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1. 

ABSTRACT  

Constant load and constant true stress tests have 

been carried out on 99.85% purity copper in the stress 

range 24.81 to 99.64 MN/m2  and temperature range 200-600°C. 

Corresponding torsion data were also obtained. 	It was 

found that the constant load tests can be described by 

the primary law of creep. 

- 	k 
E= A On (e kRT t) ... (8.12) 

where A is a constant, n = 3 and 0.23. <k<0.365. 

Below 450 °C Q was found to be 6.2 k cal/Mole°K and above 

450°C Q was 13 k cal/Mole°K. 	In the high temperature 

region Q/k is close to the activation energy for self 

diffusion. 

The constant true stress data can be described by a 

similar equation except that the time exponent was found 

to be 0.3. 

The torsion data could be correlated with the tensile 

data adequately with the aid of the Maxwell-Mises criterion. 

Cyclic load and torsion tests were also performed. 

The cyclic data were found to lie between the strain-

hardening and time-hardening equation of stats predictions 

except at temperatures above 0.5 Tm  where diffusion processes 

predominate and both equations of state underestimate the 

cyclic creep strains observed. 	In addition, neither of 

the equations of state was able to predict the creep 

recovery strains often obtained at the low stresses. 

A new equation of state based on the internal stress 

concept is proposed which can at least qualitatively 
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explain more satisfactorily the experimental results. 

It proposes that the current 'state' of the material is 

determined by the internal stress 0.1 developed in the 

material so that Ect (cr— CFI  .)n. 	The cyclic results 

below 0.5 Tm  indicate that at short times ul is governed 

primarily by creep strain suggesting that the internal 

stress may be governed in this region mainly by work- 

hardening processes. 	At longer times and above 0.5 Tm, 

metallurgical reactions such as thermal recovery due to 

diffusion processes offset some of the work-hardening 

so that in this range pi  = f(E,t). 
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NOTATION 

A 	frequency factor 

A. Ao 	instantaneous and original area 

A. 	activation area 

b 	burger vector 

C 	temperature function in creep equation 

h strain-hardening coefficient 

k 	time exponent in creep equation 

n 	stress exponent in creep equation 

Nf 	number of cycle to fracture 

Q activation energy of creep 

d 	activation energy of self-diffusion 

R 	universal gas constant 

Ro 	temperature ratio 

S stress ratio 

t time 

T 	temperature 

TES 	equivalent temperature based on SH concept 

TET 	equivalent temperature based on TH concept 

Tm 	melting temperature 

T max Tmean' To maximum, mean and minimum temperature 

tr 	rupture time 

2a 	rate of loading or rate of heating 

a, 13 	 exponent of fatigue equation 

Y2 f 	creep shear strain and creep shear rate 

temperature modified time 

EC G 	 creep strain and creep rate 
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AE 	plastic strain amplitude 

	

CTE. S 	
equivalent stress based on S. H concept 

	

ET 	
equivalent stress based on T. H concept 

07  

Ca 	internal stress.  

Ormax'Grm' Or-o maximum, mean and minimum stress 

ICES equivalent shear stress based on S.H 
concept 

CET 	equivalent shear stress based on T.H 
concept 

T max'Tm and 'co maximum, mean and minimum shear stress 

v 	frequency 

All other symbols are defined in the text 
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CHAPTER 1 

INTRODUCTION 

Most modern power plant operating at elevated 

temperatures are subjected to cyclic loading and 

temperature conditions. These conditions may occur 

during start-up or shut-down or may result from variable 

service conditions. Examples of engineering components 

suffering this type of operating history are gas turbine 

blades and vanes(1), steam turbine rotors, superheated 

tubes(2) and nuclear reactors(3). 

The actual stress strain and temperature history 

experienced by an element of material in a particular 

component will depend on its use. High temperatures 

and high mean stresses are likely to favour failure by 

creep, whereas low temperatures, low mean stresses and 

large stress amplitudes are likely to result in yielding 

and fatigue failure. At intermediate conditions creep 

and fatigue interactions may occur. Creep is deformation 

	

rt 010 	ficx tety 
which occurs with time, and fatigue failure isYtime 

independent and occurs after a particular number of 

cycles of the applied stress. 	When the stress 

amplitude results purely from differential thermal 

expansion, failure is said to occur by thermal fatigue. 

Experiments(4'5) have shown that in the temperature 

range O<T<0.25Tral  where temperature, T, is in degrees 

absolute and Tm is melting point also in degrees absolute, 

Lime-independent fatigue behaviour predominates. 

Between 0.25Tm<T<0.5Tm, both creep and fatigue can 
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occur and failure may be partly time (frequency), and 

partly cycle dependent. For T>0.5Tm  creep damage 

dominates, and failure is primarly time dependent. 

Most of the stress and temperature histories experienced 

by components in practice are extremely complicated. Stress 

and temperature do not necessarily vary in phase. 

Consequently, it is prohibitive, both in terms of time 

and cost, to duplicate actual service cycles in the 

laboratory. Usually the designer will have available 

only the basic creep and fatigue properties of the 

material and must make his assessment of component life- 

time using these data. A main aim of this investigation 

is to indicate methods of doing this. 

Depending upon the operating conditions, failure 

analyses are based on either fatigue or creep theories. 

The most common fatigue theories are those of Coffin")  

and Manson () who expressed fatigue failure in terms of 

the plastic strain range per cycle. Whilst these theories 

are satisfactory at room temperature, complications
(9-11) 

can arise at elevated temperatures which introduce 

frequency effects. 

Where creep dominates, the equation of state concept(12) 

or the super-position integral approach
(13,14) are used 

most often to predict failure under cyclic conditions. 

The former concept assumes that current creep behaviour 

f.s independent of all previous loading histories(12)  

whereas the latter takes all previous loadings into account 

and is usually most suitable for plastics and polymers. 
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Although a large amount of data on this subject have 

been accumulated, none of these approaches has been 

accepted as being universally applicable. A major 

problem with engineering alloys is that they are often 

used at temperatures where they are not metallurgically 

stable and where overageing can occur. 

The aim of this investigation is to provide a means 

of predicting cyclic behaviour in the presence of creep. 

Copper was chosen for the investigation to avoid the 

metallurgical complications referred to earlier. The 

majority of the experiments have been carried out in 

tension with an appreciable mean stress, although some 

reversed torsion tests were performed with zero mean 

stress to vary the proportion of creep to fatigue damage 

each cycle. Originally it was planned to cycle temperature 

as well as stress to simulate more nearly operating condi-

tions. However, although equipment was developed to do 

this, it broke down and was unable to be repaired. 

Consequently, the only data that have been obtained are 

at constant temperature. 
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CHAPTER 2  

FATIGUE THEORIES 

This section considers the fatigue approach to cyclic 

behaviour. It is most relevant to those types of cycle 

where the stress-strain loop closes or nearly closes. 

Attention will be confined primarly to low cycle fatigue. 

The influence of superimposed creep deformation will also 

be discussed. 

2.1 Cycle dependent relations 

Committee E9 of ASTM(15) has recently defined the 

region of low cycle fatigue. The Committee says it is 

characterized by the presence of microscopic cyclic plastic 

strains, as evidenced by a stress-strain hysteresis 

loop. Depending on the material strength and ductility, 

the region may extend from 100 to 100,000 cycles or 

more. For most common ductile structural materials, 

the low cycle fatigue regime is generally limited to 

less than 50,000 cycles. Low cycle fatigue tests are 

usually carried out at a constant total strain amplitude. 

Micro structural examination of failed fatigue 

specimens has shown that fatigue cracks initiate at 

regions of slip and never in regions where there is no 

evidence of slip(16,17). 	Hence the plastic strain range, 

,LP  p  has been used to correlate fatigue damage and failure. 

Manson(7) and Coffin(6) have independently expressed this 

relationship by the equation 

0f  ACp 	C 	 ...(2.1) 

where ¢ and C are material constants. 
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The value of p obtained from different investigations(18-21) 

ranges from 0.48 to nearly 1.0. It has been related by 

Saheb et al(22) to the strain-hardening exponent in a 

tensile test. Although the value of p can be varied by 

change of metallurgical structure, as shown for Inconel(19) 

it also shows a progressive trend with temperature. At 

low temperatures many metals exhibit a slope of about 

0.5(6), while the greater slopes are seen at higher 

temperatures(23). This suggests that the exponent p is 

more dependent on the temperature and deformation mechanism 

than directly on material composition. 

Coffin(24) was able to describe the fatigue failure 

of annealed and cold-worked 347 stainless steel, respectively 

by 

.5 Nf°  AE= 0.36 

. 
f°5 AE = 0.103 ...(2.3) 

The value of C has decreased considerably and reflects 

the lower ductility of the cold-worked material. This 

observation prompted Coffin to relate the constant, C, 

to the fracture ductility of the material, E f l in a tensile 

test. By considering fracture to occur after i cycle, at 

a strain range of Ef; Eq (2.1) becomes 

(i) cf  c 6f/2 	 ...(2.4) 

This estimate of C has been shown to be satisfactory 

in many instances at low temperatures(25-27).  However, 

the constant, CI  cannot always be related satisfacorily to 

the tensile ductility, especially at high temperatures
(26'28) 
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For example Baldwin and co-workers(28) have observed for 

stainless steel at 600°C, that the fracture ductility was 

31% greater than C. While the reason for this is not yet 

known with certainty, it is suggested that time-dependent 

effects must be included at high temperature where creep 

deformation becomes important. 	In these circumstances, 

C may be better related to creep ductility rather than to 

tensile ductility. Often creep ductility is less than 

tensile ductility(29) so that failure after fewer cycles 

may be expected for the same plastic strain range at 

higher temperature, consistent with the above observations. 

To generalize and unify the fatigue relationship to 

higher cycles of failure, Manson(30)  introduced the 'Universal 

Slopes' method. 	He claimed that most results when plotted 

logarithmically as total strain range, AEt, against cycles 

to failure give slopes of - 0.6 at large strain amplitudes 

and - 0.12 at small strain amplitudes suggesting that the 

fatigue relation can be written in the form 

Agt  = 3.5 9-1. 0.12 
÷D0.6 N  0.6 

E 	r 	f 	...(2.5) 

with constant ("universal") exponents of 0.12 and 0.6 for 

the elastic and plastic components respectively. 	The 

coefficients in the expression are all related to the tensile 

properties; crtl  is the ultimate tensile strength, E the 

modulus of elasticity, and D the true ductility measured 

100 - RA). from the % reduction of area, RA (i.e. D 	In 
100 

For most low cycle fatigue applications, the plastic strain 

rance will be much larger than the elastic strain range and the 
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second term in the equation will dominate, so that Eq (2.5) 

will simplify to the form of Eq (2.1) with p = 0.6. 

2.2 Application to thermal fatigue  

Thick sections subjected to rapid temperature fluctuations 

and components such as cooled turbine blades are prone to 

thermal fatigue failure. Because of the resulting large 

temperature gradients the surfaces of these components 

undergo plastic strain during each heating and cooling 

cycle. During the heating phase the surface is put into 

compression to compensate for the thermal expansion, 

during the cooling phase it goes into tension. Provided 

the bulk of the component remains elastic and does not 

creep, the surface will undergo completely reversed strain 

cycling with no gradual growth. 

w 
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Two types of test have been used to investigate 

thermal fatigue(24'
31). 	One is to carry out fatigue 

tests at a constant temperature within the range of the 

temperature fluctuations of the thermal fatigue cycle. 

Agreement between cyclic fatigue tests performed at the 

mean temperature of the thermal cycle and thermal fatigue 

data is shown in Fig.(2.1) for a nickel based alloy at 

1300°F (703°C) in air. These data were obtained in three 

laboratories from axial and rotating bending tests(31) 
• 

Similar agreement was obtained by Swindeman and Douglas
(19) 

for Inconel between 1300 and 1500°F (703 and 812°C). 

The success of this method of predicting thermal fatigue 

failure depends to what extent the coefficients' 0 and C 

are affected by temperature and whether or not strain 

hardening or strain softening takes place during part of 

the cycle. 	It is clear from other data shown in Fig 2,2 

that agreement is not always achieved between isothermal 

tests carried out at the mean temperature and cyclic 

temperature fatigue data. In this instance, the isothermal 

tests seriously over-estimate cyclic temperature lives. 

Even when the temperature of the isothermal tests was 

raised to the maximum temperature of the cyclic temperature 

tests (600°C), Fig (2.2) shows that the isothermal tests 

still over-estimate cyclic temperature lives. Consequently 

in this instance, cycling temperature and stress combined 

produced more damage than when just stress is cycled. 

The other method of investigating thermal fatigue 

is to subject samples whose lengths are held constant to 
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rapid temperature cycles. Again variable degrees of 

success have been achieved(24-30) in predicting lives 

using Eqs (2.1) and (2.5). 	Some studies involving 

temperatures sufficiently high to induce metallurgical 

changes were made by Clauss and Freeman(8) on cobalt alloy 

S 816 and Inconel 550, and by Glenny and Taylor(32) on 

several Nimonic alloys, and Baron(33) on Nimonic 75. 

They showed that for high values of maximum temperature 

(T max), the curve relating AEp  and Nf  departed from the 

straight line relation predicted by Eq (2.1) (see Fig 2.3). 

It will be seen that Nf is greater than would be expected 

from the straight line extrapolation of the low temperature 

results. It is probable that this effect is due largely 

to overaging, whereby the material softens because of the 

high temperature and is better able to withstand plastic 

strain without failure, or perhaps the increased ductility 

of the material at the higher temperature counterbalances 

the reduced strength in such a way that thermal endurance 

diminishes less rapidly with increasing maximum temperature. 

Baron (33 ) associated this change of behaviour in his 

material to the onset of recrystallization. From these 

results it appears that Eq (2.1) is valid only for materials 

that are metallurgically stable over the range of testing 

conditions. 

Problems can also occur if the mode of fracture 

changes. At low temperatures, fatigue failures are 

transgranuiar. 	With increasing temperature, there is 

a. tendency for the crack to become intergranular
(34-36). 
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When this happens Eqs (2.1) and (2.5) over-estimate fatigue 

life, often by a factor of 10 or more. To overcome this, 

Manson and Halford(37)  introduced their 10 percent rule. 

They argued that both initiation and propagation of 

intergranular cracks was more rapid than that of transgranular 

cracks. To account for this, they suggested that the 

lives predicted by Eqs (2.1) and 2.5) for low temperature 

behaviour should be divided by 10 to give elevated temperature 

behaviour. A similar result could also have been achieved 

by replacing the tensile ductility in the equations by 

the creep ductility for materials exhibiting relatively 

small creep elongation at fracture. 

Using this rule an improvement was obtained
(37) 

(Fig 2.4), but even this modified iftethod has limitations.t  

It does not account for frequency effects nor the effects 

of hold periods in tension or compression. 

2.3 Frequency Effects  

A number of investigators have observed(15 '38)  that 

cycles to failure can depend on frequency. In an early 

investigation, Allen and Forrest
(38) expressed the rotating- 

bending fatigue data of a structural steel at 1200°F (654°C) 

both in terms of cycles to failure and time to failure. 

The conventional diagram of stress against cycles to failure 

shown in Fig (2.5-a) indicates an increase in number of 

cycles to failure with increasing frequency. However, 

when the same data were replotted as stress against time 

to failure as shown in Fig (2.5-b),a narrow scatterband 

represented data at both frequencies equally well. Thus, 
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even under fully reversed loading, creep rupture was 

singled out as the main failure mechanism in this instance. 

In an attempt to account for frequency effects, a 

frequency-modified life relationship has been proposed 

recently by Coffin(15)  . He based the relationship on 

the period of cycling rather than the number of cycles 

following a suggestion of Coles and Skinner(4) who observed 

over a range of frequencies that 

vK tf  = constant 	 ...(2.6) 

at constant plastic strain range, where v is the frequency 

of cycling, tf  is the time to failure and K is constant 

at constant temperature. 	It was found that 04:.K.4:1. 

At low temperature, the value of K tends to unity, and since 

vtf  = Nf, transgranular fatigue failure after a fixed 

number of cycles irrespective of frequency is predicted. 

At high temperature, K tends to zero and intergranular 

creep rupture is to be expected after a constant time tf. 

At intermediate temperature, the failure mode may be mixed, 

and partly time-dependent and cycle-dependent. 

Coffin substituted Eq (2.6) into Eq (2.1) to obtain 

(vK  tf)13  AEp = (Nf vK-1)13 p = C 	...(2.7) 

and introduce a frequency term, v, into the fatigue relation. 

Eq(2.7)provides a way to account for time dependency 

when dealing with plastic strain. Application of Eq (2.7) 

tc, several materials has been reported with some success(9-11) 

although error is still apparent in the presence of hold 

times. 
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2.4 Cumulative Damage Laws  

Some method of summing the damage each cycle when 

the stress and temperature ranges vary is required for 

complicated operating histories. The basic approach was 

initially suggested by Palmgren(39) and Miner(40). They 

proposed a cumulative damage law which predicted failure 

when 

4N f =1 1 ...(2.8) 

where n is the number of cycles completed at each stress 

level and Nf is the number of cycles to failure at that 

same stress level. The main disadvantage of the law is 

that it ignores any load sequence effects as well as the 

effects of residual stresses, stress cycling below the 

fatigue limit, or coaxing effects in strain ageing 

materials. 	Several investigators(19, 28, 41, 45) have 

c- 
N  
n 

 
mostly 

z.  found that ---variesYfrom about 0.7 to 2.35 depending 
f 

upon the level and the sequence of application of the 

strain ranges. 	For example(41'42) often if a large 

stress is applied initially, enhanced damage occurs and 

zn -:--<1 at failure, -whereas the reverse often occurs when Nf  

thelow stress amplitude is applied first, i.e., 

n $, -,>1 at failure. 
"f 

Miller(46) showed that carrying out tests at constant 

strain rate should minimise if not eliminate load sequence 

effects, because a constant frequency of cycling results 

in an increasing strain rate, g r  as the strain range 

increases. 
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i.e., 	v 2dEt 	 ...(2.9) 

He modified the linear cumulative damage law to 

predict failure when 

Nn 

f 
= constant 	 ...(2.10) 

The constant term in Eq 2.10 is dependent on the definition 

of failure but was found to be independent of load sequence 

for mild steel provided the strain rate was maintained. 

constant. 

For cases where cyclic strain is superimposed on a 

monotonic stress, time dependent and cycle dependent 

damage may both occur. To account for this situation, 

Tilly(47) has extended the cumulative damage law to include 

both creep damage and fatigue damage components. His 

tests included fatigue cycles phased throughout a static 

creep test. He wrote his equation in the form. 

n t ir + 7-- = constant 	 ...(2.11) 
f 'II 

where t is the time spent at the monotomic stress and 

tR is the creep rupture time at that stress. Eq (2.11) 

is a modification of the Miner and Palmgren cumulative 

damage law to include damage due to creep as originally 

proposed by Robinson(48).. Robinson suggested that the 

total creep life of a component subjected to variable 

stress and/or temperature given by the sum of the separate 

fractions of life used up at each condition, i.e. failure 

occurs when 

tR  

When combined with Eq (240) this gives Eq (2.11). 
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Considerable success has been obtained using this 

method of analysing thermal fatigue
(49). However there 

are situations where it has limitations. For example, 

when the static creep rupture characteristics of materials 

are altered as a result of cyclic loading and when 

ambiguity develops as to the treatment of damage due to 

compressive loading. 

2.5 Strain range Partitioning  

To treat problems involving arbitrary variations of 

strain and temperature as encountered in service conditions, 

Manson(29,50-53) introduced the Strainrange Partitioning 

Approach. The approach deals with creep-fatigue interaction 

at elevated temperatures. It applies to the situation 

where the stress-strain loop closes completely so that 

there is no progressive accumulation of strain. The 

basic premise is that cyclic lives are governed by the 

capacity of the materials to absorb cyclic inelastic 

strain. Two types of inelastic strain are considered 

to be important: time independent (plastic), and time- 

dependent (creep) strain. Four combinations of creep 

and plasticity have significance since they represent 

extremes in behaviour, and because they may be regarded 

as building blocks for partitioning more complex cycles. 

These are shown in Fig 2.6 as idealized hystersis loops 

whose widths are defined by: 

PP tensile plastic strain reversed by compressive 

plastic strain 

pc tensile plastic strain reversed by compressive 

creep strain 
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AEcc tensile creep strain reversed by compressive 

creep strain 

A6cp tensile creep strain reversed by compressive 

plastic strain. 

It is postulated that each cycle will produce its own 

characteristic fatigue curve as shown in Fig 2.7. Each 

of the four independent strain range-cyclic lives, Nif, 

relationship 

AEij  = (Dij/Mij) 	
ij = (pc 

may be written in the form 

hj 	(PP 

	

(cc 
	...(2.13) 

(cp 

where Oij  is the slope of the log-log straight line 

relationship. 

Experimental data on a range of materials have shown 

that often the AZpc  and AEcp  types of cycle are more  

damaging than the corresponding AEpp  or AEcc  cycles (Fig 2.7). 

Manson(53) rationalized this on the basis that plastic 

strain cycling causes damage predominantly within the 

grains, whereas creep causes damage mainly on grain boundaries. 

During reverse plastic strain cycling, A£ pp, and reversed 

creep AEcc  cycles a certain amount of the damage caused 

during the tensile half cycle is cancelled during the 

compressive half cycle. The fact that p is greater for 
the AEcc 	PP 

than CE 	cycle suggests less creep damage is 

cancelled each creep cycle than is cancelled each plastic 

(fatigue) cycle. With a AEpc  and AEcp  , in one half 

cycle the damage is transgranular and in the other half 

intergranular, so that little of the damage is cancelled 

each cycle and consequently relatively rapid failure occurs 

as strain continues to accumulate in one direction in a 
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transgranular manner in one half cycle, and in an inter-

granular manner in the other half cycle, in much the same 

way as if ratchetting was allowed to occur. 

A new approach designated as the 'interaction damage 

rule(51)  is proposed for combining the effects of different 

cycles. 	The resulting general formula for the cycles to 

failure Nf is 

1 	E22 FPS  4. Fcc 	 22. 
Nf  N PP pc cc cp 

...(2.14) 

Ae 
PP where F 

PP 6E- In 
F 	CEP  c pc tEin  

AE 	AE cc F = 	Fcp  ein  cc n ET7-  9  I 

N is the cyclic life on the assumption that the 
PP 

whole of the cycle was of the AE 
PP PP '- 

tye, and similarly for 

the other terms. The equation has the advantage that if 

the four fatigue curves were coincident for a particular 

material, it would predict the same life for any arbitrary 

cycle, whereas the linear cumulative damage law Eq (2.10) 

would not (except for 	= 1). 

Application of this approach to an arbitrary cycle 

with a total inelastic strain range AE-in  of AD is shown 

in Fig 2.8. 	That part of the cycle which is completely 

reversed by plastic straining, AE
PP 

 , is given by DB, 

the completely reversed creep part, AEcc, by CD, and the 

remaining unbalanced cycle AE
Pc 
 is AC - BD. There is 
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no AE component so that in this case cp 

1 _ _Ea + 	+ cc 
N
f 

N
PP pc NCC 

...( 2 .15) 

where F
PP 
 = DB/AD 

Fcc = CD/AD 

and 	Fpc  = (AC - BD)/AD - 

As an example of the use of the interaction damage 

rule for the case of a symmetrical cycle having AEin  = 0.01, 

PP 
= 0.009, 6'Ecc = 0.001 and Aepc  = Aecp  0 will be 

considered for a material with fatigue properties shown 

in Fig (2.9). 

The interaction damage rule becomes 

1 0.9  0,1 = Nf ND  NC 

giving Nf,= 157 cycles. 

...(2.16-a) 

Application of the linear damage rule Eq (2.8) would 

be 

11 	1 
Nf = NA NB 

...(2.16-b) 

giving Nf  = 160 cycles. 	In this instance, there is little 

difference between the predictions of the cumulative damage 

law and the interaction damage law, but this will not 

always be the case. 
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In an attempt to universalize his life relationship, 

Manson(53) normalized the strain range by dividing by 

plastic ductility, Dp, if the tensile half of the strain 

range is plastic and by the creep ductility, Dc, if it 

is creep. 

A 	EPP  0.75 F146  Dp  

ElDcz.1.25  0445 DP  

	 0.751,10. 8 

0 
w 

.001 

.0001 
101 	102 	103 	104 	105 	106  

CYCLES TO FAILURE 

.01 

FIG.2.10_ TENTATIVE UNIVERSALIZED RELATIONSHIP 
FOR THE FOUR STRAINRAN GE COMPONENTS. 
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Fig (2.10) shows the plots of the normalized strain 

ranges against the cycle to failure. It is apparent 

that any of the strain ranges involving a creep component 

could be represented in such plots by lines of slopes 

- 0.8, and the line representing the 
app 

 component has 

a characteristic slope of - 0.6, which is equal to the 

universal slope Eq (2.5). 	If failure occurs after a 

cycle at the appropriate ductility, the normalized 

equation given in Fig (2.10) would become 

D. 	
m
ij 

t%13 	-0 	 ...(2.17) m ‘-br " 

1 where (--4)p = 0.43 or 0.33 for 13 = 0.6 and 0.8 respectively. 

The actual values on the figure vary between 0.25 and 1.25. 

Despite the flexibility of the strain range partitioning 

approach some of its desirable features may be lost when 

dealing with materials whose mechanical properties are 

unstable. 	In all instances, the experimental data were 

obtained at constant AEin. For a complex cycle if a 

material exhibits strain-ageing, the proportion of each 

individual component of the cycle will change during the 

test. That is to say Fij  will not be constant. In this 

circumstance partitioning of the cycle will be difficult 

and application of Eq (2.15) questionable. The effect 

of corrosion and oxidation may seriously reduce ductility. 

Also it is difficult to partition the inelastic range,  

especially when it is a small fraction of the total strain. 

Perhaps the major limitation of the approach is in 

applying it to situations where there is a large mean 
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stress and where the stress-strain loop does not close 

so that strain accumulates each cycle. The best that 

can be done in this circumstance is to combine the approach 

with Tilly's life fraction rule Eq (2.11). 
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CHAPTER 3  

CREEP THEORIES  

In this chapter the creep approach to predicting 

cyclic behaviour at elevated temperatures is considered. 

It begins by reviewing the main empirical and physical 

laws that have been developed to describe creep behaviour 

under constant stress and temperature conditions. Methods 

of extending these to predict behaviour under non-steady 

stress and temperature conditions will then be discussed. 

3.1 Empirical  Equations of Cresa 

3.1.1 The Time-Laws of Creep  

Creep is time-dependent strain. Most data are usually 

obtained from tests carried out at constant load (or stress) 

and constant temperature. Typical constant stress and 

temperature creep curves are shown schematically in Fig (3.1). 

During the application of the stress, we have elastic, or 

elastic plus plastic strain if the yield stress of the 

material is exceeded. 	This is labelled I on Fig (3.1). 

It is usually followed by a period of decreasing creep 

rate called the transcient or primary region of creep 

(part II), which terminates the creep process if the stress 

is sufficiently low and the temperature less than about 

0.25 Tm for most materials. At higher temperatures, 

the creep rate decreases to a constant value called the 

secondary or steady state region (part III). After 

further strain, the creep rate often accelerates (part 

IV), before final fracture. 	This final stage called 

tertiary creep results from an increase in stress due to 
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a reduction in cross-section caused by necking and/or the 

formation of internal cracks. 	It may also be caused by 

metallurgical instability. 

A great many equations have been proposed to describe 

the time dependence of creep(54-59) 	Most can be 

expressed in the form 

=Za tm 
	 ...(3.1) 

where a and m are in general functions of stress and 

temperature. 	Integration of Eq (3.1) gives the commonly 

observed time laws for creep. 

When m = - 1 we obtain 

E = a log t +50 	 ...(3.2) 

i.e. logarithmic creep. 	This type of creep is character- 

istic of low-temperature behaviour
(54-56) (T<0.25 T1 ). 

The coefficient, a, has been found to increase with stress 

for single crystals of Mg and Cu(54) and with stress and 

temperature for polycrystals of Mg and Cu(56) 

For - 1<m<0, we obtain by integration of Eq (3.1) 

E = cc tm+1+ E0  ...(3.3) 

which represent the primary creep at intermediate temperature 

(0.25 Tm< T <0.5 Tm), although in some cases Eq (3.3) can 

be applied to high temperature(56'57)  (T>0.5 Tm), 	cc 

generally increases exponentially with stress and temperature. 

m generally increases with decrease in stress and increase 

in temperature. Although values of m + 1 varying from 

0.2 to approximately 1.0 have been observed, very often 

m + 1 takes the value 1/3 such that 

/3 E =E 0 	cc t1 	 ...(3.4) 
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where 6 0  is the strain observed upon loading. 

When m = 0, we have from Eq (3.1) 

6 . pt + c 	 ...(3.5) 

i.e. steady state creep, which occurs at high temperatures 

(T)0.5 Tm)
(58,59) 	p generally increases exponentially• 

with stress(60) and temperature. However at intermediate 

stresses, p varies with the power of the stress(59). 

