
-1-

UNIVERSITY OF LONDON

IMPERIAL COLLEGE OF SCIENCE AND TECHNOLOGY

Department of Management Science

THE QUADRATIC ASSIGNMENT PROBLEM

AND PLANT LAYOUT

by

Michael John Gerrard

Thesis submitted for the degree of Doctor
of Philosophy of the University of London
and for the Diploma of Imperial College.

November 1975.

-2-

ABSTRACT

This research is concerned with methods for finding optimal

solutions to the general quadratic assignment problem. Plant layout is

an application of this problem and is used as an example throughout

this thesis.

The literature over the last decade has been largely concerned

with sub-optimal procedures, but some tree-search algorithms have

been proposed. Few empirical results have been reported for these

methods and so a computer program was written to rectify this situation;

the program has solved significantly larger problems than reported

elsewhere.

Several alternative lower bounds have been examined, both

theoretically and practically. In particular the two best-known bounds

can be interpreted graphically and thereby shown to be just two elements

of a large class of bounds. All the other potentially useful bounds in

this class are enumerated.

Integer quadratic programming provides a different approach

to the problem and this has been examined in detail. The resultant

program cannot guarantee an optimal assignment, but it does find good

assignments extremely quickly.

Neither approach has proved very satisfactory for large

general quadratic assignment problems, but most practical problems

have a specialised structure which may facilitate solution. Various

such structures were examined and efficient techniques have been

-3-

developed to solve some of them.

The thesis concludes with an empirical comparison of the

procedures proposed here with those reported in the literature.

-4-

ACKNOWLEDGEMENTS

I wish to thank my supervisor, Dr. N. Christofides,

for his advice and guidance throughout this research. I also wish

to thank Dr. R. Flavell and Mr. S. Mitra for their help with the

IBM 360 computer and its quadratic programming package.

-5-

CONTENTS

1 INTRODUCTION 9

1.1 Assignment with quadratic costs 10

1.2 Plant layout as a quadratic assignment problem 11

1.3 Notation 12

1.4 Outline of thesis 13

2 LITERATURE SURVEY 15

2.1 Early history 16

2.2 Applications and related problems 19

2.3 Mathematical properties 23

2.4 Constructive heuristics 24

2.5 Improvement heuristics 27

2.6 Computer-aided human technique 29

2.7 Tree-search algorithms 30

2.8 One-dimensional problems 34

2.9 Conclusions 34

3 QUADRATIC PROGRAMMING APPROACH 36

3.1 The linear assignment problem 37

3.2 Basic quadratic programming fo,mulation 38

3.3 Results for basic formulation 40

3.4 Biased variables 43

3.5 Biasing in practice 47

-6-

3.6 Convexity 	 51

3,7 	Determination of bias coefficients 	 59

3.8 Penalty function method 	 69

3.9 Results of program PENALTY 	 71

3.10 Calculating penalties with L.P. 	 75

3.11 Conclusions 	 79

4 TREE-SEARCH ALGORITHMS 	 80

4.1 What is tree-search? 	 81

4.2 Branching strategy 	 84

4.3 The basic bound 	 89

4.4 Program LOCATE 	 94

4.5 	Results for the basic bound 	 100

4.6 Modified bounds 	 107

4.7 Restricted ranking algorithm 	 112

4.8 Computational analysis of restricted ranking 	118

4.9 A bound using restricted ranking 	 124

4.10 Large problems 	 126

5 GRAPHICAL ANALYSIS OF BOUNDS 	 128

5.1 The search for lower bounds 	 129

5.2 Graphical representation 	 129

5.3 A bound using star graphs 	 130

5.4 Bounds using other partial graphs 	 134

-7-

5.5 Computational considerations 	 136

5.6 	Detailed analysis of partial graphs 	137

5.7 Conclusions 	 141

6 SOME SPECIAL CASES 	 144

6.1 Zero flows and infinite distances 145

6.2 Graphical interpretation 146

6.3 Elementary problems 147

6.4 Elementary trees 153

6.5 Practical problems 159

6.6 Minimal weighted spanning trees 162

7 COMPARISON OF METHODS 167

7.1 The new methods 168

7.2 Steinberg's test problem 169

7.3 Nugent's test problems 172

7.4 A bounded heuristic 176

7.5 Special cases using tree-search 178

8 CONCLUSIONS 181

8.1 The literature 182

8.2 This research 183

8.3 The future 186

-8-

APPENDICES 	 188

A 	Data for test problems 	 189

B 	Biased quadratic programming examples 	199

C 	Program PENALTY 	 207

D 	Interactive use of LOCATE 	 210

REFERENCES 	 214

-9-

CHAPTER 1

INTRODUCTION

-10-

1.1 	ASSIGNMENT WITH QUADRATIC COSTS

The cost function for a wide range of assignment situations is

quadratic in nature. This arises when a pair of facilities contributes

a cost which depends on the product of the distance between the locations

to which these facilities are assigned and the level of interaction of the

facilities.

For example, a company may acquire several new premises

in different towns and must decide which section of its business to locate

in each town. If the sections are all independent of each other then the

problem of minimising the operating cost can be formulated as an ordinary

assignment problem and easily solved (31 5 36,54). Generally, however,

labour and materials must be transported regularly from one section

to another and the cost of this movement depends on the distance between

the towns.

Quadratic assignment problems exist on many scales and

computer design involves one much-studied situation (18,371 591 60,65).

The central processor of a modern computer consists of many modules,

each having many terminals which must be connected by wires to

particular terminals on other modules. The aim is to locate the modules

so as to minimise the total length of wire used.

1.2 	PLANT LAYOUT AS A QUADRATIC ASSIGNMENT PROBLEM

As has been indicated, many assignment problems have

quadratic costs and chapter 2 discusses some further situations.

All these problems have the same mathematical form, and the material

in this thesis could be presented in terms of this abstract mathematical

form, but it is more convenient to use the nomenclature of a particular

practical application. The plant layout problem has been chosen for this

purpose.

Plant layout involves a factory with several vacant locations

which are to be occupied by several new machines. The locations are

considered indivisible so that only one machine may occupy each site.

It is convenient to assume that there are the same number of machines

as locations; if this is not so, artificial machines with zero costs may

be introduced to regularise the problem. The factory may or may not

already have existing machines in fixed locations.

Different assignments of machines to locations will result in

different levels of efficiency which can be expressed in terms of

operating cost. Plant layout involves two types of costs which can be

termed linear and quadratic. The best assignment is one which minimises

the total operating cost in so far as this depends on the locations of the

machines.

Linear costs are those dependent on the locations of individual

machines. For example, the amount of artificial lighting required for

-12-

a machine may depend on its location. Also the cost of transporting

semi-finished goods between a new machine and other existing machines

or store-rooms depends on the location of the new machine.

Quadratic costs are due to the interaction of machines and

are dependent on the locations of pairs of machines. The cost of

transporting materials between two machines is assumed to be

proportional to the distance between the machines and so the locations

of both machines are needed to determine the cost. As well as materials,

employees and information must flow from one machine to another an.1

the cost per unit distance of the total flow between two machines is a

measure of the level of interaction for the pair of machines.

The validity of this cost structure has been accepted by most

researchers, at least as a very good approximation to reality. Buffa

and Vollmann (4) have discussed the underlying assumptions in detail.

1 . 3 	NOTATION

The new machines are labelled alphabetically A ,B1 C , . c>c
• • 1 	• • •

and the locations numerically 1,2,3, ... , i 	. The number of both

machines and locations is n. An assignment, 	is a function mapping

each machine, o<, to a different location, i.

The linear cost of assigning machine cx to location i is

denoted by ccxj. Hence the linear cost of an assignment, p, is > c c,‹ o< p(o<)

The level of interaction of two machines, o< and 73, is denoted

-13-

by fo,i6 ; i.e. to is the cost per unit distance of the total flow of men,

materials and information between machines o< and 13. By definition

f = f
,E3
 . The distance from location i to location j is denoted by d...

180c 	cx

It is assumed that d. = d... The quadratic cost of assigning machine 0(ji

to location i and machine /8 to location j is f g d... Hence the oc

quadratic cost of an assignment, p, is

f d

The total operating cost of an assignment is denoted by Z(?).

Clearly, 	Z (p) = cy(a) f d
	 rig f(0)f(,e)

The plant layout problem is to discover, from the n: possible assignments,

one which minimises Z(f).

1.4 	OUTLINE OF THESIS

The following chapter considers the research on the quadratic

assignment problem which has been reported in the literature. The

theoretical properties of the problem and its relation to other problems

are considered as well as methods of solution. The various heuristics

are shown to yield rather poor assignments whilst algorithms which

find the optimum can only handle small problems.

Chapter 3 formulates the problem as an integer quadratic

program.and attempts to modify it so that it can be solved using a

standard mathematical programming package.

-14--

The next chapter presents a tree-search algorithm and

proposes several alternate lower bounds for it. The empirical results

for this computer program are superior to others found in the literature.

Chapter 5 is a theoretical study of lower bounds which could

be used in a tree-search algorithm.

There has been some research on specific situations for which

the distances conform to a restricted structure. Chapter 6 considers

several cases for which the flows are restricted.

Chapter 7 makes a detailed computational comparison of

the various methods proposed both in the literature and in this thesis.

The final chapter is forced to the conclusion that, in spite of

considerable effort by many people, there is still no really satisfactory

solution to the general quadratic assignment problem. One of the

contributions of this thesis is to partly explain why the problem has

caused so much difficulty.

-15-

CHAPTER 2

LITERATURE SURVEY

-16-

2.1 	EARLY HISTORY

For almost as long as factories have been used it has been

recognised that the relative locations of machines have a significant

effect on efficiency. At first the manager relied on common sense and

experience to design a layout, but then factories grew larger and so

specialised heuristic techniques were developed. Many textbooks have

been written on this topic (17,49,55).

Travel Charting

One analytic tool described in most of these textbooks is the

"travel chart" or "from-to chart". This is a matrix in which each

row and column corresponds to a machine and the entries give the flow

of materials or "travelling" from each machine to every other machine;

the diagonal entries are not defined.

Two other charts are often used, one giving the distance

between each pair of locations and the other giving the product of flow

and distance for each pair of machines for a particular assignment.

The sum of all the entries in this product matrix is the total quadratic

cost of the assignment. Figure 2-1 shows the three charts for a

hypothetical problem with four machines. Also shown is the flow matrix

defined in chapter 1 ; each entry is simply the sum of the corresponding

entries in the travel chart and its transpose. This symmetric matrix

can be used to calculate a triangular quadratic cost matrix which is

equivalent to the product matrix.

-17-

ABCD 1 	2 	3 	4

A 8 4 2 1 3 	4 	5

B 0 0 7 2 3 	4 	6

C 4 7 0 3 4 	4 	5

D 1 5 0 4 5 	6

Travel Chart Distance Chart

or Distance Matrix 	(d..) 1J

ABCD

A - 	24 16 10
Product Chart for the

B 0 - 0 42
assignment 	(Al B2 C3 D4).

C 16 28 - 0 Quadratic Cost = 171.

D 5 30 0

ABCD

A 8 8 3 A

B 8 7 12 24

C 8 7 0 C 32 28 C

D 3 12 0 D 15 	72 0

Flow Matrix (f)
ocit3

Triangular Quadratic Cost

Matrix for (Al B2 C3 D4).

Quadratic Cost = 171.

Figure 2-1.

Travel charts and matrices for a 4-machine problem.

-.18-

The travel charting method begins with the travel and distance

charts and then an assignment is proposed. This is evaluated using a

product chart. If the quadratic cost seems too large, a new assignment

is proposed and evaluated; the process is repeated until a satisfactory

layout is found. Inspection of the product chart usually suggests

possible improvements to the layout - in figure 2-1 , for example,

it seems that either B or D should be moved. Moore (49) notes that

"the travel-chart technique is highly dependent on the ingenuity of the

layout man, since it utilises a trial-and-error technique".

Koopmans and Beckmann's Formulation

The importance of travel charting is not in producing good

layouts, but in quantifying the efficiency of layouts. Its underlying

assumption is that the cost of moving materials between two machines

is proportional to the distance between them. This is the only assumption

about costs which is needed to justify the use of travel charts.

Koopmans and Beckmann (34) extended these ideas in two

senses. Firstly, they recognised that the same cost assumption was

applicable on a larger scale when assigning plants or other economic

activities to towns or geographic regions. Secondly, they were able

to formulate the quadratic assignment problem as a mathematical

program modelled on the ordinary (linear)) assignment problem.

Their program defines a matrix of variables, X= (x .) (xi

such that x . has the value 1 if machine oc is assigned to location i oci

-19-

and has the value 0 otherwise. The quadratic cost of an assignment

can then be expressed as

	 f d
G.(j c«,Bij

x
cx 	x iej •

(In their formulation 	was only the flow from o< to 	, not from

A to c‹ as well). This function is quadratic in X and that accounts

for the name "quadratic assignment problem".

At that time there was no known method for solving quadratic

programs but Koopmans and Beckmann were able to transform it into a

linear program. Unfortunately this was too large to be practical;

and anyway, their research was not specifically concerned with solving

the problem. But this thesis is concerned with solution and so chapter 3

considers the quadratic program in detail.

2.2 	APPLICATIONS AND RELATED PROBLEMS

There are many applications for the quadratic assignment

problem and some which have appeared in the literature are described

below in descending order of scale. Some problems do not involve

assignment to locations but can still be put in the mathematical form

of the quadratic assignment problem. Some generalised and some

restricted problems are also mentioned.

• At an international level a multi-national corporation may

decide, for partly political reasons, to manufacture different components

in different countries; at least one computer manufacturer does this.

-20-

The purely economic decision of which component is assigned to each

country is clearly a quadratic assignment problem if the various

factories have any significant interaction.

The same situation obviously arises within a country or region,

but there can be a different emphasis in centrally controlled and mixed

economies. All economic activity within a country interacts and could,

in theory, be modelled by a huge quadratic assignment formulation.

If the government has direct control over industry it should try to

implement a solution to the quadratic assignment problem. If it has

only indirect control, such as by fixing rents or taxes in different areas,

then it should try to adjust these pricing mechanisms so that the market

forces of private enterprise automatically select an optimal assignment.

Koopmans and Beckmann studied these price mechanisms, but recently

Artle and Varaiya (2) have shown that, in general, there are no prices

which will ensure an optimal assignment.

Plant layout is one problem at the scale of a building or group

of buildings. Another is the assignment of employees to rooms in an

office building; the aim is to minimise the walking between offices (42).

Two algorithms have been proposed for the one-dimensional problem of

assigning rooms along a corridor, one being a tree-search formulation (64)

and the other dynamic programming (40) - neither could deal with as

many as 20 rooms.

The layout problem for a reference library is very similar

-21--

to plant layout. Very few readers walk from books about computers to

medieval literary criticism and so these do not need to be near each

other, but computing should be near mathematics for example. It would

also be convenient, however, to have computing near accounting, and

accounting near law, and law near sociology, etc. Compromise is

necessary and the best compromise is an optimal solution to the

quadratic assignment problem which minimises total walking.

Computing design has already been mentioned and there are

numerous publications on this topic (18,24,37,59,60,65). Computer

operation also provides an example (52). A computer tape or disc may

contain many records which are accessed in different orders by various

users. The "distance" between two locations on a tape or disc is the

time needed to move the tape or reading head from one location (record)

to the other; the "flow" between two records is the frequency with which

they are accessed consecutively.

The travelling salesman problem can be forced into quadratic

assignment form by defining 1c 	to be zero except when A = oc + 1

- then it takes the value 1. Lawler (39) has extended this to a multi-

salesman problem in which the salesmen must also pay to communicate

with each other. Maxwell (47) has formulated a machine sequencing

problem in a similar way, although it requires a more complex flow

matrix.

Bowman, Pierce and Ramsey (3) have formulated an economic

-22-

problem of input-output analysis in quadratic assignment form.

Their formulation is not quite compatible with the definition used in

this thesis because their distance matrix is not symmetric - in fact,

it is an upper triangular matrix of 1 ' s . They convert the problem to

a linear program with which they are able to solve moderately large

problems.

Other Related Problems

Lawler (39) has defined a generalised quadratic assignment

problem for which the objective function is

Z(e)= 	 a
cx 4 y

o<igp(0)p(19

where Ext a .j is the cost of interaction of machines cx and A when they

are located at i and j respectively. Note that even a 10-machine

problem requires almost 10,000 items of data and so all practical

situations must be special cases in some sense. As one special case

(k) (k)
he proposes the multi-commodity problem for which a .. = 	 f d.. .

'431J k c>(/3 J

This assumes that different commodities (distinguished by superscript, k)

must use different routes of different lengths between pairs of locations.

Several papers have been published on the related bottleneck

or minimax problem (5,6,7,14,44). This aims to minimise

Z(/0) = max (fcxiel df,(0)/0(4)) and has proved slightly easier than the

quadratic assignment problem (5,7), especially when distances are

rectilinear (14).

-23-

Another related problem which has received much attention

allows the new machines to be placed anywhere in 2 or 3 dimensions

(9 112145146 51169). 	Again the rectilinear problem is easier (9112,51,69).

2.3 	MATHEMATICAL PROPERTIES

The first step in solving many problems is to transform them

into other problems. This section discusses transformations which

leave optimal assignments unchanged.

As defined in chapter 1, the cost of an assignment, 	is

Z(p) 	 ((x) + 	cx,8
dpcoop(A) ' The first term of this cxf)

/3>e<

expression is the same as for the linear assignment problem for which

a well-known transformation subtracts a constant from each entry in a

particular row of the cost matrix. This is still valid: i.e. if c
i
 is

reduced by for a particular machine, < and every location, i, the

total cost of every assignment is thereby reduced by and so any

optimal assignment for the transformed problem is also optimal for the

original problem.

Transformation of the flow and distance matrices is more

complex. If all the flows from a particular machine are reduced then

that machine becomes less critical to the plant and so is likely to be

put in an• isolated corner - hence this transformation affects the

optimality of assignments. However, if flows between all pairs of

machines are reduced by the same amount, the costs of all assignments

-24_

also change by a fixed amount.

Burkard (5,6) has shown that flows from individual machines

can be reduced if the linear costs are simultaneously increased.

Specifically, if f0q and f o< are decreased by ?I' for a particular lac

ma 	 «i is increased by i

for every location, i, then the costs of all assignments remain
J

unchanged.

An analogous transformation exists for the distance matrix.

This means that at least one zero entry can be forced into each row and

column of the flow and distance matrices. The resulting shift in emphasis

from the quadratic to the linear term was expected to assist the search

for optimal assignments, but Burkard's success was largely restricted

to the bottleneck problem defined in the previous section.

2.4 	CONSTRUCTIVE HEURISTICS

Procedures which calculate good assignments may be classified

as "algorithms" if they guarantee to find an optimal assignment or as

"heuristics" if they only aim to find a good sub-optimal assignment.

Nugent, Vollmann and Ruml (57) further classify heuristics as being

either "constructive" or "improvement". A constructive heuristic

considers one machine at a time and selects the location to which it will

be assigned whereas an improvement heuristic attempts to modify a

given layout to decrease its cost.

-25-

Gilmore (21) proposed the first effective constructive

heuristics and most other constructive methods are based on his

concepts. Both his techniques can be extended to tree-search algorithms

which eventually find an optimal assignment (see section 2.7).

Gilmore's basic idea is to approximate the quadratic costs

by linear costs. Consider the quadratic costs incurred by assigning

machine c< to location i. There are n-1 flows, foo , which must be

assigned to n-1 distances, d.., in some order, and the cost of this is

the sum of the pairwise products of the corresponding flows and distances.

This cost is minimised by assigning the largest flow to the smallest

distances, the next-to-largest flow to the next-to-smallest distance and

so on. This gives a lower bound on the quadratic costs of assigning

o< to i and, when added to the known linear cost, c ., it gives an

indication of the actual cost of assigning o< to i.

These approximate costs are calculated for all n2 possible

assignments and then the most critical assignment is selected according

to a heuristic rule. Gilmore's two procedures differ only in their

rules for this choice. His "n
4" heuristic finds the minimal approximate

cost for each machine and location and then selects the machine-location

pair which yields the largest minimum. The "n
5" heuristic considers

the nxn matrix of approximate costs as data for a linear assignment

problem and selects the largest cost which appears in that problem's

solution. The names "n4" and "n5" refer to the order of computational

-.26-

effort required.

Now that one machine has been assigned to a location the size

of the problem has effectively been reduced from n to n-1 machines.

Approximate costs are recalculated for the reduced problem and another

machine assigned. This continues until all the machines have been

assigned.

Other Constructive Methods

Hillier and Connors (30) used the same process to calculate

the matrix of approximate costs, but a "difference" or "penalty" concept

for selecting the machine-location pair . For each row and column of

the matrix they calculated the difference between the smallest and

next-to-smallest entries, and then selected the smallest entry in the

row or column which had the largest difference. This new rule produced

slightly better solutions than either of Gilmore's rules when applied to

a computer design problem with 34 modules proposed by Steinberg (65).

Heider (29) proposed two alternative methods of calculating

approximate costs and his selection rule was to choose the machine-

location pair giving the smallest cost. His more successful method

calculated the mean value of all complete assignments which included

the specified machine-location pair. An algebraic expression for this

mean was derived by Graves and Whinston (22) whose own method,

although a heuristic, is best considered as an incomplete tree-search

algorithm and so is discussed in section 2.7 . Heider claims that his

-27-

heuristic is marginally better than the earlier construction methods.

Recently Neghabat (56) has proposed an interesting constructive

heuristic for the special case of rectilinear distances. He partially

decomposes the problem into 2 one-dimensional problems. The solution

of either of these new problems defines an assignment, but the two

solutions may not be compatible. This difficulty is resolved by alternately

solving one-dimensional problems in each dimension until convergence

to a good assignment is achieved. The quality of his solutions is very

slightly worse than others, but the computation is extremely fast.

2.5 	IMPROVEMENT HEURISTICS

Just as all constructive heuristics (excluding Neghabat's

specialised method) are based on Gilmore's original concept, so all

the improvement heuristics are based on the concept of exchanging two

machines if so doing reduces the total cost of the layout. 	The various

heuristics differ only in the order in which they consider machines and

in the basic assumptions made about the layout.

Armour and Buffa seem to have been the first to formalise

this idea and program it for a computer (1,4). They assume that

different machines may be of different sizes and so only exchanges

between adjacent machines or machines of the same size can be considered.

They calculate the cost-improvement (positive or negative) resulting

from each feasible exchange and, if any improvements are positive,

-28-

the exchange giving the largest improvement is made. The process is

repeated until no further improvement is possible. This heuristic has

become known as CRAFT - Computerised Relative Allocation of

Facilities Technique.

Hillier (29) independently programmed a restricted form of

CRAFT which assumes equal-sized machines to be located on the lattice

points of a rectangular grid. Since he only considers exchanges between

machines which are orthogonally or diagonally adjacent, the resulting

assignments are not as good as CRAFT' s although much less computation

is involved.

An improved version (30) allows some non-adjacent exchanges.

It also ranks the desirability of moving each machine in each direction

so that the most propitious exchanges may be considered first. This

heuristic is very much faster than CRAFT for large problems and its

layouts appear to be only marginally worse.

The above procedures are deterministic in that each produces

a specific final assignment from a given initial assignment. Nugent

et al. (57) proposed a stochastic procedure which they called biased

sampling. This differs from CRAFT in that all exchanges giving a

positive improvement are considered and the probability of a particular

exchange being made is a function of its improvement.

Nugent et al. also programmed the earlier heuristics and

compared their performance on eight problems with from 5 to 30

machines. These have since become standard test problems and are

-29-

reproduced in appendix A. They claim that biased sampling yields

slightly better assignments than CRAFT, although at the expense of

vastly more computation.

Garside and Nicholson (18), Edwards, Gillet and Hale (13),

Khalil (33), Munita (53) and Hitchings (32) have all tested other minor

modifications of the CRAFT principle and met with minor success.

Munita notes that CRAFT is an application of the "r-opt" concept

developed by Lin for the travelling salesman problem (43) -• here r = 2.

2.6 	COMPUTER-AIDED HUMAN TECHNIQUE

Scriabin and Vergin (63) have recently noted that several

authors (24,57) have compared the relative effectiveness of various

computerised heuristics, but that the traditional methods were being

ignored. Therefore they wrote a simple, interactive APL program

which calculates the cost of a proposed layout and generally facilitates

the travel charting method described in section 2.1 .

Seventy four students used this program to solve nine layout

problems ranging in size from 5 to 20 machines. Each student sat

at a remote typewriter terminal and entered a suggested layout for a

problem. The computer then calculated the cost of the layout and,

on request, also printed travel charts of the type shown earlier in

figure 2-1. Using these charts the student could suggest new layouts

until he was satisfied with the result.

-30-

Each problem was given to up to twenty students who

independently tried to find good layouts. Their results were compared

with CRAFT and Hillier 's original improvement heuristic as tested

by Grover (23).

For every problem the best "manual" layout was at least as

good as the best "computer" layout, and for the largest problem the

manual layout was 5.8% cheaper. Also, the median manual layout was

significantly better than the median computer layout for most problems.

Perhaps the most important conclusion to be drawn from this

experiment is that heuristics do not produce particularly good layouts,

especially for larger problems. For the 20-machine problem the best

heuristic layout is at least 5.8% worse than the optimum and may be

even more inferior.

2.7 	TREE-SEARCH ALGORITHMS

Apart from methods for specialised problems which are

discussed in the next section, all the algorithms proposed for the

quadratic assignment problem have been of the implicit enumeration

type known as "branch-and-bound" or "tree-search". Pierce and

Crowston (58) have published an excellent review of the various

algorithms and there is a detailed analysis in chapter 4 of this thesis;

hence only a brief summary is presented here.

-31-

In 1962 Gilmore (21) and Lawler (39) simultaneously

described equivalent tree-search algorithms although neither reported

any computational experience. Gilmore's constructive heuristics were

based on his algorithm.

