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ABSTRACT 

Interface Waves in Anisotropic Media 

by 

Nili Halperin 

The propagation of waves at bi-crystalline interfaces is investigated 

in this thesis. 

The media on both sides of the interface are of the same crystalline 

material but differently oriented with respect to the interface axes. 

The known welded boundary conditions for the propagation of generalized 

Stoneley waves in simple elastic media, are simplified for certain 

configurations with different transformations of principal crystalline 

axes from one medium to the other. The general forms of the 

displacement and stress vectors for possible interface waves are 

shown for each of these configurations. Under some transformations 

it is proved that no generalized Stoneley waves can travel. Additional 

information is obtained when the media involved are invariant under 

the transformations discussed. 

The equations for interface waves in piezoelectric media are developed. 

Two different electric boundary conditions are investigated - that of 

welded half-spaces in the absence and in the presence of a grounded, 

infinitesimally thin, perfectly conducting electrode at the interface. 

The derived conditions are then simplified for different symmetric 

configurations for any media, and in particular for media having one 

of the symmetries examined within themselves. 

Some numerical results are obtained for simple elastic configurations 

and compared with known results. 
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1. INTRODUCTION. 

The investigation of interface waves in anisotropic media is 

based on developments in elastic theory from the beginning of the 

19th century up to today. Although there was an extensive interest 

in elastic phenomena since the 17th century (e.g. Galileo Galilei, 

Discorse e Dimonstrazioni matematiche, Leiden,(16380, R. Hooke, De 

Potentia restitutiva, London,(1678), and many others) it was 

limited to particular problems of vibrations of bars and plates 

and stability of columns. 

Some of the results of early mathematicians were general, like 

Hooke's Law, but note of those scientists tried to obtain a set 

of equations describing elastic phenomena in general. The first 

attempt at a general theory of elasticity was made by Navier 

[Paris, Mem. Acad. Sciences, t.7 (1827), read May 1821]. He obtained 

equations of motion which, due to oversimplifications, were 

dependent on one elastic constant only. 

Cauchy [Excercices de Mathematique, 1827 & 1828] who introduced the 

concepts of stress and strain tensors, arrived at the isotropic 

equations as we now accept them (dependent on two elastic constants) 

and at a later date he obtained equations for anisotropic media as 

well. 

Poisson [Paris, Mem. de l'Acad. t.1 (1831)] showed that the solution 

of the equations for isotropy lead to two body waves which are, as 

Stokes pointed out [Phil.Soc.Trans. Vol.9 (1849)] longitudinal and 

transverse. 

It was only natural that once the differential equations were 

established, solutions for various boundary value problems were 

sought. Navier, after obtaining his equations, derived boundary 

conditions that hold at a plane surface. 

When the equations were corrected various boundary conditions were 

investigated. Lord Rayleigh [1885] investigated the problem of a 

wave propagating at a plane surface of an isotropic, homogeneous 
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half-space. He imposed the condition that the waves would leave the 

surface stress free and their amplitudes decay exponentially with 

increasing distance from the free surface. He found that such waves 

exist (Rayleigh waves) and their velocity is less than that of the 

transverse body wave velocity. These waves are longitudinal in 

character and their displacement is elliptic. 

Little has been added to Lord Rayleigh's analysis of these surface 

waves, but Love [1911] showed that transverse surface waves can 

propagate on a free surface of an infinite 'superficial' layer which 

has a plane interface with an infinite half-space. These waves are 

known as Love waves. 

Stoneley [1924] published a result of a study of elastic waves at 

an interface between two isotropic half-spaces. He showed that 

under certain restrictions on the relationship between the elastic 

constants and densities of the two media on the two sides of the 

interface, there is a wave travelling with a velocity which is 

between Rayleigh wave velocity and the transverse wave velocity, 

with energy flow which is parallel to the interface. In later 

studies this wave was referred to as Stoneley wave. 

Because of the importance of these waves to geophysics Stoneley 

waves were further investigated by Sezawa K. & Kanai K. [Bull. Earth 

Res. Inst. Tokyo U. 17, 1 (1939)] and Scholte J.G. [1947] who 

investigated the range of existence of Stoneley waves, and Owen [1964] 

searched many combinations of media for the existence of these waves 

and found it possible in very few combinations of media. 

The equations for anisotropic elastic media were obtained by Cauchy 

at about the same time as the equations for isotropy. Cauchy's 

assumption of central force law lead to totally symmetric elastic 

stiffnesses(cijkl= cikjl ciljk)* These relations, known as Cauchy =  
relations, reduce the number of independent elastic constants from 

21 to 15. This last fact, and the method of approach he used were 

disputed by his contemporaries. Green introduced the strain energy 

function [Cambridge Phil. Sob. Trans., vol.7 1839)] from which he 

deduced the equations for an aeolotropic medium dependent on 21 

elastic constants. Lord Kelvin [Quart. J. of Math., 5, (1855)] 

supported Green's results and based his arguments on the first and 

second laws of thermodynamics. 
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This was not generally accepted until it was proved experimentally 

by Voigt [Ann. Phys. Chem (Wiedemann) Bde. 31 (1887) & 34 & 35 (1888), 

38 (1889)]. By measuring the torsion and flexure of prisms of several 

crystals he showed that Cauchy relations do not hold in many cases. 

Cauchy [Excercices de Mathematique, (1830)] and Green [Cambridge Phil. 

Soc. Trans. 7, (1839)] discussed the propagation of plane waves in 

aeolotropic media and obtained the equations for the wave velocity 

in terms of the direction of wave front, and showed that the wave 

front consists of a three sheeted closed surface. 

Christoffel [Ann. di Mat. 8, 193 (1877)] and later Lord Kelvin [1904] 

introduced convenient notations and summed up the equations governing 

the propagation of elastic waves in anisotropic media but obtained no 

solutions. Indeed, the computational complexity of these equations 

was for many years an obstacle in the way of obtaining any additional 

results. With the advancement of technology, the introduction of 

Computers and the apparent need for more results, mathematicians 

involved themselves with problems of wave propagation in aeolotropic 

media. 

Synge [1957] and Musgrave [1954a] discussed the relation between 

slowness surface, velocity surface and wave surface. Later analytic 

and computational solutions were given for the different symmetries, 

e.g. Hexagonal (Musgrave [1954b]), cubic (Miller & Musgrave [1956]) 

and trigonal (Farnell [1961]) 

Once solutions were given for infinite media simple boundary value 

problems were posed, such that would lead to generalized Rayleigh, 

Love and Stoneley waves in anisotropy. Synge [1956] discussed 

surface waves in anisotropic media and conjectured that Rayleigh-

waves may travel only in discrete directions in anisotropic media. 

This was disproved by Stroh [1962], and later, independently, by 

Currie [1974] (see discussion at the end of chapter 2). Stoneley 

[1955] & [1963] and Buchwald [1961] discussed the possibility of 

propagation of Rayleigh waves in different directions of cubic, 

hexagonal and orthorhombic media. Lim & Farnell [1968] and Lim [1968] 

calculated Rayleigh wave velocities in various materials and directions. 

* Buchwald [1959] and Duff [1960] employed Fourier integrals for 
the study of wave propagation in anisotropic media. 
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Stroh [1962] showed that when the Lagrangian,4 of a uniformly 

moving straight dislocation vanishes, the velocity of the 

dislocation is the same as the Rayleigh velocity. His approach 

was further developed by Barnett et. al [1973] and Barnett & 

Lothe [1974], to give an integral method of calculating the, 

Rayleigh velocity and to prove that there exists only one Rayleigh 

velocity in a range of velocities which can lead to an attenuating 

wave. 

Love waves in anisotropic media were investigated by Stroh [1962],who 

sketched the conditions for thefr existence, and Stoneley [1955] & 

[1963] who gave the conditions for the existence of Love type waves 

in cubic and orthorhombic media and showed that non-dispersive Love 

waves can propagate only in discrete directions. 

Stroh [1962] also formulated the conditions for the existence of 

Stoneley waves in anisotropic media. No solutions were given by 

Stroh to any of the conditions of existence of Rayleigh, Love or 

Stoneley waves. Chadwick & Currie [1974] simplified the conditions 

for existence of generalized Stoneley waves and showed that if there 

is a direction of existence there is a neighbourhood of that direction 

where generalized Stoneley waves exist. 

Johnson [1970] showed the possibility of existence of generalized 

Stoneley waves at interfaces between media of similar crystallographic 

structure but different density and elastic stiffnesses, and examined 

the range of existence in configurations where the crystallographic 

axes in the two half-spaces had the same orientation with respect to 

the interface axes. Lim & Musgrave [1970a] & [1970b] have investigated 

the propagation of generalized Stoneley waves at interfaces between 

Ir 
	

two cubic media having the same elastic constants and density but 

different orientation of the crystal axes with respect of the interface 

axes. 

In this summary a general formulation of the problem of plane interface 

waves at a bicrystalline interface is given in chapter 2. In chapter 3 

we investigate generalized Stoneley waves at interfaces where the 

crystalline media may be of any symmetry but are of the same material 
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and only different in orientation with respect of the interface. 

In particular the relationship between the different physical 

characteristics of the wave in the two half-spaces is obtained 

when the transformation of axes from one half-space to another is 

that of 2-fold rotation and/or inversion with respect to one of tie main 

interface axes. Some of-these conditions were assumed by Lim & 

Musgrave [1970b] and here they are derived. 

In chapter 4 the generalized Stoneley conditions are simplified in 

cases where the crystalline media are of a particular symmetry. For 

each of the conditions obtained the characteristics of the possible 

waves are investigated. 

Bleustein [1968] showed the existence of a new type of transverse 

surface waves in piezoelectric materials. These waves depend on the 

piezoelectric character of the media and cannot be found in simple 

elastic materials. These waves are different from waves investigated 

in piezoelectric media, as modifications of known surface waves 

(Farnell [1970] and Campbell & Jones [1968]) by direct approach or 

by uSof 'stiffened' elastic constants. These constants are 

modifications of the simple elastic constants which account for the 

piezoelectricity without calculating the electric effect. 

Using a technique described by Chadwick & Currie [1974] an analysis 

of waves at interfaces between two piezoelectric media is made in 

chapter5. Chapter 6 deals with cases where the piezoelectric 

crystalline media involved are different only in orientation with 

respect of the interface axes, with emphasis on media of particular 

symmetries. 

The numerical program used in the calculations is described in 

chapter 7 and the special difficulties arising in the process are 

explained. Numerical results are given in chapter 8 for cubic and 

orthorhombic symmetries. 

In addition to the referred material, the historical background 
was obtained from Love [1934], Rayleigh [1945], Sokolnikoff [1956] 
and Musgrave [1970]. 
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2. THE BASIC EQUATIONS FOR GENERALIZED. STONELEY WAVES. 

In order to arrive at the equations for generalized Stoneley waves, we 

shall first consider the propagation of a plane wave in an anisotropic 

medium with stresses which obey a generalized Hooke's Law, with cijkl' 

the elastic stiffnesses. The displacement of such a plane wave can be 

described by: 

uk  = A pk  exp[iw(sjxj-t)] 	 (2-1) 

s.beingtheslcywnesscomponentsinthecurectionx.,A the amplitude 

and pk  the component of the displacement vector in the k direction, 

(k4.1,2,3), w the frequency and t the time. Summation convention is 

used whenever repeated indices are in lower case letters. 

The linear strains are defined as: 

eke = i(ukeu/,k) 
	

(2-2) 

and the stress-strain relation described by a generalized Hooke's Law 

is: 

a.. = c..ijk e / 

c.ijkl  is the elastic stiffnesses tensor obeying the following 

restrictions: 

cijk/ = cij/k = cji/k = ck/ij 

(2-3) 

(2-4-a) 

and 

c..a.a,Eb.bi 	13>0foralla.&.s.t. Ila.11>0 & 	(2-4-b) 

The equation of motion in the absence of body forces is given by: 

(2-5) 
a.j, j 

(s represents differentiation with respect to time, p the density). 

Upon substitution of (2-3) in (2_5) and using the definition of the 

linear strains (2-2) and the symmetry of the elastic stiffnesses 

(2-4-a) one arrives at the equation: 

(2-6) 

Substitution of the expression for the plane wave (2-1) into the 
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equation of motion (2-6) yields: 

(cijklsisl 	paik)pk  = 0 	(2-7) 

For non-trivial values of pk  one has the restriction: 

- psikll =  0 	 (2-8) 

which is the equation for the Slowness Surface (Musgrave [1970] and 

others), a three sheeted closed centrosymmetric surface of sixth 

degree. 

One should note that ciikL  are usually quoted with respect to axes of 

crystal symmetry, and in general, use of the transformation law for 

fourth order tensors is necessary to obtain the stiffness appropriate 

to arbitrarily chosen reference axes. 

Consider now an interface problem, in which space is divided into two 

by the plane x3.0. We denote the medium which occupies x3>0 by I, 

and x3< 0 by II. (All quantities referred to in medium I or II, will 

be denoted by I or II, respectively). 

We shall choose the direction xl  as the wave normal, i.e. xl  = 0 is 

the plane of the wave, so that x2  = 0 will be typical of all planes 

x2  = const., and will be termed the sagittal plane. 

Plane waves in medium I will be of the form: 

uk(I)= A(I) pk(I) exp(iw[si(I)xl 	s ( ) - tl) 	x3 0 	(2-9-a) 

and in medium II: 

uk(II) = A(II) pk(II) exp[iw[si(II)xl+s3(II) - t]) x3 0 	(2-9-b) 

We seek waves such that the velocity of propagation along the interface 

is common to the two half-spaces, therefore 31, which describes the 

slowness parallel to the interface, must be the same in both media: 

si(I) = si(II) = si 	 (2-10 ) 

where s1  is real. Complex sI will lead to either_amplification_or 

attenuation in the direztion of propagation, which is not possible in 
- a non=dissipative medium. - 
In each medium, (2-8) must hold (for the medium), for non-trivial 

p
k
(n

)' 
n=I
'
II: 

kiii e(n)yn)sl(n).-  P(n)Oikli = 0  (2-11) 
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2 	00 	2 
(cAlkl(n)sl [cA 3(n)-1-cA3k]s1s3(n)-1-ek3k3(11)s3(11)-gn)61k)Pk(n)=°  

For non-trivial solution pk(n), one obtains the determinantal 

equation: 
(2-12-b) 

dcL1k1(11)s2114 cLik3(n)+c,e3ki(n)]sis3(n)+c,e3k3(n)s23(n)-p(n)6
L0 = 0 

Equation (2-12-b) gives two sextic equations with real coefficients, 

hence for each medium there are six solutions s(I) or s
m
(II), which 3 	s3  (II), 

 all be real or may include pairs of complex conjugates for each 

medium. 

Requiring that the plane wave forms an interface wave, localized to 

the interface, means that the displacement should attenuate with 

increasing distance from the plane x3  = 0 . Such attenuation can be 

obtained, in this formulation, by using in medium I the roots with 

positive imaginary part, and in medium II roots with negative imaginary 

part, so that when ix31-> co the displacement tends to zero in both 

media. Hence, except at the interface, where we have not posed our 

requirements yet, the following compound wave, involving acceptable 

s3(n), will satisfy the requirements for an interface wave: 

3 
uk(n) =Ivy(N) 	( (n)pk

) 
 (n) exp(iw[sixi  + sP)( ) -t]) (2-13) 

where n=I,II , J(4N)(I))> 0, J(4N)(II)1< 0 . 

By substituting these results in (2-2) and (2-3), one obtains the 

stress vectors on a plane parallel to the interface: 

63k = its E [c3kj1(n)s1 + c3kj3 	3(n) s(K)(n)]A
(N)

(n) pCR)(n) • 
N=1 

(N) 'exp(iw[sixi  + s3  (n) 	- t]) 	(2-14) 

Wherecijkl  (n) is referred to the common set of interface coordinates. 

In our configuration, for each chosen value of si  one obtains a 

sextic equation (with real coefficients) in s3(n), (n=I,II). 

Equation (2_7) becomes: (2-12-a) 



uk(I)i 	=, uk(II)1 
x3.0 	x3=0 

k = 1,2,3 

k = 1,2,3 a3k(i)1 	
= a

3k(II)1 

X3=0 	x3=o 

Setting: 

qkN)(n)  = [c3k1j(n)sl 	c3k3j(n) s3N)(n)] PjN)(n) (2-15)  

we may write the stress vector on a plane parallel to the interface: 

3   a3k(n)= iw E A(N)  (n) (11(7)(n) expaw[sixii-s N)(n)x3-t]} 	(2-16) 
N=1 

The welded interface requirements of a generalized Stoneley wave are 

that there is continuity of displacement and of stress across the 

interface, which means: 

S 

for all x1 and t. 

(2-17-a) yields, upon substitution of (2-13): 

3  r (N) 	( E LA 	(I) pk
N)  (I) - A(N)(II) p (N)  (II3 . 0  

N=1 

and (2-17-b) becomes, upon substituting of (2-16): 

(2-18-a ) 

- A(N)(II) q(N)(II)j= 0 

( 	( both PkN) 
 . (n) and qk

N)  (n) are dependent upon 

irii(N)(,) q(N)(I)  

N=1 

One should remember that 

s1 and 5(3N)(n). 

(2-18-b) 

Equations*(2-18-a) and (2-18-b) form a set of six linear homogeneous 

equations for A(N)(I) and A(N)(II) and for non-trivial solutions of 

A(N)(n) we have the requirement of the determinant of coefficients: 

p(N)(1) 

(N) qk 	(I) 

- p(N)(II) 

(N) - qk 	(II) 
= 0 k,N=1,2,3 	(2-19) 

which is the equation for the slowness component, sl, for welded 

interface. 

In the process of obtaining (2-19) we have not guaranteed that the 

body wave solutions are not included. Indeed, .it is quite possible 
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to obtain from (2-19) s1 such that not all s
(
3
N)(n) will be complex. 

Such cases are either body waves which move parallel to the interface 

and comply with the restrictions of continuity (2-17), or 'leaky' 

waves, whichhavenon-attenuating components in one medium or both, 

and carry energy away from the interface. 

In order to obtain generalized Stoneley waves one has to further impose 

the restriction JAs'(3N)(n)) / O.*  

The 6x6 determinant (2-19) has in general a complex value and therefore 

one would expect that the vanishing of both the real and imaginary 

parts simultaneously is needed to obtain si. Chadwick & Currie [1974] 

have shown that the generalized Stoneley condition (2-19) can be 
( 

reduced, for all cases of true Stoneley waves, i.e. JAs3
N)  (n)1 / 0 

(which is the region of interest) into a 3x3 determinant which can 

be made to be pure imaginary. The reduction is obtained in the 

following way: Equation (2-18-a) is multiplied by q(m)(II) and 

(2-18-b) by p(m)(II) then in each equation summation over k is 

carried out and the two equations obtained are added to give: 

	 (   ( 
E (m)(II) p(N)(I) + p(m)(II) qk

)  (I)]A(N)  (I) - [qi(cM)(II) pkN)  (II) 
N=1 

( + p
k
M)  (II) q(N)(II)]A(N)(II)) = 0 	(2-20) 

Stroh [1958] and Currie [1974] have shown that the matrix: 

DMN(n) M)
(n) pi(c

N)
(n) 	 (2-21) 

(, 	( is skew-Hermitian for the cases s3
N) 

 (1) - s3
M)  (n)  f 0 	(2-22) 

( 
Since for attenuating interface waves the three s3

N)  (n) taken in one 

medium have non-zero imaginary part, of the same sign, condition 

(2-22) prevails and the matrix multiplying A
(N)(II) vanishes. 

Hence, one can rewrite (2-20) as: 

3 
E FMN(I) A(17)(I) = 0 	 (2-23) 
N=1 

where FMN(I) = q(M)(II) p(N)(I) + p(M)(II) q(N)(I) 	(2-24) 

In the same way, by multiplying (2-18-a) by qi(M)(I) and (2-18-b) by 

*An attenuating interface wave is alsq possible. if one or two of the 
slowness comp ents are real, say s

3 
1, if the corresponding 

amplitudes A 	vanish as well. 
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p(m)(I) and using (2-21) for medium I, one arrives at: 

3 
E (II) A(N)(II) = 0 	(2-25) 

	

where FMLNT(II) = e)(I) p(N)(II) + p(M)(I) qe)(II) 	(2-26) 

Comparing (2-24) and (2-26) one obtains the following relationship: 

FRM(II) 	= FMN(I) 	 (2-27) 

Taking the complex conjugate of (2_25) and substituting (2_27) one  
can see that for non-trivial solution of both A(N)(I) and A

(N)(II) 

one obtains the same condition: 

	

= 0 	(2-28) 

(2-28) can be taken as a simplified generalized Stoneley condition. 

One should remember that in the process.  of simplifying the Stoneley 

condition the restriction (2-22) was introduced. However, when we 

deal with 'leaky' waves (2_22) may not hold and for those cases 

one has to return to the original condition (2-19). 

4 	(  In their paper [1974] Cladwick & Currie show that pkN)  (I) and pkN)  (II) 

can be related as: 
3 	 ( p(N)(I) 	E TIIM  pk

M)  (II) 	(2-29) 
01=1 

(since pe)(I) and
NM 
 pe)(II) form, or may be made to form, two bases 

in C
3), where T is a non-singular matrix and by appropriate choice 
( of pkN)(n)  may be made to have real determinant. 

If we substitute (2_29) into (2-48-a), the continuity of displacement 

equation, one obtains: 

• (m) 
E E A(u)(I) TNM  - A(M)(II)) = 0 	(2-30) 
M=1 	N=1 

since p(m)(II) is a non-singular matrix, only the trivial solution is 

possible for (2-30): 

3 
A(M)(II) 	E A(N.)(I) TNM 	(2-31) 

N=1 

One can see that the amplitudes in the two media are related by the 
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transposed transformation matrix which relates the components of the 

displacement vectors in the two half-spaces. 

Upon substitution of (2-31) into the continuity of stress, (2-18-b), 

one obtains: 
3 	 3 	 OA) ) (N) E (q(N)(I) - ET NM  qk (II) 	(1) = 0 	(2-32) 
N=1 k 	M=1 

For non-trivial solution of A
(N)(1): 

3 
q(N)(I) - E TNMq (m) (11)H = 0 

M=1 
(2-33) 

(2-33) can be looked upon as another alternative version of the 

generalized Stoneley condition, but it involves the complication 

of finding the transformation matrix T. . In this form one can 

easily see in the Stoneley condition the generalization of the 

Rayleigh condition, with q(m)(II) = 0. 

Using (2-33) as a Stoneley condition has the advantage that 'leaky' 

waves are not excluded, because of the skew-Hermitian character of 
MN D (or condition (2_22)) has not been taken into consideration. 

The matrix, the determinant of which vanishes in (2-33) is related 

easily to FMN(I) (using (2-24) and the skew-Hermitian properties of 

(2-21)): 

F1'6(I) = p(M)(II) (q(N) 	3  TNL (L) 	) k  (I) 	(II) 	(2-3i) 
L=1 	41' 

since p(M)(1I) is a non-singular matrix, one can see that FMN(I) 
_ 

and (qk 	1 NL (I) - 	T q(L)  (II)] are matrices of the same rank. 
= 

In their paper [1974] Chadwick and Currie have shown that TM 
 

is a skew-Hermitian matrix, in order to show that the generalized 

Stoneley condition can be reduced to a single real (or pure imaginary) 

condition. The reason for the proof is a suggestion made by Synge 

[1956] that Rayleigh waves would appear in discrete directions 

because the determinantal.equation is equivalent to two separate 

conditions, one each for the real and pure imaginary parts. 
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Stroh [1962] disproved Synge's conjecture by proving that the 

Rayleigh determinantal equation can be made real or pure imaginary. 
) He showed that since p(N) and q1  contain contain an arbitrary complex 

normalizing factor, by choosing the argument of this factor 

suitably the dot products which are involved in the Rayleigh 

determinantal equation may be made real or pure imaginary and 

therefore the Rayleigh condition is equivalent to a real equation 

in the wave slowness. 
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3. SOME. SYMMETRIC CASES. 