Steady state creep is generally preceded by transient 

creep so that at high temperature the time law is generally 

of the form 

6 .m tm+1  + p t +c o 
 (55,56) 

Replacing m 	1 = 1/3, Eq (3.6) gives the so called 

Andrade's creep law. 

6= a t1/3  +pt+ 
6 (7) 

Another creep-time relation proposed by Garafalo(61) 

and McVettY(62)  has been found to be satisfactory over a 

wide range of deformation. It is of the form 

= 60 +C 
	

(1 -6 -rt) +i s t 	... (3.8) 

whereE t  is the limiting transient creep strain (see Fig 3.1), 

r gives the rate of approach to steady state creep, and 

6s is the secondary creep rate. This relationship has 

been found to be satisfactory within the temperature range 

of 0.4 to 0.6 TM for ferritic and stainless steels
(61'62) 

To cover all stages of deformation, Graham(63) 

suggested an equation of more general form than any of the 

above. It can be written as 
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C = a t1/3  + 13 t + /S.  t3  

which is the Andrade creep equation modified to include 

tertiary creep. 

Some of the above relationships, although empirical 

are consistent with certain atomistic processes such 

as work-hardening, recovery and dislocation theories of 

creep as discussed later. 

3.1.2 Stress and Temperature Dependence of Creep  

The coefficients, a, 0,6 s  and 	of the time laws 

of the previous section are in general functions of stress 

and temperature. Most attention has been devoted to 

developing relations to describe secondary creep rate, 

13 or E s. As with the time laws, a number of expressions 

have been proposed. The most common are; 

6 a a-  linear law 

6 a o power law 

6 a eBa- exponential law 	...(3.12) 

C a sinh B o-  ) 	 ...(3.13) 
) hyperbolic sine laws 

n) 
C a (sinh 	) 	 ...(3.14) 

Each of these laws has been observed for both single 

and polycrystalline materials. 

A linear stress law has been reported for a single 

crystal of Sn(64) and polycrystalline lead(65) at 

ambient temperatures, and for many metals at temperature 

aear their melting points(66). It has been applied to 

both the initial creep rate and the steady-state or secondary 

creep rates. A power stress law has been reported for 
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many metals and alloys, the values of n ranging from 

1.0 to 30(67). The most common range of n is from 1 to 

7 for annealed metals and alloys. It is temperature 

dependent. At temperatures near the melting point n 

approaches 1.0 for Au, Ag and Cu(68-70). 	In most other 

cases of high temperature creep n lies between 4 and 6 

for pure metals and between 2 and 4 for alloys. However, 

for steady-state creep at high temperature, Weertman(71) 

found n independent of temperature with n = 4 to 5 for 

pure metals and n = 3 for dilute alloys. 	Dorn's group(72) 

reported similar results on aluminium and Al-Mg alloys 

at high temperature (T)0.5 Tm). Their data indicated 

n = 4 for the pure metal and n = 2.5 to 3.5 for the alloys, 

consistent with the results of Weertman. This is not 

always the case, however, as Gilman(73)  has observed 

n = 3 for zinc crystals. 

Other workers have not found n to be independent of 

stress. Recently Pahutova et al(74) found for 99.9% 

purity copper that the exponent n first decreased and 

then increased with increase of stress. 	Similar observations 

have been made on a solid Oolution copper alloy containing 

aluminium(75) and magnesium(76). 	Feltham and Meakin(77) 

also found for 99.99% purity copper that n depends on 

both stress and temperature. 

An exponential stress law was proposed by Ludwick(78) 

In 1909, and has since been reported over wide ranges of 

temperatures(79) 

The hyperbolic sine stress law has been claimed to 



42. 

have wider applicability by a number of investigators(80)  

for at low stresses, it reduces to a linear law, and at 

high stresses it yields an exponential law. Nadai and 

McVetty(80) claimed that this law was superior to the 

power law for relating stress and strain rate at low 

strain rates. Also Harper and Dorn(66) found for the 

creep of aluminium at very high temperatures that a 

hyperbolic sine stress law could encompass Eqs (3.10) 

and (3.11), ie, a linear law and a power law. However, 

no one has yet shown that a single hyperbolic sine stress 

law can describe the relationship between stress and strain 

rate over the entire range of strain rates. 

The temperature dependence of creep at constant 

stress is generally introduced through the activation 

energy term Q, because creep is regarded as being predomin-

ently diffusion controlled. Examples of temperature 

functions incorporating activation energy are as follows: 

(a) Exponential temperature functions 

Q 
 (81,82) 

a e RT 	 ...(3.15) 
(83) 

Q 

t=a(te RT) 	 ...(3.16) 

where R is the gas constant. 

Eq (3.15) is applicable to secondary creep and Eq 

(3.16) to the whole of the creep curve. 	Other temperature 

dependences that have been proposed are: 

(b) Simple functions 

e = a T2/3  f(t) (84) 	...(3.17) 
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(85) 
E = f [T(c + log t)] 	...(3.18) 

E = f [(T - Ta)/(log t - log ta)](861 	...(3.19) 

(c) Complex function 

C=2_b. f [t(T - T') 1 (63) 
	

...(3.20) 

Eq (3.19) proposed by Manson and Haferd can be 

considered as a modification of the Larson and Miller 

	

Eq (3.18). 	In this case when Ta  = 0, and log ta  =.- 

Eq (3.19) reduces to Eq (3.18). 

In all cases except Eq (3.20), the equation can be 

written in the form 

...(3.21) 

	

= f 	g(T)] 

with the variable separable. 

In the Graham Eq (3.20), T' is a critical temperature 

which best represents the previous history of the material, 

and so is potentially able to incorporate metallurgical 

changes. After examination of many creep data, mainly 

for Nimonic alloys, Graham and Wailes(87-89)  expressed 

their creep equation in the form 

pi  ki  
Cicr 	t 	(Ti - T)± 20k. 

L1=1 
...(3.22) 

where ki  in fact takes the values, 1/3, 1, and 3, and 

ratios - k./Pi  take values from standard series 1, 

j, 1/8 etc  	In this instance the variables are 

not separable and the creep law cannot be written as 

Eq (3.21). 
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3.1.3 Parameterllethaild..115 121222latura 

Properties  

For design purposes it is attractive to be able to 

superimpose all creep data over a range of stress and 

temperature onto one so called 'Master creep' curve. 

Time-temperature creep parameters have been developed for 

this purpose(83,85,86).  They follow from expressions 

(3.15) to (3.19). 	They can be applied to fracture 

provided rupture occurs at constant strain. Time and 

temperature are approximately equivalent in creep because 

temperature mainly accelerates the creep process so that 

what happens in a long time and low temperature, happens 

in a short time and high temperature. 

Eqs (3.15) to (3.19) can be used to predict rupture 

Lime, tR, if fracture occurs at a constant strain, Ea. 
Substituting E. E R  = constant and t = tR  into Eqs (3.15) 
and (3.16), lead to the rupture criterion 

Q. 
9 = tp  e  RT 

where 9 is the temperature compensated time relationship 

for rupture. 	On taking common logarithms of Eq (3.23) 

one obtains.  

loge = log tR  K Q/RT 

1 log tR  = loge 	Q 4) 	...(3.24) 

where K = logioe = 0.434 

Eq (3.24) is linear in log tR  and 1/T and at a given 

stress if 9 and Q/R are functions of stress only. On 

...(3.23) 
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this plot the ordinate intercept is - loge and the slope 

K Q/R. 	The difference between Dorn's approach Eq (3.16) 

and the Larson-Miller approach Eq (3.18) is that Dorn 

considers loge to be function of stress, whereas Larson 

and Miller consider Q/R to be stress dependent. 

Dorn(72)  proposed the use ofe in Eq (3.24) as a 

rupture parameter. He found it satisfactory for pure 

metals and non-ferrous alloys, but it has not been generally 

accepted for high temperature alloys. The curves 

representing log t vs 1/T with stress as a parameter would 

be a family of parallel lines (Fig 3.2-b). 

The Larson-Miller parameter(85) is based on the 

assumption that the log tR  vs 1/T curves at different 

stresses have a common intercept at 1/(T + 460) = 0. 

For many engineering alloys, they found the intercept to 

be approximately constant at - 20 when temperature was 

measured in degrees Rankine, and the rupture time in hours, 

so that Eq (3.24) becomes 

(T + 460) (log tR  + c) = P1 	...(3.25) 

with c = 20 (Fig 3.2a). 

However, other investigators have found that the inter 

cept varies with material and that more satisfactory 

correlations can be obtained with the constant having 

values between 15 and 30 for a range of metals and alloys(90-91) 

The most successful of the parameter methods was 

proposed by Manson and Haferd(86) for a wide variety of 

materials especially the high strength materials. 

Again the time-temperature relationship is empirical and 
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in this case, involves two disposable constants rather 

than just one as proposed by Larson and Miller. The 

parameter is based on the observation that constant stress 

plots of log tR  vs log T are more linear than log tR  

vs 1/T curves. Further the log tR  - T curves intersect 

at the point T = Ta  and t = ta  leading to a family of 

curves (Fig 3.2-c) and 

T - Ta  = P 2.  (log tR  - log ta) 	...(3.26) 

where P2  = f(u-). 

The Manson-Haferd parameter for rupture then becomes 

P2 = log tR  - log ta  

T - Ta 

Although most investigators agree that the Manson-

Haferd parameter is the most reliable, extrapolation is 

uncertain for times much longer than those for which data 

have been collected. 

These parameter methods have been compared by Clauss(92) 

He started from the equation.  

log tR  = y (log d, T) 	...(3.28) 

Differentiating this expression 

d log tR  = ( ci4) / 2 log cr)T  d log CT 	( c3y AT)0_ dT ...(3.29) 

where (84) /a logEr)T  is the rate of change of log tR  

with respect to log et  and is the slope of an isothermal 

line in a plot of log tR  and log0-  . 	(ay T)o- is the 

rate of change of log tR  with respect to temperature and 

is measured by the separation of isothermal lines. 

The Larson and Miller analysis predicts that isothermal 

...(3.27) 
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graphs of loge-  versus log tR  are parallel straight lines 

(Fig 3.3); the Dorn parameter gives curves with the same 

curvature (Fig 3.4), whereas the Manson-Haferd expression 

predicts diverging straight lines (Fig 3.5). / 

3.2 Microstructural Aspects of Creez 

It is argued that since the stress and the temperature 

are held constant in a creep test, the change in strain 

rate is due entirely to changes in the internal structure 

of the material which occur with creep strain and time. 

It is now generally accepted that creep is a thermally 

activated process. From a physical standpoint this seems 

to be the most reasonable explanation for the increase 

of strain with time under conditions of constant stress 

and temperature. Furthermore, experimentally it has 

frequently been found that a plot of the logarithm of the 

secondary creep rate vs the reciprocal of the temperature 

yields a straight line, in accord with thermally activated 

processes. 	Since creep is thermally activated, we can 

write for the creep rate 
•. 
E s a vo  e-  

Q/RT 
...(3.30 ) 

where vo is some fundamental lattice frequency, Q the 

activation energy for creep, R the gas constant and T 

the absolute temperature. In metals, it is found that 

the movement of dislocations plays the most important 

pole in deformation under creep conditions. Grain-

boundary sliding also occurs, but it does not contribute 

very much to the total deformation except at temperatures 
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near the melting point and at extremely low stresses(93) • 

During creep, multiplication, annihilation and immobiliz-

ation of dislocations can occur resulting in changes to 

the dislocation density. Interaction of dislocations 

impedes their motion and causes work-hardening and a 

reducing creep rate. Processes aiding dislocation mobility 

lead to recovery and enhance creep rate. 

Specific models(59,94-96) have been proposed for the 

motion of dislocations such as glide, climb, cross slip 

etc. It is possible to describe the creep process 

phenomenologically as a competition between strain hardening 

and recovery. When strain hardening is more dominant 

than recovery, we have transient creep (Fig 3.1 - part II) and 

when both balance, steady state creep (part III) is observed. 

From geometrical considerations, Cottrell
(97) and 

others(98,99) related the creep process to the movement 

of dislocations such that 

= f in  b V 	 ...(3.31) 

where?. is the mobile dislocation density, b the Burgers 

vector and V the average dislocation velocity. 

Integration of Eq (3.31) leads to some creep laws. 

The value of f and V may change throughout creep, therefore 

their values should be substituted in Eq (3.31) before 

integration. 

3.2.1 Physical Interpretation of  Time-Dependence 

One difficulty in analysing the time-dependence of 

creep is that it often depends sensitively on the previous 

history of a sample. Therefore it is often difficult to 
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identify the atomistic mechanism which controls creep. 

Nevertheless, some specific time laws exist for creep 

which correspond to certain atomistic iprocesses. 

The logarithmic creep law Eq (3.2) has been 

(100) explained in terms of work-hardening 	. It is actually 

a solution of the differential equation 

dE a e-(E-Co)/c4  dt - ...(3.32) 

An equation of the type of (3.32) with amvRT is 

expected if we have a thermally activated rate process 

where the activation energy increases linearly with the 

deformation E to allow for work-hardening. An atomistic 

process which leads to this kind of behaviour will be 

discussed later. 

The Andrade creep law Eq (3.4) is the solution of 

the differential equation 

3 dE 
	

(E E.)-2 
dt 3 ...(3.33) 

A physical interpretation of this law can be obtained if 

we consider a competition between work-hardening and 

recovery(81) 	Eq (3.32) is characteristic for low 

temperature creep, T<0.25 Tm, whereas Eq (3.33) represents 

intermediate and high temperature creep, T>0.25 Tm. 

Recently a creep relation has been formulated by 

(101) Li 	based on the dislocation kinetics of multiplication, 

annihilation, and immobilization. The formulation was 

based on the assumptions that multiplication of dislocations 

follows first order kinetics, immobilization follows 

second order kinetics and the average dislocation velocity 
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is constant at constant stress throughout creep. On 

the basis of these assumptions 

2 

at = K1 PM K2F rd  

where K1 and K2 are the multiplication and immobilization 

rate constants respectively. The rate constants K1  

and K2  are functions of stress and temperature but not off. 

These rate constants may depend on the density of 

immobilized dislocations but the dependence will be weak 

if the creep temperature is high and creep rate is low 

so that no long-range stress develops in the material. 

From Eq (3.31) and (3.34) it is found that 

	

c, -6 	- 	-1 Ki tl 
6  s [1  - 	 e  

where E is the initial creep rate and s the steady creep 

rate. Integration of this equation gives 
• • 

• 

Eo  + 	in [1 + 	(1 	e
- 	

+ 6 t (3.36) 
Ai  
s 	 Kit 

Logarithmic, exponential and steady state creep are 

special cases of Eq (3.36), depending on the relative 

values of E i, K1  and Es • • 
At low temperature where £i/£s)> 0 and Kit< 1, Eq 

(3.36) reduces to 

KS  = E o 	K + 6  ln(1 + FK1t) + 6  t 	...(3.37) 
1 . 	, 

where F i/6s' At even lower temperatures and stress 

where o and 6 s are small, Eq (3.37) reduces to the 

logarithmic creep relationship Eq (3.2). 

At intermediate to high temperature, F approaches 

...(3.35) 
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unity and Eq (3.36) reduces to 

- 
6 	 ( 	

Es  ) 
	e Kit) 	St 	...(3.38) C Oo  K1  

This is identical to Eq (3.8) if r = K1  and (El  — 6 5 )/1(1  =6 t. 
At high temperature near the melting point where F = 1, 

Eq (3.36) reduces to the steady-state creep relationship 

given previously by Eq (3.5). 

3.2.2 Interaction of Strain-hardening and Recovery  

It is considered that the emission of a dislocation 

strains the lattice locally, and the local strain must 

be reduced by recovery prior to the emission of another 

dislocation from the source. This concept is based on 

an original proposal by Bailey(102) and developed by 

°rowan(103) who considered that during creep, the flow 

stress 0"-f of a material is controlled by the relative 

magnitudes of the recovery rate, r (= c:- f), andthe rate 
T t 

of strain hardening, h (= ref) such that if the tensile 

stress-strain curve can be expressed by crf  = f(C,t) 

aCrf (10-f 	
crf 

= (3-7 di + 	dt 	 ...(3.39) 
at 

The recovery rate can be calculated from the 

incubation period following a small reduction of applied 

stress AO: The incubation period is considered to be 

the time taken for the flow stress to fall to a value 

corresponding to the new applied stress such that 
Ao" r 	The The strain hardening coefficient can be obtained 

from the slope of the stress-strain curve of a room tem-

perature tensile test (where recovery is not detectable) 

on a previously creep tested specimen, or by making a 
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small sudden increase in stress during creep tests. 

The variation of r and h during constant stress creep 

tests for 70 - 30 a brass at 4130C and 6000psi(104)  is 

shown in Fig (3.6). After a rapid increase following the 

instantaneous extension, h is essentially constant throughout 

the remainder of the transcient and all of steady state 

creep. On the other hand r decreases continuously during 

the whole of the transcient creep, attaining a constant 

value at the start of steady state. This behaviour is 

independent of stress. Similar observations have been 

reported for a iron(105) 

When the steady state creep is reached an equilibrium 

state exists, the flow stress remains constant and so 

dtrf  = 0 and hence 

dE 	Cr fic) t 	r 
Cs 	dt - acy-f/de 

Cottrell and Aytekin(58)  pointed out that the flow 

stress is not only affected by strain hardening and 

recovery, dynamic effects such as the dependence of yield 

on the rate of straining must be taken into account. 

They proposed that strain-hardening will cause the flow 

stress, all, to rise above the applied stress, Or 2 

creating an energy barrier to flow Q(cf, Q ). Thermal 

fluctuations are then considered necessary to overcome 

these barriers and the rate of flow will be controlled 

by a Boltzmann relationship of the type 

Q(07- Cr ) 

dC 
dt 

   

= v :e RT ...(3.41) 

...(3.40) 
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The effect of recovery is to reduce the level of the 

energy barrier and it follows that steady-state creep will 
dU 

occur at a value of of  such that dt  = O. 

An important prediction of this theory is that following 

small reductions of the applied stress an incubation period 

should be observed whilst the internal stress falls to a 

value appropriate to the new applied stress. Cottrell 

and Aytekin have shown that these periods do exist as 

have many other authors(57-59) 

3.2.3 Recovery as Rate-Controlling Process  

Dislocation climbing occurs if vacancies annihilate, 

the necessary condition is that the mobility and concen- 

tration of vacancies are large enough. This is the case 

at high temperatures. Therefore, there will be a 

temperature limit Tc  below which climbing will be so 

slow that the resulting creep is negligible. This 

temperature limit has been vaguely defined(100)  as 

m T 2 — c  

where Tm is the melting temperature of the material. 

It is therefore convenient to divide the behaviour 

into three categories according to the ratio T/Tm. 

(a) Low temperature behaviour, O<T<0.25Tm, where 

no significant recovery of mechanical properties occurs 

upon resting under no load i.e. no static recovery occurs. 

(b) Intermediate temperature behaviour 0.25Tm< T<0.5Tm, 

where both static and dynamic recovery mechanisms operate 

(Fig 3.7). The term dynamic recovery has been used to 

distinguish the type of recovery process which is assisted 

(3.42) 
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Static recovery 

E 

(a) Meto recovery 
	

(b) Ortho recovery 

Dynamic recovery 

E 

(c) Work softening 

Fig. 3.7 Schematic of different typet, of recovery. 

by the applied stress (Fig 3.7-c) in contrast to the 

usual static recovery which takes place without the 

applied stress(107).  The static recovery which occurs 

has been termed metarecovery(108) (Fig 3.7-a). Meta-

recovery is characterized by the fact that only the yield 

stress decreases with resting time, the original stress-

strain curve being continued after some strain, 

(c) High-temperature behaviour, T>0.5Tm, where self 

diffusion occurs, and hence the recovery mechanism is 

based on diffusion, and orthorecovery can occur (Fig 3.7b). 

The orthorecovery is characterized by the fact that the 

entire stress-strain curve is lowered by resting time. 

The temperature limit for a given type of behaviour 
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is not so sharp as indicated above, but will depend on 

the stress and strain rate. For example, the temperature 

at which the behaviour change-s from low to intermediate 

will generally decrease with increase of stress, indicating 

that dynamic recovery plays a role in determining the 

behaviour. On the other hand, the limit for high 

temperature behaviour will be raised by an increase in 

strain rate, for less time is allowed for recovery to 

occur. 

(a) Recovery by climbing  

Let us suppose that during creep deformation dislocations 

have been produced by Frank-Read sources and have piled- 

up at internal obstacles like grain boundaries, sessile 

dislocations and precipitates. The back stress on these 

piled-up groups will finally cancel the external stress 

of the sources. Hence, deformation will stop and can 

proceed only if a dislocation in the pile-up climbs over 

the obstacle, allowing a new one to be formed at the 

sources and enter the pile-up. The creep rate C will, 

therefore, be proportional to the climbing rate 

Climbing will occur if a vacancy diffuses to an edge 

dislocation and anneals out there at a jog, or if a jog 

gives off a vacancy which can diffuse away. In thermal 

equilibrium, the probability of finding a vacancy having 
_Qf/RT 

the energy of formation Qf is proportional to 
e, 

the probability that it will move in the lattice is 
_Qm/RT 

if Qm  is the energy for vacancy migration, 

and the probability of finding a jog in the dislocation 
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line is proportional to the concentration of jogs Cj. 

Hence the creep rate 6 will be given by the following 
equation 

. . 	 —Q.c/RT 	—Qm /RT 
'NJ 	e 	e ...(3.43) 

In metals where self-diffusion occurs by a vacancy 

mechanism, the energy of self-diffusion Qd  is given by 

Qd  = Qf  + Qm. If the jogs of energy Qj  are present in 

thermal equilibrium, we have C3  .".re -Q  3 	2  and hence ./RT 

the activation energy of climbing Qc  is 

Qc = Qd 	Qj 
	 ...(3.44) 

During deformation, the moving dislocations have 

to intersect the "forest" of other dislocations penetrating 

the glide plane. 	In this way 'intersection jogs' are 

formed, and if their concentration is large compared with 

the concentration of the 'thermal jog' Cj, Eq (3.43) will 

depend on the number and type of intersection points in 

the forest but no longer on the temperature. In this 

case the activation energy of creep will be given by 

Qc = Qd 	 ...(3.45) 

The question of the stress-dependence of the creep 

rate in the climbing process is more difficult to answer. 

The basic mechanism°°)  is the following: 

If the movement of the dislocations is stopped in 

the glide plane, the effective shear stress at the place 

of the dislocation is necessarily zero. There may be, 

however, a non-vanishing hydrostatic stress _+crn  which 

exerts a force on the dislocation perpendicular to the 

glide plane. 	Because of this hydrostatic stress 
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dislocations will climb. Some will absorb vacancies 

where the stress is compressive, and others will give 

off vacancy where a uniform tensile stress exists. 

There are a great number of other possibilities(95)  

and it is not always possible to predict theoretically 

which is the detailed mechanism. Nevertheless, 

it seems to be relatively well established that the 

recovery process which determines the creep rate at high 

temperature is the climb of dislocations. Since 

in this way dislocations can be annihilated or at least 

rearranged in such a way that they do not contribute to 

the work-hardening, it is possible to obtain steady-

state creep where the creep rate stays constant over a 

long period(94)  

(b) 	Recovery_by Cross-Slip  

As discussed before, at high temperature the creep 

rate is due to climb of edge dislocations by diffusion. 

Screw dislocations, however, can leave the glide plane 

by cross-slip in a temperature region below T. Cross-

slip is also thermally activated. However, it can take 

place only if a sufficiently high stress is applied. 

Hence it is a dynamic recovery process(95) which can be 

imagined in the following way: 

If a Frank-Read source has emitted dislocation 

loops, they will pile-up at obstacles, such as, sessile 

dislocations. 	Some of these sessile dislocations may 

have such a crystallographic orientation that the pile 

up has pure screw orientation. At high stress, the 
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screw parts can cross-slip into another glide plane, and 

hence, the back-stress on the source cannot be completely 

reduced, and some work-hardening will take place. Hence 

in this case a decreasing creep rate should result rather 

than steady-state creep. The creep rate should be given 

by an equation (1.00) 

-cr)/RT E = A e Q(  ...(3.46) 

where Q(LT) depends on the applied stress or, and A is a 

frequency factor. 

3.2.4 Dislocation gliding as Rate-Controlling Process, 

If a dislocation line moves across its glide plane 

in the lattice, it will encounter local obstacles, some 

of which can be overcome under certain conditions with the 

aid of thermal fluctuations. Some processes can impede 

the movement of a dislocation such as intersections of 

forest dislocations,dragging of a jog, slipping past an 

impurity atom, crossing the Peierls Hill etc. 

Intersection of the dislocation forest must take place, 

since the distance over which dislocations generally move 

(i.e. the length of slip line) is much greater than the 

distance between dislocations. If N dislocation segments 

per unit volume are held up after each thermally activated 

intersection and a dislocation of Burgers' vector b moves 

over an area A, the creep rate is given by 

• -Q,/KT 
6 =NAbve .- 	 ...(3.47) 

The factor v is the frequency of vibration of the disloca-

tion loop between its pinning points a distance 1 apart 
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and is of the order of v = vob/1 where vo is the Debye 

frequency. Qc  is the activation energy for the process. 

During the intersection usually a jog is formed in the 

dislocation line. The energy for this process is Qo  

and the applied stress does work. If we consider the 

most simple case(95), where the work done depends linearly 

on the stress and if 6l is the local stress, then 21 -610 

is the total external force on the two segments of length 

1 on each side of the intersection point. This force 

does work over an average distance d/2, where d is the 

diameter of the dislocation and is of the order of b 

for unextended dislocations and of the order of the 

splitting width for extended dislocations. Hence the 

total work is w =0 b d 1 and only the energy(100)  

Qc  = Qo  - ;:b d 1 	 (3.48) 

has to be supplied by thermal activation. Actually go  

may not have a single value but can vary within wide 

limits, depending on the special configuration of the 

intersection process as explained in section (3.2.3). 

From Eq (3.48), it is clear that we do not have a unique 

value of the activation energy. Since the applied stress 

or stays constant but the internal stress 	which resists 

the dislocation motion, increases owing to the work-

hardening, we can write formally for the local stressr. 

15;  =er - he 

where h Acr/a is the coefficient of work-hardening. 

If we substitute Eqs (3.48) and (3.49) in Eq (3.47) we 

obtain a differential equation between and a0-78t which 
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is of the type of Eq (3.32) where the activation energy 

increases linearly with deformation. The dependence of 

activation energy on stress (Eq 3.48) can be explained 

by considering the model of non-conservative motion of 

jogs on screw dislocations presented by Balasubranian and 

Li(109) 	The model is illustrated schematically in Fig 

(3.8). The creep mechanism being due to the motion of 

dislocations, the external stress can contribute to the 

activation free energy by helping the dislocation to cross 

the energy barrier. The jogs are indicated by short 

dotted segments to show that they are not in the slip 

plane of the dislocation. The circles are vacancies about 

to be absorbed or emitted. The dislocation segment between 

the jogs is assumed free and flexible so that it displays 

SHEAR STRESS 
FIG.3.8 _SCHEMATIC ILLUSTRATION OF ACTIVATION AREA 

IN A JOG MECHANISM OF CREEP. 
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a curvature consistent with the stress applied in the slip 

plane. 

The free energy of a dislocation is shown schematically 

in Fig (3.8) as a function of its position designated as 

the area swept by the dislocation from its rest configuration 

at zero stress. The free energy is for that portion of 

the dislocation which associates with and contributes 

to the overcoming of one jog barrier. Since the disloca- 

tion is passing over a barrier (dragging a jog, slipping 

past an impurity atom, cutting another dislocation, crossing 

the Peierls Hill etc.) its free energy must increase in 

the vicinity of the barrier, reach a maximum, and then 

decrease after it passes over the barrier. If this 

process is achieved reversibly by the external stress, 

the shear stress is proportional to the slope of the free 

energy area curve, since 	bdA is the reversible work 

done by the shear stressT* while the dislocation sweeps 

an infinitestimal area dA. The shear stress to maintain 

any dislocation position is thus also a function of the 

area swept by the dislocation from its rest configuration 

at zero stress as shown in Fig (3.8). 

3.2.5 Internal Stress Conceit A plied to the Creep Theories 

As explained before the strain rate is considered to 

be controlled by the dynamic interaction between the develop- 

ment of internal stresses through glide leading to work- 

hardening and reduction of internal stresses through recovery. 

The maintenance of a positive strain rate is the result 

of recovery events preventing the internal stress resisting 
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dislocation motion reaching the applied stress. It is 

proposed that the driving force for recovery is the internal 

stress, and the driving force for glide and strain hardening 

is the effective stress, such that at any time the applied 

stress, r , is opposed by the internal stress, cri, and 

the average effective stress, causing dislocation motion, 

cfle, such that 

...(3.50) 

Changes in the internal stress reflect variations in the 

structural parameters which control the creep processes. 