An important part of any tree-search algorithm is the calculation

of a lower bound on the costs of all assignments. Gilmore and Lawler

both use the matrix of "approximate costs" described in section 2.4 .

Since these costs are, in fact, lower bounds on the costs of assigning

particular machines to particular locations, the solution to the linear

assignment problem defined by this matrix is a lower bound on the cost

of all layouts.

Gilmore also suggests an alternative which is weaker but

much easier to calculate. Since each of the In(n-1) flows must be
ccrt i$ not Ws tAgn the

paired with one of the -21-n(n-1) distances, the quadraticAcost of pairing

the smallest flow with the largest distance, the next-to-smallest flow

with the next-to-smallest distance and so on. This process gives a

lower bound which is readily calculated but can be shown to be lower

than the previous bound.

Figure 2-2 indicates how lower bounds are used to develop a

tree which partitions all the assignments into disjoint subsets. First a

bound is calculated for the original problem (389) and then four 3-machine

sub-problems are defined by assuming location 1 is occupied by each

of the four machines in turn. Lower bounds are calculated for each

sub-problem and the lowest bound (392) determines the next

All
assign-
ments

1

-32-

Figure 2-2.

Tree for a 4-machine problem using Gilmore's weak bound.

(Copied from Pierce and Crowston (58)).

-33-

branching (B1). Eventually the optimal assignment (A4,B1,C3,D2) is

found and its cost, 403, is less than all the other terminal bounds.

Gavett and Plyter (20) and Land (38) chose a different

branching strategy. Rather than assigning a machine, oc, to a location, I,

they assigned a pair of machines, (cx, 4) , to a pair of locations, (i,j),

without specifying which machine was assigned to which location.

This can be viewed as assigning cie to d...

Gilmore's weaker bound is well-suited to this branching

strategy and Gavett and Plyter programmed the algorithm for an

IBM 7074 computer. The results were disappointing, needing 42 minutes

to solve an 8-machine problem.

Graves and Whinston (22) have programmed a heuristic

based on the Lawler-Gilmore algorithm. They derived explicit algebraic

expressions for the mean and variance of the costs of all n! assignments

and were able to use these at each node of the tree to estimate the

probability that an optimal solution was included in that node. If this

probability is very small they discard the node, even if its bound is less

than the cost of the best known assignment.

They have cornoared their method to several other heuristics

and found it produced very good assignments quite quickly.

-34--

	

2.8 	ONE-DIMENSIONAL PROBLEMS

For several problems, such as ordering rooms along a

corridor or records on a computer tape, the locations lie in a straight

line. Simmons (64) and Lawler (40) have both studied this situation.

Simmons, programmed a tree-search algorithm for a closely

related problem which is equivalent to the quadratic assignment problem

if the distances between adjacent locations are all equal. His program

could only handle rather small problems with about 10 machines.

Lawler defined a dynamic programming formulation which

would be effective for up to about 16 or 18 machines. It is very

similar to Held and Karp's formulation for the travelling salesman

problem (26). He also considers several one-dimensional problems

with restricted flow patterns such as networks and trees. Some of these

cases are easily solved, but some are not.

	

2.9 	CONCLUSIONS

This literature has shown that a great amount of effort by

many people has been applied to developing techniques to "solve" the

quadratic assignment problem. Francis and Goldstein (16) give a

bibliography of 226 papers whilst Moore (50) lists 25 independently

developed heuristic programs. And yet the result of all this trouble

does not appear impressive.

-35_

Ignoring specialised techniques, there are just two basic

tree-search algorithms and two heuristics. Nugent et al. (57) have

concluded that constructive heuristics are inferior to improvement

heuristics, but Scriabin and Vergin (63) have demonstrated that

students with a desk calculator are significantly superior to improvement

heuristics for large problems.

Computational experience with tree-search algorithms is

very limited. The Gavett and Plyter program could not handle more

than eight machines and the Lawler-Gilmore algorithm does not appear

to have been programmed. Gilmore has estimated that his method

could not deal with more than fifteen machines.

Because of the apparent lack of computational experience

with algorithms, this thesis investigates these methods which yield

optimal assignments. Some specialised problems which can be solved

more easily are also studied.

-36-

CHAPTER 3

QUADRATIC PROGRAMMING APPROACH

of 0 otherwise. . x . 1 if machine o< is assigned to location i, 3-1

-37-

3.1 	THE LINEAR ASSIGNMENT PROBLEM

The quadratic assignment problem can be considered as a

generalisation of the linear assignment problem. The constraints are

identical but the quadratic cost function is more complex. This chapter

tries to extend a solution technique from the linear case to the quadratic.

For the linear situation the cost of an assignment, p , is

Z(p) = 71c
cxf(ex)

This can be formulated as a 0-1 linear program by interpreting the

elements of an nxn matrix, X, in the following way:

Then Z(X) = S 	 c x i . 	 3-2 o<1 (x

Necessary and sufficient conditions for matrix X to represent an

assignment are, in addition to 3-1 :

	

x. = 1 	for all machines 0(, and
i CK 1

Z Xi.

	

< = 1 	for all locations i. o c<

3-3

If the 0-1 constraint (3-1) is replaced by the weaker inequality

0 xoci< 1 	 3-4

then the linear program comprising 3-2, 3-3 and 3-4 can be solved

readily using standard computer programs to minimise Z (X) . It can

be shown (31) that the coefficients of the constraints form a unimodular

matrix: hence an optimal basic solution automatically has integer

variables and so constraint 3-1 is obeyed implicitly. Thus the linear

-38-

assignment problem can be solved effectively using linear programming,

although this is not the most efficient technique.

3.2 	BASIC QUADRATIC PROGRAMMING FORMULATION

For the quadratic assignment problem the cost of an assignment

is Z(p) - 	 cep («) + > 	dip)/o(g)

Using the 0-1 variables defined in 3-1 this cost can be written as

Z(X) = l >_ c .x .
1 0< 1 or(

+ 7 	f d. x x
/3>o< 	ivi 0</S 	?j

3-5

Minimising this expression subject to constraints 3-1 and 3-3 would

solve the quadratic assignment problem. Koopmans and Beckmann (34)

derived an equivalent expression but were unable to optimise it.

There are no general techniques available for solving 0-1

quadratic programs, but there are computer packages available for

continuous quadratic programs. It is possible to solve quite large

problems of the form :

y 0

min Z(y) rT y + yT Qy 	 3-6

subject to A y = s .

where y is a k-component vector variable,

r is a k-component vector of linear cost coefficients,

Q is a kxk positive semi-definite cost matrix,

A is an mxk matrix of constraint coefficients, and

s is an m-component vector of constraint values.

-39-

The restriction that Q be positive semi-definite means that

y Qy must be greater than or equal to zero for all real values of y.

This ensures that Z(y) is a convex function and hence that any local

minimum is,in fact, a global minimum. If Q is not positive semi-

definite then the quadratic program may have many local minima with

•values greater than the true minimum (66). There is a more complete

analysis of this difficulty in section 3.6 .

The previous section showed how a linear assignment problem

can be solved as a linear program by relaxing the 0-1 constraint (3-1)

to a simple inequality (3-4). The same relaxation will now be considered

for the quadratic assignment problem. Note first that the constraints

3-3 and x > 0 automatically force x 	1 and so this part of constraint i

3-4 can conveniently be omitted. This leads to the following basic

quadratic programming formulation which conforms to the standard

format of 3-6 :

x 	0 for all machines cx and locations i

min Z (X) => > c x 	7 7 72 7 f d xod
,e>< i 	c</e

	

x . = 1 	for all machines a
i CX 1

	

XX . = 1 	for all locations i.
« o< 1

3-7

In terms of the standard format, k takes the value n
2, m is 2n,

r contains the linear costs c 1 and s contains only 1 ' s . The elements - cx1

of A are 0's and 1 's, and the elements of Q are the products of

-40-

appropriate flows and distances. Figure 3-1 shows how the 4-machine

problem considered by Gavett and Plyter (20) is translated into the

quadratic programming format.

3.3 	RESULTS FOR THE BASIC FORMULATION
•

A matrix generator was programmed to produce the standard

format for QPS, a quadratic programming package for the IBM 360

series computers. This package was then used to solve the quadratic

program 3-7 for several problems involving from 4 to 8 machines.

Figure 3-2 shows that the variables do not automatically

take 0-1 values as in the linear case; this should not be surprising.

There does, however, appear to be a strong correlation between the

fractional solutions and the 0-1 optima which are being sought.

In fact, for NVR8, the 8-machine problem given by Nugent,

Vollmann and Ruml (57), a simple rounding procedure provides an

optimal assignment; i.e. if the value 1 is given to those variables

greater than 0.5 and 0 to those less than 0.5 , the resultant solution

happens to be both feasible and optimal.

Unfortunately GP4, Gavett and Plyter 's 4-machine problem,

is less promising. There are only 3 variables greater than 0.5 ,

namely IcA4, xB3 and xD2. If these are set equal to 1 and the solution

made feasible by also increasing xCl
from 0.30 to 1, then the cost of

the resultant assignment is 419. But if machines B and C are

B 28 B
C 25 15 C
D 13 4 23

1 2 3 4
6 7 2

6 5 6
7 5 1
2 6 1

A 	 1
2

(d..) = 1] 	3
4

c .= 0 «i

A

C
D
1
2
3
4

A =

1

A 2 3 Q 1

4 	 1
1 	0 168 196 561

B 2 168 0 140 168 	 f"̀

3 196 140 	0 281
4 56_128 28 _ 0 1 _ _

- -
_

C 2 150 	0 125 150 90 	0 75 901
3 175 125 	0 251 105 75 	0 151
4 	50 150 25 	01 30 90 15 	0
1 - 0 7§- -91- air- 0 24 28 81 0

Q = 1 	0 1.6 175 50 1 0 9-0 105 3d1

	

0 	65 	78 1 	24

	

65 	0 	13 1 	28

	

78 	13 	0 	8

0 20 241138
20 0 41161
24 	4 	01 46

D 2 78
3 91
4 26

138 161 	461
_ _

0 115 138'
115 	0 	231
138 	23 	0:

-....---;'
- -

1 	1 	1 1 o 	0 	0 	°To 	0 	o 	o,0000
0 	0 	0 1 1 	1 	1
0 0 0 0 0 0

0

0 1 0001 0 010 1
0 	0 	1 	0 	0 	0 	1 	0 1 0 	0
0 	0 	0 	1 	0 	0 	0 	1 1 0 0

0 	010 	0 	0 	0
1 	1 	1 	0 	0 	0 	0

0_011 	1 	1_1_

	

6-001 	l000
0 	o l 	oloo

1 1 	0 	0 	0 	1 	0
1

0 	1 	0 	0 	0 	1

110 .
0 1

_0 _
1

0
1

0 0 0 _ 0_ _ 0 _01_0 	0
l000l000'

-41-

x >0

Z(x), rT x + xT Q x

Ax= b

x
T
= (xAl' x A2' xA3' xA4' xB1' x132'

rT= (0, 0, 	0, 	0, 	0, 	0,

bT= (, 1, 1, 1, 1, 1, 1, 1, 1)

1 2 A 3 4 	1 2 B 3 4 1

xD3 XD4)

0, 0)

4 1 2D 3 4

Figure 3-1.

Basic Quadratic Program for Gavett and Plyter's 4-machine problem.

0 	.86*

.64 0

.28* .14

.08 0

3 	4

0 0 0 0 .20 .80* 0 0

.19 	0 	0 	0 	.61* .20 	0 	0

.81* 0 0 0 .19 0 0 0

0 0 .77* 0

0 0 0 .30 0 0 0 .70*

0 0 0 .70* 0 0 0 .30

0 .20 .80* 0 0 0 0 0

0 .60* .16 0 0 0 .23 0

0 0 .20 .04

-42-

GP4 1 2

0 .14
Min (BQP) = 341.47 .

B .36* 0
Min (QAP) = 403.

C .30 .28

D .34 .58*

NVR8
	

1 2 3 4 5 6 7 8

Min (BQP) = 101.57 . 	Min (QAP) = 107.

Figure 3-2.

Solutions to the basic quadratic program (BQP) for QP4 and NVR8.

Solutions to the quadratic assignment problem (QAP) are shown by "*".

A

B

C

D

E

F

G

-43-

interchanged the cost of the new assignment is only 403 - in fact this

is the optimum. The fractional solution in figure 3-2 gives no hint that

this could be so.

A more sophisticated rounding procedure could be based on

solving the linear assignment problem defined by the solution matrix,

choosing the assignment which maximises the sum of the x variables.
a).

Each row and column of the solution matrix could first be weighted

according to the importance of the appropriate machine or location:

i.e. the total of flows or distances from that machine or location. But in

the case of GP4 any reasonable weighting scheme would still produce

the assignment with cost 419.

These two examples show the limitations of the basic quadratic

program. Because the solution can be fractional it may not directly

specify an assignment, but it can give a useful indication of a good, if

not optimal, assignment. The cost of the fractional solution may also

be a lower bound on the cost of the optimal assignment which could

be used in a tree-search algorithm.

3.4 	BIASED VARIABLES

This section shows how the basic quadratic programming

objective function can be modified so that 0-1 results are more likely.

The costs of all 0-1 solutions must remain unchanged while the costs

of fractional solutions are increased. This concept has been suggested

-44-

for other combinatorial problems by Taha (67) and Raghavachari (61);

Christofides and Mitra (11) used it with some success on a class of

0-1 problems.

It is important for computational convenience that the bias on

the objective function should have either a linear or quadratic character.

Consider the bias function b 1 . xo< 1 . 	o< (1 - x . 1) where b o< is some
o<

non-negative parameter called a bias coefficient; the form of this

function is shown in figure 3-3. It is positive for 0‘ x . < 1 and zero

for o< x . 1 = 0 and 1. It is symmetric about x .= i and takes its maximum 0.<1

value of lbwhen x = a< i 	 2 •

Suppose that a solution has been found for the basic quadratic

program in which x. is fractional for some machine o< and some
o<1

location i. If the bias function with positive b .a<1 is added to the

objective function then the value of that particular solution is increased

by be<i x(xi(1-x .) which is a positive amount. By suitable choice of

the bias coefficient the cost may be made arbitrarily large. The cost

of all solutions for which x is fractional will be increased by adding a<1

this bias, but the cost of solutions for which x 	is 0 or 1 will remain
o<1

unchanged.

The bias functions can be added simultaneously for all

variables so that the biased objective function is:

Z(X) 	(c .-4-b .)x 	+ 	,x2. +2- 	 f 	d x x)
(xi 	0(1 oci „9>c< i vi 0<-/3 ij 	i 	j

3-8

-45--

b. x .(1-x .) cxl, pg. 	041

lb 4 	• -0C1

1
2 1

X . c< 1

Figure 3-3.

The quadratic bias function.

-46-

Choosing sufficiently large values for the bias coefficients can ensure

that the minimum value of this expression, subject to constraints 3-3

and 3-4, occurs when all variables are 0 or 1.

The 2-Machine Problem

It is useful to examine in detail the effect of bias on the

rather trivial 2-machine quadratic assignment problem. The constraint

set 3-3 ensures that xm= xB2 and xA2= xBi = 1 - xm. Hence for

all c< and i, xtx 	x .(1-ci..) = xA1(1-xA1). This allows the objective o

function to be simplified as follows :

,

	

z(x).„. 	 > c .x . Top .x .(1-xcxi) + 2_ 	f d.. x .x) o< 	cx1 c<3. 	o< 	al al 	fi>oc jvi o<fi 	 c<1

= (cAl - cA2 - cB1 + cB2)xAl + cA2 + cB1 + (bAl
+bA2 +bB1 +bB2)x Al (1-xAl.)

+ fAB d12 xAl
2 + fAB d21 (1-xAl)

2

(c'- c")x 	c" + bx (1-x) + f d (x 2
+ (1-x)

2)

	

Al 	Al 	Al 	AB 12 Al 	Al

where c'. c + c 	. c"= c + c Al B2 	A2 B1

and b = bm+ bA2+ bBi+ bB2 .

Further rearrangement yields :

Z(X) = (2f d -b)x (x -1) + (c'- c")x + c" + f d AB 12 	Al Al 	 Al 	AB 12

	

= 	 _ k 	c1- (2f ABd
	b)
12 	Al 2 2(2f d- b)) AB 12

(2fAB d12 - b -c' + c")2

+ c" + f d -

	

AB 12 	4(2f d - b) AB 12

1
2 - 2(2fAB d12 -b) •

This function of xAl
 is a parabola, symmetric about

It will be convex (concave) if b is less c'- c"

-47-

x Al I

than (greater than) 2f AB d12 . The turning point will lie between 0

and 1 if b > 2fABd
12

+10-01 or b.<. 2fABd12-Ic'- 111 . These

characteristics are summarised in figure 3-4.

It is clear that a quadratic programming technique will

always yield the optimal assignment (in this example xAl 0) if the

total bias coefficient, b, lies between 2fAB d12 lc' - c"I and

2fAB d12+ Ici- c"I . For smaller values of b the result will be

fractional; but note that simple rounding to the nearest integer always

gives the optimal assignment. Larger values of b allow both assignments

to be local minima.

This detailed analysis of the trivial 2-machine problem has

shown clearly how biasing may be useful on larger problems. As the

bias is increased the variables gradually change from fractional to

integral and the nature of the objective function changes from convex to

concave. It is to be hoped that integrality can always be achieved

before concavity, but it has been demonstrated that slight concavity

need not prevent satisfactory solution.

3.5 	BIASING IN PRACTICE

The matrix generator program was modified to include biases

9
for all the n variables. The bias coefficients could be set independently

b=0

f d +c' AB 12 b=2fAB d12 +Ict-c" I

f d AB 12

b=fAB d12 -lc' -c"1

ABd 12

1332fAB d1 +1c1 -c"1

C -C 1

2-- 4fABd12
0 1 XA

Figure 3-4.

-48-

Effect of bias for the 2-machine problem.

-49-

of each other by the user. Most problems had to be run several times

to achieve optimal, or even good, integer solutions; the coefficients

were adjusted after each run, taking account of the information provided

by previous results.

Initially the solution to the basic quadratic program with no

bias was used. Any variables which were integers already were left

unbiased while fractional variables were given a positive bias : It was

found best to give all fractional variables the same bias and the value of

the coefficients was chosen so that the cost of that particular fractional

solution would be increased to marginally more than the cost of an

optimal assignment. For the problems studied this optimum was already

known; in practice an estimate could be used.

Using these bias coefficients the quadratic program can be

solved again. If the solution is still not integral the bias coefficients of

the remaining fractional variables can be further increased and the

process repeated. This heuristic is expressed more formally in

figure 3-5 as a flow-chart. At each iteration the bias and hence the

objective function is increased and so an integer solution must be found

eventually.

Appendix B shows the detailed working for Nugent's 8-machine

problem, NVR8. The procedure worked quite well for this problem,

but others needed many more runs to find a set of bias coefficients

which produced the optimal assignment. The difficulties encountered

with even a 4-machine problem are also shown in appendix B.

START

Given Z* an estimate of optimum.

Set all b .=
al

Use QPS to find a
minimum. (Z, x .) 'xi

x all yes
integer

9
STOP

no

Increase Z*
so that Z*>

yes

no

m = number of
fractional x . c<1

Increase the bias coefficient
of each fractional x . by

5 (Z*-Z) 0(1

m

-50-

Figure 3-5.

Heuristic procedure for choosing bias coefficients.

-51-

An integer solution could sometimes be obtained more

quickly by giving all bias coefficients a small positive value and using

the solution to this quadratic program as a starting point for the iterative

heuristic. Appendix B shows this being sucessfully applied to LA7,

Lawler 's 7-machine problem.

Judgement and intuition are used in choosing the value of

the bias coefficients. If the biasing is too small, many variables will

take fractional values. If too large, the objective function will not be

convex and it will have many local minima; the QPS package would

arbitrarily select any one of these. The remainder of this chapter

develops more scientific techniques for choosing bias coefficients.

3.6 	CONVEXITY

As stated in section 3.2, the objective function

Z(y) = r
T

y + y
T
Qy is only convex if yT

 Qy is non-negative for all

values of y (66). If Z is non-convex on part of the feasible region

defined by the linear constraints then there may be several locally

optimal solutions and the QPS package chooses between them arbitrarily.

It has been shown how large biases can cause non-convexity, but the

unbiased objective function should also be examined.

The 2-machine problem for which fAB di2= 1 has

=

Al

A2

xsi
x
B2,

and Q =

0

0

0

1

0

0

1

0

0

1

0

0

1

0

0

0

-52-

a

and so yTQy is also ;- 0. But this is not sufficient to prove that Z is

For any feasible solution x .o. 	
and the coefficients of Q are all > 0

convex in the feasible region.

Consider 	y =

1
0
0

-1

Then 	yTQy = -2. 	This negative result

means that the function in general is not convex, even in the positive

region. But it does not take into account the effect of the constraint

set. It is conceivable that inclusion of the constraints will make the

total system convex. This is certainly true for the 2-machine case, as

was shown in section 3.4 .

Definitions of Convexity

A precise definition of convexity is needed for a function and

also for a system consisting of a function and a set of constraints; these

definitions must relate directly to the existence of multiple local minima.

Therefore define Z(y) to be convex if, for all vectors y1
 and yn , and

• —

for all real numbers a, 0 < a < 1, Z(ayi+ (1-a)y2)‘... a Z(yi) + (1-a)Z(y2

Similarly define a system to be convex if, for all feasible vectors yi

and y2, and all real numbers a, 0 <a

Z(ay1+(1-a)y2).< aZ(y1) + (1-a) Z(y2) .

This definition of a convex function can be shown to be equivalent,

in the case of a quadratic function, to the earlier definition involving

T
Qy

	

	
T

(66). In fact, the vector used above to show that y y 	 Qy can

be negative can also be used to show that Z(y) is not convex in the

0 1
0 0 positive quadrant. Let y1= 0 Y2- Y 2 —1 0
1 -1

and take a= z .

1-
0
0

La

-53-

For Q as defined before and assuming r =0, Z (y1) = 0= Z (y2) but

2

1 2
0 Z(1-yi+ly2) = Z(0) = 	+ -1-Z(y2)

But note that none of these variables are actually feasible.

A2 (xAl x 	x131 x) A vector y= 	 xB2) 	feasible if and only if Os< xAl< 1,

xA2= xBI.= 1- xAi and 52= xAl 	Even if r = (cAl cA2 cB1 cB2)T is

not zero, Z(y) can be written as a function of one variable :

Z(y) Z(xAl) = 2 2(1-xm)2 + (cm+ cB2) xm+ (cA2+cm)(1-xm)

= (2 xm-1)2+ (-cA1- cA2- cBl+ cB2)xAl cAl+ c131+ 1

Now two arbitrary feasible vectors, y1 and y2 , can be characterised

by xAl =u and xAl = v where 0.11.,v.“

Then a Z(y1) + (1-a) Z(y2) - Z(ayi+ (1-a)y2)

= a(2u-1)2+ (1-a)(2v-1)2- (2au+2(1-a)v-1)2

= 4au2 -4au+a+4(1-a)v2 -4(1-a)v+1-a-4a2u2 -4(1-a)2v2 +

-1-8a(1-a)uv+4au+4(1-a)v

= 4a(1-a)u2 + 4(1-a)av2 - 8a(1-a)uv

= 4a (1-a)(u-v)2

Hence the system of objective function and constraints is

convex, at least for the 2-machine problem (see also figure 3-4).

T

-54-

Unfortunately it is not at all easy to generalise the preceding analysis

to problems with more than two machines, but it is important to know

whether or not larger systems are convex.

Empirical Test for Convexity

A pragmatic computerised test for convexity of the quadratic

programming system has been developed, based on the actual definition

of convexity. Program CONVEX randomly generates two feasible

vectors, y1 and yn , and evaluates Z(y,) and Z(y
2
). For a random-

number, a, between zero and unity it also evaluates Z (a yi+ (1-a)y2).

Then it calculates the "degree of convexity" (DOC) which is defined

to be aZ(yi) + (1-a)Z(y2) - Z(ayi+ (1-a)y2).

If the degree of convexity is negative then the system is

non-convex. If it is positive for each of a large number of feasible

vector pairs then there is a strong likelihood that the system is convex;

note that convexity can never be definitely proved in this way.

A flow-chart of CONVEX is given in figure 3-6. The number

of vector pairs to be considered must be specified by the user. Note

that it is difficult to generate vectors with a uniform probability density

over the entire feasible space; the program does not quite succeed, but

at least every feasible vector can be generated.

The three problems considered in this chapter were analysed

by CONVEX (table 3-1(a)). Many vector pairs were generated for

each problem and all the problems were found to be non-convex.

START
Read the number of vector pairs needed

Print message - "non-convex"

no

Determine A and i
such that xifl n and
xl .>1/n. Decrease

xln and 	by 1/n and
increase xl • and
0(1. x n by 1/n.81

Calculate DOC = Z (x3)- aZ (xl)- (1-a)Z(x2)

no

Consider location i=

For each machine (2)< generate

o< xl i randomly between zero and .,
one. Normalise so that 2_ xl.=

e4

Set i=i+1

yes

-55-

Figure 3-6.

Flow-chart for program CONVEX.

-56--

Problem Number of
vector pairs

DOC <0
Number % Value

Smallest DOC
As % of optimum

GP4 500 7 1.4 -0.813 0.20

LA7 100 3 3.0 -1.904 0.32

NVR8 50 4 8.0 -0.633 0.59

Test for convexity.

Problem Number of
vector pairs

DOWC
Number

<0
%

Smallest
Value

DOWC
As % of optimum

GP4 8000 1 0.01 -0.553 0.14

LA7 400 2 0.5 -2.404 0.41

NVR8 300 5 1.6 -0.170 0.16

(b) 	Test for weak convexity.

Table 3-1.

Results of convexity tests.

-57-

It appears that the systems are only "slightly" non-convex.

