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ABSTRACT 

The first four chapters of this thesis are concerned with a calculation of 

valence electron correlation functions in nearly-free electron metals. Using a 

functional derivative technique, expressions exact to second-order in a weak 

electron-ion interaction are derived for the electron-electron and electron-ion 

correlation functions (and their Fourier transforms, the structure factors S
ee(k) 

and S.
le(k) ). Although equally applicable to solid metals, attention is focused 

on applying the results to liquid metals within the framework of the two component 

theory of liquid metals. 

Using the adiabatic approximation, simplified expressions for S
ee(k) and 

S. (k) are obtained for liquid metals. Both contain terms which are explicitly le 

shown to give the correct charge neutrality limit as k 	0. An additional 

second-order term in the case of S
ee(k) involves a four-body response function of 

jellium. Two approximations to this response function are constructed, both of 

which rely on knowledge of the corresponding response function for non-interacting 

jellium. As the latter has not been evaluated fully, this contribution to S
ee

(k) 

cannot be explicitly calculated although it is expected to be small compared to 

the charge neutrality term. 

Calculations of the dominant terms in S
ee(k) and S. (k) are presented for le 

liquid sodium and aluminium. These show that electron-ion interaction effects 

on the electronic correlation functions in these liquid metals are very small. It 

is concluded that (a) the recent proposal to extract See(k) from a combination of 

X ray, neutron and electron diffraction data on liquid metals will, at least in the 

case of sodium, provide an experimental measure of the structure factor of jellium; 

(b) existing theories are unable to explain the observed differences between X ray 

and neutron structure factor data on liquid metals. 

In chapters 5 and 6 , two problems involving charge density in random 
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binary alloys are discussed. Firstly, the Friedel model of localised screening in 

dilute alloys is extended to a simple calculation of momentum density in such 

systems. The possibility of observing the screening charge by means of Compton 

scattering is then raised. Secondly, using density functional arguments, it is 

proposed that a set of energy-dependent or 	-dependent ( 	= 1/kT) periodic  

potentials can be used to calculate respectively the integrated local density of 

states and the generalized partition function of disordered binary alloys. 

A final chapter is devoted to the problem of correlated bond percolation 

on the Bethe lattice. A non-linear integral equation is derived for the percolation 

probability, analysis of which yields exact results for the critical percolation 

probability and the behaviour in the critical region. 
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INTRODUCTION  

In studying liquid metals the physicist is faced with the challenging problem 

of understanding how the metallic properties associated with the existence of 

conduction electrons are modified, when, instead of moving in a vibrating ionic 

lattice possessing long-range order as in crystalline metals, the electrons move in 

a translationally dynamic and disordered ionic array characteristic of a liquid. The 

depth of the problem can be appreciated by recognizing the fundamental difficulties 

that arise in trying to solve the SchrOdinger equation for the electronic states in 

even rigid, disordered systems (as in crystalline alloys and amorphous solids; see 

Chapter 5, 	5.1), as well as the fact that the liquid state is still the least well 

understood of the three traditional states of matter. However, much progress has 

been made in elucidating the structure, dynamics and transport properties of liquid 

metals and alloys by a synthesis of the theory of classical, non-conducting liquids 

and the theory of metals(1). 

The structure of simple, non-conducting liquids (the prototype being liquid 

argon) is usually investigated by assuming that the liquid is composed of identical 

particles interacting in pairs by a temperature and density independent pair potential 

0(r) (e.g. of the Lennard-Jones type) and then applying the methods of classical 

statistical mechanics. An important equation used in such an approach is the so 

called 'force equation' which may be derived from the classical partition function. 

This exact equation relates the pair correlation function g(r) of the liquid (see 

Chapter 1,' 1.2) to the pair potential 0(r) by means of the triplet correlation 

function. To use the equation it is necessary to make an approximation for the 

triplet function (usually by decoupling it in terms of pair correlation functions). 

Then one can either assume a form for g(r) (or use experimental determinations of 

it from neutron or Xray scattering experiments) and infer 0(r) or vice versa. Various 
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approximate procedures for doing this are known as the Born-Green, Percus-

Yevick and hypernetted chain theories
(2)

. 

This treatment of simple liquids relies on the fact that they are one 

component systems. Liquid metals, on the other hand, are essentially two 

component systems, consisting of a degenerate electron gas interacting with 

an array of positive ions (although the division into valence electrons and ionic 

core electrons may be difficult in some cases). The electron gas, by screening 

the ions, plays a crucial role in determining the indirect interactions between 

the ions and hence their dynamics. But it is not obvious that these electronic 

effects can be adequately accounted for by means of a pairwise-additive effective 

ion-ion potential of the form described above. Certainly such a potential would 

be density-dependent by virtue of the sensitivity of electron gas properties to 

density. However, in 1963 Johnson and March(3), with some theoretical 

justification based on second-order perturbation theory(4), first suggested that 

the concept of an effective pair potentials should be useful in liquid metals. 

Since then much effort has been devoted to the extraction of effective pair 

potentials from experimental data using the methods mentioned above(5). This 

procedure is fraught with uncertainties arising from the inaccuracy of experimental 

data, the need to numerically Fourier transform this data in order to obtain g(r) and 

the approximations involved in the solution of the force equation. Consequently 

results are far from consistent in detail and do not necessarily give temperature-

independent results. Even so there is evidence in many liquid metals to support 

the theoretical expectation that the pair potential, in addition to a hard core, should 

exhibit damped oscillations (unlike in simple liquids), this being a manifestation of 

the Friedel oscillations that arise when a point charge is screened by an electron gas. 

The concept of an effective ion potential in liquid metals has proved useful, 
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but the controversy that still remains over its determination and interpretation has 

prompted several authors, notably Watabe and Hasegawa(6)
, Chihara(7) and March 

and Tosi(8), to attempt to construct a full two component theory of liquid metals. 

In such a theory electrons and ions are treated on the same footing, although of 

course differences arise from the fact that the electrons must be treated as degenerate 

quantal particles, while the ions because of their much larger mass behave more like 

classical particles (for instance with translational kinetic energy per particle of 

3 —
2 

k
BT). For this reason, the natural formalism for the two component theory is 

the temperature Green's function formalism which can give zero-temperature or 

classical limits as appropriate. At the outset, only a knowledge of the bare ion-ion, 

electron-ion and electron-electron interactions is assumed. The latter is quite simply 

taken as the Coulomb repulsion between like point charges. The other interactions 

are less obvious because of the finite size and core structure of the ions, although 

they must again be Coulombic at large distances. In simple, nearly-free electron 

metals (i.e. non transition metals) a reasonable model would be to assume a pseudo-

potential for the electron-ion potential and a charged hard sphere interaction between 

the ions. The aim of the theory is then to discuss liquid metal properties from a unified 

viewpoint which transcends the one component theory (Tosi, Parrinello and March(9)  

have pointed out where this is necessary for a full understanding of electronic effects 

on ion dynamics), but which hopefully will also show when use of effective ion 

potentials is valid. 

In single component liquids there is only one pair correlation function g(r), 

whereas the two component theory of liquid metals naturally contains three. These 

are the ion-ion, ion-electron and electron-electron pair correlation functions 

9.
i 
 (r), 

l  
g. 

e
(r) and g

ee
(r), and they have to be calculated self consistently. The 

pair functions are related by Fourier transform to the corresponding static structure 
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factors S..(k), S. (k) and See(k). le 

with a calculation of See(k) and 

The first four chapters of this thesis are concerned 

S.
le

(k) in nearly-free electron metals i.e. where 

the electron-ion interaction is weak. 

Chapter 1 introduces the three correlation functions and their corresponding 

structure factors and briefly surveys their known properties. In particular, it is 

shown from charge neutrality considerations that in the long wavelength limit 

)(i.e. as k -->0), S. 	l (k),  S.e( k and See  (k) are all proportional to the same quantity 

which is related to the isothermal compressibility of the system. The aim is to 

generalise this relationship between the structure factors to all k in a way that 

preserves the correct k-30 limit. Also in chapter 1, the suggestion by Egelstaff, 

March and McGill(10) that S..(k), S. (k) and See(k) can be individually determined le 

by combining the results of accurate X ray, neutron and electron diffraction 

experiments, is outlined. 

In Chapter 2, a functional derivative technique is used to derive expressions, 

correct to second order in the electron-ion interaction, for the time ordered electron-

electron and electron-ion density response functions (from which the pair correlation 

functions can be easily obtained). The formalism is applicable to both solid and 

liquid nearly-free electron metals and involves treating the electron-ion potential 

as an external potential which couples to the product of the ionic and electron 

density fluctuations. Two special cases are then considered, rigid solids and liquid 

metals. In the latter case, simplification of the general expressions is possible by 

use of the adiabatic approximation which relies on the large ionic to electronic 

mass ratio. Furthermore, ensemble averaging over the ionic configurations of the 

liquid explicitly introduces the ion-ion structure factor into the calculation. 

Finally, expressions to second order in the electron-ion potential are obtained for 

the change in(k) and S. (k) from their jellium values (i.e. when the electron-ion 
ee 

 le 
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interaction in zero). Specific terms in each case are shown to give the correct 

long wavelength limits. 

In the case of S
ee(k) there is an additional second order term involving a 

four-body electronic response function of jellium. Chapter 3 discusses two 

approximations to this response function, one based on density functional theory 

and the other based on diagrammatic analysis. Both approaches rely on knowledge 

of the corresponding response function for non-interacting jellium and Appendix A 

is concerned with the evaluation of this function. In Appendix B some long 

wavelength sum-rules relating to the various response functions that have been 

introduced are derived. 

Calculations of the dominant terms in S
ee(k) and S.

le(k) for liquid sodium and 

aluminium are presented in chapter 4, use being made of experimental neutron 

data for S..(k). The results show that electron-ion corrections to S.
le

(k) and S
ee

(k) 

are generally small. One conclusion is that the proposal of Egelstaff et al to 

extract S
ee(k) from a combination of scattering data will, at least in the case of 

sodium, provide a measure of the structure factor of jellium at the density of liquid 

sodium. On the other hand, it is shown that the large discrepancies between 

existing X ray and neutron structure factor data cannot be explained by the theory 

of this thesis, perhaps indicating that the experiments are not yet accurate enough 

to justify carrying out the proposal of Egelstaff et al. 

Chapters 5 and 6 are concerned with two problems relating to electron density 

in random binary alloys, and the problems are introduced at the beginning of each 

chapter. Similarly, chapter 7 starts with a general introduction to percolation theory 

before going on to give the solution to the correlated bond percolation problem on 

the Bethe lattice. Finally, Appendix C gives a summary of the main results of 

density functional theory to which appeal is made at several places during this thesis. 
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CHAPTER 1  

PAIR CORRELATION FUNCTIONS AND STATIC STRUCTURE FACTORS IN LIQUID 

METALS  

1.1 Hamiltonian for a two component liquid metal 

In the introduction it has been argued that in simple liquid metals, where a 

more or less clear distinction can be made between valence and core electrons, a 

model which treats the liquid metal explicitly as an interacting two component 

assembly of valence electrons and ions is appropriate. If the bare electron-electron, 

electron-ion and ion-ion interactions are denoted respectively by V , V. and V.„, ee 	te 

then the Hamiltonian for such an assembly can be written 

H = 	ei/.201 -t- 
i. 	 L 

V,Q (ri-rd) 

Here p. and r. 

Va(R -; - 0.3) Ve, Ca- g ) 
:)*3' 

are the momentum and position of the i th electron (mass m); P. and 

R. are the momentum and position of the j th ion (mass M). (1.1) can be written 

in second quantised form by introducing density fluctuation operators e  k(t) for each 

component. These are defined in terms of the local number densities ee(r-, t) and 

ei(1-,t) of electrons and ions by the relations 

Ce, Ct.; e) 	 -sii.o) 	eaweLls-E 

(1.3) 

which on inversion give 

(1.2) 

where V is the volume of the liquid metal (conveniently taken as unity). The 

Hamiltonian now becomes 

ft/Qin 	P32  /21 t 2 	Vee(k) ( ee,-k 'et< 
t< 

vak)(ei._k eik 	14.\LOktseils 

Ae) 
(1.5) 



14 

where the mean electron and ionic densities ne and ni  are related by ne =-- Z n.1 , 

Z being the valency. 

1.2 Pair correlation functions and static structure factors  

In the two component theory of liquid metals one must work with three pair 

correlation functions, the electron-electron g(r), the electron-ion g (r) and ee 
 

ei 

the ion-ion g..(r) pair correlation functions. In general these will be denoted II 

by gab(r) where a and b can be either e and i and 73= e if a = i (and vice versa). 

This notation will also be used for other functions entering the two component theory. 

The g
ab(r) are defined in terms of the two particle distribution functions P

ab
(r) as 

follows 
pcxr. (r) 	 eir th +-0> 

< 	( C.; - ) 2 (.f...+E —110.> 
I.G. 

cc-  a-0 ft(L 	 aLtntr (Pr( r) 

Lc.4LL 

(1.6) 

(1.7) 

Here ( > indicates an average taken in the grand canonical ensemble. As 

a result, P
ab(r) and gab(r) will be configurationally averaged properties of the liquid 

metal and will thus be isotropic. A physical interpretation of gab(r) is that the 

quantity 	1÷7-11-21(60 dr gives the probability of finding a particle of type b 

within the spherical shell of width dr at distance r from an a type particle at the 

origin. Note that the total energy density U of the liquid metal can be written 

in terms of the gab(r), 

= a A.-Acr 2. 
(1 .8) 

+id! -;1.- 	(r) vie 	4 (1'1,21CL(r)Vii(r) 2AiAtc3;e0v,-,.6- 

the first two terms being the kinetic energy density of the ions (classical) and 

electrons and the other terms being the potential energy density. 
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We now introduce the static structure factors Sab
(k) defined by 

Scdr  ( k) 	(Fcdr(r) (\Ai-) at- 
0 -acr 

Oan(r)2. 	(14(r) 1)dr  
The Fourier inverse of (1.9) gives 

(1.9) 

C ikolk)L2. 
Sat; (k)- cal) A: 3 	- 10) 

(1.9) and (1.10) are generalisations of the familiar radial distribution function g(r) 

and structure factor S(k) of a one component liquid. In such a system S(k) is 

interpreted physically as the measured intensity when a monochromatic plane 

wave disturbance (e.g. electron, neutron or X ray) is transmitted through the 

system. The experimental determination of the Sab(k) will be discussed in S 1.5. 

1.3 The long wavelength limit of the Sab(k) 

We now derive the interesting 'charge neutrality' condition which relates the 

three structure factors S
ab(k) in the long wavelength limit, i.e. as k—>0. We 

follow the simple, direct argument of March and Tosi(8)  , although the result was 

first derived in references (6) and (7). 

The strong electrostatic forces between the charged components of a liquid 

metal ensure that the system must be electrically neutral overall. In other words 

the long wavelength fluctuations of each component must be neutralised by the other 

component. In particular, the total charge surrounding an electron at the origin 

must be +1 i.e. 

	

Z 0 ili.j.c") ar - ne3 (r) ct_E" 	= 1 	 (1 . 11) 

while that around an ion at the origin must be -Z, i.e. 

1-2 nLS-L;.tr) 	 41- 
	 (1.12) 

Using the fact that ne  = Zni  it follows from (1 . 11) that 

	

('3i(r)-1) dr - fie ((he  (r) 	) dr 
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which using (1.9) gives 

Similarly (1.12) leads to 

Thus we have the final result that for a liquid metal 

= 	See Co (1.13) 

Furthermore, S..11(0) may be related to the isothermal compressibility KT  of the 

system by the usual result of thermodynamic fluctuation theory extended to multi-

component systems( 11), (12).  

) 	kT 
	

(1.14) 

where 	(1(6—rr 

In liquid metals therefore, See(0) is non zero, although still very small as 

) 
S..(0) "-I 0.01 - 0.03 for most liquid metals at their melting points

(1a 
 . This is to 

be compared with the long wavelength limit of the electron structure factor S(k) 

in the jellium model. In this model, interacting electrons move against a uniform, 

positive, neutralising background and it can be rigorously established that for small k 

(.1<) 	 O(k) 	 (1.15) 

where 	We  = Q-Fir nee/001  is the electronic plasma frequency. In chapter 2 

where PS,,,(k) =c,ze(k)-%) is calculated it will therefore be necessary to 

show that 	gee Co) = 2 	(0) 

Note that the arguments leading to (1.13) have been generalised in two directions: 

(a) to relate the long wavelength limits of electronic triplet correlations functions to 

(13) thermodynamic quantities 	; and (b) to relate the k-+ 0 limits of the structure factors 
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in binary liquid alloys which are three component systems(14)
. Also, Tosi and 

March(15) 
have discussed the terms of order k2 

in the structure factors S
ab

(k). 

Assuming that in the long wavelength limit the dominant excitations in a liquid 

metal are collective modes, these authors conclude on the basis of a simple plasmon-

phonon model, that a term of the form (1.15) is still important in See  (k)(although 

z 
modified to contain the reduced plasma frequency given by Glib =-Di-TrAce2(Mt-Z1Yeitv] )  

but the corresponding terms in S..(k) and S. (k) are extremely small because of the 
it 	le 

large ionic mass. This latter point is boWne out by the characteristic flatness of 

measured S..(k)'s in the low k region. 

1.4 Density response functions 

An alternative means of defining the S
ab(k) is via the linear density response 

functions iXatr(S ii)) of the two component liquid metal. These are defined by 

O ecALA)) 	= 	 is 	1.4) 	)ct (4)) 
	

(1.16) 

Thus 	 gives the response of the density of component a to a weak 

external potential Vext (k co) of wavenumber k and frequency to applied to component 

b. The 'k(kw)  Is are properties of the unperturbed liquid metal and are given 

in terms of the density fluctuations (1.4) by the Kubo formulae 

A 11. e < Calla) e(±  -k (0)1> (1 . 17) 

where again the notation implies a thermal average. The dynamic structure factors 

Sab(k cu ) may now be defined via the Fluctuation-Dissipation theorem 

(1.18) 

and thence the static structure factors Sab(k) (k) by 
00 

c()-  OS) 	= 	 r atO ir Ck tA: Q10. air 

oclv.)± <ecus evis) 
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L 	) Tosi, Parrinello and March (TPM)(9) have shown how the Nta(r(c (Ai  S and 

their generalisations to mass and charge density response functions may be used to 

discuss a wide variety of liquid metal properties such as electrical resistivity, sound 

attenuation, viscosity and elastic neutron scattering. They are particularly concerned 

to point out how electronic effects enter the dynamics of the ions. For the present 

purpose it is interesting  to briefly follow their analysis of 1)(ati-(k to) (which closely 

resembles that of Watabe and Hasegawa(6)) to obtain information about Sab(k). 

We introduce the Hartree potentials 
	\lc il tis (4) for each component, 

defined by 

v(k w•-)  =V:471sw) 	Nair (k)(kw) 	(1.20) 

where V
ab

(k) are the bare interparticle potentials. Proper (irreducible) density 

response functions 	(A)) are then defined by 

ea05_ w) 	Traty( (j) Vi:4(15. to) 

From (1.16) and (1.21) it follows that 

r\i‘ct(r(w) = TTAQ) 	2TrecON)vca(i<M1 0-sw) 
C 

or equivalently 

Ni4 
	 II V f)( 	 (1.22b) 

in an obvious matrix notation. (1.22) may be readily solved for the ;.\i\A-(1<tki) )s  

in the form 

Nair 4. 2 ( — V) 

S 1 — 	v ctc Tict, 	(1.23) 

where I 1 — TT V j 	is the cofactor matrix and L is the determinant of 1 —1T V 

Explicitly 

[ 	 r 	(TTaNi.e 4- -TT;eVQe.)7 
(1.24) 

— M,Vie tilieVee) 	t tee..Vei,) 
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where the k w arguments have been omitted for simplicity. 

These equations can be expressed in diagrammatic form. However TPM proceed 

to obtain exact expressions for the tYa(i- Is and 1Tejr  is by formally solving the 

linearised equation of motion for the particle densities in the presence of an external 

potential. The results (which are rather complicated) contain three particle 

correlation functions of the unperturbed liquid metal. By this means compressibility 

sum-rules (c.f. (1.13) and (1.14) ) are obtained of the form 

k_4U-no  iXa()-(1.)0) -z - 	(110-ao2  Scdr(k)i 

with KT 
being expressed in terms of explicit microscopic quantities. (1.25) contains 

the result LAI.,  b(cL(3.<,0)=-11i.q3,:‘,4which follows from the classical limit of the 
k-->c 

Fluctuation-Dissipation theorem (1.18) and the Kramers-Kronig relations between the 

real and imaginary parts of f\AL- L05_14) and is therefore to be expected for the ions. 

However (1.25) shows that the long wavelength charge neutrality requirements also 

impose classical behaviour of the electrons in this limit. 

