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ABSTRACT 

The Lagrangean saddle-function is shown to form a useful basis for 

a unifying theory encompassing the different numerical procedures for 

constrained optimization. 	Dual formulations are then considered in detail 

in an attempt to define a procedure for assessing the merit of a given 

design and a simple active set strategy for optimization. 

The stationary point of the Lagrangean function, which defines an 

optimum design, is first shown to be a saddle point and the primal and 

dual problems are identified. 	Several numerical procedures for automating 

the design process are then considered to demonstrate that a unifying theory 

can be proposed. 	A method is then presented for finding feasible solutions 

to both primal and dual problems and these solutions provide bounds on the 

optimum value of the cost function. 	Information about the active constraint 

set is available through Lagrange multipliers, and an active set strategy 

for design is proposed. 	It is also suggested that the saddle function and 

duality can be used to extend certain approximate redesign strategies. 

These procedures can then be drawn into the same framework which unifies 

the different mathematical programming procedures. 

The examples considered are mainly concerned with the minimum 

mass design of aerospace structures. 	It is shown that a useful procedure 

for generating bounds to assess the merit of a given design has been 

proposed. 	The active set strategy is used to design the structures and 

the use of the dual to check the convergence of approximate redesign 

strategies is also discussed. 	Because these strategies can be identified 

with the unifying theory, it: is possible to transfer to a more rigorous 

search strategy when the approximate procedures are not converging to the 

optimum design. 
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NOTATION 

Mathematical symbols 

X 

X* 

X' 

a column vector of the design variables xi 

a locally optimal design 

the current design, often the operating point 
for the formation of approximations 

the cost or merit function 

the ith constraint function 

Vf 	a column vector of the gradient of the cost 
function 

Vgi 	a column vector of the gradient of the ith 
constraint function 

vg or G 	the matrix whose ith column is Vg. 

H the Hessian matrix with H.. - 32f  
ax-ax- j 

a column vector giving a direction in design 
space 

L(X,A) 	the Lagrangean function 

A 	a column vector of the Lagrange multipliers 

v(6,r) 	the dual merit function of geometric programming 

r the column vectors of dual variables in the geometric 
programming formulation 

21=[Ai,d12} the matrix of co,,ffici2nts in the geometric programming 
dual, contains exponents of posynomials for 
the constraints 

D 	the matrix of exponents for terms in posynomial 
approximations for the cost function 

Structural design symbols 

E 
	

Young's modulus Of elasticity 

material density 

a-  • 	 the stress in member i under load case 



Structural design symbols (contd.) 

u-- 	the deflection in direction i under load case j 

g 
	the element stiffness matrix in the finite element 

method for structural analysis 

K 
	

the assembled structural stiffness matrix 

r 	a column vector of nodal displacements 

P, R 	 column vectors of applied loads 

Units used in examples 

kg 	kilogram 

m (cm) 	metre (centimetre) 

sec 	second 

N 	Newton 
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CHAPTER 1 

INTRODUCTION AND CHAPTER SUMMARY 

1.1 Introduction 

The theory of mathematical programming for constrained 

optimization has grown historically out of initial work by Dantzig (1951) 

on the simplex method for linear problems [1], and a paper in the same 

year by Kuhn and Tucker on nonlinear programming [2]. Kuhn and Tucker.  

in fact focused attention on the role of convexity and discovered the 

connection between Lagrange multipliers and saddle points. 	The concept 

of duality was also recognised at an early stage by Gale, Kuhn and 

Tucker [3] for linear programs, and Dorn [4] and Wolfe [5] devised dual 

problems for nonlinear programming problems. The fundamental ideas for 

duality can be obtained directly from Legendre's dual transformation [6] 

and duality theorems in convex analysis were derived by Fenchel [7]. 

All of this work of course followed the classical work of Fermat in the 

seventeenth century which led to the differential approach for finding 

interior opcima of continuous functions of a single variable. 	This 

approach was extended by Lagrange in the eighteenth century by the 

development of a method for finding the extremum of a function subject 

to equality constraints. 	This method was based on the definition of 

undetermined parameters, now called Lagrange multipliers, and the 

Lagrangean function. 	With the advent of computers, however, the work 

on numerical methods after 1950 led to a sudden expansion in the use of 

optimization theory and a Verge number of numerical search procedures 

for optimization [8] have since been developed. 

These procedures have been successfully applied to a wide 

range of problems but a number of considerations have restricted their use 

in fields where function evaluations can be computationally expensive. 

The most important consideration is that a very large number of function 

evaluations can be required by the search strategy so that the overall 
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design process becomes prohibitively expensive. 	A second consideration 

is that it has not been possible to assess the merit of a given design 

without first conducting a search in either the primal or dual problem. 

Fiacco and McCormick [9] showed for example that a solution to the dual 

problem bounding the optimum could be determined, but only after the 

optimum point had been found for one of the sequence of problems which 

converges to the final solution. 	An adequate basis for assessing the 

improvement to the design which can be achieved in return for applying 

an optimization procedure has not been available. 	The designer has 

therefore been faced with the prospect of a potentially expensive design 

search with only an intuitive knowledge of the merit of his initial 

design. 

One field of engineering in which the mathematical programming 

procedures are potentially very useful is structural design for minimum 

volume or weight. 	Basic theorems on the design of pin-jointed frame- 

works were published in 1869 by Maxwell [101, and in 1904 Michell [111 

published his classical work on the limits of economy of material in 

frame structures. However the development of mathematical programming 

procedures and electronic computers after 1950 has been matched by the 

development of finite element methods for structural analysis [12, 13, 14] 

allowing the analysis process to be automated. 	The combination of 

mathematical programming procedures and finite element methods was first 

suggested by Schmit [151, and many large scale programs with practical 

operational capabilities have been developed [16, 17]. 	In addition 

several special techniques have been proposed for specific applications. 

These include the optimality criterion approach to the design of 

statically determinate structures subject to a single deflection 

constraint [181 and the Lagrange multiplier method [19] for design 

subject to frequency constraints. 

The finite element analysis procedure can however be 

computationally expensive. 	The complexity of the designs which need to 

be optimized therefore often exceeds the limit of economic application 

of tha mathematical programming procedures. 	The designs are also 

more general than the type of problems for which specialized techniques 

were defined. 	A number of approximate redesign procedures have there- 

fore been applied to these problems. 	These include the stress ratioing 
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technique to produce fully stressed designs [20], and the envelope 

procedure based on the optimality criterion approach but extending it to 

include multiple constraints [21]. 	This extension incorporates a 

degree of approximation into the redesign strategy to avoid having to 

find the values of Lagrange multipliers associated with the constraints. 

These approximate procedures then specify pre-conditions on the optimum 

design which lead to simple recursive expressions for redesign. 	They 

can therefore exhibit very rapid initial improvement in the design but 

are only guaranteed to converge to the optimum under Certain special 

circumstances. 	The Kuhn-Tucker conditions [2] can be applied to 

determine whether the final design is optimal, but it has not in general 

been possible to assess the merit of a non-optimal design. 	There does 

however seem to be considerable scope in engineering design for strategies 

such as these which can accommodate the engineers' knowledge and experience 

to define the path to the optimum [45] . 

The aim of the research carried out for this thesis has 

therefore been to isolate a basic theory common to the different 

mathematical programming procedures, and to search within this framework 

for a technique to enable the merit of a given design to be assessed. 

It is also suggested that correctly formulated approximate methods 

should lie within the same basic framework as the mathematical programming 

procedures and the approximations in these methods could then be identified. 

If this logical basis exists, then the degree of approximation could be 

reduced to recover a more rigorous algorithm capable of continuing the 

design process if the approximate method is not converging to the optimum 

design. 	This proCess would then represent an extension of the work of 

Razani [22] which suggested that a mathematical programming procedure 

should be used if the fully stressed design, produced by the approximate 

stress ra;:42ing procedure, did not satisfy the Kuhn-Tucker conditions for 

optimality, 	The generation of bounds would here provide a more useful 

basis for deciding whether the extension of the design process is 

necessary. 

It is perhaps not surprising that the search for the 

unifying theory led back to the classical Lagrangean saddle-function 

and the concepts of duality which appeared early in the history of 

mathematical programming. 	As well as the work by Fiacco and McCormick 	[9], 

Morris [23] recognised the usefulness of dual solution points in 



defining a lower bound on the minimum mass of a structure. These 

bounds were generated as a result of conducting the search for the 

optimum design in the dual provided by geometric programming. 	However 

it has been found that bounds can be obtained more directly using the 

geometric programming dual formulation and the results of this initial 

work were published by the author in [24]. 	This was closely followed 

by a paper by Bartholomew and Morris [25] based on the same strategies 

but making use of a different dual formulation. 	They also recognized 

that the mathematical programming procedure based on projected gradients 

could be recovered by removing approximations inherent in the fully 

stressing design procedure. 	Co-operation with these authors led to the 

work conducted as part of this thesis and published in [26] in which the 

unifying theory for mathematical programming procedures was detailed. 

This unifying theory is again presented in this thesis and is 

based on the Lagrangean saddle-function and duality. 	In particular it 

is shown that the penalty function and projected gradient procedures, as 

well as certain approximate redesign strategies, can be derived from the 

saddle function and related theory. A dual problem can also be defined 

for any design problem which exhibits certain local convexity properties. 

If the cost function F for the design problem is to be minimized, feasible 

solutions to the primal and dual problems satisfy the inequality 

F > F*  = V*  > V 

where V is the cost function for the dual problem and the asterisk 

indicates the optimum value. 	It is obvious therefore that feasible 

solutions to both primal and dual problems will bound the optimum value 

of the cost or merit function and define a range in which the optimum 

must lie. 	If these solutions converge simultaneously to the optimum 

then useful bounds will be obtained. 	It is also of particular 

significance that the dual variables are Lagrange multipliers which 

reflect constraint activity levels in the primal problem. 	Dual 

formulations should therefore be able to check the selection of the active 

set of constraints in the stress ratioing technique and evaluate the 

Lagrange multipliers appearing in the optimality criterion approach for 

multiple deflection constraints. 

The path for developing these ideas is, however, not clear 

because the constraints imposed on the Lagrangean function to define 

the dual problem are closely related to the Kuhn-Tucker conditions for 



optimality. 	It has been stated [20] that these conditions can only 

indicate if a given design is optimal and give no further information 

as to how the design process should proceed. 	The definition of a 

dual point can be accomplished by the solution of the set of equations 

provided by these conditions, but there is no guarantee that a set of 

subsidiary_cbnditions for feasibility, requiring that the dual variables 

be non-negative, will be satisfied. 	It was therefore necessary to 

develop a method enabling easy transition to a feasible solution to the 

' dual problem satisfying the non-negativity conditions. 

Finally a design procedure based on the saddle function and 

trying to make full use of the information available in both primal and 

dual problems is proposed. 	The extension of the design process when 

an approximate procedure has terminated at, or is converging to, a 

non-optimal design is also discussed. 

1,2 Summary of chapter content 

In Chapter 2 the design problem is defined together with the 

basic terminology which will be used throughout this thesis. 	The 

geometry of the optimum point in design space is also investigated and 

the Kuhn-Tucker necessary conditions for optimality are defined. 	These 

conditions are introduced here because in Chapter 3 it is shown that 

they can be recovered from the Lagrangean saddle-function for the design 

problem by imposing the zero derivative conditions which define the 

stationary point of this function. 	This stationary point is then 

shown to be a saddle point and duality concepts are introduced. 

The strategies followed by the mathematical programming procedures 

for constrained problems are investigated in detail in Chapter 4, and the 

Lagrangean saddle-function and duality are proposed as the basis for 

relating the different automated design procedures. 	The classical approach 

of Lagrange, projected gradient and linear progrmming, and the penalty 

function methods are considered in detail. 	Approximate methods for 

structural design are also introduced and derived from the saddle function. 

Chapter 5 is intended to clarify a number of points previously 

suggested without proof. 	Convex sets and functions are described and the 

simplifications arising in the design problem if the merit function is 



convex and the design space a convex region are discussed. 	The 

saddle point only exists if certain convexity and concavity conditions 

are satisfied, at least locally, by the merit function and constraints. 

In fact the theory of duality is derived in the branch of mathematics 

known as Convex Analysis [27] from certain conjugacy relationships 

between convex functions. 

All linear programming problems are convex and the relation-

ships used to define a solution to the dual problem corresponding to 

a particular feasible solution to the primal are identified. 	At the 

optimum a transition between feasible points in both primal and dual 

problems is possible. 	The generalization of these ideas, to allow the 

definition of corresponding pairs of primal and dual points which are 

feasible but not optimal, forms the basis of the following chapters. 

In preparation for this work the convex primal problem of geometric 

programming [28] is defined and the corresponding concave dual is 

derived from the Lagrangean saddle-function. 

In Chapter 6 procedures for generating bounds are developed 

and an active set strategy for redesign is proposed. 	The general form 

of the primal and dual problems based on the Lagrangean saddle-function 

is considered first, but it is found that entry into the dual can be 

blocked by negative Lagrange multipliers. 	The same basic equations 

can however be recovered if a particular form of approximation is made 

to the primal problem and the geometric programming dual formulation 

used. 	The advantage of this approach is flexibility in that negative 

Lagrange multipliers can be removed and entry into the dual problem 

achieved. 	Considerable emphasis is placed on showing the similarity 

between this dual entry formulation and the corresponding procedures for 

the dual based on the original form of the primal problem and the saddle 

function and used in [25]. 

Pivotal relationships exist at the primal dual interface with 

sets of equations based on the same coefficient matrix defining either 

primal or dual solution points. 	The occurrence of singularity in this 

set of equations is investigated and a redesign strategy based on the 

same coefficient matrix is developed in this chapter. 	Since the 

dimension of the dual problem depends on the number of active constraints, 
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it is proposed either to conduct a search in the dual problem if few 

constraints are active, or to work with active set strategies in the 

primal problem when many constraints are active. 	Bounds would be 

generated in both cases by the transfer between primal and dual problems 

with the dual used to select the active set in the second procedure. 

A basis of constraint vectors is also required to define the dual 

problem so that examination of the current primal design can assist 

the formation of the dual. 

Practical considerations related to the application of the 

procedures based on the geometric programming dual formulation are 

discussed in Chapter 7. 	Three preliminary examples are then presented. 

These examples only have two or three design variables and the 

mathematical operations required can be performed with the aid of a 

desk calculator. 	However these examples illustrate the existence of 

the dual and the use of the procedures proposed to generate bounds. 

A simple active set strategy is used in one of the examples to produce 

a sequence of improving designs so that it can be shown that the bound 

generated will converge to the optimum. 

Convergence of iterative design procedures is then discussed 

in Chapter 8. A convergence theorem is considered to isolate the minimal 

requirements which must be satisfied to rigorously guarantee that the 

redesign procedures will produce the optimum design. 	The use of the 

bound as a- termination criterion for the design process is considered. 

It is also suggested that the dual procedures can be used to check the 

redesign strategies of approximate methods, and that simple transfer can 

be made to mathematical programming procedures based on the saddle function 

to extend the design process if necessary. 

A set of derailed examples for application of the procedures 

based on the geometric programming formulation are then presented in 

Chapter 9, 	Although the methods are generally applicable, and the 

first preliminary example involves the minimum cost design of a 

chemical plant, these detailed examples all involve the minimum mass 

design of aerospace structures subject to stress, deflection and 

minimum size  constraints. 	Examples are constructed to test the new 

procedures on a variety of problem types. 	Problems with linear and 



non—linear merit functions are considered together with problems in 

which either a few or many non—linear constraints are active at the 

optimum. A problem is also devised in which the matrix of coefficients 

in the pivotal operation between primal and dual problems is singular. 

It is acknowledged that the Michell structure [11] can be used as an 

absolute minimum mass design for certain constraints, against which 

the merit of a given design can be assessed. However it is shown that 

the formulation in this thesis for generating bounds is more general and 

allows the merit of a given design for a defined configuration and topology 

to be assessed. 	The application of the approximate redesign procedures, 

based on the fully stressed design concept and the optimality criterion 

approach to these examples, is also discussed. 

The conclusions drawn in Chapter 10 relate firstly to the 

usefulness of the bounds in providing a method for assessing the merit 

of a given design. The identification of a unifying framework 

encompassing the mathematical programming procedures and the approximate 

redesign strategies is also considered significant. 	It is also concluded 

that the general strategy for design which is discussed could provide a 

useful extension to modern automated procedures. 	It involves attempting 

to identify; and use in an integrated fashion, those procedures which 

require a minimum of computational effort while guaranteeing that the 

process will converge to the optimum design. 

Finally the appendices give details not contained in the text. 

A description of the computer programs developed in this research project 

can be found in [44]. 
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CHAPTER 2 

THE DESIGN PROBLEM 

2.1 Introduction 

In this chapter the design problem is defined together with the 

terminology which will be used throughout the thesis. 	The geometry of 

a constrained optimum is investigated and the Kuhn-Tucker necessary 

conditions for optimality are defined. 

202 The mathematical model of the design problem 

The optimum design problem can be stated mathematically as 

minimize (or maximize) f(xl,x2,....,xn) = 	 (1) 

subject to'the satisfaction of a set of constraints which may consist of 

inequality constraints 

gi(X) 	< 

and equality constraints 

gi(i) 	= 

1 

1 

= 

i = Z+1,....,m 

(2)  

(3)  

The design variables are also usually restricted to be non-negative 

x.1  > 0 	 = 1,....,n 	, X e En  . (4) 

Any design X which satisfies the constraints is said to be a feasible 

design, and a feasible design X*  which makes f() an absolute 

minimum (maximum) is the optimum design. 

The design variables X may be any quantifiable aspect of the 

design problem such that when numerical values have been chosen for 

them the design is specified. 	For the structural design applications 



constrained minimum 
of fix) 

70. 
unconstrained min of f(x) 

f(x). constant 

REGION 
•••• • 	• • 

:";) 
oP f(x)decreasing 

they describe the configuration of the structure, the most common being 

member sizes and parameters describing the geometry of the structure. 

The merit or cost function f(X) constitutes the basis for selection 

of one of several alternative feasible designs. 	It represents the 

most important single property of the design, such as cost or weight, 

or the weighted sum of a number of properties. 	The constraints 

g.(X), i=1,....,m , consist of all restrictions which must be imposed 

for the design to be acceptable. 	For structural design these can 

include maximum stresses and deflections, minimum and maximum member 

sizes, limits on frequencies and others. 

In this thesis only the problem of minimizing the merit function 

will be considered, but it should be noted that 

minimize ( -f(x) ) 

will recover the maximization problem expressed in (1). Wherever 

possible, diagrams will be used to illustrate the geometry of design 

space and the axes for these diagrams will correspond to the design 

variables. 	The diagrams must necessarily be restricted to two, or 	at 

most three dimensions,but the concepts of planes and surfaces, 

representing contours of constant values of functions in three dimensions, 

generalise to hyperplanes and hypersurfaces inn-dimensions. 

A simple design space in two dimensions is illustrated in 

Fig. 1 with three inequality constraints. 	At the point 0 on the 

Xl 

Figure 1 A simple design space with inequality 
constraints 
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boundary of the feasible region constraints g1() and g2(X) are 

satisfied as equalities and are said to be active. 	The inequality 

sign holds for g3(X) at the point 0 and this constraint is said to 

be not active. 

Finally the gradient vector needs to be defined. 	For a 

general function h(X) , where x is an 4-dimensional vector, the 

gradient vector is given by 

Vh(x) = 

Given an arbitrary direction d , Vh(X)t  d gives the instantaneous rate 

of change of h along that directioni(kemtt.e .,0M1 0g a is one). 

2.3 	The Kuhn-Tucker 

the derivatives 

of 

necessary conditions for optimality 

Classically the minimum of a function 	f(X) 	is found by setting 

to zero, 	that is, 

0 	i 	= 1,....,n 	or simply 	Vf = 0 . 	(5) 
x=x*  

with inequality constraints illustrated in Fig. 1, it is 

3xi 

For the prcblem 

clear that condition (o) must be modified as we are now seeking the 

constrained minimum of f(X) rather than the free minimum. 	Geometrically, 
11,e. 

at the optimum point the negative gradient of the merit function, 

-of(X) , lies in the cone formed by the gradients of the active 

inequality constraints as shown in Fig. 2. 	Hence -7f(X*) is 

expressible as a non-negative linear combination of the gradients of the 

constraints active at the optimum. 

ah(x) 
axi 

• 

• 

0 



if(x) 
decreasing 

f(x)= constant 

off(  

Vg (x") 	Vg (x") 

-V f X.1) 

This concept can be extended to equality constraints by 

noting that, if the constraint g2(X) had to be satisfied as an equality, 

neither the optimum nor the condition for optimality would change, 

although the feasible region would now only exist along the curve 

g2(X) = 1 . 	However, if g3(X) was forced to be active, the optimum 

would be at point E and the gradient of g3(X) would have a negative 

coefficient to set up the constraint cone enclosing the negative gradient 

of the merit function. 	The sign of the coefficients of the gradients 

of the equality constraints is therefore unrestricted in this relationship. 

Therefore the condition on the constrained derivative, 

3f(e) 	9g(X*)  
2_, X- 	> 	0 , with A. > 0, i = 1,...,t , (6) 

Dx. 	. 	• 	1—  
J 	1=1 	

axj 

j = 1,...,n , 

mustbesatisfiedattheoptimumwithequalitylloldingforx.*> 0 . 

The auxiliary conditions 

X. 	g.(e) - 1 J 
	

= 	0 , 	i = 1,....,t , 	(7) 

for the inequality constraints (2) must also be satisfied to ensure that 

constraints not active at the optimum, such as g3(X) in Fig. 2, are 

eliminated (if ga. 1  (x*) < 1 , A. - 0 ). 	Conditions (7) are automat- 

ically satisfied by the equality constraints (3). 

x2 

Figure 2 The geometry of a constrained optimum 
(all constraints inequalities) 
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Conditions (6) and (7) together with (4) are necessary conditions 

which must be satisfied for a design to be optimal and, together with 

a condition that X*  be feasible, they are called the Kuhn-Tucker 

conditions [2]. 	A certain constraint qualification must also be 

introduced to rule out irregular behaviour or singularities on the 

boundaries of the set of feasible solutions. 	This qualification requires 

that Vg.I(X) for all active constraints be positively linearly -- - 
independent. The Kuhn-Tucker conditions can be shown to hold at the 

optimum providing only that this constraint qualification is met. Note 

also that the necessary condition for an extremum of an unconstrained 

problem is a special case of (6) when no constraints are active. 

The Kuhn-Tucker conditions are qualified as necessary 

conditions because their satisfaction is not sufficient to define the 

design as the global optimum. 	Conditions (6) will be satisfied if X*  

is a local minimum as well as the global minimum. At the local optimum 

X*  minimizes f over a feasible neighbourhood of X*  , while at a 

global optimum X*  minimizes f over all feasible points in En  . 

Throughout the thesis the asterisk will be used to denote both local 

and global optimality. 

Certain convexity conditions must be satisfied for the 

necessary conditions to also be sufficient to ensure global optimality, 

and these will be discussed in Chapter 5. 	Considerable use will also 

be made in the following chapters of the geometric interpretation of 

the Kuhn-Tucker conditions discussed in this section. 
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CHAPTER 3 

THE LAGRANGEAN SADDLE-FUNCTION AND DUALITY 

3.1 Introduction 

In this chapter the Lagrangean function is defined. 	The 

conditions for the stationary point of this function relate directly 

to the Kuhn-Tucker conditions set out in the previous chapter. 	This 

stationary point is a saddle point and the concept of duality is 

introduced. 	It is then suggested that the saddle function can form 

a basis relating the different techniques for automated design and 

that the existence of dual problems may enable bounds on the optimum 

value of the cost function to be found. 

3.2 The Lagrangean saddle-function 

Departing from geometric arguments, a general problem can be 

formulated from which the Kuhn-Tucker conditions can be derived. The 

design problem is first rewritten as 

minimize f(x) 

subject to 	gi(x) < 1 
	

i = 1,....,p , 

X > 0 	i.e. g.(x) = 1 	x. 	< 1 , i = p+1,....,Z , 

and 	 gi(X) 	1 	= t+1,111000,M 

for X c E
n 
. 	This problem can now be replaced by the problem of 

finding the stationary point of the Lagrangean function 
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- ] 
 

(9)  
1=1 

where the 	X. 	are called Lagrange 

L 

multipliers and 

X. 	0 	i = 

The non-negativity conditions on the design variables (4) have been 

incorporated into the inequality constraint set only to simplify the 

notation in the following derivations. 	Note that the Lagrange 

multipliers in (9) are unconstrained in sign for the equality constraints. 

The necessary conditions for optimality, (6) and (7), are 

recovered by imposing the conditions which define the stationary point 

of this Lagrangean function, 

and 

31, 
0 

- 	0 

for 

for 

x. 

X. 

X af(e) ag.(e) 
= 	0 

(10)  

3x. 

DL 

c 

A c 

A-* Dx. 	=1 i 

A. 	- 1 

Dx. 

. 	. 	. 

= 	0 , DX. [ g.(x*) 
J  

j 	= 	1,....,.2 	, 

andgJ 
.(x*) = 1 , 

	j = t.+1, 	 ,m 

. . . (11) 

where A = 	X = n)t 	A. > 0, i = 

X =ixl x. > 0 	x E En  
t 

The stationary point of this function L(x*,X*) therefore defines at 

least a locally optimum design if X*  is feaoible. 

To illustrate the nature of this stationary point, contours of 

the Lagrangean function (9) for the simple problem, 

minimize f(x) = (x - 2)2  subject to x S 1 , 

- 15- 



are plotted on Fig. 3. 	The Lagrangean function for this single variable 

problem is 

L(x,X) = (x 	2)2  + 	- 1) 

and the stationary point is defined by 

(i) ax 
= 0 = 2(x - 2) 	= 0 2 

aL (ii) — = o 	x = 1 . 
DA 

Substitution for x from (ii) into (i) gives the stationary point A as 

the point (1,2) . 	It can be seen from the contour diagram that this 

stationary point is a saddle point with the point A being the focus of 

a minimization problem parallel to the x-axis and a maximization 

problem in the direction DD . 

Figure 3 Contours of the Lagrangean saddle-function for the problem: 
minimize f(x) = (x-2)2, subject to x<1 
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The stationary point can be shown to be a saddle point for 

general problems if the merit function and constraints are convex near 

this point by identifying the primal and dual problems associated 

with the Lagrangean function. 