Perhaps they do not have multiple minima despite being non-convex;

remember that convexity is a sufficient but not a necessary condition

for a unique minimum. Figure 3-7 demonstrates that non-convex

functions may have only one minimum; graphs (a) and (b) are concave

between x
1

and x2, and x0 is the global minimum in each case, but

graph (b) alone has an additional minimum at x3.

A system consisting of Z (y) and a set of constraints may be

defined to be weakly convex if, for all feasible vectors y1 and y2, and

for all real numbers a, 0 a,< 1, Z (ayi+ (1-a)y2 	max (Z (yi) Z (y,)) .

It is clear that (1) any convex system is also weakly convex, and

(2) any weakly convex system has only one minimum (but the converse

is not true for functions of more than one variable). In figure 3-7,

function (a) is weakly convex but (b) is not.

Program CONVEX was modified to test for weak convexity.

The only change needed is to replace DOC by DOWC (degree of weak

convexity) which is defined as max (Z(yi),Z(y2)) - Z(ayi+ (1-a)y2).

The results of the modified program are given in table 3-1(b). None of

the three problems proved to be weakly convex, although 8000 vector

pairs produced only one counter-example for GP4.

All these results suggest that the quadratic programming

systems may have non-optimal local, minima, but there has been no

proof. The QPS package actually provided a direct proof in the case of

-58-

Z(

(a) A non-convex function with only one minimum.

Z(x)

x

(b) A non-convex function with two minima.

Figure 3-7.

Multiple minima of non-convex functions.

-59-

NVR8 when it found a non-optimal local minimum. This is recorded in

figure 3-8.

. Negative Biasing

It is easy to show theoretically that any quadratic programming

system can be made convex by adding the bias terms of section 3.4

with sufficiently negative coefficients. Program CONVEX has shown

that very moderate negative biases are sufficient for the three problems

considered here; e.g. no non-convexity was found for NVR8 with

all b 	-1 . ex1

Negative biases, of course, also tend to introduce more

fractional variables into the QPS solution. The procedure given in

section 3.5 (figure 3-5) appears to be marginally more successful if

it is initialised with all biases equally negative; the value chosen should

make almost all variables fractional. At least this prevents the

possibility of starting from a non-optimal solution as given in figure 3-8.

3.7 	DETERMINATION OF BIAS COEFFICIENTS

The purpose of introducing bias is to produce a quadratic

program which is at least weakly convex and also has an integer vector

as its minimum. These two conditions are to some extent contradictory

and success seems to depend on a fine balance between them. It has

become apparent that some bias coefficients may have to be negative

-60-

1 	2 	3 	4 	5 	6 	7 	8

A 	 .31 .08 .61

B 	 .31 .69

C 	.69 	.31

D .10 .69 	 .13 .08
=

E 	.45 .55

F 	 .55 .45

G .48 .31 	 .21

H 	.41 	 .59

Z = 106.90.

Figure 3-8.

A non-optimal local minimum for NVR8. There is

a better solution with Z = 101.57 .

(See appendix B)

-61—

and some positive. The heuristic used earlier is inadequate - even if

it does produce an assignment, it can't be proved optimal if the system

is not weakly convex.

This section derives formulae for the bias coefficients by

considering the partial derivatives of the objective function. Throughout

the section the linear cost coefficients, c l are ignored for the sake of 0<i

convenience; their inclusion would not present any analytical difficulty,

but the algebra would become rather tedious.

First consider the partial derivatives of the unbiased

objective function.

Z(X) 	
0(pc< i

f
0‹

d..x . x A
j,8 	c<1. fi

())c dz
8x =a ›— 177 	d 	8x

Xk /8>c< 	c.<,8 	xod

ax cx].

x 	+ 	d,. c<<y ivk °O d oc f ik 	i 	/3›x jk X/3 	xieJ

= 7 7 f
Ile —

dirj

13 j

4 x i
eVi iVk

. az 	7 7- z_ f d..x, i.e. 7 - = /
°xoc i fiVet jVk °<fi 13 P J

Thus the partial derivative of Z(X) with respect to the variable x is c4.1

a positive linear combination of the other variables and is independent

of x 	itself. ocl

• If a particular x is varied while the other variables are
oci

fixed, Z increases linearly with xIf the only constraints were that oci

-62-

the variables could not take negative values then clearly Z would

achieve its minimum value when all the variables were zero. To find

a minimal assignment the constraints must be incorporated somehow.

Substitution of Constraints

and xAi = 1 -..<5--Axo<i 	for all locations i -

Then x=1-T- x. =2-n+E Ex .. These 2n-1 marginal Al ivi Ai 	«/A ill 0(1

variables can now be eliminated from the objective function and hence

the equality constraints become implicitly incorporated in the objective

function.

After some simplification this substitution gives:

Z . 	 1 +f -f)(d +d -d)x x
c<VA .8:0(0.(A Afl 	il 	lj 	ij

(0(10V(/3 1 j)

+ 	 > f d x2 + FA D1 +
04AiV1 °‹A

(F -F)d + f <A (D -D1) - nfo(Adii

	

o<VA 	c< 	c 	i

where F = > f 	and D.= 	 d .
oc AVc<c<A9

The result of differentiation is:

D A +f ,-
= 	

f)(d +d -d) x 	+ 	 +
• kVA

f.
c(1-1 	 lj ij Aqj

1 *(6'1.1)V(c<Ii)

3-10
+ (Fo(- F.A 	oz A

)d + f 	(D D
1 	c4
) - nf dil

 .

The equality constraints (3-3) of the quadratic program can

be rewritten: 	x = 1 -1
°<

x
i 	

for all machines o<
3-9

-63-

Clearly the partial derivative of Z (X) with respect to x . is

a linearly increasing function of x. and so Z (X) is a convex quadratic «f

function of x.. This convexity ensures that Z as a function of x . does o<1

not have multiple minima over the range 0 to 1, but it does not ensure

that the minimum will be at an integer point.

The minimum will be at 0 or 1 if the derivative has the same

sign over the whole range from x = 0 to x = 1. The best way of 0(1 	ai

achieving this is to force the derivative to be independent of 0(x 1 by

suitable choice of bias coefficients.

The total bias is B = a.x . (1- x .) 	Substitution for
i ou

the marginal variables according to formula 3-9 leads to:

B= -b 	>x.x.->b.x.x.->b x.x ->b x2 +
Al „e4ii 0c. 	j cse Ai c<1 /91 	0(ii 	0(1 c<j 	«i oci od.

+ 	(bx i+bAl 0(.+b + (2n-3)13)x i - (n-1)(n-2)bAl (x i 	 1 	.A1 o<

where all summations exclude machine A and location 1.

The partial derivative of the bias function is:

813
-3-7c 	 x . - 2b > x . -2b > x = -2bAl j)v(oc, i) (83 	(xlivi °<J 	Awo, /el

3-11
+ b .+b +b +(2n-3)b - 2(b +b +b +b)x

0<1 Ai 0(1 	Al 	Al Ai 0<1 o<i 0(1

This is a linearly decreasing function of x•. and so B is a concave

quadratic function of pc

The sum Z+B is to be made a linear function of x . and so o<1
8(z+B)
8 x 	must be made independent of x This can only be achieved

oc1
if 4f dil - 2(bAl +bAi +bD<1 +b) = 0. 0<.A

-64-

i.e. bcxi = 2 fc.Adii bAl- bAi- 	. 	 3-12

For any choice of the 2n-1 marginal bias coefficients this

formula gives the unique values of the remaining coefficients which make

Z+B linear in each variable when considered alone. Subject to the

constraints 0< oc.
1 for o<VA and iV1 any local minimum of Z+B

will be integer. But note that Z+B still contains products of variables

and so is not a true linear function and need not be convex.

Practical Techniques

Bias coefficients calculated according to formula 3-12 could

simply be used as input for the QPS quadratic programming package,

but the above analysis suggests a more direct method for finding a

minimal solution.

Consider any 0-1 solution to the problem with the marginal

variables removed. The partial derivatives of Z+B can be calculated;

combining equations 3-10, 3-11 and 3-12 gives an explicit formula:

8(Z+B) > 	
,BSA
(fi,j)V(0<li)

 	(
	

+f 	-f)(d 	+d 	-d)-2b
cx.A 	Afi 	ece 	ij 	Al

2b 	 - Ai igv,(3 x
od.

- 2bc<1 j4-ixo(i + (F.< -FA)dii+f,,,,A(Di-D1)- (n-2)(fc<Adi1
-2b

A1
)

lei 	 3-13

Now if the present solution contains any variable x .= 1

8(Z+B)
while 	>0, the cost of the solution could be reduced by changing

ox (x i
x to 0. Similarly if x = 0 and the derivative is negative, the cost
ou 	 (xi

would be reduced by setting xc.d.= 1. Changing xcxi does not change the

-65-

derivative with respect to xbut it may change other partial derivatives.
CKi

This change in the value of one variable is the basic step of

the iterative procedure defined by a flow-chart in figure 3-9. At each

step the objective function is reduced until a minimum is found; then

all variables will be compatible with their derivatives. Since Z+B may

not be convex there is no guarantee that this local minimum will be the

global minimum, but it will be integral and it will be a solution which

QPS could have produced, given the same bias coefficients.

There are two ways in which the solution found by the iterative

procedure might prove unsatisfactory. Firstly, it may not represent

an assignment. The marginal variables have been removed from the

problem and so the values imputed to them may be negative and the

corner variable xA1
 may be greater than one.

The second fear is that, although feasible, the assignment

may not be optimal because the objective function may be non-convex.

The method allows a completely free choice of the 2n-1 marginal bias

coefficients and it is hoped that this flexibility will overcome both these

difficulties.

Computational Experience

How does this procedure perform in practice ? The 2-machine

problem is trivial since the (partial) derivative is always zero,

indicating that the two possible assignments have the same cost; if c .

terms are introduced the procedure successfully chooses the cheaper

-66-

START

Choose b 	b and b A1' c.<1 	i

Calculate other coefficients:
b = 2f d b -b 	 b (xi 	4:)<A il Al o<1 Ai

1

Choose initial 0-1
solution (x .) al

Set (oz., 1) ,
 B,2

.) is minimal oci
STOP

Figure 3-9.

Iterative procedure to minimise Z +B.

-67-

assignment.

A 3-machine problem was analysed in detail manually with

the marginal bias coefficients all set to zero. From all feasible

initial solutions the procedure converged to one of three local minima.

Of these minima, one was the true optimal assignment (Z=19), a

second was feasible but non-optimal (Z=21) and the third was not

feasible (Z=20, xB2=1= xc2 which means that xA2= -1). Adjusting the

marginal bias coefficients successfully removed the infeasible solution,

but an ad hoc analysis showed that no choice of marginal coefficients

could remove the second solution without introducing an infeasible

solution.

The difficulty of infeasible solutions does not arise if the bias

coefficients are used with the QPS package and the marginal variables

are left in. Figure 3-10 shows the outcome of doing this for NVR8

with all the marginal coefficients zero. The solution is not an assignment,

but three points are worth noting.

Firstly, the magnitude of the biases is much greater than was

used with some success in section 3.5 . Here there are two coefficients

of 80 whereas appendix B gives an optimal assignment without using

values greater than 6.

Secondly, the cost of the solution is almost 50% greater than

the optimum. This indicates that the biased objective function is highly

non-convex - not surprising in view of the huge biases used.

B

X

A

B

C

D

E

F

G

H

A

B

C

D

E

F

G

H

-68-

1 2 3 4 5 6 7 8

48 36 24 12 36 24 12 0

0 0 0 0 0 0 0 0

40 30 20 10 30 20 10 0

80 60 40 20 60 40 20 0

0 0 0 0 0 0 0 0

8 6 4 2 6 4 2 0

80 60 40 20 60 40 20 0

0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8

1

1

1

1

	

.625 	.375

	

.375 	.625

1

1

Z = 154.75
	

(Optimum is 107.)

Figure 3-10.

Result of using calculated bias with QPS for NVR8.

Note: the marginal machine used here was H rather than A
and the marginal location was 8 rather than 1 .

-69-

The third point concerns the variables themselves; most are

integers but four are not. This means that the iterative procedure of

figure 3-9 would have forced some marginal variables to be negative.

The solution might have been as in figure 3-10 except for

xE1=1= xF1= xE3 xF3 xH1= -1= xH3= xE8= X
F 8 and xH8,--- 2. Note that

the fractional variables are exact fractions (3/8 and 5/8); this is

probably a consequence of the partially linear nature of the biased

objective function.

When the marginal bias coefficient b
E8

was changed from

0 to -2, QPS found a proper assignment, but it was very far from

optimal.

The results of the formula for bias coefficients have proved

so unpromising that no further research has been done to determine

values for the marginal coefficients. A different approach seemed to

be required, one which did not arbitrarily select one machine and one

location and consider them different to the others.

3.8 	PENALTY FUNCTION METHOD

The previous section incorporated the equality constraints (3-3)

into the objective function by eliminating some of the variables;

unfortunately this also eliminated the inequality constraints associated

with those variables. This section incorporates the equality constraints

by adding a penalty function to the objective function in a similar way to

-70-

the bias function introduced in section 3.4 .

P(X) is a suitable penalty function if its value is zero for all

vectors satisfying the constraints but very large for all infeasible

solutions. Then the minimum value of Z+P must automatically satisfy

the constraints. A penalty function as described above is impractical

because it must be discontinuous at the boundary of the feasible space.

It proves sufficient to simply require P to be positive for all infeasible

solutions.

Since the objective function and the bias function are quadratic

it is convenient to use the following quadratic penalty function:

P(X) = 	 «i _ 1)2
0.<

LTX1'- 1)2
1 1 04 0(

for positive

parameters p and q.. This is clearly zero if 7 x = 1 for all
1 (xi

machines 04 and >--- x .= 1 for all locations i ; otherwise its value
cx1

is positive.

The penalty function does not force the variables to be integers

and so the bias function is still needed. The complete objective function

to be minimised is now Z+B+P where

Z = > > 	Yf d. x x
0(pc,c 	cx/3 	«i igj

B = > Y b . x . (1- x)
Q.< 	cx.1 cx1 	c<1

and P is defined above. Note that the linear cost coefficients c . are
0(1

again being omitted; they add neither difficulty nor interest to the

following analysis.

-71-

The partial derivatives of each of these 3 components are:

az
)37- = 	f d..x
oci 	/64,x j i °(f3 1.1 igj

= b .1(1-2x 0(.1)

	

ax . 	o< cx1

OP
2q.(and a—x = 2p (> x 	1) 	 1) o< 	 ie oci

As in the previous section it is useful if the bias coefficients and penalty

parameters are chosen to make the complete objective function linear

in each variable when considered as a function of that variable alone;

i.e. the partial derivative of Z+B+P with respect to x. should be o<1

independent of x. This requires -2b + 2p + 2q.= 0, or more . (x i 	0(

. simply, bc<i = po< + qi

This linearising choice of bias coefficients ensures that any

minimum of the complete objective function, subject only to 	x . 1, cgi

will be a 0-1 solution. An iterative algorithm analagous to that proposed

in the previous section can be used to find such a minimum. A flow-chart

for the method is given in figure 3-11. The formula for the partial

derivatives is

8(z+B±p)

	

dx 	 f d.. x + 2p 	x 	2q."2" x - p - q. . 3-14

	

fivcx j7i cd9 1,) 	j 	cxj 	oci 	iii,vcx 	i oci

3.9 	RESULTS OF PROGRAM "PENALTY"

The penalty procedure was programmed in FORTRAN to be

run interactively on the College's CDC 6400 computer. The interactive

aB

Choose parameters po< and qi1

Set (cx, i) = (A11)

d(z+B+p)
Calculate (equation 3-14)

oci

yes

yes

no

Increase
0.< by 1
and set
i = 1

no

All
no 	machines

considered

Choose initial 0-1
solution (x

START

-72-

yes

.) is minimal 0(1
STOP

Figure 3-/1.

Iterative procedure to minimise Z + B+ P.

-73-

facility enabled the user to alter the penalty parameters from a terminal

after a local minimum had been found, and also to specify different

initial solutions.

The basic procedure defined by figure 3-11 would be inefficient

because it calculates many derivatives unnecessarily and each derivative

is the sum of approximately n
2 terms. Program PENALTY starts with

the penalty parameters all zero and uses xcxi = 0 as its initial (infeasible)

solution; hence the derivatives at the beginning are simply equal to c cxi

(PENALTY includes the linear cost coefficients). Derivatives are never

completely recalculated, but merely adjusted whenever a variable

changes or the penalties are altered.

Figure 3-12 gives an outline of the program's logic. The user

controls execution by typing key-words of which only the three most

by 3
basic are shown in the flow-chart. To increase pBAand decrease q1

by 1.7, for example, the user would type "alter B 3 1-1.7". Key-words

which have been omitted from the flow-chart control the display of

information to the user. An example showing the use of the program

is included in appendix C.

The success of the program obviously depends on the penalty

parameters used. If the parameters are too small some of the

constraints may be broken; if too large the objective function becomes

very non*-convex and many non-optimal local minima are created.

With a little experimentation it is easy to find assignments

with costs within 10% of the optimum. Even for large problems with

Set x (xi

Change specified variables
from 0 to 1 or vice versa.

-74-

Remove no label
from x

yes yes no

A minimum
has been found.
STOP if
desired.

Read
next key-word
and branch

Set x .=0 (xi
>

Adjust Z and any affected derivatives.
If derivative changes sign, label its
variable as potentially changeable.

Increase or decrease
specified pc, or qi by
specified amount.

Adjust Z and any affected derivatives.
If derivative changes sign, label its
variable as potentially changeable.

"change"

4,

"alter"

START
Read problem data

Figure 3-1.2.

Flow-chart of program PENALTY.

-75-

as many as twenty machines the computer time required is very small,

usually less than ten seconds. Hence this program is at least a useful

heuristic, even if it proves impossible to determine penalty parameters

which produce the optimal solution.

Satisfactory penalties were found for a 2-machine problem.

From any of the 16 feasible and infeasible initial solutions the program

reached the optimal solution using the penalties pA= 10, pB= 9.9,

q1= 9.85 and q2= 10. The details of this problem and its convergence

to the optimal assignment are given in figure 3-13.

For larger problems such as NVR8 and NVR12 the program

found optimal assignments after the penalty parameters were selectively

altered several times. But if the parameters were kept fixed and a new

initial solution used, the program sometimes converged to a different

solution which could be non-optimal or infeasible. This indicates the

non-convexity of the function.

3.10 	CALCULATING PENALTIES WITH L.P.

The penalty parameters must be large enough to make minimal

solutions feasible, but as small as possible to make the complete

objective function convex. This suggests that mathematical programming

might be used to choose the parameters. The objective is to minimise

V = >_pa + 7q.
i

and the constraints must eliminate infeasible solutions.

3-15

23.9

23.85

19.9

19.85

_76-

Problem data : FAB ' =3 d12 =5 cA1 =4 cA2 =6 CB1 = =cB2.

Penalty parameters used : pA=10 = q2, pB= 9.9 , q1= 9.85 .

Figure 3-13.

This 2-machine problem was solved by PENALTY. The "tree" shows

the costs of all 16 solutions and how they converge on the optimum (A1 B2).

-77-

Suppose the cost of an optimal assignment is known, or at

least suspected, to be Z*. If a solution X is infeasible then it can be

eliminated by the constraint

Z(X) + B(X) + P(X) > Z*
	

3-16

This constraint can be written in the form

r + > s 	+ 	q. > 	 a pa. 	1 1

where the coefficients r, s and t. depend only on the problem data and

the solution X. Hence constraint 3-16 is linear and so function 3-15
4 saris fair

and constraints of the form 3-16 together constituteita linear program;

its solution gives the parameters to be used by program PENALTY.

But the number of constraints is quite immense - one for

every infeasible solution. Many of these constraints will be dominated

by others and so perhaps quite a small subset of the constraints will

suffice. Figure 3-14 describes a method for selecting a satisfactory

set of constraints.

This method successfully found the optimal assignment for GP4

and a good sub-optimal assignment for LA7. NVR8 could not be solved,

however, because after six iterations the linear program had no

feasible solution. A 3- nachine problem, MG3, was subsequently

constructed which also gave incompatible constraints. The data for

this problem is included in appendix A.

Use program PENALTY with
these parameters to find a
local minimum of Z+B+P.

-78-

START

Choose any 2n constraints.

Solve L.P. for px and q..

Calculate the constraint
corresponding to this
solution. Add the
constraint to the L.P.

Use a dual method to
solve the augmented
L.P. for p,„(and qi.

STOP]

Figure 3-14.

Determining penalty parameters with linear programming.

-79-

3.11 	CONCLUSIONS

This chapter has expressed the quadratic assignment problem

as an integer quadratic program. Standard quadratic programming

algorithms can only solve continuous convex programs, but it was hoped

that the special nature of the formulation would suggest a suitable

technique.

Several methods were proposed, of which the most successful

modified the objective function to incorporate the constraints. Some

techniques produced integer solutions which were not optimal because

the function was not convex. Others were able to produce a unique

minimum which was fractional. Still others found unique, integer

solutions which were not feasible. No method was able to combine all

the necessary attributes to find assignments which could be proved

optimal.

These techniques can be useful, even though none of them can

guarantee optimal assignments. The methods which give feasible,

integer solutions usually find good assignments; program PENALTY is

an example of such a heuristic which has the advantage of very fast

computing time.

Even methods which yield fractional solutions are useful if the

system is convex. The cost of such a solution is a lower bound on the

cost of an optimal assignment and could be used in a branch-and-bound

algorithm.

-80-

CHAPTER 4

TREE-SEARCH ALGORITHMS

-81-

4.1 	WHAT IS TREE-SEARCH ?

Chapter 2 described several "tree-search" or "branch-and-

bound" algorithms for the quadratic assignment problem and this chapter

proposes a new one with a group of variations. It may be useful to begin

with a brief discussion of tree-search techniques in general. A

mathematical treatment of this subject has been given by Mitten (48) and

Lawler and Wood (41) have compared some of its early applications.

Tree-search has been most frequently used for combinatorial

optimising problems, like the quadratic assignment problem, for which

there is a large but finite number of feasible solutions. The object of

tree-search is to partition the set of feasible solutions into a collection

of disjoint subsets; this partitioning is to be done in such a way that one

of the subsets is singleton and the cost of its element can be shown to be

better than all the solutions in each of the other subsets. The solution in

this singleton subset must therefore be optimal.

Henceforth assume that optimising means minimising. Proving

that the cost of the singleton, Z
0
 say, is less than the cost of all solutions

in a particular subset is equivalent to showing that Z
0
 is a lower bound

on the costs of solutions in that subset, or that Z
0
 is less than such a

lower bound. Calculation of lower bounds plays a major part in any

tree-search algorithm and these bounds should be as large as possible.

The partitioning of feasible solutions into subsets usually proceeds

in several stages or "levels". First the feasible solutions are partitioned

-.82-

into a small number of subsets, often only two. Lower bounds are

calculated for these subsets, which are considered as being "nodes" at

level 1 of a "tree". Taking account of the bounds, one of the subsets is

then partitioned into smaller subsets which become nodes at level 2.

Lower bounds are calculated for each new node and the partitioning process

continues until an optimal solution is found and proven optimal.

This repeated partitioning is conveniently represented as a

directed graph as in figure 4-1. In graph theoretic terms this graph is

a tree and it also resembles an inverted tree in the botanical sense; hence

the name "tree-search". Partitioning a node is known as branching and

this explains the alternative name "branch-and-bound".

At any point during the branching process those nodes which

have not been partitioned are called "pendant" or "hanging" nodes. Any

singleton subset is obviously pendant and the actual cost of its solution is

usually used as the lower bound for the node. The solution in a singleton

node is optimal if its cost is less than or equal to the bounds on all other

pendant nodes.

A hypothetical problem which has only 20 feasible solutions is

solved using tree-search in figure 4-1. The first partitioning is into

three subsets of unequal size. Node 3 has the smallest bound and so

appears most likely to contain a minimal solution; hence the next

partitioning is of this subset. Node 5 is singleton and the cost of its

solution is 77, which is less than the bounds on nodes 4 and 6; these two

nodes may therefore be discarded. The next branching is from node 2

-83-

Level 0

Level 1

Level 2 	 73 	 81

- - -

Level 3

Figure 4-1.

Tree-search method for a problem with 20 feasible solutions.

The number beside each node is its lower bound. The numbers

on the branches show the order in which the nodes were generated.

_84-

and this eventually leads to the singleton node 10 whose cost is less than

the bounds on all other pendant nodes. Hence the optimal solution is

number 8 with cost 75.

There are two types of strategic decisions needed for any tree-

search procedure. The first concerns branching: the rules for partitioning

a subset and the order in which nodes are considered. The second

decision is how the bounds are to be calculated for each node. Both

decisions can have a profound effect on the computational efficiency of the

method, but the quality of the bounds is usually the more important factor.

In figure 4-1, for example, if the bound on node 1 had been 74 instead

of 76, then many more nodes might have been generated. On the other

hand, branching from node 1 before node 3 or 2 might also generate

many more nodes.

4.2 	BRANCHING STRATEGY

There are many decisions to be made concerning branching,

which determines the nature of the tree. Into how many subsets should

each node be partitioned? Should this be fixed or vary with the level of

the node ? Should there be any symmetry between subsets of the same

node ? In particular should all subsets at the same level of the tree

contain the same number of solutions ? Since it is not practical to

enumerate the elements of a subset, how are they to be characterised ?

Node 1 of figure 4-1,for example, was characterised by its elements

-85-

1
being odd. Several authors (21,22,25,39) have partitioned each node

at level k into n-k nodes at level k+1, with each branch being

characterised by the assignment of a specific machine to a specific

location. Thus a particular node at level 1 might consist of all solutions

for which machine A is assigned to location 7, and a node at level 3

might consist of all solutions with A assigned to 7, B to 1 and C to 4.

This branching policy is considered symmetric (see figure 4-2(a)).