Of special interest in the study of generalized Stoneley waves is the 

specification of the waves which may be freely propagated at the 

interface between two crystalline half-spaces of the same material as 

the orientation of the half spaces is altered. 

In this chapter we shall investigate analytically some special cases 

where one can arrive at simple Stoneley conditions, the meaning of 

which will be studied. 

We shall assume that the material'throughout space has elastic 

stiffnesses with. respect to the crystallographic axes c!ijk/ 
 and density. 

p. Each half-space has its crystallographic axes oriented in a known 

direction so that the elastic stiffnesses, with respect to the interface 

axesx.arecij 	c.. (I) for medium I and 	(II) for medium II. The k/ 	kl 

crystallographic coordinates for medium I, in the interface coordinate 

system, x.(I), are related to the coordinates of. medium II, referred 

to the same system, x.(II) by: 

(3-1) 

Therefore, the elastic stiffnesses in the two half-spaces are related 

by: 
cijk2(II) = hirhjshkthlucrstu(I) 
	

(3-2) 

We shall now consider the equations obtained for the general interface 

problem. (2-12-a) becomes, for medium I: 	
(3-3-a) 

fc
ilk1 (I)s21+[cilk3i3k1 (I)js1s3(I)+ci3k3  (I)s3(I)-pOik 

	(I)= 0 

and for medium II: 

2 	 2 
[hirhkt[hishlus1+(hls  h

3u+h3shiu)sis3(II)+h3sh3us3(II)]crstu(I) 

poik} pk(II)= 0 	 (3-3-b) 

The sextic equation (2-12-b) becomes for medium I: 	(3-4-a) 

ilkl (I)s1ilk3 	ci3k1 1+[c 	(I)+ 	(I)is1s3(I)+c.3k3 (I)s
2
(I)-pb 1 	0 
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and for medium II:  

bilirhkt[hishiusI+ (hls
h3u+h3 	sis3  ( II) +h3 sh3u.s3  ( II) ] crstu  (I) 

= 0 

For a given material, the slowness equation referred to a given set 

of axes is unique. Although the set of axes to which the slowness 

equation is referred to in both half-spaces is the same, the 

crystallographic axes are differently oriented. It is this difference 

which accounts for the possibility of a different form of the slowness 

equation in each half space. 

Inthecasesweshallconsiderh..was chosen to have the form: 1J 

hid= 0 

( 

hi  

0 

0 

h2  

0 

0 

0 

h3 

hk  = ± 1 	(3-5) 

This type of a matrix allows for identity (where all hi=1), complete 

inversian(allh.=-1) and reflection and two-fold rotation about 

each of the interface axes. 

The components of the symmetric determinants in (3_!) are for these 

cases: 

   

	

2 	2 

	

S11(I)  = ells1 	c55s3(I) - p + 2p
15s1s3(1)  

	

2 	2 
S
12 (I)can, + c45s3(I) + (c14  + c56)s1s3(I) 

   

      

   

S13  (I) = c
15
s2  , + c35s

2
3(I) + (c13  + c55)sis3(I) 

2 	z 	-- 
S22 (I)  = c66s1 + c4483 (I)  - P 4. 2c46s1s3(I)  

2 	2 
S23(I) = c56s1  + c43s3(I) + (c36  + c45)sis3(I) 

2 	2, . 
S33(I) = c55s1  + c3383W - p + 2c35s1s3(I) 

   

      

The elastic constants of medium I are, given in contracted form, cmn, 

(see e.g. Hearmon [1961]). and are referred to the interface axes. 

For the second, medium the components of the symmetric determinant 

are: 

S
11
(II) = cs

2 
+ c55 s

2
(II) - p + 2h1h3c15s1s3(II) 

1 	3 



 

2   h1h2Lr ci6s1  + c4.5s3  

2 	2 h1h3[c15s1 + c35s3 

e6681 %IA(II)  

2 	2 h2h3[c501  + c11.3s3  

2 	2, c55s1  + c33s3J1) 

) 
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S12  (II) 

S13(II)-. 

s22 (II) 

S23(II) . 

s33  (II) 

(II)] + h2h3(c1)  + c56)s1s3(II)) 
) 

(II)] + (c13  + c55)sis3(II) 	)(3-6-b) 

- p + 2111h3c46s1s3(11) 	) 
) 

(II)] + hih2(c36  + c45)sis3(II)) ) 

- p + 2h1h3c35s1s3(II) 	) 

 

where hl, h2 & h3 form the diagonal of the transformation matrix h. 

as in (3-5). The elastic stiffnesses are the same as the ones for 

the first medium. 

Comparing the coefficients of the different powers of s3(I) and s3(II) 

in the two sextic equations (3-4-a) and (3-4-b), with hid  given by 

(3-5), one finds that the coefficients of the even powers of s3  are 

the same in both sextic equations, while the coefficents of odd 

powers of s3(I) are multiplied by a factor hih3  to give the 

coefficients of odd powers of 83(II). Since this factor is either 

+1 or -1, one finds that the roots of the two sextic equations are 

related as: 

s3 	h1h3s M)(I) 	M = 1,...,6 	(3-7-a) 

for general sextic equations. If the sextic equations become 

bi-cubic, the equations for both media are the same, regardless 

of the value of h1h3, and hence: 

s M)(II) 	M = 1,...,6 	(3-7-b) 

for bi-cubic sextic equations. 

Because of the nature of the waves that we are seeking the displacemenb 

should decrease with increasing distance from the interface and hence 

in medium I the imaginary part of s3  should be positive and in medium 

II, negative. We therefore obtain the following relationship: 

s(
3
N)(II) = h

1  h3  e3 	3 
[s(N)(I)) - iJ2(s(N)(I)) 
•  

with JA s 
(N) 

(I) ) > 0 * 

where Rfx) is the real part and al(x) is the imaginary part of x. 

A sextic equation which is bi-cubic has for its zeros the positive 

and negative square roots of the zeros of the cubic equation. 

N.1,2,3 	(3-7-c) 

3 

* In the appendix to their paper Eshelby et.al. [1953] showed that 
for sufficiently large s

1  such complex s3 
exist. 
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Therefore, in general, for such a medium the relation between 

the true roots in half-space I to those in half-space II may be 

given by: 
(N) 	(N) 	(N) s3  (II) = - s3  (I) , N=1,2,3, Jks3  (I)) 0 	(3-7-d) 

regardless of the values of hi. 

( ( 	\ / When Jks3
N )(I)) 0 one may renumber the roots so that the 

numbering is consistent with (3-7-c). When h
1  h3  -1, (3-7-d) and im 

(3-7-c) are the same. However, when al(s3 I(I)) = 0 and h1h3=+1, 

although. (3-7-c) may hold, one has to check also the possibility 

that (3-7-d) holds. If this is the case, it is impossible to use 

(3-7-c) and one has to treat specifically this case. 

In the following discussion we assume that (3-7-c) holds. Since 

our main interest is in attenuating waves, this assumption is not 

limiting. At the end of this chapter a short discussion is given 

about the excluded case. 

Substituting (3-7-c) into (3-6-b) one obtains the relationship 

between the components S(N) in the two half spaces: SK  L) 

 \ 	(N)t 	(N), SKL kII) 	h h [gS 	kI))-ih h_J(SKI,  kI))] 	(3-8) K L 	KL 	1 6 

No summation is meant by repeated upper case suffixes . 

The ratios of the components p(N)(n) are given by: 

PiN)(n):14N)(n):14N)(n) = 4)(n)4)(n) - SK N)(n)SIT)((:)?): 

[SIT)(n)4,1)(n) - SI(11)(n)S )(n)]:[Sg)(n)4,1N2T)(n) - SIT)(n)4,1)(n)] 

(where K and L are any two different rows), provided S(NKL
)(n) is a 

rank 2 matrix. In the particular cases where S
)(n) is of rank 1, KL 

this means that two s(N3( N ) 
)(n) are equal and therefore one should be 

careful in selecting pk  (n) in such a way that it is a regular 

matrix. One such possibility: 

P[N] 1):P[N+1] 11):13[N+2 )  = 0: SK[N+2](ni  (N) 	S4/L1](11) 	(3-10) 
(N)( \ (N) 	(N) 

where [N+1] =(N mod 3)+l K is chosen in such a way as to have 
(N), non-zero vectors pk (1). 
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In either case the following  relationship is obtained by treating  

separately hill3  = -1 and hih3=+1, when (3-8) holds, for the displacement 

vectors: 

(N) 	(N) pK  (II) 	x(NhKh3[R(pK  (I)) - ihihr(qpir(I))] 	(3-11) 

From (3-11) one obtains the connection between the stress vectors: 

(N)(1) = x(N)h h [Rfq(N)(I)) - ih h Jtg.K
(N)(I))] 	(3-12) K 1 	1 3  

where x(N)  in (3-11) and (3-12) are arbitrary non-zero constants. 

Once chosen we have to be consistent. 

When h1h3 = - 1 1  = - 	h = ±1) (3-11) and (3-12) may be greatly 

simplified: 

p(N)(II) = -X(N)hh K p(K N)(I) 
	

(3-13 ) 

q/(cN)(II) = x(N)hhKq/(cN)(I) 
	

(3-14) 

Using  the following  algebraic identity: 

ab - cd = 1(a + c/a)(b - a'd) + 1(a - c/a) (b+ a'd) 	(3-15) 

we can rewrite the conditions for generalized Stoneley waves (2-18-a) 

and (2-18-b): 
3 	 (3-16-a) 

E [p(
k
N)(I) + P(N)(II)/X(N)][A(N)(I) - X(N)A(N)(II)] + 

N=1  3 [p(N)(,)  -,
-"(
kN)(II)/x(N)][A(N)(/).1.x(N)A(N)(II)))  =0  

N.1 

k = 1,2,3. Similar equations are obtained for the stress componiVents: 
3 	/x(N)3[A(N)(,) x(N)A(N)(II)1  1( E [q?)(I) + qi(s11)(II) 	 (3-16-b) 
N.1 - 

( + E 	
k

N)(1)- q(N)(II)/x(N)(N)(I)+x(N)A(N)(II)]) = 0 
N=1 

Substituting  (3-13) and (3-14) into (3-16) one obtains: 

3 	(N)„ (N) 	(N) (N) 
E 	)p K 	[ A 	(I). - .x 	A 	(II)1 + 	 (3-17-a) 
N=1 	3 	(N) (N), + E i(l+hhKK  )p(N)(I)[A.(N)(I) + x  A 	JI)] = 0 
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and 

i(l+hyq (N)/\r (N)/\ - x A 	(II)] 	(317b) (N) 	(N) (N) 	, 

N=1 

The coefficients 1(1-hhK) and i(l+hhK) receive the values of either 

0 or 1, when the one is 0 the other is 1. Hence we have two 
, separate sets of three equations each, one for A(N)  (I) - x(N)A(N)(II) 

and the other for A(N)(I) + x(N)A(N)(II). At least one of these 

sets has to have a non-trivial solution, otherwise A(N)(I) = 

A(N)(II) = 0, and there is no wave. 

The equations are therefore given as: 

and 

• (A(N)(I) + x(N)  A(N)(II) ) = 0 	(3-18-a) 

(

c4N)(1 \ 

t()(I) 	• (A(N)(I) - x(N)A(N)(II)) = 0 2 	 (3-18-b) 

(N) p3  (I)4, 

	

where 4N)(I) = 	ip N)(I) 	if h2 = h 	(3-18-c) 

( 
c12
N) 
 (1) 	h2  = - h 

(N) 	() 

	

t2  (I) = 	q2  (I) 	if h2 = h 	(3-18-d)  

( 
P2
N) 

 (1) 	h2  = - h 

This leads to three possible conditions: 

Either: 

or: 

( 
P1N) (I)  

4N)(I) 
( q3N)  (I) 

p (N)  (I) 

( q3
N)  (I) 

= 0 

/ 0 

and 

and 

q(N)(I) 

t2
1\r)(1) 

1e)(I) 
(N) q 	(I) 

t(
N)(1) 

p(3
N)(1) 

0 

0 

(3-19-a) 

(3-19-b) 

3 
E i(1-hyqK  (I)[A(N) 	(N) (I) + XA(N)(II)] = 0 () 

N.1 



or both determinants vanish simultaneously: 

   

   

0 and 

 

= o 	(3-19-c) 

   

If we denote: 

B(N)= A(N)(I) - x(N)A(N)(II) 
	

(3-20-a) 

B(N). A(N)(I) + x(N)A(N)(II) 
	

(3-20-b) 

then 
A(N)(I) .+ 134_ ] (N) 	(N) 

A(N)(II) N)
-B
(N)

i/X
(N)  

B(N) and  B(N) are the null vectors of the matrices in (3-18). 

we define the total displacement components at the interface as: 

3 
P (n) = E p(N)(n)A(N)(n) 	(3-22-a) 

N=1 

and the total stress vector components on the interface as: 

3 

Qk(n)  = E g(k
N)(n)A(N)(n) 

N.1 
(3-22-b) 

(one should remember that the actual stress vector 63k is given by 

63k  = it4k) 

The total displacement and stress vectors at the interface in terms 

(3-21-a) 

(3-21-b) 

(3-23-a) 

(3-23-b) 

(3-24-a) 

(3-24-b) 

Using (3-18) we can rewrite (3-22-a) and (3-23-a): 
3 N) 	4\1) P1(n) = E pi  (I)B 
N=1 

( P2(n) = 	p2N)  (I)B(N) 	if h2=h1 N=1 

of medium II are given 
3 

PK 	-hhK  E 
N=1 
3 

QK(II) 
=1 

by: 

p(N)(I)  1[B(17)-B 
 (N) 

2 	] 

n(N)(I) 	_(N), 
"1K k I 21-1°4. 	j 
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3 

P2(n) 	E e)(I)B(N)  if h2  = h3 	(3-24-c) 
N=1 

 

3 

P3(n)=  2 E P(N)(I)B(N)  
N=1 

(3-24-d) 

and the total stress vector components at the interface may be 

rewritten as: 

Qi(n) 	E g(

1

N)(I)B(N) 

N=.1 	
/ 

3 
(3-25-a) 

3 Q2(n)  = 	E ci(

2

N)(I)B(N) 	 (3-25-b) if h2 = h1 
N=1 
3  (AT) 

Q2(n) 	E, cl'-'(I)B(N) 	if h2 	h3 	(3-25-c) 
N=1 
3 Q3(n) 	E a(N)(I)B(N) 	 (3-25-d) 
N.1 3  

If each of the determinants in (3-19) vanishes separately, then two 

separate waves, propagating at different velocities si  will occur: 

If (3-19-a) holds, B(N)= 0, and 13.4.
(N)  = 2A(N)(I), therefore: 

P1(n) = Q3(n) = 0 and P2(n) vanishes if h2=h1. If h2=h3, Q2(n) = O. 

Similarly, when (3-19-b) holds, BA N)= 0 and B(N). 2A(N)(I), which (N) 

leads to: Q1(n)=P3(n)=R2(n).0 (R2(n)= (n) when hih2=+1, and R2(n)= 

P2(n) for h1h2=-1). 

From (3-24) and (3-25) and the discussion one can see that the two 

wave displacements associated with (3-19-a) and (3-19-b) are normal 

one to the other. One total displacement vector has two non-zero 
Ass 

components while the otherenly one non-zero component, in the 

directbn in which the first vector has a zero component. 

The stress vector matching the total displacement vector having two 

non-zero components is in the direction of the total displacement 

vector having only one non-zero component. The second stress vector 

has two non-zero components and is in the same plane with the first 

total displacement vector. 

In the discussion we have not guaranteed that the velocity of these 

waves would be such that there would be attenuation of displacement 

and stress with increasing distance from the interface, indeed one 

or both of the waves may be non-attenuating. 

N) If (3-19-c) holds this means that neither B(  nor B(N) are the zero 
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vectors, and therefore the total displacement and stress vectors are 

given by (3-24) and (3-25) where B(N) and B(N) are the null vectors 

of the two matrices, in (3-18). This means that the matrices in (3-18) 

are at most of rank 2 each, which leads to the conclusion that for 

this case the original matrix of the generalized Stoneley condition 

is at most of rank 4. Therefore, there exist two 6-dimensional null 

vectors kA
(N) 

 (I),A(N)(II)) of the generalized Stoneley condition which 

are linearly independent. For a given slowness si  there is only one 
( 

acceptable set of solutions s3
N)  (n), which lead to one set of 

displacement components. The total displacement will therefore be 

a linear combination of the two solutions with each component 

attenuating at the same rate with increasing distance from the 

interface. 

When h1h3 = +1 (h1 = h3  h, h = ± 1) and (3-8-c) holds, (3-11) and 

(3-12) may be simplified: 

(N) 	(N) 	(N) 
PK  (11) = X hhKpK  (I) 	(3-26-a) 

(N)/ 1 (N) (N)/ qK  (II) = X hhKqK  kI) (3-26-b) 

The fact that the displacement and stress vectors in the second 

medium are related to the complex conjugate displacement and stress 

vectors does not enable us to separate, in general, the generalized 

Stoneley condition into two simple decoupled conditions as in the 

case h1h3 - 1. 

The generalized Stoneley condition (2-18-a) and (2-18-b) may be 

simplified to: 

3 	(N), 	(N), 	(N), 	(N) (N), 
E 	kI) A 	kI) - hhJ  pJ  kI) x A 	kII)j= 0 
N.1 ' 

3 	(N), , (N) E [qT  kI) A 	(I) - hhJ  qJ  (I) x (N)" (N)  ( )(II)] 	0 
N=1 ' 

(no summation on J) 
3 	1.R,, 

r 	) 	)B(N)  • 1,1"-. .(N)  ( I )  B(N
)  = 0 	j=1,3 or: EtetP- 	1' + N=1 

3 

	

	(N)( )1  (N) • i-alfg(N)(,)3B 10.1= 0  , j=1,3  E 4-R( q  (I ) } B- J 	 J N=1 

(3-27-a) 

(3-27-b) 

(3-27-c) 

(3-27-d) 
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3 	(N) (N) 	(N) N) E r. B 	+ t. B j= 0 - 	1 + N=1 

where: 

i=1,2 (3-27-e) 

(N) 	(N) 
r1  = kfp2  (1)) 	/ 

(N) 	(N) 
r2 Rfc12 (I))  ' 

r1N)=1.42(p N)(I))' 3 
4N)= ij(e)(I))  

)' 
) when h2  .h 

) when h2=-h 
) 

This can be put into a matrix form: 

	

( ie(p N)(I)) 	id4P N)(I)) \ J 	3 
(N) 	

it(N) r(N)  

	

RiciP)(I)) 	iJkg. )(I))/ 

B(N)\ 

= 0 

B(N)/ 

 

(3-28-a) 

 

j = 1,3 ; i=1,2 

If the determinant of the matrix of coefficients is non-zero B(N) 

B(N) 0, which means that A(N)(I) = A(N)(II) = 0. Hence in order to 

have an interface wave complying with welded conditions at the interface 

the determinant of the coefficients must vanish: 

Rip(N)(I)) (N)(I)) (Pj  

rcN) 	itch) 	= 0 	(3-28-b) 

qj(N)(I)) 	1.9(q.N)  (I)) ( 

For the case h1 = h2 h3 = h (identity or complete inversion) one 

does not expect to have an attenuating interface wave. One can however, 

have body waves travelling parallel to the interface, obeying the 

welded conditions at the interface. This expectation  can be proven 

in the following way: 

If one adds to (3-27-a) and (3-27-b) its complex conjugate (and hx= h) 

one obtains another form of the generalized Stoneley condition: 

R(p()(,)[A(N)(,)  

N=1 J 

R(ci N)(I)[A(N)(I) -
N=1 

(N)A  (N) X 	(MD = 0 

X
(N)

A
(N)

(II)]) =0 

j=1,2,3 (3-29-a) 

j=1,2,3 (3-29-b) 

j = 1,3 ; 1.1,2 

Usingthedefinitionof.(2-15) and (3-29-a) one can rewrite (3-29-b) 



as: 

3 	(N) 	(N) 
c3j3 	kls 	j 3 ( ) p 	(I) [A

(N)
(I) - 

X(N)A(N)
(II)]) 	0 	(3-29-c) k_ -- =1 

Since c3j3k / 0 one obtains a simplified version of (3-29-b): 

.

cs
3 
N) (1) 

yj  
N)( 1) [A(N)(,) 	x(N)A  (N) (II)]) = 0 	(3-29-d) 

N1 
 

SincecN)(I) are determined up to a multiplying constant, it is Po   
possible to find p(N)  (I) (J = 1 or 2 or 3) such that 

(N) 	(N) 	(N) (N), pj  W[A 	- X A 	II)] 

is pure imaginary of the same sign (say, non-negative) for all N. 

0\14A(M)( ) 	(M) (M) f 	1 	 / For, suppose P L— \I, - X A 	=a + ia
2' where a / 0. 1 	1 

wecalimatiply()(I) (holding M constant and for all values of j) Pj  
by ± ( a2  + ial), where the sign is determined so that all the 

resulting products would be of the same sign. 

For this chosen J, (3-29-d) can be rewritten as: 

3 	(N) E Jifs
3 (I))(p(N)(I) [A(N)(I) - x(N)A(N)(II)]) = 0 	(3-30) 

N.1 
( This is possible only if all Jqs3
N)  (I)) = 0, because otherwise we 

would require the sum of three non-negative numbers to vanish. 

When hi.  = h3  = h, and h2  = - h there are three possibilities of 

waves: 
(N) 	(N) B 0 B 0 

B(N) / 0 	B(N) 0 

B(N) 	0 	B(N)/ 0 

(3-31-a) 

(3-31-b) 

(3-31-c) 
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The total displacement at 

(3-27) for all cases hih3  

3 	(N) 
Pl(n)  = iklP1 ( N=1  

3 	(N) 
P2(n)  =. 1 	k)(132 ( N.1 

3 	(N) P2  (n) = 	/?(192 N=.1 
( P3 (n) = 	R(P3
N) 

 

the interface is obtained fram (3-26) and 

= +1: 

I))B( +i,P(p(1
N)(I))B(N) (3-32-a) 

( MEI(N)  + iJ(p2
N) 

 (I))13
(N) if h2=h (3-32-b) 

I))B(N) + 1,9(p(2
N)(I))B(K)  if h2=-h (3-32-c) 

I))B 
(N) 
 1fp

(
3
N) 	

(3-32-d) 
N.1 



and the total stress vector components are obtained in the same way 

and follow the same pattern as the total displacement components. 

In the case h2 = h, for (3-31-b) to hold the matrix: 
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j = 1,3  

(3-33-a) 

is of at most of rank 2. 

For (3-31-c) to hold, the matrix 

is of at most of rank 2. 

/i p(N) ,vt j  
(i4N) (I)) 

44?) (I) } 

ie(ce) ( I))/ 	j = 1,3 

(3-33-b) 

When either (3-31-b) or (3-31-c) hold the total displacement and total 

stress components are obtained by substituting B(N)  or B(N)  = 0 

respectively, in (3-32) and the similar set of equations for the total 

stress components. 

Table (3-1) gives a summary of the relationships between the different 

quantities in the two media for all symmetric configurations. Note 

that the total displacement and total stress vectors are independent 

of the choice of X
(N) 

Table (3-2) describes the possible generalized Stoneley waves in the 

different symmetric configurations discussed in this chapter. 

When the medium and the wave slowness give rise to a bi-cubic 
( 

equation for s3
N)  (n) which has real roots, and hib3  = 1, (3-7-c) 

does not necessarily hold and one has to check the possibility that 

for a bulk wave moving parallel to the interface the correct 

relation between the slowness of the wave on the two sides of the 

interface is given by (3-7-d). Substituting (3-7-d) into (3-6) does 

not, in general, yield a simple relation between S (I) and SKL(II), 
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and it is necessary to know the form of the elastic stiffnesses 

which causes the sextic equation to degenerate to a bi-cubic. 

