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ABSTRACT 

The structure of the supersymmetry algebra is investigated 

in the massive and massless cases, both covariantly and by the induced 

representation method. 	For the massive case, the unitary represen- 

tations may be specified by the "spin" basis or the "superhelicity" 

baMs. 	States are labelled as 110.2>o, J0; P- Cr J 1 > or IV> o, 	Er OC 

respectively. 	Here jo  =   is the "superspin", j is the 

component of spin, with helicity A = -J, 	I , 	J 	while 

= 	jo 	is the "superhelicity". 	The quantum 

number o--  = o, ± 	distinguishes the various spins and helicities, 

since j = jo ±i ; 	, and 	X = K 	4 (01 , 	= 0,i . 	For 

the massless case, the basis states are W-= 0, A; 	x> with the 

superhelicity A0 = 	I, --- 	an invariant, and A = X, or 

Using this formalism, the Clebsch-Gordan problem, of reducing 

the direct product of two unitary representations of the supersymmetry 

algebra, is solved for the massive case, 	This enables a partial 

wave analysis to be developed for supersymmetric scattering amplitudes. 

The scattering processes 1 -> 2 + 3 and 1 + 2 -* 3 + 4 are considered, 

and it is shown that the ordinary reduced partial-wave amplitudes 

are given in terms of a small number of supersymmetric ones. 	These 

constraints imposed by supersymmetry are worked out explicitly in 

a simple case, where parity is also included. 	If the constraints 

are continued to complex superspin, they are also found to relate 

the high-energy behaviour of the amplitudes. 

The.structure of the irreducible representations is also 

reflected in the superfield representations. 	Weight diagrams are 
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introduced which considerably simplify the analysis. 	For the massless 

case, it is shown that a superfield may or may not be gauge-dependent, 

depending upon a simple criterion. 	The supersymmetric form of such 

gauge transformations is worked out for one 	example. 

Finally, the possibilities for superfields to form bound 

states are examined in terms of a supersymmetric generalization of 

the Wick-Cutkosky model. 	The bound states are found to be pseudoscalar 

and axial vector superfields, with additional 0(4) labels (after a 

Wick rotation). 	The model therefore resembles rather a composite 

fermion-antifermion (Goldstein) model. 
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1.1 Origins  

The physics and chemistry of matter is profoundly related 

to the division of its 'elementary' constituents (electrons, photons, 

nucleons and so on) into just two classes, obeying either Bose 

statistics, or Fermi statistics. 	In quantum mechanics this dichotomy 

appears in the form of the symmetrization postulate, that only totally 

symmetrical or totally antisymmetrical wavefunctions are admissible 

for the description of states of many identical particles (bosons 

or fermions, respectively). 	Indeed, a study of the fundamental 

space-time symmetry properties of matter. (the quantum mechanical 

Poincare' group SL(2,C), including reflections) confirms that the 

elementary systems (that is, the unitary representations) may realize 

either of these possibilities, with either integral or half-integral 

spin (other possibilities, such as continuous spin, and parastatistics, 

are ruled out on observational grounds)
1
. 	The legendary spin 

statistics theorem of quantum field theory, which can be proven from 

basic axioms 
2
, establishes that the particles with integral spin are 

bosons, while those with half-integral spin are fermions. 	In fact, 

for ordinary groups, even reducible representations, describing 

several elementary systems, contain either all bosons, or all fermions, 

but do not mix the two. 

At the subnuclear level of elementary particle reactions, the 

distinction in physical properties between bosons and fermions persists. 

The names 'mesons' and 'baryons' used in strong interactions emphasize 

just this division of hadrons into two classes of broadly dissimilar 

properties. 
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Nevertheless, on purely theoretical or aesthetic grounds, there 

seem no compelling reasons a priori for any such clear-cut groupings 

of the elementary particles of nature. 	This observation may, indeed, 

have implications which lead to a more satisfactory understanding 

of the laws of physics than exists at present. 	There is one practical 

strategy for tackling this problem, which has been successfully 

employed in other areas, and is in a sense the way in which any 

progress is made in building upon old ideas. 	This is to abstract 

from the real world, and to consider instead an ideal world in which 

the physical behaviour of bosons and fermions would not be completely 

independent. 	The real world would then be understood in terms 

of a 'breaking' of this ideal situation, leading to the observed 

differences between bosons and fermions. 

The question of a unified theory combining bosons and fermions 

on an equal footing has frequently arisen in the literature. 	The work 

of Fierz 
3 
 on anomalous angular momenta in Dirac magnetic monopoles 

has recently been rediscovered in the context of spontaneously 

broken nonabelian gauge theories 
5,6,7. 
	Parastatistics 

 8,9 
 can 

be regarded as raising similar questions of spin and statistics. The 

quest in the last decade for relativistic spin-containing internal 

symmetries of elementary particles 
10 
 was motivated by a natural 

hope that, following the success of SU(3), bosons and fermions could 

be incorporated into a larger scheme. (SU(3), and also SU(6), do 

not mix bosons and fermions in their representations) 

There is one stringent constraint on any reasonable theory 

of boson fermion symmetry: the necessity to incorporate, right at 

the very beginning, the fact that in our world the fermion number 
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itself is very accurately conserved 
11

, whereas boson number suffers 

no such restriction. 	We shall be returning to this point in Sec. 4.3. 

Now, it is clear that any conserved charge which transforms 

boson , states into fermion states must itself be a half-integral 

spin object. 	The conserved current of a theory admitting such a 

symmetry can therefore be written in terms of an odd number of the 

local fermion fields. 	However, if the symmetry generated by such 

charges is to be a Lie algebra, then no information can be obtained, 

because the canonical anticommutation relations for fermion fields will 

not allow a commutator algebra of such charges to be evaluated. 

Some additional references to previous work along these lines can 

be found in Ref. 12. 

The first hints at one way of overcoming this difficulty came 

indirectly with the work of Neveu and Schwartz 13 
	14 
and Ramond 	in 

dual models and Volkov and Akulov 15  in a model of the neutrino. 	The 

problem was completely resolved by Wess and Zumino 16  by a linear 

realization of these "supergauge" transformations in 4 dimensions: 

the commutator algebra of the conserved fermionic currents is simply 

replaced by a suitable anticommutator algebra. 	If this is done, 

then the conserved charges no longer form a Lie algebra, but a mathe- 

matical entity called a " graded Lie algebra ". 	The corresponding 

finite transformations form a "generalized Lie group". 	It is interesting 

to note that these concepts were already considered by Berezin and 

Kac 17  in confronting the problem of fermion field quantization by 

functional techniques. 
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We shall be concerned in this thesis with the graded Lie 

algebra approach to Bose-Fermi symmetry. 	It has come to be known 

colloquially to physicists as "supersymmetry". 	This term refers 

especially to the algebra underlying the work of Volkov and Akulov 
15
, 

a subalgebra of the algebra introduced by Wess and Zumino 
16
, and 

subsequently studied by Salam and Strathdee 
18
. 	In the sequel it 

will be loosely referred to as "the" supersymmetry algebra, Af . 

The next section is concerned with our motivations for studying 

the particular aspects of supersymmetry treated in this thesis. 	This 

done, a brief summary of the thesis is given, together with the main 

results. 
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1.2 Motivation and Summary of Thesis  

Since its introduction more than two years ago 
16
, there has 

been a great deal of effort in developing the idea of boson-fermion 

"supersymmetry". 	We shall not attempt here to give an account of 

the progress which has been made in the subject; this is described 

in detail in some recent reviews 
19-23. 
	Here we merely sketch some 

of these aspects, in order to put in context the subject-matter of 

this thesis: 

Supersymmetry has advanced along two broad fronts. 	Firstly, 

it has been found that virtually all renormalizable field theories 

can be recast in a supersymmetric form 23, including nonabelian 

gauge theories. 	The supersymmetric theories have remarkable 

renormalization properties 
23
. 	The introduction of "superfield" 

techniques (Sec. 2.2) has considerably simplified the supersymmetric 

formulations. 	Particular interest has been centred on spontaneous 

symmetry breaking 20, and on unified models incorporating supersymmetry23. 

The second branch of development has been in the algebriac 

aspects of supersymmetry theory. 	This derives ultimately from the 

fact, discussed in the last section, that supersymmetry appears to 

be a nontrivial relativistic spin-containing symmetry, and as such 

has great potential as a particle classification scheme. 	Therefore 

there have been many attempts to combine a supersymmetry algebra 

with a strictly internal symmetry such as SU(2), to yield a realistic 

scheme. 	A fuller discussion of this problem is given in Sec. 3.5. 

As we have mentioned, it is with the algebriac aspects, particularly of 

the supersymmetry algebra 	, that we are concerned in this thesis. 
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Now the supersymmetry algebra .' is the prototype of all 

such boson and fermion mixing symmetries. 	Therefore, leaving aside 

the problem of obtaining the correct particle spectrum, for example 

until a better understanding is reached of the problems of symmetry 

breaking, we could already seek, for Af itself, physical predictions 

such as constraints on scattering amplitudes, coupling constants, high 

energy (Regge) behaviour, bound states, and so on; in a more realistic 

scheme, the predictions should be at least qualitatively similar. 

This philosophy is the basis for the remainder of this thesis. 

Some work along these lines has appeared already in the literature18,24-26 

The work of this thesis is based upon three papers 
27-29, 

 the last 

in collaboration with Dr. R. Delbourgo. 	Hitherto only very preliminary 

results along these lines have been reported in the literature, but 

in the following we shall be able to make explicit many of the 

predictions of supersymmetry which were listed above; we shall also 

encounter many areas for future exploration with the formalism to 

be developed. 

To end this introduction, we give a brief outline of the thesis. 

A more detailed account of each chapter can be found in its introductory 

paragraph. 	Finally, we state our main results. 

It is clear from the last section that any investigation of 

supersymmetry in physics entails a knowledge of graded Lie algebras. 

These are formally introduced in Chap. 2 , where "the" supersymmetry 

algebra, S , which is of particular concern in this thesis, is also 

defined. 	Graded Lie algebras can also be integrated to continuous 

(local) groups known as "generalized Lie groups", and these are also 
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discussed. 	In this context the notion of a "superfield" is introduced. 

Finally, the relationships between the graded Lie algebras and the 

"no-go" theorems for relativistic particle symmetries are briefly 

examined. 

The review of graded Lie algebras in Chap. 2 is a necessary 

preliminary to a study of their representations. 	The superfields 

themselves already provide finite-dimensional, non-unitary representations; 

however for the analysis of scattering amplitudes, the unitary 

representations are required. 	Attention is turned to these in Chap.3, 

concentrating on the case of the supersymmetry algebra .ef (as is done 

for the remainder of the thesis). 	In the first two sections, all 

unitary irreducible representations of A in the massive case (01>o) 

are found both by a covariant analysis and by an extension of the induced 

representation method. 	The massless case is treated in the following 

section. 	In each case convenient bases are found and the matrix 

elements of the "super-translations" in them are evaluated. 	The 

problem of adjoining discrete symmetries like parity to the algebra is 

also considered. 	Finally, some remarks are made about possible 

generalizations of Af to include internal symmetries. 

It should be emphasized here that for the purposes of our later 

applications, we do not need to tackle the mathematical subtleties which 

would be involved in a rigorous approach to the representation theory 

of graded Lie algebras. 	Our method is the physicist's one of 

ignoring such questions, while yet working with the formalism, until 

it becomes crucial to have a more complete understanding (as would be 

the case, in general, with the p
2 	

o and p = o unitary irreducible 

representations). 
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In Chap. 4, the formalism of Chap. 3 is applied to solve the 

problem of reducing the direct product of two unitary irreducible 

representations of the supersymmetry algebra into a direct sum of 

unitary irreducible representations. 	Using this, it proves possible 

to analyse scattering amplitudes into partial waves of total "super- 

spin", rather than spin. 	This supersymmetric partial wave analysis 

then leads to constraints upon the scattering amplitudes, and their 

high-energy behaviour; a particular example is worked out explicitly 

in the last section. 

The insights gained into the structure of the irreducible 

representations of 4 in Chap. 3 also have applications in the 

finite-dimensional case, namely the superfield representations. 

These are considered in Chap. 5. 	The structure of the "super- 

wavefunctions", and the massive and massless superfields, is analysed 

by means of weight-diagrams. 	In particular, for the massless case, 

the question of gauge-dependence is investigated. 

In Chap. 6 the possibility for superfields to form bound states 

is considered with a model which is a supersymmetric generalization 

of the Wick-Cutkosky model. 	For a qualitative understanding of the 

problem in the simplest case (that of p = o), it proves sufficient 

to take a very special representation for the supersymmetric bound 

states. 	The type of representation needed in the general case is 

pointed out. 	Finally, some comments are made about the p o case 

(massive bound states). 

In the appendices at the end of the thesis, the notational 

conventions are established, and various important formulae and 

identities called upon in the text are collected together. 
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For completeness, we now state the main results of the thesis. 

In Chap. 3, we analyse the structure of the unitary irreducible 

representations of zf from a covariant point of view, and find the most 

natural ways of labelling the basis states: the "spin" basis and the 

"superhelicity" basis. 	The massless case proves amenable to the same 

treatment. 	To our knowledge, the Casimir operator of the algebra 

in the massless case has not previously been written down 19,22,23  

In Chap. 4, we solve the Clebsch-Gordan problem of reducing 

the direct product of unitary irreducible representations, and use this 

to develop a supersymmetric partial wave analysis. 	This leads to 

supersymmetric constraints on amplitudes, coupling constants, and 

high-energy behaviour. 	This programme has only been hinted at 

elsewhere in the literature 24,25,30  

In Chap. 5, we are able to simplify considerably the analysis 

of massive and massless superfields, of arbitrary spin, by means of 

our weight diagrams 
31
. 	In the massless case, we show that a superfield 

must be either gauge independent, or gauge-dependent, depending upon 

a simple condition. 	In the second case, we derive from general 

considerations the form of the supersymmetric gauge transformations, 

and prove in general the existence of the so-called Wess-Zumino gauge
32
, 

which contains essentially only the physical gauge particles. 	Our 

analysis is model-independent. 

The main result of Chap. 6, is to show that, at least in the 

simple case considered, the supersymmetric bound states obtained, 

namely pseudoscalar and axial vector superfields with internal labels 

(after Wick rotation) of 0(4), form the appropriate supersymmetric and 

relativistic generalization of the lowest 
1
S
o 

and 
3
S
1 

states which 
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may be obtained from two spin - i states. 	Thus the supersymmetric 

Wick-Cutkosky model behaves rather like a Goldstein fermion-antifermion 

composite system. 

The price for understanding some of the problems posed in 

the beginning of this chapter is very high, and supersymmetry is only 

a small deposit. 	However it seems that future unified theories may 

well need to have cognizance of its existence. 	Some of the most 

exciting current developments along these lines are in supergravity 

theory 
33-36. 
	Here the graviton acquires a gauge partner of helicity 

renormalization properties of such a supersymmetric theory could be 

expected to be radically different from those of quantum general 

relativity, with profound implications for an understanding of gravity 

and its relationship to matter. 
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2. BASIC CONCEPTS  

In this chapter we give a review of the basic concepts of 

graded Lie algebras (GLA's) and their corresponding continuous groups, 

which will be needed in the remainder of the thesis. 	For a more 

sophisticated approach the work of Berezin and Kac
17 

and the review 

of Corwin et. al.
19 

should be consulted. 

Sec. 2.1 introduces a GLA both as a formal algebra whose 

generators satisfy a certain set of commutation and anticommutation 

relations, and more abstractly as a realization in terms of a graded 

algebra of endomorphisms of a graded vector space: this realization 

also provides the definition of a representation of a GLA. 

16.  
Some examples of simple GLA's are then given, and this leads 

to the introduction of the spin-conformal algebraV of Wess and 

Zumino and its non-simple subalgebra, the so-called supersymmetry 

algebraAf of Salam and Strathdee
18
, and Volkov and Akulov

15
, which 

is of particular concern in the sequel. Rf is also exhibited as a 

contraction of one of the simple "classical" GLA's. 

In Sec. 2.2 it is shown how the association of a continuous 

"generalized Lie group" with a GLA necessarily leads to a group 

manifold of graded-commutative structure. 	Some properties of the 

fermionic parameters, the so-called "anticommuting c-numbers", are 

described. 	The concept of a superfield is introduced, as a repres- 

entation carried by functions over the group manifold, generated by 

the inner automorphisms. 

Finally, a discussion of the Lie algebra associated with a 

generalized Lie group is given. 	This is found by choosing a basis 

for the "a-number" parameters, so the infinitesimal generators form 
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an ordinary Lie algebra over the real numbers. 	This procedure is 

applied to the supersymmetry algebraj , and it is described how the 

"no-go" theorems, for relativistic particle symmetries, apply to the 

associated Lie algebra. 
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2.1 Graded Lie Algebras  

This thesis is concerned with the recent developments of theories 

of boson-fermion symmetry utilizing the mathematical construct of graded 

Lie algebras (GLA's). 	In particular, we shall in the sequel develop 

the representation theory of one particular such "supersymmetry" 

algebra, and we shall give some applications of this work. 	We shall 

introduce this supersymmetry algebra below, and in the next section 

discuss some aspects of its corresponding Lie group. 	In the meantime, 

however, it is useful to give a brief sketch of some basic definitions 

and concepts from the general theory of GLA's, as this subject has 

developed under the impetus of the current interest and potential 

implications of these algebras as symmetries of elementary particles. 

As stated in the previous chapter, a GLA has a system of generators 

satisfying commutation [ ] and anticommutation t) relations, which 

may be cast into the canonical form
17 

Ex c., Xb 1 

Exd , 

(qcc , ck,) 	A.43  X, 	 (1.1) 

The generators {ZAI are divided into two sets 1)<,,,  at I,. -.NI/ called 

even, or bose-type generators, and 	(Lc , a = t, 	t 	, called odd 

generators or fermi-type. 	The C(0, , "1-0  (', , A,,1̀   are called the 
structure constants of the algebra. 	The X. alone generate a Lie sub- 

algebra, of the GLA. 	The Jacobi identities imply that the (-1-„)„fl  are 

representation matrices of the [X0.1 , in an N-dimensional representation 

(M,N are assumed to be finite here). 
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The definition given here is only a particular example of 

a more general abstract definition in terms of graded algebras 
19
, 

which we give here for completeness. 	All of our work can be 

considered from the point of view of the above definition, but in many 

cases a finer grading than that used above is admitted, and a better 

insight into the structure of the algebra can be obtained. 

We consider a graded vector space L = 2: eLa  where a labels 
a 

elements of some additive group. 	On this vector space is defined 

an operation of algebraic product [ 	L x L -) L, with the following 

properties: 

inclusion 	Et..0,1_11 ] 	L 

graded-commutative 	[xYl 	(--t)" Eyx3 

graded-associative 	[X[YZ1] 	[cxy3 L3 	(1)"Eyrxzu 	(2. 2) 
(Jacobi) 

Here (-1)x  = ±I , for some suitably-defined mapping (typically the 

grading will be by the integers Z, or the integers modulo 2, 

kbose, fermi} where 	(-1)x  = +1 and -1 are called even (bose), and 

odd (fermi), respectively) 	The graded vector space L, together with 

this product mapping, and a suitably defined operation of scalar 

multiplication CxL--> L (where C denotes the complex numbers), 

is called a graded Lie algebra. 

Consider a (1 	N) - dimensional vector space V = C +V I. 

Consider the linear transformations L = End (V) = 1_, 	L.+ L +1 

graded by their action on the subspaces C and V'. 	Thus an element of 

L
o 

is a linear mapping: V I-)V
I 
and a 
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linear mapping: C 	C 	while L+  consists of all linear mappings: 

C 	, and so on. 	Now define, on these linear transformations, 

a graded product (extended to arbitrary elements of L by linearity) 

[x Y] = XoY --(-1)"Yox 
	

(2.3) 

where a  denotes composition, and (-1)% +t if x6 L. and - 1 otherwise. 

It is easily verified that, equipped with this operation, L becomes a 

graded Lie algebra in the sense of Eq. (2.2) and called the GLA of 

End (V). 

Such linear transformations may be represented in the usual 

way by matrices. 	Thus x E  La  has the form (a,A), where a is a complex 

number, and A is an N xN complex matrix; similarly, elements of L +1  
and L_1  correspond to elements of V1  (column vectors, v) and (algebraic) 

dual elements (row vectors,-wt ). 	Thus arbitrary elements of L can 

be represented by (N 	1)2- matrices, and the graded Lie product 

similarly represented, provided that we define a graded matrix product 

A 

a 

AB -
- BA 

\0 ) 

A 1r 

 

A v-  - 
va 

\ - awe 

 

 

 

  

  

1r\ 	 + 
1.1- 	

I 
e+ 

-- I — 	— + 
t / Wit 	 1 4 whir 

(2.4) 
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The above definitions can easily be extended to the (m+N ) - 

dimensional case V = V`+ 	, where the Bose sector is no longer 

1-dimensional. 	In this case, the generators may be cast into the form 

of Eqns. (2.1), graded by Z2  . 

To illustrate this remark, let us take as an example the 

(real or complex) algebra of all graded (Hk* 	- matrices. 	As usual, 

we can identify the generators with unit matrices (the labels locating 

the nonzero entry) 

Xa  = a 
	 X, 	e 

9 

0 
ea  

where a, b = 1, ...., A, and c(, 	••••, N . 	In an abbreviated 

notation, XA *3= Xab  Or X (4  and so on, we find that 

= 	SA 1)  X, 

D 
°I A 
	G 

‘S A 

- 	" x„, 

- Sc g QA 

, Xc 	&c.
B 
 XA  (2.5) 

In general, a representation of a graded Lie algebra f. means 

a realization of 	in terms of linear transformations of a graded 

vector space, or a homomorphism from 	into the GLA (2.5). 

The classification of GLA's of certain types follows to some 

extent along the same lines as for the classical Cartan-Weyl-Dynkin 

theory of the semisimple Lie algebras (but with some important exceptions 

which will be indicated as we proceed). 	Thus we call a GLA 

simple if it has no nontrivial ideals (invariant subalgebras 	such that 
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[4dT 	) 	is called solvable if, for some finite n, in+1) = 0, 

[ 1)41)] and et where -et(n+I)  L.- 

Just as in the classical case, we can identify a Killing form 

g (r, f. Eqns. (2.1)) 

3012  = 1,146 	Ta, vc T bp 
of 

I 
k Os, = Ca.c. j  Cbct 

Gt  T A 9 A:(3 = 	- 	= 	 - 	4,/3 	pe  

9Ka. = e a.(  = 0 

(2.6) 

where hab is the metric tensor of the underlying LA of the GLA. 	If 

det I 9A0  I # 0, then 

ea, 	 cep 
K = g

A13 
 ZA Zz  = 9 ›cx 	g Q.4 gp (2.7) 

is a Casimir of f, , and we can construct higher-order Casimirs, as in 

the semi-simple case. 

Nahm, Rittenberg and Scheunert 	and and independently Kac 38, 

extending the Cartan-Dynkin approach to GLA's have given a complete 

classification of "strictly semi-simple" GLA's (with Jet' tgAij 	o ), 

which prove to be direct sums of strictly simple GLA's (simple, with 

det 	# o : both conditions are necessary). 

We shall not go into the details of this here. 	For illustrative 

purposes it is sufficient merely to give some examples 	of simple 

GLA's, and to introduce the GLA's which have so far found application 

in particle physics. 	All our examples have a one-dimensional bose 

sector, as in the example of Eqn. (2.4). 	Our nomenclature for 

such examples consists simply of ai affixed to the usual notation for 
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the underlying LA, to indicate a GLA with a single multiplet of 

fermion-type generators. 

Accordingly our example of Eqn. (2.5) may be denoted 16L(Mst4). 

As in the LA case, it is not simple. 	The algebra SL(M) of graded - 

traceless matrices, where a = fr(A) , is simple (Eqns. (2.4)). 

As a further example consider a complex graded vector space 

equipped with a nonsingular sesquilinear form <z-,w> =z-mt Tv/ . 	We 

define the GLA St)(7) to be the (real) graded algebra of traceless graded 

anti-hermitean matrices X, 

<Xz, w> 
	 <z, >0.1.4>,  

for J = I of the form 

X = 
r  A 	IT- 

L -triit A = - At ,  a*. -a , a = str(A) (2.8) 

Clearly, the Bose sector is iSu(m)x WO, say. 	The complexified 

form of SU(M) is SL(M). 

Similarly we can consider a real symmetric or skew-symmetric 

form eCw. For example, if the fermi sector has even dimension 2N , 

and C has the block-diagonal form (ft 01 ) , we have the (real or 

complex) GLA iS14N), of all the graded skew-symplectic matrices, 

{ A v 
t- c 0 	Ac  = C"At  C. = -A (2.9) 
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With these examples we can now identify the GLA's which have 

been involved so far in the recent developments in 'supergauge' 

symmetry in dual models, and supersymmetry in quantum field theory 
19
. 

In the former case, the GLA's are isomorphic to iSp(2)'-‘-' Vo(2,1). 

Another example is the so-called f/d algebra of Gell-Mann, Michel 

and Radicati 40. 	This is a simple subalgebra of 	 61-( 4 ,N). 

The first application of GLA's in 4 dimensions came with the 

introduction of the 24-dimensional spin-conformal algebra 1^(2= 1S0(2,1) 

So(4,2) of Wess and Zumino16. 	This has generators Te, Fr of 

the Poincare group, KoD of special conformal transformations and dilations, 

and two Majorana 4-spinors Qa,Ra. 	Unfortunately this algebra is 

of limited applicability, containing the full conformal group, and 

may be used for massless particles only. 	We shall not write down the 

bracket relations of the generators. 