Simple results for the 
	

V s are obtained if it is assumed that in simple metals, 

where the bare electron-ion interaction is weak, the indirect proper polarisations 

I lad,  can be neglected and the TT,„.)s  can be approximated by their free particle 
a  

values I la.  (in appropriate classical and zero-temperature limits for the ions and 

electrons). This random-phase approximation (RPA) gives(6), (9)  
ReA 

1 A ( ck (kw) 

FPS 
N Tx" 	 ) 

(1-1w)Vcat(t.cw)J 

RPA 
Cilw) Va(k) (\ii\dt-c 

(1.26) 

(1.27) 

where 
gPA -TT? --,0 

1 4\ I —VA\ is the usual RPA density response function for a 

single component system and the frequency dependent effective potentials for each 

(1.25) 

component are given by 

Vat (k 	=(k) rt Vaa t‹) Ni; (ctz)VE(0. (k) 
	

(1.28) 
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Although the RPA is not a good approximation for real metallic systems, these 

expressions afford a physical interpretation which TPM have shown to be general. 

According  to (1.26), each component responds to a direct perturbation as if it 

were a single component with an interparticle potential modified as a result of 

screening  by the other component. (1.27) shows that the indirect response is 

that of a single component responding  to the polarisation potential of the other 

component as if it were an external potential. Note however, that the effective 

potentials are in general more complicated and the electron-ion interaction is 

also modified. 

Very recently Trigger(23) has improved on the RPA approximation (although 

he still puts 	iej,(kw) iv 0 ) and using  the Fluctuation-Dissipation theorem 

and adiabatic approximation has derived the dominant terms which relate S. (k) le 

and S
ee(k) to S. (k) in the case of weak electron-ion coupling. These terms are 

easily shown to satisfy the correct charge neutrality conditions (1.13). Cusack, 

March, Parrinello and Tosi(22) 
have independently obtained the same results by 

a different method (see Chapter 2) which does not put --(TEL (k ,w),,,  0 but does 

rely on the adiabatic approximation (see § 2.8). Consequently, additional terms 

arise which are second order in V.
le

(k) and involve higher order correlation functions, 

although they are expected to be small. 

1.5 Experimental determination of the structure factors S , (k) CID 

In 1973 Egelstaff, March and McGill (EMM)
(10) 

suggested that in principle 

each of the three liquid metal structure factors could be empirically determined by 

suitably combining  the results of X ray, neutron and electron diffraction experiments. 

The possibility arises from the fact that these three probes are each scattered by 

different elements of the liquid metal. 

X rays are scattered by the electrons of the system, that is both core and 

valence electrons. Scattering  by the nuclei can be neglected as it gives 
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contributions to the cross section that are a factor of (m/M)2 
less. First order 

time dependent perturbation theory gives for the differential cross section for 

X rays(16) 

2 2..f 
(e.k)-z) L32 (1.29) 

Here an incident photon of frequency 4)1  , wave vector k and polarisation ei  

is scattered into a photon with corresponding parameters 6).2 , 	e2 and 

vk )0) is a dynamic structure factor given by 

.c.° cwt 
),(k,L,)) - < eicco eLk(0)›cit 

Ti 9. (1.30) 

Pi being the total (core and valence) electron density fluctuations. As in \K 
X ray experiments (112/io, f\, 1 integration over energy transfer gives (c.f. (1.19) ) 

cto-x x cx 	x  (k) 	<ek e-k) 
cLa (1.31) 

Neutrons are essentially scattered by the ionic nuclei (if magnetic scattering 

by the electrons is neglected) and the coherent cross section is given by(17) 

72. N 	1,1  ̀°k(is.,w) 
(1.32) 

where <b> is the mean scattering length of the N nuclei. Again making the 

static approximation that (k2I v !V.,' (see 4.7 for a mention of corrections 

that have to be made in analysing actual neutron data) and integrating over Co gives 
cc, 

O-NI 	(X_J (k.) 	 (k) = 	<e-L lc ei.-k 	(1.33) ) 	_ 

Electrons are scattered by all charges present and one finds 

dal  G. 1  E 0() 	(k) 
c\11 

<94 (1.34) 
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where (I,r, = QQ.Lk  eic 	, Q being  the total nuclear charge. 

Consistent with the assumptions of the two component theory of simple liquid 

metals, we now divide the total electronic density into two parts, one due to the 

Z valence electrons and one due to Zc = Q-Z core electrons. The core electrons 

are assumed to be rigidly attached to the nucleus and their density to be adequately 

described by the free ion form factor 
fc(k) 

 which is available from wave function 

calculations(18). Thus any environmental effects which might redistribute the core 

charge density are neglected. Under these assumptions et<  = eels  t ed(cak 

Using  (1.19) and (1.31), (1.33), (1.34) we now find that 

Sx 	= 	e, e OK) ± .Z1-?c(k)Sielk) 4- 	(k) 	(k) 	(1.35a) 

Sv (k) = S (k) 
	

(1.35b) 

(k) 7z.  Qluck) 	(2.1-EiSk) + k(k) c«0()) S-K(k) (1.35c) 

Neutron scattering, as expected, gives a direct measure of S..(k). Solving  for 

S. (k) and S (k) we obtain le 	ee 

Z-271.e,(k) Sick) 	+ Q CO - 4c0c)) N(.1()j 	(1.36a) 

z Qe(1.() 	[ (Q - 	(k) r 4c00 ( 1 36b) 
Q -cc(k) (Q--c\c_0()) Sv(() 

It is therefore in principle possible to determine Sie(k) and See(k) from 

experiment, although in order to do this reliably, the scattering  data needs to 

be highly accurate as only small differences are involved. For instance, in 

(1.35a) the ratio of the three terms contributing  to Sx(k) as k 	0 is 

Z
2 : 2Z(Q - Z):(Q - Z)2 (where the charge neutrality limits have been used for 

the Sab(k) and also f (0) = Q - Z). Thus only for lighter elements (Q small) will 

the valence electron correlation effects be detectable (unless they are particularly 

strong). 
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In the absence of reliable electron scattering data EMM proceeded to analyse 

the available X ray and neutron data on liquid metals on the basis of the above 

equations. In particular, they draw attention to systematic differences between 

the heights of the first (principal) peak at k = k0  as given by neutron structure 

factor data and normalised X ray data. (X ray structure factor data is conventionally 

presented as SAO ic2a.  (k) where fa(k) is the calculated free atom form factor). 

A summary of their results is shown in table 1.1. 

Liquid group 
Sty WO 

.)k(I■c)/ 	tx)-(k'-') 

Liquefied rare gases 0.98 + 
- 0.03 

Molecular fluids 1.12 -+ 0.04 

Monovalent metals 0.87 -+ 0.04 

Polyvalent metals 0.92 -+ 0.03 

Table 1.1 	Intensity ratios at the principal peak for various liquid groups. 

EMM conclude from these observations that, if systematic errors in the data 

are discounted, the consistently greater X ray peak heights in liquid metals are 

indicative of longer range instantaneous correlations between the valence electrons 

than between the ions. In other words the conduction electrons in a liquid metal 

form an electron liquid rather than electron gas. According to (1.35a) and (1.35b) 

the difference, p (k), between normalised X ray and neutron structure factor 

measurements is given by 

(k) 
(k) 	z  qe,(k) 222-cc_M;ekk) 

201 	Rf(k) 
.t.L(k)Lf

,  
f`u-c-1) 	(1-37) 

It was part of the purpose of this thesis to see if a theoretical calculation of See(k) 

and S. (k) could be used in conjunction with (1.37) to help explain the discrepancies 
le 

between experimental X ray and neutron data (see 	4.6 ). 
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CHAPTER 2  

SECOND-ORDER PERTURBATION THEORY FOR THE ELECTRONIC STRUCTURE  

FACTORS 

2. 1 Introduction  

In this chapter a second-order perturbation theory is developed for the 

electronic structure factors S (k) and S. (k) in the presence of weak electron-ion ee 
 

le 

interactions. 

The theory is applicable to both liquid and solid nearly-free electron metals 

but calculations have only been carried out in the liquid metal case (see chapter 4). 

One reason for this is that, as described in chapter 1, See(k) and S.le
(k) naturally 

enter the two component theory of liquid metals. Also, the work of EMM
(10) 

provides motivation for calculating these functions in liquid metals for comparison 

with the results of scattering experiments when they become available* and more 

immediately, to clarify the observed difference between X ray and neutron 

structure factor data. 

As will become apparent, the fact that the ensemble averaged liquid metal 

correlation functions are isotropic and the density a constant, leads to considerable 

simplifications in the following theory. However, to be able also to describe 

correlation functions in crystalline metals, where the electron density varies 

periodically, we have to consider the full two particle correlation function, or 

more conveniently its cluster part defined in the electron-electron case by (c.f.(1.9) ) 

CAL.' ee (a )>c 	 (2.1) 

* Dr. P. Dobson and Dr. B. Unvala of Imperial College, London, are currently 
engaged in a research programme to study the structure of various liquid metals 
by electron diffraction. 



 

25 

and with Fourier transform (c.f. (1.10) ) 

aeos)a_--ts) =11 	Lk.(1--.43) G- 	c 
e 	Pee cti ,r2)dr,  (Ira. (2.2) 

In (2. 1) and elsewhere the notation < N indicates the cluster (or cumulant) 
/c 

part and in (2.2), G is a reciprocal lattice vector. Thus complete information 

about the correlation functions in periodic solids will require knowledge of the 

non-diagonal (G 	0) elements of the response functions that enter the theory, 

whereas for liquid metals, the diagonal (G = 0) elements will be sufficient. 

2.2 The unperturbed system  

The principle of the perturbation theory is to switch on a weak electron-ion 

interaction V.le(r) to an unperturbed system consisting of a jellium of interacting 

electrons superimposed on (but not interacting with) a jellium of ions. Using a 

functional derivative technique, the linear and quadratic response functions which 

determine the first- and second-order changes in the electronic correlation functions 

from their unperturbed values are then calculated. 

The Hamiltonian for the unperturbed system, H0, is given by (c.f. (1.5) ) 

1-l o 

▪ 

t-le + Ni 

p2 /2ti  <-/ 
2. 	VeeCk)(eeic 	ee) 

r, /2m 2 	- 	(2.3) 

where the 	indicates that the k = 0 term is excluded from the summation to 

take account of the uniform neutralising background of jell ium
(19a).  In the 

unperturbed system, the electrons may be treated as fully degenerate (i.e. at T=0) 

while the ions behave classically. The unperturbed electron-ion structure factor 

is clearly zero, and the unperturbed electron-electron structure factor is that of 
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jellium and denoted by 5(k) (c.f. (1.15) ). 

The electron-ion interaction V.le
(r) will be treated as a time dependent 

perturbation H. (t) which couples the electron and ion densities and is given by le 

(2.4) 

2.3 Perturbation expansion for the electron-electron density fluctuation  
propagator  

To allow for the greatest generality we now generate a perturbation expansion 

for the electron-electron density fluctuation propagator. (For the electron-ion case, 

see Q 2.9). This propagator, Dee(Xi, X2), is defined by 

(X. , X2) = Ci [ 0) (q)c 	(2.5) 

where X1 — r11 
t and T is the Wick time-ordering operator. We can obtain 

P:e(ri, r2) (equation (2. 1) ) simply by putting t1  = t+2  in (2.5) and hence the 

structure factor See 
by Fourier transform. Furthermore in the unperturbed system, 

Dee(Xi  - X2) is closely related to ly (X1  - X2) the causal, linear density response 

function for interacting electrons in the jellium model
(19b).  In the static limit 

( (13= 0), which will be required later, 1)((k,O) = 	Dee(k,O) where IX (k,(4.) ) 

and D
ee

(k, w ) are the Fourier transforms of 1\i( (X1 - X2) and Dee
(X

1
- X

2).  

The first- and second-order terms in the perturbation expansion for the change 

in Dee(X1' 
X
2
) due to weak electron-ion interactions may now be formally written 

in terms of functional derivatives as 

Dee 0( o(t) = 	 (2.6) 

g Dee,(Xi ))(2) \Le., U3),A)(3  + 21111 C)211e.(XIIX2) Ve.0(3)Vie(Y,F)c1X3(14 
SVie,(;) 	 SVI-4(1)SVI.e-06) 

where Vie(X3) = Vie(r3). The response functions, expressed here as functional 

derivatives, have to be evaluated in the unperturbed system and this may be done 
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using the following theorem, proved for instance by Hedin and Lundqvist(20)  

(see also Kadanoff and Baym (21))•  

2.4 A theorem for functional derivatives  

The theorem states the following. For a system described by the Hamiltonian 

	

4-1(t) - 	+ 	e (to Vtxt(i-t) dr 	(2.7) 

where the second term describes the coupling of the density to an external potential, 

the functional derivative with respect to the external potential of the interacting 

ground state expectation value of a time ordered product of operators 

[0A1)0A)....04g> is given by 

[O, (=,)0A2) 	'ert)0,(0.....0461> (2.8) 

e4(fA) 

	

where f(3. (1:0 	()(.L.W 	<ecro . 
This theorem is proved by using the methods of time dependent perturbation 

theory(19)  i.e. by transforming from the Heisenberg representation (in which the 

above expectation values are expressed) into the interaction representation. In 

this representation, 

‹T[0,(00(-tz)...0(1(40 z <01Tt SOA)04;(t2).-04n,(q10> (2.9)  

<CASIO> 

where the interaction picture operators QI  (t) are related to the Heisenberg 

operators 0(t) by 

L HbA, i_110E(t 	*ft 
(C) 	e 	e. 	0 (k)e, (2.10) 

1 0> is the non-interacting ground state and all the effects of the external 

potential are contained in the S-matrix which is given by 
r
'°' 

 
de ,r(11.- 	w€4:1-0:4) 

(2.11) 
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From (2.11) we find 

s 	- 	eiLL-t) 
v"to.-0 (2.15) 

Now taking  the functional derivative of (2.9) gives 

Q̀  < TE01({.)02.q2)....044> 	<GI 	2Sext(t90` (11)°2- (61-  aaqi()> 

<01 SIO> 	(2.16) 

— 	 <OIT 	71e>(01-VoTG,....0,-;,MI10> + a>2 	[c v-4(6) 

from which we obtain on returning  to the Heisenberg picture 

[(:) (002(1%)...0,A.61> 	_y  k< 	(2.17) 
vexst(rk) 

This is the same as (2.8). 

2.5 Evaluation of the functional derivatives  

The above theorem is applicable to the problem in hand if it is recognised 

that the time dependent perturbation Hie(t) given by (2.4) can be thought of as 

being  due to a non-local external potential coupling to the combined density 

operator ce...01_0 etc,„5.0 . It is then found from (2.6) and (2.8) that 

beey„X2.) 

-2:11)12. 	)̀ 2- ; 	'11 )VicL(11- i) Vi'z.(11-0 (2.18) 
(Ix a-tick 4' 

with the linear and quadratic response functions 17 and 117: given by 

r, 	,X2; 	at- <-1-[ ce-0=-')e-tt-10 eEme_. 0(2-I>, (2.19) 

110(,)Y2;11:,(i. )3`11 ) 	 (2.20) 
06 

(i1.02  fa lac ett (ie(TA-E),(9`e)CE(.:gt)eL(cAoeevi)e,(2_>, 
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Note that in (2. 19) and (2.20) the time integrations arise because V. is time 
le 

independent (see after (2.6) ) and the r(A.1..".E) appearing in (2.8) are accounted 

for by the fact that cluster parts are taken. 

For the purposes of a perturbation expansion, the response functions r and 

1;.  have to be evaluated in the unperturbed system whose wave function is simply 

a product of electronic and ionic wave functions. This allows a decoupling of the 

electronic and ionic densities that occur in (2.18) and (2.19) in the following way, 

r, 	,x2 	- 	<1. e, e ("-) eeY. )ee.(4)>c< ez.(9k)> cit (2.21) 

r1(Xi ) Yz; X j1-1 	 (2.22) 

7,11.1)1  <Tet(3:10 	ee0(.)e6(2)>c<Tev)ei(10>c 	(a)  

+ i cc(IY)et;(1€)ecuivxt) . 	 (10> 
	

(b) 

+ 	<-1- e (.10 ee,( , )ee,0(2)>, ("c cc.(1v)ei.(10" , 	 (c) 

.+ 2. <-1-f(KT)e_0(1)>c  <Tei 	ei.0.30 	-E-(),( 1:0 0•2>c, 	(d) 

The factors of 2 appearing in the third and fourth terms in (2.22) arise because there 

are two distinct ways of writing these terms, corresponding to interchange of eS.c.1.) 

and 	) . 

A physical understanding of these decouplings is assisted by a diagrammatic 

representation, although this will not be done rigorously. We introduce the 

symbols (with a = e, i) 

Elie (X i  —X2) "AA,AAA, 
X1 	2  

,- 
a 
X

1 

 

(2.23) 

<-1-1(0.(gi)ec#2)] a 	a 
X2 



(y it) 

i 
(9;1) 

(a) 

<T[ (QV' )eaz)e,(4> 

30 

(2.23) 

<rE (eV) Qc0(2.)eY3M40,  
X1 

 X
2 

X
4 

From (2.18) and (2.21), the first-order change in Dee 	is now represented by 

X1 
(2.24) 

X2 
and the four second-order contributions are using (2.18) and (2.22) 

These diagrams represent the possible ways electron-ion interactions influence 

the (time-ordered) correlations between the two electrons at X
1 and X

2 
(the 

two on the left in each case). For instance in (2.25d) the correlations between 

the electrons are indirect and mediated by ionic correlations, whereas in (2.25a) 

there are additional direct correlations via the four-body electronic response 

function. It is easy to see that these diagrams are the only possible fully connected 

diagrams, this being a necessary property as we are dealing with cluster-type functions. 

The three and four-body electronic response functions entering these expressions 

are properties of interacting jellium and thus it is not possible to calculate them 



31 

exactly. In the next chapter two approximations to the four body function will be 

discussed. It is to be expected however that terms involving this function will be 

very small, as being a cluster-type function it will only be significant when all 

four electrons are close together which is not favoured energetically or by the 

exclusion principle. 

The most general system to which the expansion (2.18) applies is a non-rigid 

(i.e. vibrating) solid in which case all the diagrams contribute. It will now be 

shown that in two cases of interest, rigid solids and liquid metals, considerable 

simplification arises from the dropping out of some of the terms. 

2.6 Rigid solids  

A rigid solid is characterised by an ionic density of the form 

	

<ez u-o> = 	 (2.26) 
where R are the frozen ion sites (or lattice sites in the case of a crystal). As 

there can be no fluctuations in the ionic density, the cluster function <1 EC (.('10e-011> 

is identically zero and consequently only the first order term (2.24) and the second 

order term (2.25b) contribute. Thus we have 

D„ 	, "42) 	- 	c1 4.T ee(W eeC4 	(-c)(1Icit 	(2.27)  

± z (9k)z jirCret-(1v)Q,(1.-DeeWee611>c  Ut,-si)Ubl-)81`ctt'cildt 

where 	U  01) 	2- Vt'et;_c_-Rt) . If we now put t i  = t+2  we find for the change 

in the electron-electron correlation function 

Ve,e, 	) r2 ) 	SA3 	I 	) U cs.1 cli3 	
(2.28) 

	

(Xif- 	)5.) t,( (r3) 	cl,r, car, 

where the static three- and four-body electron response functions are defined by 

G4(1-  Pe (fi ee( ri °+) ee, (cz 8)>c  cit (2.29) 
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co f   
= 	ci( <1 ce.0_-„t )(e(13t)vr,o+)ee  (5o) >c  (2.30) 

2.7 Liquid metals 

To apply the results of t 2.5 to liquid metals it is necessary to ensemble 

average over the possible ionic positions. The ensemble averaged electron and ion 

densities are constants and given by 

zgt, 	<et.c-t)> 
	

(2.31) 

where2 is the valency. As a result, the three terms (2.21), (2.226) and (2.22c) 

(corresponding to diagrams (2.24), (2.25b) and (2.25c), i.e. those with density 

bubbles II 	
• a) 	all contain factors 

VieAk -0) (2.32) 

This factor can be taken as identically zero by suitable choice of energy zero. This 

is because in introducing the electron-ion interaction as a perturbation, we should 

also include the direct Coulomb interactions between the electrons and the negative 

background of the ionic jellium, between the ions and the positive background of 

the electron jellium and between the two backgrounds. The net result is effectively 

to remove the long wavelength (k = 0) part of the electron-ion interaction, this being 

also Coulombic in this limit. 

Thus for a liquid metal we are left with only the two second-order terms (2.25a) 

and (2.25d) which may be written as 

,X2)= z A)2f <T 	 )k(V2Pc_Kei.(E1)CiP-3-0>c 

2c-r[ee(x't)wi><-1-(.etlE)04)),<ei.(1c)e-t(‘11.)>c  

xVi,2(I-ki)V4(1, i)644114I'di41(2.33) 

The time-ordering has been dropped in the ionic terms, as these are now taken to be 

classical, ensemble averaged dynamic ion correlation functions. 



33 

2.8 Use of the adiabatic approximation  

The time dependence in (2.33) can be greatly simplified by making  use of 

the so called adiabatic approximation. This is based on the fact that because of 

the large ionic to electronic mass ratio, ionic motions are measured on a considerably 

longer time scale than electronic motion or in other words, characteristic ion 

excitation frequencies are significantly lower than those of the electrons (for 

instance plasma frequencies are proportional to (mass) 2). This situation can be 

approximately handled by putting 	= t in the ionic correlation functions and 

keeping  t' t in the electronic response functions. The integrations over t then 

give static ( 	= 0) limits of the electron response functions, this being  in line with 

the observation above, that the relatively low frequencies at which ionic excitations 

are significant, are effectively zero as regards the electrons. 

