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ABSTRACT 

This thesis investigates some aspects of develop-

ing fast approximate models of computer system performance. 

Two different modelling techniques, regression and 

simulation modelling, have been applied and a method 

developed of combining their use within a multilevel hybrid 

modelling framework. The main objective of this thesis is 

to demonstrate the feasibility and value of this approach 

to the modelling and evaluation of computer system perfor-

mance. The approach has been demonstrated by modelling a 

CDC 6000 computer system at three levels of detail. At 

each level, a self-contained model of the system has been 

developed. The Workload Model is a purely regression model 

of computer system performance. It was developed after a 

comprehensive performance analysis and analysis of residuals. 

The model expresses a batch job's elapsed time as a func-

tion of the job's reso'Irce demands and the load on the 

system. The model has been successfully validated. The 

Load Adjusting Model is a hybrid simulation/regression model 

in which a simulation framework is created which models job 

arrival and termination. Within this framework, regression 

techniques are used. The model has been successfully cali-

brated and validated. The Memory Management Model is 

developed from the Load Adjusting Model by a systematic 

expansion of detail. The Memory Management subsystem is 

simulated in considerable detail, whereas the rest of the 

system is modelled in much less detail. The model has been 

successfully calibrated and validated. 
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CHAPTER 1: 	INTRODUCTION  

The measurement and evaluation of computer 

system performance is a two stage iterative process. In 

the first stage, the performance of a computer system 

processing a given workload, is measured. In the second 

stage, a performance evaluation is carried out, by 

analysing the data collected in the first stage, by 

modelling computer system performance, or by a combina-

tion of both. The insight gained by means of the evalua-

tion, may well lead to a further iteration of the 

measurement and evaluation process. 

Three major purposes for the evaluation of com-

puter system performance are: 

(a) 	selecting a computer system 

(i) where previously no computer was available 

(ii) to replace an existing system 

(b) 	Performance measurement and analysis of an 

existing computer system to determine how 

effectively it is processing the workload 

applied to it. 	The objectives of this type 

of evaluation may be: 

(i) to determine the characteristics of 

the workload 

(ii) to determine throughput rates and res-

ponse times under various load conditions 

(iii) to provide greater understanding of 

system performance 
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(iv) to detect bottlenecks or imbalances in 

system performance 

(v) to improve system performance as measured 

by some objective function such as 

turnaround time, response time or processor 

utilisation 

(c) 	Performance and workload projection, that is 

predicting the performance of a given computer 

system: 

(i) if the workload were to be changed 

(ii) if changes were to be made to system 

parameters or scheduling algorithms 

(iii) if modifications were to be made to 

the system configuration 

Computer system modelling is a valuable tool 

in the evaluation of computer system performance. To 

gain the most advantage from a computer system model 

to be used for performance evaluation, it should be 

capable of modelling the system's performance in a 

fraction of the real world time. In such conditions, 

it is more economical to experiment with the model than 

with the system itself. 

This thesis investigates some aspects of develop-

ing fast approximate models of computer system performance. 

Two different modelling techniques, regression and 

simulation modelling, have been applied and a method deve 

loped of combining their use within a multilevel hybrid 

modelling framework, 	The main objective of this thesis 

is to demonstrate the feasibility and value of this approach 

to the modelling and evaluation of computer system perfor- 

mance. 
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The approach has been demonstrated by modell-

ing the Imperial College computer system at three 

levels of detail. At each level, a self-contained 

model of the system has been developed. The first 

level models workload performance using regression 

techniques. At the second level, simulation techniques 

are introduced and combined with the regression tech-

niques. At the third level, more detail is introduced 

by simulating the memory management subsystem. 

Chapter 2 surveys the field of performance 

measurement and evaluation of computer systems. Chapter 

3 investigates the main aspects of computer system 

modelling and how they may be applied to the evaluation 

of computer system performance. Chapter 4 presents 

the main features of the computer system modelled, the 

Imperial College Control Data (CDC) 6000 system. 

Chapter 5 describes the CDC Dayfile, the only source 

of workload and performance data used in the evaluation. 

Chapter 6 describes the initial attempts at the regres-

sion modelling of the Imperial College system. These 

were largely unsatisfactory, but paved the way for a 

much more successful attempt at modelling the system 

with the development of the Workload Model, which is 

described in Chapter 7. An attempt to overcome some of 

the limitations of the purely regression workload Model 

led to the development of a more detailed model, the 

Load Adjusting model, described in Chapter 8, in which 

simulation techniques are introduced and combined with 

the regression techniques. An attempt to overcome some 

of the limitations of the Load Adjusting model led to 

the development of the Memory Management model, described 

in Chapter 9, in which a more detailed simulation is 

carried out. Finally, Chapter 10 evaluates the work 

described in the thesis and makes proposals for future 

research. 



4 

CHAPTER 2: SURVEY OF PERFORMANCE MEASUREMENT AND  

EVALUATION OF COMPUTER SYSTEMS 

2.1 	Introduction 

This chapter surveys the different tools and 

environments used in the measurement and evaluation of 

computer system performance. 

In section 2.2, a survey of performance measur-

ing (or monitoring) techniques is presented. The main 

features of the different types of performance monitors 

are outlined. In section.2.3,.the need for different 

environments for performance evaluation is described. These 

environments are: 

(i) The real computer system processing 

the real workload. 

(ii) The real computer system processing 

a model of the workload. 

(iii) A model of the computer system process-

ing a model of the workload. 

The means of creating these environments are 

presented and discussed. In sections 2.4, 2.5 and 2.6, 

the performance evaluation of each of these alternative 

environments is described, with examples from the 

evaluation of existing- systems. 

2.2 	Performance Monitoring Techniques 

2.2.1 Performance Monitors (G2, L6) 

This section surveys tools which may be used for 

monitoring computer system performance. Different types 

Of data collection techniques may be used for this 

purpose. These may be classified as hardware or software 
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monitors. Software monitors may either be sampling 

or event drivers monitors. Sampling monitors may either 

be external or internal to the operating system. Event 

driven monitors are usually internal monitors. More 

recently, some hybrid performance monitors have combined 

both hardware and software monitoring techniques (S6). 

2.2.2 Hardware Monitors (B11, D6, N2) 

A hardware monitor can sense and record the 

time and occurrence of system events and changes of 

state at the hardware level.' The data collected may 

be cumulative (counts) or trace (time-stamped) and is 

often stored on some external medium such as magnetic 

tape. The data gathered usually provides measures of 

hardware resource activity, e.g. CPU and I/O channel 

activity, types of instructions executed, etc. 

Although hardware monitors are capable of provid-

ing measures of total resource activity, it is frequently 

difficult to relate these measures to the executing 

workload in a multiprogramming system. In systems which 

distinguish by hardware between supervisor and user 

modes, the CPU time used in each of these two modes may 

be measured. Furthermore, in systems where a different 

hardware storage protection key is associated with each 

user partition (e.g. in OS/360 systems), the hardware 

monitor is capable of recording the CPU time used by 

each partition (B11). However, to correlate the CPU time 

used by a partition with the jobs executing in that 

partition, requires data on job commencement and termina-

tion times, which could only be obtained by software 

monitoring. To correlate I/O activity.measured by a 

hardware monitor with the executing jobs would again 

need assistance from a software monitor. 
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2.2.3 Software Monitors 

2.2.3.1 	Monitoring Techniques 

A sampling monitor is a software monitor which 

samples and records the state of the system at regular 

intervals. The data is often collected by reading the 

contents of system tables and queues, or by reading the 

contents of counters maintained by the system. The 

data gathered is usually blocked before being output 

onto an external storage medium, such as disc or mag-

netic tape. Examples of sampling monitors are EYE (S13) 

and KIK (L5) on CDC 6000 systems, CUE (Hl) on IBM 360 

systems, and SPASM (S3) on Burroughs 6700 systems. 

A software event-driven monitor is an internal 

monitor which is implemented as a set of modifications 

to the operating system. As a result of this, whenever 

a specified event occurs, a transfer is made to a data 

gathering routine which may accumulate the data in 

counters, or provide a trace by time stamping a record 

of each event occurrence. The data is usually output 

in a similar manner to the sampling monitor. Examples 

of event driven monitors are GTF (I2) and DCF (P2) on.  

IBM 360/370 systems, UTEX (S4) on CDC 6000 systems, 

and the software monitors used in the Multics (Si) and 

Honeywell H6000 (D3) systems. 

In general, event-driven monitors are capable 

of gathering data of a more detailed nature than sampling 

monitors. An event-driven monitor is capable of record-

ing a sequence of events where each event represents a 

change of state in the system. A sampling monitor can 

record sequences of states but not necessarily thy: changes 

in state. 
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More recently, some performance monitors have 

attempted to combine the advantages of both sampling and 
event driven techniques. V.M Monitor (C2, C3) is an in-

ternal monitor, imbedded within the IBM VM/370 operating 

system, which uses both techniques. 

2.2.3.2 	Data Collection 

Data Collection may be carried out at different 

levels of detail and using different techniques depend-
ing on the type of monitor used and on the objectives 

of the subsequent evaluation. 

(a) 	Level of Detail  

(i) Workload Level 

Data may be collected at the workload 

level, that is at job or job step level, e.g. 

job and job step execution times, resource 

utilisation, etc. This type of data is frequent-

ly collected by accounting systems, e.g. the 

Dayfile on CDC 6000 systems (G4) and System 

Management Facility on IBM OS/360 and OS/370 

systems (I3). 

(ii) System Event level 

Alternatively data may be collected at 

the system event level, e.g. each time the CPU 

is switched, a change in memory allocation occurs 

or an I/O operation is commenced or terminated. 

This method is associated with event driven 

monitors (S4), but may also be associated with 

a sampling monitor with a high sampling rate (L5). 
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(b) 	Methods of Data Collection  

(1) 	Snapshot 

This is the typical method used by a sampling 

monitor, which records the state of the system 

whenever it is activated (S13), e.g. which job is 

active, number of jobs waiting for CPU, number of 

jobs doing I/O, etc. 

(ii) Cumulative 

This method may be used by both sampling and 

event driven monitors. For example, counters of overall 
paging activity may be maintained by the operating 

system, and output at regular intervals by a sampling 

monitor (R1). Alternatively, a job's CPU time may 

be accumulated and output at job termination by an 

event driven monitor (G4). 

(iii) Trace 

Trace data is usually collected by an event 

driven monitor which records the-type and time of 

occurrence of each event (S4). It may also however 

be collected by a sampling monitor which outputs a 

message when it notices that an event has occurred, 

which may of course be some time after the occurrence 

of the event (L5). 

2.3 Environments for Performance Evaluation  

2.3.1 The Need for Different Environments 

A. total computing system may be regarded as consist- 

ing of: 

- a computer system, that is the computer hardware 

together with the operating system. 

- the environment the system operates in, that is 
the workload processed by the system. 
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From the performance viewpoint, the output of such 

a system consists of performance measures of the computer 

system processing the workload applied to it (figure 2.1). 

A user installation is usually most interested in 

analysing the normal production environment in which the 

computer system processes the user workload. However, in 

any complex computer installation, the workload varies 

with time of day and from month to month. This makes it 

difficult to quantify performance purely on the basis of 

measurement of the real workload. 

For this reason, alternative environments for perfor-

mance evaluation have been,created, measured and analysed. 

These environments are created by modelling the user work-

load, the computer system, or both, as shown in figures 

2.2 and 2.3 respectively. One method is to model the user 

workload and apply this to a real computer system (L6). By 

this means, experiments could be carried out in a controlled 

reproducible environment. An alternative is to create a 

model of the user workload in the form of a workload trace, 

which is then applied to a model of the computer system (C4). 

2.3.2 Modelling the User Workload 

A model of the user workload, to be applied to a com-

puter system, should consist of a selection of jobs which 

are representative of the user workload. Experiments •nay 

then be carried out by either keeping the workload model 
constant, and changing operating system parameters or 

algorithms, or by keeping the system constant, and varying 

the workload model in a measurable fashion. 

The two most frequently used methods for providing 

a reproducible environment are benchmarks programs and 

synthetic programs. A benchmark program is an existing 

user application program. A model of the user workload may 

be created by selecting a specific number of user jobs 

which are representative of the user workload (L6). 
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Figure 2.1: Performance Measurement of a Computer System 
Processing the Production Workload 
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Figure 2.2: Real Computer System Procdssing Model of 
Workload 
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Figure 2.3: Model of Computer System Processing Model 
of Workload 
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A synthetic program is a program which has been 

specially created for the evaluation and does not serve 

any useful application apart from the evaluation (B13, 

Kl). A synthetic program is fully parameterised in such 

a way that the same program may display widely different 

characteristics by simply changing the parameters. A 

typical synthetic program consists of a compute loop and 

an input/output loop. The ratio of how often each loop 

is executed determines whether the program is compute 

bound or input/output bound. In addition, a dummy array 

may be used to vary the size of the program (B13). 

The degree to which results are meaningful de-

pends on the degree to which the workload model is repre-

sentative of the user workload (S11). This means that a 

thorough analysis of the real workload must first be 

carried out, so that the model may be calibrated against 

the real workload. It is likely that the calibration pro-

cess is easier for a synthetic workload, becau:e it is 

fully parameterised (01). However, synthetic workloads are 

more difficult to construct for virtual storage systems. 

The main advantages of using a model of the 

workload instead of the real workload are: 

(i) It permits the creation of a controlled repro-

ducible environment, where changes to the 

operating system may be evaluated having virtu- 

ally eliminated the effect of a fluctuating 

workload. 

(ii) Alternatively, the workload may be varied in 

a measurablE, fashion, and its effect on perfor-

mance evaluated. 

The main disadvantages of the controlled environ-

ment are: 
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(1) 	Calibrating the workload model against the 

real workload is likely to be a complex 

process (01). If the model is not calibrated, 

results may be unreliable. 

(ii) Experiments using a controlled environment 

are time consuming and require a dedicated 

machine. Thus they can prove to be very 

expensive. 

(iii) A workload is usually evolving, so the work- 

load model would need regular updating. 

• (iv) 	The model of the workload is not the real work- 

load. Some experimental aspects can lead to 

distorted measurements. For example, the run-

ning up and down time which occurs when 

executing a synthetic workload leads to 'edge 

effects'. These can be reduced but not elimina-

ted by making the experimental run time long 

compared with the running up and down time. 

2.3.3 Modelling the Computer System and 

Environment 

2.3.3.1 Introduction 

To model a total computer system for performance 

evaluation purposes, it is necessary to model both 

the computer system and its workload. A model of a 

computer system is an abstraction of the computer 

system's real world behaviour. Techniques for modelling 

computer systems include simulation, analytical and 

empirical techniques. 
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2.3.3.2 	Analytical Models 

Analytical models are mathematical models of 

computer systems and are often based on queuing theory. 

Queuing models of total computer systems usually 

involve a number of simplifying assumptions to make 

the model more amenable to mathematical analysis (G7, P1). 

These assumptions tend to reduce the validity of 

analytical models in computer system performance 

evaluation. Analytical models have probably been 

of most use in modelling subsystems, e.g. CPU schedul-

ing (K4, Ml), memory management (D2, B9), and I/O 

scheduling (Ti, D3). Most of the work done, however, 

has not directly related the predictions of the 

analytical submodels to system performance (K2). 

With the current state of the art, queuing 

models alone are therefore not sufficient for the 

evaluation of computar systems, but they can help 

in the understanding of systems (G7). Other methods 

must be used in conjunction with them. 

	

2.3.3.3 	Regression Models 

Regression analysis is a method used to deter-

mine statistical_ relationships between two or more 

variables. A regression model is a functional 
relationship which relates an output (dependent) 

variable to a set of input (independent) variables. 

The functional relationship could be linear in its 

coefficients, such as: 

k 
Y = a + 0 

 

a.X. 1 1 

 

=1 

 

where a1, i=0, 1, 	k are the regression coefficients, 

whose values may be determined by means of leaSt squares 

fitting techniques (Dl, D5). 
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Regression analysis has been used in performance 

evaluation to model workload performance, to estimate 

system overhead (B1) and to estimate the effect of a 

system change on performance in the normal production 

environment (W1, W4). 

2.3.3.4 	Simulation Models 

A computer system simulation model models the 

system's real world behaviour by means of an algorith-

mic abstraction of the system, reflecting system struc-

ture and logical procedure. 

Attempts have been made to provide one simulation 

program which models many different computer systems, 

but this necessitates the construction of such a gross 

model, that the results are usually only of general 

interest. Attempts to simulate a range of computers 

with basically the same hardware and operating system 

(e.g. IBM 360 and OS/360) have been more successful (S5). 

Many simulation models have been developed of individual 

computer systems (L3, N1, N3, W2). 

2.3.3.5 Advantages and Disadvantages of 

Computer System Modelling 

To gain the greatest advantage from a computer 

system model to be used for performance evaluation, it 

should model the system's performance in a fraction of 

the real world time. In such -conditions, it is more 

economical to experiment with the model than with the 

system itself. Thus it becomes possible to experiment 

with a wide range of situations, which would not be 

practical in a real user environment (S7). Experiment-

ing with the model has the additional important advantage, 

in that it may be used to predict the effect of configura-

tion, system or workload changes. 
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The main disadvantage of modelling is its 

relatively high cost in the form of the time and man-

power required to design, implement, calibrate and 

validate a model of the computer system. Another 

disadvantage is that from the point of view of experi-

menting with the model the most desirable area for 

experimentation may be an area for which it is difficult 

to determine the model's validity. The problems in 

calibrating and validating simulation models have been 

comprehensively described by Beilner (B4). 

2.4 	Performance Analysis of the Production Environment  

2.4.1 Introductioh 

This section describes the performance evaluation 

of the production environment, that is the real computer 

system processing the real workload. The evaluation 

is presented according to the source of data available: 

collected by hardware monitors, from accounting data, by 

sampling monitors and by event driven monitors. Some 

evaluations have been carried out using more than one 

source of data, e.g. from accounting data and a sampling 

monitor (G5, S10). 

2.4.2 Performance Analysis using Hardware 

Monitors 

As described in section 2, a hardware monitor 

may be used for monitoring hardware resource utilisation 

over prolonged periods of time. From the data collected 

by a hardware monitor a system profile may be constructed. 

A typical example of this is shown in figure 2.4, which 

displays CPU and I/O channel utilisation over a complete 

session. From this type of data, it is possible to 

determine hardware resource bottlenecks or imbalances. 

For example, if CPU activity was much higher than I/O 

activity, this might suggest that a more powerful CPU 
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Figure 2.4: System Profile - Derived by Analysis of 

Hardware Monitor Measurements (B11)  
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was required. If I/O activity dominated, then possibly 

more disc space and another channel were required. If 

I/O activity is much higher on one channel than the 

others then the possibility of redistributing the files 

should be investigated (B12). 

Another way of displaying performance data 

relating to resource activity is by means of a radial 

plot, attributed to Kiviat (M2). Its purpose is to 

display a large number of system variables in a geo-

metric pattern which portrays different shapes character-

istic of different loadings on the system. An example 

is given in figure 2.5 using an eight variable graph. 

The first diagram shows a CPU bound situation, while 

the second diagram shows an I/O bound situation. 

2.4.3 Performance Analysis using Accounting 

Data 

To relate hardware resource utilisation to the 

executing workload needs some form of software monitor-

ing. The most common form of software monitoring found 

on computer systems is that used for accounting purposes, 

such as the Dayfile on CDC 6000 Systems (G4) and the 

System Management Facility (SMF) on IBM OS Systems (I3). 

These are basically internal monitors which gather data 

(part cumulative and part trace) at the macro level. 

Analysis of this data can provide: 

(i) a detailed workload profile of the system. 

For example, the distribution of jobs or job 

steps by their resource (CPU, Memory, I/O) 

utilisation or compiler usage. 

(ii) System throughput rates. For example the 

mean and standard devia-dons of elapsed times 

for different classes of jobs at different 

times of the day/month/year. 
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Figure 2.5: Radial Plots — Derived by Analysis of  

Hardware Monitor Mep.suremeufs  (M2) 
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(iii) 	Information on peak demands and loads on the 

system. For example, number of terminal users 

logged in, length of job input and output 

queues, CPU utilisation and its distribution 

between, for example, the batch and interactive 

workloads. 

This information can be used to accumulate 

long term workload statistics, enabling the installa-

tion management to determine long-term trends in the work-

load profiler -throughput rates and peak demands. Letts 

(L4), Stanley (S12),Watson (W4) and Landau (L1) have 

all described how valuable workload and performance 

statistics were derived from this type of analysis. 

2.4.4 Performance Analysis using Sampling 

Monitors 

Sampling monitors usually collect data at 

regular intervals determined by some sampling interval. 

The data may be either snapshot data or from counters 

which have been accumulated by the operating system 

during the elapsed interval. One of the earliest 

sampling monitors was developed by Stevens (S13). A 

peripheral processor on a CDC 6600 was used to monitor 

the system. The monitoring program EYE had two loops, 

a 4 millisecond loop which was mainly used to monitor 

CPU activity and a slower loop which took a more general 

snapshot of the system at 15 second intervals, (see 

figure 2.6). Such a monitor can provide a valuable 

indication of the loads on the various resources and 

can identify bottlenecks occurring during a monitored 

session. However it is less likely to provide sufficient 

data to enable the cause of the bottleneck to be deter-

mined. 
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A refinement of this type of monitor was later 

developed with the PP sampling monitor KIK (L5) which 

recorded data on the frequency and duration of system 

(PP) programs, and individual channel activity. The 

frequency of PP program calls was used to determine 

Which system programs are most frequently called and 

should therefore be made resident in main memory, 

while less frequently called programs are stored on the 

system disc. A similar analysis was carried out on IBM/ 

360 systems using the sampling monitor, CUE (B12). The 

frequency of occurrence of supervisor routines (SVCs) 

was measured, and the most commonly used routines were 

made resident in core. 

Rodriguez-Rosell and Dupuy have described how 

a virtual machine dedicated to data collection was 

implemented on the CP-67 system (R1). The monitor 

communicates with the virtual machine supervisor, CP, 

at regular intervals and CP passes to it a snapshot 

of the system together with some cumulative and some 

time-averaged variables. This enabled the installation 

to determine how page fault rates, page stealing rates 

and CPU utilisation varied with the mean multiprogramming 

level, and hence to determine situations under which 

thrashing occurred. 

2.4.5 Performance Analysis using Event 

driven Monitors 

Event driven monitors are capable of gathering 

data of a more detailed nature than sampling monitors, 

although the cost of doing so may well be higher. The 

level of detail can be such that it is possible to make 

a detailed and accurate reconstruction of the Sequence 

of events which occurred during a monitored period. 

Internal monitors can thus be used for giving a very 

detailed view of the performance of a system. 
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Examples of event driven monitors which can 

gather data at a very fine level of detail are the 

University of Texas CDC 6000 system internal monitor 

(S4), the Generalised Trace Facility (GTF) provided 

by IBM for the OS/360 and OS/370 systems (I2), and VM 

Monitor for the IBM 370 Virtual Machine operating system (C2). 

An event trace (i.e. the formatted output of the monitor, 

see figure 2.7),can be very useful for determining 

inefficiencies in system algorithms, or the cause of 

unusual situations, for example, system hangups or 

poor response times at certain times of the day. A 

,good example of how an event driven monitor was used 

for this purpose is given by Callaway (C3). 

Designers of operating systems, as well as their 

users, are interested in measuring the time taken to 

execute frequently called supervisor modules, with the 

objective of improving operating system performance. One 

of the performance tools incorporated into the Multics 

system (SI) was a package which recorded the time spent 

executing selected frequently called supervisor modules..  

For each selected module, the package recorded the 

number of times the model was invoked and the total 

execution time accumulated within each of a number of 

ranges of execution times. Use of this package resulted 

in the identification of inefficient supervisor modules 

and led to a redesign of some of the modules. 

2.5 	Performance Analysis of the Controlled Environment  

2.5.1 Improving Computer System Performance 

When a change is made to some part of the operat-

" ing system in an attempt to improve performance (e.g. 

changing,a scheduling algorithr6,or when a system 

configuration is enhanced,it is desirable to determine 

what change in performance has actually taken place. 

4 
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Measuring performance before and after the change is 

an obvious means of doing this. Sometimes the improve-

ment in performance is so great that a detailed analysis 

is not required. More often,the change in performance 

will vary with the workload and performance may be 

improved in some circumstances and degraded in others. 

Such situations are difficult to analyse in the normal 

production environment, although statistical methods 

for doing this will be discussed in section 2.6. Alterna-

tively, it is possible to virtually eliminate the fluctua-

tions that occur in the real environment, by using a con-

trolled environment, in which a model of the workload 

is applied to the computer system. The same tools may 

be used for measuring the performance of the controlled 

environment as are used for the production environment. 

2.5.2 Analysis of the Batch Controlled 

Environment 

The most common methods of creating a hatch con-

trolled environment are by means of benchmark or synthetic 

programs. As pointed out in Section 2:3.2, it is very 

important that the model of the workload be calibrated. 

Joslin and Aiken have clearly pointed out the dangers of 

using unrepresentative benchmarks with a revealing 

example (J2). 

Using a model of the workload provides a very 

convenient means of comparing different versions of the 

operating system. In addition it may be used for evaluat-

ing entirely different computer systems. This is a 

frequently used method in computer system selection (G3, T3). 

Using a batch benchmark which modelled the short 

, lob subset of the CERN workload. the author experimented 

with a Peripheral Processor and Channel Scheduling 

mechanism which had been incorporated into the CDC 6000 

system at CERN (G5). He showed that the new scheduled system 
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functioned effectively in situations of low and high 

I/O activity and provided a more balanced and effective 

scheduling of I/0 resources than the old unscheduled 

system. For the performance analysis, the CDC Dayfile 

was used to provide workload data, and the PP sampling 

monitor KIK was used to collect performance data. 

2.5.3 Analysis of the Interactive Con-

trolled Environment 

With an interactive system a controlled environ-

ment may be created by using scripts (which are basically 

interactive benchmarks) which represent a user terminal 

session from login to logout (G6). Experiments may be 

carried out by keeping the workload constant and vary-

ing system parameters or algorithms. Alternatively, 

the system parameters may be kept constant and the work-

load varied in a measurable fashion. For example, the 

effect of increasing the workload on throughput rates, 

response times, CPU utilisation, etc. and the onset of 

system saturation may be determined. If a batch 'workload 

is also run, then the effect of increasing the interactive 

workload on the performance of the batch workload may also 

be determined (D4). 

Gomaa and Lehman (G6, L2) have described how 

a performance tool called the Stimulator was used to 

apply a controlled interactive workload to a CDC 6000 

Kronos system. Each Stimulator test consisted of a 

fixed number of simulated terminals executing pregenerated 

scripts. The interactive workload was increased in a 

measurable fashion by increasing the number of simulated 

terminals, and the performance of the system processing 

the controlled workload was measured using the CDC 

Dayfile. By this means, the onset of system saturation, 

with degradation in throughput rates and response times, was 

detected and the cause of the degradation analysed. 
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A tool such as the Stimulator has the additional 

advantage in that it is capable of simulating a larger 

number of terminals than actually exist on the system. 

It may thus be used for predicting the effect on per-

formance of a greater interactive workload than is ac-

tually supported by the system in the production environ-

ment. 

2.6 Performance Evaluation using Modelling Techniques  

2.6.1 Application of Regression Analysis to 

Computer System Performance Evaluation 

Bard used regression methods to analyse performance 

data collected by monitoring an IBM 360/67 running under 

the CP-67 operating system (81, B2). Regression techniques 

were used to analyse 'CP overhead', that is the time spent 

by CP-67 in servicing user requests for system resources 

of various kinds, e.g. CPU time, main memory and various 

types of I/O operations. A multiple linear regression 

model was used to relate the average CP overhead time 

(dependent variable) to each of the system functions (in-

dependent variables) carried out by CP, so that the 

fitted regression coefficients provided estimates of the 

average CPU time spent servicing user functions by diffe-

rent parts of CP. 

Watson (W4) applied regression techniques to the 

analysis of accounting data, and in particular to evaluate 

the change in performance due to the addition of 256K core 

memory to a 360/65 computer system. Regression models 

were constructed relating different performance measures 

(dependent variables) such as average CPU utilisation and 

average number of jobs processed per hour to various work-

load characteristics (independent variables). One of the 

independent variables was a dummy variable which was used 

to estimate the effect of the additional memory. 
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Waldbaum (W1, F3) used regression analysis tech-

niques for evaluating changes made to an APL system 

running on an IBM 360/91 under OS/MVT. Multiple linear 

regression models were built for a number of points on 

the cumulative distribution function of the system res-

ponse time. The models were used to evaluate the effect 

on system response time of reducing the average level of 

multiprogramming and increasing the maximum workspace 

size on disc. 

2.6.2 Application of Trace Driven Simulation 

Modelling to Computer System Performance 

Evaluation 

Simulation is the modelling technique which has been 

used most frequently in computer system performance evalua-

tion. A simulation model is usually more realistic than 

an analytical model, and is not constrained by the usually 

artificial assumptions made for analytical convenience (G7). 

The most interesting results in simulation modelling have 

been obtained using trace driven techniques (C4) to repre-

sent the workload. 

A trace driven simulation model of a CDC 6400 system 

running under the SCOPE 3.2 operating system was developed 

by Noe and Nutt (N3). The output of the model for each job 

consisted of predictions of the job's progress through the 

system. It is claimed that the model was able to satis-

factorily predict the performance of the system under two 

extremes of workload situation, representing high and low 

percentages of short jobs. The model was written in 

Fortran and is said to be 50 times faster than the real 

system. 

Waldbaum and Beilner developed a trace-driven simula-

tion model of an IBM 360/91 running under the OS/MVT-LASP 

system (W2). The model was written in PL/1 and is said 

to process a whole day's computer activities in less than 

one minute of CPU time. Two interesting features of the 
model were: 
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a) Submodel Simulation  

Submodelling is a means of structuring the model 

by representing only part of a system or running 

only part of a model, namely the submodel. This 

is achieved by replacing the internal information 

transmitted to a submodel, from other parts of 

the model, with input information (W3). 

b) The Calibration Methodology  

Calibration of the model is described as the pro-

cess of tuning certain calibration parameters 

and changing parts of the model's structure so 

as to yield a good match between the model out-

put and the real world output for a selected set 

of input data. Multiple linear regression tech-

niques were used during the calibration process 

(35, B7). 

2.7 	Conclusions  

This chapter has surveyed the different tools and 

environments for the measurement and evaluation of com-

puter system performance. 

The evaluation of the three environments described 

in this chapter is not mutually exclusive, but rather com-

plementary. If a model of the computer system is capable 

of modelling the system's performance in a fraction of 

the real world time, it is then possible to experiment with 

a much wider range of system and workload situations. 

Since a model is only an approximation to the real system, 

the most promising predictions of the model (e.g. parameter 

settings or scheduling algorithms) should be tried out on 

the real system. Experimental versions of the system may 

be prepared which can be run in a controlled environment 

where a calibrated model of the workload (using benchmark 
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or synthetic programs) is applied to the different versions 

of the system. Having identified the most promising 

version of the system in the controlled environment, the 

system changes may now be incorporated into the produc-

tion system. The performance of the production environ-

ment before and after the changes should be monitored to 

enable the difference in performance to be evaluated. 

Regression analysis techniques may be used to estimate the 

change in performance in the normal production environment 

by separating out the effect, on 'performance, of the 

workload from the system modification. 
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CHAPTER 3: MODELLING OF COMPUTER SYSTEM PERFORMANCE 

3.1 	Introduction 

A performance model of a computer system is an 

abstraction of the real computer system behaviour. 

This chapter describes the main aspects of computer 

system modelling and how they may be applied to the 

evaluation of computer system performance. 

Section 3.2 describes the main features of computer 

system modelling. Section 3.3 describes three of the 

main techniques of modellirig computer systems: queuing, 

regression and simulation techniques. Methods of 

_structured modelling of computer systems are described in 

section 3.4. Section 3.5 describes methods of combining 

simulation and regression techniques in a multilevel hybrid 

modelling approach to the modelling of computer systems. 

Finally, section 3.6 introduces a particular application 

of the concepts presented, namely the modelling of the 

Imperial College CDC 6000 Kronos system. 

3.2 	Computer System Modelling 

A computer system model to be used for the evalua-

tion of computer system performance abstracts the 

behaviour of the real computer system, that is the 

behaviour of the computer hardware, together with the 

operating system. As input, the model requires an ab-

straction of the workload. As output, the model produces 

a record of predicted computer system behaviour. 

Model development is a complex process. There 

are a number of steps involved in developing 'a model 

of a computer system before it can be used for experimenta-

tion. 
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(a) Understanding of the system to be modelled. 

(b) An abstraction process. This involves deciding 

on the level of detail to be included in the 

model. 

(c) Logical design of the model. 

(d) Implementation. This involves producing a 

working model. 

(e) Calibration. This process aims at reducing 

the behavioural differences between the real 

and modelled worldi, by making changes to the 

model (B4). 

(f) Validation. This process aims at determining the 
domain of situations for which the model performs 

with a given accuracy, for an established calibra-

tion (B4, B6). 

(g) Experimentation. This involves using the model 

in experimental situations which are different 

from those used during calibration and validation. 

For example, the model may be used to experiment 

on the effect of changes to the workload, system 

algorithms or parameters. 

These stages of model development are likely 

to be iterative. For example some deficiency 

in the model may be discovered during validation. This 

may be due to a logical design error in the model, which 

may in turn be due to the system not being fully under-

stood. Consequently, this may require a correction to 

the design error, modifications to the implementation, and 

a further calibration, prior to resuming the validation 

of the model. 
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3.3 	Modelling Techniques 

3.3.1 Introduction 

A performance model of a computer system is an 

abstraction of the real computer system behaviour. This 

abstraction may be in the form of a mathematical model, 

which is a mathematical representation of the system. 

Queuing models and regression models are two examples of 

mathematical models. Alternatively, the abstraction may 

be in the form of a simulation model, which is an algo-

rithmic representation of the system relecting system 

structure and logical procedure. 

A model of a computer system may be static, in 

which case it may omit the recognition of time altogether, 

describe a snapshot of the state of the system at a 

moment in time, or model a steady state situation. A 

-regression model is an example of a static model. On the 

other hand, a model may be dynamic, that is it may explicitly 

recognise the passage of time. A simulation model is an 

example of a dynamic model. 

3.3.2 Queuing Models 

Queuing models are analytical models of computer 

systems. In an analytical model, it is possible to deduce 

a solution to the problem under study directly from its 

mathematical representation CFI). 

Queuing models of total computer systems usually 

involve a number of simplifying assumptions which make the 

model more amenable to mathematical analysis. The most 

common assumption is that the probability of getting a new 

request does not depend on how long ago the last request 

was made, sometimes called the "memoryless" property (G7). 

As a consequence of this assumption, the request inter-

arrival time distribution follows an exponential distribu-

tion, which assigns the highest probability density to the 

smallest time interval of length zero. In many computing 
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environments, short values of inter-arrival times between 

requests are unlikely, since these requests are often due 

to human activity, and therefore the assumption is not 

valid (G7). A further simplification sometimes used is 

that of only analysing the steady state environment, and 

of making the assumption that the workload does not vary 

with time of day. 

These assumptions tend to reduce the validity of 

queuing models in computer system performance evaluation. 

Queuing models have probably been of most use in modelling 

subsystems, e.g. CPU and memory management (C5), and I/O 

scheduling. Many analytical models have been developed with 

the objective of gaining insight into the system being 

modelled, rather than to evaluate system performance. Never-

theless, a few examples do exist of queuing models of total 

computer systems which have attempted to relate the model 

predictions to actual system performance (H2, W7). 

3.3.3 Regression Modelling 

3.3.3.1 	Regression Analysis . 

Regression analysis is an empirical (i.e quantitative) 

method for analysing workload and performance data. Like 

many other empirical methods, it is a statistical method of 

analysing data (G7). 

In a large computer system, there are likely to 

be many variables which are related to each other in 

some manner and whose quantities are continually changing. 

Often the functional relationship that exists between these 

variables is unknown or is too complicated to be described 

in simple terms. Regression analysis provides a means of 

approximating to this complex relationship by some simple 

mathematical function, such as a polynomial, which contains 

the appropriate variables and approximates to the true 

function over some limited ranges of the variables involved 

(D5). 
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A regression model deals with the following problem. 

Given a set of data containing the observations for several 

input (independent) variables X1, X2  ... Xk  and an output 

(dependent) variable, it is required to fit the data by 

means of the function: 

Y = f(Xl, X2  ... Xk) 

The function may have no physical meaning, but it may still 

be a valuable means of estimating the value of the dependent 

variable given the values of the independent variables (D5). 

The functional relationship could be realised by 

means of a linear model: 

Y = a0  + 	ai  X. 	 (1) 
i=1 

where a1, i = 0, 1, 	k are unknown parameters. 

Given a set of m observations, where each observa-

tion consists of one set of values of all the variables in 

the model: 

(Y., X13  .' X23  . ... Xk3  .) 	j = 1,2, 	in 

then the parameters a0, al 	ak  may be estimated by 

means of least squares fitting techniques. These parameters 

are called the regression coefficients. 

A regression model of a computer system consists 

of an equation similar to equation (1). Once the regression 

coefficients have been determined, the model may be used 

for predictive purposes. A vector representing a set of 

values of the independent variables (X1 	Xk) is input to 

the model. The model then computes the predicted value 
of the dependent variable from equation (1). 
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3.3.3.2 	Regression Modelling of Computer 

Systems  

A regression model for computer systems performance 

may be shown diagramatically as in figure 3.1. A workload 

x, which consists of demands for the use of system resources 

(e.g. CPU, I/O devices, memory, etc.) is applied to the 

system (S2). The state of the system 0 has two components 

8 = (81,  82) 

where e1 describes the hardware configuration and 82 is a 

set of control (tuning) parameters. The model predicts 

the performance of the system y, according to the functional 

relationship: 

y = f(x, 0) 

If, for a particular set of experiments, the state 

of the system is constant, that is there is no change to 

the hardware configuration and no change to the control 

parameters, then the functional relationship reduces to: 

y = f(x) 

3.3.4 Simulation Modelling 

3.3.4.1 Discrete Event Simulation 

A computer system simulation model models the 

system's real world behaviour by means of an algorithmic 

abstraction of the system, reflecting system structure and 

logical procedure. A simulation model is dynamic, that 

is it explicitly deals with the passage of time, and 

simulating a system provides a means of studying the 

behaviour of a system over a period of time. 
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In a discrete event simulation model, changes of 

states in the system are represented by a collection 

of discrete events (Fl). Changes of state only take place 

when an event occurs. Since the states of entities remain 

constant between events, the simulation is able to skip 

over the time between events. Consequently, at a moment 

in simulated time when an event occurs, the appropriate 

state changes are made to the model. Then simulated time 

is advanced to the next event, and the process is repeated. 

