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ABSTRACT

A theoretical study of time-dependent free convective
heat transfer from a solid sphere to an incompressible
Newtonian fluid has been carried out for Grashof numbers
between 0.05 and 12500 and for Prandtl numbers of 0.72,

10, and 100.

The time-dependent Navier-Stokes equation for
axisymmetric flows was expressed in terms of a time-
dependent vorticity transport equat}on and a stream
function equation. These equations together with the
time-dependent energy equation were transformed from
polar space to rectangular space. These three equations

were then solved simultaneously.

For purposes of computation, the equations which
were elliptic second-order partial differential equations
with respect to space variables and parabolic with respect
to time, were replaced by appropriate finite-difference
approximations in which an upwind differencing scheme was
applied to the convective terms of the transport equations.
The time-dependent energy equation and the time-dependent
vorticity transport equation were solved using Peaceman
and Rachford's alternating direction implicit method and
the stream function equation was solved using peoint iterative

successive over-relaxation.

A computer programme was developed to solve the finite-




difference equations for a wide range of Grashof and Prandtl
numbers. The solutions, which were obtained in the form of

distributions of temperature, vorticity and stream function,
were used to calculate the iocal and average Nusselt numbers,

the surface pressure and the drag coefficients.

Numerical solutions were obtained for Grashof numbers
of 0.05, 1, 10, 25, 50 and 125 for a Prandtl number of 0.72.
Solutions were also obtained for Grashof numbers of 1250 and
12500 for a Prandtl number of 10; and for a Grashof number

of 50 and a Prandtl number of 100.

From the late-time steady state solutions it was observed

that even at extremely low Grashof numbers, weak convection

processes were present in the region close to the outer
boundary. However, it was found that even at moderate Grashof
numbers the dominant mode of vorticity transport close to the
surface of sphere was by diffusion. For all the solutions
obtained it was observed that during the early stages of
simulation the dominant mode of vorticity transport was by
diffusion and that heat transfer took place largely by
unsteady state conduction. The drag coefficients reached
their late-time steady state values in a shorter time than
the other quantities and the local Nusselt numbers took the
longest time to ?each their late-time steady state values.
The late~time steady state values obtained for the average
Nusselt number were found to be in reasonable agreement with

the experimental measurements obtained by previous workers.
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1.1 INTRODUCTION

The process of heat transfer by free convection is
encountered frequently in industrial applications such as
steam boilers, digesters, furnaces, as well as being a
mode of transfer by which heat losses from pipes, boilers,
etc. takes place. 1In general, free convective heat transfer
becomes an importaﬁt mode of heat transer in any situation
in which a hot body is immersed in an otherwise stationary
medium or in any moving medium in which changes of density
induced by temperature gradients will disturb appreciably

the fluid motion.

Because of its considerable importance in many engineering
applications the fundamentals of mass or heat transfer from
solid particles, drops, or bubbles to a continuous fluid
phase have long attracted the attention of investigators.

The study of mass and heat transfer from a single sphere
together with the associated fluid dynamics has been used

as a first step in the analysis of multiparticle systems.

For many engineering design problems, experimental
correlations are available for the prediction of average
heat or mass transfer rates. However, the optimum design
of chemical process equipment requires an understanding of
the basic mechanisms of heat, mass, and momentum transfer
which these correlations do not provide. Such detailed
knowledge could be provided in part by extensive experimen-—

tation but in many cases it could only be obtained or



supplemented from a study of the solutions of the equations
which describe heat, mass, and momentum transfer. Such
solutions would not only provide fundamental insight into
transport processes but also increase our ability to analyse

and solve complex engineering problem.

The theoretical problem of free convective heat transfer
from the surface of a body can be expressed using the equations
which describe the conservation of momentum, mass, and energy.
These equations form a complex set of interdependent partial
differential equations which are very difficult to solve.
Because of the complexity of these egquations it has nearly
always been necessary to simplify them by the introduction

of simplifying assumptions.

When the changes in the density of the fluid which arise
because of temperature variations are very small, the equations
of motion and continuity can be solved independently of the
energy equation and the solutions used in order to solve the
energy equation. This is the usual situation which arises
under conditions of forced convection. However, free convection
differs from forced convection in that the buoyancy term which
appears in the equation of motion, gives rise to, or disturbs,
fluid motion. In this case, the energy equation has to be

solved simultaneously with the momentum and continuity equations.

The set of interdependent partial differential equations
which describes free convective heat transfer is non-linear and
it is not possible to find exact.analytical solutions even

when the fluid is Newtonian. Hence, solutions must be
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obtained numerically.

Methods of solving non-linear partial differential
equations, in contrast to those for linear equations, are

not highly developed.

In fluid dynamics and heat transfer problems the
dependent variables are generally functions of three space
variables and a time variable. If it is supposed that at
large times a steady state is reached such that the dependent
variables no longer depend on time and that this steady state
is of primary interest, then there are two alternative methods
of attacking the problem; the steady state equations can be
solved directly or the unéteady state equations can be solved
as a function of time and the solutions obtained up to and
including sufficiently. large time values of the time variable.
In the steady state method the dependent variables are depen-
dent only upon the space variables. In the time-dependent
method, the equations are written as an initial value problem
in which the dependent variables are calculated as functions

of space and time.

Roache (1972) has summarised the comparison between the

iterative steady state and time-dependent methods as fallows:

“Soﬁe steady state methods, with under - and over -
relaxation adjustments being equivalent to time-step changes.
Most steady state iterative methods are at least analogous to
time-dependent methods. 1In any case, the analogy illustrates

that steady state iterative methods can not be presumed to be



stable, and should be analysed for stability through the
von~Neumann analysis". Roache also pointed out that "the
explicit time-dependent methods; ......., are less suceptible
to non-linear instabilities and are thereby less sensitive to
initial conditions. The time-dependent formulation offers

the flexibility of obtaining the transient solution if it
should be desired; more important, it does not presume the
existence of a steady state solution, which indeed may not
exist. There is a philosophical and even aesthetic attraction
in modelling the actual physical process which is, after all,
fundamentally time-dependent”. PrS%f of the existence of
solutions is somewhat less of a problem if an unsteady state
method is used: this method has proved to be generally
successful for viscous flow problem. Since there is some
confidence in the wvalidity of the time-dependent equations

of motion and enerqgy, one is inclined to believe that a
numerical solution which proceeds from a physically reasonable

initial condition also has validity.

In view of the difficulties involved in solving non~
linear partial differential equations together with reasons
given above, the unsteady method was used throughout this

work.

The numerical solution of the equations which describe
time-dependent free convective heat transfer from a sphere is
one of the most challenging problems in numerical analysis.

.However, the availability of high capacity computers invites
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further consideration of the problem so that the present

study is timely.

The particular problem which is studied in this thesis
was initiated in order to make a theoretical investigation
of time-dependent free convective heat transfer from a solid

sphere to a Newtonian fluid.

The equation of motion for an incompressible Newtonian
fluid is the well known Navier-Stokes equation. Since the
flow around a solid sphere is axisymmetric the problem is two-
dimensional so that the Navier-Stokes equation can be combined
withuthe continuity equation and expressed in the form of a
stream function equation and a time-dependent vorticity
transport equation. The stream function, vorticity transport,
and energy equations are solved simultaneously. As is shown
later in this thesis, the energy equation is of the same
classification as the vorticity transport equation so that

both equations can be solved using the same method.

The method of solution is numerical; a set of finite-
difference equations are obtained by the expansion of the
terms in the original partial differential equations using
Taylor's series. Each finite-difference equation relates
the values of the dependent variables, such as vorticity,
stream function, and temperature to the values of the same
variables at the neighbouring mesh points. The vorticity
transport and energy equations are solved using Peaceman and

Rachford's alternating direction implicit, (ADI), method



(1955). Although, the method chosen complicates the updating
of the vorticity and temperature fields with respect to time,

it has good numerical stability and is known to be accurate

and economical in computational time in comparison with other
explicit or iterative implicit methods. The sets of simul-
taneous\élgebraic equations obtained by application of the
method are solved using Thomas's elimination method as presented

by Lapidus (1962). The stream function equation is solved

using point iterative successive over relaxation, (SOR).

It is difficult to estimate the accuracy of the solution
procedure because of the complexity of the equations. At
present a complete error analysis of the solution is not
possible. However, the forms of the errors introduced are
known and a qualitative estimate of the accuracy of the solutions
can be obtained by comparing the late-time steady state results
with the eéexperimental and theoretical steady state results
obtained by previous workers. The late~time steady state
average Nusselt numbers were found to be in reasonable agreement
with the experimental results obtained by Mathers et al (1957)

and yuge (1960).

‘A computer programme is developed in this thesis in order
to solve the finite - difference equations. The distributions
of temperature, stream function and vorticity which are obtained
are used to calculate the local and average Nusselt numbers,
the pressure distribution on the surface of sphere, and the

viscous, pressure, and total drag coefficients. The computer
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programme is used to obtain the time-dependent free convective
heat transfer rate from a solid sphere for Grashof numbers
(based on the radius of the sphere) between 0.05 and 12500

and for Prandtl numbers of 0.72, 10, and 100. These solutions
were obfained using a CDC7600 digital computer.

1.2 NUMERICAL SIMULATION OF FLUID DYNAMICS

Lamb (1932) has expressed the view that theoretical fluid
dynamics began with the theory of potential flow of an ideal
incompressible fluid. Development of this theory extended;
over a long period of time during which a large class of flows
was successfully analysed. However, according to the Euler ~
d'Alembert paradox (Birkhoff 1968), the total drag force

exerted on a solid object placed in a potential flow is zero.

Theoretical analyses of viscous flows were first developed
by Navier (1822) and by Stokes (1845). One of the results of
their work was the development of the equation which expresses
the conservation of momentum for a viscous flow. This equation,
which is known as the Navier-Stokes equation, shows the importance
of the viscous terms and why the potential flow theory is
unable to predict drag forces correctly. However, for a long
time after its development, because of its non~linear character
the Navier-Stokes equation was unsolvable except for a few

simplified cases.

Stokes (1851) succeeded in solving the Navier—-Stokes

equation for the case of very slow motion, ‘'creeping flow',



37

past a sphere. He obtained his solutionby neglecting the

inertial or non-linear terms.

/

Prandtl (1904) showed how flows of high Reynolds numbers
could be analysed. He hypothesized that the flow about a
solid body at high Reynolds numbers could be divided into
two regions: a very thin region, or boundary layer, near the
solid body in which the viscous effects are important, and a
region outside this boundary layer in which the effects of
viscosity are unimportant and potential flow theory applies.
With the aid of this hypothesis, Prandtl succeeded in reducing
the Navier-Stokes equation to a more easily solvable form.

The resulting equation is known as the boundary layer equation.

At high Reynolds, Grashof, and Prandtl numbers, the
simplifying assumptions of boundary layer theory have been
used successfully to obtain solutions of both the Navier-Stokes
equation and the energy equation. Excellent discussions of the

theory and its applications are given by Schlichting (1968).

The very nature of the boundary layer equations limits
their applicability to flows with a predominant direction so
that they cannot be used to predict the flow pattern within
the recirculatory wake behind a bluff body. Also, flows at
intermediate Reynolds or Grashof numbers cannot be analysed
by use of boundary layer theory because the effects of
viscosity are not confined to a thin region close to the
body. Further, at intermediate Reynolds and Grashof numbers

the Navier-Stokes equation cannot be linearised by neglect



of the inertial terms.

It follows from the above, that for intermediate Reynolds
or Grashof numbers, the Navier-Stokes equation cannot be
simplified. Thus analytical solutions cannot be obtained

and solutions must be obtained by numerical means.

In 1910, Riéhardson presented a paper to the Royal Society
which may be considered to be the cornerstone of modern
numerical analysis of partial differential equations. He
devised an iterative method of obtaining solutions of Laplace's
equation and of the biharmonic equation. He obtained error
estimates and gave an accurate method of extrapolating solutions
towards zero mesh size. In Richardson's iterative method for
solving elliptic equations, each point in the mesh is made in
turn to satisfy the finite - difference equation involving
'0ld’' values at neighbouring points obtained from the previous

iteration.

In 1918, Liebmann showed how the convergence rate could
be improved greatly merely by using 'new' values as soon as
they become available. An early rigorous mathematical treatment
of convergence and error bounds for iterative solutions of
elliétic equations by Liebmann's method was given by Phillips

and Wiener in 1923.

It can be said that the first numerical solution of the
partial differential equations for a viscous fluid dynamics
problem was given by Thom in 1928, Thom solved the time-

independent Navier-Stokes equation numerically for viscous



fluid flow past a cylinder at a Reynolds number of 10.

The first of the implicit methods, which for multidimen-
sional problems require iterative solutions at each time step,
was the Crank-Nicolson method published in 1947. 1In 1953,
Dufort and Frankel presented their 'leopfrog' method for
solving parabolic equations. Their method allows for arbitrarily
large time steps (in the absence of convective terms) and has

the advantage of being fully explicit.

In the mid-fifties, Peaceman and Rachford (1955) and
Douglas and Rachford (1956) presented efficient implicit
methods allowing arbitrarily large time steps.for solving
parabolic equations. These methods which are known as
'alternating direction implicit', (ADI), methods, have also
been applied to elliptic equations. Alternating direction
implicit methods are probably the most popular methods used
for solving incompressible flow problems expressed in terms

of the vorticity transport equation.

The development of digital computers has motivated further
development of numerical simulation of fluid dynamics. Progress
has been remarkable, both in the development of numerical
techniques and in the range and variety of the different types
of problems analysed. Notwithstanding this rapid development,
no general numerical method for solving the Navier-Stokes
equation has so far emerged. This can be attributed partly
to a lack of the methods of effective error analysis of the

solutions. Error analysis could form a basis for the



classification of methods (Rafique 1971).

The following section surveys existing solution for free

convective heat transfer from a solid sphere.

1.3 LITERATURE SURVEY:

FREE CONVECTIVE HEAT TRANSFER FROM A SOLID SPHERE

Considerable previous effort has been given to the study
of free convective heat and mass transfer. These studies

have been analytical as well as experimental.

Most of the studies of free convective heat transfer
have investigated heat transfer from flat plates and cylinders;
relatively little work has been undertaken on transfer from

sphere and particles.

As far as this author is aware, no numerical or analytical
studies of time-dependent or time-independent free convective
heat transfer from a solid sphere at moderate and low
Grashof numbers has been carried out other than described in
this thesis. The results of a few experimental studies are,
however, available in which the average heat transfer coefficients
were determined but the flow patterns and the temperature

distributions about the body were not measured.

1.3.1 Theoretical and Experimental Studies at Low and

Moderate Grashof Numbers

Mahony (1956) made a theoretical study of time-independent



free convective heat transfer for small Grashof numbers
from spheres and thin wires by perturbing the steady state
conduction solution. He did not determine the flow field.
However, by considering the magnitudes of the various terms
in the Navier-Stokes and energy equations, he was able to
deduce for small Grashof numbers that convection is negligible
in comparison with conduction near the body, but that it
becomes as important as conduction at large distances from
the body. He then concluded that for small distances from
the body, i.e. for distances that are small in comparison
with the dimensions of the body, the use of the conduction
equation yields correct heat transfer rates. However, for
large distances from the body, the heat transfer rate must

be calculated from the solutions of the complete equations.

Farzetdinov (1958) proved that the solutions of the
steady state equations for free convective heat transfer
are unique. He obtained this result for small Grashof

numbers by perturbing the steady state conduction solution.

Hossain (1966) used a perturbation analysis to study
steady state laminar free convection flow and heat transfer
around an isothermal sphere for Grashof numbers in the range
between zero and unity and for Prandtl numbers of about
unity. Solutions of the governing equations were expressed
in series form with the Grashof number itself taken as the

perturbation parameter. The expressions were as follows:
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stream function:

3
* * - ’—:%5 (2+cos®) 9 * -k fr (2+cos @)
U =Gr¢l (r,®e +Gr ¢2 (r,®)e + ...
(1.3.1)
temperature:
rGr r3Gr
x -7 (2+cose) * - 7] (2+cos©)
T =To (r,@e +GrTl (r,0)e
(1.3.2)

where, m* and T* are the dimensionless streamfunction and
temperature ; Gr is the Groshof number based on the radius
of the sphere, and r and © are the dimensionless spherical
polar coordinates. He obtained the following relationship
between the average Nusselt number, Nu, the Grashof number,

Gr, and the Prandtl number Pr;

— 2 2,

Iu = 2 4 Gr 1 Gr7{C.13%-C.451°%Px+1.128C2Px") {(1.3.3)

2

where the first term represents the Nusselt number which
arises from the contribution made by pure conduction in the

absence of convective effects.

Hossain found that the thickness of disturbed region
was very large for Grashof numbers slightly greater than zero
but that it decreased with increasing Grashof number. He
. stated that the perturbation approach to free convection
problems is only applicable when the value of the Grashof
number is less than unity. At higher Grashof numbers he
found that the expressions he had used for the stream function
and temperature were highly singular at regions far away from

the surface of the body.
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Fendell (1968) used a perturbation analysis to study steady
state free convection about a small heated isothermal sphere.
He found that in an unbounded medium, an ordinary perturba-
tion expansion in the Grashof number leads to unbounded
velocities far from the sphere. However, he predicted that
recirculating flow will occur within the region contained
between a heated inner sphere and a cqncentric cold outer
sphere when the ratio of the radius of the outer sphere to
that of the inner sphere is less than the Grashof number,
based upon the diameter of the heated sphere, raised to

the minus one-half power. The fld%d adjacent to the heated
sphere rises while that adjacent to the outer sphere falls.
Under these circumstances the problem of the existence of
singularities in the velocity and temperature profiles does
not exist. By using inner - and - outer matched asymptotic
series expansions he was able to show that although diffusive
transport is dominant near the heated sphere, convective
transport is dominant away from the sphere. Fendel did not

make any calculations of the flow field.

Numerous experimental studies of free convection at
very low and moderate Grashof numbers have been carried out;
principally for flat plates and horizontal cylinders.
However, only average values of the Nusselt number have
been presented. Jakob (1949), McAdams (1954), and
Gebhart (1961) reviewed correlations of the experimental

data.
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Meyer (1937) carried out a few experiments with a
silver sphere in air at atmospheric pressure for Grashof
numbers between 100 and 1000. For low Grashof number, he

examined other experimental results for a cylinder and a

N :
function of the Grashof number for a sphere was approximately

sphere and concluded that the average Nusselt number as a

the same as that for a cylinder if the sphere radius was
substituted for the cylinder diameter as the characteristic

dimension.

Elenbaas (1942) made experimental studies with both a
cylinder and a sphere in air at atmospheric pressure. He
found that for a sphere, for small, moderate, and large
values of the Grashof number, the following relation applies:

TS (1- (1.3.4)

2
Nu
where Grd is the Grashof number based on the diameter of

the sphere.

Ranz and Marshall (1952) carried out experiments on
evaporating drops at Grashof numbers as low as 1 and presented

the following formula:

o = 2 + 0.60 Gré/4 pri/3 (1.3.5)

In addition to their analytical expression for heat and
mass transfer from vertical plates, Mathers, Madden, and

Piret (1957), presented empirical equations for spheres.
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Data for Rayleigh numbers less than 100 were fitted by the

following equation:

¥ = 2 + 0.282 (Rad)o'37 (1.3.6)
For Rayleigh number in the range 102<Rad <lO6 their
correlation was:

— %

Nu = 2 + 0.5 (Rad) (1L.3.7)

Tsubouchi and Sato (1960) used thermister particles of
approximately ellipsoidal shape in order to study free
convection in air. They obtained the following correlation

for shperes for Prandtl numbers, Pr, around unity and

1073

< 1.5:

Na = 2 + 0.59 (Crg pr)¥ (1.3.8)

Yuge (1960), suggested the following empirical formula
for free convective heat transfer from a sphere in air for
Grashof numbers, Grd, between 1 and 100,000. The Prandtl
number is incorporated in the coefficient:

— Y
Nu = 2 + 0.392 Gr

a (1.3.9)

Hossain (1966) made experimental studies with an
isothermal sphere of 1/4 inch diameter. He carried out the
experiments by means of a Mach-Zehnder interferometer of 5
inch field. He found the following empirical formula for

Grashof numbers between 0.02 and 2.54 and Prandtl numbers
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between 125 and 1000.

No =2 + 1.16 crl/4 prl/3

Pr (1.3.10)

1.3.2 Theoretical and Experimental Studies at Large

Grashof Numbers

The subject of free convection heat and mass transfer
has drawn the attention of many authors in the past. Almost
all of the theoretical studies are based on the assumption
of the existence of a boundary layer. From the point of
view of mathematics, these solutions represent the asymtotic
solutions as the parameter Grashof number approaches infinity.
Although boundary layer theory is only applicable at
reasonably large Grashof numbers, large Grashof numbers are
a limiting case of intermediate Grashof numbers and the
solutions obtained for intermediate Grashof numbers may
be expected to approach the boundary layer solution as the
Grashof number is increased. For this reason boundary
layer solutions and experimental results obtained for large

Grashof numbers will be briefly reviewed.

.Yamagata (1943) suggested the following relation from

his empirical study of free convective heat transfer from

5 8

sphere in air for Grashof numbers between 10” and 10 . The

Prandtl number is incorporated in the coefficient,

— y

Nu = 0.421 Grd (1.3.11)

In a series of three theoretical papers, Merk and
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Prins (1953-54) discussed and extended approximate solutions
of the partial differential equations describing thermal
convection in a laminar boundary layer. Extended solutions
were obtained for the cases of a sphere and a horizontal
cylinder. For Prandtl numbers, Pr, much greater than 1,
Merk ang'Prins derived the following relation for free

convective heat transfer from a sphere.

— 1
Nu = 0.558 (Grd Pr) * (1.3.12)

Garner and Hoffman (1961) measured local rates of mass
transfer from solid spheres of various organic acids by a
photographic technique. Schutz (1963) gave some measurements
of local rates of mass transfer from spheres and horizontal

cylinders. He found that for a sphere:

o ¥

Sh = 2 + 0,59 (Grd Sc) 1.3.13)

where Sc and Sh are the Schmidt number, and average Scherwood

number, respectively.

Chiang, Ossin and Tien (1964) obtained a solution of
the problem of external free convection heat transfer from
a sphere with various prescribed thermal conditions on the
surface. They obtained exact solutions of the boundary
layer equations for the cases of uniform surface temperature
and of uniform surface heat flux for a Prandtl number of
0.70. TFor the case of uniform surface temperature they

expressed the local Nusselt number as:

%

a (1.3.14)

Nu = (0.4576 - 0.03402 E2) Gr
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where & represents the dimensionless coordinate along the

body surface.

Sandoval (1965) made accurate measurements of overall
rates of mass transfer from benzoic acid spheroids of five
different eccentricities dissolving into water. His results

seemed to be independent of shape, being correlated by:

Sh = 0.121 (Grgy Sc) ¥ (1.3.15)

Pandya (1967) made a theoretical investigation of the
effect of shape, Schmidt (or Prandtl) number, and composition
of system, on laminar free convective mass and heat transfer.
He considered spheriods, elliptic cylinders of oblate cross-

section, and various axisymmetric similarity flow bodies.

Pandya obtained both exact and approximate solutions
of the laminar boundary layer equations in the range
0.7< Pr £2000 for heat transfer and 0.7s¢ Sc <2000 for mass
transfer and found very good agreement between the two types

of solution.

Yang and Jerger (1964) attempted to extend the applica-
bility of boundary layer theory to lower Grashof numbers.
They made a perturbation analysis for laminar free convection
along a vertical plate using the classical boundary layer
solution as the zeroth-order approximation. However, the

first-order approximation showed that their problem remained

within the framework of boundary layer theory and, as a result,

their method could not be used to extend boundary layer theory
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to lower Grashof numbers.

It is seen that there are many associated problmes
and gaps to be filled when attempting general treatments
of free convection. The present project has studied
transient free conveqtive heat transfer from a solid
sphere for Grashof numbers, Gr, in the range between

0.05 and 12500 and Prandtl numbers of 0.72, 10 and 100.
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CHAPTER 2

THEORETICAL ANALYSIS
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2.1 THE EQUATIONS OF CHANGE

The basic differential equations used here are the
'equations of change' namely the equation of continuity,
the equation of motion (Navier-Stokes) and‘the energy
equation. These equations express the basic laws of con-
serﬁation of mass, momentum, and energy applied to a small
cdntrol volume within a flowing fluid. These conservation
equations are called the 'equations of change', inasmuch as
they describe the change of mass, momentum, and temperature
with respect to time and position in the system. The deriv-
ations of these equations may be found in various standard
tests such as Schlichting (1968), Batchelor (1970), Aris

(1962) , Bird, Stewart and Lightfoot (1960), and Howarth (1956).

It is convenient at this stage, however, to list the
main assumptions which are usually made in these derivations:

1. Fluid properties are continuous functions of space
and time.

2. The fluid is Newtonian.

3. The fluid is isotropic.

With these assumptions, the governing equations of the

transport procéss of heat may be expressed as follows.

1. The equation of continuity.
The equation of continuity is based on the physical
principle of conservation of total mass, and expresses a

balance between the rates at which mass enters and leaves a
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control volume and the rate at which mass is accumulated,
through changes in density, within the control volume.

The equation of continuity in vector notation may be expressed

as:

Do - _p(v.0) (2.1.1)

Dt - L]
where: i is the velocity vector

t is time

o is density

%E is the substantial derivative
and is defined as: D _ 3 =

2. The equation of motion.
The equation of motion is derived from Newton's

Second Law of motion and may be expressed as:

D—j _ ™ ) vz TT1 l P T 2_ e T
(o) .D—‘E = F VP 4+uv<U + '§]J. ViVv.U) 3V'|J-KV.U)
+ 2(yn.V)U + v x (vx0) (2.1.2)
where: F is the body force vector
P is the pressure
u is the viscosity

Equation (2.1.2) is the general form of the Navier-
Stokes equation. The terms of equation (2.1.2) represents
forces acting on an element of fluid per unit volume. The
D0
Dt
On the right hand side of equation (2.1.2), the first term,

term p , represents the inertial forces per unit volume,

——

F, expresses the body force per unit volume, the second term,
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VP , represents the pressure force per unit volume, and
the remaining five terms represent the viscous forces per
unit volume in which the variations of viscosity are

included.

-3f“ The energy equation
The energy equation'based on the laws of thermo-
dynamics, is as follows:

DE _ _ o= _ =
Ppe = - V.4 - P(V.U) + @ (2.'1.3)

The terms of equation (2.1.3) represent rates of energy
gained by an element of fluid per unit volume. In equation
(2.1.3), the variable E, represents the specific internal
energy, so that the term,p%%%, expresses the rate of gain of
internal energy per unit volume. On the right hand side of
equation (2.1.3), the termy,q , represents the rate of
input of energy by conduction per unit volume, the second
term, P(V.U) , represents the reversible rate of internal
energy increase per unit volume by compression, and the

last term, o , represents the irreversible rate of internal

D
energy increase per unit volume arising from viscous dissip- |
ation. The specific internal energy, E, can be defined in !

terms of the state variables, the volume,V ; the pressure P,

and the temperature, T, as follows:

A

dE = C_ dT - T (aT p

|
p dp - PAV (2.1.4) |
|

where Cp is the specific heat at constant pressure. f

It follows from the substitution of V by % and the use
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of continuity equation, equation (2.1.1), that equation

{(2.1.4) can be rewritten as follows:

DE _ DT , T, %0
ot = °p bt t 53 p Dt

Fourier's law of heat conduction can be expressed as:

- Py .0) (2.1.5)
E: —kT vT (2.1.6)

where kT is the thermal conductivity.

By application of equations (2.1.5) and (2.1.6), equation
(2.1.3) can now be written as follows:
DT T (ap) DP + @

P aTp Dt D (2.1.7)

In general, the properties of the fluid depend on
temperature, T, and pressure P. The density of the fluid
can be related to temperature and pressure by an equation
of state, which may be expressed as (Batchelor 1970):

£{s,P,T) = 0 2.1,

~

The molecular transport coefficients u, viscosity,
and kT’ thermal conductivity, are functions of the local
state of the fluid. With density, p, and temperature,T, as
convenient choices of the two parameters of state, one may
write:

“u=ulp,T) ' (2.1.9)

ki kp(p,T) (2.1.10)

Equations (2.1.1), (2.1.2) and (2.1.7) to (2.1.10)
together with the initial and boundary conditions are so
complicated that they are seldom used in their complete

form to solve flow problems. In order to make progress with
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the solution of a particular problem, it is generally
necessary to introduce simplifying assumptions such that
the equations become easier to solve while continuing to

describe adequately the particular physical situation.

‘The case to be analysed here, is that of free convective
heat transfer from a solid sphere to a Newtonian fluid. The
system is éssumed to possess the following characteristics.

(i) The only body force operating is that of gravity.

(ii) It is assumed that temperature variations are not
large, so that Boussinesq's approximation can be applied
thus enabling the density to be treated as a constant in
all terms of the transport equations except the buoyancy
term. For the same reason, other fluid properties such as
the viscosity, specific heat, and thermal conductivity
may also be considered as constants.

(iii) The surface temperature of the solid sphere is
uniform and unchanging with time. In practice, such
behaviour can be approximated during a substantial portion
of the transient period provided the sphere has sufficiently
high heat capacity and conductance.

(iv) It is assumed that the heat generated by viscous
dissipation is negligible. This is justified when the ratio
of Brinkman number to the Peclet number is small and the

fluid viscosity is low.

With the above simplifications, equations (2.1.1) and

(2.1.2) and (2.1.7) reduce to:



56

V.U = 0 (continuity equation) (2.1.11) .
DU 2 o= . ,
Popeg = VP RV U+ F (Navier-Stokes equation)
(2.1.12)
DT 2 .
P C =k, v*T (energy equation) (2.1.13)

w “PwDt T oo

where the subscript =« denotes the value of the variable

distant from the body.

Appropriate boundar& and initial conditions are needed
for equations (2.1.11) to (2.1.13). For free convective
heat transfer from a solid body immersed in a Newtonian
fluid the boundary and initial conditions can be obtained

from the following considerations:

Boundary conditions:

(i) There is no slip of the fluid at the surface
of solid body.

(ii) The temperature is assumed to be constant and
uniform at all points on the surface of the body.

(iii) As the distance from the body increases the
dependent variables become asymptotic to their values in

the undisturbed stagnant fluid.

Initial conditions:

Two different sets of initial conditions could be used
in connection with the problem of the unsteady transfer of
heat from a solid body to a stagnant fluid. These two dif-

ferent initial conditions are:

(i) Initially, the fluid is at rest everywhere and
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temperature distribution is taken to be that of steady state
conduction between the body and the surrounding fluid.

(ii) 1Initially, the fluid is at rest everywhere and
temperature everywhere in the domain is set to a constant
value, TO, except on the solid surface where the temperature

is set to Ts'

In the present work, however, because of the mathemat-
ical difficulties which are associated with the second
initial condition, the first initial condition is used

exclusively.
2.2 THE EQUATIONS OF CHANGE IN SPHERICAL COORDINATE SYSTEM

The vector forms of the equations of change, that is,

equation (2.1.11) for the continuity equation, equation

for the energy equation, are applicable for any orthogonal
coordinate system. The objective in this section is to
expand these equations, in component form, in a general
orthogonal curvilinear coordinate system. This is because
depending on the shape of theibody, a particular coordinate
system may offer a great deal of simplifications of the
equations of change when setting up flow problems. For
example, in the case of axisymmetric flow around a sphere,
the use of spherical polar coordinates, ( r,®,0), facilitates
the description of the velocity vector, U, in terms of

two components u. and Ug s rather than in terms of the three



components that would be required if rectangular coordinates

were to be used.

The first step in the expansion of the equations in
component form for any particular orthogonal coordinate
system is to express the vector operators in forms such
that the transformation into orthogonal curvilinear coor-

dinates is immediate (see appendix Aa).

From the vector relationships given in appendix A with
the replacement of vectors A and B by the velocity vector U
and replacement of the scalar ¢ by the temperature, T, the

following relationships are obtained:

(U.v)U = 49 (U.0) - U x (vx0) (2.2.1)
V20 = V(v.0) - Vx( vxU) (2.2.2)
(U.9T = U.yT (2.2.3)

However,V.U = 0 from the continuity equation, equation

(2.1.13), so that equation (2.2.2) becomes:
V2U = -vx (vxU) (2.2.4)

By substitution of the relationships (2.2.1), (2.2.3),
and (2.2.4) into equations (2.1.11) to (2.1.13), the follow-

ing equations are obtained:
The continuity equation:
V.U=0 (2.2.5)

The Navier-Stokes equation:

Lo]

8
2l
+

N!D

2v(U.U)-p,U x (vXU) = -vP - u _vx (vxU) + F (2.2.6)




59

The energy equation:

Po Co L 4+ T.yT) = k. v2T | (2.2.7)

By application of equations (A.2.1) to (A.2.5) of
appendix A, equations (2.2.5) to (2.2.7) can be rewritten
in terms of the orthogonal curvilinear coordinates xl' X2,
and X3 and the corresponding scale factors hl’ hz, and h3.
The'coordinate system chosen is illustrated in figure A.3.1

of appendix A.

In orthogonal curvilinear coordinates the continuity

equation, equation (2.2.5), becomes:

1 [a 5 3
(hhu)+-——(hhu)+———(hhu)]=o<z.z.s)
hlh2h3 &Xl 27371 3X2 17372 3X3 17273

The Navier-Stokes equation, equation (2.2.6) becomes:

X1 = component:
1 P _ 3 2 2 2
Poo ST + > 3X1 (ul + uy + u3)
o P hu—-?—(hu)——@———(hu)]
hlh2h3 372 3X1 272 3X2 171

- h
- 1 3P _ 1 9 3 Py _ 8 ]
= T h, 3%, M= A, |3, [hlhz rx; (M%) 5% ‘hlul)]




60

X2 - component:

'3112
—l 4 P2 9 .2
st T 3 5, (uj

+ u?

+ u? 3)

e 2

P 3 )
-—!h.u [;~—-(h u,) - — (h,u )]
h R, hg { Che I T S A A S A

3 3
*hyug [axz (h3u3) - 3% (hzuzﬂ}

3
1 _%p 1| e [ By { 3 3 ]
hy, 8%, hihy| 8y [hyhy | 3%, 737377 8% 7202
2 [ h 2
+ (hu,) (h,u )] + F
X [hjhy | X, 171 X, 22 2
(2.2.10)




The energy equation, equation (2.2.7) becomes:

u u u
T . Y1 a7 2 3T 3 3T
ow Cp( 224 L 22, 2 ¢ 22T
P 3t ' B, 8X,' h, 8%, ' B, 3%,
. > (DM er 5 PiP3 e
Whiohy | 3] C TRy ax,) Tax; TRy Tax,
h.h
s MPy ar
+ ( ) (2.2.12)
5%, (hy; IR, ]

To simulate flow around a solid sphere, it is convenient
to rewrite the above equations in spherical polar coordinates

(see figure 2.2.1) for which:

Xl =r X. = 0 X. =@

and

L8 (2 1 2 ; 1 2 =
T ar T U) * v sine 3. (e SIN® ) * oine 35 (Yp) = O
(2.2.13)
The Navier-Stokes equation:
r - component: ) ,
+ u
aur ‘o aur . Ug u, N Uy, v, _ ug @
P at r 2ar r 30 r sin® 3@ r

u u
2P 2 2 2 Mg 2 _ 2 o
=3 +u{§lﬂf'§3'uf r? T8 T? UgCote- =776 ol *Fr

(2.2.14)
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8 — component:

u_. ?u u a1 u_u u2 cote

u u
3t r ar r e ¥ sine 3P r r

‘ 2u u du
- 13p 2 2 r_ ® _ 2 cos © )
r 38 +“'°°E7 u9+ r? 20 r* sin?e r? sin?é MZI + Fe
(2.2.15)

® - component:

u 1 u. Jsu u u u.u u.u
pm[f—g +u—2 4 EQ o, ol ¢, 2, i ® cot%]

ot r 3r 20 r sin® 3@ r
u ’ s au
= -1 9P 2., _ o 2 r,2cos © (2)
r sin® 3 +u“F7 Y9~ T¥sin?6 + r?sin @ 3@ +rzsin2® a¢:]+ FQ
(2.2.16)
The energy equation:
o c [T,y 2T, Year, % or
« Pwl st r oY r 239 r sin® 39
E 1 1 2
1 9 3T P . T 3¢T
=k, | = (12 =) ¥ —— 2 (sine) + ——y =
T, _f or 3y r?sin® 30 20 r’sin‘® 3o
(2.2.17)
where,
1 ) ) 1 ) . ) 1 5?2
2 . = _°_ 2 _9 ——t 9 9 9
v r? sr (r ar) + r2gin® 30 (siné 20 + r’gin? @ (a¢2 )

(2.2.18)



63

ur
ue
y
3
o= r
- - - "g" - U(rlelm)
P .
0 ~Y,
)}
!
¥y !
0= 0

FIGURE 2.2.1 SPHERICAL POLAR COORDINATE SYSTEM

2.3 AXISYMMETRICAL FLOWS

The general three-dimensional equations presented in
the previous section, in which the three velocity compon-
ents depend on all three coordinates, are very difficult to
solve even numerically. However, in the case of flows such
as axisymmetric flow around a sphere, the equations can be
further simplified and the mathematical difficulties encoun-

tered in obtaining solutions considerably reduced.

The spherical polar coordaintes (r,®,®) of the sphere
are arranged as shown in figure 2.2.1. As shown in the

figure, the coordinate r is normal to the surface of the
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body,® is parallel to the surface in the flow direction,
and ® is the direction of rotations about the axis of sym-
metry of the flow. For the particular case ofcstreaming
flow past a stationary sphere with no rotation, the flow
around the vertical axis is axisymmetric, the component

of velocity in the ®-direction is zero everywhere, and all

variables are independent of ¢, that is,

ug, = 0 (2.3.1)
30 _ 3T _ P _ .
=0 =0 22=0 (2.3.2)

Expressing the body force as F = pg and using relat-
ions (2.3.1) and (2.3.2), equations (2.2.13) to (2.2.18)
can be written as follows:

continuity equation:

1 3 (2 1 3 ; -
£z 3¢ (F'8) * T 5ine 38 (Yesing) = 0 (2.3.3)
Navier-Stokes equation:
r - component:
5 2
ot r 9r r 30 r Pwdl v Yy
2 2 Mg og
2 L’I.r 'J-:_T T—;:-ll@ cot®| + i (2.3,4)
P
8 - component:
Mo, , Mo, % Mo UM _ _1 1 ¢
st r ar r 30 r P r 230

ou u g
+Vm&’“e+%f - oo ] r =2 (2.3.5)
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Energy equation:

u l
T 3T ® 3T 1 d oT
—_— 4+ —— o m— ez — aim 2 2o
u 56 ~%| T2 (r )

at Y 3r 3r 3r
1 3 . 2T .
+ ;Tgiﬁé oY) (sin® 3@% (2.3.6)
where v? = L (r? jL) + ——i——— 2 (sin® JL;
¥ Jx 3T risin® 30 P

and v and o are the kinematic viscosity and thermal diff-

usivity of the fluid, respectively.

The components of the gravitational acceleration in
the radial direction, gr, and angular direction, ggr can

be evaluated from figure 2.2.1 as follows:

g cos © (2.3.7)

Q
it

-g sin @ " (2.3.8)

i

Je
The pressure, P, can be written as the sum of two

pressures:

P =P, + Py (2.3.9)

where: PS is the static fluid pressure

P. is the pressure difference between the static

d
pressure and the pressure when the fluid is in

motion.

The static fluid pressure can be derived from
equation (2.3.4) as follows

L, P, P9
- +
P, or P

0 = Y or PS= Po +0 g r cos@ (2.3.10)

o0
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where PO is a constant. By substitution of equation
(2.3.10) into equation (2.3.%) and differentiation with

respect to r and @, the following relations may be obtained:

: oP

oP d

L = e

oE T P g cos (2.3.11)
and \p 2P .

