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ABSTRACT 

This thesis is in two parts. 

In Part One, we investigate the high energy behaviour of 

scattering amplitudes in a supersymmetric field theory involving 

scalar, pseudoscalar and spinor fields. 

In the lowest orders in the perturbation expansion, we find 

that a certain class of ladder diagrams in each order give the 

leading logarithm behaviour of the scalar-scalar scattering ampli-

tude. The sum to all orders of these diagrams indicates the pres-

ence of a series of fixed Regge branch cuts, coming from the 

increasing number of possible two-particle exchange channels in 

the higher orders. The spinor-scalar and spinor-spinor scattering 

amplitudes are investigated in the lowest orders. It is found that 

these have the same form as the scalar-scalar amplitude, demon-

strating the preservation of the supersymmetry of the theory 

in the leading logarithm approximation. 

Finally we reconsider the problem using a perturbation 

expansion in terms of superfields. Working in a manifestly super-

symmetric framework throughout, we show that the class of diagrams 

which give the leading behaviour is the same for any scattering 

process, the only change needed in each case being the insertion 

of the appropriate external wave functions. 

In Part Two, we show how the famous axial vector anomalies 

arise naturally in the framework of dimensional regularisation. 

We consider an SU(n) symmetric theory of a spinor field, 

coupling to external, scalar, pseudoscalar, vector and axial vector 
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fields. In arbitary dimensions there is an additional pseudoscalar 

current in the expression for the divergence of the axial vector 

current. This new current, which does not exist in four dimensions, 

produces exactly the abnormal amplitude anomalies found using other 

techniques of regularisation. A set of self consistent normal 

amplitude anomalies is also produced, which could be subtracted out 

using acceptable counter terms in the Lagrangian. From the anomalous 

terms a modified PCAC relation is derived. 
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PART ONE 

HIGH ENERGY BEHAVIOUR AND SUPERSYMNETRY 
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PART ONE  

-I. INTRODUCTION 

The possibility of a fundamental symmetry between bosons and 

fermions has attracted a lot of interest recently. The idea was 

first introduced in the context of dual models formulated as field 

theories in two dimensions
1 
 . This was generalised to four dimensions 

by Wess and Zumino
2 
 . They constructed a non trivial Lagrangian 

field theory
3 containing fields of spin zero and spin one-half, 

invariant under four dimensional supersymmetric transformations. 

The theory only has logarithmic divergences, as higher divergences 

expected from power counting arguments cancel among themselves. 

This cancellation of divergences has proved to be a feature of 

supersymmetric theories. 

Many attempts have been made to produce more realistic super-

symmetric theories, in particular in the context of non-abelian 

gauge theories
4  . One criterion for any realistic field theory is 

that its asymptotic limit should be consistent with the experimental 

evidence that the high energy behaviour of scattering amplitudes, 

and furthermore the particle states, lie on the same straight line 

Regge trajectory. The high energy limit of scattering amplitudes in 

field theories is usually obtained by finding the leading logarithm 

contribution in each order of perturbation theory, and summing to 

all orders. This is certainly not a rigorous method, but in theories 

where independent calculations are possible it is found not to be 

misleading, and so it is believed to be a reliable heuristic approach. 
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We shall investigate the high energy limit of the theory of 

Wess and Zumino
3. As this is not a realistic model the form of the 

scattering amplitudes, although interesting, are not of particular 

importance. The really interesting questions are whether there are 

any cancellations in each order, between the higher logarithm terms 

we might expect from such a theory, which could aid possible Regge 

behaviour in a more realistic model; and whether the supersymmetry 

of the theory ismaintained in the leading logarithm approximation. 

By this we mean: Is the form of the amplitude the same in boson-boson, 

boson-fermion, and fermion-fermion scattering processes? We would 

then expect this to be the case in other, more realistic supersymmetric 

theories. 

Now, it has been shown in an SU(n) symmetric non abelian gauge 

theory, up to sixth order, that the vector meson of the theory 

lies on the Regge trajectory of the fermion-fermion scattering 

amplitude, a desirable phenomenon known as Reggeisation
5  . In a non 

abelian supergauge theory we would therefore expect these Regge- 

isation effects to occur in other scattering processes. It would, 

of course be nice to show this directly, but this taskis by no 

means a trivial one! 

We first look at the nature of the supersymmetric transform- 

ations, and of the Lagrangian of Wess and Zumino. We then consider 

the various scattering amplitudes in the theory. In the scalar 

-scalar scattering amplitude we find that a particular class of 

ladder diagrams gives the leading behaviour, and in the lowest 

orders we show that all other diagrams are non leading. We obtain 

an expression for the contribution to the leading behaviour from 
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any order in perturbation theory. The amplitude turns out not to 

have a Regge pole form, as there are not the necessary cancellations 

of the higher powers of logarithms between diagrams representing 

the various possible types of exchanges. The sum to all orders 

indicates the presence of a series of fixed Regge branch cuts, 

coming from the increasing number of two particle exchange channels 

in the higher orders of the perturbation expansion: 

We then investigate in the lowest orders the spinor-scalar 

and spinor-spinor scattering amplitudes, and find that in these 

orders the amplitudes obtained are of the same form, regardless of 

which particular scattering amplitude is considered, thus demon-

strating the preservation of the supersymmetry.of the theory in 

the leading logartihm approximation. 

In the final section we reconsider the problem using a 

perturbation expansion in terms of superfields, an approach to 

supersymmetry which was initiated by Salam and Strathdee
14  ; they 

showed that supersymmetric transformations may be viewed as- a 

realisation of a supersymmetric 'group' on some generalised fields, 

which they called superfields, defined on an eight-dimensional 

space, where points are labelled by (x 
P 
 ,0 
a
), x denoting the 

ordinary space-time coordinates and 0a 
an anticommuting Majorana 

spinor. We first look at some properties of superfields, the 

construction -of the Lagrangian of Wess and Zumino using them, and 

the corresponding Feynman rules in perturbation theory
6. Again 

we find that a class of ladder diagrams are the important ones 

and we obtain the same form for the scalar-scalar scattering 

amplitude. We would expect the equality of amplitudes to hold as 
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we work in a manifestly supersymmetric framework throughout, and 

it turns out that for each different scattering process the only 

change we have to make is to put in the appropriate external wave 

functions. Thus using superfield perturbation theory enables us 

to evaluate the high energy behaviour of the different scattering 

processes just from one set of ladder graphs, showing the power 

of the technique in simplifying calcu lations. 
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II. SUPERSYMMETRY 

Fermibose supersymmetry is a symmetry which connects particles 

of integral spin with particles of half integral spin, i.e. bosons 

with fermions, first introduced by Wess and Zumino
2 
 . 

The supersymmetry algebra is quite simple: 

s,, 	0  

[ SA)J/J-J 	(3-*/0.-A4 Sts  (2.1) 

5,4  s 	004p, 
where PP' JPv are the usual Poincare operators, and where Su  

is the generator of the supersymmetric transformation, and is a 

Majorana spinor. 

The simplest supermultiplet consists of a scalar field A, 

a pseudoscalar field B, a Majorana spinor field IP, and two auxil-

iary fields F and G. 

Writing 	

SA 	,etc  

we obtain for an infinitesmal supersymmetric transformation, 

SNA 

se e "E- XsV) 
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sw 	(2.2)  

gF = 

G Exslq) 
where e is an infinitesmal Majorana spinor. 

With this scalar multiplet Wess and Zumino3  constructed a non 

trivial supersymmetric model with Lagrangian: 

where, 

L. 
(2.3) 

(2.4) 

ag••••• 

■■•••• ra (AV 

(Fin■ — 
q)(Pk—Is5v))L1)) 

(2.5) 

••■••■•.1. 

..•••■•• 

(2.6) 

These three terms each change under the supersymmetric trans-

formation (2.2) by a total divergence, and therefore have an 

invariant action integral. For example, 

[ -_s )101].= Evi_(A--N6-6-04)1 (2.7) 
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The auxiliary fields F and G could be eliminated using their 

own equations of motion 

F 	m A -k- 	F,2) = o 	(2.8) 

+ mR. 	2.3 	=O 
	(2.9) 

and the Lagrangian (2.3) would take on the more familiar form, 

IDA7+, By-•±'It-0 	m I 

ze--.q 	 (2.10) .. 7 ryt A(AQ-hgl) .3  

i.e. a theory involving Yukawa couplings, and tri- and quadrilinear 

couplings in the scalar and pseudoscalar fields, but with all the 

couplings expressed in terms of one coupling constant g, and with 

the scalar, pseudoscalar and spinor fields having the same mass. 

Iliopoulos, Wess and 2umino3 '
7  have investigated the renorm-

alisation properties of this theory. They have shown that there 

are only logarithmic divergences in the lowest orders, any higher 

divergences cancelling among themselves, and that only one (wave 

function) renormalisation constant is needed common to all fields. 

We will investigate this theory in the form (2.3), as it 
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contains only trilinear couplings. These are much more convenient 

to work with in the high energy region, as the class of diagrams 

which give the leading behaviour are ladder diagrams. We would, Of 

course, obtain the same results with the Lagrangian in the form (2.10). 
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III. SCALAR-SCALAR SCATTERING AMPLITUDE 

In this section we investigate the leading logarithm behaviour 

of each order in perturbation theory of the scalar-scalar scattering 

amplitude of the supersymmetric theory of Wess and Zumino,described 

by the Lagrangian (2.10). 

In the lowest orders, up to sixth order, we find that a 

class of ladder diagrams gives the leading behaviour to a particular 

order and we feel that these orders are sufficiently non-trivial 

for us to expect this to be true to any order in this theory, as 

has been shown to be the case in ordinary (1)
3 

theory
8
. 

(a) General Ladder Graph 
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We first look at the general t—channel ladder graph of N loops 

shown in fig.(1). Referring to the momentum assignments there,we 

define the variables: 

s = (pl+p2)
2 

t = (p1—p3)
2 	

(3.1) 

u  = (Pl—P4
)2 

The 3N+1 individual propagator denominators are all combined 

using Feynman parameters, where the parameters associated with 

each line are displayed in the figure. Because the sum of the 

diagrams does not diverge, and as each individual diagram is 

only logarithmically divergent at most, we can translate the 4N 

component integration variable,(a column vector k made up of N 

k.'s), so as to remove the cross terms with the external momenta. 

The matrix in the remaining terms is then diagonalised by an 

orthogonal change of variables. The resulting expression for an 

N loop ladder is 

Q -21 	L 	 + ANk,,?-+DCNO/cw)314:1.  

	

ekj 	
t< Vk) W1...1<tisi())2) 

where.N(y,s,t) is the numerator of the particular diagram under 

consideration. The determinants D(N) and C(N) can be read from the 
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table in appendix two, and 

+terms involving yd's (3.3) 

C(N) = AlA2 	AN  = C ; 	D(N) = D 	(3.4) 

( 

4- 
C, 	- - - • 	- 	 i,_) 

(3.5) 

▪ terms involving other k., p1, or p2
, but with more y. 

parameters 

.4- terms involving p1-p3  

Equation (3.5) is a consequence of the manipulations involved in 

obtaining a form of the denominator of (3.2) ameniable to symmetric 

integration. With this form we can simplify N(ki',s,t) by using the 

relation 

jkt,kt, _c(k)e< 
	

10-c0(7-) etk (3 .6) 

(b) $3 Theory 

In the case of $3 scalar theory, N(k',s't) - 1, and the loop 

integrations in (3.2) can be performed using repeated applications 

of the integral: 
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k 	 r(0,--2)-  
(Ak- t3)°- 	A - V3°a. 