Other authors (20,38) adopted an asymmetric, binary branching

policy for which each branch is characterised by the assignment or the

non-assignment of a specific pair of machines to a specific pair of

locations. Then a node at level 3 might consist of all solutions for which

the machines A and B are assigned to locations 3 and 5 (in either way),

E and G are not assigned to 1 and 4, and B and D are not assigned to

5 and 6. A possible tree for this strategy is shown in figure 4-2(b).

The branching used for this investigation is also binary and

asymmetric, but is more closely related to the first strategy described

above. A specific machine o< and location i are chosen for each

branching; the node is then partitioned so that all solutions which assign

machine o< to location i are in one subset (called an "inclusion" node),

and all solutions which assign machine a to any other location are in the

other subset (called an "exclusion" node).

The selection of the particular machine and location depends on

the lower bounds used and will be explained in section 4.4 . In terms of

quadratic programming, the solutions with x .= 1 are in the inclusion c<1

All
solutions

-86-

(a) A multi-level symmetric tree.

(b) A binary symmetric tree.

A horizontal bar indicates that the pair of
machines is not assigned to the pair of locations.

Figure 4-2.

Typical trees resulting from different branching strategies.

-87-

node and those with x 	0 are in the exclusion node.
cxi

This partitioning rule determines the structure of the resulting

tree, but does not state the order in which the nodes of the tree should be

generated. The rule followed for figure 4-1 was to always branch from

the pendant node with the smallest lower bound. This is sometimes known

as a breadth-first search because all branches are explored simultaneously.

It ensures that only the minimum number of nodes are generated to find

and prove an optimal assignment. One of its disadvantages for computer

applications is that a record must be kept of all pendant nodes and there

may be many thousands of them.

The search rule used here is depth-first, for which one of the

most recently generated nodes is always the next to be partitioned.

Nodes are produced two at a time and so there is often a tie when deciding

which node is most recent; in this case the inclusion node is given

priority because it contains fewer solutions than the exclusion node and

so is likely to produce fewer nodes below it before finding an optimal

assignment or calculating bounds greater than a known assignment.

Figure 4-3' shows how the depth-first rule might explore a tree

for a 4-machine problen.. The first assignment found is (B3 A4 Cl D2).

If the cost of this is less than the bounds on nodes 4 and 6 then all five

nodes on the right of the -tree can be discarded and only a note of the best

assignment found so far need be kept. Next the branches below node 7

are explored. If the bounds on nodes 10, 11 and 12 are greater than

All
olutions

-88-

Figure 4-3.

A tree for a 4-machine problem.

The numbers above each node show the order of branching.

The number of solutions in each node is given below each node.

-89-

the best known assignment, this new section is discarded; if not, the

improved solution (node 11 or 12) replaces node 5 as the best assignment

and the new section is still discarded. Thus only a small number of

nodes need be recorded at any stage of the search.

4.3 	THE BASIC BOUND

An excellent review by Pierce and Crowston (58) has shown that

all the proposed tree-search algorithms for the quadratic assignment

problem use only two fundamentally different bounds. This paucity is

investigated in the following chapter .

The present algorithm uses a modification of the bound suggested

independently by Lawler (39) and Gilmore (21). This bound is always

greater than or equal to the other bound but requires considerably more

computation. This extra calculation is considered justified because, as

was stated in section 4.1 , tree-search methods are critically dependent

on the quality of the bounds.

First a lower bound on the overall problem (i.e. the node at

level 0 containing all assignments) will be developed; this is exactly

equivalent to Lawler 's bound. Then it will be generalised to deal with all

the nodes involving both the inclusion and exclusion of machine-location

pairs. This is necessarily different from Lawler 's bound because of the

different branching strategy.

Let I), e. and /60 represent assignments. Then, by definition,

-90-

for any assignment r ,

Zy) = 	(co(f)(cx) + #8>>o< C d

= 7 (cmox) 	1,80<fc<fi d p(c<)10G8)

, (co,
r
,,x) 	min (f d

p
,
oe 	

)

	

o< 	 pu AV0((xi8 	p)
/0"(04)=/0(0()

	

min
,,t 	o<

(c« ,(«) + min (dp,(00e„Ge))

f"(04)=0'(c)

This last expression is independent of 	and and is clearly a lower

bound on the cost of all assignments; it will be denoted by L and referred

to as the basic bound. It is not at all obvious that L can be easily

calculated and some notation must be introduced to explain how it can be

done.

Let 	a' = min (f d. oq. 10 	vc< 04,8 p(fi)
1.0(-0=i

and a 	= c 	+ -2-a 	.
CA 1 	0(1 	C>q

Now L= min(a(cx)) and this minimisation is simply a linear

assignment problem of dimension nxn. It can be solved efficiently using

the Hungarian algorithm for example (36,70).

The only remaining computational difficulty is calculating a'

for n
2

values of (cx, 1) according to formula 4-2. This minimisation is

also a linear assignment problem, this time of dimension (n-1)x(n-1)

4-1

4-2

4-3

-91-

since p(o<)-- i is fixed.

Physically, //'" f d. 	is the cost of flows to and from 4, so(0<fi

machine D< in location i ; ' . is the minimum value of this cost when all
c<1.

possible assignments of the other n-1 machines are considered.

Several authors (e.g. Gilmore (21)) have shown that this minimum is

achieved when the machine with the smallest of the n-1 flows from

machine 0.4 is assigned to the location furthest from location i, the

second-to-smallest flow to the second-to-largest distance and so on.

Thus a', can be calculated very easily. Simply rank the n-1 «1

flows from machine « in increasing order, the n-1 distances from

location i in decreasing order, and then sum the products of corresponding

numbers. This ranking procedure is much faster than solving a linear

assignment problem, even the definition of which requires (n-1)
2

multiplications.

The flow-chart in figure 4-4 summarises the procedure for

calculating the basic bound on all the solutions of the quadratic assignment

problem. Note that only 2n sets of n-1 numbers need be ranked to find

the n2 values a' . 0(1

The Bound for General Nodes

A tree-search algorithm does not, strictly speaking, require

a bound for the level 0 nodes, but it was convenient to explain it in detail

for that simplest case before generalising.

A node is characterised by the assignments it includes and those it

no Increase
o< by 1.

yes

Have
all machines

been
considered

Set i=1

Increase
i by 1.

Set i=1

i=n
	 Increase

i by 1.

Rank tf,,v? 	V O.<J
in increasing order .

START

Rank &I. • I jVi
in decreasing order.

Evaluate ac,c1 i as the sum
of corresponding products
of flows and distances.

Set a .= c
0(1

-92-

yes
Solve the L.A.P. defined
by matrix A= (ac4).
Set L= minimum cost.

I STOP 1

Figure 4-4. ,

Flow-chart to calculate L, the basic bound on all solutions.

-93-

excludes. For any node let

I = f (0‹, i) imachine c< must be assigned to location i 	and

E={(c<,i) I machine cx must not be assigned to location i .

I and E are called the inclusion and exclusion sets respectively. The

number of machine-location pairs in the inclusion set is III . Standard

set notation will be extended so that oz.E. I means that (c<, i)E I for some

location i, etc.

For any assignment, 	which satisfies the inclusion and

exclusion sets I and E :

z(lc)) 	(c
r(›- f

c,<% g
d

0-c ocx) 	Av 	p(00/0(.6))

,e1EI

+ > >f d 	
(x 	

f d 	+
o< I 	G6? f(c<V) 	p 	 cx/g P(°)/9(,) o<g

+.<4 g 	d
.<41 	f(')P(/6)

c 	,

=g(I) + 7 c(i)
cor .4 /°(°<) 12; Cgd/oMp(g)

fivo(
where g(I) = 7- (c f d c<EI 040(c)c) 	AVo< cA/51 7-°(c)M)

'el

and C (I) 	of + 	 f
c<fi

d D(/6)
1 	ifG) •

The expression 4-4 is exactly in the form of a constant, g (I),

plus a quadratic assignment problem involving (n- II,) machines and

4--4

4-5

4-6

-94-

locations. Note that formulae 4-5 and 4-6 are well-defined because

o(o<) is known for c< e I.

The restrictions of the inclusion set are automatically enforced

by formulae 4-5 and 4-6, but the exclusion set has been ignored, This

can be rectified by defining :

C (I ,EL . = f c.° if (cx i) E 	 4-7
LC(I)(x 	((x, i)E i

To summarise, a node with inclusion and exclusion sets I and

E can be used to define a new quadratic assignment problem which will

be called P(I,E). Its machines and locations are those not present in I,

and its objective function is

Z(f),I,E) C(1 ,E)04/0(0.0 + 	
oc '
f d

,d> e P(tx)/0C8

where all summations exclude machines in I. If the basic bound on

P(I ,E) is L(P(I,E)) then the basic bound on the node (I,E) is

L(I,E) = g(I) + L(P(I,E)) 	where g(I) is defined by 4-5.

4.4 	PROGRAM "LOCATE"

A FORTRAN program called LOCATE was written to implement

the tree-search algorithm. Figure 4-5 gives a general flow-chart of

the program's logic. Before discussing some features of the program

which are omitted from this flow-chart, there are two steps included

in figure 4-5 which need explanation.

One point is the deletion of a node "and all its dependents".

-95-

Bound Z*

Read problem data

Create level 0 node and
label it active. Set Z*--c›.0

Determine I and E for active node

Evaluate assignment es

no
Calculate b oundj 	Better

than Z*

Record
improved

assignment

no

Determine
branching
using the
optimal
L.A.P.
matrix

Define
exclusion
and inclusion
nodes. Set
inclusion
node active

T

Delete active
node and any
dependents

Any
nodes
left

STOP

es
Make most
recent pendant
node active

Figure 4-5

Overall flow-chart of program LOCATE.

-96-

Basically, a dependent node is one which relies on the active node to

justify its existence. The tree in figure 4-6, for example, has two

dependent nodes, 6 and 7. If active node 8 is to be deleted then 6 and

7 are also deleted and node 5 becomes active; unless an improved

assignment has been found recently such that the bound on node 4

exceeds Z*, and then nodes 5, 4, 3 and 2 would also be dependents and

would be deleted, making node 1 active.

A more fundamental vagueness in figure 4-5 concerns the rule

for branching. The objective is to branch so that the cheapest assignment •

from the active node is included in the inclusion node. This is equivalent

to saying that the bound on the new exclusion node should be as large as

possible. As implied on the flow-chart, it is possible to estimate this

bound without extensive calculation by inspecting the matrix left after

solution of the linear assignment problem for the bound on the active node.

Figure 4-7 demonstrates how branching is done for a node of

a 6-machine problem. The Hungarian algorithm is applied to the matrix

A and it subtracts constants from the rows and columns of the matrix

until a "zero-cost" assignment is found: for matrix A' the assignment

(A3 C4 D2 F6) is zero-cost. Consider the result of excluding any

machine-location pair from this assignment. If D2 were excluded,

for example, the best location for D would be 4 and the best machine

for 2 would be C: The cost of the assignment would therefore be at least

1+3=4 greater than the original cost. The value 4 is called the "penalty"

for excluding D2.

-97-

Figure 4-6.

A partially enumerated tree showing dependent nodes.

-98-

g(I) = 28.

A
C Original matrix, 	A = D
F

A-7
C After solving L.A.P. 	A'= D
F

I ={(13,5),(E,1),j, 	E={(C,3),(C,6),(D,5),(E,3),(F,2)1,

2 	3 	4 	6 _
16 10 25 21
14 c>0 16 DC'
9 19 15 13

oc 12 14 11

[

2 	3 	4 	6
0 	11 101

3 	00 0 00
0 	9 	1 	2
cx, 2 	0 	0

L(I,E) = 28 + 46 = 74

The critical assignment is (A1 3) with penalty 7+2=9.

If (A,3) is excluded and the L.A.P. re-minimised,

A" = C
D
F

A0
2

3
0
o,

3
04
00
5
0

4
4
0
1
2

6
1
00
0
0

The bound on the new exclusion node is

L(I,EUf(A,3)}) = L(I,E) + 11 = 85 .

The next critical assignment is (F 1 3) with penalty 5+0=5 etc.

Figure 4-7.

Example of penalty calculations for branching.

-99-

Penalties can be calculated for each of the four machine-location

pairs and the largest penalty determines the next branching. In this

case the maximum penalty is 9 for A3. The actual bound for the new

exclusion node can be calculated by setting the A3 matrix element to

infinity and re-minimising with the Hungarian algorithm.

Note how easy it is to calculate the bound for an exclusion node

when the bound for the active node above it has just been determined.

This process can be extended to calculate a long string of exclusion node

bounds by making minor changes to the matrix. Program LOCATE does

this automatically.

Interactive Use of Program

No special effort was made to code LOCATE very efficiently

because flexibility was considered more important, flexibility to allow

different search strategies and different bounds to be incorporated

without extensive reprogramming. In keeping with this experimental

philosophy the program can be run interactively from a computer

terminal so that the user can both watch and direct the search.

The user can specify how often he wants to interrupt the program:

e.g. after a specified number of nodes have been generated or when an

improved solution is found. Having interrupted, he may change the

active node or delete some nodes before continuing. Or he may be

content to simply print out the current best assignment and then terminate

the search. A complete guide to interactive use of LOCATE can be found

-100-

in appendix D with an example.

4.5 	RESULTS FOR THE BASIC BOUND

The three small problems considered in chapter 3 were

solved easily using LOCATE. Statistics for these and seven other

problems are given in tables 4-i and 4-2. Data for all problems are

given in appendix A. The tree created for LA7 is given as an example

in figure 4-8.

Two trends are very noticeable in table 4-1. Firstly, the

computation time increases very rapidly as the number of machines

increases. Very roughly it appears that each additional machine doubles

the number of nodes generated and almost trebles the time required.

The second obvious trend is that computation time is highly

dependent on the data used as well as the number of machines. In

particular it seems that problems with all c equal to zero are
(xi

considerably more difficult than problems with random positive cXi .

The NVR problems have zero c while for the MG problems the oci

are random, positive, with mean and variance chosen so that the linear

and quadratic components of the objective function have approximately

equal weight.

To investigate this phenomenon directly, two new problems

were formed from MG10 and NVR12; problem MG1OZ is MG10 with

c = 0 and NVR12P is NVR12 with c. equal to random positive numbers.
«1 	 o<1

-101_

Problem Number of Nodes Time (secs)

GP4 9 0.069

LA7 19 0.356

NVR8 316 5.421

TSP10 354 9.370

MG10 214 9.479

MG12 500 32.752

MG1OZ 1398 52.109

NVR12P 2344 113.186

NVR12 _11148 481.678

MG14 12586 1115.978

Table 4-1.

Basic statistics for LOCATE with ten problems.

-102-

Problem First
Solution Optimum Number of Nodes

before optimum
% of Nodes
before optimum

GP4 403 403 6 66.7

LA7 559 559 12 32.4

NVR8 107 107 14 4.4

TSP10 23 22 53 15.0

MG10 1092 1092 18 8.4

MG12 1241 1241 22 4.4

MG1OZ 965 915 846 60.5

NVR12P 489 470 89 3.8

NVR12 293 289 397 3.5

MG14 1886 1873 147 1.2

Table 4-2.

Analysis of when the optimal assignment is found.

-103_

586 G4 559

(A4,G7) (A7)

Figure 4-8.

Tree for a 7-machine problem, LA7.

(It is largely coincidence that C1 appears twice on

level 2; similarly C5 on level 3.)

-104-

In both cases the problem with positive c . was solved approximately cxi

five times faster than the same problem with zero «i.

But the data-dependence of the algorithm's efficiency cannot be

properly described in terms of c . alone. The travelling salesman

problem, TSP10, has zero cbut was actually solved slightly faster cxi

than MG10.

The transformation due to Burkard described in section 2.3

can introduce positive c.1 but experimentation has shown that it does o.1.<

not improve the efficiency of the tree-search. Applying the tree-search

algorithm to the transformed problem, which has smaller flows and

distances but larger linear costs, proved just as likely to increase

computation time as decrease it.

Table 4-2 shows that the first assignment found by LOCATE

is often optimal. If it is not, then the first assignment is usually very

good and the optimal assignment is found near the beginning of the search.

This situation is typical of depth-first searches (41).

Table 4-3 and figure 4-9 give an analysis of the computing

time used for each phase of the program. The smallest problems are

untypical, but the larger ones are quite consistent. Over 80% of the

computing time is spent calculating bounds for nodes while they are active

and this time is divided roughly equally between calculating the elements

of matrix A (using formulae 4-2 and 4-3), and solving the linear

assignment problem for this matrix.

-105-

Problem
Calculating
matrix A

L. A.
Active node

P. 	for :
Exclusion node

Overheads
& branching Total

GP4 0.013 0.013 0.006 0.037 0.069

LA7 0.096 0.083 0.057 0.120 0.356

NVR8 2.777 1.335 0.505 0.804 5.421

TSP10 5.848 1.472 0.642 1.408 9.370

MG10 3.798 4.188 0.697 0.796 9.479

MG12 14.710 13.429 2.158 2.455 32.752

MG1OZ 21.751 22.586 3.205 4.567 52.109

NVR12P 62.723 30.779 8.960 10.721 113.183

Table 4-3.

Time (seconds) used by each section of program LOCATE.

Overheads & branching

L.A.P. for exclusion nodes

GP4 MG12 NVR12P TSP10 MG10 MG1OZ NVR8 • LA7

Figure 4-9.

Percentage of time used in each section of program LOCATE.

-107-

These two phases must be the target for any improvement in

the coding of the tree-search algorithm, as opposed to improvement of

the algorithm itself. A small improvement in calculating the matrix

elements was achieved by ranking the flows and distances from each

machine and location only once, before any nodes are created. Note

the efficiency with which bounds for exclusion nodes are calculated by

modifying the optimal matrix for the active node and then re-minimising.

4.6 	MODIFIED BOUNDS

Figure 4-9 shows that approximately 40% of computation time

is used to solve linear assignment problems, the solutions to which give

lower bounds for nodes of the tree. But it is well-known that a good

lower bound on the solution to a linear assignment problem can be found

by subtracting constants from each row and column of the matrix until

each row and column contains a zero but no negative elements; the bound

is simply the sum of the constants used. This bound is also a bound on

fi
the quadratic assignment problem.

The tree-search program was modified to use this simpler

lower bound, which is clearly weaker than the basic bound and so the

number of nodes generated by the modified algorithm is greater than

before. But on the other hand, the time needed to analyse each node

is reduced by nearly 40%. Statistics for this weaker bound are given in

table 4-4; they show a definite trend in favour of using the basic bound.

-108--

Problem Number of Nodes Time (secs)

GP4 12 0.059

LA7 34 0.488

NVR8 523 6.388

TSP10 494 9.790

MG10 558 12.729

MG12 1375 48.866

MG1OZ 2651 55.753

NVR12P 4906 151.282

Table 4-4.

Statistics for LOCATE with weakened bounds. (c.f. table 4-1)

_109-

A Bound Directly Incorporating Linear Costs

Consider the physical interpretation of the formulae 4-2 and

4-3 in section 4.3 .

i .e . 	a' = min (f
0 d ipkp „)) ,ego< <,6

/°((x)=i

and 	a = c . + 	. c.o. 	Da 	Do.

(4-2)

(4-3)

The first expression is a lower bound on the cost of flows to and from

machine o< if it is placed at location i. Since c. is the linear cost oc].

incurred by such placement, a is a lower bound on the total cost of (xi

the placement.

But 4-2 completely ignores some possible effects of the linear

costs. Suppose, for example, that (cx, 	(A l l), fAB is the smallest

flow from A and d12 is the greatest distance from 1. Then formula

4-2 automatically places machine B at location 2, even though cB2 may

have a very large value. The subsequent inclusion of cB2 in the formula

for aB2 does not remedy the low value calculated for am.

Remembering that there are n-1 machines interacting with

machine A l it can be said that the basic bound associates the quadratic

cost fAB d12 with the linear cost cAl /(n-1) when a' is being calculated, l

B but with c -2/ (n 	B -1) when a'2 is being calculated. A more rational

scheme would use (cAl + cB2)/2 (n-1) in both cases. The derivation of

the lower bound in section 4.3 can now be modified with this in mind.

-110-

For any assignment p,

Z p) = 	
(ccxr‘-‘ +
	f d

1 ,Zocc<fi (c)()QM

	

\ 1 	 (f 	
1

cxe‘c<i 	2 ,8Vc< °(ig (470,0G8)+ n-1 WV))

(-1-c

	

tx 	0(1)(00 +. m 	.Z(f 	+ 1

pi,(0<iff_r,(00.8-71-0('/- P(...ofpc) n-1 cigpli()

min T(lc

	

p, 	',xfAcK) + 	min 	Z(f,< d , 	1

P) nCe) + 	c
ri,(0<)=.p,(e,),e3vo((0<f) 	n-1 igidu)).1).1

Define a' = min o1

f(a)=i

[a. 	+ 	c 1 	_
.3v„< tx,e 110(4') 	n-1 fie(f3))1 4-8

and a = lc + la'
00. 	2 0<i 	2 Oa •

Now, as before, L = min
o<

is a lower bound on the

4-9

quadratic assignment problem.

This bound may be expected to prove better than the basic

bound. It is especially important for nodes far down the tree because

each level of the tree increases the linear costs - inclusion nodes by

adding flow-distance products and exclusion nodes by introducing infinite

costs.

The minimisation in formula 4-8 cannot, unfortunately, be

solved with the simple ranking procedure used for formula 4-2. It is a

linear assignment problem of dimension n-1 and could be solved by a

general method such as the Hungarian algorithm. This would have to be

solved for each of the n
2 elements of matrix A and the computation

required was considered too great to incorporate into the tree-search

program.

A Bound using Restricted Ranking

The argument used to derive formulae 4-8 and 4-9 can be

directly generalised so that the coefficient of c 	is t rather than 1, (xi

where the parameter t may take any value between 0 and 1 inclusive.

The formulae then become:

2 al.= min 	d 	0,)
n-1 	5/0('Ai) ,!40(c<A ifG9)

and a .= tc .+
c< 1 	O(1 	o<1

4-10

4-11

Suppose these formulae are being applied to a node with an

exclusion set E t 0 ; i.e. there is at least one machine-location pair

(,..0(,81j) for which 	. i9) cannot be j . The notation /9---E 5J = and so p(

will be taken to mean that assignment p -atisfies all the exclusions of

the set E. Then, for any t between zero and one, it is clear that 4-10

can be re-written as:

a '. = min [(f
c'(d
	

4.2(1-t)
cx1 	p 	v„c fi if) 	n-1 ,6? p(6'))]*

/2(c4)=i
/0"E

Taking the limit t 	1, the equations revert to almost their original form:

a'
c<1

= min (f d. tin)
P 	igv ,„(cxie

4-12

yo(0)=i
f ,E

and acKi 	co< + z acx' . 	 4-13

-112-

This bound is similar to the previous one in that it tries to

take proper account of linear costs. It is weaker than the previous one

because it only considers the infinite linear costs, but stronger than the

basic bound.

There is some difficulty in evaluating 4-12. Simple ranking

is insufficient and the standard algorithms fOr the linear assignment

problem are too slow, as for the previous bound. The following section

develops an efficient algorithm to evaluate 4-12.

Before leaving this section it is worthwhile comparing the

bounds produced by all the methods which have been discussed, including

the weaker of Gilmore's bounds described in section 2.7 . This is done

in table 4-5 which gives the bounds for two problems, at both level 0

and a node further down the tree. The cost of the true minimal assignment

is also given.

4.7 	RESTRICTED RANKING ALGORITHM

This section modifies the Hungarian algorithm to solve the

linear assignment problem defined by formula 4-12 in a way which takes

advantage of the ranking procedure and does not actually generate the

complete matrix.

The subscripts oc and i are irrelevent and would be a nuisance

and so the entire notation will be changed for this section only. The

problem to be solved can be written:

-113-

Bound
G

All
Solutions

P 4
I= [A4)-
E=[D2,C2j

N
All

Solutions

V R 1 2
I= tC1,12, K61
E=[A3,B3,B4,E12,L3)

True minimum 403 479 289 310

With linear costs 399 470 258 289

Restricted ranking 396 470 247 274

Basic bound 396 462 247 273

Gilmore's weak
bound

389 462 243 258

Weaker bound 369 462 243 258

Table 4-5.

Direct comparison of six different lower bounds.

-114-

min V(p) p—E 	1=1,m 1 P(i)

where pi p2 	Pm

4-14

q1 > q2 / >Lin , p is a permutation

of 1,2, . . . l m satisfying the exclusion set E, and

E f(i,j) I
P

(i) cannot equal jj .

This is a linear assignment problem and therefore, according

to section 3.1 , can be put in linear programming form:

min V (X) = 	 p,
ij

x.. = 1 	 for i= 1 m
j

x.. = 1 	 for j=1,m
i 	3-j

x.. 	 for i l j=l l m

x.. = 0 	 for (i,j) e E .

As for all linear programs there is an equivalent dual formulation

(see (19) for example) and for this program it has the following form:

max InT(A)) = 	 /tt

+< p. qj J

for (i,j) 	E

, V. unrestricted in sign for i,j= 1,m .

Optimal solutions to the two problems are closely related and

in particular min V (X) = max W(A-02). Also, if VS,))) is an optimal

solution to the dual then there is an optimal solution to the primal such

that x..= 0 for all pairs (i l j) E for which pi qi 	- 	> 0.

It is now apparent that the Hungarian algorithm is simply a

-115-

way of solving the dual problem directly. The amount subtracted from

row:1 of matrix (p.q.) is ze. and the amount subtracted from column j 3 	/

is V.. The maximum total amount subtracted is equal to the minimum

assignment cost. The (i,j) element of the reduced matrix is

P. q. - /a. - 	and if this .is positive then x.. = 0; i.e. f(i) 4 j.

If no assignments are excluded (E = 0), then the ranking

procedure gives the optimal assignment as being , (i) = i, or x„ = 1
11

for i =1, m . Duality theory states that 33. q.-/t - V. the diagonal

elements of the reduced matrix, must all be zero; this is also obvious

when interpreted in terms of the Hungarian algorithm. The following

formulae for/ and V satisfy these duality relations:

V1 = 0

Pi qi vi

Vi+1 r: Pi qi+1

It can be easily shown that

for i=1,m

for i =1, m-1.

