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ABSTRACT 

This research is concerned with methods for finding optimal 

solutions to the general quadratic assignment problem. Plant layout is 

an application of this problem and is used as an example throughout 

this thesis. 

The literature over the last decade has been largely concerned 

with sub-optimal procedures, but some tree-search algorithms have 

been proposed. Few empirical results have been reported for these 

methods and so a computer program was written to rectify this situation; 

the program has solved significantly larger problems than reported 

elsewhere. 

Several alternative lower bounds have been examined, both 

theoretically and practically. In particular the two best-known bounds 

can be interpreted graphically and thereby shown to be just two elements 

of a large class of bounds. All the other potentially useful bounds in 

this class are enumerated. 

Integer quadratic programming provides a different approach 

to the problem and this has been examined in detail. The resultant 

program cannot guarantee an optimal assignment, but it does find good 

assignments extremely quickly. 

Neither approach has proved very satisfactory for large 

general quadratic assignment problems, but most practical problems 

have a specialised structure which may facilitate solution. Various 

such structures were examined and efficient techniques have been 
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developed to solve some of them. 

The thesis concludes with an empirical comparison of the 

procedures proposed here with those reported in the literature. 
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CHAPTER 1 

INTRODUCTION  
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1.1 	ASSIGNMENT WITH QUADRATIC COSTS  

The cost function for a wide range of assignment situations is 

quadratic in nature. This arises when a pair of facilities contributes 

a cost which depends on the product of the distance between the locations 

to which these facilities are assigned and the level of interaction of the 

facilities. 

For example, a company may acquire several new premises 

in different towns and must decide which section of its business to locate 

in each town. If the sections are all independent of each other then the 

problem of minimising the operating cost can be formulated as an ordinary 

assignment problem and easily solved (31 5 36,54). Generally, however, 

labour and materials must be transported regularly from one section 

to another and the cost of this movement depends on the distance between 

the towns. 

Quadratic assignment problems exist on many scales and 

computer design involves one much-studied situation (18,371 591 60,65). 

The central processor of a modern computer consists of many modules, 

each having many terminals which must be connected by wires to 

particular terminals on other modules. The aim is to locate the modules 

so as to minimise the total length of wire used. 



1.2 	PLANT LAYOUT AS A QUADRATIC ASSIGNMENT PROBLEM  

As has been indicated, many assignment problems have 

quadratic costs and chapter 2 discusses some further situations. 

All these problems have the same mathematical form, and the material 

in this thesis could be presented in terms of this abstract mathematical 

form, but it is more convenient to use the nomenclature of a particular 

practical application. The plant layout problem has been chosen for this 

purpose. 

Plant layout involves a factory with several vacant locations 

which are to be occupied by several new machines. The locations are 

considered indivisible so that only one machine may occupy each site. 

It is convenient to assume that there are the same number of machines 

as locations; if this is not so, artificial machines with zero costs may 

be introduced to regularise the problem. The factory may or may not 

already have existing machines in fixed locations. 

Different assignments of machines to locations will result in 

different levels of efficiency which can be expressed in terms of 

operating cost. Plant layout involves two types of costs which can be 

termed linear and quadratic. The best assignment is one which minimises 

the total operating cost in so far as this depends on the locations of the 

machines. 

Linear costs are those dependent on the locations of individual 

machines. For example, the amount of artificial lighting required for 
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a machine may depend on its location. Also the cost of transporting 

semi-finished goods between a new machine and other existing machines 

or store-rooms depends on the location of the new machine. 

Quadratic costs are due to the interaction of machines and 

are dependent on the locations of pairs of machines. The cost of 

transporting materials between two machines is assumed to be 

proportional to the distance between the machines and so the locations 

of both machines are needed to determine the cost. As well as materials, 

employees and information must flow from one machine to another an.1 

the cost per unit distance of the total flow between two machines is a 

measure of the level of interaction for the pair of machines. 

The validity of this cost structure has been accepted by most 

researchers, at least as a very good approximation to reality. Buffa 

and Vollmann (4) have discussed the underlying assumptions in detail. 

1 . 3 	NOTATION  

The new machines are labelled alphabetically A ,B1 C , . c>c 
• • 1 	• • • 

and the locations numerically 1,2,3, ... , i 	. The number of both 

machines and locations is n. An assignment, 	is a function mapping 

each machine, o<, to a different location, i. 

The linear cost of assigning machine cx to location i is 

denoted by ccxj. Hence the linear cost of an assignment, p, is > c c,‹  o< p(o<) 

The level of interaction of two machines, o< and 73, is denoted 
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by fo,i6  ; i.e. to  is the cost per unit distance of the total flow of men, 

materials and information between machines o< and 13. By definition 

f = f
,E3 
 . The distance from location i to location j is denoted by d... 

180c 	cx 

It is assumed that d. = d... The quadratic cost of assigning machine 0( ji 

to location i and machine /8 to location j is f g  d... Hence the oc 

quadratic cost of an assignment, p, is 

f d 

The total operating cost of an assignment is denoted by Z(?). 

Clearly, 	Z (p) = cy(a) f d 
	  rig f(0)f(,e) 

The plant layout problem is to discover, from the n: possible assignments, 

one which minimises Z(f). 

1.4 	OUTLINE OF THESIS  

The following chapter considers the research on the quadratic 

assignment problem which has been reported in the literature. The 

theoretical properties of the problem and its relation to other problems 

are considered as well as methods of solution. The various heuristics 

are shown to yield rather poor assignments whilst algorithms which 

find the optimum can only handle small problems. 

Chapter 3 formulates the problem as an integer quadratic 

program.and attempts to modify it so that it can be solved using a 

standard mathematical programming package. 
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The next chapter presents a tree-search algorithm and 

proposes several alternate lower bounds for it. The empirical results 

for this computer program are superior to others found in the literature. 

Chapter 5 is a theoretical study of lower bounds which could 

be used in a tree-search algorithm. 

There has been some research on specific situations for which 

the distances conform to a restricted structure. Chapter 6 considers 

several cases for which the flows are restricted. 

Chapter 7 makes a detailed computational comparison of 

the various methods proposed both in the literature and in this thesis. 

The final chapter is forced to the conclusion that, in spite of 

considerable effort by many people, there is still no really satisfactory 

solution to the general quadratic assignment problem. One of the 

contributions of this thesis is to partly explain why the problem has 

caused so much difficulty. 
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CHAPTER 2 

LITERATURE SURVEY 
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2.1 	EARLY HISTORY  

For almost as long as factories have been used it has been 

recognised that the relative locations of machines have a significant 

effect on efficiency. At first the manager relied on common sense and 

experience to design a layout, but then factories grew larger and so 

specialised heuristic techniques were developed. Many textbooks have 

been written on this topic (17,49,55). 

Travel Charting  

One analytic tool described in most of these textbooks is the 

"travel chart" or "from-to chart". This is a matrix in which each 

row and column corresponds to a machine and the entries give the flow 

of materials or "travelling" from each machine to every other machine; 

the diagonal entries are not defined. 

Two other charts are often used, one giving the distance 

between each pair of locations and the other giving the product of flow 

and distance for each pair of machines for a particular assignment. 

The sum of all the entries in this product matrix is the total quadratic 

cost of the assignment. Figure 2-1 shows the three charts for a 

hypothetical problem with four machines. Also shown is the flow matrix 

defined in chapter 1 ; each entry is simply the sum of the corresponding 

entries in the travel chart and its transpose. This symmetric matrix 

can be used to calculate a triangular quadratic cost matrix which is 

equivalent to the product matrix. 
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ABCD 1 	2 	3 	4 

A 8 4 2 1 3 	4 	5 

B 0 0 7 2 3 	4 	6 

C 4 7 0 3 4 	4 	5 

D 1 5 0 4 5 	6 

Travel Chart Distance Chart 

or Distance Matrix 	(d..) 1J 

ABCD 

A - 	24 16 10 
Product Chart for the 

B 0 - 0 42 
assignment 	(Al B2 C3 D4). 

C 16 28 - 0 Quadratic Cost = 171. 

D 5 30 0 

ABCD 

A 8 8 3 A 

B 8 7 12 24 

C 8 7 0 C 32 28 C 

D 3 12 0 D 15 	72 0 

Flow Matrix (f ) 
ocit3 

Triangular Quadratic Cost 

Matrix for (Al B2 C3 D4). 

Quadratic Cost = 171. 

Figure 2-1. 

Travel charts and matrices for a 4-machine problem. 
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The travel charting method begins with the travel and distance 

charts and then an assignment is proposed. This is evaluated using a 

product chart. If the quadratic cost seems too large, a new assignment 

is proposed and evaluated; the process is repeated until a satisfactory 

layout is found. Inspection of the product chart usually suggests 

possible improvements to the layout - in figure 2-1 , for example, 

it seems that either B or D should be moved. Moore (49) notes that 

"the travel-chart technique is highly dependent on the ingenuity of the 

layout man, since it utilises a trial-and-error technique". 

Koopmans and Beckmann's Formulation  

The importance of travel charting is not in producing good 

layouts, but in quantifying the efficiency of layouts. Its underlying 

assumption is that the cost of moving materials between two machines 

is proportional to the distance between them. This is the only assumption 

about costs which is needed to justify the use of travel charts. 

Koopmans and Beckmann (34) extended these ideas in two 

senses. Firstly, they recognised that the same cost assumption was 

applicable on a larger scale when assigning plants or other economic 

activities to towns or geographic regions. Secondly, they were able 

to formulate the quadratic assignment problem as a mathematical 

program modelled on the ordinary (linear) ) assignment problem. 

Their program defines a matrix of variables, X= (x .) (xi 

such that x . has the value 1 if machine oc is assigned to location i oci 
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and has the value 0 otherwise. The quadratic cost of an assignment 

can then be expressed as 

	 f d 
G.( 	j  c«,Bij 

x  
cx 	x iej • 

(In their formulation 	was only the flow from o< to 	, not from 

A to c‹ as well). This function is quadratic in X and that accounts 

for the name "quadratic assignment problem". 

At that time there was no known method for solving quadratic 

programs but Koopmans and Beckmann were able to transform it into a 

linear program. Unfortunately this was too large to be practical; 

and anyway, their research was not specifically concerned with solving 

the problem. But this thesis is concerned with solution and so chapter 3 

considers the quadratic program in detail. 

2.2 	APPLICATIONS AND RELATED PROBLEMS  

There are many applications for the quadratic assignment 

problem and some which have appeared in the literature are described 

below in descending order of scale. Some problems do not involve 

assignment to locations but can still be put in the mathematical form 

of the quadratic assignment problem. Some generalised and some 

restricted problems are also mentioned. 

• At an international level a multi-national corporation may 

decide, for partly political reasons, to manufacture different components 

in different countries; at least one computer manufacturer does this. 
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The purely economic decision of which component is assigned to each 

country is clearly a quadratic assignment problem if the various 

factories have any significant interaction. 

The same situation obviously arises within a country or region, 

but there can be a different emphasis in centrally controlled and mixed 

economies. All economic activity within a country interacts and could, 

in theory, be modelled by a huge quadratic assignment formulation. 

If the government has direct control over industry it should try to 

implement a solution to the quadratic assignment problem. If it has 

only indirect control, such as by fixing rents or taxes in different areas, 

then it should try to adjust these pricing mechanisms so that the market 

forces of private enterprise automatically select an optimal assignment. 

Koopmans and Beckmann studied these price mechanisms, but recently 

Artle and Varaiya (2) have shown that, in general, there are no prices 

which will ensure an optimal assignment. 

Plant layout is one problem at the scale of a building or group 

of buildings. Another is the assignment of employees to rooms in an 

office building; the aim is to minimise the walking between offices (42). 

Two algorithms have been proposed for the one-dimensional problem of 

assigning rooms along a corridor, one being a tree-search formulation (64) 

and the other dynamic programming (40) - neither could deal with as 

many as 20 rooms. 

The layout problem for a reference library is very similar 
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to plant layout. Very few readers walk from books about computers to 

medieval literary criticism and so these do not need to be near each 

other, but computing should be near mathematics for example. It would 

also be convenient, however, to have computing near accounting, and 

accounting near law, and law near sociology, etc. Compromise is 

necessary and the best compromise is an optimal solution to the 

quadratic assignment problem which minimises total walking. 

Computing design has already been mentioned and there are 

numerous publications on this topic (18,24,37,59,60,65). Computer 

operation also provides an example (52). A computer tape or disc may 

contain many records which are accessed in different orders by various 

users. The "distance" between two locations on a tape or disc is the 

time needed to move the tape or reading head from one location (record) 

to the other; the "flow" between two records is the frequency with which 

they are accessed consecutively. 

The travelling salesman problem can be forced into quadratic 

assignment form by defining 1c 	to be zero except when A = oc + 1 

- then it takes the value 1. Lawler (39) has extended this to a multi-

salesman problem in which the salesmen must also pay to communicate 

with each other. Maxwell (47) has formulated a machine sequencing 

problem in a similar way, although it requires a more complex flow 

matrix. 

Bowman, Pierce and Ramsey (3) have formulated an economic 
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problem of input-output analysis in quadratic assignment form. 

Their formulation is not quite compatible with the definition used in 

this thesis because their distance matrix is not symmetric - in fact, 

it is an upper triangular matrix of 1 ' s . They convert the problem to 

a linear program with which they are able to solve moderately large 

problems. 

Other Related Problems  

Lawler (39) has defined a generalised quadratic assignment 

problem for which the objective function is 

Z(e)= 	 a 
cx  4 y 

o<igp(0)p(19 

where Ext  a .j  is the cost of interaction of machines cx and A when they 

are located at i and j respectively. Note that even a 10-machine 

problem requires almost 10,000 items of data and so all practical 

situations must be special cases in some sense. As one special case 

(k) (k) 
he proposes the multi-commodity problem for which a .. = 	 f d.. . 

'431J k c>(/3 J 

This assumes that different commodities (distinguished by superscript, k) 

must use different routes of different lengths between pairs of locations. 

Several papers have been published on the related bottleneck 

or minimax problem (5,6,7,14,44). This aims to minimise 

Z(/0 ) = max (fcxiel df,(0)/0(4)  ) and has proved slightly easier than the 

quadratic assignment problem (5,7), especially when distances are 

rectilinear (14). 
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Another related problem which has received much attention 

allows the new machines to be placed anywhere in 2 or 3 dimensions 

(9 112145146  51169). 	Again the rectilinear problem is easier (9112,51,69). 

2.3 	MATHEMATICAL PROPERTIES  

The first step in solving many problems is to transform them 

into other problems. This section discusses transformations which 

leave optimal assignments unchanged. 

As defined in chapter 1, the cost of an assignment, 	is 

Z( p) 	 ((x) +  	cx,8 
dpcoop(A) ' The first term of this cxf)  

/3>e< 

expression is the same as for the linear assignment problem for which 

a well-known transformation subtracts a constant from each entry in a 

particular row of the cost matrix. This is still valid: i.e. if c
i 
 is 

reduced by for a particular machine, < and every location, i, the 

total cost of every assignment is thereby reduced by and so any 

optimal assignment for the transformed problem is also optimal for the 

original problem. 

Transformation of the flow and distance matrices is more 

complex. If all the flows from a particular machine are reduced then 

that machine becomes less critical to the plant and so is likely to be 

put in an• isolated corner - hence this transformation affects the 

optimality of assignments. However, if flows between all pairs of 

machines are reduced by the same amount, the costs of all assignments 
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also change by a fixed amount. 

Burkard (5,6) has shown that flows from individual machines 

can be reduced if the linear costs are simultaneously increased. 

Specifically, if f0q  and f o<  are decreased by ?I' for a particular  lac 

ma 	 «i is increased by i 

for every location, i, then the costs of all assignments remain 
J 

unchanged. 

An analogous transformation exists for the distance matrix. 

This means that at least one zero entry can be forced into each row and 

column of the flow and distance matrices. The resulting shift in emphasis 

from the quadratic to the linear term was expected to assist the search 

for optimal assignments, but Burkard's success was largely restricted 

to the bottleneck problem defined in the previous section. 

2.4 	CONSTRUCTIVE HEURISTICS  

Procedures which calculate good assignments may be classified 

as "algorithms" if they guarantee to find an optimal assignment or as 

"heuristics" if they only aim to find a good sub-optimal assignment. 

Nugent, Vollmann and Ruml (57) further classify heuristics as being 

either "constructive" or "improvement". A constructive heuristic 

considers one machine at a time and selects the location to which it will 

be assigned whereas an improvement heuristic attempts to modify a 

given layout to decrease its cost. 
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Gilmore (21) proposed the first effective constructive 

heuristics and most other constructive methods are based on his 

concepts. Both his techniques can be extended to tree-search algorithms 

which eventually find an optimal assignment (see section 2.7). 

Gilmore's basic idea is to approximate the quadratic costs 

by linear costs. Consider the quadratic costs incurred by assigning 

machine c< to location i. There are n-1 flows, foo  , which must be 

assigned to n-1 distances, d.., in some order, and the cost of this is 

the sum of the pairwise products of the corresponding flows and distances. 

This cost is minimised by assigning the largest flow to the smallest 

distances, the next-to-largest flow to the next-to-smallest distance and 

so on. This gives a lower bound on the quadratic costs of assigning 

o< to i and, when added to the known linear cost, c ., it gives an 

indication of the actual cost of assigning o< to i. 

These approximate costs are calculated for all n2 possible 

assignments and then the most critical assignment is selected according 

to a heuristic rule. Gilmore's two procedures differ only in their 

rules for this choice. His "n
4" heuristic finds the minimal approximate 

cost for each machine and location and then selects the machine-location 

pair which yields the largest minimum. The "n
5" heuristic considers 

the nxn matrix of approximate costs as data for a linear assignment 

problem and selects the largest cost which appears in that problem's 

solution. The names "n4" and "n5" refer to the order of computational 
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effort required. 

Now that one machine has been assigned to a location the size 

of the problem has effectively been reduced from n to n-1 machines. 

Approximate costs are recalculated for the reduced problem and another 

machine assigned. This continues until all the machines have been 

assigned. 

Other Constructive Methods  

Hillier and Connors (30) used the same process to calculate 

the matrix of approximate costs, but a "difference" or "penalty" concept 

for selecting the machine-location pair . For each row and column of 

the matrix they calculated the difference between the smallest and 

next-to-smallest entries, and then selected the smallest entry in the 

row or column which had the largest difference. This new rule produced 

slightly better solutions than either of Gilmore's rules when applied to 

a computer design problem with 34 modules proposed by Steinberg (65). 

Heider (29) proposed two alternative methods of calculating 

approximate costs and his selection rule was to choose the machine-

location pair giving the smallest cost. His more successful method 

calculated the mean value of all complete assignments which included 

the specified machine-location pair. An algebraic expression for this 

mean was derived by Graves and Whinston (22) whose own method, 

although a heuristic, is best considered as an incomplete tree-search 

algorithm and so is discussed in section 2.7 . Heider claims that his 
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heuristic is marginally better than the earlier construction methods. 

Recently Neghabat (56) has proposed an interesting constructive 

heuristic for the special case of rectilinear distances. He partially 

decomposes the problem into 2 one-dimensional problems. The solution 

of either of these new problems defines an assignment, but the two 

solutions may not be compatible. This difficulty is resolved by alternately 

solving one-dimensional problems in each dimension until convergence 

to a good assignment is achieved. The quality of his solutions is very 

slightly worse than others, but the computation is extremely fast. 

2.5 	IMPROVEMENT HEURISTICS  

Just as all constructive heuristics (excluding Neghabat's 

specialised method) are based on Gilmore's original concept, so all 

the improvement heuristics are based on the concept of exchanging two 

machines if so doing reduces the total cost of the layout. 	The various 

heuristics differ only in the order in which they consider machines and 

in the basic assumptions made about the layout. 

Armour and Buffa seem to have been the first to formalise 

this idea and program it for a computer (1,4). They assume that 

different machines may be of different sizes and so only exchanges 

between adjacent machines or machines of the same size can be considered. 

They calculate the cost-improvement (positive or negative) resulting 

from each feasible exchange and, if any improvements are positive, 
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the exchange giving the largest improvement is made. The process is 

repeated until no further improvement is possible. This heuristic has 

become known as CRAFT - Computerised Relative Allocation of 

Facilities Technique. 

Hillier (29) independently programmed a restricted form of 

CRAFT which assumes equal-sized machines to be located on the lattice 

points of a rectangular grid. Since he only considers exchanges between 

machines which are orthogonally or diagonally adjacent, the resulting 

assignments are not as good as CRAFT' s although much less computation 

is involved. 

An improved version (30) allows some non-adjacent exchanges. 

It also ranks the desirability of moving each machine in each direction 

so that the most propitious exchanges may be considered first. This 

heuristic is very much faster than CRAFT for large problems and its 

layouts appear to be only marginally worse. 

The above procedures are deterministic in that each produces 

a specific final assignment from a given initial assignment. Nugent 

et al. (57) proposed a stochastic procedure which they called biased 

sampling. This differs from CRAFT in that all exchanges giving a 

positive improvement are considered and the probability of a particular 

exchange being made is a function of its improvement. 

Nugent et al. also programmed the earlier heuristics and 

compared their performance on eight problems with from 5 to 30 

machines. These have since become standard test problems and are 
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reproduced in appendix A. They claim that biased sampling yields 

slightly better assignments than CRAFT, although at the expense of 

vastly more computation. 

Garside and Nicholson (18), Edwards, Gillet and Hale (13), 

Khalil (33), Munita (53) and Hitchings (32) have all tested other minor 

modifications of the CRAFT principle and met with minor success. 

Munita notes that CRAFT is an application of the "r-opt" concept 

developed by Lin for the travelling salesman problem (43) -• here r = 2. 

2.6 	COMPUTER-AIDED HUMAN TECHNIQUE  

Scriabin and Vergin (63) have recently noted that several 

authors (24,57) have compared the relative effectiveness of various 

computerised heuristics, but that the traditional methods were being 

ignored. Therefore they wrote a simple, interactive APL program 

which calculates the cost of a proposed layout and generally facilitates 

the travel charting method described in section 2.1 . 

Seventy four students used this program to solve nine layout 

problems ranging in size from 5 to 20 machines. Each student sat 

at a remote typewriter terminal and entered a suggested layout for a 

problem. The computer then calculated the cost of the layout and, 

on request, also printed travel charts of the type shown earlier in 

figure 2-1. Using these charts the student could suggest new layouts 

until he was satisfied with the result. 
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Each problem was given to up to twenty students who 

independently tried to find good layouts. Their results were compared 

with CRAFT and Hillier 's original improvement heuristic as tested 

by Grover (23). 

For every problem the best "manual" layout was at least as 

good as the best "computer" layout, and for the largest problem the 

manual layout was 5.8% cheaper. Also, the median manual layout was 

significantly better than the median computer layout for most problems. 

Perhaps the most important conclusion to be drawn from this 

experiment is that heuristics do not produce particularly good layouts, 

especially for larger problems. For the 20-machine problem the best 

heuristic layout is at least 5.8% worse than the optimum and may be 

even more inferior. 

2.7 	TREE-SEARCH ALGORITHMS 

Apart from methods for specialised problems which are 

discussed in the next section, all the algorithms proposed for the 

quadratic assignment problem have been of the implicit enumeration 

type known as "branch-and-bound" or "tree-search". Pierce and 

Crowston (58) have published an excellent review of the various 

algorithms and there is a detailed analysis in chapter 4 of this thesis; 

hence only a brief summary is presented here. 
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In 1962 Gilmore (21) and Lawler (39) simultaneously 

described equivalent tree-search algorithms although neither reported 

any computational experience. Gilmore's constructive heuristics were 

based on his algorithm. 

An important part of any tree-search algorithm is the calculation 

of a lower bound on the costs of all assignments. Gilmore and Lawler 

both use the matrix of "approximate costs" described in section 2.4 . 

Since these costs are, in fact, lower bounds on the costs of assigning 

particular machines to particular locations, the solution to the linear 

assignment problem defined by this matrix is a lower bound on the cost 

of all layouts. 

Gilmore also suggests an alternative which is weaker but 

much easier to calculate. Since each of the In(n-1) flows must be 
ccrt i$ not Ws tAgn the 

paired with one of the -21-n(n-1 ) distances, the quadraticAcost of pairing 

the smallest flow with the largest distance, the next-to-smallest flow 

with the next-to-smallest distance and so on. This process gives a 

lower bound which is readily calculated but can be shown to be lower 

than the previous bound. 

Figure 2-2 indicates how lower bounds are used to develop a 

tree which partitions all the assignments into disjoint subsets. First a 

bound is calculated for the original problem (389) and then four 3-machine 

sub-problems are defined by assuming location 1 is occupied by each 

of the four machines in turn. Lower bounds are calculated for each 

sub-problem and the lowest bound (392) determines the next 



All 
assign- 
ments 

1 
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Figure 2-2. 

Tree for a 4-machine problem using Gilmore's weak bound. 

(Copied from Pierce and Crowston (58) ). 
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branching (B1). Eventually the optimal assignment (A4,B1,C3,D2) is 

found and its cost, 403, is less than all the other terminal bounds. 