The final result for the second-order change SitICe0:).-E2) in the electron-

electron correlation function for liquid metals is (using  the adiabatic approximation 

+ i and putting  t1 	t2  n (2.33) ), 

reec_ (r) 	) 0  
= 2 (—LIA)zi 	1 ee --1°)  ee.(1-0VL0+)ee(5-0)>_ Kei.(1a)e (1)>c  

e€. O).> <Tee 	0€(1-2.°)> < 

\/;e. o-'' J')C6- (.114L Li 	dO 	(2.34) 

which on Fourier transform gives for the change d S
ee

(k) of the electron-electron 

structure factor (using  (1.10) ) 

9€e(k) 	N,,o( 3-k ;GI. ,(1) 	ccolvi,(1)fi d 

(2"ri)3  

NA(I<Wie.(1011 	(k) 	(2.35) 

In (2.35) 	 ik(.k)-E-\A(k 3A)=G) 	is the static density response function of jellium 

(see comments following  (2.5) ) and Nii.,(k)4- 	;I-) is the diagonal (G = 0) 
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element of the four-body response function of jellium defined in r - space by (2.30) 

and in Fourier transform by 

k. (2.36) 
;S:?)-gt-)&-i'2)ct(r-2--(3) 43-(I+) 

The first term in (2.35) is easily shown to give the correct charge neutrality 

limit for See(k). In the long wave-length limit, V. (k) " -1H-12e and (X(k)A,  - le 	kz 	 e.2  
hence 

Lift i\i( (k)Vie (k) = 
k--->o 

Thus (2.35) gives (c.f. (1.13) 

Co) z gee_ (0) --- 2 CLL (0) 

(2.37) 

(2.38) 

as required, provided the Nit. term is zero in this limit. This latter point has not 

been proved to be the case in general, but the two approximations to o (k k ; 

discussed in the next chapter both have the necessary property for it to be true of 

being zero as k--.> 0. Trigger(23)  has obtained exactly the same charge neutrality 

term as in (2.35) but the Ni(Li. term is absent in his work for the reason mentioned at 

the end of 	1.4. Note that in (2.35), Sii(k) is strictly to be evaluated in the 

unperturbed system i.e. it is the structure factor of a classical ion jellium. However, 

in view of the correct charge neutrality result (2.38) it is clear that a partial 

summation can be effected so that the exact liquid metal ion-ion structure factor is 

used instead. 

2.9 The electron-ion structure factor in liquid metals  

Having described in detail the derivation of the perturbation theory for the 

electron-electron structure factor in a liquid metal it is straightforward to apply the 

same formalism to a calculation of the electron-ion structure factor. The diagrams 

that contribute to second-order to the perturbation expansion of the electron-ion 

propagator <IC 04) Q (4)pc  are 



X1 	
e (.4.pt)  

(a) 
X2 	 (9;0 

(2.39) (b) 

e e 
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In (2.39) note the symmetry under the interchange of the electron at X1  and the 

ion at X2. By the arguments of 	2.7, only the first-order term (2.39a) and the 

second-order term (2.39b) are non zero in liquid metals and these two terms 

give the following for the electron-ion correlation function 
f,c 

= 	41-  ee.C1;..°L(,t-.0)>, 	 -t3) 	Lit 

1Pif,PSKTec,(1=1 0Ce&°Ce(5:10) < o'e) L(lo e 
X kfir.,1 )V;( 1-ci ' )44tictt di/ 0.(y aY 	(2.40) 

Using the adiabatic approximation, by which all the times in the ionic functions 

are put the same but the electronic times are still integrated over, the final result 

in Fourier transform is 

91'e, (k) 	 k) Vi eCk) c).6.(k) 	 (2.41) 

where S... is the ion triplet correlation function and I\1\2.0< ,Q.-1(‘-'9 is the 

static, quadratic density response function of the interacting electron gas given by 

e  
(2.42) 

<T?, (ritt)ee(5-tz)0:70)>, aElciLdcl(5-1-z)a(fa-c3) 



36 

Using  (2.37) it follows that the first-order term in (2.41) gives the correct charge 

neutrality limit 
i 

221  S..CL (9)  (2.43) 

provided the second-order term is zero in this limit. That this is so follows from 

the result (see Appendix B, equation 0.19)) 

LCA, !X,2.  k )9,-k ,-(1.) 	61, i((1-() Act) 	0 	(2.44) 
-->0 	 k -->O 	).fte  

Tosi and March(15) 
have obtained the first-order term by the following  

simple argument. An external potential Ve
e
xt( 	) coupled to the electrons 

in a liquid metal causes polarisations of the electrons and ions according  to 

(c.f. (1.16) ) 

ec, (kW) 	lee(S,L0) Vee:d(ill0) 
	

(2.45) 

	

(kW) '11::*() 
	(2.46) 

If the electron-ion interaction is weak, the polarisation of the ions can also be 

written 

ei_Ost_o) = Nktx.(11(A)v;e_o_oc e (ki,)) 	(2.47) 

from which it follows that 

Nig. Os 	= N LL (kw) vie ls)Nee (vu-,) 
	

(2.48) 

Using  the adiabatic approximation, the static limit ( GI) = 0) of the electronic 

response function is taken and then the Fluctuation-Dissipation theorem (1.18) 

gives the result 

(k) 
	

\)(ee  (h)Vie(k)U-k) 

(Note that 1\1(Q.(k)-- (̀ A0c) to second-order in V. e). 

The simplest way to make a calculation of the second-order term in (2.41) 

would be to use the Kirkwood superposition for the triplet ion function and use an 
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approximation for IX9 	of the form (c.f. chapter 3, S 3.3) 

N,(2  (l< )9,-k )-1) 

  

-(!s ) tOE(-40 
	

(2.49) 

where is the quadratic density response function for free electrons and E(I() 

is the dielectric function of jellium. 

2.10 Conclusion  

The achievement of this chapter has been to develop a perturbation theory for 

the electron-electron and electron-ion correlation functions in a system with weak 

electron-ion interactions. The general result has been specialised to the case of 

rigid solids and, with the help of the adiabatic approximation, to liquid metals. 

In the latter case, specific terms have been shown to give the correct charge 

neutrality limits for S
ee(k) and S. (k) at k---> 0. These terms are the same as le 

those obtained by Trigger(23)
. However it has not been shown that a further 

second-order term in the expression for S
ee(k) involving a four-body response 

function of jellium, is zero in this limit. This point will be discussed in the 

next chapter. 
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CHAPTER 3 

TWO APPROXIMATIONS TO THE FOUR-BODY ELECTRON RESPONSE FUNCTION 

3. 1 Introduction 

Equations (2.35) and (2.41) of the preceding  chapter give expressions for 

the electron-electron and electron-ion structure factors in liquid metals, correct to 

second-order in the electron-ion interaction (within the adiabatic approximation). In 

chapter 4, the dominant charge neutrality terms will be evaluated for liquid sodium 

and liquid aluminium. In this chapter we examine two approximations to the four-

body electron response function Ntr(k,C-k VG)-1,) which occurs in the 

second-order terms for the electron-electron structure factor in both the liquid 

and rigid solid cases. This function is defined by (c.f. (2.30) and (2.36) ). 

(3.1a) 

e 

) r2 ; 
00 sr  e,,(r_trte-) e(be) e 	e(C.10)\ 	(3.1b) 

- - 	 4. 

We shall be particularly concerned to see whether 	Nkt..‘„ f  1..c.1-k ;1.,-(0 = 0, 
k--->0 

this being  the necessary and sufficient condition for the exact satisfaction of the 

charge neutrality limit on See(k) in liquid metals. 

One possible procedure when confronted by complicated multi-body 

correlation or response functions is to attempt to decouple them in terms of lower 

order functions. In practice this often means approximating  them by function(als) 

of the two-body function, usually the only function about which much is known. 

In this spirit is the familiar Kirkwood superposition approximation which expresses 

the triplet correlation function of a liquid as a symmetrical product of three pair 

However it is often the case that different decouplings correlation functions(2) . 
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are required in different regimes of application of the multi-body function. For 

instance Abramo.and Tosi(24) 
(see also Feenberg(25)), in discussing systematic 

improvements to the Kirkwood approximation in classical one-component plasmas, 

have shown that it is not possible to satisfy simultaneously, with the same 

decoupling, the various sum-rules and limiting properties of the triplet function. 

Another drawback to decoupling schemes is that singularities peculiar to the 

higher-order functions will be missed. It is well known that the logarithmic 

singularity in the linear density response function of interacting electrons shows 

up as the 'Kohn anomaly' in the phonon spectra of metals(26)
. In a series of 

papers, Brovman and Kagan(27) 
have shown that the singularities of the higher-order 

(three- and four-body) density response functions that enter their more sophisticated 

theory of phonon spectra, also give rise to visible anomalies. 

For these reasons, the two approximations to i)(4. to be discussed here 

do not involve decoupling. Instead they rely on knowledge of the corresponding 
o 

response function for free electrons 	, to which screening is introduced in 	two 

different ways: firstly using a density functional theory argument ( 	3.2) and 

secondly using a simple diagrammatic analysis of 	( § 3.3). It is reasonable 

to suppose that the singularity structure of the interacting 	will will at least resemble 
e 

that of its non-interacting counterpart 	even though the discontinuity in 

electron occupation of momentum space at the Fermi surface (which will be responsible 

for the singularities) is weakened by interactions. This singularity structure will 

presumably manifest itself in the electron-electron correlation functions of liquid 

and solid metals. However it should be admitted that even '7\i.t. (which is discussed 

in Appendix A) has proved too complicated to analyse fully. 

3.2Electron-electron correlation function as a functional of the density 

The fundamental proposition of density functional theory is that the ground- 
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state properties of an interacting  N electron system can be expressed as functionals 

of the exact ground-state electron density of the system. Furthermore, this electron 

density can be generated by summing  the squares of the lowest N normalised 

eigenfunctions of the SchrOdinger equation solved with the so called Hohenberg-

Kohn one-body potential VHK (r). This potential is the sum of the Hartree 

potential and the exchange and correlation potential which includes the many-body 

effects. (See Appendix C for an amplification of these statements). 

We now return to § 2.1 where the change in the electron-electron 

correlation function fee  (c1 ,r..) due to the frozen-ion potential U(r) in a rigid 

solid is given in the form 

	

t; E2) 
	

\A1( i; 	;r3) 	(1:3) 

Nkt-(r' r2- ; 	rzi-)ac3)t,k(13.),cir3ch-4,(3.  

The change, 	 , in the electron density to second order in the perturbation 

U(r) is given by 

	

= 	Cr 	(A(1-,) 

+--.2- S) NA2, 	 (3.3) 

where Ni  and 	are the linear and quadratic density response functions of 

jellium. 

According  to density functional theory, req. 	r_2) is a functional of 

the density (eft) , so we may formally introduce linear and quadratic response 

functions H3  and H4  defined by 

r'ecQ, rk 	143 (r' 	,; 	Ele(r3 ) a(1•3  

VILt. (t.  (-3- ; r (LY) 0:3) 'eQ.(1.'20cif-3ar,(3.4)  

Furthermore, the perturbation U(..0 will produce a change LS, VHK(r) in the 
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Hohenberg-Kohn one-body potential of the system and in terms of this potential 

we can write equations analogous to (3.2) and (3.3) for 	Oc  (r r) and -2 

,NY . 
'7\3 (LI AV Ka -3 clr3 

.14k 
+ t (E. 	,Er) Wwtr3)AVN 	(3.5) 

I c) ,6,vmk(r,) at, 

tZ (C)1 	£z) AV''((r) 0V ̀t 	c12.(3. 6)  

In (3.6) (but not in (3.5) ), as Stoddart, March and Stott
(28) 

have shown, it 

is correct to use the free-electron linear and quadratic density response functions 

r\te and i\,(2, . The reason is that the Hohenberg-Kohn potential reproduces 

the exact electron density within an independent particle formalism but not the 

correlation function (which is derived from the second order density matrix() ). 

Note also that 1).(c.  and 'Ivz  are known analytically (see equations (A29),(A30) in 

Appendix A). 

The procedure now is to relate the 1\1.3 and C\Aii. in (3.2) to the analogous 
Hi< 

Hohenberg-Kohn response functions 	Nti\3 	and 'Xtr.  in (3.5) using (3.3), 
t, Hit 

(3.4) and (3.6). Pk; 	and 	will will then be approximated by their free- 

electron counterparts. 

It is convenient to proceed in Fourier space by introducing the Fourier 

transforms of general three- and four-body response functions 03  and G4  as 

follows (see next page) 



.(r.-r:) La. (1-2-r3) 
C ct(r„ ra) (c.; -s:3) (3.7) 
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G4.(k 

1
) e i,k. 	) 	

kzt(E. if2 , 

	(3.8) 

X d -12) a(1.-Z-13) ()(b-  g") 

where, because we are dealing with response functions of a homogeneous 

system, the momentum transfers at the vertices sum to zero. 

Equation (3.6) may now be inverted to give LIvHK,q, ) in terms of 

C'QE,(1)  

IYA ) 

I 	(19,i  

irtrie) Q.cry 

(3.9) 

$1±1/ ,-(1%) Cez6;  Cee((,-`1) 
11j'(‘1,1) fr($' (r) 

Substituting (3.9) in (3.5) and comparing with (3.4) we find 

1-43 (ks_k 
	

I;(1 "(k 	(3. 10a) 

et) 

k , 	, 
itt_Ilic( 	; 	1—$) 

( 	IX°  (G 
	

(3.10b) 

%.fis( (k 	 1 4,-(}) 



i(4- 	.--k ; 	,-$) 

IMO 

(3. 12) 

,-k  
1-( 	

i\g'`( krk ; 0) N 
1( 

Y(0) 

43 

Now substituting (3.3) into (3.4) and comparing with (3.2) we can express (X3  

and (\Ai+. in terms of 113  and 114, 

Or) 	1-1-1  Os % (-k 	r)( (,(5) 
	

(3.11a) 

NALf( 	,-(,) = 	1-t3(tt ,C-k 	 (3.11b) 
( 

Finally, ly 3  and (\i(4  can be related to 	F1 K and 	4K by substituting 

(3.10) into (3.11). This will only be done explicitly for the diagonal (G = 0) 

element of N4, which is required in the liquid metal case, 

In obtaining (3.12) the fact that Lun No (6 0 has been used _ _ 

(c.f. (2.44), see also Appendix 8). This makes the 113 
term in (3.1 lb) zero in 

this limit. 
it.  

Equation (3.12) is formally exact and in order to make use of ite necessary 

to approximate. The simplest one can do is to replace 	
H K 	H I< and 	by h 4 	3 

their free-electron counterparts (\A 4  and N3  . This gives the approximate form 

1\)(11. 	; 	) 

(1\4(.1) 	1X, (k 1; ) ) 
(r(c0) 	—IX; (1- )-k )°)1 7(0)1-;-$) 

NA°(0) 
(3.13) 

This approximation corresponds to the assumption that the Hohenberg-Kohn potential 

fully takes into account all exchange and correlation effects, not only with regard 



to the electron density (which is rigorously true as mentioned above), but also 

with regard to the pair correlation function. 

Two properties of the approximation (3. 13) should be noted. Firstly, 

as will be shown in Appendix B (where various sum rules for the response functions 

introduced in this section will be derived), lift VILA.V.-K;(1„---$) = 0 . Thus 
k-40 

(3.13) has the necessary long-wavelength behaviour that ensures that the rXii.  term 

in (2.35) gives no contribution as k—>0 to S
ee 

(k)in liquid metals. Consequently 

the charge neutrality limit on S
ee

(k) is exactly satisfied. Secondly, the factor 

(1\11•OriCA in (3.13) can be written in the form 

= 
l'A`'(c1/) 	Eq,$) -11°.4(1/) 	

(3 . 14) 

where E(') = 4 — 1-1-13-TThyly- is the jellium dielectric function;  —Roo 
is the irreducible (two-body) polarisability of jellium and tr(9,) = ri) is 

the corresponding  free-electron function. The E
-2

(q) factor in (3.14) clearly 

has the effect of screening  the bare electron-ion potential when (3.13) is 

substituted in (2.35). 

3.3 Diagrammatic analysis of 	(% 	. A94 r/) 

The response function ')(ii_ can be derived from the most general time-

ordered four-body Green's function 1 4.. , defined in X (=-(x, t) ) space by 

114_(xi,)(2,x1,x4) z ( ,-/AkTree(xi)e,o(z)ee(4)ecuoi>c 	(3.15) 

Pi  is susceptibile to Feynman diagram analysis
(19), though clearly rather drastic 

approximations will have to be made in order to obtain useful results. Brovman 

and Kagan
(27a) 

and Pethick(30), in discussing  similar multi-body functions, have 

found it useful to introduce the corresponding  irreducible multi-body function. 

We therefore define an irreducible four-body polarisability, M., by the equation 



X2 
(3 . 16b) 

X3 X4 

X2 	X1  

X
3 X4  

where 

XI  • 	 X X, + Xi  

xieM---4M)--- 
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['Lt.( 	) )(2,)3,Y,r) 

CI)(:(( (;ckq a4rtriV))(2. ,X3,X41- E-10‹,--;(:)E 40(2 - )(2' 
	

(3. 16a) 

r (X1.4;) 

where 	e(x-)c) is the dielectric function. 74_ is irreducible in the sense 

that it contains no two-body polarisation parts which can be separated from it by 

cutting a single electron-electron interaction line. This can be seen more readily 

from the diagrammatic representation of (3. 16a), 

FILT 	. 	) x3  ,x,t) 

1T(.,y2,\,43,x,) 

The heavy lines in the second term of the RHS of (3. 16b) represent a summation 

over two-body polarisation parts and may be written 

 

Thlee, + 	tic,2,11.Vz.e r TrVielTVQ_zil Ve(2_ 

  

   

where is the two-body irreducible polarisability (introduced 

at the end of the previous section) and Vee =-- 	- -- is the electron-electron 

interaction. The summation (3.17) 

when taken into account with the first term on the RHS of (3.16b) gives back 

the rt factors in (3.16a). 



X2 X
1 

X3  

	2 

X
3 

X
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3 
X
4 	X

3 

X
2 

X X2  X1  

X
4 
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Fourier transforming (3. 16a) we find the following formally exact 

expression for 1)(4 	1- ► - ) 

k ,cr-k cvg >1) 	
() 	Eth,w) Es(cA)-4)) 	EEO 

(3 . 18) 

where the e 	maintains the correct time-ordering as in (3.1b) ( S being an 

infinitesimal). The factors E(4?-a) E($) in the denominator of (3.18) are now 

seen to effect a screening of the electron-ion potential when (3.18) is used to 

calculate S
ee(k) as in (2.35). 

To proceed further one must now approximate, and the simplest thing to 

do is to replace IL 	 1T4_ in (3.18) by its value for free particles, 	. This corresponds ° 

to taking the zeroth order terms in the diagrammatic perturbation expansion of Mi. . 

In Appendix A it will be shown that Trz _O(. Az >Y3)/9 has the following diagrams 

where the lines now represent free electron Green's Functions. A further simplifi-

cation will be to neglect dynamic effects in the dielectric functions in (3.18) by 

replacing them by their static limits. This enables the G.) -integration to be 

carried out analytically. 

The final form for this approximation to, can be written 

-k 	> 	1)42: Os A- •) (1,4 	) 	(3.19) 

Etic ) (C_ -k) 	€ (4 ) 
where we have made the identification, 

TL, 	 (3.20) 

From (3.19) it follows that if G = 0, 644. has a factor Elk). Since E(k)^' 1/41 
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as k —> 0, it is clear that, in this approximation, 	 1--(1,) goes to 

zero at least as k4 
 in the limit of small k. 

3.4 Conclusion 

In the preceding two sections, two approximate forms, given by (3. 13) 

and (3. 19), have been derived for the four-body response function 	, (a) by 

density functional arguments and (b) by diagrammatic analysis. For ease of 

reference, the diagonal elements (G = 0) are repeated here. 

(a) Nk(k .) 1/1-cif) ,11 1)0(1)1-1L:(is.-k;1,,-$) 
	

(3.21a) 

riAL).1 1)ct(k1-1. . , 1,-1) 
1\r3Osi--k Olt(2)(9)5,,-i) (3.21b) 

(b) tYy(ic)-k 	71) 	 1 -9) 
	

(3.22) 

€2(s) C2(cif) 

In each case it has been demonstrated that (1) the dielectric constant appears in 

a way that screens the electron-ion interaction and (2) Lim ,-$)=0) k-->0 	— _ _ 
so that the charge neutrality limit on S

ee(k) for liquid metals is exactly satisfied 

to second order. 

However it should be pointed out that property (2) comes about by 

different mechanisms in the two cases. In (a), the result follows from particle 
h n  

number conservation which implies that tim 	visi—kl-e—-60 =0 (see )  

Appendix B, 	Bi ). This result has not been generalised to the exact H
4
. It 

turns out in fact that 

 

talcv  

ir29, 11.-ZtF 

 

1." 	k K-> 0 
0 (3.23) 

  

where kF  = 0i12101.  is the Fermi wave number. The second term in (3.21b) 
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(which is evaluated explicitly in Appendix B) is needed to exactly cancel (3.23) 

ask—?0, thus leading to the desired result. 

