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SUMMARY 

HYDROSTATIC  EXTRUSION OF BIMETALLIC COMPOSITES 

An experimental procedure capable of producing a 

copper-stainless steel composite wire by hydrostatic extrusion-

drawing is described. It includes the production of wires with 

different internal geometries. 

For the case of a copper sleeve and a single stainless 

steel core (or vice versa), theoretical models predicting the 

stress distribution in the deforming zone are presented. In 

particular, a form of the Method of Weighted Residuals is adapted 

for the integration of the Prandtl-Reuss 	equation and an 

approximate polynomial solution for the stress distribution 

associated with Avitzur's velocity field is obtained. 

All solutions show reasonable agreement with the 

experimental values. 

In addition, the temperature distribution produced by 

the deformation process is obtained. 

Since polynomial solutions may involve the calculation 

of a large number of terms in an usually fine net, the computation 

time required by the process and the rounding errors produced may 

be important. In order to reduce the weight of these factors, 

a procedure for the economization of polynomial solutions is 

obtained, as a generalization of Lanczo's method for the case of 

a single variable. 
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INTRODUCTION 

The hydrostatic extrusion-drawing  

Hydrostatic extrusion is a relatively new forming 

process possessing many advantages over conventional extrusion 

methods. The development of the hydrostatic extrusion and the 

application of hydrostatic pressure to the forming of metals 

represents new approaches to the field of cold forming:1i 

The first scientific attempts in the use of these 

methods correspond to Bridgman D], although the first known 

description of the hydrostatic extrusion process appears to have 

been presented by James Robertson in 1893 DI in patents taken 

out in Britain and the U.S.A. However, there is no record of 

any practical work done with this equipment. 

A detailed and comprehensive description of the feat-

ures of the process we are dealing with, can be seen in D-] E4] 
and DC. Some of the outstanding aspects of the process can be 

inferred from Fig. 1. 

An interesting resume of these characteristics is 

presented in [53 as follows: 

(1) 
	

Friction between billet and container is absent: long 

billets can be extruded without a corresponding increase in the 

extrusion pressure. 



NO BILLET-CONTAINER FRICTION 

DECREASED. DIE FRICTION 

DECREASED REDUNDANT WORK 

BILLET - 	• 
CONTAINER FRICTION 

DIE FP.ICTIOH 

REDUNDANT WORK 

r-HIGH PRESSURE 
LUBRICANT PENETRATES 
BILLET-DIE INTER-

FACE 

CONVENTIONAL 
	

HYDRO TATIC 
EXTRUSION 
	

EXTRU ION 

15 - 

Figure 1 Comparison of conventional and hydrostatic extrusion. 

(ii) Since friction between die and billet is low, dies of 

small angle may be used to reduce redundant deformation and 

extrusion pressure. Harder materials can be cold extruded 

because shearing of the billet along the die face which could 

lead to fracture in conventional extrusion is reduced. 

(iii) Within limits, it is not necessary to use cylindrical 

billets of closely controlled dimensions. Non-straight billets, 

or coils of wire with free or clamped-back end, can be extruded 

into straight products. The cladding of long lengths of wire is 

also possible. 

(iv) Support can be given to the die by surrounding it with 

the high pressure fluid. Products of complex sections can be 
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extruded through thin-walled dies. 

(v) The process is versatile. Simple die replacement 

enables billets of various sizes and sections to be extruded. 

Stepped products can be produced. 

(vi) The strength of the extruded wire is more often higher 

than in conventional wire drawing owing to the absence of 

internal voids and pores in extrusion under large compressive 

stresses. 

Possible disadvantages: 

(±) 
	

Considerable compression of the fluid has to occur 

(typically up to one-third of the volume) to generate suffic-

iently high pressures (e.g. 30 Kbar). This results in large 

amounts of stored energy, which reduces efficiency and may be 

dangerous. 

(ii) The billet must be tapered at its front end and held 

against the die to produce initial sealing. 

(iii) Once the billet has begun to extrude it is difficult 

to control the rate of extrusion. Consequently, extrusion 

speed is often too high; undesirable heating and softening of 

the billet may occur. In such cases the billet and fluid are 

ejected violently from the container, unless some means of 

control is provided. Lack of control of the extrusion speed 
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often leads to instability, which is featured by "stick-slip" 

movement on the extrudate and by its fluctuating pressure-time 

characteristics. 

(iv) 	In production, containment of fluid requires ancillary 

equipment if a horizontal arrangement is used. A large number 

of repeated cycles of operation may require frequent changes of 

the seal between the moving punch and static container, or the 

development of special sealing arrangements. This may cause 

fatigue in container, punches and other items. 

The enormous pressures required in hydraulic extrusion 

may be reduced, and the extrusion speed Controlled, by addition-

ally pushing or pulling the billet into the die. These 

techniques are often called billet and product augmentation 

respectively. The latter is the procedure adopted in the 

experiments carried out in the present work. This technique 

has received extensive development at Imperial College by 

B. Lengyel et al. D4:1,[75:1,[76:],where a special rig was 

designed for this purpose. 

1.2 	Theoretical models for the extrusion process  

The extrusion of a solid billet through conical dies 

is a very well studied process and several theoretical solutions 

for the extrusion pressure have been obtained through different 

approaches. 
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The Siebel's analysis Cc based on uniform deformation 
and the slab method first proposed by Sachs Di.] and later pres-

ented by Hoffman and Sachs Da are, perhaps, the oldest 
theoretical analyses of the extrusion problem. Their solutions 

involve the use of a constant coefficient of friction and the 

assumption that stresses are constant on a cross section. 

Tresca's yield criterion is used for the determination of plastic 

state, and, since the direction normal to the die surface is 

assumed as principal, the approach holds good for relatively 

small die angles. 

Solutions have also been obtained by means of the 

slip-line approach. A detailed and comprehensive mathematical 

treatment for the plane strain extrusion, based on Hencky's 

slip-lines field method, was done by R. Hill DO. In this work 

both the boundaries between the die and the deforming metal and 

the metal itself outside the plastic zone are treated as rigid. 

It is also assumed that this rigid material does not account 

for the elastically loaded material that surrounds the plastic 

zone. 

W. Johnson obtained a slip-line solution for the 

extrusion through wedge-shaped dies Do]. He obtained the 

corresponding solutions for several angles of dies and coeffic-

ients of friction and also took into account different possible 
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geometries of the dead metal zone. In this paper, due to the 

particular geometry adopted, only small reductions have been 

considered. However, this work was extended to the extrusion 

through square dies of large reductions D11] where solutions 

were given for different geometries, coefficients of friction 

and position of the dead metal zone. He also gives some 

empirical expressions to calculate the average extrusion press-

ures for the different cases. These cases correspond to steady 

state conditions, where the slug remaining to be extruded is 

required to be longer than the depth of the associate slip-

line field. In D2] Johnson also considered the modification 

to the slip-line solutions to accommodate shorter slug lengths 

and the form of doing so is described for the case of square 

dies. 

The slip-line method is strictly applicable only to 

plane-strain problems. However, experimental evidence 

presented by Thomsen, E.G. et al. [13], E14] seems to indicate 

that a plane strain analysis can be used with axisymmetric 

extrusion problems. In these works plane-strain and axially 

symmetric approximate solutions for a perfect plastic material 

are compared with experimental results obtained from the 

extrusion of pure aluminium. It was found that the axially 

symmetric solution shows little advantage over the simpler 

plane strain solution and that the plane strain yield mean 
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stress and axial stresses are in good agreement with the 

experimental results. However, since the treatment has been 

limited to rigid-perfectly plastic isotropic solids it cannot 

deal properly with materials that exhibit strain hardening. 

The visioplasticity method E.15:1 has also allowed to 

obtain solutions for axisymmetrical extrusion problems, such as 

extrusion of solid rods and tubes of lead [16], [17J, :18],  C19]. 
By analysing the grid-line pattern on a meridian plane of the-

deforming zone the strain rate, strain and stress distributions 

were obtained by solving the equilibrium equations, the stress-

strain relationship and the yield criterion. All these works 

involve a great deal of time-consuming operations, including 

graphical differentiations and integrations. An attempt was 

made to reduce the complexity of the method by Kobayashi, S. 

et al. E20]. Using a digital computer,velocity, strain rate, 

strain and stress distribution were obtained for the extrusion 

of a specimen of aluminium. The flow pattern for steady state 

conditions was obtained in direct extrusion through a conical 

angle 
die of 60

o includediand an extrusion ratio of 2, at a slow 

speed. They obtained a full description of the stress field 

in the deforming zone. As was pointed out in :14], there is a 

good agreement between the solutions obtained by these last 

two methods in most cases. 
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Another source of solutions for the extrusion problems 

is the Upper Bound theorem. B. Avitzur produced upper bound 

solutions for wire drawing and extrusion through conical dies 

of small and large cone angle [21J, D2], by means of a radial 

velocity field and spherical boundaries. On the assumption 

that the maximum front tension cannot exceed the yield limit of 

the material under uniaxial tension, a solution is obtained for 

the maximum possible reduction in wire drawing. An analogous 

assumption, i.e. that the absolute value of the pushing stress 

cannot exceed the yield value, gives a criterion for the 

maximum possible reduction in extrusion. The effect of each of 

the process variables on the drawing stress in wire drawing and 

the pushing stress in extrusion is presented graphically. Since 

Avitzur's solution is widely used in the present work, a 

detailed analysis of the process variables and the velocity 

field are included in further chapters. Avitzur et al. general-

ize his velocity field by introducing generalized boundaries 

for the plastic zone [23.J. 

E.R. Lambert and S. Kobayashi produced a theory on 

the mechanics of axisymmetric extrusion through conical dies 

[24]. Their upper bound approach is based on the development 

of an admissible velocity field without discontinuities, 

obtained by superposition of basic flow patterns. This 

velocity field, as is shown in the diagram, is described by 
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. 
Admissible velocity field for ax:symmetric extrusion 

the following flow functions: in regions 1 and 3 

and q)  = r = r
2 	2 

1 2 	3 	 2 
2b 

 

while in region 2 the flow lines are 

z = cr + d 

where c and d are determined for each flow line, for the given 

velocity discontinuity curves. Based on this velocity field, 

an upper bound to the average forming pressure was calculated 

for the extrusion of a rod with a semi-cone angle of 45°  and a 

reduction of 75% in area. Three different friction conditions 

were considered and the influence of the coefficient of 

friction on the deforming characteristics discussed. Most of 

the mechanical variables involved in the process were analyzed 

and plotted. This solution constitutes a lower and consequ-

ently more realistic upper bound. Values for the variables 

have to be determined numerically and the shape of the entry 

and exit boundaries of the plastic zone were determined by 
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minimising the energy of deformation. All these results show 

good agreement with those obtained by the visioplasticity 

approach. 

As an extension of his previous work [22],Avitzur 

studied the hydrostatic extrusion of solid billets 1:25]. Based 

on the velocity field discussed earlier, expressions are 

provided giving the required extrusion pressure as a function 

of the other process variables and also the cone angle which 

minimizes the required pressure. He found that for any combin-

ation of extrusion ratio and friction condition there exists 

an optimum cone angle for which the required pressure is 

minimum. 

H.L1.D. Pugh carried out a study in the mechanics o): 

the process of hydrostatic extrusion E26] through an upper 

bound approach. Solutions were obtained for the redundant 

work and friction which together with the work for homogeneous 

deformation lead to an expression for the extrusion pressure 

in terms of the constitutive equation of the metals. He tried 

several velocity fields with different limit surfaces for the 

deforming zone: (i) plane boundaries perpendicular to the axis, 

(ii) conical boundaries, and (iii) spherical boundaries with 

centre at the apex of the conical die, as can be seen in the 

following diagrams. 



t,ril' 	U 

- 
	c'. 

L ...,:,. 
zz , 

,! 	/ 	, / :__--:-- -----.____,j-=-,, ...„-,.,.....____, ___t_ __\._ _ __.,,,T____ 	,  .1 	 E 	 • .— 

He found that cf the three types of boundaries cons-

idered, the estimate for the redundant work obtained with the 

plane transverse boundary is much higher than the conical and 

spherical ones which produce fairly similar results. Consequ-

ently he adopted spherical surface limits for the deforming zone 

and for such field the required extrusion pressure for various 

die angles and extrusion ratios were calculated and plotted. 

They are as shown on the following page. 

a How line. 

h Velocity components rdong flow line immediately to the right 
am. 

Mow through a conical die with spherical entry and 
exit boundaries 
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The material used was 99.5% pure aluminium and 

aluminium alloy HD 44 and these results were in good agreement 

with the experimental ones. The model allows for an estimation 

of the coefficient of friction to be made, which seems to be in 

the order of what is expected in a hydrostatic extrusion process. 

1. J 	The coextrusion process  

A relatively less analyzed process, the coextrusion of 

dissimilar metals, is a subject of great technological interest. 

There are many requirements in industry which cannot be met 

satisfactorily by one material and involve the use of combin-

ations of metals. Thus one material is a better conductor of 

heat or electricity, or offers greater resistance to, for 

example, corrosion or irradiation damage. Often such require-

ments can be met by cladding and a number of bi-metal rods and 

wire combinations are actually in use, obtained by several 

techniques such as rolling, extrusion and drawing. The hydro- 



static extrusion process offers considerable versatility in the 

production of bi-metallic and multi-metallic products. 

The cladding operation, where a tube of one metal is 

mounted over a rod or core of another metal to provide a 

composite with a good mechanical bond on the interface, precedes 

the subsequent drawing or extrusion operation. In rod cladding 

no contact is forced on the sleeve and core until they enter 

the die. Thus at the entrance core and sleeve are free to move, 

each at its own velocity. Passing through the die, a rigid 

bond of the core-sleeve composite is produced and the exit 

velocities of both components are identical. Even if no metal-

lurgical bonding is produced at the interface, the mechanical 

packing of the two metals may form a sufficient bond. The contact 

surface 4 core and sleeve are not perfectly cylindrical (they 

are undulant surfaces); the crests on each surface, neverthe-

less, fit tightly the valleys on the other surfaces to form an 

inseparable mechanical lock E27]. 

A preliminary investigation on the experimental bases 

which govern the extrusion of rod, tube and can from combin-

ations of dissimilar metals has been made by E. Whitfield E.28] 

at the National Engineering Laboratory. The results obtained 

showed that flow of metals during the coextrusion process is 

dependent on their relative mechanical properties, dimensions 
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and geometrical disposition of the dissimilar metals in the 

original billet as well as the die geometry. Vhitfield also 

measured the influence on the required hydrostatic pressure of 

the different combinations of metals and proportions. No 

metallurgical bonding was achieved under the conditions of the 

experiment at room temperature. 

Whitfield also carried out experiments in order to 

approximately determine the minimum value of the initial plating 

thickness required for the successful extrusion of copper-plated 

billets of mild steel into rods, tubes and cans [29]. He found 

that this value is dependent on the extrusion ratio of the 

particular experiment and that the ratio of the initial plating 

thickness/extrusion ratio is approximately constant. The 

extrusion pressure-characteristics obtained during the extrusion 

of plated billets are similar to those for unplated ones. The 

adhesion of copper on the extruded products was said to be 

satisfactory; no metallurgical analysis of the interface was 

reported. 

J.M. Alexander and B.C. Whitlock carried out research 

into the production of bimetallic strips by extruding two 

dissimilar metals from separate containers through a single 

'die [30]. Experiments involve the extrusion of tin and lead 

at room temperature and copper and silver at 750
o
C. They have 



achieved bond strengths at least equal to the strength of the 

weaker metal. Upper bound and slip-line solutions were used in 

order to estimate extrusion pressure and interfacial stresses. 

The comparisons between the actual extrusion pressure required 

in the tests and their calculated upper bounds are shown in the 

following graph: 

Metal 

30 

Net al B 

40 

cc 
cc 

• LA 

Metal A 

Metal B 

0 

1/3 	1/2 	 2/i 	 3/1 
EXTRUSION SPEED RATIO (METAL !,/ METAL 61 

Actual extrusion pressure at start of extrusion 
--- Upper bounds using rough tools 
----Upper bounds using smooth tools 

o Actual extrusion pressure for tin (metal A) 
n Actual extrusion pressure for lead (metal E) 
e, 	Actual extrusion pressure for copper (metal Al 
A 	Actual extrusion pressure for silver (metal B) 

The results of metallographic examinations of the 

bimetallic strips showed that at the interface, intimate 

contact had been achieved between the dissimilar metals. 

B, Avitzur [31] made a very comprehensive analysis 

of the mechanical conditions of the coextrusion process and 
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the corresponding governing variables. These variables are: 

(1) 	Percent reduction in area. 

(ii) Semi-cone angle of the die. 

(iii) Die land. length. 

(iv) Friction. 

(v) Relative size of the core, related to tube. 

Ratio of the flow stress of the core to the flow 

stress of the tube. 

(vii) 	Prescribed body tractions (front tension in extrusion 

and back tension in drawing. 

He aimed at producing a criterion for the analysis 

of failure of composites obtained by drawing. or extrusion. 

A successful drawing or extrusion results from homo-

geneous deformation and thus identical elongation in both tube 

and core. If the core, being harder to an excessive degree, 

resists deformation so that it elongates less than the sleeve, 

failure by core fracture is iiuuiinent. If the sleeve is harder 

than the core to an excessive degree, the sleeve resists 

deformation and elongates less than the core, and failure by 

sleeve fracture is imminent. 

The combination of variables causing failure are 

presented in graphs, for different values of the core/sleeve 
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radius ratio, core/sleeve yield stress ratio and die angle. 

In the following graph the criterion for sound flow in 

extrusion is illustrated: 

LEEV TO CORE DIAMETER RATIO 

While no attempt is made to fully characterize the 

behaviour expressed in the various cases presented in the paper, 

he pointed out some general trends to apply as failure criteria, 



- 31. - 

even if these tendencies may be violated occasionally: 

(1) 
	

The harder the sleeve, for Y
c
/Y

t 
 < 1, the more likely 

it is that fracture will occur. 

(ii) The harder the core, for Y
c
/Y
t
2> 1, the more likely 

it is that core fracture will occur. 

(iii) The greater the departure of the strength ratio unity, 

the more likely it is that fracture will occur and the narrower 

becomes the range of process variables within which sound flow 

is likely to occur. 

(iv) The higher the mean pressure (higher back pressure, 

lower front tension), the wider the range of variables for which 

sound flow is expected. Thus in extrusion, the range of sound 

flow is wider than in drawing. 

(v) Normally, the higher the friction, the narrower the 

range for sound flow, except that core fracture in extrusion is 

deterred by higher friction. 

The experimental results presented verify the validity 

of the fracture criteria. 

B. Avitzur et al. E32]  also studied the hydrostatic 

extrusion of hard core clad rods considering specifically the 

influence on the mechanics of the process of the bond between 

core and sleeve. In order to cover a range of bond strengths, 
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two pairs of materials were used. These were copper clad with 

solder and a Nb-Ti alloy clad with commercially pure aluminium. 

They also studied the combinations of mechanical conditions 

leading to failure and they present the results in the graph 

that follows: 
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The experimental results show that fracture in hard 

core clad rod is not controlled by an inherent brittleness of 

either core or sleeve materials but controlled by process 

variables. 

An attempt has been made by J.M. Story, B. Avitzur 

and W.C. Hahn Jr. E33] to consider the influence that the 

combination of variables leading to failure has on the extrusion 

into receiver pressure. The experiments showed that increasing 

the receiver pressure increases the range of acceptable process 

WAVY FAILURE (CORE EAL.Y) • 

. SCY.143 EXTRUSION (COPE 0'431 	5*  
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variables to produce a sound flow. The results are presented 

graphically, pointing out the sound and failure zones for single 

and three core, pure aluminium clad Nb-44% Ti. Some important 

conclusions of their work are: 

There seems to be an optimum diameter ratio above and 

below which the size of the successful region will be signific-

antly smaller. 

(ii) The range of acceptable reductions in area will tend 

to decrease with increasing die semi-cone angle. 

(iii) The strength ratio is very critical. An increase in 

strength ratio (25-50%) will significantly reduce the size of 

the safe or successful zone. 

(iv) Increasing receiver pressure will increase the size 

of the safe zone. 

Based on Avitzur's velocity field, P.B. Mellor et al. 

produced an upper bound solution to predict failure 

conditions in the hydrostatic extrusion of composite rods. A 

detailed analysis of the theoretical basis of this approach is 

discussed in Chapter V. 

C.S. Hartley D5] produced an upper bound analysis 

for the tube extrusion. A kinematically admissible velocity 

field has been proposed based on the superposition of three 

velocity fields corresponding to the three zones in which the 
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workpiece is divided. Analysis of tube extrusion shows that 

the linear relation between extrusion pressure and 	logarithm 

of the extrusion ratio is varied by fixing the mandrel size and 

die-cone angle and varying product diameter. 

In :361 J.M. Alexander and C.S. Hartley carried out 

a comparative study of experimental results obtained from the 

hydrostatic extrusion of copper-cover red aluminium rods with 

theoretical results derived from Hartley s upper bound solution 

[35]. The study compares the experimental values obtained for 

the extrusion constant K and the required extrusion pressure 

for different extrusion ratios and die angles, showing a good 

agreement between them. They also compared a finite elements 

solution for the flow lines corresponding to the coextrusion of 

two dissimilar metals with the experimental ones obtained from 

observation of billets which have been split on a meridional 

plane, these being remarkably similar. 

1.4 	Temperature  distribution durin deformation 

The temperature rise during the process of deformation 

is a very important parameter to be considered in predicting 

mechanical properties of metallic products. During the 

extrusion process the temperature rise may be significantly 

high (for high speed or large extrusion ratios), and therefore 

become relevant not only the knowledge of the temperature of 
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the product but also the temperature distribution in the defor-

ming zone to predict the local heating and its mechanical and 

metallurgical consequences. In particular this information is 

necessary in the study of pressure welding conditions in the 

extrusion of composites. 

Several attempts have previously been made to estimate 

the temperature rise in conventional extrusion and in the 

drawing process. Possibly the first work on the subject was 

clone by5Lebel and Kobitzsch[39] for wire drawing, assuming 

uniform deformation and a constant coefficient of friction. 

More recently, Singer and Coakham [403 and Singer and Al-Samarrai 

[41.1 measured the emergent temperature of the product in 

extruded billets, for several materials and ram speeds. Iii 1-41.1 

an attempt is also made to predict the temperature rise of the 

emerging product by assuming a simple model in which all 

deformation takes place as the metal crosses the die-exit plane. 

They considered only axial heat flow and neglect the container 

friction. 

Johnson and Kudo [42] obtained a temperature field 

for the extrusion process by an upper-bound approach. In their 

assumptions they consider a rigid-perfect plastic material, 

neglect the die friction and assumed the deforming process as 

being adiabatic. 
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Based on a visioplasticity approach, We Fister [43j 

obtained the strain rate and stress distribution car-responding 

to the deforming zone for the hot extrusion of alumknium. From 

these fields he derived the temperature rise taking place in 

the metal. In this work the influence of temperature rise on 

the yield stress of the metal was taken into account, 

By using a numerical approach, J.F.W. Bishop :1110 

estimates the temperature field in the deforming zone of a 

rigid-plastic plane-strain extruded material. He evaluates 

velocities and strain rates by means of a slip-lines solution, 

assuming no friction at the material-die interface, In this 

• paper the deformation, thus heat generation, is regarded as 

taking place instantaneously, followed by a static heat cond-

uction during a small interval of time. With these assumptions 

Bishop obtained the numerical solution by means of the finite 

difference method. 

T. Altan and S. Kobayashi E45] also studied the 

extrusion process, by means of a visioplasticity approach 

obtaining the corresponding stress and strain fields. They 

adopted Bishop's sequence of heat generation and metal trans-

portation followed by a static conduction process. In their 

development they considered temperature-dependent heat para-

meters for the conduction process, a constant value for the 
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coefficient of friction and estimate the normal stress on the 

die and container by means of an empirical formula. The temp-

erature field was finally obtained by means of the Dusinberre's 

[4] finite difference approach. 

Lengyel, B. and R.M. Guha [47] estimate the temperature 

distribution in the deforming zone for the process of hydro-

static extrusion. They developed a time based simulation 

computing model to follow up the extrusion process, where 

instantaneous heat generation was followed by static conduction, 

convection and radiation during a small period of time, by 

means of the finite difference method. Temperature was estim-

ated at various extrusion speeds and coefficients of friction, 

taking into account the temperature and strain rate dependence 

of the yield stress and heat parameters of the deforming metal 

and tools. 

Despite the fact that there are models capable of 

describing the temperature distribution arising from the deform-

ation of a single metal wire, no attempt has yet been made to 

estimate the temperature distribution in the deforming zone of 

composite billets. 

1.5 	The Method of Wei hted Residuals  

Crandall has used the term "Method of Weighted 

Residuals" to denote a general approximation procedure for 
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solving various types of differential equations and boundary-

value problems. The procedure is to assume an approximate 

solution in the form of a linear combination of known trial 

functions with adjustable constants. By substituting the form 

into the governing equation, a residual function is obtained, 

which is then required to be orthogonal to a selected set of 

weighting functions. 

The application of the method of weighted residuals 

to solve a single scalar differential, equation is discussed by 

Crandall E48] and Kantorovich and Kryiov E49]. A generalization 

of this procedure to the integration of vector differential 

equations and systems of differential equations is considered 

by Finlayson and Scriven in [HO and by Finlayson in DC. 

This generalization applies to the study of :ieformation phen-

omena where it is necessary to use the method of weighted 

residuals to tensor differential equations, including realistic 

boundary conditions. Details of the mathematical aspects of 

this method are given in Chapter VI. 

E. Steck considered the application of the method of 

weighted residuals to obtain the stress and strain fields in 

the process of extrusion of solid billets through conical dies 

and compression (upsetting) of right cylindrical specimens 

between parallel platens [52], E53] E54:1 
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Solutions for the stress and strain field were 

obtained by means of a direct integration of the Prandtl-Reuss 

non-linear tensorial equations describing the plastic state 

This procedure has been used in this work and is considered in 

detail in following chapters. 

1.6 	Scope of the work 

In the present work we aim to obtain a numerical 

description of the stress and temperature field in the deforming 

zone corresponding to the coextrusion of two dissimilar metals. 

Our immediate concern is to analyze the conditions of pressure 

and temperature existing at the tube-core interface leading to 

the formation of a metallurgical bonding. 

The solid state bonding of metals by rolling aril 

indentation have been extensively analyzed and there is in the 

literature relevant information for obtaining a successful 

metallurgical bonding. The process of coextrusion, as far a 

the relevant parameters of the joint formation is concerned 

(pressure, temperature, extrusion ratio, superficial contam-

ination, etc.) has not yet so far been extensively considered. 

There exists little information on the threshold extrusion 

ratios to obtain bonding and the variables defining this ratio 

for different metals and working conditions. Hence, it is 
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considered that the study of these condltior;s would be of 

practical interest. Therefore it is proposed to examine numer-

ically the stress and temperature fields in the deforming zone, 

particularly at the interface. It is hoped that this information 

will eventually lead to a better understanding of the mechanisms 

for the joint formation during hydrostatic extrusion at room 

temperature. 

It also appears that the method of weighted residual,' 

offers a relatively easy, concise and satisfactory solution and 

less demanding in terms of computing resources. 
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ELEMENTS OF CONTINUUM MECHANICS 

Introduction 

    

The theories of elasticity and plasticity describe 

the deformation process of most of the materials commonly used 

in engineering. These theories are based on experimental studies 

of the relationships between stresses and strains of poly-

crystalline aggregates and hence their development was, to some 

extent, independent of the knowledge of the structure of matter. 

Their macroscopic conclusions hold for an idealized material 

model named "continuous". 

Among other principal applications of the Continuum 

Mechanics is the determination of stresses, strains and dis-

placement of a solid subjected to external forces. The 

equations representing physical and geometrical restrictions to 

possible mathematical solutions for this problem are well known 

[55],  EX]. In a general case these conditions are expressed 

in terms of partial differential equations, linear or non-linear, 

depending on the constitutive equation corresponding to the 

solid being considered. 

In most cases exact solutions to such equations are 

impossible to obtain, and often not even an approximate form. 

Difficulties arise from the fact that boundary conditions involve 

restrictions arbitrarily imposed, not always easy to introduce 

in the governing equations of the process. Constitutive 



-. 42 - 

equations in the Theory of Plasticity add a non-linear behaviour 

to the governing equations that, in general, make it impossible 

to obtain theoretical solutions for most of the problems. 