It is by this means that a simulation model is able to 

'compact' time, and is thus capable of modelling a computer 

system's performance in a fraction of the real world time. 

3.3.4.2 	Computer 'System Simulation 

A computer system simulation model models the 

behaviour of the real computer system, that is the computer 

hardware together with the operating system. As input, the 

model requires an abstraction of the workload. As output, 

the model produces a record of estimated computer system 

behaviour (figure 3.2). 

Workloads have sometimes been modelled using 

probability distributions. However these often make unjusti-

fied assumptions about the workload. Alternatively the 

workload may be modelled by means of an event trace which 

is a set of workload characteristics obtained by monitoring 

the actual computer system processing the normal production 

workload (C4). Each job processed by the system is 

represented by a vector, which -identifies certain characteris-

tics of the job. The vector is input to the model at the 

simulated time of job arrival. 

3.4 	Structured Modelling of Computer Systems  

3.4.1 Problems in Modellinq Computer Systems 

A number of factors have to be considered in 

constructing a model. In particular, factors of prime 
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importance are the cost of developing a model, the level 

of detail incorporated in the model, the speed of the 

completed model and its degree of accuracy. 

The greatest drawback to simulation modelling is 

probably its relatively high cost (L6). This is closely 

linked to the problem of selecting the right level of 

detail to be included in the model. If the level of 

detail is too gross,the model may be unrealistic because 

important details may have been aggregated to such an 

extent that their effect is lost. On the other hand, if 

the level of detail is too fine,the model may be too 

expensive to use. A simulation model of a computer system 

has been described which was so complex that one minute 

of simulated time required 20 minutes of simulation (g1). 

For some experiments, but not all, this level of 

detail may be required. 

In general, the more detail included in a model, 

the more closely is the model likely to represent the 

real world environment, and the more slowly is the model, 

likely to function. Thus, a gain in the speed of the 

model is likely to be at the expense of its realism. 

3.4.2 Multilevel Modelling 

A more satisfactory approach is to model the com-

puter system at several levels of detail. At each level, 

a self-contained model of the system is designed, implemen-

ted, calibrated and validated. At the next level, the 

model is refined further by adding more detail. Such an 

approach is called multilevel modelling. 

Zurcher and Randell pioneered multilevel modelling 

(Zl) as a method of modelling a computer system design as 

it evolved by the systematic expansion of detail; by this 

means evaluation could be made an integral part of the 

design process. With this approach, the model may represent 

0 
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what is happening in any part of the system without 

necessarily representing how it is happening. At each 

level of the model, greater detail may be introduced by 

gradually replacing what is happening in the model by 

how it is happening. 

3.4.3 Advantages of Multilevel Modelling 

In computer system evaluation, there are a number 

of advantages in adopting a multilevel modelling approach 

over the approach of developing a model at a single level 

of detail. 

(a) Only as much detail need be incorporated into 

the model as is required for the level of informa-

tion required and the aspect of the system under 

study. The level of information required by the 

installation manager,who may be interested in over-

all trends in the workloadris very different from 

the systems programmer who might L-a interested 

in optimising the memory scheduling algorithm. 

The requirement for refining the model to a further 

level by including more detail may be due to the 

desire for greater accuracy through a more 

realistic representation of the system,or the 

desire to experiment with lower levels of the 

system. 

(b) In general, the less detail included in the model, 

the more the saving in time and cost to build, 

calibrate and validate the model and the more 

economical the running of the model becomes. On 

the other hand, the level of realism will be less. 

(c) Experimenting with each level of the model is 

likely to provide significant insight into and 

understanding of the system. This will assist the 

model builder in designing, calibrating and validat-
ing lower levels of the system. 
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(d) 	The amount of workload data collected for input 

to the model and performance data for calibration 

purposes need only be what is required for the 

level of the model currently being implemented. 

Thus the quantity (and accuracy) of the data 

being input to and collected by the model should 

increase as the level of detailed representation 

increases. 

3.4.4 Submodelling 

Submodelling (W3) is a means of structuring the 

model into component parts; termed submodels. Each sub-

model has the property that it can run as part of the main 

model, receiving inputs from and feeding its output to 

other parts of the model. Alternatively, the submodel may 

run independently of the remainder of the model, in which 

case the inputs it would normally receive from other parts 

of the model are replaced by predefined trace or statisti-

cal data. 

The advantages of submodelling are: 

(a) 	The model may be calibrated more readily and possibly 

more accurately. Each submodel may be calibrated 

separately and independently of other submodels. 

(L) 	The validation of the model can be carried out more 

readily and possibly more accurately. Each sub-

model of the model may be validated separately. 

(c) Errors produced by various parts of the model may 

be estimated more accurately. 

(d) Experiments involving only part of a system may be 

performed more efficiently and more accurately using 

the appropriate submodel. 
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3.5 	Structured Modelling of Batch' Computer' systems  

3.5.1 Introduction 

In this section, the application of the modelling 

methods described in the previous two sections to the modell-

ing of batch computer systems is considered. This involves 

using regression and simulation modelling techniques in 

a hybrid simulation/regression model. It also involves 

applying multilevel modelling and submodelling methods to ' 

assist in modelling a computer system at several levels of 

detail. 

3.5.2 Performance Measures in Batch Computer 

Systems 

Before considering in more detail how modelling 

methods may be applied to the performance evaluation of batch 

computer systems, it is valuable to consider the alternative 

measures of batch system performance. 

In batch computer systems, throughput, turnaround 

time and availability have been identified as three prime 

measures of performance (CI). 	Turnaround time is usually 

defined as the time between a user submitting his job at 

a computer reception to the time he receives his output. 

The main steps involved in this process are listed below and 

shown diagramatically in Figure 3.3. 

(a) The user submits his job to a computer reception. 

(b) The job is read through the card reader and enters 

the Input Queue. 

(c) The job is scheduled for execution. During 

execution, the job's output is spooled to disc. 

(d) The job terminates. 
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Figure 3.3: Steps in Batch Job Processing 
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(e) The job's spooled output is printed by a line 

printer. 

(f) The output is returned to the user. 

As defined previously, the turnaround time is the 

time between event a and event f. This definition of 

turnaround time suffers from the fact that the times between 

events a and b and events e and f respectively, are dependent 

on operator intervention. As a performance measure, it 

is more valuable to consider the time between event b and 

event e, that is the time when the job is directly under 

control of the computer system. 

A batch job processed by a computer system passes 

through three sequential phases: 

(i) Input phase. This is the period spent by the 

job in the Input Queue, that is the time 

between event b and event c. 

(ii) Execution phase. This is the period when the 

job is in execution and competing with other 

jobs for physical resources. It is the time 

from when a job is scheduled for execution 

(event c) to the time it terminates execution 

(event d). This time is referred to here as the 

elapsed time of the job. 

(iii) Output phase. This is the period spent by 

the job in the Output Queue, that is the time 

between event d and event e. 

The prime measure of batch system performance to be 

used from now on in this thesis is the job elapsed  time. 

The reasons for this are: 
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(a) It is a measure of performance which is appreciated 

by computer system users, installation managers, 

systems analysts and systems programmers. 

(b) Elapsed time is readily measurable on most computer 

systems. In particular it was readily measurable 

on the system under study. 

(c) It is a convenient measure in the modelling of 

computer systems at the job level, as it can be 

related directly to the characteristics of indivi-

dual jobs, as well.as to the load on the system 
when the job was run. 

3.5.3 Multilevel Modelling of Batch Computer 

Systems  

In applying a multilevel modelling approach to a 

batch computer system, let us first consider the highest 

level model. It seems logical at this level to model 

workload performance. The performance of batch jobs in 

the system may be described entirely by means of a regression 

model which models what happens to jobs when processed by 

the system. 

In the previous section, job elapsed time was chosen 

as the prime measure of batch system performance. A 

regression model of a batch computer system may be developed 

in which the dependent (i.e. output) variable is the job 

elapsed time. The independent (i.e. input) variables are 

measures of the job's resource demands. Once such a model 

has been calibrated and validated, it would then be capable of 

predicting a job's elapsed time, given the job's resource 

demands. 

More detail may be introduced at the next level, 

either by carrying out a more detailed regression analysis, 

or by introducing simulation techniques. One method of 

Ai 

i 



46 

IIP 

performing a more detailed regression analysis is by modell-

ing job step performance. A regression model could be 

built which predicts job step elapsed time, given the job 

step resource demands. Furthermore, different regression 

models could be built for different types of job steps. 

For example, self-contained regression models of the com-

pilation, link/loading, execution and utility job steps 

could be developed. For a given job, the sum of the predic-

ted job step elapsed times is then the predicted job elapsed 

time. 

More detailed modelling may be achieved by further 

regression modelling. Alternatively, simulation techniques 

may be introduced and combined with the regression techniques 

to form a hybrid model. 

3.5.4 Hybrid Computer System Modelling 

3.5.4.1 The Framework for a Hybrid Simulation/ 

Regression Model 

A regression model is static, i.e. it does not 

recognise the passage of time. A simulation model is dynamic 

and is capable of modelling system structure and logical 

relationships. It also allows the interaction between jobs 

competing for limited resource to be dynamically modelled. 

A hybrid model should be dynamic, although capable of using 

the static features of a regression model. 

One method of constructing a hybrid simulation/ 

regression model involves using a regression model whose 

dependent variable is in units of time. In the previous 

section, a regression model was suggested which could 

predict a job's elapsed time, given the job's resource 

demands as input. To produce a dynamic model, this 

regression model is incorporated within the framework of a 

hybrid simulation/regression model. Within this frame- 

4 
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work, the regression model of job elapsed time in effect 

becomes a regression submodel, since it is now a self-

contained part of the overall model. 

A co-ordinating routine is introduced to provide the 

simulation framework. In its simplest form, the hybrid 

simulation/regression model is shown in figure 3.4. The 

co-ordinating routine inputs a vector representing the job's 

resource demands to the regression submodel at the simulated 

time of job arrival. The regression submodel predicts the 

job's elapsed time. The co-ordinating routine adds the 

predicted elapsed time to the simulated time of job arrival 

to give the predicted time of job termination. Thus by 

imbedding the regression model within a simulation framework, 

the static regression model is converted into a dynamic 

simulation/regression model. 

3.5.4.2 	Increasing the Level of Detail of the 

Hybrid Model 

Once the framework for incorporating a regression 

submodel within a hybrid simulation/regression model has 

been set up, the level of detail of the model may be in-

creased using the same framework. Increasing the level of 

detail may be accomplished either by means of further 

regression modelling, further simulation modelling or both. 

Using further regression modelling, regression sub-

models of job step performance may be developed, as mentioned 

in the previous section. One or more of these job step 

submodels may be linked together by means of a co-ordinating 

routine. A regression submodel is invoked at the time of 

job step arrival to predict the job step elapsed time. This 

estimate is then added on to the simulated job step arrival 

time to give an estimate of job step termination time. 
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As an example consider a hybrid simulation/ 

regression model with three regression submodels, a com-

pilation job step submodel, a link/load step submodel and 

a job execution step submodel. Consider the passage of a 

job with three job steps, compile, load and execute, 

through the system (figure 3.5). At the simulated time 

of job arrival,the co-ordinating routine inputs a vector 

representing the job's compilation resource demands to 

the compilation submodel, which predicts the job's com-

pilation time. The co-ordinating routine adds this esti-

mate to the simulated time of job arrival to give the 

predicted time of job step termination. Next, the 

co-ordinating routine inputs a vector representing the job's 

link/load resource demands to the linker/loader submodel, 

which predicts the linking/loading time. Finally, the 

job execution step submodel is invoked to predict the 

job execution time. The predicted time at the end of this 

job step is then the predicted time of job termination. 

3.5.4.3 Simulating Subsystems within the 

Hybrid Model 

Using further simulation modelling, different sub-

systems of the system may be simulated in more detail. By 

this means system structure and logical procedure may be 

introduced into the model. Furthermore, algorithms used 

in the actual system may be simulated. For instance the 

simulation of job and memory scheduling could be introduced 

into the model. Such a model may only schedule a job for 

execution if sufficient memory is available for it. 

Consider the example of a multiprogramming system 

with fixed size non-relocatable partitions as in IBM OS/360 

MFT. The algorithms for job and memory scheduling in such 

a system may be incorporated into the model such that a job 

is only scheduled into an appropriate partition when a parti-

tion becomes free. Once a job has been scheduled into main 

memory, a regression submodel (or a series of regression 
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submodels) is invoked, as before, to predict the job elapsed 

time. Clearly, this method may be extended to include 

different memory scheduling algorithms and the simulation 

of different subsystems. 

3.6 	Multilevel Hybrid Modelling of the Imperial 

College CDC 6000 System 

The concepts presented in the previous sections have 

been applied to the modelling of an actual computer system, 

namely the Imperial College (IC) CDC 6000 Kronos system. 

The system has been modelled at three levels of detail: 

Level 1: The Workload Model 

Level 2: The Load Adjusting Model 

Level 3: The Memory Management Model 

Each level consists of a self-contained model of 

the system. The models are fast approximate models of the 

execution phase of a batch job, that is from the time a 

job is first scheduled for execution to the time it terminates. 

The job elapsed time is used as the prime measure of per-

formance. 

The first level model uses regression modelling 

techniques entirely. A regression model is static and is 

therefore not capable of dynamically adjusting its estimates 

of the load on the system as each modelled job executes. 

By combining simulation and regression techniques, the second 

level hybrid model is capable of dynamically adjusting its 

estimates of system load. At the thii.d level, more detail 

is introduced, within the hybrid framework, by simulating 

the memory management subsystem. 
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CHAPTER 4: THE IMPERIAL COLLEGE CDC 6000 KRONOS SYSTEM 

4.1 	Introduction 

A Control Data (CDC) 6400 system was installed 

at Imperial College (IC) in 1971. The initial operating 

system used was SCOPE 3.3. In summer 1972, this was 

replaced by the Kronos 2.0 operating system. In the 

early summer of 1974, a newer version of the operating 

system, Kronos 2.1, was introduced. Later that summer, 

the Imperial College Computer Centre (ICCC) was consider-

ably enhanced by the installation of a CDC CYBER 73 com-

puter system. Apart from a few differences, the CYBER 73 

is architecturally very similar to the 6400. 

This chapter describes the main features of the 

Imperial College system. Section 4.2 describes the 

structure of the IC workload. The main features of the 

CDC 6000 architecture and system configuration are out-

lined in section 4.3. An overview of the Kronos operat-

ing system is given in section 4.4. The job processing 

and memory scheduling aspects of the system are described 

in more detail in sections 4.5 and 4.6 respectively. 

4.2 	The Imperial College Workload  

The CDC 6000 Kronos (C8, C9) system at Imperial 

College supports four types of service: 

(a) 	A timesharing service is provided by means of 

interactive terminals linked to the Telex sub-

system (C9) which operates under Kronos. Ter-

minal users are able to create and edit files 

stored on direct access devices; enter, edit, 

compile and run programs; and submit batch 

jobs to the system for subsequent execution. 
... 

* When both machines are referred to together in this 

thesis, the term CDC 6000s will be used. 
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(b) Aicafeteriatservice is provided for short batch 

jobs. The service has a dedicated card reader 

and line printer situated in a room adjacent to 

the computer room. 

(c) A local batch service is provided for all cate-

gories of batch jobs outside the smallest (cafe-

teria service) category. The turnaround time for 

batch jobs varies from a few hours to several 

days depending on the job category and the load 

on the system. 

(d) A remote batch service is provided for batch jobs 

of all categories. This is provided by means of 

low speed remote job entry terminals linked to 

the Export/Import subsystem which operates under 

Kronos. 

Batch jobs may fall into one of five job categories. 

The category a job is placed in depends on the resources 

required by the job. The resource limits for each cate-. 

gory are shown in table 4.1, 

Under Kronos 2.0, the CDC 6400 supported the batch, 

remote batch and timesharing workloads. With the intro-

duction of the CYBER 73, the workload was divided between 

the two machines. Most of the batch work and all the re-

mote batch work was run on the CYBER. The 6400 supported 

the timesharing workload as well as some batch work, 

mainly that generated by the terminal users. The two 

systems ran independently of each other. 

In June 1975, the locally developed multi-mainframe 

software was introduced. This enables the two systems 

to support a shared permanent file base. 
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Job Category 

1 4 7 10 13 

Resource Central Memory 24K 25K 30K 40K 49K 

Lines Printed 768 1536 2048 3072 5120 
* * * 

CPU time(secs) 16 65 180 300 600 

Magnetic tapes 0 2 3 3 4 

Cards Read 768 2048 3072 3072 3072 

Cards Punched 1024 1024 3072 3072 3072 

In 6600 CPU seconds r.. 2.5x6400 CPU seconds 

Table 4.1: Job Categories on the Imperial College CDC  

Kronos System  

Priority Level 

7 6 5 4 3 2 1 0 

Job 1 - - - P M J G A 

Cate- 4 P O N M J G D A 

gory 7 M L K J G E C A 

10 J I H G D C B A 

13 H G F E D C B A 

Key: Priority levels: P highest, A lowest 

Table 4.2: Job Classes on the Imperial College System 



55 

	

4.3 	The Imperial College CDC 6000 Computer System 

The Imperial College CDC 6400 (C7) and CYBER 73 each 

consist of: 

(i) A Central Processor which executes user jobs. 

(ii) 64k of 60-bit word Central Memory (CM), in 

which user jobs are multiprogrammed. 

(iii) 10 Peripheral Processors (PPs), each of which 

has its own 4k 12-bit private memory. The PPs 

perform all I/O tasks and most of the operat-

ing system functions. The PPs communicate with 

the CPU via CM. 

(iv) 12 data channels. Any PP may read or write 

to any channel, under software control. 

The main archi;:ectural difference between the 

6400 and the CYBER 73 is the compare/move unit on the 

CYBER. This processes additional character handling 

instructions,which are unavailable on the 6400. These 

instructions are made use of by some of the compilers and 

run time I/O packages on the CYBER. 

The 6400 also had 250k of 60-bit word Extended 

Core Storage (ECS) attached to it, which is used as a 

fast peripheral. When the CYBER was introduced, each 

machine was allocated 125k of ECS, which is not shared. 

Both 6000 machines are equipped with several disc 

drives and magnetic tape units. 

	

4.4 	The Kronos Operating System  

4.4.1 System Monitor 

In early CDC 6000 operating systems, the Nucleus 
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of the operating system, called Monitor, resided entirely 

in a dedicated PP. In the Kronos system, the supervisory 

duties are divided roughly equally between the dedicated 

PP Monitor (PPMTR) and the Central Monitor (CPMTR). 

CPMTR resides in Central Memory and is executed by the 

CPU. In general, CPMTR provides a faster response to user 

requests than the entirely PP resident Monitor. In this 

paper, no further distinction will be made between CPMTR 

and PPMTR; reference will be made instead to Monitor 

(MTR). 

MTR also controls the execution of system tasks by 

the 8 pool PPs. (The tenth PP is dedicated to driving 

the Dynamic System Display). Pool PPs are allocated tasks 

to execute by MTR. When a PP finishes executing a par-

ticular task, it returns to the pool. Some of the tasks 

are specifically requested by a user program, e.g. for I/O, 

in which case the PP program CIO is loaded to service the 

request. Other tasks are initiated by MTR to control job 

processing. The Job !icheduler, 1SJ is called to schedule 

jobs for execution and the Job Advancer lAJ is called to 

initiate job and job step execution. 

4.4.2 Control Points 

In the Kronos system, Central Memory (CM) is divided 

into a system area and user area. The system area holds 

the Central Memory Resident (CMR), which consists of a number of 

system tables, and Central Monitor. User jobs are multi-

programmed in CM. 

Each job in Central Memory is assigned to a logical 

entity called a control point. The control point is alloca-

ted various system resources to enable the job to be 

executed. This includes a contiguous block of CM in which 

the job resides. The Central Processor will be allocated 

to the control point from time to time to execute the job. 
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Peripheral processors will be allocated to a control 

point as required, to execute various tasks such as I/O 

and to perform system functions such as job and job 

step initiation. For each control point, there is a 

corresponding block in CMR, called the control point 

area, which holds information about the job. 

The amount of CM allocated to a control point 

may change during execution, as memory is allocated at the 

job step and sometimes sub-job step level. Jobs may be 

relocated in CM to provide room for other jobs. A job 

may also be rolled out of Central Memory and forced to 

release its control point, if a higher priority job is 

scheduled in its place. ECS is used as a primary rollin/ 

rollout device with disc as a secondary device. When a 

job is rolled out, the entire contents of its control point 

are written out to the rollout medium, together with the 

content of its control point area. The job is placed in a 

Rollout Queue and will eventually be scheduled back. into 

CM. 

4.4.3 Subsystems 

Some control points are used to carry out specific 

system functions. One control point supports a spooling 

program BATCHIO which uses its own dedicated PP to drive 

the slow peripheral devices. A second control point sup-

ports the interactive subsystem TELEX which uses a dedica-

ted PP to drive the hardware multiplexor, to which the 

interactive terminals are attached. A third control point, 

supports the remote batch subsystem EXPORT/IMPORT which 

again uses a dedicated PP to drive a second hardware multi-

plexor, to which are linked the remote batch terminals. 
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4.5 	Job' Processing on the Kronos System 

4.5.1 Batch Job Management 

A batch job submitted to the system must be in 

one of five categories (table 4.1) depending on its 

resource requirements. In addition, a user must specify 

a priority level for his job, between zero, the lowest 

level and 7 the highest. The Imperial College developed 

Job Manager(ICQMAN) maps each job into a job class, based 

on its category and priority, as shown in table 4.2 (W5). 

All jobs, apart from J1 jobs input via the cafeteria 

service, are then saved in the permanent file base. 

Every file in active use by the system (input, 

output, rollout and local files) must have an entry for 

it in the File Name Table (FNT), which is part of CMR. 

Before a job can be scheduled for execution by the Job 

Scheduler, 1SJ, it must have an entry for it in the FNT. 

At regular intervals, TCQMAN retrieves job, depending 

on their job class, from the permanent file base and creates 

FNT entries of type Input for them. All files of type 

Input in the FNT constitute the Input Queue (which is not 

a linked list) and are then available to 1SJ for job 

scheduling. Eventually a job will be scheduled to run 

at a control point. 

4.5.2 Terminal Management 

If an interactive user logged into the system is 

typing a program or doing some simple line editing, he 

makes use of facilities provided by the Telex subsystem, 

and thus only imposes a relatively small load on the 

system. On the other hand, if he wishes to compile or 

execute a program interactively, then a much larger demand 

is made on the system. For compilation or execution, an 

entry is created for the interactive user in the Rollout 
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Queue. This looks to the system like a job with one, j b 

step and is referred to here as a terminal job. The 

Rollout Queue consists of all entries in the FNT of type 

Rollout. All jobs in the Rollout Queue are available for 

selection by the Job Scheduler, 1SJ. Eventually a job in 

the Rollout Queue will be brought into CM to execute at 

a control point. Thus a terminal job must compete for 

system resources with other batch and terminal jobs. 

4.6 	Memory Scheduling 

4.6.1 Job Priorities 

In spite of its name, the Job Scheduler 1SJ deals 

with memory scheduling in addition to job scheduling. It 

therefore selects jobs for execution from both the Input 

(batch jobs) and Rollout (batch and interactive jobs) 

queues. 

1SJ bases its %decisions on the Central Memory 

priority of the job. There are a set of installation 

dependent priority parameters, namely the lower bound, upper 

bound and entry priorities, associated with each job 

origin. The job origin identifies whether the job origina-

ted from Batch, Telex or Export/Import. 

A job may enter a given queue with an entry priority 

which is between the lower and upper bounds for that job 

origin. In that case, the job's priority is gradually aged 

until it reaches the upper bound. If a job enters a given 

queue with a priority outside the lower bound/upper bound 

range, then its priority is not aged. When a batch job is 

first entered into the Input Queue by the Job Manager 

(ICQMAN), it will be given a CM priority according to 

its job class. This priority may or may not lie within 

the aging range. 
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1SJ bases its decision on which job to schedule 

next, on a job's CM priority and the maximum memory 

required by the job, as specified on the job card. If 

necessary, 1SJ will roll out jobs of lower priority. 

Once a job is rolled in, it is allocated a CM priority 

equal to the upper bound priority of its queue and 

origin. 

4.6.2 Job Time Slices 

As the Kronos system is primarily a timesharing 

system, its algorithms are oriented towards providing a 

fair allocation of resources. Consequently, each job 

in CM is allocated two time slices, the values of which 

depend on the job origin. These time slices set an upper 

time limit on the use of two critical resources, CM and 

CPU, that a job may use while resident in CM. Once a 

job exceeds one of its time slices its CM priority is 

reduced, usually to the lower bound priority of the Roll-

out queue for that jol., origin. The CM time slice is the 

real time that a job is allowed to execute in CM for 

before having its priority reduced. The CPU time slice 

is the amount of CPU time a job is allowed to use before 

having its priority reduced. 

The CPU scheduling algorithm on the Kronos system 

is basically a simple round-robin scheduling algorithm. 
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4 

CHAPTER 5: THE CDC DAYFILE ACCOUNTING SUBSYSTEM 

	

5.1 	Introduction  

In CDC 6000 systems, accounting data is collected' 

by the Operating System and stored in a disc file called 

the Dayfile. The contents of the Dayfile are dumped to 

magnetic tape at regular intervals by the operators. 

Analysis of the Dayfile can provide much information about 

the characteristics of the workload and overall throughput 

rates. 

The Kronos Dayfile was used as the source of work-

load and performance data for the evaluation and modelling 

of the Kronos system described in this thesis. Section 

5.2 describes the structure of the Dayfile. Section 5.3 

describes the main aspects of the processing of the Dayfile. 

Section 5.4 describes the three periods monitored and the 

data collected. Section 5.5 describes the limitations of 

the Dayfile for performance evaluation and modelling. 

	

5.2 	Structure of the Kronos Dayfile 

5.2.1 Kronos Dayfiles 

The Dayfile is maintained by the system Monitor 

(MTR). Any system program (central or peripheral processor), 

may record a message in the Dayfile by making a request 

to MTR. MTR adds the current time to the message before 

recording it in the Dayfile. Dayfile messages are recorded 

in chronological order (G4). 

In the Kronos system, more than one Dayfile is 

maintained. Two of the Kronos Dayfiles, the Account Day-

file and the System Dayfile, were used in this analysis. 

These two Dayfiles are maintained for the whole system, 

so that messages recorded in them relate to all batch 

jobs and time sharing users processed by the system. A 
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third Dayfile, the User Dayfile is maintained for each 

batch job. This contains all messages pertaining to 

that particular job. In Kronos, a system program must 

state which Dayfile(s) it wants a message to be recorded 

in. 

5.2.2 Usek Dayfile 

A User Dayfile is maintained for each job execut-

ing at a control point. Three types of messages are 

recorded in the User Dayfile. 

(a) The job card and all control cards processed 

by the system for that job. 

(b) Error and information messages relating to each 

job step executed. 

(c) At job termination, data on the resource utilisa-

tion of the job is output. 

The contents of the User Dayfile are printed with 

the job's output after job termination. An example of 

the User Dayfile is shown in figure 5.1. 

5.2.3 Account Dayfile 

This Dayfile records information which is mainly 

of use for job accounting. Information is recorded for 

both batch and time sharing users. An example of the 

Account Dayfile is given in figure 5.2. 

For both the Account and System Dayfiles, in 

addition to recording th time the message was issued, 

NTR also records the job name of the job for whom the 

message was issued. The job name is a unique seven charac- 
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1.94, 09. 47. JOB (UMAC H09 ) 
19.09. 50• T RAY NO. 	 HGI 
19. 09• 51.30PNESR (INPUTIPOSTPRC) 
19,09v 5 it (.,OPY C OMPLETF • 
19.09. 52.REWIND (POSTPRO) 
19.C9. 52.REPLACE( POSTPRC=POSTWO 
19. C9. 55•F UN (S,I=POSTPRD) 
19. 10t 14, C TIME 003. 765 SEC. MAY 1971* 
19. 10.14.L IBFILE(DUICAT) 
19 •10.18•OUILAT (F) 
19.1C. 20• QUICAT DONE. 
19.10.21•RU 	0.090 UNITS 
15.10e 21. :U 	0.090 UNITS 
19.11.1• 23.0 P 	3.972- SE.C• 
19. 11.1, 23.DM 	0•026 KWH* 
19• 10. 2301 S 	,0 6203 KPR. 
19•11. 04•LP20 	• 749UM ACH0- 9 	* 

Figure 5.1: Example of User Dayfile  

0 
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ter name which is given to a batch job when it first enters 

the system, or is associated with a terminal session when 

a user first logs in (see figure 5.2). An eighth character 

is added onto the end of the job name to identify the 

origin of the job: 

B - Batch job 

T - Telex (terminal) user 

E - Export/Import (remote job entry) job 

S - System job 

The data recorded for batch jobs in the Account Dayfile 

is as follows: 

(a) time a batch job is read through the card reader, 

and the number of cards read. 

(b) time a job commences execution. 	At this time, 

a copy of the user's job card is recorded in 

the Dayfile. 

(c) time a job terminates. 

The following job resource utilisation data is output 

at job termination: 

(d) CPU time used. 

(e) An estimate of Central Memory utilisation: 

the product of CM and CPU utilisation in units 

of Kiloword hours (KWH). 

(f) Disc physical records input or output. 

(g) Magnetic tape physical records input or output. 

(h) Time the job's output is printed, together with 

the number of lines printed. 
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User- ibgged:od 

Figdre 5.2: Example of Account Dayfile  

• 
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For an interactive user the following data is recorded 

in the Dayfile: 

(a) time user logged in 

(b) time user logged out 

The following resource utilisation data is recorded at 

user logout: 

(c) CPU time used 

(d) Product of CM and CPU utilisation in Kiloword 

hours 

(e) Disc physical records input or output 

(f) Characters input by user at teletype 

(g) Characters output by system at teletype 

5.2.4 System Dayfile 

Messages recorded in the System Dayfile are of the 

following type: 

(a) All batch job steps processed and the time of their 

initiation. 

(b) All terminal commands executed at a control point 

and the time of their initiation. 

(c) All job steps executed by system jobs and the time 

of their initiation. 

(d) When Telex (the timesharing subsystem) is dropped 

at the end of a timesharing session, it outputs 

data to the System Dayfile on the characteristics 

of the session. 
• 
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Figure 5.3_; Example of System Dayfile  
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(e) 	System messages, such as initial dead start 

messages, recovery dead start messages, and Telex 

recovery messages. 

An example of the System Dayfile is given in 

figure 5.3. 

5.3 	Dayfile Processing  

5.3.1 Introduction 

The Dayfile processing programs are a suite of 

programs developed for the purpose of: 

(a) Data reduction of the Account and System Dayfiles. 

(b) Analysis of the Dayfile data. 

(c) Preparing data for input to the models of the IC 

Kronos system. 

The Dayfile programs were developed over an extended 

period of time by the author in conjunction with two M.Sc. 

students, who developed some of the programs as part of 

their projects. An overall diagram showing the relation-

ship between the programs and files used is shown in figure 

5.4. 

This section concentrates on the processing of the 

Dayfile data for input to the models of the Kronos system. 

The program referred to in this section take the raw 

Account and System Dayfiles as input, and generate two 

files, the B and J files. These files are input to pre-

processor programs for the models of the system. 
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5.3.2 Account Dayfile Processing 

5.3.2.1 Account Dayfile Reduction 

The data reduction of the raw Account Dayfile 

into a more useable form is carried out by a program 
called Kronos Dayfile Reduction (KDR). KDR takes the raw 

Account Dayfile as input and generates two files, a 

Batch file and a Terminal file. 

(a) The Batch (B) File  

This file contains one record for each batch job 

processed and is ordered by job termination. 

(b) The Terminal (T) File  

This file contains one record for each terminal 

user and is ordered by user logout time. 

A description of the data stored in the B and T 

files is given next. A full description of KDR, which 

was developed by J.L. Thompson is given in reference (T2). 

The B File  

The data collected for each batch job in the B file 

is as follows: 

(a) Time the job was read through the card reader. 

(b) The number of cards read. 

(c) Time (in seconds) the job was scheduled for execu-

tion. 

(d) Job name. 

(e) Job category. 

(f) Maximum Central Memory requested (as given on JO 

card). 

(g) Number of magnetic tape drives requested. 
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(h) Number of permanent file accesses made. 

(i) Time the job terminated, in seconds. 

(j) CPU time used, in milliseconds. 

(k) Central Memory utilisation in word-hours. 

(1) 	magnetic tape physical records input or output. 

(m) Disc physical records input or output. 

(n) Time the job's output was printed. 

(o) Number of lines printed. 

(p) State field. Indicator whether the record was 

accepted or rejected by the program. A record 

is rejected if: 

(i) a message was missing 

(ii) messages were out of sequence 

(iii) an item of data appeared to be in error. 

The T File  

The data collected for each terminal user in the 

T file is as follows: 

(a) Time user logged in, in seconds 

(b) User's job name 

(c) Port number user was logged in at 

(d) Time user logged out, in seconds 

(e) CPU time used, in milliseconds 

(f) CM utilisation in word-hours 

(g) Disc physical records input or output 

(h) Number of characters output by system 

(i) Number of characters input by system 

(j) State field. Indicator whether the record was 

accepted or rejected. 

5.3.2.2 	Analysis of the System Load 

The program CSA was developed to determine the 

average batch and terminal load experienced by each batch 

job during its execution phase. The average batch load 
calculated is the average number of batch jobs executing 



72 

concurrently with a given job. The average terminal load 

calculated is the average number of terminals logged in 

while a given job was in execution. 

The program also calculates the average batch 

and terminal loads over fixed time intervals (e.g. 5 or 

15 minutes). The average batch and terminal loads over 

a whole session are also calculated. 

As no record of job rollin or rollout is maintained 

by the Dayfiles, the average batch load is a measure of 

all jobs in the execution phase competing for system 

resources. They may either be resident in Central Memory 

(CM) or rolled out to secondary storage. 

CSA uses the B and T files prepared by KDR as in-

put. CSA makes use of the job start and termination 

- times from the B file, and the terminal login and logout 

times from the T file. CSA outputs the X file which has 

one record for each batch job containing the average 

batch and terminal loads during the job's execution. 

CSA was developed by P.G. Jones and is described 

fully in reference (J1). 

5.3.3 System Dayfile Processing 

The System Dayfile Ieduction program, SDA, takes 

as input the raw System Dayfile and outputs three files. 

(a) 	BATCH 

This file has one record for each batch control 

card (equivalent to a job step) processed by the system. 

The initiation time of the job step and the jobname of 

the job it originated from are recorded in the file. 
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(b) TELEX 

This file has one record for each terminal 

command (executed as a job step at a control point) pro-

cessed. The initiation time of the command and the job 

name of the terminal user session it originated from are 

recorded in the file. 

(c) TAPE 

All System Dayfile messages relevant to magnetic 

tape processing are recorded in this file. 

A second analysis program, SDR, uses the three 

files prepared by SDA and generates the Y file which 

contains one record for each batch job containing: 

(a) The number of control cards (job steps) in each 

batch job processed. 

(b) The number of batch job steps initiated by the 

system for batch jobs executing concurrently, 

with a given batch job. This provides a measure 

of batch activity. 

(c) The number of terminal commands whose execution 

was initiated during a given job's time in the 

execution phase. This gives a measure of terminal 

activity. 

A third program, MERGE, merges the X file genera-

ted by CSA and the Y file generated by SDR into one file 

called the J file. The J file also contains one record 

for each batch job and is ordered by job start time. 

In addition to items (a) - (c) from the Y file, 

the J file also contains the following items from the X 

file: 
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(d) The average batch load experienced by a job 

during execution. 

(e) The average terminal load experienced by a job 

during execution. 

The three programs, SDA, SDR and MERGE were 

developed by P.G. Jones and are described fully in 

reference (J1). 

5.4 	The Dayfile Data Collected  

The Dayfile data used for the performance evalua-

tion and modelling of the IC system, was collected during 

three separate periods between July 1973 and April 1975. 

(i) The first period was in July 1973. The morning 

and afternoon sessions of the 16th and 18th July were 

monitored on the CDC 6400 running the Kronos 2,0 operat-

ing system. Only the contents of the Account Dayfile 

were collected. KDR was used to process the Account 

Dayfile. Another program was written to extract measures 

of terminal loading averaged over fifteen minute intervals. 

No measures of batch loading were used in the analysis 

of this period. 

(ii) The second period was in the spring of 1974. Four 

morning sessions (20th May, 12th, 17th and 18th June) 

and two afternoon sessions (17th and 18th June) were moni-

tored on the CDC 6400 running the Kronos 2.0 operating 

system. The contents of both the Account and System Day-

files were collected. All the programs described in this 

chapter were used for the Dayfile reduction and analysis. 

(iii) The third period covered the first part of 1975. 

Two sessions in January 1975 (the morning of the 27th and 

the afternoon of the 30th ) and two sessions in April 1975 
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(mornings of the 28th and 30th) were monitored on the 

CYBER 73 running the Kronos 2.1 operating system. The 

contents of the Account and System Dayfiles were collec-

ted and analysed. 

5.5 	Limitations of the Kronos Dayfile for Perfor- 

0, 	mance Evaluation and Modelling  

The CDC Dayfile is primarily an accounting tool, 

and consequently the data gathered is oriented in that 

direction. The data collected' is primarily at the 

macro (job) level. Analysis of this data can provide much 

valuable information about the characteristics of the 

workload and on overall throughput rates. In particular, 

it can provide: 

(i) A detailed workload profile of the system. For 

example, the distribution of jobs by their 

resource (CPU, Memory, I/O) utilisation or com-

piler usage. 

(ii) system throughput rates. For example, the mean 

and standard deviations of elapsed time for 

different classes of jobs at different times 

of the day/month/year. 

(iii) Information on peak demands and loads on the 

system. For-example, the number of terminal users 

logged in, length of job input and output 

queues, the average CPU utilisation over a whole 

session and its distribution between, for example, 

the batch and timesharing workloads. 

Examples of Dayfile analysis are given in (G5), 

(G6), (L4) and (S10). 
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Accounting data has been used in the past in 

computer system modelling. The CDC Dayfile was used as 

the source of workload and performance data in simulat-

ing a CDC batch computer system (N3). The accounting 

subsystem on IBM OS/360 systems, the System Management 

Facility (SMF) (13) was used as the source of data for 

simulating OS/360 systems (W2). 

There are, however, many disadvantages to using 

the Kronos Dayfile as the only source of workload and 

performance data for the evaluation and modelling of 

the IC Kronos system. This is in part due to the nature 

of the Dayfile, but also because the Kronos Dayfile is 

more limited, in the amount and type of data collected, 

than the Dayfiles of other CDC computer systems, e.g. 

the CERN SCOPE computer system (L4). It is also consider-

ably more limited than the IBM SMF package, which collects 

data at the job step level (13). 

