7 of 

cascaded commensurate lossless transmission lines terminated by 

resistances must satisfy Orchard's recuirenents. As each line 

element is lossless (reactive) 're may state at once that • 

= 0 at noints of maximum rower transfer where IHI is the 
Zi 

manitude of the transfer function. and Zi is the ith characteristic 

imnedance. We are now in a nosition to derive an exnression for 

the sensitivitY of the wave di rrital filter transfer function to 

rultinlier variations. 

A.2.2 Derivation of Formulae 

if G(z) is the transfer function of the wave digital filter, and 
A t  , 

if Gkz) is the transfer function of the transmission line filter 
1 where z = e wT then 

G(z) = K (z) 	(4.5) 
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where K is a constant whose value denenis on the elements of the 

distributed filter. For the wave digital_ filter desir:ned from 

the source end, we may use the discussion in section 3.1 and 

therefore 
n 

K = 1 + 

	

	 (4.6) 
RL 

For the wave di7ital filter desiPned from the load-end we 

similarly deduce that 

K = 2 	 (4.7) 

We may write, from eqn. (4.5), that * 

. 	A 
G 	K 	G 

S 	= S . 	+ S 
oc
p 	

04.n 	cep  

	

_ 	. 

where cep is a multjnlier. 

(4.8) 

A' 

Let us consider the term S an  in eqn. (4.8), which by using 

chain differentiation we find that 

	

A 	
A  z 	a  RL  A  R 

G S 	= 	G Sal + 	S 	+ S
R 

S
a.

s 

	

ce 	Z. 
i 1  P 	-L ap 	s p 

(4.9) 

The only assumption we have made in eqn. (4.9) is .that we may 

exnress RL, Rs, Zi each in terms of the oC n. This is valid 

because of that which follows. We shall use the Sensitivity 

Invariant for transmission lines which may be exnressed as 

follows [83] , 

A 	A 
	

A 

)77  S 	S 	= 	 (4.10) 
i=1 	Zi 	RL 

We may.eliminate one sensitivity function from eqn. (4.9) 

by,,yirtre of eqn. (4.10) and for convenience, let us choose 

S 
R 

then we have 
s 

a /R,  

	

SG 	Si  

z 

	

a 	Z Z. a 
P • 3. p 

A  R 
G L

/R
s 

RL m 

. (4.11). 

Footnote: 
A . 

* For convenience, we have dropped the (z) from G(z) and G(z), but 
their functional dependence on z is still to be presumed. 
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Z•As  
Ta'd-ing, the real nart of eqn. (4.11) and notinr* that S 1  and 

S RIJRS 	real, we have 
D 

 

A 	 A 	Z . /n el 	2:s IGI s  1 s ,F s lal splills = ty. 	Z a RL a  P 	i 	i  P 	 A P 
NI At -points of maximum nosier transfer we have S 	= 0 and (4.12) 

therefore 	 Zi  

S IGI= 	I I 	RL/Rs 	
(4.13) 

• ce  

.Talin the real -nart of eqn. (4.8) and combi.nin7 Frith eqn. (4.13) 
gives 

S 	= 	S 	+ S IG I 	RL/Rs 	 4.14) 
04 -0 	aC p 	RL 

It was shourt in Chanter 1 that S 	 = -5- at ...7../12. Therefore, 
RL 

s IGI  
= 	

RL/Rs 	 4.15) 
04D 	 04 

Let us now consider the. 1:-..ro methods of desirr.: 

I: Desirrc from tl-e. source—end. 

Zn For this case K = 1 + 	and noting that, from eqn. 
L 

(4.2), 

_ RL Zn oC n + 1 
 

RL Zn 

we can easily &low that 

K 2 = 1 + aC n+1 

thus 
[ 0 	for p = 1,2,...n 

otP 	—'n+1 
1  +°‘ n+1 	

for n = n +1 
(4 .1 6 ) 
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On rearranr;7in-,7 the relationshins of ear. (4.2) we have . 

	

Z-1 	= 	1 -d1 1 

	

Rs 	1 +oci 

	

Zk 	1 - 
for k = 2, ..., n 

	

Zk-1 	1 + eek  

	

Zn 	= 	1 -°4n+1 

	

RL 	1  + c'4  41-1 

• from which we obserVe that 

RL = Zi Z2 

	

Rs 	Rs  Z1 

and hence 
RL 
Rs 

-041 ) 	- 	2 ) 	 (1 -; ce n) (1 4" ''''n4-1) 

	

(1 +di ) (1 4.a 2) 	 (1 +an) (1  -an+1) 

(4.17) 

Tt can be seen from eq-,-1. (4.17) that 

Zn 
Zn-1 

5RL/Rs 
04 D  

for p = 1;2, 	n 

for -o = n + 1 

On conbinin7 norm. (4.15), (4.16) and (4.18) we see finally that 

for p = 1,2, . . n 

for = n + 1 

4.19) 
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IT:  De:0_n.n from the Loadnd. 

For this case K = 2 and therefore eqn. (A.15) becomes 

S 
IG I 

= i  s  RI,/Rs  
oe 	04p 	(4.20) 

On rearran7ing the desi;In expression of eqn. (4.3), 
we hove that 

ZI 	= 	1 -QCo 
Rs 	1 + ;iC 0  

Zk 	1 - 

+ 	k 
	k = 1, ...., n-1 

Zn_ 	1  - .̀4 n 
RL 	1  +. oc n 

Therefore 

	

RL_ 	Z2  
Rs  Rs Z1 

	

or RL - 	pe o ) (1 +&i )  	) 	+an) 
Rs  

(1 	bc 0)(1 -bci) 	 (1 	c(n-i ) (1 	o4n  

from which it is easy to see that 

RL/Rs  
ar  

- 20d 

(1 - 042n) 

  

; p = 0 

(4.21) 

   

 

2 oc p  

(1 -4.2n) 
; 	p = 1,2,..., 

 

On substitutinf>; for 	SRI,/Rs from eqn. (4.21) into eqn. 
cCD  

(4.20) we have 

 

Zn  RL 
zr, 

  

ial 
ben  

; p = 0 

(4.22) 

 

r = 1,2, ... 

 

   



oeo 

1 oc 
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The formulae in eqn. (4.19) and (4.22) are valid at maximum 

pseudonower transfer Points [50], however for a 'well-desi;modt 

filter it has been Postulated that at other Points in the 

Dassband, the attenuation sensitivity should be close to its 

value at MAP (33]. This fact is important with regard to 

attenuation distortion (59J. 

It should be noted that the W?D of the filter designed from the 

source differs from that of the filter desi-ned from the load only 

in the connections of the last multiplier (Figs. 4.2 and 4.3). 

Furthermore, it should be noted that the IIFD obtained usin7 the 

annroach are not dissimilar to those obtained by 

Fettweis £30] . 

Finally, lot us summarise the results of this section by saying 

that we have shovn that the first-order attenuation sensitivities 

to multiplier variations are not generallY zero at MP Points. 

This result clearly contradicts that of Renner and Gunta (40]. 

Their proof relies on the assumption that S
15I

= 3 = 0 

	

RL 	Rs 
,A„ 

at NAP, which is clearly false. (G(z) is the transfer function 

of the transmission-line filter). 

4.3 	Example I: 3rd Order Low-Pass Filter. 

Consider a third-order equally termlrated ChebYshev transmission 

line filter having a bandwidth, MT, of 0.2 and VS7R = 1.2. The 

tables of Levy [40] yield the following characteristic impedances, 

= 5.256 

Z2 = -0.1475 

Z3 =. 

also 	Rs = RL  = 1 

If we desiFn from the load-end then, on applying the design 

formulae of eqn. (4.3) we hive 

Rs :Z1 = - 0.6803 
Rs 

	

= Z2- Z1- 	- 0.9454 
Z2 + Z1 
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Z32-__Z2 = 0.9454 = -273  Z2 

	

11.1, — Z3 	= — 0.6803 oc3 
 = 	Z3 

] (4.23) 

The wave—flow diarrran appears in Fig. 4.5. The 	structure 

was analysed and the results in granhical form appear in Figs. 4.6 

and A.7. The former contains the amplitude response and the latter 

the attenuation sensitivity characteristics for each multiplier. 

At points of maximum pseudoPower transfer we have from the prarh 

of Fir. 4.7, the £0110,-7111E7 values for the attenuation sensitivities, 

IG I 1.2664 
ao  

s IGI = 8.9005 
°el 

S IGI = 8.9005 ez 2 

IGI = — 1.2664 
at 3  

   

 

(4.24) 

 

  

 

4 , 

   

Using the theory of section 

we have 

sIGI 

4.2 and, 

— 

in particular, eqn. 	(4.22) 

= 	1.2664 
c4o 1 	—"42o 

sIGi = 0( — 8.9005 cc 1 1 	— oe 21  

0(2 ------- = 8.9005 
a2 1 	—c 22 

cX3 
and s = — 1.2664 

O4 3  1 —00
3 

Thus the theoretical sensitivities are seen to be the same as those 

found by analysis. 
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4.4 	R7arnlp TT: 7th OrderLow-Passfilter. 

Consider a 7th order equally terminated Chebvshev transmission-

line filter hayinP a bandwidth of 0.8 and VS:1-2. = 1.5. The 

tables of Levy [IQ] yield the following 

Z1  = Z
7 

= 2.270 

Z2 = Z6  = 0.4956 

Z
3  

= Z
5  = 3.342 

Z4 = 0.4391 

RL  = Rs = 1 

If we design from the source-end then, on amlying the design 
formulae of eqn. (4.2) we have 

oe
1 

= (Rs - Z1 ) / (Rs + 71) = -0.38838 

= (71 	- 7,2) / (71 	+ 7,2) = 0.4160 

04
3 

= (Z2 - Z3) / (Z2 	23)  -  = -0.74171 

044  = (23  - z4) / (23 	z4) = 0.76774 

04
5 

= (24  - 25) / (z4  + 25) = - °e4 

oe6  = (z5  - 26) / (25  + 25) = - p43 

c.4
7 

= (Z6  - Z7)./ (Z6  + Z7) = - °<2 

oe 
8 = (RT., - 71)  / (RL 	27)  = 1 

The comnlete WFD annears in Fig. 4.2. The network was analysed 

at 61 frequency Points and Fig. 4.9 shows the nominal attenuation 

curve together with the curves corresponding to multipliers 

rounded to 3, 2 nnd 1 decimal place respectively. It is observed 
that the effect of reducing the wordlength is to give a constant 

shift in the attenuation curve. This confirms Orchard's argument 
for 'well-designed' filters at points, other than MAP, in the 

passband. Finally, the transfer function of the wave digital 
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filter in :Rif:. 4.8 is given by the e-mression 

G (z) 	(1 -1...?_11) G (z) 
RL 

but 	= 1 and Zn  = 2.27 

(4.25) 

therefore 
A 

(z) = 3.27 x G (z). 

At NIT points, 1(3I = 

therefore IGI = 1.635. 

The theoretical MAP sensitivities are qiveri below: 

'GT 

and S1G/
an 

 

oC D 

 

p = 1 (1) 7 

; P = 8 

S lol = 0..1574 
o 1 
NI = — s GI 

	

S ,,e2 	= - 1.0905 ee7 

	

"1 	iGi S 	. - S 	= 	1.6487 

	

oc3 	a6 

S IGI = - S IGI = 	-1.86P9 

	

c'64 	ae 5 
s IGI = 0.1776 048 

4. 	Discussion 

It is to he noted that the frequency response of the 
distributed filter is contained in [0, 15r (7iP7. 4.4) 

whilst that of the digital filter is contained in [0,7T) 
(Fia.s. 4.6 and 4.9). This is a direct result of the 

transformation (see section 2.5) 

z2  = cos A 4- jsing 

where 	z 	= ti 't which may be written as 

wT = 20 
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2.. 	The distributed. filter 'prototype we have used, •enables us 

to realize the equivalent wave digital filter with fewer 

additions than the corresponding structure realised from a 

• limned -nrototyne satisfying the same Snecification. [4.8] . 

However, the prototyne we have used in this chanter does 
- restrict us to all-Hole transfer functions. By allowinr! 

stubs (35] into the distributed filter we can, of course, 

extend the range to cover the more genera]. • 'Unit-Mement' 
(UE) Filters [38] . The derivation of wave digitsl filters 

from U filters has been extensively covered in the 

literature and references were given in Chanter 1. The 
• advants.r•c.' of using the simnler cp.E.:eade of transmission 

lines, lies in the fact. that numerous filter tables are 

available for both Chebyshey and Nasonally-Plat 

approximation thus malring desirn an easy task. 

3. Althou•-•;li the delay sensitivities ere not derived for 

transmission-line filters, the methods of section 3.3 nay 

be annlied to obtain similar results. 

4. In section 4.1, the Voltage  Standing Wave Ratio, S, 

was introrluced and a formula was given relating S to 

the rinnle factor h, namely 

= 1 + ? 4- 
j 2 	4 - 	2 h + b. (4.26 ) 

We would be interested to laiow the nassband rinnle in dB, 
given the value of S. I•re nay arrange eqn. (4.26) so that 

h annears as a function of S. It is found that 
2 

h2 = 4S. 
	 (4.27) 

By observing Fig. 4.4 we note, that the maximum nassband 
vt , is given by 

‘ /= 10 Log 	(1 +.h2  ) (4.28) 

Thus, on combining eons. (4.27) and (4.28) we find that 
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1 12 	dB = 10 Los, -10 	45 
(4.29) 

A table relating 71. to S using eqn. (4.29) is /7.iven in 

Fig. 4.10. 

4.6 	Conclusions 

We have seen that the nrocedures nroposed by Fettweis (30] for 

the design of wave dipital filters can be viewed from an 

unconstrained t-4-o-nort description of the individual lines. 

The characteristics of the attenuation sensitivity to multiplier 

variations were examined and it was found that the behaviour of 

the filter in the nassband could be nredicted. iloreover, it 

was found that the attenuation sensitivity to first-order 

variations of the inultinliers is not zero at noints of maximum 

pseudonower transfer but exhibits a constant shift from zero. 

This result is of particular innortance since the noise due to 

roundoff at the outnut of the filter is dependent on these 

sensitivities t15][21] . 
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Fig. 4.1 Distributed Filter made up from a cascade of n commensurate 

lines . 

Fig. 4.2 Wave-Flow Diagram of Fig. 4.1 obtained by design from source . 

po 

Fig. 4.3 Wave-Flow Diagram of Fig. 4.1 obtained by design from load . 
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Fig. 4.4 Typical response of distributed Chebyshev filter 
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Fig. 4.5 Wave-Flow Diagram of Example I:3rd.order Chebyshev filter . 
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Fig. 4.6 	Amplitude Response of 3rd.order Chebyshev 
Low-Pass Wave Digital Filter . 
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S 1 	(dB) 

1.01 1.075 x 10 4 

1.02 4.258 x 10-4  

1.05 2.584 x 10-3  

1.10 9.859 x 10-3  

1.20 3.604 x 10-2  

1.50 1.773 x 101 

2.00 5.115 x 10 1  

Fig:-4.10 	Table of Pass-Band Ripples (fl) against VSWR's (S) . 
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The General 17wb-Pert Transformation 
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Derivation of i.12 Sensitivity Characteristics. 

Study of Some Special Cases. 

Discussion of a Condition for Canonic S'I'D. 

General Discussion (includinp: table of wave formulations 
known to yield realisable di7ital filter structures). 
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Chrroter 5 

The genera] Two-Port Transformation 

.1 	Introduction: Princinal Ides. 

In Previous chanters, we have shown how a dip:ital filter mny be 

designed in such a war that it imitates the behaviour of a 

doubly-terminated lossless analogue network. The methoq relied 

on wave variable theory by means of which it was honed to 

nreserve the low-sensitivity Properties of the analogue nrototyne. 

The procedure consisted of transforming the port voltage and current 

variables for each element in the network to new tort variables 

Ak  and 	such that 

Ak  = Vk  Rkik  

Bk  = Vk  - I k 

Each reactive element in the network was treated as a two-tort 

and the relationship between its new tort variables was established 

using eon. (5.1) together with eqn. (5.2) which relates the 

voltages and currents. 

V1 	A 3  [V21 

C D 1
2 1 

(5.2) 

The transformation in eqn. (5.1) will be referred to as the 

1 Volta0,-e--Zave formulation' or more succinctly as the 'Voltage 

formulation'. This formulation has been studied extensively, 

almodt to the exclusion of other forms (see Chanter 1 ). 

However, two other formulP.tions are known 

(i) the Current-Wave formulation which is defined in matrix 

form as follows, 

[BA3:1 	Gk  1 I {Vk  

G -1 I Gk 
	k 

(5 .3 ) 

and (ii) the Power-Wave formulation which is defined in matrix 
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form as follows, 

1 
BI: 
 V, 

G, 	-1 	I 	2 AF. 	1 -RI_ 	T.k  
rk] = 	117k

CI

: 	

1

] 

V

kl:  I - 	I  { 	

(5.4) 

The transformations defined in eqns. (5.1), (5.3) and (5.4) are 

to be found in the theory of scattering parameters, where Rk  

isknownastheportresistanceandGk the port 

conductance f31]. The Properties of the currant-wave formulation 

are similar to those of the voltage-wave formulation in that the 

derived digital filter structures are canonic in delays and 

multitliers [60]. The rower-wave formulation would have. been .  

the more obvious choice but the.digital filter structures so • 

formed are not canonic in multipliers [30]. 

The main Durres° of this chanter is to show that there are other 

transferratons whieh enable us to synthesise a digits.] filter 

from a classical analogue network. Furthermore, it is Shown 

that there exists a subset of these transformations that admit 

canonic digital structures. 

Let us consider, therefore, instead of voltages and currents, 

four new variables and let them be related to Port voltages and 

currents by the following expressions (Fig. 5.1) * 

X11 	p V1 	
1 

Y1 	I1 

[X2I 	Q 
[V

2 
 

=  
Y2 	I2 

(5.5) 

(5.6) 

where Y1  and X2  are input variables and Y and Y2 are outnut 

variables. Also P and q are 2 x 2 non-singular transformation 

matrices. The problem therefore is to determine the elements 

of P and 1 that will enable the desi.gn of a digital filter 

imitating the behaviour of a doubly-terminated lossless network. 

Footnote: 

* The general transformation defined by eqns. (5.5) and (5.6) was 
first investigated by Carlin and Giordano in their excellent book 
'Network Theory' [99]. However, they used it only for analogue 
networks. 



[Y1 I 	Y2 

= PT
-1 [ X 1 	2 (5.8) 

Cr-11 	r:11'22 1112 

12 = - AR/R12 

X21 
	1/R12.  

-168— 

For the first part of this chapter. we shall abandon the port 

resistance concept and shall assume P and .Z each to have four 

independent coefficients. The only necessary constraint is 

that of realizability, that is no delay-free loons must be 

formed on interconnecting the sinal-flow diagrams of 

corresnondinp: analogue elements. 

Derivation of 6--Parameters 

Let us set 

T = 
A :C 
	 (5.7 ) 

Then we may combine eqns. (5.2), (5.5)', (5.6) and (5.7) to 

eliminate the voltages and currents.. We find that 

Let R = Prz 1 
, then we have more concisely, 

[yX1 	
[X
2
] 

= R 
Y2 1 

(5.9) 

We should like to express Yl  and Y2  in terms of Xi  and X2  for 

realisation nurnosos. Let the relationship be defined in the 

following way 

Y1 = 0-- 
[Y2 	[-.2c2t (5.1 o ) 

The relationship between the elements of R and those of 6 
is therefore as follows, 
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where AR is the determinant of R. As R = PTQ 
1  we have 

	

AR = 	A(PTQ-1) 

	

= 	d p) ( 	T) 	4Q 1  ) 

	

= 	A P) / A Q 
where AT = -1 if network is reciprocal (the currents are 

assumed to flow into the network). 

(5.12) 

P22 	p22 	q21. 	22 

P = {1311 

and Q-1 = 	
c1- 

-1 	
(111 	q12 

then eqn. (5.11) becomes 

Finally, let 

Cr11 = 11321q12A P21 q22B P

• 

22q12C P22q22D S  /R12 

Cr12 	AR/R12 

21 = 	1/R12 (5.13) 

622 = IP11q11 B +13 q C4. 13 q 
1 	-12 11 	'12 21D l /R12 

E12 = P11q12A  + P11 122B P

• 

12q12C 1112122D  

The general signal-flow diagram (SFD of eqn. (5.10) appears in 

Fig. 5.2. 

5.3 	Basic Equations for Series Elements 

10.1.  Series innedance 

Consider 11 in Fig. (5.1) to be a series impedance Z then 

T = 
[01  

On using eqn. (5.13) we find that 

Cr11 = (P21q12 - P22(122 - P

• 

21q22z)  / 
denom 

0-12 = 	- AR 	denom 

0-21 =1 	/ denom 

X22 = (1312q21 	1311 q11 	P• 10-21 	/ denom 
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where denom = P11412 - P12422 7,32,11 g22Z  

The next stagy-,e is to replace 7. by DL, 1 , 
PC 

\ and 1/(pC - 1--) for the series inductance, capacitance, 

series-tuned circuit and parallel-tuned circuit respectively. 

,5. 	Series Inductance 

For a series inductance, Z = pL and if we then apply the bilinear 

transformation, that is D 	- z1 ) / 	1- Z-1 ) 	eqn. (5.14) 

becomes 

a-11 	=[..(P21412 - P22422 - P21422L)  1-(D21412 
/ denom 

422 P21 q221,)z 

= cr12 - A R (1 + z-1  ) / denom 5.15 ) 

621 = (1 	+ z-1) / denom 

C1-22 =[(D12421 - D11411 	P11421L)  (D12421 - P11411 -.D11 121  
L)-- 

where 
-1 

denom = 	CI (- 11 -12 - P12422 - P11422L)  + (Pi 1 412 	P12422 i-P11422-ul
) z 

 

To avoid delay-free loops on interconnection of two-ports we have, 

as in Chanter 2, that either 6)1 or 0-22 
 must have a factor of 

z
-1. This condition implies that either 

n21 g1 2 21 -1 2 - 3'22(122 - p21 c122L  = 
	

(5.16) 

or 	P12421 	P11g1 
	

'12111= 0 
	

(5.17) 

Substituti/vr first condition (eqn.(5.16) ) into eqn. 
the following, 

0-11 	= 	 /(1 	-I- °L213-1)  

6-12 	= 	0(3(1  + z-1  )/(1 + oc2z-1 ) 

04.4 (1 	+ Z-1  )/(1 	-F 04. 2Z-1  ) X21 

6-22 	= 	(0(5 + 0(6z-1  )/ (1 fp(
2

-1  
z 	) 

(5.15) yields 

(5 .18) 

/ denom 
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where 
2 	/ 

0 1 = 213 21L/ 	A  P 

°'2  = 1 	+{2p11 1321 L/ A Di  

'43 P21 	4°1'1-22 

°(4 = P21/t22 	P] 

.°4  5 - P21 -12'21 	'11 	11 + - 11- p21 L)  21 	' 	/E-22a 	A D  

°16 = P21 (P12921 	- 	11q11 13119-21L)  /[c122 A 7] 

Substituting second condition, eqn: (5.17) into eon. (5.15) gives 

..the 

6"11 = ( 	+oc2z-1) ( 1 + oc3z 1) 

Cr12 = cx4  (1 + z-1) ( 1 + 3
z-1  ) 

. 	621 = ,045 	(1 ± z-1  ) / ( 1  +04.3z-1) 

X22 = 
-1 ( 1 + oC,

3
z 

where 

0C2 • = 

3 

c'Z4 
 

-9-21(1321'112  P22(122 

	

(p21 r'-12 	D - - 21 21 -12 	22 -22 

1 - 1 2(121n-22L  / A q  

- (121 4 13/1)11 

- P21 a22L)  41)1 A a] 

1)21 (I  2 21)  /P11 2 a] 

= 	921 1P11 A q] 

°46 = 29-
2 
 21 L  / 	

q 

5:3,3  Series Capacitance  

For a series capacitance, Z.= 1/DC and, as we have seen in 

Chanter 2, we may replace z
-1 

by -z
-1 and L by 1/C in equations 

(5.10) and (5.19) to obtain the appropriate equations. 

