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ABSTRACT 

Virtually all Computer-Aided Circuit Design procedures only refine good 

approximate circuits, rather than assist the designer during the basic 

initial design stage of the realisation. This limitation has severely 

retarded the progress of fully automated circuit design. This thesis 

develops a Computer-Aided Circuit Design procedure capable of assisting 

the designer during the basic initial stages of the design. 

A comprehensive review of design procedures, both analytic and numeric, 

highlights the suitability of the state-space approach. The subsequent 

review of optimisation techniques leads to the choice of a direct search 

procedure. 

The overall Computer-Aided Circuit Design procedure developed consists 

of 

(a) the designer selects a suitable set of reactive elements, by 

examining the required network specification, voltage gain 

against frequency, 

(b) applying an algorithm to produce a general resistive n-port, 

(c) the optimisation procedure then attempts to evolve a suitable 

network structure from the general network of (a) and (b) above. 

A novel method of evaluating symbolic network functions is developed and 

used in this procedure. This method is shown to be more efficient than 

normal numerical analysis methods for the networks under consideration. 

The optimisation procedure developed, a modified Pattern Search, is 

shown capable of radically altering network element values and basic 

network structure. 
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Successful realisations are achieved for a variety of not too complex 

network specifications. Phases (a) and (b) of the above procedure 

produce the so-called 'generalised starting network', shown to be an 

extremely poor approximation, if any, to the required network. The 

optimisation procedure then operates on this network to evolve the success-

ful realisations. 

Finally, the contribution made by this thesis is discussed, and possible 

areas for further research are proposed. 
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Chapter 1  

INTRODUCTION AND REVIEW 

1.1 	INTRODUCTION 

During the past decade or so, the new field of computer 

aided circuit design has been fully established. Significant 

advances have been made in the areas of computer oriented 

circuit, sensitivity and tolerance analysis. However in 

the area of 'true' computer aided circuit design, that is 

the area of design rather than analysis progress has been 

limited. Virtually all available procedures restrict the 

design aspect to the improvement.or refinement of element 

values of circuits of essentially fixed structure or topology. 

This has naturally retarded the development of fully 

automated circuit design. 

Circuit design consists essentially of two elements the 

evolution of circuit structure or topology and the choice of 

element values. Researchers already began to investigate 

the feasibility of fully automated design soon after the 

advent of computer aided circuit design. However the develop-

ment of evolution of circuit topology by computer has 

proved to be an arduous path. This thesis is another step 

along this path. 

In order to confine this thesis to the investigation of a 

problem of acceptable proportions, it was decided to limit 

this thesis to the evolution of passive RLC networks. It 
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should be possible, at a later stage, to extend these 

results to other classes of networks. 
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1.2 	REVIEW OF PASSIVE CIRCUIT DESIGN 

As stated previously, the vast majority of computer aided 

design procedures operate on circuits. of fixed topology or 

structure. This implies an inherent assumption - that the 

initial starting network is not far removed from the final 

desired network. Most of these procedures employ gradient 

seeking optimisation techniques which, under these circum-

stances, are not only suitable but generally preferable. 

It is obvious, however, that the above assumption is no 

longer valid when investigating the development of a .procedure 

capable of not only refining element values but also evolving 

the circuit structure. In fact, the reason for developing 

such a procedure is that the initial starting network is 

not likely to be in the 'vicinity' of the final desired network. 

• Under these circumstances, it was felt that a, complete 

re-evaluation of design procedures and methods of optimisation 

should be carried out. 

A brief survey of both analytic and computer oriented methods 

of passive circuit design is undertaken in this section. 

The survey of methods of optimisation is left to the subsequent 

chapter. 

It was felt necessary to survey the analytic methods of 

circuit design as well as the computer oriented approach, 

as the numeric procedure being developed in this thesis is 

sufficiently different in concept so as to merit a full 
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re-evaluation of all design procedures. 

The review of the vast field of CACD is limited to those 

papers which either discuss or impinge upon the actual field 

of automated design as opposed to analysis. 
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1.2.1 	Analytical Methods  

These methods can be conveniently split into three sections, 

the so-called classical methods, general recent developments 

and the state space approach. 

1.2.1.1 	Classical Methods  

The first well known circuit design procedures were confined 

to the synthesis of immittance functions. Initially Foster 

and Cauer produced methods of synthesising immittance functions, 

except minimum functions, with LC, RC or RL networks (46). 

The networks produced were minimum element or canonic 

realisations, but the element values could be impractical. 

By alternating between these procedures, the element values 

could be improved, but this is an art and not amenable to 

programming. 

Subsequently Brune showed that minimum functions could be 

realised by employing mutual inductance (46). This laid the 

foundations for necessary and sufficient conditions of 

immittance functions, i.e. positive real functions. Naturally 

the realisations generated undesirable transformers. 

Synthesis of transfer functions, in conjunction with immittance 

functions soon followed. Cauer developed his 2 terminal pair 

LC, RC and RL networks. The topology which evolved was not 

practically suitable with transformers generally being necessary. 

This was subsequently followed by Cauer's ladder real- 

isations. Both are essentially immittance function syntheses 
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carried out such that the zeros of transmission are 

included (46). 

Darlington produced a method of synthesising an impedance 

function, by restricting all the resistance to one resistor. 

This is used as the terminating load of a Cauer 2 terminal 

pair LC realisation (46). The topology evolved is complex 

and impractical, generally employing ideal transformers. 

During 1949, Bott and Duffin showed that all positive real, 

i.e. immittance, functions could be realised without trans-

formers. These realisations usually required far more elements 

than necessary and as the realisation is unique, there is no 

flexibility of element values. 

Both the Brune and Bott-Duffin realisations suffer from high 

sensitivity with respect to element values, due to the 

'balancing' structure of the networks. 

During the next decade there was a spate of activity in the 

field of passive filter synthesis. Guilleman developed an RC 

network synthesis satisfying both imaginary or complex zeros 

of transmission (46). Fialkow and Gerst and others worked on 

synthesis of lattice structures (46). Many other 2 port 

passive filters with various terminating criteria were developed. 

These generally applied the more general synthesis procedures 

developed previously to specific cases and requirements. 

Most classical synthesis procedures evolved networks with a 

pre-determined structure or topology, thereby producing 
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inflexible designs. Where there is some choice or flexibility 

during the design procedure, a high degree of experience or 

skill is required on the part of the designer. These 

techniques are really an art, not procedures, and hence are 

not amenable to automated design concepts. 

This restriction is an inherent property of most analytic 

methods and is not a criticism of the above specific methods. 
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1.2.1.2 	Recent Developments  

More recently, the emphasis in the field of synthesis has 

been on active circuit realisations with the advent of 

integrated circuits and new active devices. 

Passive network synthesis advanced mainly in the areas of 

element minimisation, use of graph and topology theory, 

multiport network realisations and the state space approach 

(to be reviewed subsequently). 

Using graph theory concepts, Seshu examined the minimal 

realisations of biquadratic minimum functions (40). It was 

shown that the modifications by Reza, Pantell, Fialkow and 

Gerst to the Bott-Duffin realisation were in general minimal 

element realisations, except in the special cases of 

Z(0) . 4Z (0° 

and vice versa, when only five elements are necessary. It 

was felt that this approach would not be practical for higher 

order functions. 

Other papers on element minimisation include a set discussing 

minimum RC realisations, for example (25) (42). These are of 

interest in the design of integrated circuits where element 

value minimisation can imply smaller 'chips'. 
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An example of n port synthesis is that by Fialkow, Hazony 

and Kodali (19). The problem of transformerless grounded 

RLC realisations was examined and necessary conditions and 

a realisation were developed. 

Several two and multiport realisations using topological 

theory are outlined in an excellent book by Kim and Chien (29) 

covering this field. These techniques often evolve the 

network structure as well as the elements and their values. 

The individual elements of the matrix are usually synthesised 

by classical techniques but the overall interconnection of 

these 'part' networks defines the overall topology. However 

these interconnections often require either ideal transformers 

or gyrators or both. 

Thus we now have circuit synthesis techniques which help 

evolve the basic structure of the network as well as the 

elements and their values. 

1.2.1.3 	State Space Approach 

As mentioned previously, the state space, or state variable, 

approach to network synthesis originated relatively recently. 

A brief introduction into the state space description is then 

followed by various methods of synthesis of the matrices 

involved. 

Baskow first introduced the A matrix into circuit theory (5.) 

by showing that any passivs circuit can be described by 
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X = A.X 

where, X - a column vector of currents through 

inductors and voltages across capacitors 

A - a square matrix, called state matrix 

• - time derivative. 

From this description, one can analyse the circuit in the 

time domain, the future.states being 

X(t2) = X(t1)•eA(t2 
- t1) 	(1.2) 

whilst the natural frequencies, or poles, are given by the 

eigenvalues of the A matrix. 

The complete state space description is however 

X = F.X + G.II 
	

(1.3a) 

Y = H.X + J.0 
	

(1.3b) 

where; 

X - state vector, as in (1.1 

U - input vector 

Y - output vector 

F - state matrix 

G - input connection matrix 

H - output 

J - direct 
	

11 	 11 

(x1( t) 	 x(t) ) 
(111(t) 	 uk(t) ) 

(Y1(t) 	 Y1(t) ) 

; dimension (n,n) 

; dimension (n,k) 

dimension (1,n) 

dimension (1,k). 
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Matrices F, G, H and J are constant matrices for time 

invariant systems such as a passive network. 

We can obtain the input to output transfer function in the 

frequency domain from this description, by taking the Laplace 

transform of equation (1.3), re-arranging and substitution, 

to get, 

Z(s) = H . (sIn  - F)-1  . G- + J 	(1.4) 

where; 

s 	- Laplace operator 

In - n dimensional unit matrix 

Z(s) 	transfer function matrix. 

Equation (1.4) forms the basis of state space synthesis 

techniques. 

These normal state space description of equations (1.3) 

restricts Z(s) to having no poles at infinity. However 

passive networks can have transfer function matrices with 

poles at infinity. To allow for these poles, the normal 

state space description needs to be extended, as described 

in a thesis by Purslow (36), to give 

X- F.X+G.U+ Rx . U 

Y 	H.X+J.U+R . U 

This severely complicates the form of equation (1.4) above, so 

these poles are normally removed first as a separate operation. 
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The overall process of synthesising a given transfer function, 

in the frequency domain now consists of three steps 

(a) decomposition of the given transfer function matrix 

Z(s) into 

Z(s) 	Z(s) + Rz  . s 	(1.6) 

where; Z(s) contains no poles at infinity but all other 

information in Z(s) 

Rz is a constant matrix of the residues of these 

poles at infinity, easily found from 

1 
RZ = 	(8)] [—

S 	 S = oci 
(1.7) 

Rz is then realised independently, thus allowing Z(s) 

to be handled by normal state space techniques. 

(b) determining the mathematical realisation (Fz, Gz, Hz, 

Jz
) of Z(s), i.e. the set of matrices which satisfy the 

relationship 

Hz  . (sI - Fz) 	. z  + J z 
	Z(s) 	(1.8) 

(c) finding the circuit realisation of the mathematical 

realisation mentioned above 

Mathematical Realisations  

The four constant matrices (F z,Gz,Hz,Jz) which constitute 

the mathematical realisation, i.e. satisfy the equation 
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(sI - F z  )-1  Gz  + Jz 	Z(s) 
	

( .9) 

have the dimensions Fz (n,n), G (n,k), Hz (1,n) and 

J (l,k) when the transfer function matrix Z(s) has the 

dimensions (l,k). The integer n is not unique and specifies 

the so-called dimension of the realisation. For a given 

Z(s) there is however a minimum value of n. 

The dimension of the realisation is also the number of state 

variables in the state vector, equation (1.3), and in terms 

of passive networks specifies the number of non-redundant 

reactive elements present. 

As we are generally interested in minimising the number of 

reactive elements in a synthesis, we are naturally interested 

in minimising the dimension, n, of the mathematical realisation. 

Fortunately most of the literature in this field is concerned 

with the concept of irreducible realisations, which are those 

having minimum dimensions for a given transfer function 

matrix. There are many methods of obtaining irreducible 

realisations, becoming increasingly complicated as restrictions 

on the transfer function matrix are removed (27) (28) (37). 

For our purposes we need only consider Z(s) as a scalar 

transfer function, which considerably simplifies the realisation 

problem. Three individual realisations, all found in an 

excellent paper by Kalman (27), are shown below. In all 

these realisations, the residue of Z(s) at infinity is first 

removed as Jz, where 
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z 	[Z(s)] s  = 	(1.10), 

The remainder is treated as shown, 

(a) given a Z(s) having only distinct poles 

i.e. Z(s) a. all b. distinct 

i = 1 s + bi  

we can use canonical form of Lur e 

-b2 
Fz 

-bn 

Gz = 

= [al  a2 	an] 
• 

Proof of this realisation can be obtained by substitution 

into equation (1.9). Note that the inverse of a 

diagonal matrix is a diagonal matrix whose diagonal 

elements are the inverse of those in the original matrix. 

Given the transfer function as 

Z(s) = an-is 	n 
n-1 + a-2 sn-2 . . . + a 

 

 

s
n 
+ b sn-1 + 	 + bo n-1 

two other realisations are 
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0 
1 0 
0 0 Gz (1.12) 

• • 0 
-b 2 • -b n-1 

•••■• 

a2 • an-1] 

O 1 
O 0 

( b ) 

Fz = O 0 

• 

-b -b 0 1 

Hz a1 

0 	. 	-b0  

0 	. 	-b1 

a0.  0 
a1 

0 	. 	-b2 Gz 	. a2 (1.13) 

. 	. 	. 

0 	-bn- an-1 

O 0 

1 0 

F 
	

0 1 z 
. 

0 

(c) 

Hz  [ 
	• 0 1 

Note that both (b) and (c) employ the companion matrix form, 

and are direct representation in space state terminology 

of the analogue computer simulation of a transfer function. 

The realisations are all equivalent in that they realise 

the same transfer function. Furthermore we can generate 

many more equivalent realisations by using the transformation 

X = T . X 

where T is any (n,n) non singular constant matrix. Substi-

tuting into equations (1.3), we get 

T 1 .X = F . T 1 X + G TJ 
-1 "' Y .H.T .X+J. 
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and by re-arranging 

1 
X = T. 	.X+T.G. U 

Y= 	H . T 1  . X + 	J . U 

Now 

-1 
Z(s) 	

- 

1 	1 
H. 	(sI -T.F.T ) 	T.G+ J 

, 	1\-1 
= H.T 

- 1 

 kT . sI . T 1 -T.F.T ) 	T. 	J 
-1 

= H . T-1 (T (sI - F) T-1  ) 	T.G + J 

= HT -1  T (sI - P)
-1 T 1 T G + J 

\ = H (sI - F)-1  G + J 

which is identical to that for Z(s). Thus one can easily 

generate equivalents, all.of the same dimension from the 

realisations 

(T . F . T 1 	. G, H.T
1  , J) 

by selecting different transformations matrices T. Thi 

extremely powerful tool answers, in theory, the problem of 

equivalent circuit generation. The next step is to realise 

the mathematical realisation with a suitable circuit. 

Circuit Realisation 

Circuit realisation is the process of realising the math-

ematical realisation (F z  ,Gz,Hz,Jz
) with a suitable circuit. 

This is the most difficult part of state space synthesis 

and has not yet been satisfactorily resolved, especially 

from the point of view of acceptable practical circuits. 
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The earliest papers dealt with the realisation of the State 

(A or F) matrix producing circuits which realise only the 

poles of the transfer function, termed portless realisation 

(12) (41) (34) (44). Note that the A matrix contains 

information of only the poles of a network. 

An alternative approach, is that by Marshall (33). He assumes 

the given transfer function is that of an nth order low pass 

filter. This avoids the problem of specifying the zeros, 

they all are at infinity and automatically taken care of by 

the topology of the ladder network of Figure 1.1. Expressing 

this network in state space terminology we obtain 

- 

	

-1 0 0 	i 

	

-G2  -1 0 	v2 

	

1 -R
3 
-1 	i3  

o 1 -G4  • v4  

1 

0 vin  

• 

or briefly as 

E1  X.K.X +II 

where; E1  is diagonal matrix (L1, C2, L3  ...) 
K is tri-diagonal matrix 

X is voltage and current vector. 

Using the transformations 

X 

U 	D2D1U 
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	1 I 	 

rn 

' J 

V 

• 

0 

Figure 1.1 	Ladder Network 



where D1  

31 

= diagonal (L1, C2, L1C2L3. • 9) 9 

we obtain 

• 
X = TX + II 

and T = D2D1KD2
-1 

- 1 	0 

Li  

1 	- G -2 
C2 	C L 2 	2 3 

0 	1 	- R3 
 

L
3 
 L3C4 

 

0 	1 	- G 

c
4 

If the general A matrix can be transformed to this tri-

diagonal form, then a ladder realisation is possible. 

Various algorithms for synthesising the T matrix are given 

but will not be dealt with here as they are not relevant. 

The important fact is that these algorithms are amenable to 

programming. 

Complete circuit realisation of the entire mathematical 

realisation (F zG zH zJ z
), i.e. realisation of both poles 

and zeros of the transfer function matrix is even more com-

plicated and produces correspondingly more impractical circuits. 
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Anderson and Newcomb (1) developed a general n-port passive 

realisation of the quadruplet (Fz  Hz  Gz  Jz). The realisation 

however is most impractical but worth examining briefly as 

it is both rigorous and elegent and also gives insight into 

the problems of state space synthesis. 

As transformers and gyrators are allowed, all reactive elements 

may be replaced by unity valued inductors. Extracting the 

p inductors outside the n port realisation, we are left with 

an n + p port resistor, transformer, gyrator network, as 

shown in Figure 1.2. 