The principle limitations of the Kronos Dayfile 

are: 

(a) Data is collected at the job level for batch jobs 

and the session level for terminal users. For 

batch jobs the job start and end times are recorded; 

and the jobs resource utilisation is recorded at 

job termination. For a terminal user, login and 

logout times are recorded and the user's resource 

utilisation is recorded at logout time. 

Consequently for both batch jobs and terminal users, 

no indication is given of the distribution of 

resource utilisation over the job or session's 

lifetime. This makes it difficult to effectively 

analyse the performance of the batch workload. It 

makes it virtually impossible to analyse the perfor- 
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mance of the timesharing workload. This is because 

a terminal user can spend large portions of the 

session thinking or doing trivial (in their demand 

on the system) operations such as typing in a 

program, followed by bursts of activity such as 

compilations and executions. 

(b) Although the initiation of each batch job step and 

terminal command is recorded in the System Dayfile, 

no indication is given of the duration of the job 

step, nor of the resources used by the job step. 

Consequently no serious attempt can be made at ana-

lysing performance at the job step level. Similarly, 

the system can only be modelled at the job and not 

the job step level. 

(c) No indication whatsoever is given of rollin/rollout 

activity. Thus, although a job's start and end 

times may be determined from the Dayfile, there is 

no means of finding out if and when a job was 

rolled out, for how long and for what reasons. In 

a dynamic system like the Kronos system, this is a 

severe limitation. 

(d) The available measure of CM utilisation is crude. 

At job termination, a space/time measure is recorded 

in the Dayfile. The figure is computed for each 

period when the CM allocated to the job is constant 

by multiplying the memory allocated with the CPU 

time used. This figure is summed for the whole job 

and converted to Kiloword-hour units. 

Dividing the Kiloword-hour utilisation by the CPU 

utilisation gives an estimate of the average memory 

used by the job during execution. This measure is 

in many cases not accurate because: 
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(i) Kiloword-hours is not a suitable unit for 

small jobs: if the CPU time is small, then 

the value of Kiloword-hours recorded (and 

hence the estimated average CM) is zero. 

Units of word-hours or Kiloword-seconds 

would be more suitable. 

(ii) If the CPU utilisation varies widely at 

different stages of the job, then the esti-

mate of average CM is biased towards memory 

sizes for which large CPU times were 

recorded. 

(e) The I/O measures are crude. The total number of 

physical records transferred, which is the only 

value of I/O activity recorded, gives no indication 

of how many I/O requests were made, nor how long 

the requests took to be serviced. In addition, no 

indication is given of the channels used, channel 

time consumed, nor of peripheral processor activity. 

(f) The time at which system jobs commence execution is 

not recorded in the Dayfile. Systems jobs have 

priority over all other jobs for the central processor, 

consequently the execution of system jobs can delay 

other jobs. 

(g) No indication is given of overall system activity, 

for example when the system is heavily utilised, 

CPU bound or I/O bound. 

5.6 	Conclusions 

The main effects of these limitations on the 

performance evaluation and modelling of the Kronos system 

are: 



79 

(a) Timesharing Subsystem 

The data available is insufficient to allow an 

effective performance evaluation of the time sharing 

subsystem. Neither is the data sufficient to allow the 

timesharing subsystem to be modelled. 

(b) Batch subsystem 

The data is sufficient to allow an attempt to be 

made at a high level performance evaluation and modelling 

of the batch subsystem. Hos;7ever, this can only be 

carried out at the job and not at the job step level. 
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CHAPTER 6: REGRESSION MODELLING OF THE IMPERIAL COLLEGE 

SYSTEM 

6.1 	Introduction 

This chapter describes the first attempt at the re-

gression modelling of the Imperial College system. The 

implementation aspects of the regression analysis are des-

cribed in section 6.2. An introduction to the regression 

models is given in 6.3. The models of the short and long job 

workloads are described in 6.4 and 6.5 respectively. The 

models are assessed in section 6.6. Appendix A presents an 

overview of multiple linear regression analysis and then 

describes the Forward Selection Regression procedure which was 

used in this analysis. 

6.2 	Implementation Aspects of Regression Modelling  

6.2.1 Introduction 

The data used for constructing the models was de-

rived from the Kronos Account and System Dayfiles as des-

cribed in Chapter 5. The B and J files are input to a 

preprocessor program which merges and sorts the data into the 

appropriate form for the Forward Selection Regression Program. 

The framework for the program was written by the author. 

The program uses a number of subroutines from the IBM 

Scientific Subroutine package (I1), which has been converted 

to run on CDC 6000 systems. 

6.2.2 Preprocessing 

The Dayfile processing programs take as input the 

Kronos Account and System Dayfiles for a particular session 

and output two files, the B and J files. The B file, which 

is ordered by job termination, consists of a job summary 

record for each job processed in the session. Each summary 

record holds measures of the resources demanded by the job 
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during its execution. The J file, ordered by job commence-

ment, contains various measures of the load on the system 

during each job's lifetime. 

The B and J files are input to the Preprocessor 

which merges and sorts the two files. The Preprocessor will 

output a number of different files depending on the input 

parameters specified. Each file consists of a set of obser-

vations, where each observation (one per job) consists of 

a set of job characteristics. These are listed in section ' 

6.3.2. 

The different output files are: 

(i) The All Jobs File which contains an entry for every 

job processed in the session. 

(ii) The Short Job File which contains an entry for every 

short job (Jl category) processed. 

(iii) The Long Job File which contains an entry for every 

long job (non-Jl category) processed. 

(iv) The Long Tate Job File which contains an entry for 

every long job processed that used magnetic tapes. 

(v) The Long Non-Tape Job File which contains an entry 

for every long job processed that did not use 

magnetic tapes. 

These files are in the appropriate format for input to the 

Forward Selection Regression Program. 

6.2.3 The Regression Program 

A block diagram showing the overall structure of 

the Forward Selection Regression Program is shown in figure 

6.1. A short description of each routine follows: 



DATA 

SELECT 

MAIN 

MSTR 
* 

PLTRES 

** 
GRAFIT 

STPRG 
* 

STOUT 

KOLMO 

• • 	 A 	• 

* IBM Scientific Subroutine Package 	** I.C. Program Library 

Figure 6.1: Block Diagram of Forward Selection Regression Program 
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MAIN 
	

is the main routine. Its main function is to co- 

ordinate the execution of the other routines. 

DELOBS is called by MAIN if any observations are to 

be excluded from the run. DELOBS sets up a 

vector of observations to be excluded. 

CORRE • - is called by MAIN to calculate the means, stan-

dard deviations and simple correlations co-

efficients of all the variables. 

DATA 	is called by CORRE to read the file of workload 

data prepared by the Preprocessor. The file 

contains the set of observations (one observa-

tion corresponds to a job) which are to be 

fitted. DATA makes use of the deletion vector 

set up by DELOBS to exclude unwanted observa-

tions for this run. 

SELECT is called by DATA to prepare any second order 

independent variables as required e.g. CPU2 or 

CPU*DPRU terms. (see section 6.3.2). 

MSTR 	is called by MAIN to carry out some matrix 

manipulation prior to calling STPRG. 

STPRG performs the forward selection regression pro-

cedure as described in Appendix A, The 

criterion for stopping the selection is whether 

R2 has been improved by a specified amount, 

which is an input parameter to the program. 

STOUT is called by STPRG to output the results of each 
step of the forward selection procedure. 

KOLMO is called by MAIN to perform a Kolmogorov-Smirnov 

one-sample test on the residuals (SS). This 

tests the hypothesis that the residuals are nor-

mally distributed (Appendix A). 
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GRAFIT is a plotting routine. It is called by MAIN 

to plot the residuals against the estimated 

and observed values of the dependent variable. 

PLTRES is called by MAIN if further plots are required. 

The residuals and the dependent variable are 

plotted against specified independent variables. 

GRAFIT is called to do the plotting. 

CORRE, MSTR, STPRG and KOLMO are subroutines in 

the IBM Scientific Subroutine Package. GRAFIT is a sub-

routine in the Imperial College ICLIB program library. 

6.3 	Early Regression Models of the Imperial College  

System  

6.3.1 Introduction 

The initial attempt at the modelling o the Kronos 

System involved building regression models of the batch 

workload. 

For the reasons given in Chapter 3, the job 

elapsed time was used as the dependent variable. The 

independent variables were of three types: 

(a) Variables representing a job's resource demands. 

(b) Variables representing measures of the overall 

load on the system. In this initial analysis, 

no variables relating to the batch load were 

available. 

(c) A variable identifying the job class of the job. 
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Initially, models were constructed of the total 

batch workload. Models were then constructed of classes 

of jobs in the workload. The classes described here are 

the short (J1) and the long (non-J1) classes of batch jobs. 

The class of long jobs was then classified further into 

jobs which used magnetic tapes and jobs that did not. 

The workload data used for building the models was 

gathered over four sessions on two separate days, the 16th 

and 18th July 1973. On each day there was a morning and 

afternoon session, separated by a system session. All the 

values of the dependent and independent variables used in 

building the model were extracted from the Account Dayfile 

using the program KDR (see 5.3.2.1). The System Dayfile 

was not used at all in this initial analysis. 

6.3.2 The Independent Variables 

In the construction of every model, a set of inde-

pendent variables were available for selection by the 

Forward Selection Regression Program. The criterion for 

stopping the selection was then the inclusion of a new 

variable improved R2  by less than a specified amount, e.g. 1%. 

The independent variables were: 

a) Job's resource demands: 

(i) Maximum CM requested (MAXCM) 

(ii) Average CM used (AVCM) 

(iii) Number of magnetic tapes required (NMT) 

(iv) CPU time (CPU) 

(v) Word hours (product of CPU time x CM used) (WH) 

(vi) Disc physical records input or output (DRRU) 

(vii) Magnetic tape physical records input or output (MTPRU) 

(viii)Number of permanent file requests (NPFREQ) 

b) Measure of interactive load (averaged on a 15 minute basis): 

(1) 	Average terminal load while job was in execution 

(AVT) (average number of terminals logged in). 
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(ii) An approximate estimate of the interactive 

CPU demand per terminal hour (CPUSPH) 

c) Class of job within workload 

(i) 	Job Category (JCL) 

Initially models were constructed for each of the 

four samples. In cases where different samples were 

merged, two dummy independent variables were used whose 

coefficients,if significant, would indicate a dependency 

on the day or time of day when the jobs were run. 

6.3.3 Analysis of the Workload 

The main features of the batch workload for the 

four sessions are displayed in table 6.1. The short job 

workload (Jl jobs) accounted for over 80% of the jobs 

processed in all four sessions. However the CPU utilisa-

tion of the short job workload was much less, varying 

from 24% in the 16/7 a.m. sample to 56% in 18/7 p.m. sample. 

The mean CPU time for short jobs varied from 4.6 seconds.  

to 5.6 seconds. The mean CPU time for long jobs was 

much larger, varying from 26 seconds, on 18/7 p.m. to 108 

seconds on 16/7 a.m. 

It is thus clear even from this superficial study 

of the workload that the short jobs though much larger 

in number, in general consume, considerably less resources 

than the large jobs, which are few in number. These 

characteristics are fairly typical of university computing 

environments. 

The characteristics of the short and long job 

workloads are shown in tables 6.2 and 6.3 respectively..  
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Table 6.1: Characteristics of the 1973 Batch Workload  

Class Characteristic 16/7/73 

a.m. 

18/7/73 

a.m. 

16/7/73 

p.m. 

18/7/73 

p.m. 

All Jobs number of jobs 

Total CPU time 

(seconds) 

Mean CPU time 

432 

7179 

487, 

4390 

723 

8685 

811 

6950 

(seconds) 16.6 9.0 12.0 8.6 

Short Jobs 
■ 

number of jobs 

percentage of 

378 433 594 692 

all jobs 87.5 89.0 82.0 85.3 

Total CPU time 

(seconds) 1739 1990 3085 3880 

Mean CPU time 

(seconds) 

percentage of 

batch CPU time 

4.6 4.6 5.2 5.6 

(seconds) 24.2 45.5 35.8 55.8 

Mean elapsed 

time (seconds) 23.8 34.8 32.0 43.0 

Long Jobs number of jobs 

percentage of 

54 54 129 119 

all jobs 12.5 11.0 18.0 14.7 

Total CPU time • 

(seconds) 5440 2400 5600 3070 

Mean CPU time 

. 

(seconds) 

percentage of 

batch CPU 

108.0 44.8 43.5 25.8 

time 75.7 54.6 64.5 44.2 

Mean elapsed 

time 	(seconds) 865 590 767 396 

_____, 
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Table 6.2: Characteristics of the 1973 Short Job Workload 
(Four Samples)  

16/7 a.m. 18/7 a.m. 16/7 p.m. 18/7 p.m. 

Elapsed time(secs)m. 23.8 34.5 32.0 43.0 

s.d, 49.5 42.0 55.4 51.7 

CPU time 	(secs)m, 
s.d. 

4.6 

5.3 

4.6 

5.2 

5.2 

5.2 

5.6 
5.2 

Word hours 	m, 

s.d. 

disc records trans- 

ferred 	(p.r.u.)m. 

21.5 

22.6 

243.9 

22.1 

24.3 

262.4 

25.9 

25.3 

324.0 

27.2 

25.9 

314.1 

s.d. 286.2 366.0 342.4 469.0 

terminal load 	m, 

_s.d. 

16.6 

3.2 

23.9 

7.2 

19.0 

5.3 

19.2 

8.7 

Number of permanent 

file requests 	m. 2.7 2.2 2.4 2.4 

s.d. 6.3 1.5 1.5 1.8 

Number of short jobs 378 433 594 692 

Key 	 mean 

s.d.: 	standard deviation 

p.r.u.: physical record units 
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Table 6.3:  Characteristics of the 1973 Long Job Workload 
(Four Samples)  

16/7 a.m. 18/7 a.m. 16/7 p.m. 18/7 p.m. 

Elapsed time(secs)m. 865 590 767 396 

s.d. 1595 1122 1771 1131 

CPU time (secs)m. 108.0 44.5 43.5 25.8 

s.d. 254.0 128.0 127.0 65.4 

Word hours 	in. 586 295 242 133 

s.d. 1582 922 740 376 	' 

Disc records 	(p.r.u)m 2723 1223 1663 907 

s.d ►8973 2398 4515 1635 

Tape requests 	m, 

s.d. 

0.4 

0.5 

0.4 
0.6 

0.4 
0.5 

0.2 

0.5 

Terminal load 	m, 

s.d. 

17.5 

3.6 

20.0 

11.3 

15.4 

7.2 

19.2 

6.5 

Number of long jobs 54 54 -129 119 

Number of tape jobs 20 17 54 24 

Number of non-tape 

jobs 34 35 	• 75 95 

Number of J4 jobs ' 47 47 93 107 

Number of J7 jobs 7 7 36 12 

Key: 	mean 

s.d.: 	standard deviation 

p.r.u.: physical record units 
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6.3.4 Regression Models of the Total Workload 

Regression models of the total workload were con-

structed for each of the four samples. These are dis-

played in figure 6.2. In each equation, the order of 

the independent variables, from left to right, represents 

the order in which these variables were selected by the 

Forward Selection Regression procedure. 

In three of the four models (16/7 a.m., 18/7 a.m. 

and 18/7 p.m.) over 80% of the variation (R2) was explained 

by the model, and in each case WH made the most signifi-

cant contribution. The values of the regression coeffi-

cients of WH, however, vary considerably. In the fourth 

model (16/7 p.m.), the fit is much poorer, and the variable 

making the most significant contribution is DPRU. This 

suggests that some heavily I/O bound jobs were dominating 

- this sample. In none of the samples, did the independent 

variables representing terminal load make a significant 

contribution. 

Analysis of the residuals revealed that most of 

the residuals were negative and comparatively small in 

magnitude. However, a smaller number were positive and 

much larger in magnitude. In particular, the large 

positive residuals occurred for jobs with large elapsed 

times. Furthermore, the estimates for the dependent 

variable, namely job elapsed time, were negative for a 

large number of short jobs. 

Thus, in spite of the large R2, the models appeared 

unsatisfactory for a number of reasons. Firstly, the 

models were inconsistent, showing large differences in 

the variables selected and in the values of the regression 

coefficients. Secondly, the large number of negative 

estimates meant that it was unrealistic to expect this 

type of model of the total workload to be a satisfactory 
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Figure 6.2: Regression Models of the Total Workload 

16/7/73 a.m. sample - 432 observations 

= -316 + 0.8 WH + 310 JCL + 0.02 DPRU 

F = 1202 s = 205 	R2 = 0.89 

16/7/73 p.m. sample - 723 observations 

Y = -2808 + 0.2 DPRU + 0.11 MAXCM + 0.63WH + 388 NMTS 

F = 222 	s = 535 	R2 = 0.55 

18/7/73 a.m. sample - 487 observations 

Y = -1052 + 2.9 WH + 285NM1S- 15.4 CPUT + 0.04 MAXCM 

+ 0.42 MrvIZU + 133 JCL 

R2 = 0.81 

18/7/73 p.m. sample - 811 observations 

Y = -54 + 2.3WH + 0.11 DPRU + 0.63 MTPRU 

F = 1257 s = 190 	R2 = 0.82 

key: 	Y: Job Elapsed time (dependent variable) 

Independent variables : Key in section 6.3.2 

R2 : proportion of variation explained by model 

s : standard error of the residuals 

F 	F statistic 

0 
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means of modelling short jobs. Thirdly, the large posi-

tive residuals meant that, for some jobs at least, a large 

amount of the variation was unexplained. It was therefore 

decided, in the first instance, to classify the workload 

into long and short job workloads and build regression 

models of each. 

6.4 	Regression Models of the Short Job Workload  

6.4.1 Models of Individual Sessions 

The short job workload consists of all jobs in 

the Jl category. The characteristics of the short job 

workload for the four samples is shown in table 6,2. 

Regression models were constructed for each of the four 

samples and are shown in figure 6.3. A regression model 

was also constructed using data pooled from the two 

morning samples, and is shown in figure 6.4. 

Figure 6.3 shows that the amount of variation 

explained by the models, R2,varies from as little as 9% 

on 16/7 p.m. to 50% on 16/7 a.m. The models were con-

sidered unsatisfactory because of this large unexplained 

variation. Furthermore, the models are substantially 

different, with different variables and different values 

of regression coefficients. 

6.4.2 Analysis of Residuals 

An analysis of residuals shows that the plots of 

residuals against the job elapsed time (the dependent 

variable),for the different models,all display similar 

characteristics. As an example, consider the residual 

plot against predicted job elapsed time for the 18/7 a.m. 

model, which is shown in figure 6.5. This shows that 
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Figure 6.3: Regression Models of the Short Job Workload 
(Individual Samples)  

16/7/73 a.m. sample - 378 observations 

Y = 289 + 4.3 NPFREQ + 6.5 CPUT - 0.01 MAXCM - 0.8 WH.  

F = 94 s = 35.1 R2 = 0.50 

16/7/73 p.m. sample - 594 observations 

Y = -15 + 0.6 WH + 1.7 CPUSPH 
F = 53.0 s = 28.3 R2 = 0.09 

18/7/73 a.m. sample -'433 observations 

Y = 13.7 + 0.05 DPRU + 0.39 WH 

F = 81.6 s = 36 R2 = 0.28 

18/7/73 p.m. sample - 811 observations 

Y = 4 + 0.3 DPRU + 2.9 CPUT + 5.6 NPFREQ 

F = 92 s = 43.8 R2 = 0.29 

Figure 6.4: Regression Models of the Short Job Workload  
(Combined Morning Samples)  

No. of observations = 811 

Y = -5.2 + 4.2 NPFREQ + 5.1 CPUT + 0.03 DPRU + 12.5 DAY 
- 0.6 WH 

R2 = 0.37 

For key refer to figure 6.2 
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although all the negative residuals are comparatively 

small in magnitude, some of the positive residuals are 

much larger. The residual plots against the independent 

variables do not explain this variation. The plot of 

residuals against actual job elapsed time, however, 

(figure 6.6) reveals another interesting fact. In general, 

the negative residuals all occur for small values of job 

elapsed time, whereas the large residuals all occur at 

large values of job elapsed time. Furthermore, there is a 

tendency for the residuals to be positively correlated 

with actual elapsed time. 

The residual plot suggests that there is some,possibly 

time-dependent, independent variable(s) which so far has not 

been taken into account in constructing the models. A 

possible explanation is the effect of the interactive work-

load on the batch workload. When the interactive load is 
4 	 high, batch jobs are rolled out of CM (because of their lower 

priority) and are not rolled in again till the interactive 

load subsides. The al;ilable measures of interactive load 

are averaged over fifteen minute intervals and have not been 

selected for inclusion in the model. Since the mean elapsed 

time for a short job is around 30 seconds, it would seem 

that a more suitable measure of interactive load should be 

at this level of resolution. 

6.4.3 Comparison of Morning Sessions 

• 	
A regression model was also constructed using work- 

load data from the two morning - samples (figure 6.4). 	A 

dummy independent variable was used to identify the day of 

the run. It was set to zero for all observations (one 

observation per job) in the 16/7 a.m. sample, and set to 1 

for all observations in the 18/7 a.m. sample. If signifi-

cant, the regression coefficient of the 'day' variable 

should be an estimate of the increased (or decreased) elap-

sed time caused by running the jobs on different mornings. 

The 'day' variable made a significant contribution to the 

model, suggesting that there was a significant difference 

in system behaviour on the two mornings. 
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Comparing the characteristics of the two morning 

samples (table 6.2) indicates that although the mean job 

'CPU time', 'word hour', 'disc record transfers', and 

'number of file requests' correspond quite closely, the 

mean job elapsed time in the first sample (23.8 seconds) was 

considerably shorter than in the second (34.5 seconds). 

This difference in short batch job performance, reflected 

in the difference of 10.7 seconds in the mean job elap-

sed times, corresponds fairly closely to the regression 

coefficient of the 'day' variable, 12.5 seconds. 

Although not recorded as having made a significant 

contribution to the variation, the terminal load was con-

siderably higher in the second sample than in the first. 

A peak of 33 terminals as compared to 19 was recorded. If, 

as seems highly probable, the two measures of terminal load 

used in this analysis do not provide a good enough measure 
of interactive load to have a significant effect on the 

model, then it is likely that the difference in system 

behaviour is being attributed to the 'day' variable instead 
of the terminal load. This problem is analysed further in 

chapter 7. 

6.5 	Regression Models of the Long Job Workload  

6.5.1 Models of Individual Sessions 

Regression models were constructed for each of the 

four samples of long (i.e. non-J1) jobs (figure 6.7). 

Considerably more of the variation was explained in these 

models than in the short job models. In general, there 

was considerable similarity, for each sample, between the 

model constructed for the long job workload and the total 

workload (figure 6.2). This indicates that it is the 

long jobs, a small part of the workload in numbers, which 
determine the form of the model. This is because the 

contribution to the total sum of squares by the long 

jobs is much greater than .the contribution by the short 

jobs, even though these are much more in number. Hence 

the contribution due to the long jobs dominates the model. 
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Figure 6.7: Regression Models of the Long Job Workload  

16/7/73 a.m. sample - 54 observations 

Y = 28 + 0.79 WH + 676 JCL + 0.024 DPRU + 339 NMTS 

F = 112 s = 590 R2  = 0.90 

16/7/73 p.m. sample - 129 observations 

Y =-3579 + 0.22 DPRU + 0.15 MAXCM + 0.54 WH 

F = 45 s = 1245 R2 = 0.52 

18/7/73 a.m. sample - 54 observations 

Y = -3135 + 0.67 WH + 0.13 MAXCM + 423 NmTS 

F = 4C.0 s = 627 R2 = 0.'5 

18/7/73 p.m. sample - 119 observations 

Y = -134 + 2.3 WH + 0.19 DPRU + 213 NMTS 

F = 209 s = 450 R2 = 0.85 

For key refer to figure 6.2 
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In three of the four models, more than 80% of 

the variation was explained and WH made the most sig-

nificant contribution. One model (16/7 p.m.) displayed 

different characteristics. Only 52% of the variation 

was explained and DPRU made the most significant con-

tribution. The analysis of the residuals for this model 

revealed some outliers, in particular one job with most 

unusual characteristics. 

In all models, the residuals are large and the 

standard errors high. In addition, there is a consider-

able variation between the models. It was concluded 

that the models were therefore not suitable in this 

form. 

The long job workload includes some jobs which 

use magnetic tapes and others which do not. There is 

likely to be a substantial difference in characteristics 

between these two classes of jobs. Hence, it was decided 

that a further classification of workload, into long 

jobs that used tapes and those that did not would be 

appropriate. 

6.5.2 Models of the Non-Tape and Tape Classes 

of Long Jobs 

Models were constructed for the long non-tape 

job class and the long tape job class of jobs. These 

were compared with each other and with the long jobs 

model for the same data. Consider the example in figure 

6.8, which shows the three models. All three models 

were built from observations for the two morning samples. 

A 'day' dummy variable was used, but it did not make a 

significant contribution to any of the models. 

Apart from the magnetic tape term in the long 

jobs model, the long job model and the non-tape long 

jobs models match quite closely. The regression coeffi- 

a 
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Figure 6.8: Comparison of Long Job Models (Combined  

Morning Samples) 

Long Jobs Model - 106 observations 

Y = 1890 + 0.80 wH + 0.08 MAXCM + 0.03 DPRU + 371 NMTS 
e 	 R2 = 0.83 

Long Non Tape Jobs Model - 69 observations 

Y = -2106 + 0.78 WH + 0.09 MAXCM + 0.03 DPRU 
F =.178 s = 546 	R2 = 0.89 

Long Tape Jobs Model - 37 observations 

= 322 + 2.4 wH + 615 JCL 

F= 3f s = 477 	R2 = 0.63 

Key : refer to figure 6.2 

0 



cient of the 'number of magnetic tapes' variable re-

presents an estimate of the time taken to mount a mag-

netic tape, 371 seconds. 

However, the tape jobs model shows considerable 

differences. Firstly, the amount of variation explained 

by the model is much lower. This is almost certainly 

due to the fact that the time taken to load a magnetic 

tape is not available from the Account Dayfile, and 

consequently could not be included in the model. 

Table 6.4 compares the characteristics of the 

tape and non-tape classes of long jobs for the combined 

morning samples. It can be seen that although the mean 

elapsed times for the two classes are of the same order, 

the CPU and word-hour utilisation figures are considerably 

smaller for the tape class. Thus the contribution to 

the total sum of squares by the long non-tape jobs appears 

to be dominating the models of the long job workload 

and indeed the models of the total workload. 

6.5.3 Models of the Long Non-Tape Job Sample 

Linear regression models of both the first order 

and second order variety were built for the long non-tape 

job samples for the 16th and 18th July respectively. A 

dummy 'time of day' variable was used to distinguish bet-

ween observations in the morning sample and afternoon 

sample. An analysis of residuals was also carried out, 

leading to the exclusion of outliers, and the construction 

of more refined models. 

Figure 6.9 shows the first order model, second 

order model, and second order model with outliers ex-

cluded, for the 16/7 and 18/7 samples respectively. In 

the second order model, second order independent variables 

of the quadratic (e.g. CPU
2
, DPRU

2) and product (e.g. 

CPU*DPRU,DPRU*AVCM) type were made available for selection 

by the Forward Selection Regression procedure. 

1.01 
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'Table 6.4: Characteristics of Tape and Non-Tape Classes  

of Long Jobs [16th and 18th July 1973 morning  

Characteristic Tape Jobs Non-tape Jobs 

Number of jobs 37 69 

Elapsed time (secs) m. 731 1090 

s.d. 823 1952 

CPU time (secs) 	m. 21.5 163.2 

s.d. 27.0 308.0 

Word hours 	m. 122 894 

s.d. 199 1937 

(p.r.u.) 	m. 

Disc records transferred  
1648 3407 

s.d. 4034 10841 

Number of tape requests m. 1.1 - 

s.d. 0.4 

Tape records transferred 

(p.r.u.) 	m. 729 - 

s.d. 2079 

Key: 	mean 

s.d.: 	standard delriation 

p.r.u.: physical record units 
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Figure 6.9a - Long Non-Tape Job Models  

16/7/73 sample - 109 observations 

First order Linear Model 

Y = 88 + 0.64 WH + 0.08 DPRU + 576 JCL 

II2 = 0.57 s = 1156 

Second order Linear Model 

Y = -95.6 + 0.89 WH + 0.047 DPRU*AVCM - 0.00034 CPU*DPRU 
2 R = 0.70 s = 996 

Second order Linear Model with outliers excluded 

Y = 9309 + 0.77 WH + 0.00001 MAXCM2 - 0.698 MAXCM 

+ 0.00001 DPRU2 

R2 = 0.91 s = 361 

Figure 6.9b (contInued)  

18/7/73 sample - 130 jobs 

First order Linear Model 

Y = -89 + 1.14 wH + 0.23 DPRU 

R2 = 0.7 s = 630 

Second order Linear Model 

Y = -41 -32 CPU -0.03 CPU2 + 0.003 CPU*DPRU 
+ 0.0016 CPU*MAXCM 

R2 = 0.90 s = 364 

Second order Linear model with outlier excluded 

Y = -66 - 30.8 CPU - 0.03 CPU2  + 0.003 CPU*DPRU 

+ 0.0016 CPU*MAXCM 
2 R = 0.96 s = 236 

For key refer to figure 6.2 



104 

Figure 6.9 shows that for both samples, the 

second order model is a noticeable improvement over the 

first order model, with higher R2 and lower standard 

error. An analysis of residuals reveals which jobs are 

outliers. These are usually jobs which make uncharac-

teristic resource demands, e.g. very large I/O demands. 

Excluding these outliers results in a further improve-

ment in the model. Furthermore the exclusion of outliers 

can result in a substantial change in the form of the 

model. This is noticeable in the 16/7 models shown in 

figure 6.9a. This is because the presence of outliers can 

distort the model. 

Consider the 18/7 sample. With the first order 

model, there are three large outliers exceeding 2000. 

With the second order model, there is one large outlier. 

When this is excluded, a good fit is obtained, as shown 

in figure 6.10. However, it is clear that there are 

four large observations with large resource demands, and 

these have been fitted well. It is these four observa-

tions which account for the major part of the good fit, 

and of the final form of the model. 

Comparison of this model with its counterpart for 

the 16/7 sample, shows that the two models are not 

consistent. Each model is dominated by a few jobs, and so 

each model is dependent on the characteristics of those 

few jobs. 

6.5.4 The Domination Effect 

The examples described in this chapter demonstrate 

that a small number of jobs with large resource demands 

can dominate a model constructed from a much larger sample 

of data. 

An experiment was carried out to determine 

approximately how many jobs were responsible for this 
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domination effect. Two models of the long non-tape job 

class were constructed, and are shown in figure 6.11. 

The first model was constructed for all the jobs in this 

class from all four samples of data. The second model 

used a subset of this data. All jobs which used more than 

66 seconds CPU time, 23 in all, were excluded. Outliers 

were also excluded from both models. The first model 

has a large R2 and is very similar in form to the second 

order model (with outliers excluded) constructed for the 

16/7 sample (figure 6.9a). This implies that it is jobs 

from the 16/7 sample which dominate both models. However, 

when the 23 largest jobs are excluded, figure 6.11 shows 

that the form of the model changes radically. 	R2 is 

reduced considerably from 0.92 to 0.40. It is, thus, 

the small number of jobs with the largest resource demands 

which dominate the long non-tape job model. If the 5 

outliers excluded are also counted then the number of jobs 

which dominate the model is 28. 

Since it was the jobs from the long non-tape 

job sample which dominated the long job workload and 

total workload models, it appears that the whole sample 

of 2453 jobs, is dominated by at most 28 jobs. 

6.6 	Conclusions  

The main conclusions of this first attempt at 

the regression analysis of the Imperial College system are 

that the models built for long and short job workloads 

are unsatisfactory, but for different reasons. 

(a) 	Short Job Workload 

The models of the short job workload are unsatisfac-

tory with low R2 and inconsistent regression 

coefficients. An analysis of residuals reveals 

a regular trend in all the models, namely a large 

number of small negative residuals with a smaller 
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Figure 6.11 - The Domination Effect  

Long Non-Tape Job Model - 231 observations 

Y = 9020 + 0.72 WH + 0.00001 MAXCM2 - 0.68 MAXCM 

+ 0.00001 DPRU2 

R2 = 0.92 s = 378 

Long Non-Tape Job Model (Jobs using under 66 seconds CPU time) 

- 208 observations 

Y = -31 + 1.04 WH + 2.3 CPUSPH 

R2 = 0.40 s = 111 

S 
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number of much larger positive residuals. In 
general, the negative residuals occur for small 

values of actual job elapsed time, whereas the 
large residuals occur for large values of elapsed 

time. The positive residuals also appear to be 

positively correlated with elapsed time. 

The presence of the large positive residuals is 

due to the actual elapsed time for some jobs being 

substantially larger in value than the predicted 

job elapsed time. This means that there is some 

additional, possibly time-dependent, factor con-
tributing to the elapsed time, which is not taken 

into account by the models. This factor is likely 
to be associated with the fluctuating load on the 

system, resulting in batch jobs being rolled out 
of Central Memory for varying periods of time. 

Insufficient measures were available in 

this analysis of the load imposed on the system by 

both the batch and ,interactive workloads. Only 

crude measures of the interactive load were used 

which were averaged on a 15 minute basis, compared 

with a mean job elapsed time of 30 seconds. No 
measures of the batch load were available at all. The 

influence of the system load on the short job work-
load is analysed further in Chapter 7. 

(b) 	Long Job Workload 

A large proportion of the variation in the models 

of the long job workload was explained. However, 

the regression coefficients were inconsistent and 

the standard error of the residuals large. It is 

the large non-tape jobs which dominate the model. 

An analysis of this subset of the workload showed 

that it was the very small number of jobs with the 

largest resource demands which dominate the models. 
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These jobs, 23 in all, form less than 1% of the total 

sample of 2453 jobs used in the analysis. 

An important assumption in regression analysis is 

that the data used for constructing the models is 

representative (see Appendix A). To construct con-

sistent models of the long job workload, it is 

necessary to have a much larger sample of long 

jobs. This means that the data for this analysis 

would need to be collected over a considerable 

period of time. The facilities for carrying this 

out were not available in the project. Moreover, 

to develop comprehensive models of the long job 

workload, workload data of a more detailed nature 

(e.g. at the job step level) would be a considerable 

advantage. 

Consequently, it was decided not to proceed further 

with modelling the long job workload, but to con-

centrate instead on modelling the short job work-

load. 
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CHAPTER 7: 	THE WORKLOAD MODEL 

7.1 'Introduction 

This chapter describes a further regression analy-

sis of the Imperial College system at the workload level. 

Following the decision in Chapter 6, the short job (J1) 

workload was modelled extensively for six sessions in the 

spring of 1974 and for four sessions in the first four 

months of 1975. Whereas the Account Dayfile was the only 

source of data used for the analysis described in Chapter 

6, the System Dayfile was also made available for this 

analysis. 

Regression models are built which attempt to explain 

a short job's elapsed time (that is the real time from when 

a job is first scheduled for execution to the time it ter-

minates) in terms of: 

the resources job demands 

the load on the system, both batch and interactive. 

The load measures are measures of the amount of competition 

for system resources that a job experiences. It was dis-

covered in the previous analysis (Chapter 6) that the 

measures of system load used were insufficient. Further 

load measures were made available for this analysis, derived 

from both Account and System Dayfiles. 

Sections 7.2 to 7,6 of this chapter, describe the 

regression analysis of the first set of data collected, in 

the spring of 1974. Sections 7.7 to 7.9 describe the 

regression analysis of the second set of data collected in 

the first four months of 1975. 

In section 7.2, the characteristics of the workload 

in the spring of. 1974 are presented and analysed. 

In section 7.3, a first analysis aimed at modelling. the 

Kronos system at the workload level is described, which 

used two morning sessions. The modelling exercise 



showed that at certain periods of the day, the 

predicted elapsed times were considerably smaller 

than the actual elapsed times, resulting in large resi-

duals. A further analysis of the Dayfiles is presented 

in section 7.4 which identified the causes of these 

delays. In section 7.5, a more comprehensive regression 

modelling exercise was carried out,using four morning 

sessions. In section 7.6, the analysis and modelling,  of 

two afternoon sessions is described. 

The second set of data collected, in 1975, was on 

the CYBER system, which supported an entirely batch workload. 

Section 7.7 describes the models constructed of the batch 

workload in the absence of the timesharing load. Section 

7.8 describes the validation of these models, which led to 

the construction of the Workload Model. Section 7.9 describes 

the modelling of a subset of the short job workload which did 

not experience any competition from other short jobs. 

7.2 	The Workload Data 

7.2.1 The Sessions Analysed 

The workload data used for the second analysis 

of the IC Kronos system,was gathered over six different 

sessions in the spring of 1974. During the period in 

question, a number of hardware faults were experienced. 

Over a dozen sessions were subjected to an initial Day-

file analysis. More than half the sessions were rejec-

ted, either because of unscheduled dead starts or due to 

failures in the Telex subsystem. 

The sessions accepted were four morning sessions 

and two afternoon ones. The morning sessions were on 

20th May, 12th, 17th and 18th June. The afternoon sessions 

were on the 17th and 18th June. Both_the Account and 

-System Dayfiles were collected for each session. 
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7.2.2 Characteristics of the Workload 

The main characteristics of the workload are pre-

sented and discussed in this section. It was discovered 

during the analysis that the 17/6 morning session had a 

hangup for a period of about four minutes, when no messages 

appeared in either Dayfile. A magnetic tape job appeared 

to block while in possession of a channel. The blockage 

cleared when the job was dropped. This partly explains 

why the figures for batch and terminal CPU utilisation 

are on the low side for this session. Because of this, 

the 17/6 session has been ignored in the discussion in this 

subsection. 

Table 7.1 displays the main characteristics of the 

batch workload for the four morning sessions. The number 

of jobs executed varied between 477 on 20/5 and 574 on 

18/6. However, the highest batch CPU utilisation was recorded 

in the former session and the lowest in the latter. In 

all four sessions, °ye.: 80% of the jobs executed were 

short jobs. The CPU utilisation of the short job workload 

was in all cases around the 15% level. The long job work-

load in all cases used more CPU time than the short job 

workload, in one case more than twice as much. Most of the 

long job CPU time was accounted for by jobs which did not 

use magnetic tapes. 