P. q. 9. 7 0 for this choice of 3

4-15

(/‘,V) and that the expression is zero when i=j.

The above results give an explicit formula for the optimal

reduced matrix of the linear assignment problem , 4-14, when E

- namely that the element (i,j) is (pi q. 	-) where, and 1.)

are defined by 4-15. Starting from this reduced matrix and the assignment

f (i) = i, it is possible to introduce the exclusion constraints of E one

at a time, re-optimising the reduced matrix according to the Hungarian

algorithm after each new constraint is added.

-116-

The constraints of E may interact with the reduced matrix in

any of three ways. First, if a constraint is not on the diagonal it will not

affect the assignment at all and can be ignored, at least initially.

The second effect arises when one of the constraints is on the

diagonal - i.e. (i,i) EE for some value of i. Then the value of the

relevent matrix element is effectively infinite and so the Hungarian

algorithm must be invoked to create another zero in the reduced matrix

to find an optimal assignment taking account of this new constraint.

It is easy to show that, provided no other constraints of E affect the

immediate neighbourhood of (i,i) , a new optimal assignment can always

be obtained by either pairing pi with qi4. and pi 1 with q., or pairing pi

with qi+1 and pi+i with qi. When the cheaper of these alternatives has

been determined, the assignment and dual variables can be adjusted

accordingly.

The final possible effect arises when two or more constraints

involve neighbouring matrix elements - e.g. E=C(i,i), 	 i+1)'3 or even

E=t(i,i),(i+2,i+2)}. Then re-optimisation involves a full iteration of

the Hungarian algorithm, but even this does not require calculation of

the reduced matrix. AL all times the matrix elements are defined by

just four vectors (p, q, /tt and V) plus the exclusion set E. Any

element can be evaluated as needed, and changing a whole row or column

is achieved by changing just one dual variable.

The simple example in figure 4-10 should clarify the algorithm.

-117-

Statement of problem:

p. (0,2,3,5)
q = (5,4,1,0)
E. f(311),(2,2),(413),(313)J

0 0 0 0
10 8 2 0

(pig.) 15 12 3 0
30 24 6 0

Ignoring E, formula 4-15 gives:

". (0,8,9,9)
v= (0,0,-6,-9)
t(1)=1, p(2)=2, o(3)=3, p(4)=4
W.11=V

0 0 6 9
2

c1. (P 	
0* 0 1

.-":- 12.) ----- 6 3 1 j 	j 	0* 0
21 15 3 0*

Allowing for (3,1)0E does not invalidate
this assignment.

But (2,2)E causes a conflict. It is resolved
by p(1)=2, f(2)=1, W.13.V, decreasing
by 2 and increasing 	and V2 by 2.

(4,3) does not cause any conflict, but (3,3)
does and it interacts with both (2,2) and (4,3).
An iteration of the Hungarian algorithm is needed
and this results in '1 and .1 At being decreased by 1

and V1' 2 1) and 1,3
 being increased by 1.

Now (/=(-3,71 9,9), V=(3,35 -5,-9),
f(1)=1, 70(2)=3, 0(3)=2, e(4)=4,
W=14.V.

0* 0 6 9
2 o 0 1

3 0* 0
21 15 3 0*J

-0 0* 8 1
0* o0 0 1
a° 1 0* 0
19 13 3 0*

0 0* 8 11-
0* 0.0 0 1
.0 0 1 c.* 0
19 13 	0*-

-0* 0 8 12
0 ca0 0* 2
00 0* 0
18 12 	0

Figure 4-10.

Example of the restricted ranking algorithm.

The matrices are only explanatory - none are actually calculated.

-118-

The unconstrained solution is found by ranking, V=11. The first and

third constraints cause no trouble, and the second only needs a simple

exchange which increases V to 13, but the fourth constraint is diagonal

and interferes with two other constraints; hence an iteration of the

Hungarian algorithm is needed and, in fact, it would still be required

even if the third constraint, (4,3), were not present. The minimum

cost for this restricted problem is V=14.

4.8 	COMPUTATIONAL ANALYSIS OF RESTRICTED RANKING

The restricted ranking algorithm was programmed in FORTRAN

for the CDC 6400 computer. The program can be divided into two

phases and flow-charts for both are given in figure 4-11. Phase A

begins with the urn tricted ranking assignment and then adjusts this by

simple pairwise interchanges to allow for as many constraints as possible.

This will yield the optimal solution for many problems.

Phase B deals with any constraints which could not be

accommodated in phase A. Each constraint is considered in turn and the

assignment and dual variables are continually updated. The method used

is adapted from Yaspan's labelling procedure for the Hungarian

algorithm (70). The matrix mentioned in the flow-chart is ab.stract in

the sense that its elements, (p.q. -/ 	3
tc. - 1).) are not stored at all, but

merely calculated when a particular element is required.

The labelling procedure only needs to know the zero elements

Calculate

cq.- 14 A 1+1 - + c = rnin(c ,c)

no

/0(i4)=i+1
(i,1+1) .;t:E

&(i+1, i) fE

yes

Reduce A l
Increase I1, 2

• • • 1- , -\.)i 	by c
by c.

• • •

yes

-119-

Read p„, q and E

Set f(i) = i and
calculate j- and 	(eqn .4-15),1

Ii=1

yes
Go to Phase B

Figure 4-11(A).

Phase A of the restricted ranking program.

Decrease" by 6 for
all unlabelled rows and
increase V by S for
all unlabelled columns.
For unlabelled columns
delete existing zero
entries in labelled rows.

-120-

From phase A

V

no

i=1

Record that p(i) is undefined.
Increase /c. and V. if necessary
to create zero entries in row i
and column i.

I Label column ij

Label all rows which have a zero
entry in a labelled column and
label all columns to which a
labelled row is assigned by p

1=1+1

V= 	 (Ai. + v.)
i 	 1 	1

STOP

Is
TOW

labelled
9

yes

The labelling
has defined
a new
assignment

no

Scan the unlabelled
rows for the minimum
entry, 8, in a labelled
column. Record
this as a zero entry.

Figure 4-11(B).

Phase B of the restricted ranking program.

-121-

of the matrix and so a record of zero entries is kept for each column.

The original record is made at the beginning of phase B and thereafter

updated as described in the flow-chart. The only occasion on which

other entries must be calculated is when the labelling procedure fails

to label row i ; then only approximately a sixth of the matrix is evaluated.

Efficiency

This program should be more efficient than a general program

for the assignment problem and so an experimental comparison was made

between it and the assignment routine from the CERN program library (8);

that routine uses the Hungarian algorithm and is based on Munkres's

method (54).

Table 4-6 shows the time used by each routine for several

problems. The specialised algorithm is very much faster than the

standard routine, 800 times faster for one problem.

The time needed by the CERN routine depends mainly on the

size of the problem, m, but for the restricted ranking program the

number of constraints is as important, and also the form of interaction

of the constraints. For all the problems except number 4 the interaction

was strong enough to require phase B. The constraints for problem 5

were deliberately chosen to make solution as difficult as possible: for the

optimal assignment /(i) 	was greater than or equal to two for 15 out

of the 40 numbers.

The great efficiency of the algorithm is due to two factors:

-122-

Problem
Number

m 1E1
Computation

Restricted
Ranking

Time

CERN

(secs.)

CERN*

1 6 8 0.005 0.012 0.005

2 15 15 0.014 0.521 0.063

3 40 20 0.052 41.722 0.573

4 40 40** 0.042 31.770 0.446

5 40 50*** 0.302 27.976 0.798

Note: ** - this problem had "easy" constraints
* * * - this problem had "hard" constraints.

Table 4-6.

Comparison of computation times for five

restricted ranking problems.

-123-

(1) it starts with the unrestricted ranking assignment which should be

near' the final assignment and (2) it does not have to manipulate a large

matrix. The relative importance of these factors was examined using

the CERN routine. To do this the cost matrix was defined to be

(p.q. 	- 1).) rather than simply (p.q.3
) ; /u. and 	were calculated

according to equation 4-15. Thus all the finite diagonal elements are

zero and this is equivalent to starting the routine with the assignment

found by unconstrained ranking.

The computing times for this modified problem are given in

table 4-6 under the heading CERN*. These results are very much better

than for the original CERN routine, but still significantly slower than

for the specialised routine.

Applications

Apart from its use in calculating lower bounds for the quadratic

assignment problem, the restricted ranking formulation can be applied

to other situations.

Still in a factory environment, the machines may not interact

with each other, but all interact with some fixed facility such as a

warehouse or store-room. Then pi measures the flow of goods from

machine i and q. is the distance from location j to the fixed facility.

If a particular machine cannot be assigned to a particular location because

of bad ventilation, a low ceiling or any other reason, that machine-

location pair would be included in E.

-124_

Another example. An exporter might manufacture goods at

many different plants but export everything through just one port.

Here pi measures the volume of goods produced at plant i and (1
	

the he

cost of transport to the port from location j. The set E contains the

plants which cannot be placed at particular locations; for example some

plants may need to be near a river for cooling purposes, or far from

urban areas because of hazardous or polluting processes.

The restricted ranking algorithm that has been described here

can solve such problems extremely efficiently. More than a thousand

machines could probably be handled without great difficulty whereas the

CERN routine would be hopelessly inadequate, needing a matrix consisting

of more than a million elements.

4.9 	A BOUND USING RESTRICTED RANKING

Returning to the ideas in section 4.6, the restricted ranking

algorithm can be used to calculate a lower bound. This will be at least

as good as the basic bound and may be considerably better for nodes

with many exclusions.

Program LOCATE was modified to calculate this bound according

to the equations 4-12 and 4-13. Some results for the modified program

are given in table 4-7. Comparison with table 4-1 shows that, although

the number of nodes is reduced by approximately 10% for most problems,

the time needed is increased by roughly 30%.

-125-

Problem Number of Nodes Time (secs.)

GP4 9 0.121

LA7 16 0.398

NVR8 283 7.885

TSP10 347 14.063

MG10 140 11.239

MG12 405 39.308

MG1OZ 1248 85.214

NVR12P 2033 134.520

NVR12 10126 707.804

MG14 11576 1590.237

Table 4-7.

Statistics for LOCATE including restricted ranking.

-126-

A similar but more exaggerated result would be expected if

the best bound proposed in section 3.6 were programmed - i.e. a

smaller number of nodes but a much greater computing time.

4.10 	LARGE PROBLEMS

For more than 13 or 14 machines the computing time of

LOCATE becomes excessive, but the program can still be used in a

heuristic fashion to determine good assignments. This is because

LOCATE produces a sequence of assignments, each being cheaper than

the previous ones.

The fastest heuristic simply takes the first assignment to be

found. Not only is this method fast, but the time is predictable and is

only dependent on the number of machines. Table 4-8 gives the

computing times for the larger problems proposed by Nugent et al.

The quality of the assignments is considered in chapter 7.

Any level of compromise is possible between this heuristic

and the complete LOCATE algorithm. The time needed to find an

improved assignment if one exists is, of course, quite unpredictable.

-127_

Problem Time 	(secs.)

NVR12 0.98

NVR15 1.98

NVR20 6.96

NVR30 30.15

ST36 62.37

Table 4-8.

Computing time for LOCATE to find its initial assignment.

-128-

CHAPTER 5

GRAPHICAL ANALYSIS OF BOUNDS

-129-

	

5.1 	THE SEARCH FOR LOWER BOUNDS

A tree-search algorithm can only be effective if its lower

bounds are large enough to eliminate many nodes high in the tree so

that most branches are cut off quickly. But despite the obvious importance

of using good bounds, all the algorithms in the literature (201 211 381 39,58)

use minor variations of just two known bounds.

One purpose of this chapter is to discover why no other bounds

have been discovered. The two known bounds are shown to belong to a

large class of bounds which is exhaustively examined.

The difficulty of the quadratic assignment problem lies in

the quadratic rather than the linear part of the cost function; hence

it is assumed that c .1
= 0 throughout the initial examination. A bound

oc

which cannot be applied to the quadratic cost alone will not be helpful

for the complete problem and so no useful bounds will be overlooked

because of this restriction.

	

5.2 	GRAPHICAL REPRESENTATION

The quadratic assignment problem can be represented as the

mapping of a flow graph to a distance graph. The flow graph has n

nodes representing the machines and the flows between machines are

represented by arcs which are weighted accordingly. Similarly the

n nodes of the distance graph represent the locations and they are

-130--

connected by arcs which are weighted with the distances between the

relevant locations.

An assignment is a mapping of the nodes of the flow graph

on to the nodes of the distance graph. Each graph is complete and so

an assignment will pair each flow arc with a distance arc. The cost of

an assignment is simply the sum of the products of these flow-distance

pairs. Figure 5-1 gives the graphs for a 5-machine problem.

The • assumption that there are no linear costs is convenient

but not essential for this representation. The linear costs would be

associated with the nodes whereas the quadratic costs are associated

with the arcs. It is the analysis in the next two sections which requires

the zero linear cost assumption.

5.3 	A BOUND USING STAR GRAPHS

A complete n-node graph can be decomposed into n star graphs,

as shown in figure 5-2. Each star has n-1 arcs and each arc occurs in

two stars. The stars of a flow graph can be labelled0A, 0B, 	, O«' • •

where the subscript denotes the central node; similarly the stars of a

distance graph are
1 3 3

' 	Si 1 	2 	• • • 	' • • • 	•

Consider any assignment, /0 1 for the quadratic assignment

problem and any partial graph of the flow graph which is a star, say Ocx

The arcs of this star will all be mapped to distance arcs which are

incident on location P(); hence 0 will be mapped to the distance

-131-

B

A

B 2 3

C 5 1 C 3 7

D 9 	3 6 D 	 4 2 	4
8

E 4 	8 5 5 	3 	6

Flow Matrix 	 Distance Matrix

1 4
31

Flow Gr[1:, 	 Distance Graph

An assignment
with cost = 196.

Figure 5-1.

Graphical representation of a problem with 5 machines.

-132-

0, 	 91-)D

Figure 5-2.

Decomposition of a 4-node flow graph into 4 star graphs.

-133-

star Sp coo .

Define C (cx, p) to be the cost of mapping the flow star 560(

to the distance star S
/0(0) '

• this is the sum of the products of the

flows with the distances to which they are mapped. Algebraically this

means C(«, P) = > fad dip (0<)/0()8) . Then the total cost of the

n star mappings defined by r is exactly twice Z(p) because the

products in the expressions for cost are identical, but each product

appears in exactly two star mappings. This allows a lower bound for

the quadratic assignment problem to be found in terms of lower bounds

on star mappings.

As noted earlier, any assignment will map each flow star 95c,‹

to a distance star 8 (0) . If the complete assignment is unknown,
/0

but P (cx) = i , then a lower bound on the cost of mapping 004. to S
i

is boti = min { C(o< I f) I (a) .i} . This expression can be easily

calculated by ranking the n-1 distances in decreasing order, the n-1

flows in increasing order and summing the products of corresponding

numbers; this technique has already been used in section 4.3 and is

considered specifically in section 6.4 .

For any assignment 2Z(B, where

B = min {Tbo<10(oc) . Finding B, having calculated (b i), is simply
allp c"

a linear assignment problem which can be solved very easily (36,54).

Clearly 1B is a lower bound for the quadratic assignment problem.

It is mathematically equivalent to the purely algebraic bounds proposed

-134-

by Lawler (39) and Gilmore (21) and formally validated in section 4.3 .

5.4 	BOUNDS USING OTHER PARTIAL GRAPHS

Since star graphs form the basis of an effective lower bound

for the quadratic assignmnt problem, perhaps other partial graphs can

also prove useful in this way.

How can the star graph technique be generalised? It begins with

a set of flow partial graphs, 	= f 01,02, ... 1p, ... 1 013 } . For st-Irs

there are n partial graphs, each characterised by a particular node,

but this need not be so. It is only necessary that each arc of the complete

graph should appear in the same number, k say, of partial graphs. The

partial graphs need not all be of the same form, but it will become

apparent later that the bound is more efficient if the partial graphs are

all isomorphic.

Once has been chosen, the set of distance partial graphs,

{ Si,S21 	'8q' 	'Q1 can be determined accordingly:

A= p(Op) p = 1,2, ... IP ; all assignments (,) , where p(vip) is the

distance partial graph to which p maps 0 . Note that Q P.

It should be clear why ,L must include every image graph of

every flow partial graph. Consider the 5-node quadratic assignment

problem in figure 5-3 for which consists of two Hamiltonian circuits,

ACDEBA and AECBDA. Suppose ,A does not include the circuit 123451.

Then any attempt to find a bound would map the flow circuit ACDEBA to

-135-

Figure 5-3.

The arcs of a 5-node graph can be covered by a pair of Hamiltonian

circuits. One is shown by a continuous line, the other is broken.

-136-

a distance circuit which included a value of 3 and so the "bound" would

be at least 11, whereas the actual optimal value is 10. Such difficulties

can always arise if any image graphs are omitted.

The bounding procedure is the same as for star graphs once

and L1 have been chosen. Any assignment p determines a mapping

from 	on to LI\ and also a mapping from each 0to 8p(p) . The

cost of a partial graph mapping can be defined as for star graphs:

C (P , p) is the sum of the products of the flows in 0 with the distances

in 8p(p) to which they are mapped.

Then kZ(f) = 	 C(56 ,p) b f(p)). B
p=1,P 	P 	p=1,P

,

where b is the minimum cost of mapping 0 to S and B is the
Pq

solution to the linear assignment problem defined by the matrix (b
Pq

) ;

if necessary the matrix can be made square by adding rows of zeros.

B/k is a lower bound on the quadratic assignment problem.

5.5 	COMPUTATIONAL CONSIDERATIONS

The above analysis can theoretically take any set 	of flow

partial graphs which cover every arc the same number of times and

produce a lower bound. But for many sets the amount of computation

would be wildly exorbitant.

The last stage of the calculation is a PxQ linear assignment

problem to find B. This could be difficult if P or Q is greater than

about a hundred. Evaluating the coefficients b 	can pose two difficulties.
Pq

-137-

Firstly there are P.Q evaluations to be made and this number may be

very, large. Secondly it may not be trivial to find each minimal partial

graph mapping.

When trying to synthesise useful flow partial graphs the

primary concern is to keep Q small. One obvious aid is to choose

all the flow partial graphs to be isomorphic so that they each generate

identical distance partial graphs. In practice this usually means that

I has exactly the same structure as L. and P equals Q. The following

analysis is not restricted to this symmetric choice of 1, but that form

appears to be most efficient.

For any partial flow graph define node c< to be equivalent to

node 4 if « is directly connected to every node to which 3 is directly

connected and vice versa, ignoring any possible arc between o< and /3

themselves. This is an equivalence relation which will divide the nodes

into one or more disjoint equivalence classes.

If one class contains r nodes there are (r) possible images

for that equivalence class and so Q) (n) . Thus computation is r

probably feasible if r =1 or n-1, difficult if r =2 or n-2, and impractical

if 3 ‹r (n-3, even for problems with small values of P.

5.6 	DETAILED ANALYSIS OF PARTIAL GRAPHS

This section considers all the potentially useful flow partial

graphs in turn. First note that a partial graph with only one equivalence

class either has no arcs at all or else is the complete graph; these

-138.-

extreme cases are of no use.

Partial Graphs with two equivalence classes

Partial flow graphs with only two equivalence classes are

the most likely to be computationally feasible. If one class has 1 node

(r = 1), then the other has n-1 nodes. The central node must either

be connected to all the other nodes or not connected to any of them;

the outer nodes must similarly be either all connected to each other or

all disconnected. The only two non-trivial such partial graphs are

shown in figure 5-4 . Case (a) is a star which is known to yield a

useful bound.

The converse graph, (b), is not computationally feasible

because calculation of bpq involves solving a quadratic assignment

problem of size n-1. It is clearly impractical to solve n2 problems

of size n-1 merely to find a bound on a problem of size n.

Next consider partial graphs for which one equivalence class

contains 2 nodes and the other n-2. Figure 5-5 shows the six possible

partial graphs. Cases (a), (b) and (c) are unacceptable because

calculation of each b is nearly as difficult as the original problem.
Pq

Case (d) yields a bound which is, in fact, the same as those

proposed by Gavett and Plyter (20), Gilmore (21) and Land (38).

It is particularly useful because the special structure of its final linear

assignment problem can be exploited.

Cases (e) and (f) are very similar to each other. A

difficulty arises in finding b
Pq

 for these "double-stars" because the

a)

(b

Figure 5-4.

The partial graphs with r = 1 & n-1.

-139-

-140-

a)
	

b)

O A

c)
	

(d)

e)
	

(1)

Figure 5-5.

The partial graphs with r = 2 & n-2.

-141-

simple ranking procedure used for stars cannot be extended. The

coefficients can be calculated by solving an (n-2)x(n-2) linear

assignment problem for each of them, but the large number of coefficients

renders this approach cumbersome.

Partial Graphs with Three Equivalence Classes

By now most of the potentially useful partial graphs have been

examined, but those with 3 equivalence classes should also be considered.

The only partial graphs which may be useful are those having two classes

of one node each and the remaining class containing n-2 nodes. For

such a graph Q can be as small as n(n-1).

There are only two such partial graphs and these are given

in figure 5-6. For case (a) it is too difficult to calculate each

coefficient. For case (b) the coefficients can be readily determined

but there are a great many of them. The massive computation can only

be justified if the bounds produced are exceptionally good - there is

little reason to expect they are.

5.7 	CONCLUSIONS

This chapter has presented an integrated analysis of lower

bounds for the quadratic assignment problem. It has studied a large

class of bounds which includes both those considered in the literature.

Only three other bounds are conceivably useful, and even these require

much more computation than the earlier bounds.

-142-

(b)

Figure 5-6.

The partial graphs for which r = 1, 1 & n-2.

-143-

A tree-search algorithm needs bounds on subsets of the

feasible solution space (the nodes of the tree) as well as on the entire

space. This study has been directed at the complete problem, but any

of the bounds can be readily adapted as required without difficulty.

A second restriction has been to assume that the linear costs

are zero. This assumption simplified the analysis and has not caused

any bounds to be omitted. Gilmore (21) has suggested one general

way to incorporate linear costs. Simply solve the linear assignment

problem defined by the linear cost coefficients and add its solution to

the bound on the quadratic cost calculated in any of the ways considered

here (or otherwise). Bounds produced in this way are unlikely to be

very good, but the linear costs can usually be incorporated more directly

as was done in chapter 4 for the star graph bound.

The quality of the lower bounds has not been considered

explicitly, but it seems unlikely that the three new bounds would be

significantly better than the star graph bound - not sufficiently good to

justify the much greater computation that would be required. This is

disappointing since the tree-search algorithm with the star graph bound

cannot solve problems with more than about 14 machines.

-144_

CHAPTER 6

SOME SPECIAL CASES

-145-

6 . 1 	ZERO FLOWS AND INFINITE DISTANCES

The previous chapters have shown that the quadratic

assignment problem can generally only be satisfactorily solved for

quite small problems. There has been greater success with algorithms

for specific problems, particularly the 1-dimensional case (40,64).

Some related problems which can be artificially forced into the quadratic

assignment format, such as the travelling salesman problem (10,27,28)

and Bowman's input-output problem (3), can also be solved more easily.

This chapter studies another class of special cases.

In a plant layout context there are usually many pairs of

machines which do not interact with each other. In other words the

flow matrix has many zero entries. The main assumption used throughout

this chapter is that the flow matrix is sparse.

A second assumption which is sometimes made concerns the

distance matrix. Movement directly between two locations may be

prohibited for some reason and so such distances can be considered

"infinite". At an international level the reason for a prohibition may

often be political, but economic reasons are more likely for plant layout.

Any assignment which matches a positive flow to an infinite

distance is, by definition, infeasible. For each infinite distance a

feasible assignment must occupy the two locations involved with two

machines which have zero flow between them.

-146-

6.2 	GRAPHICAL INTERPRETATION

The graphical representation introduced in the previous

chapter is again very convenient. As before, the flow graph has n

nodes representing the machines and the distance graph has n nodes

representing the locations.

Unlike chapter 5, however, these graphs are not necessarily

complete. Only each positive flow is represented by an arc, zero flows

being ignored. Likewise only the finite distances are represented by

arcs. The flow and distance arcs carry weights according to the values

of the corresponding flows and distances.

An assignment is a mapping of the flow graph to the distance

graph and the quadratic cost of an assignment is the sum of the pairwise

products of the weights on the arcs which are mapped to each other .

An assignment is clearly feasible only if every flow arc is mapped to

a distance arc; it is not necessary, however, for every distance arc

to be the image of a flow arc.

If the distance graph is sparse - i.e. there are many

infinite distances - then the number of feasible assignments may

be small and perhaps thr'y can be enumerated to find the optimum.

The next section considers this situation and complete distance graphs

are studied later.

-147-

6.3 	ELEMENTARY PROBLEMS

This section deals with the limiting special case in which the

number of infinite distances exactly equals the number of zero flows.

The number of feasible assignments may therefore be very small.

First note that the flow and distance graphs must be isomorphic

for any feasible assignment to exist. For example, the 4-node flow and

distance graphs in figure 6-1 have equal numbers of arcs but are not

isomorphic and so any assignment must map at least one positive flow

to an infinite distance. It can be difficult to determine whether graphs

are isomorphic or not.

Isomorphic Number of a Graph

If the graphs are isomorphic then the number of feasible

assignments depends on the actual shape of the graphs. Figure 6-2

shows a pair of isomorphic graphs (arc weights can be ignored in this

section). For any feasible assignment p(D)=.1 and p(B)=2, but

machines A and C can be assigned to locations 3 and 4 in two possible

ways.

The isomorphic number of a graph may be defined as the

number of ways in which it can be mapped to itself without changing

the relative positions of the arcs 	Hence the graphs in figure 6-2 have

isomorphic number 2. The number of feasible assignments is equal

to the isomorphic number and computer enumeration of these assignments

is possible if the number is not too large. Note that the isomorphic

number of a complete graph is n! and this becomes too large when n

-148-

Flow Graph

Distance Graph

Figure 6-1.