3.3 Duality 

The Lagrangean saddle-function gives rise to the duality 

concepts encountered in many mathematical programming procedures. 	If 

we invoke local convexity conditions near the saddle point, we can 

identify the following two problems. 

1. The primal problem 

Find the extremum of L(X,2) for the variables X with A 

satisfym3 	1:2.j  eflokAwAtzaitOn of ay , e) Lo.A. rt5i>e-,-f 10 X eilLef 

n =  1,00.0,M 

(with Ai = 0 	for 	gi() < 1 
	

i = 1,....,i) 	. . . (12) 

It can be shown mathematically that this extremum is a minimum. 

However it is intuitively obvious since enforcing (12) ensures 

L(X,X) = f(x) , and a minimum of f(X) in (9) is being sought. 

This primal problem corresponds to selecting the minimum value 

of L(x,A) from points along the lines P'P' and PP for the problem 

illustrated in. Fig. 3. 	The original design problem (8) can be recovered 

from this primal problem by noting that condition (12) requires either 

Ai = 0 or gi(X) = 1 . 	In either case 

minimize max L(X,A) 	= minimize f(x) 

xa AeA 	xcX 

where X 	= 	x I gi(X) 	1 , 	i = 1,....,t ; 

	

gi(X) = 1 , 	= t+1,....,m ; x > 0 

xt or 	 = 0  
i 	 • 

-17- 



2. The dual problem 

Find the extremum of L(X,X) for the non-negative variables A , with 

X defined to satisfy 

aL _ 
axi 

0 i = 1,....,n 	 (13) 

It can be shown mathematically, but is again intuitively obvious, 

thatthisextremumisamaximmisincethe A must be driven to zero for 
J 

g.(x) < 1 to satisfy condition (7). 	This problem is called the dual 

problem and corresponds to the segment of the line DD for which X > 0 . 

The optimum for both primal and dual problems is the stationary 
A A 

point (x,X) . 	However, the direction of extremization in these problems 

indicates that the inequality 

L(X,A) < L(2,b < L(x,5) 	 (14) 

is satisfied. 	The stationary point will therefore be a saddle point if 

the local convexity conditions are satisfied. 

An interesting property of the primal and dual problems is 

that the directions 13'13' of the primal problem and DD of the dual 

problem are conjugate with respect to the Hessian matrix of second 

partial derivatives. 	This can be demonstrated by determining the 

Hessian matrix H for the Lagrangean function illustrated in Fig. 3. 

a2L a2L 
-577  DxaX 

a2L a2L 
3A.x 

and for 	L(x,X) 	= 	(x - 2)2 	+ 	(x - 1) 

2 	1 
H 

1 	0 

Now the primal direction 	P'P' 	is given by 	
=   1 

0 
L 	J 

H 
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81, 
The dual direction DD is defined by 3x — = 0 = 2(x - 2) + A 

1 
Therefore the dual direction is p2 = and 

-2 

PitHP2 	= 

The directions 

1 
1 	ol 

pi 

	

2 	11 

	

1 	0 

and p2 

1 

are 

= 

therefore 

_2  

 

[ 2 	1 

said to be 

1 _2  

H-conjugate. 

= 	0 . 

This condition is sufficient to ensure that the primal and dual vectors, 

pi and p2 , for the quadratic Lagrangean saddle-function are independent 

and therefore the vector set p is a basis in the two-dimensional 

vector space. 

304 Summary 

In this chapter the Kuhn-Tucker conditions for optimality have 

been shown to be equivalent to requiring the existence of a stationary 

point of the Lagrangean function for the design problem. 	The concepts 

of duality, commonly encountered in mathematical programming, are then 

recovered when it is recognised that the stationary point is a saddle 

point. 

In addition, the inequality (14) indicates that feasible 

solutions to both primal and dual problems will define a range in which 

the optimum value of the merit function must lie. Therefore, if a 

feasible solution to the dual problem could be defined such that it 

would converge to the optimum as the design in the primal problem 

improves, then a method for assessing the merit of a given design would 

be available. 	It should also be noted that the dual variables would 

have to converge towards satisfying (7) and would reflect constraint 

activity levels. 	It should therefore be possible to use the dual to 

provide information to supplement search procedures in the primal 

problem, and these points will be pursued further in the following 

chapters. 	However, in order to demonstrate the unifying role played 	by 

the saddle function and duality in automated design, the search strategies 

of a number of mathematical programming procedures are studied in the 

next chapter. 
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CHAPTER 4 

THE LAGRANGEAN SADDLE-FUNCTION AS A BASIS FOR 

AUTOMATED REDESIGN STRATEGIES 

4.1 Introduction 

In this chapter the Lagrangean saddle-function is shown to 

form a useful basis relating a number of mathematical programming 

procedures for automated design. 	The role this function plays in the 

sensitivity studies of post-optimal analysis is also discussed and 

the derivation of two approximate redesign strategies from the 

Lagrangean function is summarized. 	It is shown that all the design 

procedures considered attempt to either satisfy directly the conditions 

(10) and (11),which define the saddle point, or form approximations to 

the Lagrangean function itself. 

4.2 A basis for mathematical programming procedures 

(i) 	The classical approach of Lagrange 

In Section 2.3 it was established that the optimum design for 

problem (8) defines a stationary point of the Lagrangean function. 	If 

only equality constraints are considered the design problem becomes 

minimize 	f(xl ,....,xn) 	= 	f(x) 

subject to the constraints 	gi(X) 	= 	1 	i = 12 0000 2M 	2  

o o o (15)  
with 	m < n . 	The definition of the stationary point of the 

corresponding Lagrangean function 

rn 
L(x,X) 	= 	f(x) 	E Ai  

i=1 
[ gi(x) - 1] (16)  

then requires only satisfaction of the conditions 
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3L 

	

- 0 , 	j = 1,....,n 
3xj 

axj 	0 , 	j = 1,....,m 

Since all the constraints are equalities there are no positivity 

conditions on the Lagrange multipliers to be satisfied. 	Note also 

that the restriction that m be less than n is imposed because if 

m = n the solution of the constraint set in (15) will uniquely define 

the design variables, and if m > n the design is overspecified. 

Equations (17) and (18) are a system of n + m equations in 

the n m unknowns X and X . Their solution will therefore lead to 

the set of variables X*  and A*  which define the stationary point 

of the Lagrangean function and hence the optimum design. The 

satisfaction of the constraints is guaranteed because conditions (18) 

require the constraints to be active, that is, 

3L 
3 • Xj  

- 0 	===> 	g .
J 
 (x) = 1 . 

This classical Lagrangean approach would appear to provide a 

very powerful technique for design when the active constraint set can 

be identifie.! and the functions are continuous and differentiable 

within a given closed region. 	However the equation set defined by (17) 

and (18) will in general be non-linear and their solution can impose 

severe computational difficulties. 	The classical approach is also 

not practical when the active constraint set for the optimum design 

cannot be determined in advance. 	The numerical search procedures of 

mathematical programming have been developed to overcome these problems 

by conducting a search through design space for the constrained minimum 

of the merit function, including the inequality constraints in the 

formulation as they are encountered. 

(ii) 	Penalty function methods 

The simplest penalty function methods [9] are indirect numerical search 

procedures which try to set up an approximation to the Lagrangean 

function defined in Section 3.2. 	That is, they try to set up 

and 

2 
	 (17) 

(18) 
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approximations to 

L(x,x) = f(x) 	E Ai  [ gi(X) - 1] 
i=1 

(19) 

where 	X c X and 	A c A . 

The basis for these methods is then a numerical procedure to 

perform the unconstrained minimization of a multi-dimensional function. 

Numerous computationally efficient algorithms exist to perform this 

task [8], the most obvious (but seldom the most efficient) being the 

steepest descent procedure whose search strategy is summarized by the 

equation 

x
vq-1 

X 	+ a Vcp(x) 	. 	 (20) 

Here v refers to the iteration number, a is a step length and 

Vcp(X) is the column vector of the gradients of 4  , the function being 

minimized. 

where 

and 

and 

	

If we define 	(1)(X) 	as 

m 
(p(x) 	.= 	f(x) 	E 	Si  pi 

i=1 

di 	= 	0 	if 	gi(X) 	< 1 	, 	i = 1,....,Z 

or 	gi(X) 	= 1 	, 	i = Z+1,....,m 

(S. 	> 	0' 	if 	gi(X) 	> 	1 	= 1,••0•1M 1 

6, 	< 	0 	if 	gi(X) 	< 1 	= t+1,....,M 

_ = 	1,....,m P. 	= 	( gi(x) - 1 ) 	, 	i 

(21a) 

i.e. constraints 
not violated 

. 	. 	. 	(21b) 

i.e. constraints 
violated 

 

o 	(21c) 

(21d) 

then the analogy between (21a) and the Lagrangean function (19) is clear. 

This procedure would effectively form an approximation to the Lagrangean 

function setting the Lagrange multipliers in an artificial way. 
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2 3 4 

61 — 0 

4- Unconstrained 
minima of the 
augmented function 

Insight into how these pseudo-multipliers should be set, and a 

greater understanding of the analogy with the Lagrangean function, 

can be obtained by applying this procedure to the simple problem given 

in Fig. 3. 	If we start from a feasible design (x<1 and 61=0) the 

unconstrained steepest descent search will generate a sequence of 

points along the line P'P' until the constraint is encountered at 

x=1 . 	If 61 remains equal to zero an unconstrained minimum of cp(x) 

is encountered at x=2 , the intercept of the lines X=0 and DD . 

However, if once the constraint was violated 61 is set equal to one, 

in accordance with (21c), an unconstrained minimum of (1)(X) would be 

found at x=105, the intercept of the lines X=1.0 and DD . 	If we 

set 61>2.0 the steepest descent search would drive x less than one, 

61 would have to be set to zero in accordance with (21b) until the 

constraint was again encountered, and the procedure would therefore 

oscillate about x=1 for 61>2.0 . 	The augmented function cp(X) is 
plotted in Fig. 4, and it can be seen that the solution to the 

unconstrained problem approaches the correct solution to the design 

problem at x=1 as 61 is increased. 	Setting Si  large early in the 

search for a problem with more than one constraint can lead to 

numerical difficulties which are indicated by the oscillatory behaviour 

just discussed when 61 was set to a value greater than two. 

A detailed description of the penalty function procedures is 

given in [9] where several more practical strategies for setting the 

parameters 6 and choosing the form of the penalties pi are discussed. 

Figure 4 The augmented cost function for the problem in Fig. 3 

- 23- 



Procedures similar to those described above are called exterior point 

algorithms. An alternative form is the barrier function or interior 

point algorithm which use an augmented function of the form 

1  
(1)(X) 	= 	f(X) 	1: 

6i (gi() - 1) 1=1 
(22) 

The parameters 6 are given positive values at all times so that the 

surface of (p(x) represents the normal merit function with sharply 

rising barriers near the constraints. 	The design remains feasible 

during the search and a constrained optimum is approached as the values 

of 6. are set small. 

The direct analogy with the Lagrangean function (19) does 

not apply for the augmented function of (22). 	However, if 4)) is 

minimized with set values for the parameters 6 then at the minimum 

i =  1,....,n 4  
axi  

and therefore @f 0S) 	6i 	agi(X)  

1=1- 1  - ax.
J 	

(g-(x) - 1)z ax. 0 

i = 1,....,n 

. . . (23) 

Equations (23) and (10) are the same, except that 
(gi(X) - 1)2  

replaces A. . 	Since they both hold at the optimum (x*,A*) 

(gi(L*) 	1)L 
	i=  1,....,m 

Thus minimization of the auiolented objective function (22) for given 

values of the parameters 6i  may be considered to be an evaluation of 

the corresponding dual problem with a A other than X*  . 	The 

analogy only exists after each minimization because conditions (10) 

(and hence (23)) are the constraints of the dual problem and therefore 

must be satisfied. 

These penalty function algorithms are possibly the most 

flexible of the mathematical programming procedures. 	The exterior point 
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algorithms do not need feasible starting points and therefore can 

provide a powerful technique for generating feasible but not 

necessarily optimal designs, a task which is not always easy in 

engineering design. 	The exterior point algorithms can also consider 

equality and inequality constraints with equal ease and search procedures 

which do not.require gradients can be defined if gradient evaluation is 

difficult. 	However, these procedures are limited to problems with only 

a relatively small number of variables unless the function evaluations 

are extremely simple because up to 40n(n+1) function evaluations could 

be required during the search for the optimum [30]. 

(iii) Projected gradient and linear programming procedures 

Projected gradient and linear programming procedures are 

direct search procedures which can be included in a rather broad class 

of feasible direction methods. 	In these methods a feasible direction 

is a direction in which a move can be made without violating the 

constraints, and a usable feasible direction is a feasible direction 

which also improves the merit function. The projected gradient 

method [31], for example, tries to move in the direction of the 

negative gradient of the merit function, projecting on to the surface 

of those constraints which would be violated. 

An interesting derivation of the projected gradient method 

results if an attempt is made to define an algorithm which tries 

directly to satisfy (10). 	That is, it tries to satisfy 

vf(e) 	E X.* V g. (X*) 	= 	0 	X.>0, i =1,....,t 
1=1 1 1 

 

for x. > 0 

and with X.* [ gi(X*) 

i = 1,....,n 

- 1 1 	= 	0 
	

i =  1,0A00,M 

J 

Condition (24) is a necessary condition for optimality which can be 
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rewritten in matrix form as 

Vf + G A = 0 	for 	A s A 	(25) 

For a given initial feasible design Vf(x) and Vai(X) for the currently 

active constraint set will be defined. 	It is therefore possible to 

check for optimality by solving (25) (with G containing only the 

active constraints) for the multipliers A and checking that the 

positivity condition in (24) is satisfied. 	Since G will in general 

not be square a least squares fit for the multipliers must be obtained 

in the following way. 

Rewriting (25) as 

G A = -Vf 

premultiply by Gt  to obtain 

Gt G A =GtVf 

Hence 	 - ( Gt G) -1 Gt 
vf 
	

(26) 

In general a least squares fit for A will be obtained and (25) will not 

be satisfied identically. 	Therefore we can define 

P = Vf + G 
	

(27) 

with P 	0 implying that the current design is not optimal. 

Substituting for A from (26) into (27) gives 

= Vf - G(G -t  G)-1 Gt  Vf 

Therefore 
t., P 	= 	[ I 	G(G-ti)-1 G t 
	Vf . (28) 

Now if P # 0, (10) implies VL(X,A) # 0 . 	The Lagrange multipliers 

can be set by (26), and a steepest descent path followed to minimize 

L(X,X) with respect to X . 	That is, the design can be improved by  

defining 
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x 
v+1 

= X 
v a P 	 (29) 

where v refers to the iteration number and a is a step length. 

It can now be shown that the projected gradient algorithm 

has been redovered by deriving an expression for the projection p of 

the negative of the gradient of the merit function into the active 

constraint set, the direction used in the projected gradient search. 

Figure 5 Projection of the gradient on the constraint 
hyperplane 

Vectorial addition on Fig. 5 gives 

p 
	

• 	

-Vf(X) - d.Vg.1  (x) 
1- - 

and for projection into m active constraints 

• -Vf(x) - 	d.Vg.(x) 
i=1  

or 	

• 

-vf(x) - G D 
	

(30) 

where D 	= 	d1,d2, 	 , 	Jt 
dm  

Now since p is perpendicular to each of the gradient vectors Vg.(X) 
--1 - 

0t2 = 0 = -Gtv_f. - GtG D 
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Hence 	GtGD = -Gtvf 

and 
	

D = -(Gt  G)-1  Gtvf 	 (31) 

Substituting for D from (31) into (30) gives 

P 	= -Vf + G(G
t
G)-1  Gtvf 

and hence 	-P = 	G(GtG) -1 Gt I of 
	

(32) 

Comparison of (32) and (28) shows that the direction -P used 

in the steepest descent search of (29) is in fact the direction of 

search used in the projected gradient algorithm. 	Satisfaction of the 

non-negativity condition in (24) requires that the Lagrange multipliers 

X. , and hence the d. , corresponding to inequality constraints be non- 

negative at the optimum. 	Inequality constraints with negative Ai  or 

di  must be dropped from the active set and a new projection direction 

defined. 	Only one constraint can be dropped at a time, and a general 

rule is to eliminate the most negative Lagrange multiplier. 

Movement in the projection direction will only continue to 

satisfy the active constraints if they are linear, and iterative procedures 

may have to be defined to enable the algorithm to return to the 

active constraint surface after each step. However, for linear 

constraints the procedure can move in the projection direction until 

either f(X) attains a local minimum or a new constraint set becomes 

active. 	If the merit function is also linear then a local minimum 

will not exist and the optimum will lie at an intercept of the constraints. 

When the merit function and constraints are all linear the 

design problem is called a linear programming problem. 	To demonstrate 

the existence of a dual problem, the linear programming dual will be 

derived here. 	The linear programming formulation will also be used 

in the next chapter to introduce the new procedures for generating 

feasible solutions to both the primal and dual problems. 

Consider the problem 

minimize atx  
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subject to the constraints 	Ax > b 

and x > 0 

. . (33) 

The dual problem as defined in Section 3.3 is 

maximize L(X,X) 	= gtx + xt(b - Ax) 

subject to the constraints 31, > 0 	j = 1,....,n with equality 
3 	

, 
xj  

holding for xj  > 0. 	That is, 

qt - tA > 0 

and 	A > 	. 

Nwcit -Xtiot>0,withequalityholdingforthosex.
3 
 >0 , implies 

qtx - xtAx = 0 

Therefore the dual problem becomes 

maximize X
tb 

A 
subject to the constraints XtA  <:qt 

and A 	0 

At! Sq 

. . . (34) 

The simplex algorithm [32] takes full advantage of the 

simplifications made possible by the linearity of these problems. 

However the selection of the active constraint set is still based on 

the Lagrange multipliers. 	The sensitivity coefficients for slack 

variables, which reflect the activity levels of the inequality constraints, 

are given Ly these multipliers [29]. 	The Lagrange multipliers are also 

the dual variables in (34). 	This indicates why the optimal values of 

the dual variables are given by the sensitivity coefficients for the 

slack variables in the optimum simplex tableau generated by the simplex 

algorithm. 
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(iv) 	Sensitivity studies 

Sensitivity studies are a form of post-optimal analysis which 

do not involve a definite search strategy. 	However they form an 

important branch of mathematical programming which is again based on 

the Lagrangean saddle-function. 	These studies are aimed at determining 

the sensitivity of the optimum design to changes in the constraint 

limits and cost coefficients, and can also be used to assess the 

sensitivity of the solution to inaccuracies in the mathematical model of 

the design problem. 

For the design problem 

minimize f(X) subject to g.(X) 5 b. 	, 	i = 1, 	 
,m 

thederivativeoff(x*)withrespecttob.is given by the chain rule 

as 

     

     

of 
ahi  x", A* 

axi 

X * X  * 	alp • * * X ,X 
(35a) 

      

      

Considering only the m' active constraints, for which gk(x) = bk  , we 

can write 

     

X 

s 

yA 

3x; 
3bi x", A*  

= dik , 	k = 1,....,m' 

      

where 75ik is the Kronecker delta (Tik = 1, i = k; 	Tik = 0, i 	k). 

Multiplying this last equation by Ak*  , summing over all k's and 

adding the sum to (35a) gives 

  

, 

Ak* 	22, 
k=1 	j=1 / af.] 

 

   

of 
abi * x* ,X * X* 

,X 

    

    

m' 

Xk*  a 
k=1 	

xj 
 

 

x *,X * 
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The term in the brackets has been shown to be zero. 	Therefore 

of 
3b. * * 

1  

The Lagrange multipliers therefore give the perturbation to the 

optimum value of the merit function caused by altering the constraint 

limiting value. 	This relationship forms the basis for sensitivity studies. 

The sensitivity to changes in the coefficients of the cost function follows 

from direct differentiation of f(x*) with respect to the coefficients. 

The relation (35b) is a further property of the saddle function which will 

be studied in Chapter 6. 

- Xi*  (35b) 
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4,3 The development and extension of approximate 
redesign procedures 

In addition to the mathematical programming procedures described 

in the preceding section, a number of special strategies for structural 

design can be derived from the Lagrangean function. The examples which 

will be considered in Chapters 7 and 9 involve the minimum mass design 

of aerospace structures and two approximate redesign strategies will 

be discussed. 	These are the stress ratioing procedure for stress 

limited design for a given topology and geometry, and the envelope procedure 

based on the optimality criterion approach to design for deflection 

constraints under the same configuration restrictions. 	The derivation 

of these two procedures will be summarized in this section. 	The 

approximations arise because the redesign formulae are applied to 

conditions not defined in the Lagrangean formulation. 

(i) 	The fully stressed design concept and the 
stress ratioing procedure 

The merit function considered is the mass of the structure 

given by 

2: p.c.x. 
i=1 

where pi  is the density of the material and ci  is a positive constant 

which depends on the type of structural member being considered. 	The 

design is subject only to a general stiffness requirement 

iRtr = k 	 (36) 

The Lagrangean formulation for this problem requires that the 

stationary point of the function 

L(X,X) = 	picixi+ AOR
t
r - 

i=1 

be found. 	The condition DX = 0 is automatically satisfied if the 
1, 

constraint (36) is imposed. 	The second condition 	= 0 requires 
DX 

p.c. + 
1 1 

aoRto = 
Dx. 1 

0 i =  1,011.00,n 
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or 1 
A 
• constant , 	i = 1,....,n 

Following the derivation in [33] leads to the criterion 

u • 
• constant (37) X.C.P. 1 1 1 

where u. is the total strain energy in the ith  element. 	For 

elements in which the stress remains constant 

u. = 2 E. 
1 

Substitution into (37) now gives 

constant , 	i = 1,....,n 	. 	(38) 

This is a condition which must be satisfied at the optimum and gives a 

criterion for optimality. 	If the density and Young's modulus E is 

constant throughout the structure (38) requires that the stress in all 

the members be the same. If the same limiting stress is applied to all 

members then the fully stressed design concept is recovered. 

1%,r statically determinate pin-ended bar structures the 

stress in each member is given by 

ki 
a. 
1 	xi 

i = 1,....2n 

For these structures the optimality criterion (38) can be satisfied in 

a single refiesign step,after analysing the structure for stresses, 

using the formula 

.2 . . al  xici  

E.
1
p. 

v+1 	v a.v  

	

x. 	= x. —1-- 

	

1 	1  clam 
= 1,0800 ,n (39) 

Herev=landx.v+1 is the optimal value for a statically determinate 1 
structure. 

The stress ratioing formula (39) is only approximate for 

redundant structures and iterative procedures result with v being 
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the iteration number. 	When multiple stiffness requirements, such as 

multiple load cases, are applied to the design problem more than one 

Lagrange multiplier appears in the Lagrangean formulation and prohibits 

the recovery of a simple redesign formula such as (39). 	However, this 

formula has also been applied to these problems giving an approximate 

iterative redesign procedure. 	The fully stressed criterion is modified 

to require that each member be stressed at the limiting value in at 

least one of the load cases. 	Difficulties have however been encountered 

when the members are subjected to widely differing stress limits and 

material properties. 

Because of the existence of multiple Lagrange multipliers 

which are not evaluated there is no guarantee that the fully stressed 

design, if it can be obtained, will be optimal, when multiple stiffness 

requirements are considered. 	However, Eince the stress ratioing 

procedure is iterating towards the intercept of a set of constraints 

in design space, the Kuhn-Tucker conditions could be checked for optimality. 

If the constraint intercept does not define the optimum negative Lagrange 

multipliers will be found and the projected gradient scheme described 

in Section 4.2 could be used to extend the design process and find the 

optimum design. 	Alternatively a method which adjusts the constraint 

limiting values has to be derived so that the new intercept will define 

the optimum design. 

(ii) 	The optimality criterion approach for deflection 
constraints 

Consider again the design of a pin-ended bar truss but now 

apply only a single deflection constraint, 

r1ira  

and make the design variables the cross-sectional areas of the members. 

Then if F. is the force in the member i caused by the application 

of the load system, and if Ui  is the force in member i caused by 

the application of a virtual unit load to the joint and in the direction 

corresponding to rlim  , the displacement constraint can be written as 
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r 
11m Eixi  

3L 
Again the condition -5T  = 0 for the stationary point of the Lagrangean 

function for this problem is satisfied if this constraint is forced 
aL 

to be active. 	The condition ax — = 0 gives 

p.c. + X E 	
1 

0 	(40) i.1  ax; 
	Eirlim 3 	 xi  

Now terms of the form 

U.ci 	1 3F. 
EiFlim  • X • axe  

1=1 

and similar terms involving derivatives o.f 1 
	

be shown to form 

self-equilibrating  load systems for redundant structures and sum to 

zero. 	For ,statically determinate structures they are automatically 

zerobecausetheforcesF
1  
. and U. are constant. 	Equation (40) 

therefore becomes 

P.c. 
1 1 

Afinsi 
EiFlim  ' xi- 

0 

The Lagrange multiplier can now be eliminated [21] to give the redesign 

formula 

x. 11 Eglim J.1 	E 
j
fiim  

= 1,000.,n • 

. . (41) 

This redesign formula must again be applied iteratively for 

redundantstructuresbecausetheforcesF.1  and i 
vary as the 

design changes. 	When multiple deflection constraints are considered 

the Lagrangean function takes the form 

v- F.c.U. 
111 L(X,A) = p.c.x. 

j=1 	( i=1 Eixi 

aL 
and the condition 	= 0 gives 

3x1  

p = c 	A .. 	F.-U.  
2: 	

c
1  1 	1,....,m 	(42) 

3. 	
j=1 j Eixi 
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Again multiple Lagrange multipliers have appeared in the formulation 

and cannot be eliminated to recover a redesign formula similar to (41). 

However an envelope procedure similar to the method used to apply 

the stress ratioing procedure to problems with multiple load cases 

has been proposed in [21]. 	In this procedure the structure is 

designed for each deflection constraint (and stress and minimum size 

constraint if they are applied) independently. 	The largest value of 

the design variable from all the designs is then taken as the new 

design value. However this procedure is approximate and the projected 

gradient method would again have to be applied if the design produced 

by this scheme does not satisfy the Kuhn-Tucker conditions. 	Alternatively, 

a dual formulation could be proposed in which the conditions (42) would 

become the dual constraints and the Lagrange multipliers would then 

be evaluated as the dual variables in the search for the optimum. 

404 Summary 

In this chapter a number of redesign strategies have been 

shown to be based on the Lagrangean saddle-function. 	The reason for 

isolating this unifying theory is to define a framework within which 

to search for a method for generating bounds on the optimum value of 

the cost function. 	If the method is to be generally applicable it 

should be defined within this unifying framework. 