	 (3.7) 

and we obtain 

TN  ( 	 14N!stia1/40.:fsid‘oick, 
(3.8) 

S‘( 

From the table in appendix two we see that: 

(Wirt  

( 

	

D ,---- 1 I 	- s , 	+ terms independent of s (3.9) 

VI( 

As s 4- co, with t fixed, we expect powers of logarithms to 

arise from the vanishing of the coefficient of s in D. Each yi  = 0 

region implies a logarithm, and if we do the calcu lation9, we 

find that in the limit this is indeed the case:- 

	

T
N
(s,t) 	s-1 1n

N+1
s 
	

(3.10) 

(c) Wess-Zumino Theory 

In this theory there will be certain differences in the calc-

ualation, due to the nature of the propagators, which can enhance 

the leading behaviour of TN(s,t) in the following ways: 

(i) The nuerator contains explicit powers of s. 

(ii) Powers of the loop momenta in the numerator reduce the power 

of the denominator after integration. 
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(iii) Powers of the determinant C in the denominator produce 

extra logarithms because C vanishes in certain regions of Feynman 

parameter space. 

(iv) Displacement of the loop momenta, as in (3.5), produces 

both explicit powers of s in the numerator and increases the power 

of C in the denominator. 

We first consider the effects of these in the lowest orders. 

N = 0, corresponding to the Born term, fig.(2), 

Fig.(2)  

"To s, = =--(2-gs sma. r• 	 (3.11) 

N = 1,  we find the diagrams of fig.(3) to be the dominant ones, 

and we will show in the next section that all other fourth order 

diagrams will be non leading. These diagrams give 

-1-, (, S \.) 	k (k54' 
k Ni(ki) 	s) 

(1.e -+-1)) -  • 
Here C(1) = 1, and D = yiy2s - m2 + terms independent of s, and 

(3.13) 

The terms in N(k',s,t) which give the maximum enhancement are: 
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Fig. (3) 

 

N (kcs 	--- 	( 	(3.14) 

Terms in the numerator can at most involve products of four 

momenta. In the first term of (3.14) there is enhancement both from 

the explicit s term, and from the k
2 term which lowers the power 

of the denominator which enhances the logarithmic dependence. The 

second term has an explicit s
2 dependence, but this is compensated 

for by the yi y2  coefficient which in the dominant yl  ti -1,2  'ISO region 

will lower the power of s, although enhancing the logarithmic depen-

dence.Othertermsinthenumerator,suchask
2
sy . s

2
y1
2 
 y• 2' will 

give a behaviour at least one power of lns down, except for the 

k
4 term. This is divergent, but we will show later that it cancels 

with similar terms in other diagrams. 

We can now perform the loop integrations using (3.6) and 

I  — 	r(0_-s)  
(k.z-k-b)a- 	VI-- 	r (a) 

(3.15) 
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and we obtain 

(s) 	ti a241M1-1  CIL014CkSI(X\6aSct-c.1-e..__A) 

x  5-  L 	s21141.  
D 

(3.16) 

• As s co with t fixed, we can now do the. integrations using they. 

J‘:11  

The a and 8 integrations then give unity and we obtain 

T, (s,0 
	

ZrjS 
	(3.18) 

N = 2, the leading behaviour comes from the diagrams of fig.(4), 

and we show later on that no other diagrams in this order contribuute. 

qr 

(3.17) 

• 



24 

These give 

Ta  kik) 	(2')‘.  zci1/44a06,q(c$01kbo-3 
(3.19) 

(t-- c.e — 	,k4s it)  
(Ptike-k- Pkz ka 	r 

The maximum enhancement will come from terms in the numerator 

NJ NI; ka , s, f•i4[1.<i 	 -s s tx'61 	(04 +51) 

(3.20) 

(06--1-@))) 	̀13) (04 ±. (s)(04.± 
C 

Here the extra powers of s and C are compensated for by the extra 

y parameters, and the loss of loop momentum factors in the numerator. 

We can now perform the loop integrations using repeated appli-

cations of (3.6) and (3.15): 

L.  r 	3 
— 2LIN/R)--  jirj a,c,/ icv..)7(9 v6k 

S (I 	—.Ns) s 	ZMJ3s 00ra.Qs2-1 
C2- 	LD D2 P3 

-11:c1r1 	,en, 4s 	(3.21) 

(7 
We should elaborate on how (3.21) arises. We make the trans-

formation of variables 
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--r-- 	 o 

•■■••••••1 (3.22) 
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This transformation is useful, as it has JacobianW r. Jacobian. 
	1 ' 

andCdependsonr.
1
and Yj  parameters alone: 

(3.23) 

In general we find that the t dependence is buried in the 

arguments of logarithms and so the leading Regge singularities 

will be fixed in t. We can therefore set t = 0 in our analysis, 

and hence 

D = yiy2y3s - m
2C + terms of higher order in the vanishing 

parametersyj  . (3.24) 

We will just consider the effect of the first term in (3.21), 

which reads 

B rt ar% "r"p-kra d`trtd\(C AVJC(-t  r -<NO 

c2  XiS.26:sS — 1-11_2  C.-) 

We notice that either r1 
= 1 or r

2 
= 1 in the important regions. 

If we choose any other end point regions, such as yi  = 1, these 

will give two powers less of lns. Using the standard procedure
10
, 

we rescale the variables: 

rt  17-= 1 — - 	(3.26) 
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for the r
1 

= 1 region, where p << 1. Then (3.25) becomes 

c 6  A c ral  arral.a\611A \Cal  M-3IZ t 	`6  
4 	S 	jo(rat±Nq 	 1112(rzliN6/, 4)31 

(re I 	 (3.27) 

The two dominant regions in the first part of (3.27) are the 

y
1 
 / = 1 or r2' = 1 regions. We rescale again in these regions and 

we are left with integrals of the form of (3.17), and on adding the 

r
2 
= 1 piece , and that of the other terms in (3.21), we obtain the 

result there. 

No other terms in the numerator will contribute, as they will 

lessen the enhancement effects of, or will have too many y para-

meters than, those in (3.20). 

So up to sixth order we have a series in g
2 
 ln
2 
 s. The contrib-

uting diagrams, i.e. those of figs.(2), (3) and (4), in each order 

are ladder diagrams with F and G rungs, or with rungs inside or 

part of spinor loops. This is found to be the case for any order, 

and we shall now consider the general term for any order. 

(d) Numerator of the General Term 

We have a general expression (3.2) for an N loop ladder 

diagram, with only the numerator function N(k1
kN/,s,t) 

dependent on which particular ladder is under consideration. 

For ordinary (I)
3 

theory, N(kl,..,kN,s,t) N 1 and a behaviour 

of s
-1 

ln
N+1

s is obtained 
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In the Wess-Zumino theory we find that the terms in the 

numerator whcih give the maximum enhancement of the leading behaviour 

are of the form: 

N(k' 	N  .., 	s 	% k
1
2
...kN

2
s + terms involving the displace- 

ment of all or some of the loop momenta 	(3.28) 

where the displacements of the loop momenta are given by (3.5). 

As we found in the lowest order calculations, these terms can 

only come from ladder diagrams where the rungs are either F or G 

lines, or inside or part of a spinor loop. Any other type of ladder, 

e.g. one with some F lines as sides, will lose enhancement factors 

and hence will not contribute. 

(i) We first consider the ladder graphs where all the rungs are 

either F or G lines. There must be an even number of G lines, due 

to the nature of the G interaction term, and parity conservation. 

In the lowest orders there are 2
N  diagrams of this type and we 

can show by induction that this is generally true. The numerator 

for this class of diagrams is: 

(T's 	!4. - LN) z 

+ (-2s 
t 	 t ,r\.4 	 t,e.rmv,,Vak kilns - 	N-1 C. 	

v.. 	 N—t -toots 
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przonmkze.3--1 
tg 	tcol) s  

.. .. ... 	(--a s\6  `  •\‘'''+̀  	ktrt 

	 ° 
	

(3.29) 

C- 

+ terms similar to these but of lower power of s or 

with more y parameters 

We will show that all the terms except the last contribute 

to the leading behaviour. The last terms do not, as the extra y 

parameters lower the power of lns obtained. 

(ii) Next we consider the class of diagrams where one of the loops 

is a fermion loop, but where all the other rungs are either F or 

G lines, for example the diagram of fig.(5), where the loop with 

momentum k
1 

is a spinor loop. 

all rungs either 
F or G lines 

Fig.(5)  



(3.31) 
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There are 2
N-1 

diagrams of this type. The contributing terms 

in the numerator are: 

k;4•As  0S I 
k  (—as 1 " --1CNi1){k---  L-1 l 154-1 ÷ W-11. 

4_ 	ICN*1)Nik  2  ..----. stS (3.30) 

In fact, (3.30) is the sum of the terms in (3.29) dependent 

on k12. There is no term independent of the fermion loop momentum. 

The terms derived from the displacement of the loop momentum 

inside of the fermion loop do not contribute to the leading term. 

This is because when we take the trace of the loop momenta, we 

will always get extra powers of y. due to the ordering of the 

momenta inside of the trace. Here, for example we have: 

compared with 

(3.32) 

from the diagrams with no fermion loop, as in (3.29). 

In (3.32) the terms which contribute from the first two 

brackets are of the form (ly.p1)(1y.k2') which will give a 

displacement term of s
2y y y y 	)2 which contributes to (3.29). t 

1 2k  3....  N+1 
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In (3.31), we will have a term kl.pi  ki.k2, but the displacement 

, 
term will be at best s

2
yi
2
y2(y3....yx+1)

2 
 , and due to the extra 

y
1 

factor, its contribution will be down by Ins. 

We find this to be the general rule, that displacement contrib-

utions form loop momenta inside a fermion loop will be non leading. 

We obtain a similar result to (3.30) for all the other single 

fermion loop diagrams, and summing these gives a contribution 

similar to (3.29), but without the last term, the term independent 

of any loop momenta: 

C 

6 N-1 toolj 

N 

• 
c (Qs  Irt 	1.Q-fr.( 	K NOA 3.33) 

(iii) The next class of graphs we will consider which contribute to 

the leading behaviour, are those where two of the loops are 

fermion loops or one fermion loop covers two loops of the ladder, 

where again the other rungs are either F or G lines. Examples are 

shown in fig.(6). There are 2
N-1 diagrams of this type for each 

pair of loops. Again we find that the important terms in the 

numerator are of the form given by (3.29), but where the two loop 

momenta inside the fermion loop or loops do not contribute to the 

displacement terms. 



all rungs either 

F or G lines 
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Fig. (6)  

Summing all these diagrams gives us a contributing term in 

the numerator: 

N (kti) 5 e„Etc)°s c 

 

i){k2,  L 	+ 1)-9.srmActic\zivs 

(3.34) 

 

 

 

)(\14,r 

(

.151 - 	 k 

A....-11.s 
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Note there are no terms dependent on less than two loop momenta. 

(iv) By similar calcualations we can obtain the contributions from 

diagrams with more and more fermion loops. 

