
THE PRAGMATIC FORMALIZATION OF 

COMPUTING SYSTEMS RELATIVE TO A GIVEN 

HIGH—LEVEL LANGUAGE 

BY 

DEREK JOHN COOKE. 

Thesis submitted 6ox the degitee o6 Doctox o6 Phitosophy 
of the Uravvaity ol5 London. 

1 



2 

Abstract  

Using a generalization of the 3-place operator S [116], derived 

from Markov's substitution operator 	[74], we demonstrate a procedure 

for specifying the semantics of high-level programming languages in 

terms of a small set of fundamental operations. These intrinsic 

functions are defined relative to a realistic, though not mathematically 

aesthetic, model into which implementation restrictions must also be 

incorporated. 

Application of our system yields the specification of a computing 

system as seen by the user of a high-level language; and which has 

been determined partially by the language designer and partially by 

the implementor of the language on the specific configuration in 

question. 

This thesis contains in its first 4 chapters mainly supporting 
material. The reader is therefore advised that he will probably 
find it easier to read if he starts his study at Ch.V. He will 
then find it necessary to read Ch.III before proceeding to Ch.VII. 
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CHAPTER 1  

INTRODUCTION 

The main object of the research reported herein is the setting 

up of a formal (pragmatic) system for describing the semantics of 

computing systems. 

Such a descriptive device must first deal with the syntax of 

programs driving the computing system. At the present the terms 

'syntax' and'semantics' seem to be redefined by researchers to 

suit their individual needs; therefore, before proceeding we attempt 

to clarify our position. Following Carnap [16]:- 

" Every situation in which a language is employed involves 
three principal factors: (1) the speaker, an organism in a 
determinate condition within a determinate environment; 
(2) the linguistic expressions used, these being sounds or 
shapes (e.g. written characters) produced by the speaker (for 
instance, a sentence consisting of certain words of the French 
language); and (3) the objects, properties, states of affairs, 
or the like, which the speaker intends to designate by the 
expressions he produces - and which we term the designate of 
the expressions (thus e.g. the colour red is the designatum of 
the French word 'rouge'). The entire theory of an object 
language is called the semiotic of that language; this semiotic 
is formulated in the meta-language. Within the semiotic of a 
language, three regions may be distinguished according to which 
of the three aforementioned factors receive attention. Thus, an 
investigation which refers explicity to the speaker of the 
language - no matter whether other factors are drawn in or not -
falls in the region of pragmatics. If the investigation ignores 
the speaker, but concentrates on the expressions of the language 
and their designata, then the investigation belongs to the 
province of semantics. Finally, an investigation which makes 
no reference either to the speaker or to the designata of the 
expression, but attends strictly to the expressions and their 
forms (the ways expression are constructed out of signs in 
determinate order), is said to be a formal or syntactical 
investigation and is counted as belonging to the province of 

(logical) syntax. 



In computing terms we interpret this as follows: taking as 

an example the arithmetic operation 'plus' acting on two integers, 

then: 

(a) the syntax specifies the string 

a + S 	where a and 0 are arbitrary strings of digits, 

(b) the semantics of the above is the 'abstract' notion of 

a particular way of combining the quantities denoted by 

the strings a and $, and 

(c) the pragmatics, is a well-defined process for realizing 

the semantic notion; e.g. in a machine language we may 

have: 

	

LOAD 	a 

ADD 

or, in a machine-independent form:- 

Oa 4. 	E 	if 8 = 0 

then a 

else (if 13 > 0 

then (a
+ 
+ R ) 

else -((-a) + (-0))) 

- where -a denotes negation 

a
+ 

-* a + 1 
	

is the successor function and 

8 -' 8 - 1 	is the predecessor function. 

Our system, Carabiner, affords formal descriptions of Computing 

systems based on syntactically inextensible high-level programing 

languages(see [89] for classification of various types of extensibility) 
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and consists of three parts; a model of the program space, a 

language and a translator. It is machine and language independent 

but for any given system the model is characterised by the representation 

used in the language upon which the system is based - i.e. given a 

language and its implementation, then the specification of this (system-  

dependent) dialect of the language via the Carabiner model enables the 

exact output from any program written in the language and executed by 

this implementation to be determined by means of the model. Conversely, 

Carabiner may be used to define an abstract machine for the language 

and hence to give a prescription for its implementation against which 

the correctness of the resulting system can be tested. In this respect, 

Carabiner is a definitional UNCOL [79, 98, 99]. 

In particular we note that there is no idealization within the 

model. Arithmetic quantities are neither assumed to have boundless 

range nor to be continuous. 

Carabiner places no constraints upon the designer or the implementer, 

save that of well-definedness, nor upon the programmer provided his 

program is legal - i.e. he is permitted to write nonsense if the 

language so allows. 

It has been shown by Wesselkanper [1161 that the substitution 

operator S, defined by:- 

S a b c = 	c if a= b 

a otherwise 

(where a, b, c are 'values') 

is sufficient for defining any n-adic operator over an nrvalued logic 

for any given m. 
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By additionally using a suitable naming operator, we can thus 

completely describe any stored program computer in terms of its 

memory states. Hence, by defining a hierarchy of intermediate languages, 

it should be possible to express the operations of any' high-level 

programming language in terms of these two 'basic' operations only; 

this, however, necessitates (at some stage) a translation from the 

representations used in the source language into some binary 

representation. Carabiner does not descend to such levels but, instead, 

extends the domain and codomain (range) of S so as to be able to 

manipulate assembler level operations. These in turn may be defined 

by means of S or, using a high-level representation, by means of 

Extended Markov Algorithms. 

Wesselkamper demonstrates his Crampon system by modelling Algol - c 

- a subset of Algol-60. However, the implied translation from 

Algol-e to Crampon is nowhere formalised; nor for that matter is the 

translation from Algol-60 into Algol- c [84, 85], Carabiner's syntax 

directed translator provides the mechanism for such formalization and 

yields a (Crampon-like) intermediate language; thus providing a well-

defined procedure for realising Algol-60, Algol- e and most other 

programming languages in terms of the basic operations of Crampon 

and Carabiner. 

For any language which has an inextensible syntax [89], it may 

be possible to devise a grammar by which any sentence of the language 

is recognisable by a very simple 'left-to-right' parsing machine. 

The conditions required for this to be so, the construction of 

suitable grammars, and modifications which may be applied in an attempt 

to derive suitable grammars from ones which violate the conditions are 

discussed at great length in chapter 2. 
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Throughout the thesis, we use an example language, language X, 

to illustrate salient points. This language is first introduced in 

chapter 3, where we give its syntax and show that it is suitable for 

direct recognition. We also discuss the desired semantics of X in 

an informal way. 

In the chapters that follow we shall assume that any grammar used 

satisfies the above mentioned conditions and hence explicit mention 

of this is usually avoided. 

The basic functions used (ultimately) by the high-level languages 

are described in a uniform way by means of Extended Markov Algorithms 

as defined in chapter 4. 

In chapter 5 the mathematical space, used to model the states of 

the computing system, is introduced together with the first primitive 

Carabiner operation k which is used as a digraph traverser. The 

subsequent chapter describes the Carabiner language in full and outlines 

its development into its present form. 

Having made precise the language and the space in which it acts 

we give, in chapter 7, a full definition of language X in an extension 

of BNF. The form of this definition is not unlike the attribute 

grammars of Bochmann [10, 11], but we feel that our system is more 

uniform and concrete. 

A topological description of the space is given in chapter 8 

and is linked to the concept of the stability of a program relative 

to its data. 

The relevance and applicability of Carabiner to programming 

features not present in language X is considered in chapter 9 by 

discussing the Carabiner definition of a set of languages specially 

designed to test such definitional mechanisms. 
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In the last chapter we make concluding remarks and compare our 

efforts with those of other workers in the field. 

Finally we note that the Carabiner language was originally 

intended to be a 'structured' language and, although this constraint 

is not imposed on the user, the language can be made free of explicit 

goto commands. If this is done, the modelling of high-level languages 

in which such a feature exists will necessitate restructuring of the 

program. A simple algorithm for doing this at flow chart level is 

given in the appendix. 
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CHAPTER 2  

NON-EXTENSIBLE SYNTAX AND LEFT-TO-RIGHT PARSING  

In order to be able to perform a syntax-directed translation 

from a high-level source language into Carabiner, in such a way that 

no translation actions need to be undone because of wrongly recog-

nised constructs; it is most convenient if we can parse sentences 

of the language directly from left-to-right without 'backing-up'. 

Any (top-down) syntax-directed translator has to deal with 

this problem and, as practical evidence has shown [35] [46], the 

simplest way to do this is to modify the language's syntactic 

definition; or alternatively to construct the grammar in a way so 

that such analysis is always possible. 

Trivially, this means that all syntactic structure needs to 

be known before the execution of any program in the relevant language, 

and hence this precludes any syntactic extensions being made during 

the execution of such a program; hence we must dictate that, as we 

are using a naYve top-down parser in order to simplify the syntax 

analysis as much as possible, no syntactic extensions are permissible  

within the source language. 
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In §2.1 we give an algorithm which attempts to modify a 

given syntax into an equivalent one which is suitable for left-to-right 

no-lookahead parsing whilst in §2.2 we draw up a set of rules for 

the construction of syntax which is directly parsable from left-

to-right. 

These sections are, in a sense, inverses of each other and 

thus either may be omitted; however we feel that greater insight is 

obtained by considering both. 

Though most of the work reported in §2.1 is conceptually simple, 

its formalizations seems complicated; in an attempt to present the 

material in a more readable form we therefore develop the arguments 

by means of a series of examples of increasing complexity. Consequently 

this chapter may seem disproportionately large compared with subsequent 

chapters. For this, and for any duplication which may occur from 

our presentation of the material of §2.1 and §2.2, we ask the 

reader's forbearance. 
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2.1 On Syntax Modifications  

Throughout this section we make extensive use of various 

relations and their representations as digraphs and diagrams, which 

enable us (i) to see the relevant structure, and (ii) to formalise 

the underlying mathematical framework more easily. Of particular 

note are the 'skeleton' and the 'Backup Diagram'; the skeleton 

dictates the order in which several well-known modifications can 

be more usefully applied and also leads to a formalization of a 

locked grammar. 

Theorems relating to secondary locks, and the equivalence of 

Left Factored Form and Greibach Normal Form [51] conclude the first 

half of the section. 

For completeness, an algorithm to remove a 'lock' is given 

at the end of section, although this is not the work of the author. 

Our formalization of the Backup Diagram (and the associated 

'following-sequence'), the usage graph and the linkage graph are 

new and though most of the results obtained from them and their 

associated relations are well-known the given derivation is.more 

• 
precise than can be obtained by a non-mathematical approach. 

2.1.1 Introduction  

An algorithm, SYMAL, is developed which attempts to 

transform sets of BNF production rules into a form such that any 

sentence generated by the grammar, defined by such a set, may be 

parsed directly from left-to-right with no look-ahead. 



17 

It is necessary, as a first step, to obtain a grammar 

in which each production is of the form:- 

<PlasS> ::= t  a1 la21.--lan 

where: 	(i) 	n E 

(ii) a
n 
may be A (the void option) 

a. +A: 1 Si< n 

(iii) eadice.:(11)ancla.+ 11  

begins with a different terminal symbol. 

such a form will be known as a Left factored form (LFF). 

Notice that LFF assumes the ordering of alternatives in a BNF 

production is important and that the order given is that used by 

the parser. 

Further transformation will be required in order to 

obtain a grammar such that sentences in the language may be 

recognised without the necessity for 'backtracking'. 

e.g. The sentence 'xx' which may be generated by the grammar: 

C xCx 1 A 

cannot be recognised without backtracking. 

However if the grammar is transformed to the equivalent form: 

C ".4  xxC 1 A 

Such backtracking is not necessary. 

t alternatively we use 	instead of '::=' 
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Naturally the manipulations discussed herein bear a close 

relationship to the formal theory of LR (left-to-right)t  and LF 

(left-factored) [119] grammars but our approach is more pragmatic 

though several theoretical aspects have been considered. 

Of the modifications presented, those related to the 

'Backup Diagram' are new. Left recursion is dealt with in Greibach [49], 

in fact we note that our left factored form, if it exists, is equi-

valent to Greibach Normal Form [51]; therefore, any of the identities 

derived in §2.1.2.3 may be applied to any context-free grammar (via 

its normal form) provided that grammar is unambiguous and that each 

non-terminal of the grammar is capable of generating a terminal string 

or A (i.e. any cfg which satisfies the sufficient conditions for 

conversion into LFF). 

The aim of SYMAL is the same as Foster's Syntax Improving 

Device [46], in which back-substitution of class definitions is used 

in an attempt to recover from violation of no-backup (NBU) conditions 

[59]. We use this and other techniques applied to classes which are 

selected by examination of suitable relations. 

Throughout this chapter we shall usually denote class names 

by upper case letters, subscripted where necessary, or subscripted 'C's 

B, C, ... etc. 

Or 	
C1,C2,C3, ... etc. 

tFor discussion of the theory of general LR parsing methods, the reader 
is referred to a recent survey paper by Aho & Johnson 1]. 
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Terminal strings are denoted by lower case letters or subscripted 

'T's; hence we have such productions as:- 

A 	: := AaIBCIDdIA 

C7  ::= 	C 7 	o 	o 1 2 
C
2 -, T1

C1 IC3T7T37IA 

Elsewhere Greek letters are used in locally defined roles. 

2.1.2 The Algorithm  

There are two main parts to the algorithm, the derivation 

of LFF, §2.1.2.1, and removal of NBU violations §2.1.2.3. Various 

other checks and modifications which may be made at suitable points 

either within or outside of the two major steps are given in §2.1.2.4, 

the composite algorithm being assembled in §2.1.2.5. 

2.1.2.1 Derivation of a left-factored form  

We simply describe the transformations and illustrate 

them by examples. Justification that such transformations exist and 

preserve ambiguity is given elsewhere [49], [50]. 

There are two fundamental procedures, LFAC and SYNSUB. 

LFAC checks for left-factors (i.e. meaningful leading common string 

factors in the options of a class definition). These factors are 

located and removed pairwise, a new class being created to hold the 

remaining parts of the factored options. 

e.g.: 	A ::= ablac 

becomes 	A ::= aX 

X ::= blc 

and 	A ::= ablaclad 
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becomes 

hence 

::= aXiad 

X :: bfc 

A ::= aY 

X ::= blc 

Y ::= )(Id 

We note that ambiguous grammars may give rise, ultimately t, to 

productions of the form: 

A ::= AIA 

such a production is easily detected and causes termination of the 

algorithm. 

The definition of LFAC, given above, is normally sufficient 

for our purposes, however trouble can occur when equivalent classes 

have differing forms and LFAC will be suitably modified later. 

Before describing SYNSUB (partial SYNtax SUBstitution), 

we note the well-known identity used to remove left recursion: 

A -4 Ablc 

equivalent to: 
A

X 

 cX 

 bXJA 

or, in a more complex case: 

• A Abicld 

CXWX 

X -4  bXIA 

t either in LFAC or other routines described later. 



becomes 

then factorise, so: 

becomes 

A ::. cblablc 

A ::= cXiab 

X ::= biA 

	

{

A. 	cbjablc 

	

B 	cia 

21 

Here, of course, a,b,c,d, may be classes or terminals. If b = A 

then the original productions for A yield ambiguous parses (of 

c and d) and we require that the algorithm should halt snd fail. 

The associated subroutine is called DLR. 

Now, SYNSUB takes a class definition and attempts to 

find a class name leading an option, if it fails then SYNSUB causes 

no modification; otherwise, if the class is the same as the class 

being processed then apply the identity to remove left recursion 

(i.e. call DLR), if it is different then substitute the definition 

of the class (expanded where necessary) for the occurrence of the 

class name: 

Hence: 
A ::= Bb I c 

B ::= cja  

The resultant (current) class is then processed by SYNSUB until no 

leading clatses occur in the resultant class definition. 

If we combine the modifications above in the following 

way we are part way to the required (sub) algorithm. Call this 

version AI. 



22 

AI 	(i) 	(left) factorise all definitions 

(ii) Remove all direct-left-recursion 

(iii) Process each definition, including added definitions, 

by SYNSUB. (This generally involves further factor-

ization and removal of direct left recursion of 

individual definitions). 

We now give some examples of simple grammars and their modifications 

under the above algorithm. (Step-by-step derivations of all modi-

fications of the following examples are given elsewhere [25].) 

Grammar A: 

X ::= ablabclabcdlac 

Under AI this yields: 

1

; ::= aX
3 

X1  ::= ciA 

X
2 
::= cX

4
IA 

X
3 
::= bX2Ic 

X
4 
::= diA 

Grammar B: 

tB
A ::= AbIB 

 ::= Acid 

Under AI this yields: 

e— 
A ::= dA

1
A
2 

B ::= dB1 

A
1' : bA1  IA 

/ A
2 

::= cA
1
A
2
IA 

B1 ::= bA1A2IcB
2IA 

B 
2  . • := bA1  A2  ciciA ,  

N.— 
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Grammar C: 
A ::= Bak 

B ::= CbIDd 

C ::= Aelg 

D ::= Af 

Under AI this yields: 

A ::= gbay2IcA1A2  

B gbB2IcA1
A
2
B
3 

C ::= gCl IcAlA2e 

D ::= gbaA1
A
2
fIcA

1
A
2
f 

A1  ::= ebaA1  IA 

A2  ::= fdaA1A2IA 

B1  ::= aA1
A
2ebIA 

B
2 

::= aA1A2B4IA 

B
3 
 ::= eblfd 

Bk  ::= eblfd 

C1 	
baA

1A2elA 

We now consider some less straightforward examples: 

Grammar D: 

tC
A ::= BaIC 

B ::= b 

::= dIDa 

D ::= ble 

Proceeding as in the previous cases gives: 
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A ::= BaIC 	synsub on A 

a) A ::= balC 	synsub on A 

b) A ::= baldIDa 	synsub on A 

c) A ::= baidlbalea 	factorise A 

d) A ::= baAildlea 	A now OK 

Al  ::= AIA 

Whence A
1 ambiguous grammar, moreover if we trace the steps 

back from d), we have 

-1- 

d) 	Al  ;;= AIA 

A ::= baA1  

c) 	A ::= balba 

b) 	A ::= balDa 

a) 	A ::= BalC 

hence, the two par:ses of 'ba' are: 

A 

I 	

and 	A 

I 
Ba 	C 

/ \ 	1 b 	a 
Da 

/ \ b 	a 

Thus, when our method detects ambiguity in a grammar, it also 

exhibits an ambiguous parse. 

Next we consider a non-ambiguous grammar for which the 

method fails: 

Grammar E: 
A ::= Bla 

B ::= Clb 

C ::= Bd 
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Applying AI to grammar E results in the creation of an infinite 

sequence of additional classes, i.e.: 

A :: Bla 

	

a) 	A ::= CJbJa 

	

b) 	A ::= Bdlbla 

	

c) 	A ::. Cdibd(hla 

	

d) 	A ::= Cd(bA1 la 

A1 ::= dIA 

	

e) 	A ::= BddIbA1 Ia 

	

f) 	A ::= CddlioddlbAl la 

	

g) 	A ::= CddlbA2la 

A
2 
::. ddIA1 

	

h) 	A ::= BdddlbA2la 

	

i) 	A ::= Cdddlbddd!bA2Ia 

	

{....

j) 	A ::. CdddlbA
3 
 la 

A
3 
::= dddIA

2 

synsub A 

synsub A 

synsub A 

factorise 

synbub A 

synsub A 

factorise 

synsub A 

synsub A 

factorise 

etc. The extension goes on for ever because the classes B and C 

are mutually left-recursive. However consider what happens if 

we process the productions in a different order. To achieve this 

affect we do not yet modify the algorithm but change the order of 

the productions of the grammar 

Grammar E': 	(root is A) 

B B ::. Cib 

A ::= Bla 

C ::,_ Bd 



26 

'this yields: 

::= bB
1 

A ::= bB
1
la 

C 	bB d 1 

B
1 
::. dB

1
IA 

Although AI fails on grammar E its success on grammar E' 

now leads us to attempt modifications to the algorithm to enable 

it to succeed on a larger class of grammars. 

The fundamental problem that faults the simplification 

technique of AI is that of removing (indirect) left recursion 

between classes. If we abstract this left-recursive property 

between the productions to give a relation p on C2 where C is the 

set of classes in a grammar such that 
C1pC2 

iff C
2 

occurs as the 

first element of an option in the definition of Cl. We may then 

represent this in the 'diagram': 

Cl 
	C

2 

Using this symbolism, grammar B, generates the following diagram. 

A 

Now if we consider our algorithm after stage (ii) i.e. when all 

preliminary factorization and removal of direct left-recursion has 

been done then the corresponding diagram has no loops i.e. C.p(C. 
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p Cj  .foranyi,andrio duplicateciarcs,i_e.ifC
1 	
.then there is 

only one arrow joining C. to Cj  (though there may be one in the 

reverse direction). Hence we have a directed graph or digraph [52]. 

Using digraph notation (described in chapter 5 

and elsewhere [52]), let us consider the digraphs generated by 

the given grammars after stage (ii) of AI. We shall call these 

graphs skeletons. 

Skeleton A 
	

X 

Skeleton B 

Skeleton C  

Skeleton D  
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elf 
C 

Now with each node a we associate a set 

s
a 

= 	: apx) . 

This set is sometimes called the outbundle of a. 

We note at this stage that (i) for no a do we have a E sa. 
a 

and (ii) our ultimate aim is to reduce the skeleton to a set of 

discrete points. This is equivalent to the condition sa  = 0 for 

all a. 

From the outbundle we define an infinite sequence of sets 

called successor sets. 

The nth successor set, of a, s
n
a
, is defined by the 

iterative identity 

s
n 

= (x : ypx and y E s
n
a 
-1
) n > 1 

and 1 
sa = sa a 

example: 	from the grammar D and its skeleton given above we see: 

sA  = sA  = (B,C) 

1 
sB  = sB  = 0 

sC = sC = (D)  
1 
sD = sD - 

(the null set) 
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'hence s2
A 
 = (D) 

s = 0 A 

n 
SA = 

n H  
813 = P  

s • = 

sn  = 

✓ n z  3 

✓ n z 1 

✓ n Z 2 

✓ n Z 1 

Since the skeletons are not in general acyclic (definition 

in §5.2), we have instances when a E s
n
a 
 for some n > 1. These 

are precisely the situations where we are thrown into recursive 

loops. (Trivially, the characterisation of loops by the sets sicli  

gives rise to a simple method of detecting such loops.) In order 

for us to be able to use the routine SYNSUB successfully we have 

to select nodes, a, of the skeleton with the property that every 

element of s 
a
(+ 0) ultimately generates either a or 0. However 

we may simplify this condition: 

Define the nth reduced successor set, rn , of a, by: a 

1 
r = s 
a a 

n n-1 and 	r
a 
 = (x : ypx, x+a, y E ra  , n > 1) 

then 	(a) 	if r1
a 
 = 0 there is no reduction to be done, 

(b) if n > 1 st ra = 0 then SYNSUB can be applied 

to a and its outbundle reduced to 0. 

example: 	from grammar C we have: 

rA
1 _- s 	(B)  

A - 

ri
B 
 = s

B 
 = (C,D) 
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r1C  =  sC  =  (A) 

rD  
1 s (A)  

D _ - 

- rA 
2 (C,D) - 

r3  - 0 A - 

rB = (A) 

• = 

r2 - (B) 

• = (D) 

r4 = (A) 

rg = (B) 	etc. 

2 rD = (B) 

r3  

• 

= (C) 

r 

• 

= (A) 

ri5)  = (B) 	etc. 

Notice that if 21n > m : rna 	and m is the number of nodes in 

the graph, then lip E N st. 

Defn: 	A node, a, of the skeleton such that n E 	n > 1 

and rn
a 
 = 0 , is called a central point of the skeleton. 

Defn: 1 A node, a, of the skeleton such that r
a 

= 0 is called 

a loose point of the skeleton. 
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example: 	from Grammar E we have: 

r1A  =  (B)  

1 rB = 

rc = (B) 

rA = 

r3
A 
 = (B) etc. 

2 
rB = 0  

2 r = 0 

Hence the central points of grammars C and E are A, B 

and B,C respectively, and there are no loose points. After a 

central point has been processed by 'SYNSUB' it becomes a loose 

point and need be considered no further by SYNSUB- 

Defn: If at some stage in the modification of a grammar 

(i) there are no central points and (ii) the number 

of loose points is less than the total number of class 

nodes in the current state of the skeleton for that 

grammar; then the grammar is said to be locked. 

  

We shall return to the problem of locked grammars later. 

Following the previous theory on skeletons we adjust the 

modification process to give algorithm AII. 

AII: 	(i) (left) factorise all definitions. 

(ii) Remove all direct left recursion. 

(iii) Count loose points in skeleton. 
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(iv) Locate new central points in skeleton (if 

non goto stage (vi)). 

(v) Remove a central point by 'SYNSUB', update count 

of loose points and modify skeleton. If there 

are further located central points goto (v) 

otherwise goto stage (iv). 

(vi) If number of loose points equals current total of 

nodes in skeleton goto (vii). Otherwise fail 

(Grammar is locked). 

(vii) Exit. 

We now consider the modification of some grammars (those 

given before plus new ones) under AII. 

Grammar A: 

X ::= ablabciabcdiac 

This grammar has a loose skeleton (i.e. all nodes are loose points) 

and hence gives the same result under AII as under AI, i.e. 

X2  ::= cX4  

• 

1A 

3 	2 
::= X 	:= bX ic 

::= X 	:= diA 4 ' 

Grammar B: 

::= AbIB 

B ::= Acid 

After stage (ii) of AII this gives 
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::= BAS  

::= Acid 

::= bAl lA 

with skeleton. 

.A1  

Bt.11  

Trivially Al  is loose and A,B central, hence the result is as 

before, i.e. 

