
UNIVERSITY OF LONDON

IMPERIAL COLLEGE OF SCIENCE. AND TECHNOLOGY

DEPARTMENT OF COMPUTING AND CONTROL

A Modelling Approach to the Evaluation

of Computer System Performance

by

H. Gomaa

A thesis submitted for the degree of Doctor of Philosophy

November 1975

ABSTRACT

This thesis investigates some aspects of develop-

ing fast approximate models of computer system performance.

Two different modelling techniques, regression and

simulation modelling, have been applied and a method

developed of combining their use within a multilevel hybrid

modelling framework. The main objective of this thesis is

to demonstrate the feasibility and value of this approach

to the modelling and evaluation of computer system perfor-

mance. The approach has been demonstrated by modelling a

CDC 6000 computer system at three levels of detail. At

each level, a self-contained model of the system has been

developed. The Workload Model is a purely regression model

of computer system performance. It was developed after a

comprehensive performance analysis and analysis of residuals.

The model expresses a batch job's elapsed time as a func-

tion of the job's reso'Irce demands and the load on the

system. The model has been successfully validated. The

Load Adjusting Model is a hybrid simulation/regression model

in which a simulation framework is created which models job

arrival and termination. Within this framework, regression

techniques are used. The model has been successfully cali-

brated and validated. The Memory Management Model is

developed from the Load Adjusting Model by a systematic

expansion of detail. The Memory Management subsystem is

simulated in considerable detail, whereas the rest of the

system is modelled in much less detail. The model has been

successfully calibrated and validated.

ACKNOWLEDGEMENTS

I am indebted to Professors D.J. Howarth and

M.M. Lehman for their invaluable advice and encourage-

ment. I am also indebted to Dr. H. Beilner for his

invaluable advice and assistance and to W.J. Brooker

for his assistance on statistical matters. I am also

grateful to P.G. Jones and J.L. Thompson for implement-

ing the Dayfile processing programs. Thanks are also

due to Miss D. Pesko for typing this thesis so speedily

and to Miss M. Cavill for her assistance. Last, but

by no means least, I am very grateful to my wife Gill

for her patience, understanding and encouragement.

ii

iii

Chapter

Chapter

1

2

CONTENTS

Page

1 INTRODUCTION

SURVEY OF PERFORMANCE MEASUREMENT AND EVALUATION

OF COMPUTER SYSTEMS 4

2.1 Introduction

2.2 Performance Monitoring Techniques 4

2.3 Environments for Performance Evaluation 8

2.4 Performance Analysis of the Production

Environment 15

2.5 Performance Analysis of the Controlled

Environment 22

2.6 Performance Evaluation using Modelling

Techniques 26

2.7 Conclusions 28

Chapter 3 MODELLING OF COMPUTER SYSTEM PERFORMANCE 30

3.1 Introduction 30

3.2 Computer system Modelling 30

3.3 Modelling Techniques 32

3.4 Structured Modelling of Computer Systems 37

3.5 Structured Modelling of Batch Computer

Systems 42

3.6 Multilevel Hybrid Modelling of the Imperial

College CDC 6000 System 51

Chapter 4 THE IMPERIAL COLLEGE CDC 6000 KRONOS SYSTEM 52

4.1 Introduction 52

4.2 The Imperial College Workload 52

4.3 The Imperial College CDC 6000 Computer System 55

4.4 The Kronos Operating System 55

4.5 Job Processing on the Kronos System 58

4.6 Memory Scheduling 59

4

iv

Chapter 5 THE CDC DAYFILE ACCOUNTING SUBSYSTEM 61

5.1 Introduction 61
5.2 Structure of the Kronos Dayfile 61

5.3 Dayfile Processing 68,

5.4 The Dayfile Data Collected 74
5.5 Limitations of the Kronos Dayfile for

Performance Evaluation and Modelling 75

5.6 Conclusions 78

Chapter 6 REGRESSION MODELLING OF THE IMPERIAL COLLEGE

SYSTEM 80

6.1 Introduction 80

6.2 Implementation Aspects of Regression Modelling 80

6.3 Early Regression Models of the Imperial
College System 84

6.4 Regression Models of the Short Job Workload 92

6.5 Regression Models of the Long Job Workload 97

6.6 Conclusions 106

Chapter 7 THE WORKLOAD MODEL 110

7.1 Introduction 110

7.2 The Workload Data 111

7.3 The First Models of the Short Job Workload 121

7.4 The Interaction between the Workload and

the System 131

7.5 Regression Models of the Morning Workload 138

7.6 Regression Modelling of the Afternoon 154

Workload

7.7 Regression Modelling of the Batch Workload

in the Absence of the Timesharing Load 164
7.8 Validation of the Models 17.L2.

7.9 Regression Models with no Short Job

Competition 183

7.10 Conclusions 194

•

Chapter 8 THE LOAD ADJUSTING.MODEL 197
8.1 Introduction 197
8.2 Fast Approximate Models of Computer System

Performance 197'
8.3 Concepts of the Load Adjusting Model 201
8.4 The Load Adjusting Model of the Kronos

System .207
8.5 Design of the Load Adjusting Model 209
8.6 Implementation 213
8.7 The Calibration Methodology 217
8.8 The Calibration in Practice 225
8.9 Validation of the Model 235
8.10 Conclusions 237

Chapter 9 THE MEMORY MANAGEMENT MODEL 240
9.1 Introduction 240
9.2 Limitations of the Load Adjusting Model 240
9.3 Memory Management in Kronos 241
9.4 The Memory Management Model of the Kronos

System 243
9.5 Implementation and Initial Calibration 246
9.6 The Memory Management Model Mark 2 251
9.7 Design of the Memory Management Model Mark 2 256

9.8 Calibration and Validation 262

9.9 Conclusions 266

Chapter 10 EVALUATION AND PROPOSALS FOR FUTURE WORK 269

10.1 Introduction. 269

10.2 Evaluation of the Models 269

$0.3 Extending the Models 275

10.4 Modelling at a Greater Level of Detail 280

10.5 Modelling Virtual Storage Systems 281

Chapter 11 CONCLUSIONS 283

References 285

Appendix A 294

1

CHAPTER 1: 	INTRODUCTION

The measurement and evaluation of computer

system performance is a two stage iterative process. In

the first stage, the performance of a computer system

processing a given workload, is measured. In the second

stage, a performance evaluation is carried out, by

analysing the data collected in the first stage, by

modelling computer system performance, or by a combina-

tion of both. The insight gained by means of the evalua-

tion, may well lead to a further iteration of the

measurement and evaluation process.

Three major purposes for the evaluation of com-

puter system performance are:

(a) 	selecting a computer system

(i) where previously no computer was available

(ii) to replace an existing system

(b) 	Performance measurement and analysis of an

existing computer system to determine how

effectively it is processing the workload

applied to it. 	The objectives of this type

of evaluation may be:

(i) to determine the characteristics of

the workload

(ii) to determine throughput rates and res-

ponse times under various load conditions

(iii) to provide greater understanding of

system performance

2

(iv) to detect bottlenecks or imbalances in

system performance

(v) to improve system performance as measured

by some objective function such as

turnaround time, response time or processor

utilisation

(c) 	Performance and workload projection, that is

predicting the performance of a given computer

system:

(i) if the workload were to be changed

(ii) if changes were to be made to system

parameters or scheduling algorithms

(iii) if modifications were to be made to

the system configuration

Computer system modelling is a valuable tool

in the evaluation of computer system performance. To

gain the most advantage from a computer system model

to be used for performance evaluation, it should be

capable of modelling the system's performance in a

fraction of the real world time. In such conditions,

it is more economical to experiment with the model than

with the system itself.

This thesis investigates some aspects of develop-

ing fast approximate models of computer system performance.

Two different modelling techniques, regression and

simulation modelling, have been applied and a method deve

loped of combining their use within a multilevel hybrid

modelling framework, 	The main objective of this thesis

is to demonstrate the feasibility and value of this approach

to the modelling and evaluation of computer system perfor-

mance.

3

The approach has been demonstrated by modell-

ing the Imperial College computer system at three

levels of detail. At each level, a self-contained

model of the system has been developed. The first

level models workload performance using regression

techniques. At the second level, simulation techniques

are introduced and combined with the regression tech-

niques. At the third level, more detail is introduced

by simulating the memory management subsystem.

Chapter 2 surveys the field of performance

measurement and evaluation of computer systems. Chapter

3 investigates the main aspects of computer system

modelling and how they may be applied to the evaluation

of computer system performance. Chapter 4 presents

the main features of the computer system modelled, the

Imperial College Control Data (CDC) 6000 system.

Chapter 5 describes the CDC Dayfile, the only source

of workload and performance data used in the evaluation.

Chapter 6 describes the initial attempts at the regres-

sion modelling of the Imperial College system. These

were largely unsatisfactory, but paved the way for a

much more successful attempt at modelling the system

with the development of the Workload Model, which is

described in Chapter 7. An attempt to overcome some of

the limitations of the purely regression workload Model

led to the development of a more detailed model, the

Load Adjusting model, described in Chapter 8, in which

simulation techniques are introduced and combined with

the regression techniques. An attempt to overcome some

of the limitations of the Load Adjusting model led to

the development of the Memory Management model, described

in Chapter 9, in which a more detailed simulation is

carried out. Finally, Chapter 10 evaluates the work

described in the thesis and makes proposals for future

research.

4

CHAPTER 2: SURVEY OF PERFORMANCE MEASUREMENT AND

EVALUATION OF COMPUTER SYSTEMS

2.1 	Introduction

This chapter surveys the different tools and

environments used in the measurement and evaluation of

computer system performance.

In section 2.2, a survey of performance measur-

ing (or monitoring) techniques is presented. The main

features of the different types of performance monitors

are outlined. In section.2.3,.the need for different

environments for performance evaluation is described. These

environments are:

(i) The real computer system processing

the real workload.

(ii) The real computer system processing

a model of the workload.

(iii) A model of the computer system process-

ing a model of the workload.

The means of creating these environments are

presented and discussed. In sections 2.4, 2.5 and 2.6,

the performance evaluation of each of these alternative

environments is described, with examples from the

evaluation of existing- systems.

2.2 	Performance Monitoring Techniques

2.2.1 Performance Monitors (G2, L6)

This section surveys tools which may be used for

monitoring computer system performance. Different types

Of data collection techniques may be used for this

purpose. These may be classified as hardware or software

5

monitors. Software monitors may either be sampling

or event drivers monitors. Sampling monitors may either

be external or internal to the operating system. Event

driven monitors are usually internal monitors. More

recently, some hybrid performance monitors have combined

both hardware and software monitoring techniques (S6).

2.2.2 Hardware Monitors (B11, D6, N2)

A hardware monitor can sense and record the

time and occurrence of system events and changes of

state at the hardware level.' The data collected may

be cumulative (counts) or trace (time-stamped) and is

often stored on some external medium such as magnetic

tape. The data gathered usually provides measures of

hardware resource activity, e.g. CPU and I/O channel

activity, types of instructions executed, etc.

Although hardware monitors are capable of provid-

ing measures of total resource activity, it is frequently

difficult to relate these measures to the executing

workload in a multiprogramming system. In systems which

distinguish by hardware between supervisor and user

modes, the CPU time used in each of these two modes may

be measured. Furthermore, in systems where a different

hardware storage protection key is associated with each

user partition (e.g. in OS/360 systems), the hardware

monitor is capable of recording the CPU time used by

each partition (B11). However, to correlate the CPU time

used by a partition with the jobs executing in that

partition, requires data on job commencement and termina-

tion times, which could only be obtained by software

monitoring. To correlate I/O activity.measured by a

hardware monitor with the executing jobs would again

need assistance from a software monitor.

6

2.2.3 Software Monitors

2.2.3.1 	Monitoring Techniques

A sampling monitor is a software monitor which

samples and records the state of the system at regular

intervals. The data is often collected by reading the

contents of system tables and queues, or by reading the

contents of counters maintained by the system. The

data gathered is usually blocked before being output

onto an external storage medium, such as disc or mag-

netic tape. Examples of sampling monitors are EYE (S13)

and KIK (L5) on CDC 6000 systems, CUE (Hl) on IBM 360

systems, and SPASM (S3) on Burroughs 6700 systems.

A software event-driven monitor is an internal

monitor which is implemented as a set of modifications

to the operating system. As a result of this, whenever

a specified event occurs, a transfer is made to a data

gathering routine which may accumulate the data in

counters, or provide a trace by time stamping a record

of each event occurrence. The data is usually output

in a similar manner to the sampling monitor. Examples

of event driven monitors are GTF (I2) and DCF (P2) on.

IBM 360/370 systems, UTEX (S4) on CDC 6000 systems,

and the software monitors used in the Multics (Si) and

Honeywell H6000 (D3) systems.

In general, event-driven monitors are capable

of gathering data of a more detailed nature than sampling

monitors. An event-driven monitor is capable of record-

ing a sequence of events where each event represents a

change of state in the system. A sampling monitor can

record sequences of states but not necessarily thy: changes

in state.

7

More recently, some performance monitors have

attempted to combine the advantages of both sampling and
event driven techniques. V.M Monitor (C2, C3) is an in-

ternal monitor, imbedded within the IBM VM/370 operating

system, which uses both techniques.

2.2.3.2 	Data Collection

Data Collection may be carried out at different

levels of detail and using different techniques depend-
ing on the type of monitor used and on the objectives

of the subsequent evaluation.

(a) 	Level of Detail

(i) Workload Level

Data may be collected at the workload

level, that is at job or job step level, e.g.

job and job step execution times, resource

utilisation, etc. This type of data is frequent-

ly collected by accounting systems, e.g. the

Dayfile on CDC 6000 systems (G4) and System

Management Facility on IBM OS/360 and OS/370

systems (I3).

(ii) System Event level

Alternatively data may be collected at

the system event level, e.g. each time the CPU

is switched, a change in memory allocation occurs

or an I/O operation is commenced or terminated.

This method is associated with event driven

monitors (S4), but may also be associated with

a sampling monitor with a high sampling rate (L5).

8

0

(b) 	Methods of Data Collection

(1) 	Snapshot

This is the typical method used by a sampling

monitor, which records the state of the system

whenever it is activated (S13), e.g. which job is

active, number of jobs waiting for CPU, number of

jobs doing I/O, etc.

(ii) Cumulative

This method may be used by both sampling and

event driven monitors. For example, counters of overall
paging activity may be maintained by the operating

system, and output at regular intervals by a sampling

monitor (R1). Alternatively, a job's CPU time may

be accumulated and output at job termination by an

event driven monitor (G4).

(iii) Trace

Trace data is usually collected by an event

driven monitor which records the-type and time of

occurrence of each event (S4). It may also however

be collected by a sampling monitor which outputs a

message when it notices that an event has occurred,

which may of course be some time after the occurrence

of the event (L5).

2.3 Environments for Performance Evaluation

2.3.1 The Need for Different Environments

A. total computing system may be regarded as consist-

ing of:

- a computer system, that is the computer hardware

together with the operating system.

- the environment the system operates in, that is
the workload processed by the system.

9

From the performance viewpoint, the output of such

a system consists of performance measures of the computer

system processing the workload applied to it (figure 2.1).

A user installation is usually most interested in

analysing the normal production environment in which the

computer system processes the user workload. However, in

any complex computer installation, the workload varies

with time of day and from month to month. This makes it

difficult to quantify performance purely on the basis of

measurement of the real workload.

For this reason, alternative environments for perfor-

mance evaluation have been,created, measured and analysed.

These environments are created by modelling the user work-

load, the computer system, or both, as shown in figures

2.2 and 2.3 respectively. One method is to model the user

workload and apply this to a real computer system (L6). By

this means, experiments could be carried out in a controlled

reproducible environment. An alternative is to create a

model of the user workload in the form of a workload trace,

which is then applied to a model of the computer system (C4).

2.3.2 Modelling the User Workload

A model of the user workload, to be applied to a com-

puter system, should consist of a selection of jobs which

are representative of the user workload. Experiments •nay

then be carried out by either keeping the workload model
constant, and changing operating system parameters or

algorithms, or by keeping the system constant, and varying

the workload model in a measurable fashion.

The two most frequently used methods for providing

a reproducible environment are benchmarks programs and

synthetic programs. A benchmark program is an existing

user application program. A model of the user workload may

be created by selecting a specific number of user jobs

which are representative of the user workload (L6).

PRODUCTION
WORKLOAD

PERFORMANCE

MEASURES

COMPUTER
SYSTEM

(OPERATING SYSTEM
AND HARDWARE)

10

Figure 2.1: Performance Measurement of a Computer System
Processing the Production Workload

PERFORMANCE
MEASURES

MODEL OF 	COMPUTER
WORKLOAD

• SYSTEM

Figure 2.2: Real Computer System Procdssing Model of
Workload

MODEL OF 	MODEL OF
WORKLOAD 	COMPUTER

SYSTEM

	PREDICTED
PERFORMANCE

Figure 2.3: Model of Computer System Processing Model
of Workload

11

A synthetic program is a program which has been

specially created for the evaluation and does not serve

any useful application apart from the evaluation (B13,

Kl). A synthetic program is fully parameterised in such

a way that the same program may display widely different

characteristics by simply changing the parameters. A

typical synthetic program consists of a compute loop and

an input/output loop. The ratio of how often each loop

is executed determines whether the program is compute

bound or input/output bound. In addition, a dummy array

may be used to vary the size of the program (B13).

The degree to which results are meaningful de-

pends on the degree to which the workload model is repre-

sentative of the user workload (S11). This means that a

thorough analysis of the real workload must first be

carried out, so that the model may be calibrated against

the real workload. It is likely that the calibration pro-

cess is easier for a synthetic workload, becau:e it is

fully parameterised (01). However, synthetic workloads are

more difficult to construct for virtual storage systems.

The main advantages of using a model of the

workload instead of the real workload are:

(i) It permits the creation of a controlled repro-

ducible environment, where changes to the

operating system may be evaluated having virtu-

ally eliminated the effect of a fluctuating

workload.

(ii) Alternatively, the workload may be varied in

a measurablE, fashion, and its effect on perfor-

mance evaluated.

The main disadvantages of the controlled environ-

ment are:

12

(1) 	Calibrating the workload model against the

real workload is likely to be a complex

process (01). If the model is not calibrated,

results may be unreliable.

(ii) Experiments using a controlled environment

are time consuming and require a dedicated

machine. Thus they can prove to be very

expensive.

(iii) A workload is usually evolving, so the work-

load model would need regular updating.

• (iv) 	The model of the workload is not the real work-

load. Some experimental aspects can lead to

distorted measurements. For example, the run-

ning up and down time which occurs when

executing a synthetic workload leads to 'edge

effects'. These can be reduced but not elimina-

ted by making the experimental run time long

compared with the running up and down time.

2.3.3 Modelling the Computer System and

Environment

2.3.3.1 Introduction

To model a total computer system for performance

evaluation purposes, it is necessary to model both

the computer system and its workload. A model of a

computer system is an abstraction of the computer

system's real world behaviour. Techniques for modelling

computer systems include simulation, analytical and

empirical techniques.

13

	

2.3.3.2 	Analytical Models

Analytical models are mathematical models of

computer systems and are often based on queuing theory.

Queuing models of total computer systems usually

involve a number of simplifying assumptions to make

the model more amenable to mathematical analysis (G7, P1).

These assumptions tend to reduce the validity of

analytical models in computer system performance

evaluation. Analytical models have probably been

of most use in modelling subsystems, e.g. CPU schedul-

ing (K4, Ml), memory management (D2, B9), and I/O

scheduling (Ti, D3). Most of the work done, however,

has not directly related the predictions of the

analytical submodels to system performance (K2).

With the current state of the art, queuing

models alone are therefore not sufficient for the

evaluation of computar systems, but they can help

in the understanding of systems (G7). Other methods

must be used in conjunction with them.

	

2.3.3.3 	Regression Models

Regression analysis is a method used to deter-

mine statistical_ relationships between two or more

variables. A regression model is a functional
relationship which relates an output (dependent)

variable to a set of input (independent) variables.

The functional relationship could be linear in its

coefficients, such as:

k
Y = a + 0

a.X. 1 1

=1

where a1, i=0, 1, 	k are the regression coefficients,

whose values may be determined by means of leaSt squares

fitting techniques (Dl, D5).

14

Regression analysis has been used in performance

evaluation to model workload performance, to estimate

system overhead (B1) and to estimate the effect of a

system change on performance in the normal production

environment (W1, W4).

2.3.3.4 	Simulation Models

A computer system simulation model models the

system's real world behaviour by means of an algorith-

mic abstraction of the system, reflecting system struc-

ture and logical procedure.

Attempts have been made to provide one simulation

program which models many different computer systems,

but this necessitates the construction of such a gross

model, that the results are usually only of general

interest. Attempts to simulate a range of computers

with basically the same hardware and operating system

(e.g. IBM 360 and OS/360) have been more successful (S5).

Many simulation models have been developed of individual

computer systems (L3, N1, N3, W2).

2.3.3.5 Advantages and Disadvantages of

Computer System Modelling

To gain the greatest advantage from a computer

system model to be used for performance evaluation, it

should model the system's performance in a fraction of

the real world time. In such -conditions, it is more

economical to experiment with the model than with the

system itself. Thus it becomes possible to experiment

with a wide range of situations, which would not be

practical in a real user environment (S7). Experiment-

ing with the model has the additional important advantage,

in that it may be used to predict the effect of configura-

tion, system or workload changes.

15

The main disadvantage of modelling is its

relatively high cost in the form of the time and man-

power required to design, implement, calibrate and

validate a model of the computer system. Another

disadvantage is that from the point of view of experi-

menting with the model the most desirable area for

experimentation may be an area for which it is difficult

to determine the model's validity. The problems in

calibrating and validating simulation models have been

comprehensively described by Beilner (B4).

2.4 	Performance Analysis of the Production Environment

2.4.1 Introductioh

This section describes the performance evaluation

of the production environment, that is the real computer

system processing the real workload. The evaluation

is presented according to the source of data available:

collected by hardware monitors, from accounting data, by

sampling monitors and by event driven monitors. Some

evaluations have been carried out using more than one

source of data, e.g. from accounting data and a sampling

monitor (G5, S10).

2.4.2 Performance Analysis using Hardware

Monitors

As described in section 2, a hardware monitor

may be used for monitoring hardware resource utilisation

over prolonged periods of time. From the data collected

by a hardware monitor a system profile may be constructed.

A typical example of this is shown in figure 2.4, which

displays CPU and I/O channel utilisation over a complete

session. From this type of data, it is possible to

determine hardware resource bottlenecks or imbalances.

For example, if CPU activity was much higher than I/O

activity, this might suggest that a more powerful CPU

16

TOTAL TIME

COMPUTE

L 	
WAIT STATE

• WAIT AND ANY CHANNEL BUSY

ANY CHANNEL BUSY

CHANNEL 1 BUSY

CHANNEL 2 BUSY

COMPUTE ONLY CHANNEL OVERLAP WAIT ONLY
I

Figure 2.4: System Profile - Derived by Analysis of

Hardware Monitor Measurements (B11)

17

was required. If I/O activity dominated, then possibly

more disc space and another channel were required. If

I/O activity is much higher on one channel than the

others then the possibility of redistributing the files

should be investigated (B12).

Another way of displaying performance data

relating to resource activity is by means of a radial

plot, attributed to Kiviat (M2). Its purpose is to

display a large number of system variables in a geo-

metric pattern which portrays different shapes character-

istic of different loadings on the system. An example

is given in figure 2.5 using an eight variable graph.

The first diagram shows a CPU bound situation, while

the second diagram shows an I/O bound situation.

2.4.3 Performance Analysis using Accounting

Data

To relate hardware resource utilisation to the

executing workload needs some form of software monitor-

ing. The most common form of software monitoring found

on computer systems is that used for accounting purposes,

such as the Dayfile on CDC 6000 Systems (G4) and the

System Management Facility (SMF) on IBM OS Systems (I3).

These are basically internal monitors which gather data

(part cumulative and part trace) at the macro level.

Analysis of this data can provide:

(i) a detailed workload profile of the system.

For example, the distribution of jobs or job

steps by their resource (CPU, Memory, I/O)

utilisation or compiler usage.

(ii) System throughput rates. For example the

mean and standard devia-dons of elapsed times

for different classes of jobs at different

times of the day/month/year.

CPU bound

situation

8

I/O bound

situation

5
Activity. 	or,- ts Activity

1 CPU Active 	2 8 2

3 CPU/Channel oila 	4 Channel Onl

5 An Channel)u, ; 2. 6 CPO 14a34

c%As
/7

2./

7t

7 Problem State 	g 8 	vizor Stat 2

Figure 2.5: Radial Plots — Derived by Analysis of

Hardware Monitor Mep.suremeufs (M2)

19

(iii) 	Information on peak demands and loads on the

system. For example, number of terminal users

logged in, length of job input and output

queues, CPU utilisation and its distribution

between, for example, the batch and interactive

workloads.

This information can be used to accumulate

long term workload statistics, enabling the installa-

tion management to determine long-term trends in the work-

load profiler -throughput rates and peak demands. Letts

(L4), Stanley (S12),Watson (W4) and Landau (L1) have

all described how valuable workload and performance

statistics were derived from this type of analysis.

2.4.4 Performance Analysis using Sampling

Monitors

Sampling monitors usually collect data at

regular intervals determined by some sampling interval.

The data may be either snapshot data or from counters

which have been accumulated by the operating system

during the elapsed interval. One of the earliest

sampling monitors was developed by Stevens (S13). A

peripheral processor on a CDC 6600 was used to monitor

the system. The monitoring program EYE had two loops,

a 4 millisecond loop which was mainly used to monitor

CPU activity and a slower loop which took a more general

snapshot of the system at 15 second intervals, (see

figure 2.6). Such a monitor can provide a valuable

indication of the loads on the various resources and

can identify bottlenecks occurring during a monitored

session. However it is less likely to provide sufficient

data to enable the cause of the bottleneck to be deter-

mined.

	-CONI9CL POINTS 	
USE; CfERATOR ERPTV RECALL C3MPIIING

3
3

	

3 	-
3
3
3-
3
3
3
3
3
3

' 	3
3
3
3
3
3
3
3. -
3
3'
3
3
3
3 -
3

3
' 3

3
3
3
3
3
3
3

• 3
3
3

1 	3 	1 1
1 	3 	0
1 	3 	1 2.
1 	. 	.3 	1 2
I 	- 	3 	- 	1 2 	•
1 	3 	. 	1 2 	_
1 	3 	1 -
1 	1 	- 	0 2
1 	3 	.17
i 	, 	5 	- 	0 2
1 	3- 	. 	0
1 	3 	0 2
1 	3 	0 -. 2
1 	. 	3 	0 2
1 	3 	- 	I 2
1 	3 	1 2
1 	? 	.1 2
1 	' 	3- 	- 	I 2
1 	3 	—I
1 	3 	1
1 	3 	I
1 	3 	- 	1
1 	3 	1
1 	3. 	1
1 	3 	- 	1 	--
1 	3 	1 0
1 	3 	. 	I 0

3 	1 	3 	- 	i 0 	-
1 	3 	- 	1 0
1 	. 	3 	. 	1- 0
1 	3- 	' 	I 0
1 	3 	1 0
1 	- 	3 	1 0
1 	3 	2 0
1 	3 	2
1 	: 	3 	2 1
1 	3 	2 1
1 	3 	1 1
1 	3 	o I
1 	- 	3 	0

S

20

CPERATING CHARACTER/ST/CS Palm 15.56.41 10 17.15.13, 09,27/67.

.70TAL 	cruci= itA5e61 IONE MINT EVERY 4.095 .H1LLISECONDS1
CF 	IDLF 	118F= 391181 134.981 	1JE9CFNT)
6ck-00PF1LE= 677189 (59.919 PERCN71
CCmPILE 	71m1= 8C591 	17.009 PERCENT)
1015 STIflpi= 75

2.61 - CHANNELS 1INCL C8 1 ACTIVE

ACTIVE CHANNELS 	TAPE; 	ntsK TRACKS 	MF431Y.
1 1 2 3 4 5 6 7 0 1 2 3 	ASSTGNF0 	ASSMNED 	IN UsF

4 A 0 	100 	131390

a
A
A

n 	tnn 	311300
n 	191 	311300

4 A 0 	190 	331100
A A n 	100 	331390
A a 1 	195 	311110

A- 1 	105 	311310
A I 	197 	331390
A 1 	197 	331300
A 1 	107 	331310
A 1 	19A 	331309
A 1 	198 	331300
A 1 	1913 	131100

A A 1 	194 	311100
A 1 	118 	331300
A 1 	199 	313300
A 1 	198 	332400
A 1 	199 	132400
a 1 	119 	312490
A 2 	198 	332400
A 7 	 200 	337.409
a 1 	165 	312400
A 2 	165 	332400

4 A 2 	165 	332490
A 7 	165 	332400
A 2 	165 	132400
A 7 	161 	312400
A 2 	172 	332400
A 1 	163 	132410
A 1 	167 	142400

4 A 1 	170 	342400
A 1 	165 	332400
A 1 	166 	132400

A A 1 	167 	332490
4 A 2 	166 	337400

A 1 	178 	332.400
A 1 	1 142 	332400
A A 1 	116 	332400
A A 1 	189 	312400
A 3 	192 	332400

NUAEIER OF
ACTIVE PP4S

2
1
2
2
1

7
C
1
1
1
1

2
• 2 •

2

2
2
2

1
1
2
3
?.
2
2
1
2

3
2

4

Figure 2.6: Performance Analysis of Sampling Monitor

(EYE) Measurements (S13)

21

A refinement of this type of monitor was later

developed with the PP sampling monitor KIK (L5) which

recorded data on the frequency and duration of system

(PP) programs, and individual channel activity. The

frequency of PP program calls was used to determine

Which system programs are most frequently called and

should therefore be made resident in main memory,

while less frequently called programs are stored on the

system disc. A similar analysis was carried out on IBM/

360 systems using the sampling monitor, CUE (B12). The

frequency of occurrence of supervisor routines (SVCs)

was measured, and the most commonly used routines were

made resident in core.

Rodriguez-Rosell and Dupuy have described how

a virtual machine dedicated to data collection was

implemented on the CP-67 system (R1). The monitor

communicates with the virtual machine supervisor, CP,

at regular intervals and CP passes to it a snapshot

of the system together with some cumulative and some

time-averaged variables. This enabled the installation

to determine how page fault rates, page stealing rates

and CPU utilisation varied with the mean multiprogramming

level, and hence to determine situations under which

thrashing occurred.

2.4.5 Performance Analysis using Event

driven Monitors

Event driven monitors are capable of gathering

data of a more detailed nature than sampling monitors,

although the cost of doing so may well be higher. The

level of detail can be such that it is possible to make

a detailed and accurate reconstruction of the Sequence

of events which occurred during a monitored period.

Internal monitors can thus be used for giving a very

detailed view of the performance of a system.

22

Examples of event driven monitors which can

gather data at a very fine level of detail are the

University of Texas CDC 6000 system internal monitor

(S4), the Generalised Trace Facility (GTF) provided

by IBM for the OS/360 and OS/370 systems (I2), and VM

Monitor for the IBM 370 Virtual Machine operating system (C2).

An event trace (i.e. the formatted output of the monitor,

see figure 2.7),can be very useful for determining

inefficiencies in system algorithms, or the cause of

unusual situations, for example, system hangups or

poor response times at certain times of the day. A

,good example of how an event driven monitor was used

for this purpose is given by Callaway (C3).

Designers of operating systems, as well as their

users, are interested in measuring the time taken to

execute frequently called supervisor modules, with the

objective of improving operating system performance. One

of the performance tools incorporated into the Multics

system (SI) was a package which recorded the time spent

executing selected frequently called supervisor modules..

For each selected module, the package recorded the

number of times the model was invoked and the total

execution time accumulated within each of a number of

ranges of execution times. Use of this package resulted

in the identification of inefficient supervisor modules

and led to a redesign of some of the modules.

2.5 	Performance Analysis of the Controlled Environment

2.5.1 Improving Computer System Performance

When a change is made to some part of the operat-

" ing system in an attempt to improve performance (e.g.

changing,a scheduling algorithr6,or when a system

configuration is enhanced,it is desirable to determine

what change in performance has actually taken place.

4

4

1DB 1, 	CIO 3
02 013 9966

CIO 3
CIO 3

: 0

. 0
IDE
	

CIO 3
1DB 1.
	

CIO 3
10003
10005 : 0

'1DB I 	CIO 3
1DB 1 	CIO 3
1DB 1 	'CIO 3
1DB 1 	CIO 3
1DB 1 	.4 CIO 3
1DB 1 . 	.CIO 3

. .0' 03 013 10022
1DB 1 . 	.CIO 3

10024',' 12 000 10024
. CIO 3
CIO 3

0

0960

0

CIO 3
0 02 014
(03 014
0 06 003

9981
9983
9986

0

06 000 99i€
CIO 3
CIO 3
CIO 3

0 . 02 001

CIO 3
CIO 3

. 02 003 9989

CIO 3
CIO 3
CIO 3
CIO 3
CIO 3
CIO 3

o

CIO 3

CIO 3.
CIO 3

•

RA+1 Calls.
CPU Changes' Del.Stk.Ent. 	pri PP2 	PP3 • PP4

08.41.37. 	3
1
2 3CPI 	9958 LOD 4
3 3CP0 	9958 LOD 4
4 1 1DB 	0. : LOD 4
5
6 LOD 4,
7
8. C10 	 9977 LOD 4
9 LOD 4
10
'11
12
13 3CPI 	9986 LCD 4
14 3CP0 	9987 LOD 4'
15 15 000
16 12 000
17 3 RCL 10017
18 • 3. 	' 	' 	10
19 'OIDL 10017
20 4NEW 10017
21 4 LDRP10018
22 . OIDL 10018
23
24 LDRP4
25 16 000
26 ' 3NEW 10029 LDRP4
27 3 RCL 10030 . LDRP4.

Figure 2.7: Event Trace Generated by Event Driven Monitor (S4)

24

Measuring performance before and after the change is

an obvious means of doing this. Sometimes the improve-

ment in performance is so great that a detailed analysis

is not required. More often,the change in performance

will vary with the workload and performance may be

improved in some circumstances and degraded in others.

Such situations are difficult to analyse in the normal

production environment, although statistical methods

for doing this will be discussed in section 2.6. Alterna-

tively, it is possible to virtually eliminate the fluctua-

tions that occur in the real environment, by using a con-

trolled environment, in which a model of the workload

is applied to the computer system. The same tools may

be used for measuring the performance of the controlled

environment as are used for the production environment.

2.5.2 Analysis of the Batch Controlled

Environment

The most common methods of creating a hatch con-

trolled environment are by means of benchmark or synthetic

programs. As pointed out in Section 2:3.2, it is very

important that the model of the workload be calibrated.

Joslin and Aiken have clearly pointed out the dangers of

using unrepresentative benchmarks with a revealing

example (J2).

Using a model of the workload provides a very

convenient means of comparing different versions of the

operating system. In addition it may be used for evaluat-

ing entirely different computer systems. This is a

frequently used method in computer system selection (G3, T3).

Using a batch benchmark which modelled the short

, lob subset of the CERN workload. the author experimented

with a Peripheral Processor and Channel Scheduling

mechanism which had been incorporated into the CDC 6000

system at CERN (G5). He showed that the new scheduled system

25

functioned effectively in situations of low and high

I/O activity and provided a more balanced and effective

scheduling of I/0 resources than the old unscheduled

system. For the performance analysis, the CDC Dayfile

was used to provide workload data, and the PP sampling

monitor KIK was used to collect performance data.

2.5.3 Analysis of the Interactive Con-

trolled Environment

With an interactive system a controlled environ-

ment may be created by using scripts (which are basically

interactive benchmarks) which represent a user terminal

session from login to logout (G6). Experiments may be

carried out by keeping the workload constant and vary-

ing system parameters or algorithms. Alternatively,

the system parameters may be kept constant and the work-

load varied in a measurable fashion. For example, the

effect of increasing the workload on throughput rates,

response times, CPU utilisation, etc. and the onset of

system saturation may be determined. If a batch 'workload

is also run, then the effect of increasing the interactive

workload on the performance of the batch workload may also

be determined (D4).

Gomaa and Lehman (G6, L2) have described how

a performance tool called the Stimulator was used to

apply a controlled interactive workload to a CDC 6000

Kronos system. Each Stimulator test consisted of a

fixed number of simulated terminals executing pregenerated

scripts. The interactive workload was increased in a

measurable fashion by increasing the number of simulated

terminals, and the performance of the system processing

the controlled workload was measured using the CDC

Dayfile. By this means, the onset of system saturation,

with degradation in throughput rates and response times, was

detected and the cause of the degradation analysed.

26

A tool such as the Stimulator has the additional

advantage in that it is capable of simulating a larger

number of terminals than actually exist on the system.

It may thus be used for predicting the effect on per-

formance of a greater interactive workload than is ac-

tually supported by the system in the production environ-

ment.

2.6 Performance Evaluation using Modelling Techniques

2.6.1 Application of Regression Analysis to

Computer System Performance Evaluation

Bard used regression methods to analyse performance

data collected by monitoring an IBM 360/67 running under

the CP-67 operating system (81, B2). Regression techniques

were used to analyse 'CP overhead', that is the time spent

by CP-67 in servicing user requests for system resources

of various kinds, e.g. CPU time, main memory and various

types of I/O operations. A multiple linear regression

model was used to relate the average CP overhead time

(dependent variable) to each of the system functions (in-

dependent variables) carried out by CP, so that the

fitted regression coefficients provided estimates of the

average CPU time spent servicing user functions by diffe-

rent parts of CP.

Watson (W4) applied regression techniques to the

analysis of accounting data, and in particular to evaluate

the change in performance due to the addition of 256K core

memory to a 360/65 computer system. Regression models

were constructed relating different performance measures

(dependent variables) such as average CPU utilisation and

average number of jobs processed per hour to various work-

load characteristics (independent variables). One of the

independent variables was a dummy variable which was used

to estimate the effect of the additional memory.

27

Waldbaum (W1, F3) used regression analysis tech-

niques for evaluating changes made to an APL system

running on an IBM 360/91 under OS/MVT. Multiple linear

regression models were built for a number of points on

the cumulative distribution function of the system res-

ponse time. The models were used to evaluate the effect

on system response time of reducing the average level of

multiprogramming and increasing the maximum workspace

size on disc.

2.6.2 Application of Trace Driven Simulation

Modelling to Computer System Performance

Evaluation

Simulation is the modelling technique which has been

used most frequently in computer system performance evalua-

tion. A simulation model is usually more realistic than

an analytical model, and is not constrained by the usually

artificial assumptions made for analytical convenience (G7).

The most interesting results in simulation modelling have

been obtained using trace driven techniques (C4) to repre-

sent the workload.

A trace driven simulation model of a CDC 6400 system

running under the SCOPE 3.2 operating system was developed

by Noe and Nutt (N3). The output of the model for each job

consisted of predictions of the job's progress through the

system. It is claimed that the model was able to satis-

factorily predict the performance of the system under two

extremes of workload situation, representing high and low

percentages of short jobs. The model was written in

Fortran and is said to be 50 times faster than the real

system.

Waldbaum and Beilner developed a trace-driven simula-

tion model of an IBM 360/91 running under the OS/MVT-LASP

system (W2). The model was written in PL/1 and is said

to process a whole day's computer activities in less than

one minute of CPU time. Two interesting features of the
model were:

28

a) Submodel Simulation

Submodelling is a means of structuring the model

by representing only part of a system or running

only part of a model, namely the submodel. This

is achieved by replacing the internal information

transmitted to a submodel, from other parts of

the model, with input information (W3).

b) The Calibration Methodology

Calibration of the model is described as the pro-

cess of tuning certain calibration parameters

and changing parts of the model's structure so

as to yield a good match between the model out-

put and the real world output for a selected set

of input data. Multiple linear regression tech-

niques were used during the calibration process

(35, B7).

2.7 	Conclusions

This chapter has surveyed the different tools and

environments for the measurement and evaluation of com-

puter system performance.

The evaluation of the three environments described

in this chapter is not mutually exclusive, but rather com-

plementary. If a model of the computer system is capable

of modelling the system's performance in a fraction of

the real world time, it is then possible to experiment with

a much wider range of system and workload situations.

Since a model is only an approximation to the real system,

the most promising predictions of the model (e.g. parameter

settings or scheduling algorithms) should be tried out on

the real system. Experimental versions of the system may

be prepared which can be run in a controlled environment

where a calibrated model of the workload (using benchmark

29

or synthetic programs) is applied to the different versions

of the system. Having identified the most promising

version of the system in the controlled environment, the

system changes may now be incorporated into the produc-

tion system. The performance of the production environ-

ment before and after the changes should be monitored to

enable the difference in performance to be evaluated.

Regression analysis techniques may be used to estimate the

change in performance in the normal production environment

by separating out the effect, on 'performance, of the

workload from the system modification.

30

CHAPTER 3: MODELLING OF COMPUTER SYSTEM PERFORMANCE

3.1 	Introduction

A performance model of a computer system is an

abstraction of the real computer system behaviour.

This chapter describes the main aspects of computer

system modelling and how they may be applied to the

evaluation of computer system performance.

Section 3.2 describes the main features of computer

system modelling. Section 3.3 describes three of the

main techniques of modellirig computer systems: queuing,

regression and simulation techniques. Methods of

_structured modelling of computer systems are described in

section 3.4. Section 3.5 describes methods of combining

simulation and regression techniques in a multilevel hybrid

modelling approach to the modelling of computer systems.

Finally, section 3.6 introduces a particular application

of the concepts presented, namely the modelling of the

Imperial College CDC 6000 Kronos system.

3.2 	Computer System Modelling

A computer system model to be used for the evalua-

tion of computer system performance abstracts the

behaviour of the real computer system, that is the

behaviour of the computer hardware, together with the

operating system. As input, the model requires an ab-

straction of the workload. As output, the model produces

a record of predicted computer system behaviour.

Model development is a complex process. There

are a number of steps involved in developing 'a model

of a computer system before it can be used for experimenta-

tion.

31

(a) Understanding of the system to be modelled.

(b) An abstraction process. This involves deciding

on the level of detail to be included in the

model.

(c) Logical design of the model.

(d) Implementation. This involves producing a

working model.

(e) Calibration. This process aims at reducing

the behavioural differences between the real

and modelled worldi, by making changes to the

model (B4).

(f) Validation. This process aims at determining the
domain of situations for which the model performs

with a given accuracy, for an established calibra-

tion (B4, B6).

(g) Experimentation. This involves using the model

in experimental situations which are different

from those used during calibration and validation.

For example, the model may be used to experiment

on the effect of changes to the workload, system

algorithms or parameters.

These stages of model development are likely

to be iterative. For example some deficiency

in the model may be discovered during validation. This

may be due to a logical design error in the model, which

may in turn be due to the system not being fully under-

stood. Consequently, this may require a correction to

the design error, modifications to the implementation, and

a further calibration, prior to resuming the validation

of the model.

32

3.3 	Modelling Techniques

3.3.1 Introduction

A performance model of a computer system is an

abstraction of the real computer system behaviour. This

abstraction may be in the form of a mathematical model,

which is a mathematical representation of the system.

Queuing models and regression models are two examples of

mathematical models. Alternatively, the abstraction may

be in the form of a simulation model, which is an algo-

rithmic representation of the system relecting system

structure and logical procedure.

A model of a computer system may be static, in

which case it may omit the recognition of time altogether,

describe a snapshot of the state of the system at a

moment in time, or model a steady state situation. A

-regression model is an example of a static model. On the

other hand, a model may be dynamic, that is it may explicitly

recognise the passage of time. A simulation model is an

example of a dynamic model.

3.3.2 Queuing Models

Queuing models are analytical models of computer

systems. In an analytical model, it is possible to deduce

a solution to the problem under study directly from its

mathematical representation CFI).

Queuing models of total computer systems usually

involve a number of simplifying assumptions which make the

model more amenable to mathematical analysis. The most

common assumption is that the probability of getting a new

request does not depend on how long ago the last request

was made, sometimes called the "memoryless" property (G7).

As a consequence of this assumption, the request inter-

arrival time distribution follows an exponential distribu-

tion, which assigns the highest probability density to the

smallest time interval of length zero. In many computing

33

environments, short values of inter-arrival times between

requests are unlikely, since these requests are often due

to human activity, and therefore the assumption is not

valid (G7). A further simplification sometimes used is

that of only analysing the steady state environment, and

of making the assumption that the workload does not vary

with time of day.

These assumptions tend to reduce the validity of

queuing models in computer system performance evaluation.

Queuing models have probably been of most use in modelling

subsystems, e.g. CPU and memory management (C5), and I/O

scheduling. Many analytical models have been developed with

the objective of gaining insight into the system being

modelled, rather than to evaluate system performance. Never-

theless, a few examples do exist of queuing models of total

computer systems which have attempted to relate the model

predictions to actual system performance (H2, W7).

3.3.3 Regression Modelling

3.3.3.1 	Regression Analysis .

Regression analysis is an empirical (i.e quantitative)

method for analysing workload and performance data. Like

many other empirical methods, it is a statistical method of

analysing data (G7).

In a large computer system, there are likely to

be many variables which are related to each other in

some manner and whose quantities are continually changing.

Often the functional relationship that exists between these

variables is unknown or is too complicated to be described

in simple terms. Regression analysis provides a means of

approximating to this complex relationship by some simple

mathematical function, such as a polynomial, which contains

the appropriate variables and approximates to the true

function over some limited ranges of the variables involved

(D5).

34

A regression model deals with the following problem.

Given a set of data containing the observations for several

input (independent) variables X1, X2 ... Xk and an output

(dependent) variable, it is required to fit the data by

means of the function:

Y = f(Xl, X2 ... Xk)

The function may have no physical meaning, but it may still

be a valuable means of estimating the value of the dependent

variable given the values of the independent variables (D5).

