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ABSTRACT 

A theoretical study of time-dependent free convective 

heat transfer from a solid sphere to an incompressible 

Newtonian fluid has been carried out for Grashof numbers 

between 0.05 and 12500 and for Prandtl numbers of 0.72, 

10, and 100. 

The time-dependent Navier-Stokes equation for 

axisymmetric flows was expressed in terms of a time-

dependent vorticity transport equation and a stream 

function equation. These equations together with the 

time-dependent energy equation were transformed from 

polar space to rectangular space. These three equations 

were then solved simultaneously. 

For purposes of computation, the equations which 

were elliptic second-order partial differential equations 

with respect to space variables and parabolic with respect 

to time, were replaced by appropriate finite-difference 

approximations in which an upwind differencing scheme was 

applied to the convective terms of the transport equations. 

The time-dependent energy equation and the time-dependent 

vorticity transport equation were solved using Peaceman 

and Rachford's alternating direction implicit method and 

the stream function equation was solved using point iterative 

successive over-relaxation. 

A computer programme was developed to solve the finite- 
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difference equations for a wide range of Grashof and Prandtl 

numbers. The solutions, which were obtained in the form of 

distributions of temperature, vorticity and stream function, 

were used to calculate the local and average Nusselt numbers, 

the surface pressure and the drag coefficients. 

Numerical solutions were obtained for Grashof numbers 

of 0.05, 1, 10, 25, 50 and 125 for a Prandtl number of 0.72. 

Solutions were also obtained for Grashof numbers of 1250 and 

12500 for a Prandtl number of 10; and for a Grashof number 

of 50 and a Prandtl number of 100. 

From the late-time steady state solutions it was observed 

that even at extremely low Grashof numbers, weak convection 

processes were present in the region close to the outer 

boundary. However, it was found that even at moderate Grashof 

numbers the dominant mode of vorticity transport close to the 

surface of sphere was by diffusion. For all the solutions 

obtained it was observed that during the early stages of 

simulation the dominant mode of vorticity transport was by 

diffusion and that heat transfer took place largely by 

unsteady state conduction. The drag coefficients reached 

their late-time steady state values in a shorter time than 

the other quantities and the local Nusselt numbers took the 

longest time to reach their late-time steady state values. 

The late-time steady state values obtained for the average 

Nusselt number were found to be in reasonable agreement with 

the experimental measurements obtained by previous workers. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE SURVEY 
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1,1 INTRODUCTION 

The process of heat transfer by free convection is 

encountered frequently in industrial applications such as 

steam boilers, digesters, furnaces, as well as being a 

mode of transfer by which heat losses from pipes, boilers, 

etc. takes place. In general, free convective heat transfer 

becomes an important mode of heat transer in any situation 

in which a hot body is immersed in an otherwise stationary 

medium or in any moving medium in which changes of density 

induced by temperature gradients will disturb appreciably 

the fluid motion. 

Because of its considerable importance in many engineering 

applications the fundamentals of mass or heat transfer from 

solid particles, drops, or bubbles to a continuous fluid 

phase have long attracted the attention of investigators. 

The study of mass and heat transfer from a single sphere 

together with the associated fluid dynamics has been used 

as a first step in the analysis of multiparticle systems. 

For many engineering design problems, experimental 

correlations are available for the prediction of average 

heat or mass transfer rates. However, the optimum design 

of chemical process equipment requires an understanding of 

the basic mechanisms of heat, mass, and momentum transfer 

which these correlations do not provide. Such detailed 

knowledge could be provided in part by extensive experimen-

tation but in many cases it could only be obtained or 
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supplemented from a study of the solutions of the equations 

which describe heat, mass, and momentum transfer. Such 

solutions would not only provide fundamental insight into 

transport processes but also increase our ability to analyse 

and solve complex engineering problem. 

The theoretical problem of free convective heat transfer 

from the surface of a body can be expressed using the equations 

which describe the conservation of momentum, mass, and energy. 

These equations form a complex set of interdependent partial 

differential equations which are very difficult to solve. 

Because of the complexity of these equations it has nearly 

always been necessary to simplify them by the introduction 

of simplifying assumptions. 

When the changes in the density of the fluid which arise 

because of temperature variations are very small, the equations 

of motion and continuity can be solved independently of the 

energy equation and the solutions used in order to solve the 

energy equation. This is the usual situation which arises 

under conditions of forced convection. However, free convection 

differs from forced convection in that the buoyancy term which 

appears in the equation of motion, gives rise to, or disturbs, 

fluid motion. In this case, the energy equation has to be 

solved simultaneously with the momentum and continuity equations. 

The set of interdependent partial differential equations 

which describes free convective heat transfer is non-linear and 

it is not possible to find exact analytical solutions even 

when the fluid is Newtonian. Hence, solutions must be 
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obtained numerically. 

Methods of solving non-linear partial differential 

equations, in contrast to those for linear equations, are 

not highly developed. 

In fluid dynamics and heat transfer problems the 

dependent variables are generally functions of three space 

variables and a time variable. If it is supposed that at 

large times a steady state is reached such that the dependent 

variables no longer depend on time and that this steady state 

is of primary interest, then there are two alternative methods 

of attacking the problem; the steady state equations can be 

solved directly or the unsteady state equations can be solved 

as a function of time and the solutions obtained up to and 

including sufficiently, large time values of the time variable. 

In the steady state method the dependent variables are depen-

dent only upon the space variables. In the time-dependent 

method, the equations are written as an initial value problem 

in which the dependent variables are calculated as functions 

of space and time. 

Roache (1972) has summarised the comparison between the 

iterative steady state and time-dependent methods as fallows: 

Some steady state methods, with under - and over - 

relaxation adjustments being equivalent to time-step changes. 

Most steady state iterative methods are at least analogous to 

time-dependent methods. In any case, the analogy illustrates 

that steady state iterative methods can not be presumed to be 
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stable, and should be analysed for stability through the 

von-Neumann analysis". Roache also pointed out that "the 

explicit time-dependent methods; 	, are less suceptible 

to non-linear instabilities and are thereby less sensitive to 

initial conditions. The time-dependent formulation offers 

the flexibility of obtaining the transient solution if it 

should be desired; more important, it does not presume the 

existence of a steady state solution, which indeed may not 

exist. There is a philosophical and even aesthetic attraction 

in modelling the actual physical process which is, after all, 

fundamentally time-dependent". Proof of the existence of 

solutions is somewhat less of a problem if an unsteady state 

method is used: this method has proved to be generally 

successful for viscous flow problem. Since there is some 

confidence in the validity of the time-dependent equations 

of motion and energy, one is inclined to believe that a 

numerical solution which proceeds from a physically reasonable 

initial condition also has validity. 

In view of the difficulties involved in solving non-

linear partial differential equations together with reasons 

given above, the unsteady method was used throughout this 

work. 

The numerical solution of the equations which describe 

time-dependent free convective heat transfer from a sphere is 

one of the most challenging problems in numerical analysis. 

.However, the availability of high capacity computers invites 
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further consideration of the problem so that the present 

study is timely. 

The particular problem which is studied in this thesis 

was initiated in order to make a theoretical investigation 

of time-dependent free convective heat transfer from a solid 

sphere to a Newtonian fluid. 

The equation of motion for an incompressible Newtonian 

fluid is the well known Navier-Stokes equation. Since the 

flow around a solid sphere is axisymmetric the problem is two-

dimensional so that the Navier-Stokes equation can be combined 

with the continuity equation and expressed in the form of a 

stream function equation and a time-dependent vorticity 

transport equation. The stream function, vorticity transport, 

and energy equations are solved simultaneously. As is shown 

later in this thesis, the energy equation is of the same 

classification as the vorticity transport equation so that 

both equations can be solved using the same method. 

The method of solution is numerical; a set of finite-

difference equations are obtained by the expansion of the 

terms in the original partial differential equations using 

Taylor's series. Each finite-difference equation relates 

the values of the dependent variables, such as vorticity, 

stream function, and temperature to the values of the same 

variables at the neighbouring mesh points. The vorticity 

transport and energy equations are solved using Peaceman and 

Rachford's alternating direction implicit, (ADI), method 
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(1955). Although, the method chosen complicates the updating 

of the vorticity and temperatuie fields with respect to time, 

it has good numerical stability and is known to be accurate 

and economical in computational time in comparison with other 

explicit or iterative implicit methods. The sets of simul-

taneous algebraic equations obtained by application of the 

method are solved using Thomas's elimination method as presented 

by Lapidus (1962). The stream function equation is solved 

using point iterative successive over relaxation, (SOR). 

It is difficult to estimate the accuracy of the solution 

procedure because of the complexity of the equations. At 

present a complete error analysis of the solution is not 

possible. However, the forms of the errors introduced are 

known and a qualitative estimate of the accuracy of the solutions 

can be obtained by comparing the late-time steady state results 

with the experimental and theoretical steady state results 

obtained by previous workers. The late-time steady state 

average Nusselt numbers were found to be in reasonable agreement 

with the experimental results obtained by Mathers et al (1957) 

and yuge (1960). 

A computer programme is developed in this thesis in order 

to solve the finite - difference equations. The distributions 

of temperature, stream function and vorticity which are obtained 

are used to calculate the local and average Nusselt numbers, 

the pressure distribution on the surface of sphere, and the 

viscous, pressure, and total drag coefficients. The computer 
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programme is used to obtain the time-dependent free convective 

heat transfer rate from a solid sphere for Grashof numbers 

(based on the radius of the sphere) between 0.05 and 12500 

and for Prandtl numbers of 0.72, 10, and 100. These solutions 

were obtained using a CDC7600 digital computer. 

1.2 NUMERICAL SIMULATION OF FLUID DYNAMICS 

Lamb (1932) has expressed the view that theoretical fluid 

dynamics began with the theory of potential flow of an ideal 

incompressible fluid. Development of this theory extended; 

over a long period of time during which a large class of flows 

was successfully analysed. However, according to the Euler -

d'Alembert paradox (Birkhoff 1968), the total drag force 

exerted on a solid object placed in a potential flow is zero. 

Theoretical analyses of viscous flows were first developed 

by Navier (1822) and by Stokes (1845). One of the results of 

their work was the development of the equation which expresses 

the conservation of momentum for a viscous flow. This equation, 

which is known as the Navier-Stokes equation, shows the importance 

of the viscous terms and why the potential flow theory is 

unable to predict drag forces correctly. However, for a long 

time after its development, because of its non-linear character 

the Navier-Stokes equation was unsolvable except for a few 

simplified cases. 

Stokes (1851) succeeded in solving the Navier-Stokes 

equation for the case of very slow motion, 'creeping flow', 
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past a sphere. He obtained his solution by neglecting the 

inertial or non-linear terms. 

Prandtl (1904) showed how flows of high Reynolds numbers 

could be analysed. He hypothesized that the flow about a 

solid body at high Reynolds numbers could be divided into 

two regions: a very thin region, or boundary layer, near the 

solid body in which the viscous effects are important, and a 

region outside this boundary layer in which the effects of 

viscosity are unimportant and potential flow theory applies. 

With the aid of this hypothesis, Prandtl succeeded in reducing 

the Navier-Stokes equation to a more easily solvable form. 

The resulting equation is known as the boundary layer equation. 

At high Reynolds, Grashof, and Prandtl numbers, the 

simplifying assumptions of boundary layer theory have been 

used successfully to obtain solutions of both the Navier-Stokes 

equation and the energy equation. Excellent discussions of the 

theory and its applications are given by Schlichting (1968). 

The very nature of the boundary layer equations limits 

their applicability to flows with a predominant direction so 

that they cannot be used to predict the flow pattern within 

the recirculatory wake behind a bluff body. Also, flows at 

intermediate Reynolds or Grashof numbers cannot be analysed 

by use of boundary layer theory because the effects of 

viscosity are not confined to a thin region close to the 

body. Further, at intermediate Reynolds and Grashof numbers 

the Navier-Stokes equation cannot be linearised by neglect 
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of the inertial terms. 

It follows from the above, that for intermediate Reynolds 

or Grashof numbers, the Navier-Stokes equation cannot be 

simplified. Thus analytical solutions cannot be obtained 

and solutions must be obtained by numerical means. 

In 1910, Richardson presented a paper to the Royal Society 

which may be considered to be the cornerstone of modern 

numerical analysis of partial differential equations. He 

devised an iterative method of obtaining solutions of Laplace's 

equation and of the biharmonic equation. He obtained error 

estimates and gave an accurate method of extrapolating solutions 

towards zero mesh size. In Richardson's iterative method for 

solving elliptic equations, each poInt in the mesh is made in 

turn to satisfy the finite - difference equation involving 

'old' values at neighbouring points obtained from the previous 

iteration. 

In 1918, Liebmann showed how the convergence rate could 

be improved greatly merely by using 'new' values as soon as 

they become available. An early rigorous mathematical treatment 

of convergence and error bounds for iterative solutions of 

elliptic equations by Liebmann's method was given by Phillips 

and Wiener in 1923. 

It can be said that the first numerical solution of the 

partial differential equations for a viscous fluid dynamics 

problem was given by Thom in 1928. Thom solved the time-

independent Navier-Stokes equation numerically for viscous 
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fluid flow past a cylinder at a Reynolds number of 10. 

The first of the implicit methods, which for multidimen-

sional problems require iterative solutions at each time step, 

was the Crank-Nicolson method published in 1947. In 1953, 

Dufort and Frankel presented their 'leapfrog' method for 

solving parabolic equations. Their method allows for arbitrarily 

large time steps (in the absence of convective terms) and has 

the advantage of being fully explicit. 

In the mid-fifties, Peaceman and Rachford (1955) and 

Douglas and Rachford (1956) presented efficient implicit 

methods allowing arbitrarily large time steps for solving 

parabolic equations. These methods which are known as 

'alternating direction implicit', (ADI), methods, have also 

been applied to elliptic equations. Alternating direction 

implicit methods are probably the most popular methods used 

for solving incompressible flow problems expressed in terms 

of the vorticity transport equation. 

The development of digital computers has motivated further 

development of numerical simulation of fluid dynamics. Progress 

has been remarkable, both in the development of numerical 

techniques and in the range and variety of the different types 

of problems analysed. Notwithstanding this rapid development, 

no general numerical method for solving the Navier-Stokes 

equation has so far emerged. This can be attributed partly 

to a lack of the methods of effective error analysis of the 

solutions. Error analysis could form a basis for the 
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classification of methods (Rafique 1971). 

The following section surveys existing solution for free 

convective heat transfer from a solid sphere. 

1.3 LITERATURE SURVEY: 

FREE CONVECTIVE HEAT TRANSFER FROM A SOLID SPHERE 

Considerable previous effort has been given to the study 

of free convective heat and mass transfer. These studies 

have been analytical as well as experimental. 

Most of the studies of free convective heat transfer 

have investigated heat transfer from flat plates and cylinders; 

relatively little work has been undertaken on transfer from 

sphere and particles. 

As far as this author is aware, no numerical or analytical 

studies of time-dependent or time-independent free convective 

heat transfer from a solid sphere at moderate and low 

Grashof numbers has been carried out other than described in 

this thesis. The results of a few experimental studies are, 

however, available in which the average heat transfer coefficients 

were determined but the flow patterns and the temperature 

distributions about the body were not measured. 

1.3.1 Theoretical and Experimental Studies at Low and 

Moderate Grashof Numbers 

Mahony (1956) made a theoretical study of time-independent 
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free convective heat transfer for small Grashof numbers 

from spheres and thin wires by perturbing the steady state 

conduction solution. He did not determine the flow field. 

However, by considering the magnitudes of the various terms 

in the Navier-Stokes and energy equations, he was able to 

deduce for small Grashof numbers that convection is negligible 

in comparison with conduction near the body, but that it 

becomes as important as conduction at large distances from 

the body. He then concluded that for small distances from 

the body, i.e. for distances that are small in comparison 

with the dimensions of the body, the use of the conduction 

equation yields correct heat transfer rates. However, for 

large distances from the body, the heat transfer rate must 

be calculated from the solutions of the complete equations. 

Farzetdinov (1958) proved that the solutions of the 

steady state equations for free convective heat transfer 

are unique. He obtained this result for small Grashof 

numbers by perturbing the steady state conduction solution. 

Hossain (1966) used a perturbation analysis to study 

steady state laminar free convection flow and heat transfer 

around an isothermal sphere for Grashof numbers in the range 

between zero and unity and for Prandtl numbers of about 

unity. Solutions of the governing equations were expressed 

in series form with the Grashof number itself taken as the 

perturbation parameter. The expressions were as follows: 
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stream function: 

rGr 
* 	* 	- 4 
	* 	

r 
2 	

3 
(2+cose) 	(2+cose) 4 

Gr 
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(1.3.1) 

temperature: 

rGr 	 3 
* * 	4 	 4

G (2+cose) 	r r (2+cose) 
T =To (r,e)e 	+GrT1  (r ,e)e 	+ 

(1.3.2) 

where, 	and T are the dimensionless stream function and 

temperature; Gr is the Groshof number based on the radius 

of the sphere, and r and e are the dimensionless spherical 

polar coordinates. He obtained the following relationship 

between the average Nusselt number, Nu, the Grashof number, 

Gr, and the Prandtl number Pr; 

Gr i Gr2(0.139-0.45LOPr41.1902P5:2) 
	

(1.3.3) 

where the first term represents the Nusselt number which 

arises from the contribution made by pure conduction in the 

absence of convective effects. 

Hossain found that the thickness of disturbed region 

was very large for Grashof numbers slightly greater than zero 

but that it decreased with increasing Grashof number. He 

. stated that the perturbation approach to free convection 

problems is only applicable when the value of the Grashof 

number is less than unity. At higher Grashof numbers he 

found that the expressions he had used for the stream function 

and temperature were highly singular at regions far away from 

the surface of the body. 
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Pendell (1968) used a perturbation analysis to study steady 

state free convection about a small heated isothermal sphere. 

He found that in an unbounded medium, an ordinary perturba-

tion expansion in the Grashof number leads to unbounded 

velocities far from the sphere. However, he predicted that 

recirculating flow will occur within the region contained 

between a heated inner sphere and a concentric cold outer 

sphere when the ratio of the radius of the outer sphere to 

that of the inner sphere is less than the Grashof number, 

based upon the diameter of the heated sphere, raised to 

the minus one-half power. The fluid adjacent to the heated 

sphere rises while that adjacent to the outer sphere falls. 

Under these circumstances the problem of the existence of 

singularities in the velocity and temperature profiles does 

not exist. By using inner - and - outer matched asymptotic 

series expansions he was able to show that although diffusive 

transport is dominant near the heated sphere, convective 

transport is dominant away from the sphere. Fendel did not 

make any calculations of the flow field. 

Numerous experimental studies of free convection at 

very low and moderate Grashof numbers have been carried out; 

principally for flat plates and horizontal cylinders. 

However, only average values of the Nusselt number have 

been presented. Jakob (1949), McAdams (1954), and 

Gebhart (1961) reviewed correlations of the experimental 

data. 
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Meyer (1937) carried out a few experiments with a 

silver sphere in air at atmospheric pressure for Grashof 

numbers between 100 and 1000. For low Grashof number, he 

examined other experimental results for a cylinder and a 

sphere and concluded that the average Nusselt number as a 

function of the Grashof number for a sphere was approximately 

the same as that for a cylinder if the sphere radius was 

substituted for the cylinder diameter as the characteristic 

dimension. 

Elenbaas (1942) made experimental studies with both a 

cylinder and a sphere in air at atmospheric pressure. He 

found that for a sphere, for small, moderate, and large 

values of the Grashof number, the following relation applies: 

Grd  --3 	2 )6 Nu (1- __ 
500 Nu 

(1.3.4) 

where Grd is the Grashof number based 'on the diameter of 

the sphere. 

Ranz and Marshall (1952) carried out experiments on 

evaporating drops at Grashof numbers as low as 1 and presented 

the following formula: 

Nu = 2 + 0.60 Gr1/4 r1/3 
	

(1.3.5) 

In addition to their analytical expression for heat and 

mass transfer from vertical plates, Mathers, Madden, and 

Piret (1957), presented empirical equations for spheres. 
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Data for Rayleigh numbers less than 100 were fitted by the 

following equation: 

Nu = 2 + 0.282 (Rad)°.37 	(1.3.6) 

For Rayleigh number in the range 102<Rad  <106  their 

correlation was: 

Nu = 2 + 0.5 (Rad) 
	

(1.3.7) 

Tsubouchi and Sato (1960) used thermister particles of 

approximately ellipsoidal shape in order to study free 

convection in air. They obtained the following correlation 

for shperes for Prandtl numbers, Pr, around unity and 

-3 
27 

Grd 10 < 	< 1.5: 

Nu = 2 + 0.59 (Gra  Pr) 3/4 	 (1.3.8) 

Yuge (1960), suggested the following empirical formula 

for free convective heat transfer from a sphere in air for 

Grashof numbers, Grd, between 1 and 100,000. The Prandtl 

number is incorporated in the coefficient: 

Nu = 2 + 0.392 Gr1/4 
	

(1.3.9) 

Hossain (1966) made experimental studies with an 

isothermal sphere of 1/4 inch diameter. He carried out the 

experiments by means of a Mach-Zehnder interferometer of 5 

inch field. He found the following empirical formula for 

Grashof numbers between 0.02 and 2.54 and Prandtl numbers 
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between 125 and 1000. 

Nu = 2 + 1.16 Gr 1/4 prI/3 
	

(1.3.10) 

1.3.2 Theoretical and Experimental Studies at Large  

Grashof Numbers  

The subject of free convection heat and mass transfer 

has drawn the attention of many authors in the past. Almost 

all of the theoretical studies are based on the assumption 

of the existence of a boundary layer. From the point of 

view of mathematics, these solutions represent the asymtotic 

solutions as the parameter Grashof number approaches infinity. 

Although boundary layer theory is only applicable at 

reasonably large Grashof numbers, large Grashof numbers are 

a limiting case of intermediate Grashof numbers and the 

solutions obtained for intermediate Grashof numbers may 

be expected to approach the boundary layer solution as the 

Grashof number is increased. For this reason boundary 

layer solutions and experimental results obtained for large 

Grashof numbers will be briefly reviewed. 

Yamagata (1943) suggested the following relation from 

his empirical study of free convective heat transfer from 

sphere in air for Grashof numbers between 105 and 108. The 

Prandtl number is incorporated in the coefficient, 

Nu = 0.421 Gr1/4 
	

(1.3.11) 

In a series of three theoretical papers, Merk and 
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Prins (1953-54) discussed and extended approximate solutions 

of the partial differential equations describing thermal 

convection in a laminar boundary layer. Extended solutions 

were obtained for the cases of a sphere and a horizontal 

cylinder. For Prandtl numbers, Pr, much greater than 1, 

Merk and Prins derived the following relation for free 

convective heat transfer from a sphere. 

Nu = 0.558 (Grd  Pr)4 	 (1.3.12) 

Garner and Hoffman (1961) measured local rates of mass 

transfer from solid spheres of various organic acids by a 

photographic technique. Schutz (1963) gave some measurements 

of local rates of mass transfer from spheres and horizontal 

cylinders. He found that for a sphere: 

. Sh 	2 4- n.59
d 	

4 
 (1.3.13) 

where Sc and Sh are the Schmidt number, and average Scherwood 

number, respectively. 

Chiang, Ossin and Tien (1964) obtained a solution of 

the problem of external free convection heat transfer from 

a sphere with various prescribed thermal conditions on the 

surface. They obtained exact solutions of the boundary 

layer equations for the cases of uniform surface temperature 

and of uniform surface heat flux for a Prandtl number of 

0.70. For the case of uniform surface temperature they 

expressed the local Nusselt number as: 

Nu = (0.4576 - 0.03402 E2) Grd 
	

(1.3.14) 
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where E represents the dimensionless coordinate along the 

body surface. 

Sandoval (1965) made accurate measurements of overall 

rates of mass transfer from benzoic acid spheroids of five 

different eccentricities dissolving into water. His results 

seemed to be independent of shape, being correlated by: 

Sh = 0.121 (Grd  Sc)1/4 
	

(1.3.15) 

Pandya (1967) made a theoretical investigation of the 

effect of shape, Schmidt (or Prandtl) number, and composition 

of system, on laminar free convective mass and heat transfer. 

He considered spheriods, elliptic cylinders of oblate cross-

section, and various axisymmetric similarity flow bodies. 

Pandya obtained both exact and approximate solutions 

of the laminar boundary layer equations in the range 

0.74 Pr 42000 for heat transfer and 0.74 Sc 42000 for mass 

transfer and found very good agreement between the two types 

of solution. 

Yang and Jerger (1964) attempted to extend the applica-

bility of boundary layer theory to lower Grashof numbers. 

They made a perturbation analysis for laminar free convection 

along a vertical plate using the classical boundary layer 

solution as the zeroth-order approximation. However, the 

first-order approximation showed that their problem remained 

within the framework of boundary layer theory and, as a result, 

their method could not be used to extend boundary layer theory 
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to lower Grashof numbers. 

It is seen that there are many associated probimes 

and gaps to be filled when attempting general treatments 

of free convection. The present project has studied 

transient free convective heat transfer from a solid 

sphere for Grashof numbers, Gr, in the range between 

0.05 and 12500 and Prandtl numbers of 0.72, 10 and 100. 
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CHAPTER 2 

THEORETICAL ANALYSIS 
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2.1 THE EQUATIONS OF CHANGE 

The basic differential equations used here are the 

'equations of change' namely the equation of continuity, 

the equation of motion (Navier-Stokes) and the energy 

equation. These equations express the basic laws of con-

servation of mass, momentum, and energy applied to a small 

control volume within a flowing fluid. These conservation 

equations are called the 'equations of change', inasmuch as 

they describe the change of mass, momentum, and temperature 

with respect to time and position in the system. The deriv-

ations of these equations may be found in various standard 

tests such as Schlichting (1968), Batchelor (1970), Aris 

(1962), Bird, Stewart and Lightfoot (1960), and Howarth (1956). 

It is convenient at this stage, however, to list the 

main assumptions which are usually made in these derivations: 

1. Fluid properties are continuous functions of space 

and time. 

2. The fluid is Newtonian. 

3. The fluid is isotropic. 

With these assumptions, the governing equations .of the 

transport process of heat may be expressed as follows. 

1. The equation of continuity. 

The equation of continuity is based on the physical 

principle of conservation of total mass, and expresses a 

balance between the rates at which mass enters and leaves a 

Ir  
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control volume and the rate at which mass is accumulated, 

through changes in density, within the control volume. 

The equation of continuity in vector notation may be expressed 

as: 

12_p 
= -P( VAT) Dt 

where: 	U 	is the velocity vector 

t 	is time 

p 	is density 

is the substantial derivative 
Dt 

(2.1.1) 

and is defined as: D 	a + (LV) 
Dt = at  

2. The equation of motion. 

The equation of motion is derived from Newton's 

Second Law of motion and may be expressed as: 

nit 	 9 
p 1-57= F- V P +p.V2  U + =-iu V (V .U) - 5 V1a(V .U)  

+ 2(vu.V)U + Vu, x (Vx17) 	(2.1.2) 

where: 	is the body force vector 

p 	is the pressure 

is the viscosity 

Equation (2.1.2) is the general form of the Navier-

Stokes equation. The terms of equation (2.1.2) represents 

forces acting on an element of fluid per unit volume. The 

term p DU , represents the inertial forces per unit volume. 
Dt 

On the right hand side of equation (2.1.2), the first term, 

tc. expresses the body force per unit volume, the second term, 
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VP represents the pressure force per unit volume, and 

the remaining five terms represent the viscous forces per 

unit volume in which the variations of viscosity are 

included. 

The energy equation 

The energy equation/based on the laws of thermo-

dynamics, is as follows: 

DE = V.4 - P ( V.T.f) + OD 	 (2.1.3) 

The terms of equation (2.1.3) represent rates of energy 

gained by an element of fluid per unit volume. In equation 

(2.1.3), the variable E, represents the specific internal 

energy, so that the term p DD Et, expresses the rate of gain of 

internal energy per unit volume. On the right hand side of 

equation (2.1.3), the term v,4 , represents the rate of 

input of energy by conduction per unit volume, the second 

term, P(V.U) , represents the reversible rate of internal 

energy increase per unit volume by compression, and the 

last term, OD  , represents the irreversible rate of internal 

energy increase per unit volume arising from viscous dissip-

ation. The specific internal energy, E, can be defined in 

terms of the state variables; the volume,V ; the pressure P; 

and the temperature, T, as follows: 

ialltak( 

dE = C dT - T avP dP - PdV aT  (2.1.4) 

where C is the specific heat at constant pressure. 

1 It follows from the substitution of V by — and the use 
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of continuity equation, equation (2.1.1), that equation 

(2.1.4) can be rewritten as follows: 

D 	DT T (z) DP 
P
E
D  = PC 	+ -(—) — - P -Tf) t 	P Dt p 	P Dt 

Fourier's law of heat conduction can be expressed as: 

q = -kT PT 
	

(2.1.6) 

where kT is the thermal conductivity. 

By application of equations (2.1.5) and (2.1.6), equation 

(2.1.3) can now be written as follows: 

DT 	T mp DP pCP 5f = v.(kTpa') - 
	() 5E + D (2.1.7) 

In general, the properties of the fluid depend on 

temperature, T, and pressure P. The density of the fluid 

can be related to temperature and pressure by an equation 

of state, which may be expressed as (Batchelor 1970): 

f(p,P,91) - n 	 (2.1.8) 

The molecular transport coefficients 11, viscosity, 

and kT, thermal conductivity, are functions of the local 

state of the fluid. With density, p, and temperature,T, as 

convenient choices of the two parameters of state, one may 

write: 

1117-- 11(P/1) 
	

(2.1.9) 

kT  kT  (p T) 
	

(2.1.10) 

Equations (2.1.1), (2.1.2) and (2.1.7) to (2.1.10) 

together with the initial and boundary conditions are so 

complicated that they are seldom used in their complete 

form to solve flow problems. In order to make progress with 

(2.1.5) 
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the solution of a particular problem, it is generally 

necessary to introduce simplifying assumptions such that 

the equations become easier to solve while continuing to 

describe adequately the particular physical situation. 

The case to be analysed here, is that of free convective 

heat transfer from a solid sphere to a Newtonian fluid. The 

system is assumed to possess the following characteristics. 

(i) The only body force operating is that of gravity. 

(ii) It is assumed that temperature variations are not 

large, so that Boussinesq's approximation can be applied 

thus enabling the density to be treated as a constant in 

all terms of the transport equations except the buoyancy 

term. For the same reason, other fluid properties such as 

the viscosity, specific heat, and thermal conductivity 

may also be considered as constants. 

(iii) The surface temperature of the solid sphere is 

uniform and unchanging with time. In practice, such 

behaviour can be approximated during a substantial portion 

of the transient period provided the sphere has sufficiently 

high heat capacity and conductance. 

(iv) It is assumed that the heat generated by viscous 

dissipation is negligible. This is justified when the ratio 

of Brinkman number to the Peclet number is small and the 

fluid viscosity is low. 

With the above simplifications, equations (2.1.1) and 

(2.1.2) and (2.1.7) reduce to: 
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= 0 
	

(continuity equation) 	(2.1.11) 

nco 
D  
Dt +11,„\72U + F (Navier-Stokes equation) 

-
U 

-VP  
(2.1.12) 

DT P CP.Dt = k v 2T 	(energy equation) 	(2.1.13) 

where the subscript co denotes the value of the variable 

distant from the body. 

Appropriate boundary and initial conditions are needed 

for equations (2.1.11) to (2.1.13). For free convective 

heat transfer from a solid body immersed in a Newtonian 

fluid the boundary and initial conditions can be obtained 

from the following considerations: 

Boundary conditions: 

(i) There is no slip of the fluid at the surface 

of solid body. 

(ii) The temperature is assumed to be constant and 

uniform at all points on the surface of the body. 

(iii) As the distance from the body increases the 

dependent variables become asymptotic to their values in 

the undisturbed stagnant fluid. 

Initial conditions: 

Two different sets of initial conditions could be used 

in connection with the problem of the unsteady transfer of 

heat from a solid body to a stagnant fluid. These two dif-

ferent initial conditions are: 

(i) Initially, the fluid is at rest everywhere and 
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temperature distribution is taken to be that of steady state 

conduction between the body and the surrounding fluid. 

(ii) Initially, the fluid is at rest everywhere and 

temperature everywhere in the domain is set to a constant 

value, T0, except on the solid surface where the temperature 

is set to Ts.  

In the present work, however, because of the mathemat-

ical difficulties which are associated with the second 

initial condition, the first initial condition is used 

exclusively. 

2.2 THE EQUATIONS OF CHANGE IN SPHERICAL COORDINATE SYSTEM 

The vector forms of the equations of change, that is, 

equation (2.1.11) for the continuity equation, equation 

(2.1.1')) for the m^m-ntum equation, and equation (2.1.13) 

for the energy equation, are applicable for any orthogonal 

coordinate system. The objective in this section is to 

expand these equations, in component form, in a general 

orthogonal curvilinear coordinate system. This is because 

depending on the shape of the body, a particular coordinate 

system may offer a great deal of simplifications of the 

equations of change when setting up flow problems. For 

example, in the case of axisymmetric flow around a sphere, 

the use of spherical polar coordinates, ( r,(9,0), facilitates 

the description of the velocity vector, TT, in terms of 

two components ur  and ue, rather than in terms of the three 
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components that would be required if rectangular coordinates 

were to be used. 

The first step in the expansion of the equations in 

component form for any particular orthogonal coordinate 

system is to express the vector operators in forms such 

that the transformation into orthogonal curvilinear coor-

dinates is immediate (see appendix A). 

From the vector relationships given in appendix A with 

the replacement of vectors A and B by the velocity vector U 

and replacement of the scalaryby the temperature, T, the 

following relationships are obtained: 

(ti.v) U = kv (U.'15) 	x (vxU) 
	

(2.2.1) 

v2 U = V(V.U) - V x ( vxU) 	 (2.2.2) 

(ti• 	= tJ.vT 	 (2.2.3) 

HoweverA V.0 = 0 from the continuity equation, equation 

(2.1.13), so that equation (2.2.2) becomes: 

v2 U = - V x (VxU) 	 (2.2.4) 

By substitution of the relationships (2.2.1), (2.2.3), 

and (2.2.4) into equations (2.1.11) to (2.1.13), the follow-

ing equations are obtained: 

The continuity equation: 

V.0 = 0 	 (2.2.5) 

The Navier-Stokes equation: 

P00 at 	2 P--c-°  V (U .17)- poo tT x (vxU) = -VP - tcvx (vxU) + P (2.2.6) 
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The energy equation: 

p. Cp.(111  + U. VT) = kT4y2T 	(2.2.7) 

By application of equations (A.2.1) to (A.2.5) of 

appendix A, equations (2.2.5) to (2.2.7) can be rewritten 

in terms of the orthogonal curvilinear coordinates X1, X2, 2' 
and X3  and the corresponding scale factors hi, h2, and h3. 

The coordinate system chosen is illustrated in figure A.3.1 

of appendix A. 

In orthogonal curvilinear coordinates the continuity 

equation, equation (2.2.5), becomes: 

1 	a 	 a 	a 
hh2 	1 h3 

[ 
aX (h2h3u1) + ° 7R— (hih3u2) + TR- ( 11112u3)1= 0 (2.2.8) 

1 	2 	3 

The Navier-Stokes equation, equation (2.2.6) becomes: 

X1 - component: 

au 0.  

	

a 	
1 	U (U
2 	

2
2 	

U2
3
) 

Poo  atl 4-  2 	a x  1 

h1h2h3 	
h3u,p, (h2u2) - 	(11,111d 

2 

+ h2u3[axa  (h3u3) 	ax  (hlui)] 3 

a 

_  
ax 
  ac  [h11,31 	 [3(  (h2u2 ) ac  1 DP 

h 	
_11 

i 	1 	2 3 	2 	1 2 	1 	2 

+ ax 	
h2 	a 	( h3u3  ) 

ax 3 h1h3 1 ac3 
(h11]] + F1  

   

(2.2.9) 



(h3u3 ) 	
X3 (h2u2

d} 

= 1 ap 
h2  ax2 3)(3 [h2h3 3X2 (h 3u 3) 3 X3 

(h2u2) 
h [ 1  

a (h1u1) - 3X (h2u2 ) 
1 

+ F2 

(2.2.10) 

+ h u [—a 	(h u 
1 2 	ax3 	2 2 

a p 	 a 

9 	[ h1 	[ 	 a 

ti, ax 
2 

3 	3 
:x 3 h 	ax3 [3X, 	

[ 

.]ax2 h2h3 	9X3 
	

(h2u2) 	- 	
ax2 

1 (h1u1) u1" 	(h3u3] 

(h3u3 )  
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X2 - component: 

31.12 	p co  

	

°CO 	 2 	 (111 	a2 + 1123 )  2 

Pc°  
3 	 ] 

	

h 	h2h3 1113u1 [ 3)(2 (h1u1) - 	
1 (h2u2 ) 

X3 - component : 

Po, 	at3 
	P. 	

ax3 (1121 + 112 + 1123 )  

h
1
h2h3 

{h2u1[ 	BX3 
(hlu l ) 9X1 (h3u3 ) a 
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The energy equation, equation (2.2.7) becomes: 

, 3T + 	aT „ u2 	aT 	u3 aT 1  
" -̀lpòD 	' h1 3X ' IT —TR2 

+ 
	ax3' 1 	2 	3 

kT. 
 [

a h2h3 3T a h1h3 DT 
ax1 	h1 	axl) + 3X2 	h2 	3X2) 

 

h1h2 a ( 	aT 
) 3X3 h3 ax3 

(2.2.12) 

To simulate flow around a solid sphere, it is convenient 

to rewrite the above equations in spherical polar coordinates 

(see figure 2.2.1) for which: 

X1 = r 	X2 = e 	X3 = 0 

and 

h1  = 1 
	

h2  = r 	h3  = r sin 

The continuity equation: 

r ar (r2 ur) + 
1  

r sine ape  (ue  sin8 ) + 	
1 	a , 

r sine 517 010, = 0 

(2.2.13) 

The Navier-Stokes equation: 

r - component: 

	

311.r 	our 	our 	u13  + 
r 	 (1)  e  

Pe, at 	r Dr 	r 	as 	r sine DO r 

 Du8 	au 

Dr 	
2 

r2 	r2  

	

2 	2 	2 ag 	r2  uecote- r2sine DO 
2 	d 

+ Fr 

(2.2.14) 
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e— component: 

	

Du 	Du u Du 	Du 	u u 	u2 cote 8 + u 	6+ 8 0 + 	9 

	

r e 	 

	

Plat 	r ar 	r 'De r sine 	ao 

	

Bur 	au 1 3P 	2 	8 	2 cos 0 	0 = - 	+1)..v 2u8+ r2 	ae 	r2 sin28 	r2 sin2e ao + F
e 

  

(2.2.15) 

0 - component: 

auk 	 u 	0 o uOur u 

	

auk 	e Du o 	u au 	ou  0 --- u 	-- 	---- t 
CO at 	r Dr 	r 	ae 	r sine DO 

= —  1 	aP 
r sine a0 +4c° 

0 	2 	 our 2cos 8 Du 0 V u 2 	 + 0 r2sin2e r2sin 8 DO r2sin28 ;0 + F0 

(2.2.16) 

The energy equation: 

0 
00 
c 

P
[7 	IT 4. 112 2.. 

r De 
T 	 11)

aT 
m at 

u 
r ar 	 r sine ao 

1 
= k 	[1. 	(r2 	) + 	 a (sine

a

aT

e
)+ e

1 
sin 	2e i 92T Tm r ar 	Dr 	r2 sine ae 

(2.2.17) 

where, 

= 1 	2 2 	— 	(r 	1 	a 	
aa 

(sine 
e
)+ r2slin28 (a !z r2 ar % 	Dr 	r2sin8 De 

(2.2.18) 
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FIGURE 2.2.1 SPHERICAL POLAR COORDINATE SYSTEM 

2.3 AXISYMMETRICAL FLOWS 

The general three-dimensional equations presented in 

the previous section, in which the three velocity compon-

ents depend on all three coordinates, are very difficult to 

solve even numerically. However, in the case of flows such 

as axisymmetric flow around a sphere, the equations can be 

further simplified and the mathematical difficulties encoun-

tered in obtaining solutions considerably reduced. 

The spherical polar coordaintes (r,8,0) of the sphere 

are arranged as shown in figure 2.2.1. As shown in the 

figure, the coordinate r is normal to the surface of the 



2 	2 	 a 110 	2 
— 2 11 —r 	r 2 	y U COte 	Pgr r 	a8 r 8 

Pec, 
(2.3.4) 
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body,e is parallel to the surface in the flow direction, 

and 0 is the direction of rotations about the axis of sym- 
c 

metry of the flow. For the particular case of streaming 

flow past a stationary sphere with no rotation, the flow 

around the vertical axis is axisymmetric, the component 

of velocity in the 0-direction is zero everywhere, and all 

variables are independent of 0, that is, 

u0 
 = 0 	 (2.3.1) 

at7 	aT 	ap 
=0 	= 0 	Te  = o (2.3.2) 

Expressing the body force as f = pg and using relat-

ions (2.3.1) and (2.3.2), equations (2.2.13) to (2.2.18) 

can be written as follows: 

Continuity equation: 

1 D  r2 
9r 

 t , 	1 	D — — r-2  ur) + r sin8 ae  (uesine) = 0 

Navier-Stokes equation: 

r - component: 

aur a 	2  9 r  ue our u 
u our 
r Dr 	r 	ao 	() 

= _ 111 4211r
war 

(2.3.3) 

— component: 

a 	ue  ue 9U0 9 	uru8 
ue 	

_ 1 1 aP 
-r 	 -7-  ---- 	 = 

at 	r ar 	r 	98 	r 	p r a0 

2 our 	 ue  
+ vo3
[

2 ue  + Tr a e  r2 sin28 

  

Pge  

Pm  
(2.3.5) 
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Energy equation: 

aTDT 4. u0 aT 	1 	a ( 	DTI  
at ' Ur ar 	r 98 =a 	

2 

. r2  ar 1r  ar' 

+ aT  
r sine D a (sine TO 	T;

) 
 (2.3.6) 

1 
where v 2  = 12-- (r2 	 r ar 	Dr 	r2  sineD8 (sine L), 

and v and a are the kinematic viscosity and thermal diff-

usivity of the fluid, respectively. 