Table 7.2 displays the main characteristics of the 

terminal workload on the four sessions. It can be seen 

that the average terminal load over the whole session was 

substantially lower on 20/5, averaging 15, than it was on 

the other three mornings, when it averaged over 20. Figures 

7.1 and 7.2 show how the terminal load varied over each of 

the 20/5 and 18/6 sessions respectively. The highest termi-

nal CPU utilisation was recorded on 18/6. In reference 

G6, it was shown that a good measure of total system activ-

ity is given by the 'number of times no Peripheral Processor 
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Table 7.1: Characteristics of the 1974 Batch Workload  

Class Characteristic 20/5/74 12/6/74 17/6/74
* 

18/6/74 

All No. of jobs 477 524 532 574 
Jobs Total CPU time 

(secs) 6408 4978 4245 4751 
Mean CPU time 

(secs) 13.4 9.5 8.0 8.3 
CPU Utilisation 51% 41% 34.% 39% 

Short No. of jobs 401(85%) 441(84%) 432(81%) 467(81%) 
Jobs Total CPU time 

(secs) 1888 1764 1945 1961 
Mean CPU time 

(secs) 4.7 4.0 4.5 4.2 

Mean elapsed time 

(secs) 23.7 40.2 32.2 32.3 

CPU .Utilisation 15% 14% 15% 16% 

Long No. of jobs 76 83 100 107 

Jobs Total CPU time 

(secs) 4520 3214 2300 2790 

Mean CPU time  
(secs) 59.5 38.7 23.0 26.1 

Mean elapsed time 

(secs) 531 498 1017 614 

CPU Utilisation 36% 26% 19% 23% 

Long No. of jobs 48 48 43 60 

Non-tape Total CPU time 

Jobs (secs) 4119 2895 1798 2166 

Mean CPU time 

(secs) 85.7 60.3 41.8 36.1 

Mean elapsed time 

(secs) 712 666 414 679 

CPU Utilisation 33% 24% 14% 18% 

Long No. of jobs 22 35 57 47 

Tape Total CPU(secs) 408 320 501 625 

Jobs Mean CPU(secs) 14.6 9.1 8.2 13.3 
Mean elapsed time 220 267 1471 530 
CPU Utilisation 3% 2% .5% 5% 

* System hangup occurred in 17/6 session which lasted about 
four minutes. 
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Table 7.2: Characteristics of the 1974 Terminal Workload 

20/5/74 12/6/74 17/6/74* 18/6/74 

Session Start 	' 9.29.08 9..35.26 8.25.29 9.32.29 

Telex Start 9.32.42 9.36.32 9.10.42 9.33.54 

Session End 13.00.20 13.01.00 12.59.56 13.00.08 

No.of Terminal Sessions 184 198 204 175 

Average Terminal Load 14.8 20.8 21.8 23.4 

Maximum Terminal Load 25 34 39 40 

Interactive CPU time 

used (secs) 1640 1880 1378 2320 

Average CPU time/ 

session 	(secs) 8.9 9.5 6.8 13.3 

Times No PP available 3597 5840 5924 7905 

Times/hour no PP " 1003 1670 1690 2260 

Telex CPU utilisation 3.3% 3.5% 4.8% 3.2% 

Total(Batch+terminal 

CPU used)(secs) 8048 6858 5623 7071 

Terminal User CPU 

utilisation 13% 15% 11% 19% 

Batch User CPU 

utilisation 51% 41% 34% 39% 

Total User CPU 

utilisation .64% 56.% 45% 58% 

* A system hangup occurred during 17/6 session which lasted 

for about 4 minutes. 
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(PP) was available' when a PP was requested by Telex. This 

figure was lowest for 20/5 and highest for 18/6, when it 

was more than double that for 20/5. 

PP activity is a measure of both system and I/O 

activity. PP activity can be high if the executing jobs 

are I/O bound, as it is the PPs which carry out all I/O 

operations. PP activity can also be high if system activity 

(such as rollin/rollout activity) is high, as most system 

functions are carried out by PPs. High terminal activity 

is liable to lead to high rollin/rollout activity and 

hence high PP activity. A previous performance analysis of 

the Kronos system (G6) showed that once the system becomes 

PP bound, performance degrades rapidly. It is interesting 

to note that the 20/5 session recorded the highest total 

CPU utilisation, while recording the lowest 'PP unavailable' 

figure. The 18/6 session recorded a much lower overall CPU 

utilisation while recording the highest 'PP unavailable' 

figure. 

Table 7.3 shows the main characteristics of the two 

sessions that were modelled first, the mornings of 20/5 

and 18/6. The description of the modelling is given in 

section 7.3. The analysis was first carried out on all the 

data, here called the untreated set. The analysis was then 

carried out again on a subset of this data, called the 

treated set. The reasons for excluding some observations 

from the data are given in section 7.3. The main difference 

in the two sets of data as shown in Table 7.3, is the re-

duction in mean elapsed time on 18/6 from 32.3 secs. to 

21.8 secs. 

A subsequent analysis was carried out on all four 

morning sessions, as described in section 7.5. Tables 7.4 

and 7.5 show the main characteristics of the untreated ani 

treated sets of data. Again the main difference in the 

two tables is the reduction in mean elapsed times. 
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Table 7.3: Characteristics of the 1974 Short job Workload 

(Two Morning Samples)  

Untreated Treated 

20/5/74 18/6/74 20/5/74 18/6/74 

Number of Jobs 401 467 336 373 

Elapsed time (secs) 	m. 23.7 32.3 19.2 21.8 

s.d. 21.8 42.9 14.2 15.0 

CPU time 	(CPU) 	(secs) 	m. 4.7 4.2 4.4 4.5 
s.d. 5.2 4.9 5.0 5.1 

Disc records transferred 
(DPRU) 	m. 286 219 269 219 

s.d. 378 156 350 154 

No. Control Cards(NCC) 	m. 3.9 5.3 3.9 4.7 
s.d. 2.5 . 	4.9 2.5 4.0 

No. jobs competing(AVB) 	m. 4.2 7.1 4.2 6.7 
s.d. 2.0 2.6 2.0 1.9 

Key: 	m. : mean 

s.d. : standard deviation. 



119 

Table 7.4: Characteristics of the 1974 Short Job Workload 

(Four Morning Samples Untreated) 

20/5/74 12/6/74 17/6/74 18/6/74 

Number of Jobs 401 441 432 467 

Elapsed time(secs) 	m. 23.7 40.2 32.2 32.3 
s.d. 21.8 77.3 48.7 42.9 

CPU time (CPU) (secs) 	m. 4.7 4.0 4.5 4.2 
s.d. 5.2 4.8 5.3 4.9 

Disc records transferred 

(DPRU) 	m. 286 290 287 219 
s.d. 378 322 503 156 

No. control cards(NCC) 	m. 3.9 5.1 4.6 5.3 
s.d. 2.5 4.1 3.8 4.9 

No. jobs competing(AVB) m. 4.2 5.1 8.6 7.1 
s.d. 2.0 3.0 3.6 2.6 

No. short jobs competing 

(AVJ) 	m. 0.86 1.55 1.30 1.67. 
s.d. 0.96 1.77 1.76 2.33 

Key: 	m. : mean 

s.d. : standard deviation 
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Table 7.5: Characteristics of the 1974 Short Job Workload  

(Four Morning Samples Treated) 

20/5/74 12/6/74 17/6/74 18/6/74 

Number of jobs 381 378 398 410 

Elapsed time(secs) 	m. 20.2 20.7 21.2 22.1 
s.d. 14.9 15.1 16.7 15.2 

CPU time 	(secs) 	m. 4.4 3.8 4.3 4.2 
s.d. 5.1 4.7 5.2 4.9 

Disc records transferred 	m. 269 265 230 215 

s.d. 335 256 182 151 

No. control cards 	m. 3.8 4.8 4.3 4.6 

s.d. 2.0 3.4 3.2 3.9 

No. jobs competing 	m. 4.2  4.6 8.4 6.6 

s.d. 2.0 2.8 3.6 2.1 

No. short jobs competing 

with each job 	m. 0.80 1.22 1.07 1.04 

s.d. 0.91 1.50 1.52 1.37 

No. of jobs excluded 20 -63 34 57 
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7.3 	The First Models of the Short Job Workload 

7.3.1 The Independent Variables 

The dependent variable is the job elapsed time. The 

independent variables used in constructing the models, 

were obtained from both the Account and System Dayfiles. 

The independent variables fall into two groups: 

(i) measures of a job's resource demands 

(ii) measures of the load on the system, both batch 

and interactive, which a given job has to compete 

with. 

The same measures of resource demand were used in 

constructing the models as for the 1973 models (Chapter 6), 

apart from one. The number of permanent file requests is 

no longer recorded in the Account Dayfile. In its place, 

the number of control cards (NCC) a batch job consists of, 

was derived from the System Dayfile. This is equivalent 

to the number of job steps in a job. 

More extensive measures of the interactive load ex-

perienced by a given job were used in this analysis: 

(a) Average number of terminals logged in during life-

time of this job (AVT): 

AVT = > ti  
i=1 
te 

where to is a given job's elapsed time. n is the total 

number of terminal users who were logged in at any time 

while the job was in the execution phase. ti  is the time 

user i was logged in for, while the job was in the 

execution phase. 
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0 < t. 	to  

(b) 	Rate of execution of terminal commands (RTC) 

while the job was in the execution phase: 

Number of terminal commands executed  

te 

Measures of the batch load experienced by a given 

job were introduced for this analysis: 

(a) Average number of batch jobs concurrently in execu-

tion with this job (AVB). This is not a measure 

of the level of multiprogramming, but rather a 

measure of the average number of jobs competing 

for Central Memory as well as the Central Processor. 

The multiprogramming level cannot be determined, as 

no indication of rollin/rollout is given in the Day-

file (section 5.5). 

AVB => t/  

t 

m is the total number of batch jobs which were in 

the execution phase at any time while the given 

jobwas.t.is the length of time job j 

was in the execution phase. 

0 < tj <̀ to 

(b) Rate of batch control and execution (RBC) while 

the given job was in the execution phase: 

Number of batch control cards executed  

te 

e 

• 
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7.3.2 The Initial Attempts 

Two morning sessions, the 20/5 and 18/6, were used 

for constructing the first models of the short job work-

load which are shown in table 7.6. The models were con-

sidered unsatisfactory because the amount of variation ex-

plained by the model (R2) is low, and the standard error 

of the residuals (s) is high. These values were particular-

ly poor for the model of the 18/6 session, which also had 

a large intercept. 

Table 7.6 also shows that no measures of terminal 

activity were selected by the Forward Selection Regression 

procedure. This suggests that no adequate measures of inter-

active load were available for selection. A measure of batch 

loading, the average number'of batch jobs in execution with a 

job (AVB), was however selected for inclusion in both models. 

As might be expected, the more batch jobs competing for re-

sources, the_longer a job's elapsed time is likely to be. 

7.3.3 Analysis of Residuals 

The residual plots for the models of 20/5 and 18/6 

are shown in figures 7.3 and 7.4 respectively. The general 

shape of these plots is similar to the residual plots ob-

tained with the models of the 1973 workload, although it is 

more accentuated in the 18/6 plot than in the 20/5 plot. 

The main features are: 

(i) There are a large number of small negative resi- 

duals and fewer larger positive residuals. 

(ii) The large positive residuals occur for jobs with 

large elapsed times. Thus the model gives a 

poorer prediction for jo"s with large elapsed times. 

The plots show that whereas six observations had 

residuals larger than 100 on 18/6, none did on 

20/5. 



124 

Table 7.6:' Initial Regression Models of Short Job Workload  

Independent variable 20/5/74 a.m. 18/6/74 a.m. 

CPU 	r.c. 2.54 2.53 

NCC 	r.c. 1.18 4.14 

AVB 	r.c. 2.29 2.30 

DPRU 	r.c. 0.01 * 

RBC 	r.c. * 0.36 

Intercept -5.11 -21.7 

R2 0.57 0.42 

s 14.3 33.0 

F 132 82 

No. of jobs 401 467 

Key: *• not selected for inclusion in model 

R2: proportion of variation explained by model 

s: standard error of residuals 

F: F- statistic for significance of regression 

equation 

r.c: regression coefficient 
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(iii) Furthermore, by examining the list of residuals, 

which is ordered by job termination time, it can 

be seen that the large positive residuals occur 

in groups. This indicates that there are certain 

periods in each session when the average elapsed 

time increases considerably. This occurred more 

often and for longer periods in the 18/6 session 

than in the 20/5 session. 

It was argued in chapter 6 that a possible explana-

tion of,these features was the periodic fluctuations in 

the size of the interactive load. When the interactive 

load is high, batch jobs would be rolled out of CM (because 

of their lower priority) and would only be rolled in again 

when the interactive load subsided. Comparing the inter-

active loads for the two sessions (table 7.2), there are 

indeed indications that both the interactive load and over-

all system activity were considerably higher on 18/6 than 

on 20/5, a Monday morning session. Firstly, both the maximum 

and average number of terminals logged in were much higher 

on 18/6. Secondly, the interactive CPU utilisation was 

almost 50% higher on 18/6. Thirdly, the measure of overall 

system activity given by 'the number of times all PPs were 

busy' was more than twice as high pn 18/6 than on 20/5. 

7.3.4 Which way to go? 

The analysis has shown that no adequate measures of 

interactive load were available for inclusion in the model. 

At this stage there seemed to be only two possible alterna-

tives. The first was to decide that as apparently insuffi-

cient data was available to construct a satisfactory model, 

the attempt should be abandoned until more data was available. 

The new source of data would probably have to be a software 

monitor• which would require time and manpower to implement. 
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The second alternative also admitted that a 

satisfactory model, which explained all situations from 

light to heavy system loads, was impossible to construct 

from the existing data. However, this alternative sugges-

ted that it might still be possible to construct a satis-

factory model for light and moderate loads on the system. 

The most encouraging indication that this might be possible, 

was the difference in the models for 20/5 and 18/6. In 

the 20/5 model, 58% of the variation in job elapsed time 

(R2) was explained by the model, whereas only 40% was 

explained by the 18/6 model. The larger R2 in the 20/5 

model is due to the smaller residuals for that model. The 

standard error of residuals for 20/5 was 14.3, compared 

with 33.0 for 18/6 (table 7.6). 

The decision was therefore taken to exclude the 

groups of observations where large positive residuals had 

occurred and to construct models using the remainiag.„obServa-

tions. This was felt to be a justifiable move, because as 

shown by the analysis of residuals, the large positive 

residuals occurred in groups at certain periods of the day. 

This indicated that during these periods the system was 

behaving differently. This will be confirmed later in 

section 7.4, where it is shown that during the periods in 

question the system was heavily loaded. 

7.3.5 Models with Large Residuals Excluded 

Models were built for the 20/5 and 18/6 sessions 

using data from which large residuals had been excluded. 

These models showed a marked improvement over the previous 

set. However, different independent variables were selected 

for inclusion in the two models. This is apparently a 

common feature of all the stepwise regression procedures, 

particularly when some of the independent variables are 

correlated with each other. This feature is one of the 

main disadvantages of these procedures (Dl). 
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To enable a direct comparison of the models to be 

made, models containing the same independent variables 

were constructed for each session. This was achieved by 

forcing into each model the same set of independent vari-

ables, which were: 

(a) CPU - the CPU time used by the job 

(b) NCC - the number of control cards (job steps) 
in the job 

(c) AVB - the average number of batch jobs concurrently 
in execution with this job. 

Models for the 20/5 and 18/6 sessions, and a model 

for both sessions combined, were constructed using the 

method just described. The main features of the models are 

shown in table 7.7. A number of points may be drawn by com- 

paring these models with the initial models (7.3.2 and table 7.6). 

1. In both the 20/5 and 18/6 models R2 has improved 

substantially;from 0.58 to 0.78 for the 20/5 model, 

and from 0.40 to 0.76 for the 18/6 model (comparing 

table 7.6 with table 7.7). 

2. The standard error of the residuals (s) , has been 

reduced considerably in both models. In the 20/5 

model, s has been reduced from 14.3 to 6.6 and in 

18/6 model, s has been reduced even more sharply 

from 33.0 to 7.4. 

3. The intercepts have been reduced considerably 

especially for the 18/6 model, and they are small 

compared with the mean of the job elapsed time 

(table 7.3). 

4. Comparing the regression coefficents of the inde- 

pendent variables for the 20/5 and 18/6 models, it 
can be seen that (table 7.7): 
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Table 7.7: Regression Models of Short Job Workload 

(Large residuals excluded) 

Independent Variable 20/5/74 18/6/74 Combined 

CPU r . c . 2.32 2.30 2.30 
s.e. 0.07 0.08 0.05 
t 33.2 28.8 46.0 

NCC r . c . 1.14 1.29 1.22 

s.e. 0.15 0.10 0.08 
t 7.6 12.9 15.3 

AVB r . c . 1.64 0.94 1.06 
s.e. 0.18 0.20 0.11 
t 9.1 4.7 9.7 

Intercept -2.17 -0.84 -0.71 

R2 0.78 0.76 0.77 
s 6.6 7.4 7.1 
F 399 390 772 

No. of jobs 336 373 709 

Key: 	r.c. : regression coefficient 

s.e. : standard error of regression coefficient 

t : t-statistic for significance of regression 

coefficient 

R2 : proportion of variation explained by model 

s : standard error of residuals 

F : F-statistic for significance of regression 

equation 
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(a) the coefficients of the CPU variable (2.32 and 

2.30) are almost identical. 

(b) the coefficients of NCC (1.14 and 1.29) are 

reasonably close. 

• (c) 	the coefficients of AVB (1.64 and 0.94) show a 

greater variation. 

It is clear that there is a much closer agreement 

between the regression coefficients than has been the case 
previously. 

	

5. 	The residual plots for the 20/5 and 18/6 models are 

shown in figures 7.5 and 7.6 respectively. Compar-

ing these with figures 7.3 and 7.4, it can be seen 

that although there is still a tendency for the large 

residuals to occur with large job elapsed times, 

this effect is not as marked as before, particularly 

for the 18/6 session. In both figures 7.5 and 7.6 

there appear to be two bands sloping upwards from 

left to right. This is probably due to a character-

istic of the short job workload. Most jobs have a 

small CPU demand and fall in the leftmost band. How-

ever, a sizeable minority of jobs run till they time 

trap (just over 16 CPU seconds). The contribution 

due to CPU time, as predicted by the model, will be 

virtually identical for all these jobs. These jobs 

fall into the second band. The variation in predic-

ted elapsed time for these jobs is due to the con-

tribution of the other two variables (NCC and AVB). 

	

7.4 	The Interaction between the Workload and the System 

7.4.1 The Jobs Excluded 

Constructing the much improved models described in 

the last section, showed that there was no inherent reason 

0 
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why satisfactory regression models of the IC system at the 

workload level, could not be built. The question still 

remained however: why did a number of jobs have to be 

excluded from the sample to achieve this? Was it entirely 

due to differences in the interactive workload or could 

there also have been some other influence so far undetected? 

The excluded jobs fell into three main categories: 

1. A small number of jobs appeared to hang at a control 

point until they were dropped by the operator. This 

was revealed in the System Dayfile by an 'Operator 

Drop' message for these jobs at job termination. 

2. A few jobs appeared to be uncharacteristic in their 

resource demands. In some cases, the number of 

control cards (NCC) was very high. In others, the 

number of disc records transferred (DPRU) was very 

high. Such observations should be excluded; other-

wise, as shown in chapter 6, they may distort the 

model considerably. Other jobs did not appear to 

display any unusual characteristics, as judged by the 

data recorded in the Dayfile. Nevertheless, in more 

than one case, the same job (identifiable by job 

number, control cards used and resource utilisation) 

was viin at different times of the morning, each time 

taking much longer than the model predicted. This 

definitely suggests that the job was uncharacteristic. 

For example it might have been an I/O bound job 

making a large number of I/O requests (not recorded 

in the Dayfile) but only transferring a few records 

each time, and so resulting in a comparatively small 

number of disc records transferred. 

3. Most of the jobs with large residuals fell into this 

third category. This was particularly noticeable 

in the 18/6 sample. At two different times of the 



135 

morning and particularly on the second occasion 

around 12.15 p.m., the average job elapsed time 

increased substantially. 

The two periods in question had one feature in com-

mon; the number of batch jobs in execution concur-

rently (AVB) was high. However there was a third 

occasion in this session when AVB was high, even 

thdugh the elapsed time was normal. 

7.4.2 The Reason for the Large Job Elapsed Times 

The reason for this apparent discrepancy was found 

by a close scrutiny of the 18/6 System Dayfile for the three 

periods when the average batch load was high. On the two 

occasions when the average short job elapsed time increased 

substantially, the number of short jobs concurrently in execu-

tion was high. On the third occasion, when the elapsed 

time did not increase noticeably (although the number of jobs 

concurrently in execution was high) the number of short  

jobs concurrently in execution was low. 

This immediately suggested that the memory scheduling 

algorithm had changed since the 1973 analysis, when all 

batch jobs executing concurrently were treated in the same 

manner. It now seemed that short jobs had priority over 

other batch jobs in the competition for Central Memory (CM). 

Thus on two occasions when the short job load was high, the 

average short job elapsed time increased substantially. It 

was indeed confirmed later by the I.C. Computer Centre 

management that short jobs had priority over other jobs in 

the competition for CM. 

The reason for the large increase in elapsed time 

is that CM is a scarce resource on the IC system. On 

average only 2 or 3 batch jobs may be co-resident in CM. 

Therefore if the short job load is high (3 upwards), some 
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short jobs are likely to be rolled out at some stage in 

their execution. The bigger the load on the system, the 

longer, on average, jobs will be rolled out. The longer 

a job is rolled out, the longer its elapsed time will be. 

In the case of the 18/6 sample, the bottleneck at 

around 12.15 p.m. was accentuated by the fact that it was 

caused by the influx of a substantial number of batch jobs (all 

with the same job number and submitted from terminals) 

with comparatively similar characteristics: small CPU 

time, large number of control cards, and apparently test- 

ing a mathematical program library. These jobs appeared 

to be I/O bound, and when run concurrently caused the 

bottleneck just described. When a similar set of jobs were 

run in the afternoon, the elapsed time was even worse, 

increasing from around 400 seconds to over 3000 seconds, 

and in two cases over 4000 (i.e. more than an hour to run 

a one CPU second job). 

As pointed out in sections 7.2 and 7.3, both the 

terminal load and overall system activity were higher on 

18/6 than on 20/5. Although the terminal load, as measured 

by the number of terminals logged in, may vary comparatively 

slowly (figures 7.1 and 7.2), there are likely to be bursts 

of terminal user activity during periods when a substantial 

number of terminal users submit programs to be compiled 

or run interactively. These terminal job runs at control 

points making comparatively high resource demands (section 

4.5.2). Since they have a higher priority than short batch 

jobs, a buildup of rolled out short jobs will occur (D3), 
leading to longer elapsed times. 

Thus the two main causes of the longer elapsed times 

experienced by short jobs are: 

(a) 	Bursts of terminal user activity resulting in 

short jobs being rolled out. 
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(b) 	A substantial number of short jobs in competition 

with each other resulting in some short jobs being 

rolled out. 

(b) may be caused or accentuated by (a). However 

(b) can occur of its own accord if a substantial number of 

short jobs are submitted in close succession, and in par-

ticular if they make comparatively large resource demands. 

7.4.3 The Scheduling Algorithms 

Apart from going a long way towards explaining in 

what manner the models described in 7.3.2 are deficient, the 
analysis also reveals apparent weaknesses in the system job 

and memory scheduling algorithms. Firstly, the job schedul-

ing algorithm sets no limit on the number of short jobs 

that may be scheduled for execution concurrently. As a 

result, considerable delays in elapsed time can be experienced 

by the competing jobs, when the load is high. 

The second apparent weakness is in the memory schedul-

ing algorithm and is because: 

(a) A11 short jobs have the same access priority to CM. 

(b) When 1SJ (the PP program in charge of both job and 

memory scheduling) searches the File Name Table 

(FNT) for jobs in Rollout or Input states, it always 

starts at the top of the table. As a result, rolled 

out jobs near the top of the table have a better 

chance of being scheduled for rollin than jobs with 

the same priority, but further down the table. Examin-

ing the System Dayfile revealed that this can have 

a considerable effect on a job's elapsed time, 

once a job has been rolled out. Jobs can be identi-

fied as being rolled out when no message (e.g. 

initiation of control card execution) is recorded 

in the System Dayfile for a substantial period of 

time. When a number of jobs are rolled out, it is 
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noticeable that there is no particular order in 

the re-activation of jobs and that for some 

unfortunate jobs, many minutes can pass before 

they are reactivated. 

The IC Computer Centre have since amended the 

algorithm used by 1SJ in searching the FNT. 1SJ now 

starts a search of the FNT at the place it previously 

stopped at. 

7.5 	Regression Models of  the Morning Workload 

7.5.1 Introduction 

The analysis and modelling described in sections 

7.3 and 7.4 provided a deeper insight into the interaction 

between the workload and system. To consolidate further, 

a further analysis was carried out. This included two 

further morning sessions, the 12th and 17th June, in 

addition to the 20th May and 18th June used previously. 

In the light of experience, some additional variables 

were made available for selection, as follows: 

(a) It was now known that the important influence on 

a short batch job's elapsed time is not the total  

number of batch jobs concurrently in execution 

(AVB), but rather the number of short batch jobs 

concurrently in execution. An additional variable 

was therefore used which represents the average 

number of short jobs in execution with a given job 

(AVJ). • 

(b) Use of a load term in the model such as the average 

number of short jobs in execution (AVJ) implies that 

a given load has an equal effect on job elapsed 

time, no matter what the resource demands of the job 

are. It seems more likely that a job with large 
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resource demands would suffer a bigger delay than 

a job with small resource demands.. Since CPU 

time is the variable which made the most signifi-

cant contribution to the models described in sec-

tion 7.3, a term of the form CPU * AVJ was made 

available for selection. 

(c) 	The variable representing the average number of 

terminals logged in during a job's lifetime (AVT) 

made no significant contribution to the models 

described in section 7.3. However, following the 

same argument as in.(b), it was felt that a 

variable of the form CPU *..AVT might make a more 

significant contribution. 

7.5.2 The Initial Models 

In spite of introducing independent variables 

relating to AVJ, the initial models were still not satis-

factory. However they did show an improved fit over the 

initial models discussed in section 7.3. The major 

problem is that:- 

(a) simple functions (such as the average number of 

jobs in execution) are being used to model a 

complex function (the delay in job elapsed time 

when the load gets high, resulting in jobs being 

rolled out). 

(b) these simple functions are not a sufficiently 

accurate representation of the complex function. 

A job may be rolled out for one of four reasons: 

(i) A higher CM priority job is scheduled for execu- 

tion (e.g. a timesharing user). 

(ii) The job requests additional memory (CM) which is 

unavailable. 

• 
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(iii) The job exceeds its CPU time slice. If a batch 

job has used more than this figure (currently 

set to 4 CPU seconds) it is liable to be rolled 

out. 

(iv) The job exceeds its CM time slice. If a batch 

job has been resident in CM for more than this 

figure (currently set to 200 seconds), it is 

liable to be rolled out. 

The profile of the short job workload is such 

that a short job is much more liable to be rolled out 

for reason (iii) than (iv). 

Each time a job is rolled out, its elapsed time 

is likely to increase in a stepwise fashion. As pointed 

out in section 7.4, once a job has been rolled out, it 

can be subjected to severe delays, if it is low down in 

the FNT table. Furthermore, the performance analysis of 

the Kronos system described in (G6) has shown that when 

the system gets overloaded, non-linearities are intro-

duced into the system and jobs may experience long delays. 

To get good measures of the system in an overloaded state 

requires considerably more performance data than is 

currently available from the Dayfile (section 5.5). 

7.5.3 Constructing the Models 

For the same reasons given in section 7.3, it 

was decided that models should be constructed from which 

the largest outliers had been excluded. However a 

different approach was adopted for eliminating outliers. 

An iterative approach was taken with the successive 

elimination of a few outliers at a time, until a good 

fit was obtained. A number of runs were carried out 

for each model, in which large residuals were successively 

deleted. Gradually an improved R2 and reduced standard 

error of residuals were obtained. 
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There were a number of interesting points in the 

construction of these models: 

(a) In all four models, the first variable introduced 

always included a CPU factor. Usually, the first 

variable was either CPU or CPU * AVT. These two 

variables are highly correlated: in all four 

sessions the correlation coefficient was 0.9 or 

more. Because of this, the inclusion of one 

variable in the model tended to exclude the other. 

(b) The number of observations that had to be excluded 

in order to obtain a good fit varied considerably 

from one sample to the next. Thus in 20/5, only 

22 observations were eliminated, while in 12/6, 

63 observations were eliminated. 

(c) It has already been described in section 7.3, 

how one period of the 18/6 session experienced 

severe degradation. To get a good overall fit, 

it was necessary to exclude all jobs that were 

executed in that period. 

(d) As pointed out in section 7.2, a hangup occurred 

for a period of about four minutes during the 17/6 

session. Jobs held up by this blockage were 

excluded in the construction of the 17/6 model. 

(e) The short job load was highest on the 12/6 session. 

63 observations had to be deleted (out of 441) to 

obtain a good fit. Most of the deleted observa-

tions corresponded to jobs which fell into two 

periods when the short job load was high. There 

were also three jobs which hung at control points 

and were dropped by the operator. 
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(f) 	A satisfactory regression model was constructed 

more easily for the 20/5 session. As pointed out 

in section 7.2 the 20/5 session was the most CPU 

bound and least PP bound session. It also had 

the least terminal activity and the least con-

current batch activity. Higher batch and terminal 

activity lead to greater rollin/rollout activity 

which in turn means greater PP activity and conse-

quent job delays. This explains why the 20/5 

model was the least difficult to construct. 

7.5.4 The Regression Models 

7.5.4.1 Introduction 

    

    

    

Models were eventually built for each of the pour 

sessions. In all four models, R2  was 0.7 or better. 

before, however, different independent variables were 

selected for inclusion in the models. To enable a di ect 

comparison of the models to be made, the same set of 

independent variables were forced into each model. By 

this means, different versions of each model were construc-

ted. For each version, a combined model was also construc-

ted, which used data pooled from all four samples. Tables 

7.8, 7.9 and 7.10 show three different versions of the 

four models as follows 

Table 7.8 - Independent variables are CPU, NCC and AVJ 

Table 7.9 - Independent variables are CPU, NCC and CPU * AVJ 

Table 7.10 - Independent variables are CPU * AVT, NCC and 

CPU * AVJ 

Building models with only three independent variables 

meant that in some cases R2 was reduced by a few percent 

As 

below 0.70. 
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Table 7.8: Regression Models of Short Job Workload  

First Version 

Independent Variable 20/5/74 12/6/74 17/6/74 18/6/74 Combined 

CPU 	r.c. 2.31 2.21 2.25 2.24 2.26 

s.e. 0.08 0.10 0.09 0.08 0.04 

t 28.9 22.1 25.0 28.0 56.5 

NCC 	r . C . 1.53 1.37 1.58 1.32 1.42 

s.e. 0.19 0.14 0.15 0.10 0.07 

t 8.1 9.8 10.5 13.2 20.3 

AVJ 	r.c. 3.91 1.86 3.15 3.05 2.81 

s.e. 0.43 0.30 0.31 0.29 0.16 

t 9.1 6.2 10.2 10.5 17.6 

Intercept 1.09 3.44 1.28 3.33 2.44 

R2 0.75 0.67 0.68 0.70 0.72 

s 7.5 8.7 9.5 8.1 8.5 

F 373 258 282 346 1217 

No. of jobs 381 378 398 410 1567 

For key to abbreviations refer to table 7.7. 
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Table 7.9: Regression Models of Short Job Workload 
Second Version 

Independent Variable 20/5/74 12/6/74 17/6/74 18/6/74 Combined 

CPU 	r.c. 1.73 1.65 1.73 1.79 1.75 
s.e 0.09 0.11 0.10 0.10 0.05 
t 19.3 15.0 17.3 17.9 35.0 

NCC 	r.c. 1.48 1.47 1.52 1.31 1.42 
s.e. 0.19 0.13 0.15 0.11 0.07 
t 7.8 11.3 10.1 11.9 20.3 

CPU*AVJ 	r.c. 0.71 0.53 0.49 0.41 0.50 
s.e. 0.07 0.06 0.05 0.06 0.03 
t 10.2 8.8 9.8 6.9 16.7 

Intercept 4.56 5.44 4.88 6.78 5.51 
R2 0.76 0.70 0.69 0.68 0.70 
s 7.3 8.3 9.3 8.6 8.5 
F 400 291 291 292 1237 
No. of jobs 381 378 398 410 1567 

For key to abbreviations refer to table 7.7 
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Table 7.10: Regression Models of Short Job Workload 

Third Version  

Independent Variable 20/5/74 12/6/74 17/6/74 18/6/74 Combined 

CPU*AVT 	r.c. 0.10 0.08 0.07 0.06 0.07 

s.e. 0.005 0.005 0.004 0.004 0.002 

t 20.0 16.0 17.5 15.0 35.0 

NCC 	r.c. 1.53 1.60 1.67 1.28 1.50 

s.e. 0.19 0.13 0.14 0.11 0.07 

t 8.1 12.3 11.9 11.6 21.4 

CPU*AVJ 	r.c. 0.71 0.40 0.35 0.46 0.45 

s.e. 0.07 0.06 0.05 0.06 0.03 

t 10.1 6.7 7.0 7.7 15.0 

Intercept 4.80 5.21 4.55 7.63 6.07 

R2 0.76 0.71 0.72 0.67. 0.69 

s 7.3 8.1  8.9 8.7 8.6 

F 399 311 332 279 1168 

No. of jobs 381 378 398 410 1567 

For key to abbreviations refer to table 7.7 
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7.5.4.2 	Relevance of the Independent Variables 

Before discussing the models in detail, this 

section considers the relevance of each of the variables 

selected in the final versions of the model: 

(i) Central Processor (CPU) Time  

There is an obvious relationship between a job's 

elapsed time and the CPU time it uses. The more 

CPU time a job uses, the longer its elapsed time 

is likely to be. The relationship between elapsed 

time and CPU time is shown in figure 7.7 for the 

18/6 session. 

(ii) Number of Control Cards (NCC) 

This is equivalent to the number of job steps in 

each job. Before ajob step may be executed a 

PP program, the dab Advancer (1AJ), interprets the 

control card and initiates the job step by loading 

the appropriate PP or CM program. Delays are 

liable to occur for the following reasons: 

(a) If the system is - heavily loaded, there may 

be a delay before lAJ is loaded into a PP. 

(b) lAJ has to interpret the control card and 

initiate job step execution. The program that 

is to be loaded (e.g. compiler or relocatable 

binary loader) will probably reside on disc. 

Further delays may be experienced before the 

program is loaded off disc. 

(c) A new job step will often require a change in 

memory allocation. If less memory is required, 
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the request will be rapidly satisfied. If 

an increase in memory is required and 

sufficient memory is available, the request 

will also be rapidly satisfied. However if 

insufficient memory is available, the job 

is likely to be scheduled for rollout, par-

ticularly if there are other jobs with the 

same or higher priority competing for 

memory. 

Thus a job with a larger number of job steps is 

more likely to experience delays than a job with 

identical resource demands but fewer job steps. 

The delay due to this is likely to be especially 

important for short jobs whose resource demands 

are comparatively small. The coefficient of the 

NCC variable can thus be considered as a measure 

of the system overhead to initiate a job step. 

(iii) Load Variables  

As pointed out earlier, the elapsed time a short 

job experiences can be seriously extended if the 

terminal activity is high or if there are a 

large number of competing jobs. This is the 

reason for the importance of the load variables. 

Three load variables were used in the models. 

One is the average number of short jobs each job 

has to compete with (AVJ). An alternative is 

CPU * AVJ, in which the short job load is weighted 

by the job's CPU time requirements. The third, 

CPU * AVT is a measure of terminal load, weighted 

by a job's CPU time requirements. Further com-

ments are made on the use of these variables in 

the next three subsections. 



7.5.4.3 The First Version (CPUL  NCCI.  AVJ) of 

the Models 

In this version of the model, the three independent 

variables are not correlated with each other. Thus, the 

regression coefficient of each variable reflects the only con-

tribution made by that variable to the model. To illu-

strate this, consider the CPU and AVJ coefficients in 

the 20/5 model. The model is constructed using the Forward 

Selection Procedure (Chapter 6), in which the three 

independent variables are forced in one at a time. 

1st step 	y = 9.58 + 2.40 CPU 	R2 = 0.65 
2nd step 	y = 6.42 + 2.42 CPU + 3.85 AVJ 	R2 = 0.71 
3rd step 	y = 1.09 + 2.31 CPU + 3.91 AVJ + 1.53 NCC 

R2 = 0.75 

It can be seen from the above example, that the 

regression coefficients of the CPU and AVJ variables do 

not fluctuate much with the introduction of each new 

variable. 

The models of the four sessions, together with a 

model of the combined sessions, are shown in table 7.8. 

The main features of the models are: 

(a) In the four models, R2 varies between 0.67 and 

0.75. These values of R2 are considered satis-

factory, as they mean that between two thirds and 

three quarters of the variation in job elapsed 

time is explained by the models. 

(b) There is a close agreement between the regression 

coefficients of the CPU variable. 

(c) There is also a reasonably close match between 

the regression coefficients of the NCC variable. 

149 
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(d) 	There is a much greater variability in the 

coefficient of the load variable, AVJ. 

A limitation in the use of a load variable such 

as AVJ is that no account is taken of the job's resource 

demands. In the next version of the models, an attempt was 

made to rectify this by using a CPU * AVJ term. 

7.5.4.4 	The Second Version (CPU, NCC, CPU*AVJ) 

of the Models 

In this version, the load variable is represented 

by CPU * AVJ (table 7.9). The three independent variables 

are now no longer uncorrelated, as CPU * AVJ is correlated 

with CPU. In the four sessions, the correlation coeffi-

cient between CPU and CPU * AVJ was 0.5 or more. Comparing 

tables 7.8 and 7.9 it can be seen that, replacing the AVJ 

term by CPU * AVJ, has a comparatively small- effect on 

the NCC coefficients, but a much larger effect on the CPU 

coefficients. For example, in the 20/5 model, the CPU 

coefficient is reduced from 2.31 in table 7.8 to 1.73 in,  

table 7.9, whereas the NCC is only reduced from 1.53 to 

1.48. 

The main features of the models are: 

(a) Comparing the first and second versions of each 

model (tables 7.8 and 7.9), it can be seen that 

there is little difference in R2 and s. However 

the intercepts are somewhat bigger in the second 

version of the models. 

(b) Comparing the regression coefficients of the four 

models (table 7.9), it can be seen that there is 

a relatively close mate: between the coefficients 

of the CPU and NCC variables. 
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(c) 	As before, however, there is a greater variability 

in the regression coefficient of the load variable, 

CPU * AVJ. 

The load term can still not be considered satis-

factory. One obvious omission is the terminal load, which 

is present and varying throughout each session. As ob-

served earlier, there appears to be no suitable variable 

representing terminal load available. 

7.5.4.5 	The Third Version (CPU * AVT, NCC, 

CPU * AVJ) of the Models 

An attempt was made to introduce a variable which 

is related to the terminal load by using CPU_-* AVT. How-

ever this variable is very highly correlated with CPU. The 

correlation coefficient was 0.9 or more for the four sessions. 