Needless to say that even in cases where the 

difficulties can be overcome and solutions obtained, such 

solutions do not necessarily represent the true stresses and 

strains. The degree of accuracy depends upon how well the 

constitutive equations describe the mechanical behaviour of the 

material being deformed, under the particular set of circum-

stances in which the deformation process takes place. Consequently 

in order to understand the limitations of such solutions, it is 

often necessary, while dealing with real problems, to resort to 

the available knowledge of the structure of matter and the 

mechanisms developed by Solid State Physics. As long as the 

microscopic and macroscopic points of view are not completely 

related, it is necessary to take into account both of them, as 

they provide complementary information. The present trend is 

not to make unilateral approaches, either mechanical or 

physical, but to widen constantly the field of observation 

E577 , [58:2 c59] 

It would be desirable to take from Solid State Physics 

the essential assumptions for the Theory of Plasticity, based 

on the analysis of elementary physical processes. The immediate 

requirements of solutions to technical problems and the fact 
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that Physics cannot yet meet them, makes it unavoidable that 

these assumptions are based on phenomenologicaL hypothesis or 

on experimental investigation. Consequently such conclusions 

are not general and constitute a reasonable approximation to a 

limited number of real processes. 

11.2 	Stress field 

The stress distribution will be analysed. by means of 

Cauchy's stress tensor 0. j E55-1 71:561 r6i0 E62], E72]; its i 

representative matrix in a Cartesian system of coordinates x. 
1 

(i = 1,2,3) being: 

0. 
ij 

011 

021 
0
31 

012 

0
22 

0
32 

013 

0
23 

0
33 

(1) 

with the condition 0.. = 0.. 
13 	31 

Tensor 0.. can be split into the deviatoric and 
13 

hydrostatic or spherical components: 

j = 	+ 0 b
ij 	m ij 

where Cm  = 30i1and O. is the Kronecker delta. 1j 

Consequently, the deviatoric stress tensor is 

0!. = 5.. - 	6.. 13 	13 	m 13 

The principal invariants of 0! are given by the 
ij 

(2)  

(3)  

expressions 
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(4)  

In a cylindrical coordinate system (r, 9, z) the 

matrix components of a.. are: 
j 

sOr 

[T
er 

Tr9 Trz 

0.. = 	
Oe  T

Gz (5)  

Lizr 	Tz9 z 

and they are shown in the following diagram: 

z  

Due to axial symmetry 

T
ez 	

T
1.9 

=
z9 	

0 

and the remaining functions are independent of the variable 9. 

Under these conditions the second principal invariant has the 

form: 



- tiJ 

Jt = ( 	o' + o' o' 	o' o') ±T2
2 	r 0 	9 z 	z r 	rz 

	(6) 

Ecuivalent stress 

The equivalent stress ) is defined by the expression 

[72]: 

	

= 	
2 	2 

= /r 
H of 
of 

In axial symmetry, equation (7) has the form: 

	

0 = 	a' ov _ 0,01 - Ge ar 	T  + 2  11/2 
r 9 	8 z 	z r 	.rz 

11.2.2 	Stress functions  

The equilibrium condition in terms of stresses is 

given by 

0 fi = 1,2,3 
ilk = 1,2,3 (9) 

bodyforcesbeingneglected,wherex.is a generical coord-

inate. In the case of cylindrical coordinates and axisymmetric 

conditions, equation (9) can be expressed in scalar form as: 

(7)  

(8)  

ac 	aT rz 	(s
r 
- 0

9  -- ---- 
ar + 
	+ 
az 	r 

509 = 0  

0 

(10) 

at 	50 
rZ 	Z

' 

 Zr 
ar 	az 	r = o 



- .46 - 

It can be shown that selecting two functions 01 
and 

0, such that: 

0 . 1 d-01 	02 
r r az2 	r 

ar 

a2m  
0  . 1 
z r 

ar
2 

i 

2a  
1 a w, 

_ 	 .1. __-  
r z 	r draz 

where 0
1 
= 01 

(r,z) and 02 
= 0

2 
(r,z) are scalar stress 

functions, equations (1) are automatically satisfied :611. 

11.3 	Strains  and strain rates E61], t62] 

As in the case of stresses, strains are obtained in 

terms of Cauchy's strain tensor given by 

E.. = 1 3 

du. 	du. 

2 	
1  .. 	

) 
, _a\ 

ax. r  ox. 1 
(12)  

where u. are functions describing the displacement field. 

Its representative matrix in a Cartesian system of 

coordinates x. (i = 1,2,3) is: 

E
11 	£12 	L1_3 

E..13 = 
E
21 

E
22 

P
23 

£
31 	

£
32 	

£
33 _  

(13)  
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Expressed in terms of a cylindrical system of coord-

inates (r, 9, z) and in a case of axial symmetry: 

FEr 	0 rz 

Eij  0 	Ee  (13) 

The strain rate tensor is defined as 

dE.. 

ij 
= 11  

at 

and in terms of velocities of displacements v.1 
 as 

ay. ay, 
• Eij  = 2  aX. 	ax,)  1 

(14) 

The three principal invariants of E.. are: 

= E. 
11 

J 
. 	• 

2 =z E.. E.• - 	t. jj 	E ij 
(15) 

J
3 

= det[L 

The incompressibility condition leads to: 

E = 0 	 (16) 
ii 

The strain rate tensor can also be expressed in 

terms of a deviatoric component t!j 
 and a hydrostatic or 

spherical one E 
m 
 b.. as: 
ij 
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= 	5.. 13 	m 

where E
m 
= :%jE... Consequently, the deviatoric strain rate 

tensor is given by: 

	

E! . 	=- 	b.. 

	

13 	13 	m 13 

with its three invariants: 

= 	= 0 
ii 

12 Li ij 

= 13 

(17)  

(18)  

The form of I
2 
 under axisymmetric conditions is: 

(19) 

A basic assumption of the infinitesimal elasto- 

plastictheoryisthatstrainE.
j 
 (or strain rate ij) 

i  

components can be expressed in terms of its elastic and plastic 

components as 

E. 	= 	+ E.. 	
ij 

or 	= 	E  + 
13 	13 	1J 	 ij 	ij 

Frequently it is possible to neglect the elastic 

component in relation to the plastic component. In this case, 

the plastic component is assumed as being the total strain. 

This assumption also holds for strain rates: 

cEP  
-ij 	ij 

or 
• = EP  
i ij 	j  

(20) 
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11.3.1 	Stream_ function 

Equation (16), 	= 0, is the form adopted by the 

continuity equation for a fluid of constant density. This 

condition must be satisfied for any st:rai_n rate fie? d '.. in 

order to be considered as kinematically admissible. 

In the case of cylindrical coordinates (r, 9, z), 

equation (16) has the form: 

av
r 1 

ay
9 yr 

 ay
z 

- 
+ r 69 
- + + = 

ar 	
0 	(21) 

or, under axisymmetric conditions: 

av v av 
r r - + r+  —z  = 

ar 	r 	az 
0 	 (22) 

It is easy to show that if a scalar stream function 

(1) = (I)(r,z) is selected, such that 

= 	a(1) 
v
r 	r az 

1 4 vz 	r ar 
(23)  

the continuity equation (22) is automatically satisfied. 

Developing equation (14) for the case of cylindrical 

coordinates one obtains: 

av
r 	• 	

av
9

v
0 .,_ 1 

2,,r 
Er  = 

ar 	Erg = TT - r ' r ao 

1 
v9 v 	avr  av _ . 	4, .__E, 	. 	z 

9 r ae 	r 	-rz 	az 	ar 
av
z 	

av
01 

ay
z 

= 	
(*- c = + 

az 	ez 	az 	r ao 

(24)  
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' Under 	 0 conditions of axisvmmetry 	= 0, vr = v(r,z) 

and v
z 
= v

z
(r,z), equations (24) are reduced to: 

Er 

Ee 

E z 

av 
or 

v
r = 

av
z . --- 

az 

E
rG 	

0 

ez 
= 0 	(25.a) 

av
r . 

av 

rz 	az 	at.  

In the case of a spherical coordinate system (R, Lp, 9) 

the velocity components become: 

= (vR' vkiT v9)  

and the corresponding strain rate field is described by: 

avR 	
1 av 

= 	i: 

	

E RR 	aR 	`R9 = 2R de"-  

v 

	

Tup 	R 
= R 	

to
YO 

= tRY = 0 	(25.b) 

	

99 	

v,n 	
+E 4 

 

Finally, referred to a cylindrical coordinate system, 

the strain rate field can be expressed in terms of the stream 

function as: 

a 4 
Er = arc. 75Z)  

= 	aq) 

r
2 az 

t
z =

—a4)) 
az(r ar 

(26) 
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= .±41 	- a (1  6)  
err az r az 	ar'7 

(26, continued) 

2719 
=

ez 
= 0 

11.4 	Elements of  the Mathematical Theory of Plasticity 

[67] / [68] , C69] 

11.4.1 	Yield function 

Assuming  a homogeneous material with an isotropic 

rule of hardening, the yield function may be written as 

f(0..) = C(L) 
	

(27) 

In general, L is a functional depending  on the plastic strain 

history of the material: 

L = LEE 	_ „(t )] 

and C is a scalar function. In a 9th-dimensional space of 

stresses, function C measures the instantaneous "size" of the 

yield surface. 

Assuming  an isotropic behaviour of the material before 

and during  the deformation, and since f(0ij
) is a scalar 

function, it is possible to express f in terms of the eigenvalues 

of 0. or in terms of the principal invariants: 
ij• 

f(0..) = f(J 	J
2' 

J
3
) 	(28) 



By assuming constancy of volume, equation (28) can 

be expressed in terms of the principal invariants of the 

deviatoric stress tensor o!., that is 
13 

f( 0!Li 	= f(J2' 	3  jt) 
	

(29) 

The most comuor, expressions for equation (29) are 

those .given by von Mises and Tresca. 

(1) 
	

Von Mises yield criterion: 

This is the simplest possible form of equation (29) 

and is given by: 

f = JI2 k
2 

= 0 

or 

. 	I 	1 

	

'2'0.i  0i 	
k
2 	 (30) 

j 

where k is a scalar function depending on plastic strain 

history. 

Despite the fact that physical interpretations.have 

been suggested for this criterion, based on the shear strain 

energy, they should be merely considered as formals D1]. 

(ii) 	Tresca yield criterion: 

In terms of the principal stresses G1, 02 
and 03' 

where •0
1 
 > 0

2
2> G

3' 
the Tresca criterion is expressed by: 



53 

f = 0
1 
- 3 	2k" = 0 	(31) 

Experiments give, in general, little backing to the 

hypothesis of isotropic hardening, necessary to the validity 

of these criteria E0-1 C641 	
. 

F65], LjSipj . The permanent , - 

preference for this hypothesis is due to its mathematical 

simplicii:y and to the fact that if unloading is not performed 

during the process of deformation; the results produced are in 

reasonable agreement with the experiments. 

11.4.2 	Eouivalenc strain 

From the expression of plastic work and assuming 

f = J I
2' 
 the equivalent strain is: 

= f?dE P 
 dE 

3 ij ij 
(32)  

Drucker P1],  1731. has proved that expression (32) 

is reasonably correct for any yield function of the form 

' 3 
f(J I

2  J
.) = 0. 

11.4.3 	Plastic stress-strain relationships 

For a. material that behaves according to Drucker's 

postulate E70], En],  [73], the general expression for the 

plastic stress-strain relationship is 

of of 
dE. = GOO.. RR 

(33)  
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where G is a scalar function depending on stresses, strain and 

loading history. For a material that hardens isotropically, 

equation (33) can be written as 

of 
d E 	= G d

" 	
df 

3 	O. . 

or, in another form: 

of 

	

do . . 	
00. 

 dX. 

	

13 	. 
13 

where dX = Gdf. 

(34) 

If equation (30) is used as a yield function, 

equation (34) becomes: 

P E . = 	. dX 13 	13 

or, in terms of strain rates: 

3 EP3  • 	6,01!. 

dX 
where L1 =  dt .  

(35)  

(36)  

Equations (35) or (36) are known as the Prandtl-Reuss 

relationship. The value of 	can be calculated by substituting 

equation (36) in the von Mises yield criterion (30); then the 

following expression is obtained: 

1 EP E
P = k2 

2 A 
2 ij ij 

In another form: 

(37)  
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12 = k 

where 1
2 
is the second principal invariant of the strain rate 

tensor. Finally 

and replacing this value in equation (36): 

k Oii  
j  

V 
13 ij 

which is the form to be used throughout this work. 

(38)  

11.4.4 	Power of lastic deformation 

The power involved in the plastic deformation of a 

- 
material volume V according to a strain rate field E.. and 

under a deviatoric state of stress 0!. is: 
iJ 

* = j 0!. E. 
P 
 dV (39)  

For a material obeying the Prandtl-Reuss relation-

ship, equation (38) is then valid and consequently: 

* = 	dV 
v VT 13  1-3  

or 

= jr  2V I2  dV 
it 

(40) 



If k has a constant value all over V and the material 

does not exhibit strain hardening, equation (40) can be written 

as: 

= 2k 11 	dV 

Or 

  

 

dV (41) 
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EXPERIMENTAL WORK 

III.1 	Introduction 

The general aim of this experimental work is to 

obtain a composite wire of copper and stainless steel, by means 

of an existing rig for hydrostatic extrusion-drawing processes. 

Most of the experiments have been carried out with copper as 

sleeve and stainless steel as core, but the inverse combination 

was also tried. 

The main purpose of these experiments is to produce 

an adequate composite specimen, suitable for being extruded in 

our equipment and to gather relevant information to fit in 

theoretical models describing the stress and temperature fields 

developed during the extrusion process. 

1II.2 	Experimental equipment  

111.2.1 	The hydrostatic extrusion-drawing rig  

The complete and detailed description of the rig 

can be seen in ERD, D D . We here merely list some charact-

eristics of the equipment relevant to our work. A general 

view of the total apparatus can be seen in Fig. 2, and a 

schematic view of it in Fig. 3. 
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111.2.2 	Pressure vessel  

The pressure vessel consists in a maraging steel liner, 

25.4 mm dia. bore and 660mm long. It is designed on the basis 

of a plastic liner with elastic support cylinders DI There 
are two outer cylinders: one in the form of sleeves and the 

other in rings assembled with an interference, giving a total 

external diameter of 381mm, The maximum designed working 

pressure is 30 k. 

Since at high extrusion pressures the fluid reduces 

significantly its volume, a large amount of elastic energy is 

stored in it. In order to lessen the risk involved in this 

situation, filler cylinders are used to reduce the volume of 

fluid in the bore. 

11.2.3 IntensifiaaliaLEalLSILEEP 

At one end of the pressure vessel is located an 

intensifier cylinder used to pressurise the vessel by acting 

on the plunger. The intensification ratio is 31.7. 

The pressure existing on the low pressure side of 

the intensifier is supplied by an electrohydraulic pump 

"Stansted", model TC/10 612PF, manufactured by Standted 

Filtration Ltd. The pump operates with Shell Tellus 27 

hydraulic oil, at a maximum working pressure of 1034 MN/m
2
., 

with a rate delivery of 3.8 cm3/s. 
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The pump has a special device to hold automatically 

a preset pressure indefinitely by supplying any flow demand 

within its capacity. Nevertheless, this control operation was 

done manually since this device was not sensitive enough to our 

requirements. 

111.2.4 	Dies and die holder 

111.2.4.1 	Dies 

A set of dies was designed to be used with the 

composite specimen and different extrusion ratios. A drawing 

corresponding to one of them can be seen in Fig. 4. Dies were 

made of KE 180 steel, hardened to HRC 62 min. and 30°  included 

is the angle used throughout the experiments. 

111.2.4.2 	Die holder 

The general structure of the die holder was maintained 

as in D.  Only some minor design modifications to reduce 

stress concentration were made. The new shape can be seen in 

Fig. 5. This change has been made since several die holders 

cracked at hydrostatic pressures about 15.5 kb. 	The new 

design supported 20 kb satisfactorily. 

11/.2.5  aiLL1 1c=1!-121alLaELE 

The main characteristics of the plunger operating 

in the bore of the vessel were kept as in [76], except for a 
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design modification aiming to reduce stress concentration. 

This was done after the original plunger was broken 

into pieces at a pressure of 20 kb. 	The new design is 

shown in Fig. 6. 

111.2.6 	Extrusion fluid 

The main characteristics of an appropriate extrusion 

fluid must be: (i) a good lubricant, and (ii) not to "freeze" 

at the high pressures used in the process. It is important to 

remark that at the usual pressures developed during the 

extrusion process, fluids reduce their volumes in a 30-50% range. 

Due to the important increase in the viscosity of 

fluids at high pressures, not all lubricants are suitable for 

being used in this process. A comparative analysis of the ones 

more commonly used is presented in ET_I and ETC. An illustrative 

plot relevant to fluid behaviour is presented in Fig. 7 

One of the more adequate fluids for transmitting 

the load acting on the plunger to the whole fluid Volume and 

to convert it into hydrostatic pressure, at the highest working 

pressures, is castor oil. However, the addition of 20% methanol 

was necessary to avoid freezing. 

111.2,7 EEELLII_IL,L11  

As drawing bench, a 50 kN drawing jack manufactured 
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by M/s Duff-Norton & Co. was used. It has a continuous 

variation speed through a gear box, from 1.6 to 14 mm/s. 

Modifications made in the supporting structure enlarged its 

drawing capacity in length up to 560 mm. 

The drawing head is a standard Instron jaw, capable 

of gripping any wire diameter. A load cell is located between 

the jaw and the jack screw, in order to measure the drawing 

force. The load cell works with an ordinary four arms strain 

gauges bridge connection and it has a load capacity of 9 kN. 

The measurement instrument is a U.V. recorder, properly 

calibrated. 

The rig allows operating under the entire range of 

driving stress ratios (D.S.R.); 

(D.S.R.) = Extrusion pressure/drawing stress. 

It is possible to obtain conditions going from pure drawing 

(D.S.R. = 0) up to pure hydrostatic extrusion (D.S.R. = co ). 

111.2.8 	Pressure measurement [78] 

111.2.8.1 	The coil 

The pressure in the high pressure vessel is measured 

by the change in electrical resistance of a 100 Q manganin 

coil, of 42 S.W.G. wire (0.1016 mm dia.). 
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The wire is kept for approximaLely 10 hours at a 

temperature of 140°C, aiming to stabilize the electrical 

resistance and to relax residual stresses. This procedure is 

suggested by Johnson-Matthey, the manufacturer of the wire. 

The coils are prepared according to the following 

geometry: 

The wire is tightly coiled in.a non-inductive way 

and the ends soldered to two copper terminals riveted to a piece 

of insulating material. These points are then connected to the 

plunger terminals by means of two stronger leads. Originally 

the ends of the coil were directly connected to the plunger 

terminals. In this condition, the wire breaks every time a 

violent drop in the pressure takes place, as happens when the 

billet is acidentally expelled through the die during a free 

extrusion experiment. 

The present form of convection proved to support 

satisfactorily these events saving the long time usually 

required to replace a broken coil [:76]. 
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Coils are calibrated in a dead weight machine, 

checking the resistance with a Wheatstone bridge. The more 

representative value obtained for the change in resistance with 

pressure is 1.65 x 10
-7

M/psi. and the law of variation 

linear within the observed range. The calibration line is 

shown in Fig. 8. 

111.2.8.2 	Measurement circuit 

The manganin coil is an arm of the Wheatstone bridge 

connection, as follows: 

caivo 00 

P,,. 0 L. ) 
 

o 6 o  ---- 
a ' _ 5_(i 1 :,--, — 0 r 0 

., . -- 	!:. R f  = R ; . - :: 40G2 	I 	°  8  ° 	4,  
1 	--- a 51 al____ilipv'.• ' 	.1- l_  

P, :--- .00_ ( Poi ) . 

The measurement instrument used is an Ultraviolet 

Recorder S.E. Type 3006, with a galvanometer Type A-100 (0.130 

mV/cm sensitivity). For the calibration of the recorder, a 

calibrating resistor is used that when connected to the bridge 

produces a displacement from equilibrium equivalent to the 

effect of a 7.72 kb 	pressure acting on the manganin coil. 
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111.3 	Metals and billet characteristics 

The copper tube used throughout the experiments is a 

commercial type, 24 gauge (3.64 mm bore) in "hard" condition. 

The stainless steel core was provided by: 

M/s Bekaert S.A. 

B -. 8550 Sweveguin 

Belgium. 
•, 

with a chemical composition as follows: 

17.7 Cr: 9% Ni: 1.66% Mn: 0.192% Si: 

0.07% C: 0.026% P: 0.02% S: Fe up to complete balance. 

The stainless steel wire is annealed according to 

the following procedure: maintained at 1100
o 
 i C in vacuum 

furnace and then air-cooled at room temperature. 

Experiments with composite specimens have shown that 

the best results are obtained when the plastic deformation 

characteristics of both components are similar [112]. This 

situation is reasonably achieved with fully annealed stainless 

steel and copper in "hard" state. 

After several trials, the following is the final 

design adopted for the composite billet: 
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It is important to keep the tube-bore clearance as 

small as possible to avoid geometrical distortions in the 

product. 

Once the core is inside the tube, the back of the 

tube is closed with soft soldering while the other end is 

tapered by pushing it manually through a 400  included conical 

die. 

111.4 	Experimental t.221:111-11. 

The conical end of the described specimen is then 

lapped against the die until a definite contact surface appears 

on the tube cone, as to assure a proper sealing of the high 

pressure, at the beginning of the process. 

Once this condition is attained, the specimen is 

located into the bore of the pressure vessel, full of fluid, 

and the whole equipment is assembled. The tag passing through 

the die allows the application of a small load by means of the 

jack. This operation will keep the core against the tube and 

the tube against the die, as to permit to build up some pressure. 

	) 
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The pressure makes the tube collapse over the core, 

producing a very strong grip. As a consequence, the compos-

ite billet can be pulled as a solid wire from the core tag. 

Pressure is raised in the container by pumping oil 

into the low pressure side of the intensifier cylinder. The 

high pressure induced in the vessel is measured by means of 

the manganin coil and recorded in the U.V. recorder. 

Since the drawing jack is of the screw type, motor 

driven, a start-stop push button is used to control the 

extrusion process, by means of the product augmenting pull 

the jack exerts. 

The process begins by pumping up to the desired 

pressure and then the pulling jack is started. The drawing 

jack pull needed to start and maintain the extrusion process 

at a chosen hydrostatic pressure is recorded on the same U.V. 

recorder as the pressure, from the load cell. 

The simultaneous measurement of the pressure and 

the drawing pull allows the construction of graphs with the 

"pulling stress-hydrostatic pressure" relationship, corresp-

onding to the extrusion ratio to be considered. 

111.5 
	

Results 

Composite specimens with extrusion ratios 2.7, 4.3 
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and 5.6 have been processed with the minimum speed, aiming to 

obtain the "pulling stress-hydrostatic pressure" relationships. 

The plots are shown in Fig. 9. Each point in the 

graphs is the average of three experiments carried out under 

similar conditions. The determination of these points is 

reasonably free from scatter in all the extrusion ratios 

tested. A photograph of the cross sections of these wires 

together with the original one is shown in Fig. 10. 

In Fig. 11, the "pulling stress-hydrostatic pressure" 

relationship corresponding to the stainless steel wire is 

presented. 

From examination of the composite specimen graphs 

it can be seen that they follow the pattern predicted by the 

theory existing in the literature for solid wires, referring 

to their linear trend. A theoretical interpretation of these 

results is considered in the following chapters. 

The same relationship, corresponding to the process 

of a stainless steel sleeve-copper core specimen with an 

extrusion ratio of 2.7, is shown in Fig. 12. 

111.6 	Multicore specimens  

As a complement to these experiments, a multicore 

specimen has been tried, as a first step in the line of 
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production of superconductor wires. 

The cross-section designed is shown below: 

Materials used are of the same characteristics as 

the previous specimens. The assembly of the billet follows 

a similar procedure as described before. A photograph with 

a cross-•section of the original billet and that corresponding 

to a product obtained with an extrusion ratio 2.7 is shown 

in Fig. 13. 
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FIGURE 2 . General view of the 

hydrostatic extrusion—drawing rig. 
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FIGURE 3 . Schematic view of the 
hydrostatic extrusion—drawing rig. 
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FIGURE 7 . Behaviour of different 
fluids under high pressure. 
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FIGURE 8 . Calibration 
of the manganin coil. 



•■•■■•••■MI...•••••••■■•••••••••••■•■■■■■•-•••• 

A Cre  . 

( v/, ) 

/qoo 

ffne 

L 

- N 

N 
-1; 

0 100 	cc 	/000 	1100 	taco 	zzoo 0 4/  

- 76 - 

FIGURE 9 . Fulling stress-hydrostatic pressure 
charcteristios of composites specimens under 
different extrusion ratios. 
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FIGURE 10 . Cross—sections of a composite 

billet and products of various reductions. 
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FIGURE 13 . Cross-sections of a 

multicore billet and product. 
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IV. 	SLAB METHOD APPROACH TO THE COFXTRUSION 
OF TWO DIFFERENT METALS 

[79] 

IV.1 	Introduction 

In the present section, the coextrusion of two metals 

by the process of hydrostatic extrusion-drawing will be cons-

idered from the "slab method" point of view. Such analysis 

is based on the assumption of a uniform state of stress at 

all points of a plane normal to the die axis. 

r- — 
This approach was first proposed by Sachs L7I and 

later presented by Hoffman and Sachs 	for the extrusion 

of a single metal. 

In a composite specimen where the yield stress of 

the tube is lower than that of the core, one might expect 

the tube to flow more easily through the die. However, the 

friction between the core and the tube tends to partially 

restrain the flow of the tube and, at the same time, drag the 

core along with it. If, on the contrary, the tube is harder 

than the core, the opposite situation will take place. This 

interaction will be referred to as the dragging effect. 

A section of the composite specimen and the notation 

used are illustrated in Fig. 14. 
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FIGURE 14 

In the present analysis a rigid perfectly plastic 

material model will be assumed throughout the calculations. 

It will also be assumed that the metals are isotropic before 

the deformation starts and no anisotropy is developed during 

the process of deformation. 

IV. 2 	llrag in effect 

Due to the tendency of the soft metal to flow faster 

than the hard one through the die and owing to this differ-

ential velocity being resisted by stresses developed at the 

interface, a compressive state of stress is set up in the soft 

metal and a tensile state of stress in the hard metal. As a 

result of this, the soft metal behaves as a harder one and the 

hard metal presents an apparently lower yield stress. 
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This phenomenon had also been observed and analyzed 

in the sandwich rolling and drawing of hard metals DO:], D1-1, 

D2] , E83.1. 

It will be assumed that the state of stress 

developed at the interface can be represented by a cylindrical 

state of tangential stress, of a constant value along the 

interface. 

It is apparent that the tangential. stress T will 

depend on the relationship W of the yield stresses of both 

materials, W being defined as 

W = —soft 
-hard 

Since T is generated by a differential mechanical 

behaviour, it must vanish when both metals are mechanically 

equivalent (Us) = 1) or if soft 
= 0 (W= 0, behaviour comparable 

to the corresponding to an ideal fluid). 

One of the simplest forms of representing this 

characteristic of I is by means of a quadratic function ii, 

which will be referred to as function of dragging, that is 

tip = - w2 
	

O!w Ci  

which plots as 9. A 
• 2Y 
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Hence, I can be expressed in terms of 	as 

T = 

g being a constant. The sign of q will define the positive or 

negative concavity of -a which will point out the sense of T . 

This sense will depend upon which material (core or tube) is 

softer and that is merely a metter of convention. In our 

analysis q >0 if the tube is softer than the core. 

The maximum value that -C can reach is Lhe shear 

yield stress of the softer metal, that is 

= q` ksoft 

As the maximum possible value for 17' = 0.25, the upper bound 

for q = 4 x ksoft.  

IV.3 	State of stress on the core 

Stresses acting on an element of the core are shown 

in Fig. 15. 

FIGURE 15 

Cricc  tcl();_c 
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The assumed state of stress is such that the axial 

and radial directions are both principal directions, corresp-

onding to principal stresses of x 
and -p respectively. 

Let us consider the equilibrium of an element of 

volume limited by two planes perpendicular to the axis, at 

distances x and x+dx from the apex of the conical die. The 

forces involved are axisymmetrically distributed and, consequ-

ently, the resultants act along the x-axis. These forces are 

as follows: 

(1) 
	

Due to axial stress: Neglecting infinitesimals of 

second order, the expression 

	

rc 	2 	rt 2 TCD 
(0 +d0 )--(D+dD) -0 —D =—(0 dO +20 dD) (42) 
x 	x 4 	x 4 	4 x 	x 

is obtained. 