The GLA with which we are almost exclusively concerned in this 

thesis is the non-simple subalgebra J of 'W , generated by the poincare 
algebreP, and the isupertranslations'Sa  , a majorana spinor under 

Lorentz transformations (which may be taken as Qg). 	(Notice that 

we can only define the reality properties in a representation equipped 

with an inner product, and for the moment we regard the S., as independent 

generators). 	This algebra was first studied (in a nonlinear realization) 

by Volkov and Akulov 
15
, and reintroduced in a linear realization 

as a subalgebra of 11 by Salam and Strathdee 
41

, and its representations 

studied. 	We shall occasionally refer to Af in the sequel as 'the' 

supersymmetry algebra. 

It is an interesting fact that, although not itself simple, 

J may be derived from the simple algebraiSp(4) by Inbnu-Wigner 
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contraction 42. 	This may, in fact, be of physical significance and 

not just a mathematical trick. 	For example, it is known from the work 

of Woo, 43  that 	cannot be obtained simply as the flat-space limit 

of a natural curved-spacetime formulation of supersymmetry; instead 

a singular limiting procedure must be devised. 	Also, Keck44 has 

used the whole uncontracted algebra 4S),(4)=-. 	SO (3, 2 ) 	to 

construct an alternative class of (nonlinearly realized) supersymmetries 

on superfields (c.f. next section). 	In view of these points, we shall 

now show in detail how the contraction /S19(4) -> d 	is carried out. 

Consider the real GLA of iSfr(4) . 	According to Eqns. (2.8) 

above, the generators satisfy the relations (with 04,0 = 1,2,3,4) 

M1 	 rE 	= C 	 E E   rp .05 - Ca lA w  - CAE p MAY 	Cry Mai 

	

[ Mty, q't; 	= cif; Qg 	Cvg qp 
(2.10) 

Qom , Q(5 1 1 	mq  

c /".(P = ii\oK ; 	 iso4  
For example, we may take C to be the charge conjugation matrix in 

the Dirac spinor representation, and expand the kAati"'  in terms of the 

skew-symplectic 4 x 4 matrices (YrC)4r, and (ai„C),cp 

(2.11) 

Using Eqs. (2.10), we find that the Me" generate an 0(3,1) subalgebra, 

and the M are a vector such that 
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[Mit, IA.] - -cMt" 	 (2.12) 

Comparing this with Eq. (2.10a), and defining a set of generators 

Mab (a, I, 	o, 1, 2 , 3 , 4 ) , where 

46 
we find that the M generate the S0 (3,2) algebra of the de Sitter 

group, with metric 	ab = diag (+,-,-,-,+). 	Thus we have constructed 

the basis transformation which effects the local isomorphism of the 

Lie groups Sp(4,R) ti  So(3,2). 	For the remaining commutation relations 

we have 

DA", Q a 	= -121 ( {r 144 ),., fi  

[M t', 0..(1 	- ±- (r ti )„, 15 
	 (2.13) 

10 Now let us define 39 	f-7 	P = 	Mrs, and 

MP"7  , and rewrite the GLA Eq. (2.10) in terms of the barred 

generators, and R. 	We then take the limit R ---> co 	, assuming in 

the limiting procedure that 7A"" 4 	, P P-  -4  Pr 	, and 

kt 4  S./ . 	It can be seen by inspecting Eqs. (2.12) and (2.13) 

that after the Limiting process, we shall be left with a GLA 

E Tr) , 'Tr 	= 	( tipv Tticr 	7 1.4.1" Tie 	y Tep  1- tier. Jar 

(2.14) 



30 

This algebra is the GLA .j of Salam and Strathdee, and Volkov and 

Akulov. 

It should be pointed out that there are some pitfalls in the 

classification of the GLA's which do not occur for LA's. 	For example
30
, 

it is possible to construct a GLA for which there are two inequivalent 
Second o-der 

irreducible representations, having, however, identicalACasimirs. 

Thus, although the Wigner-Eckart theorem appears to exist for simple 

cases, such as the 	S0(2  )studied by Pais and Rittenberg 
45

, it is not 

guaranteed. 	This might be expected to be the case a fortiori for the 

non-simple supersymmetry algebras . 	However, in Sec. 4.1 we shall 

explicitly carry out the reduction of the direct product of two unitary 

irreducible representations of I into a direct sum (for the massive 

case). 	Thus, in this case, also, the Wigner-Eckart theorem does hold. 

We shall encounter one case where the existence of simple 

subalgebras off is crucial: in the construction of unitary repres- 

entations. 	For fixed p # o, the 'little algebra' of super- 

translations (which is adjoined to the ordinary little group) is a 

Clifford algebra, containing the identity (and hence simple). 	Thus 

by a theorem of Weyl on simple matrix algebras 
46
, there is precisely 

one finite-dimension al irreducible representation. 	Thus the irreducible 

representations of the little algebra are uniquely specified by those 

of the little group for the p 	o cases. 	This fact will be exploited 

in Sec. 3.2. 

If on the other hand p = o, then the little algebra is not 

simple, and we can expect both finite and infinite-dimensional irreducible 

representations. 	Unfortunately this is precisely the starting-point 
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in an investigation of the homogeneous Bethe-Salpeter equation. 

Fortunately the question is somewhat simpler after a Wick notation. 

This matter will be taken up in Chap. 6. 

As was mentioned in Sec. 1.1, various uses had been made of 

the GLA concept before the advent of the "supergauge" transformations16. 

It is worth pointing out here, though, that fermion operators, with 

various tensor properties under rotations, and thus GLA's, have long 

found wide application in nuclear physics. 	However, it is usually 

some ordinary Lie subalgebra, rather than the whole GLA, which is of 

eventual interest. 

Indeed, Freund and Kaplansky 
39 
 give a realization of aGLA 

in terms of a system of boson and fermion creation and annihilation- 

operators. 	Such a mixed system resembles that used in the Green 

ansatz, in parastatistics 8. 



E1  9, 9,-',337' )4 	= 

( 9291 s:'  g,' )C = 

_CAft 
+ 	0( g3 ) A5 91 92 

c 8 A 
C SA g 91 + o (g3 ) 

(2.16) 
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2.2 Generalized Lie Groups  

In the previous chapter the idea of a natural unified description 

of bosons and fermions led to the introduction of graded Lie algebras 

as one possible vehicle for such a symmetry principle. It is important, 

for global considerations, to be able to handle finite symmetry properties, 

as well as infinitesimal ones. 	For the present case, the graded Lie 

algebras, in particular the "supersymmetry" algebra of the last section, 

correspond to the infinitesimal symmetries. 	In this section we shall 

indicate how the graded Lie algebras can be integrated, at least formally, 

to "generalized Lie groups", which are still groups in the algebraic 

sense, and which are the desired finite symmetry transformations. 

The famous theorems of Lie 47  establish the conditions under 

which the exponential mapping exists between a Lie algebra and a corres- 

ponding continuous group, and conversely. 	The group axioms of assoc- 

iativity, inverse and so on specify properties of the structure constants 

of the algebra 

[)<A , x-B] 	= 	GAB 
C 

A  
,1/41  c 

,
CAB c 
	C BA 9 
	(2.15) 

where the X
A 
are the infinitesimal group generators. 	The structure 

constants are related to commutators 0,g1 9, 	
-( of group elements. 

Choosing g,,z  close to the identity, e, and coordinates (e) on the 

group manifold such that e is at the origin of the coordinates, 
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In the case of graded Lie algebras, the situation is more 

complicated. 	As we have seen, the CAB̀  is graded-antisymmetrical, 

[ ZA  ZB 	=
Agc = —(1)

AB 
[Z A 
	 (2.17) 

Thus if we assume that there is still a corresponding local group, and 

insist upon Eq. (2.16) we have 

C AR 
	gi  A 432 B 	AB 92B etA ) = 	0 

which suggests we take 

A s 
I 92 = 	(-1)

AB 
 92

13 
 9,

A  
(2 . 18 ) 

that is, the group manifoldn ("parameter space") of a continuous 

group associated with a graded Lie algebra 	, should be graded 

commutative, .Q 	11° 12' 	. 	For example,fl might be the 

2n-dimensional Grassmann algebra of exterior products of an n-dimensional 

vector space. 	Then the even and odd elements of fl would be combinations 

of exterior products of even and odd order, respectively. 	The group 

isfix-et , where we identify (a,z).(W,e) = (-1)
zw/

(wco,zz') . 

Sufficiently close to the identity, we may write group elements as 

g = exp (CLI
A

ZA). 	Such a continuous group is called17 
	, 
a 'generalized 

Lie group". 

Differentiation and integration of functions over the group 

manifold can be defined straight-forwardly. 	For the odd coordinates 
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we have 17  

a co , 
aw 

- 3  1 
bco 

jciw = c , Jwdw = 1 , 
	,„40,31 	0 = { 	clw} 

	(2.19) 

If we assume thatfl admits an involution 

(2.20) 

then we can define an inner product with positive norm 48'49  if 1/ 	is 

2
n 	

1 - dimensional, 

< cP, X > 	= 	f eJ
y 	

X (to) (p (to*  86,3„* 	ciw,*46.), 

In the sequel we shall need no more than the rules for 

differentiation. 	Other properties of a-numbers are discussed in more 

detail elsewhere 
17, 19, 48, 49

.Using the example of GSU(2) 
45
, 

Mezinescu 
50 

 shows how functions over the group manifold admit an 

invariant measure, the group volume is nonzero, and an inner product 

and orthogonal functions can be defined (c.f. Sec. 4.1). 	The Wigner- 

Eckart theorem applies for this particular case (c.f. Sec. 2.1). 

The general question of representations of generalized Lie 

groups is crucial for physical applications. 	An obvious starting- 

point is the regular representation carried by functions over the 

group, /0,, 45 (ce) = 	(Le') 	. 	Alternatively, we could consider 

Tw  OA') = (I) (63-1w,u0) 	generated by the inner automorphisms. 
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For example, consider the supersymmetry algebra _El of the last 

section. 	The generators Pe  and Sa  generate an abelian normal 

subgroup of translations and "supertranslations". 	Therefore we can 

consider a representation of A3 on functions defined over the 8-dimensional 

manifold (x,” Ga ), where xe, is a 4-vector with components in le, and 

is a ;ajora,na 4-spinor with components in Si' . 	Functions 

defined on this manifold are called superfields 
18
. 	The action of 

finite group transformations can be derived from the graded Lie algebra 

of infinitesimal generators just as in the non-graded case. 	For 

supertranslations only, we have 18  

or 

e
LKS 

d(..)(, 	) e 	( 	e, 	£ ) 

{ s, , 	e)} 	= 	i.?1  ea ) 	
(2.20)

(x,e) 

Now any smooth function over the group manifold may be expanded 

as a Taylor series in the coordinates. 	Moreover, since (as we assume) 

there are a finite number of a-number (Fermi) parameters, the Taylor 

series becomes a polynomial in the a-numbers with c-number coefficient 

functions. 

This is true in particular of the superfields. 	We can take 

the independent linear combinations of the ODI  to be 1, Oa  , be, 0wg-s, 

+4 e1'5 0 + 

+ 4  - eLYIA 5 	 4 	32 
e A'‘ + 	6X 	+ 	(50)2. (2.21) 

6E‘61.,,Y5  8, (198 )  )2-. Thus18  

( 	, = A + dki) 	+ 	4 oe F 
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The coefficient functions are called the component fields. 	With this 

expansion, the transformations Eq. (2.20) can be explicitly evaluated, 

and the new component fields written down. 	Clearly the boson components 

obtain parts involving E and the fermion components, and vice-versa. 

These transformations in terms of the component fields are the famous 

"supergauge" transformations of Wess and Zumino 16. 

The superfield transformations of Eq. (2.20) form a non-unitary, 

finite-dimensional and in general reducible representation of 	. 	We 

shall return to some examples in Sec. 5.1 when we consider the structure 

of superfields in more detail. 

As we have seen, the parameters of a generalized Lie group 

take their values in a graded-commutative algebra 12 (for example, 

a Grassmann algebra). 	In order to determine the number of underlying 

real parameters of the continuous group, it is necessary to choose a 

. basis for S). . 	This process is rather arbitrary, but we can at least 

try to be as economical as possible. 

Let us take for example the supersymmetry algebra -ef . 	Clearly 

if fl has only one generator, w, , the superfields are linear in 9, 

and the expansion of Eq. (2.21) collapses. 	Ruhl and Yunn 48  point 

out that just two generators are sufficient. 	In the Weyl basis, we 

can choose the E, independently, and the 	follow from the Majorana 

constraint. 	Thus the general form must be Ea  = 1,),Ta 	, with 

third- and higher orders in w vanishing. 	Here 5a,7., are complex 

c-number spinors, suitably restricted by the Majorana constraint upon 

E a  (e.g. if 	wi* = &i t  , u.)2  = (02.*  , they are Majorana). 	In any 

case, E contains 8 real parameters. 	Correspondingly, we can take even 
0) parameters al, of the form a t. = a (  + e z•s t,15- E' 	where E' is an 
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odd element like E . 	This is equivalent to taking 	at, = ay.  Co) + 

* * 	
. 	In both cases aµ  is real, no higher 

orders appear, and A, contains 4 8 = 12 real parameters. 	Finally, 

including 6 real parameters for the homogeneous Lorentz transformations, 

we have 48  a total of 26 real parameters for the generalized Lie group A? 

Having found the real parameters, we can find the (local) 

Lie group "equivalent" to the generalized Lie group, by writing down 

the generators of the infinitesimal Lie algebra 19' 49. 	For the above 

analysis, the equivalent (real) Lie algebra is 26-dimensional, generated 

by 

(A.), S, , w p ; 26 

In fact, Goddard 	has shown that this amount of doubling is unnecessary: 

by exploiting the fact that the chiral projections i( 	iY5-)S are 

always decoupled (eq. (2.14)), we need only take the 18-dimensional 

Lie algebra 4 generated by 

W 1 
 S +5 	I"  S 	Pµ , (43  tij I*  Pik 7 Tv,„ = 	IS 

The comment was made in Sec. 1.2 that the supersymmetry algebra 

A may be considered as a first example of a relativistic spin-containing 

symmetry. 	It is appropriate here to consider this statement in relation 

to the "no-go" theorems which place severe restrictions on such a 

situation. 	Goddard 
49

shows that, from the point-of-view of the 

"equivalent" Lie algebra A , this actually corresponds to one of the 

possibilities distinguished by O'Raifeartaigh 51, but passed over as 



38 

unpromising: namely, a Lie algebra whose solvable part (c.f. Sec. 2.1) 

is nonabelian, and contains the translations. 	On the other hand, 

the theorem of Coleman and Mandula 52  is not applicable, because the 

Hilbert space of physical states is not invariant under the group 

(a state Ivo> obtains a part proportional to (011p under a super- 

translation).. 	Haag and others 53'54  have, in fact, extended this 

approach to determine all possible supersymmetries of the S-matrix. 

The result in general is just a graded Lie algebra of the same form 

as 4 (eq. (2.14)), with a multiplet of spinor fermion generators 

transforming under some (boson-type) Lie algebra which commutes with the 

Poincare group (c.f. also the discussion of internal symmetry, Sec. 3.5). 
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s, sf, 
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3. UNITARY REPRESENTATIONS OF  

SUPERSYMMETRY  

We begin our investigations of supersymmetry in the present 

chapter, with an analysis of the unitary irreducible representations 

(UIR's) and the multiplet structure of the algebra I in the massive 

and massless cases. 	This ground-work is essential to the development 

of the supersymmetric partial-wave analysis in the next chapter, and 

also provides valuable insights in the work on superfield representations 

in Chap. 5. 

The GLA ,f which we study is 15, 16 18 (c.f. also Sec. 2.1) 

Here the Jr-v , are the generators'of Lorentz transformations, which with 

the translation generators (4-momentum) Pp. comprise the Poincare 

subalgebra 49  (more exactly, /r14. ). 	In the language of GLA's, the 

T 	and 1)  are bose generators. 	Adjoined to these are the 

fermionic "supertranslation" generators S„c  

In a unitary representation of IP (that is, with an inner 

product such that group transformations are represented by unitary 

operators), the generators 	and Fit  are hermitean. 	We shall 

define a unitary representation of the whole algebra, I , to be one 
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in which, in addition, the supertranslations So, obey the reality 

property of a Majorana spinor, namely 

S c.  = (c-TP so  

iTS 
so that "e 	" is unitary. 	However, we consider the algebra only 

over the complex numbers, and we do not introduce a-number parameters. 

It is clear from Eq. (3.1) that irreducible representations 

of A4 are characterized by their mass, the eigenvalue of Pl.  = ?v, 0", 

just as in the Poincare case. 	Thus we can distinguish the class P-L > 0 

(timelike), 	(lightlike), P = 0 (null), and Pl< 0 (spacelike). 

It is with the first two cases that we are concerned in this and the 

next two chapters. 	The null case occurs in Chap. 6 in connection 

with the bound state problem. 

The work of this chapter is based mainly on Ref. 27. 	In Sec. 

3.1, irreducible representationsof A in the massive case are analysed 

in a covariant way to determine their possible spin contents. 	This 

is repeated in Sec. 3.2 for the UIR's by an extension of the induced 

representation method of Wigner 
24
. 	Convenient bases for the UIR's 

are found in the course of these analyses. 	In the "spin" basis, 

states are labelled 	102>o, j, 	la 0- 3 	> , 	where ja  = o, i, i, --- 

is the "superspin" of the UIR, and j = j0, jo i i 	the spin 

component, with helicity a . 	The label c 	0, 	serves to 

distinguish the different spins occurring since j = jo 	1 r )471 . 

On the other hand, in the "superhelicity" basis, the spin is replaced 

by the superhelicity, K = 	 J , so that states 
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are labelled I pz> o, jo ;fraKl> 	, where now 	X = K {- 

± i T. Icri. 	The basis transformations between these bases are written 

down. 	Matrix elements of the supertranslations are written down also. 

Weight diagrams are also introduced which display the spin structure 

of the UIR's. 

The massless UIR's (a special case of the lightlike UIR's) 

are analysed similarly in Sec. 3.3. 	States are labelled by fr.())  7t ,,.; 

> 	where A o 	is the "superhelicity", and A = A„ 

Once again, the matrix elements of supertranslations in this basis 

are written down. 

In Sec. 3.4, it is shown how parity may be adjoined to the 

UIR's of 4 . 	In the massless case it is necessary to take a direct 

sum of UIR's 	)(:)( A0) , 	which contains helicities of ± 

Extending the analysis to include internal symmetries is considered ; in Sec.3.5. 

Other progress along these lines is briefly reviewed. 

Our notational conventions are established in Sec. Al. 

Further details of the supersymmetry algebra, including some polynomial 

identities, are given in Sec. A2. 	The spin and superhelicity 

bases are described in Sec. A3. 
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3.1 Massive Case: Covariant Analysis  

In this section we consider the UIR's of the supersymmetry 

algebra RI , for the case when the momentum f! is timelike, 

?" 	nq.') > 0, and sign (13O ) = ± 1 	For massive 

particles in particular, the energy takes the positive sign. 

As a first step in the analysis we consider the algebra of 

operators commuting with the supertranslations 	. 	The square 

of the Pauli-Lubanski vector 

vki 	e 	pv fAvecr (3.2) 

is a Casimir of /P , but not of ,d . 	However, if we define 18 

Yc S 1A 

K µ = 	\A4, 

K K t, — PIA 	P-K , 

(3.3) 

(3.4) 

then we find that Kr commutes with Sa and Pt, , 

so that (K )2 is a Casimir of di , generalizing 1,12 in the case of 

the Poincare group. 	Irreducible representations of .ef are therefore 

labelled by the eigenvalue of ( 	)2, as well as P2 	The physical 

meaning of ( KJ- )2 will become clear subsequently. 

The tensors 

= 	Kt, P■1 - kV Pp. 

M r," 
	Key 	 K Pc- 

	 (3.5) 
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also commute with Sc4 , and Pr  , and moreover 

P41", 	"1 i"1:1.2. 01tACHtly 	VIVF Mtkr 	1110-"Are 	IFIOMV() 	
(3.6) 

Thus the AAr, generate a group, 	, isomorphic to the Lorentz 

group, SL(2, C ) = 	, generated by the F.A' • However, whereas 

the S, and Pw  have definite transformation properties under Lorentz 

transformations, they are invariant under Z' . 

Consider the supersymmetry transformations in more detail. 

According to Sec. 2.2, group elements are parametrized in the form 

(.1e., €0, , A t:'), acting on the 8-dimensional manifold (lev, ea )
18 

by 

(a,E , A) : ( -x, 	+ 	1.YS e A-x , So + 

Here a is a 4-vector, E4, O., are a-number Majorana 4-spinors, 
0 

i and S(A)oz 	is the matrix representing the Lorentz transformation 

r 	
in the 4-spinor basis. 	We have then for the composition of 

two such transformations 

(a', E 	A') 0 (a, E A 	= ( a' + A'(a 4- 	£'+S' 

Hence we may describe Af as a semidirect product of the Lorentz 

group, X , and the translations and supertranslations, 	. 

Comparing this with the above, we have the following 

descriptions of 	: 

:C x 
	 (3.7) 
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where A, x denote semi-direct, and direct products, respectively. 

The subalgebra fx 1 provides a means of analysing the 

UIR's of V 	In particular, since the Casimirs of L' are also 

Casimirs of I , an' UIR of .ef contains precisely one UIR of L'. 

Any irreducible representation of the latter is characterized 55  

by an ordered pair ( 	), where -Ito  = 0,i, 	--- 	and 1 1  is an 

arbitrary complex number. 	The values of 1
o 

and 1
1 

are further 

restricted for the unitary representations. 	In each case 1
o 

and 

1 1  are defined in terms of the eigenvalues of the Casimir operators 

ilApvile" and I Eever ielArr  in the irreducible representation. t  

For the present case we have 

MN„ At■ " = (17 2r po (t o  a) 	- ) = 	(KT 

and 
	

E 
	 0 

	 (3.8) 

We shall return to Eqs. (3.8) below. 	The next step is to study the 

Poincare subalgebra 

Now, a UIR of )1  provides a representation, possibly reducible, 

of 49  , so that we may analyse the structure of the former by 

determining its spin content, or the UIR's of 1°  which it contains. 

This procedure is in any case necessary in a physical application, 

since it gives the particle content of the multiplet. 

We are therefore led to study the algebra Si of da-invariants 

which may be constructed from the generators of 	. 	Each UIR of 

subduced by a given UIR of V in the reduction 0(7/9  should 

be associated with a particular irreducible representation of 54 

whose dimension gives the degeneracy of the corresponding UIR of.46  . 
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Thus the degeneracy can be removed by introducing additional quantum 

numbers as state labels for the irreducible representations of A . 

If we define, in addition to WI, and Zt,, a four-vector 

Uw  = P-1 e li 	pv If P ve 4" 5 (3.9) 

then SI is generated by the set 

//, ul ss, , P-7 , z.w, w. u , z.0 

all of which, of course, commute with P and 	However, these 

are not all algebraically independent. 	In fact, from the identities 

(eqs. (A2.8) and (A2.9)) satisfied by these invariants in any represen-

tation, it follows that the independent invariants are W;together 

with the generators P-1, .SS±  of 	, which has the Lie algebra: 

[ 	 ± 

(3.10) 
+ , 

P . 	
, 

Defining 	= 	P r. 2: and.  T± 	.2fy(1)1/S S*  si may be identified 

with the algebra of SU(2) (since T1 ,T2  and T3  are hermitean, in a 

unitary representation). 	Moreover, it follows from the supersymmetry 

algebra 18  (eq. (A2.11)) that 

( P. z ) 3  = q (FT P-z 	 (3.11) 

and the possible eigenvalues of T3  are 	o_- 0 , t z.  
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The supersymmetry algebra Af therefore contains a subalgebra 

SU(2) x 	. 	A UIR of RI breaks up into UIR's of 43  corresponding 

to doublets and singlets of SU(2). 	The eigenvalue cr of P 2  ILI 

acts as the third component of an internal "isospin", and it will 

furnish the additional quantum number required to remove the spin 

degeneracy. 	The supertranslations, 	S* a ' i(i * 	), Sit  act 

within this structure as spin- and "isospin" - shifting operators, 

since 

[ F•  z  , 	S± ] 	 (3.12) 

We may now use the identities 

(Z*W)1 	.21 `AN r- 4 pi) 	(Pw) 
(3.13) 

(1)*T )(T.W 	= 	0 = (z.w)( p.i  ) 

and the invariance of 

Oc")1  = w1  - 2y-w 	- 	 (3.14) 

to determine which are the allowed values of spin associated with the 

"doublet" and "singlet" sectors within a given UIR of Aff in this 

case. 	We define 

+ VP' 	1 )-  

27.w = 	P2  x: 

within each sector, where j is the spin. 