Gasca-Neri, Alquist and Nix(110'111)  proposed a model 

of creep based on combined glide-recovery mechanisms and 

the concept of an internal stress. This model is based 

on the Cottrell(97) Eq (3.31) 

6 = f m  b 	 ...(3.51) 

where 4) is an orientation factor, usually about I. 
Direct measurement(110) of total dislocation density, 

A, indicates it is approximately proportional to G' 2, 

Although it is not clear howf m  is related to Ft, Gasca-
Neri et al have followed the assumption of Dorn(112)  

and others(113) in considering it to be a constant fraction 

of ft  and hence 

pp 
	cri 

= (a G b)2  

where 1 is a constant about 2, 

Furthermore for metals(114) we have 

...(3.52) 

...(3.53) 
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Hence substituting Eqs. (3.52) and (3.53) in Eq (3.51) 

we obtain 

6 s  = B ( T ) ell 	1 	 ...(3.54) 

This concept can also be applied to the recovery theories 

of creep if in the Bailey-Orowan model of strain-hardening 
acr 	r 

and recovery the parameters --e-- and d  r- are expressed in 

terms of the internal stress, 	instead of the applied 

stress, 0'. . 

It follows from Friedel's theory of recovery, if r 
is defined as - (acr-At), and recovery involves the 

annihilation of dislocations of opposite sign, the recovery 

rate can be expressed as: 

" r = r o im  ...(3.55) 

where ro and m are constants and for simple network growth 

in = 3. 
If, as is found experimentally(115),  the rate of 

strain-hardening is inversely proportional totri, then 

h = 	 ...(3.56) 
ti 

and if steady state creep is given by the ratio r/h 

 c r  0  or  i 	ro ...(3.57) 
777Fr-7 = ho cri o I 

Consequently secondary creep rate increases with 

increase in internal stress. 	Clearly, however as 

increases at a given stress during primary creep Eq (3.57) 

cannot describe the decreasing strain rate during primary 

creep. 

In several recent papers(99-102) the network growth 
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model has been modified such that it is considered that once 

a dislocation link of sufficient length has formed, a 

burst of local slip will take place generating dislocation 

pile-ups which increases the local dislocation density, 

and so the next slip event is likely to take place else-

where. Hence the rate of deformation is controlled by 

the rate of growth of the network and not by recovery in 

the vicinity of the pile-up. From progressive stress 

reduction tests it was found that the incubation period 

following each consecutive small reduction in stress increased 

until a limiting value was reached, at which creep did not 

recommence within a reasonable period of time. The 

corresponding value of the current stress is termed the 

friction stress(TF. 	It is considered to be related to 

the stress level which can be supported by the relaxed 

dislocation network, and so creep deformation does not occur 

under the full applied stress but under a stress equal to 

Q-  -craF• 	In a variety of materials for which stress- 

steady state creep rate graphs show relationships of the 

form Es aCT
4 at low stresses - and Es acr

8 at high stresses, 

the approach is found to remove the break in the curves 

such that 6 a (<1-  —crF)
4 over the whole stress range(115) 

as shown in Fig 3.9. The concept has been shown to reduce 

calculated high activation energy values also(115) 

Comparing crr  with Nix ori, (cr —crF) is considered 

tc: be responsible only for determining the mesh size of 

the dislocation network developed during creep, where-as 

Cri  is considered 4s the back stress which opposes dislocation 
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movement in the forward direction. Also in the Nix 

approach incubation periods should occur only when the 

stress 	 In the 

above model however, incubation periods should occur for 

all stress reductions up to a critical level. For greater 

stress reductions than this backwards creep occurs. 

Recently some evidence by Lloyd and McElroy(116) has 

thrown doubt on the internal stress and recovery inter-

pretations of material response to stress reductions. 

It is considered that experimental observations can be 

explained on the basis of an interaction between forwards 

creep at the reduced stress level and concurrent anelastic 

recovery. 	It is suggested that anelastic recovery always 

accompanies stress reductions. The recovery rate r is 

defined as r = tg-E 1/6  an' where C1 is the creep rate after 

the stress change and C an  is the anelastic strain. The 

work hardening term, h is considered to be equal to 

Airtan. On this basis it is stated that the stress 

reduction techniques are valid for determining the rate 

controlling mechanisms during creep. However, the occurrence 

of incubation periods over a range of stress reductions 

would appear to require a fortuitous relationship between 

forwards and backwards deformation. Also since these 

incubation periods are proportional to the stress drop, 

the rate of recovery (defined as r = Lo"/1t) is constant 

In the anelastic model the rate of recovery is independent 

of C1, the creep rate after the stress reduction, and since 

this depends on the new applied stress, the predicted rate 
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of recovery (defined as r = AcrE it an ) is not constant. 
Recently, Koterazawa et al(117)  distinguished between 

two types of recovery. The normal recovery which leads 

to softening and the abnormal recovery to which they 

attributed the strengthening phenomenon observed during 

some intermittent loading tests. The main characteristic 

of the abnormal recovery is that the anelastic contraction 

during the minimum load-on period cancels out the elongation 

during the maximum load-on period resulting in a lower 

creep rate under intermittent stress. The abnormal 

recovery has been interpreted in terms of the internal 

stress by several investigators
(118,119)

. 	In Lillis case, 

only a fraction of the applied stress, cr is presumed 

to be effective for creep, that is ore  =cr —cri. 	In 

the case of changing stress, creep occurs when cr 

recovery occurs whencr.(cri. When the value of internal 

stress, ori, is sufficiently high, the recovery would 

cancel out the creep resulting in a very low resultant 

creep rate. 

Ishida(120)  gave a theoretical account of the strength-

ening phenomenon in terms of simple dislocation behaviour 

during the creep of metals under variable stress. As 

explained previously thermally activated motion of individual 

dislocations through the network is thought to be the 

chief cause of creep strain. During the process an 

individual dislocation breaks away from the nodes, meets 

another dislocation and forms new nodes with it. Two 

types of barriers may be experienced by the moving 
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dislocation, first thermally activated barriers, and 

second athermal barriers. The former would be atomistic 

barriers, such as a jog on a screw dislocation 

which recedes with time with the dislocation during 

creep deformation. The barrier therefore is not static 

but has a high mechanical strengthErt. The applied 

stress,CT ,would be smaller thanCrt. This condition is 

necessary for the specimen to creep and not break 

immediately. In fact, the present strengthening phenomenon 

takes advantage of the inherent high mechanical strength 

of the thermally activated barriers. Several types 

of athermal barriers would occur, such as dislocation 

nodes in the three-dimensional dislocation network and 

precipitates on the dislocation. The athermal stress 

FIG.3.10_ DI SLOCATI ON SEGMENT IN THREE 
DIMENSIONAL NETWORK STRUCTURE 
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Tat' is less than the applied stress p-- because creep 

deformation is occurring. The stress Tat  is similar in 

nature to the internal stresscii, therefore 

15-le = cr — (Tat 	 ...(3.58) 

where stress concentration factors at the thermally activated 

barriers are ignored for simplicity. The situation can 

be explained by reference to Fig (3.10) which illustrates 

a dislocation segment in the three dimensional network. 

The segment terminates at both ends at dislocation nodes 

which represent athermal barriers, whereas thermal barriers 

may be distributed more or less homogeneously along the 

segment. Now consider the stress to be removed (CT = 0) 

when the dislocation segment is in position (a) in Fig (3.10). 

The dislocation will creep back towards (b), Ore  on the 

dislocation is now reversed in sign that is 

cre = -ciat<0 
	 ...(3.59) 

This is assumed to be the major cause of anelastic creep. 

After a time At, when the stresstT is applied again, 

the dislocation segment moves towards (a) becausecre  is 

again positive 

d" 
e+= (7- — a ;>0 	 ...(3.60) 

The whole sequence would become reversible if (=re-  . -Ore+  
or 

(that isCrat  = y-) and if the time At without the applied 

stress is equal to that under stress. In such a case 

the effective creep rate would be zero provided At is 

sufficiently small. The creep rate will be finite if 

the same stress CT were applied statically or if At were 



73. 

so large that some dislocation segments break away from 

the nodes during the stress-on part of the cycle. The 

strengthening phenomenon was observed only when the 

stress-on period was short so that the anelastic transition 

behaviour was not exhausted during that stage. Ishida(120) 

calculated the average length of the dislocation segment, 

1, and the magnitudes of the strain increment, AE I  for an 

Fe-Mn-N alloys tested at 5000C under various stress 

from the following equation 

1 = P 	...(3.61) 
na 

and 

AC = 8  17- Pbl max 	) ...(3.62) 

where na  is the node density and p the dislocation density. 
Eq (3.62) represents the maximum strain corresponding to 

the displacement of a dislocation segment from position 

(b) to the half circle (c) Fig (3.10). 	The value of 

Amax does not vary widely with stress and agrees with 

the critical strain increment ACc of 0.01% observed in 

practice for various metals and alloys
(117,118) 

3.2.6 General Observations on C clic Cree. Behaviour 

So far we have confined our attention mainly to 

constant stress and temperature creep. Most of the 

investigations made under combined creep fatigue conditions 

indicate that unusual effects are caused by load reversal 

which are generally deleterious to the creep resistance 

of the material. 

Early experiments
(121-123) on dynamic creep of lead 
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at room temperature (<0.5 Tm) in which a cycling stress 

was superimposed over the static tensile stress showed 

an increase of creep rate over that of the static case. 

Other similar works on copper(124-125) showed that the 

cyclic strain-rate was an order of magnitude greater than 

the corresponding values under a standard creep test 

performed at the same peak effective stress. Combinations 

of axial tension and alternating torsion at the same 

temperature were also observed to produced marked accum- 

ulation of plastic strain(126,127). 	There have been, 

however other studies which do not indicate any observable 

increase in the creep rate by cycling of the creep stress
(127) 

and sometimes even a decrease in creep rate occurs( 1287129)
• 

The change in creep resistance due to cyclic loading, 

depends greatly on the testing temperature. A summary 

of published results showing the temperature effect is 

given in Table (3.1). 	In general cyclic creep causes 

a deceleration of creep deformation at intermediate 

temperature, say below 0.4 	and and a significant 

acceleration at higher temperature, above 0.5 Tm. The 

temperature limit between decelerating and accelerating 

creep deformation may be affected by several factors such 

as frequency(117'118) stress amplitude and maximum stress
(119) 

The deceleration of the creep rate was usually discussed 

in the light of work hardening theories and internal stress 

concepts
(117-119),  while the accelerating creep effect 

was related to recovery processes
(117-119) 



Material 

Chemical Pb 

Ref. 

(123) 

Temp 
Tm 

0.5 

No. of 
Stress 

Reversals 

100 

Type of 
Test 

Torsion of 
tube 

Chemical Pb (130)  0.5 20 Torsion of 
tube 

Commercial Cd (131)  0.5 1 or 2 Shear of disk 

Commercial Pb (131) 0.5 1 or 2 Shear of disk 

Spectroscopi-
cally pure Pb 

(131) 0.5 1 or 2 Shear of disk 

Magnesium (132)  0.32 10 Shear, constant 
period of 10 min. 
per reversal 

20 Cr-25 Ni-Cb 
steel 

0.1 at % 

(133)  

(134)  

0.55 

0.47 

63 or 83 

2 

axial, constant 
period of 10 h 
per reversal, 

axial 

Cu-15 Al alloy (134) 0.52 2 axial 

99% purity Al (135)  0.32- up to Torsion of 
0.55 65 tube 

Remarks 

acceleration - creep rate about ten 
times as much as creep rate of virgin 
specimens was observed after 60 to 
100 stress reversals 

acceleration - the steady state creep 
rate after stress reversals was much 
larger than that of virgin lead 

deceleration 

acceleration 

acceleration 

deceleration 

acceleration 

deceleration - stress was reversed 
at tertiary stage 

deceleration - stress was reversed 
at tertiary stage 

acceleration at high temperature -
deceleration at low temperature 

Table 341 TEMPERATURE EFFECT ON CYCLIC CREEP RATE 
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3.3 Deformation Equation for Non-Steady. Creep Behaviour  

In order to be able to describe creep under variable 

stress and temperature conditions, it is desirable to be 

able to describe creep in terms of the strain rate. 

To account for stress and temperature change, two 

basic approaches have been developed, the 'Superposition 

Principle' and the 'Equation of State concept'. 

3.3.1 	Superposition Principle  

The principle of superposition introduced by Holtzman 

was an attempt to relate the behaviour of a material at 

a given time to its past history of loading. It is an 

extension of elasticity theory and strictly only applied 

to the circumstance when creep strain is proportional to 

stress, best examples of materials of this kind are found 

among the plastics and polymers. 

According to the superposition principle, the strain 

at any time due to a variable load history is given by 

the sum of the strain contributions from each past instant. 

Each contribution is proportional to the stress at the 

past instant and is weighted by a function of the time 

elapsed from that instant. 

Considering a creep law for polymers of the form 

E = cr 	t) 	 ...(3.63) 

the superposition principle can be formulated mathematically 

by considering the present strain to be built up by the 

contributions from all previous strains. At some past 

(1) time 1- , suppose the stress increased by da- - dr. Then der 

the increment of present creep strain corresponding to this 

is 
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dE ( t ) 	(t _qr) dir(r) 	 ...(3.64) 

where IJ? (t -1') is a creep memory function. 	Integrating 

over the past history of the specimen 

6 (t) 	
t 

(I) (t 	) d -co 
...(3.65) 

This law found extensive success for polymers. In this 

form it is even possible, as shown by Leaderman(136) and 

by Rabotnov
(137) 

to allow for the effects of previous 

history for a material having a non-linear function of 

stress. The best examples of such non-linear behaviour 

are found in textile fibers(136) and certain plastics at 

strains in excess of a few per cent(138) 

Modifications to make the superposition principle 

more appropriate to metals usd;the creep rate equation 

for metals of the form 

= f(T) 11)(t --r) 	.(3.66) 

so that creep strain will be given by 

6  1  (1)(t —Pr) V- did 	...(3.67) 0,   
This equation again predicts complete recovery which is 

seldom observed for metals. 

3.3.2 Deformation Eouation Based on Mechanical Definition 

of the Structure  

Experimental data have indicated that the creep rate 

is given by the general equation 

C = 	T, s) 	 ...(3.68) 



78. 

where s is measure of the current state of the material. 

To obtain the detailed creep equation, the nature 

of the function f(T, T, s) must be evaluated. This is 

especially difficult, for s is determined by the history 

of the stress, temperature, and strain rate, as well as 

their instantaneous values. Consequently, the effect 

of test variables on the structure must be separated from 

their effect on the deformation mechanism. For example, 

to evaluate the rate-controlling mechanism, the effects 

of stress, temperature, and strain rate must be compared 

at a constant structure. 

The deformation equations that have been proposed 

over the years are based on specific definitions of s. 

Three proposals have been considered most commonly 

a) 	Strain-Hardening Concept: (S.H.) 

One of the earliest definitions proposed by Ludwick(138)  

in 1909, and later by Holloman(139) stated that "s is 

uniquely defined by the instantaneous value of the strain". 

This leads to the very general equation for the strain-

hardening concept 

C = f(0,E , T) 	 ...(3.69) 

i.e. the strain rate C, is a unique function of the current 

stress 0 , strainE, and temperature T, independent of the 

prior strain history. This concept is illustrated in 

kig (3.11-a), when the stress is changed from Ci, tocr 

after a certain time t1, the point A moves to A' along 

a constant-strain line. In the next time interval creep 
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occurs from A'. to B. It is obvious that the time at B 

is not the total test time. 

b) 	Time-Hardening Concept: (T.H.) . 

This hypothesis implies that the only factor that 

governs strain rate is time at temperature regardless of 

the stress experienced or strain induced in the prior 

history. This leads to the equation for the time-

hardening rule 

C = f(T, t, T) ...(3.70) 

This concept is indicated in Fig (3.11-b). 	Suppose the 

initial stress is 01, and is maintained for certain time 

t1, the specimen will obviously creep from 0 to A. If 

the stress is now changed to c'2; according to the time-

hardening concept, the new creep rate can be determined 

600 - 
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(2 400 
cn 
4 
1,1 
I• 
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Fig.3.12.- Time- and strain-hardening rules in creep. 
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by proceeding to point A' immediately below A. 

At elevated temperature where metals are metallurgically 

unstable, the time-dependent assumption may be fairly 

reasonable. However, in general, this concept has not 

been found as satisfactory as the strain-hardening theory. 

The strain-hardening and time-hardening theories 

are compared(140) for lead at 1200F in Fig (3.12). After 

the specimen was loaded for 27 hours at 25 p.s.i. (0.17 MN/m2), 

the stress was increased to 482 p.s.i. (3.31 MN/m2). 

If time-hardening governed, the continuation of the creep curve 

would be the 482 p.s.i. (3.31 MN/m2) creep curve displaced 

vertically, whereas if strain-hardening governed the 

displacement would be horizontal. As seen in Fig (3.12), 

the strain-hardening concept predicts the experimental 

curve much more accurately. 

c) 	Life-Fracture Concept: (L.F.) 

This concept states that if a material has a certain 

fraction of its life, t/tR, left at a given stress and 

temperature, then a change in stress and temperature will 

produce a new creep rate corresponding to the point at 

which the same percentage of life is left on the creep 

curve at the new steady stress and temperature. In this 

case s is defined in terms of t/tR  and the equation is 

6 = f(C-, t/tR, T) 	...(3.71) 

This concept is illustrated in Fig (3.11-c). 	Point 

A' is such that time at this point is the same fraction 

of the total time to rupture at 0'2 as the time at point A 

is the fracture time atCr1° 
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This concept can be used to predict rupture lives 

as well as creep rates. 	The life fraction rule predicts 

failure when 

t 
tR 

1 ...(3.72) 

Which of these equations of state predicts the most 

strain in a given circumstance will depend on the shape 

of the creep curve and whether or not stress is increasing 

or decreasing. 	But usually the life-fracture law 

predicts behaviour intermediate between that predicted 

by the time-hardening and that of the strain-hardening 

law. 

3.3.3 Application of the Strain-Harde.ningConceat 

Strain-hardening can also be applied when the stress 

is constant and the temperature is varied. 	Dorn(83) compared 

x-ray refraction patterns obtained for aluminium. The 

microstructures were very similar at a given strain regard-

less of the time and temperature combination required 

to achieve the strain. 	Since creep rate is very sensitive 

to microstructure, therefore, the constant microstructure 

associated with constant strain would also produce a constant 

creep rate, i.e., the creep rate is strain-dependent rather 

than time-dependent. This is supported by the dynamic creep 

studies reported by Taira and Koterazawa
(141) for a number of 

materials. 	Ohji and Marin(142)  also reported that the strain- 

hardening theory was much better than the time-hardening theory 

in predicting non-steady periodic creep. Warren 	arrived 

at the same conclusion except within a range where certain 

metallurgical instabilities occurred. 
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Fig. 313 — Reduction of creep curves at several temperatures to a single curve by 
0 parameter. 

Dorn(83) further developed the concept by suggesting 

a method for constructing the creep curve for any temper- 

ature at a given stress if the creep curves for one 

temperature at that stress is known. He plotted the 

strain against the Dorn parameter, Eq (3.23). 

The strain path on this type of plot is OAB PQR 

as shown in Fig (3.13). Regardless of the temperature 

variation, the strain must be along a universal path. 

Thus, if the equation of the correlating curve in Fig (3.13) 

Ise. f(e), then the final strain at R will depend only 

on the value of e at point R. 

	

-Q/RT1 	-Q/RT2 	- /RT3 e R = t1e 	+ t2 e 	+ t3 e 	...(3.73) 

If the temperature is continuously variable so that 
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the specimen spends only a period dti  at temperature T , 
1 

dt2  at temperature T2, etc., then 

-Q/RT2 	-Q/RT3 	-Q/RT
ndtn 9R = e

-Q/RT1 dt1  + e 	dt2 + e 	dt3 + ... + e 

(3.74) 

Eq (3.74) is, by definition an integral 

0 	-Q/RT = 	e  dt 
Jo 

...(3.75) 

This equation represents the area under the curve on 

a plot of e-Q/RT against t. Once the value of 0 is known 

by integration, the strain is determined from the curve 

6= f (8). 

Using this method, Dorn(83)  obtained very good 

agreement between the calculated and experimental results 

for high-purity aluminium under varying temperature and 

constant stress conditions. On the other hand, Daniels 

et al(144) obtained rather poorer agreement between the 

calculated curves and experimental data for 7075-T6 

Aluminium alloy tested at cyclic temperature. 

3.3.4 Applications of the Life-Fraction Rule 

As already indicated by Eq 3.72, rupture occurs 

when the sum of all life fractions t/t is equal to 

unity. 	Robinson(48) applied this hypothesis to creep- 

rupture tests at constant load but variable temperature. 

He incorporated the concept of a time-temperature parameter 

into his equations. Checks of the Robinson hypothesis 

were made by Caughey and Hoyt(145) and by Miller(146) • 

Miller reported excellent agreement between the calculated 

and experimental results for the rectangular wave cycle. 
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When other cycles were analyzed, the computed lives were 

longer than the observed values. 	The errors probably 

arise from the assumptions associated both with the 

Robinson hypothesis and with the use of the Larson-Miller 

parameter. 

Smith and Houston(147) made use of the concept of 

averaging the 'instantaneous' creep rates in a test in which 

the temperature was cycled. The instantaneous creep rate 

was taken as the minimum creep rate in an isothermal 

constant-load test having temperature and stresses equal 

to the instantaneous va.Lues during the cyclic test. 	They 

computed the creep rate of three steels cycled ± 50°F 

(± 28°C) about mean test-temperatures of 1100°  and 1500°F 

(593.3 and 815.5°C) 	For 1100°F (593.3°C) the computed 

data agree reasonably well with the experimental data. 

However, at 1500°F (815.5°C) the experimental creep rate 

was almost 100 times higher than was predicted by the 

'average instantaneous' creep concept. 

Manson et al(148) used a linear summation of creep 

and fatigue damage Eq (2.11). 	Good results were obtained 

for 316 stainless steel and for cobalt-base alloy L-605 

tested in axial strain cycling over a range of frequencies, 

strain ranges and temperatures. 	In other applications, 

for example long periods of steady loads in which alter-

nating stresses are periodically introduced, the linear 

damage rule may be less applicable. 	Esztergar and Ellis(149) 

checked the concept of cumulative fatigue and creep damage 

experimentally. As shown in Fig (3.14), the rmaining 
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creep fractures suffer considerable scatter due to the 

effect of hold periods on fatigue life which are not 

predicted with certainty by this method. 

Spera(150) added some modifications to the life-

fraction rule. He assumed that failure is caused either 

by the accumulation of creep damage or by conventional 

time-independent fatigue. Conventional time-independent 

low-cycle fatigue can take place at elevated temperatures 

below an upper limit determined by such test conditions 

as the frequency, strain or stress range, and mean strain 

and stress. At temperatures above this limit cyclic 

creep becomes the dominant failure mode. In the develop-

ment of his modification, he assumed that a 'smooth' 
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creep specimen will have the shortest possible life, 

tR,S,because such a specimen experiences the maximum 

amount of necking and, therefore, the most net strain. 

On the other hand, it is assumed that a 'notched' specimen 

(with the greatest amount of notch strengthening) will 

have the longest possible life, tR,N, because the triaxial 

stress state at the notched section severely limits 

necking and thereby reduces net strain to a minimum. 

Therefore, on the basis of these assumptions, the rupture 

time, tR, may vary between limits as follows: 

t < t 	t tR,S R tR,N ...(3.76) 

Generally, he obtained good agreement between calculated 

and observed life despite the many simplifying assumptions 

embodied in his method of analysis. On the other hand,,  

his results were not completely in agreement with Webstet'S (151) 

findings. For notched aluminium alloys, Webster obtained 

a notched strengthening factor of 1.63 for ductilities 

in excess of 15%, while as ductility decreased, the notch 

strengthening factor decreased, until for rupture strains 

of less than 1%, notch weakening occurs. 
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CHAPTER 4  

APPLICATION OF EQUATIONS OF STATE TO CYCLIC CREEP 

The applicability of 'Equations of State' and the 

'Superposition Principle' to variable loading and temp-

erature conditions has been discussed in section (3.3) . 

In this chapter the Equation of State concept will be used 

to predict creep behaviour under particular loading and/ 

or temperature cycling conditions. 	It is usual in these 

circumstances to express the effect of superimposed cyclic 

stress and/or cyclic temperature in terms of an 'equivalent 

stress' and 'equivalent temperature'. 	The importance 

of this suggestion is that, the overall creep behaviour 

of a cyclic creep test can be directly linked to the creep 

strain output from a steady creep test conducted at the 

'equivalent stress' and 'equivalent temperature'. 	For 

reasons given earlier, the Superposition Integral will 

not be considered; only the time hardening and strain-

hardening Equations of State will be applied. Attention 

will be confined to the types of cycle possible with the 

equipment available (see chapter 5). 

4.1 Theory based on the Strain-Hardenin• Conce•t 

The particular mathematical formulation of the strain-

hardening concept that will be used is 

E = k Cl/k 
 0-n/k E1 -1/k 	

...(4.1) 

where C is in general a function of temperature. This 

is the differential form of the constant stress and 

temperature creep equation 
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E = 	n  t k 	 ...(4.2) 

which is similar in form to Eq (3.3), and which as will 

be seen later adequately describes the experimental data 

obtained. Diffusion controlled creep will be assumed so 

that C can be expressed as 

C = A exp - Q/RT 	 ...(4.3) 

where from Eq (3.46) A is a frequency factor, Q the activation 

energy for creep and R the universal gas constant. 

Substituting in Eq (4.1) 

E= k Alik07 n/k exp  - Q/kRTE 1-1/k 	...(4.4) 

where stress 'grand temperature T will depend on time 

depending on the shape of the variable stress and temper-

ature cycles. 

Integrating within one cycle of period 211 we obtain 

for the strain in the first cycle 

51/k = Al/k )(271;-n/k exp - Q/kRT dt 
o  

...(4.5) 

th For the . cycle, the left hand side of Eq (4.5) 

becomes 

1/k 	2TE E 1/k _ E= A l/k 1 cr n/k .exp - Q/kRT dt 	...(4.6) 

where,  E. 1  is strain after the i
th cycle 

E i-i is strain after the (i - 
1)th  cycle. 

This expression is appropriate to any repetitive 
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cycle, it will be integrated first for cycling tempera-

ture, then cyclic stress and finally for both together 

for a particular shape of cycle. 

4.1.1. 	Cyclic Temperature  

Now, let us consider a temperature cycle of trapez-

oidal shape as shown in Fig 4.1. 

A sine series of period 2n will be used to represent 

this trapezoidal cycle form. 	Shifting the time axis to 

the mean value of the'temperature cycle, the trapezoidal 

cycle is clearly defined within the range (0,n) as follows 

Tmax 
w 

< Tm 
U.1 

I 
w 

To 
I 
I 	I 

o( 	 11_0(, -n,n+0( 	2 11-05271 
TIME 

Fl 6.41...TRAPEZOIDAL TEMPERATURE CYCLE. 
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0<t<a. ) 
) 

Ta T 	t 
) 
) 
) 
) 

a ,.=:t 	- a ) 
) 
) ...(4.7) 

T = Ta ) 
) 
) 

It— cc<t<7t ) 
) 

T ) 
(n ) T = as 	- t) 

where Ta . (Tmax - To)/2 

max
maximum temperature 

To = minimum temperature 

2m = time of heating or cooling 

For convenience of numerical calculation, the 

equation of the different parts of the trapezoidal cycle 

(Fig 4.1) will be represented by a Fourier series. 

By symmetry of the half-wave, it is clear that 

T(r t) = T(t) for all values of t between 0 and x. 

Hence, since sin m(n - t) = sin mt only when m is odd, 

the sine series to be found can only contain sines of 

odd values of m. 

For zero-mean temperature we have' 

T u  bm  sin mt 
	 ...(4.8) 



where 
2n 

bm n = 2 — )( T sin mt dt 
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...(4.9) 

Replacing T by its values in Eq (4.6) we get 

1L-IX 

tl 

	

2 T t )(a 
u ' TE a 

a
‘ 	t sin mt dt + I 	a sin mt dt  
o 	a 

+i  n 

	

(n 	t) sin mt dt) 	...(4.10) 
7E-0: 

Therefore integrating and substituting 

leads to 
T  

for the limits 

...(4.11) 

we have from 

...(4.12) 

3 a sin 3t + 

...(4.13) 

we get 

...(4.14) 

= — 	sin mu bm 	n 	2 m=0 	ma 

Hence for the range (0,m) and m odd, 

Eq 	(4.7) 

A 
FS T  = nu Ta 

where 

FS  = (sin a sin t + ?2  sin 
3  

1. 5 	5t sin 	a sin 
52 

For a mean value Tm = (Tmax + To)/2, 

4 + T 	T 	F 	Tm - nu 	a 	S 

In the special case of cycling temperature only, 

the mechanical equation of state based on the strain- 
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hardening concept Eq (4.5) gives the accumulated strain 

during the first cycle 

27c  E= AO-n(1 exp - Q/kRT dt)k ...(4.15) 

The corresponding expression involving 8 i  and 

for the i .th cycle is obtained from Eq (4.6). 