Parallel7.Tune4...P54914tdPA11PPerieP-AM. 
1 In this case, Z = 1/ { 	+ DC I and if we apply the bilinear DL 

transformation then 

(1 - z ) -2  
Z  "-= 	71 2-  T7-7 	z + 	oz-z (5.20) 
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Let p= ( r c)/( + C) then eqn. (5.20) may be written thus 

-2/ 	-1 
1 -  z 	 p z 	Az 

or, alternatively, as 

-17:147  -CY 

On letting T = -1 
(1 + p z-1  

( fl 	z-1  )  1  _ z—i + p z-  1 
1  + z-1 Li;  , .2;-1 

p z-l) 

in eqn. (5.21) we see that 

(5.21) 

Z = (5.22) 

nk-e-T is an all-pass function 
delay clement. In fact, when C = 0, for example, then 13 = 1 
and T = 

Substituting for Z from eqn. (5.22) into eon. (5.14) gives the 
following, 

trii 41(.92012 — 1322122 )  ( r+ a)  — 132-1 (1-22.1 

+ 16-221(112 - 1322°22 )  ( r  .1- a)  + P21(1-22.1 Ti / denom 
0- 2  = - 11 R ( r+ c) 0 + T) / denom 1 

13r21 = ( P + C) (1 + T) 	/ denom 

45-22 41 (13129-21 - :911c111 )  ( r + 0 - D I.  -11(121 I 	+ 

• {(3'12(121 - T111(111 ) ( :911 -21 ) 7 	TT]/ denom I r + 0 - n 

where 

denom =t (Pi 10.12 - 1312q22) 	+ a)  - 1311 g22 

i (P11(112 7 :912°22 ) 	r  + ,a)  + 	T  

To avoid delay-free loops on interconnection, again we have two 
alternative conditions, either 

• (92191 2 - :9229122 )  ( 	+ a).-  132022 
	 (5.24) 

or 	(1212921 - :911c1.11 ) 	17+  P ) 	:911 9/21 = 0 	(5.25) 

( /1+ C) 1.1 + 2 p 771  + z-21  

X5.23) 



1)21 	a- 	
122 

1321 /[722 A 11 

1)21 (1312121 	1)11n11 + 911(. -21 	. r 	C)  q22 	IA 

= 1321 (1)121-21 	1311c111 	13119-21. 	r+ a ))4122 6 p] 

e'e3 .= 

°I4 = 

'e5 = 

-173— 

Substituting first condition, eqn. (5.24) into eqn. (5.23) gives 
the following, 

611 = otl T 	(1 +oz2T) 

(1 +o.2T) 

(1 +0c2T) 

Cr12 

0- 21  

= 

= 

0C 3(1 

044 (1 

T) / 

+ T) / 
(5.26) 

6-22 ( oe5  -i-ce6T) / (1 4-0c2T) 

where 

2p., 	r  + C) 

0(2  = 1 + 	 .1)1 2p.
11' 21 /[( 	+ ) A Id 

Subbtituting second condition, eqn. (5.25) into eon. (5.23) Elves 
the followinp;, 

where 

0-11 = 1 -1-ce2T) / (1 +ce T) 3 

612 = 4(1 	T) 	(1 + cf3T )  

6-21 = 0{5 (1 	T) 	+ oST) 

6-22 = 6T / (1 + ce.,T) 1(5.27 ) 

"41 = -q21(1321(1 12 	P22g22 	1)21122/( r'+ C))41111  d n] 
r,  + C))/n11  6  "] °2 = -1-21 (P21(112 	P22(122 	D21"22/(  

oe3 = 1  - 2121r122/  [A 9. ( P + a)] 

c'4 = —g21 A P/Pfl 

°45= —1-21 :6116  (7.] 

"46 = 241/LA c1(  r + a  )] 

If we compare eons. (5.18) and eqn. (5.26) we see that we may 
obtain the latter by the followinP: substitution in the former 

equation, 

-1 z replaced by T 

and 	L replaced by 1/( p + c) 
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This is obvious when we consider eon. (5.22) and compare it with 

the following for a series inductance, 

-1 
Z = pL = 1 - 	L. 	(5.28) 

-1 + z 

Thus we do not need to derive the equations for the tuned-circuits. 

In fact only one set of equations for the series elements is 

necessary. The same is true for shunt elements. 

5.3.5 Series-Tuned Circuit in the Series-Arm 

1 
C 

In this case Z = pL + P — and on applying the bilinear 

tranSformation, we find that 

Z = (L + D) 	1 	(5.29) 

where T = z-1( p+ z -1 ) / (1 +pz-1 ) 

and 	//3 = (D - L) / (D 	L). 

If we comParo eqns. (5.28) and (5.29), then the-following 

- substitutions are evident, 

z-1 replaced by -T 

and 	L replaced by L + D 

in eqns. (5.18) and (5.19). 

Basic .:1cluations for Shunt :_anments 

5..4,1 	 Shunt Admittance 

Consider 11 in Fig. 5.1 to be a shunt admittance Y then 

1 0 
T = 

Y 

Oh using eqn. (5.13) we find that 

and 

611 = (P21(1-12 	P22q22 P22-12Y)  / denom 

er  
12 = 	- A R 	/ denom 

6721 = 	1 	/ denom 

cr 	— a P 22 	(-12 -21 	-11 '11 - 1 2c1-1 1 Y)  / denom  

denom = ' a 11 -12 -P12
a
-2 + p 2 	12-a  12Y  

} (5.30) 
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5.4.2 Shunt Capacitance 

For a shunt capacitance C, we have Y = nC and together with the 

bilinear transformation, eqn. (5.30) becomes 

611 	[(P21(112 - 1322(122 + 1372(112C)  + (321(112 	-P22a  22 - /322(112C)z-1/  

12 = 	 - AR (1 + z-1  ) denom 

	 denom 

21 = 
	 (1 + z-1  ) 	 denom 

61-22 = [c1312721 	P11c111 	P12(111 C) 	(P12(121 	-P11(111 .4-  p12 

denom 

where 

denom 
= 1P11(112 - P12(122 + P12(112C) 	(P11(112 - P12(122 - 1312(112C )

'z 

5.31 ) 

To avoid delay-free loops on interconnection we have either 

P21(112 - P

• 

22(3- 22 + P

• 

22q12C  = 

	 (5.32) 
or 

P12(121 - P

• 

11(111 - P

• 

129-11C  = 

	
(5.33) 

Applying the first condition to eqn. (5.31) gives the following, 

 

-1 	 -1 
0- 	= 	z 	+ a

2
z ) 

11 	1 

cri 2  = 0c3  (1 + 	) / (1 + oc2z-1 ) 

cr21  = 	(1 + z-1 ) / (1 ±c/..2z-1 ) 

cr-22 	
(c4

5 
+ oc

6
z-1 ) / (1 +

2
z 1 ) 

   

   

(5.34) 

   

   

where 

.1 

 

oC 
1 	 2 

= -2p
220/ Ap 

ac
e 

= 1 - 	 7) 
1 

21)1 ..
-22C/A D  

o43 = 	£q 1322/(112 

°C
4 
	P22t1124P1 

°45 = P22( )2(121 - P11(111 - 1312`111C) /[q12 hP] 

°'6 = P22('12q21 	Pllqii 	P12g11 C)  /[q12 ISP] 

Applying the second condition to eqn. (5.31) gives the following 

equations, 



= 	(cx1 

= 044  (1 

= ee5 	(1 

'f2.z1) 	/ 

+ z-1  ) / (1 

+ z-1  ) / (1 

	

(1 	°4321-4)  

+ 043z 1  ) 

	

+ 	z-1  ) 3 

O-11 

2 

6 21.  

Cf. 2 = ("4 6
z-1 	

9 
/ (1 + oc_z-1  ) 

(5.35 ) 
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where 0C1 	- = -a11 (D2111 2  P• 22g22 P• 22g124)  41312 A  g] 

	

0e2 = -411 (1)21112 	P• 22g22 P• 22g12C)  /[ 12Ag] 

0e
3 

= 1 + 2q11q12C/ .AQ  

°e4 = -q11 AP/P12 

°65 = -4111412 41 

046  = -2a11 C/ 6 q 2 

5.4.3  Shunt Inductance 

In this case, Y = 1/PL and as we have seen in Chapter 2 we may 

replace z-1 by -z-1 and C by P (=1/L) in equations (5.34) and 
(5.35) to obtain the appropriate equations. 

5.4.4._  Series-tuned circuit in shunt-arm 

In this case, Y = 1/(pL + -1—pC  ) and if we apply the bilinear 

transformation, we find that 

z-2)  
= 	 

(L + D) + 2(D - L)z 1  + (L + D)z 2' 

= p ,D - . 	z 	+ z P 	 1 ) On letting 	 and T = 1  L 
D + L ) 

	

1 + 	z 1 

we can write eqn. (5.36) as follows, 

1 	1 - T 
- r 

	

k L + D) 	1 +T 

(5.36) 

(5.37) 

For a shunt capacitance, 

Y = -PC 1 - z-1  0 

t + z-1 
(5.38) 

Therefore, we may obtain the appropriate 6"-parameters for a 

series-tuned circuit by replacing z-1 by T and C by 1/(L ± D) in 

eans. (5.34) and (5.35). 
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5.1.5  Parallel-Tuned Circuit in Shunt-Arm 

1
L  In this case, Y = DC + p — and on using the bilinear transformation 

we find that Y may be written as follows, 

Y = (C 	) 

±T 
i 

where T is as before. 

(5.39) 

Therefore, we may obtain the o--parameters for a parallel-tuned 

circuit by replacing z-1 by -T and C by C +1' in eqns. (5.34) and 

(5.35). 

5.5 	Basic 2q:aations for Sources, Terminations and Interconnections 

5.5.1 Introduction 

In the previous sections, as we dealt with 2-ports, it was clear that 

the matrix P defined the transformation on the input voltages 

and currents, whilst I defined the transformation on the output 

voltages and currents. In the case of 1-ports, however, We can 

use either P or Q. Thus, for each 1-port, there are two 

alternative equations. 

5.5.2  Resistive Voltare Source 

The equations of the voltage source (Fig. 5.3) are, in terms of 

P, as follows, 

Vo = V + RsI 

X = p11V + p 12 

Y  = p21V p22I  

In matrir form, eqn. (5.40) can be written as 

v 	= (1 Rs) 
(
ri)  (5.41) 

and 	(Y) = P 

	 ) 
	

(5.42) 

fV\ On eliminating k
I) betWeen eqns. (5.41) and (5.42) we find 

that 
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Rs ) P 1 t:KN 

from which we find that 

X = 
p12 - p11 Rs 
P22 - P21as 

v 
p22 - p21Rs o (5.43) 

or 	X = 1-- 2Y + pi vo  

The signal-flow diagram appears in Fig. (5.4). The delay-free 

path from I to X may be eliminated by setting pit = P11Rs and 

then eqn. (5.43) becomes 

X = pi/ V0 	(5.44) 

that is, a wave-source 1303. 

Let us now consider using Qto derive a relationship between Y 

and X. Clearly, the defining equation is similar to em. (5.43) 

with the elements of :z replacing the corresponding elements of 

P. However, in terms of the elements of q-1 we have 

X = 	(122Rs)  Y 	1 	V (5.45) 

	

(c111 ci2X7 	1-67+  q;XY  

The delay-free Path from Y to X may be eliminated by setting 

q12 	-g22 Rs 
s and then eqn. (5.45) becomes 

q29  X = 	V A q o 

Again, this represents a wave-source EN]. 

(5.46) 

5.5.0 Load Impedance 

The equations of a load impedance Z (Fig. 5.5) are, in terms of 
P, as follows 

V = Z I 

X  = P11V  P12I  

= P21V P22I  

On eliminating V and I we find that • 

P Z Y = -21 	
n 4 22 X - (5.48) L  _ 

-1'11`'
+ p

12  
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We are narticularly interested in the case when Z = R, load 

resistance and eqn. (5.48) therefore becomes 

P2121  + p22.  Y =  p1 IRL + p12 
(5.49) 

The delay-free path from X to Y may be eliminated by settin7 

P21 RL + p22 = 0 
in which case 

Y = 0, a wave-sink [SO]. 

If we had used 72 to define the load resistance then eqn. (5.49) 
would have been 

q11  Y = 	----- 
g22-L - q12 

- 
where D 1 = Eq.& . 

(5.50) 

The delay-free path from X to Y may be eliminated by setting 

q11 - 121HL = 0 

in which case, we have as before a wave-sink 130.j. 

5.5.4 Tnto-occnnoction3  

To connect two elenents together, we must apply Kirchhoff's Laws 

at the common junction (Fig. 5.6), that is 

= V
2 

II 	-12 

or equivalently, 
1 	0 

T = 0 	 (5.51) 

Combining eqns. (5.13) and (5.51) we find that 

6i1 = (P21112 - 1322(122)  / denom. 

6-12 	- A R 	/ denom. 

6-21 	 1 	/ denom. 

X22 = (P12(121 - P11(111)  / denom. 
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and denou = P119-12 - P12(122* 

To avoid delay-free loops, we have the same condition as for 

reactive tuo-port elements, namely that the constant term in the 

numerator of 6- 1  or a-22  must be zero. Therefore, we have two 1  
alternative conditions, 

P21(112 - P22(122 = 0 
	(5.53) 

or 	P12(121 - P11q11 = 0 	(5.54) 

Applying the first condition to eqn. (5.52) gives 

07 = 0 

4412 = P21 A 1/q22 

6721 = P21/(122 2/3  

622 = P21 (912q21 	P11q11 )/(122 A P 

(5.55) 

and applying the second condition to eqn. (5.52) gives • 

611 = -P12 A"- (P21q12 	P22q22)  /(111 

Crt2 = -q11 P/1312 

C21 = -q11/P12 6  q 
	(5.56) 

622 = ° 

In the discussion on interconnections in Chapter 2, it was desired 

to have a direct connection between successive two-ports. In 

this chapter, however, we are dealing more generally with 

interconnections. Let us, nevertheless, consider the case 

when 46-
1 1 

= 	
22 = 0 -  and then eqn. (5.52) gives for 

612 and 6-21  the following, 

612 = P21 Acj1122 	(5.57) 
6"21 = 1)21/422 AP  

Many equivalent expressions for 6-12  and 6-21  may be found 
because eqns. (5.53) and (5.54) must be satisfied simultaneously.. 
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5.6 	Study of Additional RealizabilitY Conditions 

5.6.1 Introduction 

We have seen, in Previous chapters. that it is necessary for 

realizability, to have no delay-free loops in the digital structure. 

There are however, additional constraints which must be satisfied. 

The first of these shall be referred to as the 'cascade' 

condition and may be expressed thus: The transmission matrix 

of a digital two-port net,Tork taken as a whole must be eoual to 

that formed by the product of the transmission matrices of the 

constituent two-ports. The significance of this condition will 

be discilssed in section 5.6.2. The second condition which shall 

be referred to as the 'Transfer-function' condition states that 

if H(n) is the transfer function of the analogue prototype and 

G(z) that of the derived digital filter then 

G (z) a K G (z) (5.59) 
where 	K is independent of frequency 

and 	G (z) is the digital transfer function 

obtained on applying the bilinear transformation to H(p). We 

shall loo'•: at this more closely in sections 5.6.3 and 5.6.4. 

Finally, the third condition concerns the individual circuit 

elements and is discussed further in section 5.6.5. 

5.6.2 	Cascade Condition 

Let us consider again a two-port (Fir,. 5.1) described by its 

modified transmission matrix, T = A 	 , 
and suppose we 

decompose the network into a' cascade of two-ports (e.g. series 

impedances, shunt admittances or unit elements). LetP and Q 

be, as before, 2 x 2 non-singular matrices such that 



	CP T n n 

Y2
(n)  
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Ue may write therefore, by eliminating V1 , 

X1 = 1 X2 

[Y1 	Y2 

and T that 

(5.59) 

The matrix R = PTA-1 is then the transmission matrix for the 

new variables X1,  X2, Y1 and Y2' Let us now transform, in a 

similar way, each constituent two-port. For the kth-section, 

we have 

(k) (k) 

{X1 	= Pk  Tk  Q.k.-1 	[X2 

(k) 	• 	
Y2
(k)I.  

1 
• 

(5.60).  

Notice that even an interconnection between, say a series 

inductance and a shunt capacitance can be treated as a constituent 

two-Port. As a consequence - of this, we have at a junction (Fie. 5.7) 

(k+1 ) 	) X1 	
= y 

X2
(k) 	= Y (k+1 ) 1 

or, equivalently in matrix form 

X (k) 	0 	1 	[X (k  1- 1) 2 	1 

[Y2
(k ) 1 	0 	y + 1) 

(5.61) 

If we now cascade n sections together (Fig. 5.8) we find that 

[ 0 	1 
where C = 

1 0 
(5.62) 

The equivalent expression for the whole network is 

• [X1(1)1 	
-1 1X 

 
2(n)1 = PTQ 

, (1) 	y (n) 
2 

(5.63) 



• where 

T = TD 

= [1 	0 0 -1 

(5.65) 

and therefore ean. (5.64) becomes 

T = T DT2D 	DTn 
(5.66) 
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A 

Let T be the conventional transmission matrix of a two-port 

and Tk 
the matrix for the kth. constituent two-port element. We 

have immediately that 

A 	A A 	 A 

fi = T1 T2 	 Tn (5.64) 

As 

that 

[Li  T 21 and ' = T 

2 

[I 	{ I 

V1 	V " 
V 

 

2 	1 	2 

we have 

We are now in a position to compare eqns. (5.62) and (5.63). 

It is clear that 

P1  = P 

Qk1 CPk+1 = D 	; k = 1,2,...,(n-1) 	t(5.67) 

-1 	-1 
Qn = 

Thus eqn. (5.67) represents the cascade conaition. Tor generality, 

we have allowed each constituent two-port to be transformed 

by different matrices but henceforth shall consider the case in 

which Pk  = P, Qk  = Q for all k. Thus eqn. (5.67) reduces to 

Q 1 CP = D 	 (5.68) 

As an example, let us consider the current-wave formulation 

for which 

r

G1  -1 

1 1 
	

[C.2  11 

P = 	= 
G2 -1 
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On using eqn. (5.68) in the form CP = Qp, we find that 

and 

Therefore, CP = 

CP 

QD 

QD 

= 

if 

G1  

G1 

G2 

G2 [ 

Gi  = 

-1 

1 

-11 

1 

G2  . 	As the cascade condition.  

is concerned with connections of two-ports and as the theory 

described in Chapter 2 allow us to interconnect directly 

two-ports if their apnropriate port resistances (or conductances) 

are equal, the current-wave foriulation clearly satisfies the 

cascade condition. 

5...6.5 The Transfer Function Condition 

In this section, we shall investigate the conditions necessary 

to realise a digital filter whose transfer function G(z) is 

related to that of the analogue prototype by the followinc;, 

G(Z) = KG(Z) 	(5.69) 
A 

where K is independent of z and G (z) is the 

function obtained by applying the bilinear transformation 

to H(p). 

Consider the network of Fir,. 5.9. The transfer function H(p) is 

given by the expression, 

H(p) = 	 1 	 (5.70) - (A- B/RL) + its(C - D/RL) 

where 

[

V1 	B [V2] 

Il  = C D 1
2 

There are three alternative dicital eauivalents of Fig. 5.9, 



R1 or 
P11 

g12 = 

422 

P12 
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(i) Fettweis-type design (Fig. 5.10), (ii) Design from the 

source (Fig. 5.11) and (iii) Design from the load (Fig. 5.12). 

Each will be discussed in turn. 

(i)  F etttreis ,Tyne  Design 

In this case, the delay-free paths of both the resistive 

source and the load resistance have been eliminated. 'Jo 

have therefore imposed the following constraints (see 

sections 5.5.2 and 5.5.3) 

and 

P12 = 1211Rs or q12 = -a Rs 

V = -P 
- 22 	21% or q11 = g21 RL 

Those conditions lead to the following, since the 

relationships between the elements of P and 1 defined 

in eon. (5.71) can not change, 

and 
1922 	g11 

1921 
- R1  or 421 - R2 

The variables R1 and R_ were chosen so as to connect the 

known transformations to the present discussion. 

Let us consider the transfer function of Fig. 5.10 and 

recall that 

	

Y1 	
6
11 6_12 ri l  

	

[y2 	 6- 	X 1 = [,,i 22 	X2 

The terminal conditions are as follows, 

(5.72) 

X2 = 0 

g22 = pi Vo  where p = p11 or - q  (see and 

section 5.5.2). Thus the transfer function G(z) = Y2/7/.0 
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can be written as 

	

= 1 6-21 
	 (5.73) 

Recalling eqn. (5.13) we have from eqn. (5.73) that 

G(z) = 	 
P11 (q12A -1-  (1223)  + P12(g12C ± g2215) 

or, equivalently as 

G(z) ) = 131 	 1  (5.74) 

	

P11112 	( A + 122 B) + P12 (C + 122 D) 

	

112 	P11 	112 

On equating coefficients of A, B, C and D in ean. (5.74) 

and eqn. (5.70) and noting eqn. (5.69), we find that 

K = ---P1— 
-11112 12 

(122 	1 

112 

and 	P12 = R 
P11 

The last two conditions lead, for reasons given before, 

to the following 

P12 	112 

P11 	q22 
 

Combining conditions for Fettweis-tyne structures, we have 

P12 	 g12 R1 	
R2  

P11 	q22 

and 	
P22 	g11 

21 . 	 121 
- R1  or — = 

also 	IC = 1 or 	1 
q12 	2p .q 

- 11 12
q 

 11 



G(z) = 	p1 

17111-112 +`4g11 
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All these results are tabulated at the end of this 

section. 