The impedance matrix of the n + p port network M is a constant 

real matrix, and is partioned as follows 

zi  Z12 
= 

Z21 Z22 

Z11 of dimension n, n 

Z 	" 
12 

ft 

 

Z 	" 21 

 

p, n 

Z 	" 22 
11 

P9 P . 

The impedance at the n ports of the terminated n + p port.  

network is given by 

Z(s) = Z11 - Z12  (sIp  + Z22)-1 Z21 

which bears great similarity with the mathematical realisation 

of Z(s) 
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Z(s) = Hz  (sI - Fz)-1  Gz  + Jz  

Thus M can be considered as 

Jz 	-H  
M 

G I -Fz 

The dimension of Fz determines the dimension p of Z22 which 

is the number of inductors required. To ensure that M 

can represent a resistor, transformer, gyrator network, the 

matrix must be positive real, thus 

M + M
t 
 	0 

( positive semidefinite). 

This can be achieved by selecting a suitable transformation 

matrix T as described in equations (1.14) and (1.15). 

This paper outlines a method of finding a suitable T and the 

resultant RTG n + p port network is realised using standard 

n port synthesis techniques. 

As mentioned previously, the realisation is however impractical, 

there being many transformers and gyrators. The realisation 

of the scalar impedance function 

Z(s) 
	s

z 
+ 2s + 1- 

s2 + s+ 1 

using this approach is shown in Figure 1.3 to emphasize 

this point. 
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Another realisation is that put forward by Yarlaggada (48). 

However the network derived, also being based upon the 

realisation of a n port constant matrix (i.e. RTG network), 

suffers from the same problem of requiring many ideal 

transformers. 

Generally, as stated in the above paper, 'state-model synthesis 

transforms the RLC network synthesis problem to an R network 

synthesis problem'. Until a method is developed for 

realising R network multi-ports without the use of transformers, 

state space synthesis realisations will be impractical. 

The main point of this approach is that the minimum number of 

reactive elements is ascertained and subsequently a network 

structure, albeit impractical, is realised. 

1.2.2 	Computer Aided Circuit Design 

The field of computer aided circuit design came fully into 

being upon the publication of a computer aided design procedure 

by Calahan in two similar historic papers in 1964/5 (7) (8). 

In these papers references were made to previous circuit 

design programs but each of these could only handle 'a part-

icular class of networks'. Calahan's design procedure was 

general in that it could cope with general passive networks. 

The program consists of two basic parts, the assembly of 

the coefficients of T(s) in terms of the elements using 

topological tree finding methods and the iterative alteration 

of element values using the Newton Raphson algorithm, with the 
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eventual aim of minimising the error in the coefficients 

of T(s). Furthermore, 'dummy' elements are introduced so 

as to consider the 'growing' of elements. This basic 

iterative procedure of analyse-compare-alter still forms 

the basis of computer aided circuit design today. 

Only a few years later, there were already visions of the 

concept of fully automated network design - although this 

was not the only opinion (35). Rohrer was one of the first 

to investigate the feasibility of fully automated design 

(38). He felt that network design could be conveniently 

thought of as two 'interrelated sub-problems 

1) the evolution of the appropriate network structure 

or configuration 

2) the optimal choice of network element values for a 

given network structure or configuration'. 

Automated design procedures are developed but the structural 

evolution achieved is limited to very simple networks. 

Activity in CACD over the next several years was mainly 

confined to the development and improvement of computer 

oriented circuit analysis and sensitivity calculations (9) 

(30) (6) (18). This was due to the application of CACD to 

large networks at many frequencies and the realisation that 

peturbation techniques to obtain gradients proved to be time 

consuming and inaccurate (2) (4) (15) (23). 

During this period significant advances were made in the area 
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of efficient sensitivity analysis (31) (13) (21) (4) (22). 

It was now possible to compute the sensitivity of the 

network function with respect to all the network elements 

with only one further network analysis, or even less (16). 

The other advantage of the auxiliary network method of 

sensitivity calculation is that the gradient components depend 

only on current or voltages, not element values. Thus it is 

possible to calculate gradients with respect to nonexistent 

elements across any node pair. Encouraged by this discovery 

Rohrer, together with Director, re-examined the possibility 

of fully automated design by element growth (39). However, 

when considering structural changes, the results were again 

very limited. At the same time an algorithm for realising 

a resistive n -port was developed (14). This did achieve 

an evolution of structure by element removal but only of 

resistive n-ports. Also, at this time, Bandler, in an 

excellent survey paper (2), commented 'Fully automated design 

and optimisation is surely one of the ultimate goals of 

computer-aided design'. 

Subsequently Bown and Geiger (6) commented 'Certainly, there 

is evidence that the computer may evolve new circuits as 

well as optimising their element values, and some feasible 

steps in this direction will appear in some examples to be 

given later'. Further in the paper it is mentioned that at 

that present time, 1971, circuit topology was invariably 

evolved by human intervention but that 'with continuing 

developments ... circuits should ultimately be evolved from 

quite primitive embryonic forms'. The examples given employing 



element removal were limited and 'attempts ... to extend 

... have not proved successful'. 

The most recent work in the field of automated network design 

is that by Cutteridge and Di Mambro (10) (11). The procedures 

operate on specified symbolic network functions rather than 

graphical type specifications. In the earlier paper, initial 

networks consisting of over-complex generalised structures 

are reduced by 'element annihilation' to evolve new simpler 

structures. This process of element 'annihilation' also 

caused node reduction. The latter paper discusses an algorithm 

employing initially element growth to satisfy non zero 

polynomial coefficients. Subsequently, element annihilation 

is used to reduce the network. In this case, however, the 

number of nodes is kept invariant. The paper also emphasises 

the lack of results so far achieved in this field. Both 

papers only claim to be first steps in the direction of fully 

automated design. 

Finally, the editorial of the recent TREE Special Issue on 

CAD (18) emphasises that 'papers dealing with CAD, as 

distinct from analysis, of real circuits ... have been few 

indeed'. 

1.2.3 	Conclusions  

The review of the various methods of circuit synthesis has 

highlighted the general properties of each approach. 

The'classical' approach can be used to develop circuit 
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topology but only by relying heavily upon the competency 

and experience of the designer, not suitable for computer-

isation. 

Amongst the more recent developments of analytical synthesis 

methods, n-port synthesis does evolve circuit topology but 

the individual elements of the matrix need to be found and 

subsequently realised by classical methods. 

However, the state space approach seems very suitable. 

This approach first determines the number of reactive elements 

and subsequently the resistive interconnection required. 

The available computer aided design procedures, which do 

attempt to evolve the network structure, use either element 

growth or annihilation as a means of altering the structure. 

However, in most cases, the initial starting network structures 

had to be carefully chosen by the designer as the structural 

modifications were only minor. In fact, these procedures 

can be considered as enhancements of the usual computer aided 

circuit design procedures (where only element values are 

optimised) as the network structures are modified rather than 

evolved. 
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1.3 	SUMMARY 

The preceding sections of this chapter have shown that 

not much advance has been made in the area of fully 

automated circuit design, specifically in the area of net-

work structure evolution. Furthermore, the state space 

approach seems a suitable choice as a basis of a computer 

oriented procedure capable of evolving the network structure. 

Chapter 2 reviews and evaluates the advantages of the various 

methods of computer optimisation techniques. 

Chapters 3 and 4 describe the outline of the approach taken 

and the development of the particular program. A novel 

method of computing the symbolic transfer function with 

respect.to the frequency dependent part of the network is 

included. 

Chapter 5 details the experimental results achieved. Initially 

many tests were carried out in order to evaluate the .effects 

of various initial parameters. Using these results, various 

circuits were then evolved with reasonable success. 

Finally, Chapter 6 reviews the contribution made by this 

thesis. Possible developments of this approach are examined 

and various recommendations regarding possible areas for 

future research are proposed. 
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Chapter 2  

REVIEW OF OPTIMISATION TECHNIQUES 

2.1 	INTRODUCTION 

Whilst computer oriented optimisation techniques are not 

the subject of this thesis, it is nevertheless a fundamental 

tool and, as such, merits a brief investigation. 

This is especially true when the available procedures employing 

these optimisation techniques have not been too successful 

in achieving what is the subject of this thesis - evolution 

of network structures. 
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2.2 	PRELIMINARY CONSIDERATIONS  

Prior to discussing optimisation techniques, it is worthwhile 

to introduce and/or define certain concepts. 

Optimum Solution 

An optimum solution is one which either maximises some 

desirable feature or minimises some undesirable feature of 

a function. 

There is no loss of generality by confining techniques to 

finding the minima of given functions as 

maximum [f(x)1 	= minimum t -f(x)1. 	(2.1) 

w.r.t.x 	w.r.t.x 

is always true. 

A 

Hence we need only be concerned with locating the point c 

which minimises a general non-linear scalar function 

(2.2) 

6 4 (c1, 	 cn)T  

\ 
Y 	(Y1, Y2, 	t Ym;

T 
 

n variables 

m independent sampling points. 

When it is not necessary to emphasize the m sampling points, 

U (S, 5) may be abbreviated to U (S). 

Expanding U (S), according to the multivariable Taylor's 

series, we have 
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u(-6 + aZ) = U(c) + tFUT  AZ + 	AZT  [1134/8 + 

(2.3) 

oc 	( D. c , Lsc2' 	Acn 
T  increment vector of 1  

%5" U A (dU dU p 
 dU gradient of U (6) 

dc1 dc2 	dcn 

[H] 	elements Hij = 	d2U 	hessian matrix of U (Z) . 

dc.dc. 
J 

A 
A necessary condition of c to be a minimum solution of 

A 
U (Z), i.e. U (c) is a minimum, is 

U r-C- ) = 0 	 (2.4) • 

This is-not however a sufficient condition, and only defines 

a stationary point. 

For sufficient conditions, it is necessary to examine the 

higher order terms of the Taylor's series. If we further 

find that 

a) [H 	> 0 	positive definite 
A 

then -6 is definitely a minimum, 

b) [11(c)1 < 0 	negative definite 

then 6  c is definitely a maximum, 

c) [11 (g)] 	0 	positive semidefinite 

EH (g)] 	o 	 negative semidefinite 

then we need to examine still higher order terms, 
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d) 	 )1 
	

indefinite 

A 
then c is neither a minimum or a maximum. 

Function Surfaces  

One of the strictest properties of function surfaces is 

convexity. This implies that the function surface is always 

below, or at most equal to, any straight line connecting 

two of its points, i.e. 

U

... 

(c - c
41 
 )] 	u (0 ) 	63(c) - U (; (2.5) 

 

any point 
11 

any other point 

04A 1 	some variable. 

Under these circumstances [H] is either positive definite or 

semidefinite, i.e. < or being true in equation (2.5). 

This property is rarely true in network problems, although 

sufficiently small localities may approximate to this condition. 

Unimodality is a less stringent property of function surfaces. 

This implies that the function has a unique minimum, i.e. 

- I 	A 
there exists a falling path from c to c for all 

C 1= 	feasible, 
, A 	

(2.6). 

If this condition is met, then the minimum found will be the 

optimum solution. Once again, very few network problems 

give rise to functions satisfying this condition. 
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Thus, on finding a minimum using an optimisation technique, 

we may rarely assume that this is an optimum solution. 

All we can state is that we have located a 'local' minimum 

which may not be the overall or 'global' minimum, i.e. the 

optimum solution. 

Scaling  

Most optimisation procedures converge best if the function 

surface contours are circular or nearly so (43). This occurs 

whenallvariableincrements.dc.have roughly the same effect 

on the function, i.e., 

dII 	dU 

dc. 	dc. . 

j-e(1, 2, ... 

(2.7 

Furthermore, the negative gradients point almost directly 

toward the minimum. 

Virtually all design functions originating from network 

design, have function surfaces far removed from this ideal 

shape. Careful scaling, or transformation, of variables can 

help improve the function surface towards this ideal. 

A useful technique is to work with relative, rather than 

absolute, increments of the variables. This scaling tends 

to de-emphasize differences in the effects of variables on 

the function. 
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Constraints  

Most physical designs have variables which are constrained 

in order to be realisable. In general we often have 

c. .6. c cli -4  1 	1.11 
(2.8) 

c is lower bound of c. 

c . is upper bound of c. . 

It is not unusual to have constraints which are far more 

complex, even forming a set of function inequalities. 

Sometimes it is possible to revert to an unconstrained 

optimisation procedure by the selection of a suitable trans-

formation of variables. 

If this is not feasible, then the designer can either 

i) hope that the constraints are not violated during 

the optimisation 

ii) simply not allow variables to move out of the feasible 

region, i.e. hold them on the boundary if attempts 

are made to violate the constraints 

iii) introduce penalty terms into the function to be 

optimised, which are invoked when the constraints 

are violated (43). 
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2.3 	OBJECTiftS FOR NETWORK OPTIMISATION 

Network specifications often consist of a set of curves or 

discrete sets of desired response with respect to either 

frequency or time. As computer evaluation is accomplished 

by numerical techniques, frequency or time can always be 

considered a discrete set of samples (43)  (15). 

We can now express the required response as a vector 

S (R) al! (si, s2, 	, sm) 	(2.9) 

s. response at frequency or time sample y1, i = 1 ... m. 

Let the actual calculated response of the network be the 

vector 

P (Z, R) A (fi (OP f2  (c) 	9 
	

(C) )T  

(2.10) 

f. (Z) calculated response at 
	

i = 1 ... m 

is vector of variable elements 	c, j = 1 	n. 

An objective function describing the performance of the 

network could be a scalar function describing the difference 

between the required and actual response 

E (C, -57-) e scalar function (S, F) 	(2.11) 

usually referred to as the error function. A decrease in the 

error function E corresponds to an improved network perform- 

ance; an ideal objective function for minimisation. 
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It is sometimes desirable to increase or decrease the relative 

importance of a particular set of response samples. This 

is referred to as the weighting of error samples (2). 

We introduce either a weighting function, or, as is normally 

the case, a weighting vector of constants for the discrete 

sampling points 

( wi 9 W29 	9  WM 
)T 
	

(2.12) 

lc weighting factor at sample y., i = 1 	m. 

We may now formulate a new comprehensive error function 

E 	5) -41 scalar function (d, F, S) 	2.13) 

incorporating the desired weighting factors. 

Although there are many possible formulations for E, we will 

confine ourselves to examining some of the most popular 

objectives used in network optimisation. 

Least pth  Objective  

This most common objective function (2) (15) is written in 

the general form 

E (Z, 5) 	= 	I wi (ri (Z) - si)11) 
	

(2.14) 
5=1 

where the subscript i refer to quantities evaluated at the 

sample point yi, and p is any positive integer. 

When p is equal to 2, we revert to the very familiar least 
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squares objective. As p tends to 00, equation (2.14) 

approaches a minimax error criterion. In general, values 

of p from 4 to 10 seem to provide a reasonable engineering 

approXimation to the minimax criterion (15). 

Provided that P (c) has continuous derivatives, with respect 

to 5, as is the case for most networks, so will E (C, i). 
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Generalised Min ax Objective  

This is probably the most ideal objective as far as design 

criteria are concerned (2). It allows the objective function 

to ascribe zero error when the response is within certain 

limits and continuous values when outside these limits, 

depending upon the distance from the nearer limit. It then 

turns it full attention to improving the worst error. 

We have 

E (c 5) = max [W (5) (F (0, 5) - Su  (5)), 

LYl
'Y,1  

411 (37.) (II  (69 i) 	sl (i))]-  (2.16) 

F c 5) 

c 

Su  (i) 

S
1 
 (i) 

W (Y) 

W 1  

response function 

variable functions 

sample points, between yl  and Yu 

desired upper response specification 

desired lower response specification 

weighting factors for Su  (i) 

weighting factors for S1  (i) 

with the following restrictions 
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Under these conditions, we find that both 

W  tbsN(i) (F (0, 5.) - Su  (i) ) 

-w (i) 	(;, i) - Sl  (i) ) 

are positive when the specifications are not met, are zero 

when specifications are just met, and negative when 

specifications are exceeded. By minimising E 	'37) to 

zero or less, the network performance fully meets the require- 

ments. If E 	i) is greater than zero, then none of the 

response samples will exceed a certain specified maximum error. 

A far simpler, but very acceptable formulation, is obtained 

when 

	

Si  (i) = Su  (R) = S (i) 
	

(2.17a) 

and 
	

w (i) = w (i) = W (i) 
	

(2.17b) 

We now obtain the more familiar Chebyshev type objective 

E 	i) = max 1W (i) (F (;, i) 
	

(D)I 
	

2.18) 

This still has the useful feature that none of the response 

samples will deviate from the desired response by more than 

a specifically known error, tending to equi -ripple conditions. 

Subsequently in this thesis equation (2.16) will be referred 
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to as the Generalised Minimax objective and equation (2.18) 

as the Minimax objective. 

Both these objectives generate discontinuous derivatives 

when the maximum deviation jumps abruptly from one sample 

point to another (2) (6). 

An alternative formulation avoiding the generation of 

discontinuous derivatives is possible. For brevity, let 

e. (C) a w. (f. (Z) - si)  

(2.19) 

(e1, e2, 	, e 

Now introduce the objective function E 	(e) as a variable, 

such that 

E 	e. 	i = 1 	m 

(2.20) 

E 	-e
i 
	• • • m 

A 
and by selecting c such that E is minimised, we have achieved 

the same objective as the Minimax objective of equation (2.18). 

This approach has been used with some success (2) (6). 
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Comparison of Objectives  

The Least Squares objective was one of the earliest 

objectives used in network optimisation (15). It provides 

continuous functions having continuous derivatives, and is 

thus suitable to optimisation techniques employing gradients. 

Its drawback is that it concerns itself with the 'average' 

error and not the worst error. This is not a usual design 

criterion. 

The generalisation of the Least Squares, the Least Pth 

objective, does to a limited extent, concern itself with 

the worst error (2) (15). As all the errors become small, 

then the 'averaging' effect tends to dominate (2). This 

approach does retain the advantage of having continuous 

derivatives. 