Even in those cases for which one can simply relate SKI  in the 

two media, it is not always possible to relate simply the displacement 

and stress components. It is only for very particular cases that a 

simple relation can be obtained between the displacement and stress 

components on the two sides of the interface. One of these is the 

case discussed by Lim and Musgrave [1970a] & [1970b]. It is 

interesting that for the case they investigated (cubic media) when 

the transformation matrix was the identity, Lim & Musgrave found a 

bulk wave which has energy flux parallel to the interface with velocity 

which is lower than the lowest body wave velocity. This may be 

explained when one considers the geometry of the slowness surface 

(see chapter 8). 

In chapter 4, treating particular cases, h1h3  = 1 is treated, and 
(3-7-c) is not assumed, therefore the non-attenuating waves are 

included in the discussion there. 
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Table (3-1) - A summary of the relationship between the different 
physical properties in the two media, in the interface coordinate 
system: 

Property 
compared 	medium I 	medium II 

The elastic 
stiffnesses cIJKL(I) 

	
hihjheilic IJKL(I)  = ± cIJKL(I)  

cif  (n) 

Slowness 
components 
in the x3  
direction 

4N)(11) 

s(N)(1) 3 	h1  h3 	
(N)(I)) 	3 

i J4s(W)(I)) 
3  

with 
( J2(s3N)  (I)1>0 

Elements of 
the secular 
matrix 

S
K
L) SJ7)(n) K 

s(NKL
)(1) hK hL [k1S

(N)(I)) (N)(I))] KL 	1 3 KL 

Displacement 
components 
( 
PK
N) 

 (n) 

(N)hK  h3  [R K(p(3)(I)) - ih1hJ(p1.(N)(1))] 

Stress 
components 

(N) 
(n)  

(N) X hK  h1  [q K  q
(N)(I)) - ih1  h3  4A(g.

(
K
N)(I))] 

Amplitudes 

A(N)(n) 

2(B(N)+ e ) i(B?)_ B(N) )1x(N). 

Total 
displacement PK(I) . 
at interface 3 
PK(n)

(  EpK
N)  (I)A(N)  I 

N=1 

3 	(N) 	(N) 
lh h ET,?(10K (I)l-ih1h3J(10K (I))]* 2 K 3N=1 

{B
(N)- B(N)]) 

Total 	QK(I) = 
stress vector 3 (N) 	(N) at interface E qK  (I)A (I) 

QK(n) 	
N=1 

 

3 	(N) 	(N) ihich E(PFNK  (I)) -ihihrXcia  (I))]. 

(N) 	(N) [13+ 	- B 	]) 



ci. 11)(I) 	p3  (I) (N) 

j=1,3 
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Table (3-2) - Conditions for possible generalized Stoneley waves 
in the different symmetric configurations (3-5). 

, 	, h1  h2  h3 	B(N)=0 & (N) /0 B(N)/0 & (N) =0 	(N)/ 0 & B(N)  /0 

A h h h 	No attenuating waves are possible 

B h -h h 	rank 7A 2 	rank 71s 2 	D5  = 0 

C h h -h 	D1  = 0 & D2/ 0 

D h -h -h 	D3=0&D 0 

where: 711 = 	iJAIDC11) (1))\ 

( 

(N) 
R(102  (I)) 

1s(q (N)(I)) 
J 

'(q(2
N)(I)) 	j=1,3 

D1 q ) 
= _(N)(I, D2  = q

(N)(I) 

p
(N)

(I)  q(2
N)(I) 

q(N)(I) 3 	p3 (I) 
(N) 

	

CITT)(I)) 	1.0(p.N)  (I)) ( 

	

LAID?)(I)) 	/e(Pj?)  (I)) 
( 

	

k (q.
N)  (I)) 	IS(?)(I)) 

	

1,=P(cl i\T)  (I)) 	R(e )  (1)) 

D2= 0 

D4= 0 

77 

& 

& 

. 

3  

D1  / 

D3/ 

= 

itlifp N)  

1...gq2N)(I))/ 

0 	D 

0 	D3= 

(pP)  (1)) 

(I)) 
(N) RN. 	(I) 

p(N)(I) 

(N) 
c12 	(1) 

1= D2 = 0 

D4  = 0 

) 

j=i'3 

D 	= q (N) (I) 1 
(N) p2 	(I) 

D5  = 
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4. GENERALIZED STONELEY WAVES IN SYMMETRIC CONFIGURATIONS OF 

DIFFERENT CRYSTALLINE MEDIA. 

The discussion in chapter 3 does not take into consideration the 

symmetries the media may have within themselves. The existence or 

non-existence of generalized Stoneley waves in symmetric configurations 

depend only on the elastic stiffnesses in the interface coordinate 

system and the density (which is the same in both media). 

If a given medium. is invariant under transformation ij
although 

hid  
may describe one of the cases B, C, or D (table (3-2)) we are 

actually dealing with case A. In thiS case no attenuating waves 

will propagate at the interface. 

Suppose the medium in half-space I has mirror symmetry with respect to 

the x3  axis (in the interface coordinate system). Then, if we use the 

transformation matrix of case C to obtain the elastic stiffnesses in 

medium II we can write: 

/h 0 0 Jh 0 0 /1 0 0 

0 h 0 = 0 h 0 	. 0 1 0 (4-1) 13 
0 0 -h 0 0 h 0 0 -1/ 

If we first operate with the right hand side matrix, there would be no 

change in the elastic stiffnesses and case C would be equivalent to 

case A. 

If the elastic stiffness matrix in the interface coordinate system 

is such that it is invariant under the symmetry operation which 

relates the media on the two sides of the interface, one can regard 

the configuration as identity or.complete inversion and therefore one 

does not expect to find any attenuating waves. 

If one deals with the different possible symmetries, one can see that 

for some configurations one does not expect to have any attenuating 

waves at the symmetric interface, and for others, one can further 

simplify the generalized Stoneley condition, and have some additional 

information about the possible waves. 

The two extreme cases are those of isotropy and the triclinic systems. 

In the case of isotropy one does not expect to have any generalized 

Stoneley waves at the interface since no discontinuity exists and the 
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boundary conditions are identically satisfied for both the longitudinal 

and transverse body waves. 

In the case of triclinic systems no additional symmetry is present in 

the medium and therefore one cannot simplify further the discussion 

in chapter 3. 

If the medium in half-space I is invariant under 1 0 0 or -1 0 0' 

( 
0 1 0 0 -1 0 
0 0 -1 0 0 

the elastic stiffness tensor is of the form: 

* 0 0 *\ 

* * 0 0 * 

* * 0 0 * 

0 0 0 * * 0 - (4 2)  

0 0 0 * * 0 

\* * * 0 0 */ 

In this case the elastic stiffnesses are such that under a 

transformation (3-5) where hih2. +1, regardless of the value of h3, 

the configuration is equivalent to the identity or complete inversion 

while if h1h2  = - 1 , cases B and D become identical. In this case, 

as far as the medium is concerned there is no difference if h1h3  = ± 1, 

for a given value of h1h2. 

The components of the symmetric matrix, the determinant of which 

describes the slowness surface, SKI,
(N) 

 ' are: 

S(N11
)(I) = c11 s

2 
+ c553  (s(N)(I)]

2 
- p 1  ) 

) (N)„ 	2 
) S12 W  = c16s1 

)(N) ) 
S13 (1) = (c13  + c55  )s1  s3 (I) 

s )(1) 	+ 	
(N) 	2 

22 	= c66s1 	c44(s3 	(/)] - V  

) 
) 
) (4-3-a) 

) 	(N)  
S23 	(I) = (c36  + c45)sis3 	(I) ) 
() 	2 	(N) 	2 ) 
S33 	(I) = c55s1  + c33[s3 	(I)] - p ) 

Assuming that the configuration is such that generalized Stoneley 

waves can propagate (hih2  = -1), cases B or D, one obtains for the 

second medium: 

S(N)(II) = c11 s
2 
+ c55  [s3

(N)
(II)]

2 
11 	1  
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()  
S12  (II) = - 01651 	 ) 

) 
S(N
13
)(II) . (c

13 
 + c55 )s13 s(N)(II) 	) 

) , 	2 S22) (II) = c66s1 + c44[ s3
(N)

(II)]2 - p 	) 	(4-3-b) 
) 

S )(II) . - (c36  + c5  )s13  s(N)(II) 	) 23 
) 

S33
)
(II) = c55 s

2 
+ c33  [s3

(N)
(II)]2 - p 	) 1  

where c in the second medium are the same as those of the first. mn 

The sextic equations obtained are bi-cubic and are the same for both 

half-spaces. If the medium and configuration are such that they 

allow true generalized Stoneley waves to propagate at the interface 

the slowness components can be complex only if either the cubic 

equation (of the bi-cubic) has three negative real roots, in which 

case the slowness components would be pure imaginary, or it would 

have one negative real root and two complex conjugate roots.' In the 

first case the slowness components would be pure imaginary: 

(1) 	s31)  (II) 	- 	s°  s
3 
 (I) = i s 	3 

o 

( 
s(32)(I) 	i s* 	s3

2) 
 (II) = - i s* 

43)(I) = i st 	s(3)(II) 	- i st  

) 
(4-4-a) 

If the cubic has one real root and a pair of complex conjugates the 

slowness components would be of the form: 

s(
3
1)(,)  = is° 	s(1)(II) = -is°

3 	

) 

(2)(I) = s* + ist 	s(2)(II) . -s* - is'
-I- ) 
) 3  
) 

s(33)(I) =-s* + ist 	s(33)(II) = s* - is'
-I- 
 ) 

For both cases 4N)(II) = -4N)(I) 

(4-4-c) is the same as (3-7-d) and therefore the following discussion 
covers cases where the interface wave does not necessarily attenuate 

(J.2[4N)(n)) may be zero for some or all N). 

The assignment of the superscript 2 or 3 to the slowness components 

in (4-4-b) is quite arbitrary and is independent of h1
h3 

(compare 

with 3-7-c)). The moment we have chosen the numeration of the 

components in (4-4) we have assumed a certain relation between the 

components in the two media and we have to carry it through. We could 

have chosen different numeration which would still give us simple 



relations between the slowness components in the two media. One 

should note that different numerations lead to different relations 

between the displacement and stress vector components but not to 

different final results of the total displacement and the total 
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Substituting the values of S 
(N)(n) in (3-9) one obtains ratios 

(N)( 	
KL. 

of pk 
fl.) in each medium. In medium I the ratio is: 

p?)(I) 	p
(N) 

(I) 	pp)(,)  = 	(4-5-a) 

(s s(N)(I)[(c +c )(c s2  + c [s(N)  (I)]2-p)-e S (e 	c )11: 

:(SAN)(I)[(C S2+c 11 1 55' 3 is(N)(I)]2-0(c36+c45 )-c];126:(21e i‘3-3÷6:55-)5];-:-  

1 3 	13 55 66 1 	 4 3 

!((clis21+055[4N)(I)]2-0)( -c66s1+c44r soN)  

and for the second medium: 

(N) 	(N) 	(N) pi  (II):p2  (II) :p3  (II) = 	• 	(4-5-b) 

(N) 	 2 
(sis3  (II)[(ci...+c____)(c s  e IS

(N)
(II)]

2-p)-ci6s1(c36'45)11: .5 5 	66 1+-44-3 

: (-sisP)(II)[ (ciisi±c55Es?) 0:012-p)  (c36±c45).. el6s21(c13+c55)]): 

:((c1131+c55Es3N) (/')]2- )( P e6681
.-1-c44Es3N) (II)12-0)-  46211 

(N Substituting (4-4-c) into the expression for SKL)  (II) (4-5-b), and 

using (3-9), one obtains the relation between the displacement 

components in the two half-spaces: 

( p(N)(II) . - p1
N)  (I) 	) 
 ) (N) 	(N) p2  (II) = p2  (I) 	

) 
) 	(4-6-a) 

p(N)(11). p(N)(1) 	) 

(Choosing the proportion constants to be the same in (4-5-a) and 

(4-5-b)). 

If the slowness components are pure imaginary the displacement 

components are in the first medium of the form: 

p  (N) (1)  = 	ice° 	ice*1 
	

lot \ 
 

0 ice2 IY*2  iu2 (4-6-b) 

a
3 	

oe
3 
* 	at / 

3 

Where for each N it may be multiplied by an'arbitrary non-zero (N) 

(I)]2-p)-464 ) 
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The displacement components in the second medium are of similar 
( form and are related through (4-6-a) to- pk
N)  (I). 

When the slowness components are complex the displacement components 

are of the form:  

Pk (N)(I)  = 	is 	cet + 14 -U1  * + id—   
icy() 	 (4-6-c)* 
2 al ÷ ic4 -4 + i°4 
a3 	aii + frit 	ctI -1.- ia 

Where, again, for each N, p(N)(I) may be multiplied by an arbitrary k 
non-zero constant O(N). The displacement components in this case, in 

the second medium are still related tlugh (4-6-a) to pl,
(N) 

 (I).  

If the slowness components are real, 4As3N)(n)) = 0, the relations 

between the slowness components in the two media are still given by 

(4-4-0, and (4-6-a) holds for this case as well. 

One should note that the relation (4-6-)is not absolute and is 

dependent on the proportion constants chosen in (4-5). If one wishes 

to remain consistent with the discussion in chapter 3 a multiplier X
(N) 

should be added to each of the equations (4-6-a) on the right hand 

side. 

Using the definition of the stress vector (2-15) and (4-6-a) one obtains 

the following relations: 

(N) 	(N) 
q1 (II) = q1 (I) 	) 

() 	(N) 
q2  (II) . - q2 , 

 
) 	(4-7-a) 

3 	3 q(N)(II) . - q(N)(1) 	
) 
) 

In the case of pure imaginary slowness components the stress vector 

components are of the form: 

q(N)(I) 	1/ sol 	st\ 
5c 1351 

irq° i13  -IR+) 

(4-7-b)* 

 

     

     

     

and when the slowness components are given by (4-4-b), the stress 

*Throughout the following discussion, a, 0, S & denote real numbers. 



components are in the first medium of the form: 

'cli(cN)(I) 	/ 131 	Pt 

▪ 

iPI 	PI - iPI 

	

po 	p*  

• 

ipt p* 	.pt 

	

2. 	2 	2 	- 1  2 

	

in 	+ 	
-R3+1.3 / 

(4-7-c) 
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In the second half-space the stress components obey (4-7-a). 

The stress vector components in the case of real slowness components 

are real and obey (4-7-a). 

If one wishes to use the multipiers X(N) for the displacement 

components one has to multiply the right hand side of (4-7-a) by the 

same multipliers. 

Substituting (4-6-a) and (4-7-a) into the generalized Stoneley sr 
conditions one obtains the following equations: 

( Z3 	p(N)(I) 	[A(N)(I) + A(N)(II)] 	0 	) .1 
) 

	

E3 p(N)(I) 	[A(N)(I) - A(N)(II)] = 0 	) 1 2 
) 

	

E3N.13 
p(N)(I) 	[A(N)(I) - A(N)(II)] = 0 	) 

) 
E3 	q(N)(I) 	[A(N)(I) - A(N)(II)] = 0 	) N.1 1 

) 

	

E3 
1
q(N)(I) 	[A(N)(I) + A(N) ( II) ] = 0 	) N. 	2 

) 
E3 ( 

	

1 3
N)(I) 	[A(N)(I) + A(N)(II)] 	= 0 	) 

(4-8)  

(4-8) form two systems of three homogeneous linear equations.in 
B(N). A(N)(I) + A(N)(II) and B(N)  = A(N)(I) - A(N)(II). . If one 

uses throughout the multipliers X(N)  they would appear in (4-8) as 

multipliers of A(N)(II), and one can see that (4-8) are two systems 
of linear homogeneous equations (as in case D) with X(N)=1. 

The determinants of coefficients may vanish separately or simultaneously: 

If they vanish separately the null vector, either B(N) or B(N) of the + 
vanishing determinant may be calculated and the other vector, for this 

given slowness, is a zero vector. Calculating the null vectors and 
( 	( taking into consideration the special forms of pk
N) 
 and qk

N) 
' one 

obtains for media with pure imaginary or real slowness components: 

B
(
±
I) 

• B
() 

• B(3) = 0• cie.  (4-9-a) • ± • ± 	±* ±. 
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and for media with complex slowness components (given by (4-)--b)): 

B2) : 3113) = cI : 4 icI : 4 icI 
(4-9-b) 

Of course, one has to remember that these are equations between ratios, 

and one can use an arbitrary non-zero multiplier, in each of the 

above equations. 

The calculation of A(N)(n) from (4-9) shows us that regardless of 

which of the determinants of coefficients vanishes, the amplitudes 

are related in the same form as the B(N)'s : 

( 
If BAN)  are described by (4-9-a), the ratio of the amplitudes has the 

form: 

A
(1)

(n):A
(2)

(n):A(3)(n) 	11°(n) : T)*(n) : t(n) 	(4-10-a) 

( 
and if BAN)  are given by (4-9-b), the amplitudes are related as: 

A(1)(n):A
(2)

(n):A(3)(n) = 11°(n):11*(n)+ill (n):11*(n)-il1 (n) 	(4-10-b) 

The exact character of the interface wave is determined mathematically 

by whether or not one or both determinants of the coefficients in (4-8) 
vanish for the given slowness. 

Suppose the determinant p(N)(I) 

.1 	(4-11-a) 

3
(N)(1) 

( 
P2
N) 
 (I)  

p(N)(I) 
3 	(4-11-b) 

q
I
N) 

 (I) 

does not. This means that B(N) is the zero vector, or that A
(N) 

 (II) = 

A
(N)(I). For this case P1

(n) - the displacement component at the 

interface in the x1 
direction vanishes and the non-zero components 

of the total displacement are in the x2  and x3  directions. Hence the 

interface wave is transverse. When one calculates the total 

displacement components (see (4-12)) it is found that P2  and P3  are 

in quadrature and therefore the displacement is elliptic at the 

interface. (see fig. (4-1)). 

If the determinants in (4-11) are such that (4-11-b) vanishes while 
(N.  (4-11-a) does not, B(N) is the zero vector, which means A(N)(II)=-A 

vanishes, while the determinant 



and the displacement components at the interface in the x2  and x3 
directions vanish. The only non-zero component of the total 

displacement in this case is P1, in the xl  direction, which means 

that the interface wave is longitudinal and rectilinear at the 

interface (see fig (4-2)). 

When the interface wave is transverse the stress vector components 

in the x2  and x3  directions vanish, and the only non-zero component 

of the stress vector is Q1. On the other hand when the total 

displacement vector is longitudinal, the stress vector is transverse, 

elliptic (see (4-13)), in the x2-x3  plane. In both cases it is 

quite obvious that the stress vector is perpendicular to the 

displacement vector. 

When both determinants in (4-11) vanish simultaneously, the total 

displacement and stress vectors have three non-zero components. 

Using (4-8), the components of the displacement vector at the 

interface are of the form: (if the slowness is of the form (4-4-a)): 

Pl(n) EN3=1P1N)(I)B(N)4i(ce
1
C°  9C*  cet1Ct) 	

(4-12-a) 

P2(n) =2  N.11)2N)(I)B+N)=ii(ce2C+ agl! a2°-+) 	(4-12-b) 

P3(n) = 2 E134=1p N)(I)B N)=12-(cec3C: + 	+ at340-) 	(4-12-c) 

If the slowness components are given by (4-4-b) the displacement is 

of the form: 

Pl(n)  = 	▪ 2 ceIC.t 	2:Y1-1" 	(4-12-d) 

P2(n) 
2i(Y2C+ Tfc 2u2:) 	(4-12-e) 

P3 
 (n) = i(uoro • 2a*c* oytc)  (4-12-f) 3\ 	2■ 3b4. 	3 + . 	3 +/ 

Therefore, independent of the slowness component pattern ((4-4-a) or 

(4-4-b)) if there is an attenuating wave at the interface between two 

media related by the symmetric transformation matrix, having a plane 

of symmetry perpendicular to the x3  axis, the displacement vector 

components at the interface are such that the displacement in the xl  

and x2  direction are of the same phase while the displacement in the 

x3 direCtion is in quadrature. 

The stress vector components are obtained in a similar way and give 



the following results: 

 

1.2 

For pure imaginary slowness components: 

Ql(n)  = 01C+ 	f31Ct+)  

Q2(n) 2(02C°  + qc* pt
2ct) 

Q3(n) = 	+ qC* + 133C) 

(4-13-a) 

(4-13-b) 

(4-13-c) 

 

and when the slowness components are given by (4-4-b) the stress vector 

components are of the form: 

gl(n)  = IAC++ 2  (qC1.- 	
t t 	(4-13-d) 

Q2(n) = 2[P°2C°  + 2(32S'e - fIct)] 
	

(4-13-e) 

(n) = 2i[V3C°  + 2 (P;Ct  + PIS*) ] 
	

(4-13-f) 

One can see that Q1(n) and Q2(n) are of the same phase as P3(n) while 

Q3(n) is in quadrature with the other stress components, but of the 
same phase as P1(n) and P2(n). However, since the stress vector 171.3  

at the interface is obtained by multiplication of Qi(n) by iw (me (2.14)) 
the stress vector 

i3 	P1(n).  

When the slowness components are real both the total displacement 

and stress vectors are real, and the relation between the vectors 

depends on their components' actual values. 

If the medium in half-space I has a symmetry plane which is 

perpendicular to the x2  axis in the interface coordinate system, its 

elastic stiffnesses tensor is of the form: 

* * * 0 * 0 

* * * 0 * 0 

* * 0 * 0 (4-14) 

0 0 0 * 0 * 
* * 0 * 0 

0 0 0 * 0 * / 

For such media if the transformation matrix from medium I to medium II 

has h1h3 = + 1, it is equivalent to the identity or complete inversion 

while if h1h3 = - 1, cases C & D become identical. (The sign of h2 
does not play any role in the analysis) 
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The components of S(N)(I) are: 

	

s11
(N)(1) = 	2 

Si

c11s1 + c55 
S )(I)  = 0 2)(I) 

	

 = 	
2 c15s1+ c35[  

	

s )(1) = 	2 
22 	c66s14- c44[  
(N S23) (I) = 0 

s33
)(1) =  c55s1+ c33[ 

 

[s(
3
N)(I)]2-p + 2c

15 s13 s(N)(I) 

(N) s3  (I)]2  + (c13+c55)s
1
4N)(I) 

(N) 
s3 (1)]2  - p 	2916s1s3K)(I) 

4N)(1), j2  p + 2c35s14N)(I) 

If we expect any interface waves, hih3  = - 1, and SKL
(N) 

 (II) are given 
by: 

S11
)(II) . c1....1s

2
1  + c55  [s

(N)pi)]2 - p - 2c15s1s3
N),  kII) 	) 3 	
(  

) 
S(N)(II) = 0 	 ) 12 

) 
S(N)(II) . -(c15 s2+c353 1  [s(N)(II)]2) + (c..5  :_+c55  )s1  s3

(N)(II)) 13 	1  
s2()(II) 	2 	 ( 	) 
2 	

(N)(II)]2 - p - 2c46s1s3N)  (II) ) (4-15-b) = c66s1 + c44[s3 
(N s23) (II) = o 	 ) 
(N) 	. 	2 	 ) 
S
33 

(II) = cs1 + c 	s(N)(II) 2 3 	] - p  - 2c35s1s3(N)  (II) ) 55  

The sextic equations are factorable in this case into a quadratic 

factor  S(N22
)
(n) and a quartic one [S1

(N)(n) S3(N)(n) - (S1
) 
 (n))

2 
 ]. 1 	3 	

(  

In order for the quadratic term to have a complex root the following 

relation must hold: 

	

4(46 c44c66) c44P ° 
	(4-16) 

2 	2 , or sl c44P/(c44c66 - c46) 

If this is the case, 41)(I) is given by: 

(1) 	,r2 	i  s3  (I) . f --c46s1 + "c46 si - c44\c66s1 

and in the second medium: 

0)/c44 	(4-17-a) 

P))/c44 	(4-17-b) 

The remaining quartic factor of the sextic equation is given by: 



[s3N)  (1)]4  (c55c33-c35) + 2s1[s )(1)13(c15c33-c35c13) + ( 	2 

(N) 2 2 	2 
[ 3 (I)]  [81(elle 33+2c15

c35-c13-2c13c55) - p(c33+c55)1 + 

(N) 	3 	 2 	2 	2 4 
2s3  Mrs]. (elle35-c15c13)-s1P(c351-c15)]  + (ells1-13)(c55s1-p)-c15s1=°  

For the second medium one obtains a similar equation with the components 

of the odd powers of s i\T)(II) having the opposite sign of the components 

of the odd powers of s N)  (I). 
3 

The slowness components in the two half-spaces are therefore related 

as: 
4N)(II) = - 4N)(I) 	 (4-19) 

(4-19) is the same as (3-7-c) when hill3 = - 1. 