(ii) 	Due to normal pressure: The resultant of the normal 

pressure generated on the surface in contact with the die and 

transmitted to the core is 

rc p 7 DdD (43) 

(iii) 	Due to dragging effect: Integrating over the 

conical surface of the volume element, the expression 

- 	-an D ,r, 
2 tan13(-' 

(44) 

is obtained. 
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Applying the equilibrium condition for the x-direction, 

the equation 

DdOx + 2 OxdD+ 2pdD- 2--9-1dD = 0 
tanr, 

(45) 

is obtained. 

For the particular state of stress assumed, both 

Tresca and von Mises yield criteria lead to the expression: 

0
1 
- 0

3 
= yc 

In this case 01 = ox and C3 = -p, hence 

Ye  - 0
x 	

(46) 

Substituting (46) in equation (45), the differential 

equation 

d 0 = 2( 	Y
c 
)
dD 

x 	tanp 
(47) 

is obtained. 

,The boundary conditions are 

D = D.c   0 = G? i x i 
D = De 	0=0f  0c 

x f 

Integrating (47) with these conditions and q, 0 and Ye  being 

constant, the expression 
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(-5 u 	
tyc 	

n R f i tanp 
(48) 

isobtained.Bysetting0.=-ph  (hydrostatic pressure), 1 

expression (48) becomes 

f 
	ph  + Yc(1 	in R

c ' 
Yetar0 

The relationship 

m = 

Yc  

evaluates the dragging stress related to the yield stress of 

the core. Calling 

1 	
tan13 
m 

expression (49) can be written as 

Oc  = D 
	

n Y
c  In R

c 
	 (so) 

Being the value of n <1, expression (50) shows that 

- 
the material is behaving with an apparent yield stress Y , 

lower than the actual one, that is 

-c 
n Yc  < Yc  

From the expression of n it is deduced that if 

(49) 

tan p 
Yc 
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the dragging stress would be equal to the stress required for 

deformation. In that case, the apparent yield stress would be 

zero. 

Equation (49) may be written as 

	

Oe 	ph Y
c 
 in R — 	R 

c tan
c 

or, in another form 

f 
c 	

a.n t 	
In R - 	D 	Y

c 
ln R

c p 

(51)  

(52)  

Considering equations (50) and (52) it follows that 

the advantages of the extrusion of hard cores with soft sleeves 

is thus to apparently reduce the yield stress of the core by 

the tensile stress imposed by the interlayer friction and it 

is directly comparable to the addition of a pulling stress of 

In R 
tan 	c 

(53) • 

If for some combination of values in expression (53) 

it happens that 

R c -2> Ye  
tanO  

the core will fail by tensile stress. As was pointed out:  

this is often the case in processes with similar situations 

:34:1• 
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IV.4 	State of stress on the tube 

Stresses acting on an element of tube are illust- 

rated in Fig. 16. 

F I Gni] 16 

 

 

Again, the axial and radial directions are both 

principal and the corresponding principal stresses Ox.  and -p 

respectively. 

As before, it will be considered the equilibrium of 

an element of tube limited by the same planes as used for the 

element of core located at distances x and x+dx from the 

apex of the conical die. All forces are axisymmetrically 

distributed and thus the resultants act along the x-axis. 

These forces are as follows: 

Due to axial stress: Neglecting infinitesimals of 

the second order, the expression 

(a +dox  )(h+dh)TID-05xhiTD= (0xdh+hdG)TED (54) x  

is obtained. 

(ii) 	Due to normal pressure exerted on the tube at the 
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tube-die interface 

pTCDtana.dx 	 (55) 

(iii) Due to normal pressure at the tube-core interface 

- p1tD tanpdx 	 (56) 

that is opposite to expression (43). Considerations of 

radial equilibrium suggest that the frictional contribution to 

the die pressure is small and, consequently, die and core 

pressures are equal [84]. 

(iv) Due to friction with the die: By assuming Coulomb 

friction with a constant coefficient at the tube-die interface, 

one gets: 

dx 	 (57) 

(v) Due to dragging effect: With similar assumptions 

as before, the dragging force on the element of tube is: 

.01-EDdx 	 (58) 

Expression (58) is equal to expression (44) but is being 

considered with opposite sense. 

Applying the equilibrium condition, the equation 

(0
x
dh + hdGx)T1:D + pTCD( tan Ck- tan)dx +TM( 	pp,.)dx = 0 

is obtained. 
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Introducing the value 

dh = dx(tan GC - tan 0 

the equilibrium equation becomes 

(0dh+hdOx) + pdh + --4±212"7-dh = 0 x tanfj,- tanp 

or, by calling 

a = tan - tan3  
b = 1 + E 

a 

expression (59) can be written as 

hd 0 + (0x 	pb -1- -9  .:■.;r) dh. = a 

(59)  

(60)  

Assuming that the same plastic conditions described in (46) 

are valid, hence 

p = y - 
x 
	 (61) 

Substituting (61) in (60), the differential equation 

hd Ox + E 0x(1-b) + bYt  + ,a] dh = 	 (62) 

is obtained. Integrating (62) with the following boundary 

conditions 

hox • ph 
• hf 	G x 	

rI • k.., f 
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and 11, q, (3, a and 'Y constant, one gets: 

1.1  

I 
t = - p

h 
ra P + — bYt 

	
a + 	rd ) 	(63) 

- 	•  

where 

h, 
r = 

h
o 

In another form: 

G]c  = ph  ra  + (1 + ;)Yt(1 ra) + 51(1 - 

Consequently, the compressive stress created on the 

tube as a result of restraining its flow speed, is 

ra) 
	

(65) 

In a case in which the core is the softer metal, the 

whole situation would be reversed. By this we mean that the 

core would be supporting compressive stresses while the tube 

would be subjected to a tensile stress. In such a case, if it 

happens to be 

P,  
21(1 ra  ) > Yt 
	

(66) 

the tube will fail by tensile stress. Failures of this type 

have been observed in experiments being carried out with copper 

tube and aluminium as a core [85]. It is interesting to point 

out that from expression (65) it follows that an increment in 
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the coefficient of friction would tend to relax the tensile 

force acting on the tube and could prevent failure. This fact 

applies more accurately to real situations when the tube wall 

is very thin. 

IV.5 	kteap_p_LI1.i2ess 

The total pulling stress acting on the composite 

specimen can be calculated through the expression 

T = Oc  A + Ot  A fc 	ft 

where 0f 
and 0f 

are given by expressions (51) and (64) 

respectively. 

Therefore, the mean pulling stress will be given by 

T__ 0cy cit ,y 0 = A
C
+A

t 
fc ft 

(67) 

Substituting expressions (51) and (64) in equation (67), the 

equation 
P- 

a = -pn  (Ye  + Ytra  ) + YeYc  In Re  +yt(1 + 1?1) (i ra ) 
11 Yt 	

ye 
+ q-ar 7( 1 - ra) 	in Re] 	(68) tanIj 

is obtained. 

Conditions of uniform deformation require that both 

metals, core and tube, must deform under the same extrusion 
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ratio. This condition implies that the apex of the conical 

surface of the core must coincide with the apex of the conical 

surface of the die (see Appendix A). This fact has been 

confirmed by specimens subjected to different extrusion ratios, 

as described in Appendix A. 

Under the above circumstances it is possible to 

express 

= R--2  

and also a = (1 - fy)tan C 

Finally, equation (68) can be written as 

P,  

G
P 
 = -phctR 

2a
)

c
Yc  In + "Y (1 + 	71-(1 - 

t . 

+ qa[T. R 
2a
) - tana 

ln R 
-1  
! (69) 

IV.6 	Normal pressure at the interface 

The normal pressure acting on the core can be calc-

ulated from equation (69). That is 

p 	x 

From (47) we get 

0 = - p
h 

+ nY
c In (D'`)2 

 

Dc  
(70) 

De.  being a generical value for the diameter of the core. 

Substituting equation (70) into (46), expression 
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D.  
c 	- 

Ye 	In (92] 	(71) P  = Ph 

is obtained. This expression describes the distribution of 

normal pressure along the tube-core interface in terms of the 

diameter of the core. 

I11.7 Conclusions 

   

Once materials, conditions of lubrication and extrus-

ion ratio are given, equation (69) can be written as 

G= 	M  Ph N 
	

(72) 

where _ 
14 	Yc 	t R La 	P- 

	(73.0 

 N = )/c.Ye  In R Yt(1 + L)Yt(1 	2a R 	) + 

Y 471(1  R  2a)  
tan 1n 

 

(73.b) 

 

The graphical representation of equation (72) in a 

O
p
-p

h 
plot is a straight line, where M is the slope and N 

represents the calculated value for the free extrusion pressure. 

From the experimental lines it is possible to deter-

mine the values of 11. and q. 

If S is the slope of the experimental line, from 

equation (73.a) the expression for 



  

s  -Y 
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1 

(74)  

is obtained. 

 

In R 

From equation (73.b) and by using  the experimental 

value of the free extrusion pressure 
Nexp, 

 the value of q  is 

obtained: 

7" 
N 	yc Yc  In R - "it 
	

, 
(1 4-2)Yt(1 - R --) 

Yt —  
1.()(—(1 - R 	) 	

CYc- In R) 
tan, .  

Experiments were conducted with copper tube and 

stainless steel core and with stainless steel tube and copper 

core. In all cases the resultant drawing  force and the hydro-

static pressure were measured. 

Fig. 17 shows the values corresponding  to experiments 

carried out with copper tube and stainless steel core. It 

contains the drawing  stress--hydrostatic pressure plot for 

different extrusion ratios. The experimental lines are shown 

together with the theoretical ones. Fig. 18 shows the 

theoretical and experimental lines corresponding  to the stain-

less steel tube-copper core experiments. Figs. 19 and 20 show 

lines corresponding  to the extrusion of copper and stainless 

steel as single metals. 

The values used throughout the calculations of 

equation (69) corresponding  to Fig. 18 lines are: 

q (75)  



Y
c = 460 MN/m

2 

Y
t 

= 1150 NN/m
2 

y
c 

= y
t 

= 0.5 

Values for Wwere also deduced from experimental lines. 

It follows from the analysis of Figs. 17 and 18 and 

other reported information E.31], D34] that the model predicts 

qualitatively the distinctive characteristics of the process 

of coextrusion. 

Figs. 17 and 18 also show that values for the lines 

0 - p, calculated by means of equation (69) are lower than 

the experimental ones. This can be due, among other simplif-

icative factors, to the hypothesis of homogeneous deformation 

the inattention paid to the tendency in the materials of work 

hardening and to redundant work of deformation. 

These assumptions constitute an oversimplification 

of the process and could lead to the low values predicted. 

Some of these hypotheses will be improved in further sections. 
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FIGUREiP . Theoretical and experimental 
results for --;.steel tube—copper core 
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V. 	UPPER BOUND SOLUTION FOR THE COEXTRUSION 
OF WO DIFFERENT METALS 

[79] 

V.1 	Introduction  

The limit theorems provide a mathematical formulation 

for obtaining bounds to the load required to deform a continuum 

solid body. These theorems can be deduced from general 

extremum principles based on energy considerations. A rigorous 

analysis of this theory can be seen in several books F86], E8 

basically concerning a rigid plastic material model. 

The upper hound theorem is one of these theorems and 

constitutes a powerful mathematical tool to establish upper 

limits for the state of stress necessary to make a solid 

deform according to some prescribed kinematically admissible 

velocity pattern. 

In this approach, equilibrium conditions are allowed 

to go unsatisfied and the main concern is to find a kinematically 

admissible velocity field. The assumptions for such a field 

require satisfying the incompressibility condition (equation 

16) throughout the volume and boundary conditions that allow 

velocity discontinuities tangential to the boundary but no 

discontinuities normal to it. 

The upper bound theorem states [H]: 

"If a kinematically admissible velocity field exists, the load 
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required to be applied to cause the velocity field to operate, 

constitutes an upper bound solution". 

The analytical expression of the theorem fora solid 

obeying von Mises yield criterion and characterised as an 

isotropic rigid-perfectly plastic material is [62:]: 

2 

J*  = 	Y ,1[11  0? LI? 	d V +  T 	T .v .dS 
V 2 ij 1j I  S 3 t  

t 
 

(76) 

where V is the deformed volume, SF  represents surfaces of 

discontinuities within V, and St  is the portion of the outer 

surface where external stresses T. are applied. According to 

 are the sign convention, in equation (76) the 
3 	

considered 

as tractions. 

O.3  is the strain rate field derived from the velocity 1 

field v.. If v. is kinematically admissible so is Et 
n .. 

3 	J 	 13 

Equation (76) expresses an upper bound on the power 

J in terms of three components: 

Internal power of deformation, expressed as 

2 2 

Y Jr [L113
?.g11.1] dV 

173 V 

i) 

(77) 

(ii) 	Shear power losses computed along surfaces of 

velocity discontinuities S 

Sr 
 e Avidsr, 	 (78) 
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(iii) 	Power supplied by predetermined body tractions 

- f T.v.dS 3 	t 
S
t 

Throughout the calculations the deformation process 

is treated as isothermal f-47]. 

V.2 	Velocity field 

In the process under consideration it is assumed that 

the metal deforms according to Avitur's velocity field [62], 

E22.] D96.]. This field involves radial flow in a 

spherically bounded plastic zone, where the radial velocity 

depends on the angular position. A geometric description of 

the field is shown in Fig. 21. 

; 2 

 

In spherical coordinates (R,q), 9) the components of 

the velocity vector are: 

,2 cos9 
V = 	- v 	---- 
R 	f f 

R
9 

ve 	= 

(79.a) 

(79.b) 

The derivation of equation (79.a) is based on volume constancy. 
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The corresponding components of the strain rate 

tensorial field are obtained by means of equations (25.b), as 

follows: 

ERR = -2L09 = -2E = 2v R2  4kp 	f f 
R
3 

2 sing 
= 	R 

R9 	2  f f 
R
3 

= LP g-) R = o  

(80) 

V.3 	Deformation of the composite specimen  

It is assumed that the composite specimen deforms 

following the geometry illustrated in Fig. 22: 

    

    

 

ZOle 

 

    

The specimen is divided into three zones in which 

the velocity field is continuous. In zones I and III the 

velocity is uniform and has an axial component only. Velocity 

in zone I is v. and in zone III is v
f. 

In zone II. the 
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velocity components are described by equations (79.a) and 

(79.b). 

In zone 1 deformation has not yet begun. Deformation 

starts when the incoming specimen crosses the boundary surface 

F-12  and ends at surface 	In the assumed Avitzur's model these 

surfaces are spherical with radii Ri  and Rf  respectively 

and centred at the apex 0 of the cone of the die. 

The conical surface 	is the core-tube interface 

where the dragging stress, as described in Section IV.2, is 

developed. Again, as a consequence of this interaction both 

metals will move together without sliding. As has already been 

pointed out, under this condition both metals deform with the 

same extrusion ratio. 

Across boundaries P1 	2 and n there exist velocity 

discontinuities parallel to these surfaces: 

Qv = of sinA 
	

along F;'. 	(81) 

and 
	

Qv = v. sinO 
	

along r; 
	

(82) 

Since the die is at rest, discontinuity along the 

conical surface n is 
3 

2 cosa, 
Qv = v 

f r 
R
2 

(83) 

All powers involved in the deformation process of 

the composite specimen are next analysed separately for core 

and tube. 
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V.4 	Power involved in the deformation of the core 

In relation to the deformation process of the core, 

two different kinds of power are identified: dissipative and 

active powers. 

The sources of dissipation or consumption of energy 

for the core are: 

(1) 
	

Internal power of deformation of the core, and 

(ii) 	Dissipation on the surfaces of discontinuities, 

while the driving or active powers are due to: 

(1) 	The drawing force, 

(ii) The hydrostatic pressure of extrusion, and 

(iii) The dragging force supplied by the tube. 

Each one of these components is considered separately 

in the following sections. A description of the acting stresses 

is shown in Fig. 23. 

FIGURE 23 
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V.4.1 	Internal power of deformation 

The internal power of deformation involved in the 

deformation of the core is given by the expression 

= Yc 
 De.e.  dV 1 13 13_, 

9 

15 V
c 

(84) 

As the strain rate components are given by equation 

(80), the following expression is obtained (see Appendix B): 

1.1  4.=11X
c(rc)2  of  F(13) in R

c 
	(85) 

V.4.2 	Dissipation on the surfaces of discontinuities 

r- 
Surfaces r1 and I 2  are surfaces where discontinuities 

exist in the velocity field. Such discontinuities parallel to 

. the surfaces have values 

Av
is 
= o

f 
sin 9 
	

along ri  

Av2  = V. sin 9 
	along  r2  

Due to this difference in velocity at both sides of 

P1 and [-21 ,'some energy is dissipated on these surfaces. Its 

total value per unit time is 

W = jenv1
dS
1 
+ Si" AV

2
dS
2 
	(86) 

2 

where 

dS1 = 2 TIRf sin© de 
	

(87) 
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and 

sine 2 TCRi  s ne d9 

For a metal with the properties assumed in this 

section T will never exceed the shear yield stress, that is 

y 

Consequently the maximum value for expression (86) is 

2 WW -  4rEvf(rf) 
2 4,c 

 
6 

or, after integration 

2 
sin de 

 14 	2 n 	c 2 c 	(:)] cot,j  7  = 	v,(rf  ) 
ti/3 sin

2p 
(87) 

• V.4.3 	p2E2LIe12222ed br the drawinc,  force 

In the process of hydrostatic extrusion-drawing, 

the driving stress is the resultant of billet augmentation 

due to the hydrostatic pressure, and product augmentation due 

to a pulling or drawing force. 

The power developed by this drawing force is 

D = - jr T.v.dS f 

f 

where Sf is the cross sectional area of the core at the exit 

of the die and T. is in this case the drawing stress distrib-

ution across that section. 
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Since the drawing force is applied at the end of a 

long tag, it produces in the metal, at the exit of the die, a 

tensile stress 0f 
that can be reasonably assumed as being 

uniform throughout the cross section. Consequently, the 

following expression is obtained: 

WD  
_c 	 c 

= avf(rf)
2  Of  (88) 

V.4.4 	Power developed by the hydrostatic oressure 

In a similar form, the power developed by the billet 

augmentation force, in this case supplied by the hydrostatic 

pressure of extrusion, is given by the expression: 

I 
W
e 

= - J T.v.dS. 
S. J J 
1 

where S. is the cross sectional area of the core before being 

deformed and T. the stress distribution on that section. 
J 

Since the hydrostatic pressure ph  acts at all points 

of S
i' 

under this condition and after integration, the 

following expression is obtained: 

W
e 

= Tcvf(r)2ph 	 (89) 

V.4.5 	Power  deyeloedl n_force 

It is assumed that the dragging effect has the same 

characteristics as described in Section IV.2. The dragging 



force is gei!era.ted by a system of tangential stresses 
1 

with 

axial symmetric properties. The power developed by such a 

system during the deformation process is 

wd = jTV. dr. 
 1 4 

4 

where dr14 is an element of area of the conical surface c, vj 

is the velocity corresponding to a generical point at the 

interfaceandT.is the stress distribution on that surface. 

This component is considered as an active power and 

it is supplied by the tube on the assumption that the tube is 

the softer metal; otherwise the situation must be reversed. 

The stress T. is expressed in terms of the dragging 

• function 'D'as: 

Tj 	1°;  

and is assumed to be constant along the n4 surface. 

The velocity of a generical point at the interface is 

 

v. =-- R2 cos - of f R2 

or, as 

R 
sing in  

the following expression is obtained: 

(90) 
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V. = v (rc)
2  cosy  

f f' 
r
2 (91)  

An infinitesimal element of the conical surface is 

d 1-1
4 

= 2 TEr dr 
sinc3 

(92)  

Substituting expressions (91) and (92) into (90), it 

gives: 
c r. 

r

i 	
, \2 cose 2Ur , 

W . 1 OTEV kr ) — --7-- or d 0 	f f r
2 sinI3 

r  

and, after integration 

Wd = q-artvff  (rc)2  cot-31n R
c 
	(93) 

In case of the tube being the harder metal, q 

and consequently this power must be considered as dissipative. 

V.4.6 Balance of power in the core 

Substituting expressions (85), (87), (88), (89) and 

(93)  into the general expression of the upper bound theorem 

(1), it gives: 

Cif ph+ q-a 	ch cot n Rc 2 = — Yc 	- cot R) + Y
c
F(P)ln R

c /3- 	sin `0 

and solving for the driving stress 

Cief +Ph - - vc 2  ( P  cot i3)+ Fo) In R
c
l+ 	R

c 
V3 V3 sin

20 
(94)  
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From equation (94) it follows that the additional 

stress acting on the core and generated by the tube is 

OcotOln Rc 	 (95) 

and it is directly comparable to a tensile stress. 

In terms of the volume fraction N , equation (95) 

can be written as: 

cot aln R
c 	

(96) 

Equation (96) is the same as expression (53) obtained 

by means of the slab method approach. 

V.5 	Power involved in the deformation of the tube 

Following similar definitions as in the analysis of 

the core, the sources of dissipation of energy in the deformation 

process of the tube are: 

(1) 	Internal power of deformation of the tube. 

(ii) Dissipation on discontinuity surfaces. 

(iii) Dragging of the core. 

(iv) Friction at the die-tube interface. 

The active powers in this case are due to: 

(1) 	The drawing force. 

(ii) 	The hydrostatic pressure of extrusion. 
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These points are considered next in an individual 

way. A description of the acting stresses is shown in Fig. 24. 

V.5.1 	Internal power of deformation 

The power involved in the internal deformation of 

the portion of tube limited by the spherical surfaces r
1 

and 

r2  can be calculated as the difference between the powers 

required to deform the whole conical volume of semi-angle a 

and the conical volume of semi-angle p. In analytical terms 

this means 

2 yt 	
(1/20.j.NV - 	• - 	(97) 
t  

1 	13 13 	0 13  : EP.);IV 
V
c 	

ij i3 

Substituting the values of the strain rate field 

components into equation (97) and integrating as has already 

been described (see Appendix B), the following expression is 

obtained: 

7  e  
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W. = TCY
t  
vf 

(r
f
)2 

 
F(0)1nRt -(rf

)
2 
 F(B)1nR (98) 

For the die angles and volume fractions used through-

out the experiments carried out, the maximum error involved in 

assuming F(0) = F(0) is less than 0.1%. 

As has already been pointed out under the conditions 

being considered, both materials deform with the same extrusion 

ratio, that is 

R
c 

R
t  

Consequently, expression (98) becomes 

Wi  = "It'A.tF(a)vff 	t (rt)
2 
[..1 - (—

rf
)
21

ln R 

or, in another form 

Wi 
	

t 
= TCY

t
F(0)vf(rf)

2 	R  In (99)  

since 

rc 

1 	
(4)2 	1  yc  = 

rf 
*Yt 

V.5.2 
	

Dissipation on the surface discontinuities 

In this case the surfaces containing the discontin-

uities are the part of ri and P2  limited by the conical 
surfaces P and P as shown in Fig. 25. 

3 4 

r
f 
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The general expression for the dissipation of power is 

w = "If 8v dA 

Assuming as before 

Yt  

n 

and since for ri  

Qv = o
f 

sine 

2 
and 	dA = 2 TIll f sine de 

the above integral rewrites to 

Y
t 

f 

 
sine)(2TIRf

sinede) 

After integration, 

fv (a - 	- sinacosa + sin cosi31 ILytR2 • 
1-1 	

Vi • 

or alternatively 

Ct 

= 
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TE t t / 2V 
	, SinBCOSe:'  

W = --I 	- 	- 	(100) 
I/5 
	sina- COu_ 	

2 
sin a - 

Similarly for (-2  

-CC tirt,2 WA-12  = 	k_.) V, [ 
Y. B cota+  sin@cosI31 

1 	. 2 sin Ct 	sing sin O. vr5 

 

or 

1;7,, + L.Cytt _ts,2,_ [ 	sineco,e; 
12 	is 	vf 	cotai- 	• ; 

sin a 	sin -a . 

since, from volume constancy: 

  

 

(101) 

  

(4)2vi 	(1.)2vf  

Finally, the total power involving both surfaces is: 

211- tirt) v2 [CC-B 	sinBcosl 	(102) 
f' f 	

2 cota-F 
sin a 	sin2a 

V.5.3 	Power consumed  in dragging the core 

This component has the same value as calculated in 

(93) with the difference that here it acts as a resistance to 

the deformation process and consequently has the opposite sign: 

W
d 
	- Ouvf(rcp2coOln R 

or 

Wd 
tN2 

-ti-alIvf rf) ye  cot (31-n R (103) 



Power disfipatfd by friction at  the tube-die interface 

1. 	2 
= 	g YtTEvf  (rf  ) cot aln R 

3 r 
(108) 
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V.5.4 

The dissipation of power due to 

expressed as 

	

I 	-- W n  = 	nv dS 

13 	[3 

friction can be 

(104) 

The tangential stress I" developed at the tube-die 

interface due to friction can be put in terms of the shear yield 
vt 

stress 	of the tube (assuming the die to be rigid in comparison 

to the tube). That is 

0 C g <1 (105) 

Under the assumption of a rigid die, the discontinuity 

in velocity across r3  is 
tN2  cosec 

6Y = vf  kr,) r 

An element of that surface is 

dS = 211r dr 
sin a 

(106)  

(107)  

Replacing values in equation (104), the following 

expression is obtained after integration: 
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V.5.5 	Active powers  acting on the tube 

Again both components arising from the process of 

product and billet augmentation in the form of a pulling or 

drawing force and a hydrostatic pressure are present. 

The power developed by the drawing force is 

• 
W
D 

= I T.v.dS 
jjt 

St  

where S
t 
is the cross sectional area of the tube at the exit 

of the due, while v. and T. are the velocity and stress distrib-

ution on that surface. 

As before, the drawing stress can be assumed as 

constant with a value of
t
. the veloCity v.• is also constant 

for the whole area. Consequently, the applied power is 

WD  = 1-Cv (r  f) 	Ut f` t-fl  It f 
(109) 

Similarly, the power applied by means of the hydro- 

static pressure of extrusion is 

W
e 

= J T.v.dS. 
S. J J 1  
1 

where S. is the cross sectional area of the tube before beinc,  
1 

deformed,whileT.
3  
and v. are the stress and velocity distrib- 

ution corresponding to that area. 

As the stress T. is in this case the hydrostatic 
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pressureph actingonallpointsofSi andthevelocityv.is 

constant, after integration, the following expression is 

obtained: 

w 	Tzvi  Drit)2 	(rci)2] 
e 

r. 
= nvi(rti)2  [1 	1\1 - t) Ph r. 

and, finally 

t  
We = fcvf (rf )

2 
 Yt ph 

since 

ri  
1 - (--)

2 
 = 1 - c = 

r. 
Yt 	(110) 

V.5.6 	Balance of over in  the tube 

By substituting equations (99), (102), (103), (108), 

(109) and (110) in the general expression of the theorem (76), 

the following expression for the driving stress is obtained: 

9v 	_ cota+  sinBcos.  t  
f + ph  = Y

tF(a)1nR + 
V-3 Yt sina 	sin

2  a 

n vt  
+ crU7-cotp R + -g- -1--cot gin R 	(111) 

It 	VTYL  

In this case, the compressive stress due to the 

dragging of the core is 

or 	•  
e 
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cot in R 
	 ( 11 2) 

Y  t 

Again, in case of the tube being the harder metal, 

q <0 and equation (112) represents a tensile stress. 

V.6 	Mean nulling stress 

The mean pulling stress G can be calculated as 

at ± c op = f t 	f c (113)  

Solving equation (94) for G;, equation (111) for G
t 

and substituting these values into equation (113), the 

following expression is obtained: 

p = Ph 
+ YtF(001nRY

t 
+ 2 

Yt. 
 L  a 

sin`a 
cot C).+ sini3cos I 2 

sin a 

+ -&-Ytcotaln R + YcY [ — (-2-13 	cots) + F(S)1nR1 
c r- 173 	 v3 sin p 

or, with the already used hypothesis 

f(a) 	F((3) 

-Ph L(Y
t 
 Yt +YcYc

)F(a.) + g -cot CC ln R + 

+ 2 tE____Ta 43_ cotOt+ sinc3cos + 
2  YcY 

15 	sin a 	sin2GC 	1/5 c  sin20 

(114)  

If only one metal is being processed, Yt =
c 
= Y, 

Nc = 0 and the well-known Avitzur s expression 
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Qp  = - p
h 

+ •(YF(CO + g Y cota) 1n R + 

+ 2 	- cot a) 
15 sin a 

(115)  

is obtained. 