Both the Generalised Minimax and Minimax objectives achieve 

the network designers frequent goal in that they concern 

themselves only with the worst error and have no 'averaging' 

effect.• However these objectives are not so popular. In 

1969, J. W. Bandler (2) commented 'This is chiefly due to 

the fact that discontinuous derivatives are generated in the 

response hypersurface when the maximum deviation jumps 

abruptly from one point on the' axis to another, and that 

multi-dimensional optimisation methods which deal effectively 

with such problems are rather scarce'. 

Today there are more methods which do cope with such problems 

(6), but probably due to historical development and the 
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inherent preference for 'smoothly' varying functions and 

gradient methods, minimax objectives are relatively rarely 

used. 

Bown and Geiger (6) draw attention to the fact that 'The 

error vector contains valuable information which should be 

retained and not lost, as is the case if one considers only 

the resultant objective function'. The inference here is 

to the efficiency of optimisation techniques which do not 

require a specific scalar objective, but operate directly 

upon the error vector, such as 'generalised least squares' 

and 'minimax' techniques. 
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2.4 	ONE-DIMENSIONAL OPTIMISATION TECHNIQUES 

Multidimensional optimisation strategies frequently employ 

one-dimensional strategies for searching along some pre-

determined direction. There are two general classes, direct 

search methods (these minimise the maximum interval containing 

the minimum) and approximation methods (these fit a curve 

through selected points and locate the minimum of the 

determined curve). 

Generally, approximation methods are superior when the function 

is 'smooth' (i.e. not so high orders) while minimax search 

methods can be applied to arbitary unimodal functions. 

Quadratic Interpolation 

This is an extremely simple yet nevertheless useful approx-

imation method. If we have a unimodal interval a, b, c, then 

the minimum of a quadratic through a, b, c is given by 

d 	(b2 	c2) Ea 4. (c2 a2) 	(a2 b2) Ec 	
2.21). 

(b - c ) Ea  + (c - a ) Eb 	(a, - b ) Ec  • 

We now select a new smaller unimodal interval from a, b, 

d, c depending upon the values Ea, Eb, Ec, Ed  and repeat 

until interval sufficiently small. 

Fibonacci Search 

This is the most efficient direct search method (43). If we 

have a unimodal interval a, b with two interior points b, c 
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a < b < c < d 

it is obvious that we can reduce this interval to either 

(a, c) or (b, d). By careful positioning of b, c within 

the interval (a, d), we can ensure that only one new point 

need be evaluated when reducing each time to a smaller interval. 

The Fibonacci search achieves the greatest interval reduction 

while satisfying the above criterion. 

The number of iterations N must be specified initially in 

order to locate the positions of b and c. This can be 

determined from known interval reduction, iteration number 

relationships (43) (2). 

Golden Section Search 

This direct search method is almost as effective as the 

Fibonacci search but the number of iterations need not be 

fixed in advance. The interval is divided into three sections 

using the golden mean. Subsequent intervals also require 

only one further function evaluation. This procedure is 

continued until the interval is sufficiently small. The 

interval reduction achieved is roughly 17% less than that of 

the Fibonacci search, for the same number of iterations. 

The above methods rely on the bounded interval being uni-

modal, otherwise convergence on the minimum is not 

guaranteed. There are no methods which can guarantee finding 

a unimodal interval which definitely contains the absolute 

minimum. 
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There are a few strategies which assist in finding intervals. 

The most simple is a set of uniformly spaced points c., 

starting from a specific location, until 

E (C + 1) 	E RI) 

A more efficient version of this approach is to systematically 

increase the step interval until the above condition is 

met. This modification speeds up the process of finding 

a suitable interval, at the expense of creating larger intervals. 
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2.5 	MULTI-DIMENSIONAL OPTIMISATION TECHNIQUES  

These techniques can be conveniently classified into two 

basic types, those requiring gradient information and those 

not requiring gradient information, referred to a direct 

search methods. 

2.5.1 	Gradient Methods  

These methods can be subdivided into two basic types, 

reduction to linear search and function approximation. 

We will examine some of the more common methods and discuss 

their suitability. 

Steepest Descent  

At the j th iteration define the change in jj  to be along 

the vector ij  thus 

-j + 1-j .  = C 	cg 13 

oci  is positive valued scalar (step size) 

s is unit vector. 

The unit vector is chosen such that 

s 1 	• 	Ei  - 
I RI- Ell 

(2.22) 

(2.23). 

The dl is usually found by a one-dimensional search until 

E is minimum. The cycle is then repeated. 
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This method represents a first order minimisation technique 

and is best suited to use far from the minimum (43). If 

the contours are elongated, as in narrow valleys, zig-zagging 

occurs and convergence is extremely slow (15). 

Part an  

The results of every second iteration of the steepest descent 

algorithm are used to define the subsequent search direction, 

termed accelerations. This produces a simple algorithm with 

good valley-following properties and is furthermore 

quadratically convergent (2). However non-quadratic functions 

naturally cause far slower convergence (6). 

Generalised Newton Raphson 

Differentiating the Taylor's series expansion about 

-j + 1 + 	 (2.24) 

we have, for quadratic functions 

+ 1)= OE (ci) + [H (;i)1 11-Ci 	(2.25). 

j + 1 	j 
If c 	is a minimum, then LIc necessary to reach this 

minimum is given by 

AZj 
	- CH 	] -1  . DE (;j) 	(2.26). 

When E (;) is not quadratic, equation (2.26) forms the basis 

of the Generalised Newton Raphson iterative scheme 

;j 	1  = ;i  -
-1
. 0Ei 
	

(2.27) 
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The hessian matrix H must be positive definite, implying 

the function is convex, or divergence may occur. Equation 

(2.27) can be modified to include 'damping', to give 

+ 1 = 	- oc 3  [Fin 1 
	

(2.28) 

where N) is chosen to minimise E (;J  +1) in the direction 

of - [H] -1. VE. This still does not guarantee convergence (2). 

Fletcher Powell  

This algorithm combines the more desirable features of the 

steepest descent and generalised Newton Raphson techniques, 

to form 'one of the most powerful' minimisation methods 

(43) (2) (15). 

The Newton Raphson technique has two main problems, 1) the 

hessian matrix and its inverse are needed, 2) until the 

minimum is near it requires severe damping for most functions. 

The steepest descent, on the other hand, starts off well but 

deteriorates as the minimum is approached. 

The two iterative procedures however have very similar 

equations, (2.22) and (2.28). Let Ell] -1  be replaced by an 

approximate inverse hessian matrix, initially set to unity 

and subsequently improved after each iteration using 

0E(E.). We now have an iterative procedure which starts 

off as steepest descent and changes to Newton Raphson as 

the minimum is approached. 
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Nevertheless, care must be exercised in defining the accuracy 

of 00 in equation (2.28), or the efficiency could be 

severely reduced (43). This method also requires a consider-

able amount of computer storage (15). 

Fletcher Reeves  

This is similar to the previous method in that gradient 

directions are modified by using previous gradient information. 

The search direction at the j + 1 th iteration is given by 

--j + 1 

(2.29) 
. 2 . 	2 

= 	(E31 / 1E3  - I 

An advantage is that less computer storage is required (15). 

If E (C) is quadratic, the 	aree conjugate - hence the 

alternative name of conjugate gradient method. 

Generalised Least Squares  

If the error function is the Least Squares objective, we have 

E (;) = G lei  (c) I 	(2.30) 
i=1 

which can be expressed as 

E (C) = ;T; 
	

(2.31) 

e 

- 

= (e1 (s), e2 (s), 	, em  (6))T  

Pi  
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From this, we can show that 

E (;) = 2 J T  ; 
	

2.32) 

J consists of dei i = 1 	m, 3 = 1 	n and referred to 

dcj 

as the Jacobian matrix. 

Applying the Taylor's series expansion to ;, we have 

; (C.  +41C) = ; (;)' + JA; + . • • 

Assuming J is the same at c and c +11C, then 

E (; +&c) = 23T 	( 
	

6] 	( 2  33 ) 

and if C.  +ANC is minimum point, 0E = 0, 

SO 	&O 	T [iri. Jill; (;) (2.34) 

1  or 	a c = 4  [3T4 	V E (C .) 	(2-35). 

Note the similarity to the Newton Raphson equation (2.26). 

Thus the hessian matrix H is replaced by 2 JT J which is 

far easier and quicker to compute. 

It is possible for the iterative procedure based upon 

equation (2.34) to behave erratically or even diverge. To 

avoid this, a variety of damping methods have been proposed 

(43) (2) (6). 

Nevertheless, this procedure is very popular when the error 

function is the Least Squares objective (6). 
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Linear Programming 

If Chebyshev type objectives are expressed in terms of 

inequality constraints, see equations (2.19) and (2.20), 

they are amenable to a gradient method of optimisation - 

linear programming techniques. 

Assume the e. (c) are linear, then we have 

(Z +AO = e (Z) 	+ J (Z) 
	

(2.36). 

Now let initial point be .6j, giving Acj  , ej  and Jj, then 

j + 1 	+ Jj 	(2.37). 

Substituting the above into equations (2.20), we get 

E 
	

Jj  

(2.38) 

E [I] 	- Jj  4.cj  

giving 

j 	0 	 j -e - J 	c + E [I] 	0 

(2.39) 
j 

	

+JAc +E (I) 	0 

[I] is unit vector, dimension m - no. 	e1  . . 

By varyingeacj  to minimise E subject to the linear constraints 

of equation. (2.39), we are essentially solving a linear 

programming problem. 
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Generally, damping is required so as to prevent the full 

constraints of equation (2.20) from being violated (2) (6). 

The process is repeated after each iteration using the 

subsequent e -j + 1 9
j A- 1 

to find a new Ac -j +1 

2.5.2 	Direct Search Methods  

All these methods predict future movements or directions 

based purely on the previous function evaluations. We will 

examine the 'more' popular methods, although generally 

speaking none of these methods share the popularity of . 

certain gradient methods. 

Individual Search 

This is the simplest technique, each variable al:  is varied 

in turn to minimise E (S). This single search can be carried 

out using any one-dimensional search technique. This 

approach is generally slow -  expecially on narrow valleys not 

oriented in any co-ordinate direction (2). 

Pattern Search 

This strategy, developed by Hooke and Jeeves, attempts to 

align search'directions along any valley encountered (2). 

si  
Explorations are carried out about a starting point c 

incrementing each variable ci, in turn, either way to decrease 
s. 

E  (
- 
c ). If any exploration is successful the new value 

of ci  is held and E (S) updated. 
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After the exploration cycle is completed we have located 
b. 	b. 

the new base point c 1  with E (Z 1). 

A pattern move is then made to a new starting point, based 

upon the position of the two previous base point. Note that 

the initial starting point is also the first base point. 

We use 

S. + 1 	b. -s 	- 1 
= c 

	

. 	b. 	A  

	

(zb  3- 	-6. 1 - I (2.40) 

and then explore about c
si + 1 

to find the next base point 
b. 1 + 1 

When a pattern move and subsequent exploratory moves fail 

to improve upon the previous base point, the strategy is to 

return to the previous base point and use this as the next 

starting point, as for the initial case. 

Should this fail, the exploratory increments are reduced and 

the exploration repeated until finally the resolution is 

below prescribed levels. 

This method tends to be slow for large numbers of variables 

(6), and can fail in sharp valleys or near constraint 

boundaries (2). 

Spider 

This is a modification of the previous method, reducing the 

risk of premature termination. Instead of the exploratory 

moves always being made in co-ordinate directions, they are 
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now made in randomly generated orthogonal directions. 

Razor Search  

When the basic pattern search terminates, a random move 

is generated and a new pattern search started. When this 

too terminates, it is assumed that both 'minima' lie on a 

'razor' sharp valley and a pattern move using these two 

'minima' is made, starting a search along the direction of 

this valley. Useful results have been shown using this 

method (3). 

Rotating Co-Ordinates  

Rosenbrock developed a strategy involving the rotation of 

co-ordinates. This method is relatively complicated 

compared to other direct search methods (2). 

Powell's Method  

Given a quadratic function 

E (Z) = Zt  (A] c + Bt  c + C 	(2.41) 

is a n dimensional constant matrix 

B 	is a constant vector 

C 	is a constant, 

it can be shown that the minimum can be reached by searching 

along each conjugate direction only once. This forms the 

basis of this quadratically convergent direct search 

technique (2). 
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Simplex  

A simplex of n + 1 vertices is set. up in n-dimensional space. 

At each iteration the vertex with the highest objective 

value is replaced with a new vertex, effectively rolling the 

simplex about the space. One efficient method is that by 

Nelder and Mead. The basic move consists of reflecting the 

'worst' vertex about the centroid of the remaining vertices. 

This process is either repeated or expansion, contraction 

or shrinking takes place, depending on the result of the 

previous process. 

The method has excellent efficiency for up to 4 parameters, 

but slows down above this number (43) (2). Bown (6) however 

generally prefers this method to the pattern search methods, 

and has experienced consistent success, especially when 

remote from the minimum. 

Grid Search 

The Grid Search method has been included only because it is 

one of the few attempts to locate the global minimum. The 

method consists of laying down a grid of points over the space 

and locating that point with a minimum value. A new smaller 

grid is then formed about this point and the cycle repeated 

until the error is acceptable. The number of evaluations 

escalates enormously with more than only a few variables 

(24) (6), and is consequently impracticable. 
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2.6 	SUITABILITY OF OPTIMISATION TECHNIQUES  

As mentioned previously, there are two basic types of gradient 

methods. 

Gradient methods based on the reduction to a linear search 

are basically linearly convergent processes and best suited 

for use when far removed from the minimum (43) (15). 

Modifications to this approach exist, for example Partan, 

which effectively convert the process to a quadratically 

convergent one, thereby improving its performance when closer 

to the minimum. All these methods have the advantage of 

always converging on a minimum (43)• 

Approximation methods based upon quadratic approximation are 

naturally quadratically convergent processes. Their strength 

lies in their efficiency in locating the minimum when in the 

near vicinity (43) (2). If far removed from a minimum, 

i.e. poor start, the approximations are generally poor and 

severe 'damping' is required to avoid divergence (2). This 

can drastically reduce efficiency. 

Certain methods which combine the better features of the above 

two types have been developed. One of the most popular 

of these is the Fletcher Powell algorithm. Nevertheless 

care must be taken in defining its use or loss of efficiency 

or even divergence will occur (43) (2). Certain programs 

simply consist of both types of methods and initially use a 

linearly convergent method followed by a quadratically 

convergent method (24). The difficulty is in the decision 
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of when to change. A simple error value test does not 

necessarily indicate this, and again loss of efficiency or 

even divergence will occur. 

Generally gradient methods are efficient for objective 

functions with continuous derivatives and the initial start 

is not too poor (24). This is particularly true when 

'precise' and efficient methods exist for computing gradients, 

as is the case for network design (13) (21) (4). Application 

of gradient methods to objective functions having discon-

tinuous derivatives will produce unpredictable results (2). 

Finally gradient methods, by their very nature, must converge 

on the local minimum in the immediate vicinity, which may 

not be an acceptable minimum (24). This is especially 

relevent when the initial start is likely to be a poor one. 

Although not generally appreciated, Direct Search methods 

compare favourably with Gradient methods as far as efficiency 

and especially reliability are concerned (2) (6). 

Most of these methods are linearly convergent with the 

attendant loss of efficiency as the minimum is approached. 

There are however quadratically convergent direct search 

methods which have improved performances near the minimum (2). 

Direct Search methods cannot diverge, after each complete 

iteration, and avoid the problems of damping (6). Some 

methods may however halt prematurely (2) (3) (6), but mod-

ified methods to minimise this feature are available (2). 
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Objective functions with discontinuous derivatives do not 

pose a specific problem to these methods (6), although the 

shape of the space could cause difficulty. 

Finally, direct search methods have a higher probability 

of 'jumping' over local minima and thereby locating a more 

preferable minimum (24). This is naturally significant when 

the initial start is probably poor. 



2.7 	SELECTION OF SUITABLE METHOD 

All known optimisation techniques suffer from one major 

failing, the inability to detect and converge upon the global 

minimum for all but very simple functions (43) (15) (6). 

Accepting this failure, we will now consider the choice of 

a suitable technique. 

The previous sections have discussed the advantages and 

disadvantages of the methods available, and it is now necessary 

to define, as closely as possible, the actual problem being 

attempted. 

Bown and Geiger (6) have defined three identifiable stages 

in the solution of optimisation problems; opening, middle 

and end. Some problems require only one or two of these stages. 

If only the end stage is required, i.e. good initial design, 

then one would probably have best results with a second 

order gradient method. 

If the opening to middle stages are sufficient, then the choice 

would probably lie with direct search or first order gradient 

methods. 

The required network criterion and its resultant objective 

will also help clarify the choice. 

Another relevant actor may be the ease of implementation 

or 	ease of interference or guidance by the designer 

during the optimisation - possibly in an interactive method. 
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There are no known definite methods of selecting an optimum 

approach, and the designer must be guided by his criteria 

and feeling for the problem being investigated. 
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Chapter 3  

OUILINE OF THIS METHOD 

3.1 	INTRODUCTION 

This thesis is an investigation into the feasibility of 

fully automated circuit design. As mentioned previously 

in Chapter 1, circuit design consists of two basic elements, 

the evolution of circuit topology and the choice of element 

values. 

However when considering CACD, the full design process has 

been split into two separate consecutive stages. The initial 

stage consists mainly of the evolution of circuit structure 

- left to the designer. The subsequent refinement stage 

consists mainly of element value choice - performed by the 

CACD program. 