Because of the factorization of the sextic equation the displacement 

vector associated with S(1)(n) = 0 is given by: 22 

p(1)(n) = p(1)(n) = 0 	and p(2)(n) = p(3)(n) = 0 	(4-20) 
32 2 

Therefore p(N)(I) is given by: 

p(N)(1) = 1 	0 	10(12)(I) P(3)(1) 1 
p(1)2(1) 	0 O (4-21-a) 

0 	p
(
3
2)
(I) p(

3
3)(I) 

where 47)(I) : 4N)(I) - -473)(I) : -111)  S (I) (N=2,3) ) . 

if 42)(I) / 4 	
) 0-22-a)

3)(I) 	' 	) 

and 	for s 2)(I) = 43)W 	) 
) (4-22-b) 

For the second medium, since the choice of proportion constants is 

arbitrary, one can 	opt 	to stay consistent with (3-13) x(N)  = 1 
(and picking an arbitrary value for h2) 

p(N)(II) = I0 	
(2) 	(3) 

-P1 (I) 	-131 ( ) 
( p2
1)  (I) 	0 	0 

0 	p
(2)

(I) 	p33)( 
3  

When 424) = 43)(I) , p13)(I) = 42)(I) = 0. 

(4 -21-b) 

 

(4-18) 

4N),(I) = (0,42)(I),0) 	, 13N)  (I) , (0,0,431 ) ) 
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The stress vector components are given by: 

(4 (N)( ,)  0 	42)(,)  43)(I)\  

( 	_ 
q21) (I) 	° 	0 

0 	q(2)(I) 43)(I)/ 
3 	' 

 

(4-23-a) 

  

where: 
(N) 
q1 

(1)  = [c1581"55s3N)(i)  

q2  k (N)/ 	
+ 	

(N) I) = [ct.sl 	c
44  s3 

 ( 

(N), 	( q3 	= [c13s1+c35s3  )i) 

]p(N)(I)--qc55s1+c35s3  (N)(,)hp3N) (1) ) 
( 

) (4-23-b) 

(I)+Le35s1+c33s3 	j 
(N) 	r 	(N)(I) 4N)(I) 

I)il4N)(I) 

and 

	

q(N)(II) =/ 0 	 1 
q(2)(/) 	q(3)( 1 / 

( 
-q2

1) 
 (I) 	0 	0 	I 	(4-23-c) 

	

0 	-q
3
2)  (1) -q(3)(1) ( 

Substituting in the generalized Stoneley conditions one obtains the 

following equations: 

Notice that relations (4-6-a), (4-7-a) and therefore (4-8) hold for 
this symmetry as well as the symmetry with respect to x

4a  
3 

axis. 

However, in this case we have more information about the actual values 

of the components. 

From the second equation of (4-24) one obtains (since p22/(I) = e(I) 
(1), 	(1), 	(1) p2  kI)[A 	kI) - A 	(II)] = 0 	(4-25-a) 

2 Since p(1)  / 0, A(1)(I) = A( )(II). Substituting this into the fifth  
equation of (4-24), if A(1)  (I) 1 0, this means that (1)(I) = 0, or:  

 
equation of (4-24), if A(1)  (I) 1 0, this means that (1)(I) = 0, or:  

c46s1 c44831)(1) 0 
( 

This would mean that s
3
1)  (I) is real, which would not lead to an 

attenuating wave at the interface. 

c46s1 c44831)(1) 0 
( 

This would mean that s
3
1)  (I) is real, which would not lead to an 

attenuating wave at the interface. 

(4-25 -b) (4-25 -b) 
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When A(1)(I) = A(1)(II) / 0 

( 
53
1) 
 (I)  = 	(c46/c44) sl (4-25-c) 

and from S(122)(I) = 0 the slowness of this bulk wave is: 

sl 4/c44P/( c44c66-  c46 )  
2 

The energy flux vector i  (Musgrave [1970]) is given by: 

2 2 
TA w cijkL(5jpol  + pNE1), and for real sk, pk  it can be shown 

that: 	
fls 11. 

si  

For the bulk wave (4-25-c), using (4-25-b) one obtains: 

2 	 2 3304 ails Vas3 =[)s22/)33][slis33 	s13]  = 4c46s-4-c  44s3)- F  S11S33-"
c
13' 

= 0 
w;fas 4A4vsy 

Which shows that this bulk wave travels parallelto the interface. 

In most cases one may expect that neither one of the determinants 

for non-trivial solutions of B(N) and B(N) (N = 2,3) would vanish 

at this slowness A(2)  (n) =A(3)  (n) = 0. Therefore the total 

displacement of this non-attenuating wave is given by P = (0,P2,0) 

and the total stress vector by: Q = (0,0,0). This means that the 

interface will remain stress free and the displacement is transverse, 

parallel to the interface in the direction perpendicular to the 

sagittal plane. The amplitude of such a wave varies periodically 

as a function of depth. When c46  = 0 this transverse wave would 

have an amplitude which is constant as a function of depth. In 

isotropy (4-25-d) describes the transverse bulk wave slowness. 
-co 	c 604.'41 wk44, 	-41-4,0 * 44'1,1‘2. o. 
The remaining equations of (4-24) consist of two sets of only two 

linear homogeneous equations each, in B(N) and B(N) respectively 
 (N = 2,3). For non-trivial solution of A(N '), kn.), at least one of 

the determinants of the matrices: 

/(2)(I) 	P(3)(I)\  1 
	

/p(2)  (I) 	P(3)(I)\  3 	3 

1  q
(2 )( I ) 	q(3)(I)

1 	
(4-26-a) 	n(2)(1) 	q(3)(I)

/ 
 (4-26-b) 

3 	3 	 \-1 	1 , 

must vanish. 

(4-25-d) 

If B(N) is the null 
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vector of (4-26-a), and 13_.N)  is the null vector of (4-267b), one can 

write: 

B(2) = -ap13)(I) 	, B(3)  = a42)(I) 

B(2) 	(3) 	N = -hp3  (I) 	, 	(3) = bp3(2)  (II 

) 
) 
) 

(4-27) 

where a and b are proportion constants which may be zero, if B(N)  or 

B(N) vanish. The amplitudes may now be found: 

(2), . 	ir ()i 	(3)( A 	j) = -ffLapi  kI) + bP3  kI)J 

A(3)(I) = ijap12)(I) + b42)(I)] 

) 
) 
) 

(4-28) 

With appropriate change of sign one obtains similar expressions for 

the amplitudes in the second medium. 

The total displacement at the interface is given by: 

Pi(a) =-ib[13(2)(I)143)(I) - P13)(I)42)(I)] 	) 
) 

P2(n) = 0 	 ) 	(4-29) 

P (n) = a[p(I) ( (I) 	(( ) (( )] 3 	2 	l (2) 	p33) 	- pi3) 	2)  I p3 	I 	, 

P
1  (n) may vanish only if b = 0, and P3

(n) vanishes only when a = 0. 

If neither a nor b are zero then the displacement is in the sagittal 

plane and is elliptic. It stays in the sagittal plane for all xi. 

(See fig (4-3)). 

The stress vector components are: 

Qi(n) = -1-a,[42)(I)43)(I) - q(3)(I)42)(I)] ) 

Q2(n)= 0 	 ) 
	

(4-30) 
Q3(n) = ib[42)(I)c43)(I) - 43)(1)424)] 

Hence the stress vector lies also in the sagittal plane. When the 

determinant of (4-26-a) vanishes, if the determinant of (4-26-b) 

does not vanish, b = 0, and P1(n) = Q3(n) = 0. If the determinant 

of (4-26-a) does not vanish but the determinant in (4-26-b) vanishes, 

Qi(n) = P3(n) = 0. 

Therefore when the plane of the interface is normal to either a 2-fold 
axis 

rotation/or mirror symmetry plane of the medium there is ,a transverse 
vol044011151.4.1" 

bulk wave which leaves the interface stress free and moves parallel 

to the interface. The slowness of -this bulk wave is given by (4-25-d). 
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A true generalized Stoneley wave may propagate at the interface in 

such a configuration. The total displacement and stress vectors 

lie in the sagittal plane. 

The third possibility for a simplification in the presence of a symmetry 

plane in the medium in half-space I is when this plane of symmetry is 

perpendicular to the x1  axis. In this case the elastic stiffnesses 

matrix in the interface coordinate system is of the form: 

*0 0 1  
* 0 0 

* * * 0 0 
0 0 0 0* * 

\o o o o : */ 

For this medium the components of the secular matrix S )(n) are given KL 
by: 

S(N)(1) 	c s2  + c [s(N)(I)]2  - p ](_3) 	11 1 	55 (N)(1) 
si2 (I) 	(c14 c56)81s3 
() 	(N) si3  (1) = (c13  + c55)s1s3  (I) 

0(), 	2 	r (N)t,N12  
c66s1 c441 8 	P 

() 	(N) 	2 S23  (I) = c34{s3  (I)] + c501  

s )(I.‘  = c 
551 
s2 	c 

333 
[s(N)(I

)
]2 	p  

33 '  

and for the second medium: 

(4-32-a ) 

S(N)(1I) = c 	s2 l_rs(N)(300,2 
11 	11 1 	4,:t 3 	' 	' i 	- p 

)(II) , 	. 	(N), 	,  
S12 	= h2h3(c14  + c56)sis3 	OI) 

ST(II) = (c13  + c55)s1s N)(II) 

a(N)(„) 	2 	r 	(N)(II)]
2 

- p k'22 	-1-j")  = c6681 + c44- 3  

Sg)(II) = h2h3(c34[s N)(II)]2  + c564) 

S(N33)(II) = c 
551 
s2 + c 

333  
[s(NY(If)]2 

- p 

) 

) 
) 
) 
) 
) 
) 
) 
) 
) 

(4-32 -b) 

It is obvious that if h2h3  = + 1, the configuration is like that of 

identity or complete inversion and no attenuating interface wave is 

expected, regardless of the value of b1h3. If  h2h3 = - 1, one may 
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expect an interface wave. The sextic equations one obtains are bi-

cubic, and the same one in both half-spaces. Therefore one would 

obtain for the slowness components of true generalized Stoneley waves 

either (4-4-a) or (4-4-b), and possible non-attenuating waves will 

obey (4-4-c). 

The ratio of the displacement components is given by: 

p(N)(I) : gN)(I) : 4N)(I) = (4-33) 

	

(N) 	(N) 	2 	2 	2 	(1,N12 (sis3  (I)[(c34(s3  (I)] +c_01)( 	c ) ( 	c 1(c 	c I 5 	c14+-56'-sc13+  S5s 66s1+  44-83 'LI' - 

(N) 	2 	(N) 	2 	kN) 	2 	2 
(I)] - 	3 	I)] :([s3  (1)] [si(c 5+c13  S 	)(c14-1-c56)[B3 

(c1141-c50s3N)(I112-p)]):  

(c34[si ()]3:+c56s1)  

ft 	2 	r  (N)ftv12 )( 	2 	r (N)t-r\12 	\ 	2r  (N)(Tv12 
:clls11-c55's3 \''' -Pi'c66s1 4- cliVfl3 `-'' - pl - sl's3 "'" 

(c14 + c56)23  

For the second half space, one obtains a similar relation with the 

appropriate changes of sign. 

Apart from multipliers of proportion, one obtains for the displacement 

vector components, using the relations between S(N)(n) and (3-9): KL 
N) 	N) pi 	(II) = - pi 	(I) 	) 

(N) 	(N) 	) 
p2 	(II) = - p2 	(1) 	) 	(4-34-a) 

p(N)(II) = p(N)(I) 	
) 

3 	3 	) 

The form of the displacement components in the'case of slowness giVen 

by (4-4-a),(pure imaginary slowness components): 

p(7)(I) . 	(1.01.1 Jail i4_ 

	

CY°2 Cef  at 
	

(4-34-b) 

\oP3 1 4/ 
For this case the displacement components' in the second medium are 

given by (4-34-a) and (4-34-b). 

If the slowness components are given by (4-4-b),(complex slowness 

components), the displacement' components are of the form: 

p(N)(I) = Lie a* -4-  icXt -a* + 
4 	

1 
• 0  a2  m 	- 

0P3 a3 + 103 , 03  - 1a3  

(4-34-c) 
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The displacement components in this case in the second medium are 

given by (4-34-a) and (4-34-c). 

The relation between the stress vector components in the two media is 

obtained from (4-34-a) and the definition of the stress vector (2-15): 

qiN)(II) = qiN)(I) 
(N), _ (N) q2  (II) - q2  (1) 

q(N)(II) - - q(N)(1) 
-3 

(4-35-a) 

If the slowness components• are all pure imaginary (4-4-a) the stress 

vectors components are of the form: 

(N) 
(I)  clk 	=1 5°1 51". 5t\ 

iei2  i3
2 

iB 

13
3 
 13.)3(. 

 13 j 

(4-35-b) 

and if the slowness components, are complex (given by (4-4-b)), the 

stress vectors in the first medium are of the form: 

(N) 	t 	t 
qk (I)  = B1 81 + iBl 51 - lel 

( 

13( 	q + i$12- -q-  + ±4 

The stress components for the second medium can be easily obtained 

from (4-35-a). 

Substituting (4-34-a) and (4-35-a) into the generalized Stoneley 

conditions one obtains: 

4=1  4N)(I) [A(N)(I) + A(N)(II)] = 0 
4=1 P2N)(1) [A(N)(I) + A(N)(II)] = 0 

4_1  4N)(I) [A(N)(I) - A(N)(II)] = 0 

4=1 qiN)(I) [A(N)(I) - A(N)(II)] 	0 

1(2N)(,) [A(N)(,) 	A(N)(II), = 0  

c4N)(I) [A(N)(I) 	A(N)(II)] = 0 

(4-36) 

These, as in the case of a planelsymmetry which i s perpendicular to 

the x -axis, gives two sets of linear homogeneous equations in B(N)and 

B(N) which may have non-trivial solutions at the same or at separate 

slownesses si. 

po 	A* 4.  iRt _IA* 4.  irAti ,3  ,3  ,3  ,3  ,3  
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The condition for non-zero B(N) is that the determinant of the matrix: 

(4-37-a) 

4N)(,)/ 

vanishes, while for non-zero B(N)  the condition is that the determinant 

of: 

(4-37-b) 

vanishes. 

If the slowness components are pure imaginary, the B's are related 

in the form: 

B(1) 	B(2) : B(3) = C°  : C* : Ct 	(4-38-a) 

If the slowness components are given by (4-4-b) the B's have the 

form: 

(1) 	(2) 	(3) B 	B 	B 	= C°  :C* + iCt  : C* - idt 

From (4-38) one can see that the amplitudes have the same form as 

the B's. 

By use of the form of the displacement components, the B's and (4-36) 

one obtains the following results for the total displacement: 

When the slowness components are all pure imaginary: 

P (n) = 1(aPC1
° + ec* + QtCt) 	) 2 

	al 	1 - 
) 

P2(n) = z (4d! + ar! aICI) 	) 

) 

P3(n) = 2 (Or+ + 254. 3e+) 	) 

If the slowness components are given by (4-4-b) the displacement 

components at the interface are: 

P1(n)  = Ii(a1C°  + 2(d45I +.4;41)]  

	

P2(n) = z [dP C° 	2(4CI - c'et2C41)] 

P3(n} = 	r-Pro 	2(-*rt _ tr*ll 

	

Lu3,,i. 	ce3+/J 

(4-39-b) 

(4 —38 —b) 

(4-39-a) 

The stress components in the case Of pure imaginary slowness components 
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are of the form:  

Qi(n) = 2 (81V++ an+ BIC't) 

Q2(n) = 2i(e2V++ 

Q3(n) = 	s3c42+ 81-3c!) 

)
) 

) 

and for slowness components given by (4-4-b) 

Qi(n) ' 1 [Blr+  + 2(135T. - stied] 	) 
) 

Q2(n) = li[qq + 2(qc' + BIC44)] 	) 
) 

Q3(n) = 2i[e3c° + 2(135.! + BIc!)] 	) 

(4-40-a) 

(4-40-b) 

Regardless of the form of the slowness components the form obtained 

for the displacement components is the same (4-39-a) and (4-39-b), 

and the stress vector form is independent of the form of the slowness 

components as well. 

One can see that in the case of a medium with plane of symmetry 

which is perpendicular to the xl  axis, if the transformation matrix 

from medium I to medium II is given by h2h3 = 	( regardless of the 

value of h1) the following waves are possible: 

If the determinant of (4-374 vanishes while the one of (4-37-00 

does not vanish, P3(n) = Q2(n) = Q2(n) = 0, while the displacement 

vector will have two non-zero components, P1  and P2  which are in 

quadrature, and therefore the displacement is elliptic. The only 

non-zero component of the stress vector is Q3  which is of the same 
phase as Pl, and therefore the actual stress um  in the x3  direction 

is of the same phase as P2. (see fig (4-4)). 
If the determinant in (4-37-1) does not vanish while the one in (11-37-0 

vanishes, Pi(n) = P2(n) = Q3(n) = O. The only non-zero displacement 

component is in the x
3 

direction, and the two non-zero components of 

the stress vector are in the plane of the interface. The two components 

of the stress vector are in quadrature, and therefore elliptic, while 

the displacement is rectilinear and of the same phase as Q. 

(see fig (l..5)). 

If both determinants of (4-37) vanish simultaneously, one can see that 

the displacement components in the x2  and x
3 

directions are of the 

same phase while the one in the xi  is in quadrature, while the stress 

components are such that Q1  is of.the same phase as P2  and P
3 

and Q2 
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and Q3  are of the same phase as pl. (see fig (4-5)). 

If the medium in half-space I exhibits additional symmetry, one may 

still further simplify the generalized Stoneley conditions for the 

possible waves, or may find out that with the additional symmetry 

no attenuating waves are possible at the symmetric interface. 

Some of the numerical results deal with a cubic medium rotated in 

such a way as to obtain in the interface coordinate system an elastic 
tt4,t, 

stiffness matrix resembling that of
A 
 tetragonal system (crystal classes 

4,T1, & 4/m). Some of the elastic stiffnesses become zero in the 

above discussion and therefore the expressions are simplified, but 

essentially the results are unaltered. 

The discussion of the possible waves under special symmetry is 

summarized in table (4-1). 



Table (4-1) - The possible interface waves in media with a plane of symmetry which is perpendicular 
to one of the axes in the interface coordinate system. 

Plane of 	Requirements 	Total 
symmetry 	of transfor- 	displacement 
perpendicular mation matrix vector P.(n) 
to the axis 	at interface 

Total 
stress 
vector Q4(n) 
at interface 

Condition 
for non-
triypl 
B` 

Condition 
for non- 

B\
!Yial 

 

  

F 
1 
=1Z*P(N)(1)B(N) 
 2 1 

FrinD(N)(I)B(N) 

(N), P3 21.-A-p3 kI)B(N)  

Q1-2
*4N)(,)B_(!) 

Q22E*q N)(I)B.(EN) 

Q34E*4N)(i)B(N) 

  

x1 h2h3 = - 1 

=0 =0 

    

x2 hp3 = - 1 P1 = - b D** 2 

P2= 0 

3 - 
= A- a D** 

c).2 =- i a Exx 

Q2 = ° 

93= 2
b F** 

B(1)= 0 

(3) B(2) =—ap 	(I) 

(3)_ 	(2)( 1 B - ap1 \I( 

B
(1)= 0 

(2) 	(3)1 B+ =-bp
3 

ki) 

B(3)= 	(2),i) \ bp
3 

k 

x3 	h1h2 = - 1 P1 2Elo1N)(I)B(N). Ql=i-E*qiN)(I)B N) 114N)(I); 

F24-E*P2N)(I)B+N)-74E*4N)(I)B(N) 	P(N)(4 =0 

F3-32-no N)(I)B N) Q3=2T*4N)(I)B(N) 4N)(I)11 

=
4=1 
(2)( ) (3)(1) 	n(3)(i)p(2)(I) D**=pi ,I,P3 	-1 	3 

F** 42)(,)43)(,) 43)(,)42)(,) 

(2)( ) (3)( 	(3)(,) (2) E**=q1 \I/pi \I/ — qi 	pi / \I/ 
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Fig. (4-1) - Particle 
displacement when at 
the interface 
P.1  = (0,P2, P3

) 
with P2 & P3 

in quadrature 

This wave is transverse. At the 
interface the displacement vectors lie 
in the x2-x2 plane. Away from the 
interface tie displacement vectors may 
lie in any plane. The displacement 
vectors in the two half-spaces for the 
same distance from the interface are 
related as: Pi(x3) = (P11'P2'P3)' and 
P.(-x3  ) 	(-P1'P2'P). 

Fig. (4-2) - Particle 
displacement when at 
the interface 
P. = (P1" 0 0). 

This is a longitudinal wave. At the 
interface the displacement is in the 
direction of the wave propagation. Away 
from the interface the displacement 
vectors may lie in any plane. The 
displacement vectors equidistant from the 
interface are related as: Pi(x3) 	(Pl' P2' P3  ) 

DC3  

and P.
1
(-x

3  ) 
	(F-E

2'
-P). 



Fig. (4-3) - Particle 
displacement when at 
the interface 
P. = (Pl'0,P3) 

and A
(1) 
 (n) = 0 

(N), po  (1)-- 0 , N=2,3 
throughout. 

In the case of%ymmetry plane which is 
perpendicular to the x2  axis the displacement 
vector lies in the sagittal plane throughout. 
When a=0 (see equation (4-29)) the wave is 
longitudinal, when b=0, the wave is transverse. 
The wave described in this figure is for an 
arbitrary a and b. The relation between the 
displacement vectors equidistant from the 
interface depends on a and b. When a=0 P1

(x
3
) 

P1(-x3) and P3
(x
3
) 	- P

3
(-x

3
). When b = 0, 

P1(x3) 	- Pi(-x3
) and P

3
(x
3
) = P

3
(-x

3
) 

Fig. (4-4) - Particle 
displacement when at 
the interface 

P. = (P 	P2' 0) 

P1  and P2 in quadrature. 
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Here the displacement vectors lie in the plane 
of the interface. Away from the interface 
the displacement vector may lie in any plane. 
at equidistance from the interface, the 
displacement vectors are related as: 

P.(x3  ) = (Pi 2'P3) and P.(-x3  ) = (P1'P2'-I'3). 



Fig. (4-5) - Particle 
displacement when at 
the interface 

P. = (0 0, P ) 3  
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This wave is transverse at the interface, 
having a displacement component in the 
direction perpendicular to the interface 
only. Away from the interface the 
displacement vectors may lie in any plane. 
The displacement vectors in the two media 
equidistant from the interface are related 
as: P.(x3  ) = (F1/I2'1) and 

P•(-x3  ) =-F2'P3). 
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5. WAVES AT AN INTERFACE BETWEEN TWO PIEZOELECTRIC MEDIA. 

5.1 GENERALIZED STONELEY CONDITIONS FOR PIEZOELECTRIC MEDIA. 

When the media on the two sides of the interface exhibit piezoelectric 

properties, one has to take into account the stresses that arise due 
4 

to the electric field in the generalized Hoof's law, and new 

equations should be derived. 

