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ABSTRACT
Interface Waves in Anisotropic Media
by

Nili Halperin

The propagation of waves at bi~crystalline interfaces is investigated
in this thesis.

' The media on both sides of the interface are of the same crystalline

material but differently oriented with respect to the interface axes.

The known welded boundary conditions for the propagation of generalized
Stoneley waves in simple elastic media, are simplified for certain
configurations with different transformations of principal crystalline
axes from one medium to the other. The géneral forms of the
displacement and stress vectors for possible interface waves are

shown for each of these configurations.. Under some transformations

it is proved that no generalized Stoneley waves can travel. Additional
information is obtained when the media involved are invariant under

the transformations discussed.

The equations for interface waves in piezoelectric media are developed
Two different electric boundary conditions are investigated - that of
welded half-spaces in the absence and in the presence of a grounded,
infinitesimally thin, perfectly conducting electrode at the interface.
The derived conditions are then simplified for different symmetric
configurations for any media, and in particular for media having one

of the symmetries exaemined within themselves.

Some numerical results are obtained for simple elastic configurations

and compared with known results.
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1. INTRODUCTION,

The investigation of interface waves in anisotrdpic media is

based on developments in elastic theory from the beginning of the
19th century up to today. Although there was an extensive interest
in elastic phenomena since the 17th century (e.g; Galileo Galilei,
Discorse e Dimonstrazioni matematiche, Leiden, (1638, R. Hooke, De
‘Potentia restitutiva, London, (1678, and many others) it was

limited to particular problems of vibrations of bars and plates

and stability of columns.

Some of the results of early mathematicians were general, like
Hooke's Law, but nowe of those scientists tried to obtain a set

of equations describing elastic phenomena in genefal. The first
attempt at a general theory of elasticity was made by Navier

[Paris, Mem, Acad. Sciences, t.7 (1827), read May 1821]. He obtained
equations of motion which, due to oversimplifications, were

dependent on one elastic constant only,

Cauchy [Excercices de Mathematique, 1827 & 1828] who introduced the
concepts of stress and strain tensors, arrived at the isotropic
equations as we now accept them (dependent on two elastic constants)
and at a later date he obtained equations for anisotropic media as
well.

Poisson [Paris, Mem, de 1'Acad. t.1 (1831)] showed that the solution
of the equations for isotropy lead to two body waves which are, as
Stokes pointed out [Phil.Soc.Trans. Vol.9 (1849)] longitudinal and

transverse.

It was only natural that once the differential equations were
established, solutions for various boundary value problems were
sought., Navier, after obtaining his equations, derived boundary

conditions that hold at a plane surface.

When the equations were corrected various boundary conditions were
investigated. Lord Rayleigh [1885] investigated the problem of a

wave propagating at a plane surface of an isotropic, homogeneous
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.half-space. He imposed the condition that the waves would leave the
surface stress free and their amplitudes decay exponentially with
increasing distance from the free surface. He found that such waves
exist (Rayleigh waves) and their velocity is less than that of the
transverse body wave velocity. These waves are longitudinal in

character and their displacement is elliptic.

Littie‘has been added to Lord Rayleigh's analysis of these surface
waves, but Love [1911] showed that transverse surface waves can
propagate on a free surface of an infinite 'superficial' layer which
has a plane interface with an infinite half-space. These waves are

known as ILove waves.

' Stoneley [1924] published a result of a study of elastic waves at
an interface between two igotropic half-gpaces. He showed that
undef certain restrictions on fhe_relationship between the elastic
constants and densities of the two media on the two sides of the
interface, there is a wave travelling with a velocity which is
between Rayleigh wave velocity and the transverse wave velocity,
with energy flow which is parallel to the interface. In later

studies this wave was referred to as Stoneley wave,

Because of the importance of these waves to geophysics Stoneley

waves were further investigated by Sezawa K. & Kanai K. [Bull. Earth

" Res. Inst. Tokyo U. 17, 1 (1939)] and Scholte J.G. [1947] who
investigated the range of existence of Stoneley waveé? and Owen [196k4]
searched many combinations of media for the existence of these waves

and found it possible in very few combinations of media,

The equations for anisotropic elastic media were obtained by Cauchy
at about the same time as the equations for isotropy. Cauchy's
assumption of central force law lead to totally symmetric elastic

stiffnesses (c, ). These relations, known as Cauchy

15k1° %ikj1T i3k
relations, reduce the number of independent elastic constants from
21 to 15. This last fact, and the method of approach he used were
disputed by his conteﬁporgries. Green introduced the strain energy
function [Cambridge Phil. Sot. Trans., vol.7 1839)] from which he
deduced the equations for an aeolotropic medium dependent on 21
elastic constants. ILord Kelvin [Quart. J. of Math., 5, (1855)]
supported Green's results and based his arguments on the first and

second laws of thermodynamics.



This was not generally accebted until it was proved experimentally

by Voigt [Ann. Phys. Chem (Wiedemann) Bde. 31 (1887) & 34 & 35 (1888),
38 (1889)]. By measuring the torsion and flexure of prisms of several
crystals he showed that Cauchy relations do not hold in many cases.

Cauchy [Excercices de Mathematique, (1830)] and Green [Cambridge Phil.
Soc. Trans. 7, (1839)] discussed the propagation of plane waves in
aeolotropic media and obtalned the equations for the wave velocity

in terms of the direction of wave front, and showed that the wave

front consists of a three sheeted closed surface.

Christoffel [Ann. di Mat. 8, 193 (1877)] and later Lord Kelvin [190L]
“introduced convenient notations and summed up the equations governing
the propagation of elastic waves in anisotropic media but obtained no
solutions. Indeed, the computational complexity of these equations
was for many years an obstacle in the Wéy of obtaining any additional
results, With the advancement of technblogy, the introduction of
computers and the apparent need for more results, mathematicians
involved themselves with problems of wave propagation in aeolotropic

medila,

Synge [1957] and Musgrave [1954a] discussed the relation between
slowness surface, veloclty surface and wave surface. Later analytic
and computational solutions were given for the different symmetries,
e.g. Hexagonal (Musgrave [1954b]), cubic (Miller & Musgrave [1956])
and trigonal (Farnell [1961])%

Once solutions were given for infinite media simple boundary value
problems'were posed, such that would lead to generalized Rayleigh,
Love and Stoneley waves in anisotropy. Synge [1956] discussed
surface waves in anisotropic media and. conjectured that Rayleigh.
waves may travel only in discrete directions in anisotropic media.
This was disproved by Stroh [1962], and later, independently, by
Currie [1974k] (see discussion at the end of chapter 2). Stoneley
[1955] & [1963] and Buchwald [1961] discussed the possibility of
propagation of Rayleigh waves in different directions of cubic, -
,hexagonal and orthorhombic media. ILim & Farnell [1968] and Lin [196Sj

calculated Rayleigh wave velocities in various materials and directions,

* Buchwald [1959] and Duff [1960] employed Fourier integrals for
the study of wave propagation in anisotropic media,
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Stroh [1962] showed that when the Iagrangian,y, of a uniformly

- moving straight dislocation vanishes, the velocity of the
dislocation is the same as the Rayleigh velocity. His approach
was further developed by Barnett et. al [1973] and Barnett &

Lothe [1974k], to give an integral method of calculating the,
‘Rayleigh velocity and to prove that there exists only one Rayleigh
velocity in a range of velocities which can lead to an attenuating

wave.

Love waves in anisotropic media were investigated by Stroh [1962],who
sketched the conditions for ther existence, and Stoneley [1955] &
[1963] who gave the conditions for the existence of Love type waves
in cubic and orthorhombic media and showed that non-dispersive Love

waves can propagate only in discrete directions.

Stroh [1962] also formulated the conditions for the existence of
Stoneley waves in anisotropic media. No solutions were given by

Stroh to any of the conditions of existence of Rayleigh, Love or
Stoneley waves. Chadwick & Currie [1974] simplified the conditions

for existence of generalized Stoneley waves and showed that if there

is a direction of existence there is a neighbourhood of that direction
where generalized Stoneley waves exlst.

Johnson [1970] showed the possibility of existence of generalized
Stoneley waves at interfaces between media of similar crystallographic
structure but different density and elastic stiffnesses, and examined
the range of existence in configurations where the crystallographic
axes in the two half-spaces had the same orientation with respect to
the interface axes. ILim & Musgrave [1970a] & [1970b] have investigated
the propagation of generalized Stoneley waves at interfaces between
two cubié media having the same elastic constants and density but
different orientation of the crystal axes with respect of the interface

axes.

In this summary a general formulation of the problem of plane interface
waves at a bicrystalline interface is given in chapter 2. In chapter 3
we investigate generalized Stoneley waves at interfaces where the

crystalline media may be of any symmetry but are of the same material
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and only different in orientation with respect of the interface.
In particular the relationship between the different physical
7 characteristics of the wave in the two half-spaces is obtained
when the transformation of axes from one half-space to another is
that of 2-fold rotation and/or inversion with respect to one of tlemain
interface axes. Some of these conditions were assumed by Lim &

Musgravé [1970b] and here they are derived.

In chapter 4 the generalized Stoneley conditions are simplified in
cases where the crystalline media are of a particular symmetry. For
each of the conditions obtained the characteristics of the possible

waves are investigated.

Bleustein [1968] showed the existence of a new fype of transverse
surface waves in piezoelectric materials., These waves depend on the
piezoelectric character of the media and cannot be found in simple
elastic matérials. These waves are different from waves investigated
~in piegoelectric media, as modifications pf known surface waves
(Farnell [1970] and Campbeil & Jones [1968])-by direct approach or
by us of 'stiffened' elastic constants. These constants are
modifications of the simple elastic constants which account for the

piezoelectricity without calculating the electric effect.

Using a technique described by Chadwick & Currie [1974] an analysis
' of waves at interfaces between two piezoelectric media is made in
chapter5. Chapter 6 deals with cases where the piezoelectric
crystalline medis involved are different only in orientation with
respect of the interface axes, with emphasis on medis of particular

symmetries,

The numerical program used in the calculations is described in
chapter 7 and the special difficulties arising in the process are
explained. Numerical results are given in chapter 8 for cubic and

orthorhombic symmetries,

In addition to the referred material, the historical background
was obtained from Love [1934], Rayleigh [1945], Sokolnikoff [1956]
and Musgrave [1970]. -
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2, THE BASIS "EQUATIONS FOR GENERALIZED . STONELEY WAVES.

In order to arrive at the equations for generalized Stoneley waves, we
shall first consider the propagation of a plane wave in an anisotropic
medium with stresses which obey a generalized Hooke's Law, with cijkl’
the elastic stiffnesses. The displacement of such a plane wave can be
described by:

w = Ap exp[iw(ijj—t)] ' - (2-1)
sj being the slowness components in the direction Xj’ A the amplitude
and Py the component of the displacement vector in the k directiom,

" (k,3=1,2,3), W the frequency and t the time. Summation convention is

used whenever repeated indices are in lower case letters.

The linear strains are defined as:
” _ 1 : -
et = (W gy o) (2-2)

and the stress-strain relation described by a generalized Hooke's Law

is:
933 T Ci3kstxt (2-3)

cijkﬂ is the elastic stiffnesses tensor obeying the following

restrictions:
CijkL T %134k T Cyitk T Craig (2-k-a)
___and ] U
. &b, s.t. ||a.{|>0 & ||b.||>0 (2=4~b)
©1 P20 070 Tor all 8y & by 8- lllll‘f,rﬁlwi,‘ S
The equation of motion in the absence of body forces is given by:
U= O,. . 2-

(» represents differemtiation with respect to time, p the demsity).

Upon substitution of (2-3) in (2-5) and using the definition of the
linear strains (2-2) and the symmetry of the elastic stiffnesses

(2-L-2a) one arrives at the equation:
- ae . . . 2 _6
13k, 25 T "™ - (2-6)

Substitution of the expression for the plane wave (2-1) into the
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equation of motion (2-6) yields:
(508454 = POyp)Py = O S (2-7)
For non-trivial values of Py one has the iestriction:
Hcijkﬂsjsﬂ - péik“ =0 (2-8)
which is the equation for the Slowness Surface (Musgrave [1970] and

others), a three sheeted closed centrosymmetric surface of sixth

degree,

One should note that c, 15kL

crystal symmetry, and in general, use of the transformation law for

are usually quoted with respect to axes of

fourth order tensors is necessary to obtain the stiffness appropriate

to arbitrarily chosen reference axes.

Consider now an interface problem, in which space is divided into two
by the plane x5=0. We denote the medium which occupies x3>O by I,

and x3< O by II. (All quantities referred to in medium I or II, will
be denoted by I or II, respectively).

We shall choose the direction X, as the wave normal, i.e. X = 0 is
the plane of the wave, so that X, = 0 will be typical of all planes

X, = const., and will be termed the sagittal plane.
Plane waves in medium I will be of the form: o
u, (I)= A(I) p, (I) expliwls)(I)x; + s.(I)x,- t1} %20 (2—9ja)

and in medium ITI: ‘
uk(IIj = A(II) pk(II) exp{iw[s (II)x S(II)xs- t1) %<0 (2-9-b)

We seek waves such that the velocity of propagation along the interface

is common to the two half-spaces, therefore s,, which describes the

l’
slowness parallel to the interface, must be the same in both media:

sl(I) = sl(II) =5 (2-10)
where Si is real. Complex S, will lead to eithergamplifigation*nr ,,,,,,, _
attenuation in the direction of propagatlon.’ which is not possible in

In each medium, (2- -8) ‘mist hold (for the medium), for non-trivial

p (), n=I,II:

Hcijkz(n)sjln)sg(n)‘- p{n)§ikn =0 (2-11)
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Where cijkﬂ(n) is referred to the common set of interface coordinates.

" In our configuration, for each chosen value of s, one obtains a

sextic equation (with real coefficients) in S3<n)’ (n=1,1I).

Equation (2-7) becomes: ) (2-12-a)

{cf'1k1<n)si + [%lks(n)m%k]? 5,54 (n)+c£3k3 (n)sg (n)-p(n.)%k}.-pk(nko

For non-trivial solution p, (n), one obtain®s the determinantal
k" -

equation:

chlkl(r.l)é?[czlks(n)%%kl(n)]Sls:,)(n)+c£3k5 (n)sg(n)-p(n)ézk\\ =0

Equatlon (2-12-b) gives two sextic equations Wlth real coefflclents,
hence for each medium there are six solutions S (I) or s, (II), which
can all be real or may 1nclude pairs of complex congugates for each

medium,

ReQuiring that the plane wave forms an interface wave, localized to

the interface, means that the displacement should attenuate with
increasing distance from the plane Xz = 0 . Such attenuation can be
obtained, in this formulation, by using in medium I the roots with
positive imaginary part, and in medium II roots with negative imaginary
part, so that when |x3|+ » the displacement tendstto zero in both
media. Hence, except at the interface, where we have not posed our
requirements yet, the following compound wave, involving acceptable

sg(n), will satisfy the requirements for an interface wave:

3
) =A™ @™ () explintsyx, + o x4 (2-15)
where n=I,I1 ', J{SéN)(I)}> 0, J{SéN)(II)}< 0.

By substituting these results in (2-2) and (2-3), one obtains the

stress vectors on a plane parallel to the interface:

3
0, = W E [c () s @1a™ @) ¥ (@) -
|

3k Nl Czk3y1
(n)x; - t1) (2-14)

(n)sl + e

3kj3

()

exp{lw[s X + 8z
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Setting:.

) - Lo ()5 + ey @) 5§ @)1 2V (1) (2-15)

3k13

we may write the stress vector on a plane parallel to the interface:
3
ogp ()= 02 AM () ol (m) expliofs,xprsi (m)x-t])  (2-16)
3k Nel 11753
The welded interface requirements of a generalized Stoneley wave are
that there is continuity of displacement and of stress across the

interface, which means:

k=1,2,3 (2-17-a)

gk(I ‘XS S = w, (II)

¥z=0

OSK(I)\ =0 k(II)l k = 1,2,3 (2-17-b)

x3=0 ' X3=O

for all X and t.
(2-17-a) yields, upon substitution of (2-13):

ZCA (1) p(N)(I) - A g p(N>(II] =0 (2-18-2)
N_.

and (2-17-b) becomes, upon substituting of (2-16):

2@ o™ (@ - 4™ () o (zr] = o (2-18-D)

N=1
One should remember that both p( )(n) and q( )(n) are dependent upon

s, and s( )(n)

Equations (2-18-a) and (2-18-b) form a set of six linear homogeneous
equations for A(N)(I) and A(N)(II) and for non-trivial solutions of

A0

n) we have the requirement of the determinant of coefficients:

(N) ()
e | 0 B 9
9 (1) Q) (IT)

which is the equation for the slowness component, s,, for welded

l’
interface.

In the process of obtaining (2-19) we have not guaranteed that the

body wave solutions are not included. Indeed, it is quite possible
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to obtain from (2-19) s, such that not all séN)(n) will be complex.
Such cases are either body waves which move parallel to the interface
and comply with the restrictions of continuify (2-17), or 'leaky'
waves, whichhave non-attenuvating components in one medium or both,

and carry energy away from the interface.

In order to obtain generalized Stoneley waves one has to further impose

the restriction J{SéN)(n)} # Of*

The 6x6 determinant (2-19) has in general a complex value and theréfore
one would expect that the vanishing of both the real and imaginary

1 Chadwick & Currie [1974]
have shown that the generalized Stoneley condition (2-19) can be

reduced, for all cases of true Stoneley waves, i.e. J{séN)(n)} £0

parts simultaneously is needed to obtain s

(which is the region of interest) into a 3x3 determinant which can
be made to be pure imaginary. The reduction 1s obtalined in the
following way: Equation (2-18-a) is multiplied by qéMj(II) and
(2-18-b) by pkM (II) , then in each equation summation over k is

carried out and the two equations obtained are added to give:

3
% (1™ (10) 50 (1) « 2 (1) oV (1™ (1) - 1o (1) o (1)

b b 4
N=l k k k

+ péMj(II) (N)(II)]A(N)(II)} =0

e (2-20)

Stroh [1958] and Currie [1974] have shown that the matrix:

(M) ()

M) = " (n) 2, (0) | (2-21)

is skew-Hermitian for the cases séN)(n) - séM:(n) £0 (2-22)

Since for attenuating interface waves the three sén)(n) taken in one
medium have non-zero imaginary part, of the same sign, condition

(2-22) prevails and the matrix multiplying A(N)(II) vanishes.

Hence, one can rewrite (2-20) as:

X | |
z #n a™ ) - o ' (2-25)
N=1 ' .

where PND) = o0 (1) pV (1) + o0V (D) V(@) (2-28)

In the same way, by multiplying (2-18-a) by qéM:(I) and (2-18-b) by

*An attenuating interface wave is a%ﬁs possible if one or two of the
3

slowness com.ﬁﬁents aré real, say s s if the corresponding

amplitudes A vanish as well.
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péM:(I) and using (2-21) for medium I, one arrives at:
2 ()
¥ FMN(II) AVV(II) =0 ‘ (2-25)
N-1

where FMN(II) qk( j(I) p II) + pk( 5(1) (N)(II) (2-26)
Comparing (2-24) and (2-26) one obtains. the following relationship:

P = FNI) | (2-27)

Taking the complex conjugate of (2-25) and substituting (2-27) one
can see that for non-trivial solution of both A(N>(I) and A:N:(II)

one obtains the same condition:
@) = o (2-28)

(2-28) can be taken as a simplified generalized Stoneley condition.
One should remember that in the process.of'simplifying the Stoneley
condition the restriction (2-22) was introduced. However, when we
deal with 'leaky' waves (2-22) may not hold and for those cases

one has to return to the original condition (2-19).

4
In their paper [1974] q@dw1ck & Currie show that p(N>(I) and péN>(II)

can be related as:

3
ﬁN)<I) ]nzl i (M)(II) - (2-29)

(31nce péN)(I) and péN)(II) form, or may be made to form, two bases

in C ), where T is a non-singular matrix and by appropriate choice

()

N (n) may be made to have real determinant.

of p

If we substitute (2-29) into (2-§8-a), the continuity of displacement

equation, one obtains:

=1
(1)

since by (II) is a non-singular matrix, only the trivial solution is
possible for (2-30): T

3 3 ‘
5 plng)(NflAm)(I) i A(M)(II)> =0 | (2-30)

200 11y 2 : A gy P (2-31)
N=1

One can see that the amplitudes in the two media are related by the
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transposed transformation matrix which relates the components of the

displacement vectors in the two half-spaces.

Upon substitution of (2-31) into the continuity of stress, (2-18-b),

one obtains:

3 3
) ( ﬁ )(I) -3 TNM (M)(II)> A(N)(I) =0 (2-32)
N=1 M=1 , :

For non~trivial solution of A(N)(I):

HQéN)(I) - ; T qéM) (1) = 0 (2-33)
M=1

(2-33) can be looked upon as another alternative version of the

generalized Stoneley condition, but it involves the complication

of finding the transformation matrix TNM. In this form one éan

easily see in the Stoneley condition the generalization of the

Rayleigh condition, with qéM)(II) = 0.