The components of the gravitational acceleration in 

• the radial direction, gr, and angular direction, ge, can 

be evaluated from figure 2.2.1 as follows: 

gr = g cos 8 
	

(2.3.7) 

ge = -g sin 8 
	

(2.3.8) 

The pressure, P, can be written as the sum of two 

pressures: 

P = Ps + Pd 
	 (2.3.9) 

where: Ps 
is the static fluid pressure 

Pd 
is the pressure difference between the static 

pressure and the pressure when the fluid is in 

motion. 

The static fluid pressure can be derived from 

equation (2.3.4) as follows 

D P 	P g 1 	s 	r  0 	- 	+ 	or P = P +p g r cos8 	(2.3.10) 
pc. a r 	pc. 	s 	o 	co 
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where P
o is a constant. By substitution of equation 

(2.3.10) into equation (2.3.9) and differentiation with 

respect to r and es, the following relations may be obtained: 

aP _ 	Pd 4. 	g cose 	(2.3.11) 
D 

ar - 	pr ' Poo- 

(2.3.12) 

By combination of the body force terms, Fr  = pgr  and 

Fe 	pg , with equations (2.3.11) and (2.3.12), respect- 

ively, the following equations can be obtained: 

	

1 aP
' 
 gr 	1 ?.13d 	g costa 

Rce  3r 	000 	O. ar 	Pm 

1 	1 NP 	Pg8 	aPd g sine (p -p ,o) 	(2.3.14) - P., 	Pre-- + P-00 	P oo 	ae 

The density, p , which is a funtion of temperature T, 

may be expressed in terms of a Taylor's series expansion 

relative to the stagnant fluid conditions, pc,, T0, as: 

	

p = n 4- a--12 	
(m_m=) 4.  ep 	(T_T.)2 + 

-- 	aT 	DT' i 	2: 

	

T. 	 T03 

thus neglecting second and higher order terms: 

P P = al 
ap 	(T-T00) (2.3.15) 

T. 

The coefficient of volumetric expansion is defined by: 

and 
3P 	apd 
ae 	De 	Pco g r sine 

(P -Poo ) 	(2.3.13) 

, aP  
13= 	 Fit  ) 

co 
	 p 

(2.3.16) 

T. 

Hence, by substitution of equation (2.3.16) into equation 

(2.3.15) the following expression can be obtained: 

P - Pc.= -Pc. f3.(T-T.) 	 (2.3.17) 

By substitution of equation (2.3.17) into equations 

(2.3.13) and (2.3.14) the following equations can be 
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obtained: 

	

_ 1 DP Pgr 	_ 1 	DPd 
p. Dr 	p. 	p 	ar - gO. costs (T-T.) 

and 

ap Pge 1 apd + Om  sin° (T-T.) + 	= - 

	

per a® +  p 	per De 

(2.3.18) 

(2.3.19) 

By substitution of equations (2.3.18) and (2.3.19) 

into equations (2.3.4) and (2.3.5), respectively, the 

following equations for the radial direction, r, and the 

angular direction, 8 f  are obtained: 

r - component: 

1 u2 	ap
d 

r P 
=-- 

3r 

au 	our 	our  

at 
n  r Ile  

at * -r 9r ' r 	DO 

2  I 	
2 	2 au0 2 

4-\)=7 ur - r2  Ur-  r2  9 0 r2 u8  cotEd- gD case (T-T ) 

(2.3.20) 

8 - component: 

a 	Du u aU 	aP ue 	e  e 8  	1 urue  
at ' ur ar 	r 	a8 	p 	r 	ao 

• 00 

2 our 	 ue  I +4 	r2 	ao 	r2  sin2  8 72u + 	+ g13 0.  sine (T-T0.  ) (2.3.21) 

Now the pressure terms can be eliminated from equations 

(2.3.20) and (2.3.21) in the following way. Equation 

(2.3.20) is differentiated with respect toe , and equation 

(2.3.21) is multiplied by r and then differentiated with 

respect to r. After performing these operations the resul-

tant equations are subtracted from each other and the 
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following equation obtained: 

a 	
au
e 	

311r 	a 2u
r 	

a 2 ue 	23,u
e
i 

+ 
3t [e• -ar 	ae 	urLarae r are 	ar 

[D.2u 	2 aue 	aur 	1 3 2 u
r 	

9ur au8 • u   	+ r e 	r ae ar rape 	ar ar 

au6 0 	1 aue aur aur aur _ 
• ar ae_ r ae ae —ag ar 

a 3u01 ., 
[ 	

3 u a 	 ,2u 
e a 3ur 	1  a 3ur 	cote ° r 

=v o, r—rp-  , r a 	i. 82 	51256 r2  767 	r2 	a 82 

8 cote  a2u
e 	a 2 u 	a2ue 	1 	a ur 	cote a ue 

75-57  3ar2 	r 	a ra 8 	r2 sin2 e ae 	IT6 

1 	9 u0  	+ 	cos8 84 (T-T) 
r sine  a r 	r2  sin2  8 up l+ 

 gOw  r sine -h (T-T ) 
	 (2.3.22) 

It is convenient to define a quantity called the 

stream function. A stream functioneti) , in spherical polar 

coordinates is defined such that: 

1  ur = r2  sineD8 (2.3.23) 

and 
	 aLP u 6 r sine ar (2.3.24) 

It is clear, by the substitution of urand u from 

equations (2.3.23) and (2.3.24) into equation (2.3.3), that 

the continuity equation is satisfied. It is equally clear 

that the conditions of equations (2.3.1) and (2.3.2) are 

satisfied as the stream function is independent of 0. 
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By substitution of the values of ur  and ue  from 

equations (2.3.23) and (2.3.24) into equations (2.3.22) 

and (2.3.6), the following equations are obtained: 

4. 	1  	34) 
r2  sine 	Dr 

I  3 	 ail) a 	2 , ae  - 2 cot 8 ) - 	— 	E2  at  

4 = vo,„E (t.0) + Ocog [sine case 38 	+ r sin2 8w9  (T-T.  

(2.3.25) 

and the energy equation: 

DT + 	1 	atU aT DLit 	, [PT 4.  2 aT 
98 ar at 	r2sine ar ae - 	=-- are 	r ar 

1 a2T 4.  cote al 
-37-9r  r2 	r2 	D8 

where, 

2  
a  2 	

sine 	,  1 	a 

	

E = 	+ 
are 	sine ae' 

(2.3.26) 

(2.3.27) 

Equation (2.3.25) is a non-linear fourth-order partial 

differential equation, which can not be solved analytically 

and its solution must generally be obtained numerically. 

However, it is more convenient to solve the Navier-

Stokes equation as two simultaneous equations in two depend-

ent variables, stream funtion and vorticity. 

2.4 VORTICITY TRANSPORT EQUATION 

The method used to solve the equation of fluid motion 

necessitates the expression of the Navier-Stokes equation 

as a vorticity transport equation. The vorticity in a fluid, 

(5, is a vector quantity having the same nature as anglular 

velocity. It is defined by: 

it 



-t  
a 	a c = 	-6i: (rue) 	(ur)] 

r 
(2.4.5) 
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= curl U = VXU 	 (2.4.1) 

The curl of a vector in orthogonal curvilinear coord-

inate is given in appendix A. Hence the vorticity components 

in spherical polar coordinates becomes: 

or  = r2  sine[76 (r sine 110  ) - 	(rue) (2.4.2) 

(2.4.3) 

(2.4.4) 

1 	a 	3 - 

	

 
we 	r sine 	DO (Lir) 	(r sine uo  ) 

1 [a, a (r u — 	‘ 

	

0 	r 3r 	e) - 	u 38 (-r)..] 

From equations (2.4.2) to (2.4.4) and from the 

conditions of axisymmetrical flow l it is clear that since 

wr = we= 0 for axisymmetric flow, there is only one non-

zero component of vorticity, that in the 0- direction. 

Denoting woby C, equation (2.4.4) becomes: 

C can now be considered as a scalar funtion of r and e. 

Equation (2.4.5) can be expressed in terms of the stream 

function as follows: 

Cr sine =E2 4) 	 (2.4.6) 

By substitution of equation (2.4.6) into equation 

(2.3.25) the vorticity transport equation becomes as follows: 

2  at 	rsine 3r 	ae 
1 	( 	- 2 cote ) - ae ar 	r 	(Cr sine) 

= vc.E2(Cr sine) + Owg sinecos8-51 	i 2 9  31(T-Tw)+ r sine  OTT(T-T.i] 

 (2.4.7) 
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However, it is more convenient to define a modified 

vorticity, G, as G =C r sine, and to solve the equation in 

terms of this variable rather than in terms of the vorticity 

function C. Equations (2.4.6) and (2.4.7) when expressed 

in terms of the modified vorticity, G, are as follows: 

Equation (2.4.6) becomes: 

G = E2  (Li)) 

Equation (2.4.7) becomes: 

{ 

(2.4.8) 

at r2sin8 	 ( Dr 38 
1 	[3q) 	a 2 cote) 11457g( 

atIJ 	a —  2 	(G)  

=v.E2(G) + (3.g [sinecose 4(T-T.) + r sin28 	aar(T-T.] 

(2.4.9) 

where E2  is given by equation (2.3.27). 

2.5 DIMENSIONLESS FORM OF EQUATIONS 

It is convenient to render the variables dimensionless. 

The object is to reduce the number of parameters to a mini-

mum and to group them into dimensionless groups for synthesis, 

interpretation, and representation of results. A standard 

technique, for obtaining a suitable dimensionless form, 

using reference variables, is given by Hellums and Churchill 

(1961). 

For natural convection, the variables in equations 

(2.3.23) and (2.3.24), (2.3.26), (2.4.6), (2.4.8) and 

(2.4.9) are made dimensionless by the use of the following 

dimensionless groups: 
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u*  _ u r  R 
	0  = ueR 

- 	. r 	
, 	8 v. 	v,. 

	

r 	. 	tvcc, 	. 	* = ER2  

	

r* = .1q- 	, 	t* = -RI- , 	r 
6 	Vw  

G* GR  

	

= — 	 4) , 	* 	LO 

	

=. —_ 	T* _ T - T.  (2.5.1) 

	

v. 	v,,,,,R 	, 	Ts- T. 

For convenience, the superscript will be ommitted and 

dimensionless variables will be used exclusively. 

It is also convenient to transform the equations from 

polar space (r,8) to rectangular space (z,8) by the follow-

ing transformation: 

r = ez 
	

(2.5.2) 

The derivation of the appropriate conformal mapping is 

given in appendix A. It should be noted that the transfor-

mation has the advantage that it allows more grid lines to 

be concentrated near the sphere surface where the gradients 

are large. 

By substitution of dimensionless variables (2.5.1) 

and by tranformation of r = ez, the system of equations 

can be rewritten as follows: 

The velocity components: 

1 
uz - 2z . e sine 80 

1 	a ti) ue  - 
e2zsine z  

The vorticity transport equation: 

e2z aG 4. 	1 	{a (1.) [aG _ 2 cot8 G 	a 19- - 2 G at ersin0 a z  " 	 a 8 az 

= e2zE2  (G) + e2zGr [sin8cos8-a + sin28 21 	(2.5.5) az 
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The stream function equation: 

e2zG = e2zE+ (L4) 

The modified vorticity, G: 

G 	e2z sine 

The energy equation: 

e 	at ' 
4. 

ezsine az ae -  90 az 
2z aT 	1 	[DtP aT 	akli al 

[ 

. 1 	a2T 4.  aT 4. 32T  + cote 11  Pr 	az2 	az 	ae2 	a 

where: 

e
2zE = a 

 2 

	

a +  a2 	a 
TiT52 cote DO 

(2.5.6) 

(2.5.7) 

(2.5.8) 

(2.5.9) 

The dimensionless parameters Gr is the Grashof number 

R3  3 co  g (Ts  - Too) [Gr -  	based on the radius of the sphere, 
v2.3 	il C 

R, and Pr is the Prandtl number [Pr - ' P.  _ v.1 . 1, 
L 	"To, 	o'too j  

It is important to note that the terms on the right 

hand side of equation (2.5.8) and the first term on the 

right hand side of equation (2.5.5), represent the diffusion 

terms, while the terms on the left hand side of these 

equations represent the convective terms. The last term 

on the right hand side of equation (2.5.5), represents the 

buoyancy term. 

Equations (2.5.3) to (2.5.8) are the forms of the 

governing equations for free convective heat transfer from 

a solid sphere which, together with the associated boundary 

and initial conditions given in section 2.6, are to be 

solved. 
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2.6 BOUNDARY AND INITIAL CONDITIONS FOR TIME-DEPENDENT 

FREE CONVECTIVE HEAT TRANSFER FROM A SOLID SPHERE 

Before any attempt can be made to obtain a solution 

of equations (2.5.3) to (2.5.8), the appropriate boundary 

and initial conditions for the system must be prescribed 

for each of the dependent variables, LI), C, G, and T. 

2.6.1 Boundary Conditions.  

The boundary conditions describing free convective 

heat transfer from a solid sphere for time, t, greater than 

or equal to zero, are set as follows: 

(i) Sphere surface: 

On the sphere surface the 'no slip' condition 

applies. Therefore, the velocity vector, U, is zero on 

the surface. Thus, at the sphere surface equations (2.5.3) 

and (2.5.4) become: 

2g1 I = 0 , 	al I =0 , respectively ao 	 az 

since 	1 	can not be zero. Hence at the sphere surface 
e2z  sin8 

the stream function has a constant value. 

Therefore, at the surface of sphere, r=1 or z=0, for 

0 $.8 	: 

 

U I = 0; 	= C' ; 192  I az 	D8 
atli  = 0* a82 

D2 tp 

s
=0 

(2.6.1) 

 

By application of conditions (2.6.1) to equation 

(2.5.6), the following relationship for the modified 
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vorticity, G, at the sphere surface can be obtained: 

G 
a 2 

az2  is 

In this work the sphere is assumed to have a high 

thermal conductivity such that it has a uniform temperature 

Ts, over its entire surface. Also, the sphere is assumed 

to have a very large thermal capacity so that the surface 

temperature becomes time independent. Therefore, the 

temperature condition on the sphere surface is as follows: 

TI = 1 
	

(2.6.3) 

(ii) Axis of symmetry. 

Along the axis of symmetry, 8= 0 and 6=n , the 

'no cross flow' condition applies. Hence the velocity 

component in the angular direction, ue, is zero along the 

axis of symmetry. Also, along the axis of symmetry, 8= 0 

and 6=n , sine is zero. Hence from equations (2.5.3) and 

(2.5.4) it is necessary that: 

aq) 	= o ae 	az 
8=0,n 	8=0,n 

Hence, 
	 = C"  0=0,n 

At the front and back stagnation points, the sphere 

surface and the axis of symmetry coincide, so that at these 

points: 

I=01 	= C' = C" = constant 
s 	8=0,n 
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For simplicity this constant is usually taken to be 

zero. Therefore: 

411  =LP 	= 0  
s 8=0,n 

so that: a/24 	= z k, 	8=0,n 

Therefore, the boundary condition for the stream function 

along the axis symmetry, 8=0 and 0=n, can be written for 

all values of z as: 

uel= 0 pld 	= 0 • 1-4!. I z 	= 0 ; 
8=0,n 	0=0,n 	8=0,n 

= 0 • 41 / 90 	= 0 

8=0,n 	8=0,n 

a 2 
(2.6.4) 

By application of conditions (2.6.4) to equation (2.5.6) 

this equation at the axis of symmetry becomes: 

32q, 	
cotu 	aq.) 	2 z = e-  u a 2 	38 

Using L'Hospital's Law, it can be shown that: 

Limit cot8 11)  = 
n 

" 
2 

ae 	2 
9 8 84- 0,n 

Therefore, equation (2.6.5) becomes 

0 = e2z G 

(2.6.5) 

(2.6.6) 

However, along the axis of symmetry, e2z cannot be zero, so 

GI 	= 0 	 (2.6.7) 
6=0,TE 

Along the axis of symmetry, 8=0 and 8=n , the vorticity 

condition, C, can be obtained from equation (2.5.7). 

that: 
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Along the axis of symmetry both G and sine are zero. 

Therefore, using L'Hospital's Law, it can be shown that: 

Limit G 	aG  
e 	sine 	ae + 0  

(2.6.8) 

G However, since the flow is axisymmetrical, a -- is zero, ae 
and since ez  can not be zero, then: 

= 0 	 (2.6.9) 
e=0,n 

Since the flow is axisymmetrical and temperature is 

a continuous function, therefore, at the axis of symmetry, 

0=0 and e=n : 

= 0 	 (2.6.10) 

e=0,TE 

(iii) Outer boundary: 

At large distances away from the sphere surface, 

all the dependent variables become asymptotic to their values 

in the undisturbed stagnant fluid. The temperature at the 

outer boundary is assumed to be constant and time-independent. 

Mathematically, the conditions at this boundary are 

only well defined as r .or z tends to infinity. However, 

because of limitations on computer storage and computation 

time, numerical integration cannot be made over too large 

a region, and a finite domain of integration has to be used. 

This means that any boundary condition is necessarily an 

approximation. Therefore, the outer boundary condition will 

be applied at some finite distance from the sphere surface. 

.aT 
ae 
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For convenience this finite distance will be denoted by 

r = r. or z = z. . The conditions at the outer boundary 

can now be expressed as: 

At z = z 

U = 0 ; 0 = 0 ; G = 0 ;C = 0 ; T = 0 	(2.6.11) 

2.6.2 Initial Conditions  

In free convective heat transfer, since the flow 

arises because of a density gradient, the medium initially 

is stationary everywhere and heat is transferred solely 

by conduction. Therefore, at t = 0 : 

U = 0 ;0= 0 ;C= 0 ; G= 0 ; T= T° 	(2.6.12) 

As described earlier, the initial temperature distri-

bution, T°, in this work, is taken to be that of pure radial 

steady state conduction between the sphere and the surround-

ing fluid. 

The energy equation for steady state conduction when 

the surrounding fluid is stagnant is: 

V 2T°  = 0 	 (2.6.13) 

Equation (2.6.13) may be expressed in spherical polar 

coordinates as: 

V
2 0 	1 	3[..r2 	

+ 	
1 	3 	aT°  

Dr 	r2sine 55  sin8 1 T 	 ] 

1 	a2  T°  
r2  sin2  e 	a 0D2  — (2.6.14) 



now, a2  T°  aT 0 	— o 
"'"W 	' 	a e 
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,2 	o 1 	a 
317 [ so  that; p 	ar  (2.6.15) 

By application of transformation (2.5.2); equation (2.6.15) 

becomes: 

[m z 9T° 
az 	a zi = 0 	 (2.6.16) 

The solution of equation (2.6.16) with the boundary condit-

ions (2.6.3) and (2.6.11) is as follows: 

Z as 
To -( 	 ) e-z 	1  

ez.-1 e z  _l 
(2.6.17) 

2.7 PROPERTIES OF THE PARTIAL DIFFERENTIAL EQUATIONS 

The mathematical formulation of most problems in 

science involving rates of change of dependent variables 

with respect to two or more independent variables, usually 

time and position, leads to partial differential equations, 

either singly or in sets. The three dimensional second 

order partial differential equations such as those derived 

in section 2.4, constitute an important class of partial 

differential equations and are the main concern of the 

present study. 

The maximum possible consideration must be given to the 

properties of the differential equations to be solved 

before any numerical solution is attempted. The present 

set of partial differential equations, vorticity transport 

equation (3.5.5), stream funtion equation (2.5.6), and 
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energy equation (2.5.8) is non-linear, second order, and 

elliptic with respect to the space variable (z,8). .Also 

equations (2.5.5) and (2.5.8) are parabolic with respect to 

time. These characteristics classify the problem as being 

of non-linear, non-stationary kind. (Sommerfield 1949, 

Forsythe and Wasow 1960, Smith 1965 and Mitchell 1969). 

The domain of integration of any of these elliptic 

partial differential equations is always an area bounded 

by a closed curve. The boundary conditions usually specify 

either the value of the function or the value of its normal 

derivative or a mixture of both at every point on the 

boundary; such a domain is usually referred to as the flow 

region. It is generally known (Ames 1965) that a non-

linear, non-stationary problem may not have a well-behaved 

mniwrinn  For the. =q1+1,-... time 	t :r,O. Outside of 

a finite interval the solution may become 'arbitrary large' 

or 'split up' by losing its regularity, ceasing to satisfy 

the equations and beginning to form branches. Moreover, 

even if a solution exists for all times greater than zero, 

it may not approach the solution of the stationary problem. 

In fact, depending on the values of the relevant parameters, 

a non linear, non stationary boundary value problem can have 

a unique solution, several solutions, or even no solution at 

all (Rafique 1971) . 

In the general case, the questions of existence and 

uniqueness of the solutions of the equations which describe 
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time-dependent free convective heat transfer from a solid 

sphere for a given set of initial and boundary conditions 

cannot be mathematically answered. However, according to 

Richtmyer (1967), equations of this kind are of such a 

nature that if a well-posed state of the physical system is 
14- 

specified at some initial time, t = to, a solution exists 

for t Ito  and is uniquely determined by the equations 

together with the associated boundary conditions and 

auxilary data. 

In view of the above considerations, it has to be 

assumed that the present formulation of the problem for 

the time-dependent free convective heat transfer from a 

solid sphere is well-posed so that it can be further assumed 

that a solution exists and is unique. 
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CHAPTER 3 

NUMERICAL TECHNIQUE 
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3.1 INTRODUCTION 

The mathematical model consists of a set of partial 

differential equations, as derived in chapter 2. The first 

step in the solution of the equations by a finite-difference 

method is to reduce them from continuous to discrete forms 

and then to solve the resulting algebraic equations on a 

digital computer. The details of these steps can be found 

in standard text books on numerical analysis, such as 

Smith (1965) and Richtmyer (1967). 

The basic method is to expand the terms of the original 

partial differential equations in Taylor's series. The 

series are truncated to a reasonable accuracy and a set of 

finite-difference equations obtained by the replacement of 

each term by the truncated series. Each finite-difference 

equation relates the value of a function at any mesh point 

to the values at neighbouring mesh points. The number of 

neighbouring points involved depends on the order of the 

original differential term and on the order of the truncated 

series expansion. The more accurate the approximation: 

the greater the number of neighbouring points involved. 

Thus, a gain in accuracy has to be balanced against an 

increased number of neighbouring points together with the 

consequent increased complexity of the finite-difference 

equations and increased computation time and storage requir-

ements. It is generally accepted that the five point 

approximation, involving four neighbouring points, is a 

reasonable compromise between accuracy and computation 
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requirements. 

A number of conditions must be satisfied if the solution 

of the finite-difference equations is to be a reasonably 

accurate approximation to the solution of the corresponding 

partial differential equation. These conditions are refer-

red to as: 'convergence', 'stability', and 'consistency'. 

These terms will now be described. 

The term 'convergence' is understood to mean that the 

exact solution of the finite-difference equations tends to 

the solution of the partial differential equation as the 

increments in time and space tend to zero. 

The terms 'stability' and 'consistency' are closely 

related to 'convergence'. The term stability refers to a 

property of the finite-difference equations in a computa-

tional procedure as the time increment is made vanishingly 

small. The property is that, as the time increment tends 

to zero, there is an upper limit, to the extent to which 

any piece of information, whether present in the initial 

conditions, brought in through the boundary conditions, 

or arising from any sort of error in the calculations, can 

be amplified in the computation without the solution becom-

ing numerically unstable. 

The term 'consistency' or 'compatibility', applied to 

a finite-difference procedure, means that the procedure 

should, in fact, approximate the solution of the partial 

differential equation under study, and not the solution of 

some other partial differential equations. If on the 
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successive introduction of finer meshes in space as the 

time-step tends to zero, the finite-difference equations 

approach the differential equation, the finite-difference 

formulation is said to be consistent. 

Richtmyer (1967) presents a theorem attributed to Lax 

which states the necessary and sufficient conditions for 

the convergence of solutions of linear partial differential 

equations. However, there is no analogous convergence 

theorem available for non-linear partial differential equa-

tions. In the absence of a convergence theorem for non-

linear partial differential equations, it can only be 

assumed that a stable and consistent difference scheme 

will yield a reasonably accurate solution of the differential 

problem. Without mathematical proofs the above arguments 

can never be confirmed but can only be contradicted if the 

solutions obtained are physically unrealistic. 

A further discussion of the stability of the finite-

difference equations will be given in a later part of this 

chapter. 

. The Navier-Stokes, energy and continuity equations are 

based on the conservation of momentum, energy, and total 

mass, respectively. Therefore, the discretization process 

must not permit undue accumulation of errors in the fluxes 

when summed over arbitrary groups of cells; including, in 

particular, the entire field of computation. Ideally, the 

efflux from one cell to a neighbouring cell should balance 
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identically the influx into'the neighbouring cell from 

the first cell. The integral of momentum, energy, and mass, 

over any part of the field of computation will then be con-

served. A difference scheme is said to possess the 

'conservative property' if it incorporates the above idea 

(Rafique 1971). Roache (1972) has compared conservative 

and non-conservative differencing methods and has stated that 

"experience so far has indicated that conservative systems 

do generally give more accurate results". In general, 

the significance of the conservative property is more 

pronounced in compressible flow problems than in incompress-

ible flow problems. Furthermore, in multi-dimensional fluid 

dynamics problems the use of differencing methods which 

achieve conservation of the basic flux quantities such as 

vorticity or energy are costly in computational requirements. 

Finally, there are arguments for and against the 

application of conservative finite-difference schemes to 

incompressible flow problems, and the results of numerical 

tests that have been reported in the literature do not 

present an entirely one-sided case. In order to avoid both 

the additional complexity of the finite-difference represen-

tation of the partial-differential equations and the increased 

computational requirements which are associated with the 

application of conservative differencing methods to multi-

dimensional flow problems (Roache 1972), non-conservative 

finite-difference schemes are used in the present work. 
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3.2 FINITE-DIFFERENCE REPRESENTATION OF THE DERIVATIVES 

The coordinates z arid 8 introduced in chapter 2 form a 

rectangular system of coordinates. The domain over which 

the equations are to be integrated, the flow region, is 

represented by a finite number of points or nodes, spaced 

systematically within the domain. A discretization process 

is used to represent any of the functions or their deriva-

tives at a general node and to relate them to the corresponding 

values at neighbouring nodes. The flow region, (z,8) plane, 

is bounded by the straight lines 8=0, 8=n , z=0 and z=z.. 

Consider the (z,8) plane as being divided up into a 

mesh of length 'h' in z-direction and 'k' in the 8- direction 

as in figures 3.2.1 and 3.2.2. It is convenient to introduce 

the indices i and j in order to locate any point in the 

flow region at a given time-step, n. The subscripts i and j 

refer to the z and 8 coordinates respectively, whereas the 

superscript n refers to the time-level or time-step. 

If a funtion W(z,8,t) is a continuous function and has 

derivatives of all orders, then using Taylor's series 

expansion, it can be approximated in terms of its values at 

the neighbouring nodes as follows: 

. 
a 	h2  9 2  + 	  

I  1,3 

	

(1 + h 	+ - 2 

	

1+1,3 	 27 az  

	

n (1—h a 	h2  a 2  

	

= (1—n — 	— 	)wn  . 

	

wi—i,j 	az 2! 3z2 	i,3 

a k2  a 2  
wi,j+1 = 

(1+ k 	yr ae2  
) n 14  

1,] 



k2  a 2  
= ( 1'k 

De 	2! 302 - 	)w . 1, j 
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n+1 
W1
. 
.3  
. = (i+htat 	2 + ( At)2  ! 

n2 
• )Wn  -a--E2 • • 

	

wn-1 	. (At)2 a2 	
. .)141.1  . 	(3.2.1) 

	

iti 	
(1—Lt TE  + 

ate 	1,J 

The function values,w , can be the stream funtion,q), 

vorticity,G, or the temperature/T. 

By elimination, approximate expressions for the partial 

derivatives at the point (i,j) can be found in terms of 

the neighbouring values as follows: 

0141 n 	
a  (wr.' ) + 0012 ) — 	i, 1j 4(W?) 	0(h2) i azii,j  

1 ( n 	. - Wn 	) + 0(h2) 2h Wi+1,3 i-1j 

2 n 
;,, 2 ) 	 ; . ( 1.1n 

j 
) 	 h 2 ) = 1 

h2 	
Wn ) 	0 (h2 )  

dZ 	 ij 

= 1 	(Wn 	+ w.11 	- 	1 .) + 0(h2 ) h2 	i+1,j 	-1,j 	,3 

aw = a 	(wr.l . ) + o (k2 ) = 	(Wn. . ) + 0(k2 ) 36 i,j 	j 	13 	2k 	j 13 

= 1 twn 	_ wn 	) 	0 (k2 ) 
2k ' ij+1 

,

62 
n 

(Z-1-1) 	=a 2  (1Alr '
13  ) 
	0 (k2  ) = k2 A2 (V? ) 	0(k2 ) 3 	 j 	 j 

. 
1,3-1 	

1,3) + 0(k2 ) 
 

(3.2.2) 

(3.2.3) 

(3.2.4) 

(3.2.5) 

where 0(h2 ), terms of order h2 , refers to the additional 

terms with factors h2 , h3 , etc. The derivatives are said to 
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be approximated at the node (i,j) and at the n time-step. 

Each derivative approximation is of second order accuracy 

and is derived using a Taylor's series expansion of the 

function about the node (i,j) i.e. central differencing 

is used. 

Using the above notations, the second order central 

difference and first order forward difference schemes for 

the time derivative can be written as follows: 

(—aw  )ifj = an  ( ff7j ) + 0(a2) 3t  

= 	fe": - Wr.1 	' -1 	+ 0(At2) 2At 1,] 1,j 

(—aw )it  = ani  (wr.1.2 
y 
) + 0  (At) at j  

wn ) 	0(At) — %Iry 
/3 At =,3 

(3.2.6) 

(3.2.7) 

The error which arises because of the difference 

between the original partial differential equations and 

their finite-difference forms is known as truncation error. 

For example, relation (3.2.2) has a truncation error of 

order h2  and is interpreted as follows: 

Limit (2H)i,j = D.(141 1,3  
.) 	(3.2.8) az  

h+0 
or, 

Limit 0(h2)= 0 	 (3.2.9) 
h+0 

Thus the consistency condition is assumed to be satisfied by 

each derivative. Therefore, the finite-difference equations 

derived with the above approximation are assumed to be 

consistent with the differential equations. 



z1. +1,3 Z. 	. Z. 1-1,3 1,3 

(3.2.10) 

= slope AB = slope CB + slope AC 
4 

w. 
1,J 

wi+1,j 
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3.2.1 First Upwind Difference Representation of Partial  

Derivatives of the Convective Terms  

The geometrical interpretation of the first partial 

derivative is that it is the slope, in the direction of the 

derivative of the tangent plane to the surface. Consider 

figure 3.2.3. It is required to approximate the slope of 

tangent XX at the point Z. .(point C on figure 3.2.3). If 1,3 

a central difference Taylor's series approximation is used 

the slope of the line XX is approximated by that of line 

AB. The slope of AB is calculated by taking an arithmetic 

mean of the slopes of lines AC and CB, that is: 

()n 2.1 fie _wri 	ltwn _wn 	_wn .1  
'az id 	2h ' i+1,j 1-1,3' 2h 1  i+1,j 1,3 2h' I,j i-1,3' 

FIGURE 3.2.3 GRADIENT APPROXIMATION 
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In general, a finite-difference formulation of a flow 

equation will possess 'the transportive property', as stated 

by Roache (1972), "if the effect of a perturbation in a 

transport property is advected only in the direction of 

velocity". Roache then concluded that "the fact is that 

the most frequently used methods do not possess this property. 

All methods which use centered-space derivatives for the 

advection (convection) terms do not possess this property. 

The emphasis is on the word'advected'. A physical pertur-

bation in vorticity will spread in all directions due to 

diffusion. But it should be carried along only in the 

direction of the velocity". A lack of the transportive 

property in a finite-difference representation of a flow 

equation, may lead to unconditional instability when explicit 

techniques are used and may cause a poor rate of convergence 

when implicit techniques are used. 

A better and more general approximation would be to use 

a more flexible representation which adjusts itself to the 

direction of the velocity. A differencing method which 

possesses the transportive property and which achieves stab-

ility of the convective terms involves the use of one-sided 

rather than central differences. Using such a scheme, 

equation (3.2.10) can be rewritten as follows: 

co - 	) aw 	(1) 	n (Ti) 	
z =— 	w 

1
. 1+1,3 	,3 	

z  + 
(1 

(w.11 w, 	,) 
,3 	-1,J 

(3.2.11) 

where wz is a weighting factor. For coz = 0.5, equation 

(3.2.11) will become identical to equation (3.2.10) 
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The most logical choice of the weighting factor for a 

particular node would be the 'upstream difference scheme'. 

In this scheme the terms in which the velocity components 

apprear as coefficients, the convective terms, are approx-

imated by backward differences if the velocity coefficients 

are positive. Forward differences, therefore, are used when 

the velocity coefficients are less than zero. Hence, if 

the flow direction at point C on figure 3.2.3, is from A 

to C, then the gradient at point C may be approximated by 

that of the line AC by setting the weighting factor equal to 

zero. However, if the flow at C is from B to C, then 

gradient at C may be approximated by that of the line BC by 

setting the weighting factor equal to one. 

Thus, the one-sided difference is always on the 'upwind' 

or 'upstream' side of the point at which the first derivatjv 

is approximated. It is in this way that upwind differences 

are used in the present work. 

This method has often been used in the past under various 

names and with different rationales. Meteorologists have 

long known the stabilizing effect of 'upwind' differencing 

and have applied it to incompressible and to Boussinesq 

problems (Lilly 1965: Forsythe and Wasow 1960). Rafique 

(1971), and Hatim (1975) have referred to it as the 

'upstream biased scheme' and they used it at high Reynolds 

numbers. Forsythe and Wasow (1960) refer to the method as 

'difference equations with positive coefficients'. 

The variable coefficients, (- 21) and (141), of the 
38 	a z 
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convective terms of the vorticity transport equation, 

equation (2.5.5) and of the energy equation, equation 

(2.5.8) are connected in direction and magnitude to the 

velocity components, uz  and ue, by equations (2.5.3) and 

(2.5.4), respectively. 

The upwind difference form of a first order derivative 

with respect to e, using the weighting factor we, can be 

represented as: 

lawIn 
i,j = e (

wn 	_ wn ) + (1-')e) 	- 	) (3.2.12) 
1 39' 	k ' i,j+1 	1,j 	I,j 	1,j-1 

In the remaining part of this chapter the following 

expressions will be used to express the original partial 

differential equations in their corresponding finite-

difference forms: 

aw  
(—) 

n 
az ai (W'. 	+ 0(h2 ) = 2h Di (le j i 

	

ij 	) + 0(h2) 
i,3 

	

. 1_ (wn 	.) 	0(h2) 
2h i+l,3 1-1,3 

311  n 

1 ( 	) 	= a2. (wr.1  . ) + o (n2 ) = h2 	j 2  (Wn  ) + 	(h2  ) 3z2  . . 	13  1,3 

1 	n 

	

= -- (W1. 	. + W1. 	.-2W. 1 	+ 0(h2) 
h2 	+1, 3 	-1, 3 	,3 

and similarly, 

DT'? 	 1 
(--) 	= a , (w7 . ) + o (k2  ) = 	A 	(Wn . ) + 0 (k2  ) DO i,j 	j 13 	2k j 	13 

(3.2.13) 

(3.2.14) 

1 	n = —  2k (W1.  ,3 .+1 	1 - W. ,3 .-1 ) + 0(k2) (3.2.15) 
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a2w n 1 = a 2.(14.) + 0(k2) = 	A2  (e.) + 0(k2 ) ae 	13 	k2  j ij 

1 
i = 	(W 	+ W 	2W1.1 	+ 0(k2) k2 	,j+1 	i,j -1 	1,3 (3.2.16) 

19W,n 	= a twryi.-1/4) 	0(At2)  = 2 orintlA N 	0(At2)  
'a 	n‘ 13 	At 	13 

2 n+ wn = 	(w.1 	- 	t2 	(3.2.17) At ,j 	if7 
+ 

 

and finally, the first order partial derivatives in 

convective terms are approximated as follows: 

n
zn t aw, 	 (1- ) 

= 	
, 	

147,j' , -1- 	
03 
z  (W.n  

	

- Wr.1 	.) 
ifi 	

-1,J 

(3.2.18) 

, 	
wn 

aw 	(w 	
wi 	

(1k-wA) 

ae 	1,j+1 	,ji1 + 
, 
	(W1.1 	) 

I,j 	 1,3 	1,j-1 

(1.2,19) 

3.3 FINITE DIFFERENCE REPRESENTATION OF THE EQUATIONS 

3.3.1 Discussion of Available Methods  

In chapter 2 the form in which the vorticity transport, 

energy and stream function equations are to be solved was 

derived. These equations are rewritten below as follows: 

vorticity transport equation: 

e2Z DG 	1  
- 2 cote G - 	- 2G Dt 	ersin e  Dz a- 

	

DT 	T = e2z E2  (G) + e2z Gr sin8cose-- + sine 	(3.3.1) 

	

ao 	az 



DT 	94) aT 
ae 	De az 

_,_„ 3T cuuu -- 
ae 

(3.3.2) 
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energy equation: 

Pr e2z 

= 

aT Pr akli — at 

32 T + 

ezsine 

	

aT 	3 

	

-- 	-2T  -- 

az 

9 z-  az 	D82  

(3.3.3) 

stream function equation: 

a2P+ 324)  cote aql = 
e2zG  

az az ler 	ae 

where G =E ez  sin8 , 

and 	
e2zE24.  = 	+ 

n  
"2182 	cqt  aZ 	

, 2 	
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a 

The finite-difference approximation or discretization 

of equations (3.3.1) to (3.3.3) can formally be expressed 

as follows: 

vorLit.:114 Lrdnsport equaLion: 

2z1 ( 3 
aG 	1 

e 	. 	zi  
e. e sin 8

. 

n 
az i,j  

, n  ,3G 
8) 	- 2 cot8.Gn. 

_ 	i,j  
1. 

- (--) 
atif 
08 	• 
	

a
n 

 • 	• 

n [aG)n 

1.3 - 2G1,3 
Gi,j  

,aG ,a2 
 

G, 
	( az )  = 	

32 
( G) 	- cotg. 

az 	aZ 	Ter 	3 ae • • 
1,7 	i,j 	i,j 	1,J 

2z. 	n
aT 	 nTn  

3  6
ae 

+ e 	Gr sin .cose 	+ sinlej  (==--) •az 
1,] 

(3.3.4) 
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energy equation: 

Pr e
2z 1
()

n z Pr 	att., n 	T  
(—) 	() at . 	. 	. 	a z . . a° . ,3  

. 
1,7 e sine 	1 1,j  

/9111 n  94) — 	t—, 
ae 1,3 	z . 1  .] ,3 	,3 

n 
( 

a 7, 	n 

	

a 2  T 	 + cote (a T)
n 

i,j 	
j 	3 

	

= --- 	+ (-
a 
 - z2) 	+ 	02
T
) 
1,i 	 1,3 

stream function equation: 

	

(8-Z tr1))n 	°a z L41) 	02-41)n 	- cotej 	e 
n 

, 	a e 2 	At 	a 	. . 
i,3 	i,j 	,1,3 

2z. 
= G. . e 

1,3 

(3.3.5) 

(3.3.6) 

The discretization process is carried out at a typical 

node i,j in the mesh covering the domain of intergration at 

the n-th time-step. Time does not appear explicitly in 

equation (3.3.6) so that the computational procedure to be 

used must solve equations (3.3.4) and (3.3.5) first in 

	

order to obtain values of n+1 
	n+1 Equation (3.3.6) 

	

1,3 	1,7 
is then solved as a Poisson's equation to obtain values of 

n+1  4)...Sincethevaluesofili.. n+1 are also required in equations 1,3 	 1,7 
(3.3.4) and (3.3.5), the entire step must be repeated until 

all the three equations are satisfied simulataneously. 

Assuming that a suitable mesh is chosen, i.e. h and k 

are sufficiently small, then the truncation error terms 

are negligible. Then simple second order explicit finite-

difference representations for the equations (3.3.1) and 

(3.3.2) can be written as follows: 
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2z. 1 	a (4)1.1.)[a.(d.1 .) e 	a tu..) + 	 - 2cot8. 
Gil 

e 
13 	z. 	i 13 3 13 	ij 

e 'sine. 

- 	 (L a3  . IR .3  ) 1
n. a. (G . ) - 2 { 	 Gi

l  

cot8.D.(e.) i 	13 	i3 	j 	13 	3 3 	 3 

2z, 
+ e 	sine.cos8.

3 
 D.(Tn.) + sin2  e . D.(T..) 	(3.3.7) 
3 i3 	3 13 

and 

Pr e2z1 a (T..) + n 13 	
zPr 	

1. 	I a. (4). .3  ) a. (T.1  .3  ) 

	

e 	
3 

. n  

'sin ®. 83  

- a. (e.) a 	(TrJ .) 
1] 	1] 

	

= e (1,1?..) + 1  (Ti j) 	+ - 3 13
) + cot8.(Ti])1 	(3.3.8) 

1 13  

Richtmyer (1967) states that the use of second order 

time-centered explicit schemes for the representation of 

diffusion terms (second order linear terms), is uncondition-

ally unstable. Hence, the addition of non-linear terms, 

for example the convective terms can only make matters 

worse. Thus the finite-difference approximations represented 

by equations (3.3.7) and (3.3.8) can not be used. However, 

explicit schemes with forward time differences and centered 

space differences are conditionally stable. By the use of 

such a first order explicit scheme to the vorticity transport 

and energy equations the following equations are obtained: 

= a  2 (tan.  .) 	a.  (Gn.)  ±a2.  (Gn.  ) 



+ 1 
a. (e.) 1 	13 a. 3 z. 

e isine. 
ij] (e.) - 2cote Gr.1 

2z. 1 	n+ k 
e 	a (G 	) 13 	j 
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vorticity transport' equation: 

 

3 

[ 
- a.(e.) al.1(e.) - 2 Gr.i. 3 13 1 13 	13 

  

   

4,-, 

  

   

= 	(G..) - a. (G..) + 32. (G..) - cote 	a. (G..) 1 1) 	1 13 	3 13 	j 3 13 

2z, 
+ eGrsine.cose. 	