-149-

Flow Graph

Distance Graph

Figure 6-2.

-150-

exceeds about 8 or 9.

Chains and Cycles

Consider a chain of n nodes (figure 6-3(a)). Clearly

machine A must be assigned to either location 1 or n. Once A is

located, the assignment of all other machines is fixed and so the isomorphic

number of a chain is 2.

For a cycle (figure 6-3 (b)) machine A can be assigned to

any location and then the other machines must be assigned in one of only

two ways, clockwise or anti-clockwise. Hence the isomorphic number

is 2n.

Star-Cycles

A star-cycle (figure 6-3(c)) is an easy extension of a cycle.

Obviously a machine-node must be assigned to a location-node of the

same degree and so p(A)=1 is essential. The symmetry of the remaining

n-1 nodes is as for the cycle - therefore the isomorphic number of

the star-cycle is 2(n-1).

Larger Graphs

The need for assigning machine-nodes to location•-nodes of

the same degree ensures that many graphs have small, even unitary,

isomorphic numbers. The graphs in figure 6-4, for example, are

isomorphic and have isomorphic number 1. A proof of this begins by

assigning H to 3 as these are the only nodes of degree 4; then, working

-151-

-----0
(a)

-----(0

(b) (c)

Figure 6-3. Some simple graphs.

(a) Chain. (b) Cycle. (c) Star-cycle.

-152-

Figure 6-4.

Isornorhic graphs with IN = 1.

-153-

round the graphs, the assignments G-4, D-8, A-12, B-11, E-10, C-9,

F-7, I-6, K-5, L-1 and J-2 are all necessary.

Regular Graphs

Regular graphs (all nodes having the same degree) are likely

to have large isomorphic numbers because the nodes are less easily

distinguishable. But even within this difficult class there is great

variation; figure 6-5 shows two 8-node regular graphs of degree 4

which have very different isomorphic numbers. Cycles and complete

graphs are both regular and indicate that the isomorhic number tends to

increase with the degree of the nodes.

6.4 	ELEMENTARY TREES

Many systems, especially hierarchical ones, have flow graphs

in the form of a tree. If the distance graph. is also of this form, the

optimal assignment can often be found even if the isomorphic number

is large. And, in fact, the isomorphic number may be quite small.

Multi-level Stars

A star is a special type of tree with complete symmetry

about a central node. Figure 6-6 shows a third order star in which

node B is in level 1, C is in level 2 and E is in the outermost level 3;

node A constitutes level 0 and is called the centre. Nodes C and D

are called the successors of node B. It is convenient to label each

-154-

(a) IN = 1152

(b) IN = 4

Figure 6-5.

Two regular graphs of degree 5.

Figure 6-6.

A 3rd order star .

fB

-155-

-156-

arc in terms of its outer node and so fBC is simply called f for

example.

Clearly each machine-node must be assigned to a location-

node at the same level, but stars have such a high degree of symmetry

that their isomorphic numbers are too large for practical enumeration.

For the 28-node example the isomorphic number is 21 239,488.

Dynamic Pro r2:agmin Solution of Stars

For any machine-node o= and location node i define C(c>‹,1\

to be the cost of assigning o< and all its successors to i and all its

successors when this is done optimally; o.< and i must be on the same

levels of their respective graphs. The following algorithm calculates

all such costs and hence solves the quadratic assignment problem for

a Kth order star.

(1) For each machine c.< and each location i at level K, the outermost

level, set C(o< ,i) =
0<
c . + f 0< d.

1
.

(2) Set level-pointer k = K-1.

(3) For each machine cx and each location i at level k calculate

C(« ,i) as follows: -

(a) Identify the direct successors of o< = ,81' 2'
. . . and the

direct successors of i = j1, j2,

(b) Set up a matrix for a linear assignment problem as shown

at the top of the next page.

-157-

C(,8 , j) C(f 1,J 2)

c(2,i1) c(,63 2 ,i2)

(c) Set C(CX1i) c 1 . 	pc 1 + f d. + solution of the linear assignment .0.c

problem defined in (b).

(4) Set k= k-1. 	If k 14 0 go to (3).

(5) Now k=0 and the centre is the only node at this level. Set up

the linear assignment problem as in step (3). Its solution gives

the optimal cost of a complete assignment and the assignments of

individual machines can be determined from the solutions to the

linear problems solved in step (3).

Ranking Procedure

For the outermost level of a star the assignment problems in

step (3) of the dynamic program can be solved trivially. This is because

the elements of the matrix are simple products of flows and distances.

As for the bound given in section 4.3, it can be shown (21) that the total

cost is minimised by matching the largest flow with the shortest distance

and so on. Thus it is only necessary to rank the flows in decreasing

order and the distances in increasing order to solve these assignment

problems.

How efficient is this algorithm? Solving the star in figure 6-6

involves ranking 12 sets of 3 numbers, evaluating 36 costs at level 2,

-158-

solving nine 2x2 assignment problems at level 1 and an additional

3x3 assignment problem for the centre. This could be done by hand

in about half an hour. Section 7.5 compares the dynamic program to

the general tree-search method.

For a Kth
order star in which each node has m successors,

mK+1-1
m-1

This means that stars with several hundred nodes can be solved comfortably

using a computer.

Dynamic Programming Solution of Trees

The symmetry of stars makes them the most difficult of trees

to solve. Other trees may have small isomorphic numbers and therefore

be amenable to enumeration of all feasible assignments.

A large isomorphic number can only be caused by different

branches of the tree having identicalstructure in the same way as a star .

Such branches can be solved using the dynamic program independently

of the rest of the tree.

First Order Stars

Stars with only one level can be solved very efficiently since

only one linear assignment problem is involved. If the linear costs, c
c<

are all zero then even this problem can be solved using the ranking

procedure. This method has been assumed in sections 4.3 and 5.2 .

there are nodes. Solution requires 2mK-1 rankings,

2K-2 	 m
2K-2

-1 m 	evaluations and 	 assignment problems, each mxm. m2 -1

-159-

6 . 5 	PRACTICAL PROBLEMS

Prohibited or infinite distances do not occur for some applications

of the quadratic assignment problem and so this section assumes that

all distances are finite. All assignments are now feasible and therefore

isomorphic analysis is irrelevant; any useful approach must involve

the arc-weights as well as the structure of the flow graph.

Stars

A first order star flow graph can be assigned to a complete

distance graph qUite easily. If the location of the central machine

was given then only the n-1 distances from that location would be

relevant; the remaining assignments could be optimised using the

ranking procedure described in section 6.4 . The optimal assignment

can be found by costing all the n possible assignments of the central

machine in this way and selecting the cheapest.

This treatment cannot be usefully extended to multi-level

stars, except in so far as a star is a tree.

General Trees

The following technique is applicable to trees and any other

flow graphs for which most nodes have degree 1. Suppose there

are n
1

nodes of degree 1 and n2
nodes of greater degree. If the

locations of the n2
multiple-degree machines were known, then the

optimal locations for the n
1

unit-degree machines could be found by

-160-

solving an n
1

x n
1

linear assignment problem. The complete optimal

assignment can be found by costing in this way all the possible assignments

of the multiple-degree machines. The number of these assignments

is (n
1
 +n

2
)(n

1
 +n

2
 -1) . 	(n

1
+ 1) and so this method is only practical

if n2
is very small.

An Assembly Line

A chain arises as a flow graph in assembly line operations

and is therefore of considerable interest. A chain is, of course, a

particular type of tree and so the above discussion applies, but it is

not at all helpful.

In a sense this assembly line problem is a generalisation of

the open-ended travelling salesman problem, since that problem results

when all the flows along the chain are equal. It is not surprising,

therefore, that the salesman's dynamic programming algorithm (26)

can be generalised to solve this problem.

Dynamic Program for an Assembly Line

It is convenient to rename the machines and flows for this

section. The machines become cc a
2'
 . . 	n ordered along

•

the chain. The flow between
1
 and o<. 	is called f.

1
 . This is shown

1+1

in figure 6-7.

For any set of k locations, Sc {s i ,s2 , 	,sk }, and any

index i, 1,.."i<k, define the recursive function g(S
k'

i) to be the cost

of an optimal assignment of the machines cx cx 	cx to the 2' • • • 	k

-161-

Figure 6-7.

Notation used in dynamic program for a chain flow.

-162-

locations S
k

when °<k is assigned to location s..

For k= 1, g(S1 	= 	
Si

1 	
•

For 2<k(n, g(Sk,i) = c 	+ min ff d 	+ g(Sk- 	j)1
cxksi j=1. 1k k-1 sisi

The cost of an optimal assignment is = min {g(
i=1,n

These equations allow Z to be calculated and an optimal

assignment to be determined, but a large number of functional values

must be evaluated. The computational complexity is the same as for

the travelling salesman problem and so the algorithm can solve assembly

lines with up to about 18 machines.

6.6 	MINIMAL WEIGHTED SPANNING TREES

The dynamic program described in the previous section is

a generalisation of an algorithm for the travelling salesman problem,

but that algorithm is not the most efficient for the simpler problem.

This section tries to extend a spanning tree algorithm from the salesman

to the assembly line prc

The spanning tree algorithm for the travelling salesman

problem is based on noticing that a chain is a particular type of tree.

A spanning tree of a complete distance graph is simply a partial graph

which is a tree; the cost of a spanning tree is the sum of the distances

in the tree. Kruskal (35) has given a very efficient algorithm for

-163-

finding a minimal spanning tree for a graph.

If a minimal spanning tree is actually a chain then it is also

a minimal tour for the travelling salesman problem. The algorithm adds

penalties to nodes in such a way that the relative costs of chains remain

unchanged but the costs of spanning trees vary until a minimal spanning

tree is found which is a chain. Because Kruskal's spanning tree algorithm

is so fast, optimal travelling salesman chains can be found for large

problems - as many as a hundred nodes.

Kruskal's algorithm is very simple. It ranks the arcs in

order of increasing distance and then arcs are taken from the top of this

list until a spanning tree is completed. At each stage the shortest

arc which does not complete a circuit is chosen. The minimal spanning

tree is complete when n-1 arcs have been chosen.

The cost of an assembly line is the sum of the distances in

the chain, each weighted with the appropriate flow - for the travelling

salesman problem the weights are all one. The cost of a weighted

spanning tree may be defined as the sum of the distances in the tree,

each weighted with one of the n-1 flows with the flows and distances

matched to give the minimal cost; i.e. the largest flow would be matched

with the smallest distance in the tree and so on.

If the minimal weighted spanning tree is a chain, its cost may

be less than the assembly line cost of that chain because the weights

are used differently. But at least it will give a lower bound on the

-164-

assembly line cost and this could be used in a branch-and-bound

algorithm. An efficient algorithm is needed to find minimal weighted

spanning trees.

A Proof for a Minimal Weighted Spanning Tree Algorithm

It happens that any minimal spanning tree is also a minimal

weighted spanning tree. Hence Kruskal's algorithm may be used for

the weighted problem and a proof of this follows.

Let F be the set of n-1 flows in the assembly line.

If T = 	Itn_d is a spanning tree, d(ti) is the length of '

arc t.1 and d(T) = d(t1),d(t2),d(tn...1)1 , define the cost of the

weighted tree to be Z(T) = F.d(T) where "." is a scalar product which

implicitly minimises - i.e. it multiplies the largest flow by the smallest

distance and so on.

Now suppose that T is a tree produced by Kruskal's method

with the arcs labelled in the order in which they were selected so that

d(t1),<, d(t2) etc. Let T0
 be any other spanning tree.

Construct a sequence of spanning trees for k = 11 2, ... 1 n-1

such that {ti ,t2, 	Tk.

then Tk Tk-1 and of course Z(Tk-1) = Z(Tk) . If tkE Tk-1

If t
k g Tk-1 then form Tk from Tk-1 by adding arc tk and removing

the largest arc (not tk) in the circuit thus formed.

Since Tk-1 contains 1- t ilt21 ...1tk_il Kruskal's

construction ensures that all other arcs in Tk-1
must have

-165-

distances greater than or equal to d(tk). But the

circuit must contain arcs other than t t
1' 2' • • • at

' k-1

and so the arc removed, t' say, has distance d(t')?, d(tk).

Now Z(Tk-1) = F.d(Tk-1)

	

= optimal sum of products of F and d(T) k-1

that sum of products with d(t') replaced

by d(tk)

= a sum of products of F and d(Tk)

F.d(Tk
)

= Z (T
k)

Now clearly Tn-1= T and Z (To) 7 Z (Ti) 	. . . > Z (Tn_i) = Z (T) and

so the weighted cost of T is less than or equal to the weighted cost of

any other spanning tree. Therefore Kruskal's algorithm produces a

minimal weighted spanning tree.

A Spanning Tree Algorithm for Assembly Lines

The above proof shows that Kruskal's algorithm might be used

as the basis of a branch-and-bound method for the assembly line problem.

The cost of a minimal weighted spanning tree, whether or not the tree

is a chain, is a lower be .nd for the assembly line problem. The general

technique outlined in section 4.1 could be applied with various branching

strategies to solve the problem.

The bound is likely to be better if the minimal tree is actually

a chain and this could be achieved by adding penalties as for the travelling

-166-

salesman algorithm. Burkard (5,6) has shown how penalties can be

applied to the general quadratic assignment problem (see section 2.3)

and his formula simplifies significantly for this special situation.

Unfortunately preliminary calculations by hand have shown that

the bounds produced by this method are not good enough to be useful,

even when the minimal tree is a chain. In fact the general bound given

in chapter 4 is often greater than this specific bound; the calculation

of the general bound can be greatly simplified for the assembly line

problem by first applying Burkard's transformation.

-167-

CHAPTER 7

COMPARISON OF METHODS

-168-

7.1 	THE NEW METHODS

Earlier chapters have developed algorithms for the quadratic

assignment problem and some heuristics have also evolved as a by-

product. This chapter empirically evaluates all these methods with

regard to reports in the literature of other research.

The non-specialised algorithms considered in this thesis are

all of the tree-search type and differ from each other only in the lower

bounds they use. The computational results of chapter 4 indicate tha-

the basic bound described in section 4.3 gives the best compromise

between the quality of the bounds and the time needed to calculate each

bound. Hence this bound has been used when comparing tree-search

with other methods.

The tree-search algorithm becomes a heuristic if some

branches are ignored without calculating a lower bound which is greater

than the cost of a known assignment. The simplest heuristic only

considers one branch, the one without any exclusion nodes. This

constructive heuristic is very similar to Gilmore's n
5 method described

in section 2.4, differing only in its use of the solution to the linear

assignment problem. The penalty rule described in section 4.4 is

intuitively more reasonable than Gilmore's suggestion.

The quadratic programming methods do not guarantee an

optimal assignment, but program PENALTY (section 3.8) finds sub-

optimal assignments very quickly. The quality of these assignments

-169-

is examined in the next two sections.

Specialised algorithms have been proposed for the multi-level

star problem and the assembly line problem in chapter 6. Section 7.5

compares the efficiency of these methods with that of the more general

tree-search.

7.2 	STEINBERG T S TEST PROBLEM

Two case studies have provided standard problems on which

many researchers have tested their procedures. This chapter continues

that sensible tradition and the data for all problems is reproduced in

. appendix A.

Steinberg (65) published a computer backboard design problem

involving 34 modules which were to be located on a rectangular grid

9 units long and 4 units wide. This gives 36 locations and so 2 dummy

modules (machines) must be added. Three distance functions have been

proposed: (1) rectangular distance, (2) direct or Euclidean distance,

and (3) direct distance squared.

Most of the constructive heuristics have been tested on this

problem using at least one of the distance functions. The direct distance

function has received most attention and so this has been adopted for the

compari.5on.

The problem proved too large to solve optimally using the

tree-search and so program LOCATE was used as a heuristic.

-170-

Program PENALTY, the quadratic programming heuristic, was also

tested and the results are given in table 7-1.

The qualification "manual" in the table means that human

intelligence directed the computer to some extent. Graves and Whinston

noticed that the assignment first produced by their program contained

two obviously poor placements and so they re-ran the program with these

modules restricted. LOCATE and PENALTY are interactive programs

and "manual" implies direction via a remote terminal for about half an

hour. The non-manual assignments are those produced initially.

Table 7-1 does not mention the computing times for the various

heuristics for two reasons. The first is that they were run on many

different computers (sometimes unspecified) and so comparison would

be difficult. The second reason is that all these heuristics are quite

fast and so time is not critical. If run on a CDC 6400 computer they

would all require less than one minute, with the possible exceptions

of the Graves and Whinston program and the manual LOCATE.

Conclusions to be drawn from this comparison are that PENALTY

is a rather poor method, undirected LOCATE is comparable with the

best alternatives and, given time and human direction, LOCATE can

produce better assignments.

-171-

Heuristic Cost

Steinberg 4894.54

Gilmore n4 4547.54

Gilmore n5 4680.36

Hillier-Connors 4821.78
(Constructive)

Graves-Whinston 4426.27

Graves-Whinston 4344.97
(Manual)

Heider 4419.49

PENALTY 4905.21

PENALTY 4450.79
(Manual)

LOCATE 4411.36

LOCATE 4327.84
(Manual)

Table 7-1.

Cost of assignments produced by the heuristics

for Steinberg's problem.

-172-

7.3 	NUGENT'S TEST PROBLEMS

Another case study has been presented by Hillier (29).

Nugent, Vollmann and Ruml (57) used the data for this 12-machine

problem to develop eight problems with the same distribution of flow-

values. Their problems range in size from 5 to 30 machines and all

assume rectilinear distances between locations which form a rectangular

grid (see appendix A).

Nugent et al. compared the assignments produced by four

improvement heuristics on these problems. Since then Edwards et al. (13) ,

Vollmann et al. (67), Khalil (33) and Hitchings (32) have also tested

their improvement heuristics on these problems. Many of these

heuristics are very similar and so tables 7-2 and 7-3 only reproduce

the statistics for four of the more successful programs.

Table 7-2 gives the costs of assignments produced for the

five larger problems by the four programs mentioned above as well as

LOCATE and PENALTY. Since the last section showed that the first

assignment found by PENALTY can be poor, the value given here is that of

the best assignment found after a directed search has used 8 seconds of

CDC 6400 computing time for the three smaller problems and 40 seconds

for the larger problems.

Three values are given for LOCATE. The initial cost is that

of the first assignment to be generated. The automatic cost is either

that of the optimal assignment (for n= 8 and 12) or that of the best

-173-

Method
8

Number

12

of Machines

15 	20 30

Hillier 	(1963) 109 301 617 1384 3244

CRAFT 107 289 583 1324 3148

Nugent et al. 107 289 575 1304 3093

Hitchings 107 289 575 1296 3086

PENALTY 111 289 589 1347 3355

LOCATE (Initial) 107 293 575 1323 3219

LOCATE (Automatic) 107 289 575 1306 3103

LOCATE (Manual) - - 575 1282 3094

Table 7-2.

Costs of assignments for Nugent's problems.

-174_

Method
Number

8 	12

of Machines

15 	20 	30

Hillier 	(1963)* 14 55 78 168 398

CRAFT * 10 70 160 528 3150

Nugent et al. * 109 - 658 2192 6915 42724

PENALTY ** 8 8 8 40 40

LOCATE (Initial) ** 0.37 0.98 1.98 6.96 30.15

LOCATE (Automatic) ** 5.42 481.67 1800 200 200

LOCATE (Manual) ** - - 200 200 200

* GE 265 computer.

** CDC 6400 computer.

Table 7-3.

Computing times (seconds) for Nugent's problems.

-175-

assignment found within the given time limit (for n= 15, 20 and 30).

When the time limit was exceeded a manually directed search continued

for a further 200 seconds of CDC 6400 time.

Table 7-3 gives the computing times for the various programs.

The three improvement heuristics were run on a GE 265 computer which

is considerably slower than the CDC 6400 used for PENALTY and LOCATE.

Hitchings' times are not reproduced here, partly because he used yet

another computer and partly because the meaning of his time is not clear;

it appears that his method is a little faster than Nugent et al.'s biased

sampling but considerably slower than CRAFT.

These tables show that PENALTY is a very fast program which

gives poor results. The initial assignment found by LOCATE is much

better, although not as good as the best improvement heuristics; it is

also very fast.

When allowed to run to completion LOCATE finds an optimal

assignment, but the time needed for this increases very rapidly as the

number of machines increases. It was noted in section 4.5 that the

time also depends on the nature of the data and that these test problems

have proved particularly difficult. Three of the four heuristics also

found optimal assignments for the two smaller problems - although it

was not then known that 289 is the optimum for NVR12.

' For the larger problems all the methods found different

assignments except that LOCATE, Nugent et al. and Hitchings all found

an assignment costing 575 for NVR15. Therefore it appears likely that

-176-

575 is the optimum for NVR15, but there may well be cheaper assignments

for the larger problems.

The initial assignment found by LOCATE is quite good and

is produced extremely quickly by comparison with the improvement

procedures. Continued searching for the larger problems is a heuristic

which is comparable with the best alternatives in terms of quality and

computing time.

7.4 	A BOUNDED HEURISTIC

An annoying feature of the improvement heuristics is that

they do not indicate how much their assignments are worse than optimal.

Their are two ways in which a tree-search program such as LOCATE

can rectify this situation.

One approach assumes that a good assignment has been found

and a user only wishes to be assured that its cost is within, say, 5% of

the optimum. Then LOCATE can be run with a special cut-off rule

which ignores any node whose bound is greater than 95% of the cost of

the known assignment. It is hoped that only a small part of the tree

will be enumerated under these conditions to prove that the initial

assignment is within the given percentage of the optimum.

The computational results for this method are rather

disappointing. Almost 60 seconds were required to show that the

optimum for NVR15 is greater than 500; i.e. to show that the suspected

-177-

optimum 575 is within 13% of the actual optimum. This indicates that

either the bounds are not as good as hoped or that there is a much better

assignment not yet discovered.

Gilmore (21) suggested an alternative means of searching a

tree to find a solution within a given percentage of the unknown optimum.

This does not assume that that a good assignment is known beforehand.

Suppose an assignment within 5% of the optimum is desired.

He proposes that the tree-search algorithm should be used normally until

the initial assignment is found and than the search continues but ignoring

all nodes with bounds within 5% of the initial assignment. The result of

this shortened search must either be to eliminate all nodes and thus prove

that the initial assignment is satisfactory, or else to find a new assignment

which is at least 5% cheaper than the first - this new assignment would

then be treated as the initial assignment and the search continued.

The procedure yields a sequence of assignments, each at least 5% cheaper

than its predecessor and the last within 5% of the optimum.

This technique proves extremely unpredictable in practice and

is very dependent on the cost of the initial assignment. Consider the

problem of finding an assignment within 2% of the optimum for NVR12.

Table 7-2 shows that the initial assignment has cost 293 and so the tree

would be enumerated until all pendant nodes exceeded 287.1 . Since the

actual optimum is 289, this means searching almost the entire tree.

On the other hand, if the initial assignment had cost 295 the optimum

-178-

might be found, perhaps quite quickly, and then the tree would only be

developed up to 283.2; this would save extensive computation. Thus

a long computing time may paradoxically correspond to a poor assignment

for this technique. For this particular problem, in fact, it would be

faster to calculate an assignment within 1% of the optimum than one

within 2%

7.5 	SPECIAL CASES USING TREE-SEARCH

Chapter 6 presented dynamic programming formulations

for the multi-level star mapping and the assembly line problems.

This section discusses the efficiency of these algorithms relative to

the general tree-search algorithm.

Figure 7-1 shows a 2
nd

order star problem with 17 machines.

This was solved by hand using the dynamic programming formulation in

14 minutes. Presumably a CDC 6400 computer could be programmed

to solve it in very much less than one second.

As reported above, LOCATE was unable to prove optimality

for a 15-machine problem, even with a generous allocation of computing

time. The special structure of the star problem resulted in very tight

bounds, however, and the tree-search program used only 5.274 seconds

and generated only 121 nodes to solve this 17-machine problem. This

still represents far more computation, of course, than the dynamic

programming algorithm requires.

-179-

· / Flow Graph

Distance Graph

Optimal Assignment: A1 B4 C3 D5 E2 F12 G14 H13 III

J10 K9 L16 M15 N17 06 P8 07.

Cost: 228.

Figure 7-1.

nd
A 2 Order Star Problem.

-180-

The algorithm for the assembly line problem was not programmed,

but its computing time can be accurately estimated since it is of the same

complexity as the dynamic programming formulation for the travelling

salesman problem (26). That algorithm has been programmed for a

CDC6400 computer and required 18 seconds to solve any 13-city

(or 13-machine) problem.

Several assembly line problems have been solved using LOCATE

and the time needed to solve the 13-machine problems varied from 39

to 436 seconds. This indicates again that specialised structures can

assist a general tree-search algorithm (c.f. NVR12) but that the

specialised algorithm is significantly faster.

-181-

CHAPTER 8

CONCLUSIONS

-182-

8.1 	THE LITERATURE

It was not until 1957 that Koopmans and Beckmann (34)

first formulated the plant layout problem as a mathematical program

and recognised it as being just one example of what they called the

quadratic assignment problem. But their quadratic cost function had

been accepted in practice long before this formal definition and various

manual heuristics had been used to design efficient layouts.

The precise mathematical definition aroused interest in the

concept of an optimal layout and in 1962 Lawler (39) and Gilmore (21)

independently proposed almost identical tree-search algorithms.

But apparently neither author implemented his method and the literature

provides no report of computational experience for these algorithms.

Other published algorithms appear to be only marginally more efficient

than total enumeration of all n: possible assignments.

Most of the vast literature which has appeared in the last

decade is concerned with heuristics which only yield sub-optimal

assignments. Almost all these heuristics may be classified as either

incomplete versions of the tree-search algorithms or as minor variations

of the CRAFT 2-opt improvement procedure (4).