(v) Finally we consider the diagrams where there is only one 

fermion loop, as in fig.(7). 

all lines either 

A or B lines 

Fig. (7) 

There are 2
N-1 of this type of diagram. There will be no 

displacement contributions at all from these diagrams, and the 

important term in the numerator is just: 

(3.35) 

(vi) We are now in a position to sum up the contributions from 

all the diagrams. 

The coefficient of the kl2....kN2 term is 

1T1 S i-t- "C 	-1/4" 	Nj  CAN) 

M.' ± ‘T'S 	 S . 2.1̀ ' s 
(3.36) 
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The coefficient of the k1
2
....kN-1

2 
term is: 

t  + 	1 ±N-Ic  N- 
C, 	 k 

N 	151 	AS.t4t)  ) 	s 	
2 

(3.37) 

Similarly we can find the coefficients of all the terms and 

we obtain the contributing terms of the numerator for the sum 

of all the N loop ladders: 

w (kti,$)Or\, 	C 

OSI ANi1) .LZ  \.< • N—\ I t•-• . 

• \5  NIA• i)°  
(3.38) 

(e) Leading Behaviour of the General Term 

In principle we could calcualate the leading behaviour of 

TN(s,t) by looking at the dominant regions of Feynman parameter 

space. But as we saw in the two loop case, this involves fairly 

intricate manipulation, and in the higher orders it becomes too 

difficult as the number of scalings becomes prohibitive. 

We find it is much easier when lookin at the higher orders 

to use Mellin transform techniques
11. To facilitate this, instead 
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of deriving TN  using Feynman parameters to combine the denom-

inators, we use the integral representation: 

1:04,04ic1( 	(3.39) 

• In an exactly analogous manner to that we used to derive T (s,t) 

previously, we find that: 

TN 
(s)\-) (1.301N+ 

	N 

x j\I (ki,f)s)t)-Q.X/Ai,(A
t\<ti 	. 	A 0( 1■4* 	(3.40) 

C., 

A.3., k.', D and C are exactly as defined before in (3.3), (3.4) 

and(3.5).TermsinN(k.',s,t) cause enhancement in the same 

• 	 ways as previously, and so N(kil ,s,t) is still given by (3.38). 

We can perform the loop integrations using: 

dik  e-etc'\ 
	- 

f d,4k kV-k1  

(3.41) 

(3.42) 

and we obtain: 

TN,(s)t-) 
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s)14-11  S 424(i  )  
(3.43) 

The form of the coefficient of s in D, D = yiy2...yx+0 J, 

where J is independent of s, makes the Mellin transform method a 

very convenient way of determining the leading behaviour of TN(s,t). 

The Mellin transform T
N
(a,t) of T

N
(a,t) is defined by

11
: 

tV Coe, 	f cur -Faust) 
0 

(3.44) 

where a = -s. The validity of the Mellin transform requires that 

the integral should not encounter a singularity. We cannot take the 

limit s co as we would encounter the normal s channel thres-

holds. If the fixed value of t is below the lowest t channel cut, 

the limit s 3  -co, i.e. a 4- co will be taken in a singularity free 

region. The dominant contributions to the asymptotic behaviour 

will come from the rightmost singularity in the aplane. In 

appendix three it is shown that the singularity at a = 0 is the 

important one in each term of (3.44). 

In (3.44) the leading contributions will come from small ai  

and B. regions as well as small yk  regions. So we can replace the 

exp (13/C) factor by unity, but we must keep the full parameter 

dependence in the 
C-2-a factor. We again make the transformation 

of variables (3.22) and take the a 4- 0 limit, and (3.44) becomes: 

TN  (0e, t) 	>1  "Cm  2'1-0" 
r4= 0 

-t0 	
rf4I 	  

01, TI TT LA- 	i ca-kve 	(3.45) 
0  

0 
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The upper limits should be small numbers ci  for the dominant regions, 

but these have been scaled out in favour of unity. 

We now define11, 

C. 
A (09.),13.),.-, 	GA.3 	 (, 	II) (3.46) 

0 	C et 
441- IC 

where, 

C = C(N) 	and 	C!(N) = C(N) - 1N+1  C(N-1) 
	

(3.47) 

In appendix three we derive a recurrence relation for this function 

and we show that the rightmost singularity of (3.46) is a multiple 

pole: 

	

1\1+ 	
alq-t- 
	(3.48) 

The leading  terms in (3.46) are now, 

(:- ( 2(1(3.49) 
TN1 	t)ri 41- r)-(SI\12.N(Nit-INI)1.!()Ot44-  1\4 ! 

t1=-'0 
The inverse Mellin Transform, from appendix three, will give: 

(3.50) 

The t channel ladder sum is: 
00 

Vs> 0 ----- 	TN(s)t) 
1■1 = 

(3.51) 

(3.52) 

The double summation in (3.51) can be rearranged to give: 

ac) 	RA"‘S)214  
(t\j---i- -,ri) 

=o 	• N 0 
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cF-Sy2' > 0 

where 

CTQA.S) 	
ja112- 

(3.53) 

Using the form of the modified Bessel function of integer order
13 

1) 	
ell4-41)\<  

(>0 

k l  r (Nyack-0) 	
(3.54) 

we obtain: 

00 

-eA
T (x-s) (3.55) 

1,1-= 

(vt:-•0 
(1-5- 12" S "-'1/ - 	(3.56) 

where we have used the asymptotic form of the Bessel function
13
: 

iE 

az) 	 (3.57) 

The leading behaviour obtained is that of a fixed point 

Regge singularity, i.e. independent of t. Each increasing value of 

M in the series corresponds to leading contributions from diagrams 

of higher orders, and reflects the increasing number of possible 

exchanges as more and more channels open in these orders. 

For completeness we must finally consider the (s,u) crossed 

t channel ladder graphs of the form of fig.(8). These are found 

to give identical contributions to the amplitude as those of the 

uncrossed ladders, and so the total amplitude is just twice (3.56), 

and there are no problems involving signature factors. 
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IV. NON LEADING DIAGRAMS 

In the last section we claimed that the leading behaviour 

of this theory comes from ladder graphs where the rungs are either 

F or G lines, or part of a spinor loop. We will now show that this 

is indeed the case up to sixth order. This we feel is sufficiently 

non trivial for making us believe that this class of diagrams are 

the dominant ones to any order. 

For N = 0,  the Born term of fig.(2) is the only second order 

diagram. 

For N = 1  Iliopolous and Zumino7  have shown(to all orders) 

that this theory needs only one (wave function) renormalisation 

constant: no separate mass or coupling constant renormalisation is 

required. 

Thus the logarithmic divergence of the diagrams of fig.(3), 

caused by the presence of k
4 terms in the numerator of (3.12), 

must be exactly cancelled by contributions from other diagrams, 

which turn out to be those of fig.(9). 

Fig. (9)  
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The remaining numerator factors of these diagrams are down 

by a factor of s, from those of fig.(3), and as such are non leading. 

Due to the easier renormalisation properties of the theory, 

all vertices are finite, and so diagrams fo the form of fig.(10) 

will contribute at most a behaviour of s
-I

ln s. 

0.010. 

 

Fig.(10)  

 

The diagrams of fig.(lla), the self energy corrections to 

the Born term, are logarithmically divergent. However after renorm-

alisation we obtain only a In s enhancement, and so these diagrams 

will be non leading. All diagrams of the form of fig.(llb) are zero 

as all tadpole. graphs are zero. 

Fig.(11a)  
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The class of diagrams of the form of fig.(12) are non leading 

as there are no or not enough enhancement factors from the numerators 

of the propagators. 

Fig. (12)  

The only remaining types of diagram to consider in this 

order are those of fig.(13). The diagrams shown are the leading 

non planar graphs. With the Feynman parameterisation as illus- 

trated, these diagrams will have a denominator, after diagonalisation; 

( k2  + s(xy - zw) + d )4  

In ordinary 0
3 theory9  this type of diagram has a leading 

Fig.(13)  
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behaviour (1., s
-2 

ln
2s. The regions of integration which yield this 

behaviour are those given by setting one of the four parameters 

near one, and the other three near zero. 

For the diagrams of fig.(13), we need a factor of s
2  in the 

numerator. There is one explicit power of s in any numerator, and 

another comes from the displacement of the loop momentum. But 

this involves the product of two Feyman parameters, and the 

dominant region is that where one is large and three are small. 

The numerator has at best therefore, a factor of s
2 multiplied 

by a small parameter, and this will reduce the power of In s 

obtained, giving a leading behaviour of these types of diagrams 

of in s. 

So in fourth order we find that the diagrams of fig.(3) are 

the only ones to contribute to the leading behaviour. 

For  N = 2:  The logarithmic divergences from each loop of the 

diagrams of fig.(4) cancel with those of diagrams' of the form of 

fig.(14). The remaining contributions of these diagrams are down 

by a factor of s from those of fig.(4). 

Fig.(14)  

Again due to the less divergent nature of the theory we would 
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expect diagrams involving vertex of self energy corrections to the 

fourth order diagrams to be non leading, as these can at best 

provide a In s enhancement and so will give at best a ln
3s leading 

behaviour. 

(c) 	 Fig.(15) 
	(d) 

The leading behaviour of graphs of the form of those of 

fig.(15) can be easily worked out in cl)
3  theory using the methods 

of Tiktopolous 
8. In the Wess-Zumino theory we find there are not 

enough enhancement effects from the numerator factors for these 

diagrams to contribute to the leading behaviour. To illustrate 

this we look at the behaviour of diagram (a) of fig.(15). 

The Feynman parameters associated with each line of the 

diagram are displayed there. The contribution of this type of 

graph will have the same form as (3.2) for N = 2, but where the 

determinants D(2) and C(2) cannot now be read from the table in 
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the appendix, and have to be found directly. Here: 

D(2) = syl(y2y3  - a2$2) + terms independent of s 	(4.1) 

Incp3 theory,li(k.1 ,s,t) ry 1 and after the loop integrations 

we are left with: 

[ s L '6:ax3  cez 	_ J3  

s —I 	 (4.2) 

In the theory of Wess and Zumino we get the maximum enhance-

ment effects when the three rungs are F or G lines or part of a 

spinor loop. The numerator obtained is k
1
2
k
2
2s at best, and on 

doing the loop integrations we obtain: 

--T- 	iCr6 (3XAM-5MIG\c/z4lokuCtt-2tat—--lbs 
.4(s) ) 	[sA5 (V - Z3--- )̀X) (4.3) 
The behaviour of this type of integral has been investigated 

by Tiktopolous
8 

and using his results we obtain enhanced behaviour 

from s-1 .'A factor of In s due to the lower power of the denom-

inator, and another In s from the vanishing of the determinant C 

are produced, as well as the explicit factor s in the numerator; 

these combine to give a behaviour of ln
2
s, and so this diagram 

will be non leading. 

Similarly when we consider the diagrams (b), (c) and (d) fo 

fig.(15) we find that they have at most a ln
2s dependence. So we 

find that the diagrams of fig.(4) are the only ones that contri-

bute to the leading behaviour in this order. 

In ordinary (I)
3 

theory
8 it has been shown that the ladder 
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graphs are indeed dominant to all orders, and as this is true 

in the lowest orders in the theory of Wess and Zumino it seems 

reasonable to assume that it is generally true to all orders. 
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V. OTHER SCATTERING AMPLITUDES 

In a previous section we looked at the high energy behaviour 

of the scalar-scalar scattering amplitude. Because of the super-

symmetry of the theory we would expect boson-boson, boson-fermion 

and fermion-fermion amplitudes to be related. 