The identification of a unifying theory will also assist the 

investigation of approximate redesign strategies. 	It should be possible 

to draw on the mathematical programming procedures, which share a 

common basis in the saddle function with the approximate methods, to 

tighten the redesign strategy and continue the design process when 

the appro,rimate methodc do not produce the optimum design. 
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CHAPTER 5 

CONVEXITY, AND CONVEX-PRIMAL CONCAVE-DUAL FORMULATIONS 

5.1 Introduction 

Properties of convex and concave functions and convex sets will 

now be investigated. 	It has already been necessary to resort to 

assumptions that the merit function and constraints are locally convex 

in the proof of the existence of the saddle point and duality. 	The 

property of convexity also ensures the uniqueness of the local minimum 

to which the numerical search procedures of the previous chapter converge, 

so that the global minimum is found. 	It is of particular importance 

that convex regions contain no re-entrant corners and that the gradients 

of convex and concave functions vary in a unimodal fashion. 

The dual and the conjugacy relationships in the saddle function 

can be derived through convex analysis [27],indicating that the unifying 

theory proposed has its foundations in this branch of mathematics, 

Certain useful properties are also defined in convex analysis, 

including uniqueness of the dual problem and conditions under 

which equivalent points can be defined in both the primal and the dual. 

These properties are illustrated for linear programming in this chapter 

and the generalization of these relationships will form the basis of 

the work which is to follow. 	In preparation a convex-primal concave- 

dual formulation is defined. 

5.2 Convex functions and convex sets 

A function f(X) is said to be a convex function if 

f 	axi + (1 - a)x2  l 	< af(xl) + (1 - a)f(x2) , 0 < a < 1 	, 

. 	. (43) 
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for any two points xl and x2 . 	The function is said to be strictly 

convex if the inequality holds always in (43). 	That is, a strictly 

convex function is never under-estimated by a linear interpolation 

between any two points. 	For a concave function the direction of the 

inequality in (43) is reversed so that a strictly concave function is 

one whose negative is strictly convex, and is never over-estimated 

by a linear interpolation. 	This definition also applies to multi- 

dimensional functions if xi and x2 are replaced by vectors xl  

and X2 in (43). 

Convex and concave functions must be continuous but they 

need not be differentiable. However for those that are twice 

differentiable it can be shown that if f(s) is convex then the 

related function 

4)(a) 	= 	f 	axi + (1 - a)x2 1 	, 	0 < a 5 1 	, 

satisfies the inequality 

2 $ — - 2 -Z 0 	o < a S, 1 	 (44) 

This result can be defined in terms of the Hessian matrix H , where' 

H.. = 
a2f(x) 

ax. ax. 
1 j 

The function f is convex if the quadratic form 

as 

Q 
n2

f  
= 	Dx.Dx. 

i,j=1 1 j 
(45) 

   

is positive semi-definite for all points X . Furthermore, it is 

strictly convex if this quadratic form is positive definite, 	Conversely 

a function is concave if the Hessian is negative semi-definite. 

These functions therefore have only one minimum or maximum 

and are said to be unimodal. 	Given a point x' it is 

af
i 
 I possible to tell from the gradients 3x 	on which side of X' the 

relative extremum lies, and this gradient varies monotonically as the 

point X' moves in either direction. 
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Convex sets are now defined in terms of convex functions using 

the following two theorems. 

1. If g(2_<) is convex, the set R = 	11 g(2D 	, which 

means R is the set of vectors X which satisfies the inequality 

g(X) <k , is convex fcr all positive k . 

2. The intersection of a number of convex sets is convex. 	That is, 

the region defined by the constraints 

gi  (JO 	 = 1,410.,M 

is convex if each gip) is convex. 

If the feasible region of a design problem is convex a straight 

line between any two points XI and X2 in Lhe feasible region lies 

entirely within that region. 	The important result is that if f(X) 

is strictly convex in a convex feasible region, then f is unimodal. 

That is, there is only one minimum in the feasible region which is there- 

fore the global minimum. 	Contours of a strictly convex function in a 

convex region are shown in Fig. 6. 	Fig. 7 shows a region which is 

not convex. 

x2 x2 

Xi 

Figure 6 A convex function defined 	Figure 7 A convex function defined 
on a convex region 	on a non-convex region 
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It is obvious from Fig. 6 that problems involving the 

minimization of a convex function subject to a set of convex constraints 

have associated with them a well-behaved design space with no re- 

entrant corners and a merit function whose variation is unimodal. 	In 

the next chapter procedures will be proposed to predict information 

about the constraint set active at the optimum. 	It is obvious from 

this brief discussion and Fig. 6 that it would be highly desirable, if 

not essential, for the merit function and the feasible region to both 

be convex in the space of the variables in which these predictions are 

to be made. 

In the following section it is shown that the properties of 

convex functions and regions make the Kuhn-Tucker necessary conditions, 

derived in Section 2.3, also sufficient for optimality. 	In a later 

section a certain form of convex function,which will allow a convex 

approximation to a real design problem to be formed, is defined. 

It should be noted that only inequality constraints have been 

considered in this discussion. 	The set 

R  
I gi (X) = k 

is convex only if gi(x) is a linear function of x . 

5.3 Sufficient conditions for optimality 

One simplifying feature of a convex design problem, in which 

the merit function and constraints are all convex, is that the Kuhn-

Tucker necessary conditions derived in Section 2.3 are also sufficient 

for optimality. 	If f(x) is strictly convex or strictly concave, 

the unimodal and second derivative properties ensure that there is only 
;f one point for which Tx- = 0 , and that point must also be the global 

optimum. 	Therefore this condition is both necessary and sufficient 

to define the unconstrained extremum of convex and concave functions. 

The simplest way to extend this argument to strictly convex 

design problems with constraints is to follow the geometric argument 

given in [29]. 	Fig. 8 shows contours of a strictly convex function 
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feasible 
region 

in a convex region. 	The zero constrained derivative condition (6) for 

only inequality constraints defines a local minimum which can be shown 

to be unique in this case. 	Consider any point X in the feasible 

region and the straight line connecting it with the global minimum X*  

Since the feasible region is convex, all points a X*+ (1-a)X on this 

line are also in the feasible region. 	However, strict convexity of 

f(A) implies 

f [ a x*  + (1 - a)X 	< of (X*) + (1 - a) f LX) 

= f (X) + a [ f (e) - f (10 	< f (10 • 

The last inequality holds because a [ f(A - f(X) J can only be 

negative, since a>0 and X* is the global minimum. 	It follows that 

all points on the line are better than the arbitrary point X , so 

that X cannot be a local minimum. Therefore the minimum for a 

strictly convex problem is unique and 	the. Kuhn-Tucker conditions 

are both necessary and sufficient to define the global optimum. 

X2 

xl  

Figure 8. Uniqueness of the minimum of a convex problem. 

The existence of the saddle point can also be guaranteed for 

a convex problem. 	Consider the following Lagrangean function in which 
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f(X) and gi(29 are all strictly convex, 

L(X,X) 	= 	f(x) + 	X.
1 
 [ gi(I) - 1 

i=1  
. . . (46) 

It was shown.in Section 3.2 that satisfaction of the Kuhn-Tucker 

conditions implied 

3L 
= 0 	for 	x. > 	 (47a) axi 

and aaOfor. 
XJ >0 
	 (47b) 

Xj 

These conditions are sufficient to define a stationary point of the 

Lagrangean function. 	However, if the inequality 

L(X*,X) <; L(X*,X*) < L(x,X*) 	, 	(48) 

where the asterisk denotes optimal values, is also satisfied then the 

stationary point is a saddle point. 

For this inequality relationship to hold L(X,X*) must first 

be convex in X . 	This function is a positive linear combination of 

strictly convex functions in the design variables X and this 

combination is also convex [28]. 	This convexity property together 

with (47a) is then sufficient to show that 

L(X*,A*) < L(X,x*) . 

The second condition (47b) requires that 

X*. (g. (X*) - 1) = 0 
J J 

so that 	L(X*,X) < L(X*,X*) 	. 

This follows because g.(X*) < 1 for those constraints j which are  

notactivearv1X.must remain non-negative. 	The inequality (48) is 

therefore satisfied if the primal problem is convex and the existence 

of the saddle function is guaranteed. 
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5.4 The primal and dual problems of linear programming 

In [27] it is shown that the concave dual for a convex primal 

problem can be derived from concepts of conjugates of convex functions 

and mappings. This confirms the conclusion drawn in Chapter 3 that 

the directions defined by the primal and dual problems on the surface 

of the Lagrangean function are conjugate. 	Certain uniqueness theorems 

are also proved. 	In particular, if certain continuity conditions are 

satisfied and F is the mapping function from the primal to the dual 

problem, then 

where F* is the conjugate of F . 	In other words, the dual of the 

dual is the primal. 	In addition it is shown that the Lagrange 

multipliers will satisfy the Kuhn-Tucker conditions for the primal 

problem, that is, 

1) 	 = 1,...o,M 

and 
	vf 	xvg = o 

if A is the optimum solution to the dual problem. 	When the primal 

problem is solved the Kuhn-Tucker conditions can therefore be used to 

define the Lagrange multipliers at the optimum enabling a dual solution 

point to be defined which is feasible and optimal. 

The simplest primal-dual formulation which can be used to 

investigate these relationships further is provided by linear programming. 

The convex primal problem for linear programming was given by (33) as 

minimize f = qty  

subject to the constraints AX > b 	and 	X > 0 

The dual derived in the same section was 

maximize h = Atb 

subject to the constraints AtA < q and 	a > 0. 

. . . (49) 

. 	. (50) 
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gi (x)=b 

	

g3()=b3 	•-• • • 	 •. 	•• • gi (x)=b 
' 	 • ; • ".. 	feasible region 

f(x)=constant 

-7g2Nti 	 J1 -Vg3 v  

-Vf 
-Vgi  -Vg2 

-Vf • 

The optimum point 0 in the two-dimensional primal problem 

depicted in Fig. 9 corresponds to the intercept of two of the constraints 

giving equations of the form 

A x = b 	 (51) 

A dual solution point corresponding to the inclusion of the same 

constraints in the dual problem will be defined by an equation of the 

form 

Al  tx  — - - q 	 (52) 

Equation (52) can however be written as 

of - xvg = o 	(53) 

which is the Kuhn-Tucker condition (6) with the sign change caused by the 

direction of the inequality in the constraints of (49). 	A geometric 

interpretation has already been applied to this equation in Chapter 2 

and will be used again here. 	At the point 0 in Fig. 9 conditions (53) 

can be satisfied by vector addition with a non-negative set of dual 

variables X and solution of (52) therefore gives a feasible solution 

to the dual problem. 	However the solution of a similar set of equations 

at B now including constraints g2(x) and g3(20 will lead to one 

negative dual variable because the gradient of the merit function lies 

outside the cone formed by the gradients of these constraints. 

Figure 9 Design space for a linear programming problem 
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The non-negativity conditions on the Lagrange multipliers will not 

be satisfied and a feasible dual solution point will not be found. 

Therefore corresponding feasible solutions to both the 

primal and dual problems can be defined at least at the optimum with 

a unique dual point being found by solving (52). 	The original primal 

point can be recovered from (51) if necessary. 	However, if the primal 

design under consideration moves away from the optimum on the constraint 

surface, (53) cannot be satisfied with a non-negative set of dual 

variables if Vg contains only gradients for active constraints. 	It 

will therefore not in general be possible to define a unique feasible 

dual point corresponding to each feasible primal point if the additional 

Kuhn-Tucker condition 

A. 	g.3.  (29 - 1 ]  = 0 

is satisfied. 	However, if the requirement to satisfy this condition is 

removed, points such as C in the feasible region in Fig. 9 can be 

considered. 	At this point (53) can be satisfied by the same set of 

dual variables as those defined at 0 and a feasible solution to the 

dual problem will be found. 

The generation of corresponding feasible solutions to both 

primal and dual problems will be considered further in Chapter 6. 

The success of transition from primal to dual problems will rely on 

the development of schemes to remove negative Lagrange multipliers 

without having to resort to considering all possible constraint 

combinations until a positive set of dual variables is found. 	This 

operation would effectively solve the linear programming problem. 

In the folicwing sections a special non-linear convex problem 

will be defined and its concave dual derived. 	For the non-linear 

problem gradients in (53) will not be the same at points 0 and C . 

Therefore solutions to the dual corresponding to these points will be 

different. Analogous formulations however arise, in particular the 

paired equations like (51) and (52), so that the new developments 

represent a generalization of the ideas presented here. 
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5.5 Posynomials and a convex primal problem 

In this section a particular form of polynomial, called a 

posynomial, will be defined. 	A primal problem in which both the merit 

function and a set of inequality constraints are all posynomials is 

called the geometric programming primal problem [28]. 	While posynomials 

are not convex,these non-linear functions can be made convex by a 

simple variable transformation. 	The concave dual for the resulting 

convex programming problem will be derived in the next section, and the 

non-linear convex-primal concave-dual formulation will then provide a 

more flexible framework within which to study the interface between 

the primal and dual problems than the linear programming problem 

discussed in the previous section. 

The exponential function e
t  is a strictly convex function 

on its domain E1  . This can be verified by evaluating the second 

derivative of (44) and showing that the strict inequality holds. 	All 

linear functions on E
n 

are also convex, but not strictly convex 

because their second partial derivatives are identically zero. 	There- 

fore the function 

f(t) 	= 	E a.. t. 
13 

is convex for constant a.. . 	To combine these functional forms the 
13 

following tneorem [27] is used. 

If h is a monotone non-decreasing function on E1  

(i.e. h(s) < h(t) when s < t), and h is also convex 

on E1  ; and if f is a convex function on its convex 

domain D C E
n 
, then the composite function h(f) is 

a convex function on D 

Hence it follows that 

 a-- t3- 13  
f(t) = e 

is convex because e
t  i 1  is clearly monotone increasing in t. . 	Also 

a positively weighted sum of convex functions is convex [28] so that 
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f (t) = 	E c e 
i 1 

a.
j 
 t. 

(54) 

is convex if all c. > 0 . 1 

Introducing  a change of variables 

t- 
x. 	= 	e J 	j = 1,....,n 2 (55) 

recovers the posynomial form 

	

f(A) 	= 	) c. TT x
a-- 	

• 	(56) 
1 
. 	. 	j  

The fact that posynomials are not necessarily convex can be observed by 

considering  the simple function xl . However, they can obviously 

be converted into convex functions by reversing  the variable transformation 

to recover (54). 

The following  posynomial programming  problem can now be defined. 

no n a  
Minimize f(x) 	= 	2: K  • TT x. 13 

i=1 1 j=1 

subject to the constraints 

E 	K. TT x.aij 	< 1 	K. > 0 , k = 	(58) 
ieJN] 1 j=1 

where J[k] = 	mk, mk+1,mk+2,..,.,pk , k = 1 	 ,m and 

ml =110+12 m2 = P1+1,• • • • t mkn  = 	pm 	P . 

Here, 	a.. are real constants. 	This is the geometric programming  

primal problem and p is the total number of terms in the problem. On making 
tne change of variable defined by (55), the following convex programming 

problem is obtained. 

Minimize ho(I) 

subject to hk(t) < 1 
	

k = 1,....,m 
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where from (57) n 
Ea..t. 

ho(t) = 7o 
n 	

j=1 " J  Ki  e 	, 
	1(

1  
. > 0 

1=1 

and from (58) n 

= 13 3  hk(t) = 	E.: 	K. ej 
 

J ic[k] 1  
K. > 0 	, 	k = 1,....,m . 

. . 	(59) 

506 Derivation of a dual for the convex programming problem and 
proof that the dual is concave 

In this section the dual for the convex programming problem (59) 

is defined and it is shown that this dual problem is concave. The 

derivation follows that given in [34] and is only summarized here. 

The first step in this derivation is to collect the coefficients 

of the exponents into the matrices B and b such that 

no 
hp (y) = ' eYi 

i=1 

and 

with 

hk(y) 	eYi 
ieJ [k] 

y = Bt + b 

k = 1,....,m , 

After taking natural logarithms the primal problem (59) is refotmulated 

as 

Minimize In ho(y) 

subject to 	In hit(y) lc 0 
	

k= 1,....,m 

and y - Bt = b 

. — (60) 
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where both y and t are variables. 

It is shown in [34] that (60) is a convex programming problem 

with convex merit function and constraints. The dual problem defined 

in Section 3,3 now becomes 

maximize in h0(y) + E ik  In hk(y) + t 
( b + Bt - y ) 

k=1 

subject to V In ho(y) + 	Xic  V In hk(y) + S
t 

V ( b + Bt - y ) 
k=1 

and X
k
> 0 
	

k = 1,....,m 

From the definition of 	at the beginning of this section this becomes 

maximize In h0(y) + E Xk  In hk(y) + t 
( b + Bt — y ) (61a) 

k=1 

eYi  

	

subject to 6. 	0 
ho(y) 	1 

i = 1 	n 'ear's, 0 , (61b) 

Ake
yi 
 — 6 - 	E J[k] , k = 1,....,m ,(61c) 

hk(y) 

8L 6 	0 	 (61d) 

and 	X> 0 . 	 (61e) 

It can be shown [34] that constraints (61c) are redundant and need not be 

considered. 	It is also shown that if (A, 6, y) is feasible for this 

dual problem, then 

2 
	k = 1,....,m 	(62) 

6
t 
Bt = 0 leads, after some algebraic 

manipulation to (61) being rewritten in the form 

— 48 — 

6 > 0 

and a. = A
k ieJ [k] 1  

Recognising that (61d) gives 



j = 1,-09  Now H.. 
11 

1 
6. 
1 

H.. 13 = 0 

     

maximize In v(66) 

subject to 	Bt6 = 0 
no 
e St = I 
=--1 	- 

and 	• 6 	0 

ai 
v(s) 	= 	15-  I s. 	71-  (' Ai 

i=1 k 	i=1 

Xi 

Xk 	= 	1: 	6. 	, 	k = 1,....,m 	2 

IEJ [k] 1  

Here 

with 

and c. = e
bi 

= K1 

i = 1,....2p 

 

  

I P. . . . (63) 

Toensure6.
1 
 1n6.

1 
 iscontinuousforS.

1
=0 , 0 In 0 is defined equal 

to zero. 

This is the geometric programming dual problem corresponding 

to the posynomial primal problem defined by (57) and (58). 	It is 

markedly different from the normal dual program defined in Chapter 3 

in which the Lagrangean function appears as the merit function. 	The 

special property which will be exploited in the next chapter is that 

the dual variable set 6 has been expanded larger than the Lagrange 

multiplier set A corresponding to the inequality constraints in the 

primal problem. The Lagrange multipliers can still however be 

recovered through Equation (62). 

To prove In v(6) concave requires that it be shown that the 

Hessian matrix, H is negative semi-definite where 

H.. = 	 v 
D6.36 	j = 1,....,p 

j 	
• 

1  

The quadratic form arising from H is 

Q(q) 	= 	f 	q. H.. q • • 3.3 i j 

i = 1,..no 
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and 
1 	1 H. = 	- 

	
, H. 1 

Tk  if j 	;ij = 0 if j 	[k] 

	

j = 
	

J[k] , k = 1 , . ,m. 

Therefore Q(q) reduces to 

= 	 .119
+ 	

( X(9) )2 .., 	 qi2 
2-1 6. 	k=1 	Ak() 	-I 6. i=1 	 [ki 

The Cauchy inequality [28] states that 

(
nn 	n E .

rYr 
)2  s Z oco2. Z (yr)2  ,=1 	i r=1 	r=1 

Therefore 

q..  
ieJ [k] 1 

12  
i 	

2 
eJ [k] "17 1  

2 

E Si  :E: 
ieJ [lc] 	ie..T [k] 1  

which means that 

( X19)2  _ 	 qi2  

Ak(6)6.  ieJ [k] 1  
< 0 

Therefore Q (q) < 0 . 

The Hessian matrix H is therefore negative semi-definite proving that 

In v(5) is concave. 

507 Summary 

When the merit function and constraints are all convex the 

design space for the i,i_ven design problem will be similar to that 

illustrated in Fig. 6 , and the merit function will only have one local 

minimum in the feasible region. 	This is essential for the subsequent 

procedures based on geometric programming as (47) is then sufficient 

to define the optimum and the existence of the dual problem and saddle 

point is guaranteed. 

The difficulty of generating feasible solutions to the dual 

problem has already been discussed in connection with the linear 
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programming primal and dual problems. This investigation will be 

continued in the next chapter. 	It should perhaps be noted here that 

duals can be defined for unconstrained problems through the Legendre 

Transformation and a dual will exist in the geometric programming 

formulation for an unconstrained problem [3510 
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CHAPTER 6 

THE DEVELOPMENT OF BOUND GENERATION PROCEDURES 

AND REDESIGN STRATEGIES 

601 Introduction 

The generation of corresponding feasible solutions to both primal 

and dual problems will now be considered in detail. 	A particular 

geometric programming dual formulation which allows negative Lagrange 

multipliers to be removed from an infeasible set of dual variables will 

be defined. 	Certain pivotal relationships in the transfer between 

primal and dual problems will also be identified. 	These pivotal 

relationships present the opportunity to define a redesign procedure• 

based on an active set strategy. 

6.2 The primal and dual problems 

Consider the following design problem including only inequality 

constraints. 	Find values for the n variables X which 

minimize f(X) 
	

(64a) 

subject to gi(x) S  1 
	= 1. 	 (64b) 

The corregponding dual problem, defined in terms of the Lagrangean 

function, is to find the variables A which 

L(X,X) 	= 	f(x) + 	X. (g. (X) - 1) i=1   

subject to Vf(X) + E A. V gi(X) 	= 0 
1=1 

and X .> 0 

(65a)  

(65b)  

(65c)  
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If a feasible design X*  is optimal then the Kuhn-Tucker conditions 

require that a set of multipliers A should exist such that 

Vf(x*) 	+ X. 
i=1 

V g.(X*) = 	0 (66)  

with X > 0 (67)  

and Xi  rgi(e) - 11 = 0 	. (68)  

The analogy between the Kuhn-Tucker conditions and the constraints for 

the dual problem has already been pointed out. 	Effectively Equation (68) 

is relaxed for feasible dual points and only finally satisfied by the 

search for the maximum of the dual problem. 

If t=r1 then Equation (65b) can be rewritten 

G A = -vf 	 (69) 

with G a square matrix. This set of equations can now be solved for 

those A corresponding to values of G and vf for a given design 

X' . 	If a sequence of improving designs is defined for the primal 

problem then the solution to (69) must converge to satisfying the 

Kuhn-Tucker conditions, and in particular (68). 	It would appear 

therefore that the sequence of Lagrange multipliers A thus generated 

could be used to gain some indication of whether constraints will be 

active at the optimum as this design is approached,with those multipliers 

corresponding to non-active constraints converging to zero. 

It should also be noted that if the set of multipliers A 

satisfying (69) also satisfy the non-negativity condition (67) then a 

feasible solution to the dual problem will be obtained. The Lagrangean 

saddle-point (14) which defines the optimum design will then have been 

spanned from a feasible design in the primal problem to a feasible 

solution point for the corresponding dual problem. 	Equation (14) can 

be rewritten as 

L(X,A) < L(x*,A*) = f(x*) < f(xl) 
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where (X,X) are feasible solutions to the dual problem defined by 

(65), and xf  satisfies (64b). 	Entry into the dual problem will 

therefore not only offer information about the constraints but will 

also provide a lower bound on the reduction to the merit function which . 

can be achieved by further redesign. The appearance of negative Lagrange 

multipliers associated with the inequality constraints will however lead 

to an infeasible dual point and prevent definition of the bound. 

Equality constraints were not included in the primal problem 

considered in this section. 	However these constraints can be included 

directly to enable bounds to be formed. 	It should be noted that no 

restriction is placed on the sign of the Lagrange multipliers for 

equality constraints and the constraints must be automatically considered 

active. 

603 Generating feasible dual solution points 

The basic ideas suggested in the previous section will now be 

investigated in more detail using the geometric programming primal and 

dual problems derived in Chapter 5. 	The following convex primal 

problem, in which the merit function is a linear posynomial and the 

constraints are single term posynomial functions, will be used. 

Minimize f(x) c.x. 
i=1 1 1 

c. > 0 1 x. > 0 1 
. . 	(70) 

subject to the constraints 

g. (x) 	= 	K. TT xi(  aik S 1 
J 	k=1 

j =  1,••••,n (71) 

in which the number of constraints is again equal to the number of 

design variables. 	The dual geometric programming problem (63)for 

this problem can be written 

maximize In v(S r) 
	

(72) 

subject to Atr = -6 	 (73) 
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where 

5: di  = 1 	9 	 (74) 
i=1 

6,r > 0 	9 	 (75) 

( 	

n r- v(s,r) 	= 	fr 	l'i- 6
i 
 Tr (Ki) 1 	(76) 

(s. 

	

i=1 	1 	j=1 

and where A is the matrix of coefficients a-1.J1s- in the constraints 

(71). 	The dual variables have here been redefined from (63) as (6,r) with 

6. = 6. 	1,....,n 

and rj = & J+n 	j = 1,....,n 

An attempt can be made to define a feasible solution to the 

dual problem for a given set of design variables x' by defining from 6:4.0 

6i  cixi'  
f(x') 

i = 1,....,n 	(77) 

and solving (73) for the dual variables r . 	The 6i  defined by (77) 

will automatically satisfy the normality condition (74) so that if the 

dual variables I' are positive,a feasible solution to the dual problem 

willhavebeenfound.Ifsomeofther.are negative they can be 

arbitrarily set to zero and (73) used to redefine 6 . 	Scaling of 

the complete dual variable set will again satisfy the normality 

condition (74) and if the 6 set is now positive a feasible dual solution 

point will have been found. 