% - 58 ~ P9 T siné (2.3.12)

By combination of the body force terms, Fr = pgr and

F8 = P9y with eqﬁations (2.3.11) and (2.3.12), respect-
ively, the following equations can be obtained:
Pg 9P
1 a°rp r 1 ="d g cos®
- e e e T e e = -
Po oY P w o. or P (0 =0,) (2.3.13)
1 1% , P9 _ 11 °P’a g sine
6. T® T B, "p.T 38 " p, PP (2.3.14)

The density, o , which is a funtion of temperature T,
may be expressed in terms of a Taylor's series expansion

relative to the stagnant fluid conditions, p_,T_ , as:

| (r-ro)?
2

2
o =p_+ g——' (r-m.) + 2

o)
P + -3 s £ 2
o T

Iy

o] «©

thus neglecting second and higher order terms:

Lo)
1
D
I
o
8

(T-Tw ) (2.3.15)
T o
The coefficient of volumetric expansion is defined by:

Hj|

(2.3.16)

Hence, by substitution of equation (2.3.16) into equation
(2.3.15) the following expression can be obtained:
P =-p,=-P, B_(T-T,)) (2.3.17)

By substitution of equation (2.3.17) into equations

(2.3.13) and (2.3.14) the following equations can be



obtained:
Pg 9P
-1 9P r__ 1 %4 _ _
oo %r T B, =" P T ~ 9P cose (T-T.)
and
P9 3P
-1 ¥ _ "o __1 4 . _
- crae " h. - " p.r 96 *+ 9P, sin® (T-T,)
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(2.3.18)

(2.3.19)

By substitution of equations (2.3.18) and (2.3.19)

into equations (2.3.4) and (2.3.5), respectively, the

following equations for the radial direction, r, and the

angular direction, © , are obtained:

r - component:

2
Pryog B, %M Y% _ 1 g
ot r 9r r 30 r o or
au
2 2 @ 2
244 - £ -4 2 . <
+vm[v YT %% T T Te 2 Yo
€@ ~ component:
ot r 3r r 96 r S 2
2 ou Yo
2 < i -
+v“[§ Ye + r? 2@ r?sin?e

o]

|

&)

cotQ]- gb_cos® (T-Tm)

{(2.2.20)

] + gB _sine (T-T_) (2.3.21)

Now the pressure terms can be eliminated from equations

(2.3.20) and (2.3.21) in the following way.

Equation

(2.3.20) is differentiated with respect to®, and equation

(2.3.21) is multiplied by r and then differentiated with

respect to r. After performing these operations the resul-

tant equations are subtracted from each other and the
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following equation obtained:

2 2 N
..i u_+ r.a._.l.:lg - .a.ilg. - 1u 9 ur -— ra ue - 2au®
ot ® or 3@ | “r| 3ro® or*t F34
2 2
‘u 9 ue . 2 Bu@ . Bur 1 9 u, . raur aue
©l3r3d r Y] 3r r 38?2 3r ar
+3u EEE..l Bueaur._aur Bur
or 90 r 9@ 96 9® 09
3 3 3 3 2
= ra o .1 37ug 37U, 1 37Uy cote Yy
®|™ 9 r3 r 9ri@* 3r?3e r: 36° r? 5 ©°2
2 2 2 i
L1%% 2%  cote % Y 1 3%  cote?Y
r: 9e? “or? r X3 © r’sin’® 3 © r? G
du
_ 1 e _ 1 3 -
T sin’® 3r  r?sin’6 ue]* 9B, cosé gg (T-T,)
+ gB. r sine -,53; (T-T_) (2.3.22)

It is convenient to define a gquantity called the
stream function. A streanlfunctionﬂb , in spherical polar

coordinates 1is defined such that:

- 1 sy
Y = 7 r7sin® 36 (2.3.23)
and
_ 1 sy
Yg ¥ ¥ sin® or (2.3.24)

It is clear, by the substitution of urand ug from
equations (2.3.23) and (2.3.24) into equation (2.3.3), that
the continuity equation is satisfied. It is equally clear
that the conditions of equations (2.3.1) and (2.3.2) are

satisfied as the stream function is indevendent of &.
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By substitution of the values of u, and ug from

equations (2.3.23) and (2.3.24) into equations (2.3.22)

and (2.3.6), the following equations are obtained:

- YR SRR -1 P I v 2 2
3t T TTsiné [ar (55 = 2 c0t® ) - 553z - T B2 (W)
_ 4 . ) . 2q 9
= VaE ({) + Bog |[sin® cos® 3 (T-T,) + r sin*6.— (T-T )
(2.3.25)

and the energy equation:

T, _ 1 |awar _awoar _, [2fT , 2T

at r?2sin® | ar 3@ 3@ dr o |dr r 3r

1 327 cot® 3T
+ —?2 302 + 2 —3@ (2.3.26)
where,
32 sin® 9 1 3
2 = — — ————

Equation (2.3.25) is a non-linear fourth-order partial
differential equation, which can not be solved analytically

and its solution must generally be obtained numerically.

However, it is more convenient to solve the Navier-
Stokes equation as two simultaneous equations in two depend-

ent variables, stream funtion and vorticity.
2.4 VORTICITY TRANSPORT EQUATION

The method used to solve the equation of fluid motion
necessitates the expression of the Navier-Stokes equation
as a vorticity transport equation. The vorticity in a fluid,

w, is a vector quantity having the same nature as anglular

velocity. It is defined by:
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@ = curl U = VXU , (2.4.1)

The curl of a vector in orthogonal curvilinear coord-
inate is given in appendix A. Hence the vorticity components

in spherical polar coordinates becomes:

v 1 [ ) . 9
©r = Tcine | 3e (¢ sin® ugy ) - 55 (rug) (2.4.2)
=_ 1 |3 _ 9 .
Y9 = T sin® [BQ (ur) 3 r (r sin® Ug ) (2.4.3)
=113 _ 9
“c T T [ar (r ug) - 59 (ur)] (2.4.4)

From equations (2.4.2) to (2.4.4) and from the
conditions of axisymmetrical flow , it is clear that since
. = g
zero component of vorticity, that in the ¢~ direction.

= 0 for axisymmetric flow, there is only one non-

Denoting w¢by C, equation (2.4.4) becomes:

I -
_ 1 9 _ _i
=z |_ar (rg) - 5o (ur)J (2.4.5)
C can now be considered as a scalar funtion of r and ©.
Equation (2.4.5) can be expressed in terms of the stream

function as follows:

Tr sin® =E2 () (2.4.6)

By substitution of equation (2.4.6) into equation

(2.3.25) the vorticity transport equation becomes as follows:

S S L g Vs _ 2 ,
5t T T¥siné [ar (56 - 2 cot® ) - 350T =) (Cr sin®)

= v_E? (Cr sin@) + B_g|sinBcos® 5%(T-Tw)+ r sin’@ﬁ%(T-Tm)

(2.4.7)
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However, it is more convenient to define a modified
vorticity, G, as G =C r sin®, and to solve the equation in
terms of this variable rather than in terms of the vorticity
function C. Equétions (2.4.6) and (2.4.7) when expressed

in terms of the modified vorticity, G, are as follows:
Equation (2.4.6) becomes:
G = E? (V) (2.4.8)

Equation (2.4.7) becomes:

2 1 3 _ QY 2 _ 2
5t T T¥sine [ar ( 20 2 cot®) ”@@‘ r r)] (G)

=v_E? (G) + B_g |sin®cos® g%(T—Tm) + r sin?® —g%(T—Tmﬂ
(2.4.9)

where E? is given by equation (2.3.27).
2.5 DIMENSIONLESS FORM OF EQUATIONS

It is convenient to render the variables dimensionless.
The object is to reduce the number of parameters to a mini-
mum and to group them into dimensionless groups for synthesis,
interpretation, and representation of results. A standard
technique, for obtaining a suitable dimensionless form,
using reference variables, is given by Hellums and Churchill

(1961) .

For natural convection, the variables in equations
(2.3.23) and (2.3.24), (2.3.26), (2.4.6), (2.4.8) and
(2.4.9) are made dimensionless by the use of the following

dimensionless groups:
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u* = urR . ua = u®R
Vo Voo
tve, 2
r* = % ; t* = ey : C* = %5
o0
GR . g . T - To (2.5.1)
% = * =) — * - ——— «de
G Voo ’ w VooR ! T TS" qu

N . . . .
For convenience, the superscript will be ommitted and

dimensionless variables will be used exclusively.

It is also convenient to transform the equations from
polar space (r,®) to rectangular space (z,0) by the follow-
ing transformation:

r = e’ (2.5.2)
The derivation of the appropriate conformal mapping is
given in appendix A. It should be noted that the transfor-
mation has the advantage that it allows more grid lines to
be concentrated near the sphere surface where the gradients

are large.

By substitution of dimensionless variables (2.5.1)
and by tranformation of r = ez, the system of equations
can be rewritten as follows:

The velocity components:

1

- _ W (2.5.3)
u L] L ]
z ezzsin@ 20
1 R
4o = ———— ¥ (2.5.4)
© ezzsin@)az

The vorticity transport equation:

ole

3 z 2z |26

e®sin®

% 3%+ Sl 1t a8 -2 coto ] -2

5 -+

_ 2z, 2z . aT .2 0T
= e "E} (G) + e““Gr [51n@cos@36 + gin®*@ e (2.5.5)
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The stream function equation:

e?’c = e%E,_ () (2.5.6)
The modified vorticity, G:

G =C e22 sin® (2.5.7)

The energy equation:

022 3T 1 [gg 3T _ %g gg]

=4
(3]

e“sin® 2
_ 1 32T 3T 92T 3T
== Pr -—Ez -é_é- + 3@2 + COt@ 5'6 (2'5'8)
where:
22 3 2 ) 32 3 (2.5.9)
- 2. 4 - —
© By = 527 T3z T 387 T ©ot0 35 :

The dimensionless parameters Gr is the Grashof number

3 -
[Gr =R B“’g(?s T“)] based on the radius of the sphere,
Vi Pl v
R, and Pr is the Prandtl number |Pr = —%—2 = Eﬁ .
L ! o ]

"TOO

It is important to note that the terms on thé right
hand side of equation (2.5.8) and the first term on the
right hand side of equation (2.5.5), represent the diffusion
terms, while the terms on the left hand side of these
equations represent the convective terms. The last term
on the right hand side of equation (2.5.5), represents the

buoyancy term.

Equations (2.5.3) to (2.5.8) are the forms of the
governing equations for free convective heat transfer from
a solid sphere which, together with the associated boundary
and initial conditions given in section 2.6, are to be

solved.
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2.6 BOUNDARY AND INITIAL CONDITIONS FOR TIME-DEPENDENT

FREE CONVECTIVE HEAT TRANSFER FROM A SOLID SPHERE

Before any attempt can be made to obtain a solution
of equations (2.5.3) to (2.5.8), the appropriate boundary
and initial conditions for the system must be prescribed

for each of the dependent variables, ¢, C, G, and T.

2.6.1 Boundary Conditions.

The boundary conditions describing free convective
heat transfer from a solid sphere for time, t, greater than

or equal to zero, are set as follows:

(i) sSphere surface:
On the sphere surface the 'no slip' condition
applies. ' Therefore, the velocity vector, U, is zero on
the surface. Thus, at the sphere surface equations (2.5.3)

and (2.5.4) become:

1 =0, e1 =0 , respectively
P13 2z
s s
since 1 can not be zero. Hence at the sphere surface

e2Z sin®

the stream function has a constant value.

Therefore, at the surface of sphere, r=1 or z=0, for

-— » - t . __a__l,i
- 0'lUL o 9z 9

= S

(2.6.1)

By application of conditions (2.6.1) to equation

(2.5.6), the following relationship for the modified
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vorticity, G, at the sphere surface can be obtained:

L]

(2.6.2):

In this work the sphere is assumed to have a high
thermai conductivity such that it has a uniform temperature
Ts' ovef its entire surface. Also, the sphere is assumed
to have a very large thermal capacity so that the surface

temperature becomes time independent. Therefore, the

temperature condition on the sphere surface is as follows:
T =1 (2.6.3)

(ii) Axis of symmetry.
Along the axis of symmetry, €= 0 and €&=n , the
'no cross flow' condition applies. Hence the velocity
component in the angular direction, Ug s is zero along the
axis of symmetry. Also, along the axis of symmetry, &= 0
and ©=n , sin® is zero. Hence from equations (2.5.3) and

(2.5.4) it is necessary that:

L = Y =0
38 3z
e=0,T ®=0,T
Hence, wl = C"
0=0,n

At the front and back stagnation points, the sphere
surface and the axis of symmetry coincide, so that at these

points:

1

=¢l = C' = C" = constant
(3] 0=0,1
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For simplicity this constant is usually taken to be

zero. Therefore:

" =w| =0
s 8=0,m
2
so that: _3?‘11 = 0
& 3 0=0,n

Therefore, the boundary condition for the stream function
along the axis symmetry, ©=0 and &=n, can be written for

all values of z as:

u l =0 ;w\ =0 ; & =0
®lo=0,m =0, 0z lgg,n g
2y _ .Y _
2 =0 ; X =0 (2.6.4)
e=0,m 0=0,1

By application of conditions (2.6.4) to equation (2.5.6)

this equation at the axis of symmetry becomes:

2
§§$ - cot® ~%g = ezzG (2.6.5)

Using L'Hospital's Law, it can be shown that:

N 2
Limit cote &¥ - Y (2.6.6)
50 = g

e~+0,n N
Therefore, equation (2.6.5) becomes

. z
However, along the axis of symmetry, e2 cannot be Zzero, so

that:
G = .0 (2.6.7)

Along the axis of symmetry, ©=0 and ©=n , the vorticity

condition, {, can be obtained from equation (2.5.7).
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Along the axis of symmetry both G and sin® are zero.

Therefore, using L'Hospital's Law, it can be shown that:

s . G 3G
Limit ——— = <= (2.6.8)
e+0 sin® 90
However, since the flow is axisymmetrical, %g is zero,
and since e® can not be zero, then:
4 =0 (2.6.9)

=0,
Since the flow is axisymmetrical and temperature is
a continuous function, therefore, at the axlis of symmetry,

8=0 and O=u

T _
°6 =0 (2.6.10)

(iii) Outer boundary:
At large distances away trom the spnere surrface,
all the dependent variables become asymptotic to their values
in the undisturbed stagnant fluid. The temperature at the

outer boundary is assumed to be constant and time-independent.

Mathematically, the conditions at this boundary are
only well defined as r or z tends to infinity. However,
because of limitations on computer storage and computation
time, numerical integration <cannot be made over too large
a region, and a finite domain of integration has to be used.
This means that any boundary condition is necessarily an
approximation. Therefore, the outer boundary condition will

be applied at some finite distance from the sphere surface.
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For convenience this finite'distance will be denoted by

r=r_or z =2_ . The conditions at the outer boundary

[ -3 L=}

can now be expressed as:
At z = z
U=0;0=0,;6G=0;T=0;T=0 (2.6.11)

2.6.2 1Initial Conditions

In free convective heat transfer, since the flow
arises because of a density gradient, the medium initially
is stationary everywhere and heat is transferred solely

by conduction. Therefore, at t = 0
U=0,;¢=0,;C=0; G=0; T=r1° (2.6.12)

As described earlier, the initial temperature distri-
bution, TO, in this work, is taken to be that of pure radial
steady state conduction between the sphere and the surround-

ing fluid.

The energy equation for steady state conduction when

the surrounding fluid is stagnant is:
V3T =0 (2.6.13)

Equation (2.6.13) may be expressed in spherical polar

coordinates as:

o o
2e® _J 1 3|, oT 1 . g T
VT = 8r[r x| * r7sine e|SiN® 30

1 » T°

ot gar = O . (2.6.14)
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521°

now, 50T 0, =g = 0
so that; I, 5o [rz %%] =0 (2.6.15)

By application of transformation (2.5.2); equation (2.6.15)

becomes:
o
3 z 3T .
3% [e 7;;] = 0 (2.6.16)

The solution of equation (2.6.16) with the boundary condit-

ions (2.6.3) and (2.6.11) is as follows:

™ =(—2 ) 7% . (1 (2.6.17)

2.7 PROPERTIES OF THE PARTIAL DIFFERENTIAL EQUATIONS

The mathematical formulation of most problems in
science involving rates of change of dependent variables
with respect to two or more independent variables, usually
time and position, leads to partial differential equations,
either singly or in sets. The three dimensional second
order partial differential equations such as those derived
in section 2.4, constitute an important class of partial
differential equations and are the main concern of the

present study.

The maximum possible consideration must be given to the
properties of the differential equations to be solved
before any numerical solution is attempted. The present
set of partial differential equations, vorticity transport

equation (3.5.5), stream funtion equation (2.5.6), and
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energy equation (2.5.8) is non-linear, second order, and
elliptic with respect to the space variables (z,8). .Also
equations (2.5.5) and (2.5.8) are parabolic with respect to
time. These characteristics classify the problem as being
of non-linear, non-stationary kind. (Sommerfield 1949,

L
Forsythe and Wasow 1960, Smith 1965 and Mitchell 1969).

The domain of integration of any of these elliptic
partial differential equations is always an area bounded
by a closed curve. The boundary conditions usually specify
either the value of the function or the value of its normal
derivative or a mixture of both at every point on the
boundary,; such a domain is usually referred to as the flow
region. It is generally known (Ames 1965) that a non-
linear, non-stationary problem may not have a well-behaved
golution for the entire time interval + 0. Outside of
a finite interval the solution may become 'arbitrary large'
or 'split up' by losing its regularity, ceasing to satisfy
the equations and beginning to form branches. Moreover,
even if a solution exists for all times greater than zero,
it may not approach the solution of the stationary problem.
In fact, depending on the values of the relevant parameters,
a non linear, non stationary boundary value problem can have
a unique solution, several solutions, or even no solution at

all (Rafique 1971).

In the general case, the questions of existence and

unigueness of the solutions of the equations which describe
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time-dependent free convective heat transfer from a solid
sphere.for a given set of initial and boundary conditions
cannot be mathematically answered. However, according to
Richtmyer (1967) , equations of this kind are of such a
nature that if a well-posed state of the physical system is
specif;:d at some initial time, t = to, a solution exists
for tnato and is uniquely determined by the equations

together with the associated boundary conditions and

auxilary data.

In view of the above considerations, it has to be
assumed that the present formulation of the problem for
the time-dependent free convective heat transfer from a
solid sphere is well-posed so that it can be further assumed

that a solution exists and is unique.
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CHAPTER 3

NUMERICAL TECHNIQUE
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3.1 INTRODUCTION

The mathematical model consists of a set of partial
differential equations, as derived in chapter 2. The first
step in the solution of the equations by a finite-difference
method is to reduce them from continuous to discrete forms
and then to solve the resulting algebraic equations on a
digital computer. The details of these steps can be found
in standard text books on numerical analysis, such as

Smith (1965) and Richtmyer (1967).

The basic method is to expand the terms of the original
partial differential equations in Taylor's series. The
series are truncated to a reasonable accuracy and a set of
finite-difference equations obtained by the replacement of
each term by the truncated series. Each finite-difference
equation relates the value of a func£ion at any mesh point
to the values at neighbouring mesh points. The number of
neighbouring points involved depends on the order of the
original differential term and on the order of the truncated
series expansion. The more accurate the approximation:
the greater the number of neighbouring points involved.
Thus, a gain in accuracy has to be balanced against an
increased number of neighbouring points together with the
consequent increased complexity of the finite-difference
equations and increased computation time and storage requir-
ements. It is generally accepted that the five point
approximation, involving four neighbouring points, is a

reasonable compromise between accuracy and computation
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requirements.

A number of conditions must be satisfied if the solution
of the finite-difference equations is to be a reasonably
accurate approximation to the solution of the corresponding
partia;ydifferential equation. These conditions are refer-
red to as: ‘'convergence', 'stability', and 'consistency'.

These terms will now be described.

The term 'convergence' is understood to mean that the
exact solution of the finite-difference equations tends to
the solution of the partial differential equation as the

increments in time and space tend to zero.

The terms 'stability' and 'consistency' are closely
related to 'convergence'. The term stability fefers to a
property of the finite-~difference equations in a computa-
tional procedure as the time increment is made vanishingly
small. The property is that, as the time increment tends
to zero, there is an upper limit, to the extent to which
any piece of information, whether present in the initial
conditions, brought in through the boundary conditions,
or arising from any sort of error in the calculations, can
be amplified in the computation without the solution becom-

ing numerically unstable.

The term 'consistency' or 'compatibility', applied to
a finite-difference procedure, means that the procedure
should, in fact, approximate the solution of the partial
differential equation under study, and not the solution of

' some other partial differential equations. If on the
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successive introduction of finer meshes in space as the
time~step tends to zero, the finite-difference equations
approach the differential equation, the finite-difference

formulation is said to be consistent.

Richtmyer (1967) presents a theorem attributed to Lax
which states the necessary and sufficient conditions for
the convergence of solutions of linear partial differential
equations. However, there is no analogous convergence

theorem available for non-linear partial differential equa-

tions. In the absence of a convergence theorem for,non—
linear partial differential equations, it can only be
assumed that a stable and consistent difference scheme
will yield a reasonably accurate solution of the differential
problem. Without mathematical proofs the above arguﬁents

L

3 e~ I I, R
can never be ceonfirmed but can conly be contradicted if the

solutions obtained are physically unrealistic.

A further discussion of the stability of the finite-
difference equations will be given in a later part of this

chapter.

. The Navier-Stokes, energy and continuity equations are
based on the conservation of momentum, energy, and total
mass, respectively. Therefore, the discretization process
must not permit undue accumulation of errors in the fluxes
when summed over arbitrary groups of cells; including, in
particular, the entire field of computation. Ideally, the

efflux from one cell to a neighbouring cell should balance
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identically the influx into' the neighbouring cell from

the first cell. The integral of momentum, energy, and mass,
over any part of the field of computation will then be con-
served. A difference scheme is said to possess the
‘conservative property' if it incorporates the above idea
(Rafique 1971). Roache (1972) has compared conservative

and non-conservative differencing methods and has stated that
"experience so far has indicated that conservative systems
do generally give more accurate results". In general,

the significance of the conservative property is more
pronounced in compressible flow problems than in incompress-
ible flow problems. Furthermore, in multi-dimensional fluid
dynamics problems the use of differencing methods which
achieve conservation of the basic flux quantities such as

vorticity or energy are costly in computational requirements.

Finally, there are arguments for and against the
application of conservative finite-difference schemes to
incompressible flow problems, and the results of numerical
tests that have been reported in the literature do not
present an entirely one-sided case. In order to avoid both
the additional complexity of the finite-difference represen-
tation of the partial-differential equations and the increased
computatiénal requirements which are associated with the
application of conservative differencing methods to multi-
dimensional flow problems (Roache 1972), non-conservative

finite-difference schemes are used in the present work.
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3.2 FINITE-DIFFERENCE REPRESENTATION OF THE DERIVATIVES

The coordinates z arnd © introduced in chapter 2 form a
rectangular system of coordinates. The domain over which
the equations are to be integrated, the flow region, is
represented by a finite number of points or nodes, spaced
systematically within the domain. A discretization process
is used to represent any of the functions or their deriva-
tives at a general node and to relate them to the corresponding
values at neighbouring nodes. The flow region, (z,€) plane,

is bounded by the straight lines =0, ©=n , z=0 and 2z=2 w.

Consider the (z,0) plane as being divided up into a
mesh of length 'h' in z-direction and 'k' in the ©- direction
as in figures 3.2.1 and 3.2.2. It is convenient to introduce
the indices i and j in order to locate any point in the
flow region at a given time-step, n. The subscripts i and j
refer to the z and © coordinates respectively, whereas the

superscript n refers to the time-level or time-step.

If a funtion W(z,®,t) is a continuous function and has
derivatives of all orders, then using Taylor's series
expansion, it can be approximated in terms of its values at

the neighbouring nodes as follows:

n 3 h? 3?2 Wt
= — —~a T + - - - - - « 3
wi+1,j (1 +h 9z + 2' oz? : ) i,J
n = (1-p B2 4 D% 232 _ Wt
Wiig,3 = U-h 52 ¥ 37 5 =« 0 o0 - )Wy
3 2 32 n
= —_— b~ — + L] [ ] - . - » . «
Wi 541 = Otk 55+ 37 38 MW 5
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Wl,]""l - (1" '3-“6 + E‘E"é_éz = e - - . -) 1'3
+1 _ 5, (at)? 32
W?,j (1+ae 2o+ 85— 2o+ ‘)W?,j
-1 _ _ 3 (At)? 52 -
w;"j = (1=t o+ 5 & - L .)w‘;‘,j (3.2.1)

The function values,W , can be the stream funtion,y,

vorticity,G, or the temperature,T.

By elimination, approximate expressions for the partial
derivatives at the point (i,j) can be found in terms of
the neighbouring values as follows:

n

oW _ 2y _ 1 A 2
(3201,5 = 21(Wy §) + 0(h?) = 55 A, (Wi + 0(h?)
= 1 n - 2
=55 (Wi 5 w;_llj) + 0(h?) (3.2.2)
la,,zw,)n - a2 ”“-’n v Olhz\ = 1 Alwn ) 4 C(hz\
‘az?’1,5 °4 ‘Ui, 5’ R h? ©"ij
=L wn + Wt - 2w L) + 0(h?) (3.2.3)
h? i+l,7 i-1,j i,3 .
. ,
-a-w- = 2 = -];.... A 2
(361,35 = 25 (Wiy) + 00K) = 3¢ A/ + 0(k?)
- 1 n - 2
= 3% W3 54 w{l"j_l) + 0(k?) (3.2.4)
QT _pa WP+ ok = & ATl + 0k
56771, 7 5 "ij kT 2315
_ 1 n - n 2
= W g0t w’i"j_l 20) 5) o+ 0(k?) (3.2.5)

where 0(h?), terms of order h?, refers to the additional

terms with factors h2?, h®, etc. The derivatives are said to
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AXIS QF SYMMETRY (DOWNSTREAM)

i = i=IN1
e::'ll'.l; ! j=JN1
h
e -
) JLf j+1
k 1(13)
J
SPHERE f OUTER
j-1
SURFACE BOUNDARY
e i=1 i i+l
z
@ =0 > Jj=1
z=0 Z=Z o

AXIS OF SYMMETRY (UPSTREAM)

FIGURE 3.2.1 RECTANGULAR GRID COVERING THE FLOW REGION

Wi, 541
i
TIME-LEVEL n+l M1, 5 .
i’lrj= ' i+llj
X
Wi, 5+1 > Wi,9-1
W, .
W . 1] . W, .
1-1,7 -+ Wi41,5 TIME-LEVEL n

Wirj—l

FIGURE 3.2.2 FIVE-POINT COMPUTATIONAL MOLECULE
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be approximated at the node (i,j) and at the n time-step.
Each deriﬁative approximation is of second order accuracy
and is derived using a Taylor's series expansion-of the
function about the node (i,j) i.e. central differencing

is used.

Using the above notations, the second order central
difference and first order forward difference schemes for

the time derivative can be written as follows:

AT W)+ o(ae)
i, n ij
1 +1 _ .n-1
= 3AE (W?,j ngj ) + 0(At?) (3.2.6)
ALY w0
at’i,] n' ij
=55 T oWl oy : (3.2.7)

The error which arises because of the difference
between the original partial differential equations and
their finite-difference forms is known as truncation error.
For example, relation (3.2.2) has a truncation error of

order h? and is interpreted as follows:

n
. W .
Limit (&, = 5. (W% .) (3.2.8)
h-+0 92 1,3 i*i,] . )
Limit O(h%)= O , (3.2.9)
h-0

Thus the consistency condition is assumed to be satisfied by
each derivative. Therefore, the finite-difference equations
derived with the above approximation are assumed to be

consistent with the differential equations.
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3.2.1 PFirst Upwind Difference Representation of Partial

Derivatives of the Convective Terms

The geometrical interpretation of the first partial
derivative is that it is the slope, in the direction of the
derivg?ive of the tangent plane to the surface. Consider
figure 3.2.3. It is required to approximate the slope of
tangent XX at the point Zi,j(point C on figure 3.2.3). 1If
a central difference Taylor's series approximation is used
the slope of the line XX is approximated by that of line
AB. The slope of AB is calculated by taking an arithmetic

mean of the slopes of lines AC and CB, that is:

n
W ~ -1 (R - B e - JUE ST S
(21,9 = 70 i, 3o, 9075 Wiar, 5798, Y2 W3, 57951, 5
1 (3.2.10)

W
Ww. i S - —\A = slope AB = 1 slope CB + 1 slope AC
.L"'l'_j e = 2 1 2
W, .
i,3

Wi+1,5
 od
Z
fi-1,5 1,3 Pinngg

FIGURE 3.,2.3 GRADIENT APPROXIMATION
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In general, a finite-difference formulation of a flow
equation will possess 'the transportive property', as stated
by Roache (1972), "if the effect of a perturbation in a
transport property is advected only in the direction of
velocity”". Roache then concluded that "the fact is that
the most frequently used methods do not possess this property.
All methods which uée centered-space derivatives for the
advection (convectiop) terms do not possess this property.
The emphasis is on the word'advected'. A physical pertur-
bation in vorticity will spread in all directions due to
diffusion. But it should be carried along only in the
direction of the velocity". A lack of the transportive
property in a finité—difference representation of a flow
equation, may lead to unconditional instability when explicit
teéhniques are used and may cause a poor rate of convergence

when implicit techniques are used.

A better and more general approximation would be to use
a more flexible representation which adjusts itself to the
direction of the velocity. A differencing method which
possesses the transportive property and which achieves stab-
ility of the convective terms involves the use of one-sided
rather than central differences. Using such a scheme,

equation (3.2.10) can be rewritten as follows:

(1-0,)

) + —F (W

n 19}

In n
141,37 "1, 3 ’

. .= W .
1'3 i_l’J
(3.2.11)

where mz is a weighting factor. For wz = 0.5, equation

(3.2.11) will become identical to equation (3.2.10)
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The most logical choice of the weighting factor for a
particular node\would be the 'upstream difference scheme’'.
In this scheme the terms in which the velocity components
apprear as coefficients, the convective terms, are approx-
imated by backward differences if the velocity coefficients
are positive. Forward differences, therefore, are used when
the velocity coefficients are less than zero. Hence, if
the flow direction at point C on figure 3.2.3, is from A
to C, then the gradient at point C may be approximated by
that of the line AC by setting the weighting factor equal to
zero. However, if the flow at C is from B to C, then
gradient at C may be approximated by that of the line BC by

setting the weighting factor equal to one.

Thus, the one-sided difference is always on the 'upwind'
or 'upstream' side of the point at which the first derivative
is approximated. It is in this way that upwind differences

are used in the present work.

This method has often been used in the past under various

names and with different rationales. Meteorologists have

long known the stabilizing effect of 'upwind' differencing
and have applied it to incompressible and to Boussinesqg
problems (Lilly 1965: Forsythe and Wasow 1960). Rafique
(1971), and Hatim (1975) have referred to it as the

'upstream biased scheme' and they used it at high Reynolds
numbers. Forsythe and Wasow (1960) refer to the method as

'difference equations with positive coefficients'.

The variable coefficients, (-~ g%? and (%%), of the
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convective terms of the vorticity transport equation,
equation (2.5.5) and of the energy equation, equation
(2.5.8) are connected in direction and magnitude to the
.velocity components, u, and uo, by equations (2.5.3) and

(2.5.%&, respectively.

The upwind difference form of a first order derivative
with respect to @, using the weighting factor Wg can be
represented as:

w

W e i} (1-wg) _
( )i j— k (w?lj"'l WI;'J) + _—?Qh (W i,J W?,j"'l) (3.2.12)

In the remaining part of this chapter the following
expressions will be used to express the original partial
differential equations in their corresponding finite-

diffcrence

n
ﬂ = 2 :Ll__. A 2
(320, ;7% (Wiy ) + 0(h?) = 50 &, (Wi,) + 0(h?)
4
_}_ 2
= 5% W2+1,3 to1,3) * 0(®) (3.2.13)
EWT ) b oom?) = 8% (wn ) + 0(h?)
9z 1,3 i 713 h2
y ]
_ 1 ,.n n ol 2 '
= b7 (Wi, 5 * Wiy 47205 L) + 0(h®) (3.2.14)

and similarly,

W, n 1
(59)5,5 = 24 Wyy) + 0(k*) = 5¢ 4y (w’i‘j) + 0(k?)
= 3% (] - W L_.) + 0(k?) (3.2.15)

2k i,35+1 i,5-1
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(a_e")m =22 (WE;) + 0(k?) = {7 43 (WG + 00k)
= o (erl,3+1 1, 4-1 2wf.:’j) + 0 (k?) (3.2.16)
(-g—v—,g):'%j =3 (w‘l‘jl/") ro@er) = 2 w“+1/4) + 0(At?)
/%_ w‘ll - w‘;’j) + 0(at?) (3.2.17)

and finally, the first order partial derivatives in

convective terms are approximated as follows:

w
_ Z,n

W - _ i (1-w,)
(3.2.18)
n ® (1-w_)
w8 - & - W
(3.2.19)

3.3 FINITE DIFFERENCE REPRESENTATION OF THE EQUATIONS

3.3.1 Discussion of Available Methods

In chapter 2 the form in which the vorticity transport,

energy and stream function equations are to be solved was

derived. These equations are rewritten below as follows:

vorticity transport equation:

22ge o 1w [0 o oo d]- 2416 - o)

at ezsin.G 3z 50| 52

2z
e

Ei (G) + e22 Gr[sin@cos@%% + sin‘@%%] (3.3.1)
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energy equation:

2z T Pr Yy 3T 3 T
Pr e B P 3 YN J-A LR 4. gL
ot eZsine 3z a® W 3z
®¥T , 9T ®T 3T
= + — + — + — .
327 52 567 cot® 36 (3.3.2)

stream function equation:

2 2 .
ag_awﬂuaw__ W _ 2z
2z nz e cot® v e” "G (3.3.3)

where G = ezsin® ’

and

2z_, _ 98 _ 38 ;3* 3
e By T 927 T 3z T e T C%F°® e

The finite-difference approximation or discretization

of equations (3.3.1) to (3.3.3) can formally be expressed

as follows:

voriicity transport equation:

22, n n n .
e 128 4+ 1 (@Y% (28 _ 2 cotec” .
ot i Z, LAY 3 PYC) i J i,
rJ e sineﬁ riL rJ
- (Y " 3G " - 2¢h
(ae) (32) Gi 3
i,3 i,3 i
2 N n 2 N n
= & @S+ &P - cote, (25
X i,3 i,] i,] i,3
22, n n
+e T or sing_.cose. (32) + sin?eg. (32) (3.3.4)
J J e, - J 9z . -
i,] 1,3
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energy equation:

2z, n n n
pre TG0 o+ B |2 &5
1ed e isina. 1] 1.1
.. n n
- ¢y &
i, i,3]
_ pap D R p2T 1 3T,
= Gzz)  F (g;)‘ ot (g@r). ot 00?9 j(iﬁ). ‘ (3.3.5)
i,] 1,] i,] 1,37
stream function equation:
2, D n 2, N n
Y Y
¥ - QY. L+ ALY - cote. @Y
9z 1,3 dz°1i,j 06 1,3 £ aei:]
n zzi
= Gl » * -
i, ¢ ‘ (3.3.6)

The discretization process is carried out at a typical
node i,j in the mesh covering the domain of intergration at
the n-th time-step. Time does not appear explicitly in
equation (3.3.6) so that the computational procedure to be
used must solve equations (3.3.4) and (3.3.5) first in

1 1

order to obtain values of G?+j and T2+j. Equation (3.3.6)
’

r

is then solved as a Poisson's equation to obtain values of

¢Q+;. Since the values oflb?+; are also required in equations
!

(3.3.4) and (3.3.5), the entire step must be repeated until

all the three equations are satisfied simulataneously.

Assuming that a suitable mesh is chosen, i.e. h and k
are sufficiently small, then the truncation error terms
are negligible. Then simple second order explicit finite-
difference representations for the equations (3.3.1[ and

(3.3.2) can be written as follows:
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2z,
i n 1 ’ n n n
e an(Gij) + N ai(wij)[aj(Gij) 2cot®j Gij:,
e sin®,
J
n n n
a3 (*sij) 3 (Gij) + 9 (Gij) cot®j 3 (Gij)

2z,
i . n . n
+ e Gri{sin®.cos®. 3. (T,..) + sin?#©. T, . 3.3.7
l:l 3 333(13) i Jai( 13):] ( )

and
2zi~ n Pr n n
Pr e ian(Tij) + z, ai(uvij) aj(Tij)
‘e sin®, .
J
n n
- s . T, .
aj(wlj) ai ( 13)]
_ n n 2 el n '
%_(Tij) + ai (Tij) + aj(Tij) + cot@j aj(Tij) (3.3.8)

Richtmyer (1967) states that the use of second order
time-centered explicit schemes for the representation of
diffusion terms (second order linear terms), is uncondition-
ally unstable. Hence, the addition of non-linear terms,
for example the convective terms can only make matters
worse. Thus the finite-difference approximations represented
by equations (3.3.7) and (3.3.8) can not be used. However,
explicit schemes with forward time differences and centered
space differences are conditionally stable. By the use of
such a first order explicit scheme to the vorticity transport

and energy equations the following equations are obtained:



vorticity transport ‘equation:

ezzia @ty o 1 b wmlyla (6RL) - 2cote. 6P
h (G5 z 1 Wiyt 3y (Gyy 5 Cij

e lsin@.
]

n n,.n n

= a2 (D _ n 2 ;A0 _
ai(Gij) ai(Gij) + aj(Gij) cot@j aj (Gij

oy

2z, ' '
1 n ' n -
+ in®. .9, (T0L) + 2g . .3.
e Gr [s n@J cos@J aj( lj) sin ejai(Tij{} (3.3.9)

energy equation:

Zz -' .
i n+ % ' Pr n n
Pre Ta (T ) 4+ Lai(wij)aj (T34

e Lsinej

n n
- aj (wij) Bi(Tij;l

2 ¢l n 2 (D n
Bi(Tij) + ai(Tij) + aj(Tij) + cotejaj(Tij) (3.3.10)

Dufort and Frankel (1953) suggested a stable second
order explicit scheme. The second partial derivatives were
approxiamted in the following manner, (for a general

function W) :

: 1 n n+l n-1
2 (W, = 92 (Wol) + o |2WD . = (W2 + Wi s 3.3.11
i ( lj)DF 1( 13) h? [ i, ( i,3 i,jﬁ (3.3 )
and
32 (W)

= a2 n 1 n _ +1 -1
o R s R 23 (Wi.) + =3 {2Wi,j (Wril’j + W?,j) (3.3.12)
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Therefore, by the use of Dufort and Frankel's scheme,

equation (3.3.2) can be written as follows:

zzi n Pr n n
Pr e @n(Tij) + —EI————_ ai(wij) aj(Tij)
e “siné.
J
: n n
- aj (wij) 3i(Tij)]
= o2 (ph n w2 ik n
ai(Tij)DF +ai(Tij) +aj('1'ij)DF + cotejaj(Tij) (3.3.13)

The application of Dufort and Frankel's scheme to the
by
vorticity transport equation results in an equation of the
same form as egquation (3.3.7) except that the second order
partial derivatives are expressed by equations (3.3.11)
and (3.3.12),
i and SQ(G?.)
J pF 3 1J pr

In the absence of non-linear convective terms, the

Dufort and Frankel scheme is unconditionally stable.

However, in practice, in order to obtain sufficient accuracy,

a restriction on the time-step, At, has to be imposed.

" The use of Dufort and Frankel's scheme requires more
computer storage than the conditionally stable simple
explicit scheme. The choice between the two schemes is
usually made from an assessment of computer time and storage

requirements (Rafique 1971) .

An implicit scheme requiring the same storage as Dufort
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and Frankel explicit scheme is better both for accuracy and
numerical stability. A general iterative implicit scheme
for solving the vorticity transport and energy equations can

be written as follows:

. vorticity transport equation:

ezzia @t %y oL Vs [ 6RL) - 2cote.c?
n i i'7ig [ J ij j i3

ij zi 3j
e sin@j

1 n n
- () [ai(Gij) -2 Gij]

) - 3. (G + 2 (G".) - cote.s, (G".
) =y (61 + & (6] 53y (65

2z, [ —_—
i n n
in®, .9 . ..) + sin?@,. . .3.
+ e G4%1n jcos®]3:l (le) sin 5 ai(leﬂ (3.3.14)

energy equation:

22i n+ %
Pr e Bn(Tij ) + — Si (wij aj 13

) n n
- o Wi oy (Tijﬂ

= 2 (TP.) + 3, (T.) + 92 (TR.) + cot®.d. (T .
i i Tij j'Tij 33 ‘i3

i3 ) (3.3.15)

where, in general, ai(w?j) = agéw?;1)+(1-a)ai(wﬁj), where

a is a weighting factor. All the terms in the above

equations are expressed in a similar manner. Equations (3.3.14)
and (3.3.15) can be solved by successive over or under-
relaxation and, wherever required, the most up to date values

of the stream function can be used. Values of the stream
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function are obtained by successive over-relaxation sweeps
of the stream function equation. The most common value of
the weighting factor, a, used is one-half and the scheme is

normally called the Crank-Nicolson scheme.

I%plicit schemes, especially when applied to the
vorticity transport and energy equations for the case of
free convective heat transfer from a solid sphere, lead to
large sets of non-linear simultaneous equations. This is
the real disadvantage of implicit schemes since the solution
of large sets of non-linear simultaneous equations is both
difficult and time consuming. For these reasons the original
alternating direction implicit method, ADI, proposed by

Peaceman and Rachford (1955) was adopted.

The alternating direction implicit methods were intro-
duced in companion papers by Peaceman and Rachford (1955)
and Douglas (1955). Also known as the method of variable
direction, this method makes use of a splitting of the time-
step to obtain a multi-dimensional implicit method. The
advantage of this approach over the fully implicit methods
is that each resulting algebraic equation, although implicit,
is only tridiagonal. Therefore, this method requires only
the solution of a tridiagonal system such as occurs when
the usual implicit methods are applied to one dimensional

problems.