Gavett and Plyter (20) and Land (38) chose a different 

branching strategy. Rather than assigning a machine, oc, to a location, I, 

they assigned a pair of machines, (cx, 4) , to a pair of locations, (i,j), 

without specifying which machine was assigned to which location. 

This can be viewed as assigning cie  to d... 

Gilmore's weaker bound is well-suited to this branching 

strategy and Gavett and Plyter programmed the algorithm for an 

IBM 7074 computer. The results were disappointing, needing 42 minutes 

to solve an 8-machine problem. 

Graves and Whinston (22) have programmed a heuristic 

based on the Lawler-Gilmore algorithm. They derived explicit algebraic 

expressions for the mean and variance of the costs of all n! assignments 

and were able to use these at each node of the tree to estimate the 

probability that an optimal solution was included in that node. If this 

probability is very small they discard the node, even if its bound is less 

than the cost of the best known assignment. 

They have cornoared their method to several other heuristics 

and found it produced very good assignments quite quickly. 
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2.8 	ONE-DIMENSIONAL PROBLEMS  

For several problems, such as ordering rooms along a 

corridor or records on a computer tape, the locations lie in a straight 

line. Simmons (64) and Lawler (40) have both studied this situation. 

Simmons, programmed a tree-search algorithm for a closely 

related problem which is equivalent to the quadratic assignment problem 

if the distances between adjacent locations are all equal. His program 

could only handle rather small problems with about 10 machines. 

Lawler defined a dynamic programming formulation which 

would be effective for up to about 16 or 18 machines. It is very 

similar to Held and Karp's formulation for the travelling salesman 

problem (26). He also considers several one-dimensional problems 

with restricted flow patterns such as networks and trees. Some of these 

cases are easily solved, but some are not. 

	

2.9 	CONCLUSIONS  

This literature has shown that a great amount of effort by 

many people has been applied to developing techniques to "solve" the 

quadratic assignment problem. Francis and Goldstein (16) give a 

bibliography of 226 papers whilst Moore (50) lists 25 independently 

developed heuristic programs. And yet the result of all this trouble 

does not appear impressive. 
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Ignoring specialised techniques, there are just two basic 

tree-search algorithms and two heuristics. Nugent et al. (57) have 

concluded that constructive heuristics are inferior to improvement 

heuristics, but Scriabin and Vergin (63) have demonstrated that 

students with a desk calculator are significantly superior to improvement 

heuristics for large problems. 

Computational experience with tree-search algorithms is 

very limited. The Gavett and Plyter program could not handle more 

than eight machines and the Lawler-Gilmore algorithm does not appear 

to have been programmed. Gilmore has estimated that his method 

could not deal with more than fifteen machines. 

Because of the apparent lack of computational experience 

with algorithms, this thesis investigates these methods which yield 

optimal assignments. Some specialised problems which can be solved 

more easily are also studied. 
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CHAPTER 3 

QUADRATIC PROGRAMMING APPROACH 



of 0 otherwise. . x . 1 if machine o< is assigned to location i, 3-1 
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3.1 	THE LINEAR ASSIGNMENT PROBLEM 

The quadratic assignment problem can be considered as a 

generalisation of the linear assignment problem. The constraints are 

identical but the quadratic cost function is more complex. This chapter 

tries to extend a solution technique from the linear case to the quadratic. 

For the linear situation the cost of an assignment, p , is 

Z(p) = 71c 
cxf(ex) 

This can be formulated as a 0-1 linear program by interpreting the 

elements of an nxn matrix, X, in the following way: 

Then Z(X) = S 	 c x i  . 	 3-2 o<1 (x 

Necessary and sufficient conditions for matrix X to represent an 

assignment are, in addition to 3-1 : 

	

x. = 1 	for all machines 0( , and 
i CK 1 

Z Xi. 

	

< = 1 	for all locations i. o c< 

3-3 

If the 0-1 constraint (3-1) is replaced by the weaker inequality 

0 xoci< 1 	 3-4 

then the linear program comprising 3-2, 3-3 and 3-4 can be solved 

readily using standard computer programs to minimise Z (X) . It can 

be shown (31) that the coefficients of the constraints form a unimodular 

matrix: hence an optimal basic solution automatically has integer 

variables and so constraint 3-1 is obeyed implicitly. Thus the linear 
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assignment problem can be solved effectively using linear programming, 

although this is not the most efficient technique. 

3.2 	BASIC QUADRATIC PROGRAMMING FORMULATION 

For the quadratic assignment problem the cost of an assignment 

is Z(p) - 	 cep  («) + >  	dip  )/o(g  ) 

Using the 0-1 variables defined in 3-1 this cost can be written as 

Z(X) = l >_ c .x . 
1 0< 1 or(  

+ 7 	f d. x x 
/3>o< 	ivi  0</S 	?j 

3-5 

Minimising this expression subject to constraints 3-1 and 3-3 would 

solve the quadratic assignment problem. Koopmans and Beckmann (34) 

derived an equivalent expression but were unable to optimise it. 

There are no general techniques available for solving 0-1 

quadratic programs, but there are computer packages available for 

continuous quadratic programs. It is possible to solve quite large 

problems of the form : 

y 0 

min Z(y) rT y + yT Qy 	 3-6 

subject to A y = s . 

where y is a k-component vector variable, 

r is a k-component vector of linear cost coefficients, 

Q is a kxk positive semi-definite cost matrix, 

A is an mxk matrix of constraint coefficients, and 

s is an m-component vector of constraint values. 
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The restriction that Q be positive semi-definite means that 

y Qy must be greater than or equal to zero for all real values of y. 

This ensures that Z(y) is a convex function and hence that any local 

minimum is,in fact, a global minimum. If Q is not positive semi-

definite then the quadratic program may have many local minima with

•values greater than the true minimum (66). There is a more complete 

analysis of this difficulty in section 3.6 . 

The previous section showed how a linear assignment problem 

can be solved as a linear program by relaxing the 0-1 constraint (3-1) 

to a simple inequality (3-4). The same relaxation will now be considered 

for the quadratic assignment problem. Note first that the constraints 

3-3 and x > 0 automatically force x 	1 and so this part of constraint i 

3-4 can conveniently be omitted. This leads to the following basic 

quadratic programming formulation which conforms to the standard 

format of 3-6 : 

x 	0 for all machines cx and locations i 

min Z (X) => >  c x 	7 7 72 7 f d xod  
,e>< i 	c</e 

	

x . = 1 	for all machines a 
i CX 1 

	

XX . = 1 	for all locations i. 
« o< 1  

3-7 

In terms of the standard format, k takes the value n
2, m is 2n, 

r contains the linear costs c 1  and s contains only 1 ' s . The elements - cx1 

of A are 0's and 1 's, and the elements of Q are the products of 
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appropriate flows and distances. Figure 3-1 shows how the 4-machine 

problem considered by Gavett and Plyter (20) is translated into the 

quadratic programming format. 

3.3 	RESULTS FOR THE BASIC FORMULATION 
• 

A matrix generator was programmed to produce the standard 

format for QPS, a quadratic programming package for the IBM 360 

series computers. This package was then used to solve the quadratic 

program 3-7 for several problems involving from 4 to 8 machines. 

Figure 3-2 shows that the variables do not automatically 

take 0-1 values as in the linear case; this should not be surprising. 

There does, however, appear to be a strong correlation between the 

fractional solutions and the 0-1 optima which are being sought. 

In fact, for NVR8, the 8-machine problem given by Nugent, 

Vollmann and Ruml (57), a simple rounding procedure provides an 

optimal assignment; i.e. if the value 1 is given to those variables 

greater than 0.5 and 0 to those less than 0.5 , the resultant solution 

happens to be both feasible and optimal. 

Unfortunately GP4, Gavett and Plyter 's 4-machine problem, 

is less promising. There are only 3 variables greater than 0.5 , 

namely IcA4, xB3  and xD2. If these are set equal to 1 and the solution 

made feasible by also increasing xCl 
from 0.30 to 1, then the cost of 

the resultant assignment is 419. But if machines B and C are 
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2 
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x >0 

Z(x),  rT  x + xT Q x 

Ax= b 

x
T
= (xAl'  x  A2' xA3' xA4' xB1' x132' 

rT= ( 0, 0, 	0, 	0, 	0, 	0, 

bT= ( , 1, 1, 1, 1, 1, 1, 1, 1) 

1 2 A  3 4 	1 2 B  3 4 1 

xD3 XD4 ) 

0, 0 ) 

4 1 2D 3 4 

Figure 3-1. 

Basic Quadratic Program for Gavett and Plyter's 4-machine problem. 
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GP4 1 2 

0 .14 
Min (BQP) = 341.47 . 

B .36* 0 
Min (QAP) = 403. 

C .30 .28 

D .34 .58* 

NVR8 
	

1 2 3 4 5 6 7 8 

Min (BQP) = 101.57 . 	Min (QAP) = 107. 

Figure 3-2. 

Solutions to the basic quadratic program (BQP) for QP4 and NVR8. 

Solutions to the quadratic assignment problem (QAP) are shown by "*". 
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interchanged the cost of the new assignment is only 403 - in fact this 

is the optimum. The fractional solution in figure 3-2 gives no hint that 

this could be so. 

A more sophisticated rounding procedure could be based on 

solving the linear assignment problem defined by the solution matrix, 

choosing the assignment which maximises the sum of the x variables. 
a). 

Each row and column of the solution matrix could first be weighted 

according to the importance of the appropriate machine or location: 

i.e. the total of flows or distances from that machine or location. But in 

the case of GP4 any reasonable weighting scheme would still produce 

the assignment with cost 419. 

These two examples show the limitations of the basic quadratic 

program. Because the solution can be fractional it may not directly 

specify an assignment, but it can give a useful indication of a good, if 

not optimal, assignment. The cost of the fractional solution may also 

be a lower bound on the cost of the optimal assignment which could 

be used in a tree-search algorithm. 

3.4 	BIASED VARIABLES 

This section shows how the basic quadratic programming 

objective function can be modified so that 0-1 results are more likely. 

The costs of all 0-1 solutions must remain unchanged while the costs 

of fractional solutions are increased. This concept has been suggested 
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for other combinatorial problems by Taha (67) and Raghavachari (61); 

Christofides and Mitra (11) used it with some success on a class of 

0-1 problems. 

It is important for computational convenience that the bias on 

the objective function should have either a linear or quadratic character. 

Consider the bias function b 1  . xo< 1 . 	o< (1 - x . 1 ) where b o<  is some 
o<  

non-negative parameter called a bias coefficient; the form of this 

function is shown in figure 3-3. It is positive for 0‘ x . < 1 and zero 

for o<  x . 1 = 0 and 1. It is symmetric about x .= i and takes its maximum 0.<1 

value of lbwhen x =  a< i 	 2 • 

Suppose that a solution has been found for the basic quadratic 

program in which x. is fractional for some machine o< and some 
o<1 

location i. If the bias function with positive b .a<1  is added to the 

objective function then the value of that particular solution is increased 

by be<i x(xi(1-x .) which is a positive amount. By suitable choice of 

the bias coefficient the cost may be made arbitrarily large. The cost 

of all solutions for which x is fractional will be increased by adding a<1 

this bias, but the cost of solutions for which x 	is 0 or 1 will remain 
o<1 

unchanged. 

The bias functions can be added simultaneously for all 

variables so that the biased objective function is: 

Z(X) 	(c .-4-b .)x 	+ 	,x2. +2- 	 f 	d x x ) 
(xi 	0(1 oci „9>c< i vi 0<-/3 ij 	i 	j 

3-8 
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b. x .(1-x .) cxl, pg. 	041 

lb 4 	• -0C1 

1 
2 1 

X . c< 1 

Figure 3-3. 

The quadratic bias function. 
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Choosing sufficiently large values for the bias coefficients can ensure 

that the minimum value of this expression, subject to constraints 3-3 

and 3-4, occurs when all variables are 0 or 1. 

The 2-Machine Problem 

It is useful to examine in detail the effect of bias on the 

rather trivial 2-machine quadratic assignment problem. The constraint 

set 3-3 ensures that xm= xB2  and xA2= xBi = 1 - xm. Hence for 

all c< and i, xtx 	x .(1-ci..) = xA1(1-xA1). This allows the objective o 

function to be simplified as follows : 

, 

	

z(x).„. 	 >  c .x .   Top  .x .(1-xcxi ) + 2_ 	f d.. x .x ) o< 	cx1 c<3. 	o< 	al al 	fi>oc jvi  o<fi 	 c<1 

= (cAl  - cA2  - cB1  + cB2 )xAl + cA2  + cB1  + (bAl 
+bA2 +bB1 +bB2 )x  Al (1-xAl. ) 

+ fAB d12 xAl 
2 + fAB d21 (1-xAl )

2 

(c'- c")x 	c" + bx (1-x ) + f d (x 2 
+ (1-x ) 

2 ) 

	

Al 	Al 	Al 	AB 12 Al 	Al 

where c'. c + c 	. c"= c + c Al B2 	A2 B1 

and b = bm+ bA2+ bBi+ bB2  . 

Further rearrangement yields : 

Z(X) = (2f d -b)x (x -1) + (c'- c")x + c" + f d AB 12 	Al Al 	 Al 	AB 12 

	

= 	 _ k 	c1-  (2f ABd 
	b) 
12 	Al 2  2(2f d- b) ) AB 12 

(2fAB d12 - b -c' + c")2 

+ c" + f d - 

	

AB 12 	4(2f d - b) AB 12 



1 
2 - 2(2fAB d12  -b) • 

This function of xAl 
 is a parabola, symmetric about 

It will be convex (concave) if b is less c'- c" 
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x Al I 

than (greater than) 2f AB d12 . The turning point will lie between 0 

and 1 if b > 2fABd
12

+10-01 or b.<.  2fABd12-Ic'- 111 . These 

characteristics are summarised in figure 3-4. 

It is clear that a quadratic programming technique will 

always yield the optimal assignment (in this example xAl  0) if the 

total bias coefficient, b, lies between 2fAB d12 lc' - c"I and 

2fAB d12+ Ici- c"I . For smaller values of b the result will be 

fractional; but note that simple rounding to the nearest integer always 

gives the optimal assignment. Larger values of b allow both assignments 

to be local minima. 

This detailed analysis of the trivial 2-machine problem has 

shown clearly how biasing may be useful on larger problems. As the 

bias is increased the variables gradually change from fractional to 

integral and the nature of the objective function changes from convex to 

concave. It is to be hoped that integrality can always be achieved 

before concavity, but it has been demonstrated that slight concavity 

need not prevent satisfactory solution. 

3.5 	BIASING IN PRACTICE  

The matrix generator program was modified to include biases 

9 
for all the n variables. The bias coefficients could be set independently 



b=0 

f d +c' AB 12 b=2fAB d12  +Ict-c" I 

f d AB 12 

b=fAB d12 -lc' -c"1 

ABd  12 

1332fAB  d1  +1c1 -c"1 

C -C  1 

2--  4fABd12  
0 1 XA 

Figure 3-4. 
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Effect of bias for the 2-machine problem. 
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of each other by the user. Most problems had to be run several times 

to achieve optimal, or even good, integer solutions; the coefficients 

were adjusted after each run, taking account of the information provided 

by previous results. 

Initially the solution to the basic quadratic program with no 

bias was used. Any variables which were integers already were left 

unbiased while fractional variables were given a positive bias : It was 

found best to give all fractional variables the same bias and the value of 

the coefficients was chosen so that the cost of that particular fractional 

solution would be increased to marginally more than the cost of an 

optimal assignment. For the problems studied this optimum was already 

known; in practice an estimate could be used. 

Using these bias coefficients the quadratic program can be 

solved again. If the solution is still not integral the bias coefficients of 

the remaining fractional variables can be further increased and the 

process repeated. This heuristic is expressed more formally in 

figure 3-5 as a flow-chart. At each iteration the bias and hence the 

objective function is increased and so an integer solution must be found 

eventually. 

Appendix B shows the detailed working for Nugent's 8-machine 

problem, NVR8. The procedure worked quite well for this problem, 

but others needed many more runs to find a set of bias coefficients 

which produced the optimal assignment. The difficulties encountered 

with even a 4-machine problem are also shown in appendix B. 



START 

Given Z* an estimate of optimum. 

Set all b .= 
al 

Use QPS to find a 
minimum. (Z, x .) 'xi 

x all yes 
integer 

9 
STOP 

no 

Increase Z* 
so that Z*> 

yes 

no 

m = number of 
fractional x . c<1 

Increase the bias coefficient 
of each fractional x . by 

5 ( Z*-Z ) 0(1 
 

m 
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Figure 3-5. 

Heuristic procedure for choosing bias coefficients. 
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An integer solution could sometimes be obtained more 

quickly by giving all bias coefficients a small positive value and using 

the solution to this quadratic program as a starting point for the iterative 

heuristic. Appendix B shows this being sucessfully applied to LA7, 

Lawler 's 7-machine problem. 

Judgement and intuition are used in choosing the value of 

the bias coefficients. If the biasing is too small, many variables will 

take fractional values. If too large, the objective function will not be 

convex and it will have many local minima; the QPS package would 

arbitrarily select any one of these. The remainder of this chapter 

develops more scientific techniques for choosing bias coefficients. 

3.6 	CONVEXITY  

As stated in section 3.2, the objective function 

Z(y) = r
T

y + y
T
Qy is only convex if yT 

 Qy is non-negative for all 

values of y (66). If Z is non-convex on part of the feasible region 

defined by the linear constraints then there may be several locally 

optimal solutions and the QPS package chooses between them arbitrarily. 

It has been shown how large biases can cause non-convexity, but the 

unbiased objective function should also be examined. 

The 2-machine problem for which fAB di2= 1 has 

= 

Al 

A2 

xsi 
x
B2, 

and Q = 

0 

0 

0 

1 

0 

0 

1 

0 

0 

1 

0 

0 

1 

0 

0 

0 
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a 

and so yTQy is also ;- 0. But this is not sufficient to prove that Z is 

For any feasible solution x .o. 	
and the coefficients of Q are all > 0 

convex in the feasible region. 

Consider 	y = 

1 
0 
0  

-1 

Then 	yTQy = -2. 	This negative result 

means that the function in general is not convex, even in the positive 

region. But it does not take into account the effect of the constraint 

set. It is conceivable that inclusion of the constraints will make the 

total system convex. This is certainly true for the 2-machine case, as 

was shown in section 3.4 . 

Definitions of Convexity 

A precise definition of convexity is needed for a function and 

also for a system consisting of a function and a set of constraints; these 

definitions must relate directly to the existence of multiple local minima. 

Therefore define Z(y) to be convex if, for all vectors y1 
 and yn , and 

• — 

for all real numbers a, 0 < a < 1, Z(ayi+ (1-a)y2)‘...  a Z(yi ) + (1-a)Z(y2  

Similarly define a system to be convex if, for all feasible vectors yi  

and y2, and all real numbers a, 0 <a 

Z(ay1+(1-a)y2 ).< aZ(y1) + (1-a) Z(y2) . 

This definition of a convex function can be shown to be equivalent, 

in the case of a quadratic function, to the earlier definition involving 

T
Qy 

	

	
T 

(66). In fact, the vector used above to show that y y 	 Qy can 

be negative can also be used to show that Z(y) is not convex in the 



0 1 
0 0 positive quadrant. Let y1= 0 Y2- Y 2 —1 0 
1 -1 

and take a= z  . 

1- 
0 
0 

La 
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For Q as defined before and assuming r =0, Z (y1 ) = 0= Z (y2 ) but 

2

1 2 
0 Z(1-yi+ly2 ) = Z( 0  ) = 	+ -1-Z(y2 ) 

But note that none of these variables are actually feasible. 

A2 (xAl x 	x131 x)  A vector y= 	 xB2) 	feasible if and only if Os< xAl< 1, 

xA2=  xBI.= 1- xAi  and 52=  xAl 	Even if r = (cAl cA2 cB1 cB2 )T is 

not zero, Z(y) can be written as a function of one variable : 

Z(y) Z(xAl ) = 2 2(1-xm )2 + (cm+ cB2 ) xm+ (cA2+cm)(1-xm) 

= (2 xm-1)2+ ( -cA1-  cA2- cBl+ cB2 )xAl cAl+ c131+ 1  

Now two arbitrary feasible vectors, y1  and y2 , can be characterised 

by xAl  =u and xAl  = v where 0.11.,v.“ 

Then a Z(y1) + (1-a) Z(y2 ) - Z( ayi+ (1-a)y2 ) 

= a(2u-1)2+ (1-a)(2v-1)2- (2au+2(1-a)v-1)2 

= 4au2 -4au+a+4(1-a)v2 -4(1-a)v+1-a-4a2u2 -4(1-a)2v2 + 

-1-8a(1-a)uv+4au+4(1-a)v 

= 4a(1-a)u2 + 4(1-a)av2 - 8a(1-a)uv 

= 4a (1-a)(u-v)2  

Hence the system of objective function and constraints is 

convex, at least for the 2-machine problem (see also figure 3-4). 

T 
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Unfortunately it is not at all easy to generalise the preceding analysis 

to problems with more than two machines, but it is important to know 

whether or not larger systems are convex. 

Empirical Test for Convexity 

A pragmatic computerised test for convexity of the quadratic 

programming system has been developed, based on the actual definition 

of convexity. Program CONVEX randomly generates two feasible 

vectors, y1  and yn , and evaluates Z(y, ) and Z(y
2 
 ). For a random-

number, a, between zero and unity it also evaluates Z (a yi+ (1-a )y2). 

Then it calculates the "degree of convexity" ( DOC ) which is defined 

to be aZ(yi ) + (1-a)Z(y2) - Z(ayi+ (1-a)y2  ). 

If the degree of convexity is negative then the system is 

non-convex. If it is positive for each of a large number of feasible 

vector pairs then there is a strong likelihood that the system is convex; 

note that convexity can never be definitely proved in this way. 

A flow-chart of CONVEX is given in figure 3-6. The number 

of vector pairs to be considered must be specified by the user. Note 

that it is difficult to generate vectors with a uniform probability density 

over the entire feasible space; the program does not quite succeed, but 

at least every feasible vector can be generated. 

The three problems considered in this chapter were analysed 

by CONVEX (table 3-1(a) ). Many vector pairs were generated for 

each problem and all the problems were found to be non-convex. 



START 
Read the number of vector pairs needed 

Print message - "non-convex" 

no 

Determine A and i 
such that xifl n  and 
xl  .>1/n. Decrease 

xln  and 	by 1/n and 
increase xl • and 
0(1. x n  by 1/n.81  

Calculate DOC = Z (x3  )- aZ (xl  )- (1-a)Z(x2)  

no 

Consider location i= 

For each machine (2)< generate 

o< xl i  randomly between zero and ., 
one. Normalise so that 2_ xl.= 

e4 

Set i=i+1  

yes 
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Figure 3-6. 

Flow-chart for program CONVEX. 
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Problem Number of 
vector pairs 

DOC <0 
Number % Value 

Smallest DOC 
As % of optimum 

GP4 500 7 1.4 -0.813 0.20 

LA7 100 3 3.0 -1.904 0.32 

NVR8 50 4 8.0 -0.633 0.59 

Test for convexity. 

Problem Number of 
vector pairs 

DOWC 
Number 

<0 
% 

Smallest 
Value 

DOWC 
As % of optimum 

GP4 8000 1 0.01 -0.553 0.14 

LA7 400 2 0.5 -2.404 0.41 

NVR8 300 5 1.6 -0.170 0.16 

(b ) 	Test for weak convexity. 

Table 3-1. 

Results of convexity tests. 



-57- 

It appears that the systems are only "slightly" non-convex. 

Perhaps they do not have multiple minima despite being non-convex; 

remember that convexity is a sufficient but not a necessary condition 

for a unique minimum. Figure 3-7 demonstrates that non-convex 

functions may have only one minimum; graphs (a) and (b) are concave 

between x
1 

and x2, and x0  is the global minimum in each case, but 

graph (b) alone has an additional minimum at x3. 

A system consisting of Z (y) and a set of constraints may be 

defined to be weakly convex if, for all feasible vectors y1  and y2, and 

for all real numbers a, 0 a,< 1, Z (ayi+ (1-a)y2 	max ( Z (yi) Z (y,) ) . 

It is clear that (1) any convex system is also weakly convex, and 

(2) any weakly convex system has only one minimum (but the converse 

is not true for functions of more than one variable). In figure 3-7, 

function (a) is weakly convex but (b) is not. 

Program CONVEX was modified to test for weak convexity. 

The only change needed is to replace DOC by DOWC (degree of weak 

convexity) which is defined as max (Z(yi ),Z(y2) ) - Z(ayi+ (1-a)y2  ). 

The results of the modified program are given in table 3-1(b). None of 

the three problems proved to be weakly convex, although 8000 vector 

pairs produced only one counter-example for GP4. 

All these results suggest that the quadratic programming 

systems may have non-optimal local, minima, but there has been no 

proof. The QPS package actually provided a direct proof in the case of 
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Z( 

( a ) A non-convex function with only one minimum. 

Z(x) 

x 

( b ) A non-convex function with two minima. 

Figure 3-7. 

Multiple minima of non-convex functions. 
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NVR8 when it found a non-optimal local minimum. This is recorded in 

figure 3-8. 