A ::. dA1
A2 

B ::= dB1  

::= A1 	bA1 IA 

A
2 

::= cA
1A2IA 

B1  ::= bA1A2IcB2IA 

B2 
::= bA1A2cJclA 

Grammar C: 

 

Baic 

CbiDb 

AeIg 

::= Af 

 

 

  

This grammar has central points A and B. After they have been 

loosened (i.e. processed by 'synsub' into loose points) the 

skeleton becomes 
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A A Al 	2  

B B
1 
	B2 	3 

Then, A,B,A1,A2,B1,B3  become loose and C,D,B2  are central. Hence 

the order of simplifcation coincides with that of AI (i.e. A,B,C,D, 

Al,A2,131,B2,B3,B4,C1) and thus gives the same result. 

i.e.. 	A ::= gbay2IcA1A2  

B ::= gbB2IcA1A2B3  

C ::= gC1 IcA1A2e 

D ::= gbay2ficA1A2f 

::= ebaA1 IA 

A2  ::= fday21A 

B
1 
::= aA1A2eblA 

B2  ::= aA1A2B41A 

B3  ::= eblfd 

• ::= eblfd 

C1  ::= baA1A2eIA 

Grammar D: 
::= BaIC 

::= b 

::= diDa 

::= ble 

Trivially B and D are loose and, A and C are central, 

hence the first central point which we try to loosen is A. This, 

of course, results in an ambiguity state and halts just as under Al. 
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Grammar E:  

 

::= Bla 

::= Gib 

Bd 

  

  

   

This grammar could not be modified by AI, however under All it 

generates the following 

tC
A ::= bB1  la 

B ::= bB
1 

::= dB1  d 

B
1 ::= dB1 IA 

Grammar F: 

::= C2a 

::= C3b 

::= C4cIC5d 

::= Ckelf 

::= C2gIC6h 

::= C71 

::= C8  

::= C6mIC9n 

::= C10PIci 

C9tIx 

Under the action of All this generates: 

C
1 
::= fC11cbC19aI xpC12n

1C
14hdbC19al 

qC12n1C14hdbC19a 

C
2 
::= fC

11cbC19I xpC12n1C14hdbC19
I 

qC12n1
C
14
hdbC

19 

C3 ::= fC11cC20IxpC12n1C14
hdC

21
I  

qC
12
n1C

14
hdC

22 
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C4 
::= 

fC11 

fClicbC19g1xpC12n1C14hC231 

qC12n1C14hC24  

C6  ::= xpC12n1C141qC12n1C14  

C7  ::= xpC12nC151qC12nC16  

C8 	xPC12nC171 qC12nC18 

C
9 

::= xpC
12

1qC
12 

C
10 ::= xC15

1qC
12
t 

C11 ::= eC11 IA 

C12 ::= tpC12 IA •  

C13 • .:= pC12 
 tIA 

C
14 • 

-:= m1C14  1A 

C15 ::= 1C
14

mIA 

C16 . • := 1C14  mIA 

C17  ::= 1C14m1A 

C18 • .:= 1C14 
 mIA 

C19 • .:= gbdC19 
 IA 

C
20 • 

.:= bC19  gd1A 

C
21 ::= bC

19gdJA 

C
22 

::= bC19gdlA 

C23 ::= dbC19grA 

C24 ::= dbC19 glA 
•  

The above set of classes can obviously be reduced since 

some of the productions are not used and there are many duplicates. 

The removal of these will be considered later. Next we consider 

Grammar G. 
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Grammar G: 

A ::= BaIDb 

B ::= CcJAd 

C 	AeIBf 

D ::= CgIh 

The skeleton is 

(111  	I  B 	)C 

This is locked since, 

rA
4  
 = (C)  

r4 	' = (A C) B  

r4 = 	B,D) 

r4 	' = (A B' 
 C) 

D  

Defn: Given a locked grammar in which the nodes al,...,a
n 
are locked. 

i.e. r
n 	

0 do 
ai 

theriaria.1  st.a.1  E s 	
for some i is a nest point. 

1 

Den:Givenanestpointa.,the nest generated by a. is 
co 	 1 

Cei n=1 a 
U rn 	d the order of this set is called the size . an  1 

of the nest. 

Trivially, grammar G generates a nest of size 4, i.e. the 

whole skeleton is a nest. 

To unlock a nest we use a transformation given (in a slightly 

different form) in [46]. Before giving the general form of 

the transformation we demonstrate its use in the case of 

grammar G. 
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Firstly, we write the productions in a tabular form: 

(A). 	(B) 	(C) 	(D) 

A ::= 	Ba! 	Db 

• B ::= Ad! 	Cc 

C ::= Ael 	Bf 

D ::= 	CgI 
	

h 

Secondly, from this table we create two arrays, Y and Z. 

Y.. - 1,3 

i 
1 

i -4  A B C D 

A d e 

B a f 

C c g 

D b 

Z. 
J 

h 

Note: Here no entry is not equivalent to an entry 'A' and, Y1. ,J 

and Z. are not classes but arbitrary strings. In what follows 

X.represent newly created classes which could later be 
1,J 

renamed to coincide with earlier notation. 

The original class definitions are now transformed into: 

A ::= hX
DA 

B ::= hX
DB 

C ::= hXDoc  

D ::= hX„, 
DD 
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where:- 

(A) (B) (C) (D) 

XAA ::= 
	dXBAleXcA l 	A 

X 
AB 	

dXBBleXcB 

X 	::. 
AC 	

dXBcleXcc 

XAD ::. 	dXBDIeXcD  

"-BA ::= aXAA I 	fXCA 

XBB ::= aXABI 	
fXCB 	A 

XBC ::= aX
AC I 	fX CC 

XBD ::= aXADI 	fXCD 

gXD A XCA 

XCB 

::. cXBAI 

cXBBI 

XCC 
::. cXBc 1 

XCD 
::. cXBD1 

XDA 

XDB  

: bXAA  

bXAB  

XDC ::= bXAC 

We note that if the Grammar G is fully defined by the given set of 

classes (i.e. A,B,C,D) then 12 of the X classes and B,C,D are 

redundant, hence we are left with, 

A, 

XAA,XBA,XcA  and XDA. 

The grammar G is extreme in that it only gives rise to 

right-branching parse trees. An example of the parse by the original 

grammar and its modified form, illustrates the power of the 

transformation. 

gX
DB 

gXDc1 A 

gXD  

XDD ::= bXAD1 	A 
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Parse of 'hbdfca' under original grammar. 

A 

bX AA 

dXBA 

 

 

N 
fX 

  

Parse of 'hbdfca' under modified grammar. 

Notice, if we had had (i) A ::= BIDb, then YBA  = A 

and XBA  :.= XAA1fXcA  etc., 	or (ii) D ::= Cglhlj, then ZD  = hlj 

and the resultant A ::= hXDAIjXDA etc., 

or (iii) A ::= BCIDb, then the parses 

could involve X-productions which have their second co-ordinate not 

equal to A, e.g. XBc, thus the necessity, in general, for constructing 

all the X-productions. 
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Formally, we may describe the transformation 'unlock' b.s follows: 

Given a nest of locked classes, 

C = (Ci  :iEPc14) 

each of which is defined by: 

C.
1 
 ::= C. Y. .IZ. 

3,1 

or 
C.C. Y. . 
1 	J11  

where WI C. is left factored 

(ii) 	j ranges over all classes, C. : j E P , and C. 

leads an option of Ci  

(iii)Y..isa string which may be 'A' and does not 

include 'I' 

(iv) 	Zi, if it exists, is a string which may be 'A', or 

contain 'I'. 

The result of the transformation is the set C'. 

C' = (C! : C. E C) lJ (X. 	: C.,C. E C) 
1 1 	1,3 1 j 

where: 
C! 	Z.X.. 	with j ranging over all Z. which exist 

(i.e. are strings, including A; see 

previous example). 

X 	Y X. IA with j ranging over all 'Ywhich exist. 
rr 	rj jr 	 rj 

Xrs ::= Y 
rj  
.X. 	withjrangingoverallYrj

.which exist, 
3s  

and r s. 

Apart from the complex manipulation of indices which is 

involved (this is trivially similar to the summation conventions 

of tensoralgebra), we must take care to distinguish between the 
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non-occurrence of strings and the occurrence of 'A' 

e.g.: A ::= BIDf 

~ YAA = ¢ ~ A 

YBA = A 

YCA =¢=I= A 

YDA = f 

Before making the required modification to our algorithm we consider 

the following (wildly ambiguous) grammar: 

Grammar H: 

p ... QIR 

Q'" plR 

R ..:. plQlx 

The skeleton for this grammar is: 

Obviously it is locked, with a nest of size 3. 

we have: 

If we apply the previous modifications to unlock P,Q,R 

P ::= x~ 

Q ::= x~Q 

R ::= x~ 
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but, 

	

Xpp ::= XQpIXRplA 

etc. 

XQp ::= XppIXRp 

etc. 

XRP ::= XPPIXQP 

Hence we have 3 secondary locks (i.e. productions created to unlock 

a set of productions are also locked). 

The skeletons are: 

X 

QP 
i! XRP 

XPR 

As mentioned before, the grammar is ambiguous. This is seen from 

the parses: 

R 

1 
x 

1 

Q 
4 

x 

Moreover, we have:- 

Theorem: 	Any secondary lock implies ambiguity. 
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*(This is not a bi-implication since we may have ambiguity in a 

set of productions which does not constitute a lock. e.g. 

but this would be detected elsewhere since it would generate'AIA' 

after application of the back-substitution and factorization 

routines, or give A 4 A, (i.e. A derives A)). 

The proof of the ambiguity is as follows: 

Since the original grammar is locked we apply the transformation 

to remove the lock. In so doing it creates a set of new classes, 

N = (Ni) with the property that each Ni  is of the form. 

Ni 
 ::= a. 	

N. 	I ... I a. 	N. 
J1 Jl Jn. Jn. 

1 
or 

Ni 
	Jn. J1 J1 1 	1 

Now if the set N locks there must be a cycle in the skeleton (more 

precisely in the restriction of the skeleton to the set N) and 

hencece=Aforasuitablesetof.'s. 
Yi 	 Yi 

i.e. . 	 N 
0 P2 	133 

with 	N
p 

EN, 	1 5 i 5 k 
i 

 

hence 3 option in the definitions of Nat  such that we may have a parse: 
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etc. X 

Removal of locks  

Given a set of locked nodes we must pick out and remove 

the minimal nest. To do this we calculate the size of the nest of 

each nest point and select one, a., with the least size (this is not 

unique). If size (ai) = p, then 

p 
nest(a.) = a. 	rn  

J n=1 	a. 

This nest is removed as described. If nest (a.) t L, where L 

is the set of locked nodes, then we repeat the operation on the set 

nest(a.). 

We now give, as promised earlier, the definition of an 

extended factorisation routine. This is followed by the final form 

(AIII) of the LFF subalgorithm. 

Extended factorisation: in an attempt to prevent needless extension 

to the set of classes by creating new elements whose definition is 

in some way equivalent to an already existing class we modify the 

factorisation routine as follows: 

After a factorisation which results in the creation of 

a new class, C., check if this is a repetition of a previous class, 

subject to any combination of the following: 
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(1) 	if 3C. ::= ce1  Ice2  I ... I an 
and 

cjf(1)laf(2) I 	laf(n) 

where f is a bijection on (1,2,...,n) then C. a C.; 
J 	1  

name Cj  by 1 

delete the definition of C.. 

	

(ii) 	if 3C. = f(C.) 

and C. = f(C.) 	, strings pi  

with f(x) = pi  x  42  x 43 	Pri-1 	4/1 

and 	x 	pt  (1 s 1L s n) 

then C. 3E C.; replace the occurrence of the name C. 1 

by C. . and delete the definition of C.. 

With this more powerful version of the factorisation routine we 

give the final version of the LFF algorithm: 

AIII 	(i) 	(left) factorise all definitions. 

(ii) Remove all direct left recursion. 

(iii) Count loose points in skeleton. 

(iv) Locate central points in skeleton. If none go to (vi). 

(v) Remove central points, update count of loose points, 

modify skeleton and goto (iv). 

(vi) If the number of nodes in skeleton equals number of 

loose points then exit, else go to (vii). 

(vii) If 'unlock' has been entered already then check if current 

nest created by a previous 'unlock'; if so then halt 

(ambiguous grammar) otherwise unlock, update count of 

loose points, modify skeleton and goto (iv). 
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Since, via the 'unlock' transformation, this is a trivial extension 

of All we give no examples of its usage. 

2.1.2.2 Equivalence of LFF and GNF 

Given a context-free language L with A ' L, defined 

by a cfg, G, then G is strongly equivalent to G1  (i.e. they both 

define L) where all productions of G
1 are in Greibach Normal Form, 

i.e. 
m) (05 m) 

are classes and a is a terminal symbol. 

This is proved in [51] and trivially asserts the 

equivalence of LFF and GNF for any language L(A L) for which a 

grammar exists such that modification to LFF is possible. 

A sufficient (but not necessary) condition for the 

formation of an LFF is that the grammar should be unambiguous. Hence: 

Theorem: 

Given a cfl L:Af'Land an associated grammar G which is unambiguous 

then 3 equivalent grammars G1, G1* and G2,G2.  in LFF and GNF res-

pectively which may be derived by translations. 

G G1 G
2 

and 	• G G
2* 

G
1* 

Proof: (a) G Gi  

trivial by application of AIII 

(b) 	Gi  o G2  

G
1 
is in LFF. If we remove any redundant classes (see '52.1.2.4) to 

give d then the grammars G
1 
and a are equivalent in that they generate 

the same language, L. 
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Given any class X (not the root) such that X A , then there 

is a (non-looping) chain, Ci  (see linkage graph in §2.1.2.4), such 

that 	
C
l 

c
2 	
1  C3 	C

n 
. X 

with Ci  Ci+1  if 3 a production Ci  a ci+1  0 , a,0 are strings 
• 

over classes and terminal symbols (U A), and C1  74  A but Ci  A (i 4 1). 

For any such class, X (i) back substitute as dictated by the chain, 

and (ii) back substitute for all occurrences of X in any production 

(4 X). 

We then have the form, 

C -4 a1
la
2
1...la

n 

wino'. 4 A for all classes C. Moreover each ai is of the form, 

411, ..., 13p  : t E T 

13i  E TUC 

where T,C are the disjoint sets of terminals and classes. 

Now for all 13. 	T substitute a class name C. and define 1 	 Pi 

C 	O. Cpl 	1 

Then the grammar is in GNF i.e. we have the required G2. 

(c) G G2*  

proved. in [51]. 

(d) G2*  G1*  

by application of AIII. 

2.1.2.3 Investigation of NBU Conditions  

To illustrate the sort of back-up problems which arise 

we consider some offending grammars. 
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(1) 	 5

bTT 

T -• alaa 

f
T 

AIII 	S -, bTT 

T-.  aT1  

1 -• alA 

an attempt to parse lima' from left to right yields 

bTT 

aT1 	aT1 

b a a 

(2) 

 I

C -4 xBy 

B YIA 

(in LFF) 

an attempt to parse 'xy' yields 

(3) 	C xCxIA 	(in LFF) 

an attempt to parse 'xx' yields 
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No-backup (NBU)  

We first give some definitions. In what follows we 

shall use the symbols T and C to denote the set of terminal symbols 

and the set of classes respectively, with 

Tnc=0, A fE T LiC 

If by use of a finite sequence of re-writing rules, we 

can replace a class X by a string a over TUCt)(A) then we say 

that X derives a and we write 

X 21. oe 

Trivially, X is A-producing if X A and the negation of the derivation 

property is denoted by I  . 

If we have 
X -0 Y1 IY21...IYn 

	n Z  1 

with Y.1 
 (1 5 i < n) of the form t.1  a1  

. and Y
n 
. A or to an 

where .L1  
. E T and a.

I 
 is an arbitrary string over TUC, then we 

construct two relations (for each such X) on CU TUCA) as follows: 

first (X) = (ti  : 1 5 i < n)Ugn  (X) 

where 	gn(X)= 	t
o 
if Y

n 
 t
o 
a
n 

0 if Yn  = A 

follow (X): If, given a grammar G in which we have the non-terminal 
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(i.e. class) X, and there exist occurrences of X such that 

X.1  -4 a. 
x5. : 1 s s n 

 1 	1 

with n finite and X. E C 1 

where 	
al

= t. y. , and Si, y. are arbitrary strings 

(in particular we may have X E 0i, yi  or Ov yi = A) 

There are 3 distinct possibilities for p. 1 

 pi  = A 

	

(ii)pi  = t! 6. 	t!  E T I 

(iii)p = , 	X! E C i  
i i 	1 

Now define h. on X such that: 
1 

h.1
(X) = 	follow (Xi) 

0 

hi(X) = 	t! 
 1 

and 	h.1
(X) = first (X!) 
 1 

then 	follow (X) = 

 

m 
 h.(X) 

i=1 1 

if Oi  = A and Xi  4 X 

if pi  = A and Xi  = X 

if pi
=t!6. 

if pi = X! 6i  

We now give a well-known set of sufficient conditions for an unambiguous 

grammar to satisfy the NBU condition [59]. 

Conditionsl: (a) no left-recursion in C, 

(b) for each class, the sets of left-most terminal 

symbols derived from each option must be disjoint, 

(c) if X -• Y1  I ... I Yn  

and X -4 A 
Athen Y. *74 	(1 5 i < n) 

i.e. X-• A 	Yn 
A 
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(d) if X Yi l...IYn  

• 
and Yn A 

then 
first(X) n follow(X) = 

After phase 1 of our modifications (i.e. when the grammar is in 

left-factored form) this set of conditions reduces to: 

Condition 2: if X : X A 

then 	first(X) 11 follow (X) = 0 

We examine how this condition can be violated and give some 

identities which attempt to remove the violation. 

Direct violation  

maybe 	I E y 

maybe 	I E 8 

(a) X xaX4 1 y IA 

(b) X -• cax131 xylOIA 

(al ) 
m 

xn Xx I A 

EX-ix
n-Fm 

 XIA 

m,n a 1 

(a2) 	X -4 xXXa I A 	a x
m
, m z 0 

11 

X -, xx Yu I A 

(a3) X -0 xyXx 1 A 	y x
n
, n a 0 

-4.xyxY 1 A 

Y yxYx 1 A 

(a4) X -4 xyXxa I A 

X xyxaX I A 
	

if Ce = y 

-4 xyxYa I A 

Y yxYax I A 

Y -• xYax I A 
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(a5) 	X-6 neXxPIvIA 

xuY0IYIA 

xZ I Yx 

(b1) 	X -# tax13 I xy I 6 I A 

cal3 I  xy  I S I A 

cyYpx I 8x I xZ 

yx I A 

Indirect violation  

X 	xal 13  IA 	(maybe I E 0) 

such that x E first(X)n follow(X) 

case (i): 	: Y 	yXx6 	(Y 	X) 

solution; we back-substitute X into Y and factorise; 

e.g. 	.4.xa I A 

Y bXxc 

becomes 	Y bxaxc I bxc 

hence 
	bxY1 

Y1 
-4 axc 1 c 

case (ii): 	3 a sequence C1, 	Cn  in C such that 

3C1  ... alX , 

C2 -4 a2
C
1 
, 

• 
• • 
Cn-1 

.4 a
n-1 Cn-2 ' 

C
n 

a
n 
C 	x 
n-1 	n 

solution; if all Cl, 	C
n 
are different then back-substitute for 
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X in C1, after a1 

C1 in C2, after a2  

Cn-1 in Cn
, after an 

 and factorise: 

If all the C1, 	C
n 
are not disjoint, then back-substitute 

(as above) those which are, until we reach one class for the second 

time. This can happen in two ways, either 

(a) when the embedded class is reached, or 

(h) if 3i,j,k st * — 

C.
1  -• aj  C. I ak  Ck 

 . 

(a) 	Before attempting formalization, we give 3 examples: 

	

(i) 	[

X 8Xxy 1 cY 

Y xa101A 

i-- 

X -4 8X'y 1 cY 

X' -• 8X'yx I cY' 

Y-4 xa10IA 

Y' •-• xY"10x 

Y" -4 axl A 

1 

	

(ii) 	X -. 00 I SY 

Y -4 0 I A 

I

X .-4 aX'Y 1 8Y 

X?  -0  cato I So 

Y -40IA 

	

(iii) 	X -4 aX0), 1 bY 

Y -40 IA 



C 	x1eB 
G s 

felcA 

A 	d 1 A 

example: 

I
D D "4  fBdly 
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X -• aX'y I 6Y 

X' -4 avy13 I 6M 

Y -BIA 

We note that (iii) needs further reduction (by the case (i) rule) 

to: 

ilX -4 aX'y I 8Y 

X' -• aX'y$ I  8aY 

Y -0 13 i A 

- that (i) needs further reduction if 

a = 
for some t E T , 

y = 

and, that (i) cannot succeed if 

: xnm} 

	

for some n,m z 1 

The following reduction may be extracted: 

(c1) 
	

1  
X -, 8Xxy I pY 1 1 

Y -4 xa I B IA 

.41.11 

-- X . oxii I WY I 1 

XI -4 8X'yx I pYx 1 lx 

Y --. xa I F! 1 A 

Notice that we have X' -* pYx and Y xa 1 A so more reduction 

needs to be done. 

(b) In this case no problems arise and we can proceed as before 
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(A in B) 

(B in C) 

(C in B) 

(B in D) 

B -4 fClcd1c 

C -. xlefClecdlec 

B -* fx1fefClfecdifecicdlc 

D -4 ffxd1 

ffefCdl 

ffecdd1 

ffecd1 

fcddl 

fcdl 

y 

on factorising this gives: 

D -4 fD
1
ly 

D
1 
 -4 fD

2
1cD
3 

D
2 -4 x

• 

dleD4 
D3 " dD• 5 

E G
1 	D4  . fCdlcdD

5 

D
5 
 -4 dIA 

C -. xleCi  

C
1 
 -4 fC1cD

5 

As stated, no problems arise in the above procedure, however no 

advantage is achieved by cutting loops. If, in the above, we 

replaced A in B then B in D we would have: 

D '"' fDlly 

D' -. fCdlcdA 

C --■ xleB 

B -4 fCIcA 

A -4 dIA 
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But d E first(A)r1 follow(A) since 

(d) c follow(C) c follow(B) c follow(A) 

and hence we must perform another chain of back-substitutions. 

i.e. (A in B), (B in C), (C in D) 

After factorization this gives: 

D 

D' 

D" 

fDT IY 

fD" IcdA 

xdleDul 

G
2 

a D"' 

C 

C' 

fCdlcdA 

xleC' 

fClecA 

A . dIA 

If we remove the trivial class D
3 

from G1  then G1 G2 by the 

isomorphism. 

D 	4-0 D 

D' " D1 

D" H D
2 

D"' " D 
 

C 	c 

C,  t cl  

A 4-'D
5 
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This suggests that the order of application of reduction sequences 

is unimportant but the amount of work involved may vary considerably. 

The problem of ordering the reductions and question of convergence 

of these reductions sequences is considered next. 

Representation of follow and first: We consider some examples. 

These are given together with related diagrams, which will be formally 

defined later. 

A -4 aittIbBc 

B dClx 

C -4 e IA 

'follow' diagram Fo 	
A 

A 	A 

B --> c 

C 	A 

F the closure of FO  
0 

A 

A 

B 	c 

A  T 

'first' digraph, Fi  
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'back-up diagram', F1(31-JF1  

In this example there are no BU problems. 

e.g. 2: 

tY
-• aYd lb 

d IA 

F = F* 
0 0 
	 X. 

Y 

F : 
I 

a 
F. U F

1 
 • " 

A4— 	— —+d 

Here we do have problems but they are.soluble (i.e. we can modify 

the grammar so that we satisfy the NBU condition). 

e.g. 3: 	aXXIbY 

Y.-* a I A 

F0: 0 A 

X 
Y -->- A 

F*: 
A 



F* U F1  : 0 	.  
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F1 : 

Y 

F F 0 	1 -r: A CX 
AT 	

ya 

Here we have violation of the NBU conditions which are not removable 

by our methods. 

e.g. 4: 	X -4 xxXXxlyY 

Y .4)C IA 

F0: 0 
X Y 	A 

Fs
0  : 
	 X 	x 

Y 

A4- — --Y' 

Here we have a violation which can be circumvented by our modifications. 

e.g. 5: 

F* U F : 1 

X xXxa I A 

Ai 
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- a removable violation. 

e.g. 6: 	X -4xnxxm  IA 

F*0 
 U F1: 	 x 

- another removable violation 

f
Y

3  

X -4 aXib 

X1 •-• a1
X2 

X
2 

-4 a2
X3 

-4cY x 
-+b I A 

F* : 	 X 	b 
o 	 At 

x2  
A 

X3 3 

F1: 	
X 	 4a 

X1 	a1  1 

X- — — — 4 a2 
X-
3 
 — — —4c 

b 

Fi(13 UF1 X---- -4a 

— 1 
tA 
X2— — — 4 a2 
tA 
X— — — — 4c 

IA 
,Y 

Ak 
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this grammar is also in violation, but the violation is removable. 

Formalisation of first and follow digraphs  

Referring to the defn. of follow, we define a function f0 
 over C 

such that 

A E fo(X) 

t! E f0 (X) 
1 

X! E f0 (X) 
1 

if 

if 

if 

ai  

a. 
1 

a. 
1 

A 

= t! 
1 

= X! 
I 

8., 
I 

8., 1 

t! E T 1 

X! E C 
1 

moreoverifX.1  -,a.X01  .anda.1 
 .A, then label the relation, thus 

1  

Xi 
X 	TA 

call the resultant diagram F. 

Now form the closure, F;', of FD  by the process: 

	

If X : X 	A (and Y A), then delete the link 

X ------).- A and construct a new (A-labelled) link 

A 

	

X 	Y 

Similarly, referring to the definition of first, we define a function 

f1  over C such that: 

t. E f (X) if Y. 	y.a. 1 	1 	a. 	1 1 

A E f1  (X) if Yn 
= A 

The resultant digraph we call F1 and represent it by broken lines. 