This method is unconditionally stable for the linear

diffusion equation, as are fully implicit methods. However,
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no stability analysis has been made for non-linear partial
differential equations such as the vorticity transport and

energy equations.

Roache (1972), has given a survey of the early applic-
ations of ADI methods to fluid dynamics problems. ADI
methods are currently the most popular methods used for vis-
cous problems. In addition to the works surveyed by Roache,
Son and Hanratty (1969) used Peaceman and Rachford's
alternating direction implicit method to obtain the solution
for flow around a circular cylinder. Rafique (1971) used
Peaceman and Rachfords alternating direction implicit method
to obtain the solution for flow around a solid sphere.

Hatim (1975) used Peaceman and Rachford's alternating direc-
tion implicit method to obtain the solution of heat transfer
from a s0lid sphere accelerating I[rom resti. The solutions
obtained by Son and Hanratty, by Rafique, and by Hatim
indicate the suitability of Peaceman and Rachford's
alternating direction implicit method for solving the vor-
ticity transport and energy equations. For these reasons,
the alternating direction implicit method proposed by
Peaceman and Rachford (1955) is used in this work to solve

the vorticity transport and energy equations.

3.3.2 Peaceman and Rachford's Alternating Direction Implicit

Method.

If a general implicit method of solving equations

(3.3.14) and (3.3.15) were to be used, all the derivatives
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in the equations would require values of the modified
vorticity, G, and temperature, T, at the n+l time-level.

As these values are unknown it would be necessary to solve
iteratively large numbers of non-linear algebraic equations.
However, if the derivatives in one of the directions were

to beiépproximated at the n+ % time-level, while the
derivatives in other direction were to be approximated at
the n-th time-level, the sets of simultaneous equations in
terms of the known values at the n-th time-level and the
unknown values at the n+ % time-level could be solved
easily by an elimination method. If the procedure were

to be repeated for the next half time-step such that the
derivatives previously approximated at the n-th time-level
were now approximated at the n+l time-level and the other
derivatives were approximated at the n+'% time level using
the values obtained previously, the temperature and vorticity
values could be obtained at the n+l time-level. This is the

method used in the present work.

In most cases the choice of derivatives which are
approximated at the n+ % time-level is unimportant. This
is not the case in the present problem because a significant
amount of computing time can be saved by making the correct
choice of the derivatives which are to be approximated at

the nt ¥ time-level.

In section 2.6 it is stated that the sphere surface
boundary condition for the vorticity is a funciton of time

and must be approximated. However, the vorticity at the
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axis of symmetry is constant and known; thus if the deriv-
atives which involve the constant boundary conditions are
approximated at the n+% time-level, then iterations are
only performed over the last half time-step. This means
that in the vorticity fransport equation the derivatives
with ;Espect to angle, ©, must be approximated at the

n+% time-level.

In the case of the eﬁergy equation, since the temper-
ature at the axis of symmetry is a function of time and is
constant at the sphere surface, a reverse procedure appears
to be reasonable. That is, the temperature should be
updated from the n-th time-level to the n+% time-level in
the j-direction and then be updated from the n+% time-
level to the n+l time-level in the i-direction. This means
that in the energy equation, the derivatives with respect to
z, radial direction, must be approximated at the n+% time-

level.

However, numerical experiments revealed that for the
present problem, a compatiable procedure for solving the
vorticity transport and energy equations not only decreases
the total time of computation but also increases the

accuracy of the results.

Therefore, in the present work, in both the vorticity
transport and energy equations, the derivatives with respect
to angle are approximated at the first half time-step and

the derivatives with respect to z, radial direction, are
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approximated at the n+l time~step.

3.3.3 Finite-Difference Representation of the Vorticity

Transport Equation

The vorticity transport equation, equation (3.3.1),
when written in finite-difference form for the time-step

n to n+'% . in the ©-direction, is as follows:

2z
i n+l/4 1 n n+ % e ot %
e N (Gij ) + z; ai(¢1j4} (G 15 )=2cot JG i3
e “sin®.
]
n n n
L ha n - n 2 n+ % - n+ %
= ai (Gij) ai(Gij) + Bj (Gij ) cot@JB (G 13 )
221 n n 1
+ e sin*@, Gr [cot®, 8, (T,/.) +39 (T,.) (3.3.16)
J L J 3 - - 1JJ

For time-step n+ % +to n+l, the finite-difference form of

the vorticity transport equation, in the z-direction, is as

follows:

2Zi8 (Gn+ % ) + 1 ] (¢n+ % | 5 (Gn+ % ) -2c0t® gt 5
€ n'Yij z, i'%iy 3'°15 3715

e “sin®
n+ % n+1
dyluy T 350655 2G13J}

=32 (Gn+l) - 3,(G n+1) + 32 (G %) - cote,? (c;’th %

1 ij 1 ij J 1]

2z
i n+ % n+ %
+ 2 G ot @, 3 T + 9, (T, . 3.3.17
e sin ®J r[c » ( i3 ) 4 15 )] ( )



Equation (3.3.16) can be expressed more clearly in the

following manner:

2z,

n

2e Y nex 3 Wy n+ i n+ &
= . . + 9,

—E Gij —--—-l——zi (G] i3 ) =2 °°t®3G13
e sinaj

.
-3¢ (GPT% ) 4 cote.s. (gt 3

3 (615 385 Gy5 7 )

z,

i 3. (Y
- 2e Gt. + _l___l_.E (G ) - ZG?éI

At ij
e sin@J

2z
+32 (g, b ) n n
+ i(Gi )= (Glj) + e sin @JGr[;ot@jaj(Tij) +ai(Tij)

(3.3.18)

similarly, equation (3.3.17) becomes:

ig J

)

2z, n+ %
gg__i_ G_n-kl_[')jm"ij ) N (Gn+1
At ij zg ij
e “sin® .,
J
n+1 n+l

82 G
( ij

)+ 3,6 LT)

2z,

+ 1
9 (¢n )
_2e Y n+y ' n+% ., _ n+ %
= AT Gij —ET——_~"— aj(Gij ) 2 cot@JGlj

n+ %
+32 (G. . - t0.35. (G,
3 ( i ) co Jaj ( i3

2z,
+e 1 SlnCB Gr[;otEJa (Tn;'% ) (Tn+'% )1 (3.3.19)

Equation (3.3.18) can be expanded into sets of simul-

taneous equations of the following form:
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n+ % n+ % n+ lz— i n
C. .P, . + C,.P, . + P = p¥ 3.
1j7i,3-1 2374,3 3374, §+1 DJ (3.3.20)
where
n n n n n
" o= . . + . i . .. .3.
Dj cli Pl_ll] C21Pl,:] + c3ipl+l,3 + C4lj (3.3.21)

for i=2,3. . . . , in and j=2,3 . , . . ,jn, where in + 1
and jn + 1 are the total numbers of grid lines in the z and
® directions, respectively, and P is a general working

variable substituted in place of the values of G.

Similarly, equation (3.3.19)§Ean be expanded into

sets of simultaneous equations of the form:

' n+l ' _n+l ' n+1 _ n+ %
Cys PIt3,5 * CpuPT 5 * Cyy PILr 4 = D) (3.3.22)
wheare

n+% _ ! n+ % ' n+% ' _n+k n+ %
Dy = C13 Fi,5-1 T C23%1,5 * C33Pi,941 T Caiy (3.3.22)

As described before, since it does not appear to be
possible to find a single system of finite-difference
equations which possesses the transportive property over
the entire space-time region of interest, four separate
systems of equations corresponding to the signs of the two
variable coefficients of the convective terms, must be used.
This has been achieved by the use of weighting factors ©,
and w_in the first upwind differencing of the first order

C]

derivatives in the non-linear convective terms. According
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to the signs of the wvariable coefficients, backward or

forward difference equations would be used.

With the above remarks, the coefficients of equations
(3.3.20) to (3.3.23) for backward , forward and central
differences (in general w=0, w=1, and w=0.5, respectively)

may be expressed as follows:

= - - A -
€13 b4j KGy 4 i(wij) (1-0,) | (3.3.24)
c =1 v 2 __ ike A P)) (1-20 -2keot®.) (3.3.25)
23 Xy ak? ij ivij z 3 °
C3y = -b3j + KGlJAi(w o, (3.3.26)
—_— — n —-—
cli bZi KGij Aj (wij) (1 m@) (3.3.27)
C,. =2+ -2 _ 4+ xe..A (UP.)(1-20.~2h) (3.3.28)
2i X; ~ ah? 159 ‘Wij © e
C.. =bhb., + KG..A. (W) a. (3.3.29)
3i 1i ij37 3 "ij e
¢ _ n+ %
Ciy = bygy * KGlJAi(w ) (1-0_) (3.3.30)
' _ 1 2 _ nt+ % _ _
Cpy = X T @ KGiin (wij ) (1-20, 2kc9t®j) (3.3.31)
' _ n+ %
' _ n+-% _
C;; = -b,, + KG, JA (W ) (1-wg) (3.3.33)
! _ 1 2 n+ % e
Cpy =% *+ofr - KGlJAJ (W % ) (1-20g-2h) (3.3.34)
i 1]
! _ _ n+ %
Cy; = -by; - KG, JA (W] ) 0g (3.3.35)

and,in general:

= h AL (T,.) + kA, .. 3.3.36
C4ij KTij Gr cot@Jh J(le) k 4 (le) { )



110

In the calculation of the variable coefficients
(3.3.24) to (3.3.36), the most up to date values of the

relevant variables are used.

The other coefficients used in the finite-difference

equations derived so far are defined as:

=1 1 _ 1

by; =5 (r - 3p) (3.3.37)
=1 1 .1

by, =< (g7 * 37 (3.3.38)
1,1 1

b3j =3 ( kT 2k) (3.3.39)
=1 .1 .1

by =& Cgr + 33 (3.3.40)

2 2

a =H'2-+]-<—2- (3.3.41)
_ aAt :

Xi 5z (3.3.42)

2 e
KTij CR h31] h3iJ (3.3.43)
c
R
KG. . (3.3.44)
i3 hsyy
where
C. = —1 _ and h e 1sine
R Zahk 3ij j

It should be mentioned that the coefficients (3.3.37)

to (3.3.41) are constants at each grid point and need to

be computed only once.

It will be seen in section 3.3.4

and 3.3.5, that the coefficients (3.3.37) to (3.3.44) are

also used in finite-difference representation of the energy

and stream function eguations.
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3.3.4 Finite-Difference Representation of the Energy Equation

As mentioned earlier in chapter 2, both the vorticity
transport and the energy equations are partial differential
equations that are elliptic with respect to the space
variables and parabolic with respect to time. Therefore,
the same method of solution can be used for both equations.
Thus, Peaceman and Rachford's alternating direc£ion implicit

method is used to solve the energy equation.

The energy equation, equation (3.3.2), in finite-
difference form for the time-step n to n+% in the g-

direction can be written as:

2z,
i n+l/4 Pr n n+ %
Pr e an(Tij ) + z; ai(tbij) aj (Tij )
e “sin®;
J
- WP . (TR
dj\\Uij di ij)
=32 (TP.) +3 (T%.) +2(T°F. % ) + cote.s. (T°F3% 3.3.45
a?: ( 13) al( 13) 83( 15 ) coted 4 ( 15 ) )

and for time-step n + % +to n+ 1, in the z~direction, the
energy equation becomes:

2z,

i n+% Pr n+% n+ %
Pr e an(Tij ) + ————-Zi ai(wij ) aj(Tij )
e Tsin®
_ n+ % n+1l
3 (wlj ) al (Tij {]
n+l n+l n+ % n+ %
= 2 (7., 45 . (T, . +52 (T, . * + cot®.y . (T,. * 3.3.46
ﬁ.( ij ) al( i3 ) aj( 15 ) 3 J( 13 ) | )

Equation (3.3.45) can be expressed more clearly in the
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following manner:
2z,

2pre T n+ % +Pr 1(¢111 n+ % n+ % ot 3
s = P . 2 - .
At le zi ](le )=23 (T i3 ) COt@Jaj( ij )
e "sin®,
J
2z, 5, (U%))

2Pr e n n
'_Tiii—_'Tij + ———————1— 3 (1] S+ T +ai(f2j) (3.3.47)

e 51n®
J

Similarly, equation (3.3.46) becomes:

ZZi 5 (¢n+ ¥ ) )
2Pr e © ontl_ Prj 7ij n+l, o oDtly o oDl
=T TS5 2, B (T3 ) =85 (Ty57) =9 (Th50)
e “sin®.
J
2z. n+ %
3, (W, . )
T Tij N aj(Tij )+a (T, i3 )
e “sin®,
J
n+ %
+ te.0. (T.. 3.3.48
cotyay (Tyy ° ) (3. )

Equations (3.3.47) and (3.3.48) can be expanded into

sets of simultaneous equations of the following form:

Equation (3.3.47) becomes:

n+ % n+ % n+5% n
. . F..P, . + F_.P, . = R, 3.3.49
1J 1i,3-1 23 1,3 3j71,3+1 J ( )
where,
n= n n n
Ry Fy3Pion,g * FyiPi,5 * F3:Pi41,5 (3.3.50)

Equation (3.3.48) becomes:

' n+l ' Jn+l ' Lon+l n+%
, . A N + A . — . 3 .
Fli Pi—lIJ+F21Pl;] F3iPl+lrJ Rl (3-3-51)
where,
] ] ]

i 13 i,3-1 23°1,3 3374,3+1
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The variable P is a general working wvariable substituted

for the T values or G values as with previous part.

The coefficients of equations (3.3.49) to (3.3.52)
for the backward, forward, or central difference approxima-

tion may be expressed as follows:

= - - A @wh -
Flj b3j PrKGij iabij)(l © ) (3.3.53)
F,. = Pr,2_ . PrKG, A GD )(1 2w ) (3.3.54)
2j Xy ak? ij *o
Fy. = =b, .+ PrkG, .4, n 3.3.55
33 43 rKG; 54 (ks J ( )
= - A n - ‘ - -
Fyy = by ;7PrKG,, jabij)(l Wg) K (3.3.56)
F - Pr _ 2 + Pr¥g..A (wn ) (1-204) (3.3.57)
21 Xy ah? ij 3743 ) e
F,. = b,.+ PrkG,. A. (U".)w (3.3.58)
3i 2i ij "3'vij’ e U
- n*% -
Flj by + PrKG, JA (b, 2%) (1-w)) (3.3.59)
' _Pr_ _ 2 _ n+% - ‘
sz - X T PrKGij A (7)) (1-20,) (3.3.60)
' - n+%
F3j b4j PrKG, JA (5w, | (3.3.61)
L ; n+%
Fli = b1i+ PrKkG, JA (w (l-mz) (3.3.62)
' _ Pr 2 - n+%
F2i = -X“- + "---—ahz PrKGijAj (wlj ) (1"‘2(0®) (3.3.63)
F.. = -b. .- PIKG, jA, (¢n+2
31 = “boy i3 ) (3.3.64)

The other coefficients used in the above finite-

difference equations are the same as derived in section 3.3.3.
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3.3.5 Finite-Difference Representation of the Stream

Function Equation

In the. present work the stream function equation,-
equation (3.3.3), is solved at any time-step by successive
over-relaxation. It should be recalled that time does not

- appear explicitly in the stream function equation.

The finite-difference form of the stream function
equation is derived by first expressing equation (3.3.3)
for the n-th time-step as follows:

2z
2 (0 - n 2 (0 - no,_ i.n

(3.3.65)

By the use of the coefficients (3.3.37) to(3.3.41), equation

(3.3.65) is expanded as follows:

n n n n n PP ¢
Yi,5 = Pri¥ie,3*P2i%io1,5™P35%, 341 Pa gV, 517 S,

(3.3;66)

2z,
where e 1
- %_= 3 (3.3.67)
A relaxation factor, @y may be defined as follows:
WRAEFL T B, - T 3.3.68
i,3 wl,] w(wlj llJl’-::l) . ( )

where the contour r refers to the number of successive

point iterations performed at the n-th time-step, and
n,r+l1
Vi

step after r + 1 iterations. The stream function values,

is the value of the stream function at the n-th time~

tbn,r+l

1,4 r are resubstituted into equation (3.3.66) which is
!
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then resolved with equaiton (3.3.68) until there is no ‘
significant difference between the stream function values
wn,r+1 and w?'¥

i,3 i,j°

3.3.6 Solution of the Systems of Algebraic Equations

The séts of simultaneous equations (3.3.20), (3.3.22),
(3.3.49) and. (3.3.51) are solved by Thomas'smethod as presented
by Bruce et al (1953) and Lapidus (1962). As stated by
Bruce et al (1953) "while the method is equivalent to plain
Gaussian elimination, it avoids the erxrror growth associated
with the back solution of the elimination method, and also
minimizes the storage problem in machine computation”.

The method may be summarized as follows.

Consider a system of n simultaneous equations with the

following form:

Cy1Py * C31P =Dy
Clrpr-l + Cerr + C3rpr+1 = Dr r=2,3, ¢« « « « , n-1
¢y P *C, P = D_ (3.3.69)

In the présent work the coefficients C and D are known
scalar quantities which are dependent on time as defined
earlier in this section. In matrix notation, the set of

equations (3.3.69) can be written as:

CP=D (3.3.70)
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The matrix of coefficient C, is a tridiagonal matrix.

To solve equation (3.3.69), the variables, Pl' . . 'Pn-l are
eliminated from the first equation onward by putting,
W, = ¢
Wr = C2r - Cqur r=2,3, . . . ,D
c .
3r-1
Q1™ w— (3.3.71)
r-1 Wr-l }
and
X =P_]..'__
1 Wl
X, = "rCir’r r=2,3, . . ,n (3.3.72)
W
r

By substitution, equations (3.3.71) and (3.3.72) transform

the set of equations (3.3.69) to the following form:

P =X
n n

P =X

- e qur+1 r=1,2, . . . n-1 (3.3.73)

If the guantities W,g, and X are calculated in order
of increasing values of r, it follows that relation (3.3.73)
can be used to calculate the variable P in order of decreasing

r, that is P, P _., . . ., P,, P,.

3.4 FINITE~-DIFFERENCE REPRESENTATION OF THE BOUNDARY AND

INITIAL CONDITIONS

The boundary and initial conditions imposed on the system
for the case of free convective heat transfer from a solid

sphere are given in chapter 2. 1In this section the
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boundary and initial conditions derived in section 2.6 are

expressed in finite-difference form.

On consideration of figure 3.2.1 in which the index i
varies from 1 at the surface of the sphere to IN1 at the
outer boundary, and the index j varies from 1 at the upstream
axis of symmetry, = 0, to JN1 at the downstream axis of
symmetry, ® = m, then the boundary and initial conditions can

be expressed in finite~difference form as follows:

3.4.1 Boundary Conditions

(a) Time-independent boundary conditions:

(i) Sphere surface:

The time-independent boundary conditions at the sphere
surface are expressed by equations (2.6.1) and (2.6.3).
The finite~difference forms of these conditions may be

expressed as follows:
At z=0 (i=1):

wl o N
i=1,5

Q
N
<

=1 (3.4.1)

2

i=1,j3
(ii) Axis of symmetry:

The time-independent boundary conditions at the axis
of symmetry,® = 0 and €= m, are expressed by equations

(2.6.4), (2.6.7), and (2.6.9) . The finite-difference




118

forms of these conditions may be written as follows:

At 6= 0 (j=1):

2
v =0 p] 'g'l'zb =0, gz;b =0 ’
i,35=1 i,3=1 i,3=1
2 =0; ¢ =0 ; G, =0 (3.4.2)
i,3=1 i,j=1 i,3=1
At® =n (j=JN1):
2
u)l =0 } -g._lzy = ( ; %.z_i = 0
i,j=IN1 i,3=JN1 i,§=JN1
%—%’I =0, ¢ =0y G' =0 (3.4.3)
i,j=JN1 i,3=JN1 i,j=JN1

(iii) Outer boundary:

The time-independent boundary conditions at the outer
boundary for the dependent variables,y ,T and T, are expressed
by equations (2.6.11). The finite-difference forms of these

conditions are as follows:
For z = z, (i=IN1):

v =0,¢ ; ;
i=IN1,3 i=IN1,j i=IN1,3j i=IN1,j

i
[=
G
il
o
H
il
o

(b) Time-dependent boundary conditions:

(i) Sphere surface:

The modified vorticity, G, at the sphere surface is

given by equation (2.6.2) which is:

R |
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_ 3%y

(GZZG) =24

(3.4.5)

Q

S S

Equation (3.4.5) in finite-difference form is as follows:

G" - @yt '
i=1,3 3z2'i=1,]3 (3.4.6)
where
n = n '
€i=1,5 = Ci=1,5 Sin@y

The surface vorticity is computed using a Taylor's
series expansion of the stream function in the vicinity of
the surface. For example; the values of the stream function
at points (i=2,j,n), (i=3,j,n,) and (i=4,j,n) are:

4 .4

n g0 a_ h? 3% h® 3% _ h- cioolgm

Yizo, 3 *VYiz1,5 Y P9z taram TIToam taraatt v
(3.4.7) °

wn =¢n +’2h..~a. + (2h)?* 237 + {2h)? 33 + (Zh)4 34+... n

1=3,5 “Yi=1,] Y 21 3z° 31 3z 4T g v

(3.4.8)
4 .4

n _n 3 (3h)2 32 . (3h)? 3 3m* * | on

Vicg,3 “Vi=1,5 T35z Y o 522t 3T 3z T 4T 3zt }‘“

(3.4.9)

All the derivatives in equations (3.4.7) to (3.4.9) are
calculated at the surface, i=1. But from the boundary
oy

conditions given by equation (3.4.1) both ¢and Tz are zero

at the surface.

If third and higher order derivatives are neglected,
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2¢gn -2 .n
(327)i=1,5 = 77 Y25
or
G" =2 40 (3.4.10)
i=1,5 - B2 Y2,5 4.

If third order derivatives are retained, then the following

relationship is obtained from equations (3.4.7) and (3.4.8):

32¢,n _ 1 n _an
(3z7)i=1,5 = A7 ®¥i_p,5 "¥i-3,5)
or
ch = Doy (3.4.11)

I
i=1, = 707 ®Viop,5 "Yi-3,;

When the third and the fourth order derivatives are retained,

equations (3.4.7) to (3.4.9) give the following expression:

3%y, n _ 1 n _ n n
(3270 i=1,5 = Tenz (108U 5 4 = 275 5 + 4454 J)
ox
n S § n 3,n 2.n
Gi:"l'j - h2 (6¢.=2,j -2‘¢l=3'j + §‘¢i=4’]) (3-4,12)

The first approximation (3.4.10) is the simplest but the
least accurate. More accurate are the approximations (3.4.11)
and (3.4.12). Al-Taha (1969) used approximation (3.4.11).
Rafique (1971) used approximations (3.4.11) and (3.4.12).

He found that for any Reynoldsnumber the differences between
the final values of the surface vorticity using approximations

(3.4.11) and (3.4.12), were very small. For example at a



Reynolds number of 500, the difference was only about 5%.
Therefore, it is advantageous in terms of computing time,

to use the approximation (3.4.11).
(1i) Axis of symmetry:
Along the axis of symmetry:

-g-?- =0 (3.4.13)

e=0,n
The temperature along the axis of symmetry can then be computed
using a Taylor's series expansion of the témperature in the
angular direction, ©, in the vicinity of the axis of symmetry.
The procedure is the same as that used to approximate the

surface vorticity.

Along the axis of symmetry =0, a forward difference
scheme is used, while along the axis of symmetry ©=n , a
backward difference scheﬁe is used. The reason for using the
different schemes can be explained with the help of figure

3.4.1 as follows:

For example, consider the temperature T4’lat grid
point (4,1) along the axis of symmetry @=0. The temperature
T4,1 at grid point (4,1) has to be approximated in terms of
the temperatures at grid points (4,2), (4,3), . . . . (4,m):

where m is the degree of the polynomial. Therefore:

n

n n noy
4,1 :

T 4'2 7 T4'3 r - - - r

= F (T

In order to do this a forward diffefence scheme has to be used.
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However, the temperature T at grid point (4,JN1)

4,JN1
along the axis of symmetry ©=n , has to be approximated in
terms of the temperatures at grid points (4,JN1-1), (4,JIN1-2),
.+ « . (4,IJN1-m'), where (m'+l) is the degree of the polynom-

ial. Therefore:

_ n n n
T4,JN1 - F('1'4,.31\11--1' T4,JN1-2' ° o 'T4,JNl—m’)

Hence along the axis of symmetry ©=n , a backward

differeqce scheme must be used.

§=JN1

§=JN1-1

§=JN1-2

j=JN1-3

SPHERE

SURFACE

i=1 i=2 i=3 i=4 i=5 ©=0
i ——m—
FIGURE 3.4.1 MESH STRUCTURE AROUND THE SPHERE
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The temperature along the axis of symmetry =0, may
be approximated as follows:

retaining third order derivatives:

n _ 1 n _ mh
Ti,j=1 = 3 (Ti,j=2 Ti,j=3) (3.4.14)
L.
retaining fourth order derivatives:
n _ 1 n - omh n
Tig=1 711 8Ty jop = 9Ty 43 * 2T 50 (3.4.15)

retaining fifth order derivatives:

n -1 n - n n _ n
Ti,j=1 = 3% (48Ti,j=2 36Ti,j=3 + 16Ti,j=4 3Ti,j=5)
(3.4.16)

Along the axis of symmetry ©=n , the temperature may

be approximated as follows:

retaining third order derivates:

n 1

n n )
TS jeomy =3 (T T ) (3.4.17)

i,j=JN1l-1 i,j=JN1-2
retaining fourth order derivatives:
n

n 1l n

— n -
Ti,g=am1 = 1T 8Ty, 4=gmi-1 = %7y, g=gwi-2 * 2T, 5=gn1-3)
(3.4.18)
retaining fifth order derivatives:
n -1 n _ n n _am
i,5=an1" 25 48Ty gn1-130T5 5ogm1-2710Ty, 5=gm1-373T4, 5=gn1-4)

(3.4.19)
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However, computational experiments showed that the
final values of the late-time steady state average Nusselt
numbers were only weakly dependent on the order of the
approximations used for temperatures along the axis of
symmetry, so that in all cases the use of equation (3.4.15)
and (3.4.18) was considered to be satisfactory, both from a

computational and an accuracy point of view.

3.4.2 1Initial Conditions

The initial condition used for free convective heat
transfer from a solid sphere, is exﬁ%essed by equations
(2.6.12) and (2.6.17) in Chapter 2. The finite-difference
forms of equations (2.6J12) and (2.6.17) may be expressed as

follows:

At t=0 (n=0)

O (o] le)
> _0;7°.=0;6°, =0 3.4.20
wllj / Clr] / 1,3 ( )
2.
i=IN1l -2,
T;"j = EG— e - (— 1 ) (3.4.21)
JCi=INL_ Ji=INL

for all values of j.

Equations (3.3.20), (3.3.22), (3.3.49), (3.3.51),

(3.3.66) and (3.3.68) together with the associated coefficients,
| boundary and initial conditions, are the set of finite-
difference equations that are solved by the computer programme

given in appendix F.
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3.5 STABILITY AND CONVERGENCE

If W(z,0,t) is the exact solution of the initial wvalue

n

problem as described in chapter 2, andvvi is the solution

’

of the finite-difference equations derived in section 3.3,

then the error of approximation € is given by:
i,
n X .
ewn .= wi,j - w((i-1)h, (3-1)k, nAt) (3.5.1)
i,J

Now one may ask two questions (Richtmyer 1957):

1. What is the behaviour of € as n » « for
i,3
fixed values of the mesh sizes, h,k and the time.step At?

2. What is the behaviour ofe as h,k and At » 0 for |

W,

i,]
a fixed value of time?

The first gquestion is one of numerical stability and,
in general, the numerical method is considered to be stable

if € remains bounded. The second question is one of
i,3
convergence and the method is said to be convergent ife
i,

tends to zero.

The only convergence theorem that exists for partial
differentail equations is for linear equations with constant
coefficients; Lax's equivalence theorem which, as stated
by Richtmyer (1957), says that a stable computation of the
differential problem will yield results which converge to the

solution of the consistent differential equation .
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Richtmyer gives the development of the theory for a class
of linear equations with constant coefficients, but points
out that the theory is inadequate for complicated problems

such as that studied in the present work.

Stability is a necessary condition for the solution
of the difference problem to converge to the solution of the
differential problem. Convergence is essential for the
results to be meaningful in that the fundamental idea of an
approximation is that the error can be made as small as one
wishes. The importance of the concept of stability has
been explained by many authors. As a general rule, a
stability criterion involves a restriction on the time-step
in terms of space increments., h and k, and the parameters
of the system of equations. 1In the case of non-linear
problems the stability criterion may also involve the dependent

variable.

A useful method of stability analysis is ﬁased upon the
use of difference equations in which all the coefficients
are positive. 1In such cases the boundedness of the solution
can be tested directly on the positivity of coefficients
(Hellums 1960, Gosman 1969) and a sufficient condition for
stability can often be established by inspection. This

method may be described as follows.

By application of the upwind differencing technique
described in section 3.2.1, the explicit finite- difference
forms of the vorticity transport and energy equations can be

written in the following general form:
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wotl W W + n

1,5 = 2131, 5 a9, 5 233%5, 5a * 235,50
+ aSijW?,j+ dg'j (3.5.2)
For equation (3.5.2) to be convergent, the following
conditions must be satisfied:
(1) Each coefficient, a, must be positive
(2) The sum of.the coefficients, a, must be less than
or equal to unity at every grid node.
(3) The sum of the coefficients, a, must be less than
unity at least at one grid node, and
(4) The variation of the coefficiénts, a, and d, from

one cycle of iteration to another, must be sufficiently small.

As an example, the above conditionswill be considered

in relation to the energy equation.

The energy equation for a first order simple explicit
scheme is given by equation (3.3.10). By the application of
upwind differencing to the convective terms of equation (3.3.10)
this equation can be writtén in explicit finite-difference

form as follows:

n+l_ n n n n n
Ti,57 @1aTie1, 9% @21%1i-1, 5% 23571, 500 24574, 9-1 7 255574,
(3.5.3)
where:
ZXi n
ali = 57 (Pr KGijAj(wij) g+ bzi) (3.5.4)
2Xi n
azi = 5t (-Pr KGijAj (Lbl]) (l—wg) +bli) (3.5.5)
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azy = E-;i; (-Pr Kc;iin(w’i’j) ©,+ bys) (3.5.6)
2Xi n
a4j = 37 (Pr KGiin(wij) (l-mz) + b3j) (3.5.7)
2X,
agyy = 1+ “F% (-Pr KGiin(w?j)(1—2mz)+PrI<GijAj(w?j)(1-2m@)—1)
« (3.5.8)

The other coefficients used in the above finite-difference

equation are given by equations (3.3.37) to (3.3.44).

Now the difference equation for the case that both

velocity components u, and ug, are positive, that is

_ ayn aun
(- 3eli,5 >0 and Gy 5

velocity components are positive, the terms in which the

_ 3¢n ayyn
(= 36)1,5 34 G y,4

coefficients, the convective terms, are approximated by

>0, is considered. Since the

variable coefficients, , appear as

backward differnces as described in section 3.2.1, i.e.
) =wz = 0. Therefore, the coefficients of equation (3.5.3)

©
become as follows:

2)% .
ali+ = ﬁ— b21 (3.5.9)
2X,
= —2 (= n )
a21+ Br Pr KGijAj(wij) + bl (3.5.10)
ZXi
2X
a,. - i n _
2X,
= —x (- T ny-y)

where the subscript + indicates that both variable coefficients

(- 21 o (YD

367 1, 7 5271, 3 are positive.
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The conditions (1) to (4) described above are now
examined with reference to equation (3.5.3) whose coefficients

are given by equations (3.5.9) to (3.5.13).

(i) Since both variable coefficients, (- %%)2 j and
’

(%%)2 jr @s well as the coefficients (3.3.37) to (3.3.44)
14

given in section 3.3.3, are positive, therefore, all the

coefficients of equation (3.5.3) are positive provided aSijz'O'
. +
ors
2Xi N o
1+ 7 (-Pr RGy 4, (U54) + PrKG, A5 (Uy4) -1) >0 (3.5.14)

By substitution of Xi and KGij given by equations

(3.3.41) to (3.3.44), inequality (3.5.14) can be re-arranged

to give:
n n
Ly by Wy 5) 1, A00y) 1, _2 1,1,
N 2z, z, 2z z; 2z, 'h? k? ,
2ke Tsin®, he ' 2he “sin®, ke Pre * ‘
4 o

(3.5.15) |

The relationships between the velocity components and
the stream function are given by equations (2.5.3) and (2.5.4)

as follows: ) ‘

. | 3
z 22 20
e "sin®
A S 1
Ug =~ 25 92
e “sin®

The finite-difference approximations of relations (2.5.3)

and (2.5.4) can be expressed as:

AL WE)
(w, 5 = - =452 : (3.5.16)
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n Ai(wﬁ') . i
(8g)i5= ——gp— (3.5.17) 1
2he isin@j

By substitution of equations (3.5.16) and (3.5.17)
into inequality (3.5.15), the following restriction for the

time~-step, At, is obtained:

N n
(uz).. (ue).. 2 1 1
2 —1 r—1 55 (o2 + xe) (3.5.18)
+ he 1 ke 1 Pre 1T

(ii) It can be proved that the sum of the coefficients

a, is always equal to unity except on the outer boundary.

From relations (3.6.11) to (3.6.15) one can write:

2xi
= 1+ ———(bli+b

Er

1i 3j+

. +b,.+b,.-1)
+ + 1

43, © %513, 217035743

But from equations (3.3.37) to (3.3.41). it follows that:

bli + b21+ b3j + b4j = 1
therefore:
a,. +a,. 4+a,. +a,. +a... =1
1i, 21 33+ 4j+ 51]+

(iii) For the third condition, consider the outer

boundary where:

n _
TrNi,5 = ©

Thus, since the temperature values on the right hand side of
equation (3.5.3) are positive, then in order for the boundary

condition to be satisfied the coefficients must be equal to zero.
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(iv) PFinally, the condition (4) cannot be answered
clearly since there is no way of defining mathematically what
is meant by 'sufficiently small', instead, one must learn
from experience; and experience has shown that this condition

is usuall{ fulfilled.

It can be shown that the restriction (3.5.18) holds
irrespective of the sign of the velocity components, u, and
ue,(the variable coefficients, (- %%) and (%%)), if absolute
values are used in the inequality, and if the difference
equation (3.5.3) are changed according to the sign of the
varaible coefficients through weighting factors, wz and g,

‘as prescribed in section 3.2.1. Therefore, the restriction

on the time-step given by the inequality (3.5.18) can be

generalized for all values of variable coefficients as follows:

n | n |
(u_ ) . (v, ). .
s z “ij (L @715 2 ( l? + ly ) (3.5.19)
At Zi zi ZZi h k

Restriction (3.5.19) is the stability criterion for
the solution of the explicit finite-difference form ©Of the
energy equation. For Prandtl numbers, Pr, greater than
unity, Pr in equation (3.5.19) should be replaced by unity

(Hellums 1960) .

It is clear that by appropriate use of the weighting
factors, ©, and.m@as prescribed in section 3.2.1, condifions

(2), (3) and (4) are always satisfied.

In the most general problem the sign of the velocity
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components u, and Uy may be expected to vary in the space-

time grid. Hence for stability, different equations must be
used in different parts of the space-time grid depending on the
sign of the velocity components. This method of dealing with
such firsgdorder partial derivatives is due to Lelevier accor-

ding to Richtmyer and has been used for the convective terms

of the present work.

In the present complex case of the solution of the
equations which describe time-dependent free convective heat
transfer form a solid sphere, a method of direct analysis of
the stability of the vorticity transport equation does not
exist. However, since the energy equation and the vorticity
transport equation are interdependent, the time-step must

be chosen such that both equations are satisfied.

None of the stability analyses are adequate for practical
computational purposes. In fluid dynamics and heat transfer
problems, the stability restrictions must be applied locally
which is time consuming. In practice an unstable scheme of
calculation usually yields meaningless numbers which overflow
the accumulator of the computer after a relatively few time-
steps. Therefore, a precise stability criterion is not

essential.

For the study of non-linear equations, according to
Roache (1972), Hicks (1969) suggests that the problems of

stability criteria should be neglected and that attention should
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be directed to problems of convergence. Fundamentally, it
is required that the solution of the finite-difference
equation should approach the solution of the partial diff-
erential equation so that stability considerations are of
secondary interest. However, a great deal of numerical
experimeﬁ%étion is often necessary in order to obtain a

convergent solution.
3.6 COMPUTATIONAL PROCEDURE

|
|
The computational algorithm is based on the assumption 1
that the entire numerical f ields of the temperature, vorticity, ‘
and stream function are known at any given time, nAt, and
that it is required to determine the complete flow field at

the next time-step, that is time (n+1)At.

The primary function of the main computational procedure
for the first half time-step is to solve equation (3.3.49)
for the temperature values at time (n+%)At, to solve equation
(3.3.20) for the vorticity values at time (n+%)At, and to
solve equation (3.3.68) for the stream function values at
time (n+%)At. For the second half time-step the procedure is
to solve equation (3.3.51) for the temperature values at time
(n+1)At, to solve equation (3.3.22) for the vorticity values
at time (n+1)At, and to solve equation (3.3.68) for the stream
function values at time (n+1)At. The solution procedure,
starting from the initial condition, t=0 or n=0, will now be

described as follows:

(i) For a particular solution of the time-dependent
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equations for free convective heat transfer from a solid
sphere; the Grashof number, Gr; the Prandtl number, Pr;
the mesh sizes, h and k; The time-step,At; the radius of
the outer boundary, r, (z°° ); the relaxation factor and

convergence criterion for the stream function,w, ande the

) Y y!
M .
relaxation factor and convergence criterion for the surface

vorticity, W and €gi

criterion for the temperature along the axis of symmetry,

and the relaxation factor and convergence

w& andeT,

conditions are also specified.

are specified. The time-independent boundary

(ii) The initial values of the stream function and
vorticity are set to zero throughout the flow field, according
to equation (3.4.20). The initial value of temperature is

obtained from equation (3.4.21).

(iii) Having determined the initial stream function
values, the initial vorticity values, and the initial temp-
erature values throughout the flow field, the temperature
and vorticity values are updated by one-half of a time-step.

In general the temperature values T? . and the vorticity wvalues

r

GT . are updated from the n-th time-step to the (n+%) time-

step to give the values of T2+§ and G2+§ . The updating is

’ I 4
done by solving the set of simultaneous equations, equation
(3.3.49) to give the temperature values and the set of simult-
aneous equations, equation (3.3.20) to give the vorticity values.
The velues of the stream function at the previous time-step,
the n-th time-step, are used for this part of the procedure.

However, the temperature values used in equation (3.3.20)

. . . +%
to obtain vorticity values G? ¢ are the newly calculated
’ .
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values obtained from equation (3.3.49).

(iv) The stream funciton values at the (n+%) time-
step are determined using successive over-relaxation in order
to solve equations (3.3.66) and (3.3.68). The iterations
are contihued until the velues throughout the flow field

satisfy the following convergence criterion:

r+l r
Oy 5 Yy, <&y (3.6.1)

where r is defined in section 3.

(v) Having determined the temperature wvalues and the
stream function values throughout the domain at the (n+%) time-
step, the temperatures along the axis of symmetry are calculated
using equations (3.4.15) and (3.4.18), respectively. The

surface vorticity values are determined using equation (3.4.11).

(vi) In order to calculate the temperature values and
the vorticity values at the new (n+l) time-step, the temperat-
ure values along the axis of symmetry and surface vorticity
values at the (n+l) time-step are required, since they are
unknown, a first approximation is made by assuming that the
temperature values along the axis of symmetry and the surface
vorticity values are the same at the two time levels (n+})
and (n+l1). Therefore, the temperature values along the axis
of symmetry and surface vorticity values at the (n+%) time-
step are used as initial estimates of time-level (n+l). The

temperature values and the vorticity values at the (n+l) time-
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step are then obtained using the sets of simultaneous equations,
given by equations (3.3.51) and (3.3.22), respectively.
For this stage of calculation, the stream funciton values

available from fhe (n+%) time-step are used wherever required.

However, for solution of equation (3.3.22) for the

vorticity values, the most up to date values of teﬁperature

n+l

Ti 5 are used wherever required.
!

(vii) Having determined the vorticity values at the (n+l)
time-step, the stream function values at the (n+l) time-step
are obtained using successive over~relaxation, SOR, sweeps
using equations (3.3.66) and (3.3.68) until criterion (3.6.1)
is satisfied. The stream function values at the (n+%) time-
step are used as a first approximation in the application of

the successive over-relaxation method.

(viii) Having determined the temperature values and
the stream function values at the (n+l) time-step, the
temperature values along the axis of symmetry and the surface
vorticity values at the (n+l) time~step, are redetermined using

equations (3.4.15), (3.4.18) and (3.4.11) respectively.