There is not however a precise correlation between the two 

types of division mentioned above. It was felt preferable 

to use the more practical division (initial and refinement 

stages) rather than the theoretical design division (evolution 

of circuit topology and element value choice). This better 

describes the extent of this thesis towards the goal of fully 

automated circuit design. 
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3.2 	THE TWO BASIC STAGES IN CACD  

The review of CACD programs, in Chapter 1, has highlighted 

the following points; 

a) the network structure of the initial approximate circuit 

must be essentially that required of the final desired 

circuit, as these programs hardly alter the network 

structure throughout the design procedure 

b) the values of most of the elements of the initial 

approximate circuit should be only a few orders of mag-

nitude removed from the final expected values, otherwise 

these programs may converge on unsuitable local minima. 

The above requirements place severe and complicated constraints 

on the choice of the initial approximate circuit. These 

initial circuits are usually found in one of two ways. 

A known circuit whose response is similar to that required, 

is modified, using analytical design procedures, to produce 

a response considered near enough to the required response. 

This modified network is then used as the initial approximate 

-network. Otherwise, one or many of the analytical design 

procedures are used to produce a network 'from scratch' with 

a response sufficiently similar to that ultimately required. 

This network is then employed as the initial approximate 

network. 

The -above two procedures, and any other method of producing 

an initial approximate circuit can be considered the 'initial 
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stage of the design'. This initial stage of design must 

either choose or evolve a suitable structure and also select 

reasonable element values. This is a most difficult task 

and requires a large degree of skill and experience on the 

part of the designer. As of yet there are no CACD programs 

which can either do the task or even contribute significant 

aid. 

The subsequent stage of refinement of element values, and 

also minor structural changes or modifications, constitute 

the 'refinement stage of the design'. This is where the 

field of CACD has fully established and justified itself. 
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3.3 	FULLY AUTOMATED CIRCUIT DESIGN 

Using the convenient division of initial and refinement 

stages of CACD, it is clear that fully automated circuit 

design is far from a reality. 

In fact, the most significant design tasks are those considered 

during the initial stage of the design - that is the 

evolution of circuit topology and estimate of element values. 

The automated assistance only comes into being during 

refinement. 

What is lacking is computer oriented methods of evolving a 

good 'initial approximate circuit'. This can then be used 

as input to one of many excellent CACD programs which refine 

these approximate networks to the degree required. 

This thesis is thus concerned with the search for and pro-

duction of a computer oriented method which will significantly 

assist the designer during the initial stage of CACD. 
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3.4 	DESIGN REQUIREMENTS  

To save duplication of effort, it was decided to further 

confine this thesis to the realisation of passive RLC net-

works with respect to one required network function. 

There is no loss of generality as the basic design procedure 

will not be dependant on the network function. 

One of the commonest required network functions is the 

voltage transfer function with respect to frequency 

Vout 	= f (network, frequency) 

V. in 

      

vin 

 

o- 	

  

Vout 

   

The modulus of this function, expressed in decibels 

Voltage Gain = 20 log10 

V. in 

will be used as the design criteria throughout this thesis. 

Vout 
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3.5 	CONSTRAINTS ON THE PROPOSED METHOD 

All CACD procedures rely upon iterative optimisation 

techniques. They consist of the analyse-correct-reanalyse 

cycle and, as such, require some form of initial circuit 

to analyse in order to start the cycle. 

Thus it may be assumed that the CACD procedure to be evolved 

during this thesis will also require an initial network. 

In order to save confusion between this initial network and 

those required by the usual CACD procedure, this initial 

network will be referred to as the 'Generalised Starting 

Network'. 

It is the aim of this thesis that the computer oriented 

procedure to be evolved will operate upon the Generalised 

Starting Network to produce a good initial approximate net-

work. This initial approximate network is that required by 

the normal CACD program which refines the network to that 

ultimately required. 

Obviously the required initial approximate network to be 

produced will depend entirely upon the ultimate desired network 

whereas the Generalised Starting Network should be completely 

independant of either. This would imply that the entire 

design procedure has been fully automated, including the 

initial stage of the design. 

This is however setting an extremely difficult, if not 

impossible, task - irrespective of whether this approach is 
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efficient or not. There is also no justification in 

automation of a task which is easily performed by human 

intervention. 

As outlined in the previous sections, the entire initial 

stage of the design was handled by the designer. This has 

proved to require a high degree of skill together with an 

intimate knowledge of a vast number of analytical design 

procedures as well as experience of producing similar networks. 

In view of the above, it was decided to try and 'strike a 

happy medium' - to use human intervention where the work 

was not suited to an automated process and also did not require 

a high degree of skill on the part of the designer - to use 

an automated process to handle the remainder of the process. 
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3.6 	STATE SPACE APPROACH 

When faced with a required response curve, one of the first 

immediately apparent features noticed is the complexity of 

the curve - that is the number of bends or kinks in the curve. 

This feature is to a large extent dependant upon the order 

of the function which may fit this curve. This is of course 

a highly simplified way of defining a function to suit the 

curve, but is nevertheless a useful starting point. 

Furthermore, it has been shown, especially when considering 

the state space approach, that there may be and usually is a 

correspondence between the highest order of the network 

function and the number of reactive elements present in a 

passive circuit. 

Another approach of linking the shape of a curve to the number 

of reactive elements required is via Bode plots and other 

graphical methods. These methods tend to be more complex 

and require experience when considering response curves beyond 

those of simple low, high and band-pass networks. It is 

obvious that the latter approach supplies far more information 

than simply the number of reactive elements. They may in 

fact be supplying too much information, which an automated 

process could also possibly supply. 

State space techniques, as mentioned in Chapter 1, place an 

initial emphasis on the number of reactive elements. They 

then complete the realisation by using an analytical algorithm 
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to connect these reactive elements with a frequency 

independent n-port. 

This approach could well be the 'happy medium' mentioned 

in the previous section. The designer could estimate the 

number of reactive elements and the CACD program could 

optimise the interconnection of these elements to the input 

and output ports. This does not require too much assistance 

from the designer while it nevertheless may supply sufficient 

information with which an iterative technique could begin. 
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3.7 	TOPOLOGICAL OPTIMISATION PROCEDURE  

Having decided that the Generalised Starting Network will 

have a given set of reactive elements - the size of this set 

being found by the designer estimating the complexity of 

the required response curve - the next step is concerned 

with the interconnection of these elements by an iterative 

process. 

This is essentially a topological optimisation procedure - 

the optimisation procedure is concerned with the interconnection 

of elements rather than the alteration of elements values. 

Topological optimisation procedures can be split into two 

basic approaches, 

1) alteration of network topology by the growth of new 

elements 

2) alteration of network topology by the removal of elements. 

The review in Chapter 1 has shown that there has been a few 

attempts at topological optimisation using both approaches, 

but the success has been limited. 

When considering this specific problem, the element growth 

approach did not seem suitable for two main reasons, 

1) what would be the form of the Generalised Starting 

Network? Simply the set of reactive elements did not 

seem feasible. On the other hand, if resistors were 

included, on what basis could one choose their position 

and value? 



during optimisation, if it was decided to grow an 

element, its initial value could be overly crucial to 

the overall response of the network. 

The element removal approach seemed to be far more suitable 

to the problem faced, 

1) the Generalised Starting Network now presents no difficulty. 

It would consist of the set of reactive elements together 

with a set of resistors which would connect each terminal 

of every reactive element and input, output ports to every 

other terminal. Hence we have 

IN 

OUT 

(N--PORT) 

COMPLETELY 

INTERCONNECTING 

SET OF 

RESISTORS 

REACTIVE 
ELEMENTS 

This includes every possible RLC network with this set 

of reactive elements, even though no internal nodes are 

permitted within the resistive n-port. It is easily 

shown, using the generalised Y 	transformation (47), 

that any node connected by only one type of element can 

be removed, 
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2) the optimisation procedure would then be allowed to increase 

or decrease the value of any resistor thereby creating 

effective open or short circuits - both cases being element 

removal. 

The optimisation procedure would obviously be required to 

initiate element value changes of many orders of magnitude 

in order to create open or short circuits in the place of some 

of the interconnecting resistors. 

Finally, to simplify computational effort, the load resistor 

terminating the output port, can be considered part of 

completely interconnecting set of resistors within the n-port. 

The topological optimisation procedure can be constrained 

to either not operate upon this resistor or not allow its 

value to fall below that of the desired resistive load. 
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3.8 	INITIAL CHOICE OF ELEMENT VALUES  

The only variables of the Generalised Starting Network not 

yet covered are the initial values of the set of reactive 

elements specified by the designer and the initial values of 

the set of interconnecting resistors. 

It seems reasonable to allow the designer to select suitable 

values for his chosen set of reactive elements. Values could 

be chosen upon the basis of both practical values and the 

approximate break frequencies in the required response. 

In order not to force the optimisation procedure in any specific 

direction, the resistors should all be of the same value, 

and possibly a few starting values tried. 

If required, certain resistors could be removed or short 

circuited to comply with certain design restrictions. Some 

likely restrictions could be the necessity of a common input 

output node, or a specific resistor across the output port 

to imitate the terminating load. These decisions would 

naturally be left with the designer. 
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3.9 	CONCLUSIONS  

As a result of the discussions of the previous sections of 

this chapter, the following method was chosen to test the 

applicability of CACD during the initial stage of the design - 

a step further towards fully automated circuit design. 

1) the required transfer function curve would be examined 

to estimate, rather roughly, the number of reactive 

elements which would be required 

2) these reactive elements would be assigned acceptable 

values, bearing in mind the relevant break frequencies 

in the transfer function curve 

3) the Generalised Starting Network becomes 

where the set of resistors form an interconnecting set 

between all the terminals of the n port, less any removed 

due to design restrictions 
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4) value of all resistors chosen to be either. say 

100K(Lor 11{31_or 10JL, except internal load resistor 

5) use optimisation procedure to produce a network with 

a response sufficiently similar to that required 

6) finally, this network could then be used as the initial 

approximate network for the normal CACD procedure which 

would refine the network as required. 
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Chapter 4  

INITIAL DEVELOPMENT OF PROGRAM 

4.1 	INTRODUCTION  

The optimisation procedure, if it is to be successful, must 

satisfy certain conditions or criteria. This chapter includes 

an examination of the necessary conditions and their effect 

or result on an optimisation procedure. An optimisation 

procedure, satisfying these conditions, is subsequently 

developed. 

The analysis of the network will be required at many 

frequencies, if we are concerned with the practicalities 

of design. As the network is conveniently separated into 

frequency dependant and independant parts, a new approach, 

utilising this separation, is proposed. 

Finally these routines were merged into a comprehensive inter-

active design program, together with other useful facilities 

to aid the designer in controlling the optimisation procedure. 
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4.2 	OPTIMISATION PROCEDURE  

4.2.1 	Requirements  

The 'Generalised Starting Network' is likely to be an 

extremely poor approximation, if any, to the network being 

developed - the 'initial approximate circuit'. This gives 

rise to the following requirements of the proposed optimis-

ation procedure. 

The optimisation procedure must be able to 

(1) alter the structure or topology of the network radically, 

(2) initiate large element value changes, over many orders 

of magnitude, 

(3) have no bias towards any range or ranges of element 

values, namely to be able to move equally freely over 

the range from very large to very small element values. 

The above criteria are in terms of electrical network concepts. 

It is useful to transform these criteria to criteria in 

terms of function optimisation theory. 

The following function optimisation criteria of the above 

are that the procedure must be able to 

(1) cause function movement all over the multi-dimensional 

space, 

(2) 'jump out of or 'jump over' unsuitable local minima, 

(3) generate large function variable changes,  

(4) have no bias towards any function variable ranges. 
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The first criterion includes or implies the following 

Criteria to a certain extent. It is nevertheless worth-

while separating the criteria to emphasise the full 

implications of the rather general first criterion. 

Besides the above criteria, it was also felt that it would 

be advantageous if the strategy of the procedure was not 

too complex. It could then be followed and perhaps even 

influenced by the designer during the design procedure, 

in an on-line environment. 

Finally, it would be preferable for the procedure to be 

capable of handling a Minimax Error Function, this being 

the most realistic error criterion for network design, see 

section 2.3. 

4.2.2 	Choice of Optimisation Procedure  

The most significant feature of the procedure to be evolved 

would be its ability to move freely about the function space. 

This severe criterion immediately excludes all optimisation 

procedures which rely upon gradient information in order 

to predict the following direction. This has been previously 

investigated in the review in Chapter 2, where it has'been 

shown that these methods necessarily (or should) converge 

on the local minimum in the immediate vicinity. Furthermore, 

these methods when applied to circuits rarely generate large 

element value changes in complex space, there being many 

local minima. The procedures are complicated to follow in 
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that it is extremely difficult to interpret a gradient 

direction in terms of relative changes in element values. 

From the conclusions drawn in Chapter 2, it is apparent 

that Direct Search methods are the most suitable. These 

methods can be made to move freely about the function space 

by choosing sufficiently large step sizes when required. 

This could, in turn, force the procedure to move over or 

ignore minor local minima and possibly even jump out of 

an unsuitable valley. 

Some of these procedures are fairly easy to follow as each 

individual move can be made to follow along one variable 

axis. This leads to easy monitoring of progress in terms 

of element values. 

Minimax objectives do not cause any inherent problem to 

these methods as gradient information is not required. 

Amongst the direct search methods reviewed, the pattern 

search method seemed as suitable as any other method. It 

was decided to select this method due to its simplicity of 

basic strategy and reported consistent success (2) (6). 

The simple strategy of the pattern search method lends itself 

to easy control by the designer. The designer simply has 

to set the exploratory increments to suitable values to 

force significant movement about the function space - at any 

stage. 
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4.2.3 	Modified Pattern Search Technique  

Having decided that a pattern search technique would be 

a suitable choice, it seemed worthwhile to investigate fully 

the modifications proposed by J. W. Randier and P. A. 

Macdonald in their paper 'Optimisation of Microwave Networks 

by Razor Search' (3). 

The paper presents two techniques, one being an optimisation 

procedure, the other being a linear search techniqUe 

concerned with locating the maximum deviation over a required 

frequency range. As we are concerned with responses at 

discrete intervals, the latter technique is not investigated. 

The optimisation procedure, termed razor search, starts with 

a modified pattern search until this fails. A random point 

is generated in the neighbourhood and a second modified 

pattern search initiated. When this ultimately converges, 

the two 'minima' are used to indicate a pattern move and 

another pattern search initiated. The process is repeated 

as required. 

As the optimisation procedure being developed in this thesis 

is to be an on-line procedure with possible designer 

intervention, it was felt that the complete razor search 

strategy could lose valuable human interpretation. 

However the modified pattern search technique in itself 

seemed a very suitable method as the modifications were 

significant but still did not overcomplicate the basic pattern 
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search strategy. 

The modifications proposed were, 

(1) that the size of the exploratory moves should reflect 

the progress made between two previous base points - 

they would increase following a large pattern move 

or decrease following a small pattern move 

(2) when a pattern move with its associated exploratory 

moves fails to improve upon the previous base point, 

the pattern is not discarded - the pattern move is 

halved and new associated exploratory moves tried - 

if this too fails, the pattern move is made in the 

opposite direction and new associated exploratory 

moves tried. 

An extra modification is included to avoid numerical compu-

tational error. This modification is to compare the new 

evaluated error against the previous minimum less a small 

chosen value. This has the added advantage of ignoring 

minute genuine improvements. 

The overall strategy chosen is similar to the above mentioned 

modified pattern search. The strategy is best illustrated 

by means of a flowchart, Figures 4.1 - 4.3. 

Symbol List  

U 	minimax objective function 

Uc 	function value at c 

U 	function value at c
o 
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minimum acceptable function change, compiled into 

program 

U'c equal to Uc - 
0 	 0 

c 	current point 	(set of variables) 

c. 	i the element of c 	(individual variable) 

c
o 	

temporary minimum 	(set of variables) 

exploratory increment about pattern move, current 

step size 

4E 	minimum permissible step size 

vector between the two previous base points, determines' 

projected pattern move and associated step size 

n 	number of variables (elements) 

S 	direction vector controlling exploratory moves 

(s. 	1, - 1) 

M 	indicator, value of 1, 2 or 3, for logic control 

Notes 

(1) On entry, the user specifiesiinitial step size, and 

4 minimum (terminating) step size. The initial 

point c is the current state of the network on entry. 

(2)ThedirectionvectorShasalls.set set to 1 by the 

program. During the optimisation the si keep track 

of the previous successful direction of the exploratory 

moves of c.. This is an attempt to reduce the number 

of function evaluations required in subroutine EXPLR, 

based upon first trying the previous successful direction. 
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96 

Figure 4.2 
	

Subroutine PATMV 



97 

Figure 4.3 	Subroutine EXPLR 



4.2.4 
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Variable Transformation  

The optimisation procedure described in the previous section 

considers most of the requirements specified in section 4.2.1. 

The only requirement outstanding is that there should be no 

bias towards any range of element values. This condition 

implies that the optimisation procedure should consider 

identical a relative change in element value about any specific 

element value. 

As the procedure either adds or subtracts an increment from 

a particular value, it was decided to use the variable 

transformation. 

ci  = log1 
 

(yi ) 

c. - objective function variable 

yi  - network element (admittance). 

Hence the optimisation procedure operates upon the log10  of 

the network admittance value, that is the index of the 

admittance value. This is a relative change in the admittance 

value, thereby having no bias towards any range of element 

values; large, intermediate or small. 

This transformation also includes other desirable features. 

The transformation totally excludes the possibility of negative 

element values being generated, thereby avoiding the problems 

of constrained optimisation. There is also the general 
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opinion that such transformations tend to generate more 

circular shaped, i.e. smooth, contours, as mentioned in 

Chapter 2. 

It was decided to include arbitary limits upon the variable 

elements so as to avoid marginal improvements which could 

prove to be costly timewasting exercises. These boundaries 

would have to be sufficiently far removed if the optimisation 

procedure is to perform topological changes. The boundaries 

initially chosen were 

upper yi  .10
6 

mhos (short circuit) 

lower yi  = 10 9  mhos (open circuit ). 