. Negative Biasing  

It is easy to show theoretically that any quadratic programming 

system can be made convex by adding the bias terms of section 3.4 

with sufficiently negative coefficients. Program CONVEX has shown 

that very moderate negative biases are sufficient for the three problems 

considered here; e.g. no non-convexity was found for NVR8 with 

all b 	-1 . ex1 

Negative biases, of course, also tend to introduce more 

fractional variables into the QPS solution. The procedure given in 

section 3.5 (figure 3-5) appears to be marginally more successful if 

it is initialised with all biases equally negative; the value chosen should 

make almost all variables fractional. At least this prevents the 

possibility of starting from a non-optimal solution as given in figure 3-8. 

3.7 	DETERMINATION OF BIAS COEFFICIENTS 

The purpose of introducing bias is to produce a quadratic 

program which is at least weakly convex and also has an integer vector 

as its minimum. These two conditions are to some extent contradictory 

and success seems to depend on a fine balance between them. It has 

become apparent that some bias coefficients may have to be negative 
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1 	2 	3 	4 	5 	6 	7 	8 

A 	 .31 .08 .61 

B 	 .31 .69 

C 	.69 	.31 

D .10 .69 	 .13 .08 
= 

E 	.45 .55 

F 	 .55 .45 

G .48 .31 	 .21 

H 	.41 	 .59 

Z = 106.90. 

Figure 3-8. 

A non-optimal local minimum for NVR8. There is 

a better solution with Z = 101.57 . 

(See appendix B) 
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and some positive. The heuristic used earlier is inadequate - even if 

it does produce an assignment, it can't be proved optimal if the system 

is not weakly convex. 

This section derives formulae for the bias coefficients by 

considering  the partial derivatives of the objective function. Throughout 

the section the linear cost coefficients, c l  are ignored for the sake of 0<i  

convenience;  their inclusion would not present any analytical difficulty, 

but the algebra would become rather tedious. 

First consider the partial derivatives of the unbiased 

objective function. 

Z(X) 	 
0( pc< i 

f
0‹ 

d..x . x A 
j,8 	c<1. fi   

())c dz 
8x =a ›— 177 	d 	8x

Xk /8>c< 	c.<,8 	xod 

ax cx]. 

x 	+  	d,. c<<y ivk °O d  oc f ik 	i 	/3›x  jk X/3 	xieJ 

= 7 7 f 
Ile — 

dirj 

13 j

4  x i  
eVi iVk  

. az 	7 7- z_ f d..x, i.e. 7 -  = /  
°xoc i fiVet jVk °<fi 13 P J 

Thus the partial derivative of Z(X) with respect to the variable x is c4.1 

a positive linear combination of the other variables and is independent 

of x 	itself. ocl 

• If a particular x is varied while the other variables are 
oci 

fixed, Z increases linearly with xIf the only constraints were that oci 
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the variables could not take negative values then clearly Z would 

achieve its minimum value when all the variables were zero. To find 

a minimal assignment the constraints must be incorporated somehow. 

Substitution of Constraints  

and xAi  = 1 -..<5--Axo<i 	for all locations i - 

Then x=1-T- x. =2-n+E Ex .. These 2n-1 marginal Al  ivi Ai 	«/A ill 0(1  

variables can now be eliminated from the objective function and hence 

the equality constraints become implicitly incorporated in the objective 

function. 

After some simplification this substitution gives: 

Z . 	 1 +f -f )(d +d -d )x x 
c<VA .8:0( 	0.(A Afl 	il 	lj 	ij 

(0(10V(/3 1 j) 

+ 	 > f d x2 + FA D1 + 
04AiV1 °‹A 

(F -F )d + f <A  (D -D1  ) - nfo(Adii  

	

o<VA 	c< 	c 	i  

where F = > f 	and D.= 	 d . 
oc AVc<c<A9 

The result of differentiation is: 

D A  +f ,- 
= 	

f 	)(d +d -d ) x 	+ 	 + 
• kVA 

f. 
c(1-1 	 lj ij Aqj 

1 *( 6'1.1)V(c<Ii) 

3-10 
+ (Fo(  - F.A 	oz A 

)d + f 	(D D
1 	c4  
) - nf dil 

 . 

The equality constraints (3-3) of the quadratic program can 

be rewritten: 	x = 1 -1  
°<

x
i 	

for all machines o< 
3-9 
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Clearly the partial derivative of Z (X) with respect to x . is 

a linearly increasing function of x. and so Z (X) is a convex quadratic «f 

function of x.. This convexity ensures that Z as a function of x . does o<1 

not have multiple minima over the range 0 to 1, but it does not ensure 

that the minimum will be at an integer point. 

The minimum will be at 0 or 1 if the derivative has the same 

sign over the whole range from x = 0 to x = 1. The best way of 0(1 	ai 

achieving this is to force the derivative to be independent of 0(x  1 by 

suitable choice of bias coefficients. 

The total bias is B = a.x . (1- x .) 	Substitution for 
i ou 

the marginal variables according to formula 3-9 leads to: 

B= -b 	>x.x.->b.x.x.->b x.x ->b x2  + 
Al „e4ii 0c. 	j cse Ai c<1 /91 	0(ii 	0(1 c<j 	«i  oci od. 

+ 	(bx i+bAl 0( .+b + (2n-3)13 )x i  - (n-1)(n-2)bAl (x i 	 1 	.A1 o< 

where all summations exclude machine A and location 1. 

The partial derivative of the bias function is: 

813 
-3-7c 	 x . - 2b >  x . -2b >  x = -2bAl j)v(oc, i) (83 	(xlivi °<J 	Awo, /el 

3-11 
+ b .+b +b +(2n-3)b - 2(b +b +b +b )x 

0<1 Ai 0(1 	Al 	Al Ai 0<1 o<i 0(1 

This is a linearly decreasing function of x•. and so B is a concave 

quadratic function of pc 

The sum Z+B is to be made a linear function of x . and so o<1 
8(z+B) 
8 x 	must be made independent of x This can only be achieved 

oc1 
if 4f dil  - 2(bAl +bAi +bD<1 +b ) = 0. 0<.A  
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i.e. bcxi  = 2 fc.Adii  bAl- bAi- 	. 	 3-12 

For any choice of the 2n-1 marginal bias coefficients this 

formula gives the unique values of the remaining coefficients which make 

Z+B linear in each variable when considered alone. Subject to the 

constraints 0< oc. 
1 for o<VA and iV1 any local minimum of Z+B 

will be integer. But note that Z+B still contains products of variables 

and so is not a true linear function and need not be convex. 

Practical Techniques  

Bias coefficients calculated according to formula 3-12 could 

simply be used as input for the QPS quadratic programming package, 

but the above analysis suggests a more direct method for finding a 

minimal solution. 

Consider any 0-1 solution to the problem with the marginal 

variables removed. The partial derivatives of Z+B can be calculated; 

combining equations 3-10, 3-11 and 3-12 gives an explicit formula: 

8(Z+B) > 	 
,BSA 
(fi,j)V(0<li) 

 	( 
	

+f 	-f 	)(d 	+d 	-d 	)-2b 
cx.A 	Afi 	ece 	ij 	Al 

2b 	 - Ai igv,( 3 x
od. 

- 2bc<1 j4-ixo(i  + (F.<  -FA )dii+f,,,,A(Di-D1)- (n-2)(fc<Adi1
-2b

A1
) 

lei 	 3-13 

Now if the present solution contains any variable x .= 1 

8(Z+B) 
while 	>0, the cost of the solution could be reduced by changing 

ox  (x i 
x  to 0. Similarly if x = 0 and the derivative is negative, the cost 
ou 	 (xi 

would be reduced by setting xc.d.= 1. Changing xcxi does not change the 
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derivative with respect to xbut it may change other partial derivatives. 
CKi 

This change in the value of one variable is the basic step of 

the iterative procedure defined by a flow-chart in figure 3-9. At each 

step the objective function is reduced until a minimum is found; then 

all variables will be compatible with their derivatives. Since Z+B may 

not be convex there is no guarantee that this local minimum will be the 

global minimum, but it will be integral and it will be a solution which 

QPS could have produced, given the same bias coefficients. 

There are two ways in which the solution found by the iterative 

procedure might prove unsatisfactory. Firstly, it may not represent 

an assignment. The marginal variables have been removed from the 

problem and so the values imputed to them may be negative and the 

corner variable xA1 
 may be greater than one. 

The second fear is that, although feasible, the assignment 

may not be optimal because the objective function may be non-convex. 

The method allows a completely free choice of the 2n-1 marginal bias 

coefficients and it is hoped that this flexibility will overcome both these 

difficulties. 

Computational Experience  

How does this procedure perform in practice ? The 2-machine 

problem is trivial since the (partial) derivative is always zero, 

indicating that the two possible assignments have the same cost; if c . 

terms are introduced the procedure successfully chooses the cheaper 
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START 

     

  

Choose b 	b and b A1' c.<1 	i 

   

 

Calculate other coefficients: 
b = 2f d b -b 	 b (xi 	4:)<A il Al o<1 Ai 

   

   

1 

     

        

   

Choose initial 0-1 
solution (x .) al 

     

          

          

   

Set (oz., 1) , 
 B,2 

     

 

 

 

 

   

.) is minimal oci 
STOP 

   

Figure 3-9. 

Iterative procedure to minimise Z +B. 
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assignment. 

A 3-machine problem was analysed in detail manually with 

the marginal bias coefficients all set to zero. From all feasible 

initial solutions the procedure converged to one of three local minima. 

Of these minima, one was the true optimal assignment (Z=19), a 

second was feasible but non-optimal (Z=21) and the third was not 

feasible (Z=20, xB2=1= xc2  which means that xA2= -1). Adjusting the 

marginal bias coefficients successfully removed the infeasible solution, 

but an ad hoc analysis showed that no choice of marginal coefficients 

could remove the second solution without introducing an infeasible 

solution. 

The difficulty of infeasible solutions does not arise if the bias 

coefficients are used with the QPS package and the marginal variables 

are left in. Figure 3-10 shows the outcome of doing this for NVR8 

with all the marginal coefficients zero. The solution is not an assignment, 

but three points are worth noting. 

Firstly, the magnitude of the biases is much greater than was 

used with some success in section 3.5 . Here there are two coefficients 

of 80 whereas appendix B gives an optimal assignment without using 

values greater than 6. 

Secondly, the cost of the solution is almost 50% greater than 

the optimum. This indicates that the biased objective function is highly 

non-convex - not surprising in view of the huge biases used. 
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1 2 3 4 5 6 7 8 

48 36 24 12 36 24 12 0 

0 0 0 0 0 0 0 0 

40 30 20 10 30 20 10 0 

80 60 40 20 60 40 20 0 

0 0 0 0 0 0 0 0 

8 6 4 2 6 4 2 0 

80 60 40 20 60 40 20 0 

0 0 0 0 0 0 0 0 

1 2 3 4 5 6 7 8 

1 

1 

1 

1 

	

.625 	.375 

	

.375 	.625 

1 

1 

Z = 154.75 
	

(Optimum is 107. ) 

Figure 3-10. 

Result of using calculated bias with QPS for NVR8. 

Note: the marginal machine used here was H rather than A 
and the marginal location was 8 rather than 1 . 
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The third point concerns the variables themselves; most are 

integers but four are not. This means that the iterative procedure of 

figure 3-9 would have forced some marginal variables to be negative. 

The solution might have been as in figure 3-10 except for 

xE1=1= xF1= xE3 xF3 xH1= -1= xH3= xE8= X
F 8 and xH8,--- 2. Note that 

 

the fractional variables are exact fractions (3/8 and 5/8); this is 

probably a consequence of the partially linear nature of the biased 

objective function. 

When the marginal bias coefficient b
E8 

was changed from 

0 to -2, QPS found a proper assignment, but it was very far from 

optimal. 

The results of the formula for bias coefficients have proved 

so unpromising that no further research has been done to determine 

values for the marginal coefficients. A different approach seemed to 

be required, one which did not arbitrarily select one machine and one 

location and consider them different to the others. 

3.8 	PENALTY FUNCTION METHOD 

The previous section incorporated the equality constraints (3-3) 

into the objective function by eliminating some of the variables; 

unfortunately this also eliminated the inequality constraints associated 

with those variables. This section incorporates the equality constraints 

by adding a penalty function to the objective function in a similar way to 
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the bias function introduced in section 3.4 . 

P(X) is a suitable penalty function if its value is zero for all 

vectors satisfying the constraints but very large for all infeasible 

solutions. Then the minimum value of Z+P must automatically satisfy 

the constraints. A penalty function as described above is impractical 

because it must be discontinuous at the boundary of the feasible space. 

It proves sufficient to simply require P to be positive for all infeasible 

solutions. 

Since the objective function and the bias function are quadratic 

it is convenient to use the following quadratic penalty function: 

P(X) = 	 «i  _ 1)2  
0.< 

LTX1'- 1)2 
1 1 04  0( 

for positive 

parameters p and q.. This is clearly zero if 7 x = 1 for all 
1 (xi 

machines 04 and >--- x .= 1 for all locations i ; otherwise its value 
cx1 

is positive. 

The penalty function does not force the variables to be integers 

and so the bias function is still needed. The complete objective function 

to be minimised is now Z+B+P where 

Z = > > 	Yf d. x x 
0( pc,c 	cx/3 	«i igj 

B = > Y b . x . (1- x ) 
Q.< 	cx.1 cx1 	c<1 

and P is defined above. Note that the linear cost coefficients c . are 
0(1 

again being omitted; they add neither difficulty nor interest to the 

following analysis. 
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The partial derivatives of each of these 3 components are: 

az 
)37- =  	f d..x 
oci 	/64,x j i °(f3 1.1 igj 

= b .1(1-2x 0(  .1) 

	

ax . 	o<  cx1 

OP 
2q.( and a—x  = 2p (>  x 	1) 	 1) o< 	 ie  oci 

As in the previous section it is useful if the bias coefficients and penalty 

parameters are chosen to make the complete objective function linear 

in each variable when considered as a function of that variable alone; 

i.e. the partial derivative of Z+B+P with respect to x. should be o<1 

independent of x. This requires -2b + 2p + 2q.= 0, or more . (x i 	0( 

. simply, bc<i = po<  + qi  

This linearising choice of bias coefficients ensures that any 

minimum of the complete objective function, subject only to 	x . 1, cgi 

will be a 0-1 solution. An iterative algorithm analagous to that proposed 

in the previous section can be used to find such a minimum. A flow-chart 

for the method is given in figure 3-11. The formula for the partial 

derivatives is 

8(z+B±p) 

	

dx 	 f d.. x + 2p 	x 	2q."2" x - p - q. . 3-14 

	

fivcx  j7i cd9 1,) 	j 	cxj 	oci 	iii,vcx 	i oci 

3.9 	RESULTS OF PROGRAM "PENALTY" 

The penalty procedure was programmed in FORTRAN to be 

run interactively on the College's CDC 6400 computer. The interactive 

aB 



Choose parameters po<  and qi1 

Set (cx, i) = (A11)  

d(z+B+p) 
Calculate (equation 3-14) 

oci 

yes 

yes 

no 

Increase 
0.< by 1 
and set 
i = 1 

no 

All 
no 	machines 

considered 

Choose initial 0-1 
solution (x 

START 
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yes 

.) is minimal 0(1 
STOP 

Figure 3-/1. 

Iterative procedure to minimise Z + B+ P. 
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facility enabled the user to alter the penalty parameters from a terminal 

after a local minimum had been found, and also to specify different 

initial solutions. 

The basic procedure defined by figure 3-11 would be inefficient 

because it calculates many derivatives unnecessarily and each derivative 

is the sum of approximately n
2 terms. Program PENALTY starts with 

the penalty parameters all zero and uses xcxi  = 0 as its initial (infeasible) 

solution; hence the derivatives at the beginning are simply equal to c cxi 

(PENALTY includes the linear cost coefficients). Derivatives are never 

completely recalculated, but merely adjusted whenever a variable 

changes or the penalties are altered. 

Figure 3-12 gives an outline of the program's logic. The user 

controls execution by typing key-words of which only the three most 

by 3  
basic are shown in the flow-chart. To increase pBAand decrease q1 

by 1.7, for example, the user would type "alter B 3 1-1.7". Key-words 

which have been omitted from the flow-chart control the display of 

information to the user. An example showing the use of the program 

is included in appendix C. 

The success of the program obviously depends on the penalty 

parameters used. If the parameters are too small some of the 

constraints may be broken; if too large the objective function becomes 

very non*-convex and many non-optimal local minima are created. 

With a little experimentation it is easy to find assignments 

with costs within 10% of the optimum. Even for large problems with 



Set x (xi 

Change specified variables 
from 0 to 1 or vice versa. 
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Remove no label 
from x 

yes yes no 

A minimum 
has been found. 
STOP if 
desired. 

Read 
next key-word 
and branch 

Set x .=0 (xi 
> 

Adjust Z and any affected derivatives. 
If derivative changes sign, label its 
variable as potentially changeable. 

Increase or decrease 
specified pc, or qi  by 
specified amount. 

Adjust Z and any affected derivatives. 
If derivative changes sign, label its 
variable as potentially changeable. 

"change" 

4, 

"alter" 

START 
Read problem data 

Figure 3-1.2. 

Flow-chart of program PENALTY. 
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as many as twenty machines the computer time required is very small, 

usually less than ten seconds. Hence this program is at least a useful 

heuristic, even if it proves impossible to determine penalty parameters 

which produce the optimal solution. 

Satisfactory penalties were found for a 2-machine problem. 

From any of the 16 feasible and infeasible initial solutions the program 

reached the optimal solution using the penalties pA= 10, pB= 9.9, 

q1= 9.85 and q2= 10. The details of this problem and its convergence 

to the optimal assignment are given in figure 3-13. 

For larger problems such as NVR8 and NVR12 the program 

found optimal assignments after the penalty parameters were selectively 

altered several times. But if the parameters were kept fixed and a new 

initial solution used, the program sometimes converged to a different 

solution which could be non-optimal or infeasible. This indicates the 

non-convexity of the function. 

3.10 	CALCULATING PENALTIES WITH L.P.  

The penalty parameters must be large enough to make minimal 

solutions feasible, but as small as possible to make the complete 

objective function convex. This suggests that mathematical programming 

might be used to choose the parameters. The objective is to minimise 

V = >_pa  + 7q. 
i 

and the constraints must eliminate infeasible solutions. 

3-15 



23.9 

23.85 

19.9 

19.85 
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Problem data : FAB ' =3 d12  =5 cA1  =4 cA2  =6 CB1  = =cB2. 

Penalty parameters used : pA=10 = q2, pB= 9.9 , q1= 9.85 . 

Figure 3-13. 

This 2-machine problem was solved by PENALTY. The "tree" shows 

the costs of all 16 solutions and how they converge on the optimum (A1 B2). 
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Suppose the cost of an optimal assignment is known, or at 

least suspected, to be Z*. If a solution X is infeasible then it can be 

eliminated by the constraint 

Z(X) + B(X) + P(X) > Z* 
	

3-16 

This constraint can be written in the form 

r  + > s 	+ 	q. > 	 a pa. 	1 1 

where the coefficients r, s and t. depend only on the problem data and 

the solution X. Hence constraint 3-16 is linear and so function 3-15 
4 saris fair 

and constraints of the form 3-16 together constituteita linear program; 

its solution gives the parameters to be used by program PENALTY. 

But the number of constraints is quite immense - one for 

every infeasible solution. Many of these constraints will be dominated 

by others and so perhaps quite a small subset of the constraints will 

suffice. Figure 3-14 describes a method for selecting a satisfactory 

set of constraints. 

This method successfully found the optimal assignment for GP4 

and a good sub-optimal assignment for LA7. NVR8 could not be solved, 

however, because after six iterations the linear program had no 

feasible solution. A 3- nachine problem, MG3, was subsequently 

constructed which also gave incompatible constraints. The data for 

this problem is included in appendix A. 



Use program PENALTY with 
these parameters to find a 
local minimum of Z+B+P. 
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START 

Choose any 2n constraints. 

Solve L.P. for px  and q.. 

Calculate the constraint 
corresponding to this 
solution. Add the 
constraint to the L.P. 

Use a dual method to 
solve the augmented 
L.P. for p,„(  and qi. 

STOP] 

Figure 3-14. 

Determining penalty parameters with linear programming. 
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3.11 	CONCLUSIONS  

This chapter has expressed the quadratic assignment problem 

as an integer quadratic program. Standard quadratic programming 

algorithms can only solve continuous convex programs, but it was hoped 

that the special nature of the formulation would suggest a suitable 

technique. 

Several methods were proposed, of which the most successful 

modified the objective function to incorporate the constraints. Some 

techniques produced integer solutions which were not optimal because 

the function was not convex. Others were able to produce a unique 

minimum which was fractional. Still others found unique, integer 

solutions which were not feasible. No method was able to combine all 

the necessary attributes to find assignments which could be proved 

optimal. 

These techniques can be useful, even though none of them can 

guarantee optimal assignments. The methods which give feasible, 

integer solutions usually find good assignments; program PENALTY is 

an example of such a heuristic which has the advantage of very fast 

computing time. 

Even methods which yield fractional solutions are useful if the 

system is convex. The cost of such a solution is a lower bound on the 

cost of an optimal assignment and could be used in a branch-and-bound 

algorithm. 
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CHAPTER 4 

TREE-SEARCH ALGORITHMS  
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4.1 	WHAT IS TREE-SEARCH ?  

Chapter 2 described several "tree-search" or "branch-and-

bound" algorithms for the quadratic assignment problem and this chapter 

proposes a new one with a group of variations. It may be useful to begin 

with a brief discussion of tree-search techniques in general. A 

mathematical treatment of this subject has been given by Mitten (48) and 

Lawler and Wood (41) have compared some of its early applications. 

Tree-search has been most frequently used for combinatorial 

optimising problems, like the quadratic assignment problem, for which 

there is a large but finite number of feasible solutions. The object of 

tree-search is to partition the set of feasible solutions into a collection 

of disjoint subsets; this partitioning is to be done in such a way that one 

of the subsets is singleton and the cost of its element can be shown to be 

better than all the solutions in each of the other subsets. The solution in 

this singleton subset must therefore be optimal. 

Henceforth assume that optimising means minimising. Proving 

that the cost of the singleton, Z
0 
 say, is less than the cost of all solutions 

in a particular subset is equivalent to showing that Z
0 
 is a lower bound 

on the costs of solutions in that subset, or that Z
0 
 is less than such a 

lower bound. Calculation of lower bounds plays a major part in any 

tree-search algorithm and these bounds should be as large as possible. 

The partitioning of feasible solutions into subsets usually proceeds 

in several stages or "levels". First the feasible solutions are partitioned 
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into a small number of subsets, often only two. Lower bounds are 

calculated for these subsets, which are considered as being "nodes" at 

level 1 of a "tree". Taking account of the bounds, one of the subsets is 

then partitioned into smaller subsets which become nodes at level 2. 

Lower bounds are calculated for each new node and the partitioning process 

continues until an optimal solution is found and proven optimal. 

This repeated partitioning is conveniently represented as a 

directed graph as in figure 4-1. In graph theoretic terms this graph is 

a tree and it also resembles an inverted tree in the botanical sense; hence 

the name "tree-search". Partitioning a node is known as branching and 

this explains the alternative name "branch-and-bound". 

At any point during the branching process those nodes which 

have not been partitioned are called "pendant" or "hanging" nodes. Any 

singleton subset is obviously pendant and the actual cost of its solution is 

usually used as the lower bound for the node. The solution in a singleton 

node is optimal if its cost is less than or equal to the bounds on all other 

pendant nodes. 

A hypothetical problem which has only 20 feasible solutions is 

solved using tree-search in figure 4-1. The first partitioning is into 

three subsets of unequal size. Node 3 has the smallest bound and so 

appears most likely to contain a minimal solution; hence the next 

partitioning is of this subset. Node 5 is singleton and the cost of its 

solution is 77, which is less than the bounds on nodes 4 and 6; these two 

nodes may therefore be discarded. The next branching is from node 2 
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Level 0 

Level 1 

Level 2 	 73 	 81 

- - - 

Level 3 

Figure 4-1. 

Tree-search method for a problem with 20 feasible solutions. 

The number beside each node is its lower bound. The numbers 

on the branches show the order in which the nodes were generated. 
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and this eventually leads to the singleton node 10 whose cost is less than 

the bounds on all other pendant nodes. Hence the optimal solution is 

number 8 with cost 75. 

There are two types of strategic decisions needed for any tree-

search procedure. The first concerns branching: the rules for partitioning 

a subset and the order in which nodes are considered. The second 

decision is how the bounds are to be calculated for each node. Both 

decisions can have a profound effect on the computational efficiency of the 

method, but the quality of the bounds is usually the more important factor. 

In figure 4-1, for example, if the bound on node 1 had been 74 instead 

of 76, then many more nodes might have been generated. On the other 

hand, branching from node 1 before node 3 or 2 might also generate 

many more nodes. 