For the trapezoidal temperature cycle T is replaced 

by the sine Fourier function Eq (4.14) and Eq (4.15) 

becomes 

ACT n IST 	 ...(4.16) 

where 

2n (Ro 	2 	o 	
2 

- 1 	R + 1 	,k 
IST = 	exp - Q/kRTo 1 	n 	m FS + 	) dtj ...(4.17) 

0 

and Eq (4.14) has to be rewritten in terms of the 

temperature ratio, Ro = Tmax/To 

Eq (4.16) was integrated by numerical analysis using 

time intervals bt -and the trapezoidal formula 

2n 	k 	i=p 	k 
I 	F(T) dt] = [i.  bt 	[F(Ti ) 	F( 	).11 	...(4.18) 

o 
ST ={ 	 Ti+1  

i=0 

where F(T) is the temperature function in Eq (4.17). 

The integration was performed using values of m of 

20, 50 and 100 and p of 20, 50 and 100. 	Little 

improvement in accuracy was obtained using m and p>50. 

All values reported in Appendix 1 were obtained using 

m = 50 and p = 50 and a value of k = 1/3. 



TES 	R k loge  2n - loge IST) 
...(4.21) Q 
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In the programme the value of 2a was changed from 

0.0083 which is almost the case of square wave cycling to 

n which gives a triangular wave. Representative results 

for the temperature cycles envisaged in the test programme 

are presented in Appendix 1. 

The equations can be applied to the general case of 

a cycle of period 2L by replacing a by 3t- a and t by t 

L k  
so that IST  must be replaced by (.77) 

k 
E = Acr n  (L-9 IST 

The value of IST depends on the minimum temperature, 

To, the temperature ratio, Ro, the time of heating and 

cooling, 2a, and the activation energy for creep, Q. 

The value of the equivalent temperature, TES, of 

a constant temperature creep test at the same stress that 

would have to be carried out to give the same creep strain 

behaviour as for the case of the cycling temperature test 

is directly obtained from Eq (4.19). 

k mern (n ) IST_ A0721(2L)k  exp - Q/RTES ...(4.20) 

Therefore 

IST and 

Eq (4.21) will be used later to calculate the equiva-

lent temperature at different testing conditions. 

Although the equivalent temperature has been calculated 
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for the first cycle only, it will clearly be the same for 

any succeeding cycle because of the repetitive form of the 

cycles. The equivalent temperature will therefore remain 

unchanged throughout the duration of a test so long as 

the cycle remains unaltered. 

4.1.2 	Cyclic Stress  

The same shape of trapezoidal cycle will be used 

for stress cycling as was used for temperature cycling as 

shown in Fig 4.2. 	This cycle can be represented by a 

sine series of period 2n, as for the case of temperature 

cycling. However this is not necessary as an analytical 

equation for each part of the trapezoidal cycle from 0 to 

2n can be obtained and integrated. 

- Tr T14-2ix 	.2r1 
TIME 

FIG.4.2_TRAPEZOIDAL STRESS CYCLE. 
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The following equations represent the stress cycle 

from 0 to 2n: 

0<ft<2C( 

07max _max - t +cro 

( Tr. + 	2a - t) 

) 
) 
) 

) 
) 
) 
) 
) 
) 
) 
) 
) 
) 
) 
) 
) 
) 
) 

Cr + 	) 0 ) 
) 
) 
) 
) 
) 

...(4.22) 

2m 

2a<t<n 

cr=cr max 

n<t<n + 

trmax -cro Q'= 2 X 

It + 2a <t <2n 

Cr= 13-o 

Using the same equation of state as before (Eq 4.4) 

but with constant temperature and cycling stress, we get 

by integration the strain in the first cycle 

E. Ae—Q/RT (f2no-n/k dt) k 
	

...(4:23 ) 

For 	 .th or the 	cycle, the left-hand side of the equation 

must be replaced by 

/E.1/k 	k  
as previously. 

Replacing a- by its value from Eq (4.22) and letting 



Therefore 1 
Scr 

cf-  = 
ES 	(270" ...(4.30) 
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(S - 1) 	= Amax  
-o 	2m 	

_ B where S 	2  we get 
cr 

	

2a 	n/k 	n/k 
I 	= 	 Bt + 	) 

SCT 	
dt + 	(Cr 	) max 	dt + 

0 	 2ot 

in+2a 	n/k2n 	n/k 

	

[B(m + 2a 	T 

	

t) + o] 	dt +J 	(T) 	dt] ..(4.24) 
in 	 +2a ° 

By integration, we obtain theequation of state for 

trapezoidal stress cycling as 

[2.2a (Sk  - I) 	(sn/k 	1)(1t 	2a.1k E = 	exp -• Q/RT on 	 )j (4.26) 
° L 	+ 1)(S - 1) 

So that the strain in the first cycle (period 21t) becomes 

E = A(e x p 	WRT)Iscr 	...(4.27) 

In the general case, if•the time of one cycle is 2L, 
k 

Isu. must be replaced by (i.) Is  togive 

k 
E = A exp .-Q/RT 	=SC" 

The equivalent stress, CrEs  to give the same output 

of creep strain as in the cycling stress case and constant 

temperature is directly obtained from Eq (4.28) 

	

LIk 	1 	n 
a., A exp - Q/RT( )iT 	Isar  . A exp 	Q/RT(21,)-  ES ...(4.29) 
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As for the case of cycling temperature provided the 

cycle shape does not change, 0.-Es  will be constant throughout 

a test. 

4.13 	Special Stress Cycles  

Some special shapes of stress cycles can be derived 

from the general equation of state for trapezoidal stress 

cycling, Eq (4.26). 

(a) 	Rectangular cycling between a maximum and a minimum  

stress  

i) For a rectangular wave between a maximum and a 

minimum stress, 2a = 0, 	the equivalent stress reduces to 

n/k n/k k/n 1 
ES = 	-"To 	)J2max ...(4.31) 

ii) For a triangle cycle varying between a maximum 

and a minimum stress, 2a = n,we get 

n/k+1 	n/k4-1 	k/n 

Amax -07o  
.ES 4 n 

( 	1) (17max 	Cr° ) 

...(4.32) 

(b) E2stmalal2EEysllnaLaween a maximum and zero stress 

i) In the case of trapezoidal repeated tensile 

stress cycling between zero stress and a maximum stress, 

o = 0, Iscr simplifies to give 

k/n 0-max  r2.2m 	+ (n 	2m)] DES = ES - (2T )kin L a  ... ...(4.33) 

ii) For repeated rectangular waves between zero and 

a maximum stress, 2m = 0 , we obtain 
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1 
TES = 2177 Tmax ...(4.34) 

iii) For repeated triangular cycles between zero and 

maximum stress)2a = it,we have 

1 	kin 
0-  = o-max n 	) ES 	4 + 

...(4.35)*  

c) 	Completely reversed stress cycle  

For the case of completely reversed stress cycling 

(To = —0 max, and the theory predicts CrEs  = 0 since the 

positive creep strain is always cancelled out by the 

negative strain. 	The theory assumes that the tensile 

and compressive responses are the same, which is not 

usually the case as will be discussed later. 

4.1.4 Cyclic Temperature and Stress  

Consider now, the general case of the temperature 

and stress both changing with time. 

If the change has a trapezoidal shape, as shown 

before, then a half-period sine series of period 2n will 

represent the variation of the temperature with time 

and also stress with time. 

As previously shown by Eq (4.13) 

4 T = Tizir Ta 	FS + Tm ...(4.36) 

and similarly the stress cycle can be represented by 

FS + Crm = re-( 	a ...(4.37) 

where 07 = (Er ax — cro )/2. a max  
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Substituting Eqs (4.36) and (4.37) into the general 

equation of state for cycling stress and temperature, 

Eq (4.4) gives on integration 

E = A (Ton  ISTG... 	 ...(4.38) 

where 

. n/k 
S- 1 2 F + S+ 1 ISTCr = 	( /2n
In aS 2 

R -1 2 F
S 	

R + 1 	ik  
exp - Q4kRTo o

n 	a ( 	o 2 Hdtj 

Eq (4.39) can be integrated by numerical analysis as for the 

case of cyclic temperature for appropriate values of Q 

(Appendix . 1). 

Eq (4.38) can be applied to the general case if the 

time of one cycle is 2L. 

E 	 . n  I . A crt) o 7t STCr ...(4.40) 

4.2 211aa..]taltlan211IE12aL212aastat. 
Referring to section 3.3.2, the time-hardening equation 

of state equivalent to the constant stress creep Eq (3.3) 

is 

E= k A exp 	Q/RTO n  tk-1 
	

...(4.41) 

where T and U' mayboth vary with time and will depend 

upon the shape of the cycle. 

Here also the cyclic temperature condition and the 

cyclic stress will be considered in turn first and then 

together. 
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4.2.1. Cyclic Temperature  

For cyclic temperature and constant stress we obtain.  

from Eq (4.41) 

E T hi k(exp . Q/RT)tk-1 dt 
o 

...(4.42) 

Replacing T by the sine Fourier series Eq  (4.12). 

The creep strain after the first cycle can be written as 

2n - / 2 	R1 . F 	R+111k-1 dt (4.43) AE1  A0P ir  k[exp - Q/RT o n 	S 2 I‘' 
0 

and for the .th  cycle 

n)(27/i 	2 R-1 	R+1 	k-1 dEi 	Ay- 	k[exp 	Q/RT0  ( 34- 	Fs  + 	dt (4.44) 
2n (i-1) 

The total accumulated strain will be 

E = EAEi 	 ...(4.45) 

For the case of the time hardening law, there will be 

no constant equivalent temperature since the creep strain 

accumulated each cycle is a function of tk-1 
	

Therefore 

in this case the creep strain after the ith  cycle will 

be obtained by addition of creep strains accumulated each 

cycle (Eq 4.45). 

4.2.2 	Cyclic Stress  

In the general case of a trapezoidal stress cycle 

Eq (4.22), the creep strain after the first cycle is given 

by 
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AE. = c k•[ J
,2a. 

2 
Crmax 

a 
 Cr° 	cr l n t + 	tk-1  dt + 1 	.  Amax 

t
k-1 dt 

,k-1 (n + 2a - t) 	115,;/ 	dt j +2a Irm ( 	ax - o 
2m Cr  

tk-1 dti 

n+2cc 

th. and for the a. cycle the creep strain becomes 

...(4.46) 

= c k[ 10 
2icc( crmax

cc 	
o t 	n tk-1 dt  

+ in  Amax t
k-1 	i(n+2/0.- 2 

dt + 	max  
a
- (To 
 (n + 2a - t) 

2icc 	Ln 

)n k-1 	2in t 

li(n+2a) ° t
k-1  dt dt + 	On 	] 

The total creep strain is given by 

E = ZAEi 	 ...(4.48) 

Again as for temperature cycling, there will be no 

equivalent stress since the creep strain'is a function of 

tk-1. 

4.2.3 	Special stress cycles  

The rectangular and triangle stress cycles are considered 

as before. 

a) Rectangular wave  

For the rectangular wave the time of loading and 

unloading is zero (i.e. 2a = 0). 

(i) Cycling between a maximum and a minimum stress. 

Using Eq (4.46) for 2m = 0 the 1st cycle of creep 

strain is given by 

...(4.47) 
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Ael = c k 
n  ax

n tk-1 dt + 
r  2n n k-1 

o t dt to  

C nk[o- n 	10-n(2k 	11 
max 	

o 
 

and the creep strain for ith  cycle is 

AE. = C nk/Or.max
n [(23. 	1)k (2i - 2)k] 

+ on  1(2i)k  - (2i - 1)k ]3 

...(4.49) 

...(4.50) 

Therefore the total creep strain is given by 

E = 	AEI. 	 ...(4.51) 

(ii) For stress varying between a zero and a maximum 

value, Wo  = 0. 	Eqs (4.49) and (4.50) give respectively 

th for the 1st and i cycle 

AE1  = C nk 2kCrmax 

pEi  = C nk  0- axn [(2i)k  - (2i - 2)11 m 

...(4.52) 

...(4.53 ) 

The total creep strain is calculated as previously 

mentioned from Eq (4.51). 

(iii) For completely reversed stress cycling, i.e., 

Cr° = 	the creep strain due to the compressive stress 

will decrease the creep due to the tensile applied stress. 
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The creep strain due to the 1st cycle then becomes from 

Eq (4.49) 

/ 
AE1  = C k j n 0-max 	m 

n tk-1 dt f 2n cr 
ax
n tk-1 dt  

	

max
n nk(2 - 2k) 	 ...(4.54) 

th. and for the 1 cycle we have 

A . = C cr
imax

n  n 1. kr 	+ 	21 k 	ki 

	

2(2i 	1)k - 21 	- (2i 	2) j 	...(4.55) 

The accumulated strain is obtained from Eq (4.51). 

b) Triangular Cycle  

For this cycle 2a = n. 

	

(i) 	Cycling between a maximum and a minimum stress. 

In Eqs (4.46) and (4.47) replacing 2a by n gives the 

strain after the 1st and ith  cycle as 

Aei  = C k [ in(crmax - cro  t  + a- )n } k-1 dt  
J 1 	7E 	0 1  "0 

( + 

	

27E crmax
TC 
 Cro 	 n — 	 ; f (2n - t) + cr ) t4-1  at i 	...(4.56) 

	

in 	 o 

and 

, 
pEi 	

in(  o- C k 	max 	o 	n 
t +(To) 	dt 

o 

2i rr- 
-n( - max - Cro 	 dt - 2n - t) + 	n  tk-1  

rt 	7E 	 0 
...(4.57) 
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(ii) For repeated cycling between zero and a maximum 

stress,cro  is replaced by zero in Eqs (4.56) and (4.57) 

giving the strain of the 1st and ith  cycles as 

n  AE1  = c k [i ( (T mcax t)n  tk-1 	0- dt + )( 2n 
	,n /max (2n - t) ) t 	dtj 

...(4.58) 
and 

c k[ fo 
inicrmax t)n  tk -1  dt 1 n 

fi 	

n ,_ 2ini 0-max (27E 	t ) ) 	
k 
 i dt 

n 
...(4.59) 

(iii) For the case of completely reversed triangular 

cycling, i.e., cro 	-or max'  the compressive stress will -  

again give negative creep strain. 

Considering 

stress equation 

0 < t <1t/2 

IC < t <311/2 

3n/2 < t < 2n 

the stress cycle 

for the 1st cycle 

0- 	Ermax _ 

shown in Fig 

is 

t 

 (n- t) 

( ' t  - ' ) 

(t - 	21t) 

(4.3) the 

) 
) 
) 
) 
) 
) 
) 
) 	-•- (4.60)  
) 
) 
) 
) 
) 
) 

n/2 
: 

0-max cr  _ 
n/2 

 . Tmax Q" 
-77 

- 0 	Omar, - 
n/2 

the creep strain due to the 1st cycle is 



3T1/2 
11/2 	 2TI(TIME) 

106. 

umax 

FIG.4.3_COMPLETELY REVERSED TRIANGULAR 
STRESS CYCLE. 

GE1  = C k.(0-max  ) n  
7t/2 	n 	1  

[ 	 it) 	dt 
0 

1t 	 n 	 (3n/2 k-1 (21--2) k-1 + L/2  (2 - 2—) t 	dt - 	 t 	dt 
T1 

27t ( 2tamowit 
firc/2 

n 
- 4) tk-1  dt] 

th and for the . cycle 

[in/2 2t tk-1 dt AE. 	C k (o- ax  ) n m 0  0 
f3iTE/2 

(2 - 2—) t 	dt 	(21--2) tk-1 dt l 	
t k1 

in/2 in 



1.07. 

i 2 in t it 	k-1 	1 - 4) 	t 	dt j 
)3in/2 n  

...(4.62) 
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CHAPTER 5  

TESTING EQUIPMENT  

The equipment used to carry out the investigation 

consisted mainly of basic dead load tensile creep testing 

machines. Some of the machines have been modified to 

enable load to be cycled continuously or to be altered 

automatically to maintain constant true stress throughout 

a creep test when strains were sufficiently large to 

warrant this degree of precision. For cycling temperature 

tests the normal resistance furnace was replaced by an 

induction coil with a much more rapid thermal response. 

This modification is explained in detail in Appendix 1. 

With the above equipment, it was not possible to load 

in compression. 	Consequently to investigate reversed 

stress effects, new equipment had to be designed. For 

reasons described later, it was found most convenient to 

reverse the stress in torsion and a creep machine capable 

of doing this was built. 

5.1 Axial Cyclic Creep Machine  

Most of the standard constant load creep tests were 

performed in model T47E Denison creep machines with a 

load capacity of 3/4 ton (7500N). 	The specimen dimensions 

are shown in Fig 6.2. 

The cycling load and constant true stress tests were 

carried out on larger machines with a capacity of 4 tons 

(40,000N) with correspondingly bigger specimens (Fig 6.1) 

fox. greater measuring accuracy. 	Some of the larger machines 

were modified to incorporate a true stress compensating 
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load system and automatic cycling facilities. 

Both types of creep machines had a 10:1 lever ratio 

and were provided with a furnace and automatic temperature 

control. In each case the furnace was wound in three 

zones to enable a uniform temperature along the specimens 

gauge length to be maintained within ± 1°C. 

To perform the cyclic loading, two loading pans were 

provided on the loading rod of the large creep machine 

(Fig 5.1). During operation the lower pan carries the 

minimum load, while the upper pan is loaded with the 

difference between the maximum load and the minimum load. 

This pan can be unloaded by a movable bracket like a two 

prolonged fork protruding at right angles from the back 

of the creep machine (Fig 5.1). 	The bracket is connected 

by a cycle chain to a Parvalux SDBMM motor, through a five 

speed sprocket to allow a range of loading rates (from 

104.2 to 157.0 mm/min). 

The electrical circuit for raising and lowering the 

bracket automatically is shown in Fig 5.2. 	It consists 

mainly of two Crouzet synchronous re-set timers, two relays 

and two microswitches to limit the travel of the bracket. 

On contacting one of the microswitches, movement of the 

bracket is halted and one timer energised for the desired 

time after which the travel of the bracket is reversed. 

By adjusting the setting of the timers, the time at maximum 

and minimum load could be controlled automatically. 

5.1.1. Constant True Stress ampensation  

Constant true stress throughout a test was achieved 
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as follows. 	One of the large creep machines was modified 

to allow a weight to move horizontally along its lever. 

An electrical feed back circuit was designed so that as 

creep strain increased the weight moved towards the fulcrum 

of the lever partially reducing the load on the specimen 

according to the expression P - T°E- , where Po  is the 

initial load, and P is the required load after strainE. 

At the start of the test, the movable weight is positioned 

at the end farthest away from the fulcrum. As the test 

progresses the weight gradually moves towards the fulcrum. 

Constant true stress will be maintained provided the volume 

of the specimen remains constant and no necking occurs. 

5.2 Axial Strain Measurement 

As a continuous recording was required, an extensometer 

was used to transmit the mechanical extension of the specimen 

to a linear-variable-differential tranducer (LVDT). The 

LVDT was located on the loading axis of the specimen and 

away from the heated zone. 

The extensometer arrangement is shown in Fig 5.3. 

It consists mainly of four legs, two clamps to attach it 

to ridges on the specimen, aluminium brackets to carry the 

main body of the tranducer and an adjusting screw for 

zeroing the recorder when desired. The tranducer is 

kept in continuous contact with the adjusting screw by 

spring pressure. 

The accuracy of the extensometer set-up was checked 

each time before starting a creep test by loading and un- 

loading the specimen within the elastic range and obtaining 
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a record of the response. A test was not started until 

a satisfactory response was obtained. 	In addition, the 

LVDT tranducer was calibrated to give an output of one 

millivolt corresponding to a strain of 0.1%. 	By adjusting 

the sensitivity of the recorder a full scale reading of 

0.1% to 10% strain could be achieved as desired. 

5.3 Design of Cyclic Torsion Creep Machine  

A compact creep-fatigue-torsion machine to meet the 

requirements of the testing programme was designed. 

Before describing the machine the main advantages and 

disadvantages of the torsion test compared to the tensile 

and compression test will be stated briefly. 

5.3.1 Advantages and Disadvantages of Torsion Test 

The torsion test has a number of advantages over the 

tension test. 	In tension testing, the area reduces as 

the specimen elongates and unless the load is reduced in 

a creep test, the stress must increase. With torsion 

testing, there are no changes in the cross-section dimensions, 

and true constant stress conditions are maintained at 

constant torque. Another advantage is the greater 

sensitivity of strain measurement that can be obtained 

in torsion compared wtih tension testing. 	Some years 

ago, Johnson(152) claimed that strain rates of the order 

10-9 per hour could be measured with the same accuracy 

in torsion as 10-7 per hour in tension. 	In addition, 

stress reversals through zero can easily be performed 

and strain set up during thermal fatigue by rapid heating 

and cooling can be more easily simulated. 
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The major disadvantage of testing in torsion is that 

a solid specimen cannot be used as the strain rate would 

vary with the radius. The only alternative is to use a 

tube which has a wall thickness that is small compared 

to the radius, so that it can be assumed that the stress 

and strain rate are both constant. However, these tubes 

suffer buckling at large strains which would affect the 

result. 	Nevertheless, Swift(153) managed to cover an 

extended range of strain with relatively thin tubes by 

fitting a mandrel in the tube to prevent buckling although 

care must be taken to prevent the load and strain measure-

ments being affected by the mandrel. 

5.3.2 Description of 	Torsion Creep Machine 

The general arrangement drawings of the torsional 

machine are shown in Drawing numbers ME/D 742/1 to 

ME/D 742/5 (appendix 4). 	Photographs are shown in Fig 	5.4, 

The main base of the machine is a heavy lathe bed to 

give rigidity. 	The drive motor, the supporting pillar 

bearings and the heating furnace are all located on the 

lathe table as indicating in Drawings ME/D741/1 and 2. 

The driving torque is transmitted from a DC motor through 

gear boxes and a belt system to the specimen and is balanced 

by a 60 cm long pendulum carrying a weight of 90 N (Drawing 

ME/D724/1 and 3). 	The weight can be changed to give a 

wider range of torques (maximum weight 450 N). The 

maximum speed of the motor (1000 r.p.m.) is reduced gradually 

by two gear boxes to 4.7 r.p.m., and then by a belt to 

1 r.p.m. 
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For cycling torque, a circuit similar to that of the 

axial cyclic load machine was used. 	It is shown in Fig 5.5. 

A 15 amp. Variac was added to allow the speed of the DC 

motor to be changed and a bridge rectifier to convert the 

AC supply to DC. 

The cycling torque is performed in a similar way to 

the axial cyclic loading. Two microswitches limit the 

angle of twist of the pendulum arm. The two microswitches 

can be rotated as shown in Fig 5.6 to allow their position 

to be changed for different torques. The position of 

the microswitches is adjusted accurately by two micrometers. 

Automatic reversals of torque occur by triggering the relay 

circuit as the pendulum arm touches each microswitch. 

The switching circuit was designed to operate under extremely 

light contact pressures between the pendulum arm and the 

microswitches to avoid over-running and ensure as far as 

possible accurate torque cycling. 

The mean cycling torque can be easily adjusted to 

zero by setting the two switch limits at the same angle 

from the pendulum arm. 

The machine can also be used for constant stress tests, 

by setting the timer for a long period. 	In this way the 

pendulum is kept at the required constant torque position. 

To assure a pure torque application without a super- 

imposed bending moment or end load, the specimen 	was was 

* The number in square parentheses refers to the parts 

number shown in Drawing NE/D 742/3 



120. 

supported on each side by two PTFE impregrenated bearings 

15 mm apart as indicated in Drawing ME/D742/3. 	Each pair 

of the PTFE bearings was supported in the same bearing 

pillar [6] and [7]. The PTFE bearings were supplied by 

Glacier Du and were chosen to minimise 'stick slip', so 

that any thermal expansion would be relieved without setting 

up axial thrust in the specimen. 

To assure a low temperature at the PTFE bearings, an 

air gap to prevent conduction was left between the specimen 

mounts [2] and [3] , the driven shaft [4] and the torque 

arm shaft N. The two coupling rings [8.] and [9] connecting 

the mounts to the shafts were each perforated with 12 holes 

to allow continual air cooling. The temperature of the 

shaft between the two bearings was measured while the furnace 

temperature was 600°C, and was found to be only 20°C higher 

than room temperature. 

5.3.3 	Shear  strain calibration 

The alignment of the tubular specimen was obtained 

by means of the twist indication shaft [10] which penetrates 

through the specimen mounts [2] and [3] supporting the 

clamped ends of the tubular specimen as shown in Drawing 

ME/D742/3. 

The angular twist is measured over the whole length 

of the specimen by recording the relative displacement 

between the two ends of the specimen, and not over a specified 

gauge length. The only error introduced will be due to 

the effect of the grips, since the specimen thickness is 

uniform over the whole length. The end effects have been 
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estimated by carrying out tests on specimens of gauge length 

6: and 90 mm at 200, 300 and 400°C. By substracting the 

strain obtained from the specimens of each gauge length, 

the end effects could be cancelled out. The relation 

between the measured strain with and without the end effects 

is plotted in Fig 5.8. The temperature effect is very 

slight and it is satisfactory to multiply the measured 

strain by 1.108 to obtain the correct strain at all temperatures. 

The relative displacement is measured by the twist 

indication shaft 110] , having one square end fitted to 

the driven shaft specimen mount [2] . The other end 

passes through the tubular specimen and the specimen mount 

[3] and is firmly attached to the spindle of a Penny and 

Giles rotary potentiometer (type RCP 18). The main body 

of the potentiometer is firmly connected to the pendulum 

arm and rotates with it (Fig 5.6). 

The electrical circuit used for recording the strain 

is shown in Fig 5.9. 	It includes a 24 volts DC supply, 

the rotary potentiometer, another variable potentiometer 

for varying the scale of the strain output from 0.1% to 

10%, a zero suppression unit and a recorder. 	The same 

curcuit shown in Fig 5.9 was used to calibrate the rotary 

tranducer for different variable potentiometer settings 

(see Appendix 2A). 	The conversion factor to give 1% 

strain at different settings is calculated in Appendix 2A. 
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5.3.4 	Torque Calibration  

A torque cell was made to enable the output of the 

rotary tranducer to be calibrated and to allow the position 

of the two micrometers on each side of the pendulum for 

different torques to be established. 

The torque cell was calibrated on an Avery torsion 

machine (Appendix 2.B) and then placed as a specimen in the 

creep-torsion machine. The load cell output is plotted 

in Fig 5.10 against the rotary tranducer output for different 

popentiometer settings. 	From the slopes of the lines and 

knowing that one millivolt output of the load cell corresponds 

to 37.1 lb in (0.113 Nm) torque (see Appendix 2B), the 

conversion factors for one N.m torque at different potentio-

meter settings were calculated and plotted as shown in 

Fig 5.11. 	The plot of the torque at different micrometer 

positions for pendulum weights of 9.0 and 220 N is shown in 

Fig 5.12. 

5.3.5 Heating System  

An ordinary automatic temperature controller and three 

zone furnace were used. The end plates of the furnace 

were redesigned to enable the furnace to be slid on the 

lathe table to the assembly position or the testing position. 

While in the assembly position, the clamped specimen and 

its two mounts are passed through the furnace and the two 

mounts rested at the end of the furnace on buffles made of 

heat-resisting Sindanyo. The two buffles were also used 

to close the furnace openings to reduce heat losses. 

The temperature variation over the 
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specimen length was found to be within I-  1°C. 

5.3.6. 	Clamping Device  

A simple two piece clamping device was designed to 

accommodate the tubular specimen as shown in Drawing 

ME/D 742/3. The clamp consisted mainly of two stainless 

steel half rings with a 1/16" clearance to allow adequate 

clamping pressure to be applied to the tubular specimen. 

A typical autographic record of the torque and strain 

shown in Fig 5.13 indicates satisfactory uniform repeated 

cycling without any sign of slipping or overshoot. 
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CHAPTER 6  

MATERIAL AND TEST SPECIMENS  

6.1 Chemical Composition  

The phospheric deoxidized non-arsenical copper 

(BS C106) bar and tube used in this investigation was 

99.85 percent purity copper. 	It was the purest copper 

available in bar and tube shape. The chemical composition 

of the bar and tube is given in table 6.1. 

Element Composition (percent by weight) 

Copper 99.85 (including silver - minimum) 

Tin 0.01 

Lead 0.010 

Iron 0.030 

Nickel 0.10 

Arsenic 0.05 

Antimony 0.005 

Bismuth 0.13/0.050  

Selenium ) 
) 0.020 

Tellerium) 

Total Impurities 0.06 	(excluding Ag, As, Ni, P) 

Table 6.1 - Chemical composition of phosphorus 
deoxidized non-arsenical copper (BS C106) 

6.2 Test specimens 

6.2.1 Axial creep specimen 

The specimen used for repeated axial cycling is shown 

in Fig 6.1. 	The gauge section was 30.0 mm long, and the 

diameter 5.0 mm. 	The form of the end of the specimen 

was as recommended by Penny et al(155) to ensure axiality 
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of loading. For some of the constant load-constant 

temperature creep tests, the Denison specimen shown in 

Fig 6.2 was used. 

All the specimens were machined from 12.5 mm diameter, 

12 m long bars before heat treatment. 

6.2.2 	Torsion creep specimen  

In the case of the torsion specimens, various factors 

had to be considered, in arriving at a suitable specimen 

size. 	In order to minimise the effects of stress gradients 

through the wall, the tube must be as thin as possible 

(see Appendix 3-A). 	On the other hand, the wall thickness 

must be large in comparison with the grain size, and large 

enough to avoid premature buckling in torsion. Satisfactory 
4. 0.05 

dimensions were found to be external diameter 22 - 

wall thickness 1.2 mm and tubing of this size was obtained. 