It is thus apparent that the CPU factor is by far the major 

contributor to the 'CPU * AVT term in the model. Indeed, 

using the Forward Selection Procedure, the introduction of 

CPU * AVT into the model had the effect of excluding CPU 

(and v.v.). 

Table 7.10 shows the third version of the models 

for each session. Like the previous two, this version 

has a satisfactory R2, but like the second version it has 

a larger intercept. This version is less satisfactory 

than the previous two, however, because there is a greater 

variability in all three sets of regression coefficients. 

7.5.4.6 	Analysis of Residuals 

The analysis of residuals for these models did not 

reveal any major differences from the analysis carried 

out on the previous models of the short job workload des- 
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cribed in section 7.3. The residual plots against 

actual elapsed time for each version of the four models 

are similar in shape to those shown previously in 

figures 7.5 and 7.6. As an example, the residual plot 

for the 12/6 model (first version) is shown in figure 

7.8. 

7.5.5 Comparison of the Models 

In all three versions of the models, R2  is greater 

than 0.67, which is considered satisfactory. In the 

first and second versions, the regression coefficients 

agree more closely than in the third. In all three ver-

sions, there is a greater fluctuation in the regression 

coefficients of the load variables. 

Of the first and second versions, the points 

favouring the first version (with AVJ) are: 

(a) the intercepts are smaller 

(b) the three independent variables are indepen-

dent of each other. Hence the regression 

coefficients are independent measures of the 

contribution made by each of the variables to 

the model. 

The main point favouring the second version (with 

CPU * AVJ) is that the load variable includes a measure 

of resource demand. However the fluctuation of the 

regression coefficients indicates that the CPU * AVJ 

variable can still not be considered an adequate measure 

of the load on the system. The model also suffers from 

the disadvantage that the contribution by CPU is now split 

between two terms, CPU and CPU * AVJ. The first two 

versions both suffer from the disadvantage of not having 

a measure of terminal loading. 
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The higher R2  in the 20/5 model for all three 

versions of the models is almost certainly due to the 

lower terminal load during that session. 

7.6 	Regression Modelling of the Afternoon Workload 

7.6.1 Analysis of the Afternoon Sessions 

Two afternoon sessions were also analysed, the 

17/6 and 18/6 sessions. The main characteristics of the 

batch and interactive workload for these sessions are 

shown in tables 7.11 and 7.12 respectively. 

Table 7.11 shows that many characteristics of the 

batch workload were remarkably similar on the two after-

noons. The total number of jobs executed was close, 

although the breakdown into short and long jobs was diffe-

rent. The batch CPU utilisation, as well as the short and 

long job CPU utilisat±on were all virtually identical for 

the two sessions. However, the mean elapsed time for short 

jobs on 18/6 was more than double that for 17/6. 

A close examination of the System Dayfile for 

the 18/6 session revealed that at one period of the after-

noon,a large number of short jobs with similar characteris-

tics were submitted and scheduled for execution over a 

short interval of time. This resulted in a system bottle-

neck. A similar event occurred in the morning session of 

the same day and was reported in section 7.4.2. However, 

the afternoon bottleneck appears to have been considerably 

more severe. In the afternoon, the elapsed time of some 

of these jobs was over 3000 seconds, and in one case 

over 4000 seconds. During this period, the number of 

batch jobs executing concurrently peaked at 33. The mean 

elapsed time for short jobs was 104 seconds in this session, 

compared with 32 seconds for the 18/6 morning session and 

24 seconds for the 20/5 morning session. 
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Table 7.11: Characteristics of the Afternoon Batch Workload 

Class Characteristic 17/6/74 18/6/74 

All 

Jobs 

No. of jobs 

Total CPU time (secs) 

976 

7820 

995 

7870 

Mean CPU time/job (secs) 8.0 7.9 

Batch CPU utilisation 36.2% 36.4% 

Short No. of jobs 872 831 
Jobs Total CPU time (secs) 4360 4410 

Mean CPU time/job (secs) 5.0 5.3 

Mean elapsed time (secs) 45.7 104.4 

CPU utilisation 20.2% 20.4% 

Long No. of jobs 104 164 
Jobs Total CPU time (secs) 3460 3460 

Mean CPU time/job (secs) 33.7 31.1 

Mean elapsed time (secs) 1262 833 

CPU utilisation 16% 16% 
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7.12: Characteristics of Afternoon Terminal Workload 

17/6/74 .18/6/74 

Session start 14.04.04 14.06.17 

Session end 20.00.00 20.00.03 

No. of terminal sessions 322 294 

Average Terminal Load 22.4 21.7 

Maximum Terminal Load 	' 4Q -36 

Interactive CPU time used (secs) 4270 3320 

Average CPU time/session (secs) 13.3 10.3 

Times no PP 	available 17,071 15,846 

Times/hour no PP available 3,570 2,640 

Telex CPU utilisation 4.7% 3.5% 

Terminal User CPU utilisation 19.8% 15.4% 

Batch User CPU utilisation 36.2% 36.4% 

Total User CPU utilisation 56.0% 51.8% 
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Table 7.12 shows the main characteristics of 

the terminal workload on the two afternoons. The terminal 

CPU utilisation was higher on 17/6 than 18/6, reaching 

20% in the former case. The afternoon sessions lasted 

from 14.00 to 20.00. The peak terminal load (as measured 

by users logged in) was recorded at around 16.00 in 

both sessions, and then dropped off steadily. It is 

therefore likely that at the peak load, the terminal 

CPU utilisation was much higher. In the 18/6 session, 
the batch bottleneck coincided with the peak terminal 

load. 

The figures for the 'number of times no PP was 

available' are higher for the afternoon sessions than 

the morning sessions. The highest morning figure was a 

rate of 2,260/hour on the morning of 18/6. The after-

noon figures were 3,570/hour and 2,640/hour on the 17/6 

and 18/6 respectively. This indicates that the overall 

system load was higher in the afternoon sessions than 

the morning sessions. However the average load appears 

to have been higher on the 17/6 afternoon, a session ih 

which the terminal load was higher. In spite of this, 

the short jobs suffered less delay than on 18/6, recording 

a mean elapsed time of 46 seconds on 17/6 compared with 

104 seconds on 18/6. 

Table 7.13 shows the main characteristics of the 

short job workload for the two afternoon sessions. Com-

paring the characteristics for the untreated sets of 

jobs on 17/6 and 18/6, it can be seen that most of the 

characteristics are similar. However, one major difference 

is that whereas each short job had an average of 2 other 

short jobs competing with it on 17/6, this figure increased 

to 4.3 on the 18/6. This analysis indicates that the 

considerably longer short job elapsed times on 18/6, were 

due more to competition from other short jobs than from 

terminal user activity (see also 7.4.2). 
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Table 7.13: Characteristics of Short Job Workload 

Afternoon Samples 

Characteristics 17/6/74 

Untreated 

18/6/74 

Untreated 

17/6/74 

Treated 

Number of jobs 872 831 799 

Elapsed time(secs) 	m. 45.7 104.4 - 29.7 
s.d. 69.4 411.6 24.9 

CPU time 	(CPU) (secs) m. '5.0 5.3 4.8 
s.d. 5.8 5.6 5.6 

Disc records trans- 	m. 275 304 258 
ferred 	s.d. 310 357 282 

No. of control cards 
- (NCC) 	m. 5.2 6.2 4.7 

s.d. 6.3 6.2 3.4 

No. jobs competing 

(AVB) 	m. 8.7 10.8 8.4 

s.d. 4.6 6.8 4.5 

No. short jobs competing 

(AVJ) 	m. 2.0 4.3 1.7 

s.d. 2.0 4.9 1.8 
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7.6.2 Constructing the Models 

The procedure for modelling the afternoon work-

load was the same as that adopted for modelling the 

morning workload (section 7.5). Large residuals were 

gradually excluded, with the objective of eventually 

constructing satisfactory models. With the 18/6 session, 

this proved to be a very difficult task. With 136 

observations excluded, the fit was still very poor. As 

described in the previous section, this session displayed 

highly unusual characteristics. Constructing a model 

for this session was abandoned because, to construct an 

adequate model, so many observations would have had to be 

excluded that it is doubtful whether the final model 

would have been meaningful. 

In order to obtain a good fit for the 17/6 model, 

73 observations were deleted. The remaining jobs con-

stitute the treated set, and their main characteristics 

are displayed in table 7.13. A major difference between 

the afternoon treated set and the morning treated sets 

(table 7.5) is the larger mean elapsed time of almost 30 

seconds for the afternoon set. This contrasts, with a mean 

elapsed time of between 20 and 22 seconds for the morning 

sessions. Furthermore the average number of short jobs 

competing with a given short job was 1.7. This was higher 

than any of the morning sessions, where the highest 

figure recorded was 1.2 on 12/6 morning. 

7.6.3 The Models 

7.6.3.1 	Introduction 

Three versions of the model were constructed. They 

are shown in table 7.14, and are similar in form to the 

three versions constructed for the morning sessions. In 

general R2 is lower than in the morning models and the 

standard error of the residuals is considerably higher. 
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Table 7.14: Regression Model of Short Job Workload  

(17/6/74 p.m. sample) 

Independent 

Variable 
Version 

1 
Independent 

Variable 
Version 

2. 
Independent 

Variable 

Version 

3 

CPU CPU CPU*AVT 
r.c. 2.89 r.c. 1.67 r.c. 0.07 
s.e. 0.10 s.e. 0.12 s.e. 0.005 
t 28.9 t 13.9 t 14.0 

NCC NCC NCC 
r.c. 1.92 r.c. 1.95 r.c. 1.89 
s.e. 0.16 s.e. 0.16 s.e. 0.16 
t 12.0 t 12.2 t 11.8 

AVJ CPU*AVJ CPU*AVJ 
r.c. 3.96 r.c. 0.70 r.c. 0.58 
s.e. 0.30 s.e. 0.05 s.e. 0.05 
t 13.2 t 14.0 t 11.6 

Intercept -0.08 Intercept 7.36 Intercept 7.67 
R2 0.63 R2 0.64 R2 0.66 
s 15.1 s 14.9 s 14.6 
F 456 F 481 F 504 
No. of jobs 799 No. of jobs 799 No. of jobs 799 

For key to abbreviations refer to table 7.7 
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The residual plot in figure 7.9 shows that the 

biggest residuals in the afternoon model are larger 

than their counterparts in the morning models (figures 

7.5, 7.6 and 7.8). Apart from this, the afternoon 

residual plot shows no major differences from the morning 

residual plots. 

	

7.6.3.2 	The First Version (CPU/  NCC/  CPU*AVJ) 

In the first version of the model (CPU, NCC, AVJ), 

the values of the coefficients of the three variables 

are all larger than any of their counterparts in the morn-

ing sessions (table 7.8). This is partly explained by 

the fact that the elapsed times in the afternoon are on 

average 50% higher than in the morning. Therefore, for 

the same set of independent variables, the higher predic-

ted elapsed times must either come from larger regression 

coefficients or from a larger intercept. In this version 

of the model, the intercept is small, and the coefficients 

of the CPU and NCC variables are larger than in the 

morning models. 

7.6.3.3 The Second Version (CPUL  NCC, CPU*AVJ) 

In the second version of the model (CPU, NCC, 

CPU * AVJ), the intercept is 7.36 which is much larger 

than in the first version (-0.08) and is also larger than 

any of the corresponding morning models (table 7.9). The 

CPU coefficient is relatively close to the morning models, 

whereas the NCC coefficient is larger. 

	

7.6.3.4 	The Third Version (CPU * AVT/  NCC, 

CPU * AVJ) 

In the third version of the afternoon model (CPU 

* AVT, NCC, CPU * AVJ) the intercept is 7.67, which is 

about the same size as in the second version, but larger 
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than in corresponding morning models (table 7.10). R2 

is marginally larger than for the first two versions. 

NCC is again larger than for the morning models. 

7.6.4 Comparison of Models 

The second and third versions are not very satis-

factory, because of their large intercepts. In the 

first version, which has a small intercept, the CPU and 

NCC coefficients are larger than in the morning models. 

The AVJ coefficient is however about the same value. 

This means that the increased delay that the afternoon 

short jobs experienced is being attributed to the CPU 

and NCC coefficients. In the second and third versions 

it is being attributed to the intercept. 

When the load is high, jobs are delayed because 

they are rolled out of CM. Jobs with larger resource 

demands (e.g. CPU time) are likely'to suffer comparatively 

greater delays. Hence, in the absence of a good measure 

of load on the system, the coefficient of the CPU variable, 

the independent variable most highly correlated with 

elapsed time, is larger for sessions with heavier loads. 

As pointed out in section 7.5.4.2, the coefficient 

of NCC (the number of job steps) may be considered as a 

S 
	measure of the system overhead to initiate a job step. 

In the afternoon session, the load was higher than in the 

morning sessions. It is likely that the system overhead 

to initiate each job step would also on average be higher. 

The larger NCC coefficient reflects this increased over-

head. 

In conclusion, the main reason for the difference 

between the afternoon model and the morning models, is the 

heavier system load (both batch and timesharing) in the 

afternoon session. 
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7.7 	Regression Modelling of the Batch Workload in  

the Absence of the Time Sharing Load  

7.7.1 Introduction 

A new machine, the CYBER 7314, was installed at 

the Imperial College Computer Centre during the summer 

of 1974. Between August 1974 and June 1975, while 

software was being developed locally to allow a shared 

permanent file base, the CYBER 7314 and 6400 operated 

independently of each other. The CYBER supported the 

bulk of the batch workload, including the cafeteria ser-

vice, the local batch workload and the remote batch work-

load. The 6400 supported the timesharing workload and 

the batch jobs submitted by timesharing users. 

The operating system run on both systems was Kronos 

2.1. The main differences between Kronos 2.1 and the 

previous version, Kronos 2.0, are the additional user 

facilities provided and the new peripherals supported 

by Kronos 2.1. Resource management is similar to Kronos 

2.0. 

The 6400 and CYBER 7314 are architecturally similar 

apart from the compare /move unit (section 4.3). The 

configuration on both machines was also enhanced with the 

addition of faster disc units. 

The fact that,for a temporary period of time, the 

CYBER was to support an entirely batch workload, provided 

an excellent opportunity for the batch workload to be 

modelled in the absence of the timesharing workload. A 

complete comparison with the previous analysis would not 

however be possible because of differences in the architec-

ture, machine configuration and operating system, between 

the 1974 evaluation on the 6400 and the 1975 evaluation 

on the CYBER. 
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7.7.2 Characteristics of the Workload 

The workload data for the evaluation of the entire-

ly batch workload on the CYBER system, was gathered during 

two periods in January and April 1975. Four sessions, 

three morning and one afternoon, were used for the evalua-

tion. The morning sessions were on the 27th January, 28th 

and 30th April. The afternoon session was on the 30th 

January. Both the Account and System Dayfiles were collec- .  

ted for each session. 

The main overall characteristics of the four sessions 

are displayed in Table 7.15, and the main characteristics 

of the short job workload are displayed in Table 7.16. The 

morning sessions were of approximately the same length, 

between 31 and 3i hours. The afternoon period was the first 

two hours of a longer session. During this period, roughly 

the same number of short jobs were processed as in the 

morning sessions. Thus the afternoon session experienced 

a considerably higher average short job load. Table 7.16 

shows that whereas the average number of short jobs in com-

petition with a given job varied between 0.42 and 0.67 in 

the morning sessions, it was 1.18 in the afternoon session. 

Table 7.15 shows that, as a result of the greater load, the 

short job CPU utilisation was 16.4% in the afternoon, where-

as in the three mornings it varied from 8.5% to 11.7%. 

In the four sessions, the short job workload accoun-. 

ted for between 75% and 85% of all jobs processed. However, 

the long job CPU utilisation was over four times as large 

as the short job CPU utilisation, except for the afternoon 

session where it was only twice as large. The long job CPU 

utilisation on 30/1/75 is probably an underestimate of the 

real figure, as it does not include any jobs which started 

before the end of the monitored period, and finished after 

it. 
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Table 7.15: Characteristics of the 1975 Batch Workload 

27/1/75 30/1/75 28/4/75 30/4/75 

Start of Monitored Period 9.37.30 14.03.09 9.31.30 9.36.59 

End of Monitored Period 12.52.13 16.04.32 12.59.59 12.50.46 

All Jobs 

Number of jobs 415 454 355 467 

Total CPU time (secs) 6875 3841 6231 7810 

Mean CPU time/job (secs) 19.4 8.5 17.6 16.7 

Batch CPU utilisation 59% 53%* 50% 67% 

Short Jobs 

Number of Jobs 354(85%) 364(80%) 278(78%) 352(75%) 

Total CPU time (secs) 1315 1181 1061 1360 

Mean CPU time (secs) 3.72 3.45 3.82 3.86 

Mean elapsed time (secs) 19.4 22.9 21.9 20.0 

Short job CPU utilisation 11.3% 16.4% 8.5% 11.7% 

Long Jobs  

Number of Jobs 61 90 77 115 

Total CPU time (secs) 5560 2660 5170 6450 

Mean CPU time (secs) 91.3 29.5 67.2 56.0 

Mean elapsed time (secs) 961 445 279 443 

Long job CPU utilisation 48% 36.8% 41.3% 55.5% 

* Approximate figure 
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Table 7.16: Characteristics of the 1975 Short Job Workload  

(Four Samples Untreated) 

Characteristic 	27/1/75 
a.m. 

28/4/75 

a.m. 

30/4/75 

a.m. 

30/1/75 

p.m. 

Number of jobs 354 278 352 364 

Elapsed time(secs) m 19.4 21.9 20.0 22.9 

s.d 18.1 26.1 17.1 33.9 

, 
CPU time(secs) 	m 3.72 3.82 3.86 3.45 
(CPU) 	s.d. 	4.90 4.62 4.95 4.94 

Disc records trans- 

ferred (DPRU) 	m.239 384 234 	- 234 

s.d.462 780 216 379 

No.control cards 	m. 	3.06 5.08 3.71 2.99 

(NCC) 	s.d. 	3.00 7.15 4.24 3.79 

Average CM(kilo- 

words) 	m., 13.4 14.6 15.4 14.2 

s.d. 	8.5 8.8 7.6 7.8 

Average short job 

load (AVj) 	m. 	0.67 0.42 0.49 1.18 

s:d. 	0.89 0.67 0.57 1.05 

Average total job 

load (AVB) 	m. 	6.10 2.28 4.83 7.57 

s.d. 	2.38 1.61 2.62 2.20 

Key: 	m. : mean 

s.d. : standard deviation 
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Comparing the short job workload characteristics 

(table 7.16) with the 6400 set (table 7.4), shows that the 

mean CPU time was noticeably lower on the CYBER (mean = 

3.6 secs) than the 6400 (mean = 4.4 secs). The difference 

may reflect a genuine change in the workload, or may be 

due to the effect of the additional character handling 

instructions provided by the CYBER's compare/move unit and 

used by some of the system software. It is probably a com-

bination of both. The mean short job elapsed times are 

considerably lower on the CYBER. The main reason for this 

is the absence of the timesharing load. 

7.7.3 The Initial Models 

The initial models for the four sessions are shown 

in Table 7.17. The Forward Selection Regression procedure was 

again used to select the independent variables to be included 

in the model. As observed before, there is a wide varia-

tion in the independent variables selected for each model. 

Comparing the initial models on the CYBER with 

those on the 6400 (table 7.6), one major difference is 

apparent. In the initial models on the 6400, R2 was not 

at all satisfactory. In the initial models of the three 

morning sessions on CYBER, R2 is over 0.67, which is con-

sidered satisfactory. However R2  is much lower for the 

30/1/75 model. An analysis of residuals for this model 

showed that two jobs with large elapsed times had very 

large positive residuals. Inspection of the Dayfiles re-

vealed that both these jobs were run under the same user 

number. In each case, the job had hung at a control point 

and eventually been dropped by an operator. When these 

jobs are excluded, the fit improves considerably. 

This shows that now the timesharing load has been 

removed, much better models of the short job workload can 

be constructed. 
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Table 7.17: Initial Models of the Short Job Workload 

27/1/75 a.m. sample - 354 observations 

Y = 5.4 + 0.23CPU*AVB + 0.01DPRU + 1.51NCC*AVJ 

+ 1.50CPU - 0.19WH 

R2 = 0.79 s = 8.3 F = 264 

28/4/75 a.m. sample - 278 observations 

Y = 6.37 + 0.01DPRU*AVJ + 2.65CPU + 1.49NCC*AVJ 

R2 = 0.80 s = 11.7 F = 278 

30/4/75 a.m. sample - 352 observations 

Y = 3.20 + 2.39CPU + 1.07NCC*AVJ + 0.76AVB + 0.55NCC 

R2 = 0.67 s = 9.9 F = 177 

30/1/75 p.m. sample - 364 observations 

Y = 9.91 + 0.55CPU*AVB + O.85NCC*AVJ + 0.00001DPRU2 

- O.29WH 
R2 = 0.30 s = 28.7 F = 37.5 

For key to abbreviations refer to table 7.6 
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7.7.4 Analysis of Residuals 

The residual plots are similar in character to the 

1974 plots, although not so accentuated. An example is 

shown in figure 7.10 for the 30/4 session. There are a 

large number of small negative residuals and fewer large 

positive residuals. The large positive residuals occur 

for jobs with large elapsed times. 

An analysis of residuals showed that there were some 

jobs in each session which displayed unusual characteristics. 

The characteristics of these jobs were one or more of the 

following: 

(i) Large job elapsed times and large positive 

residuals. 

(ii) An uncharacteristically large number of job steps. 

(iii) An uncharacteristically large number of disc 

physical records transferred. 

An examination of the System Dayfile showed that 

although these uncharacteristic jobs were relatively few 

in number, they were sometimes run a number of times in 

each session. Some of the uncharacteristic jobs always 

had long elapsed times. Others only recorded long elapsed 

times under certain conditions, such as if other un-

characteristic jobs were running with them or if the short 

job load was comparatively high. Ordinary jobs, which 

were run at the same time, were sometimes delayed by 

these jobs. 

The uncharacteristic jobs distort the models (see 6.5.4). 

The most frequently observed ones were: 

(a) Jobs which use the microfilm feature. 

(b) Jobs which use the facility for editing a user 

program library. 
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(c) Jobs which test a particular mathematical pro- 

gram library. This was the same type of job 	z' 

which had the adverse effect on performance dis-

cussed in section 7.4.2. 

(d) Jobs which use the utility for querying which 

magnetic tapes their permanent files had been 

archived to. 

All these jobs are likely to be highly I/O bound. 

Many of these jobs (e.g. the first three types above) are 

jobs one might not normally expect to be run in the short 

job category. 

It was decided that these uncharacteristic jobs, 
which constitute a small percentage of the short job 

workload, should be excluded from the analysis. The charac-

teristics of the short job workload, after excluding these 

jobs, are shown in table 7.18. 

7.7.5 Models of the Short Job Workload 

The models for the four sessions, constructed after 

excluding uncharacteristic observations, are shown in 

table 7.19. The three independent variables, CPU (job CPU 

time), NCC (number of job steps) and AVJ (short job load) 

were forced in as before. 

Table 7.19 shows that R2 is between 0.7 and 0.75 

for the four models. The regression coefficients for 

the CPU variable are in close agreement, as are the co-

efficients of NCC. However, there is a greater variability 

in the coefficient of the AVJ variable. 

Comparing these models with the 1974 models 

(table 7.8), it can be seen that whereas the coefficients 

• 
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Table 7.18: Characteristics of the 1975 Short Job Workload 

(Four Samples Treated) 

Characteristics 27/1/75 

a.m. 

28/4/75 

a.m. 

30/4/75 

a.m. 

30/1/75 

p.m. 

Number of jobs 333 259 345 354 

Elapsed time 	(secs) 	m. 18.1 16.8 18.9 19.6 

s.d. 14.1 15.1 14.8 15.4 

CPU time (secs) 	m. 3.61 3.50 3.75 3.31 
(CPU) 	s.d. 4.74 4.27 4.81 4.81 

I 

Disc records trans- 

ferred (DPRU) 	m. 206 294 234 215 

s.d. 162 455 216 214 

No. control cards 	m. 3.04 4.43 3.70 2.86 

(NCC) 	s.d. 2.78 5.14 4.24 3.54 

Average CM(Kilowords) m. 13.7 14.8 15.5 14.2 

s.d. 8.6 8.7 7.5 7.8 

Average short job 

load (AVJ) 	m. 0.57 0.35 0.49 1.17 

s.d. 0.65 0.59 0.57 1.06 

Average total job 

load 	m. 5.97 2.21 4.80 7.55 

s.d. 2.23 1.54 2.60 2.21 

No. jobs excluded 19 19 7 10 
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Table 7.19: Regression Models of the Short Job Workload  

(outliers excluded) 

Independent 

Variable 

27/1/75 

a.m. 

28/4/75 

a.m. 

30/4/75 

a.m. 

30/1/75 

p.m. 

combined 

a.m. 

combined 

all 

Equation 

Number 1 2 3 4 5 6 

CPU 	r.c. 2.25 2.22 2.21 2.28 2.24 2.25 

s.e. 0.09 0.12 0.09 0.09 0.06 0.05 

t 25.0 18.8 24.8 25.1 40.1 47.3 

NCC 	r.c. 1.16 1.05 1.05 1.14 1.05 1.08 

s.e. 0.15 0.10 0.10 0.12 0.06 0.06 

t 7.6 10.5 10.5 9.3 16.8 19.3 

AVJ 	r.c. 5.47 7.17 5.38 4.92 6.01 5.32 

s.e. 0.65 0.82 0.72 0.41 0.41 0.26 

t 8.5 8.8 7.4 12.1 14.6 20.1 
_ .. 

Intercept 3.38 1.92 4.02 3.06 3.18 3.25 

Adjusted 

Intercept 

(Equation 5) 3.44 2.25 3.64 

Adjusted 

Intercept , 

(Equation 6) 3.72 2.33 3.83 2.91 . 
R2 0.71 0.75 0.73 0.73 0.73 0.73 

s 7.7 7.7 7.7 8.1 7.6 7.8 

F 266 249 311 318 830 1145 

No. of jobs 333 259 345 354 937 1291 

For key to abbreviations refer to table 7.7 

• 
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of the CPU variable are quite close for the 74 and 75 

models, the coefficients of NCC are smaller in 75. As 

pointed out in section 7.5.4.2, the coefficient of NCC 

may be viewed as a measure of the system overhead for 

job step initiation. With no interactive load, it is not 

surprising that the overhead is less. 

Table 7.19 also shows the model constructed using 

data pooled from all three morning sessions, and the 

model constructed using data pooled from all four sessions. 

7.8 	Validation of the Models  

7.8.1 Comparison of Slopes 

Table 7.19 shows that the regression coefficients 

of the independent variables are close. However, are they 

close enough for the models to be considered statistically 

consistent? The method used for testing this is an ex-

tension of the method described in reference S13. The meth-

od tests whether there is any significant difference in 

the slopes (in four dimensions) of the models. This is 

done by comparing the residual sum of squares of the 

models of the individual sessions with that of the pooled 

model. 

The method was used first to compare the regression 

coefficients of the three morning sessions, as shown in 

table 7.20. The residual sum of squares for the three 

separate models and their respective degrees of freedom 

are derived first (lines 1, 2 and 3), and summed (line 4). 

The residual mean square of 58.7 is derived (line 4), 

Which represents the mean square when the regression models 

for the individual sessions are fitted to each set of data 

respectively. 

The pooled model is then constructed for all the 

data (equation 5 in table 7.19). This model is applied 
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Table 7.20: Comparison of Morning Models  

Model No.of 
Dbser-
vations 

d.f. Analysis of Residuals 

d.f. 	RSS 	MSR 

1 27/1/75 333 332 329 19264 58.5 

2 28/4/75 259 258 255 14972 58.6 

3 30/4/75 345 344 341 20160 59.0 

4 925 54396 58.7 

5 Pooled applied 

to 27/1 333 19335 

6 Pooled applied 

to 28/4 259 15093 

7 Pooled applied 

to 30/4 345 20209 

8 937 934 931 54637 58.7 

9 Difference be- 

tween  slope's 6 241 40.2 

10 Pooled applied  
to all data 937 936 933 54957 

11 Difference be- 

tween inter- 
, 

cepts 2 320 160 

Comparison of slopes: F = 40.2/58.7 = 0.69(d.f.=6,925) 

Difference not significant at 5% level 

Comparison of Intercepts: F = 160/58.7 = 2.72(d.f=3,931) 

Difference not significant at 22% level 

Key: d.f.: degrees of freedom RSS = residual sum of squares 

MSR*: Residual Mean square = RSS/d.f. 
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to each set of data after adjusting for the intercept. For 

each set of data, the adjusted intercept bo' is given by 

bo' = 	bl T b2 R b3 R 

where b1, b2 and b3 
are the regression coefficients of the 

pooled model. Y, T, 17, R are the mean job elapsed time, 

CPU time, number of job steps and short job load respectively. 

This is to ensure that the regression equation passes 

through the centroid of the sample.,, 

After applying the pooled model to each set of 

data, the residual sum of squares is derived for each set 

(lines 5, 6 and 7) and summed (line 8). The difference in 

the residual sum of squares 

54637 (line 8) - 54396 (line 4) = 241 (line 9) 

with six degrees of freedom, measures the contribution of 

the differences between the regression coefficients to the 

sum of squares of residuals. The corresponding mean 

square, 40.2 in line 9, is compared with the mean square 

in line 4, using the F-test, to test if there is any 

significant difference when the slopes of the models of 

individual sessions are compared with the slope of the 

pooled model. 

40.2 F = 	= 0.69 (clgrees of freedom = 6;925) 
58.7 

0.69 is less than the F value at the 5% level of significance 

(2.10), supporting the assumption that the slopes do not 

differ. 

7.8.2 A Non-Parametric Significance Test 

The F-test makes the assumption that the residuals 

are normally distributed, an assumption which, as the 
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Kolmogorov-Smirnov one-sample test shows, is not strictly 

valid. As a further check, a non-parameteric test, 

the Mann-Whitney U-Test (S8) was also carried out. Non-

parametric tests do not make any assumptions about the 

distribution of the residuals. The residuals squared, 

derived by applying the pooled model with adjusted inter-

cept to each set of data, are compared by the test. The 

test is applied to two sets of residuals at a time, 

making three tests in all, and the results are displayed 

in table 7.22a. The assumption that each two sets of 

residuals squared are drawn from the same population is 

tested. The result of the test is the probability of the 

assumption being true. 

Table 7.22a shows that the probability CP1  column) is 5% 

or more for the three cases, supporting the assumption that 

the slopes do not differ. Hence, the result of the Mann-Whitney 

test supports the result of the F-test. This means that 

the assumption that the slopes do not differ, and hence 

that the regression coefficients are consistent, may be 

accepted. 

7.8.3 Com2arison of Intercepts 

Once it has been shown that the regression coeffi- 

cients of the models are consistent, it is then permissible 

to test whether the adjusted intercepts are consistent. This 

- is done by comparing the res!dual sum of squares (RSS) of 

the pooled model applied to all the data (equation 5 in 
table 7.19) with the RSS of the pooled model applied 

to each set of data after adjusting the intercept for 

each set (table 7.20). The latter RSS, 54637 in line 8 is 

subtracted from the former RSS, 54957 in line 10, giving 

320 (line 11) with 2 degrees of freedom, which measures 

the contribution of the differences between the intercepts 

to the residual sum of squares. The corresponding mean 

square, 160 in line 11, is compared with the mean square 

in line 8, 58.7, using the F-test to test if there is any 
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significant difference in the intercepts. The F-test 

shows that although there is a significant difference at 

the 5% level, the difference is not significant at the 

2i% level. Thus the assumption that there is no difference 

in the intercepts is accepted with less confidence than 

the assumption that there is no difference in the slopes. 

As a separate check, the Mann-Whitney U-test was 

used to compare the residuals squared obtained from the 

pooled model, applied to each set of data (equation 5 in 

table 7.19). The test (P2 column in table 7.22a) shows that 

at the 5% level, there is a significant difference between 

the 27/1 and 28/4 sessions but no significant difference 

between the 27/1 and 30/4 sessions, and the 28/4 and 30/4 

sessions respectively. When the pooled model with adjusted 

intercept was applied to the 27/1 and 28/4 sets of data 

there was no significant difference at the 5% level. Con-

sequently the reason for the change must be due to the 

difference in the two intercepts. 

These results indicate that there probably is a 

slight difference in the intercepts. However as the differ-

ence in the intercepts is small compared with the standard 

error of the residuals (table 7.19), the difference is not 

considered serious. The difference in the intercepts may 

be due to a slight difference in the environments on the 

days in question. Unfortunately, ICCC records only indicate 

major changes in the environment, e.g. system up or down, 

so this cannot be checked. 

7.8.4  Comparison with Afternoon Model 

The validation of the morning models was described 

in the previous three subsections. Because of the larger 

short job load in the afternoon session (30/1/75), some 

difference might be expected in the afternoon model. The 

same analysis as before was carried out to compare the 

regression models of all four sessions. The models of the 
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individual sessions are compared with the pooled model 

(equation 6 in table 7.19). 	First the slopes are com- 
pared and then the intercepts. 

The results of the F-test are shown in table 7.21 

and of the Mann-Whitney U-test in table 7.22b. First the 

slopes are compared using the F-test. Table 7.21 shows 

that there is no significant difference at the 5% level. 

Next, the slopes are compared using the Mann-Whitney 

test. The 30/1 set of residuals squared is compared with 

each of the three morning sets of residuals squared in 
table 7.22b (P1 column). The test indicates that with the 

28/4 and 30/4 residuals, there is no significant difference 

at the 5% level. However, with the 27/1 residuals, the test 

suggests that there is a significant difference at the 5% 

level, but no significant difference at the 1% level. Com-

-paring the two sets of regression coefficients for the 27/1 

and 30/1 models in table 7.19, it can be seen that they 

agree closely. It therefore seems reasonable to accept the 

assumption that there is no significant difference between 

them. 

The adjusted intercepts of the four models are com-

pared (table 7.21), next. The F-test indicates that there 

is no significant difference between the intercepts at the 

5% level. 

Finally, the Mann-Whitney U-test is used to compare 

the residuals squared obtained by applying the pooled model 

to each set of data (equation 6 in table 7.19). This test 

(table 7.22b) indicates that there is a significant differ-

ence between the 27/1 and 30/1 sessions, but no significant 

difference between the 30/1 session and the 28/4 and 30/4 

sessions respectively. 

The results indicate that there is no reason to 

believe that there is a significant difference between the 

afternoon model and the morning models. There is, however, 

0,  
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Table 7.21: Comparison of Four Models  

Model of No. d.f. obser-
vations 

Analysis of Residuals 

d.f. 	RSS 	MSR 

1 27/1/75 333 332 329 19264 58.5 
2 28/4/75 259 258 255 14972 58.6 
3 30/4/75 345 344 341 20160 59.0 
4 30/1/75 354 353 350 22595 64.5 

5 1275 76991 60.3 

6 Pooled Applied 

to 27/1 333 19286 
7 Pooled Applied 

to 28/4 259 15285 
8 Pooled Applied 

to 30/4 345 20178 
9 Pooled Applied 

to 30/1 354 22698 

10 1291 1287 1284 60.2 77447 

11 Difference be- 

tween slopes 9 456 50.7 

12 Pooled Applied 

to all data 1291 1290 1287 77897 

13 Difference be-

tween inter- 

cepts 3 450 150 

Comparison of slopes: F = 50.7/60.3 = 0.84 (d.f. = 9,1275) 

Difference not significant at 5% level 

Comparison of Intercepts: F = 150/60.2 = 2.49 (d.f. = 3,1284) 
Difference not significant at 5% level 
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Table 7.22: Comparison of Modelsasing Mann-Whitney U-test 

Table 7.22a: Comparison of three morning models  

Pairwise Comparison P1 P2 
1st Model 2nd Model 

27/1/75 28/4/75 0.067 0.006 

27/1/75 30/4/75 0.050 0.090 

28/4/75 30/4/75  0.488 0.115 

Key: P : probability that there is no difference between 

the two models 

Pi: Pooled model with intercepts adjusted 

P2: Pooled model without intercept adjusted 

Table 7.22b: Comparison of four models  

1st Model 2nd Model P1  P2 

27/1/75 30/1/75 0.018 0.003 

28/4/75 30/1/75 0.436 0.359 

30/4/75 30/1/75 0.337 0.104 

Key: see table 7.22a. 
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some indication that the environment on 27/1 may have been 

slightly different from the other days. 

7.8.5 The Workload Model 

The validation of the models has shown that the 

regression coefficients of the four models are consistent, 

although there is a greater variation in the intercepts. 

It is therefore justifiable to use the model pooled from 

all four sessions as a satisfactory regression model of 

the short job workload. This model is called the Workload 

Model and is represented by equation 6 in table 7.19. 

7.9 	Regression Models with no Short Job Competition 

7.9.1 Introduction 

In the regression models described in sections 7.7 

and 7.8, the regression coefficients with the largest 

variation were the coefficients of AVJ, the measure of 

the short job load. In an attempt to determine what the 

effect of this independent variable is, a subset of the 

workload was modelled. A substantial number of the jobs 

executed in each morning session, experienced no competi-

tion from other short jobs. This subset of jobs was isola-

ted for each session and its characteristics are shown 

in table 7.23. 

Comparison of the workload characteristics of 

this subset (table 7.23) with the total set (table 7.16) 

reveals a number of differences. Firstly, the mean 

elapsed time is much lower when there is no competition 

from other short jobs. Secondly, the mean CPU time is sub-

stantially lower for each of the three samples. The mean 

number of job steps is also lower. Thus, there appears to 

be a tendency for the jobs in this subset to have lower 

resource demands. Jobs with larger, resource demands 

experience longer elapsed times and so are more likely to 

experience competition from other short jobs. This means 

that the subset is not a representative one. Nevertheless, 

it was felt that modelling the subset could provide further 

insight into the behaviour of the short job workload. 
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Table 7.23: 'Characteristics of Subset of Short Job Workload 

Characteristic 27/1/75 

a.m. 

28/4/75 

a.m. 

30/4/75 

a.m. 

Number of jobs 124 139 129 

Elapsed time (secs) 	m. 10.8 10.9 11.3 

s.d. 6,8 7.2 7.2 

CPU time 	(secs) 	m.. 2.44 2.77 2.28 

(CPU) 	s.d. 3.39 3.32 3.01 

Disc records transferred m. 187 201 193 

(DPRU) 	s.d. 143 157 123 

No. control cards 	m. 2.40 4.00 3.09 

,(NCC) 	s.d. 1.99 4.33 3.99 

Average CM (kilowords) 	m. 13.9 14.7 15.6 

s.d. 8.4 9.2 7.5 

Average total job load 	m. 4.65 1.53 4.50 

(AVB) 	s.d. 1.89 1.24 2.68 

No. jobs excluded 1 7 3 
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7.9.2 The Models 

Regression models were constructed for the subset 

of each session and for the pooled data. A few uncharac-

teristic observations were excluded, for the same reasons as 

given in section 7.7.4. The CPU and NCC independent 

variables were forced in. The models are displayed in 

table 7.24. 	A number of interesting points arise from 

this analysis: 

(a) 	The amount of variation explained by the models 

(R2) is satisfactory, 0.66 or above. 