On the other hand, in the diagrammatic case (b), the result does not 

depend on free particle properties but on the existence of the screening factors 

of C-20) in (3.22). But these factors only arise because of the neglect of the 

frequency dependence of the dielectric function. To treat the k--3 0 limit 

properly, one should return to (3.18) and attempt to do the GI -integration. 

The discrepancy between the two approximations has not yet been satisfactorily 

resolved. Neither has it proved possible to evaluate (3.21) nor (3.22) fully, so that 

they cannot be compared numerically. However it is to be recalled from the 

discussion at the end of S 2.5 that the contribution of the 1\1(4. term to See(k) 

in liquid metals is expected to be small compared to the charge neutrality term. 
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CHAPTER 4  

CALCULATIONS AND DISCUSSION OF THE ELECTRON-ELECTRON 

AND ELECTRON ION STRUCTURE FACTORS IN LIQUID METALS 

4.1 Introduction 

In this chapter, the dominant charge neutrality terms that appear in 

expressions (2.35) and (2.41) for See(k) and Sie(k) are calculated for liquid 

sodium and aluminium. These terms are given by 

ee.,(k) 	 Vie(k)(X(k))2 	(1( 	(4.1) 

Ck) 	-1-J- VI ekk)(X(k) 	(k) 	(4.2) 
Z 

After some general considerations given immediately below, 	4.2 discusses the 

input data required for the calculations. In 4.3 and § 4.4 the results for 

liquid sodium and aluminium are presented, followed in § 4.5 by a discussion 

of them. The implications of these results for the differences between X ray and 

neutron structure factor data are then examined in 	4.6 and 	4.7 using the 

framework suggested by Egelstaff et al (EMM)(10)
. Finally in 	4.8 there is a 

summary of the conclusions of this work. 

Liquid sodium and aluminium have been chosen for these calculations 

because they are both nearly-free electron metals with relatively weak electron-

ion interactions and to which the theory developed here should therefore be 

applicable. Also, tabulated structure factor data has been obtained for these metals, 

this being preferable to attempting to deduce the data from the diagrams usually 

presented in the literature. Sodium and aluminium differ, of course, in that 

monovalent sodium has a relatively lower mean electron density (r EN" 4) than 
s 

 

trivalent aluminium (r
s
ry 2). Here rs  = 4co(34-11-(0-3  is the usual electron 

gas parameter which measures the mean separation of the electrons in units of 

the Bohr radius a0  = 0.53 A. The jellium functions 5(k) and (%(k) that appear 

in (4. 1) and (4.2) naturally depend on rs, this dependence usually being displayed 



through the Fermi wavenumber k
F 

defined by 
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kF  = c11-erte.)7 (C1-Tr)
3 I 

Li- 	a°  rs 
(4.3) 

 

In the theory of liquid metals, the position of 2kF  relative to that of the 

first (principal) peak in the ion-ion structure factor is of considerable importance. 

For monovalent metals, 2kF (which is proportional to z3) is characteristically just 

on the low k side of this peak (c.f. figure 4.1a for sodium);  for divalent metals it 

is just on the high k side;  and for trivalent metals it is in the trough between the 

first and second peaks of S..(lb) (c.f. figure 4.2a for aluminium). Since 1)((k) 
tt 

becomes small for k > 2kF  it follows that, other things being  equal, the effect 

of the principal peak in Sii(k) should be more apparent in 6,See(k) and Sie(k) 

in polyvalent metals than in monovalent metals. However, as will appear in the 

case of aluminium, the behaviour of the electron-ion potential is also of crucial 

importance. 

It is interesting  to note that these same considerations arise in discussion 

of the resistivity, () , of liquid metals on the basis of the Ziman formula. This 

formula gives (lc)  

e 	y k  
E0-,) " cl  (4. 4 ) 

The integrand of (4.3) closely resembles (4.1) and one is led to suppose that 

metals with a high resistivity are likely to have larger electron-ion contributions 

to their electron-electron structure factors. 

4.2 Data used in the calculations  

To evaluate (4.1) and (4.2) one requires specific forms for (a) the electron-

ion interactions V.le 
 (k), (b) the density response function IX (k) and (c) the ion- 

ion structure factor S..(k). 
ti 
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(a) The electron-ion interaction V.
le 

(k) 

It is now well established that in nearly-free electron metals, the electron-

ion interaction is well described by means of a pseudopotential(31). Pseudo- 

potential theory explains the apparent weakness of this interaction by taking 

into account the need to make the valence electron wave functions orthogonal 

to those of the core electrons. Rigorous pseudopotentials are non-local and 

energy dependent, but several simpler, model pseudopotentials have been 

proposed whose parameters are usually determined by fitting to various observable 

properties. One such pseudopotential, which will be employed here because of 

its simple analytic form, is the one-parameter, empty core pseudopotential of 

Ashcroft(32)
. In r-space this has the form 

	

Viz r) 	
2/r. 	r > R, 

(4.5a) 
0 	r < 

where R
c is the empty core radius. In Fourier transform this becomes 

	

k) 	1+72 
 

CoE (kec) 
	

(4.5b) 

This pseudopotential has a node (zero) when kit =/9 . The values of 

R
c (see table 4.1 on page 53 ) have been taken from Cohen and Heine(31)

, it 

being assumed that R
c 

does not vary significantly from the solid to the liquid 

state. For further discussion of the use of pseudopotentials specifically in liquid 

metals see the first chapter of (1). 

(b) The density response function of jellium i\k(k) 

Current theories of interacting jellium usually express the static density 

response function in the form 

(\AOC) = N°(k) — wee (.k ((k) (4.6) 

where 	(k) is the free-electron density response function given by 
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kE 	_ i<2  )L kt9-kF 	(4.7) NAQ(k) 
2.10 	4-q) 111 k -2k p 

If 	ee(k)  is taken as the bare electron-electron interaction 41T /k2
, one obtains 

the familiar RPA form for i% (k). However the more recent generalised RPA 

(GRPA) theories put 

Oak) a(k)) k2  (4.8) 

where G(k) is a local field correction which modifies the Hartree field acting on 

each electron by taking into account short-range electron correlations. Several 

form for G(k) have been proposed. Here we use the now classic work of Singwi 

et al (SSTL)(33) 
whose self-consistent determination of G(k) constituted a major 

improvement over the RPA. SSTL have found that a useful parameterisation of 

their G(k) is given by 

C(k) = Mrs)[ I 
	e

—R(rs)kyv2r. ] 	
(4.9) 

The values of A and B appropriate to sodium and aluminium are given in table 4.1. 

(c) The ion-ion structure factor  S..(k) 

According to the discussion of scattering experiments in 	1.5, S..(k) is 

strictly only determined by neutron scattering. However, there is a surprising 

lack of recent neutron data on liquid sodium and so the author has had to use the 

early results of Gringrich and Heaton(34). These are undoubtedly inferior to the 

highly accurate X ray results of Greenfield et al
(35), and so comparison between 

the two has not been seriously attempted (but see § 4.6). The data of Gringrich 

and Heaton is particularly inaccurate at small k and so has been amended to agree 

with the X ray data in this region. Both sets of data are for liquid sodium at 100°C. 

S..(k) for liquid aluminium was taken from the recent, unpublished neutron 

experiments of Jovic#(36). X ray measurements were taken from Waseda (37) whose 
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data appears to be in good agreement with the (untabulated) results of Fessler et 

al(104). Both sets of data are for liquid aluminium just above its melting 

temperature of 666°C. 

The mean electron density of each metal at the appropriate temperature is 

given in table 4.1 below. In this table atomic units (A = e = nt = j ) are 

used. 

Quantity (atomic units) Liquid Na Liquid Al 

Temperature 

Electron density 

rs 

kF 

Al
0.2612 B i 	

see equation (4.9) 

Empty core radius Rc
(31) 

100°C 

0.003564(38) 

4.061 

0.473 

0.9959 (rs = 4) 

(r
s 

= 4) 

1.67 

666°C 

0.02363(39)  

2.162 

0.880 

0.8994 (r
s 

= 2) 

0.3401 (r = 2) 

1.12 

Table 4.1 Summary of parameters used in the calculations 

4.3 Results for liquid sodium  

Figures 4.1 a-d show as a function of k/kF 
(a) S.

ii 
 (k) for liquid sodium, 

(b) the form factor NA(k)Vie,(k))  (c) the change ) LSee(k), in the electron-

electron structure factor from its jellium value as given by the charge neutrality 

term (4.1), and (d) S.le
(k) as given by (4.2). Note the variation in vertical scale 

in each case. 

The first thing to notice about ASee(k) from figure 4.1c is that it is very 

small, in fact never being greater than its k = 0 value. For monovalent metals, 
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this is the same as S. (0) and for sodium equals 0.0240. S(k), the jellium 

contribution to S
ee(k), rises monotonically from zero at k = 0 (c.f. (1.15) ) 

to ^#1 for k >, 2k
F. It is shown on the left of figure 4. 1c, but rapidly goes 

off scale for k/k
F ̂ s 0.1. Thus electron-ion contributions to 5

ee
(k) are only 

one or two percent of the jellium contribution except in the charge neutrality 

limit. 

The structure of ASee(k) and its smallness is easily explained by reference 

to the behaviour of S..(k) (figure 4.1a) and 	tX(k)V. (k) (figure 4.1b). For tt 

liquid sodium, the node in the pseudopotential is at k/kF  "" 1.95 and X(k)Vie(k) 

remains very small beyond 2kF. Thus the effect of the principal peak of S.. at 

k/kF  = 2.27 is almost totally absent from Q S
ee

(k). It should be noted that 

the details of A See(k) for k/kF  "1  (that is where S..(k) is beginning to rise 

towards the first peak, while the form factor is steadily decreasing) are quite 

sensitive to small changes in S... For instance, if the peak of S..(k) were 

narrower (as is suggested by the X ray data), the bulge in ASee(k) at 

k/k
F 	1.1 would be less pronounced. Clearly more accurate neutron data for 

S..(k) is needed in order to better predict the detailed form of L\S
ee

(k). 11 

S
ie

(k ) is shown in figure (4. 1d). As it is first order in V. , it is of greater le 

magnitude than QSee(k), but does not exceed 0.1. The negative values of 

S.te (k) are consistent with the relation between S.
le l  

(k) and g. 
e
(r) (see equation 

(1.10) ) and the fact that gie(0) 	0. Again the structure of Sie(k) reflects 

that of (X(k)Vi (k) and S..(k), the most obvious feature being the rapid change 

of sign as the pseudopotential passes through its node. S. (k) reaches its maximum le 

magnitude of -0.09 at the position of the principal peak of S..(k). 

4.4 Results for liquid aluminium  

The corresponding curves for (a) S.
I.(k), (b) (X(k)Vtak) (c) A See  (k) 
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and (d) S. (k) for liquid aluminium are shown in figure 4.2 a-d. le 

Aluminium might be expected to show greater electron-ion effects on 

S
ee

(k) than sodium, because, being a trivalent metal, its electron-ion interaction 

is stronger and also, as pointed out in § 4.1, ko, the position of the principal 

peak of S..i  is less than 2kF. However it turns out that the pseudopotential node 

at k/kF  :71-1.6 almost exactly coincides with k0  so that the effect of the principal 

peak is virtually annulled. A See(k), as a result, remains small for all k, not 

exceeding its k = 0 value as given by z S..0)",  0.06. As with sodium, there is 

some sensitivity to the neutron diffraction data used. The measurements of Honma 
(39) 

and Tamaki 	show a curious bump in S..(k) at k/kF ,,,  0.7 not present in the il 

neutron data of JoviC or the X ray data of Waseda or Fessler et al. If real, 

this bump would give a corresponding peak of height Al 0.11 in AS
ee

(k) at 

this position. 

S. (k) for liquid aluminium is of similar form to that for sodium, with a le 

maximum positive and negative magnitude of #-N, 0.1 and a rapid change of sign 

at the pseudopotential node. 

4.5 Discussion of the results 

The results of the preceding two sections strongly suggest that electron-ion 

interactions make only small modifications to the electronic structure factors of 

liquid sodium and aluminium. In both these metals the change, A See(k), in 

See
(k) from its jellium value S(k) is never more than a few percent of S(k) except 

in the charge neutrality limit (k-4 0) when 

contribution. However, as discussed in §4.1, it is possible that aLSee(k) 

could be large in a polyvalent metal in which the node of the pseudopotential 

does not coincide with the principal peak of the structure factor S..(k). II 

QSee(k) constitutes the total 



58 

3.0 - 

0.0 2.0 4.0 6.0 

FIGURE 4.2a ION- ION STRUCTURE FACTOR FOR LIQUID ALUMINIUM 

/)((k)V. (k) 

1 
0.0 1 .0 2.0 3.0 

k/kF 
FIGURE  4.2b THE FORM FACTOR 	((k)V. (k) 



Position of principal peak 

of S..(k) 

kA 
0.0 2.0 4.0 6.0 0-1 

Position of principal peak 

of S. 
I! 

O. 10 

S. (k) ie 
0.05_ 

2.0 0.0 	 1.0 

0.00 
I 

6.0 

-0.05 

-0.10 

3.0 
k/k F  

59 

0.06 

0.04 

AS
ee(k) 

0.02 

0.00 

FIGURE 4.2c CHANGE IN THE ELECTRON-ELECTRON STRUCTURE 

FACTOR 

FIGURE 4.2d 	THE ELECTRON-ION STRUCTURE FACTOR 



60 

We recall that the calculations have been simplified by the use of the 

adiabatic approximation and a simple model pseudopotential and also by the 

neglect of the second-order contribution to S. (k) and of the qii.term to le 

.ASee(k). Although it is difficult to give quantitative estimates of the errors 

introduced by these approximations, it is clear that they will not substantially 

modify the conclusion that electron-ion effects on the electronic structure 

factors are generally very small. Certainly we can be sure that for small k, 

the expressions for AS (k) and S. k) are essentially exact. 
ee le(  

One further effect that has not been included in this treatment of the problem 

is the blurring of the Fermi surface of the electrons due to disorder scattering by 

the ions. The magnitude of this blurring ) Akp, will be related to the reciprocal 

of the electronic mean free path, X , which is usually many atomic spacings in 

nearly-free electron liquid metals (in sodium it is ", 73 atomic spacings, in 

aluminium .",11)(1d). Thus the effect will be small, but should introduce an 

exponential factor e —AkFr 
 into the electron-electron pair function g

ee(r). This 

will damp the small amplitude, long-range oscillations that arise in g
ee(r) due 

to the singularities in the jellium response functions 	and and k, that enter 

the theory (c.f. 	3.1). 

The conclusion from the above discussion is, that if the proposal of EMM 

to extract S
ee(k) from a combination of scattering data is carried out for liquid 

sodium and aluminium, the result will be, to the accuracy of a few percent, an 

experimental determination of the jellium structure factor S(k) at the electron 

density of these metals. 

The author does not underestimate the experimental difficulties involved 

in obtaining X ray, neutron and electron scattering data to the required high 

accuracy; these difficulties are highlighted in the following sections. However 
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the conclusion is interesting in the light of the current controversy over the 

correct form of S(k) in interacting jellium (see 	4.7). 

§4.6 Comparison of X ray and neutron structure factor data for liquid aluminium  

In the absence of suitable electron diffraction data it is not possible to carry 

out fully the proposal of EMM (see 	1.5), but it is still interesting to use the 

above calculations of S
ee(k) and S. (k) to estimate the expected theoretical le 

difference, A(k), between the structure factors as obtained by X ray and neutron 

diffraction. We recall that EMM pointed out the existence of systematic differences 

of up to 10% in the two sets of data. 

According to the theory of EMM, i(k) is given by (c.f. (1.37) ) 

A( /<.) = 	x(k)/ft  (k) 	St,/ (k) 

= Z cle(k) 2Z 2-'c(k)it(k)  +fa) --)c..(.r) 
V. (k) 	(k) 	ECK)  

(4.10) 

where fa(k) and fc(k) are respectively the free atom and free ion form factors. 

If we now use (4. 1) and (4.2) for S(k) and S. (k), (4.10) becomes 
ee  le 

A(k) 

	

z SOO 	OK(.14Vit(k) -i-Tc(k)) 

	

(k) 	L 	'Val() 
cjk) (4.11) 

Note that 6k)---)0 as k-->0. 

The quantity F(k) = fc(k) + 1.)(k) Vie(k) that appears in (4.11) can be 

interpreted on the basis of the following rigid pseudo atom picture. Ions immersed 

in an electron gas will gather around them a screening charge of electrons. Within 

the linear response approximation, ion plus screening cloud will behave as a single 

unit, which Ziman(105) has called a neutral pseudo atom. The electron density of 

the pseudoatom is described by the form factor F(k). The screening clouds of 
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neighbouring pseudoatoms must add up in the interstitial regions to give the 

roughly constant density of the original electron gas. The intrinsic correlations 

of this electron gas account for the first term in (4.11) while the term 

F
2
(k) S..(k) arises by virtue of the apparent rigid attachment of the electrons 

to the ions. The difference between F(k) and f
a(k) is usually called the 'solid 

state effect' as it is the result of the delocalisation of the valence electrons when 

free atoms are brought together to form condensed matter. Within the present 

approximation, this, together with S(k) are responsible for the differences between 

X ray and neutron structure factor data. Note that the first term in (4.11) appears 

to become large at large k, when S(k) ti  1 and f
a
2
(k) becomes small. However 

at these large momentum transfers the validity of (4.11) is doubtful because the 

distinction between core and valence electrons is less meaningful. 

A(k) has been calculated from (4.11) for liquid aluminium and is shown 

in figure 4.3a. f
a 
(k)and f

c
(k) have been taken from the wavefunction calculations 

of Fukamachi(18)
. Professor Singwi has kindly supplied the author with tabulated 

values of S(k). for r
s 

= 2 and 4. S(k) for r
s 

= 2 (which is appropriate to aluminium) 

is shown in figure 4.4. 

In figure 4.3b, 	
ex 

 P(() is shown. This is the difference between the 

X ray data of Waseda and the neutron data of Jovia" for liquid aluminium. Note 

that the neutron principal peak height is 2.34 compared with an X ray height of 

2.47, although this does not correspond to the maximum discrepancy. 

It is clear from figure 4.3 that A(k) and Aex P(k) show very little 

P(k) agreement with each other, P P(k)  being in general an order of magnitude 

greater and showing markedly different structure (except that both show a dip 

at the position of the principal peak). The results for liquid sodium (not presented 

in detail because of the inaccuracy of the neutron data) also suggest that the 
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calculated difference between the neutron and X ray structure factors is much 

less than that which is observed. Thus the systematic enhancement by up to 

10% of the X ray data noticed by EMM is so far unexplained. 

4.7 Further discussion  

The conclusion drawn in the preceding section would seem to imply that 

either inaccuracies in the X ray and neutron data make a quantitative comparison 

between them inappropriate, or that the theory is inadequate, or both. 

It is not intended here to give a detailed discussion of the relative merits 

and demerits of X rays vis a vis neutrons for studying liquid metal structure, but 

some comments will be made. Both methods require the use of corrections based 

on theoretical models to actually extract the structure factor from the raw data. 

In the case of neutrons, corrections are needed for incoherent scattering, multiple 

scattering and inelastic scattering; in the case of X rays, the effects of Compton 

scattering must be subtracted and the data divided by the square of the atomic 

form factor. Greenfield et 01(35) 
have given convincing arguments for the 

superior accuracy of at least their X ray measurements, particularly in the low 

k region. On the other hand, Enderby(17) 
and Faber

(le) 
argue favourably for 

the intrinsic accuracy of neutron experiments, although they recognise that 

measurements which do not go to sufficiently low k can lead to large normalisation 

errors. There is no doubt room for improvement in the accuracy of both X ray and 

neutron data and assuming the correctness of the theory presented here, experi-

mentalists should be concerned that there is not closer agreement between the two. 

But what impressed EMM was the systematic  enhancement of the X ray data 

for a wide variety of liquid metals and the fact that this enhancement was not 

observed for other classes of liquids such as liquefied rare gases and molecular 

liquids (see table 1.1 on page 23 ). They pointed out that a rigid pseudoatom 
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model was unlikely to be able to explain this discrepancy. It would in fact give 

the neutron peak higher than the X ray peak (as observed in the aluminium 

calculations) because of the reduction of F(k) below f
a(k). Thus EMM were led 

to suggest that there must be a degree of non-rigidity in the valence electron 

distribution so that these electrons are able to form an incipient structure (i.e. 

one only present on a short time scale) with a longer range order than the ions. 

This would show up as liquid-like peaks in the electron structure factor. From 

such a model they predicted that the neutron peak height should be intermediate 

between the X ray and electron diffraction peak heights as is apparently observed 

for bismuth. 

It is difficult to see how to incorporate these ideas into the theory of
ee

(k) 

developed in this thesis. There seems little doubt that the electron-ion 

contributions to S
ee(k) are very small and therefore the only modification that can 

be made is to the jel I ium structure factor S(k). 