The total length of each specimen was 105 mm, and the 

length between the grips was chosen to be 60 mm. 	It 

is shown in Appendix 3B with these dimensions buckling 

should not occur until strains of greater than about 8% 

have been reached. 

6.3 Heat-Treatment  

After machining, all the specimen were annealed in 

a vaccum furnace to retain the initial surface condition, 

prevent oxidation, and remove any residual internal stresses 

produced during manufacture. 

The temperature and time of annealing were chosen 

to give the same Vicker Hardness Number (VHN) for the bar 

and tube in both the transverse and longitudinal directions. 

0.025 mmy 
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Annealing Process 

Vicker Hardness Number 

Transverse Longitudinal 

As received 103.50 102.35 

2 hours at 520°C 
Furnace cooled 52.06 51.38 

4 hours at 520°C 
Furnace cooled 53.3 52.56 

Table 6.2 Vicker Hardness Number for 
rod after different annealing processes 
(each value is the average of 10 readings) 

Annealing Process 

Vicker Hardness Number 
. 

Transverse Longitudinal 

As received 94.07 95.2 

2 hours at 520°C 
Furnace cooled 72.42 7027 

4 hours at 520°C 
Furnace cooled 63.64 68.89 

7 hours at 520°C 
Furnace cooled 

60.1 63 

4 hours at 600°C 
Furnace cooled 64.87 66.73 

Table 6.3 Vicker Hardness Number for 
tubular specimens after different annealing 
processes 
(each value is the average of 10 readings) 
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Transverse direction 
grain size: 0.0195 mm 

Longitudinal direction 
grain size: 0.0213 mm 

Fig 6.3 	Grain size for rod 
(Magnification factor 112.5) 

Transverse direction 
	Longitudinal direction 

grain size: 0.01292 mm 	grain size: 0.01299 mm 

Fig 6.4 	Grain size for tube 
(Magnification factor 225) 
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Tables 6.2 and 6.3 give the results of an investigation 

carried out for the rod and tubular specimens to determine 

suitable annealing conditions. The annealing procedure 

adopted for the bar was 4 hours at 520°C, and for the tube 

7 hours at 520°C. 	These annealing processes give the 

nearest requirements. 

Micrographs were taken, Figs 6.3 and 6.4, to show 

the grain sizes of the bar and tube in both the longi- 

tudinal and transverse directions. The mean values of 

ten determinations are shown on the figures. In the 

case of the tubular specimens, the thickness of the wall 

is sufficient to accommodate about 90 grains, enough to 

ensure isotropy. 

The grain size of the tube, in both directions is 

smaller than that of the bar. Therefore it is expected 

that the V.H.N and tensile strength of the tube will be 

higher than that of the bar as is the case. 

6.4 Mechanical Properties 

Monotonic tensile tests were carried out in an 

Instron testing machine at room temperature R.T. , 200,300 

400, 500, and 600°C. 	The stress-strain curves for the 

different testing temperatures are shown in Fig 6.5. 	For 

some of the tests, the plot was interrupted before fracture 

because the extensometer slipped. 	Table 6.4 lists the 

mechanical properties of the annealed copper bar at 

dilferent temperatures. The maximum tensile stress 

decreases considerably with the increase of temperature, 

from 245.17 MN/m2 at room temperature (R.T) to 56.49 MN/m2 



Temperature 
(T) 

0.2 % 
Yield 
Stress 

Max. 
Stress 
MN/ITi2 

Elongation 
at Max. 
Stress 

on 1" GL 
percent 

Elongation 
at 

Fracture 
on 1" GL 
per cent 

Reduction 
of area 
percent 

o C oK T/
Tm  MM I\1 

RT RT - 82.22 245.17 37.5 54.32 86.72 

200 473.15 0.34 76.49 190.25 35.8 64.13 90.49 

300 573.15 0.42 60.60 155.83 32.0 64.04 92.76 

400 673.15 0.49 48.05 110.33 27.5 72.02 98.48 

500 773.15 0.56 36.38 85.52 21.5 80.14 98.74 

600 873.15 0.64 24.52 56.49 15.5 76.12 99.38 

Table 6.4 Mechanical properties of copper bar at different 
temperatures (Tm  = 1359.15°K) 



139. 

at 600°C. 	This effect is illustrated in Fig 6.6. 	An 

increase in slope occurs at about 0,53 Tm  (about 450°C) 

indicating that when diffusion rates become significant 

strength decreases rapidly with increase in temperature. 

A similar observation on commercially pure copper was made 

by Westbrook
(154) 

The percent elongation at maximum stress also 

decreases with the increase of the testing temperature 

from 37.5% at R.T. to 15.5% at 600°C corresponding to 

a decrease in the extent of work-hardening. On the other 

hand, the ductility of the material shows little change 

above 300°C as indicated by the values of the fracture 

elongation, and the reduction of area. 

To compare the strength of the tubular and the rod 

specimens, a tensile test was carried out on a sample 

of tube at R.T. To prevent the tube from slipping, 

the inside part of the ends was threaded to a pull rod. 

Strains were measured between the grips. A complete 

stress-strain curve could not be obtained because of 

premature fracture at the grips. The result of the 

test is shown by the dotted line in Fig 6.5. 	The 0.2% 

proof stress of the tube was found to be 87.5 MN/m
2 

compared to 82.22 MN/m2 for the bar, consistent with the 

higher hardness values and smaller grain size of the tube. 

Premature failure occurred at about 210 MN/m
2. However 

a sufficient length of curve was obtained to show reason-

able agreement with the bar samples. 
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CHAPTER 7  

TESTING PROCEDURE•  

All the creep tests were made on 99.85% pure copper. 

The types of test carried out can be summarized as follows: 

(1) Constant temperature and constant load tests in 

tension. 

(2) Constant temperature and constant true stress tests 

in tension. 

(3) Constant temperature and cycling load creep tests 

in tension. 

(4) The tensile sequence of testing was repeated in 

torsion with the addition of completely reversed cycling 

stress tests to simulate the tensile and compressive 

thermal strains that can be induced in components subjected 

to thermal fatigue. 

It was originally intended to carry out cyclic 

temperature tests as well, but due to failure of the 

induction heating equipment these had to be abandoned. 

7.1 	Tensile Creep Tests  

The constant load tensile creep tests were carried 

out in the temperature range between 200 and 600°C and 

at stresses from 24.81 to 99.63 MN/m2 to give rupture 

lives from 10 to 700 hours. 	The actual combinations 

of stress and temperature used are shown in table 7.1. 

Some of the tests were interupted after 2000 hours before 

failure has occurred. 

Because strains as large as 20% were measured some 

of the tests were repeated at constant true stress to 
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establish to what extent the increase in true stress 

throughout a constant load test affected creep rate and 

the form of the creep deformation equation. 

STRESS 

MN/m2 

TEMPERATURE 

oC 

24.81 400 500 600 

42.66 200 300 400 500 600 

72.86 200 300 400 

84.83 200 300 400 

99.64 ) 200 

TABLE 7.1 List of Tensile Constant Load Creep 
Tests 

The remaining axial tests were carried out at 

constant temperature and cycling load. The type of 

load cycle adopted is shown in Fig 7.1. 	In all cases 

a trapezoidal shape was used with a loading and unloading 

time of 5 seconds and hold times at each load of 295 

seconds to give 6 cycles/hour. 

Two mean stresses, Tin, and two stress amplitudes, 

AU; were selected such that the corresponding values of 

the maximum stress, 	and the minimum stressI cro, 

for each CY'm and AG- were the same as the stresses used 

in the constant load tensile creep tests. 	The range 

of temperature covered was from 200 to 500°C. 

7.2 	Torsion Creep Tests 

Most of the tensile constant load tests were repeated 

at the same temperatures and equivalent stresses in 
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Irma x 

295 	TIME (SEC) 5 	 295 

FIG.71_ LOAD CYCLE. 

torsion. 	The values of the shear stress, r, were 

evaluated using the Maxwell-Mises equivalent stress 

criterion, i.e., r .cr/f3. 

For the cyclic torsion creep tests at constant 

temperature, the conditions were again selected to be 

equivalent to the tensile tests. 	They were performed 

with a maximum shear stress of cm  /13, and a minimum ax 

shear stress of o/ f3. 	The completely reversed torsion 

tests with zero mean stress were carried out at one of 

the previously selected stress amplitudes to examine the 

effect of change in mean stress. 

7,3 	Internal Stress Measurements  

In a number of instances, measurements of internal 
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stress were made at various points along the creep curves. 

The method adopted was to creep a specimen under a constant 

load to the point at which a measurement is to be made. 

The applied stress is then reduced (by about 10%) and held 

constant for a period at the new reduced load level. 

Accompanying the stress reduction there is an elastic 

contraction followed by forwards or backwards creep 

depending on the reduced stress level. 	If forwards 

creep occurred a further reduction in stress was made 

as illustrated in Fig 7.2. 	This process was continued 

until backwards creep was just observed. 	The stress 

TIME 

FIG.7.2_A SCHEMATIC ILLUSTRATION OF STRESS 
DECREMENT TEST TO MEASURE THE INTERNAL 
STRESS, cri. 
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for which zero creep occurred immediately following the 

stress reduction is considered to be the internal stress. 

7.4 	Experimental Precautions  

Before carrying out any of the tests, the following 

precautions were taken. The LVDT strain tranducer was 

calibrated to give an output of one millivolt corresponding 

to a strain of 0.1%. The axiality of the extensometer 

mounting was also checked by loading and unloading the 

the specimen and obtaining a record of the elastic line 

using an X-Y recorder. An example of the X-Y record is 

shown in Fig 7.3. 	No test was started until a satisfactory 

record was obtained. 	In the instance when an X-Y recorder 

was not available, a three channel recorder was used to 

record separately the stress and the strain, and these 

FIG.7.3_ ROOM TEMPERATURE ELASTIC I NITIAL 
LOADING R ECORD 
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were then plotted to give the required elastic line. 

Periodic checks were made of the temperature during 

every test and necessary adjustments performed so that a 

uniform temperature along the gauge length was maintained 

to within I 1°C. All specimens were held at temperature 

for between 8 and 20 hours to ensure stability before 

laoding. 

For the cyclic loading tests, the timer settings had 

to be adjusted at high strains to ensure constant hold 

times. 
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CHAPTER 8  

RESULTS AND DISCUSSION 

All the results of the experiments just described 

are presented in Appendix 4. 	Figures 8.1 to 8.10 

show the constant load tensile data, and in Figs 8.17 

to 8.23 are shown the constant stress tensile data. 

The constant stress torsion data are presented in Figs 

8.25 to 8.34. 	The cyclic tensile results are given 

in Figs 8.38 to 8.61 and the cyclic torsion data in 

Figs 8.63 to 8.74. These results will be discussed 

in turn. 

8.1 Analysis of Static Creep Results  

Typical constant load tensile creep curves are 

shown in Figs (8.1) to (8.5). 	The curves show the 

usual primary, secondary and tertiary creep stages. 

For a given applied stress the magnitude of primary 

creep appears to increase with increase in temperature, 

whereas the extent of the secondary stage decreases. 

Comparison of curves at constant temperature and 

different stresses shows a similar trend with increase 

in stress (Fig 8.1 to 8.5). 

The same data are compared in the logarithmic 

plots of Figs 8.6 to 8.10. 	These all have approximately 

the same shape suggesting that the creep curves at the 

different stresses and temperatures are geometrically 

similar. 	Except in the very latest stages of creep 

close to fracture it is seen that the results for each 

testing condition can be represented by a straight 



STREqS 

MN/M2 

Exponents 
and 

Constant of 
Deformation 
Equation 

TEMPERATURE RATIO (T/Tm) 
0.348 
(200°C) 

0.422 
(300°C) 

0.495 
(400°C) 

0.569 
(500°C) 

0.642 
(600°C) 

24.81 

k 

n 

C 

- 

- 

- 

- 

- 

- 

0.265 

3.0 

1.1 x 10-7 

0.34 

3.0 

3.3 x 10-7  

0.34 

3.0 

1.15 x 10-6 

42.66 

I 
k 

n 

C 

0.23 

3.0 

1.8 x 10-8 

0.275 

3.0 

5.6 x 10-8 

0.29 

3.0 

1.1 x 10-7 

0.36 

3.0 

3.3 x 10-7 

0.365 

3.0 

1.15 x 10-6 

72.86 

k 

n 

C 

0.31 

3.0 

1.8 x 10-8 

0.33 

3.0 

5.6 x 10-8 

0.36 

3.0 

1.1 x 10-7 

- 

- 

_ 

- 

- 

- 

84.83 

k 

n 

C 

0.31 

3.0 

1.8 x 10-8 

0.34 

3.0 

5.6 x 10-8 

0.365 

3.0 

1.1 x 10-7 

- 

- 

- 

- 

- 

- 

The units of C are for stress in MN/m2 and time in hours 

Table 8.1 	Variation of creep constants 	with temperature and stress 
(Tm  = 1086°C) 
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line indicating that the time dependence of creep can be 

described satisfactorily by a single term of the form of 

E = a tk 	 ...(8.1) 

The slope, k, of the lines at each stress and 

temperature is listed in Table 8.1. 	It varies between 

0.23<k<0.365. 	There is a progressive increase In 

k with increases in temperature at a constant applied 

stress, and with increase in stress for a constant 

temperature. 	This trend has also been observed by 

Feltham•and Sinclair(106) for copper of 99.999% purity at 

temperatures from 400 to 800°C. 	In their case, the 

time exponent, k, increases from 0.33 at 400°C to 0.55 at 

800°C. 	Similar observations consistent with the values 

obtained in this investigation have also been made by Clauer et 

al(156) on molybedum single crystals and by Orlava
(157) 

in copper crystals. 

In spite of this slight change in k with testing 

condition to a good approximation, and certainly for 

engineering purposes, the isothermal lines shown in 

Fig 8.6 to 8.10 can be considered to be parallel with 

a constant slope of 1/3. 	Consequently the creep strain 

data can be represented by the well known Andrade law 

E. a t1/3 	 ...(3.4) 

or the first terra of the Graham and Wallis expression 

(Eq. 3.7). 

Although the linear strain-time graphs appear to 

show primary and secondary creep stages, the logarithmic 

plots show that the two stages can be completely described 

by the primary creep law Eq. 3.4. Nevertheless an 



STRESS 

MN/m2 

MINIMUM CREEP RATE E min (SEC-1) 

200°C 300°C 400°C 500°C 600°C 

24.81 - - 1.51 x 10-7 8.4 	x 10-7 9.5 x 10-7 

42.66 3.47 x 10-8  1.25 x 10-7  4.55 x 10-7  4.44 x 10-6  7.3 x 10-6  

72.86 1.944 x 10-7 6.944 x 10-7 5.55 x 10-6 - - 

84.83 3.02 x 10-7 8.7 x 10-7 1.26 x 10-5 - - 

99.64 8.5 	x 10-7 - _ 
- 

- 

Table 8.2 Minimum creep rate at different testing conditions 

01 
0 
• 
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STRESS 

MN/m2  

TEMP 

(°C) 

TEMP 

, RATIO 

LIFE 

(HOURS) 

ELONGATION 

(PERCENT) 

REDUCTION 
OF AREA 
(PERCENT) 

24.81 400 0.495 811* _ _ 

500 0.569 1052 24.1 11.11 

600 0.642 542 56.2 23.1 

42.66 200 0.348 1021.4* _ - 

300 0.422 2024* - - 

400 0.495 724 20.1 7.4 

500 0.569 91.5 72.0 53 

600 0.642 22.8 76.4 78.2 
. . 

72.86 200 0.348 1182.1* - _ 

300 0.422 1582.4* - 

400 0.495 51.2 86.66 67.7 

84.83 200 0.348 1221* - - 

" 300 0.422 427.8 72.0 75.1 

400 0.495 8.2 64.2 70.4 

99.64 200 0.348 445* - - 

* test stopped before fracture 

Table 8.3 	Rupture life at different test conditions 
(Tm = 1086°C) 
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extended region of approximately constant creep rate is seen. 

This creep rate was measured and is listed in Table 8.2 

for each testing condition. 

Tertiary creep was only observed in the specimens 

taken to fracture. 	It did not occur until strains of 

about 5% were exceeded. 	It is attributed to a local 

rapid increase in stress in the region of a neck. 	In 

table 8.3 are given the rupture lives of specimens taken 

to fracture. 	These have been plotted against the minimum 

creep rate, min' in Fig 8.11. 	The straight line 

dependence indicates a relationship of the form 

A 
Emin 

.1- 
-r = CK 

where A = 0.72, and CK  is a constant. 

This value of A is in agreement with other observations (158) 

although Feltham and Meakin(77)  obtained a value of 

N=1 in their tests on copper when steady state creep 

was attained. 	In this case, true secondary creep was 

not observed and the minimum creep rate should not be 

regarded as a true secondary creep rate. 

The stress dependence at each temperature can be 

obtained from Eq (8.1) 

E = a 0/3 
	

...(8.3) 

where m is a function of stress, by plotting strain at 

a constant time against stress. 	Fig 8.12 shows that 

for a constant time (t = 1 hour) the isothermal lines 

at all temperatures can be considered as parallel straight 

lines of slope 3. 
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Therefore the creep equation can be written as 

E =CU 3 - 	t1/3 
	

...(8.3) 

where C is only a function of temperature. 

In their investigation on 99.9% Purity copper, 

Feltham and Meakin°7)  found that the stress exponent depends 

on both stress and temperature. The value of n was 

found to vary from 3 to about 6. Their results covered 

the temperature range 400 - 700°C and a stress range of 

5 to 100 MN/m2 and are shown in Fig 8.13 on log-log 

scales. At all temperatures, the slope in the low 

stress range was 3 increasing to 6 at the higher stresses. 

Feltham and Meakin(77) claimed that this change in stress 

dependence occurred at a certain stress at which the 

mode of hardening changes from linear to parabolic. 

In their case it occurred at a stress of about 38 MN/m2 

at .500C and at about 65 MN/m2 at 400°C. 	In this 

investigation the maximum stress reached at 500°C was 

42.66 MN/m2  and at 400°C 84.83 MN/m2 and no change of 

slope was observed. 	This implies that the critical 

stress had not yet been reached. 	The reason for this 

may be due to the difference in the purity of the copper 

(99.85%) investigated here and that used by Feltham and 

Meakin (99.99%). 

Feltham and Meakin(79) suggested a ratio between 

the critical stress, 10-c, and the yield stress cry  of 

about 1.8. 	The yield stresses of the copper investigated 

here at 400 and 500°C were 48.05 and 36.38 MN/m
2 (fig 6.5) 
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giving a (Tc  of 86.5 and 65.5 MN/m2 respectively, which for 

both cases is less than the maximum creep stress applied. 

A change in slope from 3 to 6 therefore would not be 

expected in this investigation. 

Values of n ranging from 5 to 8 on the same copper 

as used by Feltham have been reported by Pahutov et al(75) 

They obtained a stress exponent which was a function of 

both temperature and stress at temperatures from 4000  to 

800°C and stresses from 10 to 80 MN/m2. 	The ambiguity 

in these results may be due to the method of testing. 

They obtained their values of n from tests in which 

sudden changes of stress and temperature were made and 

it is possible that their creep rates were measured 

before stable conditions had been reached. 	It has 

already been pointed out that slow changes of strain 

rates during primary creep can be mistaken for secondary 

creep. 

A check on the previous analysis to obtain n and 

k was made by plotting log O' against log t for a constant 

strain of 2% (Fig 8.14) to give 

log cr = — log t + K 	 ...(8.4) 

where K is a constant depending on the particular creep 

strain and temperature. 

Straight lines of slope - 1/9 are obtained which 

confirms the values of k and n previously determined. 

The values of the temperature constant C were calculated 

from the experimental data of Figs 8.1 to 8.5 by using 

a least mean squares fit. The values of C obtained at 

the same temperature were then averaged to obtain the 



154. 

best value for each temperature. 	These are listed in 

Table 8.1. 

The predicted curves obtained from Eq 8.3 with the 

appropriate value of C, as stress exponent of 3 and a 

time exponent of 1/3 are shown as dotted lines in Figs 

8.6 to 8.10 and compared with the experimental results. 

In general a satisfactory fit is obtained. 

Considering creep as a thermally activated process 

as was explained in section 3.1 we can write 

C = A e-Q/RT 

where A is a frequency factor. 

Therefore 

log C . log A - 0.434Q  RT 

...(8.5) 

...(8.6) 

when the logarithms are to base 10 and R is the gas 

constant = 2 cal/Mole °K. 

The activation energy Q can be obtained from the 

slope of the log C against 1/T plot shown in Fig 8.15. 

The plot shows a change in slope at a temperature of 

about 450°C which is consistent with the change in 

temperature sensitivity of the tensile stress as indicated 

in Fig 6.6. 	Below 450°C the activation energy for 

creep is 6.2 k cal/Mole °K and above 450°C the activation 

energy is 13 k cal/Mole°K. 

Consequently Eq 8.5 can be written as 



155. 

200 <.'.T.<450°C 	C = Al e
-6300/RT 	

...(8.7) 

and 450 ,(T <;600° 	C 	A2  e-13000/RT 
	

...(8.8) 

where Al  = 1.2 x 10-5, and A2  = 1.65 x 10
-3 for the 

activation energy in cal/Mole °K, the temperature in 

oK, the stress in MN/m2 and the time in hours. 

Replacing C in Eq 8.3 by its value from Eq 8.5 

we get a creep deformation equation of the form 

E = AlOrn e-Q/RT tk ...(8.9) 

consistent with Eqs 3.11 and 3.30. 

Another check on the values of the activation energy 

for creep was made. 	By considering the logarithmic 

form of Eq (8.9) we get 

loge = log A + n log Cr+ k log t 	0RT434  Q ...(8.10) 

For a constant stress and a constant strain, we can 

write 

log t = B + 0 RT434  n 	 ...(8.11) 

where B is a constant. 

Such a graph is shown in Fig 8.16. 	The values of 

Q are the same as previously, showing a change with 

temperature from 6.2 k cal/Mole °K below 450°C to 

13 k cal/Mole °K above 450°C. 	This change with temperature 

could be mistaken as a change with stress because at 

lower temperatures higher stresses must be used to obtain 

measurable creep rates. 	Fig 8.16 applies to all the 

stresses tested and shows that Q only changes with 

temperature. 
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Eq 8.9 can be written in a form more consistent with 

Dorn parameter (Eq 3.23) by rewriting it as 

= Acrn (e-Q/RT t)k ...(8.12) 

 = Acr 9 k  

where 0 is the Dorn parameter. Replacing Q/k by Q1 

we have for temperatures below 450oC, Q1  = 18.6 k cal/Mole oK 

and above 450°C Q1 	39.3 k cal/Mole oK. 	Those values 

should be compared with the value for the activation 

energy of self diffusion Q = 44 k cal/Mole oK(159) 

Consequently, at temperatures above about 0.5 Tm  

1 
Q QSD. 	At T < 0.5 Tm, Ql<QSD.  

Similar estimations of activation energy for creep 

were made by Feltham and Sinclair
(106) for 99.999% purity 

copper. 	They obtained an apparent activation energy of 

24.15 k cal/Mole °K between 400 and 800°C which with 

n = 0.55 gives Q1  = 44 k cal/Mole°K the same as that for 

self diffusion. 	Orlava(157) quotes a value of 18.27 

k cal/Mole °K for copper in the same temperature region 

implying a value of k = 0.375. 	This value would be quite 

consistent with the present results. 

By rewriting the creep equation as Eq 8.12 it has 

been shown that the temperature dependence of primary as 

well as secondary creep can be expressed in terms of the 

activation energy of self-diffusion. 	Some low activation 

energies for creep quoted in the past could be because 

it was assumed that the secondary creep stage had been 
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reached when in fact it had not. The results presented 

here show that only very gradual changes in creep during 

primary can easily be mistaken for secondary creep. 

8.2 	Constant Stress Creep  

Method of Predicting Constant Stress Creep Strain  

from Constant Load Creep Curves  

For experimental convenience, creep data on engineering 

materials are most often obtained at a constant tensile 

load rather than constant stress. 	At constant load as 

creep proceeds, the actual or true stress continually 

increases because of the reducing cross-section of the 

specimen. 	Creep strain may therefore be expected to 

accumulate faster in a constant load test than in a 

constant stress test. 	Comparison between creep curves 

obtained at constant stress and constant load are shown 

in Figs 8.17 to 8.23. 	At low strains, they show almost 

identical behaviour but deviate with increasing creep 

strain. However it is not until tertiary creep that 

large differences between the constant load and constant 

stress plots are observed. 

Fig 8,19 shows that although the creep strain at 

which the tertiary stage starts is almost the same (13%) 

in both cases of loading, the time to reach this strain 

is quite different and failure at constant load occurs at 

10 hours, whereas it is extended to 50 hours for constant 

stress loading. 

Using an equation of state it is possible to derive 

the constant load data from the constant stress data or 

vice-versa. 
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Assuming constant volume. 	The true stress, cr-, 

at any strain is given by 

P 
tr. A ° ( +E) 	 o (1 +E) Ao 

...(8.13) 

where Po is the original load, A the instantaneous area, 

A0 the original area, and u-o the original stress. 

a) 	Prediction  based on the Time-Hardening Concept 

Clearly the temperature and stress dependence will 

be the same for constant load and constant stress testing. 

The time dependence will be different. 

Let the constant true stress law be given by 

E 	ccr n tin 	 ...(8.14) 

where m is the true exponent for the constant true stress 

condition. 	It will not be equal to k, but the use of 

Eq (8.14) is justified by the straight lines obtained at 

constant stress in Figs 8.20 to 8.22. 	The slopes of 

these lines are shown in table 8.5. 	They are approximately 

constant at 0.3. 

According to the time-hardening law the creep data 

are given by 

5 = c crn  m  tm-1 	 ...(8.15) 

For a constant load test, replace u- by its value in 

Eq (8.13) 

n 
C A ° • (1 +5 CL)n  m 	...(8.16) CL 	0 

where 5CL and 5CL are the constant load creep rate and 
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STRESS 

MN/m2 

TIME EXPONENT 

300°C 400 C 

constant 
load 

constant 
stress 

constant 
load 

constant 
stress 

84.83 0.345 0.3 0.365 0.3 

42.66 0.275 - 0.29 0.29 

TABLE 8.5 Value of time exponent m from constant 
load tests. 

creep strain respectively. 	Integrating Eq (8.16) and 

using the condition EcL.. 0 at t = 0, we get 
p n 

1 

(1 41ECL)n-11= C (t) tm  

r - n - 1 L
l 	1  

For constant true stress at the same initial load, 

...(8.17) 

Po, we can write 

p n 

Ecs c  X2') 0 
tm ...(3.18) 

where ECS  is the creep strain that would be observed in 

a constant stress test. 	Therefore, substituting in Eq 

(8.17) we obtain 

1  
ECS - 1 - n 	- (1 -FECL)n-li 

...(8.19) 

for the relation between the constant load strain and 

the constant stress strain. 	Note that it depends only 

n and not on k or m. 

The logarithmic plot of Eq 8.19 for n = 3 is shown 

in Fig 8.23. 	The relation can be represented by a 
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straight line up to about 10% strain. 	The equation of 

the straight line is 

ECS = 0.7  (ECL)0.917 	 ...(8.20) 

Consequently the constant load creep equation Eq (8.3) 

becomes modified at constant stress to 

11/3)"917  ACS = 0.7 CU—  (t ...(8.21) 

indicating that m in Eq (8.14) should equal 0.3 

b) 	Prediction based on the Strain-Hardening Concept 

Using the strain-hardening concept, the creep strain 

rate at constant load is given by 

n/m
J. I 

8CL - clim  m(A2) 	(1 + CL
)n/m 

E CL
m 

0 
...(8.22) 

This equation can only be integrated for specific 

values of n and m. Despite the fact that mt k, the 

experimental data (table 8.5) show the value of m to be 

close to k (= 1/3). To obtain a solution,it will be assumed to 

be equal to k. Using a value of m = 1/3 and n = 3 we get 

31E2%A 
P 9  

CL (1 +47)9 JCL - 	 I t'" 	constant ...(3.23) o , 

By expanding the above series and integrating we 

obtain 

ECL (1 - 	E 	2 - 165 EL 	14r;95 	...)1/3 
4 CL 27 	2 	CL 

3 

	

c r _2. 	t1/3 

	

Ao 	
'CS ...(8.24) 

A logarithmic plot of this relationship, Eq (8.24), 
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is shown in Fig (8.23). 	As for the time-hardening 

description, it can again be approximated to a straight 

line to about 8% strain. The equation of the straight 

line is 

ECS = 0.44 (ECL)0.8 
	 ...(8.25) 

giving a constant true stress equation 

ECS = 0.44 C 0-3 t0.27 
	

...(8.26) 

Some error was introduced in developing this equation 

since m was chosen to be 1/3 instead of 0.27. 	However, 

this error is small and will not appreciably alter the 

reasoning. 