Using (2-33) as a Stoneley condition has the advantage that 'leaky’

waves are not excluded, because of the skew-Hermitian character of

g (or condition (2-22)) has not been taken into consideration.

The matrix, the determinant of which vanishes in (2-33) is related
easily ﬂo‘FMN(I) (uging (2-24) and the skew-Hermitian properties of
(2-21)):

F%N(I) = péMj I1) ( (N) 2 TNL L) 11)) (2-3k)
—T—T"”""

since pE is a non—31ngular matrix, one can see that F

and {q Z; TNL L)(II)} are matrices of the same rank.

In their paper [1974] Chadwick and Currie have shown that TMKFKN(I)

is a skew-Hermitian matrix, in order to show that the generalized
Stonele} condition can be reduced to a single real (or pure imaginary)
conditi$n. The reason for the proof is a suggestion made by Synge
[1956] that Rayleigh waves would appear in discrete directions

because the determinantal:equation is equivalent to two separate

conditions, one each for the real and pure imaginary parts.
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He showed that since p.

Stroh [1962] disproved Synge's conjecture by proving that the

Rayleigh determinantal equation can be made real or pure imaginary.

(1) 4 o

X i contain an arbitrary complex

- normalizing factor, by choosing the argument of this factor

suitably the dot products which are involved in the Rayleigh
determinantal equation may be made real or pure imaginary and
therefore the Rayleigh condition is equivalent to a real equation

in the wave slowness.
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3. SOME SYMMETRIC CASES,

Of special interest in the study of generalized Stoneley waves is the
specification of the waves which may be freely propagated at the
interface between two crystalline half-spaces of the same material as

the orientation of the half spaces is altered.

In this chapter we shall investigate gnalytically some special cases
where one can arvive at simple Stoneley conditions, the meaning of
which will be studied. '

We shall assume that the material throughout space has elastic

stiffnesses with respect to the crystallographic axes c' and density.

jkA
p. Each half-space has its crystallographic axes orlented in a known
direction so that the elastic stiffnesses, with respect to the interface
axes x4 are cijkﬁ(I) for medium I and cijkz(II)ﬁfor medium II. The
crystallographic coordinates for medium I, in the interface coordinate
system, xj(I)5 are related to the coordinates of medium IT, referred

to the same system, xj(II) by
x, (II) = hinj(I) , (3-1)

Therefore, the elastic stiffnesses in the two half-spaces are related

by

(II) = (3-2)

Cijks 1 Jshkt u rstu( )
We shall now consider the equations obtalned for the general interface

problem, (2-12-a) becomes, for medium I:
(3-3-a)

e3a (Vo703 1365 (¥ (Do (Do (Dag (-0, oy (1) = 0

and.for medium II:

2
{hirhkt[hlshlusl+(hlsh3u by By )85 (T1)+hy by II)]crstu(I) -
péik} pk(II) =0 (3-3-D)
The sextic equation (2-12-b) becomes for medium I: (S-M-a)

lley 1y (Dsotley s (Te, Skl(J:) 5185 (T¥e, 0 (T)sy (T)=pb, || =
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and for medium II:

(3-k-b)
(1) -

2

thrhkt ls lu l

+(h )8, 85 (IT)+h, II)]e

lsh5u+h5shlu 5 5( rstu

P8, [l = 0

For a given material, the slowness equation referred to a given set

of axes is unique. Although the set of axes to which the slowness
equation is referred to in both haif-spaces is the same, the
crystallographic axes are differently oriented. It is this difference
which accounts for the possibility of a different form of the slowness

equation in each half space.

In the cases we shall consider h,, was chosep to have the form:

ij
h, 0 0
hys={ 0 hy O h =%1 (3-5)
0 0 hy '

This type of a matrix allows for identity (where all hi=l), complete
inversion ( all h, = -1) and reflection and two-fold rotation about

each of the interface axes.

The components of the symmetric determinants in (3-4) are for these

cases:

S12(1) = epys] + g (D) - o+ 2e15855 (1) ;

S12(T) = cg8y + pei(1) + (clu * °56)3135(I) ) L
,Eéﬁ(I) = 15 i 3533(I) *+ (c )s SB(I) - ,§,$3‘ﬁ50 -
S52(1) = 66S + a5(D) - o+ 2°u6 55(D) g

SZB(I) = 056sl + CHSSS(I) + (c56 + ch5)sls5(l) g

SSS(I) = c55si Co 5(I) -p+ 2c55sls3(I) )

The elastic constants of medium I are, given in contracted form, Com’
(see e.g. Hearmon [1961]). and are referred to the interface axes.

For the second medium the components of the symmetric determinant
are:

2

S s

II) = ¢ (II) - p+2h

ll( 11

55 Sz 1950155785 (1T) }3
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SlZ(II)

313(11)-

il

hlhz[cl6s§ + ch5s§(ll)] + h2h3(clLL + c56)sls3(11)g

2 2 A
hth[clBSl + CSBSS(II)] + (cl3 + 055)3133(11) )(3-6-b)

2 ' 2
822(11) = cppsy * chhSB(II) -p ¥ 2h1h30h6slSS(II)

2 2

823(11) = h2h3[056sl + chSSS(II)] + hlh2(056 + cus)slss(ll))
2 2

SBB(II) = Cg557 + CynSy

et e

N

(II) - p + 2h (11)

175555153

where by, h, & h,

form the diagonal of the transformation matrix hij
as in (3-5). The elastic stiffnesses are the same as the ones for

the first medium,.

Comparing the coefficients of the different powers of sS(I) and sS(II)
in the two sextic equations (3-4-a) and (3-k-b), with hij given by

(3-5), one finds that the coefficients of the even powers of s, are

the same in both sextic equations, while the coefficents of odz
powers of SS(I) are multiplied by a factor hih3 to give the

" coefficients of odd powers of sS(II). Since this factor is either
+1 or -1, one finds that the roots of the two sextic equations are

related as:

séM)(II)l= hlhsséM)(I) M= 1,.;.,6 (3-7-a)

for general sextic equations. If the sextic equations become
bi~cubic, the equations for both media are the same, regardless

. of the value of hlhB’ and hence:

M M | ‘ '
'Sé )(II) = sé )(I) : M=1,...,6 (3-7-b)
for bi-cubic sextic equations.

Because of the nature of the waves that we are seeking tle displacemert
should decrease with increasing distance from the interface and hence

in medium I the imaginary part of s, should be positive and in medium

3
II, negative, We therefore obtain the following relationship:
séN)(II) = hlhBP{séN)(I)] - iJKséN)(I)}, N=1,2,3 (3-7~c)

with J{sém(ly] > o*

where A(x} is the real part and Hx} is the imaginary part of x.

A sextic equation which is bi-cubic has for its zeros the positive

and negative square roots of the zerog of the cubic equation,

* In the appendix to their paper Eshelby et.al. [1953] showed that
for sufficiently large 8¢ such complex 8. exist.

3
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Therefore, in general, for such a medium the relation between
the true roots in half-space I to those in half-space II may be
given by: - _ ‘

sém(n) - - SZEN>(I) , N-1,2,3, J{sém(l)}z 0 (3-7-4)

regardless of the values of hi'

When J[séN)(I)} # 0 one may renumber the roots so that the

numbering is consistent with (3-7-c). When hlhB_ -1, (3-7-d) and

(&Jw)am1meewm.Ihmww,ﬂwnJ&(>GM._OMth%&l

. although (3-7-c) may hold, one has to check also the possibility
that (3-7-d) holds. If this is the case, it is impossible to use

(3-7-c) and one has to treat gpecifically this case.

. In the following discussion we assume that (3-7-c) holds. Since
our main interest is in attenuating waves, this assumption is not
limiting. At the end of this chapter a short discussion is given

about the excluded case,

Substituting (3-7-c) into (3-6-b) one obtains the relationship

between the components S )

Ky, 10 the two half spaces:

stV (1) = nn Lot (1) -inyn sl (1)1] (3-8)

No summation is meant by repeated upper case suffixes .

(1)

The ratios of the components p, n) are given by:

(3-9)

2 @)™ @) () = 155 @s @) - 5 M @)sE @] ¢

(N)(n)S(N)(n) _ S(N)(n)S(N)( NHE (N)(n)S(N)( ) - (N)(n)S(N)(n)
()

KL
rank 2 matrix. In the particular cases where S )(n) is of rank 1,

(where XK and L are any two different rows), provided S (n) is a

this means that two sé )(n) are equal and therefore one should be

. . ()
careful in selecting Py
matrix, One such pogsibility:

(i) ) 2{fin ) (1B () = 0 800 @ ¢ 5y G-20)

(n) in such a way that it is a regular

[N+2] K[N+2] K[N+1]
where [N+1] =(N mod 3)+1 , K is chosen in such a way as to have

non-zerc vectors pﬁN (n).
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In either case the following relationship is obtained by treating

separately hih, = -1 and hlh5—+l when (3-8) holds, for the displacement
vectors:
M (11) - otpd (1)) - s (1)) (3-11)
Py X hKh3 p - ih,hAD -
From (3-11) one obtains the connection between the stress vectors:
(M) ¢ (N) . ()
g (I1) = hKh [Rlag (1)} - ih h Mg (1)}] (3-12)
where x( ) in (3-11) and (3-12) are arbitrary non-zero constants.

Once chosen we have 1o be consistent.

‘When hohy = - 1 (hy = -h,=h, h = #1) (3-11) and (3-12) may be greatly
simplified:
pM () = XM p{™ (1) (5-13)
oM (11) = xMina{™ (1) (3-14)

Using the following algebraic identity:
ab - cd = z(a + c/@)(b - ad) + 3(a - c/a)(b+ @d) (3-15)

. we can rewrite the conditions for generalized Stoneley waves (2-18-a)
and (2-18-b)s

3 A » (3-16-3)
3 El (N)(I) + péN)(II)/X(N)][A(N)(I) - ( 4l (II +
= 5 . .
+N2 (N)(I) p(N) II)/X(N)][A(N)(I)+X(N)A(N)(II)]} =0
=1 .

k = 1,2,3, Similar equations are obtained for the stress. compon®Rents:

305 1™ (1) + qlﬁ /™M™ @ @y (a6

+ Z [q(N)(I) q(N)( )/X(N)][A(N)(I)+X(N)A(N)(II)]} =0
N=1

Substituting (3-13) and (3-14) into (3-16) one obtains:

5 ,
£ 2-m )™ (0 1a™ @) - x®a™ ()7 + (3-17-2)
N_
+ z 2(1+hh )p( )(I)[A(N)(I) + X(N)A(N)(II)} =
=1
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and
3
= 20me)e @ - XM (5-17-b)

3
- NZlé(l-th)qéN)(I)[A(N)(I) o xIA® 1y 2o

The coefficients 3(1-hhy) and 3(1+hh,) receive the values of elther
0 or 1, when the one is O the other 1s 1. Hence we have two

separate sets of three equations each, one for A<N)(I) - X(N)A(N)(II)
and the other for A<N)(I) + X(N)A<N)(II). At least one of these

(W 1y -

sets has to have a non-trivial solﬁtion, otherwise A

IT) = 0, and there is no wave.

The equations are therefore given as:

()
p, (1)
'réN)(I) "(A(N)(I) + X(N) A<N)(II) > =0 (3-18-a)

9
and
qiN)(I) |
téN)(I) . (A(N)(I) - X(N)A(N)(Il)) =0  (3-18-b)
‘ péN)(I)
where réN)(I) = ( péN)(I) ifh, = h ' (3-18-¢)
(M@  my=-n
téN)(I) - g qéN)(I) ifh, =h (3-18-d)
(oM (1) b, = - b
Ihis leads to three possible conditions:
Either: piN)(I) Q£N)(I) .
réN)(I) =0 and téN)(I) 40 (3-19-a)
V(1) b ()
or: piN)(I) Q£N)(I)
réN)(I) 40 and téN)(I) =0 (3-19-b)
o\ (1) 2 (1)
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or both determinants vanish simultaneously:

) o™ (@

o

ﬁr<N)(I) -0 end téN)(I) =0 (3-19-c)
”q(N)( | péN)(I)

If we denote:
BEN)= A 1y 0,0y (3-20-3)
32 a0 (1) o W4 (17 (3-20-b)
ﬂmn.ﬂNhI)=%L§N)+Iim] (3-21-a)
A 11y - %[B+N)-BEN)}/X(N) (3-21-b)

B<N) and BiN) are the null vectors of the matrices in (3-18).

We define the total displacement components at the interface as:
3 :

a) = 2o (m)a®™ ()  (3-22-a)

(
Py noy K

and the total stress vector components on the interface as:

5
o, () = = 3™ @a () (3-22-b)
N_

(one should remember that the actual stress vector o,, is given by'

3k
Oz = 10Qy)
The total displacement and stress vectors at the interface in terms

of medium II are given by:
3

PK(II)‘= _thNfl péN)(I) %[B+N)-BEN)] (3-23-a)
Q (11) = thNz qKN) [B(N) BEN)] | (3-23-b)
Using (3-18) we can rewrite (3-22-a2) and (3-23-a):
LS () g0
P, (n) = ENZl p; (I ) 2 (3-2k-a)
z
Pa(n) = %ﬁz pé )(I) E ) if ha—hl. (3-24-b)
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3

Pz(n) =1ix éN)(I)B£N> if b, = h, (3-24-c)
=1
3

Bye) =32 o (5-24-a)

and the total stress vector components at the interface may be

rewritten as:

=37 | (5-25-2)
Q, (n) = % %lqz(N)(DBfN) it 1, = b (3-25-b)
o, (n) = % %lq-z(N) @™ e, = n, (5-25-¢)
o (n) = 1N§lq§N) (s (5-25-a)

If each of the determinants in (3-19) vanishes separately, then two

‘separate waves, propagating at different velocities s, will occur:

_ 1
If (3-19-a) holds, BEN)= 0, and BEN) = ZA(N)(I), therefore:

Pl(n) = QS(n) = 0 and Pz(n) vanishes if hy=h . If h2=h3, Qz(n) = 0.

‘Similarly, when (3-19-b) holds, BEN)= 0 and BEN)= ZA(N)(I), which
leads to: Ql(n)=P5 (n):R2 (n)=0 (Rz (n)=Q2 (n) when b hy=+1, and R, (n)=
P,(n) for hlh2=-l).
From (3-24) and (3-25) and the discussion one can see that the two
wave displacements associated with (3-19-a) and (3-19-b) are normal
one to the other. One total displacemeht vector has two non-zero
components while the otheﬁ?ghly one non-zero component, in the
directon in which the first vector has a zero component.

The stress vector matching the total displacement véctor having two
non-zero components is in the direction of the total displacement
vector haVing only one non-zero compoﬁent. The second stress vector
has two non-zero components and is in the same plane with the first

total dispiacement vector.

In the discussion we have not guaranteed that the velocity of these
~waveg would be such that there would be attenuation of displacement
and stress with increasing distance from the interface, indeed one

or both of the waves may be non-attenuating.

If (3-19-c) holds this means that neither BEN) nor BEN) are the zero

4
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vectors, and theréfore the total displacement and stress vectors are
given by (3-24) and (3-25) where BEN> and BiN) are the null vectors
of the two matrices, in (3-18). This means that the matrices in (3-18)
are at most of rank 2 each, which leads to the conclusion that for
this case the original matrix of the generalized Stoneley condition

is at most of rank 4, Therefore, there exist two 6-dimensional null
vectors (A(N)(I),A(N)(II)) of the generalized Stoneley condition which
are linearly independent. For a given slowness 81 there is only one

acceptable set of solutions s( )(n), which lead to one get of

3
displacement components. The total displacement will therefore be
a linear combination of the two solutiong with each component
attenuating at the same rate with increasing distance from the

interface.

When hihy = +1 (h h, =h, h=+% 1) and (3-8-c) holds, (3-11) and

(3-12) may be Simplified

pé)(II)= thpK " (1) . (3-26-a)
oM (11) = x Wi o™ (1) ' (3-26-b)

The fact that the displacement and stress vectors in the second
medium are related to the complex conjugate displacement and stress
vectors does not enable us to separate, in general, the generalized
Stoneley cohdition into two simple decoupled conditions as in the

cage hth = - 1,

The generalized Stoneley condition (2-18-a) and (2-18-b) may be
simplified to1

N 1\T)(I) Ay J(Nj(I) X(N)A,(N)(Il)h (3-27-a)
Nz 1o (1) 2l 1) - - q§“5(z) YW@y L0 (3o27b)

(no summation on J)

or: Z{/?{p N)(I)}B(N) + 1J{p(N)(I)}B(N)} =0, j=1,3 (3-27~c)
N=1

z{/?{q(m I)}B(m + 1J{q§N)(I)}B( M , J=1,3 (3-27-d)
N=1 ¥



g {T(N)B(N> +
=1 1 -

.where:

- i (1)

(N)

1 2
()
2

A

. /?[qZ(N)U)}

(

1

(

2
r(N>= i#{p(N)(I)}‘ ,1t§N) &Tp )(I)
ry = iJ{q(N)(I)} é

, + 002 g (1))

)
, &

lm““') (1)}

This can be put into a matrix form:

{pgm)(l)}
L0

(@™ ()

If the determinant of the matrix of coeff1c1ents is non-zero B
= 0, which means that A(N)(I) = A(N)(II) = 0,

(N)

wip™ @\ [
e

w1/ \ 5V

i=1,2

- e M (1))
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(3-27-e)

when h2 =h

e

when h2=-h

R e

(3-28-2)

1
O

jo=1,3% ; i=1,2
w) _

Hence in order %0

have an interface wave complying with welded conditions at the interface

the determinant of the coefficients must vanish:

#lo{™ (1))
e

1 N

a{™ (1)

For the case hl = h2

does not expect to have an attenuating interface wave.

iJ{p§N) ()}
itﬁN) -0 (3-28-b)
190 (1))
J j=1,3 ; i=1,2
= h, = h_(ideptity or complete inversioﬁ) one

One can however,

have body waves travelling parallei to the interface, obeying the

' welded conditions at the interface.

in the following way:

This expectgtion can be proven

If one adds to (3-27-a) and (3-27-b) its complex conjugate (and h, = h)

one obtains another form of the generalized Stoneley condition:

z mp(N)(I)[A( )1 -

N:l

2 eta™ (1)1
N=1 J

N)(I) - X

xWaNM(11y13 - 0

W, 7y -0

3=1,2,5  (3-29-a)

j=1,2,3 (3-29-b)

Using the definition of qj, (2-15) and (3-29-a) one can rewrite (3-29-b)
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as:

5 SKN

Since Hc

T e{s(“%) p“‘)(z) ™ o x @ ngy Lo (329-0)

53 |l # O one obtains a simplified version of (3-29-b):

Z/‘?{s( )(1) pJ?N)(I) AW - x™ ™)y 20 (z-29-a)
N=1
(N)(I) are determined up to a multiplying constant, it is

P0851ble to find p(N)(I) (J =1 or2 or 3) such that
péN)(I)[A(N)(I) - X(N)A(N)(II)]

Since p

is pure imaginary of the same sign (say, non-negative) for all N,

For, suppose p( )[A(M)( I) - (M) (M)(II) =)+ 1a2, where & % 0.

We can multiply p§ )(I) (holdlng M constant and for all values of j)
by £ ( a, + ial), where the sign is determined so that all the

resulting products would be of the same sign.

For this chosen J, (3-29-d) can be rewritten as:

5 =a£s(“)<z>}{p< 0 @ - x"a Sy 2o (3-30)
N=1

This is possible only if all J{séN)(I)} = 0, because otherwise we

would require the sum of three non-negative numbers to vanish,

When h., = h, = h, and h2

- h there are three possibilities of

1 3 '
waves: BEN) io BEN)¢ o (3-31-a)
BEN) lo B£N)= 5 ‘ (3-31-b)
BEN) _o | BiN)aé 0 (3-31-c)

The total displacement at the interface is obtained fram (3-26) and

(3-27) for all cases h.lh5 +1:
Pl(n) =3z /‘?{p(N)(I)}B(N) + 1J{p(N)(I)}B( ) (s-sz-a)
1\1—1

I

P,(n) =3 % /?{p(N)(I)}B(N) + 1J{p(N)(I)]BEN) if hy=h  (3-32-b)
1\1— ,

sz(n) =33z /‘?{pZ(N)(I)}B(N) + 1J{p2( )(I)]B_l(_N) if h,=-h (3-32-¢)
1\1_1

P, (n) §N§ eiei™ ()18, M 1M (110 (3-32-d)
=1 .'

3

3
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and the total stress vector components are obtained in the same way

and follow the same pattern as the total displacement components.