Kraut [1969], and others have treated the piezoelectric effect in a 

whole space, Bleustein [1968], Farnell[1970] and others have treated 

the effect on elastic free surface waves. Special waves, in addition 

to the Rayleigh wave have been observed and are referred to in the 

literature as Bleustein-Gul ev Waves. 

The stresses in a piezoelectric medium are given by: 

cijkluk,I 
+ ekij 	 (5-1) 

where is the scalar electric potential, and ekij is a tensor which 

is a result of a scalar product of the piezoelectric tensor 	andd 

the elastic stiffnesses (Nye [1957]) 

ekij 1!Qmckmij 	
(5-2) 

On substitution of (5-1) into (2-5) one obtains the equation of motion: 

cijkLuk,lj +e£ij!,Lj = Pui 	 (5-3) 

The electric displacement Di is given by: 

Di = eikjuk,i - eik 	 (5-4)k 

where c
ik 

is the dielectric permittivity tensor. 

The conservation of charge is given by: 

(5-5) 

where Q is the free charge density whichme assume to be zero. 

Substituting of (5-4) into (5-5) leads to: 

	

e
i 

AL .. 	ei 	0 

	

kj 1,01 	k ,ki  
(5-6) 

By using the scalar potential we have assumed that the magnetic flux 



S pL  0 . k,1 = 1,...,4 

where S. - c. 	s.s - p lk ijk/ / 5ik 
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does not change in time. This assumption is correct when we are 

dealing with acoustic waves, which have law velocities, relative to 

the speed of light. In such velocities the electromagnetic part 

may be regarded as quasistatic. 

We shall proceed in the way described by Farnell [1970] by assuming 

the same form of plane wave for the scalar electric potential, as that 

taken for the displacement: 

A p4  (exp[iw(sixj  - t)]) 	(5-7) 

Upon substitutio ,(5-7) and (2-1) into (5-3) and (5-6) one obtains a 

set of four homogeneous equations in four unknowns, pk: 

Sk4 = S4k = eijksisj 

= - 	..S S44 	e ljS1 j 

i,j,k,L = 1,2,3 

i,j,k.1,2,3 

i4=1,2,3 

(5-8-a) 

(5-8-b) 

(5-8-c) 

(5-8-d) 

For non-trivial solutions of (5-8) the determinant of coefficients 

must vanish. In this case one obtains an eighth order polynomial 

equation in s3  with real coefficients, the solution of which can 

contain at most four pairs of complex conjugate roots. 

In order to obtain waves which attenuate with increasing distance 

from the interface (and using the same configuration as in chapter 2) 

one would choose in the upper half-space the four roots with positive 

imaginary part. As a result the displacement and scalar potential 

would be described by a compound wave of four components. The 

stresses are obtained by differentiating the displacement and potential 

and substituting into (5-1): 

( 
a. =i  n1[c 	pk

(N)
+eLij .p 	istN) A(N)  (exp[iw(s x13  +s(N)x3  -t)]) (5-9) ij 	 ijkL 	4 

(N)  

and in particular, the stress vector component in the x3  direction is 

given by: 

4 (N) (N), 	(N) a.
13
=iw E q! 	A 	texp[iw(sixi  + s3  x3  - t)]) 	(5-10-a) 

N=1 
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( 
where qi(N) = (cinapk(N)  + 	

N) (N) 
 (5-10-b) 

If one appides the Stoneley condition for continuity of stress and 

displacement across the interface (welded interface) one obtains 

only six homogeneous equations for the eight amplitudes A
(N)

(n) in 

the two half-spaces. 	Two additional conditions can be obtained 

from continuity of potential and the normal component of the electric 

displacement. 

The generalized Stoneley condition becomes an eighth order 

and where 

determinantal 

(1,(N)(n) 

equation: 

p(N)(I) (N) - p
m 	

(II) 

qM(N)(I) 	- %n.(N)(II) 

4e 
3k1  (

n)
pIs
(N)(n) 

0 

N,m = 1,...,4 

_ 6 	(n)p(N)(n)]s(N) (n) 
e 	4 	/ 

(5-11) 

(5-12) 

k,/ = 1,2,3 	N.1,...,4 

(N The matrix gm(M)(n) pm )  (n) , 	, is not, in general, skew- 

Hermitian. By following a similar procedure described by Currie 

[1974], and using equation (5-6) as well (multiplied by p!4)(n) and 
(N) 
p4  (n)) one arrives at the following relationship: 	(5-13) 

(N) 	(M) 	(YI) (N) (1q) 	(N) (PI) ON) (s3  -53  )(D'NM  + D'Yn7) + (es13-e3sd(ps  p4  sl  +ps  p4  sz  ).0 

NM 	.,(N) (m) 
where D'NM = 	pm 	N,M,m=1,...,4 	(5-14) 

Since s(N)- s(M)  L  0 for all N, M in attenuating waves, for true 3 	3 
generalized Stoneley waves: • 

D'NM  +  D'MN = GMN 	 (5-15) 	 

with 	—747 (N) 	(M) 	(N) 	(N) 	(N) (M) 
G = (e3s1-es13)(ps  p4  sA  + ps  p4  sA  )/(53  -s3  ) (5-16) 

G is obviously . hermitian as a sum of a matrix and its transposed 

complex conjugate. In the non-piezoelectric case, e3s1=esA3= 0 

and therefore one arrives at the skew-hermitian character of D'NM. 

One should note that centroymmetric media cannot be piezoelectric, 

and for such media G
MN 

 = O. G
MN  also vanishes if e30,.es/3* This 

happens, for instance, in cubic media. 
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When eOdia 5 = 0 the solutions s(N) would be the same as in the discussion 

of chapters 3 and 4, because the fourth equation of (5-8) would be 
decoupled from the rest. 

If we now perform similar operations on the equations for continuity 

of displacement, potential and normal electric displacement and 

stresses as described by Chadwick and Currie [1974J, we obtain the 

following relationships: 
4  " v 
E Er-"

MAT 
 (I)A(1\(I) — G (II)A(N)(II)]= 0 	(5-17-a) 

N- 41 

EL- 	(I)A(N)(I) + 717(1) A(N)(II)]. 0 	(5-17-b) 
N=1 

where 	( FMN(I) = pmN)  (i)q,;"(M)  (II) + e)(II)q;l(N)(1) 	(5-18) 

For cases where both G (I) and G (II) vanish, a simplified Stoneley 

condition has the same form as for the non-piezoelectric case, 

because 6MN(I1 = 0 is a condition for non-trivial solutions of both 

A(N)(I) and A(N  (II). One should remember that F may contain 

within it the piezoelectric constants, although G
MN  (n) may vanish. 

When the configuration is such that on one side of the interface there 

is a centrosymmetric medium while on the other side there is a non-

centrosymmetric medium, one of the equations (5-17) becomes decoupled 

from the other. Suppose for medium II G
MN 

 (II) = 0. In order to have 

non-trivial solutions for A
(N)(I), FMN(I) must be a singular matrix. 

After finding the null vector of FMN(I) one may substitute in (5-17-b) 

to obtain a set of four non-homogeneous linear equations in the four 

unknowns A
(N)(II). The matrix of coefficients is singular and 

therefore the system will have a solution only if the rank of FMN(I) 

and that of the augmented matrix are the same. One should note that 

in this case, if FMN(I) is a non-singular matrix, the trivial solution 

of (5-17-a) leads only to the trivial solution for A(N)(II). 

For the case where GMN  does not vanish one can still reduce the 

generalized Stoneley condition (5-11) which is an eighth order 

determinant to a fourth ordel" determinantal condition. 

The displacement vectors pk  are or may be made to be, two different 
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bases of C4 (being eigenvectors of the matrix (Sklv
2
))(Chadwick & 

Currie [1974]) and therefore there exists a regular 4x4 transformation 
matrix T, such that: 

(N) 	4 .NM (M) 
pk  (I) 	E T p, '(I) 

M=l 14.  

By using (5-19) and the definition of G ( 

(5-19) 

), (5-15), one arrives at 

the following 

• TRM_MN  r--(i) 
M=1 

result: 

= E E TRM :I"Nq  GMQ(II) + 
M=1 Q=1 

4 . 
(I)-E TNg  FQR(I) (5-20-a) 

Q=1 

or: 

• TNQ 	T
RM
G
MQ
(II) 

Q=1 M=1 

 

4 -vc-oTi 
(I)] = 	T 	r""(i) 

Ml 

 

 

) (5-20-b) 

Multiplying (5-17-a) by ;RM, substituting from (5-20-a) and (5-17-b) 

one arrives at the following relationship: 

E f E[TRM  G (II - MQ 	) 	FQR(I)11 	TNQA(N)(I)-A(q)(II)]) = 0 	(5-21) 
Q=1 M=1 	N.1 

The condition for this equation to hold is that the determinant of 

the matrix of coefficients will vanish. For, suppose the determinant 

does not vanish, then, the trivial solution leads to: 

 
A(Q)(II) 	"N g E T A(N)  (I) 	(5-22) 

which, upon substitution into (5-17-a) gives: 

4 
E [F 
R=1 

(I 
(R)

(1) = 0  (5-23) 

For non-trivial solutions of A
(R)(I) the determinant of the 

coefficients must vanish. The matrix in (5-23) is the complex 

conjugate of the one in (5-21), the therefore for equation (5-21) 

to hold, the following determinant must vanish: 

II 	 TR H 	T G
MQ 

 (II) - FQR(I) 	0 	(5-24) 
M.1 

RN. One can see that if either G (n) is a zero matrix this condition 

leads to the condition: 

(I) I1 = 0 	 (5-25) 
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This can be seen also directly from equations (5-17). 

We shall now see that (5-22) holds for all solutions of generalized 

Stoneley waves. Suppose that the null vector of the matrix in (5-21) 

is ag, which is not a zero vector, then: 

4  ^ 
A(Q) (II) = E T-

Ar
"'"
n 
 A' -1

(m)  
(1) + cyg 	(5-26) 

N=1 

Substituting into the conditions of continuity of displacement and 

electric potential, one obtains: 

4 r, 
orQ  = 0 	 (5-27) 

q=1 m  

For non-trivial solutions of aQ  the determinant of pg(II) must vanish. 
( But since pm
N)  (II) is a matrix of rank 1, its determinant does not 

vanish, and the only way for (5-27) to hold is for ag  to vanish. 

Hence the amplitudes in the two half-spaces are related as (5-22). 

A
(N)

(I) is given as the null vector of (5-23), and A
(N) 

 (II) can be 

found from it by (5-22). 

5.2. BLEUSTEIN WAVES AT A FREE SURFACE OF A PIEZOELECTRIC MEDIUM. 

Bleustein [1968] has treated the particular case of hexagonal half 

space completely coated with an infinitesimally thin perfectly 

conducting electrode which is grounded. The equations governing the 

interior of the half space are the same as those obtained for 

piezoelectric media (5-1) to (5-10). However, this type of 

configuration leads to different electrical boundary conditions 

from the ones used traditionally (Farnell, [1970]). Rather than 

imposing continuity of the normal component of the electric potential 

and displacement one has to impose the condition of zero electric 

potential at the free surface. This boundary condition together 

with the free surface conditions (a3i=0 at x3=0) lead to the 

following Bleustein condition: 
(N) 

sik 
k=1,2,3 N=1,...,4 
	(5-28) He )  = 0 
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where q (N)  are defined by (5-10-b). 

The traditional conditions for generalized Rayleigh waves in 

piezoelectric media may lead to Bleustein wave in the particular 

case that the continuity of electric displacement lead to zero 

electric potential at the free surface. 

5.3. BLEUSTEIN TYPE WAVES AT AN INTERFACE BETWEEN TWO PIEZOELECTRIC 

MEDIA. 

Generalizing the Bleustein wave at a free surface to an interface, 

one adds to the two half-spaces configuration a coating, throughout 

the interface, of infinitesimally thin grounded electrode. This 

would cause the electric potential to be zero at the interface. 

Again, the equations governing the different physical characteristics 
w 

of the Iterior are the same as those discussed above. The welded 

conditions lead to six equations of continuity of mechanical 

displacement and stress. 

The two additional equations, however are not those of continuity 

but: I(I)I 	= 	I 	= 0 	(5-29-a) 
lx3= 0 	x3=0 

which lead to: 

4 (N, 
p4 )(n) A(N)(n) = 0 

N=1 
(5-29-b) 

(5_29-19) together with the welded conditions lead to: 

-p(N)(II)\ 

-qk(N)  (II) 

0 	

(A(N)(I) \ 

A(N)(n)J 

pe)(4 

= 0 	(5-30) 

k=1,2,3 

N=1,...,4 
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For non-trivial solution A(N)(n) (5-30) leads to: 

Pk(N)(I) H 
(N)(I) 

(N)(1) P4 
0 

-qk
(N)  (II) 

0 

( p4N)  (II) 

0 (5-31) 

Obviously, (5-29-a) guarantees continuity of electric potential, 

however, it does not guarantee continuity of the normal electric 

displacement. When the welded conditions (5-11) lead to zero 

electric potential at the interface the generalized Stoneley wave 

coincides with the Bleustein type wave. 

One can treat (5-30) in a similar way to that in which generalized 

Stoneley conditions were reduced to a 4x4 determinantal condition. 

However, one has to remember that here the summation in the matrix: 

p*MN = q4(M)(N) m=1,2,3 	(5-32) 

is over  three components only. 
Using the equations of motion (with summation over three components 

of the mechanical displacement and three components of the mechanical 

stress) one arrives at: 

(N) (NO 	MN 	(m) (N) (N) 	(m) 	(N) (N) (1/0 (m) (s3  -53  )(D* 	+ D* ) 	e ..[s 	s. P. p4 	- si P4 s. P. ]= kij / j 	j 

[s(N)  - s(N)] *NIT  3 	3 

From the first six equations (5-30) one obtains: 

(G* (1)A(N)(1) + F* A(N), JI)} - 
 

NM 

N=1 
4 [F-MN A(N)(I) - 	(II) A(N)(II)) = 0 

where - F*MN = qi(M)(II) p N)(I) + p(M)(II) 124(N)(I) 	(5-35) 

Making use of boundary conditions (5-29-b) simplifies G* ( )A(N)(n), 

(5-33) 

(5-34) 

) 
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( since p4N)  (n)A
(N)(n) = O. However, in general it would not vanish, 

and one has to treat the two equations of (5-34) with simplified 
MN G* (n)A(N)(n) as (5-17), and the discussion following it, with 
MN 	MN 

G* replacing GMN,  and F* replacing FMN, bearing in mind that * 

matrices are in general different from the non* matrices. 
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6. WAVES AT AN INTERFACE BETWEEN PIEZOELECTRIC MEDIA, SOME 
SYMMETRIC CASES. 

After obtaining the conditions for interface waves in piezoelectric 

media we shall obtain simplified conditions for symmetric 

configurations of piezoelectric media, similar to those in chapter 3, 
and proceed to investigate the symmetric media studied in chaper II. 

In particular we shall look into the difference between interface 

waves in simple elastic media and piezoelectric media. 

The notations used are similar to those of chapters 3 & 1!. 
As in chapters 3 & 4 the transformation matrix (3-5) is used to obtain 
the different constants in medium II from those of medium I. Since 

cijkl  is a fourth order tensor the transformation is dependent on 

the sign of products of pairs h.h.
j  rather than the sign of the 

individuaa. h.. Therefore
, cijkA are invariant under inversion. 1 

However, dijk is a third order tensor and is dependent on the 

individual sign of hi. It therefore changes under inversion. 

Hence, 	whereas in simple elastic media complete inversion does 

not affect the waves propagating, it would affect the wave propagating 

in piezoelectric media. 

Using the transformation matrix (3-5) to obtain the state tensors of 

medium II from those of medium I, one obtains two eighth order 

polynomial equations for s
3
(I) and s (II

)
, which are the conditions 

for non-trivial displacements pk(n). The coefficients of the odd 

powers, of s
3
(n) differ by a factor 

h1h3' which means that the roots 

of the secular equations are related as: 

= h1h3s3M)(I) 
	

M = 1,...,8 
When the secular equation is bi-quartic: 

s(
3
M)(1) = s3M)(1) 
	

M = 1,...,8 

Since we seek interface wave solutions which attenuate with increasing 

distance from the interface we choose in half-space I the four roots 

with positive imaginary part while in half-space II the roots with 

negative imaginary parts are taken. 

( s3
N)  (II) = 

When the secular 

the square roots 

(N), 	(N), hp3pis3 ki)} - ijs3 	I)) N=1,...,4 (6-2-a) 

equation is bi-quartic, since the roots s(
3
N)(n) are 

of the zeros of t)le quartic. equation one may 
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write: 

s(
3
N)(II) = - s

3
N)  (I) N = 1,...,4 	(6 -2 -b) ( 

regardless of the sign of hlh3. When the roots are complex, one may 

renumerate them so that they will comply with (6-2-a). However, when 
h1  h3  = + 1 and j2 3  

(s(N)(I)) = 0, although (6-2-a) may hold, it is quite 

possible that (6-2-b) holds and one case is not equivalent to the 

other. Like in chapters 3 & 4 we assume in the following discussion 

either jt(s(
3
N)(I)) L  0 or h1h3 = - 1. It will be pointed out when 

(6-2-b) holds rather than (6-2-a). 

Substituting (6-2-a) into the secular equation, the elements of the 

secular matrix S(N)(n) may then be related as: kl 

S(N)(II) = heL[p(S )(I)) 	ih1h3JKS NL)(I))] K,L=1,2,3 	(6-3-a) 

K4 

844) (II) 7-7  p(Sa 	4))(I)) 	ihih3j(S4  (I)) (N 	(6-3-c) 

(6-3) can be summed up in the relationship: 

S2)(II) = hKhL[R(s )(I)) - ihlys(N)(I))] K,L,1,...,4 	(6-1k) 

and h) def  1 

	

	 (6-5) 

( The ratios of the components pkN)  (n) is given as the ratios of the 

cofactors: 

(N) 	(N) 	(N) 	(N) 
Pi  (n):1D2  (n):133  (n):134 (n) = S11+(1;1.)  (n) S12(1$1) 513)(n)1 

S(N)(n) S22)(n) S(23)(n) 24  

S(N)(n) S()(n) S3()(n) 34 	23 	3 

SI1)(n) Sinn) 44)(n) 
(N), 	 ), 	 )(11)  

S12 kn) S22 kn)  _ 1-21  
(N) 	(N) 	() S 3  (n) S 3  (n) S3 

 (n) 1 	2 4 

• 

 

S1i)(n) 13 
Q(N)l Q()(1 
u 	‘/ 

c()t \ Q(N)( 	s(N)(n1 
'12 'n' "23 'n' 	24 ' I 

S(N13)(n) S3()(n) S(3 )(n) 3  

0(N)( 	Q(N)( 
	S(N)(n) 	'n' '12 \III
) 	

13 

  

   

   

(N) 	(N)
(fl' 	 (6-6) 512 (n) 322 	) b23 k ) 

3 S(N13)(n) S(N)(n) S3()(n) 23 

When one compares the ''displacement' vectors pi(cN)(n), k=1,...,4, one 

S(19(II) = hK 	K  [p(SqT
4 	- 
)(I)) 	h ( (N)( ))] 	K=1,2,3 	(6-3-b) 

1 3j  SK4 I  



4 
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obtains the following relationships: 

( 
PK
N) 

 (II) = x
(N)

hKh3[P(P
l(cN)

(I)} - ih1  h3  JPK(17)(I)}] K=1,...,4 	(6-7) 

and for the 'stress' components: 

(N), 	(N) 	(N qk (II) = x hKhl[F{qk k), I))-ihih3J7(qk
(N)(I))] K=1,...,4 	(6-8) 

Equations (6-7) and (6-8) appear the same as (3-11) and (3-12). 
However, they are the same only in form. Let us observe the electrical 

'displacement' component, 1)4, which describes the scalar potential 

(see (5-7)) and, electromechanical stress q (as defined in (5-12)). 
(N) 	(NY 	(N) 	(N) Since by definition hh  = 1, ph  (II) = x h(pfp 	(ID] 

,(N) 	(N) 	t(NT and qb.  (II) = x hl[p(q4  (I))-ih1h3,W)(I))]. 

Therefore, the electric effect in the 'displacement' component is 

dependent on h
3 

in the same way that the 'stress' electromechanical 

component is dependent on hl, both are independent of h2. 

When hp3 = - 1 (hl  h) 
( II) = - x (N)hh (N), pKN)  k eK  (I) 	(6-9) 

, qk(N) 	= x(N)  hhicqK(N)  (I) 	(6-10) 

Using the algebraic identity (3-15) on the generalized Stoneley 

condition (5-11) and substituting equations (6-9) and (6-10) one 
obtains two decoupled sets of linear homogeneous equations (similar 

to (3-17)), one for B(N)=A(N)(I) + x(N)A(N)(II) and the other for 
(N) 	(N), . 	(N) tN) B = A kI) - x A (II). At least one of these has to have a 

non-trivial solution in order to have an interface wave. The 

equations may be written in the following form: 

(p N)(I)  

r N)(I)  

qi(N)(,)  

(N) 	

• B(N)  = 0 + 	 (6-11-a) 

r4  (I) 

(

qi(N)(,)  

t(N)(I) 

p N)(I) 

t(N)(I) 

and: 

• $(N)  = 0 (6 -11-b) 

  



ifh= -  1 

if h = 1 (6711-d) 
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I) and qN)(I) are defined as in (3-18-c) and (3-18-d) 

and t)(47)(I) are dependent on the exact value of h: 

	

(I) = ( 14N)(I) 	if h = 1 	(6-11-c) 

( 	(N) ( q14.  (I). 

q7)(I) = ( q1(N)(I) 

	

14N)(I) 	if h = - 1 

Comparing equations (6-11) with the corresponding equations for simple 

elastic media (3-18) one basic difference is apparent. Whereas in 

the case of simple elastic media the equations are dependent on the 

sign of products of pairs hhi, in the case of piezoelectric media the 

dependence is on the actual value of hl. Therefore, while in the 
simple elastic case there are two distinct configurations (for hih3=-1) 

in the piezoelectric case there are four. 

The conditions for Bleustein type waves would be of the form (6-11-a) 

and (6-11-b) with: 

(N) 	(N) 
r4 (I)  P4 (I)  
4N)  (I) = 137)(I) 

These type waves do not depend on the actual value of h. 

Using the values of A.(N)(I) and A(N),kW in terms of B(N) and (6-11) 

one obtains the following values for the total 'displacement' and 

total 'stress' vectors at the interface: 

Pl(n)  = 1TLP17)(I)B(N)  

P2(n) 24=113N)(I)B(N) 

P2(n) = 24AN)(I)B.(4_7)  

P3(n)  = 14,=AN)(I)B N)  

P4(n) 1-4,11:(N)(I)B() 

P4(n)  IT'kT=1PV)(I)B(N)  

Qi(n)  = 17 =1q1(N)(I)B+N)  

Q2(n) ITN,111(N)(I)k(EN) 

92(n)  - 22Lq(N)(I)B
(
N)  

QS(n) = iL53()(I)13.(N)  

when h2 = h1 

when h2 = - hl  

when h1 = +1 

when h1 = - 1 

when h2 = h1 

when h2 = h1 

(6-12-a) 

(6 -12 -b) 

(6-12-c) 

(6-12-a) 

(6-12-e) 

(6-12-f') 

(6-13-a) 

(6 -13 -b) 

(6-13-c) 

(6-13-d) 

where rf()N)( 
■ and r4  kI) 

( 
r4
N) 
 

and 

(6-11-e) 
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n,(n) , 	,,,)f,,,(N) 
'4' ' 	=1'14 	kj")DA- 	

when hl  = + 1 	(6-13-e)  

Q(n) = 	(N) (I)B(N) 	when h
1 = - 1 	(6-13-f) 

In Bleustein type waves (6-12-a) - (6-12-d) hold, and P4(n) = 0 

for the 'displacement'. For the 'stress' components (6-13-a) - 
. (6-13-d) hold while %(n) = EN=4  15'(N)  MA(N)  (n). 