4.2 	BRANCHING STRATEGY 

There are many decisions to be made concerning branching, 

which determines the nature of the tree. Into how many subsets should 

each node be partitioned? Should this be fixed or vary with the level of 

the node ? Should there be any symmetry between subsets of the same 

node ? In particular should all subsets at the same level of the tree 

contain the same number of solutions ? Since it is not practical to 

enumerate the elements of a subset, how are they to be characterised ? 

Node 1 of figure 4-1,for example, was characterised by its elements 
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1 
being odd. Several authors (21,22,25,39) have partitioned each node 

at level k into n-k nodes at level k+1, with each branch being 

characterised by the assignment of a specific machine to a specific 

location. Thus a particular node at level 1 might consist of all solutions 

for which machine A is assigned to location 7, and a node at level 3 

might consist of all solutions with A assigned to 7, B to 1 and C to 4. 

This branching policy is considered symmetric (see figure 4-2(a) ). 

Other authors (20,38) adopted an asymmetric, binary branching 

policy for which each branch is characterised by the assignment or the 

non-assignment of a specific pair of machines to a specific pair of 

locations. Then a node at level 3 might consist of all solutions for which 

the machines A and B are assigned to locations 3 and 5 (in either way), 

E and G are not assigned to 1 and 4, and B and D are not assigned to 

5 and 6. A possible tree for this strategy is shown in figure 4-2(b). 

The branching used for this investigation is also binary and 

asymmetric, but is more closely related to the first strategy described 

above. A specific machine o< and location i are chosen for each 

branching; the node is then partitioned so that all solutions which assign 

machine o< to location i are in one subset (called an "inclusion" node), 

and all solutions which assign machine a to any other location are in the 

other subset (called an "exclusion" node). 

The selection of the particular machine and location depends on 

the lower bounds used and will be explained in section 4.4 . In terms of 

quadratic programming, the solutions with x .= 1 are in the inclusion c<1 
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(a) A multi-level symmetric tree. 

(b) A binary symmetric tree. 

A horizontal bar indicates that the pair of 
machines is not assigned to the pair of locations. 

Figure 4-2. 

Typical trees resulting from different branching strategies. 
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node and those with x 	0 are in the exclusion node. 
cxi 

This partitioning rule determines the structure of the resulting 

tree, but does not state the order in which the nodes of the tree should be 

generated. The rule followed for figure 4-1 was to always branch from 

the pendant node with the smallest lower bound. This is sometimes known 

as a breadth-first search because all branches are explored simultaneously. 

It ensures that only the minimum number of nodes are generated to find 

and prove an optimal assignment. One of its disadvantages for computer 

applications is that a record must be kept of all pendant nodes and there 

may be many thousands of them. 

The search rule used here is depth-first, for which one of the 

most recently generated nodes is always the next to be partitioned. 

Nodes are produced two at a time and so there is often a tie when deciding 

which node is most recent; in this case the inclusion node is given 

priority because it contains fewer solutions than the exclusion node and 

so is likely to produce fewer nodes below it before finding an optimal 

assignment or calculating bounds greater than a known assignment. 

Figure 4-3' shows how the depth-first rule might explore a tree 

for a 4-machine problen.. The first assignment found is (B3 A4 Cl D2). 

If the cost of this is less than the bounds on nodes 4 and 6 then all five 

nodes on the right of the -tree can be discarded and only a note of the best 

assignment found so far need be kept. Next the branches below node 7 

are explored. If the bounds on nodes 10, 11 and 12 are greater than 
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Figure 4-3. 

A tree for a 4-machine problem. 

The numbers above each node show the order of branching. 

The number of solutions in each node is given below each node. 



-89- 

the best known assignment, this new section is discarded; if not, the 

improved solution (node 11 or 12) replaces node 5 as the best assignment 

and the new section is still discarded. Thus only a small number of 

nodes need be recorded at any stage of the search. 

4.3 	THE BASIC BOUND  

An excellent review by Pierce and Crowston (58) has shown that 

all the proposed tree-search algorithms for the quadratic assignment 

problem use only two fundamentally different bounds. This paucity is 

investigated in the following chapter . 

The present algorithm uses a modification of the bound suggested 

independently by Lawler (39) and Gilmore (21). This bound is always 

greater than or equal to the other bound but requires considerably more 

computation. This extra calculation is considered justified because, as 

was stated in section 4.1 , tree-search methods are critically dependent 

on the quality of the bounds. 

First a lower bound on the overall problem (i.e. the node at 

level 0 containing all assignments) will be developed; this is exactly 

equivalent to Lawler 's bound. Then it will be generalised to deal with all 

the nodes involving both the inclusion and exclusion of machine-location 

pairs. This is necessarily different from Lawler 's bound because of the 

different branching strategy. 

Let I), e. and /60  represent assignments. Then, by definition, 
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for any assignment r , 

Zy) = 	( co(f)(cx)  + #8>>o< C  d 

= 7  ( cmox) 	1,80<fc<fi d p(c<)10G8 ) 

, (co,
r
,,x) 	min ( 	 f d 

p
,
oe 	

) 

	

o< 	 pu  AV0( (xi8 	p ) 
/0"(04 )=/0(0() 

	

min 
,,t 	o< 

(c«  ,(«) + min (  	dp,(00e„Ge) ) 

f"(04 )=0'(c) 

This last expression is independent of 	and and is clearly a lower 

bound on the cost of all assignments; it will be denoted by L and referred 

to as the basic bound. It is not at all obvious that L can be easily 

calculated and some notation must be introduced to explain how it can be 

done. 

Let 	a' = min ( 	f d. oq. 10 	vc< 04,8  p(fi) 
1.0( -0=i 

and a 	= c 	+ -2-a 	. 
CA 1 	0(1 	C>q 

Now L= min( 	a(cx) ) and this minimisation is simply a linear 

assignment problem of dimension nxn. It can be solved efficiently using 

the Hungarian algorithm for example (36,70). 

The only remaining computational difficulty is calculating a' 

for n
2 

values of (cx, 1) according to formula 4-2. This minimisation is 

also a linear assignment problem, this time of dimension (n-1)x(n-1) 

4-1 

4-2 

4-3 
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since p(o<)-- i is fixed. 

Physically, //'"  f d. 	is the cost of flows to and from 4,  so(  0<fi 

machine D< in location i ; ' . is the minimum value of this cost when all 
c<1. 

possible assignments of the other n-1 machines are considered. 

Several authors (e.g. Gilmore (21)) have shown that this minimum is 

achieved when the machine with the smallest of the n-1 flows from 

machine 0.4 is assigned to the location furthest from location i, the 

second-to-smallest flow to the second-to-largest distance and so on. 

Thus a', can be calculated very easily. Simply rank the n-1 «1 

flows from machine « in increasing order, the n-1 distances from 

location i in decreasing order, and then sum the products of corresponding 

numbers. This ranking procedure is much faster than solving a linear 

assignment problem, even the definition of which requires (n-1)
2 

multiplications. 

The flow-chart in figure 4-4 summarises the procedure for 

calculating the basic bound on all the solutions of the quadratic assignment 

problem. Note that only 2n sets of n-1 numbers need be ranked to find 

the n2 values a' . 0(1 

The Bound for General Nodes  

A tree-search algorithm does not, strictly speaking, require 

a bound for the level 0 nodes, but it was convenient to explain it in detail 

for that simplest case before generalising. 

A node is characterised by the assignments it includes and those it 



no Increase 
o< by 1. 

yes 

Have 
all machines 
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Set i=1 
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i by 1. 

Set i=1 
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i by 1. 

Rank tf,,v? 	V O.<J 
in increasing order . 

START 
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Evaluate ac,c1  i  as the sum 
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of flows and distances. 

Set a .= c 
0(1 
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yes 
Solve the L.A.P. defined 
by matrix A= (ac4). 
Set L= minimum cost. 

I STOP 1 

Figure 4-4. , 

Flow-chart to calculate L, the basic bound on all solutions. 
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excludes. For any node let 

I = f (0‹, i) imachine c< must be assigned to location i 	and 

E={(c<,i) I machine cx must not be assigned to location i . 

I and E are called the inclusion and exclusion sets respectively. The 

number of machine-location pairs in the inclusion set is III . Standard 

set notation will be extended so that oz.E. I means that (c<, i)E I for some 

location i, etc. 

For any assignment, 	which satisfies the inclusion and 

exclusion sets I and E : 

z( lc)) 	(c 
r( 	›-  f 

c,<% g 
d 

0-c ocx) 	Av 	p(00/0(.6) ) 

,e1EI 

+ > >f d 	
(x 	

f d 	+ 
o< I 	G6? f(c<V) 	p 	 cx/g P(°)/9(,) o<g 

+.<4  g 	d  
.<41 	f(')P(/6 ) 

c 	, 

=g(I) + 7 c(i) 
cor .4 /°(°<) 12; Cgd/oMp(g) 

fivo( 
where g(I) = 7- (c    f d c<EI 040(c)c) 	AVo<  cA/51  7-°(c)M) 

'el 

and C (I) 	of  + 	 f
c<fi 

d D(/6)  
1 	ifG )  • 

The expression 4-4 is exactly in the form of a constant, g (I), 

plus a quadratic assignment problem involving (n- II, ) machines and 

4--4 

4-5 

4-6 
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locations. Note that formulae 4-5 and 4-6 are well-defined because 

o(o<) is known for c< e I. 

The restrictions of the inclusion set are automatically enforced 

by formulae 4-5 and 4-6, but the exclusion set has been ignored, This 

can be rectified by defining : 

C (I ,EL . = f c.° if (cx i )  E 	 4-7 
LC(I)(x 	((x, i)E i 

To summarise, a node with inclusion and exclusion sets I and 

E can be used to define a new quadratic assignment problem which will 

be called P(I,E). Its machines and locations are those not present in I, 

and its objective function is 

Z(f),I,E)   C(1 ,E)04/0(0.0  + 	
oc ' 
f d 

,d> e P(tx)/0C8  

where all summations exclude machines in I. If the basic bound on 

P(I ,E) is L(P(I,E)) then the basic bound on the node (I,E) is 

L(I,E) = g(I) + L(P(I,E)) 	where g(I) is defined by 4-5. 

4.4 	PROGRAM "LOCATE"  

A FORTRAN program called LOCATE was written to implement 

the tree-search algorithm. Figure 4-5 gives a general flow-chart of 

the program's logic. Before discussing some features of the program 

which are omitted from this flow-chart, there are two steps included 

in figure 4-5 which need explanation. 

One point is the deletion of a node "and all its dependents". 
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Bound Z* 

Read problem data 

Create level 0 node and 
label it active. Set Z*--c›.0 

Determine I and E for active node 

Evaluate assignment es 

no 
Calculate  b oundj 	Better 

than Z* 

Record 
improved 

assignment 

no 

Determine 
branching 
using the 
optimal 
L.A.P. 
matrix 

Define 
exclusion 
and inclusion 
nodes. Set 
inclusion 
node active 

T 

Delete active 
node and any 
dependents 

Any 
nodes 
left 

STOP 

es 
Make most 
recent pendant 
node active 

Figure 4-5 

Overall flow-chart of program LOCATE. 
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Basically, a dependent node is one which relies on the active node to 

justify its existence. The tree in figure 4-6, for example, has two 

dependent nodes, 6 and 7. If active node 8 is to be deleted then 6 and 

7 are also deleted and node 5 becomes active; unless an improved 

assignment has been found recently such that the bound on node 4 

exceeds Z*, and then nodes 5, 4, 3 and 2 would also be dependents and 

would be deleted, making node 1 active. 

A more fundamental vagueness in figure 4-5 concerns the rule 

for branching. The objective is to branch so that the cheapest assignment • 

from the active node is included in the inclusion node. This is equivalent 

to saying that the bound on the new exclusion node should be as large as 

possible. As implied on the flow-chart, it is possible to estimate this 

bound without extensive calculation by inspecting the matrix left after 

solution of the linear assignment problem for the bound on the active node. 

Figure 4-7 demonstrates how branching is done for a node of 

a 6-machine problem. The Hungarian algorithm is applied to the matrix 

A and it subtracts constants from the rows and columns of the matrix 

until a "zero-cost" assignment is found: for matrix A' the assignment 

(A3 C4 D2 F6) is zero-cost. Consider the result of excluding any 

machine-location pair from this assignment. If D2 were excluded, 

for example, the best location for D would be 4 and the best machine 

for 2 would be C: The cost of the assignment would therefore be at least 

1+3=4 greater than the original cost. The value 4 is called the "penalty" 

for excluding D2. 
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Figure 4-6. 

A partially enumerated tree showing dependent nodes. 
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g(I) = 28. 

A 
C Original matrix, 	A = D 
F 

A-7 
C After solving L.A.P. 	A'= D 
F 

I ={(13,5),(E,1),j, 	E={(C,3),(C,6),(D,5),(E,3),(F,2)1, 

2 	3 	4 	6 _ 
16 10 25 21 
14 c>0 16 DC' 
9 19 15 13 

oc 12 14 11 

[ 

2 	3 	4 	6 
0 	11 101 

3 	00 0 00 
0 	9 	1 	2 
cx, 2 	0 	0 

L(I,E) = 28 + 46 = 74 

The critical assignment is (A1 3) with penalty 7+2=9. 

If (A,3) is excluded and the L.A.P. re-minimised, 

A" = C 
D 
F 

A0 
2 

3 
0 
o,  

3 
04  
00 
5 
0 

4 
4 
0 
1 
2 

6 
1 
00 
0 
0 

The bound on the new exclusion node is 

L(I,EUf(A,3)}) = L(I,E) + 11 = 85 . 

The next critical assignment is (F 1 3) with penalty 5+0=5 etc. 

Figure 4-7. 

Example of penalty calculations for branching. 
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Penalties can be calculated for each of the four machine-location 

pairs and the largest penalty determines the next branching. In this 

case the maximum penalty is 9 for A3. The actual bound for the new 

exclusion node can be calculated by setting the A3 matrix element to 

infinity and re-minimising with the Hungarian algorithm. 

Note how easy it is to calculate the bound for an exclusion node 

when the bound for the active node above it has just been determined. 

This process can be extended to calculate a long string of exclusion node 

bounds by making minor changes to the matrix. Program LOCATE does 

this automatically. 

Interactive Use of Program  

No special effort was made to code LOCATE very efficiently 

because flexibility was considered more important, flexibility to allow 

different search strategies and different bounds to be incorporated 

without extensive reprogramming. In keeping with this experimental 

philosophy the program can be run interactively from a computer 

terminal so that the user can both watch and direct the search. 

The user can specify how often he wants to interrupt the program: 

e.g. after a specified number of nodes have been generated or when an 

improved solution is found. Having interrupted, he may change the 

active node or delete some nodes before continuing. Or he may be 

content to simply print out the current best assignment and then terminate 

the search. A complete guide to interactive use of LOCATE can be found 
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in appendix D with an example. 

4.5 	RESULTS FOR THE BASIC BOUND  

The three small problems considered in chapter 3 were 

solved easily using LOCATE. Statistics for these and seven other 

problems are given in tables 4-i and 4-2. Data for all problems are 

given in appendix A. The tree created for LA7 is given as an example 

in figure 4-8. 

Two trends are very noticeable in table 4-1. Firstly, the 

computation time increases very rapidly as the number of machines 

increases. Very roughly it appears that each additional machine doubles 

the number of nodes generated and almost trebles the time required. 

The second obvious trend is that computation time is highly 

dependent on the data used as well as the number of machines. In 

particular it seems that problems with all c equal to zero are 
(xi 

considerably more difficult than problems with random positive cXi .  

The NVR problems have zero c while for the MG problems the oci  

are random, positive, with mean and variance chosen so that the linear 

and quadratic components of the objective function have approximately 

equal weight. 

To investigate this phenomenon directly, two new problems 

were formed from MG10 and NVR12; problem MG1OZ is MG10 with 

c = 0 and NVR12P is NVR12 with c. equal to random positive numbers. 
«1 	 o<1 
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Problem Number of Nodes Time (secs) 

GP4 9 0.069 

LA7 19 0.356 

NVR8 316 5.421 

TSP10 354 9.370 

MG10 214 9.479 

MG12 500 32.752 

MG1OZ 1398 52.109 

NVR12P 2344 113.186 

NVR12 _11148 481.678 

MG14 12586 1115.978 

Table 4-1. 

Basic statistics for LOCATE with ten problems. 
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Problem First 
Solution Optimum Number of Nodes 

before optimum 
% of Nodes 
before optimum 

GP4 403 403 6 66.7 

LA7 559 559 12 32.4 

NVR8 107 107 14 4.4 

TSP10 23 22 53 15.0 

MG10 1092 1092 18 8.4 

MG12 1241 1241 22 4.4 

MG1OZ 965 915 846 60.5 

NVR12P 489 470 89 3.8 

NVR12 293 289 397  3.5 

MG14 1886 1873 147 1.2 

Table 4-2. 

Analysis of when the optimal assignment is found. 
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586 G4 559 

(A4,G7) (A7) 

Figure 4-8. 

Tree for a 7-machine problem, LA7. 

(It is largely coincidence that C1 appears twice on 

level 2; similarly C5 on level 3.) 
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In both cases the problem with positive c . was solved approximately cxi 

five times faster than the same problem with zero «i.  

But the data-dependence of the algorithm's efficiency cannot be 

properly described in terms of c . alone. The travelling salesman 

problem, TSP10, has zero cbut was actually solved slightly faster cxi 

than MG10. 

The transformation due to Burkard described in section 2.3 

can introduce positive c.1  but experimentation has shown that it does o.1.< 

not improve the efficiency of the tree-search. Applying the tree-search 

algorithm to the transformed problem, which has smaller flows and 

distances but larger linear costs, proved just as likely to increase 

computation time as decrease it. 

Table 4-2 shows that the first assignment found by LOCATE 

is often optimal. If it is not, then the first assignment is usually very 

good and the optimal assignment is found near the beginning of the search. 

This situation is typical of depth-first searches (41). 

Table 4-3 and figure 4-9 give an analysis of the computing 

time used for each phase of the program. The smallest problems are 

untypical, but the larger ones are quite consistent. Over 80% of the 

computing time is spent calculating bounds for nodes while they are active 

and this time is divided roughly equally between calculating the elements 

of matrix A (using formulae 4-2 and 4-3), and solving the linear 

assignment problem for this matrix. 
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Problem 
Calculating 
matrix A 

L. A. 
Active node 

P. 	for : 
Exclusion node 

Overheads 
& branching Total 

GP4 0.013 0.013 0.006 0.037 0.069 

LA7 0.096 0.083 0.057 0.120 0.356 

NVR8 2.777 1.335 0.505 0.804 5.421 

TSP10 5.848 1.472 0.642 1.408 9.370 

MG10 3.798 4.188 0.697 0.796 9.479 

MG12 14.710 13.429 2.158 2.455 32.752 

MG1OZ 21.751 22.586 3.205 4.567 52.109 

NVR12P 62.723 30.779 8.960 10.721 113.183 

Table 4-3. 

Time (seconds) used by each section of program LOCATE. 



Overheads & branching 

L.A.P. for exclusion nodes 

GP4 MG12 NVR12P TSP10 MG10 MG1OZ NVR8 • LA7 

Figure 4-9. 

Percentage of time used in each section of program LOCATE. 
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These two phases must be the target for any improvement in 

the coding of the tree-search algorithm, as opposed to improvement of 

the algorithm itself. A small improvement in calculating the matrix 

elements was achieved by ranking the flows and distances from each 

machine and location only once, before any nodes are created. Note 

the efficiency with which bounds for exclusion nodes are calculated by 

modifying the optimal matrix for the active node and then re-minimising. 

4.6 	MODIFIED BOUNDS  

Figure 4-9 shows that approximately 40% of computation time 

is used to solve linear assignment problems, the solutions to which give 

lower bounds for nodes of the tree. But it is well-known that a good 

lower bound on the solution to a linear assignment problem can be found 

by subtracting constants from each row and column of the matrix until 

each row and column contains a zero but no negative elements; the bound 

is simply the sum of the constants used. This bound is also a bound on 

fi 
the quadratic assignment problem. 

The tree-search program was modified to use this simpler 

lower bound, which is clearly weaker than the basic bound and so the 

number of nodes generated by the modified algorithm is greater than 

before. But on the other hand, the time needed to analyse each node 

is reduced by nearly 40%. Statistics for this weaker bound are given in 

table 4-4; they show a definite trend in favour of using the basic bound. 
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Problem Number of Nodes Time (secs) 

GP4 12 0.059 

LA7 34 0.488 

NVR8 523 6.388 

TSP10 494 9.790 

MG10 558 12.729 

MG12 1375 48.866 

MG1OZ 2651 55.753 

NVR12P 4906 151.282 

Table 4-4. 

Statistics for LOCATE with weakened bounds. (c.f. table 4-1) 
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A Bound Directly Incorporating Linear Costs  

Consider the physical interpretation of the formulae 4-2 and 

4-3 in section 4.3 . 

i .e . 	a' = min ( 	 f
0  d ipkp „ ) ) ,ego< <,6  

/°((x)=i 

and 	a = c . + 	. c.o. 	Da 	Do. 

(4-2) 

(4-3) 

The first expression is a lower bound on the cost of flows to and from 

machine o< if it is placed at location i. Since c. is the linear cost oc]. 

incurred by such placement, a is a lower bound on the total cost of (xi 

the placement. 

But 4-2 completely ignores some possible effects of the linear 

costs. Suppose, for example, that (cx, 	(A l l), fAB  is the smallest 

flow from A and d12 is the greatest distance from 1. Then formula 

4-2 automatically places machine B at location 2, even though cB2 may 

have a very large value. The subsequent inclusion of cB2 in the formula 

for aB2  does not remedy the low value calculated for am. 

Remembering that there are n-1 machines interacting with 

machine A l  it can be said that the basic bound associates the quadratic 

cost fAB d12 with the linear cost cAl  /(n-1) when a' is being calculated, l 

B but with c  -2/ (n 	B -1) when a'2  is being calculated. A more rational 

scheme would use (cAl  + cB2  )/2 (n-1) in both cases. The derivation of 

the lower bound in section 4.3 can now be modified with this in mind. 
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For any assignment p, 

Z p) = 	
(ccxr‘-‘ + 
	f d 

1 ,Zocc<fi (c)()QM 

	

\ 1 	 (f 	
1 
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p, 	',xfAcK) + 	min 	Z(f,<  d , 	1 

P ) nCe) + 	c 
ri,(0<)=.p,(e,),e3vo( 	(0<f) 	n-1 igidu)).1).1 

Define a' = min o1 

f(a)=i 

[ 	a. 	+ 	c  1 	_ 
.3v„<  tx,e 110(4') 	n-1 fie(f3) )1 4-8 

and a = lc + la' 
00. 	2  0<i 	2 Oa • 

Now, as before, L = min 
o< 

is a lower bound on the 

4-9 

quadratic assignment problem. 

This bound may be expected to prove better than the basic 

bound. It is especially important for nodes far down the tree because 

each level of the tree increases the linear costs - inclusion nodes by 

adding  flow-distance products and exclusion nodes by introducing  infinite 

costs. 

The minimisation in formula 4-8 cannot, unfortunately, be 

solved with the simple ranking  procedure used for formula 4-2. It is a 

linear assignment problem of dimension n-1 and could be solved by a 

general method such as the Hungarian algorithm. This would have to be 

solved for each of the n
2 elements of matrix A and the computation 



required was considered too great to incorporate into the tree-search 

program. 

A Bound using  Restricted Ranking  

The argument used to derive formulae 4-8 and 4-9 can be 

directly generalised so that the coefficient of c 	is t rather than 1, (xi  

where the parameter t may take any value between 0 and 1 inclusive. 

The formulae then become: 

2 al.= min 	d 	0,)  
n-1 	5/0( 'Ai) ,!40( c<A ifG9) 

and a .= tc .+ 
c< 1 	O( 1 	o<1 

4-10 

4-11 

Suppose these formulae are being  applied to a node with an 

exclusion set E t 0 ; i.e. there is at least one machine-location pair 

(,..0(,81j) for which 	. i9) cannot be j . The notation /9---E 5J = and so p( 
 

will be taken to mean that assignment p  -atisfies all the exclusions of 

the set E. Then, for any t between zero and one, it is clear that 4-10 

can be re-written as: 

a '. = min [ 	( f
c'(  d 
	

4.2(1-t)  
cx1 	p 	v„c  fi if ) 	n-1 ,6? p(6'))]* 

/2(c4)=i 
/0"E 

Taking  the limit t 	1, the equations revert to almost their original form: 

a' 
c<1 

= min ( 	f d. tin ) 
P 	igv ,„(  cxie 

4-12 

yo(0)=i 
f ,E 

and acKi 	co<  + z  acx' . 	 4-13 
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This bound is similar to the previous one in that it tries to 

take proper account of linear costs. It is weaker than the previous one 

because it only considers the infinite linear costs, but stronger than the 

basic bound. 

There is some difficulty in evaluating 4-12. Simple ranking 

is insufficient and the standard algorithms fOr the linear assignment 

problem are too slow, as for the previous bound. The following section 

develops an efficient algorithm to evaluate 4-12. 