These limits exceed the practicalities of electrical network 

design, and so should not limit the possibility of finding 

a suitable solution or optimum. 
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4.3 	ANALYSIS OF CIRCUIT  

4.3.1 	Introduction 

A large proportion of CACD procedures employ a well known 

circuit analysis algorithm. This algorithm consists of 

(1) computing the nodal admittance matrix at a specific 

frequency, using complex numbers 

(2) the matrix is either pivotally reduced or inverted 

using one of many numerical methods such as 

Gaussian elimination 

(3) the desired response is obtained from the reduced 

or inverted matrix 

(4) the above steps are repeated for each required 

frequency. 

This algorithm is obviously very repetitive, and various 

attempts to reduce computational effort for specific cases 

have been published, for example (17). 

An alternative approach is to compute the symbolic network 

function with respect to frequency. This approach is not 

generally favoured owing to the large computational effort 

involved in determining the network function. Recently, 

November 1973, Lin commented in a survey (32) that 'We 

foresee that symbolic programs will supplement numerical 

programs to produce better results of computer aided design'. 

As we are concerned with optimising an extremely poor 

approximate realisation over a realistically large set of 
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discrete frequencies, the computational effort involved in 

analysing networks will be considerable. 

Under these circumstances, it was felt necessary to attempt 

to reduce this considerable computational effort. As the 

network under consideration is of a specific form, a method 

utilising this specific form is subsequently evolved. 

4.3.2 	Proposed Analysis Technique  

The particular network with which this design procedure is 

concerned, is of the form of Figure 4.4, where 

[G] 	n-port, is purely resistive 

• Yn - 2 terminating admittances, are the reactive •  

elements of the network. 

Hence the network is separated into frequency dependant and 

independent parts. It was felt that it may be possible to 

use this convenient division to produce a more efficient 

algorithm than the usual numerical algorithm described in 

the previous section. 

This investigation lead to the method described in the 

following section. 
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Figure 4.4 
	Generalised Starting Network  
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4.3.3 	Determination of Network Functions with respect to  

N Variable Elements (26) 

Consider the network of Figure 4.), ports 1 and 2 being the 

input and output ports respectively. Let the m-port [Y] 

be the invariant part of the network, with y1  . . . yn  being 

the n variable elements. 

The m port admittance matrix [Y] with elements y.can be 
19J 

readily determined using standard procedures (29) (47). 

We may now include the variable elements y1  . . . yn  in the 

m-port to form a modified m-port, as in Figure 4.6. The 

modified m-port admittance matrix [Y'] is easily expressed 

in terms of elements yi,i  of the original matrix [Y] and 

the variable elements yk  as 

Y1 ,n+2 • 

Y2,n+2 

Y)/ 	
3  Y , ) , 
	(Y, , ,Y1) 	• • 

7. 	,,,, 
	..), / 	Y5,r1W 

• • 	' 

• • 	 • 

Yn+2,1 	Yn+2,2 Yn+2,3 	" (Yn+2,n+2 Yn 
• • 

(4.2). 
Now reconsider the network of Figure 4.5 as a 2 port, having 

only input and output ports, ports 1 and 2 respectively. 

We can find the 2 port admittance matrix by reducing or 

CY.) 
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0  71 	v3 

• 
I 
m 	o 

0 yr" 

I30 
0 

y1 . . . yn terminating admittances 

[Y] 

port 1 

port 2 

m-port, m = n + 2 

input port 

output port 

Figure 4.5 	Basic Network 
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m-port 

yi  . • . yn variable elements 

[V] 	modified m-port, m n 2 

port 1 	input port 

port 2 	output port 

Figure 4.6 	Modified Network 



106 

condensing the m-port admittance matrix [Y1]. 

First, we partition the matrix CY'l as 

Y1,1 	Y1,2 	Y1,3 	• • 	• 	Y1,n+2 

Y2,1 	Y2,2 I  Y2,3 	• • • • Y2,n+2 

Y3,1 	Y3,2 	 (73,3+  Y1 )  • • • - 	
Y3,n+2 

. 	 . 	 . 

. 	 ► . 	 . 

. 	 . 

Yn+2,1 	Yn+2,2 	Yn+2,3 	• • . • 	(Y1.1+2,n+2 + Yn) 

(4.3) 

and by using the matrix generalisation of pivotal condensation, 

we obtain 

= 

ryti] 	1  

IN'12,121 

1'4 '2,21 

'1,21 

(4.4) 

IN', 

where; Niab,cd are submatrices of Y' formed by removing 

rows a, b and columns c, d 

!MI 	determinant of M', or minor of Y'. 

Let us now consider the corresponding submatrices M1,1, 

111,2, M2,1, M2,2  and M 12,12 of  [7] , formed by removing the 

corresponding rows and columns of CY) . It is possible to 

express each minor 	in terms of subdeterminants of its 

corresponding submatrix M, and the variable elements yi. 



I 	= 
j1=0 J2=6  

1 

) 	
m. 
J12 

J1 j2 

jn Yi Y2  
jii=0  
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By expanding each minor ITO along its leading diagonal, 

it can be shown that 

4.5) 

where 

J1J2 
	

i
n are subdeterminants of the corresponding 

submatrix M . 

Each subdeterminant is formed as follows 

(1) For each jk  = 1 (for k = 1, 	, n) we note which 

row-column pair in submatrix M' contains yk  

(2) We remove the corresponding row-column pairs from the 

corresponding submatrix M 

(3) We calculate the determinant of the remaining submatrix. 

As the matrix [Y] describes only the invariant part of the 

network, then its submatrices M and their subdeterminants 

m. 	are necessarily constant. 
3132 	3n 

Thus the 2 port admittance matrix [Y1 of equation (4.4) has 

been found in terms of symbolic functions with respect to 

the n variable elements. Any other required network function 

can be determined from this. 
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4.3.4 	Application to Network Concerned  

The particular network, with which this design procedure 

is concerned, is conveniently split into an invariant part 

with respect to frequency (the resistive n-port) and a 

variant part with respect to frequency (the set of reactive 

elements). Thus the results of the preceding section 

provides an alternative basis for an algorithm to calculate 

the network response at various frequencies. 

We need to analyse the network of Figure 4.4 at various 

frequencies. Let the resistive n-port represent the invariant 

part of the network, and the reactive elements represent 

the variant part of the network. Applying the procedure 

of the previous section we find the modified n port from 

equation (4.2), 

	

g1,1 	g1,2 	g1,3 	• • • • g1,n 

	

g2,1 	g2,2 	g2,3 	. . . . 	g2,n' 

	

g3,1 	g3,2 	(g3,3  + yi) 	. . . . 	g3 n  

• 

• • 	 • • 

gn,1 	gn,2 	gn,3 	
. . . . (gn,n Yn-2)  

(4.6) 	. 



[1.1 = 	
-1  

I N112,121  

Im'1,21 	Im11,11 

(4.7) 

1 
>11,1 

j2=0  

• • • 

V 1 

12 

1 

V2 

Y" 	Y" 

	

1,1 	1,2 

Y" 	Y" 

	

2,1 	2,2 

(4.9). 
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The 2 port parameter description becomes 

with 

1 jl j2 	jn-2 m. 
J1j2 

11...2  Y1 Y2 	Yn-2 
jn-2 0  

4-8). 

The transfer function V
out  /V. is easily obtained from in 

the 2 port parameter description 

As the output is open circuit, 12  = 0, we have 

Vout 

V. in 

-" 
2 	= 	- 	I 2,1 

V 	Y" 2,2 

Ina 

MT1,11 

(4.10). 

The corresponding subm 	 formed by 1,1 

removal of the respective rows and columns of the port 

conductance matrix [G] of the resistive n port of Figure 4.4. 
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The coefficients ofIM'1,2  I and 	1,1
I are found as out- 

lined in the previous section. 

As the elements of the conductance matrix [G] represent 

conductances, these coefficients are constant with respect 

to frequency. 

All that remains is to perform the following for each required 

frequency, 

(1) evaluate the admittances y1 	yn..2  of the reactive 

elements at this frequency, using complex numbers 

(2) calculate the numerator and denominator to find the 

response. 

It should be noted that the above final calculations require 

very little computational effort in comparison to analysing 

the entire network at each particular frequency. 
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4.4 	ANALYSIS ALGORITHMS  

4.4.1 	Algorithm for Determining the N Port Admittance Matrix  

If we assume that the n port contains no internal nodes, 

as is the case under consideration (section 3.7), then 

the following algorithm is applicable. 

Given an n port with ports numbered consecutively from 

1 to n, and no internal nodes, number the nodes forming each 

port as 

port i - nodes 2i - 1, 2i 

as in Figure 4.7. 

Now select the tree passing from node 1 to node 2 to node 3 

and so on to node 2n. If necessary assume zero admittance 

branches between consecutive node pairs having no real branch 

between them. Number the tree branches consecutively from 

1 to 2n-1. The remainder of the m branches can be numbered 

arbitrarily. The reference direction of all branches is from 

lower numbered to higher numbered nodes. 

We now obtain a directed graph similar to the example shown 

in Figure 4.8. Note that the ports are signified by correct 

sources. 

Take the fundamental cut sets through each tree branch, 

noting that, 



112 

port 1 

port 2 

port n 

port 3 

Figure 4.7 	Node Numbering 

  

 

V
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V
2 

 

1 v3 

    

1
3 

Figure 4.8 	Directed Graph Example  
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(4.11) 

where 

E is 	is the sum of all the current sources, or 

currents connected outside the n port, passing 

from one side of the cut set to the other 

is the sum of all the branch currents flowing 

through branches being intersected by the cut 

set. In matrix form, we have 

Psi — F.Q.1 [1bl 
	

(4.12 ) 

(2n-1, m) matrix having 0 or +1 entries, due to 

specified direction convention 

(2n-1) vector of current sources 

(m) vector of branch currents , 

['b] = [Gb] N 
	

(4.13) 

and 

[Vb] = [Q1] [VI] 
	

(4.14) 

[01.01 (m,m) diagonal matrix of branch admittances 

(Vb] (m) vector of branch voltages 

[V7](2n-1) vector of tree branch voltages. 



Substituting for [Vb] and [lb] from equation (4.14) into 

(4.13) into (4.12), we obtain 

CIs = EQ.] 	[(119 ry,1 
	

(4.15) 

or simplified to 

[Is] . [G"] [VT] 
	

(4.16) 

[G"] (2n-1, 2n-1) fundamental cut set admittance matrix. 

Let the elements of Is and VT  be isk 
and vtk  for k = 1, 

. . . , 2n-1. From the n port description of the 2n terminal 

network of Figures 4.7 and 4.8, we note that 

is1 

i 
s2 

 

. 

= 

I1  

0 

V 
t1 

v
.t2 

= 
 

= Vt2 
(4.17) 

s3 . I2 Vt3  = V2  

is4 = 0 
Vt
4 

= Vt
4 

i
s2n-1 

= In vt2n-1 n 
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Equation (4.16) now becomes 

and by rearranging 

We can now 

to find 

16. 

I
2 
0 

In 

I1 -  
1 

• 
In 

0 

0 

■ 
I1 

• 

In 

calculate 

= G" 

.[G1 

vt 	. 2 

=[G1  

• • 

V1 

vt,)  

V2 

vt
4 

Vn 

V1  

Vn 

v
t2 

vt 2n-2, 

v 
t2n-2 

V1 

• 

Vn 

in terms of V1 

(4.18) 

(4.19) 

. 	. 	. 	Vn 

(4.20) 
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This last step is essentially a pivotal condensation of 

the last n-1 rows and columns of [W] to form [G] . The 

(n,n) matrix [G] is the n port admittance matrix. 

Let us now consider the matrix [G"] from equation (4.16). 

From equations (4.15) and (4.16), we see that 

[v] = kl f:Gbl 
	

(4.21 ). 

Let the elements of [0 , 1Gb] and [G"] be q. 	g and 1,3 1 

G 	respectively. The elements of [G"] are found to be 

G" 1,3 
>  q1  g j q,k k ,k (4.22 ). 
k = 1 

The elements qi,k  are 1 only when the branch containing gk,  

that is branch k, is intersected by the fundamental cut set 

appertaining to tree branch i. 

Thus the element G" 	consists of the sum of those admittances 
itj 

of branches which are intersected by both cut sets 

appertaining to tree branches i and j. 

Alternatively, the element gk  of branch k appears in all 

the elements G" 	where branch k is intersected by cut sets 
1,i 

appertaining to tree branches i and j. 

Algorithm  

The above theory, together with the conventions of node 

numbering and tree selection specified, give rise to an 
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extremely simple and quick algorithm. 

Given the 2n terminal network, for each element 	connected 

between nodes i and j, where i < j 

for i 	1 < j 

i 	m < j 

G"1,m G"1,m gk 
	 (4.23) 

Then rearranging [G"1 to form bal 

by 

GI. . 	G"2i-1, 2j-1 1,0 	 j = 1, 000 p 

Gt. 	. 	G" . 	. 	j = 1, 	, n-1 i+n, j+n 	21,2j 

(4.24). 

Finally, pivotally condense [GA] to [G] by removal of the 

last n-1 rows and columns, using Gaussian elimination 

technique. The remaining (n,n) matrix is the required n port 

admittance matrix. 

This is the basis for the algorithm of subroutine GMAT which 

computes the n port conductance matrix given each conductance 

and its node pair. 



118 

4.4.2 	Algorithm for Determining the Coefficients of the  

Network Function 

Having computed the n-port admittance matrix [G] of the 

resistive network, we now need to determine the coefficients 

of the symbolic voltage transfer function with respect to 

the reactive elements. 

From section 4.3.4, using the port description of Figure 4.4, 

we have the required voltage transfer function expressed as 

Vout = - M'1 21 

Vi 	IM' 1,1i 1 1 

(4.10) 

where 

1 	1 

r1,21 	E j1.0 j2.0 
a. j1 j2 	jn-2 

2 	in -2 71 72 	7n-2  

4.25) 

1 	1 	1  

Im'I ,. =  	
0 

'31=°  j2=0 	jn-2'1) 	j1j2 	in_2 Y1 Y  1 1 	 2 

The coefficients a and b are found from the respective sub-

matrices M1,2 and M1,1 of the n-port admittance matrix (Gl. 

jn-2 
y n-2 
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Given the previous equation (4.6) 

g1,1 g1,2 g1,3 • • • • g1,n 

g2,1 g2,2 g2,3 • • • • g2,n 

[f'] = g3,1 g3,2 (g
3,3 

+ y
1
) • . . . 3 n 

• 

• 

gn,1 gn,3 n,n 

(4.6), 

if we form MI1,2 and  M'1,1 and rearrange the first rows and 

columns to appear as the last, that is the (n-1)th, rows and 

columns, we have 

(g3,3 	1 Y  ) 
• • • . 

3,n 	
g3,1 

   

-2)  

• 
MIR  
1,2 	 • 

gn,3 	• • • • (g 	+ Yn-2) n,n 	gn,1 

'3 g2,n 	g2,1 

   

(4.26 ) 

(33,3  + Yi) 	. . . • 	g3,n 	g3,2 

• 	 • 

• 	 • 

• 

• • 	(g 	+ Yn-2) gn,3 	
• . 	n,n 	gn,2 

g2,3 	• • • • g2,n 	g2,2 

M'R  
1,1 

(4.27) 



[MR1,1]=  

g3,3 	• • • • 	g3,n 	g3,1 

• • • • 

• • • • 

• • • • 

gn,n 

g2,n 
	g2,1 

g3,n 	g3,2 

• 

gn,3 

g2,3 

g
3,3 

• • 
• • • 
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Note that the determinants of the rearranged submatrices remain 

unchanged as two row, column interchanges take place. Now the 

elements yi  appear in the matrix elements eii. We now re-

arrange the corresponding submatrices M12 and M11 
of if] in 

the same manner to form 

. 	. 	. 

gn,3 	• . . . 	gn,n 	gn,2 

g2,3 	• • • • g2,n 	g2,2 
.._ 

(4.28) 

(4.29) 

From the above, the coefficients a and b become, where L — 

determinant, 

	

for constant term a 	6 (mRi ,2)  

(mRi ) 

for yi  terms 	a 	4(01,2  minus row, col i) 

	

b 	4(MR1,1  minus row, col i) 

for yi  yj  terms 	a 	4(MR1,2  minus rows, cols i, j) 

	

b 	4(MR1,1  minus rows, cols i, j) 
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and so on. All the determinants found are principal minors 

of the matrices MR1,2 and MR11 ' 

If we find the principal minors by triangulation and sub- 

sequent multiplication of the diagonal elements, we can 

reduce computational effort. After triangulation of say 

matrix MR1,2 we have 

T 
g1,1 

 

T 
g2,1 

 
g2,2 

(4.30) M
RT 

= 1,2 • 

• 

• 

T 	T 
gn-1,1 gn-1 2 

 
• • • • 

gn -1 ,n-1 

and we can find the following coefficients 

n-1 
constant term 7T 	En-i,n-i 

i=1 

n-2 y1 term gn-i,n-i 
i=1 

n-3 
y1y2 term gn-i,n-i 

i=1 

etc. 

Note that 

(4.31) 

coeff (y1  y2  ... yi_1) = gi,iT coeff (y1  y2  ... yi) 4.32). 
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If we consider the example of a 6 port resistive network 

terminated with 4 reactive elements y1  ... y4, then the 

matrices MR1,2 and  MR1,1 are 5 x 5. We can find the co-

efficients of the symbolic transfer function by 

removal of row 	triangulate to obtain coefficients 
and column pair 	of terms  

none 

2 

3 

4 

2 3 

2,4 

3,4 

2,3,4 

Y1 constant Y1Y2Y3Y4 Y1Y2Y3 371Y2 

Y1Y2Y3Y4 Y1Y2Y3 1Y2 Y2 

Y1Y2Y3Y4 Y1Y2Y3 YiY3 Y3 

Y1Y2Y3Y4 y1y2y4 1Y4 Y4 

Y1Y2Y3Y4 

YlY2Y3 4 

Y1Y3Y4 Y3Y4 

Y1Y2Y3Y4 Y2Y3Y4 

Y1Y2Y3 Y2Y3 

Y1Y214 Y2Y4 

Note that there is considerable duplication, however the 

last two coefficients found from each triangulation form the 

complete and unique set of coefficients. There is also a 

specific order of determination of the above mentioned set. 