If we look at the diagrams which contribute to the scalar 

-pseudoscalar and pseudoscalar-pseudoscalar scattering amplitudes 

we find that in any order they will give the same leading beha-

viour as the scalar-scalar scattering amplitude. 

(a) Spinor-Scalar Amplitude 

We find that again in the lowest order the leading behaviour 

is obtained from a certain class of ladder diagrams, those of figs. 

(16), (17) and (18). An analysis similar to that of the scalar 

-scalar case shows that these are the contributing diagrams and 

so wes will just consider these. 

For N = 0, the Born term of fig.(16) gives 

To  (s)6)--• V1/4;1(0 (Y1-111Z) U4t)  ( -4211.) 

(5.1) 

where we have used the relation: 

(5.2) 
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• Fig.(16)  

For N = 1: The leading behaviour is obtained from the diagrams 

of fig.(17). 

These diagrams have the same denominator as those of fig.(3), 

and we find that the numerator factors give the same enhancement 

as there; the spinor wave functions yield an explicit power of s 

using relation (5.2), and the loop momentum and the displacement 

terms are the same. There is no displacement contribution from the 

diagrams of type (c) due to the ordering of the spinor factors, 

just as we found for the spinor loop in fig.(3). We therefore 

obtain exactly the same numerator (3.14) and hence the same contri-

bution (3.18). 

For N = 2,  the important diagrams are those of fig.(18), which 

give exactly the same contributions as those of fig.(4), namely (3.21). 
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So we find that up to sixth order, the spinor-scalar scatt-

ering amplitude is exactly the same as the scalar-scalar scattering 

amplitude, and as there, we can see which class of diagrams are 

dominant to any order, and we would obtain the same general term, 

(3.56), by similar arguments. 

(b) Spinor-Spinor Amplitude 

The contributing diagrams in the lowest orders are the class 

of ladder diagrams of figs.(19), (20) and (21). 

For N = 0 

Fig.(19)  
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For N = I 

Fig.(20) 

For N =. 2 

Fig.(21)  

In the limit of large s we find that the helicity non-flip 

amplitude dominates, and that these diagrams yield the same 

leading behaviour as we obtained previously for the other scatt-

ering amplitudes, a result which no doubt holds to all orders. 

It is again easy to show that no other diagram in these orders 

will contribute to the leading terms. 

(c) Summary of Results 

The overall picture obtained from the leading logarithm 
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analysis is that of a series in ln
2
s, whose sum indicates the 

presence of a series of fixed Regge branch cuts, coming from the 

increasing number of possible two particle exchanges in higher 

orders in perturbation theory. 

The amplitude does not have a Regge pole form, as there are 

not the necessary cancellations of the ln
2
s terms between the 

diagrams representing the various possible types of exchanges. 

The amplitude obtained is the same regardless of which part-

icular scattering amplitude is considered, showing that the super-

symmetry of the theory is preserved in the leading logarithm approx-

imation. This would lead us to hope that this last result will be 

true in more realistic supersymmetric non-abelian gauge 

theories, so that the Reggeisation effects which we would expect 

there in the spinor-spinor amplitudes5 should also occur in other 

amplitudes in these theories. 
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VI. SUPERFIELD SCATTERING AMPLITUDES 

(a) Superfields  

Salam and Strathdee12 have shown that supersymmetric trans-

formations may be viewed as a realisation of a supersymmetric 

'group' on some generalised fields, called superfields, defined 

on an eight-dimensional space whose points are labelled by 

(x
Pa

), where x denotes the ordinary space-time coordinates and 

8
a 

is an anticommuting Majorana spinor. 

The anticommuting property of Majorana spinors implies that 

any superfield gx,0) is apolynomial in Oa  ,and is fully specified 

by sixteen ordinary functions of space-time, which are the coeff-

icients in tis expansion in powers of O. The transformation 

properties of these coefficients or components under the action 

of the Poincare or the supersymmetry group can be determined from 

those of the superfield. 

i.e. for a scalar superfield, 

gx,O) = 4'(x',8') 	by definition 

where (x 
P 
 ,0 ) 	(x 

P 
 ',0 

a
') 	is given by 

x 	)‹v 4-1) 
	

I -= 	e 	(6.1) 

for the Poincare group, and 

x 	x 	Z`6 (9 • 
(6.2) 
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for the supersymmetry group. The matrix 
	

denotes the Dirac 

spinor representation of the homogeneous Lorentz transformation 

A and the parameter cais an anticommuting Majorana spinor. 

(b) Chiral Superfields  

In the construction of supersymmetric Lagrangians one uses 

the so called chiral superfields14(15 +(x,0) and (1)...(x,0), which 

have eight components rather than the general sixteencomponent 

superfield (I)(x,0). They are defined as the general solutions to the 

following two linear differential equations: 

(6.3) 

[1 +2-i's .D] 	(K e = 0 
	(6.4) 

where 

D 	"--1(\tc,„(9),-1-&„ 	(6.5) 

They are given in powers of 0 by: 

Gccg = 	.h >‹) 	 st14\0 t- jL 	F-_, K) 

C97-AS5c9 t(x) ht- GI v)Ss. ett 6v  A ±00), 
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It)± (x)) 	 A 4.)()) 

4a)q7,--  1 
- \6s G A±(x) C911).t(x) 

(6.6) 

where A+(x) and F (x) are complex boson fields, and tp.i.  and -

are left and right handed Dirac spinors respectively 

(6.7) 

It is possible to identify (I)._ with the complex conjugate of 4): 

---- 	I  V) 	_)̀ F_ = _ 	 -t- 	(6.8) 

and so * and 11,_ are identified as the left and right handed comp-
+ 

onents, respectively, of a Majorana spinor. 

The definitions (6.3) and (6.4) of the chiral superfields 

leads to their being closed under multiplication and the following 

laws are obtained14: 

41+ 

4)1- 

41+ 

(1) 2+ 

4)2- 

412- 

= 

= 

= 

43+ 

43- 

43 

(chiral) 

(chiral) 

(general) 

(6.9) 
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(c) Construction of Lagrangians  

The construction of supersymmetric Lagrangians is made much 

simpler using this formalism. It is found that the action integral 

of a Lagrangian density (cp+-) is invariant under the trans-

formations (6.2) if every 0-dependent term in (4+,(1)...) has the 

form of a spacetime divergence. i.e. from (6.2) 

zsd,x1(4,0=latc- (1-i-lbsp-e)6)1(q),,q)) 

ex.  (q) 
1) ) +„44.ms  (6.10) 

Salam and Strathdee14have shown that it is possible to 

construct Lagrangians having any 6-dependent terms as a total div-

ergence. 

For chiral superfields: 

-(DD) ¢+ = F+ + total fouf-divergence 
	

(6.11) 

Under the transformation (6.2), F+  changes by a total divergence, 

and therefore so will ( DD ) 	. 

For general superfields: 

1- 
( DD )

2  4(x,0) = coefficient of the ( 5e )2  term for 4(x,6)64  

+ total four-divergence 	(6.12) 

Again, under (6.2), ( BD )2  gx,O) will change by a four-divergence, 

and so from these terms we can construct invariant action integrals. 
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Using these properties we can show that the Lagrangian: 

= 	D4) R- (t),T)i-i) 	-+ 

R-T50( 2%q,4-s+ ch2) 
(6.13) 

has an invariant action integral under the transformations (6.2). 

If we now expand out in components, and set: 

6.14) 

 

+7  \  th 
a kr 

 

we find that we obtain (2.10), the Lagrangian of Wess and Zumino. 

Rather than working in the component fields we now do perturbation 

theori in terms of the superfields. 

( d ) Feynman Rules 

Salem and Strathdee
6 

have obtained the following Feynman 

riiles for superfields from the Lagrangian (6.13). They obtain 

the following effective momentum space propagators: 

For a line joining a pair of vertices with the same chirality (-), 

(6.15) 

For a line joining vertices of opposite chirality, 
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(6.16) 

where the four momentum is directed from the + vertex to the 

- vertex. In these expressions, 

= 2 -E p 	A-% 

 

(6.17) 

= 	( 	 (6.18) 

Ateach vertex there will be a term 21/2g, and we must apply 

the operator: 

(6.19) 

With each external line we associate the wave function: 

(6.20) 

where the notation is obvious, with u(p) the spinor wave function. 

(e) Ladder Graphs  

We now look again at the t-channel ladder graphs. In the 



20-1 	 2N 

21A-t1 	 23,11-Va. 
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lowest orders it is again simple to show that it is the ladder 

graphs which are dominant, and so we will look at the general 

ladder graphs, assuming those to be dominant in any given order. 

In any given ladder graph, the denominator factors will be 

exactly the same as we had before, and so we will investigate the 

possible numerator factors to see which ones will give the max-

imum enhancement to the leading behaviour. 

We first look at the diagrams of figs.(22) and (23). 

Fig. (22) 
	

Fig. (23) 

These are the important ladder diagrams for the case when N is 

even. The chiralities in brackets are for the case when N is odd. 

For each loop, e.g.fig.(24), we will have a term in the numerator: 
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Fig.(24)  

az4151 c9-2_ -fir c9- VG-3A- -t- 6-3Yekt---k-7§-4Voi 

(6.21) 

where 0
13 

= 01 - 3' 
and we have used the property of Majorana 

spinors: 

(6.22) 

We can write down the numerator for fig.(22), for an even number 

of loops, with the notation as in equation (3.2). 

N 	aNI*1 
 

[€-4 571%K1 632 -+ 53‘KecLf+  

+ - _ -+ 	V (9-aN-xt•Pra 	"1)4 °i-kCA713) 44.-1- 

X tcp+(h) 	))4).__(1) 	(*(\-)4i)1 

	
(6.23) 

0 is the vertex operator: 



(6.25) 

coefficient of the term: 

erici CAS 

ti 
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of\ 	 1--T50 
	

DO) (6.24) 

where 

The factor 2N+1 arises from the extra 1/2 from each vertex term, over 

that from the vertices in (3.2). The operator 0 picks out the 

since, 

(---1-1)1)) 	(9--_.i)= 1 
	

(6.26) 

We are looking for the coefficient of this term in (6.23) 

which gives the maximum enhancement to the leading behaviour. The 

second exponential in (6.23) can be set to unity as pl  - p3  

terms cannot aid enhancement, and any 0 factors involved will 

hinder the effects of other terms. 

Two relations of Majorana spinors which can be easily 

derived are : 

(6.28) 

We use these to simplify the first exponential. The important 

terms from there are: 



--1--)( (9-  (9-  - 
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).] 
(T9L-   -->fa 20-ovi A- 	23 23- 	2/4)2:14-1, 	2NP14+t 

(6.29) 

Any other term in this exponential will have less enhancement 

effects from the loop momenta, but will have no extra effects due 

to fewer 8 factors. 

The third exponential in (6.23) can be rewritten as: 

42x17{6At 	— 	64 5eit 	-4 
	

6)2tJ)  1A■f1era- 

C32..kt +1 '161 °23- -A- 
- - C3r2tJt1 &2Q--i zw-i- .....1 

(6.30) 

X 4•0(1)  6;)?,.p,.) +1 C16 +42.) Grkt.4.4.-a.  