The predicted results using the time-hardening (TH) 

and strain-hardening laws (SH) are compared with the 

experimental data in Figs 8.17 to 8.22. 	The closest 

agreement is obtained with the TH law. 	In general the 

strain hardening concept predicts lower creep strain than 

measured. 	During the later stages of creep, the TH law 

predicts higher creep strains than measured. 	This occurs 

because of the increasing creep strain rate in the tertiary 

stage of the constant load tests while the constant stress 

curves are still in the secondary stage. 

The time exponent of 0.3 obtained from the constant 

stress tests (table 8.5) is also in agreement with the 

time-hardening prediction. 
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8.3 Analysis of Constant Stress Torsion Results  

The shear stresses chosen for testing were 1/f3 of 

the tensile stresses for comparison with the Von Mises 

criterion. 

The experimental data are given in Figs (8.25) to 

(8.34). 	They show a similar trend to the constant true 

stress tensile data. Only primary and secondary creep 

were observed because the tests were stopped before the 

tertiary stage to avoid buckling. 	It was found that 

some of the tests could be taken to 11% strain before showing 

signs of buckling, although it was established in Appendix 

(3) that buckling could be expected at 8% strain. 

Like the tensile creep data the results can satisfac-

torily be represented by a straight line on log-log plots 

suggesting a time dependence of the form 

E = a tk 	 ...(8.1) 

The values of the time exponent k are tabulated in 

MISES 
EQUIVALENT 
TENSILE 
STRESS 

MN/m2 

SHEAR 
STRESS 

MN/m2 

TIME EXPONENT 

200°C 300°C 400°C 

42.66/P 24.61 0.27 0.28 0.28 

72.86/5 41.97 0.31 0.31  - 

TABLE 8.6 List of Values of Time Exponent 
from Torsion Tests 
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Table 8.6. They can be represented by a constant value 

of 0.3. 	Since no change in shear stress occurs during 

a constant torque test, the value of k is expected to be 

the same as that obtained from constant true stress tests, 

i.e., it would be expected to be equal to m iR Eq (8.14). 

Although the value of the exponent changes slightly with 

stress, it is almost independent of temperature within 

the tested range 200 - 400°C and can be satisfactorily 

represented by a constant value of 0.3 in agreement with 

constant true stress data. 

The temperature dependence was obtained in the same 

way as for the tension data (Fig 8.24). 	The value of 

the activation energy obtained is 6.2 k cal/Mole °K. 

which is consistent with the value for the tensile tests 

in the same temperature range of 200 - 400°C. 

The final shear creep equation can be expressed as 

6200 

y= 1.35 x /0-4 e 	RT j, 3 t0.3 	...(8.27) 

where y is shear strain when 7/ is in MN/m2, T in °K and 

t in hours. 

According to the Von Mises criterion, the deform-

ation equation relating shear creep strain to shear stress 

and time should be from eq 8.14. 

Y = 3 C (f3 )n-1 	n 	 ...(8.28 ) 

Comparing with the tensile creep strain relation we get 
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y = fiE 	and N --ffltr 
	

...(8.29) 
i J  

On the other hand, the Tresca criterion leads to 

the following relationship 

y 	
3 C 2n-1 yn tra 	 ...(8.30) 

In this case comparison with the tensile creep 

relatiOn gives 

y = 3 E 	and 	 ...(8.31) 

The torsion curves predicted from Eqs (8.28) and 

(8.30) are shown as dotted lines in Figs (8.25) to (8.34). 

For the Von Mises comparison the constant load tensile 

creep strains at the appropriate tensile stress were 

corrected first to constant stress values, assuming 

validity of the time-hardening law, and then multiplied 

by P. 	For the Tresca criterion Eq (8.30) was used and 

C was obtained from Eq (8.7). 

The curves show that the Von Mises criterion gives 

better predictions than the Tresca criterion in agreement 

with published data  

Although the Von Mises criterion gives adequate 

predictions, the experimental torsion results always lie 

below the calculated curves indicating less creep then 

expected. 	This can be attributed to the smaller grain 

size, higher Vickers number and proof stress of the tube 

material compared to the bar stock (Fig 6.5). 
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8.4 	Cyclic Creep  

All the cyclic creep results are plotted in Figs 

8.35 to 8.74 of Appendix 4. 	The cyclic tensile data 

are shown in Figs 8.38 to 8.61 and the torsion cyclic 

data in Figs 8.63 to 8.74. 

8.4.1 	Cyclic Tensile Creep Results  

All the cyclic tensile creep tests were carried 

out in the large creep machines using the large test 

specimens. 

The cyclic tensile load tests were performed at an 

initial cyclic stress varying from 24.81 and 42.66 

MN/m2, referred to as the low stress amplitude (LSA), 

and from 42.66 to 72.86 MN/m2, referred to as the high 

stress amplitude (HSA) at temperatures of 200, 300, 400 

and 500°C. 	These conditions were chosen for direct 

comparison with the constant load tests. 	Two stress 

amplitudes and mean stresses were used to vary the ratio 

of creep to fatigue damage each cycle. An illustration 

of typical strain-time records for the high and low stress 

amplitude are shown in Fig 8.35. 	The figure shows an 

example of when creep strain occurred during the minimum 

load period (Fig 8.35-a) and when creep recovery strain 

occurred during the minimum load period (Fig 8.35-b). 

Creep during the minimum load period was always observed 

for the first 2 to 4 cycles of all tests; it was also 

observed throughout the test run at the LSA and 400°C. 

Recovery was observed for all the other testing conditions. 

Fig 8.36 shows typical examples of strain cycles showing 
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creep or creep recovery during the minimum load period 

and Fig 8.37 shows actual graphical plots of the accumulated 

creep strain for the LSA at 400°C (Fig 8.37-a) and the 

accumulated creep strain at the high stress with recovery 

at low stress for the case of the HSA at 200°C (Fig 8.37-b). 

In all instances after reloading to the maximum stress 

an initial period of rapid primary creep strain was 

observed even after many applications of the stress. 

Recovery was only observed at the low stress for short 

times after reduction of the stress, it had always ceased 

before reapplication of the maximum stress. 	If creep 

occurred at the low stress the creep rate gradually 

increased (Fig 8.35-a). 	This behaviour will be shown 

later to be consistent with an interpretation of the 

data in terms of the internal stress concept  

(section 3.2.5). 

On Fig 8.38 to 8.44 are shown the following creep 

data. 

Curve (a) represents the experimental cyclic creep 

data. 	In most instances the strain at the end of each 

half cycle only has been plotted. 

Curve (b); the creep curve of the static tensile 

test at the maximum stress. 

Curve (c); the creep curve of the static tensile 

tests at the minimum stress. 

Curve (d); the predicted creep curve based on the 

strain hardening concept using Eq (8.3). 

Curve (e); the predicted creep curve based on the 

time hardening concept using Eq (4.50). 
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CYCLIC 
STRESS 

TIME EXPONENT, k 

MN/m2 200°C 300°C 400°C 500°C 

24.81 - 4'1.66 0.29 0.30 0.3 0.365 

42.66 - 72.86 0.29 0.31 0.34 

TABLE 8.7 VALUES OF TIME EXPONENT, k, 
OBTAINED FROM CYCLIC LOADING 

The same curves are replotted on log-log scales in .  

Figs 8.45 to 8.51. 	In Fig 8.52 are shown the cyclic 

curves at the LSA for all the temperatures and Fig 8.53 

compares the LSA and HSA cyclic creep curves at 300°C. 

Like the constant load creep curves, apparent primary 

and secondary creep can be seen on the linear plots Figs 

8.38 to 8.44. 	However, the straight line relation shown 

on the log-log plots (Figs 8.45 to 8.53) indicates that 

the cyclic data can be represented by the primary creep 

law (Eq 3.4) with a time exponent 0.29< k <0.365 as listed 

in table 8.7 suggesting that true secondary creep is again 

not reached. The value of k is within the range obtained 

from the static axial creep tests (table 8.1). 	Like the 

static case, the value of k increases with increase in 

temperature and mean stress (Figs 8.52 and 8.53). 	To 

a good aproximation, it can be regarded as constant and 

equal to a value of 1/3 as before. 

All the experimental cyclic creep curves lie below 

the maximum stress static curve except for the LSA, 500°C 

curve. 	In this case the accumulated strain is initially 
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less than the maximum stress static curve but eventually 

exceeds it after a period of about seven hours (Figs 8.41 

and 8.48). 

8.4.2 Application of Strain-Hardening and Time-Hardening  

Concepts to Axial Cyclic Creep Results  

In the analysis given in section 4.1.2, it was shown 

how the equivalent stress based on the strain-hardening 

concept, 117-ES' could be calculated for any cycle from 

Eq (4.30). 	Substituting in this equation values of 

k = 1/3 and n = 3 for the investigated copper and 2c* = 5 sec 

and a holding time of 295 sec for the load cycle used, 

the values of 0-ES  for the LSA and HSA were found to be 

39.43 and 67.39 MN/m2 respectively. 	The strain hardening 

prediction of the accumulated creep strain for the cyclic 

loading then becomes 

E = c CrES  3  t1/3 
	

...(8.32) 

where C is evaluated at the appropriate temperature. 

Substituting 39.43 and 67.39 MN/m2  for 0-ES  at the different 

temperatures gives the dotted line, curve (d), in Figs 

8.38 to 8.51. A feature of the strain hardening law 

is that it predicts the same strain at the end of each 

cycle irrespective of whether or not the minimum stress 

is applied first. 

The time-hardening law does not give an equivalent 

stress and the creep strain after each cycle was calculated 

according to Eq (4.50) using a computer programme. 	For 

this case the predicted cyclic creep strain depends on 
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the sequence of loading. 	It is clearly seen. from Fig 

8.54 that if the maximum stress is applied first the 

predicted strain after each complete cycle is higher than 

if the minimum load is applied first. 

In the experiments, the minimum load was always 

applied first and the corresponding prediction using the 

time-hardening concept predicts less strain at the end 

of each cycle than the strain-hardening prediction as 

indicated in Figs 8.38 to 8.51 (Curve e). 

A comparison of the experimental and calculated 

curves shows that, except for the test at the LSA at 

500°C and the HSA at 400°C, and for the first few cycles 

of the other tests, the experimental data always lie 

between the strain hardening and time hardening predictions. 

The logarithmic plots Fig 8.45 to 8.51 indicate that the 

slope of the experimental line is generally less than the 

predicted line. Usually the strain-hardening law gives 

closest agreement with the data although at longer times 

there is a tendency for the experimental results to 

approach the time-hardening prediction. 

To investigate the cause of the discrepencies in 

the predictions of the equations of state, a detailed 

investigation was made of the strains accumulated in 

each half cycle. 	Figs 8.55 to 8.61 show the strains 

measured at the high and low stresses during the first 

few cycles of each test compared with those expected 

from the equations of state. Neither of the equations 

of state are able to predict the recovery strains observed 
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at the low stresses. 	Both the strain-hardening and time- 

hardening laws predict small strains at these low stresses. 

The strain-hardening law would appear to describe the 

strain at the high stress more closely than the time-

hardening law. After several cycles the strain accumulates 

at the higher stress at a slower rate than anticipated 

except at 500°C. 

When utilizing equations of state, it is assumed 

that hardening and softening processes take place in 

cyclic tests in the same manner as they do in constant 

stress tests; no allowance is made for an-elastic recovery 

or changes to the rate of work-hardening and softening 

that can occur in fatigue(162-165) due to cyclic loading. 

If accurate fitting of cyclic data is to be obtained some 

method of incorporating these effects into equations of 

state is needed. A possible way of doing this is to 

introduce the internal stress concept (section 3.2.5) 

which postulates that the creep strain rate depends on 

the effective stress and not the applied stress such that 

m (cr—cri)n 	 ...(8.33) 

It is proposed here that this expression can be used 

as an equation of state so that during a variable load 

test the strain rate at any instant is given by 

E = f(cr,01-1, T) 	 ...(8.34) 

where U- and T are the stress and temperature and cr is 

the instantaneous value of the internal stress. Unlike 

the other equations of state this equation is capable of 
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predicting accelerated creep during cycling loading if 

0.1 develops less rapidly than expected. 	It will predict 

the reverse if the internal stress builds up more rapidly. 

It will also predict creep recovery if the applied stress 

drops to below the internal stress in contrast to the 

strain hardening and time hardening laws. A major 

problem is to determine how the internal stress changes 

throughout the loading history. 

8.4.3 	Internal Stress Evaluations 

In order to assess quantitatively the validity of 

Eq 8.33 an attempt was made to measure the development 

of 01 throughout creep. 	However, it was not possible 

to obtain values during the early part of primary creep 

stage because of the lengthy procedure of the stress 

decrementtestandalsobecauseMvalues changed 

rapidly during this period. 	It was only possible to 

establish that ul increased during this stage. 	The 

internal stresses measured apply mainly to the apparent 

secondary stage where the creep rate was nearly constant. 

The values of the internal stress were determined 

at different applied stress, or, and at temperatures of 

200 and 400°C. The relationship obtained between ul 

and 0- is shown in Fig 8.62. 	It is apparent that the 

value of Cr is proportional to U'at both temperatures 

over most of the range of stress although there is some 

indication of j reaching a plateau for applied stresses 

greater than 72 MN /m2  at 400°C and 85 MN/m 2  at 200°C. 

A similar trend has been observed by Harrison(115) 
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The values of ul also show a dependence on temperature, 

the higher Ul being observed at the lower temperature. 

The temperature dependence of 01 is seen to be similar 

to the variation of the modulus with temperature. From 

the tensile results (Fig 6.5) at 200 and 400°C the ratio 

between the elastic modulus at 200°C to that at 400°C 

is about 1.4 compared to a ratio of 1.2 between the slopes 

of the internal stress lines at 200 and 400°C. 

In general it will be expected that 

f(E   1  t, T) 

This expression can be expressed as 

6 
cr. 	(T. + I h dE - 1rt  r dt 

...(8.34) 

where 	is the internal stress of the undeformed Cra 

material, the next term represents the increase of internal 

stress due to strain hardening and the last term the 

reduction in internal stress due to recovery processes. 

The terms h and r are as defined in Eqs 3.55 and 3.56. 

It will be anticipated that the strain-hardening 

component will dominate at low temperatures. At 

sufficiently high temperatures a balance between the hardening 

and softening processes leading to steady state creep will 

be achieved. 	If the hardening component dominates then 

Eq 8.34 will be analogous to the strain-hardening law; 

if the recovery term dominates it will be analogous to 

the time-hardening law. 

For the copper tested, it is clear from Fig 8.62 
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that 010 	O. 	Hence on first loading to U-0, 0-1 will 

increase from zero to its value at the end of the first 

half cycle, lull, and creep rate will decrease according 

to Eq 8.35. 	When the stress is increased to(7.
Max 7 

there will be an increase in effective stress to (101-max  - 0-11) 

and a resulting increase in strain rate. 	Further strain 

hardening will cause cri  to increase to 0-i2  at the end 

of the second-half cycle. On reducing the stress to 

0; again forwards creep will be observed if cro>cri2  and 

creep recovery if 0-i2>Cro• 	If the internal stress then 

relaxes at the low stress with time then in the former 

case accelerating creep will be observed and in the latter 

case creep recovery will cease when 0'1 has dropped to iro. 

An estimate of anticipated values of 	can be 

obtained from Fig 8.62. 	At 200°C for O-. 42.66 MN/m2, 

builds up to 30.6 MN/m2 during secondary creep which 

is higher than the minimum stress of the LSA cycle 

(22.81 MN/m2), therefore creep recovery will be expected 

as is observed in Figs 8.515 and 8.56. 	Similarly for the 

HSA with a maximum 	stress of 72.86 MN/m2, cri  will 

reach 55.5 MN/m2 which is greater than the minimum stress 

of 42.66 MN/m2 and recovery will again be expected as 

shown in Figs 8.36 and 8.59. 	On the other hand, at 

400°C and the LSA, 	= 23.8 MN/m2  which is less than 

or (24.81 MN/m2) and a small amount of creep results as 

shown in Figs 8.36 and 8.57. 

The data for the LSA at 500°C are not so convincing. 

No measurements of ITi  were made at 500°C but it is unlikely 



174. 

to build up to a value in excess of 22 MN/m2, the value 

at 400°C. 	Consequently creep would be expected at the 

low stress in this test but there was little evidence 

of any. In fact some semblance of creep recovery was 

observed (Fig 8.36-b). 	However, the accelerated creep 

at the high stress in this test, Fig 8.48, would be 

consistent with Ul having relaxed at the low stress due 

to the more rapid recovery processes at 500°C. 

8.4.4 Cyclic Torsion Creep Results  

The cyclic tensile creep tests were repeated in 

cyclic torsion. 	The maximum and minimum shear stresses 

were calculated to be equivalent to those used in tension. 

They are listed in table 8.8. 	In addition some cyclic 

torsion tests were also run at zero mean stress. 

(a) Cyclic Torsion Superimposed on a Mean Stress  

The experimental cyclic torsion creep curves at 

LSA and HSA and temperatures of 200, 300 and 400°C are 

plotted in Figs 8.63 to 8.69. 	The time exponent, k, 

at each testing condition was evaluated and is listed 

in table 8.9. 	The values of k from the cyclic torsion 

tests are smaller than for the cyclic tensile tests 

indicating less rapid creep strain accumulation with time. 

This is to be expected because there is no increase in 

stress in a constant torque test as there is in a constant 

load test. Consequently, the time exponent would be 

expected to be related to m in Eq 8.20, i.e., m = 0.917 k 

0.3. The values listed in table 8.9 are in agreement 

with this figure. 
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'Cm Lite  Tmax To 

MN/M2 MN/m2 MN/m2 MN/m2 

19.46 -  10.29 24.61 14.32 

36.77 24.32 48.93 24.61 

0.00 24.32 + 12,16 - 12.16 

TABLE 8.8 VALUES OF CYCLIC TORSION 
STRESSES 

CYCLIC 
STRESS 

MN /m2 

TIME EXPONENT k 	- 

200°C 300°C 400°C 

14.32 to 24.61 
_ 

0.26 0.27 0.29 
. 

24.61 to 48.93 0.27 0.27 0.31 

+ 12.16 to - 12.16 0.21 - 0.29 

TABLE 8.9 	TIME EXPONENT, k ,OBTAINED 
FROM TORSION CYCLIC LOADING 

The equivalent shear stress based on the strain 

hardening concept was calculated using Eq 4.30 with a 

time exponent of 0.3, the values obtained for the LSA 

and HSA cycle are 22.96 MN/m2  and 39.26 MN/m2  respectively, 

Using Eq. 8.32 the predicted cyclic torsion curves were 

obtained and are shown in Figs 8.64 to 8.69. 

For the case of the time-hardening concept the 

accumulated creep strain was calculated in the same manner 

as for the cyclic axial tests using Eq 4.50. 	Those 

predictions are also shown on Figs 8.64 to 8.69. 
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A. further comparison was made. 	The cyclic torsion 

curves were obtained directly from the tensile cyclic 

data by multiplying the tensile creep strains by fT 

as shown in Eq 8.29 to obtain the shear creep strains 

in accordance with the von Mises criterion, and plotted 

in Figs 8.64 to 8.69. 

All the experimental cyclic torsion creep curves 

show less creep than predicted from tensile creep curves 

showing a higher creep resistance to cyclic torsion than 

to axial cycling. 	The effect is comparable to the 

difference between the static axial and torsion data. 

It can be attributed to the small difference in grain 

size between the tube and bar material. 	Similar trends 

for annealed copper and other materials have been observed 

by several i-:vestigators(166,167) 
	

Kikukawa et al(167) 

found for the annealed copper that their reversed torsion 

results were 1.5 times stronger than the corresponding 

uniaxial data. Benham(166)found a factor of 4 to 5 in 

his fatigue tests. 

The equation of state comparisons show reasonable 

agreement with the cyclic torsion data. As in the tensile 

case most of the experimental results lie between the 

time hardening and strain-hardening predictions. Again 

there is a tendency for better agreement to be obtained 

with the strain hardening law at short times and with the 

time-hardening law at long times. 

All the tests showed creep recovery during the 
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minimum load period which is not consistent with the 

equations of state but which can be predicted by the 

internal stress concept. 	Fig 8.62 gives for the LSA 

cycle an internal stress of 19 and 16 MN/m2 at 200 and 

400°C, respectively, which in both cases is higher thm 

the minimum stress (14.32 MN/m2) and creep recovery is 

expected as was observed. 	For the HSA cycle, pri  at 

200 and 400°C are respectively 37 and 30 MN/m2  which 

again are higher than the minimum stress (24.61 MN/m2) 

and creep recovery should again result. 

(b) Cyclic Torsion with Zero-Mean Stress  

To investigate the effect of mean stress, the cyclic 

torsion tests run at the high stress amplitude (24.32 MN/m2) 

and 200 and 400°C were repeated with zero mean stress. 

The value of the time exponent was evaluated from the 

slope of the log y vs log t plots, Figs 8.70 and 8.71 

and was found to be 0.21 and 0.29 respectively for the 

200 and 400°C tests (as indicted in table 8.9) in comparison 

with values of 0.26 and 0.31 for the corresponding tests 

with a mean stress. At 200°C therefore, the time 

exponent for the zero mean stress test is only a little 

less than those with a mean stress which in turn are about 

the same as the constant stress tests. At 400°C the time 

exponent is constant irrespective of the value of the mean 

stress. 	These observations will be explained later in 

terms of the internal stress concept. 

The predictions of the equations of state were 

calculated as in the previous section and are shown on the 
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figures. After the first few cycles, the time-hardening 

law predicts only very small additional creep strain per 

cycle, the creep strains during the positive and negative 

stress period being approximately the same. 

As explained in section 4.1.3 for a completely reversed 

stress cycle with U-0  = - Trmax 2 the strain-hardening law 

predicts an equivalent stress of zero since the positive 

creep strain is cancelled completely by an equal negative 

strain each half cycle due to the reversed 	

found that

ding. 	In 

general, this is not observed. 	Harrison 

the minimum creep rate in compression is about half that 

in tension and used this observation to explain his cyclic 

data. 	This explanation cannot be used for torsion cycling 

as clearly there cannot be any difference in strength 

between two samples cycled in clockwise and counter 

clockwise directions. 	It is possible to modify the 

strain-hardening law to predict strain accumulation in 

reversed stressing if the strain-hardening is assumed to 

be independent of the sign of the strain. A diagrammatic 

representation of this circumstance is shown in Fig 8.72. 

It is not consistent with the observation of a Bauschinger 

effect, but does predict strain accumulation. 

For completely reversed rectangular cycling 

(2m = 0) if we consider the reversed rectangular stress 

cycle shown in Fig 8.72, the strain after the first 

cycle,AEll will be given by 
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AZ 1  =CT  0-max  L 
k n 

C6-max [(21-1k 
	

L  I 

 
CT AmaxLk  (2 - 2k) .  ...(8.36) 

The creep strain accumulated during the second cycle, 

AC2' will be 

, ikl AE2 	C 	1.(t.  + L)k - t 	C CT" 	1(t.  + 2L)k  

	

max 1 	1 	max 1 

- 	+ L)k ] 	 ...(8.37) 

where t' is the time at which the second cycle starts 

1/k AE

o- n 

1 
- 	 

1 (C max 

In general for the ith  cycle 

C. 	
) ti 	
1/k 

 
C Crmax 

n 
ancIAE1  ...c crmax  [2(t! + 	- t:k  - (t: .. 21 )k i 1 

...(8.38) 

...(8.39) 

...(8.40) 

The total strain after ith cycle, C, is given by 

...(8.41) 

A computer programme was run with the appropriate 

value of C, k = 0.3, n = 3 and 2L = 1/6 hr which is 

to time of one cycle. The predicted results are plotted 

in Fig 8.70 and 8.71 and compared with the experimental 

results. 	In this case the experimental strain accumulates 
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less rapidly than predicted. 	This is because this 

modification of the strain-hardening theory neglects the 

softening due to reversed stressing. 	The results there- 

fore show that to make accurate predictions, the 

Bauschinger effect must be taken into account. This 

can be done with the aid of the internal stress concept. 

Fig 8.73 shows the creep strain accumulated during 

the first few cycles at HSA and 400°C. 	In the first 

half cycle due to monotomic strain hardening the internal 

stress builds up to a certain value rril ,consistent with 

the strain rate at the end of the half cycle. When the 

reverse torque is applied during the second half of the 

cycle the creep rate will be due initially to the sum 

of - max ti1) leading to enhanced creep in the reverse 

direction as indicated by Fig 8.73. 	By the end of this 

half cycle the value of Zi  will have changed sign and 

become 'i2. 	The next half cycle the creep rate will 

initially be due to - (t +Z. 12 
 ) which will give more max  

creep than during the first half cycle consistent with 

the experimental observations (fig 8.73). 	Figs 8.70 and 

8.71 show the creep strain at points A on Fig 8.73 and 

Fig 8.74 shows the shear creep strain at points B the end 

of a complete cycle. 	The strains are always positive 

at points A. 	They are initially negative at points B 

but gradually become positive as strain accumulates in 

one direction suggesting that numerically 111  is always 

greater than Vi2, reflecting a Bauschinger effect. 
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8.5 	Fracture Ductility  

It is well known(34-36) that under creep conditions 

the fracture changes with temperature from transcrytalline 

to intercrystalline at high temperature. Usually this 

change is accompanied by a reduction of ductility. 

The temperature at which a transition from one kind of 

fracture to the other occurs is not precisely fixed, it 

may vary with stress, frequency of cycling and in some 

cases with the environment. 	For example high purity 

aluminium shows only transgranular fracture up to the 

melting point (Tm)(168) Furthermore, in those cases 

where a decrease in ductility does occur, very often 

full ductility is again regained at higher temperature
(169) 

where grain boundary migration becomes more prominent. 

The appearance of a neck and high ductility during 

cycling creep has been observed by many investigators
(41-43) 

for various materials and termed the 'necked-out' type of 

fracture. 

Benham(164) reported for OFHC copper two mechanisms 

of deformation during load cycling at room temperature. 

In the higher load ranges a behaviour termed 'cyclic 

creep' led to a necked-out type of fracture similar to 

that obtained from a monotomic tensile test (with a 

ductility of about 90%) which was succeeded at lower 

loads and longer endurances by a conventional fatigue 

fracture with little ductility. 	These two mechanisms 

are competing in the low-endurance region. 	Fatigue is 

trying to establish and propagate a crack but is being 

nullified by the gross plastic extension of cyclic creep. 
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When the cyclic creep reaches a sufficiently low rate at 

smaller loads the fatigue mechanism is successful in 

developing and causing fracture. 	Evidence of this has 

been given by Benham(164) for cycling at room temperature. 

The same mechanism can be extended to higher temperatures. 

Figs 8.75 and 8.76 illustrated some examples of 

fractures with and without necking obtained from constant 

load and constant stress tests. 	It can be seen that 

for the high stress and/or temperature a pronounced neck is 

observed and for the corresponding conditions, the constant 

load test gives higher ductility than the constant stress 

test (see table 8.10 and Fig 8.78). 	Pronounced necking 

was also obtained from the cyclic tests as shown in Fig 8.77. 

The cyclic ductilies given in table 8.10 show that 

at high temperature and/or mean stress where creep 

predominates, the large instantaneous strain adds to the 

creep strain to result into a necked out zone. 	For low 

temperature and/or mean stress where fatigue effects 

are more dominating the fracture ductility is lower. 

The tests at 200 and 300°C and LSA were stopped after -

about 2000 hours without showing considerable ductility. 

Fig 8.78 shows the variation of creep ductility and tensile 

ductility with temperatures. At all temperatures the 

tensile ductility is higher than the creep ductility. 

8.6 

	

	Prediction Using Strain range Partitioning Method  

The increase or decrease of creep resistance due 

to cycling will depend on the shape of the hysteresis 

loop. 	In Figs 8.79 and 8.80 are drawn the different 

stabilized hysteresis loops obtained from the cyclic creep 



LOADING 
CONDITION 

TEMPERATURE STRESS 

MN/m2 

REDUCTION 
OF AREA 
(PERCENT) 

REMARKS 

oK T/Tm 

CONSTANT 573.15 0.422 84.83 75.1 NECK  
LOAD 

673.15 0.495 42.66 7.4 NO NECK 

/2.86 67.7 NECK 

84.83 70.4 NECK 

773.15 0.569 24.81 11.1 NO NECK 

42.66 53.7 NECK 

873.15 0.642 24.81 23.1 NO NECK 

42.66 78.2 NECK 

CONSTANT 573.15 0.422 84.83 72.2 NECK 
STRESS 

673.15 0.495 42.66 29.4 NO NECK 

84.83 79.2 DOUBLE-NECK 

CYCLIC 673.15 0.495 24.81-42.66 30.6 DOUBLE-NECK - TEST STOPPED 
LOAD BEFORE FRACTURE 

42.66-72.86 38.5 DOUBLE-NECK - TEST STOPPED 
BEFORE FRACTURE 

773.15  0.569 24.81-42.66 85.7 NECK 

TABLE 8.10 DUCTILITIES FOR DIFFERENT TENSILE CREEP CONDITIONS 
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tests. 	In all the cases the loops are open and show 

ratchetting. 	Creep recovery at the low stress increases 

the hysteresis loop width and reduces the amount of 

ratchetting. 	If there is no creep recovery, the hysteresis 

loop width is zero. 