Now form the disjoint union of Pc; and Fl, i.e. F'(;LJ F1  with the 

natural equivalence relation between corresponding elements in the 

common base set Tt..) 01.)(A) (i.e. the sets of points); further, 

let F(?
o'

h) be the free monoid on F*0 
 LIF

1 
 generated by f0  and h, where: 

t Note: F1  is a digraph but F0  may not be. 
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-1, 

h : X -, 	f
0 
 (X) if A E f1(X) 

otherwise undefined 

and T0 
 is a A-labelled fo

-link. 

Defn: Any element of F(f0,h) is called a following sequence. 

Then, problems arise iff 

3 Ti, Cj  : {A, Ti} c fi(Cj) 

	

and either (i) 	T. E f0 h1j  (C.) 

	

 

or (ii) 	T. E f1  f0 h2j  
(C.) 

where h1, h2 
are following sequences. 

The above conditions may be interpreted as follows: 

Case (i): 
	

We have a following sequence, a, 

(i.e. a chain of; 

X. -11' Y 

4. 
A 

f0 X 	T. E T 
1 

- and starting at C. 

Case (ii): 	This is a following sequence,al  fromto  

X, where 
Y E f0(X) 

and 
	

T. E f1  (Y) 

(i.e. C. is followed by Y which begins with T.) 

Note: If the grammar is not in LFF then we may have, 

- and 

- ended by 

T. E f1  n(Y) 1  (n> 1) 
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Defn: The diagram, F
0  
* U F1 together with its associated operations 

F(f0,f1) is called the Backup Diagram. 

The identities given earlier, if applicable, will each remove one of 

these link sequences (i.e. an element of F(f0, f1 
 )). If the grammar 

has an (implied) infinity of such links, as in example 3, then the 

transformations will attempt to create a countable infinity of 

subsidiary classes to circumvent the violation; in this case, however, 

we can create a bounded approximation to the grammar which in some 

cases may be sufficient. An outline of how this may be done (on a 

simple example) is given in Appendix 9 of [25]. 

If the grammar is in violation and has a finite number of link sequences 

which cause the violation then these should be removed in (some) 

decreasing order of length - this may not be a unique ordering, and 

the removal of a linkage sequence may cause other links to change. 

Removal of BU violation from a grammar in LFF may be algorithmatized 

thus: 

AIV: 	(i) Form the backup diagram and check for unbounded sets of 

differinglink-sequencesbetweenC.andT.,as des-

cribed above - if any found then halt or make a bounded 

approximation. 

(ii) Remove any superfluous links by applying the first 

identity (of the set al - a5, bl, cl) which is applicable 

after chains have been removed. If any new links have 

been created go to (i), else halt. 
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2.1.2.4 Miscellaneous checks and reductions  

(a) Removal of trivial classes; any class where definition consists 

of a single option is called trivial. Any such class (other than 

the parse root) can easily be removed by back-substitution of the 

definition for every occurrence of the class name in other pro-

ductions provided that this class is not directly self-embedding. 

e.g. 
C a C 	for any adEl P(  I 

(b) Removal of redundant classes: any (non-root) class which is 

never accessed (directly or indirectly) from the root class is 

redundant and cannot occur in any parse. 

If a class is not redundant it is used and we abstract the property 

of being used in the following way:- 

For each node, a, in C we derive a set, e 
a
, of links from a. 

i.e. ( = (0: 0 E C and 0 occurs explicitly in the 

definition of a) 

e.g. if C1  ::= C2albC3IcyC1 IC3  

then 	
C l = (c1' C2,  C3, C) 

If we order the classes in such a way that the root class is number 1, 

and declare an array 'used' of length ICI with this same order, then:- 

AV 	(i) set used (1) = 1, used (i) = 0, (i 	1) 

form e for all a E C 
a 

set E= Q 	 = 
root 	C

l  

(ii) if Q= 0 then exit 
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(iii) if Ci  E Q , then - 

if used (i) = 1 goto (iv) 

otherwise, set used (i) = 1 

and q= (Q\  c.we c. 

goto (ii) 

g(iv) set Q = QA C. , goto (ii) 

Since ICI is finite for any usable BNF grammar and each class 

definition is finite, then all e 
a 

are constructable and AV must 

terminate. After termination, the set of classes, Ci  : used (i) =1 

are clearly the only ones used by the grammar. 

We may call the diagram resulting from the relation e , the usage, 

graph: 

e.g. 	aBcld 

B cA 

C -4 x 

yields the usage graph: 

C 

i.e. C is redundant. 

An alternative characterization of usage may be given thus: 

define gri  = e 	if n = 1 
a 	a 

Q if n 1 
0Een -1 lit  a 

then C. is used iff 	m E 	m s ICI 1 

and 	 C. Ee m  
ci 
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(c) Recognition of non-terminating grammars: We make the 

reasonable demand that any class name (linked to the root class) 

should be capable of generating at least one, possibly empty, 

string over TutAl. In particular this excludes productions of 

the form 
X 	aX0 

and 	
X-+ aY 

Y-+ OX 

etc. where no other productions exist. 

Formally we require that 

	

(y : Ci 	y)(VT* k) (A) ) 

for all C. E C, where T* is the set of non-empty strings over T. 

This property can easily be checked by amending the linkage relation 

Q a, so that: 

ifaa-4y :aECandyis either a string overTory= A 

then T E e a , where T is a special symbol. 

Call the extended relation Q. over CU (T) 

now let 	Q*1  = e* 

	

a 	a 

and Q*n  = U e *0  
0:0Eea* n-  {T} 

(n > 1) 

then. C. derives a terminal string (or A) iff 3 m E N : m s ICI and 

T Eq m  

The diagram of the extended linkage relation  e* is called the 

linkage graph. 
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e.g. (i) 
	-4 acid 

B 	cAleC 

C -0 xlyA 

has the linkage graph: 

This grammar has no non-terminating classes, however the following 

has: 

e.g. (ii) 

t
C

A bBic 

B -0 dC 

eB 

 

 

(d) Removal of duplicate classes: using the same characterisation 

of equivalence of productions as given in the definition of the 

extended factorization procedure we require to replace all occurrences 

of the name C. by the name C. whenever, 

	

(1) 
	

C. ::= a1 la21...lan 

and 	C. ::= af(1)
la
f(2)

1 ...la
f(n) 

where f is a bijection on (1,2,...,) 

or 	(ii) 	C.
1 
 ::= h(Ci) 

and 	C. ::= g(C.) 

where g, and h are string functions which are 

equivalent under (i) 



69 

tY

tY

-4 alb 

-• bla 

-4 aXib 

 blaY 

2.1.2.5 The Composite Algorithm  

SYMAL 	(i) Remove redundant classes and check for non-termination 

of grammar. 

(ii) Derive LFF 

(iii) Remove redundant and duplicate classes 

(iv) Check and remove BU violations 

(v) Remove redundant and trivial classes. 

This algorithm may fail at stage (i) non-terminating grammar, stage 

(ii) ambiguous grammar, and stage (iv) infinitely strong BU violation. 

Details of the failures are given in the relevant subalgorithms. 

We claim that the grammars produced by the algorithm are much 

easier to handle from the point of view of naive left-to-right parsing 

although they may be unwieldy and difficult to read. In answer to 

this (implied) criticism, we remark that it would be both possible 

and desirable to keep two versions (one original, one modified) of 

the grammar for use by the human reader and the syntax checker res-

pectively. However a modified notation which makes these modified 

grammars 'readable' is given in §2.2. 

e.g. 

and 
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2.2 On Syntax Construction 

Using the material of §2.1 we formulate a set of rules 

which may be used in constructing the syntax of a language so that, 

without modification, it is fully recognisable by a simple left-

to-right no-lookahead parser. 

Notes on the specification of several common constructs 

are also included. 

As mentioned in the Introduction to the thesis, 'syntax' 

refers to the pure syntax which can be generated by a BNF grammar 

and ignores all context-sensitive semantic restraints which must 

elsewhere be checked. 

2.2.1 The Construction Rules  

The rules are of two types, local and global, these corres-

pond to the Left-factored from (LFF) of productions and to No-backup 

(NBU) grammars. A detailed examination of LFF and NBU is given in 

§2.1, to which the reader is referred. Below we describe the required 

forms but give no justification of their relevance. 

2.2.1.1 Local Rules  

If a production has the form 

<x> ::= a
1
la
2la31...lan 

where a. (1 s i s n) are strings of terminal and non-terminal symbols; 

then we require that each ai  (1 s i s n) begins with a different 

terminal symbol with the possible exception of an  which may be the 

null string, A. 

t
More properly, we use the rules for constructing the productions which 
define the syntax. The rules given do not explicitly govern the syntax 
but the way it is specified by a suitable grammar. 
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LLF is obtainable by using the identities of §2.2.2.1; however the 

resultant production will in general be long and unwieldy. The 

notation introduced in §2.2.1+ will allow these lengthy productions 

to be cast into a more readable form. 

2.2.1.2 Global Rule  

The global rule corresponds to the set of conditions 

given by Knuth [59]t  and which, by virtue of the LFF of productions, 

reduce to: 

if 3<x> : <x> A 

then we require that 

first (<1>) n follow (<%>) = 0 

The function5'first' and 'follow' are formally defined elsewhere 

in §2.1, but may intuitively be thought of as: 

first (X) = the set of terminals which begin 

alternatives in the defining production rule 

follow (X) = the set of all terminals which may follow 

an occurrence of the class 'X' in the 

grammar. 

The location of all X : X -s A and the construction of the sets first (X) 

are trivial. 

The formation'of follow (X) is, in general, non-trivial but is made 

considerably easier if lists of similar constructs within the syntax 

are defined in a uniform and useful way - see §2.2.3. 

tIt is conjectured that the conditions do not hold for some ambiguous 
grammars, however this last point does not affect the thesis since an 
ambiguous construct will only be recognised in one way by any well-
defined parser. 
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2.2.2 Identities  

An extensive set of transformation identities has been 

given [25] and is not repeated here. Most of those identities are 

applicable only in extremely unnatural constructs. The identities 

given below are considered to be the more commonly encountered and 

desirable ones. 

2.2.2.1 Local identities  

(a) Factorization: 	if 	X : X ::= aplay 

then 	X ::= aX' 

X ::= OlY 

where a,p,y are strings of terminals and non-terminals 

and a A. 

(b) Direct left recursion: 

if 	X: X ::= X ali3 

then 	X ::= 
X'::= aVIA 

where a,0 are arbitrary strings. 

(c) Simple BU-violation: 

e.g.: X : X' ::= xaXxOlylA 

I 
E follow (X) 

E first (X) 

violations of this type can usually be resolved 	but 

meaningful equivalents can be constructed in a more systematic 

way as in §2.2.3. 



.73 

2.2.2.2 Non-local Identities  

(a) Back substitution of productions: 

if X ::= a1 Ia2I.••Ian 	and 

Ri (1 5 i s n) : ai 	cpi  

where C is a non-terminal, then the definition of C has 

to be substituted for this occurrence of C in a.. 1 

So if 	
C = Y1lY21 --- 1 Ym 

then X becomes 

X ::= 

The order in which this substitution operation is applied 

to the productions is important (for details see p.26) 

moreover if a suitable starting point for the substitution 

cannot be found we must appeal to an alternative technique 

(b). 

(b) Unlocking of productions: 

should (a) above not be applicable and there exist pro-

ductions which are not in terminal (i.e. LF) form; then 

we must use a technique analogous to solving systems of 

linear equations (see page 41). 	It is not described 

here since such interlinking of non-terminals is unlikely 

to occur in a 'real' language and should not occur 

synthetically. 

(c) General BU-violations: 

usually these are very tedious to detect and are the result 

of untidy syntax design. As in 2.2.2.1 (c) we refer the 

reader to §2.2.3. 
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2.2.3 General Remarks and Hints: 

Of what follows most is 'obvious'. The points which are of 

special importance are marked by an asterisk. 

2.2.3.1 Connectedness  

All non-terminals (and terminals) of the grammar must be 

contained in at least one sentence of the derived language. 

2.2.3.2 Finite Generation  

Each sentence of the language must be of finite (but 

possibly unbounded) length and be generated in a finite number of steps. 

2.2.3.3 Minimality 

If two or more non-terminals generate the same set of 

sub-sentences, then replace all occurrences of such non-terminals by a 

single (possibly new) non-terminal and form a suitable defining pro-

duction. Some of the original classes will now be disconnected and 

removed by 2.2.3.1. 

*2.2.3.4 On the occurrence of A 

As stated in §2.2.1.2 BU violations can only occur if we 

have a A-producing class. 

i.e. 3X : X 

and by the restrictions imposed by LFF, this reduces to 

773X : X-. A 

i.e. 	X : X ::= a1lu21—lan-11A 

Naturally, the constructs present in the syntax must to a large extent 

reflect the constructs of the language and over these we have no control. 
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However the more commonly occurring instances of A-producing classes 

present in 'real' languages should not give rise to BU violations if 

the following guide-lines are adhered to. 

*2.2.3.4.1 Factorization  

BU violations can only arise from factorization if 

symbols are 'misgrouped'. In non-recursive constructs a regrouping 

is always possible. 

Suppose 	3A : A ::= 0/14 

then 	A ::= 

and 	A' ::= 0IA 

Now 	A' -+ A and 0 E first (A') 

Violation can occur iff 0 E follow (A'). However A' only occurs in 

the definition of A and A follows A' in A 

so 	follow (A) = follow (A') 

i.e. 	0 E follow (A') 

'' 	0 E follow (A) 

0 	3C : C ::= yA0 

then 
	C 	yA0 

C ::= yupplya0 

::= y451,,q3C 1  

C'::= CIA 

Since in the above instance the language constructs were assumed to 

be non-recursive the process must ultimately end when we have re-

grouped productions of X and 0 it follow (X)- 

*2.2.3.4.2 Lists and Sequences  

Recursion is often used to describe a list cons- 

truction even though a list is fundamentally not a recursive entity. 
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Typically we may have: 

(a) 
t 
 <Unsigned integer> ::= <digit>I<unsigned integer> <digit> 

i.e. 	X ::= diXd 

Here X yields a sequence of one or more 'd's. 

(b)t  <actual parameter list> ::= <actual parameter>I<actual parameter list> 
<parameter delimiter><actual parameter> 

i.e. 	Y ::= afYda 

Here Y is a proper (i.e. non-empty) list of 'a's delimited by 'd's. 

(c) X :.= XdIA 

A (possibly empty) sequence of 'd's. 

(d) Y ::= aY1 IA 

Y1  ::= day1 IA 

Y generates an empty list or a proper list of 'a's delimited by 

'd's. 

The above cases (a-d) can be used to generate all lists and sequences, 

moreover if such combinations are terminated (explicitly or implicitly) 

by a suitable terminal symbol, i.e. one which is distinguishable from 

the components and/or the delimiters of the list or sequence - this is 

surely a most reasonable thing to ask of any meaningful readable 

language - then we may use the following (LFF) equivalents without risk 

of NBU violations. 

(a) ::= dX1  
X'::= dX'IA 

d fit follow (X) 

(b) Y ::= aY' 
Y'::= daY'IA 

d follow (Y) 

examples taken from Algol-60 revised report [823. 
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(c) X 	dXIA 

d follow (X) 

(d) Y ::= aY'IA 

Y'::. daY'IA 

a,d fi follow (Y) 

2.2.3.5 Trivial Classes  

Any connected class (which is not the root) with only a 

single option may be removed by substituting its definition for each 

occurrence of the class name. By §2.2.3.2 such a class cannot occur 

(explicitly or implicitly) in its own definition. 

2.2.4 Abbreviated BNF 

Constructing a syntax as described in §2.2.1-3 gives rise 

to class definitions which have many (similar) options each of which 

may be of considerable length. For example an Algol-60 identifier 

(restricted to an upper-case alphabet) may be represented thus: 

<identifier> ::= A <j.:(351 
B <id'>I 

Z <id'> 

<id') 	A <idl>1 
B 

Z <id'>I 
Jer<j-d'>1 
<id'>I 

9 <id'>I 
A 
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Such productions tend to make the syntax unreadable. As a first step 

to making these productions more easily understood we utilize some 

set theoretic notation: 

Write the set (a,b,c) as 

(alblc) 

then: 

	

<identifier> 	(AIBI...IZ) <id'> 

	

<id'> 	(AIBI...1Z1011j...19) 

Extending this notion a little further: 

<A> ::_ axylbxylcxyldy 

becomes <A> ::. ((alblc)xid)y 

Such notation will enable us to rewrite many class definitions in a 

more compact form. In simple cases, e.g. <identifier> as above, the 

definition will also be easily intelligible, however if nesting of 

sets occurs, e.g. <A> above, then readability is impaired. To avoid 

nested bracketing we introduce a new entity called a direct terminal 

class. 

A direct terminal class (DTC) is written thus 

<name of class> 

and is a class such that each option of its defining production begins 

with a terminal symbol or a DTC t. A DTC is defined in the same manner 

as other classes, indeed a given class may occur in a syntax as both a 

DTC and an 'ordinary' class. 

Using the examples as above we have: 

Note that no circularity can be incurred by such a definition since 
DTC's are all derived from LFF productions. 
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<identifier> ::= <alpha> <id'> 
<id'> ::= <alphanumeric> <id'>IA 

<alphanumeric> ::= <alpha>I<digir 
<alpha> ::= AIBICI...IXIY Z 
<digit> ::= 011121...1819 

<A> ::= <A1>y 
<A'> ::= <A">xId 
<A"> ::= a:TIc 

It is easily seen that the resultant syntax is comprehensible yet 

it is quickly transformed to a left-to-right recognisable form. 

Of course, if a stack is introduced we can parse directly left-to-

right from such a grammar. 

A grammar which includes DTC's will be termed an abbreviated BNF 

(AHD"). 

The concept of ABNF is to be found in many other systems, notably 

SID ([46], [121]). 

2.2.5 Consequences 

Any grammar generated by SID is unambiguous, [46], and 

by virtue of the similarity in strategy, so is any grammar which is 

constructed in accordance with the rules of §2.2. 

Formulation of a 'suitable' syntax for Algol 60 - which is 

possible by [46] - will need to resolve such syntactic (see p. 8 ) 

ambiguities as: 

<primary> 	<primary> 
1 

<variable identifier> <ID  rocedure identifier> Factual parameter part: 
1 

<identifier> 	<identifier> 	A 

Similarly for other occurrences of implicit type attributes related to 

identical syntactic constructs. 
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Any ambiguities detected by the formation of LFF productions will 

give rise to productions of the form: 

X ::= AIA 

These may be removed by replacing X by A wherever it occurs, any 

required semantic distinction being made later. 

AmbigUities incorporated in NBU violations should be detected by or, 

better still, prevented by satisfaction of the 'xE follow (y)' 

predicates of §2.2.3.1+. 

It may also be desirable, in order to keep the number of constructs 

within manageable limits, to widen the syntax so as to accept strings 

which will later be rejected by other (semantic) restraints. A typical 

example of this is in Algol 60 [82] where the conditional expressions:- 

<if clause> <simple arithmetic expression> else <arithmetic 
expression> 

and 	
<if clause> <simple Boolean> else <Boolean expression> 

may be usefully widened and combined to give:- 

<if clause> <simple expression> else <expression> 

Indeed:when dealing with polymorphic objects (e.g. 'global' identifiers 

in Algol procedures) similar constructs may not be distinguishable, by 

any method, before execution of a particular occurrence of that construct. 

2.2.6 Summary  

The rules of §2.2 provide a framework for the construction 

of (context-free) syntax [16] of a large set of real programming languages: 

any context-sensitive restrictions now fall into the realm of semantics 

and must take the form of compile-time or run-time validation checks. 

This is further discussed in later chapters. 
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CHAPTER 3  

THE LANGUAGE X; AN INTRODUCTION  

3.1 Informal description  

X is an Algol-60-like block-structured language. The syntax 

is given below in a variation of BNF. These modifications to BNF, 

which were fully explained in the previous chapter, aid parsing; 

however if the underlines of various non-terminals are ignored 

we revert back to standard BNF, familiarity with which is assumed. 

This standard BNF analogue is sufficient for the informal definition. 

Language X Syntax  

1. < program > ::= < block > 

2. < block > ::= begin < decn >; < stmts > end 

3. < decn > ::= let <. proper id list > be < type > 

4. < proper id list > ::= < id > < id list > 

5. <id list > ::= , < proper id list > 1 A 

6. < type > ::= real 1 int 

7. < stmts > ::= < stmt > < stmts 1 > 

8. < stmts 1 > ::= ; < stmts > I A 

9. < stmt > ::= < block > 1 goto < label > 1 < id 1 >:=<exp > 1 

L < special > 
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.10. < id 1 > ::= A 1 B 1 Ct  

11. < id > ::=A1B1C1 Lt  

12. < label > ::= L < digit > < rest of in > 

13. < special > 	< digit > < rest of in > < unlab. stmt > 1 

:= < exp > 

14. < digit > ::= sd 1 1 1 2 1 ... I 8 1 9 

15. < rest of int. > ::= < digit > < rest of int. > 1 A 

16. < unlab. stmt > ::= < block > 1 oto < label > 1 < id > := < exp > 

17. < exp > ::= < token > < exp follower > 

18. < exp follower > ::= + < exp > 1 A 

19. < token > ::= < id > 1 . < digit > < rest of in > 1 

< digit > < rest of in > < rest of number > 

20. < rest of number > ::= . < rest of int. > 1 A 

That this grammar for X satisfies the conditions laid down for 

direct left to right recognition is verified in §3.2. 

We now give.two examples of valid X programs. 

I. 	begin let A, B, C be real; 

A := 3.0 ; 

B := A + 1 ; 

C := B + 1.7 ; 

begin let B, L be int ; 

L := C ; 

B A 

end 

end 

tNote: < id > could be the entire alphabet and < id 1 > < id > L, 
but this would add nothing to the exposition. However, notice 
the importance of including 'L' and the related parsing problems. 
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II. begin let A be real; 

begin let B, C be int 

C := 7; 

B := 3; 

L2 	A := B + 2.9; 

goto L7; 

L3 	B := C; 

goto L2; 

L7 begin let B be real; 

B := A; 

C := C + 7; 

A := C + B 

end; 

goto L3.  

end 

end 
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3.2 Verification that the given syntax is suitable  
for left-to-right parsing  

Referring to [25] and [59] and the relations 'first' and 'follow' 

of Chapter 2 we recall that a necessary condition for an unambiguous 

language (and its associated grammar) to be recognisable directly from 

left to right is:- 

If g< x > : <x > A 

-then first (< x >) n follow (< x >) = Sd 

This condition may be checked by using the 'Produced Head Symbols' 

table and the 'C1 Matrix for Stacking Decision' produced by McKeeman's 

Compiler Generating System [77]. 

Before discussing the usage of the tables we note that 

denotes the end of input to the recogniser, and A is replaced by <empty>. 

Now, first we find all non-terminals, N, such that 

N <empty> 

This is detected by:- 

PHS(N, <empty>) = Y 

Having found such an N we use the PHS table to find all terminals Ti  

infirstMandtheCINIatrixACIPOtonlidallterglinalsT.in 

follow (N): 

i.e. 	first (N) = (x : PHS(N,x) = Y) 

follow*(N) = (x : C1M(N,x) = Y,N or #) 

[follow* is restricted to terminals because C1M is similarly restricted.] 
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We now check that these conditions hold in the syntax for 

language X, the tables for which are given at the end of this section. 

Trivially we need only consider the non-terminals numbered 38, 

43, 44, 45 and 47: 

i.e. 	< iden list > 

< statements 1 > 

< rest of number > 

< rest of integer > 

< expression follower > 

This is because 

PHS (< iden list >, < empty >) = Y (see p. 91) 

etc. 

	

Nowt, first (38) = (2) 	(,) 	(see p. 91) 

first (43) 	(1) 

first (44) = (18) 

first (45) = (7, 8, ..., 15, 16) 

first (47) = (17) 

Similarly, from C1M we have 

-follow (38) . (21) 	(see p. 92) 

follow (43) 	(22) 

follow (44) = (17) 

follow (45) = (1, 3, 4, 5, 6, 17, 18, 26, 27) 

follow (47) 	(1) 

Notice that since XPL back-substitutes to the level of terminal symbols 

we may ignore the second Backup Condition since 

From hereon we restrict consideration of first and follow to their 
terminal elements \ A, this causes no loss of generality. 
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if X E f (C.) and X non-terminal 
o 

then a E f1  (X) = a E fo  (C.) 

Now, writing C
38 

for <iden list> etc. (see tables), we. examine in 

turn the above classes 

f1  (C38) 
	(T

2' 
T
28
)  

= (T2, A) 

f
o
1(T

2
) = (T3, 	T , C ) 3 ..., 6 30 

i.e. 	C38 	A 
•—. 

' T 
• 2 

1 

 

C30 

Here there is a violation iff there is a 'following-sequence' from 

C38  to C. . We consider such sequences for all non-terminals later 

on in this section. 

f
1
(C
43) = (T1, A) 

f
1
(C
44) = (T18, A) 

f (C 	= (T ...T 	A) 1 45 	7 16' 

f
1(C47) = (T17' A) 



C32 A 

T 17 

T
1  

C39 
t C 	c 

40 	T 

" 	
2e 

A 

4. 
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The relevant sections of the backup diagram are as follows. 

A4- — — 
C,A  A C46 

 

.21 

   

From these segments it can be seen that there exist no "following-

sequences", 

from C38  to C 30 

from C
43 

to C
29 

.31 

etc. 

from 	to C45 

from C
45 

to C
33 

nor from C
47 

to C 30 

C
34 

etc. 
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Hence 5(1C : foQ. (C.
1
) (1 (f1  (C.) \ A) 	0 o 	1 

for any 
	

C. E
-11 

(A) where £ is a following sequence. 

Therefore the NBU condition is satisfied. 