(b) 	The regression coefficients for CPU and NCC are 

of substantially lower value than in the models 

of the total short job workload. The reasons for 

this are discussed in 7.9.3. 

(c) 	The standard error of the residual(s) is consider- 

ably lower than before, ranging from 3.3 to 4.2. 

This compares with the models of the total job 

workload, where s varied from 7.7 to 8.1 (table 

7.19). 

The substantially smaller mean elapsed times. and 

standard error for these subsets is due to the fact that 

the short jobs in this subset should never have been rolled 

out. This is because: 

(i) Each job was always the highest priority user job 

executing. 

(ii) Each job experienced no competition from other short 

jobs. 

(d) 	An analysis of residuals reveals that the tendency so 

far for the positive residuals to be substantially 

fewer in number and larger in magnitude, has now been 

eliminated. 	An example is shown in figure 7.11 
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Table 7.24: Regression Models of Subset of Short Job  

Workload (Two Independent Variables) 

Independent 
Variable 

27/1/75 
a.m. 

28/4/75 
a.m. 

30/4/75 
a.m. 

Pooled 

CPU 	r.c. 1.70 1.53 1.43 1.55 
s.e. 0.09 0.11 0.12 0.06 
t 19.2 14.1 11.7 24.6 

NCC 	r.c. 0.56 0.48 0.75 0.56 

s.e. 0.15 0.08 0.10 0.06 
t 3.7 5.7 7.9 10.0 

Intercept 5.32 4.72 5.75 5.34 
Adjusted 
Intercept 5.69 4.34 6.08 

R2 0.77 0.68 0.66 0.68 

s 3.29 4.1 4.2 4.0 

F 205 .142 124 418 

No.of jobs 124 139 129 392 
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of the residual plot against predicted elapsed 

time for the 27/1 model. Apart from one outlier, 

the magnitude of the positive residuals is not 

noticeably different from the magnitude of the 

negative residuals. 

The reason for this is again likely to be due to 

the fact that these short jobs should never have 

been rolled out. 

(e) The Kolmogorov-Smirnov, one-sample test (S8) was 

applied to the residuals of each model to test 

the assumption that the residuals are normally 

distributed. The test indicates the probability 

of the assumption that the residuals are normally 

distributed being true. The probabilities of 

0.29 for 27/1 and 0.11 for 30/4 are higher than 

the 5% significance level. The probability of 

0.04 for 28/4 is just below the 5% level. However, 

it is sufficiently close to justify accepting the 

normality assumption for all three sets of residuals. 

This is the first time in the regression analysis of 

the Kronos system that the normality assumption has 

been accepted. The reason is likely to be the elimina-• 

tion of the distortion in the residual plot (see d). 

The F and t tests may now be used with full confidence. 

(f) The intercepts for the models are larger than those 

for the models of the total short job workload. 

The intercept decreases in value when more variables 

are introduced into the model. When AVB, the 

number of jobs concurrently in execution, is intro-

duced, R2 is increased in *value and the intercept 

is reduced, as shown in table 7.25. AVB is not 

significantly correlated with CPU and NCC, and its 

introduction does not much affect the CPU and NCC 

coefficients. However, table 7.25 shows that there 

is a greater variability in the coefficient of AVB 
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Table 7.25: Regression Models  of Subset of Short Job  

Workload (Three Independent Variables) 

Independent Variable 27/1/75 
a.m. 

28/4/75 
. 	a.m. 

30/4/75 
a.m. 

Pooled 

CPU 	r.c. 1.73 1.55 1.49 1.59 
s.e. 0.09 0.10 0.11 0.06 
t 19.9 15.1 13.1 27.0 

NCC 	r . c . 0.58 0.54 0.74 0.61 
s.e. 0.15 .  0.08 0.09 0.05 
t 3.9 6.7 8.4 11.6 

AVB 	r . c . 0.42 1.15 0.61 0.60 
s.e. 0.15 0.27 0.13 0.08 
t 2.7 4.2 4.7 7.8 

Intercept 3.25 2.67 2.90 2.98 
Adjusted Intercept 2.68 3.11 3.13 
R2 0.79 0.71 0.72 0.73 
s 3.2 3.9 3.9 3.7 
F 146 112 104 341 
No. of jobs 124 139 129 392 
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in the three models than in the coefficients 

of CPU and NCC. As pointed out previously, 

AVB is not a good measure of load, because it 

does not distinguish between jobs in CM and jobs 

rolled out, which can be a substantial number. 

Thus the mean value of AVB can vary considerably 

from session to session as shown in table 7.23. 

7.9.3 The Regression Coefficients 

It was pointed out in section 7.6.4, that as the 

average short job load AVJ, is only an approximate 

measure of the load on the system, it is likely that not 

all the delay experienced by a short job is accounted for 

by the AVJ term of the model. Some of the delay may be 

attributed to the CPU term instead. For very high loads, 

jobs with larger resource demands are more likely .to be 

rolled out and for longer periods. This delay may then be 

attributed to the CPU term of the model, and in particular 

in the form of a larger coefficient of CPU. 

None of the short jobs in this subset should ever 

have been rolled out, since they should always have been 

the highest priority user jobs running. Hence, for these 

very light loads, the coefficient of the CPU variable is 

lower in value. 

It was also pointed out in section 7.5.4.2 that 

the coefficient of NCC (number of job steps) may be con-

sidered as a measure of the system overhead to initiate 

a job step. For very light loads, this overhead is likely 

to be lower, and consequently this is reflected in the 

smaller NCC coefficient. 

7.9.4 Validation of the Models 

Attempts were made to validate the models, (CPU, 
NCC) by first comparing the slopes and then the intercepts, 

• 

r 



. 191 

as described in 7.8. The results are shown in table 7.26. 

The F-test supports the assumption that the slopes do not 

differ, at the 5% significance level. 

It was shown in 7.9.2 that the residuals of the 

individual models are normally distributed. The normality 

assumption was also tested for the residuals of the pooled 

model applied to each of the individual sets of data. The 

residuals for 27/1 and 30/4 satisfy the normality assump-

tion at the 20% level, while the residuals for 28/4 satis-

fy it at the 1% level. Consequently, the results of the 

F-test may be accepted with confidence. The assumption 

that there is no significant difference in the slopes, and 

hence the regression coefficients, is accepted. 

When the intercepts of the three models are com-

pared (table 7.26), however, the F-test showS that there is 

a significant difference in the adjusted intercepts. 

A second analysis was carried out to determine if 

the results varied with the introduction of the AVB variable 

(table 7.27). In the models with AVB (table 7.25), the 

coefficients of AVB vary considerably, but the intercepts 

are smaller. The F-test rejects the assumption that there 

is no difference in the slopes at the 5% level, but accepts 

it at the 2i% level. Thus the introduction of AVB into 

the models has resulted in a decrease in the confidence with 

which the assumption is maintained. However, comparing the 

adjusted intercepts, the F-test indicates that there is now 

no significant difference in the intercepts. 

These results indicate that it is the AVB variable 

which is the cause of most uncertainty in the models. If 

a better measure of system load were available, such as 

the mean level of multiprogramming, then it is felt that 

this uncertainty could be reduced considerably. 
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Table 7.26: Comparison of Models of no Short Job Competition  

(Two Independent Variables) 

Model No.of 
obser-
vations 

d.f. Analysis of Residuals 

d.f. 	RSS 	MSR 

1 27/1/75 124 123 121 1306 10.8 

2 28/4/75 139 138 136 2324 17.1 

3 30/4/75 129 128 126 2228 17.7 

4 383 5858 15.3 

5 Pooled Applied 

to 27/1 124 1336 

6 Pooled Applied 

to 28/4 139 2342 

7 Pooled Applied 

to 30/4 129 —2306 

8 392 389 387 5984 15.5 

9 Difference be- . 

tween slopes 4 126 31.5 

10 Pooled Applied 

to all data 392 391 389 6207 

11 Difference be-

tween inter- 

cepts 2 223 111.5 

Comparison of slopes: 	F = 31.5/15.3 = 2.06 (d.f.= 4,383) 

Difference not significant at 5% level 

Comparison of Intercepts: F = 111.5/15.5 = 7.2 (d.f. = 2,387) 

Difference is significant 

For key refer to table 7.20 
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Table 7.27: Comparison of Models of no Short Job Com eti-

tion (Three Independent Variables) 

, 
Model No.of 

obser-
vations 

d.f. Analysis of Residuals 

d.f. 	RSS 	MSR 

1 27/1/75 124 123 120 1231 10.3 
2 28/4/75 139 138 135 2054 15.2 
3 30/4/75 129 128 125 1886 15.1 
4 380 5171 13.6 

5 Pooled Applied 

to 27/1 124 1280 
6 Pooled Applied 

to 28/4 139 2150 

7 Pooled Applied 

to 30/4 129 1926 
8 392 389 386 5356 13.9 

9 Difference be-

tween slopes 6 185 30.8 

10 Pooled Applied 

to all data 392 391 388 5372 

11 Difference be-

tween inter- - 

cepts 2 16 8.0 

t 

Comparison of slopes: F = 30.8/13.6 = 2.26 (d.f. = 6,380) 

Difference not significant at 2'i% level 

Comparison of Intercepts: F = 8.0/13.9 = 0.58 (d.f. = 2,386) 

Difference not significant at 5% level 
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7.10 	Conclusions  

This chapter has described a detailed regression 

analysis of the I.C. Kronos system. In particular, the 

short job workload was modelled extensively. As a result 

of this work, the purely regression Workload Model of the 

system was constructed. 

The initial models of the short job workload, in 

the presence of a timesharing load, were unsatisfactory. 

An analysis of residuals revealed certain discrepancies, 

namely large positive residuals for jobs with large elapsed 

times, at certain periods of the day. A close study of the 

Dayfile revealed that during these periods, the system 

was heavily loaded. When these large residuals were exclu-

ded, models with much better fits were constructed. 

A further analysis was carried out while the system 

was supporting an entirely batch workload. In the absence 

of the timesharing load, much better fits were obtained. 

However, to build models with consistent regression coeffi-

cients, some unrepresentative jobs (less than 5% of the 

total sample) had to be excluded. 

Four models were constructed, representing four 

different sessions, and compared. The results showed that 

the regression coefficients of the four models were con-

sistent, although there was a greater variation in the 

intercepts. Hence it is legitimate to pool the data for all 

four sessions to construct the regression Workload Model: 

Y= 3.25 + 2.25CPU + 1.08NCC + 5.32AVJ 

The Workload Model is a satisfactory representation 

of the four sessions, which span a period of four months. 

This is considered a significant result. 	Hitherto, both 

in this project and elsewhere, the inconsistency of regression 

coefficients has been a major problem experienced in apply- 
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ing regression modelling techniques to computer system 

performance evaluation. Bard (B1, B2) and Schatzoff/Bryant 

(S2) have described how they were unable to build models 

with consistent regression coefficients. 

The Regression Coefficients  

As the regression coefficients of the models have 

been shown to be consistent, an attempt may now be made to 

interpret their values. The regression coefficient of the 

CPU variable is an estimate of the average time expansion 

factor experienced by each job for each second of CPU time. 

This time may be partly due to system overhead and partly 

due to I/O activity, as no I/O term appears in the model. 

The coefficient of NCC is an estimate of the overhead to 

initiate a job step, which is a significant overhead for 

short jobs. 	The coefficient of AVJ is an estimate of the 

average delay experienced by a short job due to competition 

from other short jobs. The intercept is an estimate of the 

fixed overheads associated with a job, such  as job initia-

tion and job termination time. 

The regression analysis of very lightly loaded situa-

tions (7.9) and very heavily loaded situations (7.6) has 

shown that the regression coefficients vary in these extreme 

situations. The regression coefficients of the CPU and NCC 

variables are lower in lightly loaded cases, representing 

lower system overheads, and higher in heavily loaded cases, 

representing higher system overheads. 

Limitations of the Model  

The standard error of the residuals, 7.8, is high 

compared with the mean of the dependent variable, short job 

elapsed time, which is around 20 seconds. The main reasons 

for the high standard error are: 
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(a) The measure of the load on the system is only 

approximate. This is reflected in the greater 

fluctuation of the regression coefficient of 

the average short job load variable, AVJ. 

(b) No measures of job rollout time are available. 

Hence when rollin/rollout activity is high, for 

example when the timesharing load is heavy, the 

predictions of the model are poor. 

(c) No good measures of I/O demand are available. 

Hence, the predictions of the model are poor for 

those jobs whose I/O demands differ greatly from 

the average. 

These limitations are due to the limitations of 

the data used in constructing the models. A further limita-

tion of the Workload Model is a structural one. It is 

necessary for one of the independent variables to reflect 

system load, so that varying loads may be modelled. However, 

as regression models are static (3.4), estimates of the 

load on the system must be specified in advance of a run of % 
the model. 

One method of overcoming this limitation is to 

develop a hybrid model in which simulation techniques are 

combined with regression techniques. By this means, the 

model is able to adjust its estimate of system load as 

each modelled job executes. This approach is described in 

the next chapter. 
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CHAPTER 8: THE LOAD ADJUSTING MODEL 

8.1 	Introduction 

This chapter considers the limitations of the 

purely regression Workload Model and attempts to overcome 

some of them by developing a more detailed hybrid model, the 

Load Adjusting Model, in which simulation techniques are 

introduced and combined with the regression techniques. 

The Load Adjusting Model has been applied to the modelling 

of the Imperial College Kronos system at the second level 

of detail. 

Section 8.2 discusses the limitations of the 

Workload Model and describes different methods of develop-

ing fast dynamic models of computer systems. 

Section 8.3 describes the concepts of the Load Adjusting 

Model (LAM). 	In section 8.4, the application of the LAM 

to the Imperial College Kronos system is considered. 	The 

design and implementation of the model are described in 

sections 8.5 and 8.6 respectively. 	The calibration of the 

model is described in sections 8.7 and 8.8; the methodology 

in 8.7 and the results in 8.8. 	Finally the validation of 

the model is described in section 8.9. 

8.2 	Fast Approximate Models of Computer System Performance  

8.2.1 Limitations of the Workload Model 

Once the purely regression Workload Model has been 

calibrated and validated, it may be used for making fast 

and approximate predictions of a batch job's elapsed time, 

given the job's resource demands and the load on the system 

during its execution. 

The Workload Model suf:o3rs from an important struc-

tural limitation. This is because a regression model is 

static and hence does not recognise the passage of time. 

To enable the Workload Model to model varying loads, it is 
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necessary for one of the independent variables to be a 

measure of the load experienced by a job during execution. 

Because the Workload Model is static, the estimate 

of the load on the system for a given job must be input at 

the start of a run of the model and cannot be adjusted 

during the run (figure 8.1). However, in an experimental 

run, in which the environment of the model (e.g. workload, 

system parameter settings, etc.) is different from that 

used during calibration, an accurate estimate of the load 

experienced by each job is not possible in advance of the 

run. 	Consequently, further errors will be introduced into 

the model. 

A model which overcomes this limitation is one which 

dynamically adjusts its estimates of the load on the system 

as each modelled job commences or terminates execution 

(figure 8.2). Such a model must be capable of modelling the 

passage of time, which a regression model does not. 

8.2.2 Fast Dynamic Computer System Models 

There are a number of ways of building fast dynamic 

models of computer systems. One approach is to use analytical 

models of which the most widely used are queuing models. As 

pointed out in 3.3.2, however, queuing models usually involve 

a number of simplifying assumptions to make them more amenable 

to mathematical analysis. The main assumption often em-

ployed is that the request inter-arrival time distribution 

follows an exponential distribution, which assigns the 

highest probability density to the smallest time interval of 

length zero. This assumption is often suspect because of 

the finite source nature of the arrival process (B14). 

In the Imperial College system, short jobs are sub-

mitted by users, mainly via the local cafeteria service and 

also via remote job entry stations. The mean short job 

elapsed time is around 20 seconds (table 7.16), while the 
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Figure 8.2: 	The Load Adjusting Model  
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time taken to read a 200 card deck is 10 seconds on the 

local card reader, assuming perfect operation, and much 

longer via remote card readers. Consequently short values 

of inter-arrival time are very unlikely, and the assumption 

that. the request inter-arrival time is exponentially dis-

tributed is not valid. 

An alternative method is to use simulation models. 

However, a simulation model which produced results similar 

to the Workload Model would probably need to model the system 

in considerably more detail, and consequently be more ex-

pensive to implement. A more promising alternative is to 

combine simulation with different modelling techniques to 

produce dynamic hybrid models. 

Kimbleton has described an analytically driven com-

puter system simulator (K3) which combines simulation and 

queuing modelling techniques. The model is trace-driven. 

A modelled system session consists of a series of time seg-

ments, where a time segment is terminated by a job arrival 

or termination event. Hence the number of processes (jobs) 

executing in a time segment is constant. All the processes 

are assumed statistically identical. Time segment statis-

tics are predicted analytically and aggregated using simula-

tion techniques. The model is fast and is said to have com-

pared well in a very limited test with a trace-driven 

simulation model of the same system. The test consisted of 

both models processing five identical jobs which started 

simultaneously. Kimbleton states that as the jobs become 

progressively less statistically identical, the results be-

come poorer. 

The method proposed here for developing dynamic hybrid 

models of computer systems is to combine regression techniques 

which are static with simulation techniques which are dynamic. 

One essential requirement of this method is the construction 

of a simulation framework which-models the passage of time. 



By this means, the static regression model is converted into 

a dynamic hybrid simulation/regression model (see also 

3.5.4). 

8.3 	Concepts of the Load Adjusting Model  

8.3.1 Introduction 

This section describes the concepts of the hybrid 

Load Adjusting Model (LAM) which combines simulation and 

regression modelling techniques to predict job elapsed time, 

under varying load conditions. The Load Adjusting model is 

trace driven and models the execution phase of a batch job, 

that is the time from when a job is first scheduled for 

execution to the time it terminates. The time spent in this 

phase is the job elapsed time. 

In the Workload Model, the load experienced by each 

job is input as an independent variable, and is used to 

compute the delay experienced by the job due to competition 

from other jobs. In the Load Adjusting Model, a simulation 

framework is created which allows each job's progress through 

the system to be modelled dynamically. 

A regression submodel predicts each job's elapsed 

time in the absence of competition from other jobs. The 

simulation framework allows the number of jobs in execution 

at any stage to be estimated A numerical submodel estimates 

the time delay experienced by a job due to the competition 

from other jobs, for each period when the number of jobs 

executing is constant. The simulation framework maintains 

a running sum of the predictions of the two submodels. 

At the simulated time of job termination, this sum is the 

predicted job elapsed time. 

2.01 
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8.3.2 Modelling Job Elapsed Time 

A batch job's elapsed time te  may be considered 

as consisting of two terms: 

te 	t. + td 
	(1) 

t, is the elapsed time a job would experience if no other 

job were competing with it for resources. 	td is the delay 

a job experiences due to competing with other jobs for 

system resources. 	td is equal to zero if the job 

experiences no competition from other jobs. 	Consequently 

t, is the minimum elapsed time a job would experience in 

the system. 	t, will be referred to as the job execution 

time from now on. 

In a purely regression model, both tj  and td  are 

predicted using regression techniques. 	In the hybrid 

model, t, is also predicted using regression techniques. 

However td is predicted dynamically using the simulation 

framework. 

The job execution time t, is a function of a job's 

resource demands and may be predicted by the regression 

submOdel: 

tj  = f(di, d2, 	dn) 	(2) 

where (d1, d2 	dn) are the job's resource demands, e.g. 

CPU time, memory and I/O demands. 

8.3.3 Time Segments 

The Load Adjusting Model is a dynamic model and 

therefore explicitly recognizes the passage of time. 	The 

LAM is capable of modelling a whole system session. 	The 

modelled session is divided up into a series of time segments. 
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A time segment is defined as an interval of time 

during which the number of jobs competing for resources is 

constant. 	A time segment is started or terminated by one 

of two possible events: 

a) arrival of a job 

b) termination of a job. 

To simplify the model, it is assumed that in any 

time segment ti, in which there is more than one job competing 

for resources, each job is treated identically by the system. 

In segment ti, each executing job experiences 

some useful execution tji  and some delay tdi. 	t
ji 
 may be 

accounted for by CPU time, I/O time, or by the system 

carrying out some function for the job, e.g. job step 

initiation. 	tdi is the delay experienced by a job due 

to the competition from other jobs for scarce system resources, 

and so may represent time waiting for CPU, waiting for I/O, 

or time rolled out of Central Memory. . 

A job's elapsed time te  may be expressed as: 

te  =t3  + td 

= t. + 
i 
	 tdi 
=1 

where s is the number of time segments a job goes through 

in the execution phase. 

For each job, t, may be predicted at the simulated 

time of job arrival using equation (2). 	tdi is estimated 

for each time segment as described next. 
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8.3.4 Modelling Delay Time 

It is assumed that in each time segment, all jobs 

are treated identically by the system. 	It is further 

assumed that the delay tdi  experienced by each job in a 

time segment is: 

(i) a function of the number of jobs, n, competing for 

resources with a given job 

(ii) a linear function of the length of the time segment 
t. 

i.e.tdi  = -t. g(n) 
	

(3) 

In the general case, we assume that g(n) is a poly-

nomial of the form: 

g(n) = aso  + ak n
k 

k=1- 

However, since tdi has been defined such that there 

is no delay if only one job is executing, 

i.e. tdi  = 0 when n = Q. 

ao = 0 

and g(n) 

k=1 
ak n

k 
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Furthermore, if we assume that only the first 

two terms of the polynomial are significant, then we have 

for any time segment ti  in which there are N jobs executing. 

g(N) = a
1
N+a2N2  

Substituting for g(N) in 3: 

= 	(a 	N2)t. tdi 	1N+a 2 	1 (4) 

However tji t.-t di  1 

Substituting for tdi  from (4): 

t31  = (1-a1N-a2N
2)t. 	(5) 

Ji 
ti  

 

(6) 

  

1-a1N -a2N
2 

8.3.5 Estimating Time Segment Length 

A time segment is terminated either by: 

a) a new job arriving 

b) a job terminating 

The time of the next job arrival to  is obtained from a 

trace. 	The time a job terminates is estimated by the 

model. 

When a job enters the system, its execution time 

t, is predicted by the regression submodel (equation 2). 

At the start of each time segment, each job in the system 

has a remaining execution time tjr, which is the real time 

a job would require to complete execution if no other jobs 
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were competing for resources. If we assume all jobs are 

treated identically, then the job with the minimum tjr 
(given by tjrm)  is the job that will terminate first. 

The time segment tim  necessary to complete execution of 

the job with execution time tjrm  is computed using 

equation (6). 

tim 	
1-a1N -a2N

2 

tjrm 	
(7) 

timis then compared with to to determine whether the next 

event is a job arrival or a job termination. 	Hence, the 

length of the next time segment ti  is given by 

ti  = min(tim,ta) 

Givent.,the execution timetji  and delay time 

tdi for this segment may be evaluated using equations (5) 

and (4) respectively. 	ti is added to the value of the 

elapsed time so far (tes) for each job and tji  is subtracted 

from the value of the execution time remaining (tjr) for each 

job. 

tes  = tes + ti  

tjr' = tjr  - tji  

This procedure continues until t. is reduced to zero for 3r 
a particular job. 	This represents the time at which the 

model estimates the job will terminate. 	The accumulated 

elapsed time at the simulated time of job termination is 

then the predicted elapsed time for that job. 
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8.4 	The Load Adjusting Model of the Kronos System 

8.4.1 The Regression Submodel 

In this section, the application of the Load 

Adjusting Model to the Imperial College Kronos system 

is considered. 	In particular, the short job workload 

on the system is modelled using this method. 

The Workload Model, developed for the short job 

workload in Chapter 7, is a regression equation of the 

form: 

te . = bo + b1  'T + b2'K + b3'N 	(8) 

where te is the job elapsed time 

T is the CPU time required 

K is the number of job steps 

N is the average number of short jobs in competition 

with this job over its lifetime. 

It is shown in Chapter 7 that the independent 

variables of equation (8) are not correlated. 	Hence, 

when N = 0, a suitable form for the equation is: 

te = b ' + b1  'T + b2'K 

Furthermore, when a subset of the short job workload 

was modelled, namely those jobs which did not experience 

any competition from other jobs, the fitted equation was: 

te = bo" + bl"T + b2"K 	(9) 

Since only the short job workload is modelled in 

this case, it is appropriate to amend the definition of job 
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execution time given in 8.3.2. 	The job execution time is now 

defined as the elapsed time experienced by a job when it 
experiences no competition from other short jobs. 	It 

is clear that an appropriate model for short job execution 

time is then: 

t) 	o 
+ b1  T + b2K 	(10) 

Consequently, this is the regression submodel used 

in the Load Adjusting Model to predict the job execution 

time. 	The choice of the most appropriate values of the 

coefficients bo'  b1  and b2 is left to the calibration 
process, which is described in 8.7. 

8.4.2 Assumptions made by LAM 

0 

A number of simplifying assumptions are made in 

applying the Load Adjusting Model to the Kronos system. 

These are: 

1) The LAM has been applied to a subset of the workload 

on the system, namely the short job workload. 	The 

delay experienced by a short job in a time interval 
is assumed to depend only on the competition from 

other short jobs. 	The competition from long jobs 

is ignored. 	This is clearly a limitation of the model, 

but the assumption is similar to that made by the 

Workload Model. 

2) It is assumed that in each time segment, where the 

number of jobs executing is constant, all jobs are 

treated identically by the system. 	This is a reasonable 

assumption for. CPU allocation, where a round-robin 

scheduling algorithm is enforced. 	It is likely to be 
less reasonable for I/O management. 
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3) Since all real time data obtained from the Dayfile 

(e.g. job start and end times) are measured in units 

of a second, the basic real time quantum in the model is 

the second. 	It should be pointed out, however, that 

CPU time is measured in milliseconds. 	This value is 

used by the regression submodel to estimate job execution 

time, which is then rounded to the nearest second. 

These assumptions are bound to lead to inaccuracies 

in the model. Attempts are made to minimize these during 

the calibration of the model. 

8.5 	Design of the Load Adjusting Model  

8.5.1 Overview 

The central part of the Load Adjusting Model (LAM) 

is a co-ordinating routine. 	The co-ordinating routine has 

a loop which it goes round once for every time segment. 

At the start of the loop, the simulation clock is set to 

the time of the event processed in the previous round, which 

constitutes the start time of the current segment. 	The 

first task of the co-ordinator is to determine what the next 

event is and the time at which it occurs. 	This is carried 

out as described in 8.3.5, that is the time of next job 

arrival is compared with the time of the first job to 

terminate. Provision must also be made for detecting an 

end-of-session event. 

Once the time of the next event has been determined, 

the simulation clock is advanced to this time, which represents 

the end of the time segment. 	The statistics for all executing 

jobs may now be updated for this time segment. 	The event 

occurring at this simulated time is then processed. 	It is 

possible for more than one event to occur at the same 

simulated time, e.g. job termination and job arrival, and 
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LAM deals with this accordingly. 	Once the event(s) have 

been processed, this constitutes the end of this round of 

the main loop, and the process is repeated for the next 

time segment. 

8.5.2 Description of LAM 

A block diagram showing the overall design of the 

model is displayed in figure 8.3. 	A short description of 

each of the routines follows: 

4 

MAIN 

COORD 

is the main routine. 	It carries out all 

necessary initialisation and then enters 

COORD. 

is the co-ordinating routine for the model. 

It goes round .a loop once for each time segment. 

First it calls SENEVT to determine what the 

next event is, and to determine the length of 

the next time segment. 	It then calls UPDENT 

to update the entries of all jobs currently 

in execution. 	Finally, it calls one (or more) 

of the three event processing routines. 

SENEVT is called by COORD to determine what the next 

event is, and the estimated time at which it 

occurs. 	The next event could be a job arrival, 

job termination or end of session. 	It calls 

SRINT to estimate what the minimum time is 

for the next job to terminate. 	This is compared 

with the next job arrival time, to decide what 

the next event is. However, if the number of 

jobs currently in execution is equal to a 

certain limit, then no jobs will - be allowed 

to commence execution, until the number of jobs 

in execution falls below this limit. 
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TRACE ERROR 1 

Figure 8.3: Structure of Load Adjustin3 Model  
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UPDENT 	Given the length of the next time segment ti, 

UPDENT calls SRJEDT to compute the delay time 

tdi and the execution time tJi for the segment. 

A linked list is maintained which contains each 

, job in execution state. 	For each job on the 

list : 

(a) the delay time for this interval is added to the 

cumulative delay so far. 

(b) the execution time for this interval is decremented 

from the remaining execution time. 

JBTERM 	handles job termination. The entry for the 

job terminating is taken off the Execution list. 

The accumulated job statistics are copied into 

a job output buffer. 	If the buffer is full, 

it is output to a disc file. 

JBSTAT 	handles job initiation. An entry is set up for 

the new job and linked onto the Execution list. 

The job's resource requirements and other 

information are read from the job's entry in 

the input buffer and copied to the Execution list 

entry. 	RGJEDT is called to predict the job's 

execution time. 	If the input buffer is now 

empty, it is replenished. 

SESEND 	is called at the estimated time of the end of 

session. 	It outputs the findl bufferful of data 

to disc, and outputs statistics of the run to the 

line printer. 

UNLEXL(N) searches the execution list for job N. 	When the 

entry'for job N has been found, it is taken off 

the list. 	UNLEXL then clears the contents of 

the entry and links it onto a free list. 
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LNKEXL(N) 	removes an entry off the free list and links 

it onto the end of the Execution list. 

RGJEDT 

SRINT 

SRJEDT 

TRACE 

uses equation (10) to compute the predicted 

job execution time t. for a job commencing 

execution. 

uses equation (6) to compute the estimated 

real time required to complete execution of a 

given job for a given load on the system. 

computes the estimated job execution time tji  

(using equation 5) and the estimated delay time 

tdi (using equation 4) for a given time segment 

ti  and load N on the system. 

outputs a trace message each time it is called, 

providing the trace flag is on. 	The message 

is either for a job commencement or job termination. 

ERROR (I) 	is the error routine which may be called from 

a number of places in the model. 	It outputs 

an error message, dumps the contents of various 

locations and arrays, and stops. 	This routine 

is especially useful during testing, but is also 

capable of detecting any errors in the input data. 

8.6 	Implementation 

8.6.1 Introduction 

A preprocessor prepares a workload trace for input 

to the Load Adjusting Model. 	The predictions of the LAM 

are analysed by a postprocessor. 
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Three sessions were used in the calibration and 

validation of LAM. 	These were the morning sessions of 

27/1/75 and 30/4/75 and the afternoon session of 30/1/75. 

All three sessions were used in the construction of the 

Workload Model, described in sections 7.7 to 7.9 of Chapter 7. 

8.6.2 Preprocessing 

A block diagram showing the steps involved in 

running the model is shown in figure 8.4. 	The Dayfile 

processing programs take as input the Kronos Account and 

System Dayfiles and output two files, the B and J files 

(chapter 5). 	The B file, which is ordered by job termination, 

consists of a job summary record for each job processed in 

the session. 	Each summary record holds measures of the 

resources demanded by the job during its execution. 	The J 

file, ordered by job commencement, contains various measures 

of the loading on the system during each job's lifetime. 

The B and J files are input to the Preprocessor 

which merges and sorts the two files and outputs the G file, 

in which job summary records are ordered by job arrival. 

Only short jobs are selected for the G file. 	The G file 

is the input file to the Load Adjusting Model. 	It is input 

to the model in the form of a workload trace. 	Each job is 

represented by a vector of its resource demands which is 

input to the model at the simulated time of job arrival. 

8.6.3 The Load Adjusting Model 

The Load Adjusting Model is coded in Fortran and is 

well under 500 statements in length. 	It processes a four 

hour session on the CYBER, consisting of about four hundred 

short jobs and about 800 time segments, in under 10 seconds 

CPU time on the same system. 
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Figure 8.4: Overall Diagram of Dayfile Processing and 

System Modelling  
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For a particular run of the model, various parameter 

settings are input as data to the model. 	A workload trace 

is also input to the model in the form of a set of short jobs 

ordered by job arrival time. 	The model outputs the 

following predictions for each job in the form of a disc 

file called the H file: 

a) predicted job elapsed time. 

b) predicted job execution time (i.e. estimated 

elapsed time a job would have experienced had 

there been no competition from other jobs). 

c) predicted delay time a job experiences due to 

competition from other jobs. 

d) predicted average load a job experiences during 

its modelled lifetime in the execution stage. 

The elapsed time predicted by the Workload Model 

for the same job is also output. 

8.6.4 The Postprocessor 

The postprocessor analyzes the H file generated by 

a run of LAM. 	The postprocessor prints the results in 

tabular form, computes the means and standard deviations 

of the predictions of the model, and plots various figures 

as required. 	It also carries out a statistical analysis 

of the results. 

The residual for each job, that is the difference 

between the actual elapsed time and the elapsed time predicted 

by LAM, is computed by the postprocessor. 	The residuals 

are plotted against the following variables: 

a) actual job elapsed time. 

b) predicted job elapsed time (an example is shown 

in figure 8.7). 

c) estimated average load experienced by the job. 
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d) predicted delay time for the job (an example is 

shown in figure 8.6) 

e) CPU time used by job (examples are shown in 

figures 8.5 and 8.8). 

f) number of job steps. 

8.7 	The Calibration' Methodology  

8.7.1 Introduction 

Calibration is an iterative procedure whose objective 

is to reduce the difference in behaviour between the model and 
the real system by adjusting the parameters of the model (B4). 

There are two sets of parameters which may be 

• adjusted during calibration: 

a) The parameters bo, b1 and b2 of the regression 

submodel for job execution time 

t.)  =bo  +b1T+ b2N 
	

(10) 

b) The parameters al  and a2  of the submodel for the 

delay time each job experiences in a time segment: 

tdi = (a1  N + a2N
2)t. 	(4) 

Sincetdi 	.t < ., the following restrictions apply: 

O < a1  e 1 

O 45 a2 < 1 

a1 + a2 < 1 

The overall calibration approach was based on that 

used in the calibration of a simulation model of OS/360 

under LASP(B7). 
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8.7.2 Figures of Merit 

Since the objective of the calibration exercise is 

to reduce the difference in behaviour between the model 

and the real system, some 'figure of merit' is necessary 

for deciding whether one model or version of a model is 

'better', i.e. significantly closer in its predictions to 

the real world, than another. 

One method of comparing the difference between the 

real system and the model is to compare the real job elapsed 

time with the predicted job elapsed time. The difference 

between these values is the residual. However, this measure 

has the disadvantage, when averaged over all jobs, that 

residuals of the type 'job a is x seconds too fast while job 

b is x seconds too slow' cancel out. Consequently, more 

satisfactory measures are those which do not consider the 

sign of the residual, such as the absolute value of the resi-

dual or the residual squared. 

Developing the Workload Model has shown that large 

residuals occur because of situations which are not taken 

into account by the model, due to the limitations of the 

available data. Using the residuals squared as a figure of 

merit places a larger emphasis on these large residuals. 

Since basically the same data is used for developing LAM, it 

was decided to use the absolute value of residuals as the 

figure of merit. 

8.7.3 A Significance Test 

For each run of the model in calibration, it is 

likely that the predicted elapsed time will be better for 

some jobs and worse for others, as measured by the figure of 

merit. Each time a reduction in the mean absolute value of 

residuals is achieved, it is necessary to determine whether 

the reduction is a significant one. For this reason, a 

statistical significance test is used. 
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Developing the Workload Model has shown that the 

distribution of residuals is usually non-normal. Consequently 

a non-parametric significance test was used in the calibration 

of LAM, i.e. one that does not assume that the residuals are 

normally distributed. The test is the Wilcoxon matched-pairs 

signed-ranks test (S8). 

Early attempts at calibrating LAM using the Wilcoxon 

test showed that there was always a very significant 

difference between the model predictions and the real system 

behaviour. Consequently, it was decided to use the Workload 

Model as a standard for comparing LAM predictions. For each 

test, LAM and WM are run using the same input trace for a 

given session. The elapsed time for each job in the session 

is predicted by both models and the residuals are derived: 

rs = actual (i.e. measured) job elapsed time -

elapsed time predicted by Load Adjusting Model 

rr = actual jct elapsed time - elapsed time pre-

dicted by Workload Model. 

The Postprocessor prepares a sequence of matched 

pairs, one for each job, of absolute values of residuals 

(Irs1,1rrI). The sequence of matched pairs are then com-

pared using the Wilcoxon test, which tests the null 

hypothesis that there is no significant difference between 

the models (figure 8.9). It outputs the probability of 

the hypothesis being true. If the probability is above 10%, 

then the hypothesis is accepted. If the probability is 

below 10% (5%), then the hypothesis is rejected at the 10% 

(5%) significance level, i.e. with 90% (95%) confidence. 

8.7.4 The Method of Good Balance 

Each time a run with the model is made, a decision 

has to be made about the settings of the parameters for the 

next run. Some indication of the sources of inaccuracy of 
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the model may be obtained by studying the residual plots. 

A more systematic method is used by the Method of Good 

Balance which was developed by Beilner (BS). 

The Method of Good Balance provides a systematic 

means of guiding the model-builder towards constructing a 

well-balanced model. The error in such a model does not 

depend significantly on any job characteristics or on the 

system load, but instead is randomly distributed amongst 

all types of jobs and loads. A linear regression analysis 

is carried out with the residual in job elapsed time as the 

dependent variable and measures of job characteristics and 

systeM load as the independent variables. The objective of 

the exercise is to gradually develop a regression equation in 

which none of the regression coefficients are significant. 

Once this is achieved, it means that none of the independent 

variables make a significant contribution to the model, and 

that the error in the model does not depend significantly on 

job characteristics or system load. 

8.8 	The Calibration in Practice  

8.8.1 Introduction 

After each run of the Load Adjusting Model with a 

given setting of the parameters, the following analysis is 

carried out: 

(a) The mean of the absolute value of the residuals 

is inspected to determine if a reduction in this 

figure of merit has resulted from the new parameter 

settings. 

(b) The Method of Good Balance indicates whether the 

residuals are correlated with any of the job or 
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load characteristics, e.g. CPU time, number of job 

steps, delay time. 

(c) The residual plots show the nature of the relation-

ship between the residuals and the particular 

job and load characteristics. 

(d) The Wilcoxon test indicates how the LAM compares 

with the Workload Model. 

With the guidance provided by this analysis, the 

parameters are altered and the process is repeated. 