3 
a. (T..) + ein2e.

3 
a.(T

1
..)] 	(3.3.9) 

13  

energy equation: 

1 	+ 	[ Pr e
2z 

an (Tip) 	Pr 	a. (Li,1. 	. 	.. z. 	3) a3 (T13 )  
e Lsine, 

aj (!1j
) 1 13 

= 92.(T..) + D.(T..) + a2 .(T 	) + cote,a.(T..) 1 13 	1 13 	3 	3 3 13 (3.3.10) 

Dufort and Frankel (1953) suggested a stable second 

order explicit scheme. The second partial derivatives were 

approxiamted in the following manner, (for a general 

function W): 

ai (le. 	1 ) 	a2. 	1 

	

+ 1 	aWn. 	- (1■71.1+1 
1 	13 DF 	13 	h 	,j 	I,j 	1,3 

and 

(3.3.11) 

di"1 1 1-2 	= ^ 	1 	20 	- 	+ 	 -1) (3.3.12) DF 	°3 	13 1 	k2 	1,i 	 1,3 
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Therefore, by the use of Dufort and Frankel's scheme, 

equation (3.3.2) can be written as follows: 

Pr e2z4 
	

z. Pr 	[ 	n 	a 3 1 a. (LI). .) 	. ( T..) 1 	3 

 

. 

] 
— a. (e.) a1  (Ti.3) ij  

= a2  (Ti,) 	+a. (Tip  ) +a2. 	cote.a.(Tr.1.) 
i  13  DF 	1 13 	3 

(Ti.
1  DF 	13 

(3.3.13) 

The application of Dufort and Frankel's scheme to the 

44. vorticity transport equation results in an equation of the 

same form as equation (3.3.7) except that the second order 

partial derivatives are expressed by equations (3.3.11) 

and (3.3.12), 

i.e. 
32  (G'.) 	and 2(G, .) 1 13 	j 3 1 DF 	DF 

In the absence of non-linear convective terms, the 

Dufort and Frankel scheme is unconditionally stable. 

However, in practice, in order to obtain sufficient accuracy, 

a restriction on the time-step, At, has to be imposed. 

The use of Dufort and Frankel's scheme requires more 

computer storage than the conditionally stable simple 

explicit scheme. The choice between the two schemes is 

usually made from an assessment of computer time and storage 

requirements (Rafique 1971) . 

e 'sine. 

An implicit scheme requiring the same storage as Dufort 
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and Frankel explicit scheme is better both for accuracy and 

numerical stability. A general iterative implicit scheme 

for solving the vorticity transport and energy equations can 

be written as follows: 

vorticity transport equation: 

2z
1 
	ni. 	

Ti  e 	a (G. 	) + 	 2cote.e 

	

n ij 	z. 	1 13 	3 13 	3 1 i 
e lsine. 

3 

- a. ( 	[ a . (Gn..) - 2 Gn. 1}} 3 13 a. 13 	13 

=ai (e.) - 	(e.) + 92. (e.) - cote.D. (e.) 13 1 13 J 13 	3 13 

2z. - 

+ e  1Gxsine.cos8.9 	(T..) + sin28.
3 
 D.1  (T..) 

  

 

(3.3.14) 

energy equation: 

  

2z. 1 n+ Pr e 	(T n  a 	. 	) + 	 [a.1  (4). ) 	• 3 (r •1  .3 )Pr 

	

i3 	Z. 	13  1  e sine. 

 

  

- a. (e.) 	(T1.13. 13 1 1 

  

        

= 92. (T..) + 9 	(T..) + a 2(T..) + cote.a. (T..) 	(3.3.15) 1 13 	i 13 	j 13 	3 	13 

where, in general, 9.1 (Wij 	1 ) = u3.(wij 1 ij )+(l-a)a.(w ), where 

a is a weighting factor. All the terms in the above 

equations are Expressed in a similar manner. Equations (3.3.14) 

and (3.3.15) can be solved by successive over or under-

relaxation and, wherever required, the most up to date values 

of the stream function can be used. Values of the stream 
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function are obtained by successive over-relaxation sweeps 

of the stream function equation. The most common value of 

the weighting factor, a, used is one-half and the scheme is 

normally called the Crank-Nicolson scheme. 

implicit schemes, especially when applied to the 

vorticity transport and energy equations for the case of 

free convective heat transfer from a solid sphere, lead to 

large sets of non-linear simultaneous equations. This is 

the real disadvantage of implicit schemes since the solution 

of large sets of non-linear simultaneous equations is both 

difficult and time consuming. For these reasons the original 

alternating direction implicit method, ADI, proposed by 

Peaceman and Rachford (1955) was adopted. 

The alternating direction implicit methods were intro-

duced in companion papers by Peaceman and Rachford (1955) 

and Douglas (1955). Also known as the method of variable 

direction, this method makes use of a splitting of the time-

step to obtain a multi-dimensional implicit method. The 

advantage of this approach over the fully implicit methods 

is that each resulting algebraic equation, although implicit, 

is only tridiagonal. Therefore, this .method requires only 

the solution of a tridiagonal system such as occurs when 

the usual implicit methods are applied to one dimensional 

problems. 

This method is unconditionally stable for the linear 

diffusion equation, as are fully implicit methods. However, 
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no stability analysis has been made for non-linear partial 

differential equations such as the vorticity transport and 

energy equations. 

Roache (1972), has given a survey of the early applic-

atior4 of ADI methods to fluid dynamics problems. ADI 

methods are currently the most popular methods used for vis-

cous problems. In addition to the works surveyed by Roache, 

Son and Hanratty (1969) used Peaceman and Rachford's 

alternating direction implicit method to obtain the solution 

for flow around a circular cylinder. Rafique (1971) used 

Peaceman and Rachfords alternating direction implicit method 

to obtain the solution for flow around a solid sphere. 

Hatim (1975) used Peaceman and Rachford's alternating direc-

tion implicit method to obtain the solution of heat transfer 

from a solid sphere acceleraLihg frora .cesL. The 6ulutioab 

obtained by Son and Hanratty, by Rafique, and by Hatim 

indicate the suitability of Peaceman and Rachford's 

alternating direction implicit method for solving the vor-

ticity transport and energy equations. For these reasons, 

the alternating direction implicit method proposed by 

Peaceman and Rachford (1955) is used in this work to solve 

the vorticity transport and energy equations. 

3.3.2 Peaceman and Rachford's Alternating Direction Implicit  

Method. 

If a general implicit method of solving equations 

(3.3.14) and (3.3.15) were to be used, all the derivatives 
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in the equations would require values of the modified 

vorticity, G, and temperature, T, at the n+1 time-level. 

As these values are unknown it would be necessary to solve 

iteratively large numbers of non-linear algebraic equations. 

However, if the derivatives in one of the directions were 

to be ;  approximated at the n+ 1/2 time-level, while the 

derivatives in other direction were to be approximated at 

the n-th time-level, the sets of simultaneous equations in 

terms of the known values at the n-th time-level and the 

unknown values at the n+ 	time-level could be solved 

easily by an elimination method. If the procedure were 

to be repeated for the next half time-step such that the 

derivatives previously approximated at the n-th time-level 

were now approximated at the n+1 time-level and the other 

derivatives were approximated at the n+ 1/2 time level using 

the values obtained previously, the temperature and vorticity 

values could be obtained at the n+1 time-level. This is the 

method used in the present work. 

In most cases the choice of derivatives which are 

approximated at the n+ 	time-level is unimportant. This 

is not the case in the present problem because a significant 

amount of computing time can be saved by making the correct 

choice of the derivatives which are to be approximated at 

the n+1/2 time-level. 

In section 2.6 it is stated that the sphere surface 

boundary condition for the vorticity is a funciton of time 

and must be approximated. However, the vorticity at the 



105 

axis of symmetry is constant and known; thus if the deriv-

atives which involve the constant boundary conditions are 

approximated at the n+1/2 time-level, then iterations are 

only performed over the last half time-step. This means 

that in the vorticity transport equation the derivatives 

with respect to angle, 19, must be approximated at the 

n+1/2 time-level. 

In the case of the energy equation, since the temper-

ature at the axis of symmetry is a function of time and is 

constant at the sphere surface, a reverse procedure appears 

to be reasonable. That is, the temperature should be 

updated from the n-th time-level to the n+ 1/2 time-level in 

the j-direction and then be updated from the n+1/2 time-

level to the n+1 time-level in the i-direction. This means 

that in the energy equation, the derivatives with respect to 

z, radial direction, must be approximated at the n+ 1/2 time-

level. 

However, numerical experiments revealed that for the 

present problem, a compatiable procedure for solving the 

vorticity transport and energy equations not only decreases 

the total time of computation but also increases the 

accuracy of the results. 

Therefore, in the present work, in both the vorticity 

transport and energy equations, the derivatives with respect 

to angle are approximated at the first half time-step and 

the derivatives with respect to z, radial direction, are 



106 

approximated at the n+1 time-step. 

3.3.3 Finite-Difference Representation of the Vorticity 

Transport Equation  

The vorticity transport equation, equation (3.3.1), 

when written in finite-difference form for the time-step 

n to n+'1/2 in the 8-direction, is as follows: 

2z. 
e 	 n+/4 

a (G. 	1 	1 + 	 a. (e.) .(e 1/2  )-2cote .e+  n (Gil l "4'  1 13 3 lj 	3 ij 
e lsine. 

3 

_ a.3 (tpn..
3 )
{3. (Gn..

3  ) 
	2 Gn.  71 

1 	1 	ij 

(Gib) - a i  (G n.) + a 2  (Gib "- 	e. 	(Gib ) - cot3.(G + 1/2  ) 13 	j 	3  

2z4  
+e'L sin2 8.Gr rcot8.a. (Tn.) +a4 (T7.)1 

L 	3 3 	13 	
1.3 (3.3.16) 

For time-step n+ 1/2 to n+1, the finite-difference form of 

the vorticity transport equation, in the z-direction, is as 

follows: 

2z
1 	n+ 	n 	1/2 e 	3 (G.. I  ) + 	1 	+ 1/2 . (tp. . 	) 	. (G. . 	) -2cote 	1/2  n 1J 	z. 	1 13 	J 1J 	3 13 

e 'sine. 

n+ 1/2 	n+1 	n+11 - a . (LI). . 	) a . (G.. ) - 2G.. 3 13 	1 13 

1 	n+1 	n+ (G.n+  ) 	a.(G.. ) + 	2  ) 	COte.a.(G11: 1/2  ) 
1 	13 	1 1J 	J 13 	3 3 1J 

2z 	. 	n+ 2 e 	sine 8. Gr cot 8. a . (T. 	- ) + 3 (Tip 1/2  ) 	(3.3.17) 3 	3 (Tip 	ij 
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Equation (3.3.16) can be expressed more clearly in the 

following manner: 

2e  
2z. 
1 n+ 	3.1444N 1/2 

	

G. 	+ 	
. 	a.(e-1-1/2  )-2 cote .Gn+  z 	 1/2 t 1j 	 i ij 	j j 

e lsine j  

- 1/2 

	

- j (Gib 	cotej  B. (Gib 1/2 
) 3 	1j 

z. 	n  
2D 

t1 
	3 No. ) 

	

GI./  + 	j 	13 	8i  (Gr.l. ' - ) 	2Gr.1  A t 	ij 	z. 	1 13 	ij 
e 2-sine 

1 13 1 13 

2zi  
+ e 	sin2e.Gr cote

j  9j l  
(T?

j 
 ) +9 (Tr./.3) J 	i 1 

(3.3.18) 

similarly, equation (3.3.17) becomes: 

2z. 	9 	tihn-1.- 1/2 	N  
2e 1  _n+1 	' 	n+1, 	n+11 

At 	13 	zi 	
a . (G. 1.3 	13 ) 	zG.. 1 

e sine. 

	

1 	(G.. 1 13 
n+1 ) ) + a. 1 13  

2z. 	a. (tpr.it 	[ 
2e 1  n+ k 	13  	n+ 	 n+ 

	

G.. 	.(G. . 2 	- 2 cot8 .G. 	2  
At 	13 	 Z . 	 J 1J 	 3 13 

e sine. 
3 

+92. (e+. 1/2  ) - cote.a . (G
n+
., 

	

13 	3 3 	13 

2z. 	2 
+ e 	1  sine. Grpotla . 3. (T1.14.- 	) + a. (Tx./.4.- 1/2  ) 	(3.3.19) 

	

3 	3 3 13 	13 

Equation (3.3.18) can be expanded into sets of simul-

taneous equations of the following form: 
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n+ 1/2 	 n+ 1/2 , C .Pn+1/2 	+ C .P. 	+ C .P. 	= D. C13 
1,j-1 	2j 1,j 	3j 1,j+1 

where 

Dn 	
li 
 P. 	. + C P. . + c P. 	+ C4 

 
1j 2i 1,3 	3i 1+1,j 	41j 

(3.3.20) 

(3.3.21) 

for i=2,3. . . . , in and j=2,3 . T  . . ,jn, where in + 1 

and jn + 1 are the total numbers of grid lines in the z and 

8 directions, respectively, and P is a general working 

variable substituted in place of the values of G. 

Similarly, equation (3.3.19)6n be expanded into 

sets of simultaneous equations of the form: 

1 

C 	P +1 	+ C .Pn+1  . 	+ C' 3i 
Pn+1  
i+1,j = D

n+ ;- 
. 	2  

1i

n 

i-1,j 	2i 1,j 	1 (3.3.22) 

where 

n+J, 1 n+ 	n+ 	+ D 	C 	P. 	+ C .P. 	+ C P.n 	+ Cn+1/2 1 	1i 1,j-1 	2j 1,j 	3j 1,j+1 	4ij 	(3.3.22) 
• 

As described before, since it does not appear to be 

possible to find a single system of finite-difference 

equations which possesses the transportive property over 

the entire space-time region of interest, four separate 

systems of equations corresponding to the signs of the two 

variable coefficients of the convective terms, must be used. 

This has been achieved by the use of weighting factors coz  

and co in the first upwind differencing of the first order 

derivatives in the non-linear convective terms. According 
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to the signs of the variable coefficients, backward or 

forward difference equations would be used. 

With the above remarks, the coefficients of equations 

(3.3.20) to (3.3.23) for backward , forward and central 

differences (in general w=0, w=1, and w=0.5, respectively) 

may be expressed as follows: 

Cli  = -b4i  - KGii  Ai(kpij) (1-wz) 	(3.3.24) 

C2j = x-I-'--. + 2ak + 	 A KG1. 	(4.1ij 	3 
)(1-2wz-2kcot8.) 	(3.3.25) j i  i 

C3j = -b3j + KGij  Ai 1  (e.3)wz 	(3.3.26) 

Ca  = b2i  - KGijAj  (L1)11j) (1-we) 	(3.3.27) 

C21 = -/--7 	?a,-1-7. + 	 A. KG.. 	(I4 )(1-2w8-2h) 1j j 	1 	(3.3.28) 
1 

C. 	= b. 	+ KG. .A j ' (tb..)w- 	 (3.3.29) ii 	li 	13 13 0 

4j 	i = b + KG A. Cli 	j 1(LPij 	) (1-wz) 	(3.3.30) 

1 	1 	2 	n+ 1/2 c2j = —X. - ak2 	KG..A. (q).. 	)(1-2w -2kcote.) 	(3.3.31) 13 1 	13 	Z 	. 	3 1 

n+ C3i  = b3i  - KGijAi(kPij 	)wz 	(3.3.32) 

1 	 k cli  = -b2i  + 	n+ 	(0 ) (1- 0) 
13 3 13 	

(3.3.33) 

 
C2i =  X 

1 	 2 
2 	1 

KG.
i 
 of  (el- 	)(1-2wo-2h) 	(3.3.34) .' 1 4. ah 	ij 

1 	 l C3i  = -bli 	13 3 	13 - KG..A.(q)..n+ i  )6.)e 	(3.3.35) 

and,in general: 

C4ii 	Gr cote.h A.(T..) + kA. (Ti j ) 	 (3.3.36) 13 	3131  

n+ k 



KG..= lj h3ij 

(3.3.43) 

(3.3.44) 

KTij= CR  hlij  

CR 
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In the calculation of the variable coefficients 

(3.3.24) to (3.3.36), the most up to date values of the 

relevant variables are used. 

The other coefficients used in the finite-difference 

equations derived so far are defined as: 

b11 = 11 
1 — a 

1 1 
- --) 2h (h2 h 

1 	1 	1 
b 	= — ( 	+ 	 ) 2i a h2  2h)  

1 	1 	1 
b3j = 	` 	- 2k' 

1 	1 	1 b . = — ( 	+ 4] a k2 2k)  

a _ 2 + k2 
h2  

aAt  X.  .1 	2z. 
2 e 1  

(3.3.37) 

(3.3.38) 

(3.3.39) 

(3.3.40) 

(3.3.41) 

(3.3.42) 

where 
z. 1 	1 . C = 	 and 	= e sin8. R 2ahk hnj 	3 

It should be mentioned that the coefficients (3.3.37) 

to (3.3.41) are constants at each grid point and need to 

be computed only once. It will be seen in section 3.3.4 

and 3.3.5, that the coefficients (3.3.37) to (3.3.44) are 

also used in finite-difference representation of the energy 

and stream function equations. 
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3.3.4 Finite-Difference Representation of the Energy Equation  

As mentioned earlier in chapter 2, both the vorticity 

transport and the energy equations are partial differential 

equations that are elliptic with respect to the space 

variables and parabolic with respect to time. Therefore, 

the same method of solution can be used for both equations. 

Thus, Peaceman and Rachford's alternating direction implicit 

method is used to solve the energy equation. 

The energy equation, equation (3.3.2), in finite-

difference form for the time-step n to n+ 1/2 in the e-

direction can be written as: 

2z 
(Ti

1/4) + 	 a 1 
Pr   Pr e 	i; 	. (k1)i  ) 3.(Ti  n 	j 	z. 	j 	j 	)  

e 1  sinej  

a 

	

- 
3  
. (e ) a (T 

lj 	i ij
) 

 

n+ 1/2 
= 	. ) + 	(T . . ) + a2. (Tn+ 	) + cot0.3 	(T. 	) (3.3.45) . .3 1 13 	3 	1j 

and for time-step n + xi to n+ 1, in the z-direction, the 

energy equation becomes: 

1 	n r Pr e
2z 
 a (T.. + I ) + 	 D . (LUT  +. 	) a . (Tip .

n+ ), 2  ) n 13 	z
P  	

1 . 	13 	17 1 e sine 

1 

	

a 	
n+ 1/2

) 3 	(Tip 	
) 

	

j lj 	i  

n+1 	n+1 	n+ 	n+ 
= g (T.. ) 	) 	2  ) 	COte.a.(T.. 2  ) (3.3.46) 13 	1 13 	13 	3 13 

Equation (3.3.45) can be expressed more clearly in the 
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)-cot8.3.(T1.11-  	) 

	

At 	13 	z 
i 	 7 . 	3 1J 	J 1J 	J 1J 

e sine. 
J 

_ 2Pr e2zi n 	Pr 	i3 ) a
1  (. Lli

n
. 

	

T 	+ 	3. (T.)+2P. (Tr.' . ) +a. (Tr! .) (3.3.47) 
A4.,. 	13 	z. 

1 	1 13 1 13 1 1J 
e sine. 

Similarly, equation (3.3.46) becomes: 

22.  
a. (Lii.. 	) 2Pr e 1  n+1 Pr 3 13 	n+1 	n+1 	n+1 a. (T. )- 92. (T.. ) — a. (T. ) 

	

A t 	ij 	z. 	1 ij 	x 13 	1 ij 
e lsine. 

J 
22. 	1 tihn+ 1/2 1  

	

2Pr 	e 1  n+ h Pr'l‘wij 	' 	n+ 15 	
(T' 

1/2 = 	T.. 	B. (T.. 	)+ a2. (T.. 	) 
A t 	1.] 	z. 	j 17 	j 13 

e 'sine. 
J 

1/2 

	

+ cote.3 
 a. (T.. n+ 	) 	(3.3.48) 3 	13 

Equations (3.3.47) and (3.3.48) can be expanded into 

sets of simultaneous equations of the following form: 

Equation (3.3.47) becomes: 

n+ 1/2 	n+ k 	n+ 1/2 
F .P. . 	+ F .P. . 	+ F 

Pi ,j+1 
 = R. 

17 1,3-1 	2j 1,3 	33 1,3+1 	3 

where, 

R
3   = F11 

P1 -1 ,3.  + 21 P1,J 
+ F 31  P1 +1,3 

Equation (3.3.48) becomes: 

n+1 ' n+1 ' n+1 	n+11 F 	P. 	.+F .P 	. + F .P. 	= R. 
li 1-1,3 2i i,3 	3i 	1+1,3 	1 

(3.3.49) 

(3.3.50) 

(3.3.51) 

where, 

n+1/2 

	

R. 	=F I Pr.1- 1/2 	. 114. 1/2 	.Pri+ 1/2  

	

1 	1J 1,
4 	+ F 
i-1 	23P 
	+ F 
I,j 	33 1,j+1 (3.3.52) 

following manner: 

2z. T 

	
+  t din 

2Pr e 	1 	n+ 1/2 	Prui diji  a.(Tr11-  1/2 )_32 (Tr.11- 1/2 ..  
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The variable P is a general working variable substituted 

for the T values or G values as with previous part. 

The coefficients of equations (3.3.49) to (3.3.52) 

for the backward, forward, or central difference approxima-

tion may be expressed as follows: 

Flj = 
-b3j 	13 1 -PrKG..A. (LP r.'. ) (1-u'z )  13 

P 	2  F2j 	.X = -- + 	+ PrKG.j  Ai  (tJ )(1-20)z) 

	

.r ak2 	1 1 

+ PrKG..A. 	i O3 F3j 	- b4j 	13 	j)  z 

Fli = bl . 13  A. O
n ) (1-0e) 

F2i = Pr 
	2 	+ PrKG. A (4)n i3  

.) (1-20e) 

	

a2 	ij j  

F3i  = b2i+ PrKGij  Aj(q_j)we  

p
lj 

11.- 
) (1-wz) b3j+ 	

ij 13 1 

F 	Pr 	2 	n+1/2 
23 x. 	ak2 	PrKG..13 	) (1-2o)  13 

1 	n+1/2 F3j  = b4j  - PrKG..A1.(4).. )6) 13 13 z 

,,n+1/2, = -Icon+ 	) (1-wz) 
F. 	13 3 13 

Pr 	2  
F2i 	ah2 	

n+1/2 - PrKGijAj(tPij  )(1-2we) 
i 

=  

-b 	1/2)co 2i 	13 3 13 	8 
F 
3i 

(3.3.53) 

(3.3.54) 

(3.3.55) 

(3.3.56) 

(3.3.57) 

(3.3.58) 

(3.3.59) 

(3.3.60) 

(3.3.61) 

(3.3.62) 

(3.3.63) 

(3.3.64) 

The other coefficients used in the above finite- 

difference equations are the same as derived in section 3.3.3. 
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3.3.5 Finite-Difference Representation of the Stream 

Function Equation  

In the-present work the stream function equation,. 

equation (3.3.3), is solved at any time-step by successive 

over-relaxation. It should be recalled that time does not 

appear explicitly in the stream function equation. 

The finite-difference form of the stream function 

equation is derived by first expressing equation (3.3.3) 

for the n-th time-step as follows: 

2z, 
D2(0n  ) -a.(e.) + a2.(e.) - cote.a.(e.)-- e "L'Gn  

	

i 	13 	3 13 	3 3 13 	ij 

(3.3.65) 

By the use of the coefficients (3.3.37) to(3.3.41), equation 

(3.3.65) is expanded as follows: 

	

0r1 	b .+b 0. .+b 0. 	+b 0. 	-c.Gn i+1,3 2i 1-1,3 3j 1,j+1 43 1,j-1 1 i,j 

where 

 

2z. 
(3.3.66) 

(3.3.67) - c = 
a 

 

A relaxation factor, cod, may be defined as follows: 

437:;4-1 -47:; 4-0)0(07i -07:;) 
	

(3.3.68) 

where the contour r refers to the number of successive 

point iterations performed at the n-th time-step, and 
n,r+1 

is the value of the stream function at the n-th time- 

step after r + 1 iterations. The stream function values, 

n r+1 0.'. 	, are resubstituted into equation (3.3.66) which is 
1.7 
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then resolved with equaiton (3.3.68) until there is no 

significant difference between the stream function values 

0
n,r+1 and 4,n,r  
1,J 	1,J 

3.3.6 Solution of the Systems of Algebraic Equations  

The sets of simultaneous equations (3.3.20), (3.3.22), 

(3.3.49) and (3.3.51) are solved byThomaesmethod as presented 

by Bruce et al (1953) and Lapidus (1962). As stated by 

Bruce et al (1953) "while the method is equivalent to plain 

Gaussian elimination, it avoids the error growth associated 

with the back solution of the elimination method, and also 

minimizes the storage problem in machine computation". 

The method may be summarized as follows. 

Consider a system of n simultaneous equations with the 

following form: 

C21P1 + C31P2 	= D1  

	

ClrPr-1 + C2rPr + C3rPr+1 = Dr 	r=2,3, . . . . , n-1 

	

ClnPn-1+C2nPn = D
n 
	(3.3.69) 

In the present work the coefficients C and D are known 

scalar quantities which are dependent on time as defined 

earlier in this section. In matrix notation, the set of 

equations (3.3.69) can be written as: 

C P = D 	 (3.3.70) 



and 

C3r-1 
gr -1 Wr -1 

(3.3.71) 
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The matrix of coefficient C, is a tridiagonal matrix. 

To solve equation (3.3.69), the variables, Pl, . . .Pn_i  are 

eliminated from the first equation onward by putting, 

W1 = C21 

Wr = C2r - Clrqr 
	r=2,3, . . . ,n 

D1  X1 	1 

Xr = Dr-C  1rXr-1  
Wr 

r=2,3, . . ,n 	(3.3.72) 

By substitution, equations (3.3.71) and (3.3.72) transform 

the set of equations (3.3.69) to the following form: 

Pn = Xn 

Pr = Xr - qrPr+1 	r=1,2, . . . n-1 (3.3.73) 

If the quantities W,q, and X are calculated in order 

of increasing values of r, it follows that relation (3.3.73) 

can be used to calculate the variable P in order of decreasing 

r, that is Pn, Pn-1' 	P2' Pl.  

3.4 FINITE-DIFFERENCE REPRESENTATION OF THE BOUNDARY AND 

INITIAL CONDITIONS 

The boundary and initial conditions imposed on the system 

for the case of free convective heat transfer from a solid 

sphere are given in chapter 2. In this section the 



i=1,j 	az  

atp 
= u ; re-- 	=° % 

 

i=1,j 	i=1,j 
= 0 %  

30 
• 
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boundary and initial conditions derived in section 2.6 are 

expressed in finite-difference form. 

On consideration of figure 3.2.1 in which the index i 

varies from 1 at the surface of the sphere to IN1 at the 

outer boundary, and the index j varies from 1 at the upstream 

axis of symmetry, e= 0, to JN1 at the downstream axis of 

symmetry, = n, then the boundary and initial conditions can 

be expressed in finite-difference form as follows: 

3.4.1 Boundary Conditions  

(a) Time-independent boundary conditions: 

(i) Sphere surface: 

The time-independent boundary conditions at the sphere 

surface are expressed by equations (2.6.1) and (2.6.3). 

The finite-difference forms of these conditions may be 

expressed as follows: 

At z=0 (i=1): 

a2 t1) 	
= 0 ; 	T 	=1 
	(3.4.1) 

dU i=1,i 	
i=1,j 

(ii) Axis of symmetry: 

The time-independent boundary conditions at the axis 

of symmetry,8 = 0 and e= n, are expressed by equations 

(2.6.4), (2.6.7), and (2.6.9) . The finite-difference 
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forms of these conditions may be written as follows: 

At 6= 0 (j=1): 

=0 /  
32 	1 

• 9111  I 	= 0 • — 	= az 	az2 
4) 

	0;  i,j=1 	i,j=1 	i,j=1 

= 0 • 	 = 0 ; GI 	= 0 	(3.4.2) sel i,j=1 	i,j=1 	i,j=1 

yl 

Ate =n (j=JN1): 

a 2 tpl = 0 I • -11) 	= 0 e• a z  i,j=JN1 	i,j=JN1 	i,j=JN1 
4)1 =0; 

ae i,j=JN1 

ako = 0 • =0% GI 	=0 (3.4.3) 
i,j=JN1 	i,j=JN1 

(iii) Outer boundary: 

The time-independent boundary conditions at the outer 

boundary for the dependent variables,q) ,C and T, are expressed 

by equations (2.6.11). The finite-difference forms of these 

conditions are as follows: 

For z = z (i=IN1): 

= 0 ; GI 	=0 	T1 	=0 
i= 	= ° ;C  IN1,j 	 i=IN1,j 	i=IN1,j 	i=IN1,j 

(3.4.4) 

(b) Time-dependent boundary conditions: 

(i) Sphere surface: 

The modified vorticity, G, at the sphere surface is 

given by equation (2.6.2) which is: 
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(e 2z  G)1 = Ilk az' s 
(3.4.5) 

 

   

Equation (3.4.5) in finite-difference form is as follows: 

where 

2 n 
- ( ) az' i=1,j (3.4.6) 

	

. 	C. 	. sine. 

	

Gi=1,3 	1=1,3 	3 

The surface vorticity is computed using a Taylor's 

series expansion of the stream function in the vicinity of 

the surface. For example; the values of the stream function 

at points (i=2,j,n), (i=3,j,n,) and (i=4,j,n) are: 

dir.1 	+ h a 	+ h2 D2 	4- h3  a3 	+ h
4 

D
4 4

- 	A.n  'i=2,j '1=1,j 	az 	2! az' 	3! az' ' 4! az4  

(3.4.7) 

a 	(2h)2 a2 	(2hPa' 	(2h)4 a
4 

ty. 	=0). 	+ 	 n 

	

1=3,j 1=1,j 	az 2! az' 	3! az'
+ 
 4! az 

(3.4.8) 

(. 	=. 	
'" 	

+ (3h) 2 	a2 2 +  (3h) 3 a 3 	(3h)  4 	o4 

-1= 	
.h 

	

4,j 4'1=1,j 	az 	2! 	az' 3! az' 	4! 	aZ4+.. tPri  

(3.4.9) 

All the derivatives in equations (3.4.7) to (3.4.9) are 

calculated at the surface, i=1. But from the boundary 

conditions given by equation (3.4.1) both kpand 	are zero pz 

at the surface. 

If third and higher order derivatives are neglected, 
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then from equation (3.4.7), one obtains: 

a20 n 	2 dri 
(tir) i=1,j = h' '2,j 

or 

Gn 	. = -2 LIP . 1=1,3 h2  2,3 (3.4.10) 

If third order 

relationship 

132 LPI n 

or 

G1. 	. 	- =1, 3 

= 

12  

derivatives 

is obtained 

are retained, then the 

from equations 	(3.4.7) 

1 (8e 	-e 	.) 

following 

and 	(3.4.8): 

(3.4.11) 

	

2h2 	1=2,j 	1=3,J 

	

(84.11. 	. 	.) 

	

=2, 3 	1=3, 3  2h 

When the third and the fourth order derivatives are retained, 

equations (3.4.7) to (3.4.9) give the following expression: 

2 kp n 
(--y)   (108 	- 27 n 	+ 40n 	.) az i=1,j 18h2 	tq=3,j 	1=4,3 

or 

	

1 	n 

	

 Gi=1,j h' 	2-w  tiji=2,j 	i=3,j 
_L 
 9 vi=4,j )  (3.4.12) 

The first approximation (3.4.10) is the simplest but the 

least accurate. More accurate are the approximations (3.4.11) 

and (3.4.12). Al-Taha (1969) used approximation (3.4.11). 

Rafique (1971) used approximations (3.4.11) and (3.4.12). 

He found that for any Reynoldsnumber the differences between 

the final values of the surface vorticity using approximations 

(3.4.11) and (3.4.12), were very small. For example at a 
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Reynolds number of 500, the difference was only about 5%. 

Therefore, it is advantageous in terms of computing time, 

to use the approximation (3.4.11). 

(ii) Axis of symmetry: 

Along the axis of symmetry: 

8TI = 0 
30 6=0,n 

(3.4.13) 

The temperature along the axis of symmetry can then be computed 

using a Taylor's series expansion of the temperature in the 

angular direction, 49, in the vicinity of the axis of symmetry. 

The procedure is the same as that used to approximate the 

surface vorticity. 

Along the axis of symmetry 0=0, a forward difference 

scheme is used, while along the axis of symmetry 8=n , a 

backward difference scheme is used. The reason for using the 

different schemes can be explained with the help of figure 

3.4.1 as follows: 

For example, consider the temperature T41at grid ,  

point (4,1) along the axis of symmetry 0=0. The temperature 

T4,1 at grid point (4,1) has to be approximated in terms of 

the temperatures at grid points (4,2), (4,3), . . . . (4,m): 

where m is the degree of the polynomial. Therefore: 

T4,1  = F (T4,2  , T4,3  , . 	. , T4,m). 

In order to do this a forward difference scheme has to be used. 
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However, the temperature T4 ,0171  at grid point (4,JN1) 

along the axis of symmetry 0=n , has to be approximated in 

terms of the temperatures at grid points (4,JN1-1), (4,JN1-2), 

. . (4,JN1-m'), where (m1 +1) is the degree of the polynom-

ial. Therefore: 

T 	F(T =  , Tn 4,JN1 	4,JN1-1 	4,JN1-2' 	- - T4,JN1-m 

Hence along the axis of symmetry e=71 , a backward 

difference scheme must be used. 

8=TE 
j=JN1 

j=JN1-1 

j=JN1-2 

j=JN1-3 

SPHERE 

SURFACE 

J 

j=4 

j=3  

j=2 

j=1 
1=1 1=2 i=3 1=4 i=5 	0=0 

i 
FIGURE 3.4.1 MESH STRUCTURE AROUND THE SPHERE 
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The temperature along the axis of symmetry 0=0, may 

be approximated as follows:.  

retaining third order derivatives: 

n1 n 	n 
1 T. 	= 	

(Ti ,j=2 
	T. ,j=1 3 1,j=2 1,j=3)  

k.,  
retaining fourth order derivatives: 

(3.4.14) 

1 Ti,j=1 = 11 (18T. . 	- 9 	+ 2 	) 	(3.4.15) 1,J=4 	
Ti,j.3 	Ti,j.4  

retaining fifth order derivatives: 

mn  3 (48TH 	- 36T7 	+ 16 n - n 
j'i,j=1 25 Ti,j.2 	,j=3  16TH 	Tipi=5) 

(3.4.16) 

Along the axis of symmetry 8=n , the temperature may 

be approximated as follows: 

retaining third order derivates: 

= (T 1 n . 	. Ti,j=JN1 3 1,3=JN1-1 Ti,j=JN1-2
) 

retaining fourth order derivatives: 

(3.4.17) 

T 	
1 (18 - 9 n + 2 n i,j=JN1 = 11 	1T17,j=JN1-1 	Ti,j=JN1-z 	Ti,j=JN1-3) 

(3.4.18) 

retaining fifth order derivatives: 

Tn . 	1 -36Tn  . 	+16 n --(48T. 	 -3T. . i,J=JN1 25 1,JN1-1 i,J=JN1-2 Ti,j=JN1-3 1,3=JN1-4) 

(3.4.19) 
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However, computational experiments showed that the 

final values of the late-time steady state average Nusselt 

numbers were only weakly dependent on the order of the 

approximations used for temperatures along the axis of 

symmetry, so that in all cases the use of equation (3.4.15) 

and (3.4.18) was considered to be satisfactory, both from a 

computational and an accuracy point of view. 

3.4.2 Initial Conditions 

The initial condition used for free convective heat 

transfer from a solid sphere, is exiaiessed by equations 

(2.6.12) and (2.6.17) in Chapter 2. The finite-difference 

forms of equations (2.6.12) and (2.6.17) may be expressed as 

follows: 

At t=0 (n=0) 

too = 0  . ro = 0 G? = 0 
1  i,j 	1,3 

= (
zi=IN1 	-z. 

T 1,j 	
e 	) e 	1  

e
zi=IN1 -1 	e

zi=IN1 -1 

for all values of j. 

Equations (3.3.20), (3.3.22), (3.3.49), (3.3.51), 

(3.3.66) and (3.3.68) together with the associated coefficients, 

boundary and initial conditions, are the set of finite-

difference equations that are solved by the computer programme 

given in appendix F. 
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3.5 STABILITY AND CONVERGENCE 

If W(z,8,t) is the exact solution of the initial value 

problem as described in chapter 2, and w n is the solution 

of the finite-difference equations derived in section 3.3, 

then the error of approximation ewn  is given by: 

e 	=1,j 	w((i-1)h,(j-1)k, nAt) 	(3.5.1) 

1,j 

Now one may ask two questions (Richtmyer 1957): 

1. What is the behaviour of c 	as n to for wn 

fixed values of the mesh sizes, h,k and the time-step At? 

2. What is the behaviour ofe_n  as h,k and At 4- 0 for 
wi,j  

a fixed value of time? 

The first question is one of numerical stability and, 

in general, the numerical method is considered to be stable 

if e 	remains bounded. The second question is one of wn 
ifj 

convergence and the method is said to be convergent ifewn  

1,7 

tends to zero. 

The only convergence theorem that exists for partial 

differentail equations is for linear equations with constant 

coefficients; Lax's equivalence theorem which, as stated 

by Richtmyer (1957), says that a stable computation of the 

differential problem will yield results which converge to the 

solution of the consistent differential equation . 
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Richtmyer gives the development of the theory for a class 

of linear equations with constant coefficients, but points 

out that the theory is inadequate for complicated problems 

such as that studied in the present work. 

Stability is a necessary condition for the solution 

of the difference problem to converge to the solution of the 

differential problem. Convergence is essential for the 

results to be meaningful in that the fundamental idea of an 

approximation is that the error can be made as small as one 

wishes. The importance of the concept of stability has 

been explained by many authors. As a general rule, a 

stability criterion involves a restriction on the time-step 

in terms of space increments , h and k, and the parameters 

of the system of equations. In the case of non-linear 

problems the stability criterion may also involve the dependent 

variable. 

A useful method of stability analysis is based upon the 

use of difference equations in which all the coefficients 

are positive. In such cases the boundedness of the solution 

can be tested directly on the positivity of coefficients 

(Hellums 1960, Gosman 1969) and a sufficient condition for 

stability can often be established by inspection. This 

method may be described as follows. 

By application of the upwind differencing technique 

described in section 3.2.1, the explicit finite- difference 

forms of the vorticity transport and energy equations can be 

written in the following general form: 
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= a i 

	

W 	. + a . n 	Wn  . 	.W. . +1,3 	21W  i-1,j+ a  3j i,34-1 + a 43 1,3-1 

+ 
a5i3i fj 

.W 	+ dn  . 	(3.5.2) 
if3 

For equation (3.5.2) to be convergent, the following 

conditios must be satisfied: 

(1) Each coefficient, a, must be positive 

(2) The sum of the coefficients, a, must be less than 

or equal to unity at every grid node. 

(3) The sum of the coefficients, a, must be less than 

unity at least at one grid node, and 

(4) The variation of the coefficients, a, and d, from 

one cycle of iteration to another, must be sufficiently small. 

As an example, the above conditions will be considered 

in relation to the energy equation. 

The energy equation for a first order simple explicit 

scheme is given by equation (3.3.10). By the application of 

upwind differencing to the convective terms of equation (3.3.10) 

this equation can be written in explicit finite-difference 

form as follows: 

n+1 

	

T. = a .Tn 	.+ a .T. 	.+ a Ti.+ a Ti.+ a .T. 1,j 	li i+1,) 	21 1-1,3 	33 1,j+1 	43 1,j-1 	5i3 1,j 

where: 
2X4  

a
li 	

= 	-` (Pr KG..p.(4)..) w+ b) Pr 	17 17 
el 2i 

 
2X. 

a21 . 	Pr = 	1  (-Pr KG..A. (
13 .)(1-(08) 

Ion  13 3 	+) 

(3.5.3) 

(3.5.4) 

(3.5.5) 
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2 X. 
a4j  = 7-3  (Pr KGijAi(tPij) (1-0)z) + b3j) 	(3.5.7) 

2X. 
= 1+ -717-, (-Pr KGi jAi  N/11 j) (1-20z)+pr K Gi jA j  (eij) (1-2(.08) -1 ) 

(3.5.8) 

The other coefficients used in the above finite-difference 

equation are given by equations (3.3.37) to (3.3.44). 

Now the difference equation for the case that both 

velocity components uz and 	are are positive, that is 

aLp n 	ti) n (- 8®).  . > 0 and az 	. >0, is considered. Since the 1,3 	a 1,3 

velocity components are positive, the terms in which the 

e 1
ct, variable coefficients, (- a--).

n 
 ,
. and (-az1). ,., appear as 3 	a3 

coefficients, the convective terms, are approximated by 

backward differnces as described in section 3.2.1, i.e. 

w =a)
z 
= 0. Therefore, the coefficients of equation (3.5.3) 

become as follows: 

2X. 
a
li+ 

= Pr b2i 

2X. 
1   

a2i 	( -Pr KG..A. (in-) + b1  ) + 	Pr 	13 3 13  

. 
2 X. 
1 b  

a3j4. Pr 4j 

2 X, 
a4j+ 	-1747.  ( Pr KGijA i  (4)7j) + b3j  ) 

2X 
a5ij+ = 1+ Pr 

(- Pr 	 A KG..e3.) 13 i ( 1 +PrKG..A.(e.)-1.) (3.5.13) 13 3 13 

where the subscript + indicates that both variable coefficients 

aq) n 	n (- -5-5)i,j  and ( .7,7)4,4  are positive. 