The functional relationship could be realised by

means of a linear model:

Y = a0 + 	ai X. 	 (1)
i=1

where a1, i = 0, 1, 	k are unknown parameters.

Given a set of m observations, where each observa-

tion consists of one set of values of all the variables in

the model:

(Y., X13 .' X23 Xk3 .) 	j = 1,2, 	in

then the parameters a0, al 	ak may be estimated by

means of least squares fitting techniques. These parameters

are called the regression coefficients.

A regression model of a computer system consists

of an equation similar to equation (1). Once the regression

coefficients have been determined, the model may be used

for predictive purposes. A vector representing a set of

values of the independent variables (X1 	Xk) is input to

the model. The model then computes the predicted value
of the dependent variable from equation (1).

35

3.3.3.2 	Regression Modelling of Computer

Systems

A regression model for computer systems performance

may be shown diagramatically as in figure 3.1. A workload

x, which consists of demands for the use of system resources

(e.g. CPU, I/O devices, memory, etc.) is applied to the

system (S2). The state of the system 0 has two components

8 = (81, 82)

where e1 describes the hardware configuration and 82 is a

set of control (tuning) parameters. The model predicts

the performance of the system y, according to the functional

relationship:

y = f(x, 0)

If, for a particular set of experiments, the state

of the system is constant, that is there is no change to

the hardware configuration and no change to the control

parameters, then the functional relationship reduces to:

y = f(x)

3.3.4 Simulation Modelling

3.3.4.1 Discrete Event Simulation

A computer system simulation model models the

system's real world behaviour by means of an algorithmic

abstraction of the system, reflecting system structure and

logical procedure. A simulation model is dynamic, that

is it explicitly deals with the passage of time, and

simulating a system provides a means of studying the

behaviour of a system over a period of time.

Abstraction

of Workload

x

Predicted

Performance

y

State of

System e

Computer System

36

Figure 3.1: Regression Model of Computer System

Performance

37

In a discrete event simulation model, changes of

states in the system are represented by a collection

of discrete events (Fl). Changes of state only take place

when an event occurs. Since the states of entities remain

constant between events, the simulation is able to skip

over the time between events. Consequently, at a moment

in simulated time when an event occurs, the appropriate

state changes are made to the model. Then simulated time

is advanced to the next event, and the process is repeated.

It is by this means that a simulation model is able to

'compact' time, and is thus capable of modelling a computer

system's performance in a fraction of the real world time.

3.3.4.2 	Computer 'System Simulation

A computer system simulation model models the

behaviour of the real computer system, that is the computer

hardware together with the operating system. As input, the

model requires an abstraction of the workload. As output,

the model produces a record of estimated computer system

behaviour (figure 3.2).

Workloads have sometimes been modelled using

probability distributions. However these often make unjusti-

fied assumptions about the workload. Alternatively the

workload may be modelled by means of an event trace which

is a set of workload characteristics obtained by monitoring

the actual computer system processing the normal production

workload (C4). Each job processed by the system is

represented by a vector, which -identifies certain characteris-

tics of the job. The vector is input to the model at the

simulated time of job arrival.

3.4 	Structured Modelling of Computer Systems

3.4.1 Problems in Modellinq Computer Systems

A number of factors have to be considered in

constructing a model. In particular, factors of prime

38

Abstraction

Model of

Predicted

Performance

of Workload

Computer System

Figure 3.2: Simulation Model of Computer System

Performance

39

importance are the cost of developing a model, the level

of detail incorporated in the model, the speed of the

completed model and its degree of accuracy.

The greatest drawback to simulation modelling is

probably its relatively high cost (L6). This is closely

linked to the problem of selecting the right level of

detail to be included in the model. If the level of

detail is too gross,the model may be unrealistic because

important details may have been aggregated to such an

extent that their effect is lost. On the other hand, if

the level of detail is too fine,the model may be too

expensive to use. A simulation model of a computer system

has been described which was so complex that one minute

of simulated time required 20 minutes of simulation (g1).

For some experiments, but not all, this level of

detail may be required.

In general, the more detail included in a model,

the more closely is the model likely to represent the

real world environment, and the more slowly is the model,

likely to function. Thus, a gain in the speed of the

model is likely to be at the expense of its realism.

3.4.2 Multilevel Modelling

A more satisfactory approach is to model the com-

puter system at several levels of detail. At each level,

a self-contained model of the system is designed, implemen-

ted, calibrated and validated. At the next level, the

model is refined further by adding more detail. Such an

approach is called multilevel modelling.

Zurcher and Randell pioneered multilevel modelling

(Zl) as a method of modelling a computer system design as

it evolved by the systematic expansion of detail; by this

means evaluation could be made an integral part of the

design process. With this approach, the model may represent

0

40

what is happening in any part of the system without

necessarily representing how it is happening. At each

level of the model, greater detail may be introduced by

gradually replacing what is happening in the model by

how it is happening.

3.4.3 Advantages of Multilevel Modelling

In computer system evaluation, there are a number

of advantages in adopting a multilevel modelling approach

over the approach of developing a model at a single level

of detail.

(a) Only as much detail need be incorporated into

the model as is required for the level of informa-

tion required and the aspect of the system under

study. The level of information required by the

installation manager,who may be interested in over-

all trends in the workloadris very different from

the systems programmer who might L-a interested

in optimising the memory scheduling algorithm.

The requirement for refining the model to a further

level by including more detail may be due to the

desire for greater accuracy through a more

realistic representation of the system,or the

desire to experiment with lower levels of the

system.

(b) In general, the less detail included in the model,

the more the saving in time and cost to build,

calibrate and validate the model and the more

economical the running of the model becomes. On

the other hand, the level of realism will be less.

(c) Experimenting with each level of the model is

likely to provide significant insight into and

understanding of the system. This will assist the

model builder in designing, calibrating and validat-
ing lower levels of the system.

.41

(d) 	The amount of workload data collected for input

to the model and performance data for calibration

purposes need only be what is required for the

level of the model currently being implemented.

Thus the quantity (and accuracy) of the data

being input to and collected by the model should

increase as the level of detailed representation

increases.

3.4.4 Submodelling

Submodelling (W3) is a means of structuring the

model into component parts; termed submodels. Each sub-

model has the property that it can run as part of the main

model, receiving inputs from and feeding its output to

other parts of the model. Alternatively, the submodel may

run independently of the remainder of the model, in which

case the inputs it would normally receive from other parts

of the model are replaced by predefined trace or statisti-

cal data.

The advantages of submodelling are:

(a) 	The model may be calibrated more readily and possibly

more accurately. Each submodel may be calibrated

separately and independently of other submodels.

(L) 	The validation of the model can be carried out more

readily and possibly more accurately. Each sub-

model of the model may be validated separately.

(c) Errors produced by various parts of the model may

be estimated more accurately.

(d) Experiments involving only part of a system may be

performed more efficiently and more accurately using

the appropriate submodel.

42

3.5 	Structured Modelling of Batch' Computer' systems

3.5.1 Introduction

In this section, the application of the modelling

methods described in the previous two sections to the modell-

ing of batch computer systems is considered. This involves

using regression and simulation modelling techniques in

a hybrid simulation/regression model. It also involves

applying multilevel modelling and submodelling methods to '

assist in modelling a computer system at several levels of

detail.

3.5.2 Performance Measures in Batch Computer

Systems

Before considering in more detail how modelling

methods may be applied to the performance evaluation of batch

computer systems, it is valuable to consider the alternative

measures of batch system performance.

In batch computer systems, throughput, turnaround

time and availability have been identified as three prime

measures of performance (CI). 	Turnaround time is usually

defined as the time between a user submitting his job at

a computer reception to the time he receives his output.

The main steps involved in this process are listed below and

shown diagramatically in Figure 3.3.

(a) The user submits his job to a computer reception.

(b) The job is read through the card reader and enters

the Input Queue.

(c) The job is scheduled for execution. During

execution, the job's output is spooled to disc.

(d) The job terminates.

43

Turnaround Time

Input Queue Elapsed Time 	Output Queue

Time Time

/s•-, .A

a b c 	d e f

submit 	job 	job 	job 	output 	user

job 	read in 	scheduled 	terminates 	printed 	gets

output

time

Figure 3.3: Steps in Batch Job Processing

44

(e) The job's spooled output is printed by a line

printer.

(f) The output is returned to the user.

As defined previously, the turnaround time is the

time between event a and event f. This definition of

turnaround time suffers from the fact that the times between

events a and b and events e and f respectively, are dependent

on operator intervention. As a performance measure, it

is more valuable to consider the time between event b and

event e, that is the time when the job is directly under

control of the computer system.

A batch job processed by a computer system passes

through three sequential phases:

(i) Input phase. This is the period spent by the

job in the Input Queue, that is the time

between event b and event c.

(ii) Execution phase. This is the period when the

job is in execution and competing with other

jobs for physical resources. It is the time

from when a job is scheduled for execution

(event c) to the time it terminates execution

(event d). This time is referred to here as the

elapsed time of the job.

(iii) Output phase. This is the period spent by

the job in the Output Queue, that is the time

between event d and event e.

The prime measure of batch system performance to be

used from now on in this thesis is the job elapsed time.

The reasons for this are:

45

(a) It is a measure of performance which is appreciated

by computer system users, installation managers,

systems analysts and systems programmers.

(b) Elapsed time is readily measurable on most computer

systems. In particular it was readily measurable

on the system under study.

(c) It is a convenient measure in the modelling of

computer systems at the job level, as it can be

related directly to the characteristics of indivi-

dual jobs, as well.as to the load on the system
when the job was run.

3.5.3 Multilevel Modelling of Batch Computer

Systems

In applying a multilevel modelling approach to a

batch computer system, let us first consider the highest

level model. It seems logical at this level to model

workload performance. The performance of batch jobs in

the system may be described entirely by means of a regression

model which models what happens to jobs when processed by

the system.

In the previous section, job elapsed time was chosen

as the prime measure of batch system performance. A

regression model of a batch computer system may be developed

in which the dependent (i.e. output) variable is the job

elapsed time. The independent (i.e. input) variables are

measures of the job's resource demands. Once such a model

has been calibrated and validated, it would then be capable of

predicting a job's elapsed time, given the job's resource

demands.

More detail may be introduced at the next level,

either by carrying out a more detailed regression analysis,

or by introducing simulation techniques. One method of

Ai

i

46

IIP

performing a more detailed regression analysis is by modell-

ing job step performance. A regression model could be

built which predicts job step elapsed time, given the job

step resource demands. Furthermore, different regression

models could be built for different types of job steps.

For example, self-contained regression models of the com-

pilation, link/loading, execution and utility job steps

could be developed. For a given job, the sum of the predic-

ted job step elapsed times is then the predicted job elapsed

time.

More detailed modelling may be achieved by further

regression modelling. Alternatively, simulation techniques

may be introduced and combined with the regression techniques

to form a hybrid model.

3.5.4 Hybrid Computer System Modelling

3.5.4.1 The Framework for a Hybrid Simulation/

Regression Model

A regression model is static, i.e. it does not

recognise the passage of time. A simulation model is dynamic

and is capable of modelling system structure and logical

relationships. It also allows the interaction between jobs

competing for limited resource to be dynamically modelled.

A hybrid model should be dynamic, although capable of using

the static features of a regression model.

One method of constructing a hybrid simulation/

regression model involves using a regression model whose

dependent variable is in units of time. In the previous

section, a regression model was suggested which could

predict a job's elapsed time, given the job's resource

demands as input. To produce a dynamic model, this

regression model is incorporated within the framework of a

hybrid simulation/regression model. Within this frame-

4

47

work, the regression model of job elapsed time in effect

becomes a regression submodel, since it is now a self-

contained part of the overall model.

A co-ordinating routine is introduced to provide the

simulation framework. In its simplest form, the hybrid

simulation/regression model is shown in figure 3.4. The

co-ordinating routine inputs a vector representing the job's

resource demands to the regression submodel at the simulated

time of job arrival. The regression submodel predicts the

job's elapsed time. The co-ordinating routine adds the

predicted elapsed time to the simulated time of job arrival

to give the predicted time of job termination. Thus by

imbedding the regression model within a simulation framework,

the static regression model is converted into a dynamic

simulation/regression model.

3.5.4.2 	Increasing the Level of Detail of the

Hybrid Model

Once the framework for incorporating a regression

submodel within a hybrid simulation/regression model has

been set up, the level of detail of the model may be in-

creased using the same framework. Increasing the level of

detail may be accomplished either by means of further

regression modelling, further simulation modelling or both.

Using further regression modelling, regression sub-

models of job step performance may be developed, as mentioned

in the previous section. One or more of these job step

submodels may be linked together by means of a co-ordinating

routine. A regression submodel is invoked at the time of

job step arrival to predict the job step elapsed time. This

estimate is then added on to the simulated job step arrival

time to give an estimate of job step termination time.

job's
resource resource
demands Regression

Submodel

48

M

1\

time t. 1

predicted
job elgpsed
time t I

AN.

time t. (=t.1+t e)

	

event i: Simulated time 	event j: Predicted
4 	 of job arrival 	time of job

termination

Simulated time

Figure 3.4: A Simple Hybrid Simulation/Regression
Model

49

As an example consider a hybrid simulation/

regression model with three regression submodels, a com-

pilation job step submodel, a link/load step submodel and

a job execution step submodel. Consider the passage of a

job with three job steps, compile, load and execute,

through the system (figure 3.5). At the simulated time

of job arrival,the co-ordinating routine inputs a vector

representing the job's compilation resource demands to

the compilation submodel, which predicts the job's com-

pilation time. The co-ordinating routine adds this esti-

mate to the simulated time of job arrival to give the

predicted time of job step termination. Next, the

co-ordinating routine inputs a vector representing the job's

link/load resource demands to the linker/loader submodel,

which predicts the linking/loading time. Finally, the

job execution step submodel is invoked to predict the

job execution time. The predicted time at the end of this

job step is then the predicted time of job termination.

3.5.4.3 Simulating Subsystems within the

Hybrid Model

Using further simulation modelling, different sub-

systems of the system may be simulated in more detail. By

this means system structure and logical procedure may be

introduced into the model. Furthermore, algorithms used

in the actual system may be simulated. For instance the

simulation of job and memory scheduling could be introduced

into the model. Such a model may only schedule a job for

execution if sufficient memory is available for it.

Consider the example of a multiprogramming system

with fixed size non-relocatable partitions as in IBM OS/360

MFT. The algorithms for job and memory scheduling in such

a system may be incorporated into the model such that a job

is only scheduled into an appropriate partition when a parti-

tion becomes free. Once a job has been scheduled into main

memory, a regression submodel (or a series of regression

predicted
link/load-1
ing
time

execu-
tion 	Execution

Step

Submodel
resource,

I demands

Linker/loader

Submodel

•

predicted Ilink/load
job compi-liresource
lation 	demands

time : Predicted time k link/load step
termination and
predicted time
execution step
commencement

compilation 	
resource
derria.nds__?

Submodel
	time

1

time t.: Simulated time of job
arrival and predicted
time compilation step
commencement

time t.: Predicted time compila-
tion step termination
and predicted time link/
load step commencement

predicted
execution

1

time t

Predicted time
execution step
termination and
predicted time
job termination

Compilation

Simulated Time

Figure 3.5: Hybrid Model with Three Regression Submodels
Ui

51

submodels) is invoked, as before, to predict the job elapsed

time. Clearly, this method may be extended to include

different memory scheduling algorithms and the simulation

of different subsystems.

3.6 	Multilevel Hybrid Modelling of the Imperial

College CDC 6000 System

The concepts presented in the previous sections have

been applied to the modelling of an actual computer system,

namely the Imperial College (IC) CDC 6000 Kronos system.

The system has been modelled at three levels of detail:

Level 1: The Workload Model

Level 2: The Load Adjusting Model

Level 3: The Memory Management Model

Each level consists of a self-contained model of

the system. The models are fast approximate models of the

execution phase of a batch job, that is from the time a

job is first scheduled for execution to the time it terminates.

The job elapsed time is used as the prime measure of per-

formance.

The first level model uses regression modelling

techniques entirely. A regression model is static and is

therefore not capable of dynamically adjusting its estimates

of the load on the system as each modelled job executes.

By combining simulation and regression techniques, the second

level hybrid model is capable of dynamically adjusting its

estimates of system load. At the thii.d level, more detail

is introduced, within the hybrid framework, by simulating

the memory management subsystem.

52

CHAPTER 4: THE IMPERIAL COLLEGE CDC 6000 KRONOS SYSTEM

4.1 	Introduction

A Control Data (CDC) 6400 system was installed

at Imperial College (IC) in 1971. The initial operating

system used was SCOPE 3.3. In summer 1972, this was

replaced by the Kronos 2.0 operating system. In the

early summer of 1974, a newer version of the operating

system, Kronos 2.1, was introduced. Later that summer,

the Imperial College Computer Centre (ICCC) was consider-

ably enhanced by the installation of a CDC CYBER 73 com-

puter system. Apart from a few differences, the CYBER 73

is architecturally very similar to the 6400.

This chapter describes the main features of the

Imperial College system. Section 4.2 describes the

structure of the IC workload. The main features of the

CDC 6000 architecture and system configuration are out-

lined in section 4.3. An overview of the Kronos operat-

ing system is given in section 4.4. The job processing

and memory scheduling aspects of the system are described

in more detail in sections 4.5 and 4.6 respectively.

4.2 	The Imperial College Workload

The CDC 6000 Kronos (C8, C9) system at Imperial

College supports four types of service:

(a) 	A timesharing service is provided by means of

interactive terminals linked to the Telex sub-

system (C9) which operates under Kronos. Ter-

minal users are able to create and edit files

stored on direct access devices; enter, edit,

compile and run programs; and submit batch

jobs to the system for subsequent execution.
...

* When both machines are referred to together in this

thesis, the term CDC 6000s will be used.

53

(b) Aicafeteriatservice is provided for short batch

jobs. The service has a dedicated card reader

and line printer situated in a room adjacent to

the computer room.

(c) A local batch service is provided for all cate-

gories of batch jobs outside the smallest (cafe-

teria service) category. The turnaround time for

batch jobs varies from a few hours to several

days depending on the job category and the load

on the system.

(d) A remote batch service is provided for batch jobs

of all categories. This is provided by means of

low speed remote job entry terminals linked to

the Export/Import subsystem which operates under

Kronos.

Batch jobs may fall into one of five job categories.

The category a job is placed in depends on the resources

required by the job. The resource limits for each cate-.

gory are shown in table 4.1,

Under Kronos 2.0, the CDC 6400 supported the batch,

remote batch and timesharing workloads. With the intro-

duction of the CYBER 73, the workload was divided between

the two machines. Most of the batch work and all the re-

mote batch work was run on the CYBER. The 6400 supported

the timesharing workload as well as some batch work,

mainly that generated by the terminal users. The two

systems ran independently of each other.

In June 1975, the locally developed multi-mainframe

software was introduced. This enables the two systems

to support a shared permanent file base.

54

Job Category

1 4 7 10 13

Resource Central Memory 24K 25K 30K 40K 49K

Lines Printed 768 1536 2048 3072 5120
* * *

CPU time(secs) 16 65 180 300 600

Magnetic tapes 0 2 3 3 4

Cards Read 768 2048 3072 3072 3072

Cards Punched 1024 1024 3072 3072 3072

In 6600 CPU seconds r.. 2.5x6400 CPU seconds

Table 4.1: Job Categories on the Imperial College CDC

Kronos System

Priority Level

7 6 5 4 3 2 1 0

Job 1 - - - P M J G A

Cate- 4 P O N M J G D A

gory 7 M L K J G E C A

10 J I H G D C B A

13 H G F E D C B A

Key: Priority levels: P highest, A lowest

Table 4.2: Job Classes on the Imperial College System

55

	

4.3 	The Imperial College CDC 6000 Computer System

The Imperial College CDC 6400 (C7) and CYBER 73 each

consist of:

(i) A Central Processor which executes user jobs.

(ii) 64k of 60-bit word Central Memory (CM), in

which user jobs are multiprogrammed.

(iii) 10 Peripheral Processors (PPs), each of which

has its own 4k 12-bit private memory. The PPs

perform all I/O tasks and most of the operat-

ing system functions. The PPs communicate with

the CPU via CM.

(iv) 12 data channels. Any PP may read or write

to any channel, under software control.

The main archi;:ectural difference between the

6400 and the CYBER 73 is the compare/move unit on the

CYBER. This processes additional character handling

instructions,which are unavailable on the 6400. These

instructions are made use of by some of the compilers and

run time I/O packages on the CYBER.

The 6400 also had 250k of 60-bit word Extended

Core Storage (ECS) attached to it, which is used as a

fast peripheral. When the CYBER was introduced, each

machine was allocated 125k of ECS, which is not shared.

Both 6000 machines are equipped with several disc

drives and magnetic tape units.

	

4.4 	The Kronos Operating System

4.4.1 System Monitor

In early CDC 6000 operating systems, the Nucleus

56

of the operating system, called Monitor, resided entirely

in a dedicated PP. In the Kronos system, the supervisory

duties are divided roughly equally between the dedicated

PP Monitor (PPMTR) and the Central Monitor (CPMTR).

CPMTR resides in Central Memory and is executed by the

CPU. In general, CPMTR provides a faster response to user

requests than the entirely PP resident Monitor. In this

paper, no further distinction will be made between CPMTR

and PPMTR; reference will be made instead to Monitor

(MTR).

MTR also controls the execution of system tasks by

the 8 pool PPs. (The tenth PP is dedicated to driving

the Dynamic System Display). Pool PPs are allocated tasks

to execute by MTR. When a PP finishes executing a par-

ticular task, it returns to the pool. Some of the tasks

are specifically requested by a user program, e.g. for I/O,

in which case the PP program CIO is loaded to service the

request. Other tasks are initiated by MTR to control job

processing. The Job !icheduler, 1SJ is called to schedule

jobs for execution and the Job Advancer lAJ is called to

initiate job and job step execution.

4.4.2 Control Points

In the Kronos system, Central Memory (CM) is divided

into a system area and user area. The system area holds

the Central Memory Resident (CMR), which consists of a number of

system tables, and Central Monitor. User jobs are multi-

programmed in CM.

Each job in Central Memory is assigned to a logical

entity called a control point. The control point is alloca-

ted various system resources to enable the job to be

executed. This includes a contiguous block of CM in which

the job resides. The Central Processor will be allocated

to the control point from time to time to execute the job.

57

Peripheral processors will be allocated to a control

point as required, to execute various tasks such as I/O

and to perform system functions such as job and job

step initiation. For each control point, there is a

corresponding block in CMR, called the control point

area, which holds information about the job.

The amount of CM allocated to a control point

may change during execution, as memory is allocated at the

job step and sometimes sub-job step level. Jobs may be

relocated in CM to provide room for other jobs. A job

may also be rolled out of Central Memory and forced to

release its control point, if a higher priority job is

scheduled in its place. ECS is used as a primary rollin/

rollout device with disc as a secondary device. When a

job is rolled out, the entire contents of its control point

are written out to the rollout medium, together with the

content of its control point area. The job is placed in a

Rollout Queue and will eventually be scheduled back. into

CM.

4.4.3 Subsystems

Some control points are used to carry out specific

system functions. One control point supports a spooling

program BATCHIO which uses its own dedicated PP to drive

the slow peripheral devices. A second control point sup-

ports the interactive subsystem TELEX which uses a dedica-

ted PP to drive the hardware multiplexor, to which the

interactive terminals are attached. A third control point,

supports the remote batch subsystem EXPORT/IMPORT which

again uses a dedicated PP to drive a second hardware multi-

plexor, to which are linked the remote batch terminals.

58

4.5 	Job' Processing on the Kronos System

4.5.1 Batch Job Management

A batch job submitted to the system must be in

one of five categories (table 4.1) depending on its

resource requirements. In addition, a user must specify

a priority level for his job, between zero, the lowest

level and 7 the highest. The Imperial College developed

Job Manager(ICQMAN) maps each job into a job class, based

on its category and priority, as shown in table 4.2 (W5).

All jobs, apart from J1 jobs input via the cafeteria

service, are then saved in the permanent file base.

Every file in active use by the system (input,

output, rollout and local files) must have an entry for

it in the File Name Table (FNT), which is part of CMR.

Before a job can be scheduled for execution by the Job

Scheduler, 1SJ, it must have an entry for it in the FNT.

At regular intervals, TCQMAN retrieves job, depending

on their job class, from the permanent file base and creates

FNT entries of type Input for them. All files of type

Input in the FNT constitute the Input Queue (which is not

a linked list) and are then available to 1SJ for job

scheduling. Eventually a job will be scheduled to run

at a control point.

4.5.2 Terminal Management

If an interactive user logged into the system is

typing a program or doing some simple line editing, he

makes use of facilities provided by the Telex subsystem,

and thus only imposes a relatively small load on the

system. On the other hand, if he wishes to compile or

execute a program interactively, then a much larger demand

is made on the system. For compilation or execution, an

entry is created for the interactive user in the Rollout

59

Queue. This looks to the system like a job with one, j b

step and is referred to here as a terminal job. The

Rollout Queue consists of all entries in the FNT of type

Rollout. All jobs in the Rollout Queue are available for

selection by the Job Scheduler, 1SJ. Eventually a job in

the Rollout Queue will be brought into CM to execute at

a control point. Thus a terminal job must compete for

system resources with other batch and terminal jobs.

4.6 	Memory Scheduling

4.6.1 Job Priorities

In spite of its name, the Job Scheduler 1SJ deals

with memory scheduling in addition to job scheduling. It

therefore selects jobs for execution from both the Input

(batch jobs) and Rollout (batch and interactive jobs)

queues.

1SJ bases its %decisions on the Central Memory

priority of the job. There are a set of installation

dependent priority parameters, namely the lower bound, upper

bound and entry priorities, associated with each job

origin. The job origin identifies whether the job origina-

ted from Batch, Telex or Export/Import.

A job may enter a given queue with an entry priority

which is between the lower and upper bounds for that job

origin. In that case, the job's priority is gradually aged

until it reaches the upper bound. If a job enters a given

queue with a priority outside the lower bound/upper bound

range, then its priority is not aged. When a batch job is

first entered into the Input Queue by the Job Manager

(ICQMAN), it will be given a CM priority according to

its job class. This priority may or may not lie within

the aging range.

60

1SJ bases its decision on which job to schedule

next, on a job's CM priority and the maximum memory

required by the job, as specified on the job card. If

necessary, 1SJ will roll out jobs of lower priority.

Once a job is rolled in, it is allocated a CM priority

equal to the upper bound priority of its queue and

origin.

4.6.2 Job Time Slices

As the Kronos system is primarily a timesharing

system, its algorithms are oriented towards providing a

fair allocation of resources. Consequently, each job

in CM is allocated two time slices, the values of which

depend on the job origin. These time slices set an upper

time limit on the use of two critical resources, CM and

CPU, that a job may use while resident in CM. Once a

job exceeds one of its time slices its CM priority is

reduced, usually to the lower bound priority of the Roll-

out queue for that jol., origin. The CM time slice is the

real time that a job is allowed to execute in CM for

before having its priority reduced. The CPU time slice

is the amount of CPU time a job is allowed to use before

having its priority reduced.

The CPU scheduling algorithm on the Kronos system

is basically a simple round-robin scheduling algorithm.

61

0

4

CHAPTER 5: THE CDC DAYFILE ACCOUNTING SUBSYSTEM

	

5.1 	Introduction

In CDC 6000 systems, accounting data is collected'

by the Operating System and stored in a disc file called

the Dayfile. The contents of the Dayfile are dumped to

magnetic tape at regular intervals by the operators.

Analysis of the Dayfile can provide much information about

the characteristics of the workload and overall throughput

rates.

The Kronos Dayfile was used as the source of work-

load and performance data for the evaluation and modelling

of the Kronos system described in this thesis. Section

5.2 describes the structure of the Dayfile. Section 5.3

describes the main aspects of the processing of the Dayfile.

Section 5.4 describes the three periods monitored and the

data collected. Section 5.5 describes the limitations of

the Dayfile for performance evaluation and modelling.

	

5.2 	Structure of the Kronos Dayfile

5.2.1 Kronos Dayfiles

The Dayfile is maintained by the system Monitor

(MTR). Any system program (central or peripheral processor),

may record a message in the Dayfile by making a request

to MTR. MTR adds the current time to the message before

recording it in the Dayfile. Dayfile messages are recorded

in chronological order (G4).

In the Kronos system, more than one Dayfile is

maintained. Two of the Kronos Dayfiles, the Account Day-

file and the System Dayfile, were used in this analysis.

These two Dayfiles are maintained for the whole system,

so that messages recorded in them relate to all batch

jobs and time sharing users processed by the system. A

62

third Dayfile, the User Dayfile is maintained for each

batch job. This contains all messages pertaining to

that particular job. In Kronos, a system program must

state which Dayfile(s) it wants a message to be recorded

in.

5.2.2 Usek Dayfile

A User Dayfile is maintained for each job execut-

ing at a control point. Three types of messages are

recorded in the User Dayfile.

(a) The job card and all control cards processed

by the system for that job.

(b) Error and information messages relating to each

job step executed.

(c) At job termination, data on the resource utilisa-

tion of the job is output.

The contents of the User Dayfile are printed with

the job's output after job termination. An example of

the User Dayfile is shown in figure 5.1.

5.2.3 Account Dayfile

This Dayfile records information which is mainly

of use for job accounting. Information is recorded for

both batch and time sharing users. An example of the

Account Dayfile is given in figure 5.2.

For both the Account and System Dayfiles, in

addition to recording th time the message was issued,

NTR also records the job name of the job for whom the

message was issued. The job name is a unique seven charac-

63

1.94, 09. 47. JOB (UMAC H09)
19.09. 50• T RAY NO. 	 HGI
19. 09• 51.30PNESR (INPUTIPOSTPRC)
19,09v 5 it (.,OPY C OMPLETF •
19.09. 52.REWIND (POSTPRO)
19.C9. 52.REPLACE(POSTPRC=POSTWO
19. C9. 55•F UN (S,I=POSTPRD)
19. 10t 14, C TIME 003. 765 SEC. MAY 1971*
19. 10.14.L IBFILE(DUICAT)
19 •10.18•OUILAT (F)
19.1C. 20• QUICAT DONE.
19.10.21•RU 	0.090 UNITS
15.10e 21. :U 	0.090 UNITS
19.11.1• 23.0 P 	3.972- SE.C•
19. 11.1, 23.DM 	0•026 KWH*
19• 10. 2301 S 	,0 6203 KPR.
19•11. 04•LP20 	• 749UM ACH0- 9 	*

Figure 5.1: Example of User Dayfile

0

64

ter name which is given to a batch job when it first enters

the system, or is associated with a terminal session when

a user first logs in (see figure 5.2). An eighth character

is added onto the end of the job name to identify the

origin of the job:

B - Batch job

T - Telex (terminal) user

E - Export/Import (remote job entry) job

S - System job

The data recorded for batch jobs in the Account Dayfile

is as follows:

(a) time a batch job is read through the card reader,

and the number of cards read.

(b) time a job commences execution. 	At this time,

a copy of the user's job card is recorded in

the Dayfile.

(c) time a job terminates.

The following job resource utilisation data is output

at job termination:

(d) CPU time used.

(e) An estimate of Central Memory utilisation:

the product of CM and CPU utilisation in units

of Kiloword hours (KWH).

(f) Disc physical records input or output.

(g) Magnetic tape physical records input or output.

(h) Time the job's output is printed, together with

the number of lines printed.

b terminated

	

J 	i
SP ' 	4
Si EC0077 	SITE ADDRESS
JCUMMAARSJ4.111-1) JLGC JC3
US 	LHA

4
AR54 	 7.-_1:

	

J 	 __.
SP 	4
Si EC0032 	- SITE ADDRESS
LP 	t;.844 KLN.
JObiUMEMN651J4ISP49T24,CM25;72,LC-20 MT
t) 	. J.FITZPATkIK- NUC.PDWER•
US 	UMEMN05

,I 	. 	4

	

SP 	4
LP 	0.253 KLN.

5.0 	t., f, H 	C C'. KW
VIREW~PIRIMMIREIONIIIIIIIIIIMMIME4'.

14.1 .25.00AUGA05. UN 	4.047 UNITS -
1L.17.25.0DAL6A0b. LP 	0.15C KLN.
i4.17.23.4L01057T. USER UMEHH74 LOGGED IN.
14.17.34.rh3An12T. USER UMENt'62 LOGGED IN.
14.17.47,!.00AbK5ME. USN ULIC1AF 	ASSIGNEE).
14.17.45.4LCIL571. USER phEMR74 L3G OFF.
14.17.49.i-LCI0571. VIVO 	0.1$8 UHARAAERS.
14.17.48.i:LCIe577. TTYI 	b.,521.4 CHARALTERS -' 17-'77-

14.17.49.0DACAAOE. LP 	4.366 KLN.
14.17.56.0CtCSAhE. CP 	. 	23.106 SEC.
14.17.56.0CV,SAMb. Lh 	0.140 KWH.
14.17.56.0GELSAME. KS 	U.536 KPR.
14.17.56.0LtUSAM6. UN 	6.24b UNITS -

14.1b.02.AFFY248E. LOGGFF UREAWCi.
14.16.02.0DADUBht. CP 	5.434 SEC.
14.16.02.0DALUEME. CM 	1.037 KWH.
14.1e.2.00A6UEME. hS 	• 	0.514 KPR.
14.18.,.32.00$-EU6h6. UN 	ts.u6l UNITS
14.1b.03.0DgCHA0b. Lk 	0.464 KCD.
14.1t.03.0LACHA0b. ST BC0034 	SITE ADDRESS
14.18.04.0DACHAOE. JUEIUMLAU52.
14.1t.L;5.00PUHAQS. US 	UHCAC52
114.16,.05.0U4GHADS. J 	i
14.1b.05.00i.UHAOS. SP 	4
14.16.1J.PWM73T. USER ZHAOC22 LOGGED IN.
1b.18.11.D0OLEAHb. OP 	1.345 SEC.
14.1C.11.00AbRAME. CH 	0.295 KWH.- 	-
14.1.8.11.0DAD'cAME. MT 	0.167 KPR.
14.1f1.11.0OPAMI-1. MS - 	As.1E6 KPR.
11=.18.11.0WEEAME. UN 	11.239 UNITS
1P./F.11.0UiUOAQE. LP 	(.376 KLN.
14.1t.13.LFSA05151_. USFit UHFKPfi5 LOG OFF.
t"1"liakEIII5kL"CE 1 =- iL„4.b.13.vFSAli541. hS 	p.uil KPli.

time job Job

'
issued , re/origin -Message

(.....;-..,,,-..,r _,...--0.-
14.17.03.00AYAM6. MS 	6.(156 KPR.
14.17.1<3.0UAAY4Mb. UN 	U.0C4 UNITS
14.17.03.000031I. USER UPECP07 LOG OFF.
14.17.03.gT00031I. LP 	21.594 SEC.
14.17.e3.P.100ti311. Lh 	I.U5.71 KWH. 	_
1.4.17.G3.IT000317. MS 	r.846 KPh.
14.17.133.000031T. TTYG 	1.312 CHARA;TERS.
14.17.03.t5.7000317. TIYI 	6.255 CHARALTERS.
1.4.17.1:4.00AUGAO. Lk 	0.313 IC:O.

SITE ADDRESS
1.14.17.6.0Tik0Up0E. JUtomEpplm

14.17.02.0DAUGAQS.
14.17.V6.00ALGAOS.
14.17.11.0D0bKEme.
14.17.1/.00AbKUNS.
14.17.13.0DAGKENS.
14.17.13.00Kbps.
14.17.13.0DASK6MS.
14.17.13.00Auu6RE..
14.17.13.00AtXACA.
14.17.13.0DA6UEM6.
14.17.13.00PUUEMb.
14.17.14.0DAbUBMS.
14.17.14.001bUEMS.
14.17.15.0GP0U6hS.
14.17.22.00PAYAME.

14.47.6.00i.UGAGR. ST ECTD34 	 Started
14.17.07.PES4g541. USQ4 UNPN25 LOGGED IN. 	 • 	.
14.17.vd.OUAL 140S. US 	UMEEE13 	_ ';':..%-..User logged in

16.16.13.0-SW,541. TTYU 	P.3-it CHARik:TFRS.
14.11-.13.tPSAA5La. MI 	ji.n31,.. UHARA27FRS.
14.1E.16.00ARKthb. LP 	0.651 SEC.
14.16.16.0DI-bK6mb. MS 	0.0:16 KPR.
10.1t.1b.0UALK8mt. PT 	U.Ct3 KPW.
14.16.23.00i.LIAQ6. Ll 	0.254 KCD.
14.18.2d.ODAUIA0t. Si EC0034 	SITE ADDRESS
14.1L.2.004LIAOL. Ju2(UNENH1b.J1)
14.1b.31.00P61AOS. US 	UMEMN1b
14.1u.31.0U4401A0S. SF 	4
14.1b.31.00AUIAQS. SP 	4
14.1t.35.1.44U0473T. USER ZHACt22 RECOVERED.
1h.1t.38.0DAUIA00. UP 	6.977 SEC.
14.18.3d.ODACIADE. MS 	E.197 KPR.
14.16.34.0DAuCA06. LP 	0.523 KLN.
14.1b.42.00A49ASS. UP 	35.b41 SEC.
14.1L.42.00AAOASS. Ch 	4.175 KWH.
1.4.10.42.COAADASS. hl 	6.v74 KPP.
14.1b.42.0OPADASS. MS 	1.9u4 KPk.
14.1b.42.00AADASS. UN 	0.342 UNITS.

•
User- ibgged:od

Figdre 5.2: Example of Account Dayfile

•

66

For an interactive user the following data is recorded

in the Dayfile:

(a) time user logged in

(b) time user logged out

The following resource utilisation data is recorded at

user logout:

(c) CPU time used

(d) Product of CM and CPU utilisation in Kiloword

hours

(e) Disc physical records input or output

(f) Characters input by user at teletype

(g) Characters output by system at teletype

5.2.4 System Dayfile

Messages recorded in the System Dayfile are of the

following type:

(a) All batch job steps processed and the time of their

initiation.

(b) All terminal commands executed at a control point

and the time of their initiation.

(c) All job steps executed by system jobs and the time

of their initiation.

(d) When Telex (the timesharing subsystem) is dropped

at the end of a timesharing session, it outputs

data to the System Dayfile on the characteristics

of the session.
•

11.55.29.NYATTA%. PASSWON
11.55.2'e.NYA1IACIE. GEI(MYLIB)
11.55.31.NYATIAOL. FUN(S)
11.55.310.YAlbAAI. 5)0F, 	•

CTIME nt6.217 SEC. '(AY 1971.
13.5E.33.hYpTIAOL. mFlEAfT)
11.55.33.1.YA1IAOL. LLAC(LCOOYLIb)
11.55.34.1\YA71ADE. EXECUTE.
11.55.36.AAARquEM. PSUT.0,c24.
11.55.38.hYPIIADE. FATAL EKkOk 	84
11.55.38.NY',17A0b. AENCI,Mp.L lERMINATION
11.55.3301IA0E. 	134 EiKOK (JElEGIED 8Y DUTFID
11.55.44.)-1Y11:4b1. eLoc4o.Pic1l,"2.
11.55.45.t.YA1iA0b. JU':(UMEmm1b,J1)
11.55.47.NYO)A0E. PASSWCF
11.55.47.1. (p7JAOL. GET(SAVARA)
11.55.48.A7N094qT. ePACK.4,GENJS.'
11.55.46.4ZWOU4670 PACK itimPLEIE.
11.55.49.AIYIP46T. PLUll 	—014400
11.55.504AYATJAOL. UPOglE(P=SAMAEA.Q)
11.55.50.kYAT)A0E4 KEADING INPUT
11.55.5u.NYATJA01:-. 	1 UPDATE EkxCES, JOB ABORTED.'
11.55.51.ACIY050. DISFUSE.k.Ut,S4VE=Fk1NISE.
11.55.57.1*0Y1C241. eLPF,330.334,EAS.
1.1.55.5.AA0A1,02m. rSUI-TOC7k.
11.55.53.Phk0, 727. ELPFILE-9,REFORM.
11.55.59.AZW00401. KKEDIT.AGENJS.
11.560U2s4LLYU5U1. cGfiTL.L T.
11.56.130, L40,17:57. eLPEIHYMCMY.'
11.56.13-.ADCY0347. CUMFASS,I=INDID.
13.56.13.AELYbSw4. FL ICAL SHOOT.
11.56.19.i.i4AA1U2h. M5OPT.L045.
11.56.2U.ASOY451. tl.,E(1,D9K,)=BDSIDE)
11.56.20.APDY(134T. PEL,45000.
11.56.22.1kYAImASS. X=OSTATUS(DO=NYAASB72)
11.56.22.NUTMASS. 	OSTA1US(D.J=NYA45B;)
11.56.29.NYAASBGE. JOb(UmFm4u110,1300,CM4G000,LC5000)
11.56.31.KYATHAFF. JLE(ltMEAbE3,J1)
11.56.31.NYAASGE. PASSWOh
11.56.31.NYASEGb. GET(OLOPL=PENAME)
11.56.3304210051. ZIA11.1S1.
11.56.33.hYAIHAPE. PASSWOF
/1.56.34.ASDYD451. 	C7IME = 	3669MS PSR LEVEL
11.56.34.ASOYQ451. 	CCKE NEEDED IS
11.56.35.0.PLY11347. cQmFrs5',1=1"010.
11.56.35.AAA002V. MSC-i700024.
11.56.35.0'LYV341. ASSEMFLY COMPLETE.
11.56.36.NYATHAPE. MNE(b

* E-
 B)

11.56.37.WWILA0b. JLE(ZmiMm581.11)
11.56.37.NYAILA0E-. PELLONIN
11.56.39.rYAILA01. PASSwOk
11.56.41.1.YAIHAPE. 	CTIME = 	233UMS
11.56.41.1.YA1HAPE. 	COKE NEEDED IS 	053237B
11.56.41.NYATHAPE. MAP(P)
11.56.41.NYAIHAPE. be
11.56.410.01,Yfi3rl. CPACK,LAD.
1.3.56.42.ADI-Y1,31.1. 	PACK COMPLETE.
11.56.42.10(A1LA06. MAP(PAFT)
11.56.43.hYATLAOL. MNF(:=2,E=1)
11.56.44.A0Y11, 247.
11.56.45.FELYU341. EKEIUMNILGO.
11.56.47.pCLY05L1.
13.56.49.NYAILAGE. 	CHM& = 	2758MS PSR LEVEL 1•
11.56.49.NYAILA0E. 	CekE NEEDED IS 	05b541E
11.56.51.ADI, Yt3UT. CLPFILtD.
13.56.F20, YATLADE. STOP
11.56.55.P6CY0341. ek, EWINC.INOID.
11.56.56.NUASE,GL. UPDATE (F)
11.56.58.A1l00711. ZGATLISTILC=E.
11.57.0.AELY0347. DCmPASS.1=N01011=n.
11.57.09.PEOY034I. ASSEMELY COMPLEIE.
11.57.40.hYATHAPE. TINE Limn. -
1.3.57.110,Yi.THAPE. FATAL ErvcCP 130.
11.57.11..YuINAnt. JOE(UMEEE1,Ji)
11.57.120,YAASEGE. FEMUING INFO.)
11.57.13.011.1NAOF. PASSWCk
11.57.14.FYAINADE. KNE(O,E=3,K=U,L=11)
11.57.17.i.AAAtIVem. MSOK1,(;.424.
11.57.1a.t1(W;E51. ElPF.OFULS1.
11.57.19.AOYIU241. eS0traIlJOEY,B.
11.57.22.NYAI1ADE. 	CTImE = 	1329MS P5k LEVEL 1
11.57.22.kUINA0b. 	COkE NEEDED IS 	6551548
11.57.24.17W00407. KFL.20000D.
11.57.250,YPTUD4.6. JCb(UmEE11,114/MI1)
11.57.2E.NUTOEME. PASSWOP

1

PSR LEVEL

Figure 5.3_; Example of System Dayfile

68

(e) 	System messages, such as initial dead start

messages, recovery dead start messages, and Telex

recovery messages.

An example of the System Dayfile is given in

figure 5.3.

5.3 	Dayfile Processing

5.3.1 Introduction

The Dayfile processing programs are a suite of

programs developed for the purpose of:

(a) Data reduction of the Account and System Dayfiles.

(b) Analysis of the Dayfile data.

(c) Preparing data for input to the models of the IC

Kronos system.

The Dayfile programs were developed over an extended

period of time by the author in conjunction with two M.Sc.

students, who developed some of the programs as part of

their projects. An overall diagram showing the relation-

ship between the programs and files used is shown in figure

5.4.

This section concentrates on the processing of the

Dayfile data for input to the models of the Kronos system.

The program referred to in this section take the raw

Account and System Dayfiles as input, and generate two

files, the B and J files. These files are input to pre-

processor programs for the models of the system.

1
HYBRID

MODELS

ACCOUNT SYSTEM

DAYFILE

SDA

69

KDR

B
T

BATCH

TELEX

TAPE

SDR CSA X

MERGE

v

PREPROCESSOR
FOR

HYBRID
MODELS

PREPROCTSSOR
FOR

REGRESSION
MODELS

REGRESSION

MODELS

Figure 5.4: Dayfile Processing - Program and File

Relationships
0

70

5.3.2 Account Dayfile Processing

5.3.2.1 Account Dayfile Reduction

The data reduction of the raw Account Dayfile

into a more useable form is carried out by a program
called Kronos Dayfile Reduction (KDR). KDR takes the raw

Account Dayfile as input and generates two files, a

Batch file and a Terminal file.

(a) The Batch (B) File

This file contains one record for each batch job

processed and is ordered by job termination.

(b) The Terminal (T) File

This file contains one record for each terminal

user and is ordered by user logout time.

A description of the data stored in the B and T

files is given next. A full description of KDR, which

was developed by J.L. Thompson is given in reference (T2).