	Design from the source 

In this case only the delay-free path of the resistive 

source has been eliminated. 	have therefore imposed the 

constraint 

P12 = 111% or  q12 = g22Rs 

These conditions lead to the followin 

	

P12 = R 	q12 
= - p11 

	

1 	Or. 	2 g22 

Let us consider the transfer function of Fig. 5.11, the 

terminal conditions are 

	

K1 
	pivo 

X2  = y 

	

2 	2 

These, together with eqn. (5.72) give 

Y  
Vo 
2 	X21 G(z) = 	- 	- ocar-22) (5.75) 

On combining eqns. (5.75) and (5.13), we find that 

1 

	

A + g22 °5"-21  B  P12 	g22+"21 D)  

g12 	4̀g11 	p11 	q12 4- c4g11 

(5.76) 

Comparing eqns. (5.76), (5.69) and (5.70) and equating 

co-efficients of A, B, C and D together with K, we find that 

K • = 	/31 

517g12 +°4g11)  

P12 
P11 

= R
s  5.77) 
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and 122 	°(121 

112 	°4-111 

There are two possible values for a., depending on whether 

P or 7/ was used for the derivation of the signal-flow 

diagram for RL  (see section 5.5.3). 

P21RL 4- P• 22 If 	oc 	then the last expression in 
P11 RL P

• 

12 

eqn. (5.77) can be written as follows, 

q22 (P12 	Pii RL) 	121(1°22 	p21 RL) 1 	(5.78) 

q12 (-13-12 + p  i i RI)  + 111 (P22 + P21c- 	RL 

Clearly eqn. (5.75) must be satisfied for all values of 

R 	This leads to the following set bf constraints, 

122 . -P2i 
121 	P11 

412 	p22 
(5.79) 

and 
	

421 	Pi 1_ 

111 	p12 

Ifd = qi1 - _q21 RL 
	then we have, from eqn. (5.77), that 

-q12 122RL 

122 (- (112 + 122Rd - 121 (111 - 1• 21 RL) 1 

q12 (- 112 q2210 q11 (111- q

• 

21RLY 	RL 

which leads to the following 

and 

22 
122 = 121 
22 
111 = 112 

It is easy to show that when q22  = q21  then qii 
 = - 112 
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and when (122 = - q21 then q.. = a 

Note also that the expression for K in eqn. (5.77) depends 
on of and 131  and since there are two possible values for 
each, K has four alternative values. These values appear 
in the summary at the end of this section. 

iii) Desi from the load 

In this case only the delay-free path of the load has 
been eliminated and therefore the following constraint 
has been applied (see section 5.5.3), 

P22 - P21RL or q11 = q21 RL 

These conditions lead to the following, 

P22 (111 - R or — = 1 	 R2 
• P21 	 c121 

Let us consider the transfer function of Fig. 5.12, the 
terminal conditions of which are 

= 	/32Y1  

and X2  = 0 

These, together with eqn. (5.72) give 

	

Y2 	13 1 a-21 G(z) = 	= 

	

0 	(1 - 192  a-717j (5.80) 

On combining eqns. (5.80) and (5.13), we find that 

G(z) - 	131  
g12 (p11 P2P20 

 

c122 + (p2  :P2P22)  +  q22 14  
c112 	p11 -P2P21 	q12 

(5.81 )• 
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Comparing eqn. (5.81) with eLins. (5.69) and (5.70) and 

equating coefficients of A, B, C, D and K we find that 

K = 

q22 

q12 ( P1 1 	- 

= 	1 
RD 

P2P22 

P2P2 17  

= 	a 

(5.82) 

q12 

P12 - 

• We have to consider the alternative values .for pLI  , j3 2  

depending on whether P or Q is used for the voltage 

source. 

If P was used then, from section 5.5.2 

13 1 
p  

P22 - p21  its 

and 	p2 = p12  - p11  Rs 
P22 - P21 Rs 

and together with e4n. (5.82) give 

K  = 1/q12 

	

and p12  - P21322 	P12 (P22 - p

• 

21  Rs)- 13

• 

22(P12 - P

• 

1 i Rs)  

	

Pll P2P21 	P11 (1)22 - P

• 

21 Rs)  - P

• 

21 (P12 - P

• 

i 1 "ls 

= R
s  

If q was used then, from section 5.5.2 

13 1 = 	1  
7-171- (121% )  

/3
2 
 = - 0-12 +  c122as)  v  

(q11 (121170.  

and together with eqn. (5.82) we find that 

P11 - P2P21 
Rs 

•• • •-•17, 



P12 = 	P22 = 

 Ri 
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P12 (̀111 	12 R;,)(g12 	122Rs)  P22 R 
P11(4711 	g21%) 	(112 	122"1s)  P21 

(5.83 ) 

ITou en. (5.83) must be satisfied for all Rs. This leads 

to the following set of equations, 

and 

P12 - 112 

(5.84) 

P22 

P11 

= 	■•••"- 

q11  

= 	122.  

121 

g21 = 

P21 

P21 

P22 q11  

	 SummarT of the Transfer Tunation Condition 

	 Fettweis-Type Desial 

(a) 	;.latrix P for source and load. 

g12 	

2 
1• =

2, 	q12 

(b) Eatrix P for source, q for load. 

P12 = R  111 = 112 

P11 	l' 121 	122 

K = 

112 

(c) 	Hatrix q for source, P for load. 

P12 	P22 = - ----• 	R 
P11 	p21 	

1 

112 = 

122 
122 - R2' K 
P11 11  

P11 	P21 

q12 
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(d) 	Iatria Q for source and load.. 

P12 _ 
p1 

R1  
q11 	q12 
421 	q22 I2 

K  
1 

21311'111 	q12 

(ii) 	Desio. from the source-end  

(a) 	Matrix P 

P12 

for source 

R1' 

- 
P21 
p11 

P11 _ 

K 

' 

and load. 

•- 12 ( .0 	) 
11 

q22 
q21 

(121 

= a -11 

q12 = 

p 	11 	RL 

P22 
----- 
P12 q11 

g11 1312 

(b) Matrix P for source, Q for load. 

-  P11 
12 	

R1' (122 = 	q21 ' q-11 	"1" q12 

K = 1 	1 

q12 	q-22RL 

(c) Matrix for source, P for load. 

P12 
= 	

q12 
1311 	

C122 	R2 

q22 	_ p21 	q12_ P22 
q21 	P11 	q11 	p12 



7121 	a -22 	 412 
q11 = a-12 1 = R2 , K = 
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(d) Matrix Q. for source and load. 

P12 = R1 	
al 2 

' 	= - R2  
P11 	422 

(122 	1 	1 
(122 = 	a-11 	rt.. (112' K  = 	D 

2'1 1 	q (112 	q721-11 

	Desirn from the load-end. • 

(a) Matrix P for source and load. 

1112 = 
	

1 
1 	- R2' Y  - a q -22 	 q12 

(b) Matrix P for source, 2  for load. 

P22 
P21 

(c) Matrix Q 

P22 

for 

— 

_ 

= 

source, 

R1' 

c112 
q-11 

°-21 

P for 

41 2 

load. 

_ 
- 	- R2 

= - 
422 

- 21 

P12 

422 

1311 
P22 

P21
P22 

p21 

K 

421 

{__Pi 26 p2 qi -- 
c111 42 

= 
1311 

(d) Matrix Q  

c111 

for 

= 

= 

c121 

source 

(112 

and load. 

= 	R2 

P11 

1 
q 

 12 

q-22 
421 

0  
2p220  22 

P12 

q22 

a-12 
P22 

D,. - ei 

-111 

a 21 

, 	p21 

, 	K 	- 
P22 q11 
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The transfer function condition reintroduces the port resistance 

concept which was abandoned at the beginning of this chanter. 

Several important points arise and we shall discuss them here. 

It is clear that, disregarding for the moment the terminations, 

P is associated with the input port and its resistance R1 and Q 

with the output port and R2. However, we may use either P or Q 

to derive the SFD's of the terminations. Let us consider, 

for example, the value of K in eqn. (5.74), namely, 

The quantity 191411q12. 	p11  is definitely associated with the 

input and a12  with the output. Moreover 131  is associated with 

input irrespective of whether P1  is derived from P or Q. As 

another example, let us consider eqn. (5.77) where 

K  = i31/IP11(1.12 4-°e(111)1.  Agin we have that p11  and p 
are associated with the input and q11  and q12  with the output. 

The multiplier variable a may be derived using P or Q, but 

it is still associated with the output port and its corresnondilv; 

resistance R2. This discussion immediately implies that the 

constraints of eqn. (5.79) need only hold when Ri  = R2  since 

P and . refer to the same port. A similar argument may be 

applied to eqn. (5.84). 

In the expression for K, the separation of variables into those 

at the input and those at the output will have important 

conse:Iuences in the next section when we discuss sensitivity. 

Finally, the sianificance of expressions such as 
P12411 	R1 

lies in the fact that R1 must be finite and non-zero and therefore 

both pl/  and p12  must be non-zero. 

We have nowhere assumed that P and T are the same, although there 

are cases in which the known transformations exhibit this similarity. ' 

For example, the voltage formulation, which is defined as follows 

1 R1 	[11 ...R2  

P = 	Q = [ 1 -R1] 

satisfies the condition P = Q when RI  = R2. In this case, and 

also for the current and power-wave formulations, using P or Q 



-193- 

to derive the signal-flow diagrams leads to the same structure 

and thus the argument used in this and the preceding section could 

be simplified. However, we shall consider, in a later chapter, 
transformations for which the condition P =, When R1  = R2  never 

holds and this justifies the more general approach taken here. 

We could discuss the three cases above as special cases of the 

general two-port configuration shown in Fig. 5.13. The transfer 

function may be derived as follows, 

We require G(z) = 2 
o 

(5.85) 

and we know that 

B1 -11 	r12 	Al 

{ B2  H,1 6 A 

	

22 	2 

(5.86) 

The terminal conditions may be written in matrix form as 

0 	4.  /31 

 

Al 	[ P2 By [ 
3
2 	

0 (5.87) 

A2 	0  

Eliminating Al 
	between (5.86) and (5.87) gives 

A
2 

It is easy to show that, using ean. (5.88) and (5.85), we may 

write the transfer function'G(Z) in the following way, 

G(z) = 	131 Cr-21 

c<" cr22 - P2 °-.11 	°4  P2 

where As is the determinant of 6-  , that is 

611 - 622 	6-12 cr21 

It can be seen from Fig. 5.13 that a'delay-free loop can be 

avoided if 6-12 or 6-21 has a factor of z-1 . Such a property 

(5.89) .  



= -g21(1)219-12 P22q22 P20-2211)1 	11 	6  q] 

= -q21 (p21 q12 P22q22 P21q22L)411 Ag] 

and eqn. (5.19), 

441 

a2 
oc3 = 1 - 2q21 q2211  6  q 
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is a characteristic of filters made up from a cascade of 

commensurate lossless transmission-line elements. ',Te shall not 

take this general approach any further, since all practical filters 

fall into one or more of the simpler cases.. 

5.6.5  Individual Circuit Element Condition 

The last condition concerns the individual two-port circuit 

elements. By observing the form of the coefficients foed in 

the Cr-parameters (see sections 5.3 and 5.4), it is clear that 

a condition is necessary in order to ensure the non-degeneracy 

of the digital structure. In other words, we must examine the 

restrictions necessary so that Ice,l< 00 
	

for some k. 

In this section we shall consider only design from the source and 

design from the load, since Fettweis-type two-port elements using 

adaptors are similar to those discussed in Chapter 2. 

If we design our network from the source-end, then it is necessary 

that 	6-22' for each two-port element, is divibible by z
-1. 

For a series inductance, let us recall eqn. (5.17), that is 

P1 2'121 - 1311411 + P111211" = 
	

(5.90) 

(5 . 91 ) 
oc4 = —q21 A.P/Pi 

'45 = -q214.11 Aq] 

c46 = 2q211-1  q 

For a shunt capacitance, let us recall eqns. (5.33) and (5.35), 

that is 

P12q21 	P11111 - P12q11 
	= 0 
	

(5.92) 

and 



-197— 

°e1 = -q11 (P21(112 - 1)22(122 	1122q12C)41)12 .4qj 1  

ce2 = -q)1 (P21q12 - P20-22 - P22q12C)4,1)12 
= 1 	2111q12C/ A q 

°44 = -q11 11 P/P12 

°45 = -q114312 d  q] 
A 

0e6  = -2q12  1 C/ ea q  J 

(5.93) 

We do not need to consider any other circuit elements since their 

equations can he obtained from either eqn. (5.91) or eqn. (5.93) 

. by transformations which are independent of P and Q. 

It is clear that pll  and p12  can never be zero otherwise we have 
infinite valued multipliers. Also q11 

must be non-zero, since if 

q11  = 0 then eqn. (5.92) gives q2. = 0 and then 	q = q1  1 c122-c112q21 = 0  • 
which leads to infinite valued multipliers. 2inally q21  must be 
non-zero, since if q2/  = 0 then ezin. (5.90) sixes(111 = 0-and 
then 21 q  = O. 

Thus for networks designed from the source-end, the following 

conditions are necessary: 

p11  / 0, pI2  / 0, q11  / 0, q21  / 0 	 (5.94) 

Using a similar arrxment, with networks designed from the load-

end, and eqns. (5.16), (5.18), (5.32) and (5.34) we find the 

following conditions are necessary: 

P21 / °' P22 	°, q12 / °' (122 / ° . 	(5.95) 

5.6.6 Conclusions 

:fie are now in a position to discuss possible values for P and 24  

and their associated structures. It is to be noted that the last 

condition was derived only for ladder network elements and 

henceforth we shall consider only doubly-terminated lossless 

ladder networks. The arguments may, however, be applied to unit-

element filters. Althowth we abandoned the port resistance concept 

at the beginning of the chapter, we have found it necessary to return. 

We may indeed restate the first condition with this in mind, since 
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at a junction, the port resistances are eaual and therefore the 

condition is 

CC1 CP 	D 
	

(5.96) 

RI = R2 

and if we express eqn. (5.96) in terms of the elements of P 

and Q we have 

P11 

P21 

again when Ri  = R2. 

In the special case when 

= 

= 

P 

Q21' P12 

Q11, P22 

= 	a 

= 	-Q22 

= 	-112 

we have from 

(5.97) 

eqn. 	(5.97), H2  R' = 

P11 = P21' P12 = -P22 
(5.98) 

all = Q21' Q12 = -Q22 

The three known transformations all satisfy P 	Q when 

= R2  and it is easy to verify that they also satisfy eqn. (5.98).  

A table of other transformations that satisfy the three conditions 

will be given at the ena of this chapter. 

5.T 	Derivation of 	Sensitivity Characteristics 

We are ultimately interested in digital filters that have no more 

than one multiplier for each reactive element. Thus for any 

useful configuration, linear relationships must exist between 

the multiplier variables 0C1  , 	eZ6.in eqn. (5.18), for 

example. It is not unreasonable to assume, therefore, that the 

one independent multiplier will be a function of the passive 

variable R, L or C. This assumption is precisely the one made for 

the derivation of NAP sensitivity formulae in Chapter 3. 

Consequently at points of maximum available pseudopower or NAP 

we shall have 

S RL1Rs  (5.99) cc   
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for a multiplier 0‹. , where G(z) a KH(p, 1 - z-1  
P - 	-1 

1 -F. z 

and K is independent of p and z
-1
. 

The importance of the sensitivity function in estimating round-

off noise has already been established 113][217 and so it is 

expedient to minimise the absolute value of S
IG/ 

There are two conditions for which 

S 	= 0 	V o  

Either 

(a) RL — independent of of Vec 
Rs 

and K is a constant 

or F a 
(b) K = k -,77-. 	, k constant. 

It 

Condition (a) has been discussed in detail by Fettweis for ':iave 

Digital Filters based on voltage waves [59]. He found three classes 

of filters that satisfy (a). They are as follows: 

(1) Transfer functions realised as Reflectances. The main 

disadvantage is that stopband sensitivity is high. 

(2) Lattice Filter realisations. Disadvantage as (1). 

(3) Certain types of Unit-Element Filters. The main' 

disadvantages are increased number of delays and design 

can only be achieved by optimisation. Tie will.not discuss 

the implication of (a) on the general two-port transformation. 

Condition (b) is easily derived by writing eqn. (5.99) as follows 

s IG1 K11777, = S 	L s De 	DC (5.100) 

Therefore, if K = k)73-571: where k is a constant, then we have 
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the desired result . Alternatively, we may consider the transfer 
A 

function li(p) which may be defined thus 

11(p) = k 
rZ
sEl(p) 	(5.101) 

At points of maximum power transfer, 

'H(p)1 
	

and 

therefore 

and thus 

IH  (p )1 	= 	i 	• 

I Sx
fil 
 = 0 for all passive variables x . 

Again, we have the desired result using the arguments of Chapter 3. 

Let us now apply this constraint to the three cases discussed in 

the last section. It is important to recall the comment made in 

the last section, that is to separate clearly the variables associated 

with the input and those with the output. 

Fettueis-type design (see 5.6.4) 

For (a) and (b), K - 	. No solution is 
q12 

possible in this case since (112  is associated only 

with the output port and its associated resistance 

R2  = RL  . For (c), K=1 g22 / 1 	where the 

P11 	c112 

bracketed expression is associated with the input port. 

Therefore as K = k — 
RL 

f. 

 

we have 

. 	(5.102) 

q22 	 R, k  
p11 Aq j q12 	----- 	(5.103) 
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Ue have immediately that 

c112 = 1'1 	 (5.104) 
and 
	

c122 = -k1 //172 

3qn. (5.103) then becomes 

(122 = k k 1 	'tir  P11 A q 

Applying the cascade condition Q11 = p21  we have 

- k k1 	s P11  

Let pl., = k2/J, without loss of generality, then 

P21 = k k1  k2 

Therefore 
p12 = k2 1 

and 
	

P22 = -k kik2R1  

Ne thus have P and Q in the follolling form, 

.11 

k2 

1 
	k2 ,f"1 

P = 

-kkik221 

kk1k2 kk1k2R2 

k2 -k2417:27 

However, we must check Q to see that eqn. (5.104) is satisfied. 

P21 

Now q12  = - Q12 = - 	-2- 	 (5.105) 



k2 k 
c- 	

k2d 1 

k2  

P = 

and 	C = 

"lic R2  

-k2 irc 
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On combining eqns. (5.104) and (5.105) we have 

2 

and therefore the final form for P and Q is as follows, 

Finally, for (d) 

f1 ? 1  = 

2131 qi 3 q12 

rR 
(5.106) 

therefore, we have immediately that 

(112 = 1z11-172 

and 	q22 = k1/ R2 

Eqn. (5.106) becomes 

2-91111 	= 1  /(1±11-1 s)  

Let p11  = k2/Jr as before then 

c111 = 	1  
2kk1k2 

and hence (121 = -1-- 2kk k2 2-2 
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Thus we may write, by inverting Q 
1 , that 

kk1k2 
kk k P 1 2 ̀2 

  

1 	 ..171T2-  
2k1 	2k

1  

and using the cascade condition, 

1 	. JR1 
2k1  Er 1N 1 	2k1  

Q 

kk1k2 

but p11  = k2/VT therefore 1 

k1k2 = 

-kk1k2 R1 

2 

and the final solution is the same as for (c). 

For the design from the source-end and design from the load-end, 

no solutions are possible. In the former case, q is associated 

with R2  but 112  / RL  and in the latter case, P is associated with R1 
but 111 / R. 

To conclude this section let us summarise the main results. Tile 

have shown that the sensitivity properties of digital filters 

derived using the general linear transformation are similar to 

the sensitivity properties of 'Jaye Digital.  Filters. 'Furthermore, 

there exists a transformation with the property of zero attenuation 

Sensitivity at NAP points, although the presence of irrational 

terms such as R1  and„ R: means that the diFrital filter will 

not be canonic (303. 	shall not proceed therefore with this 

transformation but will concentrate on those that are canonic. 
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5.8 	Stutz.  of some special cases. 

5.8.1 Introduction 

The current-wave and voltage-wave .formulations have the property 

of yielding canonic digital filter structures in the sense that 

the number of multipliers is equal to the number of reactive 

components plus one and the number of delays is equal to the 

number of reactive components. Therefore any new transformation 

Should be at least as sparing in the number of discrete components. 

In this section we are going to examine the effects of applying 

certain constraints to the general two-port transformation 

tha-t are known to apply to the current and voltageformuiations. 

5.8.2  Port Resistance Concept 

We shall now consider the case when the port resistance concept 

is retained. In mathematical terms we may write 

Also 

-1212 	p22 

P11 	p21 

Q12 	Q-22 _ _ 
Q11 	. 221 

R1 	(5.107) 

R2 	(5.108) 

whereQ,is an element of Q. 

If qij  is an element of Q 1 
then eqn. (5.108) can be written as 

follows 

q11 	q12 _ 
q21 	(122 

- '2 

= 

(5.109) 

Now, as 	
12111222 	P121221 

and from eqn. (5.107) 

then 

similarly 

0 12111222 p12p21 

= 4111222 = - 21)121°21 

Aq = 2q1 1'122 	2c112c121 

(5.11o) • 
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Using eqns. (5.107), (5.109), (5.110) and (5.111) together with 

the appropriate eqns. for the various elements in section 5.3, 

5.4 and 5.5, we have the followills.  results, which have been 

smimarised. Note that we need only consider the series 

inductance and the shunt capacitance together with the source, 

termination and interconnection. 

For the series inductance we have, therefore, 

either 
	

R1 = R2 L  

a
2 

= - p21
L 

P12 

R2 

R1 	R1 

ce3 = 21321(111 

c<
4 

= —1/2n 
12-22 

a
5 = (121 

q22 R1 

oe = 0 

or 	 R2 

= 

R1  + L 

1 -21 L 

P11 R2 

oe 
2 

= 0 

1 	— L = 1 

2 112.  