(ix) The newly calculated temperatures along the axis
of symmetry, and the surface vorticity values are compared
with the corresponding values assumed previously during stages
(vi) and (vii). If the differences are unacceptable, the
procedure is repeated from stage (vi), until the following

convergence criteria are satisfied:

n+l,r+l1 _ n+1,r|
Ty, 3 Ty Q:T (3.6.2)
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at all points along the axis of symmetry, (j=1 and j=JN1),and:

n+l,r+1 _ n+l,r

Gio1'3 1213 e (3.6.3)
In repeating the procedure from stage (vi) the latest avail-
able values of the stream function,tb?+;, and the temperatures

14
. n+1l n+l
along the axis of symmetry, Ti,j=1 and Ti,j=JN1' and the
n+l

surface vorticity values, G are used.

In order to prevent the solution from diverging and to
minimize the number of iterations required for the convergence
of the temperatures along the axis of symmetry and the conver-
gence of surface vorticity values, the changes in the values
of temperature along the axis of symmetry and the changes in
the surface vorticity from one iteration cycle to the next

are limited by means of the following relaxation factors:

n+l,r+1 n+l,r

e =T +o, (7O o pitl.r (3.6.4)
i,3 i,3 T 1,3 i,3
14
for j=1 and j=JIN1l, and:
n+l,r+l1 _ .n+l,r + n+1 _ oh+tl,r
Gi=1,j Gi=1,j wG( Gi=1,j Gi=1,j) (3.6.5)
n+l n+1l n+l
where ?i,jxl ' Ti,j=JN1 ' and Gi=1,j are the latest

available values of the temperature along the axis of symmetry,
©=0 ande@=mn and of the surface vorticity values obtained

from equations (3.4.15), (3.4.18) and (3.4.11), respectively.

. . n+l,r+l1 n+l,r+1l
For the next iteration, the values of Ti,j=1 'Ti,j=JNl '
n+l,r+l1 n+l,r n+l,r
and Gi=1,j are used as the values of Ti,j=l ' Ti,j=JNl ’
and Gn+1,r , respectively.

i=1,3
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(x) The newly calculated values of the temperature,

9+% ) the vorticity, G?+%, and the stream function,¢?+%,
i,] 1i,] i,]

over the entire flow field now replace the 'old' values,

T

i.e. the (n+l) time-level becomes the new n-th time-level
and the entire procedure is repeated form stage (iii) for

L
the next time-step. o

(xi) At certain time intervals, the isotherms and
the stream function and vorticity contours around the solid
sphere are plotted and the surface pressure; frictional,
formed, and total drag coefficients are calculated using the
equations derived in appendicesB and C. The local and average
Nusselt numbers are calculated using the equations derived

in appendix D.

(xii) As there is no simple way of establishing from
one time-level to another whether or not the simulation
is proceeding satisfactorily and also to gain greater insight
into the numerical technique used, a high degree of user
participation is necessary. This is achieved by transferring
the flow field at the end of a certain number of time-steps
on to a magnetic tape. The values of the temperature, vort-
icity and stream function are printed-out at this stage in
order to check the results obtained and to consider whether
any changes in the programme are necessary for the next run.
At the start of the next run the data are read-in and manipu-

lated according to decisions of the user.

(xiii) A constant time-step, t, is used over any one
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run. The whole algorithm provides freedom to change the time-
step, At, whenever desirable, i.e. either to minimize computing
time for a complete solution over the entire time domain or

to follow rapid changes in the flow field.

(xiw) This procedure is repeated for several computer
runs until only small changes occur in the values of the local
Nusselt number calculated from one time-step to the next.

At this stage the solution is assummed to have reached the

late~time steady state condition.



CHAPTER 4

RESULTS AND DISCUSSION

140
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4.1 INTRODUCTION

The set of differential equations, initial and boundary
conditions describing time-dependent free convective heat
transfer from a solid sphere to a stagnant Newtonian medium
were derived in chapter 2. In chapter 3 the differential
equations were replaced by finite-difference equations and
a set of non-linear algebraic equations were also developed

in chapter 3.

Based on these procedures, the computer programme
listed in appendix F was developed so that the stream
function, vorticity and temperature distributions could
be generated for a wide range of Grashof and Prandtl numbers.
From these distributions other quantities which characterize
the problem are calculated. These quantities are the local
and average Nusselt numbers, the dimensionless pressure

distribution at the sphere surface and the drag coefficients.

In this chapter the computer results for Grashof numbers,
Gr, of 0.05, 1, 10, 25, 50 and 125 and a Prandtl number of
0.72; for Grashof numbers of 1250 and 12500 and a Prandtl
number of 10; and a Grashof number of 50 and a Prandtl

—~

number of 100 are presented and discussed.

Once the Grashof and Prandtl numbers have been specified
there are nine arbitrary constants which must also be
specified before a solution can be obtained. These constants

are the mesh sizes, hand k; the time-step, At; the radius of




142

the outer boundary, r,; the convergence criterion and the
relaxation factor for the stream function, €¢ and mw; the
convergence criterion and the relaxation factor for surface
vorticity, €g and Wgi and, finally, the convergence
criterion and the relaxation factor for the temperature

&‘
along the axis of symmetry, € and O«

The relaxation factors and convergence criteria are
chosen on the basis of computational experiments such that
the computational time is minimized while retaining accep-
table accuracy. The optimum values of the constants used

are given in table 1.

4.2 FACTORS WHICH INFLUENCE THE ACCURACY OF THE SOLUTION

Once a numerical solution has been obtained the most
important question is; what is its accuracy? This mainly
depends on round-off errors, truncation errors, and errors

introduced by approximation of the boundary conditions.
(i) Influence of round-off errors

Round-off errors refer to the errors resulted
from the rounding or truncation of the results of individual
arithmetic operations on a computing machine. They arise
because of the finite word length of digital computers.
Analysis of round-off errors present in the final results
of a numerical computation, usually termed the accumulated

round-off errors, is difficult, particularly when the



algorithm used is of some complexity. This is because
round-off errors introduce aberrant results; for example
floating point addition and multiplication give rise to
commutative round-off errors %hich are neither associative

nor distributive, as has been shown by Forsythe (1970).

-
In the present work numerical calculations were made
using a CDC7600 computer which works with fourteen decimal
places. In view of this, it is probable that round-off
errors generated from the integration of the equations
during the time-dependent period did not affect the results
appreaciably since fourteen decimal places was well beyond
the accuracy which was desired in‘this work. However, as
it is explained later in this thesis, this is not the case
once the solution has reached the late~time steady state
condition. Although an awareness of round-off error is
important, it is generally true that, for numerical solution
of partial differential equations of multi-dimensional fluid
dynamics problems, the mesh increments are necessarily
coarse enough for truncation errors to be the dominant

errors (Roache 1972).
"(ii) Influence of truncation errors

Truncation errors refer to the errors incurred
by not retaining all the terms in a Taylor's series expan-
sion. The accuracy which can be obtained with any finite-

difference method of solution is largely dependent on the
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truncation errors.

A particular kind of truncation error exhibited by
some finite-difference represenations of convective terms
is called 'false viscosity' (Wolfshtein 1967 and Rafique
1971). " This error has often been analysed in the past
under various names, such as ‘'numerical, artificial, or
psuedo viscosity', or 'numerical or artificial diffusion'.
This error has the effect of introducing into the equations
an additional 'false diffusion' of the dependent variables.
This false diffusion is primarily associated with the one-
sided difference schemes which are used to represent the
convective terms in transport equétions. The effect of
false diffusion is not restricted to the present method.
All methods in which one-sided difference schemes have been

used may bhe expected to suffer from it.

The interpretation of the false diffusion in complex
cases of multi-dimensional viscous non-linear problems is
difficult. Arguments have been made to the effect that
accurate solutions are not possible unless the false viscosity
introduced is much less than the real viscosity of the fluid
(Rafique 1971). But the practical situation is not so bad.
The solutions obtained by other authors for their multi-
dimensional problems indicate the success of one-sided

difference schemes.

From a formal examination of Taylor's series expansion
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it may be concluded that central difference scheme is more
accurate than upwind one-sided difference schemes. On the
other hand, upwind difference schemes have several advantages
in comparison with central difference scheme. In particular,
upwind difference schemes are inherently more stable. Also,
one—sid;d difference schemes possess the transportive property
as described in chapter 3. The transportive property is as
important as physically significant as the conservative
property. In this sense, at least upwind difference schemes
are more accurate than schemes with spaced-centered derivatives

of the convective terms.

The choice between central difference scheme and one-
sided difference schemes is, therefore, a compromise between
truncation errors and transportive errors. Although it is
true that truncation errors dominate the other errors, it is
also true that upwind difference schemes are usually used
because they ensure stability and rapid convergence; with
this in mind, the reduced accuracy may seem an acceptable

penalty.

It appears then, that usable solutions are obtainable
using one-side difference schemes (Gosman 1969 and Roache
1972), although the effects of pseudo viscosity must be

considered when assessing the accuracy of the results.

Truncation errors tend to zero as the mesh intervals

tend to zero. Generally, the finer the mesh size; the
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smaller will be the truncation errors and the faster will

be the convergence of the numerical solutions. However, the
reduction of mesh size will increase the number of grid
points and, hence, the number of simultaneous equations

to be s&}ved. This in turn, will result in an increase

. in the amount of computer storage and computing time

required to~solve the finite-difference eqﬁations. Therefore,
optimum values of the mesh sizes in space and time have to

be used such that the truncation errors, and the errors

which can be related to truncation errors, can be made

acceptably small.
(1ii) Influence of boundary conditions

Inaccuracies may be introduced through the choice
of boundary condition to be satisfied. 1In particular; as
mentioned earlier, equation (3.4.10) is less accurate than
equation (3.4.11) for the calculation of the vorticity at

the sphere surface.

The radius of the outer boundary affects the accuracy
of the solutions obtained. For instance; if the outer
boundary is taken to be. too close to the sphere surface it
affects the vorticity gradients around the sphere which in

turn, change the values of the drag coefficients.

4.3 FACTORS WHICH INFLUENCE THE ECONOMY OF THE CALCULATION

PROCEDURE

Accuracy is not the only factor which must be considered
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in the evaluation and design of a numerical method. The

total cost of obtaining solutions must be also considered.

The factors which influence the economy of the present problem
were found to be: the choice of time-step, the choice of
convergence criteria for the stream function, voriticity

" and temﬁerature, the choice of relaxation factors associated
with these convergence criteria and, finally, the total

number of mesh points (i, j).

In the present work values for all of the above factors
were found on the basis of numerical experiments, and values
were selected in order to achieve a balance between accuracy

and economy.
(1) Choice of time-step

The time-step was chosen such that it would provide
convergence of the numerical solution with acceptable accuracy
and keep the total computing time within reasonable limits.
Values of the time~step used to obtain solutions for

different Grashof and Prandtl numbers are given in table 1.
(ii) Choice of convergence criterion

The computation time required at every time-step
is proportional to the number of iterations which must be
performed before the solution is said to have converged at
that time-step; that is, when the effective change in the

vorticity, stream function, or temperature values between
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one iteration cycle and the next is acceptably small. What

is acceptable is of course related to the accuracy desired.

If higher accuracy is required, more iterations have to be
performed, so that computing time becomes excessive. Therefore,
once aggin, a balance must be made between the accuracy
required and computing time used. There is little point in
using excessive computing time when little is gained in the

accuracy of the solution.

In the present work, the following convergence criterion

G

where the function W, can either be the stream function, the

was used:

W Il ynex

i,] 1.3

surface vorticity, or the temperature along the axis of
symmetry, and r represents the number of iterations periformed.
Values of the convergence criteria used for different Grashof

and Prandtl numbers solutions are given in table 1.
(iii) Choice of relaxation factor

The rate of convergence of an iterative solution
procedure can sometimes be improved by over-relaxation since,
the variation in the W's from one iteration cycle to the
next can be forced to be greater than that which would be
obtained in the normél iteration process. For this reason,

where possible, over-relaxation was used. In the present




work, the following relaxation scheme was used:

whItL _ T o (L - T
1,3 WXJTIJ ¢ WI-'EIJ

W i,J

where wW is a relaxation factor.

On' the basis of numerical experiments, it was found
that for the stream function, the optimum value of the
relaxation factor varied between 1.5 to 2, while for the
surface votticity, a relaxation factor of less than 1 had
to be used in order to avoid divergence of solution. For
the temperature along the axis of symmetry, the optimum
value of the relaxation factor was found tofbe in the
region of 1.1 to 1.5. The values used for the relaxation

factors are given in table 1.
(iv) Choice of mesh size

As mentioned earlier, a reduction of the mesh
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size reduces the truncation errors but increases the number

of grid points (i, j) at which the stream function, vorticity

and temperature have to be calculated. This means that the

number of simultaneous equations to be solved increases as
does the computing time required for each iteration cycle.

Therefore, once again, a compromise must be made between

the accuracy required and the amount of computing time used.

In the following sections of this chapter, numerical

solutions of the equations which describe free convective

heat transfer from a solid sphere are presented. Solutions
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are given for Grashof numbers (based on the radius of the
sphere) of 0.05, 1, 10, 25, 50, 125 and a Prandtl number

of 0.72. Solutions are also given for a Grashof number

of 1250 and a Prandtl number of 10; for a Grashof number

of 50 apd a Prandtl number of 100; and for a Grashof

number ;f 12500 and a Prandtl number of 10. It will be

seen later in this chapter that the late—time steady state
values obtained fér the average Nusselt number,Nu, were
found to agree reésonably well with those obtained by other
workers. However, there are no data available for comparison
with other results obtained in the present work such as the
distributions. of the surface pressure, the total drag
coefficients; form drag coefficient and viscous drag coeffi-
cient. Therefore, in the absence of a rigorous error
analysis and lack of sufficient data, the question of how

the solutions should be assessed was crucial.

To examine the accuracy and reliability of the laté-
time steady state values obtained in the present study of
the numerical solutions for time-dependent free convective
heat transfer from a solid sphere, the author obtained
numerical solutions of the time-independent equations for
a short range of Grashof numbers. The method of solution
was a simple explicit method in which a central difference
scheme was adopted for the diffusion terms of the equations
and an upwind difference scheme for the convective terms.

The result of this study are presented in table 2. As will
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be seen later in this chapter, the late-time steady state
results presented in table 1 and the steady state results

presented in table 2 are in reasonable agreement.

Before presentation and discussion of the results
obtained from the numerical solutions of the time-dependent
equations, it is necessary to explain how a solution was
assessed to have reached its late-time steady state

condition.

A numerical simulation of a fluid dynamics or heat
transfer problem is generally said to have reached its
late-time steady state condition when the effective changes
in the dependent variables from one time-level to the next
become relatively small. Mathematically, the late-time
steady state values of the dependent variables must remain

unchanged as the integration proceed further with time.

On the basis of numerical experiments in the present
work, however, it was found that once a numerical simulation
had reached its late-time steady state condition, integration
for a further period of time fluctuated values of the depen-
dent variables. Eventually the values become physically
unrealistic., This was mainly a result of the accumulation

of round-off errors.

As explained earlier in this chapter, the magnitude of
the round-off errors associated with any numerical algorithm

depends upon the computing machine used, the particular
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sequence of machine operations used, and the values of the
various numbers involved in these machine operations. Integ-
ra tion of the equations during the time-dependent period
gives rise to round-off errors which are random in behaviour
since the time-dependent variables are changing with time,
and as explained in section 4.2 it is unlikely that round-
off errors during this period can appreciably affect the
solution. However, further integration of the equations,
once the solution has reached late—ﬁime steady state
condition gives rise to round-off errors which are regular
in behaviour since the dependent variables are no longer
changing with time, thus, all the necessary arithmetic
operations for carrying out the integration from one time-
level to the next are performed on round-off errors which
are propagated and accumulated throughout this part of the
computation in a regular manner. As a result, the late-time
steady state values obtained earlier for the dependent
variables will be affected by the round-off errors if

simulation is continued.

To avoid the undue accumulation of round-off errors in
the present work, whenever the effective changes in the
values of the dependent variables became relatively small,
it was assumed that the simulation had reached the late-
time steady state condition. The late-time variations with
time of the flow characteristics are presented in tables 7

to 13.
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The numerical results thch will be presented in the
following sections of this chapter and in tables 1 to 13
are in terms of the dimensionless variables defined in
chapter 2; and in all the contour drawings the direction

of flow along the axis of symmetry is from right to left.

4.4 NUMERICAL SOLUTION FOR A GRASHOF NUMBER OF 0.05

AND A PRANDTL NUMBER OF 0.72

The development with time of the streamlines starting
from a motionless flow field around a heated solid sphere
in conditions of free convective heat transfer at a Grashof
number, Gr, of 0.05 and a Prandtl number, Pr, of 0.72 is
shown in figures 4.4.l1a to 4.4.1d. As mentioned earlier,
the solid sphere was assumed to be enclosed in another
ithe oulter bouundary. It was dlso
assumed that the temperatures of the solid sphere and the
spherical shell are uniform and unchanging with time but
at two different levels. The temperature distribution
within the fluid changes with time and the fluid near the
hotter boundary, the sphere surface, tends to rise and that
near the colder boundary, the outer boundary, tends to move
downwards. The rising and descending currents generate a
circulatory flow pattern as shown by the streamlines plotted
in figures 4.4.1a to 4.4.1d. From the stream function
contours, it can be observed that the fluid velocity iﬁcreases

from zero to its late-time steady state value.
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FIGURE 4.4 .1 b STREAMLINES ARCUND THE SPHERE AT
GRASHOF NUMBER OF 0.05 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME .t =20

FIGURE 4.4 .1a STREAMLINES AROUND THE SPHERE AT
GRASHOF NUMBER OF 0.05 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME . t =12
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FIGURE 4 .4.1d STREAMLINES AROUND THE SPHERE RT
GRASHOF NUMBER OF 0.05 AND é\kHNDTL NUMBER OF 0.72
DIMENSIONLESS TIME ., t =36

FIGURE 4.4 .1c STREAMLINES ARGUND THE SPHERE AT
GRASHOF NUMBER OF 0.05 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME .t =28
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Late-~time values of the local Nusselt number, the
surface vorticity, and the surfaﬁe pPressure are presented
in table 7. From this table one can observe that the
above variables become almost independent of time during

the dimensionless time period of 28 to 36.

@
Figures 4.4.2a to 4.4.2d show the development with

time of the isotherms around the solid sphere. The time-
dependent energy equation was solved using the radial
steady state conduction solution as an initial condition.
In the limiting case of a fluid at rest then in the absence
of convective effects, the influence of the heated sphere
extends uniformly in all directions. However, even at as
small a Grashof number as 0.05, a comparison of the tempera-
tures at distances far away from the solid sphere with the
initial values reveals that there is weak convective process
far away from the sphere surface. As a result, the tempera-
tures in the upstream region of the solid sphere are less
than those predicted by the pure conduction solution.
Figure 4.4.2d shows the late-time steady state temperature

distribution at a dimensionless time of 36.

‘'The generation and diffusion of vorticity into the
fluid around a solid sphere in conditions of free convective
heat transfer can be seen in figures 4.4.3a to 4.4.3d which
show the wvorticity distribution as a function of time.

From these figures one observes that the vorticity values

are relatively small and that they are distributed almost
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FIGURE 4.4 .2b ISOTHERMS ARGBUND THE SPHERE AT

GRASHOF NUMBER OF 0.05 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME ., t =20

0.1

0,3

(2

FIGURE 4.4 .2a ISGTHERMS ARGUND THE SPHERE AT

GRASHOF NUMBER OF 0.05 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME ., t =12
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FIGURE 4.4 .2d ISOTHERMS AROUND THE SPHERE AT

GRASHOF NUMBER OF 0.05 AND %'RRNDTL NUMBER OF 0.72

DIMENSIONLESS TIME , t =36

0-3

A\

FIGURE 4.4 .2c¢ ISOTHERMS ARGUND THE SPHERE AT

GRASHOF NUMBER OF 0.05 AND PRANDTL NUMBER OF 0.72
OIMENSIONLESS TIME ., t =28
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FIGURE 4.4 .3b VORTICITY DISTRIBUTION AROUND THE SPHERE RT
GRASHOF NUMBER OF 0.05 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME , t =20

-0,0007

FIGURE 4.4 .3a VORTICITY DISTRIBUTION ARGUND THE SPHERE AT
GRASHOF NUMBER OF 0.05 AND PRANDTL NUMBER OF 0.72
DIMENSIGNLESS TIME ., t =12
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FIGURE 4 .4.3d VORTICITY DISTRIBUTION AROUND THE SPHERE AT
ORASHOF NUMBER OF 0.05 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TINE , t =36

FIGURE 4.4 .3 c VORTICITY DISTRIBUTION = ARGUND THE SPHERE AT
GRASHOF NUMBER OF 0.05 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME , t =28
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symmetrically about an imaginary plane normal to the axis

of symmetry of flow and passing through the equator of the
sphere. This may be explained as follows. At a Grashof
number of 0.05 and a Prandtl number of 0.72, the fluid
velocity is small and therefore, the convection of vorticity
is small. The late~time steady state vorticity distribution

at a dimensionless time of 36 is shown by figure 4.4.3d.

The temperature gradients normal to the sphere surface
are evaluated from the temperature distributions. The
temperature gradients are then used to calculate the local
Nusselt number, Nu®, and the average or overall Nusselt
number, Nu, as described in appendix D. Figure 4.4.5 shows
the variation of the local Nusselt number with dimensionless
time, t. During the early stages of simulation, the
difference between local Nusselt numbers at the front and
rear stagnation points of the sphere is relatively small
showing the weakness of the effects of convection. However,
as simulation continues, the convective effects increase
very slightly and the difference between the local Nusselt
numbers at the front and rear stagnation points of the solid

sphere increases.

Figure 4.4.8 shows the variation of the average Nusselt
number with time. Since the steady state conduction, in a
finite space (equation 2.6.17), is used as an initial
dimensionless fluid temperature, the average Nusselt number

starts from a value of 2.085 and increases continuously



0 162
-4 \
o |
i L :
4 12 |
| 20 ‘
el 28
5
=
-2
i
TR
753
=
Ze N
<
1%
ao
X
2
L ]
e
‘b

.00 30.00 60.00 80.00 120.00 150.00  180.0¢
< HNGLE(DEGREES] » 0

FIGURE 4.4.5 LOCAL NUSSELT NUMBER VERSUS TIME AT
GRASHOF NUMBER OF 0.05 AND PRANDTL NUMBER OF 0.72

[on ]

o

%.00 6.00 12.00 18.00 24.00 30.00 36.00
TIME »t :

FIGURE 4.4.4 DRAG COEFFICIENTS VERSUS TIME AT
GRASHOF NUMBER OF 0.05 AND PRANDTL NUMBER OF 0.72



163

towards its late-time steady state value. Table 3 shows a
comparison of the late~time steady state values of the
average Nusselt number obtained in the present study with
the results obtained by other workers from their analytical
and experimental studies. It is seen that the late-time
steady state average Nusselt number calculated in this

work for a Grashof number of 0.05 and a Prandtl number of
0.72 is slightly greater than the valﬁe obtained by Hossain
(1966) from his analytical solution. The value of the
average Nusselt number is, however, slightly underpredicted

in comparison with experimental measurements.

The variation of surface vorticity, Cs’ with time is
plotted in figure 4.4.7. From this figure one observes
that the surface vorticity is fairly symmetrically distri-
buted about an imaginary plane placed between the upstream
and downstream regions of the flow field. This is because
the dominant mode of transfer close to the surface is
diffusion as explained earlier. From figure 4.4.7 and table
7 it can also be seen that as simulation continues the
surface vorticity increases until its late-time steady

state value is attained.

From the stream function, vorticity and temperature
distributions the dimensionless surface pressure is evaluated
as described in appendix B. The variation with time of
dimensionless surface pressure, K@' is shown in figure 4.4.6.

From figure 4.4.6, it can be seen that as time increases,
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the dimensionless surface pressure increases over the -
upstream region of the sphere and decreases over the down-

stream region of the sphere.

The behaviour of the drag coefficients with time is
shown in figure 4.4.4. Both the pressure or form drag
coefficient, CDP’ and the viscous or frictional drag

coefficient, C show a smooth increase with dimensionless

DF’
time, t. The reason why the drag coefficients increase

with time may be explained as follows.

Consider equations (C.2.5) and (C.3.5) which are

derived in appendix C and are as follows:

T .
Cpp = £K® sin 2046 (C.2.5)
CDF= 4'/(;:,3 sin“e de (C.3.5)

As the dimensionless time increases, the dimensionless
surface pressure increases over the upstream region of the
sphere and decreases over the downstream region of the
sphere. The surface vorticity also increases with time.
Therefore, both the form drag coefficient and the viscous

drag coefficient increases with time.

The main results obtained from the numerical solution
of the time-dependent problem are presented in table 1.
Table 2 shows the main results of the time-independent
problem. A comparison between tables 1 and 2 for a Grashof

number of 0.05 and a Prandtl number of 0.72 shows the results
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obtained from the time-dependent and time~independent

solutions are in good agreement.

4.5 NUMERICAL SOLUTION FOR A GRASHOF NUMBER OF 1

AND A PRANDTL NUMBER OF 0.72

Figures 4.5.1a to 4.5.1d and figures 4.5.2a to 4.5.24
show the streamlines and isotherms respectively, as a
function of time around a so0lid sphere in conditions of
free convection. Figures 4.5.1d4 and 4.5.2d show the stream
function and temperature contours at the late~time steady

state condition obtained at a dimensionless time, t, of 15.

As can be seen from figures 4.5.2a to 4.5.24, during
the early stages of simulation heat diffuses radially into
the surrounding fluid, but as the transfer of heat continues
the heated region extends downstream. As the dimensionless
time approaches to its late-time steady state value, the
thickness of the heated layer over the upstream region of
the solid sphere decreases, while over the downstream region
of the solid sphere, it increases. At the late—time‘steady
state condition, the thickness of the heated layer increases

with the angle, &, measured from the front stagnation point.

Figures 4.5.3a to 4.5.3d show the vorticity distribution
as a function of time around the solid sphere. As can be
seen from figure 4.5.3a, during the early stages of integra-

tion, the vorticity distribution around the solid sphere is
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FIGURE 4 .5.1b STREAMLINES AROUND THE SPHERE AT
GRASHOF NUMBER OF 1 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME , t =7

FIGURE 4.,5,1a STREAMLINES AROUND THE SPHERE AT

GRASHOF NUMBER OF 1 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME ., t =4



FIGURE 4.5.1d STREAMLINES AROUND THE SPHERE AT
BRASHOF NUMBER OF 1 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME ., t =15

FIGURE 4.5 . 1c STRERMLINES AROUND THE SPHERE RT
GRASHOF NUMBER OF 1 AND PRANDTL NUMBER OF 0.72

DIMENSIONLESS TIME ., t=11
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FIGURE 4.5.2b ISOTHERMS AROUND THE SPHERE AT
GRASHOF NUMBER OF 1 AND PﬁnNDTL NUMBER OF 0.72
DIMENSIGNLESS TIME ., t =7
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FIGURE 4.5.2a ISOTHERMS ARROUND THE SPHERE AT
GRASHOF NUMBER OF 1 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME ., t =4
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FIGURE 4 5.2 d ISOTHERMS AROCUND THE SPHERE RT
GRASHOF NUMBER OF 1 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME , t=15

FIGURE 4.5 .,2c ISOTHERMS ARGCUND THE SPHERE RT

GRASHOF NUMBER OF 1 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME ., t=11



172

almost symmetrical about an imaginary plane placed between
the upstream and downstream regions of the flow field. This
is because during the early stages of simulation, the fluid
velocity is small so that the effects of convection are
small. nHowever, as simulation continues the effects of
convecgion increases and vorticity is convected more and

more downstream. Figure 4.5.3d shows the vorticity contours

at the late-time steady state condition.

Figure 4.5.5 shows the variation of the local Nusselt
number with time for a Grashof number of 1 and a Prandtl
number of 0.72 when steady state conduction is used as an
initial dimensionless fluid temperature. During the initial
stages of heat transfer, the local Nusselt number at the
front stagnation point does not differ much from the local
Nusselt number at the rear stagnation point. This is
because intially, the velocity is small and heat transfer
takes place mainly by unsteady state conduction. Howevér,
as time increases, the convective effects increase and the
variation in the local Nusselt number becomes more pronounced.
Generally, the local Nusselt numbers around the upstream
region of the sphere increase steadily towards their late-
time steady state values while those around the rear part
of the sphere decrease at first and then increase as the
late-time steady state condition is approached. This
behaviour can be seen from figure 4.5.5 for a Prandtl number

of 0.72.
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FIGURE 4 .5.3bVORTICITY DISTRIBUTION AROUND THE SPHERE AT
GRASHOF NUMBER OF 1 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME , t =7

FIGURE 4 .5.3aVORTICITY DISTRIBUTION AROUND THE SPHERE AT
GRASHOF NUMBER OF 1 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME , t=4
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FIGURE 4 5, 3d VORTICITY DISTRIBUTION RROUND THE SPHERE AT
GRASHOF NUMBER OF 1 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME . t =15

FIGURE 4 .5, 3c VORTICITY DISTRIBUTION AROUND THE SPHERE AT
GRASHOF NUMBER OF 1 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME , t =11
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The behaviour of the drag coefficients with time is
shown by figure 4.5.4. The variation with time of the form

drag coefficient, C the viscous drag coefficient, C

DF’
follows a similar pattern

DP’
and total drag coefficient, CDT’
to that shown by the Grashof number of 0.05 solution. Both

the form drag and the viscous drag coefficients show a smooth

increase with time.

The variation with time of the surface vorticity is
shown in figure 4.5.7. From this figure one observes that
the surface vorticity, for all times is almost symmetrically
distributed about an imaginary plane situated between the
upstream and the downstream regions of the flow. This shows
that although convective effects are noticeable away from
the sphere surface (figure 4.5.3d) the dominant mode of

vorticity transport near to the surface is diffusion.

Figure 4.5.6 shows the variation of surface pressure
with time. The behaviour with time of the surface pressure
follows a similar pattern to that shown by the solution
obtained for a Grashof number of 0.05. From figure 4.5.6
one observes that as time increases, the dimensionless
surface pressure increases over the upstream region of the

sphere and decreases over the downstream region.

The main results obtained from the numerical solution
of the time~dependent problem for a Grashof number of 1 and

a Prandtl number of 0.72 are presented in table 1.
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From a comparison of the solutions obtained for Grashof
number of 0.05 and 1, both for a Prandtl number of 0.72, one
observes that the total dimensionless time, t, taken before
late-time steady state conditions are reached is shorter in
the case of a Grashof number of 1 than for a Grashof number
of 0.05%, This may be explained as follows:

The Grashof number represents the ratio of the buoyancy
forces to the viscous forces. Therefore, an increase in the
Grashof number represents an increase in the buoyancy forces
relative to the viscous forces thus increasing the fluid
velocity so that the effects of convection are increased.
The increased convection currents lead to an increase in the
rate of heat transfer from the sphere to the medium and will
shorten the total dimensionless time taken to reach late-time

steady state condition.

Table 8 represents the late~time values of the local
Nusselt number, the surface vorticity, and the surface pressure
as the simulation approaches the late-time condition . From
this table it can be seen that the relative changes in the
above variables during the dimensionless time period of 12
to 15 become relatively small indicating that the simulation

has almost reached steady state condition .

The variation of the average Nusselt number with time
"is shown in figure 4.5.8. The average Nusselt number starts

from a value of 2.085 and increases continuously towards its
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late~time steady state value which calculated to be 2.34.

As can be seen from table 3, the late-time steady state
average Nusselt number obtained in the present study for a
Grashof number of 1 is in reasonable agreement with the
available experimental measurements. Table 2 shows the main
results obtained from the numerical solution of time-indepen-

dent problem. As can be seen from tables 1 and 2, the

and the time-independent equations for a Grashof number of
1 and a Prandtl number of 0.72 are also in reasonable

agreement.

4.6 NUMERICAL SOLUTION FOR A GRASHOF NUMBER OF 10

results obtained from the solutions of the time-dependent
AND A PRANDTL NUMBER OF 0.72

The development with time of circulatory flow at a

Grashof number of 10 and a Prandtl number of 0.72 can be

around the solid sphere as a function of time. As can be
observed from figures 4.6.la and 4.6.1d during the early
stages of simulation the streamlines follow a similar pattern
to those shown by the solutions obtained for lower Grashof
numbers. However, as simulation continues, the streaml
function contours are slightly moved downstream. This is
because the Grashof number in this case is larger than in the
previous cases so that the ratio of the buoyancy forces to the

seen in figures 4.6.la to 4.6.1d which show the streamlines
|
|
viscous forces is larger than in the previous cases thus increasing

|
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FIGURE 4.6.1b STRERMLINES AROGUND THE SPHERE AT
GRASHOF NUMBER OF 10 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME ., t=1.5

FIGURE 4 ,6.1a STREAMLINES ARGUND THE SPHERE AT

GRASHOF NUMBER OF 10 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME . t =0.5



FIGURE 4 6 .1d STREAMLINES AROUND THE SPHERE AT
GRASHOF NUMBER OF 10 AND P\?:?FINDTL NUMBER OF 0.72
DIMENSIONLESS TIME ., t =6

FIGURE 4 .6.1¢c STREAMLINES ARGUND THE SPHERE RT

GRASHOF NUMBER OF 10 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME , t =3.5
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effects of convection and the rate of heat transfer. As a
result, the thickness of the heated layer adjacent to the

upstream surface of the sphere is reduced. The increased

velocity of the fluid passing the sphere causes the fluid

in the fmmediate vicinity of the heated layer to be draged
downstréam so that the streamlines are shifted slightly

from the upstream region to the downstream region of the

flow field. This is shown in figure 4.6.1d.

Figures 4.6.2a to 4.6.2d show the development of the
isotherms around the solid sphere. The steady state conduction
solution was used as an initial condition for the time-
dependent energy equation. During the early stages of
simulation, the dominant mode of heat transfer is conduction
and therefore, the influence of the heated body extends
uniformly in all directions, This is shown by figure
4.6.2a. However, as integration proceeds with time, the
isotherms begin to become closer to the surface of the |
sphere in the upstream region and to extend further from
the sphere in the downstream region. The temperature
distribution at the late-~time steady state condition, is

shown by figure 4.6.2d.

Figures 4.6.3a to 4.6.3d show the vorticity contours
as a function of time around the solid sphere. The effects
of convection in .the solution can be seen in the vorticity
distributic plots. As with the solution obtained for a

Grashof number of 1, initially diffusion is the dominant
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FIGURE 4 .6 .2b ISGTHERMS ARCUND THE SPHERE AT
GRASHOGF NUMBER OF 10 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME ., t =1.5

FIGURE 4,6 .22 ISOTHERMS AROUND THE SPHERE AT

GRASHOF NUMBER OF 10 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME , t =0.5



185

[

FIGURE 4.6.2d ISOTHERMS AROUND THE SPHERE AT
GRASHOF NUMBER OF 10 AND PRANDTL NUMBER OF 0.72

DIMENSIONLESS TIME ., t =6
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A

FIGURE 4.6 .2c ISOTHERMS AROUND THE SPHERE AT
GRASHOF NUMBER OF 10 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME ., t =3.5
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FIGURE 4 ,6.3b VORTICITY DISTRIBUTION = ARGUND THE SPHERE AT

GRASHOF NUMBER OF 10 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME , t =1.5

FIGURE 4 .6.3a VORTICITY DISTRIBUTION AROUND THE SPHERE RT
GRASHOF NUMBER OF 10 AND PRANOTL NUMBER OF 0.72
DIMENSIONLESS TIME .t =0.5
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FIGURE 4 .6.3dVORTICITY DISTRIBUTION ARGUND THE SPHERE AT
GRASHOF NUMBER OF 10 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME , t =6

FIGURE 4 6_.3c VORTICITY DISTRIBUTION ARGUND THE SPHERE AT
GRASHOF NUMBER OF 10 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME . t =3.5



mode of vorticity transport, as shown by figure 4.6.3a.
However, after a dimensionless time, t, of about unity the
effects of convection begin to distort the contours, as

shown by figures 4.6.3b and 4.6.3c. The late-time steady
state vprticity distribution obtained at a dimensionless

time, ti of 6 is shown in figure 4.6.3d. As expected, the
figure shows that the effects of convection on the vorticity
contours are more pronounced than those shown by the solution

obtained for a Grashof number of 1.

Figure 4.6.5 shows the variation of the local Nusselt
number with time. The local Nusselt number around the solid
sphere remains fairly constant during the early stages of
heat transfer. However, as the convective effects increase
in magnitude the local Nusselt numbers around the upstream
region of the solid sphere increase until their late-time
steady state values are attained. During the same period,
the local Nusselt numbers around the downstream region of
the sphere decrease at first but then increase as the late-

time steady state condition is approached.

The behaviour of the drag coefficients with dimensionless
time, t, is shown in figure 4.6.4. Initially, both the form

drag coefficient, C and the viscous drag coefficient, C

DP, DFI

show the same behaviour as those discussed for Grashof
numbers of 0.05 and 1. But, in the present case, the drag
coefficients reach their late-time steady state values at

a dimensionless time of 4. However, as can be seen from
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table 9, the simulation had to be continued to a longer time
since small changes in the local Nusselt number, the surface
vorticity, and the surface pressure still continued to occur

during the dimensionless time period of 4 to 6.

Figure 4.6.7 shows the behaviour of the surface vorticity
with time. The variation of the surface vorticity with time
follows a similar pattern to that shown by the solution
obtained for a Grashof number of 1 in that the surface
vorticity for all time, t, is almost symmetrically distributed
about an imaginary plane placed between the upstream and
downstream regions of the flow field. This shows that at
a Grashof number of 10, the dominant mode of vorticity

transport close to the surface is diffusion.

The variation with time of the surface pressure is shown
in figure 4.6.6. From this figure one observes that as
simulation continues, the dimensionless surface pressure
over the upstream region of the sphere increases slowly
towards its late-time steady state value. While the
dimensionless surface pressure over the downstream region
of the sphere continues to decrease until the late-time

steady state condition is reached.

The average Nusselt number starts from a value of 2.085
because of the conduction initial condition used and increases
continuously towards its late-time steady state value which is

found to be 2.92. This can be seen from figure 4.6.8.
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Table 3 shows a comparison of the late-time steady
state average Nusselt numbers obtained in the present work
with the experimental measurements of the other workers.
As can be seen the maximum discrepancy between the value
of the average Nusselt number for the present case and
other r;éults for a Grashof number of 10 is about 12%.
Table 2 shows the main results obtained from the numerical
solutions of the time-independent equations. It is seen
from tables 1 and 2 that the results calculated from the
time-dependent and the time-independent solutions, for the

present case, are in reasonable agreement.

It was decided to study the influence of mesh sizes
and location of the outer boundary on the results. However,
since these kinds of numerical experiments are expensive
from a computational point of view, the simulation was
carried out until the flow field was developed sufficiently
for comparison purposes but not until late-time steady state
condition was reached. The influence of the location of the
outer boundary and mesh sizes on the results can be judged
from table 4. It was generally observed that for a Grashof
number of 10 and a Prandtl number of 0.72; for a specified
location of the outer boundary, the use of coarser mesh
sizes gives rise to smaller values of the flow characteristics
than when fine meshes are used. Also, coarser mesh sizes
were found to cause vorticity fluctuation close to the outer

boundary. A reduction in the radius of the outer boundary,
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was found to . lead to the prediction of slightly smaller
values for the flow characteristics such as the average
Nusselt number, front stagnation pressure and drag

coefficients.

The final choice of mesh sizes and location of the
outer boundary, presented in table 1, was a compromise

between computing economy and accuracy of results.

4.7 NUMERICAL SOLUTION FOR A GRASHOF NUMBER OF 25

AND A PRANDTL NUMBER OF 0.72

The simulation of the flow field starting from a
motionless flow field around a solid sphere in conditions
of free convection at a Grashof number of 25 and a Prandtl
number of 0.72 can be seen in fiqures 4.7.1la to 4.7.1d
which show the streamlines as a function of time. From
these figures one observes that the stream function .
contours show a similar pattern to that discussed for a
Grashof number of 10. Figure 4.6.1d shows that the stream-
lines at the late-time steady state conditions are displaced

slightly in the downstream direction.