Obviously this procedure can fail with some of either the 

variables 6 or r remaining negative. However, for the optimum 

design the dual constraints (61b) must be satisfied. 	Therefore 

cixi* 
	

= 	6.*  v(6*,r*) 	with 	v(6*,r*) 	= 	f(x*) 	(78) 

and 6 defined by (77) will be optimal. 	In this solution to the 

dual problem the positivity conditions (75) will automatically be 

satisfied so that failure to remove the negative dual variables by the 

procedures proposed above would indicate that the design X' is far 

from optimal. 
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An interesting analogy can now be drawn between this primal-

dual formulation and the standard Lagrangean dual problem given in 

Section 6.2 . 	Consider the case when the single term posynomials 

(71) are approximations to the real constraints. 	A suitable method 

for generating these approximations is given in [28] and described here 

in Appendix A. The approximations are given by 

= gi()..C) 	(EL aii 	a 
ij 

= 	a 
j=1 	j 	gi I 	 - x 	 xj x=x, 

j = 1,....,n , 

. . . (79) 

where the operating point X' is the point about which the approximation 

is required. 	This approximation can be written 

gi(X) = c. IT x.aij 
1  j=1 

c. > 0 1 

and takes the form required by the primal problem in (71). 	The 

matrix A in (73) now contains terms 

x4 a.. 	= 
3.3 	gi Dx- J x=x 

With the dual variables 6  defined by (77), the Equation (73) can be 

written 

E.: [ x. 	
I  

3xa'gi 	
r.  i=1 gi j x=xl 1 = f0 

x j  
1) 	, 	j = 1,....,n 	• 

P F 
Therefore 2....., I 	Ig.i 1 

= 
r.... 	r- 	— —S_i___ 
i=1 	J 	,—., 

	

L  Bx! 	x _x i g i (1/ ) 	 f (X 1  ) _ 

or 	
f(&1  

	

Bi 	
) 
r- F. 

	

1=1 L xj 	x.xl gi(/ ) 	1 	
- c. j= 1,....,n 

. . . (80) 

Comparing (80) with (69) indicates that 

f r  
gi(X') 	i 

j = 1,....,n 

(81) 

-56- 



where X. are the Lagrange multipliers for the classical Lagrangean 

saddle-function corresponding to the primal problem. 	Effectively 

the same equation set is therefore being solved when (73) is solved 

for r or (69) is solved for the Lagrange multipliers X . 

The bounds defined by the general Lagrangean dual and the 

geometric programming formulation can also be compared if a positive 

set of Lagrange multipliers is obtained. 	The merit function for the 

Lagrangean dual is given by 

L(x',X) 	= 	f(x') + E Xi  (gi(X') - 1) . 	(82) 
i=1 

For the geometric programming dual the merit function (76) can be 

written as 

n , 15. 	n 	]r • . a.. 
v(6,r) 	' 	TT 	 TT 	K. 1 	

x•  a13 13 	
1  

• 
i=1 	1 	i=1 	j=1 

. . . (83) 

If the (5 set is defined by (77) then the first product of n terms 

in (83) will be equal to the current value of the merit function so 

that this equation can be rewritten 

Ir

i 

 

v(S,r) = f(x') . TT gi(X') 
i=1 

For regions near the optimum design gi(X`) it- 1 for those r
i 

not 

equal to zero. 	By the binomial expansion 

(1 + c)a 	+ ae 	f., 6 small. 

Therefore we can write 	gi(X') 
lri 

 J 	
1 + ri  (gi(X') - 1) 

Hence 	v(d,r) f(x') . 	TT [ 1 + ri  (gi(X') - 1) ] 
i=1 

fw) + E f(x') ri  [gi(20) - 1] • 
i=1 

Substituting for r from (81) now gives 
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v(6,r) 	f(x') + :E: Ai  gi(X/) ki(X/) - 1] 	. 	(84) 
i=1 

The dual functions (82) and (84) can now be compared and it 

can be seen that near the optimum the dual function v(d,r) corresponding 

to feasible designs with g.(X) < 1 will in general be greater than 

L(X,X) . 	In fact, for the examples considered in Chapters 7 and 9, 

values of the bounds given by (76) are near optimal and this dual 

function is particularly flat near the optimum. 

It therefore follows that if a convex approximation to the 

design problem in the form of (70) and (71) can be formed then a 

corresponding feasible solution to the dual geometric programming 

problem can be found even when some of the Lagrange multipliers are 

negative. The generation of linear posynomials for the merit function 

is straight forward since a linear function in the required form can 

be found by matching the current value and first derivatives. Any 

constant can be absorbed into f(X) and positive coefficients ensured 

by using the variable transformation 

x! = k - x. 1 

with k a suitably defined constant, to remove any negative signs. 

The effect on the bound of this approximation and the formation 

of the approximations (79) to the constraints must also be discussed. 

A solution to the dual problem defined by (65) can obviously be obtained 

if the current value and first derivatives of the merit function 

and constraints are known. 	If a positive set of Lagrange multipliers 

is defined by the first solution of (73) for the dual variables I' 

in the geometric programming formulation, the dual solution point 

will therefore provide a bound on the optimum value of the merit 

function for the true design problem. This follows because the current 

value and first derivatives are correctly matched by the approximations in 

the form of (70) and (71). 	In other words the dual defined by (61) 

would be the same irrespective of whether the primal merit function 

and constraint functions in (60) are exact or only match the current 

values and first derivatives. 	However, if negative r. appear in the 
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initial solution and are set to zero, the dual variables are updated 

to a different solution point in the dual corresponding to the 

approximating primal problem. 	Since the minimum of this approximating 

problem may be higher than the true optimum, there is no longer any 

guarantee that the new feasible solution to the dual will provide a 

lower bound on the true optimum value of the merit function. A 

bound on the true optimum is therefore only obtained when the initial 

solution of (73) leads to a positive set of Lagrange multipliers. 

The main advantage of using the geometric formulation is the 

fact that it is possible to generate a dual feasible point even when 

negative Lagrange multipliers have been encountered. 	A similar 

flexibility could have been built into the dual defined by (65) if the 

merit function was non-linear. 	For example, if 

n 
f(x) 	1: ILL 

i=1 xi 

then the vector Vf consists of terms of the form 	c 	 . 	An 
xi 

adjustment to the right-hand side of (69),corresponding to setting a 

negative Lagrange multiplier to zero,could now be considered to cause 

an adjustment to the design variables x , 	If a non-negative set 

of variables X and Lagrange multipliers X were thus obtained a 

feasible solution to a dual problem based on linear approximations to 

the constraints (since G in (69) remained constant) would have been 

found. 	The fact that the Lagrangean dual is inflexible if the merit 

function has the linear form of (70) agrees with the linear programming 

results found in Section 5.4. 

6.4 	The development of redesign strategies 

The bound on the minimum value ut the cost function will provide 

a valuable supplement to a redesign procedure because it will allow the 

merit of a given design to be assessed and therefore provide a criterion 

for terminating the redesign process. 	However, gradients had to be 

found to generate the bound and an attempt should be made to propose 

redesign strategies which take advantage of these gradients and the 

information about constraint activity levels provided by the Lagrange 

multipliers. 
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To make the dual procedures more generally applicable consider 

the case when the primal problem contains a large number of constraints. 

The convex approximation to the primal problem given by (70) and (71) 

now contains m single term posynomial constraints„ with ril?.n , and 

each constraint generated using (79). The At matrix can now be 

partitioned into Ai and A2 giving (73) as 

At 	At  • 2 (85) ri 

• • • • 

r2  

where A
t  
i is an nxn matrix. 	It should be noted that n of the m 

constraints are sufficient though not always necessary, to define the 

optimum point in the n-dimensional design space. 	Since each column 

of At  contains the coefficients a. 	for a particular constraint , li  

the partitioning of At can be done by including the n active, or 

nearest to active constraints in Al . 	This choice will ensure that if 

the current design is optimal then the correct active constraint set 

will be included in Al . 

Given a design X' for the primal problem the procedures for 

defining a dual feasible point can now follow those given by (77) and 

the solution of (73),but now setting r2 = 0 and solving the subset of 

equations 

Al ri = 	-a 	 (86) 

for the dual variables ri . 	The procedures for removing negative r. 

follow those defined in Section 6.3. 

The "selectioc. of the active constraint set included in Ai  can 

be checked by recognising that In v(6,r) is concave and the dual 

constraints are linear equality constraints. 	Gradients of In v(6,r) 

should therefore vary monotonically from their current value to zero 4 ilotmcom‘i0 

along a line joining the current dual solution point to the optimum point. 

Therefore if those variables r. which have been set to zero in (85) 

are included in the independent set and gradients of the form 31n v  
D • rj  

evaluated, then for any gradient which is positive the corresponding 
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r. would take positive values in a search for the optimum of the dual 

problem. 	The corresponding constraint would therefore be active at 

the optimum for the approximating problem defined by (70) and (71) 

and should have been included in the active set in A.  . 

It should be noted that the dual problem contains n+m 

variables 6 and r and n+1 linear equality constraints. 	There are 

therefore a total of m-1 independent variables which can best be 

selected from the m variables r . 	The variable rk not included 

in this set could be arbitrarily selected to be the one with the 

largest positive value. 	Gradients can then be obtained in the simplest 

way by a finite difference scheme incrementing the appropriate r. , 

adjusting rk  to satisfy (74) and redefining 6 by matrix multiplication 

in (85). 	The dual function In v(6,r) can then be re-evaluated. 

When the given design in the original primal problem defined 

by (64) does not lie at the intercept of n constraints, the nearest 

to active set is used to construct the matrix 4 . 	If a positive set 

of Lagrange multipliers is now obtained from the solution of (73), 

then the optimum for the problem would be correctly defined by the 

intercept of these constraints so long as the gradients of the merit 

function and constraints do not change significantly between the current 

design and the optimum. 	The gradients of the merit function and 

constraints contribute to the equation sets (69) or (73) used to find 

the Lagrange multipliers. 	Therefore when significant changes can 

occur to the gradients, pseudo-limits for the constraints should be set 

to some suitable value between the true limit and the current value if 

the intercept of the constraint set is to define an improved design. 

This intercept can now be found by noting that the active single term 

posynomial constraints in (71) have the form 

n,  
g.(X) 	= K! TT x 	= 	1 

k 
k=1 

where the constants K! include the effect of defining the pseudo-limits. 

Taking logarithms of both sides of these equations leads to the set of 

linear equations 

Al In X 	In K' 
	

(87) 
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which can be solved for the design variables X at the intercept of 

these constraints in design space. 

The point to be emphasised is that any interpretation placed 

on the Iagrange multipliers with respect to constraint activity levels 

is only locally accurate. 	However, returning to the concave dual 

problem defined by (72) to (76) the following considerations also apply. 
31n v  

If F.
3 	 3 • is zero or positive and the gradient 	is positive with 

1.3  
v(6,r) including the real constraint limiting values, then the constraint 

will also be active at the optimum of the approximating dual problem 

defined by (70) and (71). 	If the approximations were reasonably accurate 

this should apply with respect to constraint B in Fig. 10(a). 

AlternativelyifLis zero in the feasible dual solution and 31n v  - r3  
is negative, then the constraint will not be active at the optimum of 

the approximating dual problem - a situation in which this would occur 

being depicted in Fig. 10(b). 	The third alternative is forri  to be 
n v 31 positive but for 	to be negative. 	It is now not conclusive 3 • 
rJ whether the corresponding constraint would be active at the optimum of 

the approximate problem. 	This would depend on whether the gradient 

would go to zero beforeri  had been driven to zero in the search for 

the maximum of the dual problem. A situation in which this might occur 

is depicted on Fig. 10(c) but it should be noted that restricting the 

range over which the information is considered correct should lead to the 

definition of a pseudo-constraint similar to B' 

 

L B  

 

(a) 
	

(b) 

P marks the current design 
and operating point 

* P 	
/

0
/ 	

 

(c) 

Figure 10 Constraint intercept configurations in design space 
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= constant gi= con sta t g2= constant 

(a) (b) 

li 	
XiVgi 

X2Vg2 -1  

777-71 

f = constant 

g2= constant 

A2Vg 

f__ constant 

It is obvious from these considerations that the greatest 

difficulty in these procedures is going to arise when the Lagrange 

multipliers are small,since large positive values for these multipliers 

indicate that a constraint will be definitely binding, if the limiting 

value lies in the near region of design space where the gradients Vf 

and Vg cannot vary significantly. However, the cone formed by the 

multipliers in the Kuhn-Tucker conditions derived in Section 2.3 

indicates that the absolute values of the Lagrange multipliers reflect 

the degree of influence of the corresponding constraints in constraining 

the design. 	For the simple two-dimensional situation shown in Fig. li(a) 

the Lagrange multipliers must have nearly equal values to satisfy the 

condition 

- of = vG x 

which is represented by the vector addition shown in the diagram. 	In 

Fig. 11(b) however constraint 2 will be instrumental in blocking the 

progress of a search in the direction - Vf , while the influence of 

constraint 1 will be relatively small. 	It is obvious from the figure 

that the values of Al and A2 will be correspondingly large and small 

respectively. 	A design process utilizing information generated in the 

Figure 11 Vector diagrams for the Kuhn-Tucker conditions 
at constraint intercepts in design space 
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dual about active constraint sets should therefore be relatively insensitive 

to inaccuracy in the prediction of whether constraint 1 in Fig. 11(b) 

is active or not. 	This concept is reinforced by (35b), that is, 

of 
abi  x* x* 

-X.* 	if 	gi(X) < bi  

   

This relation was originally derived for the sensitivity studies but 

serves here to show that, if the Lagrange multiplier is small, the optimum 

will be insensitive to errors in the limiting value of the corresponding 

constraint. 

If a positive set of Lagrange multipliers is obtained by 

solution cf (86) and any negative gradients of the dual function are not 

large enough to drive the corresponding dual variable to zero in a 

limited search, then (87) can be solved for the new design with relatively 

large changes allowed in design space. However, if negative Lagrange 

multipliers were found in the initial solution of (86) and were 

subsequently set to zero, this simple active set redesign procedure could 

not be used directly. 	If the gradient of the dual function for the 

variable Pk corresponding to this Lagrange multiplier were positive 

then the constraint could be considered active and a limited step taken. 

However, if this gradient is negative the constraint is not active. 

A situation in which this might occur is shown in Fig. 12 if 

the current operating point were the point C . At the optimum however 

x2 

Figure 12 A pseudo-constraint which defines the optimum 
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amn vo,r)  
ar. 

(88) 

for those independent r. not set to zero. 	It is therefore possible 

to update the limiting values for the constraints predicted to be non- 

active to define the pseudo-constraint B' in Fig. 12. 	Updating the 

limiting value till (88) is satisfied will provide a prediction of the 

value of the constraint function gj(X) at the optimum, and hence the 

limiting value required for this constraint to be active at that point. 

Itshouldbenotedthat'settingr.equal to zero removes the constraint 

g.(X) from the dual function (76). A small positive value brings the j   

constraint into the formulation so that satisfaction of (88) with r. 

equal to zero indicates that the optimum value of the merit function 

does not change if the limiting value of the constraint g.
J
(X) is 

modified slightly from the value which makes it active at the optimum. 

This interpretation follows geometrically for constraint B' in Fig. 12 

but is dependent on the design space being convex. 

The pseudo-limits defined using (88) will only be accurate when 

the maximum of the dual problem has been found. 	Some search in the 

dual will therefore be necessary if pseudo-constraints have to be defined 

and some of the gradients are large. The search however can be limited 

to removing the large gradients because the optimum has already been 

shown to be insensitive to errors in the constraint limiting value if 

the corresponding Lagrange multiplier is small. 	The range of accuracy 

of the active set prediction will also invariably restrict the pseudo-

limit update. The most effective dual search would then probably be a 

steepest ascent strategy with 

v+1 
r. 	r." + « Vv 

for r. in the independent set, v defining the iteration number, a 

a step length and Vv the vector of gradients 
aln v 
a  F.] 

The active set strategy for redesign can now be extended to 

the case when a full set of n constraints is not active at the optimum. 

The limiting values of the active constraints included in Ai  are set 

either to the true limiting values or to reflect the range over which 

the predictions of activity levels are considered correct. 	This active 
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set can then be augmented by the pseudo-constraints derived above in 

order to produce a square nxn set of coefficients in AI 	Solution 

of (87) willthen define the new design variables. 

It is interesting  to note the pivotal nature of the Al  matrix 

with entry to the dual problem being  based on the solution of (85), that 

is, 

Alt   Li (dual solution) 	(89) 

The definition of points in the primal design space now however is based 

on the solution of the equations (87), or 

Al 
 
 In X 	In K. (primal solution) 

	
(90) 

Indeed if a Cholesky decomposition were used in the initial solution of 

(89) the operation would not have to be repeated to carry out the 

redesign with (90). 	Similar "pivotal relationships" have already been 

identified in linear programming  in Section 5.4n 	They will be 

discussed further in the next section before an attempt is made in the 

following  chapter to demonstrate the existence of the dual and the use 

of the design procedures for a number of problems. 	Iterative redesign 

procedures naturally result because the posynomial approximations to 

the constraints based on (79) need to he updated as the design improves. 

6.5 Singular matrices in the pivotal relationships 
at the primal-dual interface 

The pivotal relationships (8°) and (90) can be rewritten 

r, 	= 	- r Alt ]-1  6' 
	

and 	In X 	= 	Al 
 1
-1  In K . 

Any point in either primal or dual design space can be defined by 

adjusting  the constants 6 or K respectively. 	The columns 

of Al t therefore form a set of vectors which is a basis 

for the dual problem, while the columns of Al form a basis 

for the primal design space of the variables x . 	A basis set of 

vectors must be independent and the recognition of the transposed 
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relationships in (89) and (90) is useful if the Al matrix is singular. 

The occurrence of a singular matrix would prevent the solution of 

these equations and stop entry into the dual problem from the primal, 

or entry into the primal from the dual. 

The cause of the singularity can be investigated by considering 

the following set of equations, 

xi + x2 + 2x3 = 9 

4x1 - 2x2 + x3 = 4 

5x1 - x2 + 3x3 = 1 

Forming an augmented matrix and performing a Gauss reduction gives 

1 

4 

5 

1 

-2 

-1 

2 

1 

3 

9 

4 

1 

1 	1 	2 

7 
0 	6- 

o 	o 	o 

9 

16 5- 

1 

The third row of the final matrix indicates that 

Oxi + 0x2 + 0x3 	= 	1 	2 

so that the equation set is clearly inconsistent. 	A dependence must 

exist between the columns of the coefficient matrix of the form 

c3 = bci + dc2 

where c. denotes the ith column of the matrix. 	From the final 1 
matrix 

     

 

bd  

 

2 

7 
6 

 

giving 

and 

 

5 
6 

  

c3 
5 	7 

Tc2 

 

(91) 
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A different form of dependence is exhibited by the equation 

set 

xi  + 3x2  - x3  = 6 

2x1  + x2  + 2x3  = 3 

8x1  + 9x2  + 4x3  = 21 

Again forming an augmented matrix and performing a Gauss reduction 

gives 

1 3 -1 6 1 3 -1 6 

2 1 2 3 0 1 - 4 5- 9 5- 

8 9 4 21 0 0 0 0 

The third row of the final matrix now correctly indicates that 

Oxi  + 0x2  + 0x3  = 0 

and the equation set is consistent. However from the final matrix 

xi  + 3x2  - x3  = 6 	and 	x2  - 5x3 

Substituting for x2  from the second equation into the first gives 

3 	7 x l = 	- --5-x3  

and 9 x2  = — + —4Xn 
5 	a  

Clearly x3  can be arbitrarily set. 	The choice of the variable to be 

set is not unique and the existence of the dependence between the 

equations indicates only that there is a degree of freedom in the equation 

set. 

The coefficient matrices in (89) and (90) are the same except 

that a transpose operation has been performed. 	When attempting to 

define the dual problem the main difficulty arises in selecting the 
t  constraint set to form the basis. If the matrix Ai 	is singular it will 

9 
5 
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therefore invariably be caused by a column dependence. This 

could be removed by replacing one of the constraints with another, 

effectively changing one of the columns of Alt . 	The constraint 

interchange may, however, not be easy to select and it may be simpler 

to recognise that a row dependence will exist in (90) if the Ki  

correspond to the current operating point. 	One of the design variables 

X can then be arbitrarily set for the given design cycle, reducing 

the dimension of Al by one and modifying the coefficients Ki  in the 

dual cost function (76).- The singularity will be removed and a dual 

point will then be obtained corresponding to the primal design problem 

with the additional constraint that the selected design variable does 

not change or takesa particular value. 

Finally since each column of Al
t 

corresponds to the exponents 

in the single term posynomial for a given constraint, the physical 

interpretation of a dependence between the columns of this matrix is 

not difficult. There would however appear to be no similar reasoning 

which could anticipate a linear dependence between the equations of 

(89) or the columns of (90) and arbitrarily setting a Lagrange multiplier 

would not alter the equation set in (90). 

6.6 Least-squares solutions to define dual points 

In general less than n constraints (where n is the number 

of design variables) are active at the optimum and pseudo-constraints 

have to be defined in the redesign process. 	Difficulties can however 

arise in the definition of the initial dual solution point and bound. 

The number of equations in (65b) or (73) is equal to the number of 

design variables. 	Therefore these equations cannot be solved directly 

for the dual variable:, unless it is possible to select a full set of n 

constraints which are either active at the optimum, or are near-active 

and can be updated to form pseudo-constraints. 

For the initial dual solution point the matrix Al could be 

constructed only from those constraints which are currently active or 

expected to become active at the optimum. 	A least squares fit to (86) 

could then be found in the same way as for the solution of (25) in 

Chapter 4. 	That is, taking 
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premultiply by Al 

Alt r 

: 

= 	- 6 (93) 

Al Alt  r = 	- Al  6 

giving r 	= - Al  Alt  ]-1 
Al  S. 	(94) 

The dual variables r given by (94) may not satisfy (93) 

identically if Al is not a square matrix, but any small errors together 

withanynegativel".could be removed by multiplying in (93) to reset 

the variables 6 . 	Scaling the complete dual variable set would then 

lead to satisfaction of the normality condition (74) and hence a 

feasible dual solution point. 

It has however already been recognised that the removal of 

negative r. could lead to negative values for some of the set 6 . 

Negative values could also result here from the removal of the least squares 

error in the solution (94). 	This difficulty did not arise in any of the 

design examples considered in this thesis and procedures for countering it 

were not developed. 	However, the dual formulation proposed in [25] is 

based on the Lagrangean dual (65) which has no flexibility for removing 

negative Lagrange multipliers if the cost function is linear. 	A Newton 

updating scheme is suggested for driving out any negative multipliers and 

this would appear to be the most appropriate method when difficulties are 

encountered in the solution of (93). 	The similarity between the least 

squares solution of (94) and the projection direction in the projected 

gradient method has also been pointed out in Section 4,2. 	This method 

could be used to improve the design, at least until a better selection of 

the active constraints can be made and a dual solution point found. 	At the 

optimum the Kuhn-Tucker conditions (6) must be satisfied and the least 

squares solution (94) Tflust then be exact since essentially the same set of 

equations is being solved. 	Note however that the direct correspondence 

between the Lagrange multipliers A and the variables r expressed in 

(81) is lost in the least squared solution of (94). 

6.7 Summary 

It has been shown that feasible dual solution points corresponding 

to a given design in the primal space can be defined and used to generate 

bounds. 	The correspondence between the equations solved to find the 
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solution to the dual and the Kuhn-Tucker conditions for optimality 

indicate that the bound will equal the current value of the cost function 

if the design is optimal. 	The relative rates of convergence to the 

optimum of the bound and an improving sequence of primal designs will be 

investigated in the examples. 	It has been suggested in Section 6.3 

that the bound should remain near-optimal for non-optimal primal designs. 

An active set strategy for redesign has also been suggested in 

an attempt to utilise fully the information available in the saddle 

function with the Lagrange multipliers providing information about the 

active constraint set. 	Alternative redesign schemes could be based on 

the projected gradient or penalty function procedures, and acceleration 

procedures exist for the second method if predictions of the optimum value 

of the cost function (here provided by the bound) are known. 	If only 

a few constraints are active however a search for the optimum of the dual 

problem would form a computationally efficient scheme if the single term 

posynomial approximations to the constraints are accurate. 	The 

number of independent dual variables is one less than the number of 

constraints in this case and would therefore be small. 	Once the maximum 

of the dual has been found (78) can be used to define the new design 

variables. 	The redesign procedure would then be similar to the sequence 

of geometric programming problams suggested in [36] with new approximations 

to the cost function and constraints being obtained at each new design 

point. 

The difficulties which can be encountered in defining a bound 

when few constraints are active at the optimum has also been considered 

in Section 6.6. 	If the search for the optimum were to be conducted in 

the dual plane then standard procedures for defining the initial dual 

solution point [8], which can incorporate a linear programming step, 

could be used. 

In the following chapters several examples will be presented 

to demonstrate the use of the dual procedures to generate bounds and 

the active set strategy for redesign. 	The use of the bound as a 

termination criterion in the design process will also be discussed. 
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CHAPTER 7 

CONSIDERATIONS FOR PRACTICAL APPLICATION AND 

PRELIMINARY EXAMPLES 

7.1 Introduction 

In this chapter a number of preliminary examples are presented 

to illustrate the existence of the dual problem, and the use of the 

convex-primal concave-dual geometric programming formulation in the 

design process. 	A number of points related to the practical use of 

this formulation are first discussed in the next section. 

7.2 Considerations for practical application 

All the examples presented in this chapter and Chapter 9 make 

use of the geometric programming formulation proposed in Section 6.3. 

This formulation is used because feasible dual solution points can 

be defined even when negative Lagrange multipliers are encountered. 

However, it has already been recognised that only m-1 of the m 
dual variables r can be considered independent and this can make the 

dual procedures cumbersome. 	In the following work on stress constrained 

problems the dual was considered a problem in m variables r with the 

search directions projecting into the single constraint posed by the 

normality condition (74) at each step. 	Constrained derivatives evaluated 

by taking a finite difference step and projecting onto the normality 

condition were also used in,the definition of the pseudo-constraints 

using (88).• 

It is interesting to note that this projection scheme can be 

recovered by introducing the variable transformation 

A 
rj  = 1-aL A 

i = 1,....,n j = 1,....,m . 

. . 	(95) 
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into the dual problem. 	Substitution into Equations (72) to (76) gives 

the dual problem as 

where 

maximize In v(6',1",A) 
6.1 

V(IY,V,A) = 	TT (4) A  A TT (Ki) A 6 i=1 	i=1 
(96) 

6' 	. 	— Atr' — 	, 

it 

A 	= I: 6i'  2 
l=1 

and 

Now 

6', r' > o 

1 
In 	E —A  = 	(6e In ci - Si l  In 6i') 	+ In A 

i=1 " 

m 

E A  In Ki 
i=1 

Therefore 
aln v  

f(V, 
3(ST 

, A, 7777) 	K in ' ark' 	 ark 	ark 
aA  

- 14— In Kj ar.  

Pseudo-limits are only defined fcr those rj' equal to zero so 

that the last term drops out when these limits are being defined. 