V.7 	Theoretical and experimental results 

The driving stress can be obtained from equation (114) 

and presented in a non-dimensional form by relating it to the 

yield stress of the core: 

a +  
- [(Ca ± )F(co+ g (-1-cot 	2 

c 	2 
In R + 	( P 	cot 13) 

Y
c 	t c vr.a- 	/5 	sin )3 

+ —w 	.1 	
tu . + 

	

2 1 U — co.EL 	sincos 
(116)  

17 	sin
2a 	sin

2ia -J 

Expression (116) was computed for different values of 

the extrusion ratic and the W relation. The results are shown 

in Fig. 26 in a semi-logarithmic scale together with the 

experimental ones. 

The analysis of Fig. 26 shows that there is a reason-

able agreement between the experimental and the predicted values. 

This problem has been solved independently by Mellor 

et al. by using a similar tangential stress system to describe 

the dragging effect. Their approach represents the dragging 

stress as: 



- 1.23 - 

Z= mYsoft 	0 	n c 1 

and considerations about the influence of Ysoft/Yhard 
are made 

on the basis of experimental results. 

The form of expression I = q used in the present 

work seems to have more flexibility, not only because it 

includes the relation CO into the theoretical formulation but 

also because it allows the use of different dragging functions 

. This has the advantage of making room for non-uniform and 

non-s3,ffiffietric distributions of I along the interface. 

It seems apparent that T must be influenced by the 

pressure distribution along the die interface and expressions 

like (71) or results as described in E9111 should be taken into 

account in a future work. 
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VI. 	THE METHOD OF WEIGHTED RESIDUALS AND 
EGONOMIZATION IN SEVERAL VARIABLES 

VI.1 	Introduction  

The Method of Weighted Variables is an engineer's 

tool for finding approximate solutions to the equations of 

change of distributed systems. Experience and intuition can be 

distilled into a reasonable and sometimes quite accurate first 

guess, from which it is possible to proceed to qiir-rpqqiNrply 

improved approximations. 

Briefly, the procedure consists in assuming an app-

roximate solution in the form of a linear combination of known 

trial functions with unknown coefficients. By substituting the 

proposed solution in the governing equation, a residual function 

is obtained, which is then required to be orthogonal to a 

selected set of "weighting" functions. 

The analytical form of the approximate solution is 

often more useful than solutions generated by numerical integ-

ration and it usually takes less computation time to generate 

[501 [92] • 

Approximate solutions of differential equations may 

be required to satisfy either all or only part of the conditions 

of the problem. For example, it may be necessary to satisfy 

both the differential equation and the boundary condition 
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approximately; in other cases the differential equation may 

need to be satisfied only at a few positions, rather than at 

each point. 

The approximate solution is expanded in a set of 

known functions with arbitrary parameters. In order to determine 

these parameters by the method of weighted residuals, the 

differential equation and boundary condition are directly used. 

Two strategies may be followed: 

a) A first approximation may be sufficient; its validity 

is assessed using our intuition and experience. 

b) A sequence of approximations can be calculated to 

converge to the solution. In this case, calculations must be 

put in a form amenable to a computer E511 

In all approximate methods where we focus our 

attention on achieving a small equation residual, we make the 

tacit assumption that a small error in satisfying the equation 

is reflected by only a small deviation of the approximate 

solution from the true solution. Systems for which this assum-

ption is justified are often said to be "well behaved" or "well 

conditioned" E48:]. 

VI.2 	lDescription L the method E 5 1] , D2] 

Let us consider the differential equation for u(X) 
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N(u) = 0 
	

X G V 	(116) 

where N(u) denotes a generical differential operator involving 

spatial derivatives of u, and V is a three-dimensional domain 

with boundary B. The boundary condition may have the form 

u(X) = f B(X) 
	

X G B 	(117) 

Assume a trial solution of the form: 

u*(x) = uB(X) Ai  Ti  (x) 	 (118) 

i=1 

where the approximating functions, LPi_  are prescribed so that 

they satisfy the boundary condition 

uB(X) = fB(X) and VX) = 0 	X G B (119) 

and A. are the parameters to be determined. This means that 

u" satisfies the boundary conditions for. any set of values 

given to the so far unknown parameters. 

The trial solution does not necessarily need to be 

linear unThe A. parameters, nevertheless this form is usually 

chosen for simplicity. 

By substituting expression (119) in the differential 

equation (116), we obtain: 

N(u ) = R(u ) 	 (120) 
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R(u ) being the residual function of the differential equation 

and constituting a measure of the extent to which the trial 

solution satisfies the equation. Finally, the error R will be 

minimized by following certain criteria and this operation will 

produce the A. parameters. 

According to the requirements of a specific problem, 

the q). can be prescribed as to fit in one of the following cases: 

Satisfies 	Error function 
exactly 	corresponds to 

Satisfies 
approximately  

Diff. equation 

Diff. equation 
& Boundary con 

Boundary cond. 

Diff. equation 
& Boundary cond. 

Boundary cond. 	Diff. equation 

Diff. equation 
d, 	& Boundary cond 

Diff. equation Boundary cond. 

Every case corresponds to a different problem and 

a particular analysis of each needs to be done [931 , [49] . 

VI.3 
	

Criteria for minimi ation of the error 

.There are several approaches to the minimization of 

the total error R that we consider next: 

(i) 
	

Let us express the total error in the form: 

R = R. 
1 (121) 

1=1 

which we want to make zero. In this expression, "i" is a 



Expression (123) may be written as 

R.
2  
 = 	R. x R. = 0 (125) 
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generical nodal point corresponding to a spatial mesh which 

represents a discretization of the domain V, and Ri  the error 

that the assumed solution produces in the "i" point. This 

criterion may lead to false conclusions because of the possibility 

R. A- R. = 0 
3 

and, consequently, its use is not convenient. 

(ii) Let us express the total error in the form: 

, R = 	R.) = 0 	 (122) 

1=1 

which expresses the total error as a function of the local 

errors. This form is a generalization of the case (i) and F 

may be any suitable function. 

 

Example: 

R. = 0 ' 	(123) 

 

1=1 

  

that, in fact is also 
n 

 

    

1R.1i= 0 	 (124) 
1=1 

(iii) Other forms:- 

1=1 	1= 
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and may be considered a particular case of the more general 

expression: 
TI 

Ri  x (something else) = 0 	(126) 

1=1 

Example: If we choose 
11 

R. x (sign of the error) = 0 

i=1 
the expression (124) is obtained. 

A general form for the expression (126) is 

W(Xi)R(Xi) = 0 
	

(127) 

i=1 

or, in the case of a continuum domain V: 

f W(X)R(X)dX = 0 	 (128) 
V 

Equation (128) is the analytical expression of the Method of 

the Weighted Residuals which, in general terms, means that the 

weighted averages of the residuals must vanish. The W(X) are 

called "weighting functions". 

In a more abstract form, equation (128) may be 

regarded as 

j R(X) dl. = 0 	 (129) 
V 

where 	W(X)dX = di-L(X). 

Expression (129) is a Stieltjes's integral, where 
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the differential dli"weighs" at any point the function which 

is to be integrated. 

VI.4 	Particular forms of  the method of weic,hted residuals 

The general process which is analytically described 

in equation (128), contains many well-known approximation 

methods (e.g. the methods of collocation, subdomain, Galerkin, 

least squares, etc.) as special cases corresponding to 

particular methods for choosing the weighting functions. 

Let us see an illustrative example of the most common 

forms of the method EOM We propose to solve the differential 

equation: 

t> 0 	 (130) 

with the boundary condition 

x = 1 	t =0 	 (131) 

in the interval 0 -.._ t < 1. 

The first and most important step in the application 

of the method is to adopt a trial family of approximate 

solutions. An analysis of the different criteria for the 

selection of trial families will be considered further on. For 

this particular case we choose 

x = 1 + A
l
t + A

2
t
2 	 (132) 

dx 
dt 
	-x 
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where A
l 
and A

2 
are the free parameters to be determined. 

Different combinations of values for Al  and A7  

represent different possible approximations. This trial 

solution (132) satisfies the boundary condition (131) for any 

value of the parameters. 

By substituting function (132) in the differential 

equation (130) we obtain the expression of the residual R(t) 

as follows: 

R(t ) = ddx, + x = 1 + (l+t)Ai  + (2t + t2)A2 	(133) 

The next step requires the adoption of a criterion 

for selecting the best approximation within the family, 

Several different criteria have been suggested. 

(1) 
	

Collocation 

In this criterion we choose as many locations within 

the interval as there are parameters to be determined. The 

assumption here is that the residual vanishes at these locations. 

Having in this case two free parameters, we choose two points 

within the interval, e.g. 3 and 3. Consequently, we obtain 

R(3) = 1 + 3Al  + 4A2  = 0 

R(?5) = 1 + A1 
	9 
+ 	2 = 0 

When solving for Al  and A
2  we get: 
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Al 
	

- 0.9310 

A
2 	0.3103 

and hence, from expression (132), the corresponding approximate 

solution 

x = 1 - 0.9310t+ 0.3103t 2 
	

(134) 

(ii) 	Subdomain method 

The desired interval is divided into as many sub-

domains as there are free parameters. Then they are adjusted 

until the average value of the residual in each subdomain is 

zero. 

For this example, let us consider the two subdomains 

as: 0:,c; t‹;k, and 1/2 C t <1, and consequently: 

r 2  
J R dt = 1/2 + 

5  
--A1 

24  
+ —

7
A
2 
 =0 8  

0 
1 

7 	25 f 	
8 

% Rdt = + --A1 
24  

+ —A
2 
 = 0 

2   
2 

Solving for A
l 
and A

2 
and substituting into expression (132) 

we finally obtain: 

x = 1 - 0.947t+ 0.3158t2 
	

(135) 

Galerkin's method 

This criterion requires that the weighted averages 

of the residual over the desired interval must vanish. The 
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weighting functions are taken to be the same functions of t 

as were used in constructing the trial family. In this case, 

these functions are t and t
2 
and, therefore, we establish that: 

1 

A 	11-  A = 0 f t R dt = L 5 "i 12 
0 

1 
9 A  t2  R dt = 

d 	12 
+ -2- 

A1 2  75  + - 1-12  = 0  

Solving this system  for Al  and  A. leads to: 

x = 1 - 0.9143 t + 0.2857 t2 	(136) 

iv) 	Method of least squares 

Here the free parameters are adjusted in such a way 

as to minimize the integral of the square of the residual, 

over the desired interval. Thus we establish: 

1 	1 

- a 	R2 dt = 	R 
8R 

 dt 	+ 7A + 2A = 0 
2 aA o 	o 	1 	

3 1 	4 

1 	1 
a R

2 
dt = 	

,0  aR 
38 aA2 dt =

4 
 + 9  —A + 	= 0 2  aA 

d 41 z 2 0 	0 

from which we obtain: 

x = 1 - 0.9427 t + 0.3110t2 
	

(137) 

All four criteria can be considered as special 

cases of the single general criterion (128) which states that 
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the weighted averages of the residual must vanish. In the 

case of collocation, the weighting function is the "Dirac 

delta": 5(: -a), "a" being the chosen location. Similarly, 

in the subdomain method, the weighting function is taken as one 

in the subdomain and zero outside. The cases corresponding to 

the Galerkin and least squares methods are more obviously 

particular forms of equation (128). 

The error distribution corresponding to the different 

methods, over the 0- 1 interval is shown in Fig. 27. As a 

matter of comparison it is also shown the truncation error of 

the first three terms of the Taylor's series: 

x = 1 - t + 1/2 t2  

corresponding to the true solution: x = e
-t
. 

FIGURE 27 
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Note that ti 2 least squares method provides the 

most uniform distribution of the error while collocation gives 

the worse. Nevertheless, all of them are better approximations 

than Taylor's series, except near the zero end of the interval, 

The selection of the weighting functions for a given 

set of trial functions and a particular problem is still a 

matter of discussion :941. Several authors considered this 

question from the standpoint of the economy in computing time-

and ease of application and presented numerical examples 

showing relative accuracy E48], :93],  E95] E96], [97]. 

VI.5 	The least squares method 

As was pointed out in section VI.4.(iv), the integral 

of the square of the residual is minimized in respect to the 

undetermined parameters A
k' 

to provide the r simultaneous 

equations required: 

a ,I R2 	= 1(1)r 	(138) 
dA 	R2dX  = 0 
k V 

In numerical calculations it is frequent to assume 

the domain V represented by a discrete mesh and, accordingly, 

to minimize the error at the nodal points. Therefore, 

expression (138) is substituted by: 

dAk
a 
 z>  R:  = 0 	k = 1(1)r 	(139) 

i=1 
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n being the number of nodal points in the adopted mesh, while 

"i" represents a generical one. 

This procedure involves, in fact, the idea of the 

collocation method. 

Since a polynomial is probably the easiest form for 

computation, it is frequent to adopt, as trial solutions, 

expressions of the form: 

u*  (X) = 1113(x) A.X1  
1 

(140) 
i=1 

Being the differential operator N(u) linear, 

expression (139) leads to a set of simultaneous linear equations 

in the free parameters A.. 

VI.6 	The trial solution  

The most important and difficult stage in all the 

methods described here is the selection of the trial function. 

As the purpose of these methods is merely to choose the "best" 

approximation of a given family, good results cannot be obtained 

if good approximations are not included within the family. 

Theoretically, if enough independent i(X) are 

included in (118), good approximations must be contained within 

the family; however, the principal attraction of these methods 

lies in the possibility of obtaining good approximations with a 

limited number of adjustable parameters [48]. 
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In low-order approximations the choice may influence 

the results, but higher approximations are less affected since 

numerical convergence is desired. 

Tha trial functions must be complete and linearly 

independent. A set of functions 	1) 	
complete if any 

function of a given class can be expanded in terms of the set: 

f(x) = 	A. 2.(X) 

Consequently, expressions of the form 	A.q).(x) are inherently 

capable of representing the exact solution, provided enough 

terms are used. The polynomials are a complete set and, 

therefore, any continuous function can be expanded in terms of 

them. 

The property of completeness of a set of functions 

ensures that, if sufficient number of terms are used, we can 

represent the exact solution. Otherwise, the successive approx-

imations might converge to something which is not the solution 

D1 . 

A common expression for a trial function of polynomial 

form is: 

P = P(X) = 	A. X 

1=1 
With a boundary condition such that 
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P = f
B 

when X = 0, 

the estimate may be written as 

 

 

n 

  

P = f
B 
+ 	A. Xi  

i=1 

(141) 

Other functions such as orthogonal polynomials and 

transcendental functions have also been used in setting up the 

trial solution [98],[99]. In general, this selection may 

involve difficulties in the computing process, but it may be 

suitable for some particular problems. 

The selection of approximating functions is yet 

somewhat dependent on the user's intuition and experience, and 

this is often regarded as a major disadvantage of the methods of 

weighted residuals. Nevertheless, some guidelines of general 

application may be outlined: 

(a) The form of the estimate must be kept as simple and 

general as possible, trying to avoid the use of too rigid 

restrictions, even if a minor characteristic of the solution 

has to be lost. 

(b) Consideration should be given to symmetries or any 

other special feature of the solution which may be known in 

advance from the kind of problem to be solved. This property 

must be kept independent of the free parameters. 



- 140 - 

(c) The highest power in the coordinates must give no 

preference for any one coordinate direction. The initial 

estimate should not predetermine a strong tendency in the 

solution. 

(d) The trial solution must satisfy the largest possible 

number of boundary conditions, independently of the values 

taken by the set of free parameters. 

VI.7 	Sellinguk_error functions  

As was pointed out, it is advisable to select the 

trial solution in such a way as to satisfy all the boundary 

conditions, independently of the free parameters A.. 

Unfortunately, this is not always possible, or at 

least, not for all the prescribed boundary conditions. Frequ-

ently a boundary condition may constitute too strong a restriction 

for the more suitable trial solution for. the governing equation. 

In other cases, the selected estimate does not simply leave 

room as to include some particular condition. In these circum-

stances, it is more convenient to have separate error functions 

for the boundary conditions. 

Expression (128) is substituted by a linear combin-

ation of the integrals: 

a irW(X) Rv(X) dX + b W(X) RB(X) dX = 0 	(142) 
V 
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where a and b are constants, usually called "weighting factors", 

R
v 

is the error functions corresponding to the governing equation 

and R
B 
the error functions corresponding to the boundary condit- 

. ion. The integral associated with the boundary condition is 

calculated only at boundary points. 

If the least squares method is used, one obtains 

a I 	 a ( 2 
a R2(X,idX + 	bR (X)dX = 0 	k = 1(1)r 	(143) 

dAk v  v 	aA  
k B 

or, in another form: 

, 
a R

2
(X) + b 11"(X)1dX = 0 	k = 1(1)r 	(144) c?Ak 

V — v  

where R
B 
is defined in such a way that it takes the proper 

value at boundary points and zero on all others. 

Referred to a discrete domain or a representative 

mesh, equation (29) becomes: 

[a R2.(X) +bR2.(X)1 = 0 	k = 1(1)r 	(145) aAk . 
1=1 

If linear forms in the unknown parameters Ak, have 

been used for the trial solutions of both, governing equation 

and boundary condition, expression (145) represents a linear 

system of equations that may be solved by means of any of the 

standard methods. Otherwise, a non-linear system would be 

obtained which in general is more difficult to solve by computer 
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methods. This consideration is particularly important if the 

method is going to be used on an iteration process, as is 

frequently the case when solving non-linear equations. 

In general, the region over which the boundary error 

function is integrated is smaller than the total domain V, 

where the error function associated with the governing equation 

is integrated. Consequently, the errors in the differential 

equation will "weigh" more heavily in the minimization of the 

total error and it can be expected that the boundary conditions 

will be approximated with much less accuracy. A criterion may 

be derived from these considerations in order to give values 

for the constants a and b. This may be given by the ratio of 

the number of mesh points in the domain V to that of the boundary. 

Expression (145) may be written as 

as \J> R2. = 0 	k = 1(1)r (146) Tl 
1=1 

where 

N  2 9 

i 
R
2
Ti = R- 	

N
2 

.(X) 	R
B 
 (X) 

and N
1 
and N

2 
are the number of nodal points on V and the 

boundary region B respectively [54.3. 

It is important to remark that one must be careful 

to choose a closer net when increasing the number of free 
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parameters in order to prevent waviness in the solution. 

Together with the use of a finer net and a large 

number of parameters, a better accuracy is obtained, but the 

computing time and the rounding error increases very rapidly, 

so a compromise situation must be found between these factors. 

VI.8 

VT.8.1 

Economization of polynomial solutions 

Introduction 

 

   

The use of estimates of a polynomial form as 

11 

P( x) = A. X 
1 

X G V 

i=1 
has several advantages in the process of computation and it is 

preferably used in relation with the method of weighted residuals. 

There is a frequent inconvenience in the use of this type of 

estimates: the eventually large number of terms "n" required 

in order to keep the maximum error of the solution, bounded by 

a pre-fixed value E. This is particularly important if the 

solution is then going to be computed at a large amount of 

nodal points. 

In general the number of terms required to get the 

total error bounded by a pre-fixed value is not known in 

advance. Consequently, "n" will be increased until an admissible 

level of accuracy is attained and then the polynomial solution 

is economized in order to reduce the computing time and to 
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avoid the instabilities arising from operating with an 

excessively laborious arithmetic [100. These problems involve 

the use of high powers and too many multiplications, which 

increase the rounding errors considerably. 

The aim of the economization process is to reduce the 

complexity in the calculation of P while allowing for a small 

permissible error of amplitude E to be distributed in the 

domain V. 

The method was originally proposed by C. Lanczos, 

ENE and E.10?], for the case of one variable, where economization 
was achieved when the degree of a given polynomial could be 

reduced in at least one unit. 

In the following we extend Lanczos's method for 

economization to the case of more than one variable and find a 

second possible criterion which we call "carving" or vectorial 

economization. The purpose of carving is to induce as many 

zeros as possible in the lowest or extreme right lines of the 

coefficients matrix A, associated with P (see section VI.8.2). 

Then we discuss, for the case of two variables, sufficient 

conditions for the economization process to be feasible, in 

terms of the coefficients of the original polynomial. These 

results are condensed in simple rules for the case of two 

variables. The construction of the economized polynomial and 

the possibility of bloc.k economization are also discussed. 
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Since many polynomials used in the approximate 

solution of partial differential equations or in optimization 

problems come from the truncation of convergent power series 

expansions in several variables, where the coefficients decrease 

rapidly, the method describing the existence of a E--economized 

expression of a given polynomial P(x,y) is applicable to a wide 

variety of problems. 

VI.8.2 	Economization in several variables 

Economization is essentially based on the idea of 

representing the original polynomial in terms of a polynomial 

basis which emphasizes the contribution of the first components. 

The shifted Chebyshev polynomials of the first kind: 

T
n
(x) = cos ne, 

20  
x = cos 

2 
0 xC 1 

are such that 

[j 
x
n 

= 2 x 4
-n 
 T(x) + 

(2n)T„ 
 (x) + 	+(

2n 
 )T (x) (147) 

n 
* 

1 n-1 	n 0 

and clearly constitute a basis with such a property. 

In our approach we consider a given finite hypercubic 

domain V in which the economization is required, and we represent 

in it each variable of P = P (x,y,...) in terms of Chebyshev 

polynomials defined in suitable intervals. This gives a poly- 

Ch in 
	

Ch 
nomial P 	n the new basis. Then we define Ps  such that 
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1p peChi < 

in V. PE
Ch  
 is called the E-economized form of P. Eventually 

pCh is reconverted into powers of the original variables and 

is referred to as PE. For the sake of simplicity we shall 

restrict our discussion to the case when P = P(x,y) is a poly-

nomial of two variables x and y, and the economization process 

takes place in the square: 

= (x,y): 0 < x < 1, 	0 < y < 11, 

an approach which can be extended without essential difficulties 

when the number of variables is greater than two. 

Let us write P in the following form: 

= A Y 	 (148) 

where 

X = 

0 

[Y3T1 
 

2 
y 

Y = A = ((a..) 
ij [

i= 0 (1) I 

j = 0 (1) J 

    

    

Then P is expressed in terms of Chebyshev polynomials 

by means of the linear transformations 

X = B T" 
 

Y = BT::  
y 

(149) 
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where 

* 
T 

T  (t) 

T
*
(t) = 	T(t) 

T
M
(t) 

T"(t), D = 0 (1) M, are Chebyshev polynomials of the first 

kind as defined above. The elements of B = ((b..)) are gener-

ated by means of (147). 

From (148) and (149) we obtain: 

Ch * * 
= T C Ty  y 

(150) 

that is the expression of P in terms of Chebyshev polynomials 

where 

C = B
T
AB 

is the coefficients matrix of P
Ch. 

 

VI.8.3 	The rocess of economization  

Two possible ways will be considered in which econom-

ization can be achieved. In the first we look for the largest 

possible reduction in the degree of the given polynomial 

compatible with the permissible error bound. In this case we 
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conduct in the matrix C a search along a diagonal path and 

terminate it when the accumulated error exceeds E. We call 

this process triangular economization. ln the second case we 

assume that the polynomial P is given in a double nested form 

in the variable x: 

P(x,y) = ((pl(r)y 	p(r))y - ...)Y 	Pn(r) 	(151) 

or, in y: 

P( x'Y)  = ((glwx 	g2(3))x - ...)x 	gn (y) (152) 

In this case, the cancellation of every coefficient 

in a border line of the matrix A, will result in a reduction of 

one in the number of multiplications required to evaluate P. We 

call this process "carving or vectorial economization". 

Triangular economization  

We arrange the elements of matrix C in a diagonal 

sequence 

0 = t (k) 

	

c.. 	, 

	

ij 	
k = 1,2,...N = (I+1)(J-1-1) 

such that C.. is identified with 

the leading coefficient cIj  and 

in every secondary diagonal, the 

coefficients are of the same 

* * 
degree r+s in Tr(x)Ts(y). 

/ ,0 0 
.e, 	 , 	/ 
,' 	g 	.:' 

0 ,0 ,0' ,0 

o 	a- o 
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Given the admissible error bound E, we then proceed 

to compute the sums 

Ic(I 
S
1 
= 1 

k)
j 1 

E = 1 (1) N 

kGO 

and look for the separation index such that: 

S E SE  

Since the maximum possible absolute value of Tn 
 (t) 

for all positive integers n and 0 C t < 1 i3 one S E 
will be the 

maximum error arising from deleting all the E terms from P
Ch. 

Consequently, S
1 
defines the sequence 0E 

of best E-economization 

for P in Lanczos's sense. 

Garvin or vectorial economization 

The algorithmic process is similar to the one just 

described, except for the fact that the search is now conducted 

along the farthermost right column or the lowest row, starting 

always with the element aij. The separation index is found as 

in the triangular economization and the choice of row or column 

is made on the basis of the efficiency of the process which is 

measured by the number of zeros induced in the extreme lines of 

C. The polynomial PE  is then evaluated in either the double 

nested form (151) or (152). 
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V1.8.4 
	

Construction of the economized polynomial PE 

Once 0'E 
have been found, we define a new matrix G

E 

with elements c.. such that: 
13 

C.. = 0 13 

C. = c. 13 	ij  

if c..G G 
13 	0 

otherwise 

This matrix C
E defines the E-economized polynomial PE(x,y) as: 

* 
P
E 

= P
E 
(x y) = (Ts)T CE T E (153) 

and for every (x,y) G Q, 

!P(x,y) 	P6 (x,y)1 <7.E 

The E-economized polynomial PE(x,y) is defined as a 

polynomial in x and y by the expression: 

PE  = PE(x,y) = X
T
(B

-1
)
T 
C
E B-1 Y 
	

(154) 

VI.8.5 Sufficient conditions for the existence of an 
E-economization  rocess in terms of  the 
coefficients of P 

    

Let us assume that P(x,y) is defined in Q. If we 

take into account expression (147) and assume that I = J = n. 

we see that the leading coefficient cnn of P
Ch 

is given by: 

2 )2 	1 
nn = 71'1 ann 

4
2n-1 ann 
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Therefore, an E-economization process involving ann
, i.e., 

reducing the overall degree of P from 2n to 2n-1, will only be 

possible if: 

la 	< 42n-le  
nnl 

(155)  

If this condition is satisfied, we then analyze the 

possibility of E-economization involving the terms xnyn  and 

n n-1 
x y 	(or x

n-1
y
n). That will only be possible if a and nn 

a
n n-1 

(or a
n-1 n) 

are such that: 

2n+1.1 	, 
4 !arm I 	lann-11 < 4

2n-2E (156)  

or 

2n+1 -anni + 	< 42n-2 E 4  l  (157 ) 

Inequalities (155) to (157) will be used to give 

sufficient conditions in the two following cases, 

(1) 
	

E-economization on a border line of matrix A 

• 
In the case of E-economization involving x

n
y
n
, x

n
y
n-1

, 

n n-j 
x y 	where 0 <j‹:n, i.e. along the farthermost right 

column of A, the condition for a reduction in the number of 

multiplications in (151) is: 

v-s  

)  4s  lann-s1 k  k 
<1. (2(n-s)) 4211-1E  

s=0 k=0 

(158) 
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where n-j = v. This follows from (155)-(157) by an inductive 

argument. 

If we introduce the auxiliary function: 

Ca,p) = 	(7!), 

k=0 

CC and (3 positive integers, we can easily show that: 

qi(ct+ 1, p+ 1) = (1)(a,(3) +coc,p+ 

cods). l 
R = 0, 1, 2, ... 

and 

q)(a., 	= 2a 	a =13= 0, 1, 2, • • • 

Therefore, condition (158) can be stated more simply 

in terms of the recurrent expression ka l  13): 
n-i  

s=0 

For example, if n=4 and j = 1, from Table I we get 

the following condition for the possibility of E-economization 

of the four coefficients of P(x,y) in the farthermost right 

column of A, starting with ann: 

ann(i)(8,3) +4ann-M6,2) +42ann-2(*91)  

43ann-311(2.0) = 93ann + 88an n-1+80ann-2 

+ 64an n-3  < 16384 E 

4s  la 	lq)(2(n-s), n-j-s) < 4
2n-4E 

nn-s 
(159) 
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where the a.. are taken in absolute value. 