In the case h, = - h, for (5751'b) to hold the matrix:
#to{™ (1))
(o™ (1)) |
(1) (3-33-a)
R{qj (1))
1™y 5= 1,3

is of at most of rank 2.
For (3-31-c) to hold, the matrix iJ[péN) 1)}

(
(
(3-33-b)
( ,
(

1))} j=1,3

is of at most of rank 2.

When either (3-31-b) or (3-31-c) hold the total displacement and total
BEN) 0 _ 4

stress components are obbtalined by substituting or B
respectively, in (3-32) and the similar set of equations for the total

stress components,

Table (3-1) gives a summary of the relationships between the different
quantities in the two media for all symmetric configurations. Note
that the total displacement and total stress vectors are independent
of the choice of X<N).

Table (3-2) describes the possible generalized Stoneley waves in the

different symmetric configurations discussed in this chapter.

When the medium and the wave slowness give rise to & bi-cubic
equation for SéN)(n) which has real roots, and hh, = 1, (3-7-c)
does not necessarily hold and one has to check the possibility that
for a bulk wave moving parallel to the interface the correct
relation between the slownesé of the wave on the two sides of the
interface is given by (3-7-d). Substituting (3-7-d) into (3-6) does

not, in general, yield a simple relation between SKL(I) and SKL(II),
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and it is necessary to know the form of the elastic stiffnesses

which causes the sextic equation to degenerate to a bi-cubic,.

Even in those cases for which one can simply relate SKL

two media, it is not aiways possible to relate simply the displacement

in the

and stress components. It is only for very particular cases that a
simple relation can be obtained between the displacement and stress
components on the two sides of the interface. One of these is the

case discussed by Lim and Musgrave [1970a] & [1970b]l. It is
interesting that for the case they investigated (cubic media) when

the transformation matrix was the identity, Lim & Musgrave found a

bulk wave which has energy flux parallel to the imterface with velocity
which is lower than the lowest body wave velocity. This may be
explained when one considers the geometry of the slowness surface

(see chapter 8).

In chapter 4, treating particular cases, hlh5 = 1 is treated, and

(3-T-c) is not assumed, therefore the non-attenuating waves are

included in the discussion there.
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Table (3-1) - A summary of the relationship between the different
physical properties in the two media, in the interface coordinate
system:

Property
compared medium T medium IT

S ey B T v e A = e P e M R M S R S S e R R M MR W S M Em T R M R S T T R R R

The elastic

stiffnesses cIJKL(I) by thIJKL(I) = % CIJKL(I)

Cijk,@(n)
Slowness
components séN)(I) h;h, @(SéN)(I)} -1 J{SéN)(I)}
in the .

; . with
direction ()

Ss(N) @ Hsg (D10
T T Wy, T
1 t £ S I N . N
the seonler KU 0 hy hy LR SIE:L)(I)} -1 hthJ{SI({L)(I)H
mabrix (N)
Ser,” ()

Displacement

co?ﬁgnentsn’ péN)(I) X(N)hKhB[ETPéN?(I)] - ihthJ[péN?(I)]]
py (n)

Stress

oopoumt M@ xWan et (1) - e @)
a  (n)

. . T D S B O B R T B T O Wb ST A G g e O (o G ST g Y T e S s T P e s O P i G U A B G Bt o ey PTF W SRy e B Uy A S B B S

My T *
______________________________________ Smmmmmmmmmmmmmmennooeseo oo
gg:;iacement PK(I) = %hKhsN?E?{PéN)(I)}-ihthJ{PéN)(I)}]'

t interf 3 A B
: P;Ene)ar - ZpI((N)(I)A(NzI) ' EIS 3

=1 ‘
___________________________ g e e
Total Q(I) = %hKth‘f{ [/?{qI(CN)(I)}-ihlhEJ(ngN)(I)}]°
stress vector =z (N) (M) =1 _
at interface = o (T)AM(T) [B(N) _ B(N)]}

- gln)
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Table (3-2) - Conditions for possible generalized Stoneley waves
in the different symmetric configurations (3-5).

3 ¢ B_EN)%O 308 8o 5y 0 6 8y

+ +
A h h h No attenuating waves are possible
B h-h h rank M < 2 rank 7 2 Dy = 0
C h h-h Dl=O&D2#O D=O&Dl;éo D,= D, =0
D h-h-h D=0 & Dy# 0 D= 0& D # 0 D= D =0
Where: 7 = 1J{p§N) (1)} n= /‘?{Pj(.N)(I)}
e (1)) 10p{" (1))
(0™ (1)) pla{" (1))
‘ ﬂ?{qz(N)(I)} J=1,3 iJ{qE(N)(I)} J=1,3
b o= pM@|  n =M@ n - ™M@ o, - M@
o™ (1) o (1) (1) 2 (1)
oM (@) ™ (1) (1) oM (1)
Dy = /‘?{pgN)(I)} iJ{pgN)(I)}
wip™ @y e )
pa™@) ™)
eV @) e s
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}, GENERALIZED STONELEY WAVES IN SYMMETRIC CONFIGURATIONS OF
DIFFERENT CRYSTALLINE MEDIA.

The discussion in chapter 3 does not take into consideration the
symmetries the media may have within themselves. - The existence or
non-existence of generalized Stoneley waves in symmetric configurations
depend only on the elastic stiffnesses in the interface coofdinate

system and the density (which is the same.in both media).

If a given medium.is invariant under transformation hi" although
hij may describe one of the cases B, C, or D (table (3-2)) we are
actually dealing with case A, In this case no attenuating4waves

will propagate at the interface.

Suppose the medium in half-space I has mirror symuetry with respect to
the Xz axis (in the interface coordinate system). Then, if we use the
transformation matrix of case C to obtain the elastic stiffnesses in

medium IT we can write:

h 0 o© h 0 © 1 o
hij.= 0O h 0] =10 h 0J]/l0 1 0 (4-1)
0O 0 =h 0 0 h 0O 0 -1

If we first operate with_the right hand side matrix, there would be no
change in the elastic stiffnesses and case C would be equivalent to

case A,

If the elastic stiffnesses matrix in the interface coordinate system
is such that it is invariant under the symmetry operation which
relates the media on the two sides of the interface, one can regard
the configuration as identity or.complete inversion and therefore one

does not expect to find any attenuating waves.

If one dea;s with the different possible symmetries, one can see that
for some configurations one does not expect to have any attenuating
waves at the symmetric interface, and for others, one can further
simplify the generalized Stoneley condition, and have some additional

information ‘about the possible waves.

The two extreme cases are those of isotropy and the triclinic systems.

In the case of isotropy one does not expect to have any generalized

Stoﬂeley waves at the interface since no discontinuity exists and the
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boundary conditions are identically satisfied for both the longitudinal

and transverse body waves.

In the case of triclinic systems no additional‘symmetry is present in
the medium and therefore one cannot simplify further the discussion

in chapter 3.

o 1 0
A0 0 -1

!
OHO

If the medium in half-space I is invariant under (l 0 O) or (-1 ;)
0 0
0 .

the elastic stiffness tensor is of the form:

I¥ ¥ ¥ 0 0o
¥ ¥ ¥ 0 0o ¥
* ¥ % 0 0 ¥
0 0 0 * % 0 (b-2)
O 0 0 * ¥ 0
¥ ¥ % 0 0o *

In this case the elastic stiffnesses are such that under a

transformation (3-5) where h. h,= +1, regardless of the value of h,,

12
the configuration is equivalent to the identity or complete inversion
while if h1h2 = - 1 , cases B and D become identical, In this case,

as far as the medium is concerned there is no difference if hlh3 =x1,

for a given value of hlhz'

The components of the symmetric matrix, the determinant of which

describes the slowness surface, SKL , are;

( )(I) = cllsi + 055[séN)(I)]2 - g
(N)u) _ cl6s2 )
“”(I) - (o3 * o590 (1) )

: ( )(I) - ¢ + e <N)(I) g (4-3-a)
So2 = Cg6° l hh )
ST = (eg + o0)os ‘N><I> |

ss(g)(‘ 1) = o s + o ““(1) )

Assuming that the configuration is such that generalized Stoneley
waves can propagate (hlh2 = -1), cases B or D, one obtains for the

‘second medium:

(N)(II

ey * °55[S§N)KII)]2 =P g.
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Ség)<11) = cl6si g_
s (1) = (cy 55)slS(N)(II) %
s (1) < i + ¢, 1sV (1)1 ) h_5.0)
ség)(n) = - (056 + c) )s S(N)(II) %
577173 )
st (1) - el + e[ (1)1 )

where cmn in the second medium are the same as those of the first.

The sextic equations obtained are bi-cubic and‘are the same for both
half-gspaces. If the medium and configuration are such that they
allow true generalized Stoneley waves to propagate at the interface
the slowness components can be complex only if either the cubic
equation (of the bi-cubic) has three negative real roots, in which

. case the slowness components would be pure imaginary, or it would
have one negative real root and two complex conjugate roots. In the

Lirst case the slowness components would be pure imaginary:

sél)(I) =1ig sél)(II) = -1 %
s (1) = 1 o¥ sElan) = -1 e ) (hohea)
séS)(I) =1i sT ég)(II) = -1 sT

If the cubic has one real root and a pair of complex conjugates the

slowness components would be of the form:

V(1) = 1s° sV = a0 )
)
sE@ = sr v st 8D = v -1 | (4D
| ( ( ) =g + isT éB)(II) = §% - iST ) \
For both cases séN)(II) = éN)(I) (b-L-c)

(b-k-c) is the same as (3-T-d) and therefore the following discussion
covers cases where the interface wave does not necessarily attenuate

(J{séN)(n)} may be zero for some or all N).

The assignment of the superscript 2 or 3 to the slowness components

in (4-4-b) is quite arbitrary and is independent of b b (compare
with 3-7-¢)). The moment we have chosen the numeration of the
components in (4-L) we have assumed a certain relation between the
components in the two media and we have ‘to carry it through, We could

have chosen different numeration whlch would still glve us simple
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relations between the slowness components in the two media. One
should note that different numerations lead to different relations
between the displacement and stress vector components but not to

different final results of the total displacement and the total

stress.

Substituting the values of Sy ( )(n) in (3-9) one obtains ratios .
of pé )(n) in each medium. In medium I the ratio is:

et b 1 o A T e U

M) ;5™ o ) - (h->-2)

3
{SlséN)(I)[(c13+c55>(°66s§ + o lag
sV (D)1 (e lls§+c55[ 3 (110 (eggtay g )-ep g6 (e he,s) 1)

[s (N>(I) -p)(c66s +cm[s(N>(I)] -p)= c2 u

I>]2'p>'°168§.(°36+°l+5> 1)

2,
t{(ep s+ 55
and for the second medium:

o™ (xr):p{M (11) oW (21) - - (1-5-b)

{sls§N><Iz> [(oys 55)( 66sl+cm[sr,§”>(n)]2-p>-¢l6s§(c56+cu5'>]}:

(N)(II)[( ¢ 18 l 55[ :,.S )(]I)]z-p)( 36+°l+5)" 1651 (c15+c55)]}
E lls§+c55[s<N>(n>] 0) (eggsey, 10 (11)1%-0) -2 o)

Substituting (h-k-c) into the expression for S<l\I (IT) (4-5-b), and
using (5-9), one obtains the relation between the displacement

comporients in the two half-spaces:

2V (11) = - s (1) )
o™ (11) = p{™ (1) ! (4-6-a)
W (11) - 2™ (1) )

(Choosing the proportion constants to be the same in (4-5-2) and
(4-5-b)).
If the slowness'components are pure imaginary the displacement

components are in the first medium of the form:

() N TSIV

Py (1) = io de. do
ia; iory ﬂyg (4-6-b)

o % O(T

Y 93 3

Where for each N it may be multiplied by an arbitrary non-zero B<N).
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The displacement components in the second medium are of 31m11ar
form and are related through (4-6-a) to- p(N>(I)

. When the slowness components are complex the displacement components

are of the form:

pl(iN)(I) -/ if of + dof  -of + iof |
idf, of+ i} -of + d0f (4-6-c)* |
. " &g. ,a% + idg a* + 1d§ o

Where, agaln for each N, p(N)(I) may be multlplled by an arbitrary

non-zeroc constant B(N). The dlsplacement components in this case, in

the second medium are stlll related thugh (b-6-2) to p£ )(I).

If the slowness components are real, J{S(N)(n)} = 0, the relations
between the slowness components - in the two media are still given by
(4-l-c), and (4-6-a) holds for this case as well.

One should note that the relation (4-6-a) is not absolute and is
dependent on the proportion constants chosen in (4=5). If one wishes

()

to remain consistent with the discussion in chapter 3 a multiplier X
should be added to each of the equations (4-6-a) on the right hand

side.

‘Using the definition of the stress vector (2-15) and (4-6-a) one obtains

the following relations:
oM - M)
(N)m) - - qél“m

q§N><Ix> - - M)

(4-7-a)

e et e S

!

‘In the case of pure imaginary slowness components the stress vector

components are of the form:

oMy = /8 B 8
B% B% Bg (4=7-b)*
iB°3 15936 1B§

“and when the slowness components are glven by (h - b) the stress

*Throughout the following discussion, @, B, ¢ & 7 denote real numbers.

.
.
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components are in the first medium of the form:

'qéN)(I) =/ B} Bt+ iBI Bx - iﬁi 7
B By + iB-lz- Bg- iB; (4=T=c)

In the second half-space the stress components obey (4-T-a).

The stress vector components in the case of real slowness components

are real and obey (4-T-3).
()

components one has to multiply the right hend side of (4-7-a) by the

If one wishes to use the multipiers ¥ for the displacement

same multipliers.

Substituting (4-6-a) and (4-7-a) into the generalized Stoneley me

conditions one obtains the following eqﬁations:

22 2™y ) + a™ang 2o

N=1P1 + )
2 2w M@ - a® a1 - o )
g ém< ™) - ™) - o ;
oy 1q£ o @) - A - o g | (4-8)
2§=lq2(N)(I) ™) + A1y - 0 g
5 lqéN)(I) 2™y 4+ a7 20 g

(4-8) form two systems of three homogeneous linear equations in

BiN)= A(N)(I) + A(N)(II) and BEN) = A(N)(I) - A(N)(II). If one
uses throughout the multipliers ¥ N) they would appear in (4-8) as
multipliers of A(N)(II), and one can see that (4-8) are two systems

‘ . - (N
- of linear homogeneous equations (as in case D) with ¥~ '=1.
The determinants of coefficients may vanish separately or simultaneously.

If they vanish separately the null vector, either BEN) or BEN), of the .
vanishing determinant may be calculated and the other vector, for this
given slowness, 1ls a zero vector. Calculating the null vectors and

(M) and qé ), one
obtains for media with pure imaginary or real slowness components:

I N S T T T (

taking into consideration the special forms of Py

k.9-a)



and for media with complex slowness components (given by (L-L-b)):

B, 5@ 5 o g eac s gy - ad] (4-9-b)

Of course, one has to remember that these are equations between ratios,

and one can use an arbitrary non-zero multiplier, in each of the

“above equations.
()

which of the determinants of coefficients vanishes, the amplitudes

are related in the same form as the B(N)'s :

The calculation of A'"/(n) from (4-9) shows us that regardless of

If BiN) are described by (4-9-a), the ratio of the amplitudes has the
form:

A (y:a® ) all ) - ) ¢ @) ;@) (u-10-8)
and if BiN) are given by (4-9-b), the amplitudes are related as:
20 0):a@) (10):4%) ) = P @) )+1n (0) 1% ()i ()  (4-10-b)

The exact character of the interface wave is determined mathematically
by whether or not one or both determinants of the coefficients in (4-8)

vanish for the given slowness.

Suppose the determinant (N)(I)

( )(I)

(4-11-a)
(N) (1)

(N)(I)

vanishes, while the determinant P,

) (1)

Pz

()

(4-11-b)

N) L ()

is the zero vector, or that A‘ ' (II) =

For this case P (n) - the displacément component at the

does nof. This means that B(

A (),

interface in the Xy direction vanishes and the non-zero'components
of the total displacement are in the Xy and X, directions., Hence the
interface wave is transverse. When one calculates the total
displacement components (see (4-12)) it is found that P, and P, are
in quadrature and therefore the dlsplacement is elliptic at the

interface, (see fig. (L4-1)).

If the determlnants in (4~11) are such that (4-11-b) vanishes while
N
(4-11-a) does mnot, BiN) is the zero vector, which means A( )(II)—-A 2I),
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and the displacement componénts at the interface in the X, and Xy
directions vanish. The only non-zero component of the total

displacement in this case is Pl’ in the x, direction, which means

1
that the interface wave 1s longitudinal and rectilinear at the

interface (see fig (4-2)).

When the interface wave is transverse the stress vector components
in the X, and Xz directions vanish, and fhg only non-zero component
of the stress vector is Ql’ On the other hand when the total
displacement vector is longitudinal, the stress vector is transverse,
elliptic (see (-13)), in the Xg-X; plane, In both cases it is
guite obvious that the stress vector is perpendicular to the

displacement vector;

When both determinants in (4-11) vanish simultaneously, the total
displacement and stress vectors have three non-zero components.
Using (4-8), the components of the displacement vector at the

interface are of the form: (if the slowness is of the form (hk-k-a)):

Pl<n>_= 3 ZiﬁlpiN)(I)BEN)=%i@xigi + axCx +,a1;*) (b-12-a)
R - 5V @ deg ey e ofch Gz
p () =3 2o (13MLese +axcx + ol (h-12-c)

If the slowness components are given by (h-4-b) the displacement is
of the form:

Pl(n) = %1611€i+ 2 afgt + aiiéf) N _ (h-12-43)
Po(n) = 31@5CT + 2gxC + za;r@;) (4-12-e)
- Bo(n) = 305 + 2osCx - 20‘2@1-) _ o (h-12-7)

Therefore, independent of the slowness component pattern ((L-L-a) or
(4-k-b)) if there is an attenuating wave at the interface between two
media related by the symmetric transformation matrix, having a plane
of symmetry perpendicular to the xs-axis, the displacement vector

components at the interface are such that the displacement in the Xy
and X, direction are of the same phase while the displacement in the

x, direction is in quadrature.

3

The stress vector components are obtained in a similar way and give
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the following results:

For pure imaginary slowness components:

a (n) = 38363 + pxcx + BICT) (1-15-2)
Q, (n) = F(BOC° + ByCx + B;rgf) (4-13-b)
Q(n) = 24(BLC7 + ByCx + BECT) (h-13-c)

and when the slowness components are given by (4-L-b) the stress vector

components are of the form:

o) = HE S 2 (Byex - BCDT (h-15-a)
ay(n) = 3IB3C° + 2(BxCx - BIC)T (4-15-e)
Qg (n) = 3i[B3C° + 2(B§£T + ngf)] (4-13-1)

One can see that Ql(n) and Qz(n) are of the same phase as P%(n) while
Qs(n) is in quadrature with the other stress components, but of the
same phase as Pl(n) and Pz(n). However, since the stress vector o,
at the interface is obtained by multiplication of Qi(n) by iw (®e @1k4))

the -stress vector oy components are of the same phase as Pi(n).

3

When the slowness components are real both the total displacement
and stress vectors are real, and the relation between the vectors

depends on their components' actual values,

If the medium in half-space I has a symmetry plane which is
perpendicular to the X, axis in the interface coordinate system, its

elastic stiffnesses tensor is of the form:

(4-1k)

o k% O k %k *
o *x O X *x ¥
o k O * ok ok
* QO *x O O O
o k O k k ok
X O % O O O

For such media if the transformation matrix from medium I to medium IT
has hth =+ 1, it is equivalent to the identity or complete inversion
while if hth = - 1, cases C & D become identical, (The sign of h2

does not play any role in the analysis)



The components of S(N>(I) are:

%1)<I) = cllsi + c55[ é >(I)] -p + 2cl5 18 éN>(I) g
s\Wiry 2 o )
12
)
S£§)<I) = clssi 35 éN)(I)] (c13+c55)s S<N>(I) g (h-15-)
S%g;(I) = c66si+ chh[sé >(I)] -p+ 2ch6slséN)(I) g
N
325 (1) =0 )
: )
Sé§><1) - c55si+ o33l ém)(l) - P+ Zegosy8 éN)(I) )
If we expect any interface waves, hih, = - 1, and S N) (II) are given
by
S%?i(II) = cllsi + c55[SéN)@I)]- -p - 2cl5 15 éN)(II) ;
N
8,5 (I1I) = 0 ' )
)
S£§>(II) = -(eqg8 i c55ls éN>(II) 17) + (c15+c55>slséN)<II)%
ség)(zz) - c66si + ¢ ls, (M) (1112 _ o - 2ch6sls§ )(11) g (4-15-b)
(W)
8,5 (II) = 0 )
: ‘ )
ég)(II) - c5ssi + g ls <N)(II)] -p- 2c35 .5 é )(I;) )

The sextic equations are factorable in this case into a quadratic

factor S§g>(n)’and a quartic one [S iﬁ)(n) S< )( ) - (Sig)(n))z]

In order for the quadratic term to have a complex root the following

relation must hold:

2 2

<ch6 - ¢ ¢ 66> + ¢ p <O (4-16)

2
or 55 > epp/ ey chs - ch)

If this is the case,Asél)(I) is given Dby:

Noy

R z
I) = (eygsy + Wog 55 - oy (cgess - M1/cy,  (-17-a)

and in the second medium:

(l)<

1) = (o8 - ey 5 - oy (eges) - PI/ey,  (-27-D)

The remaining quartic factor of the sextic equation is given by:
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in
(5 (0 (o55055755) + 251[?gm)(I)]B(C15933'°35C13) F(-28) L
(N)(I)] [s (e

2
©11033+20 503570 372e 5055) = pleggress)l +
(N) 3 T
(D)L= (°11 357C15¢13)-81P (egzteqs)] + (Cllsl'P)(c ‘P)‘ ¢15%7=0 k

For the second medium one obtains a similar equation with the components
of the odd powers of s(N)(II) having the opposite sign of the components
of the odd powers of s3N)(I).