Table 10 represents the late-time wvalues of the local
Nusselt number, the surface vorticity, and the surface
pressure. From this table one observes that these variables
become relatively independent of time during the dimension-

less time period of 1.5 to 2.16.
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FIGURE 4 .7 .1b STREAMLINES AROUND THE SPHERE AT

GRASHOF NUMBER OF 25 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME ., t =0.5

FIGURE 4.7 .1a STREAMLINES RROUND THE SPHERE AT

GRASHOF NUMBER OF 25 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME ., t =0.1



FIGURE 4 .7.1d STREAMLINES AROUND THE SPHERE RT
GRASHOF NUMBER OF 25 RND Pi%RNDTL NUMBER OF 0.72
DIMENSIONLESS TIME , t=2.16

196

FIGURE 4 7.1c STREAMLINES AROUND THE SPHERE AT
GRASHOF NUMBER OF 25 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME ., t =1
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The distributions of isotherms around the solid sphere |
for various dimensionless times, t, are shown in figures
4.7.1a to 4.7.1d. During the early stages of flow develop- )
ment, the thickness of the heated region around the solid 3
sphere is almost uniform and heat transfer takes place
mainly by unsteady state conduction. However, at a
dimensionless time of approximately 0.5, the heated layer
of the fluid in contact with the upstream region of the

solid sphere starts to shrink while the heated layer over

shows the isotherms around the sphere at the late-time

steady state condition.

|
|
|
|
|
|
|
|
l
the downstream region continues to expand. Figure 4.7.24 i
|
\
The generation and development with time of vorticity }
around the solid sphere can be seen in figures 4.7.3a to |
4.7.34 whiach show the vorticity distribution as a function
of time. During the early stages of simulation, the vorticity
contours, as shown in figure 4.7.3a, are almsot symmetrically
distributed about an imaginary plane placed between the
upstream and downstream of the flow field. However, as
integration proceeds with time, the effects of convection
on the distribution of vorticity become more important than
the effects of diffusion. As the simulation continues,

vorticity is convected more and more downstream. This can

be seen in figures 4.7.3c and 4.7.3d.

The behaviour of the drag coefficients with time is

shown in figure 4.7.4. Both the form drag coefficient and
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FIGURE 4 ,7.2b ISOTHERMS AROUND THE SPHERE AT

GRASHOF NUMBER OF 25 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME ., t =0.5
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FIGURE 4 ,7.2a ISOTHERMS AROUND THE SPHERE AT

GRASHOF NUMBER OF 25 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME ., t =0.1
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FIGURE 4 _7.2d ISOTHERMS AROUND THE SPHERE AT
GRASHOF NUMBER OF 25 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME ., t =2.16

FIGURE 4.7.2 ¢ ISOTHERMS AROUND THE SPHERE AT

GRASHOF NUMBER OF 25 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME , t =1
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FIGURE 4 .7.3bVORTICITY DISTRIBUTION AROUND THE SPHERE AT
GRASHOF NUMBER OF 25 AND PRANDTL NUMBER OF 0.72 |
DIMENSIONLESS TIME ., t =0.5

FIGURE 4 .7.3aVORTICITY DISTRIBUTION AROUND THE SPHERE AT
GRASHOF NUMBER OF 25 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME , t =0.1
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FIGURE 4 .,7.3d YORTICITY DISTRIBUTION RAROUND THE SPHERE AT
GRASHOF NUMBER OF 25 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TINE . t =2.16

FIGURE 4 ,7.3c VORTICITY DISTRIBUTION AROUND THE SPHERE AT

GRASHOF NUMBER OF 25 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME , t =1
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the viscous drag coefficient follow the same pattern as shown
previously by the solutions obtained at lower Grashqf numbers.
As can be seen from tables 1 and 2 the late-time steady state
values of the drag coefficients obtained from the present
study for a Grashof number of 25 and a Prandtl number of 0.72
are in reasonable areement with the drag coefficients obtained
from the numerical solution of the time-independent problem.
The other quantities shown in these tables, for the present

case, are also in reasonable agreement.

Figure 4.7.5 shows the variatigns of the local Nusselt
number with time. Since steady state conduction is used as
the initial condition, the local Nusselt number starts from
a value of 2.085 which is constant around the solid sphere.

However, as integration proceeds with time, the convective

upstream region of the sphere increase continuously towards
their late-time steady state values while the local Nusselt
numbers over the rear part of the sphere first decrease and

then increase towards their late-time steady state values.

The average Nusselt number starts from a value of 2.085
and increases continuously towards its late-time steady state
value. This is shown in figure 4.7.8 which shows the
variation of the average Nusselt number with dimensionless

time.

The variation with time of the surface vorticity is

shown in figure 4.7.7. From this figure it can be ocbserved
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that the surface vorticity wvalues are initially small and
almsot symmetrically distributed about an imaginary plane
situated between the upstream and the downstream regions

of the flow field. As simulation proceeds, the surface
vorticigy values increase but the symmetry of the distribu-
tion reméins almost unchanged. This shows that at a Grashof
number of 25 and .a Prandtl number of 0.72, the dominant mode
of vorticity transport very close to the surface is diffusion.
However, as one moves away from the surface the dominant mode

of vorticity transport changes from diffusion to convection.

The variation with time of the dimensionless surface
pressure is shown in figure 4.7.6. Initially, the dimention-
less surface pressure shows the same behaviour as that
discussed for lower Grashof numbers in the previous sections.
However,; the late-~time steady state surface pressure shows
a shallow minimum at an angle of 145 degrees. The late-time

surface pressure distributions obtained for lower Grashof

numbers did not exhibit such a minimum.

The influence of the location of the outer boundary on
the average Nusselt number, on the drag coefficients, and
on the stagnation pressures can be judged from table 5. It
can be seen that a reduction in the radius of the outer
boundary from 24.53 to 20.08 sphere radii results in a
reduction in the average Nusselt number of 6% and a reduction
in the total drag coefficient 6f about 5%. Thus, as stated

previously, the position of the outer boundary does affect
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the solution. However, computation storage limitations

precluded the use of a larger flow field.

Table 3 presents a comparison of the late-time steady
state values of the average Nusselt numbers obtained in the
presen£§5tudy with experimental measurements. It is seen
from this table that the average Nusselt number calculated
in the present study for a Grashof number of 25 is in

reasonable agreement with experimental measurements.

4.8 NUMERICAL SOLUTION FOR A GRASHOF NUMBER OF 50

AND A PRANDTL NUMER OF 0.72

The development with time of the flow pattern for free
convective heat transfer from a solid sphere to a Newtonian
fluid is shown in figures 4.8.la to 4.8.1d. The development
of the streamlines around the solid sphere is very similar
to the cases described previously. Figure 4.8.1d shows that
the stream function contours at the late-time steady state
condition are displaced slightly downstream of the flow
field. This is in accordance with the discussion given in

previous sections.

Figures 4.8.2a to 4.8.2d show the development of the
isotherms with time around the solid sphere. The time-
dependent energy equation was solved using steady state
radial conduction as the initial condition. The behaviour

of the isotherms in figures 4.8.2a to 4.8.24 does not show



FIGURE 4 .8.1b STREAMLINES AROUND THE SPHERE AT
GRASHOF NUMBER OF 50 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME , t =0.25

FIGURE 4 .8.1a STREAMLINES AROUND THE SPHERE RT
GRASHOF NUMBER OF 50 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME . t =0.05

208




209

FIGURE 4 .8.1d STREAMLINES AROUND THE SPHERE AT
GRASHOF NUMBER OF 50 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME , t =1.64

FIGURE 4.8.1c STRERMLINES AROUND THE SPHERE RT

GRASHOF NUMBER OF 50 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME . t =0.6
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FIGURE 4 .8.2b ISOTHERMS AROUND THE SPHERE RT

GRASHOF NUMBER OF 50 AND PRANDTL NUMBER OF 0.72 -
DIMENSIONLESS TIME , t =0.25

FIGURE 4 .8.2a ISOTHERMS ARCUND THE SPHERE AT

GRASHOF NUMBER‘OF 50 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME . t =0.05
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FIGURE 4 .8.2d 1SOTHERMS RROUND THE SPHERE AT

GRASHOF NUMBER OF S50 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME . t =1.64

211

FIGURE 4 .8.2¢ ISOTHERMS AROUND THE SPHERE AT

GRASHOF NUMBER OF 50 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME . t =0.6
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a marked difference from that for a Grashof number of 25 as
shown in figures 4.7.2a to 4.7.2d. During the early stages
of simulation, heat is transferred mainly by unsteady
conduction in all directions. This is shown by figure
4.8.2a. However, as simulation proceeds, the convective
effects increase in magnitude and the isotherms become
closer to the surface of the sphere in the upstream region
and extend further downstream at the rear of the éphere.

The isotherms at the late~time steady state condition are

shown by figure 4.8.24.

The generation, diffusion and convection of vorticity
from the sphere can be seen in figures 4.8.3a to 4.8.3d
which show the vorticity distribution as a function of
time. After aninitial radial diffusion, shown by figuré

4.8.3a; convection m

carries the vorticity to the downstrea
region of the sphere. The vorticity distribution at the

late-time steady state condition is shown by figure 4.8.3d.

The behaviour of the drag coefficients with dimension-
less time, t, is shown in figure 4.8.4. In common with all
the other solutions obtained, both the form drag coefficient,
show a continuous

C and the viscous drag coefficient, C

DP' DF'

rise with time.

The variation with time of the local Nusselt number
shown in figure 4.8.5, follows a similar pattern to those

shown by the solutions for lower Grashof numbers. During
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FIGURE 4. 8.3b VORTICITY DISTRIBUTION ARROUND THE SPHERE AT
GRASHOF NUMBER OF 50 RAND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME ., t =0.25

FIGLRE 4 .8.3a VORTICITY DISTRIBUTION AROUND THE SPHERE AT
GRASHOF NUMBER OF 50 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME . t =0.05
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FIGURE 4 .8.3d VORTICITY DISTRIBUTION ARARGUND THE SPHERE AT
GRASHOF NUMBER OF 50 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME , t =1.64

FIGURE 4 . §.3c VORTICITY DISTRIBUTION RROUND THE SPHERE AT
GRASHOF NUMBER OF 50 AND PRANDTL NUMBER OF 0.72
DIMENSIGNLESS TIME . t =0.6



the early stages of simulation, the local Nusselt number
over the solid sphere remains fairly constant since heat
transfer takes place mainly by unsteady conduction.
However, as integration proceeds with time, convective
effects\increase and, as a result, the local Nusselt
numbers over the upstream region of the solid sphere
increase until their late~time steady state values are
obtained. During the same period, the local Nusselt
numbers over the downstream region of the sphere decrease

at first but increase as the late-time steady state

condition is approached.

Figure 4.8.7 shows the variation of the surface
vorticity with time. This variation follows a similar
pattern to those described in previous sections. The
symmetrical distribution of surface wvorticity about an
imaginary plane placed between the upstream and downstream
regions of the flow region confirms that at a Grashof

number of 50, diffusion is the dominant mode of vorticity

transport close to the sphere surface.

The variation with time of the surface pressure is shown

in figure‘4.8.6. It can be observed that as simulation
proceeds with time , the surface pressure over the
upstream region of the sphere increases slowly towards
its late-time steady state value. The dimensionless
surface pressure over the downstream region of the sphere

decreases but as shown by figure 4.8.6, at a dimensionless
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time, t, of about 0.3 the dimensionless surface pressure

starts to show a shallow minimum which develops with time.

The average Nusselt number, Nu, as in the previous
cases, starts from a steady state conduction value of
2,085 and increases continuously towards its late-time
steady state value as shown by figure 4.8;8. The late-
time steady state value of the average Nusselt number for
a Grashof number of 50 and a Prandtl numbér of 0.72 is
found to be 3.82 which according to table 3 is in reasonable

agreement with experimental measurements.

The influence of the location of the outer boundary
on the results obtained for a Grashof number of 50 and a
Prandtl number of 0.72 can be judged from table 5. It can
be observed that a reduction in £he radius of the outer
boundary from 24.53 to 16.44 sphere radii leads to the
prediction of smaller values for the overall flow charact-
eristics, The final choice of the location of outer boundary

was a compromise between economy and accuracy of results.

Table 11 presents the values of the local Nusselt
number, the surface vorticity, and the surface pressure
as integration approaches the late-time condition. From
this table it can be observed that the relative changes
in the above variables during the dimensionless time period
of 1.1 to 1.6 become small. This shows that at a dimension-
less time of about 1.6 the simulation has reached steady

state condition.
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4.9 NUMERICAL SOLUTION FOR A GRASHOF NUMBER OF 125

AND A PRANDTL NUMBER OF 0.72

The simulation of the flow field around a solid sphere
in conditions of free convective heat transfer at a Grashof
number of 125 and a Prandtl number of 0.72 can be seen in
figures 4.9.la to 4.9.1d which show the stream function
contours as a function of time. The stream function contours
in figures 4.9.1a and 4.9.1d are not significantly different
from those obtained for a Grashof number of 50. However, as
integration proceeds the heated layer adjacent to the upstream
surface of the sphere becomes thiner and the fluid velocity
increases throughout the flow field. The increased velocity
of the fluid in the vicinity of the sphere causes the fluid
close to the sphere surface to be draged downstream so that
the streamlines are shifted slightly from thc upstream
region to the downstream region of the flow field. This is

shown in figure 4.9.14.

The development with time of the isotherms is shown by
figures 4.9.2a to 4.9.2d. The development of the isotherms
is similarto that described before for sﬁaller Grashof
numbers. Starting from an initial condition of pure radial
conduction, the influence of the heated body extends
uniformly in all directions. However, as simulation
proceeds, it is clearly seen from figures 4.9.2b and 4.9.2c
that in the region upstream of the solid sphere the isotherms

move closer to the sphere surface whereas in the downstream



FIGURE 4.9 .1b STRERMLINES RROUND THE SPHERE RT
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FIGURE 4.9.1a STREAMLINES RROUND THE SPHERE AT

GRASHOF NUMBER OF 125 AND PRANDTL NUMBER OF 0.72
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FIGURE 4.9.2b ISOTHERMS AROUND THE SPHERE AT
GRASHOF NUMBER OF 125 8ND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME .t =0.55

FIGURE 4.9.2a ISOTHERMS AROUND THE SPHERE AT

GRASHOF NUMBER OF 125 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME ., t =0.3
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FIGURE 4 .9.2d ISOTHERMS RROUND THE SPHERE AT
BRASHOF NUMBER OF 126 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME ., t =0.96

FIGURE 4 9 ,2¢ ISOTHERMS ARGUND THE SPHERE AT
GRASHOF NUMBER OF 126 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME ., t =0.75
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region the isotherms move further from the surface. Figure
4.9.3d shows the late-time steady state temperature contours
around the solid sphere. 1In general as the Grashof number
is increased, it is to be expected that the late-time
thickness of the heated layer around thé upstream region

of the éolid sphere will decrease and in the limiting case
of very large Grashof numbers the so-called 'boundary layer

problem' may be obtained.

The generation and development with time of vorticity
around the solid sphere can be seen in figures 4.9.3a to
4,9.3d. Initially, since the fluid velocity is relatively
small, the convective effects are small and the vorticity
distribution around the sphere is almost symmetrical about
an imaginary plane which separates the upstream and down-
stream regions of the flow region. However, as the velocity
approaches its late-time steady state value, the vorticity
is convected more and more downstream. Figure 4.9.3d shows
the vorticity contours at the late-time steady state

condition.

The variation with time of the drag coefficients,
figure 4.9.4, follows the same pattern as those obtained
for lower Grashof numbers. Both the form drag coefficient
and the viscous drag coefficient increase rapidly with time

and reach their late~time steady state values very quickly.

Table 12 shows the late-time values of the local Nusselt

number, the surface vorticity, and the surface pressure.
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FIGURE 4 .9 .3b VORTICITY DISTRIBUTION RRGUND THE SPHERE AT
GRASHOF NUMBER OF 125 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME ., t =0.55

FIGURE 4 .9.3a VORTICITY DISTRIBUTION AROUND THE SPHERE AT
GRASHOF NUMBER OF 125 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME .t =0.3
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FIGURE 4.9 .3d VORTICITY DISTRIBUTION ARCUND THE SPHERE AT
ORASHOF NUMBER OF 125 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME , t =0.96

FIGURE 4.9.3cVORTICITY DISTRIBUTION RROUND THE SPHERE AT
GRASHOF NUMBER OF 125 AND PRANDTL NUMBER OF 0.72
DIMENSIONLESS TIME , t =0.75
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From this tables it can be seen that the above variables
become relatively independent of time during the dimension=

less time period between 0.75 and 0.95.

Figure 4.9.5 shows the variation of the local Nusselt
number with time. The local Nusselt number around the sphere
remains fairly constant during the early stages of simulation.
However, as simulation proceeds with time, the local Nusselt
numbers over the upstream region of the sphere increase
towards their late-time steady state valueswhile the local
Nusselt numbers over the rear part of the sphere first decrease
rapidly and then increase slowly towards their late~time

steady state values.

The variatioh with time of the average Nusselt number
is shown in figure 4.9.8. The average Nusselt number starts
from a value of 2.085 and increases continuously towards
its late~time steady state value. Table 3 shows that the
late~-time steady state value obtained for the average Nusselt
number is in reasonable agreement with available experimental

measurements.

The variation with time of the surface pressure is
shown inlfigure 4.9.6. From this figure one cbserves that
as simulation continues the dimensioﬁless surface pressure
over the upstream region of the sphere increases very slowly
towards its late-time.steady state value. During the same
period, the dimensionless surface pressure over the down-

stream region of the sphere decreases and shows a shallow
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minimum at an angle of 120 degrees.

Figure 4.9.7 shows the variation of surface vorticity
with time. During the early stages of simulation, radial
diffusion is the dominant mode of vorﬁicity transport.

The 1a£é—time steady state surface vorticity distribution
shows a slight asymmetry between the upstream and down-

stream regions of the sphere.

It is clear that flow characteristics such as surface
vorticity, surface pressure, drag coefficients, and local
and average Nusselt numbers are dependent ﬁpon the velocity
and temperature distributions. As velociﬁy and temperature
change with time, the flow characteristics also change with
time. ¢ However, the solutions obtained for Grashof numbers
greater than 1, show that the drag coefficients, the surface
pressure, and the surface vorticity are relatively less
sensitive to small variations in the velocity and temperature
distributions than the local Nusselt number. In particular,
tables 9 to 13 show that the relative difference in the local
Nusselt numbers from one time-level to the next is greater
than the relative differences exhibited by the other flow
characteristics. Furthermore, the most important quantities
in heat transfer problems are the local and the average
Nusselt numbers. For the above reasons the épproach to the
late-time steady state condition in the present work, was
best judged by observing the relative variation of the

local Nusselt number with dimensionless time.
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4.10 NUMERICAL SOLUTION FOR A GRASHOF NUMBER OF 1250

AND A PRANDTL NUMBER OF 10

The development with time of the streamlines around a
solid sphere for free convection at a Grashof number of
1250 and a Prandtl number of 10 can be seen in figures
4.10.1a to 4.10.1d. The development with time of the flow
patterns around the solid sphere is similar to those
described in previous sections. As inrthe previous cases,
the stream function contours at late-time steady state -
condition are displaced slightly to the downstream region

of the flow field. This can be observed from figure 4.10.14.

The development with iime of the isotherms around the
solid sphere starting from steady state radial conduction
is shown in figures 4.10.2a to 4.10.2d. As expected,
conduction is the dominant mode of transfer during the
early stages of simulation and heat is mainly transferred
by unsteady conduction in all directions. This is shown
by figure 4.10.2a. However, as simulation continues, the
thickness of heated layer adjacent to the upstream region
of the sphere decreases with time whereas, the thickness
of the heated layer of fluid adjacent to the downstream
region of the solid sphere continues to increase and forms
a region of heated fluid which extends downstream to the

vicinity of the outer boundary.

The generation, diffusion, and convection of vorticity



FIGURE 4.10.1b STREAMLINES AROUND THE SPHERE AT
GRASHOF NUMBER OF 1250 AAND PRANDTL NUMBER OF 10
DIMENSIONLESS TIME ., t=0.1

FIGURE 4.10.1a STRERMLINES AROUND THE SPHERE AT

GRASHOF NUMBER OF 1250 AND PRANDTL NUMBER OF 10
DIMENSIONLESS TIME ., t=0.05



235

FIGURE 4.10.1d STRERMLINES AROUND THE SPHERE AT
GRASHOF NUMBER OF 1250 AND PRANDTL NUMBER OF 10
DIMENSIONLESS TIME , t =0.24

FIGURE 4 .10 1c STREAMLINES AROUND THE SPHERE AT

GRASHOF NUMBER OF 1250 AND PRANDTL NUMBER OF 10
DIMENSIONLESS TINE , t=0.15
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FIGURE 4.10.2b ISOTHERMS AROUND THE SPHERE AT
GRASHOF NUMBER OF 1250 AND PRANDTL NUMBER OF 10
DIMENSIONLESS TIME . t=0.1
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FIGURE 4 .10.2a ISOTHERMS ARGUND THE SPHERE AT
GRASHOF NUMBER OF 1250 AND PRANDTL NUMBER OF 10

DIMENSIONLESS TIME ., t =0.05
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FIGURE 4.10.2¢c ISOTHERMS AROUND THE SPHERE AT
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FIGURE 4. 10.3bYORTICITY DISTRIBUTION RAROUND THE SPHERE AT
GRASHOF NUMBER OF 125ﬂ AND PRANDTL NUMBER OF 10
DIMENSIONLESS TIME .t =0.1

FIGURE 4.10.3a VORTICITY DISTRIBUTION AROUND THE SPHERE AT
GRASHOF NUMBER OF 1250 AND PRANDTL NUMBER OF 10
DIMENSIONLESS TIME , t =0.05
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FIGURE 4.10.3d VORTICITY DISTRIBUTION AROUND THE SPHERE AT
|
GRASHOF NUMBER OF 1250 AND PRANDTL NUMBER OF 10 |

DIMENSIONLESS TIME . t =0.24

FIGURE 4 .10.3CVORTICITY DISTRIBUTION AROUND THE SPHERE AT
GRASHOF NUMBER OF 1250 AND PRANDTL NUMBER OF 10
DIMENSIONLESS TIME , t =0.15
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around the solid sphere can be seen in figures 4.10.3a to
4.10.34 which show the vorticity contours as a function of
time. During the initial stages of simulation, the vorticity
contours are regular and, since during this period the
dominant mode of vorticity transport is diffusion, the
vorticity contours are symmetrically distributed about an
imaginary plane situated between the upstream and downstream
regions of the flow field. However, as integration proceeds
with time the effects of vorticity convection increase and
the vorticity is convected more and more downstream. The
late-time steady state vorticity distribution shown in
figure 4.10.3d at a dimensionless time of 0.24 is more
influenced by convection than the distributions obtained

for smaller Grashof numbers.

The variation with time of the drag coefficients is
shown in figure 4.10.4. Both the form drag and viscous
drag coefficients increase rapidly towards their late-time
steady state values which they reach at a dimensionless
time of almost 0.14. However, simulation was continued to
a much larger time since relative changes in the surface
vorticity, the surface pressure, and, in particular, in
the local Nusselt number still continued to occur during
the dimensionless time period of 0.15 to 0.24. This can
be observed from table 13 which represents the late-time
values of the above variables during the time period of

0.15 to 0.24,
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It is observed for a Grashof number of 1250 and a
Prandtl number of 10 the total dimensionless time taken
for the solution to reach its late-~time steady state
condition is much shorter than that for a Grashof number
of 125 and a Prandtl number of 0.72. This is accordance
with the’reasoning given earlier which related the total
dimensionless time taken before late-time steady state
conditions are reached to the inverse of the Grashof
number. The larger Grashof number gives rise to larger

velocities which in turn, accelerate the simulation.

The variation with time of the local Nusselt number
is shown in figure 4.10.5. During the early stages of
simulation, heat transfer takes place mainly by unsteady
state conduction. This can be seen by examination of the
distribution of the local Nusselt number at dimensionless
time of 0.05 shown in figure 4.10.5 which shows that the
local Nusselt number is almost constant around the sphere
surface. As integration proceeds with time, the local
Nusselt number for the upstream region of the sphere
increase until their late-time steady state values are
reached. During the same period of time, the local Nusselt
numbers, for the downstream region of the sphere decrease
at first but increase as the late-time steady state condi-

tion is approached.

All the solutions obtained so far show that the local

Nusselt number at late-time steady state condition decreases




as the angle ®, measured from the front stagnation point,
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increases. This behaviour is conceivable from the following

physical consideration. At lower values of ®, relatively

cooler fluid moves towards the sphere surface and this causes

a higher rate of heat transfer. As the angle ©, increases
the fluia becomes warmer and this in turn, causes a lower
rate of heat transfer. From the plots given for the
variation of local Nusselt number as & function of time,
it is also observed that the change in the local Nusseit
number with the angle is much greater at higher values of
the Grashof number than at lower values. This behaviour
indicates that at relatively low Grashof numbers, heat
transfer takes place partly by conduction and partly by
convection. However, at higher Grashof number heat is

transferred mainly by convection with relatively little

contribution by conduction.

The behaviour of the average Nusselt number with time
is shown in figure 4.10.8. The average Nusselt number
starts from a value of 2.085 and increases with time to

its late-time steady state wvalue.

‘"The variations with time of the surface pressure and
surface vorticity are shown in figures 4.10.6 and 4.10.7,
respectively. It is seen from figure 4.10.6 that as
integration proceeds with time, the surface pressure

increases in the upstream region and decreases in the

downstream region. The distribution shows a shallow
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minimum at angle of 110°.

Comparison of the late-time steady state surface
vorticity distribution for a Grashof number of 125 and
a Prandtl number of 0.72 with that for a Grashof number
of 1250"and Prandtl number of 10 solution, figures 4.9.7
and 4.10.7, respectively, shows greater asymmetry between
the upstream and the downstream flow regions in thé case

of a Grashof number of 1250 and a Prandtl number of 10.

4.11 ADDITIONAL SOLUTIONS

To examine the capability of the numerical technique
used and the computer programme developed in this thesis,
additional solutions for a relatively larger Grashof
number of 12500 and a Prandtl number of 10 and a solution
for a Grashof number of 50 and a relatively larger Prandtl
number of 100 were obtained. These solution will now be

discussed.

The development with time of the stream function,
temperature, and vorticity around a heated solid sphere
in conditions of free convection to a Newtonian medium
starting from a motionless flow at a Grashof number of
12500 and a Prandtl number of 10 were similar to those
described for a Grashof number of 1250 and a Prandtl
number of 10. After an initial period in which radial

conduction of heat and radial diffusion of vorticity
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dominate the transport processes, convective effects become
the dominant mode of transfer. At the late-time steady
state condition, as was expected, the effects of convection
were ﬁore pronounced than in previous cases in which the
Grashof numbers were smaller. In particular, the surface
vorticity showed greater asymmetry between the upstream

and downstream regions in comparison with the previous
cases. However, the variations of the surface pressure,
the drag coefficients, the local and the average Nusselt
numbers with time followed similar patterns to those
obrained for a Grashof number of 1250 and a Prandtl number
of 10. The total dimensionless time taken before the late-
time steady state condition was reached was found to be 0.09
which was shorter than those for the cases already described.
The main results obtained for the solution of a Grashof

number of 12500 and a Prandtl number of 10 are presented

in table 6.

The solution obtained for a Grashof number of 50 and
a Prandtl number of 100 is slightly different from the
solution obtained for a Grashof number of 50 and a Prandtl
number of 0.72. During the early stages of the simulation,
conduction was the dominant mode of heat transfer but as
simulation continued, the fluid velocity and the convective
effects increased and the thickness of the heated region
upstream of the sphere in the immediate wvicinity of the

sphere surface decreased with time. However, the heated
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region downstream of the sphere extended with time. As
may be expected, it was observed that the thickness of
heated layer adjacent to thévupstream region of the solid
sphere for a Grashof number of 50 and a Prandtl number of
100 wasfless than that for a Grashof number of 50 and a

X

Prandtl number of 0.72. However, the reverse was the case

in the downstream region.

The variation with time of the surface vorticity, the
surface pressure, the drag coefficients, the local Nusselt
number, and the average Nusselt number followed a similar
pattern to those described for the Grashof number of 50 and
Prandtl number of 0.72. The local Nusselt number around
the solid sphere remained fairly constant during the early
stages of heat transfer. However, as simulation continued,
the local Nusselt numbers over the upstream region of the
sphere increased until their late-time steady state values
were attained. During the same period the local Nusselt
numbers over the downstream region of the sphere decreased
at first but increased as the late~time steady state condition
was approached. Late-time steady state values of the local
Nusselt numbersat the front and rear stagnation points were
found to be 16.4 and 0.39, respectively. The main results
obtained for a Grashof number of 50 and a Prandtl number of

100 are presented in table 6.
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4.12 GENERAL DISCUSSION

In chapter 2, it was observed that experimental studies
of free convective heat transfer from solid bodies have been
directed primarily towards obtaining correlations which
expressathe average rates of heat transfer in terms of
dimensionless groups which specify the system. These dimen-
sionless groups for free convection are the average Nusselt
number, Nu, the Grashof number, Gr, and the Prandtl number,

Pr. The correlations usually take the following form:
= B R
Nu = A + BGr Pr (4.12.1)
For generality and ease of use, it is desireable to
present a relationship between the average Nusselt numbers

obtained in this work, and the Grashof and the Prandti

numbere, in the form cf expression (4.12.1).

The constant A in equation (4.12.1) may be considered
to be the value of the average Nusselt number that would be
obtained in the limiting case of zero Grashof number. This
limiting case would thus be that of steady state conduction
from a heated solid sphere to an infinite stagnant medium
of lower temperature for which the average Nusselt number

has a value of 2.

To determine the best values of the constant B and the
exponents n, and n, of the equation (4.12.1), extensive
computer experiments, based on the late—-time steady state

average Nusselt numbers obtained from the numerical solutions



of the time~dependent and time~independent equations were
carried out. The computer experiments revealed that it was
not possible to find a single relationship which fitted the
data for the wide range of Grashof numbers used in this

thesis. Two different relationships were used as follows:
).{' ~

2

Nu = 2 + 0.39562(Ra)0-4 (4.12.2)
for:

0.035 éa 36

0.d5 <Gr<50

0.7 <Pr\<\1oo (4.12.3)
and;

Na = 2 + 0.75159 (Ra)©-2° (4.12.4)

for:

36 QRa 125000

s s

50 Gr L2500

0.7 Qr Qoo (4.12.5)
where: Ra = Gr x Pr .

Figure 4.12.1 shows the variation of the 1at§—time
steady state average Nusselt number with Grashof nﬁmher,
for a Prandtl number of 0.72. The analytical solution of
Hosséin (1966) , and experimental data of Mathers et al
(1957), Tsubouchi and Sato (1960), and Yuge (1960) are

also included in figure 4.12.1.

Figure 4.12.2 shows the variation of the late-time

steady state average Nusselt number obtained in this work
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with Rayleigh number, Ra. In figqure 4.12.2, experimental
results of Yuge (1960), (for Pr=0.72) and Mathers et al
(1957) are also plotted for comparison purposes. The
present solutions predict lower values of the average
Nusselt number than the experimental measurements shown
in figure 4.12.1 and 4.12.2. The maximum difference,
relative to the results of Mathers et al is about 11%;
relative to the results of Tsubouchi and Sato and to the

results of Ranz and Marshall it is about 20%.

It must be noted that most experimental measurements

of free convective heat transfer rates are influenced by

and radiaiton leading to overestimation of values of the
average ‘Nusselt number. It is possible that the lower
cxperimental valucs cf the Nusselt numbers shown in fiqures
4.12.1 and 4.12.2 are the most likely to be correct.
Furthermore, the properties of the system, such as; fluid
density, viscosity, and thermal conductivity are frequently
not known accurately enough to give accurate evaluations

of the average Nusselt number.

'As a check on the accuracy of the numerical solutions

|
|

|

|

forced convection and suffer from losses due to conduction
\

\

\

|

|

|

|

|

|

\

|

|

|

i

a few numerical tests were conducted as follows: |
\

\

Dimensionless surface pressures were computed using
two different methods. In the first method the surface

pressures were calculated from the vorticity values as
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expressed by equation (B.3.8) in appendix B. In the second
method the calculation was based on the stream function
values as expressed by equation (B.3.14). The difference
between the surface pressure values obtained using the two
different methods was in the region of 1% to‘15% based on
the values obtained from equation (B.3.8). To determine
the cause of the above discreponcy, numerous computational
experiments were carried out from which the following

conclusion was drawn.

The numerical solutions of the equations of free
convective heat transfer from a solid sphere presented in
this thesis give a good approximation of the local values
of the temperature, the stream function, and the vorticity.
Using these values, it is possible to obtain good appfoxima—
ticns ¢f the first order derivatives of the temperature,
the stream function, and the vorticity. The second and
higher order derivatives of these variables are less acéurate
and any integration which requires second order and, in
particular, higher order derivatives, will yield inaccurate

results.

In order to provide a further check on the accuracy
of the numerical solutions the following first order
derivatives were calculated from the solutions: the first
order derivative of temperature with respect to angle, ©,

along the axis of symmetry; the first order derivatives



of the stream function aloﬁq the surface of the sphere and
on the axis of symmetry with respect to © and z; and the
first order derivative of vorticity with respect to © along
the axis of symmetry. For all the solutions, the values
of the above derivatives were found to have a magnitude of

-10 20

10 to 10~ and to be relatively close to the required

value of zero.

The average central processor time required to obtain
a late-time steady state solution was found to be approximately
three and half hours when using the University of London

Computer Centre's CDC7600 digital computer.

4.13 TIME-INDEPENDENT SOLUTIONS

The numerical technique developed for the solution of
the time-~independent equations provided solutions which for
Grashof numbers up to 25 were in reasonable agreement with
the late-~time solutions of the time-dependent equations.

For Grashof numbers of 10 and 25, some vorticity fluctuations
were noticed close to the outer boundary. This fluctuation
behaviour has been recorded by other authors working on the
numerical calculation of flow fields. It is generally known,
however, that as long as the magnitude of the fluctuations

is relatively small, it is unlikely that the solution, and,
in particular, the derived flow characteristics close to
sphere surface, will be affected. However, the surface

vorticity and, as a consequence, the surface pressure, and




255

the drag coefficients were slightly affected by the
fluctuations of the vorticity at the outer boundary, in
the solution obtained for a Grashof number of 50 and a
Prandtl number of 0.72. To avoid numerical divergence

of the‘surface vorticity, it was necessary to use much
smallermfelaxation factors and to increase the wvalues

of the convergence criteria. Even so, for Grashof numbers
greater than 50, time-independent solutions could not be
obtained. The average central processor time required to
obtain a solution for Grashof numbers of 0.05 to 1 was
found to be about one hour, for Grashof numbers between

1 and 25 it was found to be about three hours and for
Grashof numbers between 25 and 50 it was found to be
about four hours when using the University of London

Computer Centre's CDC7600 digital computer.
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CONCLUSIONS

The results of the present study may be summarised as

follows:

1. A finite-difference method of solution of the
Navier-Stokes and energy equations has been developed for
axisymmétric time—-dependent free convective heat transfer

from a solid sphere.

2. The time-dependent Navier-Stokes equation was
expressed in the formofavorticity transport equation and
a stream function equation. The energy equation was
expressed in a form similar to the vorticity transport
equation. These three equations were solved simultaneously.
The vorticity transport and energy equations were solved
using Peaceman and Rachford's alternating diractio% implicit,
ADI, method. The stream functin equation was solved using

a point interative successive over-relaxation, SOR, method.

3. In order to preserve the transportive property and
to obtain convergence, an upwind differencing scheme was
used for the finite-difference representation of the convective

terms of the vorticity transport and energy equations.

4. A computer programme was developed to solve the
finite-difference equations. Numerical solutions were
obtained for Grashof numbers of 0.05, 1, 10, 25, 50, 125

for a Prandtl number of 0.72. Solutions were also obtained
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for Grashof numbers of 1250 and 12500 for a Prandtl number
of 10; and for a Grashof number of 50 and a Prandtl number

of 100.

5. The solutions showed that for all the Grashof and
Prandtl numbers used, the distributions of vorticity and
temperature around the solid sphere remained almost symmet-
rical about an imaginary plane located between the upstream
‘and downstream regions of the flow field during the early
stages of simulation., However, as integration proceeded
with time the effects of convection increased until the

late-time steady state solutions were attained.

6. It was observed that at low Grashof numbers,
the late -time steady state st?eam function, vorticity, and
temperature distributions remained almost symmetrical about
an imaginary plane placed between the upstream and downstream
regions of the flow field. However, an examination of the
temperature distribution revealed that even at a small Gras-
hof number of 0.05 weak conveqtion processes were present
in the region close to the outer boundary. As the Grashof
ﬂumber was increased the convective effects became more and
more pronounced and the vorticity and the heated fluid were
convected more and more into the downstream region of the
flow field. At the same time the thickness of the thermal
layer around the upstream region of the sphere decreased

and the streamlines were displaced in the downstream region




of the flow field.

7. It was observed that the total dimensionless time
taken before late~time steady state conditions were reached

became shorter as the Grashof number was increased.

8. The solutions were used to calculate other
quantities which characterize the free convective flow
such as;the local and average Nusselt numbers, the dimension-
less surface pressure, the pressure drag coefficent, andr
the viscous drag coefficient. These quantities showed
different sensitivities to small variations of velocity
and temperature with time. In particular, the local
Nusselt number appeared to be particularly sensitive
and was used in order to judge the approach to the late-

time steady state solutions.

9. During the early stages of simulation, the local
Nusselt number was approximately constant around the solid
"sphere. However, as the simulation continued the local
Nusselt numbers over the upstream region of the sphere
increased towards their late-time steady state values
while the local Nuéselt numbers over the downstream region
of the sphere decreased at first and then increased to
their late-time steady state values. It was also observed
that the average Nusselt numbers increased conitnuously
from their initial values which corresponded to that of

steady state conduction to their late-time steady state
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values. The computed values of the late-time steady state
average Nusselt number found to be slightly low in comparison

with experimental data available in the literature.

10. It was observed that the surface vorticity
distributions for small and moderate Grashof numbers,
remained almost symmetrical about an imaginary plane
situated between the upstream and downstream regions

of the flow field.

11. Dimensionless pressure distributions at the
surface of the sphere were computed from the vorticity
values.and also from the stream function values. The
difference between the results obtained from the two
different methods was in the region of 1% to 15% based
on the values obtained from vorticity values. With the
increasing Grashof number, the dimensionless surface
pressure over the upstream regioq of the sphere increased
while the dimensionless surface pressure over the downstream
region of the sphere decreased and exhibited a shallow

minimum which developed with time.

12. The viscous drag and pressure drag coefficients
were found to increase quickly to their late-time steady
state values which increased with Grashof number. The
pressure drag coefficents were calculated from vorticity
values as well as from values of the stream function.

The difference between the results obtained from the two




different methods was in the region of 1% to 15% based on

the values obtained from vorticity distribution.

13. The use of Peaceman and Rachford'd alternating
direction implicit method yielded stable numerical solutions
of the equations which describe time-dependent free convec-—
tive heat transfef from a solid sphere. The solutions were
quantitatively reliable as far as could be ascertained from
a comparison of the predicted results with existing experi-

mental data.

14. The solution procedure developed in this work
haé been used to obtain solutions for a restricted range
of Grashof and Prandtl numbers and has also been applied
to only one geometrical shape; the sphere. However, as
procedure has been shown to provide reliable results it
could probably be)used to obtain solutions for problems
involving different geometries and different values of

the Grashof and Prandtl numbers.
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APPENDIX A

VECTOR RELATIONSHIP, ORTHOGONAIL CURVILINEAR COORDINATE

SYSTEM AND TRANSFORMATION OF THE POLAR COORDINATE SYSTEM

TO RECTANGULAR SYSTEM

&
Vector Algebra

A vector quantity can be expressed as follows:

A = Alel + A2e2 + A3e3 (A.1.1)

where ey e2 and e3 are the unit vectors in Xl’ x2 and X3

directions, respectively, and Al, A2 and A3 are the scalar

components of the vector A.

For orthogonal coordinate systems, the scalar and

vector products of two vectors A and B become:

A.B = Ale + A2B2 + A333 (scalar product) (A.1l.2)
e; e, e,

AxB = A, A, 2y (vector product) (A.1.3)
By By By

Vector Operators in . Orthogonal Curvilinear

Coordinate System

It can be shown (Spiegel 1959) that the vector
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operator Vv has the following form in orthogonal curvilinear

coordinate system (Xl,xz,XB):

e e e
_% 5 %2 3 %3

]
.
[\ 8]
N
w
w



FIGURE A.2.1 ORTHOGONAL CURVILINEAR COORDINATE SYSTEM

o~ T {3 —_— 1 - 1 E
where h,{i = 1,2,3) are the scales factors.

1

Equation (A.2.1) is used to derive the expression
for the gradient, divergence and curl operators in

orthogonal curvilinear coordinates.

The gradient of a scalar quantity ¢ is given by:

29
5%, T

6

2
2= +
3

.o
D"IN(D[
'J'wabl

29 (A.2.2)

grad ¢ =V o= 3
3 3

1

=
N
©

|
If A is a vector quantity defined by equation (A.1.1),

|

\

then the divergence and curl of A are given by:

= 1 3 3

div A =V .A = (h,h,Al) + —=— (h h.A,) |
hihohy | 89X, 273710 T RX, T1U372 1
3
+ 5% (h;h,A4) (A.2.3)

3
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h,e; hye, hie,
- - 1 3 3 3
curl A = VXA = (A.2.4)
) RER, |3%, 3%, 3%

hlAl h2A2 h3A3

Equations (A.2.2) to (A.2.4) show clearly that div A
is a scalar quantity, but that grad ¢and curl A are both

vector gquantities.