(3.15) 
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If icri=i, 	then from Eqs. (3.13), (3.14) and (A2.11) 

we have 	K J- 2  = W 
2. 	Thus the o-  = ± s sectors contain just 

one allowed spin, say jo. 	If on the other hand 	0- = o , then 

Eqs. (3.13) and (3.14) reduce to 

-r t i(j + ) )( -c 	) 	= 

and 	— j0(jo 	= 	I) — 2c — 3/4 

respectively. 	The j 	o solutions for z = 	-1-1), i j are 

j = :Jot i , Jo 	, respectively, in the latter case provided 

that jo 

To summarize, UIR's of I for the timelike case may be 

labelled (>o, jo  )1- 	, where jo  = 0, 	1, 	 is the superspin, 

and sign ( P0  ) = ± 1 . 	They contain UIR's of 	with P'z  > o 	and 

possible allowed spins 	J = j„ 	Jo,  ,i0+ -t1  and (provided J. 	) 

Having discovered the significance of the Casimir ( K -1" r 

	

— Pjc  (J0+1) and the eigenvalues Ja  = o, 	1, - . 	we can 

return to Eqs. (3.8) and comment further on the UIR of L' which is 

associated with each UIR of I . 	Now, according to Gel 'land et. al.55 , 

the UIR's of the Lorentz group may be classified into two series, 

1. Principal Series: 1. o, 	; — Co < 11'11(t1 	(3° Re (tt  = o. 

2. Supplementary Series: 10  = o ;  Ivvt(t,) = 0, It, I 

The values of jo , ( 	, 	), and the series, are given in Table 3.1 

below, where 	= 	+J. — r y. 	For I = o 	and 	j. = I 	there 

appear to be two possible solutions for ( 	1, ). 	Which of these 

is chosen in practice can only be decided from a detailed examination 
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of the irreducible representations, which is beyond the scope of the 

present analysis, which is in any case more concerned with elucidating 

the structure of the subalgebra of supertranslations. 

iG  (to  , 1, ) Seri es 

o 
o 
, a 
1 
I 

>i 

( 0  , 	I 	) 
( 	I , 	o ) 
( 0, 	i) 
(t 	, 	o) 
(0, 	I ) 
(a, 	it) 

S 
P 

s 
P 
P 
P 

Table 3.1 

The special case jo = o (0,0 is particularly interesting, since 

it would correspond 
55 

 to the trivial, 1-dimensional unitary representation. 

Thus tA ti, = 0, which implies in general that the generators Tlav 

are not linearly independent. 	In the rest frame, for example, 

T = — 	 Just such a realization of the supersymmetry 

algebra has in fact been proposed by Chakrabarti 56. 

It should be pointed out in this connection that Nahm et. al.
30 

have given an example of a simple GLA possessing two inequivalent 

irreducible representations, having however the same eigenvalues of 

the Casimir operators. 	The present case may furnish another example 
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of such a phenomenon, since both GLA's are "odd reducible" (with the 

fermionic generators belonging to a reducible representation of the 

underlying Lie algebra of the Bose sector). 	However, too close an 

analogy cannot be drawn, since the GLA 121 of the present case is not 

simple (c.f. Chap. 2). 

So far we have only determined that in a ( p2 > o , J0 	UIR 

of 	, the allowed values of the spin are J = Jo 	Icr f . 	We 

have not shown with what multiplicities these spins occur, if they occur 

at all. 	We now answer this question, by constructing explicit 

realizations of the UIR's. 	In particular we shall show that the 

(122- > o , 	UIR's of A contain 	2.5 + 
	hel ici ty states, 

the spin content being precisely 

4( 2 jo + i) 	.2 (ajo k 	+ (2.(j0+1)+ I) + (a(j.-i)* I) 

as in other analyses 18'24,57. 	We also find the matrix elements of 

the supertranslations Sce  in the spin basis, and verify the Majorana 

condition, Eq. (3.1), so that the representations are indeed unitary. 

The spin content of as ( r> o, 	UIR of A may be 

conveniently visualized by means of a "weight diagram". 	This is 

a two-dimensional plot of 	3 	against 6' , showing the values 

of (j, r) or weights, which participate in the UIR. 	The weight 

diagrams for jo= 0, and arbitrary 30 ' 0 are given in Fig 3.1. 	We 

shall return to these diagrams subsequently, in considering direct 

products of representations, and also finite-dimensional (superfield) 

representations. 
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0 

  

   

- . 
1 

  

      

0 

 

J 

Fig. 3.1 Weight diagrams for ,J„ = o , 
and arbitrary ja  , (v> o, j0 ) ±  UIR's. 

In constructing the (102 > 0, id, )± UIR's of xf , we begin 

with a UIR 	19 > 0 , Jo ) ± of /P , with weight 	cr = 2- 

Since this is the lowest participating value of 0-  , these states will 

act as vacua for the raising and lowering operators 	S±ot 	and 

-4- 	. 	In particular, we shall have 

= , = o. 

We then use the raising operators to define covariantly normalized 

basis states I I' > o, :Jo 3 
	pi 	> , 

<r'; 10V A'10- ;  p A 

with 	 < 	 21;,.(2R-)3 E 3 (t'— v), 
	(3.16) 
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where the Joj X> 	states of the various cr- sectors will belong 

to 	( 13' > o, j)1-  UIR' s of 	, with spin j and helicity A : 

113 	a > 	= 	U (Lo ) I I; 	> 

	

72. 11) J a > 	= 	J(J+ 1 )Ipi a> 

A> = 

The operators (SAD, have a complicated effect on helicity 

states, and are not the most convenient cr- shifting operators. 

Instead, we pass to an equivalent set r± 	, defined by 48  

R. 
± 
	

11 K (0) St 

(3.17) 
3± = 	2 IA-K4.(p) K 

where u-c (p).4  , K.= ± .1-1  are normalized positive-frequency c-number 

spinor solutions of the Dirac equation, with mass m, and helicity k, 

whose properties are given in Eqs. (A3.1). 	The transformation 

properties of the rt 	under Lorentz transformations are 

(A) Ct. (13) U (A)-‘  = 	(O 1),,: CA 	(3.18) 

where 	= ni,  A L 	is a little group rotation, the D2  matrix 

represents notations for spin-h, and the U(A ) are unitary (reducible) 

operators representing Lorentz transformations. 	Using the reality 

property of the D-matrices 58, the operators 

Kt 	= 	(71 )1( 	(P) 	el)g  R_,(P) S± 	(3.19) 

will transform with D. 
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The algebra of R:(13) may be derived from that of the 5.4 18. 

In particular, we have 

and 

Si  

	

K V I(' = 	7 K -wt. Sic _le §S + 

{ K+K R-K/ 	= 	_ a K. 7n. 4K, -K' 

	

(K II, ) 1 .... 	-T 2K 0, 

(3.20) 

(3.21) 

in a unitary representation. 

In view of (3.18), we find that 

U(A) K 	I 19 j A > = 	R Ki (AO 1 At j 	>!`yK!k ZA,x (A), 

so that in particular, using the Wigner-Eckart Theorem, 

K I --I; 13.3.x > = 2 c.J 10- 	Atio<i 	; j > 

where the 	< 	A+ K ; z Jo 12 K ; ja X > = < 	jc X I j X+K 	ja 

are Clebsch-Gordan coefficients 58, and thecj 	-1- K. are independent of A  

The algebra of the R K Eq. (3.20), and that of the SS;* 

and P•Z , eq. (A2.11), may now be used to determine the c
J
, and 

 

hence the normalized basis vectors. 	The latter are given in Eq. (A3.6). 

We find the nonzero matrix elements of 	Kt, 	to be 

<0 5 P'i A+K I RI I ;25 pie, A> 	= rw <j A+K I 	:Jo >< VI V'› 

(3.22) 

‹±i; J, ),4K1 	0; 	a> = T 2-1-1-0—i„)(. 1 )<jo x-tic 	A)<V1p>, 
0 

and Eq. (3.21) holds as a matrix identity. 
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3.2 Massive Case: Induced Representation Method  

In the previous section we analysed the UIR's of the supersymmetry 

algebra .cf for the massive case by a purely covariant method, without 

recourse to induced representation theory. 	However, this does 

provide an intuitive physical understanding of the structure of the 

UIR's, and it is interesting-from a mathematical point of view to see 

that an extended form of induced representation approach can indeed 

be applied in this case. 	In this section we therefore repeat the 

construction of the ( 172.  > 	C ) 
	

UIR's of 4 , but now using 

induced representations. 	We follow very closely the method of Salam 

and Strathdee 18, 24
. 

 

Whereas our main concern in the last section was the spin 

content of the UIR's of Ag , in the induced representation construction 

we shall find another quantum number, here called the "superhelicity", 

k, with values lc = -J0,•••, arising much more naturally than the 

spin, j. 	Our main motivation for the induced representation approach 

is, in fact, to introduce the superhelicity basis, which will be used 

in an essential way in parallel with the spin basis in the next chapter, 

in solving the Clebsch-Gordan problem. 	Here we merely define the 

superhelicity basis and establish the relationship between it and the 

spin basis of the last section. 

In the usual induced representation method for the space 

groups 
1, 59

, one considers an irreducible representation of the 

translation subgroup, namely a linear form e 	. One then 

induces from a UIR of the corresponding little group of transformations 

which leave the linear form invariant, to obtain a UIR of the whole 

group. 	In the case oft? , with timelike momentum of the form 
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± rn, (I, o, o, o) 	, the supertranslations as well as the 

rotations are included in a "little algebra" whose UIR's are to be 

found. 

Salam and Strathdee 
24 

 have observed that the subalgebra 

of the little algebra generated by the Sc4  is a 16-dimensional 

Clifford algebra. 	It follows that it has only one finite-dimensional 

irreducible representation: the 4-dimensional one (viz., in terms of 

4 x 4 matrices). 	Moreover, by examining the graded Lie algebra of the 

little algebra generators (in the Dirac-Pauli basis, Sec. A2) in 

the rest frame, 

E 	, T.; 	 k 	 j 	= (, i,3 ),  

[ Set, Tz 	(cri 	S6 	 = 1 , 2_ ) 	
(3.23) 

Lsa , sb1 	0 	= t s:. , 5'1 1, 

it may be seen that the Si,„ have a direct realization in terms of 

fermion creation and annihilation operators, S, =.5Z a,, Sa  

which may be used to construct a Fock representation of the algebra in 

a familiar way 
60
. 

We follow this construction, but work instead with the chiral 

parts, writing the generators as (S±) 	= 1,2) , where 

(Si-) 	= 	Et2(S — ) 10 	. 	We have now 

(s±) a. 	(S ) 	0, 
(3.24) 

4Lb . 
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Now introduce a Fock vacuum space of orthonormal vectors carrying a 

UIR of the rotation group with spin jo, and helicity (third 

component of spin) 	is = -jc,  -j0 +1, 	j„ 	with the 

property that 

(S- ) c4, I :Jo  4 > 	= 	0 
	

(3.25) 

It follows that the desired irreducible representation of the algebra 

is spanned by the four orthonormal states which can be obtained by 

acting with monomials in ( S.4)a on the vacuum space, taking into 

account Eq. (3.24a). 	We take these states to be 

I Jd K > 	(4, )1(s+ ), I jo > 	(4-t (SA 11 > (;201 (C+)1( 5tUloK>. (3.26) 

Let us examine the algebra in the rest frame in more detail. 

In view of Eq. (3.25), we have 

1;* E  I jo K > = Ij
° 
 4> = 	&(5+)eL Eato(S—)1, — 101:100 = 	> PC   

3 	0 K > = 	ljoK> 

3  I j. K 	= 	1;11,-  ( s+),t(a;)„L(S—)6 lio K > Pc, 

P
K • JOIC 	( 	) 	K> 	= 	K > • P0  

(3.27) 

O 



Then since (Eqs. (A2.9)) 

[ T3  )(Si)a 1 	= 	a (S+),,.. (1, 2 ) 

and 

[- k3L,(S+),,] = o, (3.28) 

[ 	(S÷) a. ] 
Pc  

it follows that the basis vectors defined by Eq. (3.26) are eigenstates 

of the operators A =73 ,  P-2' F• I , 	and 	A = -p 2 

with eigenvalues A, cr, and S, respectively, where 6 = 

Each state has the same eigenvalue 	K = X — E cf — 

We can therefore label the rest-frame states of Eq. (3.26) as 

11)1 > 0, J, ; where (o', S) has the values 

("ti, o  ) or ( a, II). We define boosted states by 

I 03- > o, jo  ; aTSi> = U(4p) 	0, 	; persK> 	(3.29) 

and it is readily verified that, in an arbitrary frame, 0-, cr, 	and 

k are the eigenvalues of 

56 

P. 2: 
13' 

A =  	A -A = 	 K -L  
P. ILI 

(3.30) 

respectively. 	We call 	K = -JO 	1 , • - • , io 	the 

"superhelicity" in analogy with the ordinary helicity. 

The superhelicity basis with the labels 6-, 	, and k admits 

a very convenient graphical notation. 	We represent the pair (6,6) 

by a symbol +, for example (4i, o) = -1- , (c), ) = 	, and so 
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forth, with four different combinations altogether. 	The basis states 

may then be written as 	1 172- > 0,jc; 	K > 	where 

+ = 4., ±, +, or 	. 
	For such a state, the values of 

6., d , and k may be visualized as in Fig. 3.2, where K 	= 	jo - ja+ I 

• 
	

j0 
	is plotted against o = o, f 	. 	The centre of the + 

gives the value of k, and the dot gives the values of X and a . 

Thus there are 4(24 + 1) helicity states for superspin 

Using the simplified notation, we can easily write down the 

normalization of states in the superhelicity basis: it is 

13'+'}`' I 	, + K > = eSicijo  S_V+  Ste,:  < 	> 
	

(3.31) 

The utility of the superhelicity basis lies in the fact 

(Eq. (A2.9)) that k is invariant under the supertranslations, SW 9 

which act only on the symbol +. 	In fact, passing to the auxiliary 

generators RI 	using Eqs. (3.18) and (3.29), we have 

R1(13) IP 	K> = < IAD 	R±i ( P)11;+ K>, 	(3.32) 

suppressing the representation labels p
2 
and 4. 	The matrix 

elements of R±  may therefore be written down by transforming to the 

rest frame, and using Eqs. (3.26), (A3.4), and (3.24). 	For fixed 

jo  and k, the nonzero matrix elements are 
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<4 I R: 14- > -.-- m = - <1-- I R: 1 4-> 

< -i- I CI 1-i-0 = M 	= 	<-1-) I R; 1 -1— > 	 (3.33) 

<c+ I Rt H-  > = -pt. 	<-1- I R; H-> 

where 	Kt E R. ±i  . 

6--  , 

      

 

-I- 

. 

   

0 - 

   

   

 

a= K - 1i 

 

     

     

	

I 	I 	[ 	1 	1 	 1 	1 	I 	I 

	

--ic-i 	--ic 	-i,41, 	 J. 	ibi-i 

• A + K. 

Fig. 3.2 Visualization of helicity states 
in the superhelicity basis 

The total number of labels in the superhelicity basis 

11)1> o, jo  ; la 0- S lc > 	is 8, which is the same as in the spin basis, 

I 171> 0,i,.; V o  j A > . 	The helicity 	1 (... tc + S ) is 

diagonal in both bases. 	From the way in which the superhelicity basis 
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was constructed, Eq. (3.26), it is clear that here the spin cannot 

be diagonal, and it is easily verified that [ ict , Ye] 1 a • 

The transformation coefficients relating the two bases may be deduced 

by comparing Eqs. (3.22), (3.33). 	We find, for fixed jo  and p, 

14- K > = I I jo  > 

K > 	
r  —lc + 

= 	ai + 1 	 4 	 
ric + 	2. 

o 	 > 
2:).7+ 

r 	K + 	 ic 	, 1 +e I, 21+ 	I ° 	K+ 331> li + 	40  jo -25.  K+i> c   

it K> = 	Jo > 

3.34) 

Since the spin is not diagonal, Lorentz transformations in 

the superhelicity basis are represented by linear combinations of Wigner 

rotation matrices for different spins. 	We have 

u(n) 	+ 	 +/K/>{-1--'+},°,,  (x) 	
(3.35) 

where 	= LAI) A L i, and 	cr '. cr 	is Lorentz invariant. 

Hence there are only six nonzero f+'-f- / 	matrices, namely 

f -F- +1, ft+ . Using Eqs. 

(3.34) gives for example 

= KK K K K K 

(3.36) 

I 
KKK 
 jo 

L r    j3 , 
L 2 j,-r t 	2,501- 

fi 	
2i0+ I .1) 

where the 2)1(/K 	) 

The 0-/-1-1 matrices 

in Eqs. (A3.8). 

are ordinary spin-j Wigner rotation matrices. 

58 
and their symmetry properties 	are summarized 
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3.3 Massless Case. 

As was noted at the beginning of this chapter, the irreducible 

representations of A may be classified according to the eigenvalue 

of the Casimir P1  . 	In the last sections, we treated the timelike 

case r> 0  . 	There remain the spacelike, ("2".< 0 	lightlike, 

P3.  = o 	, and null, 	I' = o , cases. 	In this preliminary study, 

we do no attempt an exhaustive account of these cases, which would 

confront the pathologies resident in a rigorous definition of the 

operators i3a and their domain (that is, the carrier space of the 

representations). 	Rather, we are concerned with elucidating the UIR's 

of 	which are of most relevance to the classification of elementary 

particles. 	(This criterion of physical relevance is open to question, 

since little algebra expansions of crossed channel scattering amplitudes 

would necessitate a knowledge of UIR's for all types of momentum 

transfer. 	However, this application is not considered here). 	The 

only remaining such class for the Poincar6 group is then the massless 

case, a subset of the lightlike case where the noncompact Euclidean 

generators are trivially represented, with the helicity an invariant. 

Correspondingly, we there fore restrict our attention to the massless 

UIR's of 4f , containing only such massless particles. 

It is again possible to give a covariant analysis of the spin 

content of the massless UIR's. 	Massless UIR's of /b have 

Pz  = W = 0 , the helicity, A , becomes a Casimir of P, 

and the generators satisfy the constraint 

W 	= 	A PIA , 

A 
	

(3.37) 
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This will therefore hold in each spin sector of a massless UIR of 2/. 

In fact, this constraint implies a restriction also on the supertransl- 

ations S . 	For (Eq. (A2.9)) 

sk, 	= 	1  e tAvpcr  Pv(crtfs) 4  

= [ SK , A Pr 	= 7 	11 .1  ro  Pr  60,r, P" crr S ), 

and using Eq. (A1.6), we find that (3.37) implies 

= 0.  (3.38) 

Also, since 

s o( w21 = 	 P sp   

this is consistent with the condition 	W = 

It follows from Eq. (3.38) that S.(  may be represented as 

CFS1 	for some Majorana spinor S'. 	Then we have 

explicitly, for the Poincar4 invariants, Eq. (3.10), that 	 *F-■• 

and 	P • Z = 	Furthermore, we have 

NI Pt, 	 (3.39) 

where N = --1,:§1■./Y5 S1  must be a Poincare invariant. 	From Eq. (A2.8) 

it follows that 1\11= 4  whence N has eigenvalues 	— a. 

Furthermore, from Eqs. (A2.9) 	 , it follows that 
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N, (S±).< ] = 	(s±)a  

A 	(s± ).4 	i( s±), 	 (3.40) 

so that the operator A - z N, or 

K = A _ N 
4- 
	 (3.41) 

is a Casimir of 	, with eigenvalue 'X, • 

To summarize, the massless UIR's of I may be labelled 

( r= o, AO ) , where Ac  = o, ±11 , 	is the superhelicity. 

They contain two spin sectors, carrying massless UIR's of //0  with 

invariant helicities A 0, )—i 	corresponding to eigenvalues 

+ 	 respectively. 	As in Sec. 3.1, by constructing 

explicit realizations, we shall verify that the (b2 = 0 , ?, ) 

UIR of d contains precisely one massless UIR of 4b of each allowed 

helicity. 	We shall also verify the Majorana constraint. 

Just as in the massive case, we can visualize the spin 

content of the ( p' = o, Xo ) UIR by means of a "weight diagram" 

indicating the participating weights (W,1) ). 	In analogy with the 

massive case, we still draw the diagram in two dimensions, even 

though X = a „ + i (1,  - x  ) 	, and V is redundant. 	Such 

a diagram is shown in Fig. 3.3 below. 	These diagrams will be useful 

later when we come to consider massless superfields and massless 

super-wavefunctions. 
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1 
ao 

Fig. 3.3 Weight Diagram for the 

(pl. = o, X) UIR of 4. 

We can now follow the method of Sec. 3.1 and construct the 

r. o, A.) UIR of Al explicitly. 	As cyclic states we introduce 

a massless UIR of 49  with lowest weight V = 	, and 

invariant helicity X = Ac-i . 	In view of Eq. (3.40), we have 

(s_.), I 171= o, xe 	 0 
	

(3.42) 

By acting with the raising operator (c.4)a we can then define 

covariantly-normalized basis vectors of the form r". 0, Ao; X >, 

where 

<12')1/4'Ip■> 	= 	</1p> 
	

(3.43) 

We cannot here define shift operators analogous to the Kt 

introduced in the massive case, since the condition 	= 0 ensures 
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the vanishing of combinations like u.S ± . 	However, (Si  ) 

changes the helicity by 	, and commutes with F. , so we must 

have 

(S4 L 	> 
	

1L+g(3) h) A.> 

(3.44) 
and 

where the spinor normalization constants must also satisfy 

(3.45) 

and so may be written v..±  (19) = Cl±  u.(13) , as the chiral 

projections of a c-number solution of the massless Dirac equation. 

The algebra of the (Si ), in the massless case may be 

deduced from Sec. A2 and Eq. (3.38). 	One finds 

(s1 	s± )(1  = 0 

(5* )pc  ( 	)1;  = 	(Acrl-c).(is  (N -± 

	 (3.46) 

and applying Eqs. (3.45) and (3.46) to states 	It) 	> , 

( 5+)1; i 	= (ti4--).1(001-4(0 

= 	(Yr* ),<(; I i) 

Using the completeness of the algebra of 1-matrices, we deduce 

= 	
2/3e. (3.47) 



Finally, the representation will be unitary, satisfying 
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= 	)1'1' (s_)(;  

if 

 

(3.48) 

u(p) = 14.`(p) = Cu , 

that is, if u(p) is a Majorana spinor. 

Conditions (3.45), (3.47) and (3.48) are sufficient to 

fix 'u(J) , and hence 	I 0 Ao  ) , 	up to a phase. 	The nonzero 

matrix elements in this basis are 

<13/NO  (s+).< 	= (st-+L() 

(3.49) 

and 
	

< 	Ao-i (s-)x l a a s  >= Ot-)„(b) < 	ID> . 
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3.4 Parity  

It is straightforward to extend the representations of the 

last three sections to UIR's of I augmented by parity, TP . 	For 

this purpose we shall take the definition 18, 61, 62  

Up 	
, 	

= << yo  s ), 
(3.50) 

or 

u (s+), 	= (c. 

Consider firstly the massive case. 	From Eq. (3.3), 	G- 

is a pseudoscalar, so we have (suppressing the labels p
2 

and j
o
): 

UR  I cr 	j 	A>  cc 	1 — r P13 	-a> 

Thus fr may be adjoined to each or = o spin sector in a familiar 

manner 
63
. 	For example, if 

Ua, 1 0 (3 j0 + -i.  X > 	= 	1 o 	> , (3.51) 

then the remaining parities in the'multiplet are completely determined 

by the supersymmetry. 	For, from Eqs. (3.50), (3.19) and the matrix 

element (3.22a), we conclude that 

U„ 1 -± > = 	11)1) jc —70 

U 1 o 1) jo— I A > o PI, 
(3.52) 

By taking combinations ,f2; ( 1+ 1  ID Jo 	> -11  1 -i a :Jo  a >) 	of 
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definite parity 	± qo 	, we can use the parity in place of c in 

the labelling of states. 	We thus arrive at the spin parity basis 

(9°.> 0 , J 0 , 	; 	9 j a > 	where 

tog-.I x> = Yt(I) Ifp j —A 
	

(3.53) 

and the spin content is 18 J..± riG 	je.k1  )1% 	
P 

	
If we define 

16r 	1:) 	, then 

	

= (-I) 
	

(3.54) 

This discussion could have been formulated also in the 

superhelicity basis. 	Herewe merely quote the results. 	We find 

UR ( P + K > = 10E1)
21E1 —3') 

I ifp te+ 	> 

where, for example, 	IT' 	, 	= 	. 
The treatment of the massless case proceeds similarly. 

The labels A and N are both pseudoscalar and so (Eq. (3.41)) 

—1 
U K U11, 	—K + Er  

(3.55) 

(3.56) 

Therefore the massless UIR's of 	augmented by IF must have the 

form of a direct sum 	(12 /-= 0, )„ ) 1- (t,2-= o , — A° 	) 	of 

massless UIR's, with helicity content 	t A°  , t (NO---1) , viz., 

4 helicity states. 	This result was quoted in Ref. 18. 



68 

In order to see how the parity factors combine for the 

massless case, we take the required direct sum of UIR's, and fix 

the phase of the spinor normalization constant through le (WO = iyou.(0. 

If 

1),10  > = — tio  

then by considering 	(S+),4  I 1,, 	> , 	Eq. (3.44), it 

follows that the parities for the 	.Xc  , 	components 

are 	q0 (--1) "- 	— lc 	 respectively. 
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3.5 Internal Symmetry  

As was indicated in Sec. 1.1, the concept of "supersymmetry" 

in elementary particle physics, that is to say the utilization of 

the rich mathematical structure of graded Lie algebras in a fundamental 

way, is a powerful one. 	There are inherent possibilities for 

incorporating bosons and fermions into a natural unified framework. 