The slowness components in the two half-spaces are therefore related

as:

M) = - M) (4-19)

(4-19) is the same as (3-T-c) when hlh3 - - 1.

Because of the factorization of the sextic equation the displacement

vector associated with>s(l)(n) 0 is given by:

(”m>-ﬂ”m>-o and 232 (0) - 283 () - (1-20)
Therefore p( )(I) is given by:
2Py - jo o B P
p2 (I) o o (4-21-a)
0 1 )(I) p(3)(I)
where p(N)(I) (N)(I) = (N)(I) (N)(I) (N=2,3) ) :
ey, (D | (h-22-a)
if 53 (1) # 53 (1) )
and for sée)(r) = s§3)(I) g (120-)

™M) = (0,0 (,0 , o{M(x) = (0,003

For the second medium, since the choice of proportion constants is

~ arbitrary, one can opt to stay consistent with (3-13) X(N)

(end picking an arbitrary value for h2)
2 (1) = [0 »Fm P
(l)(I) 0 o (4-21-b)
0 ERAC IS Co

When séEEI) = s§3)(I? , pr)(I) = Pge)(I) =0
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The stress vector components are given by:

(N)(I) (o (2)(1) (3)(1)
qél)(l) 0 0 (1-23-a)
0 @ P

where:

0 (0 - | feggtyress st (D 1oggnp70,: s 01 (1) )
a{" (1) - [c%sl oM } (1-230)
i (1) = [e gs,veygs éN)(I)]p(N)(I)+ g5517 550 (1) TpSM (1) )

o P P

] O Ce 0 (4-23-c)
o =Pm P

Substituting in the generalized Stoneley conditions one obtains the
following equations:

5 M@y ) - o

2 (™) -4 ) - o

M@y AWy - o

52 @ AW - o

w21 a (0™ (1) a® () - o
@M@ M)

(4-21k)

Nt S e N P e A e

Notice that relations (4-6-a), (4-7-a) and therefore (4-8) hold for
this symmetry as well as the symmetry with respect to x3 axis,
~

However, in this case we have more information about the actual values

of the components.

From the second equation of (4-24) one cbtains (since p( 7(I) = P(g)(l) = 0).

<l)<I)[A(l)(1t) - 2oy - | o (he25-0)

"Sinece p( 40, A )(I) NG )(11). Substituting this into the fifth
equation of (k-24), if A( ) T) # 0, this means that qél)(l) = 0, or:
CeSy + chhsé )(I) =0 (4-25-1)

(1)
3.

attenuating wave at the interface.

This would mean that s,”/(I) is real, which would not lead to an
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When A(l)(I) = A(l)(II) £0
s = - (ogfo) 5 (1-25-c)

and from S( )(I) = O the slowness of thls bulk wave is:

2
) (h-25-4)
The energy flux vectorag (Musgrave [1970]) is given by:

LLA w clez(p Py S, * D, pks ), and for real S Py it can be shown
that:

% o alls Il
Bsi
For the bulk wave (4~25-c¢), using (L4-25-b) one obtains:
‘ 2
iy aHSKLH/és3 =[5822/553][811833 - 813 2(°h6sl+°hhs3)[sll 33" 13]
= 0

with euavgy flux
Which shows that thls bulk wave travel%(parallel to the interface.

In most cases one may expect that neither one of the determinants
for non~trivial solutions of BiN) and B(N) (N = 2,3) would vanish

at this slowness A( )(n) A(3)(n) 0. Therefore the total
displacement of this non-attenuating wave is given by P = (O,PQ,O)
and the total stress vector by: Q = (0,0,0). This means that the
interface will remain stress free and the displacement is transverse,
parallel to the interface in the direction perpendicular to the
sagittal plane. The amplitude of such a wave varies periodiecally

as a function of depth. When g = 0 this transverse wave would
have an amplitude which is constant as a function of depth. 1In

isotropy (h—25-d) describes the transverse bulk wave slowness.

The remaining equations of (L-24) consist of two sets of only two

linear homogeneous eguations each, in B(N) and B( ) respectively ﬁ
(N = 2,3). For non-trivial solution of A( )(n), at least one of

the determinants of the matrices:

»Fm 23w SRICORSHC |
(2)(1) q§3)(1) (4-26-a) (2)(1) q£3)(1) (4-26-D)
must vanish. / It BEN) is the null
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vector of (4=-26-a), and B(N) is the null vector of (4-26-b), one can
write: '

BEE) _ ap§3)(I) , BE3) _ ap£ ) (1) %
Biz) - (3)(1) 5(3) bp§2)(1) )

s + =

(4-27)

where a and b are proportion constants which may be zero, if B(N) or

()

vanish, The amplitudes may now be found:

A®) (1) = 33 (1) + 6P (1)) | .
A®(n) = 3t (x) + bp(a)(x)] )

With appropriate change of sign one obtains similar expressions for

the amplitudes in the second medium,

The total displacement at the interface is given by: )

2 (n) =dolo{?)(D)pl> (1) - {3 (0P (1)) )
Py(n) = 0 | ) ()
p,(n) = 3alo{®) (1)p{?) (1) - ‘3)(I>p§2)<1)1 )

Pl(n) may vanish only if b = 0, and P3(n) vanishes only when a = O.
If neither a nor b are zero then the displacement is in the sagittal
plane and is elliptie. It stays in the sagittal plane for all Koo
(See fig (4-3)).

The stress vector components are:

o ) = 2ala{® (03 - o3 (el (1)1 )
ay(n) = 0 ) ()
0, (n) = lb[pga)(l)q§3)(1) oI @mdPlny )

Hence the stress vector lies also in the sagittal plane. TWhen the
determinant of (4-26-a) vanishes, if the determinant of (4-26-b)

does not vanish, b = 0, and P.(n) = Q3(n) = 0, If the determinant |
of (426-a) does not vanish but the determinant in (4-26-b) vanishes,
Ql(n) = P3(n~) = 0.

Therefore when the plane of the interface is normal to either a 2-fold
is
rotation/or mirror symmetry plane of the medium there is a transverse

wibh e vﬁf Fln
bulk wave which leaves the interface stress free and moves‘ para

to the interface. The slowness of. this bulk wave is given by (4-25-d).
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A true generalized Stoneley wave may propagate at the interface in
such a configuration. The total displacement and stress vectors

lie in the sagittal plane.

The third possibility for a simplification in the presence of a symmetry
plane in the medivm in half-space I is when this plane of symmetry is

perpendicular to the x, axis. In this case the elastic stiffnesses

1
matrix in the interface coordinate system is of the form:

¥ % ¥ ¥ 0 0
* * ¥ * 0 0
¥ ¥ % % 0 0 (4-31)
* * * * 0 0
0O 0 0 0o * *
\0 0 0o o * *

For this medium the components of the secular matrix Ség)(n) are given

by:
S(N)(I) = cllsi + 055[S§N)(i)]2 - )
(N) ' (N)(I) )
(1) = (e + exg)s;8; | g
S(N)(I) = (egq + eg5)sps0 (1) ) ~
(N)(I) Sest 4 [ (W) e ) (h-32-2)
= CggS1 + oyl S3 (D1 - ;
(N)(I) - c3h[s§N)(I)]2 b oggst , % ,
S(N)(I) = el + oy ls éN)(I)]E’ -5 )
and for the second medium:
(N)(II) - C]_]_ 1 +%§S(N)(I[) g
S(N)(II) - 3(clh +c 6)sls CE) %
sg)(m = (013 55)s1s(N)(II) % (4-32-b)
Ség)(II) = 06681 + Chh ( )(II) %
503 (TD) = Byhy(e u[S(N)(H)] * Csg 1} :
ség)(zz) - 55s§ + oy (N)(II) )

Tt is obvious that if h h3
identity or complete inversion and no attenuating interface wave is

expected, regardless of the value of h1h3‘ If h2h3 = = 1, one may

= + 1, the configuration is like that of
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expect an interface wave, The sextic equations one obtains are bi-
cubic, and the same one in both half-spaces. Therefore one would
obtain for the slowness components of true generalized Stoneley waves
either (l-l-a) or (L4-L-b), and.possiﬁle non-attenuating waves will
obey (h-l-c). |

The ratio of the displacement components is given by:

(" (1) + o (1) + (1) - (4-33)
{sls( ><1)[(c (587 (1)1 00 62) (o resg)- (o progs ) eggsvey, st ()1
| : 1}
(5§ (11715 (egsrers)(eqyregg) 155 (11 (e 'h[s§N>?i>12+c %)
(eqys2res (50 (1)1%0) )
(g sove, [887(1)1%0) (eggs? + cuu[s(N)(I)] - o) - 31[33 (1))
(clh + 056) }

For the second half space, one obtains a similar relation with the

appropriate changes of sign.

Apart from multipliers of proportion, one obtalns for the displacement

vector components, using the relations between S( )(n) and (3-9):
(N)(II) (N)(I)
(N)<II) - - pgN)(x>

(N)<Ix) - o (D)

(4-3k-a)

 The form of the displacement components in the case of'slowness given

by (4-k-a), (pure imaginary slowness components):

2 (1) = i 1o i)
5 of  db (4-3k4-b)
oo o

For this case the displacement'components‘in the second medium are

given by (4-34-a) and (4-3k-b).

Tf the slowness components are given by (Y=4-b), (complex slovness

components), the displacement' components are of the form:

(N)(I) iQ’?L oﬁf + iaj- "Oll + 1 % .
a,% of + io[$ of - iv (4-3h-c)

of of tlaz, o -iog
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The displacement components in this case in the second medium are
given by (4-34-a) and (4-3k4-c).

The relation between the stress vector components in the two media is
obtained from (4-34-a) and the definition of the stress vector (2-15):

(N)(II) _ (N)(I)
q;%) - qg%)
o) = - M)

(4-35-2)

If the slowness components are all.pure imaginary (L4-k-a) the stress

vectors components are of the form:

31

1 | |

1B}, 1B% i3 (4-35-D)
*
3

and if the slowness components are complex (given by (4-4-b)), the

stress vectors in the first medium are of the form:

(N)(I) = /8] 8% +~iei B - ie{
R iﬁz et iﬁz

o ™ .t

Py By v APy -RE v iby

The stress components for the second medium can be easily obtained
from (4-35-2).

' Substituting (4-3L4-a) and (4-35-a) into the generalized Stoneley

conditions one obtains:
‘glpm%ntgmu) A1 - o
2 o8 M) + a® ) -
2%&1 P(N)(I) 1) - Ay - 0

+

+
I
O

S e M e P N N S

Zﬁ:l (N)(I) ™y - a® ()1 -0 (4-36)
Z§=l qéN)(I) [A(N)(I) - A(N)(II)] =0
-Zﬁ?l qéN)(I) [A(N)(I) + 2™ - o

These, as in the case of a plane symmetry which is perpendicular to

()

( ) which may have non-trivial solutlons at the same or at separate

the x -ax1s, gives two sets of llnear homogeneous equations in B " ‘and

slowneSSes s:L
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The condition for non-zero BiN) is that the determinant of the matrix:

2 (1)
(N)(I)
(N)(I)

(4-37-2)

vanishes, while for non-zero BEN) the condition is that the determinant
of': '
N
at"(1)
N
qé (1)

pgN)(I)

(4-37-D)

vanishes.

If the slowness components are pure imaginary, the B's are related
in the form:

3 5B B3 i (4-38-2)

If the slowness components are given by (4-L~b) the B's have the
form:

(1) . @) . (3) .t B »

B : B : = H e s (% - 4-38-b

+ A T S S (3-38-b)
From (4-38) one can see that the amplitudes have the same form as
the B's '
By use of the form of the displacement components, the B's and (4-36)

one obtains the following results for the total displacement:
When the slowness components are all pure imaginary:

P (n) = 31(a° + ofC* + alC])

e N o e

Py(n) = 3 (o300 + ofC* + a;gb (4-39-2)
Py(n) = 5 (3CS + oACY + agCD

If the slowness components are given by (l-4-b) the displacement

components at the interface are:

P (n) = B + 2laft] +alcH)] )
Py(n) = 3 [oCC + e(aggf - ofggf)] ‘ g (4-39-D)
P (n) = 3 [0 + 2(oic! - oly)] )

The stress components in the case bf pure imaginary slowness components
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are of the form:

o= Ol

o (n) = & (83c+ sycx+ olc) )

%(n) = 3408303+ sxCs+ afch) § (4-t0-2)

ay(n) = B30+ sycx+ slch) )

and for slowness components given by (U4-l-Db)

o (n) = & [83¢S + 2(B3cx - BlcT)) )

Q,(n) = 1] 505 + 2(8% 1: + B‘gci)] % (4-10-b)
)

a,(n)

Regardless of the form of the slowness components the form dbtained
for the displacement components is the same (4-39-a) and (4-39-b),

and the stress vector form is independent of the form of the slowness

106300 + 2(s5cT + alcn)]

components as well.

One can seé that in the case of a medium with plane of symmetry

which is perpendicular to the x, axis, if the transformation matrix

1

from medium T to medium IT is given by h = -1 ( regardless of the

2h3
value of hl) the following waves are possible:

If the determinant of ( 1!-37-5) vanishes while the one of (4-37-&)
does not vanish, P3(n) = Ql(n) = Qg(n) = 0, while the displacement
and P, which are in

1 2
quadrature, and therefore the displacement is elliptic. The only

vector will have two non-zero components, P

non-zero component of the.stress vector is Q3 which is of the same

phase as P,, and therefore the actual stress 033 in the x direction

1 3

is of the same phase as P,e (see fig (h-1)).

If the determinant in (4-37-%) does not vanish while the one in (L4-37-8)
vanishes, Pl(n) = Pe(n) = Q3(n) = 0. The only non-zero displacement

component is in the x_ direction, and the two non-zero components of

3

the stress vector are in the plane of the interface. The two components
of the stress vector are in quadrature, and therefore elliptic, while
the displacement is rectilinear and of the same phase as Ql’

(see fig (L-5)).

.

If both determinants of (4-37) vanish simultaneously, one can see that

the displacement components in the X, and x3 directions are of the

same phase while the one in the x, is in quadrature, while the stress

1
components are such that Q, is of .the same phase as P, and P, and
1 , 2 3
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and Q3 are of the same phase as P. (see fig (4-5)).

If the medium in half-space I exhibits additional symmetry, one may
still further simplify the generalized Stoneley conditions for the
possible waves, or may find out that with the additional symmetry

no attenuating waves are possible at the symmetric interface.

Some of the numerical results deal with a cubic medium rotated in

" such a way as to obtain in the interface coordinate syétem an elastic
stiffness matrix resembling that oflf:’fetragonal system (erystal classes
LT, & 4/m). Some of the elastic stiffnesses become zero in the

- above discussion and therefore the expressions are simplified, but
essentially the results are unaltered.

The discussion of the possible waves under special symmetry is
summarized in table (L4-1). '



. Table (4k-1) - The possible interface waves in media with a plane of symmetry which is perpendicular
to one of the axes in the interface coordinate system

Plane of Requirements‘ Total Total Condition Condition

symmetry of ?ransforj ~displacement stress »fo? non- fo? non-

i v rrali g e 5 re iotertoos G RORS

% B, = -1 Py 10l (0™ g Bmxe{™ (1™ (N)(I) pg_N)(I)
pAmel (0™ o2mx(™ (1p™ qéN)(I) o [p{™(my||0
patoolD @™ oM™ [p{P oM (1)

%, hihy = - 1 P= -4 b D** Q = - % a B p(P- o B£1)= 0 |
P, 0 Q - 0 5(*—ap{3) (1) (2) bp§3)(1)
Py= % a Dxx Q = 2 b Fxx B£3) apg_z)(I) P)_ gz)(x)

%, hh, = - 1 Pl—éz*p](_N)(I)B(N) Q1-12*q£N)(I)B£N) l\qiN)(I)l ”P(N)(I)H
pape (e oemaP@a® M@oY
ptpe(M @™ oz @i V(o

. < e mdP - PP )
@ @@ - 2P 0P @ BP0 (1) - P el ()

e
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Fig. (4-1) - Particle
displacement when at
the interface

P f Xy Py o= (0,Py Py)
___j w1th P & P3 in gquadrature
1
el . :
z =
F/' W/‘// _ *
11/ =
TG This wave is transverse, At the
] interface the displacement vectors lie
R - in the x,-x, plane. Away from the

1nterface tﬁe displacement vectors may
lie in any plane. The displacement

vectors in the two half-spaces for the
same distance from the interface are
related as: P, (x ) = (P 10 2:,P ), and

(X)“(lazﬁ)

Fig. (4-2) - Particle

displacement when at
XAy ‘ the interface
' P, = (Pl,0,0).

This is a longitudinal wave. At the
interface the displacement is in the
direction of the wave propagation. Away
from the interface the displacement

vectors may lie in any plane. The

displacement vectors equidistant from the
interface are related as: P, (x ) = (P

13P2:P3)
andP(x)_(P —P)

23
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L&
1
' Fig. (4-3) - Particle
<:\\\ displacement when at
the interface

P, = (Pl,O,P3)

: @
. d A (n) =0
. ) B a?N)

/ i p (Il)= 0, N=2,3
C\____./ tﬁroughout.

: In the case onSymmetry plane which is :

( t: perpendicular %o the X, axig the displacement
vector lies in the sagittal plane throughout.

‘ When a=0 (see equation (4-29)) the wave is

-1 longitudinal, when b=0, the wave is transverse.

The wave described in this figure is for an

arbitrary a and b, The relation between the

- o ' displacement vectors equidistant from the L
~ interface depends on a and b. When a=0 Ii(x3) =

Ei(-x3) and Eé(x3) = - P3(_x3). then b = 0,
Ii(x3) = - Ii(-x3) and P3(x3) = P3(-x3)

3

Fig. (4-14) - Particle
Ly : displacement when at

N the interface
P; = (Pl, Py 0)
Pl and P2 in quadrature.

Here the displacement vectors lie in the plane
of the interface. Away from the interface

the displacement vector may lie in any plane.
at equidistance from the interface, the
displacement vectors are related as:

Pi(x3)_= (Ii,Ié,Eé)'and P&(-x3) = (Pl,Pz,-PB).
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Fig. (4-5) - Particle
displacement when at
the interface

P, = (O,O,P3)

This wave is transverse at the interface,
having a displacement component in the
direction perpendicular to the interface
only. Away from the interface the _
displacement vectors may lie in any plane.
The displacement vectors in the two medis
eguidistant fran the interface are related

as: Pi(x3) = (Pl’PZ’P3) and |
Pi(-x3) = (-Pl,-Pz,P3).
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5. WAVES AT AN INTERFACE BETWEEN TWO PTEZOELECTRIC MEDIA.
5.1 GENERALIZED STONELEY CONDITIONS FOR PIEZOELECTRIC MEDIA.

When the media on the two sides of the interface exhibit piezoelectric
properties, one has to take into account the stresses that arise due

‘ N
to the electric field in the generalized HooK's law, and new

equations should be derived.

Kraut [1969], and others have.treated'the piezcelectric effect in a
whole space, Bleustein [1968], Farnell[1970] and others have treated
the effect on elastic free surface waves. Special waves, in addition
to the Rayleigh wave have been observed and are referred to in the

‘literature as Bleustein-GuIaxev Waves.

The stresses in a piezoelectric medium are given by:

O. — . -

157 Ciget, 0 ¥ Crigx = (5-1)
where ¢ is the scalar electric potential, and ekij is a tensor which
is a result of a scalar product of the plezoelectric tensor dkﬂm and
the elastic stiffnesses (Nye [19571)

i = YemCiniy (5-2)

On substitution of (5-1) into (2-5) one obtains the equation of motion:

Cigkdfi, 25 T 132,05 T Py (5“5)

The electric displacement Di is given by:

Di = i,y - %ax’ Lk (5-4)
where €., is the dielectric permittivity tensor.
The conservation of charge is given by:

where Q is the free charge density which we assume to be zero,
Substituting of (5-4) into (5-5) leads to:

i, 31~ Sk, ki = © (5-6)

By using the scalar potential we have assumed that the magnetic flux
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does not change in time. This assumption is correct when we are
dealing with acoustic waves, which have low velocities, relative to
the speed of light. In such velocities the electromagnetic part

may be regarded as quasistatic.