The divergence of grad ¢, Vzw, is an important
quantity and can be expressed, using equations (A.2.2) and

(A.2.3), as follows:

V. Vo) =V o
! 5 (hzhs 20,
hlh2h3 axl hl axl
+ 9 (hlh3 39)
9%, h, 3%,
h.h :
172
+ =2 ( .9y (A.2.5)
3X3 " hy 38X,

It can be shown (Spiegel 1959) that for spherical

polar coordinates scale factors have the following forms:

X

f
2}
o]

N

il
(/]
e

f

1 3 =9

it
b.—l
j=
i
R
=2
L]

hl rsing

A.3 Vector Relationship

The following relationships between vector operators
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can be found in standard texts such as Kreyszig (1967)
and Spiegel (1959). They are used to express the vector
operators in standard forms whose transformations to

any orthogonal curvilinear coordinate system are immediate.

v(A.B) = (AV)B + (B.W)A + A x (VxB) + B x (VxA)
(A.3.1)
Vx(AxB) = A(V.B) - B(vW.A) - (A.v)B + (BW)A (A.3.2)
V2R = V(V.E) - Vx(VxE) (A.3.3)
AV)o=ZAVo ‘ (A.3.4)
curl grad ¢ = V x(Vo) = 0O (A.3.5)
div curl A =V.(VxA) =0 (A.3.6)

A.4 Transformation of Polar Coordinate System to

Rectangular System

The spherical polar coordinate system, (r,®,®), has
been arranged as shown in figure 2.2.1. As explained
earlier, for the case of axisymmetric flow with no rotation
past a stationary sphere, the component of velocity in the
® - direction is zero everywhere, and all variables are
independent of ®. Thus, the coordinates in the meridian
plane, (r,®), are the only coordinates required to describe
the flow and the spherical polar coordinate system is

reduced to the polar coordinate system, (r,®).
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Consider the dimensionless polar coordinates (r,®)
and Cartesian coordinates (Y2, Y3). In general, for any

complex number W there corresponds a point P with .

Cartesian coordinates(yz, Y3) or with polar coordinates

(r,®) aélfollows (Kreysizig 1967):

Y. + iy (A.4.1)

W=y, 3

W=r el® (A.4.2)
This is shown in figure A.4.1. Therefore, the polar

coordinates (r,®) can be related to the Cartesian coordinates

(22: ¥3) as follows:

. - ie
Y2 + 1Y3 r e (A.4.3)
but according to Euler formula:
ele = coée + isin®
hence;
Y2 + iY3 = r (cos® + isin® ) (A.4.4)

By equating the real and imaginary parts of relation

(A.4.4), the following relations can be obtained:

r cose (A.4.5)
r sin® (A.4.6)

¥,
Y3

By elimination of @ between expressions (A.4.5) and

(A.4.6), the following relationship can be obtained:

2 .2 _ .2 ‘
Y5 + Y3 = r _ (A.4.7)

which, for different values of r, describes a family of

concentric circles as shown in figure A.4.2.



By elimination of r between relations (A.4.5) and

(A.4.6), the following relationship can be obtained:

Y, = (tan®) Y

3 2

which, for different values of ® , describes a family of

©

radiating straight lines as shown in figure A.4.2.

For the reasons given in chapter 2, it is desirable
to transform the dimensionless polar coordinates (r,®)
to a system of rectangular coordinates. This transformation

may take place through an ekponential function as follows:

F=e (A.4.8)

which defines a mapping which is conformal everywhere,

because its derivative is different from zero at every

z+i®

point. Now if F = e  then from relations (A.4.1)

w

- — — — — — — — —y W=Y, + iY

=;Y2

FIGURE A.4.1 GEOMETRICAL REPRESENTATION OF A COMPLEX NUMBER
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FIGURE A.4.2 POLAR COORDINATES (r,p) IN A MERIDIAN PLANE
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FIGURE A.4.3 MODIFIED POLAR COORDINATILS(z,@)
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and (A.4.8), one may write:

Y. + iy .
e 2 3 -2t 16 (A.4.9)

By equating the real and imaginary parts of relation

(A.4.9)°, the following relation can be obtained:

Y, = 2 and Y, = © (A.4.10)

However, by equating of F = eZ+l€3 and relation (A.4.2)

one may write:

z+1i i
e ®:= r el@
so that:
z
r = e

The new coordinates (z,8) are plotted in figure
A.4.3 which shows that the vertical lines z = constant
and the horizontal lines ® = constant correspond to the’
concentric circles and the radiating straight lines of
figure A.4.2, respectively. The shaded areas in the two
Qiagrams correspond , and the ;ine z=0 corresponds to
the surface of the solid sphere (r equal to unity). Hence,
by the transformation r=ez, the external region on the
right hand side of figure A.4.2 is mapped onto the
rectangle of figure A.4.3 which is bounded by the lines

€=0; =1 ; 2z=0, and zézw.

270
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APPENDIX B

CALCULATION OF THE DIMENSIONLESS PRESSURES AT THE FRONT

STAGNATION POINT AND AT THE SPHERE SURFACE

B.1l Introduction
'\‘_1

The continuity equation, equation (2.3.3) and the
time-dependent Navier-Stokes equation in polar coordinates,
equations (2.3.20) and (2.3.21), for free convective heat
transfer from a solid sphere are given in chapter 2. These

equations are rewritten below as:

The continuity equation, equation (2.3.3)

1
3r r rsin®

53—9 (ugsine) (B.1.1)

The Navier-Stckes cguation:

r-component, equation (2.3.20):

2
Ju + aur+’u®8ur_u®v=_ lan
at r or r 3@ r P, O
su
2 2 2 © 2 |
+ Vv u - s u, - -5 —= - —5 ucot®| - gp cos & (T-T )
r r2 r r2 20 r2 )

(B.1.2)

®-component, equation (2.3.21):

e, Mo Yele UM _ _1 1°Fa
3¢ r r r 90 r R, ¥ 9®
2 2 9y Ug

+ gB_ sin® (T-T ) (B.1.3)



The vorticity, T, is defined by equation (2.4.5) as:

‘_ 1 {3 ?
C= T ['a—r-_ (ru@) - '—aé (ur)] (B.1.4)

For convenience, the subscript 4 from the pressure terms
will be omitted and P will be used exclusively on the
understanding that the local pressure, P, will be measured
relative to the undisturbed static-fluid pressure at the

point considered.

B.2 Calculation of the Dimensionless Pressure at the

Front Stagnation Point

As stated in chapter 2, aloné the axls of symmetry
the velocity ugr the stream function, , and all their -
derivates with respect to r are zero. Therefore, along
the axis of symmetry, equations (B.1l.1), (B.1l.2) and

(B.1.4) become; respectively:

Ju 2u au
_r,_x,1l_T_o (B.2.1)
oxr r r 3@
su au 2 u 3u azu
r o, r _ 1 3P r 2 r 1 r
—_— u == - = o 5 + = T + = 5
et r or P, 9T ar r r r? se
au 2u u
cot® r r 2 e
+ - - = -B T-T B.2.2)
2 30 2 2 3 w9 ) (
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FIGURE B.2.1 INTEGRATION OF PRESSURE ALONG THE AXIS OF SYMMETRY

and,

-1 _r
C= = , (B.2.3)

m

3

A e
o

2
3 l_aue L e _1° [ _2Ug 1 3% 3 Yy
3 3 Y

2] Lar i
(B.2.4)
By differentiation of equation (B.2.l1l) with respect to r

and substitution into equation (B.2.2), the following

equation can be obtained:

2
Vrin Br o 13p  ve | _? "% _ 1%
ot r ar p_ar r 9r3e r 3e
a u Ju
l" "r cote x| _ _

Now, by substitution of equations-(B.2.3) and (B.2.4) into

!
equation (B.2.5), one obtains:
au au
r r_ . _13 , vof _3C _ _C - - .
ot + Ur T3t P or r ) tane® B9 (T Tw)

(B.2.6)



But along the axis of symmetry, both tan €and { are zero.
Therefore, using L'Hospital's rule;
Limit —&_ - —3C
e »0 tan® 13
so that équation (B.2.6) becomes:
au au
r r __ 13 _ 23C_ _
5t T Yr Tor B, 3r =T 3 9B, (T-T,) (B.2.7)

By integration of equation (B.2.7) along the axis of
symmetry between points A and B shown in figure B.2.1,

the following expression is obtained;
1. 2 - 2 1 -
2 [(ur)B (ur)A] + 5o (Pg ~ Py)

B .
= f z ——gdr - -—~ dr - [B g (T- -T_ )ydr (B.2.8)
A 4N

By use of the dimensionless variables expressed by relation
(2.5.1) and introduction of the dimensionless pressure, K,

defined as follows:

P R2

50,V

K-—

(B.2.9)

equation (B.2.8) becomes:

N =

*2 *2 1
[ (@, g = ("), J t 5 (Kg- K,) i
B * B

u *
[ agdz—./‘BZ -GrfTezdz
A A3t A

(B.2.10)
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Now, if point A is on the outer boundary and if point B

is at the front stagnation point, then, at any time t:

* * *
(uz)A =u, _ =0 ; (uz)B - u _ =0 i
z=Z z=
**KA = 0 and ‘KB = KO
Thus:
O * Oau* 0
*
Ky = - ./r —%%-dz i]r —Z e?az - GS/QT e?az (B.2.11)
z, z, 0t 20 <

*
Now if u, is expressed in terms of the stream function,

equation (B.2.11) becomes:

2m zﬁb

* Zi 2 % *
Ky = 4f gg dz - ‘2/‘—2 a* (——-—l-b—z-) dz + Grf T e?dz
o (o) e"at 20

0 (B.2.12)

The integrands in equation (B.2.12) are evaluated at ©=0.

B.3 Calculation of the Dimensionless Pressure at the

Sphere Surface

The pressure distribution on the sphere surface can
be derived from the ®-component of the time-dependent
Navier-Stokes equation, equation (B.1l.3) as follows. As
stated in chapter 2 the following conditions apply at the

sphere surface:

su o au 3
= - ®&_ _©® _ r _ "o _
U =% = 3t " e ~ 36 e =0 (B.3.1)

Therefore, at the sphere surface, equation (B.1l.3) may
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O=T e=0

FIGURE B.3.1 INTEGRATION OF PRESSURE AT THE SPHERE SURFACE

be written as:

1 3P _ 2 . _
FO;? 5'-@— = V.V u + gBms:LnG) (T Tw) (B.3.2)
OX:
82u au
1l 3P -V e + _g e |+ gBmsin® (T—Tw) (B.3.3)
p_xr 0O © arz r 3

r
Also, from equation (B.1l.4):

2
B§S=Bu®+l3ue (B.3.4)
or sp2 L dx ' U
and
C 3u
s _ 1 e
- =% 5% (B.3.5)

By substitution of equations (B.3.4) and (B.3.5) into

equation (B.3.3), one obtains:
3. T
1 3p _ s , _s . -
5T 76 ° v ( =t T )+ B_gsin ® (T-T,) B (B.3.6)
%
By expressing equation (B.3.6) in dimensionless form and

integrating between the points C and D shown in figure

B.3.1, one obtains:
D *
ol *
KD = KC - 2Gr (cos@D - cos@C) + 2 . (-—5-2- + T )de (B.3.7)
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If point D is at an angle®, and C is at the front
stagnation point where © =0, then

|

Kc = KO and KD = Ka

and equation (B.3.7), may be written as: ‘
N
|

*
a ‘
Kg= Ky + 2 Gr (1-cos@) + 2 | (—= + ') de (B.3.8) |
o ’o z -

The integrands in equation (B.3.8) are evaluated at the
sphere surface, z=0. Equation (B.3.8) can be integrated 1
in the above form or it can be rewritten in terms of stream
function values as follows using the following relationships

which were obtained in section 5 of chapter 2:

0g * 2 % * 2 ok *
e“%g =——w—32-3a¢z+3¢2—cot®g%
0z 3 6
and
* * o
G =T e sine

Thus; by substitution: -~

*
- 3w (B.3.9)
cot® )

3 * 2 * * ) zw*
e zsin@C. = 2 '~2U - asb + 2 5
az< - z 38

Differentiation of equation (B.3.9) with respect to z

leads to:

*  af 330" a2yt a3, azw*
e3zsin®(3c + acz) = ¢3- g+ 2‘1’ -cot@-a—m
3z 3z 3032
(B.3.10)

By application of the boundary conditions expressed in

chapter 2, at the sphere surface, equation (B.3.1l0)




reduces to:

3% 2 %
=2V __ 3y (B.3.11)

z=0 az3 322

*
sin @ (3C + %—)

The surface vorticity is given in chapter 2 as:

Sx 1 32‘11*
z=0 d z

By substitution of equation (B.3.12) into (B.3.1l1l) the

following relationship can be obtained:

3*
= 1 _93"Y
sin@ az3

- .
9L (B.3.13)

4*
39z" <

z=0 Z=0 z=0

Equation (B.3.8) can now be written as follows for the

calculation of the surface pressure:

e 3 %
_ 1 2y *
Ko =K, + 2 Gr (l-cos ©) + 2 (—5—5 == ~ 3C) de

e C o sin 52>

(B.3.14)

The integrands in equation (B.3.14) are evaluated at the

sphere surface, Z=0.
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APPENDIX C

CALCULATION OF THE DRAG COEFFICIENTS

C.1 Introduction

The drag force on an immersed body is the resultant
of the 'pressure drag' and 'frictional drag' forces exterted

by the fluid on the surface of the body.

At every point on the sphere surface there is a
force per unit area which acts perpendicularly to the
sphere surface (see figure C.1.1). The drag force obtained
by integration over the sphere surface of this force is

known as the 'pressure drag' or 'form drag', D Also,

p*
at every point there is a shear stresé acting tangentially
to the sphere surface. The drag force obtained by integ-
ration of the shear stress over the sphere surface is known

as the 'frictional drag' or ‘viscous drag', DF'

It is customary to express the drag force in terms
of a dimensionless coefficient, CD' which for free convec-
tion at a given time, t, is defined in the present work
as:
DRAG FORCE

C, = (C.1.1)
D o v 2

CROSS-SECTIONAL AREA x % ———%—
R

The drag coefficient obtained from the pressure drag,

R



rée

FIGURE C.l1.1 FORCES ON THE SPHERE SURFACE

DP’ and the viscous drag, D_; will be denoted by C

F DP
and CDF’ respectively. The total drag coefficient,

C is the sum of the two drag coefficients,C and C

DT’ DP DF*

C..=C._ +C__ (C.1.2)

C.2 Calculation of the Pressure Drag Coefficient

From equation (C.l.l1l), the pressure drag coefficient,

C is defined as follows:

DP’
D
- P
TR x % uﬁ_?_

R

With reference to figure C.1l.1, the pressure drag force,

D can be calculated as follows:

Dp =// P sin Bds (C.2.2)

PI

S
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where B =n/2 -6

2

and dS = 2 nR” sin&de

Therefore,

P
: 0
% 2
But, as before: K = ——~£5—7?—

ke, v

TL
D. = nszP sin 264 © (C.2.3)

-]

Therefore; n

2
D =nR2 (%9—1\19—)-/ K_,sin 2©4 © (C.2.4)
P 2 e
R
o
Hence, by application of equation (C.2.1):

Cpp = fK 6sin 2ede (C.2.5)
o

where KE) is calculated from equation (B.3.8) or from

eqguation (B.3.14).

C.3 Calculation of the Viscous Drag Coefficient

From eguation (C.1l.1):

D
c.. = F (C.3.1)

DF 2

R

With reference to figure C.1.1, the viscous drag force,

DF' can be calculated as follows:

DF = [/Tre cos Bds (C.3.2)

S
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‘where B = ; -9
das = 2nR2 sin® 4
u au
= e 3 e 1~
tre = U [r 7 (r ) + z 76 ] (C.3.3)

However, on the sphere surface:

& du,
u®=ur=—2—®——=0
Therefore:
Ju
T ‘—"Ll.o::—--—Q
re or
Also,
§=_8u—8+11_@.-_]:fl-1£
°r r r 230

Therefore equation (c.3.2) reduces to:

\

|

|

|

\

n |

Dp = 2m Rzu{ g, sin®e d& (C.3.4) ‘
o) : |

\

|

The drag coefficient is defined by equation (C.2.1),
so that when all functions are written in dimensionless

form, the viscous drag coefficient is obtained as:

T

* .2 |
Cpp = 4 /gs sin‘e de (C.3.5) 1
0
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APPENDIX D
CALCULATION OF THE LOCAL AND THE AVERAGE

NUSSELT NUMBERS

D.1 Calculation of the Local Nusselt Number

In convective heat transfer, the quantity of most
practical importance is the rate at which heat transfer
takes place from the surface of the body to the surrounding

fluid.

In accordance with Fourier's Q%w of heat condition,
the heat flux q, normal to the surface of a sphere, at

any instant of time is given by:

T
q = - k — (D.l.l)
r T or r=R
whare kT ie the thermal conductivity of the fluid and
%% is the local temperature gradient at the surface in

the direction of the outward normal to the surface,

r-direction.

The local heat flux may also be expressed in terms

of the local heat transfer coefficient, h (@), as follows:
9, = h (@) (T, - T)) (D.1.2)

Ecuating ecuations (D.l.1) and (D.l.2) one obtains:

h (8 ___ 1 aTL (D.1.3)
k (TS—Tm) ar | _p L




The local Nusselt number, Nu_ , is defined as follows:

e

_ h (e) x 2R
Nue = kT (D.1.4)

By substitution of equation (D.l.4) into equation

(D.1.3)% one obtains:

_ - 2R 3T
Mg = —w_ T ar

(D.1.5)

[= ]

r=R
Equation (D.1.5) can be rewritten in dimensionless form

as follows:

(D.1.6)

D.2 Calculation of the Average Nusselt Number

The average rate of heat transfer, from the sphere

surface can be determined as follows:

The total heat flow rate from thg sphere surface,

QT, can be evaluated as follows:

o = ffqr as (D.2.1)
s

where 9. is the local heat flux and dS is an element of

surface area on the sphere surface.

QT may also be expressed in terms of an average or

overall heat transfer coefficient, h, as followé:

op =R s (T, - T.) (D.2.2)
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Therefore, by equating equation (D.2.1) and (D.2.2), one

obtains:

h s(ty - T,) =g/]qr ds (D.2.3)

By subsgitution of qy from equation (D.1l.1l), ecuation

(D.2.3) can be expressed as:

E_._-____l__f 3T
k., S(Ts-Tm) or

T

ds (D.2.4)

r=

where for a sphere;

S=4n',R2

2

and ds R sine de do

therefore, equation (D.2.4) becomes:

_ 21 T
%.:- 5 1 ff—g—i-' R2 sine dedo
T 4nR” (T - T,) 5 Yo i
r=R (D.2.5)
or
h2) 1 f“ 3T .
“r 2(Ts7Ta)o 3r|r=R

The overall or average Nusselt number, Nu, is defined as

follows:

Z|
’
J=
"
%

(D.2.7)

By substitution of equation (D.2.7) into eguation (D.2.6),
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one obtains:

n
— _ _ R T .
Nu = = ngjﬁj-4§ 3 singde (D.2.8)

r=R

Equation (d.2.8) can be rewritten in dimensionless form

as follows:
— P * )
Nu = - f EEL singde. . . . (D.2.9)
z Lo .

But, from equation (D.1.6)

2=0
Thus, equation (D.2.9) can be rewritten in terms of the
local Nusselt number as follows:

— m N "
Na = %f Nug sinede | - | (D.2.10)
A ‘
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APPENDIX E

NUMERICAL INTEGRATION AND DEFFERENTIATION .

E.1l Introduction

The solutions of the finite-difference equations
ML '
derived in chapter 3 provide the numerical values of
the stream function, vorticity, and temperature at each

point in the flow region at any time.

From these distributions, other quantities, such
as the surface pressure, the drag coefficients, and the
. local and the average Nusselt numbers can be obtained as
described in appendices B, C and D, respectively. The
calculation of these quantities requires numerical
evaluations of the first derivatives_of the dependent
variables with respect to space variahles or to time
variable, and also the numerical evaluation of integrals

over any range of the independent variables.

E.2 Numerical Integration

The integral of a general function W(X) over the

It

limits X Xa and X = Xb may be evaluated by the use of
the 'trapezoidal rule'. The integration formula can be

derived as follows:

The interval of integration, whose length is Xb—Xa,

is subdivided into n equal parts of length AX, as shown
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in figure E.2.1. |

Therefore;

AX =

Then tHe n trapezoids in figure E.2.1 have the following

areas:

1. 1 - -
3 [W(Xa) + w(xz)i] AX, 3 W(Xz) + W(X3)] AX, ...,
Llwe ) + wix) | ax
2 n-1 b .
Thus,
Xp
W(Xa)
W(X)dX = AX 75— F WX, + W(Xy) + ...+ W(Xn—l)
W(X
X + (b)
a 2 (E.2.1)
-l
W
W=W (X)
// AX AX
X > X
X, %3 X3 X-1 %

FIGURE E.2.1 THE TRAPEZOIDAL RULE
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Equation (E.2.l) can be written in the following compact

form:
Xy .
W(X_) + W(X,) nl
W(X)dX & AX a Dby ZW(XJ) (E.2.2)
.k J=2
Xa

E.3 Numerical Differentiation

Consider a general function W(X) and let W(XO)=Wl

and W(Xo+h)=W ... Where h=AX.

2'
Define a forward difference operator A and a

differentiation operator D as follows:

nW(x ) = wi(x ) = W (E.2.2)
Ld A Ol LY Oi ax X=X N
O
From Taylor's series expansion, one can write:
h2
= - 1 et "
W2 = W(Xo+h) = W(XO) + hw (XO) + 37 W (XO) + e (E.3.3)

By substitution of equations (E.3.2) into equation (E.3.3),

and noting that W(XO) = Wl’ the following equation can be

obtained:

2.2
W, = (1+hD+9—25,’—-+...)wl=eth

2 (E.3.4)

1

Thus, from equations (E.3.1l) and (E.3.4), the following
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relationship can be obtained:

P = 1 + 4 (E.3.5)
orxr s
hD =
" 1 .2 1 .3 1 .4 .
= A-' "'2- A + "'3‘ A had z A + o8 e (E.3-6)

|
\
|
|
|
l
|
|
|
|
1n (1+4)
|
|
|
which on operating on Wl gives the following relation: |
|
|
|
|
1

_ 1.2 i,3_1.,4
hDWl = { A 5 AT + 3 AT, 7 A° + ...)Wl (E.3.6)
or * |
' o= - 1,2 1,3, 1,4 |
th = AWl 5 A Wl + 3 A W1 2 A Wl + ... .(E.3.7) 1
1
where:
|
AW1 = Wz - Wl (E.3.8) |
W |
A |
|
|
|
|
W3 i
|
Wy i
Wy
h h
~ - >
» X
X0 Xl X2

FIGURE E.3.1 NUMERICAL DIFFERENTIATION
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2. _ -

A Wl = W3 2W2 + Wl (E.3.9)
3 - - -

A w1 = W4 3w3 + 3w2 Wy (E.3.10)
4 _ - _ N

A wl = W5 4W4 + 6W3 4w2 + Wl (E.3.11)

etcﬁ"o a e e

By substitution of equations (E.3.8) to (E.3.11 into

equation (E.3.7), the following equation is obtained when

A5W1 and the higher difference terms are omitted:

— =W’

1

= (-25W, + 48W

125 1 g ~ 36W

3 + 16W4 - 3W5)

(E.3.11)

Thus, the derivative of the function W(X) can be
evaluated at a given value of X in terms of five successively

equally spaced values of the function.



APPENDIX F

COMPUTER PROGRAMME

F.1l User's Guide to the Computer Programme

Thg development of an accurate, stable and economical
method of solving the equations governing the transfer of
heat from a solid sphere by time-dependent free convection
has been the central. theme of the present study. A computer
programme is a necessary link between the formal descripéion
of the method in terms of symbols and the practically

useful predictions in terms of numbers.

The programme was written in the FORTRAN IV language
and has been run on a CDC 7600 computer; with a few minor

changes it can be run on CDC 6600 and CDC 6400 computers.

The listing of the computer programme is presented in
section F.4. The skeleton of the present computer programme
is very similar to that generated by Rafique (1971). The
main function of each subroutine in the programme is des-
cribed in the listing. Therefore, the user should not
find it difficult to understand and use the programme. The
main functions of the main subroutines can be summarised as

follows.

The input data and output of the results are handled
by two subroutines called INPUT and OUTPUT. The main

computations described in Section 3.7 are performed by



two subroutines called UPDATE and VARBC. The various
options built in the programme are controlled from a

subroutine called CONTROL.

The main programme calls the above mentioned

§

¢
subroutines. The programme also consists of several
auxillary subroutines which allow quick detection of

errors.

To obtain all results presented in this thesis,
the user needs only to specify appropriate counters

and parameters in subroutine CONTROL.

F.2 List of FORTRAN Symbols

293

Given below is the list of the main FORTRAN symbols used

in the programme. All the other symkols used in the programme

are either defined in terms of these symbols or are self-

explanatory.

FORTRAMN SYMBOL MEANING
A a

ARNOT ko
AK(J) k@

ANUL (J) Nue
ANUO Nu
B1(I) bli

B2 (I) byy
B3(J) b



FORTRAN SYMBOL

B4 (J)
C(I)

- CCG
CCTD %
CCTU
CCu

CDF

CcDpP

CDT

CPT

CR
Cs (J)
CT (J)
DFG

DFTD
DFTU
DFU

GO(I,J)
GN (I,J)

GR
H3(I1,J)
II

IN1

294

MEANING
b4j

€

€
G

€ (downstream)
€ (upstream)
€
Cor

CDP

CDT

The Central Processor time set

for a CDC 7600 computer

Cr

cose

cote

{downstream)

(upstream)

G, .
1,3

n+l
i,3

G
Grashof number
B3ij
Input magnetic tape unit number
INl=total number of grid lines

in the Z-direction
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FORTRAN SYMBOL ~ MEANING
ISKIPN Number of files to be skipped on

the input magnetic tape.

ISKIPO Number of files to be skipped on
the output magnetic tape.

ITHETA (J) eﬁin degrees

IXSTEP - Number of ‘line-printer steps to
be used for plotting one quarter
of the flow field. Normal setting .
as shoxn in programme lising.

JJ Output ;agnetic tape unit number.

JN1 JN1l=total number of grid lines in
the ak—direction.

KNT Number of temperature contours

to be plotted.

KNU Number of stream-lines to be
plotted.
KNV Number of vorticity contours to

be plotted.
KS k in degrees
(All.FoRTRAN Symbols beginning with L are programme control
contours)
LMl If ILMl=1, another step in time
is taken. Otherwise iterations
are performed on the existing

solution.



FORTRAN SYMBOLE

M2

LNP1 e

LNP2

LNP3

LOP1

LOoP2

296

MEANING

If LM2=1, the stream function

equation is solved at the n+%

time step.

If LNP1=1, the programme starts

from t*=0. If LNP1=0, the

ope?ation of the programme is -
contrglled by LNP2 or LNP3.

If LNP2=1, the programme reads }
in a previocusly obtained converged 1
solution from a magnetic tape and ‘
updates it in time. Otherwise

set as zero.

If 1LNP3=1, the programme reads in

a previously obtained unconverged
solution from a magnetic tape and
performs the appropriate computa-

tions. Otherwise set as zero.

If LOPl=1, a full output of results

is produced and the current solution

is transferred to a magnetic tape.
Otherwise set as zero.

If LOP2=1, only the Nusselt numbers,
the surface pressures, and the drag
coefficients are printed out and the

current solution in the computer y
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FORTRAN SYMBOL MEANING

is transferred to a magnetic tape.
Otherwise set as zero.

LoP3 If LOP3=1, a table of stream func-=

(¥ tion, vorticity and temperature

values together with the drag
coefficients and Nusselt numbers
are printed out. Otherwise set
as zero.

M The number of the sections (1-10)
of the flow field that are to be
searched when plotting contours.

MNPR The maximum number of unconverged
nmodes acceptable in a solution.
Normally set as zero.

MXITER The maximum number of iterations
allowed per time step for cénver~
gence of the time-dependent
boundary conditons. ‘

MXU ) The maximum number of iterations
allowed for convergence of the stream
function values at the n+% time
step.

MXUP The maximum number of iterations
allowed for convergence of the

stream function values at the n+}

C



FORTRAN SYMBOL

NPRG1

NPRTD1

NPRTU1

NPRU1

NPRINT

NTIMES

OPTIME

PR

RPLOTT

RPLOTU

- 298

MEANING

time step.

The total number of unconverged
surface vorticity nodes.

The total number of unconverged
temperature nodes at the down-
stream axis of symmetry.

The total number of unconverged
temperature nodes at the upstream
axis of symmetry.

The total number of unconverged
nodes in the stream function field.

The number of time-step after

which a print out of the dependent

variables is produced.

The total number of time steps

by which the solution is advanced
in time.

The approximate CDC 7600 central
processor time required for output
of results

Prandtl number

The radial distance upto which
the isotherms plot is produced
The radial distance upto which

the streamlines plot is produced.



FORTRAN SYMBOL

RPLOTV

SH
SK
SN (J)
ST
THETA (J)
TIME °

™(I,J)

TO(I,J)

UN(I,J)

VCV (K)

VN(I,J)
Vo (I1,J)

WT
Wz

Z(T)

e
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MEANING

The radial distance upto which the
vorticity distribution plot is
produced . |

Mesh size h

Mesh size k

sin ¢

Time-step

eA

t

e+l
1,]
n

i,3
n+l
bi,5

T

1’-n

¥i,5

Values of the isotherm contours
Values of the streamline
contours

Values of the vorticity contours

n+l
i,]

Zi' distance in z-direction
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Flow Diagram and Listing of the Computer Programme

START

L
CALL
' CONTROL

‘CALL CNSBC
)

'

(el

CALL INPUT

]

INITILIZE

CONTERS

TIME=TIME
+ 8T

FIGURE F.3.1 FLOW DIAGRAM FOR THE MAIN PROGRAMME
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FIGURE F.3.1 (CONTINUED)

CALL UPDAT

LM1=0

SOLUTION
ONVERGE

YES
-(3)



FIGURE F.3.1 (CONTINUED)

CALCULATE
COMPUTER

TIME USED IN

PREVIOUS
STEP

YES

YES

NUMBER
OF TIME E7TE
QMPLETE

CALL OUTPUT

NO

QUT REQUI-
RED

ROTATE
STORAGE

302
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FIGURE F.3.1 (CONTINUED)

NO
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PROGRAM FREE 76/76 OPTe2 ‘ C FTN 6424178

PROGRAM FREE (INPUT,0UTPUTsTAPES=INPUTyTAPES=0UTPITyTAPEL»TA?F2)

c.i*#**&#“**ﬁﬁﬁﬁﬁﬁﬁ*bﬁﬁ&G“Q##l###%ﬁ“#b*ﬁ#**Q&#*&“Q#**k#*###%###%##ﬁ#*“i

c

c THIS PROGRAM SIMULATES FREE CONVECTIVE HEAT TRANSFER FROW 4 sosi
C

c SPHERE TO A VISCOUs INCOMPRESSISLE NEWTONIAN MEQIJUM BY !
¢

c SOLVING TIME~DEPENDENT NAVIER=~STOKES AND ENERGY

C

c EQUATIONS SIMULTANEQUSLY USING PEACEVAN<

C

¢ RACHFORD ALTERNATING DIRECTION

c :

¢ IMPLICIT »ADIy METHOD.

c :

¢
gﬂ&**##ﬁﬁfﬁiﬁaﬁﬁﬁﬁéﬁﬁﬂﬁ&##*ﬂﬁ#ﬁ%#%ﬁﬁb%###%####*##ﬁ#”ﬁﬁ##**##*##*####w*
c

Chessas ALL THE VARIABLES ARE IN DIMENSIOVLESS FORMS

c

c

c MAIN PROGRAM

c
Cﬁﬂﬁ#G#9#f######ﬁ#######&*#&##*###&ﬁ#&######&#%**n%###**%#%%#*%k%ﬁ###“
c

COMMAN /GRTDZ Z(81)«E(RI)SITHETA(31)9oSM(31)eCS(31)«CT(31) 94311
1 YoTHETA(ZL) .

COMMON /Z0LDV/ UD(81431)s6G0(8B1e31),TO(B1+31)

COMMON /NEWV/ UN(81+31) oGN(B1931)4,TN(BYs31) )

COMMON ZINJN/Z INLoJUN19INeJINsSHeSK,STeKSsGRIPReCCIsCCGIDFUIDTn
COMMON /NPR(E/ MPRUJU1sHPRG1 +MPRJISNPRGONTOTAL s UNPReMXITERINPRINT,
1 NTIMESyMXU«MXUP

COMMON /TSTEP/ RX(81)TIME

COMMON /LOTPUT/ LOP1.LOP2LOP3

COMMON /LMAIN/ LM1,LM2

COMMON /ZLRSTAR/ L.RS}

COMMON /CPTIME/ CPTLOPTIME

COMMON /GR 'F/ 1GRAPHNG

COMMON /TEMP/ NPRTUL1sNPRTD1aNPRTUGNPRTDeCCTJeCCTIsNFTIeDFTD
LEVEL 2 sZ,UO03UNSINIsNPRUL$RX9LOPL9LMIoLRS1eCPT2IGRAPH4NPRT 41
WRITE(ev20)

g-»»«»n SET PROGRAM CONTROL PARAMETERS TO START COMPUTATION
call CONTRoOL

g*“*#** SET TIME-INDEPEVDENT BOUNDARY CONDITIONS
CALL CNSBC

E*““*** READ OR FVALUTE INPUT DATA

CALL INPUTY

|
C*Q&**l#***#*%l#4##*&**!*%&**##*#*****#*i#*.#***#*###*l***ﬂ****b#i#*q*J
N=0ENPOLD=rENPAGE=0ECPSECI=0,
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PROGRAM FREE Te/T¢ OPT=z - ’ | FTN 4,2+178
!

t'“i““ﬂb#ﬁ#####ba“**ﬁ“#Q#ﬁ*“ﬁ#ﬂﬁ##*ﬁb#b*##“b*ﬁ##“hh*#ﬂ#****b#ﬂ“###ﬁ**#

C
Chonend START PROCEEDINSG IN TIME

“\
10 CONTINUE ‘
NIT=R=¢ ‘
LMl=1 |
TIMc=TIME«ST
IF (NPAGELEQ.1) WRITE(6,20) :
20 FORUAT (1H1) - %
|

c'#####%ﬁ*#ﬁ####*“##ﬂ##?###“#ﬁ*##9*###*###*###*###ﬁ“b“ﬁG#“@%*%ﬁ#*ﬁﬁ*#“

30 CONTINUE
consens UPDATE TEMPERATURE AND VORTICITY FIELDS IN TIVE=== aND S53LVE

c STREAM FUNCTION EQUATION
CALL UPDATE
LM1=¢ o : |
g"“**“ EVALUATE TIME=~DEPENDENT BOUNDARY CONDITIONS AT THE NEW TIug=ST
¢ CALL VARBC

NITER=MITERS]
NTOTAL=NPRU+NPRG+NPRTU+NPRTD
WRITE(6+40) NTOTAL,NPRUsNPRGNPRTUsNPRTD
40 FORMAT(1Xo#NTOTAL=#414,5X9#NPRU=#,16495X9#\NPRG=#¢]%95Xy
_ 1 BNPRTU=%*914,5X9#NPRTD=#414)

E***é*v TEST FOR CONVERGENCE
IF(NTOTALLE«MNPR) GO TO 50

c

cheneas TesT FOR MAXIMUM ITERATIONS

IF(NITER,GE ,MXITER) GOTO 110
GOTo 335

50 CONTINUE

c .

choepess CHECK COMPUTER TIME USED

c
CALL SECONND(CPSEC)
WRITE(6460) CPSECSNITER :

60 FORUAT(IHOW®CPTIME = #,F1245¢10Xs#NITER = #414)
WRITE(6e120) |
TLEFT=CPT=PSFEC
DLT1=TLEFT-0PTIME
ODLT»=CPSECCPSECI
IF(DLT1,LE.OLT2) GOTO 100
CPSECI=CPSFC
N =N.l
\

c

cr#wnns CHECK PRINT OUT OF RESULT

¢
IFINTIMES,FrQe.N) GO TO 100
NPNew=N/NPRINT
IF ((NPNEW=tPOLD) +EQsl) GO TO 90



PROGRAM FREE

70

80
90

306 |
Te/76 OPT=2 | FTV 4,2+178 \

NPAGE=n ' . ‘

CONT {NUE |
NPOLD=NPNE . , 4 o o ‘
DO np I=1,1N1 |
DO ap J=1,UN1 \
UO(TJ)=UN{TJ) .

GO(T9J)=GN(Ted) |
TO(T9J)=TN(T D) i
CONT INUE _ |
G0 To 19 |
CONTIMUE |
NPAGE=] ‘ |
LOPl=0fLLOP2=0£I.0P3=1 .

CALL OUTPUT ‘ _

G0 To 7o |

Cﬁ#*&*#**“*###Qﬁ**#**##&#*#*##ﬁ##*%ﬂ##ﬁ#**#*##*ﬁ**#*%#bb*%**%*#ﬁ##*“#“ﬂ

c
100

e
110

|
CONTINUE |
LOP1l=1£LOPP=0£LOP3=0 : . |
IF(N,EQ.NTIMES) IGRAPM=] |
CALL OUuTPUT ‘ |
"IF(IGRAPH,,F3,0) WRITE(69140)
IGRAPH=D |
STOP \

é#*###**##*&###*a###%###*»**###ﬂ#&ﬁﬁ##*#ﬁ**######*»ﬁ*&ﬁ**#*#####**###51

CONTINUE ‘
LOP1l=0ELOP2=1£L0P3=0

CALL OUTPUT ' \
WRITE (6915q) ‘
SToP ‘

c#ﬁ***“##“#***#*oﬁﬂﬁﬁﬁﬂ&##ﬂ****&%##6&#%6#####“*#“#&%#ﬁﬁ#“&%####&##**#“ﬁ

120
149

150

FORIAT (35X y# ecemcecsenccccccccrnrrarernaeenast)
FORIAT(1HD 4 #mmmmmcmmm=aaa=SOLUTION CONVERGED AND T2ANSFERRED ANTO
IMAGNETIC TaPE==%==REMEMBER TO SET LNP2=] FOR NEXT RUN==e==wi) ‘
FORUAT(1HQ y#mmemmmcmma=a=e=SOLUYTION JIVERGED RUT TIANSFERRED ANTD-
1AGNETIC TAPE~====REMEMBER TO SET LNP3=1 FOR NEXT U\=we==ca#)

END
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| ¢
cb*####

c THIS SUBROUTINE SUPPLIES ALL PROGRAM CONTROL PARAMETERS
gk“i##*

| SUBROUTINE CONTROL; .
. C '
COMMON /GRID/ Z(B1)+E(81)sITHETA(31) sSN(31)+LS(31)4CT(31)9H3(R1+3
| ) o THETA(31)
COMMON /NPRe/ NPRUJ1yNPRG1eNPRUSNPRGINTOTAL s VNPRyMXITERINPRINT,
[ 1 NTIVES sMXU 9 MXUP
} COMMON /INUN/ IN1oJN19IN9sJINeSHeSKeSTeKSsGRePRyCCJICCGIDFUDFp
COMMON /TSTEP/ RX(R1)*TIME
i COMMON /PLTPCN/ VCU(10)sVCV(10)sVCT(10) sKNUyKNV9<NT oM .
COMMON /PLOTC/ XX1(31910)9YY1(31910)9XX2(31410)sYY2(31910)977Se
| 1 IXSTEP s UNH1 9 JNHs KNPy RPLOT ¢ RPLOTU s R2LOTVRPLOTT
| COMMON /LMATIN/ LM1,LM2
COMMON /ZLNPUT/Z LNP1JLNP2yLNP3
’ COMMON /ULNTAPE/ ISKIPN,11
‘ COMMON /LOTAPE/ ISKIPO,JJ
COMMON /CPTINE/ CPT+OPTIME
COMMON /GR+F/ 1GRAPHsNG
: COMMON /TEMP/Z NPRTU] oNPRTD1sNPRTUGNPRTD+CCTUsCCTIsDFTJWDFTD
LEVEL 2 »Z4NPRULSINIsRX9VCUIXX1oLMLILNPLISKIPNeISKIPDs
1 CPT,IGRAPH,NPRTUL
|

. C :
Counas SoT GRASHOF NUMBERs PRANDTL NUMBERs MESH SIZES aND TIME~INTZRVA
c
GR=1,
PR=n_72
TiMr=0,
SH=n,04E£KS=26
SK=3,14159#FLOAT(£5)/180,
ST=0,001
INI=8lgJUN1=31
IN=IN]l=1
JN=JUN1=1
JNHH=UN/2

‘ JNHH2=JNHH .2 :
C*ﬁ####*%*#*b##ﬁ#*##*##*##0*#*##*##*&&##&&’*&&#&“**@*“*#ﬁ#ﬁ“#*ﬁﬁ*ﬁ#%#ﬁﬁ

¢
Crenues SET APPROPRIATE INITIAL CONDITION
c _

LNPl=1gLNP2=0ELNP3=0

II=1gJJu=2 ,

ISKIPN=0EISKIPO=0 g

Lv2=1
c&######*f##a&*###%6%&%ﬁb##é#*ﬁ##**ﬁ%#&k#ﬂ&&&#&#o#%%#b*&%%**%#%##b#ﬁ#ﬁ#

c
Chenuss SET CONVERGENCE CRITERIA AND RELAXATION FACTORS
c

CCU=0.000001EDFU=]1,6
CCG=0,001ENFG=N,65
CCTU=0.000001£DFTU=1.5
CCTD=0,000n01EDFTI=1,5
MNPR=¢

MXITER=50
MXUP=200E8vXy=200
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c#*#ﬁ%#ﬁﬁ“#ﬂ####Q#*###Qh#ﬁ######%#*ﬁ#%ﬁ####ﬁ#*&&ﬁh##ﬁ“*##ﬁﬁﬁ#ﬁ**%0#####

c
c

Cosease SET QUTPYT PARAVETERS ' !