O
4 = —21)22421 

= 1 /2
p11 - 

a 
12 

a
6 = —q

21_ 
L 

q12 
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For the shunt capacitor we have either 

G1 	G2 + C 

o P22 = - 
P11 

	

C 	
G2 

1 

	

G1 	G1 

= -2c1211222 

= 1/2p11  

-11 	C 0e5  = q
12 G1 

oe 6 = 0 

or 	G
2 

= G
1 + C 

= P22 C 
p12 G2 

oc 
2 

= 0 

1 
c.4

3 
= 1 - 	= 62  - 	G2 

oe
4 

= 21021 q1 11 

- -1/2p oe5 	
-12q  22 

c4
6 

111 
q22 

For the resistive voltage-source we have, for example, using P that 

X. = 
R - R 

I-P1 1 \ y + 21)1 1 111 	 v 

-T- -e) k  
1 	s 	21 	 R1 + 

Rs 	o 

oe 
3 

(112 

and to avoid the delay-free path from Y to X, we can set R
1 = Rs 



-207- 

and then X = 	V 
-11 o' 

For the load resistance we have using P, 

R2 

	(-21)  
Y - (R4 R

\ 
2' 	

X 
P11 

and to avoid delay-free path we can set R = R and then Y = 0. 

Finally for interconnections ue find 

= R2 

and = 0 

dr
12 

= 2D
21 

 q 
' 	11 

	

0'" 21 	-1/2D a 

	

21 	1222 

622 = 0 

that is, a direct connection. 

Clearly the port resistance concept is not sufficient to yield 

canonic structures. The number of multipliers has only been 

reduced by one. Notice that equations like Ri  = R2  + L are 

the same as those found in the theory of Chapter 2. 

5.8.1 	6--Dara=tcr  constraints 

The voltage formulation also satisfies constraints of the form 

and 

0-11 

0-21 21 

621 

0- 2 1 

+ 

+ 

- 

- 

0-12  

0 2-  2 

6-11 

0-2  2  

= 

= 

= 

= 

1 

1 

1 

1 

} for series impedances 

for shunt admittances 

/ 

(5.112) 

(5.113) 
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Thus the equation 

Y2 	a- 	(7-  
21 	22 	2 " _ 

becomes for series impedances, 

Y1  =
— 0-11 (x1 	x7) + X2 

Y2 = a-22 (X2 - X1 ) + X1 

and for shunt admittances, 

Y1  
[ fr- 1 	6- 12 	{Xi 

Y1 = ( 611X1 

Y2 = ( °71X1 

cr22X2) x2 

cr22X2) X1 

Let us now apply eqns. (5.112) and (5.113) to the two-tort 

elements. We find that for the series inductance either 

c 3  = 1, egi  + 0(3  = c< 2 , a4  + ot 5  = 1 , 	, } 
0.116) 

oel  + 0Z4  = 1, 062  +c)(4  = "3, oC5  = 1, 

(5.117) 

and for the shunt capacitance, either 

O
4 	' 

= 1 a
4 
 - oe1 = 

3

• 	

- t>6 = 1 "3  .... oe 3  = 1 , 
(5.118) 

or 	
°/5 	°/1 = 1' °65 -°42 = 

	. 1, 
( 5. 1 1 9 ) 

a4 - oe6 = co 3 

o 4 A- cle
6 
= 'cc

2 

or 

°c  6 °4  3 

In each case, the constraints have reduced the number of- multipliers 
from six to two. 
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Let us consider, as an example, the equations for a series 

inductance with no delay-free path in 011 . le have therefore 

from eqns. (5.18) and (5.116) 

1 = 	1 z-1/(1 4- cd
2
z-1  ) 

where 

612 = (1 + z-1  )/(1  + 042z-1) 

0-21 = 	od
4 
 (1 + z 1  )/(1 + 042

z 1) 

a
T22 = ( oe + eG6z1  )/(1 + 04

2
z-1) 

o< 1  = 	oL2  - 1 

ce6 = o4 + oe 
5 	• 1 

and oC 	= 1 - oG
5 4 

The Signal-Flow Diagram (S 'D) of eqn. (5.114) appears in Fig. 5.14. 

For a canonic S7D we need to eliminate one more multiplier, or 

equivalently a relationship must exist between 6' 11  and 0-22  

such that the SD of one includes the other. This does not 

exclude the case ,Jhere 'fru  or 0-22  is zero. .ks an example, 

ifoc 5 
	6 
= 0 then o4 = oC . and 	to 11 = e'22 and if od 6  = 0-  

then oc5  = - 	and CI  / = 15-22z  • -1 	The latter is the case 

for the voltage formulation. 

It can therefore be seen that equations of the form of eqns. (5.112) 

and (5.113) do reduce the number of multipliers and enable canonic 

structures to be built up. 

In the next two chapters we shall discuss transformations that do 

yield canonic structures. 

L. 	, condition for Canonic SID  

In this section we propose a hypothesis concerning canonic signal-

flow diagrams. First let us define what we mean by Canonic: 

A canonic SFD is one in which there is a minimum number of delays 

and multipliers with the exception that multiplications by powers 
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of 2 are not counted. 

Of course, one could exrress any multiplier as a sum of powers of 

two but clearly this would imply a large number of additions. 

Although adders are not specifically mentioned in the definition,. 

it is accapted that we should wish to reduce their numbers too. 

Let us now state the hypothesis: 

It is sufficient for canonic SF that the transformation matrices 

be of the same type, i.e. voltage or current. 

2or example, in the transformation 

	

= V1 	R1 I1 	
X
2 = R2  I " 2 

and 
Y1 = -R1 I1 
	Y2 = V2  - R2I2  

the variables Xi' X2' Y1 and Y are voltage variables and 

therefore the transformation satisfies the condition. 

However, the transformation 

X1  = Gi V1 I1 	X
2 = V2  322 

and 
Y = V1 - Ri I1 	Y2 = G2V2 - I2 

does not satisfy the condition since 	
X1  ,Y2 are current and 

Y1  ,X2  X, are voltage variables. 

de shall consider these transformations more thoroughly in 

subsequent chapters. 

5.10 	General Discussion  

In this section we shall summarise the main ideas of the chapter. 

'de have studied a general two-port transformation on the classical 

doubly-terminated lossless netuork. It was found that certain 

conditions had to be satisfied to ensure that the resulting 

digital filter was realisable and indeed imitated the classical 

prototype. The sensitivity behaviour was found to be similar to 
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that of 'lave Digital Filters and furthermore, a transformation 

exists that yields digital filters with zero 	sensitivity 

but, unfortunately, such filters are not canonic. A sufficient 
condition was given for canonic D which seems to fit all 

formulations found so far. Finally, in this chazter, we give 

a table of transformations that satisfy the three conditions, 

that is the cascade condition, the transfer function condition 

and the individual circuit element condition. This table which 

appears in Fig. 5.15 is by no means exhaustive. Of the thirteen 

transformations listed, ten are canonic. The first column gives 

the elements of P, the second give6 the elements of .7.4. The 

third column gives a key to how a realisable diital filter may 

be designed. For example, (i)(a) means that a digital filter 

of the Fettweis-type, with matrix P used for both source and 

load, can be designed (see section 5.6.4). If the number appears 

on its own, then we may use P and .7t in any combination for the 

source and load. Notice that only the three known transformations, 

the voltage, current and power formulations are unrestricted in 

this way. Alen we introduce zero elements into P and q, the 

number of realisations reduces to one. It is to be noted also 

that only the voltage, current and power formulations satisfy 

the condition P = Q when P = R2. Finally, the fifth 
column gives the name of the transformation where applicable. 

In the following two chapters we shall examine the properties of 

the transformations, listed in Pig. 5.15, more closely. 
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V2 

 

Fig. 5.1 General Representation of a two-port network N . 

xl 

   

   

Y1 

   

   

Fig. 5.2 Signal-Flow Diagram of general 2-port . 

  

  

V 

Y 

Fig. 5.3 Resistive Voltage Source . 	Fig. 5.4 SFD of Fig. 5.3 . 

Fig. 5.5 Load Impedance Z . 	Fig. 5.6 'Analogue junction of two ports . 

Fig. 5.7 	Interconnection of two-ports . 
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1 

Y(1) (1) (2) x(2) (n) (n) 
„2 

(n) 
A  
2 2 1 

X2 y 1
--  

Fig. 5.8 Cascade of n two-port sections . 

Fig. 5.9 Doubly-terminated two-port . 

Yl  

Fig. 5.10 Fettweis-type design . 	Fig. 5.11 Design from Source . 

13 

1 	X2=0 

Fig. 5.12 Design from Load . Fig. 5.13 General 2-port . 

2 

11 

X2 
Fig. 5.14 Signal-Flow Diagr'am of Series Inductance 



. 1 	R, 

G1  -1 

1 

1 -R1  

Q 

1 R2 

1 -R
2 

1 R2 
-1 1̀2 

G2  1 

1 -R2 

Class(es) 
	

Ref.No. 

I ; II; III 	 Fl 

I;II;III 	F2 

I ; II ; III 	 F3 

I; II (a) (c 

III (a) (b ) 

I ; I1(a ) (c )1 

III (a ) (b ) 

Name (if any) 

Volta5e Waves 

Current Waves 

Power Waves 

F4 

F5 

F6 IVR 

0 
G1  -1 

0 R1  
1 -R1  

G1  0 

G1  -1 

1 R1  
1 	0 

G1  1 
G1  0 

1 R2 
1 0 

G2 1 

O -1 

1 R2 
O -R2 

G2 1 

G2 0 

1 	0 
1 -R2 

O 1 

G2 -1 

O R2 
1 -R2  

G
2 

0 

G2 
-1 

F7 ITA 

F8 

F9 

F10 

Fll 

F12 

F13 

Fig. 5.15 	Table of transformations known to satisfy the three conditions 
discussed in section 5.6 . 
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6.9 	Example: 5th.Order Chebyshev LP Filter. 

	

6.10 	Conclusions. 
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Chanter 6 

The 'Invariant Voltar,e Ratio' Transformation 

	

6.1 	Introduction 

In this chapter we examine a transformation given in the table at 

the end of the last chapter. 4e consider first the derivation 

of the signal-flow diagrams for each analogue element and for 

the terminations and interconnections. The design and sensitivity . 

analysis of digital filters using this transformation will then 

be examined and examples will be presented illustrating the 

characteristics of this formulation. The discussion will then 

turn to the lattice filter realisation first examined by ilonta.  

[52].. Although such realisations have poor sensitivity 

-characteristics in the stopband, they exhibit some advantages 

which are to be examined. Finally, a comparison will be made 

between seven methods of synthesising a digital filter from a 

third-order elliptic filter with particular reference to the 

number of components used and the effects of coefficient 

quantisation. 

	

6.2 	Derivation of SFD for the basic elements,• sources,  

terminations and interconnections. 

6.2.1 Introduction 

The transformation that we shall consider will be referred to 

as the 'Invariant Voltage Ratio' transformation (IVR) for 

reasons which will become apparent. We may define it as follows, 

[ 1 P = 
1 

0 Ri  

{ 	

R2 

1 	0 

(6.1) 

(6.2) 

The IVR transformation satisfies the three conditions of 

Chapter 5 but we may design only from the load-end. We shall 

see that each element had only one SFD and not two, as in the 
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voltage—wave formulation. 

Let us derive the Cr—parameters directly from eqns. (6.1) and (6.2) 
so that we may observe any important relationships between them. 

'1e have immediately 

1-1 [1 

{ 

X1 	1 	0 	A 	B 	1 	 2 

Yi 	= 1 	—RI 	C 	D 	1 	0 i 	T) 	
(6.3) 

and Dirther 

where 

X2 

[Y2.} 

(6.4) 

1:11 = BG2 
R12  = A — BG2 
1121  = BG2  — DR1  G2  

R22  = A — CR1  — BG2  DR1  G2  

Therefore 
= (A — CR1  — BG2  DR1  G2) / (A — BG2  

cri 2  = 	G2  / (A — BG2) 

6-21 = 1 / (A - BG2) 
0-22  = -BG2  / (A - BG2) 

(6.5) 

For a series impedance, A = 1, B = —Z, C = 0 and D =-1 and 
therefore eqn. (6.5) becomes 

611 = (R2 - 111 	Z)  / (R2 1-Z)  

a-12 = 111/ (R2 + Z)  

d21 = 112/ (R2 jr Z)  

a22 = Z  / (R2 Z)  

(6.6) 



-218— 

It is observed that 

6
11 

+ 6—  = 1 
12 

and 621 + C-  = 1 21 	22 

For a shunt admittance, A = 1, B = 0, C = Y, D = -1 and thus 

eqn. (6.5) becomes 

C-11  = (GI  - G2  - Y) / G/  

d
-12 

= G
2
/G

1 

0721 = 1 

6"22 = 0 22 

  

  

It is clear from eqn. (6.6) that the delay-free path cannot be 

removed from 	a-22 
and thus only configurations with the delay- 

free path eliminated from 0-11  need be considered. 

ie shall continue with the method of this section although we 

could, of course, use the general results of Chapter 5 with the 

elements of P and 11 substituted for from eqns. (6.1) and (6.2). 

6.2.2 	Series  Elements 

For a series inductance we have Z = pL in eqn. (6.6) and 

together with the bilinear transformation gives the following, 

6-11 = (R2 - 13 1 	L) 	z-1 (R2 - R1 	L)  

(R2  + L) . + z-1  (R2  — L) 

cr-22 = 	k1 — z-1  ) L  	 

(R2  + L) + z-1  (R2  - L) 

 

(6.9) 

 

The parameters T-12  and G-21  due to. eqn. (6.7) need not be 

considered. 

To avoid delay-free loops, ire must set Ri  = R2  + L and then eqn. 

(6.9) becomes 



611 - 	-1 1 ÷ ciC2
z 

ot. (1 - z 1  ) 

622 = 	21 
+ a2z 
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1 

where 	cc = -2L/:11  
= 1 oe1 

0{
3 = 0.1  

For realisation purposes, co41  and oC3  must be expressed in 

terms of cZ2. Thus 

a1 = od2 - 1 

ce
3 

= 4- (i - 042) 

The signal-flow equations are 

Y1 = 	0-11 1 — X2) + X2 

Y2  = 	cr22(X2  - X1 ) X1  

6.11) 

The SFD of the series inductance can be derived using out, (6.12) 

together with eqns. (6.10) and (6.11), and is illustrated in 

Fig. 6.1. 

For other series elements we may refer back to Chapter 5 from 
which we find that for a series capacitance, C, the SrD is simply 

Fig. 6.1 with z
-1 

replaced by -z .
-1  and L replaced by D = 1/C. 

The parallel-tuned circuit has a SFD which can be derived from 

that of the series inductance by the following replacements, 

(see section 5.3.4) 

z-1 by T 
and 	L 	by 1 i( r c) 
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Where 

T= z-1( fl+ z 1 )/(1 + p z-1 ) 

and 
	

p= ( 	c)/( r+ 	(D L)/(D + L) 

and 
	r = 1/L, D = 1/C. 

The series-tuned circuit has a SFD which can be derived from that 

of the series inductance by the following substitutions, (see 

section 5.3.5) 

z 1 by -T 

and 	L 	by L + D 

where 	D 	= 1h: . 

The SFD of nese series elements can be found in Figs. 6.2, 6.3 

and 6.4. 

6.2.3 Shunt Elements  

For a shunt capacitance, C, we have Y = pC and together with the 

bilinear transformation, eqn. (6.8) becomes, 

(G1  - G2  - C) + z-1  (G1  - G2  + C) 
6
11 	G1  (1 + z-1) 

Note that other 0--parameters do not depend on frequency and 

therefore we need not consider them at present. 

To avoid delay-free loops we must have 

G = G2 + C 

and thus eqn. (6.13) becomes 

a 1 z
-1 

0-  = 11 	1 + z-1 
(6.14) 

together with 

where 

and 

Cr
112 

= oc
2 

ot= 2C/G 
1 
	2C/G1 

oC2 = G2/G1 

(6.15) 

(6.13) 
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For realisation purposes, let us express cei  and ot2  in ter :1s 

of ce= C/C11 , thus 

= 2a 

ce2 = 1 - o  

The signal-flow equations are 

Y1 = 	0-11 
X  + 07 2 

and Y2 = X1.  

The SPD of the shunt capacitance can be derived using eqns. 

(6.14) and (6.16) and is shown in Fig. 6.5. 

For the other shunt elements we have, from the theory of Chapter 5, 

the following substitutions: 

The SFD of a shunt inductance can be found by replacing z-1  by 
-1 -z and C by . r= 1/1, in Fig. 6.5 (see section 5.4.3). The 

SFD of a series-tuned circuit can be found (see section 5.4.4) by 
1 - replacing z by T and C by 1/(L + D) in Fig. 6.5 where 

1 ( 	// 	'"41 \ ) T=z 	p+z )/k1 	pz 	and 	p = (D - L) (D + L). 
Finally, the SFD of a parallel-tuned circuit is the same as 

Fig. 6.5 with z-1  replaced by -T and C by C + r (see section 

5.4.5). The SPD of these shunt elements can be found in 

Figs. 6.6, 6.7 and 6.8. 

6.2.4 Resistive Volta-e Source 

Let us recall the transfer function condition of Chapter 5. For 

the IVR transformation defined by eqns. (6.1) and (6.2), we see 

that realisable structures can be built up only if P is used 

for the source and load. 

The signal-flow equation for the resistive voltage source is, 

from section 5.5.2, 

 
X 	{

P12 - P11Rs 	
1-A1) P22 - P21231 Y  + P22 - P212. s - Vo 	(6.18) 
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On using the values for P from eqn. (6.1) in eqn. (6.1S) we have 

that 

x = 	13(y - vo ) + vo 
where 

/3= Rs/(R + Rs) 

The SPD appears in Fig. 6.9. 

6.2.5 Load Resistance  

aecalling eqn. (5.49) from section 5.5.3, that is 

P21I P22  
Y  - 1  

P11- 
T? 

 I, 
	P12 

and using the values for P from eqn. (6.1) we find that 

(6.19) 

(6.20) 	' 

Y ={111, -R ix 	(6.21) 
RL  

On setting R = RL, we have Y = 0, a wave-sink. 

6.2.6 Interconnections 
1 

. As we have seen, the ABM matrix of an interconnection is 0  

and therefore, on using eqn. (6.5) we find that 

- a e 	- 1  1 
R2 

12 

 

R2 

0-21 = 1 

and 
0-  = 22 

To avoid delay-free loops on interconnection, we must have 	= 0, 

therefore R2  = R1  and hence 

0-  = 

0-12 = 0"21  = 1. 

0 
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These equations are those of a direct intercomlection between 

two ports. 

We have therefore derived the STD of all necessary lumped elements 

and in the next section shall consider complete digital networks. 

6.3 	Design and Sensitivitv Analysis of Dtgital Filters Imitatiniz 

Doubly7Terminated Lossless Ladder Ietworks 

6.3.1 	Design Procedure 

or the Iva formulation we may only design from the load—end. 

2or the analogue prototype of .Fig. 6.1-C) there is therefore one 

digital equivalent (gig. 6.11). The port resistance at the output 

of the LC net:ork is than constrained to have the value of the 

load resistance. All subsequent port resistances are then also 

defined by virtue of the linear. relationships between the port 

resistances and the element values. since the valUe of the port 

resistance at the input of the LC network is not generally the 

same as that of the source resistance, we must use the general 

SFD for the resistive voltage source. 

There is no problem about interconnecting iD of successive two—

ports since at every junction we can ensure that the corresponding 

port resistances are equal. 

The transfer function of the resulting digital filter structure, 

denoted by G(z), differs from the function obtained by bilinear 

transforming the analogue transfer function H(p) by a multiplicative 

factor K. From the theory of Chapter 5 we knew-  that K = 1/q12 • 
where q12  is an element of 	It is easy to see, from eqn. (6.2) 

that q12  = 1 and therefore K = 1. Thus the transfer function G(z) 

is identical to the function H(p) = V2/V0  after the application of 

the bilinear transformation. 

6.3.2 Sensitivity Characteristics 

We may state immediately that at MAP points, 

S 
IGI = S 
	+ 	S K - 	RL/Rs 

oc 	oc ec 

where cc is any multiplier. 

(6.22) 
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Eqn. (6.22) is an immediate consequence of the arguments of 

section 5.7. For the IVR formulation, we have is= 1 and 

therefore eqn. (6.22) becomes 

IGI 	RL/RS 
S 	S - 2 (6.23) 

For all digital two-ports*using the IVR formulation there is one 

multiplier which depends on the port resistances. Furthermore, 

for tuned-circuits the additional multiplier depends only on 

the corresponding element values and therefore the corresponaing 

sensitivity is zero. Thus we have 

R2  
for series-elements, 	= 2 — - 1 Ri  

0
2 for shunt-elements, o4 = 1 - — G
1 

R 
 and for the voltage source,0C- 

Let us consider a two-port network consisting of series and 

shunt elements terminated resistively at both ends. In Chapter 3, 
we expressed Rips  as a product of port-resistance ratios, that is 

RL 	RL 	Rn 	A2 	R1  
R
s 	Ra 	An-1 	T1  • Rs 

(6.24) 

and then we expressed each multiplier as a ratio of port 

resistances. 

For series elements 

whilst for shunt elements 

	

Rk 
	

1  

	

Rk-1 	
(1 — oc ) 

and for the voltage source 

— 04 )  
0t 

A1 + it
s  
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The sensitivities can no:: be derived and substituted in 

eqn. 	(6.23). 	find that for series elements 

,IGI = (6.25) 

(6.26) 

(6.27) 

2 	vl 
and for shunt elements 

S 	 ce a 

) 

2(1 - 
and finally for the voltage-source.  

IGI S 	=— 1 
211 — ) 

6.4 	xample: 3rd Order Che22yshev Filter 

As a simple example of the ideas of the last three sections, 

let us take the third-order example- used in section 3.2, that is 

a Chebyshev normalised filter with 0.1d3 passband ripple and equal 

terminations. The circuit and values are shown in Fig. 6.12. The 

design equations are as follows (2ig. 6.13), 

G
3 

	GL  + C 	= 2.0316 

P4 = C/G5  = 0.50778 

R2 	= 	R3 	L = 1.63962 

fl3  = (R3  — L)/R2  = -0.39959 

G1  = G2 + C = 1.64150 

112  = 0/G1 	= 0.62845 

= Rs/(Rs  R1) = 0.62143 

The complete SF D appears in Fig. 6.14 whilst the amplitude ' 

response and the attenuation sensitivity characteristics are 

shown in figs . 6.15 and 6.16 respectively. 

Using the appropriate formulae for the theoretical 11AP sensitivity 

in section 6.3 we have ' 
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s IGI = .321 
P 1 

SIGI = 0.8459 

P2 

= -0.3329 
P3 

and 
	IGI 	

0.5157 

p4 

The computer analysis shown in Pip:. 6.16 gives the following for • 

the same sensitivities -1.3200, 0.04572, -0.33277 and 0.51581 

respectively thus showing the desired agreement. 