(3.5.9) 

(3.5.10) 

(3.5.11) 

(3.5.12) 
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The conditions (1) to (4) described above are now 

examined with reference to equation (3.5.3) whose coefficients 

are given by equations (3.5.9) to (3.5.13). 

(i) Since both variable coefficients,(- -76)i,i  and 

IL1))n , .s well as the coefficients (3.3.37) to (3.3.44) 
az i,j 

given in section 3.3.3, are positive, therefore, all the 

coefficients of equation (3.5.3) are positive provided 	0, 
or 

1+ —pi.
ij 1(Lu1] 	

.. + PrKG..A.(q)) -1 ) 	0 
13 3 13 

(3.5.14) 

BysubstitutionofXi andIW
ij 

given by equations 

(3.3.41) to (3.3.44), inequality (3.5.14) can be re-arranged 

to give: 
n 	n 

A (4). .) 	A.(4). ) 
1 Ns 	j 1r) 	1 	1 lj 	1 	2 	1 1 

+ 	 + 	( + ) 
At
+

4'7 — 	2z. 	 2z. 	z. 
i Pre 

h2 k2 
2ke 3-sine. he

zi 
	the lsine, ke 

3 	 3 

(3.5.15) 

The relationships between the velocity components and 

the stream function are given by equations (2.5.3) and (2.5.4) 

as follows: 

	

1 	34) uz 
= - 

	

2z 	
98 

e sine 

u = 
8 	az 

2z 
e sine 

The finite-difference approximations of relations (2.5.3) 

1 	aq) 

and (2.5.4) can be expressed as: 

n 
= - 3 	3  (u z ij 	2z, 

2ke lsinO. 

(3.5.16) 



( 	)1. 
n - 	2zi  

2he sine. 
3 

(3.5.17) 
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By substitution of equations (3.5.16) and (3.5.17) 

into inequality (3.5.15), the following restriction for the 

time-step, At, is obtained: 

n 
()

n  
Oaz)  iZ 	ij 	2  

2z 	h2 „. 
/ 1 	1 

TE-4P 
1 

he 	ke 	Pr e 

(ii) It can be proved that the sum of the coefficients 

a+ is always equal to unity except on the outer boundary. 

From relations (3.6.11) to (3.6.15) one can write: 

2x4  

ali 
+ 	+ a3. + a43+  . + a5 3+  .. = 1+ --±(b11 .+b2i +b33 .+b43 .-1) + 
a2i

+ 	3+ 	Pr 

But from equations (3.3.37) to (3.3.41). it follows that: 

b11 . + b2i  + b33  . + b4j
= 1 

therefore: 

ali + a 	+ a . + a . + 	= 1 
+ a5ij+ 2i+ 	33+ 	43+  

(iii) For the third condition, consider the outer 

boundary where: 

Tn . - 0 IN1,3  

Thus, since the temperature values on the right hand side of 

equation (3.5.3) are positive, then in order for the boundary 

condition to be satisfied the coefficients must be equal to zero. 

(3.5.18) 
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(iv) Finally, the condition (4) cannot be answered 

clearly since there is no way of defining mathematically what 

is meant by 'sufficiently small', instead, one must learn 

from experience; and experience has shown that this condition 

is usuali fulfilled. 

It can be shown that the restriction (3.5.18) holds 

irrespective of the sign of the velocity components, uz  and 

at!) 	akp ue,(the variable coefficients, (- 76) and (Ti)), if absolute 

values are used in the inequality, and if the difference 

equation (3.5.3) are changed according to the sign of the 

varaible coefficients through weighting factors, wz  and we, 

.as prescribed in section 3.2.1. Therefore, the restriction 

on the time-step given by the inequality (3.5.18) can be 

generalized for all values of variable coefficients as follows: 

I 	u  )n.  
1 	z 	8 13  

At, 	i 

	

zi 	Pre 	

2 	1 	1 --> z ( 	+ 	) 	(3.5.19) 2zi  h2 k2 

	

he 	k e  

Restriction (3.5.19) is the stability criterion for 

the solution of the explicit finite-difference form of the 

energy equation. For Prandtl numbers, Pr, greater than 

unity, Pr in equation (3.5.19) should be replaced by unity 

(Hellums 1960). 

It is clear that by appropriate use of the weighting 

factors, wz and w8 
 as prescribed in section 3.2.1, conditions 

(2), (3) and (4) are always satisfied. 

In the most general problem the sign of the velocity 

0 
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components uz  and %may be expected to vary in the space-

time grid. Hence for stability, different equations must be 

used in different parts of the space-time grid depending on the 

sign of the velocity components. This method of dealing with 

such first order partial derivatives is due to Lelevier accor-
sk_ 

ding to Richtmyer and has been used for the convective terms 

of the present work. 

In the present complex case of the solution of the 

equations which describe time-dependent free convective heat 

transfer form a solid sphere, a method of direct analysis of 

the stability of the vorticity transport equation does not 

exist. However, since the energy equation and the vorticity 

transport equation are interdependent, the time-step must 

be chosen such that both equations are satisfied. 

None of the stability analyses are adequate for practical 

computational purposes. In fluid dynamics and heat transfer 

problems, the stability restrictions must be applied locally 

which is time consuming. In practice an unstable scheme of 

calculation usually yields meaningless numbers which overflow 

the accumulator of the computer after a relatively few time-

steps. Therefore, a precise stability criterion is not 

essential. 

For the study of non-linear equations, according to 

Roache (1972), Hicks (1969) suggests that the problems of 

stability criteria should be neglected and that attention should 
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be directed to problems of convergence. Fundamentally, it 

is required that the solution of the finite-difference 

equation should approach the solution of the partial diff-

erential equation so that stability considerations are of 

secondary interest. However, a great deal of numerical 

experimentation is often necessary in order to obtain a 

convergent solution. 

3.6 COMPUTATIONAL PROCEDURE 

The computational algorithm is based on the assumption 

that the entire numerical fields of the temperature, vorticity, 

and stream function are known at any given time, nAt, and 

that it is required to determine the complete flow field at 

the next time-step, that is time (n+1)At. 

The primary function of the main computational procedure 

for the first half time-step is to solve equation (3.3.49) 

for the temperature values at time (n+h)At, to solve equation 

(3.3.20) for the vorticity values at time (n+k)At, and to 

solve equation (3.3.68) for the stream function values at 

time (n+k)At. For the second half time-step the procedure is 

to solve equation (3.3.51) for the temperature values at time 

(n+1)At, to solve equation (3.3.22) for the vorticity values 

at time (n+1)At, and to solve equation (3.3.68) for the stream 

function values at time (n+1)tt. The solution procedure, 

starting from the initial condition, t=0 or n=0, will now be 

described as follows: 

(i) For a particular solution of the time-dependent 
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equations for free convective heat transfer from a solid 

sphere, the Grashof number, Gr; the Prandtl number, Pr; 

the mesh sizes, h and k; The time-stepf At; the radius of 

the outer boundary, r.  (z.  ); the relaxation factor and 

convergence criterion for the stream function,w ande the 

relaxation factor and convergence criterion for the surface 

vorticity, wG  and cG; and the relaxation factor and convergence 

criterion for the temperature along the axis of symmetry, 

wT  andeT, are specified. The time-independent boundary 

conditions are also specified. 

(ii) The initial values of the stream function and 

vorticity are set to zero throughout the flow field, according 

to equation (3.4.20). The initial value of temperature is 

obtained from equation (3.4.21). 

(iii) Having determined the initial stream function 

values, the initial vorticity values, and the initial temp-

erature values throughout the flow field, the temperature 

and vorticity values are updated by one-half of a time-step. 

Gig

In general the temperature valuesTi,j  and the vorticity values 

. are updated from the n-th time-step to the (n+k) time-3 

	

+k 	+k steptogivethevaluesofT.n 	and G.n  . . The updating is 

	

1,3 	itj 

done by solving the set of simultaneous equations, equation 

(3.3.49) to give the temperature values and the set of simult-

aneous equations, equation (3.3.20) to give the vorticity values. 

The velues of the stream function at the previous time-step, 

the n-th time-step, are used for this part of the procedure. 

However, the temperature values used in equation (3.3.20) 

to obtain obtain vorticity values G.n 	are the newly calculated 1,3 
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values obtained from equation (3.3.49). 

(iv) The stream funciton values at the (n+k) time-

step are determined using successive over-relaxation in order 

to solve equations (3.3.66) and (3.3.68). The iterations 

are continued until the velues throughout the flow field 

satisfy the following convergence criterion: 

r+1  tj 	 <6 i j 	1.  (3.6.1) 

where r is defined in section 3. 

(v) Having determined the temperature values and the 

stream function values throughout the domain at the (n+k) time-

step, the temperatures along the axis of symmetry are calculated 

using equations (3.4.15) and (3.4.18), respectively. The 

surface vorticity values are determined using equation (3.4.11). 

(vi) In order to calculate the temperature values and 

the vorticity values at the new (n+1) time-step, the temperat-

ure values along the axis of symmetry and surface vorticity 

values at the (n+1) time-step are required, since they are 

unknown, a first approximation is made by assuming that the 

temperature values along the axis of symmetry and the surface 

vorticity values are the same at the two time levels (n+1/2) 

and (n+1). Therefore, the temperature values along the axis 

of symmetry and surface vorticity values at the (n+k) time-

step are used as initial estimates of time-level (n+1). The 

temperature values and the vorticity values at the (n+1) time- 



136 

step are then obtained using the sets of simultaneous equations, 

given by equations (3.3.51) and (3.3.22), respectively. 

For this stage of calculation, the stream funciton values 

available from the (n+k) time-step are used wherever required. 

Tip

However, for solution of equation (3.3.22) for the 

vorticity values, the most up to date values of temperature 

. 	are used wherever required. 1,3 

(vii) Having determined the vorticity values at the (n+1) 

time-step, the stream function values at the (n+1) time-step 

are obtained using successive over-relaxation, SOR, sweeps 

using equations (3.3.66) and (3.3.68) until criterion (3.6.1) 

is satisfied. The stream function values at the (n+k) time-

step are used as a first approximation in the application of 

the successive over-relaxation method. 

(viii) Having determined the temperature values and 

the stream function values at the (n+1) time-step, the 

temperature values along the axis of symmetry and the surface 

vorticity values at the (n+1) time-step, are redetermined using 

equations (3.4.15), (3.4.18) and (3.4.11) respectively. 

(ix) The newly calculated temperatures along the axis 

of symmetry, and the surface vorticity values are compared 

with the corresponding values assumed previously during stages 

(vi) and (vii). If the differences are unacceptable, the 

procedure is repeated from stage (vi), until the following 

convergence criteria are satisfied: 

n+1,r+1 	n+1,r - T. 	< Ti,j 	1,3 	T 
(3.6.2) 
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at all points along the axis of symmetry, (j=1 and j=JN1),and: 

I

n+1,r+1 	e 	
CE Gi=1,j 	1.1,j 	G 
	 (3.6.3) 

In repeating the procedure from stage (vi) the latest avail-

able values of the stream function, 41
n+ , and the temperatures 

1 =, 	T along the axis of symmetry, Ti 	and n+ and the ,+ji,j=JN1'  

surface vorticity values, G 	are used. i=n+11  ,j   

In order to prevent the solution from diverging and to 

minimize the number of iterations required for the convergence 

of the temperatures along the axis of symmetry and the conver-

gence of surface vorticity values, the changes in the values 

of temperature along the axis of symmetry and the changes in 

the surface vorticity from one iteration cycle to the next 

are limited by means of the following relaxation factors: 

n+11  r+1 = Tn+1r +w (T  n+1  - Tn+1r) T. . 1,J T 1,3 1,] (3.6.4) 

for j=1 and j=JN1, and: 

n+1,r+1 	n+1,r 	n+1 	n+1,r) 	(3.6.5) Gi=1,j 	= G 	+w (G i=1,3 G 1=1,j Gi=1,j 

where n+1  Ti,j=1  
• 

n+1 
Ti,j=JN1 

and G. 1=1,7 are the latest 

available values of the temperature along the axis of symmetry, 

8 =0 and ® = Tr, and of the surface vorticity values obtained 

from equations (3.4.15), (3.4.18) and (3.4.11) 

For the next iteration, the values of Tn+1'r+1 
i,j=1  

+1 +1 	 n+1 r and G. 1 .r  are used as the values of T. .1  1=1,3 	 1,3=1 
+1,r and Gin=1,j , respectively. 

, respectively. 

n+1 r+1 ,T 	' i,j=JN1 
Tn+1
1 r . 	.1  ' 	,J=JN1 ' 
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(x) The newly calculated values of the temperature, 
n+1 	n+1 	 n+1 Ti,j 	the vorticity, G. ., and the stream function,On+l, 

 1,j 	 1,3 
over the entire flow field now replace the 'old' values, 

i.e. the (n+1) time-level becomes the new n-th time-level 

and the entire procedure is repeated form stage (iii) for 

the next time-step. 	ti 

(xi) At certain time intervals, the isotherms and 

the stream function and vorticity contours around the solid 

sphere are plotted and the surface pressure; frictional, 

formed, and total drag coefficients are calculated using the 

equations derived in appendicesB and C. The local and average 

Nusselt numbers are calculated using the equations derived 

in appendix D. 

(xii) As there is no simple way of establishing from 

one time-level to another whether or not the simulation 

is proceeding satisfactorily and also to gain greater insight 

into the numerical technique used, a high degree of user 

participation is necessary. This is achieved by transferring 

the flow field at the end of a certain number of time-steps 

on to a magnetic tape. The values of the temperature, vort-

icity and stream function are printed-out at this stage in 

order to check the results obtained and to consider whether 

any changes in the programme are necessary for the next run. 

At the start of the next run the data are read-in and manipu-

lated according to decisions of the user. 

(xiii) A constant time-step, t, is used over any one 
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run. The whole algorithm provides freedom to change the time-

step, At, whenever desirable, i.e. either to minimize computing 

time for a complete solution over the entire time domain or 

to follow rapid changes in the flow field. 

(xi's) This procedure is repeated for several computer 

runs until only small changes occur in the values of the local 

Nusselt number calculated from one time-step to the next. 

At this stage the solution is assummed to have reached the 

late-time steady state condition. 
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CHAPTER 4 

RESULTS AND DISCUSSION 



141 

4.1 INTRODUCTION 

The set of differential equations, initial and boundary 

conditions describing time-dependent free convective heat 

transfer from a solid sphere to a stagnant Newtonian medium 

were derived in chapter 2. In chapter 3 the differential 

equations were replaced by finite-difference equations and 

a set of non-linear algebraic equations were also developed 

in chapter 3. 

Based on these procedures, the computer programme 

listed in appendix F was developed so that the stream 

function, vorticity and temperature distributions could 

be generated for a wide range of Grashof and Prandtl numbers. 

From these distributions other quantities which characterize 

the problem are calculated. These quantities are the local 

and average Nusselt numbers, the dimensionless pressure 

distribution at the sphere surface and the drag coefficients. 

In this chapter the computer results for Grashof numbers, 

Gr, of 0.05, 1, 10, 25, 50 and 125 and a Prandtl number of 

0.72; for Grashof numbers of 1250 and 12500 and a Prandtl 

number of 10; and a Grashof number of 50 and a Prandtl 

number of 100 are presented and discussed. 

Once the Grashof and Prandtl numbers have been specified 

there are nine arbitrary constants which must also be 

specified before a solution can be obtained. These constants 

are the mesh sizes, hand k; the time-step, At; the radius of 
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the outer boundary, rco; the convergence criterion and the 

relaxation factor for the stream function, 64)  and 	the the 

convergence criterion and the relaxation factor for surface 

vorticity, eG  and wG; and, finally, the convergence 

criterion and the relaxation factor for the temperature 

along the axis of symmetry, eT  and (UT. 

The relaxation factors and convergence criteria are 

chosen on the basis of computational experiments such that 

the computational time is minimized while retaining accep-

table accuracy. The optimum values of the constants used 

are given in table 1. 

4.2 FACTORS WHICH INFLUENCE THE ACCURACY OF THE SOLUTION 

Once a numerical solution has been obtained the most 

important question is; what is its accuracy? This mainly 

depends on round-off errors, truncation errors, and errors 

introduced by approximation of the boundary conditions. 

(1) Influence of round-off errors 

Round-off errors refer to the errors resulted 

from the rounding or truncation of the results of individual 

arithmetic operations on a computing machine. They arise 

because of the finite word length of digital computers. 

Analysis of round-off errors present in the final results 

of a numerical computation, usually termed the accumulated 

round-off errors, is difficult, particularly when the 
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algorithm used is of some complexity. This is because 

round-off errors introduce aberrant results; for example 

floating point addition and multiplication give rise to 

commutative round-off errors which are neither associative 

nor distributive, as has been shown by Forsytt (1970). 

In the present work numerical calculations were made 

using a CDC7600 computer which works with fourteen decimal 

places. In view of this, it is probable that round-off 

errors generated from the integration of the equations 

during the time-dependent period did not affect the results 

appreaciably since fourteen decimal places was well beyond 

the accuracy which was desired in this work. However, as 

it is explained later in this thesis, this is not the case 

once the solution has reached the late-time steady state 

condition. Although an awareness of round-off error is 

important, it is generally true'that, for numerical solution 

of partial differential equations of multi-dimensional fluid 

dynamics problems, the mesh increments are necessarily 

coarse enough for truncation errors to be the dominant 

errors (Roache 1972). 

(ii) Influence of truncation errors 

Truncation errors refer to the errors incurred 

by not retaining all the terms in a Taylor's series expan-

sion. The accuracy which can be obtained with any finite-

difference method of solution is largely dependent on the 
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truncation errors. 

A particular kind of truncation error exhibited by 

some finite-difference represenations of convective terms 

is called 'false viscosity' (Wolfshtein 1967 and Rafique 

1971). 	error has often been analysed in the past 

under various names, such as 'numerical, artificial, or 

psuedo viscosity', or 'numerical or artificial diffusion'. 

This error has the effect of introducing into the equations 

an additional 'false diffusion' of the dependent variables. 

This false diffusion is primarily associated with the one-

sided difference schemes which are used to represent the 

convective terms in transport equations. The effect of 

false diffusion is not restricted to the present method. 

All methods in which one-sided difference schemes have been 

used may hp pxpenfpa to suffer from it. 

The interpretation of the false diffusion in complex 

cases of multi-dimensional viscous non-linear problems is 

difficult. Arguments have been made to the effect that 

accurate solutions are not possible unless the false viscosity 

introduced is much less than the real viscosity of the fluid 

(Rafique 1971). But the practical situation is not so bad. 

The solutions obtained by other authors for their multi-

dimensional problems indicate the success of one-sided 

difference schemes. 

From a formal examination of Taylor's series expansion 
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it may be concluded that central difference scheme is more 

accurate than upwind one-sided difference schemes. On the 

other hand, upwind difference schemes have several advantages 

in comparison with central difference scheme. In particular, 

upwind difference schemes are inherently more stable. Also, 

one-sided difference schemes possess the transportive property 

as described in chapter 3. The transportive property is as 

important as physically significant as the conservative 

property. In this sense, at least upwind difference schemes 

are more accurate than schemes with spaced-centered derivatives 

of the convective terms. 

The choice between central difference scheme and one-

sided difference schemes is, therefore, a compromise between 

truncation errors and transportive errors. Although it is 

true that truncation errors dominate the other errors, it is 

also true that upwind difference schemes are usually used 

because they ensure stability and rapid convergence; with 

this in mind, the reduced accuracy may seem an acceptable 

penalty. 

It appears then, that usable solutions are obtainable 

using one-side difference schemes (Gosman 1969 and Roache 

1972), although the effects of pseudo viscosity must be 

considered when assessing the accuracy of the results. 

Truncation errors tend to zero as the mesh intervals 

tend to zero. Generally, the finer the mesh size; the 
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smaller will be the truncation errors and the faster will 

be the convergence of the numerical solutions. However, the 

reduction of mesh size will increase the number of grid 

points and, hence, the number of simultaneous equations 

to be solved. This in turn, will result in an increase 

in the amount of computer storage and computing time 

required to solve the finite-difference equations. Therefore, 

optimum values of the mesh sizes in space and time have to 

be used such that the truncation errors, and the errors 

which can be related to truncation errors, can be made 

acceptably small. 

(iii) Influence of boundary conditions 

Inaccuracies may be introduced through the choice 

of boundary condition to be satisfied. In particular; as 

mentioned earlier, equation (3.4.10) is less accurate than 

equation (3.4.11) for the calculation of the vorticity at 

the sphere surface. 

The radius of the outer boundary affects the accuracy 

of the solutions obtained. For instance; if the outer 

boundary is taken to be too close to the sphere surface it 

affects the vorticity gradients around the sphere which in 

turn, change the values of the drag coefficients. 

4.3 FACTORS WHICH INFLUENCE THE ECONOMY OF THE CALCULATION 

PROCEDURE 

Accuracy is not the only factor which must be considered 
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in the evaluation and design of a numerical method. The 

total cost of obtaining solutions must be also considered. 

The factors which influence the economy of the present problem 

were found to be: the choice of time-step, the choice of 

convergence criteria for the stream function, voriticity 

and temperature, the choide of relaxation factors associated 

with these convergence criteria and, finally, the total 

number of mesh points (i, j). 

In the present work values for all of the above factors 

were found on the basis of numerical experiments, and values 

were selected in order to achieve a balance between accuracy 

and economy. 

(i) Choice of time-step 

The time-step was chosen such that it would provide 

convergence of the numerical solution with acceptable accuracy 

and keep the total computing time within reasonable limits. 

Values of the time-step used to obtain solutions for 

different Grashof and Prandtl numbers are given in table 1. 

(ii) Choice of convergence criterion 

The computation time required at every time-step 

is proportional to the number of iterations which must be 

performed before the solution is said to have converged at 

that time-step; that is, when the effective change in the 

vorticity, stream function, or temperature values between 
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one iteration cycle and the next is acceptably small. What 

is acceptable is of course related to the accuracy desired. 

If higher accuracy is required, more iterations have to be 

performed, so that computing time becomes excessive. Therefore, 

L 
	 once again, a balance must be made between the accuracy 

required and computing time used. There is little point in 

using excessive computing time when little is gained in the 

accuracy of the solution. 

In the present work, the following convergence criterion 

was used: 

 

wn,r+1 _ wn,r 
1,7 	1,7 

  

where the function W, can either be the stream function, the 

surface vorticity, or the temperature along the axis of 

symmetry, and r represents the number of iterations performed. 

Values of the convergence criteria used for different Grashof 

and Prandtl numbers solutions are given in table 1. 

(iii) Choice of relaxation factor 

The rate of convergence of an iterative solution 

procedure can sometimes be improved by over-relaxation since, 

the variation in the W's from one iteration cycle to the 

next can be forced to be greater than that which would be 

obtained in the normal iteration process. For this reason, 

where possible, over-relaxation was used. In the present 
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work, the following relaxation -scheme was used: 

= wn,r 	(wn - wn,r) 
i,j 	i,j W i►j iti 

where w is a relaxation factor. 

On' the basis of numerical experiments, it was found 

that for the stream function, the optimum value of the 

relaxation factor varied between 1.5 to 2, while for the 

surface votticity, a relaxation factor of less than 1 had 

to be used in order to avoid divergence of solution. For 

the temperature along the axis of symmetry, the optimum 

value of the relaxation factor was found to be in the 

region of 1.1 to 1.5. The values used for the relaxation 

factors are given in table 1. 

(iv) Choice of mesh size 

As mentioned earlier, a reduction of the mesh 

size reduces the truncation errors but increases the number 

of grid points (i, j) at which the stream function, vorticity 

and temperature have to be calculated. This means that the 

number of simultaneous equations to be solved increases as 

does the computing time required for each iteration cycle. 

Therefore, once again, a compromise must be made between 

the accuracy required and the amount of computing time used. 

In the following sections of this chapter, numerical 

solutions of the equations which describe free convective 

heat transfer from a solid sphere are presented. Solutions 
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are given for Grashof numbers(based on the radius of the 

sphere) of 0.05, 1, 10, 25, 50, 125 and a Prandtl number 

of 0.72. Solutions are also given for a Grashof number 

of 1250 and a Prandtl number of 10; for a Grashof number 

of 50 and aPrandt1 number of 100; and for a Grashof 

number of 12500 and a Prandtl number of 10. It will be 

seen later in this chapter that the late-time steady state 

values obtained for the average Nusselt numberi Nu, were 

found to agree reasonably well with those obtained by other 

workers. However, there are no data available for comparison 

with other results obtained in the present work such as the 

distributions. of the surface pressure, the total drag 

coefficients; form drag coefficient and viscous drag coeffi-

cient. Therefore, in the absence of a rigorous error 

analysis and lack of sufficient data, the question of how 

the solutions should be assessed was crucial. 

To examine the accuracy and reliability of the late-

time steady state values obtained in the present study of 

the numerical solutions for time-dependent free convective 

heat transfer from a solid sphere, the author obtained 

numerical solutions of the time-independent equations for 

a short range of Grashof numbers. The method of solution 

was a simple explicit method in which a central difference 

scheme was adopted for the diffusion terms of the equations 

and an upwind difference scheme for the convective terms. 

The result of this study are presented in table 2. As will 
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be seen later in this chapter, the late-time steady state 

results presented in table 1 and the steady state results 

presented in table 2 are in reasonable agreement. 

Before presentation and discussion of the results 

obtained from the numerical solutions of the time-dependent 

equations, it is necessary to explain how a solution was 

assessed to have reached its late-time steady state 

condition. 

A numerical simulation of a fluid dynamics or heat 

transfer problem is generally said to have reached its 

late-time steady state condition when the effective changes 

in the dependent variables from one time-level to the next 

become relatively small. Mathematically, the late-time 

steady state values of the dependent variables must remain 

unchanged as the integration proceed further with time. 

On the basis of numerical experiments in the present 

work, however, it was found that once a numerical simulation 

had reached its late-time steady state condition, integration 

III 

	

	
for a further period of time fluctuated values of the depen- 

dent variables. Eventually the values become physically 

unrealistic. This was mainly a result of the accumulation 

of round-off errors. 

As explained earlier in this chapter, the magnitude of 

the round-off errors associated with any numerical algorithm 

depends upon the computing machine used, the particular 
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sequence of machine operations used, and the values of the 

various numbers involved in these machine operations. Integ-

ra tion of the equations during the time-dependent period 

gives rise to round-off errors which are random in behaviour 

since the time-dependent variables are changing with time, 

and as explained in section 4.2 it is unlikely that round-

off errors during this period can appreciably affect the 

solution. However, further integration of the equations, 

once the solution has reached late-time steady state 

condition gives rise to round-off errors which are regular 

in behaviour since the dependent variables are no longer 

changing with time, thus, all the necessary arithmetic 

operations for carrying out the integration from one time-

level to the next are performed on round-off errors which 

are propagated and accumulated throughout this part of the 

computation in a regular manner. As a result, the late-time 

steady state values obtained earlier for the dependent 

variables will be affected by the round-off errors if 

simulation is continued. 

To avoid the undue accumulation of round-off errors in 

the present work, whenever the effective changes in the 

values of the dependent variables became relatively small, 

it was assumed that the simulation had reached the late-

time steady state condition. The late-time variations with 

time of the flow characteristics are presented in tables 7 

to 13. 
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The numerical results which will be presented in the 

following sections of this chapter and in tables 1 to 13 

are in terms of the dimensionless variables defined in 

chapter 2; and in all the contour drawings the direction 

of flow along the axis of symmetry is from right to left. 

4.4 NUMERICAL SOLUTION FOR A GRASHOF NUMBER OF 0.05 

AND A PRANDTL NUMBER OF 0.72 

The development with time of the streamlines starting 

from a motionless flow field around a heated solid sphere 

in conditions of free convective heat transfer at a Grashof 

number, Gr, of 0.05 and a Prandtl number, Pr, of 0.72 is 

shown in figures 4.4.1a to 4.4.1d. As mentioned earlier, 

the solid sphere was assumed to be enclosed in another 

spherical shell, namely Lhe ouLei Luulidaiy. It wab alb() 

assumed that the temperatures of the solid sphere and the 

spherical shell are uniform and unchanging with time but 

at two different levels. The temperature distribution 

within the fluid changes with time and the fluid near the 

hotter boundary, the sphere surface, tends to rise and that 

near the colder boundary, the outer boundary, tends to move 

downwards. The rising and descending currents generate a 

circulatory flow pattern as shown by the streamlines plotted 

in figures 4.4.1a to 4.4.1d. From the stream function 

contours, it can be observed that the fluid velocity increases 

from zero to its late-time steady state value. 
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FIGURE 4,4.1 b STREAMLINES AROUND THE SPHERE AT 

GRASHOF NUMBER OF 0.05 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t = 2 0 
( 

FIGURE 4.4 .1 a STREAMLINES AROUND THE SPHERE AT 

GRASHOF NUMBER OF 0.05 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t = 12 



155 

FIGURE 4 . 4.1 d STREAMLINES AROUND THE SPHERE AT 
GRASHOF NUMBER OF 0.05 AND OhANOTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t =36 

FIGURE 4.4.1c STREAMLINES AROUND THE SPHERE AT 

GRASHOF NUMBER OF 0.05 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME pt =28 
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Late-time values of the local Nusselt number, the 

surface vorticity, and the surface pressure are presented 

in table 7. From this table one can observe that the 

above variables become almost independent of time during 

the dimensionless time period of 28 to 36. 

Figures 4.4.2a to 4.4.2d show the development with 

time of the isotherms around the solid sphere. The time-

dependent energy equation was solved using the radial 

steady state conduction solution as an initial condition. 

In the limiting case of a fluid at rest then in the absence 

of convective effects, the influence of the heated sphere 

extends uniformly in all directions. However, even at as 

small a Grashof number as 0.05, a comparison of the tempera-

tures at distances far away from the solid sphere with the 

initial values reveals that there is weak convective process 

far away from the sphere surface. As a result, the tempera-

tures in the upstream region of the solid sphere are less 

than those predicted by the pure conduction solution. 

Figure 4.4.2d shows the late-time steady state temperature 

distribution at a dimensionless time of 36. 

The generation and diffusion of vorticity into the 

fluid around a solid sphere in conditions of free convective 

heat transfer can be seen in figures 4.4.3a to 4.4.3d which 

show the vorticity distribution as a function of time. 

From these figures one observes that the vorticity values 

are relatively small and that they are distributed almost 
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FIGURE 4.4.2h ISOTHERMS AROUND THE SPHERE AT 

GRASHOF NUMBER OF 0.05 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME . t =20 

FIGURE 4.4 .2a ISOTHERMS AROUND THE SPHERE AT 

GRASHOF NUMBER OF 0.05 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t =12 
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FIGURE 4.4 .2dISOTHERMS AROUND THE SPHERE AT 
GRASHOF NUMBER OF 0.05 AND PRRNOTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t =36 

FIGURE 4.4.2c ISOTHERMS AROUND THE SPHERE AT 

&IMHOF NUMBER OF 0.05 AND PRANOTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t =28 
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FIGURE 4.4 .3b VORTICITY DISTRIBUTION AROUND THE SPHERE AT 

GRASHOF NUMBER OF 0.05 AND PRRNDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t =20 

FIGURE 4.4.3a VORTICITY DISTRIBUTION AROUND THE SPHERE AT 

GRASHOF NUMBER OF 0.05 AND PRRNDTL NUMBER OF 0.72 

DIMENSIONLESS TIME . t =12 
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FIGURE 4.4.3d VORTICITY DISTRIBUTION AROUND THE SPHERE AT 

GRASHOF NUMBER OF 0.06 AND AtANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t =36 

FIGURE 4.4.3c VORTICITY DISTRIBUTION AROUND THE SPHERE AT 

GRASHOF NUMBER OF 0.05 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t =28 
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symmetrically about an imaginary plane normal to the axis 

of symmetry of flow and passing through the equator of the 

sphere. This may be explained as follows. At a Grashof 

number of 0.05 and a Prandtl number of 0.72, the fluid 

velocity is small and therefore, the convection of vorticity 

is small. The late-time steady state vorticity distribution 

at a dimensionless time of 36 is shown by figure 4.4.3d. 

The temperature gradients normal to the sphere surface 

are evaluated from the temperature distributions. The 

temperature gradients are then used to calculate the local 

Nusselt number, Nue,  and the average or overall Nusselt 

number, Nu, as described in appendix D. Figure 4.4.5 shows 

the variation of the local Nusselt number with dimensionless 

time, t. During the early stages of simulation, the 

difference between local Nusselt numbers at the front and 

rear stagnation points of the sphere is relatively small 

showing the weakness of the effects of convection. However, 

as 'simulation continues, the convective effects increase 

very slightly and the difference between the local Nusselt 

numbers at the front and rear stagnation points of the solid 

sphere increases. 

Figure 4.4.8 shows the variation of the average Nusselt 

number with time. Since the steady state conduction, in a 

finite space (equation 2.6.17), is used as an initial 

dimensionless fluid temperature, the average Nusselt number 

starts from a value of 2.085 and increases continuously 
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towards its late-time steady state value. Table 3 shows a 

comparison of the late-time steady state values of the 

average Nusselt number obtained in the present study with 

the results obtained by other workers from their analytical 

and experimental studies. It is seen that the late-time 

steady state average Nusselt number calculated in this 

work for a Grashof number of 0.05 and a Prandtl number of 

0.72 is slightly greater than the value obtained by Hossain 

(1966) from his analytical solution. The value of the 

average Nusselt number is, however, slightly underpredicted 

in comparison with experimental measurements. 

The variation of surface vorticity, Cs, with time is 

plotted in figure 4.4.7. From this figure one observes 

that'the surface vorticity is fairly symmetrically distri-

buted about an imaginary plane placed between the upstream 

and downstream regions of the flow field. This is because 

the dominant mode of transfer close to the surface is 

diffusion as explained earlier. From figure 4.4.7 and table 

7 it can also be seen that as simulation continues the 

surface vorticity increases until its late-time steady 

state value is attained. 

From the stream function, vorticity and temperature 

distributions the dimensionless surface pressure is evaluated 

as described in appendix B. The variation with time of 

dimensionless surface pressure, Ke, is shown in figure 4.4.6. 

From figure 4.4.6, it can be seen that as time increases, 
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the dimensionless surface pressure increases over the 

upstream region of the sphere and decreases over the down-

stream region of the sphere. 

The behaviour of the drag coefficients with time is 

shown in figure 4.4.4. Both the pressure or form drag 

coefficient, CDp, and the viscous or frictional drag 

coefficient, CDE" show a smooth increase with dimensionless 

time, t. The reason why the drag coefficients increase 

with time may be explained as follows. 

Consider equations (C.2.5) and (C.3.5) which are 

derived in appendix C and are as follows: 

CDP = fKe  sin 28 de 

CDr 4fi sn2  8 de i 
0 

(C.2.5) 

(C.3.5) 

As the dimensionless time increases, the dimensionless 

surface pressure increases over the upstream region of the 

sphere and decreases over the downstream region of the 

sphere. The surface vorticity also increases with time. 

Therefore, both the form drag coefficient and the viscous 

drag coefficient increases with time. 

The main results obtained from the numerical solution 

of the time-dependent problem are presented in table 1. 

Table 2 shows the main results of the time-independent 

problem. A comparison between tables 1 and 2 for a Grashof 

number of 0.05 and a Prandtl number of 0.72 shows the results 
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obtained from the time-dependent and time-independent 

solutions are in good agreement. 

4.5 NUMERICAL SOLUTION FOR A GRASHOF NUMBER OF 1 

AND A PRANDTL NUMBER OF 0.72 

Figures 4.5.1a to 4.5.1d and figures 4.5.2a to 4.5.2d 

show the streamlines and isotherms respectively, as a 

function of time around a solid sphere in conditions of 

free convection. Figures 4.5.1d and 4.5.2d show the stream 

function and temperature contours at the late-time steady 

state condition obtained at a dimensionless time, t, of 15. 

As can be seen from figures 4.5.2a to 4.5.2d, during 

the early stages of simulation heat diffuses radially into 

the surrounding fluid, but as the transfer of heat continues 

the heated region extends downstream. As the dimensionless 

time approaches to its late-time steady state value, the 

thickness of the heated layer over the upstream region of 

the solid sphere decreases, while over the downstream region 

of the solid sphere, it increases. At the late-time steady 

state condition, the thickness of the heated layer increases 

with the angle, e, measured from the front stagnation point. 

Figures 4.5.3a to 4.5.3d show the vorticity distribution 

as a function of time around the solid sphere. As can be 

seen from figure 4.5.3a, during the early stages of integra-

tion, the vorticity distribution around the solid sphere is 



168 

FIGURE 4 .5.1b STREAMLINES AROUND THE SPHERE AT 
GRASHOF NUMBER OF 1 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME , t =7 

FIGURE 4.5.1a STREAMLINES AROUND THE SPHERE AT 
GRASHOF NUMBER OF 1 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME P t =4 



169 
I  

FIGURE 4.5.1d STREAMLINES AROUND THE SPHERE AT 
GRASHOF NUMBER OF 1 AND PRANDTL NUMBER OF 072 

DIMENSIONLESS TIME 	t =15 

FIGURE 4.5.1c STREAMLINES AROUND THE SPHERE AT 

GRASHOF NUMBER OF 1 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t =11 
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FIGURE 4.5.2b ISOTHERMS AROUND THE SPHERE AT 

GRASHOF NUMBER OF 1 AND PRANOTL NUMBER OF 0.72 

DIMENSIONLESS TIME . t =7 

FIGURE 4.5.2a ISOTHERMS AROUND THE SPHERE AT 

GRASHOF NUMBER OF 1 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME . t = 4 
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FIGURE 4.5 .2d ISOTHERMS AROUND THE SPHERE AT 

GRASHOF NUMBER OF 1 AND PRRNDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t =15 

FIGURE 4.5.2c ISOTHERMS AROUND THE SPHERE AT 

GRASHOF NUMBER OF 1 AND PRRNDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t= 11 
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almost symmetrical about an imaginary plane placed between 

the upstream and downstream regions of the flow field. This 

is because during the early stages of simulation, the fluid 

velocity is small so that the effects of convection are 

small. However, as simulation continues the effects of 

convection increases and vorticity is convected more and 

more downstream. Figure 4.5.3d shows the vorticity contours 

at the late-time steady state condition. 

Figure 4.5.5 shows the variation of the local Nusselt 

number with time for a Grashof number of 1 and a Prandtl 

number of 0.72 when steady state conduction is used as an 

initial dimensionless fluid temperature. During the initial 

stages of heat transfer, the local Nusselt number at the 

front stagnation point does not differ much from the local 

Nusselt number at the rear stagnation point. This is 

because intially, the velocity is small and heat transfer 

takes place mainly by unsteady state conduction. However, 

as time increases, the convective effects increase and the 

variation in the local Nusselt number becomes more pronounced. 

Generally, the local Nusselt numbers around the upstream 

region of the sphere increase steadily towards their late-

time steady state values while those around the rear part 

of the sphere decrease at first and then increase as the 

late-time steady state condition is approached. This 

behaviour can be seen from figure 4.5.5 for a Prandtl number 

of 0.72. 
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FIGURE 4 .5.3bvaRricITY DISTRIBUTION MOUND THE SPHERE AT 

GRRSHOF NUMBER OF 1 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t = 7 

FIGURE 4.5.3a VORTICITY DISTRIBUTION AROUND THE SPHERE AT 

GRRSHOF NUMBER OF 1 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t= 4 
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FIGURE 4 .5.3d VORTICITY DISTRIBUTION AROUND THE SPHERE AT 

GRASHOF NUMBER OF 1 AND PANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME . 1=15 

FIGURE 4 .5.3c VORTICITY DISTRIBUTION AROUND THE SPHERE AT 

GRASHOF NUMBER OF 1 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t =11 
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The behaviour of the drag coefficients with time is 

shown by figure 4.5.4. The variation with time of the form 

drag coefficient, CDp, the viscous drag coefficient, Cu, 

and total drag coefficient, CDT, follows a similar pattern 

to that shown by the Grashof number of 0.05 solution. Both 

the form drag and the viscous drag coefficients show a smooth 

increase with time. 

The variation with time of the surface vorticity is 

shown in figure 4.5.7. From this figure one observes that 

the surface vorticity, for all times is almost symmetrically 

distributed about an imaginary plane situated between the 

upstream and the downstream regions of the flow. This shows 

that although convective effects are noticeable away from 

the sphere surface (figure 4.5.3d) the dominant mode of 

vorticity transport near to the surface is diffusion. 

Figure 4.5.6 shows the variation of surface pressure 

with time. The behaviour with time of the surface pressure 

follows a similar pattern to that shown by the solution 

obtained for a Grashof number of 0.05. From figure 4.5.6 

one observes that as time increases, the dimensionless 

surface pressure increases over the upstream region of the 

sphere and decreases over the downstream region. 

The main results obtained from the numerical solution 

of the time-dependent problem for a Grashof number of 1 and 

a Frandt1 number of 0.72 are presented in table 1. 
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From a comparison of the solutions obtained for Grashof 

number of 0.05 and 1, both for a Prandtl number of 0.72, one 

observes that the total dimensionless time, t, taken before 

late-time steady state conditions are reached is shorter in 

the case of a Grashof number of 1 than for a Grashof number 

of 0.05. This may be explained as follows: 

The Grashof number represents the ratio of the buoyancy 

forces to the viscous forces. Therefore, an increase in the 

Grashof number represents an increase in the buoyancy forces 

relative to the viscous forces thus increasing the fluid 

velocity so that the effects of convection are increased. 

The increased convection currents lead to an increase in the 

rate of heat transfer from the sphere to the medium and will 

shorten the total dimensionless time taken to reach late-time 

steady state condition. 

Table 8 represents the late-time values of the local 

Nusselt number, the surface vorticity, and the surface pressure 

as the simulation approaches the late-time condition . From 

this table it can be seen that the relative changes in the 

above variables during the dimensionless time period of 12 

to 15 become relatively small indicating that the simulation 

has almost reached steady state condition . 

The variation of the average Nusselt number with time 

is shown in figure 4.5.8. The average Nusselt number starts 

from a value of 2.085 and increases continuously towards its 
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late-time steady state value which calculated to be 2.34. 