Conventional globally supersymmetric Lagrangian field theories have 

remarkable properties 
16, 18, 64-66

. 	The supersymmetry of Wess and 

Zumino, which we have been studying in this chapter, can be regarded 

as a first example of a unitary, relativistic spin-containing symmetry, 

in which the Poincare group is embedded in a larger group in a nontrivial 

manner but avoiding proscription by the famous "no-go" theorems 51,52  

(This point was discussed in detail in Sec. 2.2). 	As the original 

name of "supergauge" symmetry implies, the theory has deep possibilities 

as a local space-time symmetry 32,67  

All of these aspects motivate the search for algebraic 

structures which generalize and exploit the supersymmetry idea. 	To 

complement our detailed study in the foregoing of the simplest 

example of the Wess-Zumino algebra, in this section we briefly 

review some of the developments along these lines. 

The so called "internal degrees of freedom" which are a 

fundamental attribute of matter in the subnuclear regime are convention-

ally described by internal symmetry groups, independent of the space-time 

aspect. 	As mentioned above, supersymmetry is unconventional in 

that it is in a sense a fusion of internal and geometrical symmetries. 

Indeed, in Sec. 3.1, in investigating the structure of the Wess-Zumino 

algebra, we found an SU(2) x P subalgebra. 	However, this SU(2) 

is a manifestation purely of the supersymmetry structure, and not an 
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internal symmetry group. 	This will become transparent when we discuss 

the finite-dimensional representations in Chap. 5. 	For example, 

in the jo  = 2 case (the so-called "vector supermultiplet") the doublet 

sector of the representation is associated with (different 

chiral projections of)a single fermion field. 	In contradistinction 

an internal SU(2) doublet entails two fields, for example the nucleon 

doublet. 

This observation means that the incorporation of conventional 

internal symmetries into a supersymmetry scheme requires a larger 

structure. 	The possibilities are not arbitrary, but are limited by 

consistency with certain properties of the S-matrix 	In In fact, for 

the massive case, and in some circumstances for the massless case, 

this constraint is strong enough to determine the form of the algebra 53.  

The result (see Sec. 2.1) is a graded Lie algebra containing the 

Poincare algebra, which commutes with the internal Bose generators, 

as in the older "no-go" theorems. 

Many attempts have been made to produce a fruitful generalized 

supersymmetry scheme consistent with the above requirements 24,25,68-72  

The results for the simplest ansuitze are now well established, and we 

shall review these, rather than the more exotic possibilities. 

The most obvious enlargement of the supersymmetry algebra 

we have been considering is to replace the SD, with generators Socz 

7069, 
carrying an additional degree of freedom. 	For example 

24,69,70 
 -Son: 

could be an isospinor ( 	= i,z ), with a modified anticommutation 

relation 24  

S s =y 
9 r

c) 
5  11  (3.57) 
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and Majorana property 

Say  C ) Li  5 de j 
(3.58) 

The unitary representations for the massive case 
24 
 can be constructed 

by the induced representation technique used in Sec. 3.2. 	They are 

labelled ( P2 > 0 , To  , 1.0  ) and contain UIR's of different (spin, iso- 

spin ) content. 	For (114.,(3, 0 ) one has 24  

lb - 	+ 4 	+74-  4 

(3.59) 

= (0,0) 	(-k 	+ (1,0) -t- (0, 0 

For n > 2 the fundamental representation of SU(n) is not 

equivalent to its conjugate, and the Majorana constraint cannot be 

applied. 	This implies a rapid increase with n of the number of 

generators. 	However for 0(n) this difficulty is avoided, and we 

can take an algebra 25  

sat , 	= 	 pt 	(3.60) 

Once again, one can construct a Fock representation of the algebra 

in the rest frame, which can be decomposed with respect to the bilinear 

generators 	s.z 	sl.] 	of SU(2n). 	Obviously, by this 

method one constructs purely antisymmetric tensors. 	For example, if n =3, 

(A- = I + 6 + 	+ 20 -+ 	+ 	 (3.61) 
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Unfortunately, results like Eq. (3.61) are physically 

unacceptable. 	The fundamental representation contains the 6-fold 

q, but also diquarks qq, rather than mesons 'Cm and baryons qqq, and 

furthermore the SU(6) structure persists in the higher-dimensional 

representations 
25
. 	The same results can also be obtained from a 

superfield approach 
69

, where there is the additional fact that 

interactions cannot be introduced in a renormalizable way. 	These 

problems have led to alternative proposals 68, for example incorporating 

colour 	but but so far with no positive results. 

Clearly schemes such as (3.57) and (3.60) are amenable to 

the covariant methods of Sec. 3.1. 	In general we should have a 

Poincare-invariant algebra of generators of the internal group, G, 

like :.;S 	and 	P.2:'13 	. 	The algebra also includes vector 

and axial-vector generators TXt., S 	and and YS S 	. 	We 

should thus be able to identify a subgroup like SU(1) X G Y(7 ')4  P. 

Also, because of the anticommutation relations, the bilinear generators 

satisfy matrix polynomial identities of finite order 
74
, which can 

be used to identify the allowed values of spin for each internal 

sector, in direct analogy with Eq. (3.14). 

However, this programme is not likely to bear fruit until 

the means are found of circumventing the shortcomings outlined above. 

Perhaps more information in the way of physical motivation and 

mathematical knowledge is required. 	In any case it seems that these 

ideas could benefit if some of the more sophisticated techniques of 

the fermion calculus 	are brought to bear than have hitherto been used. 

One possible alternative, which may avoid the unphysical 

multiplets encountered above, is to replace the GLA system by a 
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variant involving parastatistics for the fermionic generators 8' 76  

(a so called "graded triple system"77). Fock representations of the 

algebra can certainly be contructed 
78
. 	It may also be possible to 

retain a group interpretation by introducing a-number parameters, 

as for GLA's (Sec. 2.2). 	Further investigations along these lines 

are merited. 

We shall not reconsider internal symmetry in the sequel. 

For the purposes of this study the Wess-Zumino supersymmetry already 

has the essential feature of boson-fermion symmetry which enables 

us to regard it as the prototype of such schemes, and its predictions 

as qualitatively typical of the multitude of possible alternative 

schemes. 
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4. PARTIAL-WAVE ANALYSIS FO R  

SUPERSYMMETRIC SCATTERING  

AMPLITUDES  

In this chapter the previous formalism (for the massive case) 

is directly applied in developing a partial-wave analysis for super- 

symmetric scattering amplitudes. 	The work is based on Ref. 28. 

In Sec. 4.1 the direct product of two massive UIR's of 

is reduced into a direct sum of UIR's, and the Clebsch-Gordan coefficients 

are written down. 	The consideration of degeneracy labels for the 

reduced states is shown to favour the use of the superhelicity basis, 

in which the spin is not diagonal, as the most appropriate one. 

Precisely such a mixing is, indeed, characteristic of supersymmetry 

as a spin-containing symmetry. 	This enables the angular dependence 

of helicity amplitudes for the processes 1-32+3, and 1 + 2 	3 + 4, 

to be extracted in Sec. 4.2 as a series in certain generalized 

Wigner matrices (the matrices of Lorentz transformations in the 

superhelicity basis), together with some supersymmetric reduced 

amplitudes 	( 2 3 II 	jo (s ) II  1> 	and ( 34 11 1 10(s) II t z>, 

corresponding to partial waves of total superspin 4. 	Symmetry 

properties of these reduced amplitudes (especially under parity) 

are considered in Sec. 4.3. 

In Sec. 4.4 an interpretation is given of these supersymmetric 

reduced amplitudes by comparing the supersymmetric with the ordinary 

partial wave expansions of the scattering amplitudes. 	It is found 

that, after cancelling off the common angular dependence, the ordinary 
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reduced amplitudes , < 2 3 	Ad(s) 11 i> , 	and 	< 3 4 (► A)(s)R 2>,  

can be expressed directly in terms of a much smaller number of 

supersymmetric ones. 	A careful count is given of the numbers of 

independent reduced amplitudes involved. 	The same supersymmetric 

constraints on the reduced amplitudes, if continued to complex 

superspin (and hence complex spin), are shown also to imply stringent 

constraints upon the high energy behaviour. 

Finally in Sec. 4.5 a simple case study, that of three-

point couplings for jo  = o+, thus involving particles 01.-  and 

is given to illustrate the general arguments of Sec. 4.4. 	It is 

found that the 7 independent couplings g
231

(s) (including parity) 

are given in terms of just one supersymmetric one G(s), plus 

kinematical factors. 

In Secs. A4 and A5, some details are given of the algebra 

of the direct product, and the notation used for the labelling 

operators, and some of the kinematics, is introduced. 
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4.1 Reduction of the Direct Product 

In this section we consider the reduction of the direct 

product of two UIR's of the supersymmetry algebra in the massive 

case, (10..1 e  jot )+ x ( )1,1„.  , 	where 	p1 = -yr4 > O, 

1;.1 = mi > o, and sign (NI  ) = +I = sign ( p„ ), into a 

direct sum of UIR's. 	In applications we shall be describing each 

factor of the direct product by means of the physical spin-basis, 

so that the problem is to reduce the two-particle states 

j°1 t21 	2" 5 ja  C24 a.1 sj 	> = jot 	.5r1 	Al> 	cr..-L X.> 

into a direct sum of states of the-form 

where we have indicated that, since each massive UIR requires 8 labels 

for its states (two representation labels, m and jo, and 6 state 

labels p , 07, j , 71 ), the reduced states still lack at least 

8 degeneracy labels. 

The total supertranslation, momentum, and angular-momentum 

generators for the reduced states are defined by 

sc  = s:, 

P = r + 

Tt 	
2 

t" 	
+ j

t" 

(4.1) 
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where we must assume 

{ sue , S;1 	0 
	 (4.2) 

in order to have 

t sv„ Sn J = 	 (4.3) 

For consistency it is also necessary to adopt the definition 24  

Sc: i I a > 	) 	I I; 2/  > < 2/  I  s1  1 2> 	 (4.4) 
2/  

for the generators S:(  acting in the product space. 

With these definitions, by considering the translation 

invariance of the inner product 

< jo p • - • I i, I), • 	; J0z  13.- • • > cc Z4  ( 	1)1 —N) 
	

(4.5) 

we may assume 

= 	p + 
	 (4.6) 

Furthermore, sign (pc, ,) = + 	and 	hi = 	V3_ > 0 

Thus the two-particle states reduce into a sum of ( 1)2> 0, jo  ) 4.  

UIR's, just as in the case of the Poincar6 group. 

In general we can write 

( cosh '51  , 	( 	cos e t  , Sin e, CZA 4, , cos e, ) 
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where 
	- co < 	< 5 	0 	< 	0 	4, < zr,  

with a similar parametrization for p t, 	. 	However, by considering the 

Lorentz invariance of (4.6), it is sufficient to consider the particular 

choice of orientations given by 

	

1P-  = 	11,1 	costa r, , 0 , c  , sznkrt ) 

	

= 	ret, ( Gosh c. , o 	0 	) 	(4.7) 

	

pr = 	M ( 	I 	0 	0 , 	0 ) 

where M 	= Ar§ 	is the total energy in the centre-of-mass 

frame. 	With this choice, we see that 	$14 
	

points in the +7. -  direction, 

and W- 	in the -z-direction, in the rest frame of 10'.4- p' . 	The 

Clebsch-Gordan coefficients for arbitrary orientations of p, p
1 

and 

p
2 
may be obtained from those for this special orientation by applying 

the appropriate Lorentz transformation. 

Before proceeding we must settle the question of the degeneracy 

labels for the reduced states. 	Adopting the spin-basis labelling 

suggested above, it is readily verified using the commutation relations 

(Eqs (A2.9)) and the definitions of these labels (Eqs. (A4.3)) that 

, 5, 3 

[ j„, , Al] 

and 

Further identities in the algebra of the direct product are collected 
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in Sec. A4. 	Thus in particular, since jo  must be used as a representation 

label for the reduced states, we are forced to abandon the use of 

ji, jl, A1, 	and 0-1, c2 	as degeneracy labels, and look for 

other invariant combinations. 	Two such (Table A4.1) are 	and 

e 	01-% 	but counting 	jm  , jct, mi  and 111„, which are 

still good degeneracy labels, we still lack two labels. 

Since we can in any case no longer retain the usual labels 

for the reduced states, we may also consider the possibility of 

choosing different bases for the product states, such that the degeneracy 

problem is simplified. 	As suggested in the introduction to this 

chapter, the philosophy is that the results of the supersymmetric 

analysis may always be re-interpreted in terms of the physical spin-

basis by transforming back to it at the end. 

We find that the superhelicity basis introduced in Sec. 3.2 

is a very natural choice from this point of view. 	The superhelicity 

commutes with the supertranslations, and hence with any labels constructed 

from them, including the total j„ 0-, E and IC of the reduced states. 

Thus in the superhelicity basis with k
1 

and k
2 
as good degeneracy labels 

(Table A4.1), the labelling problem for the reduced states in the 

direct product is now solved. 	Including the labels suggested above, 

the degeneracy labels are 

-1, jot 	111-2 	jiz 	K t  K2  1 6-1 	, X, - A 	= 8 	(4.8) 

However, the last two labels, while Lorentz invariant, are not super-

translation invariant, since 

[ a l + (3.1, (5±)0. J = *Ii(St)a. 

(s±)e_ J = 	a-(s±)c. , 
	 (4.9) 
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where the values a = 1,2 are replaced by a = 	on the right-hand 

side. 	On the other hand, in the direct product algebra A 

the number of labels commuting with, for example, the algebra af„ is 

10, namely the two representation labels (Casimirs) of di  , and any 

of the 8 independent labels of 42  . 	We might therefore expect a 

similar accounting to be valid also if we choose to reduce .dix 

with respect to the diagonal generators ,J1 	, namely the total 

supertranslation, momentum, and angular momentum. 	We therefore seek 

to replace 	o ÷cri 	and A,- A,. by invariant combinations. 

Such combinations may, indeed, be constructed: for, if from 

the supertranslation generators 	and Sic, , which anticommute, we 

construct some nontrivial linear combination, then there exists another 

linear combination which anticommutes with the first. 	We define, 

corresponding to the total supertranslation 	se, = S a + S 	, the 

"relative supertranslation" 

S o, = (Ae 	— (4 	s2cc  , 	 (4.10) 

(which is anti-Majorana), and observe that 

S 	= 	3 

(4.11) 

K.( 3 1 = 0,c)„f, 

where 	151, 	wit I  1A 	012.3
" p2- 	 (4.12) 
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Moreover, 	ga 	is a spinor under the total angular momentum, and 

commutes with P p_ . 	It follows that we may define labels S, 75 	and 

for Sa  in precisely the same way,as for So, (Eq. (A4.3)), replacing 

So, by 	, 	PI, by Tr_ 	, and with 

P 7IS 
2. 	 M 	2. 

rwt. nn 2  ) (4.13) 

We find, for example, 	"), = A , 	ib  = Jo  , K = x 	and 

	

= ci — Cr 	 (4.14a) 

In general 8 is a complicated combination of 	and 	, but 

for the reduced states in the centre-of-mass frame, the formula 

(c.f. Eq. (A4.4)) 

s t 	s (4.14b) 

(which is obviously not Lorentz invariant) is true, and we shall use 

this henceforth. 	The So, and the labels constructed from them are 

discussed in more detail in Sec. A4. 

The invariant labels (5, b ), for which we use the notation 

-T- 	in analogy with Sec. 3.2, replace ( 	) > (e+ 62 , - X2" ) of 

Eq. (4.8). 	The labels for the reduced states are finally 

K ; 141-1 jot 	jot 	K, r, 	-T > 	I‘ , 	(4.15) 

where + specifies ( rc 	) and + specifies ( 	7S" ) . 	The problem 

at hand is therefore to find the Clebsch-Gordan coefficients 
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< :Jo  P+ K i rnl ja .htx ic•.. Kt K x ; 	jot  Ipt +t  KI  *) .161  1 3_ +2. Ki > 	(4.16) 

which we shall often simplify, omitting inessential labels, to 

< 	K 	K, K, I IT. 	-1-1  K1  5 +2.  K, 	(4.17) 

The evaluation of the Clebsch-Gordan coefficients is straight- 

forward. 	Using the operators (St )a as shifting operators, in 

particular 

ET,  ( S-ILL 	= ±i(S±)a 

[E , ( S±)6.] 	= 	a( 5 ± A. 

we apply the operators 

S 	= ± 4(S+ ),(S4.), 

to the two-particle states, to construct states of total o 	± 

which may be further resolved into eigenstates of S . 	Once + is 

given, 1  follows from Eq. (4.14). 	As usual for the two-particle 

states we have 

A I 1 1  KI j +L  Kt > 	= 	(NI-Az) I 	Kt i +1_ K2.> . 

Hence for the total superhelicity we have by definition 

IC = 	- 	K, - K2  1- 	— 	—(3 = Ki — 	Km.  • (4.18) 
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By this means we can construct, for cr= 	i , eigenstates of the form 

I 	K ; K, K 2_ 	> t 	 Other 	total eigenstates may be 

constructed by applying the ( S ± )a. 	Notice that these states are 

not yet eigenstates of total superspin, jo. 

The distribution of such 1.+; 	> states is plotted against 

+ 6-2.  and SI  - S1  in Fig. 4.1, together with the 1 +1  +2  > 

states with which they couple. 	For example, the state 1 1- 	> 	has 

	

= o and E, 	= o and so is coupled to I 	; 	> , t± 	>, 

	

4- ; r > and 	I 	; f > 	. 	The counting of states is consistent: 

for fixed 	andd k2, the 	1G 1 	> 	states have been resolved 

into 1C, + > 	states. 

(r1 4. crl 

1 

—o 	o — 

-z 

H4> 

H- t> 

Itf> 

14-1-H1-47— 

a' - 

Fig. 4.1. Plot of the Distribution of I + 
and 	+2) against 	cr,_ and 6, -4E2  . 
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These considerations already allow us to deduce the Clebsch- 

Gordan series. 
	For fixed superhelicities k1  and k

2
, but allowing the 

values of t and -1-;,  to vary, we have 

jc2. 
= 	Jo + Z (.6-'3)2  + 2 v. (4.19) 

	

jo=  Kt 	I 	jo  = I Kt —Ka I 	I IC, 'Ka.*  I 

giving for example 

0 X 0 	 U 	a 	4. 	1 2.  4.  3 	- • 

This is to be compared with the corresponding series for the Poincar6 

group (the product of two UIR's of spin zero), 

0 X 0 	= 	0 

▪ 	

I 	▪ 2 + 5 -f 	• 

	

In general, for a given state 1-1-1  1-1> 	, there will be 

one or more different UIR's with total superspin jo  coupling to it, 

distinguished by different values of -T. 	(Fig. (4.1)). 	Altogether 

there will be four such UIR's. 	For example, we can construct the 

following four special states 1+ -T- > t 	(the assignment of labels 

can be verified directly from the definitions given in Sec. A5): 

I+ ; 	>e = It +> 

I 1-  K-1; t >E  = 	e 
r 
 1 	 -I-1-> 

	

4-  it +I; 	 ell' I+ t> 	(7.:) e 
	(4.20) 

< ; T>t 	= 	It 
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Here 	K = K 1  - K x  . 	The distribution of these special states can 

be read off from Fig. 4.1. 	Their projections onto total superspin 

j
o 
are easily obtained: since 	101 = i 	and 	= sic 	kri = jo, 

the superspin coincides with the spin, and the projections simply 

involve the Clebsch-Gordan coefficients for the Poincarg group, on 

passing back to the spin basis on the right-hand sides of Eqs. (4.20), 

using Eqs. (3.34). 	Consider for example 

; 	> E = 
	a I -I- 	> 	+ z I 	. 

If the projection onto spin (= superspin) -jo  is denoted by IIJ' , then 

the reduced state will be given by 

1 	; 	> 	cc 	11  31. 	>t. 

If = 	 + 

we define 	> 	1)-  71 1 i0 4- 	>t  , 

SO 

The phase of 	1+ ; 	> is fixed by this definition. 	The second 

factors on the right-hand sides involve linear combinations of Poincar6 

group Clebsch-Gordan coefficients; we take these to be 

< 	; A. Ax 	J. 	; 	 (24 + I), 	(4.22) 



(s1), 1+,+.>) 4: 
(4.24) 

> = 	(s+ ), > 

s 	= 	= (s`-- 	Cs3-- • 

= ,:k7a 	1(sL). 

and 

so 
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where 	P = p = 	+ pz  , j , As  — ),2 I 	 and p, and pz  

are in the special orientation of Eq. (4.7). 

The combinations needed in Eqs. (4.20) and (4.21) are given 

in Sec. A5, where notations for the various kinematical factors are 

introduced. 	In this notation, and using the method which led to 

Eqs. (4.21) we have for example 

÷, 4-, 1 T ; 	> 

< 4-, 4-, 4-) 1  > = 

43 K, Kt  •-•{Cy+-1 2i c+ 1) 

-x (2j +1) 6
K, K, 

(KI) 
vpi-+ Oct , (4.23) 

Once the Clebsch-Gordan coefficients for these four special 

states have been found, the remainder are determined by supersymmetry, 

by acting on each side with the shift operators (S± ),L . 	Thus, for 

example, 

where we have used the matrix elements of ( 	)a in the rest frame 

(Eqs. (A3.4) and (3.33)). 

Using this method, the remaining Clebsch-Gordan coefficients 

(altogether 36 nonzero ones) may be written down. 	They are given in 

Table 4.1, which is to be consulted in conjunction with Fig. 4.1. 

Notation for Table 4.1 is established in Sec. A5. 

As mentioned above, the Clebsch-Gordan coefficients for an 

arbitrary frame are related to the above coefficients in the special 
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frame by means of Lorentz transformations. 	In particular, we shall 

restrict ourselves to the case of the centre of mass frame, with 

orientations of p1  and p2  with zero azimuthal angle, but with arbitrary 

polar angle (Eq. (4.7)), defining 

(4.25) 

where the 	+,>c 	refers to the states with the z-axis orientation 

which we have been considering. 	The matrix elements of Lorentz 

transformations in the superhelicity basis have been discussed in Sec. 3.2, 

where the -(1-/  + I 	matrices were introduced. 	In terms of these 

matrices, we therefore have 

< +1 +, + K; > E { 	1;c 	0-1+2  1 +, ic.z; > I-112+lee je),(4-26) m   

where 
	

jo 	max ( IK I , IK12.1 

where k12  is given by Eq. (4.18), and 	+, is given in terms of +I  
and -1: by Eqs. (4.14). 

Finally, we may use the completeness property of the reduced 

states to expand any state 	°< 	41  I 	as: 

+, 	= 	{ 	-14 }° (0) < I K; Kt Ki 	I 	+1). • 
	(4.27) 

:r- 

Once again, notice that + is given once +„ +2  and t 	are 

specified. 	The {+/+} 	(e) matrices are clearly the analogues 

in the superhelicity basis of the ordinary Wigner notation matrices, 

	

(0) 
	

in the spin basis. 	They will play a crucial role 



f o -?-1r: tic; 

then 	(TS) 	= -€1.N ++  0 0 
EV+  0 0 
0 -I-1S +  Fu- ÷ 

0 
-TV; 

-TV: 
o + j 
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in the supersymmetric partial wave analysis to be developed in the 

next three sections. 

The Clebsch-Gordan coefficients of Eq. (4.26) may also be 

obtained by the rather more aesthetically appealing technique of harmonic 

analysis over the little group via the Plancherel theorem. 	In the 

case of the Poincare group 
79

, (matrix elements of) the two-particle 

states are exhibited as (square-integrable) functions over the appropriate 

little group, which are expanded as an integral or summation over 

UIR's of the little group, thereby effecting the decomposition into 

reduced states. 	In the present case, the little algebra of Eq. (3.23) 

integrates to a group by means of a-number Majorana spinor parameters 

„ , 	as explained in Sec. 2.2. 	Arbitrary little group transformations 

have the form 

S 	3-3  
U (E,q, 0) = e e 

with matrix elements 

K' I Lqi, 	e )1 + K > = Z+„ 	 (g") 

where 	{-1-'+"} (i) 	e-`i5I-1-> 

is independent of the superhelicity. 	For example, if we label the 

basis vectors in the order 4- -1- 
	and write (c.f. Eq. (A3.3)) 

S = T -ts W.. 	IC Vvt. 
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In particular, in the rest frame, according to Eq. (A3.4), we have 

(v-i) e<  = ,[71, za 	. 	From this we 

can write down the unitary matrix 	t 1-"+"1-  (s). 

The next step is to use the method of Mezinescu 50  to find 

the invariant group measure jcri. p(t) 
	

just as in the case 

of --6/, S u (3) 	described in Sec. 2.2. 	Since 

>e  = 
a  

e
-zeZr

I> 

the reduced states are simply given in terms of the projections 79  

X 	G 

1 4+ K 7 +5 O K'K = fd4Ef(E) ja(cos6) acp (++1
Kie 

me) 1+I + i> . 

We shall not develop this approach to the analysis of the UIR's 

in detail here. 	The algebraic approach to the analysis of the 

representations, which we have adopted so far, has solved the Clebsch-

Gordan problem, and indeed provides a useful reference point for the 

development of the global method. 
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Table 4.1 Clebsch-Gordan coefficients. Here pt. F. 	, . 
and a common factor (2.30.+I)

1_11 
(-0

4 ltijel 
3K, K,-K=-FS 

is understood. 

f++1-1-} i(p+1)-1 (1)....)21D_+ 

(..1-± ± } = ILO)/D-+ 	{i-÷14- } = --I p 3 1)_+ 

	

{-I-  + ±} = 	N+  (z)/ D-+ 	{-F +) = 

	

-I-  + 	 + -I--  

fi {++14-41 = kki (1-1 )=. KLAIV D._+ 
H 	11 

	

. 	ft +1÷} = /14 2 (141141 /11° t\i+(1)/D-4 	1 
-r.T__ *"..; c. 
+10 	 .--.. 