The relevant XPL-generated information now follows:- 
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PRODUCTIONS  

£ GRAMMAR FOR LANGUAGE X 

1 <PROGRAM> ::. <BLOCK> 

2 <BLOCK> ::. 'BEGIN' <DECLARATION> ; <STATEMENTS> 'END' 

3 <DECLARATION> ::. 'LET' <PROPER IDEN LIST> 'BE' <TYPE> 

4 <PROPER IDEN LIST> ::. <IDEN> <IDEN LIST> 

5 <IDEN LIST> ::. , <PROPER IDEN LIST> 
6 	I <EMPTY> 

7 <TYPE> ::= 'REAL' 
8 	I 'INT' 

9 <STATEMENTS> ::. <STATEMENT> <STATEMENTS 1> 

10 <STATEMENTS 1> ::= ; <STATEMENTS> 
11 	1 <EMPTY> 

12 <STATEMENT> ::= <BLOCK> 
13 	I 'GOTO' <LABEL> 
14 	I <IDEN 1> := <EXPRESSION> 
15 	1 L <SPECIAL> 

16 <IDEN 1> ::= A 
17 	I B 
18 	 I C 

19 <IDEN> ::. A 
20 	I 
21 	1 C 
22 	I L 

23 <LABEL> 	L <DIGIT> <REST OF INTEGER> 

24 <SPECIAL> ::. <DIGIT> <REST OF INTEGER> <UNLABELLED STATEMENT> 
25 	1 := <EXPRESSION> 

26 <DIGIT> ::. 0 
27 	1 . 
28 	2 
29 	3 
30 
31 	5 
32 	6 
33 	7 
34 	8 
35 	9 

36 <REST OF INTEGER> 	<DIGIT> <REST OF INTEGER> 
37 	I <EMPTY> 
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38 <UNLABELLED STATEMENT> ::= <BLOCK> 
39 	 I 'GOTO' <LABEL> 
40 	 I <IDEN> := <EXPRESSION> 

41 <EXPRESSION> ::. <TOKEN> <EXPRESSION FOLLOWER> 

42 
43 

44 
45 
46 

<EXPRESSION FOLLOWER> 	+ <EXPRESSION> 
I <EMPTY> 

<TOKEN> 	<IDEN> 
I 	. <DIGIT> <REST OF INTEGER> 
I 	<DIGIT> <REST OF INTEGER> <REST OF NUMBER> 

47 <REST OF NUMBER> ::= . <REST OF INTEGER> 
48 I <EMPTY> 

TERMINAL SYMBOLS NONTERMINALS 

1 ; 29 	<TYPE> 
2 , 30 	<IDEN> 
3 L 31 	<BLOCK> 
4 A 32 	<LABEL> 
5 B 33 	<DIGIT> 
6 C 34 <TOKEN> 
7 0 35 	<IDEN 1> . 
8 1 36 	<PROGRAM> 
9 2 37 	<SPECIAL> 
10 3 38 	<IDEN LIST> 
11 4 39 	<STATEMENT> 
12 5 40 	<STATEMENTS> 
13 6 41 	<EXPRESSION> 
14 7 42 	<DECLARATION> 
15 8 43 	<STATEMENTS 1> 
16 9 44 	<REST OF NUMBER> 
17 45 	<REST OF INTEGER> 
18 . 46 	<PROPER IDEN LIST> 
19 := 47 	<EXPRESSION FOLLOWER> 
20 48 	<UNLABETIED STATEMENT> 
21 'BE' 
22 'END' 
23 'LET' 
24 'INT' 
25 'REAL' 
26 'GOTO' 
27 'BEGIN' 
28 <EMPTY> 

<PROGRAM> IS THE GOAL SYMBOL. 
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PRODUCED HEAD SYMBOLS: 

1111111 1112222222222333 3333333344444444 

+124567890123456+7890123436789012+34567890123456784  

1 	;
y 

2 , 
3 L 
4 A 
5 B 
6 C 
7 0 
8 1 
9 2 
10 3 
11 4 
12 5 
13 6 
14 7 
15 8 
16 9 

17 + 
18 . 
19 := 
20 
21 'BE' 
22 'END' 
23 'LET' 
24 'INT' 
25 'REAL' 
26 'GOTO' 
27 'BEGIN' 
28 <EMPTY> 
29 <TYPE> 	 YY Y 
30 <IDEN> 	YYYY 
31 <BLOCK> 	 Y Y 
32 <LABEL> 

33 <DIGIT> 	YYYYYYYYYY 
34 <TOKEN> 	YYYYYYYYYYYYYY Y 	Y YY 
35 <IDEN 1> 	yyy 
36 <PROGRAM> 	 Y Y 	Y 
37 <SPECIAL> 0  YYYYYYYYYY Y 	Y Y 
38 <IDEN LIST> 
39 <STATEMENT> 	YYYY 	yy y 	y y 
40 <STATEMENTS> 	YYYY 	YY Y 	Y YY 
41 <EXPRESSION> 	YYYYYYYYYYYYYY Y 	Y YY 
42 <DECLARATION> 
43 <STATEMENTS 1> 
44 <REST OF NUMBER> 
45 <REST OF INTEGER> 	yyyyyyyyyy 	y 	y 
46 <PROPER IDEN LIST> 	YYYY 
47 <EXPRESSION FOLLOWER> 
48 <UNLABELLED STATEMENT> 	YYYY 	YY YY 

	 + 	 4 
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Cl MATRIX FOR STACKING DECISION: 

1 	; 
2 	, 

1111111 
1234567890123456 

YYYY 
YYYY 

111122222222 
789012345678 

YY 

3 	L N 	YYYYYYYYYY N # N 
4 	A N N N N 
5 	B N N N N 
6 	C N N N N 
7 	0 NNNNNNNNNN N 
8 	1 NNNNNNNNNN N 
9 	2 NNNNNNNNNN N 

10 	3 NNNNNNNNNN N 
11 	4 NNNNNNNNNN N 
12 	5 NNNNNNNNNN N 
13 	6 NNNNNNNNNN N 
14 	7 NNNNNNNNNN N 

.15 	8 NNNNNNNNNN N 
16 	9 NNNNNNNNNN N 

17 	+ YYYYYYYYYYYYYY Y 
18 	. YYYYYYYYYY Y 
19 	: YYYYYYYYYYYYYY Y 
20 Y 
21 	'BE' YY 
22 	'END' N N 	N 
23 	'LET' YYYY 
24 	'INT' N 
25 	'REAL' N 
26 	'GOTO' Y 
27 	'BEGIN' 
28 	<EMPTY> N NNNN NN 	NN 	NNN 
29 	<TYPE> N 
30 	<IDEN> Y N Y 
31 	<BLOCK> N N N 
32 	<LABEL> N N 

33 	<DIGIT> YYYYYYYYYY Y 
34 	<TOKEN> Y 
35 	<IDEN 1> Y 
56 	<PROGRAM> N 
37 	<SPECIAL> N N 
38 	<IDEN LIST> 
39 	<STATEMENT> Y Y 
40 	<STATEMENTS> 
41 	<EXPRESSION> N N 
42 	<DECLARATION> Y 
43 	<STATEMENTS 1> N 
44 	<REST OF NUMBER> N 	 N 
45 	<REST OF INTEGER> N #### N# 	### 
46 	<PROPER IDEN LIST> 
47 	<EXPRESSION FOLLOWER> N N 
48 	<UNLABELTED STATEMENT> N N 
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3.3 Executive Semantics  

The semantics of X are as follows:- 

(i) the block structure is similar to that of Algol-60. 

Explicit transfers across block boundaries are forbidden. 

(ii) Assignment is treated as in Algol-68, i.e. we can widen 

an integer to a real but not vice-versa. Similar types 

can be assigned in the usual way. 

(iii) Addition between mixed node quantities is valid and 

integers are widened (see PS]) as required. 

The problem of (semantic) validation is dealt with in chapter 7, 

however we need to know about the executable semantics before we can 

describe the initial CPS (Carabiner Program Space) for X, hence we 

give the following (tentative) set of productions with semantic 

injections. Note that these are only intended as a guide to the 

run-time semantics which govern a valid X program. 

1. < program > ::= < block >. 
1.1 

2. < block > ::= begin  . block entry 
< decn > 

2.1 

< stmts 
2.2 

end <1 block exit 

	

3. 	< decn > ::= let 
< proper id list > 

3.1 

be 

< type > .;1link list to type 
3 . 2 

	

4. 	< proper id list > ::= < id > 	save name 4.1  

< id list > 
4.2 
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5. < is list > ::= 

< proper id list > 	1 5.1 
A 

6. < type > ::= real 

int 

7. < stmts > ::= <  stmt  > < stmts 1 > 7.1 	7.2 

8. < stmts 1 > < stmts > 	1 A 
8.1 

9. 	< stmts > ::= < block > 	I 9.1  

goto  

< label > 	generate 'goto' t  1 9.2 

< id 1 9.3 

< exp >9.4  . generate assignment 	1 

L < special 9.5 

10. 	< id 1 >::= A 1 

B1 

C 

11. 	< id > 	A 

BI 

CI 

L 

12. 	<.label > ::= L 

< digit > 
12.1 

< rest of int. 
12.2 

We merge: <1 generate 'goto' 	into a translation routine which 
simplifies the whole control network within an X-block. A fuller 
discussion of this is given in the appendix. 
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13. 	< special > ::= < digit > 
13.1 

< rest of in > 
1342 

< unlab. stmt > 	1 
13.2 

< exp > 	4 generate assignment 
13.4 

14.  < digit > 	::= 0 	1 	1 1 	2 	1 	... 	1 	9 

15.  < rest of int. > ::= < digit > 
16.1 

< rest of int. > 	1 
15.2 

A 

16.  < unlab. stmt > ::= < block > 	1 
16.1 

goto 

< label > 	4 generate goto 1 

< id > 
— 16.3 

< exp > 	4 generate assignment 16,4 

17. < exp > ::= < token > 	< exp follower > 
17.1 	17.2 

18. < exp follower > ::= + 

< exp > 	4 generate addition 	1 
18.1 

A 

19. .< token > ::= < id > 	4 take value 	1 
— 19.1 

• 

< digit > 
19.2 

< rest of int. > 	1 
19.3 

< digit > 
19.4 

< rest of int. > 
19.6 

< rest of number > 
19.6 

20. 	< rest of number > ::= • 

< rest of int. > 	1 
20.1 

1642 

A 
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execution semantics: 

4 block entry fl. 

4 block exit 

4 link list to type 

4 save name is incorporated within translation 

4 generate 'goto' *„(. 

4 generate assignment 

4 generate addition 

The above 'injections' (and others concerned with validation) will 

later be defined by actions in the program space specified by the 

Carabiner language. 
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CHAPTER  

BASE FUNCTIONS OF THE SOURCE LANGUAGE  

In order that our system should (a) be definitive and (b) use 

the notation of the high-level source language we use a derivative 

of Markov's normal algorithms [74] to specify the 'base functions'. 

These are the routines, details of which are often ignored by other 

systems, that perform such functions as integer addition, subtraction 

etc., similarly real operations, and also logic operations. NaiVely 

we may regard them as the 'hardware' functions of the system. 

At this point we note that by allowing translations into binary 

representation a more pedantic set of definitions could be given by 

using the substitution operator S (see Chapter 6), however, such 

detail would be restrictive since by using different representation 

(or types of representation, e.g. binary, binary coded decimal, 

characters) equivalent processes would naturally give different 

results. We take the stand that any implementation of a given function 

is correct iff for each input the result (characterized as in the 

source language) is the same as that produced by the defining algorithm. 

This chapter contains the elements of the Theory of Markov 

Algorithms together with some extensions. As we wish to present this 

as concisely as is practicable it tends to consist of a set of 
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disjoint statements, rather sparse and unelaborated. Anyone 

with a prior knowledge of Markov Algorithms may skip this chapter, 

merely referring to it as is found necessary. 

In §4.1 we define the basic terminology associated with 

Markov Algorithms (MAs), giving two examples of such algorithms 

in §4.2. Extended MAs are defined in §4.3, and, in §4.4-5 we 

give details of how elementary MAs can be combined. 



4.1 Markov Algorithms: 

Our characterization of Markov's [74] scheme for the 

'abstraction of potential realizability' follows closely that of 

Mendelson [78] but the notation is modified to embody the concept, 

of the level of an algorithm to facilitate the formation of com-

binations of algorithmic schemata. 

We define the fundamentals of a Markov algorithm and describe 

further notation as it becomes necessary. 

Definition by equality is denoted thus:- 

def 
'definiens! - 'definiendum' 

Defn: The input to an algorithm, the algorithm itself, and the 

result of the algorithm are represented by sequences of 

atomic symbols which we call letters. 

Defn: A non-empty set of letters is called an alphabet. We denote 

the set of all alphabets by Ab. 

Given A E Ab, the set W(A) of words of A is the free monoid 

generated by A under the operation of concatenation with 

unit element A , defined below (see ffilg, [71]). To denote 

arbitrary words we use capital letters or barred small letters. 

E.g. A or a. 

IfaEAEAb then we writeafor a
1 
andAfor ao, VaE A. 

A is called the empty word and 

AFB V BE Ab 

.99 



100 

yet 

A E W(B) V B E Ab . 

Defn: The product of two words is denoted and defined by juxta-

posing them, and multiples of words are represented by:- 

n _ 
x : x E W(A) 

(the bar may be omitted if x E A). 

Defn: Given x E W(A), denote by l(R), the length of the word 
 

x, i.e. the number of letters occurring in it such that: 

1(a) 

1(A) 

n  
1(x ) 

1(a-) 

l(Xy) 

def 
= 

def 
= 

def 
= 

def 
= 

def 
= 

1 

0 

n1(X) 

n 

1(x) + 1(y) 

a E A 

R E W(A) 

a E A 

R,Y E W(A) 

We assume the existence of a denumerable number of alphabets 

def 
A. : i E N 	= 	C0,1,2,...) 

and 
(Ai  : i E N) c Ab 

We write A for Ao 
and assume there are special symbols 

L.' and '.' such that 

-. , . 0A VA E Ab 

Defn: Given A,B E Ab st. A c B we say that A is a subalphabet  

of B, equivalently that B is an extension of A. 
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If we tentatively regard an algorithm as a function whose 

value for any given argument can be found by a finite 

(terminating) calculation; and if the domain of the function 

f is denoted by 1)f; then, if Di.c W(A) we say that f is 

an algorithm in A. 

Defn: An algorithm over A is an algorithm in an extension of A. 

Defn: An algorithmic schema,  a , is a finite sequence of productions  

(or sets of productions) denoted by: 

P 	(') Qn 

where, if a represents an algorithm in A(E Ab), then: 

P.,Q. E W(A) (1 5 i,j s n) . 

There are three types of production. 

a) simple, written P 

b) terminal, written P -4 .Q 

c) total, 

written P Q. for simple total 

and 	P .Q. for terminal total. 

We shall show in §4.2 that total productions may be written 

in terms of simple and terminal productions and hence are 
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merely a notational convenience. The notation 

P -4 (.)Q 

is used for the general representation of an arbitrary 

production of any of the above types a), b) or c). 

Defn: Given x E W(A), let 1 = l(R) then define 

th 
(R) 	(1 s i s 1) to be the i letter in x 

e.g.: 

if 	A = (a,b,c) 

and 	R ab2ca4b E W(A) 

(here x is given in its canonical form) then 

(i)
1 
 = a 

(R)2  = b 

(R)
3 
 = b 

(R)6 = a  

(R)
9 	

b 

For completeness, we stipulate 

- def 
(x)i  = A Vi> 1(x) 

Then, given two words x E W(A) 

E W(B) 

def 
R = y = (R)i  = (Di  Vi E 

and trivially,if x = y then R,i E W(AflB). 



103 

Defn: If a,b E W(A) : A E Ab then we say that a occurs in E  

if a c,d E W(A) such that 

E = cad 

and denote this by a o b otherwise a le b. 

If a o b and 1 = 1(b), then let 

b 

a d2  
2 

where 1(-8.1) < 1(Zi  ) +1 

• 1 5 i 5 j-1 - - - c. a d. 
J 	J 	and 	j 5 1 

- be all the representations of b in the form ci  a di  

with Z1., a.1 
 E W(A). 

Defn: Then we say that the word c1  specifies the leading occurrence  

of a in E and the a immediately following Ci  is that 

occurrence. 

The action of the algorithmic schema, a, defined by the 

sequence of productions:- 

P
1 	(.)Q 

P.,Q. E W(A) 

(1si, jsn) 
Pn (')Qn 

over the alphabet A, may now be described. 

(The analytical notation for mapping follows [60], [65].) 

Let the input to a be P E W(A) 

(i.) if P. $ P Vi : 1 5 i sn then a has no effect on P 

(i.e. the algorithm passes all its n stages without 

action) 
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So, 

a : Ps-. P 

which we denote by 

a : 

(ii) otherwise 

a j : -1“n 

where 

P. o P 

and 

P. siP Ali : lsi<j 

jth  The j production is then to be applied to the input in 

the following way:- 

Since p. o .P there is a leading occurrence of P. in P, 

let this be specified by R1  such that 

P 	R P 
1 j 

R
2 

(a) If P.
J 
 -4 Q. (i.e. the jth  production is simple) - 

then replace this occurrence of P. byQj  .. 

i.e. 
a(.)  : R P R -. 	Q R2 

where 

1 j 2 1 j 2 

where a(i) is 

the jth production in the schema for a. 

Then execute the algorithmic schema once again (from 

stage (1)) using this modified word as input. 

(b) If P. "4 Q. (terminal) then carry out the process (a) 

but instead of recycling the process, halt and exit 

with the transformed word as the result. 
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(c) If P. -4 Q.. 
J 	J 

orP.-4.Q..then the whole of the 'input' word is 

replacedby. Q. and processing continued or terminated 

according to whether or not the production is simple. 

If a simple production is applied and transforms P 

to R, say, then we write 

a : pi- R 

If a terminal production is applied and transforms P 

to R, then the algorithm execution terminates and we 

write 

a : P r .R 

We will have cause in the sequel to refer to many different 

algorithms and we label these 

th 
So cri(j)  represents the j 	production of the .th  

algorithm. 

Defn: An algorithmic schema, 

a. = (a .
(j)  : 
	

1 	1 
isn. for some n. E N)) i  

is a Markov Algorithm, MA, in the alphabet A if 

(a) ai(j)  E Pj 	(.)Q., Pj, Qj  E W(A) 

Vj : 1 j ni  

(b) for any P E W(A), a a sequence Ro, R1, 	Rk  

such that: 
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R
o 5 P 

and Rk  e R (say) 

and where, for 0 5 j s k- 2 

a : R. 1 	j 	3+1 

and either 

(b') 

a • R 
i • —k-1 ~ Rk 

and 
ai  : Rk  

or (b") 

a • R 
i • -1C-1 	.Pic 

If (b') then we write 	k R 

If (b" ) then we write a. 	.R 

In either case we say that the application of a. 

yields R. 

to P 

4.2 Examples of two elementary algorithms  

Having formalized the structure and action of MAs we now 

give examples of the simple MAs required to evaluate simple integer 

functions. 

We may, as in recursive function theory, reduce the work 

involved in specifying the more complex operations by first defining 

the two basic functions 5 (the successor function on N ) and 2 (the 

predecessor function on
+
). This we do by the MAs $31 and 

	
2 

in figs 4.1 and 4.2. 
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Fig. 4.1 	131 (o on MT ) 

1) at -.6 	§a (E my 
2) all -. 	.0. (110N1 ) 

3) a .. 	0 
013 -. 	.1 

10 -4 	.2 
2B -4 	.3 
30 .4 

4)  Lfp - 	.5 

50 -. 	.6 
60 - 	.7 
70 . 	.8 

8p - 	.9 

5) 90 - 	00 

6) 0 _. 	.1 

7) A -. 	ot 

Fig. 4.2  B 2 ( Pori IT) 

1) Eeg -` ga 	(§ E 1 1  ) 

2) &11 --. .0. 	(1)°111 ) 
3) a06t . .0. 

4) ceP& --. PO 	(PE W(111  )) 

10 --• .0 
20 •-• .1 

   

5)  

 

    

   

:80 . .7 
9p . .8 .... 

6) 00 - 09 
7) A . as 
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These examples involve further notation which is now 

given, as is the formal definition of a total production. 

Notn: Let NI  = (0,1,2,...,8,9) 

Note: No Greek letters will be allowed in the input alphabets of 

our MAs and that any algorithm will be defined over the 

input alphabet extended by a subset of G, where 

G = (a,0,Y1s,C,-11,6,X0µ,v,§,rr,PlQ,T,X,'V1w)UG 

with 

G = (i : g E G) 

and write for : 1  for 	etc. 
a CY CY a 

The characters 0,11/,x have each a special significance which 

will be described in §4.4 and §4.5. 

Notn: We sometimes use an abbreviated notation of the form: 

P§Q 	(§ES) 

to represent, in any required order, the set of productions 

derived from the subalphabet S, when the cardinality of 

S, 151 is such that 

(a) 	ISI =n:nEN 

or 	(b) 	IA \ 81 .n:nEll and A is the alphabet of 

definition for the current MA 

or 	(c) 	ISM 	. i.e. S is bijective with 21. 

Defn: We define the total production:- 

y-4 .P. 

to be equivalent to the schema. 
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i)  

ii)  

iii)  

OP
1 
 yP
2  

A -* 8Z 

-4 .P iT
Pl ,P2  

V§EA 	for suitable A 

EW(A) 

P1 	specifies the leading 

occurrence of y in Ply 

The corresponding definition of 

y 	.P (i.e. simple and total) 

is identical but with 

ii)' 	OP1yP2
6 	P in place of ii) 

With reference to 51  (fig. 4.1) 

Notice: (a) that the contraction of production (4) causes no 

ambiguity 

(b) that production (2) is a total production 

(c) that parameter type errors would usually not 

reach this stage, i.e. execution, because they 

would constitute syntax errors, however when we 

link values to identifiers (simple names) we 

will require the explicit type checks of the 

kind incorporated in 13 1' 
and 	(d) that Tv is a special symbol which may be thought 

of as a (universal) error flag. 

?2  (fig 4.2) represents the function Pon the set 111- = /1\ (0). 

Since n E N n z 0 we can have no negation function 11-4 11. 

This concludes the introduction to MAs proper; in the next section 

we consider EMAs. 
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4.3 Extended Markov Algorithms (EMAs)  

We now turn to our first diadic operator, the diadic plus. 

In Polish notation this would be denoted by xy+ or x, y., 5)3 (say). 

We give a uniform technique for the manipulation of k-adic 

operators (V k z 0). Suppose that the triple given above occupies 

cells numbered 

1-2, 1-1, 1 

Formally we say that the function (here P3) acts on the preceding 
1-1 cells. To illustrate the manipulation more fully, consider 

the more general case with a list:- 

1 2 	1-n  

V
n 

1-2 1-1 1 1+1 

Let '9 be an n-adic function yielding m values ( P. may be thought 
of as a vector function or as a subroutine). 

(a) Input: strictly speaking each production in the schema for 

evaluating Pi is of the form:- 

where R,! are vectors of length 1-1, each co-ordinate of which 

is a word of the appropriate alphabet. We may illustrate the 

input mapping by fig. 4.3. 

(b) Execution: since the operation J9i is n-adic all the components 
of any production 

R -+ (.)g. 

of the schema for P which operate on co-ordinates j : j > n 
may be thought of as:- 

A A 



1 	2 1-n 1-2 1-1 1 

Schema for p 
i 

-. \ 
1 

V 
2 

	  IV 
n 

components of 
vector which i 
processed by a 
production of 

fili 

> 

111 

Fig. 4.3  

Fig. 4.4  

1
R -, S1. 

2 
 . 

.2Q  

8
m
-3Q 

3
R 

n 
 

1-n 	1 -n+m -1 



112 

and, because such a production is always applicable and has no 

effect, it is omitted from the schema. Any void co-ordinate 

production within the schema (i.e. acting on the jth co-ordinate 

where 1 s j s n) must be shown but may be indicated by a long dash. 

For a production (e.g.:- 

R-• (.)Q •=7. 

• 

nR (.)n ) 

to be applied to a vector V = (V1,...,V
n
) we require that 

.Ro V. Vi : 1 s i s n 

and that no earlier production is applicable. Execution stops 

when either no vector production is applicable or when every 

co-ordinate of an applied vector production is terminal. 

(c) Output: when n > 1 and m 1 we use the symbol e to indicate 

the exit value of the function: we do this by appending 8 to 

a co=ordinate of the terminal vector production e.g. 

P 8.Q 

When m > 1 we use g : (1 s i s m) in a similar way. The action 

ofthe output mapping is illustrated by the example in diagram 

in fig. 4.4. 

To illustrate how these extended algorithms (EMAs) work we give, in 

fig. 4.5, the schema for a function, f, which takes as input three 

words in W(A), and combines them to produce two new words subject to 

the rule:- 

(g, E, E) 	05-6, 
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Fig. 4.5  

The function f: 

1)  

2)  {Ft 	 

3) f &t 	g(Te 

(t E A) 

(t E A) 

(§ E A) 

it) 

5) 

YPY 

0Q0 

aRcx --, 

A 

A 

A 

.A 

2 . Qp 

e 	.RQ 

00 

as 

(R, P, 	Q E W(A)) 
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equivalently, in terms of lists 

a, E, C, f 

4, 

EC, ab 

To exemplify further, we trace the execution of. f with input list 

xy, pqr, 01p, f 

Y Y 0 1 p 

4) 	1 	5pqr 

Ei x y 

• 

Y 0 .7( 1 

2) 	1 	t3 5p q 

x y 

0 1 p 

6) 	p q 

x y 

{Yo  0 1 p 

8) 	p q r 

p 

r 3) 1 

5) 2 

Y 

r 7) 

Y 

9) 3 

y 0 1 y p 

0 3 p q r 
acrx y 

y 0 1 p 

OpFqr 

a a x y 

T, 0 1 p 

0 p q r 

a a x y 

y 0 1 p y 

ppqr5 

	

0 1 p 	 yy01p 

	

input {p q r 	1) 	5 	S 5pqr 

	

x y 	 a Cr x y 

x a y 	a x y 

10) 4 
• A 

e2. pqr01p 
1 
g.xypqr 1p

x y 
output  q 

p 

r 

q 

0 

r 

1 
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Notice also, that if we require work space during the execution 

of an algorithm, or we have a function f': 

f' : Xn  Xm 	min 

extra components can be added to the vectors with indides < 0 

i.e. 	
V
-3 

V
-2 

v-1 

V
n 

Then we may initialize these cells to A and henceforth treat them 

in the same way as before, keeping the same input mapping technique 

so as not to interfere with these cells. 