6.5 	acamole TI: 5th Order MliPtic Low-Pass Filter 

Let us now consider an example for the purpose of examining the 

effects of reducing the multiplier wordlength. The example we 

shall use is the same as that in Chapter 3 (section 3.6). The 

element values are displayed in Fig. 6.17 and the si.na1-flow 

block diagram appears in Fig. 6.18. The design equations are 

as follows, 

C1  = • 1.08077, C2  = 0.06809, L2  = 1.29869, 03  = 1.80288, 

04  = 0.18583, L4  = 1.15805, C5  = 0.98556, Rs  = RL  = 1 

G1 = GL + C5 = 1.98556 

= C5/G1 	= 0.496364 

	

= 1/G1 	= 0.503636 

112  = R1  + L4C4/(L4  + C4) = 1.456607 

002  = (2R1/R2) - 1 = -0.308480 

0(
3 
= (D

4 
- L

4
)/(D

4 
L
4
) = 0.645819 

	

. G2  = 1/R2 	= 0.686527 

G3 = G2 + c3 = 2.489407 

0(
4 
= C

3
/G
3 

= 0.724221 

	

R3  = 1/G3 	= 0.401702 
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R4  = R3  + L2D2/(L2  + D2) = 1.594682 

e4
5 	

(2/a
4 
 ) - 1 	-0.496261 

3  

046  = (D2  - L2)/(D2  + L2) = 0.837513 

G
4 

= 1/R
4 

= 0.627006 

G
5 
= G
4 + C1 = 1.715776 

od7 = C1/G5 = 0.634564 

oe
8 

= G
5
/(G

s 
+ G

5
) = 0.631781 

The complete SFD appears in Fig. 6.19. The digital network was 

.thenanalysedat 50 frequency points first with the nominal . 

multiplier values above, then with the multipliers rounded to • 

3 decimal places and finally with the multipliers rounded to 1 

decimal place. The analysis is shown in graphical form in 

Fig. 6.20 and confirms the hypothesis about low sensitivity. 

6.6 	Example  III: 6th Order elliptic Band-Pass Filter 

As a further example of the FIR transformation,'let us consider 

the 6th order elliptic band-pass filter first introduced in 

section 3.7. The circuit and element values appear in 

Pig. 6.21 and the signal-flow block diagram appears in Fig. 6.22. 

The design equations are as follows, 

Rs  = RL  = 1, L, = L4  = 11.672, C., = C4  = 0.085675 

L2 = 0.79126, C2 = 2.1845, L3  = 0.45778, C3  = 1.26380. 

	

I 3 	 9 3  

R1 = RL  + L4  + D4  = 24.344016 

= 1 - (2RL/R1 ) = 0.917844 

ee
2 

= (D4 L
4
)/(D

4 
+ L

4
) = 0 

G = 1 	= 0.041 0779 

G
2 
 = G1 +r3C3/(p3  + 	0.841690 

oz3 = G1 /G2 = 0.0488040 

X4  = ( r 3  - c3  )/( r 3 + C3) = 0.266992 -  
G3  = G2  + r2C2/( [12 	C2) = 1.642311 

a5 = G2/G3 = 0.512503 

°46 = ( r2  —'c2)/( r2  02) = —0.266999 
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= 1/G., = 0.6C8398 

R4 = R3 	Li 	D1 = 23.952915 

c47  = 1 - (2113/114) = 0.949159 

• = (D1  — L1  )/(D1  + L1 ) = 0 

• 	

= Rs/(R4  + Rs) = 0.0400755 

As a result of the fact that L1 C1 = L4
C
4 

= 1 the number of 

multipliers is reduced from nine to seven. The complete SFD is 

shown in Fig. 6.23. The digital network was then analysed at 

50 frequency points over the entire spectrum (0, it/T) and then 

-at 21 points in the passband only. The attenuation curves for-

the network with (a) nominal multiplier-values given aboVe, 

(b) multiplier values rounded to 3 decimal places and (c) multiplier 

values rounded to 1 decimal place are shown in Fig. 6.24. 

6.7 	The 'ITV Lattice Filter, its Derivation  and Properties. 

6.7..1  Introduction 

In this section we shall consider the di,7if.al equivalent of a 

doubly—terminated lossless symmetrical lattice network using the 

IVR transformation. It is well known that there is a lattice 

equivalent for every symmetric ladder and furthermore the number 

of distinct elements in the lattice is, in general, less than that 

of the ladder [531. Tho low sensitivity propert7 in the passband 

of doubly—terminated LC networks obviously applies to the lattice. 

However, the stopband sensitivity is high and therefore, as analogue 

networks require tuning and are subject to ageing, this disadvantage 

is serious. 'Jith digital filters, though, no such problem exists 

although we may need slightly longer wordlengths to accomplish 

the same accuracy as the ladder filter. This fact must be weighed 

against the reduction in the number of discrete components. 

We follow slightly different lines to references (527[533 in the 

derivation of the appropriate signal—flow diagrams. 
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6.7.2 	Derivation  of  

The ABCD parameters of a symmetrical lattice (Ti3. 6.25) are, 

as is well known, 

A = (Z2  + Z1 ) / (Z2  - Z1) 

B = 2Z1 Z2  / (Z2  - Z1 ) 

= 2/(27,2  - z1 ) 

= (z2 	Z1 ) / (Z2  - Z1) 

(6.28) 

 

 

The transfer function, H(p), of a doubly-terminated network may 

be written as follows (iii;;. 6.26) 

1 
(6.29) 

(A + 2-pt  ) + g  ( c + 	) 

On substituting for the lattice parameters, eqn. (6.29) becomes, 

(Z1  + Rs)(Z2 	 ± as) 	(6.30)  

We shall consider only the case where RL  = as  = R and therefore 

eqn. (6.30) becomes 

H(p) = 	RL 
(z2  - z1 ) 

R (z2 - z1) H(p) = 
2 (Zi  + Z-(72777 

Let us now consider the IVR transformation which can be written 

as follows, 

and 

[1 

1 ] 

[A21 

2 1 

= 

. 

P 
V

l  I 1 

[V21 

12 

P = 

= 

1 

[1 

1 

[. 1 

0 

-R1 

RI 

0 

As in the Lattice realisation6 of Fettweis [53] we uish.to find 

a simple relationship between 11(p) ani the reflectances of the 

canonical impedances Z1  and Z2. 

(6.31) 

(6.32) 

(6.33) 
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Tor an impedance Z we have two possible reflectances depending 

on whether we use P or Q.. Using i we have 

B 	R 
S = A = 	Z 
	

(6.34) 

and using 0., 

	

n - A - Z + R 
	(6.35 ) 

For the voltage formulation as P a Q when R1  = 112, we have only 

one possible refloctance namely (Z - R) / (Z R) [30[53]. 

Let the reflectances of ZI  and Z,, in eqn. (6.31) be S1  and S2 
respectively. Usin P to define 31  and S2  we have therefore that 

Z
k 
- 

Sk  - 	, k =1, 2 	(6.36) Zk 

and on eliminating Z1  and Z2 from eqn. (6.31) using eqn. (6.36) 

we find that 

H(P) = 	
S2 - S1  

2(2 - S1  )(2 - S2) 

which can be written as 

H(p) 	4' (T2  - T1) 	(6.37) 

where 

	

Tk = (1  - 4-Sk)-1 	
k = 1,2 
	

(6 .38) 

Combining eqn. (6.38) and eqn. (6.36) gives 

2Zk  

Zk  + R 

which is the reflectance obtained using Q. Thus we have found 

a simple relationship between H(p) and the reflectances, namely 

	

H(P)  = 	(52 - S1) 	• 

where Sk 	= 	Zk 	, k = 1,2. . 
Zk  + R 

(6.39) 
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If ire had chosen .1 to define the reflectances and eliminated 

Z
1 and Z2 

from eqn. (6.31), ;:e would have found that 

H(p) = 2 (S2  - Si ) as before. 

Thus if the lattice impedances Z1  and Z2  are realised as 

reflectances in digital filter form, then the arithmetic 

difference between these reflectances gives the desired 

transfer function. The STD of the lattice realisation of 

H(p) =ears in Fig. 6.27. 

- It is not too. difficult to show that, if we had used.? for Z. 

and for Z2, the transfer function would have been the tame 

as in eqn. (6.39). Similarly, if we had used C! for. Zi  and 

P for Z2. 

• 

6.7.3 2xamDle 

Consider as an example a third-order elliptic filter realised 

in lattice form (Fig. 6.28). The lattice impedances Z1  and 

Z2 are as follows, 

Z1  = pL1  

Z2  = pL + 2 pC2  

(6.40) 

The reflectances S
1 and S2 are found using eqn. (6.35). 

Thus 

= pL1  
pL1  + R 

X If and on applying the bilinear transformation, p 41. 	- Z'-'1  )/k1 + z-1) 
we have 

1 -1 	(6.41) 1 + a.
2
z 

where 041  = Li/(R + L1) 

and 4̀2 = (11  - L1 )/(R  + L1 ) 
also 2 oCi  + of 2 	= 	1 

1 a - z 1 



S2 -1 1 + 2 ot 2z-1 + 

oC 1 + 2 40(- 2z
-1  + oC 1z

-2 
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The '::2D of"1  anpelrs in Fig. (6.29). 

Also 
1 

S2 = - 2 	Pe2 
1 pL + 	+ R 2 pC2 

and on applyin3.  the bilinear transformation we find that 

(6.42) 

where oel  = (D2  + L2) / (D2  + L2  + R) 

and 	cle2  = (D2  - L2) / (D2  + L7  + R) 

0e3  = (D2  + L2  - R) / (D2  + L2  + R) 

also 	20e1 -0e
3
=1 

If we let p= 0gf2/oC1  = (D2  - L2) / (D2  + L2) 

then we can write eqn. (6.42) as 

(1 + T) 
S2 - 	 1 + oLT 

where T = z-1 ( A+ z-1 )  
1 + p z-1 

(6.45) 

The SFD of S2 is shown in Fi,,.. 6.30. We could have derived 

eqn. (6.43) by noting that (see section 5.3.5) 

f 1 + T 
Z2 = (L2 + D2)11-T1 	(6.44) 

Then on combining eqns. (6.44) and (6.35) we have the desired 

expression for S2  in eqn. (6.43). In both the STD of S/  in .. 

Pig. 6.29 and the 62D of S2  in Pig. 6.30 we have a multiplier 

of value+. 	The only effect of dropping these multipliers is 

to give a scaling to the transfer function. In fact, if G(z) 

is the transfer function of the digital lattice and H(p) is that . 

of the analogue lattice then, on using eqn. (6.39), we have 

G(z) 	F. 	411(P) 1 - z
-1 

P = 
1 + z

-1 
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6.7.4 	Discussion 

"je have shown that a lattice digital filter, based on the Iva 

formulation, can be derived which is similar to that derived by 

?ettweis [5:5]. The transfer function is simply the difference 

between the reflect:_mces of the canonical impedances Z1 and Z2. 
For the given third-order elliptic filter example, the lattice 

realisation has used three delays and three multipliers which 

is less than the corresponding ladder realisation. Furthermore, 

the number of additions used was nine which again is less than 

the ladder. 

6.8 	Co7narirlon or 3,-,rnn 77ethrrls of  S'rnthnsisin-,  a J4.;--itg1 

Filter from a Third-Crder Ulintic Filter 

6.8.1 Introduction 

In this section we exLmline the digital filter structures of 

seven methods of reAdsing a third-order elliptic low-pass 

filter. 'le compare not only the coefficient quantisation 

properties but also the number of discrete components needed. 

The analoue ladder filter is shown in Fig. 6.31 and the lattice 

equivalent in Fig. 6.32. This example was used in Chapter-3. 

6.8.2  Direct Synthesis 

The transfer function of the analogue filter example is given 

by the following 

where 

11(p) = 
Z
2 

77-7711 )(1 +-Z i  + 2Z2) 
(6.45) 

Z1 = pL1 = pL3 

and 
	

Z2  = pL2  + 1/pC2  

We have assumed Rs = RL = 1. 

If we apply the bilinear transformation directly to eqn. (6.45) 

we obtain the following, 

I 	 / 
1 + R,z-1 + r2z -2 	et_z-3 

G(z) - 	 
eV + 04,z

-1 
+ o(1  z-2 + at

o 	
z-3 

(6.46) 



and H2(p) - 1 +L1 + 2Z2 

then II(p) = 	(p) I12.(p) 

(6.48) 

(6.49) 

Z2 
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where 	oeo 	a) / f 

oC1 = (3 - a) / f 

= (3b + c - d - 3e) /f 

P2 = (70 - c - d + 3e) / f 

= (b - c + d - e) f 

and 	a = L202  

b = 2 

c = 2L1 + C2 - 

= 2C2(L1 + L2) 

e = Li C2(Li  + 21,2) 

f= b+c+d+ e 

The values of the coefficients are as follows, 

= 0.105899 

oC1  • 0.304336 

P1 • 0.200227 

P2 • 0.479347 

	

and /33 
	

-0.0386328 

The oFJ of the direct synthesis of eqn. (6.46) appears in 2ig. 6.33 

and the attenuation characteristics, for the cases where the 

multiplier values have been rounded to 3 and 2 decimal places 
together with the nominal case above, appearsin Fig. 6.34. 

6.8.3 	Cascade "Synthesis  

:ie may decompose eqn. (6.45) as follows, 

Let H1(p) 	
1  

- 1 + Z1 
(6.47) 
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.;..pplyinz the bilinear transfor-ation to H1  and H2  we find that 

oC(1 + z-1) 

GI (z)  = 	
(6.50) 

where 0(.2  = (1 - L.) / (1 + 1,1 ) 

and 2c41 = 1 + ot2 

Also 

where 

A-1 A  —2 
Ot 	Z 	Cie

o
z 

G2(z) - A .'°1 A  p l  -2 1 + e jiz + 2z  

0.1.1/ o  = (1 + L2C2) /7/ 

c;,C 	= 2(1 — L2C2) R 

= 2(2 - 02L. - 2c2L2 ) 

and fl2 = 	 2 + C2(LI + 2L2 -. 1)1 / 

(6.51) 

and 	= 2 + C2(i + L1  + 2L2). 

The values of the multipliers are as follows, 

oe
2 = -0.0771502 

;Co  = 0.229505 

toe
1  = 0.430053 

= 0.277370 

and 	= 0.500747 

The S.Li'D appears in Fig. 6.35 and the attenuation characteristics 

in Fig. 6.36 for the cases where the multiplier values have been 

rounded to 3 nro  2 decimal places together with the nominal case 
as given above. 

6.8.4 Voltaize-gave Ladder Synthesis  

The design of a digital filter from the third-order elliptic 

prototype of Fig. 6.31 using the voltage formulation has been done 

in Chapter 3. For convenience, we give here the multiplier values 

and the SFD. 
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Thus 
or = 0.461425 

0e2  = 0.297867 

or
3 

= 0.936915 

or4  
= 0.356112 

04
5  

—0.288949 

The SFD appears in Fig. 6.37 and the attenuation characteristics 

may be found in Fir-. 6.38 (multiplier values rounded to 6, 3, 2 

and 1 decimal places). 

6.8.5 	'Fiqt Ladder Synthesis  

The signal-flow block diagram appears in Fig. 6.39 and the design 

equations, using, the principles of this chapter, are as follows, 

Ri  = RL  + L3  = 2.1672 

= (RL  — L3) / (RL  + L3) 

G1  = 1/R1 	
= 	0.461425 

G2 	= G1  + 	!'2C2/(!'2C2/(/'2 + C2) 
oe
2 	

G
1
/G2 	= 	0.297367 

( /7 	- C)/( r 	C2) oe3  = 	2 	2' 

	

2 	2 

= 	—0.0771502 

= 	1.549099 

= 	0.936915 

R2  = 1/C-2  = 0.645536 

R3  = R2  + Li  = 1.812736 

0e4  = (R2  — L1  )/(R2  + L1 ) . 	—0.287777 

045  = Rs/(Rs  + R3) = 0.355526 

The SFD of the complete network is shown in Fig: 6.40 and the 

attenuation characteristics appear in Fig. 6.41. 
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6.8.6 Sedlmeyer-Fettweis Ladder Synthesis  

In the case of ladder networks that can be bisected so that one 

half is the mirror-image of the other, we may use the theory of 

wave digital filters to eliminate one multiplier from the resulting 

network 039][59]. For the third-order example of Fig. 6.31, the 

corresponding wave digital filter appears in Fig. 6.42. Irotice 

that the central adaptor has two port resistances equal and 

therefore the corresponding multipliers are equal. The adaptor 

equations may therefore be written so as to require only one 

multiplier for realisation. In the ladder realisations of 

sections 6.8.4 and 6.8.5 we required 5 multipliers in all whilst . 	. 
we need only 4 multipliers in the realisation of Fig. 6.42. 

The complete SFD appears in Fig. 6.43 and the desien equations 

are as follows, 

Rs  = RL  = 1, Li  = L3  = 1.1672, C2  = 1.1231, L2  = 0.029. 

R1 = Rs + L1 = 2.1672 

R2  = RL  + L3  = 2.1672 

= oC3  = Rs/R1  = 0.461425 

R3  = L2  + D2  = 0.919393 

/3 = (L2  — D2) / (L2  + D2) = —0.936913 

oe
2 
= 2G2

/(G1 + G2 + G3) = 0.459010 

The attenuation characteristics appear in Fig. 6.44. 

6.8.7 	'IVR' Lattice Synthesis 

We have already derived the SFD of the reflectances Si  and S2  

for the third-order elliptiC lattice filter. The complete STD 

appears in Fig. 6.45 and the design equations using the 

component values of Fig. 6.32, are as follows, 

= R L1 = -0.0771502 
R + L

1  

a2 
	

D2 + L2 - R = 0.500747 

°C3 = D2  L2 = 0.184826 
D2 + L2 

D2  + L2  + R 
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where 3= RL  = Rs 
= 1 

The attenuation characteristics are illustrated in Fig.. 6.46. 

6.8.> 	Fettweis Lattice ",vnthecds 

Finally, we consider the synthesis of a wave digital lattice 

filter from the circuit of Fig. 6.32 using the method described 

in re2erence [53]. The signal-flow block diagrui is Shown in 

Fig. 6.47 and the design equations are as follows, 

= 1.1672, L2  = 1.2252 

C2 = 0.56155,R=3s
=R

L
= 1 

°di = (R 	L1 )/(R 	Li)  
= -0.0771502 

a2 = 2D2/(D2 + L2 + R) 
= 0.839062 

o43  = 2L2/(D2  + L2  + a) = 0.611685 

The complete SFD is shown in Pig. 6.48 and the attenuation 

characteristics in Fig. 6.49. 

6.8.9  Discussion 

The number of discrete components used in the seven realisations 

have been summarised in Fig. 6.50. The lattice realisations are 

clearly the most economical, however their high stopband sensitivity 

could be a disadvantage. In the passband, lattice filter structures 

behave excellently and this is the result of their zero MAP 

sensitivity (593. In the stopband, however, we see the expected 

shift in the attenuation pole which also occurs in the classical 

Prototype. We can, of course, predict accurately the- number of 

bits required in the digital realisation for a given accuracy 

in the filter response. It may well be feasible to use a higher 

wordlength in the lattice realisation, as compared with the ladder, 

to have the advantage of fewer multiplications. Although the 

example chosen in this section is mainly for illustrating the 

ideas. of the present chapter, the digital filter structures 

derived using linear transformations do seem to behave better 

than those derived using conventional synthesis techniques. This 

fact has been borne out by the large amount of simulation studies 

reported in the literature (see.Chapter 1), 
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6.("? 	Exa-inle: 5th Order Chebyshev LPLilter 

In this section we shall consider the 'Iva,  lattice realisation 

of the 5th order Chebyshev Low-Pass Filter used by Pettweis in 

Reference [53]. Thus we shall be able to coMpare the di.gital 

structure derived using the voltage formulation and that derived 

using the IVR formulation. 

In Pig. 6.51 may be found the lattice impedances Z and Z2 and 

the corresponding element values. 

Let us consider first the reflectance S1 for Zr 

:Tow 	ZI  = 1/ [ pC1  +1/plii  I 

and on applying t';:e bilinear transformation, we know from 

Chapter 5 that 

1 	1 - 
Z1 = 	+—C-1) 1 + T 

where r i  = IL, 

(6.52) 

and 
	T = z 1 ( p1  + z-1 )/(1 + 131 z-1 ), 

Ph = ( p 1 — c1 )/( p1 + c1 ). 

Z 

	

S1 = 
	
Z + R ' R = RL  = Rs  = 1 we have 
1 

on using eqn. (6.52) that 

Si 
 

(1 — oc h  )(1 — 
(6.53) 1 +T 1 

where 	 + C1 — 1)/(  r 1 +c1 + 1) 

For the lattice impedance Z2, 

terminated by an impedance Z3  

shunt capacitor 02  is already 

we have a shunt capacitor C2  

= pL + 	. The SF]) of the 3 pC
3 

known as it was discussed in 

section 6.2. The SFD of Z3  was derived in section 6.7. It 
was found that 

• 



-240- 

z + 
1 + 043

) (1 + 1) 

1 + (6.54) 

where 	oc
3 	

(D3  + L3  - R1  )/(D., + L3  + 31 ) , 

T = z-1( )72  + z')/(1 + 1 ) , 

and 	= (D3  - L3)/(D3  + L3). 

liotice that R/  is the port resistance between the shunt capacitance 

C2 and Z3. 2rom the theory of section 6.2 it is known that 

G
1 
 = G + C2 	(6.55) 

where G1  = 1/11i  and .G = 1/a. 

The corresponding multiplier 012, for C2  is defined as follows, 

042 = C2/G1 
	(6.56) 

The complete STD of the digital lattice filter is shown in 

	

Fig. 6.52. It is to be noted that the factors of 	in eqn. (6.53) 

and (6.54) have been absorbed. The former into the output and 

the latter also into the output and, in addition, into the SFD • 

of the shunt capacitor C2. The overall transfer function is thus 

four times that of the analogue prototype. The DC value will 

therefore be 2, as opposed to 1/2. The multiplier values for 

Fig. 6.52 are as follows, 

cc
1 0.392670 

p1  . -0.514106 
a2 0.634503 

oc
3  0.744851 

)92  = -0.43630j,  

.The digital structure was analysed first with the values above, 

then, as in [55], ;rill' the multiplier values truncated to 5 
bits in an equivalent decimal representation. The attenuation 

characteristics are shown in Fig. 6.55. 



le have used 5 multipliers, 5 delays and 14 adders in this 

realisation. In the o-;uivLaent 2ettueis structure using the 

voltage formulation, the same number of components were used (33]. 