Comparing (6-12) and (6-13) to (3-24) and (3-25), the corresponding 

equations for simple elastic media, one can see that the equations 

describihg the mechanical displacement and stress in the piezoelectric 

media are the same as for the case of simple elastic media. Although 
( 

the electrical effect would be felt in the actual values 	Pi N) (n), 
(N)/ q' 	(n), \n), and B(N), the character of the wave is the same whether the 

media involved are simple elastic or piezoelectric and elastic. The 

electric potential component, P4, and the electromechanical stress 

are dependent on the actual value of hl  in the Stoneley type wave, 

but not in the Bleustein type wave. 

The determinants of the matrices in (6-11) may vanish separately or 

simultaneously, just like (3-18). Checking the possible waves for 

the different configurations: 

When B(N) = 0 (the determinant of the matrix in (6-11-a) vanishes 

while that in (6-11-b) does not), from (6-12) and (6-13): 

Pl(n) = yn) = 0  

	

If= (1,1,-1) 1 	(11 	Pi(I) = (0,0,P3,0) 	) 
) 

Qi(I) = (QI,W2,0,Q4) 	) 

	

hl 
	Pi(I) = (0,P2,P310) 	) 

) 
Qj(I) = (Q1,0,0,01) 	) 

= (-1,1,1) 

	

1 	Pi(I) = (0,P2,P3,P4) 	) 
) 

Qj(I) = 	) 

= -, -11), 

	

1 	(1 	Pi(I) = (0,0,P3,P4) 	) 
) 

Qj(I) = (Q1, Q2,0,0) 	) 

Notice that for (6-14-a) and (6-14-b) the conditions for a Bleustein 

type wave are satisfied. 

(6-111-a) 

(6-14-b) 

(6-14-c) 

(6-111-d) 
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When B(N)  = 0 and B(N)  1.0 

P3(n) = Q1(n) = 0 . The following are the forms of the different 

possible waves for such a case: 

If h. = (1,1,-1) Pi(I) = (P1,P2,0,P4) 

Qj(I) = (o,o,a4,o) 

Pi  (I)= (p1,o,o,p4) 

Qi(i) = (o,o,o) 

pi(I) = (pi,o,o,o) 

Q5(I) = (0,01,Qi,Q4) 

Pi(I) = (p1,p2,o,o) 

Qj(I) = (0,0,Q3,Q4) 

(6-15-a) 

(6 -15 -b) 

(6-15-c) 

(6-157d) 

Under these conditions in the configurations (6-15-c) and (6-15-d) 

Stoneley type waves and Bleustein type waves are the same. 

In both (6-14) and (6-15) when one of the determinants of the matrices 

in (6-11) vanishes and the other does not vanish, the electrical effect 

at the interface is localized to either the electrical potential or the 

electromechanical 'stress' component, depending on the actual value 

of h1 (and therefore h3 
as well) and which one of the determinants 

(in (6-11)) vanishes. It is independent of the value of h2, although 

the mechanical components are dependent on the value of 13212. 

The relation between the transformations in the pairs [(6-14-a) and 

(6-14-0, [(6-14-b) & (6-14-c)] ,16-15-a) & (6-15-d)] and [(6-15-b) & 
(6-15-0] is of inversion and therefore the mechanical components are 

of the same form in the two members of each pair. However, the 

electrical components in the members within a pair are different. 

For each of the transformations there is a correlation between the 

wave for which B(LT)=  0 and the one for which B(N) = 0. The vanishing 

components in the 'displacement' vector when BtN)  = 0 are the same 

as the vanishing components in the 'stress' vector when B
(N) = 0. 

( For h = + 1 and B(N) = 0, or h = -1 and B.4 _N)  = 0 the electrical effect 

is localized to the 'stress' and the electrical potential,. P4, vanishes 

at the interface. When h = ± 1 and B(N)= 0, the electrical effect 

is localized to the electric potential, and the electromechanical 

'stress', Q , vanishes at the interface. 
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When B(N)= 0, the mechanical displacement is transverse, the stress 

is purely longitudinal for transformations (1,-1,-1) and (-1,1,1). 

When B+
(N)  = 0, the mechanical stress is transverse and the displacement 

is purely longitudinal for these transformations. 

One should note that in both these cases, either B(N) . 0 or B(N) = 0 

if the piezoelectric effect is zero then the sign of h is not 

important and these cases reduce to those discussed in chapter 3. 

There is always the possibility that the two determinants of the 

coefficient matrices in (6-11) vanish simultaneously, in which case 

it is possible that neither B(N) nor B(N)  are zero vectors and 

therefore P.(n) and QI(n) may have four non-zero components, given 

by (6-12) and (6-13). 

When one imposes the Bleustein type conditions P4(n) = 0, the 

mechanical and electrical components do not depend on the actual 

value of h: 

When the determinant of coefficients of B(N) vanishes, while that 

of B(N) does not vanish, B(N) = 0 and: 

for hi  = (h,h,-h) 	!i(I)= (0,0,P3,0) 

Qi(I)= (Q4_,Q,0,Q4) 

hi  = (h,-h,-h) 	Pi(I)= (0,P2,P3,0) 

Qi(I)= (Q1,0,0,Q4) 

When B+
(N)  = 0 and B(N) / 0 

for b.. = (h,h,-h) 
	

Pi(I)= (P1,P2,0,0) 	
(6-15-e) 

Qi(I)= (0,0,Q3,K) 

h. = (h,-h,-h) 
	

Pi(I)= (P1,0,0,0) 	
(6-15-f) 

Qi(I)= (0, ce2, '?rT3  
B(N) and  B(N) are not necessarily the same as those for the Stoneley 

(N) 	( type waves, they depend on the value of r4  and t4
N) 
• 

When h1h3 = + 1 

(N) 	(N) 	(N) pK  (II) = x hheK  (I) 

q'
(N)

(II) = x
(N)

hhK qt
(N) 	

(I) 

(6-16-a) 

(6 -16 -b) 
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One cannot simplify much further the generalized Stoneley conditions. 

It is possible to rewrite the Stoneley conditions for this case in 

terms of real and imaginary parts of p
(N)

(I) and cli'c
(N) 

 (I), as in 

(3-28). 

If h
1 
 = h

2 
 = h

3 
 = +1, using (3-29) with N varying from 1 to 4, and 

i having values of 1 to 4, with (1k replacing qk: 

22N=1,p((N)(I) [A(N)(I) 	A(N)(II),1  = 0  
(6-17-a) 

T(N) 
Eu=1R(qi 

	

	(1) [A
(N)

(1) - (N)  ANN)  (II)]) = 0 	(6-17-b) 

i , 
Using the definition of qi

(N) 
 (n), (5-10-b), (5-12) and (6-17-a) one 

obtains: 

ci3k3 	1 ' 

7 p{71(

k 	3

N)(I)s(N)(
I)
[A(N)(,) x(NWN) 

'N= 	` 

4 	(N) 	(N) 	(N) + e 3i3EN=ip(p4  (i)s3  (I)[A 	(I) - x(N)A(N) 	(II)]) = 0 
i,k = 1,2,3 

and 

,..,4 	r  (N)(T\  (N) 	(N) 	- x(N)
A(N)(11)3}  + 

e3k32-N=19`P
k '''23 (I)[A (I) 	 (6-17-d) 

4 	, (N), x (N)/ X (N) 
+ €337N=1.0tP4 kI)s3  kIAA 	(I) - 

x(N)A(N)(II)31 = 0
, 

 

k = 1,2,3 

(

ci3k3 e3i3) 

e3k3 	€33 

is regular, and therefore we can follow the arguments of chapter 3 to 

prove that no generalized Stoneley waves are expected at an interface 

between two media having the same elastic and piezoelectric coefficients 

and the same orientation with respect to the interface coordinate 

system. In the case of non-piezoelectric media e3i3  =.0 and one is 

left with the case discussed in chapter 3. One should note that 

unlike the case of simple elastic media, these arguments do not hold 

for complete inversion (hi  = - 1). 

In a Bleustein type configuration (6-17-d) is not necessarily correct. 

In (6-17-c), if e3i3  = 0 the case still reduces to simple elastic 

media, otherwise, one has to check the possibility of a wave under 

the condition (5-31). 

One of the configurations where the difference between simple elastic 

media and piezoelectric media manifests itself most is that of c4ete 

inversion. For simple elastic media complete inversion is the same 

The 4x4 matrix 

(6-18) 
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as the identity and no attenuating waves at the interface are expected. 

But if the media are piezoelectric, this is not necessarily the case: 

(N) 	(N) ( pk  (II) = x pkN)  (I) 

(N) 	(N) 	(N) p4  (II) = - x p4  (I) 

(N) 	(N) 	 qk 	(II) = x 	qi(N)  (I) 

q114.(N)(II) = - x(N)(111.(N)(,) 

(6-19) 

k = 1,2,3 

One obtains a generalized Stoneley condition of an 8x8 determinant 

which has to vanish, and depending on the media characteristics one 

may or may not obtain attenuating waves. 

• 
	 The condition for Bleustein type waves is the same in case of 

identity or complete inversion. 

We shall now try to further simplify the results for cases of 

particular symmetries within the media on the two sides of the 

interface. 

Following the arguments of chapter 4: If medium I has symmetry 

plane which is perpendicular to the x
3 

axis, its elastic stiffnesses 

tensor is of the form given by (4-2). The piezoelectric tensor 

eijk (if the symmetry is that of proper 2-fold rotation): 

o o o o 
0 0 0 * * 0 
\* * * 0 0 */ 

and for the same symmetry eij  is of the form: 

/* * 0 

* * 0 

(6-20) 

(6-21) 

\0 0 * 

S(NKL
)(n), for K,L=1,2,3 are the same as in the non-piezoelectric case, 

(N) and given by (4-3-a) and (4-3-b), SK4 (n) is given by: 

( 
SIV(I)  = (e131 + e311)s1s3N) (I)  
(N) 	() 
S24 (I)  = (e132 + e312)81s3 (I)  
(N) 	2 	(N) 	2  S34 (1) = elle].  + e333[s3  (1)] 

s(N)( 1 	2 	r (N)/T\12  
44 'I' = - 611s1 - €33Ls3 \'" 

and for the second medium: 
(N)( 	2„ 
S14  (I I) = h3(e131 + e311)s1s3(II) 

(6-22-a) 
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(6-22-b) 

S(N)(II) = h h h (e 24 	1 2 3 132 
S(r34
)(II) = h3 (e1131 s2 + 

544 (I/) - 	ells1 - €33[53 (/)] 	) 

() The elements of SK  (II) are dependent on the sign of h1h2' like 

S(NKL
)(II) for K,L = 1,2,3, and in addition on the actual sign of h

3' 
For configurations of piezoelectric media, which have a plane of 
symmetry which is perpendicular to the x3  axis, where h1h2  = +1 and 

h
3 
= + 1 we would not expect an attenuating Stoneley type waves. 

Suppose h
1
h
2 

= + 1 but h
3 

- 1. The eighth order polynomial of the 

secular equation is bi-quartic. The complex roots of the quartic 

equation may have one pair, 2 pairs or non4of complex conjugates. 

The real roots of the quartie, if they exist and will lead too  true 
attenuating wave, must be all negative. There are three possible 

forms for the slowness of attenuating waves: 

( 
s
3
N)  (1) = isa, isb, isc, isd 

(N), s
3 

kI1) = -isa,-isb,-isc,-isd 

s(
3
N)(I) = isa, isb, sc + isd, -s

c 
+ is

d 

( s
3
N) 

 (ii = -is
a
, -isb, -sc -isd, s

c 
-is

d 

(N) 	a 	ba 	bcdcd, ) s
3 

 (I) = s + is b, s - is b, s +is , s -is  

s3
N) 

 ( 4 --s
a  -isb  , sa  -isb  ,-scd sc  -isd 	) 

In all these cases the same pattern appears: 

= - s N)(I) 	 (6-23-d) 

One may notice that it is possible to rearrange the slowness 

components so that the relationship between the components in the 

 3 
two media will be s(m)(II) = s(m)(I) , this in turn would cause a 

different order of the 'displacement' and 'stress' components, which 

may differ in form but lead to the same total displacement and 

'stress' vectors. 

Using (6-23-d), (6-22), (4.L3), and (6-6), when there is a plane of 
symmetry perpendicular to the x

3 
axis, and in this numeration, the 

'displacement' components are related as follows: 

P1 (N)(II) = - h p(N)(I) 3 	) 
) 

+ e312)s1s N)  (II) 	)) 

( e333[s3N)  (I)]2  ) 

(N) 	2 	(N) 	2 

(6-23-a) 

(6-23-b) 

(6-23-c) 



p(N)(II) = -h1  h2  h3 2  p(N)(I) 2  

p3N)(II) = h33  
p(N)(I) 

(1i) 	() p4  (II) = p4  (I) 

(6-24-a) 
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If the slowness components are given by (6-23-a), the 'displacement' 

components have the form: 

(N)( ) 	.a 	.b 	
'
.
a
c 	

l
. d 

	

Pk = lal 	l al 
.a.b.c. d 10/2  1012  la2  10/2  

a 

	

013 	a3 
	013 	013 

a 
'4 '4 '4 '4 

(6-24-h) 

and that of the second medium for this case can be obtained by use 

of (6-24-a). 

If the slowness components are given by (6-23-c) the 'displacement' 

is of the form: 

11N )( 
I)  = / al+1ab  

0a+ 1 b   
a .b a3+1a3  

\a.b 
'4+1'4 

-aa+ la 
-aa+1a   

a. b a3-1013  
a. b 
'-1a4 

 '1 +, '1 

02  +, 0d 

c 	d a
3
+ia

3 
c 	d 
"4-Flail 

-al +,d 

-012  +
4„ 02d  

c 	d a3-1013 
c 	d 

1-  al- "4 

(6-24-c) 

In the same manner one may obtain the form for p( )(n) when the slowness 

components are of the form (6-23-b). 

Substituting (6-24-a) in the definition of q.(N)(n), (5-10-b) and 
(5-12), one may obtain the form of the 'stress' vector components 

which correspond to the different possible forms of the slowness 

components. For all possible slowness forms which are related as 

(6-23-d) one obtains the following relations between the components 

of the 'stress' vectors in the two media: 

qi(N)(II) = h3  q'
(N)

(I) 

(N) q2 	(II) =h1h2h3-ole.(N)(I) d 
q'(N)(II) =-h

3 
 sql
3
(N)(IY 
 

,, 	(N), q4(N)  (II) = 	kI) 

(6-25) 

Substituting in the generalized Stoneley conditions (6-24-d) and (6-25) 



• (A(N)(I) + A(N)(II)) = 0 	(6-27-a) 

• (A(N)(I) - A(N)(II)) = 0 (6-27-b) 

and 

one obtains a set of eight homogeneous linear equations which 

are decoupled, or two sets.of four homogeneous linear equations 

each, in B(N) and B(N): 
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(N),
kI 

 )[ (N)(  ) 
FN=1131 A I  

, Nr 
1P(N)kI)IA (l)  

4 ( EN=1p3N)  MLA(N)  (I) 
4 	(N), NTA(N),I)  
EN-1134 ‘1) 	k  

 
Eli..-1°1  1 

(N)(I)TA(N)(I) 

 7DT=lcI2(N)(i)TA(N)(i) 

 
TN=1c13 ,(N)(I)[A(N)(I) 

 
TN=114 	iL 

,(N)(i)rA(N)(I) 

+ h
3
A(N)(II)] = 0 

+h
1
h2h3A(N)(II)] = 0 

- h
3f"
(N)(II)] = 0 

- A(N)(II)] = 0 

- h
3  A
(N)(II)] = 0 

-h1h2h3A(N)(II)] = 0 

+ h
3
A(N)(II)] = 0 

+ A(N)(II)] = 0 

(6-26-a) 

(6-26-b) 

(6-26-c) 

(6-26-d) 

(6-26-e) 

(6-26-f) 

(6-26-g) 

(6-26-h) 

(6-26-a) to (6-26-g) hold for Bleustein type wave while instead of 

(6-26-h) one has to write: 

(), 	(N) 	(N) EN=ip4  k)LA 	(I) + A 	(II)] = 0 

One can see that whereas in the non-piezoelectric media the sign of 

h,

K 

is irrelevant, here it has a significance as in the values of 
. 11s) S4 (II). Because of the different results for different values of 

h
3 
rather than having only one possible attenuating wave, as in the 

simple elastic case when h1h2  = -1, here there are three different 

configurations where Stoneley type attenuating waves are possible 
a 

in media with plane of symmetry perpendicular to the x3  axis. hih2=+l 

and h
3
=1 is the case of identity which does not lead to an 

attenuating wave. However there may be anon-attenuating wave 

travelling along the interface, the equations of which are: 

(6-26-i) 
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For non-trivial solutions in this configuration, for this special 

case, one needs the determinants of the matrices (6-27) to vanish, 

either separately or simultaneously. For Bleustein type wave 

(6-27-b) holds while in (6-27-a) p)(4N)(I) replaces ce)(I). 

The determinants of the matrices in (6-27) may be considerably 

simplified: 

(c33 e33 
+ e2

33 
 ) 

I4N)(,)  

s N)(I) pl(+N)(I)  

is equivalent to the requirements of the determinant of the 

matrix in (6-27-a) to vanish. Similarly, the requirement of the 

vanishing of the determinant of the matrix in (6-27-b) can be 

simplified to: 

2 
(e44e55 	c15 

= 0 	(6-28-b) 

For)31eustein type wave, instead of  L6,28-a) one_hasl_ 

p(N)(1) 

p2
(N)(1) 
(c 
333 

p(N)(I) + 
e331) 	s3 

(N)(T)) (N)(T) 	0 	(6-28-c) 
'-" 

P4
N) 
 (/) 

These determinants, when they vanish, would lead to non-attenuating 

wave solutions,in the case of Stoneley type configuration. The 

fact that no attenuating wave solutions are possible was shown in 

the discussion following (6-17) and (6-18). However, non-attenuating 

waves may comply with the continuity conditions at the plane x
3 
= 0 

and therefore be solutions, of (6-26). 

When h1h2  = + 1 one does not expect for simple elastic media, in this 

symmetry, an attenuating interface wave, regardless of the value of 

h (chapter 4). However, when the medium is piezoelectric one does 

expect some waves when,h
3 
= - 1. This covers two cases: complete 

= 0 	(6-28-a) 

(N) 	(N) s3  (I)pi  (I) 

s i\T)(I)e)(I) 

p(
3
N)(I) 

( 
P4
N) 

 (/) 



Two sets of equations obtained from (6-26) are: 

/4N)(i)\ 

p(N)(I) • (A(N)(i) - A(N)(II)) = 0 	(6-29-a) 
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inversion (h1 = h2 h3 = -1), and rotation about the x3 
axis, with 

inversion (improper rotation). 

and 	qi(N)(I).  

(N) q2  (I) 

4N)(I) 

q4(N)(I) 

(w) 
• (A(N)(I) + A'-'(II) = 0 (6-29-b) 

Notice that (6-29-a) is identical to the condition for the 

existence of Bleustein wave in the configuration h h = +1, h
3 
=+1. ?NI  (N) For Bleustein type wave (h3  = -1) p1 (I) replaces (g)'.  (I) in (6-29-b) 

which makes it identical to (6-27-b). 

The two determinants of the matrices (6-29) may vanish simultaneously 

or separately. From (6-24) and (6-25) one should notice that for 

h1h2 = +1 and h3 
= -1 two forms of components are present: those of 

(N), 	(N) 	(N), p(N)(I), p2  kI), qi 	(I) & 	kI) (group 1), and that of q'(N)(I), 1 
(N), 	(N), 	(N)I 	I \I), p3  (I) & p4  (I) (group 2). If the slowness components 

are pure imaginary the form of the elements of group I are pure 

imaginary (multiplied by some complex coefficients) while the elements 

of group 2 are real (multiplied by the same coefficients). If the 

slowness components are complex they appear in conjugate pairs. 

The corresponding elements of group 1 appear as anti-conjugate pairs, 

and those of group 2 as conjugate pairs. 

As a result the vector components of B(N) and B(N) for slowness 

components of the form (6-23-a): 

B(1): B(2): B(3): B(4) 	ira. irb: irc:  ird 	
(6-30-a) c.±  s±  

For slowness components of the form: (6-23-.c): 

Bil): 	 2). 	= a + ba  +iCbcdcd : 	6-30-b) 

The total displacement components in the xl  and x2  directions and 

the total stress component in the x3  direction and Q14  would all be 



A(N) 	(N) (II))=0 ; 

(6-32-a) 

(A(N)(I)+A(N)(ii))=o 
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real (multiplied by the same afbitrary complex constant), regardless 

of the form of the slowness components. The total displacement 

component in the x
3 

direction and the electric potential and the total 
stress components in the x1 and x2 directions are all pure imaginary 

(multiplied by the same complex constant). 

The general expressions for the total 'displacement' and total 

'stress' vectors at the interface, for.  Stoneley type waves, are: 

4 	4 
P. = 

2r, V
(N),,NB N),, r(N),,N,(N  ) 

1 N=1 1   	N=12 
	 4 

f \ 4 
Q1 

= 0 4(N)(I)BkN),z 	N)(I)B(N) 
N=1  	N=1 

4 	4 ( 	, 	( 	(,, 
,E 	

N) 
(I)B

(N) 
 ,7 P4N)  13+N) ) 1 

N=1 ' 	N=1 	) 

4 	4 (N) 	(N) 	(N) (N) )
X6-31-4 

 ,E 42  (I)B+  ,E 44 B_ )) 
N=1 ' 	N=1 

If B(N)  = 0, B(N)  = 2A(N)(I) 

Pi = (P1' P2' 0, P1) 	 = (a, o, 

If B(N)  = 0, B(N)  = 2A(N)(I) 

Pi  = (0, 0, P3, 0) 	, Q = 	QL, o, 

For Bleustein type waves P4(n) = 0 and the mechanical components 

are of the same form as in (6-31) although 32._(4_N)  is a null vector 

of a different matrix from that of (6-29-b). 

The above analysis dealt with two possible transformations when 

h1h2 = + 1 and h3 
= -1 (-1,-1,-1) and (1,1,-1). In the case of 

improper rotation about the x3  axis, h1h3  = -1, and therefore the 

general discussion and (6-9) to (6-15) hold. Since the numeration 

is not the same, one should notice that the different components 

do not correspond. However, the results are not contradictory as 

they may seem at first sight, and the two possible waves (6-31-b) 

and (6-31-c) represent the waves in (6-15-a) and (6-14-a) respectively. 

Similar analysis may be done for the configurations: h1h2  = -1, h3=1, 

where the generalized Stoneley conditions obtained from (6-26) 

lead to: 
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For Bleustein type wave q )(I) is replaced by pfN)(I). 

The total 'displacement' and 'stress' vectors are given by: 

4 	4 	4 	4 
pi=it z p(N)(i)B(N),z  e)(i)33+(N),E p(N)(I)B+N),z p25.);(N)))  

N=1 	N=1 	N=1 5 	N=1 	) 
)(6-32--0 

4 	4 	4 • 	4 	) 
,,,1„tz cl(N)(I)B(N),E  410(D,,(N) , 40\)(T\B(N),z  04B(N))) 
''61- 2  N=1  	N=1. 	

ii, 	,L. -J. 	\-,--, 
N=1 -. 	N=1 

For Bleustein type wave the mechani al components are of the same 

form and P(n) = O. 