Before leaving this section it is worthwhile comparing the 

bounds produced by all the methods which have been discussed, including 

the weaker of Gilmore's bounds described in section 2.7 . This is done 

in table 4-5 which gives the bounds for two problems, at both level 0 

and a node further down the tree. The cost of the true minimal assignment 

is also given. 

4.7 	RESTRICTED RANKING ALGORITHM  

This section modifies the Hungarian algorithm to solve the 

linear assignment problem defined by formula 4-12 in a way which takes 

advantage of the ranking procedure and does not actually generate the 

complete matrix. 

The subscripts oc and i are irrelevent and would be a nuisance 

and so the entire notation will be changed for this section only. The 

problem to be solved can be written: 



-113- 

Bound  
G 

All 
Solutions 

P 4 
I= [A4)-  
E=[D2,C2j 

N 
All 

Solutions 

V R 1 2 
I= tC1,12, K61 
E=[A3,B3,B4,E12,L3) 

True minimum 403 479 289 310 

With linear costs 399 470 258 289 

Restricted ranking 396 470 247 274 

Basic bound 396 462 247 273 

Gilmore's weak 
bound 

389 462 243 258 

Weaker bound 369 462 243 258 

Table 4-5. 

Direct comparison of six different lower bounds. 
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min V(p) p—E 	1=1,m 1 P(i) 

where pi  p2 	Pm 

4-14 

q1  > q2 / > . . . .Lin  , p is a permutation 

of 1,2, . . . l m satisfying the exclusion set E, and 

E f( i,j ) I 
P

(i) cannot equal jj . 

This is a linear assignment problem and therefore, according 

to section 3.1 , can be put in linear programming form: 

min V (X) = 	 p, 
ij 

x.. = 1 	 for i= 1 m 
j 

x.. = 1 	 for j=1,m 
i 	3-j 

x.. 	 for i l j=l l m 

x.. = 0 	 for (i,j) e E . 

As for all linear programs there is an equivalent dual formulation 

(see (19) for example) and for this program it has the following form: 

max InT(A)) = 	 /tt 

 

+< p. qj  J  

 

for (i,j) 	E 

, V. unrestricted in sign for i,j= 1,m . 

Optimal solutions to the two problems are closely related and 

in particular min V (X) = max W(A-02). Also, if VS,)) ) is an optimal 

solution to the dual then there is an optimal solution to the primal such 

that x..= 0 for all pairs (i l j ) E for which pi  qi 	- 	> 0. 

It is now apparent that the Hungarian algorithm is simply a 
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way of solving the dual problem directly. The amount subtracted from 

row:1 of matrix (p.q.) is ze. and the amount subtracted from column j 3 	/ 

is V.. The maximum total amount subtracted is equal to the minimum 

assignment cost. The (i,j) element of the reduced matrix is 

P. q. - /a. - 	and if this .is positive then x.. = 0; i.e. f(i) 4 j. 

If no assignments are excluded (E = 0), then the ranking 

procedure gives the optimal assignment as being , (i) = i, or x„ = 1 
11 

for i =1, m . Duality theory states that 33. q.-/t - V. the diagonal 

elements of the reduced matrix, must all be zero; this is also obvious 

when interpreted in terms of the Hungarian algorithm. The following 

formulae for/ and V satisfy these duality relations: 

V1  = 0 

Pi qi vi 

Vi+1 r: Pi qi+1 

It can be easily shown that 

for i=1,m 

for i =1, m-1. 

P. q. 9. 7 0 for this choice of 3 

4-15 

(/‘,V) and that the expression is zero when i=j. 

The above results give an explicit formula for the optimal 

reduced matrix of the linear assignment problem , 4-14, when E 

- namely that the element (i,j ) is (pi  q. 	- ) where, and 1.)  

are defined by 4-15. Starting from this reduced matrix and the assignment 

f (i) = i, it is possible to introduce the exclusion constraints of E one 

at a time, re-optimising the reduced matrix according to the Hungarian 

algorithm after each new constraint is added. 
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The constraints of E may interact with the reduced matrix in 

any of three ways. First, if a constraint is not on the diagonal it will not 

affect the assignment at all and can be ignored, at least initially. 

The second effect arises when one of the constraints is on the 

diagonal - i.e. (i,i) EE for some value of i. Then the value of the 

relevent matrix element is effectively infinite and so the Hungarian 

algorithm must be invoked to create another zero in the reduced matrix 

to find an optimal assignment taking account of this new constraint. 

It is easy to show that, provided no other constraints of E affect the 

immediate neighbourhood of (i,i) , a new optimal assignment can always 

be obtained by either pairing pi  with qi4.  and pi 1  with q., or pairing pi  

with qi+1  and pi+i  with qi. When the cheaper of these alternatives has 

been determined, the assignment and dual variables can be adjusted 

accordingly. 

The final possible effect arises when two or more constraints 

involve neighbouring matrix elements - e.g. E=C(i,i), 	 i+1)'3 or even 

E=t(i,i),(i+2,i+2)}. Then re-optimisation involves a full iteration of 

the Hungarian algorithm, but even this does not require calculation of 

the reduced matrix. AL all times the matrix elements are defined by 

just four vectors (p, q, /tt and V ) plus the exclusion set E. Any 

element can be evaluated as needed, and changing a whole row or column 

is achieved by changing just one dual variable. 

The simple example in figure 4-10 should clarify the algorithm. 



-117- 

Statement of problem: 

p. (0,2,3,5) 
q = (5,4,1,0) 
E. f(311),(2,2),(413),(313)J  

0 0 0 0 
10 8 2 0 

(pig.)  15 12 3 0 
30 24 6 0 

Ignoring  E, formula 4-15 gives: 

". (0,8,9,9) 
v= (0,0,-6,-9) 
t(1)=1, p(2)=2, o(3)=3, p(4)=4 
W.11=V 

0 0 6 9 
2 

c1. (P 	
0* 0 1 

.-":- 12.) ----- 6 3 1 j 	j  	0* 0 
21 15 3 0* 

Allowing  for (3,1)0E does not invalidate 
this assignment. 

But (2,2)E causes a conflict. It is resolved 
by p(1)=2, f(2)=1, W.13.V, decreasing  
by 2 and increasing 	and V2  by 2. 

(4,3) does not cause any conflict, but (3,3) 
does and it interacts with both (2,2) and (4,3). 
An iteration of the Hungarian algorithm is needed 
and this results in '1 and .1  At being  decreased by 1 

and V1' 2 1) and 1,3 
 being  increased by 1. 

Now (/=(-3,71 9,9), V=(3,35 -5,-9), 
f(1)=1, 70(2)=3, 0(3)=2, e(4)=4, 
W=14.V. 

0* 0 6 9 
2 o 0 1 

3 0* 0 
21 15 3 0*J 

-0 0* 8 1 
0* o0 0 1 
a° 1 0* 0 
19 13 3 0* 

0 0* 8 11-  
0* 0.0 0 1 
.0 0 1 c.* 0 
19 13 	0*- 

-0* 0 8 12 
0 ca0 0* 2 
00 0* 0 
18 12 	0 

Figure 4-10. 

Example of the restricted ranking  algorithm. 

The matrices are only explanatory - none are actually calculated. 
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The unconstrained solution is found by ranking, V=11. The first and 

third constraints cause no trouble, and the second only needs a simple 

exchange which increases V to 13, but the fourth constraint is diagonal 

and interferes with two other constraints; hence an iteration of the 

Hungarian algorithm is needed and, in fact, it would still be required 

even if the third constraint, (4,3), were not present. The minimum 

cost for this restricted problem is V=14. 

4.8 	COMPUTATIONAL ANALYSIS OF RESTRICTED RANKING  

The restricted ranking algorithm was programmed in FORTRAN 

for the CDC 6400 computer. The program can be divided into two 

phases and flow-charts for both are given in figure 4-11. Phase A 

begins with the urn tricted ranking assignment and then adjusts this by 

simple pairwise interchanges to allow for as many constraints as possible. 

This will yield the optimal solution for many problems. 

Phase B deals with any constraints which could not be 

accommodated in phase A. Each constraint is considered in turn and the 

assignment and dual variables are continually updated. The method used 

is adapted from Yaspan's labelling procedure for the Hungarian 

algorithm (70). The matrix mentioned in the flow-chart is ab.stract in 

the sense that its elements, (p.q. -/ 	3 
tc. - 1). ) are not stored at all, but 

merely calculated when a particular element is required. 

The labelling procedure only needs to know the zero elements 



Calculate 

cq.- 14 A  1+1 - + c = rnin(c ,c ) 

no 

/0(i4 )=i+1 
(i,1+1) .;t:E 

&(i+1, i) fE 

yes 

Reduce A l  
Increase I1, 2 

• • • 1- , -\.)i 	by c 
by c. 

• • • 

yes 
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Read p„, q and E 

Set f(i) = i and 
calculate j- and 	( eqn .4-15 ),1  

Ii=1 

yes 
Go to Phase B 

Figure 4-11(A). 

Phase A of the restricted ranking program. 



Decrease" by 6 for 
all unlabelled rows and 
increase V by S for 
all unlabelled columns. 
For unlabelled columns 
delete existing zero 
entries in labelled rows. 
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From phase A 

V 

no 

i=1  

Record that p(i) is undefined. 
Increase /c. and V. if necessary 
to create zero entries in row i 
and column i. 

I Label column ij 

Label all rows which have a zero 
entry in a labelled column and 
label all columns to which a 
labelled row is assigned by p  

1=1+1 

V= 	 (Ai. + v.) 
i 	 1 	1 

STOP 

Is 
TOW 

labelled 
9 

yes 

The labelling 
has defined 
a new 
assignment 

no 

Scan the unlabelled 
rows for the minimum 
entry, 8, in a labelled 
column. Record 
this as a zero entry. 

Figure 4-11(B). 

Phase B of the restricted ranking program. 
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of the matrix and so a record of zero entries is kept for each column. 

The original record is made at the beginning of phase B and thereafter 

updated as described in the flow-chart. The only occasion on which 

other entries must be calculated is when the labelling procedure fails 

to label row i ; then only approximately a sixth of the matrix is evaluated. 

Efficiency 

This program should be more efficient than a general program 

for the assignment problem and so an experimental comparison was made 

between it and the assignment routine from the CERN program library (8); 

that routine uses the Hungarian algorithm and is based on Munkres's 

method (54). 

Table 4-6 shows the time used by each routine for several 

problems. The specialised algorithm is very much faster than the 

standard routine, 800 times faster for one problem. 

The time needed by the CERN routine depends mainly on the 

size of the problem, m, but for the restricted ranking program the 

number of constraints is as important, and also the form of interaction 

of the constraints. For all the problems except number 4 the interaction 

was strong enough to require phase B. The constraints for problem 5 

were deliberately chosen to make solution as difficult as possible: for the 

optimal assignment /(i) 	was greater than or equal to two for 15 out 

of the 40 numbers. 

The great efficiency of the algorithm is due to two factors: 
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Problem 
Number 

m 1E1 
Computation 

Restricted 
Ranking 

Time 

CERN 

(secs.) 

CERN* 

1 6 8 0.005 0.012 0.005 

2 15 15 0.014 0.521 0.063 

3 40 20 0.052 41.722 0.573 

4 40 40** 0.042 31.770 0.446 

5 40 50*** 0.302 27.976 0.798 

Note: ** - this problem had "easy" constraints 
* * * - this problem had "hard" constraints. 

Table 4-6. 

Comparison of computation times for five 

restricted ranking problems. 
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(1) it starts with the unrestricted ranking assignment which should be 

near' the final assignment and (2) it does not have to manipulate a large 

matrix. The relative importance of these factors was examined using 

the CERN routine. To do this the cost matrix was defined to be 

(p.q. 	- 1). ) rather than simply (p.q.3
) ; /u. and 	were calculated 

according to equation 4-15. Thus all the finite diagonal elements are 

zero and this is equivalent to starting the routine with the assignment 

found by unconstrained ranking. 

The computing times for this modified problem are given in 

table 4-6 under the heading CERN*. These results are very much better 

than for the original CERN routine, but still significantly slower than 

for the specialised routine. 

Applications  

Apart from its use in calculating lower bounds for the quadratic 

assignment problem, the restricted ranking formulation can be applied 

to other situations. 

Still in a factory environment, the machines may not interact 

with each other, but all interact with some fixed facility such as a 

warehouse or store-room. Then pi  measures the flow of goods from 

machine i and q. is the distance from location j to the fixed facility. 

If a particular machine cannot be assigned to a particular location because 

of bad ventilation, a low ceiling or any other reason, that machine-

location pair would be included in E. 
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Another example. An exporter might manufacture goods at 

many different plants but export everything through just one port. 

Here pi  measures the volume of goods produced at plant i and (1 
	

the he 
 

cost of transport to the port from location j. The set E contains the 

plants which cannot be placed at particular locations; for example some 

plants may need to be near a river for cooling purposes, or far from 

urban areas because of hazardous or polluting processes. 

The restricted ranking algorithm that has been described here 

can solve such problems extremely efficiently. More than a thousand 

machines could probably be handled without great difficulty whereas the 

CERN routine would be hopelessly inadequate, needing a matrix consisting 

of more than a million elements. 

4.9 	A BOUND USING RESTRICTED RANKING  

Returning to the ideas in section 4.6, the restricted ranking 

algorithm can be used to calculate a lower bound. This will be at least 

as good as the basic bound and may be considerably better for nodes 

with many exclusions. 

Program LOCATE was modified to calculate this bound according 

to the equations 4-12 and 4-13. Some results for the modified program 

are given in table 4-7. Comparison with table 4-1 shows that, although 

the number of nodes is reduced by approximately 10% for most problems, 

the time needed is increased by roughly 30%. 
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Problem Number of Nodes Time (secs.) 

GP4 9 0.121 

LA7 16 0.398 

NVR8 283 7.885 

TSP10 347 14.063 

MG10 140 11.239 

MG12 405 39.308 

MG1OZ 1248 85.214 

NVR12P 2033 134.520 

NVR12 10126 707.804 

MG14 11576 1590.237 

Table 4-7. 

Statistics for LOCATE including restricted ranking. 



-126- 

A similar but more exaggerated result would be expected if 

the best bound proposed in section 3.6 were programmed - i.e. a 

smaller number of nodes but a much greater computing time. 

4.10 	LARGE PROBLEMS  

For more than 13 or 14 machines the computing time of 

LOCATE becomes excessive, but the program can still be used in a 

heuristic fashion to determine good assignments. This is because 

LOCATE produces a sequence of assignments, each being cheaper than 

the previous ones. 

The fastest heuristic simply takes the first assignment to be 

found. Not only is this method fast, but the time is predictable and is 

only dependent on the number of machines. Table 4-8 gives the 

computing times for the larger problems proposed by Nugent et al. 

The quality of the assignments is considered in chapter 7. 

Any level of compromise is possible between this heuristic 

and the complete LOCATE algorithm. The time needed to find an 

improved assignment if one exists is, of course, quite unpredictable. 
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Problem Time 	(secs.) 

NVR12 0.98 

NVR15 1.98 

NVR20 6.96 

NVR30 30.15 

ST36 62.37 

Table 4-8. 

Computing time for LOCATE to find its initial assignment. 
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CHAPTER 5 

GRAPHICAL ANALYSIS OF BOUNDS 
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5.1 	THE SEARCH FOR LOWER BOUNDS 

A tree-search algorithm can only be effective if its lower 

bounds are large enough to eliminate many nodes high in the tree so 

that most branches are cut off quickly. But despite the obvious importance 

of using good bounds, all the algorithms in the literature (201 211 381 39,58) 

use minor variations of just two known bounds. 

One purpose of this chapter is to discover why no other bounds 

have been discovered. The two known bounds are shown to belong to a 

large class of bounds which is exhaustively examined. 

The difficulty of the quadratic assignment problem lies in 

the quadratic rather than the linear part of the cost function; hence 

it is assumed that c .1
= 0 throughout the initial examination. A bound 

oc 

which cannot be applied to the quadratic cost alone will not be helpful 

for the complete problem and so no useful bounds will be overlooked 

because of this restriction. 

	

5.2 	GRAPHICAL REPRESENTATION 

The quadratic assignment problem can be represented as the 

mapping of a flow graph to a distance graph. The flow graph has n 

nodes representing the machines and the flows between machines are 

represented by arcs which are weighted accordingly. Similarly the 

n nodes of the distance graph represent the locations and they are 
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connected by arcs which are weighted with the distances between the 

relevant locations. 

An assignment is a mapping of the nodes of the flow graph 

on to the nodes of the distance graph. Each graph is complete and so 

an assignment will pair each flow arc with a distance arc. The cost of 

an assignment is simply the sum of the products of these flow-distance 

pairs. Figure 5-1 gives the graphs for a 5-machine problem. 

The • assumption that there are no linear costs is convenient 

but not essential for this representation. The linear costs would be 

associated with the nodes whereas the quadratic costs are associated 

with the arcs. It is the analysis in the next two sections which requires 

the zero linear cost assumption. 

5.3 	A BOUND USING STAR GRAPHS 

A complete n-node graph can be decomposed into n star graphs, 

as shown in figure 5-2. Each star has n-1 arcs and each arc occurs in 

two stars. The stars of a flow graph can be labelled0A, 0B, 	, O«' • • 

where the subscript denotes the central node; similarly the stars of a 

distance graph are
1  3 3 

' 	Si 1 	2 	• • • 	' • • • 	• 

Consider any assignment, /0 1  for the quadratic assignment 

problem and any partial graph of the flow graph which is a star, say Ocx  

The arcs of this star will all be mapped to distance arcs which are 

incident on location P( ); hence 0 will be mapped to the distance 
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B 

A 

B 2 3 

C 5 1 C 3 7 

D 9 	3 6 D 	 4 2 	4 
8  

E 4 	8 5 5 	3 	6 

Flow Matrix 	 Distance Matrix 

1  4  
31 

Flow Gr[1:, 	 Distance Graph 

An assignment 
with cost = 196. 

Figure 5-1. 

Graphical representation of a problem with 5 machines. 
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0, 	 91-)D 

Figure 5-2. 

Decomposition of a 4-node flow graph into 4 star graphs. 
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star Sp coo  . 

Define C (cx, p ) to be the cost of mapping the flow star 560(  

to the distance star S 
/0(0 ) ' 

• this is the sum of the products of the 

flows with the distances to which they are mapped. Algebraically this 

means C( «, P) = > fad  dip (0<)/0()8  ) . Then the total cost of the 

n star mappings defined by r  is exactly twice Z( p) because the 

products in the expressions for cost are identical, but each product 

appears in exactly two star mappings. This allows a lower bound for 

the quadratic assignment problem to be found in terms of lower bounds 

on star mappings. 

As noted earlier, any assignment will map each flow star 95c,‹  

to a distance star 8 (0)  . If the complete assignment is unknown, 
/0  

but P (cx) = i , then a lower bound on the cost of mapping 004.  to S
i 

is boti  = min { C( o< I f ) I (a) .i} . This expression can be easily 

calculated by ranking the n-1 distances in decreasing order, the n-1 

flows in increasing order and summing the products of corresponding 

numbers; this technique has already been used in section 4.3 and is 

considered specifically in section 6.4 . 

For any assignment 2Z( 	 B, where 

B = min {Tbo<10(oc)  . Finding B, having calculated (b i ), is simply 
allp c" 

a linear assignment problem which can be solved very easily (36,54). 

Clearly 1B is a lower bound for the quadratic assignment problem. 

It is mathematically equivalent to the purely algebraic bounds proposed 
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by Lawler (39) and Gilmore (21) and formally validated in section 4.3 . 

5.4 	BOUNDS USING OTHER PARTIAL GRAPHS 

Since star graphs form the basis of an effective lower bound 

for the quadratic assignmnt problem, perhaps other partial graphs can 

also prove useful in this way. 

How can the star graph technique be generalised? It begins with 

a set of flow partial graphs, 	= f 01,02, ... 1p, ... 1 013 } . For st-Irs 

there are n partial graphs, each characterised by a particular node, 

but this need not be so. It is only necessary that each arc of the complete 

graph should appear in the same number, k say, of partial graphs. The 

partial graphs need not all be of the same form, but it will become 

apparent later that the bound is more efficient if the partial graphs are 

all isomorphic. 

Once has been chosen, the set of distance partial graphs, 

{ Si,S21 	'8q' 	'Q1 can be determined accordingly: 

A= p( Op ) p = 1,2, ... IP ; all assignments (,) , where p(vip ) is the 

distance partial graph to which p maps 0 . Note that Q P. 

It should be clear why ,L must include every image graph of 

every flow partial graph. Consider the 5-node quadratic assignment 

problem in figure 5-3 for which consists of two Hamiltonian circuits, 

ACDEBA and AECBDA. Suppose ,A does not include the circuit 123451. 

Then any attempt to find a bound would map the flow circuit ACDEBA to 
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Figure 5-3. 

The arcs of a 5-node graph can be covered by a pair of Hamiltonian 

circuits. One is shown by a continuous line, the other is broken. 
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a distance circuit which included a value of 3 and so the "bound" would 

be at least 11, whereas the actual optimal value is 10. Such difficulties 

can always arise if any image graphs are omitted. 

The bounding procedure is the same as for star graphs once 

and L1 have been chosen. Any assignment p determines a mapping 

from 	on to LI\ and also a mapping from each 0to 8p(p) . The 

cost of a partial graph mapping can be defined as for star graphs: 

C ( P , p) is the sum of the products of the flows in 0 with the distances 

in  8p(p) to which they are mapped. 

Then kZ(f) = 	 C(56 ,p)   b f(p) ). B 
p=1,P 	P 	p=1,P 

, 
 

where b is the minimum cost of mapping 0 to S and B is the 
Pq 

solution to the linear assignment problem defined by the matrix (b 
Pq

) ; 

if necessary the matrix can be made square by adding rows of zeros. 

B/k is a lower bound on the quadratic assignment problem. 

5.5 	COMPUTATIONAL CONSIDERATIONS  

The above analysis can theoretically take any set 	of flow 

partial graphs which cover every arc the same number of times and 

produce a lower bound. But for many sets the amount of computation 

would be wildly exorbitant. 

The last stage of the calculation is a PxQ linear assignment 

problem to find B. This could be difficult if P or Q is greater than 

about a hundred. Evaluating the coefficients b 	can pose two difficulties. 
Pq 
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Firstly there are P.Q evaluations to be made and this number may be 

very, large. Secondly it may not be trivial to find each minimal partial 

graph mapping. 

When trying to synthesise useful flow partial graphs the 

primary concern is to keep Q small. One obvious aid is to choose 

all the flow partial graphs to be isomorphic so that they each generate 

identical distance partial graphs. In practice this usually means that 

I has exactly the same structure as L. and P equals Q. The following 

analysis is not restricted to this symmetric choice of 1, but that form 

appears to be most efficient. 

For any partial flow graph define node c< to be equivalent to 

node 4 if « is directly connected to every node to which 3 is directly 

connected and vice versa, ignoring any possible arc between o< and /3 

themselves. This is an equivalence relation which will divide the nodes 

into one or more disjoint equivalence classes. 

If one class contains r nodes there are (r ) possible images 

for that equivalence class and so Q ) (n ) . Thus computation is r 

probably feasible if r =1 or n-1, difficult if r =2 or n-2, and impractical 

if 3 ‹r (n-3, even for problems with small values of P. 

5.6 	DETAILED ANALYSIS OF PARTIAL GRAPHS  

This section considers all the potentially useful flow partial 

graphs in turn. First note that a partial graph with only one equivalence 

class either has no arcs at all or else is the complete graph; these 
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extreme cases are of no use. 

Partial Graphs with two equivalence classes  

Partial flow graphs with only two equivalence classes are 

the most likely to be computationally feasible. If one class has 1 node 

(r = 1), then the other has n-1 nodes. The central node must either 

be connected to all the other nodes or not connected to any of them; 

the outer nodes must similarly be either all connected to each other or 

all disconnected. The only two non-trivial such partial graphs are 

shown in figure 5-4 . Case (a) is a star which is known to yield a 

useful bound. 

The converse graph, (b), is not computationally feasible 

because calculation of bpq  involves solving a quadratic assignment 

problem of size n-1. It is clearly impractical to solve n2 problems 

of size n-1 merely to find a bound on a problem of size n. 

Next consider partial graphs for which one equivalence class 

contains 2 nodes and the other n-2. Figure 5-5 shows the six possible 

partial graphs. Cases (a), (b) and (c) are unacceptable because 

calculation of each b is nearly as difficult as the original problem. 
Pq 

Case (d) yields a bound which is, in fact, the same as those 

proposed by Gavett and Plyter (20), Gilmore (21) and Land (38). 

It is particularly useful because the special structure of its final linear 

assignment problem can be exploited. 

Cases (e) and (f) are very similar to each other. A 

difficulty arises in finding b
Pq 

 for these "double-stars" because the 



a) 

(b 

Figure 5-4. 

The partial graphs with r = 1 & n-1. 
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a) 
	

b ) 

O A 

c ) 
	

( d )  

e) 
	

( 1 ) 

Figure 5-5. 

The partial graphs with r = 2 & n-2. 
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simple ranking procedure used for stars cannot be extended. The 

coefficients can be calculated by solving an (n-2)x(n-2) linear 

assignment problem for each of them, but the large number of coefficients 

renders this approach cumbersome. 