Recognition that constraints of the form 

S alim  have been rewritten 	< 1 
al

a  

im 

to recover the posynomial form required in (71), then shows that updating 
the limiting value leads to modification to Ki . 	In the following 

examples the computer implementation of this procedure involved scaling 

KJ  a • 	small amount, re-evaluating the derivative and extrapolating 

the scaling factor linearly (which is exact) to the pseudo-limit giving 

zero derivative. 

• 

-73- 



ff(x) 	= 	E cixi 1  + K 	(97) 
1=1 

n d- 

The final practical consideration for the application of the 

new design procedures is that posynomial approximations will in general 

be required for both the merit function and the constraints. 	An 

iterative procedure was therefore required in the redesign process and 

the operating point for the approximations (79) was taken to be the 

current design at each step. An attempt can also be made to improve 

the accuracy of these approximations by generalising the convex primal 

problem to the form originally considered in (57) and (58). 	Use is 

made of this generalised form in two problems considered with non-linear 

merit functions. 	In Appendix A approximations to these functions in 

the form 

can be found matching first and second derivatives at the operating point. 

Two-term posynomial approximations defined in Appendix A were also 

formed for deflection constraints by matching second derivatives of the 
a2, 

form 	as well as first derivatives at the operating point. 	These 3x 
constraints may define more than one design variable so the increased 

accuracy is an advantage. The active constraint conditions (87) are 

now replaced by the conditions at the optimum that 

K. Fr x. aij 	= a 	w here i J[k] and J[k] was defined 
Ak j=1 

for (58) , 
. . . (98) 

for the multi-term constraints. 

In summary the steps in the dual procedures can be detailed 

as follows: 

1 	SETTING UP THE DUAL PROBLEM 

1.1 Determine a posynomial approximation for the merit function 

1.2 Select the active constraint set to form a basis for the dua] 

1.3 Evaluate gradients and form single term posynomials for the 
constraints selected in 1.2 using (79) 

2 	BOUND GENERATION 

2.1 Set the dual variables (5 using (77) 
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2.2 Solve (73) for r 

2.3 Check for negative F. , if any are present set them to zero 

and use (73) to redefine d . 	Scale all the dual variables 
to satisfy (74). 	Ifnegative. Si  now appear set them to 

zero and return to 2.2 

2.4 Evaluate the bound 

3 	THE ACTIVE SET STRATEGY FOR REDESIGN 

3.1 Reduce the feasible region about the operating point to an 
area in which the posynomials are accurate by tightening the 
constraints 

3.2 Scan the Lagrange multipliers for zero or small values and 
associated negative gradients 

3.3 If pseudo-limits are to be defined conduct a limited dual 
search to remove large gradients and define the new constraints 
using (88) 

3.4 Solve (87) for the new design variables 

The only difficulty which can arise in the application of these 

procedures and which has not been explored is the appearance of negative 

dj  in the dual search of 3.3. 	These negative values should however 

not occur because each of the dual variables d should be related 

through (77) to a minimum size constraint on each of the variables X . 

703 Preliminary examples 

Three examples are presented in this section to illustrate the 

existence of the dual problem and the easy transfer between primal and 

dual feasible points which is possible using the procedures proposed in 

Chapter 6. 	Active set strategies are used to improve the designs and 

it is shown that the bounds converge to the optimum as the design in 

primal space improves. 

(1) 	Example 1 

The minimum cost design of a chemical plant 

a. The design problem 

The minimum value is sought for the annual operating cost of 

the chemical plant depicted in Fig. 13 and described in detail in [29]. 

The annual operating cost of the plant is given by 
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Product 

Raw 
materials 

Recycle ratio x2 

Figure 13 A hypothetical chemical plant 

y( 	= 
	

1000x1 + 4 x 10
9 
xl
-1 

x2
1- 

+ 2.5 x 105  x2  , (99) 

and the design is constrained by safety and design codes which require 

that the non-negative variables x1  and x2  satisfy 

xix2  1 	< 1 
9000 	2200 

(100) 

Design space for this problem is plotted in Fig. 14,• 

The merit function (99) does not have the correct form required 

to apply the procedures proposed in Section 6.3. 	An approximation to 

the merit function based on the generalised form (97) was therefore 

found. 	A feasible design X' for the plant, which was used as the 

operating point for this approximation, is given by 

xi = 1700 
	

x2 = 6.5 
	 (101) 

for which y(X') = 3.687 x 106  . 	The approximation matching the current 

value of y(x) , first partial derivatives and second derivatives of the 
92y 

form 	at this design point is given by 
axi  
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Figure 14 Design space for the chemical plant problem 

Y(X) - 2.0159 x 106 
	

= 	901247 xl
1.5411 + 4.2240 x 10

4 
x2

1.5732 

The primal merit function is now set as 

f(21) 	= 	Y(x) - 2.0159 x 106 	and 	f(X1) 	= 	1.6711 x 106  . 

b. Dual entry procedures 

The saddle inequality (14) now gives 

f(x) > f(X*) = v(6*J*) > v(a,r) 

- 77 - 



where 	v(6,r) 	= 

and the dual variables 

al. 

	

[0 	-1 	: 

	

1 	-1 	: 

	

61 + 62 	= 

and 	6, r 	Z 	0 

(9.1247p 

rl  

r2  

r3  

x 104)62(1r (9000)r2 	1 	r3 
-777 

A2  

1 

0 

1  

6 	and 

(4.2240 

62 

r 	must satisfy 

- 

-8- 2200 
( 	) 

o 	• 	. 	(102) 

the constraints 

1.5411 	61 (103)  
1.5732 62 

(104)  

(105)  

The nearest to active of the constraints (100) at the operating point 

(101) have been included in Al  . 

Applying (77) to define the dual variables 6 gives for the 

operating point (101), 

61 = 0.5196 
	

62 = 0.4804 . 

Setting r3  = 0 and solving (103) then gives 

rl  = 0.0449 	and r2  = 0.8007 

"Since these dual variables satisfy the non-negativity conditions (105) 

a feasible dual solution point has been obtained and substitution 

of these values into (102) gives 

v.(S, r) 	= 	1.404 x 106  

It is of interest to note that setting r1  to zero and solving 

(103) for r2  and r3  would have given 

r2 = 0.75576 
	

r3  = .-0.0449 

The new dual solution point does not satisfy the non-negativity condition 
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(105) and therefore is not feasible. 	However, the procedures proposed 

for removing negative variables in the r set can be applied by setting 

r3 to zero and performing a matrix multiplication in (103) to redefine 

61 and 62 . 	Scaling both 6 and r to give 61 + 62 = 1 gives 

61 = 0.5051 , 62 = 0.4949 , r2 = 0.7785 

and 1'1 = r3 = o 

. . . (106) 

A feasible dual solution point has been recovered and substitution into 

(102) gives 

v(6,r) 	= 	1.428 x 106  

The third variation in the solution of (103) would be to set 

r2 = 0 and solve for r1 and r3 . 	This obviously gives negative 

values for both r1 and r3 and there is no way to define a feasible 

dual solutioa point in which the second constraint and r2 do not 

participate. 

The optimum design [29] has an annual operating cost of 

3.444 x 106  with xi = 1500 and x2*  = 6 . 	This solution corresponds 

to f(X*) = 1.428 x 106  so that both of the dual solution points have 

given excellent bounds on the reduction in the annual operating cost 

which can be achieved by optimizing the design. The second dual 

solution point is optimal because with r3=0 the three conditions 

defined by (103) and the normality condition on the variables 6 uniquely 

define 61, 62  and r2  and hence define the optimum point. 

c. Recovery of Lagrange multipliers 

The recovery of the Lagrange multipliers for the general 

Lagrangean form (65) from the dual variables r can be demonstrated for 

this simple problem. 	Equation (81) defines 

Xi  = 
	

F. 	giving 	X1 = 1.6711 x 106  x 65  x 0.0499 

= 9.2 x 104 

	

and 	A2 = 1.6711 x 106 	11050x 0.8007 
9000 

= 1.6 x 106 
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The value of the Lagrange multipliers can also be found from the dual 

constraints 

	

Vf(x') + Vg(X') A 	= 	0 	 (107) 

for the Lagrangean function for this problem. 	These constraints give 

the equation set 

[0.125 -0.1253 	[ A2  	[ 

	

0 -0.0004791 	Al  = _ 787.12 (108) 
194298.65 	. 

Solution of (108) gives 

	

= 902 x 104 	, 	= 1.6 x 106  

d. Definition of pseudo-constraints 

The updating of limiting values for non-active constraints so 

that pseudo-constraints active at the optimum are defined can also be 

demonstrated. 	Consider the solution to the dual problem given by 

(106). 	Since r3  was originally negative when (103) was solved for 
n v Dl  

this constraint set, 	gives a prediction of whether the third of 
3F3 

the constraints (100) will be active at the optimum. 

In v = 61 In 9.1247 - 61 in 61 + 62 In 42240 - 62 In 62 

- r1• In 8 + r2 In 9000 - r3 In xiiim  

. . (109) 

But from (103) 

12 	r3 
	

• 	

- 1.5411 61  

	

-r2 	

• 	

- 1.5732 62  

. . . (110) 

and the normality condition 61  + 62  = 1 must also be satisfied. 	These 

three equations can now be used to eliminate 61, 62  and r2  from 

(109). 	Differentiation and setting xllim  = 2200 and substituting for 
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the dual variables from (106) gives 

aln 17 
ar3  

• -0.3801 . 

The constraint is therefore not active at the optimum and in order to 

define a pseudo-constraint which is active xiiim  must be decreased 
n 

until 
Di  
-- v = 0 . 	Setting the derivative obtained from (109) to 
ar3  

zero gives 

ln xiiim  = 7.316 

or 	
xllim 

• 

1504 . 

The active set strategy now requires simultaneous satisfaction of the 

constraints 

	

xi  _ = 	9000 
1 and 	

- 

1 
1504 	xix2  

giving (to the accuracy of the calculations) 

xi  = 1504 
	

x2  = 5.98 . 

Recall once again that the optimum solution is 

Xl  = 1500 
	

X2  = 6.0 . 

e. Sensitivity studies 

The final feature of the saddle function which can be illustrated 

using this example is the well-known use of the Lagrange multipliers 

in sensitivity studies. 	For the dual solution given by (106) which 

is optimal, the optimal value of the Lagrange multiplier for the active 

constraint is given from (81) as 

A2 = 1.428 x 106  x 1 x 0.7785 = 1.1117 x 106  . 

The constraint corresponding to this Lagrange multiplier can be written 

	

\ 	1 
(x1 

x2)-1  
9000 
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A linear approximation to the change in the merit function if the limiting 

value of the original constraint is raised from 9000 to 9500 is given 

from (35b) as 

Ay = -AAb = -1.1117 x 106 	1 
9500 

1 
9000 

= 5.8508 x 104  . 

It has already been stated that the dual solution (106) is optimal so 

that the optimum value of the merit function for the updated constraint 

is given as 

.7785 
Yen = 1.428 x 106 

 x 9500 
9000 

= 1.489 x 106  

Therefore 

Ay = 1.489 x 106  - 1.428 x 10b  = 6.1 x 104  

Application of the procedure described by (35b) has therefore led to an 

accurate prediction of the sensitivity of the optimum design to the 

given change to the active constraint. 

(ii) 	Example 2 

The minimum mass design of a 3-bar truss subject to 
stress constraints 

a. The design problem 

The 3-bar truss shown in Fig. 15 was designed for minimum 

mass with geometry.fixed. 	Thedesignvariablesx.,i=1,.,3 were the 

cross-sectional areas of the bars. 	Two load cases were applied and 

the design was subject to stress constraints on each member. 

Design space for this example has been dicIwn on Fig. 16. 

Symmetry of the design and the applied loads ensures that xl  and x3  

can be set equal se that a two-dimensional drawing is sufficient to 

illustrate the design space. 	The constraints shown in the figure by 

the hatched lines ( //// ) include the stress constraints for members 

1 and 3 for the first and second load cases respectively, and the 

constraint for member 2 which is the same for both load cases. 	It • 

can be shown analytically that these constraints are given by setting 

all = a21= 13790 in 
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- 88960 xl 88960 (x., + /2x1) 	1/2-  
2x1x2 	iir  x12 

	 and a21. = all - 	 (2x1x2 	IT x12) 

where a.. is the stress in member i for load case j 
13 

In order to apply the procedures proposed in Section 6.3 to 

this design problem single term posynomial approximations had to be 

found for the stresses because the expressions given by (111) do not  

have the required form given by (71). These approximations were 

found using (79) with the operating point taken to be xl = x3 = 6.45 

and x2 = 1.61 , and are given by 

-- 
all' = 6.62 	

x1  .889 x2  .111 
4 x 104 	and 

a21
t = 40570 x 10

4 x1
-.739 x2

-.261 

25.4 cm 

 

25.4cm 

 

Applied loads: 	load case 1 it = 88960 N 	P2 = 0 
load case 2 P1 = 0 	P2 = 88960 N 

Material properties: !oung's modulus = 6895000 N/cm2  
Density = 2.768 gm/cm3  

Constraints: 	Stress lail 5  13790 N/cm2  , i = 1,.0,3 

Figure 15 Design details for the 3-bar truss 
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4-0 
1 • 

Optimum 
■ 

0 
Operating point for 
the approximations 

Constant maSs-
contour 

Direction of 
decreasing mass 

3.0 

2.0 

1 .0 

The curves obtained by setting 011' = 021' = 13790 have been plotted 

as the dashed line (----) on Fig. 16. 	Notice that the powers in 

each posynomial sum to -1 and the approximations are tangent to the 

true constraint curves at points corresponding to scaling the structure 

from the operating point A . No approximation was required for the 

merit function since the mass of the structure is given by m = 2: c.x. 
in which c. > 0 so that the expression has the correct posynomial 

form. 

b. Dual entry procedures 

The vector diagrams for the gradients of the constraints at 

points (-1) and ( 	on Fig. 16 indicate that a positive set of dual 

variables should be obtained at point (11) by the solution of (69), but 

a negative Lagrange multiplier will be associated with one of the 

Figure 16 Design space for the 3-bar truss problem 
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constraints at point 2 . 	In fact the dual entry procedures proposed 

in Section 6.3 which are effectively solving (69) gave 

for point 
	

1'1  = 0.576 	r2 = 0.216 	r3  = 0.207 

. (112) 

and for point 	= 0.482 	, 	r2  = -0.201 , 	r3  = 0.719 . 

. 	. (113) 

In deriving these values three constraints were included in (73) and all 

three design variables were included in the problem. 	The dual variables 

r1 and r3  are not equal because the stress constraint for member 1 

was from the first load case, while those for members 2 and 3 were 

from the second load case and 	the matrix A in (73) is not symmetric. 

The point 	 is given by (xl, x2, x3) = (6.45, 6.45, 6.45) 

with m = 1.736 . The lower bound on the minimum mass obtained by 

substituting the dual solution point corresponding to (112)into (76) was 

1.094. 

Tha point 	 on the other hand is given by (5.60, 1.38, 5.60) 

with m = 1.211 . 	This design was deliberately chosen to be infeasible 

to show that the dual procedures are not dependent on the operating 

point being feasible. 	The lowest weight feasible design found by scaling 

this design to point 
	

has a mass of 1.214. 	The dual variables 

including r in (113) do not however define a feasible dual solution 

point. 	Setting r2  to zero, re-evaluating the (3 set and normalising 

gave 

1 = 0.402 	r2  = o 	r3  = 0.598 . 

A feasible dual solution point had now been obtained giving a lower bound 

on the minimum mass of 1.189. 

The mass of the two designs and the bounds obtained have been 

entered in Table 1. 	The optimum design for this truss given in [22] 

is (5.058, 2.723, 5.058) with a mass of 1.197 kgm. 	The feasible primal 

designs and the dual solution points therefore correctly define a range 
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in which the optimum must lie with the dual solution point being near 

optimal. 

Design 1 Design 2 Optimum 	I 

mass 1.736 1.214 1.197 

bound 1.094 1.189 

Table 1 Feasible design masses and corresponding 
bounds of the 3-bar truss 

c. Convergence of the bound to the optimum as the 
primal design improves 

In order to show that the bound will converge to the optimum 

as the design in primal space improves the active set strategy was 

applied to design the truss. 	The design given as point (1) on Fig. 16 

was taken as the initial design. 	When negative Lagrange multipliers 

were encountered and pseudo-constraints had to be defined, a maximum of 

two line searches in steepest ascent directions were conducted in the 

dual at each step. 	Design space was not otherwise artificially 

constrained. 

The sequence of designs produced is detailed in Table 2 

together with the pseudo-limits defined for the constraint on member 2 

to be used in the design update. 	Convergence of the bounds and the 

mass of the designs to the optimum is plotted in Fig. 17. 	The stresses 

in members 1 and 3 are of course 13790 at the optimum. 	The 

values of the dual variables I' from the initial solution of (73) at 

each step are also given in Table 2 to show that r2  converges to 

zero verifying the conclusions drawn from the vector diagrams in 

Fig. 11 . 

d. Alternative design procedures applied to the truss 

The stress ratioing procedure described in Section 4.3 attempts, 

for this design problem, to force a stress constraint active for each 
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Iteration number Iteration number 

e feasible designs 
o bounds 

E 

	

1.0 	 116 

	

1 	2 	3 	4 	5 	1 	2 	3 	4 

c feasible designs 
0 bounds 

E 
1.2 

1.1 

a. Design point 1 in Fig. 16 
	

b. Design point 2 in Fig. 16 
as the initial design 	as the initial design 

Figure 17 	Iteration histories for the application of the 
active set strategy to the design of the 
3-bar truss 

member of the truss. 	The iterative redesign process therefore converges 

to the design F on Fig. 16. 	This design is given by (6.45, 0.0, 6.45) 

with a mass of 1.283 kgm. 	Because it is iterating towards an intercept 

in design space this procedure is essentially similar to the active set 

strategy proposed in Section 6.4. 	In0,.ed truncation of the posynomial 

in (71), while maintaining the sum of Lhe exponent,: equal to -1 to 

ensure that scaling the design variables will scale the stresses by 

an equal amount, recovers the stress ratiuing redesign formula. 	However 

the stres3 ratioing procedure does not update the intercept to which it 

is converging and therefore does not achieve the optimum design. 	The 

truncation of the posynomial form also leads to inaccuracy in the 

simulation of structural behaviour as the design changes, resulting in . 

slow convergence to the optimum design. 	Designs produced after 20 

and 200 iterations of the stress ratioing method are given in Table 3. 
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Iteration 

xi 

Design 
(cm) 

X2 X3 

Dual variables from 
initial solution of (73) 

r1 	r2 	r3  

Feasible dual 
set 

rl 	r2 	r3 

Design 
mass 
(kg) 

Bound 
Pseudo-limit 

for a2  
(N/cm2) 

1 6.45 6.45 6.45 0.576 0.216 0.207 1.736 1.094 

2 5.693 1.565 5693 0.483 -0.176 0.693 0.411 0.0 0.589 1.242 1.190 10954. 

3 5.343 2.025 5.343 0.604 -0.092 0.488 0.553 0.0 0.446 1.2049 1.194 10462. 

4 5.137 2.381 5.187 0.494 -0.036 0.542 0.477 0.0 0.523 1.1989 1.196 10199. 

5 5.107 2.580 5.107 0.509 -0.007 0.499 0.505 0.0 0.495 1.197 1.197 10116. 

Optimum 5.058" 2.723 3.058 1.197 9986. 

Table 2. Iteration history for the design of the 3-bar truss 

Design xl X2 X3 

Initial 5.600 1.380 5.600 

After 20 iterations 6.200 0.354 6,200 

After 200 iterations 6.419 0.044 6.419 

Point F on Fig. 16 6.452 O. 6.452 

Table 3. Designs produced by the stress ratio method 



(iii) 	Example 3 

The minimum mass design of a 2-bar truss subject 
to a single deflection cunstraint. 

In this problem only a single deflection constraint is imposed- 

on a 2-bar truss being designed for minimum mass. 	Since the values 

of two design variables are controlled by a single constraint,it 

provides an opportunity to test the least squares scheme for entering 

the dual problem proposed in Section 6.6. 

a. The design problem 

Design details for the truss are given in Fig. 18. 	The design 

variables are the cross-sectional areas of the members and the structure 

is designed for minimum mass with geometry fixed. 

100 c m 	+ 	100 cm 

Applied load: 	P = 100000 N 

Material properties: 	Young's modulus E = 6.895 MN/cm2  
Density p = 2.8 gm/cm3  

Design constraint: 	Deflection ul < 1.0 cm 

Figure 18 Design details for the 2-bar truss 
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The truss is statically determinate and simple statics gives 

the internal loads F. in the members for an applied load P as 
1 

F = P 1 - 	' F 2  =  (114)  

where the sign convention for F1  and F2  is defined in Fig. 18. 	The 

deflection ul  shown on this figure is given by the Unit Load Theorem 

as 

2 
_111 U. 

1 	Ex 
i=1 

• 

(115)  

where L. is the length of member i , 

and 	U. is the force in member i caused by the application of a 

virtual unit load corresponding to ul  in direction and point 

of application. 

Substitution of the design details and (114) into (115) gives 

ul  = 1.0255 x1-1  + 1.0255 x2 1 	(116) 

The mass of the truss is to be minimized and is given by 

2 
w = 	p.L.x. 	O 

i=1 

Substitution of the design details into this equation gives 

w = 	0.39598 xl  + 0.39598 x2 
	 (117) 

Design space for this problem can now be drawn and is given in Fig. 19. 

b. The dual entry procedure 

The operating point for the initial design was taken to be 

xl = 0.8, x2  = 1.2 . 	The lowest mass feasible design having this 

material distribution can be found by scaling and has a mass of 1.6920. 

A single term posynomial for the deflection constraint 

can now he generated using (79) which gives 

6 
ul 	= 	2.0101 xl . x2-.4 
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Hence 	0.52 r1 = 0.48 

and rl = 0.9231 

. 	. 	• 

Feasible region 

• 

. . • 

Optimum design 

v7 r,17 

'0 

3 	4 	5 	6 

6 

x2 

The dual for the design problem is now given by 

v(s,r) 

subject to . 

with 	61 

Applying (77) gives 

-0.6 

-0.4 
[ 	1 

62 	= 

( 0.39598 

, 

61  

6,r 

k 

61 	I 

62 

> 

(0.39598 
(2.0101)rl 

so that (119a) 

(?18) 

(119a) 

(119b) 

becomes 

61 

ri  

1 	and 

61 = 0.4 

62 

o 

62 = 0.6 

-0.6 r1 = - 0.4 

-0.4 	0.6 • 

Applying the least squares solution procedure 

{ -0.6 	-0.4 
	

-0.6 	r1 	= 	- [ -0.6 	-0.4 ] 	0.4 

	

-0.4 	 0.6 

xi  

Figure 19 Design space for the 2-bar truss p'roblem 
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Using (119a) to redefine 	and and scaling to satisfy the normality 

condition in (119b) gives the feasible dual solution point 

61  = 0.6 , 62  = 0.4 	and 	r, = 1 , 

for which 	v(6,r) = 1.5602 . 

The optimum in Fig. 19 has xl  = x2  = 2.051 and w = 1.5602 . 	The 

lowest feasible mass found by scaling the design given as the operating 

point onto the constraint surface was 1.6920 . 	This mass and the 

bound given by the dual solution point therefore correctly define a 

range in which the optimum lies. 

This example can also be used to demonstrate the use of the 

projected gradient scheme to redesign the structure. 	The feasible 

design found by scaling the design xl  = 0.8 , x2  = 1.2 onto the 

constraint surface is xl  = 1.7092 , x2  = 2.5638 and of course 

w = 1.6920 . 	Equation (26) gives 

A = - (Gt  G)-1  Gt  of 

For this design 

[ 

	

G = -0.35103 	and of = .39598 

	

-70.15602 	 .39598 	. 

Hence applying (26) gives 	A = 1.3607 . 

Now the projection direction is given by 

P 	= 	of + A G 	= 	-0.08167 

0.18368 	. 

Equation (29) for the new design now gives 

x
v+1 

a P 

With a = 1.0 , 	Xv4-1 	= 	1.7909 

2.3801 
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Comparing this new design with 

X
v 1.7092 

2.5638 

and the optimum 	X* = 	12.051 

2.051 

moved towards the optimum. 

shows that the new design has 

A similar projection scheme can be based on the least squares 

solution to the dual variables r in (94). 	The projection directions 

will not be the same however because the scheme based on r is projecting 

into the constraints of (60) in order to finally satisfy the Kuhn-Tucker 

conditions for the problem defined therein. 

7.4 Summary 

A number of practical points related to the application of the 

primal-dual procedures proposed in Chapter 6 have been discussed, and 

various features of the primal-dual formulations demonstrated for three 

simple examples. 	The linearity in the dual constraints enables he 

search to maximize the dual function with respect to the variables I' 

to be subject only to the normality constraint. 	Here (73) would be 

used only to define (5 . 	Projection into this normality condition 

involves scaling the dual variable set. 	The dual search procedures are 

therefore very simple and the linearity has also been shown to extend 

to the definition of the pseudo-constraints. 

A number cf examples requiring the use of a digital computel are 

presented in Chapter 9.. 	However, convergence of the new design 

procedures and the use of the bound as a termination criterion in the 

design process will first be considered in the next chapter. 
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CHAPTER 8 

CONVERGENCE OF ITERATIVE REDESIGN PROCEDURES AND 

USE OF THE BOUND TO TERMINATE THE DESIGN PROCESS 

8.1 Introduction 

The Kuhn-Tucker conditions can be used to check whether a 

redesign procedure has achieved at least a locally optimal design. 

However, the search procedures can be computationally expensive and the 

bound would be a valuable supplement if it could be used to terminate 

the redesign process before the optimum is found. 	There must however 

be some form of guarantee that the design is converging to the optimum 

before a termination criterion based on the bound can be used to stop 

the redesign process. 

A convergence theorem is introduced in this chapter and the 

use of the bound as a termination criterion is considered. 	In particular, 

the difficulties arising when negative Lagrange multipliers are found 

are discussed. The bound is then only a bound on the optimum defined by 

the posynomial approximation to the primal problem. 

The use of the dual formulations to monitor the strategy of 

approximate redesign procedures is also considered. 	Here the Lagrange 

multipliers can be used to check the selection of the active constraint 

set in the stress ratioing and envelope p-rocedures based on the optimality 

criterion approach to structural design. 	The ease with which certain 

mathematical programming procedures can be brought into the design 

process when the approximate procedures fail to improve a nun-optimal 

design is again pointed out. 