4.4 Composition of Algorithms and Embedding 

4.4.1 Sequential Composition  

To formalize the notions of composing and nesting MAs and EMAs 

(or more correctly their schemata, though we usually ignore this 

distinction) we need more notation. 

Defn: Given algorithms a,3 over A E Ab, then if 

a (p) = 8 (p) y P EW (A) 

[inclusive of the case when neither is applicable to P and hence 

a (P) = P] we say that a,g3 are fully equivalent, and write a 	. 

Defn: A normal algorithm ai  is closed iff a a production of the 
form: 

a
i(J) 

S7- A .Q 
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Given any arbitrary MA, a, let at- denote the closure of a 

formed by adding the production 

A .A 

to the end of the schema for a. 

Trivially 

a• a 

Now we consider the problem of defining the composition 

o a  

of the MAs, a (over A E Ab) and 46 (over B E Ab). We usually 

have the case when AnB cif or even A = B and in order to deal 

with these cases we define a special procedure which creates 

an isomorphic copy of the required alphabet each time the MA 

is activated. 

For any given i E INT and A E Ab, define 

C. : A 	Ai  

where Al  is the I
th 

IM copy of A and 

C. : a-. a. 	(a E A) 

[The stimulus behind this is the requirement to attach a 

suffix to every letter, except -4 and . used in any MA; 

whenever a new MA is 'called' we increment the suffix of the 

current string and of the new schema by one.] 

Defn: An algorithm acting on an alphabet subscripted by i is said 

to act at level i. 

C. can be defined by the abbreviated schema 
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g -4  gi 

A -4 .A 

Obviously C. is bijective and if we denote its inverse by 

- 
C.

1 
 then the transfer function required when entering a 

nested schema is the following: 

T. . Ft: C. ° C.-1  
1,3 	j 	1 

and for exit: 

-1 	-1 
T 	. PL.- C. 0 C. 
1,3 	1 	j 

At this stage it may seem that we are producing a circular 

construction by attempting to achieve composition by defining 

new functions which themselves have to be composed; however, 

as will be seen, the transition functions behave differently 

from arbitrary MAs and their composition is more easily defined. 

We refer to C. and T.. as subalgorithms; these never stand 
1 	1,3 

alone nor do they have input or output in the usual sense; 

they are used to formalize change of alphabets within 

algorithmic schemata. 

Since we have not yet defined the symbol '0' between MAs, 

the preceding equivalence for T. . is vacuous; we give a 
11J 

schematic definition:- 

T
i 
 . (i < j) 

1) g i  ei. ei  gi  
2) ei g i. — ei  

where § E A, 8 y2 A and 

A is the union of the 

alphabets of the component 

algorithms in the composition 

schema (see below) 

E A) 

j,i 



Ti,
j (i > j) 
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') 
2) *i  gi 	gj  Si  

3). Si 	Ai  

where 

g E A,.11/ 	A 

T. . is as 	(i > j) but with production 3) replaced by 
1,3 	i,j 

3') Si 	.A. 

N.B. We even index the empty word and require that 

A. ci P. 	if i 	j 	V P E W(A) 
1 	j 

N.B. In the schemata for T, g is a dummy variable but 0, $ are 

not; they are linkage markers and are used as illustrated in 

an example given below. 

By their nature it is impossible to compose arbitrary MAs sequentially; 

what we do is define a new schema which embodies isomorphic (slightly 

modified but still isomorphic) copies of the constituent schemata 

which is fully equivalent to their sequential evaluation. 

Given algorithms a on A and 	on B 	we use the functions C. 

and C. 	to give: 
1+1 

ai def = 	CL,  on Ai  

_ 	def 23. 	on B
i+1 

We are going to define composition iteratively in pairs. The next 

modification to the schemata is to ensure the correct order of 

evaluation; if we are currently at level i then i+1 cannot be 

executed and any combination would terminate on the completion of a i. 



119 

We replace all termination 'dots' of the schema 

ai by e. 

i 
Call this the 9. termination of a and write it as: 

1 

Similarly for B form' 7 

Now define go a at level i by the schema given below, which 

consists of four ordered sets of productions. 

4) 	g *i+1  
Ti+1 

Multiple composition is defined by the following: 

if a, 19 , 	are MAs, then so is 

a ogo C 
where 	ao So e 	((ctoo )0 e) 

At level 6 this yields the schema:- 



where a o.8 at level 7 is: 

1)  T7,8  

2)  '1
8,7 

3)  71% 
18 

4) e7  
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1) T
6,7 

2) ri7,6 

3) ao ct8 7417  

4) 6 6o 
6 

The derived schema may be simplified by applying the reduction rule:- 

Ti,k where i>j>k 

in such a way as to minimize the total number of T's in the 

resultant schema. 

Defn: Consistent with our aim of trying to simplify notation and 

since we are justified in introducing any abbreviations 

provided only that we have a well-defined procedure for 

expanding them uniquely into an EMA; we denote a sequence  

of (sub) algorithms as in the preceding example by:- 

a. : a : a : 
j 	

a 
: n 

Defn: Now we can define the composition of a and0 level i by:- 

450 ai clef T. 	:
' i 
	: 	i+1 

i,i+1 	1+1,i 	0 	*. 

	

i 	1+1 

where a is simple. 
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An algorithm a is simple iff 

a 4 9,,Q 

for any non-trivial 53, Q. . The definition thus covers all 

multiple compoSitions, since:- 

6.13. ai. Ti, 	 : 	a 	: Co/3 +1  

	

,i+1 	i+1,i 	e. i+1 
where 

i+1 	 --i+1 ,7i+2 
62GB 	. T. 	. 	: 11. 	. 	

i 	
:6 *. 

	

1+1,1+2 	1+2,1+1 	G
+1 	1+2 

Examples of 	the mechanics of sequential combination are given 

at length elsewhere [23]. 

4.4.2 Embedding  

Having defined the functions $ and 9 on Nand 11+  by 

the schemata B1  and 432 (given in figs. 4.1 and 4.2) we wish to 
use these to calculate 'x+y' by increasing x and reducing y until 

y=0; the current value of x is then the required sum. To do this 

we will need to achieve the effect of embedding one EMA within 

another, i.e. to have productions of the form:- 

P 	(..)Q a(n)I1 where a is an EMA 

Without formality, we dictate that when such a production is invoked 

we evaluate the embedded schemata (a) on the given input (n) and 

then replace a(n) with the result: the evaluation of a being carried 

out separately from the rest of the computation, i.e. we do not embed 

the schema for a, only a 'call' to a which is denoted by the 
occurrence of a. 
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2)  

3)  

14) 

6)  

7)  
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Now: 	z = (x+y) = (a) if 	(x=0) then z:= y 

else (x := x-1; 

y := y+1; 

goto (a)) 

Fi-om this definition we may extract an MA, 	3  given in fig. 4.6 

Fig. 4.6  

3' 
addition on 11 

(§ E 11.1) 

(P, Q E W 	)) 
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Proceeding in this way the other basic arithmetic functions can 

be defined [23], however it is easier to appreciate what is 

happening within an (E)MA if we define only the most primitive 

operations by such means; using higher-level operations to 

determine which sequences of basic operations should be executed 

next. These are fully defined (via MAs) in §4.5.1 and, in §4.5.2 

we use them to specify the fundamental arithmetic operations. 

4.5 Iteration and Ramification  

In this section we give two fundamental control routines. 

These model the Algol-60 constructs:- 

if ... then ... else 

and 
label: ... if ... then goto label; 	- and 

may be defined in terms of MAs as we show in §4.5.1. Also, one of 

the operations may be equivalently defined in terms of S as in §6. 

In §4.5.2 these control routines are used to define some of 

the less primitive arithmetic operations. 

4.5.1 Formal derivation of RAM and PTL. 

We wish to define the ramification of processes a and $ 

by the predicate y:- 

i.e. if y then a else 0 

- and the iteration of a controlled by 

the predicate y :- 

label: a ; if y then goto label. 

In order to simplify the exposition we use a continuous indexing 

scheme for denotation of levels, instead of using a system based on 
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primes (et G8del). This means that the constructions given below 

are technically incorrect. However, if (at the stages marked by 

an asterisk) we replace the construction by an equivalent al-

gorithm which acts at only one level, then the construction is 

valid. 

We now give the constructions. A commentary, to aid com-

prehension of the assembly, is included at the end of this section. 

Defn: If0 is a MA on A and Ac:B, prefix the schema to/0 with 

b b (b E B\A) 

Call the new schema cpB• 

Then 	
(1-9

B 
(P) p.,10(P) V P E W(A) 

B. is called the propagation ofcV onto B 

Defn: Given a on A and on B with AuB =. C. Let ac  and 8 c  be 

the propagations of a and onto C. 

Then Sc  o ac is the normal composition of a andg, and is 

written o a. 

In what follows we shall pay no particular attention to the 

compatability of alphabets; any inconsistency may be easily removed 

by using appropriate propagations. 

Defn: Given A,B.E Ab with A c B 

Then 

E
B
A  
: g - A (g E B\A) 

is the projection of B onto A. 

Defn: A predicate is a MA which yields (depending on its data) 

either the logic value T or the logic value F. 
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Defn: A void predicate is formed by the composition of the MA 

with a predicate, where 

	

v 	. 
• 

• 

A A  

i.e. if 6:1 .voG where eisapredicate, then 

G(P) = T 	C1(P) = A 

e(P) = F a 631(P) = F (+ A) 

Defn: We define the n-tuple algorithm at level i 

Tn 	1 : P. 	1 P.+1 1 P.+2 	i+n 
... P 	: P E W(A) 

- by the schema of fig. 4.7 

Trivially its inverse Tn
1 
 is defined by the abbreviated schema: 
- 

-1 	. 
T
n 

(at i) : t j  --• t. 	i<j5i+n 
Fig. 4.7  

T
n
: 

1) a§ii+1 gi+2i+n a (g E A) 

2) a --• A 

3) t111jj 1 
	

(i<j<a<n)  (, 	E A) 

4) A — a 

Defn: 	Using the tupling algorithms Tn  we form the juxtaposition 

of a set of MAs 

ai : 1 s i 5 n by 

	

45 = Ti 	
: T.

1 	,..: 
Ti +2,i• T. 

	: +n,i 	+n-1,i 	+2,i 	+1,i 

-i+1-i+1 : T
n 

1+n 	1+1 

and write 

g =a a 	a 
2 • • • 
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The major operation at which we are aiming is the ramification 

of two MAs governed by a third (void predicate) MA. In the cons-

truction of a ramification we use x as a selector flag and develop the 

concept by means of two lemmas. 

Lemma 1: 	Given a void predicate 4  over A then 3 an algorithm 

over A U (X) = B, such that: 

{ 

XP if P E W(A) and e C(P) = A 
• 

(For a description of e see §6.3. Informally e C(P) means the result 

of Con P.) 

Construction: Take 0 	B and let C = Bu(p). Define 001  over C 

by the schema 

1) a 	(a E B) 

2) 02  p 

3) p 	.A 

4) A 	.X 

(*) set 4;1' 2  = #1  °C 

Now if J is the identity function defined by the schema 

A --• .A 

Then: 

c17 =°2c9  

Lemma 2: 	Given MAs (*)a, (*)0 on A at level i and X 0 A then 

, an MA over Au (X) such that: 

1 

s ( x  p) p,- a(p) 
P E W(A) 

5(P) 	Q3(P) 

cv(p) 
P if P E W(A) and e G(P) A 
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Construction: is defined by the schema: 

1) 
i 

2) T.1  . 
	• t 	: ei+1 • •hi 

,1+1 •
• T. 
	. 

*1+1 

Defn: Taking (*)g and (*)4) as in the Lemmas and setting 

y = 5 04) 

then S is called the ramification of a and governed by G. 

i.e. 	a(P) if P E W(A) and e C(P) = A 
Y(P) 	49(P) if P E W(A) and e C(P) 	A 

Defn:
t 
Using the derivation of Y and regarding P as the common (or 

total), data for a,6 ande (via propagations) we define: 

	

RAM (C, A, B) 	y 

where P is understood. 

Defn: If we now set 41.9 = J and denote the new ramification by So, 

then: 
CE(P) if P E W(A) and e e(P) = A 

o (P) = 	
P if P E W(A) and e e(P) + A 

In this case we say that yo  is equivalent to a controlled  

by the (void) predicate (*)47 

i.e. 

y (P) := if e C(P) = A then a(P) 

else P 

Defn: If for a given Po
E W(A) we have a sequence P1, P2, P3, 	P

n 

with n E 11 such that 

t This is not the same as in [23]. 
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e  a (130) = P1 	eZ(P1) = A 

e a (P1 ) 	 P2 1
) 	P 	e(P2  ) = A —  

e a (p2  ) = P 
3 	

e e(p

- 	

3  ) = A 

e a (Pn-2) = Pn_l 	ee(Pn_i) = A 

e a (Pn-1  ) = Pn 	e e(pn  ) 	A 

then this may be viewed as the iteration of a controlled by the 

(void) predicate c? . We now formalize such an iterative scheme:-

Given a MA (*)a and a void predicate Cover A, then 

. 3a,C 

the iteration of a controlled by e is an MA; we give its construction:- 
Take x fl A and let B = Av[x) then349 over B such that: 

tXP if P E W(A) and e C(P) = A JP (P) = 	P if P E W(A) and e a(P) 	A 

let Y =40a and (*)Y is in , form the linked closure of 

Y, 	where X  ft F. Defines by the schema: 
X 

1) §R R§ 
	

E F) 

2) Xx A 

3) X  •X 

i+) 
X 

Then 
	F\ (x) 0 5 

Defn: From the algorithm 	Jag  we define 

PTL(A, C) 
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i.e. Process A (given by schema a), Test the predicate C 

(evaluated by () and if True repeat processing  from A, 

otherwise exit. 

Commentary: 

RAM:- For input x;  form xx 

Process the leading  x by f, 2  Ag 2(x) = X if 6(x) = A 

(i.e. C(x) T). 

This gives 41 (x) = xx 

Then god1 (x) = a (x) 
where a evaluates A 

Alternatively C+ A so cD(x) = x 

and 5os (x) .e? (x) 

PTL:- Given x do a(x) giving  result y,if C(y) = True then 

d)(y) = xy otherwisecP(y) = 

So if C(y) = True 

then 	(x) contains x- and x  hence by 5 we get x

- x

a (say) 
X 

and 5o(CY 1-■ CY 	and 
-X 

is repeated. 

Otherwise, if C(y) = False 

then 	(x) does not contain x  

hence by g 	.x  

and we get XP (say) on exit. 

Tinally-
F\(x) 

erases X giving  the required result. 

4.5.2 Examples: 

Given j3 (5 on ]IT) and 232 (.Pon N) thencR3 (addition on 1ST) 

may be redefined by:- 



130 

J5 
3(x,y) 

E.,  RAM (x = o, y, (PTL((x := g2(x), 

Y := 31(Y)), 

oDI  

y)) 

Similarly, 04  (multiplication on 1T +) 

g
4'- 
cx ) = RAM (x = 1, y, ( z 	y, 

PTL( ( x :=A(x), 

z :=03(y, z)), 

(x 	1)) 

z)) 

Explicit details of the order evaluation through control constructs 
are given in chapter 6. 
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CHAPTER 5  

THE PROGRAM SPACE AND THE OPERATOR k 

5.1 Informal Discussion  

In the Carabiner Program Space (CPS) we represent all directly 

addressable components of a computing system as elements of a list 

which we call the STORE. These elements are referred to as Key nodes. 

Another list, called ATTRIButes, holds the (abstract) properties 

which may be used to characterize elements of the system. 

Other components of the system must be linked in some way to 

STORE, and it is via these key nodes in STORE, that they are accessed. 

As a trivial example consider an Algol-60 identifier, COUNT, 

which denotes an integer quantity. We wish to represent this 

information by the relations:- 

integer .E ATTRIB 

COUNT E STORE 

- where 'w' is used to denote an unassigned value. 

A more complex example is given by the following (Algol-60) 

procedure declaration heading:- 
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integer procedure f(x,y); 	real x; 

integer y; 

value y; 

This may be represented thus:- 

integer, procedure, real 	ATTRIB 

STORE Q (OUTPUT FROM f IS (§1), f IS (§ , §2)) 

The meaning of 'OUTPUT FROM', 'IS' and (si) will be explained in 	1 

depth in subsequent sections; however, informally:- 

'OUTPUT FROM f' denotes the output from f, 

'IS' is a list definition operator, and 

th 
denotes the i element in a list 

Also it may be noted that a function is considered as a pair; the 

name of the function being identified with its input (formal) 

parameter list and the body, 'w' in the present example since we 

only know about the procedure head, which is 'possessed' by the 

name. We shall formalise these relations when we have defined 

the CPS rigorously. 
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5.2 Some Mathematical Definitions  

5.2.1 Lists: 	Our notation for lists is the usual one [45] 

but the operations defined are tailored to meet our special re-

quirements. The definitions given below are based on set-theory 

but we note that they can all be specified by Extended Markov 

Algorithms as in Chapter 4 or by S as in Chapter 6. 

Defn: A (double-ended) pseudo-list is a finite set, L, that is 

well orderedt  [72]. 

i.e. there is an associated order relation, which we write 

<, such that if 
L 

x, y E L 

and 

x y 

then 

x < y or x > y (not both). 
L 	L 

Moreover, since L is finite, there exists an element 

01 
of L : 01 

<x VxEL\ (01 
. 

L 
Also, if the cardinality of L, ILI = n E 1N , then there is an 

element 0
n 

of L, such that 

On  >x V xEL\ (On) . 

Selecting elements inductively by the rule 

Oi  : Oi  <x V x E L \ (01, 02, ... ,0i) 

with 1 5 i 5 n, and Oi  E L 

tBy the 'linearity' of a computer's store any set held within the 
store has an implicit ordering. 
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or equivalently 

O. : O. >x Y xEL \ (0i, Oj+1, ..., On) 
3 	L 

with 1 5 j 5 n and O. E L 

we have:- 

01 < 02 
< 03 

< 	< 0
n-1 <0n 

. 
L L L 

Hence, we denote the set L by:- 

(01, 02, 03, ..., On-2' On-1' On) 

Defn: Since a pseudo-list, L, is a set, we use E to denote 

inclusion. i.e. x E L iff L = (01, 	x, 	On) 

Defn: Given a pseudo-list, L, where 

L = (01' 
0
2' 

...
' 
0
n-1' 

0
n
) 

we define the left-augmentation of L with an object x 

by the operation AUGL such that: 

AUGL (L, x) : L H (x, 01, 02, ..., 0n
). 

Similarly for right-augmentation: 

AUGR (L, x) : L 1-• (01, 02, ..., On, x). 

Note that if M is a pseudo-list, then 

AUGL (L, M) : L 	( (M),01, ..., 0
n
). 

Also, to augment a pseudo-list by a set of elements, the 

order of which is irrelevant, we may use normal set notation, 

since no ordering is implied, so:- 

AUGL (L, (a, b, c}) : L r (a, b, c, 01, ..., 0n
) 

i.e. 

AUGL (L, {a, b, 	= AUGL (L, c) 

AUGL (L, b) 

AUGL (L, a) 
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but AUGL (L, (a, b, c)) : Lk ((a, b,'c), 01, ..., On) 

Notice that when using AUG's, the result may not be a 

pseudo-list; this leads to:- 

Defn: A list is an element of the recursively defined set .C, 

where: 

(1:1 is a pseudo-list or 

AUGL (L, x) : L k 1 or 

AUGR (L, x) : L I 

where L E j  and x is a set) 

examples: (a) (x, y, x, x, y) 

x is a pseudo-list 

AUGL ( (x), (x, 	) : (x) H (x, y, x) 

AUGR ( (x, y, x), (x, y) ) : (x, y, x) 	(x, y, x, x, y) 

(b) (x, (x), y) is a pseudo-list. 

Note that the elements of are not at all uniquely defined, 

,e.g. (a) above. 

Defn: To (re)initialize 	a list we use the definitional operator IS. 

e.g. L IS(a, b, c) . 

To insert an element into a list, in a specified position, we use 

the following two operators:- 

Defn: Given a list L , where 

L IS (0 	02, ..., 0
n
) 

1,  2  

then INSERTL (L, 0i, p) : L 	(01, 02, 	p, 0i, ..., On) 

	

provided Oi 	(Oi+1, ..., On) 

and INSERTR (L, 0., p) : L 	(0 	..., 0., p 	O) 
1' 	, 	n  

	

provided O. 	(01' 
 ... 0

i-1 
 ) 

'  
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These may be read: insert p into L to the immediate 

left of O.1, 

and: insert p into L to the immediate 

right of Oi. 

If O. 	L then 

INSERTL (L, 0i, p) = AUGL (L, p) 

and 

INSERTR (L, 0i, p) = AUGR (L, p). 

Defn: Given a list L IS (01, ..., 0n, x, pi, ..., pm) we may 

duplicate a portion of L by the routines 

e COPYR (L, x) = (1)1, ..., pm) if pi 	x 

(1 s i s m) 

e COPYL (L, x) = (01, ..., On) if Oi 	x 

(1 5 i 5 n) 

The list L is unchanged. 

Similarly, to copy the whole list we use COPY(L). 

Notice:  The copy routines define an object not a mapping, and e 

denotes activation of the routine (see Chapter 6). 

Defn: To delete an element, x, of a list L, e.g. 

L IS (01, ..., On, x, pi, ..., pm, x, q1, 	qe) 

- where x 	(01, ..., On, qi, 	qe) - 

we use the two operations:- 

DPI', (L, x): L 	(01, ..., On, p1,  ..., pm, x, q1, 	qe) 

DELR (L, x): L -4 (01, ..., On, x, pi, ..., pm, q1, 	qe). 
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If x L then 

DELR (L, 	: L f-■ L 

and 

DELL (L, x) : Lt. L 

DELR s delete rightmost specified element 

DELL s delete leftmost specified element. 

Defn: 	To delete portions of a list I,  , where 

L IS 	(o 	. .., 1,  

delimited by 

On, 	x, 	p1, 	..., 

x 	we define: 

pm), 

TRIMR (L, x) 	: L H 	(01, 	..., On) if 	pi 	x 

(1 5 i 5 m) 

TRIML (L, x) 	: L P-4 	(p1, Pm) if O. 	x 

One final point with reference to inclusion in lists. By the 

construction of a list, an object of that list may occur in several 

different places, 

e.g. (x, y, x). 

Defn: We postulate a selection operator 'OF' which denotes the 

right-most entry of an object in a list; 

So if L IS (x, y, x, z) 

then: 

x OF L denotes the 3rd object in L. 

Moreover, we may use the concept of the formal parameter to 

yield an explicit selector function i.e. 

§n 
OF (01, ..., Om) = On 	

if 1 5 n s m 

= w 	otherwise. 
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Defn: Given a list L IS (01, ..., 0n
) 

and i: (1 s i s n) 

then §. OF L yields an element of L. 

Moreover, Next (L, §i) yields §i 1. 1  OF L 

Prev (L, §i) yields §i  _ 1  OF L. 

When these operations take extreme parameters i.e. 

Next (L, §n) 

Prev (L, §1) 

then the results are defined to be: 

w : w is both an atom and an anti-atom (see §5.3.3). 

5.2.2 Digraphs  

As in §5.2.1 we presuppose a knowledge of elementary set theory 

and familiarity with the concept of a relation such as is to be found 

in most introductory texts in modern analysis (e.g. [80]). 

Defn: A (finite) graph G consists of : 

(a) a (finite) set of points (or nodes) P(G) 

(b) a (finite) set of lines (or edges, or links) L(G) 

such that: 

L(G) c P(G) x P(G) 

Defn: A relation p ,on a set A is a subset, A of A x A 

i.e. y E p x iff 	y) E A 

Defn.(i) A digraph D is a graph G, 

such that (x, y) E L(G) a x y, 

together with an ordering mapping 

b : L(G) -+ P(G) 



139 

where, 

if z = (x, y) E L(G) 

then 
b(z) E (x, y} 

e.g. if G is 

P1  

p5  

and b : ( P1' P2 ) " p1 

( P4' P2) 	P2  

( P2' P3 	
p
3  

( P1' P4 	1 

- then the digraph D generated by G and b is 

P1  

p5  

(In other words, the elements of L(G) are ordered and b selects 

the base points of pairs in L(G).) 
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equivalently (ii) a digraph D is 

(a) a (finite) set of points P 

(b) an irreflexive relation p on P. 

Notation: following defn.(ii) for a digraph  

if D = {P, 0, then: 

if x, y, E P, x L y and y E px 

(i.e. xpy), then we denote this by: 

x 

p 

or, more simply, by 

x 

 

y 

 

Defn: Given a digraph, D 	{13, 0, then a p-link (or p-path) 

joining x1 
to x

n
, is a sequence in P, 

xi, x2, 	xn 	: n > 1 

such that x.1+1  E px.: V i : 1 5 i s n-1 

Defn: A cycle in D (as above) is a p-link from x
1 

to x
n 

such that 

x1 E pxn 

Defn: An acyclic digraph is a digraph with no cycles. 

Defn: Given D = {P, 0, then associated with p is its 

pseudo-inverse p-lx (y:yEP andxEpy) 

Defn: If D 	(13, p) and x E P, then p x is the outbundle of 

x in D. The cardinality of p x is called the outdegree 

of x, written 1p xl . 



141 

Similarly, p-lx is the inbundle of x in D and 

1p-lx1 is the indegree of x. 