Partial Graphs with Three Equivalence Classes 

By now most of the potentially useful partial graphs have been 

examined, but those with 3 equivalence classes should also be considered. 

The only partial graphs which may be useful are those having two classes 

of one node each and the remaining class containing n-2 nodes. For 

such a graph Q can be as small as n(n-1). 

There are only two such partial graphs and these are given 

in figure 5-6. For case (a) it is too difficult to calculate each 

coefficient. For case (b) the coefficients can be readily determined 

but there are a great many of them. The massive computation can only 

be justified if the bounds produced are exceptionally good - there is 

little reason to expect they are. 

5.7 	CONCLUSIONS  

This chapter has presented an integrated analysis of lower 

bounds for the quadratic assignment problem. It has studied a large 

class of bounds which includes both those considered in the literature. 

Only three other bounds are conceivably useful, and even these require 

much more computation than the earlier bounds. 
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(b )  

Figure 5-6. 

The partial graphs for which r = 1, 1 & n-2. 
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A tree-search algorithm needs bounds on subsets of the 

feasible solution space (the nodes of the tree) as well as on the entire 

space. This study has been directed at the complete problem, but any 

of the bounds can be readily adapted as required without difficulty. 

A second restriction has been to assume that the linear costs 

are zero. This assumption simplified the analysis and has not caused 

any bounds to be omitted. Gilmore (21) has suggested one general 

way to incorporate linear costs. Simply solve the linear assignment 

problem defined by the linear cost coefficients and add its solution to 

the bound on the quadratic cost calculated in any of the ways considered 

here (or otherwise). Bounds produced in this way are unlikely to be 

very good, but the linear costs can usually be incorporated more directly 

as was done in chapter 4 for the star graph bound. 

The quality of the lower bounds has not been considered 

explicitly, but it seems unlikely that the three new bounds would be 

significantly better than the star graph bound - not sufficiently good to 

justify the much greater computation that would be required. This is 

disappointing since the tree-search algorithm with the star graph bound 

cannot solve problems with more than about 14 machines. 
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CHAPTER 6 

SOME SPECIAL CASES 
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6 . 1 	ZERO FLOWS AND INFINITE DISTANCES  

The previous chapters have shown that the quadratic 

assignment problem can generally only be satisfactorily solved for 

quite small problems. There has been greater success with algorithms 

for specific problems, particularly the 1-dimensional case (40,64). 

Some related problems which can be artificially forced into the quadratic 

assignment format, such as the travelling salesman problem (10,27,28) 

and Bowman's input-output problem (3), can also be solved more easily. 

This chapter studies another class of special cases. 

In a plant layout context there are usually many pairs of 

machines which do not interact with each other. In other words the 

flow matrix has many zero entries. The main assumption used throughout 

this chapter is that the flow matrix is sparse. 

A second assumption which is sometimes made concerns the 

distance matrix. Movement directly between two locations may be 

prohibited for some reason and so such distances can be considered 

"infinite". At an international level the reason for a prohibition may 

often be political, but economic reasons are more likely for plant layout. 

Any assignment which matches a positive flow to an infinite 

distance is, by definition, infeasible. For each infinite distance a 

feasible assignment must occupy the two locations involved with two 

machines which have zero flow between them. 
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6.2 	GRAPHICAL INTERPRETATION  

The graphical representation introduced in the previous 

chapter is again very convenient. As before, the flow graph has n 

nodes representing the machines and the distance graph has n nodes 

representing the locations. 

Unlike chapter 5, however, these graphs are not necessarily 

complete. Only each positive flow is represented by an arc, zero flows 

being ignored. Likewise only the finite distances are represented by 

arcs. The flow and distance arcs carry weights according to the values 

of the corresponding flows and distances. 

An assignment is a mapping of the flow graph to the distance 

graph and the quadratic cost of an assignment is the sum of the pairwise 

products of the weights on the arcs which are mapped to each other . 

An assignment is clearly feasible only if every flow arc is mapped to 

a distance arc; it is not necessary, however, for every distance arc 

to be the image of a flow arc. 

If the distance graph is sparse - i.e. there are many 

infinite distances - then the number of feasible assignments may 

be small and perhaps thr'y can be enumerated to find the optimum. 

The next section considers this situation and complete distance graphs 

are studied later. 
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6.3 	ELEMENTARY PROBLEMS  

This section deals with the limiting special case in which the 

number of infinite distances exactly equals the number of zero flows. 

The number of feasible assignments may therefore be very small. 

First note that the flow and distance graphs must be isomorphic 

for any feasible assignment to exist. For example, the 4-node flow and 

distance graphs in figure 6-1 have equal numbers of arcs but are not 

isomorphic and so any assignment must map at least one positive flow 

to an infinite distance. It can be difficult to determine whether graphs 

are isomorphic or not. 

Isomorphic Number of a Graph 

If the graphs are isomorphic then the number of feasible 

assignments depends on the actual shape of the graphs. Figure 6-2 

shows a pair of isomorphic graphs (arc weights can be ignored in this 

section). For any feasible assignment p(D)=.1 and p(B)=2, but 

machines A and C can be assigned to locations 3 and 4 in two possible 

ways. 

The isomorphic number of a graph may be defined as the 

number of ways in which it can be mapped to itself without changing 

the relative positions of the arcs 	Hence the graphs in figure 6-2 have 

isomorphic number 2. The number of feasible assignments is equal 

to the isomorphic number and computer enumeration of these assignments 

is possible if the number is not too large. Note that the isomorphic 

number of a complete graph is n! and this becomes too large when n 
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Flow Graph 

Distance Graph 

Figure 6-1. 
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Flow Graph 

Distance Graph 

Figure 6-2. 
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exceeds about 8 or 9. 

Chains and Cycles  

Consider a chain of n nodes (figure 6-3(a)). Clearly 

machine A must be assigned to either location 1 or n. Once A is 

located, the assignment of all other machines is fixed and so the isomorphic 

number of a chain is 2. 

For a cycle (figure 6-3 (b) ) machine A can be assigned to 

any location and then the other machines must be assigned in one of only 

two ways, clockwise or anti-clockwise. Hence the isomorphic number 

is 2n. 

Star-Cycles  

A star-cycle (figure 6-3(c)) is an easy extension of a cycle. 

Obviously a machine-node must be assigned to a location-node of the 

same degree and so p(A)=1 is essential. The symmetry of the remaining 

n-1 nodes is as for the cycle - therefore the isomorphic number of 

the star-cycle is 2(n-1). 

Larger Graphs  

The need for assigning machine-nodes to location•-nodes of 

the same degree ensures that many graphs have small, even unitary, 

isomorphic numbers. The graphs in figure 6-4, for example, are 

isomorphic and have isomorphic number 1. A proof of this begins by 

assigning H to 3 as these are the only nodes of degree 4; then, working 
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-----0 
( a ) 

-----(0 

(b) (c) 

Figure 6-3. Some simple graphs. 

(a) Chain. (b) Cycle. (c) Star-cycle. 
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Figure 6-4. 

Isornorhic graphs with IN = 1. 
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round the graphs, the assignments G-4, D-8, A-12, B-11, E-10, C-9, 

F-7, I-6, K-5, L-1 and J-2 are all necessary. 

Regular Graphs  

Regular graphs (all nodes having the same degree) are likely 

to have large isomorphic numbers because the nodes are less easily 

distinguishable. But even within this difficult class there is great 

variation; figure 6-5 shows two 8-node regular graphs of degree 4 

which have very different isomorphic numbers. Cycles and complete 

graphs are both regular and indicate that the isomorhic number tends to 

increase with the degree of the nodes. 

6.4 	ELEMENTARY TREES 

Many systems, especially hierarchical ones, have flow graphs 

in the form of a tree. If the distance graph. is also of this form, the 

optimal assignment can often be found even if the isomorphic number 

is large. And, in fact, the isomorphic number may be quite small. 

Multi-level Stars  

A star is a special type of tree with complete symmetry 

about a central node. Figure 6-6 shows a third order star in which 

node B is in level 1, C is in level 2 and E is in the outermost level 3; 

node A constitutes level 0 and is called the centre. Nodes C and D 

are called the successors of node B. It is convenient to label each 
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(a) IN = 1152 

(b) IN = 4 

Figure 6-5. 

Two regular graphs of degree 5. 



Figure 6-6. 

A 3rd order star . 

fB 
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arc in terms of its outer node and so fBC is simply called f for 

example. 

Clearly each machine-node must be assigned to a location-

node at the same level, but stars have such a high degree of symmetry 

that their isomorphic numbers are too large for practical enumeration. 

For the 28-node example the isomorphic number is 21 239,488. 

Dynamic Pro r2:agmin  Solution of Stars  

For any machine-node o= and location node i define C(c>‹,1\ 

to be the cost of assigning o< and all its successors to i and all its 

successors when this is done optimally; o.< and i must be on the same 

levels of their respective graphs. The following algorithm calculates 

all such costs and hence solves the quadratic assignment problem for 

a Kth order star. 

(1) For each machine c.< and each location i at level K, the outermost 

level, set C(o< ,i) = 
0< 
c . + f 0<  d.

1
. 

(2) Set level-pointer k = K-1. 

(3) For each machine cx and each location i at level k calculate 

C(« ,i) as follows: - 

(a) Identify the direct successors of o< = ,81' 2' 
. . . and the 

direct successors of i = j1, j2, 

(b) Set up a matrix for a linear assignment problem as shown 

at the top of the next page. 
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C(,8 , j ) C(f 1,J 2 ) 

c( 2,i1) c( ,63  2  ,i2  ) 

(c) Set C( CX1i) c 1  . 	pc 1  + f d. + solution of the linear assignment .0.c  

problem defined in (b). 

(4) Set k= k-1. 	If k 14 0 go to (3). 

(5) Now k=0 and the centre is the only node at this level. Set up 

the linear assignment problem as in step (3). Its solution gives 

the optimal cost of a complete assignment and the assignments of 

individual machines can be determined from the solutions to the 

linear problems solved in step (3). 

Ranking Procedure  

For the outermost level of a star the assignment problems in 

step (3) of the dynamic program can be solved trivially. This is because 

the elements of the matrix are simple products of flows and distances. 

As for the bound given in section 4.3, it can be shown (21) that the total 

cost is minimised by matching the largest flow with the shortest distance 

and so on. Thus it is only necessary to rank the flows in decreasing 

order and the distances in increasing order to solve these assignment 

problems. 

How efficient is this algorithm? Solving the star in figure 6-6 

involves ranking 12 sets of 3 numbers, evaluating 36 costs at level 2, 
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solving nine 2x2 assignment problems at level 1 and an additional 

3x3 assignment problem for the centre. This could be done by hand 

in about half an hour. Section 7.5 compares the dynamic program to 

the general tree-search method. 

For a Kth 
order star in which each node has m successors, 

mK+1-1 
m-1 

This means that stars with several hundred nodes can be solved comfortably 

using a computer. 

Dynamic Programming Solution of Trees  

The symmetry of stars makes them the most difficult of trees 

to solve. Other trees may have small isomorphic numbers and therefore 

be amenable to enumeration of all feasible assignments. 

A large isomorphic number can only be caused by different 

branches of the tree having identicalstructure in the same way as a star . 

Such branches can be solved using the dynamic program independently 

of the rest of the tree. 

First Order Stars  

Stars with only one level can be solved very efficiently since 

only one linear assignment problem is involved. If the linear costs, c 
c< 

are all zero then even this problem can be solved using the ranking 

procedure. This method has been assumed in sections 4.3 and 5.2 . 

there are nodes. Solution requires 2mK-1  rankings, 

2K-2 	 m
2K-2

-1 m 	evaluations and 	 assignment problems, each mxm. m2 -1 
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6 . 5 	PRACTICAL PROBLEMS  

Prohibited or infinite distances do not occur for some applications 

of the quadratic assignment problem and so this section assumes that 

all distances are finite. All assignments are now feasible and therefore 

isomorphic analysis is irrelevant; any useful approach must involve 

the arc-weights as well as the structure of the flow graph. 

Stars  

A first order star flow graph can be assigned to a complete 

distance graph qUite easily. If the location of the central machine 

was given then only the n-1 distances from that location would be 

relevant; the remaining assignments could be optimised using the 

ranking procedure described in section 6.4 . The optimal assignment 

can be found by costing all the n possible assignments of the central 

machine in this way and selecting the cheapest. 

This treatment cannot be usefully extended to multi-level 

stars, except in so far as a star is a tree. 

General Trees  

The following technique is applicable to trees and any other 

flow graphs for which most nodes have degree 1. Suppose there 

are n
1 

nodes of degree 1 and n2 
nodes of greater degree. If the 

locations of the n2 
multiple-degree machines were known, then the 

optimal locations for the n
1 

unit-degree machines could be found by 
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solving an n
1

x n
1 

linear assignment problem. The complete optimal 

assignment can be found by costing in this way all the possible assignments 

of the multiple-degree machines. The number of these assignments 

is (n
1 
 +n

2 
 )(n

1 
 +n

2 
 -1) . 	(n

1
+ 1) and so this method is only practical 

if n2 
is very small. 

An Assembly Line  

A chain arises as a flow graph in assembly line operations 

and is therefore of considerable interest. A chain is, of course, a 

particular type of tree and so the above discussion applies, but it is 

not at all helpful. 

In a sense this assembly line problem is a generalisation of 

the open-ended travelling salesman problem, since that problem results 

when all the flows along the chain are equal. It is not surprising, 

therefore, that the salesman's dynamic programming algorithm (26) 

can be generalised to solve this problem. 

Dynamic Program for an Assembly Line  

It is convenient to rename the machines and flows for this 

section. The machines become cc a
2' 
 . . 	n ordered along 

•  

the chain. The flow between
1 
 and o<. 	is called f.

1 
 . This is shown 

1+1  

in figure 6-7. 

For any set of k locations, Sc {s i ,s2 , 	,sk }, and any 

index i, 1,.."i<k, define the recursive function g(S
k'

i) to be the cost 

of an optimal assignment of the machines cx cx 	cx to the 2' • • • 	k 
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Figure 6-7. 

Notation used in dynamic program for a chain flow. 
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locations S
k 

when °<k  is assigned to location s.. 

For k= 1, g(S1 	= 	
Si

1 	
• 

For 2<k(n, g(Sk,i) = c 	+ min ff d 	+ g(Sk- 	j )1 
cxksi  j=1. 1k k-1 sisi  

The cost of an optimal assignment is = min {g( 
i=1,n 

These equations allow Z to be calculated and an optimal 

assignment to be determined, but a large number of functional values 

must be evaluated. The computational complexity is the same as for 

the travelling salesman problem and so the algorithm can solve assembly 

lines with up to about 18 machines. 

6.6 	MINIMAL WEIGHTED SPANNING TREES  

The dynamic program described in the previous section is 

a generalisation of an algorithm for the travelling salesman problem, 

but that algorithm is not the most efficient for the simpler problem. 

This section tries to extend a spanning tree algorithm from the salesman 

to the assembly line prc 

The spanning tree algorithm for the travelling salesman 

problem is based on noticing that a chain is a particular type of tree. 

A spanning tree of a complete distance graph is simply a partial graph 

which is a tree; the cost of a spanning tree is the sum of the distances 

in the tree. Kruskal (35) has given a very efficient algorithm for 
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finding a minimal spanning tree for a graph. 

If a minimal spanning tree is actually a chain then it is also 

a minimal tour for the travelling salesman problem. The algorithm adds 

penalties to nodes in such a way that the relative costs of chains remain 

unchanged but the costs of spanning trees vary until a minimal spanning 

tree is found which is a chain. Because Kruskal's spanning tree algorithm 

is so fast, optimal travelling salesman chains can be found for large 

problems - as many as a hundred nodes. 

Kruskal's algorithm is very simple. It ranks the arcs in 

order of increasing distance and then arcs are taken from the top of this 

list until a spanning tree is completed. At each stage the shortest 

arc which does not complete a circuit is chosen. The minimal spanning 

tree is complete when n-1 arcs have been chosen. 

The cost of an assembly line is the sum of the distances in 

the chain, each weighted with the appropriate flow - for the travelling 

salesman problem the weights are all one. The cost of a weighted 

spanning tree may be defined as the sum of the distances in the tree, 

each weighted with one of the n-1 flows with the flows and distances 

matched to give the minimal cost; i.e. the largest flow would be matched 

with the smallest distance in the tree and so on. 

If the minimal weighted spanning tree is a chain, its cost may 

be less than the assembly line cost of that chain because the weights 

are used differently. But at least it will give a lower bound on the 
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assembly line cost and this could be used in a branch-and-bound 

algorithm. An efficient algorithm is needed to find minimal weighted 

spanning trees. 

A Proof for a Minimal Weighted Spanning Tree Algorithm  

It happens that any minimal spanning tree is also a minimal 

weighted spanning tree. Hence Kruskal's algorithm may be used for 

the weighted problem and a proof of this follows. 

Let F be the set of n-1 flows in the assembly line. 

If T = 	Itn_d is a spanning tree, d(ti ) is the length of ' 

arc t.1  and d(T) = d(t1),d(t2 ), ... .d(tn...1 )1 , define the cost of the 

weighted tree to be Z(T) = F.d(T) where "." is a scalar product which 

implicitly minimises - i.e. it multiplies the largest flow by the smallest 

distance and so on. 

Now suppose that T is a tree produced by Kruskal's method 

with the arcs labelled in the order in which they were selected so that 

d(t1),<, d(t2) etc. Let T0 
 be any other spanning tree. 

Construct a sequence of spanning trees for k = 11 2, ... 1 n-1 

such that {ti ,t2, 	Tk. 

then Tk Tk-1 and of course Z(Tk-1) = Z(Tk ) . If tkE Tk-1 

If t
k  g Tk-1  then form Tk from Tk-1 by adding arc tk and removing 

the largest arc (not tk ) in the circuit thus formed. 

Since Tk-1  contains 1-  t ilt21 ...1tk_il Kruskal's 

construction ensures that all other arcs in Tk-1 
must have 
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distances greater than or equal to d(tk ). But the 

circuit must contain arcs other than t t 
1' 2' • • • at 

' k-1 

and so the arc removed, t' say, has distance d(t' )?, d(tk ). 

Now Z(Tk-1  ) = F.d(Tk-1 ) 

	

= optimal sum of products of F and d(T 	) k-1 

that sum of products with d(t') replaced 

by d(tk ) 

= a sum of products of F and d(Tk ) 

F.d(Tk
) 

= Z (T
k ) 

Now clearly Tn-1=  T and Z (To  ) 7 Z (Ti  ) 	. . . > Z (Tn_i  ) = Z (T) and 

so the weighted cost of T is less than or equal to the weighted cost of 

any other spanning tree. Therefore Kruskal's algorithm produces a 

minimal weighted spanning tree. 

A Spanning Tree Algorithm for Assembly Lines  

The above proof shows that Kruskal's algorithm might be used 

as the basis of a branch-and-bound method for the assembly line problem. 

The cost of a minimal weighted spanning tree, whether or not the tree 

is a chain, is a lower be .nd for the assembly line problem. The general 

technique outlined in section 4.1 could be applied with various branching 

strategies to solve the problem. 

The bound is likely to be better if the minimal tree is actually 

a chain and this could be achieved by adding penalties as for the travelling 
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salesman algorithm. Burkard (5,6) has shown how penalties can be 

applied to the general quadratic assignment problem (see section 2.3) 

and his formula simplifies significantly for this special situation. 

Unfortunately preliminary calculations by hand have shown that 

the bounds produced by this method are not good enough to be useful, 

even when the minimal tree is a chain. In fact the general bound given 

in chapter 4 is often greater than this specific bound; the calculation 

of the general bound can be greatly simplified for the assembly line 

problem by first applying Burkard's transformation. 
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CHAPTER 7 

COMPARISON OF METHODS  
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7.1 	THE NEW METHODS  

Earlier chapters have developed algorithms for the quadratic 

assignment problem and some heuristics have also evolved as a by-

product. This chapter empirically evaluates all these methods with 

regard to reports in the literature of other research. 

The non-specialised algorithms considered in this thesis are 

all of the tree-search type and differ from each other only in the lower 

bounds they use. The computational results of chapter 4 indicate tha-

the basic bound described in section 4.3 gives the best compromise 

between the quality of the bounds and the time needed to calculate each 

bound. Hence this bound has been used when comparing tree-search 

with other methods. 

The tree-search algorithm becomes a heuristic if some 

branches are ignored without calculating a lower bound which is greater 

than the cost of a known assignment. The simplest heuristic only 

considers one branch, the one without any exclusion nodes. This 

constructive heuristic is very similar to Gilmore's n
5 method described 

in section 2.4, differing only in its use of the solution to the linear 

assignment problem. The penalty rule described in section 4.4 is 

intuitively more reasonable than Gilmore's suggestion. 

The quadratic programming methods do not guarantee an 

optimal assignment, but program PENALTY (section 3.8) finds sub-

optimal assignments very quickly. The quality of these assignments 
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is examined in the next two sections. 

Specialised algorithms have been proposed for the multi-level 

star problem and the assembly line problem in chapter 6. Section 7.5 

compares the efficiency of these methods with that of the more general 

tree-search. 

7.2 	STEINBERG T S TEST PROBLEM  

Two case studies have provided standard problems on which 

many researchers have tested their procedures. This chapter continues 

that sensible tradition and the data for all problems is reproduced in 

. appendix A. 

Steinberg (65) published a computer backboard design problem 

involving 34 modules which were to be located on a rectangular grid 

9 units long and 4 units wide. This gives 36 locations and so 2 dummy 

modules (machines) must be added. Three distance functions have been 

proposed: (1) rectangular distance, (2) direct or Euclidean distance, 

and (3) direct distance squared. 

Most of the constructive heuristics have been tested on this 

problem using at least one of the distance functions. The direct distance 

function has received most attention and so this has been adopted for the 

compari.5on. 

The problem proved too large to solve optimally using the 

tree-search and so program LOCATE was used as a heuristic. 
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Program PENALTY, the quadratic programming heuristic, was also 

tested and the results are given in table 7-1. 

The qualification "manual" in the table means that human 

intelligence directed the computer to some extent. Graves and Whinston 

noticed that the assignment first produced by their program contained 

two obviously poor placements and so they re-ran the program with these 

modules restricted. LOCATE and PENALTY are interactive programs 

and "manual" implies direction via a remote terminal for about half an 

hour. The non-manual assignments are those produced initially. 

Table 7-1 does not mention the computing times for the various 

heuristics for two reasons. The first is that they were run on many 

different computers (sometimes unspecified) and so comparison would 

be difficult. The second reason is that all these heuristics are quite 

fast and so time is not critical. If run on a CDC 6400 computer they 

would all require less than one minute, with the possible exceptions 

of the Graves and Whinston program and the manual LOCATE. 

Conclusions to be drawn from this comparison are that PENALTY 

is a rather poor method, undirected LOCATE is comparable with the 

best alternatives and, given time and human direction, LOCATE can 

produce better assignments. 
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Heuristic Cost 

Steinberg 4894.54 

Gilmore n4 4547.54 

Gilmore n5 4680.36 

Hillier-Connors 4821.78 
(Constructive) 

Graves-Whinston 4426.27 

Graves-Whinston 4344.97 
(Manual) 

Heider 4419.49 

PENALTY 4905.21 

PENALTY 4450.79 
(Manual) 

LOCATE 4411.36 

LOCATE 4327.84 
(Manual) 

Table 7-1. 

Cost of assignments produced by the heuristics 

for Steinberg's problem. 
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7.3 	NUGENT'S TEST PROBLEMS  

Another case study has been presented by Hillier (29). 

Nugent, Vollmann and Ruml (57) used the data for this 12-machine 

problem to develop eight problems with the same distribution of flow-

values. Their problems range in size from 5 to 30 machines and all 

assume rectilinear distances between locations which form a rectangular 

grid (see appendix A). 

Nugent et al. compared the assignments produced by four 

improvement heuristics on these problems. Since then Edwards et al. (13) , 

Vollmann et al. (67), Khalil (33) and Hitchings (32) have also tested 

their improvement heuristics on these problems. Many of these 

heuristics are very similar and so tables 7-2 and 7-3 only reproduce 

the statistics for four of the more successful programs. 

Table 7-2 gives the costs of assignments produced for the 

five larger problems by the four programs mentioned above as well as 

LOCATE and PENALTY. Since the last section showed that the first 

assignment found by PENALTY can be poor, the value given here is that of 

the best assignment found after a directed search has used 8 seconds of 

CDC 6400 computing time for the three smaller problems and 40 seconds 

for the larger problems. 

Three values are given for LOCATE. The initial cost is that 

of the first assignment to be generated. The automatic cost is either 

that of the optimal assignment (for n= 8 and 12) or that of the best 
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Method 
8 

Number 

12 

of Machines 

15 	20 30 

Hillier 	(1963) 109 301 617 1384 3244 

CRAFT 107 289 583 1324 3148 

Nugent et al. 107 289 575 1304 3093 

Hitchings 107 289 575 1296 3086 

PENALTY 111 289 589 1347 3355 

LOCATE (Initial) 107 293 575 1323 3219 

LOCATE (Automatic) 107 289 575 1306 3103 

LOCATE (Manual) - - 575 1282 3094 

Table 7-2. 