The B File

The data collected for each batch job in the B file

is as follows:

(a) Time the job was read through the card reader.

(b) The number of cards read.

(c) Time (in seconds) the job was scheduled for execu-

tion.

(d) Job name.

(e) Job category.

(f) Maximum Central Memory requested (as given on JO

card).

(g) Number of magnetic tape drives requested.

71

(h) Number of permanent file accesses made.

(i) Time the job terminated, in seconds.

(j) CPU time used, in milliseconds.

(k) Central Memory utilisation in word-hours.

(1) 	magnetic tape physical records input or output.

(m) Disc physical records input or output.

(n) Time the job's output was printed.

(o) Number of lines printed.

(p) State field. Indicator whether the record was

accepted or rejected by the program. A record

is rejected if:

(i) a message was missing

(ii) messages were out of sequence

(iii) an item of data appeared to be in error.

The T File

The data collected for each terminal user in the

T file is as follows:

(a) Time user logged in, in seconds

(b) User's job name

(c) Port number user was logged in at

(d) Time user logged out, in seconds

(e) CPU time used, in milliseconds

(f) CM utilisation in word-hours

(g) Disc physical records input or output

(h) Number of characters output by system

(i) Number of characters input by system

(j) State field. Indicator whether the record was

accepted or rejected.

5.3.2.2 	Analysis of the System Load

The program CSA was developed to determine the

average batch and terminal load experienced by each batch

job during its execution phase. The average batch load
calculated is the average number of batch jobs executing

72

concurrently with a given job. The average terminal load

calculated is the average number of terminals logged in

while a given job was in execution.

The program also calculates the average batch

and terminal loads over fixed time intervals (e.g. 5 or

15 minutes). The average batch and terminal loads over

a whole session are also calculated.

As no record of job rollin or rollout is maintained

by the Dayfiles, the average batch load is a measure of

all jobs in the execution phase competing for system

resources. They may either be resident in Central Memory

(CM) or rolled out to secondary storage.

CSA uses the B and T files prepared by KDR as in-

put. CSA makes use of the job start and termination

- times from the B file, and the terminal login and logout

times from the T file. CSA outputs the X file which has

one record for each batch job containing the average

batch and terminal loads during the job's execution.

CSA was developed by P.G. Jones and is described

fully in reference (J1).

5.3.3 System Dayfile Processing

The System Dayfile Ieduction program, SDA, takes

as input the raw System Dayfile and outputs three files.

(a) 	BATCH

This file has one record for each batch control

card (equivalent to a job step) processed by the system.

The initiation time of the job step and the jobname of

the job it originated from are recorded in the file.

73

(b) TELEX

This file has one record for each terminal

command (executed as a job step at a control point) pro-

cessed. The initiation time of the command and the job

name of the terminal user session it originated from are

recorded in the file.

(c) TAPE

All System Dayfile messages relevant to magnetic

tape processing are recorded in this file.

A second analysis program, SDR, uses the three

files prepared by SDA and generates the Y file which

contains one record for each batch job containing:

(a) The number of control cards (job steps) in each

batch job processed.

(b) The number of batch job steps initiated by the

system for batch jobs executing concurrently,

with a given batch job. This provides a measure

of batch activity.

(c) The number of terminal commands whose execution

was initiated during a given job's time in the

execution phase. This gives a measure of terminal

activity.

A third program, MERGE, merges the X file genera-

ted by CSA and the Y file generated by SDR into one file

called the J file. The J file also contains one record

for each batch job and is ordered by job start time.

In addition to items (a) - (c) from the Y file,

the J file also contains the following items from the X

file:

74

(d) The average batch load experienced by a job

during execution.

(e) The average terminal load experienced by a job

during execution.

The three programs, SDA, SDR and MERGE were

developed by P.G. Jones and are described fully in

reference (J1).

5.4 	The Dayfile Data Collected

The Dayfile data used for the performance evalua-

tion and modelling of the IC system, was collected during

three separate periods between July 1973 and April 1975.

(i) The first period was in July 1973. The morning

and afternoon sessions of the 16th and 18th July were

monitored on the CDC 6400 running the Kronos 2,0 operat-

ing system. Only the contents of the Account Dayfile

were collected. KDR was used to process the Account

Dayfile. Another program was written to extract measures

of terminal loading averaged over fifteen minute intervals.

No measures of batch loading were used in the analysis

of this period.

(ii) The second period was in the spring of 1974. Four

morning sessions (20th May, 12th, 17th and 18th June)

and two afternoon sessions (17th and 18th June) were moni-

tored on the CDC 6400 running the Kronos 2.0 operating

system. The contents of both the Account and System Day-

files were collected. All the programs described in this

chapter were used for the Dayfile reduction and analysis.

(iii) The third period covered the first part of 1975.

Two sessions in January 1975 (the morning of the 27th and

the afternoon of the 30th) and two sessions in April 1975

75

(mornings of the 28th and 30th) were monitored on the

CYBER 73 running the Kronos 2.1 operating system. The

contents of the Account and System Dayfiles were collec-

ted and analysed.

5.5 	Limitations of the Kronos Dayfile for Perfor-

0, 	mance Evaluation and Modelling

The CDC Dayfile is primarily an accounting tool,

and consequently the data gathered is oriented in that

direction. The data collected' is primarily at the

macro (job) level. Analysis of this data can provide much

valuable information about the characteristics of the

workload and on overall throughput rates. In particular,

it can provide:

(i) A detailed workload profile of the system. For

example, the distribution of jobs by their

resource (CPU, Memory, I/O) utilisation or com-

piler usage.

(ii) system throughput rates. For example, the mean

and standard deviations of elapsed time for

different classes of jobs at different times

of the day/month/year.

(iii) Information on peak demands and loads on the

system. For-example, the number of terminal users

logged in, length of job input and output

queues, the average CPU utilisation over a whole

session and its distribution between, for example,

the batch and timesharing workloads.

Examples of Dayfile analysis are given in (G5),

(G6), (L4) and (S10).

76

Accounting data has been used in the past in

computer system modelling. The CDC Dayfile was used as

the source of workload and performance data in simulat-

ing a CDC batch computer system (N3). The accounting

subsystem on IBM OS/360 systems, the System Management

Facility (SMF) (13) was used as the source of data for

simulating OS/360 systems (W2).

There are, however, many disadvantages to using

the Kronos Dayfile as the only source of workload and

performance data for the evaluation and modelling of

the IC Kronos system. This is in part due to the nature

of the Dayfile, but also because the Kronos Dayfile is

more limited, in the amount and type of data collected,

than the Dayfiles of other CDC computer systems, e.g.

the CERN SCOPE computer system (L4). It is also consider-

ably more limited than the IBM SMF package, which collects

data at the job step level (13).

The principle limitations of the Kronos Dayfile

are:

(a) Data is collected at the job level for batch jobs

and the session level for terminal users. For

batch jobs the job start and end times are recorded;

and the jobs resource utilisation is recorded at

job termination. For a terminal user, login and

logout times are recorded and the user's resource

utilisation is recorded at logout time.

Consequently for both batch jobs and terminal users,

no indication is given of the distribution of

resource utilisation over the job or session's

lifetime. This makes it difficult to effectively

analyse the performance of the batch workload. It

makes it virtually impossible to analyse the perfor-

77

mance of the timesharing workload. This is because

a terminal user can spend large portions of the

session thinking or doing trivial (in their demand

on the system) operations such as typing in a

program, followed by bursts of activity such as

compilations and executions.

(b) Although the initiation of each batch job step and

terminal command is recorded in the System Dayfile,

no indication is given of the duration of the job

step, nor of the resources used by the job step.

Consequently no serious attempt can be made at ana-

lysing performance at the job step level. Similarly,

the system can only be modelled at the job and not

the job step level.

(c) No indication whatsoever is given of rollin/rollout

activity. Thus, although a job's start and end

times may be determined from the Dayfile, there is

no means of finding out if and when a job was

rolled out, for how long and for what reasons. In

a dynamic system like the Kronos system, this is a

severe limitation.

(d) The available measure of CM utilisation is crude.

At job termination, a space/time measure is recorded

in the Dayfile. The figure is computed for each

period when the CM allocated to the job is constant

by multiplying the memory allocated with the CPU

time used. This figure is summed for the whole job

and converted to Kiloword-hour units.

Dividing the Kiloword-hour utilisation by the CPU

utilisation gives an estimate of the average memory

used by the job during execution. This measure is

in many cases not accurate because:

78

(i) Kiloword-hours is not a suitable unit for

small jobs: if the CPU time is small, then

the value of Kiloword-hours recorded (and

hence the estimated average CM) is zero.

Units of word-hours or Kiloword-seconds

would be more suitable.

(ii) If the CPU utilisation varies widely at

different stages of the job, then the esti-

mate of average CM is biased towards memory

sizes for which large CPU times were

recorded.

(e) The I/O measures are crude. The total number of

physical records transferred, which is the only

value of I/O activity recorded, gives no indication

of how many I/O requests were made, nor how long

the requests took to be serviced. In addition, no

indication is given of the channels used, channel

time consumed, nor of peripheral processor activity.

(f) The time at which system jobs commence execution is

not recorded in the Dayfile. Systems jobs have

priority over all other jobs for the central processor,

consequently the execution of system jobs can delay

other jobs.

(g) No indication is given of overall system activity,

for example when the system is heavily utilised,

CPU bound or I/O bound.

5.6 	Conclusions

The main effects of these limitations on the

performance evaluation and modelling of the Kronos system

are:

79

(a) Timesharing Subsystem

The data available is insufficient to allow an

effective performance evaluation of the time sharing

subsystem. Neither is the data sufficient to allow the

timesharing subsystem to be modelled.

(b) Batch subsystem

The data is sufficient to allow an attempt to be

made at a high level performance evaluation and modelling

of the batch subsystem. Hos;7ever, this can only be

carried out at the job and not at the job step level.

80

CHAPTER 6: REGRESSION MODELLING OF THE IMPERIAL COLLEGE

SYSTEM

6.1 	Introduction

This chapter describes the first attempt at the re-

gression modelling of the Imperial College system. The

implementation aspects of the regression analysis are des-

cribed in section 6.2. An introduction to the regression

models is given in 6.3. The models of the short and long job

workloads are described in 6.4 and 6.5 respectively. The

models are assessed in section 6.6. Appendix A presents an

overview of multiple linear regression analysis and then

describes the Forward Selection Regression procedure which was

used in this analysis.

6.2 	Implementation Aspects of Regression Modelling

6.2.1 Introduction

The data used for constructing the models was de-

rived from the Kronos Account and System Dayfiles as des-

cribed in Chapter 5. The B and J files are input to a

preprocessor program which merges and sorts the data into the

appropriate form for the Forward Selection Regression Program.

The framework for the program was written by the author.

The program uses a number of subroutines from the IBM

Scientific Subroutine package (I1), which has been converted

to run on CDC 6000 systems.

6.2.2 Preprocessing

The Dayfile processing programs take as input the

Kronos Account and System Dayfiles for a particular session

and output two files, the B and J files. The B file, which

is ordered by job termination, consists of a job summary

record for each job processed in the session. Each summary

record holds measures of the resources demanded by the job

81

during its execution. The J file, ordered by job commence-

ment, contains various measures of the load on the system

during each job's lifetime.

The B and J files are input to the Preprocessor

which merges and sorts the two files. The Preprocessor will

output a number of different files depending on the input

parameters specified. Each file consists of a set of obser-

vations, where each observation (one per job) consists of

a set of job characteristics. These are listed in section '

6.3.2.

The different output files are:

(i) The All Jobs File which contains an entry for every

job processed in the session.

(ii) The Short Job File which contains an entry for every

short job (Jl category) processed.

(iii) The Long Job File which contains an entry for every

long job (non-Jl category) processed.

(iv) The Long Tate Job File which contains an entry for

every long job processed that used magnetic tapes.

(v) The Long Non-Tape Job File which contains an entry

for every long job processed that did not use

magnetic tapes.

These files are in the appropriate format for input to the

Forward Selection Regression Program.

6.2.3 The Regression Program

A block diagram showing the overall structure of

the Forward Selection Regression Program is shown in figure

6.1. A short description of each routine follows:

DATA

SELECT

MAIN

MSTR
*

PLTRES

**
GRAFIT

STPRG
*

STOUT

KOLMO

• • 	 A 	•

* IBM Scientific Subroutine Package 	** I.C. Program Library

Figure 6.1: Block Diagram of Forward Selection Regression Program

83
MAIN
	

is the main routine. Its main function is to co-

ordinate the execution of the other routines.

DELOBS is called by MAIN if any observations are to

be excluded from the run. DELOBS sets up a

vector of observations to be excluded.

CORRE • - is called by MAIN to calculate the means, stan-

dard deviations and simple correlations co-

efficients of all the variables.

DATA 	is called by CORRE to read the file of workload

data prepared by the Preprocessor. The file

contains the set of observations (one observa-

tion corresponds to a job) which are to be

fitted. DATA makes use of the deletion vector

set up by DELOBS to exclude unwanted observa-

tions for this run.

SELECT is called by DATA to prepare any second order

independent variables as required e.g. CPU2 or

CPU*DPRU terms. (see section 6.3.2).

MSTR 	is called by MAIN to carry out some matrix

manipulation prior to calling STPRG.

STPRG performs the forward selection regression pro-

cedure as described in Appendix A, The

criterion for stopping the selection is whether

R2 has been improved by a specified amount,

which is an input parameter to the program.

STOUT is called by STPRG to output the results of each
step of the forward selection procedure.

KOLMO is called by MAIN to perform a Kolmogorov-Smirnov

one-sample test on the residuals (SS). This

tests the hypothesis that the residuals are nor-

mally distributed (Appendix A).

84

GRAFIT is a plotting routine. It is called by MAIN

to plot the residuals against the estimated

and observed values of the dependent variable.

PLTRES is called by MAIN if further plots are required.

The residuals and the dependent variable are

plotted against specified independent variables.

GRAFIT is called to do the plotting.

CORRE, MSTR, STPRG and KOLMO are subroutines in

the IBM Scientific Subroutine Package. GRAFIT is a sub-

routine in the Imperial College ICLIB program library.

6.3 	Early Regression Models of the Imperial College

System

6.3.1 Introduction

The initial attempt at the modelling o the Kronos

System involved building regression models of the batch

workload.

For the reasons given in Chapter 3, the job

elapsed time was used as the dependent variable. The

independent variables were of three types:

(a) Variables representing a job's resource demands.

(b) Variables representing measures of the overall

load on the system. In this initial analysis,

no variables relating to the batch load were

available.

(c) A variable identifying the job class of the job.

85

Initially, models were constructed of the total

batch workload. Models were then constructed of classes

of jobs in the workload. The classes described here are

the short (J1) and the long (non-J1) classes of batch jobs.

The class of long jobs was then classified further into

jobs which used magnetic tapes and jobs that did not.

The workload data used for building the models was

gathered over four sessions on two separate days, the 16th

and 18th July 1973. On each day there was a morning and

afternoon session, separated by a system session. All the

values of the dependent and independent variables used in

building the model were extracted from the Account Dayfile

using the program KDR (see 5.3.2.1). The System Dayfile

was not used at all in this initial analysis.

6.3.2 The Independent Variables

In the construction of every model, a set of inde-

pendent variables were available for selection by the

Forward Selection Regression Program. The criterion for

stopping the selection was then the inclusion of a new

variable improved R2 by less than a specified amount, e.g. 1%.

The independent variables were:

a) Job's resource demands:

(i) Maximum CM requested (MAXCM)

(ii) Average CM used (AVCM)

(iii) Number of magnetic tapes required (NMT)

(iv) CPU time (CPU)

(v) Word hours (product of CPU time x CM used) (WH)

(vi) Disc physical records input or output (DRRU)

(vii) Magnetic tape physical records input or output (MTPRU)

(viii)Number of permanent file requests (NPFREQ)

b) Measure of interactive load (averaged on a 15 minute basis):

(1) 	Average terminal load while job was in execution

(AVT) (average number of terminals logged in).

86

(ii) An approximate estimate of the interactive

CPU demand per terminal hour (CPUSPH)

c) Class of job within workload

(i) 	Job Category (JCL)

Initially models were constructed for each of the

four samples. In cases where different samples were

merged, two dummy independent variables were used whose

coefficients,if significant, would indicate a dependency

on the day or time of day when the jobs were run.

6.3.3 Analysis of the Workload

The main features of the batch workload for the

four sessions are displayed in table 6.1. The short job

workload (Jl jobs) accounted for over 80% of the jobs

processed in all four sessions. However the CPU utilisa-

tion of the short job workload was much less, varying

from 24% in the 16/7 a.m. sample to 56% in 18/7 p.m. sample.

The mean CPU time for short jobs varied from 4.6 seconds.

to 5.6 seconds. The mean CPU time for long jobs was

much larger, varying from 26 seconds, on 18/7 p.m. to 108

seconds on 16/7 a.m.

It is thus clear even from this superficial study

of the workload that the short jobs though much larger

in number, in general consume, considerably less resources

than the large jobs, which are few in number. These

characteristics are fairly typical of university computing

environments.

The characteristics of the short and long job

workloads are shown in tables 6.2 and 6.3 respectively..

87

Table 6.1: Characteristics of the 1973 Batch Workload

Class Characteristic 16/7/73

a.m.

18/7/73

a.m.

16/7/73

p.m.

18/7/73

p.m.

All Jobs number of jobs

Total CPU time

(seconds)

Mean CPU time

432

7179

487,

4390

723

8685

811

6950

(seconds) 16.6 9.0 12.0 8.6

Short Jobs
■

number of jobs

percentage of

378 433 594 692

all jobs 87.5 89.0 82.0 85.3

Total CPU time

(seconds) 1739 1990 3085 3880

Mean CPU time

(seconds)

percentage of

batch CPU time

4.6 4.6 5.2 5.6

(seconds) 24.2 45.5 35.8 55.8

Mean elapsed

time (seconds) 23.8 34.8 32.0 43.0

Long Jobs number of jobs

percentage of

54 54 129 119

all jobs 12.5 11.0 18.0 14.7

Total CPU time •

(seconds) 5440 2400 5600 3070

Mean CPU time

.

(seconds)

percentage of

batch CPU

108.0 44.8 43.5 25.8

time 75.7 54.6 64.5 44.2

Mean elapsed

time 	(seconds) 865 590 767 396

_____,

88

Table 6.2: Characteristics of the 1973 Short Job Workload
(Four Samples)

16/7 a.m. 18/7 a.m. 16/7 p.m. 18/7 p.m.

Elapsed time(secs)m. 23.8 34.5 32.0 43.0

s.d, 49.5 42.0 55.4 51.7

CPU time 	(secs)m,
s.d.

4.6

5.3

4.6

5.2

5.2

5.2

5.6
5.2

Word hours 	m,

s.d.

disc records trans-

ferred 	(p.r.u.)m.

21.5

22.6

243.9

22.1

24.3

262.4

25.9

25.3

324.0

27.2

25.9

314.1

s.d. 286.2 366.0 342.4 469.0

terminal load 	m,

_s.d.

16.6

3.2

23.9

7.2

19.0

5.3

19.2

8.7

Number of permanent

file requests 	m. 2.7 2.2 2.4 2.4

s.d. 6.3 1.5 1.5 1.8

Number of short jobs 378 433 594 692

Key 	 mean

s.d.: 	standard deviation

p.r.u.: physical record units

89

41

Table 6.3: Characteristics of the 1973 Long Job Workload
(Four Samples)

16/7 a.m. 18/7 a.m. 16/7 p.m. 18/7 p.m.

Elapsed time(secs)m. 865 590 767 396

s.d. 1595 1122 1771 1131

CPU time (secs)m. 108.0 44.5 43.5 25.8

s.d. 254.0 128.0 127.0 65.4

Word hours 	in. 586 295 242 133

s.d. 1582 922 740 376 	'

Disc records 	(p.r.u)m 2723 1223 1663 907

s.d ►8973 2398 4515 1635

Tape requests 	m,

s.d.

0.4

0.5

0.4
0.6

0.4
0.5

0.2

0.5

Terminal load 	m,

s.d.

17.5

3.6

20.0

11.3

15.4

7.2

19.2

6.5

Number of long jobs 54 54 -129 119

Number of tape jobs 20 17 54 24

Number of non-tape

jobs 34 35 	• 75 95

Number of J4 jobs ' 47 47 93 107

Number of J7 jobs 7 7 36 12

Key: 	mean

s.d.: 	standard deviation

p.r.u.: physical record units

90

w

6.3.4 Regression Models of the Total Workload

Regression models of the total workload were con-

structed for each of the four samples. These are dis-

played in figure 6.2. In each equation, the order of

the independent variables, from left to right, represents

the order in which these variables were selected by the

Forward Selection Regression procedure.

In three of the four models (16/7 a.m., 18/7 a.m.

and 18/7 p.m.) over 80% of the variation (R2) was explained

by the model, and in each case WH made the most signifi-

cant contribution. The values of the regression coeffi-

cients of WH, however, vary considerably. In the fourth

model (16/7 p.m.), the fit is much poorer, and the variable

making the most significant contribution is DPRU. This

suggests that some heavily I/O bound jobs were dominating

- this sample. In none of the samples, did the independent

variables representing terminal load make a significant

contribution.

Analysis of the residuals revealed that most of

the residuals were negative and comparatively small in

magnitude. However, a smaller number were positive and

much larger in magnitude. In particular, the large

positive residuals occurred for jobs with large elapsed

times. Furthermore, the estimates for the dependent

variable, namely job elapsed time, were negative for a

large number of short jobs.

Thus, in spite of the large R2, the models appeared

unsatisfactory for a number of reasons. Firstly, the

models were inconsistent, showing large differences in

the variables selected and in the values of the regression

coefficients. Secondly, the large number of negative

estimates meant that it was unrealistic to expect this

type of model of the total workload to be a satisfactory

91

Figure 6.2: Regression Models of the Total Workload

16/7/73 a.m. sample - 432 observations

= -316 + 0.8 WH + 310 JCL + 0.02 DPRU

F = 1202 s = 205 	R2 = 0.89

16/7/73 p.m. sample - 723 observations

Y = -2808 + 0.2 DPRU + 0.11 MAXCM + 0.63WH + 388 NMTS

F = 222 	s = 535 	R2 = 0.55

18/7/73 a.m. sample - 487 observations

Y = -1052 + 2.9 WH + 285NM1S- 15.4 CPUT + 0.04 MAXCM

+ 0.42 MrvIZU + 133 JCL

R2 = 0.81

18/7/73 p.m. sample - 811 observations

Y = -54 + 2.3WH + 0.11 DPRU + 0.63 MTPRU

F = 1257 s = 190 	R2 = 0.82

key: 	Y: Job Elapsed time (dependent variable)

Independent variables : Key in section 6.3.2

R2 : proportion of variation explained by model

s : standard error of the residuals

F 	F statistic

0

92

means of modelling short jobs. Thirdly, the large posi-

tive residuals meant that, for some jobs at least, a large

amount of the variation was unexplained. It was therefore

decided, in the first instance, to classify the workload

into long and short job workloads and build regression

models of each.

6.4 	Regression Models of the Short Job Workload

6.4.1 Models of Individual Sessions

The short job workload consists of all jobs in

the Jl category. The characteristics of the short job

workload for the four samples is shown in table 6,2.

Regression models were constructed for each of the four

samples and are shown in figure 6.3. A regression model

was also constructed using data pooled from the two

morning samples, and is shown in figure 6.4.

Figure 6.3 shows that the amount of variation

explained by the models, R2,varies from as little as 9%

on 16/7 p.m. to 50% on 16/7 a.m. The models were con-

sidered unsatisfactory because of this large unexplained

variation. Furthermore, the models are substantially

different, with different variables and different values

of regression coefficients.

6.4.2 Analysis of Residuals

An analysis of residuals shows that the plots of

residuals against the job elapsed time (the dependent

variable),for the different models,all display similar

characteristics. As an example, consider the residual

plot against predicted job elapsed time for the 18/7 a.m.

model, which is shown in figure 6.5. This shows that

93

S

Figure 6.3: Regression Models of the Short Job Workload
(Individual Samples)

16/7/73 a.m. sample - 378 observations

Y = 289 + 4.3 NPFREQ + 6.5 CPUT - 0.01 MAXCM - 0.8 WH.

F = 94 s = 35.1 R2 = 0.50

16/7/73 p.m. sample - 594 observations

Y = -15 + 0.6 WH + 1.7 CPUSPH
F = 53.0 s = 28.3 R2 = 0.09

18/7/73 a.m. sample -'433 observations

Y = 13.7 + 0.05 DPRU + 0.39 WH

F = 81.6 s = 36 R2 = 0.28

18/7/73 p.m. sample - 811 observations

Y = 4 + 0.3 DPRU + 2.9 CPUT + 5.6 NPFREQ

F = 92 s = 43.8 R2 = 0.29

Figure 6.4: Regression Models of the Short Job Workload
(Combined Morning Samples)

No. of observations = 811

Y = -5.2 + 4.2 NPFREQ + 5.1 CPUT + 0.03 DPRU + 12.5 DAY
- 0.6 WH

R2 = 0.37

For key refer to figure 6.2

Or • • •

2.80E+0E U0 I a 	i. 	 X
7
g 	s .

4
6 	't
r, 	t

3 I
2 I

2.10E+02 30i i
4 I a 7
7 I 	 X
6 7
5 I 	 X
4 /
3 I
2 1
1 I 	 X

1440E+02: 20 I
9
8 7
7 I

Residuals 	6
5
4 	1.
3 Y. 	 x x x

1•7•00E+01 ii /
X (y X

9

	

X X 	XX X

2 I

A 	/ 	4X 	X 	'X 	X
7 	T. 	i 	X
6 I
	

(XX
5 	'XXX 	X
4 	7 	X X XX 	• 	XX X 	X

; 3 I 	 X X X , 	 X XXXXYXXX
 XXX 	X 	X 	 X

1 7 	 ' X(XXXXX
0E+00 	0 I-..-”,,,, XXXXXYY-XXXX-X--.X-X-XX -X 	 00 	

XXX X X XX X X
XX

x 	
1 I

XXXX(XXXXXXXXXX X XXX X
XXX(KXXXXXXXXXXXXXXX XX XXXX. 	

X
2

13. I 1 	
XXXX X

XXXXXXX XX X 	 X
5 7 	 X X

X
X 	 X

6 I
7 	 X

r 	X
9 I 	 Predicted Job Elapsed time

m.7.04E+01 -10 1 	 (seconds)
012145674301234567690123456709612345678901234567890123456789012345678901234567890/2345f75901234567690
U 	 1 	 , 2 	 3 	 4 	. 	5 	 6 	7 	 8 	 9 	 0

1

	

1080E101 	 5.40L+01 	 9.00E+01 	 1.26E+02 	 1.62E+02
04t90 - ' 	 3.60E401 	 7.20E+01 	 1006E+02 	 1.44E+02 	 1.80E+02

Figure 6.5: Plot of Residuals v Predicted Job Elapsed Time - Short Job Model (18/7 a.m. sample)

95

although all the negative residuals are comparatively

small in magnitude, some of the positive residuals are

much larger. The residual plots against the independent

variables do not explain this variation. The plot of

residuals against actual job elapsed time, however,

(figure 6.6) reveals another interesting fact. In general,

the negative residuals all occur for small values of job

elapsed time, whereas the large residuals all occur at

large values of job elapsed time. Furthermore, there is a

tendency for the residuals to be positively correlated

with actual elapsed time.

The residual plot suggests that there is some,possibly

time-dependent, independent variable(s) which so far has not

been taken into account in constructing the models. A

possible explanation is the effect of the interactive work-

load on the batch workload. When the interactive load is
4 	 high, batch jobs are rolled out of CM (because of their lower

priority) and are not rolled in again till the interactive

load subsides. The al;ilable measures of interactive load

are averaged over fifteen minute intervals and have not been

selected for inclusion in the model. Since the mean elapsed

time for a short job is around 30 seconds, it would seem

that a more suitable measure of interactive load should be

at this level of resolution.

6.4.3 Comparison of Morning Sessions

• 	
A regression model was also constructed using work-

load data from the two morning - samples (figure 6.4). 	A

dummy independent variable was used to identify the day of

the run. It was set to zero for all observations (one

observation per job) in the 16/7 a.m. sample, and set to 1

for all observations in the 18/7 a.m. sample. If signifi-

cant, the regression coefficient of the 'day' variable

should be an estimate of the increased (or decreased) elap-

sed time caused by running the jobs on different mornings.

The 'day' variable made a significant contribution to the

model, suggesting that there was a significant difference

in system behaviour on the two mornings.

X X

X

X 	X

X

X

X
X

. I•11

Actual Job Elapsed Time
•7 (seconds)

• •

240E+02 40 Y
Y

'il. 	;
6 +
r; 	fr.
4 7
7 7
2 I
1 I

2.10E+02 VI 7
9 	7
c. 	I

7
6 	7'
✓ 1
4
3 7 * 2 	.

1 	!r: /'■ '040E+02 29
9
 7

I
A I

Residuals 7 1 P 1
4
7 	1 	 X XX

i 	i 	 X X
7.00E+01 111 . 	 X X

A 	4 	 X X X X X

7 I
e 	I 	 X X 	X

x
7 	

X

6 	 XXX
 X

i4 	I 	 XXX
XX 	X X X X

3 	.i 	XXXXXX X
XX X

X
 X

X
1 'I 	XXXXX X XXX XX X

0. E+00 	0 	I•.....XXXXXXCXX•XXX"X••■...X 	
1 IXXXXXXXXXMXX X •
2 7XXXM"XXXXYX X
3 	7 XXX<XXXXXX X
4 	7 XXXXXX XXX 	X

6
5 	7 	X XX

1
7 I 	 X
A 	

7
I 	X 	X .

7•00E+01 —10 I

Li23455'0 39/23466.N.101234567611:123456759012345678A01234567891123456719012345678A012345t7393123“o67690
2 	3 	4 	5 	6 	7 	b 	9 	0

3.50E401 	1.05E+02 	1.75E+02 	2.45E+02 	3.15E+02
0.E+00 	7.00E+01 	1.40E+02 	2.10E+02 	2.00E+02 	3.50E+02

Figure 6.6: Plot of Residuals v Actual Jcla Elapsed Time - Short Job Model (18/7 a.m. sample}

ks)
rn

97

Comparing the characteristics of the two morning

samples (table 6.2) indicates that although the mean job

'CPU time', 'word hour', 'disc record transfers', and

'number of file requests' correspond quite closely, the

mean job elapsed time in the first sample (23.8 seconds) was

considerably shorter than in the second (34.5 seconds).

This difference in short batch job performance, reflected

in the difference of 10.7 seconds in the mean job elap-

sed times, corresponds fairly closely to the regression

coefficient of the 'day' variable, 12.5 seconds.

Although not recorded as having made a significant

contribution to the variation, the terminal load was con-

siderably higher in the second sample than in the first.

A peak of 33 terminals as compared to 19 was recorded. If,

as seems highly probable, the two measures of terminal load

used in this analysis do not provide a good enough measure
of interactive load to have a significant effect on the

model, then it is likely that the difference in system

behaviour is being attributed to the 'day' variable instead
of the terminal load. This problem is analysed further in

chapter 7.

6.5 	Regression Models of the Long Job Workload

6.5.1 Models of Individual Sessions

Regression models were constructed for each of the

four samples of long (i.e. non-J1) jobs (figure 6.7).

Considerably more of the variation was explained in these

models than in the short job models. In general, there

was considerable similarity, for each sample, between the

model constructed for the long job workload and the total

workload (figure 6.2). This indicates that it is the

long jobs, a small part of the workload in numbers, which
determine the form of the model. This is because the

contribution to the total sum of squares by the long

jobs is much greater than .the contribution by the short

jobs, even though these are much more in number. Hence

the contribution due to the long jobs dominates the model.

98

Figure 6.7: Regression Models of the Long Job Workload

16/7/73 a.m. sample - 54 observations

Y = 28 + 0.79 WH + 676 JCL + 0.024 DPRU + 339 NMTS

F = 112 s = 590 R2 = 0.90

16/7/73 p.m. sample - 129 observations

Y =-3579 + 0.22 DPRU + 0.15 MAXCM + 0.54 WH

F = 45 s = 1245 R2 = 0.52

18/7/73 a.m. sample - 54 observations

Y = -3135 + 0.67 WH + 0.13 MAXCM + 423 NmTS

F = 4C.0 s = 627 R2 = 0.'5

18/7/73 p.m. sample - 119 observations

Y = -134 + 2.3 WH + 0.19 DPRU + 213 NMTS

F = 209 s = 450 R2 = 0.85

For key refer to figure 6.2

99

In three of the four models, more than 80% of

the variation was explained and WH made the most sig-

nificant contribution. One model (16/7 p.m.) displayed

different characteristics. Only 52% of the variation

was explained and DPRU made the most significant con-

tribution. The analysis of the residuals for this model

revealed some outliers, in particular one job with most

unusual characteristics.

In all models, the residuals are large and the

standard errors high. In addition, there is a consider-

able variation between the models. It was concluded

that the models were therefore not suitable in this

form.

The long job workload includes some jobs which

use magnetic tapes and others which do not. There is

likely to be a substantial difference in characteristics

between these two classes of jobs. Hence, it was decided

that a further classification of workload, into long

jobs that used tapes and those that did not would be

appropriate.

6.5.2 Models of the Non-Tape and Tape Classes

of Long Jobs

Models were constructed for the long non-tape

job class and the long tape job class of jobs. These

were compared with each other and with the long jobs

model for the same data. Consider the example in figure

6.8, which shows the three models. All three models

were built from observations for the two morning samples.

A 'day' dummy variable was used, but it did not make a

significant contribution to any of the models.

Apart from the magnetic tape term in the long

jobs model, the long job model and the non-tape long

jobs models match quite closely. The regression coeffi-

a

100

Figure 6.8: Comparison of Long Job Models (Combined

Morning Samples)

Long Jobs Model - 106 observations

Y = 1890 + 0.80 wH + 0.08 MAXCM + 0.03 DPRU + 371 NMTS
e 	 R2 = 0.83

Long Non Tape Jobs Model - 69 observations

Y = -2106 + 0.78 WH + 0.09 MAXCM + 0.03 DPRU
F =.178 s = 546 	R2 = 0.89

Long Tape Jobs Model - 37 observations

= 322 + 2.4 wH + 615 JCL

F= 3f s = 477 	R2 = 0.63

Key : refer to figure 6.2

0

cient of the 'number of magnetic tapes' variable re-

presents an estimate of the time taken to mount a mag-

netic tape, 371 seconds.

However, the tape jobs model shows considerable

differences. Firstly, the amount of variation explained

by the model is much lower. This is almost certainly

due to the fact that the time taken to load a magnetic

tape is not available from the Account Dayfile, and

consequently could not be included in the model.

Table 6.4 compares the characteristics of the

tape and non-tape classes of long jobs for the combined

morning samples. It can be seen that although the mean

elapsed times for the two classes are of the same order,

the CPU and word-hour utilisation figures are considerably

smaller for the tape class. Thus the contribution to

the total sum of squares by the long non-tape jobs appears

to be dominating the models of the long job workload

and indeed the models of the total workload.

6.5.3 Models of the Long Non-Tape Job Sample

Linear regression models of both the first order

and second order variety were built for the long non-tape

job samples for the 16th and 18th July respectively. A

dummy 'time of day' variable was used to distinguish bet-

ween observations in the morning sample and afternoon

sample. An analysis of residuals was also carried out,

leading to the exclusion of outliers, and the construction

of more refined models.

Figure 6.9 shows the first order model, second

order model, and second order model with outliers ex-

cluded, for the 16/7 and 18/7 samples respectively. In

the second order model, second order independent variables

of the quadratic (e.g. CPU
2
, DPRU

2) and product (e.g.

CPU*DPRU,DPRU*AVCM) type were made available for selection

by the Forward Selection Regression procedure.

1.01

102

'Table 6.4: Characteristics of Tape and Non-Tape Classes

of Long Jobs [16th and 18th July 1973 morning

Characteristic Tape Jobs Non-tape Jobs

Number of jobs 37 69

Elapsed time (secs) m. 731 1090

s.d. 823 1952

CPU time (secs) 	m. 21.5 163.2

s.d. 27.0 308.0

Word hours 	m. 122 894

s.d. 199 1937

(p.r.u.) 	m.

Disc records transferred
1648 3407

s.d. 4034 10841

Number of tape requests m. 1.1 -

s.d. 0.4

Tape records transferred

(p.r.u.) 	m. 729 -

s.d. 2079

Key: 	mean

s.d.: 	standard delriation

p.r.u.: physical record units

103

Figure 6.9a - Long Non-Tape Job Models

16/7/73 sample - 109 observations

First order Linear Model

Y = 88 + 0.64 WH + 0.08 DPRU + 576 JCL

II2 = 0.57 s = 1156

Second order Linear Model

Y = -95.6 + 0.89 WH + 0.047 DPRU*AVCM - 0.00034 CPU*DPRU
2 R = 0.70 s = 996

Second order Linear Model with outliers excluded

Y = 9309 + 0.77 WH + 0.00001 MAXCM2 - 0.698 MAXCM

+ 0.00001 DPRU2

R2 = 0.91 s = 361

Figure 6.9b (contInued)

18/7/73 sample - 130 jobs

First order Linear Model

Y = -89 + 1.14 wH + 0.23 DPRU

R2 = 0.7 s = 630

Second order Linear Model

Y = -41 -32 CPU -0.03 CPU2 + 0.003 CPU*DPRU
+ 0.0016 CPU*MAXCM

R2 = 0.90 s = 364

Second order Linear model with outlier excluded

Y = -66 - 30.8 CPU - 0.03 CPU2 + 0.003 CPU*DPRU

+ 0.0016 CPU*MAXCM
2 R = 0.96 s = 236

For key refer to figure 6.2

104

Figure 6.9 shows that for both samples, the

second order model is a noticeable improvement over the

first order model, with higher R2 and lower standard

error. An analysis of residuals reveals which jobs are

outliers. These are usually jobs which make uncharac-

teristic resource demands, e.g. very large I/O demands.

Excluding these outliers results in a further improve-

ment in the model. Furthermore the exclusion of outliers

can result in a substantial change in the form of the

model. This is noticeable in the 16/7 models shown in

figure 6.9a. This is because the presence of outliers can

distort the model.

Consider the 18/7 sample. With the first order

model, there are three large outliers exceeding 2000.

With the second order model, there is one large outlier.

When this is excluded, a good fit is obtained, as shown

in figure 6.10. However, it is clear that there are

four large observations with large resource demands, and

these have been fitted well. It is these four observa-

tions which account for the major part of the good fit,

and of the final form of the model.

Comparison of this model with its counterpart for

the 16/7 sample, shows that the two models are not

consistent. Each model is dominated by a few jobs, and so

each model is dependent on the characteristics of those

few jobs.

6.5.4 The Domination Effect

The examples described in this chapter demonstrate

that a small number of jobs with large resource demands

can dominate a model constructed from a much larger sample

of data.

An experiment was carried out to determine

approximately how many jobs were responsible for this

0 0

. 7.50E+02 30

a
7

5
4

IX

3 X I
2
1 7

5.00E+02 20

8
7 X

5
4
3
2

T 	x
U50E+02 is

• 8
Residuals 	7 	X

	

6 	KTX X

X

	

3 	X X

	

2 	 •)(X(
XY x

0.E.00 	0 	... xxt. . ..

	

1 	xXt

	

2 	XXt
* TX(Y
TXXXX
T XX

	

6 	I XX
7

x
•2.50E.02 -10 	7 X

3

5
X

7

9
.5.00E402 .20

, • 	X

Predicted Elapsed Time (seconds)

• .
(997E5432101234567810123456789:,1234567850/23456705012345678001234567590/23456789412345678,43123.567858

.1 	0 	1 	2 	3.: 4 	5 	6 	7 	S 	9

01(444 	2.00E+03 	4.80E+03 	6.00E+03 	8.00E+03 1acc413 	3..00E+03 	5.00;4+03 	• 7.00E.03 	9.44E+03 -Loor+o3

Figure 6.10: Residual Plot: Second Order Long Job Model with '(18/7 sample)

106

domination effect. Two models of the long non-tape job

class were constructed, and are shown in figure 6.11.

The first model was constructed for all the jobs in this

class from all four samples of data. The second model

used a subset of this data. All jobs which used more than

66 seconds CPU time, 23 in all, were excluded. Outliers

were also excluded from both models. The first model

has a large R2 and is very similar in form to the second

order model (with outliers excluded) constructed for the

16/7 sample (figure 6.9a). This implies that it is jobs

from the 16/7 sample which dominate both models. However,

when the 23 largest jobs are excluded, figure 6.11 shows

that the form of the model changes radically. 	R2 is

reduced considerably from 0.92 to 0.40. It is, thus,

the small number of jobs with the largest resource demands

which dominate the long non-tape job model. If the 5

outliers excluded are also counted then the number of jobs

which dominate the model is 28.

Since it was the jobs from the long non-tape

job sample which dominated the long job workload and

total workload models, it appears that the whole sample

of 2453 jobs, is dominated by at most 28 jobs.

6.6 	Conclusions

The main conclusions of this first attempt at

the regression analysis of the Imperial College system are

that the models built for long and short job workloads

are unsatisfactory, but for different reasons.

(a) 	Short Job Workload

The models of the short job workload are unsatisfac-

tory with low R2 and inconsistent regression

coefficients. An analysis of residuals reveals

a regular trend in all the models, namely a large

number of small negative residuals with a smaller

107

Figure 6.11 - The Domination Effect

Long Non-Tape Job Model - 231 observations

Y = 9020 + 0.72 WH + 0.00001 MAXCM2 - 0.68 MAXCM

+ 0.00001 DPRU2

R2 = 0.92 s = 378

Long Non-Tape Job Model (Jobs using under 66 seconds CPU time)

- 208 observations

Y = -31 + 1.04 WH + 2.3 CPUSPH

R2 = 0.40 s = 111

S

108

number of much larger positive residuals. In
general, the negative residuals occur for small

values of actual job elapsed time, whereas the
large residuals occur for large values of elapsed

time. The positive residuals also appear to be

positively correlated with elapsed time.

The presence of the large positive residuals is

due to the actual elapsed time for some jobs being

substantially larger in value than the predicted

job elapsed time. This means that there is some

additional, possibly time-dependent, factor con-
tributing to the elapsed time, which is not taken

into account by the models. This factor is likely
to be associated with the fluctuating load on the

system, resulting in batch jobs being rolled out
of Central Memory for varying periods of time.

Insufficient measures were available in

this analysis of the load imposed on the system by

both the batch and ,interactive workloads. Only

crude measures of the interactive load were used

which were averaged on a 15 minute basis, compared

with a mean job elapsed time of 30 seconds. No
measures of the batch load were available at all. The

influence of the system load on the short job work-
load is analysed further in Chapter 7.

(b) 	Long Job Workload

A large proportion of the variation in the models

of the long job workload was explained. However,

the regression coefficients were inconsistent and

the standard error of the residuals large. It is

the large non-tape jobs which dominate the model.

An analysis of this subset of the workload showed

that it was the very small number of jobs with the

largest resource demands which dominate the models.

109

These jobs, 23 in all, form less than 1% of the total

sample of 2453 jobs used in the analysis.

An important assumption in regression analysis is

that the data used for constructing the models is

representative (see Appendix A). To construct con-

sistent models of the long job workload, it is

necessary to have a much larger sample of long

jobs. This means that the data for this analysis

would need to be collected over a considerable

period of time. The facilities for carrying this

out were not available in the project. Moreover,

to develop comprehensive models of the long job

workload, workload data of a more detailed nature

(e.g. at the job step level) would be a considerable

advantage.

Consequently, it was decided not to proceed further

with modelling the long job workload, but to con-

centrate instead on modelling the short job work-

load.

110

CHAPTER 7: 	THE WORKLOAD MODEL

7.1 'Introduction

This chapter describes a further regression analy-

sis of the Imperial College system at the workload level.

Following the decision in Chapter 6, the short job (J1)

workload was modelled extensively for six sessions in the

spring of 1974 and for four sessions in the first four

months of 1975. Whereas the Account Dayfile was the only

source of data used for the analysis described in Chapter

6, the System Dayfile was also made available for this

analysis.

Regression models are built which attempt to explain

a short job's elapsed time (that is the real time from when

a job is first scheduled for execution to the time it ter-

minates) in terms of:

the resources job demands

the load on the system, both batch and interactive.

The load measures are measures of the amount of competition

for system resources that a job experiences. It was dis-

covered in the previous analysis (Chapter 6) that the

measures of system load used were insufficient. Further

load measures were made available for this analysis, derived

from both Account and System Dayfiles.

Sections 7.2 to 7,6 of this chapter, describe the

regression analysis of the first set of data collected, in

the spring of 1974. Sections 7.7 to 7.9 describe the

regression analysis of the second set of data collected in

the first four months of 1975.

In section 7.2, the characteristics of the workload

in the spring of. 1974 are presented and analysed.

In section 7.3, a first analysis aimed at modelling. the

Kronos system at the workload level is described, which

used two morning sessions. The modelling exercise

showed that at certain periods of the day, the

predicted elapsed times were considerably smaller

than the actual elapsed times, resulting in large resi-

duals. A further analysis of the Dayfiles is presented

in section 7.4 which identified the causes of these

delays. In section 7.5, a more comprehensive regression

modelling exercise was carried out,using four morning

sessions. In section 7.6, the analysis and modelling, of

two afternoon sessions is described.

The second set of data collected, in 1975, was on

the CYBER system, which supported an entirely batch workload.

Section 7.7 describes the models constructed of the batch

workload in the absence of the timesharing load. Section

7.8 describes the validation of these models, which led to

the construction of the Workload Model. Section 7.9 describes

the modelling of a subset of the short job workload which did

not experience any competition from other short jobs.