Strain range partitioning approach proposed by Manson 

is based on the concept that the creep and plastic modes 

of deformation may exist separately or concurrently and 

that their interaction can influence the fracture behaviour 

of the material to a considerable degree. An important 

feature of the method relates to the manner in which a 

tensile component of strain is balanced by a compressive 

component to close the hysteresis loop during completely 

reversed straining. 

Manson(50-53) states that because of the different 

deformation systems it becomes possible for an internal 

ratchet to develop when a ACcp  or ACpc  component is 

present. 	For the AC 	cycle tensile creep strain continues cp 

to accumulate each half cycle and compressive plastic 

strain accumulates within the other half. Although 

externally there may be no net strain accumulation after 

each cycle tensile creep strain will accumulate in one 

half cycle and compressive strain in the other. A repetitive 

ACpc cycles simulates a conventional tensile test and will 

accumulate tensile plastic strain (see section 2.5). 	The 

material therefore ratchets in creep or plastically each 

half cycle until the material reaches its creep ductility 

or its plasticity ductility when failure will occur. 
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A similar argument might be applied to the ratchet 

observed in Figs 8.79 and 8.80. 	The creep strain 

occurring during the maximum load period is partially 

cancelled out by the creep recovery of the minimum load, 

period reducing the amount of ratchetting. The extent 

of ratchetting is increased when creep occurs at the low 

stress Fig 8.79-c and as temperature is increased (compare 

Fig 8.79-a and 8.79-b). 	In Fig 8.80 the effect of mean 

stress is clearly seen. At zero mean stress the width of 

the hysteresis loop is greater each cycle than the ratchet. 

With a mean stress, the ratchet is much greater than the 

loop width. 

The strain range partitioning approach is not really 

suitable for the present application. 	It is more appro- 

priate to strain controlled cycling or to the case where 

the hysteresis loop width almost closes. 	Some method of 

including the damage caused by ratchetting is required 

before it can be used to explain the present results. 

8.7 	General Discussion  

Damage during creep may be considered to be due to the 

interaction of several processes. 	Some have a hardening 

effect on the creep behaviour such as 

(a) Monotomic work-hardening as strain accumulates 

due to creep. 

(b) Cyclic hardening occurring as a result of the 

cyclic loading. 	With this type of hardening usually a 

saturation condition is reached. 

(c) Strain ageing which is more appropriate to some 

alloys. 
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Other processes are considered to lead to a softening 

behaviour, namely: 

(a) Recovery processes which are usually diffusion 

controlled and hence primarily time and temperature dependent. 

(b) Cyclic softening occurring due to the cyclic 

loading. Again often a saturation condition is reached. 

The degree of interaction of the various processes 

will depend upon the testing condition. 	Before discussing 

this, let us first explain briefly the effect of each process 

separately 

The cyclic hardening and cyclic softening have been 

studied by numerous investigators and reviewed by Ham(162) 

It is commonly observed that initially soft materials 

(0- /07>1.4) show cyclic hardening, while initially hard u y 

materials (u-12431,4(1.2) soften. 	In either case the material 

'shakes down' into a stabilized hysteresis loop or 

saturation condition. 	It has been shown for copper(170) 

that the dislocation cell size at saturation is a function 

of the stress amplitude and temperature only, irrespective 

of whether the material was initially cold-worked fatigued 

or annealed. 	The metal either softens (with an increase 

of cell size) or hardens (with a decrease of cell size) 

until a unique saturation cell size is reached. The 

saturation stress increases with increasing strain range 

leading to a smaller cell size i.e. to higher strain- 

hardening. 	Ham and Broom(163) reported that in annealed 

copper polycrystals, the yield strength could increase up 

to 40 percent above the applied stress amplitude. 	Benham(164) 
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compared the effect of load cycling and strain cycling 

(at different mean stresses) on OFHC copper and found that 

the material develops a steady cyclic condition which is 

independent of its pre-test condition (hardness) and the 

type of cycling (load, strain, mean value). 	In the case 

of load cycling, the annealed material hardens and the strain 

range per cycle decreases, while the cold-worked material 

softens, i.e., the strain range per cycle increases. 

Coffin(165) studied in detail the effect of mean strain. 

For this case the hardening will be due to the additive 

effect of monotomic and cyclic strain-hardening or softening. 

After saturation is reached, there is a balance between 

the monotomic hardening and cyclic softening. 	This argument 

can explain the cyclic torsion results obtained with and 

without a mean stress. 	Eventually an almost steady state 

is reached after balance has been achieved and strain 

continues to accumulate each cycle at an approximately 

constant rate. 

Recovery occurs only in plastically strained materials 

and always causes weakening. 	It is customary to attribute 

to recovery any strength loss which occurs at temperature 

significantly below the recrystallization temperature 

(750°C for copper). 	Since the strength which is lost 

because of recovery is really a loss of strain-hardening, 

we could alternatively regard recovery as a reduction of 

the strain available to cause strain-hardening. 	This 

loss of strain-hardening will be greater when the recovery 

is by diffusion, i.e., at high temperature as shown by the 

effect of different annealing temperatures on the stress 
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Fig. 	Interrupted creep test on quenched and tempered Cr-Mo-V steel at 
1000°F and 35,000 psi. 

Fig. 55.B2._ Stress-strain curve of copper at room temperature interrupted by various 
heat treatments at no load. 
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strain curve of prestrained copper(9) (Fig 8.81). 	If 

the temperature is sufficiently high recovery rates may 

be such that there is no net strengthening. Fig 8.82  

shows(171) that the creep curve for a Cr. Mo. V steel at 

55000 psi (377 MN/m2) is nearly a straight line after a 

short initially curved portion. 	This apparent lack of 

strain-hardening can be shown to be due to recovery by 

removing the load for a period of time when creep recovery 

strain occurs while the interval drops, and then observing 

the creep after reapplying the load. 	The figue shows 

that the creep rate is higher after the recovery treatment 

than before. 	Hence upon removal of the load while main- 

taining the temperature in a cycling creep test, some 

relief of the strain-hardening may take place so that when 

the load is reapplied the specimen starts to creep at a 

more rapid rate than at the instant the load was removed. 

This type of recovery which relaxes the internal stress 

leads to a softening effect as observed for the cyclic 

tests exhibiting creep recovery strain (Figs 8.48 and 8.58) 

in this investigation. 

On the other hand, at temperatures below 0.45 Tm, 

the creep recovery during the minimum load period leads 

to a lower creep accumulation during the maximum load 

period. 	In this case, the anelastic contraction during 

the minimum load period cancels out some of the creep 

occurring during the maximum load period and results in 

less creep and an apparent strengthening behaviour. 

The transition from strengthening to softening has 

(172) been related to relaxation peaks (Tp) 	Internal 
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friction (measured by the area of the hysteresis loop) 

has been studied to clarify relaxation peaks associated 

with various anelastic processes. 	Internal friction is 

generally found to be very dependent on frequency and 

temperature. 	At high frequencies of cycling, or at low 

temperatures, the shear stress across grain boundaries 

can relax only slightly during a strain cycle and the 

material remains reasonably elastic. 	Thus although the 

shear stress may be large, the anelastic shear strain is 

small and the hysteresis loop is narrow. 	Thus internal 

friction is small as shown in case (a) of Fig 8.83(a). 

By contrast, at very low frequency or at high temperatures, 

stress relaxation is very rapid under cyclic straining and 

the shear stress is small as a result of the relaxation 

process. 	Here again the area within the loop is small 

as shown by curve (c). 	At some intermediate conditions, 

however, the stress relaxation is optimum for producing 

the maximum area within the hysteresis loop as shown by 

case (b). 	Experimental data on polycrystalline aluminium 

which confirm this qualitative analysis and more quanitatative 

work(172) are shown in Fig 8.83-b. 

The relaxation peak (Tp) for 99.999% Copper(156) at 

a constant frequency (1.14 cps) is shown in Fig 8.84. 

London et al(173) obtained for 99.98% copper at lcps a 

T = 0.42 Tm  (456°C) which is in close agreement with the 

temperature at which a change in activation energy is obtained 

in the present investigation. 	The temperature dependence 

of T suggests that it results from grain boundary-diffusion
(174) 
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Therefore the transition from strengthening to softening 

in the present investigation can be attributed to a change 

from cross slip to climb (see section 3.2.3) as the 

controlling process. 	In the case of cross-slip of a pure 

screw dislocation to another glide plane, the back stress 

of the source cannot be completely reversed therefore some 

work-hardening will take place. 	On the other hand, the 

aspect of deformation that is of special relevance to 

fatigue is the degree of reversibility. 

It is known(175) that hysteresis loops for certain 

metals at elevated temperature indicated a strong 

Bauschinger effect, also that specimens unloaded after 

initial prestrain will exhibit backwards creep in the 

direction opposite to the prestrain. 	This is evidence 

that the internal stress that contributes to the strain 

hardening during the initial prestrain causes the reversed 

motion of dislocations upon unloading and the low yield 

stress on reversing the direction of stress. 

When climb dominates, the dislocations can be annihilated 

or at least rearranged in such a way that they do not 

contribute to the work-hardening. Also the lack of strong 

barriers to slip reduces the monotomic strain-hardening 

and the Bauschinger effect which leads to a general softening. 

The strain hardening and time-hardening concepts 

developed to treat the cyclic loading conditions neglect 

to a great extent many of the mechanical and metallurgical 

complications just discussed. 	They assume that cycle 

behaviour can be predicted from the corresponding behaviour 

under steady conditions (see section 3.3). 	They cannot 
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account for cyclic work-hardening or softening. 	If 

these two affects are small or approximately cancel, the 

cyclic creep behaviour may then apparently obey a mechanical 

equation of state as was nearly the case with some of the 

present tests (Figs 8.45 - 8.47, 8-49 and 8.50). 	In 

cases where the accelerations due to fatigue adds to the 

strain-hardening lost due to recovery (T>0.45 Tm), the 

mechanical equations of state will seriously underestimated 

strains (Figs 8.48 and 8.51). 

A modification to the equations of state to take into 

account the above hardening and softening effects is 

possible using the internal stress concept. A new equation 

of state is proposed such that strain rate is governed by 

the effective stress, i.e, C a 	• 	The values of 

IT: will depend upon the state of the material and will 

control the creep rate. 
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CHAPTER 9  

CONCLUSIONS  

Basic fatigue and creep theories for describing 

material behaviour under cycling loading have been 

reviewed. 	The well known Manson(7' 29 7  30 50-53) and 

Coffin(6.15'
24) fatigue theories successful at low temp-

eratures were shown to be inadequate at elevated temper-

atures where frequency, strain rate, hold time, environ-

mental and other metallurgical factors become important. 

Similarly the time-hardening, life fraction and strain-

hardening mechanical equations of state variously proposed 

to describe cyclic creep deformation were also shown to 

suffer drawbacks particularly when applied to complex 

alloys at temperatures high enough to cause structural 

instability. 	To minimise metallurgical complications, 

this investigation was conducted on 99.85% pure copper. 

Constant load, constant true stress and cyclic load tests 

were performed at temperatures from 200 to 600°C. 

A torsion creep machine was designed and built to 

enable constant torque and reversed stress cycling tests 

to be carried out to more closely represent the type of 

stress cycle imposed during thermal fatigue. A specimen 

geometry was selected which enabled shear strain of greater 

than 10% to be achieved in thin walled tubes before the 

onset of buckling. 

The experimental constant load tensile creep data 

could be represented by the following primary creep 

equation. 
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AO., 	e  kRT 	kt 	 ...(8.12) 

where A is a constant,n = 3, 0.23 <k <0.365. 	Within 

acceptable accuracy k could be considered constant and 

equal to 1/3. 	Below 450°C, Q was found to be 6.2 k cal/Mole °K, 

and above 450°C, Q was 13 k cal/Mole °K which is close to 

the activation energy of self diffusion of copper in 

agreement with the observations of Dorn
(83) 

The constant true stress data could be described by 

a similar expression to Eq (8.12) but with k = 0.3. 

Prediction of constant true stress data from the constant 

load data or vice-versa could be made satisfactorily by 

using the time-hardening equation of state. 	Similarly 

the torsion data could be correlated with the tension data 

adequately (when allowance is made for the grain size 

difference of the bar and tube material) with the aid of 

the Maxwell-Mises criterion consistent 	with previous 

observations. 

A series of cyclic loading tests in tension and 

torsion with different mean and stress amplitudes was 

performed. 	Strain records showed that at low stress creep 

recovery was often observed which could not be predicted 

by any of the equations of state. 

Calculations have shown that for cyclic loading the 

strain-hardening law predicts an equivalent constant stress..  

It also predicts the same results whether or not the cycle 

is started at the high or low stress. 	On the contrary 

the time-hardening law does not predict a constant equivalent 
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stress. 	It also indicates that the order of cycling 

is important. 	In addition the strain-hardening law predicts 

no strain accumulation during completely reversed stress 

cycling whereas the time-hardening law does. 

Comparison of the calculations with the experimental 

cyclic results has shown that on the whole the results 

lie between the strain-hardening and time hardening predic- 

tions. 	Above 0.5 Tm, where diffusion processes dominate, 

both equations of state underestimate the cyclic creep 

strain observed. 	In fact strain accumulates faster than 

in a static test at those temperatures. 

A new equation of state based on the internal stress 

concept is proposed which can at least qualitatively 

explain the experimental results. 	It is proposed that 

Ea(Cf-T.)n  so that at any instant the current 'state' of 

the material is defined by the current value of the internal 

stress,Cri. 	This law will predict both accelerated and 

retarded creep at the high stress and creep or creep recovery 

at the low stress depending on the value of Ul. 	If 

relaxation of M occur at the low stress then accelerated 

creep will occur on reloading to the higher stress. 	If 

at the low stress 111- <171 1  creep recovery will occur. 	The 

experimental measurements of orl were consistent with the 

results of all the cyclic tests except the one at 500°C 

(above 0.5 Tm) where less creep was observed at the low 

stress than was anticipated. 	Further modification of the 

concept will probably be required to explain this result. 

The cyclic results below 0.5 Tm  indicate that the 

strain-hardening law gives more satisfactory predictions 
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than the time-hardening law for short times suggesting that 

the internal stress may just be a function of strain in 

this region and therefore be governed only by work-hardening 

processes. 	At longer times and above 0.5 Trap metallurgical 

reactions such as thermal recovery due to diffusion processes 

will offset some of the work-hardening so that in this range 

. = f(E,t). i 
Further work is required to investigate 

more fully the range over which the internal concept may 

be applicable and whether it can be used with complex 

engineering alloys which may not be metallurgically stable. 

For most of the cyclic tests, the stabilized hysteresis 

loop obtained during the apparent secondary stage was drawn. 

None of these loops closed; they all showed ratchetting 

making application of fatigue theories inappropriate. 

Although the Strain range Partitioning method(50-53) is 

capable of describing qualitatively some of the effects 

observed it is not capable in its present form of dealing 

with a ratchetting cycle. 	Future investigations could 

consider ways in which it could be modified to incorporate 

an open hysteresis loop. 



1.98. 

ACKNOWLEDGMENTS  

I am sincerely grateful to my supervisor 

Dr. G.A. Webster for his continued help, consideration 

and interest throughout this research programme. 

His advice so freely given has been a constant 

stimulus and inspiration towards increased effort 

throughout this work. 

I should also like to acknowledge with gratitude, 

Mr. Potter of the Design Office, Mr. H. Ramsey of 

the Mechanical Engineering Workshop and Messrs J. Miller, 

D. Willis. 

To my husband, I should always be indebted, his 

encouragement over this prolonged programme meant 

more to me than I can express. 



199. 

References  

1) Glenny E. and J.E. Northwood - Foundry Trade Jour. 

119, 607, 1965. 

2) Steward W.C. and W.G. Schreitz - Trans ASME 

72 No 2, 1043, Oct 1950. 

3) Thompson A.S. 	Jour. Aero Sci 19 No 7, 476, July 

1952. 

4) Coles A. and D. Skinner. 	Jour Roy Aero Soc 69, 

53, 1965. 

5) Forrest P.G. 	App Materials Research. 	4, 239, 1965. 

6) Coffin L.F., Jr. 	Proc 4th Sagamore Ordonance 

Materials Research Conf. 	August 21-23, 1957. 

7) Manson S.S. 	WACA Rept 1170, 1954 (Supersedes NACA 

TN 2933). 

8) Clauss J.F., and J.W. Freeman. 	NACA TN 4160 and 

NACA TN 4165, Sept 1958. 

9) Coffin L.F., Jr. 	Proc of the 1971 Kyoto Intl Conf 

of Materials II, p 234, 1973. 

10) Coffin, L.F., Jr. 	Symp. on Fatigue at Elevated 

Temperatures,ASTM STP 520, 5, 1972. 

11) Henry M.F., H.D. Solomon and L.F. Coffin Jr. 

Intl Conf on Creep and Fatigue in Elevated Temperature 

Applications. 	Paper C/82/73, 1973. 

12) Manson S.S. 	'Behaviour of Materials at Elevated 

Temperatures' 	Ed by Dorn E.J. - McGraw Hill Book 

Co. Inc., p 455, 1961. 

	

1:5) 	Finnie I. and W.R. Heiler 	'Creep of Engineering 

Materials' 	McGraw Hill Book Co. Inc., p. 37, 1959. 



200. 

14) Marin J. and Y.H. Pao. 	Trans ASME, 74, 1231, 1952. 

15) Coffin L.F., Jr. 	Proc Intn Engrs ,188, 109, 1974. 

16) Ewing, J.A. and J.C.W. Humfrey. 	Phil Trans Soc 

(London) 200, 241, 1903. 

17) Gough, H.J. 	Proc ASTM 333, 3, 1933 

18) Majors H., Jr. 	Trans ASM 51, 421, 1958. 

19) Swindeman R.W. and D.A. Douglas, Jr. 	Trans ASME 

Jour Basic Eng 82, 203, 1959. 

20) Forrest P.G. and K.B. Armstrong. 	'Joint Intl 

Conf of Creep', paper 1, session 3, p 1, 1963. 

21) Garden A.E., ASME Gas Turbine Conf and Products 

Show - Washington Paper 65 - GTR - 5 - 1965. 

22) Saleh, R.E. and T Bio-Quoc. 'Intl Conf on Creep and 

Fatigue in Elevated Temperature Applications- 1973. 

23) Summer G. 	'Thermal and High Strain Fatigue Tests 

of Metals', June 1967. 

24) Coffin L.F., Jr. 	Trans ASME, 78 No 3, 27, April 1956. 

25) Coffin L.F., Jr. 	Trans ASME, 76, 931, 1951. 

26) Johanson A. 	Proc Colloquim on Fatigue - Stockholm 

p 112, 1955. 

27) Tavernelli J.F. and L.F. Coffin, Jr. 	General Electric 

Research Laboratory - Rept No 57 RL 1847, 1957. 

28) Balwin E.E., G.J. Sokol and L.F. Coffin, Jr. 

Proc ASTM 57, 567, 1957. 

29) Manson S.S. 	ASTM STP 744, 1973. 

30) Manson S.S. 	Intl Jour Fracture Mechanics 2(1), 

372, 1966. 



201. 

31) Carden A.E. 	Trans ASME. 	Jour of Basic Eng, Series 

D, 237, March 1965. 

32) Glenny E., and T.A. Taylor. 	Jour Inst Metals, 88, 

449, 1959-60. 

33) Baron H.G. 	New Scientist, 7. 1287, 1960. 

34) Crussard C. and J. Friedel. 	NPL Conf on Creep and 

Fracture. 	Philosophical Libr., Inc., New York, p 243. 

35) Grant, N.J. 	NPL Conf on Creep and Fracture. 

Philosophical Libr., Inc., New York. p 317, 1957. 

36) Greenwood J.N., D.R. Miller, and J.W. Suiter. 

Acta Met. 2, 250, 1954. 

37) Manson S.S. and G. Halford. 	Intl Conf on Thermal 

and High-Strain Fatigue. 	The Metal and Metallurgy 

Trust, London, p 154. 	1967. 

38) Allen N.P. and P.G. Forrest. 	Intl Conf on Fatigue 

of Metals. 	Inst Mech Eng and ASME, Session 4, 

paper 1, 1956. 

39) Palmgren A, ZVDI, 68, 339, 1924. 

40) Miner M.A. 	Jour Appl Mech 12A, 159, 1945. 

41) Kommer J.B. 	ASTM Proc 45, 532, 1945. 

42) Bennet J.A. 	NACA TN 992, 1945. 

43) D'Amato R. 	WADC TR 60-10715, 1960. 

44) Low A.C. 1 Proc 1956 Intl Conf on Fatigue of Metals'  

Inst Mech Eng, p 206, 1958. 

45) Forrest P.G. 	'Fatigue of Metals' 	Oxford, Paric and C. 

(Pergamon Press) 1962. 

46) Miller K.J. 	'Intl Conf on Thermal and High Strain 

Fatigue' 	The Metals and Metallurgy Trust, P 225, 1967. 



202. 

47) Tilly G.P. 	Proc Intl Conf on Thermal and High Strain 

Fatigue. 	Inst of Metals,p 198, 1967. 

48) Robinson E.L. 	Trans ASME,74,778, 1952. 

49) Spera D.A. 	'Fatigue at Elevated Temperatures' 

ASTM STP 520,648,1973. 

50) Manson S.S., G.R. Halford and M.H. Hirschberg. 

Symposium on Design for Elevated Temperature Enviorment, 

ASME, New York 1971. 

51) Manson S.S. 	Proc of the 1971 Intl Conf of Mechanical 

Behaviour of Material. 	The Soc of Materials Science, 

Japan p 5 (1972). 

52) Halford G.R., M.H. Hirschberg and S.S. Manson. 

NACA TMX 	68023, 1972. 

53) Halford G.R., M.H. Hirschberg and S.S. Manson. 

Fatigue at Elevated Temperatures, ASTM STP 520, 1972. 

54) Conrad H. 	Acta Met. , 6, 339, 1958. 

55) Wyatt 0.H. 	Proc Phy Soc. 	Sec B 66, 459, 1953. 

56) Conrad H. and W.D. Robertson. 	Trans AIME, 212, 536, 

1958. 

57) Andrade E.N. 	Proc Roy Soc. , Ser A 90, 329, 1914. 

58) Cottrell A.H. and V. Aytekin. 	Jour Inst Metals, 

77, 389, 1950. 

59) Weertman J. 	Jour Appl Phys.,26, 1213, 1955. 

60) Brown A.F. 	Advances in Phys, 1, 427, 1952. 

61) Garafalo F. 	Trans AIME, 227, 351, 1963. 

62) McVetty P.G. 	Mech Eng, 56, 749, 1934. 

63) Graham A. 	Research, 6, 92, 1953. 

64) Chalmers B. 	Proc Roy Soc, 156, 427, 1936. 



203. 

65) Moore, H.F. and B.B. Belly. 	Trans ASM, 24, 913, 

1936..  

66) Harper J. and J.E. Dorn. Acta Met.,5, 654, 1957. 

67) Kenyon, J. 	Ph.D. Thesis. 	'Application of Linear 

Fracture Mechanics to Creep Cracking' 1975. 

68) Buttner F.H., E.R. Funk and H. Udin. 	Trans AIME, 

194, 401, 1952. 

69) Greenwood A.P. 	Phil Mag, 43, 1075, 1952. 

70) Pranatis A.L. and G.M. Pound. 	Trans AIME, 204, 

664, 1955. 

71) Weertman, J. 	Naval Research Lab. 	Progr Rept, 

p 15, Feb 1958. 

72) Dorn, J.E. 	NPL Conf on Creep and Fracture. 

Phil Libr. Inc. New York, p 89, 1957. 

73) Gilman, J. 	Trans AIME,206, 1326, 1956. 

74) Pahutova M., J. Cadek and P. Rys. 	Phil Mag., 

23, 509, 1971. 

75) Pahutova M., T. Hostinsky, J. Cadek and P. Rys. 

Phil Mag, 20, 975, 1969. 

76) Milicka K., J. Codek and R. Rys. 	Acta Metall, 

18, 1071, 1970. 

77) Feltham P. and J.M. Meakin. 	Acta Metall, 

7, 614, 1959. 

78) Ludwick P. 	Physik Z, 10, 411, 1909. 

79) Feltham P. 	Phil Mag, 2, 584, 1957. 

80) Nadai A. and P.G. McVetty. 	Proc ASTM, 43, 735, 

1943. 

81) Mott N.F. 	Phil Mag, 44, 742, 1953. 



204. 

82) Kauzman W. 	Trans Amer Inst Min Met Eng. 

143, 57, 1941. 

83) Dorn J.E. 	Jour Mech Phy Solids, 3, 85, 1955. 

84) Mott N.F. and F.R.N. Nabarro. 	Rept of the Conf 

on the Strength of Solids, 46 The Phys Soc London, 

1948. 

85) Larson F.R. and J. Miller. 	Trans ASME, 74, 765, 1952. 

86) Manson S.S. and A.M. Haferd. 	NACA TN 3195, 1954. 

87) Graham A. and K.F.A. Walles. 	ARC-CP 379, CP 380, 

1958. 

88) Walles K.F.A. 	NGTE Rept No R 232, March 1959. 

89) Walles K.F.A. and A. Graham. 	NGTE Rept No R 247, 

Oct 1961. 

90) Goldhoff R.M. 	'Materials in Design Engineering', 

49 No 4, 93, 1959. 

91) 'Elevated Temperature Properties of Chromium Moly-

bdenum Steels' ASTM STP 151, 1953. 

92) Clauss F.J. 	'Deformation and Creep at Elevated 

Temperatures', M/T Press Cambridge Mass, 1965. 

93) Sully A.H. 	Progress in Metal Physics, Pergamon 

Press Ltd., London, Vol 6, p 135, 1956. 

94) Schoeck G. 	'Recovery and Creep', ASI'I, Cleveland 

Ohio, p 199, 1957. 

95) Seeger A. 	'Dislocations and Mechanical Properties 

of Crystals', J.C. Fisher et al (ed), John Wiley 

and Sons, Inc., New York, p 243,. 1957. 

96) Sherby O.D., R.L. Orr and J.E. Dorn, Trans AIME, 

200, 71, 1954. 



205. 

97) Cottrell A.H. 	'Dislocations and Plastic Flow in 

Crystals', Oxford Univ Press (London), p 18, 1965. 

98) Johnston W.G. and J.J. Gilman, 	Jour. Applied 

Phys. 30, 129,. 1959. 

99) Orowan E. 	Proc Phys Soc, 52, 8, 1940. 

100) Schoeck G. 	'Mechanical Behaviour of Material at 

Elevated Temperatures' 	Ed. by J.E. Dorn, McGraw 

Hill Book Co., Inc., p 99, 1961. 

101) Li J.C.M. 	Acta Metall, 	11, 1269, 1963. 

102) Bailey R.N. 	Jour Inst Metals, 35, 27, 1926. 

103) Orowan, E. 	Jour West Scotland Iron and Steel Inst, 

54, 45, 1946-47. 

104) Evans W.J. and B. Wilshere. 	Trans of the Metall 

Soc of AIME, 242, 2514, Dec 1968. 

105) Watanabe T and S. Karashima. 	'Intl Conf on the 

Strength of Metals and Alloys' Tokio, 1967. 

106) Feltham, P. and R. Sinclair. 	Acta Metall, 20, 1095, 

1972. 

107) Seeger A. 	Dislocations and Mechanical Properties 

of Crystals' Ed. by J.C. Fisher et al. 	John Wiley 

and Sons Inc, New York, p 243, 1957. 

108) Cherian T, P. Pictowsky and J.E. Dorn. 	Trans 

AIME, 185, 948, 1949. 

109) Balasubranian, N. and J.C.M. Li. 	Jour of Materials 

Sc, 5, 934, 1970. 

110) Ahlquist G.N. and W.D. Nix. 	Acta Metall, 19, 373, 

1971, 

111) Gasca-Neri R.,C.N. Ahlquist and W.D. Nix. 	Acta 

Metall, 18, 655, 1970. 



206. 

112) Raymond L. and J.E. Dorn. 	Trans AIME, 220, 560, 

1964. 

113) Barrett C.R., W.D. Nix and D.D. Sherby. 	TASM 

59, 3, 1966. 

114) Vreeland, T, Jr. 	'Dislocation Dynamics', ed. by 

J.C.M. Li, McGraw Hill, p 487, 1968. 

115) Harrison G.F. 	'Deformation and Fracture Behaviour 

of some Nickel-Based Gas Turbine Alloys', Ph.D. 

thesis. 	Imperial College (London), 1975. 

116) Lloyd G.J. and R.S. McElroy. 	Acta Met, 22, 339, 

1974. 

117) Koterazawa R. and T. Shimohata. 	'Intl Conf on 

Creep and Fatigue in Elevated Temperature Applications', 

Philadelphia, Sept 1973, and Sheffield UK April 

1974, 13. 

118) Rotcrazowa R, 	Proc Intl Conf on Mechanical Behaviour 

of Materials, III, 135, 1972. 

119) Shetty D. and M. Meshi. 'Intl Conf on Creep and 

Fatigue in Elevated Temperature Applications; 

Philadelphia, Sept 1973, and Sheffield UK April 

1974, 13. 