Several comparative tests of these heuristics have shown

that the improvement methods are superior to the constructive methods

in terms of the quality of assignment for a given amount of computer

time. A major difficulty in evaluating these heuristics was that there

-183-

had been no indication of how sub-optimal their assignments were,

because true optima were only known for very small problems

8 machines or less.

This question was partially resolved recently by Scriabin

and Vergin (63). They found that students using the "old-fashioned"

technique of travel-charting with the computer only assisting as a

calculator were able to design better layouts than the computer using

the CRAFT heuristic. For larger problems the difference was as

much as 6%. This not only shows that humans can be useful designers,

but also that the available heuristics are quite significantly sub-optimal.

Hence further development of algorithms would seem useful

because the efficiency of an optimal layout is likely to be much greater

than for the best heuristic layouts. Also, the development of new

heuristics would benefit from an algorithm which could calculate the

optimum and thereby provide an absolute standard for comparison.

8.2 	THIS RESEARCH

In the spirit of the previous section, this research tried to

develop algorithms for the quadratic assignment problem which would

solve moderately large problems. The only report of previous

computational experience came from Gavett and Plyter (20) who were

unable to solve problems with more than 8 machines.

Chapter 3 tried to solve the problem directly as a 0-1

quadratic program. A standard computer package was able to solve

-184-

the program without the 0-1 condition but gave fractional values.

The concept of biasing was introduced to eliminate the fractions but the

objective function was then non-convex and the resulting assignment

was not necessarily optimal; this method proved ineffective, even as

a heuristic.

The quadratic program was again transformed, this time by

incorporating the constraints into the objective function. Then the

variables were automatically zero or one, but feasibility required

large penalties whilst convexity required small penalties and a

successful compromise was not always possible. The method is,

however, a useful heuristic, especially when specifically programmed

as described in section 3.8 instead of using the general quadratic

programming package.

Chapter 4 was concerned with tree-search algorithms based

on those suggested by Gilmore and Lawler. Since neither author has

published any results, the aim was first to report computational experience

for their algorithms and then to improve on them, particularly by

calculating better lower bounds.

Section 4.4 described a tree-search algorithm which uses the

bound proposed by Lawler and Gilmore, but a different branching

strategy. This program has solved problems with as many as 14

machines, which is compatible with Gilmore's prediction. The time

needed to solve a problem is very unpredictable.

-185--

The rest of chapter 4 investigated several other lower bounds,

some weaker and some stronger than the original. Mathematical proofs

have been given to show that these expressions are, in fact, lower

bounds.

Evaluation of one of these bounds involves solving a special

case of the linear assignment problem. This restricted ranking problem

can also arise directly in various practical assignment situations.

An extremely efficient algorithm for restricted ranking was developed

and tested (sections 4.7 and 4.8).

Chapter 5 continued the analysis of alternative lower bounds

using graph theory. The bounds of chapter 4 correspond to particular

partial graphs and it was shown that no other partial graphs correspond

to useful bounds. This appears to exhaust the possible usefulness of

tree-search algorithms.

Most plant layout and other quadratic assignment applications

are special cases in some sense, often having many zero coefficients.

Chapter 6 has developed solution techniques for several specialised

problems, again making use of graph theoretic concepts.

One particular case has been called the assembly line problem

and this was formulated as a dynamic program. Another dynamic

programming formulation was derived for a hierarchical "star-graph"

problem and this is extremely efficient.

Chapter 7 has computationally compared all the methods -

heuristics and algorithms, from the literature and this research.

-186-

The tree-search algorithm of chapter 4 is the only method which

guarantees optimal assignments for more than 8 machines, excluding

the highly specific dynamic programming methods. It has solved all

problems with less than 15 machines that have been tested, as well as

some larger specialised problems.

For large problems there are no known algorithms. Incomplete

tree-search can be used as a heuristic and this has been done for as many

as 36 machines. Such a method is very flexible in that it designs a

good layout very quickly and then may improve it if given more computing

time. Using the same time as the best alternative heuristics, incomplete

tree-search has produced assignments of the same or marginally

superior quality.

8.3 	THE FUTURE

It is difficult to predict the direction of future research on

the quadratic assignment problem. Many people are very interested

in it but the way ahead seems blocked at many points.

The optimal procedures described in this thesis are limited

to only about 14 machines and this is disappointing. And yet no one has

been able to suggest an alternative to tree-search and chapter 5 seems

to account for all useful bounds.

There has been little improvement in heuristics in the last

6 or 8 years and all the extensive research has concentrated on

-187-

refinement of just one technique. Further improvement seems to

require a "break-through", a new concept on which to build another

heuristic.

The most likely direction of research in the immediate future

is probably that of specialcases. Almost all applications of the

quadratic assignment problem have a specialised pattern or structure

and this can often simplify the tasks of finding both optimal and

sub-optimal assignments.

-188-

APPENDICES

-189-

APPENDIX A 	DATA FOR TEST PROBLEMS

This appendix gives the data for all the problems mentioned

in the text. Where known the optimum cost, Z*1 and an optimal

assignment are also given. The problems are labelled according to

the author's name and the number of machines. Thus LA7 is Lawler ' s

7-machine problem, and MG12 is the 12-machine problem proposed by

this author.

If all the linear costs are zero, as for Nugent's problems, then

the linear cost matrix is omitted. Since all problems have symmetric

flow and distance matrices it is convenient to combine them as shown,

putting the distances above the diagonal and the flows below.

2 	3 • • •

d12 d13

fBA - 23
fCA fCB

•

•

B

Flows 	C

1

2

3
	Distances

B 	C 	. . .

1 2 3 4 5 6 7 8 9 10

A 25 57 34 11 34 29 15 13 22 61

B 45 35 10 3 54 68 41 21 19 20

C 0 71 45 23 14 26 45 17 42 54

D 13 32 46 52 74 36 28 5 2 33

E 16 27 38 41 62 33 49 40 10 1

F

G

H

I

J

6 13 26 41 32 68 52 37 44

32 41 52 36 19 99 21 30 41

27 41 23 53 61 25 43 23 16

38 16 28 21 34 60 10 7 16

49 20 37 16 21 31 16 10 1

51

12

19

12

33

-190-

MG3 2 3

2 5 1

B 3 	6 2

C 1 4

A B

Z*=29 : A3 B1 C2.

MG10 	 2 3 4 5 6 7 8 9 10

4 6 2 7 1 7 8 8 6 1

B 5 	3 4 5 2 9 4 5 5 2

C 4 6 	7 3 1 4 4 3 8 3

D 8 3 1 - 8 3 6 2 1 7 4

E 3 9 9 8 - 7 3 3 2 4 5

F 4 5 2 3 8 	5 4 1 3 6

G 8 8 5 6 2 4 	6 3 9 7

H 7 4 2 6 5 7 9 - 4 9 8

I 1 1 3 9 1 1 3 5 - 9 9

7 9 6 8 9 9 7 1 3

ABCDEFGHI

Linear
costs

Z*=1092

A8 B10 Cl D9 E6
F2 G5 H3 17 J4.

- 6 3 1 4 5 8 9 4 2 2 1

3 - 6 6 6 3 3 2 2 4 5 5

5 2 - 3 2 4 7 4 5 6 7 3

7 1 3 - 8 1 4 1 3 7 4 4

3 5 4 7 	3 6 4 4 3 6 2

1 3 2 6 4 - 	5 4 1 1 	3

9 8 3 4 6 1 4 6 2 	4

4 2 6 4 7 7 5 - 	2 5 	2

3 1 1 2 1 4 3 5 - 	6 	5

3 6 5 4 7 3 5 4 6 - 	8

2 43 3 6 5 1 8 3 9 5 	-

1 4 7 8 5 2 4 3 5 4 	4

6

8

9

4

3

5

15 36 47 62 81 40 35 24 71 66 83 23

15 62 35 87 68 46 23 15 36 45 81 40

81 23 64 90 37 72 68 43 27 82 46 11

43 0 10 46 38 91 20 49 62 36 72 46

83 17 56 3 19 91 77 38 50 38 26 31

1 10 47 53 82 93 86 14 55 21 51 39

22 61 1 0

72 15 43 10

95 7 38 21

37 67 89 32

40 83 28 95

33 89 56 25

34 40 10 72 39 11 15 30

23 11 73 49 82 83 80 65

96 84 59 7 38 47 16 3 32

93 6 48 36 74 20 81 11

71 28 46 73 28 29 74 61

0 27 46 53 92 1 36 48

-191-

MG12
	

2 3 4 5 6 7 8 9 10 11 12

AB CDEF GHI J K

1 2 3 4 5 6 7 8 9 10 11 12

Z*=1241 : Al B7 C9 D3 E4 F2 Gil H12 I10 J8 K5 L6.

1

2

3

4

5

6

7

8

9

10

11

2 4 3 	5 4 8 2 - 	8 3 4 5

2 5 4 	7 6 3 4 9 - 	7 5 9

3 4 6 	5 7 3 4 5 3 - 	3 1

8 4 5 	6 3 4 7 5 3 1 - 	2

7 3 8 	4 6 2 1 1 7 3 2

3 8 2 	2 2 6 3 1 7 3 8 4

3 2 7 	1 2 5 4 2 5 3 9 4

8 2 1 5 3 9 3 7 8 7 4 3 7

3 - 7 7 3 6 3 7 6 3 2 3 7 5

5 2 - 3 7 4 8 4 4 6 4 7 2 6

1 5 4 - 2 5 6 6 1 2 5 2 8 3

4 5 2 3 - 2 3 2 3 7 1 8 9 5

5 7 2 3 5 	1 4 2 4 8 4 7 4

3 6 5 3 3 8 6 1 5 4 - 5 9 7

4 2

1 7

4 3

3 4

2 8

- 2

5

81 27 36 47 58 91 70 37 26 38 46 51 26 37
50 48 10 26 38 64 72 38 49 71 1 39 20 57
72 47 38 74 63 19 3 47 65 28 39 71 8 39
1 27 38 46 28 49 88 42 74 56 91 22 36 48

83 46 58 16 37 28 37 49 71 40 30 91 46 58
92 47 58 37 61 38 40 86 28 49 33 10 6 59
89 44 37 28 19 73 46 58 29 37 64 51 83 59

10 82 64 52 89
96 37 48 19 31
39 47 61 28 42
37 82 21 27 29
83 49 96 58 47
73 28 22 21 28
47 62 38 47 49

28 37 46 19 47 77 33 28 46
21 90 32 29 56 37 83 21 89
74 36 28 39 16 59 37 18 28
20 38 47 59 81 47 39 28 46
90 48 39 31 34 32 18 64 1
84 38 29 47 38 19 38 64 58
64 57 37 44 24 46 48 75 53

-192-

MG14 	 2 3 4 5 6 7 8 9 10 11 12 13 14

AB CDE F GHI JKLM

1 2 3 4 5 6 7 8 9 10 11 12 13 14

B

C

D

E

F

G

H

I

J

K

L

M

N

A
B
C
D
E
F
G
H
I

K
L
M
N

1

2

3

4

5

6

7

8

9

10

11

12

13

Z*---1873 : A3 B11 C7 D2 E4 F12 G5 H10 114 J8 K1 L9 M13 N6.

3 6 9 9 4 3 2 4 9

1 	4 9 9 9 9 4 3 9

0 1 	3 9 9 9 9 2 5

0 0 1 - 2 9 9 9 4 3

0 0 0 1 	1 9 4 4 3

0 0 0 0 1 	2 2 9 3

2

2

1

-

0 0 0 0 0 1 - 	2 9

0 0 0 0 0 0 1 - 	4

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 1

-193-

TSP10

2 3 4 5 6 7 8 9 10

B

C

D

F

G

H

I

J

1

2

3

4

5

6

7

8

9

AB CDEF GHI

Z*=22 : Al B2 C9 D3 E4 F5 G6 H7 I10 J8.

-194-

GP4 2 	3 	4

1 - 	6 	7 	2

B 28 - 	5 	6 2 Z*. 403 : A4 B1 C3 D2.
C 25 15 - 	1 3

D 13 4 	23 -

A B 	C

LA7
2 	3 	4 	5 	6 	7

- 	5 	0 	5 	0 	5 	4 1

B 0 	- 	9 	7 	3 	8 	6 2

C 12 2- 	9 	4 	4 	4 3

D 2 	0 	16 - 	1 	1 	9 4

E 2 	6 	16 14 - 	5 	5 5

F 16 2 	8 	12 0 	- 	4 6

G 8 	6 	4 	8 	12 18 -

AB

1 	2

CDEF

3 	4 	5 	6 7

A 51 27 14 9 0 18 0

B 0 1 22 17 0 41 13

C 2 0 13 22 2 12 27

D 38 11 0 0 22 13 14

E 62 56 0 67 1 0 5

F 61 0 3 14 9 1 67

G 41 12 23 0 18 41 0

Z*=559 : A7 B2 C1 D3 E5 F6 G4.

I 2 3 4 5 6 7 8 9 to II 12

12 3 I 2 3 4 2 3 4 5
5— I 2 2 I 2 3 3 2 3 4
2 3 — I 3 2 I 2 4 3 2 3
4 0 0 — 4 3 2 I 5 4 3 2
I 2 0 5 — I 2 3 1 2 3 4
0 2 0 2 10 - I 2 2 I 2 3
0 2 0 2 0 5 - I 3 2 I 2

6 0 5 10 o I I0 — 4 3 2 I

2 4 5 oo I 5 0— I 23

I 5 2 0 5 5 2 0 0 - I 2

I 0 2 5 I 4 3 5 10 5 — I
I o 2 5 I o 3 o 10 0 2 -

-195-

Nugent et al. used a slightly different notation, numbering the machines

as well as the locations. Their five larger problems are reproduced

here directly from their paper (57) and so the machine-labels are

different, but the layout of the entries is as for the other problems.

NVR8

2 3 4 5 6 7 8 Z 4=107
I

2
7

5
z

—
2
I

3
2

I
2

2
7

3
2

4
3 A6 B5 Cl D7

3 2 3 — I 3 2 I 2 E8 F4 G3 H2.
4 4 0 0 — 4 3 2 I

I 2 0 5 — I 2 3
6 0 2 0 2 I0 - I 2
7 0 2 0 2 0 5 —
8 6 0 5 To o I Jo

NVR12

2

3
4
5
6
7
8
9

I0
II

I2

Z*=289

A5 B9 Cl D8 E6 F2 G5 H3 17 J4

4
5
6
7
8
si

II

23
14
25

I — I 2 3 4 1 2 3 4 5 2 2 .., 4 5 6
210-12 3 212 343. 2 345
3 o / 	I 2 *1 .. 2 x 2 3 4 3 2 3 4

5 	3 	10 	— 	1 	4 	3 	2 	/ 	2 	5 	4 	a _ 	2 	2 ...

I 	2 	2 	2 	— 	5 	4 	3 	2 	1 	6 	c - 	4 	3 	2

o 2 	0 	I 	3— 	12 	3 	4 	I 	2 	3 	4 	5
2 	2 	2 	5 	5 	2 	— 	1 	2 	3 	2 	2 	2 	3 	4
2 	3 	5 	0 	5 	2 	6— 	12 	3 	2 	I 	2 	3
2 	2 	4 	o 	5 	z 	0 	5 	— 	1 	4 	3 	2 	I 	2

102 	0 	5 	2 	I 	5 .., 	I 	2 	0— 	5 	4 	3 	2 	I
2 	2 	2 	I 	0 	0 	5 	20 	20 	o 	— 	I 	2 	3 	4

1200 	2 	0 	3 	0 	5 	0 	5 	4 	5— 	I 	2 	3
4 	10 	5 	2 	0 	2 	5 	5 	zo 	0 	0 	3— 	2 	2
0 	5 	5 	5 	5 	5 	2 	o 	o 	o 	5 	3 	xo — 	I
o 0 	5 	0 	5 	10 	0 	0 	2 	5 	0 	0 	2 	4 —

-196-

NVR15

I 2 3 4 5 6 7 8 9 lo II 22 13 24 25

Best known cost is 575.

NVR20

2 3 4 5 6 7 8 q !Oil 12 13 14 23 26 17 28 IQ 20

— 1 2 3 4 1 2 3 4 5 2 34 3 6 3 4 5 6 7
0 	1 2 3 2 I 2 3 4 3 2 34 5 4 3 4 3 6
5 3 	I 1 3 2 2 2 3 4 3 2 34 5 43 4 5
0 20 2— i 4 3 2 1 2 5 4 3 2 3 6 5 4 3 	4
5 S 	0 1— 5 4 3 2 1 6 5 4 3 2 7 6 5 4 	3
2 2 5 0 5 — 1 2 3 4 1 2 3 4 5 1 3 4 5 	6

10 5 2 5 6 5 — 1 2 3 2 2 2 3 4 3 2 3 4 	5
3 1 4 2 5 2 0—, 1 2 3 2 1 2 3 4 3 2 3 	4
I 2 4 I 2 1 0I — I43 2 1 2 5 4 3 1 	3
5 4 5 0 5 6 0 2 2 — 3 4 3 2 1 6 5 4 3 	2
5 2 0 10 2 0 5 20 0 5— 1 2 3 4 1 2 3 4 	5
5 5 0 2 0 0 10 10 3 5$ — I 2 3 2 I 2 3 	4
0 oo 2 5 10 2 2 5 0 2 2 —I 2 3 2 I 2 	3
0 10 5 0 10 2 0 5 5 5 20 2 — I 4 3 2 1 	2
5 20 I 2 1 2 5 I0 0 1 I 5 2 5 5 4 3 2
4 3 0 I I 0 I 2 5 010 0 1 5 3 — 1 2 3 	4
4 00 5 5 1 2 5 00 0 I 0 2 00—* I 2 	3
0 S 	5 2 2 0 I 2 0 5 2 1 0 5 5 0 5 — 1 	2
OW 0 5 5 I 0 2 0 5 2 2 0 5 10 2 2 I-
I 	5 0 5 I 5 10 10 2 2 S 	5 5 01000/ 	6 —

2
3
4
S
6
7
8
9

10
II

12
23•
14

15

16
17
18
19

20

Best known cost is 1282.

I— 1 2 3 4 5 1 2 3 4 5 6 2 3 4 5 6 7 3 4 5 6 7 8 4 5 6 7 8 g
2 3— 2 2 3 4 2 I 2 3 4 5 3 2 3 4 5 6 4 3 4 5 6 7 5 4 5 6 7 8
3 	2 4-1 2 3 3 2 I 2 3 4 4 . 3 2 3 4 5 5 4 3 4 5 6 6 5 4 5 6 7

4 0 0 3— 2 2 4 3 2 2 2 3 5 4 3 2 3 4 6 5 4 3 4 5 7 6 5 4 5 6
5 0 20 4 0— 2 5 4 3 2 2 2 6 5 4 3 2 3 7 6 5 4 3 4 8 7 6 5 4 5
6 2 4 0 0 5— 6 5 4 3 2 2 7 6 5 4 3 2 8 7 6 5 4 3 9 8 7 6 5 4
7 10 o 5 0 2 I— 1 2 3 4 5 2 2 3 4 5 6 2 3 4 5 6 7 3 4 5 6 7 8
8 5 o 5 2 0 2 I0 —/ 2 3 4 2 I 2 3 4 5 3 2 3 4 5 6 4 3 4 5 6 7
g 0 2 5 20212 2 33 21 3443 2 345 5 4345 6
20 5 2 2 o o 2 5 3 20 — z 2 4 3 2 I 2 3 5 4 3 2 3 4 6 5 4 3 4 5
11 	224 604205 2 5 2543 212 65432 3 765434
12 501 02 10100 1 5 o — 6 5 4 3 2 2 7 6 5 4 3 2 8 7 6 5 4 3
23 0 5 020 X06 0 5 6051234 51 23456 2 34 5 6 7

24 0 0 4 5 0 2 0 0 2 0 I S 2 — 1 2 3 4 2 I 2 3 4 5 3 2 3 4 5 6
25 2 00 2 0 5 0 2 0 I 2 2 0 2 —I 2 3 3 2 I 2 3 4 4 3 2 3 4 5
26
27
28
29
20
22
22
23
24
25
26
27
28
20
30

00 4 5 0 5104 3 5 1 04 1 4_ 1 2 4 3 2 2 2 3 5 4 3 2 3 4
5 	0 0 1 2 2 02 0 	2 5 5 0 0 5 5 o 0 0 	2 02 05 w 0— 0- 1 1 5 5 2 4 4 3 3 2 I 2 6 5 4 3 2 3
6 	2 6 2 2 S 	I 2 2 0 2 0 	2 5 1 3 2 — 6 5 4 3 2 2 7 6 5 4 3 2

3 	o 3 I o o 10 20 0 5 0 0 	2 3 0 0 2 5 —/ 2 3 4 5 1 2 3 4 5 6

0 	I 2 I 0 0 	/ 6 o 2 0 2 	0 10 I 2 0 I 0— I 2 3 4 2 I 2 3 4 5
I 	6 5 2 2 0 	5 0 4 3 0 0 	6 0 0 2 0 2 S 	5 — I 2 3 3 2 I 2 3 4

20 	2 5 2 0 10 	5 5 0 5 6, 4 	2 0 5 0 0 20 5 2 4— I 2 4 3 2 I 2 3

o o 2 4 5 0 	2 5 5 0 6 5 	2 4 0 2 6 re x I 0 5— I 5 4 3 • 2 1 2

10 	1 I 0 I 0 	3 2 2 5 o 20 	5 2 2 0 5 40 3 I o o — 5 5 4 2 3 3 4 I 5

2 	2 0 2 0 0 	5 5 0 2 4 15 0 0 5 3 o 5 x o 4 4 5 —
2 	2 00 2 4 	0 0 5 10 5 0 	0 0 0 0 5 0 2 5 0 4 4 5 1 — 1 2 3 4
2 	5 3 2 I 0 	2 5 2 10 3 0 	0 4 5 5 0 5 2 6 0 5 1 0 0 0— 1 2 3

z 	2 2 2 o 20 	0 5 2 1 2 C 	I 2 I 2 00 2 5 5 0 0 2 20 0 0— I 2

0 100 5 2 I 	I 0 5 5 2 0 	5 5 I 5 5 010 5 0 2 2 0 1 0 0 2 —1

2 	5 	2 5 z I 	3 2 2 2 10 I 	5 5 o xo I o 20 3 0 5 2 0 0 0I0 2 2 —

NVR30

3 4 5 6 7 8 9 20 2I 22 13 14 15 16 /7 18 29 20 21 22 23 24 25 26 27 28 20 30

1 2

Best known cost is 3086.

ST36

The 34 modules must be

placed in 4 rows of 9,

with any two locations

empty. The di stance

between locations is the

str aight-line or Euclidean

distance. The "flows" in

the matrix are the numbers

of wires between each pair

of modules.

E
__ 0_21

EI '3

~
!.
5

E II I ~-r----------___ ~~~16 33 8 2 s~U. S'j-;15:':;.1;-~25;;-:1;:-1----~~"":~--
~1 .S!l6 6

EI5 I "';:.3 I ~ ~~19~--2~~~--

.~ 6

10 6 Cili=1~
_~o.:c::

7 " 2 I I 486 22

~ 3 2 5 5 4 I 112 17

7 3 J 109 IS

34 4
LE 17 I "'" 4 0
EIE " 2 , __
EI9 I ""'13 9 7 27 16 3 20 4 116 I 13

~=I "" 4 36 16 13 9 10 1 28 6 2 309 r 26
E21 ""-36 6 8 2 SO I 7 r-- f-._-

~~ "".; 51 6

E23 __ "'" 12 9 .--~r-?--I
E24 I "'" 26 5 53 5
~' I ""'35 2 93 ~
~. ~ "'" 4 . 51 3

IE~7J "" -r4--i'2---------
E28 I TOTAL t.iUr.mER OF WIRES = 2620 " 10 22 4 6 4 12 157 12.1
f-._--
E291 ~J912 79 8 I

E30 I _. "'- 19 4 5 8 99 .L_IO_

E31 " 3 13 54 I 7
~I._ ... S 1824 lOG -8-,

. .. -~- --.S:20 61 7 I
E33

E31 ~J 87 6

K NUMOER OF ELEMENTS, TO VHIICH EACII 13 CON~ECTED

Best knovvn cost is 4327.84.

I
~

'" ex>
I

-199-

APPENDIX B 	BIASED QUADRATIC PROGRAMMING EXAMPLES

An optimal assignment for NVR8 is A6 B5 C1 D7 E8 F4 G3 H2

with cost 107. The iterations of the biasing procedure described in

section 3.5 are given below.

With no bias the QPS package gives Z.101.57,

1 2 3 4 5 6 7 8

A .20 .80

B .19 .61 .20

C .81 .19

D .20 .04 .77
X =

E .30 .70

F .70 .30

G .20 .80

H .60 .16 .23

There are 19 fractional variables and so the bias coefficients should be

5(107-101.57)
19 	

=1.39 . (see flow-chart in figure 3-5).

the value 1.0 was used, with the following result:

For convenience

-200-

1 2 3 4 5 6 7 8 	1 2 3 4 5 6 7 8

A 1 1 1

B 1 1 1 1

C 1 1 1

D B= 1 1 1 X = .17 .83

E 1 1 .23 .77

F 1 1 .77 .23

G 1 1 .16 .84

H 1 1 1 .67 .16 .17

Z = 104.05

Now there are 11 fractional values and this means that the bias coefficients

should be increased by 1.32 ; again 1.0 was used.

1 2 3 4 5 6 7 8 	1 2 3 4 5 6 7 8

A 1 1 1

B 1 1 1 1

C 1 1 1

D B= 2 1 2 X = .18 .82

E 2 2 .14 .86

F 2 2 .86 .14

G 2 2 .05 .95

H 2 2 2 .77 .05 .18

Z = 105.60

For this solution the same values as before are fractional , but most of

them have become nearer to being integers. The bias should be increased

by 0.67, but 1.0 was more convenient.