To get a condition for the E-economization involving 

coefficients in the lowest row of A, we only have to switch 

indices in (159). 

TABLE  

Ca ,3) 

0 	1 	2 	3 
	

4 
	5 
	

6 
	

7 
	

8 

1 

1 2 

1 3 4 

1 4 7 8 

1 5 11 15 16 

1 6 16 2 6 31 32 

1 7 22 42 57 63 64 

1 8 29 64 99 120 127 128 
_._. 

1 9 37 93 163 219 247 255 256 
..... 

(ii) 	E.:economization on a trian ular corner of matrix A 

For the three coefficients ann
, a

n n-1 
and a

n-1 n' 

from (155)-(157), the condition for the possibility of 

E-economization is: 

4 farm' 
	 < 42n-2 E  

4 '
a
rm' 

+ 
I
lan n-11 + Ian-1 n1 

1 

2 

3 

4 

5 

6 

7 

8 
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In the case of a triangular sector of 1-1., this 

expression generalizes as follows: 

r-(s+u) 
17 4s 4n a 	

( 
 2(n-u)

)( 
 2(n-O - 4 2n-1 

. 	' 	. 	/ ) `---  
4
2n-1 	n-u n-s 	1 	J 

s+u=0 	i+j=0 (160) 

where r-1 is the number or rows (or columns) involved in the 

triangle under consideration. 

From inequalities (159) and (160) we can give easy 

empirical rules for the E-economization. For instance, we can 

say that E-economization in the triangular case is possible 

for a
nn if: 

la 
nn

I < 1011 E 

anf for the first triangular corner, if: 

n !a
nti
' + Ian n_11 .+ I

an-1 n I 	
10
n 
E 

Similar rules can be found in the case of economization in one 

variable. From the previous formulae, it is easy to deduce 

analagous rules for the case of carving in one variable. 

VI.8.6 	Block economization 

Conditions (159) and (160) give the possibility of 

E-economization of a polynomial P considering only the set of 

coefficients a. for which, according to the method chosen for 
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the economization, the first or second condition is satisfied. 

The polynomial P is thus divided into two segments 

P
1 
and P

2' 
such that the coefficients of P

2 
satisfy one of the 

conditions. Then P
2 
is expressed in terms of the Chebyshev 

polynomials and E-economized. The resulting expression is 

reconverted in powers of the original variables and added to 

P1  to get PE. 

This procedure is particularly suitable when either 

the number of variables, the size of the stored information or 

the computing time impose heavy restrictions on the economiz-

ation process. 

In the subroutine described in the next chapter, 

the E-economization process involves the entire polynomial. 

It is important to point out that when the difference 

between the times required to perform addition and multiplicat-

ion is not too great, it may be preferable to carve the 

polynomial, inducing as many zeros as possible, everywhere in 

A. 
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VII. 	NUMERICAL INTEGRATION OF  THE PRANDTL-REUSS  EQUATION 
BY MEANS OF THE METHOD OF WEIGHTED RESIDUALS 

VII.1 	Introduction 

In this chapter, the method of weighted residuals 

will be used in order to obtain approximate polynomial solutions 

to the Prandtl-Reuss equation. The procedure will then be used 

in the particular case of the hydrostatic extrusion-drawing of 

a bimetallic specimen, with the aim of obtaining the stress 

distribution on the deformating area. It is assumed that the 

flow pattern of deformation is described by Avitzur's velocity 

field and the materials are homogeneous and with an isotropic 

rule of hardening. 

As was pointed out in equation (38) of Section 11.4.3, 

the Prandtl-Reuss equation may be written as: 

0! = k  
lj 	lj 

or, by means of symbolic notation: 

= --- V 
	 (160) 

T' being the deviatoric stress tensor and V the strain rate 

tensor. In a scalar form and under conditions of axial-

symmetry, equation (160) becomes: 



▪ k 

r 
2 

• 
oe 
. 0 m  + k E A VT" 

- 1.57 - 

(161.a) 

(161.b) 

(161.c) 

(161.d) 

2 

k E 
• 

z• = C5m 	z 

k 
I = rz 	r--  rz 

2 

These equations are not independent if constancy of 

volume is assumed, that is, 

tz = 	

• 	

9)  

and consequently: 

cf 
	-(0.1r +c') 

9' 

(162)  

(163)  

VII.2 	Process of calculation 

Since the Prandtl-Reuss's equation is a non-linear 

one, the use of polynomial forms as trial solution leads to 

non-linear systems of equations in the unknown parameters. This 

fact constitutes an important obstacle in the application of 

the method of weighted residuals because non-linear systems of 

equations are hardly possible to be solved by means of a 

computing routine. 

The way chosen for the solution of that problem is 

a process of linearization E53] and the use of the least 

squares criterion, within a routine of iteration. 
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Let us assume that, in a first approach, equation 

(160) may be written as: 

T' = k\T 	 (164) 

where k is a constant that here may take the initial value of 

the shear yield stress of the material. 

In this hypothesis, equations (161) are not exactly 

satisfied and, hence, there will be some difference between 

both sides of these equations. Let us express these differences 

bymeansoftheerrorfunctionsL.Equation (161.c) will not 

be considered due to constancy of volume.. Therefore, if "n" 

identifies a generical nodal point of the mesh that represents 

the deformating area, equations 

Rln = 0 -0 m -
r 	

(165.a) 
r  

R2n = 0 - m 
kt 	(165.b) 

R3n = I - 	 (165.c) 
rz 	rz 

are obtained, which must all be calculated for every modal point. 

Squaring these equations, according to the least 

squares method, and summing up the error at all points of the 

mesh, we obtain: 

(166.a) 
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(166.b) 

(166.c) 

R2 

 

(R2d2  

(R,„)2 	0 

  

  

The total error in the whole deformating zone may 

be expressed as a linear combination of the error functions 

corresponding to each of the equations involved, that is: 

R
T = g1R1 g2R2 g3R3 = 

 

giRi 	(167) 

   

where the gi  coefficients are the weighting factors. 

As was pointed out in Section 11.1.2.2, an axi- 

symmetrical state of stresses, referred to a cylindrical set 

of coordinates, can be expressed in terms of two stress functions: 

01= 01(r,z) and 02  = 02(r,z). In Section 11.3.1 it was shown 

that the corresponding strain rate field can be put in terms 

of a stream function (4) = (P(r,z). Hence, if polynomial forms 

are adopted to represent approximately these three functions, 

such as: 

0 = 0 (r,z,A..) = 0*  1 	1 	ij 	1 

°2 = 02(r'z'Bk1)  

(I) = (P( r l z ,Cmn) = e 

A..r
i
z
j 

B
kl 
r
k
z
l 

C r
M 
z
D 
 

MD 

(168.a) 

(168.b) 

(168.c) 

m n 

the state of stress and strain rate can be put in terms of 
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the free parameters A.. B and Cmn
, according to equations 

1j,  kl 

(11) and (26). 

This allows us to express the total error function 

R
T 
in terms of those parameters, as 

R
T 

+
' 
z A ,B ,C ) 
' i

.
j kl mn 

In this next step, following the least squares 

criterion, we calculPtP: 

aR
T 

BA.. 	0 	 (169.a) 
13  

ORT 
= 0 	 (169.b) 

aB
kl 

aR
T 

0 	 (169.c) acmn 

which constitutes a system of linear equations in the free 

parameters. By solving the system we obtain the values of the 

(1 	(1 
free parameters Ail), Bpi), C(1) that minimize the error in 

13 kl MD 

the whole deformating zone. Consequently they give an approx-

imate form to the stress and stream functions and also to the 

stress and strain fields. Those values define a first approx-

imation to the strain rate field V
(1) 

and the corresponding 

stress field T
(I) 

satisfying the governing equation (164). 

A "better" set of parameters may be found if the 

error functions (165) are recalculated with 
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instead of k, where the value of I
(1) 

is derived from V(1) 

In this way, repeating equations (165)(169), a new set of 

2) 
parameters A.

(
. , B

kl
(2) 

 and C(2)  is obtained which improves the 
ij 	mn 

solutions for the stress and strain rate tensor fields T
(2) 

and 

V
(2)

. In general, this second set of values is different from 

the first one and, therefore, it gives a new value for 

I(2)  
2 

With where I
(2) 

is derived from V
(2) 

 . With this value the process 
2 

is reinitiated from equation (165) onwards and will continue as 

described until the absolute value of the difference between 

any parameter of the cycle "n+1" and the corresponding to the 

cycle "n" becomes smaller than a prefixed value Q, that is 

IA(n+1)  A(n)l<Q 
I Pq 	Pq I 

(170)  

where A is a generical parameter of the group. The value of 
Pq 

Q may also be expressed in terms of percentage of variation of 

A 
Pq

, as criterion for establishing convergence. Another useful 

criterion of convergence is to determine the cycle in which R
T 

reaches its minimum value: 

R(111-1) 2> R(n)  
T 	T• 

(171)  
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Once this situation is obtained, by means of the 

velocity field (equation (23)), it is possible to determine 

the new positions of the nodal points by: 

= yr Lt 

Qz=v z Qt 

where At is a small interval of time. 

The final coordinates are: 

r
o 
+ Ar 	

(172) 
z1  = zo  + Qz 

where r
o 
and z

o 
correspond to the coordinates of the mesh points 

at t = O. 

The application of expression (172) to all nodal 

points of the original mesh will produce a new mesh that repres-

ents the "picture" of the deformating zone after a time At. 

The sequence of iteration is restarted for this new 

mesh, from equation (165) onwards, using 

as first value, n being the last cycle of iteration. 

The same value of k is used throughout the process 
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if the problem is solved under the hypothesis of non-hardening 

materials. If the material work-hardens, k must be modified 

at this stage as described in the next item. 

This routine continues until the total deformation 

time is covered. 

VII.3 	Work hardening materials 

The procedure used up to here is valid for a rigid 

perfectly-plastic material; eventually k may be considered as 

the mean yield stress of a work hardening metal. 

Let us now take into account the real behaviour of 

metals and introduce work hardening into the theory. 

As von Mises's yield criterion was used when develop-

ing the theory, the effective stress Q may also be considered 

as a yielding function, that is: 

= Y = tnk 	 (173) 

According to the definition,, the effective strain 

rate is: 

2_ 
v  2 
	 (174) 

and, consequently 

(175) 
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Assuming the relationship Cl= -6"(E) as being known 

for the material we are dealing with, this may be expressed as: 

a =15o + O(e) 
	

(176) 

where 0
0 
is a constant. 

The derivative of equation (176) with respect to 

time is: 

dD 	dO 
dt 	dE dt 	

He 
 

(177) 

where H is the slope of the 6-t curve, as in Fig. 28. 

Expression (177) can be written as: 

dO = HLdt 	 (178) 

and introducing equation (174) in (178) we get: 

d3 = 2  j-j2 (179) 

Ha: 
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Differentiating (173) and replacing in (179) 

3HVdt dk = 3 —Hdt 2 

is obtained, or, in terms of finite increments: 

2 
Ak 	— 

3 H 
	Qt 

(180)  

(181)  

A - time interval Qt must be adopted according to the 

velocity of displacement of the cross-section in which we are 

interested. 

If a linear rule of hardening is admissible, H(E) = 

constant, equation (181) may be written as: 

	

= C
k 	

At 
	 (182) 

where Ck 
is a constant. In this case, a unique value for H 

will be used throughout the calculations. 

Equation (181) will be used to take into account 

modifications in the value of k in equations (165) due to work 

hardening; as follows: 

The total range of deformation will be divided into 

	

small intervals: 0 	
e(1).. 	

etc. These intervals 

are determined by the Qt increment chosen and the velocity of 

the specimen. It is assumed that the shear stress will take a 

constant value within each interval, that is: 
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Step 	t = 0 	0 - E(  

-(1) _(2) 
t = At 	E -E 

k = k
1  

k = k
2 = k1 + nk1 

        

t = n At 
El.(n-1)..E(n) k = kn = kn-1

+Ak
n-1 

VII.4 	Modifications to the error functions 
due to work hardeni 

Once convergence was achieved for the first step, 

corresponding to t = 0, by using the first value of k = k, and 

the last value for I(2
n) ' it is possible to calculate: 

Qk = Ck 2  11()  At 
	 (183) 

assuming a linear rule of hardening. Consequently, the next 

value for k = k2 to be used during the second step will be: 

k
2 

= k
1 
+ Qk 

With this new value for k and the new mesh obtained 

according to: 

r
1 
 = ro + v(11) Qt

z
1 
 = zo + v(11)  Pt 
	 (184) 

the procedure is reinitiated from equations (165) onwards. The 

value 

k2 

II(n)  2 
is used in these equations. 
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If the hypothesis of linear hardening is not satis-

factory, equation (181) must be used in order to calculate Gk, 

by means of the corresponding value of H in each step, as shown 

in Fig. 28. 

As was pointed out before, the procedure continues 

until the total time of deformation is covered. 

The whole sequence of calculations is summarized in 

the flow chart presented in Fig. 29. 

VII.5 	Economization  of the solutions  

Once the polynomial expressions for the different 

fields have been obtained, we next proceed to economize them in 

order to reduce the incidence of high powers and rounding errors. 

With this purpose, we use a procedure presented as a computing 

subroutine, described as follows: 

VII.5.1 	Description of the subroutine 

In the first part of the subroutine the polynomial P 

is rearranged in terms of Chebyshev polynomials and P
T 
 is 

generated. 

In the second part a search is made for the special 

term ai
T
j 
= a" for which the number of elements in a set TI'a*  is 

maximum; an element a.
T  
. G Til* if 

ij 	a 
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a 	la* T 	, 	and 
1ji  

E 

 

E being the permissible error bound read in the main programme. 

If the polynomial P(x,y) comes from the truncation of 

a convergent power series expansion, as is often the case, this 

part of the subroutine will tend to select the terms of higher 

orders and then reduce the total number of multiplications. A 

FORTRAN list of the subroutine is presented in Fig. 30 with the 

name ECON2. 

VII.5.2 	Data for the subroutine 

The coefficients a..
13 
 of the polynomial P are supplied 

in array DYX. The subroutine reads the elements of the matrix 

transforming powers of x and y in Chebyshev expansions and its 

inverse matrix, from the main programme, in the form of arrays 

DX and DT. 

When the subroutine is called, the parameters 

(1) 	ND 	= dimension of arrays, 

(ii) NT 	= highest exponent in P plus 1, 

(iii) ERRMAX = permissible error bound E, 

must be fixed in its argument. 

VII.5.3 	Output of the subroutine 

The subroutine commands the following printout: 



SUP1POUTINF ECON? 
1 	 (NO,NT.NC.EFIRMAX.EPPTOT§OX.DTIDYX.ECT ,  :X) 

C 
C 	ErONOMIZATIGN• OF A PCLYNOHIAL IN TWO vARIABLES 
C 
C 
C 
C 	Nr) - DIMENSION CF ARRAYS 
C 	NT - HIGHEST EXPONENT IN THE :x!-,'RESSION +I 
C 	Nr 	NUM-ER OF TErmS IGNORED FP:1m CHSBYSHEv EX=ANSION 
C 	5oRmAx - pERm/651=LF mAXIP.Um ERROR 
C 	EPRTOT - ACTUAL TOTAL EPROP 
C 	DYX - ARRAY CONTAINIr'G GIVEN ExPRFSS/CN 
C 	nyx(19N) 	(X*4-:0)(vo) 	(x ,4-0)((*.1=1) 
C 	 DYX(2,N) (X-A1)(Y*401 (X*1-1)0(*?fil 

C 	DX - CONTAINS cCFFF1rIENTS OF vARIABLES IN CHEIJYSHEV• 
C 	 POLYNOMIALS 
C 	DT 	CONTAINS INVERS--7 GF DX 

FCT - CONTAINS CHF6YSHEv FXnANSION 
C 	FcX - CONTAINS EroN0mIZEO EXPFSSION 
C 	 IN THE SAmF SEcurNc.- AS DyX 
C 	ALL PARAMETERS EXCEPT NC,ERR7OT.FcT.ND FCX SHOULD BE 
C 	SuPPL1FD IN THE VAIN PRCGRAmMF 
C 
C 

C 
DI mENSioN  FcT(NDIND)9Fcx(ND9ND),DYX(ND.ND)9DTIND9ND/ 

1 	DX(NO,NO) 
DOUBLE PRECISION DTIFCX4FCT.A.ERPMAX.ERR,AEPR.BEPR 
14 EPRTOT4FRPTNeFEN 

C 	COMPUTE CHFilYSHFV EXPANSION 
Do 100 1= 1.NT 
00 100  J= 1.NT 

100 FcT(1■J)=. 0.0 
DO 101 1= 1.NT 
DO 101 J= 1.NT 
A= DYX(I.J) 
Ip( A .EG. 0.0 ) GO TO 101 
DO 102 N=111 
DO 102 M= 19J 
FrT(N.M) = FCT(N.m) 	DT(19N) * DT(J9:4) * A 

102 CONTINUE 
101 CONTINUE 

EPPN = 0.0 
NrN= 0 
DO 103 I= 1.NT 
DO 103 J= leNT 
EOP= DADS(FCT(I+J)) 
FPPTOT = 0.0 
Nr= 0 
bo 115 II= 1.NT 
DO 115 !J= 1.NT 
A = FCT (1111J) 
IFIDABS(A) . GT. 'FZR) CO TO 115 
FPRTOT = ERPTIDT 4- DA9S(A) 
Nr = NC + 1 

115 CONTINUE' 

IP(FPRTOT .GT.E90mAX) GO TO 103 
1.(No 	LE 	NCN) GO TO 103 
NCN = NC 
EcPN = ERR 

103 CONTINUE 
C 	COmPuTE ECONOMIZEn EXPRESSION 

EORTOT = 0.0 
Nr = 0 
EOR= ERON 
00 113 1 = 1.NT 
00 113 J = 1.NT 

113 FrX(19J) = 0.0 
Do 106 1 = 19NT 
DO 106 J = 1.NT 
A= FCT(1,j) 
IF(DAPS(A) . LE. &7RFR) GOTO 109 
DO 107 N= 191 
DO 107 M= 1.J 
FCXINIM1= FCX(NO.t) + oX(I.N)*DX(J.M)*A 

107 CONTINUE 

GOTO 106 
109 No. = NC + 1 

EPRTOT = Er4qT07 + D495(A) 

106 CONTINUF 
RETURN 
FND 
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FIGURE 30 
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total error in P, 

number of terms either deleted or zero in 
the Chebyshev expansion of P, 

Chebyshev expansion of P, 

double array with the coefficients of the 
economized polynomial P . 

VII.5.4 	Test results  

As an example, the first 36 terms of the power series 

expansion of exp(x + y) are considered: 

P(x,y) = 1 + x + y + 1/2(x2  + 2xy) 
4. y2) 4. (x3 .4. 3x2y 	3xy2 ± y3)/6 

+ (x4  + 4x3y + 6x2y2  + 4xy3  + y4)/24 + 

(x5  + 5x4y + 10x3y2  + 10x2y3  + 5xy4  + y5)/120 + 

(x6  + 6x5y + 15x4y2  + 20x3y3  + 15x2y4  + 6xv5  + y6)/720+ 

(x
7 
+ 7x

6
y + 21x

5
y
2 
+ 35x

4
y
3 
+ 35x

3
y
4 
+ 21x

2
y
5 
+ 7xy

6 
 

+ y7)/5040. 

After being economized, the polynomial with an error 

bound E equal to 0.005, the expression 

PE  (x y) = 1.000 + 0.995(x+y) + 0.125xy + 0.466(x
2+y

2) + 

0.042(x2y+xy2) + 0.687x
2
y

9 
 + 0.254(x

3
+y
3
) +0.46(x

3
y+xy

3
) 

is obtained, with only 13 terms. Figures were rounded to 3D 

and the economy is 23 terms. 

Table II shows the values of the percentage relative 

error: 



1 
	

1/9 
	

2/9 
	

3/9 
	

4/9 
	

5/9 
	

6/9 
	

7/9 
	

8/9 
	

1 

-5.6462 2.5206 10.6247 15.0569 14.9159 11.1076 5.6596 1.2086 0.6233 6.7361 

2.5206 -7.0368 -6.9042 -4.3099 -2.8183 -3.4360 -5.4648 -7.1500 -6.1655 0.0297 

10.6247 -6.9042 -9.8091 -7.3399 -4.5243 -3.3977 -3.9560 -4.8846 -4.1079 0.8031 

15.0569 -4.3099 -7.3399 -4.1589 -0.4093 1.4588 1.1870 	I -0.0598 -0.2747 2.9612 

14.9159 -2.8183 -4.5243 -0.4093 3.8468 5.7882 5.1074 3.1848 1.8718 3.6851 

11.1076 -3.4360 -3.3977 1.4588 5.7882 7.3807 6.1680 3.4615 1.3774 2.4114 

5.6596 -5.4648 -3.9560 1.1870 5.1704 6.1680 4.3653 1.2272 -1.0511 0.0485 

1.2086 -7.1500 -4.8846 -0.0598 3.1848 3.4615 1.2272 -1.9059 -3.6891 -1.6151 

0.6233 -6.1655 -4.1079 -0.2747 1.8718 1.3774 -1.0511 -3.6891 -4.2729 -0.3500 

6.7361 0.0297 0.8031 2.9612 3.6851 2.4114 0.0485 -1.6151 -0.3500 6.1969 

TABLE II: 	The values of p(%) are multiplied by 100. 

0 

1/9 

2/9 

3/9 

4/9 

5/9 

6/9 

7/9 

8/9 

1•  
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p(%) = 
P(x,Y) 	PE(x9Y) 

P(x7Y) 
100 

calculated in 100 equidistant points of the square Q:(1,1). 

In no entry of the table the error exceeds 0.151%. 

Some results related to the evaluation of numerical 

solutions of partial differential equations will be considered 

further on. 



- 175 - 

VIII. 	ANALYSIS OF THE HYDROSTATIC EXTRUSION-DRAWING OF  A 
COMPOSITE WIRE BY THE METHOD OF WEIGHTED RESIDUALS 

VIII.1 	Introduction  

The procedure described in the preceding Section is 

now being used to calculate the stress field developed in the 

deforming zone during the extrusion of a composite wire constit-

uted by two different metals. From the stress field required 

for having plastic deformation under steady state conditions,. 

values for the "pulling stress-hydrostatic pressure" relationship 

for different extrusion ratios are obtained. These values allow 

a direct comparison with the experimental ones. The geometric 

characteristics of the specimen are as described in Chapter III. 

It is assumed that the pattern of deformation follows 

Avitzur velocity field. It is also assumed that no relative 

movement between both metals exists on the interface and, hence, 

the interface is considered as the superposition of the limit 

surfaces of both metals. 

During the process of calculation, mesh points are 

considered with the physical constants of the corresponding 

metal, according to its position in the wire. 

A mesh point located on the interface is taken into 

account twice: first as belonging to one metal and then to the 

other, and finally, the value attributed to that point is the 
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average of both situations. 

A rigid-plastic mcdel with a linear rule of hardening 

is assumed for both metals. As the elastic strains are 

neglected, the plastic strains coincide with the total strains. 

VIII.2 	Velocity field and stream function 

Avitzur's velocity field is described in a cylindrical 

coordinate system by the stream function: 

(1) = - v R2 z
2 

r
2 

f f 4(r2+z
2
) 

(185) 

which gives, according to expression (23), the following 

velocity equations: 

v
r 

= - v R2 (186.a) 
f f (r2

vz

+z
2
)
2 

2 
z  

v
z 

2 
(186.b) of 

 Rf (r
2
+z
2
)
2 

and the strain rate field: 

9 , 2 
Er 	

z n2 z -Jr 
= VI: f 	 ') 

(r +z.) 

2 e 	v R 
f f 

 (r2
+z2)2  

2 r
2
z 	z

3 

z 	f f  (1.4+z-) 
- 2 v R 	, 3  

R
2 r3 - 7rz2 

rz 
= kvf  af  2  2. 3  

(r-+z ) 

(187.a) 

(187.b) 

(187.c) 

(187.d) 
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The corresponding second principal deviatoric invariant 

is then calculated by means of: 

I = -(E'E' + 	+ 	+ 
2 	r 0 	W--z 	TZ 

(188) 

VIII.3 	Stress field 

For the description of an axisymmetric stress field, 

two stress functions are required. Let us propose the following 

polynomial forms as trial functions: 

i(r/z) = T kr 3 p3 	7 A 1.21+3  zj 	(189.a) -   Z._ 
i j 

2(r'z) = P2  
B r2m+1 zn mn (189.b) 

 

m n 

  

whereP=R?-r
2 
- z

2
, A.. and Bmn 

are parameters to be deter-
1 

mined and k the shear yield stress corresponding to a generical 

material point. 

From these stress functions, according to expressions 

(11), the trial functions corresponding to the stress field are 

obtained as follows: 

0 
MD

n 
r L 2m 

 r-4Pr B z 	2  + (2m+ 1)P
2
j 	(190.a) 

m 

r 
U
z 
 = /71‹+ A..Pz-i  r21  L.24r

4  - 6(4i + z)Pr2 
 

+ (21+3)(2i+ 2)P2] 	)190.b) 
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Cr 
214-2 j-z A.

1 	
z 	P L24z

4 
 6Pz2(2j + 1) + j(j 1)P2Di  

1 

+T- 
m 

 

Br2mzn 
mn 

 (190.c) 

   

'trz A. .r21-1-1zj-1P E-24r2z 2  + 6jPr2  + 6(21 + 3)Pz2  
1J 

- j(2i + 3)P2] 	 (190,d) 

The 0
1 and 02 

expressions have been chosen in such a 

way as to have a general polynomial form and, at the same time, 

allow the stress field to accomplish the following boundary 

conditions for any set of values of their free parameters: 

(1) 	For mesh points on the 

entry boundary (P = 0) z = yr5k 

belonging to the core or 	5r_ 
= a

9 
 = T rz = 0 

the sleeve: 

These are the conditions required for having plastic flow under 

the particular state of stresses existing on that surface. 

(ii) For mesh points on the 

z-axis (r = 0), conditions 
	0z = f(z) 

of axisymmetry require: 
	rz = 09 = C =0 

where f(z) is the expression of 0
z
(r,z) for r = 0. 

(iii) The axial symmetry condition also requires that the 

functions 0 '  0 and 0z 
be even in the r variable, while T 

r 0 	 rz 
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be odd in this variable. 

VIII.4 	Boundar condition on the tube-die interface 

The conical surface corresponding to the tube-die 

interface may be characterized as follows: 

it 

2 

where Otis the semi-angle of the die and n a normal vector 

given by: 

n = (cosCg 0,-sinC) 

The stress components at a generical point on that 

surface are: 

= G. n. 1 	13 3 

and in this particular case: 

S
r 

= C
r
cosa- T sing, 

rz 

S0 	0 
9 

S 	= T cosCt- GsinCt z rz 	z  

The stress component tangent to that surface is: 



R
ln

- CY - 	L 
Or m Vi; L  

2 

R
3n 

= 	
k 

T 
rz 

	E 
r-- rz v I
2 

R2n = 'Ye -15m - v I 

(194.a) 

(194.b) 

(194.c) 
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r ---0z  sin zu, , 	cos20 
2 	rz 

(191) 

The frictional stress at the interface may be expre-

ssed in terms of a fraction of the shear yield stre; of the• 

tube, i.e. 

q 
	 (192) 

q being 0 Z q <1. 

Substituting expression (191) into (192), the equation 

conditions stresses on the boundary 

- Or z sin 2a + Trz  cos 2a. = a lit  (193) 

is obtained. 

VIII.5 	The error functions 

By substituting expressions (187), (188) and (190) 

into Prandtl-Reuss's equation, the following error functions 

are obtained: 

n representing a generical node point and O
m 

= 1/2(0 r +0
0 
 +5 ). 
 z 
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The expression corresponding to Oz  does not appear to constancy 

of volume, since 

z = 	(Cir °-9)  

Another error function is obtained from the boundary 

condition at the tube-die interface: 

Or 
2  

- 5z  
R
4n 

= 	sin 2CX. + T
rz 

 cos 2 CC - q k`"  (195) 

where 0
z
, 0

r 
and T are to be substituted by expressions 

rz 

(190.b), (190.c) and (190.d) respectively. 

Equations (194.a) are to be calculated in the whole 

deformed volume while equation (195) is to be considered only 

at the tube-die interface. 