When h1h2  = 1, h3= -1 

N)1,1\ 
'1 \ / 
( 

c12 N) (I) 	(N) • B 	= 0 ; 

one obtains: 

(

gi(N)(,)\ 

e)(I) 

p(
3
N)(1) 

( 
q4

N) 
 (1)/ 

(6-32-c) 

• B(N)  = 0 

The total displacement and 'stress' vectors are given by: 

P. = 1 	ZN-1P1 )B+N)\ Q1 - 	%=1c11 ' B- 
4 	(N) (N) 

4 	(N) (N) 	4 	,(N) (N) 
EN=1P2 B 	%=1c12 3+ 	(6-32-d) 
4 • (N) (N) 	,4 	(N),(N) 
ZN=1P3 B- 	LN=1q3 -+ 

4-113V)B-ri 	
4 ,(N) (N) / 
EN=1g4 B  / 

(N) 	,(N) 	. Again, for Bleustein type wave p4  (I) replaces q4  (I) in (6-32-c) 

and the mechanical components are of the same form as in the Stoneley 

type wave whilesP4(n) = 0. 

When the symmetry in the medium is not that of proper rotation with 

respect to the x3  axis but or rotation inversion, the elastic 

stiffnesses and dielectric permittivity coefficients are the same 

as in the above discussion but the piezoelectric coefficients tensor 

is of the form: 
* 
* 

( 

o 

*. 

* 
o 

* 
* 
o 

0 

0 

* 

0 

0 

* 
* 
oi 

(6-33) 
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The contributions ScN)(n) which are different from (4-3) and (6-22) ij 
are: 

S(N) 	
2 	(N) 	2 

14 (I)= ellsl + e35[s3 (I)] 

S (N)( 	2 

S34

24 `-'
T) 

= el6s1 + e34{s3N)(I)]2 
(N) 	(N) 

(I) = (e13 + e35)s1s3 (I) 
(N) 
S 14 (II) = hl(ell 4_ + e35[s N)(I0121 

(N )  h_.(el.. os, 	, (N)
(II)1

2
3 S2  (II) = 'e 	1 + e 34[s 3 

S31 (II) = hi(e13 + e35)sls3 (II) (N) 	N) 

(6-34-a) 

(6-34-13) 

There is no dependence on the value of h
3 

but there is a difference 

in the secular matrix components if h1 and h2 change their sign. 

The secular equation is independent of either h1h2 or h3
, so that 

the bi-quartic equation is the same in both half-spaces and 

relation,(6-23-d) holds for the slowness components. The relations' 
avd. 

between the displacement components in the two half-spaces ft: 

N) 	N) 
pi (II) = hipi (I) 	) 
() 	()  
p2 (II) = h2p2 (I) 	) 

()/ N 	(N)/ N 
 

p3 kI) = - hip3 	 I) 	) 

() 	() 	) 
p4 (II) = p4 (I) 	) 

(N)/ 
qi 	kII) = hiqi

(N)(I) 

cf (N)(II) = - h2q (N)(I) 

q3(N)(II) = h13 qi(N)(I) 

qj!(N) 	(N), (II) = - q
( 
N
) 

(6-35-b) 

The resulting equations of continuity across the interface are: 

4 	(N) .r.(N)(I) - h A(N)(II)] = 0 7-N=1131 (I)LA 	1 
(N),[A(N)(_. 

- 	(N), . 

	

I) 	h2A 	kii)] = 0 
2N=1P2 ki) 

(N),_.[A(N),_. ki) + hiA(N)(II)] = 0 rN=1133 kll  
,4

=1P4 	A k (N)1,\EA(N)(,) _ (N), . II)) = 0 1-N 
,

=1"1 
4
1 	ki) (N)(,)[A(N),..., + hiA(N)(II)] . 0 '  

	

 l„ (
,142wi_11N), .r.(N)(I) 	h 2A

(7)
(II)] = 

(6-36-a) 

(6-35-a) 
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ic3(N)(i)p) (,) h1A(N)(II)1 0  ) 

7,1  1(114.(N)(I)p) (,) 	A(N)(II)1  _ 	) 

which lead to four different conditions depending on the individual 

values of h1 and h2 in the transformation. Therefore: 

for hi  = (1,1,h3) 

/ 	
1)

y) 	(N)\ 
Pi = -f /7 =11 (I)B+ 

( 	( 
TN.1P2N) (I)B+

N) 
 

4 ( 
TN=1133

N) (I)B(N) 
 

4 (N) (N) 
1EN=1P4 (I)B+ / 

Qi=i- It.A51(N)(I)B(N)\ 

' 4 (N) (N) 
EN= .5L (I)B_ 

y4  ro(N)M (N) 
-N=1'3 	B+ 

EN=1514. (I)B_ 
4 	(N) 

(6-36—b) 

for hi  = (1, -1,h3) 

Pi 
 , 	/7,4  ,(N)(T)n(N)\ i 	2 I  N--111. 

4 ( 
2N-1132

N) 
 (I)B

(N) 
 

	

(N) 	(N) EN=1p3  (1)B 

EN=11417)(I)B-(1.-N)/ 

for h. = (-1,1,h3) 

Pi 
= 

	B (N) 

	

1 
= 

2 
1. 
 LN=1P1 	/ - 

11- 	( 	( 
TN=1P2

N) 
 (/)B+

N) 
 

(N), _Ni)B (N) 
EN=1P3 k 
4  \7N=1P(N),,NBN)] 

4 \if  
( 
+ / 

for hi  = (-1,-1,h3) 

4 (N) (N)\ P1 = 	'EN=1P1 (I)B  

	

(N) 	(N) 
ZN=1P2 (I)B  

	

4 
g3  
(N) 	(N) 

EN= 	(I)B+ 

	

4 ( 	( 
2N=1P4N) (/)B+

N)j 
 

(N)„ 
141 I)  

4 	( 
EN=lc12

(N) (I) 
 + 

4 	(N) 	(N) 
2N=lq3 (/)B+ 

	

,(N) 	(N) 
EN=154 (/)B  

1/ 	 , 	(N) 
7N
4 ,
A51(N) (I)B+ 

4=1 (N)(/)B+N)  
4 ,(N) (N) 
EN=1q3 (I)B  
4 ,(N) (N) 

\%.1g4 (i)B  

= 
i. 
2 

(N) 

) 

6-36-c) 

(6-36-d) 

(6-36-e) 

(N) 
For Bleustein type waves, in the eighth equation of (6-36-a) q1 	(I) 

(N) is replaced by p4  (I). The mechanical Uisplacement' and 'stress' are 
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of the same form as in (6-36-b) to (6-36-e) while P4(n) = 0. 

B(N)  and B(N) are the null vectors of different matrices, depending 
on the transformation matrix: 

for h. = (1,1,h
3
) 

/ (N)(I) 
( 
P2N) (1)  

q3(N)(I) 

p)(1.N)(i)  / 

for h = (1,-1,h
3
) 

• B(N)  = 0 ; 

(6-37-a) 

• B(N)  = 0 

/ PIN)  (I) \ 
,(N) 	i 
q2 	(I) 	• B(N) _ 0  ; 
(N) qi3  (I) 

\i)jr (I) 

for h = (-1,1,h3) 

/ qi(N)(I)\ 
(N) 
P2 (1)  
(N) 	• B(w) = 0 ;- p
3 

(I) 

\ 147)  (I) j 

for hi  = (-1,-1,h3) 

( 

cii(N)(/)  

( (42 N)  (I) 	(N) • B 	= 0 ; 
(N)/ N p3  kI) 

I:(7)m  / 

(6-37-b) 

• B(N)  = 0 

(6-37-c) 

• B(N)  = 0 

(6-37-a) 

• B(N)= 0 

Therefore if the determinants for non-trivial solutions vanish 

separately one obtains the following possible 'displacement' and 

'stress' at the interface: 

hi  = (1,15h
3
) 

B(N)  = 0 & B(N)  / 0 : Pi  = (P1,P2,0,P4) 	Qi.(o,o,c,o) ) 
) (6-38-a) 
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B(N)= 0 & B(N)/ 0 : P.= 	0,P3,0 ) ; Q1.(Q1,q,o,Q4) 	) 

h.=(1,-1,h3) 

B(N)= 0 & B(N)/ 0 

B(N)= 0 & B(N)/ 0 

h.=(-1,1,h3) 

B(N)= 0 & B(N)/ 0 

B(N)= 
0  & B(N)/  

11.=(-1,-1,h
3
) 

B(N)= 0 & B(4)/  t  0 
,(N)= 0  & B(N)/ 0  

: Pi.-(Pro,o,P4) ; 

pi--(o,p2,p3,o) ; Q1.(Q1,0,0,Q0 

: Pi=(0,1)2,1)3,P4) 	QI=(Q1,0,0,0) 

Pi.(pi,o,o,o) ; cq=(o,QL,Qi,Q4) 

Pi-(o,o,p3,p4) ; Q1.(Q1,(e2,o,o) 

Pi=(1)1,p2,o,o) ; Q1=(0,0,Q,Q0 

) 
) (6-38-h) 
) 

) 
) (6-38-c) 
) 

) 
) (6-38-d) 
) 

Since the whole discussion is independent of the value of h
3 
we can 

choose a value for h
3 

so that h1h3 - 1 and we can compare (6-38) 

with (6-14) & (6-15). (6-38-a) corresponds to (6-15-a) & (6-14-a) 

(6-38-b) corresponds to (6-15-b) & (6-14-b), (6-38-c) corresponds 

to (6-14-c) & (6-15-c) and (6-38-d) corresponds to (6-14-d) & 

(6-15-d). 

The transformation in (6-36-b) (and (6-37-a) & (6-38-a)) may describe 

the identity, if h
3 
= +1. In such a case, if there is a solution, 

it would describe anon-attenuating wave travelling parallel to the 

plane x3  = 0. 

( For Bleustein type waves 41(N)(1) is replaced by p4N)  (I) and the 
mechanical components are of the same form as (6-38) while P4(n)=0 

for all configurations. 

When the plane of symmetry (of proper rotation) is perpendicular to 

the x1  axis, the elastic stiffnesses are given by (4-31), the 

dielectric permittivity coefficients are of the form: 

7* 	0 	0 

0 	* (6-39-a) 

\J) 

the piezoelectric constants are of the form: 

* 	* 	* 	* 	0 	0 

0 	0 	0 	0 	* 	* (6-39-b) 

0 	0 	0 	0 	* 
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When the plane of symmetry is of rotation inversion the only 

coefficients which are different in form are those of the piezo- 

electric tensor. Instead of (6-39-b) this tensor has the form: 

/0 0 0 0 * *\ 
* * * * 0 0 (6-39-c) 

\* * 0 of 

For each of these symmetries one obtains a bi-quartic secular 

equation. In the case of (6-39-b) it is dependent on the sign of 

both 

h2

h

3 

and h

1, 

while in the case (6-39-c) it depends on the 

signs of h2  and h3  only, and is independent of h1. 

For the case (6-39-b) the equations of continuity are simplified to: 

7 =1" 

,(N)(i)rA(I)(I 

	

) - h1  A(N)(II)] 	0 
(N1  

(N) 	(N), 	 (N) / 

'N=1132 (I)(A 
	cI) + hih2h3A 	kII)] = 0 

(N) 	(N) 	(N) 7N=1p3 (I)[A 	(1) + hiA 	(II)] = 0 

(N),1[A(N)(,) 	

A(N)(ii)] = 0  
7N=1P4 

7N=1 
 (

11
7(N)(I)[A(N)(I) + h1 A(N)(II)] = 0 

 

7k=
1q  2 ,(N)(I)EA 

(N)(I) - h

1

h

2

h

3

A(N)(II)] = 0 

7=1"3 

ro(N)tim 	

) 

A(N)(I, - h
1

A(N)(II)] = 0 
N 

4 	 (N)(N)rA(N)(I) + A

(N)(II)] = 0 
5-N=icl4 

For the case (6-39-c) the equations of continuity are: 

4 	(N)(ImA(N)(,) 	(N) 	Ni 
= 0 + h

3

A (lin 
7N=1P1 

(N), N1 4 	(N)r \[A(N)(I) - h

2

A 	JI)J = 0  
EN=1P2 'I'  

rN=1 11

0

-3

(N)(I)[A(N)(I) - h3 A(N) (II)] = 0 

7N =1P4 

(N) Nr„(N)(,) 	

A(N)(II)] = 0 

74  
=1 ci,1(N)(1)[A(N)(I) - h

3A
(N)

(II)] = 0 

7N -112

(N)(i)[A(N)(i) +h
2
A(N)(II)] =0 

 
7N =1g3 

(N)(I)[A(N)(i +.h

3  A

(N)(II)] = 0 

(N)(I' 

,[A(N)(I) 	A(N)(II)] = 0  
7N=1c114-   

(6-40-a) 

(6-40-b) 

(6-40-c) 

(6-40-d) 

(6740-e) 

(6-40-f) 

(6-40-g) 

(6-40-h) 

(6-41-a) 

(6-41-b) 

(6-41-c) 

(6-41-d) 

(6-41-e) 

(6-41-f) 

(6-41-g) 

(6-41-h) 

The analysis for each of the different transformations in this symmetry 

is similar to the cases, of media having a plane.of symmetry 



S
(N)
(n) S

(N)
(n) 13 	33 

and in the case (6-42-b): 

il522)(n)11 • S(N11)(n) ' S1()(n) 3 

S13
)
(n) 	s33 (n

)  ) \ 

s(N) 	(N) 
14 (n) 	S34 (n)  

• 

( 	(N 

S22) (n) 	S24) (11)1  

s(N)f 	,(N)f 

24 °I) 	'44 '111  

written as: 

() 	() 
S'
1 
 (n) 	S

13 
(n) 

1 

(N 
S
14) 

(n) 

() 
S
3 
 (n) 

(N S44
) 
(n) 
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perpendicular to the x
3 

axis. 

For Bleustein 

and (6-41-h). 

( 
type waves p

N) 
 (I) replace 	(N) 	i (I) in (6-40-h) 

When the plane of symmetry is perpendicular to the x2  axis the 

secular equations are not bi-quartic, but similar to the non-

piezoelectric case they are separable. 

The piezoelectric constants are of the following forms: 

If the symmetry is of rotation: 

/o 	0 	0 	* 	0 
* 	* 	* 	0 (6-42-a) 

\0 	0 	0 	* 	0 

and if it is symmetry of inversion rotation: 

* 	* 	* 	0 	* 	0 

0 	0 	0 	* 	0 	* (6-42-b) 
* 	* 	* 	0 	* 	0 

The dielectric coefficients are in both cases of the form: 

0 	* \ 

0 	* 	0 6-42-c) 
* 	0 	*1 

If one calculates the elements of the secular matrices in the case 

(6-42-a) 

) 	(N) 	(N) 	(N) 

S12 (n) = 
S23  (n) - 

S14 (n) = S34 (n)  •-• 0  

and in the case (6-42-b) 

24 
s
(N)

(n) = s
)
(n) = 

(N) 

12 	S  (n) 
0 

23 

Hence in (6-42-a) case one obtains a secular equation which may be 

= 0 	(6-44-a) 

= 0 	(6-44-b) 

(6-43-a) 

(6 -43 -b) 
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(6-44-a) leads to two quartic equations, the first of which is 

bi-quadratic, and the second one having third and first order 

terms. These two equations may or may not have complex roots, 

depending on sl, the elastic stiffnesses and the density. The 

'displacement' components associated with the vanishing of the 

first determinant of (6-44-a) cannot be obtained from (6-6) since 

all the cofactors vanish, however .if one uses different cofactors, 

one obtains for the 'displacement' in the case (6-42-a): 	(6-45-a) 

141\1)(n):411-)(n):141\11(n):Pi(4.N)(n) = S33)41)D1(N, n):0:-SITD1(N;n):0 

N=1,2 Di(N,n)= [44)(n)12-S )(n)S(N)( ) ' 	22 	44 ǹi 

(6-45-b) 
(N) 	(N) (N)(n).n(N)(n).,(N)(n. _ 

	

) 	 (N) 	 (N)  P1 ` "P2 ` 	 .."3 ` "1"4 ` 

N=3,4 D2(N,n)=ST(n)S33)(n) - [43)(n)]2  

The decoupling of the displacement components would cause similar 

decoupling in the solutions for the amplitudes, analogous to the 

non-piezoelectric case (with similar symmetry). 

In (6-44-b) one obtains a quadratic equation from the factor S(N22)(n) 

the solution of which is given by (4-17). Hence under the restriction 

(4-16) one slowness 	component is pure imaginary. The rest of the 

secular equation is a sextic equation. The treatment from here on 

is the same as for non-piezoelectric media. The 'displacement' 

components for this case are decoupled in a different way (stemming 

from 

(1) 
Pi  

Pi
N)  

the decoupling 

, 	(1) 	, 	(1) 
ln):102  kn):P3 	(n):P4 

(n):P2
N) 	( 
(n):P3

N)  

(N) 	(N) 

	

(n) 	S14 (n)  
(N , 

	

si3
)  (n) 	s34  kn) 

(n)*P(N)(n) 

of the 

(1) 

• 

secular equation: 

(n) = 0:P21)(n):0:0  

n = - 	S(N)( 	) 14   

o(NrN 034)_ 

S(N)(n) 	S1 3)(n)  11 	13)(n)  

S1(N3)(n) 	S
3
(N
3

)(n) 

(N S13
)  (n) 

S  
33
)(n) 
 

N=2,3,4 

:0; 

(6-46-a) 

(6-46-b) 

This decoupling leads again to a decoupling of the equations for 

the amplitudes. 

The results obtained for proper rotations are dependent on both the 



signs of h1h3 and h2, while in the case of symmetry of rotation-

inversion the results are dependent only on the signs of h
1 and h3. 

In all these cases piezoelectricity has contributed to the 

modification of the mechanical results. One can see that the 

possible forms of the mechanical waves do not change, although 

the wave parameters do. 
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7. THE. NUMERICAL CALCULATIONS. 

In order to calculate the generalized Stoneley wave velocity in a 

given configuration a program was written in FORTRAN IV to be used 

on the CDC 6400 at the Imperial College, and later modified to be 

run on IBM 360/75 at UCSB (University of California, Santa Barbara). 

The program is based partially on a program written by T.C. Lim [1968] 

& Lim & Musgrave [1970]. 

The program is written so that one can calculate either the slowness 

(velocity) of a generalized Rayleigh wave in a given direction of an 

anisotropic medium, or, one can find the slowness (velocity) of a 

generalized Stoneley wave in a given direction at an interface 

between two anisotropic media. The two media on the two sides of 

the interface can differ in any or all of their properties. 

Besides the slowness, the output of the program gives other information. 

about the generalized Rayleigh or. Stoneley waves, such as displacement 

and stress components at the free surface or interface, respectively. 

The input to the program includes the physical parameters of the 

medium or media involved, its orientation with respect to the free 

surface or interface coordinate system, and the choice of either 

Rayleigh or Stoneley waves. 

In the first part of the program the appropriate transformations 

are done so that the elastic stiffnesses of the media involved would 

be given in the interface coordinate system. 

The program then goes through the following stages: 

1. Calculation of the body velocities in the xi  direction at the 

free surface or interface. This involves the solution of the 

secular equation setting 53=0. 

For velocities less than the lowest body wave velocity: 

2. Calculation of the slowness components s(3
N)(n). This involves 

solution of the secular equation for a given si, and choosing the 

appropriate three roots by the sign of the imaginary part of the 

solution. 
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3. Calculation of the displacement vector components p(N)(n). These 

are the null vectors of the matrices Slk
(N) 

 (n). 

( 4. Calculation of the stress vector components qk
N) 
 (n). This is done 

by using the definition (2-15). 

5. Calculation of the determinant (2-19) for the generalized Stoneley 

waves (6x6), or a similar one for the generalized Rayleigh waves (3x3). 

6. Minimization of the absolute value of the determinant for the 

generalized Rayleigh or Stoneley waves. The value of the velocity 

for which the determinant is minimum is taken to be the generalized 

Rayleigh or Stoneley wave velocity. The interval of search is either 

dictated with the input or decided automatically as a function of 

the lowest body wave velocity. 

7. The amplitudes are calculated as the null vectors of the matrix 

of the generalized Rayleigh or Stoneley condition. 

8. Calculation of the total displacement and stress at the interface. 

There are four main numerical problems in this process: 

1. The solution of a sixth order polynomial for its roots. 

2. The calculation of 6th order determinant. 

3. The calculation of null vectors of 3x3 and 6x6 matrices. 

4. The minimization of the function obtained by the determinant, 

since one has to find the tips of very narrow minima (which may be 

cusps). Sometimes the minima are very close, and are diffidult to 

distinguish. 

The problems were solved as follows: 

1. The sixth order polynomial is checked if it is bi-cubic. When 

it is one can solve the cubic equation analytically and improve, the 

result by use of Newton-Raphson process, and then take the square 

root of the solutions of the cubic. The formulae* used were taken 

so as to reduce the numerical error: 

If x3 + ax + b = 0 is the'reduced cubic equation to be solved, and 

if b
2
/4>> a

3/27, then in obtaining the auxiliary variables: 

3-b/2 + 	/4 + a /27 , B = -b/2 - 	/4 + a3/27 one faces A = 	4A2 	a3/27 	 Y 	,A
2, 	 
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the problem dloosing accuracy due to subtraicion of like numbers. 

For this reason one multiplies and divides by the conjugate to 

avoid subtraction. For instance, if b> 0, A would be very 

inaccurate in its present form but would be more accurate if we 

	

take: A = AXB/B, since AXB = -a/3, and B involveq  Parli.h5n14 r for 	 

than subtraction of two like numbers. When b<0 and b 4»a /7 
2/,, 	3 2  

one uses B.BxA/A.-a/(3A) for better accuracy. 

When the sextic equation is not bi-cubic one has to use one of the 

numerical methods available. - The one method found to be most suited 

is the Lin-Bairstow method (Young & Gregory [1972]). In this method 

one seeks quadratic factors of the polynomial with real coefficients 

to be solved. The quadratic factors are then solved analytically by . 

formulae which minimize the numerical error (similar to those 

described for the cubic equation). 

Using: 
n+1 	

2 	
n-1 

E i ax
n-i+1 .(x+1Dx-+q)Eb.xli-i-a + bnx + bn+1 i=1 	1.1 1  

(7-1) 

b
n 

and b
n+1 are looked upon as functions of p and q, and one seeks 

the roots of these functions by a two variable Newton-Raphson method. 

The Lin-Bairstow method succeeds if the initial guess for p and q 

is sufficiently close to the right value. Once one quadratic factor 

is found one looks for a quadratic factor of the polynomial of the 

(n-2)th degree, unless it is either a first or a second order 

polynomial. This repetitive division may give rise to a serious loss 

of accuracy in the value of the coefficients of the polynomials in 

the process. This problem is by-passed by taking several iterations 

of a Newton-Raphson process with initial guess of the roots found. 

One has to modify the N-R method when the roots are very close, 

approaching a double root solution. 

The initial values for the quadratic factors are taken to be the 

elements on the diagonal of the matrix, the determinant of which 

forms the secular equation. This guarantees that if the secular 

equation is factorable (as in the case of symmetry with respect to 

the x2  axis, dealt with in chapter 4), no iteration is needed. In 

those cases where the secular equation is not immediately factorized, 
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these are still good initial values because the elements on the off 

diagonal have in most cases less weight than the diagonal elements. 

2. It was quite tempting to try and use the FMN  matrix (2-24) as 

the simplified generalized Stoneley condition rather than the matrix 

of coefficients (2-18) which is a 6x6 matrix.. However, besides the 

reason given in chapter 2, namely that calculation of Ft  does not 

allow for 'leaky' waves, there is a numerical reason for working with 

the 6x6 matrix. In the calculation of each element of FMN  one has 

to have 6 multiplications and 3 additions of elements of the 6x6 

matrix (the total of 54 multiplications and 27 additions). These 

calculations done in floating point arithmetic greatly reduce the 

accuracy of the elements of F, so that when one calculates the 

determinant of F
l 
 it would have a very large error in it. 

1114 
Using Gauss elimination process with total pivoting strategy (Conte 

& de Boor [1972]) on the 6x6 matrix assures us of least errors in 

the calculations and the matrix is diagonalized with 54 multiplication 

divisions and 54 additions/subtractions. The determinant is the 

product of the elements on the diagonal. 