As can be seen from table 3, the late-time steady state 

average Nusselt number obtained in the present study for a 

Grashof number of 1 is in reasonable agreement with the 

available experimental measurements. Table 2 shows the main 

results obtained from the numerical solution of time-indepen-

dent problem. As can be seen from tables 1 and 2, the 

results obtained from the solutions of the time-dependent 

and the time-independent equations for a Grashof number of 

1 and a Prandtl number of 0.72 are also in reasonable 

agreement. 

4.6 NUMERICAL SOLUTION FOR A GRASHOF NUMBER OF 10 

AND A PRANDTL NUMBER OF 0.72 

The development with time of circulatory flow at a 

Grashof number of 10 and a Prandtl number of 0.72 can be 

seen in figures 4.6.1a to 4.6.1d which show the streamlines 

around the solid sphere as a function of time. As can be 

observed from figures 4.6.1a and 4.6.1d during the early 

stages of simulation the streamlines follow a similar pattern 

to those shown by the solutions obtained for lower Grashof 

numbers. However, as simulation continues, the stream 

function contours are slightly moved downstream. This is 

because the Grashof number in this case is larger than in the 

previous cases so that the ratio of the buoyancy forces to the 

viscous forces is larger than in the previous cases thus increasing 
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FIGURE 4. 6.1b STREAMLINES AROUND THE SPHERE AT 
GRASHOF NUMBER OF 10 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t =1.5 

FIGURE 4.6.1a STREAMLINES AROUND THE SPHERE AT 
GRASHOF NUMBER OF 10 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME . t =0.5 
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FIGURE 4.6.1d STREAMLINES AROUND THE SPHERE RT 
GRASHOF NUMBER OF 10 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t =6 

FIGURE 4.6.1c STREAMLINES AROUND THE SPHERE AT 

GRASHOF NUMBER OF 10 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME I, t =3.5 
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effects of convection and the rate of heat transfer. As a 

result, the thickness of the heated layer adjacent to the 

upstream surface of the sphere is reduced. The increased 

velocity of the fluid passing the sphere causes the fluid 

in the immediate vicinity of the heated layer to be draged 

downstream so that the streamlines are shifted slightly 

from the upstream region to the downstream region of the 

flow field. This is shown in figure 4.6.1d. 

Figures 4.6.2a to 4.6.2d show the development of the 

isotherms around the solid sphere•. The steady state conduction 

solution was used as an initial condition for the time- 

dependent energy equation. During the early stages of 

simulation, the dominant mode of heat transfer is conduction 

and therefore, the influence of the heated body extends 

uniformly in all directions  . This is shown by figure 

4.6.2a. However, as integration proceeds with time, the 

isotherms begin to become closer to the surface of the 

sphere in the upstream region and to extend further from 

the sphere in the downstream region. The temperature 

distribution at the late-time steady state condition, is 

shown by figure 4.6.2d. 

Figures 4.6.3a to 4.6.3d show the vorticity contours 

as a function of time around the solid sphere. The effects 

of convection in the solution can be seen in the vorticity 

distributic plots. As with the solution obtained for a 

Grashof number of 1, initially diffusion is the dominant 
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FIGURE 4 .6 .2b ISOTHERMS AROUND THE SPHERE AT 

GRASHOF NUMBER OF 10 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t =1.5 

FIGURE 4.6 .2a ISOTHERMS AROUND THE SPHERE AT 
GRASHOF NUMBER OF 10 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME . t =0.5 
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FIGURE 4.6.2d ISOTHERMS AROUND THE SPHERE AT 
GRASHOF NUMBER OF 10 AND PRANOTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t =6 

FIGURE 4.6.2c ISOTHERMS AROUND THE SPHERE AT 

GRASHOF NUMBER OF 10 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t =3.5 
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FIGURE 4 .6.3b VORTICITY DISTRIBUTION' AROUND THE SPHERE AT 
GRASHOF NUMBER OF 10 AND PRANOTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t =1.5 

FIGURE 4 .6.3a VORTICITY DISTRIBUTION AROUND THE SPHERE RT 
GRASHOF NUMBER OF 10 AND PRANOTL NUMBER OF 0.72 

DIMENSIONLESS TIME • t =0.5 
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FIGURE 4 .6.3dVORTICITY DISTRIBUTION AROUNO THE SPHERE AT 

GRASHOF NUMBER OF 10 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME p t =6 

FIGURE 4,6.3c VORTICITY DISTRIBUTION AROUND THE SPHERE AT 

- GRASHOF NUMBER OF 10 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME p t =3,5 
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mode of vorticity transport, as shown by figure 4.6.3a. 

However, after a dimensionless time, t, of about unity the 

effects of convection begin to distort the contours, as 

shown by figures 4.6.3b and 4.6.3c. The late-time steady 

state vorticity distribution obtained at a dimensionless 

time, t, of 6 is shown in figure 4.6.3d. As expected, the 

figure shows that the effects of convection on the vorticity 

contours are more pronounced than those shown by the solution 

obtained for a Grashof number of 1. 

Figure 4.6.5 shows the variation of the local Nusselt 

number with time. The local Nusselt number around the solid 

spheke remains fairly constant during the early stages of 

heat transfer. However, as the convective effects increase 

in magnitude the local Nusselt numbers around the upstream 

region of the solid sphere increase until their late-time 

steady state values are attained. During the same period, 

the local Nusselt numbers around the downstream region of 

the sphere decrease at first but then increase as the late-

time steady state condition is approached. 

The behaviour of the drag coefficients with dimensionless 

time, t, is shown in figure 4.6.4. Initially, both the form 

drag coefficient, CDF, and the viscous drag coefficient, CDF, 

show the same behaviour as those discussed for Grashof 

numbers of 0.05 and 1. But, in the present case, the drag 

coefficients reach their late-time steady state values at 

a dimensionless time of 4. However, as can be seen from 
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table 9, the simulation had to be continued to a longer time 

since small changes in the local Nusselt number, the surface 

vorticity, and the surface pressure still continued to occur 

during the dimensionless time period of 4 to 6. 

Figure 4.6.7 shows the behaviour of the surface vorticity 

with time. The variation of the surface vorticity with time 

follows a similar pattern to that shown by the solution 

obtained for a Grashof number of 1 in that the surface 

vorticity for all time, t, is almost symmetrically distributed 

about an imaginary plane placed between the upstream and 

downstream regions of the flow field. This shows that at 

a Grashof number of 10, the dominant mode of vorticity 

transport close to the surface is diffusion. 

The variation with time of the surface pressure is shown 

in figure 4.6.6. From this figure one observes that as 

simulation continues, the dimensionless surface pressure 

over the upstream region of the sphere increases slowly 

towards its late-time steady state value. While the 

dimensionless surface pressure over the downstream region 

of the sphere continues to decrease until the late-time 

steady state condition is reached. 

The average Nusselt number starts from a value of 2.085 

because of the conduction initial condition used and increases 

continuously towards its late-time steady state value which is 

found to be 2.92. This can be seen from figure 4.6.8. 
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Table 3 shows a comparison of the late-time steady 

state average Nusselt numbers obtained in the present work 

with the experimental measurements of the other workers. 

As can be seen the maximum discrepancy between the value 

of the average Nusselt number for the present case and 

other results for a Grashof number of 10 is about 12%. 

Table 2 shows the main results obtained from the numerical 

solutions of the time-independent equations. It is seen 

from tables 1 and 2 that the results calculated from the 

time-dependent and the time-independent solutions, for the 

present case, are in reasonable agreement. 

It was decided to study the influence of mesh sizes 

and location of the outer boundary on the results. However, 

since these kinds of numerical experiments are expensive 

from a computational point of view, the simulation was 

carried out until the flow field was developed sufficiently 

for comparison purposes but not until late-time steady state 

condition was reached. The influence of the location of the 

outer boundary and mesh sizes on the results can be judged 

from table 4. It was generally observed that for a Grashof 

number of 10 and a Prandtl number of 0.72; for a specified 

location of the outer boundary, the use of coarser mesh 

sizes gives rise to smaller values of the flow characteristics 

than when fine meshes are used. Also, coarser mesh sizes 

were found to cause vorticity fluctuation close to the outer 

boundary. A reduction in the radius of the outer boundary, 
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was found to lead to the prediction of slightly smaller 

values for the flow characteristics such as the average 

Nusselt number, front stagnation pressure and drag 

coefficients. 

Th'e final choice of mesh sizes and location of the 

outer boundary, presented in table 1, was a compromise 

between computing economy and accuracy of results. 

4.7 NUMERICAL SOLUTION FOR A GRASHOF NUMBER OF 25 

AND A PRANDTL NUMBER OF 0.72 

The simulation of the flow field starting from a 

motionless flow field around a solid sphere in conditions 

of free convection at a Grashof number of 25 and a Prandtl 

number of 0.72 can be seen in figures 4.7.1a to 4.7.1d 

which show the streamlines as a function of time. From 

these figures one observes that the stream function _ 

contours show a similar pattern to that discussed for a 

Grashof number of 10. Figure 4.6.1d shows that the stream-

lines at the late-time steady state conditions are displaced 

slightly in the downstream direction. 

Table 10 represents the late-time values of the local 

Nusselt number, the surface vorticity, and the surface 

pressure. From this table one observes that these variables 

become relatively independent of time during the dimension-

less time period of 1.5 to 2.16. 



195 

FIGURE 4 .7 .1b STREAMLINES AROUND THE SPHERE AT 

GRASHOF NUMBER OF 25 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t = 0.5 

FIGURE 4.7.1a STREAMLINES AROUND THE SPHERE AT 

GRASHOF NUMBER OF 25 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t =0.1 
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FIGURE 4.7.1d STREAMLINES AROUND THE SPHERE AT 

GRASHOF NUMBER OF 25 AND FRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t =2.16 

FIGURE 4.7.1c STREAMLINES AROUND THE SPHERE AT 

GRASHOF NUMBER OF 25 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t =1 
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The distributions of isotherms around the solid sphere 

for various dimensionless times, t, are shown in figures 

4.7.1a to 4.7.1d. During the early stages of flow develop-

ment, the thickness of the heated region around the solid 

sphere is almost uniform and heat transfer takes place 

mainly by unsteady state conduction. However, at a 

dimensionless time of approximately 0.5, the heated layer 

of the fluid in contact with the upstream region of the 

solid sphere starts to shrink while the heated layer over 

the downstream region continues to expand. Figure 4.7.2d 

shows the isotherms around the sphere at the late-time 

steady state condition. 

The generation and development with time of vorticity 

around the solid sphere can be seen in figures 4.7.3a to 

4.7.1d which show the vorticity distribution as a function 

of time. During the early stages of simulation, the vorticity 

contours, as shown in figure 4.7.3a, are aimsot symmetrically 

distributed about an imaginary plane placed between the 

upstream and downstream of the flow field. However, as 

integration proceeds with time, the effects of convection 

on the distribution of vorticity become more important than 

the effects of diffusion. As the simulation continues, 

vorticity is convected more and more downstream. This can 

be seen in figures 4.7.3c and 4.7.3d. 

The behaviour of the drag coefficients with time is 

shown in figure 4.7.4. Both the form drag coefficient and 
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FIGURE 4.7.2b ISOTHERMS AROUND THE SPHERE AT 

GRASHOF NUMBER OF 25 AND PRANOTL NUMBER OF 0.72 

DIMENSIONLESS TIME . t = 0.5 

FIGURE 4 7.2a ISOTHERMS AROUND THE SPHERE AT 

GRASHOF NUMBER OF 25 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t =0.1 
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FIGURE 4.7.2d ISOTHERMS AROUND THE SPHERE AT 

GRASHOF NUMBER OF 25 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t =2.16 

FIGURE 4.7.2 C ISOTHERMS AROUND THE SPHERE AT 

GRASHOF NUMBER OF 25 RNO PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t =1 
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FIGURE 4 .7.3bVORTICITY DISTRIBUTION AROUND THE SPHERE AT 

GRASHOF NUMBER OF 25 AND PRANOTL NUMBER OF 0.72 

DIMENSIONLESS TIME • t =0.5 

FIGURE 4 .7 .3aVORTICITY DISTRIBUTION AROUND THE SPHERE AT 

GRASHOF NUMBER OF 25 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t =0.1 
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FIGURE 4 .7.3d VORTICITY DISTRIBUTION AROUND THE SPHERE AT 

GRASHOF NUMBER OF 25 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME , t = 2.16 

FIGURE 4 .7.3c VORTICITY DISTRIBUTION AROUND THE SPHERE AT 

GRASHOF NUMBER OF 25 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	=1 
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the viscous drag coefficient follow the same pattern as shown 

previously by the solutions obtained at lower Grashof numbers. 

As can be seen from tables 1 and 2 the late-time steady state 

values of the drag coefficients obtained from the present 

study for a Grashof number of 25 and a Prandtl number of 0.72 

are in reasonable_agreement with the drag coefficients obtained 

from the numerical solution of the time-independent problem. 

The other quantities shown in these tables, for the present 

case, are also in reasonable agreement. 

Figure 4.7.5 shows the variations of the local Nusselt 

number with time. Since steady state conduction is used as 

the initial condition, the local Nusselt number starts from 

a value of 2.085 which is constant around the solid sphere. 

However, as integration proceeds with time, the convective 

Increase so that the local Nusselt numbers over th,* 

upstream region of the sphere increase continuously towards 

their late-time steady state values while the local Nusselt 

numbers over the rear:part of the sphere first decrease and 

then increase towards their late-time steady state values. 

The average Nusselt number starts from a value of 2.085 

and increases continuously towards its late-time steady state 

value. This is shown in figure 4.7.8 which shows the 

variation of the average Nusselt number with dimensionless 

time. 

The variation with time of the surface vorticity is 

shown in figure 4.7.7. From this figure it can be observed 
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that the surface vorticity values are initially small and 

almsot symmetrically distributed about an imaginary plane 

situated between the upstream and the downstream regions 

of the flow field. As simulation proceeds, the surface 

vorticity values increase but the symmetry of the distribu-

tion remains almost unchanged. This shows that at a Grashof 

number of 25 and.a Prandtl number of 0.72, the dominant mode 

of vorticity transport very close to the surface is diffusion. 

However, as one moves away from the surface the dominant mode 

of vorticity transport changes from diffusion to convection. 

The variation with time of the dimensionless surface 

pressure is shown in figure 4.7.6. Initially, the dimention-

less surface pressure shows the same behaviour as that 

discussed for lower Grashof numbers in the previous sections. 

prwpirpo-, the 1atp-time  steady state surface presstirg,  shows 

a shallow minimum at an angle of 145 degrees. The late-time 

surface pressure distributions obtained for lower Grashof 

numbers did not exhibit such a minimum. 

The influence of the location of the outer boundary on 

the average Nusselt number, on the drag coefficients, and 

on the stagnation pressures can be judged from table 5. It 

can be seen that a reduction in the radius of the outer 

boundary from 24.53 to 20.08 sphere radii results in a 

reduction in the average Nusselt number of 6% and a reduction 

in the total drag coefficient of about 5%. Thus, as stated 

previously, the position of the outer boundary does affect 
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the solution. However, computation storage limitations 

precluded the use of a larger flow field: 

Table 3 presents a comparison of the late-time steady 

state values of the average Nusselt numbers obtained in the 

present study with experimental measurements. It is seen 

from this table that the average Nusselt number calculated 

in the present study for a Grashof number of 25 is in 

reasonable agreement with experimental measurements. 

4.8 NUMERICAL SOLUTION FOR A GRASHOF NUMBER OF 50 

AND A PRANDTL NUMER OF 0.72 

The development with time of the flow pattern for free 

convective heat transfer from a solid sphere to a Newtonian 

fluid is shown in figures 4.8.1a to 4.8.1d. The development 

of the streamlines around the solid sphere is very similar 

to the cases described previously. Figure 4.8.1d shows that 

the stream function contours at the late-time steady state 

condition are displaced slightly downstream of the flow 

field. This is in accordance with the discussion given in 

previous sections. 

Figures 4.8.2a to 4.8.2d show the development of the 

isotherms with time around the solid sphere. The time-

dependent energy equation was solved using steady state 

radial conduction as the initial condition. The behaviour 

of the isotherms in figures 4.8.2a to 4.8.2d does not show 
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FIGURE 4.8.1b STREAMLINES AROUND THE SPHERE AT 

GRASHOF NUMBER OF 50 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME • t = 0.25 

FIGURE 4.8.1a STREAMLINES AROUND THE SPHERE RI 

GRASHOF NUMBER OF 50 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME • t =0.05 
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FIGURE 4.8.1d STREAMLINES AROUND THE SPHERE AT 
GRASHOF NUMBER OF 50 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t =1.64 

FIGURE 4.8.1c STREAMLINES AROUND THE SPHERE AT 

GRASHOF NUMBER OF 50 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t = 0.6 
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FIGURE 4 .8.2b ISOTHERMS AROUND THE SPHERE AT 

GRASHOF NUMBER OF 50 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME . t =0.25 

FIGURE 4.8.2a ISOTHERMS AROUND THE SPHERE AT 

GRASHOF NUMBER OF 50 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME . t =0.05 
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FIGURE 4 .8.2d ISOTHERMS AROUND THE SPHERE AT 
GRASHOF NUMBER OF 50 AND ?MOIL NUMBER OF 0.72 

DIMENSIONLESS TIME . t =1.64 

FIGURE 4.8.2c ISOTHERMS AROUND THE SPHERE AT 

GRASHOF NUMBER OF 50 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t =0.6 
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a marked difference from that for a Grashof number of 25 as 

shown in figures 4.7.2a to 4.7.2d. During the early stages 

of simulation, heat is transferred mainly by unsteady 

conduction in all directions. This is shown by figure 

4.8.2a. However, as simulation proceeds, the convective 

effects increase in magnitude and the isotherms become 

closer to the surface of the sphere in the upstream region 

and extend further downstream at the rear of the sphere. 

The isotherms at the late-time steady state condition are 

shown by figure 4.8.2d. 

The generation, diffusion and convection of vorticity 

from the sphere can be seen in figures 4.8.3a to 4.8.3d 

which show the vorticity distribution as a function of 

time.. After aninitial radial diffusion, shown by figure 

4,R.1A_ F  convection  ("Al-rie'q  the vorticity  to  the  downstream 

region of the sphere. The vorticity distribution at the 

late-time steady state condition is shown by figure 4.8.3d. 

The behaviour of the drag coefficients with dimension-

less time, t, is shown in figure 4.8.4. In common with all 

the other solutions obtained, both the form drag coefficient, 

CD?, and the viscous drag coefficient, CDF, show a continuous 

rise with time. 

The variation with time of the local Nusselt number 

shown in figure 4.8.5, follows a similar pattern to those 

shown by the solutions for lower Grashof numbers. During 
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FIGURE 4. 8.3b VORTICITY DISTRIBUTION AROUND THE SPHERE AT 

GRASHOF NUMBER OF 50 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t =0.25 

FIGURE 4 .8.3a VORTICITY DISTRIBUTION AROUND THE SPHERE AT 

GRASHOF NUMBER OF 50 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME a t =0.0 5 
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FIGURE 4 .8.3d VORTICITY DISTRIBUTION AROUND THE SPHERE AT 

GRASHOF NUMBER OF 50 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t =1.64 

FIGURE 4.8.3c VORTICITY DISTRIBUTION AROUND THE SPHERE RI 

GRASHOF NUMBER OF 50 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME . t =0.6 
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the early stages of simulation, the local Nusselt number 

over the solid sphere remains fairly constant since heat 

transfer takes place mainly by unsteady conduction. 

However, as integration proceeds with time, convective 

effects increase and, as a result, the local Nusselt 

numbers over the upstream region of the solid sphere 

increase until their late-time steady state values are 

obtained. During the same period, the local Nusselt 

numbers over the downstream region of the sphere decrease 

at first but increase as the late-time steady state 

condition is approached. 

Figure 4.8.7 shows the variation of the surface 

vorticity with time. This variation follows a similar 

pattern to those described in previous sections. The 

symmetrical A 4  ___qtributinn of surfar,a vorticity about an 

imaginary plane placed between the upstream and downstream 

regions of the flow region confirms that at a Grashof 

number of 50, diffusion is the dominant mode of vorticity 

transport close to the sphere surface. 

The variation with time of the surface pressure is shown 

in figure 4.8.6. It can be observed that as simulation 

proceeds with time , the surface pressure over the 

upstream region of the sphere increases slowly towards 

its late-time steady state value. The dimensionless 

surface pressure over the downstream region of the sphere 

decreases but as shown by figure 4.8.6, at a dimensionless 
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time, t, of about 0.3 the dimensionless surface pressure 

starts to show a shallow minimum which develops with time. 

The average Nusselt number, Nu, as in the previous 

cases, starts from a steady state conduction value of 

2.085 and increases continuously towards its late-time 

steady state value as shown by figure 4.8.8. The late-

time steady state value of the average Nusselt number for 

a Grashof number of 50 and a Prandtl number of 0.72 is 

found to be 3.82 which according to table 3 is in reasonable 

agreement with experimental measurements. 

The influence of the location of the outer boundary 

on the results obtained for a Grashof number of 50 and a 

Prandtl number of 0.72 can be judged from table 5. It can 

be observed that a reduction in the radius of the outer 

boundary from 24.53 to 16.44 sphere radii leads to the 

prediction of smaller values for the overall flow charact-

eristics. The final choice of the location of outer boundary 

was a compromise between economy and accuracy of results. 

Table 11 presents the values of the local Nusselt 

number, the surface vorticity, and the surface pressure 

as integration approaches the late-time condition. From 

this table it can be observed that the relative changes 

in the above variables during the dimensionless time period 

of 1.1 to 1.6 become small. This shows that at a dimension-

less time of about 1.6 the simulation has reached steady 

state condition. 
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4.9 NUMERICAL SOLUTION FOR A GRASHOF NUMBER OF 125 

AND A PRANDTL NUMBER OF 0.72 

The simulation of the flow field around a solid sphere 

in conditions of free convective heat transfer at a Grashof 

number of 125 and a Prandtl number of 0.72 can be seen in 

figures 4.9.1a to 4.9.1d which show the stream function 

contours as a function of time. The stream function contours 

in figures 4.9.1a and 4.9.1d are not significantly different 

from those obtained for a Grashof number of 50. However, as 

integration proceeds the heated layer adjacent to the upstream 

surface of the sphere becomes thiner and the fluid velocity 

increases throughout the flow field. The increased velocity 

of the fluid in the vicinity of the sphere causes the fluid 

close to the sphere surface to be draged downstream so that 

the streamlines are shifted slightly from the upstream 

region to the downstream region of the flow field. This is 

shown in figure 4.9.1d. 

The development with time of the isotherms is shown by 

figures 4.9.2a to 4.9.2d. The development of the isotherms 

is similar to that described before for smaller Grashof 

numbers. Starting from an initial condition of pure radial 

conduction, the influence of the heated body extends 

uniformly in all directions. However, as simulation 

proceeds, it is clearly seen from figures 4.9.2b and 4.9.2c 

that in the region upstream of the solid sphere the isotherms 

move closer to the sphere surface whereas in the downstream 
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FIGURE 4 .9 .lb STREAMLINES AROUND THE SPHERE AT 

GRASHOF NUMBER OF 126 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t = 0.55 

FIGURE 4.9.1a STREAMLINES AROUND THE SPHERE AT 

GRASHOF NUMBER OF 125 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t =0.3 
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FIGURE 4 .9 *id STREAMLINES AROUND THE SPHERE AT 

GRASHOF NUMBER OF 125 AND f4tANOTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t = 0.96 

FIGURE 4.9.1C STREAMLINES AROUND THE SPHERE AT 

GRASHOF NUMBER OF 125 AND PRANOTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t= 0.75 
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FIGURE 4 . 9 .2b ISOTHERMS AROUND THE SPHERE AT 

GRASHOF NUMBER OF 125 AND kANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME * t =0.55 

FIGURE 4 .9.2a ISOTHERMS AROUND THE SPHERE AT 

GRASHOF NUMBER OF 125 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t =0.3 



224 

FIGURE 4 . 9 . 2d ISOTHERMS AROUND THE SPHERE AT 

GRASHOF NUMBER OF 126 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t = 0.9 6 

FIGURE 4 9 2c ISOTHERMS AROUND THE SPHERE AT 

GRASHOF NUMBER OF 126 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t = 0.75 
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region the isotherms move further from the surface. Figure 

4.9.3d shows the late-time steady state temperature contours 

around the solid sphere. In general as the Grashof number 

is increased, it is to be expected that the late-time 

thickness of the heated layer around the upstream region 

of the solid sphere will decrease and in the limiting case 

of very large Grashof numbers the so-called 'boundary layer 

problem' may be obtained. 

The generation and development with time of vorticity 

around the solid sphere can be seen in figures 4.9.3a to 

4.9.3d. Initially, since the fluid velocity is relatively 

small, the convective effects are small and the vorticity 

distribution around the sphere is almost symmetrical about 

an imaginary plane which separates the upstream and down-

stream regions of the flow region. However, as the velocity 

approaches its late-time steady state value, the vorticity 

is convected more and more downstream. Figure 4.9.3d shows 

the vorticity contours at the late-time steady state 

condition. 

The variation with time of the drag coefficients, 

figure 4.9.4, follows the same pattern as those obtained 

for lower Grashof numbers. Both the form drag coefficient 

and the viscous drag coefficient increase rapidly with time 

and reach their late-time steady state values very quickly. 

Table 12 shows the late-time values of the local Nusselt 

number, the surface vorticity, and the surface pressure. 
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FIGURE 4 .9 .3b VORTICITY DISTRIBUTION AROUND THE SPHERE AT 

ORASHOF NUMBER OF 125 AND AIRNOTL NUMBER OF 0.72 

DIMENSIONLESS TIME • t = 0.55 

FIGURE 4 .9.3a VORTICITY DISTRIBUTION AROUND THE SPHERE AT 

GRASHOF NUMBER OF 125 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t = 0.3 
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FIGURE 4.9.3d VORTICITY DISTRIBUTION AROUND THE SPHERE AT 

GRAS/10F NUMBER OF 125 AND PRRNDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t = 0.96 

FIGURE 4 .9.3cVORTICITY DISTRIBUTION AROUND THE SPHERE AT 

GRRSHOF NUMBER OF 125 AND PRANDTL NUMBER OF 0.72 

DIMENSIONLESS TIME 	t = 0.75 
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From this tables it can be seen that the above variables 

become relatively independent of time during the dimension= 

less time period between 0.75 and 0.95. 

Figure 4.9.5 shows the variation of the local Nusselt 

number with time. The local Nusselt number around the sphere 

remains fairly constant during the early stages of simulation. 

However, as simulation proceeds with time, the local Nusselt 

numbers over the upstream region of the sphere increase 

towards their late-time steady state values while the local 

Nusselt numbers over the rear part of the sphere first decrease 

rapidly and then increase slowly towards their late-time 

steady state values. 

The variation with time of the average Nusselt number 

is shown in figure 4.9.8. The average Nusselt number starts 

from a value of 2.085 and increases continuously towards 

its late-time steady state value. Table 3 shows that the 

late-time steady state value obtained for the average Nusselt 

number is in reasonable agreement with available experimental 

measurements. 

The variation with time of the surface pressure is 

shown in figure 4.9.6. From this figure one observes that 

as simulation continues the dimensionless surface pressure 

over the upstream region of the sphere increases very slowly 

towards its late-time steady state value. During the same 

period, the dimensionless surface pressure over the down-

stream region of the sphere decreases and shows a shallow 
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minimum at an angle of 120 degrees. 

Figure 4.9.7 shows the variation of surface vorticity 

with time. During the early stages of simulation, radial 

diffusion is the dominant mode of vorticity transport. 

The late-time steady state surface vorticity distribution 

shows a slight asymmetry between the upstream and down-

stream regions of the sphere. 

It is clear that flow characteristics such as surface 

vorticity, surface pressure, drag coefficients, and local 

and average Nusselt numbers are dependent upon the velocity 

and temperature distributions. As velocity and temperature 

change with time, the flow characteristics also change with 

time.' However, the solutions obtained for Grashof numbers 

greater than 1, show that the drag coefficients, the surface 

pressure, and the surface vorticity are relatively less 

sensitive to small variations in the velocity and temperature 

distributions than the local Nusselt number. In particular, 

tables 9 to 13 show that the relative difference in the local 

Nusselt numbers from one time-level to the next is greater 

than the relative differences exhibited by the other flow 

characteristics. Furthermore, the most important quantities 

in heat transfer problems are the local and the average 

Nusselt numbers. For the above reasons the approach to the 

late-time steady state condition in the present work, was 

best judged by observing the relative variation of the 

local Nusselt number with dimensionless time. 
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4.10 NUMERICAL SOLUTION FOR A GRASHOF NUMBER OF 1250 

AND A PRANDTL NUMBER OF 10 

The development with time of the streamlines around a 

solid sphere for free convection at a Grashof number of 

1250 and a Prandtl number of 10 can be seen in figures 

4.10.1a to 4.10.1d. The development with time of the flow 

patterns around the solid sphere is similar to those 

described in previous sections. As in the previous cases, 

the stream function contours at late-time steady state 

condition are displaced slightly to the downstream region 

of the flow field. This can be observed from figure 4.10.1d. 

The development with time of the isotherms around the 

solid sphere starting from steady state radial conduction 

is shown in figures 4.10.2a to 4.10.2d. As expected, 

conduction is the dominant mode of transfer during the 

early stages of simulation and heat is mainly transferred 

by unsteady conduction in all directions. This is shown 

by figure 4.10.2a. However, as simulation continues, the 

thickness of heated layer adjacent to the upstream region 

of the sphere decreases with time whereas, the thickness 

of the heated layer of fluid adjacent to the downstream 

region of the solid sphere continues to increase and forms 

a region of heated fluid which extends downstream to the 

vicinity of the outer boundary. 

The generation, diffusion, and convection of vorticity 
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FIGURE 4.10.1b STREAMLINES AROUND THE SPHERE AT 

°IMHOF NUMBER OF 1250 AND PRANOTL NUMBER OF 10 

DIMENSIONLESS TIME . t = 0.1 

FIGURE 4.10.1a STREAMLINES AROUND THE SPHERE AT 

GRASHOF NUMBER OF 1250 AND PRANDTL NUMBER OF 10 

DIMENSIONLESS TIME 	t = 0. 05 
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FIGURE 4.10.1d STREAMLINES AROUND THE SPHERE AT 

GRASHOF NUMBER OF 1250 AND PRANDTL NUMBER OF 10 

DIMENSIONLESS TIME • t =0.24 

FIGURE 4 .10 .1c STREAMLINES AROUND THE SPHERE AT 

GRASHOF NUMBER OF 1250 AND PRANDTL NUMBER OF 10 

DIMENSIONLESS TIME • t = 0.15 



236 

FIGURE 4 .10 .2b ISOTHERMS AROUND THE SPHERE AT 

GRASHOF NUMBER OF 1250 AND PRANDTL NUMBER OF 10 

DIMENSIONLESS TIME • t = 0.1 

FIGURE 4 .10 .2a ISOTHERMS AROUND THE SPHERE AT 

GRASHOF NUMBER OF 1250 AND PRANDTL NUMBER OF 10 

DIMENSIONLESS TIME • t = 0.0 5 
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FIGURE 4 .10.2d ISOTHERMS AROUND THE SPHERE AT 

GRASHOF NUMBER OF 1250 AND PRANDTL NUMBER OF 10 

DIMENSIONLESS TIME 	t=0.24 

FIGURE 4.10.2CISOTHERMS AROUND THE SPHERE AT 

GRRSHOF NUMBER OF 1250 AND PRANDTL NUMBER OF 10 

DIMENSIONLESS TIME 	t =0.15 
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FIGURE 4 . 10.3VORTICITY DISTRIBUTION AROUND THE SPHERE AT 

GRASHOF NUMBER OF 1250 AND PRANDTL NUMBER OF 10 

DIMENSIONLESS TIME . t =0.1 

FIGURE 4.10.3aVORTICITy DISTRIBUTION AROUND THE SPHERE AT 

GRASHOF NUMBER OF 1250 AND PRANDTL NUMBER OF 10 

DIMENSIONLESS TIME . t =0.05 
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FIGURE 4.10.3d VORTICITY DISTRIBUTION AROUND THE SPHERE AT 

GRASHOF NUMBER OF 1250 AND PRANDTL NUMBER OF 10 

DIMENSIONLESS TIME . t =0.24 

FIGURE 4 .10.3cVORTICITY DISTRIBUTION AROUND THE SPHERE AT 

GRASHOF NUMBER OF 1250 AND PRANDTL NUMBER OF 10 

DIMENSIONLESS TIME . t = 0.15 
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around the solid sphere can be seen in figures 4.10.3a to 

4.10.3d which show the vorticity contours as a function of 

time. During the initial stages of simulation, the vorticity 

contours are regular and, since during this period the 

dominant mode of vorticity transport is diffusion, the 
$C,  

vorticity contours are symmetrically distributed about an 

imaginary plane situated between the upstream and downstream 

regions of the flow field. However, as integration proceeds 

with time the effects of vorticity convection increase and 

the vorticity is convected more and more downstream. The 

late-time steady state vorticity distribution shown in 

figure 4.10.3d at a dimensionless time of 0.24 is more 

influenced by convection than the distributions obtained 

for smaller Grashof numbers. 

The variation with time of the drag coefficients is 

shown in figure 4.10.4. Both the form drag and viscous 

drag coefficients increase rapidly towards their late-time 

steady state values which they reach at a dimensionless 

time of almost 0.14. However, simulation was continued to 

a much larger time since relative changes in the surface 

vorticity, the surface pressure, and, in particular, in 

the local Nusselt number still continued to occur during 

the dimensionless time period of 0.15 to 0.24. This can 

be observed from table 13 which represents the late-time 

values of the above variables during the time period of 

0.15 to 0.24. 
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It is observed for a Grashof number of 1250 and a 

Prandtl number of 10 the total dimensionless time taken 

for the solution to reach its late-time steady state 

condition is much shorter than that for a Grashof number 

of 125 and a Prandtl number of 0.72. This is accordance 

with the reasoning given earlier which related the total 

dimensionless time taken before late-time steady state 

conditions are reached to the inverse of the Grashof 

number. The larger Grashof number gives rise to larger 

velocities which in turn, accelerate the simulation. 

The variation with time of the local Nusselt number 

is shown in figure 4.10.5. During the early stages of 

simulation, heat transfer takes place mainly by unsteady 

state conduction. This can be seen by examination of the 

distribution of the local Nusselt number at dimensionless 

time of 0.05 shown in figure 4.10.5 which shows that the 

local Nusselt number is almost constant around the sphere 

surface. As integration proceeds with time, the local 

Nusselt number for the upstream region of the sphere 

increase until their late-time steady state values are 

reached. During the same period of time, the local Nusselt 

numbers, for the downstream region of the sphere decrease 

at first but increase as the late-time steady state condi-

tion is approached. 

All the solutions obtained so far show that the local 

Nusselt number at late-time steady state condition decreases 
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as the angle 8, measured from the front stagnation point, 

increases. This behaviour is conceivable from the following 

physical consideration. At lower values of 8, relatively 

cooler fluid moves towards the sphere surface and this causes 

a higher rate of heat transfer. As the angle 8, increases 

the fluid becomes warmer and this in turn, causes a lower 

rate of heat transfer. From the plots given for the 

variation of local Nusselt number as a function of time, 

it is also observed that the change in the local Nusselt 

number with the angle is much greater at higher values of 

the Grashof number than at lower values. This behaviour 

indicates that at relatively low Grashof numbers, heat 

transfer takes place partly by conduction and partly by 

convection. However, at higher Grashof number heat is 

transferred mainly by convection with relatively little 

contribution by conduction. 

The behaviour of the average Nusselt number with time 

is shown in figure 4.10.8. The average Nusselt number 

starts from a value of 2.085 and increases with time to 

its late-time steady state value. 

The variations with time of the surface pressure and 

surface vorticity are shown in figures 4.10.6 and 4.10.7, 

respectively. It is seen from figure 4.10.6 that as 

integration proceeds with time, the surface pressure 

increases in the upstream region and decreases in the 

downstream region. The distribution shows a shallow 
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minimum at angle of 1100 . 

Comparison of the late-time steady state surface 

vorticity distribution for a Grashof number of 125 and 

a Prandtl number of 0.72 with that for a Grashof number 

of 1256'and Prandtl number of 10 solution, figures 4.9.7 

and 4.10.7, respectively, shows greater asymmetrybetween 

the upstream and the downstream flow regions in the case 

of a Grashof number of 1250 and a Prandtl number of 10. 

4.11 ADDITIONAL SOLUTIONS 

To examine the capability of the numerical technique 

used and the computer programme developed in this thesis, 

additional solutions for a relatively larger Grashof 

number of 12500 and a Prandtl number of 10 and a solution 

for a Grashof number of 50 and a_relatively larger Prandtl 

number of 100 were obtained. These solution will now be 

discussed. 

The development with time of the stream function, 

temperature, and vorticity around a heated solid sphere 

in conditions of free convection to a Newtonian medium 

starting from a motionless flow at a Grashof number of 

12500 and a Prandtl number of 10 were similar to those 

described for a Grashof number of 1250 and a Prandtl 

number of 10. After an initial period in which radial 

conduction of heat and radial diffusion of vorticity 
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dominate the transport processes, convective effects become 

the dominant mode of transfer. At the late-time steady 

state condition, as was expected, the effects of convection 

were more pronounced than in previous cases in which the 

Grashof numbers were smaller. In particular, the surface 

vorticity showed greater asymmetry between the upstream 

and downstream regions in comparison with the previous 

cases. However, the variations of the surface pressure, 

the drag coefficients, the local and the average Nusselt 

numbers with time followed similar patterns to those 

obrained for a Grashof number of 1250 and a Prandtl number 

of 10. The total dimensionless time taken before the late-

time steady state condition was reached was found to be 0.09 

which was shorter than those for the cases already described. 

The main results obtained for the solution of a Grashof 

number of 12500 and a Prandtl number of 10 are presented 

in table 6. 

The solution obtained for a Grashof number of 50 and 

a Prandtl number of 100 is slightly different from the 

solution obtained for a Grashof number of 50 and a Prandtl 

number of 0.72. During the early stages of the simulation, 

conduction was the dominant mode of heat transfer but as 

simulation continued, the fluid velocity and the convective 

effects increased and the thickness of the heated region 

upstream of the sphere in the immediate vicinity of the 

sphere surface decreased with time. However, the heated 
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region downstream of the sphere extended with time. As 

may be expected, it was observed that the thickness of 

heated layer adjacent to the upstream region of the solid 

sphere for a Grashof number of 50 and a Prandtl number of 

100 was less than that for a Grashof number of 50 and a 

Prandtl number of 0.72. However, the reverse was the case 

in the downstream region. 

The variation with time of the surface vorticity, the 

surface pressure, the drag coefficients, the local Nusselt 

number, and the average Nusselt number followed a similar 

pattern to those described for the Grashof number of 50 and 

Prandtl number of 0.72. The local Nusselt number around 

the solid sphere remained fairly constant during the early 

stages of heat transfer. However, as simulation continued, 

the local Nusselt numbers over the upstream region of the 

sphere increased until their late-time steady state values 

were attained. During the same period the local Nusselt 

numbers over the downstream region of the sphere decreased 

at first but increased as the late-time steady state condition 

was approached. Late-time steady state values of the local 

Nusselt numbersat the front and rear stagnation points were 

found to be 16.4 and 0.39, respectively. The main results 

obtained for a Grashof number of 50 and a Prandtl number of 

100 are presented in table 6. 
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4.12 GENERAL DISCUSSION 

In chapter 2, it was observed that experimental studies 

of free convective heat transfer from solid bodies have been 

directed primarily towards obtaining correlations which 

expresscthe average rates of heat transfer in terms of 

dimensionless groups which specify the system. These dimen-

sionless groups for free convection are the average Nusselt 

number, Nu, the Grashof number, Gr, and the Prandtl number, 

Pr. The correlations usually take the following form: 

Nu = A + BGr
ni 
 Pr

no 
	 (4.12.1) 

For generality and ease of use, it is desireable to 

present a relationship between the average Nusselt numbers 

obtained in this work, and the Grashof and the Prandtl 

numbers, in the form of expression (4.12.1). 

The constant A in equation (4.12.1) may be considered 

to be the value of the average Nusselt number that would be 

obtained in the limiting case of zero Grashof number. This 

limiting case would thus be that of steady state conduction 

from a heated solid sphere to an infinite stagnant medium 

of lower temperature for which the average Nusselt number 

has a value of 2. 

To determine the best values of the constant B and the 

exponents nl  and n2  of the equation (4.12.1), extensive 

computer experiments, based on the late-time steady state 

average Nusselt numbers obtained from the numerical solutions 



250 

of the time-dependent and time-independent equations were 

carried out. The computer experiments revealed that it was 

not possible to find a single relationship which fitted the 

data for the wide range of Grashof numbers used in this 

thesis. Two different relationships were used as follows: 

Nu = 2 + 0.39562(Ra)0.42 	(4.12.2) 

for: 

and; 

0.035 4a N,‘  

0.85 <Z9r 50 

0.7 <Pr<(100 (4.12.3) 

Nu = 2 + 0.75159(Ra)°'25 	(4.12.4) 

for: 

36 ‹ta <25000 

50 Se %zbou 

r 400 	 (4.12.5) 

where: Ra = Gr x Pr . 

Figure 4.12.1 shows the variation of the late-time 

steady state average Nusselt number with Grashof number, 

for a Prandtl number of 0.72. The analytical solution of 

Hossain (1966), and experimental data of Mathers et al 

(1957), Tsubouchi and Sato (1960), and Yuge (1960) are 

also included in figure 4.12.1. 

Figure 4.12.2 shows the variation of the late-time 

steady state average Nusselt number obtained in this work 
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with Rayleigh number, Ra. In figure 4.12.2, experimental 

results of Yuge (1960), (for Pr=0.72) and Mathers et al 

(1957) are also plotted for comparison purposes. The 

present solutions predict lower values of the average 

Nusselt number than the experimental measurements shown 

in figure 4.12.1 and 4.12.2. The maximum difference, 

relative to the results of Mathers et al is about 11%; . 

relative to the results of Tsubouchi and Sato and to the 

results of Ranz and Marshall it is about 20%. 