These four error functions are to be joined together 

in a general error function R
n
, as a linear combination of them 

with weighting factors: 

R
n = glRln g2R2n g3R3n g4R4n 

	(196) 

In this case is gl  = g2  = g3  and, hence: 

R
n 

= g (R +R +R ) 	R 
1 ln 	2n 3n 	'4 4n (197) 

The values of g4  and gl  are adopted proportional to 

the number of nodal points existing atithe interface and in 
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the whole deforming zone respectively. In the process of 

calculation, expression R4n  is taken into account only at: the 

interface nodal points. 

After all substitutions have been made, an expression 

of R in terms of the coordinates and free parameters A., 	 d 

B
mn 

is obtained: 

R
n 

= R
n
(r, z, A

ij 
B
mn
) 

This expression of the total error function is to be 

squared and minimized with respect to the free parameters, in 

the volume of the deforming zone. The corresponding sequence 

of calculations will be programmed by using a least squares 

approach, in the frame of the method of weighted residuals, as 

was already described. 

VIII.6 
	

Process of deformation  

Based on Avitzur's velocity field, the mesh adopted 

for representing the deforming zone under steady state condit-

ion is shown in Fig. 31. 

According to this pattern of deformation, it is 

assumed that the final hardening of the specimen is achieved in 

eight steps, that is, hardening takes place only when the 

material reaches a spherical surface and no strain hardening 

occurs in between them. 
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Assuming a linear rule of hardening, it is possible to 

calculate the shear yield stress of the metals at each point by 

means of the expression: 

k = k
o 
 + C

k 
 VT

2
Tr
'
z7 at 
	(198) 

where k
o 
is the initial shear yield stress, C

k 
is a constant 

defined in equation (182) and At the time increment. The 

material moves from the entry boundary I towards the exit 

boundary IX, crossing nine equidistant spherical surfaces, with 

a velocity field given by equation (187). 

Adopting an axial velocity VE  for the specimen at the 

exit and the geometrical dimensions of the die, the time 

increment At required for the material to move from one surface 
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to- the next can be obtained for each nodal point by means of 

the expression: 

(r.-r. 	)
2 
+ (z.-z. 	)

2 1
1 

lvt (r, z) = 	
v
2 

+ v
2 
	(199) 

r. 	z. 
3 

VIII.? 	Pulling stress-hydrostatic ressure relationshiE 

The numerical procedure described so far provides a 

description of the stress components required for having plastic 

flow at each point of the deforming zone. 

Particularly we obtain the axial stress components at 

the entry and exit boundaries. Let them be expressed by functions 

0(1) and 0(II) respectively, according to the following diagram: 

C.r) 
-41T 

0- at) 	I 
I - 

I 

F-' 

rC

.  

The average stress acting on each boundary is given 

by: 

CS 	= 	1 JJ 0(i) dr ci0 I 	A A
I 
 z 

AS  

and 
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o
II 

= 	I0(II) 
r dr de 

All All z 

respectively, where AI  and All  are the cross sectional areas. 

In practice, stress 0, is provided by the hydrostatic pressure 

ph  while 0,, by the pulling stress g . Hence, the driving 

stress may be expressed as: 

. 	fro
z
m 

r dr de + 	
1r c(II) 

r dr d9 p O + ph °a 
I AT 	

AII ATE  

These integrals are evaluated numerically as follows: 

0 . 	ri G(I)2 JJ r dr de = 2 
r ( 
j G` ) r dr 

z 	
z r

I 
A
I 	r

2 
0 

 

with a discrete approach: 

N 
r. 	- r. 

(o
(I).r). (  1+1 

2 1-1) z  

or 

0(1).0. 	
1-1. J 

(r.., - r. 1) 
J  

J= 

N 

0I = 
 
2 	(0

(II).r)
j 
(r.+1  -r.  1 ) 

- 
rII j=1 

Finally, the driving stress is given by: 

O
p 
+ p

h 
= 0

1 
511 

and, similarly: 

(200)  

(201)  

(202)  

The values of 0
I 
and 511 depend upon materials 
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involved, conditions of friction, deformation velocities, 

extrusion ratio, etc. If all parameters except the extrusion 

ratio are kept constant, equation (202) can be expressed as a 

function P of this parameter: 

o
p 
+ p

h 
= 
	 (203) 

This equation allows a direct comparison with the experimental 

values. 

VIII.8 	Temperature distribution 

VIII.8.1 Introduction 

The steady state temperature distribution developed 

during the process of deformation is now considered by using 

the method of weighted residuals. 

It is assumed that heat is generated at nodal points, 

due to the plastic work involved in the process of deformation 

already described and at the tube-die interface, due to friction. 

It is also assumed that work is entirely converted into heat. 

Both metals are considered isotropic and homogeneous, 

from the thermal point of view. 

VIII.8.2 Theoretical considerations [110,Eig 

Let us define in a material medium a spatial velocity 
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field V = -17(x,y,z), referred to some particular coordinate 

system of reference: 

Let us pay attention to a particular volume V(x,y,z) 

limited by a surface B(x,y,z) and fixed with respect to the 

frame of reference. It is assumed the existence at any point 

of this volume of a source of heat characterized by the function 

h
v
(x,y,z,t), the amount of heat generated per unit volume. The 

amount of heat produced at points on the surface B is measured 

by the function hs(x,y,z,t), where hs  is the heat produced per 

unit area. 

'As a consequence of these sources of heat, a temper-

ature field T(x,y,z,t) is obtained, which we aim to describe. 

It is an experimental fact that the amount of heat 

accumulated in V at a given time may be expressed as: 

H = Jjf tic T dV 	 (204) 
V 
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where -arepresents the density of the medium and c its specific 

heat. The time derivative of expression (204) is: 

dH d 	.T 
fijr-3'-cTdV= fffac c 	xgradT)V (205)  

dt = dt 	bt V 

The heat transferred by conduction through the surface 

B, per unit area and unit time in the n-directions is propor-

tional to the temperature gradient in this direction: 

d2H 
-1 dT 

kndt 	
(206) 

dsdt = 

where k
n 

is the thermal conductivity of the medium in the 

n-direction. If the material is thermally isotropic, kn  has 

the same value for any direction, say k. Hence, expression 

2
H  

ddt
1 	dT 

= k TiT  dS = kVT x a 	(207) 

is obtained. 

By integration of expression (207)  over the whole 

boundary surface B, the expression 

dH
1  jf (k77T).a (208)  dt 

is obtained. On the other hand, the amount of heat generated 

per unit time within V and its boundary surface is: 

dH
2

vdV 	frii sds 
 rrr 

dt 	)  
V 

(209)  
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oh 	ah 
where b

y 
= -a— and hs 

	at'  by  being the amount of heat 

generated per unit volume and hs  the heat generated per unit 

area. Adding expressions (208) and (209), the total rate of 

change of the heat in V is obtained: 

dH = ff (kVT)x 	+ 	dv + 	n as 	(210) 
B dt V 

Assuming a flux vector as: 

cis = n".h 

being the unit normal vector to the surface element dS. The 

last term of expression (210) rewrites as: 

JJ s
as = ff ilsdsc; x 	=x s dS (211)  

By substituting expression (211) into (210) 1,,e get: 

dH 
= fj  (kv T) x 	+ if ay + jf = de" 

dt 	 V 

which, by means of Gauss's theorem may be transformed into: 

dH = gr  Ldiv(kVT) h ÷ divhs IIV 
dt 

V 
(212)  

According to the conservation of energy principle, 

equations (205) and (212) may be equated and hence: 

jjjv 
aT 	

f c 	+ v x gradl dV = 	Ek 
2  T +h

v 
+ div jdV 

V 
f
v  

(213)  



a2T a
2
T 

ar
2 

az
2 'r 

61s)r 
r 

a(1is)r  

- 'year 	dz = 	ar Q 
	p aT 

a(fidzi  

az (216) 
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As equation (213) must hold for any volume V, exp- 

ression 

+ v x gradT1 = k\ 7 'I' + by  + div hs 	(214) 

is obtained. 

If only the steady state is to be considered, equation 

(214) becomes: 

V
2

T - 	v xgradT) = - ( -1
v 
 + divf;s) k  

(215) 

where p 

Under conditions of axial symmetry and referred to a 

cylindrical system of coordinates, expression (215) is written 

as: 

which is the equation to be integrated for this case. 

VIII.8.3 Proposed estimates and error  functions 

In order to calculate the temperature distribution in 

the deforming zone of a composite wire, it is adopted the 

geometry shown in Fig. 32, which includes the die. 

The value of by corresponding to each nodal point is 
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FIGURE 32 
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calculated assuming that all plastic work involved in the 

process is converted into heat and, consequently, its expression 

is given by: 

A E 3 1 = O13  .. .• 

where tensors 0!. and E.. have already been obtained. The 
13 

expression for the heat generated on the tube-die interface due 

to friction is: 

hs 	T
CC 

 v 
U 

where T is the shear stress at the tube-die interface and v 

the velocity corresponding to points on that surface. These 

values are assumed as being given by the expressions: 

= q kt  

va  = V (r
2 

 +z ) 

and, hence, for that surface the expression for hs 

= VEREqk
t cosa  

h
s 	

2 2  (cosa, 0, -sine) 
r +z 

is obtained. 

(217) 

The boundary conditions to be considered in the 

process of integration are as follows: 

(1) 	On surfaces I and II: T = To  (room temperature). 

cost 



as: 

T = To  + (RI
2 
 - r

2 
 - z

2  ) ( z tanCCE  - r 
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aT  (ii) 	On surface III 	= _az v. It implies no variation of 

temperature Lffinediately after leaving the boundary of the 

deforming zone. 

(iii) 	Due to symmetry, at all points of the z-axis (r = 0) 

is 21  0 and also T = f(z). ar 

The proposed trial family for this problem is chosen 

M 

i=0 j=1 

or, in another form: 

   

    

T = To + P,L 
	> D..1]r

2i
Z
j (219) 

 

i=0 j=1 

  

where P = RI  - r2 	z
2 
and L = z tans - r = z.a r. 

 

Factors P and L ensure the fulfillment of condition 

(i). It can be shown that condition (iii) is automatically 

satisfied while condition (ii) needs to be taken into account 

through an error function. 

By substituting expression (218) into the governing 

equation (216), the following error function arises: 

Rln = 	
D..r2i-zE2i-1)z2(-2r2L-Pr+ziPL)+z2r(-4rL 

+4r2-P-4irL-2iP)+r
2
(j-1)(-2z

2
L+aPz-FjPL) 
Q  +r2z(-4zL-4az+aP+jaP-zjzL)+(-1  -pvr  )z

2  r(-zr2  L r  
-Pr+2iPL)+ pvzr2z(-2z21.4-aPz±jPL):+-t[hv+divris] 

(219) 
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In this expression, the values of the physical cons-

tants for each point are properly selected during the computing 

process. For simplicity sake the same values are assigned for 

the die and the stainless steel core since they are quite 

similar. 

For points on the tube-die interface, the expression 

2rcosa 	cost 	2zsina 
divfi = V R

9
qk
tcos (- 	±- 1- 

(r
2
-1-z
2
)
2 

r(r -rz ) (r
2
-f-z
2
)
2 s 	E E 	2, 2 

(220)  

is obtained, which must vanish for any other point. 

The boundary condition (ii) gives birth to the second 

error function: 

  

7-D r2izi-1(-2z2L+arz ) 	0.0 
ij 

(221)  

R
2n

=  

 

  

The total error function is: 

R
n = glRln g2R2n 
	 (222) 

g
1 
and g2 

being weighting factors proportional to the involved 

nodal points respectively. This error function is to be squared, 

computed at all points, and minimized through the least squares 

criterion. 
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VIII.9 Description 	 computing °Exmat 

The process of calculation is programmed in FORTRAN IV 

language, for the C.D.C. 6400 computer of the Imperial College. 

For simplicity sake the programme is designed with a 

Main Programme and three subroutines performing the following 

operations: 

Subroutine MESH: 

It generates the coordinates of the nodal points 

selected in the composite wire for the analysis of stress and 

also, in the die, for the analysis of temperatures. 

Subroutine STRESS: 

It calculates the stress distribution, according to 

the method of weighted residuals already described. 

Subroutine TEMPD: 

It determines the temperature distribution which 

arises from the stress and strain rates previously calculated. 

.The calculations are performed for different 

extrusion ratios. 

After the polynomial solutions are obtained, they 

are economized by means of the subroutine ECON2, already 

described. 

The detailed sequence of operations performed during 
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the process by each subroutine can be seen in the corresponding 

flow charts and listings. 

VIII.9.1 Main Programme  

The Main Programme reads the data related to the 

physical and geometrical characteristics of the problem, which 

are expressed as FORTRAN variables with the following names: 

Input Data: 

Number of error functions (stress) 	NERRFN 

Maximum power in R (stress 1) 	NTERM1 

Maximum power in z (stress 2) 	NTERN2 

Number of variables (stress) 	NVAR 

Number of error functions (temperature) 	NERFT 

Maximum power in R (temperature 1) 	NTERM3 

Maximum power in z (temperature 2) 	NTERM4 

Number of variables (temperature) 	NVART 

Number of total nodes 	 NDNODE 

Number of nodes in billet 	NNODE 

Number of nodes in the core 	NFNODE 

Number of nodes in the interface 	NCNODE 

Number of divisions of angle (core) 	NADIVC 

Number of divisions of angle (tube) 	NADIVT 

Number of divisions of angle (die) 	NADIVD 

Radius at exit 	 RF 
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Radius at entry 

Semi-core angle 

Semi-die angle 

Semi-external angle 

Velocity at exit 

Constant Q (friction) 

Shear yield stress of core 

Shear yield stress of tube 

Constant CK for the core 

Constant CK for the tube 

Initial temperature 

Thermal conductivity (tube) 

Thermal conductivity (core) 

Constant beta - 1 

Constant beta - 2 

Weighting factor - 1 (stress) 

Weighting factor.- 2 (stress) 

Weighting factor - 3 (stress) 

Weighting factor - 4 (stress) 

Weighting factor - 1 (temperature) 

Weighting factor - 2 (temperature) 

RI 

ALPHAC 

ALPHA 

ALPHAE 

VE 

Q 

AK1 

AK2 

CK1 

CK2 

TIN1 

TC1 

TC2 

BETA1 

BETA2 

G(1)  

G(2)  

G(3)  

G(4)  

WF(1)  

WF(2)  

It also performs several preliminary operations which 

are enumerated in the corresponding flow chart. This flow 
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chart is presented as Fig. 33 while the FORTRAN listing is 

presented as Fig. 34. 

At the end of the calculations the subroutine GRAFIT 

is called as required to plot results. This subroutine is a 

standard one of the Computing Centre. 

VIII.9.2 Subroutine MESH 
••••••••■••••■••••*■•■•••••••■• 11■••■•••■•■• 

The coordinates of the nodal points are calculated 

with reference to a cylindrical system of coordinates (r,z), 

according to the following diagram. 

I 
■ 1 ....- 	 Ir.

L . ...-- ..• 	 I ..■ 
, 	,0 	 r , 	1 -r . 

,...- - qi 	 I 
I 

e 	C 
	

KL 	e 
I 

The RF coordinate defines the exit spherical surface and, 

consequently, the extrusion ratio. By selecting adequate values 

for RF, it is possible to obtain the different extrusion ratios: 

r. 
R
F 	

sin1501/R 

In the case of our specimens: 

RF 
= 9.4358 R 2 
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The flow chart and the FORTRAN listing are presented 

as Figs. 35 and 36 respectively. 

VIII.9.3 Subroutine STRESS 

It performs the whole sequence of the method of 

weighted residuals with the numerical values for the variables 

read in the Main Programme and the coordinates generated in 

MESH. All these variables are contained in a COMMON declaration 

statement. 

In order to solve the linear system of equations, 

this subroutine calls another subroutine SIMQ, which is a 

standard one of the IBM System Subroutine Package. 

Since we are using linear expressions in the unknown 

parameters A. as trial function, the arising error functions have 

a form like: 

F = A.X. 
1 1 

which squares as: 

F
2 

= A.A.X.X. 

The least squares method requires that the derivatives of this 

expression with respect to the parameters must vanish, that is: 

o
2 
= 	A.X.X. + 15. A.X.X. = A.X X. + A.X.X = 0 

aA
p 	

ip 3•13 	3p113 	3p3 	lip 
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and, finally: 

a 
F2 

aA 	= \‘1: A.X. / 'll
Xp 0 

which is a generical equation of the system to be solved. It 

is interesting to point out that the coefficient matrix of the 

• 

 

system contains the same elements 	as in F
2 
 , making the 

derivative operation unnecessary. 

The corresponding flow chart and the FORTRAN listing 

are presented as Figs, 37 and 38 respectively. 

VIII.9.4 Subroutine TEMPD 

The sequence of operations performed by this subroutine 

is similar to the subroutine STRESS, solving the temperature 

distribution equation (216) as already described. The numerical 

data come from Main Programme through a COMMON declaration 

statement. 

The corresponding flow chart and FORTRAN listing are 

presented .as Figs. 39 and 40 respectively. 

VIII.10 Verification  of the alalt12 

The temperature or stress field in the wire cannot be 

measured by experimental means. Consequently, in order to have 

a true idea about the accuracy of the numerical procedure to be 

used in the analysis of these fields, we consider next the 
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numerical solution of the elliptic equation 

V 2f = a
2
f 	a

2
f 

ox 
 

ay 
 

-A 	(223) 

with f/D = 0 and A = 2, of which solutions are very well known. 

This equation corresponds to the torsion problem of 

Saint-Venant, discussed by Southwell [103] using relaxation 

methods, and by Mason 0_04],[14 using Chebyshev methods. A 

theoretical analysis of this problem is given by Knudsen and 

Katz ElOg. That equation also describes the temperature distrib-

ution on a plane section, with a uniform source of heat all over 

the surface, in which case the governing equation is: 

V 2T = 

H being the source of heat. This equation is a particular case 

of the equation 

v 2T - 13(7 xvT) . - 11, 	 (224) 

to be integrated in the temperature distribution, in which the 

convective term is zero. 

We solve equation (223) by means of the method of 

weighted residuals in a square section as follows: 
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As trial solution we use an expression of the form: 

f(x,y) = (x-z)(y-z (225) 
1=1 j=1 

valid in a square domain D = [ 0 x < 2, 0< y <2. The 

factors preceding the polynomial make certain that the boundary 

condition is fulfilled. The A.. are the unknown parameters we 

then evaluate with a least squares approach. 

Fur the numerical application we use a square mesh 

with a set of 121 equidistant points. 

We start with an approximate solution of degree 6 in 

x (N = 6) and 6 in y (M = 6) and then economize it in the square 

domain D
1 
= (0‹ x C 1, 0 <y‹ 11 with permissible error 

bound E= 0.8 10
-3, to a degree of 4 in x and 4 in y. We 

restrain our study to the domain D1 
because, due to symmetry, 

in the domain D there are four equivalent sectors as D1. 

The original. polynomial solution is shown in Table III 

and that corresponding to the economized polynomial in Table IV. 

In Table V we give values of f(xi,yi) for xi, yi  

= 0 (0.25) 1, computed using: 

a. The analytical solution (top line). 

b. Our solution (middle line in brackets). 

c. Chebyshev selected points solution (low line) as 

given in 	rounded to 3D. 
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TABLE III TABLE IV 

  

0.4969E401 

-.1001E+0? 
V 
-.10q2P+02 
1,.421F+01 

-.7536F+0r,  
-.1001F+G2 
0.3572F+02 
-.5024F+0? 
0.5201E+0? 

-.22IPF+02 
0.36q7r+01 

0.13•.:64'+02 
-.6627402 
0.10pop-+01 
...q61F+02 
.4157E+L2 
-.6923+u) 
-.1092E+02 
0.5203E+02 
-.9663E+2 
0.6657E+02 

-.3746E+02 
0.6242E+01 
0.4921E+01 
-.2219E+02 
0.4)57E+02 
-.3745E4.02 
0.1624E+02 

-.2706E4." 
-.7536E+00  
0.3697E+01 
-.6920E+01 

0.6242E+01 

-.2706E+01 
0.4511E+00  

(X.* 
iX** 

cxt= 
(X.A 
cx+k 
(x.* 
(X** 
1X4* 

(X** 
(X.* 

(X** 
(x** 
(X** 
Ix** 
(X.* 
(X** 
(x*. 
(x*. 
(X** 
(X** 

(X** 
(x41  
(x** 

(x** 
(X** 
(X** 
(X** 
(x4* 

Ix* *  
(X** 
(X** 
(X** 
(X** 
(X** 
(X** 

1) 
I) 

I) 
1)  

)) 
)) 
2)  
p) 

2) 
2) 

2) 
2) 

1) 
."() 
') 

3) 
41 
41 
4) 
4) 
4) 
4) 

5) 
5) 
5) 

5) 
5) 

5) 
6) 
6) 
6) 
6) 
6) 
6) 

(Y*. 
Ix*. 

(Y,* 
(e.. 
(Y.. 
(Y** 
(Y** 
(y*, 
(Y.* 

('e4+ 

(Y** 
(y** 
Y*4 
4y*. 
(V** 
((.* 

(Ys* 
(Y*. 
(Y+11. 
(Y** 

(Y** 
(Y** 
(Y** 
(Y.. 

(y*. 
(y** 
(y** 

(Y** 
(y** 

(Y** 

(Y** 
(Y** 
(y** 
(Y** 
(Y*4 
(Y** 

11 

31 
41 
5)  
6)  
1) 
p) 
3)  

4)  
5)  
6)  
1) 
?) 
3)  
4)  

5)  

6)  
)) 
2) 

3) 
4) 
5) 
6) 

1)  
2)  

3)  

4)  
5)  

6)  

1)  
2)  
3)  
4)  
5)  

6)  

0,181s1r-L4 
0.38430-02 
-.170-01 
0.2C,rw..-S/1 
-.84950-02 
0.38430-02 
C.422D+01 

-.7132D+01 
0.62490+01 
-.22910+0 4 
-.15F70-01 
-.71320+01 
0.18780+02 
-.20810+C2 

0.81560+0 1 
0.20190-01 
0.62500+01 
-.20510+02 
0.24400+02 
-.10040+02 
-.A4960-02 
-.22010+01 
0.81560+01 
-.10040+02 
0.41190+01 

(x.4 
(X** 
(X.* 
(X** 

(x.* 

(X** 
(X4* 
(X** 
(X.* 
(X** 

(Xls. 
(xot 
(xxv 
(x+4 
(X41  
0(4* 
(x** 
(Xs% 
(X.* 
(X.* 
(X** 
(x** 
(x., 

(X*. 
(X** 

0) 
0) 
0) 
0) 
0) 

1) 
1) 
1) 

1) 
1)  

2)  
2) 
2) 
2) 
2) 
3) 
1) 
3) 
1) 
3) 
4) 
4) 
4) 

4) 
4) 

(Y. 
(r** 
(Y** 
(Y+4 

(7** 

(Y** 
(74* 
(Y** 
(Y** 
(Y** 

(Y** 
(YA* 
(r44 
(Y** 
(Y4* 
CY** 
(Y1* 

(Y** 
(V** 

(Y.* 
(7** 
(Y.. 
(7.* 

(Y** 
(Y** 

0! 
1)  
2)  

4) 

0 ) 
1) 
2) 

3) 
41 
0) 
1)  
2)  
3)  

4)  
0: 
1)  

2)  
3)  

4)  
0) 
1)  
2)  

3)  
4)  

TABLE V 

0 
	0.25 	0.50 	0.75 

0.589 

( 0.585 

0.600 

) 

0.558 

(0.553 ) 

0.562 

0.459 

(0.456 

0.450 

) 

i 	0.280 

(0.279 

0.262 

) 

0.558 0.528 0.456 i 	0.267 

( 0.553 ) (0.524 ) I 	(0.454 ) I  ( 0.266 ) 

0.562 0.530 1 	0.431 i 	0.258 

0.459 0.436  0.362 i 	0.226 
I 

(0.456 ) ( 0.434) 1 ( 0.562 ) ( 0.225 ) 

0.450 0.431 1 	0.356 0.254 

0.279 0.267 1 	0.225 0.146 

(0.279 ) (0.266) 1  (0.225) 0.146) 

0.262 0.258 ! 	0.234 0.163 

0 

0.25 

0.50 

0.75 
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Comparison of our solution and the one given in El071 

based on Manson's extension of Lanczos's selected points method, 

with the analytical solution [106] (see Appendix C) being, in 

this case, favourable to our results. 

The maximum error detected in our solution in the 

mesh described in E10] is 0.89% and for the Chebyshev collocation 

solution, 11.64%. In this case of the E-economized solution, 

error estimates can be deduced from estimates on the least 

squares approximations (see Picone a08], Fichera [109] and 

CollatzE9]). 

This application shows that our numerical procedure 

is adequate to solve this type of equation and, hence, we can 

confidently use it with equation (224) which governs the 

temperature distribution in our problem. 

VIII.11 	Stress fields in the com osite wire 

By means of the described programme, the stress and 

temperature distributions produced during the extrusion process 

of a bimetallic wire under different extrusion ratios are 

obtained. This means the description of the stress tensor 

component fields: 0,
A' 

G
z
, T

rz
, and the temperature field. 

The strain hardening distribution in the wire, according to the 

adopted rule of hardening, is also described. 
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Except for the extrusion ratio all other parameters 

involved in the process are kept constant. 

The numerical values selected for the physical and 

geometrical parameters which characterized the experiments 

carried out are as follows, in S.I. units wherever relevant. 

Number of error functions (Stress) 	4 

Number of indices (Stress 1) 	3 

Number of indices (Stress 2) 	3 

Number of variables (Stress) 	2 

Number of total nodes 	 144 

Number of nodes in billet 	 99 

Number of nodes in the core 	63 

Number of nodes in the interface 	9 

Number of divisions of angle (core) 	6 

Number of divisions of angle (tube) 	4 

Number of divisions of angle (die) 	5 

Radius at exit 	
according to 

 
extrusion ratio 

Radius at entry 	 .9500E-02 

Semi-core angle 	 .2000E+00 

Semi-die angle 	 .2600E+00 

Semi-external, angle 	.5220E+00 

Velocity at exit 	 .1000E-02 

Constant Q (friction) 	.5000E-01 



- 206 - 

Shear yield stress of core 

Shear yield stress of tube 

Constant CK for the core 

Constant CK for the tube 

Time increment (hardening) 

Weighting factor - 1 (stress) 

Weighting factor - 2 (stress) 

Weighting factor - 3 (stress) 

Weighting factor - 4 (stress) 

according to 
extrusion ratio 

.2000E+09 

according to 
extrusion ratio 

.3400E+08 

.5625E+00 

.1000E+01 

.1000E+01 

.1000E+01 

.1000E+01 

In Figs. 41 and 42 the experimental stress-strain 

curves of the two metals are shown together with the linear 

approximations chosen to be used in this theoretical approach. 

These straight lines have been chosen with a least square 

criterion, within the approximate range of deformation covered 

by our extrusion experiments, and the following expressions were 

obtained: 

0  = 320 + Ht. 
	

(MN/m2) 

for copper. Similarly 

0 = 950 + 750E. 	(MN/m2) 

for the stainless steel and deformation up to the extrusion 

ratios 5 and 6. For extrusion ratios up to 4 the following 

expression was used: 
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= 650 + 770E 
	

(MN/m2) 

These equations correspond to the theoretical form 

adopted to follow the strain hardening of the metals, according 

to von Mises's yield criterion and a linear rule of hardening 

(see equation (182)). 

As far as the polynomial solution is concerned, a 

polynomial of nine terms has been adopted for the determination 

of the unknown parameters in the expressions of the stress 

functions: 

3 
01 -  _ k r3 +p3 >-- 	A1J r2

1 zJ 15  
1=1 J=1 

3 

/  BMN 
r2M+1 zN 

M=1 N=1 

This is achieved in the computer programme by making I = J = 3 

and also M = N = 3. In this case, maximum powers of 10 in r and 

8 in z are produced, which are on the recommended upper limit, 

as far as rounding errors are concerned. 

The calculations have also been made with higher values 

of indices (4 and 5) and, since no significant differences with 

the previous results arise, the value 3 has been adopted for the 

final results. This fact is considered as a convergence test by 

several authors :51j, E481. 

02 = 
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These polynomials are then economized to power 7 in r 

and 6 in z, thus obtaining the set of values for the unknown 

parameters to be used in the calculation of the stress field. 

The contour corresponding to equi-stress lines for 

the different stress components and extrusion ratios are shown 

in Figs. 43 to 62 . The values have been divided by the 

initial yield stress of the tube in order to put them in a non-

dimensional form. 