Current theories of S(k) based on the GRPA show no liquid-like structure; 

S(k) rises monotonically to /NJ 1 at 2k
F 

(see figure 4.4 on page 66 ). However 

there is growing evidence that these theories are still inadequate because they 

neglect the important frequency dependence of the local field correction G(q) 

(see equation (4.8) ). Doubts were originally raised by Platzman et al's inelastic 

X ray scattering measurements of the dynamic electron structure factor, S(k, w ), 

in several solid metals
(106) (see also HOhberger et al

(107)
). These workers 

unexpectedly observed in beryllium, aluminium, lithium and also graphite that 

reasonably well defined plasmon excitations persisted into the wavenumber range 

between k
F 

and 2k
F. 

Furthermore the plasmon dispersion relation, 0)(k), appeared 

to flatten and even to acquire negative slope. 	These observations (which seem 

not to depend on lattice structure) conflict with the mean field (GRPA) theories of 
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FIGURE 4.4 	THE JELLIUM STRUCTURE FACTOR, S(k), 

FOR rs  = 2. Data supplied by Professor K.S. Singwi. 
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interacting electrons. According to these theories plasmons are ill-defined in 

this region because they are unstable to decay into single- and multi-particle 

excitations. Recently Singwi et al(108) have suggested an explanation for the 

observed phenomena in terms of electron life-time effects. 

The relevance of these observations to the present discussion can be made 

apparent by means of a simple model. If we suppose that the electron excitations 

are predominantly plasmon-like with dispersion relation 	(k) and we also neglect 

plasmon damping, then the two sum rules on S(k, W) given by(109) 

S() 	ctt..) ah,(,)) 

kk 	at.0 	S (L63) 
2m 	fl! 

are both satisfied by the form 

(4.12) 

(4.13) 

(4.14) 

provided 

6J(k) 	
s(k) 
	 (4.15) 

On the basis of (4.15), an explanation of the observed flattening of Le (k) in 

the region kF 	k < 2kF, is a corresponding enhancement of S(k) in this region. 

Although this model is naive in neglecting the large contribution to S(k,L;) 

due to single- and multi-particle excitations, it does point towards the conclusion 

that the jellium structure factor S(k) may show some liquid-like structure due to 

short-range electron correlations. 

It must not be supposed that the deviations of the observed electron structure 

factor from that for instance shown in figure 4.4, are large. Certainly there is no 

suggestion that the electrons possess the substantial degree of order characteristic 

of a Wigner lattice(110); this is unlikely because the electron densities of real 
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metallic systems are well clirOve: that suspected for the Wigner transition. However 

an idea of the magnitude of the effect can be seen from figure 4.5. The full curve 

shows S(k) for solid beryllium as obtained from (4.12) using the experimental 

measurements of S(k, W) by Platzman et a 1(111). 
 The dotted curve shows the 

theoretical S(k) for an electron gas corresponding to the density of beryllium, 

according to the RPA. It can be seen that the observed S(k) shows a bump at 

k/kF  'N.,  0.8 and also is enhanced by up to 10% at k/kF  ", 2. It should be 

remembered however, that beryllium shows distinct anisotropy in some of its 

properties(112) 
and thus electron-ion interactions are clearly more important 

than in nearly-free electron metals. Quantitative conclusions from figure (4.5) 

must therefore be treated with caution. 

The implications of these results 	for See (k)in liquid metals are still 

uncertain. Even if S(k) does show some liquid-like behaviour, there is still the 

problem that the enhancement of the X ray structure factor appears to be independent 

of the atomic number of the liquid metal. It might have been expected that in metals 

in which the proportion of core electrons to valence electrons is high, the X ray 

scattering would be entirely dominated by the former. But as EMM have pointed 

out, the division of electrons into valence electrons (those which are dominated 

by electron-electron interactions) and core electrons (those for which the electron-

ion interaction is comparatively strong) may not in this context correspond to the 

customary separation. 

In summary, this discussion has shown that although recent experiments have 

modified our view of the electron structure factor in homogeneous electron systems, 

there is no firm evidence that in such systems there is present the degree of electron 

ordering that would be necessary to explain the enhancement of the X ray structure 

factor data over the corresponding neutron data in liquid metals. Little further 

progress can be made in the absence of reliably accurate neutron and X ray 
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FIGURE 4.5 	ELECTRON STRUCTURE FACTOR FOR SOLID 

BERYLLIUM. 

FULL CURVE, EXPERIMENTAL RESULTS OF PLATZMAN ET AL(111)
. 

BROKEN CURVE, S(k) AS GIVEN BY THE RPA AT THE ELECTRON 

DENSITY OF BERYLLIUM. 
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scattering data. 

4.8 Final summary and conclusions  

The aims of the work described above and in the preceding chapters have been, 

(1) to derive expressions for the electronic pair correlation functions and static 

structure factors in nearly-free electron metals, 

(2) to apply these expressions to a calculation of S
ee

(k) and S.
le(k) in simple liquid 

metals, and 

(3) to use these calculations to try and understand the observed differences between 

X ray and neutron structure factor data on liquid metals. 

The first aim has been achieved in chapter 2. There, a perturbation expansion 

for the electron-electron two particle correlation function, correct to second-order 

in a weak electron-ion interaction, is derived using a functional derivative 

technique. The unperturbed system is taken as a jellium of electrons superimposed 

on, but not interacting with, a jellium of ions. General results are obtained for 

an inhomogeneous system in which the ions are free to move. However they are 

shown to simplify (a) when the ions are 'frozen', as in rigid solids, and (b) in 

liquid metals, which are homogeneous on average. Only (b) has been investigated 

in detail. Using the adiabatic approximation (which relies on the small electronic 

to ionic mass), expressions to second-order in the electron-ion interaction V.le,  are 

derived for the electron-electron and electron-ion structure factors, S
ee

(k) and 

S.le( k) , in liquid metals. These expressions involve ion-ion correlation functions, 

and response functions of the electron jellium. 

The condition of overall charge neutrality in liquid metals has been shown by 

several authors to imply that as k-->0, See(k) and Sie(k) are simply related to the 

ion-ion structure factor S..(k) according to 
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0') 	;,1.(1t) 	 z VQCGt) 

where Z is the valency. Specific terms in the expressions derived for Seek) 

and S
ee(k) are shown to give these exact limits. These 'charge neutrality' 

terms are the first-order term in the case of S. (k) and one of the two second- 
fe 

order terms in the case of S
ee(k) (there being no first order term). Clearly it 

is then required to prove that the other terms contributing to S. (k) and S k) 
to 	ee(  

are zero as k-->0. This has been done for the second-order contribution to 

S.le (k). However, no general proof has been found that the additional second-

order term contributing to S
ee

(k) is zero in this limit. 

This term involves a complicated four-body response function of jellium, 

In chapter 3, two approximations to N.,. are constructed, one using density 

functional arguments and the other using diagrammatic analysis. Both approx-

imations do in fact lead to the conclusion that the Alti. term contributes nothing 

to Seek) as k 	0. But as the physical interpretation of this property of r\ki, 

is different for the two approximations, the exact nature of tyas. is still uncertain 

and requires further elucidation. Furthermore, it has not yet proved possible to 

evaluate fully either approximation to Nit... But as 1)(4r  is a measure of the 

irreducible short-range correlations between four adjacent electrons, its contri- 

bution to S
ee

(k) is expected to be small. Trigger(23), in his analysis of S (k) 
ee 

by a different method, does not explicitly consider this term at all, and also 

concludes that the 'charge neutrality' term is the dominant electron-ion contribution 

to Seek) for all k. 

In 	4,1 to § 4.5 of chapter 4, calculations of these dominant electron-ion 

contributions to S
ee

(k) and S.
le

(k) are presented for liquid sodium and aluminium. In 

these calculations, the Ashcroft empty core pseudopotential was used for the electron-

ion interaction; S..(k) was taken from neutron diffraction experiments; and the jellium 

(33) linear density response function was taken from the GRPA results of Singwi 	et•al. 
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In liquid sodium, the electron-ion contribution to
ee

(k) is never greater 

than its k = 0 value of 0.0240, and similarly in liquid aluminium, not greater 

than the k = 0 value of 0.06. These contributions are, at most, one or two percent 

of See(k), except in the charge neutrality (k-->0) limit, when the otherwise 

dominant, jellium contribution to S
ee(k), tends to zero. The electron-ion 

contribution does, however, show marked structure, which reflects that of both 

the ion-ion structure factor and the pseudopotential. In particular, the smallness 

of the electron-ion effects is explicable in the case of (a) sodium, because the 

principal peak of S. (k), being beyond 2kF, has very little impact, and (b) 

aluminium, because the principal peak, although before 2kF, has its effect 

annulled by its coincidence with the node in the pseudopotential. 

S. (k) is also small, its magnitude not exceeding 0.1 in either liquid sodium le 

or aluminium. However, a feature common to both metals is a rapid change of 

sign of S. (k) at the position of the pseudpotential node. le 

Two conclusions follow from these results, both of which arise in the context 

of the proposal by EMM(10) to experimentally determine See(k) and S. (k) by 
le 

combining the results of X ray, neutron and electron scattering experiments on 

liquid metals (see 	1.5). 

Firstly, in liquid sodium and aluminium, the electron-ion contributions to See(k) 

are so small as to imply that a measurement of See(k) by the method of EMM will be 

effectively a measure of the jellium structure factor at the electron density of these 

metals. It should be pointed out however, that highly accurate data will be required 

for this purpose, which is certainly not available at present in the case of electron 

diffraction. 

Secondly, as has been discussed in ci 4.6 and 	4.7, the very small electron- 

ion effects calculated here, in no positive way help to explain the systematic 
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enhancement (as observed by EMM) of the principal peak of the X ray structure 

factor over that obtained by neutron diffraction experiments on liquid metals. 

Assuming that this enhancement is not simply a manifestation of inaccurate 

X ray or neutron data, it follows that its explanation requires the existence of 

some degree of incipient ordering amongst the valence electrons, which will be 

detected by the X rays but not by the neutrons. This ordering should show up as 

liquid-like peaks in the jellium structure factor although current GRPA theories 

of jellium predict no such behaviour. However there is growing experimental 

evidence from the work of Platzman(106) 
and others, that these theories are 

inadequate in their treatment of dynamic short-range electron correlations. 

Furthermore, these experiments explicitly show some structure in the measured 

electron structure factor, although it is still uncertain whether this is of a magnitude 

that will help explain the discrepancies between the X ray and neutron data. Clearly 

future work in this field should aim to clarify this point further. 
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CHAPTER 5 

A SIMPLE MODEL OF MOMENTUM DENSITY IN DILUTE BINARY ALLOYS  

S
5.1 Introduction 

It is well known that observations of Compton scattering of high energy photons 

by electronic systems (see § 5.4) give useful information about the momentum 

density of the electrons. In this chapter it is proposed that such measurements are 

a possible means of investigating impurity screening in dilute random alloys of 

nearly-free electron metals. 

The basic idea is simple. lf, for instance, a small concentration of magnesium 

is present in a host lattice of lithium, the excess charge of the Mg2+  ions over the 

+ ions ions creates an attractive impurity potential and leads to the build up of a 

localised electron screening charge centred on the magnesium ions. In such a 

screening charge the electron density will be strongly varying and to represent the 

density gradients, the electronic wave functions must contain high Fourier components. 

These will manifest themselves as a tail above the usual Fermi cut-off in the momentum 

density and also in the Compton profile. 

Clearly a detailed quantitative treatment of self-consistent screening and 

momentum density in disordered alloys taking into account crystal structure, multiple 

scattering and impurity clustering would be very complicated, although recent attempts 

along these lines have been made by Bansil and Mijarends(40)
using the average 

t-matrix approximation. However the method adopted here is to illustrate the 

particular phenomenon described above by means of a simple non-structural theory 

of charge distribution in dilute alloys first discussed by Friedel(41)
. The momentum 

density and Compton profile are then derived from this charge density by a semi-

classical Thomas-Fermi argument. Calculations are presented for an alloy of 10% 

magnesium in lithium and some comments made on other effects which may mask 
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observation of the screening charge by this method. Finally, contact is made with 

the recent density functional theory of momentum density of Platzman and Lam(42) 

5.2 The Friedel model of primary solid solutions 

The Friedel(41) 
model of localised screening in dilute random alloys is based 

upon the following definitions and assumptions. 

a) Impurity ions, each with an excess charge of Z let are distributed in the 

solvent metal with an atomic concentration c. Each impurity is situated at the 

centre of a sphere of radius R such that 

C 	 (5.1) 

where Si is the atomic volume of the pure solvent. Clustering of impurities (and 

hence the overlap of the impurity spheres) is neglected, as is distortion of the solvent 

lattice. 

b) Within each impurity sphere the additional Z electrons and the extra ionic charge 

give rise to a self consistent Hartree potential V(r) which satisfies Poisson's equation 

in the form 

V2V(i) 	— 	Q( 	 z scL 	(5.2) 

Here 	e (Er  r) is the pure solvent electron density (i.e. the density of electrons 
, 

with energy less than the Fermi energy Ed; (1(Ef-i-Uf , r) is the alloy electron 

density, in general with a Fermi level shift; and the delta function takes account of 

the excess charge at the impurity site. Note that the electrostatic potential is 

V(r)/-le) 	, although in the atomic units used here, IC' 	 fft, 	I . This 

equation is to be solved with the boundary conditions 

V(R) = 0 
	

(5.3a) 

V (R) = 0 
	

(5.3b) 

These conditions ensure the overall charge neutrality of the impurity spheres as well 

as continuity at the boundaries of two adjacent spheres. 
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c) The alloy and pure solvent electron densities are related by means of the 

generalised Thomas-Fermi approximation, i.e. by putting 

bEf , r) 	ec  Ei÷AEf _v(E) ,r) 	(5.4) 

This is exact if V(r) is a constant (and AET = 0) but is expected to be a reasonable 

approximation also if V(E) is slowly varying. In order to be able to solve (5.2) 

simply, it is still necessary to linearise the expression for the extra electron density 

(r) by assuming the potential is weak, and using the expansion 

6,eir) N ec,(Eci-af —vu:),r) —(,(46 )f) 

AEI= 	)MEc>r)  

Assuming that the solvent metal approximates to a free electron metal, the 

occuring in (5.4) (the density of states at the Fermi level) can be replaced 

free-electron value 

(5.5) 

derivative 

by its 

')c(4)  Me, ?F 
)5,7. Es 	—2. 

(5.6) 

where r; is the Fermi momentum of the pure solvent. Poisson's equation now 

reads 

VIV(E) 	= 
	( 	(1)) + 11L71-Z CCE) 

	
(5.7) 

where q = [ 	Me PFG 	is the Thomas-Fermi screening parameter for the 
-Tr 

solvent. 

The potential V(r) (which is in fact spherically symmetrical) and the Fermi level 

shift are now straightforwardly obtained by integrating equation (5.7) subject to the 

conditions (5.3). The result is 

V(r) 	Ag.c 	r A 
	cedlci,(R-r) 	9,(Q-1 (5.8) 

Ef 	z 
	 (5.9) 

where 

A 	1,1: sh.(1.P. sylk,s1,12 
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From (5.5) we obtain for the extra electron density 

(r) 	4F,  APf -V(r)) = 	 - 	(5.10) 

and it is easily verified that this gives a total of Z electrons in the impurity sphere. 

Some important consequences of these results were pointed out by Friedel. The 

Fermi level shift 	Ef given by (5.8) is for finite concentrations non zero but much 

smaller than that predicted on the basis of what will be called the mean density model. 

In this model, a rigid free-electron band is simply filled with the available electrons, 

ignoring  screening, and the Fermi level is calculated from the mean electron density. 

Such a model gives a Fermi level shift 

AE = 75.[s„.z (e.„.. z.e )] 3  -2-.  
3TT20  3 Sril%at4 2 c  

r 
(5.11) 

which for small concentrations is linear in the concentration, whereas in the Friedel 

theory, AEP approaches zero much faster (indeed exponentially) in the limit of 

infinite dilution. That this is reasonable can be seen from the following  argument 

for the case of an attractive impurity potential (see also the end of 	5.3). The 

band energy of the solvent metal will be lowered by the attractive potential, but 

there are also now more electrons to put into it. These effects virtually cancel out 

at low concentrations and no significant Fermi level shift arises until the concentration 

is high enough ( 	10) that there is no unperturbed solvent between the impurities. 

Another way to see what is happening  is to examine the extra electron density 

(c.f. equation (5.10) ) 

A co-) 	 _ 1,V(1-)  (5.12) 
4-1■ 

The first term in (5.12) is a constant density term which contributes a charge 

Aus towards the total of Z in each impurity sphere. Q is simply the 

uniform charge necessary to raise the free electron Fermi level by AEI . The 

second term, proportional to V(r), is the screening  cloud which because of the 

boundary conditions vanishes at r = R. Since Q/Z is in general small (in the 



78 

calculation below for 10% Li Mg, Q/Z = 0.07), the bulk of the extra electrons 

are in the screening cloud. Furthermore the electron density of the screening cloud 

is strongly varying and well localised around the impurity ion, since the Thomas-

Fermi screening length q-1 (roughly the range of the impurity potential) is in general 

less than an atomic radius. 

Before going on to discuss momentum density it is necessary to comment briefly 

on the weaknesses of the Friedel model. The treatment of screening by linearised 

Thomas-Fermi theory is clearly unsatisfactory, especially close to the impurity sites 

(the model in fact gives an infinite electron density at r = 0). Non-linear effects 

of the rapidly varying Coulomb-like potential will be important in this region. 

Also, as Friedel himself later demonstrated, the monotonically decaying exponential 

impurity potentials characteristic of linearised Thomas-Fermi theory are replaced in 

proper wave mechanical theories by longer range and oscillatory potentials (Friedel 

oscillations). The model, being essentially based on perturbation theory, is only 

applicable to dilute alloys in which the impurities are more or less screened 

independently and the wave functions of the pure solvent (i.e. plane waves in the 

above) are still a good basis set. As Friedel showed in his original paper, despite 

these criticisms his model gives a surprisingly good account of the electronic properties 

of a wide range of dilute alloys. We shall now proceed to show how the strongly 

varying electron density in the screening cloud manifests itself in the alloy momentum 

distribution. 

5.3 Momentum density in the Friedel model  

Continuing in the spirit of Thomas-Fermi theory, that is, on the assumption that 

the electron gas is sufficiently slowly varying to be treated as locally homogeneous, 

we define a local Fermi momentum pF(r) by means of the free electron relation 

pF(r) = 	Slizr [ eo  Ae 	3 
	

(5.13) 
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where P 	is the mean density of the pure solvent and ,A (r) is given by (5.12). 
O 

The probability of electrons at radius r having  momentum of magnitude between p and 

p + dp, 	r)dp, is then given by the familiar Fermi sphere argument in terms of the 

unit step function 	e(x) as 

I(p)r) _ t̀ e(rF(r)—P)AP 
4/3  Tr pF30 

At radius r, the density of electrons is pLie 	, so in the spherical shell 
v-c) 

of volume LEirrzar , the number of electrons with momentum between p and 

p + dp is 

I ( p r) d p [Fri-  Qo  AQ0-)Mr = 11) 0 (er(r) --p)r-Ickpdr 	(5.15) 

where (5.13) has been used. Integrating  over the whole impurity sphere (which 

contains N electrons, say) the normalised momentum distribution for the alloy, 

1(p), is given by 
-)R 

ii-Tcr 2-(c.„4-A(r)) neir)(A' = 21+11e( fF(r)- p)C2Cir (5.16) 

If p < pF  (R), the integration extends over the whole sphere. If p > pF(R), only 

the sufficiently high density regions with pF(r) > p contribute. We therefore 

define r(p) such that 

r(p) = R 	P < PF (R)  

r(p) is the solution of p = pF(r) if p > pF(R) 

The curve r = r(p) is shown schematically in figure 4.1 and the range of integration 

for a particular p ) pF(R) is shown shaded. 

r 

pF(R) 

(5.14) 
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The curve can alternatively be regarded as p = pF(r) and illustrates the increase 

of local Fermi momentum towards the centre of the impurity sphere. 

The final result for 1(p) is 
p2. 	 r(i') ra  

W 
This should be compared with the result, Im(p) expected on the basis of the mean 

density model. This would give 

(5.18) 
3 IT 

where ii1  is given by 

1(p) has been calculated 

The parameters for this 

Atomic radius 

N 

[ 3,-,2(e0„ -4c__)] i 3 	(c.f. equation 

for an alloy of 

units) 	i  
( 3.  1Ly 

(5.11) 	). 

10% magnesium in lithium. 

3.26 

from (5.17) 

system are (in atomic 

of lithium, Ra = 	4-7-rr - 	= 

Thomas-Fermi screening length, q-1 	= 1.15 

Impurity sphere radius, R 	 = 7.02 

Lithium Fermi momentum, p° 	= 0.5890 

Alloy 'Fermi momentum', pF  (R) 	= 0.5903 

Mean density Fermi momentum, pF 	= 0.6080 

Dilute Li Mg is expected to be as good a candidate as any for the Friedel model, lithium 

being a fair approximation to a free electron metal and its lattice being very little 

distorted by even quite high concentrations of magnesium. 