8.8.2 Initial Parameter Settings 

When calibrating the model, a decision must be made at 

an early stage about the initial settings of the calibration 

parameters. 

The choice of the initial parameter settings for 

the regression submodel for execution time 

t- = bo + b1  T + b2N 	
(10) 

was guided by the regression models of the short job work-

load (Chapter 7). In particular, it was guided by the 

models of the subset of the workload that did not ex-

perience'competition from other short jobs (table 7.24). 

As this subset of the workload is not a representative one 

(see 7.9.1), it is to be expected that the regression 

coefficients of the model of this subset would not be 

appropriate for the regression submodel of execution time. 

The appropriate parameters need to be determined 

by means of the iterative tuning process. It was decided 
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to set each parameter initially to the minimum value of 

the regression coefficient for the appropriate indepen-

dent variable in the three models of the subset (table 

7.24). Hence, the initial settings were: 

bo = 4.7 	b1  = 1.4 	b2 = 0.5 

Intuitively reasonable values were chosen for the 

initial settings of the parameters of the delay time submodel: 

tdi  . (a1  N + a2N
2)t. 

The initial settings were al  = 0.15 a2  = O. 

8.8.3 Analysis of Residuals 

Initially, some observations were excluded from 

the calibration. These were the same observations that 

had been excluded from the Workload Model, for the reasons 

described in 7.7.4. 

During the calibration, an analysis of residuals 

revealed that at certain times for each session, large 

positive residuals were obtained using the Load Adjusting 

Model, which were not obtained using the Workload Model. 

Initially, this was puzzling. However a more detailed 

analysis revealed that these large positive residuals 

occurred at times when the delay time predicted by LAM was 

small, while the delay time predicted by the Workload 

Model was much larger. ' 

A study of the System Dayfile for the times in 

question, revealed two causes for this. 

1. 	Occasionally system joL3 are run. These jobs 

carry out functions such as Dayfile dumping, 

permanent file dumps and reloads. System jobs 

are allocated a higher CPU priority than other 
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jobs. Hence the presence of system jobs perturbs 

the systems and sometimes leads to a buildup of 

short jobs, which are consequently delayed. 

2. 	Some of the jobs excluded from the Workload Model, 

(and LAM), because of their_unusual characteristics, 

run for much longer than normal and cause a build-

up of short jobs with subsequent delays. 

Neither of these two types of job are actually 

used in the calibration, either because their presence is 

not recorded (system jobs, see 5.5) or because they are 

deliberately excluded (uncharacteristic jobs). 	However 

the delay caused to other jobs is felt, and much more 

so by the Load Adjusting Model than the Workload Model. 

The reason for this is due to the difference in the 

basic structure of the two models. The Workload Model is a 
regression model of the form 

t
o 

= bo + blT + b2K + b3N 
	

(equation 8 in 8.4.1) 

To a first approximation, the delay time dr  predicted by 

the model is given by 

d
r 
= b3N 

 

where N is the average short job load experienced by a 

short job while in execution. 	N is in fact input to 

the model as one of the independent variables (figure 8.1). 

Thus any perturbation to the system which leads to a build-

up of short jobs will be reflected in an increased value 

of N and consequently a larger predicted delay dr. 

On the other hand, the relay ds  predicted by the 

Load Adjusting Model is generated internally by the model 

(figure 8.2). 	If the model is completely unaware of 

the perturbation that occurred, as in cases 1 and 2 above, 

then it cannot possibly account for it. 
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It was decided therefore to exclude from the 

calibration, those observations which were noticeably 

affected by the perturbation. The calibration was then 

recommenced. 

8.8.4 An Example of the Calibration 

In this subsection, an example of the calibration 

of the Load Adjusting Model (LAM) for one particular 

session, the morning of 30/4/75, is given. Starting with the 

initial parameter settings chosen in 8.8.2, a number of 

runs were carried out. A selection of the runs (there 

were considerably more than 7) are displayed in Table 8.1. 

For each run, the following results are displayed: 

(a) 	the parameter settings for the run 

(b) the mean predicted elapsed time t 
e 

(c) 	the mean of the absolute residuals Ir
s

I 

(d) the result of the Wilcoxon test, i.e. the 

probability that the null hypothesis, that 

there is no difference between the LAM and 

Workload Model (WM), as measured by the dis-

tribution of the two sets of absolute residuals, 

is true 

(e) the result of the Method of Good Balance (MGB), 

in particular which variables have significant 

regression coefficients, and the sign of the 

correlation. 

In Run 1 (the initial settings), the mean predic-

ted elapsed time of 11.9 is mucn lower than the mean 

actual elapsed time, 17.0. Ir is is greater than the mean 

of the absolute WM residuals IT-1. The Wilcoxon test shows r 
that WM is significantly better than LAM. The MGB indi- 
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Table 8.1: Example of Tuning the Load Adjusting Model  

- 30/4 Workload Trace  

Runs with LAM 

predic- 
Run b0 b1 b2 a

1  a2 P M.G.B. ted te Irs1 

1 4.7 1.4 0.5 0.15 0 11.9 5.89 0.001 +CPU 
+NCC 

2 4.7 1.7 0.7 0.30 0 15.4 5.05 0.186 -SDEL 

+CPU 

3 4.7 1.9 0.7 0.23 0 15.3 4.64 0.178 -SDEL 

4 4.7 1.9 0.7 0.15 0.01 14.8 4.68 0.253 W.B. 

5 4.7 2.0 0.8 0.11 0.01 15.3 4.58 0.118 W.B. 

6 4.7 2.1 0.8 0.11 0.01 15.7 4.55 0.064 W.B. 

7 4.7 2.1 0.8 0.20 0.01 16.7 4.75 0.?70 -SDEL 

Mean actual (i.e. measured) to = 17.0 -te predicted by WM = 17.9 

Mean of absolute value of residuals of WM, Irrl = 4.72 

: 

: 

mean elapsed time in seconds 
mean of absolute value of residuals of LAM 

Probability that there is no difference 

between LAM and WM 

Key: 	to  

lrs 
P 

M.G.B. : Method of Good Balance 

W.B. : Well Balanced model 

CPU : CPU time 	Variables that 

NCC : Number of Control Cards residuals may be 

SDEL : Predicted delay time correlated with. 

+/- : sign of correlation 



cates that the coefficients of both the CPU and NCC 

variables, bl  and b2  respectively in equation (10), should 

be increased in value. The residual plot against CPU 

time (figure 8.5) also indicates that the residuals are 

positively correlated with CPU time. 

In Run 2, b1 and b2, in addition to a1 
are increased 

in value. As a result, the mean predicted elapsed_ time 

is increased to 15.4. IF-1 is still greater than 1P-r
1, but 

the Wilcoxon test indicates that the difference between 

the two models is no longer significant. The MGB indi-

cates that bI should be increased further. It also indi-

cates that the residuals are negatively correlated with 

delay time. This is supported by the residual plot against 

delay time (figure 8.6). 

In Run 3, b1 is increased and a1 
decreased. This 

time Irs-I  is smaller than Irr
I, but the Wilcoxon test 

indicates that the difference is not significant. The 

MGB shows that the residuals are still negatively correla-

ted with delay time, although to a lesser extent than 

before. 

In Run 4, only the delay parameters are altered. 

a1 is reduced further while a2 
is set to a non-zero value 

for the first time, so as to introduce a finer degree of 

tuning. With these settings, MGB indicates that the model 

is now well balanced, i.e. the error in the model is no 

longer correlated with any particular job characteristic or 

load on the system. However, the Wilcoxon test indicates 

that, although Irs 1 is smaller than Irri, there is still 

no significant difference between the Load Adjusting and 

Workload Models. 

From now on, the iterative tuning procedure becomes 

more difficult. The objective is to continue improving 

the model by reducing the value of 1rs
1. However, the MGB 

can no longer help as the model is now well balanced. The 

2.31 
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iterative procedure was lengthy, so only the principal 

results are highlighted here. 

In Run 5, b1  and b2 have both been increased in 

value, while al  has been reduced. The Wilcoxon test 

indicates that the null hypothesis can still not be re-

jected, but the probability of 0.118 is close to the 10% 

significance level. 

In Run 6, bl  is increased to 2.1. The Wilcoxon 

test indicates that the null hypothesis can now be re-

jected at the 10% level, as the probability of the two sets 

of absolute residuals being drawn from the same locpulation 

is 0.064. Figures 8.7 and 8.8 show the residual plots 

against elapsed time and CPU time respectively for these 

parameter settings. 

Attempts to improve the model further by adjusting 

each of the parameters or combination of parameters (e.g. 

Run 7) failed. So the parameter settings for Run 6 were 

taken to be the 'best' values, since they resulted in the 

closest agreement between the modelled and real worlds, as 

measured by the figure of merit of the absolute value of the 

residuals. 

With the parameter settings of Run 6, the mean 

predicted elapsed time is 15.7 seconds as compared with 

the mean actual elapsed time of 17.0 seconds. It is possible 

to select parameter settings which allow the mean predicted 

elapsed time to be closer to the mean actual elapsed time. 

In Run 7, the delay parameter al  is increased to 0.20. 

The mean predicted elapsed time is now 16.7, which is much 

closer to the mean actual elapsed time. However, MGB 

indicates that the model is no longer well balanced, as the 

residuals are negatively correlated with delay time. Fur-

thermore, the Wilcoxon test shows that the difference between 

the LAM and WM is no longer significant, because of the in-

crease in 1rsI. Similar results are obtained if b1 is in-

creased instead of a1. This feature of LAM has been 



233 

observed with other simulation models. During the calibra-

tion of SOUL (Simulation of OS/360 under LASP), it was 

noted that for the 'best' parameter settings, the mean pre-

dicted elapsed time was significantly lower than the mean 

actual elapsed time (W2). 

8.8.5 Comparison of Modelled Sessions 

The model was run with three different workload traces, 

where each trace represented a different session. In 

addition to the morning of 30/4/75, the morning session of 

27/1/75 and the afternoon session of 30/1/75 were used. The 

model with the trace for each session was calibrated using 

the methods described in sections 8.7 and 8.8.4. The sessions 

are compared in table 8.2. The following points should be 

noted: 

(a) During the last part of the monitored period in the 

30/1/75 session, a number of system jobs were run. 

These perturbed the system in the manner discussed 

in 8.8.3 thereby causing larger positive residuals. 

It was decided to exclude this latter period from 

the calibration. 

(b) For all three sessions, the Wilcoxon test indicates 

that the predictions of the Load Adjusting Model 

are significantly better, at the 10% significance 

level, than the Workload Model. For the 27/1 session, 

the model predictions are significantly better at 

the 5% level. 

(c) There are some differences in the 'best' parameter 

settings for each session, particularly in bl, the 

coefficient of the CPU variable and the delay para-

meter a . 
1 
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Table 8.2: Comparison of Modelled Sessions  

Modelled 
Session 

bo  bl  b2  al  a2  actual predic- I 
 

P V 's  
ted t 

LAA to (secs 

27/1 4.7 2.3 0.8 0.10 0.01 17.4 16.4 5.08 4.45 0.037 

30/4 4.7 2.1 0.8 0.11 0.01 17.0 15.7 4.72 4.55 0.064 

30/1 4.7 2.0 0.8 0.11 0.01 16.8 15.4 4.42 3.98 0.069 

For key refer to table 8.1 
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a 

8.9 	Validation of the Model  

8.9.1 Introduction 

Validation of the LAM aims at determining the domain 

of situations for which the model performs with a given accu-

racy, for an established calibration (B4, B6). 

During calibration, the parameters of the model are 

adjusted with the objective of reducing the difference in 

the behaviour between the real and modelled worlds for a 

particular workload trace. When calibrating the model for 
a given trace, there is always the danger of overtuning the 
model, that is adjusting the parameters so well that the 

predictions of the model for the calibration situation are 

significantly better than for other situations (B6). Con-

sequently, the objective of the validation process is to 

find a set of parameter values, determined during calibration 

for a given workload trace, with which the model predictions 

are not significantly worse for other traces. 

8.9.2 Validation 

The LAM parameters are set to values obtained in 

the calibration of the model with a given trace. The model 

is then run with the other two traces respectively. Next, 

a non-parametric test, the Mann-Whitney U-test, is carried 

out to determine if there is any significant difference in 

the model predictions. The criterion for comparison is the 

absolute value of residuals IrsI. The null hypothesis,that 

two independent groups of observations have been drawn from 

the same population, is tested. In this case, the independent 

groups are the sets of absolute residuals obtained by 

running the model, with a given set of parameters, using 

different input traces (figure 8.10). Since there are three 

traces, the test is carried out in a pairwise manner, com-

paring two sets of absolute residuals at a time, making three 

tests in all. 

gi! 
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If the test rejects the null hypothesis, the 

validation is recommenced. Different parameter values, 

obtained from the calibration of the model with a different 

workload trace, are set. The model is then run with the 

other two traces respectively and the Mann-Whitney test is 

again applied to the sets of absolute residuals. 

The validation was tried first using the parameter 

values obtained in the calibration of the 30/4 session 

(8.8.4). The Mann-Whitney test indicates the probability of 

the null hypothesis, that the two sets of absolute residuals 

have been drawn from the same distribution, being true. Table 
8.3 shows that the null hypothesis may be accepted at the 

10% level. Hence the LAM has been successfully validated 

for the three sessions under consideration. 

8.10 	Conclusions 

This chapter has described the concepts of the hybrid 

Load Adjusting Model, Yllich combines regresc3ion and simula-

tion modelling techniques by creating a simulation framework 

which models job arrival and termination. By this means, 

an important structural limitation of the Workload Model, 

that the average load experienced by a job must be specified 

in advance of an experimental run, is overcome. Since the 

load will not usually be known in advance, the Load Adjusting 

Model is a more valuable model for experimental runs. 

The viability of the approach has been shown by apply-

ing it to modelling the short job workload on the Imperial 

College Kronos system at the second level of detail. The 

parameters of the model were tuned during an iterative cali-

bration procedure. The model was successfully validated for 

three separate sessions. 

A limitation of the model is that the mean absolute 

value of the residuals is large. Table 8.3 shows that, for 

two of the sessions, the predictions of the validated LAM 
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Table 8.3: Validation of Load Adjusting Model  

Parameter Settings  

bo  = 4.7 bl  = 2.1 	b
2 
 = 0.8 

al  = 0.11 	a2 = 0.01 

Model Predictions  

Session 

Modelled 

actual to  

(secs) 

predicted Irs 1 P Irrl 

E 	(secs) 

27/1 17.4 15.6 5.08 4.56 0.161 
30/4 17.0 15.7 4.72 4.55 0.064 
30/1 16.8 15.7 4.42 4.01 0.119 

(For key refer to table 8.1) 

Pairwise Comparison of LAM Predictions using Mann-Whitney U-Test  

Session A Session B P1  

27/1 30/4 0.140  
27/1 30/1 0.492 
30/4 30/1 0.161 

P1 : Probability that there is no difference between the 

two sets of absolute residuals. 
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are not significantly better than the Workload Model. For 

the third, the predictions are significantly better at the 

10% level. This limitation is mainly due to the fact that 

the data used by LAM is at the same level of detail as WM, 

although in one case different in nature. The average load 

experienced by a job is input to WM (figure 8.1), whereas 

it is predicted by,.LAM (figure 8.2) given the times of job 

arrival. This leads'to certain situations where the predic-

tions of WM are superior to LAM. This happens when a build-

up of short jobs on the real system results from a perturba-

tion which is not recorded in the data and hence cannot be 

modelled. 

Most of the limitations of the Workload Model are 

due to a lack of data (7.10), and these are also reflected 

in the regression submodel. 	Data on jobs I/O demands and 

rollout time would enable a much more accurate regression 

model of execution time to be constructed. 

The Load Adjusting Model, like the Workload Model, 

does not distinguish between short jobs executing in Central 

Memory and those rolled out. Furthermore, LAM is only 

capable pf modelling the short job workload. Methods of 

overcoming both these limitations are discussed in the next 

chapter. 

In spite of these limitations, it is believed that 

the Load Adjusting Model has clearly shown that, by overcoming 

the structural limitations of the purely regression model, 

the hybrid simulation/regression modelling approach is a 

valuable method of computer system modelling. 
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CHAPTER 9: 	THE MEMORY MANAGEMENT MODEL 

9.1 	Introduction 

This chapter considers the limitations of the 

Load Adjusting Model and attempts to overcome one of the 

most important limitations by simulating the memory 

management subsystem. The Memory Management Model has 

been applied to the modelling of the Imperial College 

Kronos system at the third level of detail. 

Section 9.2 discusses an important limitation of 

the Load Adjusting Model and how it may be overcome by 

developing the Memory Management Model. Section 9.3 des-

cribes the memory management subsystem in Kronos. Section 

9.4 describes the assumptions made by the model and 

presents an overall description of the model. Section 

9.5 describes the implementation and initial calibration 

f 
	 of the model. Limitations in the model were revealed 

which led to the redesign of the model, as discussed in 

section 9.6. Section 9.7 describes the design of the 

Mark 2 model. Finally the calibration and validation of 

the model, which was similar to the method used for the Load 

Adjusting Model, are described in section 9.8. 

9.2 	Limitations of the Load Adjusting Model.  

In the Workload Model, a measure of the level of 

competition is given by the average number of short jobs 

competing for resources with a given job. This measure is 

input to the model as an input variable (figure 8.1). In 

the Load Adjusting model, the level of competition is 

estimated using a simulation framework. The estimate is 

based on the number of short jobs started, input as a 

trace, and the number of short jobs terminated, which is 

predicted by the model (figure 8.2). However, the level 

of competition, whether measured in level 1 or estimated 

in level 2, does not distinguish between jobs in Central 

Memory (CM) competing for the CPU and I/O, and jobs rolled 

out of CM. This is a clear limitation of these models. 
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The Memory Management Model attempts to estimate 

more precisely the load on the system at any given time, 

by simulating the memory management subsystem. This sub-

system is modelled at a greater level of detail than the 

rest of the system. As with the Load Adjusting Model, 

the regression modelling approach is used to estimate a 

job's elapsed time in the absence of competition from 

other jobs. This minimum elapsed time is termed the job 

execution time. The time a job spends in the execution 

phase may be extended by competition from other jobs in 

CM for scarce resources, or by the job being rolled out of 

CM. 

The delay, due to the competition with other jobs 

in the execution phase for scarce system resources, is 

estimated using the same method as in the level 2 model, 

that is by estimating the delay experienced by each job 

on- a time segment basis. However, one important difference 

is that the predicted delay in the level 3 model is 

based on the estimated number of jobs resident in CM, 

rather than the estimated number of jobs in execution 

(as in level 2), some of which may be rolled out. For 

this to be possible, it is necessary to simulate the memory 

management subsystem. 

9.3 	Memory Management in Kronos  

Memory management in Kronos is handled by: 

The Job Scheduler PP program, which mades schedul-

ing recommendations to 

Monitor (the Nucleus of the Kronos Operating 

System) which allocates and de-allocates memory 

to and from the control points at which jobs 

run. Monitor bases its decisions on the Job 

Scheduler's recommendations. 
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Memory is allocated to a job at the job step 

level and occasionally at the sub-job step level. Each 

user specifies the maximum memory his job will require 

on the job card. For some job steps (e.g. any job step 

requiring the relocatable binary loader), the maximum 

memory allotment is allocated to the job. For system 

S 
	utility job steps, only the memory required by the appro- 

priate system program is allocated. 

When a job first enters the system, it is placed 

in the Input Queue. A job rolled out of CM is placed in 

the Rollout Queue. For the purpose of memory allocation 

the Job Scheduler treats the Input and Rollout queues as 

one queue. It bases its decisions on: 

(a) the job's CM priority - this is a priority 

associated with each job 

(b) the amount of memory requested by the job 

(c) memory availability and-the CM priorities of 

the jobs resident in CM. 

When a job enters the Input or Rollout Queue, its 

CM priority is set to an initial value. Its priority is 

gradually aged till an upper bound is reached. On the 

I.C. Kronos system, short jobs are given an initial 

priority which is above the upper bound. Consequently 

their priorities are not aged, and they are given preferen-

tial treatment over other batch jobs in the allocation of 

CM. 

A job resident in CM is liable to be rolled out if 

a higher CM priority job makes a memory request. The 

higher CM priority job may: 

(a) 	have entered the Input or Rollout Queue with a 

higher priority than a job in CM 
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(b) have had its priority aged past the priority of 

a job in CM 

(c) be resident in CM and have made a request for 

more memory. 

Each job resident in CM is also awarded two 

time slices, a CPU time slice and a CM time slice. The 

CPU time slice is the amount of CPU time a job may use 

before becoming eligible for rollout. The CM time slice 

is the amount of real time a job may be resident in CM 

for, before becoming eligible for rollout. Usually, 

when a job becomes eligible for rollout, its CM priority 

is reduced, making it more likely that the job will be 

rolled out. However,on the I.C. system, the CM priority 

of short jobs is not reduced when a time slice expires; 

although eligible short jobs are liable to be rolled out 

if other short jobs are requesting memory. 

9.4 	The Memory Management Mode-1 of the Kronor System 

9.4.1 Assumptions made by the Memory Management 

Model 

A number of simplifying assumptions have been 

made in constructing the Memory Management Model. These 

are: 

1. The only information on memory allocation that 

may be derived from the Dayfile is the average 

CM used by a job during its execution. Conse-

quently, the model assumes that a job uses its 

average memory size throughout the execution phase. 

This is an obvious limitation to the model. It 

would be a simple extension to the model to handle 

memory allocation at the job step level if the data 

was available. 

2. The model only models the short job workload. 

' Since all short jobs have the same priority, no 
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priority scheduling is built into the model. It 

would again be a simple extension to the model 

to handle jobs of different priority. 

3. Since all real time data derived from the Dayfile 

(e.g. job start and end times) are measured in 

units of a second, the basic real time unit in 

the model is the second. 

4. Because of assumption 3 and because no measures 

of rollin/rollout time are available, the time 

taken to roll a job out and back in again must 

be neglected. 

5. It is assumed that in each time segment, all jobs 

resident in CM are treated identically by the system. 

This is a reasonable assumption for CPU allocation, 

where a round robin scheduling algorithm is en-

forced. It is likely to be less reasonable for 

I/O management. 

6. As a result of a local modification to the Account 

Dayfile in late 1974, the time a job was read 

through the card reader is no longer recorded. 

Consequently, the first message relating to a given 

job is recorded when the job starts execution. 

This time is used in the workload trace to represent 

job arrival in the system. This means that any 

job which is not scheduled immediately for execu-

tion by the model, and which enters the Input Queue 

instead, starts simulated execution later than it 

did on the real system. 

These assumptions are bound to lead to inaccuracies 

in the model. Attempts are made to minimise these during 

the calibration of the model. 
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9.4.2 Overall Design of the Memory Management 

Model (MMM) 

9.4.2.1 Job Commencement 

When a job arrives in the system, at the simulated 

time of arrival, its execution time, (i.e. elapsed time 

in the absence of competition) is predicted by the re-

gression submodel (see 8.3). The model then determines 

whether sufficient memory is available for the job, 

rolling out 'eligible' jobs if necessary. 

If sufficient memory is available, an entry is 

set up for the job and is linked onto the end of the Execu-

tion List. This list contains an entry for each simulated 

job executing in CM. If insufficient memory is available, 

an entry is set up for the job and linked onto the end of 

a combined Input/Rollout Queue. This queue contains an 

entry for each simulated job in input or rollout state. 

9.4.2.2 	Time Slice Expiry 

Each time round its main loop, the model checks 

each job in the Execution List to determine whether it has 

exceeded the CPU or CM time slice. The length of the 

CPU time slice is a system parameter and is currently set 

to four seconds. The model converts this into a real 

time measure, which is called the Execution time slice. 

At the simulated time of job commencement, the Execution 

time slice is estimated for each job whose total CPU time 

is greater than the CPU time slice: 

Estimated Job Execution Time x CPU time 
Execution time slice = 	 slice 

Total CPU time required 

In estimating the Execution time slice, it is again 

assumed that a job uses the resources it requests uniformly. 

The CM time slice is a real time measure, currently set to 

200 seconds, and so no conversion is necessary. If the 



246 

model determines that a job has exceeded either time slice, 

the job's state is set to 'eligible for rollout'. 

9.4.2.3 	Rollout Jobs 

If insufficient free memory is available for a 

job at the simulated time of its arrival, then jobs in 

'eligible for rollout state' are liable to be rolled out. 

Furthermore, each time round its main loop, the model 

checks if sufficient memory is available for one or more 

jobs in the Input/Rollout Queue to be rolled in. If 

necessary, jobs in 'eligible for rollout state' will be 

rolled out. A rolled out job is taken off the Execution 

list and placed at the end of the Input/Rollout Queue, and 

its state is set to rollout state. 

9.4.2.4 	Rollin Jobs 

In the Kronos system, the Job Scheduler scans the 

File Name Table in one pass, to select the highest priority 

jobs in either Input or Rollout state that will fit into 

memory (after rollouts if necessary). In the model, a 

combined Input/Rollout Queue is maintained. Incoming jobs 

are placed on the end of the queue. The model attempts to 

fit each job in turn in the available memory (after rollouts 

if necessary). A job- that can be allocated memory is 

taken off the Input/Rollout Queue and transferred to the 

end of the Execution list. Its state is changed to execu-

tion state. 

9.5 	Implementation and Initial Calibration 

9.5.1 Im2lemantation 

The implementation approach to the Memory Management 

Model was similar to that adopted for the Load Adjusting 

Model (8.6). A preprocessor uses the B and J files for 

a given session to prepare a workload trace, which is in-

put to . the model. The model outputs a number of statistics 
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for each job, which are analysed by the Postprocessor. The 

predictions for each job are: 

(a) Predicted job elapsed time. 

(b) Predicted job execution time. 

(c) Predicted delay time a job experiences due to 

competition from other jobs in CM. 

(d) Predicted rollout time. 

(e) Predicted time spent in Input Q. 

The elapsed time predicted by the Workload Model for the 

same job is also output. 
4 

9.5.2 Problems in Calibrating the Memory 

Management Model 

A number of problems exist in the calibration of 

the Memory Management Model (MMM). These are mainly due 

to the lack of performance data available to assist in 

the calibration. 

As pointed out in section 3.4.3, in a multilevel 

modelling approach, the quantity and accuracy of the data 

input to the model should increase as the level of detailed 

representation increases. Although the level of detail 

was increased from level 1 to level 2, the quantity of data 

input to the model was different, though not greater in 

detail. Whereas, the average load experienced by each job is 

input to the level 1 Workload Model, this figure is predicted 

by the level 2 Load Adjusting Model, given the times of job 

arrival. 

Increasing the level of detail from level 2 to level 

3, more data is input to the model, but the increase is 

limited. The additional information is: 
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(i) the total amount of Central Memory available for 

user jobs, 50K 60 bit words 

(ii) the average CM used by each job. 

The main problems in calibrating this level are: 

(a) because the average CM allocated to jobs is used, 

the model considerably underestimates the rate of 

change of memory allocation. 

(b) No indication of rollin/rollout is given in the 

Dayfile. Thus no indication is given of which 

jobs were rolled out, why they were rolled out, 

and for how long. 

The calibration process attempts to reduce the 

difference in behaviour between the real and modelled 

worlds. If the behaviour of the real world is not known 

in sufficient detail, this will considerably restrict 

the calibration process. 

A trace driven simulation model of a CDC 6000 system 

has been described (N3) which also used the Dayfile as 

the source of workload and performance data. For each job, 

the total rollout time and number of times the job was 

rolled out were extracted. This data was used as input to 

the model. However, as these values are dependent on the 

system load, it is believed that they should be predicted 

by the model, as is the case with MMM. If this performance 

data were available, it should be used to assist in the 

calibration, as will be discussed in chapter 10. 

9.5.3 The Calibration Approach 

Because of the problems described in the previous 

subsection, the calibration approach adopted for the 
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level 3 MMM was very similar to the level 2 LAM, in spite 

of the fact that the system is modelled at a greater 

level of detail. To calibrate the MMM, the calibration 

parameters of the execution time and delay time submodels 

were adjusted in an attempt to reduce the difference in 

behaviour between the real and modelled worlds, (see sections 

8.7 and 8.8 in chapter 8). The parameters are: 

(a) The parameters bo, b., and b2  of the regression 

submodel for predicting job execution time 

t.
7 	

bo + b1  T + b2N 	(1) 

(b) The parameters al  and a2  of the submodel for 

predicting the delay experienced by each job 

in a time segment: 

tdi  = a1  N + a2 N
2 	 (2) 

In the MMM, N refers to the estimated number of 

jobs in Central Memory competing with a given job, rather 

than the total number of short jobs in execution, whether in 

CM or rolled out, as used by the LAM. 

In the calibration, the figure of merit used is 

again the absolute value of residuals. The iterative 

tuning approach is again adopted with the Method of Good 

Balance and Wilcoxon test applied at each stage. 

The same three sessions were used for the cali-

bration and validation of MMM as for LAM. 

9.5.4 Initial Calibration Results 

The initial attempts at calibrating the model used 

the 27/1 session as a basis. The results showed that: 

• 
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(a) The number of jobs rolled out or placed in 

the Input Q on arrival, was small. For the more' 

satisfactory parameter settings, it did not ex-

ceed 5% of the sample. The predictions for the 

number of jobs rolled out are almost certainly 

much lower than the actual number rolled out. The 

use of average CM is likely to smooth out the 

flow of jobs in the model, leading to considerably 

less rollin/rollout activity than in the real 

system. 

(b) The Wilcoxon Test showed that with the more 

satisfactory parameter settings, the difference 

between the Memory Management and Workload models, 

as measured by the distribution of the two sets of 

absolute residuals, was not a significant one. At 

no stage however was the MMM significantly better 

than the WM. 

It was apparent from analysing the results that 

for a large proportion of simulated time, the MMM was 

behaving in a manner similar to the Load Adjusting model. 

Indeed, the most satisfactory parameter settings for 

MMM were close to those for LAM. This was regarded as an 

unsatisfactory state of affairs, as it was felt that the 

level 3 model should be capable of producing better results. 

Although the calibration had not been satisfactory, it 

was felt that the problem lay in the model itself, rather 

than with the calibration method. It was therefore decided 

to re-examine the structure of the model and attempt to 

improve it. 

The first attempt at improving the model was in 

the method of checking whether a job had exdeeded its time 

slice, thereby making it eligible for rollout. A simpli-

fication had been made in the design of the model, which 

meant that a check on time slice-  expiry was only carried 

out each time a job start or job termination event 



251 

occurred. This was changed, so that a time slice expiry 

could now be a separate event. This meant that the model 

should be more accurate at estimating when a job becomes 

eligible for rollout, which should have the result of in-

creasing the number of rollouts. Incorporating this 

change in the model did increase the number of rollouts 

slightly. However, it did not have a significant effect 

on improving the predicted job elapsed time. 

9.6 	' The Memory Management Model Mark 2  

9.6.1 modelling the Long Job Workload 

It became apparent that a radical change to the 

structure of the Memory Management Model was necessary, 

if the model was to be significantly improved. One way 

in which the model could be improved is in the prediction 

of job delay time. 

In the first and second level models, only the 

short job workload is modelled, and the presence of the 

long job workload is ignored. This is because no measure 

is available of rollin/rollout. Hence there is no means 

of distinguishing between long jobs in CM and those 

rolled out. It is likely that for most of the time, most 

long jobs in the execution phase are rolled out and 

therefore do not affect the progress of the higher priority 

short jobs. However, those long jobs executing in CM are 

likely to affect the progress of short jobs, because once 

in CM, no preferential treatment is shown by the CPU and 

I/O scheduling algorithms. Hence, ignoring the long job 

workload is bound to introduce additional errors into the 

models. 

In the version of the Memory Management Model just 

described, long jobs are also ignored. However, when the 

memory management subsystem is simulated, it becomes 
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possible to take into account the effect of long jobs. 

This is because, at this level, it becomes possible to 

make reasonable estimates of how many long jobs are 

executing in CM and how many are rolled out. It was 

therefore decided that the long job workload should 

be modelled in addition to the short job workload. 

The method adopted for modelling the long job 

workload is similar to that used for the short job 

workload. A regression submodel is used to predict 

long job execution time. The delay time submodel is 

used for estimating the delay experienced by each job 

(long or short) in a time segment. The simulation of 

the memory Management subsystem is extended to include 

long jobs. 

One method of modelling the long job workload 

is to attempt to construct a regression submodel to 

predict long job execution times, and to calibrate this 

in the same manner as the regression submodel for the 

short job workload. However, as discussed in chapter 6, 

it is doubtful whether representative regression models 

of the long job workload can be constructed in the 

-framework of this project. 

The objective of introducing the long job work-

load into the model is therefore limited to making 

better estimates of the competition experienced by short 

jobs, rather than for predicting the elapsed time of 

long jobs. Consequently, it was decided to use the same 

regression submodel for predicting job execution times 

for both long and short jobs. 

9.6.2 Assumptions made by Memory Management 

Model Mark 2 

A number of simplifying assumptions are made in 

modelling the long job workload: 
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1. The regression submodel for execution time is 

used to predict the execution time of long jobs. 

The reason for this was discussed in the last 

subsection. 

2. A long job is assumed to use its average memory 

requirement throughput. This is similar to and 

for the same reason as the assumption made for 

short jobs. 

3. Only two priority levels for access to CM are 

assumed, one for short jobs and the other for 

long jobs. 

In the Kronos system, no distinction is made between 

the different classes of jobs once they are executing 
in CM. Short jobs have a constant access priority 
to CM which is higher than for long jobs. Long 

jobs enter the Input and Rollout queues with a 

given priority which is aged until an upper bound 

is reached. 

In the model, two sets of Input/Rollout queues 

are maintained, one for long jobs in addition to 

the one for short jobs. Each job entering input 

or rollout states is placed on the end of the 

appropriate queue. The approximation is therefore 

a reasonable one. 

4. As long jobs have a lower CM priority than short 

jobs, they are liable to be rolled out much more 

frequently. Consequently, no check is made on 

the time slice expiry of long jobs. The only 

effect of including this check might be to rollout 

one long job to allow another to execute. 

5. In Kronos, no distinction is made between the 
different classes of jobs for CPU and I/O schedul- 
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ing. Therefore, it is assumed in the model that 

in each time segment, all jobs resident in CM 

are treated identically. Consequently, the same 

method as before is employed for estimating the 

delay time in each segment. 

6. 	Since magnetic tape mounting time is not known 

for those jobs that use tapes, it is assumed that 

tape mounting is instantaneous. As the objective 

of modelling the long job workload is not for pre-

dicting long job delay time, this assumption is 

acceptable. 

The assumptions made in modelling the long job 

workloads, many of which are cruder than those for the 

short job workload, are bound to lead to inaccuracies in 

the model. Nevertheless it was felt that modelling the 

long job workload, even in this crude form, was better 

than not modelling it at all, and that the result would 

be an improvement in the predictions for the short job 

workload. 

9.6.3 Overview of Memory Management Model Mark 2 

9.6,3.1 Introduction 

This section provides an overview of the Memory 

Management Model Mark 2. The lists maintained by the 

model are increased by one. In addition to the Execution 
List, and combined Input/Rollout Queue for short jobs, an 

Input/Rollout Queue for long jobs is also maintained. 

9.6.3.2 	Job Commencement 

When a long job arrives in the system, at the 

simulated time of arrival, its execution time is predicted 

by the regression submodel (equation 1). If sufficient 
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memory is available, the job is linked onto the end of 

the Execution List. If not, it is placed onto the end 

of the combined Input/Rollout Queue for long jobs. This 

contains an entry for every long job in Input or Rollout 

state. 

When a short job arrives in the system, the model 

checks if enough memory is available for the job. If 

there is, the job is linked onto the end of the Execution 

List. If not, the model checks if there is enough 

'eligible' memory in addition to free memory, to allow 

the job to start execution. Eligible memory is that used 

by executing jobs which are eligible for rollout. This 

includes all long jobs and all short jobs whibh have ex-

ceeded their time slice (see 9.4.2.2). If there is then 

sufficient memory, as many 'eligible' jobs as necessary 

are rolled out, and the new job is linked onto the Execu-

tion List. If insufficient memory is available, the job is 

placed on the end of the short job Input/Rollout Queue. 

9.6.3.3 	Rollout Jobs 

If insufficient memory is available when a short 

job enters the system, jobs in 'eligible for rollout state' 

are liable to be rolled out. Two passes are made through 

the Execution List. 	First, long jobs are rolled out. 

Next short jobs in eligible state are rolled out. The 

search stops as soon as enough memory has been released to 

satisfy a memory request. Long jobs rolled out are placed 

on the end of the long job Input/Rollout Queue. Short 

jobs rolled out are placed on the end of the short job 

Input/Rollout Queue. 

9.6.3.4 Rollin Jobs 

Each time round its main loop (at each event 

occurrence), the model checks if sufficient memory is 

available for one or more jobs in first the short job and 

then the long job Input/Rollout queues to be rolled in. 



256 

Short jobs in eligible state are liable to be rolled out 

to allow short jobs (but not long jobs) to be brought 

into CM. 

Starting at the head of the list, a check is 

made on each job in the short job Input/Rollout queue to 

see if sufficient memory, including eligible memory, is 

available for it to be rolled in (if it was in rollout 

state) or start execution (if it was in input state). If 

so, the job is brought into CM and placed on the end of 

the Execution List, after rolling out eligible jobs if 

necessary. 

Next, a similar check is made on the long job 

Input/Rollout Queue. A long job is only rolled in, if 

sufficient free memory is available. 

9.7 	Design of the Memory Management Model Mark 2 

The level 3 Memory Management Model is a refinement 

of the level 2 Load Adjusting Model described in chapter 8. 

The design uses the same framework as the level 2 design. 

Some new routines have been added, others have been ex-

tended and the remainder have been left unchanged. A block 

diagram showing the overall design of the Memory Management 

model is shown in figure 9.1. A short description of each 

of the routines follows: 

MAIN 	is the main routine. It carries out a necessary 

initialisation and then enters COORD. 

COORD is the co-ordinating routine for the model. It 

goes through a main loop, once for each time 

segment. First it calls SENEVT to determine what 

the next event is, and to determine the length 

of the next time segment. It then calls UPDENT 

to update all job entries. If any jobs are due to 

terminate, the job termination routine JBTERM is 
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Figure 9. • Structure of the Memory Management Model  
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called. Next, the routine CHKTSL is called to 

check whether any short jobs in executing state 

have exceeded a time slice. Next, the routine 

CHKROQ is called to check jobs in the Input/Rollout 

queues to determine if any jobs may be brought 

into CM. CHKROQ is called twice, first for short 

jobs, then for long jobs. Finally if a job is due 

to arrive in the system (as determined by the 

input trace), the job commencement routine JBSTAT 

is called. 

SENEVT is called by COORD to determine what the next event 

is, and the estimated time at which it occurs. 