120) Ishida Y. 	Nature Phy Sc, 237, 107, June 1972. 

121) Greenwood J. 	Proc ASTM, 49, 834, 1949. 

122) Kennedy A.J. 	Proc Conf Fatigue of Metals, Inst 

Mech Engrs and ASME, 401, 1956. 

123) Morrow J.D. and G.R. Halford. 	Joint Intl Conf Creep, 

Proc Inst Mech Engrs, 178 (Pt 3A), 3-43, 1963-64. 



207. 

124) Moyan G.J. and G.M. Sinclair. 	Joint Intl Conf 

Creep. 	Proc Inst Mech Engrs, 178(Pt 2A), 2-47, 

1963-64. 

125) Eltner G.E. and G.M. Sinclair. 	Joint Intl Conf 

Creep. 	Proc Inst Mech Engrs, 178 (Pt 3A), 3-9, 

1963-64. 

126) Wood W.A. and S Mc K. Cousland. 	Joint Intl Conf 

Creep. 	Proc Inst Mech Engrs, 178 (Pt 3A), 3-25, 

1963-64. 

127) Nine, H.D. and W.A. Wood. 	Jour Inst Metals, 252, 

August 1967. 

128) Yerkowich L.A. and G.J. Guarnier. 	WAOC TR 55-226, 

1955. 

129) Taira, T. and R. Koterazawa. 	Proc 4th Japan Congress 

on Testing Materials, 50, 1961. 

130) Freund, L.B. 	Fourth Student Symp on Engineering 

Mechanics T & AM Rept No 262, Dept of Theoretical 

and Applied Mechanics, Univ of Illinois, Urbana, 

III, 1964. 

131) Andrade, E.N. and K.H. Jolliffe. 	Proc of the Roy 

Soc of London, 3, 213A, 1952. 

132) Conrad, H. 	Trans of Metallurgical Soc. 	Am Inst 

of Mining and Metallurgical and Petroleum Engrs., 

215, 58, 1959. 

133) Hughes, A.N. 	TRG Rept 1018(6), United Kingdom 

Atomic Energy Authority, 1965. 

134) Davies P.W. and B. Wilshire. 	Philosophical 

Magazine, 11, 189, 1965. 

135) Kitagawa M, C.E. Jaske and J.M. Morrow. 	'Fatigue 

at High Temperature', ASTM - STP 459, 100, 1972. 



208. 

	

. 136) 	Leaderman H. 	'Elastic and Creep Properties of 

Filamentous Meterials', Textile Foundation, Washington, 

D.C., 1943. 

137) Rabotnov, Y.N. 	Prik Met : Mek 12, 53, 1948. 

138) Ludwick R. 	Element des Technologischen Mechanic- 

Springer-Verlag, Berlin 1909. 

139) Holloman, J.H. 	Mech Technol TP 2034, 1946. 

140) Finnie I and W.R. Heller. 	'Creep of Engineering 

Materials', McGraw Hill Book Co In., New York, 

p 118, 1959. 

141) Taira S. and R. Koterazawa. 	Bull JSME 5, No 17, 

1962. 

142) Ohji, K. and J. Marin. 	Proc Inst Engrs 178, Pt 3L, 

1963-64 

143) Warren, J.W.L. 	Aero. Res. Council CPN 919, London 

HMSO. 

144) Daniels 	H.B. Masuda and J.E. Dorn, WADC 

TR 53-336 - ASTIR Document AD 101706 and AD 102400, 

May 1962. 

145) Caughey, R.H. and U.B. Hoyt. 	NAVORD Rept 3403 

(NOTS 995), US Navel Ord., Test Station, China Lake, 

Calif.,p 79, March 15, 1955. 

146) Miller, J. ASTM, STP 165 53, 1954. 

147) Smith, G.V. and E.G. Houston. 	ASTM, STP 165, 67, 1954. 

148) Manson, S.S., G.R. Halford and D.A. Spera. 	'Advances 

in Creep Design', Ed A.I. Smith et al - Applied Sc. 

Publ. Ltd., London, p 229, 1971. 



209. 

149) Esztergar, E.P. and J.R. Ellis. 	'Thermal Stresses 

and Thermal Fatigue', Ed D.J. Littler, London, 

Butterworth, p. 128, 1968. 

150) Spera, D.A. 	NASA TIED 5317, July 1969. 

151) Webster, G.A. 	Proc 4th Conf on Dimensioning, Budapest, 

p 241, 1971. 

152) Johnson, A.E. 	Jour Sci Instru., 27, 74, 1950. 

153) Swift, H.W. 	Engineering (London), 163, 253, 1947. 

154) Westbrook J.H. 	Trans ASW, 45, 221, 1953. 

155) Penny R.K., E.G. Ellison, G.A. Webster. 	Mat. 

Research Standard, 6, 77, 1966. 

156) Clauer A.H., B.A. Wilcox, and J.P. Hirth, 

Acta Metall, 18, 367, 1970. 

157) Orlava A., Z. Metallk, 61, .439, 1970. 

158) Garagalo F. 	'Fundamental of Creep and Creep- 

Rupture in Metals', MacMillan, New York, 1965. 

159) Rhines, R.N. and R.F. Mehl, Trans AIME, 128, 185, 1938. 

160) Crossland B., R.G. Patton and W.J. Skelton. 

'Advances in Creep Design', Ed. A.I. Smith and A.N. 

Nicolson, p 129, (Applied Science Publ. Ltd), 1971. 

161) Kikukawa, M., K. Ohji, S. Kotani and T. Yokoi, 

JSME, Bulletin, 15, No 86, 889, 1972. 

162) Ham R.K. 	'Intl Conf on Thermal and Hig-Strain 

Fatigue', 1967, p 55 (Inst of Metals). 

163) Ham, R.K. and T. Broom. 	Phil Mag, 7, 95, 1962. 

164) Benham, P.P. 	Jour. Inst of Metals, 89, 328, 1960-61. 

165) Coffin, L.F., Jr., 	ASTM, STP 465, 53, 1970. 

166) Benham P.P. 	Jour Inst of Metals, 99, 403, 1962-63. 



210. 

187) 	Kikukawa, M., K. Ohji, S. Kotani and T. Yokoi. 

JSME Bulletin, 15, No 86, 889, 1972. 

168) 	Chang H.C. and N.J. Grant. 	Trans AIME, 197, 1175, 1953. 

189) 	Gemmil G. and N.J. Grant. 	Trans AIME, 209, 417, 1957. 

170) Pratt J. 	J. Materials, 1, 77, 1966. 

171) Lequear A.A. and J.D. Lubahn, 	ASTM STP, 1952 - 

'Symposium on the Effect of Notches and Metallurgical 

Changes in Strength and Ductility at Elevated 

Temperature'. 

172) Kes, T.S. 	Phys. Rev., 71, 1947. 

173) London, P., J. Lytton, L.' Shepard and J.. Dorn. 	Trans 

ASM, 45, 225, 1953. 

174) Zener, C. 	'Elasticity and Anelasticity', Univ of 

Chicago Press, Chicago, 1948. 

175) Well, C.H. 	Jour of Basic Engineering, Trans ASME, 

89, 893, 1967. 



211. 

APPENDIX 1 

Rapid Heating Methods  

A.1.1 Review of Rapid Heating Methods  

In recent years, a considerable effort has been 

expended in developing methods of testing materials 

in the laboratory to simulate in a more realistic way 

actual service conditions. 	Of particular interest is 

the effect on the creep and rupture behaviour of 

materials of rapid variations of temperature and stress 

that can be encountered during repeated start up of 

many engineering components operating at elevated 

temperatures. 

A number of different tests have been devised to 

examine this behaviour. A comprehensive review of 

testing machines and apparatus is given by Benham(1A) 

Glenny and his co-workers(2A) have used the fluidized 

bed technique to rapidly heat and cool tapered discs. 

Many other workers have followed Forrest and Penfold(3A) 

in simulating thermal strain mechanically by applying 

unLform bending to rectangular section bars. Axial 

push-pull machines have been used by Mackenzie and 

Benham(4A) and others(5A) 	Some of the push-pull machines 

were capable of load controlled as well as strain controlled 

cycling. 

The heating methods in current use capable of 

producing rapid thermal response are electrical resistance, 

radiant, and induction heating. 	Table (A-1.1) summarizes 

some of the methods employed by previous investigators. 



APPLICATION MATERIAL METHOD OF HEATING 
AND COOLING 

REF. 

I 	Externally Constrained Samples 

Power 
Plant 

347 Stainless Steel tube Electrical resistance 
heating and air blast 
through bore of tube 

Coffin(6A) 

Gas 
Turbine 
Blading 

3816 - Inconnel 
550 - 422 Steel 

Electrical resistance 
heating - continuous 
water cooling 

Clauss and 

Freeman(8) 

A1S1 347 
STB 42D 

Electrical resistance 
heating. 	Blasting air 
against the inner wall 
of specimen 

Taira 

et al(7A) 

Molten 
Salt 
Reactor 

Ni 5050 
Hastelloy N 

Electrical resistance 
heating.- compressed gas 
through hole 

Carden(31) 

II 	Self 6pntrained Bodies or Tapered Discs 

Gas 
Turbine 
Blade 

Turbine blade Cast 
Austenitic steel 

Hot gases - High 
pressure air 

Bentele 4nd, 
Lowthian 1/48A)  

Wedge shape Cast alloys 
Co and Fe - base 

Furnace - Water quench of 
specimen edge 

Whithman 
et al(9A )  

III 	Separately controlled load and temperature cycling 

Gas 
Turbine 
Engine 

Rectangular section - 
Nimonic 	(75, 	90, 	105) 

H.A. current at low voltage 
through specimen - cooled 
at still air 

Forrest and 

Armstrong(10A) 

Thin cylinder H.46 Marten- 
sitic stainless steel, A1S1 
Austenetic steel 

Electrical resistance 
heating - air bias through 
bore 

Udoguchi and 

Wada(11A) 

Tubular - Ni base super- 
alloys 

H.F. Induction heating Webster(12A )  

TABLE A-1-1 REVIEW OF RAPID HEATING METHOD 
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These heating methods have been compared by Webster(12A) 

Perha..ps the most common method of producing rapid 

temperature changes has been resistance heating but the 

main difficulty is to obtain a uniform temperature within 

the gauge length, because heat is conducted away from 

the ends. 	Furthermore, changes in cross-sectional 

area due to cracks or necking, or both, will result in 

local temperature changes, which can cause hot spots. 

With radiant heating, the main problem is again 

to attain a uniform temperature without the use of an 

excessively long specimen. 	In this case, cracks and 

necking will not cause local hot spots. 	However, any 

extensometry will undergo similar changes in temperature 

to the specimen. 	This can lead to difficulties in 

strain measurement if the transcient response of the 

extensometer arms is different to that of the specimen. 

A-1.2 Direct-Induction Heatin System  

In this method the specimen is located along the 

axis of an induction coil which is energised by a high-

frequency electric current. An electromagnetic field 

is established around the specimen with the flux lines 

concentrated in the outer layers of the specimen. 	Eddy 

currents are induced in a circumferential direction 

so that transverse cracking will present no area to the 

current path and will not lead to hot spots. 	The 

temperature gradient along the gauge length may be reduced 

to 4' 1°C by suitable winding of the induction coil. 
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Also temperature transients can be virtually 

elminated by using extensometer parts of non-conducting 

material enabling accurate measurement of the strain. 

Consequently this method of heating was adopted in this 

investigation. 

(a) 	Induction Heating System  

The high frequency generator used was a Cambridge 

Electroheating Generator Type CE 1/3 with a continuous 

output rating of 3 kW at frequencies between 500 kc/s 

and 2 Mc/s. 

The work coil is shown in Fig (A-1-1). 	It was 

made of 4.76rmm in diameter copper tubing wound in two 

coils each having five turns. 	It was designed in such 

a way that the gap between the two coils could be varied 

using adjusting screws as shown in Fig (A-1-1). 

With induction heating, the induced current is 

concentrated in the surface of the specimen. 	The efficiency 

with which various metals heat depends on their resistivity 

and permeability. 	For a given specimen, and coil 

geometry, the power, P, is given by(13A) 

Pa 	 ...(A.1 -1) 

where f is the resistivity, µ the permeability and f 

the frequency. 

Because of the large difference in resistivity of 

the copper specimen and nimonic pull rods (1.72 compared 

to 124 microhm cm) great care had to be taken to prevent 

overheating of the specimen ends and failure outside the 



FIG A-1-1 INDUCTION COIL 

FIG A-1-2 PLUG BOARD FOR TEMPERATURE 
CONTROL 
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gauge length. 	This problem was overcome by increasing 

the length of the specimen outside the gauge length 

Fig (6.1). 

The specimen temperature was controlled automatically 

using a fine diameter (0.5 mm) Pt/Pt - 13% Rd thermo-

couple tied to the surface of the specimen and a Euro-

therm type PID/SCR three-term-controller equipped with 

proportional, derivative (or rate), and integral (or 

reset) actions. 	These could be adjusted to give smooth 

long term stability and accurate temperature cycling 

with no overshoot. 	Fig (A-1-2) shows a photograph 

of the temperature programming facility. 

(b) 	Programming System  

It is capable of providing a constant rate of rise 

or fall in temperature between two temperature limits. 

The hold time at each temperature can be controlled by 

separate timers. 

Programme selection is achieved by means of a 

stepping relay and plug board as shown in Fig (A-1-2). 

Any shape of trapezoidal cycle is possible and the cycle 

of operation can be repeated and counted automatically 

until the specimen fails. 

A-1-3 Temperature Measurements  

With rapid heating great care is required to obtain 

accurate temperature measurements. 	It has been reported 

by Webster(12A) that differences of up to 30°C can be 

noted between thermocouple and pyrometer readings. 

Because of the large thermal gradients close to the 
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specimen surface, the thermocouple leads conduct heat 

away from the surface and cause the thermocouple to read 

low. 

For temperatures below 800°C, an optical pyrometer 

cannot be used and another method was adopted to cali- 

brate the thermocouple output. 	The method consisted 

of comparing the output of two chromel/Alumel thermocouples 

buried into holes of different depths in the middle of 

the specimen to a thermocouple tied to the surface. 

The output of the three thermocouples for different 

temperature settings is plotted in Fig (A-1-3). 	The 

plot shows no difference in temperature between the two 

embedded thermocouples. 	The discrepency with the surface 

thermocouple increases from 10°C to 22°C from 100 to 

340°C respectively. 	The accuracy of this correction 

depends mainly on how far the radial temperature distribu-

tion is uniform. 

This can be estimated from(13A) 

Ph  a 	2 X(K2 	r/a) - 1 
Tr - To 	2k 	[ra2 	

1 	) K2 	(K2) 	
1 ...(A.1.2) 

where Tr is the temperature at radius r, To the tempera-

ture at the centre, k the thermal conductivity, Pn  the 

net power input and the term in square brackets includes 

Bessel functions which have been tabulated for different 

a/' values by Simpson(13A) 
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()READING AT SURFACE 
°READING AT 1/2 DIA. DEPTH 
+READING AT 114 DIA_ DEPTH 

/0 

L. 00 

300 

200 	300 	400 	500 	600 	700 	BOO 
MACHINE SETTING 

Fl G.A1.3_THERMOCOUPLES OUTPUT AT DIFFERENT 
TEMPERATURE CONTROL SETTING. 
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where S.  2n  Ff 
...(A.1.3) 

In addition the rate of rise of temperature is given by 

dTr 2 Pn 
dt 	yCa 

...(A.1.4) 

where y is the density, C the specific heat and a the 

radius. 

The temperature difference between the surface (Tr) 

and the centre (To
) (Eq A-1.2) is plotted in Fig (A-1-4) 

for a 5°C/sec heating rate at 600°C. The temperature 

difference is only 0.3°C confirming an approximately 

constant radial temperature distribution as indicated 

during the thermocouple calibration test. 
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FIG.A.1.4_RADIAL. TEMPERATURE DISTRIBUTION OF 
0,5 CM. DIAMETER COPPER SPECIMEN AT 600°C 
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PROGP,AN. FrPSILON (INUT,OUTPUT,TAPE5=TNPUT,TAPEOUTPUT) 
PI=ASIN(1.)4-2. 
ITNX=90 	e.IMMX=50 
:Nk=1TN.X/1r) 
DT=2.*PI/FEOIT(ITHX) 
PIN=PI/2. 
51EFA=FIN/5. 
AtiGU=FOT=7FOT=O 

-1=1/3. 
TF.Ir=273.1F 
DO 26C ITEP=1,3 
T'iiIP=TE"IF4-103 
8IFA=-CALr4 
no LOC IALFA=1,6 
ALFA=ALFA+DALFA 
IF(TALFA.E0.1) ALF4=r1.0033 
IP(IALFA.E0.2) ALFA=PIH/5. 
TYTP1=1. 
CO 200 IX=1,5 
E21SIE=0 

""YTN=TXTN+0,1 
TOT=MITN+10/2. 
Tuf0=(TXTN-1.)/rT 
31KITi(6 1 6)3)ALFA,TXTN,TE'IP 
ro 2u0 IT=1,ITX 
T=T+OT 
SILIFX=STN(')'SIN(A FA) 
0(1 190 N=1,IT'FX 
EnAK=2.4-FLUI'(N)41. 
AtiGLEAK':-T 
ANGL7'N=8 ZAK'ALrA 
SUNcAUM:X+SIN(AN',-,LE)'SIN(ANGLI7)/AK''''.2 

117j0 	CONTINLE 
SW!.:-:XN=SUMEX*TOTW'2./ALFA+TOT 
SUT9T=8.31L"T7!,1P4—SUM.'7XM"'ST 

!.11-0T=1,F,-20 
P077--.'-.157/5UT0T 
,'7Pir- ='= XP(POT) 
Er'STL=PSIL47;=0T"IT 

c:iILN=-7.PS7L-AST 
TN=621.30.4ALO:,(2.72)/(2.'(0.3337'ALOG(2.4PD-ALOG(F°SILN))) 

7F(PW.c_0.040,:,IT.E0.1)W7ITL(51 610)SUMEX11 7 7F3T I EPSIL I EPSILN,TN 
200 	C .iNTINUE 
6C0 r.'CAT('SUMXrI FOT,,;:nSIL,t'STLN,TN',/,"ALFA=4,710.4 7 4-TXTN-=', 

11- 10.4 1 4.-NMP=71G.LLI /) 
610 '01--smAT(1X,5(73X,L12.'0) 

SiCt; 

PROGRAMME A.1.1. 
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Dpo3pAm EPSTLON(INPUTOUTPUT,TAPE5=INPUT,TAPE6=OUTPUT) 
PT=ASTm(1.)*2. 
TTmX=50 £ TKIMx!=.0 
m4P=1"Tmx/10 
DT=2.*PT/FLOAT(ITMX) 

PIN=PT/P. 
nALFA=PIN/5. 

ANISLF=POT=FPOT1;0 
=3, 

fT=0.1333 
cP=72.P6/42.66 
SPt=(SP+1.)/2. 

DT=(SR-1.)/Pi 
TFHP=273•15 
r)0 2(10 ITEmP=1,1 
TFmr)=TEm2+100- 
ALFA=-()ALFA 
nr1 2nn IALFA=1.6 
ALFA=ALFA+DALFA 
tr(1ALFA,F0.1) ALFA=0.0003 
TF(IALFA.F0.2) ALFA=PIWS. 
TXT"I7-17.0 
nO 2o0 IX=Ie5 
TXT ,A=TXTNI+0.1 
TDT=(TXTN4-1.),P. 
TOT ,J=(TxTN-1.)/PT 
w9TTF(69600)ALrA,ITMX,INMX,TxTN,SRITEMP 
rPSIL=0 

Trz-D7/2, 
7)r) Pon IT=1,ITmX 
Tr:I4-DT 
5UmqX=SIN(T)*S1m(ALFA) 

Pn loll N=1,INMX 
IRi,K=2.*FLOATUJI+1. 
ANSLP=ARAK*T 
PTILFM=9RAK*ALPii 
corrX=sUqFX 4STINJ(ANGLE)*SIN(ANGLEN)/RRAK**2 

10n cwITTNUE 
qtylFvq=SU,TX*InTN*P./ALFA+TOT 
SUTDT=A.314*TF*10*SUmEYN*ST 
Tr(SIITuT.LT.I.r-P0) SUT0T=1.F-20 
POT=-6200.*4,17/SUTOT 
EPOT=vXP(PnT) 

1 	,-zomExs=sU,4FX*Sor)T*2./ALFA+sR 
ciAm7Yu=SUmEXS*0.5K/ST) 

3 	fOrTY.F=SUEXK*FPOT 
4 	FPSTL=FPSTL+SUmrXF*DT 

roST(m=EPSTL**ST 
N.Por..0o(TT,N1WR) 
Tr(qW,F001.0P.T.E0.1)WRITE(6,610)IT,SUMEX,SUMEXN,EPOT,SWIEXK, 

1 FWIEXF,EPSTL,FPFTLN 
200 cn\1T7NUF 
600 FnPliAT(*IT,sumFX,SUmEXN,EPOT,sumExK ISUMEXF,EPSIL,EPSfLN*,/, 

l*ALFA=*,E1n.49 41. TTmx=*069*INMX=*9169*TXTN=*,E12.41*SR=*,F12149 
2*TcmP=*,F12.4,/) 

610 	rtIP\IAT(1 )(,I697(1X9E12.4)) 
STOP 

PROGRAMME A.1.2. 
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FIG.A.1.5_EQUIVALENT TEMPERATURE AT DIFFE-
RENT TEMPERATURE CYCLIC CONDITIONS. 
ii:V=6.2 KCAL/MOLE °K AND T=2 00°C 
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Longitudinal Temperature Distribution  

The longitudinal temperature distribution along the 

specimen gauge length (24 mm) and up to 5 mm outside the 

gauge elgth was determined by embedding five thermocouples 

in i diameter depth holes, three of them at equal intervals 

within the gauge length, and the other two at 5 mm away 

from each end of the gauge length. A temperature 

variation of only 0.5°C was obtained after suitable 

adjustment of the coil windings. 

A-1-4 Application of the Strain-Hardening Concept to  

Cyclic Temperature 

The values of the integral 'ST  and IsTor for cyclic 

temperature and for cyclic temperature and stress are 

given in Eqs (4.17) and (4.39) were evaluated numerically 

using Programmes (A-1-1) and (A-1-2). 

(a) 	Cyclic Temperature constant  Stress  

For this case, the equivalent temperature, TES  is 

given by 

TES = R(k loge  2n - log IsT) 
	...4.21) 

Computer programme (A-was used to calculate values 

of IST and TES for a range of cycles. 	Fig A-1-5 shows 

results for To = 200°C, Q = 6300 cal/Mole °K and a varying 

sufficiently to cover the whole range of trapezoidal 

cycles. 	In Fig A-1-6, TES  is plotted against the 

temperature ratio, R, for various a. According to these 

results, the value of TES  is near the mean temperature, 

TM, for a small temperature range while for the higher 



CASE MATERIAL TEMPERATURE oC I REFERENCE 
NO 

To T MAX TMEAN 

A1S1 347 100 to 225 475 to 600 350 15A 

(1)  T 	--' T 18Cr - 12Ni - Cb 150 to 200 600 to 650 400 15A,16A 
EQ-  MEAN (A1S1 347 Type) 

Inconel 538, 	760 871 705, 	816 19 

2iCr - 1Mo 10 to 50 550 to 610 300 to 310 14A,16A 

1Cr - 1Mo - i V Cast 30 to 105 570 300 to 400 19 

(2)  T 	T "'- 
18Cr - 9Ni 200 700 450 17A 

EQ 	MAX (A1S1 304 Type) 

18Cr - 11Ni - Cb 100 600 350 18A 
(A1S1 347 Type) 

TABLE A-1-2 PREVIOUS TEST RESULTS 
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2 ot = 0.00 83 
2 cx= 3-n/ 10 
2rxr- 5 T1/10 

1.1 	1.2 	1.3 	1.4 	1.5 	1.6 	1.7 
TEMPERATURE RATIO 

Fl G.A.1.7_ CYCLIC STRESS AND TEMPERATURE 
VARIATION WITH TEMPERATURE RATIO AND 
CYCLE SHAPE (To= 200°C , 	6.2 KCAL/ MOLE°K, 
cr,-„=24. 81 MN/ m2  , crmAx  =42.6 6 MN /m2  ) 
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2 o< =0.0:03 
2/).‹ =3-n/10 
2o< = 5n /10 

  

   

I 	I 	I 	I 	I  
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TEMPERATURE RAT I 0 

F I G.A.1 .8_ CYCLI C STRESS AND TEMPERATURE 

VARIATION WITH TEMPERATURE RATIO AND 
CYCLE SHAPE (T;)=200°C, C4=6.2 KCAL / MOLE °K 
0-0=42.66 MN/m2  AND crMAX " 72 83MN /m2  ) 
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temperature ranges, TES  is near to the maximum temperature 

TAX. 	The equivalent temperature, TES, is also dependent 

on the shape of cycle, being higher for the square 

cycle (2a = 0)-  than the triangular one (2a = n/2) which 

reflects the effect of time spent at the high temperature. 

A similar trend was observed experimentally by 
(14A) 

Taira 	and some examples of thermal fatigue results 

leading to the same trend are listed in Table A-1-2. 

(b) Cyclic Temperature and Cyclic Stress 

In the case of cycling both temperature and stress, 

it is not possible to obtain an equivalent temperature 

or stress. 	It is only meaningful to evaluate I STor 

(Eq 4.38). 	Computer programme (A-1-2) was used for 

this purpose. 

Fig (A-1-7) and (A-1-8) compare values obtained for 

the same representative cycles. Here again the results 

show that the square wave is more damaging than the 

triangular wave and also that damage increases with 

temperature ratio and mean stress. 
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APPENDIX 2  

A. Calibration of Rotary Tranducer  

The calibration was performed using a 'Matrix 

Optical Dividing Head'. The tranducer was centred 

in the dividing head, and the output voltage measured 

for different potentiometer settings and a constant 

input voltage of 24 volts as the shaft was rotated 

through 60°. 	The results are shown in Fig A.2.1. 

In Fig A.2.2., the plot of the potentiometer setting 

against the millivolt output/degree rotation for a 

24 volt input indicates a linear calibration. 

To convert the millivolt output/degree rotation into 

shear strain, 15* , we have for no warping of the tube 

cross-section and an angle of twist, 0 

= 2L 
	 ...(A.2.1) 

where D is the mean tube diameter (= 20.8 mm) and L is 

the gauge length (= 60 mm) 

thus 	0.2080 	 ...(A.2.2) 

Therefore each degree rotation gives a percentage 

strain of 0.363 %. 	The conversion factor for 1% shear 

strain at different potentiometer settings is plotted in 

Fig A.2.3. 

B. Calibration of Torque Cell  

A torque cell was made from a RR58 aluminium alloy 

tube having the same dimensions as a copper specimen. 

Four strain gauges were fixed to the tube diametrically 

opposite to each other at angles of 45°  to the tube axis 

and connected to a Wheastone bridge circuit. 
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The torque cell was calibrated in a standard 15000lb in 

(1700Nm) Avery torsion machine. 

The resulting graph for a complete cycle is shown 

in Fig A.2.4. 	The gradient of the line indicates that 

for a 24 volt supply, each one millivolt out corresponds 

to a torque of 37.1 lb in (4.2 Nm). 
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APPENDIX 3 

A. Check on Uniformity of Shear Stress Distribution 

through tube wall 

Assuming a creep relation between shear-strain rate, 
. 
Dc' and shear stress, T , of the type 

0: = const x Tn " c 

we have at any radius, r, 
1 

j = 1: t~ ) n 
o 0 

••• (A.3.1) 

••• (A.3.2) 

where r is tbe shear stress at the outside radius, R • o 0 

Therefore if at the internal surface, r = R., and f= r., 
:l. l. 

the ratio between the outer and inner shear stress will 

be 

To 
7i 

1 
"R n 

= (...2.) R. 
~ 

••• (A.3.3) 

The ratio 1 /1. is shown in Table A.3,,1, for R = 11 mm, 
o l. 0 

R. = 9.8 rom, and different values of n~ 
~ 

The shear stress 

distribution within the wall thic]cness is more uniform 

the larger the value of n, "and for n = 3 varies by less 

than 4%. 

n 1 2 3 4 5 6 7 

fol1i -1. -122 1.059 1.039 1.029 1.023 1 .. 019 1.016 

Table A 03.1. Shear stress ratio, 1 /1:, for o ~ 

different values of n. 

B~ Shear-Strain to Cause Buckling 

The equation for buckling of-tubes in torsion used 

. ." d (13) by F~nn~e an Heller· was employed to calculate the 
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critical shear strain, 	 Cr,lc 	for buckling namely, 

ICCr = 2.6(t/R)
5/4  (R/L)1/2  

where R is the average radius of the tube, t the wall 

thickness, and L the length of the specimen. 

For the present investigation 

R = 10.4 mm 

t = 1.2 mm 

and 	L = 60 mm 

Therefore, . 

.6cr  = 2.6(1.2/10.4)5/4  (10.4/60)1/2  

Consequently it should be possible to achieve 

shear strains of about 8% before the onset of buckling. 
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