Finally having determined each coefficient, it is necessary 

to store it for later use. There are 
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1 	constant term 

m! Yi  .terms 

(m-1)!1! 

m! 	y.
1 
 y term3 

(m-2)12! 

where m is the number of reactive elements, 

for both numerator and denominator of the transfer function. 

Algorithm 

For computational ease, it was decided to store the co-

efficients in two vectors, CFFN for the numerator and MI) 

for the denominator coefficients. 

The specified order of coefficients within each vector is 

constant 

yi 

Y. Y. j 

• 
yi  yj 	ym 

i = 1 	m 

i= 1 ... m-1, j= i 	1 	m 

i 	1, j . 2, ... , m=m 

with i varying slowest, j next slowest, etc. 

Given the number of reactive elements, m, a vector STEP is 

formed, containing the displacement of the first coefficient 

of each new order term - i.e. the displacement of constant 

term, first 1st order term, first 2nd order term, etc. This 

is used to determine the position of a coefficient within the 

coefficient vectors CFFN and CFFD. 

The two rearranged submatrices Ll 2 ref ,1 are formed from 

the n-port admittance matrix[G]. 
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An information vector IV contains information regarding which 

row-column pairs are to be removed from let1,2 and let ,1 • 

It takes the form 

where 2 -4  a 	m 

a< b ts m, or b= 0 

b< c ts m, or c= 0 

where m is the number of reactive elements. Each element 

value i in the vector signifies that row-column pair i is 

to be removed. The values are stepped through the combinations 

and are used in forming the reduced principal submatrices. 

These submatrices are triangulated and the products of the 

diagonal terms g2,2 	gk,k
T 

and g1,1T 	gk,k
T 

where k is the submatrix dimension, are stored in their 

respective positions within the coefficient vectors GFFN and 

CFFD. All the numerator coefficients are multiplied by -1 

to include the sign of equation (4.10). 

The algorithm is dependent upon the maximum allowable number 

of reactive elements. This was chosen to be 6 - sufficiently 
large to test the proposed procedure. 

This algorithm forms the basis of subroutine MINORV which 

computes and stores the required coefficients. 

a 



125 

4.4.3 	Algorithm for Evaluating the Network Function 

and Maximum Error 

The algorithm of subroutine NDEVAL evaluates the transfer 

function modulus and phase at all specified frequencies. 

The admittances of the reactive elements are calculated at 

a specific frequency and these are used together with the 

coefficient vectors CFFN and CFFD to compute the modulus 

and phase of the network function at that frequency. 

The above is repeated for all NF frequencies specified in 

the frequency vector F. 

During the above cycle, the error at each frequency is 

computed as 

ERROR = IR - RR lx RW 	(4.33) 

where 

RW - weighting factor 

RR - required voltage gain in dB 

R - actual voltage gain in dB 

R 	10log10 ) out 
1(v2 /v2.  ) 

This error is compared with the previous maximum error 

during this cycle in order to obtain the maximum weighted 

error over the given frequency set. 
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4.5 	EVALUATION OF PROPOSED ANALYSIS METHOD  

4.5.1 	Nodal Admittance Matrix Reduction. Method  

This is one of the most efficient of the popular numerical 

methods of analysing networks, as mentioned in section 4.3.1. 

The computational effort, for each frequency, consists of 

a) forming the complex nodal admittance matrix 

b) reduction of the complex matrix by pivotal 

condensation - Gaussian Elimination 

c) determination of voltage gain. 

We can approximate this effort by considering only the multi- 

plications during the pivotal condensation, as 

effort A, d3  complex multiplications 
3 

where d is the dimension of the nodal admittance matrix (20). 

Note that these are complex number multiplications which 

are generally four times the effort of real number multi-

plications. 

The number of nodes of the network being considered is likely 

to be twice the number of the n ports less one for a common 

input-output node. The dimension of the nodal admittance 

matrix will then be 2n - 2. 

The total effort over f frequencies, in units of real 

number multiplications, will be 

- 
effort 	

(2n 2)3  4f 	units (4.34)- 
3 
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4.5.2 	Proposed Transfer Function Method 

The computational effort involved consists of 

a) forming the n-port conductance matrix, insignificant 

to b) and c) 

b) evaluating the required principal minors of two 

(n-1, n-1) real submatrices to find the numerator 

and denominator coefficients 

c) at each frequency, multiply the coefficients with 

the reactive element admittances to determine the 

voltage gain. 

Again we can approximate the effort by considering only 

multiplications. Referring back to section 4.4.2, we can 

see that we need to triangulate 

2 	(n-3) I 	(n-1-r, n-1-r) real matrices 
(n-3 -r) r 

r = 0, ..., n-3 

and so computational effort, in units of real number 

multiplications 

	

effort1  ^a 
n-3 	

(n-3) 	• (n-1-r)3  units (4.35). 

	

r=0 
	

(n-3 -r) ! r 
	

3 

The number of multiplications involved during stage c), per 

frequency, is approximately 

effort 
	n-2 	

2 	(n-2) 	
r units 
	

(4.36). 

	

r=1 
	(n-2 -r) ! r 
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So, total effort over f frequencies is 

n-2 
effort22 	(n-2) !  r units 	(4.37). 

r=1 	(n-2 -r) ! r': 

4.5.3 	Comparison 

As the formulae involved, equations (4.34), (4.35) and 

(4.37) do not lend themselves to direct comparison, specific 

examples will be evaluated in order to define a trend. 

Throughout this evaluation, the Generalised Starting Network 

of Figure 4.4 will be used, where the number of ports always 

exceeds the number of reactive elements by two. 

Let the number of frequency samples be f. Evaluating for 

various numbers of reactive elements, we have 

network size 	method 

elements 	 matrix 
number of reactive transfer function 	nodel 

1 	5 	+ 	2f 	85f 

2 	23 	+ 	Of 	288f 

3 	84 	+ 	24f 	683f 

4 	270 	+ 	64f 	1333f 

5 	810 	+ 	160f 	2304f 

6 	2304 	+ 	384f 	3659f 

Linear passive networks containing m reactive elements 

will, in general, give rise to bi - mth order network 

functions with respect to frequency. At least 2m + 1 

admittance 

. 
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discrete frequency samples are necessary to fully specify 

a bi - mth order frequency function. This figure is thus 

a useful estimate of the likely number of frequency samples 

specified for a required network complexity. 

The above information and table show that the proposed 

transfer function analysis method is substantially more 

efficient for the networks under consideration. 
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4.6 	THE INTERACTIVE DESIGN PROGRAM 

The proposed optimisation and network analysis routines 

form the basis of a flexible interactive design program, 

thereby enabling the designer to monitor and control the 

progress of the optimisation procedure. 

The program consists of a set of independent routines, each 

performing a specific function, which the user may call 

at will. These are 

INPIIT 

CHANGE 

OPTMIZ 

for entering new lists of reactive elements, 

resistors and required response with 

weighting 

for conveniently adding to or altering the 

present state of the network, including the 

addition of reactive elements which auto-

matically increases the number of nodes in the 

network; also for altering the network 

requirements, i.e. response and weighting 

the user specifies or accepts previous entry 

requirements, and starts or restarts 

optimisation 

CCTRES 	for listing present state of network response, 

voltage gain in dB or modulus and phase 

GRAPH 
	

for simultaneous graphical display of present 

network response with required response, 

dB and log frequency scales 
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LIST 	for listing the present state of the 

network and/or required response 

CCTDET 	for quickly and conveniently examining any 

part of the network and/or required response 

TAPE 
	

for quickly storing or retrieving the 

present state of the network and required 

response to or from a magnetic media file 

ANALYS 	for analysing the network 

INFORM 	for information regarding use of program . 
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Chapter 5  

EXPERIMENTAL RESULTS  

5.1 	INTRODUCTION 

In order to highlight deficiencies in the procedure 

developed, as soon as possible, the initial tests were of 

complex network requirements. These initial tests lead to 

modifications to the Generalised Starting Network. 

Subsequent tests with simple realisations indicated the need 

for further modifications to the Pattern Search optimisation 

procedure. Successful realisations were then obtained. 

A large number of tests were made to help form a basis to 

evaluate various approaches within the overall strategy. 

Finally, examples are given of a number of more complex net-

work requirements and their realisations. 

The following convention is used throughout this chapter, 

type 	 Port 	terminals  

input 	1 	live 1, reference 2 

output 	2 	live 3, reference 4 

reactively 

3 

4 

5, 6 

7, 8 

 . 

n 2n-1, 2n 	, 

terminated 
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and on all graphical output detailed in the subsequent 

Figures 

response 	symbol  

required response 

network response 

when both the same 
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5.2 	INITIAL SEVERE TESTS  

A rather complex voltage gain requirement was initially 

chosen to highlight deficiencies in the procedure, as 

developed in the previous chapters, as soon as possible. 

The first series of tests had the following chosen specific-

ation, a modification of example 9-29 from 'Modern Network 

Synthesis' (46), 

gain weighting 

1 rad. -34.0  dB 1 

10 -14.0 1 

30 - 5.7 1 

50 - 3.0 1 

90 - 1.0 1 

200 0.4 1 

300 - 1.0 1 

500 - 3.o 1 

2000 -11.0 1 

3000 -11.0 

4000 - 8.5 1 

5000 - 0.0 1 

6000 -14.0 1 

9000 -32.5 1 

10000 -35.5 1 

50000 -79.o 1 

with no specific load. There was to be a common input-output 

node. 

The Generalised Starting Network of Figure 4.4 consisted of 

four reactive elements, all being lita capacitors, together 

with a resistive 6-port network. As the input, output ports 
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were to share a common node, terminals 2 and 4 were 

connected by 1 Mn.. Then all terminald 1 to 12, except 4, 

were interconnected with 10xLresistors, 56 in all. Analysis 

of this Generalised Starting Network gave a virtually flat 

gain - frequency response, namely -73.0 dB for all 

frequencies. 

The minimum acceptable error improvement 4 was set to 0.05 dB. 

All subsequent tests using differing starting and terminating 

step sizes produced the same result - simply adjusting this 

flat response to minimise the maximum error over all 

frequencies, i.e. a flat -39.5 dB gain. 

Examination of these disappointing results lead to further 

consideration regarding the structure of the resistive 

n-port. 
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5.3 	THE RESISTIVE N-PORT 

The generalised resistive 2-port is the fully connected 

network of Figure 5.1. However, either the two parallel 

or two crossing resistors are redundant, once it is 

determined which pair are necessary. 

If measurements are being taken only at one port, while the 

other is simply terminated, then either of the two pairs 

is sufficient. Under these circumstances, the reduced 

generalised network need only consist of four resistors, 

see Figure 5.2. 

If one assumes that, between any 2 ports of a larger multi-

port network, the reduced network of Figure 5.2 is sufficient, 

then there is a vast reduction in the number of resistors 

compared to a fully interconnected network. 

This assumption is not however valid and certain 'cross 

connections' are necessary. The reasoning becomes complex 

and above 3-ports, there are no reduced generalisations 

other than a fully interconnected network (47). 

We are not however concerned with the realisation of multi-

port matrices but rather with the realisations of transfer 

functions. Under these circumstances certain reductions 

may be in order. 

The above assumption of generalising Figure 5.2 to n-ports, 

although being an over-reduction of resistors, may still 

produce worthwhile results. 
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Figure 5.1 	Generalised Resistive 2-Port  

Figure 5.2 	Reduced Resistive 2-Port  
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General Reduction Algorithm 

Alternatively the efficacy of individual types of resistive 

connections could be examined. It was felt that the 

following reductions were in order 

(1) the resistor across the input port is not necessary 

(2) a direct resistive connection between the 'live' 

input-output terminals may not be necessary 

(3) the 'live' input terminal need only be resistively 

connected to one of the terminals of each reactively - 

terminated port 

(4) where a common input-output node (earth) is specified, 

then the two 'reference' terminals of the'input-output 

ports should be connected with a fixed low resistance, 

say 1 milliohm, and that other terminals need only be 

connected to either one of these terminals. 

The above reductions should cause no serious loss of 

generality but nevertheless make worthwhile reductions in 

the number of resistors within the resistive multiport of 

the Generalised Starting Network of Figure 4.4. 
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5.4 	buRTHER SEVERE TESTS  

The resistive 6-port described in the previous initial 

tests, was now reduced to contain only 32 resistors. This 

was achieved by using the reduced resistive 2-port network 

of Figure 5.2 between every pair of ports. As before, 

terminal 4 is only connected to terminal 2, with a 1 mit 

resistor. All other resistors were set initially to 10JL. 

This reduced Generalised Starting Network showed no improve-

went over the fully connected network used previously. 

Large initial step sizes giving rise to increments of 

resistive values of x10
6 or L106 did not improve the final 

results achieved - always a flat gain response of -39.5 dB, 

midway between the minimum and maximum gain specified. 
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5.5 	SINGLE REACTIVE ELEMENT CASE  

As no positive results were being achieved with the rather 

severe initial tests, it was decided to attempt simple 

realisations and build up from these. 

For these tests, it was decided to reduce the effective 

minimum acceptable error improvement )1 to 0.001 or 0.0005 dB 

so as not to ignore even minimal trends. 

The same network requirement as used previously was employed 

except that now the first 4 or 5 frequencies were heavily 

weighted in comparison to the remaining frequencies, a ratio 

of 100 : 1. The effect was thus to optimise to a high pass 

requirement, 

w 	gain 

1 rad. 	-34.0 dB 
10 -14.0 

30 - 5.7 
5o - 3.o 

(9o) 	(- i.o) 	. 

All realisations were to have a common input-output node 

while effective terminating loads varied from 1 kilohm to 

virtual open circuits. 

The Generalised Starting Network for the single reactive 

element case consists of a 3-port general resistive network 

and one specified reactive element terminating the third port. 

Employing the general reduction algorithm outlined in 

section 5.3, for reducing the set of resistors within the 
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3-port network, and noting the common earth requirement, 

the starting network of Figure 5.3 is produced. 

The resistor between nodes 2 and 4 was held at 10 3  ohm, 

while the resistor between nodes 3 and 4 was held at various 

values, specifically 103, 107 or 109 ohms, to simulate 

differing terminating loads. All other resistors were 

variables to be optimised. 

The first set of tests were carried out with a 1t,„F capacitor 

as the single reactive element. The six variable resistors 

were initially set to 104 or 105 ohms and several different 

initial and terminating step sizes were used. However all 

these attempts were unsuccessful - the initial flat gain 

response curve was simply adjusted to midway between the 

minimum and maximum gain required over the 4 or 5 frequencies. 

During these tests, it was noted that the order in which 

the elements were optimised during each cycle - which was 

fixed - had a pronounced effect on the optimisation. As the 

designer could not be expected to select a suitable order, 

it was decided to randomise this process. This process is 

discussed in the succeeding section, section 5.6. 

The second set of tests had the same high pass requirement 

as above, specifying a fixed terminating load of 103  ohms, 

and a common earth. This time the reactive element chosen 

was a 161a capacitor - sufficiently large to have a break 

frequency of less than 100 radians in conjunction with a 

1 kilohm terminating load. 
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The starting value chosen for the six variable elements 

was always 105 ohms. An initial step size of -1 to the 

index of the variables, together with different random 

orders of element optimisation produced the same unsuccess-

ful results as above. 

The initial step size was reduced to ±0.2 and the first 

successful realisation of Figure 5.4 was produced. The 

imum error was 2.04dB over the frequencies specified. 

The minimum acceptable error improvement was increased. 

The initial step size was again chosen at ±0.2 and a new 

random sequence produced another successful realisation of 

Figure 5.5. The maximum error of this realisation was 

2.17 dB. 

Both these realisations are similar in form, approaching 

the classical high pass network. 
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Figure 5.5 	Second  Realisation 
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5.6 	RANDOM ORDERING OF VARIABLES  

The experimental results of the previous section, using the 

modified pattern search algorithm of Chapter 4, indicated 

that the fixed order in which the variables were optimised 

during each cycle was critical. 

As it is unreasonable to expect the designer to select a 

suitable order in which to optimise the variables, it was 

decided to randomise this process. 

This random ordering process should be repeated prior to each 

iterative cycle throughout the optimisation, so as to 

minimise the effect of each random selection. 

The process developed consisted of 

(1) prior to each exploration in subroutine EXPLR, 

see section 4.2.3, 

(2) each variable is ascribed a random number, 

(3) the variables are optimised in order of increasing 

ascribed numbers. 

When generating a sequence of 'random' numbers by computer, 

a seed is initially entered from which the first psuedo 

random number is generated. Each random number can then 

be used as a seed for the subsequent pseudo random number. 

In this way any pseudo random number sequence is easily 

repeated - which is a useful feature. 
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5.7 	STATISTICAL TESTS  

When faced with a design requirement, the designer has two 

different tasks to perform. The first is to select a 

suitable Generalised Starting Network, the second is to 

supply information which the optimisation procedure requires 

purely for its own functioning. This information consists 

of 

(1) minimum acceptable error reduction A 

(2) initial value for the set of resistors within 

the m-port resistive network 

(3) initial step size 

(4) terminating step size 

(5) seed for random number sequence. 

The seed required must be randomly selected by the designer, 

basically if one seed fails then another seed is used. 

There can be no useful guide to assist the designer. 

It was however felt that examination of a sufficient number 

of samples may identify certain trends for the remaining 

information required. 