7.2 	The Workload Data

7.2.1 The Sessions Analysed

The workload data used for the second analysis

of the IC Kronos system,was gathered over six different

sessions in the spring of 1974. During the period in

question, a number of hardware faults were experienced.

Over a dozen sessions were subjected to an initial Day-

file analysis. More than half the sessions were rejec-

ted, either because of unscheduled dead starts or due to

failures in the Telex subsystem.

The sessions accepted were four morning sessions

and two afternoon ones. The morning sessions were on

20th May, 12th, 17th and 18th June. The afternoon sessions

were on the 17th and 18th June. Both_the Account and

-System Dayfiles were collected for each session.

112

0

S

7.2.2 Characteristics of the Workload

The main characteristics of the workload are pre-

sented and discussed in this section. It was discovered

during the analysis that the 17/6 morning session had a

hangup for a period of about four minutes, when no messages

appeared in either Dayfile. A magnetic tape job appeared

to block while in possession of a channel. The blockage

cleared when the job was dropped. This partly explains

why the figures for batch and terminal CPU utilisation

are on the low side for this session. Because of this,

the 17/6 session has been ignored in the discussion in this

subsection.

Table 7.1 displays the main characteristics of the

batch workload for the four morning sessions. The number

of jobs executed varied between 477 on 20/5 and 574 on

18/6. However, the highest batch CPU utilisation was recorded

in the former session and the lowest in the latter. In

all four sessions, °ye.: 80% of the jobs executed were

short jobs. The CPU utilisation of the short job workload

was in all cases around the 15% level. The long job work-

load in all cases used more CPU time than the short job

workload, in one case more than twice as much. Most of the

long job CPU time was accounted for by jobs which did not

use magnetic tapes.

Table 7.2 displays the main characteristics of the

terminal workload on the four sessions. It can be seen

that the average terminal load over the whole session was

substantially lower on 20/5, averaging 15, than it was on

the other three mornings, when it averaged over 20. Figures

7.1 and 7.2 show how the terminal load varied over each of

the 20/5 and 18/6 sessions respectively. The highest termi-

nal CPU utilisation was recorded on 18/6. In reference

G6, it was shown that a good measure of total system activ-

ity is given by the 'number of times no Peripheral Processor

•

.113

Table 7.1: Characteristics of the 1974 Batch Workload

Class Characteristic 20/5/74 12/6/74 17/6/74
*

18/6/74

All No. of jobs 477 524 532 574
Jobs Total CPU time

(secs) 6408 4978 4245 4751
Mean CPU time

(secs) 13.4 9.5 8.0 8.3
CPU Utilisation 51% 41% 34.% 39%

Short No. of jobs 401(85%) 441(84%) 432(81%) 467(81%)
Jobs Total CPU time

(secs) 1888 1764 1945 1961
Mean CPU time

(secs) 4.7 4.0 4.5 4.2

Mean elapsed time

(secs) 23.7 40.2 32.2 32.3

CPU .Utilisation 15% 14% 15% 16%

Long No. of jobs 76 83 100 107

Jobs Total CPU time

(secs) 4520 3214 2300 2790

Mean CPU time
(secs) 59.5 38.7 23.0 26.1

Mean elapsed time

(secs) 531 498 1017 614

CPU Utilisation 36% 26% 19% 23%

Long No. of jobs 48 48 43 60

Non-tape Total CPU time

Jobs (secs) 4119 2895 1798 2166

Mean CPU time

(secs) 85.7 60.3 41.8 36.1

Mean elapsed time

(secs) 712 666 414 679

CPU Utilisation 33% 24% 14% 18%

Long No. of jobs 22 35 57 47

Tape Total CPU(secs) 408 320 501 625

Jobs Mean CPU(secs) 14.6 9.1 8.2 13.3
Mean elapsed time 220 267 1471 530
CPU Utilisation 3% 2% .5% 5%

* System hangup occurred in 17/6 session which lasted about
four minutes.

.114

Table 7.2: Characteristics of the 1974 Terminal Workload

20/5/74 12/6/74 17/6/74* 18/6/74

Session Start 	' 9.29.08 9..35.26 8.25.29 9.32.29

Telex Start 9.32.42 9.36.32 9.10.42 9.33.54

Session End 13.00.20 13.01.00 12.59.56 13.00.08

No.of Terminal Sessions 184 198 204 175

Average Terminal Load 14.8 20.8 21.8 23.4

Maximum Terminal Load 25 34 39 40

Interactive CPU time

used (secs) 1640 1880 1378 2320

Average CPU time/

session 	(secs) 8.9 9.5 6.8 13.3

Times No PP available 3597 5840 5924 7905

Times/hour no PP " 1003 1670 1690 2260

Telex CPU utilisation 3.3% 3.5% 4.8% 3.2%

Total(Batch+terminal

CPU used)(secs) 8048 6858 5623 7071

Terminal User CPU

utilisation 13% 15% 11% 19%

Batch User CPU

utilisation 51% 41% 34% 39%

Total User CPU

utilisation .64% 56.% 45% 58%

* A system hangup occurred during 17/6 session which lasted

for about 4 minutes.

• • 	 •

2.50E+01 	SO
9 T
8 T
7 r
6 T
5 T
4 I 4t

T
2 T i T •

40 T
9 I
8 I

T •
6
5

T
T

4 T r •
3 T
2 T *
1 I • * • • •
31 •

9 I •
8 r
7 T
6 I
5 r
4 1
3 r
2

T
20 T
9 T

T
7
6 2
5 t
4
3 I
2 I
1

10 T
9 I
8 r
7
6 I

t

Time of Day 4 T
3 I
2 I

I

2. 00E+31

Number of

Terminals

Logged in
1.50E+01

1.00E01

5.00E+00

O.
9.

T
30 	10..00 	11.00 	12.00]3.00

Figure 7.1: Avera e Terminal Load over 5 minute Intervals Plotted A•ainst Time of Da (20/5/74am)

yr

•

• *

•

« 	 •
• •

4.60 E+Ot

3, 26 E.t.a i

50
9
3
7
6
5

3
2
1.

4
9

T
T
T
I
I

T
T

.1
I
I

8 T
7 T
6 T
5 T
4 I
3 T
2 t
1

2.40E+01 30

Number of

Terminals

Logged in

1.60E+41 20

8.00E+00 11

0.

•

•

I
9 T
8 T
7 T
6 T
5 T
4 T
3
2 r
2 T

r
9
3 T •
7 T •
6 I
5 I
4 T
1 T
2 T • • •
1. T

r •
9 T
8 T
7 I
6 T
5
4

t
I T

2 T
I •

1 T 	 f

• • 	•
•

• • 	4F
•

• *

•

•

73
Time of Day

	 4 	•
9'30 	10 4,00 	 11.0'u 	12.00 	13.00

Figure 7.2: Average Terminal Load over 5 minute Intervals Plotted Against Time of Day (18/6/74 a.m.)
C'

.117

(PP) was available' when a PP was requested by Telex. This

figure was lowest for 20/5 and highest for 18/6, when it

was more than double that for 20/5.

PP activity is a measure of both system and I/O

activity. PP activity can be high if the executing jobs

are I/O bound, as it is the PPs which carry out all I/O

operations. PP activity can also be high if system activity

(such as rollin/rollout activity) is high, as most system

functions are carried out by PPs. High terminal activity

is liable to lead to high rollin/rollout activity and

hence high PP activity. A previous performance analysis of

the Kronos system (G6) showed that once the system becomes

PP bound, performance degrades rapidly. It is interesting

to note that the 20/5 session recorded the highest total

CPU utilisation, while recording the lowest 'PP unavailable'

figure. The 18/6 session recorded a much lower overall CPU

utilisation while recording the highest 'PP unavailable'

figure.

Table 7.3 shows the main characteristics of the two

sessions that were modelled first, the mornings of 20/5

and 18/6. The description of the modelling is given in

section 7.3. The analysis was first carried out on all the

data, here called the untreated set. The analysis was then

carried out again on a subset of this data, called the

treated set. The reasons for excluding some observations

from the data are given in section 7.3. The main difference

in the two sets of data as shown in Table 7.3, is the re-

duction in mean elapsed time on 18/6 from 32.3 secs. to

21.8 secs.

A subsequent analysis was carried out on all four

morning sessions, as described in section 7.5. Tables 7.4

and 7.5 show the main characteristics of the untreated ani

treated sets of data. Again the main difference in the

two tables is the reduction in mean elapsed times.

118

Table 7.3: Characteristics of the 1974 Short job Workload

(Two Morning Samples)

Untreated Treated

20/5/74 18/6/74 20/5/74 18/6/74

Number of Jobs 401 467 336 373

Elapsed time (secs) 	m. 23.7 32.3 19.2 21.8

s.d. 21.8 42.9 14.2 15.0

CPU time 	(CPU) 	(secs) 	m. 4.7 4.2 4.4 4.5
s.d. 5.2 4.9 5.0 5.1

Disc records transferred
(DPRU) 	m. 286 219 269 219

s.d. 378 156 350 154

No. Control Cards(NCC) 	m. 3.9 5.3 3.9 4.7
s.d. 2.5 . 	4.9 2.5 4.0

No. jobs competing(AVB) 	m. 4.2 7.1 4.2 6.7
s.d. 2.0 2.6 2.0 1.9

Key: 	m. : mean

s.d. : standard deviation.

119

Table 7.4: Characteristics of the 1974 Short Job Workload

(Four Morning Samples Untreated)

20/5/74 12/6/74 17/6/74 18/6/74

Number of Jobs 401 441 432 467

Elapsed time(secs) 	m. 23.7 40.2 32.2 32.3
s.d. 21.8 77.3 48.7 42.9

CPU time (CPU) (secs) 	m. 4.7 4.0 4.5 4.2
s.d. 5.2 4.8 5.3 4.9

Disc records transferred

(DPRU) 	m. 286 290 287 219
s.d. 378 322 503 156

No. control cards(NCC) 	m. 3.9 5.1 4.6 5.3
s.d. 2.5 4.1 3.8 4.9

No. jobs competing(AVB) m. 4.2 5.1 8.6 7.1
s.d. 2.0 3.0 3.6 2.6

No. short jobs competing

(AVJ) 	m. 0.86 1.55 1.30 1.67.
s.d. 0.96 1.77 1.76 2.33

Key: 	m. : mean

s.d. : standard deviation

120

Table 7.5: Characteristics of the 1974 Short Job Workload

(Four Morning Samples Treated)

20/5/74 12/6/74 17/6/74 18/6/74

Number of jobs 381 378 398 410

Elapsed time(secs) 	m. 20.2 20.7 21.2 22.1
s.d. 14.9 15.1 16.7 15.2

CPU time 	(secs) 	m. 4.4 3.8 4.3 4.2
s.d. 5.1 4.7 5.2 4.9

Disc records transferred 	m. 269 265 230 215

s.d. 335 256 182 151

No. control cards 	m. 3.8 4.8 4.3 4.6

s.d. 2.0 3.4 3.2 3.9

No. jobs competing 	m. 4.2 4.6 8.4 6.6

s.d. 2.0 2.8 3.6 2.1

No. short jobs competing

with each job 	m. 0.80 1.22 1.07 1.04

s.d. 0.91 1.50 1.52 1.37

No. of jobs excluded 20 -63 34 57

.121

7.3 	The First Models of the Short Job Workload

7.3.1 The Independent Variables

The dependent variable is the job elapsed time. The

independent variables used in constructing the models,

were obtained from both the Account and System Dayfiles.

The independent variables fall into two groups:

(i) measures of a job's resource demands

(ii) measures of the load on the system, both batch

and interactive, which a given job has to compete

with.

The same measures of resource demand were used in

constructing the models as for the 1973 models (Chapter 6),

apart from one. The number of permanent file requests is

no longer recorded in the Account Dayfile. In its place,

the number of control cards (NCC) a batch job consists of,

was derived from the System Dayfile. This is equivalent

to the number of job steps in a job.

More extensive measures of the interactive load ex-

perienced by a given job were used in this analysis:

(a) Average number of terminals logged in during life-

time of this job (AVT):

AVT = > ti
i=1
te

where to is a given job's elapsed time. n is the total

number of terminal users who were logged in at any time

while the job was in the execution phase. ti is the time

user i was logged in for, while the job was in the

execution phase.

122

0 < t. 	to

(b) 	Rate of execution of terminal commands (RTC)

while the job was in the execution phase:

Number of terminal commands executed

te

Measures of the batch load experienced by a given

job were introduced for this analysis:

(a) Average number of batch jobs concurrently in execu-

tion with this job (AVB). This is not a measure

of the level of multiprogramming, but rather a

measure of the average number of jobs competing

for Central Memory as well as the Central Processor.

The multiprogramming level cannot be determined, as

no indication of rollin/rollout is given in the Day-

file (section 5.5).

AVB => t/

t

m is the total number of batch jobs which were in

the execution phase at any time while the given

jobwas.t.is the length of time job j

was in the execution phase.

0 < tj <̀ to

(b) Rate of batch control and execution (RBC) while

the given job was in the execution phase:

Number of batch control cards executed

te

e

•

123

7.3.2 The Initial Attempts

Two morning sessions, the 20/5 and 18/6, were used

for constructing the first models of the short job work-

load which are shown in table 7.6. The models were con-

sidered unsatisfactory because the amount of variation ex-

plained by the model (R2) is low, and the standard error

of the residuals (s) is high. These values were particular-

ly poor for the model of the 18/6 session, which also had

a large intercept.

Table 7.6 also shows that no measures of terminal

activity were selected by the Forward Selection Regression

procedure. This suggests that no adequate measures of inter-

active load were available for selection. A measure of batch

loading, the average number'of batch jobs in execution with a

job (AVB), was however selected for inclusion in both models.

As might be expected, the more batch jobs competing for re-

sources, the_longer a job's elapsed time is likely to be.

7.3.3 Analysis of Residuals

The residual plots for the models of 20/5 and 18/6

are shown in figures 7.3 and 7.4 respectively. The general

shape of these plots is similar to the residual plots ob-

tained with the models of the 1973 workload, although it is

more accentuated in the 18/6 plot than in the 20/5 plot.

The main features are:

(i) There are a large number of small negative resi-

duals and fewer larger positive residuals.

(ii) The large positive residuals occur for jobs with

large elapsed times. Thus the model gives a

poorer prediction for jo"s with large elapsed times.

The plots show that whereas six observations had

residuals larger than 100 on 18/6, none did on

20/5.

124

Table 7.6:' Initial Regression Models of Short Job Workload

Independent variable 20/5/74 a.m. 18/6/74 a.m.

CPU 	r.c. 2.54 2.53

NCC 	r.c. 1.18 4.14

AVB 	r.c. 2.29 2.30

DPRU 	r.c. 0.01 *

RBC 	r.c. * 0.36

Intercept -5.11 -21.7

R2 0.57 0.42

s 14.3 33.0

F 132 82

No. of jobs 401 467

Key: *• not selected for inclusion in model

R2: proportion of variation explained by model

s: standard error of residuals

F: F- statistic for significance of regression

equation

r.c: regression coefficient

• •

9.00E+01

b.00r+al.

3.00E+u1.

Residuals

(1.C440

'3.00E+01

-6.00E+01

30.
9
5
7
6
5
4
3
2
I

20

6
7
6
5
4
3
2
1

10
9.
6
7
b

4
3
2
1
0
1
2
3
4
5
6
7
8
9

-16
1
2
3
4
5
6
7
8
9

-2i,

1
1

- 	1
1 .
1
1
1
1
1
3
1
I 	 .
3
1
3
1
1
1
7
1
I
7
1 	 X
1
I . 	XX 	X
I 	 X 	XX 	.X
I 	 X 	xx 	X
1 	X 	XXX• XXX
1 	X 	XXXXXX 	XXX 	XX
I 	XXXXXXXX X 	XXX 	X 	X XX 	X
3-XxxxxXxxxxxxxxx--XX-XXXX-X---X-X- 	
1XXX 	XXXXxxxxxxx 	x 	X 	X 	Xx X 	X 	X
1 	XxXxxXXxxXxxX Xx X X X 	Xx 	X
3 	XXXXXXXXX 	X 	xx XX 	XX 	XX 	X

, 	I 	X 	X 	X 	XXXXXXX 	X)(XXX
. 	1
I 	 XX 	XX X

X
* 	X 	

X X

X 1 	.X 	X 	 X
I
1 	 x 	 x
1
3
3 	 .-
1 	

.

3
1
I
A
3
1
3

X

X

.
XX

X X

. 	X'

X

. X
X

. X

X

x

X

x

- 	x

XX

X

X

.X

X X

X

b1E34567t9t,1234587t9i41234567,0234567b501234bbit9012345676901234567890123456709612345t7b90123467t90
A 	 1 	 2 	 3 	 4 , 	b ' 	6 	 7 	 6 	 5 	 i..

o.e400
1

1.50E+01 	 4.50E+01 	 7.For+Oi 	 11.05E+02 	 1.35E*02
3.00E+01 	 6.00E+01 	 9.00E+01 	 1.20E+02 	 1.50E+02

Actual Job Elapsed Time (seconds)

1‘..) Figure 7.3: Residual Plot - Initial Model of Short Job Workload (20/5/74 a.m. session) 01

2.405+02 3y' r
I
T

7 T X
6 I
5 I. X
4 T
3 E
2 I I

1.60E+02 2J I X
9 1
3 I
7 1
6 I
'.; T
4 I
3 I
2 I
4 I

8. 00E+01. 1 J I X X X
9 I
3. I X X
7
6 i x xxx X
5 T X XXX
4 r X XX x
3 T xX XX 	XXX

x X 2 I XXXXXXX x x
. I XxxxxXxx X X
J 	(XxXXXXX-xX-XX-X----X--X
1• rxXX)(XXXXXXXXX X X

TxX:;XxXXXX x 	x

4
3 	T

X
X' 	XxXX

XX
 X

T i X X'
5 1 XX X X
6 t XX X. X 7 r XXX 	X
a T 	X X
9 	I 	X X

	

-8.00E+01 -4J T 	XX X
1 r
2 	1
41 X

I
5 T
b I
7 	T
8 	T. 	•
9

-1.50E+OZ •212 I
1 123456789J1.2345678911123456789J

3
1234557394

4
12345618901234567094

6
1244567890

7
12345670S01234567890123456Z890

a ' 	9

	

5. 00 E+oi 	50 E.+02 	2.50E4.02 	3.50E+02 	4.50E+02

	

04E+00 	. 1.000.02 	2.00e+02 	3.00E+02 	4.00C+02 	5.00E+02

Actual Job Elapsed Time (seconds)

a

Residuals

Figure 7.4: - Residual Plot-Initial Model of Short Job Workload (18/6/74 a.m. session)

127

(iii) Furthermore, by examining the list of residuals,

which is ordered by job termination time, it can

be seen that the large positive residuals occur

in groups. This indicates that there are certain

periods in each session when the average elapsed

time increases considerably. This occurred more

often and for longer periods in the 18/6 session

than in the 20/5 session.

It was argued in chapter 6 that a possible explana-

tion of,these features was the periodic fluctuations in

the size of the interactive load. When the interactive

load is high, batch jobs would be rolled out of CM (because

of their lower priority) and would only be rolled in again

when the interactive load subsided. Comparing the inter-

active loads for the two sessions (table 7.2), there are

indeed indications that both the interactive load and over-

all system activity were considerably higher on 18/6 than

on 20/5, a Monday morning session. Firstly, both the maximum

and average number of terminals logged in were much higher

on 18/6. Secondly, the interactive CPU utilisation was

almost 50% higher on 18/6. Thirdly, the measure of overall

system activity given by 'the number of times all PPs were

busy' was more than twice as high pn 18/6 than on 20/5.

7.3.4 Which way to go?

The analysis has shown that no adequate measures of

interactive load were available for inclusion in the model.

At this stage there seemed to be only two possible alterna-

tives. The first was to decide that as apparently insuffi-

cient data was available to construct a satisfactory model,

the attempt should be abandoned until more data was available.

The new source of data would probably have to be a software

monitor• which would require time and manpower to implement.

128

The second alternative also admitted that a

satisfactory model, which explained all situations from

light to heavy system loads, was impossible to construct

from the existing data. However, this alternative sugges-

ted that it might still be possible to construct a satis-

factory model for light and moderate loads on the system.

The most encouraging indication that this might be possible,

was the difference in the models for 20/5 and 18/6. In

the 20/5 model, 58% of the variation in job elapsed time

(R2) was explained by the model, whereas only 40% was

explained by the 18/6 model. The larger R2 in the 20/5

model is due to the smaller residuals for that model. The

standard error of residuals for 20/5 was 14.3, compared

with 33.0 for 18/6 (table 7.6).

The decision was therefore taken to exclude the

groups of observations where large positive residuals had

occurred and to construct models using the remainiag.„obServa-

tions. This was felt to be a justifiable move, because as

shown by the analysis of residuals, the large positive

residuals occurred in groups at certain periods of the day.

This indicated that during these periods the system was

behaving differently. This will be confirmed later in

section 7.4, where it is shown that during the periods in

question the system was heavily loaded.

7.3.5 Models with Large Residuals Excluded

Models were built for the 20/5 and 18/6 sessions

using data from which large residuals had been excluded.

These models showed a marked improvement over the previous

set. However, different independent variables were selected

for inclusion in the two models. This is apparently a

common feature of all the stepwise regression procedures,

particularly when some of the independent variables are

correlated with each other. This feature is one of the

main disadvantages of these procedures (Dl).

129

To enable a direct comparison of the models to be

made, models containing the same independent variables

were constructed for each session. This was achieved by

forcing into each model the same set of independent vari-

ables, which were:

(a) CPU - the CPU time used by the job

(b) NCC - the number of control cards (job steps)
in the job

(c) AVB - the average number of batch jobs concurrently
in execution with this job.

Models for the 20/5 and 18/6 sessions, and a model

for both sessions combined, were constructed using the

method just described. The main features of the models are

shown in table 7.7. A number of points may be drawn by com-

paring these models with the initial models (7.3.2 and table 7.6).

1. In both the 20/5 and 18/6 models R2 has improved

substantially;from 0.58 to 0.78 for the 20/5 model,

and from 0.40 to 0.76 for the 18/6 model (comparing

table 7.6 with table 7.7).

2. The standard error of the residuals (s) , has been

reduced considerably in both models. In the 20/5

model, s has been reduced from 14.3 to 6.6 and in

18/6 model, s has been reduced even more sharply

from 33.0 to 7.4.

3. The intercepts have been reduced considerably

especially for the 18/6 model, and they are small

compared with the mean of the job elapsed time

(table 7.3).

4. Comparing the regression coefficents of the inde-

pendent variables for the 20/5 and 18/6 models, it
can be seen that (table 7.7):

130

Table 7.7: Regression Models of Short Job Workload

(Large residuals excluded)

Independent Variable 20/5/74 18/6/74 Combined

CPU r . c . 2.32 2.30 2.30
s.e. 0.07 0.08 0.05
t 33.2 28.8 46.0

NCC r . c . 1.14 1.29 1.22

s.e. 0.15 0.10 0.08
t 7.6 12.9 15.3

AVB r . c . 1.64 0.94 1.06
s.e. 0.18 0.20 0.11
t 9.1 4.7 9.7

Intercept -2.17 -0.84 -0.71

R2 0.78 0.76 0.77
s 6.6 7.4 7.1
F 399 390 772

No. of jobs 336 373 709

Key: 	r.c. : regression coefficient

s.e. : standard error of regression coefficient

t : t-statistic for significance of regression

coefficient

R2 : proportion of variation explained by model

s : standard error of residuals

F : F-statistic for significance of regression

equation

. 131

(a) the coefficients of the CPU variable (2.32 and

2.30) are almost identical.

(b) the coefficients of NCC (1.14 and 1.29) are

reasonably close.

• (c) 	the coefficients of AVB (1.64 and 0.94) show a

greater variation.

It is clear that there is a much closer agreement

between the regression coefficients than has been the case
previously.

	

5. 	The residual plots for the 20/5 and 18/6 models are

shown in figures 7.5 and 7.6 respectively. Compar-

ing these with figures 7.3 and 7.4, it can be seen

that although there is still a tendency for the large

residuals to occur with large job elapsed times,

this effect is not as marked as before, particularly

for the 18/6 session. In both figures 7.5 and 7.6

there appear to be two bands sloping upwards from

left to right. This is probably due to a character-

istic of the short job workload. Most jobs have a

small CPU demand and fall in the leftmost band. How-

ever, a sizeable minority of jobs run till they time

trap (just over 16 CPU seconds). The contribution

due to CPU time, as predicted by the model, will be

virtually identical for all these jobs. These jobs

fall into the second band. The variation in predic-

ted elapsed time for these jobs is due to the con-

tribution of the other two variables (NCC and AVB).

	

7.4 	The Interaction between the Workload and the System

7.4.1 The Jobs Excluded

Constructing the much improved models described in

the last section, showed that there was no inherent reason

0

4

6.00E+01 40 7
9 A
7 i
6

	

	
,

7
5 T
4 I
3
2 7
1 I

4.50E+01 30
9
6 i
7 T

7
5 I
4

7
I

3
P 7
i I

3.00E+01 2
9
r 7

1 8
7 I
6 T
5 I

Residuals 4 7
3 I 	

X
X 	x 	

X
X

2 7 	 X

1.50E+01 	in1
	I

I 	 X 	
X X 	X 	

X X •
9 I
8 7 	 X
7 7 	 4 4. 	X 	 X
6 	7 	 X X X X
5 	I 	 X X XX X 	X 	• X 	 X

x 4 7 	X XX(X 	 XX
3 	7 	XXX X 	KY X 	X 	 X 	 X 	 X
2 	7 X X X XXX(XXXXX X X 	X 	X 	X 	 X
1 	I 	X 	XXX XXX XXX 	 X 	X. 	 X

O. Ell. CO 	f' 	7-...•XwXXXXXX(XXXY-XXX--XX—•-X----■•■ X 	X 	
1 	7 	XXXXXXX“)(XXX X 	 X 	 X
2 	7 X XXXXXXX(XXXXX XXX X 	X X 	X 	XX X 	XX

I X 	XX XX(X XXXXXXXXX X XX 	X X 	XX
4 	TX XXXX 	XXX XXX 	X 	 X 	X
5 	/X XXXXX

X
 X 	X
	X

	 X X
6 7 X 	 X

7
I 	X 	

X X 	
X XXXX
	 Actual Job Elapsed Time (seconds) 8

9 7 	 XX 	 X
.../.50E+01 -in I

1 2 3 4 5 6 7 8 3 0
1

I. 00E+01 3.00E+01 5•00E+01 7.00E+01 9.00E+01
2.00E+01 44,00E+01 6.00E+01 8.00E+01 1.00E+02

01234567530123456781-.1012345670914 12345678901234567691112345678901234567890/ 23456709r/23456789J1234567890
0

0.E+00

Figure 7.5: Residual Plot - Model of Short Job Workload - Large Residuals Excluded

(20/5/74 a.m. session),

A

Residuals

3.00E+01

2.00E+01

•
1.00E4.0i

.

0.E+00

-1.00E+01

-2.00E+01

30
q
6
7
6
5
h
3
?
i

2s
q
8
• 7
6
c
4
3
2
J in
q
r
7
6
5

fl i
?
1
r
1
2
3
47 c
6
7
8
9

-10
1
2
7
4
5
6
7
8.7
q

-2P

7
I
T

T
7
7
7
7
7 	.
V

.5.
7
7
V J 	•
I 	 X
7 	 .'--
T 	 XX
7 7 	 X X
7 	 X
7 	 x 	X 	X
7 	 X 	XXX
I 	 X 	X 	X
7 	 XX 	 x 	x 	x
i 	 X 	

X 	XX 	XX X 	XX

	

XXXX X 	X X X
7 	X XXX 	XX 	XXXX 	XX
7 	X 	X XXX 	X. 	XX X 	X
T--x-x--x----xxxx-x 	x- -x 	X- X
7 	X x xxxx X XX X XX 	X
I 	XXX 	X X XXX)! 	XXX 	X 	XX X
7 	X 	XXX 	XX Y XXX 	XXXX

	

XXXXXX XXX 	XXXXXXXXX .
1 	XX 	XX 	XX x 	X 	X
T 	XX 	XXX 	X K X 	X
1 	.X X 	X 	XX
7.
7 	XX
7 	X 	X 	XX
7 	 X 	X
7 	XX 	X 	X
7 	 . X
I 	 X
7
7
7
1
7

X

XX
XX

X

XX
X

x

X

X

X

X

X
x

X

X

X.
X 	.

X
X

X

X
X X

X 	X
XXXX

X

X

X
X
x

X
XX

XX
X
XX

x

X

1

XX

X 	X

 .XX

X

	

X--X 	
X

X 	X
X 	' 	X

X 	 X

X
XXX ,

X 	X
X 	X

X X
X

x
X

x

X X

X

X

X

X
X

X

X

X

X

X

XX .

x

. X

X
X

x

X

X

X X

.. X

X
X

XX

x
X

0.00E+00 	2.40E+o1 	4.00E+O1. 	5.68E+01 	7.20E+0i
O.C+00 	1.60E+01 	3.20E+01 	4.80E+01 	6.40E+01 	8.00E+01

Actual Job Elapsed Time (seconds)

Figure 7.6: Residual Plot: Model of the Short Job Workload - Large Residuals Excluded

• (18/6/74 a.m. session)

Di234567q9ni234567090123456769u1234567890123456789012345678901234567890123456789012345678501234567890
f - 	1 	2 	3 	4 	5 	6 	7 	8 	9 	0

1

134

why satisfactory regression models of the IC system at the

workload level, could not be built. The question still

remained however: why did a number of jobs have to be

excluded from the sample to achieve this? Was it entirely

due to differences in the interactive workload or could

there also have been some other influence so far undetected?

The excluded jobs fell into three main categories:

1. A small number of jobs appeared to hang at a control

point until they were dropped by the operator. This

was revealed in the System Dayfile by an 'Operator

Drop' message for these jobs at job termination.

2. A few jobs appeared to be uncharacteristic in their

resource demands. In some cases, the number of

control cards (NCC) was very high. In others, the

number of disc records transferred (DPRU) was very

high. Such observations should be excluded; other-

wise, as shown in chapter 6, they may distort the

model considerably. Other jobs did not appear to

display any unusual characteristics, as judged by the

data recorded in the Dayfile. Nevertheless, in more

than one case, the same job (identifiable by job

number, control cards used and resource utilisation)

was viin at different times of the morning, each time

taking much longer than the model predicted. This

definitely suggests that the job was uncharacteristic.

For example it might have been an I/O bound job

making a large number of I/O requests (not recorded

in the Dayfile) but only transferring a few records

each time, and so resulting in a comparatively small

number of disc records transferred.

3. Most of the jobs with large residuals fell into this

third category. This was particularly noticeable

in the 18/6 sample. At two different times of the

135

morning and particularly on the second occasion

around 12.15 p.m., the average job elapsed time

increased substantially.

The two periods in question had one feature in com-

mon; the number of batch jobs in execution concur-

rently (AVB) was high. However there was a third

occasion in this session when AVB was high, even

thdugh the elapsed time was normal.

7.4.2 The Reason for the Large Job Elapsed Times

The reason for this apparent discrepancy was found

by a close scrutiny of the 18/6 System Dayfile for the three

periods when the average batch load was high. On the two

occasions when the average short job elapsed time increased

substantially, the number of short jobs concurrently in execu-

tion was high. On the third occasion, when the elapsed

time did not increase noticeably (although the number of jobs

concurrently in execution was high) the number of short

jobs concurrently in execution was low.

This immediately suggested that the memory scheduling

algorithm had changed since the 1973 analysis, when all

batch jobs executing concurrently were treated in the same

manner. It now seemed that short jobs had priority over

other batch jobs in the competition for Central Memory (CM).

Thus on two occasions when the short job load was high, the

average short job elapsed time increased substantially. It

was indeed confirmed later by the I.C. Computer Centre

management that short jobs had priority over other jobs in

the competition for CM.

The reason for the large increase in elapsed time

is that CM is a scarce resource on the IC system. On

average only 2 or 3 batch jobs may be co-resident in CM.

Therefore if the short job load is high (3 upwards), some

136

short jobs are likely to be rolled out at some stage in

their execution. The bigger the load on the system, the

longer, on average, jobs will be rolled out. The longer

a job is rolled out, the longer its elapsed time will be.

In the case of the 18/6 sample, the bottleneck at

around 12.15 p.m. was accentuated by the fact that it was

caused by the influx of a substantial number of batch jobs (all

with the same job number and submitted from terminals)

with comparatively similar characteristics: small CPU

time, large number of control cards, and apparently test-

ing a mathematical program library. These jobs appeared

to be I/O bound, and when run concurrently caused the

bottleneck just described. When a similar set of jobs were

run in the afternoon, the elapsed time was even worse,

increasing from around 400 seconds to over 3000 seconds,

and in two cases over 4000 (i.e. more than an hour to run

a one CPU second job).

As pointed out in sections 7.2 and 7.3, both the

terminal load and overall system activity were higher on

18/6 than on 20/5. Although the terminal load, as measured

by the number of terminals logged in, may vary comparatively

slowly (figures 7.1 and 7.2), there are likely to be bursts

of terminal user activity during periods when a substantial

number of terminal users submit programs to be compiled

or run interactively. These terminal job runs at control

points making comparatively high resource demands (section

4.5.2). Since they have a higher priority than short batch

jobs, a buildup of rolled out short jobs will occur (D3),
leading to longer elapsed times.

Thus the two main causes of the longer elapsed times

experienced by short jobs are:

(a) 	Bursts of terminal user activity resulting in

short jobs being rolled out.

137

(b) 	A substantial number of short jobs in competition

with each other resulting in some short jobs being

rolled out.

(b) may be caused or accentuated by (a). However

(b) can occur of its own accord if a substantial number of

short jobs are submitted in close succession, and in par-

ticular if they make comparatively large resource demands.

7.4.3 The Scheduling Algorithms

Apart from going a long way towards explaining in

what manner the models described in 7.3.2 are deficient, the
analysis also reveals apparent weaknesses in the system job

and memory scheduling algorithms. Firstly, the job schedul-

ing algorithm sets no limit on the number of short jobs

that may be scheduled for execution concurrently. As a

result, considerable delays in elapsed time can be experienced

by the competing jobs, when the load is high.

The second apparent weakness is in the memory schedul-

ing algorithm and is because:

(a) A11 short jobs have the same access priority to CM.

(b) When 1SJ (the PP program in charge of both job and

memory scheduling) searches the File Name Table

(FNT) for jobs in Rollout or Input states, it always

starts at the top of the table. As a result, rolled

out jobs near the top of the table have a better

chance of being scheduled for rollin than jobs with

the same priority, but further down the table. Examin-

ing the System Dayfile revealed that this can have

a considerable effect on a job's elapsed time,

once a job has been rolled out. Jobs can be identi-

fied as being rolled out when no message (e.g.

initiation of control card execution) is recorded

in the System Dayfile for a substantial period of

time. When a number of jobs are rolled out, it is

• 	 138

•

noticeable that there is no particular order in

the re-activation of jobs and that for some

unfortunate jobs, many minutes can pass before

they are reactivated.

The IC Computer Centre have since amended the

algorithm used by 1SJ in searching the FNT. 1SJ now

starts a search of the FNT at the place it previously

stopped at.

7.5 	Regression Models of the Morning Workload

7.5.1 Introduction

The analysis and modelling described in sections

7.3 and 7.4 provided a deeper insight into the interaction

between the workload and system. To consolidate further,

a further analysis was carried out. This included two

further morning sessions, the 12th and 17th June, in

addition to the 20th May and 18th June used previously.

In the light of experience, some additional variables

were made available for selection, as follows:

(a) It was now known that the important influence on

a short batch job's elapsed time is not the total

number of batch jobs concurrently in execution

(AVB), but rather the number of short batch jobs

concurrently in execution. An additional variable

was therefore used which represents the average

number of short jobs in execution with a given job

(AVJ). •

(b) Use of a load term in the model such as the average

number of short jobs in execution (AVJ) implies that

a given load has an equal effect on job elapsed

time, no matter what the resource demands of the job

are. It seems more likely that a job with large

139

411

resource demands would suffer a bigger delay than

a job with small resource demands.. Since CPU

time is the variable which made the most signifi-

cant contribution to the models described in sec-

tion 7.3, a term of the form CPU * AVJ was made

available for selection.

(c) 	The variable representing the average number of

terminals logged in during a job's lifetime (AVT)

made no significant contribution to the models

described in section 7.3. However, following the

same argument as in.(b), it was felt that a

variable of the form CPU *..AVT might make a more

significant contribution.

7.5.2 The Initial Models

In spite of introducing independent variables

relating to AVJ, the initial models were still not satis-

factory. However they did show an improved fit over the

initial models discussed in section 7.3. The major

problem is that:-

(a) simple functions (such as the average number of

jobs in execution) are being used to model a

complex function (the delay in job elapsed time

when the load gets high, resulting in jobs being

rolled out).

(b) these simple functions are not a sufficiently

accurate representation of the complex function.

A job may be rolled out for one of four reasons:

(i) A higher CM priority job is scheduled for execu-

tion (e.g. a timesharing user).

(ii) The job requests additional memory (CM) which is

unavailable.

•

140

(iii) The job exceeds its CPU time slice. If a batch

job has used more than this figure (currently

set to 4 CPU seconds) it is liable to be rolled

out.

(iv) The job exceeds its CM time slice. If a batch

job has been resident in CM for more than this

figure (currently set to 200 seconds), it is

liable to be rolled out.

The profile of the short job workload is such

that a short job is much more liable to be rolled out

for reason (iii) than (iv).

Each time a job is rolled out, its elapsed time

is likely to increase in a stepwise fashion. As pointed

out in section 7.4, once a job has been rolled out, it

can be subjected to severe delays, if it is low down in

the FNT table. Furthermore, the performance analysis of

the Kronos system described in (G6) has shown that when

the system gets overloaded, non-linearities are intro-

duced into the system and jobs may experience long delays.

To get good measures of the system in an overloaded state

requires considerably more performance data than is

currently available from the Dayfile (section 5.5).

7.5.3 Constructing the Models

For the same reasons given in section 7.3, it

was decided that models should be constructed from which

the largest outliers had been excluded. However a

different approach was adopted for eliminating outliers.

An iterative approach was taken with the successive

elimination of a few outliers at a time, until a good

fit was obtained. A number of runs were carried out

for each model, in which large residuals were successively

deleted. Gradually an improved R2 and reduced standard

error of residuals were obtained.

141

There were a number of interesting points in the

construction of these models:

(a) In all four models, the first variable introduced

always included a CPU factor. Usually, the first

variable was either CPU or CPU * AVT. These two

variables are highly correlated: in all four

sessions the correlation coefficient was 0.9 or

more. Because of this, the inclusion of one

variable in the model tended to exclude the other.

(b) The number of observations that had to be excluded

in order to obtain a good fit varied considerably

from one sample to the next. Thus in 20/5, only

22 observations were eliminated, while in 12/6,

63 observations were eliminated.

(c) It has already been described in section 7.3,

how one period of the 18/6 session experienced

severe degradation. To get a good overall fit,

it was necessary to exclude all jobs that were

executed in that period.

(d) As pointed out in section 7.2, a hangup occurred

for a period of about four minutes during the 17/6

session. Jobs held up by this blockage were

excluded in the construction of the 17/6 model.

(e) The short job load was highest on the 12/6 session.

63 observations had to be deleted (out of 441) to

obtain a good fit. Most of the deleted observa-

tions corresponded to jobs which fell into two

periods when the short job load was high. There

were also three jobs which hung at control points

and were dropped by the operator.

1142

(f) 	A satisfactory regression model was constructed

more easily for the 20/5 session. As pointed out

in section 7.2 the 20/5 session was the most CPU

bound and least PP bound session. It also had

the least terminal activity and the least con-

current batch activity. Higher batch and terminal

activity lead to greater rollin/rollout activity

which in turn means greater PP activity and conse-

quent job delays. This explains why the 20/5

model was the least difficult to construct.

7.5.4 The Regression Models

7.5.4.1 Introduction

Models were eventually built for each of the pour

sessions. In all four models, R2 was 0.7 or better.

before, however, different independent variables were

selected for inclusion in the models. To enable a di ect

comparison of the models to be made, the same set of

independent variables were forced into each model. By

this means, different versions of each model were construc-

ted. For each version, a combined model was also construc-

ted, which used data pooled from all four samples. Tables

7.8, 7.9 and 7.10 show three different versions of the

four models as follows

Table 7.8 - Independent variables are CPU, NCC and AVJ

Table 7.9 - Independent variables are CPU, NCC and CPU * AVJ

Table 7.10 - Independent variables are CPU * AVT, NCC and

CPU * AVJ

Building models with only three independent variables

meant that in some cases R2 was reduced by a few percent

As

below 0.70.

143

Table 7.8: Regression Models of Short Job Workload

First Version

Independent Variable 20/5/74 12/6/74 17/6/74 18/6/74 Combined

CPU 	r.c. 2.31 2.21 2.25 2.24 2.26

s.e. 0.08 0.10 0.09 0.08 0.04

t 28.9 22.1 25.0 28.0 56.5

NCC 	r . C . 1.53 1.37 1.58 1.32 1.42

s.e. 0.19 0.14 0.15 0.10 0.07

t 8.1 9.8 10.5 13.2 20.3

AVJ 	r.c. 3.91 1.86 3.15 3.05 2.81

s.e. 0.43 0.30 0.31 0.29 0.16

t 9.1 6.2 10.2 10.5 17.6

Intercept 1.09 3.44 1.28 3.33 2.44

R2 0.75 0.67 0.68 0.70 0.72

s 7.5 8.7 9.5 8.1 8.5

F 373 258 282 346 1217

No. of jobs 381 378 398 410 1567

For key to abbreviations refer to table 7.7.

144

Table 7.9: Regression Models of Short Job Workload
Second Version

Independent Variable 20/5/74 12/6/74 17/6/74 18/6/74 Combined

CPU 	r.c. 1.73 1.65 1.73 1.79 1.75
s.e 0.09 0.11 0.10 0.10 0.05
t 19.3 15.0 17.3 17.9 35.0

NCC 	r.c. 1.48 1.47 1.52 1.31 1.42
s.e. 0.19 0.13 0.15 0.11 0.07
t 7.8 11.3 10.1 11.9 20.3

CPU*AVJ 	r.c. 0.71 0.53 0.49 0.41 0.50
s.e. 0.07 0.06 0.05 0.06 0.03
t 10.2 8.8 9.8 6.9 16.7

Intercept 4.56 5.44 4.88 6.78 5.51
R2 0.76 0.70 0.69 0.68 0.70
s 7.3 8.3 9.3 8.6 8.5
F 400 291 291 292 1237
No. of jobs 381 378 398 410 1567

For key to abbreviations refer to table 7.7

145

Table 7.10: Regression Models of Short Job Workload

Third Version

Independent Variable 20/5/74 12/6/74 17/6/74 18/6/74 Combined

CPU*AVT 	r.c. 0.10 0.08 0.07 0.06 0.07

s.e. 0.005 0.005 0.004 0.004 0.002

t 20.0 16.0 17.5 15.0 35.0

NCC 	r.c. 1.53 1.60 1.67 1.28 1.50

s.e. 0.19 0.13 0.14 0.11 0.07

t 8.1 12.3 11.9 11.6 21.4

CPU*AVJ 	r.c. 0.71 0.40 0.35 0.46 0.45

s.e. 0.07 0.06 0.05 0.06 0.03

t 10.1 6.7 7.0 7.7 15.0

Intercept 4.80 5.21 4.55 7.63 6.07

R2 0.76 0.71 0.72 0.67. 0.69

s 7.3 8.1 8.9 8.7 8.6

F 399 311 332 279 1168

No. of jobs 381 378 398 410 1567

For key to abbreviations refer to table 7.7

146

7.5.4.2 	Relevance of the Independent Variables

Before discussing the models in detail, this

section considers the relevance of each of the variables

selected in the final versions of the model:

(i) Central Processor (CPU) Time

There is an obvious relationship between a job's

elapsed time and the CPU time it uses. The more

CPU time a job uses, the longer its elapsed time

is likely to be. The relationship between elapsed

time and CPU time is shown in figure 7.7 for the

18/6 session.

(ii) Number of Control Cards (NCC)

This is equivalent to the number of job steps in

each job. Before ajob step may be executed a

PP program, the dab Advancer (1AJ), interprets the

control card and initiates the job step by loading

the appropriate PP or CM program. Delays are

liable to occur for the following reasons:

(a) If the system is - heavily loaded, there may

be a delay before lAJ is loaded into a PP.

(b) lAJ has to interpret the control card and

initiate job step execution. The program that

is to be loaded (e.g. compiler or relocatable

binary loader) will probably reside on disc.

Further delays may be experienced before the

program is loaded off disc.

(c) A new job step will often require a change in

memory allocation. If less memory is required,

X

* 	 •

4.04E+01.

	

b 	1

	

X 	1
6 1

	

5 	1

	

4 	I

	

3 	I •

	

2 	1

	

1 	1
7.20E+01 4b

	

5 	1

	

U 	1 ..