6.10 	Conclusions 

In this chanter we have ex7lored the Invariant Voltage ;ratio 

tmnsforuation in some detail. -le have derived the signal-flow 

diagrams of the constituent elements of a doubly-terminated 

LC filter and exaAinea the sensitivity properties of complete 

filters. Through the examples, we have shown that the properties 

• of digital networks derived using the Iva transformation are • 
similar to those of the fave Digital Filters discUssed in a 

previous chapter. In the next chapter we shall examine other 

transformations and the corresponding digital structures, 

although in net as much detail as tre have discussed the IVd 

transformation. 
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Fig. 6.1 	Signal-Flow Diagram of series inductance . 
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Fig. 6.2 Signal-Flow Diagram of series capacitance . 
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Fig. 6.3 Signal-Flow Diagram of parallel-tuned circuit in series-arm . 
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Fig. 6.4 Signal-Flow Diagram of Series-Tuned Circuit in Series-Arm . 

0  Y2 
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+C G2 a=C/G =1-  1 	G1  

R2  

	 -) X
2 

. 

Fig. 6.5 Signal-Flow Diagram of Shunt Capacitance . 

Xio 	 

R1  

Y 
1 

Fig. 6.6 Signal-Flow Diagram of Shunt Inductance . 
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X°-  >" PC  G
2+ (r+c, 

- 
(P-C) 

3= ( 	m=1 - r.77i_c - 
7̀1 

Fig. 6.7 Signal-Flow Diagram of Series-Tuned Circuit in Shunt-Arm . 

Rl 	
G12 

 T0-07 -Fr+ c (r)  
	G2 	 
a= 1 - Y2 

R2 

Fig. 6.3 Signal-Flow Diagram of Parallel-Tuned Circuit in Series-Arm . 

Fig. 6.9 Signal-Flow Diagram of Resistive Voltage Source . 

R1  
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Fig. 6.10 Doubly-Terminated Classical Analogue Network . 

a=Rs/(R+Rs) 

Fig. 6.11 IVR Digital equivalent of Fig. 6.10 . 

Rs=1 
	L.1.1474 

=1 

Fig. 6.12 	3rd.order Chebyshev filter . 

Fig. 6.13 	Signal-flow block diagram of Fig. 6.12 . 
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fig. 6.14 Complete SFD of 3rd. order Chebyshev filter showing multiplier values • 
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Fig. 6.15 Amplitude response of 3rd.order Chebyshev 
IVR digital filter . 
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Fig. 6.16 	Attenuation sensitivity in 3rd.order Chebyshev 
In digital filter . 
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L2=1.29869 

C2=0.06809  

L4=1.15805 

C
4
=0.1858 C 	 

1.0 1.0 

5
=0.98556 

0 	 

Fig. 6.17 Example II:. 5th. order Elliptic Low-Pass filter . 
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a CC5,ac  

R
3  

    

     

     

  

R2 

 

a2 	(13 

RL  

Fig. 6.18 SignalFlow Block Diagram of Fig. 6.17 . 

Fig. 6.21 Example III: 6th. order Elliptic Band-Pass filter . 

----e1=1.08877 =1.80288 

Fig. 6.22 Signal-Flow Block Diagram 'of Fig. 6.21 . 



a1=0.496364 

a2=-0.308480 

a3.0.645819 

y0.724221 
a5=-0.496261 

a6="837513  

a7=0.654564 
u8=0.651781 

Fig. 6.19 Complete SFD of 5th. order Elliptic Low-Pass Digital Filter . 



Attenuation Curves for Example II showing effect of multiplier rounding . 
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Fig. 6.23 Complete SFD of 6th.order Elliptic Band-Pass Digital Filter . 
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V 1 

Y 

Fig. 6.25 	Symmetrical Lattice Structure . 

V 2 

  

A 

 

  

V
2 

   

Fig. 6.26 	Doubly-terminated network . 

Fig. 6.27 	SFD of general digital lattice filter . 

L1 

Fig. 6.28 3rd.order Elliptic Low-Pass Lattice Filter . 
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a
2=(R-L1)/(11-1-1,1) 

Fig. 6.29 SFD of Reflectance Si  . 

Fig. 6.30 SFD of Reflectance S2  
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 1.1672 1 

0 	 
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4C--- 1. 0 

C2=1.1231 
4 

Fig. 6.31 Example I: 3rd.order Elliptic Low-pass Filter . 
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Fig. 6.32 	Lattice equivalent of Fig. 6.31 . 
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U 	 ao=0.105899 

a1=0.304336 
51=0.200227 
02=0.479347 
53=-0.0386328 

Fig. 6.33 SFD of Direct Synthesis . 
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Fig. 6.35 SFD of Cascade Synthesis . 

Fig. 6.39 	Signarr:flow block diagram of IVR synthesis . 
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Fig. 6.37 Complete SFD of 3rd.order Elliptic Low-Pass Digital Filter ~sing Voltage-Wave Transformation • 
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Fig. 6.40 . Complete SFD of 3rd.order Elliptic Low-Pass Digital Filter using IVR transformation . 



PA
  5

 5 ' 
R

A
 N

D
  S

C
A

LE
  

5
7

0
P

/3
A  

M
D

 Sc
..4

4.
0

  

Attenuation curves for Example I SIVR Ladder Synthesis) showin d8 

0 
Klr 

co,c . 4.9 



N 

                  

                  

                  

                  

                  

                     

                     

                     

                     

             

         

         

             

          

          

          

          

          

  

a1=0.461425 

a2=0.459010 

a3-a.1  
0=-0.956915 

               

                 

                     

                     

Fig. 6.43 Complete SFD of 3rd.order Elliptic Low-Pass*Digital 
Filter using Sedlmeyer-Fettweis synthesis . 
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X=11o 

a
1=-0.0771502 

m2=0.500747 

3=0.184326 

Fig. 6.45 Complete SFD of 3rd.order Elliptic Low-Pass Lattice Digital 
filter using IVR transformation . 

-1 

L = 
1 110 

Fig. 6.47 Signal-Flow Block Diagram of 3rd.order Elliptic Low-Pass 
Lattice Filter using.Fettweis synthesis . 
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A 

Fig. 6.43 Complete SI,D of 3rd.order Elliptic Low-Pass Lattice 
Digital Filter using Fettweis Synthesis . 

Synthesis 

. Number of 
Components . 

Direct 5 3 6 0 
Cascaded 2nd.order 5 3 . 	7 0 
Voltage-Wave Ladder 5 4 16 0 
IVR Ladder 5 4 18 2 
Sedlmeyer-Fettweis Lad. 4 4 15 0 
IVR Lattice 3 3 9 0 
Fettweis Lattice 3 3 10 0 

Fig. 6.50 Table showing number of discrete components used in 
various realisations . 
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1.0 	 1.0 

C1=1.73 	L1=1.795 	C2=1.7 6 

Z
2 

=1.795 

C
3
=1.4195 

Fig. 6.51 Lattice Impedances of 5th.order Chebyshev Low-Pass Filter . 
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Fig. 6.52 Complete SFD of 5th.order Chebyshev Low-Pass Lattice Digital 
Filter using the IVR transformation . 
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Chapter 7  

A  Study  of your Transformations 

	

7.1 	Introduction 

In the previous chapter the 'IVR' transformation was studied 

in some detail and the properties of the corresponding digital 

filter structures were considered. In this chapter, four other 

linear transformations are examined, the appropriate signal-

flow diagrams are derived and the corresponding digital filter 

transfer functions synthesized. The transformations given in 

this section are found in the table of section 5.10 and therefore 

they satisfy the three existence conditions of section 5.6. 

Canonic transformations will be chiefly studied, although one 

transformation will be examined which is not. The examples 

provided help to confirm by construction the validity of the 

sufficient condition of section 5.9. 

	

7.2 	The 'Invariant Transfer Admittance' •(IT11.) Transformation 

The transfornntion may be written thus (see section 5.10), 

= 

0 1 
P 

G1  -1 

1 
and Q 

[G2 
= 

0 -1 

(7.1 ) 

(7.2) 

From Chapter 5, we have in addition 

   

sae 

 

   

1,  

    

 

2 

  

(7.3 

     

     

      

where 

X11 = R... PL 

	

11 	R22/R12 

= - AR/R. 

	

12 	 2 

°21 = 1/1112 

and 

	

cr-22 	- R11 1112 
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and 

with 

R = PTa 1  

A 

(7.4) 

T = 
C D 

and A R = - AP/ aQ if network is reciprocal. 

Combining eqns. (7.1), (7.2) and (7.4) together with (7.3) we 

deduce the following expressions, 

ri  = AC1  R,2  - BGI  - CR2  + D 2 

612 = G1 R2/1112 7.5) 
621 = 1212 

and  6-22 = -C112/R12 

where R12  = CR2  = D. 

For the series impedance Z, A = 1, B = -Z, C = 0 and D = -1 

therefore eqn. (7.5) becomes 

6-11 = (R2 - R1 	Z)  /111 

i2 = R2/R1 

0-21 = 1 

0-22 = 0 22 

For the shunt admittance Y, A = 1, B = 0, C = Y, D = -1 and 

therefore eqn. (7.5) becomes 

611  = (G1 - G2 - Y) / (G2 Y) 

452  = Gi  / (G2  + Y) 

0-21 = G2 / (G2 + Y) 

(7-22 = Y  / (G2 Y)  

Moreover we have from eqn. (7.7) 

and 

672 - 61'1 = 1  
r 21 	22 = 1  
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and therefore eqn. (7.3) becomes 

	

Y1  = 0-11  (X1 	X2) + X2  

Y2 = Cr (X  ± x2 )  ÷ X  

	

22 1 	1 

We need only consider the SFD of the series inductance and the 

shunt capacitance as all other SFD can easily be derived from 

them as it will be illustrated. 

It has been established in Chapter 5, and section 5.10 in 

.particular, that the ITA formulation satisfies the transfer 

function condition in only one instance. That is, realizable 

structures can be obtained only if desi8n is begun at the load-

end. 

 

 In addition, the transformation matrix P must be used to 

derive the SFD of both terminations. As design must begin from 

the load-end, it is necessary to ensure that the SFD for each 

two-port has no delay-free path in its 	transmittance. 

- 
For the series inductance, Z = pL and p = 1 

	z 	then we 
1 + z-1 

-1 

have from eqn. (7.6), 

Cr-11 = 
(R2  — 	L) 	(R2  — —1 

R1  (1 + z 1 ) 

 

and 0- = 12 

To avoid delay-free loops we must have R2 	+.L = 0; that 

is we must set F = R2  + L from which condition we obtain 

Let 

then 

and 

oc = 

0-1  = 1 

6 	= 12 

-2L 	z
-1 

(7.10) 

0 11 	R1 	117711nr 1 

R2/1t1  

2(1 	- ct) z-1  

1 	+ z
1 

01 

One parameter only appears in eqn. (7.10) i.e.ot in addition to 

one delay. Thus a canonic structure can be realised as the 

SFD shorn in Fig. 7.1 . 
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For the other series elements we need only modify Fig. 7.1 in 

the following way (see section 5.3): 

For a series capacitor, we can replace z 1 by -z-1 and L by 

D = (1/C), for a parallel-tuned circuit, replace z-1 by T 

and L by 1/( r+ C) and for a series-tuned circuit, replace 

z-1  by -T and L by L + D, where T = z-1  ( p + z -1 ) / 	+ p z -1 ) 
and 	[3= 	- L) 	(D + L) or ( P— c) / (r + c). 

1 — z-1 
For the shunt capacitance, Y = pC and 

..on using egn. (7.7), that 

X11 (G2  + C) + (G2  - C) z-1  

p 	z-1 then we have, 

(G1  - G2  - C) + (Gi  - G2  + C) 

and err-  = 
22 	-C 	z -1  ) 

(G2  + C) + (G2  - C) z 

To avoid delay-free loops we must have 

G1 - G2 - C = 0 

that is we must set G1 = G2 + C and then 

611 
_ 

G1  

z-1 
r, „qq, 

1 ‘' 

- 
d- 
	= 	

0 	z
1 
 ) and 22 	G1  • 1 4.  (1 	

z 
2C1 -1 
G1' 

Now let 2 1 ---C 	then G
1  

 

0711 = 
1 + 13 z 

6-22 = 
1 + fiz 1-  

    

    

(7.11 ) 

    

and 
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The SFD appears in Fig. (7.2) and was derived using eqns. (7.11) 

and (7.9). 

For the other shunt elements we need only modify Fi 

a shunt inductor replace z
-1 

by -z
-1 and C by ri( 

series-tuned circuit replace z-1 by T and C by 1/( 

parallel-tuned circuit replace z
1 

by -T and C by 

T is as for series elements. 

Henceforth we shall examine only the SFD of the series L and 

the shunt C. We may obtain from them the SFD of the series C, 

shunt L and tuned-circuits using the appropriate transformations 

given above. If the SFD of the series L is canonic, then it 

is easily checked that any SFD derived from it will also be canonic. 

We may argue in a similar way for shunt elements. 

Let us now consider the terminations and interconnections for the 

'ITA' transformation. The transfer function condition implies 

that only P must be used to derive the SFD of the terminations. 

The equations for the resistive voltage source are therefore 

as follows, 

X = 

Y = 1 

and V = VR-I 

On eliminating V and I from enn. (7;12) we find that 

X = a Y + AV 

where c4 = -R1/(111  ÷ Rs) and 	/3= 1/(R1  + as ). 

Note that we do not need a multiplier for /3 since we can excite 
A 

the filter with a source Vo  = ro. The resulting transfer 

function will then differ by a constant from the desired one. 

.g. 7.2. For 

= 1/1), for a 

L D) and for a 

C +p , where 

The equations for the terminating resistance are as follows, 
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X = I 

Y = G2V - I 

V = RII 

from which we see that, 

Y = (G2  - GL)X 

As we have to design from the load, we must set G2  = GL  and 

then Y = 0; a signal sink. 

.Finally, let us examine the interconnection of two-Ports with . 

port resistances al  and R2  respectively. Using eqns. (7.5) 

with A = 1, B = C = 0 and D = -1, we have 

11-11 = G1 R21 

ai 2 	G1 R2 

(7. 1 = 

22 = 0 

4, 

   

   

To avoid delay-free loops on interconnection, we must have 

4711 = 0, that is Ri  = 22  and therefore eqns. (7.14) 

correspond to a direct connection. 

The external connections of a two-port using the IT. formulation 
A , 

are shown in Fig. 7.3. The actual transfer function, G(2), is 

given, by Y2/Vo  but the desired, 0(z) is given by Y2/Vo. We know, 

from Chapter 5, that 

0(z) 1 - z-1 

P - 1 + z-1 
(7.1 5 ) 

where 	= 1/R for the 'ITA' transformation and H(p) is the 

transfer function of the analogue filter. Thus 

G(z) 	k1ll(P) 	1 - z
-1 

P - 
1+ z 

where K1  = (11  + Rs) /RI. 
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The reason for calling the transformation defined by 

eqns. (7.1) and (7.2) the Invariant Transfer Admittance may 

be explained as follows: 

?fie have seen, from eqn. (7.15), that K = 1/RL  and therefore 

K1*) = V2/Vona, 

but 	V2 = I R. 

	

2 1J 	
therefore 

ET(p) = I2/V0  

The SFD using the ITA formulation are similar to those using 

the IVR formulation. However, it is to be observed that, whereas 

in the former the SFD corresponding to the series elements have 

a simpler form, in the latter it is those that correspond to the 

shunt elements. 

As a result of the arguments of section 5.7, it is apparent 

that the sensitivity properties of filters derived using the ITA 

transformation are similar to those already described. Thus the 

effect of multiplier rounding would be a constant shift in the 

attenuation curve. 

• 7.3 	Study of Sinilar  Canonic Transformations 

7.3.1 Introduction 

In this section, we consider two other transformations from the 

table of section 5.10. 7e shall derive the STD of the series 

inductance, shunt capacitance, terminations and interconnections. 

All other required SFD can be derived using princibles outlined 

in the previous section. As the IVR and ITA formulations admit 

only design from the load, we shall examine here two formulations 

that allow only design from the source-end, namely F10 and F12. 

. .2 	T.he.r i7l1 •filIsfornation F10 

The transformation may be defined as follows, 
• 

P = [1 (7.16) 

1 	0 
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(7.17) 

Combining eqns. (7.4), (7.16), (7.17) and (7.3) Ire find that, 

a-11 = BG /0" + DR ) 2 	j2 	1 G  2 

2 0-1 	= -R1 G2/(BG2  + DR1 G2 ) 

er21 = -1 / (BG2  + DR, G2  ) 

C-22 = 	+ BG2  + CR1  + DR/ G2 )/(BG2  + DR1 G2) 

7.18) 

For series impedances, A = 1, B = -Z, C = 0, D = -1 and therefore • 
eqn. (7.18) becomes 

611 = z / (a1  + z) 

°i2 = ni / (al 	z)  

u-21 = R2 / (111 	Z)  

cr22  = (al  - R2  + z) / (R/  + z) 

Note also that 

	

a- 	= 1 

	

1 	2 
and 	

6-21 + a 2  - 	= 1 
	 (7.20) 

1 - z-1 
For a series inductance, Z = pL and p - 

1 + z-1 have from eqn. (7.19), 
therefore we 

al 1 	L(1 .L z-1  ) / (ELI  + L) + (111  - L)z 

and 	°12 = €(R1 - R2  + 	4- 	- R2  - L)z-1  I / 

f(Ri  + L) + (al  - L)z-1 1 

(7.21) 

As we have to design from the source-end, we must ensure that for 
each element the corresponding Cl 2 -has no delay-free path. 
Thus we must set 



0, 	= (G2 - Gi 	C) + (G2 - Gi + C) z-1  
22 

G2 (1 + z-1)  
(7.24) 
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- R2  + L = 0 

that is R2  = R1  + L 

and therefore eon. (7.21) becomes 

÷ (1 — 	— z-1  ) 
— (1 	oc z-1 ) 

(7.22) 

( 	- 	, 
cr 	where of = 2R  1 -1 
22 	+ ocz )• 

The realization appears in Ag. 7.4 and was obtained using 

eqns. (7.3), (7.20) and (7.22). 

For shunt admittances, A = 1, 3 = 0, C = Y, D = -1 and therefore 

eqn. (7.18) becomes 

0- 	0 11 

= 1 12  

0-21 = G1/C 

cr-22 = (G2 - G1 	Y)  /G2 

(7.23) 

- 	z For a shunt capacitance, Y = pC and p = 1 	-i  and we find that 1 + z 
 

and 

R2 

-1 

To avoid delay-free loops, 6-22  must have no constant in the 

numerator therefore, 

and 

G2 = G1  + C 

2(1 -/3 )z-1  
22 	(1 + z-1 ) (7.25) 

where 	= 01 /G2. 
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The realization appears in Fig. 7.5 and was obtained using 

eqns. (7.3), (7.23) and (7.25). 

For interconnections, A = 1, B = 0, C = 0 and D = -1 and on 

using eqn. (7.18) together with the realizability condition, 

ue find that Ri  = R2  and 

X11 	22 = 6—  = 0 11 	2 

0-1 	= 0- 	= .1 2 	21 

that is, a direct connection. 

Let us 	consider the terminations, noting that we must use 

P for both source and load. 

For the resistive voltage source, 

X'= V + R/I 

Y = V 

and Vo = V RsI 

As we are forced to design from the source-end, by the transfer 

function condition, we must set RI  = It and then 

X = V . 

For the load-resistance, 

X = 	4- R2I 

Y = V 

V = RLI 

therefore, 	Y = %PRI, + R2 ) I X 

The resulting digital filter structure for a general doubly-

terminated LC two-port is shoe la in Fig. 7.6. 
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.4 The Tntmformation  F12 

This transformation may be defined as follows, 

P = (7.26) 
0 -R 1 

	

1 	-R2] 

	

Q = 0 
	R2  

(7.27) 

Combining eqns. (7.4), (7.26) and (7.27) and (7.3 

6'11 = -C:t1/212, 

6-12 = 111 G2/1112 

Cr21 = 1/R12 

we see that 

S (723) 

x'22 = - 	+ BG + C? + DR G )/R 22 	2 	1 	1 2 	12 

12 = A + CR1  

For the series impedance z, eqn. (7.28) becomes 

-11 
= 0 

c712 = R1 112 
(7.29) 

a-21 = 1 

6-22 = (R1 	R2 + Z)  /112 

For a series inductance L We find that on using eqn. (7.29) 

622 = f (R1 - R2 	L) 	(R1 - R2 - L)z-1 J /R2(1 + z-1) 	(7.30) • 

To avoid delay-free loops, we must set R2  = R1  + L and therefore.  

2 ( oC - 1 ) z 1  
a- = 22 	

1 4. z_1 (7.31) 

where 
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The realization is shown in Fig. 7.7 and was obtained using 

.eqns. (7.3), (7.29) and (7.31). 

For the shunt admittance, Y, eqn. (7.28) becomes• 

6-11 = -Y/ (G1 + 

6-2  = G2 / (G1  +Y) 1 

21 	"r1 = 	/ (G1  + Y) 

0'22 = (G2  - G1  - Y) / (G1- + Y) 

It is noted that 

Cr - 	= 1 21 	11 

and 	0-12  - 0-22  = 1 
} (7 .33 ) 

For the shunt capacitance C, we find that, on using eqn. (7.32) 

and applying the realizability condition, 

G2 = G1  + C 

0r11 = 	( p -1) (1 - z -1  ) / 	+ p z-1  ) (7.34) 

and 
	

5-22 = (1 	)°
-1 
 / (1  +fiz

-1)  

where i?  = 2 — -1 G2 

The SFD appears in Fig. 7.8.and was obtained on,using. eqns. (7.3), 

(7.33) and (7.34). 

On using eqn. (7.28) it is easy to shim that we may directly 

connect two ports so long as their appropriate port resistances 

are equal. 

Finally, let us consider the terminations, which must be derived 

using P as a result of the transfer function condition. 
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For the resistive voltage source, 

= V + RI  I 

Y = -11/  I 

V
o = V + RsI 

As we are forced to design from the source-end, we *must set 

R1 = Rs and therefore X = Vo. 

For the load resistance, 

X = V R2I 

Y = -R 2I 

V = RLI ' 

Therefore, on eliminating V and I, we find that 

Y =1 	R2 	I X. 

R2 + 

The representation of a general doubly-terminated two-port using 

the F12 transformation, appears in Fig. 7.9. 