It must be noted that most experimental measurements 

of free convective heat transfer rates are influenced by 

forced convection and suffer from losses due to conduction 

and radiaiton leading to overestimation of values of the 

average.Nusselt number. It is possible that the lower 

G xperimental values of thee.  Nusselt 	shown  in figul-Pq 

4.12.1 and 4.12.2 are the most likely to be correct. 

Furthermore, the properties of the system, such as; fluid 

density, viscosity, and thermal conductivity are frequently 

not known accurately enough to give accurate evaluations 

of the average Nusselt number. 

As a check on the accuracy of the numerical solutions 

a few numerical tests were conducted as follows: 

Dimensionless surface pressures were computed using 

two different methods. In the first method the surface 

pressures were calculated from the vorticity values as 
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expressed by equation (8.3.8) in appendix B. In the second 

method the calculation was based on the stream function 

values as expressed by equation (B.3.14). The difference 

between the surface pressure values obtained using the two 

different methods was in the region of 1% to 15% based on 

the values obtained from equation (B.3.8). To determine 

the cause of the above discreponcy, numerous computational 

experiments were carried out from which the following 

conclusion was drawn. 

The numerical solutions of the equations of free 

convective heat transfer from a solid sphere presented in 

this thesis give a good approximation of the local values 

of the temperature, the stream function, and the vorticity. 

Using these values, it is possible to obtain good approxima-

tions of the first order derivatives of the temperature, 

the stream function, and the vorticity. The second and 

higher order derivatives of these variables are less accurate 

and any integration which requires second order and, in 

particular, higher order derivatives, will yield inaccurate 

results. 

In order to provide a further check on the accuracy 

of the numerical solutions the following first order 

derivatives were calculated from the solutions: the first 

order derivative of temperature with respect to angle, 8, 

along the axis of symmetry; the first order derivatives 
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of the stream function along the surface of the sphere and 

on the axis of symmetry with respect to 0 and z; and the 

first order derivative of vorticity with respect to 0 along 

the axis of symmetry. For all the solutions, the values 

of the above derivatives were found to have a magnitude of 

10-10 	-20 to 10-20  and to be relatively close to the required 

value of zero. 

The average central processor time required to obtain 

a late-time steady state solution was found to be approximately 

three and half hours when using the University of London 

Computer Centre's CDC7600 digital computer. 

4.13 TIME-INDEPENDENT SOLUTIONS 

The numerical technique developed for the solution of 

the time-independent equations provided solutions which for 

Grashof numbers up to 25 were in reasonable agreement with 

the late-time solutions of the time-dependent equations. 

For Grashof numbers of 10 and 25, some vorticity fluctuations 

were noticed close to the outer boundary. This fluctuation 

behaviour has been recorded by other authors working on the 

numerical calculation of flow fields. It is generally known, 

however, that as long as the magnitude of the fluctuations 

is relatively small, it is unlikely that the solution, and, 

in particular, the derived flow characteristics close to 

sphere surface, will be affected. However, the surface 

vorticity and, as a consequence, the surface pressure, and 
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the drag coefficients were slightly affected by the 

fluctuations of the vorticity at the outer boundary, in 

the solution obtained for a Grashof number of 50 and a 

Prandtl number of 0.72. To avoid numerical divergence 

of the surface vorticity, it was necessary to use much 

smaller relaxation factors and to increase the values 

of the convergence criteria. Even so, for Grashof numbers 

greater than 50, time-independent solutions could not be 

obtained. The average central processor time required to 

obtain a solution for Grashof numbers of 0.05 to 1 was 

found to, be about one hour, for Grashof numbers between 

1 and 25 it was found to be about three hours and for 

Grashof numbers between 25 and 50 it was found to be 

about four hours when using the University of London 

Computer Centre's CDC7600 digital computer. 
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CHAPTER 5 

CONCLUSIONS 
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CONCLUSIONS 

The results of the present study may be summarised as 

follows: 

1. A finite-difference method of solution of the 

Navier-Stokes and energy equations has been developed for 

axisymmetric time-dependent free convective heat transfer 

from a solid sphere. 

2. The time-dependent Navier-Stokes equation was 

expressed in the formofavorticity transport equation and 

a stream function equation. The energy equation was 

expressed in a form similar to the vorticity transport 

equation. These three equations were solved simultaneously. 

The vorticity transport and energy equations were solved 

using Peaceman and Rachfordis alternating dircction implicit, 

ADI, method. The stream functin equation was solved using 

a point interative successive over-relaxation, SOR, method. 

3. In order to preserve the transportive property and 

to obtain convergence, an upwind differencing scheme was 

used for the finite-difference representation of the convective 

terms of the vorticity transport and energy equations. 

4. A computer programme was developed to solve the 

finite-difference equations. Numerical solutions were 

obtained for Grashof numbers of 0.05, 1, 10, 25, 50, 125 

for a Prandtl number of 0.72. Solutions were also obtained 
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for Grashof numbers of 1250 'and 12500 for a Prandtl number 

of 10; and for a Grashof number of 50 and a Prandtl number 

of 100. 

5. The solutions showed that for all the Grashof and 

Prandtl numbers used, the distributions of vorticity and 

temperature around the solid sphere remained almost symmet-

rical about an imaginary plane located between the upstream 

and downstream regions of the flow field during the early 

stages of simulation. However, as integration proceeded 

with time the effects of convection increased until the 

late-time steady state solutions were attained. 

6. It was observed that at low Grashof numbers, 

the late -time steady state stream function, vorticity, and 

temperature distributions remained almost symmetrical about 

an imaginary plane placed between the upstream and downstream 

regions of the flow field. However, an examination of the 

temperature distribution revealed that even at a small Gras-

hof number of 0.05 weak convection processes were present 

in the region close to the outer boundary. As the Grashof 

number was increased the convective effects became more and 

more pronounced and the vorticity and the heated fluid were 

convected more and more into the downstream region of the 

flow field. At the same time the thickness of the thermal 

layer around the upstream region of the sphere decreased 

and the streamlines were displaced in the downstream region 
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of the flow field. 

7. It was observed that the total dimensionless time 

taken before late-time steady state conditions were reached 

became shorter as the Grashof number was increased. 

8. The solutions were used to calculate other 

quantities which characterize the free convective flow 

such as;the local and average Nusselt numbers, the dimension- 

less surface pressure, the pressure drag coefficent, and 

the viscous drag coefficient. These quantities showed 

different sensitivities to small variations of velocity 

and temperature with time. In particular, the local 

Nusselt number appeared to be particularly sensitive 

and was used in order to judge the approach to the late- 

time steady state solutions. 

9. During the early stages of simulation, the local 

Nusselt number was approximately constant around the solid 

sphere. However, as the simulation continued the local 

Nusselt numbers over the upstream region of the sphere 

increased towards their late-time steady state values 

while the local Nusselt numbers over the downstream region 

of the sphere decreased at first and then increased to 

their late-time steady state values. It was also observed 

that the average Nusselt numbers increased conitnuously 

from their initial values which corresponded to that of 

steady state conduction to their late-time steady state 
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values. The computed values of the late-time steady state 

average Nusselt number found to be slightly low in comparison 

with experimental data available in the literature. 

10. It was observed that the surface vorticity 

distributions for small and moderate Grashof numbers, 

remained almost symmetrical about an imaginary plane 

situated between the upstream and downstream regions 

of the flow field. 

11. Dimensionless pressure distributions at the 

surface of the sphere were computed from the vorticity 

values and also from the stream function values. The 

difference between the results obtained from the two 

different methods was in the region of 1% to 15% based 

on the values obtained from vorticity values. With the 

increasing Grashof number, the dimensionless surface 

pressure over the upstream region of the sphere increased 

while the dimensionless surface pressure over the downstream 

region of the sphere decreased and exhibited a shallow 

minimum which developed with time. 

12. The viscous drag and pressure drag coefficients 

were found to increase quickly to their late-time steady 

state values which increased with Grashof number. The 

pressure drag coefficents were calculated from vorticity 

values as well as from values of the stream function. 

The difference between the results obtained from the two 
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different methods was in the region of 1% to 15% based on 

the values obtained from vorticity distribution. 

13. The use of Peaceman and Rachford'd alternating 

direction implicit method yielded stable numerical solutions 

of the equations which describe time-dependent free convec-

tive heat transfer from a solid sphere. The solutions were 

quantitatively reliable as far as could be ascertained from 

a comparison of the predicted results with existing experi-

mental data. 

14. The solution procedure developed in this work 

has been used to obtain solutions for a restricted range 

of Grashof and Prandtl numbers and has also been applied 

to only one geometrical shape; the sphere. However, as 

procedure has been shown to provide reliable results it 

could probably be used to obtain solutions for problems 

involving different geometries and different values of 

the Grashof and Prandtl numbers. 
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coordinate system (X1,X2,X3): 

a 62 a 63 
X1 	

h2  3X2 	
h3 3X3 

(A.2.1) 
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APPENDIX A 

VECTOR RELATIONSHIP, ORTHOGONAL CURVILINEAR COORDINATE 

SYSTEM AND TRANSFORMATION OF THE POLAR COORDINATE SYSTEM 

TO RECTANGULAR SYSTEM 

k 
A.1 Vector Algebra 

A vector quantity can be expressed as follows: 

X =g1  + A2e2 + 33 
	(A.1.1) 

where 2 and e3 are the unit vectors in X1, X2 and X3 

directions, respectively, and Al, A2  and A3  are the scalar 

components of the vector T. 

For orthogonal coordinate systems, the scalar and 

vector products of two vectors A and E become: 

X:E = 

AxB = 

A1B2 

el 

Al 

B1 

+ A2B2 

e2 	e3 

A2 	A3 

B2 	B3 

+ A3B3 (scalar product) 

(vector product) 

(A.1.2) 

(A.1.3) 

A.2 Vector Operators in Orthogonal Curvilinear 

Coordinate System 

It can be shown (Spiegel 1959) that the vector 

operator V has the following form in orthogonal curvilinear 
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FIGURE A.2.1 ORTHOGONAL CURVILINEAR COORDINATE SYSTEM 

where h. 	= 1,2,3) are the scale factors. 

Equation (A.2.1) is used to derive the expression 

for the gradient, divergence and curl operators in 

orthogonal curvilinear coordinates. 

The gradient of a scalar quantity w is given by: 

a(P: 	a(1) grad 4) =Vcp= ET ax
W  
i 	Dx2 +h

3 
3  aX3  (A.2.2) 

If K is a vector quantity defined by equation (A.1.1), 

then the divergence and curl of are are given by: 

[ 	

—1— , 
div A-  = ‘7  .7A = hih21 	h3  3X1 (h 2h 3A 1) + ax2 (h1h3A2) 

a + 
ax3 

(h1h2A3)  (A.2.3) 

  

-J 
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curl A=vXA= 	1  
h
l
h
2
h
3 

hlel  h2e2  h
3 

a 	a 	a 
ax1 	ax2 	ax3 

h
1
A
1 

h
2
A
2 

h
3
A
3 

(A.2.4) 

   

Equations (A.2.2) to (A.2.4) show clearly that div 

is a scalar quantity, but that grad cpand curl A are both 

vector quantities. 

The divergence of grad (1), V
2

(1), is an important 

quantity and can be expressed, using equations (A.2.2) and 

(A.2.3), as follows: 

V . (7Q) = V 
2

Q 

1  

h
1
h
2
h
3 

h h 
2 3 aTI  

ax1 h1 
 ax1 

  

a 	h
1
h
3  

ax2 h
2 
 ax2  

 

h,h, _a_ i'LL 	AWN 
7-  aX

3 	
1  h

3 
ax
3
' 

(A.2.5) 

  

It can be shown (Spiegel 1959) that for spherical 

polar coordinates scale factors have the following forms: 

Xi = r 	X
2 
= e 	X

3 
= 0 

hi  = 1 	h
2 
= r 	h3  = rsine, 

A.3 Vector Relationship 

The following relationships between vector operators 
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can be found in standard texts such as Kreyszig (1967) 

and Spiegel (1959). They are used to express the vector 

operators in standard forms whose transformations to 

any orthogonal curvilinear coordinate system are immediate. 

v (LE) = (731-.v )13 + (11.v )7c. + A x (viE) + 13 x 	xT) 

(A.3.1) 

V x(TxE) = T(V .13) - T3(7 .T) 	(T.V)I3 + (13.V )T 	(A.3.2) 

V 2A = V (V 	- V x(VxT) 	 (A.3.3) 

(T.V ) (I) = T.V(i) 	 (A.3.4) 

curl grad cp = V x(V(p) = 0 	(A.3.5) 

div curl T = V. (VxT) = 0 	(A.3.6) 

A.4 Transformation of Polar Coordinate System to 

Rectangular System 

The spherical polar coordinate system, (r,0,0), has 

been arranged as shown in figure 2.2.1. As explained 

earlier, for the case of axisymmetric flow with no rotation 

past a stationary sphere, the component of velocity in the 

0 - direction is zero everywhere, and all variables are 

independent of 0. Thus, the coordinates in the meridian 

plane, (r,e), are the only coordinates required to describe 

the flow and the spherical polar coordinate system is 

reduced to the polar coordinate system, (r,e). 
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Consider the dimensionless polar coordinates (r,e) ' 

and Cartesian coordinates (Y2, Y3). In general, for any 

complex number W there corresponds a point P with 

Cartesian coordinates (Y2, Y3) or with polar coordinates 

(r,e) as follows (Kreysizig 1967): 

W = Y2 + iY3 

W = r eJo 

This is shown in figure A.4.1. Therefore, the polar 

coordinates (r,e) can be related to the Cartesian coordinates 

(y2, Y3) as follows: 

Y2 + iY3 = r e
ie 	 (A.4.3) 

but according to Euler formula: 

eie = cose + isine 
hence; 

Y2 + iY3 = r (cose + isine ) 	(A.4.4) 

By equating the real and imaginary parts of relation 

(A.4.4), the following relations can be obtained: 

Y2  = r cose 	 (A.4.5) 

Y3  = r sine 	 (A.4.6) 

By elimination of e between expressions (A.4.5) and 

(A.4.6), the following relationship can be obtained: 

2 Y + Y3
2   = r2 (A.4.7) 

which, for different values of r, describes a family of 

concentric circles as shown in figure A.4.2. 
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By elimination of r between relations, (A.4.5) and 

(A.4.6), the following relationship can be obtained: 

Y3  = (tan e ) Y2  

which, for different values of e , describes a family of 

radiating straight lines as shown in figure A.4.2. 

For the reasons given in chapter 2, it is desirable 

to transform the dimensionless polar coordinates (r,0) 

to a system of rectangular coordinates. This transformation 

may take place through an exponential function as follows: 

F = eW 
	

(A.4.8) 

which defines a mapping which is conformal everywhere, 

because its derivative is different from zero at every 

z+i8 point. Now if F = e 	, then from relations (A.4.1) 

Y3 

irk =Y2 + iY3 

Y2 

FIGURE A.4.1 GEOMETRICAL REPRESENTATION OF A COMPLEX NUMBER 



Y3 

z 

FIGURE A.4.2 POLAR COORDINATES(r,8) IN A MERIDIAN PLANE 	FIGURE A.4.3 MODIFIED POLAR COORDINATES(z,8) 

z z . 1 z2 
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3 
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and (A.4.8), one may write: 

eY2 + iY3 = ez + ie 	 (A.4.9) 

By equating the real and imaginary parts of relation 

(A.4.9)', the following relation can be obtained: 

Y2 = z 	and 	Y3 = 6 	
(A.4.10) 

However by equating of F = e
z+ie and relation (A.4.2) 

one may write: 

ez+i 8 = r eie 

so that: 

r = ez 

The new coordinates (z,8) are plotted in figure 

A.4.3 which shows that the vertical lines z = constant 

and the horizontal lines 0 = constant correspond to the 

concentric circles and the radiating straight lines of 

figure A.4.2, respectively. The shaded areas in the two 

diagrams correspond , and the line z=0 corresponds to 

the surface of the solid sphere (r equal to unity). Hence, 

by the transformation r=ez, the external region on the 

right hand side of figure A.4.2 is mapped onto the 

rectangle of figure A.4.3 which is bounded by the lines 

0=0; 8=TE z=0, and z=z,.. 



APPENDIX B 

CALCULATION OF THE DIMENSIONLESS PRESSURES AT THE FRONT 

STAGNATION POINT AND AT THE SPHERE SURFACE 

B.1 Introduction 

The continuity equation, equation (2.3.3) and the 

time-dependent Navier-Stokes equation in polar coordinates, 

equations (2.3.20) and (2.3.21), for free convective heat 

transfer from a solid sphere are given in chapter 2. These 

equations are rewritten below as: 

The continuity equation, equation (2.3.3) 
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a 	 1  

	

7T  (r2  ur) 	rsin8 aae (uesin8) 
r 

The Naylor-Stokes equation: 

r-component, equation (2.3.20): 

	

aur 	our ue aur  u2  + u 	+ — 

	

at 	r ar 	r 8 

(B.1.1) 

1 aPd 
p.  3r 

au8 

[ 2 

	2 	2 	2 .--2- u cotO O + vco V ur - r2 ur - r2 a 8 r 

8-component, equation (2.3.21): 

 

- gl3wcos 8 (T:T00) 

(3.1.2) 

au e 	au a  u8 au8 urue 	1 1 aPd 

at u 
+ 	+ r Dr r 	D8 	r 8 

3u 
[ 	2 r 	

u e  2 

	

+ vo, v tle ± 
r2 a 0 	

2 . 2 r sin 8 
+ g O w  sin e (T-Too) 	(B.1.3) 
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where 

c-/ 
2 	1 a , 2 a, 	1 	a 

(sine—
a 
 ) 

r 
- 	r — -r 

v 	2 ar k ar 	 a e 
r
2
sin e 

a 6 

The vorticity, C, is defined by equation (2.4.5) as: 

r ar ( rue) -

a 
(ur)] 
	

(B.1.4) 

For convenience, the subscript d from the pressure terms 

will be omitted and P will be used exclusively on the 

understanding that the local pressure, P, will be measured 

relative to the undisturbed static-fluid pressure at the 

point considered. 

B.2 Calculation of the Dimensionless Pressure at the  

Front Stagnation Point  

As stated in chapter 2, along the axis of symmetry 

the velocity ue, the stream function, 4), and all their 

derivates with respect to r are zero. Therefore, along 

the axis of symmetry, equations (B.1.1), (B.1.2) and 

(8.1.4) 

our  

+ 

ou
r 

become; 

+ 

ou
r 

2u
r 
+ 

respectively: 

1 
 ou

r 
= 

..1.v 
co 

0 

32u
r 

ar 

u 
r 

- = 

r ae 

1 	aP 

at 3r ar p03 
art 

(B.2.1) 

2 our 	1 
a
2
u
r 

+ --- + 
r ar 

r
2 

38
2 

cote 
our 
	

2u
r 	2 

311 0 
-kg (T-T.) 	(B.2.2) 
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FIGURE B.2.1 INTEGRATION OF PRESSURE ALONG THE AXIS OF SYMMETRY 

and, 

_ 1 our 
r ae 

Also, from equation CB.1.4) 

(B.2.3) 

2 	2 r au 
aC = a 	8 	u8 1 our 	 a ue 	aue 	3   = 	+ — DG 	

ae  Lar 	
r 98 	

_ 	
r ae 	r 

8 
 2 

8 
(B.2.4) 

By differentiation of equation (B.2.1) with respect to r 

and substitution into equation (B.2.2), the following 

equation can be obtained: 

our 	our _ 	1 aP v 	
2 

a 	auw _ ue 1 e at + u r Dr 	ar 	r 	arae r ae 

132ur cote au - pmg (T-Tm) 	(B.2.5) r 982 r 	D8 

Now, by substitution of equations (B.2.3) and (B.2.4) into 

equation (B.2.5), one obtains: 

au + 
u 

9 	_ 	1 aP 	ac _ c 
pwar r ae tang - at 	r 	 omg (T-Tm) 

(B.2.6) 
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But along the axis of symmetry, both tan 8and C are zero. 

Therefore, using L'Hospital's rule; 

Limit 	 _ aC 
0 + tan0 	30 

'tk 
so that equation (B.2.6) becomes: 

ou
r + 1, our _ 	1 DP 	2 DC at 	-r 3r 	— 	-574  — g 0.(T—Tc) (B.2.7) 

By integration of equation (B.2.7) along the axis of 

symmetry between points A and B shown in figure B.2.1, 

the following expression is obtained; 

[r  2, 	r 	] 	1 
o, ur/B - 2 ) 	+ - r A 	P 	B - PA)  

B Ilu 	B 
- - :001-  1 dr - f--jt  dr - owg (T-T.)dr 

.14  A 	-f A 
(B.2.8) 

By use of the dimensionless variables expressed by relation 

(2.5.1) and introduction of the dimensionless pressure, K, 

defined as follows: 

2 P R2  

k — k 	v20, 

equation (B.2.8) becomes: 

(B.2.9) 

B * 	Bu, * 
21.  -IL dz - fl-=.ezdz - GrfTezdz 

De A 	 A at 	A 	(B.2.10) 
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Now, if point A is on the outer boundary and if point B 

is at the front stagnation point, then, at any time t: 

(uz)A = uz z=z03 
=0 ; (uz)B = uz =0 ; 

z=0 

    

     

and K = K B 	0 

Thus: 
* f 0 	* 	vau 	0 

K0  = 	98 dz 	ezdz - GIT*ezdz 
zo.Dt 

(B.2.11) 

Now if uz is expressed in terms of the stream function, 

equation (B.2.11) becomes: 

zo, 
 

K0 	ae = 	4 	aC  dz - 2 	1 a* (a  4') dz + Gr 	T*ezdz 
o e at 	ae 	0 (B.2.12) 

The integrands in equation (B.2.12) are evaluated at 8=0. 

B.3 Calculation of the Dimensionless Pressure at the  

Sphere Surface  

The pressure distribution on the sphere surface can 

be derived from the 9-component of the time-dependent 

Navier-Stokes equation, equation (B.1.3) as follows. As 

stated in chapter 2 the following conditions apply at the 

sphere surface: 

aue aue 	au r 32ue 
u 	u= 	- 	- 0 8 at DO ae 382 

(8.3.1) 

= 0 

Zoo 	* 	 Z oo 

Therefore, at the sphere surface, equation (8.1.3) may 
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8 -Tt 9=0 

FIGURE B.3.1 INTEGRATION OF PRESSURE AT THE SPHERE SURFACE 

be written as: 

1 aP 
per 38 	

2 

	

= Vcc, VU+ 	cosine (T—Too) 

Or: 

2 

	

ap = v 
a u8 	2  Due + g (3 cosin 8 (T-Tco) 

Pcor a9 	ar2 	r ar 

Also, from equation (B.1.4): 

DCs 	ague 	1 aue 
ar 

ar
2 + i Dr ' 

and 

Cs 1 aue 
r r ar 

(B.3.2) 

(B.3.3) 

(B.3.4) 

(B.3.5) 

By substitution of equations (B.3.4) and (B.3.5) into 

equation (B.3.3), one obtains: 

aE_ C 

	

ap 	
r = vim( 	
S 
) 13,egsin 9 (T-Tm) 

	

pwr ae 	ar  (B.3.6) 

By expressing equation (B.3.6) in dimensionless form and 

integrating between the points C and D shown in figure 

B.3.1, one obtains: 
D a; * 

ir 	
* KD  = KC  - 2Gr (cos% 'e'' CO S ec) + 2 	(--5-1- + E )d8 (B.3.7) 
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If point D is at an angle 8 , and C is at the front 

stagnation point where 0=0, then 

KC = KO 	and KD = K e 

and equation (B.3.7) , may be written as: 
* csa 

K 0 = K
0  + 2 Cr (1-cos 8 ) + 2 	h i- + C*  )d8 

O 
(B.3.8) 

The integrands in equation (B.3.8) are evaluated at the 

sphere surface, z=0. Equation (B.3.8) can be integrated 

in the above form or it can be rewritten in terms of stream 

function values as follows using the following relationships 

which were obtained in section 5 of chapter 2: 

e 2zG * - 9
2  4)* 

a z 2 

and 

a 	+ a
2 , 

‘ij
* 
 cote "j*  az 

 
a® 

2 	D 

* 
G =C e-  sin 8 

Thus; by substitution: , 

* 	2 * Lit 	
2 * 	* 

e3zsin8C = 121? 2-- + 2-1- cotO L/)  
az2 a e2  9 z 	 a0 

(B.3.9) 

Differentiation of equation (B.3.9) with respect to z 

leads to: 

* 	e 	a 
3
ki
* 

a 
2
4)
* 	a 3  u) * a 	LI) 

2 
e3zsin e (3 C+ — a z) = 	3 	cot e azae a z a z2 	a2eaz 

(B.3.10) 

By application of the boundary conditions expressed in 

chapter 2, at the sphere surface, equation (B.3.10) 
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reduces to: 

sin (3e+ az 
93111 * 	a 2 4r 

z=o 	az3 a z2 
(B.3.11) 

(8.3.12) 

The surface vorticity is given in chapter 2 as: 

S* 	 a 20)*  = 
sine z=0 	z2 

By substitution of equation (B.3.12) into (B.3.11) the 

following relationship can be obtained: 

ac  
az 

z=0 

1 a3  
sing az3 

- 4 e 
z=0 	z.0 

(B.3.13) 

     

Equation (B.3.8) can now be written as follows for the 

calculation of the surface pressure: 

0 	3* 
Kg = K + 2 Gr (1-cos 	+ 2 	( .   - 3e) d8 s 

1  
in., az, 0 

(B.3.14) 

The integrands in equation (B.3.14) are evaluated at the 

sphere surface, Z=0. 
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CROSS-SECTIONAL AREA x p°'  v°° 	c° c° 

 2 

R2 

DRAG FORCE (C.1.1) 
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APPENDIX C 

CALCULATION OF THE DRAG COEFFICIENTS' 

C.1 Introduction  

Th6 drag force on an immersed body is the resultant 

of the 'pressure drag' and 'frictional drag' forces exterted 

by the fluid on the surface of the body. 

At every point on the sphere surface there is a 

force per unit area which acts perpendicularly to the 

sphere surface (see figure C.1.1). The drag force obtained 

by integration over the sphere surface of this force is 

known as the 'pressure drag' or 'form drag', D. Also, 

at every point there is a shear stress acting tangentially 

to the sphere surface. The drag force obtained by integ-

ration of the shear stress over the sphere surface is known 

as the 'frictional drag' or 'viscous drag', DF. 

It is customary to express the drag force in terms 

of a dimensionless coefficient, CD, which for free convec-

tion at a given time, t, is defined in the present work 

as: 

The drag coefficient obtained from the pressure drag, 



DP  
CDP - 2 

TIR2 x 1/2 
p v 
" 
R2 

(C.2.1) 
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FIGURE C.I.1 FORCES ON THE SPHERE SURFACE 

D , and the viscous drag, DF; will be denoted by CDP 
and CDF' respectively. The total drag coefficient, 

is the sum of the two drag coefficients,CDp  and CDF. CDT' 

CDT = CDP + CDF 
	 (C.1 .2)  

C.2 Calculation of the Pressure Drag Coefficient 

From equation (C.1.1), the pressure drag coefficient, 

CDP' is defined as follows: 

With reference to figure C.1.1, the pressure drag force, 

DP' can be calculated as follows: 

D =JO( P sin OdS 
	

(C.2.2) 



- PR 
1/2 0. v.2 

2 

Therefore; 
2 

D = TER2 	P  (1/2 	v  )J K sin 20d 
R2 	e 

TE 

(C.2.4) 

CDF 2 
nR2 x PcoVo.  

R2 

DF (C.3.1) 
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where 	13 = n/2 - 6 

and 	dS = 2 nR2  sin 0 d 6 

Therefore, 

D = nR2fP sin zede 
0 

But, as before: 

(C.2.3) 

Hence, by application of equation (C.2.1): 

CDP = 	K esin 28de 
	

(C.2.5) 
0 

where K e is calculated from equation (B.3.8) or from 

eauation (B.3.14). 

C.3 Calculation of the Viscous Drag Coefficient 

From equation (C.1.1): 

With reference to figure C.1.1, the viscous drag force, 

DF, can be calculated as follows: 

DF = ff r0 
cos 3dS 
	

(C.3.2) 

S 
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where 	(3 = 	-e 
dS = 2nR2 sine de 

	

tico  F r 	ue 	1  auri 
re 	ar ( r ) 	r ae j 

However, on the sphere surface: 

au 
Ue  = Ur  = ae - 0  

Therefore: 
Sue  

= um re 	ar 

Also, 
a 	 our  
ar 

u 1  
ar + r 	r ae 

(C.3.3) 

again, on the sphere surface: 

aun  
Cs 	ar1--  

Therefore equation (c.3.2) reduces to: 

DF = 2n R211. 	Cs sin2e de 	(C.3.4) 

The drag coefficient is defined by equation (C.2.1), 

so that when all functions are written in dimensionless 

form, the viscous drag coefficient is obtained as: 

* CDF = 4 	s sin
2  e de 

0 
(C.3.5) 
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APPENDIX D 

CALCULATION OF THE LOCAL AND THE AVERAGE 

NUSSELT NUMBERS 

D.1 Calculation of the Local Nusselt Number 

In convective heat transfer, the quantity of most 

practical importance is the rate at which heat transfer 

takes place from the surface of the body to the surrounding 

fluid. 

In accordance with Fourier's 14w of heat condition, 

the heat flux qr  normal to the surface of a sphere, at 

any instant of time is given by: 

q = k  T 	
1 

 9r r=R 
(D.1.1) 

where k ic +h= 4-11=-m-1 	of the  fluid anfl "T 

3T is the local temperature gradient at the surface in 3r 

the direction of the outward normal to the surface, 

r-direction. 

The local heat flux may also be expressed in terms 

of the local heat transfer coefficient, h (8), as follows: 

qr  = h (e) (Ts  - T) 	 (D.1.2) 

Equating eauations (D.1.1) and (D.1.2) one obtains: 

h (0) _ 	1 	3T 1 
kT 	(Ts-To.) 	3r r=R 

(D.1.3) 
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The local Nusselt number, Nu
0 
 , is defined as follows: 

h (e) x 2R Nu
e 
 = 	kT 

(D.1.4) 

By substitution of equation (D.1.4) into equation 

(D.1.3)', one obtains: 

- 2R 	aT Nu
e 
 = (Ts - T.) 	Dr r=R 

(D.1.5) 

Equation (D.1.5) can be rewritten in dimensionless form 

as follows: 

Nue  = - 2 -5'i 
aT *1 z=0 
	 (D.1.6) 

D.2 Calculation of the Average Nusselt Number  

The average rate of heat transfer, from the sphere 

surface can be determined as follows: 

The total heat flow rate from the sphere surface, 

QT/ can be evaluated as follows: 

QT = ff qr dS 	 (D.2.1) 

S 

where qr  is the local heat flux and dS is an element of 

surface area on the sphere surface. 

QT may also be expressed in terms of an average or 

overall heat transfer coefficient, R, as follows: 

QT = h S (Ts  - Tom) 	 (D.2.2) 



or 

11 /I"' 	I sinede  kT 	2(Ts-Tm)A 
r=R 

(D.2.6) 
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Therefore, by equating  equation (D.2.1) and (D.2.2), one 

obtains: 

IT stirs  - Tw) =j6(gr  dS 	(D.2.3) 

By substitution of qr  from equation (D.1.1), equation 

(D.2.3) can be expressed as: 

K aT I dS kT 	S (Ts  -T m) 	3r 
r=R 

where for a sphere; 

S = 4 TLR2 

and dS = R2  sine de do 

therefore, equation (D.2.4) becomes: 

2n n 
_ 	1 	 f f ar kT 4TER2 (Ts  - Too) 0 0 	1 

r=R 

(D.2.4) 

2 R sine ded0 

(D.2.5) 

The overall or average Nusselt number, Nu, is defined as 

follows: 

Nu 
 =k

x 2R kT 
(D.2.7) 

By substitution of equation (D.2.7) into equation (D.2.6), 



286 

one obtains: 

aT Nu = - (T - 
R 
 T ) r I 	sinede 

s 	0 	r=R 
(D.2.8) 

Equation (d.2.8) can be rewritten in dimensionless form 

as follows: 

f
n 

aT
*  

Nu = - J 3z 	sinede. 
0 	=0-  

a. 

(D.2.9) 

But, from equation (D.1.6) 

aT Nue  = - 2 z=0 

Thus, equation (D.2.9) can be rewritten in terms of the 

local Nusselt number as follows: 

Nu = ljrNu8  sinede 2  
0 

(D.2.10) 
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APPENDIX E 

NUMERICAL INTEGRATION AND DEFFERENTIATION 

E.1 Introduction 

The solutions of the finite-difference equations 

derived in chapter 3 provide the numerical values of 

the stream function, vorticity, and temperature at each 

point in the flow region at any time. 

From these distributions, other quantities, such 

as the surface pressure, the drag coefficients, and the 

local and the average Nusselt numbers can be obtained as 

described in appendices B, C and D, respectively. The 

calculation of these quantities requires numerical 

evaluations of the first derivatives of the dependent 

variables with respect to space variahles nr to time 

variable, and also the numerical evaluation of integrals 

over any range of the independent variables. 

E.2 Numerical Integration 

The integral of a general function W(X) over the 

limits X = Xa and X = Xb may be evaluated by the use of 

the 'trapezoidal rule'. The integration formula can be 

derived as follows: 

The interval of integration, whose length is Xb-Xa, 

is subdivided into n equal parts of length AX, as shown 



fx

Xb  

W(X)dX r:,  Ax 

a 

2 	 + W(X2  ) + W(X3) + 	+ W(Xn-1) 
W (Xb) 

2 

W (Xa ) 

(E.2.1) 

	• X 
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in figure E.2.1. 

Therefore; 

AX = 
Xb - Xa 

Then th n trapezoids in figure E.2.1 have the following 

areas: 

1 —1  [W(Xa  ) + W(X2) 	—2 1 AX, 	P(X2) + W(X3)1 AX, 2  

—1   2 [W(Xn-1 ) + W(Xb)1 AX. 

Thus, 

W=W(X) 

FIGURE E.2.1 THE TRAPEZOIDAL RULE 
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Equation (E.2.1) can be written in the following compact 

form: 

Xb  

oil  

W(X)dX 's AX 
i 	2 	' 	1E:W(X )1 

n-1 
W(Xa) + W(X1,) 

X a 

(E.2.2) 

E.3 Numerical Differentiation 

Consider a general function W(X) and let W(X0)=W1  

and W(Xo+h)=W2' ... where h=AX. 

Define 	a 	forward difference 

differentiation operator D 

AW1  = w2 - W 1 

aw 
x=xo  

) 0 

as follows: 

operator A and 

one can write: 

2 
+ h W" (X0) + - 

a 

(E.3.1) 

(E.1.2) nw(x0) 	W(xo)  = = 
ax 

From Taylor's series expansion, 

W2 = W(X +h) = W(X C) + hW'(X 0 	0 (E.3.3)  2 ! 

By substitution of equations (E.3.2) into equation (E.3.3), 

and noting that W(X0) = W1, the following equation can be 

obtained: 

h2D2 W2 = (1 + hD + 	+ 	 .)W = ehDW 2! 	1 	1 (E.3.4) 

J=2 J 

Thus, from equations (E.3.1) and (E.3.4), the following 
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relationship can be obtained: 

or 

ehD = 1 + A 

hD = In (1+A) 

A 1  A 2 	1  7 A3  = 	7 	, 	- 1 A4 	....  

(E.3.5) 

(E.3.6) 

which on operating on W1  gives the following relation: 

hDW

or 

hW' 

W3 

wi  

where: 

1 = ( A- 1 — A
2 

2 

= AW 	- 1 A2  1 	1 	2 

AW1 = W2 - 

W 

	

1 + 	A3• 	4 
1 - — A4  3  

1 	3 + 

	

1 	-1 	

1 

W1  

+ 	...)W1 

"

4 
"
w  A  
1 *** 

(E.3.6) 

(E.3.7) 

(E.3.8) 

X 

h h 

w 
Xo  X1  X2 

FIGURE E.3.1 NUMERICAL DIFFERENTIATION 
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A2W1  = W3 - 2W2 + W1 
	 (E.3.9) 

A3W1 = W4 - 3W3  + 3W2 - W1 
	(E.3.10) 

A4W1  = W5 - 4W4  + 6W3  - 4W2 
+ W1 	(E.3.11) 

etc 	 

By substitution of equations (E.3.8) to (E.3.11) into 

equation (E.3.7), the following equation is obtained when 

A5W1 and the higher difference terms are omitted: 

3W = wl 
ax  x=x 0 

12h (-25W1 + 48W2 - 36W3 + 16W4 - 3W5) 

(E.3.11) 

Thus, the derivative of the function W(X) can be 

evaluated at a given value of X in terms of five successively 

equally spaced values of the function. 

1 
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APPENDIX F 

COMPUTER PROGRAMME 

F.1 User's Guide to the Computer Programme  

The development of an accurate, stable and economical 

method of solving the equations governing the transfer of 

heat from a solid sphere by time-dependent free convection 

has been the central,theme of the present study. A computer 

programme is a necessary link between the formal description 

of the method in terms of symbols and the practically 

useful predictions in terms of numbers. 

The programme was written in the FORTRAN IV language 

and has been run on a CDC 7600 computer; with a few minor 

changes it can be run on CDC 6600 and CDC 6400 computers. 

The listing of the computer programme is presented in 

section F.4. The skeleton of the present computer programme 

is very similar to that generated by Rafique (1971). The 

main function of each subroutine in the programme is des-

cribed in the listing. Therefore, the user should not 

find it difficult to understand and use the programme. The 

main functions of the main subroutines can be summarised as 

follows. 

The input data and output of the results are handled 

by two subroutines called INPUT and OUTPUT. The main 

computations described in Section 3.7 are performed by 
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two subroutines called UPDATE and VARBC. The various 

options built in the programme are controlled from a 

subroutine called CONTROL. 

The main programme calls the above mentioned 

subroutines. The programme also consists of several 

auxiliary subroutines which allow quick detection of 

errors. 

To obtain all results presented in this thesis, 

the user needs only to specify appropriate counters 

and parameters in subroutine CONTROL. 

F.2 List of FORTRAN Symbols 

Given below is the list of the main FORTRAN symbols used 

in the programme. All the other symbols used in the programme 

are either defined in terms of these symbols or are self- 

explanatory. 

FORTRAN SYMBOL 	MEANING 

A 	 a 

AKNOT 	 ko 
I 	AK(J) 	 ke 

ANUL(J) 	Nue  

ANUO 	 FT17-1 

Bl(I) 	 bli  

B2(I) 	 b21  

B3(J) 	 b3i 
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FORTRAN SYMBOL 
	

MEANING 

B4 (J) 

C(I) 	 ci 

.CCG 	 G 

CCTD 	 e (downstream) 

CCTU 	 eT (upstream) 

CCU 	
(1) 

CDF 
	

CDF 

CDP 
	

CDP 

CDT 
	

CDT 

CPT 	 The Central Processor time set 

for a CDC 7600 computer 

CR 	 CR 

CS(J) 	cose 

CT(J) 	 dote 

DFG 	 wG 

DFTD T (downstream) 

DFTU 	 wT (upstream) 

DFU wto  

GO(I,J) 

GN(I,J) 

GR Grashof number 

H3(I,J) 	h3ij  

II 	 Input magnetic tape unit number 

IN1 	 IN1=total number of grid lines 

in the Z-direction 
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FORTRAN SYMBOL 	MEANING 

ISKIPN 	Number of files to be skipped on 

the input magnetic tape. 

ISKIPO 
	

Number of files to be skipped on 

the output magnetic tape. 

ITHETA(J) 
	

6 in degrees 

IXSTEP 
	

Number of line-printer steps to 

be used for plotting one quarter 

of the flow field. Normal setting. 

as shown in programme lising. 
ap 

JJ 	 Output magnetic tape unit number. 

JN1 
	

JN1=total number of grid lines in 

the e -direction. 

KNT 
	

Number of temperature contours 

to be plotted. 

KNU 
	

Number of stream-lines to be 

plotted. 

KNIT 
	

Number of vorticity contours to 

be plotted. 

KS 
	

k in degrees 

(All FORTRAN Symbols beginning with L are programme control 

contours) 

LM1 	 If LM1=1, another step in time 

is taken. Otherwise iterations 

are performed on the existing 

solution. 
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FORTRAN SYMBOLE 	MEANING 

LM2 	 If LM2=1, the stream function 

equation is solved at the n+k 

time step. 

LNP1 	 If LNP1=l, the programme starts 

from t*=0. If LNP1=0, the 

operation of the programme is 

controlled by LNP2 or LNP3. 

LNP2 	 If LNP2=1, the programme reads 

in a previously obtained converged 

solution from a magnetic tape and 

updates it in time. Otherwise 

set as zero. 

LNP3 	 If LNP3=1, the programme reads in 

a previously obtained unconverged 

solution from a magnetic tape and 

performs the appropriate computa-

tions. Otherwise set as zero. 

LOP1 	 If LOP1=1, a full output of results 

is produced and the current solution 

is transferred to a magnetic tape. 

Otherwise set as zero. 

LOP2 	 If LOP2=1, only the Nusselt numbers, 

the surface pressures, and the drag 

coefficients are printed out and the 

current solution in the computer 
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FORTRAN SYMBOL 	MEANING 

is transferred to a magnetic tape. 

Otherwise set as zero. 

LOPS 
	

If LOP3=1, a table of stream func7 

tion, vorticity and temperature 

values together with the drag 

coefficients and Nusselt numbers 

are printed out. Otherwise set 

as zero. 

M 
	

The number of the sections (1-10) 

of the flow field that are to be 

searched when plotting contours. 

MNPR 
	

The maximum number of unconverged 

nodes acceptable in a solution. 

Normally set as zero. 

MXITER 
	

The maximum number of iterations 

allowed per time step for conver-

gence of the time-dependent 

boundary conditons. 

MXU 
	

The maximum number of iterations 

allowed for convergence of the stream 

function values at the n+1/2 time 

step. 

MXUP 
	

The maximum number of iterations 

allowed for convergence of the 

stream function values at the n+li 
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FORTRAN SYMBOL 	MEANING 

time step. 