8.2 A convergence theorem for iterative redesign algorithms 

In this section the first of a number of convergence theorems 

given in (34] is presented. 	This theorem relies on the notion of a 
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point-to-set.map which must be defined, together with closedness and 

compactness of sets. 

Redesign algorithms are iterative procedures which calculate 

a sequence of points ixKi-k=1  . 	At the heart of the algorithm is a 

recursive process that given a point Xk calculates a successor point 

Xk+1 
	

This recursive process can in general be defined in terms of a 

point-to-set map Ak:V---). V . 	That is, for any point X e V , Ak(X) 

is a set in V and in terms of the algorithm 

X
k+1 	

Ak  (Xk) 	. 

Furthermore, any point in the set Ak(xk) is a possible successor point 

Xk+1 

Before considering the convergence theorem, we must consider 

closed maps and compact sets. 	Closedness is an extension of the function 
co 

continuity concept to maps. 	A point-to-set map is closed at X 	if 

(a) Xk 	Xc° 
	

k c K 

(b) yk E A(xk) 
	

k e K 

and 	(c) Yk 	Y 
	

k c K 

imply 	(ti) y E A(x ) 

where K defines the infinite sequence generated by the map. 	The map 

is said to be closed if it is closed at each point where it is defined. 

Zangwill [34] offers the following intuitive rule for deter- 

mining whether a map is closed at a point X . 	Let y e A(x) so that 

y is a possible successor to X . 	Now perturb X slightly to x' 

and let y' e A(X') . 	If y' is close to y , then A probably has 

the continuity property (i.e. closedness). 	Basically, a slight change 

to X should produce a slight change in X's successor. 	If this 

statement seems correct at an intuitive level, closedness of the map 

can usually be mathematically verified. 

The remaining notion which has to be introduced is that of 

compactness. 	In Euclidean spaces, compact sets correspond to closed 
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and bounded sets. 	Thus a compact set must contain all of its edges 

and not extend to infinity in any direction. 	The points generated by 

most algorithms are contained in such sets. 

The convergence theorem can now be defined in 

terms related to an algorithm which tries to determine a solution point 

such that the merit function Z(X) is within a certain tolerance of a 

minimum. 	Let the algorithm define a point-to-set map A:V 	that 

given a point X' e V generates the sequence 	. 

Suppose 

(1) All points X
k are in the compact set X C V 

(2) There is a continuous function Z:V—P-E1 such that: 

(a) if X is not a solution, then for any y e A(x) 

Z (y) < z(x) 

(b) if X is a solution, then either the algorithm 

terminates or for any y e A(X) 

Z (y) < Z(X) 

and (3) The map A is closed at X if X is not a solution. 

Then either the algorithm stops at a solution, or the limit of any 

convergent subsequence is a solution. 

This convergence theorem is the same as that given in [34] but 

for the definition of the solution set which here consists of designs 

with values of the cost function within a certain tolerance of the 

optimum value. 	Condition (1) guarantees that the sequence of points 

generated .1o2s not diverge to infinity while Condition (3) is required 

to prohibit the discoriinuities that may cause nonconvergence. 

This theorem now specifies a precise procedure for proving 

convergence. 	Once the map A has been determined the compactness 

property can generally be assumed to hold, as it usually does in practice. 

The merit function Z must be identified and Condition (2) proved. 

Finally A must be showy to be closed at any point that is not a solutinn. 
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8.3 The bound as a termination criterion in the design process 

It was implied in the design problem and convergence theorem 

in the previous section that it is seldom necessary to find the exact 

optimum. 	The design process could be terminated if it is known that 

the design is within a certain tolerance of the optimum. This would 

also allow the possible improvement to the design to be balanced 

against the computational expense of the redesign process. 	This 

termination criterion does however require the generation of bounds 

because there is no other way to assess the merit of a given design 

without allowing the redesign process to finally terminate and then 

checking the Kuhn-Tucker conditions for optimality. 

If a positive set of Lagrange multipliers is obtained from 

the initial solution of (73) then bounds on the optimum to which the 

algorithm is converging will be found. 	It has already been shown that 

these bounds will converge to the optimum as the design improves when 

the nearest to active constraint set is included in the dual. 	The new 

termination criterion can therefore be applied. 

The bound, however, is not guaranteed to envelop the optimum 

when negative Lagrange multipliers are encountered in the initial dual 

solution point. 	To obtain the bound the values of the dual variables 

(5 have to be modified from those given by (77) so that the negative r, 
can be set to zero. 	However the single term posynomial approximations 

to the constraints based on (79) match the current value and first 

derivatives at the operating point. 	Therefore, if the current design 

at each step is taken as the new operating point, the value of a new 

bound generated will only be equal to the current value of the cost 

function at the optimum. 	A gap should therefore always exist between 

the value of the cost function and the bound when the design is not 

at least a local optimum,even though the convergence need not follow 

the pattern obtained in Fig. 17. 

Negative Lagrange multipliers were encountered in the second 

example in Chapter 7 and bounds on the optimum were still obtained when 

these multipliers were set to zero. 	A sequence of bounds must however 

be generated in this situation to check that the design and bounds are 

converging monotonically to the final design. 	On the other hand, 
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if a positive set of Lagrange multipliers is obtained in the initial 

solution of (73),the final design can be checked against any of the 

bounds generated in the preceding design sequence. 	The appearance of 

negative Lagrange multipliers need not preclude the use of the bound as 

a termination criterion but a more careful control needs to be applied 

and a tighter criterion imposed. 

8.4 Convergence of the redesign procedures 

A number of redesign strategies have been considered in the 

preceding chapters and their ability to produce optimal designs can 

now be discussed with reference to the convergence theorem. 	Of 

particular interest are the approximate procedures for structural design. 

and the active set strategy proposed in Chapter 6, because each of the 

mathematical programming procedures described in Chapter 4 are shown in 

[34] to produce a sequence of designs satisfying the convergence theorem. 

With the approximate redesign strategies it will still in 

general be acceptable to follow Zangwill's suggestion and assume the 

compactness property holds because divergence to infinity will at least 

be recognised if the application of the procedure is monitored. 	The 

closedness or continuity property can also be checked using the simple 

differencing scheme proposed. 	The difficulty however arises in 

satisfying Condition (2) because it is not, in general, possible to 

guarantee that a sequence of improving designs will be produced. 

The dual procedures for generating the bounds and the Lagrange 

multipliers do however provide an opportunity to monitor the redesign 

process. 	For the type of constraints considered in the structural 

design problems in this thesis, feasible designs can always be produuz.d 

by scaling the structure. 	The improvement to the least weight design 

at each step can therefore be checked. 	The stress ratioing and 

envelope procedures also operate with an active constraint set and 

Lagrange multipliers can be found by solution of (65b) to check whether 

the correct constraint set is being considered. 	If a positive set of 

multipliers is obtained the approximate strategy would appear to be 

iterating towards an intercept in design space which correctly defines 

the optimum. 	However, the appearance of negative values would indicate 
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that the converse is true and the design process should be stopped, 

especially if the improvement to a sequence of feasible designs cannot 

be monitored. 

The use of (65b) to monitor the convergence immediately 

suggests the strategy which should be followed when the approximate 

redesign process is stopped before the termination criterion based on 

the bound is satisfied, 	The projected gradient scheme described in 

Chapter 4 is based on a least squares solution to this equation. 	The 

transfer to this search strategy, which is guaranteed to satisfy the 

conditions of the convergence theorem and therefore will lead to at 

least a locally optimal design, should therefore be simple. 

The alternative strategy which could be used,if the dual 

procedures to monitor convergence are based on the geometric programming 

formulation,is the active set strategy described in Chapter 6. 

Convergence of this procedure to the optimum cannot however be proved, 

because of the form of the posynomial approximations. 	If it could be 

shown that the feasible region for each approximating primal problem 

would always be a subset of the real feaible region, then a proof of 

convergence could follow those given in [36] and [37]. 	However this 

condition is not generally satisfied. 	Convergence should in general 

occur, especially if the constraint tightening procedures depicted in 

Fig. 20 are further utilized to ensure that at each step the feasible 

Figure 20 Pseudo-constraints limiting the design change 
at each step 
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design space is constrained to a region in which the posynomial 

approximations are accurate. However, this convergence cannot be 

guaranteed. 

805 Summary 

The use of the bound as a termination criterion in the design 

process has been considered in this chapter. 	If no negative Lagrange 

multipliers appear in the dual formulation, a bound on the optimum is 

found which will converge to the optimum as the primal design improves. 

There is then no difficulty in using the bound to terminate the redesign 

process. 	If negative Lagrange multipliers do appear in the dual, the 

accuracy of the posynomial approximations to the primal problem must be 

considered if the dual formulation based on geometric programming is 

used. 	Procedures for generation two-term posynomials, which match 

second as well as first derivatives at the operating point, are described 

in Appendix B. 	However the analogy between these dual procedures and 

the Lagrangean dual of (65) would be lost if these approximations are 

used. 	A better procedure would therefore be to generate a sequence of 

bounds as the primal design improves and check if the convergence 

pattern in Fig. 17 is being followed. Alternatively a Newton update 

procedure could be used in the geometric programming formulation to 

remove negative Lagrange multipliers. 	This procedure would update the 

operating point, and hence the posynomial approximations, in an attempt to 

remove negative Lagrange multipliers while improving the primal design. 

This procedure is followed in [25] for the dual based on the Lagrangean 

function (65), 	A bound on the optimum is obtained when an operating 

point giving a positive set of Lagrange multipliers in the solution of 

(65b) or (73) is found. 	This bound could then be used in a criterion 

to terminate the design process. 

The use of dual formulations to monitor the constraint selection 

in approximate design strategies has also been discussed. 	The main reason 

for these procedures noi: producing an optimal design is recognised as the 

inability to guarantee that the design will impruve at each step. 	The 

Lagrange multipliers can, however, be used to sense convergence to a . 

non-optimal design. A more rigorous mathematical programming procedure 

could then be used in the design process. 
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CHAPTER 9 

DETAILED EXAMPLES FROM STRUCTURAL DESIGN 

9.1 Introduction 

A number of examples demonstrating the implementation of the 

new procedures for generating bounds and redesign are presented in this 

chapter. 	All these examples are concerned with minimum mass structural 

design. 	The finite element method, which will be used to analyse the 

structures, can be computationally expensive on all but the simplest 

problems. 	These examples will therefore reflect a field of design in 

which the direct application of mathematical programming procedures 

would be impractical if the problem contains more than a few design 

variables. 

The emphasis on minimum mass structural design is in some 

respects unfzrtunate because the procedures and ideas are generally 

applicable to automated design and optimal policy selection problems. 

However, application to structural design does enable a variety of 

special examples to be constructed to test the procedures proposed. 

These examples supplement the preliminary examples in Chapter 7 

and therefore start with Example 4. 	This first example illustrates the 

application of the new dual procedures to a problem in which no pseudo-

constraints have to be defined and a constraint is active at the 

optimum for each design variable. 	The number of design variables is 

moderately large but 2onvergence to the optimum is obtained in two 

iterations when the active set strategy is used for redesign. 

A singular dual entry matrix Al was encountered in Example 5 

and the methods proposed in Section 6.5 were used to determine the 

cause of the singularity. 	The stress ratioing procedure fails to 

produce the optimum design for this structure and pseudo-constraints 

have to be defined in the active set strategy proposed in Chapter 6. 
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Example 6 is a multiple deflection constrained problem for 

which the envelope procedures based on the optimality criterion approach 

do not produce satisfactory convergence to the optimum design. 	The 

use of dual procedures to augment this approach is discussed and it 

is shown that monotonic convergence towards the optimum can be achieved. 

In Example 7 the shape of a 15-bar cantilever was allowed to 

vary so that the merit function as well as the constraints were non- 

linear. 	In structural design the Michell structure for transmitting 

a given set of loads to support points can provide a measure of the 

absolute minimum mass design which can be achieved for a restricted 

range of constraints. 	The usefulness of the Michell structural mass 

should therefore not be ignored and comparison is made in this example. 

However it is shown that the bounds based on the dual formulation are 

more useful as they allow a given design to be assessed within a defined 

geometry and topology, 

The final example, Example 8, provides a design space in which 

the range of accuracy of the single-term posynomial approximations to 

the constraints is limited compared to the design changes which could 

occur. 	For one application of the active set strategy the constraint 

tightening procedures proposed in the previous chapterwere required to 

ensure convergence. 

Various computational aspects for the implementation of the 

new procedures in these examples are discussed in Appendix B. 	A 

flow chart for the computer program used in these examples is also given. 

The dimensions, loads and material properties for all but the first and 

last example were chosen to allow the results to be compared with those 

which have already appeared in the literature. 

9.2 Example 4 - A tower with 252 design variables 

a. 	The design problem 

The minimum mass design was sought for the pin-jointed tower 

shown in rig. 21 by varying the cross-sectional area of each member. 

The design was subject to constraints on the maximum stress levels and 
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Loads (N) applied to the top level 

1-  
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1_ 

£=304.8 cm 
P8 

7 

minimum cross-sectional areas. Two load conditions were applied to the 

structure and the redesign process involved 252 variables. The pin-

jointed bar is, however, possibly the simplest of all structural members 

since it carries only an axial load. 	Each stress constraint is 

therefore related to a particular member and hence a particular design 

variable. An active set strategy based on a set of active constraints, 

equal in number to the design variables, can therefore be applied directly 

to this problem. 

b. Design by stress ratioing 

The iteration history for the application of the stress ratioing 

procedure (39) to the design of the tower is given in Fig. 22. After 

each iteration the structure was scaled to remove violation of the 

constraints and the mass of the resulting feasible design is given. A 

lower bound on the minimum mass was also found to assess the merit of 

each design. 	It can be seen that the design produced after six iterations 

of the stress ratioing procedure was near optimal. 

Load Load Case 1 Load Case 2 
P1 44480 0 
P2 0 44480 
P3 44480 0 
P4 0 44480 
P5 0 44480 
P6 44480 0 
P7 0 44480 
P8 44480 0 

Material properties: 
Young's modulus = 6.895 MN/cm2  
Density = 2.768 g/cm3  

Design constrai nts: 
X > 0.645 ciaL 2  

'al < 1.379 x l04  N/cm2  

/ ////////1/ i/ 
Basic layout 

Figure 21 Design details for the skeletal tower 
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The stress ratioing procedure does not always converge to the 

optimum design. 	Any confidence that it has produced the optimum 

design in this example is not based on the low weight reduction over 

the last three iterations (which could at best indicate that a fully 

stressed design had been achieved). 	Rather it is based on convergence 

with the bound and the fact that a positive set of Lagrange multipliers 

was obtained in the solution of (73) indicating that constraint 

intercept to which the redesign procedure was converging would satisfy 

the Kuhn-Tucker conditions. 

c. Procedures used for generation of the bounds 

The problem had been posed in the following way, 

252 
minimize w = 	E c.x. 	1 	c. > 0 	, 	x. > 0 	$ 

	

1 1 	1 	1 
1=1 

subject to the constraints 

 
0.645x. 	< 1 	L < 1 

1 - ' 137K,  
i = 1,....,252 	j = 1,2 , 

where a.. was the stress in member i under load conditions j , and 
13 

the variables x. were the cross-sectional areas of the members. 	To 
1 

find each bound single term posynomial approximations had to be derived 

for those stress constraints which were roarer to being active than 

• 600 • o Designs produced by the F.S.D. 
procedure. 

0 Bounds fcr designs produced by the 
580- F.S.D. procedure. 

A Designs produced by the active set 
strategy. 

560- 
• 

540 

2 
0 

520- 

500 I i 	I 	I 	I 
1 2 	3 	4 	5 	5 

Iteration Number 

Figure 22 Design histcries and bounds for the skeletal tower 
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the minimum size constraint for each member. 	These posynomials were 

derived using (79) with the current design at each iteration as the 

operating point. 	Only the local element groups depicted in Fig. 23 

were considered in these approximations since the stress redistribution 

caused by the change in area of any one element was localized. 	Therefore 

the polynomial for the stress constraint identified with the member 

marked with an asterisk in Fig. 23 involved non-zero exponents on the 

design variables for those members shown in the same group. 	The 

computational expenditure to generate the stress gradients was then 

reduced by evaluating several gradients simultaneously. 	If a finite 

difference scheme had been used to evaluate the gradients, rather 

than the matrix equations given in Appendix B, this procedure could be 

easily seen to involve the simultaneous variation of members from 

different groups selected such that no overlap occurred. 

The nearest to active constraint for each member was included 

in the matrix Al in (85). 	The methods described in Section 6.3 

corresponding to the application of (77) and the solution of (73) were 

applied and the bounds obtained are shown in Fig. 22. 	Normally only 

a single bound would have been required to check the merit of the 

final design when the stress ratioing procedure was terminated. 	However, 

additional bounds were found to demonstrate the accuracy of the bound 

as a prediction of the optimum mass when the operating point was far 

from optimal. 	The hounds were obtained from the initial entry to the 

dual problem and therefore enveloped the true optimum design as the 

dual variable set defined from the solution of (73) was non-negative. 

No updating or maximization procedures were required in the dual and the 

Figure 23 Local element groups considered in the 
stress posynomials 
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the bounds were recognized as being near-optimal from the low values 

of the dual gradient set. 

d. Improving the redesign step 

Since the active constraint set can be easily identified in 

this problem,convergence to the optimum design could be expected in a 

single step if the redesign formulae were accurate. 	It should be 

noted that the stress ratioing procedure assumes 

a. a x. 
-1 	 (120) 

whereas the single term posynomials used to generate the bounds take 

the form 

a. a Ty x.b  3 
jeJ •  

where the set J defines the element groups given in Fig. 23. 	It is 

of course not acceptable to use approximations matching those for the 

stress ratioing procedure in the posynomials for the bounds because 

this would lead directly to the prediction that the fully stressed design 

was optimal. The only situation in which this is undoubtedly correct 

is if the structure is statically determinate and then the exact 

posynomialF do take the form of (120) with other exponents zero. 	The 

degree of truncation of the posynomials which will be acceptable in 

any given problem will depend on the problem being considered. 

To demonstrate the effect of improving the approximations to 
the active stress constraints, an active set strategy, based on the 

solution Zur tha intercept of the single term posynomials used to 

define the bounds, was applied to design the tower. 	The initial design 

was the same as the initial design to which the stress ratioing procedure 

was applied. The redesign process was however terminated after just 

two iterations because convergence had occurred with the bound. 	This 

bound was generated automatically on each step when entering the dual 

to evaluate the Lagrange multipliers and check the selection of the 

active constraint set. 	The masses of feasible designs found by scaling 

the structure onto the constraint surface have been superimposed on 

the results for the stress ratioing procedure in Fig. 22. 
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This first example has demonstrated the application of the 

procedures proposed to a problem well suited to the active set type of 

redesign strategy. 	It was not necessary to define pseudo-constraints 

and the single term posynomial approximations to the stress constraints . 

were shown to be accurate even in the truncated form selected. The 

ease with which the dual solutions were generated is encouraging and 

the bounds were near optimal. 

9.3 Example 5 - A more difficult problem with a singular 
dual entry matrix 

a. The design problem 

The 10-bar truss shown in Fig. 24 was designed for minimum 

mass by varying the cross-sectional areas of the members. 	The single 

load case and design constraints are also given in the figure. 	In 

this initial form the design problem is very similar to the tower 

Material properties: 	E = 68950 MN/m2  
p = 2.768 gm/cm2  

P1 = P2 = 4.448 x 105  N 

Initial constraint set:lxil > 0.645 cm2  Case A 
172.36 MN/m2  (25000 psi) 

Figure 24 Design details for the 10-bar.truss 

Single load case: 
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considered in the previous example and the stress ratioing procedure 

was applied to design the truss. 	The optimal design, with the area 

distribution given as Case A in Table 4 and a mass of 722.7 kg, was 

obtained. 

The constraint set was then modified by raising the limiting 

value for the stress in member 5 . 	If the cross-sectional area of 

this member is reduced to keep the stress equal to the limiting value, 

member 5 becomes more flexible and the load is redistributed to members 

4, 6 and 10 . 	The design problem within the augmented constraint 

set, given as Case B below, then served to illustrate a number of points 

related to the primal-dual formulation and the application of active 

set strategies for design. 

Constraint set Case B 
	

lxil k 0.645 cm2  

lad 5 172.36 MN/m2  , 	5 . (25000 psi) 

1051 5 482.65 MN/m2 	(70000 psi) 

a. Application of the stress ratioing procedure to design for 
constraint Case B 

The derivation of the stress ratioing procedure given in 

Section 4.3 indicates that this procedure would lead to the optimum 

design for this truss when the limiting value was the same for all the 

stress constraints. 	It was however recognised that this redesign 

procedure may fail to produce the optimum design when the structure 

contains materials with markedly different allowable stresses. 	It was 

therefore anticipated that application of the stress ratioing procedure 

to design the truss for the new constraint set might lead to a non-

optimal design. 

The fully stressed design for constraint Case A given in 

Table 4 was used as the starting design. 	The new application of the 

stress ratioing procedure produced a design with a mass of 782.6 kg. 

The iteration history for designs found by scaling the structure to 

remove stress violation are given in Fig. 25, and the final design 

areas are detailed yin Table 4. 	The fully stressed designs produced by. 

the stress ratioing procedure for the constraint sets Case A and 

Case B are also compared diagramatically in Fig. 26 to show the 

alternative load path utilized in the second design. 
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Bar 

No. 

Case A 

FSD & OPT 

Case B 

Design produced 
by stress ratio 

Case B 

Design from ASS 

Case B 

Optimum [41] 

1 35,929 0.968 35.604 35.583 

2 37.063 72.024 37.388 37.408 

3 0.645 0.645 0.645 0.645 

4 0.645 35.528 0.895 0.912 

5 35.929 0.645 24.063 23.721 

6 0.645 25.122 0.645 0.645 

7 52,013 76.735 52.243 52.258 

8 25.406 0.685 25.176 25.161 

9 51.212 26.491 50.982 50.968 

10 0.645 25.122 0,645 0.645 

Mass 722.7 782.6 680.5 679.3 

Table 4 Design areas (cm2) and mass (kg) for the 10-bar truss 

All designs scaled to remove stress 
violation 

Stress ratioing with lo515482.65MN/m2  

Optimum mass for lo51<172.36 MN/m2  

Optimum mass for la51  5482.65 MN /m2  

1200' 

1100 

1000- 

900 

800 

700 

5 	10 	15 
	

20 
	

25 

Iteration number 

Figure.25 Iteration history for the stress ratioing design of the 
10-bar truss 
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CASE A 

The constraint on the stress in member 5 has been relaxed 

and the new feasible region in design space for Case B therefore 

contains all points in the feasible region for Case A. 	The optimum 

mass for the new constraint set must therefore be at most equal to, if 

not lower than, the optimum mass for Case A (722.7 kg). 	The second 

fully stressed design produced by the stress ratioing method is 

therefore obviously not optimal. 

Figure 26 	Load paths for the fully stressed designs for the 
different constraint sets 

b. Application of the active set strategy proposed in Chapter 6 
to the design of the truss 

The active set strategy proposed in Section 6.4 was applied 

to design the truss for constraint Case B, starting from the fully stressed 

design for Case A. 	Single term posynomial approximations to the stress 

constraints were derived using (79) with the current design at each 

step used as the operating point for the approximations. 	In order to 

restrict the feasible region in design space to a region in which these 

posynomial alproximacions would be accurate, the limiting stress for 

each member was set to at most 13.8 MN/m2(2000 psi) from the value for 

the current design. 

The iteration history,with feasible designs and bounds produced 

in the dual formulation,is given in Fig, 27, 	The bounds at each step 

bound the optimum within the tightened constraint set and therefore do 

not envelop the optimum mass. 	No search was conducted in the dual 

plane because a positive set of Lagrange multipliers was obtained at 

each step and no pseudo-constraints had to be defined. 
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The set of active, or nearest to active constraints included 

stress constraints in all members except members 3, 4, 6 and 10 

which were set to minimum size in the initial iterations. 	The stress 

constraint in member 4 became active after the fourth cycle. The 

design process was terminated at the seventh step because stress constraints 

became active for all members but member 3 in the following cycle, 

and the matrix Al used for both dual entry and design update became 

singular. 

This singularity will be investigated in the next section but 

the best design achieved has been detailed in Table 4. 	It can be 

compared to the optimum design taken from [41] also given in the table. 

The stress in member 5 for the final design produced by the active 

set strategy was 255.03 MN/m2  (36988 psi), and the same stress for 

the optimum design is 260.29 (37750 psi). 	This indicates why the 

stress ratioing procedure, iterating towards a design with the stress 

limit in this member of 70000 psi , failed to produce the optimum. 

Convergence to the optimum for the active set strategy could 

not have been predicted from the sequence of designs and bounds produced 

and plotted in Fig. 27. 	However, if the singularity can be overcome 

and a dual solution point found, the bound obtained should indicate the 

optimum has been found. 

"a 
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• Primal designs 

A Feasible primal designs 

0 Dual solution points 

A 
I 
0 

1 	2 	3 	4 	5 	6 	7 

Iteration number 

Figure 27 Iteration history for the active set 
strategy applied to the design of the truss 



c. An investigation of the cause of the singularity in Al  

It was observed that the singularity in the matrix Al  

occurred for a design which was near to the optimum given in [41] and 

detailed in the last column of Table 4. 	The singularity is however 

not related to the close proximity of the optimum, but rather to the 

selection of the active constraint set. 	This fact was demonstrated by 

trying to enter the dual problem from a design the same as the fully 

stressed design Case A in Table 4, but with x5  set to 12.9 cm2  . 

Stress constraints fcr all members except member 3 were violated or 

much closer to being active than the minimum size constraint. 	There- 

fore the active set in Al  was the same as that for the singular matrix 

encountered in the redesign cycle depicted in Fig. 27. 	The matrix was 

again singular so that the dual procedures could not be used to improve 

this far from optimal design unless the methods proposed in Section 6.5 

could be used to determine the cause of the singularity. 	To ensure 

the generality of the application of these procedures the investigation 

was based on this second configuration rather than the near-optimal 

design. 