+ {±+H-} = 1P-2.(P+ 1 )1  1C-(1)/D-+ 	- *

• 

II+ 
0- (.4. 1+4 = -- zp.1(e+1)1.  t4 .,(1)/ D.. f. 	+ 	HI 

.s.:14.• 

	

rzi---  ± ,-f- -1-• 	1- -4- 

- 

-4- -1

- 

-• 	 e-4-• 

	

1- -÷ ± .4- 	-I- 4 -h .+ 	 -i-e 
- ___. __ 	___ 	 -I- 

	

-I- -1-• -I-• -1- 	-1-- + .4-  4- 	 ._- 

	

.--- ----- •-•-r-' ■•■—• 	...-r+ ,...-...... ,--e" ',..-nro 	 +. ....,-. 

	

II 	II 	II 	II 	II 	II 	11 	11 

	

f••
1 	..... 	-..... 	...p 

• ..... 	
....... • 	

... 	• 	
.. 	

4 I 

... 	P 	 )..
1.. 	 i 

--t, 
1- :4 

E4- 	
e-I- 

"0 
1.1- 

t ± 	= 	P N - (1) D 4. 

{± +1+} = 1-tir—rt !)I M+(1 )/ D++ 

1+ 	(P+I  11 /41-(2)/D++ 

1+-1-1+1 	i/42. (p+i)21-  t4+(1)/D++  

{+-11f 	D++ 	 1-/ = N+0 y-D++  

+i-fi = 	D4+ 
	

{-1-  + 1 	= ;pi N_WD÷., 

t+ 1-1 +.1 = -i(p+t)-±o+S/D4-4 
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4.2 Partial-Wave Series  

We now use the formalism of the last section to analyse the 

angular dependence of three- and four- particle scattering in the 

superhelicity basis, by making a partial-wave expansion in terms of the 

total superspin, 4. 	We take 

< p'; -f I S—  1 	> = (za)4  S / (r--13) <-f- I VOI >, 	(4.28) 

where s = p
2
, and as before adopt the centre-of-mass frame so that 

the total 4 - momentum is 	µ = pr  . 	Assuming T to be invariant 

under supertranslations as well as Lorentz transformations, we have 

by a generalization of the Wigner-Eckart Theorem: 

< 	K'; K1  IC3 	T1 +, K 1 > = Sit iS+,+  Seri  < k i K3 	II T ic' (s) 	> ci 	1   

and 

<+/ K' jK4 ; 	> = 6j: o  jgli+ (5•K'K <K1 4C4 -T-1  11 1-3°M 11 Kt 4C/ 	>, (4.29) 

for the decay process 1 -› 2 + 3 and the scattering process 1 + 2 -> 

3 + 4, respectively. 

The partial-wave expansion is simply obtained by writing 

the two-particle (final) states 	8<-1-, iit 	in terms of the 

reduced states 	<-F K 	K, K 2  -1" 1 , 	Eq. (4.27). 	The angular 

dependence for the process 1 	2 + 3 is therefore (Eq. (4.26)) 

(1/4+2 	K 3 	i; Kt 	= 	f t +3 1 14  Jj" (0) < 	TfI Tim 	> 	(4.30) 

where 	2j0}  = 	1 1(231 (mod 2), 	jo, = IK i31 . 
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Here, as in Eq. (4.18), 	K 23  = K1  - 1(3 -i-  & . 	For 

the process 1 + 2 	3 + 4 we have similarly 

° 4 +3  K 3  ; 	K4  I --r 	K, 3 --t1 K2  > = 
(4.31) 

=2, 2 {+3 -1-4 121-"4--1-1-,t,Ti0(0)<K3K4-1-11-3011K,K,i->, 

where ziKt,t = 2 1K34 1 (mod 2) 2 	To  = rnax( (Kul, 1K30), 
and we define (Eq. (4.26)) 

•••••,".• 	 .i„ 
t I t + I +, +,31(0 = °<+ + 11 	• -f.> ti/t 	(9) <-1- ic,73 -T- 	+23,0.32) 3 4 	 3 4- 	34  

1(34 K, 2. 

As in Eqs. (4.26) and (4.27), + is fixed by 	and 	through 

Eq. (4.14), and similarly for 

The angular functions of Eqs. (4.30) and (4.31) are essentially 

the {-V+ K'K  (e) functions of Eq. (3.35), multiplied by the appropriate 

Clebsch-Gordan coefficients for the special z-axis orientation of 

p1  and p2. 	For example, from Table 4.1, we have 

ljo (e) = 	 ljo 	(e). KI-Ky2  K (4.33) 

4.,  
Thus they are linear combinations of 	die (0) 	and cr° -  (0) 

(Eq. (A3.8)), with coefficients depending upon kl, k2, k3  and k4, 

and invariants such as m
1 

and s. 	Here da = AA 	and 8 are 

the centre-of-mass energy, and scattering angle, respectively. 

We defer for the moment the questions of convergence, 

inversion and interpretation of the expansions (4.30) and (4.31). 

These will be dealt with in Sec. 4.4, in the context of the relationship 
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between the supersymmetric reduced amplitudes, <K3  K4  "f 	1-j° n 

if K, K2  1 > and the ordinary partial wave amplitudes 	<,?%3 A4  It /0 11 

II A t  al  > 	, with total angular momentum j. 	A careful count of 

the numbers of these amplitudes of each type will also be given. 

In the meantime, we shall investigate what further 

constraints are imposed upon our reduced amplitudes by symmetries such 

as parity. 
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4.3 Symmetry Properties  

In the previous section we exploited the invariance of T 

under Lorentz transformations and supertranslations, namely 

= ET, Sa  

to separate out the angular dependence of the amplitudes and derive 

the partial wave series in the reduced amplitudes. 	A priori there 

are 41 1T4 	t I) 	supersymmetric reduced amplitudes for the 
a. I 

—3 
process 1 + 2-5 3 + 4 , and 	4 iIt (2).+ 0 reduced amplitudes = 	CL 

for the process 1 —+ 2 + 3. 	A more careful count of the number 

of reduced amplitudes will be given in the next section. 	These 

amplitudes are further constrained if we assume that T has additional 

symmetry properties. 	In particular, we shall investigate here the 

consequences of parity conservation, 

U T U 	= T 	(4.34) 

In Sec. 3.4 it was shown how to extend the UIR's of supersymmetry 

to include parity. 	This was taken to act on the supertranslations 

as 24 

u, (s± )„ u," (4.35) 

In the spin basis, it was found that the multiplets could be described 

in terms of an intrinsic parity )1., , in addition to the superspin 

jo, with spin parity content 	jo tio , 	41° (Eq. (3.53)). 
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In the superhelicity basis, this becomes (Eq. (3.55)) 

1(81 	. 
(J 	12 	K > = 	 Pp. IP+ — K > ■ (4.36) 

The action of U. on the reduced states 

may be derived similarly. 	We consider firstly the projections 1 
	

a; 

5 ?, A u_> 	of states I -F, K, 	K2 > 	onto total spin j (not 

superspin). 	These projections may be expanded in terms of the 

p 3 a ; j, )t, J2  Aa  > 	by means of the basis transformations, Eq. (3.34). 

These latter have the property 63  

	

UrP I 1)  j 	ji 	> 	ic, (1 )j(*i2 —23  I Pt, j —A 3 j,—A, 

This procedure results in 

	

Ull, Ip j ^ 5  4, K 1 	> = 1101 11e2 (- 1 /JL' I . 4 	II)-f, -K 1; re-i-i-Km> 

(4.37) 

Finally, the states l + 	> 	may be written as 

a sum of spin -jo  and jo  ± 2 projections on combinations of 1 -Ft  K, ; 

	

K T> states (Eq. (4.20)). 	The result is 

U fi, r + K ; 	 > 	)10110, (—`) 	I fp  
5 -i- jot — aCio— tst) 

(4,38) 

Eqs. (4.34),(4.36) and (4.38) give for the reduced amplitudes (4.30) 

and (4.31) the required constraints following from parity conservation. 
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The results are simply 

K 	jM  (5) > 	11.„ )1 	)1.0  (71  Yic‘ -4" -jcs< 	-KS ?4" li  1-j°1  II  >, 

(4.39) 

( -K  3  -K4 	-K2  Tiq>. < K3  K4 	(.5)1 

K t 
	> 	rie: qc111 01C1)  

Thus under parity conservation the number of independent amplitudes 

is reduced by a factor of (roughly) 2. 

It would clearly be possible to study analogously the 

consequences of other symmetries of the T-matrix, such as time 

reversal invariance, and charge conjugation (crossing) symmetry, 

in the supersymmetry framework. 	In general, however, the results 

are no more than the transferral to the superhelicity basis of the 

corresponding well-known properties 
63 

 of the ordinary reduced amplitudes 

(in the spin basis). 	We therefore do not develop this formalism 

here. 

The frequent use of superspin-zero models in the literature 

lends some interest to the general question of identical-particle 

states in supersymmetry. 	In the spin basis it is well known that 

the physical states with permutation properties appropriate to the 

connection between spin and statistics are of the form 63  

(+2)> = 	(IjA;12> 	().1 	21>) 
	

(4.40) 

for total spin-j. 	If we construct these states for all possible 

spins jo, jo t -i 	in the multiplet, using the basis transformations, 

Eqs. (3.34), we find that they may be expressed in terms of symmetrised 

states of the form 	f jo  + (la) -- > 	, with the same basis 

.o. 
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transformations, Eqs. (3.34), if we define 

I j, 	6 K (K, r,) Er 	> 

(1 .JQ  6- 	; Kt Kza-. 	> 	(-1)° -131 
	

; pc, K, 5-- 	>). (4.41) 

Thus these 	I jo 	(ict  tc,.) 	> 	states are the appropriately symmetrized 

identical particle states in the superhelicity basis. 	In particular, 

these states vanish for odd jo  if )C, = K2 	and 	S 	o = 	viz. 

the states I + > , I + 	 and 	I 	> 	(c.f. 

Fig. 3.1). 	This is the analogue of the result 63  that the states 

(4.40) vanish for odd j, and ), = 

It should be pointed out here that the assumption of the 

spin-statistics theorem for a supersymmetric formalism is itself 

nontrivial (for example, there is as yet no axiomatic system which 

encompasses supersymmetry). 	However, since it does seem to be 

consistent in all the models which have been used so far, we shall 

accept it here also. 

There is one further point to be emphasized, in connection 

with the conservation of total superspin, with regard to the total 

number of fermions occurring in the multiparticle states in matrix 

elements of T, such as <+, +4  I T +, +z.  > . 	Consider for 

example < -1- 4- I T I + > 	and suppose the superspins joi  

are all integral. 	The only possible term in the partial wave 

expansion, Eq. (4.31), is that involving the reduced amplitude 

< 	T 	> 	(c.f. Fig. 3.1). 	However, for this 

case, 	I K(2. 1 = I K i  - K x  1 	is integral, but 	tic34.1= I K3  -K4 
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is half-integral (c.f. Eq. (4.18)). 	This means that, in the 

amplitudes 	<-4--" /C / 3 	I T + 	; 	> 	 , leading to 

the partial-wave series (before the Wigner-Eckart Theorem, Eq. (4.29), 

is applied), we have j: 	half-integral, and Jo  integral. 	Thus, 

in view of Eq. (4.29), and (4.27), this amplitude must vanish, 

< 1-  4-  I T 	4- > = O 	Of course, referring to the spin 

basis via Eqs. (3.34), this is no more than the statement that 

	

< j03  t x joif T  I J0 joz > = C) 	for joz integral, and we 

expect conservation of total superspin, Jo, to be consistent 

with this. 	It does, at least, show that supersymmetry is consistent 

with conservation of fermion number modulo 2, and it devolves upon 

the model in question to ensure that fermion number is conserved 

(for example, by giving the correct antifermion assignments). 

This question, and in general the question of discrete transformations 

and supersymmetry, has received considerable attention in the 

literature 62, 80-83, with solutions proposed in some cases requiring 

states with rather exo tic assignments of fermion number 
61
. 	It 

is to be hoped that, in a future application of our present formalism, 

either with the Wess-Zumino supersymmetry, or a generalization of 

it, these problems may be resolved. 
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4.4 Interpretation of the lleduced Amplitudes  

We take up in this section the questions of interpretation 

of the supersymmetric reduced amplitudes, introduced in the partial 

wave expansions, Eqs. (4.30) and (4.31). 	We shall not develop a 

full theory of supersymmetric partial wave analysis (for example 

of complex superspin) but will be content with the philosophy that 

the results of our supersymmetric approach are to be regarded in 

parallel with the standard, and well-developed, formalism for ordinary 

spin, with all its ramifications for particle physics 63, 79, 84, 85  

Thus the more delicate questions of convergence, analyticity and 

so on, which must eventually be answered in a thorough analysis, 

will here be transferred back to corresponding questions in the 

conventional partial wave formalism, despite some loss of structure 

in doing so. 

In any case, as we have already found, our supersymmetric 

analysis certainly has the effect of imposing strong restrictions 

upon the ordinary partial wave analysis, and one of our natural aims 

is to investigate this issue in detail. 	As we shall see, our 

present attitude will prove sufficient to do this. 	We shall 

investigate firstly the explicit relationship between the ordinary 

and reduced partial waves, and then make some preliminary qualitative 

remarks on the continuation to complex superspin, and the implications 

which it has for the more conventional Regge pole hypothesis (or at 

least the assumption of analytic continuation in angular momentum). 

The first point we should clarify relates to the simple 

counting of amplitudes. 	Consider a decay process 1-4 2 + 3 for 
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example, involving supersymmetric multiplets with superspins jet, ioa 

and iO3  . 	According to our analysis of Sec. 3.1 of the spin 

content of these multiplets (viz. 4 different spins j:, 	for 

superspin ja  ), for this process there could be in principle 43 

reactions with different combinations of spins; and, since each 

supersymmetry multiplet contains a total of 4(21 i- I ) helicity 

states for superspin jo  (Sec. 3.1), this gives a possible 

43  Tr 
3 
 ( 2jai + I) 	different helicity amplitudes. 	However, half 

of these will be forbidden by conservation of total angular momentum, 

leaving 	32- Tr3 ( 2j,c + 1 ) 	possible helicity amplitudes. 

This is of course also the number of possible superhelicity amplitudes, 

since the helicity and superhelicity are both diagonal in the 

superhelicity basis. 

If we now partial wave analyse these amplitudes 63  in the 

standard way into partial waves of definite total spin j, we find 

that they may all be expressed in terms of reduced partial wave 

amplitudes 	<,),. J3 ; 712  13 It Ail (s) II> 
	 , a priori 

a total of 	4 >4 4' 75  (23 C . 	 since the A - dependence  
is given explicitly through the aligner-Eckart theorem. 	Once again, 

allowing for conservation of total angular momentum, the final 

number of independent invariants is reduced to 	3Z .1-1-3 	+ I ) 
1 

If we also perform a supersymmetric partial wave analysis 

of all of these helicity amplitudes via Eqs. (3.34) and (4.30), 

we find that these may all be described in terms of reduced 

supersymmetric partial waves <ja,j,,3  KZ  K 3  T-  Il Tic' 11 > 	, where 

once again the 	K t - dependence is completely specified by the 
3 	. Wigner-Eckart Theorem, Eq. (4.29). 	This gives a priori 4 :TT ( zia +1) 
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reduced amplitudes; allowing for conservation of total superspin, 

the final number of supersymmetric independent invariants is 

2  5: ( 2j cE + I ) . 

Comparing the above observations, we conclude that the 

existence of supersymmetry effects a 16-fold reduction in the 

number of independent invariants 	This is a strong constraint 

indeed. 	Moreover, as was stressed in the first introduction, 

Sec. 1.2, supersymmetry typically connects reactions in which 

different numbers of bosons and fermions participate: in this 

respect, it is, truly on the level of a relativistic spin-containing 

symmetry. 	It remains to be seen, however, whether such predictions 

will entail any physics, in a realistic scheme. 	This point will 

be returned to in the next section, where we present a detailed 

case study of three-particle couplings in a simple example. 

We could carry out precisely the same analysis as the 

foregoing for the process 1 + 2---> 3 + 4. 	The results for both cases 

are summarized in Table 4.2, where we give the total number of helicity 

amplitudes, 	< I T I > 	, partial waves of total spin j, 

< h 	h > , and partial waves of total superspin jo , < 11 -ijoh 

Ty p e I . 	< 	ITI 	> 2. 	< 	if A j  I( 	> 3. 	< 	H T je II 	> 

1 	—1, 	2. -1. 3  

I +2- -"P 3 + 4 

—rr 3 i 32. 	n 	kx jct.:  4- a) 
z 	r_. 	1 

128 TV4  (2 jur.  + I) 
i= I 

,_,..3 
32. It 	(2ja. 	-I- 	t ) 

c= 2. 

 I aS 
	
TI(zi- 	i ) a  

i:=1 

	

2...11-3  (2j_. 	+ 1) 
,= 2 	01. 

g  1 4 2L + i ). (, t  
t=I 

 

Table 4.2 Number of 1. helicity amplitudes, 2. partial waves of 

total spin j, and 3. partial waves of total superspin jo, in 

(supersymmetric) two-particle processes. If, in addition, parity 

is conserved, all numbers must be halved. 
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In the last section, we analysed the requirements of spin 

and statistics for two-particle states of two identical particles, 

and found that for odd Jo  , certain of these states vanished 

(Eq. (4.41)). 	This provides further restrictions on the amplitudes, 

but since this is not essentially a supersymmetric effect (subject 

to the qualifications made in deriving Eq. (3.41)), we shall not 

develop this here. 

In the previous section we also found consequences of parity 

conservation for the supersymmetric amplitudes. 	The result 

(Eq. (4.39)) has precisely the same form as the ordinary case, 

but involving the intrinsic supermultiplet "super parities"  and 

superspins, rather than individual parities and spins. 	The effect 

of parity conservation, therefore, both for the prdinary and the 

supersymmetric partial waves, is (approximately) to halve the 

number of independent invariants, in Table 4.2. 

We turn now to the examination of the explicit constraints 

relating the spin partial waves to the superspin partial waves. 

For the general case we do not bother to give a complete analysis 

(reserving this for the case study of the next section), but merely 

give some illustrative examples of the types of constraint equations 

which emerge. 

Consider once again the three-particle process 1 --> 2 + 3, 

and assume for simplicity that joi  , 	and J0, are all integral. 

Consider a reaction involving the spin components (jot- 2-i ) 	(42+ Jk.) 

jo3 	The angular dependence in the spin basis is given by 63  

e 	
jaci, 

° 	jo; A 3 T 0  ic, 	> = )1/4.z )■3  A€1*)1 > (2j 	 Ì A  ci 	 , 	) 

where 	-x = 	— A3 	 (4.42.) 
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On the other hand, performing the corresponding supersymmetric 

decomposition, we have, on transforming to the superhelicity basis 

and using Eqs. (3.34), (4.26) and (4.30), in the notation introduced 

in Sec. A3.5 

0<O jai+ i L) 	X3 (T 1 0 	A i > 

= A3 71 	>{+1-144-}jc (c,cz  (--+ c. 	(0) 	s, ca. 1+-1-1i   ,(0)1 ) 
jo r 

< 	A ± II 140; >f-F1- 1-f--r} 	 , (0) t g,sa+ +.1 	, (0)] 3 	 x4-I 	 A-1 , XI—I 	2 

where 	C E C,(x,), and so on (Eq. (A3.7)). Using Eqs. (A3.8) 

and Table 4.1, we can write this angular dependence simply in terms 

of 	d jai 73:25- functions. 	In fact the ci j 	(6) dependence 

vanishes (as must happen if the supersymmetric formalism is to be 

consistent with standard partial-wave analysis). The result is 

simply 

° Jct+i A ; Jc; A3 IT 0 jcii AI > = 
(4.43) 

= 	A3 111 -r im > 	 A3 1 II Ti" 	J(2j 1) ci jf,  1(e). 

Thus, comparing Eqs. (4.42) and (4.43) we have, in a simplified notation 

j-i 	 1 r 	J b" 
A ),),3(s) = 	+0 (el lc), Sx TA/  A 4(s) — (F51 ) e 	C 2-  T 	(s) A 	Tapia,-t 21 le 

(4.44) 
j-i , 

that is, in this example AkA0,3 ls) 	is given as a linear combination 

of 	-fk,
L.1-1 A3-1

(5) 	and 	TAfi A3 .t (S) 
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Obviously similar identifications could be made for any of 

these helicity amplitudes. 	According to Table 4.2, the 	31.11.3 
2 
(23_.-ri)  

reduced partial waves will thereby be given in terms of just 2.:11-23 . 

(2j1  + t) supersymmetric reduced partial waves. 	These relations 

may alternatively be viewed simply as additional helicity constraints, 

arising from supersymmetry. 

The analysis of the scattering processes 1 + 2 ---> 3 + 4, 

for components of supersymmetric multiplets, proceeds similarly. 

Let us assume as before that the ja.  are integral, and take for 

example the process involving spins (jo,+1,1 4  i„ 	(j03 +  i ) t joy 

The angular dependence in the spin basis is given by a conventional 

partial wave expansion 63, 

< 0 .103 + 2  A3 ; 	ja 4 	1T1 C idt k i. 	A2_ > 

where 

co 
L 	J (2j *  I) cl ( 6 ) < X3 A4  Ai(5)11 	Az> , 

,/t• = 'X 3 — 	= 	= max((h1,1A1). 

(4.45) 

On the other hand, we can also exhibit the angular dependence by 

means of a supersymmetric partial wave expansion. 	The first step 

is to transform to the superhelicity basis, using Eqs. (3.34) and 

the notation of Sec. A3: 

< 	43+221 A3 3 i jc+ 	I ° jai+ 	I 	ja )b > = 

= S I S'3 43‹+ 	-1" )4 I T 1 + A( 4 	1 Ax> 	C,S1°<4i--  A341; --1- 	IT1 +AA', +- Az> 

- S1  C3°<+ .13-i;-) Ali T 	; t 	+ C1  C3e<-1-• 	A„ IT II-  at  2;+ Az> 

(4.46) 
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Each term may now be partial-wave analysed by means of Eq. (4.30). 

For example, using Eq. (4.32) and Table 4.1, we have 

6<.-1.- A3+ 	; 4- 14  I T I -F 	; -t-  A2. > = 

co (y.  -r 1 (t412-e... 	%,{++130 
(0) <A3-ti A4 • 11 TiC )%  a- 2- J T o -  o 

where 
To  = max (11-1--11) 	. 	 (4.47) 

A similar expansion can be written down for the other components, 

with different lower limits for the summations. 	By substituting 

these expressions into Eq. (4.46), writing the {-f- H- j j°(o), t-1--hij°(0), 

in terms of the 	d 	(01, 	(Eq. (A3.8)), and rearranging, we 

obtain a form comparable with the right-hand side of Eq. (4.45). 

For ease of writing, we specialize to the case 'Ai =Iv,- 	and .icc= 0  . 

Then 	A, = a = o , and the angular dependence, and remaining 

dependence on 	A i  , a3  , 	is given explicitly (in a simplified 

notation) by 

00 

J- 

where 

(2j 	1) d 

0 
G ›,,>„ 

F j° A3  Xi  

,,(o) AA 	(c)  
3 

= 	o, 

= 	(e 1 c3 st, 

s) 	= 

- s3  cr  )(ea-  c, s x  - cA  

(4.48) 

(4.49) 

= 	(e ir c3cr.+s3stot )(e)Cr ctc.x.+  sic),  ), 
A31 1  

for example 

	

F i° 	( 	) 	6 j° - e 

	

+1- 	2 joi- I -" jot 	) 24.  + I 	• 
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Note that in the general case of Eq. (4.48), the terms of the series 

on the right-hand side near the lower limit of the summation must 

be evaluated separately. 	In general, however, this example shows 
je+1 , , that 	A j  A;  (S 	is given as a linear combination of 	T t+ '- <c) 

and 	T j°+1  (s) . 

An example of another process in the same reaction 1 + 2-4.3 + 4 

is that involving the spins 	jot  t  Joe 	jo3  + 	. 	we can 

analyse this in just the same way as before: it is simpler than the 

above, since it must involve only to- I = 	states of the spin 

basis (Eq. (3.34)). 	The same procedure as above, for the case 

	

-1.03  A3 	jc4  A4 T I -± 	)'t ; 	jol A2- > 	leads (in a simplified 

notation) to 

2 (2j  + 0 d(0) AAj3X4X,X (s) -.7 	jot I) je clvx  0) T . 	(s) 1  
m  jo 	jo  

j -= :T 	 = T 	 1" t a,a4),,A 
(4.5-o) 

and in this case, for the same conditions of Job = 0 	, "viz 	, 

as in Eq. (4.48), 	Ai(s) 	is proportional to 	Tj_t _i_ (s). 