-201-

1 2 3 4 5 6 7 8 	1 2 3 4 5 6 7 8

A 1 1 .19 .81

B 1 1 1 .19 .81

C 1 1 1

B 3 1 3 X .19 .81

E 3 3 1

F 3 3 1

G 3 3 1

H 3 3 3 .81 .19

Z = 106.32

Now some of the 0-1 variables have become fractional and vice versa.

The formula for bias increment gives 0.43, but since all fractions are

so near zero or one, the effect of additional bias is small and so a larger

value can be used - e.g. the convenient 1.0 .

1 2 3 4 5 6 7 8 	1 2 3 4 5 6 7 8

A 2 2 1

B 1 1 2 1 1

C 1 1 1

D B = 3 1 1 4 X = .10 .90

E 3 3 1

F 3 3 1

G 3 3 1

H 4 3 4 .90 .70
ow.

Z = 106.75

Again the formula suggests a low value, 0.31, for the bias increment.

But the extreme values of the fractions mean that the bias needed to give

this solution the cost 107 is actually much higher, 0.70 . Hence 1.0

was used again.

-202-

1 2 3 4 5 6 7 8 	1 	2 3 4 5 6 7 8
WOO

A 2 2 1

B 1 1 2 1 1

C 1 1

D
B = 4 1 1 5

X = 1

E 3 3 1

F 3 3 1

G 3 3 .08 .92

H 5 3 5 .92 .08

Z = 106.96

This is very nearly integral and only one further iteration was needed to

give the optimal solution.

1 2 3 4 5 6 7 8 	1 2 3 4 5 6 7 8

A 2 2 1

B 1 1 2 1 1

C 1 1 1

D B = 4 1 1 5 = 1

E 3 3 1

F 3 3 1

G 4 4 1

H 6 4 5 1

Z = 107.

-203-

Here is another example of the heuristic biasing procedure

given in section 3.5 . The problem is GP4, Gavett and Pl-yter 's 4-machine

example, for which the unique optimal assignment is A4 B1 C3 D2 with

cost 403. The formula given in section 3.5 is followed accurately and

so no detailed working need be shown.

With no bias the QPS package gives:

1 2 	3 4

A .14 .86

= B .36 .64 Z = 341.47

C .30 .28 	.28 .14

D .34 .58 	.08

1 2 3 	4 1 2 	3 4

A 20 20 .27 .29 	.45

B= B 20 20 X = .71 .29 Z = 390.72
C 20 20 20 20 .45 .55

D 20 20 20 .28 .71

1 2 3 	4 1 2 	3 4

A 6 26 6 20 1

B = B 20 6 20 	6 = .38 .62 Z = 377.60
C 26 20 26 20 .42 .20 	.38

15 26 20 20 	6 .20 .80

Note that Z has decreased and so the biased function was sufficiently

non-convex at the previous iteration to have a non-optimal local minimum.

-204-

1 	2 	3 	4 	1 2 3 4

A 6 26 	6 20 .21 .79

B 	B 34 	6 34 	6 1 Z. 396.79
C 40 34 40 20 .38 .42 .21

D 40 34 20 	6 .62 .38

1 	2 	3 	4 	1 2 3 4
.10

A 6 30 	6 24 1

B = B 34 	6 34 	6 .64 .36 Z = 395.40
C 44 38 40 24 .36 .64

D 44 38 20 	6 1
001 "am

This solution is almost optimal.

1 	2 	3 	4 	1 2 3 4

A 6 30 	6 24 .39 .59 .02

B= B 44 	6 44 	6 X = .59 .41 Z=385.81
C 54 38 50 24 .02 .98

D 44 38 20 	6 1

The objective has been reduced again

1 	2 	3 	4 	1 2 3 4

A 6 42 18 36 1

B 	B 44 18 56 	6 1 Z = 407.62
C 54 50 50 36 .64 .36

D 44 38 20 	6 .36 .64

The cost of this solution is actually greater than that of the optimal

assignment and the procedure is clearly out of control anyway since the

sequence of solutions oscillates wildly. The procedure was continued

-205-

using somewhat arbitrary bias increments for the final four iterations .

The resultant assignment is quite unsatisfactory.

1 2 3 4 	1 2 3 4

A 10 62 30 44 1

B
B 44 30 68 6 = 1

Z. 445.00
C 58 62 50 44 1

D 52 42 24 6 1

The unique optimal assignment for Lawler 's 7-machine

example, LA7, is A7 B2 C1 D3 E5 F6 G4 with cost 559. The biased

quadratic programming procedure found this most easily by starting

with all bias coefficients set to 10. 	This leads to :

1 	2 	3 	4 	5 	6 	7 	1 	2 	3 4 5 6 7

A 10 10 10 10 10 10 10 .36 .64

B 10 10 10 10 10 10 10 1

C 10 10 10 10 10 10 1.0 1
B=

D 10 10 10 10 10 10 10
X =

1

E 10 10 10 10 10 10 10 1

F 10 10 10 10 10 10 10 1

G 10 10 10 10 10 10 10 .64 .36

Z = 546.60

-206-

Note that simple rounding at this stage would give the optimal

assignment. Continuing with the biasing procedure :

1 2 3 4 5 6 7 	1 2 3 4 5 6 7

A 10 10 10 35 10 10 35 1

B 10 10 10 10 10 10 10 1

C 10 10 10 10 10 10 10 1
B X

D 10 10 10 10 10 10 10 .99 .01

E 10 10 10 10 10 10 10 1

F 10 10 10 10 10 10 10 1

G 10 10 10 35 10 10 35 .01 .99

Z = 558.986

1 2 3 4 5 6 7 	1 2 3 4 5 6 7
^-1

A 10 10 10 35 10 10 35 1

B 10 10 10 10 10 10 10 1

C 10 10 10 10 10 10 10 1
B X

D 10 10 15 15 10 10 10 1

E 10 10 10 10 10 10 10 1

F 10 10 10 10 10 10 10 1

G 10 10 15 40 10 10 10 1

Z = 559.

-207-

APPENDIX C 	PROGRAM "PENALTY"

The program reads the problem date from TAPE 1 and

minimises Z with the penalties zero and starting with the infeasible

solution, x =0; if all cost coefficients are non-negative this zero

solution is optimal already. Then it prints Z and awaits directives from

the following list.

Change 	Changes specified variables from 0 to 1 or vice versa.

Alter 	Increases specified penalties by specified amounts.

Alter + 	Increases all penalties by specified amount.

Go 	Minimises with the current parameters. A blank line

has the same effect.

Step 	Increments all penalties associated with unsatisfied constraints

by a specified amount, minimises, and repeats until a

feasible solution is found or the specified limit is reached.

Monitor 	Resets print control to give more or less information.

Tape 	Further directives are read from specified tape.

Finish 	Terminates program.

Print (list) Prints sele-ted information according to the sub-directives

in the list. Possible sub-directives are:

Solution Current variables and Z.

Penalties Current machine and location penalties.

Critical The minimum increase and decrease in the specified

penalties which will change the solution.

111

Penalty. 20 is too small.
But 45 is too large and so
the variables in this infeasible
solution are rather arbitrary.
D 4 	E 1 1 	F 6 	13 H

H 12 	I '1 	.1

•
2 • 0111/)

6113.6100

t 	13 	C 3

-208-

Derivative The partial derivatives of Z with respect to the

specified variables; also the change in penalty needed

move the variable in or out of the solution.

Many directives can be typed on the same line, but "finish", "go" and

"step" are terminal. As an abbreviation, only the first three letters

of each directive need be typed.

The example below shows the difficulty of choosing suitable

penalties for the 15-machine problem. The notes on the Tight have been

added later. The cost of the best known solution is 575.

nr
. 	M & N are missing.

ARE 	61• 	(I ()CH 7)*—.9F 4.1v (Luck! 0)
/UHF 	:13 • fArcl(LUC,IA) *— • E,-4F 	(LI)C14 44)
Al-i 	:3:3 • t 41(1 (t'!) -A.— • Pc. + 1!:i (MACH
AHE 	•,35 • 11Vt^ Mi41'.14)F+10 (MACH
5 10 	15 12 go

(i',"'c• 000

bk 1 	13 2 	C 3
	

1) 4 	F 13 	G 5 	H12
7 	J 9 	L 11/'

Obviously nowhere near a good
assignment and so this run
was abandoned.

lgo„,nvr16
INFLAbTJLE

	

? alter 	20 Jo
INFASTULE

? alter r 25 go
INFEASTUL 	7 -

? print solution
SOLUTION

K 13 	L. 16 	1114
Z = 	6 1 ti • ITO

? print critical m
ZEFiRb OH MACH M
ZFEWS FHH 	H
ZFH11S F rill Lfril
ZEHHS FHH LHCH15

? alter n 34 m 36
IHFEikg IH! 	=

? print solution
UUHH ENT S WW1 T.11,1

	

;:■ 	11 14
Z = 	622.vtlo

? fin
STOP

-209 -

PENALTY being used for NVR8. Optimum is 107.

lgo...nvrB
TNFEASTULE 	Z 	 (A

? step 100 3
7B IN'HiEmi,HTS HUT NEE0En.
FEASTUIF 	7 = 	116.0M1

? print solution penalties
CURRFNT SOLUTION 	A i 	U7 	Cfri 	06 	EH 	F4 	G3 	HP
Z 	116-rfam
MAnHTHF PI=WALTIFS 	A 15•11M0 	13 	• 14J0 	C P,U,U0 	0 21•VGA;
F 21.00 	(3 10.000 	H 42° (100

LOCATION PENALTTES 	1 P1-01,10 	2 6-1/mv 	3 12.0L0 	4 1B.0f.IV
H 18.000 	7 21.1100 	13 3M• LIMO

? alter + —2 go
INFEASIBLE 	Z 	113.um0
? print solution
CURRENT SOLUTION 	U '1 	CB 	Of) 	E8 	F4 	03 	H2
Z = 	113-cw
? print critical a 1
ZEHUS FUR MACH A AHE 	3*(Nn(L01'N 1)---S.:F+11,1(CUCW
ZEROS FUR LOCH 1 ARE 	2.C11U(AACH C1*—.PE+1V(mACH
? alter 1.3 go
INFFASTOLF 	Z 	115.00
? print solution
CURRENT SOLUTTHN 	7 	Cl 	CB 	U6 	E8 	F4 	0:1 	HP
Z = 	115.(,(10
? print critical a c
ZEROS FUR MACH A ARE 	14-LuO0 ncH 214.—.9E+1m(1ocki t,)
ZEROS FOR MACH C ARE 	1.000(10CH 1) —10.333(LOCN 2)
? alter c 2 go
TNFEASIHIF 	Z 	116.000

? print solution
CURRENT SO1 LITTON 	8 7 	CB 	D6 	EU 	F4 	G3 	H2
Z 	116-000
? print critical a
ZEROS FUR mACH A ARE 	12•(3(10(LUC[J 2) 	0(LOCW 1)
? alter a 13 go
TNFEASIULE 	Z - - 	110.01A

? step 20 1
16 INCREMENTS NUT HEEOF0-
FFAqTPIF 	Z = 	116•(10V

? print solution
CUHFNT SoIoTTON 	Al 	87 	C5 	Up 	Eh 	F4 	G3 	H ;
Z 	116.000
? alter + —3 go
iNFEA5IRCE 	Z 	1m 6-000

? Step 50 1
J2 INflHE1ALNTS NUT NFEOLID.
FLAI;THLE 	2 . 	117.01 10

? print solution
CURRENT SOLUTION 	Al 	u S 	Co 	07 	FH 	F4 	G3 	H2
Z - 	11'?. 000
? finish
STOP

-210-

APPENDIX D 	INTERACTIVE USE OF "LOCATE"

As mentioned in section 4.4, program LOCATE can be run

interactively. All manual input is via a subroutine called WATCH which

is entered at the beginning of the program and then later in accordance

with a parameter called 'WATCH. If IWATCH =0, WATCH is never

entered. If > 1, it is entered on completion of the search. If > 2,

when an improved solution is found. If 4, when a node is about to be

deleted. If > 6, when a newly active node is about to have its bound

calculated. Higher values of IWATCH are only used for debugging.

Once it has been called, WATCH types a message indicating

the reason for the call and then awaits further direction in the form of

key-words typed by the user. The meaning of the 15 key-words is

summarised below.

Flow 	Print the flow matrix.

Distance 	Print the distance matrix.

Cost 	Print the linear cost matrix.

Parameters Print the current value of IWATCH and two other parameters

and accept new values for them.

Limit 	Sets the number of nodes to be generated before the next

call to WATCH.

Summary 	Prints the number of nodes generated and also the number

not yet discarded, the active node and the current minimum.

Best 	Prints the current best assignment.

Time 	Prints the computer time used in seconds.

-211-

Tree 	Prints all the nodes in the tree below a specified node.

Single 	Prints a specified node, giving its bound and the nodes

immediately above and below itself.

Up 	Prints all the nodes directly above a specified node.

Down 	Prints one node from each level below a specified node.

Active 	Declares a specified node to be active.

(blank) 	Continues running program normally.

Stop 	Terminates execution.

Most of these directives allow the user to watch the search

process, but the "active" instruction gives the power to change the

course of the search.

IWATCH is preset to 1 and so the program runs without

interruption unless either "limit" or "parameters" is used at the

beginning of execution. The output below shows NVR8 being solved

without interruption. Lower case letters are typed by the user, upper

case by the computer.

get,tapel=nvr8
/x,fortran,i=locate,e=4.k

STAHT

ENO 	TIME NM TS 6-62 	STNCE LAST CALL IS 1"-;Eif7.
THTAL NOmUFH nF NunLs IS 	14?

bULUTION IS 	1t17 • [i(')O

A ti 	U 5 	C 1 	D 7 	E ul 	F 4 	U 3
STOP 	 ---:-'
/ 	 ----r--;-* H2

-212-

The following output is for Gavett and Plyter 's 4-machine

problem and demonstrates a few of the key-words. The notes on the

right-hand side were added later.

START
? flows
N•R• 	ENTRIES

A

ARE TUTAL PATRWTSE FLOWS

H 	C 	U

Print flow matrix.

A 	0 2B. 25. 13•
13 	25. 0 15• o•
C 	25 • 15. M 23.
D 	1:1• 4* 23. 0

?

distances
1 2 ;1 4 ' Print distance matrix.

1 	0 6. 7- 2•
2 	6. 0 5• 6 •
3 	'7. 5• 0 1.
4 	2. 6 • 1• ' 0

? parameters
IwATCEL. 	1 	MAXEXCL- 4 	DIMENS=. it 9 f,1
? 6 1 100 	 IWATCH= 6
?
START ANALYSIS OF ACTIVE NUDE 	 Node at level 0.
? time

TIME: NOW IS 7.101 	SINCE LAST CALL IS 	• L';'I LI

START ANALYSIS HI' ACTIVE: NUDE 	First inclusion node.
? time

TIME NUW IS 7. 124 	SINCE LAST CALL TS 	-023

Calculation of bound

for node at level 0

needed 0.023 seconds.

Continued on next page.

398 	396

The first branch.

The tree
when the.
first
assignment
was found.

-213-

Total number of nodes generated.

Number of nodes not yet discarded.

? summary
NOUES. 	:3 (3) 	ACTIVE= 2 	BEST-999999-Ho

? tree
WOOF AEibIGNMFNT

? 1
1 	0 	0 	.396-00 	0 	2 	, -)

2 	A 	4 	396-on 	1 	— 1 	vi,

3 	A 	—4 	J9E3 • h1,1 	1 	—1 	• IA
? paremeters
IWATUHr. 6 	mAxExrt, 1 	DIMENS= 100

? 2 1 100
?
IMPROVNO SoLUTInN
? summary
NUDES- 	7 (7) 	ACTIVE= 6 	BLST. 	403•00
? best

A 4- n 1 C 3 0 2
'? tree
NOOE ASSIGNMENT dOUNn PAHEHT CHTI.nREN

? 2
2 	A 	4 	397.51,1 	1 	4 	5

3 	A -A 	396.11H 	1 	-1 0
4 D 2 4n3.00 2 6 7
r 	 2 	-1 	_O J 	U -2 	441

6 	U 	1 	41)13.00 	4 	-1 	v
7 	E3 	-1 	419 • r1.1 	4 	-1 	0

? time
TIME NOW IS '7-190 	SINcE LAST CALL IS 	-w74

Eiji) 	TIME NnW IS 7.223 	SINCE LAST CALL TS 	-025

-FOAL NoM0),n OF nonFs TS 	8 • 	Only one more
node was
generated.

SninTToN IS 	403-OHO

/1 	4 	E3 	'1 	C
ST 0P

HuUND PARENT CHILIMEN

-214--

REFERENCES

1. Armour, G.C. and Buffa, E.S. (1963) "A heuristic algorithm and

simulation approach to the relative location of facilities",

Man. Sci. 9, 294-309.

2. Artie, R. and Varaiya, P.P. (1975) "Economic theories and empirical

models of location choice and land use - survey", Proc IEEE 63,

421-427.

3. Bowman, V .J .1 Pierce, D.A. and Ramsey, F. (Nov. 1971)

"A linear programming formulation of a special quadratic

assignment problem", unpublished report, Carnegie-Mellon Univ.

4. Buffa, E.S. and Vollmann, T.E. (1966) "The facilities layout problem

in perspective", Man. Sci. 12, 450-468.

5. Burkard, R.E. (Aug. 1973) "A perturbation method for solving

quadratic assignment problems", presented at mathematical

programming symposium, Stanford Univ.

6. (1973) "Quadratische Bottleneckprobleme", O.R.

Verfahren 18, 26-41.

7.
(Jan. 1975) "Numerische Erfahren mit summen and

bottleneck-zuordnungsproblemen", report 75-1, Mathematishes

Institut, Universitat zu Koln.

8. CER1\T Program Library, deck H300, Geneve, Switzerland.

9. Cabot, A .V , Francis, R.L. and Stary, M.A. (1970) "A network

flow solution to a rectangular distance facility location problem",

AIIE Trans. 11, 132-141.

-215-

10. Christofides, N. and Eilon, S. (1972) "Algorithms for large scale

1 travelling salesman problems", O.R.Q. 23, 511-518.

11. Christofides, N. and Mitra, S.K. (1974) "A method for 0-1

programming", submitted for publication in O.R .Q .

12. Dearling, P.M. and Francis, R.L. (1974) "A network flow solution

to a multifacility location problem involving Rectilinear distances",

Transp. Sci. 8, 126-141.

13. Edwards, H., Gillett, E.E. and Hale, M.E. (1971) "Modular

Allocation Technique (MAT)" , Man. Sci. 17, 161-174.

14. Francis, R.L. (1967) "Some aspects of a minimax location problem",

O.R. 15, 1163-1171.

15. 	 (1973) "A minimax facility configuration problem

involving lattice points", O.R. 21, 101-118.

16. 	 and Goldstein, J.M. (1974) "Location theory: a

selective bibliograpy" O.R. 22, 400-413.

17. 	 and White, J.A. (1974) "Facility layout and location",

New Jersey, Prentice-Hall.

18. Garside, R.C. and Nichoson, T.A. (1968) "Permutation for the

backboard wiring problem", Proc. IEEE 56, 27-30.

19. Gass, I.S. (1964) "Linear programming" New York, McGraw-Hill.

20. Gavett, J.W. and Plyter, N.V. (1966) "The optimal assignment of

facilities to locations by branch-and-bound" , O.R. 14, 210-232.

21. Gilmore, P.C. (1962) "Optimal and suboptimal algorithms for the

quadratic assignment problem" J. SIAM 10, 305-313.

-216-

22. Graves, G.W. and Whinston, A.B. (1970) "An algorithm for the

quadratic assignment problem", Man. Sci. 16, 453-471.

23. Glover, K.L. (1969) "An evaluation of plant layout algorithms" ,

MBA research report, Seattle, Washington.

24. Hanan, M. and Kurtzberg, J. (1972) "A review of the placement

and quadratic assignment problems" , SIAM Rev. 14, 324-342.

25. Heider, C.H. (1973) "An N step, 2-variable search algorithm for

the component placement problem" NRLQ 20, 699-724.

26. Held, M. and Karp, R. (1962) "A dynamic programming approach

to sequencing problems" , J. SIAM 10, 196-210.

27. 	 and 	 (1970) "The travelling salesman problem

and minimum spanning trees", 0 .R . 18, 1138-1162.

28. 	 and 	 (1971) "The travelling salesman problem

and minimum spanning trees: part II", O.R. 19, 1-23.

29. Hillier, F.S. (1963) "Quantitative tools for plant layout analysis",

J. Ind. Eng. 14, 33-40.

30. 	 and Connors, M.M. (1966) "Quadratic assignment

problem algorithms and the location of indivisible facilities" ,

Man. Sci. 13, 42-57.

31. 	 and Lieberman, G.J. (1967) "Introduction to operations

research" , Houlden-Day.

32. Hitchings, G.G. (1973) "Analysis and development of techniques

for improving the layout of plant and equipment", Ph.D. thesis,

Univ. of Wales.

-217-

33. Khalil, T.M. (1973) "Facilities Relative Allocation Technique

- (FRAT)" , Int. J. Prod. Res. 11, 183-194.

34. Koopmans, T.C. and Beckmann, M.J. (1957) "Assignment problems

and the location of economic activities", Econometrica 25, 53-76.

35. Kruskal, J.B. (1956) "On the shortest spanning subtree of a graph

and the travelling salesman problem" , Proc. Am. Math, Soc. 1,

48-50.

36. Kuhn; H.W. (1955) "Hungarian method for the assignment problem",

NRLQ 2, 83-97.

37. Kurtzberg, J.M. (1964) "Algorithms for backplane formation",

Proc. ONR symp. on microelectronics and large systems,

Washington D.C.

38. Land, A.H. (1963) "A problem of assignment with inter-related

costs", O.R.Q. 14, 185-199.

39. Lawler, E.L. (1963) "The quadratic assignment problem",

Man. Sci. 9, 586-599.

40. 	 (1975) "The quadratic assignment problem: a brief

review" , unpublished report.

41. 	 and Wood, D.E. (1966) "Branch-and-bound methods:

a survey", O.R. 14, 699-719.

42. Levin, P.H. (1964) "Use of graphs to decide the optimum layout

of buildings" , Architects J. 908-917.

43. Lin, S. (1965) "Computer solutions of the travelling salesman

problem" , Bel]. System Tech. J. 44, 2245-2269.

-218-

44. Loberman, H. and Weinberger, A. (1957) "Formal procedures for

connecting terminals with minimum total wire length" , J. ACM 4,

428-437.

45. Love, R.F. (1974) "The dual of a hyperbolic approximation to the

generalised constrained multi-facility location problem with 1

distances", Man. Sci. 21, 22-33.

46.
and Morris, J.G. (1975) "Solving constrained multi-

facility location problems involving 1 distances using convex

programming", O.R. 23, 581-587.

47. Maxwell, W.L. (1964) "The scheduling of single machine systems :

a review", Int. J. Prod. Res. 3, 177-199.

48. Mitten, L.G. (1970) "Branch-and-bound methods: general formulation

and properties" , O.R. 18, 24-34.

49. Moore, J.M. (1962) "Plant layout and design", New York, Macmillan.

50. 	 (1974) "Computer-aided facilities design: an international

survey" , Int. J. Prod. Res. 12, 21-44.

51. Morris, J.G. (1975) "A linear programming solution to the

general rectangular distance Weber problem" NRLQ. 22, 155-164.

52. Morse, P.M. (1972) "Optimal linear ordering of information items",

O.R. 20, 741-751.

53. Munita, J. (1972) "Suboptimal solution procedures for the layout

problem", M.Sc. thesis, Dept. of Man. Sci., Imperial College.

54. Munkres, J. (1957) "Algorithms for the assignment and transport-

ation problems" , J. SIAM. 5, 32-38.

-219-

55. Muther, R. (1955) "Practical plant layout", New York, McGraw-Hill.

56. Neghabat, F. (1974) "An efficient equipment-layout algorithm",

O.R. 22, 622-628.

57. Nugent, C.E., Vollmann, T.E. and Ruml, J. (1968) "An experimental

comparison of techniques for the assignment of facilities to

locations" , O.R. 16, 150-173.

58. Pierce, J.F. and Crowston, W.B. (1971) "Tree-search algorithms

for the quadratic assignment problem", NRLQ 18, 1-36.

59. Pomentale, T. (1965) "An algorithm for minimising backboard

wiring functions" CACM 8,699-703.

60. 	 (1967) "On minimisation of backboard wiring functions"

SIAM Rev. 9, 564-568.

61. Raghavachari, M. (1969) "On the 0-1 integer programming problem"

O.R. 17, 680-684.

62. Ritzman, L.P. (1972) "The efficiency of computer algorithms for

plait layout" , Man. Sci. 18, 240-248.
cool/car/son of cam/m.(1-er

63. Scriabin, M. and Vergin, R.C. (1975) IIR-elativc cffectivewass-ef
glyor;thms ark,/ visual Aa.-cif
eemput-er—aRel-fa.anual- methods for plant layout" , -,sulg+ca-ttP-cl-f-e-r-

pubi-ieat-44944444. Man. Sci. 22. 	/ 72- /ff/.

64. Simmons, D.M. (1969) "One-dimensional space allocation: an

ordering algorithm" , O.R. 17, 812-826.

65. Steinberg, L. (1961) "The backboard wiring problem: a placement

algorithm" , SIAM Rev. 3, 37-50.

-220-

66. Stoer, J. and Witzgall, C. (1970) "Convexity and optimisation in

finite dimensions I" , Berlin, Springer-Verlag.

67. Taha, H.A. (1973) "Concave minimisation over a convex polyhedron" ,

NRLQ 20, 533-548.

68. Vollmann, T.E., Nugent, C.E. and Zartler, R.L. (1968) "A

computerised model for office layout" , J. Ind. Eng. 19, 321-336.

69. Wesolowsky, G.O. (1972) "Rectangular distance location under the

minimax optimality criterion", Transp. Sci. 6, 142-155.

70. Yaspan, A. (1966) "On finding a maximal assignment", O.R. 14,

646-651.