Using (6.28) we can see that terms from the first part of the 

exponential will not contribute and so the remaining terms in (6.23) 

are: 

N(k )s,0 3 	k • • \<1.12  

- l (9-2v-i,7,0*x(9)-N-1 , 114 .--t-)( (9'23 (9-a. -) 

2t t 2,v+1).e4 	+'f g') 

0&(p) ck.41)(1).4ock44)] (6.31) 
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If N is odd, we have a similar expression, the important diff-

erence being a pl  - p2  term in the exponential, which yields a 

factor of (-1)N  in the final amplitude. 

The diagram of fig.(23) will give exactly the same numerator, 

except for the chiralities being reversed. Any other ladder diagram, 

e.g. fig.(25), will involve propagators of the A++  type, and 

these will introduce me
2 factors in the numerator without accom-

panying momentum factors, and so enhancement effects will be reduced 

and hence these diagrams will be non leading. 

Fig.(25)  

So for the study of the leading behaviour, we need only 

consider the ladder graphs of figs.(22) and (23). 

(f) Scalar and Pseudoscalar Scattering Amplitudes 

We first look at the scattering amplitude when all the external 
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legs are scalars. (I) (p) is replaced by its scalar component A(p), 

which in turn is replaced by (1/1i) A(p). The scalar wave functions 

A(p) are equal to one. 

In (6.31) 0 is the product of 2N+2 operators (-1ED)i  from 
each of the 2N+2 vertices i. There are 2N products of 5e outside 
the exponential, and so we need two more products from it. Hence 

using (6.27) we obtain: 

t4+3 

Ni(\<.1. )5 ) ) ,‘- 

	

- - - -t\I--t 1N1-1-). (9-a 	a_r) 	G-a..11Sa3—) 

(-5r2 ti 

	

R- +1  ao av)i- i) 	 + 

2N1 — I 2 	
S 
	

(6.32) 

For general N we will have a (-1)
N factor. From the diagram of 

fig.(23) we obtain exactly the same result, and so the numerator 

for the scalar-scalar scattering amplitude is: 

N kis,e) e%1 21\1  (1-1)t*1 	- t<NIZS (6.33) 

The displacement of the loop momenta will give N(k',s,t) exactly 

as in (3.38) which was derived by considering the problem in terms 

of the individual fields. We have reproduced the tedious sum of 

graphs there by the calcu lation of just one type of diagram. 

By making  the substitution in the wave functions of (6.31), 

A+(p) 	
+(l/Vt) B(p), we also find that the scalar-pseudoscalar 
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and pseudoscalar-pseudoscalar amplitudes will be identical. 

(g) Other Scattering Amplitudes  

Equation (6.31) will also give us the scattering amplitudes 

for processes involving spinors. We first look at the spinor 

-scalar amplitude. In (6.31) the wave functions become: 

k- –05;±" a-101) 

4)±. (A73) —9  T)---JCVs) 
	

(6.34) 

(7a) --P 	(t) 
Since, 

4-= 01.4 "t 	CP' 4S- 	- - 
(6.35) 

we can use (6.28) and obtain: 

(1)± c()) tk,(7 ,) 

(6.36) 

We now require only the term involving one 
02N+2' and one 02N+1 

term from the exponential, and so (6.31) now reads, 

{a) 	Ce5v4, 4+) 
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Zt441 	.sg-4. 1 	N.N41 CeP(0**) °2.1.1-sra-) 

(-4-ezt,j4+ 	\) 1)) ( (9-aldAra..—) 

	
(6.37) 

After operating by 0, putting in the asymtotic form of the 

spinor wave functions, including the (-1)
N 

factor for the diagrams 

with an odd number of loops, and adding the contribution from the 

diagram of fig.(23), we obtain (6.33). So we find that the numer-

ators, and hence the scattering amplitudes are the same in the 

spinor-scalar and scalar-scalar cases. 

It is now just as easy to find the spinor-spinor numerator, 

by putting the spinor wave functions into (6.31). This forces the 

exponential to unity, and the asymptotic form of the wave functions 

will give us the same form again, (6.33). 

Thus using the powerful technique of superfield perturbation 

theory we have reproduced our results for both the form, and the 

equality for different scattering processes, of the scattering 

amplitude. We would expect the equality to hold as we work in a 

manifestly supersymmetric framework throughout. For each diff-

erent procees the only change we have to make is to put in the 

appropriate external wave functions. 
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APPENDIX ONE 

(a) Notation:  

Our notation is that used by Salam and Strathdee
14. The 

metric tensor is: 

g 	= diag ( +1, -1, -1, -1 ) 
uv 

The Dirac matrices are given by: 

= 2gpv 

and y5 is defined by: 

Y5 = YOY1Y2Y3 

The matrices yo, yoyp, 
YOopv= 

liyo 	, yoiypy5, 

are all hermitian. The adjoint spinors are defined by-* = yo, 
- 

and the charge conjugate of i by iC = C tpT, where C
T 
= -C and 

C 
-1 
y 	

T. 
C = -y 
UWe dedne a Majorana spinor by ip =

c 
If 4i and x are Majorana 

spinors then: 

Tx = 

TquX = 

!iYpY5X = XlYYIP 

Ty5x = xy.5* 

To. X = 	tP yv 	pv 

(b) Feynman Rules  

For the Lagrangian (2.3). 

f(270-4 d4k1for each closed loop. 

Propagators: 

. , 	2 	. ,-1 
<AA> = 	kp - m + 1E) 	= <BB> 
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<AF> = -im 
(p2 m2 4.  iE)-1 = <BG> 

(p2 	m2 4. iE)-1 <FF> = ip2  <GG> 

m) , 	„ <op> = i (y 	m) kp2  - m2  + IC)
-1 

 

Vertices: 

Internal: 

= 2ig 

 

= -2ig = 2igy5 
Pc 

External: 

= -2ig 717(q) nia(P) 

= -2ig t.1.(p) u:d(q) CaS  
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= -2ig Ticl(p) 	Cab 

Here u1, u. are the incoming and outgoing spinor wave 
3 

functions with their respective helicity labels; and C is the 

charge conjugation matrix. The last two types of vertices arise 

as we are dealing with Majorana spinors. 
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APPENDIX TWO 

The determinants C(N) and D(N), in the denominator of (3.2) 

are obtained from the table below
8. D(N) is the determinant of 

the whole matrix, and the determinant of the matrix made up of 

the first N rows and columns is C(N). 

column 

row 
1 2 3 	i N + 1 

1 	frl + Y1 
I 

) 	-Y2 
0 31.1) 4.Y1P1 

2 2 (r2 + Y2 + Y3) 	-73 R 21) 

3 0 -13 	(r3 + 13  + Y4) R 3.13  

. 

N 0 0 0 31iP  	YN+1 

N + 1 1P -FY1P 
2p fi. 3P 

. 

X 

N 
where: 	X = -m2 ( 1 - y 	+ t E 13i  l  - 	) 

i=1 

r. + a . 
1 	1 	1 

and P = 131 - p3 
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APPENDIX THREE  

Mellin Transforms  

The Mellin Transform F(8) of a function f(x) is defined by the 

relation: 

RN= Sc: 	ax 	
(A.1) 

It possesses an inversion formula: 

) 	Fp) x.(1  ck q, 
0.4.-Tx 

(A.2)  

where the contour C is parallel to the imaginary $ axis, and F(a) 

is analytic along C. In particular functions of the form 

(A.3)  

have Mellin transforms which are multiple poles, 

• F(0 = 	 (A.4) 

If F(f3) is analytic except for multiple poles in some region, 

then we can displace the contour to the left and obtain a series of 

contributions from the multiple poles that have been crossed over. 

The dominant contributions will come from the rightmost pole in 

the 0, plane; when x ce in (A.3) the smallest value of ao  at the 

poles will give the leading term, and this corresponds to the 

rightmost pole. 

In order to obtain the behaviour of (3.45), we define: 
oe.-1 

ti  A 	\Ciqt1) 	C  

NR) -41-Crri ri. t  u\61 C
(2-fc)4 	15NtIC  (A.5) 
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where C = C(N) and: 

:= cCNO 	ckf\I-0 =: 1-0 (41-1).-‘-(51,1 cd1 04- (A.6) 

A(a,N,p) can be rearranged: 

)5t44-1 UN-F) 

x 	

NX 4116-1 
1-1  

c'j(-/1) !st4 C(f\i-t+ 

14-0± C' (+s 

)41-o c' (N) 	
(A.7) 

We perform the 1N+1 integration in the region, 1 > Rea > 0: 

■06-1 bi t 	I)! a\16, 

c(1.1-11{ t 	t 
oz-1-1/ (A.8) 

This can be reexpressed as: 

x 1.1 C(.1\1-1) tez?-kk% coz-t0""1 
I 	t 

(A.9) 

[ an;-1)  114 ail.,  
c-ti\J 

The r
N 
integration is now fairly straightforward: 



m 	oe 1 m 0-1 1%1 cx‘mt—r1) -k-1  
ml! 

(A.12)  A (0e, 0 

So' 06-1 f 
X 	-Q4N K 

(A.13)  
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pt 

A k N ) P)-1 	-17 (Lc, 	ck\ig -,C1 

C (14 -1)-114- 	k7k. ‘. Loe 	(QZ4 Or-kkft  

x 	\st.ic_16_\1-1 
Oct.) -I) 

This contains A(a,N-1,k), and so we have a recurrence relation: 

A(o, )k  
(A.11) 

This recurrence relation is valid in the region 0 < Rea < 1. We 

are interesed in the rightmost poles of A(a,N,p) in the aplane 

and the important term of (A.11) is: 

PtkN-I)k) k{ of 

(Nis 	cer)N-I—ell ri .1- ' 
01'41=1 

Now since C(0) = Ci(0) = 1, 

fnat. 

(A.10) 

-art 

k  rk (26.0y 
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Therefore we have: 

where: 

(A. 14) 

(A.15) 

Mira( 	k 
	

f J 
In order to evaluate (3.45) we require A(a, N, 0): 

AG?)  N)  0) g(N)0)  
oeaw I 

Hence (3.45) becomes 

2t\11,  

NI! 040. 
(A.16)  

Consklxv* x aczN-1- (A.17)  

and it is analytic in the region 0 < Rea < 1. The inverse Mellin 

transorm requires that TN(a,t) is analytic along the contour, so 

we take as the contour in (A.2), the line AB in fig.(26). 

Fig.(26) 
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We analytically continue ya,t) as defined by (A.17) into 

the region -1 < Rea < 0, except for multiple poles at a = 0. We can 

now evaluate: 

et 
1 	

17,1 (06 edLOZ 	CO7k4CAN X PAI
N
S 

1 

2-crti 
A6 13C CP Atk--  

so41:14(0‘1)0c104 (A.18) 

 

The contribution from the horizontal lines BC and DA vanish 

as the imaginary coordinate goes to infinity, and the contribution 

from the left hand vertical goes to zero as s co. The remaining 

integral is the inverse Mellin transform we require, so we have: 

-r (s 6) 	0040.4 x -Q/rts 	(A.19) 

which is the form of equation (3.56). 
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PART TWO 

ANOMALIES VIA DIMENSIONAL REGULARISATION 
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PART TWO  

Y. INTRODUCTION  

The validity of the manipulation of highly divergent quant-

ities is a question which arises often in quantum field theories. 