NPRG1 	The total number of unconverged 

surface vorticity nodes. 

NPRTD1 	The total number of unconverged 

temperature nodes at the down-

stream axis of symmetry. 

NPRTU1 	The total number of unconverged 

temperature nodes at the upstream 

axis of symmetry. 

NPRU1 	The total number of unconverged 

nodes in the stream function field. 

NPRINT 	The number of time-step after 

which a print out of the dependent 

variables is produced. 

NTIMES 	The total number of time steps 

by which the solution is advanced 

in time. 

OPTIME 	The approximate CDC 7600 central 

processor time required for output 

of results 

PR 	 Prandtl number 

RPLOTT 	The radial distance upto which 

the isotherms plot is produced 

RPLOTU 	The radial distance upto which 

the streamlines plot is produced. 
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FORTRAN SYMBOL 	MEANING 

. RPLOTV 	The radial distance upto which the 

vorticity distribution plot is 

produced. 

SH 	 Mesh size h 

SK 	 Mesh size k 

SN(J) 	 sine 

ST 	 Time-step 

THETA(J) 

TIME 

TN(I,J) 	T.n  . 
1,7 

TO(I,J) 

UN(I,J) 

nocTA1 n W. 

VCT(K) 	Values of the isotherm contours 

VCU(K) 	Values of the streamline 

contours 

VCV(K) 	Values of the vorticity contours 

VN(I,J) 	n+1 
Ci,j 

VO(I,J) 	
Ci,j 

WT 

WZ 	 wZ  

Z(I) 	 Z., distance in z-direction 
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F.3 Flow Diagram and Listing of the Computer Programme 

( CALL 
CONTROL 

(CALL CNSBC)  

(TALL INPUT 

FIGURE F.3.1 FLOW DIAGRAM FOR THE MAIN PROGRAMME 
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FIGURE F.3.1 (CONTINUED) 



YES 

NO 

NUMBE 
OF TIME STE 
COMPLETED- 

YES 

	""(ALL OUT9 
YES 
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FIGURE F . 3.1 (CONTINUED) 

CALL SECON 

CALCULATE 
COMPUTER 
TIME USED Ls' 
PREVIOUS 

, STEP 

(-ALL OUTPUT 

NO 

ROTATE 
STORAGE 



MAX. 
TERATION 
COMPLE- 

CALL OUTPU 
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FIGURE F.3.1 (CONTINUED) 
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PROGRAM FREE 

	

	
76/7, OPT=2 	 FT4 4.2+17B 

PROGRAM FREE(INPUTOUTPUT,TAPEB=INPUTI,TAPE6=OUTOJT,TAPEltTA2r2) 
C 
c*********************************************************************i 

C 
C 	

THIS PROGRAM SIMULATES FREE CONVECTIVE HEAT TRANSFER FROM! A SOJ 
C 
C. 	SPHERE TO A VISCOUS INCOMPRESSIBLE NE4TONIA4 MEDIUM BY 
C 
C 	SOLVING TIME•DEPENDENT NAVIER..STOKES A4) ENERGY 
C 
C 	EQUATIONS SIMULTANEOUSLY USING PEACEAAN4' 
C 
C 
C-
C 
C 
C 
C 
c*********************************************************************f 

C 
C****** ALL THE VARIABLES ARE IN  DIMENSIONLESS FORMS 
C 
c**************************************************************0******.t,  

C 
C 	 MAIN PROGRAM 
C 
c*****************************************************************,**** 

C 
COMMON /GRTD/ 2(81).E(11),ITHETA(31),SM(31),CS(31)*CT(31),H3nly 

),THETA(31) 
COMMON /OLDV/ U0(81931)00(81031)41T0(81,31) 
COMMON /NEmV/ UN(91,31),(uN(81,31),TN(131,31) 
COMMON /INjN/ IN1,UN1fIN,JN,SH,SK,SToKSIGRIPR,CCJ,CCGeOFUO:.1 
COMMON /NPRC/ NPRJ1,NPRG1,1`1PRJ,NPRGOTOTAL,MNPR,AKITER,NP4I1T. 

NTIMES,MXU,MXUP 
COMMON /TSTEP/ RX(PI),TIME 
COMMON /LOTPUT/ LOP1,LOP2,LOP3 
COMMON /LMAIN/ LM1,LM2 

. COMMON /LRSTAR/ LRS1 
COMMON /CPT1ME/ CPTOPTIME 
COMMON /GR'F/ IGRAPHO(; 
COMMON /TEmP/ NPRTU19NPRTD19NPRTU,NPRTD,CCTJICCT),DFTJ,DFTO 
LEVEL 2 atUO,UNIIN1,NPRU1,RX,LOPIILMI,LRS10CPT,I3RAP-ioNPRTjl 
WRITE(6920) 

C 
C****** SET PROGRAM CONTROL PARAMETERS TO START COMPUTATION 
C 

CALL CONTROL 
C 
C****** SET TIME-INDEPENDENT BOUNDARY CONDITIONS 
C 

CALL CNSBC 
C 
C****** READ OR FVALUTE INPUT DATA 
C 

CALL INPUT 
N=OENPOLD=nr,NP1GE=0£CPSECI=0. 

RACHFORD ALTERNATING DIRECTION 

IMPLICIT ,ADI, METHOD. 
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PROGRAM FREE 
	

76/76 	OPT=2 	 FT4 4,2+178 

te********************************************************************* 

C 
C****** START PRocEEDING IN TIME 
C 

10 CONTINUE 
NIT7R=0 
LM1=1 
TIMv=TImE+cT 
IF(NPAGE.E0.1) WRITE(6,20) • 

20TOP9AT(1H1) 
c**********************1.**********************************0**********H 
C 

30 CONTINUE 
C 
C****** UPDATE TEMPERATURE AND VORTICITy FIELDS IV TIME-- AND SOLVE 
C 	 STREAM FUNCTION EQUATION 
C 

CALL. UPDATE 
LM100 

C 
C****** EVALUATE TIME-DEPENDENT BOU4DARy CONDITIONS AT THE NEw TT4r-sT 
C 

CALL VARBC 
NITER=NTTER+1 
NTOTAL=NPRu+NpRG+NPRTU+NPRID 
WRITEC6,40) NT0TAL,NPRuINPRG,4PRTuORRTO 

40 FORmAT(1X0NT0TAL=*,I4,5X,*NPRu=4,14,5x,*4PRG=*li4,5X, 
1 	*NPRTu=*,I4,5X1*NPRTD=11,I4) 

C****** TEST FOR cONVERGE4cE 
C 

IF(NTOTAL,LE0NPR) GO TO 50 
C 
C****** TEST FOR MAXIMUM ITERATIONS 
C 

IF(NITER,GE,MXTTER) GOTO 110 
GOT0 30 

50 CONTINUE 
C 	• 
C****** CHECK COODUTER TIME USED 
C 

CALL SECONn(CPsEC) 
WRITE(6,60) CPSEC,NITER 

60 FORmAT(1H0e*CpTImE = *,F12,5,10)0*NITER = *914) 
WRITE(6,12n) 
TLEFT=cPT-cPSFC 
DLT1=TLEFT-OPTIME 
DLT.p=CPSEc-cRsECT 
IF(OLT1,LE.0LT2) 30T0 100 
CPSECI=CPSEC 
N =N+1 

C 
C****** CHECK PRINT OUT OF RESULT 
C 

IF(NTImE.S,r0„N) Go TO 100 
NPNL-N=N/NPRTNT 
IN(NPNEW-nPOLD).EQ.1) GO TO 90 
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NPAGE20 
70 CONTINUE 

NPOLD=NPNEm 
DO to I=191N1 
DO to J=1,,1N1 
UO(T,J)=LIN(T,J) 
GO(I,J)=GN(I,J) 
TO(I,J)=TN(I,J) 

80 CONTINUE 
,G0 TO 10 

90 CONTINUE 
NPAGE=1 
LOP1=0rL0P2=0eLOP3=1 
CALL OUTPUT 
GO T0 71 

a*********************************************************************4 
C 

100 CONTINUE 
LOP1=1CL0PP=OcLoP3=0 
IF(N.EO.NTImE2) IGRAPH=1 
CALL OUTPUT 
IF(TGRAPH,F0,0) WRITE(69140) 
IGR4PH=0 
STOP 

********************************************************************** 

C 
110 CONTINUE 

LOP1=0EL0P2=1CLOP3a0 
CALL OUTPUT 
WRITE(6,150 
STOP  , 

c********************************************************************** 

	

120 FOP.IAT(35X,* 	 *) 

	

140 FOR'IAT(1H0•* 	SOLUTION CONVERGE) AND T4ANSFERRF) INTO 
1MAGNET/C T4PE 	REMEMBER TO SET LNP2-1 FOR NF XT RuN 	*) 

	

150 FORIAT(1H09* 	SOLUTION DIVERGED AUT T4ANSFERRED nNTI, 
• lAGNFTIC TAPE 	REMEMBER TO SET LNP3 1 FOR NEXT iJN 	*) 

END 
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SUBROUTINE CONTROL4 

C 
co.**** 
C 	THIS SUBROUTINE SUPPLIES ALL PROGRAM CONTROL PARAMETERS 
c****** 

.0 
COMMON /GRID/ Z(B1),E(81),ITHETA(31),SN(31),CS(31),CT(31),H3l11,3 

1 	),THETA(31) 
COMMON /NPRC/ NPRA,NPRO1,NPRU,NPRG,NTOTAL,mVPROxITER,NPRINT. 

NTImES,MxU,mxJP 
COMMON /INJN/ IN1,J41,IN,JN,SH,SK,ST,KS,GR,PR,CCJ,CCG,Dru,DF6 
COMmON /TSTEP/ RX(F11),TImE 
COMMON /PLTPCN/ VC11(10),vCV(10),VcT(10),KNU,KNv,<IT0 
COMMON /PLOTC/ XX1(31,10Y,YY1(31,10),XX2(31,10),YY2(31,10),6;S, 

1 

	

	IXSTEP,JNH1,JNHOOPOPLOTOPLOTU,RLOTV,RPLOTT 
COMMON /L4TN/ 01,02 
COMMON /LNPuT/ LNaleLNR2,LNP3 
COMMON /LNTAPE/ ISKIPN,II 
COMMON /LOTt.,PE/ ISKIPO,JJ 
COMMON /CPTIME/ CPT,OPTIME 
COMMON /GR'1F/ IGRAPHOG 
COMMON /TEMP/ NPRTu1,NRRTD1,NPRTU,NPRTD,CCTJ•ccT),OFTJOFTO 
LEVEL 2 ,ZOPPUI,IN1,Rx,VCU,XX1,Lm1,1NP1,ISKIPN,ISKIP3, 

1 	CPTOGRAPH,NPRTU1 
.0 
C****** SET  GRASHOF NUMBER, PRANDTL NUMBER, MESH SIZES AND TIME-INTrpVA 

GR=1, 
pR=^,72 
TIME=0, 
SH=0,04CKS=6 
SK=3,14159*FLOAT(KS)/180, 
ST=0,001 
/N1=81cJN1-431 
IN=IN1-1 
JN=JN1-1 
JNHN=JN/2 
JNHH2=JNHH+2 

o********************************************************************iw* 

C 
C****** SET APPROPRIATE INITIAL CONDITION 
C 

LNP1=1ELNP2=0ELNP3=0 
II=leJJ=2 
ISKIPN=OE ISKIP0=0 
02=1 

c********************************************************************0* 
C 
c****** SET CONVERGENCE CRITERIA AND RELAXATION FACTORS 
C 

CCU=0.0000oIEDFU=1 46 
CCG=0.001EnFG=0•65 
CCTo=0,000001VFTJ=1.5 
CCTO=0,000nOlEOFT)=1,5 
mwR=0 
mxITER=50 
MXUP=200E4X0=200 
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c****************************************************************o***** 

C 
c******- SrT OUTPUT PARAMETERS 
C 

CPT-1200. 
OPTNE=14. 
NPPTNT=100 
NTI'IES=2 
IGRAPH=0 

c*****.*****************************************************************1 

C 
C****** SET PARAmETERS FOR STREAM FUNCTION,VORTICITY A4) TE0ERANRe 
C 	 CONTOUR PLOTS 
C 

RPL0TU=24.5325tRPL0TV=24.5325ERPLoTT=24,5325Em=10E.IXSTEP=50 
ITS=1.6666*FLOAT(USTEP-1)+1,5 
KNU=3EKNV=icKNT=3 
VCU(1)=0.050/CU(2)=0,1EV0(3)=0.2 
VCV(1)=1,015EVCV(2)=-0,00025EVCV(3)=-0.001 
VCT(1)=0.7PNCT(2)=0,25EVCT(3)=0.01 

WRITE(6910) 
10 FOR4AT(IX,//960X1*OONVERGENCE CRITERION 	RELAXATION FACTO 

1*) 
WRITE(6920) CCU,OFU,CCG,DFG,CCTU,OFTU,CCTD,DFTD 

20 roR,4AT(1X,i/ISXOSTRrAm FUNCTION*:45)(9,r1It8t21Xpr5,31/1/.5x t  
l*SURFACE VnRTICITY*943X,F114.8921X,E54•3,///15X,*AXIS OF SYMM=TRy T 
2MRERATURE--upSTREA1*922X,F11•8,21X9F5.3,1//,5)(**4xIS OF SYMmg:TRY 
3EMPFRATURE.-DowNSTREAM*,20X,F11,8,21A,FS.3) 
WRITE( .3n) sH,KS,sisIN1,JNI,TImE 

30 FO14ATC1X,////,5X,*mESH SIZE IN RADIAL DIRECTI0V*,15X,F64,4.//5X.,  
1 *Mr:SH SIZE IN ANGULAR DIRECTION(OESREES)*OX,I2s//,5x,*Timr DIVE 
2VAL*,30X9F6,49//,SX,*NUmBER OF GRID POINTS IN RADIAL OIRE:TtnN*4p 
36X,T31//,Sxt*NUMBER OF GRID POINTS IN ANGJLAR DIRECTION*,5X,13* 
4//95)(f*STARTINGTIME FOR THIS RUN*,18X,F6•4) 
RETURN 
END 
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SUBROUTINE CNSBC 

O 
c****** 
C 	THIS SUBROUTINE SETS TIME—INDEPENDENT BOUNDARY CDNDITIONS 
C****** 
C 	

COMMON /GRID/ 2(R1),E(81),ITHETA(31),SN(31),CS(31),CT(31),H3i91,: 
1 	),THETA(31) 
COMmON /NEWV/ UN(B1,31)0N(81,31),TN(91,31) 
.COMMON /V00/ V0(81,31) 
COMMON /VW!, VN(81,31) 
COMMON /INjN/ INliwjN1,IN,JN,SH,SK,ST,KSOR,PR,CCO,CCGOFU,OFG 
LEVEL 2 ,Z,UNIIVO,VNIIIN1 

C 
DO 10 /7.1,01 
0(1,1)=0, 
UN(i,JN1)=0. 
ON(T,1)=0, 
ON(I,JN1)=0. 
V0(i,1)=0. 
VO(i,JN1)=n, 
VN(i,1)=0, 
VN(f,JN1)==r, 

10 CONTINUE 
DO 20 J=1,jN1 
TN(1,J)=1, 
TN(IN11,0=n, 

20 CONTINUE 
DO 3n J=2#AN 
UN(1,J)=0, 
UNON1,J1=n. 
ON(IN1,J)=n. 
VO(IN1IIJI=n. 
VN(IN1,J)=0, 

30 CONTINUE 
RETURN 
END 
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SUBROUTINE INPUT 
C 
c4***** 

C 	THIS SUBROUTINE CONTROLS ALL INPUT DATA REQUIRES TO START iFF 
C 	 SOLUTION PROCEDURE 
C****** 
C 

COMMON /GRID/ Z(81),E(81),ITHETA(31),SN(31),CS(31),cT(31),3(8193 
1 	),THETA(31) 
COMkION /0LnV/ Uot91,31)00(81931),T0(81,31) 
COwioN /NEwV/ UN(61,31),GN(81931),TN(81,31) 
COMMON /i..67oEF/ ASH,ASKOSH,RSK,CR,A 
COMMON /COFF/ B1(91)02(81)11E33(81),34(81),C(81),ESQ(81) 
COMMON /TSTEP/ RX(81),TIME 
COMMON /INjN/ IN19.341ITNIJNISI,SK,STIKSOR,PR,CCJtCCG,DFUOFti 
COMMON /NPRC/  NPRJ1/NPRO1,NPRU,NPRG,NTOTALOINPROXITER,NPRINT. 

NTIMES,MXU,MXUP 
COMMON /LNPUT/ LNP1,LNP2,LNP3 
COMMON /TEMP/ NPRTUI,NPRTDIIINPRTU,NPRTD,CCTJ,CCT)*OFTJPOFTO 
COMMON /LRSTAB/ LRS1 
LEVEL 2 IZOO,UN,A51-1,31,RX,IN1tNPRU19LNP19NPRTU194RS1 

NPRu1=(IN-1)*(JN-1) 
NPRnI=JN-1 
NPR1=NPRU1+NPRG1 
NPRTU1=IN•1 
NPRTO1=IN..1 
/F(LNP1.E0,1) GO To 20 
IF(LNP,tErle1) (30 TO 30 
IFCLNP3.E0,1) GO TO 50 
WRITE(6,10) 

10 FORAT(1X,* INCORRECT CONTROL PARAMETERS-.--EXECJTIoN TERII4ATE3* 
STOP 

c****************************************0*********************0*******1  
C 

20 CONTINUE 
CALL GRID 
CALL COUP',  
CALL INTVAL 
WRITE(6,90) 
GO To 60 

. 0.********************************************************************* 

C 
30 CONTINUE 

CALL INTAPE 
DO 40 J=1,JN1 
DO 40 I=1.1N1 
U0(t,J)=UN(I,J) 
GO CI.J)=GN(

I")  TO(I,J)=TN(I,J) 
40 CONTINUE 

WRITE(61100) 
GO To 60 

crne****************************************************************** 

C 
50 CONTINUE 

CALL INTAPE 

C 



C 
C****** 
C 

OS1=1 
CALL RESTAB 

LRs1=1 WRITE OLD VALUES OTHERWISE WRITE NEB! viki.JES 
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WRITE(60110) 
a********************************************************************** 

C 
60 CONTINUE 

C 
C****** EVALUATE CONSTANT COEFFICIENTS FOR TRANSPORT EOJATIONS 
C 

A=2,*((1./SH**2)+(10/SK**2)) 
ASH=1./(ADSM*SM) 
ASK=10/(A*SK*SK) 
RSM=1./(A*BN) 
RSK=10/(105K) 
CR=1.W.*A*SM*SKY 
OD 70 /=1,01 
ES(1(I)=CE(I)*E(I))/A 
RX(T)=(2.*rSO(I))/BT 

70 CONTINUE 
C 

WRITE(6,80) E(IN1) 
80 FORqAT(iXt///tBX,*RATIO OF THE DIAMETER oF THE OJTER 30jN)A4;; TO' 

IHE SPHERE DIAMETER =*,p10•6) 

C 
90 FORMAT(1)(,///920X000MPUTATION STARTS FROM DONDJCTION SOLJTT140 

100 FORmAT( 1X,///,20X000mPUTATIOV STARTS FROM cONVER3ED RESUi.Ts 	P 

1EVIOUS RUM*) 
110 FORmAT(1X,///,20X,*CONpUTATI04 STARTS FROI DIVEROED RESULTS 

1VIOUS RUN*) 

RETURN 
ENO 



312 

WIROUTiNE GRID 
	

76/16 OPT=2 	 FT4 4.24178 

SUBROUTINE GRID 

C"*4~ 

C 	THIS SUBROUTINE SUPPLIES GRID INFoRMATI04 AT EC:'( NODE 
c****** 
C 

COMMON /GRID/ Z(81),E(81),ITHETA(31),SN(31),CS(31),CT(31),H3igil, 
),THETA(31) 

COMMON /INJN/ IN1,X419IN,JN,SH,SK,ST,KS,GR,PRoCCJoCCGOFUIPDFG 
-LEVEL 2 ,Z,INI 

DO 10 J=2,JN 
ITHETA(J)=Ksit(J-1) 
THETA(J)=SK*FOAT(J-1) 
SN(4)=SIN(THETA(J)) 
CS(J)=c0S(THETA(J)) 
CT(J)=CS(J),SN(J) 

10 CONTINUE 
ITHFIA(1)=n 
ITH7TA(.041)=180 
THETA(1)=0. 

'THETA(JN1)=5K*FLOAT(JN) 
SN(1)=c, 
sN(JN1)=0. 
CS(1)=1. 
CS(A1)=-1. 
DO 20 I=2,IN 
Z(I)=SH*FLoAT(I-1) 
p(T)=ryp(71!)) 

20 CONTINUE 
Z(1)=0, 

.VIN1)=SH*FLOAT(IN) 
E(1)=1, 
E(INI)=EXP(Z(IN1)) 
DO 30 J=1,JN1 
DO 30 I=1,TN1 
H3(f"))=E(i)*SN(J) 

30 CONTINUE 
. RETURN 
END 
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SUBROUTINE cOEFF 

C...... 

C 	THIS SUBROUTINE EVALUATES CONSTANT COEFFICIENTS IN 
C 	FINITE-DIFFERENCE EQUATIONS 
C...... 
C 

COMMON /GRID/ Z(81),E(81)./THETA(31),SN(31),CS(31)11cT(31),H3(ii,Z 

	

1 	),THETA(31) 
.COMMON /COFF/ 81(91)02(01)033(81),34(81),C(11),ESa(S1) 
COMMON /INJN/ TNI,JN1111N,JN,s4,sic,sTilks,GRoRipcC.J.ccoilDFU,O=ril 
LEVEL 2 ,Z,B1,IN1 

C 
A=2,*((1,/sm**2)4.(1./SK**2)) 
BA=((1,/5m**2) -0..s/sH)/A 
BB=1(1./Sm**2)+o.5/sm)/A 
DO 10 I=2,IN 
81(T)=BA 
82(1)=BR 
C(I)=CE(I)*E(I))/A 

10 CONTINUE 
DO 20 J=2,jN 
B3(J)=((1,/sK**2)-0.5*CT(J)/SK)/A 
B4(J)=((1,43/sK**2)+0,5=CT(J)/Sio/A 

20 CONTINUE 
RETURN 
END 



314 

UBROUT/NE /NTVAL 	76/76 	0PT=2 	 FT4 4.2+178 

SUBROUTINE INTVAL 

a,►+*,►,► 

C 	THIS SUBROUTINE SETS APPROPRIATE INITIAL CONDITIONS 
C****** 
C 	

COMMON /GRID/ 2(81),E(81),ITHETA(31),SN(31),CS(31),CT(31),H3iS1+i 
1 	),THETA(31) 
COMMON /0LnV/ U0(81,31)0001,317,T0(81,31) 
.COMmoN /NEWV/ uN(81,31)9oN(81,31),T1(81931) 
COMMON /INJN/ IN1,JN1,IN,JN,SHIISK,ST,Ks,GRIppRtcCJ,CcG,DFU,DF6 
LEVEL 2 9Z,u0,UNIIN1 

C 
C****** INITIAL CONDITIONS OF VORTICITY AND STREAM FUNCTION 
C 

DO 10 J=1,JN1 
DO 10 I=1,IN1 
GOCT,J)=0, 
U0(i,J)=), 

10 CONTINUE 
C 
C****** INITIAL CONDITION OF TEMPERATURE 	PURE RADIA6( CONDUCT/ON 
C 

ER=1,/E(IN1) 
ER1=14.-CR 
DO 20 J=1,JN1 
DO 20 I=2,TN 
TO(I,J)=1./(E(I)*EP1)-1./(E(INI)*ER1) 

20 CONTINUE 
DO 30 J=1,JN1 
TO(1,J)=1, 
TO(1N1,J)=1), 

30 CONTINUE 
DO 40 J=1,JN1 
DO 40 I=1,IN1 
UN(/,J)=UO(I,J) 
GN(T,J)=GO(T,J) 
INCT,J)=TOiI,J) 

40 CONTINUE 
RETURN 
END 
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SUBROUTINE UPDATE 
C 
c****** 

C 	THIS SUBROUTINE UPDATES TEMPERATURE AND VORTICITY FIELDS /4 
C 	TIME USING PEACEMAN RACHFORD f,LTERIATING DIRECTION IMPLICIT 
C 	'ADD METHOD AND SOLVES STREAM FUNCTION EQUATION USING 
C 	SUCCESSIVE OVER RELAXATION,SOR, METHOD 

C 
COMMON /GRID/ 7(81).E(81),ITHETA(31).SN(31).CS(31),CT(31).M3(q1 

1 	),THETA(31) 
COMMON /OLDV/ U0(51.31) 00(81.31),T0(81.31) 
COMMON /NEWV/ UN(51931),GN(811131),TN(81,31) 
COMMON /V0E-J/ VN(81,31) 
COMMON /IJCOEF/ ASH,ASK,RSH,RSK,CR,A 
COMMON /INJN/ INI,JN19/N,JNISH,SK,ST,KS,GRIFPR,CCJsCCG,DFU,DFri 
COMMON /NPRC/ NPRj19NPRG1,NPRO,NPRGONTOTALIMNPROIXITER,NP4INT, 

NTIMES,MXU,MXUP 
COMMON /COFF/ 91(31)982(81)03(81),34(81),C(81),ESO(81) 
COMMON /SLvCF/ C1(81),C2(81),O3(61),0(81),P(81),LSV1 
COMMON /TSTEP/ RX(81),TIME 
COMMON /LMAIN/ LM1,LH2 
COMMON /LRSTAB/ LRSI 
LEVEL 2 .Z00. UN.VN,ASH.INI.NPRU1,31,C11RX.01.051 

C1(1)=0. 
C2(1)=1. 
C3(1)=0, 
IF(LM1,E0,0 GO TO 120 

-********************************************************************* 

C 
C****** UPDATE VALUES OF VORTICITY AND TEMPERATURE AT T-IE HALF TIAF ST 
C """*".COLUtiN WISE 
C 

CIAJN1)=0, 
C2(A1)=1, 
C3(JN1)=G. 

C 
C"0*** LSV1=1 UPDATE COLUMN BY COLUMN OTHERWISE UPDATE ROW BY RO4 
C.  

LSV1=1 
c***********0******4************************************************** 
C 
C****** UPDATE VALUES OF TEMPERATURE 
C 

DO 30 I=2,tN 
0(1)=TN(I.1) 
D(JN1)=TN(I,JN1) 
DO 10 J=29jN 
SKG=CR/H3(T,J) 
DIFUJ=UO(/...1+1)UD(19J...1) 
DIFHI=UO(I‘1,J)-UO(I•11,J) 
IF(DIFUI) 113.4 

2 WZ=1, 
GO TO 5 

3 Va=t!,5 
GO TO 5 
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4 WZ=n, 
5 CONTINUE 

IP(DIFUJ)6,7,8 
6 WT=0. 

GO TO 9 
7 WT=n,S 

GO TO 9 
8 WT=1, 
9 CONTINUE 

C1(J)=81(I)-PR*SK3*DIFUJ*(1.0PWT) 
C2(J)=PR*RX(I)-2.41.ASH+PR*SKG*DIFUJ*(1.-2.*WI) 
C3(J)=B2(I)+PR*SK3*DIFUJ*WT 
D(J)=C1(J)*TO(T-19J)+C2(J)*TO(I,J)+C3(J)*TO(I+19J) 
CI(J)=-R3(j)-PP*SKG*DIFUI*(1.-wn 
C2(J)=PR*Rx(I)+2.*ASK 4TR*SKG*DIFUI*(1.-2,*WZ) 
C3(J)=-84(J)+PR*SKG*DIFUI*WZ 

10 CONTINUE 
CALL SOLVE 
DO 20 J=1,JN1 
TN(T,J)=P(J) 

20 CONTINUE 
30 CONTINUE 

DO 40 J=1,A1 
DO 40 I=1001 
TO(T,J)=TN(T,J) 

40 CONTINUE 
d*********************************************************************# 

C 
C****** UPDATE VALUES OF VORTICITY 
C 

DO 70 I=2,IN 
o(1)=ON(I11) 
D(JN1)=GN(T IJN1) 
DO 5n J=2,JN 4, 
SKG=oR/H3(T,J) 
SKT=cR*H3(I,J)*H3(I.J) 
DIFTI=TO(T+1,J)-TO(I-1,J),  
DIFTJ=TO(I.J+1)-TO(19J-1) 
DIPUJ=UO(I,J*1)-UD(I,J-1) 
DIF0T=UO(I4,1,J)-UO(I.,1,J) 
IF(DIFUI) 41,42,43 

41 WZ=1, 
GO To 45 

42 WZ=,,,5 
GO TO 45 

43 WZ=';, 
45 CONTINUE 

IP(DIFuJ)461147948 
46 WT=n, 

GO TO iL9 
47 WT=;,,S 

GO To 49'  
48 WT=1, 
49 CONTINUE 

Cl(d)=412(II-SKG*DIFJJ*(1.-WT) 
C2(J)=Rx(I)-2.*ASH*SKn*DIFUJ*(1.-20*WT-2.*S4) 
C3(.1)=PI(1)4. KG*OIFUJ*WT 
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C4J=SKT*GR*(SH*CT(J)*DIFTJ+sk*DIFTI) 
D(J)=O1(J)*G0(1-1,J)*C2(J)*G0(I,J).C3(J)*GO(I+1,J)+C4J 
C1(J)=-,1 4(j)-SKG*DIFUI*(1.-w2) 
C2(J)=Rx(I)+2.*ASK+5KG*DIFUI*(1.-2.*W2-2,*SK*CT(J)) 
C3(J)=-q3(J)+SKG*DIFUI*WZ 

50 CONTINUE 
CALL SOLVE 
DO 60 J=1,JN1 
GN(T,J)=P(J) 

60 CONTINUE 
70 CONTINuE 

DO #30 J=1,JN1 
DO PO 1=1,IN1 
GO(T,J)=GM(I,J) 

80 CONTINUE 
IF(Lm2,EO,n) GO TO 120 

c*******************************************************************0* 

C 
cm*** SOLVE STPEAm FUNCTION AT THE HALF TIME STEP 
C 

N=0 
90 CONTINUE 

NPRu=NPRui 
DO 100 J=2,JN 
DO 100 I=2,rN 
UTGN=B1(I)*UN(I+111J)*B2(I)*UN(I-111,)+83(J)*J1(I,J+1) 

4,84(J)*UNC/sJ-1)-c(I)*GN(I,J) 
UTGN=UN(I,J)+OFU*CUTGN.uNti,J)) 
ERRORU=UTGN-uM(/, 
IF(A3S(ERR0RU).LE,CCU) NPRU=NPRU-1 
UN(T,J)=uTr;N 

100 CONTINUE 
N=N+1 
IF(NPRU.EQ,0) GO To 110 
IF(N.E004Xu) STOP 
GO To 9i 

110 CONTINuE 
WRITE(6922o) N 

. CALL VAR8c 
C 
c****************************************************************0***a.* 
c*************************************************** *****************w* 
c*****************************************************00************** 

C 
C****** UPDATE VALUES OF TEMPERATURE AND VORTICITY AT TlE NEW TIME STEP 
C 	 ROW 3Y ROW 
C 

120 CONTINUE 
Cl (IN1)=0. 
C2(IN1)=1, 
C3(TN1)=0. 
LSV1=o 

C*****************************#####*#i**************************0#41.***0* 

CD***** UPDATE VALUES OF TEMPERATURE 
C 

DO 150 J=2,JN 
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0(1)=TN(1,J) 
WIN1)=TN(01,J) 
00 130 I=2,IN 
5KG=CR/H3(T,J) 
DIFUI=UN(I+1,J)-U4(1-1,J) 
DIFUJ=UN(I,J+1)-U4(I,J-1) 
Ir(OIFUI) 1211122,123 

121 WZ=1. 
GO TO 125 

GO TO 125 
123 WZ=r. 
125 CONTINUE 

IF(DIFuJ)126,127,128 
126 WT=n, 

GO To 129 
127 WT=1.5 

GO TO 129 
128 WT=1, 
129 CONTINUE 

C1(1)=83(J)+PR*SKG*01FU/*(1.-4Z) 
C2(/)=PR*RY(I)-2.*ASK-RR*SKG*DIFUI*(1.,2.*WZ) 
C3(I)=R4(J)-PR*SK3*O1FuI*WZ 
D(I)=C1(I)*T0(1,J-1)+C2(1)*TO(I,J)+C3(I)*TO(I,J+1) 
C1(I)=-P1(i).PR*5KG*DIFUJ*t1e-WT) 
C2(I)=PR*RX(1)+2,*ASH.-PR*SKG*DIFUJ*(1.-2.*WT) 
C3(i)=-R2(/)-PR*SKG*DIFUJ*WT 

130 CONTINUE 
L cnoir 

DO 140 I=1,IN1 
IN(T,J)=P(i) 

140 CONTINUE 
150 CONTINuE 

c***************.i***********************t****************************** 

C****** UPDATE VALUES OF VORTICITY 
C 

DO 180 J=2,JN 
0(1)=ON(1,..1) 
D(INI)=GN(IN19J) 
DO 160 I=2,IN 
5KG=0/H3(111,1) 
SKT=0*H3C/IJI*H3(I,J) 
DIFTI=TN(I4.19,1)-TV(I-1,J) 
DIFTJ=TN(I,J4.1)-14(I,J-1) 
DIFUI=UN(I+1,j)-01(I-1,J) 
DIF'JJ=UN(I,J+1)-U4(19J-1) 
IF(DIFUI) 151,152,153 

151 WZ=1, 
GO To 155 

152 tar.-.5 
GO To 155 

153 WZ= 
155 CONTINUE 

IF(D/FuJ)196,157,158 
156 WT=n, 

GO To 159 
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157 WT=,-1.5 
GO TO 159 

158 WT=1. 
159 CONTINUE 

C1(I)=64(J)+SKG*DIFUI*(1.•WZ) 
C2(I)=PX(I)•2,41. ASK+SKG*D/FUI*(1.2.*WZ•2,*5K*C7(J)) 
C3(I)=83(J)-SKG*DIFUI*WZ 
C4I=SKT*GR*(SH*CT(J)*D/FTJ+SK*DIFTI) 
D(I)=C1(I)*GO(I,J.•1)+C2(/)*GO(I,J)+C3(I)*G0(I,J+1)+C4I 
Cl(i)=.“12(I)+SKG*O/FUJ*(1..-47) 
.C2(T)=RX(I)+2.*AS4+5KG*DIFUJ*(1.2.*WT2**51) 
C3(T)=.'Rl(T)•..SKG*DIFUJ*Wi 

160 CONTINUE 
CALL SOLVE 
DO 170 1=1./N1 
GN(T,J)=P(I) 

170 CONTINuE 
150 CONTINUE 
IA5 CONTINUE 

C 
co****************************************************0**************** 

C****** SOLVE STREAM FUNCTION AT NEW TIME STEP 
C 

N=0 
190 CONTINUE 

N=N+1 
NPPU=NPRU1 
DO 200 J=2,JN 
DO NO I=2,IN 
UTGN=Fliti)*IINt1+1+J)+8?(P*ON(I.10)+83Q)iiumtiTjbl, 

1 	4434(j)*UN(19J+1)•T(1)*GN(I+J) 
UTON=UN(I,j)+DFU*(urGN-UN(1#J)) 
ERRnRU=UTG!,-UN(I,J) 
IFOABS(ERRnRU).LE.CCU) NPRU=NPRU-1 
UN(r,J)=UT(;N 

200 CONTINUE_' 
IF(NPRU,EO.0) GO TO 210 
IF(N,Eo.mXuP) GO To 230 
GO TO 190 

210 CONTINUE 
WRITE(6922',) N 

220 FOR9AT(10X,2HN=014) 
RET(1RN 

230 CONTINuE 
DO 240 J=2,JN 
DO P40 i=1, I()1 
VN(T,J)=GN(I,J)/H3(I,J) 

240 CONTINUE 
LRS1=0 
CALL RESTAR 
GO TO 185 
END 
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SUBROUTINE VARBC 
C 
c****** 

C 	THIS SUBROUTINE EVALUATES TIME-DEPENDENT BOUVOARY COVOITIOV 
C****** 

C 
COMMON /GRID/ Z(S1),E(81),ITHETA(31),SN(31).CS(31),CT(31),H3(q1 

),THETA(31) 
COMMON /NE0,/ UN(81,31),GN(814,31),TN(81,31) 	. 
COMMON /INJN/ INIsJ\11/INeJNIIH,SKISTiKS,GR/PR,CCJ,CCOOFU,D;"ti 
COMMON /NPRc/ NPRJ19NPROltNPRU,NPROtNTOTAL,MVPROKITER,NPRI4T. 

NTIMES,MXU,MXUP 
COMMON /LMAIN/ LM1,02 
COMMON ITEtIP/ NPRTUltNPRIDI,NPRTU,NPRTD,CCTJICCTD,OFTjtOFTO 
LEVEL 2 IZIUN'IN1,NPRU19019NPRTU1 

RSH,=0,5/(sli*Sm) 
IF(LM1.EQ.1) GO TO 30 

C********************************************************************* 

C 
C****** EVALUATE AT THE NEW TIME-STEP 
C 

NPRn=NPRG1 
NRRTu=NPRTul 
NPRTD=NPRTn1 

C 
C****** EVALUATE SURFACE VORTICITY 
C 

DO in Jr-1,t,JN 
UTGN=RsH2*(p.*Im(2,J)-uN(3,J), 
UTGN=GN(11A)+DFG*(uTGN-GN(11,1)) 
ERRoRG=MinN-GN(1,J))/H3(19J) 
IF(485(ERRoRG).LE.CCG) NPRG=NPRG-1 
GN(1,J)=UTGN 

10 CONTINUE 
C 
C****** EVALUATE TEMPERATURE ALONG THE AXIS OF SYMMETRY 
C 

DO 	I=2,TN 
UTGN=CIA,*TN(I,2)-q,*TN(I,3)4.2.*TN(I14))/11. 
UTGN=IN(III1)+OFTU*(uTGN-TN(I:11) 
ERRoRT=UTGfi-TN(191) 
IF(',BS(ERRnRT).LE,CCTU) NPRTU=NPRTU-1 
TNI(T I,1)=UTc,N 
UTON=C18•*TN(I,JN)-9.*TN(IIIJN-1)+2.*TN(I,JN-2))/11. 
UTGN=TN(I,JN1)+OFTn*(UTGN-TN(I,JN1)) 
ERRoRT=UTGi-TNCI,JNI) 
IF(ABS(ERRnRT).LE.CCTD) NPRTD=NPRTO-1 
TN(I,JN1)=OGN 

20 CONTINUE 
RET IRN 

C 
c********************************************************************* 
c********************************************************************0 
C 
C******  EVALUATE AT THE HALF TIME-STEP 
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30 CONTINUE 

C****** EVALUATE SURFACE VORTICITY 
C 

DO 40 J=2iJN 
GN(1,4)=(3.*UNC2,J)-UN(39J))*RSH2 

40 CONTINUE 
C 
C****** EVALUATE TEMPERATURE ALONG THE AXIS OF SYm4ETRY 

DO 50  i=2,iN 
TNtit1)=11q.*TN(I112)-9.*TN(I,3)+2,*TN4/114))/11. 
TN(TtJN1)=(1 .*TN(/,JN)-9.*TN(/,..1N-1)+2,1*TN(1,J4-2))/11. 

50 CONTINUE 
RETURN 
END 
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SUBROUTINE SOLVE 
C 
c****** 

C 	THIS SUBRoUTINE SOLVES TRIDIAGONAL MATRICES FOR TEMPERATJR= 
C 	 AND VORTICITY VALUES 
c****a* 

C 
DIMENSION w(81),3(81) 	 # 

COMMON /GRID/ Z(B1),E(81),ITHETA(31),SN(31),CS(31),CT(31),H3(11,3 
),THETA(31) 

COMMON /INJN/ IN1,JN19IN,JNISH,sK,STIKS9oR,PRecCJICCG.DFU,DFni 
COMMON /SLVCF/ C1(81),C2(81),C3(81)90(81)03(81),LSV1 
LEVEL 2 ,Z,IN1,C1 

IF(LSV1gE0,1) GO To 30 
W(1)=C2(1) 
G(1)=D(1)/A1) 
DO 16 I=20N1 
W(I)=C2(I)-c1(I)*C3(I-1)/w(I-1) 
G(I)=CD(I).c1(i)*3(/-1))/W(1).  