We shall proceed in the way described by Farnell [1970] by assuming
the same form of plane wave for the scalar electric potential, as that

taken for the displacement:
&= A {expliw(s.x. - % -
v, {expliv(s,x; - £)]1) (5-7)

Upon substitutionA(5-7) and (2-1) into (5-3) and (5-6) one obtains a
set of four homogeneous equations in four unknowns, Py

S.4Py = O k, 4 = 1,...,4 | (5-8-a)

where §,, = C4345554 - PO (5-8-b)
i,‘j,k,«(’/ = .19295

Wy = Sy = ®5 355153 i,3,k=1,2,3 | (5-8-¢)

Sy, = - eijsisj i,j3=1,2,3 (5-8-4)

For non-trivial solutions of (5-8) the determinant of coefficients
mist vanish., TIn this case one obtains an eighth order polynomial

equation in s, with real coefficients, the solution of which can

contain at mozt four pairs of complex conjugate roots.

In order to obtain waves which attenuate with increasing distance

from the interface (and using the same configuration as in chapter 2)
one would choose in the upper half-space the four roots with positive
imaginary part. As a result the displacement and scalar potential
would be described.bj a compound wave of four components. The

stresses are obtained by differentiating the displacement and potential

and substituting into (5-1):

- (v) (), (), () . () v
Uij_lmmzl[cijkﬂpk *eys5P) Ts; "A {explin(s x +s," % -t) 1} (5-9)
and in particular, the stress vector component in the Xz direction is
given by:

n

iy o W) m. .

0, =1 by ay A {exp[lw(slxl * s %, - )]} (5-10-a)

N=1
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(m) (n) (), ()

where q! = (013k£pk + egi-P) ) (5-10-b)

If one appies the Stoneley condition for continuity of stress and
displacement across the interface (welded interface) one obtains
only six hdmogeneous equations for the eight amplitudes A(N)(n) in
the two half-spaces. Two additional conditions can be obtained
from continuity of potential and the normal component of thé electric
displacement. -

The generalized Stoneley condition becomes an eighth order

determinantal eguation: A
My -y “ i
oW -qWanl

and where

q,;(N) (

(5-11)

n) =le @p{™ (@) - e, p™ @)1s{V () (5-12)

k,4 = 1,2,3 N=1,...,h
The matrix qﬁzMj(n) pé#)(n) , m=1,...4 , is not, in general, skew-
Hermitian. By following a similar procedure described by Currie
[1974], and using equation (5-6) as well (multiplied by piMj(n) and

(

puN>(n)) one arrives at the following relationship: (5-13)

<s3(N)-s73W> (0™, podly (eszs-eSsﬂ)(gmpimS,EM)+péN)p,EM)S£N))=0
where D' - q—r;:(mpélm N,M,m=1,...,4 (5-14)
Since séN)- ;gﬁj 4 0 for all N, M in attenuating waves, for true
generalized Stoneley waves:

o™, p Y M | G-13)

with
MN
- G (e3sz'esz3)(P

gﬂ)PﬁN)ng)+ Pém)iziﬁgéN))/(S§N):;§ﬁ7) (5-16)

GMN is obviously ' hermitian as a sum of a matrix and its transposed

complex conjugate. In the ﬁon-piezoelectric case, e, ,=e¢ , =0
. . 3sh i3 NM
and therefore one arrives at the skew-hermitian character of DV,

One should note that centrosymmetric media cannot be piezoelectric,
and for such media GMN= 0. GMN also vanishes if e, ,=e . This
3sd” "sd3

happens, for instance, in cubic media.
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(1)

3
-of chapters 3 and 4, because the fourth equation of (5-8) would be

When el 0 the solutions s would be the same as in the discussion

decoupled from the rest.

If we now perform similar operations on the equations for cOntihuity
of displacement, potential and normal electric displacement and
stresses as described by Chadwick and Currie [1974], we obtain the

follow1ng relationships:

z [FMN a1y - @ r)a®™ ()]- o (5-17-a)
z{ N (N)(I) + 71y A m]- o (5-17-D)

where QN(ry (0 (390 W gy prgMNn)q;ﬂ(N)(x) (5-18)

For cases where both GV (I) ‘and N (IT) vanish, a simplified Stoneley

condition has the same form as for the non-piezoelectric case, |

because HEMN(I)Q = 0 is a condition for non-trivial solutions of both
N (I) and A(N (II). One should remember that F may contain

within it the piezoelectric constants, although GMN(n) may vanish,

When the configuration is such that on one side of the interface there
is a centrosymmetric medium while on the other side there is a non-
centrosymmetric medium, one of the equations (5-17) becomes decoupled
from the other. ©Suppose for medlum IT GMN(II) . In order to have
non-trivial solutions for A( ) (1), FMN (I) must be a singular matrix.
After finding the null vector of FMN (I) one may substitute in (5-17-b)
to obtain a set of four non-homogeneous linear equations in the four
unknowns A( )(II) The matrix of coefficients is singular and
therefore the system will have a solution only if the rank of FMN (1)

. and that of the augmented matrix are the same. One should note that
in this case, if FMN is a non-singular matrix, the trivial solution
of (5-17-a) leads only to the trivial solution for A(N)(II)

For the case where GMN does not vanish one can still reduce the
generalized Stoneley condition (5-11) which is an eighth order

determinant to a fourth order determinantal condition.

The displacement vectors Py are, or may be made to be, two different
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bases of Cu (veing eigenvectors of the matrix @klvz))(Chadwick &
Currie Ll97h]) and therefore there exists a regular Lxh transformation
matrix T, such that: ‘
Lo

N M

p (1) = T e, () (1) (5-19)

Py M=1. k

. . eas MN .

By using (5-19) and the definition of ¢ (n), (5-15), one arrives at
the following result:

Y o A O T T boa | mem——
gl gy _p o w R e GMRpny L BNy 5 e FOR (1) (5.20.4)
M=1 M=1 Q=1 Q=1
or: . .
” i) b ~zm i M R b RN |
[z (I1) - F¥(I)] = =T FMN(I) - G (I) (5-20-b)
ml M=1 M=1

Maltiplying (5-17-a) by T, substituting from (5-20-a) and (5-17-b)
one arrives at the following relationship:

booh e e L4

5 (S - F RO ™y a @)y 20 (5-21)
Q=1 M=1 N=1
The condition for this equation to hold is that the determinant of
the matrix of coefficients will vanish., For, suppose the determinant

does not vanish, then, the trivial solution leads to:

L
A@ 7y o g @ g (5-22)
which, upon substiEEtion into (5-17-a) gives:
Lo L

Z[Fm%D ZG@%H: (R%I)=o . (5-23)
R=1 M=1

For non-trivial solutions of A(R)(I) the determinant of the
coefficients must vanish. The matrix in (5-23) is the complex
conjugate of the one in (5-21), the therefore for equation (5-21)

to hold, the following determinant must vanish:

e N |
I = ey - PR |- o (5-2k)
M=1

One can see that if either GRN(n) is a zero matrix this condition

leads to the condition:

P = o | (5-25)
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This can be seen also directly from equations (5-17).

We shall now see that (5-22) holds for all solutions of generalized
Stoneley waves. Suppose that the null vector of the matrix in (5-21)

is aQ, which is not a zero vector, then:
TR
Ay - Mgy 4 0 (5-26)
N=1 -

Substituting into the conditions of continuity of displacement and

electric potential, one obtains:

b oq
T p (IT) o =0 - (5-27)
er

For non~trivial solutions of aQ the determinant of pQ(II) must vanish.

()

vanish, and the only way for (5-27) to hold is for o

(II) is a matrix of rank 4, its determinant does not

Q

But since Py
to vanish,
Hence the amplitudes in the two half-spaces are related as (5-22).
A(N)(I) is given as the null vector of (5-23), and A(N)(II) can be
found from it by (5-22).

5.2, BLEUSTEIN WAVES AT A FREE SURFACE OF A PIEZOELECTRIC MEDIUM.

Bleustein [1968] has treated the particular case of hexagonal half
‘space completely coated with an infinitesimally thin perfectly
conducting electrode which is grounded. The equations governing the
interior of the half space are the same as those obtained for
piezoelectric media (5-1) to (5-10). However, this type of
configuration leads to different electrical boundary conditions
from the ones used traditionally (Farnell, [1970]). Rather than
imposing continuity of the normal component of the electric potenmtial
and displacement one has to'impose the condition of zero electric
potential at the free surface. This boundary condition together
with the free surface conditions (G ;=0 at XB—O) lead to the

following Bleustein condition:
o ()
k

o™

k=1,2,3  N=l,...,h (5-28)
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where q'(N> are defined by (5-10-b).

The traditional conditions for generalized Rayleigh waves in

a7
plezoelectric media may lead tohﬁleustein wave in the particular
case that the conbinuity of electric displacement lead to zero

electric potential at the free surface. .

5.3. BLEUSTEIN TYPE WAVES AT AN INTERFACE BETWEEN TWO PIEZOELECTRIC
MEDIA,

Generalizing the Bleustein wave at a free surface to an interface,
one adds to the two half-spaces configuration a coating, throughout
the interfdce, of infinitesimally thin grounded electrode. This

© would cause the electric potential to be zero at the interface.

Again, the equations governing the different physical characteristics
W

of the ytericr are the same as those discussed above., The welded

conditions lead to six equations of continuity of mechanical

displacement and stress.

The two additional equations, however are not those of continuity
but:

(1) = &(II) =0 (5-29-a)
}%z 0 x3=0
which lead %o ~
) .
%lpﬁN)(n) A(N)(n) =0 (5-29-b)
(5-29-b) together with the welded conditions lead to:
p@ M
@ -qWan| (A"
' 0 ) =0 (5"30)
pﬁN)(I) ' 0 A(N)(II)
0 o (1)
- . k=1,2,3

Nel,... 0
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For non-trivial solution A(N)(n) (5-30) leads to:

2@ )

I ay ™o -4 (1) -0 (5-51)
N>(I) 0
0 (N)I(II)

Obviously, (5-29-a) guarantees continuity of electric potential,
however, it does not guarantee continuity of the normal electric
displacement. When the welded conditions (5-11) lead to zero
electric potential at the interface the generalized Stoneley wave
coincides with the Bleustein type wave,

One can treat (5-30) in a similar way to that in which generalized
Stoneley conditions were reduced to a.hxh'determinantal condition,

However, one has to remember that here the summation in the matrix:

. _qm: B i 2,5 (5-32)

is Qver three components only. o
U51ng the equations of motion (W1th summation over three components

of the mechanical displacement and three components of the mechanical

stress) one arrives atb:

(s ‘1“7)(D* + Ay | [;TMT (), (N)‘T‘T éN)p£N>;§ﬂ5;§M31=

= [;§M7 - séN)]G* (5-33)
From the first six eguations (5-30) one obtains:
]_I_ .
2 (- a®™ gy 4 ™ @ 1y _ )
i g (5-34)
£ (m A0(1y L o rr) 4™y - )
N=1
where - FEN _ qﬁzMj(II) piN)(I) + p;Mj(II) qﬁ(N>(I) (5-35)

Making use of boundary conditions (5-29-b) simplifies G*MN(n)A(N)(n),
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since piN)(n)A(N)(n) = 0, However, in general it would not vanish,
and one has to treat the two equations of (5-34) with simplified
~ G*MN(n)A(N)(n) as (5-17), and the discussion following it, with
MN . MN MN . FMN . . .
G¥ " replacing G , and ¥ replacing , bearing in mind that *

matrices are in general different from the non* matrices.



67

6. WAVES AT AN INTERFACE BETWEEN PIEZOELECTRIC MEDTA, SOME
SYMMETRIC CASES.

After obtaining the conditions for interface waves in pieéoelectric

media we shall obtain simplified conditions for symmetric |

configurations of piezoelectric media, similar to those in chapter 3,

and proceed to investigate the symmetric media studied in chaper k4,

In particular we shall look into the difference between interface

waves in simple elastic media and piezoelectric media.

The notations used are similar to those of chapters 3 & L.

As in chapters 3 & 4 the transformation matrix (3-5) is used to obtain
the different constants in medium IT from those of medium T. Since
cijkz is a fourth order tensor the transformation is dependent on

the sign of products of pairs hihj ra.the;' than the sign of the
individual hi' Therefore, c,. ., are invariant under inversion.

ijk4

However, d. is a third order tensor and is dependent on the

ijk : .
individual sign of hi' It therefore changes under inversion.

Hence, whereas in simple elastic media complete inversion does

not affect the waves propagating, it would affect the wave propagating

in piezoelectric media.

Using the transformation matrix (3-5) to obtéin the state tensors of
medium IT from those of medium I, one obtains two eighth order
polynomiai equations for 33(I) and s3(II), which are the conditions
for non-trivial displacements pk(n). The coefficients of the odd

- powers of SS(H) differ by a factor h,h,, which means that the roots

1P3
of the secular equations are related as:

(M) _ () - -1-

s3 (1) = hlh383 (1) M=1,...,8 | (6-1-2a)
When the secular equation is bi-quartic:

s (o) = s (1) M= 1,...,8 (6-1-0)

Since we seek interface wave solutions which attenuate with increasing
distance from the interface we choose in half-space I the four roots
with positive imaginary part while in half-space IT the roots with

negative imaginary parts are taken.

séN)(II) = hlh3A9{S§N)(I)} - iJ{SgN)(I)} N=1,...,% (6-2-a)

(W)
3
the square roots of the zeros of the quartic equation one may

When the secular equation is bi-quartic, since the roots s /(n) are
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wr;i_‘te: ‘ .
S(N)(II) = - S(N)(I) N=1,...,4 (6-2-b)

regardless of the sign of h1h3 When the roots are complex, one may
renumerate them so that they will comply with (6 2-a)., However, when
hlh3 =+ 1 and séN)(I)} = 0, although (6-2-a) may hold, it is quite
possible that (6-2~b) holds and one case is not equivalent to the
other. Iike in chapters 3 & L} we assume in the following discussion
either J{sgN)(I)} #0orh h3 = - 1, It will be pointed out when
(6-2-b) holds rather than (6-2-a).

‘Substituting (6-2-a) into the secular equation, the elements of the

N
secular matrix S (n) may then be related as:

S(N)(II) - hKhL[p{S(N)(I)} - ihyhg 4{S(N)(I)}] K,1-1,2,3 (6-3-a)

(N)(II) =h [A?{S(N)(I)} 3J{S(N)(I)}] K=1,2,3 (6-3-b)
Sﬁ)(II) = p{sﬁﬂ)(n} - ihh ,,a{sﬁ)(x)} \ (6-3-¢)

(6~ 3) can be summed up in the relationship:
(N)(II) = hKhL[R{S(N)(I)} - ih 3,0{sg)(1)}] KIel,ee., b (6-4)
def

and Iy = 1 | (6-5)
The ratios of the components pé )(n) is given as the ratios of the
cofactors:
p{ ()10 (m): p(N’<n>=p£N)<n>= 5@ sBtey sP ey
‘N>(n> s<N><n> s(N)(n> :
(N)( ) S(N)(n) S(N)(n)
AP s @ Py - P s e sfPm
Sg)(n) sg)(n) Sélg)(n) : (N)(n) S(N)(n) sgﬁ)(n):
s @) W) P ) s @ s
sl @ 8@ sy
s ) s () s (n) (6-6)
S%I)(n) sg)(n) sg)(n)

When one compares the *displacement' vectors p(N)(n), k=1,...,4, one
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obtains the following relationships:

pl(gN)(II) ( )hKh3[p{p(N) (1)} - ibjh J{p(N)(I)}] K=1,...,4 (6-7)
and for the ‘stress"components: '

4 ) = P e 01-snptg P 1) 1, 6-8)

Equations (6-7) and (6-8) appear the same as (3-11) and (3-12);

However, they are the same only in form., Let us observe the electrical
'displacement' component, I which describes the scalar potential

(see (5-7)) and, electromechanlcal stress g} (as defined in (5-12)).
Since by definition h) = 1, py (II) = X(N) (N)(I)} ih.h 3JCP£N)(I»]
and a1 (11) = 5P tpta} M (1)1-10n st q N)(Im.

Therefore, the electric effect in the ‘displacement' component is

dependent on h, in the same way that the 'stress' electromechanical

3

component is dependent on h,, both are independent of he.

l,
When hlh3 =~ 1 (h =h) (
pM () = - W o) (6-9)
qk(N’(II> = x ™ g M (1) (6-10)

Using the algebraic identity (3-15) on the generalized Stoneley
condition (5~11) and substituting equations (6Q9) and (6-10) one
obtains two decoupled sets of linear homogeneous equations (similar
to (3-17)), one for B(N)—A(N)(I) + (N)A(N)(II) and the other for
(N) A(N)(I) (N) tN)(II) At least one of these has to have a
non—tr1v1a1 solutlon in order to have an interface wave., The

equations may be written in the following form:

(N)(I) ‘ B(N) = (6-11-a)

|
(o]

rﬁN)<z>
and: Qi(N)(I)

£ (1)

o) [ B - (6-11-b)

|
(o]

+ (1)
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where %N)(I) and téN)(I) are defined as in (3-18-c) and (3-18-)
and rg (I) and tiN (I) are dependent on the exact value of h:

RGN L CO NS N O (6-11-0)
( qL(N)(I). ifh==-1
d : |
- tﬁN)(I) = QL(N)(I) ifh=1 (6-11-4)
pgN)(I) ifh=-1

Comparing equations: (6~11) with the corresponding equations for simple
elastic media (3-18) one basic difference is apparent. Whereas in
the case of simple elastic media the equations are dependent on the
sign of products of pairs hhi’ in the case of piezoelectric media the

dependence is on the actual value of h Therefore, while in the

l.
simple elastic case there are two distinet configurations (for‘hih3=—D

in the piezoelectric case there are four,

The conditions for Bleustein type waves would be of the form (6-11-a)
and (6-11-b) withs '

+M(1) - M (1) | (6-11-¢)
£ (1) = p{M(1)
These type waves do not depend on the actual value of h.

Using the values of AN (1) and AN (1T) in terms of BiN) and (6-11)
one obtains the foilowing values for the total ‘displacement' and

total !'stress! vectors at the interface:

py(n) - b5t o™ (") (6-12-2)
Py(n) = %le\;zlpéN)(I)BEN) when hy, = hy (6-12-b)
p,(n) = bt o0 (D™ wmenn, - - n, (6-12-c)
p,(n) = 3z o™ (1)p (") (6-12-a)
p(n) = 35t o (03™  wmenn - w1 (6-12-¢)
Py (n) = %zll;:lpﬁN)(I)BiN) when b = - 1 (6-12-F)
Q(n) = %zNilq'l(N)(I)BfN) ' (6~13-a)
Qh(n) = %Z‘,Nthé(N)(I)Bf_N) when h2' = hy (6-13-b)
g -3t a™ @™ wmean, - n, (6-13-c)
Q}(n) = %zﬁ:lqém,)(z)BfN) : o (6-13-4)
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Q, (n) %Ell\;_iq*(N)(I)B(N) when hy = + 1 (6-13~¢)

il

i

Qﬁ(n) —2§ q'(N)(I)B(N) when hl = -1 (6-13-F)

In Bleustein type waves (6-12-a) -~ (6-12-d4) hold, and Pu(n) =0
for the ‘displacement'. . For the 'stress' components (6-13-a) -

(6-13-4) hold while gj(n) = zll;:lq' () (24 ().

Comparing (6-12) and (6-13) to (3-24) and (3-25), the corresponding

- equations for simple elastic media, one can see that the equations
describing the mechanical displacement and stress in the piezoelectric
media are the same as for the cage of simple elastic media. Although
the electrical effect would be felt in the actual values of p( )(n),
q‘(N)(n), and B(N), the character of the wave is the same whether the
media involved are simple elastic or piezoelectric and elastie. The
electric potential component, Ph’ and the electromechanical stress

QL are dependent on the actual value of hl in the Stoneley type wave,

but not in the Bleustein type wave.