	

I 	I
. 	6 	I

	

. 5 	1

	

4 	I
4 	1
2 	1

'
5.40E+01 :,o1 1 I 	X 	 X

1 X X Job Elapsed ' 	d I 	X 	 X 	X 	X X 	, x
IXX 	 X

6 	1 	AX 	 X 	 X 	X 	x , Time (seconds) 5 1 	X
4 	I 	x 	 x 	' X X 	 X
4 	1 	 X. 	 A 	X 	X 	X
2 1 X X 	 X 	 K 	X. 	 X

IX 	X
3.60E+01 2

1
U 1 	X

X 	 X
X 	 X 	 X

xx

b 	1 	K
d 	IX 	 XX 	

X 	 x 	xx. 	 x

	

X 	 X XX 	X , 	X 	. XX 	X
X 	1 X 	X 	X XX 	X X 	K 	XK 	X 	X 	X
6 	I 	X 	XX 	X 	X• 	X 	. X • 	X 	X
5 I X 	X 	X
4 	1X X 	XK 	X 	X. X 	X XX
4 	1 	X 	X 	X 	XX X 	XX' 	' . X X 	X

.'d 	XX X 	X X XX XXX X XXX 	XX 	XX 	X 	X ' . X
I 	X X XX XXX XX 	. X xx X X 	XX x

1,16E+0i 	16 	1 x 	x x 	XX x 	x x
b 	xxx 	x xxx xxx x XX 	XXXXX 	X 	X
b 	JXXXX XXXXXXXX 	xx 	X X
i 	1XXXX XXXx XXXX 	XX x 	 x
6 	XXXXX XXXXXXXXXXX
5 	XAXX 	X X
4 	XXx XX X X
4 	xx • XXX
2XX 	.
I 	X

Q.E+OQ o 1 	

1,12456/bob124456ibbbi24456-iobU123456X612645bibbX12445p/Lbt,12,341.)67o5‘124451.46b614445tab:.b124456:u
b 	.1 	c 	6 	4 	5 	t 	/ 	b 	'.. 	4

A

CPU time (seconds)

XX

140E00 	5.400.00 	9,00E+40
04+00 	3.60E+00 	7.20E+00 	1.06E+01

1.26E+01 	1.62E+01
1.441E+01 	1.90e+01

Figure 7.7: Short Job Workload - Variation of Job Elapsed Time with CPU Time

148

the request will be rapidly satisfied. If

an increase in memory is required and

sufficient memory is available, the request

will also be rapidly satisfied. However if

insufficient memory is available, the job

is likely to be scheduled for rollout, par-

ticularly if there are other jobs with the

same or higher priority competing for

memory.

Thus a job with a larger number of job steps is

more likely to experience delays than a job with

identical resource demands but fewer job steps.

The delay due to this is likely to be especially

important for short jobs whose resource demands

are comparatively small. The coefficient of the

NCC variable can thus be considered as a measure

of the system overhead to initiate a job step.

(iii) Load Variables

As pointed out earlier, the elapsed time a short

job experiences can be seriously extended if the

terminal activity is high or if there are a

large number of competing jobs. This is the

reason for the importance of the load variables.

Three load variables were used in the models.

One is the average number of short jobs each job

has to compete with (AVJ). An alternative is

CPU * AVJ, in which the short job load is weighted

by the job's CPU time requirements. The third,

CPU * AVT is a measure of terminal load, weighted

by a job's CPU time requirements. Further com-

ments are made on the use of these variables in

the next three subsections.

7.5.4.3 The First Version (CPUL NCCI. AVJ) of

the Models

In this version of the model, the three independent

variables are not correlated with each other. Thus, the

regression coefficient of each variable reflects the only con-

tribution made by that variable to the model. To illu-

strate this, consider the CPU and AVJ coefficients in

the 20/5 model. The model is constructed using the Forward

Selection Procedure (Chapter 6), in which the three

independent variables are forced in one at a time.

1st step 	y = 9.58 + 2.40 CPU 	R2 = 0.65
2nd step 	y = 6.42 + 2.42 CPU + 3.85 AVJ 	R2 = 0.71
3rd step 	y = 1.09 + 2.31 CPU + 3.91 AVJ + 1.53 NCC

R2 = 0.75

It can be seen from the above example, that the

regression coefficients of the CPU and AVJ variables do

not fluctuate much with the introduction of each new

variable.

The models of the four sessions, together with a

model of the combined sessions, are shown in table 7.8.

The main features of the models are:

(a) In the four models, R2 varies between 0.67 and

0.75. These values of R2 are considered satis-

factory, as they mean that between two thirds and

three quarters of the variation in job elapsed

time is explained by the models.

(b) There is a close agreement between the regression

coefficients of the CPU variable.

(c) There is also a reasonably close match between

the regression coefficients of the NCC variable.

149

150

(d) 	There is a much greater variability in the

coefficient of the load variable, AVJ.

A limitation in the use of a load variable such

as AVJ is that no account is taken of the job's resource

demands. In the next version of the models, an attempt was

made to rectify this by using a CPU * AVJ term.

7.5.4.4 	The Second Version (CPU, NCC, CPU*AVJ)

of the Models

In this version, the load variable is represented

by CPU * AVJ (table 7.9). The three independent variables

are now no longer uncorrelated, as CPU * AVJ is correlated

with CPU. In the four sessions, the correlation coeffi-

cient between CPU and CPU * AVJ was 0.5 or more. Comparing

tables 7.8 and 7.9 it can be seen that, replacing the AVJ

term by CPU * AVJ, has a comparatively small- effect on

the NCC coefficients, but a much larger effect on the CPU

coefficients. For example, in the 20/5 model, the CPU

coefficient is reduced from 2.31 in table 7.8 to 1.73 in,

table 7.9, whereas the NCC is only reduced from 1.53 to

1.48.

The main features of the models are:

(a) Comparing the first and second versions of each

model (tables 7.8 and 7.9), it can be seen that

there is little difference in R2 and s. However

the intercepts are somewhat bigger in the second

version of the models.

(b) Comparing the regression coefficients of the four

models (table 7.9), it can be seen that there is

a relatively close mate: between the coefficients

of the CPU and NCC variables.

. 151

(c) 	As before, however, there is a greater variability

in the regression coefficient of the load variable,

CPU * AVJ.

The load term can still not be considered satis-

factory. One obvious omission is the terminal load, which

is present and varying throughout each session. As ob-

served earlier, there appears to be no suitable variable

representing terminal load available.

7.5.4.5 	The Third Version (CPU * AVT, NCC,

CPU * AVJ) of the Models

An attempt was made to introduce a variable which

is related to the terminal load by using CPU_-* AVT. How-

ever this variable is very highly correlated with CPU. The

correlation coefficient was 0.9 or more for the four sessions.

It is thus apparent that the CPU factor is by far the major

contributor to the 'CPU * AVT term in the model. Indeed,

using the Forward Selection Procedure, the introduction of

CPU * AVT into the model had the effect of excluding CPU

(and v.v.).

Table 7.10 shows the third version of the models

for each session. Like the previous two, this version

has a satisfactory R2, but like the second version it has

a larger intercept. This version is less satisfactory

than the previous two, however, because there is a greater

variability in all three sets of regression coefficients.

7.5.4.6 	Analysis of Residuals

The analysis of residuals for these models did not

reveal any major differences from the analysis carried

out on the previous models of the short job workload des-

•
152

cribed in section 7.3. The residual plots against

actual elapsed time for each version of the four models

are similar in shape to those shown previously in

figures 7.5 and 7.6. As an example, the residual plot

for the 12/6 model (first version) is shown in figure

7.8.

7.5.5 Comparison of the Models

In all three versions of the models, R2 is greater

than 0.67, which is considered satisfactory. In the

first and second versions, the regression coefficients

agree more closely than in the third. In all three ver-

sions, there is a greater fluctuation in the regression

coefficients of the load variables.

Of the first and second versions, the points

favouring the first version (with AVJ) are:

(a) the intercepts are smaller

(b) the three independent variables are indepen-

dent of each other. Hence the regression

coefficients are independent measures of the

contribution made by each of the variables to

the model.

The main point favouring the second version (with

CPU * AVJ) is that the load variable includes a measure

of resource demand. However the fluctuation of the

regression coefficients indicates that the CPU * AVJ

variable can still not be considered an adequate measure

of the load on the system. The model also suffers from

the disadvantage that the contribution by CPU is now split

between two terms, CPU and CPU * AVJ. The first two

versions both suffer from the disadvantage of not having

a measure of terminal loading.

A 	 • 	 • 	 S

4.50E+01 30 I
I

8 I
, 	7 I

6 I
5 I
4 1
3 I
2 I
1 I

• 3.00E+01 I 2
9
0

8 7
I

x

7 6 I I X
5 I
4 I
3 1
2 1 	 : 	X X X X
1 r 	 x xx x X

1.50E+01 10 I X X
9 I 	 X 	X' X X
8 I x X 	 X X X X X
7
6
5

X 	XX 	X I 	 XX
I 	X 	X 	X X
I 	 XXX 	X 	X 	'

XXX
X x

X

X 	X
X

X
X

X
X

X

x
x

x x
4 7 	X 	XX 	X X 	X 	X X X X

Residuals 3
2

7 	X 	X XXX 	XXX 	XXX 	X
I 	X 	xX 	g 	X 	XX 	XX

X X

XXXXX 	XXX 	XXXX 	XXX XX
0.E+00 i 	X-XXXX-XXXX-X--X- -XX-X-X- -XX

x

1 IXXX XXXX XXXX XX 	XxxXX X
2 I 	XXxX xxXX XXXX XXX 	XXX 	X 	XXX 	X X
3 I 	XX 	XXXX XX X 	XX 	XX 	XX 	X 	X X
4 I 	XxX XXx 	XX 	XXXXX 	XX 	X X X
5 IX 	XX XXXX 	XXX XX 	X X 	X X X X
6 I 	XXX 	X 	XX X 	X 	X
7 I 	X 	 X XX 	X
8 I 	 x 	X
9 I 	 X 	X X

ft1.50E+01 •iD I
1
7 I 1 	 X
3 1 	 X
4 I
5 I
6 I
7 I 	 X
8 1
9 I

-3.00E+01 -23 I

01234567890123456789)12345678901234567890/23456789012345878901234567890123456789012345678901234567850
0 	i 	2 	3 	4 	5 	6 	7 	b 	 9 	fJ

1
1.00E+00 	2.40E+01 	4.00E+01 	5.60E+01 	7.20E+01

0.E+00 	1.60E+01 	3.20E+01 	4.80E+01 	6.44E+01 	S.00E+01

Actual Job Elapsed Time (seconds)

Figure 7.8: Residual Plot - Model of Short Job Workload (12/6/74 a.m. session)

154

The higher R2 in the 20/5 model for all three

versions of the models is almost certainly due to the

lower terminal load during that session.

7.6 	Regression Modelling of the Afternoon Workload

7.6.1 Analysis of the Afternoon Sessions

Two afternoon sessions were also analysed, the

17/6 and 18/6 sessions. The main characteristics of the

batch and interactive workload for these sessions are

shown in tables 7.11 and 7.12 respectively.

Table 7.11 shows that many characteristics of the

batch workload were remarkably similar on the two after-

noons. The total number of jobs executed was close,

although the breakdown into short and long jobs was diffe-

rent. The batch CPU utilisation, as well as the short and

long job CPU utilisat±on were all virtually identical for

the two sessions. However, the mean elapsed time for short

jobs on 18/6 was more than double that for 17/6.

A close examination of the System Dayfile for

the 18/6 session revealed that at one period of the after-

noon,a large number of short jobs with similar characteris-

tics were submitted and scheduled for execution over a

short interval of time. This resulted in a system bottle-

neck. A similar event occurred in the morning session of

the same day and was reported in section 7.4.2. However,

the afternoon bottleneck appears to have been considerably

more severe. In the afternoon, the elapsed time of some

of these jobs was over 3000 seconds, and in one case

over 4000 seconds. During this period, the number of

batch jobs executing concurrently peaked at 33. The mean

elapsed time for short jobs was 104 seconds in this session,

compared with 32 seconds for the 18/6 morning session and

24 seconds for the 20/5 morning session.

155

Table 7.11: Characteristics of the Afternoon Batch Workload

Class Characteristic 17/6/74 18/6/74

All

Jobs

No. of jobs

Total CPU time (secs)

976

7820

995

7870

Mean CPU time/job (secs) 8.0 7.9

Batch CPU utilisation 36.2% 36.4%

Short No. of jobs 872 831
Jobs Total CPU time (secs) 4360 4410

Mean CPU time/job (secs) 5.0 5.3

Mean elapsed time (secs) 45.7 104.4

CPU utilisation 20.2% 20.4%

Long No. of jobs 104 164
Jobs Total CPU time (secs) 3460 3460

Mean CPU time/job (secs) 33.7 31.1

Mean elapsed time (secs) 1262 833

CPU utilisation 16% 16%

156

7.12: Characteristics of Afternoon Terminal Workload

17/6/74 .18/6/74

Session start 14.04.04 14.06.17

Session end 20.00.00 20.00.03

No. of terminal sessions 322 294

Average Terminal Load 22.4 21.7

Maximum Terminal Load 	' 4Q -36

Interactive CPU time used (secs) 4270 3320

Average CPU time/session (secs) 13.3 10.3

Times no PP 	available 17,071 15,846

Times/hour no PP available 3,570 2,640

Telex CPU utilisation 4.7% 3.5%

Terminal User CPU utilisation 19.8% 15.4%

Batch User CPU utilisation 36.2% 36.4%

Total User CPU utilisation 56.0% 51.8%

157

Table 7.12 shows the main characteristics of

the terminal workload on the two afternoons. The terminal

CPU utilisation was higher on 17/6 than 18/6, reaching

20% in the former case. The afternoon sessions lasted

from 14.00 to 20.00. The peak terminal load (as measured

by users logged in) was recorded at around 16.00 in

both sessions, and then dropped off steadily. It is

therefore likely that at the peak load, the terminal

CPU utilisation was much higher. In the 18/6 session,
the batch bottleneck coincided with the peak terminal

load.

The figures for the 'number of times no PP was

available' are higher for the afternoon sessions than

the morning sessions. The highest morning figure was a

rate of 2,260/hour on the morning of 18/6. The after-

noon figures were 3,570/hour and 2,640/hour on the 17/6

and 18/6 respectively. This indicates that the overall

system load was higher in the afternoon sessions than

the morning sessions. However the average load appears

to have been higher on the 17/6 afternoon, a session ih

which the terminal load was higher. In spite of this,

the short jobs suffered less delay than on 18/6, recording

a mean elapsed time of 46 seconds on 17/6 compared with

104 seconds on 18/6.

Table 7.13 shows the main characteristics of the

short job workload for the two afternoon sessions. Com-

paring the characteristics for the untreated sets of

jobs on 17/6 and 18/6, it can be seen that most of the

characteristics are similar. However, one major difference

is that whereas each short job had an average of 2 other

short jobs competing with it on 17/6, this figure increased

to 4.3 on the 18/6. This analysis indicates that the

considerably longer short job elapsed times on 18/6, were

due more to competition from other short jobs than from

terminal user activity (see also 7.4.2).

. 158

Table 7.13: Characteristics of Short Job Workload

Afternoon Samples

Characteristics 17/6/74

Untreated

18/6/74

Untreated

17/6/74

Treated

Number of jobs 872 831 799

Elapsed time(secs) 	m. 45.7 104.4 - 29.7
s.d. 69.4 411.6 24.9

CPU time 	(CPU) (secs) m. '5.0 5.3 4.8
s.d. 5.8 5.6 5.6

Disc records trans- 	m. 275 304 258
ferred 	s.d. 310 357 282

No. of control cards
- (NCC) 	m. 5.2 6.2 4.7

s.d. 6.3 6.2 3.4

No. jobs competing

(AVB) 	m. 8.7 10.8 8.4

s.d. 4.6 6.8 4.5

No. short jobs competing

(AVJ) 	m. 2.0 4.3 1.7

s.d. 2.0 4.9 1.8

159

7.6.2 Constructing the Models

The procedure for modelling the afternoon work-

load was the same as that adopted for modelling the

morning workload (section 7.5). Large residuals were

gradually excluded, with the objective of eventually

constructing satisfactory models. With the 18/6 session,

this proved to be a very difficult task. With 136

observations excluded, the fit was still very poor. As

described in the previous section, this session displayed

highly unusual characteristics. Constructing a model

for this session was abandoned because, to construct an

adequate model, so many observations would have had to be

excluded that it is doubtful whether the final model

would have been meaningful.

In order to obtain a good fit for the 17/6 model,

73 observations were deleted. The remaining jobs con-

stitute the treated set, and their main characteristics

are displayed in table 7.13. A major difference between

the afternoon treated set and the morning treated sets

(table 7.5) is the larger mean elapsed time of almost 30

seconds for the afternoon set. This contrasts, with a mean

elapsed time of between 20 and 22 seconds for the morning

sessions. Furthermore the average number of short jobs

competing with a given short job was 1.7. This was higher

than any of the morning sessions, where the highest

figure recorded was 1.2 on 12/6 morning.

7.6.3 The Models

7.6.3.1 	Introduction

Three versions of the model were constructed. They

are shown in table 7.14, and are similar in form to the

three versions constructed for the morning sessions. In

general R2 is lower than in the morning models and the

standard error of the residuals is considerably higher.

160

•

•

Table 7.14: Regression Model of Short Job Workload

(17/6/74 p.m. sample)

Independent

Variable
Version

1
Independent

Variable
Version

2.
Independent

Variable

Version

3

CPU CPU CPU*AVT
r.c. 2.89 r.c. 1.67 r.c. 0.07
s.e. 0.10 s.e. 0.12 s.e. 0.005
t 28.9 t 13.9 t 14.0

NCC NCC NCC
r.c. 1.92 r.c. 1.95 r.c. 1.89
s.e. 0.16 s.e. 0.16 s.e. 0.16
t 12.0 t 12.2 t 11.8

AVJ CPU*AVJ CPU*AVJ
r.c. 3.96 r.c. 0.70 r.c. 0.58
s.e. 0.30 s.e. 0.05 s.e. 0.05
t 13.2 t 14.0 t 11.6

Intercept -0.08 Intercept 7.36 Intercept 7.67
R2 0.63 R2 0.64 R2 0.66
s 15.1 s 14.9 s 14.6
F 456 F 481 F 504
No. of jobs 799 No. of jobs 799 No. of jobs 799

For key to abbreviations refer to table 7.7

161

The residual plot in figure 7.9 shows that the

biggest residuals in the afternoon model are larger

than their counterparts in the morning models (figures

7.5, 7.6 and 7.8). Apart from this, the afternoon

residual plot shows no major differences from the morning

residual plots.

	

7.6.3.2 	The First Version (CPU/ NCC/ CPU*AVJ)

In the first version of the model (CPU, NCC, AVJ),

the values of the coefficients of the three variables

are all larger than any of their counterparts in the morn-

ing sessions (table 7.8). This is partly explained by

the fact that the elapsed times in the afternoon are on

average 50% higher than in the morning. Therefore, for

the same set of independent variables, the higher predic-

ted elapsed times must either come from larger regression

coefficients or from a larger intercept. In this version

of the model, the intercept is small, and the coefficients

of the CPU and NCC variables are larger than in the

morning models.

7.6.3.3 The Second Version (CPUL NCC, CPU*AVJ)

In the second version of the model (CPU, NCC,

CPU * AVJ), the intercept is 7.36 which is much larger

than in the first version (-0.08) and is also larger than

any of the corresponding morning models (table 7.9). The

CPU coefficient is relatively close to the morning models,

whereas the NCC coefficient is larger.

	

7.6.3.4 	The Third Version (CPU * AVT/ NCC,

CPU * AVJ)

In the third version of the afternoon model (CPU

* AVT, NCC, CPU * AVJ) the intercept is 7.67, which is

about the same size as in the second version, but larger

X X
X

• •

6.00E+01 'kil I

i 	 x 	x
7 1 	 X 	 X
6 	I 	 X 	X X
5 I 	 X 	x
4 I 	 X 	 X 	 X • 	X

x 3 7 	 x 	X
2 	

I 	
X 	X 	 X

x 	
XX X X

1 	 X 	 X X
3.00E+01 	10 	

7
1 	

X 	
X X X

X 	XXX X X
	X 	 x

8 	1 	 x 	x x xx 	 x x 	x 	X
7 	1 	 X X X

	

X 	 X XXX 	X X
X X 	X 6 	7 	 X 	X 	 XXX X X 	X

5 	1 	 X 	X 	X X 	X 	XX 	X X 	X X X 	 X 	 X
4 	I 	 X XXXXX XXX XXXXXXXX 	XX 	 X
3 	I 	 XX 	X XX X XX X 	X 	X 	XX X 	X X 	 X
2 	I 	X X XX xXxX X xx 	X 	XXX X 	X 	X
i 	IXXXXXXXXXXXXXXXXX XXXX X XXXXX X 	X X 	, XX X
0 	TXXXXXXXXXXXXXXX..-X—X.-XXXXX......XXXXXXX......•X”..XX■X 	
1 	TXXXXXXXXXXXXXXXXXXX X X X 	XXX 	X XX
2 	3X XXXXXXXXXXXXXXX XXXX XXXXX XXX 	X X 	 X
3 	IXXXXXXXXXXXXXXXXxXXXXXXXX 	XXX X
4 IXXXXXXXXXXXXXXXXXXXXXXXXX
5 	IX X 	XXXXXXXXXXX X X X XX 	X X
6 	I 	 X 	X X 	X 	X' X X X
7 	 XX X XX X X XXX
8 	

I 	
X. X 	X 	X

9
•3.00E+01 -I 	

I 	 X
X 	 X 	x

2 7
3 I

5
61
7 7

9 /
-6.00E+0/ —21 7

2 7
3 	I
4I
5 1
6
7 I
8
9 1

• 9.00E+01 —30 I

0.E+00

Residuals

X
X

XX 	X

X

ti2345676901234567890/2345678$0123456789,1123456789012345676:1123456789d1234567 (11,12545570Su12345t$765u e 	 1 	 2 	 3 	 4 	 5 	 6 	 7 	 6 	 9 	 U
1.50E+01 	 4.50E+01 	 7.50E+01 	 1.05E+02 	 1.35E+02 	

i
0.E+00 	 3.00E+01 	 6,00E+01 	 9.00E+01 	 1.20E+OZ 	 1.50E+02

Actual Job Elapsed Time (seconds)

Figure 7.9: Residual Plot - Model of Short Job Workload (17/6/74 p.m. session)
rn

163

than in corresponding morning models (table 7.10). R2

is marginally larger than for the first two versions.

NCC is again larger than for the morning models.

7.6.4 Comparison of Models

The second and third versions are not very satis-

factory, because of their large intercepts. In the

first version, which has a small intercept, the CPU and

NCC coefficients are larger than in the morning models.

The AVJ coefficient is however about the same value.

This means that the increased delay that the afternoon

short jobs experienced is being attributed to the CPU

and NCC coefficients. In the second and third versions

it is being attributed to the intercept.

When the load is high, jobs are delayed because

they are rolled out of CM. Jobs with larger resource

demands (e.g. CPU time) are likely'to suffer comparatively

greater delays. Hence, in the absence of a good measure

of load on the system, the coefficient of the CPU variable,

the independent variable most highly correlated with

elapsed time, is larger for sessions with heavier loads.

As pointed out in section 7.5.4.2, the coefficient

of NCC (the number of job steps) may be considered as a

S
	measure of the system overhead to initiate a job step.

In the afternoon session, the load was higher than in the

morning sessions. It is likely that the system overhead

to initiate each job step would also on average be higher.

The larger NCC coefficient reflects this increased over-

head.

In conclusion, the main reason for the difference

between the afternoon model and the morning models, is the

heavier system load (both batch and timesharing) in the

afternoon session.

164

7.7 	Regression Modelling of the Batch Workload in

the Absence of the Time Sharing Load

7.7.1 Introduction

A new machine, the CYBER 7314, was installed at

the Imperial College Computer Centre during the summer

of 1974. Between August 1974 and June 1975, while

software was being developed locally to allow a shared

permanent file base, the CYBER 7314 and 6400 operated

independently of each other. The CYBER supported the

bulk of the batch workload, including the cafeteria ser-

vice, the local batch workload and the remote batch work-

load. The 6400 supported the timesharing workload and

the batch jobs submitted by timesharing users.

The operating system run on both systems was Kronos

2.1. The main differences between Kronos 2.1 and the

previous version, Kronos 2.0, are the additional user

facilities provided and the new peripherals supported

by Kronos 2.1. Resource management is similar to Kronos

2.0.

The 6400 and CYBER 7314 are architecturally similar

apart from the compare /move unit (section 4.3). The

configuration on both machines was also enhanced with the

addition of faster disc units.

The fact that,for a temporary period of time, the

CYBER was to support an entirely batch workload, provided

an excellent opportunity for the batch workload to be

modelled in the absence of the timesharing workload. A

complete comparison with the previous analysis would not

however be possible because of differences in the architec-

ture, machine configuration and operating system, between

the 1974 evaluation on the 6400 and the 1975 evaluation

on the CYBER.

165

•

•

7.7.2 Characteristics of the Workload

The workload data for the evaluation of the entire-

ly batch workload on the CYBER system, was gathered during

two periods in January and April 1975. Four sessions,

three morning and one afternoon, were used for the evalua-

tion. The morning sessions were on the 27th January, 28th

and 30th April. The afternoon session was on the 30th

January. Both the Account and System Dayfiles were collec- .

ted for each session.

The main overall characteristics of the four sessions

are displayed in Table 7.15, and the main characteristics

of the short job workload are displayed in Table 7.16. The

morning sessions were of approximately the same length,

between 31 and 3i hours. The afternoon period was the first

two hours of a longer session. During this period, roughly

the same number of short jobs were processed as in the

morning sessions. Thus the afternoon session experienced

a considerably higher average short job load. Table 7.16

shows that whereas the average number of short jobs in com-

petition with a given job varied between 0.42 and 0.67 in

the morning sessions, it was 1.18 in the afternoon session.

Table 7.15 shows that, as a result of the greater load, the

short job CPU utilisation was 16.4% in the afternoon, where-

as in the three mornings it varied from 8.5% to 11.7%.

In the four sessions, the short job workload accoun-.

ted for between 75% and 85% of all jobs processed. However,

the long job CPU utilisation was over four times as large

as the short job CPU utilisation, except for the afternoon

session where it was only twice as large. The long job CPU

utilisation on 30/1/75 is probably an underestimate of the

real figure, as it does not include any jobs which started

before the end of the monitored period, and finished after

it.

166

Table 7.15: Characteristics of the 1975 Batch Workload

27/1/75 30/1/75 28/4/75 30/4/75

Start of Monitored Period 9.37.30 14.03.09 9.31.30 9.36.59

End of Monitored Period 12.52.13 16.04.32 12.59.59 12.50.46

All Jobs

Number of jobs 415 454 355 467

Total CPU time (secs) 6875 3841 6231 7810

Mean CPU time/job (secs) 19.4 8.5 17.6 16.7

Batch CPU utilisation 59% 53%* 50% 67%

Short Jobs

Number of Jobs 354(85%) 364(80%) 278(78%) 352(75%)

Total CPU time (secs) 1315 1181 1061 1360

Mean CPU time (secs) 3.72 3.45 3.82 3.86

Mean elapsed time (secs) 19.4 22.9 21.9 20.0

Short job CPU utilisation 11.3% 16.4% 8.5% 11.7%

Long Jobs

Number of Jobs 61 90 77 115

Total CPU time (secs) 5560 2660 5170 6450

Mean CPU time (secs) 91.3 29.5 67.2 56.0

Mean elapsed time (secs) 961 445 279 443

Long job CPU utilisation 48% 36.8% 41.3% 55.5%

* Approximate figure

167

•

S

Table 7.16: Characteristics of the 1975 Short Job Workload

(Four Samples Untreated)

Characteristic 	27/1/75
a.m.

28/4/75

a.m.

30/4/75

a.m.

30/1/75

p.m.

Number of jobs 354 278 352 364

Elapsed time(secs) m 19.4 21.9 20.0 22.9

s.d 18.1 26.1 17.1 33.9

,
CPU time(secs) 	m 3.72 3.82 3.86 3.45
(CPU) 	s.d. 	4.90 4.62 4.95 4.94

Disc records trans-

ferred (DPRU) 	m.239 384 234 	- 234

s.d.462 780 216 379

No.control cards 	m. 	3.06 5.08 3.71 2.99

(NCC) 	s.d. 	3.00 7.15 4.24 3.79

Average CM(kilo-

words) 	m., 13.4 14.6 15.4 14.2

s.d. 	8.5 8.8 7.6 7.8

Average short job

load (AVj) 	m. 	0.67 0.42 0.49 1.18

s:d. 	0.89 0.67 0.57 1.05

Average total job

load (AVB) 	m. 	6.10 2.28 4.83 7.57

s.d. 	2.38 1.61 2.62 2.20

Key: 	m. : mean

s.d. : standard deviation

168

Comparing the short job workload characteristics

(table 7.16) with the 6400 set (table 7.4), shows that the

mean CPU time was noticeably lower on the CYBER (mean =

3.6 secs) than the 6400 (mean = 4.4 secs). The difference

may reflect a genuine change in the workload, or may be

due to the effect of the additional character handling

instructions provided by the CYBER's compare/move unit and

used by some of the system software. It is probably a com-

bination of both. The mean short job elapsed times are

considerably lower on the CYBER. The main reason for this

is the absence of the timesharing load.

7.7.3 The Initial Models

The initial models for the four sessions are shown

in Table 7.17. The Forward Selection Regression procedure was

again used to select the independent variables to be included

in the model. As observed before, there is a wide varia-

tion in the independent variables selected for each model.

Comparing the initial models on the CYBER with

those on the 6400 (table 7.6), one major difference is

apparent. In the initial models on the 6400, R2 was not

at all satisfactory. In the initial models of the three

morning sessions on CYBER, R2 is over 0.67, which is con-

sidered satisfactory. However R2 is much lower for the

30/1/75 model. An analysis of residuals for this model

showed that two jobs with large elapsed times had very

large positive residuals. Inspection of the Dayfiles re-

vealed that both these jobs were run under the same user

number. In each case, the job had hung at a control point

and eventually been dropped by an operator. When these

jobs are excluded, the fit improves considerably.

This shows that now the timesharing load has been

removed, much better models of the short job workload can

be constructed.

169

Table 7.17: Initial Models of the Short Job Workload

27/1/75 a.m. sample - 354 observations

Y = 5.4 + 0.23CPU*AVB + 0.01DPRU + 1.51NCC*AVJ

+ 1.50CPU - 0.19WH

R2 = 0.79 s = 8.3 F = 264

28/4/75 a.m. sample - 278 observations

Y = 6.37 + 0.01DPRU*AVJ + 2.65CPU + 1.49NCC*AVJ

R2 = 0.80 s = 11.7 F = 278

30/4/75 a.m. sample - 352 observations

Y = 3.20 + 2.39CPU + 1.07NCC*AVJ + 0.76AVB + 0.55NCC

R2 = 0.67 s = 9.9 F = 177

30/1/75 p.m. sample - 364 observations

Y = 9.91 + 0.55CPU*AVB + O.85NCC*AVJ + 0.00001DPRU2

- O.29WH
R2 = 0.30 s = 28.7 F = 37.5

For key to abbreviations refer to table 7.6

170

7.7.4 Analysis of Residuals

The residual plots are similar in character to the

1974 plots, although not so accentuated. An example is

shown in figure 7.10 for the 30/4 session. There are a

large number of small negative residuals and fewer large

positive residuals. The large positive residuals occur

for jobs with large elapsed times.

An analysis of residuals showed that there were some

jobs in each session which displayed unusual characteristics.

The characteristics of these jobs were one or more of the

following:

(i) Large job elapsed times and large positive

residuals.

(ii) An uncharacteristically large number of job steps.

(iii) An uncharacteristically large number of disc

physical records transferred.

An examination of the System Dayfile showed that

although these uncharacteristic jobs were relatively few

in number, they were sometimes run a number of times in

each session. Some of the uncharacteristic jobs always

had long elapsed times. Others only recorded long elapsed

times under certain conditions, such as if other un-

characteristic jobs were running with them or if the short

job load was comparatively high. Ordinary jobs, which

were run at the same time, were sometimes delayed by

these jobs.

The uncharacteristic jobs distort the models (see 6.5.4).

The most frequently observed ones were:

(a) Jobs which use the microfilm feature.

(b) Jobs which use the facility for editing a user

program library.

3.60E+01 40
9
8
7
6

I
1
4
1
1

5 1
4 J. X X
3 i
2 1 X
1 1

2.40E+01 20 1 X
9
8

I
1 x

7 L
6

K
X X X

5 I X 	.
4
3

I
1 XX x K

K
x

x
2 i X

1.20E+01 10

I 4.
1.

X
X 	X X X X

X,

9' I X 	K 	X X
b I X
7 / XX 	 X X , X

Residuals 6
5 t

X
xX 	K 	x X X

4 I X 	XXxX X 	X X
3 4. AxxXX XX X 	XK X . Xx X X
2 I Xxx 	XXXXX X
1 I X XXXXXXXX X 	XX 	XX XX • X

06E+40 0 A XXXxAXXXXX-x- 	X--X-X-X 	 4.....".•X.•X X..,•••
1 4 XAKXXXXXX XX 	X 	X 	XX X K X 	. X
2 1 XXXXX AXXxXXXXX X X X X
3 A XX XxXXX4 XX 	Xx XXX X
4 1 XXX XXXXX 	X XXX 	X X
5 iX XXXXX 	X 	XX 	X. XX 	XX X
6

7

I

1

	

XX 	X 	XX 	X 	X X1(

	

X 	 XX
	X X XX

	'x
I X 	X ' 	44XX 	XX X- X X 8 I

.-1.20C+01 -10 1 XX
/ 4. X 	X 	X
2 4. X
3 1 K
4 1 X
5 I
6 1
7 1 X
6
9 t

• 2.40E+01 -20 I
0123456789012J4567890/2345678901234567890123456789012345678901234567890124456789012345678901234567890
0 1 2 3 4 5 6 7 8 • 9 0

1
1.00E+01 3.00E+01 5.00E+01 7.00E+01 9.00E+01 04E+00 2.00E+01 4.00E+01 6..00E+01 8.00E+01 1.00E+02

Actual Job Elapsed Time (seconds)

Figure 7.10: Residual Plot - Model of Short Job' Workload (30/4/75 session)

•

172

(c) Jobs which test a particular mathematical pro-

gram library. This was the same type of job 	z'

which had the adverse effect on performance dis-

cussed in section 7.4.2.

(d) Jobs which use the utility for querying which

magnetic tapes their permanent files had been

archived to.

All these jobs are likely to be highly I/O bound.

Many of these jobs (e.g. the first three types above) are

jobs one might not normally expect to be run in the short

job category.

It was decided that these uncharacteristic jobs,
which constitute a small percentage of the short job

workload, should be excluded from the analysis. The charac-

teristics of the short job workload, after excluding these

jobs, are shown in table 7.18.

7.7.5 Models of the Short Job Workload

The models for the four sessions, constructed after

excluding uncharacteristic observations, are shown in

table 7.19. The three independent variables, CPU (job CPU

time), NCC (number of job steps) and AVJ (short job load)

were forced in as before.

Table 7.19 shows that R2 is between 0.7 and 0.75

for the four models. The regression coefficients for

the CPU variable are in close agreement, as are the co-

efficients of NCC. However, there is a greater variability

in the coefficient of the AVJ variable.

Comparing these models with the 1974 models

(table 7.8), it can be seen that whereas the coefficients

•

173

Table 7.18: Characteristics of the 1975 Short Job Workload

(Four Samples Treated)

Characteristics 27/1/75

a.m.

28/4/75

a.m.

30/4/75

a.m.

30/1/75

p.m.

Number of jobs 333 259 345 354

Elapsed time 	(secs) 	m. 18.1 16.8 18.9 19.6

s.d. 14.1 15.1 14.8 15.4

CPU time (secs) 	m. 3.61 3.50 3.75 3.31
(CPU) 	s.d. 4.74 4.27 4.81 4.81

I

Disc records trans-

ferred (DPRU) 	m. 206 294 234 215

s.d. 162 455 216 214

No. control cards 	m. 3.04 4.43 3.70 2.86

(NCC) 	s.d. 2.78 5.14 4.24 3.54

Average CM(Kilowords) m. 13.7 14.8 15.5 14.2

s.d. 8.6 8.7 7.5 7.8

Average short job

load (AVJ) 	m. 0.57 0.35 0.49 1.17

s.d. 0.65 0.59 0.57 1.06

Average total job

load 	m. 5.97 2.21 4.80 7.55

s.d. 2.23 1.54 2.60 2.21

No. jobs excluded 19 19 7 10

174

Table 7.19: Regression Models of the Short Job Workload

(outliers excluded)

Independent

Variable

27/1/75

a.m.

28/4/75

a.m.

30/4/75

a.m.

30/1/75

p.m.

combined

a.m.

combined

all

Equation

Number 1 2 3 4 5 6

CPU 	r.c. 2.25 2.22 2.21 2.28 2.24 2.25

s.e. 0.09 0.12 0.09 0.09 0.06 0.05

t 25.0 18.8 24.8 25.1 40.1 47.3

NCC 	r.c. 1.16 1.05 1.05 1.14 1.05 1.08

s.e. 0.15 0.10 0.10 0.12 0.06 0.06

t 7.6 10.5 10.5 9.3 16.8 19.3

AVJ 	r.c. 5.47 7.17 5.38 4.92 6.01 5.32

s.e. 0.65 0.82 0.72 0.41 0.41 0.26

t 8.5 8.8 7.4 12.1 14.6 20.1
_ ..

Intercept 3.38 1.92 4.02 3.06 3.18 3.25

Adjusted

Intercept

(Equation 5) 3.44 2.25 3.64

Adjusted

Intercept ,

(Equation 6) 3.72 2.33 3.83 2.91 .
R2 0.71 0.75 0.73 0.73 0.73 0.73

s 7.7 7.7 7.7 8.1 7.6 7.8

F 266 249 311 318 830 1145

No. of jobs 333 259 345 354 937 1291

For key to abbreviations refer to table 7.7

•

175

of the CPU variable are quite close for the 74 and 75

models, the coefficients of NCC are smaller in 75. As

pointed out in section 7.5.4.2, the coefficient of NCC

may be viewed as a measure of the system overhead for

job step initiation. With no interactive load, it is not

surprising that the overhead is less.

Table 7.19 also shows the model constructed using

data pooled from all three morning sessions, and the

model constructed using data pooled from all four sessions.

7.8 	Validation of the Models

7.8.1 Comparison of Slopes

Table 7.19 shows that the regression coefficients

of the independent variables are close. However, are they

close enough for the models to be considered statistically

consistent? The method used for testing this is an ex-

tension of the method described in reference S13. The meth-

od tests whether there is any significant difference in

the slopes (in four dimensions) of the models. This is

done by comparing the residual sum of squares of the

models of the individual sessions with that of the pooled

model.

The method was used first to compare the regression

coefficients of the three morning sessions, as shown in

table 7.20. The residual sum of squares for the three

separate models and their respective degrees of freedom

are derived first (lines 1, 2 and 3), and summed (line 4).

The residual mean square of 58.7 is derived (line 4),

Which represents the mean square when the regression models

for the individual sessions are fitted to each set of data

respectively.

The pooled model is then constructed for all the

data (equation 5 in table 7.19). This model is applied

176

S

Table 7.20: Comparison of Morning Models

Model No.of
Dbser-
vations

d.f. Analysis of Residuals

d.f. 	RSS 	MSR

1 27/1/75 333 332 329 19264 58.5

2 28/4/75 259 258 255 14972 58.6

3 30/4/75 345 344 341 20160 59.0

4 925 54396 58.7

5 Pooled applied

to 27/1 333 19335

6 Pooled applied

to 28/4 259 15093

7 Pooled applied

to 30/4 345 20209

8 937 934 931 54637 58.7

9 Difference be-

tween slope's 6 241 40.2

10 Pooled applied
to all data 937 936 933 54957

11 Difference be-

tween inter-
,

cepts 2 320 160

Comparison of slopes: F = 40.2/58.7 = 0.69(d.f.=6,925)

Difference not significant at 5% level

Comparison of Intercepts: F = 160/58.7 = 2.72(d.f=3,931)

Difference not significant at 22% level

Key: d.f.: degrees of freedom RSS = residual sum of squares

MSR*: Residual Mean square = RSS/d.f.

•

. 177

to each set of data after adjusting for the intercept. For

each set of data, the adjusted intercept bo' is given by

bo' = 	bl T b2 R b3 R

where b1, b2 and b3
are the regression coefficients of the

pooled model. Y, T, 17, R are the mean job elapsed time,

CPU time, number of job steps and short job load respectively.

This is to ensure that the regression equation passes

through the centroid of the sample.,,

After applying the pooled model to each set of

data, the residual sum of squares is derived for each set

(lines 5, 6 and 7) and summed (line 8). The difference in

the residual sum of squares

54637 (line 8) - 54396 (line 4) = 241 (line 9)

with six degrees of freedom, measures the contribution of

the differences between the regression coefficients to the

sum of squares of residuals. The corresponding mean

square, 40.2 in line 9, is compared with the mean square

in line 4, using the F-test, to test if there is any

significant difference when the slopes of the models of

individual sessions are compared with the slope of the

pooled model.

40.2 F = 	= 0.69 (clgrees of freedom = 6;925)
58.7

0.69 is less than the F value at the 5% level of significance

(2.10), supporting the assumption that the slopes do not

differ.

7.8.2 A Non-Parametric Significance Test

The F-test makes the assumption that the residuals

are normally distributed, an assumption which, as the

178

•

•

Kolmogorov-Smirnov one-sample test shows, is not strictly

valid. As a further check, a non-parameteric test,

the Mann-Whitney U-Test (S8) was also carried out. Non-

parametric tests do not make any assumptions about the

distribution of the residuals. The residuals squared,

derived by applying the pooled model with adjusted inter-

cept to each set of data, are compared by the test. The

test is applied to two sets of residuals at a time,

making three tests in all, and the results are displayed

in table 7.22a. The assumption that each two sets of

residuals squared are drawn from the same population is

tested. The result of the test is the probability of the

assumption being true.

Table 7.22a shows that the probability CP1 column) is 5%

or more for the three cases, supporting the assumption that

the slopes do not differ. Hence, the result of the Mann-Whitney

test supports the result of the F-test. This means that

the assumption that the slopes do not differ, and hence

that the regression coefficients are consistent, may be

accepted.

7.8.3 Com2arison of Intercepts

Once it has been shown that the regression coeffi-

cients of the models are consistent, it is then permissible

to test whether the adjusted intercepts are consistent. This

- is done by comparing the res!dual sum of squares (RSS) of

the pooled model applied to all the data (equation 5 in
table 7.19) with the RSS of the pooled model applied

to each set of data after adjusting the intercept for

each set (table 7.20). The latter RSS, 54637 in line 8 is

subtracted from the former RSS, 54957 in line 10, giving

320 (line 11) with 2 degrees of freedom, which measures

the contribution of the differences between the intercepts

to the residual sum of squares. The corresponding mean

square, 160 in line 11, is compared with the mean square

in line 8, 58.7, using the F-test to test if there is any

179

significant difference in the intercepts. The F-test

shows that although there is a significant difference at

the 5% level, the difference is not significant at the

2i% level. Thus the assumption that there is no difference

in the intercepts is accepted with less confidence than

the assumption that there is no difference in the slopes.

As a separate check, the Mann-Whitney U-test was

used to compare the residuals squared obtained from the

pooled model, applied to each set of data (equation 5 in

table 7.19). The test (P2 column in table 7.22a) shows that

at the 5% level, there is a significant difference between

the 27/1 and 28/4 sessions but no significant difference

between the 27/1 and 30/4 sessions, and the 28/4 and 30/4

sessions respectively. When the pooled model with adjusted

intercept was applied to the 27/1 and 28/4 sets of data

there was no significant difference at the 5% level. Con-

sequently the reason for the change must be due to the

difference in the two intercepts.

These results indicate that there probably is a

slight difference in the intercepts. However as the differ-

ence in the intercepts is small compared with the standard

error of the residuals (table 7.19), the difference is not

considered serious. The difference in the intercepts may

be due to a slight difference in the environments on the

days in question. Unfortunately, ICCC records only indicate

major changes in the environment, e.g. system up or down,

so this cannot be checked.

7.8.4 Comparison with Afternoon Model

The validation of the morning models was described

in the previous three subsections. Because of the larger

short job load in the afternoon session (30/1/75), some

difference might be expected in the afternoon model. The

same analysis as before was carried out to compare the

regression models of all four sessions. The models of the

. 180

individual sessions are compared with the pooled model

(equation 6 in table 7.19). 	First the slopes are com-
pared and then the intercepts.

The results of the F-test are shown in table 7.21

and of the Mann-Whitney U-test in table 7.22b. First the

slopes are compared using the F-test. Table 7.21 shows

that there is no significant difference at the 5% level.

Next, the slopes are compared using the Mann-Whitney

test. The 30/1 set of residuals squared is compared with

each of the three morning sets of residuals squared in
table 7.22b (P1 column). The test indicates that with the

28/4 and 30/4 residuals, there is no significant difference

at the 5% level. However, with the 27/1 residuals, the test

suggests that there is a significant difference at the 5%

level, but no significant difference at the 1% level. Com-

-paring the two sets of regression coefficients for the 27/1

and 30/1 models in table 7.19, it can be seen that they

agree closely. It therefore seems reasonable to accept the

assumption that there is no significant difference between

them.

The adjusted intercepts of the four models are com-

pared (table 7.21), next. The F-test indicates that there

is no significant difference between the intercepts at the

5% level.

Finally, the Mann-Whitney U-test is used to compare

the residuals squared obtained by applying the pooled model

to each set of data (equation 6 in table 7.19). This test

(table 7.22b) indicates that there is a significant differ-

ence between the 27/1 and 30/1 sessions, but no significant

difference between the 30/1 session and the 28/4 and 30/4

sessions respectively.