A plot of I( p) against p/pF(R) is shown in figure 4.2. I(p) follows the normal 

free electron-like parabola, but instead of being sharply cut-off to zero at pF(R), there 

exists a high momentum tail. Shown dotted is 1rn(p) calculated from (5. 18). This 

curve does have a sharp cut-off but at the higher momentum lin  (pmF/pF(R) 	1.03). 

Since the area under each curve is unity, this clearly illustrates that the occupation 

of high momentum states necessary for localised screening is only compatible with a 

smaller change in the Fermi level. 

I( ) is'• (-3( 
.3 -7 NI 

(5.17) 
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0.0 	 1 .0 
	

2.0 P/PF(R) 

FIGURE 4.2 	THE MOMENTUM DISTRIBUTION FOR 10% Li Mg. 

FULL CURVE, 1(p) AS GIVEN BY EQUATION (5.17). .  

DOTTED CURVE, Ini(p) AS GIVEN BY EQUATION (5.18). 
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5.4 Compton profile  

One possible means of observing the effect described above is by Compton 

scattering experiments. In such experiments the energy spectrum of monochromatic 

X or )1 rays scattered through a fixed large angle (N 1800) by an electronic 

system is measured. The recoil energy of the electrons is considerably higher than 

typical atomic energies and this enables the general expression for the X ray 

scattering cross section (equation (1. 29 ) ) to be simplified by means of the 'impulse 

approximation' (see for instance Platzman and Tzoar(43)). The result for Compton 

scattering is 

me 
.1 TO-) *),)-M2. 	N (5.19) 

where the Compton profile (CP) 1(q) is defined in terms of the exact momentum 

density N( p) of the system by 

(0v) 	r 	(11 N(r) (?z—c1,) 	 (5.20) 

Here the reduced variable q = 	— 11° 
	

U) being the energy transfer, 
11:1 

k the momentum transfer (taken as the z-axis) and the g -function expressing 

conservation of energy. From (5.20) it follows that the measured CP gives direct 

information about cross sections perpendicular to the k direction of the three 

dimensional momentum density. 

For a system with spherical symmetry it is easy to show that (5.20) reduces to 

7(  co 
	2 rc.3,1 I(?) 

P 
P 

(5.21) 

where I(p) is the probability density for an electron having momentum of magnitude P. 

Using the expression (5.16) for I( p ) in the Friedel model, we find 

T ( 9e) rz 	p ( eF(0 	cip dr 
c) (>0 

Jo Jq, 

 

 

= 
Tr IN 	rz  e; (r) ovz)13(0-) -(0 dr 

(5.22) 
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1.5 - 

FIGURE -4.3 THE COMPTON PROFILE J(q) FOR 10% Li Mg 

AS CALCULATED FROM EQUATION (5.22). 
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J(q) calculated for the same Li Mg alloy is shown in figure 4.3. Again the 

usual free-electron like inverted parabola has an additional high momentum tail 

above q = pF  (R). J(0) is about 1% lower than the value expected from the mean 

density model which would give for the CP, 

3 1"(co 	((i);T-$2) -0(tr-c0 
37;  N 

(5.23) 

However it should be noted that the usual experimental procedure of fitting a 

parabola of the form of (5.23) to the observed CP to obtain the Fermi momentum, 

would, if applied to figure 4.3, give a value much nearer pF  than pF(R). In order 

to distinguish the two models one must look for the high momentum tail and the 

shoulder in J(q) at pF(R). 

5.5 Difficulties in observing the high momentum components  

In the example above, the effect of screening on the CP is not large and it is 

important to ask whether in real alloys its observation will not be masked by other 

contributions to the high momentum tail in the momentum distribution. Such contri-

butions arise from: 

(a) the strongly varying electron density in the ionic cores; 

(b) inhomogeneities in the solvent metal electron density arising from 

the Bloch wave nature of the electronic wave functions; 

(c) electron correlations (which in the homogeneous electron gas have 

the effect of weakening the discontinuity in the momentum distribution 

at the Fermi level by shifting occupancy of states from below to above it); 

(d) the blurring of the Fermi surface in alloys due to lifetime effects. (These 

are difficult to estimate and will not be discussed further). 

The effect of the ionic cores is usually subtracted out using calculations of 

their contribution to the CP from free ion wavefunctions. Eisenberger et al(44) 

(see also Pandey and Lam(45)
) have shown that both (b) and (c), as well as core 
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orthogonalisation, are important in lithium and sodium metals, giving contributions 

to the CP tail of roughly the same magnitude as estimated above for the screening 

effect. Clearly the best procedure would be to watch the change in CP as 

magnesium is added to lithium, although it is still doubtful whether one could 

with any accuracy single out a contribution due to the screening of magnesium 

ions. The effect would be greater in more concentrated alloys and where valency 

difference is larger, but this has not been pursued in detail because of the limited 

validity of the Friedel model and its extension to the calculation of momentum 

density presented here. 

It should be noted that positron annihilation experiments also give information 

about momentum density in electronic systems(46). Stewart
(47) 
 carried out some 

investigations of this sort on the Li Mg system, although the lowest magnesium 

concentration used was 19%. Interestingly, he speculated that the lack of fit of 

his angular correlation curves to theoretical curves based on the mean density model 

may be due to just the effect of screening calculated above. However, interpretation 

of positron experiments is complicated by uncertain many-body corrections due to the 

electron-positron interaction. Also the tendency of the positron to avoid the 

positive ionic core regions means that any effect of the localised screening charge 

will be partially missed. As a result, Compton scattering experiments are probably 

better suited to observing this effect. 

5.6 Conclusion 

On the basis of the Friedel model it has been shown using semi-classical 

arguments how impurity screening in dilute nearly-free electron alloys gives rise 

to high momentum tails in the momentum distribution and Compton profile of the 

alloy. No quantitative conclusions can be drawn with any confidence because 

of the simplicity of the model. However, it is likely that observation of the effect 
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will be difficult because of other factors which give contributions of roughly the 

same magnitude to the tail in the Compton profile. 

It is interesting to note that Platzman and Lam(42) have recently shown that 

density functional theory (see Appendix C) can be extended to the calculation of 

the momentum density N( p ) and Compton profile J(q) of inhomogeneous systems. 

Where the electron density ft (r) is slowly varying they propose use of local 

density approximations of the form 

, a (EA NCE) dr 

5G(c1, )  11(a) 	k(is) (11-  

(5.24) 

(5.25) 

where N°( 0 , n) and J°(q, n) are respectively the exact momentum density and 

Compton profile of an interacting electron gas of constant density n. These 

expressions, used successfully by Platzman and Lam in the case of atoms, are 

clearly analogous to equations (5.16) and (5.22) derived above using Thomas-Fermi 

theory. They differ in including electron correlation effects rather than relying on 

free electron theory. To use (5.24) and (5.25) in the alloy problem, one would need 

a better approximation to the alloy electron density than for instance given by the 

Friedel model. In this connection it is worth mentioning the work of Rani and 

Ziman(48). These authors calculate self consistent charge densities in binary alloys 

by solving the non-linear Thomas-Fermi equation, but only in the interstitial regions 

where the density is at its most uniform. The model has the advantage of being 

applicable to concentrated alloys. 
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CHAPTER 6  

PERIODIC POTENTIALS FOR RANDOM BINARY ALLOYS  

6. 1 Introduction 

The theory of the electronic structure of pure crystalline metals and ordered 

alloys is enormously simplified by the use of Bloch's theorem which characterises 

the nature of electronic wave functions in the presence of a periodic potential. 

Very accurate methods now exist for the calculation of the one-electron band 

structures of such systems, progress in recent years being largely concerned with 

the inclusion of electron correlation effects in a self consistent manner. However 

it only needs one impurity or defect in the crystal to annul the translational symmetry 

of the potential and make Bloch's theorem strictly inapplicable. Of course single 

impurities can be satisfactorily treated by perturbation theory. But this is in general 

inappropriate to the case of concentrated disordered alloys where the crystal momentum 

t.k which characterises Bloch wave functions is no longer a good quantum number. 

Such systems necessitate the development of alternative methods of calculating 

electronic properties, such as the density of states, this being an important field 

of current research. Progress has been made in recent years by using Green's function 

techniques and multiple scattering theory, the most promising methods being the 

coherent potential approximation (for a recent review see Yonezawa and Morigaki(49)) 

and the continued fraction method (see Jacobs
(50)). 

The purpose of this chapter is to demonstrate that in principle some of the 

configurationally averaged properties of random binary alloys can be obtained from 

a set of periodic potentials used in conjunction with existing band structure techniques. 

The model of a random binary alloy that will be used is as follows. Atoms of 

type A and B are placed at random on the sites of a perfect lattice, it being assumed 

that the lattice can accommodate the two kinds of atom without distortion. The 
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concentration of the NA A atoms is c, and that of the N-NA B atoms is 1-c. 

Atoms of type A and B respectively have atomic-like localised potentials VA  (r) 

and VB() associated with them. A particular configuration of atoms is denoted 

by R x  , and in this configuration the alloy potential is given by 

V oc. = 	Ve(r 	) 	v 	 (6.1) 

where V(r) = VA(r) - VB(r) and the second sum is only over A sites. The correct 

procedure now,is to use (6. 1) for a general configuration in the SchrOdinger 

equation and to calculate electronic properties from the wave functions so obtained. 

Only then should configuration averaging be carried out to give the measurable 

properties of the alloy. This procedure is in general inpracticably difficult for the 

reasons given above. 

The earliest attempt to simplify the alloy problem by using a periodic potential 

was by Nordheim (51)  who introduced the 'virtual crystal' approximation. This 

involves the replacement of (6. 1) in the SchrOdinger equation by its configurational 

average, the virtual crystal potential v (r) given by vcN N  

	

Vvc (c) = < Vizjr" > = 	a(E- 	(2- 	gz) 
Z4i 

	

cvA(i--g0 	0-c) vg 	)3 	
(6.2) 

where here and elsewhere < > denotes configurational averaging. This is now 

a periodic potential as each atom irrespective of type has associated with it the 

average potential C 	( I -C) V& (L) 

This prescription clearly has no a priori justification whatsoever, since the 

configurational averaging is done in the wrong order with respect to the solving of 

the SchrOdinger equation. As a result all effects of disorder scattering have been 

eliminated. Nevertheless the virtual crystal approximation has been used with some 

success in the prediction of a number of Fermi surface properties (such as the de Haas- 
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van Alphen effect) in dilute Cu Zn alloys by March, Gibbs, Stocks and Faulkner 

(MGSF,(52)). 

6.2 Energy dependent periodic potentials for random alloys  

We now follow the argument given by MGSF as a justification for the use of 

energy dependent periodic potentials in the calculation of the configurationally 

properties of random alloys. In particular we focus on the quantity <\ R IP 	(r, E c4, 

that is the configurationally averaged density of electrons with energy less than E. 

From this, the averaged electron density is obtained by putting E = EF, the Fermi 

energy. Furthermore, the number of electrons with energy less than E, N(E) is 

given by 

N (E) 	 < (GP: ' 	(6.3) 

with N(E
F) being the total number of electrons, Ne. The alloy density of states, 

n(E) is given by 

(E) = )N(E)  (6.4) 
)E 

We have assumed that the alloy lattice is undistorted and so the electron 

density <eR,,(1 EF)>must have the periodicity of the background lattice. 

For example, in the case of dilute Cu Zn alloys, the background lattice will be 

the face-centred cubic lattice of copper, though perhaps with an expanded lattice 

parameter. Appealing to density functional theory (see Appendix C, proposition (6) ) 

it now follows that there must exist a periodic potential denoted by VE  (r) which is EF  

expressible as a functional of the density <eR.0 (r)  EF )> 	and from which this 

density can be generated according to 

< CQ,4 	EF 	
ri EFI 

L.) 
i.e. by summing the squares of the lowest Ne normalised eigenfunctions 

(which will be Bloch-like) of the Schrodinger equation with potential VE  (1). 
F 

Of course the potential VE  (r) will also generate a complete density of 
F 

(6.5) 
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states curve but having the van Hove singularities characteristic of the background 

lattice. This therefore cannot be the alloy density of states,which is expected to 

have a much more complicated structure. To obtain this, the following procedure 

is necessary. For each energy E a different periodic potential VE(r) is required to 

generate the periodic density <ez„, (.1: 1 E)>. . The periodic potential VE*(r) 

can thus, by means of (6.3), be used to obtain the single point on the integrated 

density of states curve corresponding to E --= E*. The complete N(E) is built up point 

by point by solving an infinite number of periodic potential problems and the alloy 

density of states derived by differentiating this composite curve with respect to E. 

Note that for given E, the potential VEQ-.) only depends on r and not on the energy 

eigenvalue occuring in the Schradinger equation. 

In a pure metal, VE(r) must obviously be independent of E, as a single periodic 

potential is sufficient to obtain the complete density of states. However for a random 

alloy it is to be expected that VE(r) strongly varies with E. In this way it is possible 

to see how the considerable fine structure known to exist in the density of states of 

alloys due to clustering (53)can be reproduced. 

How to construct the periodic potentials VE(r) is not at all clear and for this 

reason an alternative set of periodic potentials for alloys is discussed below. The 

above argument however allows the virtual crystal approximation to be viewed in 

a different light. MGSF suggest that the virtual crystal potential is a reasonable 

first approximation to the potential V E  (E). 	Furthermore if the energy dependence 
F 

near the Fermi level is not great this approximation should give fair agreement with 

some Fermi surface properties (as indeed they find for Cu Zn). However, the authors 

do point out that the variation with E of the periodic potential must be included to 

properly describe the copper and zinc d band resonances. 
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6.3 e  -dependent periodic potential for random alloys 

For a particular alloy configuration R ot  let the electronic wave functions 

obtained from the SchrOdinger equation with potential (6. 1) be 	yi  (r) and the 

corresponding energies be E,. Then instead of 	 E) as above, 

we now introduce the generalised partition function (diagonal element of the Bloch 

density matrix), C Ka.  (r, p ) , defined by 

-(3  t- ie) = 	a 	(E) (F i,(E) (6.6) 

alL L 
where 	= (kT)-1. It is easily shown (see March, Young and Sampanthar, (29) 

p 14) that in general e  (r, E) is the inverse Laplace transform with respect to 

of C(E, 	)/ e  . Furthermore C(r, q) can be obtained explicitly to all orders 

, 
in perturbation theory in terms of a one-body potential V(r) (March and Murray

(58) 
 ) 

and this expansion can,in principle, be inverted to give . 

V(r) 	1[C(E)0] 
	

(6.7) 

where g is a universal functional. Since V® is independent of e , we note that 

for all 
	

1i )F2. 

	

[ 	)F,)] 	[ C (E ,F2)1 
For a particular alloy configuration we therefore have 

vRe 	(L.) 	 t Cgoc(E ,  

(6.8) 

(6.9) 

We now suppose, in the spirit of MGSF, that for a given ? , there exists a 

periodic potential WO which yields from the SchrOdinger equation Bloch wave 

, , functions 	Of, kr) with energy ck from which we construct 

+ 	e 
C 	 exec -Ele 	k ( ) k(1) 

cl( k 
Then defining 

Cc  (s: 	e ) 	< CE,,CE 
and noting from (6.7) that 

(6.10) 

(6.11) 
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[ C v(i 	 1)] 
	

(6.12) 

it follows from (6.8) and (6.11) that 

(i(E) 	[ 	C (t- 	5>-] 	(6 . 13) 

It is interesting to compare this result with the virtual crystal potential which from 

(6.2) and (6.9) can be written in the form 

Vv (.r) 	< Ve,(0> = < 	F).1 	(6.14) 

The difference between (6.13) and (6.14) is, as might be expected, the ordering 

of the configurational averaging, and in (6.13) this introduces a (/ -dependence 

into the potential not present in (6.14). 

To recapitulate this argument, (6.13) gives a formal expression for an infinite 

set of periodic potentials, one for each value of 	. For a particular B *, the 

periodic potential Ve* (r) will generate via (6.10) and (6.11) just the one value 

of < 	(E. 
	corresponding to 	= 0* . The complete <C?r,c (2 e)> 

is therefore built up by solving an infinite number of periodic potential problems 

in an analogous way to the obtaining of N(E) from the energy-dependent potentials 

in 	6.2. Since the taking of Laplace transforms commutes with configurational 

averaging, one can in principle then obtain <e,(E,E)> and hence the 

density of states. 

6.4 Two approximate forms for the 	-dependent potentials 

The objective of the approach described in the preceding  section is to find 

periodic potentials Ve(r) in the form 

Vr) z F [ \Aft) , a- ) ) C. Cl 	(6.15) 

This can be done in two approximate cases where the functional g (see (6.7) ) is 

known. 
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a) Slowly varying alloy potential  

If the alloy potential is slowly varying we can suppose it simply has the effect 

of locally shifting the electron energy levels and hence the generalised partition 

function is approximately of the form 

(L) () = 	C,(s: )p) 
	

(6.16) 

	

where Ci(r, 	) is calculated from the periodic potential 	Vg(i- Z.) and is 
L=.1 

therefore independent of configuration. From (6.16) it follows that 

	

VRc( 	=- 	Ve 	 Lrt Cgd(E.0 
e 	C, (i)(3) (6.17) 

From (6. 13) 

V3 (1: 	 < Cfax (3 )>] 

z 2. V ROI- (it.) 	La 
cl 

To evaluate the average in (6.18) we introduce 

- \--1 L-120 
Q 	- 

(1-_- 
e,  " 	> 

(6.18) 

(6.19) 

-.> 
(6.20) vi 4 k 

ilk 
Because the summations in (6.20) are over clusters in which all sites are distinct, 

averaging simply implies the substitution 2 --> C. 	and so we find 
1.1 

h\frk (it_po  
cf L ) (6.21) 



(6.29) 

94 

Substituting in (6. 18), the final result for the 0 -dependent periodic potentials 

in the form (6.15) is 
N 	 -0/(1:Ai) 

)]LZ I 

b) Effective potential approximation  

Hilton, March and Curtis() have found it useful to express the generalised 

partition function in terms of an effective potential U(r, e  ) defined by 

(6.22) 

(6.23) 

where C.(0 is the partition function per unit volume for free electrons 	l  1 

These authors show that if any one of the conditions (i) U small, (ii) V U small, 

(iii) (3 small, is satisfied then 

(6.24) Lq-c)€ ) 	Vp,(s)C1 (:-1:,  ) 0)ttli 
where 

,q) = 
	e - 

(6.25) 

(6.24) can be inverted by convolution to give 

VP,,x0-1 

where 

u(t-i )(3)70-3-1: ,F) 

ed-L1 

r,  I 	aq, 
c2;)2  

(6.26) 

(6.27) 

Here G 	F 	is the Fourier transform of (6.25). From (6.26) and (6.23) we 

now have to  [CM-ci ,F )]--(f,._r l y)  
C,(1,  (6.28) 

and from (6. 13) 
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Now 

where 

e 	- - 
_ 

e, (6.30) 

r, p vsLi3-gi) G( - .1-1 )F) ((Et (6.31) 

and U= UA  - UB. Applying the same averaging method to (6.30) as used above, 

we finally find that 
N- 	ISA \-1 

V6(1-) 	t 	g_O — isr(ft{i + c (e 	yitc(5-_ Ocif,1 
(6.32) 

Both the results (6.22) and (6.32) have two important properties. Firstly, 

as must be the case for a theory of concentrated alloys, they are correctly 

invariant under the interchange of components A and B i.e. under the transformation 

c 	VB  OVA, V —> V. For instance, under this transormation (6.32) 

becomes 

VICE) 
OACC:,01,(3) 

VO-SO — -14c -1- 0-0e 	IStE-E,e)Q\s:?( 

By making use of the identity 
	 (6.33) 

LA — C ce-x) x 	(c 0-0j) 	(6.34) 

and also the inverse of (6.31) it is easily seen that (6.32) and (6.33) are identical. 

Secondly, both (6.22) and (6.32) reduce to the virtual crystal potential 

(6.2) in the limit of small 	and as VA-->VB (that is, small V and U). All 

(3 -dependence is then lost. This can be verified for (6.32) by observing that 

Vic (-(...) 	 V(E- gt.) + C f Ei(gL 	0-VS 
L.,  

It is interesting to note that MGSF showed quite generally that the coherent 

potential approximation (CPA) also reduces to the virtual crystal approximation 

in the limit of small differences between VA and VB. However, neither the CPA 

nor the (2 -dependent potentials discussed here agree with the virtual crystal 

approximation as C--->0 for general VA  and V . , 

(6.35) 
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6.5 Conclusions  

In this chapter an argument has been presented which justifies the use of a 

set of E-dependent or (i -dependent periodic potentials in the calculation of 

< 	)0> or <CRsai' '0) for random binary alloys. The argument 

throws new light on the virtual crystal approximation which, considered on its own 

is theoretically unsound, but in the present context can be seen as a limiting form 

of the E- or 	-dependent potentials. 

The achievement of the approach developed here is to allow the well-known 

techniques of solving the periodic potential problem to be used in the case of 

random alloys. However this gain is balanced by the need to solve a large number 

of periodic potential problems in order to obtain a complete picture of the electronic 

structure of the alloy. This is particularly true of the e  -dependent potentials, as 

in this case, if one is really interested in calculating < 	r , E.)› and the 

density of states, <Cit,z  (L. 	is needed for a wide range of values in 

order to be able to take the inverse Laplace transform satisfactorily. For this 

reason it is doubtful whether the 	-dependent periodic potentials are of much 

practical value. 