The determinants of the matrices in (6-11) may vanish separately or
simultaneously, just like (3-18). Checking the possible waves for
the different configurations:

When BEN) = 0 (the determinant of the matrix in (6-1l-a) vanishes
while that in (6-11-b) does not), from (6-12) and (6-13):

Pl(n) = Qé(n) =0 .
f hi = (]_,l,-l) Pi(I) = (0307P3}O) ) (6—1&-—&)
(1) = (Q},95,0,9)) )
h, = (1,-1,-1 . =(0,%,,P,,
= ) P, (1) =-(0,%,,P3,0) % (6-14-D)
Q.J'_(I) = (Q/laO:OrQ-ll_) )
b= GLLY - B (0REpR) ) (6-1k-c)
Q1) = (Q],0,0,0) )
h, = (-1,-1,1) P, (1) - (0,0, 3’Ph) ) (6-14-a)

Q1) = (@,000,0) )
Notice that for (6-14-a) and (6-14-b) the conditions for a Bleustein

type wave are satisfied.
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When BS_N) = 0 and B_(_N) £.0

P3(n) = Qi(n) = 0 , The following are the forms of the different

possible waves for such a case:

If hi = (1919"1) Pi(i) = (PlaPzao:Pll_) )
‘ ) (6-15-a)

Q&_(I) = (0303%30) )

h, = (13"1,"1) P.(I) = (P »0,0,P
1 By 10:0:Fy) g (615-b)
. Q;_(I) = (O,Qé,Qé,O) ) ’

hi = ('lyl)l) P-(I) = (Pl,0,0,0) )
i ) (6-15-c)

sz_(I) = (oné: Qé:Q}l) )

hi = ('l:"l: l) Pj_(I) = (Pl,Pz,0,0) )
) (6-15-d)

. Q:;_(I) = (0,0, Qé: Qﬁ) ) ‘

Under these conditions in the configurations (6-15-c¢) and (6-15-4)

Stoneley type waves and Bleustein type waves are the same.

In both (6-14) and (6-15) when one of the determinants of the matrices
in (6-11) vanishes and the other does not vanish, the electrical effect
at the interface is localized to either the electrical potential or the
electromechanical 'stress' component, depending on the actual value
of‘h:L (and therefore h3 as well) and which one of the determinants

(in (6-11)) venishes. It is independent of the value of h,, although

the mechanical components are dependent on the value of hihz.

The relation between the transformations in the pairs [6-1k-a) and
(6-14-4d)), [(6-14-b) & (6-1k-c)], .[(6-15-a) & (6-15-4)] and [(6-15-Db) &
(6~15-c)] is of inversion and therefore the mechanical components are
of the same form in the two members of each pair. However, theA

electrical components in the members within a pair are different.

For each of the transformations there is a correlation between the
wave for which BEN)z 0 and the one for which B(N) = 0. The vanishing
components in the ‘displacement' vector when BiN) =0 are(gge same

as the vanighing components in the 'stress' vector when B = 0.

For h'=+ 1 and BEN) =0, or h=-1"and BEN)= 0 the electzical effect
is localized to the 'stress' and the electrical potential,.Ph, vanishes
at the interface. When h = + 1 and BiN)= 0, the electrical effect

is localized to the electric potential, and the electromechanical

'stress’, QL, vanishes at the interface,



73

When B(N)— 0, the mechanical displacement is transverse, the stress
is purely-longitudinal for transformations (1,-1,-1) and (-1,1,1).
When B(N) 0, the mechanical stress is transverse and the displacement

is purely longitudinal for these transformations.

One should note that in both these cases, either BEN) = 0 or BiN) = 0,
if the piezoelectric effect is zero then the sign of h is not

important and these cases reduce to those discussed in chapter 3.

There is always the possibility that the two determinants of the
coefficient matrices in (6-11) vanish simultaneousiy, in which case
it is possible that neither BEN) nor BiN) are zero vectors and ‘
therefore Pi(n) and Q{(n) may have four non-zero components, given
by (6-12) and (6-13).

When one imposes the Bleustein type conditions Ph(n) = 0, the
mechanical and electrical components do not depend on the actual

value of h:

When the determlnant of coeffilcients of B( ) vanishes, while that
of B(N) does not vanish, B(N) 0 and:

for h, = (h,h,-h) P.(I)= (0,0,93,0) )
+ St , ‘ ) (6-1b-e)
Q{(I): (Q/J'_)Qéao: QII-) )
h, = g =1ly =~ . = s ’
; = (b b, -1) P;(T)= (0,Py,P;,0) g (6-14-£)
%(I)= (Qlaoso:Qvll_) )
When BiN) - 0 and BEN) #0
for h, = (h,h,-h) p.(1)= (P,,P,,0,0) )
Ty i 1°72 ) (6-15-¢)
Q‘l(I)= (O,O,Qé,QL') )
hi = (h, 'h,'h) Pi(I)= (Pl,0,0,0) ; (6_15_f)
o ()= (0,4,03,Q) )
B(N) and B(N) are not necessarily the same as those for the Stoneley

type waves, they depend on the value of r( ) and t(N)

When hlh3 =+ 1 -

2™ (1) = Wm p( (1) (6-16-2)

qI‘{( )(11) - x( ?nan;{( o (6-16-)
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One cannot simplify much further the generalized Stoneley conditions.
It is possible to rewrite the Stdneley conditions for this case in
terms of real and imaginary parts of péN)(I) and qi(N)(I), as in
(3-28). -

If h, = h, = h3 = +1, using (3-29) with N varying from 1 to 4, and

17 %2
i having values of 1 to 4, with qi replacing ShE
Zﬁzlp{pgN)(I) [A(N)(I) - gTN7 A(N)(II)]} =0 (6-17-2)
st et @) ™y - ™ Wy -0 (6-17-b)

Using the definition of qi(N)(n)’ (5-10-b), (5-12) and (6-17-8) one
obtains: ,
®33k3 3§=1‘4P§N)(I)S§N)(I)[A(N)(I) - AWy s (6-17-c)

t e 3i3X§;1F{P£N)(I)S§N)(I)[A(N)(I) - x(N)A(N)(II)]}'= 0
i,k = 1,2,3

and

e3k32§=1P{P§N)(I)S§N)<I)[A(N)(I) - MW 1)1y o (6-17-2)

eyt @M 0™ (1) - @Ay <0
k = 19293

The Lxl matrix i3k3  ©333

. . (6-18)

3k3 33

is regular, and therefore we can follow the arguments of chapter 3 to
prove that no generalized Stoneley waves are expected at an interface
between two media having the same elastic and pieZoelectric coefficients
and the same orientation with respect to the interface coordinéte
system. In the case of non-piezoelectric media e3i3 = 0 and one is

left with the case discussed in chapter 3. One should note that

unlike the case of simple elastic media, these arguments do not hold

for complete inversion (hi = - 1).

In a Bleustein type configuration (6-17-d) is not necessarily correct.
In (6-17-c), if €313
media, otherwise, one has to check the possibility of a wave under
the condition (5-31). o

= 0 the case still reduces to simple elastic

One of the configurations where the difference between simple elastic
medla and plezoelectric media manifests itself most is that of co%?ete

inversion. TFor simple elastic media complete inversion is the same

1
)
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. as the identity and no attenuating waves at the interface are expected.

But if the media are piezoelectrie, this is not necessarily the case:

(N)(II) _ (N)’Y"Tf}" )
pﬁN)(II) = - X(N);£—7253 )
o™ (1m) - W™ () ) | (639
qL(N>(II> = - X‘N)aiﬁﬁyifi ;

i

k= 1,2,3

One obtains a generalized Stoneley condition of an 8x8 determinant
which has to vanish, and depending on the media characteristics one
may or may not obtain attenuating waves.

The condition for Bleustein type waves is the same in case of

identity or complete inversionm.

We shall now try to further simplify the results for cases of
particular symmetries within the media on the two sides of the
interface, -

Following the arguments of chapter 4: If medium I has symmetry
plane which is perpendicular to the x3 axis, its elastic stiffnesses
tensor is of the form given by (4-2). The piezoelectric tensor

eijk (if the symmetry is that df proper 2-fold rotation):
0 0 0 * *

O 0 0 * % 0 (6-20)
* * % 0 0

and for the same symmetry €33 is of the form:

* % 0
* % 0 . (6-21)
o o0 ¥

(N>(n), for X,1=1,2,3 are the same as in the non-pierzoelectric case,
and given by (4-3-a) and (L4-3-~b), S (N>(n) is given by:

sI(I) = (eggy + egyy)sysl (D) |

(N) _ (w)

(N)(I) = (e1322+ e312)51?N> (1) % (6-20-2)
(I> = ll?)sl + 6333[8 ’ (I)] g

(N)(I) = - ellsi 633 83 )(I)] )

and for the second medium:

(N)(II) - n (el3l + esll)glsi(II) | )
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(N)(II) = nyhyhy(e, o, + 312)sls(N)(II) g
<N><n> - 3{e113s§ sl (07 ) (62
sﬁ{’(n) - - o5t - eyl )

The elements of (N>(II) are dependent on the sign of h.h

(N 115 like

(II) for K,L = 1,2,3, and in addition on the actual sign og.h3

For configurations of piezoelectric medig which have a plane of
symmetry which is perpendicular to the x3 axis, where hlh2 = +1 and
h3 = + 1 we would not expect an attenuating Stoneley type waves.

Suppose hlhE = + 1 but h3 = ~ 1. The eighth order polynomial of the
- secular equation is bi-quartic. The complex roots of the quartic

. equatlon may have one pair, 2 pairs or nomtof complex congugates.
The real roots of the quartic, if they exist and will lead tq‘true
attenuating wave, must be all negative. There are three possible

forms for the slowness of attenuating waves:

(N)(I) = is%, iéb, 1s%, 154 )
) (6~23-a)
(N (11) = -38%,-1s°,-i5%,-1s% )
S(N)(I) = is%, iéb, ¢ + isd, -s® 4 16 )
) (6-23-b)
sgN)(ID = -isa, -isb, -s¢ -isd, € -isd )
SéN)(I) = 5%+ iéb, s% - iéb, sc+isd, s-1s2 )
W), . & .b a.b c.d c.da I (6-23-c)
83 (M) =-8" -is", s ~is ,-8 =-is , s -is )
In all these cases the same pattern appears:
S§N>(II) = - ng)(I) (6-23-4d)

One may notice that it is possible to rearrange the slowness

components so that the relationship between the components in the
RS (M) (M) o s

two media will be 83 (11) = 83 (I) , this in turn would cause a

different order of the 'displacement' and 'stress' components, which

may differ in form but lead to the same total displacement and

'stress' vectors.

| Using (6-23-d), (6-22), (4-3):and (6-6), when there is a plane of

symmetry perpendicular to the x, axis, and in this numeration, the

3
'displacement' components are related as followss
N
( V(1) = - 0™ (1) )
3 1 : : )
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o™ (1) = -nynb oM (1)

(N)(II) _ h (N)(I)
p£N>(II) = pﬁy>(l)

(6-24-2a)

If the slowness components are given by (6-23-a), the 'displacement!

components have the form:

(N) .a .b ,e¢ ,d
(I) 1&’1 1&’_1 1&’1 1&’1
1 a . b . C . d
@y top top top (6-2k-b)
a b c d
% o3 03 03

a c d
o o) o) o
and that of the second medium for this case can be obtained by use

of (6-2h-3).

If the slowness components are given by (6-23-c¢) the 'displacement'
is of the form:

N a.b a.b c . d ¢ . d
( )(I) Q’l"'lafl -ozl+1ozl CYl"'lQ’l "CYl'I'lOll

~a ., b a . b c,. d c . d
Q/2+1Q/2 -Q/2+1Q/2 Q/2+1Ql2 -Q/2+1Q/2

e hrieg fuidy oridy

(6-2h-c)
a.b b

aie ofj-ie  efrial  of-id
In the same manner one may obtain the form for pé >(n) when the slowness
components are of the form (6-23-b). '
Substituting (6-24-a) in the definition of qé(N)(n), (5-10-b) and
(5-12), one may obtain the form of the 'stress! vector components
which correspond to the different possible forms of the slowness
components. For all possible slowness forms which are related asg
(6-23-d) one obtains the following relations between the components

of the 'stress' vectors in the two medla-
(N)(I)

a3 ™ (11)

h3qi
qé(N)(II) = 2h3q2
qé(N)(II) - - 3q§(N>(I)
g™ - - ™)

(6-25)

S S e o A S

Substituting in the generalized Stoneley conditions (6-24-d) and (6-25)
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one obtains a set of eight homogeneous linear equations which
are decoupled, or two sets of four homogeneous linear equations
each, in B(N) and B(N)

g @@+ 02 m - o (6-26-2)
Z‘,N lPéN)(I)[A(N)(I) + hlh2h3A(N)(II)] =0 (6-26-D)
T lpéN)(I)[A(N)(I) - h3§(N)(II)] =0 ’A (6-26-c)
ENLL__.l ﬁN)(I)[A(N)(I) - A(N)(II)] =0 (6-26-4)
Zli;:lq' W) (ry a1y - h3A(N)(II)] =0 (6-26-€)
zg_ (N)(I) (N)(I) -hh h3A(N)(II)] =0 | (6-26-£)
211\;:1(13 D ry M) + h3A(N)(II)] =0 (6-26-g)
Zgleﬁ(N)(I)[A‘N)(I) + Ay -0 (6-26-h)

(6-26-2a) to (6-26~-g) hold for Bleustein type wave while instead of
(6-26-h) one has to write: '

thlpgN)(I)[A(N)(I) + A(N)(II)] =0 (6-26-1)

One can see that whereas in the non-piezoelectric media the sign of

is irrelevant, here it has a significance as in the values of

%N)(H)

h_ rather than having only one possible attenuating wave, as in the

3

simple elastic case when h1h2 = =1, here there are three different

Because of the different results for different values of

configurations where Stoneley type attenuating waves are possible
3 axis. h1h2=+l
and h3=l is the case of identity which does not lead to an

attenuating wave. However there may be a non-attenuating wave

29
in media withAplane of symmetry perpendicular to the x

travelling along the interface, the equations of which are:
) (1)
(N)(I) . (A(N)(I) + A(N)(II)> =0 (6-27-3)
q3(N)(I) |
(W)
a), > (1)
and a M ()
™)
()
pg (1)
pgN)(I)

. (A(N)(I) - A(N)(II)> =0 (6-27-b)
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For non-trivial solutions in this configuration, for this special
case, one needs the determinants of the matrices (6-27) to vanish,
either separaiely or simultaneously. For Bleustein type wave
(6-27-b) holds while in (6-27-a) pﬁN)(I) replaces qﬁN)(I).

The determinants of the matrices in (6~27) may be considerably

. simplified: '
2

(33033 + 53) o)D)
(N)(I)

M) 5| e

sgN)( ) pff“(z)

is equivalent to the requirements of the determinant of the
matrix in (6-27-a) to vanish. Similarly, the requirement of the
vanishing of the determinant of the matrix in (6-27-b) can be
simplified to:
2 (N) ()
(c)_'_)_'_css - c)_'_s) ( )(I)P( )(I)
- N N
S3 (T)py /(T)

(N)(I)

=0 (6-28-b)

For Bleustein type wave., instead of (6- 28M_l_gng;has;,&

el
(“)( 1)

(c 3P§N)(I) + e3$p£N)(I))s§N)(I) =0 (6-28-c)

I K

These determinants, when they vanish would lead to non-~attenuating
wave solutions in the case of Stoneley type configuration. The

- fact that no attenuating wave solutions are possible was shown in
the discussion following (6-17) and (6-18). However, non-attenuating
waves may comply with the continuity conditlons at the plane x3 =0
and therefore be solutions of (6-26).

When hlhE = + 1 one does not expect for simple elastic media, in this

symmetry, an attenuating interface wave, regardless of the value of
h (chapter 4). However, when the medium is piezoelectric one does

expect some waves when.h_, = - 1, 'This covers two cases: complete

3
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inversion (hl = h, = h3 = =1), and rotation about the Xg axis, with
inversion (improper rotation).
Two sets of equations obtained from (6-26) are:
N
( )(I)
(N) .
S I AT E I CLOT e (6-29-a)
N
pL(L (1)
and g™y
() ¢
I)
qf?’N) . (A(N,)(I) + A(N)(II) = 0 (6-29-b)
py (1)
a3 (1)
Notice that (6-29-a) is identical to the condition for the
existence of Bleustein wave in the configuration h = +1, h,  =+1,

For Bleustein type wave (h3 = =1) p(N)(I) replaces q% )(I) in (6-29~b)
which makes it identical to (6-27-b)

The two determinants of the matrices (6-29) may vanish simultaneously

or separately. From (6-24) and (6-25) one should notice that for

hl'h2 = +1 and h3 = =1 two forms of components are present: those of
(o), 28(1), 1™ (1) & 0tM(1) (growp 1), ana tnst or oy (),

qé(N)(I), p(N)(I) & p(N)(I) (group 2). If the slowness components

are pure Imaglnary the form of the elements of group 1 are pure ‘

imaginary (multiplied by some complex coefficients) while the elements

of group 2 are real (multiplied by the same coefficients). If the

slowness components are complex they appear in conjugate pairs.'

The corresponding elements of group 1 appear as anti-conjugate pairs,

and those of group 2 as conjugate pairs. i

As a result the vector components of B(N) and B(N), for slowness

components of the form (6- 23-a)

(1), g(2), (3) (4) Y .8 o
For slowness components of the form: (6—23<c):

(D, @, B), W _ & . b & b c.d c.d
By 't B 't B2 By = [+ A -0, ALt CoHC -G ML, (6 30-b)
The total displacement components in the Xy and X, directions and

the total stress component in the x, direction ‘and Q’h would all be

3
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real (multiplied by the same srbitrary complex constant), regardless
of the form of the slowness components. The total displacement
component in. the x3 direction and theelectﬁc'potential and the total

stress components in the X, and X, directions are all pure imaginary
(multiplied by the same complex constant).

The general expressions for the total 'displacement' and total

'stress' vectors at the interface, for Stoneley type waves, are:

7 = 37003 2O0ny oD oa,7 {05y
o - %IEI%]. o (0, %ﬁzl (D) (715, %ﬂ(ém) ™, 1%4 ‘iﬁ—N)BEN)}%@_BM)
e 8 - o, BJ(;N) - 22
P, = (Pl, Fys O, Ph) » Q= (0, 0, Qé, 0) (6_31_10)
e 3 = 0, 5 - 2aM(r) |
P, = (0, 0, P, 0) , @ = (Q}, @, 0, Q}) (6-31-c)

For Bleustein type waves Ph(n) = 0 and the mechanical components
are of the same form as in (6-31) although BiN) is a null vector
of a different matrix from that of (6-29-b).

The above analysis dealt with two possible transformations when
hih, =+ 1 and h3 = -1 (-1,-1,-1) and (1,1,-1). In the case of
improper rotation.about the x3 axis, hlhB = -1, and therefore the
general discussion and (6-9) to (6-15) hold. Since the numeration
" is not the same, one should notice that the different components
do not correspond. However, the results are not contradictory as
they may seem at first sight, and the twbﬂpossible waves (6-31-b)

and (6-31-c) represent the waves in (6-15-a) and (6-1k-a) respectively.

Similar snalysis may be done for the configurations: hihy = -1, b=l

where the generalized Stoneley conditions obtained from (6-26)
lead to: '

at™ (1) - p{V(1) (6-32-2)
pgN)(I) (A (13-4 (11y)0 qé(N)(I) (™ (1) ™ (11))=0
o (1) | 3 @)

oM (1) | ™)
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For Bleustein type wave qL(N)(I) is replaced by»pﬁN)(I).

The total ‘displacement’ and 'stress' vectors are given by:

N b
A P(N)(I)B(N),Z péN)(I)B(N),z pM (@™, 5 ofbe{™))
N=1 N=1 N=1

) (6~32-1)
b b b b )
EEIC UL L RO I RCURS I L

‘For Bleustein type wave the mechanic*al components are of the same
~ form and Py (n) = 0.

When h.h, = ~ 1, h3= -1, one obtains:

12"~
{0 (1) o) (6-32-¢)
qégm)(l) N N PéN)(I) R N
g™ B GO
p(M (1) o™ (1)
The total displacement and 'stress' vectors are given by:
| Zﬁ—ipgN) EN) % = 2§—1qi(m) EN)
= 1P(N) o Zﬁﬁlqe(m) o0 (6-32-4)
ZN_lp(N) EN) | ZNlt_qus(m) J(rN)
le\LlPﬁN)BJ(rN) 211;_ . () (N)

Again, for Bleustein type wave pgw)(l) replaces qL(N)(I) in (6-32-¢)
and the mechanical components are of the same form as in the Stoneley
type wave while‘Pn(n) = 0.