Similar identifications may be made for any of the amplitudes 
/ of the reaction. 	According to Table 4.1, the 	1233 L2j,,L 

reduced portial waves are given in terms of only S' 1T1(2jci-o) super- 

symmetric ones. 	These relations may alternatively be viewed simply 

as additional helicity constraints arising from supersymmetry. 	The 

way in which this arises is shown by the cases considered above, 

Eqs. (4.48) and (4.50). 	As we see, the 	Ajax  (s) amplitudes for A, 
the spinor process 	d +i 	+ i 	is given in terms of the 

	

amplitude 	Akg) 	for the scalar process 0 + 0 -+ 0 + 0; in 

particular the helicity dependence is explicitly specified. 
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Particular cases of the above relationships between the 

ordinary and the supersymmetric partial waves occur in the asymptotic 

regimes near threshold, and in the high-energy limit. 	In particular, 

the number of independent (supersymmetric) amplitudes quoted in 

Table 4.2 for the case when parity is conserved, is also just the 

number of nonvanishing amplitudes in the forward direction at threshold. 

However, to make any further predictions of the threshold behaviour, 

for example the angular momentum barrier effects, we would need to 

develop the formalism of supersymmetric representations in the 

canonical LS basis. 	We leave this however as a future technical 

application of our general formalism. 	As to the high-energy 

limit, one way of proceeding might be to take a form Ak(s,E)cc 5(E)S"(" 

for the amplitude for one particular reaction, and then substitute 

this into the helicity constraint equations derived from the 

supersymmetry, so obtaining asymptotic forms for amplitudes of several 

related reactions in the same process, but with different spin 

components. 	This could for example be done directly, in the case 

study to be treated in the next section. 

There is another approach to the implications of supersymmetry 

for the high-energy behaviour of the amplitudes, which involves a 

somewhat stronger assumption than the above: we extend the analyticity 

postulates in a natural way, and assume that the S-matrix can be 

continued to complex superspin, j0 , with only isolated singularities 85  

We shall also assume that the above identifications, such as (from 

Eqs. (4.48) and (4.50)): 

( 2,j + I ) A AA 03 	= (2j + 1 )2 ,hg- 	(i+i,$) Fx1x,(i+=, 

+ (23) 	 T.H.(j-i,c) 
	

(4.51) 

(ki t %) A (i, s) = (2,i +1Y Js To (,1,$) 
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continue to be valid. 	Thus the analyticity postulate applies in 

particular to continuation in complex angular momentum. 	This may 

be performed separately, for each combination of spins in the process, 

by established techniques 
86
. 	Supersymmetry then demands that all 

of these continued amplitudes be given in terms of a small number 

of supersymmetric amplitudes. 

Thus, in the example of Eq. (4.51), the leading singularities 

of Ti4 (Jo, s) 	dominate the high-energy behaviour in the 

crossed channels of both 	A(.i, s) 	and I1x3x,(j,$) 	. 	For 

example , a pole at 	jo  = u°  (s)will generate, in /1/4(j,$) , 

a dependence dr: t c(°(5.)  and will occur in 	r6■ ),,(j,$) when j f Z = Deo(5), 

(s) 
giving a dependence of t d. 

	
A "super-Regge-trajectory" 

oc (s) 	in general corresponds therefore to ordinary Regge 

trajectories ,.(0(51 and Dc,(s)-±i, and the residues of the various 

contributions would be given in terms of the residue of 1-(k.(s),5). 

It is clear from these examples that there is a need to 

give a more thorough treatment of the complex superspin formalism, 

for application to these questions of high-energy behaviour. 	Once 

again, we must pass over this subject here, leaving it as an area 

for future development. 

It should be pointed out that recent work on the high- 

energy behaviour of the Wess-Zumino model 87  indicates that the leading 

singularity is not a simple pole. 	Nevertheless the effect of super- 

symmetry is still to tie together the asymptotic behaviour of the 

various spin channels. 	However, it may be that in a gauge theory 

88,89  model 
88,

Regge pole behaviour will be reinstated also in the 

supersymmetric case. 
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4.5 Case Study: Three Point Couplings for Zero Superspin  

In this section we shall illustrate the foregoing general 

discuss ion by working out in detail some of the supersymmetric 

constraints. 	The simplest case is that of a superspin zero 

multiplet. 	According to Eq. (3. 4), for intrinsic parity no  = + the 

spin parity content must be 0.1, ji . 	We might therefore label 
cr 

— the weight diagram 	t■I . 	Since we are considering supersymmetry 

alone, with internal symmetry only as a direct product, for comparison 

with experiment we should for consistency consider the labels 

to refer to the entire SU(3) octets to which 

these particles belong, rather than the particles themselves. 

Another possible supermultiplet, again with SU(3) octets, might 

be the jerl' = 22:7  case rz 	Nt41 	e , 	where N' is one of the 

15-0o ) 	octets. 	However, such multiplets can never 

mix decuplets and octets. 	Thus a realistic comparison of super- 

symmetry with experiment must await a satisfactory solution of the 

problem of incorporating supersymmetry and internal symmetry 

(see Sec. 3.5). 	The main point here is to see the power of the 

assumption that the scattering process preserves supersymmetry. 

We therefore take as our example the three-point couplings 

of the 	• 	N 	supermultiplet. 	Of course, since we have not 

introduced any mass breaking, the processes 1-> 2 + 3 cannot be 

regarded as physical: the particles 2 and 3 are off mass-shell 

with cosh 	= z . 

According to the amplitude count given in the last section 

(Table 3.2), for this case there should be 16 independent reduced 

partial-wave amplitudes, including conservation of total angular 

momentum and parity. 	However only one supermultiplet is involved, 

so the symmetry between particles 2 and 3 reduces this to altogether 

7 reduced couplings g231(s). 	The independent helicity amplitudes 
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in the spin parity basis are given in Table 4.3 together with their 

reduced forms with the angular dependence made explicit. 	Some 

constraints arising from parity (P), conservation of total angular 

momentum (J) and 2 0 3 symmetry (s) are also given. 

Also according to Table 4.1, for this case there should 

be just one supersymmetric reduced partial-wave amplitude, if parity 

is conserved. 	This is indeed the case: the 2-particle states 

; 	0> 	couple only to jo  = o ---- ic 	so the corresponding 

Clebsch-Gordan coefficients must be of the form ti-2-1-3 1 -1-qja t+'+1:,,, 

with 	le = 0= 0 - 0 + d 	. 	Thus, including parity 

(Eq. (4.39)), there is only one reduced supersymmetric amplitude, 

namely 	< 	1 T°(c) f1 > 	11 T c (5)11 > = 	G Cc) 	, say. 

The g231(s) are given uniquely by G(s) and some kinematical 

factors. 	The explicit relationships are given in Table 4.4. 	To 

derive this table, we simply write out the spin parity states in 

terms of the superhelicity states, using Eqs. (4.39) and (3.34). 

The latter are simply 	1 4-i > = 	, 	> 	— 1-4-> , 

and 	1 	> = 	(1-1- > -E i f > ) , 	for jo  = o. 	Thus, for 

example, 

	

< 221`0±17- 1--1`> = 	<+-1-1T1-1-> 

We then use Eqs. (4.30), (4.26), (A3.8) and Table 4.1. 	The angular 

functions { 	+ jo (o) 	simplify greatly for jo = o. 	For example cep( 

f-h -F- 3„(6) = 
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After carrying out this process, each helicity state is given in 

terms of G(s). 	The g231(s) (from Table 4.3)can then be directly 

compared with G(s), after cancelling off the angular dependence 

(the same from both the ordinary and the supersymmetric partial-

wave analysis). 
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Amplitude Reduced Form 
Independent 

Symmetry 
couplings 

<1.1  ii IT I °±› 

< ii -ii.  1 T 1 0 ± > 

<11-  0± IT i J.-L> 

<--i!.  0.1  1 T I 1122 1 > 

< 0±  C3 	I T 1 O+> 

< a+  a-  1 --r I 0-> 

< 0±a1 IT I o-  > 

<'' i 22-i ltA° 11 0±› 

4(e) <iiilligil o±> 

cfi  +,(0) <Ì   0-1  II Alll i> 
1 -2 

di', +1(0 <-.J.L0±  II Ai  11 1-> 
1-1 	2  

< 0± 01:  11A°  Il +> 

< o+.  a-  11 A°  11 - > 

< at 0± 11 Ac. ii -> 

1.1N cr  

	

9__' 
	- 
	±.- 	9++ Iv  

	

r...a. 	.1.ocr 

3.i.--- 	. 	.-4..- 	•rz 	0 

G- N 	/4 
9+' 

4 c.  g 
9:8C 	= 	± 9:4'4 

3
cr Ir 	

0 

	

a' 	'X It a' 
, 

	

wcw 	v.:, 
9 	= 	9 

a 

P 

P, 3 

P 

S 

P 

Table 4.3 Independent helicity amplitudes for three-
point couplings of a superspin-O multiplet 

Amplitude Reduced form 
Supersymmetri c 

form 

< ii  ill-Vo> 

+ 
< -1 	01 -rl±ii> 

01  of  I T 1 	01- > 

0+ (21-  IT I o-> 

c 9  ro, 
++ 

	

di 	(0) 	9 4' 
1-2 

	

1 	1  
a-cr 0.. g 7.17. 

9 
J-wv 

L ji.„ { - 	i v-,1,., r 	t  

	

col., v') 	6(s) 

f cosi" T j 
001±, (e ) ,ri t ...,t.r-tT 1 	.1 

2-  (I ±2- ) 	CI(S ) 
2 

G(s) 

f 6(s) 

Table 4.4 Comparison of ordinary and super-
symmetric reduced partial waves 
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5. STRUCTURE OF SUPERFIELDS  

The analysis of the structure of 	carried out in Secs. 

• 
3.1 and 3.3 applies to the irreducible representations in general, as 

well as to the UIR's, and so may be used in the finite-dimensional, 

non-unitary superfield representations (Sec. 2.2). This chapter is 

based upon this remark, and applies our formalism to analyse the 

structure of superfields, both in the massive and massless cases. 

The work extends and develops some of the ideas of Ref. 27. 

These ideas are explored firstly in Sec. 5.1 in the context 

A 
of "super-wavefunctions", which may be labelled yA 

Aga  03) , where 	, 

j and X are the parity, spin, and helicity, respectively (for 

given superspin, jo, and intrinsic parity, Ile, ), and A runs over a 

set of Lorentz indices appropriate to the various spins occurring. 

The method of Salam and Strathdee
18 

for constructing the super-wave-

functions is carried out explicitly for jo  = 0 and jo  = 2. In the 

latter case the super-wavefunction is .reducible, and its reduction 

is given. 

In Sec. 5.2 the reduction of a general massive scalar super-

field is reviewed
18
. It is shown that, if the superfield is rewritten 

in a basis in which the label o' is diagonal (with 8 , 98 , 	, 

.... replaced by cr-eigenfunctions 12 pa- (0) ), it is already in 

manifestly reduced form. This process is viewed in the light of the 

weight diagrams (Sec. 3.1) whose nodes are labelled by the correspond-

ing component fields. It is shown how this procedure naturally 

generalizes to the case of higher-spin superfields, and one example 

is given. 

Massless superfields are investigated in Sec. 5.3. Two 
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cases arise, depending upon whether the triviality condition ps = 0 

acting on the superfield (ensuring the correct physical helicity 

components: Sec. 3.3) is satisfied. If not, then it must be 

implemented via gauge invariance of the corresponding M-function. 

The required property of the M -function, and the supersymmetric form 

of the corresponding gauge transformations, are worked out explicitly 

for the case of the massless, non-chiral superfield 	0) 

Some properties of spin-i and -1 helicity projectors, needed 

in this analysis, are collected in Sec. A6. 
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5.1 Super-Wavefunctions  

A superfield d5(,c,e) (Sec. 2.2) provides a finite-

dimensional, non-unitary representation of the supersymmetry algebra. 

It may be reduced into its component fields (of different spins and 

parities) and each of these must similarly be associated with a finite-

dimensional non-unitary irreducible representation of the Poincal4 

group. As we found in Sec. 3.4, momentum states (of the field) could 

be labelled in the massive case by their spins, parities, and helicities 

in the form 1 pa>o , jo, no  ; j IX), where jo  is the superspin, qo  

the intrinsic parity of the superfield, j = jo  or jot 	and 

=(-1)±1'fl PI O  , where kr! = 	j--,3„1 (we treat here only the massive 

case, and defer the massless case until Sec. 5.3). Therefore, for 

each of the component fields, say 1p,,(y) , where m is the label of 

the finite-dimensional representation, we can associate a momentum- 

space wavefunction 

1 3 
c (I) ) = <0  1%,(0 ) Ir> 0  io n() ) 17 J >. 

(5.1) 

By the super-wavefunction 	d5'1," A  (19) 	we shall mean the set of all 

such wavefunctions, where PI j A runs over all the spin components, 

and A runs over all the corresponding finite-dimensional representations 

(such that "T AW =o unless A belongs to the index set of the spin-

j component). 

There is an alternative means of defining the super-wave-

function as a function of e , 

crj X  
( P, 0 ) 	= < 01 :cf (0 , 0 )113'.> 0,j, ') P cr jA >, (5.2) 
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which is a function only of our wavefunction 11),(17) since the 

spin-j momentum states will be orthogonal to any other components 

created by the superfield cl5 . We do not use this definition here 

because the spin transformation properties are obscured by the 0 -

dependence. However, this wavefunction is appropriate for discussing 

the reduction of superfields in thecr-basis (c.f. Sec. 5.2). 

As we expect, on the super-wavefunction k(P) we have a 

finite-dimensional representation of supersymmetry: 

E ---e 
Ct(t)) e 	= 	DA  1(0 (-§(13) 

t s , 	) 1 	= 	a )t: ec s 	
(5.3) 

We begin our study of the finite-dimensional representations with 

these super-wavefunctions, rather than the superfields. 

It might be asked here whether or not the spin composition 

of the superfields should be the same as for the UIR's. For fixed p, 

t 
the finite-dimensional matrices (S.,JA  are irreducible representations 

of the Clifford algebra of the generators SS  , which for p A 0 is 

simple (Sec. 2.1). Therefore by the theorem of Wey146  it follows 

that there is a unique finite-dimensional irreducible representation, 

which is the one already used in the construction of the ( (7'- > 0, jj 

	

UIR's of the supersymmetry algebra AS 	(Sec. 3.2). Where parity is 

included (as it is in the sequel) this is no longer the case. This is 

illustrated below for the jo  = 2 case (the so-called "vector" super-

field18). 

As in the case of ordinary wavefunctions, there is 

considerable freedom as to what sort of finite dimensional represent- 
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ations may be used and grouped together into a super-wavefunction. 

The most economical choice9°  involves (2J + 1) -component spinor 

representations D(J,o) of the Poincare group SL ( 2 , C). We shall 

briefly describe how to construct such superwavefunctions using the 

general method of Salam and Strathdee
18
. The method is to compute 

the change in one particular spin component under a supertranslation 

of the whole super-wavefunction. This introduces in the original 

component an admixture of other components, whose spins and wave-

functions may be deduced by covariance considerations. The procedure 

is repeated for these new components until all the participating 

wavefunctions have been found. 

For this analysis it is necessary to treat the supertrans-

lations Spz  as a pair of Weyl spinors So_ and Si,, where 0,,a. = 

The algebra of the supertranslations in the Weyl basis is given in 

Sec. A2. In particular, the Majorana constraint becomes c% = Eat;(S th. 

Thus suppose the superwavefunction ti has a component 

-gm  of spin -J0, belonging to the D(Jo,o) representation, where 

ht = 	. Let us suppose that 7D„ is a "vacuum" 

state for S a  , in the sense that 

M. In = 0 
(5.4) 

Now consider sipm. = 	(f)),, under a supertranslation by Sc, . The 

right-hand side must transform as direct product of spins, 2  x Jo, 

so we have 

(ScA 	= < a 70  111-1 	I1 > Uµ f <i a Tc l,,t3 iM7 VM  

(5.5) 
where Uµ  = < 	a To  hi,),8),,and similarly for 11;4  . Here the 
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<cro  ± 	i a 7;m>are Clebsch-Gordan coefficients. Thus by 

considering the spin-J0  component of S6, we learn that ,1) contains 

components of spins J0 ± Z. Considering in turn these components, we 

have 

	

(Sa. ,cD ) t, = < 	 1̂."> lab Ym- 
	

(5.6) 

Sc, II) 	= < To+i hl Ii b  To 	> E0A, X,,,/ 	(5.7) 

where 7e,,,  = 	S afet 6 S6 (15  Lvt' , 	-70 	, To  . The E j, tensor 

arises again because { s,,sb } p. For the same reason, there is no 

S.X component of .S,A : 

	

(SA ) 	= 0 . 
(5.8) 

The simplest example of this process arises when we start 

with a scalar component of the superwavefunctions, say A. Then we 

have simply 

= 0 

(sa -T! )„ 	4. 

(sad ) 6  = 
	

B 

(sa_Cs = 0 
	 (5.9) 

Here the wavefunction is simply 	= {A,th, B/ : the so-called 

"chiral scalar" superfield18. 

Returning to the general case, Eqs. (5.5) to (5.8) give the 

matrix elements of 	acting on the superwavefunction {(JIA ,A4„,?6,,,V,A 1 

where the components have spins J
o 	

J
o' 

J
o' 

and Jo 
 
+Z. +. The super- 

wavefunction is irreducible, with 4 (2J0  + 1) components. By 

comparison with Sec. 3.3, we see that this method of construction 

parallels the construction of a UIR of supersymmetry for superspin -J0, 
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by the induced representation method. 

We could easily write down the matrix elements of Skin this 

basis, by using the definitions of the various components Of II given 

above, and using the algebra of Eq. (A2.6). 

If we consider representations including parity, we must 

adjoin the conjugate wavefunction 	, WA, X g„,,14,1, If we assume 

that the 1P compoennt has a parity factor i.11, , so that 

(5.10) 

then by considering the transformation properties under SA , in the 

same way as above (with U2  SaUff i= 	(Eq. (A2.7)), then we find 

that the spin and parity content must be 	, (J0 	, 

just as in Sec.3.3. The dimension of the parity-doubled represent-

ation is 8(2J
o
+1). As mentioned above, this may be reducible. 

Using the super-wavefunction formalism, we could also 

develop antl-function approach to supersymmetric scattering ampli-

tudes. Thus we could write in general 

<-f S 	; 	> = K- A c15:3A (p) 	
(5.11) 

We shall not pursue this idea further here. However, the notion will 

be used in Sec. 5.3 below when we consider the massless superfield. 

The multispinor superwavefunctions considered above, while 

economical, are not usually the ones encountered in association with 

superfields. We should also consider superwavefunctions constructed 

by the above method from reducible component fields, containing for 

example a wavefunction 11),,A belonging to a representation D(Ti,u1) 

of SL( 2,c). 

U 11) p tn. U R 	 1)A , 
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As an example of this, we give here an explicit construction 

of a superwavefunction P containing a 2-component spinor a , but 

with (Sa.(E)b= 0  . In this case we shall see explicitly how parity-

doubling may be avoided. 

It is straightforward to write down the matrix elements 

of S0.and Sa in this basis, using the construction given above. We 

have simply (c.f. Sec.A2) 

SG t-Pb = Vitig 	 SalP6 = a 

Sa Vgb 	E au  )( 6 	SaVlib = 	(1- crE ) at; 1.4 

Sa  K b  = 0 	SeL 2C (i''Gr) at; V 	, 	(5.12) 

an 8-dimensional representation in terms of components (1)0. ,Ya., Vac, /. 
If parity is included, then corresponding to Eq.(5.12) we 

introduce another 8-dimensional representation in terms of (conjugate) 

components tit)a,Xia , vaa } . Let us suppose that, under parity, 

the 111) component transforms as 

	

i? 	U; 1 	(WO 	
(5.13) 

with parity factor i.ri o  (we assume here that the components will 

transform as their corresponding fields). If 	U S a  U -1?-1  = 	Sa 

holds in this representation, it is obvious from the definitions of V 

and 'X (eqs. (5.12)) that 

	

UR' 	 = — (110 
-1 

and 	U Vai, U 	 = 	VeL6iP 

We may write the components Va6A6 in the forms 

(5.14) 

Vila r. 	, 	Vc,a 	(vro- E ) . 
r 	cua . 

(5.15) 

Then using Eq. (5.14) we have alternatively 
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14 u;i  = -10  Co' 	
(5.16) 

Thus, when parity is included, we have a 16-dimensional representation 

in terms of Dirac spinors 11/00; and (reducible) vectors V, Tit" . 

Moreover, if we assume (for example) that 	is Majorana, then so 

also is Y, 	and V and Vµ  are hermitean. 

The question arises as to whether this 16-dimensional 

representation is reducible. For example, we may try to relate the 

spinors Ali and X in some way, consistently with the transformation 

properties. For example, we may set 

-)C c, = 	X 	11) ri 
	

X 	= Rat, (1)t, 	
(5.17) 

thus enabling us to eliminate ›L d.  and Xa.  in favour of 11) . 

Examining :3, -)4 1,, from Eq. (5.12) and Sa. X.5  from its parity conjugate 

equation, we find that, for consistency, X 2 5( must be such that 

bE 	( 3.5-  )jt, 
and 

v t- 
Veo; A gc 	_ 	(P'cr )0.b Vgb 

i.e. 	)6Z 	- 

or 	X = 	±( ,. r) , X = 	P"75- ) . 	 (5.18) 

It is easy to see that these solu tions respect Eq. (5.14a). 

Having obtained ) in terms of 11) , we can immediately find 

V I, in terms of \It, . Substituting 	X = t (hr) into Eq. (5.18b) 

and using Eqs. (A1.1) and (A1.3) leads to 

. V = 	-± 1). 	V % = 

	

74: V 	± 	13Ci r 	r 

Finally, we may always write V, V in terms of a scalar and a divergence- 

free vector. We find, for 	X = ± (p.(7), 



Ar-rA*t,)a); 

0 

Si,. A = 	a  

s.oP b  = - A" + rik) (Ffr E) &t, 

Saab   = 0 
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A v, 	Pr  A 

V 	A + a r)r. A, 

(5.19) 

where 	13. A = 	0, 

respectively. The spin parity content, for X = ±(17.(7) , is 

therefore 

(5.20) 

Thus we have shown how the 16-dimensional parity-doubled 

m i-) 
system, Eqs. (5.12) reduces to two equivalent systems, say CYO 	, by 

means of the decomposition 

111; 	
(.+) 

11) 	
+ 1.1) 

2C = (t). - )11(*)  — (P.cr)V-)  

= 	+ 	( A t, - 	
(71 

) 	( 	A(-) ) 
(4-) 

VI„ 	 A(11:' ) + 	p r  ( A(4)  + 	) 	
(5.21) 

Finally, we write out the complete set of transformations of 

the super-wavefunction 	, for the case X = -12-0- qj, in the 

r )ik = 	f A,1,An  1 basis 

= 	0 4-10 	I. 	c 	I 110  I 	( jo  = 2 

S, A r 	(pt, - 	17:51.6 4/6 	5a A t, = l  pIH -± 	l'- cr)Ag 4 ki . 

(5.22) 
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Comparisons with Eqs. (4.30b) of the next section shows that these 

transformations are precisely those in the Weyl basis of the "vector 

supermultiplet" 	which occurs in the reduction of the general 

scalar superfield. 

This example shows explicitly how the parity-doubling which 

is generally necessary for the super-wavefunctions, may be avoided in 

some cases. 
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5.2 Massive Superfields  

Armed with our findings of the previous section concerning 

the superwavefunctions, we can now take up the study of massive super-

fields. The concept of a superfield as a function over an 8-dimension-

al manifold (-xe,ea ) was introduced in Sec. 2.2. Thus a scalar 

superfield I.(1(,19) may be written as a polynomial in the a-number 

Majorana spinor ea  , whose coefficients are ordinary fields18: 

(-x, 	= A + 9LI) 4  :if @( F Y56  1- "0510 

2- 6e -6X + A 736 2-  D 4 
(5.23) 

On such a function the supertranslations S.4  have a differential 

representation (Eq. (2.20)): 

{ Svc 	(1(1 	= 	 "ce 	(,() a ) 
' 	(5.24) 

where 

From Eq. (5.23) it can be seen that a general scalar super-

field provides a 16-dimensional representation of the supersymmetry 

algebra, and (in view of the discussion of the previous section) may 

be reducible. It was, in fact, shown by Salam and Strathdee18'91'92  

that one can define "covariant derivative" operators 

(5.25) 

which anticommute with the S',e, and satisfy an algebra isomorphic to 

that of the S',4  , Eq. (3.1). From the Da one can construct three 

orthogonal projection operators
18
, 
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E 4 	 -1) D r, 

E 	I — (Z3)-2.(--5Dr 	 (5.26) 

and hence decompose d(y, e) in an invariant manner into three 

irreducible parts 	5±(x,e) and GT),(x,e) : 

(D.± 	e) = A} (x) + 60)±(x) + de* F 

4ec YrYc & 1:61̀ A + 	(60)1(a)1p, , 

(x, ) = 	A, (x) ) 	-dck 	6 1:Yr Ys- Aft' 

+ ?Fe .45TSt-i), — A(ee)' (6)' A, 

where 	Lmar = 0 	 (5.27) 

Salam and Strathdee
18 

showed that necessary and sufficient conditions 

for the fields to be eigenfunctions of the projection operators are 

given by the supplementary conditions 

D±x 	(*x, e ) 

and 
	

512)± (Di  ( x, e- ) = c) 	 (5.28) 

The 	x  (x, G) are called the chiral supermultiplets, and the 	d i(x,e) 

the non-chiral, or vector, supermultiplet. 