These tests consisted of realising the previously mentioned 

effective high pass specification, that is 
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gain relative weight 

1 rad. -34.0  dB 1.0 

10 -14.0 1.0 

30 - 5.7 1.0 
50 - 3.0 1.0 
90.  - 1.0 0.01 
200 - 0.4 0.01 
300 - 1.0 0.01 
500 - 3.0 0.01 
2000 -11.0 0.01 
3000 -11.0 0.01 
4000 - 8.5 0.01 
5000 - 0.0 0.01 
6000 -14.0 0.01 
9000 -32.5 0.01 
10000 -35.5 0.01 
50000 -79.0 0.01 	, 

the realisation having a common earth and being terminated 

with a 1 kilohm load. 

The chosen Generalised Starting Network was a single 

reactive element network, specifying a 25JAF capacitor. 

The resistive 3-port was that of the previous section 5.5, 

see Figure 5.3. The resistor R
24 

was held at 10 3 ohms, 

and the resistor R3,4  was held at 103  ohms, to simulate a 

common node and terminating load respectively. 

In order to identify trends, if any, of the above mentioned 

points, the following tests or samples were taken 

sample I, 	the set of variable resistors were 

initially set to 100K ohms 

sample II, 	the set of variable resistors were 

initially set to 1K ohms 
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sample III, 	the set of variable resistors were 

initially set to 10 ohms 

and for each sample 

(a) the following initial terminating.step sizes were 

specified 

0.2 - 0.01 

1.0 - 0.01 

2.0 - 0.01.  

3.0 - 0.01 

each combination being tested with 3 or 4 random 

order sequencies 

(b) each test was carried out with two minimum acceptable 

error reductions A, that is 0.001 dB and 1/00 dB. 

The results of these samples, in terms of 

number of iterations required 

error at the minimum 

success or failure 

are detailed in Tables 5.1, 5.2 and 5.3. 

Examination of the detailed outputs, taken after each iteration, 

provided further information regarding the choice of 

terminating step sizes. From these listings it was possible 

to determine 

(a) the number of iterations required, together with the 

subsequent step size reduction, to reach within 0.5 dB 

of the minimum (as determined by a terminating step 

size of ±0.01), see Table 5.4 
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(b) the number of iterations and function error 

reduction, had the terminating step size been 

± 0.05 initial step sizes 0.2, 1.0, 2.0, 3.0 

± 0.1 	 0.2, 1.0, 2.0, 3.0 

± 0.2 
	

" 	1.0, 2.0, 3.0 

see Tables 5.5, 5.6 and 5.7 respectively. 

Note that in all the above four tables, the order in which 

the samples are tabulated, for each initial step size, 

is that specified in the Sample Tables I II and III. 

5.7.1 	Minimum Acceptable Error Reduction 

The predominant requirement is that the optimisation 

procedure should locate a suitable minimum. This is 

reflected by a unity value in the success columns of the 

Sample Tables; Tables 5.1, 5.2 and 5.3. 

The sampled probabilities or meansipLof success can be 

summarised as 

Sample 0.001 dB 1 	dB 

I 0.8125 0.8125 

II 0.5834 0.5000 
III 0.0000 0.0000 

I + II + III 0.5000 0.4750 

From the above results for success or failure, there is 

no clear indication of preference for A of 1/00  or 

0.001 dB. 



Sample 1/cop dB 0.001 dB 

16.75 its. 
17.08 

12.58 

16.44 its. 
11.50 

11.83 

15.60 I + II + III 13.58 
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From the tables, it is possible to compare the effect of 

of 1/OD or 0.001 dB on the required number of iterative 

cycles prior to satisfying the terminating criteria. 

We have, mean number of iterations for each sample for A 

of 0.001 and 1/c° dB for the following termination criteria 

minimum SS of 0.01i Tables 5.1 - 5.3 

Sample s A 0.001 dB 1/00 	dB 

I 19.38 its. 22.81 	its. 

II 14.67 27.25 

III 16.58 18.42 

I + II + III 17.13 22.83 

minimum SS of 0.05, Table 5.5 

minimum SS of 0.1, Table 5.6 

Sampl:NN._  LS. 0.001 dB 1/00  dB 

I 14.44 its. 14.44 its. 
II 9.17 10.33 

III 9.75 9.75 

I + II + III 11.45 11.80 



100KA 

1K.A. 

10 JL 

0.8125 

0.5830 

0.0000 

Sample Initial Values Sampled Prob. of Success 
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minimum SS of 0.2, Table 5.7 

Sample 	 A 0.001 dB 1/00 	dB 

I 8.00 its. 7.88 its 

II 7.50 7.17 

III 7.00 8.33 

I + II + III 7.55 7.50 

From the above results, there is a fair indication that A 

of 0.001 dB is likely to cause quicker convergence, 

especially so for smaller termination criteria where savings 

are more worthwhile. 

5.7.2 	Initial Values for the Set of Resistors  

Three different initial values for the set of variable 

resistors were tested; 100KA, 1K n. and 10J.L. 

Again, the predominant requirement is that a suitable 

minimum, i.e. realisation, should be located. 

From the Sample Tables I, II and III, using only the minimum 

acceptable error reduction A of 0.001 dB, we have 

The above results indicate strongly that initial values 

of 1001CoLare most likely to meet with success. The results 
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for initial values of 10JLare surprisingly very poor. 

The indication seems to be for effective element growth 

rather then effective element annihilation. This is of 

course a valid deduction only for the case of the specific-

ation chosen. Far more evidence is required before any 

generalisations can be made. 

5.7.3 	Initial Step Size  

Confining results to those where the value of 1 is 0.001 dB 

and initial value for resistors is 100K, i.e. Sample I, 

we have from Table 5.1 

I 
Initial Step Size Sample Prob. of Success 

0.2 1.00 

1.0 0.75 

2.0 0.75 

3.0 0.75 

As there are only four samples for each initial step size, 

there is no likely conclusion from these results. 

The effect of differing initial step sizes on the speed of 

convergence for different termination step sizes can be 

obtained from Tables 5.1, and 5.5 - 5.7, again confining our 

results to A of 0.001 dB and initial value of resistors of 

100K.A. . We have for mean number of iterations to termination 



0.2 

0.1 

0.05 

0.01 
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Minimum Initial Step Size 

Step Size 0.2 1.0 2.0 3.0 

0.2 - 9.25 11.25 11.50 

0.1 14.50 15.00 15.75 12.50 

0.05 16.25 17.00 19.00 13.50 

0.01 18.25 20.50 22.75 16.00 

If we repeat the above calculations to include all three 

initial values for the resistors, i.e. Samples I, II and III, 

we have a wider field for comparison. So, for all three 

Samples I, II and III, we now have 

Initial Step Size Sample Prob. of Success 

0.2 0.50 

1.0 0.40 

2.0 0.50 

3.0 0.60 

These results, although determined from 10 samples each, are 

too close for any likely conclusion to be drawn. 

The effect of differing initial step sizes on the speed of 

convergence for differing termination step sizes over all 

Samples I, II and III, now becomes 

mean number of iterations to termination 

Initial Step Sizes 

• 

Step Size 	0.2 1.0 	2.0 3.0 
- 	9.6 	10.6 

	

7.2 	13.4 	13.3 

	

10.9 	15.0 	15.6 

	

14.4 	18.3 	19.6 

10.0 

11.9 

12.8 

16.2 
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Both sets of results, comparing the number of iterations 

to termination against initial step size, indicate slight 

preference for initial step sizes of either 0.2 or 3.0, 

the extremes of the range. 

These results are not of course conclusive and can not be 

generalised to other specifications safely. 

5.7.4 	Termination Step Size  

The obvious preference for a termination criterion is to 

specify a certain margin from the local minimum. However, 

when optimising a complex function, the local minimum value 

is unknown and so the above criterion is not feasible. 

It is nevertheless possible to use the above criterion in 

retrospect, i.e. after optimisation - having found a 

minimum, in order to judge the efficacy of some other term-

ination criteria. 

A usual termination criterion is to compare the size of an 

element perturbation against some fixed minimum - in this 

case a minimum step size. 

The predominant requirement is for the termination criteria, 

i.e. minimum step size, not to be severe enough, i.e. too 

large, so as to cause premature termination. Table 5.4 

lists the minimum step size used in order to be within 

0.5 dB of the minimum (found with a minimum step size of 

only 0.01). From this table we can examine the number of 

premature terminations (defined as >0.5 dB from minimum) 
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which would have occured had the minimum step size been 

0.2, 0.1 and 0.05. Confining results to Al of 0.001 dB, 

we have 

for Premature Termination Rate 

Initial Termination Step Size 

Step Size 0.2 0.1 0.05 

0.2 1 from 10 0 from 10 

1.0 1 from 10 0 	" 	10 0 	" 	10 

2.0 1 	" 	10 0 	" 	10 0 	" 	10 

3.0 0 	" 	10 0 	" 	10 0 	" 	10 

Note that all three premature terminations occur when 

converging on so called 'good minima'. 

From the above table, it seems reasonable to conclude that 

a termination step size of 0.2 when initial step size is 

3.0 is not unduly risky, i.e. not result in an unacceptable 

level of premature terminations. For smaller initial 

step sizes, a termination step size of 0.1 would be more 

appropriate. 

In order to judge the effective saving in computational 

effort by specifying larger minimum step sizes, we can 

compare the number of iterations to termination. It is also 

useful to compare these results against those using the 

'ideal' criterion, in this case 0.5 dB from minimum. From 

the Tables 5.1 — 5.7, we have 
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for mean number of iterations to termination 

e 

Termination 

Criteria 

Initial Step Size 

0.2 1.0 2.0 3.0 

min. + 0.5 dB 4.6 6.2 7.1 5.7 

min. step size 

0.2 - 9.6 10.6 10.0 
0.1 7.2 13.4 13.3 11.9 
0.05 10.9 15.0 15.6 12.8 

0.01 14.4 18.3 19.6 16.2 

We can see that the saving in computational effort by 

specifying a minimum step size of 0.2 or 0.1 is significant. 

However even a minimum of 0.2 is not nearly as efficient 

as the 'ideal' criteria of 0.5 dB from local minimum. 

5.7.5 	Conclusions  

All the above data and the trends outlined refer to only 

one function space. 

The above procedure should be repeated for many different 

function spaces. However the amount of work required would 

be considerable, and outside the range of this thesis. 

Nevertheless some trends have been found and are used in 

later examples. In all subsequent tests A was always set 

to 0.001 dB. 



initial - 
terminating 
step size 

random 
sequence 
seed 

minimum acceptable error reduction A 

iterations 

0.001 dB 1/00 dB 

error at 
minimum 

success iterations error at 
minimum 

success 

0.2 - 0.01 2.59 * 15 + 2 0.777 dB 1 * 23 + 2 0.777 dB 1 

n 7.36 17 0.775 1 34 0.771 1 

" 1: 17 0.790 1 30 0.771 1 

it 6.66 .22 0.773 1 19 0.778 1 

1.0 - 0.01 2.59 15 15.500 0 36 ..  15.520 0 

II 6.83 17  0.774 1 28 . 0.771 . 1 

s 9.96 31 0.773 1 17 15.510 0 

to 3.89 19 0.775 1 22 0.778 1 

2.0 - 0.01 6.84 18 0.776 1 19 0.773 1 

II 9, 18 0.772 1 18 0.787 1 

to 1:79 28 0.772 1 18 0.787 1 

If 4.32 27 15.349 0 20 16.450 0 

3.0 - 0.01 2.75 13 0.776 1 23 0.771 1 

. 5.746 13 0.774 1 16 0.774 1 

“ 8.92 24 15.503 0 21 0.773 1 

,, 
4.74 14 0.774 1 19 0.772 

Initial value of set of variable resistors - 100K ohms 

*actual run step size 0.2 - 0,05, estimate 2 extra iterations 	Table 5.1 
	

Sample I, 



initial - 
terminating 
step size 

random 
sequence 
seed 

minimum acceptable error reduction IS 

0.001 dB 1/00 dB 

iterations error at 
minimum 

success iterations error at 
minimum 

success 

0.2 - 0.01 1.89 8 15.5 dB 0 68 0.776 dB 1 

II 5.72 19 0.789 1 31 0.773 1 

n 9.00 13 15.5 0 13 15.5 0 

1.0 — 0.01 4.85 17 0.773 1 33 0.772 1 

“ 6.1 14 15.9 0 23 15.5 0 

n 7.77 14 15.9 0 14 15.9 0 

2.0 — 0.01 4.061 17 0.775 1 38 0.772 1 

,, 7.77 13 15.9 0 20 15.9 0 

" 2.74 15 0.772 1 17 15.5 0 

3.0 — 0.01 1.23 18 0.772 1 16 15.5 0 

., 4.56 14 0.790 1 16 0.773 1 

., 7.89 14 0.774 1 38 0.774 1 

Initial value of set of variable resistors - 1K ohms 

Table 5.2, 	Sample II  



initial - 
terminating 
step size 

random 
sequence 
seed 

minimum acceptable error reduction A 

0.001 dB 1/00  dB 

iterations error at 
minimum 

success iterations error at 
minimum 

success 

0.2 - 0.01 

.. 

n 

1.0 - 0.01 

" 

" 

2.0 - 0.01 

" 

n 

3.0 - 0.01 

o 

IS  

5. 

3. 

1. 

3.96 

1.99 

6.83 

5.82 

9.11 

1.63 

7.77 

2.22 

9.37 

11 

6 

14 

20 

19 

17 

19 

19 

22 

24 

13 

15 

15.5 dB 

15.5 

15.5 

15.5 

15.5 

15.5 

15.5 

15.5 

15.5 

15.5 

15.5 

15.5 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

11 

6 

15 

20" 

37 

20 

17 

19 

24 

18 

13 

21 

15.5 dB 

15.5 
. 

15.5 

15.5 

15.5 

15.5 

15.5 

15.5 

15.5 

15.5 

15.6 

15.5 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Initial value of set of variable resistors - 10 ohms 

Table 5.3 
	

Sample III  



initial 
step 
size 

Sample I Sample II Sample III 

A 	.001 dB 100 .001 Voe .001 1/00 

• its. min SS its. min SS its. min SS its. min SS its. min SS its. min SS 

0.2 7 .18 6 .20 1 .20 21 * .06 3 .10 3 .10 

“ 8 .18 14 .20 9 * .05 12 * .05 1 .20 1 .20 

e 7 .18 13 .15 1 .20 1 .20 2 .20 2 .20 

II 7 .18 7 .20 

1.0 6 .39 16 *..19 2 .81 	' 2 .81 8 .45 8 .45 

n 

ti, 

5 

19 

.91 

* .18 

4 	, 

14 

1.00 

* .03 

1 

1 

1.00 

1.00 

10 

1 

.40 

1.00 

- 	6 

9 

.27 

.38 

7 

 9 

. 	.27 

.38 

5 .91 6 1.00 

2.0 9 .49 4 2.00 3 1.79 3 1.60 8 .21 8 .45 

8 .61 5 1.24 1 2.00 1 2.00 6 .69 10 .25 

13 * .16 5 1.24 4 .60 9 .30 9 .21 10 .25 

11 10 .38 7 .48 

3.0 4 1.01 3 1.36 8 .79 9 .24 7 .30 8 .21 

., 

n 

3 

8 

2.69 

.93 

6 

10 

1.49 

.21 

5 

5 

1.02 

1.03 

6 

4 

.36 

.83 

4 

7 

.66 

.30 

4 

8 

.89 

.21 

11 6 .57 2 2.44 

*premature terminations possible for minimum step sizes 0.2, 0.1, 0.05 

Table 5.4 	Error within 0.5 dB of Minimum 



initial 
step 
size 

Sample I Sample II Sample III 

41 	.001 dB 1/0o .001 liao .001 1/0o 

its. error its. error its. error its. error its. error its. error 

0.2 15 .777 23 .777 4 15.6 36 .779 3 15.6 3 15.6 

" 15 .775 26 .774 17 .789 22 .773 . 	3 15.5 3 15.5 

n 15 .790 22 .772 5 15.5 5 15.5 12 15.5 13 15.5 

to 20 .773 17 .778 

1.0 11 15.5 22 15.5 15 .773 25 .773 16 15.5 16 15.5 

n 13 .774 16 .773 12 15.9 20 15.5 14 15.5 16 . 	15.5 

11 29 .773 12 16.1 12 15.9 12 15.9 13 15.5 14 15.5 

it 15 .775 15 .780 

2.0 16 .777 15 .773 15 .775 18 .772 12 15.5 12 15.5 

il 14 .772 14 .787 8 15.9 18 15.9 16 15.5 15 15.7 . 

n 23 .772 14 .787 13 .772 13 15.5 16 15.5 20 15.5 

11 23 15.3 18 16.4 

3.0 11 .777 10 .777 16 .772 10 15.6 14 15.5 14 15.5 

n 11 .775 14 .775 9 .790 12 .773 10 15.6 11 15.6 

II 20 15.5 16 .773 12 .774 14 .774 13 15.5 14 15.5 

n 12 .776 14 .773 

Table . 	Terminating Step Size 0.05  



initial 
step 
size 

Sample I 	I Sample II Sample III 

1/0o LI 	.001 dB 1/00 

its. 