It is a very good policy to use partial double-precision (Conte & 

de Boor [1972]) in the calculation of alms of products either in 

the calculation of the elements of FMN  if one chooses to do so, or 

in the process of back-substitution in the Gauss elimination process. 

This method reduces considerably the errors due to the fact. that the 

number of digits in the mantissa of an exact product is the sum of 

the digits in the mantissas of the multipliers, since in this method 

the double-precision does not round-off after each multiplication 

but after the addition of all the products. This, however, has not 

been implemented in the program. The original program was written 

for running on CDC 6400 which has a single precision word length of 

64 bits. This was accurate enough for most of the calculations and 

a partial double precision would have improved the results and maybe 

would have allowed some results which could not be obtained otherwise. 

However, when the program was run on IBM 360/75, whose word length is 

32 bits, it was found that all calculations had to be done in double- 
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precision in order to obtain any meaningful results. The improvement 

of the addition of products would now require a special subroutine 

which will do the calculations in two double-precision words. This 

seemed unjustified. 

3. Once a matrix is triangularized (by a Gauss elimination process) 

it is quite simple to find a null vector of the matrix and to 

determine if there is one orthogonal direction to the matrix, or, if 

the rank of the n x n matrix is less than n-1, i.e. n-m, then we 

should look for the m independent null vectors of the matrix. This 

is done by back-substitution, and assigning an arbitrary value to xn. 

There are iterative methods which may calculate the null vectors more 

accurately than this direct method (Wilkinson [1970]) but they involve 

considerable calculations. The finding of the null vectors of the 

matrix SL
( N) 

	is done many times in the process of seeking the 

interface or free surface velocity and .it seems like the cofactor 

method is sufficient. 

There are problems which had to be resolved of how close two roots 

should be one to the other in order to be considered equal, in which 

case we are looking for two independent null vectors of the same 

matrix. These problems were solved by choosing an arbitrary value: 
( If : Is3
N)( '11) - s(3

m)(n) < 10-5. Since the accuracy to which we 
calculate the slowness components is less than this number, it may 

seem too strict a value. But when higher values were taken for the 

difference the function which described the absolute value of the 

determinant had a discontinuity which seemed numerical and was 

eliminated once the value for closeness of roots was lowered. 

1. The minimization method is essentially the Golden Section method 

described by Lim [1968] and Guilfoyle et.al [1967]. A use was 

made of the properties of the function involved. It was observed, 

and for generalized Rayleigh wave proven (Barnett et al [1973]) that 

for velocities greater than the interface/surface wave velocities, 

the function is monotonic' decreasing. Therefore the slope of the 

function is of the same sign and changes at a rate which varies very 

slowly up to the value of the Rayleigh or Stoneley wave velocity. 
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One should note that at the minima involved there is, for most cases, 

a discontinuity in the derivative of the function, since we are 

looking for the minima of a function which is the absolute value of 

the Rayleigh/Stoneley condition function. The interval over which 

one looks for the minimum is found by checking the slope of the 

function. This guarantees that if there is a narrow minimum, which 

falls between two points of calculations, the program would at least 

sense that there is a change in slope. In Lim's program the 

indication of a root was the minimum value of the function at the 

calculation points. The change was made because this minimum value 

often happens to be the body wave velocity or near it, because of 

the narrowness of the minima at the surface/interface wave velocity. 

There are very few restrictions for use of the Golden Section method 

for finding the minimum of a function but a necessary condition for 

this method to work is that over the interval in which one searches 

for the minimum the function is unimodal. A continuous function f(x) 

is unimodal over an interval [A,D] if there exists a point x0E [A,D] 

such that the function is strictly decreasing (increasing) on [A,x0) 

and strictly increasing (decreasing) on (x0,1)]. When the difference 

between Rayleigh or Stoneley velocities and the lowest body wave 

velocity is larger than the intervals over which the first rough 

search is done, the function is unimodal. But if this difference in 

velocities becomes smaller than the interval of search the function 

may not be unimodal in any of the intervals and therefore the Golden 

Section method does not work very well. For such an interval it is 

advisable to check the square of the absolute value of the determinant 

rather than the Absolute value. Although one loses in accuracy by 

taking the square of the function one obtains a smoother curve which 

is more suitable for a cubic fit method (Guilfoyle [1967]) of 

minization of a function. 

The Golden Section method is based on the theorem on optimal one-

dimensional maximization (or minimization) (Bellman & Dreyfus [1962]). 
This theorem states that if F

n represents the interval of maximum 

length over which it is possible to locate the minimum of a unimodal 

function f(x) by calculating the value of f(x) at most n times, 

F
n
= F

n-1 
+ Fn-2'  n 2. Fn 

are Fibonacci numbers. For instance, 

F
20> 10,000. Therefore, the position of the minimum can always be 
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located within 10 4of the original interval in at most 20 calculations. 

The connection between the Golden Section and Fibonacci numbers is 

given in Binet's formula: F
n = [1/15][(1+Z)/2]n- [1/j][(145)/2]n. 

For large values of n the second term'may be disregarded and one may 

approximate Fn  [1/\5][(1+Z)/2]11, and therefore Fn_14(N5-1)Fn  = G*Fn  

(with G .618034). This dictates the next two points of checking 

B and C, the values of the function within the interval [A,D] 

F
n-1 = [A,C] = [B,D], B= (1 - G)(D - A) + A , C = A + G(D - A). 

If we are not sure that the function is unimodal within the initial 

interval of search then we cannot be sure of blocking the minimum. 

If this is the case, the method of cubic fit may be more suitable. 

We still have to have only one minimum within the interval of search' 

but the function may have one maximum as well. This slackening of 

restriction of unimodality is very important, especially in Stoneley 

wave velocity calculations where the velocity searched for is not 

very different from one of the body wave velocities. The idea of a 

cubic fit is a regular curve fitting, in this case to a cubic 

polynomial, which may be done with only 4 points - and then one 

obtains the interpolation polynomial (perfect fit), or, best fit, 
br,a, 

which is done with least square method (5 - 10 points). One then 

finds the minimum of the cubic a
o + alx + a2x

2 
a3x

3 
by: 

If a3 0 0 _x min = [ - a2 + 4(8.2)
2 

- 3a1a3 ]/(3a3) 	(7-2-a) 

If a
3 

0 & a2> 0 xmin= - a3/[ a2 + 4(a2)
2 
- 3a1a3] (7,2-b) 

Otherwise no cubic minimum can be determined. 

The cubic fit method involves solution of a system of four linear 

equations for each approximation. This may be
a
Amuch more lengthy 

operation than the Golden section method and is resorted to only when 

the unimodality of the function is in doubt - i.e. - if the initial 

search interval is close to a body wave velocity. 

The way the program is written it may easily be converted to the 

calculation0 of different conditions at the interface from the 

generalized Stoneley conditions - conditions of continuity of 
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displacement and stress across the interface. Dr. C. Atkinson has 

suggested the use of this program for the calculation of the rate 

at which a crack would freely propagate along a plane. This 

however is not the subject of this present work and may be done at 

a later date. 
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8. NUMERICAL RESULTS. 

Calculations were done with the program described in chapter 7 to 

obtain the generalized Stoneley wave velocities in different 

configurations, and different directions. 

The program is designed to take any two media for the two half-

spaces. By checking the results one may obtain the generalized 

Stoneley wave velocity, if such a wave exists. One may also 

obtain waves which comply with the welded conditions at the interface 

but for which there is no attenuation, or attenuation of some of 

the components, in one or both media. 

Problems arise when the imaginary part of s(
3
N)(n) is much smaller 

than the real part of the slowness components in the x
3 

direction. 

These cases, however, exhibit little attenuation with increasing 

distance from the interface, and therefore do not give rise to 

generalized Stoneley waves localized to the interface. 

Although the analysis in chapters 3 and 4 has a significance of its 

own, it serves as an excellent check on the numerical results. 

Since the program is independent of the symmetries in the media, 

or of hih' one expects that in the particular cases where these 

symmetries exist, the patterns of results, consistent with the 

analysis, should be obtained. 

Other checkes on the program were made by comparison with known 

calculated results by W.W. Johnson [1970] and Lim &444sgrave [1970a] 

and [1970b]. 

W.W. Johnson gave ranges of existence of generalized Stoneley waves 

when the media on the two sides of the interface are cubic, 

orthorhombic and monoclinic, of the same orientation with respect 

to the interface axis but having different elastic parameters. 

He showed that the range varies with direction. The ranges are 

given in terms of c(1)/c(2) asctfunction of p(1)/ p(2) for specific 11 11 t'(1), 	(2), 
ratios of elastic stiffnesses c.. c(1)  and c. /c

(2)  
]J / 11 	ij 	11 

• Lim & Musgrave reported calculations' of generalized Stoneley waves 

at interfaces between cubic media of the same elastic parameters 

but different orientation with respect to the interface axes. 

The calculations were done on a hypothetical cubic elastic medium 
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having the following elastic constants referred to the principal 

axes of. crystal. symmetry: 

c11 = 17.1x101°N/le' c12.  =12.39x101°N/le and c44=3.56x101%/1? 

(anisotropy factor c = c11c12-2c44 =2 	10 .41x10 N/m ) 

The density p = 8.95gr/cm3. Using the notation of chapter 3, 
x.(n) being the crystallographic coordinate system of medium n 

(n=I, II) as referred to in the interface coordinate system, xi. 

The transformation matrices relating the coordinate systems are 

in medium I: 

xi  = / cos p(I) 	sin p(I) 0 \ 

-sin p(I) 	cos p(I) 0 xi(I) (8-1) 

0 	0 

and for the second medium: 

1/ 

x. = 	cos p(II) 	sin p(II) 0 

sin p(II) -cos p(II) 0 xi(II) (8-2) 
0 	0 -1 

where p(n) is a specified angle of rotation. 

The generalized Stoneley wave velocities are given as a function 

of p(II) for different constant cp(I). 

One should note that the equations of generalized Stoneley waves 

in anisotropic media are dependent on each of the elastic stiffnesses 

and densities in the two media, which in general involve 44 

parameters. Therefore, for any instructive investigation of the 

variation in velocity and range of existence of generalized 

Stoneley waves one needs to hold most of the parameters constant. 

One obvious way to reduce the number of parameters is to have 

the same crystallographic structure on both sides of the interface 

with known relation between the two media involved. 

Johnson kept the orientation of the media constant and varied the 

ratios of only one of the elastic parameters and densities. This 

is a continuation of Scholte's [1947] approach for isotropic media 

and does not take into account the main difference between isotropy 

and anisotropy, namely, that of change in physical properties of 

a medium with direction. 
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It is this difference between isotropy and anisotropy which is 
the basis to Lim & Musgrave's work - they investigated the 
existence of generalized Stoneley waves as a function of change 
in relative orientation only. In the extreme case of isotropy 
both the isotropic bulk waves comply identically with the 
welded conditions, but no attenuating wave would propagate. The 
introduction of anisotropy accounts for the existence of the 
interface waves. 

One of the questions Johnson's report raises is whether the same 
ranges of existence hold for the ratios quoted but different 

(n, (n elastic constants cij)/. 	c11
)  in the media involved. A set of 

calculations was done with the elastic parameters quoted in the 
paper. The calculated results correspond with those obtained by 
Johnson. Another set of calciAlations was done with aluminum on 
one side and a hypothetical medium on the other side of the 

(2 (1 interface, with p(2)/p(1) = 3 and c11
)  /c11) = 2.2 . This represents 

a point which is well inside the range of existence for 0° and 
(2, (2 15o angles of rotation. cij)/. 	c11

)  was chosen arbitrarily to be 
different from the ones given. No generalized Stoneley wave 
was found, which emphasizes the need for more comprehensive 
investigation of the dependence of range of existence on variation 
in the various elastic parameters. 

The main concern of the present work was the understanding of the 
dependence of interface waves on the relative orientation of the 
media involved. For this purpose several sets of computations were 
made, the first of which was similar to Lim & Musgrave's set of 
computations. 

The transformation matrices relating the principal crystallographic 
axes, x.(n), and the interface axes, x., are given by: 1 	1 

xi  = 	cos w(n) sin cp(n) 0\ 
-sin cp(n) 

c 

cos y(n) 0 )c.1(n) (8-3) 
o 

n=I, II 

For medium I (8-3) is the same as (8-1), but, in general, the 

transformation (8-2) is different from (8-3) for n=II, and they 



the x axis. ,This is the case for the medium used in both Lim-Ntsgravels 
1  

and the present work.* While L-M obtained the longitudinal waves, 

corresponding to B(N)  =0 (Fig (ii-2)), the waves calculated here (described 

in figs.(8-1)7(8-5) are transverse and correspond to B( N)=0 (fig.(4-1)). 
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are related as: 

cos up(II) 	sin p(II) 0 	/ 1 0 

sin p(II) -cos p(II) 0 0 -1 

0 	0 -1 \O 0 

(8-4) 

0.\ / cos p(II) sin cp(II) 0 

0 	-sin T(II) cos (((II) 0 

-0 0 	0 	lj 

Therefore, the Lim-Musgrave configuration may be obtained from the 

configuration used in the program described by a 2-fold rotation 

about the x1 axis. The two configurations coincide when medium. II 

in the configuration used is invariant under 2-fold rotation about  

Fig.(8-1) shows the results obtained for the different configurations 

with the lowest body wave velocities and the Rayleigh velocities 

given in each direction. The configurations checked were such that 

half space II was rotated at angles y(II) = 00t0-450  (at intervals 

of-5°) and in half space I the angles y(I) = 5°, 10°  and 20°  were 

taken. 

Each curve of constant y(I) merges with the slowest Bulk wave 

velocity curve. Results for configurations where the continuation 

of the, generalized Stoneley waves beyond the bulk wave velocity 

were not conclusive, although it seems that there exist 

configurations for which one can find 'pseudo'generalized Stoneley 

wave similar to the pseudo generalized Rayleigh waves described 

by Lim [1968] and Parnell [1970]. 

Fig. (8-2) describes the imaginary parts of the slowness components 

in the two half-spaces in the 20°  configurations. The larger the 

imaginary part in absolute value the stronger the attenuation. The 

equations for the slowness components in the x
3 
direction are bi-

cubic which give rise in most attenuation cases to one pure imaginary 

and a pair of anti-conjugate components, having the same imaginary 

parts: j[s(11)(II)) 	-JAs
(N)

(I)), ,Js
3
2) (n)) =

3
3) (n)}. 

3 	3 
As the angle of rotation increases beyond 30°  one of the slowness 

components in medium II is real and therefore there is one non- 

attenuating component in medium II. For angles less than 15°  there 

is one non-attenuating component in medium I. Therefore, the range 

*In the interface coordinate system the elastic stiffness matrix for a 
cubic medium rotated about the x

3 
axis has a tetragonal form (see p.53). 

• 



• 
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of existence of the generalized Stoneley waves, with m(I) = 20°  

is approximately -30q< p(II) <-15°. This range is in the 

neighborhood of the symmetric configuration 9(II) =-20°. 

An auxiliary program was written for symmetric cases only, in 

which the input, besides the elastic components of the medium I 

investigated, includes the transformation matrix h... For the 

generalized Stoneley wave velocity calculated, the values of 

two other determinants are given, those of the simplified generalized 

conditions (chapter 3, table (3-2)). In this way one can find out 
the character of the generalized Stoneley wave obtained. In each 

determinant only three vectors are involved, rather than six in 

the general program, therefore one expects more accuracy in the 

calculations done with the auxiliary program. The results of a 

set of symmetric calculations for the hypothetic medium is 

summarized in fig. (8-3), together with the lowest bulk wave 

velocity and the Rayleigh velocity for each direction. Fig.(8-4) 

shows the real and imaginary parts of the slowness components 

for the symmetric cases w(I) = - cp(II) as a function of the angle 

of rotation 9(n). For the hypothetic cubic medium used in the 

	

(1) 	(1)/ calculations, jAs3 (I)) ---„Js km) is a decreasing function of 
n 	 (2), 	(3) the angle (in the interval 0-  s y 45°) while js3  kI)) = „As3  kI) 

-js(2)(II)) = (3)(II)) is an increasing function of the angle. 3 	 3 
The range of existence is much larger than in the case discussed 

in fig. (8-2) and includes the open range 00< p < 45°  . 

The attenuation of the total displacement and stress depend on the 

relative size of the displacement components as well as the magnitude 

of the imaginary part of the matching slowness components. In 

fig.(8-5) the attenuation of the (normalized) displacement components 

is given as a function of distance from the interface for the 

configuration when cp(I) = cp(II) = 20°. 

It is interesting to note that although one does not expect to obtain 

a generalized Stoneley wave for the case of no rotation, since this 

represents an infinite medium without an interface, one does obtain 

a pseudo-Stoneley wave velocity with one non-attenuating slowness 

component which is lower than the lowest bulk wave velocity. The 

explanation for this is in the shape of the slowness surface for 

cubic media with negative factor, of anisotropy (fig. (8-6)). In 
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(8-6) the lowest bulk wave velocity is obtained where the outer-

most sheet of the slowness surface intersects the s
1 axis, (at (1)). 

The other root obtained is the intersection of the slowness surface 

with the line s=s1 (2), which has two real intersections and four 

imaginary ones. The energy flux of this wave is parallel to the 

interface. 

When the cubic medium has properties such that the outermost sheet 
2 	2 of the slowness surface is the circle s2 1 + s3 
= s

Ti there is a bulk 

wave with slowness sTi which complies with the conditions for a 

Rayleigh wave and generalized Stoneley wave in all directions. Both 

the Rayleigh and Stoneley waves would have at least one non-

attenuating component. An example of such a medium was calculated, 

fig. (8-7). The m

2

edium taken was KF (Potassium fluoride) with 

/ e11 = 6.58x10
10  N/m ' c12 = 1.49x 1010N/142 c44 = 1.28x101°  N/M2  

(anisotropy factor c = 2.53N/N2), and density p = 2.48gricm3. 

Since symmetric configurations seem to have a wider range of 

existence than non-symmetric configurations, additional calculations 

were done in symmetric configurations of another medium. 

New results were obtained for spruce, which is orthorhombic and 

very highly anisotropic. The choice was made because of the high 

anisotropy. 	The elastic stiffnesses taken for the spruce are: 

10 	1_2 	= 
	, 	 0 	/...2 	 /_2. c11=0.078x10 	N/m , 	c22 - 0.044x10 	N/m 	, 	c33  - 16.3x1010  N/m , 

/_ c12=0.020x1010N/N2, 	c13 = 0.043x10
10  N/m2  , 	c23  = 0.031x1010N/4 

1_ 	 /_ 0.004x1010  N/m2  . c44=0.077x10
10  N/m2  , 	c

55 
= 0.062x101002  , 	c66 = 

The density taken is p = 0.431 griem3. 

In fig (8-8) the following results are summarized: The lowest bulk 

wave velocity is given in the xi  direction when the medium principal 

axes are rotated with transformation (8-3), T(I) from 00  to 900  at 

intervals of 5°. The Rayleigh wave velocity is plotted, as well 

as the generalized Stoneley wave velocity where the medium in the 

second half-space is spruce as well, and the transformation matrix 

is given by: hij  = 1 
0 

( 0 

0 
-.1 
0 

0 
0 
-1 ) 

(8-1) 
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Here, again the auxiliary program was used in order to calculate 

the value of the simplified generalized Stoneley condition 

determinants, as well as condition (2-19). 

In the calculations done generalized Stoneley waves were found, 

when present, to exist between the Rayleigh wave velocity (shown 

to be unique by Barnett et.al [1973]) and the lowest bulk wave 

velocity, in a narrow band, closer to the bulk velocity than to 

the Rayleigh velocity. Since we are looking for attenuating waves 

when we search for generalized Stoneley waves, we want complex 

intersections of real lines s=si with the slowness surface. This 

type of intersection is possible only when the slowness si  is 

outside of all the slowness sheets of the slowness surface, or 

the generalized Stoneley wave velocity has to be lower than the 

lowest body wave velocity. On the other hand it is not self-

evident that generalized Stoneley wave velocities should be higher 

than generalized Rayleigh velocity. 

For cases explored the general behaviour of the determinant of the 

generalized Stoneley condition as a function of the wave velocity, 

is consistently very similar to that of the determinant of the 

generalized Rayleigh condition. 

In fig. (8-9) the logarithm of the function describing the Rayleigh 

condition for the hypothetical material rotated with transformation 

matrix( 8-3), (p = 5°. Fig (8-10) describes the behaviour of the 

logarithm of the generalized Stoneley condition determinant when 

a symmetric configuration was taken with cp(i) =-(1)(II) = 5°. 

The simplified Stoneley wave condition determinants calculated 

exhibit behaviour which is not always exactly the same as the 

generalized Stoneley wave condition (2-19). While the determinant 

for the non-trivial values of B(11)'  with B(N)=0, (fig. (8-11))  
exhibits exactly the same behaviour as that of the generalized 

Stoneley condition (8-10) for the cubic medium investigated, the 

determinant for non-trivial B(N)  with B(NID(fig. (8-12)) shows a 

monotonous behaviour. 

For the orthorhombic medium taken, spruce, both determinants 

minimize simultaneously, but the determinant associated with non-

zero B(N) is several orders of magnitude less than that for the 
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non-trivial B(N) (characteristically 7 orders of magnitude 
difference). 

Many more computations are needed for the complete understanding 

of the ranges of existence of generalized Stoneley waves and the 

dependence of the velocity on the configuration. For Lim & Musgrave 

configurations some degree of misorientation is necessary for the 

existence of generalized Stoneley waves. However, there is, in 

all cases tested, a maximal degree of misorientation beyond which 

no such waves exist. Symmetric configurations seem to have a 

larger range of existence than non-symmetric configurations. 

Additional calculations should be illuminating. 

Further investigation is still needed to find the dependence of the 

range of existence on the degree of anisotropy both in Johnson's 

and Lim & Musgrave's approaches. In both approaches, as the degree 

of anisotropy increases so does the range of existence. But there 

is a degree of anisotropy beyond which the range of existence 

diminishes. 



• 
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Jig. (8-2) Hypothetical medium, imaginary parts of the 
slowness components of interface waves 

p(I) = 20°. 
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Fig (8-3) - Hypothetical 
medium. Lowest body 
wave velocity, 
interface wave velocity 
with hi=(1,-1,-1) and 
Rayleigh wave velocity. 



Fig (8-4-a) - The absolute 
value of the imaginary part 
of the pure imaginary (or 
real) slowness component. 
Hypothetical material. 
cp(I) = - 

3 o 	s S 
S v,6 

0, 

Fig (8-4-b) - The 
absolute value of 

the.real and imaginary 
parts of the compleZ 
slowness components. 
Hypothetical media 
cp(I) = - cp(II). 
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Fig (8-5) - Displacement 
vector components as 
they attenuate with 
distance from the interface. 
Hypothetical material. 
Symmetric interface 
cp(I) = 	= 20°. 
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Fig ( 8-6 ) -11y-pothetical112 
medium, Slone 
:Surface, • 
illitersection 
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Fig. (8-7) - KF - Body wave velocities. 
L.B.V. = Rayleigh velocity = 
Symmetric interface velocity = 
7.184Kmisec. 
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Fig. (8-8) - Lowest bulk 
wave velocity, Ray1.4g4,,Z_,_ 
velocity and symmetric 
interface wave velocity-7 -- 
for spruce. 
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Fig. (8-9) - Hypothetico

f
edium. Rayleigh condition, D, 

as a function of velocity. Rotation - 5°. 
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Fig. (8-10) - Hypothetical medium. Symmetric interface 
wave condition, D, as a function of velocity. 
Rotation: 9(I) = -p(II) = 5°. 
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Fig. (8-11) - Hypothetical medium. Symmetric 
configuration p(i) = - p(II) = 20 . 
DtM the condition for non-trivial B" ", 

)3 \  1=0. 
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Fig; (8-12) - Hypothetical medium. Symmetric 
configuration: cp(I)=-p(II) = 20°. 	(y)  
Dfy the condition for non-trivial 13"". 
13\ 1= 0. 
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