The results indicate that there is no reason to

believe that there is a significant difference between the

afternoon model and the morning models. There is, however,

0,

181

Table 7.21: Comparison of Four Models

Model of No. d.f. obser-
vations

Analysis of Residuals

d.f. 	RSS 	MSR

1 27/1/75 333 332 329 19264 58.5
2 28/4/75 259 258 255 14972 58.6
3 30/4/75 345 344 341 20160 59.0
4 30/1/75 354 353 350 22595 64.5

5 1275 76991 60.3

6 Pooled Applied

to 27/1 333 19286
7 Pooled Applied

to 28/4 259 15285
8 Pooled Applied

to 30/4 345 20178
9 Pooled Applied

to 30/1 354 22698

10 1291 1287 1284 60.2 77447

11 Difference be-

tween slopes 9 456 50.7

12 Pooled Applied

to all data 1291 1290 1287 77897

13 Difference be-

tween inter-

cepts 3 450 150

Comparison of slopes: F = 50.7/60.3 = 0.84 (d.f. = 9,1275)

Difference not significant at 5% level

Comparison of Intercepts: F = 150/60.2 = 2.49 (d.f. = 3,1284)
Difference not significant at 5% level

182

Table 7.22: Comparison of Modelsasing Mann-Whitney U-test

Table 7.22a: Comparison of three morning models

Pairwise Comparison P1 P2
1st Model 2nd Model

27/1/75 28/4/75 0.067 0.006

27/1/75 30/4/75 0.050 0.090

28/4/75 30/4/75 0.488 0.115

Key: P : probability that there is no difference between

the two models

Pi: Pooled model with intercepts adjusted

P2: Pooled model without intercept adjusted

Table 7.22b: Comparison of four models

1st Model 2nd Model P1 P2

27/1/75 30/1/75 0.018 0.003

28/4/75 30/1/75 0.436 0.359

30/4/75 30/1/75 0.337 0.104

Key: see table 7.22a.

183

some indication that the environment on 27/1 may have been

slightly different from the other days.

7.8.5 The Workload Model

The validation of the models has shown that the

regression coefficients of the four models are consistent,

although there is a greater variation in the intercepts.

It is therefore justifiable to use the model pooled from

all four sessions as a satisfactory regression model of

the short job workload. This model is called the Workload

Model and is represented by equation 6 in table 7.19.

7.9 	Regression Models with no Short Job Competition

7.9.1 Introduction

In the regression models described in sections 7.7

and 7.8, the regression coefficients with the largest

variation were the coefficients of AVJ, the measure of

the short job load. In an attempt to determine what the

effect of this independent variable is, a subset of the

workload was modelled. A substantial number of the jobs

executed in each morning session, experienced no competi-

tion from other short jobs. This subset of jobs was isola-

ted for each session and its characteristics are shown

in table 7.23.

Comparison of the workload characteristics of

this subset (table 7.23) with the total set (table 7.16)

reveals a number of differences. Firstly, the mean

elapsed time is much lower when there is no competition

from other short jobs. Secondly, the mean CPU time is sub-

stantially lower for each of the three samples. The mean

number of job steps is also lower. Thus, there appears to

be a tendency for the jobs in this subset to have lower

resource demands. Jobs with larger, resource demands

experience longer elapsed times and so are more likely to

experience competition from other short jobs. This means

that the subset is not a representative one. Nevertheless,

it was felt that modelling the subset could provide further

insight into the behaviour of the short job workload.

'184

Table 7.23: 'Characteristics of Subset of Short Job Workload

Characteristic 27/1/75

a.m.

28/4/75

a.m.

30/4/75

a.m.

Number of jobs 124 139 129

Elapsed time (secs) 	m. 10.8 10.9 11.3

s.d. 6,8 7.2 7.2

CPU time 	(secs) 	m.. 2.44 2.77 2.28

(CPU) 	s.d. 3.39 3.32 3.01

Disc records transferred m. 187 201 193

(DPRU) 	s.d. 143 157 123

No. control cards 	m. 2.40 4.00 3.09

,(NCC) 	s.d. 1.99 4.33 3.99

Average CM (kilowords) 	m. 13.9 14.7 15.6

s.d. 8.4 9.2 7.5

Average total job load 	m. 4.65 1.53 4.50

(AVB) 	s.d. 1.89 1.24 2.68

No. jobs excluded 1 7 3

185

S

•

7.9.2 The Models

Regression models were constructed for the subset

of each session and for the pooled data. A few uncharac-

teristic observations were excluded, for the same reasons as

given in section 7.7.4. The CPU and NCC independent

variables were forced in. The models are displayed in

table 7.24. 	A number of interesting points arise from

this analysis:

(a) 	The amount of variation explained by the models

(R2) is satisfactory, 0.66 or above.

(b) 	The regression coefficients for CPU and NCC are

of substantially lower value than in the models

of the total short job workload. The reasons for

this are discussed in 7.9.3.

(c) 	The standard error of the residual(s) is consider-

ably lower than before, ranging from 3.3 to 4.2.

This compares with the models of the total job

workload, where s varied from 7.7 to 8.1 (table

7.19).

The substantially smaller mean elapsed times. and

standard error for these subsets is due to the fact that

the short jobs in this subset should never have been rolled

out. This is because:

(i) Each job was always the highest priority user job

executing.

(ii) Each job experienced no competition from other short

jobs.

(d) 	An analysis of residuals reveals that the tendency so

far for the positive residuals to be substantially

fewer in number and larger in magnitude, has now been

eliminated. 	An example is shown in figure 7.11

186

Table 7.24: Regression Models of Subset of Short Job

Workload (Two Independent Variables)

Independent
Variable

27/1/75
a.m.

28/4/75
a.m.

30/4/75
a.m.

Pooled

CPU 	r.c. 1.70 1.53 1.43 1.55
s.e. 0.09 0.11 0.12 0.06
t 19.2 14.1 11.7 24.6

NCC 	r.c. 0.56 0.48 0.75 0.56

s.e. 0.15 0.08 0.10 0.06
t 3.7 5.7 7.9 10.0

Intercept 5.32 4.72 5.75 5.34
Adjusted
Intercept 5.69 4.34 6.08

R2 0.77 0.68 0.66 0.68

s 3.29 4.1 4.2 4.0

F 205 .142 124 418

No.of jobs 124 139 129 392

1.20E+01 30 I X
9 T

	

11 	/
7 I
6 I
5 I
4 I
3 I
2 I
1 I

8.00E+00 20 I
9 I

	

8 I 	 X
7 I
6 I
5 I

	

4 I 	 X

	

3 I 	 X

	

2 I 	 X
1 I

	

4.00e409 . 1; 	I 	

x x
	

x

	

8 I 	
X 	X

	

X X X 	 X
7

	

6 I 	 X X X 	 X

	

5 	I 	 X 	X X XX 	X 	 X

	

4 7 	X 	X X 	Y

	

3 I 	x x 	x 	 x

	

2 	1 	x 	x 	xx x x xx
x 	

x

	

a 	I 	• 	X X 	X 	X 	X 	 X X 	x
0,6E+00 	9 I 	 X...••X ...X

	

1 I 	 X X X X 	 X

	

2 I 	X 	XX x XX XX 1

	

4 	I 	x x x X x XX X X X X X 	 X 	 X 	 X 	 X x

	

X 5 I 	 X. X X X

	

6 	7 	 X 	X X X 	 X X

	

7 I 	 X X X

	

8 7 	X 	 XX 	 X 	 X

	

9 7 	 X

	

m4.00E+00 -10 I 	 X

2

	

1
7
I 	 X 	 X

	

3 I 	 X 	 X

	

4 7 	X
5 I
6 7
7 1
8 I
9 I

.1.00E+00 -20 I

012345678901234567898123456789C123456789612X456789012346714901234567P(101234567f9u12345678h01234567E'A

	

0 	1 	2 	3 	4 	 5 	 6 ,
	

7 	 8 	9

3.50E+00 	1.05E+01 	1.75E+01 	2.45E+01 	3.15E+01
8.E+00 	7.00E+00 	1.40E+01 	2.18E+01 	2.00E+01 	3.5.0C+01

Predicted Job Elapsed Time (seconds)

•

Residuals

Figure 7.11: Residual Plot - Model of Subset with no Short Job Competition (27/1/75 session)

188

of the residual plot against predicted elapsed

time for the 27/1 model. Apart from one outlier,

the magnitude of the positive residuals is not

noticeably different from the magnitude of the

negative residuals.

The reason for this is again likely to be due to

the fact that these short jobs should never have

been rolled out.

(e) The Kolmogorov-Smirnov, one-sample test (S8) was

applied to the residuals of each model to test

the assumption that the residuals are normally

distributed. The test indicates the probability

of the assumption that the residuals are normally

distributed being true. The probabilities of

0.29 for 27/1 and 0.11 for 30/4 are higher than

the 5% significance level. The probability of

0.04 for 28/4 is just below the 5% level. However,

it is sufficiently close to justify accepting the

normality assumption for all three sets of residuals.

This is the first time in the regression analysis of

the Kronos system that the normality assumption has

been accepted. The reason is likely to be the elimina-•

tion of the distortion in the residual plot (see d).

The F and t tests may now be used with full confidence.

(f) The intercepts for the models are larger than those

for the models of the total short job workload.

The intercept decreases in value when more variables

are introduced into the model. When AVB, the

number of jobs concurrently in execution, is intro-

duced, R2 is increased in *value and the intercept

is reduced, as shown in table 7.25. AVB is not

significantly correlated with CPU and NCC, and its

introduction does not much affect the CPU and NCC

coefficients. However, table 7.25 shows that there

is a greater variability in the coefficient of AVB

189

Table 7.25: Regression Models of Subset of Short Job

Workload (Three Independent Variables)

Independent Variable 27/1/75
a.m.

28/4/75
. 	a.m.

30/4/75
a.m.

Pooled

CPU 	r.c. 1.73 1.55 1.49 1.59
s.e. 0.09 0.10 0.11 0.06
t 19.9 15.1 13.1 27.0

NCC 	r . c . 0.58 0.54 0.74 0.61
s.e. 0.15 . 0.08 0.09 0.05
t 3.9 6.7 8.4 11.6

AVB 	r . c . 0.42 1.15 0.61 0.60
s.e. 0.15 0.27 0.13 0.08
t 2.7 4.2 4.7 7.8

Intercept 3.25 2.67 2.90 2.98
Adjusted Intercept 2.68 3.11 3.13
R2 0.79 0.71 0.72 0.73
s 3.2 3.9 3.9 3.7
F 146 112 104 341
No. of jobs 124 139 129 392

190

•

•

in the three models than in the coefficients

of CPU and NCC. As pointed out previously,

AVB is not a good measure of load, because it

does not distinguish between jobs in CM and jobs

rolled out, which can be a substantial number.

Thus the mean value of AVB can vary considerably

from session to session as shown in table 7.23.

7.9.3 The Regression Coefficients

It was pointed out in section 7.6.4, that as the

average short job load AVJ, is only an approximate

measure of the load on the system, it is likely that not

all the delay experienced by a short job is accounted for

by the AVJ term of the model. Some of the delay may be

attributed to the CPU term instead. For very high loads,

jobs with larger resource demands are more likely .to be

rolled out and for longer periods. This delay may then be

attributed to the CPU term of the model, and in particular

in the form of a larger coefficient of CPU.

None of the short jobs in this subset should ever

have been rolled out, since they should always have been

the highest priority user jobs running. Hence, for these

very light loads, the coefficient of the CPU variable is

lower in value.

It was also pointed out in section 7.5.4.2 that

the coefficient of NCC (number of job steps) may be con-

sidered as a measure of the system overhead to initiate

a job step. For very light loads, this overhead is likely

to be lower, and consequently this is reflected in the

smaller NCC coefficient.

7.9.4 Validation of the Models

Attempts were made to validate the models, (CPU,
NCC) by first comparing the slopes and then the intercepts,

•

r

. 191

as described in 7.8. The results are shown in table 7.26.

The F-test supports the assumption that the slopes do not

differ, at the 5% significance level.

It was shown in 7.9.2 that the residuals of the

individual models are normally distributed. The normality

assumption was also tested for the residuals of the pooled

model applied to each of the individual sets of data. The

residuals for 27/1 and 30/4 satisfy the normality assump-

tion at the 20% level, while the residuals for 28/4 satis-

fy it at the 1% level. Consequently, the results of the

F-test may be accepted with confidence. The assumption

that there is no significant difference in the slopes, and

hence the regression coefficients, is accepted.

When the intercepts of the three models are com-

pared (table 7.26), however, the F-test showS that there is

a significant difference in the adjusted intercepts.

A second analysis was carried out to determine if

the results varied with the introduction of the AVB variable

(table 7.27). In the models with AVB (table 7.25), the

coefficients of AVB vary considerably, but the intercepts

are smaller. The F-test rejects the assumption that there

is no difference in the slopes at the 5% level, but accepts

it at the 2i% level. Thus the introduction of AVB into

the models has resulted in a decrease in the confidence with

which the assumption is maintained. However, comparing the

adjusted intercepts, the F-test indicates that there is now

no significant difference in the intercepts.

These results indicate that it is the AVB variable

which is the cause of most uncertainty in the models. If

a better measure of system load were available, such as

the mean level of multiprogramming, then it is felt that

this uncertainty could be reduced considerably.

192

Table 7.26: Comparison of Models of no Short Job Competition

(Two Independent Variables)

Model No.of
obser-
vations

d.f. Analysis of Residuals

d.f. 	RSS 	MSR

1 27/1/75 124 123 121 1306 10.8

2 28/4/75 139 138 136 2324 17.1

3 30/4/75 129 128 126 2228 17.7

4 383 5858 15.3

5 Pooled Applied

to 27/1 124 1336

6 Pooled Applied

to 28/4 139 2342

7 Pooled Applied

to 30/4 129 —2306

8 392 389 387 5984 15.5

9 Difference be- .

tween slopes 4 126 31.5

10 Pooled Applied

to all data 392 391 389 6207

11 Difference be-

tween inter-

cepts 2 223 111.5

Comparison of slopes: 	F = 31.5/15.3 = 2.06 (d.f.= 4,383)

Difference not significant at 5% level

Comparison of Intercepts: F = 111.5/15.5 = 7.2 (d.f. = 2,387)

Difference is significant

For key refer to table 7.20

193

Table 7.27: Comparison of Models of no Short Job Com eti-

tion (Three Independent Variables)

,
Model No.of

obser-
vations

d.f. Analysis of Residuals

d.f. 	RSS 	MSR

1 27/1/75 124 123 120 1231 10.3
2 28/4/75 139 138 135 2054 15.2
3 30/4/75 129 128 125 1886 15.1
4 380 5171 13.6

5 Pooled Applied

to 27/1 124 1280
6 Pooled Applied

to 28/4 139 2150

7 Pooled Applied

to 30/4 129 1926
8 392 389 386 5356 13.9

9 Difference be-

tween slopes 6 185 30.8

10 Pooled Applied

to all data 392 391 388 5372

11 Difference be-

tween inter- -

cepts 2 16 8.0

t

Comparison of slopes: F = 30.8/13.6 = 2.26 (d.f. = 6,380)

Difference not significant at 2'i% level

Comparison of Intercepts: F = 8.0/13.9 = 0.58 (d.f. = 2,386)

Difference not significant at 5% level

194

7.10 	Conclusions

This chapter has described a detailed regression

analysis of the I.C. Kronos system. In particular, the

short job workload was modelled extensively. As a result

of this work, the purely regression Workload Model of the

system was constructed.

The initial models of the short job workload, in

the presence of a timesharing load, were unsatisfactory.

An analysis of residuals revealed certain discrepancies,

namely large positive residuals for jobs with large elapsed

times, at certain periods of the day. A close study of the

Dayfile revealed that during these periods, the system

was heavily loaded. When these large residuals were exclu-

ded, models with much better fits were constructed.

A further analysis was carried out while the system

was supporting an entirely batch workload. In the absence

of the timesharing load, much better fits were obtained.

However, to build models with consistent regression coeffi-

cients, some unrepresentative jobs (less than 5% of the

total sample) had to be excluded.

Four models were constructed, representing four

different sessions, and compared. The results showed that

the regression coefficients of the four models were con-

sistent, although there was a greater variation in the

intercepts. Hence it is legitimate to pool the data for all

four sessions to construct the regression Workload Model:

Y= 3.25 + 2.25CPU + 1.08NCC + 5.32AVJ

The Workload Model is a satisfactory representation

of the four sessions, which span a period of four months.

This is considered a significant result. 	Hitherto, both

in this project and elsewhere, the inconsistency of regression

coefficients has been a major problem experienced in apply-

195

ing regression modelling techniques to computer system

performance evaluation. Bard (B1, B2) and Schatzoff/Bryant

(S2) have described how they were unable to build models

with consistent regression coefficients.

The Regression Coefficients

As the regression coefficients of the models have

been shown to be consistent, an attempt may now be made to

interpret their values. The regression coefficient of the

CPU variable is an estimate of the average time expansion

factor experienced by each job for each second of CPU time.

This time may be partly due to system overhead and partly

due to I/O activity, as no I/O term appears in the model.

The coefficient of NCC is an estimate of the overhead to

initiate a job step, which is a significant overhead for

short jobs. 	The coefficient of AVJ is an estimate of the

average delay experienced by a short job due to competition

from other short jobs. The intercept is an estimate of the

fixed overheads associated with a job, such as job initia-

tion and job termination time.

The regression analysis of very lightly loaded situa-

tions (7.9) and very heavily loaded situations (7.6) has

shown that the regression coefficients vary in these extreme

situations. The regression coefficients of the CPU and NCC

variables are lower in lightly loaded cases, representing

lower system overheads, and higher in heavily loaded cases,

representing higher system overheads.

Limitations of the Model

The standard error of the residuals, 7.8, is high

compared with the mean of the dependent variable, short job

elapsed time, which is around 20 seconds. The main reasons

for the high standard error are:

196

(a) The measure of the load on the system is only

approximate. This is reflected in the greater

fluctuation of the regression coefficient of

the average short job load variable, AVJ.

(b) No measures of job rollout time are available.

Hence when rollin/rollout activity is high, for

example when the timesharing load is heavy, the

predictions of the model are poor.

(c) No good measures of I/O demand are available.

Hence, the predictions of the model are poor for

those jobs whose I/O demands differ greatly from

the average.

These limitations are due to the limitations of

the data used in constructing the models. A further limita-

tion of the Workload Model is a structural one. It is

necessary for one of the independent variables to reflect

system load, so that varying loads may be modelled. However,

as regression models are static (3.4), estimates of the

load on the system must be specified in advance of a run of %
the model.

One method of overcoming this limitation is to

develop a hybrid model in which simulation techniques are

combined with regression techniques. By this means, the

model is able to adjust its estimate of system load as

each modelled job executes. This approach is described in

the next chapter.

197

•

CHAPTER 8: THE LOAD ADJUSTING MODEL

8.1 	Introduction

This chapter considers the limitations of the

purely regression Workload Model and attempts to overcome

some of them by developing a more detailed hybrid model, the

Load Adjusting Model, in which simulation techniques are

introduced and combined with the regression techniques.

The Load Adjusting Model has been applied to the modelling

of the Imperial College Kronos system at the second level

of detail.

Section 8.2 discusses the limitations of the

Workload Model and describes different methods of develop-

ing fast dynamic models of computer systems.

Section 8.3 describes the concepts of the Load Adjusting

Model (LAM). 	In section 8.4, the application of the LAM

to the Imperial College Kronos system is considered. 	The

design and implementation of the model are described in

sections 8.5 and 8.6 respectively. 	The calibration of the

model is described in sections 8.7 and 8.8; the methodology

in 8.7 and the results in 8.8. 	Finally the validation of

the model is described in section 8.9.

8.2 	Fast Approximate Models of Computer System Performance

8.2.1 Limitations of the Workload Model

Once the purely regression Workload Model has been

calibrated and validated, it may be used for making fast

and approximate predictions of a batch job's elapsed time,

given the job's resource demands and the load on the system

during its execution.

The Workload Model suf:o3rs from an important struc-

tural limitation. This is because a regression model is

static and hence does not recognise the passage of time.

To enable the Workload Model to model varying loads, it is

198

necessary for one of the independent variables to be a

measure of the load experienced by a job during execution.

Because the Workload Model is static, the estimate

of the load on the system for a given job must be input at

the start of a run of the model and cannot be adjusted

during the run (figure 8.1). However, in an experimental

run, in which the environment of the model (e.g. workload,

system parameter settings, etc.) is different from that

used during calibration, an accurate estimate of the load

experienced by each job is not possible in advance of the

run. 	Consequently, further errors will be introduced into

the model.

A model which overcomes this limitation is one which

dynamically adjusts its estimates of the load on the system

as each modelled job commences or terminates execution

(figure 8.2). Such a model must be capable of modelling the

passage of time, which a regression model does not.

8.2.2 Fast Dynamic Computer System Models

There are a number of ways of building fast dynamic

models of computer systems. One approach is to use analytical

models of which the most widely used are queuing models. As

pointed out in 3.3.2, however, queuing models usually involve

a number of simplifying assumptions to make them more amenable

to mathematical analysis. The main assumption often em-

ployed is that the request inter-arrival time distribution

follows an exponential distribution, which assigns the

highest probability density to the smallest time interval of

length zero. This assumption is often suspect because of

the finite source nature of the arrival process (B14).

In the Imperial College system, short jobs are sub-

mitted by users, mainly via the local cafeteria service and

also via remote job entry stations. The mean short job

elapsed time is around 20 seconds (table 7.16), while the

199

Job's Resource Demands

WORKLOAD MODEL

Measured Load

Predicted

	 Job

Elapsed Time

Figure 8.1: 	The Workload Model

Job's Resource Demands

Predicted

	 Job

Elapsed Time

LOAD ADJUSTING

MODEL

Estimated. Load

Figure 8.2: 	The Load Adjusting Model

200

time taken to read a 200 card deck is 10 seconds on the

local card reader, assuming perfect operation, and much

longer via remote card readers. Consequently short values

of inter-arrival time are very unlikely, and the assumption

that. the request inter-arrival time is exponentially dis-

tributed is not valid.

An alternative method is to use simulation models.

However, a simulation model which produced results similar

to the Workload Model would probably need to model the system

in considerably more detail, and consequently be more ex-

pensive to implement. A more promising alternative is to

combine simulation with different modelling techniques to

produce dynamic hybrid models.

Kimbleton has described an analytically driven com-

puter system simulator (K3) which combines simulation and

queuing modelling techniques. The model is trace-driven.

A modelled system session consists of a series of time seg-

ments, where a time segment is terminated by a job arrival

or termination event. Hence the number of processes (jobs)

executing in a time segment is constant. All the processes

are assumed statistically identical. Time segment statis-

tics are predicted analytically and aggregated using simula-

tion techniques. The model is fast and is said to have com-

pared well in a very limited test with a trace-driven

simulation model of the same system. The test consisted of

both models processing five identical jobs which started

simultaneously. Kimbleton states that as the jobs become

progressively less statistically identical, the results be-

come poorer.

The method proposed here for developing dynamic hybrid

models of computer systems is to combine regression techniques

which are static with simulation techniques which are dynamic.

One essential requirement of this method is the construction

of a simulation framework which-models the passage of time.

By this means, the static regression model is converted into

a dynamic hybrid simulation/regression model (see also

3.5.4).

8.3 	Concepts of the Load Adjusting Model

8.3.1 Introduction

This section describes the concepts of the hybrid

Load Adjusting Model (LAM) which combines simulation and

regression modelling techniques to predict job elapsed time,

under varying load conditions. The Load Adjusting model is

trace driven and models the execution phase of a batch job,

that is the time from when a job is first scheduled for

execution to the time it terminates. The time spent in this

phase is the job elapsed time.

In the Workload Model, the load experienced by each

job is input as an independent variable, and is used to

compute the delay experienced by the job due to competition

from other jobs. In the Load Adjusting Model, a simulation

framework is created which allows each job's progress through

the system to be modelled dynamically.

A regression submodel predicts each job's elapsed

time in the absence of competition from other jobs. The

simulation framework allows the number of jobs in execution

at any stage to be estimated A numerical submodel estimates

the time delay experienced by a job due to the competition

from other jobs, for each period when the number of jobs

executing is constant. The simulation framework maintains

a running sum of the predictions of the two submodels.

At the simulated time of job termination, this sum is the

predicted job elapsed time.

2.01

202

8.3.2 Modelling Job Elapsed Time

A batch job's elapsed time te may be considered

as consisting of two terms:

te 	t. + td
	(1)

t, is the elapsed time a job would experience if no other

job were competing with it for resources. 	td is the delay

a job experiences due to competing with other jobs for

system resources. 	td is equal to zero if the job

experiences no competition from other jobs. 	Consequently

t, is the minimum elapsed time a job would experience in

the system. 	t, will be referred to as the job execution

time from now on.

In a purely regression model, both tj and td are

predicted using regression techniques. 	In the hybrid

model, t, is also predicted using regression techniques.

However td is predicted dynamically using the simulation

framework.

The job execution time t, is a function of a job's

resource demands and may be predicted by the regression

submOdel:

tj = f(di, d2, 	dn) 	(2)

where (d1, d2 	dn) are the job's resource demands, e.g.

CPU time, memory and I/O demands.

8.3.3 Time Segments

The Load Adjusting Model is a dynamic model and

therefore explicitly recognizes the passage of time. 	The

LAM is capable of modelling a whole system session. 	The

modelled session is divided up into a series of time segments.

203

A time segment is defined as an interval of time

during which the number of jobs competing for resources is

constant. 	A time segment is started or terminated by one

of two possible events:

a) arrival of a job

b) termination of a job.

To simplify the model, it is assumed that in any

time segment ti, in which there is more than one job competing

for resources, each job is treated identically by the system.

In segment ti, each executing job experiences

some useful execution tji and some delay tdi. 	t
ji
 may be

accounted for by CPU time, I/O time, or by the system

carrying out some function for the job, e.g. job step

initiation. 	tdi is the delay experienced by a job due

to the competition from other jobs for scarce system resources,

and so may represent time waiting for CPU, waiting for I/O,

or time rolled out of Central Memory. .

A job's elapsed time te may be expressed as:

te =t3 + td

= t. +
i
	 tdi
=1

where s is the number of time segments a job goes through

in the execution phase.

For each job, t, may be predicted at the simulated

time of job arrival using equation (2). 	tdi is estimated

for each time segment as described next.

204

8.3.4 Modelling Delay Time

It is assumed that in each time segment, all jobs

are treated identically by the system. 	It is further

assumed that the delay tdi experienced by each job in a

time segment is:

(i) a function of the number of jobs, n, competing for

resources with a given job

(ii) a linear function of the length of the time segment
t.

i.e.tdi = -t. g(n)
	

(3)

In the general case, we assume that g(n) is a poly-

nomial of the form:

g(n) = aso + ak n
k

k=1-

However, since tdi has been defined such that there

is no delay if only one job is executing,

i.e. tdi = 0 when n = Q.

ao = 0

and g(n)

k=1
ak n

k

205

Furthermore, if we assume that only the first

two terms of the polynomial are significant, then we have

for any time segment ti in which there are N jobs executing.

g(N) = a
1
N+a2N2

Substituting for g(N) in 3:

= 	(a 	N2)t. tdi 	1N+a 2 	1 (4)

However tji t.-t di 1

Substituting for tdi from (4):

t31 = (1-a1N-a2N
2)t. 	(5)

Ji
ti

(6)

1-a1N -a2N
2

8.3.5 Estimating Time Segment Length

A time segment is terminated either by:

a) a new job arriving

b) a job terminating

The time of the next job arrival to is obtained from a

trace. 	The time a job terminates is estimated by the

model.

When a job enters the system, its execution time

t, is predicted by the regression submodel (equation 2).

At the start of each time segment, each job in the system

has a remaining execution time tjr, which is the real time

a job would require to complete execution if no other jobs

206

were competing for resources. If we assume all jobs are

treated identically, then the job with the minimum tjr
(given by tjrm) is the job that will terminate first.

The time segment tim necessary to complete execution of

the job with execution time tjrm is computed using

equation (6).

tim 	
1-a1N -a2N

2

tjrm 	
(7)

timis then compared with to to determine whether the next

event is a job arrival or a job termination. 	Hence, the

length of the next time segment ti is given by

ti = min(tim,ta)

Givent.,the execution timetji and delay time

tdi for this segment may be evaluated using equations (5)

and (4) respectively. 	ti is added to the value of the

elapsed time so far (tes) for each job and tji is subtracted

from the value of the execution time remaining (tjr) for each

job.

tes = tes + ti

tjr' = tjr - tji

This procedure continues until t. is reduced to zero for 3r
a particular job. 	This represents the time at which the

model estimates the job will terminate. 	The accumulated

elapsed time at the simulated time of job termination is

then the predicted elapsed time for that job.

207

8.4 	The Load Adjusting Model of the Kronos System

8.4.1 The Regression Submodel

In this section, the application of the Load

Adjusting Model to the Imperial College Kronos system

is considered. 	In particular, the short job workload

on the system is modelled using this method.

The Workload Model, developed for the short job

workload in Chapter 7, is a regression equation of the

form:

te . = bo + b1 'T + b2'K + b3'N 	(8)

where te is the job elapsed time

T is the CPU time required

K is the number of job steps

N is the average number of short jobs in competition

with this job over its lifetime.

It is shown in Chapter 7 that the independent

variables of equation (8) are not correlated. 	Hence,

when N = 0, a suitable form for the equation is:

te = b ' + b1 'T + b2'K

Furthermore, when a subset of the short job workload

was modelled, namely those jobs which did not experience

any competition from other jobs, the fitted equation was:

te = bo" + bl"T + b2"K 	(9)

Since only the short job workload is modelled in

this case, it is appropriate to amend the definition of job

208

execution time given in 8.3.2. 	The job execution time is now

defined as the elapsed time experienced by a job when it
experiences no competition from other short jobs. 	It

is clear that an appropriate model for short job execution

time is then:

t) 	o
+ b1 T + b2K 	(10)

Consequently, this is the regression submodel used

in the Load Adjusting Model to predict the job execution

time. 	The choice of the most appropriate values of the

coefficients bo' b1 and b2 is left to the calibration
process, which is described in 8.7.

8.4.2 Assumptions made by LAM

0

A number of simplifying assumptions are made in

applying the Load Adjusting Model to the Kronos system.

These are:

1) The LAM has been applied to a subset of the workload

on the system, namely the short job workload. 	The

delay experienced by a short job in a time interval
is assumed to depend only on the competition from

other short jobs. 	The competition from long jobs

is ignored. 	This is clearly a limitation of the model,

but the assumption is similar to that made by the

Workload Model.

2) It is assumed that in each time segment, where the

number of jobs executing is constant, all jobs are

treated identically by the system. 	This is a reasonable

assumption for. CPU allocation, where a round-robin

scheduling algorithm is enforced. 	It is likely to be
less reasonable for I/O management.

209

3) Since all real time data obtained from the Dayfile

(e.g. job start and end times) are measured in units

of a second, the basic real time quantum in the model is

the second. 	It should be pointed out, however, that

CPU time is measured in milliseconds. 	This value is

used by the regression submodel to estimate job execution

time, which is then rounded to the nearest second.

These assumptions are bound to lead to inaccuracies

in the model. Attempts are made to minimize these during

the calibration of the model.

8.5 	Design of the Load Adjusting Model

8.5.1 Overview

The central part of the Load Adjusting Model (LAM)

is a co-ordinating routine. 	The co-ordinating routine has

a loop which it goes round once for every time segment.

At the start of the loop, the simulation clock is set to

the time of the event processed in the previous round, which

constitutes the start time of the current segment. 	The

first task of the co-ordinator is to determine what the next

event is and the time at which it occurs. 	This is carried

out as described in 8.3.5, that is the time of next job

arrival is compared with the time of the first job to

terminate. Provision must also be made for detecting an

end-of-session event.

Once the time of the next event has been determined,

the simulation clock is advanced to this time, which represents

the end of the time segment. 	The statistics for all executing

jobs may now be updated for this time segment. 	The event

occurring at this simulated time is then processed. 	It is

possible for more than one event to occur at the same

simulated time, e.g. job termination and job arrival, and

210

LAM deals with this accordingly. 	Once the event(s) have

been processed, this constitutes the end of this round of

the main loop, and the process is repeated for the next

time segment.

8.5.2 Description of LAM

A block diagram showing the overall design of the

model is displayed in figure 8.3. 	A short description of

each of the routines follows:

4

MAIN

COORD

is the main routine. 	It carries out all

necessary initialisation and then enters

COORD.

is the co-ordinating routine for the model.

It goes round .a loop once for each time segment.

First it calls SENEVT to determine what the

next event is, and to determine the length of

the next time segment. 	It then calls UPDENT

to update the entries of all jobs currently

in execution. 	Finally, it calls one (or more)

of the three event processing routines.

SENEVT is called by COORD to determine what the next

event is, and the estimated time at which it

occurs. 	The next event could be a job arrival,

job termination or end of session. 	It calls

SRINT to estimate what the minimum time is

for the next job to terminate. 	This is compared

with the next job arrival time, to decide what

the next event is. However, if the number of

jobs currently in execution is equal to a

certain limit, then no jobs will - be allowed

to commence execution, until the number of jobs

in execution falls below this limit.

211

TRACE ERROR 1

Figure 8.3: Structure of Load Adjustin3 Model

212

UPDENT 	Given the length of the next time segment ti,

UPDENT calls SRJEDT to compute the delay time

tdi and the execution time tJi for the segment.

A linked list is maintained which contains each

, job in execution state. 	For each job on the

list :

(a) the delay time for this interval is added to the

cumulative delay so far.

(b) the execution time for this interval is decremented

from the remaining execution time.

JBTERM 	handles job termination. The entry for the

job terminating is taken off the Execution list.

The accumulated job statistics are copied into

a job output buffer. 	If the buffer is full,

it is output to a disc file.

JBSTAT 	handles job initiation. An entry is set up for

the new job and linked onto the Execution list.

The job's resource requirements and other

information are read from the job's entry in

the input buffer and copied to the Execution list

entry. 	RGJEDT is called to predict the job's

execution time. 	If the input buffer is now

empty, it is replenished.

SESEND 	is called at the estimated time of the end of

session. 	It outputs the findl bufferful of data

to disc, and outputs statistics of the run to the

line printer.

UNLEXL(N) searches the execution list for job N. 	When the

entry'for job N has been found, it is taken off

the list. 	UNLEXL then clears the contents of

the entry and links it onto a free list.

213

LNKEXL(N) 	removes an entry off the free list and links

it onto the end of the Execution list.

RGJEDT

SRINT

SRJEDT

TRACE

uses equation (10) to compute the predicted

job execution time t. for a job commencing

execution.

uses equation (6) to compute the estimated

real time required to complete execution of a

given job for a given load on the system.

computes the estimated job execution time tji

(using equation 5) and the estimated delay time

tdi (using equation 4) for a given time segment

ti and load N on the system.

outputs a trace message each time it is called,

providing the trace flag is on. 	The message

is either for a job commencement or job termination.

ERROR (I) 	is the error routine which may be called from

a number of places in the model. 	It outputs

an error message, dumps the contents of various

locations and arrays, and stops. 	This routine

is especially useful during testing, but is also

capable of detecting any errors in the input data.

8.6 	Implementation

8.6.1 Introduction

A preprocessor prepares a workload trace for input

to the Load Adjusting Model. 	The predictions of the LAM

are analysed by a postprocessor.

214

Three sessions were used in the calibration and

validation of LAM. 	These were the morning sessions of

27/1/75 and 30/4/75 and the afternoon session of 30/1/75.

All three sessions were used in the construction of the

Workload Model, described in sections 7.7 to 7.9 of Chapter 7.

8.6.2 Preprocessing

A block diagram showing the steps involved in

running the model is shown in figure 8.4. 	The Dayfile

processing programs take as input the Kronos Account and

System Dayfiles and output two files, the B and J files

(chapter 5). 	The B file, which is ordered by job termination,

consists of a job summary record for each job processed in

the session. 	Each summary record holds measures of the

resources demanded by the job during its execution. 	The J

file, ordered by job commencement, contains various measures

of the loading on the system during each job's lifetime.

The B and J files are input to the Preprocessor

which merges and sorts the two files and outputs the G file,

in which job summary records are ordered by job arrival.

Only short jobs are selected for the G file. 	The G file

is the input file to the Load Adjusting Model. 	It is input

to the model in the form of a workload trace. 	Each job is

represented by a vector of its resource demands which is

input to the model at the simulated time of job arrival.

8.6.3 The Load Adjusting Model

The Load Adjusting Model is coded in Fortran and is

well under 500 statements in length. 	It processes a four

hour session on the CYBER, consisting of about four hundred

short jobs and about 800 time segments, in under 10 seconds

CPU time on the same system.

PREPROCESSOR

G FILE

LOAD ADJUSTING

MODEL

H FILE

POST PROCESSOR

215

ACCOUNT

DAYFILE

SYSTEM

DAYFILE

DAYFILE

PROCESSING

PROGRAMS

B FILE J FILE

Figure 8.4: Overall Diagram of Dayfile Processing and

System Modelling

216

For a particular run of the model, various parameter

settings are input as data to the model. 	A workload trace

is also input to the model in the form of a set of short jobs

ordered by job arrival time. 	The model outputs the

following predictions for each job in the form of a disc

file called the H file:

a) predicted job elapsed time.

b) predicted job execution time (i.e. estimated

elapsed time a job would have experienced had

there been no competition from other jobs).

c) predicted delay time a job experiences due to

competition from other jobs.

d) predicted average load a job experiences during

its modelled lifetime in the execution stage.

The elapsed time predicted by the Workload Model

for the same job is also output.

8.6.4 The Postprocessor

The postprocessor analyzes the H file generated by

a run of LAM. 	The postprocessor prints the results in

tabular form, computes the means and standard deviations

of the predictions of the model, and plots various figures

as required. 	It also carries out a statistical analysis

of the results.

The residual for each job, that is the difference

between the actual elapsed time and the elapsed time predicted

by LAM, is computed by the postprocessor. 	The residuals

are plotted against the following variables:

a) actual job elapsed time.

b) predicted job elapsed time (an example is shown

in figure 8.7).

c) estimated average load experienced by the job.

217

d) predicted delay time for the job (an example is

shown in figure 8.6)

e) CPU time used by job (examples are shown in

figures 8.5 and 8.8).

f) number of job steps.

8.7 	The Calibration' Methodology

8.7.1 Introduction

Calibration is an iterative procedure whose objective

is to reduce the difference in behaviour between the model and
the real system by adjusting the parameters of the model (B4).

There are two sets of parameters which may be

• adjusted during calibration:

a) The parameters bo, b1 and b2 of the regression

submodel for job execution time

t.) =bo +b1T+ b2N
	

(10)

b) The parameters al and a2 of the submodel for the

delay time each job experiences in a time segment:

tdi = (a1 N + a2N
2)t. 	(4)

Sincetdi 	.t < ., the following restrictions apply:

O < a1 e 1

O 45 a2 < 1

a1 + a2 < 1

The overall calibration approach was based on that

used in the calibration of a simulation model of OS/360

under LASP(B7).

•

4.00E+01 	40 	I
9 I
8 I
7 I
6 I
5 I
4 I

	

3 	I
2 I

	

1 	I
3.00E+01 30 I

9 I
8 I
7 I
6 I

X

Residuals

1 	XXXXXX X XXX X X 	 X 	X
2 	XXX XX X 	XX X 	X
3 XXXXX 	XX 	X 	XX
4 X
5 IX
6 I
7 I
8 I
9 I

-1.00E+01 -10 I

5 I
- 4 	I 	 X X
3 I
2 	I

X I
2:00E+01 20 IX

9 X 8 IXX
7 I
6 X
5 	X 	 • X
4 X X X 	X
3 I X
2

I
I 	X 	X

1.00E+01 10
1 IXXXX X XX

X 	X
9 	I XX X X 	X
8 X XX XXX 	X X X.
7 	XXXXXX X X 	X• 	X
6 I XX XX X 	XX
5 	I X XXXX XX 	X
4 xx x XXX XXX 	XX X
3 	XXXXX XXX X X X X 	X
2 	X XXXX XX XX X . X 	X
i 	XXXXXX XXX 	X X 	X

0.E+00 0 XXXXXX-XX--X-X 	

X
X 	X

X
X

X X 	X

	

X- -X--X - 	• - X 	
X

XX
X

A 	XX
X X X

X

X

X

X
X 	

X X
X

01234567890123456789012345678901/34567890/23456789012345678901734567890123456789012345678901234567890
0 	1 	2 	3 	4 	5 	6 	7 	8 	 9 	0

1.
1.80E+00 5.10E+00 	9.00E+00 	1.26E+0i 	1.62E+01

0.E+00 	3.60E+00- 	7.20E+00 	1,08F+01 	1.44E+01 	1.80E+01

	7
CPU Time (seconds)

Figure 8.5: Plot of Residuals Against CPU Time (30/4/75 Run 1)

CO

3.60E+01

•

30
9
8
7
6
5
4
3
2
1

I
I
I
I
I
I 	X
/
I
X
I

2.40E+01 20 X X
9 I
8 I
7 X
6 I
5 X
4 X 	x
3 X

. 	2 X
1 X 	X X

,1.20E+01 10
9

X 	
x 	

X
x

X

8 X 	X 	X 	X ..
7 X 	X 	X
6 X 	x
5 X 	X 	X 	X
4 X 	X 	X 	XX 	X X

Re5iduals
3
2
1

X 	XX
x 	x 	x x 	x
x 	x 	x

x

0.E+00 0 X--X--X--X-X--X X-
1 X 	X 	X 	X X X
2 X 	X 	X 	X X 	X X X
3 X 	X 	X 	X X X • '
4 X 	 X X X X
5 X 	X 	X X X X
6 I 	X 	 X X X ,'
7 X 	X' X x x
8 I 	 X 	X X
9

-1.20E+01 -10 I X X
1 I
2 I X
3 I 	X
4 I
5 I 	

,

6 I
7 I
8 I X X
9 I

-2.40E+01 -20 I

01234567890123456709012345678901236567090123456789012345678901234567890123456789012345678901234567090
0 	 1 	 2 	 3 	4 . 	5 	 6 	 7 	8 	 9 	 0

i
3.50E+00'

' 	7.00E+00
1.05E+01

 1.40E+01
1.75E+O1 . 	2.45E+01 	3.15E+01

0.E+00 2.10E+01 	. 2.80E+01 	3.50E+01

Predicted Delay Time (seconds)

Figure 8.6: Plot of Residuals against Predicted Delay Time (30/4/75 Run 2) tv?

LO

3.60E+01

2.40E+01

1.20E+01

Residuals

0.E+00

•
-1.20E+01

-2.40E+01

30
9
8

6
5
4
3
2
1

20
9
8
7
6
5
4
3
2
1

10
9
8
7
6
5
4
3
2
1
0
1
2
3
4
5
6
7
8
9

-10
1.
2
3
4
5
6
7
8
9

-20

7

X
X

X X

X X X
X

X X 	X
X 	XXXX

X
xxxxx

X
XXXX 	X X
XXX

X
XX 	X X

XXXXXXX
XXXXX 	X 	xX
--X-X-X-X 	X
XXXXXX 	XXX
XX 	XXXXX
XXX 	XX
X 	X X 	X X

X

X

X
X

X

X
X
X 	X X

X

	

x 	X 	x
X 	X

X
XX 	XX

X 	XX 	X 	XX
X- 	X 	X-X- -X
XXXX

X 	XX 	XX
X 	X X 	•
• X 	X 	X

X
X 	X
XX

X

X

X

X

X

X X
X

X

X

X

X

X
X

X X

X X

X
X X

X

X X

X

X

X

X

X

x

X

X

X

X

X XX

X---X 	
X

X

X

X

X

X

X

X

01234567890123456709012345676901234567890123456769012345678901234567890123456789012345678901234567890
1 	2 	3 	4 	5 	6 	7 	8 	9 	

1
0
	1

1.00E+01 	2.00E+01 	300E+01 	4.00E+01 	5.00E+01
5.00E+00 	1.50E+01 	2.50E+01 	3.50E+01 	4.50E+01 	5.50E+01 °

Predicted Elapsed Time (seconds)

Figure 8.7: Plot of Residuals against Predicted Elapsed Time (30/4/75 Run 6)

Residuals

3.60E+01

2.40E+01

1.20E+01.

04E+00

-1.20E+01

■2.40E+01

30
9
8
7
6
5
4
3
2
1

20
9
8
7
6
5
4
3
7

1 0 0
.9
8
7
6
5
4
3
2
1
0
1
2
3
4
5
6
7
8
9

•1
1
0

2
3
4
5
6
7
8

-20 0

I
I
I

I

I
I
I
I
I
I
I
X.
IX
I
X 	X 	X 	X 	'
I
X 	 . 	X
I
	

X

I
I 	X XX
XXXXXXX 	X
7 	XX XX 	X
XXXXX 	X 	X 	X
X X XX X 	X XXX
X 	X XXX X X 	X. 	X
XXXXXXXXXXX 	X 	X
XXXXXXXX 	XXXX
XXXXXX•XX•■•••XX■X•X•X 	•XX 	
XXXXXX XX 	XX X 	X X
XXXXXX XXXXX XX XX 	X

X
X 	' X
XXXX

 X 	
XX XX
	X

I 	. 	X 	X
I 	 ' 	X

X 	 X '
IX 	

X

I
I
I
/

I

X
X

r

X

X

X X
X

X

X

- X

X

X
x
X

X 	X

X
X

X--X

X

X X
X

X
X

X

X

X

I

I

X

.

X

X

X
X X

X

X

X

X 	X

X

XX

X

XX

X

X

X

X

X

X

 X
X

X
XX

X

X- --X 	
X

X

X
X

• X

X X

X

0123456789012345678901234567890i234567890123456713901.2345678902234567890123456789012345678901234567890
0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	0

1.80E+00 	5.40E4.00 	9.00E+00 	-1.26E1.01 	1.62E+01 	
I

0.E+00 	3.60E+00 	7.20E+00 	1.08E401 	i.44E+01 	1.80E+01

CPU Time (seconds)

Figure 8.8: 'Plot of Residuals against CPU Time (30/4/75 Run 6)

222

8.7.2 Figures of Merit

Since the objective of the calibration exercise is

to reduce the difference in behaviour between the model

and the real system, some 'figure of merit' is necessary

for deciding whether one model or version of a model is

'better', i.e. significantly closer in its predictions to

the real world, than another.