.001 

error 

goo 

its. error 

.001 	- 

its. error its. error its. error its. error 

0.2 15 -777dB 14 .777 2 15.8 6 15.6 3 15.6 3 15.6 

" 14 .775 23 .775 2 15.5 2 15.6 2 15.6 2 15.6 

II 14 .790 20 .773 3 15.5 3 15.5 2 15.7 2 15.7 

it 15 .776 16 .778 

1.0 10 15.5 22 15.5 14 .773 22 . 	.773 15 15.5 15 15.5 

" 12 .774 12 .773 11 15.9 19 15.5 12 15.5 	. 15 15.5 

It 26 .773 11 16.1 11 15.9 10 15.9 11 15.5 11 15.5 

II  12 .803 12 .780 

2.0 15 .777 14 .775 14 .775 11 .775 9 15.9 9 15.8 

" 13 .773 11 .787 7 15.9 10 15.9 15 15.5 14 15.7 
it 21 .773 11 .787 12 .772 10 15.9 13 15.5 17 15.5 

II 14 15.5 17 16.5 

3.0 10 .777 9 .777 15 .772 9 15.6 14 15.5 10 15.8 

u 10 .775 13 .775 8 .790 • 9 .781 9 15.6 10 15.6 

ti 19 15.5 14 .774 11 .774 13 .775 12 15.5 9 15.7 

II  11 .778 12 .773 

Table 5.6 	Terminating Step Size 0.1  



initial 
step 
size 

Sample I Sample II Sample III 

A 	.001 dB 1/00 .001 
. 

1/0o .001 1/00 

its. error its. error its. error its. error its. error its. error 

1.0 7 15.5 15 16.4 11 '473 14 .773 12 15.5 12. 15.5 

11 .777 8 .779 8 15.9 11 15.9 - 	11 15.5 12 15.5 

Hi  8 15.8 10 17.9 8 15.9 9 15.9  9 15.8 9 15.8 

H 11 .803 11 .781 

2.0 14 .777 11 .775 13 .775 10 .775 8 15.9 ' 	8 15..8 

if 
10 .773 10 .787 7 15.9 5 15.9 12 15.5 11 15.7 

II 
7 16.1 10 .787 11 .772 9 15.9 10 15.6 11 15.8 

n 14 15.5 11 16.9 

3.0 . 9 .777 8 .777 14 .772 9 15.6 7 15.9 8 16.0 

21 
9 .775 10 .775 8 .790 7 .782 8 15.5 9 15.6 

11 18 15.5 11 .775 10 .774 12 .775 7 15.9 8 15.7 

11 10 _ 	.778 11 .775 - 

Table 5.7 	Terminating Step Size 0.2  
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5.8 	SIMPLE LOW PASS NETWORKS  

For the next series of tests, the simple low pass 

requirement of below was chosen 

frequency 	voltage gain 

500 HZ 	- 1 dB 

1000 0 

5000 -12 

10000 -25 

with a specified terminating load of 1K.n. , and a common 

earth. The actual network specification was more complex, 

but only the above four frequencies were unity weighted. 

The others were weighted with 0.01 and so had virtually no 

effect. 

The required slope was 25 dB per decade, so a single 

capacitor realisation was attempted. The reduced generalised 

starting network became that of Figure 5.3. The load 

resistor R
34 

and the effective short circuit for common 

earth R24  were held at 1K.n and 1ms. respectively. All other 

resistors, i.e. variables, were set to 100KA. . A 1/4iF 

capacitor was chosen, sufficiently large for a break frequency 

of about 1000 Hz with a terminating load of 1K.n. . Tbis 

generalised starting network response is detailed as part of 

Figure 5.6. 

The strategy developed in the previous section was used; 

preference for larger initial step sizes with termination 

step sizes of 0.2, but other combinations were also tried. 
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In all, twelve optimisations were attempted, using different 

random seeds. Three of these runs produced reasonable 

realisations; two from starting step sizes of 2.0, the 

other from 3.0. 

These realisations and their responses were those of 

Figures 5.6, 5.7 and 5.8. The minimax errors achieved were 

4.15 dB, 5.18 dB and 4.66 dB respectively. Note that 

resistors less than 0.1 ohms and larger than 100K ohms are 

not shown, for reasons of clarity. 

The capacitor was then set to 100,4F. One acceptable 

realisation was evolved from nine attempts. Figure 5.9 

details the realisation and its response, a maximum error 

of 3.93 dB was achieved. Again resistors outside of 0.1 ohms 

to 100K ohms are not shown. 
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2.62 

only 0.1 ohms 	R 	100K ohms shown 

Figure 5.6 i 	Low Pass Network 1  
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Figure 5.6 ii 	 Starting Network Response 



REQUEST ROUTINE 
? graph 

rn 

IMO 

—25.00 

1-no 
2.00 

—20•R3 	—16.67 
• • 
• • 

-12.50 
. 
• 

. 

-833 	-4•17 
. 	. 
• • 

* 
* 

2.78 
4.64 
7.74 
10.o0 * 
2o.410 • 

35.94 
50*00 • * 
loo.00 * 	• 

166-81 
278•26 

CA 500°S: 
00 • 

1291.55 
2154.43 

0 3593.81 
5000.00 * 
10000'00* 

0 
0 
co 
cD 

N.
10

/q
. 8

N
  S

8
 14

01
  

. 



169 

121 
	

280 

only 0.1 ohms _4 R -1 100K ohms shown 

PiFurs 5.7 i 	 Low Pass Network 2  
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5.18 dB Error 

Low Pass Network 2 

Figure 5.7 ii 	 Response  
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only 0.1 ohms 	R 	100K ohms shown 

171 

Figure 5.8 i 	 Low Pass Network 3  
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1K 

only 0.1 ohms 	R Is 100K ohms shown 

Figure 5.9 i 	 Low Pass Network 4  



RFrnIEST ROUTINF 
? graph 

Ole 

—25.00 	—2o.nn 	— 1A*A7 	—12.5 	,n.sa 	—4.17 	—.00 
. 	 • 

. 
1.00 
2.00 
2.7A 
4.AA 

• 
• 

. 

• • • 

* 

7,74 
10.00 • 
20.00 • 

35.94 
50•00 • * 
100.00 • * 

%.-14 16f .a1 
278'2( 
500.00 * • 

icino.no * 
1291.5 
2154.43 
3f3934411 
r,clon.cio • 

* 



175 

5.9 	SIMPLE EQUALISERS 

A realistic simple equaliser specification was selected, 

Figure 5.10, the details of which are; 

frequency voltage gain 

1 Hz -40 dB 

2 -40 

5 -39 
10 -37 
20 -33 
50 -26 

100 -20 

200 -14 

500 - 7 
1000 - 3 
2000 - 1 

5000 0 

10000 0 

20000 0 

100000 0 

The equaliser is to have a common earth and a terminating 

impedance of 1KJ. . 

A two reactive element generalised starting network was 

specified, there being two distinct break frequencies. 

Using the reduction technique outlined in section 5.3, the 

generalised starting network becomes; 



reactive element 
I/ 

resistor 

11 

11 

It 

ff 

I/ 

If 

11 

176 

node 1 node 2 

5 

7 
1 

1 

1 

2 

2 

2 

2 

2 

3 

3 

3 

3 

3 

5 

5 

5 
6 

6 

7 

6 

8 

3 

5 

7 

4 

5 
6 

7 
8 

4 

5 
6 

7 
8 

6 

7 
8 

7 
8 

8 

effective open circuit 

effective earth 

load 

i.e. two reactive elements and 19 resistors. The terminating 

resistorR304. andtheeffectiveshorteircuitlirmre R2 
 

held at 1K .A. and 1m n. respectively. The resistor 13
1,3 

connecting the live input to live output terminals was 

included for flexibility. It was however not required and 

held at 109.A. throughout. This left 16 variable resistors. 

Two capacitors were chosen for the reactive elements, of 

values 0.2 /F and 25/4F. The smaller capacitor was to cope 

with the 1K Hz break frequency while the large capacitor 

was for the 10 Hz break frequency. 
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It was decided to first attempt to realise the lower half 

of the specification. The first eight frequencies were 

unity weighted while the latter seven were weighted to 

only 0.01. As only one capacitor is necessary, the 

effective resistive path through this capacitor, the 25,4F, 

i.e. 

node 1 	node 2 

resistor 1 	 5 
2 	5 
2 	6 

3 	 5 

3 	 6 

5 	 6 

were set to 100K JA. and allowed to vary. All other so called 

variable resistors were set to 109.01- and not allowed to 

vary. This starting network had the response shown in 

Figure 5.11. 

Six optithisation attempts of this part of the generalised 

starting network produced a network realising the first 

eight frequency requirements of the full specification with 

only 0.41 dB maximum error, see Figure 5.12. 

It was decided to attempt the realisation of the full 

equaliser specification with only the one reactive element, 

the 25/4F capacitor, as the response of this part of the 

network already looked close to the complete specification. 

The weighting of the remaining seven frequency require-

ments were set to unity, thereby equally specifying the 



17.  

entire equaliser. The optimisation procedure was then 

allowed to operate upon the single reactive element 

realisation developed so far. The network of Figure 5.13 

was produced after a few attempts. This network realised 

the full equaliser specification with only 0.42 dB maximum 

error, see Figure 5.14. Note that all other resistors 

not shown are fixed at 109 ohms, effective open circuits. 

Having successfully realised the simple equaliser 

specification with the 25imF capacitor in two parts, it 

was decided to attempt the realisation in one attempt. 

A further successful realisation was evolved, Figure 5.15, 

having a maximum error of only 0.87 dB, see Figure 5.16. 

This network was found after four optimisation attempts. 
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Figure 5.13 	Simple Equaliser 1  
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Figure 5.15 	Simple Equaliser 2  
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5.10 	EQUALISERS  

This time a more complex equaliser specification was 

chosen, in that the fall from 0 dB to -50 dB consisted of 

two rates, i.e. 20 and 30 dB/decade, Figure 5.17. The 

detail specification was 

frequency voltage gain 

10 Hz -50 dB 

20 -50 

50 -49 

100 -47 

200 -40 

500 -29 

1,000 -21 

2,000 -14 

5,000 - 7 

10,000. - 3 

20,000 - 1 

50,000 

100,000 

with a common earth and to be terminated with a 11C.R. 

impedance. 

Again, a two reactive element generalised starting network 

was felt appropriate. The resistive set was that of the 

previous section, 

(a) two fixed resistors R3,4  of 1K/Land R2,4  of 1m" 

simulating the terminating impedance and common earth 

respectively 



187 

(b) one fixed resistor R1,3, held at 109.1. , 

(c) 16 variable resistors. 

Considering the two break frequencies of 100 Hz and 10K Hz 

with a terminating impedance of 1K.41., two capacitors, 

10/4F and 1/AF were chosen. 

The first six frequency responses were unity weighted, the 

remainder weighted at 0.01. The resistive path through the 

10)LAY capacitor, i 

node 1 	node 2 

resistor 
11 

11 

11 

1 

1 
2 

2 

3 
3 
5 

5 
5 
6 
5 
6 
6 

were set to 100KILand allowed to vary. The remainder, 

except B2,4  and R3,4, were set to 10911. and held constant. 

This network had the response of Figure 5.18. 

Optimisation of this part of the network, ten attempts, 

produced a realisation which closely followed the require-

ments over the first six frequencies, maximum error of 

3.35 dB, see Figure 5.19. 

Optimisation of this part of the network, the path through 

the 1964Y capacitor, was allowed to proceed further to see 

what could be achieved with only 1 capacitor over the full 

specification. A reasonable realisation was produced on 
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the first attempt, Figure 5.20, only showing resistors 

between 0.1.41. and 1M.rt.. This realisation had a maximum 

error of 4.18 dB, see Figure 5.21. 

To see whether a two capacitor realisation would make an 

appreciable improvement over the complete equaliser 

specification, the network realising the first six frequency 

requirements, see Figure 5.19, was regenerated. The other 

so-called variable resistors were now set to 1001C.rt.. 

This naturally adversely affected the network response, 

see Figure 5.22. 

The entire network, except for the few fixed resistors R1,3' 

R2,4  and R3,4, was then optimised three times to find two 

acceptable realisations, see Figures 5.23, 5.25. Their 

responses were marginally better than that of the one 

reactive element realisation, with maximum errors of 3.72 dB, 

see Figures 5.24 and 5.26 respectively. 

Further attempts to realise the specification were made..  

Unity weighting was applied to the full specification. 

All the resistors of the generalised starting network 

specified in this section, except R1,3' 2,4 and R"3,4' 
were 

set to 1001CJI.. . The two capacitors remained at 1j.F and 

10/AF. The response of this starting network is shown in 

Figure 5.27. All the resistors, except the above three 

specified, were allowed .to vary. From nine attempts, two 

successful realisations were generated, see Figures 5.28 



189 

and 5.30. Their responses closely followed the full 

equaliser specification, see Figures 5.29 and 5.31, with 

maximum errors of 3.71 dB and 3.76 dB respectively. 

The above attempts were repeated, except that this time all 

the variable resistors were initially set to 1000 DIJL 

Figure 5.32 outlines this starting network response. 

One successful realisation, Figure 5.33, was generated from 

eight attempts, a maximum error of 3.82 dB. The full 

realisation response is detailed in Figure 5.34. 
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5.11 	TUNED CIRCUITS  

The final example chosen was the tuned circuit specification 

of 

frequency voltage gain 

- 10 2  Hz -40.0 dB 

10-1  -40.0 

1 -38.5 

10 -24.0 

102 - 6.5 

103  - 2.5 

104  - 5.0 

105 -22.0 

106 -38.0 

107  -40.0 

108  -40.0 

The realisation was to have a common earth and a terminating 

impedance of 11CA. . 

A two reactive element generalised starting network was 

again felt appropriate. The resistive set was that 

specified for the equaliser realisations of section 5.9, 

(a) two fixed resistors R3,4  of 1K n. and R2,4 of 1m n. 

to simulate the terminating load and common earth 

respectively, 

(b) one fixed resistor R1,3' held at 10
911. 

(c) sixteen variable resistors. 
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Considering the specified curve, 1,42 and 0.1 AT capacitors 

were selected for the two reactive elements. 

The first half of the specification, first six frequencies, 

was initially attempted. These frequency responses were 

unity weighted, the remainder weighted with 0.01. Once 

again the resistive path through one capacitor, the 1/...F 

i.e. 

node 1 node 2 

resistor 1 5 
2 5 

U 

tl 

2 

3 

6 

5 
3 6 

5 6 

were set to 100K.n. and allowed to vary, the others set to 

10911. and held constant. This starting network had the 

response of Figure 5.35. 

The first optimisation attempt produced the realisation 

of Figure 5.36, with a maximum of only 0.37 dB over the 

first six frequencies, Figure 5.37. 

Equal unity weighting was then applied over the entire 

tuned circuit specification. The remaining resistors were 

set to 100K .n. and also allowed to vary. Figure 5.38 shows 

the degraded network response at this stage. Fourteen 

optimisations of this network produced three reasonable 

realisations, having maximum errors of 3.57 dB, 0.25 dB 

and 4.52 dB. Figures 5.39, 5.40 and 5.41, 5.42 and 5.43, 
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5.44 detail the realisations and their respective 

responses. 

Several attempts to realise the full specification in one 

'go' failed. 
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Figure 5.43 	Tuned Circuit 3  
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5.12 	CONCLUSIONS  

Having generated an approach which does produce reasonable 

realisations from extremely poor initial networks, the 

Generalised Starting Network, a fair measure of success 

can be claimed. 

Nevertheless it should be noted that during the generation 

of successful realisations, many different optimisations 

were often required - achieved by specifying different 

random number sequence seeds, section 5.6, and different 

initial and termination step sizes, section 5.7. 
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Chapter 6  

CONCLUSIONS  

6.1 	GENERAL CONCLUSIONS  

A Computer Aided Circuit Design procedure has been 

developed in this thesis. This procedure has been shown 

capable of assisting the designer during the so-called 

'initial stages of the design' - when the basic network 

structure is being evolved. 

During the development of this procedure, a novel method 

of evaluating symbolic network functions was proposed. 

This method of network analysis was shown to be amenable 

to programming and relatively efficient for the networks 

under consideration. The optimisation procedure was care-

fully chosen and modified, this being the heart of the 

overall procedure. The optimisation procedure had to be 

capable of considerably improving rather poor approximate 

networks, a difficult task. 

Given the required network specification, the designer 

selects a reasonable set of reactive elements. The next 

step is the application of an algorithm to specify a general 

resistive n-port. Finally, the optimisation procedure 

operates on this general network to evolve a suitable net-

work realisation. 

The results achieved were encouraging. Chapter 5 detailed 

several successful realisations achieved for a variety of 
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network specifications. The initial generalised starting 

network was shown to be an extremely poor approximation, 

if any, to the required network specifications. After 

several attempts, the optimisation procedure did however 

evolve suitable realisations, thus considerably assisting 

the designer during the initial stages of the design. 

The required network specifications realised were not too 

complex, so the reported success must be considered some-

what limited. Further research is required before 

generalisations can be safely made. 
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6.2 	CONTRIBUTIONS  

Fully automated circuit design has long been the goal of 

many a Computer Aided Circuit Design exponent. Yet, very 

little has been achieved towards this goal. Virtually all 

CACD procedures only refine good approximate circuits, 

rather than assist the designer during the basic initial 

design stage. 

This thesis develops a CACD procedure which does seem suited 

to assisting the designer during the initial stage of the 

design. Limited success has been achieved by application 

of this procedure. This thesis is thus another step 

towards the goal of fully automated circuit design. 

A novel method of evaluating symbolic network functions is 

also developed. This procedure could be of general use to 

computer oriented circuit analysis. 
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6.3 	FUTURE RESEARCH 

Encouraging results have been achieved with this procedure 

for the not too complex network specifications selected. 

The author does however feel that considerable research 

effort will be required before similar results can be 

achieved with complex specifications. 

The number of resistors in the generalised starting network, 

i.e. function variables, grows alarmingly as the number of 

reactive elements required increases. This will of course 

demand considerable computational effort as well as 

adversely affecting the efficacy of the optimisation 

procedure. 

Research into various forms of the general resistive n-port 

could possibly help reduce this problem. 

Alternatively, research into the application of this method 

using a multi-stage approach may prove to be effective. 

This would entail a part by part realisation of a complex 

specification, simple examples of which are outlined in 

Chapter 5. 
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