The usual technique to overcome such problems is to regularise 

the divergent integrals by some method, and the most usual way 

now is the methcd of dimensional regularisation'. This has the 

advantage over other previously used means of regularisation in that 

it preserves all the symmetries, like gauge invariance (abelian 

or not) of the original field theories. 

When using dimensional regularisation we define the theory 

in arbitary dimensions. On evaluating Feynman integrals, the diver-

gences of the theory appear as poles in the number of dimensions, 

and can be removed easily. The limit of four dimensions is taken 

at the end of the calcualation. The actual continuation to 

arbitary dimensions is trivial for theories with only scalar and 

vector fields.. However, in theories involving spinors or abnormal 

parity objects, the generalisation requires considerable care. 

One particular area in which the manipulation of divergent 

quantities turns out to be invalid, is in the divergence of the 

axial vector current, defined in a number of spinor field theories. 

This has been investigated by several authors
2'
3, who have 

shown the presence of anomalous terms in the corresponding Ward 

identities, absent from the identities obtained formally from 

the equation of motion of the spinor field. 
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Akyeampong and Delbourgo
4 have shown how these anomalous 

terms arise naturally in the framework of dimensional regular-

isation. Identifying axial vectors and pseudoscalars as three 

component and four component tensors in arbitary dimensions, 

an expression for the divergence of the axial vector current is 

found: 

a  KALMN = 2miP  KLMN 	Pt 
 
KLMN 

where P is the usual pseudoscalar current. The new current P', 

which is overall pseudoscalar, involves the antisymmetric product-

of five gamma matrices and so is zero in four dimensions. However, 

the contributions from this current produce the anomalous terms 

in the limit of four dimensions 
4
. 

We consider an SU(n) symmetric theory of a spinor field, 

coupling to external scalar, pseudoscalar, vector and axial vector 

fields. We first look at the divergence of the axial vector current 

in this theory, in four dimensions
5. The existence of a minimal 

set of anomalous terms in the abnormal Ward identities for the 

axial vector current has been demonstrated using various tech-

niques of regularisation
2  ' and the c—separation method of defining 

local operator products
3. We show that the contribution from the 

new current P', produces exactly this minimal set. We find that 

this current also produces a set of other anomalies, associated 

with processes involving other external fields. These are self 

consistent, and we can remove them using acceptable gauge invariant 

counter terms in the Lagrangian, although whether we should do so 

is uncertain. We certainly cannot do this with the minimal set as 
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it is not possible to include counter terms to remove these, 

without affecting the vector Ward identities, and hence the gauge 

invariance and renormalisation of the theory. 

Finally from the anomalous terms we derive a modified PCAC 

relation, and we discuss possible implications of it, with or 

without the counterterms. 
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II. SU(n) MODEL IN FOUR DIMENSIONS  

We consider an SU(n) symmetric theory of a spinor field 

coupled to external scalar, pseudoscalar, vector and axial vector 

fields, described by the Lagrangian: 

l,(x) 	M) 1-PCA) 	)'1.0.C-g) 1PicLOC) (2.1) 

where the currents jia(x) are constructed from the free fermion 

fields: 

(2.2) 

The 
ZXi 

 are a representation of SU(n); ra  = 1, y5, Yp, iYuY5  

correspond to the scalar, pseudoscalar, vector and axial vector 

currents respectively; p
i
a 
= S

i
, P

i
, Vp

i
, Apt are their respective 

external fields; and ga  their respective coupling constants which 

we will absorb into the definition of the fields, and so can be 

set to unity in (2.1). 

Using the equations of motion which follow naively from (2.1), 

the divergence of the axial vector current is: 

jtA" tfr; CK) 	apn ,(x) (2.3) 

In perturbation theory, to the lowest order in the coupling 

constants, we can reexpress (2.3) as the Ward identity: 
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(P-X-V1)—(Z.V1 \6 	WI) 	‘65 41—  AA) 

( 

(2.4) 

where k is the four momentum carried by the axial current, and 

p is that carried by the incoming fermion line at the vertex. 

• Eqation (2.4) has been derived from the rather naive use of 

the field equations, involving the formal manipulation of highly 

divergent quantities. The question arises therefore as to the 

validity of these manipulations. 

To illustrate that in fact these manipulations are not 

justified in certain cases, we consider the Ward identity for the 

i 5 . 
divergence of the axial current 3 	(k) to two'vector currents 

jvi(ki) and ja
k
(k2). In the lowest order of perturbation theory 

the contribution from the left hand side of equation (2.4) is 

that of the diagram of fig.(1), together with the diagram with 

• the vector currents interchanged. 

• 
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The total contribution we denote by R pd
ijk

, where the dujk 

are the completely symmetric SU(n) structure constants. The first 

term on the right hand side of equation (2.4) gives a contribution 

which is that of a similar pair of diagrams with 	 1-1Y5 
replaced 

by 
2105' 

and we denote it by 2mR vad
ijk. The remaining terms in (2.4) 

do not contribute in this order. If (2.4) holds then: 

(2 .5) 

should also be true. 

Using the explicit calcualation of Rosenberg
6
, Adler has 

shown that equation (2.5) is not valid, and that instead: 

R vcr 	awl Rvo-- 	V"? 2 	0,<,40- (2.6) 

i.e. the axial vector Ward identity fails in the case of the 

7  triangle graph. This failure can be traced back to the illicit 

operation of the translation of an integration variable in a lin- 

early divergent Feynman integral in the derivation of (2.4). 

By several techniques of regularisation
2  and by the e-separ- 

ation method of defining local operator products
3 
 i , it has been shown 

that there are other extra terms, "anomalies", in the divergence 

of the axial vector current which are not obtained when the diver- 

gence is calcualated using formal manipulations of the equations 

of motion of the spinor field. These arise from the couplings,• 

via closed fermion loops, to various other combinations of 

currents. Their results can be summarised as follows: 

(a) No loops involving scalar or pseudoscalar couplings have 
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Ward identity anomalies which cannot be removed by appropriately 

chosen, and acceptable gauge invariant counter terms in the 

Lagrangian. 

(b) The only loops with'true'anomalies, i.e. those which 

cannot be removed in this manner, are those with vector and axial 

vector vertices, with an odd number of axial vector vertices. If 

subtraction terms are chosen so that all the vector current Ward 

identities are satisfied then the following loops have anomalous 

axial vector Ward identities:- the AVV and AAA triangles; the 

AAAV and AVVV squares; and the AVVVV, AAAVV and AAAAA pentagons. 

The triangle anomalies are the only ones obtained when there are 

no internal degrees of freedom present. We will see that these 

anomalies emerge naturally in the framework of dimensional regul-

arisation. 

Adler has shown that, as a consequence of these extra terms, 

the axial vector divergence is not multiplicatively renormalisable7.  

One effect of this is that in the usual local current-current 

theory of the leptonic weak interactions: 

(2.7) 

where: 

— 5 (1- -1‘65)/A. v,,YA(1-4)e(2.8) 

is the leptonic current, the radiative corrections to ve
e and V p 

scattering are divergent in fourth and higher orders of pertur-

bation theory. 

So we see that the presence of anomalies in a theory destroys 
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• its renormalisability for abnormal amplitudes, and possibly its 

validity as a description of the weak interactions, and so it 

is important to know whether a spinor field theory is anomaly 

free or not. 
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III. SOME PROPERTIES OF ARBITARY DIMENSIONS 

(a) Generalised Gamma Matrices  

That one can generalise the gamma matrices to an n-dimen-

sional space is well known. We note some of the relevant properties 

beginning with the Clifford algebra: 

rM'rN } = 2g 
	 (3.1) 

wherethe indices M,N run from 0,1,2,....,n-1. The metric g is 

that appropriate to the SO n-1,1 group: 

g00 = 	gON = O' gMN = -6  MN where M,1sL): 1 

Aa usual we can lower and raise indices: 

FM = gMN 
	

(3.2) 

There are some differences for even and odd dimensional 

spaces, but these are not relevant to our work. We work in an 

even dimensional, n = 22, space and dimensional regularisation 

will correspond to analytic continuation in Q. In such a space 

the r-matrices are of dimension 22x 22, and there are n
2 
- 1 

= 222 - 1 of them obtained by multiplication and these forma 

complete set. If we define the antisymmetric product of r-matrices: 

rt 	------  Ctri 
permutations 
	(3.3) 

of Mr 
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then the complete set of matrices are: 

i. the unit matrix 

ii. the vector matrices r 

iii, the matrices Biro 
iv. the "axial" matrices rt

KrLg 

and v. the pseudoscalar matrices reLrmrii). 

As in four dimensions the product of an odd number of r-matrices 

has vanishing trace: 

if r is odd (3.4) 

For r even: 

re Tri 	= stAN) 	(3.5) 

Tr- 1 rk  Pi_ ri.ArNi 
	

(3.6) 

tdt 	SVA LI■J 	%N.) •BLIA etc. 
Other trace form ula we find useful are: 

Tr unless s = r 
	(3.7) 

rt  Tr 	 r"r1 

••••■•• 
aommI 

(3.8) 
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0) p  WY] 
Z-Q 	nirjrt< 	• 	[11 

I-1-7r 

	

c.. 	Nr] 
K 	° 	r) 

4m) 	 co1:3 	c  
L 3‘<ttAI 	 ,1,3 

(3.9) 

We also need the multiplication rules: 

(3.10) 

(3.11) 

.L 14 , - P 	=--2---P - rir3 	1-44 t.1,4 lit 
(3.12) 

and the contraction formula: 

LN M " - • Mr) 

c,Nr 
(3.13) 

(b) Loop Integrations  

The other properties of n dimensional spaces we need are 

the loop integrals. It is easily shown that'. 
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'641 1;1
(

37'r) 	. ic-19.+L44)( 	 
Cr-  4- 	)2J-tt 	rco0 Y (3.14) 

The important cases of this integral are those when a = 2,3, 

4 and 5 and R = 0, 1, 2 and 3 respectively, when this integral 

has the value: 

where we have put R. = 2 in the factor which multiplies the gamma 

function. 

The symmetric integration relations in n dimensions also 

prove valuable: 

Sltak-fopo 	jet r--41) 

Jetzt) po,1),NN-cy) 	r 
&s?; 	9ctet5 Bcs  

(3.15) 

(3.16) 

(c) Axial Current in 2)2 Dimensions  

4 	Before we can consider abnormal amplitudes in the theory, we 

must first decide what we mean by the axial vector current in 2k 

dimensions. One possible alternative is 4 
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where r_i  = r0r1r2....r2t_1, which in four dimensions reduces to 

y5, and so will give the correct axial vector form. But this also 

involves identifying the pseudoscalr current as IT(x)1Air tp(x). 

This does not give the usual PCAC relation, and we obtain a zero 

answer in the computation of the 7
0 
 2y amplitude for X > 3. 

Another possibility would be to identify the pion current 

with the product r0r1r2r3, which again is 15  in four dimensions. 

But this is non covariant, and as such unattractive. 