One method of comparing the difference between the

real system and the model is to compare the real job elapsed

time with the predicted job elapsed time. The difference

between these values is the residual. However, this measure

has the disadvantage, when averaged over all jobs, that

residuals of the type 'job a is x seconds too fast while job

b is x seconds too slow' cancel out. Consequently, more

satisfactory measures are those which do not consider the

sign of the residual, such as the absolute value of the resi-

dual or the residual squared.

Developing the Workload Model has shown that large

residuals occur because of situations which are not taken

into account by the model, due to the limitations of the

available data. Using the residuals squared as a figure of

merit places a larger emphasis on these large residuals.

Since basically the same data is used for developing LAM, it

was decided to use the absolute value of residuals as the

figure of merit.

8.7.3 A Significance Test

For each run of the model in calibration, it is

likely that the predicted elapsed time will be better for

some jobs and worse for others, as measured by the figure of

merit. Each time a reduction in the mean absolute value of

residuals is achieved, it is necessary to determine whether

the reduction is a significant one. For this reason, a

statistical significance test is used.

223

Developing the Workload Model has shown that the

distribution of residuals is usually non-normal. Consequently

a non-parametric significance test was used in the calibration

of LAM, i.e. one that does not assume that the residuals are

normally distributed. The test is the Wilcoxon matched-pairs

signed-ranks test (S8).

Early attempts at calibrating LAM using the Wilcoxon

test showed that there was always a very significant

difference between the model predictions and the real system

behaviour. Consequently, it was decided to use the Workload

Model as a standard for comparing LAM predictions. For each

test, LAM and WM are run using the same input trace for a

given session. The elapsed time for each job in the session

is predicted by both models and the residuals are derived:

rs = actual (i.e. measured) job elapsed time -

elapsed time predicted by Load Adjusting Model

rr = actual jct elapsed time - elapsed time pre-

dicted by Workload Model.

The Postprocessor prepares a sequence of matched

pairs, one for each job, of absolute values of residuals

(Irs1,1rrI). The sequence of matched pairs are then com-

pared using the Wilcoxon test, which tests the null

hypothesis that there is no significant difference between

the models (figure 8.9). It outputs the probability of

the hypothesis being true. If the probability is above 10%,

then the hypothesis is accepted. If the probability is

below 10% (5%), then the hypothesis is rejected at the 10%

(5%) significance level, i.e. with 90% (95%) confidence.

8.7.4 The Method of Good Balance

Each time a run with the model is made, a decision

has to be made about the settings of the parameters for the

next run. Some indication of the sources of inaccuracy of

Workload Trace

For a given

session

WORKLOAD

MODEL (WM)

Performance Predictions

s

WILCOXON

MATCHED-PAIRS

TEST

Probability that

Predictions of LAM not

Significantly better

than WM

Workload Trace

for same session

LOAD ADJUSTING

MODEL (LAM)

Parameter

Settings

Performance predictions

Figure 8.9: 	Procedure. for Calibrating. Load:Adjusting* Model

225

the model may be obtained by studying the residual plots.

A more systematic method is used by the Method of Good

Balance which was developed by Beilner (BS).

The Method of Good Balance provides a systematic

means of guiding the model-builder towards constructing a

well-balanced model. The error in such a model does not

depend significantly on any job characteristics or on the

system load, but instead is randomly distributed amongst

all types of jobs and loads. A linear regression analysis

is carried out with the residual in job elapsed time as the

dependent variable and measures of job characteristics and

systeM load as the independent variables. The objective of

the exercise is to gradually develop a regression equation in

which none of the regression coefficients are significant.

Once this is achieved, it means that none of the independent

variables make a significant contribution to the model, and

that the error in the model does not depend significantly on

job characteristics or system load.

8.8 	The Calibration in Practice

8.8.1 Introduction

After each run of the Load Adjusting Model with a

given setting of the parameters, the following analysis is

carried out:

(a) The mean of the absolute value of the residuals

is inspected to determine if a reduction in this

figure of merit has resulted from the new parameter

settings.

(b) The Method of Good Balance indicates whether the

residuals are correlated with any of the job or

226

load characteristics, e.g. CPU time, number of job

steps, delay time.

(c) The residual plots show the nature of the relation-

ship between the residuals and the particular

job and load characteristics.

(d) The Wilcoxon test indicates how the LAM compares

with the Workload Model.

With the guidance provided by this analysis, the

parameters are altered and the process is repeated.

8.8.2 Initial Parameter Settings

When calibrating the model, a decision must be made at

an early stage about the initial settings of the calibration

parameters.

The choice of the initial parameter settings for

the regression submodel for execution time

t- = bo + b1 T + b2N 	
(10)

was guided by the regression models of the short job work-

load (Chapter 7). In particular, it was guided by the

models of the subset of the workload that did not ex-

perience'competition from other short jobs (table 7.24).

As this subset of the workload is not a representative one

(see 7.9.1), it is to be expected that the regression

coefficients of the model of this subset would not be

appropriate for the regression submodel of execution time.

The appropriate parameters need to be determined

by means of the iterative tuning process. It was decided

227

to set each parameter initially to the minimum value of

the regression coefficient for the appropriate indepen-

dent variable in the three models of the subset (table

7.24). Hence, the initial settings were:

bo = 4.7 	b1 = 1.4 	b2 = 0.5

Intuitively reasonable values were chosen for the

initial settings of the parameters of the delay time submodel:

tdi . (a1 N + a2N
2)t.

The initial settings were al = 0.15 a2 = O.

8.8.3 Analysis of Residuals

Initially, some observations were excluded from

the calibration. These were the same observations that

had been excluded from the Workload Model, for the reasons

described in 7.7.4.

During the calibration, an analysis of residuals

revealed that at certain times for each session, large

positive residuals were obtained using the Load Adjusting

Model, which were not obtained using the Workload Model.

Initially, this was puzzling. However a more detailed

analysis revealed that these large positive residuals

occurred at times when the delay time predicted by LAM was

small, while the delay time predicted by the Workload

Model was much larger. '

A study of the System Dayfile for the times in

question, revealed two causes for this.

1. 	Occasionally system joL3 are run. These jobs

carry out functions such as Dayfile dumping,

permanent file dumps and reloads. System jobs

are allocated a higher CPU priority than other

228

jobs. Hence the presence of system jobs perturbs

the systems and sometimes leads to a buildup of

short jobs, which are consequently delayed.

2. 	Some of the jobs excluded from the Workload Model,

(and LAM), because of their_unusual characteristics,

run for much longer than normal and cause a build-

up of short jobs with subsequent delays.

Neither of these two types of job are actually

used in the calibration, either because their presence is

not recorded (system jobs, see 5.5) or because they are

deliberately excluded (uncharacteristic jobs). 	However

the delay caused to other jobs is felt, and much more

so by the Load Adjusting Model than the Workload Model.

The reason for this is due to the difference in the

basic structure of the two models. The Workload Model is a
regression model of the form

t
o

= bo + blT + b2K + b3N
	

(equation 8 in 8.4.1)

To a first approximation, the delay time dr predicted by

the model is given by

d
r
= b3N

where N is the average short job load experienced by a

short job while in execution. 	N is in fact input to

the model as one of the independent variables (figure 8.1).

Thus any perturbation to the system which leads to a build-

up of short jobs will be reflected in an increased value

of N and consequently a larger predicted delay dr.

On the other hand, the relay ds predicted by the

Load Adjusting Model is generated internally by the model

(figure 8.2). 	If the model is completely unaware of

the perturbation that occurred, as in cases 1 and 2 above,

then it cannot possibly account for it.

229

It was decided therefore to exclude from the

calibration, those observations which were noticeably

affected by the perturbation. The calibration was then

recommenced.

8.8.4 An Example of the Calibration

In this subsection, an example of the calibration

of the Load Adjusting Model (LAM) for one particular

session, the morning of 30/4/75, is given. Starting with the

initial parameter settings chosen in 8.8.2, a number of

runs were carried out. A selection of the runs (there

were considerably more than 7) are displayed in Table 8.1.

For each run, the following results are displayed:

(a) 	the parameter settings for the run

(b) the mean predicted elapsed time t
e

(c) 	the mean of the absolute residuals Ir
s

I

(d) the result of the Wilcoxon test, i.e. the

probability that the null hypothesis, that

there is no difference between the LAM and

Workload Model (WM), as measured by the dis-

tribution of the two sets of absolute residuals,

is true

(e) the result of the Method of Good Balance (MGB),

in particular which variables have significant

regression coefficients, and the sign of the

correlation.

In Run 1 (the initial settings), the mean predic-

ted elapsed time of 11.9 is mucn lower than the mean

actual elapsed time, 17.0. Ir is is greater than the mean

of the absolute WM residuals IT-1. The Wilcoxon test shows r
that WM is significantly better than LAM. The MGB indi-

230

Table 8.1: Example of Tuning the Load Adjusting Model

- 30/4 Workload Trace

Runs with LAM

predic-
Run b0 b1 b2 a

1 a2 P M.G.B. ted te Irs1

1 4.7 1.4 0.5 0.15 0 11.9 5.89 0.001 +CPU
+NCC

2 4.7 1.7 0.7 0.30 0 15.4 5.05 0.186 -SDEL

+CPU

3 4.7 1.9 0.7 0.23 0 15.3 4.64 0.178 -SDEL

4 4.7 1.9 0.7 0.15 0.01 14.8 4.68 0.253 W.B.

5 4.7 2.0 0.8 0.11 0.01 15.3 4.58 0.118 W.B.

6 4.7 2.1 0.8 0.11 0.01 15.7 4.55 0.064 W.B.

7 4.7 2.1 0.8 0.20 0.01 16.7 4.75 0.?70 -SDEL

Mean actual (i.e. measured) to = 17.0 -te predicted by WM = 17.9

Mean of absolute value of residuals of WM, Irrl = 4.72

:

:

mean elapsed time in seconds
mean of absolute value of residuals of LAM

Probability that there is no difference

between LAM and WM

Key: 	to

lrs
P

M.G.B. : Method of Good Balance

W.B. : Well Balanced model

CPU : CPU time 	Variables that

NCC : Number of Control Cards residuals may be

SDEL : Predicted delay time correlated with.

+/- : sign of correlation

cates that the coefficients of both the CPU and NCC

variables, bl and b2 respectively in equation (10), should

be increased in value. The residual plot against CPU

time (figure 8.5) also indicates that the residuals are

positively correlated with CPU time.

In Run 2, b1 and b2, in addition to a1
are increased

in value. As a result, the mean predicted elapsed_ time

is increased to 15.4. IF-1 is still greater than 1P-r
1, but

the Wilcoxon test indicates that the difference between

the two models is no longer significant. The MGB indi-

cates that bI should be increased further. It also indi-

cates that the residuals are negatively correlated with

delay time. This is supported by the residual plot against

delay time (figure 8.6).

In Run 3, b1 is increased and a1
decreased. This

time Irs-I is smaller than Irr
I, but the Wilcoxon test

indicates that the difference is not significant. The

MGB shows that the residuals are still negatively correla-

ted with delay time, although to a lesser extent than

before.

In Run 4, only the delay parameters are altered.

a1 is reduced further while a2
is set to a non-zero value

for the first time, so as to introduce a finer degree of

tuning. With these settings, MGB indicates that the model

is now well balanced, i.e. the error in the model is no

longer correlated with any particular job characteristic or

load on the system. However, the Wilcoxon test indicates

that, although Irs 1 is smaller than Irri, there is still

no significant difference between the Load Adjusting and

Workload Models.

From now on, the iterative tuning procedure becomes

more difficult. The objective is to continue improving

the model by reducing the value of 1rs
1. However, the MGB

can no longer help as the model is now well balanced. The

2.31

232

iterative procedure was lengthy, so only the principal

results are highlighted here.

In Run 5, b1 and b2 have both been increased in

value, while al has been reduced. The Wilcoxon test

indicates that the null hypothesis can still not be re-

jected, but the probability of 0.118 is close to the 10%

significance level.

In Run 6, bl is increased to 2.1. The Wilcoxon

test indicates that the null hypothesis can now be re-

jected at the 10% level, as the probability of the two sets

of absolute residuals being drawn from the same locpulation

is 0.064. Figures 8.7 and 8.8 show the residual plots

against elapsed time and CPU time respectively for these

parameter settings.

Attempts to improve the model further by adjusting

each of the parameters or combination of parameters (e.g.

Run 7) failed. So the parameter settings for Run 6 were

taken to be the 'best' values, since they resulted in the

closest agreement between the modelled and real worlds, as

measured by the figure of merit of the absolute value of the

residuals.

With the parameter settings of Run 6, the mean

predicted elapsed time is 15.7 seconds as compared with

the mean actual elapsed time of 17.0 seconds. It is possible

to select parameter settings which allow the mean predicted

elapsed time to be closer to the mean actual elapsed time.

In Run 7, the delay parameter al is increased to 0.20.

The mean predicted elapsed time is now 16.7, which is much

closer to the mean actual elapsed time. However, MGB

indicates that the model is no longer well balanced, as the

residuals are negatively correlated with delay time. Fur-

thermore, the Wilcoxon test shows that the difference between

the LAM and WM is no longer significant, because of the in-

crease in 1rsI. Similar results are obtained if b1 is in-

creased instead of a1. This feature of LAM has been

233

observed with other simulation models. During the calibra-

tion of SOUL (Simulation of OS/360 under LASP), it was

noted that for the 'best' parameter settings, the mean pre-

dicted elapsed time was significantly lower than the mean

actual elapsed time (W2).

8.8.5 Comparison of Modelled Sessions

The model was run with three different workload traces,

where each trace represented a different session. In

addition to the morning of 30/4/75, the morning session of

27/1/75 and the afternoon session of 30/1/75 were used. The

model with the trace for each session was calibrated using

the methods described in sections 8.7 and 8.8.4. The sessions

are compared in table 8.2. The following points should be

noted:

(a) During the last part of the monitored period in the

30/1/75 session, a number of system jobs were run.

These perturbed the system in the manner discussed

in 8.8.3 thereby causing larger positive residuals.

It was decided to exclude this latter period from

the calibration.

(b) For all three sessions, the Wilcoxon test indicates

that the predictions of the Load Adjusting Model

are significantly better, at the 10% significance

level, than the Workload Model. For the 27/1 session,

the model predictions are significantly better at

the 5% level.

(c) There are some differences in the 'best' parameter

settings for each session, particularly in bl, the

coefficient of the CPU variable and the delay para-

meter a .
1

234

Table 8.2: Comparison of Modelled Sessions

Modelled
Session

bo bl b2 al a2 actual predic- I

P V 's
ted t

LAA to (secs

27/1 4.7 2.3 0.8 0.10 0.01 17.4 16.4 5.08 4.45 0.037

30/4 4.7 2.1 0.8 0.11 0.01 17.0 15.7 4.72 4.55 0.064

30/1 4.7 2.0 0.8 0.11 0.01 16.8 15.4 4.42 3.98 0.069

For key refer to table 8.1

235

a

8.9 	Validation of the Model

8.9.1 Introduction

Validation of the LAM aims at determining the domain

of situations for which the model performs with a given accu-

racy, for an established calibration (B4, B6).

During calibration, the parameters of the model are

adjusted with the objective of reducing the difference in

the behaviour between the real and modelled worlds for a

particular workload trace. When calibrating the model for
a given trace, there is always the danger of overtuning the
model, that is adjusting the parameters so well that the

predictions of the model for the calibration situation are

significantly better than for other situations (B6). Con-

sequently, the objective of the validation process is to

find a set of parameter values, determined during calibration

for a given workload trace, with which the model predictions

are not significantly worse for other traces.

8.9.2 Validation

The LAM parameters are set to values obtained in

the calibration of the model with a given trace. The model

is then run with the other two traces respectively. Next,

a non-parametric test, the Mann-Whitney U-test, is carried

out to determine if there is any significant difference in

the model predictions. The criterion for comparison is the

absolute value of residuals IrsI. The null hypothesis,that

two independent groups of observations have been drawn from

the same population, is tested. In this case, the independent

groups are the sets of absolute residuals obtained by

running the model, with a given set of parameters, using

different input traces (figure 8.10). Since there are three

traces, the test is carried out in a pairwise manner, com-

paring two sets of absolute residuals at a time, making three

tests in all.

gi!

Workload Performance

Predictions Trace 12.

Parameter

Settings

Performance

Trace oc. 	Predictions

Parameter

Settings G

Probability that there is no

significant difference between

the two sets of absolute residuals.

Figure 8.10: Procedure for Validating Load Adjusting Model

a

Workload

237

If the test rejects the null hypothesis, the

validation is recommenced. Different parameter values,

obtained from the calibration of the model with a different

workload trace, are set. The model is then run with the

other two traces respectively and the Mann-Whitney test is

again applied to the sets of absolute residuals.

The validation was tried first using the parameter

values obtained in the calibration of the 30/4 session

(8.8.4). The Mann-Whitney test indicates the probability of

the null hypothesis, that the two sets of absolute residuals

have been drawn from the same distribution, being true. Table
8.3 shows that the null hypothesis may be accepted at the

10% level. Hence the LAM has been successfully validated

for the three sessions under consideration.

8.10 	Conclusions

This chapter has described the concepts of the hybrid

Load Adjusting Model, Yllich combines regresc3ion and simula-

tion modelling techniques by creating a simulation framework

which models job arrival and termination. By this means,

an important structural limitation of the Workload Model,

that the average load experienced by a job must be specified

in advance of an experimental run, is overcome. Since the

load will not usually be known in advance, the Load Adjusting

Model is a more valuable model for experimental runs.

The viability of the approach has been shown by apply-

ing it to modelling the short job workload on the Imperial

College Kronos system at the second level of detail. The

parameters of the model were tuned during an iterative cali-

bration procedure. The model was successfully validated for

three separate sessions.

A limitation of the model is that the mean absolute

value of the residuals is large. Table 8.3 shows that, for

two of the sessions, the predictions of the validated LAM

238

Table 8.3: Validation of Load Adjusting Model

Parameter Settings

bo = 4.7 bl = 2.1 	b
2
 = 0.8

al = 0.11 	a2 = 0.01

Model Predictions

Session

Modelled

actual to

(secs)

predicted Irs 1 P Irrl

E 	(secs)

27/1 17.4 15.6 5.08 4.56 0.161
30/4 17.0 15.7 4.72 4.55 0.064
30/1 16.8 15.7 4.42 4.01 0.119

(For key refer to table 8.1)

Pairwise Comparison of LAM Predictions using Mann-Whitney U-Test

Session A Session B P1

27/1 30/4 0.140
27/1 30/1 0.492
30/4 30/1 0.161

P1 : Probability that there is no difference between the

two sets of absolute residuals.

239

are not significantly better than the Workload Model. For

the third, the predictions are significantly better at the

10% level. This limitation is mainly due to the fact that

the data used by LAM is at the same level of detail as WM,

although in one case different in nature. The average load

experienced by a job is input to WM (figure 8.1), whereas

it is predicted by,.LAM (figure 8.2) given the times of job

arrival. This leads'to certain situations where the predic-

tions of WM are superior to LAM. This happens when a build-

up of short jobs on the real system results from a perturba-

tion which is not recorded in the data and hence cannot be

modelled.

Most of the limitations of the Workload Model are

due to a lack of data (7.10), and these are also reflected

in the regression submodel. 	Data on jobs I/O demands and

rollout time would enable a much more accurate regression

model of execution time to be constructed.

The Load Adjusting Model, like the Workload Model,

does not distinguish between short jobs executing in Central

Memory and those rolled out. Furthermore, LAM is only

capable pf modelling the short job workload. Methods of

overcoming both these limitations are discussed in the next

chapter.

In spite of these limitations, it is believed that

the Load Adjusting Model has clearly shown that, by overcoming

the structural limitations of the purely regression model,

the hybrid simulation/regression modelling approach is a

valuable method of computer system modelling.

• 240

CHAPTER 9: 	THE MEMORY MANAGEMENT MODEL

9.1 	Introduction

This chapter considers the limitations of the

Load Adjusting Model and attempts to overcome one of the

most important limitations by simulating the memory

management subsystem. The Memory Management Model has

been applied to the modelling of the Imperial College

Kronos system at the third level of detail.

Section 9.2 discusses an important limitation of

the Load Adjusting Model and how it may be overcome by

developing the Memory Management Model. Section 9.3 des-

cribes the memory management subsystem in Kronos. Section

9.4 describes the assumptions made by the model and

presents an overall description of the model. Section

9.5 describes the implementation and initial calibration

f
	 of the model. Limitations in the model were revealed

which led to the redesign of the model, as discussed in

section 9.6. Section 9.7 describes the design of the

Mark 2 model. Finally the calibration and validation of

the model, which was similar to the method used for the Load

Adjusting Model, are described in section 9.8.

9.2 	Limitations of the Load Adjusting Model.

In the Workload Model, a measure of the level of

competition is given by the average number of short jobs

competing for resources with a given job. This measure is

input to the model as an input variable (figure 8.1). In

the Load Adjusting model, the level of competition is

estimated using a simulation framework. The estimate is

based on the number of short jobs started, input as a

trace, and the number of short jobs terminated, which is

predicted by the model (figure 8.2). However, the level

of competition, whether measured in level 1 or estimated

in level 2, does not distinguish between jobs in Central

Memory (CM) competing for the CPU and I/O, and jobs rolled

out of CM. This is a clear limitation of these models.

241

The Memory Management Model attempts to estimate

more precisely the load on the system at any given time,

by simulating the memory management subsystem. This sub-

system is modelled at a greater level of detail than the

rest of the system. As with the Load Adjusting Model,

the regression modelling approach is used to estimate a

job's elapsed time in the absence of competition from

other jobs. This minimum elapsed time is termed the job

execution time. The time a job spends in the execution

phase may be extended by competition from other jobs in

CM for scarce resources, or by the job being rolled out of

CM.

The delay, due to the competition with other jobs

in the execution phase for scarce system resources, is

estimated using the same method as in the level 2 model,

that is by estimating the delay experienced by each job

on- a time segment basis. However, one important difference

is that the predicted delay in the level 3 model is

based on the estimated number of jobs resident in CM,

rather than the estimated number of jobs in execution

(as in level 2), some of which may be rolled out. For

this to be possible, it is necessary to simulate the memory

management subsystem.

9.3 	Memory Management in Kronos

Memory management in Kronos is handled by:

The Job Scheduler PP program, which mades schedul-

ing recommendations to

Monitor (the Nucleus of the Kronos Operating

System) which allocates and de-allocates memory

to and from the control points at which jobs

run. Monitor bases its decisions on the Job

Scheduler's recommendations.

242

Memory is allocated to a job at the job step

level and occasionally at the sub-job step level. Each

user specifies the maximum memory his job will require

on the job card. For some job steps (e.g. any job step

requiring the relocatable binary loader), the maximum

memory allotment is allocated to the job. For system

S
	utility job steps, only the memory required by the appro-

priate system program is allocated.

When a job first enters the system, it is placed

in the Input Queue. A job rolled out of CM is placed in

the Rollout Queue. For the purpose of memory allocation

the Job Scheduler treats the Input and Rollout queues as

one queue. It bases its decisions on:

(a) the job's CM priority - this is a priority

associated with each job

(b) the amount of memory requested by the job

(c) memory availability and-the CM priorities of

the jobs resident in CM.

When a job enters the Input or Rollout Queue, its

CM priority is set to an initial value. Its priority is

gradually aged till an upper bound is reached. On the

I.C. Kronos system, short jobs are given an initial

priority which is above the upper bound. Consequently

their priorities are not aged, and they are given preferen-

tial treatment over other batch jobs in the allocation of

CM.

A job resident in CM is liable to be rolled out if

a higher CM priority job makes a memory request. The

higher CM priority job may:

(a) 	have entered the Input or Rollout Queue with a

higher priority than a job in CM

2143

(b) have had its priority aged past the priority of

a job in CM

(c) be resident in CM and have made a request for

more memory.

Each job resident in CM is also awarded two

time slices, a CPU time slice and a CM time slice. The

CPU time slice is the amount of CPU time a job may use

before becoming eligible for rollout. The CM time slice

is the amount of real time a job may be resident in CM

for, before becoming eligible for rollout. Usually,

when a job becomes eligible for rollout, its CM priority

is reduced, making it more likely that the job will be

rolled out. However,on the I.C. system, the CM priority

of short jobs is not reduced when a time slice expires;

although eligible short jobs are liable to be rolled out

if other short jobs are requesting memory.

9.4 	The Memory Management Mode-1 of the Kronor System

9.4.1 Assumptions made by the Memory Management

Model

A number of simplifying assumptions have been

made in constructing the Memory Management Model. These

are:

1. The only information on memory allocation that

may be derived from the Dayfile is the average

CM used by a job during its execution. Conse-

quently, the model assumes that a job uses its

average memory size throughout the execution phase.

This is an obvious limitation to the model. It

would be a simple extension to the model to handle

memory allocation at the job step level if the data

was available.

2. The model only models the short job workload.

' Since all short jobs have the same priority, no

244

priority scheduling is built into the model. It

would again be a simple extension to the model

to handle jobs of different priority.

3. Since all real time data derived from the Dayfile

(e.g. job start and end times) are measured in

units of a second, the basic real time unit in

the model is the second.

4. Because of assumption 3 and because no measures

of rollin/rollout time are available, the time

taken to roll a job out and back in again must

be neglected.

5. It is assumed that in each time segment, all jobs

resident in CM are treated identically by the system.

This is a reasonable assumption for CPU allocation,

where a round robin scheduling algorithm is en-

forced. It is likely to be less reasonable for

I/O management.

6. As a result of a local modification to the Account

Dayfile in late 1974, the time a job was read

through the card reader is no longer recorded.

Consequently, the first message relating to a given

job is recorded when the job starts execution.

This time is used in the workload trace to represent

job arrival in the system. This means that any

job which is not scheduled immediately for execu-

tion by the model, and which enters the Input Queue

instead, starts simulated execution later than it

did on the real system.

These assumptions are bound to lead to inaccuracies

in the model. Attempts are made to minimise these during

the calibration of the model.

245

9.4.2 Overall Design of the Memory Management

Model (MMM)

9.4.2.1 Job Commencement

When a job arrives in the system, at the simulated

time of arrival, its execution time, (i.e. elapsed time

in the absence of competition) is predicted by the re-

gression submodel (see 8.3). The model then determines

whether sufficient memory is available for the job,

rolling out 'eligible' jobs if necessary.

If sufficient memory is available, an entry is

set up for the job and is linked onto the end of the Execu-

tion List. This list contains an entry for each simulated

job executing in CM. If insufficient memory is available,

an entry is set up for the job and linked onto the end of

a combined Input/Rollout Queue. This queue contains an

entry for each simulated job in input or rollout state.

9.4.2.2 	Time Slice Expiry

Each time round its main loop, the model checks

each job in the Execution List to determine whether it has

exceeded the CPU or CM time slice. The length of the

CPU time slice is a system parameter and is currently set

to four seconds. The model converts this into a real

time measure, which is called the Execution time slice.

At the simulated time of job commencement, the Execution

time slice is estimated for each job whose total CPU time

is greater than the CPU time slice:

Estimated Job Execution Time x CPU time
Execution time slice = 	 slice

Total CPU time required

In estimating the Execution time slice, it is again

assumed that a job uses the resources it requests uniformly.

The CM time slice is a real time measure, currently set to

200 seconds, and so no conversion is necessary. If the

246

model determines that a job has exceeded either time slice,

the job's state is set to 'eligible for rollout'.

9.4.2.3 	Rollout Jobs

If insufficient free memory is available for a

job at the simulated time of its arrival, then jobs in

'eligible for rollout state' are liable to be rolled out.

Furthermore, each time round its main loop, the model

checks if sufficient memory is available for one or more

jobs in the Input/Rollout Queue to be rolled in. If

necessary, jobs in 'eligible for rollout state' will be

rolled out. A rolled out job is taken off the Execution

list and placed at the end of the Input/Rollout Queue, and

its state is set to rollout state.

9.4.2.4 	Rollin Jobs

In the Kronos system, the Job Scheduler scans the

File Name Table in one pass, to select the highest priority

jobs in either Input or Rollout state that will fit into

memory (after rollouts if necessary). In the model, a

combined Input/Rollout Queue is maintained. Incoming jobs

are placed on the end of the queue. The model attempts to

fit each job in turn in the available memory (after rollouts

if necessary). A job- that can be allocated memory is

taken off the Input/Rollout Queue and transferred to the

end of the Execution list. Its state is changed to execu-

tion state.

9.5 	Implementation and Initial Calibration

9.5.1 Im2lemantation

The implementation approach to the Memory Management

Model was similar to that adopted for the Load Adjusting

Model (8.6). A preprocessor uses the B and J files for

a given session to prepare a workload trace, which is in-

put to . the model. The model outputs a number of statistics

• 2147

for each job, which are analysed by the Postprocessor. The

predictions for each job are:

(a) Predicted job elapsed time.

(b) Predicted job execution time.

(c) Predicted delay time a job experiences due to

competition from other jobs in CM.

(d) Predicted rollout time.

(e) Predicted time spent in Input Q.

The elapsed time predicted by the Workload Model for the

same job is also output.
4

9.5.2 Problems in Calibrating the Memory

Management Model

A number of problems exist in the calibration of

the Memory Management Model (MMM). These are mainly due

to the lack of performance data available to assist in

the calibration.

As pointed out in section 3.4.3, in a multilevel

modelling approach, the quantity and accuracy of the data

input to the model should increase as the level of detailed

representation increases. Although the level of detail

was increased from level 1 to level 2, the quantity of data

input to the model was different, though not greater in

detail. Whereas, the average load experienced by each job is

input to the level 1 Workload Model, this figure is predicted

by the level 2 Load Adjusting Model, given the times of job

arrival.

Increasing the level of detail from level 2 to level

3, more data is input to the model, but the increase is

limited. The additional information is:

248

(i) the total amount of Central Memory available for

user jobs, 50K 60 bit words

(ii) the average CM used by each job.

The main problems in calibrating this level are:

(a) because the average CM allocated to jobs is used,

the model considerably underestimates the rate of

change of memory allocation.

(b) No indication of rollin/rollout is given in the

Dayfile. Thus no indication is given of which

jobs were rolled out, why they were rolled out,

and for how long.

The calibration process attempts to reduce the

difference in behaviour between the real and modelled

worlds. If the behaviour of the real world is not known

in sufficient detail, this will considerably restrict

the calibration process.

A trace driven simulation model of a CDC 6000 system

has been described (N3) which also used the Dayfile as

the source of workload and performance data. For each job,

the total rollout time and number of times the job was

rolled out were extracted. This data was used as input to

the model. However, as these values are dependent on the

system load, it is believed that they should be predicted

by the model, as is the case with MMM. If this performance

data were available, it should be used to assist in the

calibration, as will be discussed in chapter 10.

9.5.3 The Calibration Approach

Because of the problems described in the previous

subsection, the calibration approach adopted for the

249

level 3 MMM was very similar to the level 2 LAM, in spite

of the fact that the system is modelled at a greater

level of detail. To calibrate the MMM, the calibration

parameters of the execution time and delay time submodels

were adjusted in an attempt to reduce the difference in

behaviour between the real and modelled worlds, (see sections

8.7 and 8.8 in chapter 8). The parameters are:

(a) The parameters bo, b., and b2 of the regression

submodel for predicting job execution time

t.
7 	

bo + b1 T + b2N 	(1)

(b) The parameters al and a2 of the submodel for

predicting the delay experienced by each job

in a time segment:

tdi = a1 N + a2 N
2 	 (2)

In the MMM, N refers to the estimated number of

jobs in Central Memory competing with a given job, rather

than the total number of short jobs in execution, whether in

CM or rolled out, as used by the LAM.

In the calibration, the figure of merit used is

again the absolute value of residuals. The iterative

tuning approach is again adopted with the Method of Good

Balance and Wilcoxon test applied at each stage.

The same three sessions were used for the cali-

bration and validation of MMM as for LAM.

9.5.4 Initial Calibration Results

The initial attempts at calibrating the model used

the 27/1 session as a basis. The results showed that:

•

250

(a) The number of jobs rolled out or placed in

the Input Q on arrival, was small. For the more'

satisfactory parameter settings, it did not ex-

ceed 5% of the sample. The predictions for the

number of jobs rolled out are almost certainly

much lower than the actual number rolled out. The

use of average CM is likely to smooth out the

flow of jobs in the model, leading to considerably

less rollin/rollout activity than in the real

system.

(b) The Wilcoxon Test showed that with the more

satisfactory parameter settings, the difference

between the Memory Management and Workload models,

as measured by the distribution of the two sets of

absolute residuals, was not a significant one. At

no stage however was the MMM significantly better

than the WM.

It was apparent from analysing the results that

for a large proportion of simulated time, the MMM was

behaving in a manner similar to the Load Adjusting model.

Indeed, the most satisfactory parameter settings for

MMM were close to those for LAM. This was regarded as an

unsatisfactory state of affairs, as it was felt that the

level 3 model should be capable of producing better results.

Although the calibration had not been satisfactory, it

was felt that the problem lay in the model itself, rather

than with the calibration method. It was therefore decided

to re-examine the structure of the model and attempt to

improve it.

The first attempt at improving the model was in

the method of checking whether a job had exdeeded its time

slice, thereby making it eligible for rollout. A simpli-

fication had been made in the design of the model, which

meant that a check on time slice- expiry was only carried

out each time a job start or job termination event

251

occurred. This was changed, so that a time slice expiry

could now be a separate event. This meant that the model

should be more accurate at estimating when a job becomes

eligible for rollout, which should have the result of in-

creasing the number of rollouts. Incorporating this

change in the model did increase the number of rollouts

slightly. However, it did not have a significant effect

on improving the predicted job elapsed time.

9.6 	' The Memory Management Model Mark 2

9.6.1 modelling the Long Job Workload

It became apparent that a radical change to the

structure of the Memory Management Model was necessary,

if the model was to be significantly improved. One way

in which the model could be improved is in the prediction

of job delay time.

In the first and second level models, only the

short job workload is modelled, and the presence of the

long job workload is ignored. This is because no measure

is available of rollin/rollout. Hence there is no means

of distinguishing between long jobs in CM and those

rolled out. It is likely that for most of the time, most

long jobs in the execution phase are rolled out and

therefore do not affect the progress of the higher priority

short jobs. However, those long jobs executing in CM are

likely to affect the progress of short jobs, because once

in CM, no preferential treatment is shown by the CPU and

I/O scheduling algorithms. Hence, ignoring the long job

workload is bound to introduce additional errors into the

models.

In the version of the Memory Management Model just

described, long jobs are also ignored. However, when the

memory management subsystem is simulated, it becomes

252

possible to take into account the effect of long jobs.

This is because, at this level, it becomes possible to

make reasonable estimates of how many long jobs are

executing in CM and how many are rolled out. It was

therefore decided that the long job workload should

be modelled in addition to the short job workload.

The method adopted for modelling the long job

workload is similar to that used for the short job

workload. A regression submodel is used to predict

long job execution time. The delay time submodel is

used for estimating the delay experienced by each job

(long or short) in a time segment. The simulation of

the memory Management subsystem is extended to include

long jobs.

One method of modelling the long job workload

is to attempt to construct a regression submodel to

predict long job execution times, and to calibrate this

in the same manner as the regression submodel for the

short job workload. However, as discussed in chapter 6,

it is doubtful whether representative regression models

of the long job workload can be constructed in the

-framework of this project.

The objective of introducing the long job work-

load into the model is therefore limited to making

better estimates of the competition experienced by short

jobs, rather than for predicting the elapsed time of

long jobs. Consequently, it was decided to use the same

regression submodel for predicting job execution times

for both long and short jobs.

9.6.2 Assumptions made by Memory Management

Model Mark 2

A number of simplifying assumptions are made in

modelling the long job workload:

253

1. The regression submodel for execution time is

used to predict the execution time of long jobs.

The reason for this was discussed in the last

subsection.

2. A long job is assumed to use its average memory

requirement throughput. This is similar to and

for the same reason as the assumption made for

short jobs.

3. Only two priority levels for access to CM are

assumed, one for short jobs and the other for

long jobs.

In the Kronos system, no distinction is made between

the different classes of jobs once they are executing
in CM. Short jobs have a constant access priority
to CM which is higher than for long jobs. Long

jobs enter the Input and Rollout queues with a

given priority which is aged until an upper bound

is reached.

In the model, two sets of Input/Rollout queues

are maintained, one for long jobs in addition to

the one for short jobs. Each job entering input

or rollout states is placed on the end of the

appropriate queue. The approximation is therefore

a reasonable one.

4. As long jobs have a lower CM priority than short

jobs, they are liable to be rolled out much more

frequently. Consequently, no check is made on

the time slice expiry of long jobs. The only

effect of including this check might be to rollout

one long job to allow another to execute.

5. In Kronos, no distinction is made between the
different classes of jobs for CPU and I/O schedul-

254

ing. Therefore, it is assumed in the model that

in each time segment, all jobs resident in CM

are treated identically. Consequently, the same

method as before is employed for estimating the

delay time in each segment.

6. 	Since magnetic tape mounting time is not known

for those jobs that use tapes, it is assumed that

tape mounting is instantaneous. As the objective

of modelling the long job workload is not for pre-

dicting long job delay time, this assumption is

acceptable.

The assumptions made in modelling the long job

workloads, many of which are cruder than those for the

short job workload, are bound to lead to inaccuracies in

the model. Nevertheless it was felt that modelling the

long job workload, even in this crude form, was better

than not modelling it at all, and that the result would

be an improvement in the predictions for the short job

workload.

9.6.3 Overview of Memory Management Model Mark 2

9.6,3.1 Introduction

This section provides an overview of the Memory

Management Model Mark 2. The lists maintained by the

model are increased by one. In addition to the Execution
List, and combined Input/Rollout Queue for short jobs, an

Input/Rollout Queue for long jobs is also maintained.

9.6.3.2 	Job Commencement

When a long job arrives in the system, at the

simulated time of arrival, its execution time is predicted

by the regression submodel (equation 1). If sufficient

255

memory is available, the job is linked onto the end of

the Execution List. If not, it is placed onto the end

of the combined Input/Rollout Queue for long jobs. This

contains an entry for every long job in Input or Rollout

state.

When a short job arrives in the system, the model

checks if enough memory is available for the job. If

there is, the job is linked onto the end of the Execution

List. If not, the model checks if there is enough

'eligible' memory in addition to free memory, to allow

the job to start execution. Eligible memory is that used

by executing jobs which are eligible for rollout. This

includes all long jobs and all short jobs whibh have ex-

ceeded their time slice (see 9.4.2.2). If there is then

sufficient memory, as many 'eligible' jobs as necessary

are rolled out, and the new job is linked onto the Execu-

tion List. If insufficient memory is available, the job is

placed on the end of the short job Input/Rollout Queue.

9.6.3.3 	Rollout Jobs

If insufficient memory is available when a short

job enters the system, jobs in 'eligible for rollout state'

are liable to be rolled out. Two passes are made through

the Execution List. 	First, long jobs are rolled out.

Next short jobs in eligible state are rolled out. The

search stops as soon as enough memory has been released to

satisfy a memory request. Long jobs rolled out are placed

on the end of the long job Input/Rollout Queue. Short

jobs rolled out are placed on the end of the short job

Input/Rollout Queue.

9.6.3.4 Rollin Jobs

Each time round its main loop (at each event

occurrence), the model checks if sufficient memory is

available for one or more jobs in first the short job and

then the long job Input/Rollout queues to be rolled in.

256

Short jobs in eligible state are liable to be rolled out

to allow short jobs (but not long jobs) to be brought

into CM.

Starting at the head of the list, a check is

made on each job in the short job Input/Rollout queue to

see if sufficient memory, including eligible memory, is

available for it to be rolled in (if it was in rollout

state) or start execution (if it was in input state). If

so, the job is brought into CM and placed on the end of

the Execution List, after rolling out eligible jobs if

necessary.

Next, a similar check is made on the long job

Input/Rollout Queue. A long job is only rolled in, if

sufficient free memory is available.

9.7 	Design of the Memory Management Model Mark 2

The level 3 Memory Management Model is a refinement

of the level 2 Load Adjusting Model described in chapter 8.

The design uses the same framework as the level 2 design.

Some new routines have been added, others have been ex-

tended and the remainder have been left unchanged. A block

diagram showing the overall design of the Memory Management

model is shown in figure 9.1. A short description of each

of the routines follows:

MAIN 	is the main routine. It carries out a necessary

initialisation and then enters COORD.

COORD is the co-ordinating routine for the model. It

goes through a main loop, once for each time

segment. First it calls SENEVT to determine what

the next event is, and to determine the length

of the next time segment. It then calls UPDENT

to update all job entries. If any jobs are due to

terminate, the job termination routine JBTERM is

UNLINKQ

REOFL

S RJE DT
ROLIN ROLINJ

RGJE DT

SRINT
ROLOUTJ ROLOUT

MAIN

a

Figure 9. • Structure of the Memory Management Model

258

called. Next, the routine CHKTSL is called to

check whether any short jobs in executing state

have exceeded a time slice. Next, the routine

CHKROQ is called to check jobs in the Input/Rollout

queues to determine if any jobs may be brought

into CM. CHKROQ is called twice, first for short

jobs, then for long jobs. Finally if a job is due

to arrive in the system (as determined by the

input trace), the job commencement routine JBSTAT

is called.

SENEVT is called by COORD to determine what the next event

is, and the estimated time at which it occurs.

The next event could be a job arrival, job termina-

tion, time slice expiry, or end of session. SRINT

is called to estimate what the minimum segment

length for the next job to terminate is. This is

compared with the next job arrival time and the

time for the next time slice expiry event to decide

what the next event is. If the number of jobs

currently in execution is equal to a certain limit,

then no jobs will be allowed to commence execution,

until the number of jobs in execution falls below

this limit.

UPDENT Given the length of the next time segment ti,

UPDENT calls SRJEDT to compute the delay time tdi

and the execution time t.i for the segment

(chapter 8). The entries are updated for each job

on the Execution list, as follows:

(a) the delay time for this interval is added to

the cumulative delay so far.

(b) the execution time for this interval is de-

cremented from the remaining execution time.

259

UPDENT also scans both the short job and long job

Input/Rollout Queues and for each job in rollout

state, the segment length is added to the rollout

time so far.

JBTERM handles job termination. The entry for the job

terminating is taken off the Execution list. The

accumulated job statistics are copied into a job

output buffer. If the buffer is full, it is out-

put to a disc file.

JBSTAT handles job arrival. The job's resource require-

ments and other information are read from the

job's entry in the input buffer and copied into

an entry created for the job. RGJEDT is called to

predict the job's execution time. If sufficient

memory is available, the job is scheduled for

execution and linked onto the end of the Execution

list. Its state is set to executing. If in-

sufficient memory is available, the job is linked

onto the end of the appropriate Input/Rollout Queue

and its state is set to input. Finally, JBSTAT

checks if the input buffer is empty, and if so re-

plenishes it.

CHKROQ is called by COORD to check the Input/Rollout Queues

for either short jobs or long jobs. For the queue

selected, CHKROQ starts with the first entry in the

queue, extracts the memory request, and calls

REQFL to determine if the request can be satisfied.

If it can, then the job is brought into CM by call-

ing ROLIN for short jobs or ROLINJ for long jobs.

Each job in the appropriate queue is checked in

this manner.

REQFL checks if sufficient free Central Memory is avail-

able to satisfy a memory request from either a

short or long job. If sufficient free memory is

260

available, a positive response is returned. If

not, and the job is a long job, a negative res-

ponse is returned. For short jobs, a further

check is made to determine if enough memory is

available when the CM used by jobs eligible for

rollout is taken into account. If enough memory

is still not available, a negative response is

returned. Otherwise, ROLOUTJ is called to roll-

out as many long jobs as necessary. If more

memory is still required, ROLOUT is called to

rollout as many short jobs in eligible state as

necessary. A positive response is then returned.

ROLOUTJ handles the rolling out of long jobs. If no long

job is in executing state, a return is made to the

calling routine REQFL. Otherwise the Execution

list is searched for long jobs. A long job is

removed from the list and placed on the end of

the long job Input/Rollout Queue. The free memory

.count is increased. If sufficient memory is

available to satisfy the request, the search is

stopped. Otherwise, it is continued in the same

manner until the end of the list is reached.

ROLOUT handles the rolling out of short jobs. The Execu-

tion list is searched for short jobs in 'eligible

for rollout' state. Each job in this state is

removed from the Execution list and placed on the

end of the short job Input/Rollout Queue. The free

memory count is increased. When sufficient memory

is available to satisfy the request, the search is

stopped.

ROLIN brings a given short job into Central Memory. The

job is unlinked off the short job Input/Rollout

Queue and placed on the end of the Execution list.

The job, which may have been in input or rollout
states, is put in execution state.

261

ROLINJ brings a given long job into CM. The job is un-

linked off the long job Input/Rollout Queue and

placed on the end of the Execution list.

SESEND is called at the estimated time of the end of

session. It outputs the final bufferful of data

to the disc file, and outputs statistics of the

run to the line printer.

UNLIST (N,A,B) searches list A for the entry for job N.

When found, the entry is unlinked off list A and

linked onto the end of list B.

UNLINKQ (N,A,B) unlinks the top entry off list A and

links in onto the end of list B. The entry number

is returned in N.

MJEDTcomputesthepredictedjobecutiontimet.for a

job commencing execution (see chapter 8).

SRINT computes the estimated time required to complete

execution of a given job for a given load on the

system (see chapter 8).

SRJEDTcmputestheestimatedjobexecutiontimet..
71
 and

the estimated delay timetdi for a given time seg-

ment t- and load N on the system (see chapter 8).

JID

TRACE outputs a trace message each time it is called,

providing the trace flag is or.. The message is

either for job commencement, job termination, job

put in Input Queue, job rolled out of CM or rolled

back in again.