When the symmetry in the medium is not that of proper rotation with
respect to the x

3

stiffnesses and dielectric permittivity coefficients are the same

axis but or rotation inversion, the elastic

as in the sbove discussion but the piezoelectric coefficients tensor

is of the form:
¥ % ¥ 0 0 %

¥ % % 0 0 * (6-33)
0 0 0 * * 0
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The contributions Sg?)(n) which are different from (4-3) and (6-22)
are:

G (@) = ey + ey 1M (1)

)
)
00 - g et | (6-3i-2)
(N)(I) = (e13 + e 5)3 S(N)(I) )
(N)(II) =h {ellsi + ey [s§N>(ID]2} %
S(N)(II) - nleyst + e M[S(N)(II)]E} % (6-34-b)
)

334 (T1) = hy(eq + 35)sls(N)(II)

There is no dependence on the value of h, but there is a difference

3

in the secular matrix components if hl and h2

The secular equation is 1ndependent of either hlh2 or h3, so that

the bi-quartic eguation is the same in both half-spaces and

change their sign.

relation. (6~ £3- d) holds for the slowness components, The relations
ave
between the displacement components in the two half-spaces #8:

2 (11) = np{™M ()

(N)(II) - 1m0 (1)

(6-35-a)
2 () = - e (1)
(N)(II) (N>(I)
™) = - na M)
aM @ = - 1M o35

qé(N)(II) — l é(N)(I>
M) - - ()

Nt e e N et e

The resulting equations'of continuity across the interface are:

ZNLF lPJ(_N)(I)[A(N)(I) ~ hlA(N)(II)] =0 )
ZNlL 1PéN)(I)[A(N)(I) - hQA(N)(II)] =0 %
2§ 2@ (@), + 5 a® ) - 0 %
iﬁ: (N)(I)[A(N)(I) - Ay -0 g (6-36-2)
i lq‘(N)(I) 2™ 1y + n A(N)(II)] =0 § |
%

le\IL q'éN)(I)[A(N)(I) +h A(N)(II)] =0
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Zﬁzi AROIKICE hlA(N)(II)] =0 §
g POV« -0 )

which lead to four different conditions depending on the individual

values of h, and h. in the transformation. Therefore:

1 2
for h, = (l,l,h3)
Pp=% z11\;:3.19:(:\1)(I)BJ(rN) § =3 ZNilqi(N)(I)BEN)
Y ST e 1S MR CISY (63609
Z;LlpgN)(I)BSN) - le; l<13(N)(I) )
ZgzipﬁN)(I)BiN) | - Z§=1 (0 1yp EN)
for h, = (1,-1,h.)
py =% [y i @™ Qf = ¥ rpy0y 0 @p
ol pl® S|
%#Mmm 'ﬁﬁwmﬁ)
2N=1 (N)(I)BS\I) E;qul‘;(N)(I)BfN)
for h, = (-l,l,h3)
Py =2 §=1P£N>(I)BEN) =z Zli; 1qi(N)(I)B(N) .
5t o (s ety (s '(6-36—d)
ryapy (o gy (5"
Z:ﬁ:lpgm (I)BJEN) Zli;:lqiL(N) (e
for hy = (-1,-1L,h ) |
-3 (5o )(I)B(N) @ -5 e ™ s
mpeape (087 e U@ | e
s (N)(I)B(N) zﬁ;lqg(N)(I>B(N)
%ﬁm@m) gt 0"
For Bleustein type waves, in the eighth equation of (6-36-a) qL(N)(I)

is replaced by pﬁN)(I), The mechanical Qisplacement’ and 'stress' are
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of the same form as in (6-36-b) to  (6-36-e) while Ph(n) = 0O,

3"

on the transformation matrix:

for h, = (1,1L,nh )

qé(N)(I) -
o1

for b, = (3,-1,h )

p{M (1)

'(N)(I) . B(N) _ o

qé(N)(I)
‘pﬁy)ﬁl)
for h, = (-1, l,h )

2™ )
<N)(I)

L () _
(N)(I)‘ B 0
(N)(I)
for h, = = (-1,-L,h )

a ™ () .
,(N)

% (1) M _ o,

20 () -
(N)(I)

. B(N) =0 3

'(N)(I)

q2<m(1)

pgN)(I)
qﬁ(N)(I)

o™ @

péN)(I)

pgN)(I)

qL(N)(I)

' (N)(I)
(N)(I)

%
™)
o' (1)

NOJeS
‘N)m

.(N)
% (;)
o™ (1)

and BEN) are the null vectors of different matrices, depending

(6-37-2)
BiN) =0

(6-37-b)
S _ g

(6-37-¢)
3@ - o

(6-37-d)
B£N>: 0

Therefore if the determinants for non-trivial solutions vanish

separately one obtains the'following possible ‘'displacement' and

'stress' at the interface:
h = (l)l)hB)

| BEN) =0 ¢& B£N) 0

Py = (Pl,Pz,O Ph) ; Qi— (0,0, QE ,0)

) (6-38-a)



BS_N)= 0 & BE_N)7! 0 Pi=‘(090:.P3:O) 3 Q%_”(Qi: Qé}oﬁ QL',_) )
hf%L—Lhy’ |
BEN)= 0 & BEN)¥ 0 :~Pi=(Pl’O’O’Ph) 5 Qiz(osgéaqgao)

) |
| 6-38-
3W_ 0 & 3My4 0 P,=(0,P5,25,0) 5 @}=(4},0,0,0}) 3(3 »

hi=(-1,1,h3)

BEN)= 0 & BiN)¥ 0

'Pi=(O,P2,P3,P)+) 5 Q:{=(Ql,0,0,0)
. BS—N): 0 & B.(.N)7[O . Pi=(Pls 0,0,0) 5 Q:;_=(O, Qé: Qé: QL_)

)
; (6-38-c)

hi=(-1,-1,h3)

3=( '3 ',0,0) )
e 3 (6-38-4)

-e

BEN)= 0 & BEN)¥ 0 Pi=(O,O,P3,Ph)
BEN)= 0 & BEN)¥ 0

.o

Pi=(P1,P2,O,O) s Q:;_:(O,O,Qé,QL_)

Since the whole discussion is independent of the value of h.3 we' can
choose a value for h., so that hlh = - 1 and we can compare (6-38)
~with (6-14) & (6-15). (6-38-2a) corresponds to (6-15-a) & (6-1k-2)
(6-38-b) corresponds to (6-15-b) & (6-14-b), (6-38-c) corresponds
to (6-1k-c) & (6-15-¢) and (6-38-d) corresponds to (6-14-4) &
(6-15-4). | | |

The transformation in (6-36-b) (and (6-37-a) & (6-38-2)) may describe
the identity, if h3 = +1. In such a case, if there is a solution,

it would describe a non-attenuating wave travelling parallel to the

plane x, = 0.

3 ,
For Bleustein type waves QL(N)(I) is replaced by pgN)(I) and the
mechanical components are of the same form as (6-38) while Ph(n)zo

for all configurations.

When the plane of symmetry (of proper rotation) is perpendicular to
the x, axis, the elastic stiffnesses are given by (4-31), the -

dieleitric permittivity coefficients are of the form:
¥ 0 0 _
o * x (6-39-2)
0 % % o '

the piezoelectric constants are of the form:
¥ % ¥ ¥ 0 0
6 0 0 o x * (6-39-b)
o 0 0 6 * x/ |
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When the plane of symmetry is of rotation inversion the only
coefficients which are different in form are those of the piezo-
electric tensor., Instead of (6-39-b) this tensor has the form:

* % x % 0 0 - (6-39-c)

For each of these symmetries one obtains a bi-quartie secular
' equation. In the case of (6-39-b) it is dependent on the sign of

both h2h3 and h,, while in the case (6-39-¢) it depends on the

signs of h and h, only, and is independent of h

3 1’

For the case (6-39-b) the equations of contimuity are simplified to:

o lpgN)(I)[A(I)(I) h A(N)(II)] =0 (6-40-2)
” lpéN)(I)[A(N)(I) + A () = o (6-40-b)
N 1P gN)(I) (1) + n A(N)(II)] =0 | (6-%0-c)
e 2@ ™) - Ay - C (6-k0-)
;’ (N)(I) (1) + A(N)(II) | (6-40-e)
o qé(N)(I)[A(N)(I) hlh2h3A(N)(II)] -0 (6-40-£)
; '(N)(I) A(N)(I) A(N)(II)] =0 (6-40-g)
2§:qu(N)<N) M (xy + A(N)<II)1 -0 (6-40-h)
For the case (6-39-c) the equations of continuity are:
E§ 1P§N)(I)[A(N2(I) ¥ h3A(N)(II)] =0 (6-41-a)
Eﬁ 2@ M) - a®an) - o ©(6-b1-b)
T 1P§N)(I) Ay - h3A(N)(;I)] = 0 (6-41-c)
ZﬁzipgN)(I)[A(N)(I) (N)(II)] =0 (6-41-d)
7” 1q1(N)<I)[A<N)(I) h3A(N)(I1)] =0 (6-b1-e)
zg ™ @ ™ + 0™ an) - o (6-11-F)
gy M@t - h3A<N)(II)] _ 0 (6-l1-g)
g 1qu(N’<I>tA(N)<I) + () = o (6-11-1)

The analysis for each of the different transformations in this symmetry

is similar to the cases of media having a plane:of symmetry
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perpendicular to the x3 axis.

For Bleustein type waves p( )(I) replace aj, (N )(I) in (6-4%0-h)
and (6-41-h).

‘Jhen the plane of symmetry is perpendicular to the X, axis the
secular equations are not bi-quartic, but similar to the non-
piezoelectric case they are separable.

The piezoelectric constants are of the following forms:

If the symmetry is of rotation:

O -0 0 % 0 %
x % % 0 % 0 . (6-h2-a)
6 0 o0 * 0o =
and if it is symmetry of inversion rotation:
¥ ¥ ¥ 0 % 0

0 0 o0 * 0o x|} (6-42-b)
¥ x ¥ 0 * 0
. The dielectric coefficients are in both cases of the form:

* 0 %
0 ¥ 0 : (6-k2-c)
* 0 %

If one calculates the elements of the secular matrices in the case

(6-k2-a)

S(N)(n) _ g (N)(n) _ S(N)( ) = Sgll\l) (n) _ 0 | (6-143-2)
- and in the case (6-42-b) :
s () - S(N)(n) -5 m) - o (6-143-b)

Hence in (6-42-a) case one obtains a secular equation which mey be

written as:

s () (m(n) sW@ s ()
(N) (N) ) <N> !=° (6-k-2)
(n) @l s @) - st ()
and in the case (6 h2 b):
NP« sV - sy sl
<N)(n) <N>(n) sV )| =0 (6-1-b)
S:S\I)(n) S(N)(n) (M ()
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(6-Lh-a) leads to two quartic equations, the first of which is
bi-quadratic, and the second one having third and first order
terms. These two equations.may or may not have complex roots,

depending on s,, the elastic stiffnesses and the density. The

lD
- 'displacement' components associated with the vanishing of the

first determinant of (6-44-a) camnot be obtained from (6-6) since
all .the cofactors vanish, however if one uses different cofactors,

one obtains for the 'displacement' in the case (6-42-a); (6-45-2)

of )25 ()0 m)ep V) = 5y (1 m):00-2Po, (50

1,2 0y (1 m)-[sE) ()12 580 ()5l ()

(6-45-D)
oM ):2" (2) 2™ (2):0{™ (1) = 0:-5{ (n)D, (,1):0:5{ (n)D, (1, m)

N3,k D, (N,m)- s‘“><n>s(“><n> (“>(n)1

The decoupling of the displacement components Would‘cause similar
decoupllng in the solutlons for the amplitudes, analogous to the

non-piezoelectric case (with similar symmetry).

In (6-4L4-b) one obtains a quadratic equation from the factor S(N)(n),
the solution of which is given by (4-17). Hence under the restriction
(4-16) one slowness = component is pure imaginary. The rest of the
secular equation is a sextic equation. The treatment from here on
is the same as for non-piezoelectric media., The 'displacement!
components for this case are decoupled in a different way (stemming

.from the decoupling of the secular egquation:

(12n> P( 2n) P( )(n):p(l)(n) = O:p(l)(n):O:O " (6-46-a)
2 . Iy 2

P P

2" (a): p(N)(n> oM my:p{M () =
' (N)(n) (N)(n)

5Py s ()
(N)( ) (N)(n)

sV s(y ()
(N)(n> (N)(n>

(6-16-b)
N=2,3, I

This decoupling leads again to a decoupling of the equations for
the amplitudes.

The results obtained for proper rotations are dependent on both the



signs of h1h3 and h2, while in the case of symmetry of rotation-

inversion the results are dependent only on the signs of hl and h3.
In all these cases piezoelectricity has contributed to the
modification of the mechanical results. One can see that the

possible forms of the mechanical waves do not change, although

the wave parameters do.



o1
7. THE NUMERICAL CAICULATIONS,

In order to calculate the generalized Stoneley wave velocity in a
given configuration a program was written in FORTRAN IV to be used

‘on the CDC 6L00 at the Imperial College, and later modified to be

run on IBM 360/75 at UCSB (University of California,Santa Barbara).

. The program is based partially on a brogram written by T.C. Lim [1968]
& Lim & Musgrave [1970]. ’ ‘

The program is written so that one can calculate either the slowness
(velocity) of a genefalized Rayleigh wave in a given direction of an
anisotropic medium, or, one can find the slowness (velocity) of a
generalized Stoneley wave in a given direction at an interface
between two anisotropic media. The two media on the two sides of

the -interface can differ in any or all of their properties.

Begides the slowness, the output of the program gives other information.
about the generalized Rayleigh or Stoneley waves, such as displacement

and stress components at the free surface or interface, respectively.

The input to the program includes the physical parameters of the
medium or media involved, its orientation with respect to the free
surface or interface coordinate system, and the choice of either

Rayleigh or Stoneley waves.

In the first part of the program the appropriate transformations
are dore so that the elastic stiffnesses of the media involved would

be given in.the interface coordinate system.
The program then goes through the following stages:

1. Calculation of the body velocities in the x direction at the
free surface or interface. This involves the solution of the

secular equation setting 35=O.

For velocities less than the lowest body wave velocity:

(
3

solution of the secular equation for a given Sqs and choosing the

2. Calculation of the slowness components s N>(n). This involves

appropriate three roots by %he sign of the imaginary part of the

solution.
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3. Calculation of the displacement vector components pﬁN)(n). These
are the null vectors of the matrices S(N)(n).

2k
4. Calculation of the stress vector componénts qéN)(n). This is done

by using the definition (2-15).

5. Calculation of the determinant (2-19) for the generalized Stoneley

waves (6x6), or a similar one for the generalized Rayleigh waves (3x3).

6. Minimization of the absolute value of the determinant for the
generalized Rayleigh or Stoneley waves. The value of the velocity
for which the determinant is minimum is taken to be the generalized
Rayleigh or Stoneley wave velocity., The interval of search is either

dictated with the input or decided automatically as a function of

the lowest body wave velocity.

7. The amplitudes are calculated as the null vectors of the matrix

of the generalized Rayleigh or Stoneley condition.

8. Calculation of the total displacement and stress at the interface.

There are four main numerical problems in this process:

1. The solution of a sixth order polynomial for its roots.

2. The calculation of 6th order determinant. |

3. The calculation of mull vectors of 3x3 and 6x6 matrices,

L4, The minimization of the function obtained by the determinant,
since one has to find the tips of very narrow minima (which may be
cusps). Sometimes the minima are very close, and are diffidﬁlt to
distinguish.

The problems were solved as follows:

1. The gixth order polynomial is checked if it is bi-cubic. When
it is one can solve the cubic equation analytically and improve the
result by use of Newton-Raphson process, and then take the square

root of the solutions of the cubic. The formulae# used were taken

so as to reduce the numerical error: .

If XS + ax + b = 0 is the reduced cubic eguation to be solved, and

if bz/h>> a3/27, then in obtaining the auxiliary variables:

A= 3[;/2 + véz/h * a5/27 , B= 3{b/2 - véz/h + a3/27 one faces




93

the prbblem d loosing accuracy due to subtr%%ion of like numbers.
For this reason one multiplies and divides by the conjugate to
avoid subtraction. - For instance, if b> 0, A would be very
inaccurate in its present form but would be more accurate if we
take: A = AXB/B, since AXB = -a/3, and B involves additisn pathar
than subtraction of two like numbers:“When b<D and.b,/h>>a3/27

one uses B=BxA/A=-a/(3A) for better accuracy. .

When the sextic equation is not bi-cubic one has to use one of the
numerical methods available. . The one method found to be most suited
is the Lin-Bairstow method (Young & Gregory [1972]). In this method
one seeks quadratic factors of the polynomial with real coefficients
to be solved. The guadratic factors are then solved analytically by
formilae which minimize the numerical error (similar to those

described for the cubic equation). .

Using:
n+l Lo ' n-1 . .
T . (x? + px +q) & bl 4 b x4+ 1 (7-1)
i=1 * i=1 * o owtl

bn and bn+ are looked upon as functions of p and 9, and one seeks

1
the roots of these functions by a two variable Newton-Raphson method.
The Lin-Bairstow method succeeds if the initial guess for p and g

is sufficiently close to the right value. Once one quadratic factor

is found one looks for a quadratic factor of the polynomial of the

’ (n-2)th degree, unless it is either a first or a second order

polynomial. This repetitive divisien may give rise to a serious loss
of accuracy in the value of the coefficients of the polynomials in
the process. This problem is by-passed by taking several iterations
of a Newton-Raphson process with initial guess of the roots found.
One has to modify the N-R method when the roots are very close,
approaching a double root solution.

The initial values for the quadratic factors are taken to be the
elements on the diagonal of the matrix, the determinant of Which
forms the secular equation. This guarantees that if the secular
equation is factorable (as in the case of symmgtry with respect to
the %, axis, dealt with in chapter 4), no iteration is needed. In

those cases where the secular equation is not immediately factorized,
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these are still good initial values because the elements on the off

diagonal have in most cases less weight than the diagonal elements.

2. It was quite tempting to try and use the P petrix (2-24) as

the simplified generalized Stoneley condition rather than the matrix
of coefficients (2-18) which is a 6x6 matrix.. However, besides the
 reason given in chapter 2, namely that calculation of FMN does not
allow for 'leaky' waves, there is a numerical reason for working with
the 6%6 matrix. In the calculation of each element of P one has

to have 6 multiplications and 3 additions of elements of the 6x6
matrix (the total of 54 multiplications and 27 additions). These
caleulations done in floating point arithmetic greatly reduce the
accuracy of the elements of FMN, so that when one calculates the

determinant of FMN it would have a very large error in it.

the
Usingﬂ&auss elimination process with total pivoting strategy (Conte

& de Boor [1972]) on the 6x6 matrix assures us of least errors in
the calculations and the matrix is diagonalized with 5S4 multiplicationy
divisions and 54 additions/subtractions. The determinant is the

product of the elements on the diagonal.

It is a very good policy to use partial double-precision (Conte &

de Boor [1972]) in the calculation of sums of products either in
the calculation of the elements of FMN, if one chooses to do so, or
in the process of back-substitution in the Gauss elimination process.
This method reduces considerably the errors due to the fact that the
number of digits in the mantissa of an exact product is the sum of
the digits in the mantissas of the multipliers, since in this method
the dduble~precisibn does not round-off after each multiplication
‘but after the addition of all the products. This, however, has not
been implemented in the program. The original program was written
for.running on CDC 6400 which has a single precision'word length of
6h bits. This was accurate enough for most of the calculations and
a partial double precision would have improved the results and maybe
would have agllowed some results which could not be obtained otherwise.
However, when the program'wds run on IBM 360/75, whose word length is

32 bité, it was found that all calculations had to be done in double-
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precision in order to obtain any meaningful resﬁlts. The improvement
of the addition of products would now require a special subroutine
which will do the calculations in two double-precision words. This

seemed unjustified.

3. Once & matrix is triangularized (by a Gauss elimination process)
it is quite simple to find a null vector of the matrix and +to
determine if there is one orthogonal direction to the matrix, or, if
the rank of the n x n matrix is less than n-1, i.e. n-m, then we
should look for the m independent null vectors of the matrix. This

is done by back-substitution, and assigning an arbitrary value to X,

There are iterative methods which may calculate the null vectors more
- accurately than this direct method (Wilkinson [1970]) but they involve
considerable calculations. The finding of the null wvectors of the

. (W)
matrix Sﬂk

(n) is done many times in the process of seeking the
interface or free surface velocity and it seems like the cofactor

method is sufficient.