Unfortunately little progress has been made in the construction of the more 

directly useful E-dependent potentials. However it is to be hoped that except 

over certain ranges of energy, the variation with energy of the potential is small 

enough to allow useful information to be obtained from a limited number of 

calculations. 
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CHAPTER 7 

CORRELATED BOND PERCOLATION ON THE BETHE LATTICE  

7.1 Introduction to percolation theory 

The theory of percolation processes in random media is an intriguing branch 

of probability theory which has found application in a wide range of physical 

problems. For general reviews, see Frisch and Hammersley (70), 
 Shante and 

Kirkpatrick(71) 
and Essam

(72)
. 

A typical percolation problem is as follows. The sites of an infinite perfect 

lattice are occupied at random with probability p and a cluster is defined as a 

group of neighbouring occupied sites surrounded by vacancies. How does the mean 

size of clusters (irrespective of shape) vary with p and what is the percolation 

probability P(p) that a particular site is part of a cluster of infinite size? This is 

the so called site percolation problem, but alternatively one could focus attention 

on the nearest neighbour bonds of the lattice and take p as the probability that a 

given bond is present (bond percolation problem). 

These percolation problems are tantalisingly simple to formulate but as yet no 

analytic solution for a general d-dimensional lattice exists, although certain 

percolation properties of particular lattices are known exactly. However the 

general features of the solution have been elucidated. If one begins with an 

empty lattice and then occupies sites (or bonds) at random, thus steadily increasing 

the fraction p of sites occupied, the mean size of clusters clearly increases with p 

as existing clusters grow in size and coalesce. At p = 1 the mean cluster size is 

obviously infinite, but it turns out that for infinite lattices there is a well defined 

critical percolation probability  p
c at which the mean size of clusters first diverges. 

p
c 

is best defined in terms of the percolation probability P(p) as 

(7.1) PC = supl p P(?) = 03 
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This says that for p < pc 	all occupied sites are with certainty contained in 

finite clusters and hence P(p) is identically zero. Above p
c there exist 

infinite clusters (Kikuchi(73) has argued that in fact there can only be one such 

cluster) and P(p) increases from zero at p = pc 	to one at p = 1 (which it 

approaches asymptotically as P(p) n. p) as the infinite clusters extend over the 

whole lattice. 

In general the bond (b) and site (s) problems for a given lattice result in 

different percolation properties (for instance ps  > pb), although the Bethe c  

lattice (see below) is an exception. Results for the common 3-d lattices have to 

be obtained by Monte Carlo methods(74),(75) 
 or series expansions(76)  and numerical 

estimates of p
c for these lattices are given in Table 7.1 (where z is the 

co-ordination number of the lattice). 

lattice 
Ps 
c P

b  
c z 

b zpc 

diamond 0.425 0.388 4 1.55 

s.c. 0.307 0.247 6 1.48 

b.c.c. 0.243 0.178 8 1.42 

f.c.c. 0.195 0.119 12 1.43 

h.c.p. 0.204 0.124 12 1.49 

Table 7.1 	Numerical estimates of the critical percolation probability for some 
3-d lattices 

One lattice for which analytic results are available is the Bethe lattice 

(infinite Cayley tree). A Bethe lattice of co-ordination number z = Cr + 1 is 

a branching structure in which z bonds leave each site but one and only one 

path links any two sites (see figure 7.1). The Bethe lattice is infinitely 

dimensional in the sense that it cannot be embedded in any finite dimensional 

space while maintaining the same topology. However it is the simplicity of 
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Figure 7.1 	Part of a Bethe lattice of co-ordination number 3. 

its topology that makes it susceptible to exact analysis (Fisher and Essam(77)). It 

can be shown rigorously that for a Bethe lattice of co-ordination number G-  + 1, 

P nt7  

	

Pc 	= = (7.2) 

intuitively, (7.2) is simply saying (in the bond case) that an infinite cluster can be 

built up provided an occupied bond has on average at least one of the Cr independent 

bonds leaving a particular end also occupied. Figure 7.2 shows the percolation 

probability P(p), the probability of a site belonging to a finite cluster F(p) and the 

mean size of (finite) clusters S(p), for a Bethe lattice with z = 4, although curves 

for other lattices are similar in form. 

One reason for studying the percolation problem is because of the interesting 

critical behaviour around pc. Critical exponents have been introduced for the 

percolation probability P(p) and mean cluster size S(p), of the form 

Pip) 	 Pc) 
k 

2(e) 	("c 	( Pc -  f')- "1-1)  
(7.3) 

where k = I, i = 0 for the Bethe lattice and for 3-d lattices 0.3 	k < 0.4 

(Kirkpatrick(75)). Recently, various authors have begun to apply modern ideas 

about critical phenomena to the percolation problem, for instance scaling 
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FIGURE 7.2 	PERCOLATION PROPERTIES OF A BETHE LATTICE 

OF CO-ORDINATION NUMBER 4 

(a) PERCOLATION PROBABILITY, P(p) 

(b) PROBABILITY OF A SITE BELONG1isiG TO A FINITE CLUSTER, F(p) 

(c) MEAN SIZE OF FINITE CLUSTERS, S(p) 

Diagram taken from reference (71). 
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hypotheses(78) 
and the renormalisation group(79) 

As a physical example of the site percolation problem, consider an alloy 

in which the concentration of magnetic impurities (assumed distributed at random) 

is p (Essam(72)
, p149). If the magnetic interaction is short range, isolated clusters 

of impurities spins will behave independently and so there can be no ferromagnetic 

ordering at any temperature while there are only finite sized clusters i.e. for 

p < ps . ps 
 is thus a lower bound for the occurence of spontaneous magnetisation. c 	c 

If a nearest.neighbour Ising interaction is assumed, the spontaneous magnetisation 

at zero temperature is proportional to Ps(p). 

A resistor on a lattice in which a fraction (1-p) of the resistors (bonds) is 

removed at random is an illustration of the bond percolation problem. Clearly 

if p < pb 
there can be no conducting paths extending right through the network c 

and the ensemble averaged conductivity <C7(p).> of such a system is zero. 

is non zero but as first pointed out by Last and Thouless 

and confirmed by Kirkpatrick(81) and Stinchcombe(82), it increases more slowly 

than the percolation probability with a power law behaviour in the critical 

region of the form 

<6(P)> of  ( e — pc`r)-t  (7.4) 

with t ", 1.6 for 3-d lattices and t = 2 for the Bethe lattice. The reason for 

this is that although there is an infinite conducting path through the network 

for p > Pb,
c  the resistance of such a path remains very high until a substantial 

number of parallel conducting paths exist. For recent work on resistor networks 

see (83), (84). The derivation of the name percolation theory becomes apparent 

if one identifies the bonds in the bond problem with open or blocked water pipes 

or channels in a porous rock. Only if p >pb can water percolate through such ' c 

b  
For p >pc, _, 0-*(p)> (80) 

a system. 
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The percolation problem can be generalised in a number of interesting ways. 

Odagaki et 
al(85) 

and Coniglio
(86) 

have recently considered the temperature 

dependent percolation problem, that is when sites of a lattice are occupied not 

at random, but in accordance with the statistical mechanical distributions 

characteristic of lattice gas or !sing systems. Ziman
(87) constructed a semi classical 

bond percolation model of electronic conduction in disordered systems by assuming 

that the ability of an electron to percolate from one atomic cell to another depended 

on the height of the intercell potential barriers, which in a disordered system would 

be random quantities. Ziman suggested that the empirical relation 

z ntz 	 (7.5) rc  

(d is the lattice dimension and z its co-ordination number) which holds quite well 

for 2 and 3 dimensional perfect lattices (see table 7. 1) could be extended to 

irregular structures where only a mean co-ordination is defined. Scher and 

Zallen
(88) 

went further and extended percolation ideas to continuous media by 

considering the motion of a classical particle of energy E in a random continuous 

potential. They estimated that the volume fraction of classically accessible 

space (i.e. with potential less than E) had to exceed a critical fraction v "0.15 

(3 dimensions) before the particle could percolate throughout the system. This 

critical volume fraction is also relevant to the problem of when a random 

inhomogeneous mixture of conducting and insulating material will actually conduct 

electricity(89). The sharp metal-insulator transition observed at low temperatures 

by Cusack et al(90) in metal-rare gas mixtures has been interpreted on this basis 

but so far there is no conclusive evidence that these systems are in fact 

inhomogeneous. An alternative explanation in terms of the Mott transition has 

been proposed by Berggren and Lindell(91). Clearly the validity of the classical 

percolation theory of conduction is in doubt when the conducting regions are small 
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compared to the electronic mean free path. In this case quantum mechanical 

tunnelling through classically forbidden regions must be considered. Indeed 

electronic conduction in systems in which the disorder is on an atomic scale 

as in alloys, amorphous semiconductors, liquids and supercritical fluid metals 

is perhaps more usefully discussed in terms of a division of the electronic states 

in a band into localised and non-localised states separated by a mobility 

edge(92),(93),  than in percolation terms. 

A final example of the application of percolation theory is to the problem 

of thermally-activated hopping conduction in doped semiconductors. Miller and 

Abrahams(94) 
and Ambegaokar et al 

(95)
(see also Suprato and Butcher

(96)
) have 

shown that provided the localised impurity states are far enough apart, phonon 

assisted transitions between two states at sites R., R. and with energies E,, E,, 
--1 

can be described by an impedance Z.. where 

Z 	c< €. 	
-2cdRZ-R31 	

(7.6) 

The problem is thus reduced to finding the conductivity of a random network 

with impedances Z.. and several methods have been suggested for doing this 

( (95), (97) ). The results appear to confirm Mott's original suggestion(98)  

that the conductivity in these systems at low temperatures should obey the 

relation In 0-  cKT z. 

For the purpose of the work to be described below the interest in the model 

just outlined lies in the fact that Kirkpatrick(81)  abstracted from it the so called 

correlated bond percolation problem, which as its name suggests, introduces a 

degree of correlation between bonds that is not present in the random bond 

percolation model. 
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7.2 The correlated bond percolation problem  

The problem to be discussed in the remainder of this chapter is as follows. Each 

site i of a lattice is associated with a random variable E. which is uniformly I 

distributed on [-1, 1] . A bond joins neighbouring sites i and j provided 

.1,i 7:" 	` 1E1 t 1E-:,1 t iEl.- - ..11) ‘. E 	(7.7) 

where 0 ...< E .....c 1. What is the percolation probability P(E) that a given site is 

part of an infinite chain of sites linked by bonds, and is there a well defined critical 

value of E, Ec, such that percolation can occur only for E > E
c? 

To help understand the problem, figure 7.3 shows the values of E., E. which 

imply a bond between neighbouring sites i and j. 

+1 CI 

  

    

Figure 7.3 Neighbouring sites i and j have a bond joining them provided (E., E.) is 

in the shaded region. Left, E <-1-; right E > 2. 

From figure (7.3) it is clear that only sites with 	E.1 < min(2E, 1) can 

have bonds from them. Also, the probability p(E) that two neighbouring sites are 

joined by a bond irrespective of any other connections is equal to the shaded area 

divided by the total area of the square of allowed values of E., E., that is 

e(E) 	3E' 	0‘E 
E (2-E) 	E< 1 	 (7.8) 

If there were no correlations between bonds one would simply have a random bond 

percolation problem with Ec given by 

(7.9) 
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where pb 
c 

is the critical percolation probability for the bond problem on the 

lattice concerned. 

However correlations of a form which tend to cluster bonds together do 

exist. If a site i has a bond entering  it, then jEj I 4 min (2E, 1). Therefore 

the conditional probability 	(E), that given i has one bond entering  it, it 

also has a bond leaving  it to a second neighbouring  site, is given by 

0E 

(7.10) 

Thus if E 	a site with one bond entering  it is actually more likely to have 

another bond leaving  it than if the occupation of bonds is assumed independent. 

Clustering  of bonds and the likelihood of percolation is therefore enhanced in 

the correlated bond problem. 

In order to obtain analytic results we now specialise to the case of correlated 

bond percolation on the Bethe lattice of co-ordination number CT+ 1. As 
• 

mentioned in 	7.1, the condition for percolation to occur on a Bethe lattice 

is that a site which has a bond entering  it must have open on average at least 

one of the Cr other bonds leaving  it. When correlations are important, one must 

be careful to use a conditional probability here, of the form (7.10). Thus we 

arrive at the following  estimate for the percolation threshold, 

PI(Ec) 

EL  (13-1) 	
(7.11) 

It will be seen below that even when correlations are exactly taken into account, 

E
c 

turns out to be only slightly less than this estimate. Note that a Bethe lattice 

with 0-  = 1 corresponds to a linear chain. As there is no possibility of bypassing  

an absent bond, percolation cannot occur on a linear chain unless E = 1. 
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7.3 Percolation probability for the correlated bond model on the Bethe lattice 

Using a method analogous to that devised by Essam
(72) 

to discuss random 

bond percolation, we now show how to obtain the percolation probability P(E) 

for the correlated bond model on the Bethe lattice. 

Suppose the central site has associated parameter E0. Since the fr+ 1 

branches leaving this site are independent of each other if E0 
 is fixed, we may 

write 

P(E) c
fI(EJ)dEa 

 
(7.12) 

Here, QE(EO) is the probability that no infinite chain leaves a site with parameter E 0 

along a particular branch. The 2  arises from the uniform probability distribution of 

Eo  on [-1, 

Let pE(Ei, E.) = 1 - qE(Ei, Ei) be the probability that a bond connects 

neighbouring sites with parameters E., E.. From (7.7), 

(E — E ;.) 	 (7. 13) 

It now follows that QE(EO) satisfies the following non-linear integral 

equation, 

QE (gc) 

12. siCE;) 	c(E. 	k(E.,E)at;.(E;.)c(E,, 
-1 	 s 

(7.14) 

In (7.14) the first term is the probability that the bond in a given direction 

leaving E0 
is absent. The second term is the probability that this bond is 

present but that the cr remaining branches leaving E. are all dead ends. With 

the help of figure 7.3 and noting that QE(E0) is even in E0, (7.14) may be written 

- 9-E -t- 	QE(EiNtL, - 2. 	QE (Ei.)clEt 
2E-Fu  

	

QE(E:e) 	 0 < Ea 2E 

	

(E ,d-) 	2E < 
(7.15a) 



of C(, since 
	cilE(cc) 	- 

TE (a) = 2 OCE 	. 

(1— DoE(t-311E Q )  
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‘‘.‘ Q`,.(E,)aE 	0 --.. Ec  lE —I 

Q ( E .) = ) 	° 	 1 

	

1 	1  
( >.1-) 	

- 2E i EC  
2 	F  Z(E)cik. — fi Q(.-t)ck.E_ 	(7 . 15b) 

	

o 	
"-E; 	EQ>2E-I 

From the discussion above (c.f. equation (7.11) ) we expect Ec < 

(for Cr > 1) and so we now focus attention on (7.15a). It is easily seen that 

Q
E
(E

0
) = 1 is always a solution of (7. 15a). However, we expect that there exists 

an E
c 

such that for E > E
c 

there is another solution with QE(E0) < 1 (provided 

1E0  1 
	2E) indicating that percolation can take place with a non-zero probability. 

E
c is thus a bifurcation point of the integral equation(99). 

Let 
	

`XECI-x) 	I 	QE(E.jaE-) , then for o(< 1 (7.15a) becomes 

(ck) 

2E 1  [ 	-1E( ))r] 	- E 1  El - (1 -eXls())1 At 
1-ft 

(7. 16) 

(7. 16) is of the form of an eigenvalue equation with eigenvalue E and has the 

properties 

= 0 	is a solution of (7. 16) ) 

(ii) 	Any non-zero solution of (7.16) is a monotonic decreasing  function 

From (ii) and (iii) it follows that Ec 
is a well defined quantity in the sense 

that considered as a function of E for fixed a., , the second solution required to 

(7.16) is such that SCE (I:4) —> 0 as E --4E+  for all of . In other words, the 

threshold E does not vary with 0( . We therefore make the ansatz that for small 
c 

 

E - E
c
, 

E (00 
	

z(34) 	• • • ) 
	

(7.17) 

where S=E- E
c
and 

(1.11 , 	aE(ck)  0 (7.18) 
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The exponent )) will later be shown to be 1. Substituting (7.17) in (7.16) 

and using (7.18) gives a linear integral equation for ty:_t) ) 

Ec 
 oi

(0 At 
1— ct. 

This equation is best solved by reduction to a second order differential equation. 

1 

C z  lECC- 1.0  (i(-1)Ctb 	z 	(°) 

(7. 19) can be written (with X =Ec  ) 

C 	X r k3(1-4-) 	 (7.21) 

2Ec o- ym at (7.19) 

Putting 

(7.20) 

Differentiating with respect to et gives 

G)W 	— X (1--c0 
Q\C) 

X [ 	 • a) at 
Differentiating again gives 

82  iO(A) 	= — X 2  kicc0 

The solution of (7.23) is clearly of the form 

GO 	P\ 36.‘, ‘k< 	cos Xx 

(7.22) 

(7.23) 

(7.24) 

Substituting back in (7.19) we find 

(6k) 	C 	 (7.25) 

where C is a non-zero constant as yet undetermined and X must satisfy the 

condition 	
( -- s .<) 	1 

CoS X 
	2 

The relevant solution of (7.26) gives for the percolation threshold 

Ec 
	.k(1.-1(-111/0- 	EMS/Cr 

(7.26) 

(7.27) 

This exact result is to be compared with the value E 	sr   obtained by 

simple arguments in 	7.2 (equation (7.11) ). The small difference arises 
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when full account is taken of the variation with E. of the conditional probability 

that further bonds leave a site i given that a bond enters i. 

To obtain the exponent y and the constant C it is necessary to make use 

of the non-linearity of (7. 16). This may be done by solving for the next order 

term in the expansion (7.17). Substituting (7. 17) in (7.16) we find as 3---> 

yk,j(c() t r1.2.(f.) 
{2E 0-( ) (0 i. Sv"z) 6-(cr--1) 	+ 

2 
where Fa  is the linear functional given by 

Fc  V..c)(.01 — 	ctt 
1-0( 

Putting 0-E =X+ 0-23  , the terms in SeY in (7.28) give back (7.19) for 

as —>Q+, while the terms in V4.1  give for Zex) 

Z(0!.) = F [2X2({) 	 X(T-i) W-4 

cfz(c4.) 
c(.2  

where again the last term only occurs if V=1 . Now if this term is excluded, 

a solution to (7.31) is easily found to be 

z() 	)k) 	-00 	ood)( 1—c0 	(7.32) 

However if (7.32) is now substituted into (7.30) (with the y2( 	) term missing) no 

non-zero solution of this form can be found to the integral equation. This is 

essentially because the lack of 2. terms in (7.32) and the integral equation it 

should satisfy means that the constant C = y(0) (see (7.25) ) cancels out of the 

integral equation and hence is not available as an additional degree of freedom 

to help (7.32) satisfy the eq uation. We therefore conclude that V = 1. 

(7.28) 

(7.29) 

1,3C4) 

(7.30) 

Note however that in (7.30) the term in y2(c( ) is only included if y = 1 

(i.e. if 2 I) 	). Following a similar procedure to that used above, (7.30) may 

be reduced to a second order differential equation, 

— 	9_6-X04) ± XVI) - k)[IP-c4) --1-4)-Lik.3 (7.31) 
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It then follows, after considerable algebra, that the solution to (7.30) is 

ti3k) 	(cI) 630-4 4  TS.5.  ( --1  

)() 	 1)ck)) 

z (00 
(7.33) 

where C is now fixed by the requirement that 

IS a-
il- Ca= 

(7.34) 

D is a constant undetermined to this order. 

Having found "V and C, we are now in a position to obtain the critical 

behaviour of the percolation probability P(E) (defined by (7. 12) ), 

P(E) z I 

ru 	Ec (0-To 	ack t O (d 2) 

(Cr-V1)  (E— Ec) + 0(E—  Ec)2  
(0--1) 

(7.35) 

where (7.20) and (7.34) have been used. The percolation probability thus behaves 

linearly in the critical region. 

In order to obtain P(E) for general E, one must solve the non-linear integral 

equation (7. 15) numerically. This has been done for various IT using a straightforward 

iterative procedure, the integrations being computed using the trapezium rule with 40 

subdivisions. Convergence was found to be very fast except near the critical region. 

However extrapolation of the results from just above Ec 
gave very good agreement with 

the theoretical values of C and E. OCEW and P(E) for CT = 4 are shown in figure 7.4 

and figure 7.5 respectively. Note that the calculations have only been carried out 

for E 	0.5. 

7.4 Conclusion 

The exact solution to the correlated bond percolation problem on the Bethe lattice 

has been presented. This has involved the analysis of an interesting non-linear 

integral equation for the percolation probability (see (7.15) ). The bifurcation point 
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of this equation (i.e. the eigenvalue at which two different solutions of the equation 

coincide) corresponds to the percolation threshold, E
c
, of the problem. Only for 

E > E
c is the percolation probability, P(E), non zero. Ec has been found to depend 

on the co-ordination number CT + 1 of the Bethe lattice according to 

Ec  = 	sart-' (4) 
cr 

This exact result is only slightly different from the estimate (7.11) obtained by 

simple arguments. These arguments may therefore be usefully extended to other 

lattices for which analytic results are not available. 