75.4_ Discussion 

Certain important observations need to be mentioned with regard 

to the signal-flow diagrams derived in this chapter. The SFD 

of the series inductance and shunt capacitance using the F10 

transformation (Figs. 7.4 and 7.5) can be derived fremthe 

corresponding SFD using the IVR transformation (Figs. 6.1 and 6.5) 

by interchanging input and output. That is, by interchanging X1  

and X2, Y1  and Y2, RI  and R2. This fact becomes apparent when we 

realise that the F10 transformation is just the IVR transformation 

with P and Q interchanged. By observing the entries in Fig. 5.15, 

we may verify that this property holds between F4 and F5, F7 and 

F11, F8 and F12, and F9 and F13. We .would therefore expect to obtain 

the SFD of one from the corresponding SFD of the other. 
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Let us now compare the SFD of F12 with those of the ITA 

transformation. The SFD of the series inductance and shunt 

capacitance using the P12 transformation can be derived from the 

corresponding SFD using the ITA transformation (Figs. 7.7, 7.8, 

7.1 and 7.2) by reversing the flow and interchanging Al  and B2, 

A2  and B1 , R1  and P. If we examine the corresponding P and 1 

matrices, we find that to obtain the appropriate pair for 212 

all we need to do is interchange the P and q matrices for the 

ITA transformation and multiply them by their respective port 

resistances. This property also holds between 26 and F15, P8 

and F11, and F9 and F10 (see Fig. 5.13). Furthermore, in the 

special case when P = Q when R1  = R2, interchangint: P and Q 

has no effect. Therefore, the voltage and current formulations 

may be derived from one another by respectively multiplying by 

the port conductance and the port resistance. The relationship 

between the SFD obtained using the voltage and current 

formulations has been examined in Reference [60]. 

Finally, if we reverse the flow in Fig. 7.3 together with the 
interchanging of RL  and Rs, Al  and B2, and A2  and B1  we obtain 

Fig. 7.9. This last point implies that a network designed using 

the ITA formulation may be transformed by flow reversal into 

one designed using the F12 formulation. Similar comments may 

be made about F1 and P2, F6 and F15, F8 and 211, and F9 and F1 C. 

For convenience, we have illustrated the general tuo-nort for F6 

to F13 inclusive in Fig. 7.10. 

1.4 	Stud,r of One Non-Canonic Transformation 

Let us examine the transformation, 14, defined as follows 

(7.35) 

(7.36) 
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So far we have studied, almost exclusively, transformations that 

yield canonic digital filter structures. By the tern 'canonic' 

we mean that the individual ;,FD use the minimum number of 

multipliers and delays although the overall digital structure 

may not. All the transformations that have been examined, satisfy 

the sufficient condition of section 5.9. In fact, of the thirteen 

transformations listed in-Fig. 5.15 ten are known to be canonic 

and the other three are not canonic. All the canonic transformations 

of Fig. 5.15 satisfy the sufficient condition. 'Je may indeed 

propose that the condition is not only sufficient but necessary. 

110 transformation has yet been found which contradicts this. 

Returning to the present discussion, namely the discussion of the • 

F4 transformation, we have on combining eqns. (7.35), (7.36), 
(7.5) and (7.4) the following expressions, 

or/ 	= (11.22  - B - C71/  Rs  + DR/  ) 	Fti 2  

Cr12 = 2/R12 

'21 = 2/R12 

X22 = -(AG1  + BG1  G2  + C + DG2) / R12 

212 = (AG1  R2  - BG1  + C22  - D) 

For the series impedance, Z, eqn. (7.37) becomes 

C-11 = 1Z1 (R2 	+ Z) 	(R2 + R1 + Z)  

cri 2  = 2R1  / (112 	Z) 

Cr = 6-  21 	1 2 

cr:22 = G2(R1  - R2  + Z) 	(22  + R1  + Z) 

t (7.37) 

(7.38) 

For the shunt admittance, Y, eqn. (7.37) can be written thus, 
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011  = R1(G1 - G2 - Y)  / (G1 4- G2 Y)  

52 = 2G2 / (G1 + G2 
+ Y) 

(7.39) 
X21 21 = 

46- 
12 

62 = G(G2  - G1  -y)/(a1  + G2  + Y) 

Let us consider the series inductance, L, as an example, then 

eqn. (7.38) becomes 

611 = R1 f(R2  - 	+ L) + (R; - Ri - L)s-1/ / denom. 

N / OT2  = 2RI (1 + z
-1 ) 	denom 

(7.40) 
er = 21 	12 

6-22  = G2  f(Ri 	L) + (R1  - R2  - L) z-11/ denom 

where denom = (R2  + R1  + L) + (R2  + R1  - L)z 

To avoid delay-free looms on interconnection either Ri  = R2  + L 

or R2  = R1 + L. If we let RI  = R2  + L in eqn. (7.40) then 

011  = -Lz
-1/ (1 + az-1 ) 

cr 2  = (1 + z-1 ) / (1 + ac z-1  ) 1 

2 = (G2 - G1 ) / (1 + e z-1 ) 

where ot= R2/111 . . 

The SFD for the series inductance is formed using eqn. (7.41) 

with eqn. (7.3). However, it is clear that no structure can 

be built up using only one multiplier,and one delay. To realise 

these equations, we would require at least three multipliers and  

two delays, since there are no useful relationships between the 

cr-parnmeters and between L, (G2  - G1 ) and a. . Thus the SFD 
of a series inductance is not canonic. 'le may deduce, in a 

similar way, that the SFD of a shunt.capacitance is also non-

canonic. We need not, therefore, concern ourselves with the sources, 

terminations and interconnections of the F4 transformation. 

2 2  

1 
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Finally, it is observed that the F5 transformation can be 

obtained from F4 by interchanno, P and Q. Thus, we may equally 

apply the arguments of this section to 25. 

2:5 	Discussion and Conclusion 

In this chapter we have examined four transformations and shown 

that the SFD of an element using one particular transformation 

can be obtained by elementary operations on the SPD of the same 

element using a different transformation. We have found that F4 

can be obtained from F5 by interchanging P and q which is 

equivalent to interchanging X1  and X2, Y1  and Y2  and R1  and R2. 
SiMilarly, F6 and 710, 77 and P11, FS and F12, 79 and P13 are 

so related. 

We have also established that a digital structure derived using 

F6 may be obtained from that derived using 713 by flow reversal. 

A similar relationship holds between 77 and F12, FS and F11, 

P9 and F10, and F1 and 72. 

We may thus classify the thirteen transformations given in 

section 5.10 into 5 divisions. The first consists of II and 72, 

the second of 75 only, the third consists of F4 and 2'5, the fourth 

of F6, F9, F10, F13 and the fifth of P7, FS, F11, F12. The 

transformations in each class are related by one or both of the 

properties mentioned above. 

The transformations given in Fig. 5.15 and discussed here are, 

by no means, the entire set of transformations that satisfy the 

three existence conditions. Clearly, there is more work needed 

to find new transformations and examine their properties, in 

particular the attenuation sensitivity to multiplier variation 

and round-off noise effects. 



R1=R2
+L 
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)—o Y2 

Fig. 7.1 SFD of Series Inductance 	(ITA) . 

y2 

-3> 
G1=G2 	

R
2 

t3=3. - -2C 1 
'4—°X2 

Fig. 7.2 	SFD of Shunt Capacitance (ITA) • 

Fig. 7.3 	General digital two—port (ITA) . 
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2 

R2 

< 	GX 

R
1  a= 2 -1 
2 

I() 1+) = 	+L 

4 

2 

Fig. 7.4 
	

SFD of series _inductance (F10) . 

xl 

R
1  

Yl  

R
1  

Yl 	 X2 

Fig. 7.5 SFD of shunt capacitance 	(F10) . 

0 

y=1,tL/(RL+R2) 

Fig. 7.6 	General Digital Two-Port 	(no) . 
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2=R14.L 

=Ri/n2 
Y1 
 o_<_ 

Fig. 7.7 SFD of Series Inductance (F12) . 

11
1  

xl 
0 	 

G2=G1+C 

2
G1 
G2 

Fig. 7.8 	SFD of Shunt Capacitance 	(F12) 	. 

y=-R2/(R2+1IL) 

Fig. 7.9 	General Digital Two-Port 	(F12). . 



rs 

Fig. 7.10 General Digital Two-Port for F6 to F13 inclusive 
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Design from the Load-End Design from the Source-End . 

1 
4= -R1/(R1s d=1/(R1+Ps) 

F7 F12 

X2=0 

d=R1/(R1+Rs) 

2=0 Y1 
a=Rs/(121+Rs ) , a=1/(R1+Rs ) 

F9 	 • 

a 0 

F6 F13 

xi=vo/p.6  

D 

Y CI 1 

Y2 

Fll 

0 	 

Rs 

X2 
13.-RL/(R2+IRL) 

no • 
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Chapter 8  

Computer-Aided Analysis of Dirrital 2ilter Structures  

8.1 	Introduction  

The many filter examples given in this thesis were analysed using 

programs written in APL [84]. This language was chosen for the 

following reasons, (a) it is fully interactive, (b) it is very 

concise, and (c) it has an extensive built-in matrix handling 

facility. Thus programs can be written and tested very quickly. 

As a digital filter structure can be thought of as a linear 

signal-flow graph (857(863, all major programs use a common input 

procedure in which the signal-flow graph (Sr G) of the digital 

filter is specified. The following four rules describe the 

properties of a tine-invariant S2Cr' [297: 

I. Signals flow along branches in the direction 

of the arrows. 

II. A signal flowing along any branch is multiplied 

by the transmittance of that branch. 

III. The value of the variable represented by any 

node is the sum of all signals entering the 

node. 

IV. The value of the variable represented by any 

node is transmitted to all branches leaving 

that node. 

A node can be any point on a branch in the SFG, however we are 
restricted here because we admit only 'two types of branch 

transmittance (a) a real constant or multiplier and (b) a fixed 

complex delay, z
-1 

where z = exp(jwT). Thus every branch 

transmittance must be uniquely defined by.two nodes, the order 

of which defines the direction of the signal. The nodes of an 

SF are numbered from 1 to n Where n is the total number of nodes. 

Then every branch is defined by three numbers, the first two are 

the nodes to which the branch is connected and the third is the 
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value of the transmittance if a multiplier and zero otherwise, 

i.e. if a delay. As an example, consider the digital circuit 

of Fig. 8.1 and its associated SFG in Fig. 8.2. The appropriate 

nodes have been numbered and in Fit?. 8.3 we see the SFG 

information in list form. 

It is the purpose of this chapter to describe how sensitivity 

derivatives are evaluated and to discuss a new algorithm which 

is helpful in calculating the change in a network function Given 

simultaneous changes in value of one or more multipliers. 

8.2 	74nite  Ch n --e Srmsitivi t- 

Consider a linear SFG with n nodes. Je may describe it by 

a set of linear algebraic equations of the form (873, 

	

x = Ax + e 
	(8.1) 

where x represents the signal values at the nodes. 

e is the vector of nodal inputs or signal sources. 

and A is the n x n connection matrix such that A
ji 
 is the 

transmittance from node i to node j. A can be written 

down by inspection of the SFG. 

Eqn. (8.1) may be solved for x to give 

x = Te 	 (8.2) 

. where T = (I Aj
-1  and I is the unit matrix. 

It must be assumed, of course, that (I - A) is non-singular. 

If v is the output node and u is the input node then the transfer ' 

function G(z) is defined as xv/eu or Tom. The partial derivative 

of G with respect to a transmittance pc connected from node i to 

j (see Fig. 8.4) is given by (seVasAfbo)bil 

aG 
= Tvj  Tiu  aoc (8.3) 

Thus the sensitivity is simply the product of two elements from 

the matrix T. To evaluate all the sensitivities for the transfer 

function G(z), we need only the uth. column and vth. row of T. 
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To find the entire natrix T requires n3 operations (multilply-add) 

whilst to find one row and column require 4n3  + 2n2  at each 

frequency of interest 023[97][9 B]. The program SOLVE finds 

the former and as *:re shall see this is necessary if we are to 

require a finite change algorithm. A listing of SOLVE is given 

in Anuendix II. 

The principal problem of this section is to derive an expression . 

which is numerically efficient that enables us to calculate the 

change in G(Z) given simultaneous changes in multiplier values. 

- This expression is required because for Digital Filters we are 

interested in the effects of reducing. the multiplier wordlength 

overall. 

Let us first consider the following; if we perturb T by an amount 

41T and A' 	I A by AI' then we otill have the co-respohd(ng 
c1 tie t4 A', AA' 1  Nat be such that 

(A? + A A' )(T + d T) = I 	 (8.4) 

where I is the unit matrix. 

Eqn. (8.4) can be written as follows, 

(Al + 11 Al) Q T = 	421'T 

or as 

AT = -(A' + QA')-1  &LIT 

lie may write eqn. (8.6), since A'T = I, as 

AT = -(I T AA')-1T 4A'T 

But 	
= - AA 

(8.7) 

therefore eqn. (8.7) becomes 

AT = (I - T dA)-l T dAT 	(8.8) 

We know that A is linear in each transmittance, therefore 

AA = E j  
(0.9) 

J aoci 
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wherece.is the jth branch transmittance and the summation is 

taken over, say, m of them. The matrix aA consists only of 
72,7j 

ones or zeros. Thus, if we use eqn. (8.8) in conjunction with 

eqn. (0.9) we may certainly find the change in G(z) civen a 

thange,l1m.,in the jth. transmittance for j from 1 to m. 

However, we need to invert not only Al but also (I - T AA). 

We shall next consider an alternative and more efficient approach. 

Expressions have been found for the change in G due to only one 

multiplier changing. Crochiere derived his formula using the 

Taylor Series 1.852b63 whilst Spence [373 derived a similar 

expression using the Jubstitntion Theorem [93]. We shall use the 

latter approach here in a more general way. 

Consider changing m of the branch transmittances by finite amounts. 

Let a typical branch have nominal transmittance Pk  and 

associated change 	(FiE;. 0.5). The transmittance 	/1/3k  cank 
be replaced by a source with value Apic.Xik  at node Jic  without 

_affecting the overall structure of the graph. This replacement 

(shown in Fig. 8.6) can be performed for all transmittances that 

change thus reducing the structure to its original form with 

additional sources at the relevant nodes. 

Let us denote T 	= xv/eu 
as the nominal transfer function of 

the system. 

The change in the output due to changes of the transmittances will 

• be given by 
m 

d v  x = 	T 	 Vil e3  
k=1 	

k  

(8.1o) 

whereTvjk  represents the transmittance from node Jk to the • 

output node v. Equivalently, we can lirite eqn. (8.10) in the 

form 

A x T —' vJ -QJ .(8.11) 
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where 

vJ and eJ  are column vectors, with the prime - 	- 
denoting transpose. 

From superposition, we can write, therefore, that 

m 
x,

"11: 
= T 	 T Iku e u 	/e" 	IkJ 

eJL L L=1 

or equivalently 

= T e + T e -I 	.-Iu u 	-J (8.12) 

where xI 
 and T 	are column vectors and TIJ is an m x m matrix. 

Furthermore, we can write the expression 

eJk 
= 	Aft k  xik  

or (8.13) 

where 4 is an m x m diagonal matrix. 

On combining eqns. (8.11), (8.12) and (8.13) we obtain 

(8.14) 
[( )-1 Tu.] ,, 

A xv  = 4.,T 	 =iueu 

where ( Afi )-1  is a diagonal matrix whose elements are 1/ Li /3 k  1 . 

On comparing eqn. (8.14) with (8.8) we see that knowledge of T is 

required in both, however, whereas in the latter we have to invert 

another n x n matrix, in the former it is an m x'm matrix. Although 

the total number of branches is generally greater than n, the 

number of multipliers of interest will'always be much less n. 

Therefore eqn. (8.14) is more efficient to use than eqn. (8.8). 

At any frequency of interest, we may apply eqn. (8.14) to find 

the change in the transfer function given a simultaneous change in' . 

m branch transmittances. The only term that changes in eqn. (8.14), 
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for different sets of changes in the branch transmittance, is 
)-1 

A program, called FINIT3, uhich embodies the finite change algorithm 

just described is listed in Appendix II and is to be used in 

conjunction tiith SOLV2. 

8.3 	Neu  Analysis2.1,7orithn 

We have considered, thus far, 1_ 1  A. c  to be a general transmittance. 

For digital filter structures, 11, could be a multiplier or a 

delay. By considering a finite change in each of the delays, we 

may develop an analysis algorithm uhich has many advantages over 

conventional methods. 

Let the change in each delay be equal to Sz-1. This has the 
effect of changing the frequency from its nominal value. Je can 

write, therefore, that 

p = 	A-11 	 (8.15) 
where 

dz
-1 

z-1 1 	- z-1 	, a scalar 

and I is the unit matrix. 

Thus eqn. (8.14) becomes, 

15x = T' 	JZ I - v 	vJ 	j 12Iueu 	(8.16) 

where 	= 1/ 47z-1. 

The algorithm will be as follous:-  

1. At some frequency w = tiro, solve eqn. 8.1), that 

is invert A'. 

2. Use eqn. (8.16) to find 
illir for some frequency 

w = w1 by considering delay elements as the. changing 

transmittances. 

W = w1 	w=wo 

3. 	Apply stop 2 for other frequency values of interest. 



It should be noted that, since eqn. (8.16) is exact, we may 

choose any value for dz. Thus the complete analysis of the 

system is necessary at one frequency point only, which may be 

chosen at convenience. In fact, the complete analysis may be 

done at zero frequency when all transmittances are real and 

therefore matrix calculations are simpler. The subsequent 

analysis using step 2 above, requires the inversion of an 

m x m matrix where m is the number of delay branches. For the 

digital filter structures described in previous chapters, m is 

very much less than n. The ideas of this section have been 

incorporated into a program called =COIN, a listing of which 

is given in Appendix II. 

8.4 	axporimental 7Zesults 

8.4.1 	Theoretical Predictions 

We have developed the algorithms in the previous two sections, 

so as to be able to compute efficiently the change in the loss 

characteristic of a digital filter structure due to changes in 

the multiplier values. Let us therefore compare these algorithms 

with the conventional method of triangular decomposition, which 

is the most efficient way of solving a general system of linear 

equations. 

Let n be the number of nodes, 

m be the number of multipliers of interest, 

d be the number of delays, 

c be the number of sets of changes 

and f be the number of frequency points. 

then for 

Hethod A: Triangular Decomposition of A' = I — A at every 

frequency point. 

The number of arithmetic operations, TA, is given by [921 

(4n3 	n2) (c 	1) f 
	

(8.17) 
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Method B: Multiple finite change algorithm together with 

inversion of A' at every frequency point. 

The number of operations, TB  = (n3  + m3c) f 	(8.18) 

and Method C: Hew Analysis Algorithm. 

T = 	n3  + d3  (f - ) / (c + 1) 	(8.19) 

8.4.2 Emmple 

Let us consider a :lave Digital Filter with 

n= 14, m= 4,'d = 4, e = 1, 4 and 6, and 

f = 10 and 20. 

The filter was analysed using Methods A, B and C with the aid 

of an APL terminal. The CPU times were noted• and tabulated 

in Fig. 8.7 where they may be compared with the theoretical 

predictions. The CPU times have enabled us to derive the 

following expressions for the three methods which can estimate 

the corresponding  CPU time for any c and f value. 

TA  = 424 (c + 

TB = (978 + 135c)f 	 (8.20) 

-T‘e  = (1008 + 91 (f - 1) j (c + 1) 

Fig. 8.7 shows, at least for one filter, that method C and 

method B are superior to method A and that method C is superior 

to method B. In fact, method B becomes more efficient as c 

increases since m << n and method C becomes more efficient as 

f increases since d<c n. 

Finally, Fig. 8.8 tabulates the theoretical estimates using 

methods A, B and C for five different networks and it can be 

seen that the conclusions drawn above are not unreasonable: 
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8.5 	_  Discussion 

In this chapter two new ways of examining finite wordlength 

effects in digital filter structures have been discussed. 

Both methods avail themselves of the formula for multiple 

parameter finite change.* The first uses the basic inversion 

of the connection matrix torether with the finite change algorithm 

at each frequency of interest. This method is particularly 

useful when the number of sets of different changes is large 

and m is less than n. 

The second method uses the basic inversion only at the first 

frecuency point. At subsequent points, the multiple parameter 

finite change algorithm is used to modify the frequency response. 

It is of greatest advantage when the number of delay branches, 

is small compared with the number of nodes, n, and when the 

number of frequency points is large. 

Both methods show improved results when compared with the 

conventional triangular decomposition method. 

Although the advantages of these two methods have been argued 

for Wave Digital Filters, it is expected that the same advantages 

will apply to the analysis of Digital Ladder _2ilters (622E65], 
Leapfrog Digital Filters 14471457 and the Digital Filters of 
Gray and ::arkel [68][597. 

Footnote: 

* An efficient method for the computation of the change in an 
analogue network function due to simultaneous finite changes in 
two or more network parameters has recently been published (941. 
The formulae were derived using the Adjoint Network Concept [95]. 
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Fig. 8.1 	A Digital Circuit Example . 

Fig. 8.2 	Signal-Flow Graph of Fig. 8.1 . 

1 2 0 

2 3 0 
3 0 

4 5 a3  

3 5 a2 
2 5 al  

1 5 ao 
2 1 b1  

3 1 b2 
4 1.  b

3 

Fig. 8.3 	Tabular Form of Fig. 8.2  
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Fig. 8.4 	Transmittance m connected from node i to node j . 

13k4.613k • 

Fig. 8.5 	Transmittance (3kk 
connected from node Ik 

to Jk . 

Fig. 8.6 Equivalent representation of Fig. 8.5 . 

OBSERVED(in units of time) 1111,.ORETICAL(no. of operations) 

c=1 c=4 c=6 c=1 c=4 c=6 
Method f=10 	1  f=10 f=20 f=10 f=10 f=20 

A '8480 21200 59360 22220 55550 155540 

B 11130 15180 35760 28080 30000 62560 

C 3654 9135 19159 6640 16600 27720 

Fig. 	Comparison between methods A,B & C for one 
example . 
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Iethod 

Network A B C 

N1 37 64 (c=0) 
64 (f=1) 
15 (f=10) 

n=4,m=5,d=2 115:(c=5) 
8 (f=60) 

125 (c=00) 

N2 
n=10,m=4,d=3 433 1000 (c=0) 1000 (f=1) 

220 (c=5) 138 (f=10) 
64 (c=oo) 27 (f=00) 

N3 2268 5832 (c=0) f5832 (f=1). 
n=18,m=4,d=3 1025 (c=5) 675 (f=10) 

64 (c=00) 27 (f=00) 

. 	. 
N4 

n=14,m=4,d=4 1111 2744 (c=0) 2744 (f=1) 
511 (c=5) 369 (f=10) 
64 (c=oo) 64 (f=00) 

N5 37 64 (c=0) 64 (f=1) 
n=4,m=3,d=2 33 (c=5) 15 (f=10) 

27.(c=00)  8 (f=v0) 

Values tabulated are no. of operations per frequency change . 

Fig. 8.8 Theoretical Estimates for methods A,B & C applied to 
five different networks . 
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Chapter 9  

Further Research. 
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Chanter 9  

Further Research. 