There are problems which had to be resolved of how close two rcots
should be one to the other in order to be considered equal, in which
case we are locking for two independent null veectors of the same
matrix. These problems were solved by choosing an arbitrary value:
If |s§N)(n) - séM)(n)l <1077, Since the accuracy to which we
calculate the slowness components is less than this number, it may
seem too strict a value. But when higher values were taken for the
difference the function which described the absolute value of the
determinant had a discontinuity which seemed numerical and was

eliminated once the value for closeness of roots was lowered,

4, The minimiiation method is essentially the Golden Section method
described by Lim [1968] and Guilfoyle et.al [1967]. A use was

made of the properties of the function involved. It was observed,
and for generalized Rayleigh wave proven (Barnett et al [1973]) that
for velocities greater than the interface/surface wave velocities,
the function is monotonic' decreasing. Therefore the slope of the
function is of the same sign and changes at a rate which varies very
slowly up to the value of the Rayleigh or Stoneley wave velocity.
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One should note that at the minima involved there is, for most cases,
a discontinuity in the derivative of the function, since we are
looking for the minima of a function which is the absolute value of
the Rayleigh/Stoneley condition function. The interval over which
one looks for the minimum is found by checking the slope of the
function. This guarantees that if there is a narrow minimum which
falls between two points of calcuiatiOns, the program would at least
sense that there is a change in slope. In Lim's program the
indication of a root was the minimum value of the function at the
calculation-poinfs. The change was made because this minimum value
often happens to be the body wave velocity or near it, because of
the narrowness of the minima at the surface/interface wave velocity.
There are very few restrictions for use of the Golden Section method
for finding the minimum of a function but a necessary condition for
this method to work is that over the interval in which one searches
for the minimum the function is unimodal. A continuous function f(x).
is unimodal over an interval [A,D] if there exists a point XOEI[A,D]
such that the function is strictly decreasing (increasing) on [A,xo)
and strictly increasing (decreasing) on (XO,D]. When the difference
between Rayleigh or Stoneley velocities and the lowest body wave
velocity is larger than the intervals over which the first rough
search is done, the function is unimodal. But if this difference in
velocities becomes smaller than the interval of search the function
may not be unimodal in any of the intervals and therefore the Golden
Section method does not work very well, For such an interval it.is
advisable to check the square of the absolute value of the determinant
rather than the gbsolute value. Although one loses in accuracy by
taking the square of the function one obtains a smoother curve which
is more suitable for a cubic fit method (Guilfoyle [1967]) of
minization of a function,

The Golden Section method is based on the theorem on optimal one-
dimensional maximization (or minimization) (Bellman & Dreyfus [1962]).
This theorem states that if Fn represents the interval of maximum’
length over which it is possible to locate the minimum of a unimodal

function f(x) by calculating the value of f(x) at most n tiﬁes,

Fn= Fn 1t Fn 0y M= 2. Fn are Fibonacei numbers. For instance,
F20> 10,000. Therefore, the position of the minimum can always be
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located within lo'hof the original interval in at most 20 caleulations.
The connection between the Golden Section and Fibonaccel numbers is

. . . . n : n
given in Binet's formula: F = [1//51{A+/5B) /217 [1/8511 (1-45) /21",
For large values of n the second term may be disregarded and one may
approximate F_ ~ [1/4511 (1445) /21", and therefore F, ~WB-1)F = G¥F
(with G = ,618034). This dictates the next two points of checking
B and C, the values of the function within the interval [A,D]

Foq= [A,C] = [B,D], B= (1 -G)(D-A)+A, C=A4A+G(D- A).

If we are not sure that the function is unimodal within the initial
interval of search then we cannot be sure of blocking the minimum.
If this is the case, the method of cubie fit may be more suitable.
We still have to have only one minimum within the interval of search
but the functiqn may have one maximum as well. This slackening of
restriction of unimodality is very important, especially in Stoneley
wave velocity calculations where the veloeity searched for is not
very different from one of the body wave velocities. The idea of a
cubic fit is a regular curve fitting, in thié case to a cubie
polynomial, which may be done with only 4 points - and then one
obtains the interpolation polynomial (perfect fit), or, best fit,
which is done withh;east square method (5 - 10 points). One then

£inds the minimm of the cubic a_ + a x + azxz + a3x3 by

If ag % 0 K = [ - a, + V«az)z - 3aja, ]/(3&5) (7-2-a)

If a, =~ 0 & a2> 0 X .

3 min~ as/F ay * VQaz)z - Sajaz]  (7-2-D)

Otherwise no cubic minimum can be determined,

The cubic fit method involves solution of a system of four linear
equations for each approximation., This may beimuch more lengthy
operation than the Golden Section method and is resorted to only when
thé unimodality of the function ig in doubt - i.e. - if the initial

search interval is close to a body wave velocity.

The way the program is written it may easily be converted to the
calculation¢ of different conditions at the interface from the

generalized Stoneley conditions - conditions of continuity of
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&isplacement and stress aéross the interface. Df. C. Atkinson has
suggested the use of this program for the calculation of the rate
at which a crack would freely propagate along a plane. This
however is not the subject of this present work and may be done at

a later date.



99

8. NUMERICAL RESULTS.

Calculations were done with the program deseribed in chspter 7 to
obtain the generalized Stoneley wave velocities in different

configurations, and different directions.

The program is designed to take ahy two ﬁedia'for the two half-
spaces. By checking the results one may obtain the generalized
Stoneley wave velocity, if such a wave exists. One may also

obtain waves which coﬁply.with the welded conditions at the interface
but for which there is no attenuation, or attenuation of some of

the componenté, in one or both media.

Problems arise when the imaginary part of sgN)(n) is much smaller

than the real part of the slowness components in the Xg direction.
These cases, however, exhibit little attenuation with increasing
distance from the interface, and therefore do not give rise to

generalized Stoneley waves localized to the interface.

Although the analysis in chapters 3 and 4 has a significance of its
own, it serves as an excellent check on the numerical results.
Since the program is independent of the symmetries in the media,

or of hih’ one expects that in the particular cases where these
symmetries exist, the patterns of results, consistent with the
analysis, should be obtained.

Other checkes on the program were made by comparison with known
calculated results by W.W. Johnson [1970] and Lim & Musgrave [1970a]
and [1970b].

W.W. Johnson gave ranges of existence of generalized Stoneley waves
when the media on the two sides of the interface are cubic, '
orthorhombic and monoclinic, of the same orientation with respect
to the interface axis but having differeﬁt elastic parameters.

He showed that the range varies with direction., The ranges are
given in terms of c(l)/c(g) as functlon of p(l)/ p( ) for specific
ratios of elastic stiffnesses c(l)/c and 0(2)/0( 2)

Iim & Musgrave reported calculatlons of generalized Stoneley waves
at interfaces between cubic media of the same elastic parameters
but different orientation with respect to the interface axes.

The calculations were done on a hypothetical cubic elastic medium



100

having the following elastic constants referred to the principal
axes of. crystal symmetry:

1" l?.lxlOloN/lVf?, c 2;12.39::10101\1/1\42 and ¢))=3. 56XlOlON/M2

€1 1
L . B 10
(anisotropy factor ¢ = cll—cl2-2cML = - 2,41x10 AN/M2)

The density p = 8.95gr/cm3. Using the notation of chapter 3,
xi(n) being the crystallographic coordinate system of medium n
(n=I,II) as referred to in the interface coordinate system, X, .
The transformation matrices relating the coordinate systems are

in medium T:

x, = cos o(I) sin (I) O
-sin ¢(I) cos o(I) O xi(I) (8-1)
0 0 1
and for the second medium: -
x, = cos p(II) sin (II) O |
sin (II) -cos (II) O | xi(II) (8-2)
0 0 -1

where p(n) is a specified angle of rotation.

The generalized Stoneley wave velocities are given as a function
of o(II) for different constant ¢(I).

One should note that the equations of generalized Stoneley waves
in-anisotropic media are dependent on each of the elastic stiffnesses
and densities in the two media, which in general involve 4k
parameters. Therefore, for any instructive investigation of the
variation in velocity and range of existence of generalized

Stoneley waves one needs to hold most of the parameters constant.

One obvious way to reduce the number of parameters is to have

the same crystallographic structure on both sides of the interface

with known relation between the two media involved.

Johnson kept the orientation of the media constant and varied the
ratios of only one of the elastic parameters and densities. This

is a continuation of Scholte's [1947] approach for isotropic media
and does not take into account the main difference between lsotropy
and anisotropy, namely, that of change in physical properties of

a medium with direction.
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It is this difference between isotropy and anisotropy which is
the basis to Lim & Musgrave's work - they investigated the
existence of genefalized Stoneley Wavesbas a function of change
in relative orientation only. 1In the extreme case of isotropy’
both the isotropic bulk waves comply identically with the
welded conditions, but no attenuating wave would propagate. The
introduction of anisotropy accounts for the existence of the -

interface waves.

- One of the questions Johnson's report raises is whether the same
ranges of existence hold for the ratios quoted but dlfferent *
elastic constants c<?>/c(n) in the media involved. A set of
calculations was done with the elastic parameters quoted in the
paper. The calculated results correspond with those obtained by
Johnson. Another set of calcwlations was done with aluminum on
one side and a hypothetical medium on the other side of the
interface with (2)/ 1) _ = 3 and 0(2)/0(l> = 2.2 . This represents
a p01nt which is well inside the range of ‘existence for 0° and

15° angles of rotation. cgg)/cll was chosen arbitrarily to be
different from the ones given. No generalized Stoneley wave

was found, which emphasizes the need for more comprehensive
investigation of the dependence of range of existence on varlatlon

in the various elastic parameters.

The main concern of the present work was the understanding of the
dependence of interface waves on the relative orientation of the
media involved. For this purpose several sefs of computations were
made, the first of which was similar to Lim & Musgrave's set of

computations.

The transformation matrices relating the principal erystallographic

axes, xi(n), and the interface axes, X , are given by:

X, = [ cos o(n) sin cp(n)1 0
-sin @(n) cos ¢(n) . O xi(n) (8-3)
o 0 1

. n=I,TI

For medium I (8-3) is the same as (8-1), but, in general, the
transformation (8-2) is different from (8-3) for n=II, and they
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are related as:

| (8-1)

cos (II) sin w(II)' 0y /1 0O 0\/ cos o(II) sin o(II) ©

sin o(II) -cos o(II) O| =[O0 -1 O || -sin ¢(II) cos (II) O
o . 0 -1 0 o -1 0 0 1

Therefore, the Lim-~-Musgrave configuration may be obtained from the
configuration used in the program described by a 2-fold rotation
about the Xl axis, The two configurations coincide when medium. IT

in the configuration used is invariant under 2-fold rotation about -

the x. axis. ;This is the case for the medium used in both ILim-Musgrave's
"~ and the present work,* While I-M obtained the longitudinal waves,
corresponding to B(N)—O (Fig {2), the waves calculated here (described
in flgs.(8-l)7(8-5) are transverse and correspond to BEN)=O (fig. (k-1)).

Fig.(8-1) shows the results obtained for the different configurations

with the lowest body wave velocities and the Rayleigh velocities
given in each direction. The configurations checked were such that
half space IT was rotated at angles (II) = 0%0-145° (at intervals
0f-5°) and in half space I the angles cp(I) = 5° 10° and 20° were
taken. '

Each curve of constant ¢(I) merges with the slowest Bulk wave
veloeity curve. Results for configurations where the continuation
of the generalized Stoneley waves beyond the bulk wave velocity
were not conclusive, although it seems that there exist
configurations for which one can find 'pseudo'generalized Stoneley
wave similar to the pseudo generalized Rayleigh waves described
by Lim [1968] and Farnell [1970]. )

Fig. (8-2) describes the imaginary éarts of the slowness components
in the two half-spaces in the 20° configurations. The larger the
imaginary part in absolute value the stronger the attenuation. The
equations for the slowness components in the x3 direction are bi-
cubic which give rise in most attenuation cases to one pure imaginary
and a palr of anti-conjugate components, having the same imaginary
parts: J{S(N)(II)} = J{S(N)(I)} J{S(E)(n)} —4{8(3)(11)}

As the angle of rotation increases beyond 30 one of the slowness
components in medium II is real and therefore there is one non-
attenuating component in medium ITI. For angles less than 150 there

is one non-attenuating component in medium I, Therefore, the range

¥In the interface coordinate system the elastic stiffness matrix for a

cubic medium rotated about the x, axis has a tetragonal form (see p.53).

3

S = -
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of existence of the generalized Stoneley waves, with o(I) = 20°

is approximately -3OQ< m(II) <-15°. This range is in the
neighborhood of the symmetric configuration ¢(II) =-20°,

An auxiliary program was written for symmetric cases only, in

which the input, besides the elastic components of the medium I
investigated, includes the transformation matrix hi" For the
generalized Stoneley wave velocity calculated, the values of

two other determinants are given, those of the simplified generalized
conditions (chapter 3, table (3-2)). In this way one can find out
the character of the generalized Stoneley wave obtained.‘ In each
determinant only three vectors are involved, rather than six in

the general program, therefore one expects more accuracy in the
calculations done with the auxiliary program. The fesults of a

set of symmetric calculations for the hypothetic medium is

summarigzed in fig. (8-3), together with the lowest bulk wave

velocity and the Rayleigh velocity for each direction. Fig.(8-4)
shows the real and imaginary parts of the slowness components

for the symmetric cases o(I) = - ¢(II) as a function of the angle.

of rotation ¢(n). For the hypothetic cubic medium used in the
calculations, J(s(l)(l)} = J{s(l)(II)} is a decreasing function of
the angle (in the interval 0° s p < 15° ) while J{s( )(I)} = J{S(3ZI)F
Jﬂs( )(II)} = J(S(3)(II)} is an increasing functlon of the angle.
The range of ex1stence is much larger than in the case discussed

in fig. (8-2) and includes the open range 0°< ¢ < b5°

The attenuation of the total displacement and stress depend on the
relative size of the displacement components as well as the magnitude
of the imaginary part of the matching slowness components. 1In
fig.(8-5) the attenuation of the (normalized) displacement components
is given as a function of distance from the interface for the
“configuration when (I) = - (II) = 0°.

It is interesting to note that although one does not expect to obtain
a generalized Stoneley wave for the case of no rotation, since this -
represents an infinite medium without an interface, one does obtain

a pseudo-~Stoneley wave veloéity with one honQattenuating slowness
component which is lower than the lowest bulk wave velocity. The
explanation for this is in the shape of the slowness surface for

cubic media with negative factor of anisotropy (fig. (8-6)). In
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(8-6) the lowest bulk wave velocity is obtained where the outer-
, axis, (at (1)).
The other root obtained is the intersection of the slowness surface

most sheet of the slowness surface intersects the s

with the line §=84 (2), which has two real intersections and four
imaginary ones. The energy flux of this wave is parallel to the
interface.

When the cubic medium has properties such that the outermost sheet

of the slowness surface is the cirele si + s§ = si there is a bulk

wave with slowness sTl which complies with the con&itions for a
Rayleigh wave and generalized Stoneley wave in all directions. Both
the Rayléigh and Stoneley waves would have at least one non-
attenuating component. An example of such a medium was calculated,

fig. (8-7). The medium taken was KF (Potassium fluoride) with
10 " - 10 10
ey, = 6.568x10 N/Me, ey, = 1.hox10 N/Me, ey, = 1.28x¢10 N/M2

(anisotropy factor c = 2.53N/M?), and-density p = 2.h8gr/cm3.

Since symmetric configurations seem to have a wider range of
existence than non-symmetric configurations, additional calculations
were done in symmetric configurations of another medium,

New results were obtained for spruce, which is orthorhombic and
very highly anisotropic. The choice was made because of the high

anisotropy. The elastic stiffnesses taken for the spruce are:
¢,=0.078x107N/1f, e, = 0.0Mx10" WA Cag = 16.3x10° N/,
O.OlL3xlOlON/M2 s Cp3 O.O3lxlOlON/M2,

~0.020x10%K /ME, c
O.O6'2xlOlON/MZ, cee O.OOlelOlON/Mz.

22

Il
I

12
¢,,=0.0TTx10WAF, e

13

55
The density taken is p = 0.431 gr/emS.

In fig (8-8) the following results are sumarized: The lowest bulk
wave velocity is given in the X direction when the medium principai
axes are rotated with transformation (8-3), o(I) from 0° to 90° at -
intervals of 50. The Rayleigh wave velocity is plotted, as well

as the generalized Stoné;ey wave velocity where the medium in the
second half-space is spruce as well, and the transformation matrix

LR =

is given by:
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Here, again the auxiliary program was used in order to calculate
the value of the simplified generalized Stoneley condition

determinants, as well as condition (2-19).

In the calculations done generalized Stoneley waves were found,
when present, to exist between the Rayleigh wave velocity (shown
to be unique by Barnett et.al [1973]) and the lowest bulk wave
velocity, in a narrow band, closer to the bulk velocity than to
the Rayleigh velocity. Since we are looking for attenuating waves
when we search for generalized Stoneley waves, we want complex
intersections of real lines s=s. with the slowness surface. This

1
type of intersection is possible only when the slowness s. is

outside of all the slowness sheets of the slowness surfaci, or
the generallzed Stoneley wave veloclty has to be lower than the
lowest body wave velocity. On the other hand it is not self-
evident that generalized Stoneley wave velocitie; should be higher

.than generalized Rayleigh velocity.

For cases explored the general behaviour of the determinant of the
generélized Stoneley condition as a function of the wave velocity,
is consistently very similar to that of the determinant of the

generalized Rayleigh condition.

In fig. (8-9) the logarithm of the function deseribing the Rayleigh
condition for the hypothetical material rotated with transformation
metrix (8-3), ¢ = 5°. TFig (8-10) describes the behaviour of the
logarithm of the generalized Stoneley condition determinant when

a symmetric configuration was taken with ¢(I) =¢(II) =

The simplified Stoneley wave condition determinants calculated
exhibit behaviour which is not always exactly the same as the _
generalized Stoneley wave condition (2-19). While the determinant
for the non-trivial values of BiN); with BEN)=O, (rig. (8-11))
exhibits exactly the same behaviour as that of the generalized
Stoneley condition (8-10) for the cubic medium investigated, the
determinant for non-trivial B(N) with B(BDO(flg. (8 12)) shows a

monotonous behaviour.

For the orthorhombic medium taken, spruce, both determinants
minimize simultaneously, but the determinant associated with non-

' Zero BEN) is several orders of mdgnitude less.than that for the
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non-trivial BSN) (characteristically 7 orders of magnitude

difference).

Many more computations are needed for the complete understanding

-of the ranges of existence of generalized Stoneley waves and the ‘
dependence of the velocity on the configuration. For Lim & Musgrave
configurations some degree of misorientation is necessary for the
existence of generalized Stoneley waves. However, there is, in

all cases tested, a maximal degree of misorientation beyond which
no such waves exist. Symmetric configurations seem to have a
larger range of existence than non-symmetric configurations.

Additional calculations should be illuminating.

Further investigation is still needed to find the dependence of the
range of existence on the degree of anisotropy both in Johnson's
and Lim & Musgrave's approaches. In both approaches, as the dégreée
of anisotropy. increases so does the range of existence. But there
is a degree of anisotropy beyond which the range of existence

diminishes.
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fig. (8~2) Hypothetical medium, imaginary parts of the

slowness components of interface waves
w(I) = 20°,
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Fig (8-4-a) - The absolute

, value of the imaginary part
see/m, of the pure imaginary (or
real) slowness component.
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CORRIGENDA

p.3 line 31 ~ Hypothetic should read Hypothetical
p.11 18t line BASIS " " BASIC
. t 1"
p.13  (2-12-a) ¢ g3kl chl(n)
. line 6 obtaines " " dbtains
p.1+  (2-18-a) 3 3 ’
2 A(N) 1 1" 2 (A(N)
N=1L N=1"
(I1) = 0 " " (II)) =0
(2-18-p) 3 3
Z A(N) 1" 1" z(A(N>
N=1 N=1
, (II) = 0 " " (I1)) = 0
p.16  (2-25) 3 | L 3
‘ z ' pX
n=1 N=1
line 15 Cadwick " " Chadwick
(2-29) 3 L, 3
PN : z
N=1 . M=1
line 21 - (2-28-a) " " (2-18-a)
(2_30) ’ pl({M) " " pl(:M) (II)
. 3 " w 3
p.17 line 19 ZN= 21:1
P.23 line 19 . componenents mooon components
p.26°  line 19 insert has after while the other
p.32 2nd line
from bottom’ intervace should read  interface
p. 3B line 13 ‘
from bottom stiffnesses " " stiffness
p.38 1line 6 Where " " where
‘ line 8 though " " through
P.39 line 11 delete co at the end of the line
p.47 line 17 x . should read Xy
2nd line = insert after moves: with energy flux

from bottom

i et D P e s ey 5 o e asen s o as s o~ e



p.b7 line 6 stiffnesses should read  stiffness

p.58 1line 5 Hoock " " Hooke
‘ line 7 [1959] . " " [1969]
line 11 Gulayev o " Gulyaev
p'6l (5'17'3) )'l' ~ Ll- ~
Z F/ 11 1" Z(F
N=1 N=1
(II) = 0 " " (II)) = 0
(5-17-b) L ' ' 1
% -G " " z(-a
N=1 Nl
(11) )= 0 " " (I](Z)) =0
(¥ N), -
- r 1 n 1
(5-18) a' (1) qr (T)
p.64t  1ine 13 iterior " " interior
N
p.65  (5-35) o' (1) " " qé( )(1)
p.T4+ 2nd line comlete " " complete
‘ from bottom
p.76  line 11 non " " none
line 12 to true " b to a true
p.83 line 13 is " " are
p.92  line 28 formilaes » " " formulae
p.93 1lst line  subtration " " subtraction
p.9% line 27 sbsolute " " absolute

p.107 on the (II) axis add -45° below the last point -
add - sign to 300, 35° and 40°

p.110 line 4 in Fig (8-k~b) - comples should read complex

p.115 line 1 Hypothetic should read Hypothetical