ERROR (I) is the error routine which may be called from a

number of places in the model. It outputs an

error message, dumps the contents of various loca-

tions and arrays, and stops.

262

9.8 	Calibration and Validation

9.8.1 Calibration

After the major changes to the Memory Management

Model to incorporate the modelling of the long job work-

load, the calibration process was recommenced. The cali-

bration of the model with individual traces of the three

sessions, the 27/1, 30/1 and 30/4 followed on similar

lines to the detailed example given in section 8.8.4.

An analysis of residuals revealed that at certain

times for each session, large positive residuals were

obtained. The cause for this was similar to that described .

in 8.8.3, and due to the difference in basic structure

between the Workload and Memory Management models. The

problem was resolved, as before, by excluding certain observa-

tions.

The calibration now showed that the Mark 2 Memory

Management Model was a considerable improvement over the

Mark 1 model, and to a lesser degree over LAM. An example

of four runs with the various models using the 27/1 trace,

is shown in table 9.1. The runs are:

(i) The calibrated LAM, with the 'best' parameter

settings for 27/1.

(ii) MMM Mark 1 with the same parameter settings as (i).

(iii) The calibrated MMM Mark 2 with the 'best' parameter

settings for 27/1.

(iv) MMM Mark 1 model with the same parameter settings

as (iii).

The results show that the calibrated MMM Mark 2

model (run iii) is:

263

Table 9.1: Comparison of Models

Run Model bo b1 b2 a1 a2 predic- P 1r 	1
s ted te

i LAM 4.7 2.3 0.8 0.1 0.01 16.4 4.45 0.037
ii MMM MK.1 4.7 2.3 0.8 0.1 0.01 16.1 4.57 0.125

iii MMM MK.2 4.7 1.9 0.7 0.1 0.01 16.5 4.25 0.000
iv MMM MK.1 4.7 1.9 0.7 0.1 0.01 14.1 4.90 0.488

Mean actual to = 17.4 seconds
Mean predicted to by WM = 18.3 seconds
1rr1 = 5.08

For key refer to table 9.2

Comparison of Models using Wilcoxon Test

Run A Run B - P 1

iii i 0.074

iii ii 0.016

i ii . 	0.030

Pi : Probability that there is no difference between the

two models.

264

(a) significantly better than the Workload Model at

the 0.1% significance level (i.e. with 99.9% con-

fidence).

(b) Significantly better than the calibrated LAM

(run i) at the 10% level.

(c) Significantly better than either of the Mark 1

runs (ii and iv) at the 5% level.

The basic problem with the Mark 1 model is shown

(table 9.1) by the fact that with the LAM parameter

settings (run ii), the results are better than with the

Mark 2 (run iv) parameters settings. The reason for this

is that for a large proportion of simulated time, the

Mark 1 model behaves in a manner similar to LAM.

9.8.2 Comparison of Sessions

The MMM Mark 2 was calibrated separately for the

three different workload traces, where each trace re-

presented a different session. The results are shown in

table 9.2 and are now compared:

(a) The Wilcoxon test indicates that the predictions

of the Memory Management Model are significantly

better than the Workload Model at the 10% con-

fidence level (i.e. with 90% confidence) for the

30/4 session, at the 5% level for the 30/1 session

and at the 0.1% level for the 27/1 session.

(b) The parameter of the regression submodel, bo, bl

and b2 in equation 1, are identical for all

three sessions. The differences in the parameter

settings for the three sessions are in the delay

parameters al and a2.

: mean of absolute residuals of WM

I
rsI : mean of absolute residuals of MMM

P 	: probability that there is no difference between

MMM and WM

265

Table 9.2: Comparison of Modelled Sessions

Session

Modelled

b0 bl b2 al a2 actual predic- Ire' P

re
(secs)

ted to
by MMM 	

27/1 4.7 1.9 0.7 0.1 0.01 17.4 16.5 4.25 0.000

30/4 4.7 1.9 0.7 0.0730.013 17.0 15.8 4.54 0.087

30/1 4.7 1.9 0.7 0.07 .01 16.8 15.2 3.99 0.046

Key: to : mean job elapsed time in seconds

• 266

9.8.3 Validation

The same approach to the validation of MMM was

adopted as for LAM (section 8.9). The model parameters

are set to values obtained in the calibration of MMM with

a given workload trace. The model is then run with the

other two traces respectively. The Mann-Whitney U-test

is used to determine if there is any significant difference

in the model predictions. If the test fails, the valida-

tion is recommenced using a set of parameter values, ob-

tained in the calibration of the model with a different

workload trace.

The results of the validation are shown in table

9.3. The Mann-Whitney test shows that the null hypothesis,

that two sets of absolute residuals have been drawn from

the same population, may be accepted at the 4% level. Thus

the MMM has been successfully validated at this level for

the three sessions under consideration.

With the parameter settings of table 9.3, the pre-

dictions of MMM are significantly better at the 5% level

than the WM for two sessions, 27/1 and 30/1. For the 30/4

session, there is no significant difference between the

models.

9.9 	Conclusions

This chapter has described the modelling of the

I.C. Kronos system, at the third level of detail, with the

simulation of the memory management subsystem. By this

means, an important limitation of both the Workload and

Load Adjusting Models (neither of these models distinguished

between jobs executing in Central Memory and those rolled

out) was overcome.

The calibration of this model suffered from a scar-

city of performance data for calibration purposes. Initially

267

Table 9.3: Validation of Memory Management Model

Parameter Settings

bo = 4.7 	b1 = 1 9 	b2 = 0.7

al = 0.07 	a2 = 0.01

Model Predictions

.

Session

Modelled

Actual Predic- Irrl P In

te(secs) ted to

27/1 17.4 15.4 5.08 4.51 0.037

30/4 17.0 15.7 4.72 4.58 0.133

30/1 16.8 15.2 4.42 3.99 0.046

For key refer to table 9.2

Pairwise Comparison of MMM Predictions Using Mann-Whitney U-Test

Session A
■

Session B

27/1 30/4 0.057

27/1 30/1 0.444

30/4 30/1 0.042

P' : Probability that there is no difference between the

two sets of absolute residuals.

263-

only the short job workload was modelled, but this approach

was not satisfactory. It was decided therefore to also

include the long job workload in the model. However this

could only be done in a very approximate manner, as no

regression model of the long job workload existed. In

spite of this, the approach resulted in a significantly

better model. The Memory Management Model was calibrated

and successfully validated for three separate sessions.

The limitations of the model are due mainly to the

limitations of the workload and performance data available

from the Dayfile:

(a) The average CM requested by each job is used in

the model. This means that the model is bound

to considerably underestimate the rate of change

in memory allocation.

(b) No data is recorded on rollin/rollout activity

whatsoever. This considerably restricts the cali-

bration. Ways in which the presence of this data

could help the calibration are discussed in chapter

10.

(c) Long jobs are modelled very approximately. The

short job submodel is used to predict long job

execution times.

In spite of these limitations, it is felt that the

Memory Management Model has demonstrated further the viability

and advantages of the multilevel hybrid approach to computer

system modelling. The model builder need only model in

detail that part of the system of particular interest, using

simulation techniques. Other parts of the system may be

modelled at a much less detailed level, using regression

techniques.

265

CHAPTER 10: EVALUATION AND PROPOSALS FOR FUTURE WORK

	

10.1 	Introduction

Three models of computer system performance have

been constructed and applied to modelling the Imperial

College system at three levels of detail. Section 10.2

evaluates the three models. Section 10.3 discusses methods

of developing more accurate versions of the three models.

Methods of modelling the system at a greater level of detail

are discussed in section 10.4.

Although only applied to one system, the modelling

approach developed in this thesis may be applied to other

non-virtual storage batch systems. Further research is needed

to extend the approach to modelling virtual storage systems.

Methods of doing this are suggested in section 10.5.

	

10.2 	Evaluation of the Models

10.2.1 Main Results

The main results of the research described in this

thesis are:

(a) Validated regression models of computer system per-

formance may be developed by applying a systematic

approach to the evaluation.

The Workload Model is a- purely regression model of

the short job workload. The model was validated for

four different sessions, covering a period of four

months. In other words, it was shown that a single

regression equation is adequate to explain each of

the four data samples.

Regression analysis may initially appear to be a

simple method of computer system modelling, but in

practice this was not found to be so. The analysis

270

described in this thesis has shown that to build

meaningful and consistent models of computer system

performance requires a very comprehensive analysis

of the characteristics of the workload and of the

residuals of the model, coupled with a thorough

understanding of system behaviour. It was revealing

to discover that the process of developing the model

actually helped explain certain aspects of system

behaviour. Understanding system behaviour was

essential for explaining the inadequacies of earlier

versions of the model, for assisting in decision-

making and for interpreting the regression coefficients
of the final- model.

(b) Regression and simulation modelling techniques may

be combined to construct a hybrid model, which is a

dynamic model of system performance.

To model variations in load in a regression model,

it is necessary for one or more of the independent

variables to be measures of system load. This limita-

tion is overcome in the hybrid Load Adjusting Model

by the creation of a simulation framework which models

job arrival and termination. By this means, LAM is

capable of dynamically adjusting its estimate of the

load on the system. Hence, the LAM is more valuable

than the Workload Model for experimental purposes.

The LAM was successfully calibrated and validated for

three different sessions, demonstrating the feasibility

and value of this approach.

(c) The hybrid simulation/regression framework provides

a very useful means of modelling the system at

different levels of detail. Those parts of the system

of special interest may be modelled at as detailed

a level as required using simulation techniques. The

rest of the system may be modelled at a much less
detailed level using regression techniques.

2.71'

The approach has been demonstrated by modelling

the Imperial College system at three levels of

detail, the second and third of which make use of

the hybrid framework. The Memory Management Model

is derived from the Load Adjusting Model by a

systematic expansion of detail. It is a hybrid

model in which the memory management subsystem is

modelled at a much greater level of detail than

the rest of the system. The model was successfully

calibrated and validated for three different

sessions.

10.2.2 Comparison of the Models

Table 10.1 shows the relative speeds of the three

models on the CYBER system. It shows the compilation times

and the execution times required to model one 32 hour

session on the CYBER. The results show that the models are

extremely fast. Thus, experimenting with any of these

models is more than three orders of magnitude more economi-

cal than experimenting with the real system.

Table 10.2 compares the predictions of the three

validated models for each of the three sessions. The follow-

ing results are displayed:

(a) The mean of the actual job elapsed time, i.e. as

measured on the CYBER.

(b) Mean of the absolute value of the residuals for

each model.

(c) (b) as a percentage of (a) for .each model. This is

a measure of the accuracy of the predictions.

(d) The result of the Wilcoxon test, i.e. the probability

that the predictions of one model are not significantly

better than another model, for the same session.

272

Table 10.1: Comparison of Model Speeds

Compilation

Time (secs)

Execution

Time *(secs)

Workload Model 1.8 0.7

Load Adjusting Model . 	2.3 3.4

Memory Management Model 4.6 4.6

* Time to process 32 hour session on 27/1/75

Table 10.2: Comparison of Model Predictions

Session Measured Workload. Model .Load Adjusting. Model 	 Memory. Management Model

171
(secs)

FI (%) 1 71
(secs)

171
() P1

1 1.1
(secs)

ITI P2 P3
i7.e

(secs) —
1— e

— (%)
E--- e to

27/1 17.4 4.93 28.3 4.56 26.2 0.351 4.51 25.9 0.087 0.181

30/4 17.0 4.61 27.2 4.55 26.8 0.185 4.58 26.9 0.380 0.344

30/1 16.8 4.56 27.1 4.01 23.9 0.069 3.99 23.8 0.023 0.419

Mean actual elapsed time

Mean absolute value of residuals for a given model

: Probability that there is no significant difference between LAM and WM

Probability that there is no significant difference between MMM and WM

: Probability that there is no significant difference between MMM and LAM

Key: to
IrI

P1

P2

P3

274

Table 10.2 shows that:

(a) The mean absolute error in the predictions as a

percentage of mean actual elapsed time is between

27% and 28% for the Workload Model, and between

24% and 27% for both the Load Adjusting and Memory

Management Models.

(b) The predictions of the Load Adjusting Model are

significantly better than the Workload Model at the

10% level in one case out of three.

(c) The predictions of the Memory Management Model are

significantly better than the Workload Model at the

10% level in two cases out of three.

(d) In none of the cases are the predictions of the Memory

Management Model significantly better than the

Load Adjusting Model.

The results show that the residuals of all three

models are comparatively large. The main reason for this is

the limitations of the available data. As pointed out in

section 3.4.3, the amount of workload data collected for

input to the model and performance data for calibration pur-

poses should increase as the level of detail of the model

increases. However in the modelling of the Kronos system,

the quantity and accuracy of the data, all derived from the

Kronos Dayfile, were basically unchanged for all three models.

Whereas the Workload Model uses the average load experienced

by each jOb as input, this figure is predicted by both the

Load Adjusting and Memory Management Models, given the times

of job arrival. The MMM also uses the average memory require-

ment of each job and the total amount of Central Memory

available to user jobs.

Furthermore, as has already been pointed out, the

data collected by the Dayfile has some severe limitations. The

results of this research indicate strongly that if more workload

and performance data were available, the models could be sig-
nificantly improved (see 10.3).

•

11

10.2.3 The Problems of Calibration and Validation

This section discusses the different approaches to

the calibration and validation of the regression and hybrid

models. The Workload Model is a least squares regression

equation. The objective of the least squares method is to

minimise the sum of the residuals squared. Hence, as

measured by this figure of merit, the parameters (i.e. inter-'

cept and regression coefficients) of the Workload Model

are optimum.

The calibration of the hybrid models uses an iterative

tuning approach. The Method of Good Balance is a very valuable

means of guiding the tuning process. However, it is possible

for the model to be well balanced while still capable of

further improvement (see 8.8.4). From this stage on, the

choice of parameter settings is intuitive and the tuning pro-

cess becomes considerably more difficult. 	Calibration is

stopped when no further improvement in the model is obtained.

In a regression model, the mean of the residuals is

zero, that is the means of the observed and predicted values

of the dependent variable are equal. However, in the hybrid

models, the tuning process leads to a biased model, that is

one where the model underestimates the job elapsed time. This

is a consequence of the tuning process only considering the

absolute value, and not the sign, of the residuals.

The calibration process was by far the most time

consuming task in the implementation of the two hybrid models.

There is no doubt that there is considerable scope for further

research into developing more sophisticated statistical methods

of calibrating and validating computer system models.

10.3 	Extending the Models

10.3.1 Improving the Workload Model

This section discusses methods of improving and extend-

ing the Workload, Load Adjusting and Memory Management Models.

275

276

A method of improving all three models would be to

improve the predictions of the regression Workload Model.

This would also result in improvements to both the Load

Adjusting and Memory Management Models, as both use a

regression submodel.

Three areas where the Workload Model is in need of

improvement are:

(a) 	There is no I/O term in the model. This is because

the available measures of I/O demand are inadequate.

Hence, the predictions of the model are poor for

those jobs whose I/O demands differ greatly from

the average. Better measures of I/O demand would be

(i) non-overlapped I/0 time

(ii) number of I/O requests

(b) 	No measures of job rollout time are available. There

is substantial evidence to support the view that if

rollout time were accounted for in the model, the model

would be significantly improved:

(i) It was shown that when the system was heavily

loaded and hence rollin/rollout activity was

high, the regression models of the short job

workload were poor (7.3). When these periods

were excluded, much better models were built.

(ii) When the batch workload was modelled in the

absence of the timesharing load (7.7), thereby

eliminating one major cause of short job

rollout, the models were much more satisfactory.

(iii) When the subset which did not experience any

competition from other short jobs, (and hence

should never have been rolled out) was modelled

(7.9), the standard error of the residuals

was considerably reduced.

277

(c) 	The measure of short job competition used in the

model does not distinguish between short jobs in

Central Memory competing for resources and those

rolled out. The approximate nature of this measure

is reflected in the greater fluctuation of the

regression coefficient of this variable (7.7). A

better measure of short job competition would be

the average multiprogramming level.

Given this additional data, a regression model could.

be constructed in which the dependent variable would be the

job memory residence time (i.e. elapsed time - rollout time).

Independent variables would be the measures of resource

demand and multiprogramming level. With the elimination

of the uncertainty of rollout times and improved measures of

I/O time and system load, these are strong grounds for believ-

ing that this model should be a significant improvement over

the Workload Model.

Furthermore, a model of this type is likely to be

more satisfactory for modelling the long job workload, as

long jobs may be rolled out for substantial periods of time

when the short job load is high.

A separate method would now be necessary for predict-

ing rollout time. Regression techniques could be tried,

although it is uncertain how successful this approach would

be. A more satisfactory method is probably that of simulat-

ing the memory management subsystem as in the Memory Manage-

ment Model.

10.3.2 Regression Models at the Job Step Level

More detailed regression models could be developed'by

modelling the system at the job step level. For this to be

possible, all measurements of job resource demands and all

performance measures would need to be collected at the job

step level instead of the job level.

278

Different models could be built for different types

of job steps, e.g. compilation, link loading, execution

etc. (see section 3.5.3). In these models, the dependent

variable would be the job step elapsed time. Independent

variables would be the job step resource demands and

measures of the load on the system. For a given job, the pre-

dicted elapsed time is the sum of the predicted job step

elapsed times.

10.3.3 Regression Models of the Timesharing

Workload

If more performance data were available, the time-

sharing workload could also be modelled. An appropriate

performance measure for a timesharing environment is the

response time, that is the time from when a transaction is

requested by the user to the time the user starts receiving

the response. The response time will depend on the resources

required to process the transaction and on the load on the

system.

To model the system at the transaction level, per-

formance data at this level is necessary. Regression models

could be constructed in which the dependent variable is the

response time. Independent variables would be:

(i) Measures of the transaction resource demands.

(ii) Measures of the load on the system.

10.3.4 Extending the Load Adjusting Model

The Load Adjusting Model could be improved by:

(a) 	developing a mores accurate regression model of

job execution time. This could be done by using

the regression model of job memory residence time

proposed in 10.3.1 as a basis.

279

(b) 	Modelling the system at the job step level. This

would necessitate developing regression submodels

at this level. Job step, as well as job/start and

termination events would need to be simulated.

The LAM could be extended to model the whole work-

load in a system which did not have any rollin/rollout

activity, such as OS/360 MVT (multiprogramming with a

variable number of tasks). For any system with rollin/-

rollout activity, a more accurate dynamic model of the whole

workload could be developed if the memory management sub-

system was modelled.

10.3.5 Extending the Memory Management Model

The performance data available for calibrating the

model was limited. More accurate versions of the model

• 	could be constructed if more performance data was available.

In particular the following steps could be undertaken:

(a) A more accurate regression submodel of job execution

time, as described for LAM, could be developed.

(b) Job rollout time is necessary for a more accurate

calibration. Real and predicted rollout times

could then be compared. Attempts could be made to

reduce the difference between them.

(c) A separate regression submodel of long job execution

time could be developed. This would enable the long

job workload to be modelled more accurately.

(d) Regression submodels could be developed at the job

step level. Several regression submodels of job step

execution time, reflecting different characteristics

of the workload, could be developed as described in

3.5.3 and 10.3.2.

(e) Job arrival time in the 'Input Queue should be recorded

in the Dayfile. This would enable job scheduling

to be modelled more accurately.

280

(f) System job activity should be recorded to allow

system jobs to be modelled.

(g) Measurements of the time taken to roll jobs in

and out of CM should also be available. 	This as-

pect of memory management could then be included in

the model.

(h) MMM could be extended to model the timesharing load. .

A regression submodel of transaction execution time

could be developed in the same way as proposed for

the batch job step execution submodel.

10.4 	Modelling at a Greater Level of Detail

The multilevel hybrid modelling approach could be

refined further by modelling the system at greater levels of

detail. For example, the time spent by a job resident in

main memory could be modelled in more detail by modelling

CPU and I/O management. A number of different approaches

could be tried. In general, the more detail included in the

model, the more workload and performance data required.

(a) A queuing submodel(s) is constructed to predict CPU and

I/O utilisation for jobs resident in main memory (K3).

(b) The CPU and I/O scheduling algorithms are simulated.

It is assumed that each job uses the average CPU and

I/O burst throughput (W2).

(c) Increasing the accuracy of (b) by collecting a detailed

event trace for every job in which the length of

each.CPU and I/O burst is measured (S4) and used as

input to the model (S7).

(d) A submodel could 'be constructed for each I/O device,

whose function is to predict I/O transfer times,

given the characteristics of the device and data

281

about each transaction. Attempts could be made to

construct these submodels using queuing, regression

or simulation techniques.

10.5 	Modelling Virtual Storage Systems

10.5.1 Introduction

The multilevel hybrid modelling approach may be

applied to other non-virtual storage batch systems, providing

sufficient data is available. Further research is necessary

to investigate how this approach could be applied to virtual

storage systems. Some suggestions are made in this section.

Because of the increased complexity in virtual storage

systems, modelling these systems is also more complex. A

number of analytical models of virtual storage systems have

been developed (B8, B9, C5, C6, D2). The objective of

developing these models, however, has usually been to study

properties of virtual storage systems, rather than to relate

the model predictions to actual computer system performance.

Some simulation models of virtual storage systems have been

developed (B10, N1, W6), but these are often very detailed

models which are considerably slower than the system itself.

10.5.2 Hybrid Models of Virtual Storage Systems

There are a number of problems to be overcome in

constructing hybrid models of virtual storage systems. A

major problem is that of predicting paging rates, as the

relationship between program behaviour, multiprogramming and

paging is very complex.

It is proposed first to construct regression models

in which job elapsed time is the dependent variable, as before.

Independent variables may again be in one of two categories,

resource demands, or measures of load on the system. The

measures of load on the system should now include paging

rates. Once constructed, such a model would, as before, pro-

vide the basis for a regression submodel within a hybrid
model.

282

A possible approach to constructing a hybrid model

might be to start with a model similar in concept to the

Memory Management Model, in which each job's memory require-

ment is given by its estimated working set size (D2). 	Some

method is then necessary for predicting the delay time due

to paging.

One method of predicting a program's paging rate is

by means of the parachor curve (M3). A parachor curve is a

graph of the total number of page interrupts a program en-

counters as a function of the amount of physical memory

available for holding pages. 	It would be necessary to de-
velop a parachor curve, or more realistically a set of para-

chor curves, for the workload on a given system (M3). The

paging delay experienced by each job could then be estimated

using the appropriate curve.

A possible alternative approach might be to obtain

first, by performance monitoring, a page trace of every pro-

gram executed (B3). 	is then proposed that a submodel be

constructed which predicts the occurrence of page interrupts

given the program trace, the program's CPU and I/O requirements,

and the amount of physical memory available to it. It should

then be possible to simulate the memory and paging algorithms.

Other possibilities might include the use of analyti-

cal submodels for predicting paging rates.

283

CHAPTER 11: 	CONCLUSIONS

This thesis has investigated some aspects of

developing fast approximate models of computer system per-

formance. Two different modelling techniques, regression and

simulation modelling, have been applied and a method developed

for combining their use within a multilevel hybrid modelling

framework. The main objective of this thesis has been to

demonstrate the feasibility and value of this approach to

the modelling and evaluation of computer system performance.

The approach has been demonstrated by modelling the

short job workload on the Imperial College CDC 6000 Kronos

system, at three levels of detail. At each level, a self-

contained model of the system has been developed. At

the first level, the Workload Model uses purely regression

techniques. At the second level, the Load Adjusting

Model, simulation techniques are introduced and combined

with the regression techniques. At the third level, the

Memory Management Model, more detail is introduced with

the simulation of the memory management subsystem.

All the workload and performance data, used for

input to and calibration of the models, was extracted from

the Kronos accounting subsystem called the Dayfile. The
performance data collected by the Dayfile is limited.

This has proved to be the major limitation in the develop-

ment of the models.

The Workload Model is a purely regression model of

computer system performance. It was developed after a

comprehensive performance analysis and analysis of residuals.

The model expresses a batch job's elapsed time as a function

of the job's resource demands and load on the system. The

model has been successfully validated for four different

sessions.

284

One disadvantage of the Workload Model is that it

is a static model and hence is not capable of dynamically

estimating the load on the system. The hybrid Load

Adjusting Model overcomes this limitation by creating a

simulation framework within which regression techniques may

be used. By this means, the model dynamically adjusts its

estimate of system load as each simulated job executes.

The Load Adjusting Model has been successfully calibrated

and validated for three different sessions.

A disadvantage of both the Workload and Load Adjust-

ing Models is that neither distinguish between jobs resident

in Central Memory and jobs rolled out to secondary storage.

The Memory Management Model overcomes this limitation by

simulating the memory management subsystem. A more accurate

estimate of the load on the system is made possible by also

modelling the long job workload. The Memory Management

Model has been successfully calibrated and validated for

three different sessions.

By successfully constructing, calibrating and vali-

dating the three models of the Imperial College system, the

feasibility and advantages of combining regression and

simulation modelling techniques within a multilevel modell-

ing framework have been demonstrated. By this means the

advantages of both techniques are exploited. Regression

analysis provides a fast quantitative method of modelling

a system or subsystem at a gross level. Simulation models

the passage of time and provides a means of modelling the

system in more detail by representing logical and structural

relationships in the system.

Although the modelling approach described in this

thesis has been applied to only one system, the approach

may be applied to other non-virtual storage batch systems.

Methods for improving the three models further and for

extending the approach to model the system at greater levels

of detail have been proposed. Methods of extending the

approach to virtual storage systems have also been suggested.

285

REFERENCES

Bl
	

Y. Bard, 'Performance Criteria and Measurement for

a Time Sharing System' IBM Systems Journal,

Vol. 10, No. 3, 1971.

B2 	Y. Bard and K.R. Suryanarayana, 'On the Structure

of CP Overhead', page 329 in Reference F2.

B3 	M. Baylis, D. Fletcher and D.J. Howarth, 'Paging

Studies made on the I.C.T. Atlas Computer', Proc.

IFIPS Congress, 1968.

B4 	H. Beilner, 'Problems in Calibrating and Validating

Simulation Models' Proceedings of 2nd Seminar

on Experimental Simulation, Liblice (CSSR), 1973.

B5 	H. Beilner, ' The Method of Good Balance', Proc.

Computer Systems Performance Evaluation Workshop,

Iowa State University, 1973.

B6 	H. Beilner, 'Validating Simulation Models', Proc.

Computer System Performance Measurement. and

Evaluation Workshop, Rocquencourt, 1974.

B7 	H. Beilner and G. Waldbaum, 'Statistical Methodology

for Calibrating a Trace-Driven Simulator of a

Batch Computer System', page 423 in Reference F2.

B8 	L.A. Belady, 'A Study of Replacement Algorithms for a
Virtual Storage Computer, 'IBM Systems Journal, Vol.5

No.2, 1966.

B9 	L.A. Belady and C.J. Kuehner, 'Dynamic Space Sharing

in Computer Systems', Communications ACM, May 1969.

B10 	C. Boksenbaum, S. Greenberg and C. Tillman, 'Simula-

tion of CP-67', IBM Report No.G320-2083, 1973.

286

B11 	A.J. Bonner, 'Using System Monitor Output to

Improve Performance', IBM Systems Journal, Vol.8,

No.4, 1969.

B12 	P. Bookman, B. Brotman and K. Schmitt, 'Use

Measurement Engineering for Better System Performance',

Computer Decisions, April 1972.

B13 	W. Buchholtz, 'A Synthetic Job for Measuring System

Performance', IBM Systems Journal, Vol.8, No.4, 1969.

B14 	J.P. Buzen and P.S. Goldberg, 'Guidelines for the

use of Infinite Source Queuing Models in the Analysis

of Computer System Performance', Proc. AFIPS

National Computer Conference, 1974.

Cl 	P. Calingaert, 'System Performance Evaluation:

Survey and Appraisal', Communications ACM, January

1967.

C2 	P.H. Callaway, 'V.M. Monitor', IBM Research Report

No. RC 4666, 1973.

C3 	P.H. Callaway, 'VM/370 Performance Tools', IBM

Systems Journal, Vol.14, No.2, 1975.

C4 	P.S. Cheng, 'Trace-driven System Modelling', IBM

Systems Journal, Vol.8, No. 4, 1969.

C5 	.E.G. Coffman and P.J. Denning, 'Operating Systems

Theory', Prentice Hall, 1973.

C6 	E.G. Coffman and T.A. Ryan, 'A Study of Storage

Partitioning using Mathematical Model of Locality',

Proc. Third ACM Symposium on Operating System

Principles, 1971.

C7 	Control Data 6400/6500/6600/6700 Computet Systems

Reference Manual, Publication No. 60100000.

287

C8 	Control Data 6000 Series Kronos Batch User's

Manual, Publication No. 591506000.

C9 	Control Data 6000 Series Kronos Timesharing User's

Manual, Publication No. 59151300.

D1 	C. Daniel and F. Wood, 'Fitting Equations to Data',

Wiley, 1971.

D2 	P.J. Denning, 'The Working Set Model for Program

Behaviour', Communications ACM, May 1968.

D3 	M.A. Diethelm, 'A Method of Evaluating Mass Storage

Effects on System Performance', Proc. National

Computer Conference, 1973.

D4 	C.E. Dingley, 'Performance Measurement and Analysis

of an Interactive System under a Controlled Work-

load', M.Sc. Thesis, Imperial College, London,1973.

D5 	N. Draper and H. Smith, 'Applied Regression Analysis',

Wiley, 1966.

D6 	M.E. Drummond, 'Evaluation and Measurement Techniques

For Digital Computer Systems', Prentice-Hall, 1973.

Fl 	G.S. Fishman, 'Concepts and Methods of Discrete

Event Digital Simulation', Wiley, 1973.

F2 	W. Freiberger (ed.), 'Statistical Computer Performance

Evaluation', Academic Press, 1972.

F3 	H.P. Friedman and G. Waldbaum, 'Evaluating System

Changes under Controlled Workload Conditions: A

Case Study', Proc. Computer Systems Performance

Evaluation Workshop, Iowa State University, 1973.

G1 	E. Gelenbe, 'On Approximate Computer System Models,

Journal ACM, January 1975.

288

G2 	R. Gimbel and H. Schwetman, 'Measurement Techniques

for Computer System Performance Evaluation',

Proc. Computer Systems Performance Evaluation

Workshop, Iowa State University, 1973.

G3 	H. Gomaa, 'Computer System Evaluation for Selection

Purposes', Imperial College,Dept. of Computing and

Control, Report No. 73/14, May 1973.

G4 	H. Gomaa, 'Performance Measurement and Analysis of

CDC 6000 Systems', Imperial College, Dept. of

Computing and Control, Report No. 74/28, March 1974.

G5 	H. Gomaa, 'An Exercise in Resource Allocation', Soft-

ware - Practice and Experience, Vol. 4, No. 3, 1974.

G6 	H. Gomaa and M.M. Lehman, 'Performance Analysis of

an Interactive Computing System in a Controlled

Environment', Proc. Online Conference on Computer

System Evaluation, September 1973.

G7 	U. Grenander and R. Tsao, 'Quantative Methods for

Evaluating Computer System Performance: A Review

and Proposals', Page 3 in F2.

HI
	

G. Hoitwick, 'Designing a Commercial Performance

Measurement System', Proc. ACM/SIGOPS workshop on

System Performance Evaluation, April, 1971.

H2 	P.H. Hughes and F. Moe, 'A Structural Approach to

Computer Performance Analysis', Proc. AFIPS National

Computer Conference, 1973.

IBM System/360, Scientific Subroutine Package,

Publication No. H20-02C3.

12 	IBM System/370, OS/VS Service Aids, Chapter 1 -

Generalised Trace Facility, Publication No. GC28-0633.

289

13 	IBM System/370, OS/VS System Management Facility,

Publication No. GC35-0004.

J1
	

P.G. Jones, 'Performance Analysis of the Batch

and Interactive Environments of a Multiprogramming

System', M.Sc. Thesis, Imperial College, London,

1974.

J2 	E.O. Joslin and J.J. Aiken, 'The Validity of

Basing Computer Selection on Benchmark Results',

Computers and Automation, January 1966.

K1 	B. Kernighan and P. Hamilton, 'Synthetically

Generated Performance Test Loads for Operating

Systems', Proc. 1st SIGME Symposium on Measurement

and Evaluation, 1973.

K2 	S.R. Kimbleton, 'The Role of Computer System

Models in Performance Evaluation', Communications

ACM, July 1972.

K3 	S.R. Kimbleton, 'A Fast Approach to Computer System

Performance Prediction', Proc. Computer Architec-

tures and Networks - Modelling and Evaluation

Workshop, IRIA, 1974.

K4 	L. Kleinrock, 'A Continuum of Time Sharing Scheduling

Algorithms', Proc. AFIPS Spring Joint Computer

Conference, 1970.

Ll 	K. Landau, 'Acquisition and Analysis of Raw Account-

ing Data', Proc. EuroComp Congress, May 1974.

L2 	M.M. Lehman and H. Gomaa, 'Interactive System Per-

formance in a Simulated Environment', Imperial

College, Dept. of Computing and Control, Report

No. 73/9, May 1973.

290

L3 	M.M. Lehman and J.L. Rosenfeld, 'Performance of a

Simulated Multiprogramming System, 'Proceedings

AFIPS Fall Joint Computer Conference, 1968.

L4 	P.J. Letts, 'Characteristics of the Central Comput-

ing Workload at CERN on a CDC 6600', CERN Data

Handling Division, Report No. DD/71/22, 1971.

L5 	P.J. Letts, 'Peripheral Activity on CDC 6000 Series

Machines Used at CERN', CERN Data Handling Division,

Report No. DD/72/9, 1972.

L6 	H.C. Lucas, 'Performance Evaluation and Monitoring',

ACM Computing Surveys, Vol.3, No.3, 1971.

M1 	J.M. McKinney, 'A Survey of Analytical Time-Sharing

* 	Models', ACM Computing Surveys, Vol. 1, No. 2, 1969.

M2 	M.P. Morris, 'Kiviat Graphs - Conventions and

Figures of Merit', ACM Performance. Evaluation Review,

October 1974.

M3 	J.E. Morrison, 'User Program Performance in Virtual

Storage Systems', IBM Systems Journal, Vol. 12,

No. 3, 1973.

N1
	N.R. Nielson, 'Computer Simulation of Computer System

Performance', Proc. 22nd ACM National Conference,

1967.

N2 	J.D. Noe, 'Acquiring and Using a Hardware Monitor',

Datamation, April 1974.

N3 	J.D. Noe and G.J. Nutt, 'Validation of a Trace-

driven CDC 6400 Simulation', Proc. AFIPS Spring

Joint Computer Conference, 1972.

291

01 	P. Oliver, G. Baird, M. Cook, A. Johnson and P. Hoyt,

'An Experiment in the use of Synthetic Programs for

System Benchmarking', Proc. AFIPS National Computer

Conference, 1974.

P1 	C.C. Parish, 'On the Application of Queuing Theory

to Analysing On-line Computing Systems', The

Computer Journal, May 1975.

P2 	T. Pinkerton, 'Performance Monitoring in a Time-

sharing System', Communications ACM, November 1969.

R1
	

J. Rodriguez-Rosell and J.P. Dupuy, 'The Evaluation

of a Time-sharing Page Demand System', Proc. AFIPS

Spring Joint Computer Conference, 1972.

S1 	J. Saltzer and J. Gintell, 'The Instrumentation of

Multics', Communications ACM, August 1970.

S2 	M. Schatzoff and P. Bryant, 'Regression Methods in

Performance Evaluation: Some Comments on the

State of the Art', Proc. Computer System Performance

Evaluation Workshop, Iowa State University, 1973.

S3 	J.M. Schwartz and S.M. Wyner, 'Use of the SPASM

Software Monitor to Evaluate the Performance of the

Burroughs 6700', Proc. AFIPS National Computer

Conference, 1973.

S4 	H.D. Schwetman, 'A Study of Resource Utilisation and

Performance Evaluation of Large-scale Computer

Systems', Ph.D. Thesis, University of Texas, Austin,

July 1970.

S5 	P.H. Seaman and R.C. Soucy, 'Simulating Operating

Systems', IBM Systems Journal, Vol. 8, No. 4, 1969.

S6 	P.R. Sebastian, 'HEMI-Hybrid Events Monitoring

Instrument', ACM Performance Evaluation Review,

December 1974.

292

S7 	S. Sherman, F. Baskett and J.C. Browne, 'Trace-

driven Modelling and Analysis of CPU Scheduling

in a Multiprogramming System', Communications ACM,

December 1972.

S8 	S. Siegel, 'Non-Parametric Statistics for the

Behavioural Sciences', McGraw-Hill, 1956.

S9 	G.W. Snedecor and W.G. Cochran, 'Statistical Methods',

Iowa State University Press, 1967.

S10 	R. Snyder, 'A Quantitative Study of the Addition of

Extended Core Storage', ACM Performance Evaluation

Review, March 1974.

Sib 	K. Sreenivasan and A.J. Knielman, 'On the Construc-

tion of a Representative Synthetic Workload',

Communications ACM, March 1974.

S12 	W.I. Stanley, 'Measurement of System Operational

Statistics', IBM Systems Journal, Vol.8, No.4, 1969.

S13 	D. Stevens, 'System Evaluation on the CDC 6600',

Proc. IFIPS Congress, 1968.

T1
	

T.J. Teorey and T.B. Pinkerton, 'A Comparative Analysis

of Disc Scheduling Algorithms', Proc. Third Symposium

on Operating Systems, 1971.

T2 	J.L. Thompson, 'Workload Characteristics of a

University Computing Environment, M.Sc. Thesis,

Imperial College, London, 1973.

T3 	E.M. Timmreck, 'Computer Selection Methodology', ACM
Computing Surveys, Vol. 5, No. 4, 1973.

W1
	

G. Waldbaum, 'Evaluating Computing System Changes

by Means of Regression Models', Proc. ls-E. SIGME

Symposium on Measurement and Evaluation, 1973.

293

W2 	G. Waldbaum and H. Beilner, 'SOUL - A Simulation

of OS Under LASP', Proc. Summer Simulation Con-

ference, 1972.

W3 	G. Waldbaum and H. Beilner, 'Submodel Simulation',

Proc. Summer Simulation Conference, 1973.

W4 	R. Watson, 'Computer Performance Analysis:

Applications of Accounting Data', Rand Report

R-573-NASA/PR, May 1971.

W5 	P. Whitehead, 'Job Management under Kronos 2.1',

Proc. European Control Data Users Conference,

September 1974.

W6 	J. Winograd, S.J. Morganstein and R. Herman,

'Simulation Studies of a Virtual Memory, Time-

shared, Demand Paging Operating System', Proc.

Third ACM Symposium on Operating System Principles,

1971.

W7 	K. Wong and J.C. Strauss, 'Use of a Software Moni-

tor in the Validation of an Analytical. Computer

System Model', Software-Practice and Experience,

Vol. 4, No. 3, 1974.

Z1 	F.W. Zurcher and B. Randell, 'Iterative Multilevel

Modelling - A Methodology for Computer System

Design', Proc. IFIPS Congress, 1968.

294

APPENDIX A: INTRODUCTION TO MULTIPLE LINEAR REGRESSION

ANALYSIS

A.1 	Introduction

This appendix is intended for readers who are un-

familiar with regression analysis or for those who wish to

refresh themselves on the subject. The treatment here is

meant to be of sufficient detail to enable unfamiliar

readers to follow chapters 6 and 7.

An overview of multiple linear regression analysis

is presented in section A.2. The procedures for selecting

the 'best' regression equation are reviewed in section A.3,

and the procedure implemented in this project is discussed.

The implementation aspects of the regression analysis are

described in section A.4.

A.2 	.Multiple Linear Regression Analysis

A.2.1 Regression Analysis

Regression analysis is an empirical method for

analysing workload and performance data. Like many other

empirical methods, it is a statistical method of analysing

data.

A regression model deals with the following problem.

Given a set of data containing the observations for several

input (independent) variables Xi, X2 ... Xk and an output

(dependent) variable, it is required to fit the data by means

of the function:.

Y = f(X1, X2 ... Xk)

The functional relationship could be realised by

means of a linear model:

295

Y = ao +\,› 	a
i
 X.
1

i=1
(1)

where a-, i = 0, 1, 	k are unknown parameters. These

parameters are called the regression coefficients and may

be determined by least square fitting techniques.

A.2.2 Method of Least Squares

The method of Least Squares states: Find the values

of the constants in the chosen equation that minimise the

sum of the squared deviations of the observed values from

those predicted by the equation (D1). An added requirement

for linear least squares estimation is that the equations

chosen be linear in the regression coefficients, ao, a1 	ak,
hence the term linear regression (D1).

Linear least squares estimation partitions the

total variability in the data (expressed as the total sum

of squares) into two parts: the regression sum of squares

(i.e. due to the fitted equation) and the residual sum of

squares.

Many different forms of models may be built using

linear least squares estimation. A simple linear regression

model has one independent variable. A multiple linear

regression model has two or more independent variables. A

multiple linear regression model may also have second order

terms, e.g.

Y = b0 + b1X1 + b11 1
X2 +b2X2 + b

22 2 X2 + b12X1X2

A.2.3 Assumptions of the Least Squares Method

Certain assumptions are made in the least squares

method of regression analysis. A very important assumption

is that the data used for constructing the model is typical,

that is the data is a representative sample

296

from the whole range of situations it is required to

analyse and model. It should be obvious that an equa-

tion which represents the typical behaviour of a system

cannot be derived from non-typical data (Dl).

A number of the assumptions made concern the pro-

perties of the residuals (or errors) in the model. The

residual ei in the model is the difference between the

observed value of the dependent variable yi and the

predicted value Y.,

e. = y. - y.

The assumptions are that the errors are independent and

that their distribution is normal with zero mean and fixed
variance.

Another assumption is that the values of the

independent variables are known without error. All the

error is in the values of the dependent variable.

According to Daniel and Wood (Dl), a further

unwritten assumption is "that the data used are 'good'

data. But most large collections of data and occasion-

ally even small collections contain a few 'wild points'

called mavericks or outliers. What happens to make them

nontypical cannot usually be reconstructed. They must

be :Totted however, since to retain them may invalidate

the judgements we make."

Consequently, it is important to carry out an

analysis of the data used in constructing the model

and of the residuals obtained from the constructed model,

to determine if any outliers exist.

297

A.2.4 Measures of Goodness of Fit

Once the regression model has been built, it is

necessary to determine how well the chosen equation fits

the data. A number of complementary measures are available:

(i) The multiple correlation coefficient squared, R2,

represents the fraction of the total variation explained

by the fitted equation. R2 is_the ratio of the re-,

gression sum of squares to the total sum of squares.

(ii) The F-test is used to judge the statistical

significance of the value of R2.

(iii) The t-test for the regression coefficient of

each independent variable in the model is used

to judge whether the independent variable

makes a significant contribution to the model.

The validity of the F and t tests depends on the

assumption that the residuals are normally distributed. An

analysis of residuals should be carried out to test for

normality and to determine if there are any outliers in the

data.

A.3 	Selecting the 'Best' Regression Equation

A.3.1 Introduction

When constructing a regression model, there is

one dependent variable Y and a number of independent

variables X1 	Xm. It is possible to construct a

model containing all m independent variables. However

it is likely that some of the independent variables

make no significant contribution to the model, in which

case there seems little point in including them in the

model . Furthermore, their presence in the model is

misleading, since it may suggest that these variables are

making a useful contribution.

298

Consequently, a number of statistical procedures

have been devised for selecting only a subset of the

independent variables to include in the model. There is

no unique statistical procedure for doing this and some

personal judgement is necessary. Furthermore, the

different methods do not all lead to the same solution

when applied to the same problem (D5).

A.3.2 The Forward Selection Procedure

One of the procedures used for selecting the 'best'

equation is the Forward Selection procedure (D5) in which

independent variables are introduced one at a time into

the equation. This is also referred to as the stepwise

regression procedure in some texts (Dl). The steps in-

volved in the forward selection procedure are as follows:

(1) The first variable introduced is the independent

variable most highly correlated with the depen-

dent variable Y.

(2) The partial correlation coefficients between the

remaining independent variables and Y are then

found. The independent variable with the highest

partial correlation coefficient with Y is

selected next.

(3) Each time a variable is introduced into the model,

R2 is determined. Some criterion is then used

to determine whether the addition of the new

variable has made a significant improvement to

the model. If the improvement is significant,

steps 2 and 3 are repeated.

(4) If the improvement is not significant, then the

. selection procedure is stopped. The criterion

for judgement could be a partial F-test for the

299

variable most recently entered. Alternatively,

the criterion could be whether R2, the fraction

of the variation explained by the model, had

been improved by a specified amount, e.g. 1%.

A.3.3 The Stepwise Regression Method

The Stepwise Regression procedure is an improved

version of the forward selection procedure (D5). In

the Forward Selection procedure, it is possible that the

introduction of a variable into the model results in the

contribution made by a variable already in the model to

no longer be significant. This is particularly likely

if some of the independent variables are correlated.

Because of this, the Stepwise Regression procedure

does one further test at each step. Each time a variable

is introduced into the model, a partial F-test is made on

those variables already in the equation to determine

whether they still make a significant contribution. If a

variable no longer does, then it is eliminated from the

equation.

A.3.4 The Procedure Implemented

The method used for this project was the Forward

Selection procedure. This was dictated by its presence

in the main statistical program library on the Kronos sys-

tem, namely the IBM Scientific_ Subroutine Package (I1).

However, by exercising some personal judgement, the

same results may be obtained using this procedure as with

the Stepwise Regression procedure. After a run using the

Forward Selection procedure, the model selected is inspec-

ted. The t-tests on each of the regression coefficients

of the independent variables indicate whether those

independent variables make a significant contribution to

300

the model. Those variables that do not may be eliminated

and a further run is carried out. This process may be

repeated until all the independent variables make a sig-

nificant contribution to the model. This model is then

identical to the model which would have been selected using

the Stepwise Regression procedure.