Given below are suggestions as to what research could usefully be 

done on some of the topics discussed in this thesis. 

In Chapter 5, the general two-port linear transformation was 

introduced. It still remains to find a provable necessary and 

sufficient condition for canonic signal-flow diagrams. The one 

given in this thesis seems not to be provable, although it is 

satisfied by the thirteen transformations listed in Chapter 5. 

Furthermore, are there other canonic transformations apart from 

the ten listed in section 5.10? 

With regard to the Cascade condition, is there any interesting 

and useful consequence of allowing P and . to be different for 

each constituent series and shunt arm? Of course, at junctions 

the condition Q 1 C P 	= k+1 	D still holds. 

In the same chapter, the 11AP sensitivity characteristics were 

investigated and two conditions were found for zero sensitivity. 

The second condition was studied and it was found that only 

non-canonic SFD satisfied it. The first condition was not 

investigated and it would be interesting to know whether 

canonic transformations exist for which RL/R
s is independent 

of every multiplier variable. 

Recently, Fettweis examined a way of reducing the number of delay 

elements in a wave digital filter by applying to the analogue 

network a Bruton transformation [541[55].  This had the effect 

of producing new types of elements, the so-called super-

capacitances and super-inductances. However, the good sensitivity 

characteristics were preserved. It would therefore be interesting 

to know whether such techniques could be applied to the 'Iva', 

'ITA' and other transformations discussed in Chapters 6 and 7. 

The noise properties of digital filters derived using 'IVR', 'ITA', 

etc. need to be studied. Comparisons has been made between the 

round-off noise generated in Wave Digital Filters and conventional 
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digital filters (W. It was found that, in certain circumstances, 

the former yielded the lowest noise. It is expected that the 

digital filter structures discussed in Chapters 6 and 7 will 

behave in a similar way. As a step towards a ri'orous analysis 

of the round-off noise, a comparison between seven different 

realisations of the same third-order elliptic transfer function 

was made. This may be found in Appendix III. 

No mention has been made of the transient response and clearly 

work is needed in this area. In addition, the parasitic effects, 

i.e. limit cycles need to be studied for the new transformations. 

Finally, with regard to computer-aided analysis a start has been 

made on writing software for a PDP-15 computer with an interactive 

graphics unit. In this way, a digital filter structure may be 

entered into the computer by drawing it with a Edit pen on the 

graphics terminal screen. At the present, the structure can 

be analysed in the frequency domain and appropriate response curves 

plotted. In addition, the differential sensitivity is calculated 

and displayed. Further work needs to be done in the following 

areas, (i) Large-change sensitivity, (ii) Transient analysis, 

(iii) Facilities for entering very large structures in sections 

and (iv) Noise analysis. 
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Conclusions  

1. A method has been described in which digital filter structures 

were derived from classical analogue doubly-terminated lossless 

ladder networks using the two-port approach. The method consists 

of treating each series and shunt ladder arm as a two-port and 

deriving the correspondin7 wave-flow diagram. These wave-flow 

diagrams may then be directly connected together thus obviating 

the need for adaptors. The principles of design were then 

illustrated by means of several examples. These examples also 

verified that the coefficient quantization error in these wave 

.digital filter structures was lower than that in conventional . 

direct and cascade structures. 

The method was then extended to cover filters made up from a 

cascade of commensurate stepped-impedance transmission lines. 

2. The attenuation sensitivity to first-order multiplier variations 

was then examined. A formula was derived relating this sensitivity 

to that of the analogue network from which the digital filter 

was derived. It was found that the first-order attenuation 

sensitivities were approximately constant in the passband. 

Lon;; has derived similar formulae but in a completely different 

way using the concept of pseudopower (44). 

The consequence of approximately constant sensitivities is a 

constant shift in the attenuation curve, after multiplier rounding. 

3. The two-port approach enables digital filters to be designed simply. 

with the aid of standard filter tables. The analogue prototypes may 

be ladder networlm or networks made up from a cascade of 

commensurate :transmission lines. 

4. A generalization of the Wave Digital Filter concept was also 

presented. This was made possible by considering, instead of 

voltages and currents, new variables which were related to the 

former by linear transformations as follows, 

X 	V, 
1 	1 	 r2  

= P and 	- 
[11 	 I. 

X2

L2 	12 
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The matrices P and being of dimension 2x2 and non-singular. 

Conditions have been found on the elements of P and q such that 

the resulting digital filter structure was realizable, canonic 

and, indeed, imitated the analogue filter from whidh it was 

derived. The general linear transformation on a two-port was 

first examined by Carlin and Giordano E99], although they considered 
only analogue networks. Using the same method as above, the 

sensitivity behaviour was investigated and was found to be of a 

similar character to that of the Wave Digital Alter. Furthermore, 

a transformation was found to exist that yielded structures 

with zero attenuation sensitivity at points of maximum pseudopower 

'transfer but, unfortunately, such structures were found not to 

be canonic. A table was given, listing thirteen transformation's, 

from which the Invariant Voltage Ratio transformation was taken 

and studied in detail. Several filter examples were given that 

verified the low attenuation distortion property. . 

5. Other transformations, from the table, were also examined; It 

was found, for example, that structures derived using one 

transformation could be obtained from structures derived using 

another, by simple operations on the corresponding signal-flow 

diagram. 

6. Finally, the computer-aided analysis of digital filter structures 

was investigated and various methods of analysis were discussed, 

from the point of view of the number of arithmetic operations 

needed. A new algorithm was presented in which the formula for 

calculating the change in the frequency response, given changes 

in any number of branch transmittances, was used. The branch 

transmittances changed were the delays and in this way, the 

frequency response at different freuencies could be calculated 

for only one complete analysis of the structure. It was further 

shown that the new algorithm was more efficient to use than 

conventional techniques for the analysis of most practical filter 

structures. 
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Appendices  

Contents: 

Delay 31ement Sensitivities. 

II: 	API, Analysis Programs. 

Round—Off Noise Lnalysis. 
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Appendices 

Appendix I: Delay .711ement Sensitivities. 

The. aim of this appendix is to derive the functional relationships 

between DL, Dc' D1 and D2 for the case of a series-tuned circuit 

in the shunt arm. For this circuit, the admittance Y is given 

by 

Y = 1 / ipL +  pC (A .1 ) 

On applying the bilinear transformation to eqn. (A.1) in the form 

1 - DL pL 1 + D
L

L 

1 - Dc C and 	pC 
1 + D 

we find that 

Y = 
	(1 + DL )(1 - De ) 

(1 - DL) (1 	L + (1 + DL) (1 + Dc) i 

which can be written as 

Y = 

Let 	= 	1  
(D + L) 

1 + (DL  - De) - DLDe  

(D + L) + (D - L)(DL  + De) + (D + L) DLDe  

and /3= _ (4H.:-10 then eqn. C1.2) 	becomes 

(A.2) 

Y 
1 + (DL  - De ) - DLD e  

(A.3) 	• 1 + 
)9tDL

+  De ) + DLDe  

NOT let us consider the realization of the series-tuned circuit. 

On applying the bilinear transformation to eqn. (1.1) we have that 

1 - z-2 

(D + L) + 2 (D - L) z-1  ± (D + L) z-2  
Y 

or 
a0  z-2) 

Y = 	• -1 	-2 1 + 2/3 z + z 

  

  

(A.4) 
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Eqn. (I..4) nay be written as follows 

Y = 	-1 	-1 
( + taz + z 	+ z 

or, finally, as 

Y = 

where 	T = 

• (A.5) 

z 	
, 	 1, 

1 + p z-1 

 

In the actual realization (see Figs. 2.23 and 2.24) we have 

D1  ( fr+ D2) 

On substituting for T fro! earl. (A.6) into eqn. (A.5) we have 

T = 1 + / 13D
1 	

(A.6) 

Y 
04 (1 - D1  D2) 
1 +2 p D1  + Di D2  (A.7) 

We may put eqn. (A.3) into the following form, 

Y 
041 + i  (DL  - Da) + z  (DL  - Da) - DLDa  I 

1 + 	L  Da) + t3 (DL + Da) + DLDa  - < (DL  - Da) 

(A.8) 

On dividing both nu:aerator and denominator of eqn. (A.8) by 

1 +
2 
(DL  - Dc) and comparing with eqn. (A.7), it is not too 

difficult to see that 

(DL.+ Da) 

	

D1 	1 	 Dc  

and 	D
1
D
2 	DLDa  - (DL  - Da) 

1772777517--  

which is the desired result. 



DLDc 
- 4- (DL - Dc) 

D2 	(DL  De) (A.1 1 ) 

We may obtain D2  explicitly by dividing eqn. (A.10) by eqn. (A.9). 

We find that 

It is easily checked that, when DL = Dc = z
1 
then D1 and D2 

are also both equal to z1 .. 

Almendix II: APL Anal,  sis Prorrrams 

Listings of the programs described in Chapter 8 are given here, that 

is SOLT], FINITE AND NE'JSOLV. In addition, four functions are 

given, namely ::OD, AnG, =am and °DIV. .These four functions are 

called from within the analysis programs. The input requirements 

of these programs are summarised below: 

(i) 	SOLVE 

NB 	= Number of branches 

NN 	= Number of nodes 

WO 	= First frequency 

W1 	= Final frequency 

NFRQ = Number of frequencies 

DATA = Vector of size 4 NB describing the 

digital network. For each branch there 

are four quantities required. The first 

two are the nodes to which the branch is 

connected. The third is the multiplier 

value or zero if the branch is a delay. 

Finally the fourth quantity is zero only 

is no sensitivity information is required 

for that branch. 

FINITE 

This program is to be used in conjunction with SOLVE. 

Therefore a call to FINITE must be made in SOLVE. It is 

suggested that a suitable place would be between lines 25 

-and 26. Furthermore lines 26 to 45 should be removed. The • 

fourth quantity in the branch information, which is stored 

in DATA, should then contain the desired change for that 

branch. A vector called MIMI acts as an indicator to the 

branches that are required_ to change in value. 
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(iii) :L17JoLy 

NB 

UN 

JO 	as for SO= 

11 

11213.). 

DC 	= scaling value for attenuation characteristic 

TZAITCH 	= vector containing the branch numbers of 

delay cle_lents 

DST A 	= vector of size 31IB describing the 

digital netuork. For each branch 

there are three quantities re-luireq. 

The first two are the nodes to which 

the branch is connected. The third is 

the multiplier value or zero if the 

branch is a delay. 
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VSOLTIET0v 
V SOLVE 

[1] 13:1T4-(PD,L0pDATA 
[2] 11÷(T11-W0)+11FRQ-1+17FRO=1 
[3] J4-1 
[4] L4:_724-1 
[5] WT4-WO+HxJ-1 
[6] A1+-112÷(1711,ilP)p0 
C7] L3:1114-BRI1TEY;1] 
[a] 	172÷DRPIT[I;2] 
[9] 	/734-T[T;3] 

1101 	-“113=0)/L1 
Ell] 	A11112;711]+-A1[:72;N1]-P3 
[12] ±L2 
[13] L1:A11112;a1.14-AlL/12;P1J-20Wf' 
[14] A2[1 2;111:]  
C15] 	1,2:I.‹-I+1 
[16] ->-(T:=171?)/L3 
[17] 14-1 
[19] 	L5:A1II;I:14-1 
[19] /4-1+1 
[20] -.)-(I:=L-7)/L5 

(. ) [21] A3÷rAl 
C22] 	T14-f111+A2+.xA3+.xA2 
[23] 	T21--71+.xA2+.xA3 
C24] 	674-T1rV;U],T2FV;Ui 
125] 	UT;' 	';MOD 	G;' 	';20x10 OD G;' ';ARC 
[26] T4-1 
[27]  
[28] L6:-)-(RRXITY;43=0)/Lq 
[29] ill-c-P=CI;1] 
[30] 112 4-BTIT[I;2] 
[31] 1134-PRi1TEI;3] 
[32] i;14-f1i:V;i7 2j,f2EV;j21 
[33] 1,24-!/71[111;(ij,T2[Pl;U] 
[34]  
[35] DTFF4-7,1 CLWL Z2 
C35] 	=S÷DIPP CP Tn G 
[37] ÷(173=0)/L7 
[38] DIPP4SE1711x113 
C39] 	->L8 
[40] 	L7:Z3*- (20WT), - (10WT) 

if--  
[41] DIFF÷SENS MUL 7,3 
[42] L8;1 	1 ;1; 1 	';DIFF 
[43] L9:I4-T+1 
[44] -)-(I:=11B)/L6 
[45]  
[46] J4-J+1 
[47] -*(J511PRQ)/L4 
[48] ÷0 

G 

V 
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vpIaITEr.riv 
✓ FIN= 

[l] 	;44-TBaA11CH 
[2] DELL 4-(L1,M)p0 
[3] JeT÷II4-1/p0 
[4]  
[5] 1,1:II[E]-(-BX/TERPANCFC.K];1] 
[6] JJ[K]4-BR:fTEDRANCHLKi;2] 
[7] BELBDC;Z:14-+BRMTEBRANCREKJOA-ixBRMTD3PAPCP[K.10]+100 
[8] K4-K+1 
Eq] 

[1.0] 314-DELP-T1LTI;JJ] 
[1A] 324--T2[II;JJ] 
[12] 534-21[V;JJ] 
[1.3] 344-j.'?_[V;cTJ1 
[14] 854-T1[TY;U] 
[15] .564-T2[17;(1] 
[16] 37÷41:31 
[17] 314Ka1+.52-1-.xS7+.xS2 
[1.8] 32.4-31+,x32+,x57 
[19] .(774-(S3+.x.51)-S4+.xS2 
[20] 51÷(34+.x31)+53+.x.92 
[21.] S24-(S7+.xS5)-51+.x,56 
[22] a7÷(a1-1-.xS5)+,:77+.xS6 
[23] G14-0+32,37 
[24] t 	';MOD 	 ';ARG G1 

V 

vARGrOv 
✓ R-4-ARG ;;;S 

4 [1] 54 -30!Z[2]:7,[1])x180:-01 
[2] -4((7,[1]>0)AZ[2]?..0)/L1 
[3] -44(Z[1]>o)Az[2]<o)/L2 
[4] -)4.(7,11J<o)A[2]>0)/L3 
[5] 174-S+180 
CB] 	-4- 0 
[7] L1:2÷,q 
[8] ÷0 

[9] L2:114-360-5 
[10] -)-0 

[11] L3:R4-100-3 
[12] -1-0 

W7DivEriv 
✓ R4-A CDT. V B;17 

[1] R÷ 1 1 
[2] D4(R[1]*2)+0F2]*2) 
[3] R[1]4-((A[1]xR[1])+(A[2]xP[2]))+D 
[4] RE2j4-((AC2ix5E1:1)-(AC1.1x/31.23)):1) 

vGi1UT,iH]v 
✓ R4-A CM UL B 

[l] 	R+ 1 1 
[2] 	R[.174-(A[1]xBr.1])-(A1:21xPE2.1) 
C3] 	1E2]4(A[1]><B[2])+(A[2]xDC1]) 

vMOD[P]v 
✓ R4- OD 

[1] 	R4-((z[1:1*2)+(7,[2]*2))*0.5 
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'71 
[l] 
[2] 
E31 
[4]  

[5]  

[6]  

[7]  

-:717,::;oL7fLiv 
:1:7.;;nLy 
:=4--(PP,3)pDAf."A 
P÷(;!1-;:0):=C-2-1-1-=(2=1 
j4-1 

L4:WT÷FO+1hxj-1 

-*(j>1)/1,12 

74-1 

A14-A24- (;;,,-;[7 )p 0  

Ca] 1,3:471- CI;1.1 

[9] /72÷PR!fa1;21 

C10] ; 3] 

[11] -)- (113 = 0)/1,1 

C12] A1C;i2;;71]-(-Al[7!2;171 .1 -a3 

[13]  ->L2 

[14]  L1:A11P2;11]4-A1[112;g1] - 20WT 

[15]  A2[;2;d1]-(-- 42[si2;171j+10,:? 

C18 ] L2:/4-Y+1 

[17] ±(IrOB)/L3 
[10] I.1 
[19]  L5:A1ET;I:14-1 
[20]  T*-T+1 
C211 -)-(Tili1)/1",5 
C22] A34-tA1 
[23]  T14- U1+A2+.x/13+.xA2 

[24]  f72÷-T1+.x112+.xA3 

[25]  (74-?1[V;11],Y2EV;(11 
[26]  ';Y,T) 	';20x100;?C:-.10T) 

1.4'1" 
it- 	r 

[27]  714-TBRA1ICH 
[28]  JeT4-I.7-4-::p0 

C29] if*-1 

[30]  1,13:ITC14-BT"T[PPA:TCPET];1] 
[31]  jj[K]4-!MTEPRAPCHEZ1;21 
[32]  K4-7.f+1 

[33]  -)(11)/L13 
[34]  U14- (1100  .=tM 

[35]  S34-7:1[V;JJ] 

[36]  344-T2[V;JJ] 
[37]  S54--T1[II;U] 
[38]  4i6 4-f:I2LTI;ui 

C39] -4-L14 

[40]  L12:DELZ -<- ((20WT) -20;10),( 10110 ) -10WT 

[41]  DELZ÷(1,0) CDIV DEN, 
[42]  a14(PELZ[1]x[11)-?1[II;JJ1 
[43]  .524-(DELZ[2]x(11)-T2[II;JJ] 
[44] 

 477-(-2 

[45]  S24--- E:JS2+31+.x,57+.xsi 

[46]  314.--52+.xS1+.x57 

[47]  574- (53+.x31) -54+.x-S2 

[48]  514-(54+.x51)+33+.xS2 
[4Y] S2-(4.37+.75) -31+.x,56  

[50]  57*- (51+.x,55)+57+.x56 

[51]  G14-G+S2,57 
[52]  UT;' 	';1101) 	Gl;' 	 1 ;20x1060DC1- HOD G1;' ';ARG G1 

[53]  L14:J÷J+1 

[54]  .4-(cTRPRQ)/L4 
[55]  -4-0 

V 
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7i7-d.-Pn±mt _',oend-O_ff  

It has been shown that [100] the total round-off noise in the output 

of a fixed-point digital filter has a power density spectrum KM 

given by the following, 

11s  2 
Id (w) = 	0- 	> ' K

M i' J 
M=1 

where a-: is the variance of the round-off noise. If it is assumed 

that the rounding errors are uniformly distributed with zero mean 

then [100] 

2 	2. 
0—  = 	e / 12 

where LS is the spacing of the quantization steps. 

Is is the number of nodes (or branches) with error sources. 

. K is the integer number of error inputs to the j
mth node. 

T. is the transfer response from the jmth node to the output 7311  

node of the filter (Fig. 1.1). 

Each error source (rounding operation) is assumed to inject white 

noise of uniform power-spectral density No. 

A program has been written in APL to calculate the function NM. 

It is called RONSA and a listing appears at the end of this 

appendix. It has been assumed that K = 1 for all values of m, 
2 which is not unreasonable. Furthermore 0-  has been dropped 

from the formula in eqn. (A.12), since it is a constant. The 

summation of eqn. (A.I2) is taken over all non-unity multipliers. 

The variance corresponding to N(w) is given by the following [44], 

T  17j m 

2 
.1 2 ) 

   

2 
0 T 

j
r7117.7-  

N(w)aw (A .13) 
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To calculate 	or2, the Trapezoidal aule [44] has been used and thus, 

	

2 	
N —1 

6—  1  2A0) 	 N( Tr/T) + 
	.  

N(w
1
)] 	(A-14) r I 

i =1 

where w. = 	N 	
i = 1,2,...., 	N-1 7r 

T 

and (II2 1) is the number of frequency points. 

For the seven methods of realizing the third—order elliptic filter 

discussed in Chapter 6, ROUSA has been used to calculate the 

corresponding i;(w) and 0.2. 	'ig.  (i1.2). shows the power density 
spectrum expressed in dB's for each of the seven realizations. 

The table of Fig. (A.3) summarizes the variance estimates. Although 

the figure for the voltage ladder is high, this value does not seem 

unreasonable f44]. 
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vRONSACrlu 
v RONSA 

[1] B1?:IT4- (17R,4)pDATA 
[2] 11-4-(,111-110):11FRQ-1+NFRQ=1 
[3] J-4-1 
[4] VAR4-0 
[5] L4:7--(--1 
[6] WT-4/0+I1xJ-1 
[7] A1--A2÷(17P,PrOp0 
[8] L3:N1-i-13R:"TC.T;11 
[9] 112÷BR:151-.I;21 
[10] 1134-BRI1TEIOJ 
[11] -4(/13=0)/L1 
[12] A1[112071]*-A1Ca2;N1J-213 
[13] -*L2 
[14] L1:A1EN2;111J÷A1ER2;2711-20WT 
[15] A2[`72;"1]÷A2Efi2;1711+10:7T 
[16] L2:T-(-T+1 
[17] -4(I7113)/L8 
[18] I+1 
[19] L5:A1[I;-7 ]4-1 
[20] T4--I+1 

[21] . ±(3--11)/L8 

[22] A3<-'.A1 
[23] T144A1+A2+.xA3+.xA2 

[24] T2-4---T1+.><A2+.xA3 
[25] (74-T1EV;Ui,T2CV;Ul 
[26] 11OTS174-0 

[27] I4-1 
[28] L6:-4(TIXT[I;4]=0)/L9 
[29] 1124-BR1"TFT;2] 
[30] 7,14-T1[V;112],f"2[V;112] 
[31] 11OISE÷liOISEt(Z1[1]*2)-1-0;1[2]*2) 
[32] L9;I-4--I+1 
C33] -4(I171)/L6 
[34] J÷J+1 
[35] -4(W=0)v(J=1.IFRQ))/L7 
[36] VAR÷vAR+POISE 
[37]  
[38] L7:VAR÷VAR+NOISE:-2 
[39] L8 :1T;' 	';20x10*DCIUOD G;' 	';10x10*POISE 
[40] -0-(eTs'NFRQ)/L4 
[41] VA1?-(-VAR:RFRQ-1 
[42] 'VARIARCE ESTIi1ATg = 	';VAR 
[43] -4-0 

V 
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Fig. A.1 	Signal-Flow Graph of Digital Filter with one multiplier 
extracted . 

Synthesis 
A 2 

o 

Direct Form 2.43 

Cascaded 2nd.order 2.29 

Voltage-Wave Ladder 8.68 
Voltage-Wave Lattice 5.23 
IVR Ladder 1.78 
IVR Lattice 4.19 
Sedlmeyer Ladder 3.11 

Fig. A.3 	Noise Variance Summary Table . 
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Fig. A.2 Power density spectra for different realisations of a third-ord=r 

elliptic transfer function . 
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