Costs of assignments for Nugent's problems. 
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Method 
Number 

8 	12 

of Machines 

15 	20 	30 

Hillier 	(1963)* 14 55 78 168 398 

CRAFT * 10 70 160 528 3150 

Nugent et al. * 109 - 658 2192 6915 42724 

PENALTY ** 8 8 8 40 40 

LOCATE (Initial) ** 0.37 0.98 1.98 6.96 30.15 

LOCATE (Automatic) ** 5.42 481.67 1800 200 200 

LOCATE (Manual) ** - - 200 200 200 

* GE 265 computer. 

** CDC 6400 computer. 

Table 7-3. 

Computing times (seconds) for Nugent's problems. 
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assignment found within the given time limit (for n= 15, 20 and 30). 

When the time limit was exceeded a manually directed search continued 

for a further 200 seconds of CDC 6400 time. 

Table 7-3 gives the computing times for the various programs. 

The three improvement heuristics were run on a GE 265 computer which 

is considerably slower than the CDC 6400 used for PENALTY and LOCATE. 

Hitchings' times are not reproduced here, partly because he used yet 

another computer and partly because the meaning of his time is not clear; 

it appears that his method is a little faster than Nugent et al.'s biased 

sampling but considerably slower than CRAFT. 

These tables show that PENALTY is a very fast program which 

gives poor results. The initial assignment found by LOCATE is much 

better, although not as good as the best improvement heuristics; it is 

also very fast. 

When allowed to run to completion LOCATE finds an optimal 

assignment, but the time needed for this increases very rapidly as the 

number of machines increases. It was noted in section 4.5 that the 

time also depends on the nature of the data and that these test problems 

have proved particularly difficult. Three of the four heuristics also 

found optimal assignments for the two smaller problems - although it 

was not then known that 289 is the optimum for NVR12. 

' For the larger problems all the methods found different 

assignments except that LOCATE, Nugent et al. and Hitchings all found 

an assignment costing 575 for NVR15. Therefore it appears likely that 
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575 is the optimum for NVR15, but there may well be cheaper assignments 

for the larger problems. 

The initial assignment found by LOCATE is quite good and 

is produced extremely quickly by comparison with the improvement 

procedures. Continued searching for the larger problems is a heuristic 

which is comparable with the best alternatives in terms of quality and 

computing time. 

7.4 	A BOUNDED HEURISTIC  

An annoying feature of the improvement heuristics is that 

they do not indicate how much their assignments are worse than optimal. 

Their are two ways in which a tree-search program such as LOCATE 

can rectify this situation. 

One approach assumes that a good assignment has been found 

and a user only wishes to be assured that its cost is within, say, 5% of 

the optimum. Then LOCATE can be run with a special cut-off rule 

which ignores any node whose bound is greater than 95% of the cost of 

the known assignment. It is hoped that only a small part of the tree 

will be enumerated under these conditions to prove that the initial 

assignment is within the given percentage of the optimum. 

The computational results for this method are rather 

disappointing. Almost 60 seconds were required to show that the 

optimum for NVR15 is greater than 500; i.e. to show that the suspected 
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optimum 575 is within 13% of the actual optimum. This indicates that 

either the bounds are not as good as hoped or that there is a much better 

assignment not yet discovered. 

Gilmore (21) suggested an alternative means of searching a 

tree to find a solution within a given percentage of the unknown optimum. 

This does not assume that that a good assignment is known beforehand. 

Suppose an assignment within 5% of the optimum is desired. 

He proposes that the tree-search algorithm should be used normally until 

the initial assignment is found and than the search continues but ignoring 

all nodes with bounds within 5% of the initial assignment. The result of 

this shortened search must either be to eliminate all nodes and thus prove 

that the initial assignment is satisfactory, or else to find a new assignment 

which is at least 5% cheaper than the first - this new assignment would 

then be treated as the initial assignment and the search continued. 

The procedure yields a sequence of assignments, each at least 5% cheaper 

than its predecessor and the last within 5% of the optimum. 

This technique proves extremely unpredictable in practice and 

is very dependent on the cost of the initial assignment. Consider the 

problem of finding an assignment within 2% of the optimum for NVR12. 

Table 7-2 shows that the initial assignment has cost 293 and so the tree 

would be enumerated until all pendant nodes exceeded 287.1 . Since the 

actual optimum is 289, this means searching almost the entire tree. 

On the other hand, if the initial assignment had cost 295 the optimum 
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might be found, perhaps quite quickly, and then the tree would only be 

developed up to 283.2; this would save extensive computation. Thus 

a long computing time may paradoxically correspond to a poor assignment 

for this technique. For this particular problem, in fact, it would be 

faster to calculate an assignment within 1% of the optimum than one 

within 2% 

7.5 	SPECIAL CASES USING TREE-SEARCH  

Chapter 6 presented dynamic programming formulations 

for the multi-level star mapping and the assembly line problems. 

This section discusses the efficiency of these algorithms relative to 

the general tree-search algorithm. 

Figure 7-1 shows a 2
nd 

order star problem with 17 machines. 

This was solved by hand using the dynamic programming formulation in 

14 minutes. Presumably a CDC 6400 computer could be programmed 

to solve it in very much less than one second. 

As reported above, LOCATE was unable to prove optimality 

for a 15-machine problem, even with a generous allocation of computing 

time. The special structure of the star problem resulted in very tight 

bounds, however, and the tree-search program used only 5.274 seconds 

and generated only 121 nodes to solve this 17-machine problem. This 

still represents far more computation, of course, than the dynamic 

programming algorithm requires. 
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· / Flow Graph 

Distance Graph 

Optimal Assignment: A1 B4 C3 D5 E2 F12 G14 H13 III 

J10 K9 L16 M15 N17 06 P8 07. 

Cost: 228. 

Figure 7-1. 

nd 
A 2 Order Star Problem. 
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The algorithm for the assembly line problem was not programmed, 

but its computing time can be accurately estimated since it is of the same 

complexity as the dynamic programming formulation for the travelling 

salesman problem (26). That algorithm has been programmed for a 

CDC6400 computer and required 18 seconds to solve any 13-city 

(or 13-machine) problem. 

Several assembly line problems have been solved using LOCATE 

and the time needed to solve the 13-machine problems varied from 39 

to 436 seconds. This indicates again that specialised structures can 

assist a general tree-search algorithm (c.f. NVR12) but that the 

specialised algorithm is significantly faster. 
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CHAPTER 8 

CONCLUSIONS  
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8.1 	THE LITERATURE 

It was not until 1957 that Koopmans and Beckmann (34) 

first formulated the plant layout problem as a mathematical program 

and recognised it as being just one example of what they called the 

quadratic assignment problem. But their quadratic cost function had 

been accepted in practice long before this formal definition and various 

manual heuristics had been used to design efficient layouts. 

The precise mathematical definition aroused interest in the 

concept of an optimal layout and in 1962 Lawler (39) and Gilmore (21) 

independently proposed almost identical tree-search algorithms. 

But apparently neither author implemented his method and the literature 

provides no report of computational experience for these algorithms. 

Other published algorithms appear to be only marginally more efficient 

than total enumeration of all n: possible assignments. 

Most of the vast literature which has appeared in the last 

decade is concerned with heuristics which only yield sub-optimal 

assignments. Almost all these heuristics may be classified as either 

incomplete versions of the tree-search algorithms or as minor variations 

of the CRAFT 2-opt improvement procedure (4). 

Several comparative tests of these heuristics have shown 

that the improvement methods are superior to the constructive methods 

in terms of the quality of assignment for a given amount of computer 

time. A major difficulty in evaluating these heuristics was that there 
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had been no indication of how sub-optimal their assignments were, 

because true optima were only known for very small problems 

8 machines or less. 

This question was partially resolved recently by Scriabin 

and Vergin (63). They found that students using the "old-fashioned" 

technique of travel-charting with the computer only assisting as a 

calculator were able to design better layouts than the computer using 

the CRAFT heuristic. For larger problems the difference was as 

much as 6%. This not only shows that humans can be useful designers, 

but also that the available heuristics are quite significantly sub-optimal. 

Hence further development of algorithms would seem useful 

because the efficiency of an optimal layout is likely to be much greater 

than for the best heuristic layouts. Also, the development of new 

heuristics would benefit from an algorithm which could calculate the 

optimum and thereby provide an absolute standard for comparison. 

8.2 	THIS RESEARCH  

In the spirit of the previous section, this research tried to 

develop algorithms for the quadratic assignment problem which would 

solve moderately large problems. The only report of previous 

computational experience came from Gavett and Plyter (20) who were 

unable to solve problems with more than 8 machines. 

Chapter 3 tried to solve the problem directly as a 0-1 

quadratic program. A standard computer package was able to solve 
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the program without the 0-1 condition but gave fractional values. 

The concept of biasing was introduced to eliminate the fractions but the 

objective function was then non-convex and the resulting assignment 

was not necessarily optimal; this method proved ineffective, even as 

a heuristic. 

The quadratic program was again transformed, this time by 

incorporating the constraints into the objective function. Then the 

variables were automatically zero or one, but feasibility required 

large penalties whilst convexity required small penalties and a 

successful compromise was not always possible. The method is, 

however, a useful heuristic, especially when specifically programmed 

as described in section 3.8 instead of using the general quadratic 

programming package. 

Chapter 4 was concerned with tree-search algorithms based 

on those suggested by Gilmore and Lawler. Since neither author has 

published any results, the aim was first to report computational experience 

for their algorithms and then to improve on them, particularly by 

calculating better lower bounds. 

Section 4.4 described a tree-search algorithm which uses the 

bound proposed by Lawler and Gilmore, but a different branching 

strategy. This program has solved problems with as many as 14 

machines, which is compatible with Gilmore's prediction. The time 

needed to solve a problem is very unpredictable. 
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The rest of chapter 4 investigated several other lower bounds, 

some weaker and some stronger than the original. Mathematical proofs 

have been given to show that these expressions are, in fact, lower 

bounds. 

Evaluation of one of these bounds involves solving a special 

case of the linear assignment problem. This restricted ranking problem 

can also arise directly in various practical assignment situations. 

An extremely efficient algorithm for restricted ranking was developed 

and tested (sections 4.7 and 4.8). 

Chapter 5 continued the analysis of alternative lower bounds 

using graph theory. The bounds of chapter 4 correspond to particular 

partial graphs and it was shown that no other partial graphs correspond 

to useful bounds. This appears to exhaust the possible usefulness of 

tree-search algorithms. 

Most plant layout and other quadratic assignment applications 

are special cases in some sense, often having many zero coefficients. 

Chapter 6 has developed solution techniques for several specialised 

problems, again making use of graph theoretic concepts. 

One particular case has been called the assembly line problem 

and this was formulated as a dynamic program. Another dynamic 

programming formulation was derived for a hierarchical "star-graph" 

problem and this is extremely efficient. 

Chapter 7 has computationally compared all the methods - 

heuristics and algorithms, from the literature and this research. 
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The tree-search algorithm of chapter 4 is the only method which 

guarantees optimal assignments for more than 8 machines, excluding 

the highly specific dynamic programming methods. It has solved all 

problems with less than 15 machines that have been tested, as well as 

some larger specialised problems. 

For large problems there are no known algorithms. Incomplete 

tree-search can be used as a heuristic and this has been done for as many 

as 36 machines. Such a method is very flexible in that it designs a 

good layout very quickly and then may improve it if given more computing 

time. Using the same time as the best alternative heuristics, incomplete 

tree-search has produced assignments of the same or marginally 

superior quality. 

8.3 	THE FUTURE  

It is difficult to predict the direction of future research on 

the quadratic assignment problem. Many people are very interested 

in it but the way ahead seems blocked at many points. 

The optimal procedures described in this thesis are limited 

to only about 14 machines and this is disappointing. And yet no one has 

been able to suggest an alternative to tree-search and chapter 5 seems 

to account for all useful bounds. 

There has been little improvement in heuristics in the last 

6 or 8 years and all the extensive research has concentrated on 
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refinement of just one technique. Further improvement seems to 

require a "break-through", a new concept on which to build another 

heuristic. 

The most likely direction of research in the immediate future 

is probably that of specialcases. Almost all applications of the 

quadratic assignment problem have a specialised pattern or structure 

and this can often simplify the tasks of finding both optimal and 

sub-optimal assignments. 
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APPENDICES  
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APPENDIX A 	DATA FOR TEST PROBLEMS  

This appendix gives the data for all the problems mentioned 

in the text. Where known the optimum cost, Z*1  and an optimal 

assignment are also given. The problems are labelled according to 

the author's name and the number of machines. Thus LA7 is Lawler ' s 

7-machine problem, and MG12 is the 12-machine problem proposed by 

this author. 

If all the linear costs are zero, as for Nugent's problems, then 

the linear cost matrix is omitted. Since all problems have symmetric 

flow and distance matrices it is convenient to combine them as shown, 

putting the distances above the diagonal and the flows below. 

2 	3 • • • 

d12 d13  

fBA - 23 
fCA fCB 

• 

• 

B 

Flows 	C 

1 

2 

3 
	Distances 

B 	C 	. . . 



1 2 3 4 5 6 7 8 9 10 

A 25 57 34 11 34 29 15 13 22 61 

B 45 35 10 3 54 68 41 21 19 20 

C 0 71 45 23 14 26 45 17 42 54 

D 13 32 46 52 74 36 28 5 2 33 

E 16 27 38 41 62 33 49 40 10 1 

F 

G 

H 

I 

J 

6 13 26 41 32 68 52 37 44 

32 41 52 36 19 99 21 30 41 

27 41 23 53 61 25 43 23 16 

38 16 28 21 34 60 10 7 16 

49 20 37 16 21 31 16 10 1 

51 

12 

19 

12 

33 
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MG3 2 3 

2 5 1 

B 3 	6 2 

C 1 4 

A B 

 

 

Z*=29 : A3 B1 C2. 

MG10 	 2 3 4 5 6 7 8 9 10 

4 6 2 7 1 7 8 8 6 1 

B 5 	3 4 5 2 9 4 5 5 2 

C 4 6 	7 3 1 4 4 3 8 3 

D 8 3 1 - 8 3 6 2 1 7 4 

E 3 9 9 8 - 7 3 3 2 4 5 

F 4 5 2 3 8 	5 4 1 3 6 

G 8 8 5 6 2 4 	6 3 9 7 

H 7 4 2 6 5 7 9 - 4 9 8 

I 1 1 3 9 1 1 3 5 - 9 9 

7 9 6 8 9 9 7 1 3 

ABCDEFGHI 

Linear 
costs 

Z*=1092 

A8 B10 Cl D9 E6 
F2 G5 H3 17 J4. 



- 6 3 1 4 5 8 9 4 2 2 1 

3 - 6 6 6 3 3 2 2 4 5 5 

5 2 - 3 2 4 7 4 5 6 7 3 

7 1 3 - 8 1 4 1 3 7 4 4 

3 5 4 7 	3 6 4 4 3 6 2 

1 3 2 6 4 - 	5 4 1 1 	3 

9 8 3 4 6 1 4 6 2 	4 

4 2 6 4 7 7 5 - 	2 5 	2 

3 1 1 2 1 4 3 5 - 	6 	5 

3 6 5 4 7 3 5 4 6 - 	8 

2 43 3 6 5 1 8 3 9 5 	- 

1 4 7 8 5 2 4 3 5 4 	4 

6 

8 

9 

4 

3 

5 

15 36 47 62 81 40 35 24 71 66 83 23 

15 62 35 87 68 46 23 15 36 45 81 40 

81 23 64 90 37 72 68 43 27 82 46 11 

43 0 10 46 38 91 20 49 62 36 72 46 

83 17 56 3 19 91 77 38 50 38 26 31 

1 10 47 53 82 93 86 14 55 21 51 39 

22 61 1 0 

72 15 43 10 

95 7 38 21 

37 67 89 32 

40 83 28 95 

33 89 56 25 

34 40 10 72 39 11 15 30 

23 11 73 49 82 83 80 65 

96 84 59 7 38 47 16 3 32 

93 6 48 36 74 20 81 11 

71 28 46 73 28 29 74 61 

0 27 46 53 92 1 36 48 
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MG12 
	

2 3 4 5 6 7 8 9 10 11 12 

AB CDEF GHI J K 

1 2 3 4 5 6 7 8 9 10 11 12 

Z*=1241 : Al B7 C9 D3 E4 F2 Gil H12 I10 J8 K5 L6. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 



2 4 3 	5 4 8 2 - 	8 3 4 5 

2 5 4 	7 6 3 4 9 - 	7 5 9 

3 4 6 	5 7 3 4 5 3 - 	3 1 

8 4 5 	6 3 4 7 5 3 1 - 	2 

7 3 8 	4 6 2 1 1 7 3 2 

3 8 2 	2 2 6 3 1 7 3 8 4 

3 2 7 	1 2 5 4 2 5 3 9 4 

8 2 1 5 3 9 3 7 8 7 4 3 7 

3 - 7 7 3 6 3 7 6 3 2 3 7 5 

5 2 - 3 7 4 8 4 4 6 4 7 2 6 

1 5 4 - 2 5 6 6 1 2 5 2 8 3 

4 5 2 3 - 2 3 2 3 7 1 8 9 5 

5 7 2 3 5 	1 4 2 4 8 4 7 4 

3 6 5 3 3 8 6 1 5 4 - 5 9 7 

4 2 

1 7 

4 3 

3 4 

2 8 

- 2 

5 

81 27 36 47 58 91 70 37 26 38 46 51 26 37 
50 48 10 26 38 64 72 38 49 71 1 39 20 57 
72 47 38 74 63 19 3 47 65 28 39 71 8 39 
1 27 38 46 28 49 88 42 74 56 91 22 36 48 

83 46 58 16 37 28 37 49 71 40 30 91 46 58 
92 47 58 37 61 38 40 86 28 49 33 10 6 59 
89 44 37 28 19 73 46 58 29 37 64 51 83 59 

10 82 64 52 89 
96 37 48 19 31 
39 47 61 28 42 
37 82 21 27 29 
83 49 96 58 47 
73 28 22 21 28 
47 62 38 47 49 

28 37 46 19 47 77 33 28 46 
21 90 32 29 56 37 83 21 89 
74 36 28 39 16 59 37 18 28 
20 38 47 59 81 47 39 28 46 
90 48 39 31 34 32 18 64 1 
84 38 29 47 38 19 38 64 58 
64 57 37 44 24 46 48 75 53 
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MG14 	 2 3 4 5 6 7 8 9 10 11 12 13 14 

AB CDE F GHI JKLM 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

L 

M 

N 

A 
B 
C 
D 
E 
F 
G 
H 
I 

K 
L 
M 
N 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Z*---1873 : A3 B11 C7 D2 E4 F12 G5 H10 114 J8 K1 L9 M13 N6. 



3 6 9 9 4 3 2 4 9 

1 	4 9 9 9 9 4 3 9 

0 1 	3 9 9 9 9 2 5 

0 0 1 - 2 9 9 9 4 3 

0 0 0 1 	1 9 4 4 3 

0 0 0 0 1 	2 2 9 3 

2 

2 

1 

- 

0 0 0 0 0 1 - 	2 9 

0 0 0 0 0 0 1 - 	4 

0 0 0 0 0 0 0 1 

1 0 0 0 0 0 0 0 1 
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TSP10 

2 3 4 5 6 7 8 9 10 

B 

C 

D 

F 

G 

H 

I 

J 

1 

2 

3 

4 

5 

6 

7 

8 

9 

AB CDEF GHI 

Z*=22 : Al B2 C9 D3 E4 F5 G6 H7 I10 J8. 
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GP4 2 	3 	4 

1 - 	6 	7 	2 

B 28 - 	5 	6 2 Z*. 403 : A4 B1 C3 D2. 
C 25 15 - 	1 3 

D 13 4 	23 - 

A B 	C 

LA7 
2 	3 	4 	5 	6 	7 

- 	5 	0 	5 	0 	5 	4 1 

B 0 	- 	9 	7 	3 	8 	6 2 

C 12 2- 	9 	4 	4 	4 3 

D 2 	0 	16 - 	1 	1 	9 4 

E 2 	6 	16 14 - 	5 	5 5 

F 16 2 	8 	12 0 	- 	4 6 

G 8 	6 	4 	8 	12 18 - 

AB 

1 	2 

CDEF 

3 	4 	5 	6 7 

A 51 27 14 9 0 18 0 

B 0 1 22 17 0 41 13 

C 2 0 13 22 2 12 27 

D 38 11 0 0 22 13 14 

E 62 56 0 67 1 0 5 

F 61 0 3 14 9 1 67 

G 41 12 23 0 18 41 0 

Z*=559 : A7 B2 C1 D3 E5 F6 G4. 



I 2 3 4 5 6 7 8 9 to II 12 

12 3 I 2 3 4 2  3 4 5 
5— I 2 2 I 2 3 3 2  3 4 
2 3 — I 3 2 I 2 4 3 2  3 
4 0 0 — 4 3 2 I 5 4 3 2  
I 2 0 5 — I 2 3 1 2 3 4 
0 2 0 2 10 - I 2 2 I 2 3 
0 2 0 2 0 5 - I 3 2 I 2 

6 0 5 10 o I I0 — 4 3 2 I 

2 4 5 oo I 5 0— I 23 

I 5 2 0 5 5 2 0 0 - I 2 

I 0 2 5 I 4 3 5 10  5 — I 
I o 2 5 I o 3 o 10 0 2 - 
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Nugent et al. used a slightly different notation, numbering the machines 

as well as the locations. Their five larger problems are reproduced 

here directly from their paper (57) and so the machine-labels are 

different, but the layout of the entries is as for the other problems. 

NVR8  

2 3 4 5 6  7 8  Z 4=107 
I 

2 
7 

5 
z 

— 
2 
I 

3 
2 

I 
2 

2 
7 

3 
2 

4 
3 A6 B5 Cl D7 

3 2 3 — I 3 2 I 2 E8 F4 G3 H2. 
4 4 0 0 — 4 3 2 I 

I 2 0 5 — I 2 3 
6 0 2 0 2 I0 - I 2 
7 0 2 0 2 0 5 — 
8 6 0 5 To o I Jo 

NVR12  

2 

3 
4 
5 
6 
7 
8 
9 

I0 
II 

I2 

Z*=289 

A5 B9 Cl D8 E6 F2 G5 H3 17 J4 



4 
5 
6 
7 
8 
si 

II 

23 
14 
25 

I —  I 2 3 4 1 2 3 4 5 2 2 .., 4 5 6 
210-12 3 212 343. 2 345 
3 o / 	I 2 *1 .. 2 x 2 3 4 3 2  3 4 

5 	3 	10 	— 	1 	4 	3 	2 	/ 	2 	5 	4 	a _ 	2 	2 ... 

I 	2 	2 	2 	— 	5 	4 	3 	2 	1 	6 	c - 	4 	3 	2 

o 2 	0 	I 	3— 	12 	3 	4 	I 	2 	3 	4 	5 
2 	2 	2 	5 	5 	2 	— 	1 	2 	3 	2 	2 	2 	3 	4 
2 	3 	5 	0 	5 	2 	6— 	12 	3 	2 	I 	2 	3 
2 	2 	4 	o 	5 	z 	0 	5 	— 	1 	4 	3 	2 	I 	2 

102 	0 	5 	2 	I 	5 .., 	I 	2 	0— 	5 	4 	3 	2 	I 
2 	2 	2 	I 	0 	0 	5 	20 	20 	o 	— 	I 	2 	3 	4 

1200 	2 	0 	3 	0 	5 	0 	5 	4 	5— 	I 	2 	3 
4 	10 	5 	2 	0 	2 	5 	5 	zo 	0 	0 	3— 	2 	2 
0 	5 	5 	5 	5 	5 	2 	o 	o 	o 	5 	3 	xo — 	I 
o 0 	5 	0 	5 	10 	0 	0 	2 	5 	0 	0 	2 	4 — 
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NVR15  

I 2 3 4 5 6 7 8 9 lo II 22 13 24 25 

Best known cost is 575. 