The transformation properties of the components of 	and 

under supertranslations can be found by using Eq. (5.24), and the 

rules for the differentiation of anticommuting quantities (Eq. (2.19)). 

If we write the components as 

= 	A ±  , 1±13  

(C) 
	

A 	 14.111; , A ir 	
(5.29) 

then the transformations may be written ( £3 = O F,) 
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(SAO, = 	, ( F± .V/k&) Ca( , 

(s, (II) 	= t 1.1)1. „ i(gAl 	L,; 	) Cap  , 0(5 (1)1.-- Yrif) tPla 
(5.30) 

They have already been given, as examples of irreducible super-wave-

functions, in the last section, Eqs. (5.9) and (5.22), respectively. 

Notice that, in the Weyl basis, the conditions (5.28) mean 

that 6+  , k_ is a function only of ea  , 6„ respectively. This 

is perhaps not surprising in view of the manner in which Eqs. (5.9) 

were constructed. 

If we assume that 45(x,e) has intrinsic parity Ito  , say 

(c.f. Eq. (A2.4)) 

o f?  Cx,e) 	= 	(1( T-x, 	
(5.31) 

then we find 	
4 (X, e ) 
	

ho 	(TN, zY, o) 

and 
	UP 	(x, ) U1?-1  = 	 oioe . 

Thus under parity the irreducible multiplets are 6, 	, and 	1. 

By considering LPt  = AI  + -64 	...., we deduce that the correct 

spin parity assignment is 	((00, VI., 1 10  ) 	, as already 

observed in the last section (Eqs. (5.20) and (5.22)). 

In the previous section it was explained (and we found in 

practice) that the same spin composition is expedted for the finite-

dimensional representations of supersymmetry, namely, the massive 

superfields, as for the massive UIR's of Secs. 3.1 and 3.2. In Sec. 

3.1 it was seen how this structure could be conveniently represented 

for the massive case by means of a two-dimensional weight diagram 

giving a plot of the weights (T, j) participating in a UIR. In 
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view of the above remark, we might also expect to be able to represent 

the structure of superfields by means of weight diagrams. 

The first step is to discover which parts of the superfields 

are eigenfunctions of the operator (a)-I 	(Eq. (3.3)), 

Cc-N -2. 3'1 Y r  , 	 = 	5(1,0)-` ys_a 4 4  8 (CO)Wy e 	= 0-a2 

with a" = 	. For an arbitrary field ai(x,0) it is easy to 

verify that there are 9 different possible eigenfunctions. Each of 

these has the form of a polynomial in 8 , multiplied by a single 

arbitrary function of x (c.f. Eq. (5.2)). For polynomials of lowest 

order 17 . 0, 1, 2 , we can find in each case eigenfunctions with 

cr = o f 1  . We can therefore label the 6 -eigenfunctions as 12 cr (0). 

The normalized eigenfunctions are given in Table 5.1 (the arbitrary 

function of x is taken to be a constant). 

L 	
. 

0 fi 00  (0 ) 	--= i + tz 001 62-  1).„(01 	= I -i 1  UPs a —1211elai  

I A to (4) = 6 - :-I O0 6 ,:$ :(L i (e)r. (IT* 4 50 -6,-.0)r4._ 

a .Rio n) _-,. -:--1 -6iI14 15 0 112+ 01 	= 	* 6G.T. 

Table 5.1 Normalized 12. (0) Eigenfunctions. 
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The functions it k.(6) are in 1-to-1 correspondence with 

the 8 independent monomials 1, 	, 09 	, 	'0  8 , Ba Y5  6 	, 
60 0 and (60)2  which can be constructed from 19,‹  and Z.e.  , 

and which in Eq. (5.23) are used as a basis for the Grassmann algebra 

of the a-number Majorana spinor 8 (Here matrix multiplication of the 

spinor (fermion) monomials merely redefines the spinor coefficient by 

a matrix factor, so we are counting iii4 	as one function 11,(0) ). 

Therefore we may just as well expand any superfield in terms of the 

1/  
Pa- (0) basis, with suitable coefficient fields. Table 5.1 implies 

that these new fields will be related to the old fields, Eq. (5.23), 

by a nonsingular (but possibly nonlocal18) basis !transformation. We 

may in any case write 

( 1( , = 12- 0+(e) A+ 	) + ► (0)  1'4- (x)  Ra.-(a) F4 (%) 

si o_(&) 	ik_ (-A) 4 _R („($)tIL-(%) 11„(0) F_(x) 

4 _act, (6) 	A, (x ) * 2, (e) 4)(  (x) + SLtlo  (0) 	(x) 

where 
	

= 0 	 (5.32) 

Comparison with Eq. (5.27) shows that, written in the lip, basis, 

the scalar superfield '(x,0) is already in completely reduced form. 

The chiral supermultiplets 6, are associated with the 	± 210-1 

eigenfunctions, and the non-chiral supermultiplet with the 
	= 

eigenfunctions, with 	1,51 = 	(c.f. Sec. 3.2). 

We can immediately write down the weight diagram for the 

scalar superfield, giving the values of the weights 0,T) which 

participate, and labelling each weight with the associated component 

field. This is given in Fig. 5.1. 
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0 

Fig. 5.1 Weight Diagram for Scalar Superfield. 

O'Raifeartaigh31  has discussed similar weight diagrams for 

superfields. However, those diagrams involve only the order in 

of the various monomial coefficients of the fields. As such, the 

structure is not so transparent as with the (j, tr) weight diagrams. 

It is worth noticing also that the tensor calculus
31 

of 

superfields, for example the question of reducing the product of super-

fields, can profitably be carried out in the 12(8) basis, using 

their multiplication table; for example, 

ata(0)ii(e) 	2(z0)-'1L co  -(0n1„ -(0)-4.110_ - 11„ - 

Thus it is evident that the subsets 1/0t  , 111,,r., 	and 12_ 1.t  are 

bases for two subspaces of the complete algebra which are closed under 

multiplication: the products of chiral superfields are again chiral 

superfields. 

The use of the SLp, basis is obviously not restricted to 

the scalar superfield case. Higher-spin superfields have, in fact, 

received much attention in the literature20'93-99. In the present 

approach, a superfield 6A (y, ) of arbitrary spin (where A labels 

an arbitrary representation, possibly reducible, of SL(2,0 	may 

still be written in the 2p, (e) basis, as in Eq. (5.32), with 
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components labelled in exactly the same way. The problem is simply 

to decompose the reducible representations A , c(A 	and IAA , in 

each specific case. The irreducible supermultiplets are found by 

inspection, after drawing the weight diagram and labelling each point 

(j, r) by the component carrying that particular value of spin. For 

each component AY) 	of spin-J, there will be a pair of chiral- 

type supermultiplets 	C 01 , and for 
non- 

each component w 	of spin-J, there will be a /Chiral-type 

supermultiplet 	6(7)  -1 	, in each case with superspin equal to J. 

The observation that there is a lowest weight uniquely associated with 

each irreducible supermultiplet was made by O'Raifeartaigh31, and is 

implicit in the discussion of superwavefunctions given by Salam and 

Strathdee
18
. 

An elegant higher-spin formalism for superfields which 

illustrates the above remarks has been developed by Sokatchev
99
. We 

conclude our study of the massive superfields with a brief review of 

this work. 

It is straightforward to verify that the scalar superfield, 

while reducible as a representation of the supersymmetry algebra 4 

is irreducible as a representation of the larger algebra 4= generated 

by Sa  and the covariant derivatives Da  which anticommute with them. 

The projection operators (Eqs. (5.26)) then project onto eigenstates 

of the invariants of 	(including the superspin) which can be 

constructed in °1- 

By the Fock space method of Sec. 3.218, it transpires that 

arbitrary irreducible representations of 51(- (of which the scalar 

superfield is the simplest case) are labelled by a spin Y0 = 0 , i , I , • • • , 
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containing superspins T, = 	, 	, Yo  , 	+ i 	(with another 

degeneracy label, 	). Furthermore, the spin X, 	just 

corresponds to the external spin of the superfield: thus such an 

irreducible representation may be realized for example as a Rarita-

Schwinger superfield of, spin- Y0  , 15w.. ),4)(1t, a) or ki_p0,4(c0). 

Also, just as in the scalar superfield case, the projections onto the 

irreducible supermultiplets prove to be equivalent to (in general) 

much simpler supplementary conditions on the superfields. 

The weight diagram for this case is given in Fig. 5.2. As 

can be expected in the light of the above discussion, here the super- 

field d (,)  has one component of 11)1,(1).) of spin Yo 	, and 

one of spin Yo  F i , corresponding to the two vector-type super- 

multiplets; and a pair of components 	AI(E,t) of spin - Yo  , giving 

the two chiral supermultiplets. 

2. 

 

 

 

Fig. 5.2 Rarita-Schwinger Superfield of Spin -Yo. 
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5.3 Massless Superfields  

In our partial treatment in Sec. 3.3 of the representations 

of the supersymmetry algebra, ,d , in the lightlike case, we found 

all the massless UIR's, that is, those with components which are 

physical massless particles. For the latter, there is the require-

ment that the noncompact Euclidean group generators be trivially 

represented, so as to ensure that the helicity A becomes an 

invariant (Eq. (3.37)) 

W 	= A P 
	

(5.33) 

The condition (Eq. (3.38)) 

S = 0 	
(5.34) 

was then found to be necessary for (5.33). In this case there is 

only one independent supertranslation generator, and its conjugate. 

The UIR's were therefore found to contain only two different spin 

sectors, with invariant helicities ) 	and A. 

When we turn to the finite dimensional representations 

(superfields) in the massless case, we must obtain the same spin 

content as for the UIR's. Now, with ordinary massless fields, this 

can be ensured in two distinct ways. The first way, the "gauge-

independent" method, is to choose the finite-dimensional represent-

ation of SL(2,C) carefully so that Eq. (5.33) is satisfied. An 

example of this is the electromagnetic tensor, Ft„ -- 1)(1,0) 	73(0,1). 

In the second, or "gauge-dependent" way, when Eq. (5.33) is not 

satisfied, the field is defined only up to a "gauge transformation% 

which can be chosen to remove the unphysical components of the fields, 
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while the physical amplitudes remain gauge-invariant. For example, 

the electromagnetic vector potential is defined classically up to a 

gauge transformation cS-Ar, = 3r11 . It may happen, as well, that 

other components of the field are dependent variables, and can be 

eliminated: this is true for example of the gravitational metric 

tensor gt,,„(x) . 

In studying the supersymmetric massless case, we shall be 

able to find direct analogies for both of these methods. Eq. (5.34) 

takes the corresponding role to Eq. (5.33) in the ordinary case. 

Consider firstly massless superfields, all of whose 

components are gauge-independent in the sense described above. Thus 

necessarily Eq. (5.34) holds, or, in the superfield representation 

(Eq. (5.3)) 

g. (,x, 0 ) = 0 
(5.35) 

This condition is Lorentz-covariant. Applying an infinitesimal 

supertranslation, 

u(E)-'03 di(lce)u(E) = (Afs 	:: r-E) cP.x,e) t o(E-) 

so that it is also supercovariant provided P2. o . Moreover, it 

commutes with the supplementary conditions, Eqs. (5.28), in the 10,4  , 

which project out the irreducible parts of a superfield. 

We turn for examples to the chiral scalar supermultiplets 

and the vector supermultiplet a21  , treating these as massless, 

gauge-independent superfields, and imposing the condition (5.35). The 

action of supertranslations on their components is given in Eqs. (5.29) 

and (5.30). 

Strictly speaking, the separation of 6 into ofi±  and C.  

cannot be performed for arbitrary superfields 4 in the P-11= 0 case: 



134 

in making such a separation, we are assuming that the field is 

already "locally reducible" in the sense of Ref. 18. However, our 

results are not essentially affected by this specialization. 

For the chiral supermultiplets we find that Eq. (5.35) 

implies 

0 (1)+ = 0 	F 	, 	a2-  (4) 	= o= 	27‘ 

and 	a., (7,-, e) = A ± + e t  t 4ecYt,y5-4nr- A ±  • 
	(5.36) 

For the vector supermultiplet we find that Eq. (5.35) implies 

= 0 , Alt, = c aµ  x t 	= 0 = 	, 	
(5.37) 

whence, defining A1± 	X,) , we find 4, .43„, 	where it), 

is as in Eq. (5.36). Thus in both cases, the irreducible, gauge- 

independent massless superfields are of chiral type, 	or 4 2 4 .1_ 

and contain a pair of free, massless fields (A 	. 

We can introduce weight diagrams for these superfields in 

the same way as for the massive case in the previous section. Here 

the weights are of the form (?,, v) , where v=i- i is the eigen- 

value of 2 r  = t4 P 	(Sec. 3.3). There are now only four basis 

functions, w o,(e) 	, where p =0,1 . These are given in Table 5.2. 

P v= ±i 

o wol  (e) , 	1 _T 4 ZiOce 

Table 5.2 
	

0-1 09 (e) Eigenfunctions for IS = 0 . 
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When 	=0 , the supertranslations act effectively on a 

4-dimensional space of a single a-number 0 , and its conjugate 6 , 

with basis i , 0 	, DQ . The coov(e) 	eigenfunctions are in 

one to one correspondence with these, so any gauge-independent super-

field may be expanded in terms of them. For example, for the case 

of the general scalar superfield, we have from the above 

	

= 41+ 4  - 	(1.1+ +  

where each massless chiral part is in reduced form, 

	

(P± = 630+  ( e ) A 	c734 	1 	
(5.38) 

The weight diagram for this case, labelled by the components, is 

given in Fig. 5.3 below. 

V 

 

 

2- 

1 

  

_ 
2. 

O 

Fig. 5.3 Weight Diagram for Gauge-Independent, 
Massless Scalar Superfield. 

We now take up the case where at least one component of the 

massless superfield is gauge dependent. Here the condition YS 	= 

cannot be imposed directly, but it is still implemented through the 
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gauge invariance of the amplitudes. Specifically, suppose that these 

are expressed in terms of M-functions multiplying external super-

wavefunctions (Eq. (5.11)), 

<-4 I s ipin > = A A 4.- ,11  A  ( la ) 

Condider the change SIA 	in ./ A  induced by an infinitesimal super- 

translation by ZjfE 	. To guarantee Eq. (5.34) and thus the correct 

components of the superfield, we should have 

MA sa A  = 
O 

(5.39) 

This will impose certain constraints on AA
A 
, but such that the 

amplitudes are invariant with respect to a larger class of transformations, 

(5.40) 

of the external super-wavefuncticn. It is these that we shall identify 

as the gauge transformations of the corresponding superfields. 

The simplest example of a gauge-dependent I(x,e) is the 

massless vector supermultiplet, Eq. (5.27). The action of super-

translations on the components is given by (Eqs. (5.29), (5.30)) 

415„C d510  , di5,g 	) 	= 	, 	P-A, --- 0 

(Sp, 	), = ( 	± 	+ Z.,9(Ss-)cp 	115( p t, 	) . 
(5.41) 

Let us examine in more detail the way in which the different 

helicity components of the fields transform under the S±,‹  in the 

massless case. We can do this by using the helicity projectors rn, 

and TI°, 112  ( K 	= ±) for spins i and 1, respectively. 



(K 1 
s ± opt 4)(4  

( s 	) (01 

i r (,v 17 pc ) 

-7- a (1.0 + 	,ri ) *IT a 
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The helicity - ± 	component of a massless spinor is just the 

chiral component, 

while for a vector ( k 	k ) 

A() 
	

— I •A ± i x A 

and 
	(o) = 

The projectors are introduced in Sec. A6, and some of their important 

algebraic properties are summarized there. 

Using these projectors, and especially Eq. (A6.3b), we may 

rewrite the transformations of 	z  as 

• ( 	4. .4 (13  ,) 0 	= 

(5.42) 

It is important to note here that, since we could be applying these 

considerations to interacting fields, we do not impose equations of 

motion on the components. 

Thus from Eqs. (5.42b,d) we have 

(s1 °b-  )(I)  = 0 = 
(S+ 

9(  	

,T, %(*) 
Jf 	 ) 	# o # s*  1 5  )(1)  -  

(5.43) 
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This suggests (c.f. Eqs. (5.22b,g) and Fig. 5.3) that possible 

candidates for the irreducible massless constituents of 81  are the 

pairs 	= 	, e/ ). Unfortunately under S± 	the 

other components A and e of 	1  also pick up parts (depending 

upon 1..T. and 144 , respectively), and the system does not close on 

the 	parts. It is the role of the gauge dependence of c to 

remove the unwanted components. 

Following Eqs. (5.39) and (5.40) consider the change Sal  

of k under an infinitesimal supertranslation by 17,V€ 	. Firstly 

note that from Eq. (5.4) the components A , ei  do not contribute 

to &11  . Further, suppose that c% contains in addition only the 4-25_, 

+1 helicity states. Then from Eq. (5.41), using Eqs. (A6.3), we have 

	

(1.1 	= 	( 0 , w, _ , A(1+' ) 

( S 	 ) 	( K , 11+  X , 	) 

where 	X ---- 	, 	= 	(A(-1-)- c-(-) C.) - 	(5.44) 

Thus substituting Eq. (5.44) into Eq. (5.39), theiA -function (M) = 

(At°, NO, AA A ) must be such that 

( 	1)1  ) X 	+ 	me<  ( r+  ) 	= 0 	
(5.45) 

Moreover, since this equation is to be super-covariant, the individual 

coefficients must vanish. Thus 

(5.46) 

But this means that the amplitude is invariant for any transformation 

eDA -I- )(A  , where XA  has the form of Eq. (5.44b), but 
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where X and X. are now arbitrary. A similar set of gauge trans- 

formations is found for the 	
.41- 

- component, involving 

of the same form as (5.44b) but with the opposite sign of br  X . 

It only remains to transpose the above findings back into 

the language of superfields. The conclusion is that the massless 

T a ) 
vector supermultiplet contains irreducible, gauge-dependent parts (pi  , 

the condition (5.34) being ensured by invariance of the amplitudes 

under the gauge transformations 

--> 
if (5.47) 

where 	(.11 	
Ps(-1  * 647. 	iii.V15,61C 	+ 1-1  -66 4fty74-. 

and 
	

* bxt, ± 4 bcosexl, 4 	-64f x,± , (5.48) 

so 	ki  -> A, 	+ x,, 

	

al 	(E) A II, 	A Ir 	± b 
Jr l= 

	

.,t 
	 + r± y 	

(5.49) 

where X. 	and Y are arbitrary. 

Note that the form Eq. (5.49) of gauge transformation is 

only supercovariant if 	AIJC1 + ---- 0 	. Thus the massless vector 

superfield is subject to gauge transformations 

(+- 	(T1 	
+ 	± 

where the gauge function X 	(lc e) 

massless chiral superfield. 

Under parity, the constituents 
x  (I I 

transform into one 

is an arbitrary (gauge-independent) 

another (Sec. 3.3). The massless vector supermultiplet -1 	is now 
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defined up to gauge transformations 

= X' + 7ci X + 	o E.VA )'4- 	x + ydo eX 

A i 	Ai  t X 

A lt&  —3 	A 	+ 1E,. X 

4)1-± 	.11)(-E 	r. 

(5.50) 

Thus in this case there exists a gauge in which Al . o 	, and the 

massless superfield manifestly involves only the physical components 

10, and A lt, , which are subject to the ordinary types of gauge 

transformations of massless fields. 

The weight diagram for the massless vector supermultiplet 

is given in Fig. 5.4 below. 

  

(1.) 
6, 

   

- 

 

0 

Fig. 5.4 Weight Diagram for Massless 
Vector Supermultiplet. 

The gauge fields which have been used in the literature
32
'
67 

in supersymmetric abelian and non abelian gauge theories bear some 
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resemblance to the case of g51  that we have studied here. There the 

gauge field is a (reducible) scalar superfield, but with gauge 

dependence such that in a special gauge (the "Wess-Zumino" gauge32) 

the superfield is left with components 

-T (x, 0) = q (TLy t,y5 p At" + 	ae +5Y5 X 	-6G2-1)s- 

so that 10(5(,0) is nilpotent, just as d51  is in the gauge with 

AI  = o 	. However, in the special gauge the physical components 

of l(x,e) are accompanied by a pseudoscalar auxiliary field, 

whereas the special gauge of di  contains only the physical 

components. 

The generalization of this work to higher-spin superfields 

is straightforward in principle. The general result survives that 

the only possible gauge-independent parts of a massless superfield 

are the massless chiral-type parts (Eq. (5.36)). It may be possible 

to utilize the chiral parts, instead of the non-chiral parts, as 

gauge fields, provided the external spin is at least one-half. Some 

attempts have already been made in this direction97'98 
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6. THE BETHE-SALPETER EQUATION IN  

SUPERFIELD THEORY  

In the preceding chapters we have used our formalism for the 

unitary representations to explore the consequences of supersymmetry 

as it applies to scattering amplitudes, partial wave analysis, and so 

on. In the present chapter we shall be concerned with another area 

where the power of supersymmetry in tying together many different pro- 

cesses is also manifest: the bound state problem. The primary vehicle 

for attempting a relativistically covariant description is provided by 

the Bethe-Salpeter equation, and here we deal with its supersymmetric 

generalization. The work to be described was developed from a study 

by Delbourgo
100 
 of supersymmetric composite states, and is based upon 

Ref. 29. 

Clearly it is quite impossible to classify all supersymmetric 

bound state equations, which depend both upon the interaction kernels 

used, and the participating fields. We shall therefore focus on a 

generalization of one of the simplest models, where the elementary 

fields are scalar, and the interaction corresponds to the exchange 

of a massless scalar: namely, the Wick-Cutkosky
101,102 

problem. Of 

course, even in this case, the supersymmetric version is far from trivial, 

since there are a great number of channels to contend with, all coup- 

led together by supersymmetry (Fig. 6.1). In this situation, it is 

mandatory to use the formalism of superfields, rather than treat the 

various components and coupled channels separately. 

Superfields were introduced in Sec; 2.2, and investigated in the 

last chapter. We shall not describe in detail here how they are applied 
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in supersymmetric models; further information is to be found, for 

example, in Ref. 18. 

For our model, then, we consider a theory involving only el- 

ementary scalar fields 	(-x,6). The potential which drives the dy- 

namics will also be assumed to be generated by the exchange of another 

scalar superfield X . Thus we take the Lagrangian 

ai ) = ;17 ( Tot) 	CD+  15D 	± 	DD (IS+  — rn- 	— 

.“51))( X +  ED X_ + 	X_ 15-1) X +  — 	- 

9(T D) .+L• x+ 	? x - )  (6.1) 

corresponding to two separate superscalars 	and )( of masses 'bi- and 

interacting trilinearly (D is the "covariant derivative", Eq. (5.25)). 

For pk. = o this is the supersymmetric generalization of the Wick-

Cutkosky model.. The methods we use are straightforwardly extended to 

other more intricate cases, which may include gauge vector superfields and 

more complicated kernels, so in that respect , ours is the prototype 

theory. 

In Sec. 6.1 the superfield equations for our model are set up, 

giving the reduced equationd for the Bethe-Salpeter wavefunctions, after 

all the extraneous kinematical factors have been extracted. In Sec. 6.2, 

the simplest case p = 0 is considered, and after choosing a special super-

symmetric representation for the bound states, valid in this case, the 

equations prove tractable. In the p. =0 limit it is found that the 

equations admit a continuum of possible eigenvalues of the coupling con-

stant 3 . This difficulty is familiar from studies of the fermion-anti-
fermion (Goldstein) composite problem

103
; the model does, indeed, in- 
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clude a two-fermion channel.(Fig. 6.1) The ambiguity is removed 

by other means.
103,104 

 Finally, in Sec. 6.3 some comments are made 

about the massive bound state problem. 