Notn: When 1p xl = 1 we write p x = y instead of p x = (y}, 

and similarly when 1p-ixl = 1 we write p-ix=y.  

5.2.3 	Finite Disjoint Unions  

Given a collection of sets S. : i E TJ, form an isomorphic 

set of cartesian products by the mapping, 

d : x -4 (x, i) V x E Si  V i E 26 

Then, given any two sets S., Sk  (j 	k) the derived sets dS. , 

dS
k 

are disjoint and we write: 

(3.S.UdS
k 

as 	
ss

3  .LJ k . 

This is called the disjoint union of S., Sk. 
J k 

e.g. if S1 = (a, b, c) 

S
2 = 

 (a, 	d} 

then 	S
1 
LJ S2 = (a, b, c, d) 

and S1 US2 = ((a, 1), (a, 2), (b, 1), 

(c, 1), (c, 2), (d, 2)). 

Extending this notation in a natural way, we obtain 

I 	 S. = 
iEA 1 	J1 J2 	Jn 

where A = (j1, 	in) 

Si  = S1 U S U 	USnU 
iEN  
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and 	I 	j S. = 
iEZZ 

Lis 	... L_Is Us 	 SnLJ 
-m 	-1 	1 

••• 

If now Si  is such that a  m, n E 2Z and 

S. = 	i< m 

and Si = ptv i> n with m s n 

then we abuse the notation by regarding A as an abbreviationt 

for All0 and hence write 

S. for S L_Js 	Usn -1 
Lis

n 
iE2Z 1 	m m+1 

We call i_j Si  the finite disjoint Union of Si. 
iE 

tClearly,  what we really need is an embedding not unlike the identification 
of finite polynomials with formal sums, of the form c° a.x , see 
e.g. [47] or rings of formal power series [73]. i=o 
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5.3 Description of the Space  

5.3.1 Non-Mathematical Description  

The structure of CPS is language dependent as are the trans-

formations which can take place within the structure. We believe 

that CPS is capable of representing any high-level language, including 

Algol-68. Since Carabiner is extensible, it may seen that we require 

a metalanguage similar in power to that of the Algol-68 report [108]. 

However, we take the view that there must be a simpler way of 

describing the facilities of such a language, e.g. along the lines 

of Algol-N [55, 104, 124]. 

We envisage the initial mode-structure to be a simplified 

representation of the diagram in [1261. In our list notation this is:- 

MODE IS (mood, union of MODEn+1) 

mood IS (type, stowed) 

type IS (Plain, format, proc) 

etc. 

Ideally we should be able to start from a set of empty lists, 

augmenting and linking these lists as the syntax analysis and semantic 

validation of the program progresses; further extensions being made 

as the (possibly recursive) declarations are executed. 

The one major stumbling block of this philosophy is that all 

high-level languages have an Algol-68-like prelude which needs to 

be embedded within CPS. We shall consider this prelude to be part 

of every program written in a particular language; hence the basic 

set of empty lists together with the extensions defined by the prelude 

constitute the initial CPS state for that language. A detailed 

description of the full initial state for the language X is given 

in chapter 7. 
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The fundamental elements of CPS are:- 

(a) The lists: STORE and 

ATTRIB (i.e. attributes) 

and 
(b) The operator k (and hence k

1
) 

Defn: STORE is a list which represents both the heap (of global 

entities) and the stack of local quantities. 

Heap material is augmented to the left of STORE and local 

material to the right. A special symbol, $ , is used in 

STORE to denote Carabiner (data) block entry. 

Defn: ATTRIB is a list of attributes (usually types or modes) used 

in a program. It contains the standard modes of the source 

language and of Carabiner. ATTRIB may be augmented by mode 

declarations as in Algol 68 and may also hold temporary 

information required at compile time. 

Notation: In the sequel we shall frequently refer to elements of 

the list STORE, e.g. 

x OF STORE . 

Where no ambiguity arises, we denote this simply by the 

name of the element i.e. x. 

The initialization of STORE consists, in general, of (left) 

augmentation of standard procedures, system constants and a 'nameless' 

procedure pa, the body of which is undefined, but which will eventually 

comprise the Carabiner 'object' program produced by the source program. 

Here p generates a 'name' for the procedure a. A formal definition 
is given in §5.3.2. 



145 

Moreover: 

and if 

where 

OF pa = k (string of ATTRIB) 

a is (al' a2' a3' a4) 

a1  = 
INSERTL(STORE, pa, OUTPUT FROM pa ) 

a2  = OUTPUT FROM pa IS (§1, 	§m) 

a
3 
 = LINK(string OF ATTRIB, (§ m 

OF OUTPUT FROM pa )) 

( ak  = BLOCK (T) - where T denotes the procedure (program) 

body.) 

where ( 1 5 i 5 n, 1 5 j 5 m) for some suitable n, m E 14. 

[We claim that this is a reasonable way of representing a software 

system based on a stored program computer. After translation of a 

source program into Carabiner, the model is self-contained and only 

requires e to operate on a to activate the computational process.] 

a acts on a row of strings and yields a row of strings. These 

strings are the I/O buffers. 

Strinpj is a Carabiner mode not necessarily distinct from the language 

defined modes. 

Loading and unloading of buffers is outside the scope of the program 

being modelled. 

5.3.2 Mathematical formulation  

We define CPS constructively from a void finite disjoint 

union a, where 
Ua. 	a. = 0 V iE 2Z 

a is equivalent to STORE, with ai  (i < 0) corresponding to'global 

entities arid a. (0 < i) denoting local (stack) quantities, a
o 
is 

the component of a which represents the name of the program. 

t For discussion see §7.2. 



d) 0_2 = 

ATTRIB IS (proc, 	int)  
I 

f 	IS (§1, §2) 
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In general, each non-null component of a is a k-directed graph. 

This may, however, consist only of a trivial (single point and no 

line) graph. 

The key node of each graph, i.e. the node which represents 

the entry in the list STORE, may be referred to by its own name or 

(unambiguously)bythecorrespondinga,This is a further abuse of 

terminology but no side effects arise. 

For any 'nameless' procedure, e.g. the program a, we define 

pa = k-1  a n STORE. 

pa possesses a and usually is equivalent to a's input parameter list. 

According to the definition of a so far given, a typical CPS 

(to avoid confusion we will call the STORE 0) may be defined thus:- 

a) 0 = g 
ATTRIB IS (proc) 

(:: 
b) 	00= 	pq IS ( ) 

\I 
a is (...) 

ATTRIB IS (proc, real) 

c) 13-1 = sin IS (§1) 

a;sinIS (...) 

e) 131 = 

ATTRIB IS (int) 

f) 132 = I 
6 
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ATTRIB IS (real) 

g) 0
3 
 b 
 1 

7.1 

Hence 0 is an ordered set of six disjoint k-.digraphs (the unnamed 

_digraph relation is, as always, taken to be the k. In particular, 

notice that 

k -1  a = proc  

k
-1 as. 
	= proc  

— sin 

k
-1 a 	k

-1 a. — sin 

We require that these mode indicators should be identified with 

the same characterizations and hence we define an equivalence relation 

overasubsetofPwhereP=UP.1 
 and P. is the underlying point set 

of the digraph ai. Denoting the relation by we say that 

antiode mode of a. 1 

and 

but 

whenever 

and 

(i) amode E ATTRIB 

Equivalently, let ATTRIB be an ordered set of attributes (modes etc.) 

each of which is represented by its own equivalence class; 

e.g. 	ATTRIB IS ( 	amode ], [ anothermode ], 	• 

With this characterization of ATTRIB part (i) of the definition of 

should be:- 

'whenever [amode] E ATTRIB' . 

If we now use solid lines and arrows to denote k-links and 

broken lines to indicate equivalence relations in ATTRIB, then the 

CPS based on 0 as defined above may be represented by the diagram:- 



proc  

H 
H 
H 

STORE IS 

[proc]  

H 

IS (§ §2) 1' 2 

real 

sin IS (§1  )1 

a 	( 	) sin 

	 proc  

( 

pa is ( ), 

V 
a Is (... ) 

2a3S..  

[real] 

[int] int 

real 
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.We further stipulate that, in order for k to traverse STORE if 

amode E ATTRIB then 

k E amode 	= 	k amode : amode E [ amode ).  

In our example, this yields:- 

k int OF ATTRIB ] = 	§
2 

OF f, 

k (§1 
 OF f), 
 

k a 	) 

etc. 

5.3.3 The k-completiont  of CPS 

Defn: A CPS is k-complete iff each component of the underlying 

finite disjoint union (i.e. STORE) is k-complete. 

Each component of STORE is an acyclic digraph, and hence we 

need to define the k-completion of such a graph but before 

doing so we consider an example. 

Take the digraph D with the relation k:- 

D 
a 

the notion of completion 
traditional graph theory 
sequence x on D : 	E 

defined here is NOT the same as in 
[7, 52, 53]; however, notice that any 
k x. is well defined and achieves its 
— 

limit after a finite number of steps; hence it is Cauchy and the 
space of such sequences is complete. 
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D may be fully described by either 

(i) k a = b 

kb 	c, d} , k c = cf) 

k d = 0 

k e = c 

or (ii) k-la = 0 

k
1
b = a 

k
1
c = { b, e } 

k
1
d = b 

k
1
e = 0 

The nodes a and e, and c and d are peculiar in that 

either their inbundles or their outbundles are empty. These 

facts are easily characterised by the predicates 

k x 	0 

and 	k-lx = 0 . 

However, the evaluation of this predicate does, in a sense, 

lead us outside the domain of definition, because: 

k x = 0 iff ygkx Vy in CPS. 

Now since D is acyclic we are able to modify it into what we 

shall call its k-completion or k-complete form. Before 

defining this, we need some notation and terminology. 

Defn: Given points a, b in a set, we may define one or two 

k-semi-links between them. Suppose a g k
1
b and b k a, 

then (a into b) is a non-invertible relation denoted by 

b 

fi 
in the sense that the inverse relation is not defined. 
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with the effect that: 

a E k
1
b 

but 	b k a 

Analogously: 

( b outof a ) is denoted by 

a 

and has the effect that:- 

a k lb 

while bEka 

Now since a k-semilink is non-invertible we may define (a 

into a) and (a outof a) without creating cycles. 

Defn: An in-k-semiloop at a point 'a' is equivalent to the 

k-semilink (a into a) and is represented by 

Similarly, the out-k-semiloop at 'a' is equivalent to 

(a outof a) and denoted 

Given an acyclic digraph D, we form its k-completion by 

the following process:- 

(a) VxED: k-lx . 0 

add an in-k-semiloop to D at x. 

(b) VxED:kx= 0 add an out-k-semiloop to D at x. 
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Then: 

k x / 0 / k-lx 	x E D. 

The nodes which previously had void inbundles and/or 

outbundles now have inbundles and/or outbundles which 

consist of that same node and are defined to have indegree 

and/or outdegree 1. 

Defn: An element x of a k-complete (acyclic) digraph such that 

k x = x is called an atom and an element y such that 

k
1y = y is called an anti-atom. 

The k-completion, Dk, of D may now be represented 

Now:- k
1
c = (b, e) 

, 
k 2  c = (a, e) 

k-3c = (a, e} 	etc. 

and . 
k a = b 

k2a 	= (c, d) 

k3a 	= (c, d) 	etc. 

By introducing the natural convention thatk0x=xVxwe then 

have a system which gives a valid and meaningful result for 

knx when x E CPS and n E 
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Although not used in language X, we remark here that the 

completion of CPS allows the definition of fixed points 

(relative to k and k
1) derived from any element x (OF STORE), 

thus:- 

Defn: Fixed point operators K+  and K can be defined for any x 

in a k-complete CPS. 

st. 
K+x (y:yEk

n xandky.yforasuitablen 0) 

and 

Kx = (y:yEk nx and k-1y = y for a suitable n Z 0) 
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CHAPTER 6  

THE CARABINER LANGUAGE 

The language is built on the three basic operators, S, k, and 

e, which are described in the sections 6.1 to 6.3 below. These 

primitive operations may be gathered together in various ways to 

form procedures, functions and macros as described in §6.4 and §6.8. 

Formalization of the order in which sequences of operations 

are performed (and hence the central structure of Carabiner) is given 

in §6.5. This is closely related to the way in which e is used to 

model the OBEY command of a computing system and is defined in §6.6 

The inter-relationship between k and e may be used to give a 

formalization of left- and right-hand modes of evaluation as in CPL 

[6, 15]. This leads to more precise characterization of S particularly 

when it is used to emulate assignment commands as in §6.7. 

The order in which the material is presented may be challenged, 

however, after reading it will be obvious that S, k and e are so closely 

inter-dependent that any order of presentation would necessitate both 

forward and backward referencing between the subsections. 
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6.1 The Operator S  

Related to Markov's normal Algorithms [74] is a substitution 

operator E, defined on three words x, y, z by the MarkoV algorithm 

thus:- 
E(x, y, z) E Y 	.z 

A-' A 

E denotes the replacement of the leading occurrence of y in x by z; 

if y x then it is undefined. 

Wesselkamper [116] defined an operator S (which we shall call 

S
w
) that performed a similar operation upon substructures of his 

CRAMPON machine, and which was defined to be the identity if not 

applicable: 

S
w
x y z 	if y 'bt' x then replace it by z 

otherwise do nothing 

Here 'bt' means 'belongs to' in the sense of 'being a sub-

structure of the current state of the machine. Sw 
was also defined 

when x was not a structure but a 'value', in which case:- 

Sw a b c = if a=b then c 
else a 

Notice that the distinction between the execution of S
w 
and E 

and their respective results is vague. We shall return to this in 

§6.3. 

The Carabiner S is developed from the 'value' definition of S
w
. 

The action of S involves (i) an equality test, and possibly (ii) a 

replacement. 
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By means of the operators k and e (§6.2, §6.3) we are able 

to specify positions and extract values; these may then be manipulated 

by S. We make the assertion that position specifiers and values 

are incomparable. 

Using 'v' and 'p' to denote objects of type 'value' and 

'pointer' we may fully define S as follows: 

Sv1v2v3 

Sv
1
v
2
p
3 

Svip2v3  

Sy
1
p
2
p
3 

Spiv2v3  

Spiv2p3  

yields, if v1  = v2  then v3  else v1  

yields, if v1  = v2  then p3  else vl  

v1  

 

 

equivalent to the 
identity operation 

 

 

p1 

 

   

Sp1p2v3 	if p1  = p2  then substitutes v3  or p3  into p1  

Sp1p2p3 	otherwise it is equivalent to identity operation. 

Examples of the usage of S to model conditionals and (generalised) 

assignment are given in subsequent sections when other supporting 

operators have been defined. 

Notice, that if we denote by y the current state of the CPS and 

redefine 'bt' to relate to this space t, then each Carabiner assignment:- 

So/1a2a3 

can be more correctly written in the form:- 

S
w 
ya

1 
Sa

1
a
2
ce
3 

tThis could be done by explicitly redefining S to act on sets and lists, 
but as will be seen this is not necessary. 
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Moreover, if we have a sequence of such statements:- 

Su1,1 a1,2 a1,3 

Su2,1 
a2,2 a2,3 

• 
Su a a n,1 n,2 n,3 

andwedenoteby.the state of CPS before the execution, of the ith 

statement then we have:- 

Y1 

Y2 = Sw Y1 a1,1 S a1,1 a1,2 a1,3 

Y3 	Sw Y2 a2,1 S a2,1 a2,2 a2,3 

Yn 
= S

w Yn-1 an-1,1 
Sc n-1,1 an-1,2 

an-1,3 

Here the final state of CPS is 

y = S
w 
y
n 
a
n,1 

Su
n,1 

u
n,2 

a
n,3 

= S
w  S

w 	Sa 
w w Yn-1 an-1,1 	n-1,1 an-1,2 an-1,3 

an,1 San,1 an,2 an,3 
• 
• 
• 

= S
w  Sw 	

Sw y1 

a1,1 Sa1,1 a1,2 a1,3 

a2,1 Su2,1 
a2,2 2,3 

• 

an,1 San,1 an,2 an,3 

All this means is that each assignment changes the current state of 

the space and hence the n
th assignment will act on the space as left 

by the (n-1 )th  assignment. 

. 
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Putrnathematicany,eachassigunentrepreserrtsafunctionS.1  :r r 

where F is the set of all possible states of CPS. If this function 
symbolises the assignment 

S y. . Su. a. a. 

	

w 1 1, 
	1,1 1,2 1,3 

then the above sequence represents the functional composition 

Sn 0 Sn-1 0 ... 0 S2
0 S1  : r- r 

Now, by virtue of the list format of STORE and ATTRIB (see chapter 5) 

and the associated operators, specification of the subject of S via 

the 'bt' relation is superfluous. Also, since 

	

Rs g 	s 
 (ranges domain) 

we need only know the order of the operations and hence write them 

as a list. i.e. S1' 
S
2' 

..., S
n
. We shall return to this in §6.4 

6.2 The Operator k  

k (or 0 was introduced into'CRAMPON as a way of relating an 

identifier to the value it possessed. Each identifier was regarded 

as a name-value pair and k was a projection from this pair onto its 

second component. 

e.g. 	k x = k (x, 3) = 3 	(say) 

Formally: 	
k (<name>) = k (<name> : <value>) 

= < value > 

and 	k <value> = <value> 

Depicting the (<name> : <value>) pair as - 
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<name> 

<value> 

- the extension of k to be a general graph traversing operator is 

quite natural, as is the extraction of its pseudo-inverse k
1. 

This was done in §5.3. 

We are now able to describe fully the states of CPS which 

represent more complicated constructs such as:- 

{proc , 	real, 	int} g ATTRIB 

(f IS 	(§1' §2  )} g STORE 
I 	

t 

W <  
( 	) 

- by k
1 
k f n ATTRIB = proc OF ATTRIB 

k 	(§1  OF f) 

etc. 

= real OF ATTRIB 

   

Notice, however, that we may have ambiguities such as:-

STORE IS (x, y) 

3 3 

now kx = 3 and y = 3, but do we intend that yEk-ikx? The operator 

e resolves these conflicts as will be shown in §6.7. 
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.6.3 The Operator e 

Up to now we have only been concerned with describing the 

execution of a validated and translated program and hence the 

vital distinction between (a) a procedure, and (b) its effect, 

was ignored. However, in, for example, the translation phase, 

we must be able to distinguish between these notationally similar 

concepts. e.g.: 

Translate (f(5)) 

could mean (i) evaluate f at 5 and Translate the result, or 

(ii) Translate the program segment representing the 

function f acting on 5, or 

/ (iii) the program segment representing the translation 

• routine acting on the value of f at 5, or 

(iv) the program segment representing the translation 

routine acting on f acting on 5. 

A first thought on a method of distinguishing these cases was 

to extend the role of k. This would seem very desirable since there 

is much similarity between the concept of a variable delivering a 

value and that of a function (+ parameters) delivering a result. 

However k is itself an operator and hence difficulties arise.-  

To illustrate the problem, consider the expression:- 

k
2a 

acting on the structure:- 
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proc  

i.e. 'a' is the name 
of a procedure 

- then k2a (= k k a) could mean:- 

(i) k2a 

(ii) k (k a) 

= a
1 

(iii) k (k a) 

= k a 1 

(i.e. do no activation) 

(activate k acting on a) 

(do a1  ) 

etc. 

The trouble here is that k is being used for two distinct (but 

indistinguishable) purposes; namely as a graph-traversing operator 

and as an activiation operator; moreover, the graph operation may 

be the operand of the activation operator. 

If we denote activation by the operator e (and use k merely 

for graph traversing) then the above cases could be characterised by:- 

(i)' k2a 

(ii)' e k a 

e ( e k a ) 
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Notice that in examples (ii) and (iii) the leftmost k is 

replaced by e but the second k in (ii) denotes the operation to be 

performed, while in (iii) the same token is activated (by e in 

(iii)') to yield the operation to be performed, namely a1. 

The departure from using k to relate a function to its result 

seems to break with the underlying philosophy (see pages 10 and 11) that 

S and k are sufficient to describe all computational processes. 

If we are only attempting to define the (final) result of applying 

an arbitrary Boolean function to a vector of Boolean variables, as 

is the case in generating the result of executing a computer program; 

then only S is necessary [116]; but when talking about the result 

we (implicitly) need k to be able to say e.g.: 

k < bit n> = 0 etc. 

Moreover, if we regard a computing process as being defined by a 

collection of functions acting on such a vector, and these functions 

are combined to form a program - represented as a vector of Boolean 

• values - it would seem reasonable that we require not only an 

explicit activation operator but also a formalism to describe which 

functions should be used at any given state. This matter is 

elaborated further in §6.5 and §6.6. 

The operator e may also be used to distinguish between (node) 

values and position specifiers within the program space as shown in 

§6.7. 

Finally we note a special property of e when acting upon a 

pr9cedure defined by a list of more elementary operations. In this 
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case e distributes over that list. 

i.e. 	given 	x -. (x1 , ..., x
n) 

and 	x E k (proc OF ATTRIB) 

then 	
2- )! a (ex1 , ..., 22c2) 

If the list x is derived from a 'sequence' of embedded functions ..._ 

(cf. S in §6.1) then this property of e is not merely convenient 

but indeed necessary. Moreover this property is required to execute 

'dormant' procedures as we shall see in §6.5. 

6.4 Procedures and Functions  

The fundamental structure associated with a procedure is its 

template. Essentially this is a representation of the code sequence 

required to evaluate the function, together with the mechanism for 

loading its parameters and determining its order of evaluation. 

Diagramatically it is represented thus:- 

= OF ATTRIB 

F IS (§) OF STORE 

1 
'"'"+(y.) 

i.e. F is the name of an entity of type proc (procedure), § denotes 

the formal parameter vector, and x denotes the sequence of operations 

required to do the evaluation after § has been replaced by the actual 

parameter vector P. 
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Any procedure used within a program has to have a template 

defined either (a) by the system, i.e. in the language prelude, 

or (b) by the execution of appropriate definitions within the 

program. 

Now consider a subroutine procedure call: 

do F(v) , 

if we denote the formal parameter vector of F by § , then the 

execution of the above statement goes as follows: 

1. Create a copy of the procedure template of F. 

2. Load §' by either substituting actual parameters, or 

tt 
linking § to actual parameters. 

3. Activate the body of the procedure. (This acts upon 

§ ). 

4. Delete F. 

If now F is a 'function' procedure, so we may have: 

F(v) , 

then the operation is as before but with the extra step of creating 

and loading a vector, 
ttt 

 OUTPUT FROM F, which is not deleted with F. 

These extra steps can be included in the function definition. 

(See §9.4). 

The assignment to / can then be carried out as if it were: 

:= OUTPUT FROM F 

t
In practical cases F (i.e. its template) might be stored in a 
library file. 

tt
This preserves side effects but is dependent on the type of parameter 
handling (name, value, reference etc.). By default we assume call 
by value (but see chapter 9). 

ttt 
This phrase is used so as to avoid confusion with the list operator 
OF (§5.2.1). 
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Using the operator k, we, may describe the situation in a more 

rigorous way. 

A procedure body is an entity y such that: 

proc OF ATTRIB E k 1  y 

i.e. y E k (proc  OF ATTRIB). 

Now y may be defined by either an Extended Markov Algorithm 

(EMA) or by a list of moreelementaryoperations or procedures. EMA's 

are described at length in chapter 4 and herein are regarded as 

atomic. 

If the function is defined by a list of operations then the 

sequence of operations properly constituting the procedure F is:- 

S A, A, STRUCT (F) t 

S § OF F, § OF F, x 

e k F 

S STRUCT (F), STRUCT (F), A 

We shall denote this by F(x)► Activation is then caused by sequential 

execution of this list and is written e F(x). Note that this is 

purely shorthand notation for 

e S A, A, STRUCT (F) 

e S § OF. F, § OF F, x 

e e k F 

e S STRUCT (F), STRUCT (F), A 

the third term of this is then expanded to give (say):- 

e ekF=ey= e(y1,...,Yn) = (e yi, 	eyn) 

tSTRUCT(x) is defined in §8.1 and gives the structure within CPS which 
refers only to the object x. In this context we may think of it as 
the function template. 
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It is usual in mathematics for f(x) to mean the result of 

applying a function f to the argument x, the actual process of 

evaluating the function being taken for granted; in the 'abstract' 

world of mathematical evaluations this causes no problems, however 

when we are concerned with the actual mechanism of evaluation (as 

we are in describing computing machines and processes), it is 

sometimes necessary to talk about this process explicitly and hence 

the distinction between a process and its result needs to be made. 

This has been done by the operator e. 

Now the classical meaning of f(x) is represented by e f(x). 

This apparent clash in the use of f(x) reflects an inconsistency 

of the traditional notation and makes the description of computing 

processes easier and more explicit. 

6.5 On Orders of Evaluation and Control Functions  

6.5.1 Non-control Functions  

So that we may precisely define which function should be 

executed at any given point of the 'program' we specify the order 

in which actual parameters are created and (non-control) functions 

(defined by sequences of more elementary functions) are elaborated. 

Given a 'procedure template' as in §6.4, i.e.:- 

(... , proc , ...) 

	 1 
Y IS (Y1,..., Yn) 

(... , F IS (§
1
, ..., §

m
),...) 
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If we append a pointer, PTR, to this template so that 

kPTR = §
1 
 OF F, we have:- 

(... , proc , 

(... , F IS (§ 	' § ) 

	

1' 	m " PTR • 

Is (Y1,-1 Yn) 

Before a procedure is executed, by e, the template is copied into 

a local area of STORE and the actual parameters are copied into 

position; the procedure is then activated. In mathematics, these 

processes are implicit and hence the order in which they are carried 

out is ignored; however in computing processes it is possible for the 

'evaluation' of one parameter to affect the 'evaluation' (or even 

the specification) of another, hence this needs to be formalised. 

The pointer, PTR, allows us to do not only this but also to dictate 

the order of evaluation of sequences of functions. 