It has also been shown that P(E) behaves linearly in the critical region (see 

(7.35) ). This is the same as found for random bond percolation()  and temperature 

dependent percolation(85)  on the Bethe lattice, thus lending further support to the 

hypothesis that critical exponents for a particular dimensionality of lattice (in this 

case, infinite) are independent of the details of the percolation problem. 

An interesting extension to the work presented here would be to use the 

methods of Heinrichs and Kumar(100) to calculate the conductivity of a correlated 

bond resistor network. 



114 

APPENDIX A 

EVALUATION OF THE FREE-PARTICLE FOUR-BODY RESPONSE FUNCTION  
Ni 

The free-particle response function ' 
o

M. appears in both the approximations 

derived for the interacting 1\11. 4. in chapter 3. It is therefore of interest to try 

and evaluate 1\1\?. This function is defined in r-space by (c.f. (3.1) ) 

NCLj- (ft JC:2- .3 5 S)!f a63a 6i. <0 riee 0'24 e(1.3- (3) ()e(c-. 010010c 
-0 

tv 0 
where 16> is the non-interacting ground state. In this appendix ) Ait. is 

(A1) 

evaluated by two different methods although no closed analytic expression is 

obtained for its Fourier transform form, C\Att..( , 	k 
Al Derivation using Wick's theorem  

r,o 
We consider the Green's function 	defined by 

ri; , 1 x2 	xy) = (--'01- 01-reeveMee(43)eA)(4-Wc 
where 	X i = (r1 t.,) . In terms of the electron field operators 	(.111-(X.I and 

I 

Yc.(,X1) 	eS,(;) can be written in the form 

(A2) 

(A3) 

0- being a spin index. Thus (A2) becomes 

r: (Y. 	, 	xLe) 	 (A4) 

y‘ (xL)y, (4)q,;0(3)0(-03)(1,TNY-uic)lkiV.)44-'iti\> (11 c2ci krit. 	,41-. 	3 	3 	 2 
(19) ric Using Wick's theorem for time-ordered products, 	iLi- can be decomposed to give 

Ft; (,), 	)41 y,t) 7, 2.2.31 Co 	Gc(x2-Y-s) VO(3-)64.)(°(y4-1) 

-I- (x.1-3) C°M-x,t)a-aut.:‘,0 co(x2_xt) 

.F c.c(shi_xl)cg(x-rxo c(.x2.4 c°ok_xl 
(A5) 

In (A5) one of the factors of 2 arises from a spin sum, the other from the fact that 

each of the three terms appears twice in the Wick's theorem decomposition. 
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We now note that 
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06(1 -,0 is the free-particle Green's function for one spin and is given by 

i.C-(Y).- .>2) 	= <01T 	OCi) i(X2.) o> 
	

(A6) 

The three terms in (A5) clearly correspond to the Feynman diagrams 

hAl-' Ck )Q-k. ;yet 1-9/) 
__ ()di,, QZ 	i,k.(r,-r2.) LG. (r2-r3)  i qr. (ri  _ r,) _Lw(6,Az) 

C2t) 
f 
e 	e. 	e, - 	e 1  

(A7)  

i.kaS 
where the e, 	maintains the correct time ordering as in (Al). The expression 

in the curly brackets was denoted by TE: in chapter 3 (c.f. (3.20) ). 

Substituting (A5) in (A7) we find 

14 k a-k 	)-$) 
ti 	at%) eall  auo 

17Q;) 

(A8)  

C-ctr:k )4?i-w)C°(?-G )0)(°(_ g) °(I)(49 

+ C;(1)-15 ,u+43 )a°(r-G_ )0)C0(t)-ck-t)t4.)el r ,i,.7,) 

± co(rmitocgcm,-L;) t.a,1-Locq(e-Lo-9, )o)(e.....-k lko 

where 

P,w) 00;f: - II)) 	.G(1f 	1cF)  
- 132/2tA - 	(-0  - P2/2111 + LE (A9)  

Three kinds of frequency inegral in (A8). 

(a) The first two terms have a factor 

x 
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Cc( -k 	cito 
a7) (A10) 

(b) The first two terms also have a factor of the form 

G3( t.,) cq(s,),,)(10(f),,w) 

p - e(k,-),)  + G(ti-kp)lie(cF-12.)  +Q02-6)1 	q0.3 _ 
o_T3 Lo-p12t2m-iE 0-11:1/2i„iLE 

	

	id-wzoki w-ropi-LE 14-p:),2,,+LE] 

(All) 

In (A11), only the six product terms that have poles both sides of the real axis 

contribute to the integration. The other two terms give zero as the contour can 

be closed in the half-plane in which there are no poles. After some algebra it 

follows that 

(P12-1/2)0)1 	(12.-P12)('?'-P;) 	(r32  P21)(0-  PO 

(c) The last term in (All) has two factors of the form 

o 	
Co(!,, 

2 [  e(kF -r,) 	.00;F-F2 )1 

Collecting together the results we find 

N,:(1<,e-k ,47a) -$) 

0(„liqi)13(f ,1--q, 	) 
+ -52( 	 Pf ct--cc) 

(Al2) 

(A13)  

(A14)  

The integrals in (A14) are to be interpreted as principal parts where necessary. 

Note that (A14) is unchanged under the transformations kG - k and q 	G - q. 
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If G = 0, this implies symmetry between ri  and r2  and between r3  and r4  in the 

r-space form of i\rtt_ 

For liquid metal calculations the G ---> 0 limit of (A14) is required. This 

involves the expression 13 	f' fq-9,) 	which can be readily defined if it 

is noticed from (Al2) that 

0 ( IcF P, ) 

•2.)(r,2-11:) 
90(F- P,) - 13(4F (2)  

Hence 	 f) 

33a, ez js) 	taf-e3) - 0(4-0  +.1(P1-6)  
-> P 	if. 	 f);=-) 	

,)1, 	
1J (A16) 

Unfortunately, because of the complex form of (A14) it has not been possible 
NIO 	Ai 	\ 

to evaluate fully Ilrit VA-N;c1,-4Z )-9,, ) or the G =0 limit (although some other 
f"o 

limits are derived in Appendix B). However the r-space form of 14  can be 

obtained by making  use of the Fourier transforms 

1< . 	(kFIC:il  1- )<F11_2 )) 
gIT3 	11-11 1 1.11 

J2. 

0.„ ) 	e 
(2.-)3 (21f)1  

(A17) 

2. 
kF 	( kFLS kr 	r.:30 
2114- 	1 r1 11:2) 

:L153.1'3 	c4,  cip iTTI(Pofz,f33)e 	e 	e - G.) 	_2 3  
(.9..-0(.2xY IT) 

kF.2. 	1F k 	_ LP' 
21r2 	r 1 	 4:17)3 

(A18)  

(A19)  

In (A18), (A19) and (A20), ji(kF 	is the spherical Bessel function given by 

(kF r) = SiA.kF r 	kFr cokr 
(j40' 

(A20a) 

(A15) 
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( 	r) 
	

Sin:X. r C1X. 	 (A20b) 

The integral representation in (A20b) is useful in demonstrating (A18) - (A20). 

Using these Four Ter transforms, i(4.(ri 	; 	) is obtained from (A14) as 

i\l(Li (Ls% 
	r3 )1-4.) 

—1cFir 	10(F tr■-izi) 3, uori-cii-i-kdr3-rykkoroli) 
214 	ir,--i-21 	1 r,-('31 tr3- rtt I I cti-- (11 

. i 1,0(p)r,431AFIrz-ri\  ) A1G-ry.)-0(fi-r2I) -1- 2 	_ ... 	 (A21) 
1 ri  - r3  ) 1 r3- r2  1 	r,---clt 1 ) II-- rx I 

A2 Second derivation using the Dirac density matrix  

The Dirac density matrix '1r, ,r, ) is defined for a general electron system 

by 
q/krt(t_;) Wcr (A22) 

and it immediately follows from (A3) 

(A21) 

For a system of N non-interacting spin 2  fermions it is easily shown that 

(E, > r, 	z 	2 	x- 	• 
tiji, (Si) 	(Ez) 

where 	are the normalised one particle wave functions. For a homogeneous 

system of free electrons, the yt-.)s are plane waves and in this case 

(s )rz) 	4-2 	kF 1-1- rz 
-fx I 

It follows from (A22) that '6°  has the property of idempotency, that is 

1)N6°  (ri ,r9.))513 (ri ,r1) Ar3 	2 T(r. ,r3) 
	

(A24) 

As discussed by March, Young and Sampanthar
(29) in the case of free particles, 

(A22)  

(A23)  

the Dirac density matrix completely determines all higher order correlation functions. 
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nc 
( r r 

	

In particular, the cluster part of the two particle correlation function, rve 	,r2 

for free particles is given by 

Pe (rt  r2) 	[TV,  )E2' 	(A25) 

March and Murray(58) 
have given a perturbation expansion for '6 (E.-, )E2) 

in the presence of an external potential 

change in "67 ,r, )ci) from its homogeneous gas value (A23) is given by 

 - k9F- 	11 ( kF )5-E31-i-ko!)-Li ) ut(r3)Ar3 
QT13 	1 ri- (.3 ) \ r3- (-21 

34" 
F-2  I 4 1 va, ri 43. T-F,,- 4-,i +-F 1 4--rzy (A26) 

/4- 
+ k 	‘ (Ir  	)  	ti r 	1 r  

I is. -1'31 1 r3-r4.1 1 (-it- rzi 
x U(r3) tt( !li) a r3 ctiY 

The corresponding change in Pece ((I OZ.) can be obtained from (A25) as 

Pc 
ee (El )L-2) 

(A27) 

If (A26) is now substituted in (A27), the resulting expansion clearly corresponds 

to equation (2.28) of chapter 2, provided 1)(3 and Nti. in that equation are 

replaced by their free particle values. By comparing terms in these expansions 

we find 

mo f 	 )1 (1(plc,-c2.1)3,(kF if-cr3itkpls-r20 
27rs 	r, 	I - 	 (A28) 

and 	ri  52; /3,14) is exactly as given in (A21). 

Final ly,we deduce from (A21) and (A26) that the free-particle linear and 

quadratic density response functions 1\A° and  Ni
0 

 2  are given in r-space by 
2_ N4' ( r,_ r2. ) 	- 	), (2kF ) i] -Ez ) 

A - 
 

(A29) 

WE). To second order in U(r), the 

);`'(r„ fsz ) 
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X 2 -1 jr- f 3 ) 31( kFV; -r2) 	611-3 	(A30) 
27-'r 	r,_1-2.) I r2-r31 



(B5)  

r2, 	) 	) a is'  (B6)  
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APPENDIX B  

SOME EXACT LONG WAVELENGTH LIMITS OF THE RESPONSE FUNCTIONS 

IX2 	Mt°1- 
Firstly it is shown that 

Urn 	(k e--1C) 17.% )""ctr) 0 
(B1) 

where H4° is the free particle response function defined in r-space by (c.f. (3.4) ) 

Pee(E, )E1) 
	

H3  0; Ez ;_r3) 

+4. )-1 G- (5 I.2. i 5 , iii) c). (.r.-?) CQ_(.44-) ch ky 

+ 0 (e::) 
	

(B2) 

Secondly, the result (81) is used to give some exact long wavelength limits of 

the other free particle response functions. 

BI Proof of (B1) 
ob,C 

According  to (A25), ree Cry 0.2-) for free particles is given in terms of the 

Dirac density matrix -)r(rt fi) by 

)5.) 2 (B3) 

Using  the idempotency of -'6°  (as expressed in (A24) ) and the fact that its 

diagonal element is the electron density, it follows that for free particles 

Pe (r, ) 5) Jr) 	Ce,(Ea.) 	 (B4) 
Comparing (B4) and (B2) we find 

The Fourier transform of (B6) is the same as (B1). 

B2 Long wavelength limits of 1\ ry  
1\2  N3 ► Alt- 

If both sides of (B4) are expanded to second-order in the external potential 
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the following relationships between response functions are obtained 

) 

.) 	) 1-4" ) a rl 

In Fourier space, these become 

4A0  Nk; 	, e-k • -_a-) 	-1)c(q) 

-(Y;_ (G- I cfrq )--co 

O.; C ) 3 

A /0 
9_ 	r2 ,c-.3 

(B7) 

(68) 

(B7a) 

(B8a) 

(B8a) can in fact be verified from the expression for 	given by (A14). 

We are now in a position to derive some explicit long wavelength results for 

1)(40  Pr 	
mc 

.2 1 	3 and "iktt. . 

(a) From expression (A30) for 1\4°2  

(o  )(" 	
k 11 (kFl s 	Icf 1 	t 	f c, ta-c z  

114 	ir, V2.1 ir,Tr2) 	—
, 

_3 	
1,(2k,=11:1 I )  (IL 

I 111 

I  trt  cp-ikF I 	 (89) 
729/ v-7-2E-1 

In (69), 3,,(x) = Sitio: 	and use has been made of the result that for arbitrary C, 
x 

C t ICF)r-r?-))ac 	4.Li 31 (kv1c-24-1 \ i-c) 	(B10) 
tri-ri 	-r2,1 	 kF 

(b) (89) and (B8a) immediately imply that 

NAL: (k •-k ct, -ci,) - 	' 	- 
two 

(c) From expression (A28) for /A.k , 

(1( 1 -kio) j,(kF)i-i +6. fifF)i, I c1 2irs 	
) 
i r2.1 

ic(tcar.i)) t i  

No 
7\2. 

e 	9,—DcF 
12  (A I  clit'21(F•  

cl 
 

 

(B11) 

 

iEst 



= G21141e"+''''. 1] _az z 	11-72F 	a. -2.kF 

1i2 

and 
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T2 
Rap-0 (I k 
	

(812) 

where (B10) has again been used. 

(d) From expression (A29) for 
icF3. 

fr)  
'LC 

)1 (akFiLi)  J 

rz 

Note that (813) agrees with equation (4.6) of chapter 4. 

(e) Using expression (A21) for 1;14. 

NAL; k ) k .)°)°) 

3,(kEtY:z-1).).(kFlItti)-fkiz-tkpi)tzi)  
1%ttzi_i 

3)(kFlttq-it 
1r 2 	 

s+1 I 	ts+1-i-z1 

kF3 	\1 ((0-1)  

- 	et  iqx) dx 
Z 	d(-2_,C 

(B15) 

 

1 (24- k) 
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In deriving (B15) use has been made of (B10) and also the result 

,c) J.(kF)Iiit)1 i-kF lAt) tt 	, , 	cocivx 
(B16) 

(f) In chapter 3 it was shown that 

N4( s.1.--k;0).)(1(oill-cf)} (B17) 

Using (B9), (312) and (B14) the second term of the RHS of (B17) is 

NIC;OsA iG)(1\1(0)1,--Lk) 	eC4-10 (i 	)1,41(1,4*9kF I 
IX° (0) 	 119, 	

2IcF 	I, --91(F 

From (B15) and (B18) it follows that 

(B18) 

k ir 0-(1 _11 0,0) - (. cF.-k-) I( 
.2721c;,- 

which clearly goes to zero as k --> 0 as required by (B1). 

Finally, Brovman and Kagan(27a), 
and Pethick(30) have shown that 

(319) 

is is an exact relation for the interacting jellium density response functions 1\11( and 

i\42. Since Gn\lk) 0 , this shows that 	 l‘2( 	)0) is zero. This 
It—>0 

fact has been used in 	2.9 and 	3.2. (B19) is in fact equally applicable to 

free particles, for which it takes the form (using (B14) ) 

NiL(0, ,- c-) 	
!tF of 

Imo 

Use of (B13) in (B20) gives an alternative proof of (B10). Brovman and Kagan 

have given an explicit form for the complete 	N/C2 (k,a-k ,- 

(B20) 

(27b) 
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APPENDIX C 

SUMMARY OF DENSITY FUNCTIONAL THEORY 

Density functional theory (DFT) is a formally exact theory of inhomogeneous 

many-electron systems which however is expressed in a form that lends itself to a 

number of useful approximations. It dates from two classic papers by Hohenberg 

and Kohn(HK, 55) and Kohn and Sham 	56)  where it was shown that a secure 

theoretical foundation could be given to the early attempts of Thomas(102)and 

Fermi(103) to characterise the ground state properties of inhomogeneous electron 

systems by their electron density. For a general review of DFT see March(57) 

DFT is based on the following two part theorem proved by HK. 

(1) The ground state energy E of an interacting N-electron system in the presence 

of an external potential V(r) may be written in the form 

E = F[iJ 	N(1-) ckr 	EN 
	

(Cl) 

where F En] is a universal functional of the density n (r) (i.e. independent of 

N and V(E) ). 

(2) Subject to the conservation of particle number, i.e. 

n.CE) 	N 
	

(C2) 

the ground state energy is stationary (a minimum) with respect to first order changes 

in the density, that is in functional derivative notation, 

0 (C3) 

This theorem is straightforwardly proved using the variational principle for 

the ground state wave function (assumed non-degenerate) and involves the use of 

the lemmas: 

(3) 	The external potential V(r) is to within a constant a unique functional of the 

exact ground state electron density n(r). 
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(4) The ground state wave function is a unique functional of the density n(r). 

Indeed (4) is the strongest proposition within the theory and has the corollary: 

(5) All ground state properties of an inhomogeneous electron system can be expressed 

as unique functionals of the density n(r). 

(1) is a special case of (5) which has also been used in chapter 3 as justification 

for the expansion ( 3.4). 

KS made the important step of writing the energy functional in (1) in the form 

E[fil 	fv(r)ft(r) 	+ [A] + 2 dpki  n(r)nCii) 	t  ExeN (C4) 
(1-0 

where TsCrt] is the total kinetic energy of a gas of non-interacting  electrons of 

density n(r) (see (59) 
 for a discussion of this functional), E xcEt]  is the total 

exchange and correlation energy (including a kinetic energy contribution) and the 

third term is the classical coulomb energy. Using (2) we find the Euler equation 

c\ SeEn] 
(C5) 

where )k is a Lagrange multiplier which is easily identified as the chemical 

potential. (C5) gives 

E ral 	Ts [11]  
S a (E) 	0-CO 

4 v1-11<(r) 
(C6) 

where VHK 
W is the sum of the usual Hartree potential VH— (r) and the exchange 

and correlation potential V (r), i.e. 
xc- 

V14K  (r) 	V( r) 	r aCr.  Mil 	Vxc 	(C7) 
J 	1  1 

Vxc 
Pxc Crl] 	 (C8) 

S'a(r) 

KS showed that VHK (r) could be considered as a one body potential for the 

many electron system in the sense that the electron density n(r) is generated from it 



127 

by summing the squares of the N lowest one particle wave functions obtained from 

the SchrOdinger equation 

4&0) = 	 (C9) 

This result is summarised in the proposition. 

(6) Given any density n(r) such that iGit.  ft(r) 	= an integer, there exists a 

one body potential which will generate via the SchrOdinger equation the same 

density. 

Note that the functions W and energies 	in (C9) strictly have no other 
IL 

physical significance than through the relations 

lv 
A.(1) 	Lif-!(L) ( C10) 

f' fq,C) INUI)ai-d14 	SV;„ (S.) nOiar  r- fit 	 1) 

Excriq 
However some authors 

(60) 
 have irresistibly (though not without some justification(101)  

used approximations to VHK 
(r) as a means of introducing exchange and correlation 

into band structure calculations, the very successful ' e  31  exchange potential of 

Slater
(61) 

being an example of this. 

In order to make use of the exact equations (C7) to (C10) it is necessary to 

solve them self-consistently given some approximation to E xcN and an initial 

n(r). A frequently used form for E xc[11.1 is the so called local approximation given 

by 

Exc Cfq 
	

E):c [rt(r)] 
(C12) 

where 
c

'AC L • [J is the exchange and correlation energy density of an interacting 

homogeneous electron gas. This approximation is expected to be useful when the 

electron density is slowly varying. Several authors ( (56), (59), (62) ) have 

discussed gradient corrections to (C12), the most general form of EAc[a] that has 
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been proposed(56) (63) 
being 

EXC LI] II' dr { P-r-lj 	2 side gXC I 	rit(s--f 
(C13) 

The second term in (C13) partially sums the gradient expansion of the exchange 

and correlation energy and the kernel Bxc  can be related in Fourier transform 

to the local field factor G(q) in the expression for the dielectric constant of the 

homogeneous electron gas (see equation (4.7 ) ). In fact 

( 	kF) 	27  C(61,) 
	

(C14) 

and therefore requires a theory of exchange and correlation transcending the RPA 

for its calculation. 

Since its inception DFT has been increasingly applied to the calculation of 

a large number of physical properties of various electronic systems. Some examples 

are : charge density in atoms (64);  charge density at surfaces (65);  band structure 

calculations(60)'  (66)
; spin density(67) ; momentum density(42), (68), phonon 

spectra(69). 

EXC. (-IL I  ; 110-1)= EXC t El  -) kr ) 
k = (?c,I2  a (L.  )) 3  
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