10 CONTINuE 
P(IN1)=G(IN1) 
/=/N 

DO 20 K=1,TN 
P(I)=G(I)-0(I)*P(/+1)/W(1) 
I=I-1 

20 CONTINUE 
RETURN 

co*****************************************************0*************** 

C 
30 CONTINuE 

W(1)=C2(1) 
G(1)=D(1)/,,(1) 
DO 46 J=2,JN1. - 
W(J)=C2(J)-C1(J)*O3(J-1)/w(„1-1) 
GtJ)=M(J)-cl(J)*G(J-1))/01(J) 

40 CONTINUE 
. P(J141)=G(Jn1) 
J=JN 
DO So K=1,JN 
P(J)=G(J)-c3(J)*P(J+1)/W(J) 
J=J-1 

50 CONTrNHE 
RETURN 
END 
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SUBROUTINE OUTPUT 

C 

****** 

THIS SUBROUTINE CONTROLS OUTPUT OF RESULTS 
****** 

C 
COMMON /GRID/ Z(81),E(81),ITHETA(3I),SN(31),CS(31),CT(31).H3iRI, 

I 	),T1ETA(31) 
COMMON /INA/ IN1.J41,IN.JN.SH,SK,STIPKS,GR,PR,CCJIICCG,DFU,D7i 
COMMON /LOTPUT/ LOP1,LOP20LOP3 
COMmON /LRSTAB/ LRS1 
'LE1,fri. 2 a./NI,LOR1.LPS1 

C 
LRS1=0 
IF(LOP1.E0.1) GO TO 20 
IF(LOP'7,EO,1) GO TO 30 
/F(LOP3.E0.1) GO TO 40 
WRITE(6,10) 

10 FOR'IAT(1X,*INCORRECT GENERATION OF OUTPUT CONTROL! PARAMETERS*) 
RETURN 

.********************************************************************* 
C 

20 CONTINUE 
CALL PDNC0FF 
CALL RESTAP 
CALL CNPLTP 
CALL OUTAPE 
RETURN 

t********************************************************************** 

C 
30 CONTINUE 

CALL PONCOFF 
CALL OUTAPE 
RETURN 

c***************************************************** *o*************** 
C 

40 CONTINUE 
CALL PC)NCOrF 
CALL RESTAR 
RETURN 
END 
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SUBROUTINE INTAPE 

C 

C 	THIS SUBROUTINE READS IN DATA FROM MAGNETIC TAPE 
C****** 

C 
COm4oN /GRID/ Z(B1),E(81),ITHETA(31),SN(31),CS(31),CT(31)0-13(q19 

1 	)IIT1ETA(31) 
COMmON /OLPV/ U0(81,31)00(81,31),T0(81,31) 
.COmION /NEwV/ UN(91931),GN(81,31),T1(81,31) 
COMmON /INJN/ IN19JN1IIN,JNISH,SK'sT.KS,GR,PRicCJ,CcG,DFU,D7, 
CDMAION /COEF/ 81(B1)02(81),B3(81)04(81),C(B1)4E5(81) 
COMMON /LNTAPE/ ISKIPN,II 
LEVEL 2 9Zsu0,UN'IN101,ISKIpN 

C 
REWIND II 
IF(ISKIPN.GT,O) CALL. SKPFILE(ISKIPN,II) 

C 
READ(II)(Z(I),E(I),1=1,IN1) 
READ(II)(ITHETA(J),THETA(J),SN(J)10(J),CT(J),J=1,JNI) 
READ(//)(81(I),82(/),C(/),I=1,01) 
READ(/')(B1(J)164(J),J=1,JN1) 
READ(II)((H3(I,J),I=19/N1),J=1,JN1) 
READ(II)((Ito(I,J),/=1,IN1),J=1,JNI) 
READ(II)((no(I,J),/=19/N1),J=1,JN1) 
READ(II) TOI,J),I=1,IN1),J=1,JN1) 
READ(II) UN(I,J),I=1,IN1),J=1,JN11 
READ(II)((ON(I,J)0=1,INI),J=1,JN1) 
RFAn(IT)(CTN(I1J),/=1,TNI)f.J=IrdN1) 
RETURN 
END 
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SUBROUTINE OUTAPE 
C 
c****** 

C 	THIS SUBROUTINE WRITES OUT DATA ON MAGNETIC TAPE 

C 

c****** 

COMMON /GRID/ Z(B1),E(81),ITHETA(31),SN(31)0CS(31),CT(31),1431.2 
1 	),THETA(31) 
COMMON /OLOV/ U0(31,31),G0(81,31),T0(81,31) 
COMMON /NENVi 1.1N(91,31)*GN(81,31),TN(8101) 
COMMON /INUN/ IN1IJN1,IN,JN,SH,SK,ST,KS,GR,PR,CCJ,CCG.DFUOFG 
COMMON /COFF/ R1(91)02(81)03(81),84(81),C(B1),ESQ(31) 
COMMON /LOTAPE/ ISKIPO,JJ 
LEVEL 2 ,Z00,UNIIN1019ISKIPO 

REWIND JJ 
IF(ISKIPO.GT.0) CALL SKPFILE(ISKIPOoJJ) 
WRITE(JJ)(7(1)9E(I),I=1,IN1) 
WRITE(JJ)(ITHETA(J),THETA(J),SN(J),CS(J),Ci(J),Ja19JNI) 
WRITE(JJ)(nI(I)02(I),c(I),I=ltIN1) 
WRITEWW3(j),B4(J),J=1,JN1) 
WRITE(JJ)((H3(it4)91=1,IN1).J=1,JN1) 
WRITr(JJ)((!)0(1,J),I=IIIN1).J=1,JN1) 
WR/Tr(JJ)((00(I,J),I=1,INI),J=1,JN1) 
WRITF(JJ)((TO(I,J),I=1,IN1),41119JN1) 
WRITE(JJ)(01N(I,J),I=1,IN1)IJ=1,JN1) 
wRITF(JJ)((1N(I,J),I=1,INI),J=1,JNO 
WRITE(JJ)(iTN(I,J),I=1,INI/IJ=1,JNI) 
END FILE JJ 
RETURN 
END 
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StWoUTINE sKPF/LE,  (ISKIP,I). 

c****** 
C 	THIS SUBROUTINE SKIPS FILES ON MAGNETIC TAPE ***• CDC 7600 
C****** 
C 

LEVEL 2 OSKIP,I 
C 

NO 
10 CONTINUE 

"READ (I) DUm.IY 
/F(roF(I)) 20,30 

20 N=N41 
IF(N,E0,ISKTP) RETURN 

30 GO To 10 
END 
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SUBROUTINE CNPLTP 
C 

C 	THIS SUBROUTINE EVALUATES PLOT POSITIONS OF CONTOURS AND CALLS 
C 	THE LINE-PRINTER PLOTTING ROUTINE 
Cyr***** 

C 
DIMENSION ZVC1(10),ZVC2(10),LVC(10) 
COMMON /GRID/ Z(81),E(81),ITHETA(31),SN(31),CS(31),CT(31),H3'(81:3 

),THETA(31) 
COMMON /PLTPCN/ VCU(10),VCV(10),V CT(10),KMUIKNVIoW,M 
COMMON /NEWV/ UN(91,31),GN(81,31),T1(81,31) 
,COMMON /VON/ VN(61.31) 
COMMON /PL0TC/ XX1(31910),YY1(31910),XX2(31910),YY2(31,10)96;S, 

1 	IXSTFP,,INH1•JNH,KNP,RPLOTOPLOTU,RLOTV,RRL.OTT 
COMMON /MN/ IN1i0J119IN,JNISH,SK,ST,KS,GROR,CCJ,CCG,DFU,D; 
LEVEL 2 latVCUsU4,VN,XX19IN1 

C 
WRITE(6,24n) 
WRITF(69250) 
WRITE(6926n) (VCJ(K),K=1,KNU) 
DO 10 K=1,KNU 
ZVC1(K)=0. 
ZVCR(K)=0. 
LVC(K)=1 

10 CONTINUE 
IIN1=(IN*M/10)4.1 
IIN=IIN1-1 
JNWIJN/2 
JNHI=JNM+1 

c********************************************************************0* 

C 
C****** SEARCH AND INTERPOLATE BETWEEN TWO 

....STREAM FJ1CTION COlToURS 
C 

DO TO 4.17-2,JN 
DO 40 I=2,TIN1 
DO 40 K=1,KNU 
IF ( 1 1N(P•19J) •LE•VCU (K) .AND.UNCI,J1•GE•VCU(K) ) GO to 20 
Ir(uN(I-1,,i).GE.VCUCK).AND.UN(ItJ).LE.VCU(K)) GO TO 20 
GO TO 4P 

20 IF(LVC(K).F0.0) GO TO 30 
2VC1(K)=SH*(FLOAT(I-2),4,(VCU(K)*UN(I..1,J))/ON(I,J)-UN(I*19J))) 
ZVC,(K)=0. 
LVC(K)=0 
GO 10 40 

30 ZVC2(K)=SH*CFLOAT(I-2)+CVCU(K)..UN(/-1tJ))/04(/,J)..UN(I.,19J))) 
40 CONTINUE 

DO 50 K=1.KNU 
ZVC1(K)=EXP(ZVC1(()) 
ZVC(K)=EXP(ZVC200) 
/F(ZVC1(K).LE.1.) 7VC100=0. 
IF(ZVC2(K),LE.),.) ZVC2(K)=0. 
YVI(J-1.K)=ZyC1(K)*SN(j) 
XX1(j...100=ZVc1(K)*cs(j) 
YY2(J.el,K)=ZVC2(K)*SN(J) 
XX2(j-1tK)=ZVC2(K)*CS(J) 
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50 CONTINUE 
WRITE(6t271) /THETA(J),(VIC1(K),K=1,KNU) 
WRITE( 6,280/ (ZVC2(K),K=1,KNU) 
DO 50 K=1,KNU 
VIC1(K)=0, 

LVC(K)=1 
60 CONTINUE 
70 CONTINUE 

C****** PLOT STREAM FUNCTION CONTOURS 
C 

RRLOT=RRLOTU 
KNP=KNU 
CALL CNPLOT 

80 CONTINUE 
WRITE(6,29'0 
WRITE(6,251) 
WRITE(5,250) (VCV(K),K=1,KNV) 
DO 90 K=1,KNV 
VIC1(K)=0, 
ZVC2(K)=0, 
LVC(K)=1 

90 CONTINUE 
c********************************************************************** 

C 
C'***** SEARCH AND INTERPOLATE BETWEEN TWO IwL/NE5... 

CONTOURS 
C 

DO 150 J=2,JN 
DO 120 I=2,IIN1 
DO 120 K=leKNV 
IF(VN(I•ltj)•LEOCV(K),ANDeVN(/9,)0E,VCV(K)) GOT3 100 
IF(VN(I-.1,J),GE.VCV(K).ANDINN(I,J).LE.VCV(K)) GO,  TO 100 
GO TO 120 

100 1F(LVC(K).rn.0) GO TO 110 
VIC1(K)=SH*(FLOAT(I•2)*(VCV(K)...VN(/...1,J))/(VN(I,J)...VN(I...1,J))) 
ZVC2(K)=0, 
LVC(K)=0 
GO To 120 

110 ZVC2(K)=SH*(FLOAT(I-2)*(VCV(K)-vN(I-11,1))/(Vm(I,J)—VN(I-1,J))) 
120 CONTINUE 

DO 130 K=1,KNV 
ZVC1(K)=EXP(ZVC1(K)) 
ZVC(K)=EXr(Zl/C2(K)) 
IF(ZVC1(K).LE.1.) ZVC1(K)=0. 
*IF(ZVC2(K).LE.1.)ZVC2(K)=0. 
YY1(J-11K)=ZVC1(K)*SN(J) 
XX1(Jwl,K)=ZVC1(K)*CS(J) 
YY2(J•1:K)=ZVC2(K)*SN(J) 
XX2(..1.-1.K)=ZVC2(K)*CS(j) 

I3o CONTINUE 
WRITE(6,27n) ITHETA(J),(ZVC1(K),K=1,KNV) 
WRITE(6,28n) (ZVC2(K),K=1,KNV) 
DO 140 K=1,KNV 
ZVC1(K)=0, 
ZVC?(K)=0. 

C 
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LVC(K)=1 
140 CONTINuE 
150 CONTINUE 

C 
C****** PLOT VORTICITY CONTOURS 
C,  

RPL0T=RPLoTV 
KNP=KNV 
CALL CNPLOT 

C****** **************************************************************** 
C 
C****** SEARCH AND INTERPOLATE BETWEEN TWO I-LINES... 

.......TE4PERATJRE CONTOURS  
C 

160 CONTINUE 
WRITE(6,300) 
WRITE (6,25(1) 
WRITE(6,260) (VCT(K),K=19KNT) 
DO 170 K=1,KNT 
ZVC1(K)=0, 
ZVC2(K)=0, 
LVC(K)=1 

170 CONTINUE 
DO 230.J=2,JN 
DO 200 I=2,TIN1 
DO 200 K=1,KNT 
/F(TN(I.1,J),LE.VCT(K),AND.TN(I,J),GE.VCT(K)) GO TO 180 
IF(TN(I-1,,J).GE#VCT(K),,AND.TN(I,J),LE.VCT(K)) GO TO 180 
GO TO 200 

160 IF(LVC(K),F0.0) GO TO 190 
ZVCI(K)=sH*(FL0AT(I-2)4,(VCT(10-TN(/-1,J))/(TN(T,J)0TN(I-1,J))) 
ZVC2(K)=0„ 
LVC(K)=0 
GO To 200 

190 Zi/C2(K)=SH*(FLOATi1...2)*(VCT(K).PTN(I401,J))/(TN(/,J)...TN(1...19J))) 
200 CONTINuE 

DO 210 K=1,KNT 
ZVC1(K)=EXp(2VC1(K)) 
IVC(K)=EXP(ZVC2(K)) 
• IF(ZVC1(K).LE.1.) ZVC1(K)=0. 
1F(ZVC2(K).LE.1,) ZVC2(K)=0. 
YY1(„1-1,K)=ZvC1(K)*sN(J) 
XX1(J-19K)=Zvc1(K)*cs(j) 
YY2(J-1,K)=ZVC2(K)*sN(J) 
XX2(J-1,K)=ZVC2(K)*CS(j) 

210 CONTINUE 
WRITE(6,27r) ITHETA(J),(ZVC1(K),K=1,KNT) 
WRITE(69280) (ZVC2(K),K=1,KNT) 
DO 220 K=1,KNT 
ZVC1(K)=0, 
ZVC(K)=0, 
LVC(K)=1 

220 CONTINUE 
230 CONTINUE 

C 
C****** PLOT TEMPERATURE CONTOURS 
C 	• 
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RPLOT=RPLOTT 
KNP=KNT 
CALL CNPLOT 

240 FOR4AT(1M1,35)(,* 	 COORDINATES OF-  STREAM FUNCTION CONTOURS --- 
1-*) 

250 FoR4AT(1m0./,5x,5HANGLEti0x,1xoHcovouR 1,1x.9Hcoymm 2,1x.9Hco 
1TOUR 3,1X111HCONTOUR 4.1X,9HCONToUR 5,1X,9HCovToJ4 6,1x0HColT3uR_ 
2,1)(19HcONTnUR A,1X,9HCoNToUR 911X,10HCONTOUR 10) 

260 FMAAT(20X110F10.7) 
270 FORmAT(1H0,4X,I5,10x1p10F10.4) 
280'FORmAT(20X,10F10.4) 
290 PORmAT(1H1,38x,* 	 COORDINATES OF' VORTIC/TY CONTOURS 	*) 
300 FORilATC1H1,36X,* 	 COORDINATES OF TEMPERATURE CONTOURS 	 

RETURN 
END 
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BROUTiNE CNPLOT 	76/76 	0PT=2 	 F74 4.24,178 

LC=(FLOATtreS),RPLOT)*sQRT(CL).0•5 
IF(LceEO.0.OR.LCOT.IYS) GO TO 110 
CHAR(LC)=PLOT 

110 CONTINUE 
WRITE (6,120) CHAR 

120 FORN4AT(2X2120A1) 
GO To so 

130 CONTINUE 
a********************************************************************0* 

	

- 	• 
c****** PLOT CONTOURS I4 THE DOWN-STREAM SECTION 
C 

XPLoT=Dx 
N4J=JNH-1 
NJ=JN•1 

140 CONTINUE 
DO 180 JJ=JNH,NJ 
D0 180 K=14KNP 
INABS(xPL0T+xx1(jj00),LE.0XMLF) GO TO 150 
GO TO 16o 

150 0.7.(FLoAT(TYS)/RPL0T)*Ve1(JJ,K)+0.5 
IF(LL.7.0.0.0R.LLe3T•IYS) GO TO 160 
CHAR(LL)=PLoT 

160 IF(ABS(XPL0T+xX2(JJ.K)).LE.DXHLF) GO TO 170 
GO TO 180 

170 LL=(FLOAT(TYS)/RPL0T)*YY2(JJ,K)+0.5 
IF(LL#EO.0.0R.LL.ST.IYS) GO TO 180 
CHAR(LL)=PLoT 

180 CONTTNuE 
IF(XpLoT,LT.1,) GO To 210 
WRITE(6970) CHAR 

190 CONTINUE 
IF(XPLOT,GF.(RPLOT-OX/10000) RETuR4 
DO 200 L=1ITYS 
CHAR(L)=BLANK 

200 CONTINUE 
XPLOT=XPLOT+I5X 
GO TO 140 

210 CONTINUE 
• CL=1,-(((PloT)**2) 
LC=(FLOAT(IYS)/RPLOT)*soRT(CL)+0.5 
IF(Lc.E0,0.oR.L.C.GT.IYSI GO TO 220 
CHAR(LC)=PLOT 

220 CONTINUE 
WRITE(6.12n) CHAR 
GO To 190 
END, 
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JRROUTiNE PDNCOEF 	76/76 	OPT=2 	 'FT4 4.2+178 

SUBROUTINE RDNCOEF! 

C 

0****** 
- THIS SUBRoUTINE EVALUATS SURFACE PRESSURE 	DRA3 COEFFICIENTS 

C 	AND LOCAL AND AVERAGE NuSSELT NUM3ERS 
C****** 

DIMENSION VTH(31),VTH2(31),AK{31),AK2(31),ANUL(31) 
DIMENSION ANUL2C31) 
COMMON /GRID/ Z(81),E(81),ITHETA(31),SN(31)#CS(31),CT(31),H3i41,3 

1 	),THETA(31) 
COMMON /0LnV/ 00(81,31).60(81,31),T0(81,31) 
'COMmoN /NEwV/ uN(81931),GN(81,31),TN(81,31) 
COMMON /VON/ vN(81,31) 
COMMON /INJN/ IN1,JNI.IN,JN,SH,SK,ST,KS,GR,PR,CCJ,CCG,DFU,DFG 
COMMON /GRAF/ IGRAPHOG 
COMMON /TSTEP/ RX(p1),TIME 
LEVEL 2 a vUOON,VN,INI,IGRAPH,RX 

DO 10 J=2,JN 
DO 10 I=1.IN1 
VN(T,J)=GN(I,J)/H3(/.J) 

10 CONTINUE 
S1=1,/(12.4sH) 
52=1,012.4:.sK) 
SI=71,/(SK*SK*ST) 

tp*******0************************************************************* 

C 
C****** EVALUATE FRONT STAGNATION PRESSURE. COEFFICIENT 
C 
r****** AT T=10=1 T=1 AND AT /=INI.J=1. T=0. 
Co"**;. ON SYmMETRY AXIS (Jr-I) STREAM FUNCTION IS ZERO 
C****** AT OUTER BOUNDARY VORTICITY Is ZERO 
C 

YUZ=0, 
YVZ=0.5*S2*(48.*V4(1.2)-36.*V4(1113)+16.*V4(1,4)-3.*VN(1,5)) 
YTZ=0.5*1. 
DO 70 I=2,TN 
VZ=s2*(48,*VN(/92).36.*VN(/93)416,*VN(I.4)+,3.*01(/.5)) 
UZ=s3*(UN(I,2)-UO(/.2))/E(I) 
TZ=TN(191)*E(I) 

'YVZ=yVZ+VZ 
YUZ=YUZ+UZ 
YTZ=YTZ*TZ 

20 CONTINUE 
Al=cH*YvZ 
A2=sH*YUZ 
A3=SH*YTZ 
AKNoT=4.*AI.2,*GR*A3 

C 

C 
C****** EVALUATE SURFACE PRESSURE COEFFICIENT 
C 
C****** AT 1=1 AND j=1 (J=JN1) VOTICITY IS ZERO 
C 

RSH3=6./(SH*SH*SH) 
RSHP4=3,,SH+4, 
VTH(1)=(1.EvTH(JN1)=0. 

I 
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SROUTiNE PDNCOEF 	76/76 	OPT=2 	 FT4. 4.2.178 

VT112(1)=0.0TH2(J41)=0, 
DO 30 J=2,JN 
YYms.1*(-25,*VN(1,J)+48.*VN(2,J)-36,*VN(39J)+16,*VN(4,J).-3.*VN(5,..1  

1) . 

C****** EVALUATION OF SURFACE PRES'SUR USING STREAM FUNCTION VALUES 
C 

Y2=RSH3*UN(2,J)/S4(J)-RSHP4*VN(1,J) 
VTHG.q=2,*(YY+VN(I,J)) 
,VTi-I(J)=2,*(Y24VN(1,J)) 

30 CONTINUE 
AK(I)=AKNOT 
AK2(1)=AKNoT 
DO 40 J=20JN1 
AK(J)=AK(J-1)+0.5*SK*(VTH(J-1)+VTH(J))-2.*GR*(c.S(J)-CS(J-1)) 
AK2(J)=AK2(J-1).00,5*51(*(VTH2(J-1)+VTH2(J))-2.**(CS(J)-CS(J-1)) 

40 CONTINUE 

c********************************************************************ii* 

C 
C****** EVALUATE VISCOUS AND FORM DRAG COEFFICIENTS 
C 

CF=6. 
CF=n, 
CR2=0, 
DO 50 J=2, A1 
SNS=SN(J)*sN(J) 
SN2=2.*SN(J)*C5(J) 
CF=CF+VN(1.J)*SNs 
CP=cP+AK(J)*SN2 
CP2=CP2+AK2(J)*sN2 

50 CONTINUE 
CDF=4**SK*rF 
COP=SK*CR 
COR?=SK*CPp 
COT=CDF4CDr,  
cov›=c0F+cnP2 

c*****************************************************0*************.** 
C 
C****** EVALUATE LOCAL AND OVERALL NUSSELT NUMBER 
C 

ANUo=0, 
DO 60 J=1,JN1 
ANUL(J)=S1*(-2q.+48.*TN(21J)...36.*TN(S,J)4.16.*TN(41j)-3.*T4(5,J)).  
ANIU0=ANO0+ANUL(J)*SN(J) 
ANUL(J)=-2.*ANUL(J) 
ANUL2(J)=ANuL(J)/ANJL(1) 

80 CONTINUE 
ANUO=-(ANun*SK) 
WRITE(6.70) 

TO FORmAT(1H1.5x.5HAvGLEI6X93HIITHIFIlx,4HVTH2fl0x.24( ,10g,2H'<2 
1,11X,2HKcill1X0HvystlOx,4HANUL,9X,5HRAANU) 
DO 90 j=1,JN1 
AKC=AK(J)-2.*A2 
WRITE(6,80) ITHETA(J),VTH(J),VT1-12(j),AK(J),AK2(J)+AKC,VN(1,J), 

1ANUL(J),ANuL2(J) 
So FOFNAT(5)(04,s(2X,F11.5)) 
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BROUTINE 0ONCOEF 	76/76 	OPTio2 	 FT4 4.2+178 

90 CONTINUE 
WRITE(6$10n) 

100 FORMAT(1X,///110X,2HGR,10X,2HPR,10)02HA1,10)(1202,BX,2HA3sliX, 
13HCOFOXOHCDP97X 113-1COT,7X,411CDP2,7X,4HCDT2) 
WRITc(6,110 GR,PRIA19A2,A3,C0F9CDP,CDT,CDP2,CDT2 

110 FORAAT(4X,r9.3s4X,9(F11.5)) 
120 CONTINUE 

AKNOT=AK(I)-.2•#A2 
wRiTE(69130 TIME,AKNOT,ANUO 

130 FOR4AT(10X,//95X,*TOTAL TIME 	4P,F12.5,5X0AKNOT= *,F10415, 
1'5WOVERALL NUSSELT NO.= **F10•5) 
RETURN 
ENO 
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BROUTTNE RESTAB 	76/76 0PT=2 	 FT4 442+178 

C 
	SUDRoUTINE RESTAB 

C  
cm.** 

THIS SUBROUTINE PRINTS OUT STREAm FUNCTION 	VORTICITY AND 
TEMPERATURE FIELDS IN TABULAR FORM 

gili***** 

C 
COMMON /GRID/ Z(81),E(B1),ITHETA(31),SN(31),CS(31),CT(31),43ica,3 

),THETA(31) 
COMMON /01.0V/ u0(81,31)00(81,31),T0(81,31) 
'COMMON /NFwV/ oN(91,31),GN(81,31),TN(81,31) 
cOw-ioN /V00/ v0(81,31) 
COMkioN /VON/ VN(81,31) 
COMMON /TSTEP/ PX(81),TIME 
COMMON /INJN/ /N1,JN1sTN,JN,SH,SK,STIIKS,OR,RR,CCJ,CCG.0FUOFq 
COMMON /NPRc/ NPRJ1,NRRG1,NPRU,NPRGOT0TALIIm4PROxITER,NPRINT, 

1 	NTImFs,Mxu,mxUP 
COMMON /LRsTAB/ LRS1 
COMMON /GRAF/ IGRAPM,NG 
LEVrt. 2 ,Z,UO,UN,VO,VN,RX,IN1,NPPul,LRS1,IGRAPH 

C****** LRS1=1 //RITE OLD VALUES OTHERWISE WRITE NE4 VALUES 
C 

IF(LRS1,,E0,1) GO To 60 
WRITE(6,130 
iNN=01-10 
DO 10 K=1,0N,10 
K1=K*9 
WRITE(6,140) (CUN(I,J),I=K,K1),J=1,..)N1) 
WRITr(6,15,0 

10 CONTINUE 
WRITE(6,16') ((UN(1,J),I=IN1,INI),J=1,JNI) 
WRITF(6,17(1) 

20 CONTINUE 
DO 30  K=1,TNN,10 
K1=K*9 

ITE(6,140) (0/4(I,J),I=K,K1),J=111,1N1) 
WRITE(6,15n) 

30 CONTINUE 
'WRITE(6,16n) MIN(I,J),I=IN1oIN1),J=1,JN1) 

40 CONTINUE 
WRITE(6,18n) 
DO 50 K=1,1NN,10 
K1=K*9 
WRITE(6,14.) ((TN(/,J),I=K,K1),J=1,JN1) 
wR/TF(6,15n) 

50 CONTINUE 
WRITr(6,160 ((TN(I,J),I=IN1,1N1),J=1,JN1) 
RETuRN 

o********************************************************************o* 

C 
60 CONTINUE 

TIM==TIME-,cT 
IF(TIME.L.T.0.0) TImr=0, 
WRITE(h,12n) OR,PR,TIME 
WR/TE(0,130) 
/NN=IN1-10 
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84OUTiNE RESTAB 	78/76 	OPTm2 
	

FTV. 4.24,178 

DO 70 K=1,INN,10 
K1=K+9 
WRITE(6914n) ((UO(/,J),I=K9K1),Ju1tJN1) 
WRITE(6915n) 

70 CONTINUE 
WRITE(6,160) (CUOt/9J),I=INlipIN1),J=1,jN1) 
wuTp(6,170) 
DO A° J=2,JN 
DO Ro I=1,/N1 
VO(T,J)=G0(/,..1)/H3(/,J) 

80 CONTINUE 
DO 90 K=1,TNN,10 
KI=K49 
WRITE(6914o) ((VO(I,J),/=KIK1),J=1,JN1) 
WRITE(69150) 

90 CONTINUE 
WRITE(6,16m) ((v0(/,J),I=INI,IN1),J=1,JN1) 

100 CONTINUE 
wRITE(olen) 
DO 110 K=1,INN10 
K1=K+9 
wR/TE(6,14n) t(TO(/9J),I=K9K1),J=1,JN1) 
WRITE(6,15n) 

110 CONTINUE 
WRITE(6,16,1 ((TO(I,J).1=/N1,IN1),J=1,JN1) 
RETURN 

120 FORmAT(1HC9///,15X,*GRASHOF NO. = *012.5910X9*P4AVOT1..-NO. 9 
1F80,10X,*TOTAL TIME = *IF12.5) 

130 FORAT(1H1,34Xt* 	STREAM FUNCTION 	*) 

140 FOR,IAT(5xv1nG12.5) 
150 FORAT(lHos56x,* 	 *) 

160 FOR,IAT(5X9G12,5) 
170 FOR9AT(1H1,30X9* 	VORTCITY DISTRIauTIO4 	*) 

180 FORk4AT(1H1,30X,* 	TEMPERATURE DISTRIBJTION) 	*) 
END 
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TABLES 



Gr Pr r h k At el 
LP cG E

T 

0.05 0.72 24.53 

24.53 

24.53 

24.53 

24.53 

24.53 

24.53 

0.04 

0.04 

0.04 

0.04 

0.04 

0.04 

0.04 

6°  

6°  

6° 

6°  

6° 

6° 

6°  

0.01 

0.01 

0.005 

0.001 

0.001 

0.001 

0.0005 

10-6 

10-6  

5X10-6 

7.5X10-6 

2.5X10-5 

5X10-5  

10-3  

10-3 

10-3  

5X10-3  

7.5X10-3  

10-2  

5X10-2  

10-1 

10-6 

10-6  

10-6  

10-6  

10-5  

5X105  

10-4 

1 0.72 

10 0.72 

25 0.72 

50 0.72 

125 0.72 

1250 10 

TABLE 1: MAIN RESULTS AS THE SOLUTIONS OF THE TIME - DEPENDENT EQUATIONS 

APPROACH LATE-TIME STEADY STATE 



coto  
G WT Ko  KrE CDF CDP CDT Nu 

1.9 1.2 1.5 2.09 0.49 -0.40 1.13 0.59 1.72 

1.6 0.65 1.5 2.34 6.32 -5.69 15.75  7.95 23.70 

1.5 0.5 1.5 2.92 37.44 -33.60 78.25 42.36 120.21 

1.5 0.5 1.5 3.30 81.59 -46.05 146.39 82.62 229.01 

1.5 0.5 1.5 3.82 141.26 -54.43 236.11 138.18 374.29 

1.5 0.5 1.5 4.25 297.28 -61.53 448.31 276.20 724.51 

1.5 0.3 1.2 9.98 1988.35 -71.10 1958.01 1386.11 3344.12 

TABLE 1 (CONTINUED) 



Pr=0.72 

Gr 0.05 J 10 25 50 
,r. 

Nu 2.09 2.39 2.96 3.32 3.96 

0.50 5.97 36.07 76.23 118.30 

-0.40 -5.40 -31.26 -48.68 -12.66 

CDF 1.17 16.42 74.88 143.70 211.20 

CDP 0.58 7.58 41.29 87.08 105.45 

CDT  1.75 24.00 116.17 230.73 316.65 

h=0.04 , k=6° 	r =24.53 

TABLE 2: MAIN RESULTS OF THE SOLUTIONS OF THE TIME-INDEPENDENT 

EQUATIONS 



2.09 

2.34 

2.92 

3.30 

3.82 

4.25 

6.12 

9.32 

2.09 	2.05 

2.39 

2.96 

3.32 

3.96 

2.32 

2.67 

3.20 

3.51 

3.80 

4.26 

6.03 

9.10 

	

2.18 	2.42 

	

2.54 
	

2.90 

3.26 

3.73 

4.05 

4.59 

6.60 

10.19 

2.43 

2.90 

Nu 

Gr 

YUGE (1961);  

EXPERIMENTAL 
METHOD 

PRESENT STUDY;PRESENT STUDY;HOSSAIN (1966k 

TIME-DEPENDENT TIME-INDEPEN-ANALYTICAL 
NUMERCIAL 	DENT NUMERI- SOLUTION 
SOLUTION 	CAL SOLUTION 

TSUBOUCHI AND 

SATO (1960);  
,EXPERIMENTAL 
METHOD 

MATHERS et-RANZ AND MAR- 

al (1957); SHALL (1952);  
EXPERIMEN- EXPERIMENTAL 
TAL METHOD METHOD 

0.05 

1 

10 

25 

50 

125 

1250 

12500 

TABLE 3: COMPARISON OF AVERAGE NUSSELT NUMBER FOR DIFFERENT GRASHOF NUMBERS FOR A PRANDTL 

NUMBER OF 0.72 



RESULTS QUATED AT t=1.5 

r 
co 

h k K°  Km CDF cDP - CDT Nu 

24.53 0.04 6° 2.175 32.90 -14.38 65.01 33.39 98.40 

24.53 0.04571 6°  2.10 29.18 -12.98 58.19 27.90 86.09 

24.53 0.04 9°  2.12 30.71 -13.53 59.43 29.29 88.72 

16.44 0.04 6°  2.10 29.98 -15.21 60.41 29.83 90.24 

TABLE 4: EFFECTS OF VARIATIONS OF MESH SIZES AND PROXIMETY OF 

THE OUTER BOUNDARY ON THE RESULTS OF GRASHOF NUMBER 

OF 10 AND PRANDTL NUMBER OF 0.72 SOLUTION 
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Gr=25 , Pr=0.72 Gr=50 , Pr=0.72 

r =24.53 
oo 

r =20.08 r =24.53 
co 

r =16.44 
m 

h 0.04 0.04 0.04 	• 0.04 

k 6° 6° 6°  6°  

3.30 3.11 3.82 3.32 Nu 

81.59 75.15 141.26 130.19 

Kn  -46.05 -50.26 -54.43 -57.62 

CDF 146.39 138.24 236.11 217.98 

CDP 82.62 78.95 138.18 130.75 

CDT 229.01 217.19 374.29 348.73 

TABLE 5: EFFECT OF PROXIMETY OF THE OUTER 

BOUNDARY ON THE RESULTS OF GRASHOF 

NUMBERS OF 25 AND 50 FOR A PRANDTL 

NUMBER OF 0.72 
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Gr=50, 
Pr=100 

Gr=12500, 
Pr=10 

r 
m 

24.53 

0.04 

11.02 

0.04 h 

k 6°  6° 

8.21 16.82 Nu 

122.6 12077.34 

Kn  -57.37 3904.00 

CDF 195.04 8700.77 

CDp 114.61 6606.85 

CDT 309.65 15307.62 

TABLE 6: LATE-TIME STEADY STATE 

RESULTS FOR A GRASHOF 

NUMBER OF 50 AND A 

PRANDTL NUMBER OF 100, 

AND FOR A GRASHOF NUMBER 

OF 12500 AND A PRANDTL 

NUMBER OF 10 SOLUTIONS 
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TIME ,t VARIABLE 

ANGLE (DEGREES), 8 

0 60 120 180 

Nue  2.127 2.107 2.066 2.044 

28 
Es 

0.000 0.176 0.177 0.000 

%. 0.452 0.249 -0.157 -0.360 

Nub  2.130 2.109 2.065 2.041 

30 0.000 0.181 0.183 0.000 
S 

K© 0.463 0.254 -0.164 -0.373 

Nue  2.131 2.110 2.064 2.041 

32 0.000 0.184 0.187 0.000 

K8 0.473 0.260 -0.170 -0.383 

Nu a 2.132 2.110 2.064 2.040 

34 0.000 0.185 0.191 0.000 

Ke  0.481 0.264 -0.175 -0.394 

Nue 2.132 2.110 2.064 2.040 

36 
Es 

0.000 0.1136 0.192 0.000 

Ke 0.489 0.267 -0.179 -0.402 

TABLE 7: VALUES OF LOCAL NUSSELT NUMBER, SURFACE VORTICITY 

AND SURFACE PRESSURE AS THE SOLUTIONS OF THE 

EQUATIONS APPROACH LATE-TIME CONDITION FOR A 

GRASHOF NUMBER OF 0.05 AND A PRANDTL NUMBER OF 

0.72 
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TIME,t VARIABLE 
ANGLE (DEGREES),8 

0 60 120 180 

Nu8  2.575 2.426 2.040 1.783 

11 Cs 0.000 2.394 2.416 0.000 

K
e  5.955 2.982 -2.670 -4.250 

Nub  2.651 2.488 2.089 1.812 

12 Cs 0.000 2.501 2.551 0.000 

K
e  6.157 3.092 -2.912 -5.011 

Nu
e  2.687 2.523 2.114 1.824 

13 Es 0.000 2.559 2.632 0.000 

K
e  6.277 3.135 -3.023 -5.446 

Nue  2.695 2.539 2.123 1.828 

14 Cs 0.000 2.573 2.642 0.000 

K
e  6.309 3.140 -3.073 -5.586 

Nue  2.7,0 2.540 2.125 1.828 

15 Cs 0.000 2.573 2.642 0.000 

Ke  6.320 3.141 -3.075 -5.691 

TABLE 8: VALUES OF LOCAL NUSSELT NUMBER, SURFACE VORTICITY 

AND SURFACE PRESSURE AS THE SOLUTIONS OF THE 

EQUATIONS APPROACH LATE-TIME CONDITION FOR A 

GRASHOF NUMBER OF 1 AND A PRANDTL NUMBER OF 

0.72 
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TIME,t VARIABLE 
ANGLE (DEGREES),8 

0 60 120 180 

Nu
e  

3.62 3.32 2.40 1.61 

3.5 Es 0.00 12.81 11.84 0.00 

K8 
 35.08 14.08 -19.24 -24.44 

Nu
e  

3.69 3.38 2.47 1.69 

4 Es 0.00 12.99 12.02 0.00 

K
e  

36.47 13.05 -23.87 -29.64 

Nu
® 

3.73 3.42 2.51 1.73 

4.5 Es 0.00 13.09 12.11 0.00 

K
e  37.10 12.41 -26.65 -32.99 

Nue  3.76 3.45 2.54 1.76 

5 Es 0.00 13.14 12.15 0.00 

Ke  37.31 12.15 -27.91 -33.40 

Nue  3.78 3.47 2.55 1.78 

6 Es 0.00 13.15 12.15 0.00 

Ke  37.44 12.01 -28.72 -33.60 

TABLE 9: VALUES OF LOCAL NUSSELT NUMBER, SURFACE VORTICITY 

AND SURFACE PRESSURE AS THE SOLUTIONS OF THE 

EQUATIONS APPROACH LATE-TIME CONDITION FOR A 

GRASHOF NUMBER OF 10 AND A PRANDTL NUMBER OF 

0.72 
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TIME,t VARIABLE ANGLE (DEGREES),8 

0 60 120 180 

Nub 
 

3.49 3.14 2.10 1.26 

1 L s 
0.00 22.69 19.98 0.00  

K
e 

71.82 31.86 -25.24 -28.06 

Nu
e  

3.81 3.45 2.35 1.40 

1.25 C 0.00 
s 

 24.18 21.36 0.00 

K
e 

76.74 29.94 -37.41 -37.51 

Nu
e  

3.99 3.64 2.48 1.47 

1.5 
s  

0.00 24.85 21.22 0.00 

K
e  

79.75 28.86 -43.15 -42.80 

Nu
e  

4.09 3.72 2.56 1.49 

1.75 
s  

0.00 25.15 22.03 0.00 

K0 
 

80.85 28.26 -46.59 -45.51 

Nub 
 

4.14 3.76 2.58 1.50 

2 
s 

0.00 25.25 22.06 0.00 

K0 
 81.59 28.37 -47.29 -46.05 

TABLE 10: VALUES OF LOCAL NUSSELT NUMBER, SURFACE VORTICITY 

AND SURFACE PRESSURE AS THE SOLUTIONS OF THE 

EQUATIONS APPROACH LATE-TIME CONDITION FOR A 

GRASHOF NUMBER OF 25 AND A PRANDTL NUMBER OF 

0.72 
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TIME,t VARIABLE 
ANGLE (DEGREES),e 

0 60 120 180 

Nub  3.69 3.28 2.08 1.15 

0.6 Cs 0.00 36.55 30.99 0.00 

K
8 

127.53 56.70 -36.54 -30.59 

Nub  
4.30 3.87 2.51 1.39 

0.85 Cs 0.00 39.08 32.40 0.00 
it 

K8 
 

135.12 52.47 -57.18 -46.73 

Nue  4.66 4.20 2.78 1.50 

1.1 Cs 0.00 40.31 33.21 0.00 

K8  139.46 50.65 -65.69 -52.32 

Nub  4.78 4.32 2.90 1.53 

1.35 Cs 0.00 41.08 33.83 0.00 

K8  140.10 49.81 -69.49 -54.16 

Nub  4.82 4.36 2.91 1.54 

1.60 Es 0.00 41.29 33.96 0.00 

K8  141.26 49.95 -70.00 -54.43 

TABLE 11: VALUES OF LOCAL NUSSELT NUMBER, SURFACE VORTICITY 

AND SURFACE PRESSURE AS THE SOLUTIONS OF THE 

EQUATIONS APPROACH LATE-TIME CONDITION FOR A 

GRASHOF NUMBER OF 50 AND A PBANDTL NUMBER OF 

0.72 
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TIME,t VARIABLE 
ANGLE (DEGREES),13 

0 60 120 180 

Nue  5.45 4.89 3.09 1.35 

0.75 Es 0.00 81.45 63.70 0.00 

Ke  296.23 101.59 -124.35 -61.45 
. 

Nue 5.59 5.02 3.18 1.42 

0.8 s 0.00 81.69 63.70 0.00 

K8 296.55 100.76 -125.37 -61.49 

Nue 5.64 5.07 3.23 1.45 

0.85 Es 0.00 81.78 63.71 0.00 

K8 296.83 100.25 -126.00 -61.51 

. . 
Nue 5.68 5.11 3.25 1.47 

0.9 Es 0.00 81.82 63.71 0.00 

Ke 297.10 99.90 -126.19 -61.52 

Nu0 5.70 5.12 3.26 1.47 

0.95 E s  0.00 81.82 63.71 0.00 

K8 297.28 99.73 -126.29 -61.53 

TABLE 12: VALUES OF LOCAL NUSSELT NUMBER, SURFACE VORTICITY 

AND SURFACE PRESSURE AS THE SOLUTIONS OF THE 

EQUATIONS APPROACH LATE-TIME CONDITION FOR A 

GRASHOF NUMBER OF 125 AND A PRANDTL NUMBER OF 

0.72 
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TIME,t VARIANCE ANGLE (DEGREES),8 

0 60 120 180 

Nub  12.93 11.39 5.62 0.45 

0.15 Cs  0.00 323.42 235.53 0.00 

Kla 1854.46 664.73 -578.8 243.21 

Nue  14.79 13.17 7.18 0.49 

0.17 Cs  0.00 340.63 254.54 0.00 

Ke  1932.70 544.77 -607.41 68.73 

Nue  15.75 14.11 7.93 0.52 

0.19 Es 0.00 348.87 264.77 0.00 

K0  1970.01 473.32 -623.30 -31.68 

Nue  16.27 14.69 8.32 0.53 

0.21 0.00 351.71 270.45 0.00 

% 1986.48 432.85 -631.92 -69.88 

Nue  16.53 14.$3 8.42 0.54 

0.24 0.00 352.68 271.46 0.00 

Re 1988.35 430.75 -632.72 -71.10 

TABLE 13: VALUES OF LOCAL NUSSELT NUMBER, SURFACE VORTICITY 

AND SURFACE PRESSURE AS THE SOLUTIONS OF THE 

EQUATIONS APPROACH LATE-TIME CONDITION FOR A 

GRASHOF NUMBER OF 1250 AND A PRANDTL NUMBER OF 

10 
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