Akyeampong and Delbourgo
4 
 introduced a pseudoscalar tensor 

current : 

I 	- 
A)  ixv 	Ct co buc) 

which is correct in four dimensions, and overcomes the problems 

of the current involving r-1. Identifying the axial vector current 

as: 

and using the equations of motion for the spinor field, the 

i 

	diver- 

gence of the axial vector current s
4 
 , 

LKTIi(x)PL.Gi 11.04) = 2yviT(x)rh< PL G4 Pr.Pcx) 

--L9(?s) 6  IL;I K IL I tl 	tfrCA) + terms of 0(g) 
	

(3.17) 

This can be reexpressed as a Ward identity, which reads to the 

lowest order in the coupling constants,(using the notation of (2.4)), 
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11.(1)4.0 -fft)(  kt, r, Po)  (n. 

----- 	) 	P' r, r, CIN0  — 	(a \() .2c  
cri_rmeg,3i 	--111Y+ R„rtyri  \ (ri 

4- 61-(0.0-vv,)-ii rE.Kni_rmr7.0 
In four dimensions, since 

vuY0 = -664, )-eY5, 	YEY4Yja 0= 0,  

and 	6 ilv= -apAya liYi.tYvYra = 4' y5cAPvcr' 	33 	ll  

(3.18) 

(3.19) 

we find that(3.17) and (3.18) formally reduce to the usual PCAC 

identities, (2.3) and (2.4) respectively. 

However in arbitary dimensions PCAC is no longer quite true. 

Here the divergence of the axial vector current is the sum of the 

- J 
pseudoscalar current and a new current 1P(x)3 

(4 
Vicymrex), 

which is overall pseudoscalar, and it is this new current which 

gives rise to the anomalous terms when we go to four dimensions. 
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IV. THE ANOMALIES8  

(a) Abnormal Amplitudes  

We first consider the Ward identities for amplitudes which 

are overall abnormal, taking as an example that for the divergence 

of the axial vector current coupled via a closed fermion loop to 

two vector currents. The right hand side of (3.18) yields three 

types of graphs: 

i. the usual pseudoscalar-vector-vector, <PVV>, vertex. 

11. two self-energy like graphs due to the contraction of 

propagators. 

iii. the anomalous term involving the antisymmetric product 

of five r-matrices, <P 1 VV>. 

It is not too difficult to carry out the calcualation in 

spite of the profusion of indices if we recognise that the four 

dimensional limit 2, -4- 2 is to be taken at the end, and that the 

anomalies emerge as the product of an integral which diverges in 

this limit multiplied by a kinematic term with a factor (2.-2) 

from the trace of the r-matrices, which vanishes in this limit. 

Other kinematic factors like OL R  S Iiho  which are zero in four 
dimensions must be multiplied by integrals which are not singular 

as 2, -+ 2. These important technical aspects of dimensional regul-

arisation prove to be well substantiated by detailed computation. 

i. The <P(k)V(ki)V(k2)> vertex is described by the tensor: 

Titt34t)t3  = 	lei, 	rar. p 	r,(11-474,) 4,v) 

(r$142) 
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(4.1) 

where we have used the notation ¶n] to denote an antisymmetric 

product with n indices. The p
2 term in the numerator of the inte-

grand gives a 1/(t-2) factor using equations (3.14) and (3.15), 

but it multiplies a trace factor tr( lj4lrArB) E 0 for all 2., and 

so does not contribute. The remaining terms give a finite integral, 

and the usual answer when the limit t '÷ 2 is taken. 

ii. The self energy like graphs give zero for all 2,, and so 

do not contribute. 

iii. The anomalous term associated with the new current, 

<1°(k)V(kl)V(k2)>, neglecting the SU(n) indices is: 

	

T153 	 ctxv. 1.  -1/4-k)
7 

 -Yr r 	(0.1,,m) 

1_(\)2--‘111)  4-0,..-Y1-12) 	-)c-\<1 "\-\<Z)fl  
With the usual Feynman parameterisation this becomes: 

Tcs3  —c 

	

— 	aow0/2. a,d3 	(z_D )- 3
tipt 	5 	 t) 

0 

(4.3) 

where D, k', k0' etc. are functions of the a's and the k's. 
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• 

After symmetric integration the p
4 term multiplies tr (WAFB) E 0, 

for all 2,, and so these terms do not contribute. 

To simplify the p2 terms the relation 

P Pt, Pti 1 43 	 - ') i,31 (4.4) 

proves useful. We have traces of the form: 

p fa, rtto/npnAP.,' re, IL t41 
Remembering that, (summing over repeated indices), 

f rx, Pc.4)1 	= 0-1) rico 

(4.5) 

(4.6) 

this trace yields, using equation (3.15), a factor: 

41'2a-2)  Tr  [ rtto 	kti  r t 
The p

2  integration gives a 1/(2-2) factor from equation (3.14), 

and so the coefficient of the trace is finite. We can now take the 

limit R. ÷ 2 and make the substitution ix y5, rA  Y., rB  yo 
the trace becomes: 

Tr(65̀6D, yi,/) 	 (4.7) 

and so we can evaluate the total contribution from these terms which 

is: 
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Other terms in equation (4.2), whose numerator is independent 

of the loop momenta vanish for all t. 

The diagram with the vector currents interchanged gives a 

similar contribution, and if we include the internal symmetry 

factors we obtain 

t>11-3,)\/20,,w,i( (t<> 	L,c..cok  (4.8) 

where the d k are the totally symmetric SU(n) structure constants. 

This is just the famous axial vector anomaly and it has arisen 

quite naturally in the framework of dimensional regularisation 

as the contribution from the new overall pseudoscalar current P'. 

If we examine the left hand side of (3.18) we can see that 

we obtain this extra new term. The relation 

kittuti ri\f3 - 	r  kri3-31 
	

(4.9) 

simplifies this calcualation. So we have demonstrated the validity 

of (3.18) to the lowest order of the perturbation expansion, for 

the coupling to two vector currents. 

By similar manipulations the other abnormal amplitudes can 

be evaluated relatively simply, despite the awesome number of 

indices involved. To demonstrate the ease of the method we look 

at the important features of the <AAAAA>anomaly in the SU(n) 

gauge theory. 

The anomalous term again comes from the new current, so we 

just consider the <P'AAAA> amplitude. The important term after 

Feynman parameterisation and diagonalisation of the denominator 

is: 
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= ('el) (t- 

Trf 111-SQ P. rmtl. 	.11L;3n-17r/wlitel (4.10)  
where D is a function of the external momenta and the Feynman 

parameters. Other terms give at most a p
4 
factor in the numerator 

and, from equation (3.14), these integrals are non singular. They 

are multiplied by kinematic factors which are zero in four dimen-

sions, and so do not contribute. So we need only consider the p
6 

integration. The trace involved in the integration is : 

rttal 	rtl-, fit iVil) rt3, wt13  

ri.4.-brztsT-1)q3)-713.rinyen] (4.11) 

Using the symmetric integration relation (3.16) this produces 

three terms: 

1,--7  	 Tr[trx, llt43} 113) 11)k 1-133 113)11  at(P14:a) 

	 TrRrx, Gal (1L1) 	 Ttn] 2e, Wi-a) 

Tr [1. 	rinrt ri.33rt 	1 '`c-(.131 
21, 	)+a 
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From each of these we get a kinematic term of the form 

A (2,-2) + B, which multiplies a 1/(2-2) factor from the p6  inte-

gration. The terms B, which do not exist in four dimensions, 

appear also in other parts of the equation (the self energy parts 

in this case), and they cancel for all . It is A therefore which 

is of primary interest. 

We will look at the most complicated case, the second term, 

the others are similar and simpler. Making use of the identities 

in section III.(a) throughout this term becomes: 

r  
	Tr [ rx, rtjt)  [113 1 11131 	P ol+o 

— 	rits-Rs-Rrx  PLI3r 

	 Thifix,fz&-)1 c'.3) rt, C3 rx rin ri r3 
(4.12) 

21(x)(4,1ru,rtoq-) rtA3 	rx )(;-11Clo 
We can now move the rx's through the r's to their left, 

as each gAB  term will give rise to a frA,94 type term with no 

2,-2 factor, which will add to the uninteresting term B. In A one 

is left with: 

(274') T4 11_L3 	q.11/ 	r!13, 
(2tkl) 

(e-a) TcNcl-) 	r93 11133) 

-f-46,-at)(e- Tr (CIA) l33173) 
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40)7(ta3)1111711\111173) 

-i-sk,---a)Tr(rt4Grwra (4.13) 

  

As there is an (R-2) factor in front of both traces we can now 

evaluate them with It set equal to two and can make the substitution 

1)+  15, 	iya15. The first trace is zero, and the second gives 

a contribution: 

-44)6  Ct-a) 

The total contribution from all the traces after doing the 

integration using (3.14), is: 

L
. 

c 
(1-gI cP<F c 

The anomalous <P'AAAA> amplitude is this term multiplied by 

the appropriate SU(n) tensors. If there were no internal symmetry 

this term would cancel with terms from other diagrams with the 

axial vector currents interchanged, and there would be no anomalous 

contribution from the <AAAAA> diagram. 

It can be easily shown that the self energy type diagrams 

have the same traces, and the p
4  integrations yield the same 

structure; i.e. the calcualations are as before with identically 

the same uninteresting terms B. 

We can evaluate all the abnormal amplitude anomalies in a 
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similar manner, and we obtain the obtain the minimal Bardeen sett, 

where we denote the anomalies by <P' 	>, as they are due to 

the new current P': 

<P'VV> = -(1/87r
2
) d

ijkcoeysk11k26  

2 <P'AA> = -(i/247 ) dijk
c 	

k Yk 6  
aBri 1 2 

<P'VVV> = (i/6471-2)caaTS(-a1(k3 + k1)6  + 172(k1 + k2)6  

43(k2  + k3)6) 

<P'AAV> = (i/1927r2)calsid ( 1711(k3 - k1)6+ W2(k1 + k2 + 4k3)6  

+ W3 (k2 + k3
)6  ) 

<P'VVVV> = -(i/2567r
2)colel 	Etc(jklm) Zijklm  • 

<P'AAVV> = (i/384u2)6 
aBY6 

( Zijklm  + Zikmjl 
zijlkm zikjml 

+ zilkjm  + 3Z
i31nak  - (1 	m) ) 

<P'AAAA> = (i/76872)c 001/6 E' c(jklm) Zijklm 
	

(4.14) 

Our notation is the following; the momenta from left to 

right are k,kk2'k3 and k4; • the Lorentz indices are c, a, B, y 

and 	and the SU(n) indices are i, j, k, 1 and m. c(jklm) = +1 (-1) 

for even(odd) permutations of j, k, 1 and m, 	E' denotes the 

sum over all the permutations of j, k, 1 and m, and similarly E" 

denotes the sum over all permutations of j, k and 1. The SU(n) factors 
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d, d, f, W, W, Z and Z are as defined in the appendix. 

All the other possible abnormal amplitude anomalies, i.e. <P'V>, 

<P'VS>, etc. are zero. 