In order to check how well the solution satisfies the 

governing equations, a direct numerical substitution for all 

nodal points was made. The resulting error was expressed as a 

percentage of the calculated values. 

From this analysis it clearly shows two zones of the 

mesh where the higher errors are obtained, being located at 

both ends of the tube. The maximum and average percentage 

errors for the different stress components and extrusion ratios 

are shown in the table on the following page. The economization 

process adds a maximum of 2% to the corresponding average errors. 

In order to be compared with the experimental results 

the pulling stress-hydrostatic pressure relationship has been 

calculated from the theoretical stress field for different 

extrusion ratios, by means of expression (202). In Fig.68 the 

theoretical lines are shown together with the experimental ones 

presenting a reasonable agreement. 



Extrusion 
Ratio 

Gr o
e rz 

 Maximum 
error 	% 

Average 
error 	% 

Maximum 
error (%) 

Average 
error (%) 

Maximum 
error (%) 

Average 
error (%) 

Maximum 
error (%1,error  

19 

Average 
(%) 

15 2 21 16 23 17 18.6 13 

3 18 14 I 	21 15 17 12 18 14 

4 16 11 19 16 15 14 20 16 

5 19 12 20 14 15 12 21 17 

6 18 15 21 15 16 13 17 13 
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VIII.12 Temperature field in the com2osit.ewire 

The temperature field was calculated by direct integ-

ration of the equation (216) by means of the method of weighted 

' residuals, using the following trial function: 

N M 

T = To 
	I 
+ (R - r

2 
- z

2
)(z.tangt  - 

21 j 
r z 

as was explained in Section VII.8.3. 

The error function arising from the use of that 

expression was calculated with the following numerical values, 

in S.I. units wherever relevant(mics sYsten1): 

Number of error functions 2 

Maximum index (temperature 1) 3 

Maximum index (temperature 2) 3 

Number of variables (temperature) 1 

Initial temperature .2000E+02 

Thermal conductivity (tube) .1600E+02 

Thermal conductivity (core) .3860E+03 

Constant beta - 1 .3600E+12 

Constant beta - 2 .1445E+11 

Weighting factor - 1 (temperature) .1000E+01 

Weighting factor - 2 (temperature) .2200E+03 

The contours corresponding to the isothermal lines 

for the different extrusion ratios are presented in Figs.64 

to 67 • 
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The maximum temperatures predicted are of the same 

order as the ones obtained by R.M. Guha and B. Lengyel [47] by 

a finite difference approach in the case of hydrostatic 

extrusion of a single metal wire. 

VIII.13 Pressure welding conditions  

VIII.13.1 Introduction  

The basic process variables involved in solid state 

welding are pressure, temperature and level of superficial 

contamination. A metallurgical variable must also be taken into 

account when the welding of dissimilar metals is considered. 

These variables, together with the physico-chemical properties 

of the materials to be welded, determine the course of the joint 

formation process E],[10,[11]. Although the experimental 

parameters involved in several welding processes are well 

estbalished, the mechanism operating in the formation of the 

joint still remains unclear El]. 

There are two aspects in the formation of a pressure 

weld: 

(i) The presence of surface oxide films that prevents 

bonding. 

(ii) The difficulty of forming a bond between metallic 

areas exposed by fragmentation of the oxide during the deform-

ation.' 
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The several reasons proposed to account for the 

second point can be seen in El] and they can be briefly 

summarized as follows: 

(1) 
	

An energy barrier has to be overcome for the formation 

of the bond. 

(ii) Bonds do form but are broken by elastic stresses on 

release of the load. 

(iii) The metallic surfaces become contaminated by adsorbed 

contaminants transferring from particles of the original surface. 

These mechanisms are in a close relationship with 

the existence of a minimum or threshold deformation required to 

produce the joint, below which the welding of the surfaces does 

not seem to take place. 

VIII.13.2 Surface preparation  and threshold deformation 

Whenever metals are to be pressure welded at room 

temperature the question of surface preparation arises, for it 

is invariably found that welding will not take place without 

some sort of surface treatment. 

An extensive consideration of this problem has been 

done by L.R. Vaidyanath and D.R. Milner El]. In their experi-

ments it has been found that degreasing followed by scratch 

brushing immediately before welding gives the highest bond 
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strengths. It is often stated that scratch-brushing removes 

scale and oxide films; although this may be true, it cannot 

produce a surface which is free from oxide, for the scratch-

brushing operation heats the surface layers, so that a further 

film will be rapidly reformed before welding can be carried out. 

It has also been postulated that the main effect of 

scratch-brushing is the removal of adsorbed contaminant 

surface layers lEg. This finds support in Milner's work Ei.3 

where it was shown that if scratch-brushed surfaces were 

exposed to the atmosphere before welding for periods exceeding 

about two minutes, the bond strength progressively decreased 

owing to the adsorption of contaminants, mainly water vapour. 

In Ref. ElZ there is presented an illustrative 

diagram showing the influence that different surface treatments 

have on the bond strength of aluminium roll-bonded composites. 

It is found that degreasing followed by scratch-brushing gave 

the best bonding properties. It is also established that if 

the procedure is reversed, with scratch-brushing followed by 

degreasing, the threshold deformation for bonding is higher, 

and lower bond strengths are obtained. Machined surfaces gave 

intermediate bond strengths, while electropolished surfaces 

and the "as received" commercial surfaces, either with or 

without a degreasing treatment, did not weld even with an 80% 

deformation. 
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In the same reference, El], another series of 

experiments analyse the influence of heating the "as received" 

specimens followed by a cooling period in a dessicator, on the 

bond strength. It was shown that temperature does not seem to 

be as effective as scratch-brushing in removing contaminants or 

that there must be another significant factor associated with 

the scratch-brushing process. 

In some papers by H. Heiman and C. Martinez Vidal it 

was experimentally studied the influence of the moisture and 

the specimen exposure time to this, time covering from the end 

of the scratch-brushing process to the bonding process, on the 

threshold deformation of aluminium specimens bonded by rolling 

[TA and by indentation E212. In Figs. 69 and 70 can be seen 

how relevant to the threshold deformation is the adsorbed 

moisture and also the importance of avoiding delays after the 

scratch-brushing process is finished. 

Perhaps one of the more conclusive experimental works 

in favour of the superficial contamination as being mainly 

responsible for the existence of a threshold deformation was 

done by W.C. Sherwood and D.R. Milner [122J. In this work the 

effect on pressure welding of reducing the level of contamination 

has been examined by rolling strips together immediately after 

machining off the contaminated surface layer. The operation 
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was carried out in a vacuum chamber so as to minimize the 

possibility of reformation of a contaminated layer. It was 

shown that when operating in a vacuum of 3 x 10
-5 

torr the 

threshold deformation for aluminium, copper and cadmium was 

reduced to less than 1%, while for stronger metals it went up 

to 7% for nickel and 24% for iron. 

Another similar experiment has been done by D.V. 

Keller and T. Spalvins 0.211: in an ultra-high vacuum chamber, 

contaminants were removed from the surfaces by argon-ion and 

electron bombardment, in a vacuum of 10
-11 

torr. They have 

found that when the surfaces were brought together under light 

loads, many, but not all, metals and combinations of metals 

adhered together. 

In industrial practice much more highly contaminated 

surfaces are welded together to give full strength, but this is 

accomplished by greater pressures and deformations, and some-

times also by operating at high temperatures. 

Very little is known about how contaminants behave 

during the process of deformation. There is some information 

about oxides' behaviour during the rolling process [124] and 

also there has been proposed a mechanism for the joint formation 

related to such behaviour [125]. Briefly, it was stated that 

for surfaces prepared by degreasing and scratch-brushing, 
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cold pressure welding is essentially a three-stage process 

involving: 

Coherent fracture of the surface layers resulting 

from extension of the interface during rolling. 

(ii) Extrusion of underlying surfaces through interfacial 

cracks from both sides of the interface under the action of 

normal roll pressure. 

(iii) Metallic bonding between freshly created surfaces 

that approach to within interatomic distances. 

It also pointed out that welding is initiated at a 

deformation slightly below the threshold deformation, i.e. 

that at which the bonds formed become sufficiently strong to 

withstand the forces acting to separate the strips as they 

emerge from the roll gap. The principal effects of increasing 

the degree of deformation are to enlarge - the interfacial area 

available for bonding and to increase the bonded area of 

individual junctions. 

Nevertheless, there still remains unclear the role 

played by other inhibiting factors such as moisture, trapped 

and adsorbed gases, etc. Since most of the research effort has 

been oriented towards the form of eliminating such interferences, 

mainly by the process of degreasing followed by scratch-brushing, 

there is little information about cold welding conditions for 
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the "as received" coumercial surfaces processed by conventional 

methods (rolling, indentation, etc.). It is only known that 

the threshold deformation is very high: more than 80% for 

cold rolled aluminium Nand we know that a still higher 

deformation did not produce bonding in aluminium deformed by 

indentation DT. 

The basic problem to be considered, therefore, is 

the welding of two surfaces having a certain amount of contam-

inant present between them that must in some way be dispersed 

by the operating variables of deformation, pressure and temper-

ature. Such information is relevant to some cases where the 

scratch-brushing operation is difficult to carry out. This is 

the case of our specimens, which consist of small diameter 

tubes and a wire as core, for the process of coextrusion. 

However, there exists a pressure welding method where 

the surfaces received no special treatment prior to the welding 

process, as is the case of explosive cladding. Nevertheless, 

in this prbcess a jet or spray of metal is formed at the apex 

of the collision of both plates and is forced outward from 

the space between the colliding plates, at a very high velocity. 

The explosion-welding process can be considered as 

a two-step process. Firstly, the jet breaks up and cleans 

the inhibiting surface layers and, secondly, the high pressure 
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produced forces the clean metal surfaces into such close 

contact that the interatomic forces can be established across 

the bond interface [1261. 

The impact pressure developed during the welding 

process required for the joint to be formed are 44.7 Kb for low 

carbon steel, 48 Kb for medium carbon steel, and 44 Kb for Ti, 

L127], involving kinematic energies in the order of 150 NM/cm
2  L1.27], 

0-20,  62?-]. These values tend to increase with the yield stress 

of the metals to be welded. 

The other parameters involved in pressure welding 

are less critical, as far as cold welding is concerned. Inc-

reasing pressure primarily increases the development of bonding 

above the threshold deformation, having little effect on the 

threshold deformation itself PO]. 

If high temperature is developed during the process 

of deformation it may have an important influence on the 

bonding: the threshold deformation decreases as temperature 

increases. This incidence seems to be directly related to the 

yield stress. With metals which dissolve their oxide films at 

high temperature (e.g. iron, copper, titanium, etc.) welding 

is greatly enhanced at these temperatures, because the oxide 

on the mating surfaces dissolves into the adjacent metal, thus 

decreasing the area over which the bonding is inhibited. This 
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dissolution starts to occur at welding temperatures of about 

0.5 Tm (Tm is the absolute melting temperature) DO]. 

VIII.14 	Coextrusion of copper-stainless steel specimens 

VIII.14.1 Experimental  preparation  

The specimens to be processed are those described in 

Section 111-.3 

The superficial treatment given to the copper tube 

was as follows: 

1. Degreasing by means of trichlorethylene. 

2. Chemical removal of oxides by means of the solution 

80% NO3H 	20%(P03)4H3  

After being carefully washed with water the tubes were left in 

a dessicator with silica gel during at least 24 hours. 

This treatment is known to have poor results because 

of the amount of contaminants, mainly adsorbed water, left at 

the end of the process on the surfaces to be welded. Unfort-

unately it was not possible to use, without special devices, 

the procedure of baking followed by scratch-brushing. The 

adequate temperature required for the contaminents to be baked 

off is too high to avoid softening the copper tube E1:71_, (see 

Section 111.3) and the scratch-brushing operation of the 
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internal surfaces of tubes of small diameters requires the use 

of special devices. 

The stainless steel wire was heated in vacuum 

furnace at 600°C and scratch-brushed immediately before the 

composite specimen was assembled. 

The preparation of the composite specimen takes some 

time since it involves several operations; in a minor degree 

also the assembly of the extrusion rig imposes a delay before 

the deformation process. 

After all these steps have been fulfilled, the 

surfaces to be welded have surely been recontaminated. 

Consequently, as far as the bonding operation is concerned, the 

surfaces of the tube and core may reasonably be considered to be 

in a similar condition to the "as received" state. 

VIII.14.2 Pressures and temneratures at the interface 

From the theoretical description obtained for the 

stress and temperature fields, it is possible to calculate the 

normal stress or pressure acting along the interface and also 

the temperature distribution developed on this surface. 

The pressure distributions are presented in Figs. 71-75 

while the temperature distributions are shown in Fig. 76.In 

Fig. 77 is presented the "maximum temperature-extrusion ratio" 
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relationship, and in Fig. 78 the "maximum pressure-extrusion 

ratio" relationship. 

VIII.14.3 Conditions for cold welding and ex erimental results 

The described specimens were extruded with the 

extrusion ratios 2.7, 4.3 and 5.6. It was intended to reach 

still higher extrusion ratios; however, it was not possible to 

obtain further reductions since even with an extrusion pressure 

of 110 ton/in
2 
the stainless steel was broken without the 

specimen starting to extrude, for an extrusion ratio of 7. For 

safety reasons the use of higher pressures was not considered. 

In all cases the minimum speed was used; for the 

extrusion ratio 5.6 several specimens were obtained free 

extruded with an estimated velocity of 1 m/s. 
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IX. 	GENERAL CONCLUSIONS 

The process of hydrostatic extrusion of bimetallic 

composites was analysed by the Method of Weighted Residuals. 

Pressure, stress and temperature distribution in the deforming 

zone were computed. 

The metals were assumed to obey the von Mises yield 

criterion, a linear rule of isotropic hardening and Prandtl-

Reuss stress-strain relationship. Avitzur's velocity field 

was assumed to characterise the flow of metals through the dies. 

The theoretically predicted pulling stress-hydrostatic 

pressure relationship is in reasonable agreement with the 

experimental results. The maximum temperatures computed in the 

deforming zone are comparable to those obtained by others. 

The pressure distribution at the core/tube interface 

of the composite was calculated for different extrusion ratios 

and the influence of this parameter on the pressure welding of 

the two metals was discussed. 

Metallurgical bonding was not achieved during the 

experiments. Adequate preparation of contact surfaces to 

ensure satisfactory welding conditions was not possible to 

obtain with the available equipment due to the difficult 

geometry of the specimen and the mechanical properties of the 

metals used. Neither the required pressure (60-100 Kb) nor 
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sufficiently high temperature (2> 500°C) which might have 

allowed pressure welding to take place without removing the 

contaminated layer could be reached during the experiments. 

The chosen Method of Weighted Residuals has proved to 

be easy to handle and suitable to solve the two types of 

equations encountered in this work. It is also much less 

demanding in terms of computation and consequently less expensive 

in comparison with other numerical methods. About 12 seconds of 

processing time (CDC 6400) was required to obtain the stress and 

temperature distributions mentioned above, whereas the central 

processing time required to obtain the same information by the 

method of Finite Elements would probably be several orders of 

magnitude higher. 

Whenever a solution to a system of partial differential 

equations (or tensor differential equation) is to be approximated 

by a polynomial to within an acceptable level of accuracy, it 

is usually necessary to use high order expansions. This 

condition could lead to high rounding errors and excessive 

computing time. Aiming to lessen these difficulties a new method 

for the numerical solution of partial differential equations 

based on the economization of several variables was developed 

I:133]. This procedure combines the operational simplicity of 

the Method of Weighted Residuals with the high accuracy of the 
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Chebyshev methods, which are difficult to use in the numerical 

solution of partial differential equations, as has been pointed 

out by several authors E30,[132]. 
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1 	 51,14 4- jr.1TTNI FACTjP, .. 1 (T'mP.) 	  - 12.4// 

2 	5X.354 N.IrN-Tr: g40TOD. - 2 (TLNR„) 	E12.4//) 
NGNOOE . 1.111C.7

3 
 + N-Aln,  4. NCNOOE 

NT11O0c. . tiNOC. 4.  NCN11-  
Nsron0 = winc: - 4,:w1,= .■ 

NSTNT = .T1OC2 - .1.:N11: + I. 
NPAR6M . t.fRmi•Nrr. .4,  • 2 
NPARA1 . KTZR,43'4Tr14 

f.150IZ.. Irolz + 1 
CALL MESH 
DO 121 J = 1, 4N00E 

21 R = ORG9(J) 
7 = OP.GZ(J) 
P:! = R•R 
R3 = R2 'F. 
R4= R2.22 
Z? = Z'Z 
23 = 72 "7 
F1 = R2 4Z? 
PAPA = - VS • RF ' of 

FAC5 . DI ' gi. 
F1C6 = rAC9 . orT 

	

'C 	STRAIN RAli FIEL1 

STPNRT(I,J) = 1=4.['7-,?"7..3.)/FACE 
STRNU(Z,J) = F.Ac,,..,,r.15 
STRNRT(3,J1 . 2."rArto.fDT'Z-7:)/RAC5 
ST?N=T(4,JI = '.c "21,7 " • (,:7-..:'?'22)/FAC; 

	

C 	GOuglITE il+.1.07 5,-: 	TN 1l?Tr.'1I (I?) =10 9,: )/1mTG= T 4: STRESZ-  1ENSOP 

STHY17(.1)=175(3T7"7'C 1.,J1'7T,'.PT 4,J) - .1"--.N=T(t,1)..S.TRPIRT(2,1)-  

1 STP.NkT(LIJ)".3TRN7 T(7 1.1) -ST L'Hii(3,..1)..STRNo.Ili,J)) 

121 CONTINUE 
00 131 N= !,N-!10-1?  

on 133 I = N1lTN10,-. 0,,,1n1 

IF(I,GT.PFN)_,i) CO T1 7 - 
SKIT) = AKI +.;Ki ' S1?'(IIN11(I)1 • CELTAT • (NCNOU-N) 
GO TO 133 

20D SKttl. tv,24C 1(2.'SloT(1'NVARII-ICNOOEWOELTAT'(NCNOO -N) 
13? CONTINUE 

00 5%2 I= NS01.70'..4107 
,JR(Il. I. 

5012 V?( I)= L.f 
CALL STPLSS 
C+LL TE"DO 

on 555 I = ifmlnr 
5T.nmPMT) = ,I.-0!—=(7.1 • 1.n,-...,5 

Str,MAT(1) = iIr-W.(I) ".- =.-5 

SI(.,M67(I) = SI;'.. Y1 41  • 1.:-5 

SI■MP.2 (1) = !:r4?4:41 4  1.'-- i 

555 5K(I) = :,K(T) • :-:1D"(1.") ' i.:,2-6 
WRITE(6,3) 

10C3 FOrWTItil:P“,"!, 7.1,1'"T :D D IULTS/0Y.1194   	/1 

I12ITE(6,:21'-) (I,1(7),..' = 1,NgAg 1.1) 

14;:5 ro,...mr.rtS). 7 2-o, 	r-!--7 ,4-..As._T,... (TLMP.) 	A -,13,7H 	 ,g14/) 

02.41) 1904 Fo;..4..7(::",'9H 	fl- -  '.-t'.:.:TE0. (13.,0TS) A -,I2,7H 	 
WR/1,:k...f....i5) (I,1 f1),

,1
i) 

WDITF(F,1711) 

1011 FOJeATlii-.- vo,il'A qi 	R 	7 	'Jt:LOCITY- 	VELOCIT 
1Y-7 	31742-, 	11-,1-1- sicrA-2 SIGr.A.--tZ yLo.sTss 

2 	iiHR. 	 /) • 
WRITE(5,:i1 6):1 1o.lo rt1,0 (I),J4 (11,47(.1),114R(1),31G4AT(I), 

1 	316,t2(I),3P,0.7 (T),!(11,TE 10(1) , 1 = 1,1N00il 
1015 Frpn!,T(5(,74,1712.1,1  

N3Non6 
M = ftlo-Ji.+.1. 
vRIT,Q,:,  '7) (1,17.),14:Gz( II,T7'15(1), I= '1, 

1117 FrpN!,70-..4,74,1'!7.4, I'," 	_..._ 	--- 	--- 

i---- 	 --- 	 --- 	7E14.41 
WP.IT!- (6,L 2'..) Al_71.,".)--,, .1VE,t 

1:..2i roPm!T(';,;, ;',11 	1 1!•,..r -  !,01.....IN0 iir-,:"S .. 	 
I 

	°1L .I/ 
2 	

ri3E, 3 . 31- 	1,Y1')1""A''' 7 n,- ,,;(1;,,, 
	  ■ *.::/f.f/1 

CALL c.: 7'e:firrt”j 1::.71."1 ,7i't.-,-,717,-:,I.,,,,I.:.?,1: 	,A) 
r- ..t! i 	r.--fir t 	'i-  :•'...'%%. 	 ', 	t, 	,:.. 	"!: 	.7J 
CAC:, f.,-..sir(    ,- - -. ,-.7,1,-  -,q,, ,-1, . i  I_ 	7 
CALL G,.'.;  ;.;'i 	.1:,: ':', 3,1:, - ",',,91 :Is. 	1 	/1 
r. "LL '''.,Irlit ,=,-, ',1-''.',r.','",;,;'' 	i  
CALL E:1Fil ( 1,r,'.'1'",n0-,,i, ,:. 	l't.7) 

S1!.P 
rill 	 F "GUM] 14 



        

   

Compute the constants 
for generating  mesh: 
FACT1,FACT2,etc and 
initialise ANGLE and 
RADS(1). 

 

J=2I NCNODE (9) 

 

I 

Compute radicus for the 
different arcs 

RADS(J) 

   

        

        

1=2 IN 

Yes 

ANGLE=ANGLE+FACT3 

I 7 NC N>  

-1. ANGLE=ANGLE+FACTT 

ANGLE=ANGLE+FACT1 

-T--  

Yes 

1 

No 

- 229 - 

Subroutine MESH 

C START 
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ti 

O 

Compute SIN andCOS of 
the angle of the line 
along which a'set of 
nodal points lie. 

J = 1,NCNODE I 

Compute K (no.of nodal 
points ) 
K = J 	..NCNODE x (I — 1) 

Compute the r and z coordin; 
ates: 
ORGR(K) and ORGZ(K )  

f--  

I N =  1,NCNODE j 

Compute r and z coordinate& 
of nodal points along the 
axis. 

r RETURN 

FIGURE 35 
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SLMROUT I Ur M ES'H 
- 	COMMON 	N 077PM )I  PH22 114AP. 'NEP FT , NTERN3 I NTErM4 INO,RT )  

NDNODt.:) ::NCOR l1=N0-17 ) CNOu,.. ) NAOI/C )NAT ) NADIVJ I N'zINT )  

	

2 	RF ) 	ALPH!,C;, 	ALPH t  4E, 0, AK, AK2x  OK:)  CK2) 

	

'3 	TC1, TC2, 7:ET11. )  3-TV!)  NTA0uE )  NS- CNP )  NGNO:-.)  NPAR.AM,RA", c.1 
- -- 	4 	A(2:)2L:), 3(4"), :7(773) )  o(2:), GC 	,-47 ( 2) )  ;,( 11 )2), 	= 

	

5 	ORGF.i1414)) ORG7(3A41 1  RADt( 9) )  E.FNRT(4)99). SINvi•P(1.E) )  

	

6 	SK(-i- !:), 	47('4.4)t SIG'1AP(Sq) ). STG1A2(99) )  

	

7 	SIGNAT( 99.), 1IG!IP 7( 19) $ -1E10(144) ) AJER)  AVER1)  AVER2 
NC = NkJIV + 
NT = NC + NACIVT 
N = NT + NADIJO 
ALPHAT = ALPFA - ALDHAC 
ALPHAD= kLPHAE - 
FACT = (RI-RF)/(q71017-11 
FACT' = ALPHIC/NVITV: 

- FACT2 = ALPHAT/NACIq7 
. .% 	FACT3 = AL 0HA3/NAOIV1 

RADS(1) = RF 
ANGLt = 
DO 141 J = 2 1 NON0oF 

- 141 RAgS(J) 	S(J-t) + 7tCT 
• DO 146 I r 2,N 

IF(I.GT. NT) GO T3 I?" 
IF(I•GTeNC) CC TO 131 	. 

ANGLE = ANGLE+FA1T1 
GO TO 1 35 
ANGLE = ANGLE + FiCT/ 
GOTO 135 

12: 	= ANGLE + 
135 SIGNN = SI1(ANGL7) 

COSIGN = Cli(ANIL) 
DO 14": J = if NON017 

• K = J + NCAOCE ' (I-1) 
ORGR(K)= RI-S(J) / SIGN?! 
O7(K) = 7LACS(J) 	1r)cTGN 

14:-  CONTI- NT:. 
• DO 15 N = iiNCHOoc: 
• ORGZ(N) = RAr:S(N) 

15 OR(H) = ).C.JJL1'1 
RETURN 
END 

FIGURE 36  



J= 11K 
I= 1,K 

Initialise 
A(I,J) =  0 

--1 

Yes 
> 

I
N=NN-N0E0DE 

1 HP= -5-  K2 

0 

Factor 
LFACT=1.0 

1 

Q,) 

0 
0 

NN=1,NTNODE 
1 

N 
K MODE 

if  No 

N = NN 
HP= 43 Kl  

Compute hardening 
STK=SK(NN)/ 

Compute no. of 
error functions 

NERR 

232 - 

Subroutine STRESS 

CSTART D 
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•N>.-NSINT 
and \ Yes 

Nz---NFNODE 
\ 9 

* / 

/ 
V NO 

V 

FACT-0.25 so as 
to average error 
function along 	1 
the  interface.______I 

NI:=1I NTERM1 1 

NK=11 NTERM2 

r 
A 	n EL 	

. 	-1 • 
Compute r z and rid and 

0 
G 	 then coefficients of A1,  and; 

o 	
N , 	Bij for each term and each 1 

error function: F1ntF2n,... 

(i.e. X(1,NT) ), etc.Alao 
independent terms in each 
function ( i.e. X(l,NP1) ). 

er) 

la=1,NERRI 
	 J=1,K 

I=1,K 

k 
(- </1 Compute Ft F .

1 
 g. 

	

Fin 	PIL 	1 
and average at the interface by apply-
ing suitable factor FACT (i.e.A(I,J)= 
A(I2J) 

	

1 	Note: At the end of Loop X 4̀ 102,A(I1J) 
will be equivalent to 

/ 	 7.,t  

	

F'D4.t. 	-) 
E L Amn 	az; 

	

1 	
and forms a system of linear equations. 
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JJ = 1 

J = 1,NPARAM 

Initialise 
C(J) = 0 

Fil=NPARAM + 1 

1 	. 

	

tl 	r 	1 = 1,NPARKM 
1 

	

o 	 7v 

(Ct,‘ 	Transfer coefficients of Amn  ,etc 
0 __°4  column by column to a single 

	

° 	I  

	

-4 	1_ i 	dimension array: 
i.e. B(JJ)=A(J,I) 

set JJ = JJ + 1 

r 	 

ti 
0 
0 

  

[I = 1,NVAR 	1 • 

  

 

Transfer the constant terms to 
array C such that they form the 
right hand side of the system of 
linear equations: 

'C(J) = C(J) — A(J,M) 

set M = M + 1 

   

   

[Call Subroutine SIMQ 



call Subroutine ECON2 

	 I = 1,NNODE 

HP= — 3 K1  j 

Yes 
---- 

[HP= — 3 K2  
No 	I 	 

Compute Stress Field 
SIGMAR(I)=C7T- =22 A r2mzn 

vs Inn 

SIGMAZ(I)=Cre = • • • * 

etc. 
‘,1 

SIGMAZ(I) = SIGMAZ(I) W  HP 

etc. 