Very simply, the process for dealing with the above procedure, 

F, may be defined in 'pidgin Algol' as follows:- 

(while k PTR E (§1  OF F,..., §111...1  OF 11 

do (evaluate k PTR; 

• set k PTR to next item in list); 

evaluate k PTR; 

set k PTR to yi  OF y; 

while k PTR E (yi  OF y 	yn-1  OF y 

do (evaluate k PTR; 

set k PTR to next item in list); 

evaluate k PTR) 
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Notice that in general yn  will be of the form TRIMR (STORE,F) 

which means erase F and its PTR, hence returning control to the 

calling function and another PTR. 

To facilitate description of pointer manipulation in Carabiner 

we use the routines: 

Advance Parameter Pointer (APP) 

and Advance List Pointer (ALP) 

Trivially these routines increment by one the pointer k PTR in 

either the parameter list or the defining statement list. e.g. 

Given 

...,F IS (a,b,c,d) , PTR , 

then 
APP 

F IS (a,b,c,d) , PTR , 

So that none of our arguments become circular we explicitly state 

that no pointer mechanism is associated with these two routines 

Hence we have the Carabiner program:- 

t This may seem somewhat arbitrary and indeed it is. If all 
instructions (functions, procedures, operators) of the underlying 
system had to be implemented by software then the system would 
never work and the sequence of 'set up' functions would regress 
infinitely since these 'set up' functions would need themselves 
to be 'set up' etc. etc. In practical cases we bootstrap up from 
hardware instructions which take zero or one parameter and are 
executed by a single (atomic) action, hence they need no pointer 
mechanism. Any process of 'semantic refinement' if taken to a 
meaningful limit must reach such basic hardware actions.(cf. 
Woodger's traversing of semantic levels [120J until he eventually 
'strikes bottom'.) 
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e(TPL (e(ekPTR E (§1 
 OF F,..., m-1 OF F } ), 

	 7 e(e k PTR APP)), 

e k PTR, 
tt 

BREAK (PTR, k PTR), . 
tt 

LINK ( PTR, y i  OF k F) , 

TPL(e (e k PTR E (yi  OF k F, 	OF k F)), e(e k PTR, ALP)), 

e k PTR) 

- this assumes that n,mz 1 and that the function and all its parameters 

are fully evaluated. If this is not so then conditional actions have 

to be embedded within the function definition, we return to this point 

in §6.6. 

6.5.2 Control Routines  

Regardless of whether the high-level source language is block-

structured or not, we may require the resultant Carabiner program to 

be 'structured' (by which we mean free of explicit 'goto' statements 

- but see the appendix) and this usually requires the creation of 

Carabiner blocks. To model this we use the two 'routines': 

BLOCK ( <block body> ) 

and 	EXIT ( < exit depth > ) 

Here <block body> is the list of statements to be executed within 

the BLOCK and <exit depth> is a strictly positive integer, which 

specifies the number of nested blocks to be exited from, or 'T' for 

terminate. 

- TPL(X, Y) 	while X do Y 

(defined in §6.5.2). 

tt 
Defined in §6.8.1. 
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Within blocks, jumps may be either (logically) forward or 

backward. These two cases give rise to 'if-then-else' constructs 

or (potential) loops, and are modelled by the operations RAM 

(ramification).and PTL (Process, test, loop) which were formally 

. defined in §4:5.1. Recall: 

RAM(a, b, c) 	E if a then do b else do c 

PTL(a, b) 	= do a if b then do PTL(a,b) 

Although, not strictly necessary, for completeness we also give: 

TPL(a, b) 	= if b then do PTL(a, b) 

The templates of these routines are similar in structure to those 

of non-control routines, however the associated pointer manipulations 

are very different, as we shall see below. 

6.5.3 Activation of Control Routines  

Relating the distributivity of e to the control operations: 

BLOCK, EXIT, RAM, PTL, TPL 

demands special consideration because, in contrast to non-control 

procedures, the parameters constitute part of the sequence of 

instructions to be obeyed in executing the procedure. Because of 

arguments which will be given in §6.6, these parameters cannot be 

preceded by the activation operator e and hence it must be inserted 

when the control routine is activated. 

Strict formulation of e-manipulations relative to BLOCK-EXIT 

constructs requires the specification of associated pointer handling. 

The same is true of the loop routines PTL and TPL, when modelled in 

a sequential environment . 

While this is characteristic of current machine architecture, it 
may not always be so in the future. 
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.Informally:- 

given a = (al,...,an) 

and 	
h. = (Pi , •• • ,13.) 

then:- 

and 

(1) BLOCK (a) 	BLOCK IS (a) 

e BLOCK (a) - e(a) 

(ea1,...,2pen) 

(2) Given BLOCK (a) as above with 

al  . = EXIT (1) for some (1 5 i 5 n) 

then 	
ea-oskipol, (i < j 5  n) (i.e. execute as if 

cy. =a) (i<jsn)) 
3 

(3) Given RAM (p,a,h) 

then e RAM (p,a,W 

e e (if en -then a else 0 

(4) Given PTL (a,p) 

then e PTL 

(z, 2(if ep then PTL (a,p))) 

and 
(5) Given TPL (a,p) 

then eTPL (a,p) 

e e (if ell then PTL (a,p) ) 

We may achieve these effects by the following 'next instruction' 

pointer manipulations:- 

(1) On creation of a BLOCK, create simultaneously a pointer BPTR 

(cf. BLOCK template) linked to the first element of the associated list 

of instructions. Whilst this pointer exists, after execution of any 

statement (kBPTR) then advance the pointer by the procedure ALP. 
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(2) On reaching EXIT(n), TRIMR STORE so as to remove n BPTR's. 

This automatically leaves the rightmost pointer remaining in STORE 

pointing to the next instruction to be executed. Trimming removes 

any intermediate pointers associated with other control constructs 

as described below. 

(3) On encountering a RAM statement we must create a pointer 

CPTR. If the result of evaluating the condition is True then we 

set kCPTR to the first element of the 'then-clause' otherwise set 

kCPTR to the first element of the 'else•clause'. If now we terminate 

both clauses by an instruction to delete CPTR (and its related 

STRUCTure) the required activation sequence results. 

(4)/(5) The required execution sequences are achieved by 

using the activation of RAM ((3) above) to model 'if-then-else' 

constructs with the definitions given above. 

6.5.4 The 'Next Instruction' 

Although it was originally intended that there shall be no 

mechanism in Carabiner for explicitly mirroring 'GOTO's; a by-product 

of the formalism given for flow of control within blocks has (by 

virtue of any Carabiner program being a procedure and a block) given 

us the facilities to do just this. 

Loosely: e k BPTR a the 'Next Instruction' 

Modelling of a 'goto' statement is thus easily achieved since, 

if we model labels thus:- 



173 

ATTRIB IS(..., label, ..., L9, ... 

a is (..., w, 	x, ...) 

where x is the translation of 'goto' L9, then:- 

x° S k BPTR, k BPTR, e k(L9 OF ATTRIB) 

Processing then continues from the point immediately after the null 

statement labelled by L9. 

Note: If access to these pointers is forbidden (by the designer) 

and hence the Carabiner program has no explicit 'goto', then 

PTL has to be included as a primitive operation just like 

S, k and e. 

6.6 Dormant Procedures  

Any function (or procedure), f, which is not immediately 

preceded by e is not (at the current stage of execution of the 

system) activated and is called a dormant procedure. A dormant k 

acts as a pointer (or reference) and will be discussed further 

in §6.7. 

Except when we are dealing with functionals [105] and in 

general we are not, dormant functions would seem to be of little 

use unless we can arrange for them to be 'awakened' at some later 

point in the program evaluation. The operator e, described earlier, 

already caters for this by virtue of the distributivity of e over 

any function-defining list in the strict order dictated by k PTR. 

Below we give examples of the use of dormant procedures. 
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6.6.1 Examples 

The first example concerns the modes of initialization in 

CPL [6, 15]. Consider the declaration statements: 

let g [x] = A[i]x2  

   

let h [x] 	B[j]x; 

- the first being initialized by value, the second by reference. 

In terms of e and k we have: 

e k (e k i OF A) -■ 	for A[i] 

k (e k j OF B) 	for B[j] 
• 

Obviously the above declarations represent function definitions 

and to this end procedure templates must be created; in these 

creation processes the parameters of e's are evaluated. Now, on 

execution of h in the body of the program a specific value will 

need to be extracted from the array B, hence kB will need to be 

evaluated by e. We cannot write e k (e k j OF B) since this would 

derive a value immediately; we need a notation which dictates that 

certain specified e's should be activated at one time and others 

later. One solution would be to replace each e by either el  or 

e
2 
 (say), so that:- 

e k (e k i OF A) becomes e1
- k (e

1 
 k i OF A) 

and 
k (e k j OF B) becomes e2- k (e k j OF B) 

The distinction created here needs to be interpreted. Intuitively 

this is not difficult but we leave formalization until after we 

have given another example. 
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Consider the following:- 

L9 : x : = x + 1 ; 

y : = f(Y); 

if (x < 100) then goto L9; 

If we wish to transform this segment of program into unoptimised 

'goto-less' form (see Appendix, also [28, 29]) then, before control 

modifications, the situation may be represented in the following 

way
t  

(..., label,..., L9,...) 

(...,w, Skx,kx,e plus(e kx,e1),Sky,_syl,ef(eky),CONT(r<100,§2 ,§ ),w,--) 

In translating this into a post-check loop we have to take the two 

S-operations and form the body of the loop; extract the first para-

meter of CONT and use it for the post-check predicate; and replace 

the section 

by the resultant loop operation. Again we need to execute some 

operations but not all. Using e1  to denote translation activation, 

e2 
 to denote activation associated with execution of the object 

program, and informal English to describe the operations, we have:- 

tCurrently irrelevant details have been ignored or simplified. CONT(x,y,z) 
is used to represent a 'semi-translated' control statement which will 
later give rise to a RAM or PTL. 
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e1 
 (insert 0 to left of (/), 

/ 
e1- k  e1-  k (52 

 OF CONT) 

/ 

e
2 
 (repeat (/) until (/)) 

/ 	/ 

e1  (copy (51 
OF CONT)) 

/ 

/ 

e1  (from (/) to (/)) 

/ / 

/ 	/ 

e1  left of (CONT) - 
/ 

/ 

e1  right of (e1-  
k e

1-  
k (5

2 
 OF CONT)) 

delete from (e1  left of repeat ( ) until ( )) to CONT )) 

Here, the stroke 	is used to demonstrate the embedded structure 

and has no semantic meaning. 

6.6.2 Discussion 

In the above cases it is possible to replace e1  and 22  by 

other constructs to achieve the same effect [31]. This is done by 

'move' operations which when activated do not evaluate their argument 

(parameter); however, the techniques used in doing this are ad hoc. 

As our purpose is strictly definitional we shall not utilize these 

non-uniform methods but formally define ei. 

Defn: Given an indicator modex which stipulates the mode of execution  

of the system, given as a positive integer than for any f 

e. f a e (if e e k modex = i then of else f) 



f<  

U 

False 

	.1■ 	 
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We explain this by two examples: 

(i) 	Suppose 'modex = 3', then the evaluation of e3 
 f goes:- 

e
3 

 f = e (if e e k modex = 3 then ef else f) 

True 

ef 	 

The action of the e's in the definition is as follows:- 

(i) 1st e activates if-then-else 

(ii) 2nd e activates = (the predicate) 

(iii) 3rd e activates k to yield a value 

(iv) 4th e (conditionally) activates f 

(ii) Under the same conditions elf 

24f = e (if e e k modex = 4 then ef else f) 

As it stands, the definition of e.f given above yields either 

the value (result) of f or the identifier f. This we do not want - 

we require either the result of f or the string e.f. Modifying 

the definition would lead to a circular argument so instead we 

A 
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stipulate that the elaboration of the definition of e.f is re-

executed whenever necessary, i.e. we always consider e.f and 

never the result of a previous elaboration. 

Defining ei  allows the generation of a countable infinity of 

activation operators; however, recent work on a set of test 

languages [33, 34] has shown that only 2 or 3 such operators are 

needed in order to specify the semantics of a wide range of commonly 

occurring high-level language features. 

6.7 On Position Specification and Value Selection in CPS  

Taking up from the assertion at the beginning of the previous 

section, that e generates a value, and k, if not immediately pre-

ceded by e is interpreted as a position specifier (pointer or 

reference) within the program space, we return to our fundamental 

operator S. Recall that S may be, depending on its arguments, 

either a substitution operator or a selector. 

As a selector: 

Sxyz = e if e (x = y) then z else x. 

As a substitution operator: 

Sxyz m e if e (x = y) then replace x by z. 

- here e(x = y) is the (boolean) result of the equality predicate 

on parameters x and y, and e if ... then ... denotes the result of 

the 'if' statement. Notice in particular that the result of the 

substitution S is either 'w' or 'replace x by z' but not 'e replace 

x by z'. 
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Now, using the above definition we cannot, in general, 

distinguish between the two different usages of S. We need to 

know whether the arguments of S are 'values' or 'pointers'. 

Consider the assignment: 

x := y 

This means, substitute the value of y for the value of x. If x and 

y have initial values 3 and 5 and are represented thus: 

x 	y 

3 5 

So, kx = 3 and icy = 5, but also e k x = 3 and e k y = 5. We have a 

paradox. We need to define precisely what the above assertions mean. 

k x = 3 means (i) there is a position related to 

x by k 

i.e. 

and (ii) the position specified contains a representation 

of 3. 

ekx = 3 means that the result of traversing the structure from x 

by k is 3; and this may henceforth be manipulated as a (single) value 

which no longer is related to x. 

Clearly what is needed to model the effect-of the assignment 

in Carabiner is 

Skx, kx, eky 

or more generally 

S position, position, value. 
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In the case of selection operations we must have a value as 

the first parameter, moreover for any comparison between the first 

two parameters to be meaningful, the second should also be a value 

(although when any parameter is conditional this may not be so, 

as we see below). The third parameter may be of any type. This 

justifies the definition of S given in §6.1. 

To complete the formal distinction between pointers and values 

recall that values and position specifiers are incomparable and in 

the case where a specifier and a value have the same form we use e 

to 'break' a value from a position. The rationale for this is:- 

e x= eko  x= x as a value 

Recall the question posed in §6.2; given the CPS substate:- 

STORE IS (x , y) 

/ 
3 3 

then k x = 3 and k y = 3 but is y E k 1  k x ? 

Clearly, by the above discussion, it is not. 

k
-1

k x = (x) because k x = 3 only asserts that the position k — — 

from x contains the value 3, i.e. 

3 

hence k
-1
(this 3) = (x). Similarly for y. In fact 

x 4 y 	 locations have different names 

and 	k x ky 	 locations are different 

but ek x = eky 	contents of the location are equal 
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.Using CPL [6] terminology a value is a right-hand value and a 

position specifier is a generalised left-hand value. 

As a final example, consider the bi-conditional assignment 

statement:- 

(a 	b, c). := 	(d --• e, f) 

or, in Algolese 

(if a then b else c) := (if d then e else f) 

The left-hand side yields:- 

eS(eS(eka, eT, kb), eF, kc) 

supposing that the value of a is F(alse) then 

eka' ' 	eT, 	kb 

1 	1 	1 
F , 	T , kb 

e S( 

eF, kc 

	

1 	1 4  

	

e S(F 	, 	F, kc) 

kc 

The hand side yields 

eS(eS(ekd eT kf), eF kg) 

Now if we write 

Sx, x, y as Six , y 

the whole expression can be assembled: 

eSi(eS(eS(ek a, eT,kb), eF,kc),eeS(eS(ekd,eT,kf),eF,kg)) 
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The operators k
1 
and OF may also be used as position 

specifiers. k
1 may be used together with e in the same fashion 

as k; however OF always (without e!) yields a position, e being 

available to break the contained value from the structure, should 

this be required. 
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6.8 Macros and Set Theory. 

So far we have formally defined only three basic Carabiner operations, 

and described the denotations used in representing other (language - or 

program-defined) procedures. Any other operations used in Carabiner, 

apart from those explicitly related to a given source language, we shall 

call macros. These include all the set and list operations, and some 

topological functions (e.g. STRUCT etc.) which we define, together with 

other operations that act upon the CPS, in §6.8.1. 

In the subsequent section we examine the relationship between S and 

set theoretic operations hence we show that the list operations of §5.2.1 

are a natural consequence of our fundamental operations and do not 

contradict our claim that these basic procedures are sufficient for the 

description of computing systems. 
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6.8.1 Operation on CPS. 

Apart from the operations of §5.3 which act on the constituent lists 

and graphs (and sets) we may define new operations which act on the CPS, 

as follows. 

To create a new link between two elements (nodes) of CPS, we augment 

the in/out-bundles of the relevant nodes i.e.:- 

Defn:t LINK (x,y) : 	kx 	kx U {y} 

k-1y,÷ k-1yu{x} 

Similarly: 

Defn: BREAK (x,y): kx kx {y} 

-1 	-1 	, k 	k y\{xt 

  

Using the operations LINK and BREAK we can easily define any number 

of ADJustment operators which can be tailored to suit specific needs. 

Here we define only one but suggest how two others can be derived and used. 

Given four nodes, a, b, c, d in CPS such that b C ka 

i.e. 

Now define ADJ (a, b, 

a 

b 

c, d) 	E 

{ 

• d 

BREAK 

LINK 

(a, b) 

(c, 	d) 

a 

•b I d 

t Trivially either operand of LINK may be extended from a singleton to a 
larger set. This may be viewed as rejecting a graph operation onto an 
operation on a related hypergraph L8]. 
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Trivially, to reset the destination of a k link we could define - 

ADJ1 (a, b, c) 	E 	ADJ (a, b, a, c) 

- or to reset the source - 

ADJ2 (a, b, c) 	E 	ADJ (a, c, b, c) etc. 

One direct use of ADJ is in the specification of pointer (PTR) manipulation 

described in §6.5. The routines used therein, namely 

Advance Parameter Pointer (APP) 

and 

Advance List Pointer (ALP) 

can be defined thus:- 

Given an active function template, F (say), then 

APP E ADJ(PTR, kPTR OF F, PTR, e(Next(F, kPTR OF F))) 

ALP E ADJ(PTR, kPTR OF kF, PTR, e(Next(kF, kPTR OF kF))) 

Notice here that the 4th parameter could actually modify the 2nd if 

it was elaborated before the 2nd; hence the need for a definite order of 

elaboration. Without formality this is defined to be strictly from left 

to right. 

Any element of CPS which is not in the lists STORE or ATTRIB must be 

accessed by reference to these lists and the use of the operations k, k
-1 

and OF (together with associated selector names). In general, this specifier 

is not unique, and if further we allow the use of the equivalence relations 

across ATTRIB then the set of items in CPS specifiable from a single element 

of one of the fundamental lists can be very large and is of little interest. 

However, we can extract some subsets of this collection of related items 

which will make manipulation of the CPS easier. Conceptually these 

constructs are simple but their formal definition is somewhat complex. 
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What we finally require are substructures of CPS such that given x 

OF STORE the related substructure is the part of CPS which has to be 

added to CPS in order to give the whole CPS from a state without x (or, 

equivalently, the substructure to be deleted if we wish to remove x); 

obviously this depends on the current state of CPS. 

Defn. Given x C CPS 

deriv(x) = k 1(x) Utz : z E li(x) : x ATTRIB} 

U {z : z E k (yi)U k
1(yi), (1 a i 	m) if x IS (yi,...,ym):x ATTRIB] 

The above set comprises all elements of CPS which are one (k) step 

away from x without traversing the equivalences of ATTRIB. 

Now, from x C STORE we may construct 

Do  (x)= deriv(x) 

and Dn(x) = {z : z C deriv(y): y C Dn_1(x) } 

twhere Dn(x) = Dn(x) \ STORE*  for all n 

Then Rel(x) = 	Dn(x) U {x} 

Rel(x) is then all the nodes and lists in CPS which are related to x via 

the relations k, k
1 
and OF (but not =) without returning to STORE. 

Now form Rel (x) : 

* 
Rel (x) = Rel(x) U { (y,z) : y,z E Rel(x) and z = ky} 

* 
i.e. Rel(x) yields all the elements of Rel(x) and their interconnecting 

structure (given by k). 

Obviously, given x1,x2  : xl  # x2, and x1,x2  C STORE, the related sets 

Rel (xl), Rel (x2) are in general not disjoint, however from Rel(xl) we 

can abstract a suitable structure thus:- for x C STORE 

let Nhd (x) = Rel (x) 	Rel (y) 

y C STORE \ {x} 

t STORE
* 

= {y : y C y1  E 	E yn  C STORE} 

for allnC lN  
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than 

STRUCT (x) = Nhd (x) 	(a ,b) : (a ,b) E Rel*  (x) 

and (a e Nhd (x) 

or b C Nhd(x) ) } 

STRUCT yields 'open' sets around each element of STORE. (This fact may 

be used to define a topological basis for CPS - see Chapter 8). In 

practical terms, manipulation of STRUCT corresponds to the duplication 

of a subgraph or deletion of an element in STORE; the mathematical 

formulation does, nevertheless, look somewhat over-powering. In an 

attempt to illustrate its inherent simplicity we give an example. The 

example is not intended to represent a specific point in the execution 

of a program and hence names etc. are meaningless except for STORE and 

ATTRIB. 



ATTRIE IS , a4 , a5 , 

STORE IS ( 

( al, a2 , a 

/ 
sl' s2 

) 
v1 

a6 ) 

s4  IS (t4 ' t5) , s.5 , s6 ) 

\/ 
v3  IS (y1 , 	w 

IS (P2, 

IS 	t2, t3), s3 , 

w 

v2 IS (x1, x2) 

i 
w 
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deriv(ai  OF ATTRIB) = 0 	i C (1,...,6) 

deriv(si) = (a2  OF ATTRIB, 

deriv(s2) = Chs2, a2  OF ATTRIB,  k(t2 OF s2), k(x1 
 OF ks

3 
 )) 

deriv(s3) = fks31 

deriv(s4) = {ks4, a6  OF ATTRIB, k(t5  OF s4)} 

deriv(s5) = {ks5} 

deriv(s6) = {a6  OF ATTRIB, ks6} 

Before proceding further, we note that the node names (other than 

selections and elements of ATTRIB and STORE) v1,...,v4  and pl  are added 

for convenience and w denotes a void entity. The derived sets given above 

are in their strict form but for ease of exposition we shall write, e.g. 

deriv(s4) = (v3,  a6,  v4} 

Using this principal where applicable, and also disregarding specifiers 

for arguments of 'deriv', we have:- 

deriv(ky = deriv(v1) = {sl, s2} 

deriv(v2) = (s3' p1, is.t2
1 

deriv(v3) = fa4, 54} 

deriv(v4) = (a4, t5} 

deriv(t1) = (a2} 

deriv(t2) = {ka2} 

deriv(t3) = {p1} 

deriv(t4) = {a6} 

deriv(t5) = {v4} 

deriv(pl) = ft3, x1} 

deriv(p2) = deriv(p3) = 0 

deriv(yi) = deriv(y2) = 0 



190 

deriv(xl) = {p1} 

deriv(x2) = {kx2} 

deriv(kt2) = ft2, a2} 

deriv(kx2) = {x2, a2} 

deriv(ks5) = deriv(ks6) = {s5, 

Then:— 

hence: 

and 

D(s
1
) = {a

2' 
 v1} 

Do  (s1) = Do(s1) = {a2, vi} 

D
1
(s
1
) = 0 U {s1, s

2}- 

= {s1' s2
} 

 

D
1 

(s
1
) = 0 

Rel(si) = 	a2, v1} 

Rel (s ) is :— 	a2  
2 

Si 

1 

vl 

Similarly: 

Do  (s2)= {v1, a2, h(t2), 131} = Do  (s2) 

D1(s2) = {si, s2, t2,a2, t3, x1} 

D
1 

(s
2
) = {a2, x

1
} 

D
2
(s
2
) = {p

1
}c:D

o
(s
2
) 

Rel(s2) = {s2, v1, a2 , kt2 , p1 , x1} 
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and 
Rel (s2) is 

3) 

 

xl  

   

Do  (s3) 

D
1(s3

) 

D1 (s3) 

• {v2} = Do 
(s
3
) 

• {s
3' p1, kx2} 

1 hx2 

• • 

Similarly: 

D
2
(s
3
) 	{t3, xl, x2, a2} 

D
2 (s3) = {x1,  x2,  a2} 

"1' 	D3(s3) D
3
(s

3
) . in Inc 	

= D 
 

D
4
(s

3) = ft3, x
1, x2, a2) 

D
4 (s3) 

= {x
1, 
 x2, a

2
} = D

2 (s3) 

Rel(s3) = {s3,v2, p1, .19E2, a2) 

Rel(s3) is:- 

2 

X2) 

P1  

Rel(s4) = {s4, v3, a4, a6, v4} 
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* 
Rel (s4) is:— 

and trivially: 

* 
Rel (s

5
) is 	s5  

w 

Then: 

* 
Rel (s6) is 	1.6 

s6  

I 

Nhd(si) = fsil 

Nhd(s2) = {s2, kt2} 
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Nhd(s3) = {s3, v2, 12[2} 

Nhd(s4) = {s4, v3, v4, a4} 

Nhd(s5) = {s5}  

Nhd(s6) = {s6}  

Now, finally, if we adopt the convention that elements not in 

STRUCT but which must be specified so as to indicate a link (pair) 

in STRUCT are depicted by encircled symbols then:- 

STRUCT(si) is:- 

STRUCT (s2)is:- 

IS 

STRUCT(s3) is:- 

3  
v2 IS (x1,  12 

t Notice v
2
ENhd(s

3
) and by definition v

2 
IS (x

1
, x2); )- this implies 

x1  C Nhd(s3) although xl
e Rel(s2). 
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IS (p2, p3) 

STRUCT(s5) is:— 

STRUCT(s6) is 
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6.8.2 The S definition of set operations and predicates. 