(b) Normal Amplitudes  

The procedure outlined previously also yields unambiguously 

a host of other anomalies in the Ward identities for amplitudes 

which are overall normal. In the same notation as before these are: 

<P'A> = -k (1/12n2) ( k2  -
a 

<13'P> = im (1/12n
2
) (k

2 
- 6m

2 
 ) d 

ij 

<P'PS> = i(1/24w2) ( 3k
2 + 3k.k1 + k1

2 - 18m2 ) dijk 

<P'AS> = -m (1/47r2) kla  dijk  

‹P'AV> = i(1/24Tr2) ( (k k + 2k k + 3k k ) 
a 46 	a a 	la 28 

- gaf3(3k2 + k1
2 + 3k.k1 - 6m

2
) ) fijk 

<P'AAA> = -(1/192 
2
) ( gcoo gya{(-3k1  - 2k2  - k3)6  W1  + (k1  + k2  

-2k3)6W2  + (-2k1  - 3k2  k3)sW3} + gay%6{(ki  

- 2k2 + k3)SW1 + (-3k1 - k2 
- 2k3)

5W
2 
+ (-2k1  

-k2  - 3k3)sW3} + gazgay  f(-k1  - 2k2  - 3k3)8  W1  

+ (-k1  - 3k2  - 2k3) W2  + (-2k1  + k2  + k3)6 W3) ) 
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<I0VP> = -m(1/1211-2) ( kl  + 2k2  )a fijk 

<P'AAP> = 1.131(1/3272) goo( W1  + 2W2  + W3  ) 

<P'APP> = -(1/192n2) {(3k1  + 4k2  + 5k3)aWl  + (3k1  + 5k2  + 4k3)aW2  

+ (3k
2 
+ 3k

3
)
a
W
3
1 

• 

<P'PPP> = -im(1/4872) ( W
1 
+ W

2 
+ W

3 
) 

<P'PSS> = -im(1/1672) ( W1  + W2  + W3  ) 

<P'ASS> = -(1/64u ) { Wi(k/  + k3 a  ) + W2(k, + k2 a 3 2  )+ W(k + k3)a  

<P'AVS> = m(1/3272) gas (W1 - W3 
 ) 

<VAIN> = (1/1927
2
) ( goolls { 3(k1  + 2k2  + k3)(5 W, 	(k1  + 3k2  

+ 2k3)& W2  - (2k1  + 3k2  + k3)
is
W3  } + gaygao { -(k1  

+ 2k2  + 3k3)(3 141  + 3(ki  + k2  + 2k3)6W2  - (2k1  + k2  

+ 3k
3
)& 	} + g g

13Y 
 { (k

1 
 - 2k

2 
+ k

3
)(S W

1 

+ (k
1 
+ k

2 
- 2k

3
)W

2 
+ (2k

1 
- k

2 
- k3)

& W3 

}) 

<p'vPs> = i(1/19272) { (k
1 
+ 2k

2 
+ 3k3)afi1 + 3(k

1 
+ k

2 
+ 2k

3
)
a

177
2 

• + (2k1  + k2  + 3k3)aW3  } 

<P'VVP> = im(1/967r2) gas  ( Wi  - 2W2  + W3  ) 
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<P'AVPP> = (1/384n2) gEijlink  321j1 	32iljnik Eilkmd 

-ilmkj 	 ilmjk + Z 	+ 3Z 	+ ( 1 4-4' M ) } 

zijklm zijlkm ▪ ziljkm ziljmk <PAAPS> = (i/144n2) gaa{ 

ijmlk ijkmi , Z 	- Z 	-1-kj-4-÷k) } 

<P'VVPS> = 1(1/384112) gee{ 
zijklm _ 3ziljmk 3zilmjk ziljkm 

▪ zimjlk _ 3zijmlk ▪ (j÷4.k)  

En  ( 5zijklm _ 3zijkm1 ) <P'PPPS> = -1(1/384n2) 

<plpsss> = —i(1/25672) E' Zijklm 

g 	( Eijklm 	 iljkm -ijkmi <P'AAAV> = -(1/384n2) { 	+ 3Z 	+ Z 
aa' ,146 

• Eijmkl 22ijlmk ▪ 2imjik 	( 	k)  ) 

„ „ ( Eijlkm 32ikjlm • 2ijlmk 2Eijkmi 
bay.bas  

- 	- 	, 	, Z-ilkjm + Ziindk  + zimlkj + ( 	÷ 3÷ 1 ) ) + 	k 
ad ay 

▪ 3Eijklm Eilkmd 	2Eikjm1 2ilmkj Eimljk 

+ ( 1 	k ) ) 

- <P'AVSS> = (1/144n2) g { Zijklm 2imklj 	2imljk Eikjlm  
018 

Eikl jm Eil jkm 	( 1 	m ) } 

<P'AVVV> = -(1/38471
2
) { gaa gy6( 3L

▪ i-iklm 	3EinIklj 	lmk 
+ Z 

3iimkj1 Eimljk ▪ Eiljmk 
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gaYgss( 3Eimlkj 3Eij1km Eijkml Eimkjl 

▪ 3Eimljk Eikjml 	( k 	m  ) ) 	„ 	Eijklm 
6aS GBy 

• Eikjlm 3Eijkm1 3Eijmlk 3Eilmjk 2ilkjm 

+ ( k 	1 ) ) 	 (4.15) 

It can be seen that the consistency conditions between these 

amplitudes : 

P7 -= CP/  P 

786 (4.16)  
CP P, —<P/ Pv ko)> -6( 

Ii1A•  
are all obeyed. 

• (c) The Modified PCAC Relation 

The PCAC relation, equation (2.3),.is no longer true, and the 

extra terms needed can be evaluated from the anomalies. The new 

relation will be of the form: 

• 
5(x) = -2m j5(x) + Abnormal + Normal (4.17) 

The abnormal term is that of Bardeen2: 

v6 -i(1/47r2)6
clays 

Tr
I
( 	) ( 4Fc43  (x) F'

V 
 (x) + (1/12)Fc4  (x) 	F A (x) 

A 	A 

+ (2/3)iAa(x) AS  (x) FV (x) 	(2/3)i4113 (x) AY  (x) AS  (x) 

• 
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+ (2/3)iAct  (x) Fti(x) AS  (x) - (8/3)Acx (x) A(3  (x)AY(x) AS  (x) ) 

(4.18) 

where Tr
I 
means the trace only over the internal SU(n) matrices. 

The vector and axial vector field strength tensors are defined by: 

F(2c) = v(10 (x) — vva(x) 
	

(4.19) 

FA  (x) = VaA13  (x) - Aa  (x) 
	

(4.20) 

where 

VNi(x) = ea(I) i(x) - ifijk  Vai(x) 4k(x) 
	

(4.21) 

is the gauge covariant derivative. 

The extra normal term in equation (4.17) is: 

-i(1/71-2) Tr1( /Ai  ) ( (1/6)meVpP(x) + M3P(x) + (1/12)VveVpAv(x) 

-(1/4)V VvVPA
v 
 (x) + (1/4)V VPVI)A 

v
(x) + (1/2)m2VPA (x) 

- (1/6)g Pv gPa {3V5AP(x)AP(x)Av(x) + All(x)Av(x) IAP(x) 

+ 2e(x)1PAP(x)Av (x) — VI AP(x)AP(x)Av (x) 

+ AP(x)V1AP(x)Av (x) } — mgpv{ AP(x)Av(x)P(x) 

+ AP(x)P(x)Av(x) } + (1/3)mP(x)P(x)P(x) 

+ (1/6) { 3VPA (x)P(x)P(x) + 4A (x)VPP(x)P(x) 

+ 5A (x)P(x)VPP(x) + 3VPP(x)A (x)P(x) } ) 

(4.22) 
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This has to be modified to include the scalar field S(x). 

One makes the substitutions: 

m -+ m + S(x) 

mV VPP(x) 9- I ( 3VPV S(x)P(x) - VPV P(x)S(x) + 3VPV (S(x)P(x))) 

m2V AP(x) 	VPA (x)S(x)S(x) + A (x)S(x)VPS(x) - VPS(x)A (x)S(x) 

mP(x)P(x)P(x) 	( 5P(x)P(x)P(x)S(x) - 3P(x)P(x)S(x)P(x) ) 

mA
P 
 (x)A

v 
 (x)P(x) 	I ( All(x)Av(x)P(x)S(x) - A (x)A

v 
 (x)S(x)P(x) 

+ Au(x)P(x)Av(x)S(x) + P(x)A11(x)S(x)Av(x) 

+ P(x)A (x)A (x)S(x) + A (x)S(x)P(x)A (x) ) 
P v 

and every other term like: 

mP(x) 	( S(x)P(x) + P(x)S(x) ), etc. 	(4.23) 

These extra polynomial terms can be subtracted out using 

acceptable gauge invariant counter terms in the Lagrangian. These 

will be of the same form as the extra normal terms in the diver-

gence equation, (4.22), and will leave the minimal Bardeen term. 

If we do so, then the fact that no loops involving scalar and 

pseudoscalar couplings have Ward identity anomalies means that 

0 
7 4' 2y and the SU(3) related processes of n ± 2y and X

o 2y, 

are the only cases in which the anomalies alter the predictions 

of the usual PCAC current algebra5  . In particular they would not 
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alter the predictions of current algebra in the troublesome n 4- 3n 

decays. However, if we do not subtract out these terms, the normal 

anomaly <P tPPP> which is non zero, would alter the current algebra 

predictions for this process. So apart from the interests of 

simplicity and possible renormalisability, it is not certain that 

one should subtract out the normal anomalies, and whether we should 

include the expression (4.22) in the modified PCAC relation (4.17) 
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APPENDIX 

SU(n) Tensors  

We choose as a representation of SU(n), the usual matrices 

lAi. Then the tensors used in the anomalies are defined by: 

 6 	= I Tr(A
i 
 ,X
j 
 ) 

i ,X j  = 2if ijk  

{ xi,x j } = 2di jk  

ijkl 	..i_
A
jAkx1 	AiTAjTAkT,

A
1T , 

) Tr( A 
W1 

= W 

W1  = 	= Tr( 
Aixjxkx1 AiTAjTAkTAlT ) 

w2 w
ijlk 

2 W3 = W
ikjl

, etc. 

ijklm Tr(AiA J Ak XIXm AiTAjTAkTA1TAmT)  

Tr(XiAjA
kAlAm AiTAjTAkTA1TAmT) 



REFERENCES 106 

  

1. G. t'Hooft and M. Veltman, Nucl. Phys. 44B, 189 (1972) 

C. G. Bollini and J.J Giambiagi, Phys. Lett.40B 566 (1972) 

J. Ashmore, Lett. Nuovo Cimento 4, 289 (1972) 

2. W.A Bardeen, Phys. Rev. 184 1848 (1969) 

R.W. Brown, C.C. Shih and B.L. Young, Phys. Rev 186, 1.491 (1969) 

P. Breitenlohner and H. Mitter, Nuovo Cimento 10A, 655 (1972) 

3. C.R. Hagen, Phys. Rev. 177 2622 (1969) 

R. Jackiw and K. Johnson, Phys. Rev. 182, 1457 (1969) 

4. D. Akyeampong and R. Delbourgo, Nuovo Cimento 17A, 578 (1973), 

18A, 94 (1973), 19A, 219 (1974) 

5. see review by S.L. Adler in, " Lectures on Elementary Particles 

and Quantum Field Theory", 1970 Brandeis Summer Institute 

in Theoretical Physics, Volume One, ( MIT Press, 1970 ) 

6. L. Rosenberg, Phys. Rev. 129, 2786 (1963) 

7. S.L. Adler, Phys. Rev. 177, 2426 (1969) 

8. R. I. Kee, Imperial College preprint ICTP/73/8 