NIJ=1,NTERM1 

NK=1,NTERM2 

7Th 
g ) 

1 
Rearrange Ai  parameters 
for the economization 
process. 

- 235 - 
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AVER1 = 0.0 
JJ = NSBOND-1 
J = NONODE4-1 

I = J2JJ,NCNODE 

  

V 

Compute average 
Pulling stress 

AVER1 

r- 

Compute hydrostat 
ic pressure 

AVER2 

Compute driving 
stress 

AVER 

V 

(RETURN ) 

FIGURE 37  
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SIPROUTTNE STRES^, 
CO'IMON NLRRF:, NT 7_="11 ) NTF"-sN2)1VAR)Nz:FFTINTEF.N3,NTERt'HiIHVART) ur, 
2 	RF) 	Al=1.) AL")(4 )  AL°HAE )  1;-. )  C I  AK1 )  LK:), cdc4, 

1,,7s 	HTNODTs  NSTtJHO! NiNTILs 0.2 RAN/NPA.4) 
TI il, 

4 	A(L s 2tri 	'1f2 )1,0(2:!), G( 2.)A  .F(  
5 	01',;Mitill.). O''37(1L%)) 	i C ). SiRN"::i(4)99il 3INVAR(Ir) )  
6 	Sl.e) 	) 	S.“`ri 	ici $ STG:iAZ (99) 
7 	SJ5t-kT( 9?), I1C 9'10,TE1D(144) 1 AT-7R)  AVER1 )  AVER2 
K = NPARAr 	4 ;qIii? 
PO 	J = is K 
00 	I = i34 

= le0 
C 	(*YIP 1.1_ TO SWAP.7 	FUNCTION FCR EACH NODE 

= NPAEAN + 1 
NP? = N2kFAH  
;(3.0D2)  
nn 	a 414 = 12NTN3D7  
IF(U' (GT, NFA0071 t7iTo ioe 
HP = 	scIRT(3.,;) 	5.<1 
N = Ntl 
COTO 9 
N = UCNODE 
H0  = - SaRT(.(i) 	At(? -  

il9 Fr's 	s<(1.N)/SaTr;TAVtP(H)) 
N7PR= NERF,.FN 
Ft:GT = le: 

- IF(N 	NSINT et.NnaN ,LE, NFNODE) FACT = 0025 
R= 07.r.“:(H) 
7 =00,57.(N) 
72 = 
Z3 = 7.2vZ 
Z4 = 22 	22 
R2 = R'R 
R5 = R"-) 
Rb = R2"!-12 
Pi = 	22 
P= RIRI 	Pi 
00 5.76 HL= 1,NT77 D4t 
00 	6 	IF<= is HT7M2 
INT1 = NK — 4  
INCH= UL 
TWIT= NK-1. 
tHOJ = i. - 
NTrNK-1-(HL - I )r-`1r7D11 
NT7NIERMI 477"121 
SIGRA=(;'."(21 1MI)“('"(INDJ-2) )P*(244R42-Vi'P*22*(2*INOJ+1) 

i 	INDJ4- (7NflJ4-1) 4P'°?) 
SIGU_ = F":.F4(R"P'TW"I))1.'(7.."INON) 
SIG7=(Z"IliDAY'(""TNOM-2))'''(-44 P 74 4 4- (24-- TN0M 4-1 ) 4:7c 2*P w-P)  
SIGZA = P4  (c'.4 4 (7.--INIT))?(Z". (IHDJ))4 4-64 (44'INCI47)'P*RL"1-  
(7*IH2I+:)*(21q11T4-'),"P'D) 
SFA= (E.4*(2I- 171I))"(7.(INOJ-.1)) 4 PN (-244---(3*Z21-6*P4INDJ*R3-1-  

- i. 6'(2"IN)I+3):"c'72';- (2'TNDI4-3)-'"IN9J4:','F'R) 
X(,'.tT)= 	CIS7' - STG7A / 
MI NTT) = 	(2/3)4SIGP.5. 
Y(207) = -Si.'/?J - '7IGZA/7;*:.: 
X(2,HTT) = (?6/7•1'FIF 	SIGRJ/300 

SIG17A 
= -,* 

IF(HeLieHL2ONG)  
X(407)= (SIG-i4—Tr i(24ALDHA)/2410 	SIGRZA*CCS(2.C'ALRW) 
YX-INTT) 	SIG7-0"=IN(2,r't ALDHA) / 

ir;E, CrYiTItiUE 
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X Cl s "-11'1) .  
X (I OP2) = 1/' RF4RF* (Z3-3. 7.4- R27  Z) )/ (P/*F1*P1) 
X (2,NP1) = 
X (9 INP2) = ( STK 	''',/E4 P,F*3F 4 7) / (P.-_*P1.) 
Y (70°1) = (1"--,1K 	 V=4-RF4 RF*(?..1-7, ..*R*22) ) / (24 Cr!' R1* Pt* P1) 

X 
X (4NP1) = -r.14.57K 

(4 ,
,
NP2) • 	= 9D* --;r1(0,. ir- ALPHA) /2. 

iF(N.Gc. HSF3CNn) q",=.= "-aRF(I 
00 1:3 LT= 1, .1 R? 
00 141 J= 
DO ir1 I = 1 K 
A (T LJ)= A(I,J) + X(LT.T) 4. X (LT J) 4  G (LT) * FACT 

1t11 CO:i. INUF 
1°3 COIITINUE 
112 C0NTIHUE 

JJ = 1 
DO 11 	J = 	!IPA °A'4 
C 
tI = dart? /:l: + 1 
nn J../4 I = 1 HRAR.A 
P(JJ) = A(J,I) 
J.) = JJ + 1 

134 COW; I NUE 
DO 1C7 I = 1, N'JAz. 
C (J) = 	(J) - A (J,A) 

• )1 = 
117 CONTINUE 
1(15 CONTI;AUE 

CALL SIMO (73, C, ■IPA.?! 
122 COFITINUE 

DO 132 I = 1, N,11:1-'7. 
H° = -saP:r (3c )) x  AKt 
IF(I GT. 	 PR = -SQP.T (38:3) 	AK2 
R = ORGR(1) 
Z = ORGZ (I) 
SIC-, titR(I)=1*.7 
SIG-AT (I)= if 
sTGl1.7(I)= i s )  
SI6:1RZ (I )=• J• 
72 = 7*Z 
73 = 72*7 
Z14 = 7.c * Z2 
R2 = P.*R 
R3 = r 2 4  R 
P4 = R2; F:2 
• = R9 + Z2 
P= RI*RI - P1 
VR(I)=-(1/:.*RFRF"".") / (P1'21) 

= -( 
DO i 31 NL= 

N 	

NT.70,+.14. 
00 131 NK=1,NTE 
IDN = NK -I 
I in h= HL 

- I NOI= 
INDJ = NL - 
INF:I=NK+ 	ir. ‘171-)41 
I tlY1 = irm4-;11 	p';,  
SIGRA=(-14- ` (2 IN 	) 	INDJ-2) ) *P* (24*R4*rc2-64-94 72* (2*INDJ+1) 

1 4..R2+ INDJ+ (INOJ+1) "x°''72) 
Sir-RF■ 	= (1.'f (71  T 	(7'"I'13N) 

(Z.;*- *INON) (-7*r-  ( 	1I]ii-2) 	P'eR4+ (2*INDM41)*F2*P*P). 
SIGZA = Pt ( 	4( ''"TN1f )) ( Z**( IN0j) ) 4  (24 4- R4- 21. (4 4̀ INDI-17)*P*R2+ 

4  (?*P10I+::) -4..(2''INnT+/)'1'=") 
SIGRZA.= (=.?-* (21" FI)I)) " 	INDJ-1) ) 4.P 4  (-24',R3#Z2+5*P4 INDJ*R3+ 

6* (2*INDI+3 ) 
Sir-A1AR(i)=-S.I..;1",(T)-  4- n (I:13) 4-SIG 	+ C (INOD) r-SIGR3 
SIGMAT(I)= 	(I) + r(IN11) --.`SIGT:2 
SIf..,-4.47 (1)= 	 (Trr)) -4 SIG7 .1, 

C!IND)"SIG:qZA 

FIGURT] 33  

1.3?. 	ONTT Nu= 
SIG"IA7 -(i)= SIGHA7(I) - 

132 CO'ITINUE 
A Vc" RI. = 
J J = NS':(2N -.) - 1. 
J = HCHODE + 1 
DO 2'.;.1 I = J, J.11'17101' 

2'.)e A II"?' =A VE:-.11+ 	(fl r“.1=' (I) tORqR (I4r CNODE)-DRGi (I-NCHODE) ) 
• -JR,5'.= 	VER .) (ORf;9 (N-•; 7Otr))*0".GR( NS7.;CNC)) 
• ()RCP 	) 	(`AFNO.I'ci) 
RR = ORd!:.(1C.57) 	nr;(\4107.7.) 
A J7R2 = (SIG,;:1-,-(:1=,oni7-strNODE)".R+SIG).A7 (N:2002-NCNO3E)*(qR-R) ) /RR 
V./7.R = AlcRr + /AJFR9 

124 RETURN 
ENO 



N=NN 
P= (3  
TC=TC1 

Yes 

- 239 - 

Subroutine TEMPD 

START 

LL= 19K 

J= 11.1f 

Initialise 

A(J,LL)=0 

	[NN=1,NGNODE 

1'  
Set values: 

NERR = NERRFT-1 
FACT = 1.0 
NEC = MOD(NN,9) 

L 
N=NN—NCNODENCNORO, 

= ± 
TC = TC1 

si;NTNOD 
Yes 

	J 
N=NN—NCNODE 

L 
No 



Yes 

- 240 - 
(F/ 

Compute spherical and deviati 
oric components of stresses 

141 	Tr 7 0-6 I • • • • 

Compute power developed by 
the plastic deformation 

H = Gr.• 

Yes 

TC.TC21  

Lo 7 (32-  

T 

e,'RNSBOND' 	 No 

Add power dev-
eloped by fri-
ction: H=H+... 

NR=1,N1ERM3 
Na=1,NIERM4 

1 
Compute coeff. of Ala  
for each error funct. 
Fin I P2n 

Compute independent 
terms of Fln 'F2n 

NN>NITIDE 

No 



Ft= Ftn = 	P. P. 

LT=1,NERR 
J=1,K 

LL =1,K 

1T--  
Compute 

i t< 

	 J=1,NPARA1 
	 J 

Compute temperature T 
rise: T = 22 

Call Subroutine ECON2 

k 

Rearrange coefficient 
for the economization 
process. 

I 
Assemble coeff, of Amn,etc 
and then convert terms as in 
Subroutine STRESS. 

Call Subroutine SIMQ 

I=1, NDNODE 

NR = 11NTERM3 

NZ = 1,NTERM4 

241 - 

( ( 
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,77  21 T 4 

0 

No 

Yes 

 

   

   

 

in T.0 

    

A 

Add ambient 
temperature 

r RETURN 

FIGURE 39 



su-.0u1iw: 7:5.i 	 — 243 
S. 
commoN tl;p.:NoTitu-r -'1?.7iiA,t,ir,;;FliNTPP-13,NT = 2.t4,%!ART, 

HING%-; TIC 	 !:T 
2 	RF, =I 	IL =r0.', 	 4‹:, C^1, 
3 	TCI; IC', 	t77Z1 , 	.47 j)', 	 t.7„?.•.1,NP4=4.1., 

(2. ,2f 	13(:,:^) t  ":"), "1(2-;, 	4), t+r( 	X(k z?'), 
5 	00G;.:.(_!-.4), 	 5), ST,=N-ur(4.ci), 
6 	SK(:'.:.), 	q 7'(4.44), 	7.IGI4Z(39) 1  
7 	SIC-T( .39). ".1•7,,,,,,7 1 39)2TE:10(144) ,AJER,Ai., IE22 
R.7AL L 
K= NT-y3 	tiTe-314 + 
DO 4 9 L1=1,4 
DO 4S9 J=1,K 

409 A(JILL) = 
nO 4:1 Hi= 

= NFFT - 
FACT = 1.1 
WIf7, = MOD('INO) 

.GT. N(0) G370 
ti=N,1 
IP( t1,1 	GT 	F .4O 7 ') 	= 
SIrtiAM = ( S IG1An (N) • Tr'iy,  (ro +SIG".AT (N) ) /3,^ 
osTpl 	sir., in 	- yr.r;rr,1 
OSTP7 = SI15T1,11 - l'rr.".1r1 
OSTR3 =S1 :3 ,1 78(4) - 

L DSTR = SIGM;7-!(u) 
H = (ADS(DiT;VST=N=- V,'I)) + ARS(DSI;;:"STRURT(20))+ Y3S(OSTR.34  
i STRN,;.T 3 ,N) ) + an:(1-,"4•sTR9RT(4,1,))) 	1' 	ui 
IF(NN.GT. 1FN007) co 70 721r1 
TC= TCf 
FETA= 3ETA1 
R = 0RGRV1) 
Z = ORGZ(N) 
GO TO 315 

32U TC = TC2 
V=TA=.1,1.A2 
P = ORGP.(N) 
7 = ORGZ(N) 
RI= R41: + Z*2 

=i 	-1E4RF4RF4 0*A;(7 4 COS(ALPH5, ) 4 ((24R4  
COZAALPPA)/(Pi"t)) - (COS(ALPHA)/(;"Fl)) - (2424"SIN(ALP4A)/ 

2 (Pi*P1 )))411101.1  
GO TO 3Li 

211r N = NN - NrAC:1-7 - N7A3r= 
TC=TC1 
BETA= GETA1 
H = C.1 
I= 0,GR(N) 
Z= ORGZ(N) 

• 3115 Z2= Z*Z 
73=72*7 
z4=za.z? 
P?= R'R 
R3=RVR 
P4= 1:24-R2 
Pl= R2 + 22 
P= RI*RI - 1 
TA= TAN(b.L'HiE) 

VRP=A71S(4F..(N)) 
SJZZ= A=■S(V2(N)) 
DO 4:1 NR = 1,N-7047  
DO 4[2 NZ = 1INTEu4 
'NOR= u-4-1 
INOZ= NZ 
NT= MZ+ (NR-1) 	4T'7,q4 

21 )(CLINT) = 1q4, 17,'T.O1-7.-!1) 4'(1"“(INOZ-2))* 
1 (1c IM)K-1)472-(-,7".1-74,-;+24IN1R*F*L)+ 
2 R*Z24(-0R4L+_75_.,,i-Ii-R'R'L-2nInCre'P)+ 
3 7.24 1-2■i-.2*L-.7-‘m+-"7.4"'"L)+ 
L P24 (IN07-1)/(-2'7" .,4-1.402*orL)4. 
5 Z4R?°(-E',Z*L-.,-, +1",!'?,DID7w- TA*P-2sINOZ*Z4L)+ 
6 9ETA4).,:,,F 4- 724:i4 1- ,'L-P+2- IIICR'P41)+ 
7 DET.14 V72*24,0*(-2'77'L+'A4P4Z+IND24 "L)) 

22 IF(N7i.c ,r3i. 1) 
X(2 	 M)74*(IN)2-I))4 (-2422*L+TA4P*2+INOL1P4L) 

402 CONTINUE -- 

4)C coNTINus 
x(1on=q 1+1 ) 
x(20P:Rri4-1) = 
IFUJC .EO. 1 ) 172P. = W'RFT 
IF(N.GEOSINT.AN).N.L-.NFNOD).0R.(N.GE.NSMAD.AND.N. LE NODE)) 

• I FACT = ten.  
DO i'13 LT = 1.07/a 

416 no 43 Jr il< 
DO 423 LL=1 2K 
A(J,LL) = A(J,LL)+X(LT,J)4X(LT,LL)41■F(L1)*FACT 

4t3 CONTINUE 
/003 C05ITI4UE 
401 CONTINUE 

JJ=i 
DO 45 J= 1,NPAR* i 
0(J) = C.C1 
M=NPARAL+! 
DO 46 I= 1,NPARAt 
B(JJ)= A(J,I) 
JJ=JJ+1 

406 CONTINUE 
DO 407 I=10VAcT 
0(J)= 0(J) - A1J1,9 

407 CONTINUE 
405 CONTINUE 

CALL SIP.0 C32 g11-31RA 4 0.1 
DO 17.  I = 4 iNt:NO1E 
TEMP!, = 1,3 
R = ORGR(I) 	

. ._ • . 	•_ 

Z = ORG2(I) 
P = FIJ •R4; -7". 
TA= TAN(,)L3H4i) 
L= TA * 2 - 
On 421 ,:rnt,vr,p92  
DO 423 N2=1INTER'n 
TWIR=Ncl-: 	 . 	• 
T■192=H7 
FIT= N2+ (N;;-1)*N-70 , 

1123 TFJ.IP 4 	 p-tn (7.--  IND?) ).'" (72*-4 1K02)*0(NT) 
3F( 	 77-9p1 = 

131? 	
“T) 	TI1T 

•RETO?N 	
FIGURE 40 

EN1 
• 
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FIGURE 41 . Stro3a—stra.in curve 
for copper wire. 
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FIGURE 43: Stress distribution corresponding to 

Q1 
x 103. Extrusion ratio 2. 

Yc 
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Stress distribution corresponding to 
ao  

---'''' x 103. Extrusion ratio 2. 

FIGURE 44: 

Yc 
0 
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FIGURE 45: Stress distribution corresponding to 

Gz  

Yc  
0 

Extrusion ratio 2. 
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FIGURE 46: Stress distribution corresponding to 

rz 
x 10

3
. Extrusion ratio 2. 

Yc 
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FIGURE 47: Stress distribution corresponding to 
Or  
— x 10

3. Extrusion ratio 3. 
Yc 
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FIGURE 48: Stress distribution corresponding to 
09  

103. Extrusion ratio 3. 
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FIGURE 49: Stress distribution corresponding to 
Gz ..... 
c • Extrusion ratio 3. 	• 

0 
Y 
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FIGURE 50: Stress distribution corresponding to 
Irz 

x 10
3
. Extrusion ratio 3. 

Y 
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FIGURE 51: Stress distribution corresponding to 
Gr 

x 10
3
. Extrusion ratio 4. 

Y 
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Ye  
0 

x 10
3. Extrusion ratio 4. • 

FIGURE 52: Stress distribution corresponding to 
Go 
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FIGURE 53: Stress distribution corresponding to 

C/z 
Extrusion ratio 4. 

Y  
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FIGURE 54: Stress distribution corresponding to 
Trz 3 

x 10. Extrusion ratio 4. 
Y 
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FIGURE 55: Stress distribution corresponding to 

Y
o 

Ur  
x 10

3. Extrusion ratio 5. 
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FIGURE 56: Stress distribution corresponding to 
Go  

Yc 
 

x 103. Extrusion ratio 5. 
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FIGURE 57: Stress distribution corresponding to 
GZ 	

Extrusion ratio 5. 
Yc 
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FIGURE 58: Stress distribution corresponding to 

Yc 
0 

Irz x 103. Extrusion ratio 5. 
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FIGURE 59: Stress distribution corresponding to 
Gr 	3 

Yo 

x 103. Extrusion ratio 6. 
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FIGURE 60: Stress distribution corresponding to 
Go 

x 10
3. Extrusion ratio 6. 

Yc 
0 
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FIGURE 61: Stress distribution corresponding to 
Gz Extrusion ratio 6. 
Yc 
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FIGURE 62: Stress distribution corresponding to 
trz 

x 10
3
. Extrusion ratio 6. 
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FIGURE 63: Isothermal lines for extrusion ratio 2. 
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FIGURE 64: Isothermal lines for extrusion ratio 3. 
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FIGURE 65: Isothermal lines for extrusion ratio 4. 
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FIGURE 66: Isothermal lines for extrusion ratio 5. 
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FIGURE 67: Isothermal lines for extrusion ratio 6. 
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FIGURE 68 . Theoretical and experimental 

results for copper tube—s.steel core 

specimens ( method of weighted residuals) 
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FIGURE 69: Influence of humidity on the process of 
welding by indentation. 
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FIGURE 70: Influence of humidity on the process of 
welding by indentation. 
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FIGURE 71 . Pressure diitribution along 
the core—tube interface ( d:distance 
from the apex ). Extrusion r9Aio 2. 
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FIGURE 72 . Pressure distribution along 
the core--cube interface ( d:distance 
from the apex ). Extrusion ratio 3. 
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FIGURE 73 . Pressure distribution along 
the core—tube interface (d:distance 
from the apex).Extrusion ratio 4 • 
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ti 
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FIGURE 74 . Pressure distribution along 
the core—tube intrface ( dAdistance 
from the apex). Extrusion ratio 5. 
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FIGURE 75 . Pressure distribution along 
the core—tube interface (d:distance 
from the apex ). Extrusion ratio 6. 
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FIGURE 76: Temperature distributions along the core-tube 
interface for different extrusion ratios. 
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FIGURE 7 7. Maximum temperatures at 
the core—tube interface for different 
extrusion ratios. 
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FIGUR@ 78 . Maximum pressures at the 
core—tube interface for different' 
extrusion ratios. 
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X.1 	APPENDIX A 

  

 

Geometrical conditions for uniform deformation 

Uniform deformation implies that the specimen is 

subjected to the same extrusion ratio at all points of a plane 

normal to the axis die. Consequently, both metals must deform 

with the same extrusion ratio. 

Let us show that, in this case, the apex of the 

conical surface limiting the core at the deformation zone should 

coincide with the apex of the die conical surface. The geom-

etrical situation is illustrated in the following diagram: 

A 
A 

h 	 - 

   

-■ ■ c , 
N E 	'-'■ 	L; f 
24- 	■ -, 
t 	■, ■ „„....... 

—= 
1, 	/. 	0 

   

The convergence of both conical surfaces was verified by 

observation with adequate magnification meridional sections as 

shown in the following picture: 
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The extrusion ratio of the core is: 

(Di)
2 

R
c = (DP' 

--7 

The extrusion ratio of the tube is: 

(±) 

(Di) t 2 
(D)2 - (Di) 

R = 	 (ii) 
t (DfL)`"

0 
 (Dcd2  

From a direct proportionality between elements of 

the triangles A8C and B6C, expression 

D
t 

Di 	f = — 
D.
1 	

Df 

is obtained. In other form 

D
c 

t 
Di = 	Df 	c = 	Dtf  

D 
 

(iv) 

Replacing (iv) and (i) into (ii), one gets 

R (Dt)2-(D)2  c f  R 
	

(v)  
t 
  - R 

(q) 

	

, 	
c 

(* 2  R
c 

Consequently, if both materials have undergone the 

same extrusion ratio, both apices should coincide. 

Another relationship to calculate is 

t c 

	

h
f 	

D
f 
- D

f 
r h. 

	

1 	D. - D. 1 	1 

By substituting (i) and (iv) into (vi), the expression 

(vi 
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t c 
D Df 	1 	1 
t R

c 
D
f c 

D
f  

is obtained. Calling with R = Re  = Rt, we finally obtain 

R 

Ley us finally calculate the relationship between 

the angles a ,0 and the proportion of the component metals: 

D, 
tan a = co 

D. 
tang = 1 

CO 

hence, 

tana. D. 
1 

   

tan D. 

The fraction of volume of the core is 

D. Y = (i.)2 c   
D. 1 

and hence, 

tan p = 	tan a 

or 	tan l3  =1 -1-77 tan a 
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X.II 	APPENDIX B 

Internal ower of deformation using  
Avitzur's velocit'  field  

The general expression for the internal power consumed 

in the plastic deformation of a volume V is: 

1.4.1 a. . L. dV 13 13 (1) 

For a material obeying the Prandtl-Reuss's relationship it is: 

LP  
ai  • = iL j ic 

and, consequently, expression (i) rewrites as: 

•P 
Y 

W. = 	dV 
1 V /75 11— 13  

Or 

S -- 2  Y VI dV 
1 V /5 

• P 
since I2 = z EP E. . 13 1j 

For a non-hardening material, the yield stress is 

constant throughout V, and hence 

1 	
2 

= 	Y 	dV 
15 V 2 

The expression of 12  in a spherical system of 

coordinates (R, V,, G) and conditions of axial symmetry is: 
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12 = -( R1&9 EAAE4° 
	) -r ERA 

Replacing equations (6) into (iv) gives: 

2 cos9 2 	2 cos9 2 2 cosO 1
2 
= [2(vfRf 	+ (vfRf  —7) - 2(vfRf  —7) 

n2 sin9)2 + (32-vef  
R 

2 or 	v f f 2 12 = 	Dcos
2
9 + 4sin291 

R3 

and, consequently expression (iii) becomes 

Rf 
2 

W. = 2  Y of 	3cos + 4sin29 dV 1   15 V R 

By using suitable trigonometric transformations, the 

following expression is obtained: 

W. . 	R Lc- 1  

	

= 2 Y v f f 	1; 1121 2— 
V R 	 s in dV 

where dV = 2 TER sin0 R dR d9. 

Equation (v) can be written as: 

	

P 	R. 
(1  

RR W = 4ity vfRf  ( 	i 
12sn2 G sine I --)de R 

2 	11  

0 	R
f 

Taking into account that: 

c 
Rf 	Ri  q 

r = 	and 	= 
f sin 	Rf rc f 

after integration, the expression 
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C TEW. = 	Y(r-)-  of  F(p) In Rc 

is obtained, where 

F(0) = .12 Li - cos 	- 	 20 	1  
12sin  H+0 sin p 	 =  

+ 
12  . In 

11 2 42.1  cos0 + 	- —sin 0 12 

A table with values of F(3) for different values of 

the angle is presented as Table I. 
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TABLE I 

F(a) -If:  - cota 
sin a 

a F(cx) --11 --cota. 
sin a 

1 1.00001 0.011636 46 1.01679 0.58587 
2 1.00003 0.024375 47 1.01772 0.60111 
3 1.00006 0.034920 48 1.01869 0.61655 
4 1.00010 0.046573 49 1.01970 0.63217 
5 1.00016 0.058237 50 1.02075 0.64800 
6 1.00023 0.069915 51 1.02185 0.66403 
7 1.00031 0.081611 52 1.02300 0.68027 
8 1.00041 0.093327 53 1.02420 0.69674 
9 1.00052 0.10507 54 1.02546 0.71344 
10 1.00064 0.11683 55 1.02677 0.73037 1 
11 1.00078 0.12862 56 1.02814 0.74755 
12 1.00093 0.14045 57 1.02958 0.76498 
13 1.00109 0.15231 58 1.03108 0.78268 
14 1.00127 0.16421 59 1.03265 0.80066 
15 1.00146 0.17614 60 1.03430 0.81891 
16 1.00167 0.18813 61 1.03603 0.83746 
17 1.00189 0.20016 62 1.03784 0.85632 
18 1.00212 0.21223 63 1.03974 0.87549 
19 1.00237 0.22437 64 1.04174 0.89500 
20 1.00264 0.23656 65 1.04384 0.91484 
21 1.00292 0.24881 66 1.04605 0.93503 
22 1.00322 0.26112 67 1.04838 0.95559 
23 1.00354 0.27350 68 1.05082 0.97653 
24 1.00387 0.28595 69 1.05340 0.99787 
25 1.00422 0.29848 70 1.05613 1.01961 
26 1.00459 0.31108 71 1.05900 1.04178 
27 1.00498 0.32377 72 1.06204 1.06438 
28 1.00538 0.33653 73 1.06526 1.08745 
29 1.00581 0.34939 74 1.06867 1.11099 
30 1.00625 0.36234 75 1.07228 1.13503 
31 1.00672 0.37539 76 1.07611 1.15958 
32 1.00721 0.38854 77 1.08018 1.18467 
33 1.00772 0.40180 78 1.08451 1.21031 
34 1.00825 0.41516 79 1.08912 1.23653 
35 1.00881 0.42864 80 1.09404 1.26335 
36 1.00939 0.44224 81 1.09928 1.29080 
37 1.01000 0.45596 82 1.10488 1.31890 
38 1.01063 0.46981 83 1.11087 1.34768 
39 1.01129 0.48380 84 1.11727 1.37717 
40 1.01198 0.49792 85 1.12413 1.40740 
41 1.01270 0,51218 86 1.13148 1.43840 
42 1.01345 0.52660 87 1.13935 1.47020 
43 1.01423 0.54117 88 1.14780 1.50284 
44 1.01505 0.55590 89 1.15687 1.53636 
45 1.01590 0.57080 90 1.16660 1.57080 
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X.III 	APPENDIX C 

erature distribution in a rectangular section  

Let us consider a rectangular section as described 

in the following diagram: 

Tern 

The temperature temperature distribution 

source of heat h is governed 

ential equation: 

8
2
T 8

2
T 

ay
2 az

2 
	

k 

in this section generated by a 

by the elliptic partial differ- 

Let us assume as boundary conditions that: 

(i) Temperature is uniform all over the boundary: 

± 7  a 

is T = T
o 

(ii) If h is constant all over the surface, conditions of 

symmetry are such that temperature gradients across both axes 

should vanish, that is: 



air 

0 

oz 

• 

0 

8T 
ay 

• 0 

z 

• 

0 
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In this condition and if for simplicity sake we choose To = 0, 

the theoretical solution for the temperature distribution is 

given by: 

n-1 cosh(nTEX) 	nTCz 4a2h

,5 

15(.4)  2 

= 
 k  n=1275 

  a 
cos 

cosh(11M.270 	
a 
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