The zero diagonal term in the Gauss reduction of the Al
t 

matrix occurred in the tenth column. This Gauss reduction was attempting 

to solve the set of equations 

A t r 	= 	- S 	 (121) 

to define a dual solution point. Row operations ware carried out on the 

augmented [ 	matrix. The corresponding term in 6 did not go 

to zero simultaneously indicating, as discussed in Section 6.5, that a 

linear dependence existed between the first ten columns of the Alt 

matrix. 	The back substitution proposed in Section 6.5 revealed the form 

of this dependence as 

C10 	= 	1.49 ci  - 1.54 c2  - 0.001 c3  - 2.83 e4  + 4.41 c5  

- 1.0 c6  - 0.76 c7  + 0.74 e6  + 0.75 c9  

. . . (122.) 

where c. is the ith column of the Alt  matrix. 	The coefficients in.  
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(122) indicate that all the columns of the matrix, except possibly 

column 3 depending on the accuracy of the calculations, contribute to 

the linear dependence. 

It was suggested in Section 6.5 that, if the dependence was 

not between the rows of (121), a row dependence should exist between 

the rows of the active set equation solve given by 

Al ln x = - ln K 
	

(123) 

Here the posynomial 

n 
K. 	x.aii 	1 

J. • 	J  J-1 

describes the constant stress contour passing through the current design 

point for the stress in the ith member. 	In the Gauss reduction of the 

augmented matrix [ Al, -lnK 	the diagonal term in Al and the 

corresponding term in [ - ln K ] went to zero simultaneously. 	Therefore 

a row dependence did exist and one of the variables xi  could be 

arbitrarily set. 	By backward substitution it was found that this 

dependence could be defined as 

In x9 = 3.8972 - 	0.0168 ln x10 

ln x8 = 3.6140 - 	0.0379 ln x10 

In x7 = 3.9834 + 	0.0163 ln x10 

In x6 = ln x10 

ln x5 = 2.4850 - 	0.0342 ln x10 

ln x = 1.6948 + 	1.00135 ln x10 

In x8 = - 0.4335 

In x2 = 3.6807 + 	0.0321 ln x10 

In xl = 305087 -- 	0.0341 ln x10 

. . . (124) 

It is interesting to note that these equations correctly indicate that the 

areas of members 6 and 10 will remain equal in the redesign process 

and one design variable could have been used to define both of them. 
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One of the variables, apart from x3  , has to be given a definite 

value to define a design using (124). 	Therefore, in order to remove 

the singularity from the Al  matrix and enter the dual problem, one of 

the stress constraints in this matrix could be replaced by a constraint 

of the form 

• • xi 	x  

where xi  is the value of xi at the operating point. 

It is interesting to note from (124) that a basis in design 

space has not been defined and multiple designs exist with the same 

stresses as those at the operating point (within the approximation of 

the posynomials). 	It may be possible to interpret this as the presence 

of alternative load paths, but this has not been investigated further. 

However a strong dependence between members 4, 6 and 10 , which form 

one of the load paths in the outer bay, is indicated in (124). 

In order to enter the dual and complete the design process 

depicted in Fig. 27, one of the stress constraints in Al  was inter-

changed with a minimum size constraint in A2  .. Since the current 

areas of members 6 and 10 at iteration number 7 were at the minimum 

size, one of these was selected. 	Member 10 was arbitrarily chosen 

and the stress constraint placed in tii 	of (85). 	A search in the dual 

plane was then conducted to ensure that this constraint could influence 

the design. 	Positive Lagrange multipliers were then obtained for both 

the stress and minimum size constraints for members 6 and 10 . 	This 

indicated that both constraints were simultaneously active for these 

members. 	The Lagrange multiplier for the stress constraint in member 5 

was driven to zero and a pseudo-constraint was defined for this member. 

The active set strategy then recovered a design close to the optimum design 

given in Table 4. 

d. Use of the dual procedures to guide the stress ratioing 
method to the optimum 

The similarity between the stress ratioing method and the active 

set strategy proposed in this thesis was pointed out in Example 4. 	A 

stress ratioing algorithm could be augmented by the soluticn of 

n 
of + E A. V g1.  • 	= 	0 1    

i=1 
, (125) 

for the Lagrange. multipliers A . 	Here the constraint set would include 
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the n constraints considered active by the stress ratio procedure. 	A 

positive set of multipliers would indicate that the constraint set would 

be binding if the constraint limits were locally active. 	However, the 

gradients in (125) are only locally accurate and therefore the constraint 

tightening procedure, proposed for the active set strategy based on 

posynomial approximations, should be applied to the stress ratioing 

procedure. 	For this example, investigation of the exponents in the single 

term posynomial approximations to the constraints showed that the trun-

cated stress ratioing form (120) would be quite accurate and the redesign 

process would then follow the curve drawn in Fig. 27, rather than that in 

Fig. 25, 	However, if gradients have been evaluated to solve (125) for 

the Lagrange multipliers then it is logical that the redesign formula 

should utilize this information. 	If a Taylor series expansion is used, 

linear approximations are recovered. Alternatively posynomial forms 

could be used and the active set strategy used in Part (b) of this example 

would be recovered. 

An extended version of the active set strategy was applied to 

this problem in the results reported in [26]. 	There a search for the 

optimum of the dual was conducted at each iteration in order to define 

the value of the pseudo-limit for the stress constraint in member 5 

The limit so defined, starting from the fully stressed design given in 

Case A in Table 3, was 236.4 MN/m2  and then 252.7 MN/m2  from the 

improved design. 	The resulting design had converged sufficiently with 

the bounds generated in the dual to allow the procedure to terminate. 

However, considerable work in the dual was required at each step to 

define the pseudo-limits. 

9.4 Example 6 - Multiple global con:tl.aints 

a. The design problem 

The 10-bar truss shown in Fig. 28 was designed for minimum mass 

under a single load condition with deflection, stress and minimum size 

constraints. 	The configuration, material properties and constraints 

are detailed in the figure. 
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914.4cm 	914.4 cm 
9 	 10 

9144 cm 

by  
444800N 

44u2  

444800 N 

b. Application of optimality criterion procedures 
to the design of the truss 

The problem detailed in Fig. 28 was taken from [40] where the 

approximate envelope procedure,based on the optimality criterion approach 

and described in Section 4.3,was applied to the design of the truss. 

The iteration history for this procedure is reproduced in Fig. 29. 	It 

is reported in [40] that the minimum mass achieved for a feasible design 

was 5112.0 lb (2318.8 kg). 	However, the mass subsequently rose to 

9029.1 lb (4095.6 kg) and the redesign process was not terminated until 

47 iterations had been completed. 	The sharp rise in the mass after 

iteration 18 is caused by the constraint on ul  becoming active as 

well as the constraint on u2 . 

Improved results are reported in [41] where the design change 

is restricted when the mass increases. 	The lowest mass obtained was 

Material properties: 

Design constraints: 

Young's modulus E 	6.895 MN/cm2  
Material density p = 2.768 gm/cm3  

ul, u2 5: 5.08 cm 
lail s 172.38 MN/m2  
x. 	 . > 0 645 cm2  _  

Figure 28 Design details for the 10-bar truss with 
deflection constraints. 
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10,000r 
All designs scaled to become feasible 

5 	10 	15 	20 	25 	30 
Iteration number 

9.000 

6,000 

5,000
o 35 40 45 50 

5061.86 lb (2296.1 kg), 	However, no conclusions are drawn as to the best 

method for restricting the design change and a considerable number of 

attempts were made, each requiring several iterations, before this design 

was achieved. 

It was shown in Section 4.3 that the difficulties in applying 

the optimality criterion approach to multiple deflection constrained 

problems result from the presence of multiple Lagrange multipliers which 

cannot be eliminated from the problem. 	The exact optimality criterion 

design equation (41) can be applied to design the truss up to iteration 

18 because up to this point only a single deflection constraint is 

active and the "envelope" procedure is not required. 	A least squares 

solution of the Kuhn-Tucker condition 

m 
Vf+ 5-  A.

1 
 V g

1  
. 	= 	0 

--' 	--  
i=1 

for the Lagrange multipliers A would indicate that the design obtained 

at this iteration in Fig. 29 was not optimal. 	The relation between 

the least squares error in this equation and the projection direction 

described in Section 4.2 suggests directly the use of the projected 

gradient scheme to continue the design of the truss [42]. 

Figure 29 Iteration history for the application of the 
envelope procedure based on the optimality 
criterion approach to design the truss 
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A different approach also aimed at evaluating the Lagrange 

multipliers within the optimality criterion formulation has been proposed 

in [43] and use of the exact form of the geometric programming dual has 

also been suggested [42]. 

c. A simple redesign strategy to demonstrate the use of the dual 
to complete the design process and generate bounds 

In order to demonstrate the use of a dual formulation to take 

over the redesign process from the optimality criterion algorithm and 

overcome the sudden increase in the weight at iteration 18 in Fig. 29, 

a geometric programming formulation was applied to the design of the 

truss. The two-term posynomials described in Appendix A, which attempt 

to match second derivatives, were used to approximate the deflection 

constraints because approximations to the second derivatives would be 

readily obtained. Finite difference steps can be taken and u. = AU 
APi 

evaluated using the stress gradients,which are assumed constant, to 

evaluateAU.HereAP.is a unit load increment applied at the point 

and in the same direction as u. , and AU is the increment to the strain 

energy in the structure. 

The initial design detailed in Table 5 was selected because 

the design at iteration 18 in Fig. 29 was not known. 	However, for the 

single deflection u2 controlling the design up to this point, the 

statically determinate structure defined in the initial design in Table 5 

would approximate to the optimum configuration. 	The structural mass 

and deflections ul and u2 for this design are given in Table 6. 

Only the deflection constraint restricting ul was active in 

the initial design and the initial dual solution point was obtained by 

noting that, if the design was optimal And the deflection constraint is 

given by 

K1 TT x alk 	K2 -rr xi:2k =1 
k=1 	k=1 

then (98) gives 

K1 	xkalk 

k=1 

rl  
ri  + r2  
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and 
r2  

r3 	r2 
. . 	(126) 

In the approximate form proposed in Appendix A both terms were given the 

same value so that r1  = r2  . 	Therefore these dual variables were set 

to0.5,allotherr.were set to zero, and (73) used to define the 

set 6 . 	Scaling the dual variables then satisfied the normality 

condition (74). 	Those dual variables 6i  , related through (77) to 

the design variables at the minimum size in this initial design,were. 

however negative and had to be set to zero. 	Equations (73) were then 

solved and the dual variable set scaled to again satisfy (74) to define 

a feasible dual solution point. 

A Newton update in the dual was then used to define a single 

search direction. 	This procedure involved solving linear approximations to 

aln v _ 
;ri 

where = 	r.
J 
 I r. > o 

J 

and the asterisk indicates the optimal value. 	The bound given in 

Table 6 is then the maximum found along this search direction. 

Member 
Design variables x for the 
initial operating point 

. for dual entry 

Design variables x for the 
best design given 

in [41] 

1 150 136.97 

2 100 48.24 

3 5 	, 0.645 

4 0.645 0.645 

5 100 136.08 

6 0.645 3.4 

7 200 151,84 

8 100 96.23 

9 200 199.1 

10 0.645 0.645 

Mass 2536.6 2296.0 

Table 5 	Initial and optimal designs for the 10-bar truss 

0 
	

for 	
rJ s 
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A simple updating scheme was then applied to redesign the 

truss. 	A new set of design variables was obtained by defining a pseudo- 

limit for a minimum size constraint for each member without conducting 

further search in the dual. 	It however appeared rational to apply 

a restriction to the redesign at each step to ensure monotonic convergence, 

and only seventy-five per cent of the predicted design change at each 

step was taken. 	The following iterative redesign strategy then involved 

only a single Newton step in the dual, updating of the design variables 

and the evaluation of a new set of posynomial approximations to the 

constraints at each iteration. 	The limit on the design change at each step 

enabled the dual variables r from the previous iteration to be used 

to give an initial dual solution point and (73) was used to redefine S . 

The iterative design sequence is given in Table 6. 	The bounds 

did not always bound the true optimum because the dual constraints in 

the form (65b) were not satisfied. 

Iteration 
Number 

Mass 
(kg) 

Constrained deflections 
(cm) 

u1 	u2 

Mass of feasible 
design (kg) 

Bound 
 

1 2536.6 5.1782 	4.2042 2585.6 2331.7 

2 2371.8 5.0425 	5.0687 2366.5 2277.2 

3 2304.4 5.1464 	5.0778 2334.5 2293.9 

4 2299.4 5.1383 	5.0736 2325.8 2300.8 

5 2299.3 5.0904 	5.0894 2304.0 - 

Table 6 Results from application of the dual procedures to the 
deflection constrained design of the trugs 

A solution to (73) in a least squares sense was also obtained to 

define the initial dual solution point. 	The duel variables 6 were 

defined using (77) and the set r defined using (94). 	That is, 

r 	= 	Al  Al
t 1-1 

A l  s _  
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with Al containing only the two-term posynomial for the deflection 

constraint on ul  . 	The error in this solution could not be 

removed by using (73) to redefine d because some of these variables 

would have been driven negative. However the error was small and the 

dual function had a value of 2309.1. 	It would therefore appear possible 

to define a bound when as few as one constraint is active for a multi-

variable problem. 

This example was mainly intended however to show that an 

iteration history similar to that shown in Fig. 29 would not occur if 

correct use was made of a dual formulation or projected gradient search 

when multiple constraints were active. 	Because of the difficulty in 

defining a feasible dual solution point the projected gradient procedure 

would probably be the most suitable procedure for extending the design 

process. 

9.5 Example 7 - A variable shape problem 

a. The design problem 

In the three examples already considered in this chapter there 

has been no alternative to the bounds for assessing the merit of a given 

design. 	However, in a design problem with variable geometry and subject 

to stress constraints, the Michell structure gives the minimum mass which 

can be achieved. A variable geometry problem is therefore considered 

in this example to compare the bounds produced using the dual formulation 

and that obtained from the Michell structure. The introduction of 

variable shape makes the merit function non-linear and the computation 

becomes more difficult. 	The dual procedures were therefore not fully 

automated in this example. 

When the geometry is allowed to vary the mass of a pin-ended 

bar structure is given by 

f(x,y) = 	p4xiii(z) 
i 	4-  

Here pi  is the density of the ith member, xi  is the cross-sectional 

area of this member, yi  are the coordinates of the joints connected by 
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the bar elements and 1.(y) is the length of the ith member. 	Since the 

lengthsLare functions of the positions of the joints this merit 

function is non-linear if the cross-sectional areas also change. 	The 

optimality criterion methods, which have already been applied to other 

examples, are currently confined to finding the best member sizes for a 

fixed geometric configuration. 	It has, in general, therefore been 

necessary to resort to mathematical programming procedures to find the 

optimal shape. 

The initial configuration of the pin-jointed truss given in 

Fig. 30 was first designed for minimum mass by varying the cross-sectional 

areas of the members. 	The design was subject only to stress and minimum 

cross-sectional area constraints and the stress ratioing procedure was 

used. 	Details of the optimum design for this initial configuration are 

given as Design 1 in Table 7. 	A prediction was then sought of the 

further reduction in mass which could be achieved by allowing the vertical 

positions of the unsupported nodes to become design variables 

b. Application of the dual procedures 

To generate the bound approximations were required for both the 

merit function and the stress constraints. 	The merit function was 

approximated in the form 

	 914.4 cm 	---1,1 
..1 13 	t 	 4 	15 	P  , 	Yl 	Y3 

f " 
■ co 

10 	11 	12 Y5 -.7 	 Material properties: 
o . 	 Y6 

Young's modulus = 6.895 MN/cm2  
_i__ - 	

EN 	, 
Density = 2.768 g/cm3  

. 

. 	7 	8 	9 
Y2 	YLt 	V 

Design constraints: 
Initial design with applied loads 

xi % 0.645 cm2  
,25.4 cm 

ICI < 1.724 x 104  N/cm2  

Applied load: 

P = 0.2224 MN 

Design produced by the active set 
strategy 

Figure 30 Design details for the 15-bar cantilever 

___.,... 

\ 	 / \ N 

/ 	 / \ 	I 

/ 	 , 	\ 
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f(x,Y) 
15 	6 
E c.x.d 	

c 	, di-445 
i+15 	co 

i=1 	1=1 

by matching the current value, first derivatives, and second derivatives 
2f a 

of the form ---7- at the operating point. 	The geometry variables y Dxi 
were defined as shown in Fig. 30 to ensure the coefficients c. 

i = 11,....,16 , were positive. 	The stress constraints were approximated 

using the single term posynomial approximations (79) with the design 

variable set including both the variables X and y 

The configuration for the operating point for these approximate 

forms was the initial design shown in Fig. 30, but with the two end nodes 

displaced to a position 25.4 cm from the centre line of the cantilever. 

It was anticipated that the approximate forms would then be accurate near 

the optimum, and values for the member cross-sectional areas at this 

operating point were obtained by applying a single fully stressing step 

to an initially uniform design. 	This operating point is also detailed 

in Table 7 as Design 2. 

The structure has 21 variables, and 21 single term constraints 

were included in the bound formulation. 	Fifteen were taken as the 

nearest to active of the stress or minimum area constraints for each 

member. 	The geometry variation was to be unconstrained but to limit 

the design change occurring in the desigr step six constraints, 

yi  5 50.8 
	

i 	1,....,6 	(127) 

were added. A feasible dual solution point was defined using (77) to 

define d and solving (73) for r . 	Three steps in a steepest ascent 

direction were then sufficient to drive to zero the variables r. associated 

with the constraints on yj,, j = 3,..,6 . 	These constraints were 

obviously not going to be active because large negative gradients with 

respect to them were obtained in the dual problem. 

The bound thus computed is given in Table 8 together with the 

mass of the initial fully stressed design. 	It indicated that a reduction 

in mass of up to 20 kg could be obtained by geometry and further member 

area variation. 	A single iteration of the active set strategy based on 
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i 

Design 1 
(cm2) 

xi 	Yi 

Operating Point 
Design 2 

xi 	Yi 

Design 3 

xi 	Yi 

Optimum from 
search technique 

xi 	Yi 

1 18.245 25.4 18.245 25.4 24.233 49.792 23.881 48.224 

2 18.245 25.4 18.245 25.4 24.233 49.792 23.881 48.224 

3 18.245 25.4 18.245 25.4 13.374 22.863 12.999 18.771 

4 18.245 25.4 18.245 25.4 13.374 22.863 12.999 18.771 

5 18.245 152.4 14.935 25.4 14.739 6.043 14.952 0.127 

6 18.245 152.4 14.935 25.4 14.739 6.043 14.952 0.127 

7 64.516 64.516 61.150 61.321 

8 38.710 38.710 35.505 36.091 

9 12.903 13.981 14.509 14.948 

10 0.645 0.645 0.645 0.645 

11 0.645 0.645 0.645 0.645 

12 0.645 0.645 0.645 0.645 

13 64.516 64.516 61.150 61.321 

14 38.710 38.710 35.505 36.091 

15 12.903 13.981 14.509 14.948 

Mass 
328.725 317.175 313.120 313.032 

(kg) 

Table 7 Designs for the 15-i.ar cantilever 

(87), with pseudo-constraints being defined for the geometry variables y , 

was therefore applied without further dual search. 	The configuration 

of the new design is given in Fig. 30, but when this design was analysed 

it was found that some of the stress constraints had been violated. 

This violation was therefore removed by an active sPt redesign step with 

fixed geometry. 	Details of the final design obtained are given in Table 7 

as Design 3. 

The mass of the new design has also been entered in Table 8 

and is within 3 kg of the initial bound. 	Since only a small violation 

of the stress constraints had occurred, these approximations were shown 

to be quite accurate near the final design. 	The bound 310.262 should 

therefore be a lower bound on the optimum mass and further redesign was 

not attempted. 
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Design Mass (kg) Bound 

Initial 

From active set 
strategy 

Optimum 

328.725 

313.120 

313.032 

310.262 

312.757 

Table 8 Design masses and bounds for the 15-bar cantilever 

To complete Table 8 a bound was computed using the final design 

as the operating point. 	This bound verified that the final design was 

near optimal and this design can be compared with the best design achieved 

after a relatively large amount of computational effort by applying the 

mathematical programming procedures in [16] and also given in Table 7. 

A Michell structure with a mass of 284 kg can also be generated 

[38] to carry the load considered in this design problem. 	It cannot be 

used as a termination criterion for this design process with the given 

structure having a specified topology since a gap between the current 

mass and the mass of the Michell structure will always exist. 	It can 

therefore only be used to assess the merit of the topology selected. 

9.6 Example 8 - The minimum mass design of a wing box structure 

a. The design problem 

In this final example the active set strategy and bound generation 

procedures were applied to the design of a structure representing the 

main load carrying members of the inboard section of a wing. 	One test 

case was constructed such that the range of accuracy of the single term 

posynomials was limited when compared to the design changes which occurred. 

The redistribution of material required an order of magnitude change in 

some of the design variables and the active set strategy failed to produce 

a converging sequence of designs even though the bounds were reliable. 
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spars and ribs 
equally spaced. 

P = 160000.N 

The structure considered is detailed in Fig. 31 and material 

properties and the design constraints are given. 	The finite element 

model of the structure included 75 elements which are also detailed in 

Material properties: 	Young's modulus E = 6.895 MN/cm2  
Material density p = 2.768 gm/cm3  
Poisson's ratio = 0.3 

Design constraints: 	la.' 	 13 < 13790 N/cm2  - - 
ti > 0.2 cm for panels 
Ai = 5.0 cm2  for all bar elements 

The finite element model 

Element type Number in
model 

Description Structural member 

Quadrilateral panels 18 diract and shear 
stress 

top and bottom covers 

Quadrilateral shear 
panels 

21 shear stress only vertical panels of 
spars and ribs 

Pin-jointed bars 36 axial load only booms for spars, 
vertical members 
between shear panels 
of ribs to provide 
correct boundary 
conditions for these 
panel elements 

Figure 31 Design and structural details for the multi-cell 
box structure 
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0 feasible designs produced 
by scaling 

0 bounds 

-0- 

the figure. 	A design variable was defined to describe the thickness ti of 

each panel element in the top and bottom skins, spars and ribs. 	The 

geometry of the structure was fixed and the cross-sectional areas Ai  of the 

bar elements were not allowed to vary. 	There were therefore 39 variables 

in the design problem and only a single load case was applied. 

b. The design of the structure 

The bound generation procedures and the active set strategy 

were first applied to Design A in Table 9. 	This initial design was 

obtained after some trial and error, interactively adjusting the design 

by hand and reanalysing the structure. 	The general distribution of 

material turned out to be almost optimal even though some stress violation 

occurred. 	To apply the dual procedures approximations were required for 

the stress constraints to give the problem in the correct posynomial form. 

Single-term posynomials were generated for them using (79). 

The iteration history is given in Fig. 32 where the mass at 

each iteration is for a feasible design found by scaling the structure 

to remove stress violation. 	No constraint tightening procedures were 

used and no search was conducted in the dual plane because negative 

Lagrange multipliers were not encountered and no pseudo-constraints had 

to be defined. 

740— 
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640 

0 

M 620 0— 
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X806 I 

	

I 		I  
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Figure 32 Application of the active set strategy 
to Design A 

Iteration number 



Element numbering sequence for Table 9, outboard bays follow sequentially. 

Design A Design B 

. 
1 

initial 
design 

final
design . initial design 

final 
design 

. initial 
design 

final 
design i 

initial 
design 

final 
design 

1 0.2 0.2 21 7.5 6.695 1. 0.22 0.2 21 8.0 6.766 

2 1.0 1.076 22 7.5 6.695 2 1.0 1.077 22 8.0 6.768 

3 0.2 0.2 23 0.2 0.2 3 0.2 0.2 23 0.2 0.2 

4 2.5 2.648 24 0.2 0.2 4 3.0 2.566 24 0.2 0.2 

5 2,5 2.648 25 0.2 0.2 5 3.0 2.566 25 0.6 0.2 

6 1.0 1.027 26 0.2 0.2 6 1.0 1.028 26 0.6 0.2 

7 0.2 0.2 27 0.4 0.299 7 0.2 0.2 27 0.4 0.287 

8 12.0 10.605 28 1.0 0.875 8 10.0 10.687 28 1.0 0.886 

9 12.0 10.606 29 0.3 0.281 9 10.0 10.687 29 0.4 0.345 

10 0.2 0.2 30 0.5 0.412 10 0.2 0.2 30 0.5 0.383 

11 0.2 0.2 31 0.5 0.411 11 0.2 0.2 31 0.5 6.382 

12 0.2 0.2 32 1.0 1.011 12 1.0 0.2 32 1.0 1.016 

13 0.2 0.2 33 0.2 0.2 13 1.0 0.2 33 0.2 0.2 

14 0.2 0.216 34 2.0 1.828 14 0.22 0.211 34 2.0 1.855 

15 1.0 1.0 35 2.0 1.829 15 1.0 1.005 35 2.0 1.856 

16 0.2 0.2 36 0.2 0.217 16 0.2 0.2 36 0.2 0.2 

17 1.75 1.654 37 0.5 0.490 17 2.0 1,588 37 0.5 0.493 

18 1.75 1.653 38 0.3 0.220 18 2.0 1.587 38 0.4 0.214 

19 1.0 1.073 39 0.3 0.220 19 1.0 1.074 39 0.4 0.215 

20 0.2 0.2 20 0.2 0.2 

Table 9 Designs for the wing structure 
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600 
o designs produced by the dual procedures 

and scaled to become feasible 

0 bounds 

X designs produced by the stress raticing 
procedure and scaled to become feasible 

New constraints enter the 
active set at this step 

760 

720 

6130 

fo 
2 

640 

600 

The dual procedures were also applied to Design B in Table 9. 

Significant changes in the design were expected so that a maximum stress 

variation of 1000 N/cm2  and a maximum panel thickness change of 1 cm 

were allowed at each redesign step. 	These pseudo•-limits were applied 

immediately after the bounds were found before the active set strategy 

was applied to design the structure. 

The iteration history is given in Fig. 33. 	Up to eight 

negative Lagrange multipliers were found On each of the early design 

steps but bounds on the optimum were still found. 	This result is 

encouraging because it has already been pointed out on a number of occasions 

that the bound cannot be guaranteed to envelop the optimum when the dual 

solution point has to be modified to remove negative Lagrange multipliers. 

The relatively slow convergence of the active set strategy on the other 

hand was controlled by the pseudo-limits which limited the design change 

at each step up to the eighth design iteration. 	Some further updating 

to define pseudo-constraints was required for some of the constraints 

associated with the negative Lagrange multipliers. 	Only 50 steps were 

560 	i 	1 	1  
1 	2 	3 	4 	5 	6 	7 	8 	9 	10 
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Iteration nun bc>r 

Figure 33 Application of the active set strategy to Design B 



allowed in the dual search leading to, at most, two line searches in 

steepest ascent directions. 