NVR20  

2  3 4 5 6 7 8 q !Oil 12 13 14 23 26  17 28 IQ 20 

— 1  2 3 4 1  2 3 4 5 2 34 3 6 3 4 5 6 7 
0 	1 2 3 2 I 2 3 4 3 2  34 5 4 3 4 3 6 
5 3 	I 1 3 2 2 2 3 4 3 2 34 5 43 4 5 
0 20 2— i 4 3 2 1 2 5 4 3 2  3 6  5 4 3 	4 
5 S 	0 1— 5 4 3 2  1 6 5 4 3 2  7 6 5 4 	3 
2 2 5 0 5 —  1 2 3 4 1 2 3 4 5 1 3 4 5 	6  

10 5 2 5 6  5 — 1 2 3 2 2 2 3 4 3 2  3 4 	5 
3 1 4 2 5 2 0—,  1 2 3 2 1 2 3 4 3 2  3 	4 
I 2 4 I 2 1 0I — I43 2 1 2 5 4 3 1 	3 
5 4 5 0 5 6 0 2 2 — 3 4 3 2  1 6 5 4 3 	2 
5 2 0 10 2 0 5 20 0 5— 1 2 3 4 1 2 3 4 	5 
5 5 0 2 0 0 10 10 3 5$ —  I 2 3 2 I 2 3 	4 
0 oo 2 5 10 2 2 5 0 2 2 —I 2 3 2 I 2 	3 
0 10 5 0 10 2 0 5 5 5 20 2 — I 4 3 2 1 	2 
5 20 I 2 1 2 5 I0 0 1 I 5 2 5 5 4 3 2 
4 3 0 I I 0 I 2 5 010 0 1 5 3 —  1  2  3 	4 
4 00  5 5 1 2 5 00 0 I 0 2 00—* I 2 	3 
0 S 	5  2 2 0 I 2 0 5 2 1 0 5 5 0 5 — 1 	2 
OW 0 5 5 I 0 2 0 5 2 2 0 5 10 2 2 I- 
I 	5 0 5 I 5 10 10 2 2 S 	5 5 01000/ 	6 — 

2 
3 
4 
S 
6 
7 
8 
9 

10 
II 

12 
23• 
14 

15 

16 
17 
18 
19 

20 

Best known cost is 1282. 



I— 1 2 3 4 5 1 2 3 4 5 6  2  3 4 5 6  7 3 4 5 6  7 8 4 5 6 7 8 g 
2 3— 2 2 3 4 2 I 2 3 4 5 3 2  3 4 5 6 4 3 4 5 6 7 5 4 5 6 7 8 
3 	2 4-1 2 3 3 2 I 2 3 4 4 . 3 2  3 4 5 5 4 3 4 5 6 6 5 4 5 6 7 

4 0 0 3— 2 2 4 3 2 2 2 3 5 4 3 2  3 4 6 5 4 3 4 5 7 6  5 4 5 6  
5 0 20 4 0— 2 5 4 3 2 2 2 6 5 4 3 2 3 7 6 5 4 3 4 8 7 6 5 4 5 
6 2 4 0 0 5— 6 5 4 3 2 2  7 6  5 4 3 2  8  7 6  5 4 3 9 8  7 6  5 4 
7 10 o 5 0 2 I— 1 2 3 4 5 2 2 3 4 5 6 2 3 4 5 6 7 3 4 5 6 7 8 
8 5 o 5 2 0 2 I0 —/ 2 3 4 2 I 2 3 4 5 3 2 3 4 5 6 4 3 4 5 6 7 
g 0 2 5 20212 2 33 21 3443 2 345 5 4345 6  
20 5 2 2 o o 2 5 3 20 — z 2 4 3 2 I 2 3 5 4 3 2 3 4 6 5 4 3 4 5 
11 	224 604205 2 5 2543 212 65432 3 765434 
12 501 02 10100 1 5 o — 6 5 4 3 2 2 7 6 5 4 3 2 8 7 6  5 4 3 
23 0 5 020 X06 0 5 6051234 51 23456 2 34 5 6 7 

24 0 0 4 5 0 2 0 0 2 0 I S 2 — 1 2 3 4 2 I 2 3 4 5 3 2 3 4 5 6 
25 2 00 2 0 5 0 2 0 I 2 2 0 2 —I 2 3 3 2 I 2 3 4 4 3 2  3 4 5 
26 
27 
28 
29 
20 
22 
22 
23 
24 
25 
26 
27 
28 
20 
30 

00 4 5 0 5104 3 5 1 04 1 4_ 1 2 4 3 2 2 2 3 5 4 3 2 3 4 
5 	0 0 1 2 2 02 0 	2 5 5  0 0 5 5 o 0 0 	2 02 05 w 0— 0- 1 1 5 5 2  4 4 3 3 2 I 2 6 5 4 3 2 3 
6 	2 6 2 2 S 	I 2 2 0 2 0 	2 5 1 3 2 — 6 5 4 3 2 2 7 6 5 4 3 2 

3 	o 3 I o o 10 20 0 5 0 0 	2 3 0 0 2 5 —/ 2 3 4 5 1 2 3 4 5  6 

0 	I 2 I 0 0 	/ 6 o 2 0 2 	0 10 I 2 0 I 0— I 2 3 4 2 I 2 3 4 5 
I 	6 5 2 2 0 	5 0 4 3 0 0 	6 0 0 2 0 2 S 	5 — I 2 3 3 2 I 2 3 4 

20 	2 5 2 0 10 	5 5 0 5 6, 4 	2 0 5 0 0 20 5 2 4— I 2 4 3 2 I 2 3 

o o 2 4 5 0 	2 5 5 0 6 5 	2 4 0 2 6 re x I 0 5— I 5 4 3 • 2 1 2 

10 	1 I 0 I 0 	3 2 2 5 o 20 	5 2 2 0 5 40 3 I o o — 5 5 4 2  3  3 4  I 5  

2 	2 0 2 0 0 	5 5 0 2 4 15 0 0 5 3 o 5 x o 4 4 5 — 
2 	2 00 2 4 	0 0 5 10 5 0 	0 0 0 0 5 0 2 5 0 4 4 5 1  — 1  2  3 4 
2 	5 3 2 I 0 	2 5 2 10 3 0 	0 4 5 5 0 5 2 6 0 5 1 0 0 0— 1 2 3 

z 	2 2 2 o 20 	0 5 2 1 2 C 	I 2 I 2 00 2 5 5 0 0 2 20 0 0— I 2 

0 100 5 2 I 	I 0 5 5 2 0 	5 5 I 5 5 010 5 0 2 2 0 1 0 0 2 —1 

2 	5 	2 5 z I 	3 2 2 2 10 I 	5 5 o xo I o 20 3 0 5 2 0 0 0I0 2 2 — 

NVR30 

 

3 4 5 6  7 8 9  20 2I 22 13 14 15 16 /7 18 29 20 21 22 23 24 25 26 27 28 20 30  

 

1 2 

Best known cost is 3086. 
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APPENDIX B 	BIASED QUADRATIC PROGRAMMING EXAMPLES  

An optimal assignment for NVR8 is A6 B5 C1 D7 E8 F4 G3 H2 

with cost 107. The iterations of the biasing procedure described in 

section 3.5 are given below. 

With no bias the QPS package gives Z.101.57, 

1 2 3 4 5 6 7 8 

A .20 .80 

B .19 .61 .20 

C .81 .19 

D .20 .04 .77 
X = 

E .30 .70 

F .70 .30 

G .20 .80 

H .60 .16 .23 

There are 19 fractional variables and so the bias coefficients should be 

5(107-101.57) 
19 	

=1.39 . (see flow-chart in figure 3-5). 

the value 1.0 was used, with the following result: 

For convenience 
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1 2 3 4 5 6 7 8 	1 2 3 4 5 6 7 8 

A 1 1 1 

B 1 1 1 1 

C 1 1 1 

D B= 1 1 1 X = .17 .83 

E 1 1 .23 .77 

F 1 1 .77 .23 

G 1 1 .16 .84 

H 1 1 1 .67 .16 .17 

Z = 104.05 

Now there are 11 fractional values and this means that the bias coefficients 

should be increased by 1.32 ; again 1.0 was used. 

1 2 3 4 5 6 7 8 	1 2 3 4 5 6 7 8 

A 1 1 1 

B 1 1 1 1 

C 1 1 1 

D B= 2 1 2 X = .18 .82 

E 2 2 .14 .86 

F 2 2 .86 .14 

G 2 2 .05 .95 

H 2 2 2 .77 .05 .18 

Z = 105.60 

For this solution the same values as before are fractional , but most of 

them have become nearer to being integers. The bias should be increased 

by 0.67, but 1.0 was more convenient. 
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1 2 3 4 5 6 7 8 	1 2 3 4 5 6 7 8 

A 1 1 .19 .81 

B 1 1 1 .19 .81 

C 1 1 1 

B 3 1 3 X .19 .81 

E 3 3 1 

F 3 3 1 

G 3 3 1 

H 3 3 3 .81 .19 

Z = 106.32 

Now some of the 0-1 variables have become fractional and vice versa. 

The formula for bias increment gives 0.43, but since all fractions are 

so near zero or one, the effect of additional bias is small and so a larger 

value can be used - e.g. the convenient 1.0 . 

1 2 3 4 5 6 7 8 	1 2 3 4 5 6 7 8 

A 2 2 1 

B 1 1 2 1 1 

C 1 1 1 

D B =  3 1 1 4 X = .10 .90 

E 3 3 1 

F 3 3 1 

G 3 3 1 

H 4 3 4 .90 .70 
ow. 

Z = 106.75 

Again the formula suggests a low value, 0.31, for the bias increment. 

But the extreme values of the fractions mean that the bias needed to give 

this solution the cost 107 is actually much higher, 0.70 . Hence 1.0 

was used again. 
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1 2 3 4 5 6 7 8 	1 	2 3 4 5 6 7 8 
WOO 

A 2 2 1 

B 1 1 2 1 1 

C 1 1 

D 
B = 4 1 1 5 

X = 1 

E 3 3 1 

F 3 3 1 

G 3 3 .08 .92 

H 5 3 5 .92 .08 

Z = 106.96 

This is very nearly integral and only one further iteration was needed to 

give the optimal solution. 

1 2 3 4 5 6 7 8 	1 2 3 4 5 6 7 8 

A 2 2 1 

B 1 1 2 1 1 

C 1 1 1 

D B =  4 1 1 5 = 1 

E 3 3 1 

F 3 3 1 

G 4 4 1 

H 6 4 5 1 

Z = 107. 
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Here is another example of the heuristic biasing procedure 

given in section 3.5 . The problem is GP4, Gavett and Pl-yter 's 4-machine 

example, for which the unique optimal assignment is A4 B1 C3 D2 with 

cost 403. The formula given in section 3.5 is followed accurately and 

so no detailed working need be shown. 

With no bias the QPS package gives: 

1 2 	3 4 

A .14 .86 

= B .36 .64 Z = 341.47 

C .30 .28 	.28 .14 

D .34 .58 	.08 

1 2 3 	4 1 2 	3 4 

A 20 20 .27 .29 	.45 

B= B 20 20 X = .71 .29 Z = 390.72 
C 20 20 20 20 .45 .55 

D 20 20 20 .28 .71 

1 2 3 	4 1 2 	3 4 

A 6 26 6 20 1 

B =  B 20 6 20 	6 = .38 .62 Z = 377.60 
C 26 20 26 20 .42 .20 	.38 

15 26 20 20 	6 .20 .80 

Note that Z has decreased and so the biased function was sufficiently 

non-convex at the previous iteration to have a non-optimal local minimum. 
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1 	2 	3 	4 	1 2 3 4 

A 6 26 	6 20 .21 .79 

B 	B 34 	6 34 	6 1 Z. 396.79 
C 40 34 40 20 .38 .42 .21 

D 40 34 20 	6 .62 .38 

1 	2 	3 	4 	1 2 3 4 
.10 

A 6 30 	6 24 1 

B = B 34 	6 34 	6 .64 .36 Z = 395.40 
C 44 38 40 24 .36 .64 

D 44 38 20 	6 1 
001 "am 

This solution is almost optimal. 

1 	2 	3 	4 	1 2 3 4 

A 6 30 	6 24 .39 .59 .02 

B= B 44 	6 44 	6 X =  .59 .41 Z=385.81 
C 54 38 50 24 .02 .98 

D 44 38 20 	6 1 

The objective has been reduced again 

1 	2 	3 	4 	1 2 3 4 

A 6 42 18 36 1 

B 	B 44 18 56 	6 1 Z = 407.62 
C 54 50 50 36 .64 .36 

D 44 38 20 	6 .36 .64 

The cost of this solution is actually greater than that of the optimal 

assignment and the procedure is clearly out of control anyway since the 

sequence of solutions oscillates wildly. The procedure was continued 
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using somewhat arbitrary bias increments for the final four iterations . 

The resultant assignment is quite unsatisfactory. 

1 2 3 4 	1 2 3 4 

A 10 62 30 44 1 

B 
B 44 30 68 6 = 1 

Z. 445.00 
C 58 62 50 44 1 

D 52 42 24 6 1 

The unique optimal assignment for Lawler 's 7-machine 

example, LA7, is A7 B2 C1 D3 E5 F6 G4 with cost 559. The biased 

quadratic programming procedure found this most easily by starting 

with all bias coefficients set to 10. 	This leads to : 

1 	2 	3 	4 	5 	6 	7 	1 	2 	3 4 5 6 7 

A 10 10 10 10 10 10 10 .36 .64 

B 10 10 10 10 10 10 10 1 

C 10 10 10 10 10 10 1.0 1 
B= 

D 10 10 10 10 10 10 10 
X = 

1 

E 10 10 10 10 10 10 10 1 

F 10 10 10 10 10 10 10 1 

G 10 10 10 10 10 10 10 .64 .36 

Z = 546.60 
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Note that simple rounding at this stage would give the optimal 

assignment. Continuing with the biasing procedure : 

1 2 3 4 5 6 7 	1 2 3 4 5 6 7 

A 10 10 10 35 10 10 35 1 

B 10 10 10 10 10 10 10 1 

C 10 10 10 10 10 10 10 1 
B X 

D 10 10 10 10 10 10 10 .99 .01 

E 10 10 10 10 10 10 10 1 

F 10 10 10 10 10 10 10 1 

G 10 10 10 35 10 10 35 .01 .99 

Z = 558.986 

1 2 3 4 5 6 7 	1 2 3 4 5 6 7 
^-1 

A 10 10 10 35 10 10 35 1 

B 10 10 10 10 10 10 10 1 

C 10 10 10 10 10 10 10 1 
B X 

D 10 10 15 15 10 10 10 1 

E 10 10 10 10 10 10 10 1 

F 10 10 10 10 10 10 10 1 

G 10 10 15 40 10 10 10 1 

Z = 559. 
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APPENDIX C 	PROGRAM "PENALTY" 

The program reads the problem date from TAPE 1 and 

minimises Z with the penalties zero and starting with the infeasible 

solution, x =0; if all cost coefficients are non-negative this zero 

solution is optimal already. Then it prints Z and awaits directives from 

the following list. 

Change 	Changes specified variables from 0 to 1 or vice versa. 

Alter 	Increases specified penalties by specified amounts. 

Alter + 	Increases all penalties by specified amount. 

Go 	Minimises with the current parameters. A blank line 

has the same effect. 

Step 	Increments all penalties associated with unsatisfied constraints 

by a specified amount, minimises, and repeats until a 

feasible solution is found or the specified limit is reached. 

Monitor 	Resets print control to give more or less information. 

Tape 	Further directives are read from specified tape. 

Finish 	Terminates program. 

Print (list) Prints sele-ted information according to the sub-directives 

in the list. Possible sub-directives are: 

Solution Current variables and Z. 

Penalties Current machine and location penalties. 

Critical The minimum increase and decrease in the specified 

penalties which will change the solution. 



111 

Penalty. 20 is too small. 
But 45 is too large and so 
the variables in this infeasible 
solution are rather arbitrary. 
D 4 	E 1 1 	F 6 	13 H 

H 12 	I '1 	.1 

• 
2 • 0111/) 

6113.6100 

t 	13 	C 3 
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Derivative The partial derivatives of Z with respect to the 

specified variables; also the change in penalty needed 

move the variable in or out of the solution. 

Many directives can be typed on the same line, but "finish", "go" and 

"step" are terminal. As an abbreviation, only the first three letters 

of each directive need be typed. 

The example below shows the difficulty of choosing suitable 

penalties for the 15-machine problem. The notes on the Tight have been 

added later. The cost of the best known solution is 575. 

nr
. 	M & N are missing. 

ARE 	61• 	(I ()CH 7 )*—.9F 4.1v (Luck! 0) 
/UHF 	:13 • fArcl(LUC,IA 	) *— • E,-4F 	(LI)C14 44 ) 
Al-i 	:3:3 • t 41(1 ( 	t'! ) -A.— • Pc. + 1!:i (MACH 
AHE 	•,35 • 11Vt^ Mi41'.14 	)F+10 (MACH 
5 10 	15 12 go 

(i',"'c• 000 

bk 1 	13 2 	C 3 
	

1) 4 	F 13 	G 5 	H12 
7 	J 9 	L 11/' 

Obviously nowhere near a good 
assignment and so this run 
was abandoned. 

lgo„,nvr16 
INFLAbTJLE 

	

? alter 	20 Jo 
INFASTULE 

? alter r 25 go 
INFEASTUL 	7 - 

? print solution 
SOLUTION 

K 13 	L. 16 	1114 
Z = 	6 1 ti • ITO 

? print critical m 
ZEFiRb OH MACH M 
ZFEWS FHH 	H 
ZFH11S F rill Lfril 
ZEHHS FHH LHCH15 

? alter n 34 m 36 
IHFEikg IH! 	= 

? print solution 
UUHH ENT S WW1 T.11,1 

	

;:■ 	11 14 
Z = 	622.vtlo 

? fin 
STOP 
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PENALTY being used for NVR8. Optimum is 107. 

lgo...nvrB 
TNFEASTULE 	Z 	 (A 

? step 100 3 
7B IN'HiEmi,HTS HUT NEE0En. 
FEASTUIF 	7  = 	116.0M1 

? print solution penalties 
CURRFNT SOLUTION 	A i 	U7 	Cfri 	06 	EH 	F4 	G3 	HP 
Z 	116-rfam 
MAnHTHF PI=WALTIFS 	A 15•11M0 	13 	• 14J0 	C P,U,U0 	0 21•VGA; 
F 21.00 	(3 10.000 	H 42° (100 

LOCATION PENALTTES 	1 P1-01,10 	2 6-1/mv 	3 12.0L0 	4 1B.0f.IV 
H 18.000 	7 21.1100 	13 3M• LIMO 

? alter + —2 go 
INFEASIBLE 	Z 	113.um0 
? print solution 
CURRENT SOLUTION 	U '1 	CB 	Of) 	E8 	F4 	03 	H2 
Z = 	113-cw 
? print critical a 1 
ZEHUS FUR MACH A AHE 	3*(Nn(L01'N 1)---S.:F+11,1(CUCW 
ZEROS FUR LOCH 1 ARE 	2.C11U(AACH C1*—.PE+1V(mACH 
? alter 1.3 go 
INFFASTOLF 	Z 	115.00 
? print solution 
CURRENT SOLUTTHN 	7 	Cl 	CB 	U6 	E8 	F4 	0:1 	HP 
Z = 	115.(,(10 
? print critical a c 
ZEROS FUR MACH A ARE 	14-LuO0 ncH 214.—.9E+1m(1ocki t,) 
ZEROS FOR MACH C ARE 	1.000(10CH 1) —10.333(LOCN 2) 
? alter c 2 go 
TNFEASIHIF 	Z 	116.000 

? print solution 
CURRENT SO1 LITTON 	8 7 	CB 	D6 	EU 	F4 	G3 	H2 
Z 	116-000 
? print critical a 
ZEROS FUR mACH A ARE 	12•(3(10(LUC[J 2) 	0(LOCW 1) 
? alter a 13 go 
TNFEASIULE 	Z - - 	110.01A 

? step 20 1 
16 INCREMENTS NUT HEEOF0- 
FFAqTPIF 	Z = 	116•(10V 

? print solution 
CUHFNT SoIoTTON 	Al 	87 	C5 	Up 	Eh 	F4 	G3 	H ; 
Z 	116.000 
? alter + —3 go 
iNFEA5IRCE 	Z 	1m 6-000 

? Step 50 1  
J2 INflHE1ALNTS NUT NFEOLID. 
FLAI;THLE 	2 . 	117.01 10 

? print solution 
CURRENT SOLUTION 	Al 	u S 	Co 	07 	FH 	F4 	G3 	H2 
Z - 	11'?. 000 
? finish 
STOP 
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APPENDIX D 	INTERACTIVE USE OF "LOCATE" 

As mentioned in section 4.4, program LOCATE can be run 

interactively. All manual input is via a subroutine called WATCH which 

is entered at the beginning of the program and then later in accordance 

with a parameter called 'WATCH. If IWATCH =0, WATCH is never 

entered. If > 1, it is entered on completion of the search. If > 2, 

when an improved solution is found. If 4, when a node is about to be 

deleted. If > 6, when a newly active node is about to have its bound 

calculated. Higher values of IWATCH are only used for debugging. 

Once it has been called, WATCH types a message indicating 

the reason for the call and then awaits further direction in the form of 

key-words typed by the user. The meaning of the 15 key-words is 

summarised below. 

Flow 	Print the flow matrix. 

Distance 	Print the distance matrix. 

Cost 	Print the linear cost matrix. 

Parameters Print the current value of IWATCH and two other parameters 

and accept new values for them. 

Limit 	Sets the number of nodes to be generated before the next 

call to WATCH. 

Summary 	Prints the number of nodes generated and also the number 

not yet discarded, the active node and the current minimum. 

Best 	Prints the current best assignment. 

Time 	Prints the computer time used in seconds. 
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Tree 	Prints all the nodes in the tree below a specified node. 

Single 	Prints a specified node, giving its bound and the nodes 

immediately above and below itself. 

Up 	Prints all the nodes directly above a specified node. 

Down 	Prints one node from each level below a specified node. 

Active 	Declares a specified node to be active. 

(blank) 	Continues running program normally. 

Stop 	Terminates execution. 

Most of these directives allow the user to watch the search 

process, but the "active" instruction gives the power to change the 

course of the search. 

IWATCH is preset to 1 and so the program runs without 

interruption unless either "limit" or "parameters" is used at the 

beginning of execution. The output below shows NVR8 being solved 

without interruption. Lower case letters are typed by the user, upper 

case by the computer. 

get,tapel=nvr8 
/x,fortran,i=locate,e=4.k 

STAHT 

**ENO** 	TIME NM TS 6-62 	STNCE LAST CALL IS 1"-;Eif7. 
THTAL NOmUFH nF NunLs IS 	14? 

bULUTION IS 	1t17 • [i(')O 

A ti 	U 5 	C 1 	D 7 	E ul 	F 4 	U 3 
STOP 	 ---:-' 
/ 	 ----r--;-* H2 
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The following output is for Gavett and Plyter 's 4-machine 

problem and demonstrates a few of the key-words. The notes on the 

right-hand side were added later. 

START 
? flows 
N•R• 	ENTRIES 

A 

ARE TUTAL PATRWTSE FLOWS 

H 	C 	U 

Print flow matrix. 

A 	0 2B. 25. 13• 
13 	25. 0 15• o• 
C 	25 • 15. M 23. 
D 	1:1• 4* 23. 0 

? 

distances 
1 2 ;1 4 ' Print distance matrix. 

1 	0 6. 7- 2• 
2 	6. 0 5• 6 • 
3 	'7. 5• 0 1. 
4 	2. 6 • 1• ' 0 

? parameters 
IwATCEL. 	1 	MAXEXCL- 4 	DIMENS=. it 9 f,1 
? 6 1 100 	 IWATCH= 6 
? 
START ANALYSIS OF ACTIVE NUDE 	 Node at level 0. 
? time 

TIME: NOW IS 7.101 	SINCE LAST CALL IS 	• L';'I LI 

START ANALYSIS HI' ACTIVE: NUDE 	First inclusion node. 
? time 

TIME NUW IS 7. 124 	SINCE LAST CALL TS 	-023 

Calculation of bound 

for node at level 0 

needed 0.023 seconds. 

Continued on next page. 



398 	396 

The first branch. 

The tree 
when the. 
first 
assignment 
was found. 
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Total number of nodes generated. 

Number of nodes not yet discarded. 

? summary 
NOUES. 	:3 ( 3) 	ACTIVE= 2 	BEST-999999-Ho 

? tree 
WOOF AEibIGNMFNT 

? 1 
1 	0 	0 	.396-00 	0 	2 	, -) 

2 	A 	4 	396-on 	1 	— 1 	vi, 

3 	A 	—4 	J9E3 • h1,1 	1 	—1 	• IA 
? paremeters 
IWATUHr. 6 	mAxExrt, 1 	DIMENS= 100 

? 2 1 100 
? 
IMPROVNO SoLUTInN 
? summary 
NUDES- 	7 ( 7) 	ACTIVE= 6 	BLST. 	403•00 
? best 

A 4- n 1 C 3 0 2 
'? tree 
NOOE ASSIGNMENT dOUNn PAHEHT CHTI.nREN 

? 2 
2 	A 	4 	397.51,1 	1 	4 	5 

3 	A -A 	396.11H 	1 	-1 0 
4 D 2 4n3.00 2 6 7 
r 	 2 	-1 	_O J 	U -2 	441 

6 	U 	1 	41)13.00 	4 	-1 	v 
7 	E3 	-1 	419 • r1.1 	4 	-1 	0 

? time 
TIME NOW IS '7-190 	SINcE LAST CALL IS 	-w74 

**Eiji)** 	TIME NnW IS 7.223 	SINCE LAST CALL TS 	-025 

-FOAL NoM0),n OF nonFs TS 	8 • 	Only one more 
node was 
generated. 

SninTToN IS 	403-OHO 

/1 	4 	E3 	'1 	C 
ST 0P 

HuUND PARENT CHILIMEN 
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