CPT=1200.

OPTIME=10, _

NPRINT=100 |
NTIMES=2 _

IGRAPH=0 ’ ' ‘

C###k%}b%*&*#*##*ﬁ###ﬁ###*Q“*%###*#QGQG#Q*QQ###**##&*“###*ﬁﬁ####*###%”#

c

Cavstans SET PARAMETERS FO? STREAM FUNCTIONsVORTICITY AND TERPERATYR('

¢
c

20 FORUAT (11X 2/e5Xa#STREAL FUNCTTON® . 45XeF11.8221X2F3,30/77e5X,

CONTOUR PLOTS !

RPLOTU=24,53258RPLOTVS24.5325ERPLOTT=24,5325EU=]10E8IXSTEP=50 .
I¥YS=1e6666#FLOAT(IXSTEP=1)+1,5

KNU=3EKNV=agKNT=3 :

VCU(1)=0,056VCU(2)=0,18VCU(3)=0,2 ‘

VCV(1)=n,015EVCV(2)==0,000258VCV(3)==0,001 |
VCT(1)=0,76yCT(2)=0,25EVCT(3)=0,01 :

WRITE(6910)

10 FORAT(1Xs//260Xs#CONVERGENCE CRITERION RELAXATION FacTO

1#)
WRITE(6920) CCUsDFUICCGIDFGHCCTUIDFTUSCCTDDFTD

1#SURFACE VARTICITY#943XeF11e8921XF5e39///95Xe#AXIS OF SYUMTZTRY r
EMPERATURE ==UPSTREAM# 922X 9F11eB8921X9F5e39///35Xs#AX]S OF SYUyrTRY
3EVMPrRATURE==DOYNSTREAM# 920X oF11eB921XsF5,3)

WRITFfSQ3D) SHaKSeSTeINIeJN1sTIME |

30 FORMAT (1Xe/7/795Xe#MESH SIZE IM RADIAL DIRECTION®»15XeFbetes 5Xe |

1 #MesH SIZe IN ANGULAR DIRECTION(DEGREES)#90Xe12s//¢5Xe#TIuz INTE
2VAL® 30X 9F6.49//95Xs *NUMBER OF GRID POINTS IN RADIAL DIRECTTIAN®,
BQKvIBy//;SY,*NUMBER OF GRID PJOINTS IN ANGJLAR DIRECTION#95X,13,
4/7/ 95X e #STARTING TIME FOR THIS RUN#,18XsF6es)

RETURN A

END -
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SUBROUTINE cNsBC

c..#ﬁ*i

c THIS SUBROUTINE SETS TIME=-INDEPENDENT BOUNDARY CONDITIONS
c’ﬁ#u#» .

COMMON /GRID/ Z(81)+E{81) s ITHETA(31)sSN(31)¢CS(31)+CT(31)sH3(RL:
1 ) s THETA(31)
COMMON /NEWV/ UN(B1931)9GN(8B1931),TN(B1,31)
.COMMQON /V00/ VO (81,31)
COMMON /vOrt/ VM(81,31)
COMMON /INJN/ IvaJVI’IN;JN;SH;SK.ST,KSgGR;PRyCcdeCG;DFU’DFG |
LEVEL 2 9ZoUNyVOsVNsIN] ;
D0 190 I=1,1INl
UN(1,1) =0, S T . ,
UN(T4JN1)=n, ‘
GN(T1,1)=0, . ’
GN(TyJN1}=n, : ‘
VO(;,1)=0. . )
VO(1yJN1)=n,
VNi1,1)=0,
YN(T,JN1)=n, |
10 CONTINUE :
DO 20 J=1,UN1 . ) |
TNtl,J) =1, - A
TN(INlysJ)=n,
20 CONTINUE
DO 3pn J=2,.,.N
UN(l,J)=0,
UN(IN1yJ)=0, . -
GN(IN1,J)=n,
VO(INlsJ)=n,
VN(IN1l,J) =0,
30 CONTINUE
RETURN
END
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SUBRQUTINE INPUT

c
cbi#**l

¢
Crrunte

c

10

UBROUTINE INPUT 76/76 OPT=2 ' FTN 4,2+178
¢

THIS SUBROUTINE CONTROLS ALL INPUT DATA REQUIRES TO START FF
SOLUTION PROCEDURE

COMMON /GRID/ Z(81)+E(81) 9 ITHETA(31) 9SN(31)9CS(31)4CT(31)9ri3(R1 93
1 ) THETA(31)

COMYON 70LNV/Z U0(81431)+G0(81931),T0(81,31)

COMMON /NEWV/ UN(81+31)¢GN(B1+31),TV(81931)

COMUYON Z/IJCOEF/ ASHeASKyRSHeRSKsCR,eA

COMMON /COEF/ B11(81)9B2(81)983(81)+84(81)9C(8B1)9ESQABL)

COMMON /TSTEP/ RX(81)9TIME .

COMMON /ZINJN/ INIoJN19INsJNsSHISK,STIKS9GRePRyCCIvCCGIDFULDF
COMMON /NPRC/Z NPRU1+NPRG1sNPRUSNPRGINTOTAL Y MNPRyMXITERINPRINT,
l NTIMESsMXUyMXUP

COMMON ZLNPUT/ LNPYLNP2,LNP3

COMMON /TEMP/ MPRTU1sNPRTDIsNPRTUSNPRTD9CCTJU9CCTDDFTIIDFTD
COMMON /LRSTAB/ LRIS1

LEVEL 2 9ZsUOsUNsASHeB1sRXsINLIsNPRULILNP1INPRTUL»LRS]

NPRyU1=(IN=1)#(JN=])

NPRR1=UN=]

NPR1=NPRU]1+NPRG1

NPRTU1=IN=)

NPRTD1=IN=1

IF(LNP1,EQ.Y1) GO TO 20

IF(LNP2.ER.1) GO Tp 30

IF(LNP3.£Q,1) GO TO S0

WRITE(6e1l0) ‘

E?R;AT(1X,« INCORRECT CONTROL PARAMETERS===«EXECJTION TERMINATED#®
0 |

c##**###**##**####“##*##########ﬁ*%%%%ﬁ##“ﬁ#%“#&#####“&%%#ﬁ%*##&*#*ﬁ%4*

c
20

é####ﬁ#*#“########ﬁ####&#Q#G#Q####ﬁ#%&§§§#ﬁ§#&#ﬂ*ﬁ##*#ﬁ%#####*%*%#ﬁ*#ﬁﬁ

30

40

CONTINUE

CALL GRID

CALL COEFF. |
CALL INTVAL |
WRITE(6+90)

GO To 60 ‘

CONTINUE

CALL INTAPE

D0 40 J=1,UNl
DO 40 I=1y1INl
UO(TeJ)=UN(TJ)
GO(T5J)=GN(IsJ)
TO‘I,J’=TN(I'J)
CONTINUE

WRITE(6s10n) )

GO TD m0

CQ##ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬂﬁﬁﬁﬁG**ﬁ*{##&###ﬂ#ﬁ#*&*i###ﬁ&ﬂ##ﬂﬁ*##**##%&#*##%*#“#

50

CONT TNUE
CALL INTAPE
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. WRITE(6s1l0) : :
c&##u#*##f&ou#a»ﬁﬁﬁuuou9#»#699#&##6#*00&»“#9#&0»9»»#**&##9*#»##»#####iﬁ
[~

60 CONTINUE
c :
cheawnsd EVALUATE CONSTANT COEFFICIENTS FOR TRANSPORT EJJATIONS

c
A2 ,#((]1,/75HR#2) +(],/5K*#2))
ASH=1./ (A#GH#SH)
ASK=14/ (A#SKH*SK)
RSH=1¢/ (A#SH) : |
RSK=14/ (A%sK) ~ |
CR=1.71( "¢ #ABSHESK) - - - - |
DO 70 I=1.IN1 *
ESQ(I)=(E(TI*E(I))I/A
RX(I)=(2.%rSQ(I)) /ST

70 CONTINUE

WRITE (69803 E(IND) -
80 FORUAT (1X9///+5Xe#RATIO OF THE DIAMETER OF THE OJTER 30UNJARY T)
1HE SPHERE DIAMETER =%#+F1046)

c
chewnts [ Rgl=] WRITE OLD VALUES OTHERWISE WRITE NEW VA{JES

C
. LRS1=1
CALL RESTABR

90 FORMAT(1X9///7+20Xs#COMPUTATION STARTS FROM CONDJCTION SOLJTIAN®)

100 FORMAT(1X9///7920Xs#COMPUTATION STARTS FROM CONVERIED RESULTS oF P
1EVINUS RUN#)

110 FORMAT(1Xe///7920%X9#COMPUTATION STARTS FROM DIVERGED RESULTS AF 72
1VIOUS RUN#®)

RETURN
END
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UBROUTINE GRID

c'ﬁ#ﬁ’.

c

76/76¢ 0OPT=2

SUBROUTINE GRID

fod 24 4 4 2

10

20

312

"FTN 4.,2+178

THIS SUBROUTINE SUPPLIES GRID INFORMATION AT EACH NOOE

COMMON /GRID/ Z(B81)+E(81)sITHETA(31) oSNI31)9CS(31)+CT(31)sH3(nly»

l )+ THETA(31)

COMMON /INJUN/ INlyJN19INeJNeSHSK,STeKSeGRePRsCCIeCLCGDFUsDFg

LEVEL 2 +2Z,1INl

D0 1o J=2,uN

ITHETA(J) =xg#H(J=1)
THETA(J)=SKY¥FLOAT (J=1)
SN(J)=SIN(THETA (J))
CS(J)=COS(THETA(J))

CT (N =CcS(Jy/SN(D)
CONTINUE

ITHETA(Ll) =n
ITHETA(JN1y=180
THETA (1) =0,

"THETA (UN1) =sK#FLOAT (JUN)
'SN(1)=OQ

SN(JN1’=00

csS(ly=1,

CS(JIN1)==1,

DO 20 I=2,IN
Z(I)=SHH#FLOAT(I=1)
E(I)=FEXP(Z:1))
CONTINUE

2‘1’300

CZUINL)=SH®FLOAT(IN)

30

E(l)=1,
ECINL)=EXP(Z(INL))
DO 30 J=1 '\’Nl

DO 39 I=1l,IN1
H3(T,J)=E(T)#SN(J)
CONTINUE

. RETURN

END
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SUBROUTINE COEFF
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FTN 4,2+178

!

¢§Q¢¢§¢ . -
C TH1S SUBROUTINE EVALUATES CONSTANT COEFFICIENTS IN
(o FINITE=-DIFFERENCE EQUATIONS
cli##&#
COMMON /GR1D/ z<81).E(81),ITHETA(31)oSN(31).03(31),CT(31>-ﬁakalgé
1 {N Y9 THETA(31)
.COMMON /COFF/ B1(B81)9B2(81)+B3{B1)434(81)+C(B1)+ESA(BL)
COMMON ZINUN/ TIN19JN19INeJINsSHySK STeKSsGRePRsCCIeCCGIDFU,D7
) LEVEL 2 9Z,BlyIN1
c

10

20

A=2,8((1./75Hau#2) ¢ (],/5K#82))
BAS((1,/SH#%2)=0,5/5H) /A
BB=((1,/5H#%#2)+0+5/SH) /A

DO lg I=2,IN

Bl(1)=RBA

B2(1)=BR

C(I)=(E(I)»E(TI))/A

CONTINUE

DO 20 J=2,4UN
BI(J)=((1,/5K##2)=0,5#CT(J)/SK) /A
BA ()= ((1,0/SK*#2)40,54#CT(J)/SKI/A
CONT INUE

RETURN

END
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SUBROUTINE INTVAL

g##*#‘* .
THIS SUBRAUTINE SETS APPROPRIATE INITIAL CONDITIONS
Chonnos
¢ ';
COMMON /GRID/ Z(81)sE(81) sITHETA(31) #SN(31)9CS(31)sCT(31)9H3(51s3
| 1 ) s THETA(31) :

| COMMON /0LNDV/ U0(81931)4G0(81931),T70(814+31)
COMMON /NEWV/ UN(B1931)9GN(81931),TV(81¢31)
COMMON ZINJUN/ INLlgJN19oIN9JNeSHSKSTeKSsGRIPRyCCJ9CCGIDFUWDF
) LEVEL 2 +Z,U0,UNsINIL
¢ . .
crasnet INITIAL CONDITIONS OF VORTICITY AND STREAM FUNCTION
C .
DO 10 J=1’JN1
DO 1o I=1l,yINl
GO(I.J)=O.
Ul(red)=0,
10 CONTINUE

c
ces#ewsds INITIAL CONDITION OF TEMPERATURE ~== PURE RADIAL: CONDUCTION
c Y

ER=1,/7E(IN1)
) Eglslo“ER

DO 20 J=1ls Nl

DO 2p I=2+IN

TO(T4J)=1,/(E(I)#ERL)~14/(E(IN])*ER])

20 CONTINUE
DO 30 Jal,yNl
TO(!.J)=1.
_ TO(IN1,J) =a, ’ o

| 30 CONTINUE
| DO 40 J=1,4uUNl

DO 40 I=1,INl
\ UN(TyJ)=UD(T9d)
| GN(T,J)=GO(Tsd)
l TNCT, ) =TO(T9d)

40 CONTIMUE . :

| RETURN |
’ END
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SJBROUTINE UPDATE

rUBBRER

THIS SUBROUTINE UPDATES TEMPERATURE AND VORTICITY FIELDS IV
TIME USING PEACEMAN RACHFORD ~LTERVATING DIRECTION IMPLICZIT
sADIs METHOD AND SOLVES STREAM FUNCTION EQUATION USING

SUCCESSIVE OVER RELAXATIONsSORe METHOD
LTI Y T

OO0 O

COMMON /GRID/ 7(81)sE(81) 9 ITHETA(31) #SN(31)9CS(31)+CT(31)sH37810
1 ) s THETA(31)

COMMON /0LDV/ 110(81931)9G0O(81931)4T0(81431)

COMMON /NEWV/ UN(81931)9GN(81931),TN(81431)

COMMON /VOn/ VN(B81,31)

COMMON /1Jr0FF/ ASHeASKyRSH9RSKeCR,A

cOMMON ZINJUN/ INl9JV11IV:JNvSH’SK'vaKSoGR’PRoCCJ9CCGvDFUoDFr
COMYON /NPRC/ MNPRJ19NPRGI yNPRUsNPRGINTOTALS YNPRy MXITERsNPRIINT,
1 NTIMES ¢MXUMXUP

COMMON /COFF/ B1(31)sB2(81)9B3(81),34(81)sC(81)yES52(81)

COMMON /SLVvCF/ Cl(B1)4C2(B1)9C3(8B1)sD(81)9sP(81)4LSV1

" COMMON /TSTEP/ Ri(81)TIME

COMMQON /ZLMAIN/ LMI,LM2

COMuMON /LRSTAB/ LRS1

LEVEL 2 9Z,UDsUNSVN9ASHeIN1eNPRUL,BlsC1leRXeM1,LRS)

Cl(l)=gp,

ca2(ly=1,

C3(l)=q.
} IF(LMI.EQ.Q) GO TO 120
c#**#*“#“*ﬁ**##Q““#*#Q*ﬁ&*##“#*###“#“*&%#***%#%ﬁ“#“*Q“#**ﬂ**#@*****ﬁ&ﬁ

<

c
Caewuss UPDATE VALUES OF VORTICITY AND TEMPERATURE AT THE HALF Tlug ST
C ====COLUMN WISE

Cl(UN1) =0, )
C2(JIN1) =1,
C3(JN1)=00

“

c
cuenann Lovl=l UPDATE COLUMN BY COLUMN QTHERWISE JUPDATE ROW BY R0y

LSVl1=l ,
oL Y e A L T YT LT S T T T

(of
CH#erude YPDATE VALUES OF TEMPERATURE
c .
D0 30 I=2,1N
D(1)=TNI(I,1)
D(JN1)=TN{T.JN1)
DO 10 J=2’JN
SKG=CR/H3(T+J)
DIFIIU=UD(T4J*1)=UD(TeJ=1)
DIFIII=SUD(TIsle ) =UD(I=1yJ)
IF(DIFUL) 24394
2 WZ=l,
GO To &
3 WZ=n,5
GO Tp 5
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O® N O e

1o

20
30

40

WZ=n,

CONT INUE
IF(DIFUJIB,Te8
WT=n,

G0 To 9
WT=n,5

GO To 9
CONTINUE

Cl(J)=Bl(1)=PR#SKG#DIFUJR(1e=WT)

C2(J)=PR#RX{I) =2 ¢ #ASH*PR*SKGHIIFUI# (1 ¢ =24#WT)
C3(J)=B2(1)+PR#SKZHDIFUJIH*WT
DIU)=Cl(JU)nTO(T=19J)+C2(JIHTO(I9J)+C3(UIETO(Ie19J)
CltJ)==03(J)=PRE¥SKGHDIFUI®(le=w2Z) ,
C2(J) =PRH#RY (1) +2¢ #ASK*PR#SKG#DIFULI#(14=2,%WZ)
C3(J)==84 () +PR#SKG#DIFUI*WZ

CONTINUE

CALL SOLVE

DO 2p J=1l,yuNl

TN(T,J)=P(J)

CONTINUE

CONTIMNUE

DO 4p J=1ly N1

DO 4p I=1,1IN1

TO{T1,J)=TN(TId)

CONTINUE

t#**ﬁ##*”“#*Q&##gﬁ#####Q#&%#*#*##*##Q***&ﬁ*’#ﬂ#i*G*##*#bﬁ##ﬁ#%%#%ﬁb*#“#

c

ce#ssee UPDATE VALUES OF VORTICITY

c

41
42

43
45

46
7

48
49

DO 7p I=241N

DI1)=GN(I,1}
D(JNL)=GN(1,JIN1)

DO 5n J=24 N %
SKG=CR/H3(1+J)
SKT=CR#H3(14J)#H3 (10 J)
DIFTI=TO(T1+100)=TO(I=1,4).
DIFTU=TO(I+J*1)=TO(Isd=1)
DIFUJ=UOC(I J*1)=UD(IvJd=])
DIFUI=UD(I*IQJ"UD(I“IQJ’
IF(DIFUL) 4l942943

WZz=1, :

GO TO 45

wz::-'s

GO To 45

WZ=A4,

CONTIMNUE

IF(DIFUJ) 46,4T948

WT=n,

GO To «9

Wr=~,5

GO To 49

Wwr=1,

CONT INUE
Cl{J)=R2(1)=SKG*DIFUJ®(1e=¥WT)
C2(J)=RX(T1 =2 #ASH+SKRH*DIFUJIR (14 =2. "W T=2,#SH)
C3(J)=Bl(I)+ KGHDIFUJ*UT
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C4J=SKT#GR# (SHECT (J) #DIFTJ+SK#DIFTI)
DI =C1l(J)2GO(T=19J)+C2(NNI*GO(IsJ)+C3(J)*#GO(I+]19J)+C4J
Cl{J)==R4{ ) =SKGHDIFUI#(1le=WZ)
C2(J)=RX (1) +2+®ASK+SKGHDIFUIR(] =2, #WZ=2,,#SK*CT(J))
C3(J)==n3(J) +SKG*DIFUI»WZ
50 CONTINUE ~ ,
CALL SoLVE : :
DO g0 J=1yuUNl ‘
GN(T,J)=P(J)
60 CONTINUE SR ) |
70 CONTINUE : .
DO Ry J=l,UN1 ‘
00 ng I=1,1IN1 ' : |
GO(T,J)=GN(I2J) . o
80 CONTINUE ‘ J
_ IF(LM2.£Q,n) GO TD 120 ’
c*#**#*##f#*#*##*#*##*%%*###ﬁ*##**ﬁﬁ&ﬁﬁ%#ﬂ###ﬁ*ﬂ#*%#*#“*&#######*ﬁ#ﬁ#ﬁ

c
cr#ssune SnlVE STREAM FUNCTION AT THE HALF TIME STEP

c

N=0
90 CONTINUE
NPRU=NPRU1
D0 lgo J=2,JN
D0 190 I=2,IN -
UTGN=B1(I)#UN(TI+10J)+B2(I)#UN(TI=14J)*BI(JI#IN(T9J+1)
1 +B4 (VY FUN(T9J=1)=C(I)#GN(I,)
UTGN=UN(Ty ) +DFU# (UTGN=UN(T s J))
ERRORU=UTGM=UM(T s 1)
IF (ABS(ERRORU) 4LE,CCU) NPRU=NPRU=~1
UN(T,J)=UTN
100 CONTINUE
N=N4+]
IF (NPRULEQ.n) GO TO 1llp
IF(N,EQsMX11) STOP
GO Yo 9n
110 CONTINUE
WRITE(69227) N
. CALL VaRBC

o

C

c###***##*#ﬁﬁ*#ﬂnﬁ“#%%#ﬁ###ﬁ&#ﬂ#ﬁﬁﬁﬁﬁuﬂﬁﬁﬂﬁﬁﬁﬁﬁﬁﬁkﬂﬁﬁﬁk&#ﬁ*##%*#&k###ﬁﬁ
c##%#*#***##i&#bﬁ#ﬂ##%*#*ﬁ#ﬁ#######“#####ﬂ#%*##ﬁ#ﬁ*%**é%#*ﬁﬁ**ﬁb#&***ﬁﬂ
c#*ﬁ####*ﬂﬁﬂéﬂﬁﬁuéﬁﬁﬁﬁﬁﬁﬁ#%*###ﬁ###**#§##§§§*§Q§**§§§*ﬁ##*###ﬁ#b%ﬁ**#ﬁ#

c
Cawueaes UPDATE VALUES OF TEMPERATURE AND VORTICITY AT THE NEW TIvz gT=R

(o) ROW 3Y Row
(o}
120 CONTINUE
Cl(INl) =0,
C2(IN1)=1,
C3(1Nl) =0,
LSVi=p

c.####***“#*ﬁ##ﬁﬁﬁﬂﬁﬁﬁﬁﬂ*#*###*##ﬁ##*ﬁ#**#%##**#ﬂ#*ﬁ%#“&ﬁ#%#&&ﬁ#ﬁ*#**“%

o
Chewaes UPDATE VALUES OF TEMPERATURE
c .

00 150 J=2,JN
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D(1)=TN(1,.1)
DIINI)=TN(IN1yJ)
OO 130 I=2QIN
SKG=CR/H3(1,J)
DIFUI=UN(TI+194J)=UN(I=14J)
DIFYJ=UN(T 4 J*1)=UN(IsJ=1)
IF(DIFUI) 121s122y123 ] .
121 wi=l1, L .
60 To 125 . ) o
122 wWZ=.,5
60 To 125
123 wWi=~r,
125 CONTINUE ) ,
IF(DIFUJ)I12691279128 : >
126 HT=G.
G0 To 129
127 WT=4,5
60 To 129
128 wT=l,

. 129 CONTINUE 1,
c1tx)-na(J)¢PR*SKG*DIFUI¢(1.-wZ)
C2(1)=PR#RY(I) =2+ #ASK=PRESKGHDIFUI#(lem2,%#W2)
C3(1)=R4 (J)=PR#SKG#DIFUT*WZ
D(IN=C1(I)#TO(TsJ= 1)+cz(I)#Totl,da+c3(IJ~TocloJ¢1)
Cl[)==R1 (1) +PRESKGHDIFUJIH (1 =WT)

| C2(I)=PR#RX(])+2+ #ASH=PR#SKGHIIFUJI# (14=2,#WT)

‘ C3(1)==R2(I)=~PRU#SLKGHDIFUJI*NWT

130 CONTINUE

‘ cALL soLve

| 00 140 I=1,INI

| IN(1,J) =P ()

) 140 CONTINUE

150 CONTIMUE

CQ###*%###*##%#%&-*##Q####*#‘H&ﬁ***#ﬁ#G##ﬁ{:ﬂ'ﬁﬁ###**ﬁ-*“##b*%##ﬁ*“*ﬁ##&*% L)

c,
Caseute UPDATE VALUES OF VORTICITY
o
D0 1lg0 J=2,JN
D(1)=GN(1,)
"DCINLII=GN(IN1¢J)
PO 160 I=2,IN
SKG=CR/H3(1,4J)
SKTSCR¥HI(T,J) #H3(T+J)
DIFTI=TN(I4+1l9J)=TN(I=1yJ)
DIFTU=STN(I4J¢l)=TN(IgJ=1}
DIFUI=UN(T+1eJ)=UN(I=1,J)
| DIFJSUN(TsJ+1) =UN(T9d=1)
‘ IF(DIFUI) 151,152,153
‘ 151 wi=l,
| GO To 155
\ 152 wWZ=-,5
G0 To 155
‘ 153 w2=.,
\ 155 CONTINUE
IF(OIFUJI 15691579158
156 WT=n,
GO To 159
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cﬁ#%**#***b#**#ﬁ%*ﬁ*#ﬁ—*ﬁ**#****###ﬁi#####**Qﬁﬁ#&*ﬁ*ﬂ'&ﬁ'Q#Q**#*Q*i##ﬁﬁﬁ*ﬁ

c

157

158
159

160

170
180
185

WT=a,5

GO To 159 -

wr=1,

CONT INyUE

ClI)=B4(J)+SKGRDIFUI*(le=WZ)

C2(TI)=RX (1) =2, #ASK=SKG#DIFUI#(1,=2,#¥WZ=2,#SKH#CT(J))
C3(1)=B3{J)=SKGH*DIFUI*WZ

C4I=SKT#GR4 (SHECT(J)¥DIFTJ+SK#*DIFTI)
D(I!=CI(I)*GO(IOJ-1)*CZ(I)*GO(I’J)¢C3(I)*G°(10J*Il¢C4I
CliT)==R2(1) +SKGH*DIFUJ#(1le=WT)

"C2CTISRX(I) 42 #ASH=SKG#DIFUJIH (1, =2, %¥WT=2,#SH)

C3(1)==RBl(7)=SKGH*DIFUJ#NWT
CONT I NUE

CALL SOLVE

DO 170 I=1,IN1

GN(TeJ}=P (1) Crgh
CONTINUE

CONTINUE

CONTINUE

Coasnis SOLVE STREAM FUNCTION AT NEW TIME STEP

c

190

200

210

220

230

240

N=0

CONTINUE

N=N+ ]

NPR{1=NPRU1

DO 200 J=2,JN

DO 200 I=2.IN

UTON=D1 () wuN(T+1e N 4B2(TI#UN{T=T JIeBIIQIFUNLT 201
*B4A( N PUN(TIvJ=1)=C(I)*GN(IsJ)

UTGN=UN(TI4 ) +DFU* (UTGN=UN(I9J))

ERRORU=UTGM=UN(T9J) .

IF (aBS (ERRNRU) L LE,CCU) NPRU=NPRU=1

UM(I,J)=UTGN

CONTINUE

IF(NPRU.EQ.n) GO TO 210

IF(N,EQaMXyP) GO To 230

60 To 190

CONT I NUE

WRITE(Rs22:) N

FORMAT (10X ,2HN=914)

RETURN

CONTINUE

DO 240 J=2,JN

DO 240 I=1,1N1

VN(ToJ)=GN(TrJ)/H3(I9J)

CONT TMUE

LRS1l=9

CALL RESTAR

G0 Tp 185

END

-
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SUBRQUTINE VARBC

éoa##u#

¢ THIS SUBROUTIME EVALUATES TIME=DEPENDENT BouUNDARY COVDITIONS

gcHtannn

COMMON
1
COMMQON
. COMuQON
COMMoN
1
COMMON
CcOMMONM

/GRID/ Z(81)4E{81)+ITHETA(31)#SN(31)9CS(31)9CT(31)9A3(n1s:
)9 THETA(31) |

/NEWV/ UN(B1931)+GN(B1931),TN(81,31) .

ZINJUN/ INLg N1sINsJNgqHySKySTeKSeGRaPRCCJIsCCGIDFUSDFR

/NPRC/ NPRULsNPRGLeNPRUYNPRGINTOTALI UNPRyUXITERINPIINT, |
NTIVES«MXUsMXUP 1

ZiMAINZ LMY, LM2

/TENP/ NPRTU1+NPRTD19NPRTU,NPRTDyCCTYsCCTIIFTISOFTD

LEVEL 2 2Z4UNoINLgMPRUL9LM1eNPRTUL

c

RSH2=0,
IF{LMl,

57 (sH#SH)
EQ.1) GO TO 30

c*####**““#*####**#6#“%#*n&ﬁ##%#&ﬁ“&#&ﬂ##“Gﬁ#*&##ﬁ##*#k#ﬁ#ﬁbiﬁﬂbiﬁ#bﬁﬁ‘

C
cuunnes EVALUATE AT THE NEW TIME~STEP

c

NPRn=MNPRG1

NPRTyU=NPRTU1L
NPRTD=NPRTN1 ‘

¢
CH##nes EVALUATE SURFACE VORTICITY

c

00 1n J=2. N
UTGN=RSHR# (p #1IN(24J)=UN(39J)) |
UTGN=GN (14 J) *DFG* (UTGN=GN{1sJ))
ERRORG=(UTAN=GN(14¢J))/H3(19J)
IF(4BS(ERRORG) ¢ LE(CCGY NPRG=NPRG=1
GN(1,J)=UTGN
10 CONTINUE

c
Cuaveas EVALUATE TEMPERATURE ALONG THE AXIS OF SYMMETRY

UTGN= (1R, #TN(T192) =0, 2TN(193)42,#TN(Iv4)) /11,
UTGN=TN(I41) +DFTU® (UTGN=TN(Is1))
ERRORT=UTGH=TN(Is1)

IF(4BS(ERRART) LLE,CCTU) NPRTU=NPRTU=~1

UTON= (184 #TN(ToJIN) =¥ TN(T9JIN=1)+2 , #TN(I9sJIN=2)) /11,
UTGN=TN(TI 43 JN1) +DFTP# (UTGN=TN(IsJN1))
ERRNRT=UTGH=TN(TI9IN1)

IF(aBS(ERRORT) 4LE,CCTD) NPRTD=NPRTD~]

TN(T4JN1) =TGN

c
DO =20 I=2,1N
TN(T41)=UTnN
20 CONTIMUE
_ RET IRI!
c

c&#ﬁ###b##&”####%*ﬂﬁﬁ##*###“##&h#ﬂ##ﬁﬁ##ﬂ####%ﬁ&ﬁ##*b95@&##&###&#*b*#a
c#*###ﬁ“ﬁﬁﬁﬁﬁﬁﬁﬁuﬁﬁﬁhﬁﬂ&%#%“Q#%Q&%é####ﬂ&%#b#%ﬁﬁ#b&*Q#nﬁ##“%ﬁ*##n%ﬁ”**

c
chewets EVALUATE AT THE HALF TIME=STEP

c
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30 CONTINUE
c
Cuenans EVALUATE SURFACE VORTICITY

>
o DO 40 J=24UN
GN(lyJ)=(B,HUN(29J)=UN(3+J))#RSH2
60 CONTINUE
c

Cheneas EVALUATE TEMPERATURE ALONG THE AXIS OF SYVMETRY

DO Sg I=2,1N

TN(Tel)=(1la ,#TN(Is2)=9.#TN(I93)+2,#TN(I+4))/11,

TNCToJNYIIS (1 o#TN(TaJIN) =¥ TN(T o JN=1) 42, #TN(Iy y\=2)) /11,
50 CONTINUE - )

RETURN -

END .
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SUBRQUTINE SOLVE

g&&#a## _ . :
c THIS SUBROUTIME SOLVES TRIDIAGONAL MATRICES FQR TEMPERATJR:
c AND VORTICITY VALUES
cHotany
c .

DIMENSION w(81)9+5(81) o

| COMMON /GRID/ Z(81)sE(81)9ITHETA(31)+SN(31)9CS{31)sCT(31)9H3 1

1 )9 THETA(31) ‘

COMMON ZINJN/ INLoUN1sINeJINgSHySK,STeKSeGRIPRCLIICCGeDFUyDF

COMMON /SLVCF/ Cl(81)¢C2(81)9C3(B1)+D(81)2P(81)4L5V1
] LEVEL 2 sZ,IN1sCl
c.

IF(LSV1.EQ, 1) GO To 30

Wil)=cz(1)

G(1)=D(1)/: ()

DO 15 I=2,1N1

WD) =C2(I)=Cl(I)#C3(I=1) /W (I=1)

GID =(DID) =gl (D #*3(I~1)) /4 (1)

10 CONTINUE '

PINL)=G(IM])

I=IN

D0 20 K=1,41N

! P(I)=G(I)=c3(1)®P(I+1) /W (I}
I=I=-1
20 CONTINUE

, RETURN
r
ElHl-*##*##“##*%%*u*#####ﬁﬁ##&#&%“#**####ﬁ*&ﬂ**##%#*#ﬁ###»**ﬁ%***#ﬁ%*#«l.’rﬁ'i&
c

30 CONTINUE
| wil)=C2(1)
| G(1)=0(1) /(1)
DO 40 J=2,uN1l. -
\ W) =C2(J) =C1(J)#C3(J=1) /W (J=1)
Gl =(D(J)=cl N #5(J=1))1 /74 ())
40 CONTINUE .
. POJINL)Y =G (Ji1l)
1 J=JN
DO 59 K=1,uN
o PII) =G (N =3 (J)#P(J+1) /W L)
J=J=1
50 CONTINUE
RETURN
END
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) SUBRQUTINE oUTPUT
c‘#%k#ﬁ

| c THIS SUBRQUTINE CONTROLS OUTPUT oF RESULTS
i gbl&ﬁﬁ# ’
S ‘

| COMMON /GRID/ Z(81)sE(81) s ITHETA(31)9SN(31),4CS(31)+CT(31) 93710

| 1 ) s THETA(31)

\ COMMON ZINJUN/ IN1,JN1leIN, JN;SH;SK,STﬂKSoGR;PR,ccd,cce,ofu,Dpn
COMMON /LOTPUT/ LOP1,LOP2sL0OP3
COMuON /LRSTAB/ LRS1
LEVEL 2 9Z,IN1sLOP14LRS1

LRS1=0
IF(LOPl.EQ,1) GO TO 20
IF(LOP2,EQ,1) GO TO 30
IF(LOP3.EQ.1) GO TO 40
NRITE(G:IO)
10 gO?SQ;(IXQ*INCORRECT GENERATION OF OUTPUT CONTROL: PARAMET;Q,»J
é#*#*##:*ﬁ&%#ﬁ##**#%***b#Q%“#*#ﬁﬁiiﬁﬁﬁﬁﬁﬂﬂﬁﬁﬂﬂﬁﬁﬁﬁﬁﬁﬁﬁﬁk###%#**h*n**ﬁ9

20 CONTIMUE
CALL PDNCOFF
CALL RESTAR “ :
CALL CNPLTP
CALL OUTAPE - , ﬁ

RETURM
cQﬁ##ﬁ#####%##**g##u“%*#%##&u#9&#%*ﬂ*#ﬁ##“#%####ﬁﬁ#&%“####ﬁ%####*#*k#“ﬁ
c
30 CONTINUE

CALL PODMNCOEF

CALL OUTAPE :

RETURM ’
c#&####&##o###%#n*%#*%###u#%##*#%###%##ﬁ###G##@&#b&b»&#ﬁ»#*ﬂ&#ﬂ*&&#&ﬁw%
c |

40 CONTINUE
CALL PDNCOFF
CALL RESTAR

. RETURN
END



324
UBROUTINE INTAPE 76/76 OPT=2 LT FTN 4,2¢178

SUBROUTINE INTAPE

¢§#nn¢#

c THIS SUBROUTIME READS IN DATA FROM MAGNETIC TaAPE
Cotsusn

COMuON /GRID/ 2(81)qE(BI)vITHETA(31)9$N(3I)’CS(31)9CT(31’9H3}R15%

| 1 Yo THETA(3])
COMMON Z0LDV/ UO(B1931)+G0(Ble31),T70(81+31)
| LCOMMON /NEWV/Z 1IN(S81931)9GN(81431)4TN(81¢31)

COMMON ZINUN/Z INloJNMI9INeJNeISHISK,STIKSeGRIPRCLCJIICCGeOFUNDF

| COMMON /COEF/ B1(81)982(81)983(81)¢B4(B1)9C(81)+ESA(B])
COMMON /LNTAPE/ ISKIPN,II
LEVEL 2 9ZsU0yUN9IN19B19ISKIPN

REWIND II ‘ . \ '
IF(ISKIPN.GTo0) CALL SKPFILE(ISKIPNsII)

READ(IT)(Z(T1)+E(I)sI=14IND)
READ (IT) (ITHETA(J) 3 THETA (J) oSN{J) 4CS(J) o CT(J) s =1 eJINI)
READ(II)(B1(I})9sB2(I)sC(I)sI=19IN]) :
READ(II) (B(J)+84(J)rJ=19JIN])
READ (IT) ((H3(IsJ)eI=1sIN1)sJd=1eJNl)

| READ(II) C(110(Ted) 9I=19IN1)od=19sUN])

; READ(II) ((0(Isd) o I=10IN1) sd=19JNl)

| READ(I1) ((TO(Ied)sl=1sIN1)sJd=1sUN1)
READ(IT) ((UN(Isd)sI=19IN1)sJ=1eUN])

| READ(II) ((GN(IsJ)eT=19IN1)sd=1yJN1)

| READ(ITY ({TNIT o) eI=1eIN1)ed=1eJN1)

| RETURN
END
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SUBRQUTINE OQUTAPE

¢
codnnnn

c THIS SUBRNUTINE WRITES OUT DATA ON MAGNETIC TAPE
cD‘lHNHHt

COMMON /GRID/ Z(81)9E(81) sITHETA(31) sSN(31)4CS(31)9CT(31)9r3(Als3
1 )9 THETA(31)

| COMWON‘/OLHV/ U0(B81+31)+6G0(81931),TO(B1,31)

’ COMMON' /NEWV/ IN(81931)9GN(B1931),TN(81+31)

| COMMON /INJUN/ IN19JN19INsJNsSHySKSTeKSsGRePReCCIeCLGsDFUsDFg
COMMON /COrFF/ Rl(Sl)982(81)983(81)984(81)’5(31)QESQ(BI)
COMMON /LOTAPE/ ISKIPO,JJ
LEVEL 2 +Z,U0yUNsIN19B1yISKIPO

REWIND JJ

IF(ISKIPO,.GT.0) CALL SKPFILE(ISKIPO;JJ)
WRITE(JUN (Z(I)2E(I) s I=19INLD)

WRITE(JJI) (ITHETA(D) s THETA(J) 9SN(J) 9CS(U) 9CT (J) 9J=19JNL)
WRITE(JN (RY{T)eB2(I)eC(I)eI=1sIN])
WRITE(JJ) (R3(J) 9B4(J) sJd=19JN1Y
WRITE(JU) ((HI(T9Jd)oI=lyINL) 9J=19UN1)
WRITE(JDN ((UO(Tsd) o I=14IN1) eJd=1eIN])
WRITE(JI) ((GO(T9d) o I=1,IN1)sd=1sJN1)
WRITE(JJ) ({TO(Tsd)9I=141IN1) 9J=19JN1)
WRITE(JJ)Y ((UN(Iod)9I=19INL) 9JsleJNI)
WRITE (JJ) ((GN(I9d)yI=1yeINL)ed=1sUN])
WRITE(JI) ((TN(Tad) e I=19INL) 9J=14JN])
END FILE Jy

RETURN

END
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SUBROUTINE SKPFILE (ISKIPsI)

(2 Xel

[ X X 2-X-% 1
THS SUBROUTINE SKIPS FILES ON MAGNETIC TAPE a#s CDC 7600

gX2]

12222 2

LEVEL 2 +1ISKIPs!