The stress ratioing procedure was also applied to the design 

of the wing structure using Design B in Table 9 as the initial design. 

The iteration history is superimposed on Fig. 33. 	While the initial 

improvement to the design was rapid, the final convergence to the optimum 

was slow. 	However, the stress ratioing procedure does not require the 

evaluation of gradients which can be computationally expensive. 	The 

best design strategy for this problem would therefore have been to apply 

this approximate redesign procedure and use the active set strategy based 

on posynomials on those steps when the gradients are found to generate 

bounds and to aid the final convergence. 	Time was unfortunately not 

available in this research project to determine the effect of varying 

the pseudo-limits, or replacing the single-term posynomials with linear 

approximations in the redesign process. 

c. The limited accuracy of the single-term posynomial 
approximations 

One difficulty which was investigated in detail results directly 

from the product form of the posynomials, 

39 

f = c TT x.
ai 

 
i=1 

(128) 

If f is to remain constant as the design variables are changed and one 

is driven small, then significant overprediction of the other variables 

can occur. 	This effect can be demonstrated by considering the stress 

in member 13 of the wing structure. 	For an operating point with 

x5 = 7.5, x9 = 7.5 and x13 = 3.0 , the exponents ai  in the expression 

(128) for the stress in member 13 inelhded a5  = -0.035, a9 = -0.516 

and a13 = -0.395 . 	A solution for the intercept 	a set of tightened 

pseudo-constraints including stress constraints for members 5, 9 and 

13 gave 

xs = 0.22 , x3 = 1.25 x 104  and x13 = 1.17 x 10-7  . 

In fact the stress constraint for member 13 is not active at the optimum 

and x13  is correctly being driven to zero because the minimum size constraint 

for x13 was not included in this redesign solution. However if x13. is reduced 
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from 3.0 to 0.3 investigation of (79) indicates that a13 would be 

reduced by a similar order of magnitude. 	However, the exponents of 

course remain constant during each design step and a large change was 

required in xq to keep the stress in member 13 constant at its 

limiting value. 

Gross overprediction of this kind did not occur when the active 

set strategy was applied to Design B in Table 9. 	However some of the 

initial design changes were large and these were truncated by imposing 

limits on the design change at each step. 

The procedures for generating bounds on the minimum mass were 

however again successful for this problem. 	The reason for this success 

even when the redesign strategy encountered difficulties is that the 

solution of (65b) or (73) is attempting to satisfy conditions at the 

operating point and form the geometric construction depicted in Fig. 2. 

The redesign step on the other hand solves for the intercept of the 

posynomial approximations to the constraints in design space and thus 

requires extrapolation away from the current operating point. 

907 Summary 

The five examples considered in this chapter have been intended 

to extend the investigation which started with the preliminary examples 

in Section 7.3. 	An attempt has been made to present a range of problems 

each demonstrating and testing different aspects of the primal-dual 

formulation and the active set strategy suggested in Chapter 6. 

The first example in this chapter, Example 4, was straight 

forward and no difficulty was encountered in either generating a feasible 

dual solution point or using the active set strategy to design the 

structure. 	It is considered that this example, together with the first 

application of the procedures to the design of the multi-cell structure 

in Fig. 32, reflect a practical application of the automated procedures 

in the sense that a good starting design is defined. 

Example 5 demonstrated that it is possible to obtain a singular 

dual entry matrix and considered the difficulties this can cause in the 
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procedures proposed. 	This example and Example 6 then showed that 

the dual procedures could overcome difficulties encountered by 

approximate redesign strategies. 

Example 7 demonstrated that the methods are not restricted 

to problems with linear merit functions by considering a variable 

shape structure. 	The bounds also provided a better measure of merit 

than comparison with a Michell structure. 

Finally the last example gave a warning that difficulties can 

be encountered in the active set strategy based on the single term 

polynomials when large changes can occur in the relative magnitude 

of the design variables. 

As examples of structural design for minimum weight these results 

do illustrate how well the new procedures may be expected to perform. 

However, the examples themselves do not reflect real design problems. 	In 

practice a large number of load cases may have to be considered and 

additional constraints, such as to prevent buckling, may have to be 

imposed. 	It was also in many respects unrealistic to make the mass of 

the structure the sole contributor to the merit function since the cost 

must also be considered. 	These examples would therefore fit the description 

of automated rather than optimal design as feasible designs are automatically 

generated with the minimum mass criterion giving the algorithm some 

indication of what will characterize a good design. 	In this context 

however the tables of design variables quoted to four decimal places 

would appear pointless. 	However these results are quoted accurately so 

that they can be checked and the performance of the active set strategies 

compared to other methods in a mathematical rather than a practical sense. 

The most LIJLable  feature common to the results is the fact 

that the bounds converged to the optimum value much faster then the 

feasible solutions to the primal problem, and provided a good prediction 

of the optimum mass. 	It is worth noting that, when the dual is derived 

from the Legendre transformation [35], an arbitrary condition can be 

satisfied. 	It is chosen to satisfy the zero derivative optimality 

condition for one of the variables and this could further help to explain 

why the bounds are near optimal. 
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Finally, the computational expenditure for these examples 

has not been discussed in detail. 	The aim has not been to present 

a working algorithm, and the research programs are in many respects 

inefficient. 	A detailed consideration of the operations involved 

should therefore give better insight into the computational aspect. 
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CHAPTER 10 

DISCUSSION AND CONCLUSIONS 

The early chapters in this thesis attempted to isolate a 

unifying theory common to numerical procedures for optimization. The 

Lagrangean saddle-function, duality and the Kuhn-Tucker conditions are 

strongly interdependent and form the basis of this theory. The main 

numerical procedures of mathematical programming for the type of problem 

being considered were shown to base their search strategies either on 

the Kuhn-Tucker conditions or to work directly with the Lagrangean 

function itself. 

While none of the theory presented is new, the particular 

emphasis has been placed on those features of the algorithms which conform 

to the unifying basis. 	What is also significant is that an attempt 

has been made to show that the saddle function and duality can be used 

to extend certain approximate redesign strategies and include them in 

this framework. 	In particular, the fully stressing algorithm has the 

same basic strategy as the active set algorithm herein except that the 

constraint set defining the optimum is pre-assumed rather than evaluated 

as the redesign process proceeds. 	The "envelope" strategy for applying 

optimality criteria to multiple constrained problems should also be 

modified by a dual search to evaluate the Lagrange multipliers appearing 

in the formulation. 	Both procedures could then be made mathematically 

rigorous, the active set algorithm degenerating to a projected gradient 

scheme if uecessary and a geometric programming dual formulation has 

been proposed [42] for the optimality criterion approach. 	The 

approximations in these procedures would then only relate to the 

assumptions about structural behaviour. 

The main aim of the research has been however to look for a 

method for assessing the merit of a given design because the redesign 

process can often be expensive. 	The study of the saddle function and 

duality led to the proposal that procedures could be developed which 
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allow feasible solutions to be found for both primal and dual problems , 

and the use of these procedures for generating bounds on the optimum 

value of the cost function is immediately obvious. 	In Chapter 6 it 

was shown that releasing the Kuhn-Tucker condition requiring that 

either a constraint be active or the corresponding Lagrange multiplier 

must be zero, leaves the remaining condition defining feasible (but 

not optimal) dual points if the non-negativity conditions on the Lagrange 

multipliers are satisfied. 	If a negative Lagrange multiplier is 

encountered a method is required to move from the given non-feasible 

dual point to a feasible dual point. The procedure proposed,which is 

based on a simple form of the geometric programming primal-dual formulation, 

is extremely simple compared to any numerical search scheme and has 

be shown to be successful in the examples considered. 	This procedure 

is based on a particular form of approximation to the given primal 

problem based on posynomialsland the effect of inaccuracy in these 

approximations has been considered. 	However, the bound will converge 

to the optimum as the design in primal space improves and it was pointed 

out that this approximate procedure deals with the same equation set as 

the standard method for defining a dual point for the Lagrangean function. 

In fact the dual point is a bound on the true optimum if the initial 

dual variable set obeys the non-negativity condition,in spite of the 

approximations. 

The interface between the primal and dual problems has been 

considered in some detail from a practical point of view,and the dual 

role of the matrix of exponents of the posynomials in defining primal 

and dual solution points was pointed out. 	Singularity in this matrix 

has been given particular attention because practically it would prevent 

the transition between primal and dual problems,. 	However, it would 

appear that sufficient information can be generated to determine the 

cause of the singularity ana allow the design process to proceed. 

The development of procedures to enter tha dual problem were 

of course soon followed by the recognition that the dual can provide 

significant information about constraint activity levels in the primal 

problem. 	It is considered that the general format of the design 

algorithms proposed in this thesis represent a maximum use of the 

information that can be obtained from the saddle function. 	The bound 
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of course allows early termination of the redesign process, but in addition 

the procedures proposed are oriented towards minimizing the work required. 

If many constraints are active the dual is only used to ensure an active 

set can be found defining the optimum point, and a solution for the 

intercept of these constraints is used for redesign. 	However, if few 

constraints are active the dimension of the dual problem is low and 

it is then efficient to conduct an extended search in the dual problem. 

The accuracy of the posynomial approximations required for the procedures 

proposed in this thesis may severely restrict their usefulness,but this 

is the fault of the particular formulation rather than the overall 

strategy based on the saddle function. 

When considering the mathematical algorithms themselves it 

would appear that the penalty function procedure is very attractive 

because of the availability of bounds after a search at each penalty 

level. 	A feasible solution to the dual is only obtained at the optimum 

with a projected gradient method which moves on the surface of constraints 

in the feasible region, 

The examples presented adequately demonstrate that it is 

possible to propose algorithms which work simultaneously with feasible 

solutions to both primal and dual problems. A wide range of examples 

were presented aimed at illustrating different features of the interface 

between the primal and dual problems. 	The preliminary examples are of 

particular interest because the calculations can be carried out with 

the aid of a desk calculator, and they illustrate very simply all the 

procedures proposed. 	On the other hand the two examples relating to 

the 10-bar truss in the detailed examples represent more difficult 

problems on which the stress ratioing and optimali.ty criterion approaches 

do not perform satisfactorily. 	In particular the stress limited design 

problem for the 10-bar truss can be made to produce a singular dual 

entry matrix. 

The attempt at designing the 15-bar truss with variable shape 

allowed the bound generated to be compared with that which could be 

obtained by evaluating the weight of a Michell structure to carry the 

applied loads. 	The Michell weight could not provide a termination 

criterion for the design process but could be used to assess the merit 

of the configuration selected for the design. 	The results for the 252-bar 
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tower and the first of the wing-box problems however reflect the 

extremely good performance of the bound generation and redesign procedures 

which was encountered in the majority of the problems attempted, but not 

presented here. 	In fact the results presented do not correctly indicate 

this performance unless it is recognised that an attempt has been made to 

present results pointing out different features of the saddle function 

and the new methods proposed, and this required the consideration of a 

number of potentially difficult problems. 	In the two examples just 

mentioned however the initial designs are near-optimal, as would be most 

initial designs produced by design engineers and to which the automated 

procedures are to be applied. 

In all of these problems the posynomial approximations were 

sufficiently accurate for the convergence of the redesign algorithm 

to be rapid. 	Considerable design change did occur in the final example 

and it is obvious from the product form of the posynomial approximations 

to the stress constraints, that they will not be accurate over such 

a wide range. 	However, the procedures based on tightening the constraint 

limits to reduce the size of the feasible region centred on the current 

design point successfully overcame this problem. 	This was only at 

the expense of an increased number of redesign iterations and other forms 

of approximation may be more suited to the problem where large changes 

can occur in the design. 	However this example does demonstrate the 

fact that if the initial set of Lagrange multipliers in the dual are 

positive the bound will bound the true optimum in spite of the inaccuracy 

in the posynomial approximations. 

The computational expenditure involved in applying the new 

methods has not been detailed in terms of actual computing time for 

each run because emphasis has not been placed on developing efficient 

programs. 	Rather the intention, in the time available, has been to 

develop programs to investigate all the proposals about dual entry, 

and also consider a wide range of problems. 	However, in Chapter 6 

it was shown that only a single triangularization of the matrix A is 

required in the dual if a Choleski method is used to solve the equation 

sets. 	This single decomposition enabling both the dual entry and 

redesign equation solutions to be performed by only the relatively 
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inexpensive forward and backward substitutions of the method. 	All 

other operations in the dual are linear, apart from the evaluation of 

the dual function itself so that the search and pseudo-limit updating 

procedures are extremely simple. 	In practical problems in structural 

design, where many load cases are often considered, the evaluation of 

the gradients for the posynomial approximations to the constraints may 

require the most computational effort. 	However little can be 

ascertained about the optimality of a given design without the gradients 

of the merit function and constraints being found. 	A check of whether 

the Kuhn-Tucker conditions are satisfied by the given design requires a 

knowledge of these gradients so that this computational expenditure seems 

unavoidable. 

Convergence of redesign algorithms was also considered briefly 

in Chapter 8 because it has been suggested that the new methods proposed 

in this thesis might be used to supplement approximate redesign 

algorithms. 	The dual procedures could be used to check the convergence 

of an approximate algorithm by generating bounds, and providing sufficient 

refinement to ensure convergence of the redesign process to the optimum 

when the approximate algorithm fails to produce this design. 	A good 

understanding of the minimal requirements for convergence, and the 

limitations in this respect of the particular form of the saddle function 

procedures proposed in this thesis, would be essential in any such 

application. 

It is recognised that this thesis is basically an exercise 

in convex analysis. 	However, even though convexity forms the basis 

of the primal-dual procedures, there is no guarantee that they will 

produce bends en the global optimum or find this design rather than a 

local optimum. 	When locally accurate convex approximations in the 

form of the posynomials are made for the merit function and constraints, 

a local optimum near the given design could become the global optimum 

for the convex problem. 	However convex analysis does form the basis 

for numerical procedures for optimization, and the ability to 

include approximate design procedures in the same framework as the 

rigorous methods would appear to offer a useful extension to these 

procedures. 
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In addition to the identification of this unifying theory, 

the generation of corresponding feasible solutions to both primal 

and dual problems has formed the basis of the research carried out for 

this thesis. 	The resulting bounds can be used to check convergence 

and even decide whether design optimization is worthwhile. 	It should 

finally be noted that the Lagrange multipliers evaluated for the final 

design provide the sensitivity coefficients for post-optimal analysis. 

The extension of the design process to include sensitivity studies is 

then a logical step. 	Indeed it should be possible to treat the design 

problem in an integrated way incorporating special redesign strategies, 

mathematical programming procedures, dual formulations and sensitivity 

studies into the same framework. 
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APPENDIX A 

POSYNOMIAL APPROXIMATIONS 

The dual procedures based on geometric programming require 

both the cost function and constraints to be in posynomial form. 	That 

is, they must be functions of the form 

h(x) = 	c. xd aiJ  
i=1 	j=1 

(Al) 

with 	
3 

c.
1  > 0 , i = 1,...0,n but with a1.

..  arbitrary constants. 	The 

cost function and constraints may not in general have this form and the 

purpose of this appendix is to present methods for generating posynomial 

approximations to general functions. 

a0 The basic approximation to the cost function 

The form required for the cost function is in general a linear 

posynomial given by 

f'(x) = 2: i  cx + 1 	cn+1 	with 	c.
1 
 > 0 , 	i = 1,••••,n • 

1=1 

. . . (A2) 

When structural mass forms the cost function for fixed geometry no 

approximation is required. 	However in general it is possible to set 

c. = of  
1 	Dxi 

where f(x) is the function being approximated. 	If any of the coefficients 

in (A2) are now negative, the transformation 

can be used to remove the negative sign. 	Here k is a suitably defined 
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constant such that x.' > 0 for the anticipated changes to x. . 

The current value of the function is matched if a new constant 

c
n+1 is defined by 

cn+l 

n 
= f (x) 	L c. x. 

1=1 1  

Bounds are then formed on 

(f' (x) - c
n+1
) 	E cixi i=1 

b. The basic approximation to the constraints 

A single term posynomial approximation is in general required 

for the constraints. 	The dual formulation will then correspond to 

an extension of the dual given by (65) to allow negative Lagrange 

multipliers to be removed. 	These approximations are given in [28] as 

ai 
g!(x,x') 	giW)  TT (;:j.- T) — — i=1 

a. 

This approximation is 

x; 
gi 

2.ELL i = 
x=x 

to expanding 

1,....,n 	• 

. 	. 	. 	(A3) 

In g 	in a power series equivalent 

in terms of the variables z. = In 25-11- and neglecting all but the xj 
linear terms. 	Here X' is the operating point and g!(x,x') is a 

posynomial if gi(x') is positive. 	The approximation is such that 

g 	and the posynomial have the same value and the same first partial 

derivatives at the operating point. 

c. Extensions to the approximation to the cost function 

A posynomial approximation to the cost function matching 
-D
x  
2f second derivatives of the form 	can be obtained if the approximation DiL 

has the form 

f' (X) 	c.x.d • c 
n+1 i=1 
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aft 	d.-1 
• c

a.
.d.x. 1  

axi  

a 

	

	

1 

2f, 

577 	
. 

c.d.(d. - 1)x.
d1-2  

2-   

- 	af 
Defining c.d.x.d 1-1  

• axi 

and d.-2 
c.d. 

1  
(d. 	

1 
1)x. 1  

1 1  

a2f 

a2f 

gives by division 	(d.
1 
 - 1)x. 	= 	axJEI 
 1 

so that 

a2f 

d. 

axij 

a) 2-  
xi 	1 

of 

and substitution into (A4) gives c. . 

A difficulty now arises in ensuring the c. are positive for 

i=1,....,n although this form of approximation to the cost function 

was used successfully in Examples 1 and 7. 	In general if a negative 

sign persists, even after a variable transformation of the form 

x.' = (k--xi) is tried, it would be necesFary to revert to the linear 

form for this particular variable. 	It is guaranteed that in the linear 

form a posynomial can be generated. 

d. The generation of two term posynomial approximations 
for the constraints 

The extension of the posynomial approximations to the constraints 

to match second derivatives:at the operating point 4s more difficult 

and requires the definition of a two term posynomial. 	Consider the 

posynomial form 

2 x. 	ij g(x,x') = 	c TT ( kr .c2  
i=1 1  j=1 	x  

where x' is the operating point about which the approximation is 

required. 

Here 

and 

(A4)  

of 
@xi 

(A5)  
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(A8)  

k = 1,...,n (A9)  

= 
32g(X) 
axk2  

X= X' 

k = 	1,....,n 

. 	. (A10)  

and 	cialk(alk 	1) + c2a2k (a2k  - 1) 

ci + c2 = g(X) 

colic  + c2a2k 

 

 

X= X' 

  

2 E 
c.aik (A6) 

i=1 

2 
22 ciaik(aik  - 1) 	(A7) 
i=1 

Now 

and 

Dg 
axk X=X1  

   

  

    

Theposynomial(AS)hasat+2constantsc.anda
ij  

to be evaluated. 

These will be defined by requiring that the current value and derivatives 

of the form of (A6) and (A7) be matched at the operating point. 

Therefore, 

To guarantee the matching of the current value and the first derivatives 

by the approximation define 

c2 = g(x) ci 
	 (All) 

and 	a2k  = 

x=X' 

1 [ 9g(X) 
c2 axk 

- c]alk 	, k = 1,....,n. 
x= x' 

For ease of notation define 

g(Z) x=X' 	
Dg(2;) 
Oxk 

and 
a2g (x) 

9xk2  
kk 

= 

   

Substitution into (A10) gives 

cialk(alk - 1) + (g - cl) . (g _
1 
ci)g

k 	
clalk] • 

(g - 1  
ci) (gk - ciaik) - 1 	= 	gkk 

. (Al2) 

k 
g 

x= x' 

- 147- 



Solving for alk now gives 

k 4. 1 	(gk)2c12 - cig(gk)2 + 
[ 	

cig2gk  - ci2ggk alk = g — cig 

cogkk(g  - cl) 	 k = 1,....,n 

. . (A13) 

The definition of elk therefore depends on the expression 

within the square bracket in (A13) being non-negative. 	That is 

(gk)2c12 - cig(gk)2 	cig2gk - ci2ggk 	ciggkk(g - cl) 
	

0 

or for cl  > 0 

_(gk)2 (g 	cl) 	gkg (g - cl) 	ggkk (g ■ cl) 	0 

This requires 

g(gk 	gkk) > (gk)2 	if 	g > cl 	(A14) 

Or 	g (gk 	gkk) < (gk) 2 	if 	g < cl  . 

Since equations (A8), (A9) and (A10) only define 212+1 of the constants, 

one can be arbitrarily set. 	If c1  and c2 are set such that 

1 
	C2 	2 

condition (A14) operates. 	It can be seen that alk can be defined if 

gkk >> 0 . 	This positive second derivative relates to the condition 

that the Hessian be positive semi-definite for convexity given in 

Section 5.2. 

It would therefore appear that it will be Possible to 

define elk if the constraint function g is highly curved and convex. 

However it will not always be possible to generate the two term polynomials 

matching the second derivatives defined in (A10), 	When the 

term within the square brackets of (A13) is negative ail(  can be set to 

zero. 	Equations (All) and (Al2) will still ensure that the current value 

and first derivative will be matched at the operating point x l  . 
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APPENDIX B 

COMPUTATION ASPECTS FOR STRUCTURAL DESIGN 

The computer programs used to generate the results for the 

detailed structural examples presented in Chapter 9 are described in 

detail in [44] . 	Only a brief description of the computational 

procedures will therefore be given in this appendix. 

The finite element analysis procedure was used to analyse the 

structures for deflections and stresses. 	The idealization into finite 

elements involved taking each pin-ended bar element, or the panels 

bounded by the spars and the ribs in the wing box, as different elements. 

For these simple elements and fixed geometry design, it is then 

possible to write the element stiffness matrix ke 	as 

' • - e- 1 	xi  
(A15) 

where xi is the design variable associated with the ith element and 

k' 	can be found by generating the normal element matrix for xi=1 	. ei 
The matrix P e. need then only be found once during the design 

process. 	The element matrices are then assembled to give the global 

stiffness matrix K with 

K r 	= 	P 	 (A16) 

and 	a = B r 	 (A17) 

where P are the applied loads, r the nodal displacements and B is 

the stress matrix derived for each element. 	The Cholesky scheme was 

then used to solve (A16) by triangularization of the symmetric matrix 

K such that 

L i t 
(A18) 
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Equations (A16) now become 

L Lt  r 

Defining 

 

It r 
	

(A19) 

gives 	L u 
	

(A20) 

with L and L
t 

lower and upper triangular matrices respectively. 

Equations (A20) and (A19) are the forward and backward substitution 

operations to define r . 	These operations are relatively inexpensive 

for banded equations when compared to the effort required for the 

triangularization in (A18). 

Some special purpose techniques have been developed [25] to 
3a 

evaluate the gradients rr  for pin-ended bar structures. However, 

these procedures were not incorporated into the computer programs. 

Instead a general purpose procedure based on differentiation of the 

finite element equations was used. 	From (A16) 

K ar 
axe  

aK 	aP 
r 	for 	= 0 . 

ax- axj 
(A21) 

However (A15) gives 

aK _ , 
ax- 	-ei 

with k' —ei 
then give 

assembled alone into the global matrix. 	Equations (A17) 

as 
axi B 	with 	

aB
= 0 	for fixed geometry design. 

— axj 	 axe 

Since a static analysis always precedes the design cycle the 

matrix L from (A18) can be stored and used to solve (A21). 	The 

solution for the gradients in (A21) therefore requires only the application 

of the forward and backward substitution operations defined by (A19) and 

(A20). 
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A number of procedures are discussed in [39] for reducing the 

computational expense when repeated analysis of structures with only 

minor design changes are required. 	These 	procedures were 

again not incorporated in the design program since the research was 

directed towards the investigation of different features of the saddle 

function. 	However they could form the basis for future research and 

improvements to the computer programs. 

Details of the operations for the dual procedures will not be 

considered here beczuse they are described in detail in the text of 

this thesis. 	In particular the individual steps were detailed in 

Section 7.2 and this sequence was followed in.the computer programs. 

Particular use of the linearity of the dual constraints was made in 

the search in the dual plane and in the definition of the pseudo-

constraints,and led to the conclusion that highly efficient algorithms 

could be developed. 

A simple flow chart showing the modular nature of the program 

and the flow of the operations is given in Fig. Al. 	Reference [+4] 

should be consulted for more details of the layout and operations of 

the program. 
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Read data 

Analysis 
Generate the element stiffness and stressing 
matrices for unit values of the design variables 

Analyse the structure for deflections and stresses 
using the finite element method 

The generation of posyaomial approximations  

Evaluate the gradients aX and 

Form posynomial approximations to the cost 
function, and to the constraint set to be 
included in A in (85) 

a. The generation of a bound  

Define a set of dual variables using (77) to define 
6 and solving (86) for r 

If negative rk appear, set these negative values 
to zero, matrix multiply in (86) to redefine 6 
and scale the dual variables to ensure the 
normality condition (74) is satisfied 

Terminate the dual entry attempt if negative 6 
or F persist and conclude the current design 
is Ca7r from optimal 

Check for convergence with 	the bound and terminate 
if convergence criterion satisfied 

b. Apply the active set strategy for redesign  

b.1 When the number of active constraints is 
approximately  equal to the number of design  
variables  

Tighten the constraints to ensure the redesign 
step is confined '7r,  a region in which the 
posynomial apptoximations and active set 
predictions are accurate 

If all the Lagrange multipliers r are positive 
solve (87) for the intercept of the constraint 
set and the new design 

If some Lagrange multipliers Pk are zero or 
have small values with negative gradients, 
conduct a dual search to remove any large 
gradients of the dual function 

Define pseudo—lim'.ts for the non—active constraints 
and solve (87) for the new desi6.: 

b.2 When few constraints are active  but  an 
initial feasible  dual point has been  
achieved by  leant scares  fit  

Conduct complete dual search and use (78) for 
redesign 

b.3 if a feasible dual solutior. has not been  
achieved 

Conduct redesign search in primal but based on 
posynomial approximations 

INITIALIZE 

PRMAL 
PROCEDURES 

INTEPFACE 
BETWEEN 
THE 
PRIMAL 
AND DUAL 
PROBLEMS 

DUAL 

PROCEDURES 

Procedures 
not used in 
the design 
examples 
presented 

Figure Al Operations flow chart for the computer program used to 
generate the results for the examples in Chapter 9 
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