The next event could be a job arrival, job termina-

tion, time slice expiry, or end of session. SRINT 

is called to estimate what the minimum segment 

length for the next job to terminate is. This is 

compared with the next job arrival time and the 

time for the next time slice expiry event to decide 

what the next event is. If the number of jobs 

currently in execution is equal to a certain limit, 

then no jobs will be allowed to commence execution, 

until the number of jobs in execution falls below 

this limit. 

UPDENT Given the length of the next time segment ti, 

UPDENT calls SRJEDT to compute the delay time tdi  

and the execution time t.i  for the segment 

(chapter 8). The entries are updated for each job 

on the Execution list, as follows: 

(a) the delay time for this interval is added to 

the cumulative delay so far. 

(b) the execution time for this interval is de-

cremented from the remaining execution time. 
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UPDENT also scans both the short job and long job 

Input/Rollout Queues and for each job in rollout 

state, the segment length is added to the rollout 

time so far. 

JBTERM handles job termination. The entry for the job 

terminating is taken off the Execution list. The 

accumulated job statistics are copied into a job 

output buffer. If the buffer is full, it is out-

put to a disc file. 

JBSTAT handles job arrival. The job's resource require-

ments and other information are read from the 

job's entry in the input buffer and copied into 

an entry created for the job. RGJEDT is called to 

predict the job's execution time. If sufficient 

memory is available, the job is scheduled for 

execution and linked onto the end of the Execution 

list. Its state is set to executing. If in-

sufficient memory is available, the job is linked 

onto the end of the appropriate Input/Rollout Queue 

and its state is set to input. Finally, JBSTAT 

checks if the input buffer is empty, and if so re-

plenishes it. 

CHKROQ is called by COORD to check the Input/Rollout Queues 

for either short jobs or long jobs. For the queue 

selected, CHKROQ starts with the first entry in the 

queue, extracts the memory request, and calls 

REQFL to determine if the request can be satisfied. 

If it can, then the job is brought into CM by call-

ing ROLIN for short jobs or ROLINJ for long jobs. 

Each job in the appropriate queue is checked in 

this manner. 

REQFL checks if sufficient free Central Memory is avail-

able to satisfy a memory request from either a 

short or long job. If sufficient free memory is 
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available, a positive response is returned. If 

not, and the job is a long job, a negative res-

ponse is returned. For short jobs, a further 

check is made to determine if enough memory is 

available when the CM used by jobs eligible for 

rollout is taken into account. If enough memory 

is still not available, a negative response is 

returned. Otherwise, ROLOUTJ is called to roll-

out as many long jobs as necessary. If more 

memory is still required, ROLOUT is called to 

rollout as many short jobs in eligible state as 

necessary. A positive response is then returned. 

ROLOUTJ handles the rolling out of long jobs. If no long 

job is in executing state, a return is made to the 

calling routine REQFL. Otherwise the Execution 

list is searched for long jobs. A long job is 

removed from the list and placed on the end of 

the long job Input/Rollout Queue. The free memory 

.count is increased. If sufficient memory is 

available to satisfy the request, the search is 

stopped. Otherwise, it is continued in the same 

manner until the end of the list is reached. 

ROLOUT handles the rolling out of short jobs. The Execu-

tion list is searched for short jobs in 'eligible 

for rollout' state. Each job in this state is 

removed from the Execution list and placed on the 

end of the short job Input/Rollout Queue. The free 

memory count is increased. When sufficient memory 

is available to satisfy the request, the search is 

stopped. 

ROLIN brings a given short job into Central Memory. The 

job is unlinked off the short job Input/Rollout 

Queue and placed on the end of the Execution list. 

The job, which may have been in input or rollout 
states, is put in execution state. 
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ROLINJ brings a given long job into CM. The job is un-

linked off the long job Input/Rollout Queue and 

placed on the end of the Execution list. 

SESEND is called at the estimated time of the end of 

session. It outputs the final bufferful of data 

to the disc file, and outputs statistics of the 

run to the line printer. 

UNLIST (N,A,B) searches list A for the entry for job N. 

When found, the entry is unlinked off list A and 

linked onto the end of list B. 

UNLINKQ (N,A,B) unlinks the top entry off list A and 

links in onto the end of list B. The entry number 

is returned in N. 

MJEDTcomputesthepredictedjobecutiontimet.for a 

job commencing execution (see chapter 8). 

SRINT computes the estimated time required to complete 

execution of a given job for a given load on the 

system (see chapter 8). 

SRJEDTcmputestheestimatedjobexecutiontimet..
71 
 and 

the estimated delay timetdi  for a given time seg-

ment t- and load N on the system (see chapter 8). 

JID 

TRACE outputs a trace message each time it is called, 

providing the trace flag is or.. The message is 

either for job commencement, job termination, job 

put in Input Queue, job rolled out of CM or rolled 

back in again. 

ERROR (I) is the error routine which may be called from a 

number of places in the model. It outputs an 

error message, dumps the contents of various loca-

tions and arrays, and stops. 
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9.8 	Calibration and Validation  

9.8.1 Calibration 

After the major changes to the Memory Management 

Model to incorporate the modelling of the long job work-

load, the calibration process was recommenced. The cali-

bration of the model with individual traces of the three 

sessions, the 27/1, 30/1 and 30/4 followed on similar 

lines to the detailed example given in section 8.8.4. 

An analysis of residuals revealed that at certain 

times for each session, large positive residuals were 

obtained. The cause for this was similar to that described .  

in 8.8.3, and due to the difference in basic structure 

between the Workload and Memory Management models. The 

problem was resolved, as before, by excluding certain observa-

tions. 

The calibration now showed that the Mark 2 Memory 

Management Model was a considerable improvement over the 

Mark 1 model, and to a lesser degree over LAM. An example 

of four runs with the various models using the 27/1 trace, 

is shown in table 9.1. The runs are: 

(i) The calibrated LAM, with the 'best' parameter 

settings for 27/1. 

(ii) MMM Mark 1 with the same parameter settings as (i). 

(iii) The calibrated MMM Mark 2 with the 'best' parameter 

settings for 27/1. 

(iv) MMM Mark 1 model with the same parameter settings 

as (iii). 

The results show that the calibrated MMM Mark 2 

model (run iii) is: 
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Table 9.1: Comparison of Models  

Run Model bo b1  b2 a1  a2 predic- P 1r 	1 
s  ted te 

i LAM 4.7 2.3 0.8 0.1 0.01 16.4 4.45 0.037 
ii MMM MK.1 4.7 2.3 0.8 0.1 0.01 16.1 4.57 0.125 

iii MMM MK.2 4.7 1.9 0.7 0.1 0.01 16.5 4.25 0.000 
iv MMM MK.1 4.7 1.9 0.7 0.1 0.01 14.1 4.90 0.488 

Mean actual to = 17.4 seconds 
Mean predicted to  by WM = 18.3 seconds 
1rr1 = 5.08 

For key refer to table 9.2 

Comparison of Models using Wilcoxon Test 

Run A Run B - P 1  

iii i 0.074 

iii ii 0.016 

i ii . 	0.030 

Pi  : Probability that there is no difference between the 

two models. 
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(a) significantly better than the Workload Model at 

the 0.1% significance level (i.e. with 99.9% con-

fidence). 

(b) Significantly better than the calibrated LAM 

(run i) at the 10% level. 

(c) Significantly better than either of the Mark 1 

runs (ii and iv) at the 5% level. 

The basic problem with the Mark 1 model is shown 

(table 9.1) by the fact that with the LAM parameter 

settings (run ii), the results are better than with the 

Mark 2 (run iv) parameters settings. The reason for this 

is that for a large proportion of simulated time, the 

Mark 1 model behaves in a manner similar to LAM. 

9.8.2 Comparison of Sessions 

The MMM Mark 2 was calibrated separately for the 

three different workload traces, where each trace re-

presented a different session. The results are shown in 

table 9.2 and are now compared: 

(a) The Wilcoxon test indicates that the predictions 

of the Memory Management Model are significantly 

better than the Workload Model at the 10% con-

fidence level (i.e. with 90% confidence) for the 

30/4 session, at the 5% level for the 30/1 session 

and at the 0.1% level for the 27/1 session. 

(b) The parameter of the regression submodel, bo, bl  

and b2 in equation 1, are identical for all 

three sessions. The differences in the parameter 

settings for the three sessions are in the delay 

parameters al  and a2. 



: mean of absolute residuals of WM 

I
rsI : mean of absolute residuals of MMM 

P 	: probability that there is no difference between 

MMM and WM 
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Table 9.2: Comparison of Modelled Sessions  

Session 

Modelled 

b0  bl  b2  al  a2  actual predic- Ire' P 

re  
(secs) 

ted to 
by MMM 	 

27/1 4.7 1.9 0.7 0.1 0.01 17.4 16.5 4.25 0.000 

30/4 4.7 1.9 0.7 0.0730.013 17.0 15.8 4.54 0.087 

30/1 4.7 1.9 0.7 0.07 .01 16.8 15.2 3.99 0.046 

Key: to  : mean job elapsed time in seconds 
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9.8.3 Validation 

The same approach to the validation of MMM was 

adopted as for LAM (section 8.9). The model parameters 

are set to values obtained in the calibration of MMM with 

a given workload trace. The model is then run with the 

other two traces respectively. The Mann-Whitney U-test 

is used to determine if there is any significant difference 

in the model predictions. If the test fails, the valida-

tion is recommenced using a set of parameter values, ob-

tained in the calibration of the model with a different 

workload trace. 

The results of the validation are shown in table 

9.3. The Mann-Whitney test shows that the null hypothesis, 

that two sets of absolute residuals have been drawn from 

the same population, may be accepted at the 4% level. Thus 

the MMM has been successfully validated at this level for 

the three sessions under consideration. 

With the parameter settings of table 9.3, the pre-

dictions of MMM are significantly better at the 5% level 

than the WM for two sessions, 27/1 and 30/1. For the 30/4 

session, there is no significant difference between the 

models. 

9.9 	Conclusions  

This chapter has described the modelling of the 

I.C. Kronos system, at the third level of detail, with the 

simulation of the memory management subsystem. By this 

means, an important limitation of both the Workload and 

Load Adjusting Models (neither of these models distinguished 

between jobs executing in Central Memory and those rolled 

out) was overcome. 

The calibration of this model suffered from a scar-

city of performance data for calibration purposes. Initially 
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Table 9.3: Validation of Memory Management Model  

Parameter Settings  

bo = 4.7 	b1  = 1 9 	b2  = 0.7 

al  = 0.07 	a2 = 0.01 

Model Predictions 

. 

Session 

Modelled 

Actual Predic- Irrl P In 

te(secs) ted  to  

27/1 17.4 15.4 5.08 4.51 0.037 

30/4 17.0 15.7 4.72 4.58 0.133 

30/1 16.8 15.2 4.42 3.99 0.046 

For key refer to table 9.2 

Pairwise Comparison of MMM Predictions Using Mann-Whitney U-Test  

Session A 
■ 

Session B 

27/1 30/4 0.057 

27/1 30/1 0.444 

30/4 30/1 0.042 

P' : Probability that there is no difference between the 

two sets of absolute residuals. 
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only the short job workload was modelled, but this approach 

was not satisfactory. It was decided therefore to also 

include the long job workload in the model. However this 

could only be done in a very approximate manner, as no 

regression model of the long job workload existed. In 

spite of this, the approach resulted in a significantly 

better model. The Memory Management Model was calibrated 

and successfully validated for three separate sessions. 

The limitations of the model are due mainly to the 

limitations of the workload and performance data available 

from the Dayfile: 

(a) The average CM requested by each job is used in 

the model. This means that the model is bound 

to considerably underestimate the rate of change 

in memory allocation. 

(b) No data is recorded on rollin/rollout activity 

whatsoever. This considerably restricts the cali-

bration. Ways in which the presence of this data 

could help the calibration are discussed in chapter 

10. 

(c) Long jobs are modelled very approximately. The 

short job submodel is used to predict long job 

execution times. 

In spite of these limitations, it is felt that the 

Memory Management Model has demonstrated further the viability 

and advantages of the multilevel hybrid approach to computer 

system modelling. The model builder need only model in 

detail that part of the system of particular interest, using 

simulation techniques. Other parts of the system may be 

modelled at a much less detailed level, using regression 

techniques. 
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CHAPTER 10: EVALUATION AND PROPOSALS FOR FUTURE WORK 

	

10.1 	Introduction  

Three models of computer system performance have 

been constructed and applied to modelling the Imperial 

College system at three levels of detail. Section 10.2 

evaluates the three models. Section 10.3 discusses methods 

of developing more accurate versions of the three models. 

Methods of modelling the system at a greater level of detail 

are discussed in section 10.4. 

Although only applied to one system, the modelling 

approach developed in this thesis may be applied to other 

non-virtual storage batch systems. Further research is needed 

to extend the approach to modelling virtual storage systems. 

Methods of doing this are suggested in section 10.5. 

	

10.2 	Evaluation of the Models  

10.2.1 Main Results 

The main results of the research described in this 

thesis are: 

(a) Validated regression models of computer system per-

formance may be developed by applying a systematic 

approach to the evaluation. 

The Workload Model is a- purely regression model of 

the short job workload. The model was validated for 

four different sessions, covering a period of four 

months. In other words, it was shown that a single 

regression equation is adequate to explain each of 

the four data samples. 

Regression analysis may initially appear to be a 

simple method of computer system modelling, but in 

practice this was not found to be so. The analysis 
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described in this thesis has shown that to build 

meaningful and consistent models of computer system 

performance requires a very comprehensive analysis 

of the characteristics of the workload and of the 

residuals of the model, coupled with a thorough 

understanding of system behaviour. It was revealing 

to discover that the process of developing the model 

actually helped explain certain aspects of system 

behaviour. Understanding system behaviour was 

essential for explaining the inadequacies of earlier 

versions of the model, for assisting in decision-

making and for interpreting the regression coefficients 
of the final- model. 

(b) Regression and simulation modelling techniques may 

be combined to construct a hybrid model, which is a 

dynamic model of system performance. 

To model variations in load in a regression model, 

it is necessary for one or more of the independent 

variables to be measures of system load. This limita-

tion is overcome in the hybrid Load Adjusting Model 

by the creation of a simulation framework which models 

job arrival and termination. By this means, LAM is 

capable of dynamically adjusting its estimate of the 

load on the system. Hence, the LAM is more valuable 

than the Workload Model for experimental purposes. 

The LAM was successfully calibrated and validated for 

three different sessions, demonstrating the feasibility 

and value of this approach. 

(c) The hybrid simulation/regression framework provides 

a very useful means of modelling the system at 

different levels of detail. Those parts of the system 

of special interest may be modelled at as detailed 

a level as required using simulation techniques. The 

rest of the system may be modelled at a much less 
detailed level using regression techniques. 
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The approach has been demonstrated by modelling 

the Imperial College system at three levels of 

detail, the second and third of which make use of 

the hybrid framework. The Memory Management Model 

is derived from the Load Adjusting Model by a 

systematic expansion of detail. It is a hybrid 

model in which the memory management subsystem is 

modelled at a much greater level of detail than 

the rest of the system. The model was successfully 

calibrated and validated for three different 

sessions. 

10.2.2 Comparison of the Models 

Table 10.1 shows the relative speeds of the three 

models on the CYBER system. It shows the compilation times 

and the execution times required to model one 32 hour 

session on the CYBER. The results show that the models are 

extremely fast. Thus, experimenting with any of these 

models is more than three orders of magnitude more economi-

cal than experimenting with the real system. 

Table 10.2 compares the predictions of the three 

validated models for each of the three sessions. The follow-

ing results are displayed: 

(a) The mean of the actual job elapsed time, i.e. as 

measured on the CYBER. 

(b) Mean of the absolute value of the residuals for 

each model. 

(c) (b) as a percentage of (a) for .each model. This is 

a measure of the accuracy of the predictions. 

(d) The result of the Wilcoxon test, i.e. the probability 

that the predictions of one model are not significantly 

better than another model, for the same session. 
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Table 10.1: Comparison of Model Speeds  

Compilation 

Time (secs) 

Execution 

Time *(secs) 

Workload Model 1.8 0.7 

Load Adjusting Model . 	2.3 3.4 

Memory Management Model 4.6 4.6 

* Time to process 32 hour session on 27/1/75 



Table 10.2: Comparison of Model Predictions  

Session Measured Workload. Model .Load Adjusting. Model 	 Memory. Management Model 

171 
(secs) 

FI (%) 1 71 
(secs) 

171 
() P1 

1 1.1 
(secs) 

ITI P2 P3 
i7.e 

(secs) — 
1—  e 

— (%)  
E---  e to 

27/1 17.4 4.93 28.3 4.56 26.2 0.351 4.51 25.9 0.087 0.181 

30/4 17.0 4.61 27.2 4.55 26.8 0.185 4.58 26.9 0.380 0.344 

30/1 16.8 4.56 27.1 4.01 23.9 0.069 3.99 23.8 0.023 0.419 

Mean actual elapsed time 

Mean absolute value of residuals for a given model 

: Probability that there is no significant difference between LAM and WM 

Probability that there is no significant difference between MMM and WM 

: Probability that there is no significant difference between MMM and LAM 

Key: to  
IrI 

P1 

P2 

P3 
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Table 10.2 shows that: 

(a) The mean absolute error in the predictions as a 

percentage of mean actual elapsed time is between 

27% and 28% for the Workload Model, and between 

24% and 27% for both the Load Adjusting and Memory 

Management Models. 

(b) The predictions of the Load Adjusting Model are 

significantly better than the Workload Model at the 

10% level in one case out of three. 

(c) The predictions of the Memory Management Model are 

significantly better than the Workload Model at the 

10% level in two cases out of three. 

(d) In none of the cases are the predictions of the Memory 

Management Model significantly better than the 

Load Adjusting Model. 

The results show that the residuals of all three 

models are comparatively large. The main reason for this is 

the limitations of the available data. As pointed out in 

section 3.4.3, the amount of workload data collected for 

input to the model and performance data for calibration pur-

poses should increase as the level of detail of the model 

increases. However in the modelling of the Kronos system, 

the quantity and accuracy of the data, all derived from the 

Kronos Dayfile, were basically unchanged for all three models. 

Whereas the Workload Model uses the average load experienced 

by each jOb as input, this figure is predicted by both the 

Load Adjusting and Memory Management Models, given the times 

of job arrival. The MMM also uses the average memory require-

ment of each job and the total amount of Central Memory 

available to user jobs. 

Furthermore, as has already been pointed out, the 

data collected by the Dayfile has some severe limitations. The 

results of this research indicate strongly that if more workload 

and performance data were available, the models could be sig-
nificantly improved (see 10.3). 
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10.2.3 The Problems of Calibration and Validation 

This section discusses the different approaches to 

the calibration and validation of the regression and hybrid 

models. The Workload Model is a least squares regression 

equation. The objective of the least squares method is to 

minimise the sum of the residuals squared. Hence, as 

measured by this figure of merit, the parameters (i.e. inter-' 

cept and regression coefficients) of the Workload Model 

are optimum. 

The calibration of the hybrid models uses an iterative 

tuning approach. The Method of Good Balance is a very valuable 

means of guiding the tuning process. However, it is possible 

for the model to be well balanced while still capable of 

further improvement (see 8.8.4). From this stage on, the 

choice of parameter settings is intuitive and the tuning pro- 

cess becomes considerably more difficult. 	Calibration is 

stopped when no further improvement in the model is obtained. 

In a regression model, the mean of the residuals is 

zero, that is the means of the observed and predicted values 

of the dependent variable are equal. However, in the hybrid 

models, the tuning process leads to a biased model, that is 

one where the model underestimates the job elapsed time. This 

is a consequence of the tuning process only considering the 

absolute value, and not the sign, of the residuals. 

The calibration process was by far the most time 

consuming task in the implementation of the two hybrid models. 

There is no doubt that there is considerable scope for further 

research into developing more sophisticated statistical methods 

of calibrating and validating computer system models. 

10.3 	Extending the Models 

10.3.1 Improving the Workload Model 

This section discusses methods of improving and extend-

ing the Workload, Load Adjusting and Memory Management Models. 
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A method of improving all three models would be to 

improve the predictions of the regression Workload Model. 

This would also result in improvements to both the Load 

Adjusting and Memory Management Models, as both use a 

regression submodel. 

Three areas where the Workload Model is in need of 

improvement are: 

(a) 	There is no I/O term in the model. This is because 

the available measures of I/O demand are inadequate. 

Hence, the predictions of the model are poor for 

those jobs whose I/O demands differ greatly from 

the average. Better measures of I/O demand would be 

(i) non-overlapped I/0 time 

(ii) number of I/O requests 

(b) 	No measures of job rollout time are available. There 

is substantial evidence to support the view that if 

rollout time were accounted for in the model, the model 

would be significantly improved: 

(i) It was shown that when the system was heavily 

loaded and hence rollin/rollout activity was 

high, the regression models of the short job 

workload were poor (7.3). When these periods 

were excluded, much better models were built. 

(ii) When the batch workload was modelled in the 

absence of the timesharing load (7.7), thereby 

eliminating one major cause of short job 

rollout, the models were much more satisfactory. 

(iii) When the subset which did not experience any 

competition from other short jobs, (and hence 

should never have been rolled out) was modelled 

(7.9), the standard error of the residuals 

was considerably reduced. 
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(c) 	The measure of short job competition used in the 

model does not distinguish between short jobs in 

Central Memory competing for resources and those 

rolled out. The approximate nature of this measure 

is reflected in the greater fluctuation of the 

regression coefficient of this variable (7.7). A 

better measure of short job competition would be 

the average multiprogramming level. 

Given this additional data, a regression model could. 

be constructed in which the dependent variable would be the 

job memory residence time (i.e. elapsed time - rollout time). 

Independent variables would be the measures of resource 

demand and multiprogramming level. With the elimination 

of the uncertainty of rollout times and improved measures of 

I/O time and system load, these are strong grounds for believ-

ing that this model should be a significant improvement over 

the Workload Model. 

Furthermore, a model of this type is likely to be 

more satisfactory for modelling the long job workload, as 

long jobs may be rolled out for substantial periods of time 

when the short job load is high. 

A separate method would now be necessary for predict-

ing rollout time. Regression techniques could be tried, 

although it is uncertain how successful this approach would 

be. A more satisfactory method is probably that of simulat-

ing the memory management subsystem as in the Memory Manage-

ment Model. 

10.3.2 Regression Models at the Job Step Level 

More detailed regression models could be developed'by 

modelling the system at the job step level. For this to be 

possible, all measurements of job resource demands and all 

performance measures would need to be collected at the job 

step level instead of the job level. 
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Different models could be built for different types 

of job steps, e.g. compilation, link loading, execution 

etc. (see section 3.5.3). In these models, the dependent 

variable would be the job step elapsed time. Independent 

variables would be the job step resource demands and 

measures of the load on the system. For a given job, the pre-

dicted elapsed time is the sum of the predicted job step 

elapsed times. 

10.3.3 Regression Models of the Timesharing 

Workload 

If more performance data were available, the time-

sharing workload could also be modelled. An appropriate 

performance measure for a timesharing environment is the 

response time, that is the time from when a transaction is 

requested by the user to the time the user starts receiving 

the response. The response time will depend on the resources 

required to process the transaction and on the load on the 

system. 

To model the system at the transaction level, per-

formance data at this level is necessary. Regression models 

could be constructed in which the dependent variable is the 

response time. Independent variables would be: 

(i) Measures of the transaction resource demands. 

(ii) Measures of the load on the system. 

10.3.4 Extending the Load Adjusting Model 

The Load Adjusting Model could be improved by: 

(a) 	developing a mores accurate regression model of 

job execution time. This could be done by using 

the regression model of job memory residence time 

proposed in 10.3.1 as a basis. 
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(b) 	Modelling the system at the job step level. This 

would necessitate developing regression submodels 

at this level. Job step, as well as job/start and 

termination events would need to be simulated. 

The LAM could be extended to model the whole work-

load in a system which did not have any rollin/rollout 

activity, such as OS/360 MVT (multiprogramming with a 

variable number of tasks). For any system with rollin/- 

rollout activity, a more accurate dynamic model of the whole 

workload could be developed if the memory management sub-

system was modelled. 

10.3.5 Extending the Memory Management Model 

The performance data available for calibrating the 

model was limited. More accurate versions of the model 

• 	could be constructed if more performance data was available. 

In particular the following steps could be undertaken: 

(a) A more accurate regression submodel of job execution 

time, as described for LAM, could be developed. 

(b) Job rollout time is necessary for a more accurate 

calibration. Real and predicted rollout times 

could then be compared. Attempts could be made to 

reduce the difference between them. 

(c) A separate regression submodel of long job execution 

time could be developed. This would enable the long 

job workload to be modelled more accurately. 

(d) Regression submodels could be developed at the job 

step level. Several regression submodels of job step 

execution time, reflecting different characteristics 

of the workload, could be developed as described in 

3.5.3 and 10.3.2. 

(e) Job arrival time in the 'Input Queue should be recorded 

in the Dayfile. This would enable job scheduling 

to be modelled more accurately. 
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(f) System job activity should be recorded to allow 

system jobs to be modelled. 

(g) Measurements of the time taken to roll jobs in 

and out of CM should also be available. 	This as- 

pect of memory management could then be included in 

the model. 

(h) MMM could be extended to model the timesharing load. . 

A regression submodel of transaction execution time 

could be developed in the same way as proposed for 

the batch job step execution submodel. 

10.4 	Modelling at a Greater Level of Detail  

The multilevel hybrid modelling approach could be 

refined further by modelling the system at greater levels of 

detail. For example, the time spent by a job resident in 

main memory could be modelled in more detail by modelling 

CPU and I/O management. A number of different approaches 

could be tried. In general, the more detail included in the 

model, the more workload and performance data required. 

(a) A queuing submodel(s) is constructed to predict CPU and 

I/O utilisation for jobs resident in main memory (K3). 

(b) The CPU and I/O scheduling algorithms are simulated. 

It is assumed that each job uses the average CPU and 

I/O burst throughput (W2). 

(c) Increasing the accuracy of (b) by collecting a detailed 

event trace for every job in which the length of 

each.CPU and I/O burst is measured (S4) and used as 

input to the model (S7). 

(d) A submodel could 'be constructed for each I/O device, 

whose function is to predict I/O transfer times, 

given the characteristics of the device and data 
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about each transaction. Attempts could be made to 

construct these submodels using queuing, regression 

or simulation techniques. 

10.5 	Modelling Virtual Storage Systems  

10.5.1 Introduction 

The multilevel hybrid modelling approach may be 

applied to other non-virtual storage batch systems, providing 

sufficient data is available. Further research is necessary 

to investigate how this approach could be applied to virtual 

storage systems. Some suggestions are made in this section. 

Because of the increased complexity in virtual storage 

systems, modelling these systems is also more complex. A 

number of analytical models of virtual storage systems have 

been developed (B8, B9, C5, C6, D2). The objective of 

developing these models, however, has usually been to study 

properties of virtual storage systems, rather than to relate 

the model predictions to actual computer system performance. 

Some simulation models of virtual storage systems have been 

developed (B10, N1, W6), but these are often very detailed 

models which are considerably slower than the system itself. 

10.5.2 Hybrid Models of Virtual Storage Systems 

There are a number of problems to be overcome in 

constructing hybrid models of virtual storage systems. A 

major problem is that of predicting paging rates, as the 

relationship between program behaviour, multiprogramming and 

paging is very complex. 

It is proposed first to construct regression models 

in which job elapsed time is the dependent variable, as before. 

Independent variables may again be in one of two categories, 

resource demands, or measures of load on the system. The 

measures of load on the system should now include paging 

rates. Once constructed, such a model would, as before, pro-

vide the basis for a regression submodel within a hybrid 
model. 
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A possible approach to constructing a hybrid model 

might be to start with a model similar in concept to the 

Memory Management Model, in which each job's memory require- 

ment is given by its estimated working set size (D2). 	Some 

method is then necessary for predicting the delay time due 

to paging. 

One method of predicting a program's paging rate is 

by means of the parachor curve (M3). A parachor curve is a 

graph of the total number of page interrupts a program en-

counters as a function of the amount of physical memory 

available for holding pages. 	It would be necessary to de- 
velop a parachor curve, or more realistically a set of para-

chor curves, for the workload on a given system (M3). The 

paging delay experienced by each job could then be estimated 

using the appropriate curve. 

A possible alternative approach might be to obtain 

first, by performance monitoring, a page trace of every pro- 

gram executed (B3). 	is then proposed that a submodel be 

constructed which predicts the occurrence of page interrupts 

given the program trace, the program's CPU and I/O requirements, 

and the amount of physical memory available to it. It should 

then be possible to simulate the memory and paging algorithms. 

Other possibilities might include the use of analyti-

cal submodels for predicting paging rates. 



283 

CHAPTER 11: 	CONCLUSIONS 

This thesis has investigated some aspects of 

developing fast approximate models of computer system per-

formance. Two different modelling techniques, regression and 

simulation modelling, have been applied and a method developed 

for combining their use within a multilevel hybrid modelling 

framework. The main objective of this thesis has been to 

demonstrate the feasibility and value of this approach to 

the modelling and evaluation of computer system performance. 

The approach has been demonstrated by modelling the 

short job workload on the Imperial College CDC 6000 Kronos 

system, at three levels of detail. At each level, a self-

contained model of the system has been developed. At 

the first level, the Workload Model uses purely regression 

techniques. At the second level, the Load Adjusting 

Model, simulation techniques are introduced and combined 

with the regression techniques. At the third level, the 

Memory Management Model, more detail is introduced with 

the simulation of the memory management subsystem. 

All the workload and performance data, used for 

input to and calibration of the models, was extracted from 

the Kronos accounting subsystem called the Dayfile. The 
performance data collected by the Dayfile is limited. 

This has proved to be the major limitation in the develop-

ment of the models. 

The Workload Model is a purely regression model of 

computer system performance. It was developed after a 

comprehensive performance analysis and analysis of residuals. 

The model expresses a batch job's elapsed time as a function 

of the job's resource demands and load on the system. The 

model has been successfully validated for four different 

sessions. 



284 

One disadvantage of the Workload Model is that it 

is a static model and hence is not capable of dynamically 

estimating the load on the system. The hybrid Load 

Adjusting Model overcomes this limitation by creating a 

simulation framework within which regression techniques may 

be used. By this means, the model dynamically adjusts its 

estimate of system load as each simulated job executes. 

The Load Adjusting Model has been successfully calibrated 

and validated for three different sessions. 

A disadvantage of both the Workload and Load Adjust-

ing Models is that neither distinguish between jobs resident 

in Central Memory and jobs rolled out to secondary storage. 

The Memory Management Model overcomes this limitation by 

simulating the memory management subsystem. A more accurate 

estimate of the load on the system is made possible by also 

modelling the long job workload. The Memory Management 

Model has been successfully calibrated and validated for 

three different sessions. 

By successfully constructing, calibrating and vali-

dating the three models of the Imperial College system, the 

feasibility and advantages of combining regression and 

simulation modelling techniques within a multilevel modell-

ing framework have been demonstrated. By this means the 

advantages of both techniques are exploited. Regression 

analysis provides a fast quantitative method of modelling 

a system or subsystem at a gross level. Simulation models 

the passage of time and provides a means of modelling the 

system in more detail by representing logical and structural 

relationships in the system. 

Although the modelling approach described in this 

thesis has been applied to only one system, the approach 

may be applied to other non-virtual storage batch systems. 

Methods for improving the three models further and for 

extending the approach to model the system at greater levels 

of detail have been proposed. Methods of extending the 

approach to virtual storage systems have also been suggested. 
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APPENDIX A: INTRODUCTION TO MULTIPLE LINEAR REGRESSION  

ANALYSIS 

A.1 	Introduction  

This appendix is intended for readers who are un-

familiar with regression analysis or for those who wish to 

refresh themselves on the subject. The treatment here is 

meant to be of sufficient detail to enable unfamiliar 

readers to follow chapters 6 and 7. 

An overview of multiple linear regression analysis 

is presented in section A.2. The procedures for selecting 

the 'best' regression equation are reviewed in section A.3, 

and the procedure implemented in this project is discussed. 

The implementation aspects of the regression analysis are 

described in section A.4. 

A.2 	.Multiple  Linear Regression Analysis 

A.2.1 Regression Analysis 

Regression analysis is an empirical method for 

analysing workload and performance data. Like many other 

empirical methods, it is a statistical method of analysing 

data. 

A regression model deals with the following problem. 

Given a set of data containing the observations for several 

input (independent) variables Xi, X2  ... Xk  and an output 

(dependent) variable, it is required to fit the data by means 

of the function:.  

Y = f(X1, X2  ... Xk) 

The functional relationship could be realised by 

means of a linear model: 
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Y = ao +\,› 	a
i 
 X. 
1 

i=1 
(1) 

where a-, i = 0, 1, 	k are unknown parameters. These 

parameters are called the regression coefficients and may 

be determined by least square fitting techniques. 

A.2.2 Method of Least Squares 

The method of Least Squares states: Find the values 

of the constants in the chosen equation that minimise the 

sum of the squared deviations of the observed values from 

those predicted by the equation (D1). An added requirement 

for linear least squares estimation is that the equations 

chosen be linear in the regression coefficients, ao, a1 	ak, 
hence the term linear regression (D1). 

Linear least squares estimation partitions the 

total variability in the data (expressed as the total sum 

of squares) into two parts: the regression sum of squares 

(i.e. due to the fitted equation) and the residual sum of 

squares. 

Many different forms of models may be built using 

linear least squares estimation. A simple linear regression 

model has one independent variable. A multiple linear 

regression model has two or more independent variables. A 

multiple linear regression model may also have second order 

terms, e.g. 

Y = b0  + b1X1 + b11 1 
X2 +b2X2 + b

22 2 X2 + b12X1X2 

A.2.3 Assumptions of the Least Squares Method 

Certain assumptions are made in the least squares 

method of regression analysis. A very important assumption 

is that the data used for constructing the model is typical, 

that is the data is a representative sample 
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from the whole range of situations it is required to 

analyse and model. It should be obvious that an equa-

tion which represents the typical behaviour of a system 

cannot be derived from non-typical data (Dl). 

A number of the assumptions made concern the pro-

perties of the residuals (or errors) in the model. The 

residual ei in the model is the difference between the 

observed value of the dependent variable yi  and the 

predicted value Y., 

e. = y. - y. 

The assumptions are that the errors are independent and 

that their distribution is normal with zero mean and fixed 
variance. 

Another assumption is that the values of the 

independent variables are known without error. All the 

error is in the values of the dependent variable. 

According to Daniel and Wood (Dl), a further 

unwritten assumption is "that the data used are 'good' 

data. But most large collections of data and occasion-

ally even small collections contain a few 'wild points' 

called mavericks or outliers. What happens to make them 

nontypical cannot usually be reconstructed. They must 

be :Totted however, since to retain them may invalidate 

the judgements we make." 

Consequently, it is important to carry out an 

analysis of the data used in constructing the model 

and of the residuals obtained from the constructed model, 

to determine if any outliers exist. 
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A.2.4 Measures of Goodness of Fit 

Once the regression model has been built, it is 

necessary to determine how well the chosen equation fits 

the data. A number of complementary measures are available: 

(i) The multiple correlation coefficient squared, R2, 

represents the fraction of the total variation explained 

by the fitted equation. R2  is_the ratio of the re-, 

gression sum of squares to the total sum of squares. 

(ii) The F-test is used to judge the statistical 

significance of the value of R2. 

(iii) The t-test for the regression coefficient of 

each independent variable in the model is used 

to judge whether the independent variable 

makes a significant contribution to the model. 

The validity of the F and t tests depends on the 

assumption that the residuals are normally distributed. An 

analysis of residuals should be carried out to test for 

normality and to determine if there are any outliers in the 

data. 

A.3 	Selecting the 'Best' Regression Equation  

A.3.1 Introduction 

When constructing a regression model, there is 

one dependent variable Y and a number of independent 

variables X1 	Xm. It is possible to construct a 

model containing all m independent variables. However 

it is likely that some of the independent variables 

make no significant contribution to the model, in which 

case there seems little point in including them in the 

model . Furthermore, their presence in the model is 

misleading, since it may suggest that these variables are 

making a useful contribution. 
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Consequently, a number of statistical procedures 

have been devised for selecting only a subset of the 

independent variables to include in the model. There is 

no unique statistical procedure for doing this and some 

personal judgement is necessary. Furthermore, the 

different methods do not all lead to the same solution 

when applied to the same problem (D5). 

A.3.2 The Forward Selection Procedure 

One of the procedures used for selecting the 'best' 

equation is the Forward Selection procedure (D5) in which 

independent variables are introduced one at a time into 

the equation. This is also referred to as the stepwise 

regression procedure in some texts (Dl). The steps in-

volved in the forward selection procedure are as follows: 

(1) The first variable introduced is the independent 

variable most highly correlated with the depen-

dent variable Y. 

(2) The partial correlation coefficients between the 

remaining independent variables and Y are then 

found. The independent variable with the highest 

partial correlation coefficient with Y is 

selected next. 

(3) Each time a variable is introduced into the model, 

R2  is determined. Some criterion is then used 

to determine whether the addition of the new 

variable has made a significant improvement to 

the model. If the improvement is significant, 

steps 2 and 3 are repeated. 

(4) If the improvement is not significant, then the 

. selection procedure is stopped. The criterion 

for judgement could be a partial F-test for the 
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variable most recently entered. Alternatively, 

the criterion could be whether R2, the fraction 

of the variation explained by the model, had 

been improved by a specified amount, e.g. 1%. 

A.3.3 The Stepwise Regression Method 

The Stepwise Regression procedure is an improved 

version of the forward selection procedure (D5). In 

the Forward Selection procedure, it is possible that the 

introduction of a variable into the model results in the 

contribution made by a variable already in the model to 

no longer be significant. This is particularly likely 

if some of the independent variables are correlated. 

Because of this, the Stepwise Regression procedure 

does one further test at each step. Each time a variable 

is introduced into the model, a partial F-test is made on 

those variables already in the equation to determine 

whether they still make a significant contribution. If a 

variable no longer does, then it is eliminated from the 

equation. 

A.3.4 The Procedure Implemented 

The method used for this project was the Forward 

Selection procedure. This was dictated by its presence 

in the main statistical program library on the Kronos sys-

tem, namely the IBM Scientific_ Subroutine Package (I1). 

However, by exercising some personal judgement, the 

same results may be obtained using this procedure as with 

the Stepwise Regression procedure. After a run using the 

Forward Selection procedure, the model selected is inspec-

ted. The t-tests on each of the regression coefficients 

of the independent variables indicate whether those 

independent variables make a significant contribution to 
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the model. Those variables that do not may be eliminated 

and a further run is carried out. This process may be 

repeated until all the independent variables make a sig-

nificant contribution to the model. This model is then 

identical to the model which would have been selected using 

the Stepwise Regression procedure. 