(2 2 o ]

\

|

‘ N=0

~ 10 CONTINUE

|- ‘READ(I) DUMMY : |
IF(EOF (1)) 20,30 |

20 N=N.1 |
IF(N,EQ.ISKIP) RETURN

30 GO To 1n

\ END




y
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SUBRQUTINE CNPLTP

c.’#iﬂﬁ
c THIS SUBROUTINE EVALUATES PLOT POSITIONS OF CONTDURS AND CaLLS
il c THE LINE=-PRINTER PLOTTING ROUTINE
c&#####
DIMENSION ZVC11(10),2vVC2¢(10)+LVC(1D)
COMMON /GR1D/ Z(Sl)aE(Bl),ITHETA(BI)’SN(BI)nCS{Bl)oCT(31):H3(3193
’ | ) ¢ THETA(31) .
COMMON /PLTPCN/ VCU(10) sVCV (10) sVET (10) sKNUSKNV 9 KNT oM
COMMON /NEWV/ UN{81931)¢GN(Ble31)sTNI(81931)
.COMMON /VON/ VN(31,31)
COMMON /PLOTC/ XX1(31910)9YY1(31910)9XX2(31910)9YY2(31910)97YSs
IXSTEP s UNH1 o UNH KNP ¢ RPLOT o RPLOTUsR2LOTVIRPLOTT
COMMON /ZINUN/Z INloaJN1oINgJN9SHySK,STsKSesGRIPRCLJIICLCGeDFUDFyg
LEVEL 2 4Z+VCUsUN,VNeXX19IN1 .
c

10

WRITE(6924N)
WRITE(69250)
WRITE(6+260) (VCU(K) 9K=19KNU)
D0 1o K=1,xkNU
ZVCl(K) =0,
ZVC2(K) =0,

LVC (k) =1
CONTTHUE
IINl=(IN®#M/10) ¢1
IIN=TIN1=]
JNH=JUN/2
JMH]I=UNH+ 1

c&#ﬁ#ﬁ#***%%*#ﬁ#ﬁ*ﬁ#%%*#*ﬁ#ﬁ&%&“##&é#%**%*###@%#*ﬂ#*%“&#**%%#9###%**&*&

C
Chevass SFARCH AND INTERPOLATE BETWEEN TWO I=LINES===

‘ c
c

e==STREAM FJINCTION CONTQURS

DO 7o J=24uN
D0 4pn I=2,7TIN1
DO 40 K=1sKNU

CIF(ON(I=190) e LE«VCU(K) «ANDeUN(TIsJ) «GEeVCU(K)) 6D TO 20

20

30
40

IF(UNCI=19.1) ¢GEsVCUI(IK) ¢ ANDWUN(IoJ) LESVCU(K)) GO TO 20

60 To 4~

IF(LVC(K) oFne0) GO TO 30

ZVCL(K) =SH# (FLOAT(I=2) ¢« (VCU(K)=UN(I=19J))/Z7(JN(TeJ)=UN{I™]19)))
ZVC» (K)=0,

LVC(K)=2

GO To 4¢

ZVC2 (K) =SH#(FLOAT{I=2) « (VCU(K)=UN(I=19J))/Z7(UN(TI9J)=UN(I=]10J)))
CONTINUE

D0 509 K=1lsxkNU

ZVCI(K)=EXP (ZVr1 (K))

ZVCo2(K)=EXP(ZVC2(K))

IF(ZVC1(K) LEel,) ZVCl(K)=0,

IF(ZVC2(K) bEele) ZVC2(K)=0e

YY1(Jd=leK)=ZyCl(K)aSM(J)

XX1 (J=1eK)=ZVCI(K)#CS(Y)

YY2(J=19K)=ZVCR2(K)#SN(.}) _
XX2(Jd=1leK)=ZVC2(K)®CS ()
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50 CONTINUE 4
WRITE(6e277) ITHETA(J) 3 (ZVC1(K) 9K=19KNU)
WRITE(6928n) (ZVC2(K) 9K=19KNU)

DO "0 K=14kNU . )
- ZVC1(K)=0.
ZVCQ(K)=00
LvC(k)=1 ,
60 CONTINUE _ '
70 CONTINUE -

seonse PLOT STREAM FUNCTION CONTOURS

OO

KNP=KkNy -
CALL CNPLOT

80 CONTIMUE ST e ' .
WRITE(69294) : o
WRITE (64257)
WRITE(69260) (VCV(K) 2KslaKNV) ‘
DO 93 K=1,kKNV '
ZVCl(K) =0, , \
ZVCr(K)=0, : :
LVC (K) =1

90 CONTINUE
c#“ﬁ#“#ﬁ**#*###ﬁg'ﬂ'##%%* Ty Y I st 2 L R Y S AR E g R

RPLOT=RPLOTU :

C
Chennns SEARCH AND INTERPOLATE BETWEEN TWO I~LINES=== -
¢ »e=VORTICITY CONTOURS

c
B0 180 J=2,JN
D0 120 I=2.1IN1
DO 120 K=1,KkNV
IFCVYN(I=19 ) o LEVCVIK) JANDVN(I9J) 4GELVCVI(K)} GOTD 100
IF(VN(I=19) ¢GESVCVIK) ANDJVN(IoJ) LESVCV(K)) GO TD 100
G0 To 120
100 IF(LVC(K).,FOe0) GO TO 110
ZVC1 (K)=SH# (FLOAT (I=2) + (VCV(K)=VN(I=19J) )/ (VUN(TeJ)=VN(I=19J)))
ZVNCo(K) =0,
LVC(K)=0 )
60 To 120
110 ZVC2(K)=SH# (FLOAT (I1=2) ¢+ (VCV(K)=VN(I=19J) )/ (VN{TsJ)=VN(I=13J)))
120 CONTIMUE
D0 130 K=] KNV
ZVC1(K)=EXr (ZVC1(K))
ZVCo(K)=EXp(ZVC2{K))
" IF(ZVC1(K) JLEal,) ZVCl(K)=04
“IF(ZVC2(K) JLEL1e)ZVC2(K) =00
YY1 (J=1eK)=ZVC1(K)#SN(Y)
XX1(J=1eK)=ZVCL(K)®CS ()
YY2(J=1eK)=ZVC2(K)#SN(J)
XX2(J=19K)=ZVC2(K)#CS(J)
130 CONTINUE
WRITE(6e270) ITHETA(J) 4 (ZVCL1(K) sK=19KNV)
WRITE(6e280) (ZVC2 (K) yK=19KNV)
D0 140 K=],KNV
ZVCl(K)=0,
ZVC2(K)=0,
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LVC(K)=1 } -
1640 CONTINUE
160 CONTINUE

¢ N
ceasas PLOT VORTICITY CONTOURS

RPLOT=RPLOTV
KNP=KNV -
CALL CNPLOT

é&’#&####*#*#ﬂ%#*##*&*#“*#“#*G*ﬂ#&G####ﬁ*ﬁﬁﬁﬁﬁ’#‘ﬁ###“ﬁ#éﬁ“#*#“##“#*““%

c |
Chrénansd SEARCH AND INTERPOLATE BETWEEN TWO I=LIVESw«w
¢ . »==TEMPERATJRE CONTOURg |
c . |
160 CONTINUE |
WRITE(69300) : B - o A \
WRITE(69250) |

WRITE(69260) (VCTI(K) 9K=19KNT) ‘
DO 170 K=1,KNT
ZVCl(K)=0, |
ZVCa (K) =0, | . ‘
LVCiK)=1
170 CONTINUE
DO 230 .J=2,JN |
DO 200 I=2,1IN1 |
DO 200 K=19KNT
IFC(TN(I=19)) oLEVCTI(K) dANDoTNI(I9J) GELVCT(K)) GO YO 180
IFCTNCI=190) oGE«VCT(K) qANDeTN{IoJ) LESVCT(K)) GO TO 180
GO To 200
180 IF(LVC(K),FRe0) GO TO 130
ZVCLI(K)=SH# (FLOAT(I=2) #+ (VCT(K)=TN(I=1loU))/Z7(TN(ToJ)=TN(I=10J)))
ZVC2(K)=0,
LVC(K)=0
G0 To 2¢
190 ZVC2(K)=SH# (FLOAT(I1=2)+ (VCT(K)=»TN(I=1eJ)) /(TN (e J)=TN{I=190)))
200 CONTINUE
DO 210 K=]1,KNT
ZVCI(K)=EXP(ZVC1(K))
ZVC2(K)=EXP (ZVC2(K) )
" IF(ZVCI(K) ,LEel,) ZVCl1(K)=0o
IF(ZVC2(K) ,LEgle) ZVC2(K)=0e
YY1(J=19K)=2VC1(K)#SN{J)
XX1(J=loK)=ZVC1{K)I®#CS(J)
YY2(J=19K)=ZVC2(K)#SN(J)
XX2(J=1vK)=2ZVC2(K)#CS{Y)
210 CONTINUE
WRITE(69271) ITHETA(J) 9 (ZVC1(K)sK=]19sKNT)
WRITE(69280) (ZVC2(K)sK=19KNT)
DO 220 K=1,kKNT
ZVCYl(K) =0,
ZVCQ(K)=0.
LVC(K) =1
220 CONTINUE
230 CONTINUE

c
chensa® PLOT TEMPERATURE CONTOURS
c .
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RPLOT=RPLOTT
KNP=KNT : , '
CALL CNPLOT |

240 FORUAT(1H] 435X s #=mu=a COORDINATES OF STREAM FUNCTIOV CONTOURG ===
l=®)

250 FORMAT(1HO,/95XeSHANGLE910Xs1XsOHCONTOUR 191XeGHCONTOUR 241%,9HCO
1TOUR 3,1Xs2HCONTOUR 491XeSHCONTOUR SelXs9HCONTOUR 69 1Xs9HCONTHUR
291X 9HCONTOUR 891Xy FHCONTOUR 991X, 10HCONTOUR 10) |

260 FORWAT (20X,10F10.7) ‘

270 FORMAT (1H0,4Xs15910Xs10F10¢%) . |

280 FORVAT (20X,10F1044) |

290 FORMAT(1H1,38Xs#===== COORDINATES OF VORTICITY CONTOURS =====o)

300 FORWAT(1H1g36X!*---—~ COORDINATES OF TEMPERATURE CONTOURS =ee=wit}

RETURN
END
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SUBROQUTINE CNPLOT

t&“&*&#

C Tst SUBROUTINE PLOTS STREAM FUNcTION s VORTICITY AND TEMPZRATJR
CONTOURS

Crevans

c

DIMENSION cHAR(120) .
COMMON /GRID/ Z(Bl)!E(BI)QITHETA(31)OSN(31)9C5(31’!CT(31)0H3(Q103

1 )+ THETA(31)
"COMMON /PLOTC/ XX1(319 10)'YY1(31’10)’XXZ(31010)9YY2(31’10)OTYSO
1 IXSTEP s JUNH1 9 JNHa KNPy RPLOTsRPLOTU9 R2L0TVRPLOTT

COMMON ZINJN/Z INlyJUN19INpJINeSHeSK ST9sKSeGRsPReCCJeCCGIDFUyDF
LEVEL 2 +42,XX141IN1 .
DATA BLANK,PLOT/L1H o1H,/

DX=RPLOT/(FLOAT(IXSTEP=1))
DXHLF=DX/2,
D0 10 L=1,4120
CHAR(L)=PLOT
10 CONTINUE
WAITE(6+20) CHAR
20 FORyAT(1H1,120A1)
] DO 3p L=1,119
CHAR (L) =8LaNK
{ 30 CONTIMUE

ci*ﬁ#ﬂ%%***#***ﬁ%“**@##i#####“####ﬁﬂ&###* ##0####0&##}#&#*“###%#{#*ﬂ'%ﬂ?# i

¢
crewess PLOT CONTOURS IN THE UPSTREAM SECTION
C »
XPLOT=RPLOT |
40 CONTINUE . , |
D0 60 JJ=1,JNH
DO o K=1,KNP ‘
IF(aBS(XPLOT=XX1(JJsK) ) +LEDXHLF) GO TO 50
G0 To 52
50 LL=(FLOAT(T1YS)/RPLOTI®#YY1(JJyK)+0,5
) IF(LLer Qa0 NReLLeGTIYS) GO TO 52
CHAR(LL) =PI OT
52 IF (4BS(XPLOT=XX2(JJsK)) eLESDXHLF) GO TO 55
GO To 69
55 LL=(FLOAT(TYS)/RPLOT)#YY2(JJeK)+0,5
IF(LLOEN,D.ORLLe3TLIYS) GO TO 60
CHAR(LL) =PLOT
‘ 60 CONTINUE |
IF (XPLOT4LT.1.) GO TO 100 ‘
\ WRITE(6970) CHAR
70 FOR4AT(1Xe1Hes120A1)
80 CONTINUE
DO 9y L=ly7YS
‘ CHAR (L) =B aANK
90 CONTIMUE ‘
IF(XPLOT.LF, (DX/10004)) GO TO 130
‘ XPLAT=XPLOT=DX
GO To &0
‘ 100 CONTINUE
CL=l,=( (XPLOT) #42)



- - Ve P ) PR " e

332

BROUTINE CNPLOT 76/7¢ OPT=2 FTN 4,24178

LC=(FLOAT(IYS)/RPLOT)#SQRT(CL)*0.5
IF(LCeEQ,0.0R.LCeSTL1IYS) GO TO 1llo
CHAR(LC)=PLOT
110 CONTINUE
. WRITE(6s12n) CHAR
120 FORMAT (2X4120A1)
G0 To an

_ 130 CONTINUE
cl“““*#ﬁ#*#G%G*%#“Q#GQQ###Q“*#ﬁ##*ﬂ'ﬁ*##& (2T 2T TY Tyt -T2 2 3 0

¢ X
crenude PLOT CONTOURS IN THE DOWN~STREAM SECTION
c
XPLOT=DX
NMJ=JUNH=1 .
NJ=JN=1
140 CONTINUE
D0 ls¢ JJ=uNH4NJ
. DO 180 K=1.KNP
IF(ABS (XPLOT+XX1(JJeK) ) ¢ LE.DXHLF) GO TO 150
GO To léo
150 LL=(FLOAT(TYS)/RPLOT)®*YY1(JJyK) 20,5
IF(LLe"Q,0,0ReLLeG3T41YS) GO TO 160
CHAR(LL) =PI 0T
160 IF(ABS(XPLOT#XX2(JJeK) ) «LESDXHLF) GO TO 170
G0 To 180
* 170 LLS(FLOAT(TYS)/RPLOT)®YY2(JJeK)+0,5
IF(LLeEQ,0.OR.LLeGT4IYS) GO TO 189
CHAR(LL)=PLOT '
180 CONTIMUE
IF{XPLOT.LT.1a) €O TC 2
WRITE(6s70) CHAR
190 CONTINUE
IF(XPLOT,GF, (RPLOT=DX/10004)) RETURN
DO 200 L=1,1YS
CHAR (L) =BLANK
200 CONTINUE
XPLOT=XPLOTenX
GO To 1lao0
210 CONTINUE
- CLEl = ((XPI OT)##2)
LC=(FLOAT(1YS)/RPLOT)#SQRT(CL)+045
IF(LCeEN,0.,0RLCeB3T.IYS) GO TO 220
CHAR(LC)=PL0OT
220 CONTIMUE
WRITE(6e120) CHAR
60 To 190
END,

¢

e
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SUBRQUTINE PDNCOEF:

c&&»n#*
c THIS SUBRNUTINE EVALUATS SURFACE PRESSURE . DRAS COEFFICIENTS
c AND LOCAL AND AVERAGE NySSELT NUM3ERS

h Chadaass

DIMENSTION VTH(SI)gVTH2(31)’AK(31)9&K2t31)9AVUL(31) {
DIMENSION aNuL2({31) :
COMNQON /GR1ID/ 2(81)'E(81)9ITHETA(31)’SN(BI);CS(31)9CT(31)vH3(a193

1 ) o THETA(31) !
COMMON /aLnV/ uo(51,31),60(81’31).70(81,31: |
COMMON /NEWV/ UN(B1+31)9GN(Ble31),TN(81+31)

COMMON /VON/ VH(B]l,31)
COMMQN ZINUNY/ IVIoJV19IN'JN»SH,SK,ST'KSQGRQOR,CCJQCCG’DFU;DFf

COMMON /GRAF/ IGRAPH¢NG
COMMON /TSTFP/ RX(R1)sTIME
LEVeEL 2 9Z,UOyUNIVNsIN] s IGRAPH,RX

DO 10 J=2,.N

DO 10 I=1,1N1

VN(TsJ)=GN(T9J)/H3 (1)

10 CONTINUE )

S1=1,/(12,4SH)

s2=1,/(12,»5K)

S3=n,/ (SK#SK#ST)
éb###ﬁ#&#####%*#a###*##*#ﬁ######*66########«###%G##**##*a###ﬁﬁﬁ%####%ﬁ*

C .
Crenans EVALUATE FRONT STAGNATION PRESSURE. COEFFICIENT

c . .
chtaeed AT T=1,.0=1 T=1 AND AT I=INled=le. T=0.
CEewase ON SYMMETRY AXIS (J=1) STREAM FyYNCTION IS ZERD
Chuunsts AT OUTER BOUNDARY VORTICITY IS ZERO
¢ )
YUZ=S0e
YVZ=0eS#S24% (4B #VN(192) =36¢#VN(193)¢16,28VN{1e4)=3,#VN(195))
YTZ= 005*1.
DO »2n I=2,IN
VZ=go# (48, 4VN(T92) »36eVN(193) 416, #VN(Ts4)=»3a#YN(T45))
UZ=S3#(UN(T+2)=UO0(T192))/E(])
TZ=TN(Ts 1) #F (1)
" YVZsyYVievZ
YUZ=YUZ+Uuz
YTZSYTZ+T2Z
20 CONTINUE
Al=gH#YVZ
A2=sHRYUZ
| A3=SH#YTZ
i _ AKNDT=4 ,#A142,#GROAS
) g#***#&o##oﬂéﬁﬁhﬁﬁ#*ﬂﬁﬁ&#0*##0###*#&*&#####6#6###%&#»&#»*#4&%*%#oﬁ&*b“*e
c
‘ crenose EVALUATE SURFACE PRESSURE COEFFICIENT

¢
cansass AT I=1 AND J=1 (J=JN1) VOTICITY IS ZERO

(o
‘ RSH3=6,/ (SH#*SH#*SH)
: RSHP4=3¢/Sti+4 4
VTH (1) =04 EvTH (JN1) =0,
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VTH2(1)=0,2VTH2{JN1) =0,

DO 390 J=24yN

YY=S18 (=25, %VN(19J)+48,8VN(29J)=36,%VN(39J) +16,#VN(49J) =3, #VN(Sed
1)

sosots EVALUATION OF SURFACE PRESSUR USING STREAM FUNZTION VALJES

(sllgle L

Y2=RSHI#UN(249J) /SN(J) =RSHP4#VN(19J)

VTH(J}=2e% (YY+VNI(1,J))

VTH> (J)= 2.*(Y2+VN(1oJ))

30 CONTINUE

AK (1) =AKNOT

AK2 (1) =AKNOT

D0 40 J=2,4UN1

AK (J) SAK (Jwl) 40 o SHSK® (VTH (J=1) +VTH(J) ) =2, #GR# (£S(J) ~C5 (J=1))

AK2(J) =AK2(J"1) +045#5Ke (VTH2(J=1) 4VTHZ(J) ) =2 #GR#(CS (I =CS(J=-1) ]
40 CONTINUE
g§Q§G#Q§¢##§#¢#§*#Q###§§####aa#ﬁﬁﬁwnaﬁﬁﬁaiviﬁﬁﬁﬁoﬁﬁﬁéﬁwwéﬁﬁﬁﬂwwﬁﬁwﬁ##ﬁa
c
Creoand EVALUATE VISCOUS AND FORM DRAG COEFFICIENTS
(o}

CF=n,

CP=n,

cPa=Q,

DO 5o J=2,uN

SNS=SN (J) #sN(J)

SN2=2.#SN (1) #CS (J)

CF=CF+VN(1,J)#SNS

CP=CP+AK(J) #*SN2

CP2=CP2+AKZ (J) #SN2

50 CONTINUE

COF =4 #SKH#NF

COP=sK#CP

CDP>=Sk#CP>

COT=CcDF«CDP

COT»=COFe+CNP2
cu&&%###*%&##**%«.#&*###*###6%%%%#4“#####0###*###*&%&%*# [Z-2-2-X- XX R-F-F-F X X P8 23

c
Chitnans EVALUATE LOCAL AND OVERALL NUSSELT NUMBER
C
ANUn=0,
DO 40 J=1l,yyN1
ANUL (J)=S1le (=25.+4R, “TN(ZvJ)-Bé.*TNtaod)tlb BIN(Gy J)=3e"TN(5,U)}
ANUn=ANUO« ANUL (J) #SN(J)
ANUL (JY==2 _ ®ANUL ( J)
ANUL2 (D) =anNub (D) Z7aNJL (1)
60 CONTINUE
ANUn== (ANUO®SK)
WRITE(6970)
70 FORMAT (1H] +SXeSHANGLE 96X e 3HVTHe 11X o 4HVTH2910X 02494 910X 92H<2
1911X42HKC911Xe3HVNS 910X s4HANUL 98X SHRAANU)
DO 9¢ JU=1l,UNl
AKC=AK (J) =p A2
WRITE(6980) ITHETA(J) sVTH(J) oVTH2 (J) sAK(J) 9 AK2(J) 9 AKCoVUNI(], J).
1ANUL (J) s ANUL2 () .
B0 FORUMAT(SXy149R(2XeF1lle5))
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90 CONTINUE
WRITE(6e100n)
100 FORMAT (1Xs//77910Xs2HGRy10Xs2HPR,10X9s2HAL 310X e2HA2¢8Xs2HA3e17X,
13HCDF 99X ¢ 3HCDP o TX 4 3HCDT 9 7TX9y4HCDP2,TX94HCNT2)
WRITe(69e110) GRqPRoAI9A20A3!CDF0CDP9CDTQCDPEoCDT2
110 FORMAT (4X9FF¢3+4X49(F1l145))
120 CONTINUE
AKNOT=AK (1) =2,%*A2
WRITE(6s130) TIME,AKNOT,ANUO
130 FORMAT (10X /7954 8TOTAL TIMES ®#9F12e5¢5Xe®AKNOT=E #9F10e3,
IS5Xs #*OVERALL NUSSELT MOg= #9F10.,5)
RETURN
END
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OO0 O OO

SUBRQUTINE RESTAB

(2 L 22 1

THIS SUBRQUTIMNE PRINTS OUT STREAM FUNCTION 4 VORTICITY AND
TEMPERATURE FIELDS IN TABULAR FORv

1 2 2222 )

COMMQN /GRID/ Z(Bl)»Eial)9ITHETA(31):SN(SI),CS(BI)9CT(31)’43(Q1y3
1 Yo THETA(31) |
COMMON /0LNV/ UOI(81931)46G0(81931)4T0(814+31) |
'COMMON /NEWV,/ IIN(B1e31)¢GN(BLl9e31),TN(B1431) ‘
COMuON /V00/s VN(81,31) ) :

COMMON /VON/ VN(81431)

COMMON /TSTEP/ RX(81)TIME

COMMON ZINJN/ INLeJUN1sINsJIN9ySHISKsSTeKSeGRePRyCCIICCGeDFUIDFn
COMMQON /NPRC/ NPRJ1¢NPRGL1NPRUSNPRGINTOTALSMNPRyUXITERINPRINT, ‘
1 NTIVMES ¢ MXU9MXUP

COMMON /LRSTAB/ LRSI :

COMUON /GRAF/ IGRAPHeNG

LEVEL 2 sZyUOyUNsVOIVN,RXsINIsNPRULILRS1eIGRAPH ‘

¢
che#asne LRS1=1 WRITE OLD VALUES OTHERWISE WRITE NEW VALUES

c

lo

20

30
40

50

60

IF(LRS1.EQ,1) GO To 60 1
WRITE(69131) \ ' l
INN=IM1=10

DO 19 K=14INNs10 : '
Kl=Ks+9 ’

WRITE(6914n) ((UN(TsJ)eI=KsK1)eJ=1l,yJIND)

WRITE{6+15n2

CONTINUE

WRITE(69182) ((UN{IsJ)sI=INI9IN1)4J=1eJUN1)

WRITE(6e1lTn) :

CONTNUE

D0 3p K=1ls1NNylo

Kl=x+9

W ITE(6el40) ((VN(I9d)sI=KeK1l)eJ=19JN])

WRITE(69151)

CONTINUE

"WRITE(69l6n) ((VN(IeJ)oI=IN1yIN1)4J=19JINL)

CONT INUE

WRITE(6418n)

DO S5 K=141NNsl0

Kl=xas9

WRITE(69140) ((TN(T9J)sI=KeK1l) s J=19JN]1)
WRIT=(69150)

CONT INUE

WRITE(6el160) ((TN(IoJ)osI=IN1pIN1) yJ=1sUNL)
RETHRM

é#“#ﬁ&##ﬁ#ﬁﬁﬁ*#ﬁﬁﬂ%&%#*ﬁb***ﬁﬁ#ﬁ#@ﬁﬁﬂﬁﬁﬁ#ﬁ##*&ﬁﬁ%#“#%#b»Q##%ﬁ#ﬁ###**###

CONT INUE

TIMo=TIME=gT
IF(TIMELLT.0.0) TIME=O,
WRITE(6he12n) GRyPR,TIME
WRITE(ke13n)

INN=TN1=10
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DO 7g K=1lsINN,10 e
Kl=Ke9
WRITE(6e14n) ((UO(T9J)s1=KsK1)eJ=1l,yJN1)
WRITE(Ke150) »

70 CONTINUE .
WRITE(69160) ((UO(TeJ) ¢ I=INLeINL) 9J=19UN1)
WRITE(6s170) .
DO 89 J=2,JN
DO Rp I=1,INl
VO{19J)=GO(ToJ)/H3(10J)

80 CONTINUE
DO 99 K=l,1NN,y1l0
Ki=x+9 ,
WRITE(6s1l4n) ((VO(IsJ) oI=KeK1l)eJy=1,JN])

© WRITE(6s150)

90 CONTINUE : : .
WRITE(6s160) ((VO(IsJ)oI=IN19IN1)yJ=1vJIN]1)

100 CONTIMNUE :
WRITE(691806)
DO 110 K=1,INNs10
Kl=k+9
WRITE(6914n) ((TO(I9Jd)sI=KeK1l)eJ=1yJIN])
WRITE(69150)

110 CONTINUE
WRITE(Es160)  ((TO(IsJ) eI=INL1oIN1)sJ=19JN])
RETURM

120 FORMAT(1HOD 3///915Xs#GRASHOF NO, = #9F12.5910Xs#PJANDTL NOo = %
1F8a3410Xe#TOTAL TIME = #9F1245)

130 FORMAT (1H]1 34X ¥ STREAM FUNCTION #)

140 FORMAT(B5X41nG1l24D) :

150 FORVAT(1H0+56X1¥ mcamccesccacccesceess #)

160 FOR“AT(BX¢G1l2.5)

170 FORYAT(1H1 430X % VORTCITY DISTRIBUTION #)

180 FORVMAT (1H1 430X s TEMPERATURE DISTRIBJTION %)
END :
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TABLES



Gr Pr r, h k At €y €g E
0.05 0.72 24.53 0.04 6° 0.01 1078 1073 107°
1 0.72 24.53 0.04 6° 0.01 1076 1073 1076
10 0.72 24.53 0.04 60 0.005 5x10"¢ . sx1073 1078
25 0.72 24.53 0.04 6° 0.001 7.5X10"°% 7.s5x%1073 10~6
50 0.72 24.53 0.04 60 0.001 2.5X1073 10™2 1072
125 0.72 24.53 0.04 6° 0.001 5X107°  5%x10"2  5x107°
1250 10 24.53 0.04 6° 0.0005 1073 10-1 1074

TABLE 1l: MAIN RESULTS AS THE SOLUTIONS OF THE TIME - DEPENDENT EQUATIONS

APPROACH LATE-TIME STEADY STATE

6€€



“y e @ Nu Ko K Cpp Cpp Cpr
1.9 1.2 1.5 2.09 0.49 -0.40 1.13 0.59 1.72
1.6 0.65 1.5 2.34 6.32 -5.69  15.75 7.95 23.70
1.5 0.5 1.5 2.92 37.44  -33.60  78.25 1 42.36 120.21
1.5 0.5 1.5 3.30 81.59  -46.05 146.39 82.62 229.01
1.5 0.5 1.5 3.82 141.26  -54.43 236.11  138.18 374.29
1.5 0.5 1.5 4.25 297.28  -61.53 448.31  276.20 724.51
1.5 0.3 1.2 9.98  1988.35  -71.10 1958.01 1386.11 3344.12

TABLE 1 (CONTINUED)

ov€



Pr=0.72

Gr 0.05 1 10 25 - 50
Nu 2.09 2.39 2.96 3.32 3.96
Ko 0.50 5.97 36.07 76.23  118.30
K -0.40 -5.40  -31.26  -48.68  -12.66
Cpr 1.17 16.42 74.88  143.70  211.20
Cpp 0.58 7.58 41.29 87.08  105.45
Cprp 1.75 24,00  116.17  230.73  316.65

h=0.04 , k=6© , raf24.53

TABLE 2:

MAIN RESULTS OF THE SOLUTIONS OF THE TIME~-INDEPENDENT

EQUATIONS

7€



PRESENT STUDY; PRESENT STUDY; HOSSAIN {966} YUGE (1961); TSUBOUCHI AND MATHERS et-RANZ AND MAR-

e T IME-~DEPENDENT TIME-INﬁEPEN—ANALYTICAL EXPERIMENTAL SATO (1960); al (1957); SHALL (1952);
Gr NUMERCIAL DENT NUMERI- SOLUTION METHOD '-EXPERIMENTAL EXPERIMEN- EXPERIMENTAL
SOLUTION CAL SOLUTION METHOD TAL METHOD METHOD
-
0.05 2.09 2.09 2.05 2.32 2.43 2.18 2.42
1 2.34 2.39 2.67 2.90 2.54 2.90
10 2.92 2.96 3.20 3.26
25 . 3.30 3.32 3.51 3.73
50 3.82 3.96 3.80 4.05
125 4,25 4.26 4.59
1250 6.12 . ‘ 6.03 6.60
12500 9.32 ' 9.10 | 10.19

TABLE 3: COMPARISON OF AVERAGE NUSSELT NUMBER FOR DIFFERENT GRASHOF NUMBERS FOR A PRANDTL

NUMBER OF 0.72 ‘

ve



RESULTS QUATED AT t=1.5

co
24.5310.04 6° 2.175 32.90 -14.38 65.01 33.39 98.40

24,53 (0.04571 6° 2.10 29.18 -12.98 58.19 27.90 86.09

24.53]0.04 90 2.12 30.71 -13.53 59.43 29.29 88.72

16.4410.04 6° 2.10 29.98 -15.21 60.41 29.83 90.24

TABLE 4: EFFECTS OF VARIATIONS OF MESH SIZES AND PROXIMETY OF
THE OUTER BOUNDARY ON THE RESULTS OF GRASHOF NUMBER

OF 10 AND PRANDTL NUMBER OF 0.72 SOLUTION

€ve



Gr=25 , Pr=0.72 Gr=50 , Pr=0.72
v r =24.53 | r =20.08 | r =24.53 | r =16.44
o @ o ©
h 0.04 0.04 0.04 0.04
k 60 6° 6° 6°
Nu 3.30 3.11 3.82 3.32
Ko 81.59 75.15 141.26 130.19
K -46.05 ~50.26 ~54.43 ~57.62
CpF 146.39 138.24 236.11 217.98
Cpp 82.62 78.95 138.18 130.75
Cpp 229.01 217.19 374.29 348.73

TABLE 5: EFFECT OF PROXIMETY OF THE OUTER
BOUNDARY ON THE RESULTS OF GRASHOF
NUMBERS OF 25 AND 50 FOR A PRANDTL

NUMBER OF 0.72

344



Gr=50, Gr=12500,
Pr=100 Pr=10

r 24.53 11.02

[0 o]

h 0.04 0.04

k 6° 6°

Nu 8.21 16.82

Ko 122.6 12077.34

Kq -57.37 3904.00

Cpp 195.04 8700.77

Cpp 114.61 6606.85

Cpr 309.65 15307.62

TABLE 6: LATE-TIME STEADY STATE

RESULTS FOR A GRASHOF
NUMBER OF 50 AND A
PRANDTL NUMBER OF 100,
AND FOR A GRASHOF NUMBER
OF 12500 AND A PRANDTL

NUMBER OF 10 SOLUTIONS
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ANGLE (DEGREES), ©
TIME ,t VARIABLE
.0 60 120 180

b Nu, 2.127 2.107 2.066 2.044

28 z 0.000 0.176 0.177 0.000
S

Kg 0.452 0.249 | -0.157 -0.360

Nug 2.130 2.109 2.065 2.041

30 C 0.000 0.181 0.183 0.000
S

Kg 0.463 0.254 | -0.164 ~-0.373

Nug 2.131 2.110 2.064 2.041

32 Cs 0.000 0.184 0.187 0.000

Kg 0.473 0.260 | -0.170 ~0.383

Nug 2.132 2.110 2.064 2.040

34 C 0.000 0.185 0.191 0.000
S

Kg 0.481 0.264 | ~0.175 -0.394

Nug 2.132 2.110 2.064 2.040

" 36 C 0.000 0.186 0.192 0.000
S

Kg 0.489 0.267 | -0.179 -0.402

TABLE 7: VALUES OF LOCAL NUSSELT NUMBER, SURFACE VORTICITY
AND SURFACE PRESSURE AS THE SOLUTIONS OF THE
EQUATIONS APPROACH LATE-TIME CONDITION FOR A
GRASHOF NUMBER OF 0.05 AND A PRANDTL NUMBER OF

0.72
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ANGLE (DEGREES) ,@
TIME,t | VARIABLE
0 60 120 180
Nug 2.575 2.426 2.040 1.783
11 Cs 0.000 2.394 2.416 0.000
Kg 5.955 2.982 -2.670 | -4.250
Nug 2.651 2.488 2.089 1.812
12 s 0.000 |2.501 2.551 0.000
Kg 6.157 3.092 -2.912 -5.011
Nu g 2.687 2.523 2.114 1.824
13 Ts 0.000 2.559 2.632 0.000
Ko 6.277 3.135 -3.023 -5.446
Nu g 2.695 2.539 2.123 1.828
14 Cs 0.000 |2.573 2.642 0.000
Kg 6.309 3.140 -3.073 ~5.586
Nu g 2.7@0 [2.540 2.125 1.828
15 s 0.000 2.573 2.642 0.000
Kg 6.320 3.141 -3.075 -5.691
TABLE 8: VALUES OF LOCAL NUSSELT NUMBER, SURFACE VORTICITY

AND SURFACE PRESSURE AS THE SOLUTIONS OF THE
EQUATIONS APPROACH LATE-TIME CONDITION FOR A
GRASHOF NUMBER OF 1 AND A PRANDTL NUMBER OF

0.72
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ANGLE (DEGREES),®
L TIME, t VARIABLE
0 60 120 180
5 Nu 3.62 3.32 2.40 1.61
3.5 Ts 0.00 12.81 11.84 0.00
Ke 35.08 14.08 -19.24 -24.44
Nug 3.69 3.38 2.47 1.69
4 T 0.00 12.99 12.02 0.00
Ky 36.47 13.05 -23.87 | -29.64
Nug 3.73 3.42 2.51 1.73
4.5 T 0.00 13.09 12.11 0.00
K, |37.10 12.41 -26.65 | -32.99
Nug 3.76 3.45 2.54 1.76
5 Cs 0.00 13.14 12.15 0.00
Kg 37.31 12.15 -27.91 | -33.40
Nug 3.78 3.47 2.55 1.78
6 Cs 0.00 13.15 12.15 0.00
Ky 37.44 12.01 -28.72 | -33.60
TABLE 9: VALUES OF LOCAL NUSSELT NUMBER, SURFACE VORTICITY

AND SURFACE PRESSURE AS THE SOLUTIONS OF THE
EQUATIONS APPROACH LATE-TIME CONDITION FOR A
GRASHOF NUMBER OF 10 AND A PRANDTL NUMBER OF

O. 72
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TIME,t | VARIABLE ANGLE (DEGREES),®
0 60 120 180
Nu 3.49 3.14 2.10 1.26
1 z 0.00 22.69 19.98 0.00
S
K, 71.82 31.86 | -25.24 | -28.06
Nug 3.81 3.45 2.35 1.40
1.25 C 0.00 24.18 21.36 0.00
S
K, 76.74 29.94 | -37.41 | -37.51
Nu 3.99 3.64 2.48 1.47
1.5 c 0.00 24.85 21.22 0.00
s .
K, 79.75 28.86 | -43.15 | -42.80
Nu_ 4.09 3.72 2.56 1.49
1.75 c 0.00 25.15 22.03 0.00
S
Kq 80.85 28.26 | -46.59 -45.51
Nug 4.14 3.76 2.58 1.50
2 0.00 25.25 22.06 0.00
S
Kq 81.59 28.37 | -47.29 -46.05
TABLE 10: VALUES OF LOCAL NUSSELT NUMBER, SURFACE VORTICITY

AND SURFACE PRESSURE AS THE SOLUTIONS OF THE
EQUATIONS APPROACH LATE-TIME CONDITION FOR A
GRASHOF NUMBER OF 25 AND A PRANDTL NUMBER OF

0.72
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ANGLE (DEGREES),®
TIME,t VARIABLE

o) 60 120 180

Nug 3.69 3.28 2.08 1.15

0.6 Ts 0.00 36.55 30.99 0.00
Xg 127.53 56.70 -36.54 -30.59

Nug 4.30 3.87 2.51 1.39

0.85 Ts 0.00 39.o§¥ 32.40 0.00
K, 135.12 52.47 -57.18 -46.73

Nu_ 4.66 4.20 2.78 1.50

1.1 s 0.00 40.31 33.21 0.00
Kg 139. 46 50.65 -65.69 -52.32

Nug 4.78 4.32 2.90 1.53

1.35 Ts 0.00 41.08 33.83 0.00
Kg 140.10 49.81 -69.49 -54.16

Nug 4.82 4.36 2.91 1.54

1.60 Ts 0.00 41.29 33.96 0.00
K 141.26 49.95 -70.00 -54.43

TABLE 11: VALUES OF LOCAL NUSSELT NUMBER, SURFACE VORTICITY
AND SURFACE PRESSURE AS THE SOLUTIONS OF THE
EQUATIONS APPROACH LATE-TIME CONDITION FOR A
GRASHOF NUMBER OF 50 AND A PRANDTL NUMBER OF

0.72
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ANGLE (DEGREES),®
TIME,t | VARIABLE
o 60 120 180
0.75 Cs 0.00 81.45 63.70 0.00
Kg 296.23 101.59 | -124.35 -61.45
0.8 Cs 0.00 81.69 63.70 0.00
Ke 296.55 100.76 | -125.37 -61.49
Nug 5.64 5.07 3.23 1.45
0.85 Cs 0.00 81.78 63.71 0.00
Kg 296.83 100.25 |=-126.00 -61.51
Nug 5.68 5.11 3.25 1.47
0.9 Cs 0.00 81.82 63.71 0.00
Kg 297.10 99.90 |-126.19 -61.52
Nug 5.70 5.12 3.26 1.47
0.95 Cs 0.00 81.82 63.71 0.00
Kg 297.28 99.73 |-126.29 -61.53
TABLE 12: VALUES OF LOCAL NUSSELT NUMBER, SURFACE VORTICITY

AND SURFACE PRESSURE AS THE SOLUTIONS OF THE

EQUATIONS APPROACH LATE-TIME CONDITION FOR A

GRASHOF NUMBER OF 125 AND A PRANDTL NUMBER OF

0.72
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TIME, t VARIAVLE ANGLE (DEGREES) ,®
o) 60 120 180
Nu6 12.93 11.39 5.62 0.45
0.15 Zs 0.00 323.42 235.53 0.00
K@ 1854.46 664.73 -578.8 243.21
Nu6 14.79 13.17 7.18 0.49
0.17 Cs 0.00 340.63 254,54 0.00
Ke 1932.70 544.77 -607.41 68.73
Nu6 15.75 14.11 7.93 0.52
0.19 :s 0.00 348.87 264.77 0.00
K6 1970.01 473.32 -623.30 -31.68
Nug 16.27 14.69 8.32 0.53
0.21 :s 0.00 351.71 270.45 0.00
Nyg 16.53 14.83 8.42 0.54
'0.24 :s 0.00 352.68 271.46 0.00
Kg 1988.35 430.75 -632.72 -71.10
TABLE 13: VALUES OF LOCAL NUSSELT NUMBER, SURFACE VORTICITY

AND SURFACE PRESSURE AS THE SOLUTIONS OF THE

EQUATIONS APPROACH LATE-TIME CONDITION FOR A

GRASHOF NUMBER OF 1250 AND A PRANDTL NUMBER OF

10
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