    

= 

 

+ 

 

    

+ + 

+ 
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+ 

 

       

       

       

Fig. 6.1 Typical coupled Bethe-Salpeter equations for the field com-
ponents in supersymmetric theories. The solid, broken and 
dotted lines represent respectively the Majorana fermion, 
physical scalars and auxiliary scalars. 
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6.1 The Bethe-Salpeter Wavefunctions for Superfields  

We are interested in the bound states IV> occurring in the (1)2- 

channel due to the exchange of the X field, and accordingly there are 

four kinds of Bethe-Salpeter wavefunction to be analysed, depending upon 

the chirality of the 4 fields (c.f. Eq.(5.1) ): 

, Xx 0, ) = <o I 	o,) 	1 	> 	 (6.2) 

The free propagators occurring in the Bethe-Salpeter kernel are105,106,107 

01 T DLL- (1(1 	 ei)] I 0 > = 	(1e10,, 7 A 0.) 

	

. 	9, Tir± e 	2s,(,e) 

	

<0 T [X-± (xt el) 	(1(2. G.)] ( e> 	E 	-:t 7{: ( 	, 

	

ex(, 	 5A5.8 	
(6.3) 

where 6 = ace, and x = -x, - x1  are the relative coordinates . The equations 

of motion are 

= 	2-rn, 	+ 29 (12-  
(6.4) 

and if we apply these to Eqs. (6.2) we arrive at the homogeneous 

Bethe-Salpeter equations 

	

ED, DDz -11±4.(1, 2-) = 4  (114-2 	e 	 0,2)  

151), 131:11 	t;  (1 	) = 	4 ( In!" 	91 A±ri. (1, 2)) CT.*.  (1,2.) 	(6.5) 

in an obviously abbreviated notation. The covariant derivatives appear-

ing here commute as usual with the supertransformations. 
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As they stand, Eqs. (6.5) are not very useful: we need to ex-

tract out all irrelevant kinematical factors from the P associated 
with the "centre of mass" variables. To do this, we recall the action of 

the supertranslations (Eq. (2.20)), 

ei(a 	+ ;is) 
C "a•P "Is) 	cD("x -A -iii158, 0-1) 

providing the representations 

If therefore we choose the coordinate transformations to be the mean 

values 

a - ) 

then we find 

407  2.) 	I (6( 	z 	e) 	(-i-x 	CE-voi,-149 

e
i((x.4- /c1)-P 	(1-5, -1-1-0S) 

I AD > 	 (6.6) 

Evidently our bound state is to be chosen as an eigenstate of total 

four-momentum p= h+ 1)1, and the action of 	is specified by the 

commutation rule (Eq. (3.1)) 

s, S= 	Ae 	 (6.7) 

Besides this,110 will carry a label corresponding to internal (relative) 

degrees of freedom, like the momentum difference 2i- 	. We 

shall attend to the choice of representation forlin the next sec-

tion; for the moment we merely assume that there is one, and leave 

it unspecified. From Eq. (6.6) it follows that each wavefunction oc- 
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curring in Eq. (6.5) must be of the factorized form 

((-‹, 4-.):1 	+ 	6),. +5,4- 4 .1s) 
( -xt 01, 7,0 ) = 	 W (.x ,9 ) 

where W is only a function of the relative variables x and 0 . We 

easily find that the covariant derivatives act on W as follows: 

(6.8) 

1)2_ 11) (1 ,2 ) 	= 	1( a 	t 	otst - s)) w 
(6.9) 

This permits us to investigate the chirality constraints, Eqs. (5.28), 

on the individual fields, and we obtain the conditions 

b +:--3 ,13(e)w±± = r:  ( OA -S)W±± = 

( a + 	'O T- )s5( e - s)) 	± 
	= 0 

(6.10) 

on the wavefunctions. The solutions of these equations lead to a 

further set of reduced wavefunctions with 

W ±± (-)( 9 ) 	= e -'`e'rice .1(+ do rIT  (s -0'0) lAr±± (x) 

- 5 	a. .7172;y s 5 

(6.11) 

The next step is to substitute Eqs. (6.11) and (6.3) into (6.5) to 

get the reduced equations (see Sec. A7, especially Eqs. (A7.1,2,3)). 

After some algebra one arrives at 

- 'D2  E+  (S, - ) 	(S, ) 1W±± = ( vij 	9tp- 	6.2.) lArk 

- 	(S, 	(S, 	) 14e-±7, = ( 	+ gig'- 	) 

(6.12) 
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where the operators E are defined by 

E.... (S, 3) = I + i -- cr'S.4. - .i(sVIS,,)2  + 	 -1,19'a -I S 	
(6.13) 

Eqs. (6.12) are the distillate of our work thus far and contain 

the essence of all the dynamics. 
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6.2 Zero-Momentum Bound States  

So far we have avoided committing ourselves to a choice of 

supersymmetric representation carried by the bound states110. If, 

for example, r> 0 , then we could directly apply the results of 

Secs. 3.1 and 3.2, and use, for example, the spin basis forhE>. We 

could then, in principle, write down Eqs. (6.12) explicitly, knowing 

the matrix elements of S. However, this is rather complicated, and 

in any case the resulting equations would be practically insoluble. 

We therefore choose instead to look at a special case in which 

Eqs. (6.12) are tractable: namely, the limit p=0 . This case represents 

a minimal requirement on our understanding of the problems involved, 

and sets the scene for the r >0 case. Unfortunately, although the 

equations simplify, the choice of representations becomes more difficult 

(c.f. Sec. 2.1), and our results from Chap. 3 are inapplicable. In-

stead, we must use the correct UIR's of the algebra for the null case. 

In the covariant approach, it is appropriate in this case to 

analyse such UIR's in terms of their Lorentz group content (c.f. Sec. 

3.1). By using the supersymmetry algebra, Eq. (3.1), we can evaluate 

[sa,i5r.rland [S„,Ev„,,..34Axplicitly, and split Se4  into rais-

ing and lowering operators for the Casimirs R0,-0. Thus we can de-

duce which representations (epA) will participate in a null UIR of 

I . Because of the anticommutation relations, there is the possibil-

ity that only a finite number of such weights occurs. 

The situation is similar if (as we do eventually) we perform 

a Wick rotation. The supersymmetry algebra now becomes a graded gen-

eralization of 00(Sec. 2.1), with the simplifying fact that the 

unitary representations of the participating weights become 



-e-lie±4-(-x>"5 = 

_ V1 e±itaf,s7T , 	= i.9'4,(-x)114CT ± (x,T) 
(6.15) 
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finite-dimensional. 

Fortunately, there is an elegant trick by which we can proceed 

to the essential qualitative results of the model, and avoid the details 

of the representations, at least for this case. This follows from the 

observation that, for p = o , the supertranslations 	anticommute,and 

so can be 'diagonalized' in the sense that we can consider 10 such 

that 
Sa Lc> = "oc iT> 

where 	is an a-number Majorana spinor. In fact, for later simplifica- 

tion, we shall choose 1.  = ?ST . In this case the wavefunctions be-

come functions of x and sr 1,Ar(q), and are eigenfunctions of all 

supertransl ations ,so 

S:t41)  "7 	riAr , E+ (S,)lre = e ± .. *i Y,  1" 	
(6.14) 

making for a number of simplifications. One obtains from Eqs. (6.12) 

Let us now expand IC in terms of '5 (Eq. (2.21)) 

le = A +II) 4- 2711(F+ 1G 	i.)(16 	 iaWD 

for each of the wavefunctions, and substitute into Eqs. (6.15), ob-

taining coupled field equations (some of which are effectively inhomo-

geneous). We shall write down these equations just for y=o , as it is 

only in this limit anyway that one can derive analytic solutions. 

Asy4o one set of equations is trivial, 
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corresponding to the fact that in equal chirality situations, there 

is no potential (A4-4-.4  o ) to assist the binding. In the opposite 

chirality case, the content of the equations 

- ( A .4.T.  14;  F± 	GI;  ) = ( m.3". 	31/4-roxL) ( A -4* , VT+ F_. 

o ( 	 -T Z31.4 A+-4  ) = Om' - g74-rxxl 

- a7- (±T. -4-  0±; ) 	( 	- 

- D±,-;  - 	+7  ; 	Dr, \1:.;  ) = (Ixt - ef4r'xx ))
;+ 

is easier to appreciate if we take even and odd parity combinations 

) 

(6.16) 

A(±)  = 	A 4_ ± A 	, F 	F 4  _ 	F-+ , • - - 

and break up V into a longitudinal and a transverse part: 

V 0 

We then get partly decoupled sets of homogeneous and inhomogeneous 

equations: 

( b2.  * 	)t-1" - 	214 	))(A(±), 	(±), 	 1  
r(i) 

1' 	

(±) 
7 V 41 
	

O 

- 01) t  ( 	- g'/472-70- ) 13()  = 0 

o2. x(±) 	 .1„2 _ 92- / 4  _al. 7e. ) )‘(±) , 

6/-  ( e )  - - 	B(4- ) )f ( '1x.2  - 921,Mzxi ) 	 (6.17) 

To discuss the solutions, consider typically the scalar sector in 

Eq. (6.17). Perform a Wick rotation 	and make the usual expan- 
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sion into 4-dimensional spherical harmonics: 

A(x) 	 GL,jr) 
vc C m  

= 	2, •-- ; 	= 
	0 	I , - • - it - 1 	; Yt1 = - 	, • - , 

Then 

( 211. 4  17: 	 (1712-  4;ri) aT Cr) = 0 
cir7-  

which has a direct analogue in the fermion-antifermion bound state 

problem. The only acceptable solutions, bounded as r4 co are for ct,"  : 

(6.18) 

	

arlil Cr) = 	jot'  - g1/422- ) 2-  

	

(r) = 	0 . 

(6.19) 

As is well known, the nonzero solutions, Eq. (6.19), would seem to 

suggest a continuum set of eigenvalues o 6 g. 2-tcrt . There are ways 

of curing this unpleasant feature which tell us to pick the least singular 

sal utionl°3 
 ,104 

3 = 	21-cyz. 	 a nl (r) 	= 	(1-.4.r) 

(6.20) 

(-) 
Parallelstatements apply to the components 11.5-), F", 6"  and V.  . Carrying 

the argument over to the inhomogeneous equations, we find that 1§)  , X-)  and 

IP)  have a similar character, and for the rest, in view of Eq. (6.20), 

we discover that 

LC-1- 1 	 • 	(.--) 
or vn  n 

and 

-0(+) - az  3Z  pp  ) ) 	 rt11 x  ) e+) 	
0 

a2. ( 	tp 	) + ( m.t _ 	2. ) 	= 
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(+) 	0.) 	(--$ 
as the final inhomogeneous set, giving D and X in terms of IS and -43(-). 

In the final analysis then we see that it is the odd parity wave= 

functions which represent the only bound systems for (;)=0 and that these 

correspond to a 16-fold complete tensor superfield (I1(-) , made up of 

a pseudoscalar superfield and an axial vector superfield, to which are 

associated internal 0(4) excitation quantum numbers -n.,-E,m, providing 

of course that the coupling constant equals the value g--:211 . The 

result is rather pleasing as it represents the appropriate relativ-

istic and supersymmetric generalization of the lowest 'So  and 3S1  

states that can be obtained from a fermion-antifermion system. 
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6.3 Massive Bound States  

Let us now imagine a slow variation of 9 from the maximal p 

eigenvalue to its physical value. In the course of this variation 

we expect to get a splitting of o(1) vectors into 0(3) vectors and a splitting 

between the pseudoscalar and axial vector superstates. To follow 

algebraically what happens, we need to extend our special represen-

tations to the massive case, which we can indeed do, by positing 

S 	,14 -1  a ) . We could then treat the I) t o 	case as a 

perturbation of the 0=0 case, making an expansion in powers of 

retaining the lowest order, and looking for example at the equations 

for the SF and EVE1-  components of the wavefunctions, which belong 

uniquely to the scalar and vector supermultiplets, respectively. By 

this means the t degeneracy is removed. 

However, we already know from Chap. 3 the correct representa-

tions to choose in the massive case. It is therefore not appropriate 

to extend the special representation of the last section. Our effort to 

understand the level splitting should rather be devoted to rework-

ing the 10=0 case using the null representations outlined in the last 

section. For the present, the subject must be left as an area for 

future investigation. 

It should be pointed out here that our study of the homogeneous 

Bethe-Salpeter equation is rather limited, for two very good reasons. 

Firstly, we have taken a very special model where the kernel is des-

cribed by massless supersinglet exchange; the results could look very 

different if we alter the kernel; e.g. if the exchanged particle 

corresponds to the supergauge field. Secondly, the problem is far 

from realistic as yet; if by some stretch of the imagination, the phys- 
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ical particles do organize themselves into supermultiplets, the 

supersymmetry must certainly be badly broken (spontaneously or other-

wise) and therefore it is essential to take proper account of the ex-

ternal mass-breaking in the Bethe-Salpeter equation. In spite of these 

criticisms, our calculations have value in so far as they give a proper 

count of the bound states to be expected in problems of this type, and 

in any case they represent the first step of a more exact treatment. 
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APPENDICES  
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Al Notation  

Conventions  

Three-vectors are covariant, a = (aL) , L = i, 2,3, unless 

otherwise specified. Four-vectors are written in component form 

a w  = (a..,  at) ) 	= 	3 . We use a Lorentz metric 	= -l- 

and 60123 = 	I . Thus at  = a"  a 	= a - a.• a 

Pauli Matrices 0-r. = (60,2) 

)at; = 	( 01 	). ((U)Jt; 	 ) ) 

i cri 	= 	- 	(fl 	) 

.16 

Trace (6'H  ) = 2 ki t„, 

- E 	cr(  7-  CY` 6'v = 	V"' 	1.100/0 U- 

( CrtAit; 	r  )t:4 	( (131;)ak;(Crc)c3 	0-0 )al(Cro ),4; ) 

a- c cr = a - iax cr 

a_x a • a' = 

(... x 01') - ( 12x5.-) = 	2a-10 -I- i. a x 6. 0-  

r -Matrices  

(A1.5) 

6 A.,,,e  a- Cr ID' 	= 	2 crlAv 

6 	=Y 5 r 

Dirac-Pauli Basis: 

(A1.6) 

(A1.7) 

Weyl Basis: 

Oss- 

Y5  

C a 
0 ) 

C. ) - 
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4-Spinors  

Adjoint 
	 r`P se: 

Conjugate 	= (CI  )` (̀3  

Chi ral Parts 
	

(50.4 = 	sts 	-1(1 ias.)a  is  so 	(A1.8) 

C 	— c = C t = i \er,, 

-
1 A = A = A 

A2 Supersymmetry Algebra and Identities 

Dirac-Paul i Basis  : 

Majorana Constraint: 	S -7 	Ea6 S 	Sat  , S6  E ) 	(A2.1) 

Chiral Parts: (S±)a 	(Sa ± EAle Sbt  ), 	= ±Eab(S-+-)6 	(A2.2) 

Anticommutation Relations: 

	

{ (Si)a  (SA, 1 = 0 , -{(5+)3(S-)6,) = -'5(1,-FE)at, 	(A2.3) 

.-1 
Parity: 	li, Sy:  l -' 	= Q.)',,S),, , Uti,(S±)., li?  = i(S.7).3 	(A2.4) 

Weyl Basis: 

Majorana Constraint: 	S .= ( 2.  ) 7sa, 	, 

	

 i = 	ag St; 	(A2.5)  

Anticommutation Relations: 

{ s a , St, 
	0 

t sa, stA = 	 = 	 (A2.6) 

Parity: 
	 sa 	 (A2.7) 
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Commutation Relations and Shift Operators
18
:  

E N ''/°T ff w'r e  
i 	PP Is 

PP  T-tr  
rt e,„ 1z  — P29 	P„ (A2.8) 

Es,, 	= 	F")y5  
rs,,, A I = 	Pc-` (0-0,) r ) Ys- S.e  
[S, )  Ztk] 	(41 r1,Y5 S), 

	

3±] = 	l'x S±  

[ P.7, 	= ± fz  SS± 

Polynomial Identies
18 

 : 

( 	)3  = 4 P2' 	 S.t  

( P*2 	- 4 03nz  P•Z 

z.Z = 4 P-2 (P.z)z  - 

(r.Z = ;14 SS X  

( F.1 )(Z. V4) = o = (Y°̂ 1)67.2. ) 

(I' W)
z 
 = 	wl  ( Y' 	el) - 2.2.- P2•CI-w ) 

A3 Spin and Superhelicity Bases: 

Normalized Dirac Wavefunctions  

(A2.9) 

(A2.10) 

(A2.11) 

(A2:12) 
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(p) 	= 	2 Iv■ 5 

bc  2 r. 

-1A-1,(2) 1.7.,((P) 	= 

K 
C = (-1  ) 

 
6 —K (A3.1) 

Algebra of Shift Operators: 

Rt (I;) 	(-OK 	 S 4- 

(Kt )1. 	 2ic kcx 	 (A3.2) 

R K 	= 

	

141( 1.-K•  I 	- 1< --K /  

( 	= 

= 	 (P-1 1).Z)( 2 (?2P-I) 	I  ) 

= 	 3s± = - P.I SS+ 

Relation Between Sct and K±K  

Rest Frame 	 = m(1, o)  01  0): 

Boosted Frame 	 = 	(cosh r, o o si in V ) 

— ( S ± )1  = ‘rf-' $;,. et. R ±_i 	(SOz  = -./T-  - €€ ± R 

(A3.3) 

(A3.4) 



(:)„+ 21c.A + 
2 j, + I wt. I 2J6A-K > Z, 

	

_2Kx 	R4 z  2K ( 	. 	 a 	> 

	

2 + 1 	rn. 

=„,,, (0) 	= 	 (e) 

S(e-i) 5(x-±) 
	

C(le-i ) C(K -i)  

- 	c(K#i) c1.5,÷1 	(0) c (e-i) (K+1) 1c4 1  
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S 
	 Y 

R 	+ e 

z 

2. 	-.17)1.. e 1  5 	 2- 3. (A3.5) 

Normalized Spin-Basis Vectors:  

(A3.6) 

ja  
-1-1,,,„(0) 	Functions, and Symmetry Properties: 

C (lc) = 
+ K + 
2 j + i ) (A3.7) 

i+6+ KKK (&) = - C (le+-1) S (K-1) d 	(0 ) + S(e+i)c(K-i.) ci eri 	 le4t  Ic-i  

(e) 

{1'014, (0)  

- 	 ic  *I) c
le 
 +i' L f leK 

= (-0 	t1—.1H 	(0 -) 

• C(e+1) C (K-i-) dJ 	(0) + s(e+i) so,I) 

	

eri K+1 	 k+1  

▪ (-1)
K •--k 	

,(0) 

(A3.8) 



162 

A4 Algebra of the Direct Product  

Definitions of Labels  

[(mz - 0,4,4 	(vn, - rA,Y )jk 

S 	 = On—I SPe (eP 

(A4.1) 

= f + 	 15y.. (PT' f 	F1-1- 	(A4.2) 

(14:17- = 	P7-1(je.A-1) 	0‹"T- = -P"- ioCi„4-1) 

\.\/' 	= 	- 121- i (i+ 1) 	(vitr- 

A 	= 	fl -I \A/c 	 = 	P. 

= le I-I K: 	 P. K 

a- 	= 	P-1 f.I 	 = 	(Pt )-1 £1. 

CT 	= 	P 	 ; 	- cr I - cr 

	

2. 	MI VIA 2 -8' 

	

	 = 	- 	- Wt; - prt.1 

(A4.3) - 

	

2. 	Z 	co5V-t 	cosh Tx SZni't 	 - 2S) 
cosh -;) M 	 2 

sihtl!'i Cosk rz 	- sin1,1X1 CaS1-1';l 	+ sint-1 CC, -To 	) 

(A4.4) 

Total and Relative Supertranslation:  

S, = 	s: 	 = Ger s:e — 



(5 ... ). = 

(S.t) :L = 

($-). -= 

(5-)2 = 

,..,1. loA ";l 

= N\ = (~~ ) " 1.. 

;. -i "'1 R' ~ 
, i-r~ R2.+ 

e - J2;..1.. e + ",/;.M, 

~ .!.y, 
R'~ 

, -1. r,. ':1. -t 
-~, e" , + ~l.'"YI.,- e. .R_ .,. 

i. 1. i, tz' : 
I e -i'ra. R2: v;;:;, , e .J2m~ 

;. -i't. \- , ! r). {Z:1,.-
-~I e R 04- + ~'J.ea. _ 

-~-I-I- I·~i ., !-~ tb 
, 

\I.Q 
"J.'" b .< ~ ~ ,.( 'll 

Co<J . , 
I J o 

j' [X lX lX IXI X X 
cr' X lX r><l X 

1.' X rx ex: X 
K' 

jo I 
J XI 

cr I 
A 

tc. 

lTt+ (f 
... 

-(j 

~'_ ~2. 

[Z] (~ow, C.OlJ :f: 0 
.., 
~ 

Table A4.l Commutation properties of labels 
in the direct product algebra 
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(A4.5) 

(A4.6) 
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Evaluations of some Labels ( 	4: "I: 1  -4- 	etc.): 

fQ 
mi  

Vt  

• 2 nek- 	e 	1 + e k
+  

e —T4 	 I: 

- i cosiNT, 	t .f4. 2) 

+ 	.stw,*-1", 	(1.(-4,  -2) 

+13 ) M 	 ) ("g ) (11,1 	 2. + (s+ (s-) 

= 	P-2 P.7 	= - r,°,  M lei  a. AA 
2- 

X 1  

[ e 	
1-z) 

°Veil 	 I 2_ - e 	t: 2 4 	e 	 + e 	- 
- 

4- — 3-3 	A4 101 
▪ "la 2-1 	! f*. "L7 a 	12. 

AA I  

, 	
[ 	

_ Y 2_ = 	L e 	I 2: - e 	1 +  7 ... - e 	I -, 2  
_ 1_2_ 

= 	 [ 2
3 	(1-  coch(r i-Tz ) 

z 	 St-AL 

(A4.8) 

A5 Clebsch-Gordan Coefficients 	-11+2_ 1 + 1.1' (a)  : 

Notation: 

cork 	 2_ m 	-j- ''`'` 	-  "41  

2 MAI , 

▪ = ( w`(2., 	AA1) 
2M 

(A5.1) 

- csc e  

vv‘ 2. 2m 2 

itA2- - 	- 	- Q) 

(A5.2) 
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C(K1 	
+ K 
2 jo 	1 	 S (--K) 

K14.(K) 	= 

(1,21 

	

(1,2) 	= 

+' Ie,-.03-; 

C (K* 1) 

( 14 * (0 

(I) 

t 	S(ci-1) 

± 	10 	1,1 ,,- (2)) ;* 

71: 	P 	14 -1(2 )) 1  

{ 	+ 	i°  
• Ir::"K (a) 

(A5.3) 

(A5.4) 

Combinations of Poincar6 group Clebsch-Gordan Coefficients: 

< 44 I rio  t ++ > = 	 = 	1 	rie  

<-1-4- I rjo 	> = 

<-t-- + 1 no 	> = 	 N4.(t‘c,*1) 

<-1- -1-  1 11 1 	> = 	c3 ),, Kt _ 	(2.11- 	t4 - 

<--t-+ 1 a 	> = 	(2;.+() Nt(K.+i) 

A6 Helicity Projectors for Spin j and Spin 1  

Spin 	(1,2 .0) 

( 	) of 	
= 	

Z(Tr 

( 	 = 

(A5.5) 

(A6.1) 

Spin 1  

(D- = 
	( st,,r vt,t, — 	GI-  ler .) 

Tc° 	(I — At ) , 	71- ± = iA(A±I) 
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IT °0\1 = 	A , 7  ON) = A- Vk-A * i x A 	 (A6.2) 

Algebraic Identities: 

iA 	 .t cr 	 (2--_ 

IK = 	(1- Kt ) 13-1  

= 

cr = 2  ( — „, — 	) 
	

(A6.3) 

A7 Covariant Derivatives of the Bethe-Salpeter Wavefunctions  

It was established in the text that 

2 
z i((%.+%.113 4-  TO 0, # (alt 

= 

and 

DI 1 ± 	 - = 

151.7_ 	= 	
e 	z  ( 5- + gel)- ( 	W 

If we substitute the solutions of the auxiliary conditions 

e 	• tac  0 ( , 	_ 
16 	 1- 8 Q(S-70) T  

5''5  + 	r5s ) 

using such formulae as 
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S e 	= e 
1  aYSS

( s -? )55 ) 

3 e  

	

c- , 
	

+ frig( ) 

we can pass the derivatives through all the exponents to get 

D V++  e i(--; - fLtrY5-6 )(4.i a 4.4-,re) -±(s.-7e))(T-1.-150).(-M14± 

= e 	-64‘15-(1) 	 5.1i - ( ani, (5-1.4?).(s—o 11(±±. 

	

" 54s-s) (± 	

▪ 

(-1- zye - s + 00 

e i( ..±  
▪ (-; -1 14 	- 	)-±) 1V-k ;  

We are now in a position to work out the action of the 151k, ; thus 

151)1  Apf_ = 	 + s  + e  ) - 416 	s - ate 

Since the right-hand side can be compared with 	the following 

identity will prove of assistance: 

e -48?5)(50 	(1•64e + s + -60)(-Pere +S 	 = 

e 4401 ' (±-+ 73- 7)(s -$03), e —1
-6YsS 

= (s-  + 4 0)(s - 045)i. E 4(6s+e -1:6;s  

e--1-1.:6 ?/ 17a14SiLJr+s,'Nei 

= E.f6i4(1(58  CS T3- 0)(s — Oe ) + Et(C)a) (A7.1) 

where E + 	has been defined in Eq. (6.13). Thus 

1510P+- = e e
f-
‘

4<rce 
40)(s 	E+ (c) -a.) 
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We know furthermore that 

P/ 	€1Y 
DD 2 111  +- = 	4 12-1D4-- = ej (-) (1)--2 a) e 2. 4 5' 2. ...11e 

By comparing the right-hand side with explicit calculation, we deduce 

the second identity 

	

+ 6,12() 	 4-Ve) -2i(g -010 ))-(gt60)(E - ge)+ 

= e-tjt.vvs-0 46 gyc e ( 1,-.2c.b )  e 	 E 	3) 	(A7.2) 

and other identities which may be obtained either by reversing Ys. or by 

making the change of variable Z,  4  -6, 0 4 -0. We easily deduce that 

31),)( 15D, ) 113 +_ = el" e 744"50 	(5 + -03r) 	+ -60 x 

	

(--;.( 	+ 	-i(s-00))(+73- 0)(S-W0)+  E +  

( p + 2 i 3)2.  e4 47' "5°  + 	E+4  (S 	) E+(s,a)1V,_ 

In similar vein we discover the companion formulae 

	

151:1 1  1D++  = 
	e 	2n). e  EioNcce t 16Y5s e=i(s,  ) 104  

	

-151)2  1)Di  1 ++ 
	 ( 	( + 6)(s -0'0+ x  

x  

Finally, if we make use of the supersymmetry algebra
18
, one can es-

tablish that 

( s, 	( + p)-1 	(s) ) 	 (A7.3) 

and that the Et commute. Putting all these things together, we 

arrive at Eq. (6.12). 
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