From the definition of S we can easily model the conditional 

statement: 

if a then a else y 

by 	S(eS eT, eka,r3),, eT, y 

where a is a Boolean value, expression or function and S, y are 

not Boolean values; however, if we are in a situation where such Boolean 

values can arise then we need to use the rather more complex form: 

Se(eS eT, eka S) eT, e(S eka , eF, y) 2 	9 

The validity of these forms can be checked by examination of truth-

tables for S or by a simple proof [96]. 

The conditional expression (or statement) given above may also be 

written as a 'McCarthy conditional', i.e. 

(eka 	0, eT 4- y) 

or, less formally: - 

(131 	(1)  

where pl  is a Boolean value and q, 	can be anything. 

More complex conditionals can be built up by embedding constructs 

of this type, e.g. 

if pl  then (if p2  then q2  else q ) 

becomes:- 

(P1 	(P2 ÷ c12' T 	T 	A).  

The derivation of an equivalent S-expression is trivial and is not 

here developed. 
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We now consider the predicate E , i.e. does x C A for any given 

x and A. - to make the discussion less formal we consider only values 

and ignore the operators e and k 

if A = {y} 

then x E A •• x = y 

i.e. if x = y then True else False 

Now the predicate '=' may be defined in several ways. 

If x and y are tBoolean then we may use the predicate x E y, 

i.e. 

S(STxy)T(STyx) 

- if x is not tBoolean then we may use 

S (SxyT)xF. 

The last definition also works when x is False, the trouble arising 

when x is True. 

If we have a denotation, a , for an object not in the set of 

program-defined elements, then we may use this to represent the value 

True by 

Sa T a, i.e. if a = T then a else a 

hence the required equality predicate (for all program-defined parameters) 

could be represented by: 

(a = b) 	S (S (S a T a) (S b T a) T) (S a T a) F 

t ' x is Boolean' may be checked by using 

B(x) =ST  (S T (S x V(x)T) F) F 

where 

V(x) = S T (S T x F) F. 
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Returning to sets:- 

if A = {y} 

then x C A iff x = y 

and x ot A iff x # y 

where (x # y) E ST (x = y) F 

Trivially if A = 0 

then xiA Vx 

Given any non-void set A i.e. 

A = fyl,..., yn} 

then the list 

A'  ' (Y1,..., yn) 

is derived from A and has an explicit order relation. Since any 

representation
t  
 of a set has an implicit ordering, from hereon we regard 

sets as represented by a corresponding list. 

So: x E (y1,..., yn) 

• if x = yl  then True else x C 	yn) 

• (x = yi) V (x = y2) v 	v (x = yn) 

• V (x  = yi)  
letin 

Although the recursive definition is most informative, in the sense 

that when the element is found the search stops; the iterative form 

is more realistic in terms of implementation. Problems of indexing have 

been ignored, but the extension of S to act on (finite but unbounded) 

lists would easily circumvent these, i.e. 

S x, y, z 

as used in a computing system. 
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where x is {a, b, c} or (a, b, c) could be 

S 	a 	, y, z 

b 

S a, Y, z 

S b, y, z 

S c, y, z 

Notation and procedures for manipulating such lists would then have to 

be developed. 

Tacitly we assume that the length of a list is easily obtainable 

from the representing system and hence we could embed any equality 

predicate in a suitable loop e.g. 

(for i := 1, 1, length do ( if x = yi  then (result:= True, exit ))) 

Obviously: A n B = { x: x e A, x 

AliB=Ix:xeA or xEB }  

A \ B = { x: x E A and x (t. B 

- are all derivable in a similar way. 

Now given a list A = (a1,..., a
n
) and ai, aje A, then 

a. 	a. iff a. e (a ..., a. ) 
A -3 	1 1, 	 -1 

so, within a length-bounded i-indexed loop we could have 

if a. = at  then (result:= True, exit ) 

if a1  
. = a. then (result:= False, exit ) 

—  

Hence list (and implicit set) order-related predicates are also definable 

in terms of S . 
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6.8.3 On S abbreviations and pointer/value associations. 

To complete our notes on macros we define the operators S
1 
and S

2' 

These are merely special cases of S used when the parameters of S 

take particularly simple forms. 

Notn: for S x, x, y write S1  x, y 	((re—)initialization) 

for S x, x, eA write S2  x (deletion). 

— here x, y may be general elements of CPS, elements of 

STORE or STRUCTures derived from STORE elements 

S1  A, x E AUGR(STORE, x) 

At this point we specify the pointer/value associations of all 

operations previously defined. In what follows these associations will 

not be checked but may be used by the reader to clarify the meaning (effect) 

of complex constructions. Here p and v denote objects of type pointer 

and value respectively. 

AUGL/R(p, v) 

INSERTL/R(p, p, v) 

COPYL/R(p, v) v 

DELL/R(p, v) 

TRIML/R(p, v) 

v OF p p 

kp 	p 

Next(p, p) 	P 

Prev(p, p) 	p 

K p v 

K p v 
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LINK (p , p) 

BREAK (p , p) 

STRUCT (p) 9- v 

ADJ(p, P$ P9 P) 

APP (P9 P) 

ALP (P 9 13) • 
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CHAPTER 7 

TRANSLATION AND A FORMAL DEFINITION OF X 
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7.1 Parsing Strategy  

Compilation  

We briefly describe the three phases of compilation, namely; parsing, 

validation and translation. These may be thought of as disjoint activities 

although in practice they are more efficiently performed concurrently. 

The descriptions given in this section do not specifically relate to the 

language X. Of particular note is the subject of type-checking validations. 

These can be checked dynamically at execution time but in general are more 

efficiently performed (if the language allows) statically during translation. 

(see §9.4). 

The syntax analysis may be performed by any suitable method; however, 

the analysis is greatly simplified if sentences in the languages may be 

parsed directly from left to right (see [17,46,56,57,591), The construction 

of a suitable grammar (which may generate a 'larger' language than is 

required) was discussed at length in Chapter 2. During parsing we develop 

and, later, contract numerous inter-related trees. The nodes of these trees 

are created by the parser and used in the validation and translation phases 

(see below). In what follows, only nodes of trees of incomplete syntactic 

classes (non-terminals) can be referred to by their syntactic index 

(e.g. < >9.3), other quantities (if required) must be stored explicitly 

by the compiler. 

Validation  

In the main, this involves the checking of attributes to ensure that 

any context-sensitive restrictions which are permitted by the pure syntax 

[16], but which do not make sense are detected and/or removed before the 

current syntactic phrase is translated or executed. This may have to be 

done at compilation time or in execution; in the latter case the appropriate 

check must be embedded within the resultant Carabiner object program. We 

may specify these validity checks by using S with logical parameters. 
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This would make the overall approach more uniform but less simple to 

comprehend and hence we use set theoretic notation to facilitate readability. 

E.g. given kxe k real OF ATTRIB 

and 	kye kint OF ATTRIB 

then y := x 

is syntactically correct in X but invalid semantically, this check being 

performed by the schema:- 

no 

In the above diagram the boxes drawn thus 

represent translation steps. 
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We could at this stage give elaborate 'ad hoc' methods for the 

validation of an X-program: however, a more rational and uniform technique 

is desirable, in which 'modal substructures't  of CPS may be used statically 

or dynamically to validate polymorphic objects [68]. The specification 

of such structures and their related operations lies beyond the scope 

of the current chapter but is dealt with in §9.4. 

Translation  

The translation phase is merely a syntax-driven compiler [17,56,57] 

which operates on 'standard' BNF and is defined by sequences of injections 

(actions) implanted within the right-hand sides of the syntax productions. 

These injections are delimited by meta-brackets thus:- 

Any string delimited in this way is ignored by the parser but is, subject 

to the satisfaction of validation predicates, added to the translator's 

output stream. 

This output stream, which may temporarily hold sets of partially 

translated elements, ultimately consists of a sequence of Carabiner 

operations and is placed at the node a of CPS. It is activated by the 

distributive e operation which constitutes the execution phase of the 

program. 

t Informally this is a connected subgraph of CPS used to define a 

complex mode type. 



205 

7.2 The Semantic Injections of Language X. 

Initial Structure  

The routines used in the validation of an X program and the execution 

of the corresponding resultant Carabiner program need to be incorporated 

(as part of the initial structure) in CPS. However, to keep this example 

as simple as possible, we here discuss only the composition of CPS as 

determined by the standard prelude for X. 

We describe the construction of the initial CPS step by step and give 

a diagramatic representation of the full initial state at the end of this 

section. 

Notation: 
def 

LOC(a) = AUGR(STORE, a) 

def 
HEAP (a) = AUGL(STORE, a) 

def 
AT(a) = AUGR(ATTRIB, a) 

The Construction:  

The fundamental objects in CPS are the lists ATTRIB and STORE 

ATTRIB IS ( ) 

STORE IS 	( ) 

The explicit modes of language X are real and integer, so: 

AT( (real, integer) ) 

The nameless procedure, pa, needs to be set in STORE. In this language 

it takes no parameters and has a void
t 
result, hence: 

1 For a quantity of (implicit) type void we have two possibilities :- 

(i) void C. ATTRIB 

and 
LINK(void OF ATTRIB, quantity) 

(ii) void it' ATTRIB 

and 
ATTRIB n k-1 (quantity) = 0 

Here we use the first characterization of the void mode but make no 
general pronouncement on the problem. 
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HEAP (pa) 

pa IS ( ) 

Sikpa ( al,a2,a3,a4) 

where tt a1 
 = INSERTL(STORE, pa, OUTPUT FROM pa) 

tt a2 
= OUTPUT FROM pa IS ( ) 

tt a3  = LINK(void OF ATTRIB, OUTPUT FROM pa) 

a4 
= BLOCK(T) 

AT( (proc, void) ) 

LINK(proc OF ATTRIB, a) 

The most complex enhancement to the structure is the embedding of what 

McCarthy calls the 'base functions' [75]. In this example these are the 

X-operations of the diadic plus (for integers and reals) and the conversion 

routine from integer to real, and the Carabiner operation PTLt (for details 

of these see §6.5.2). The required extension to the CPS is brought about 

by the following sequence of Carabiner statements:- 

HEAP( {pally  paR+, par+} ) 

PaIR IS (§1)  

paiti.  IS (§1, §2) 

pal+  IS (§1, §2) 

LINK(proc OF ATTRIB, tam, 

aR+, 
al+  } ) 

[By virtue of the operator p, we implicity have 

Sikpa, , a„ 

LINK (pa, , 	for for V a, 

tt Since there is no I/O for an X-program it may sensibly be 
subroutine instead of a function and hence these steps could 
In general, of course, this is not true. 
t This implies also that the 'dummy' operation CONTrol needs 
a template:- 	Boolean Proc 

regarded as a 
be disregarded. 

to be set up with 

\\
1----\ 

CONT IS 	
0P §2'  §3 

 ) 
I   

w 
To simplify discussion this template is ignored in the examples. 
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LINK(int OF ATTRIB, 01  OF pant, 

§1  OF pal+, 

§
2 
OF pa

I+  } ) 

LINK(real OF ATTRIB, {§1  OF pail , 

§2  OF paR+, } ) 

HEAP (PTL) 

PTL IS (§1,§2) 

AT (Bool) 

sih Pm, apm. 

LINK(proc OF ATTRIB, {PTL, §1  OF PTL } ) 

S
1
1(§

2 
OF PTL), w 

LINK(Bool OF ATTRIB, k(§2  OF PTL ) ) 

Diagramatically, the CPS now looks like:- 



[ real 

[ int 

[ 

void a 
Bool 

	 real 

int in t CIO PE= MEM •■••■ ,■■ .110 AIME. •■■■• ■•• MEM '110  

roc roc roc 
moo •■■■ =NO 

A
TT

R
IB

 IS
 (  

IS (§1' 2)  ' PaI+ STORE IS (PTL 

aPTL aIR 

IS (g1,§2), pa IS ( ) ) 

aI+ 	 a. IS (al'a2'a3 ,a4) 

roc 

Bool  



209 

Here solid lines denote the relation k and the broken lines 

represent the equivalence relation generated by ATTRIButes over CPS. 

SEBNF Definition of language X  

Here we give the definition of X in semantically extended BNF.  

In the definition the predicates are described in an informal Algol/set-

theoretic form and all type-checking and validation is done dynamically. 

SEBNF is BNF together with DTC's (see Chapter 2) and the meta symbols:- 

• • • 
	

• • • 

Occurence of a string enclosed by such brackets denotes immediate 

activation of the string by a distributive e. Further definition is not 

given but illustrative examples will be given later to clarify its meaning. 

In what follows particular note should be taken of the use of e, 

k, and the distinctions between:- 

f, kf, f(x), ef(x) 

1) <program> ::= <block>1.1  

Si  (a, sTRucT(BLocK)), 

S1 
 (BLOCK, A) 

eeka 

2) <block> ::= begin 

AT($), 

LOC($) 

AT(label), 

LOC(LOC($)) * 

<decn>
2.1 

<stmts>
2.2 

end 
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block exit fi  

3) <decn> ::= let 3: LOC(AT(declist)) * 

<proper id list>3.1  

be 

<type>3.2  

LOC(LOC(ek(declist OF ATTRIB))), 

LOC(LINK(< >3.2  OF ATTRIB, ek(declist OF ATTRIB))), 

S2(ek(declist OF ATTRIB)), 

S
2
(declist OF ATTRIB) 

4) 	<proper id list> ::= <id>4.1  

LOC(< >4.1)' 
LINK(declist OF ATTRIB, < >4.1) 

< id list >4.2 

5) <id list> ::=, 

<proper id list>5.1  I 

A 

6) <type> ::= real I 

int 

7) <stmts> ::= <stmt >
7.1 

<stmts 1>7.2 

8) <stmts 1 > 

<stmts>
8.1 1 

A 

In contrast to most other semantic injections, this is not realised by 
only a few statements but by a rather large program which restructures 
the whole of the preceding block by a subalgorithm of that given in §7.2.1. 
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9) <stmt> ::= <block>
9.1 

Rota 
<label>9.2 

if (< >9.2  ft ek(label OF ATTRIB)) 

then (AT (< >9.2), 

LINK(label OF ATTRIB, < >9.2  OF ATTRIB) ) 

AUGR(BLOCK, e CONT (True, §2, A)), 

LINK(Bool OF ATTRIB, §1  OF (CONT OF BLOCK)), 

LINK(§2  OF (CONT OF BLOCK),< >9.2  OF ATTRIB) 	I 

<id' 1>
9.3 

LOC(LOC(ework)) * 

<exp>9.4 
t LOC(if (TYPE(< >9.3) = int) 

Ma (if (TYPE(work) = int ) 

then (S1  (k < >9.3, ekwork) ) 

else EXIT (T) 

else (if (TYPE(< >9.3) = real) 

then (if (TYPE(work) = int ) 

then ADJ(int OF ATTRIB, kwork, real 
OF ATTRIB, kwork) 

Viwork, Sipam(hwork)) 

TYPE (x) 	(k lkx)fl ATTRIB 

The required dynamic type checks and transfers can be deduced from the 
following table for x := y 

TYPE (y) 

TYPE (x) 

;= int real other 

int assign error error 

real convert 
assign 

assign error 

other error error error. 
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else (if (TYPE(work) = real) 

then A 

else EXIT (T) 

S1  (k < >9.3' ekwork) 

S2 work) :( 	I 

L 

<special>9.5  

10) <id 1 > ::= A 	I 

B 

C 

11) <id> 	::= A 	I 

B I  

C 	I 

L 

12) <label> ::= L 

<digit).12.1 

<rest of int>
12.2 

13) <special> ::= <digit>13.1  

<rest of int>
13.2 

<unlab. stmt>
13.3 I 

:= LOC(LOC(ework) ) * 

<exp>13.4  

MC(if(TYPE(L) = int) 

then(if(TYPE(work) = int) 

then( Si(kL,ekwork) ) 

else EXIT (T) 

else(if(TYPE(L) = real) 

fi 

see production 9. 
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then(if(TYPE(work) = int) 

then ADJ(int OF ATTRIB, kwork, 

real OF ATTRIB, kwork) 

Slctwork,Sipan(hwork) ) 

else (if(TYPE(work) = real ) 

then A 

else EXIT (T) 

S1  (kL ekwork) 

) 

S
2 
work) 

14)  <digit> ::= 0 	I 	1 	I 	2 	I 	... 	I 	9 

15)  <rest of int.> ::= <digit>15.1  

<rest of int.>
15.2 

A 

16)  <unlab. stmt> ::= <block>
16.1

i 

go to 

<label>
16.2 

5-1(<  >16.24ek
(label OF 

A
TTRIB) ) 

then (AT( 
'‹ >16.2)' 

LINK(label OF ATTRIB, < >16.2  OF ATTRIB) ), 

AUGR(BLOCK, e CONT(True,§2,A) ), 

LINK(Bool OF ATTRIB, §, OF(CONT OF BLOCK) ), 

LINK(§
2 
 OF(CONT OF BLOCK, < >16.2  OF ATTRIB) 	I 

qc?16.3 

<exp>
16.4 

LOC(if(TYPE
(< >16.3) 

= int) 
 

then (if(TYPE(work) = int) 

1 
see production 9. 
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then(S1(k < >16.3,ekwork) ) 

else EXIT (T) 

else (if(TYPE (< >16.3)  = 
 real) 

then(if (TYPE (work) = int) 

then ADJ(int OF ATTRIB, kwork, 

real OF ATTRIB, kwork) 

Sl(kwork,SlpaIR(kwork) ) 

else (if(TYPE(work) = real) 

then A 

else EXIT (T) 

) 

S1  (k< >16.3,ekwork) 

) 

) 

S2 work) 

17) <exp> ::= <token>17.1  

<exp follower>17.2  

18) <exp follower> ::= + 

1..0C(LOC(work)) 

<exp>
18.1 

t LOC (if (TYPE (Prey (STORE ,work) = int) 

then(if(TYPE(work) = int) 

t This insertion may be more easily comprehended after consultation of 
the following table:- 

result := x + y 
TYPE(y) 

TYPE (x) 

+ int real other 

int aI+ Convert x+R 
a
R+ 

.,,, 

. 
real Convert y+R 

,51R+ aR..1. 
;.K/ . 

other 
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then S1 
 (kPrev(STORE,work), 

eS1 paI+ 
 (ekPrev(STORE,work),ekwork)) 

else (if(TYPE(work) = real) 

then(ADJ(int OF ATTRIB, 
kPrev(STORE,work), 
real OF ATTRIB, 
kPrev(STORE,WORK)), 

S,kPrev(STORE,work), 
e(S1IR (ekPrev(STORE,work))), 

SikPrev(STOR E,work), 
e(SipaR+,(ekPrev(STORE,work),ekwork)) 

else EXIT (T) 

else (if (TYPE(Prev(STORE,work) = real) 

then(if(TYPE(work) = real) 

then S11 kPrev(STORE,work), 
e(S1 paR+' (ekPrev(STORE,work), ekwork)) 

else if (TYPE(work) = int) 

then(ADJ(int OF ATTRIB, 
kwork, real OF ATTRIB, kwork), 

Sikwork,e(Sipa, , 
(ekPrev(STORE,work), ekworkI) 

else EXIT (T) 

else EXIT (T) 

S2work I A 

19) <token> ::= <id> 19.1 

S1 
kwork, 211< >

19.1' 

LINK(TYPE(< >l9.1)' 
 kwork * I 

.<digit>19.2<rest of int>19.3 

3S1kwork, e(.< >19.1
< >

19.3
),  

LINK(real OF ATTRIB, kwork) * I 

<digit>19.4  

<rest of int.> 19.5 

<rest of number>19.6 
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20) <rest of number> ::= . 

<rest of int.>
20.1 

Olkwork, e(< 
	

< >20.1)' 

LINK(real OF ATTRIB, kwork) ( 1 

A 

Olkwork, e(< 
>19.4< >19.5)' 

LINK(int OF ATTRIB, kwork) 
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7.2.1 Control Translations in X.  

To aid control translation we use a (purely notational) 'function'. 

CONT(a, 0, y). 

This function may accur as an item in STORE and corresponds loosely 

to 
RAM(a, a, y). 

a is a predicate, so 

ka E k Bool 

a is a pointer such that 

kO C STORE 

or 

ka E ATTRIB 

and 

k
2
(3 C STORE 

(The latter case models a label, it, held in ATTRIB such that kt is the 

first statement in the list 'named' by t.) 

Similarly for y . 

CONT differs from RAM in that 8, y are not arguments of the procedure 

but merely pointers; moreover, if < is the list order relation of STORE 

and 

kf3 	CONTrol(a, 0, y) 

then the resultant control routine may not be RAM but PTL (see appendix). 

CONTrol is primarily used to emulate the underlying flow schema of 

a program and its modification by a suitable algorithm into an equivalent 

semi-structured program. 

The simplicity of control commands in language X leadsto simple 

equivalent Carabiner control operations and the translation is easy. 
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Before giving the algorithm, first informally and then in Carabiner, 

we make some remarks and give some illustrations. These are not exhaustive 

and may not be applicable to other source languages. 

(1) 	There are no conditional control transfers in X so 

CONT(a, g, y) 	a = True G k Bool 

Y = A 

hence: 

(ii) goto Ll 	CONT(True, , 	A ) 

Ll e ATTRIB 

Ll: statement Ll C ATTRIB 

Aatemene C STORE 

- where statement' is the translation of statement. 

(iv) 	Since control flow changes can only be dictated by 'obeying' 

labels, we must insert additional CONTrol indicators prior to 

each label. To illustrate the need for this, consider the 

following flow path. 

a) 

b) 
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The flow from 0 to t
1 
in (a) needs to be catered for in the same 

way as in (b); the difficulty being that, although in (a) the flow 

from 13 to y seems to be forward, it does in fact imply a jump 

back to a previously translated segment - namely. y . 

A solution to this problem is to replace any label, tn, by:- 

/ n 

CONT(True„ A), to, ... 

- then any manipulation through a label must involve explicit 

manipulation of that label. 

(v) 	Given the restriction on control transfers across block boundaries 

(as in X), then temporary markers, $ , may be used to delimit sublists 

of STORE and ATTRIB such that if 'goto'<label> is the original text 

then 

(a) <label> e the required sublist of ATTRIB and is :(unique) in 

that sublist, and 

(b) k<label> e the corresponding sublist of STORE and is in 

that sublist. 

N.B. Of course k 1<label> need not be unique - or even exist. 

From the previous observations we may formulate the following 

translation procedure: 

(i) On recognising the beginning of a block, set temporary 

marks, $ , in ATTRIB and STORE, and add label to ATTRIB. 

(ii) While in the block process goto statements thus:- 

given goto <label>, check that <label> t k(label OF ATTRIB) 

if so then create label i.e. add <label> to ATTRIB 

and set.k
-1 

<label> to label  
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replace goto <label> by CONT(True, 52, A) 

set k(5
2 
 OF CONT) = <label> OF ATTRIB 

(iii) While in the block process <label>s thus 

given <label>, check that <label>ck(label OF ATTRIB) 

if it is then stop (fail), 

otherwise add <label> to ATTRIB 

and set k 1<label> = label OF ATTRIB 

add CONTrol to STORE, 

set §3 
OF CONT to A, 

5
1 
 OF CONT to True 

link Boolean OF ATTRIB to 5
1 
 OF CONT 

add wt to STORE 

set k<label> = w 

link 5
2 
OF CONT to w 

(vi) 	On recognising the end of a block; insert Block( ) to left of $ in 

STORE, add 'next' to ATTRIB and process the section e COPYR(STORE, $ ) 

from left to right as follows. 

(a) if the section is null then goto (e) 

else goto (b) 

(b) set knext to first element of section and goto (e) 

(c) if knext is a CONTrol statement 

then goto (d) 

else add statement to BLOCK 

if section from knext is null 

then goto (e) 

else set knext to following statement 

goto (c) 

w may here be regarded as the unity operation i.e. 

Sx, x, x for any x . 
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(d) (CONTrol Statement) 

if k2(§
2 
 OF k(next)) E BLOCK 

then we have a loop so generate PTL 

goto  

else if k
2
(§nL  OF knext) C section  

then set knext = that element of section 

else error. stop. 

goto (c) 

(e) Add EXIT(1) to BLOCK 

goto  

(f) Trim from 

Trim from label OF ATTRIB 

From the above we may define the following Carabiner translation 

sequences for X: 

BLOCK ENTRY 1 E 3 AT(next) 

LOC($) 

AT(label) 

LOC(LOC($) ) 

Ott GENERATE 'GOTO' 	E if (< >9.2  . ek(label OF ATTRIB)) 

then W(.< >9.2), 

LINK(label OF ATTRIB,< >9.2  OF ATTRIB)) 

else A, 

AUGR(BLOCK, CONT (True,§2, A)), 

LINK(Bool OF ATTRIB, §1  OF (CONT OF BLOCK)), 

LINK(§2 OF (CONT OF BLOCK), < >9.2
OF ATTRIB) 

LOG LABEL 1 
 E 	if L  < >12.1< >12.2 C ek (label OF ATTRIB)  

then eEXIT (T)t 

Error; label occurs twice in same block. 

ttSet theoretic notation is used to aid comprehension; however, this does 
not go against the philosophy of using S to specify operations; since in all 
finite (practical) cases we may express set operations as S operations on 
lists - see Chapter 6. 
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else A, 

AT(L < >
12.1 

< >12.2), 

LINK(label OF ATTRIB, L < >12.1 < >12.2 
OF ATTRIB), 

LOC(CONT (True, 52, A)), 

LINK(Bool OF ATTRIB, 51  OF (CONT OF BLOCK)), 

LINK(52  OF (CONT OF BLOCK), L< >12.
1 

< >12.2  OF ATTRIB), 

LOC(w), 

LINK(L < >
12.1 

< >
12.2 

OF ATTRIB, w) 

BLOCK EXITS E jaNSERTL(STORE,$ , BLOCK( )), 

AT(next), 

if(COPYR(STORE,$ ) = 0) 

then(AUGR(51  OF BLOCK, EXIT(1))) 

else(LINK(next OF ATTRIB, 51  OF COPYR(STORE,$))), 

BLOCK(PTL(True,(if(ek(next OF ATTRIB) = CONT( )) 

then(if(ekek(52  OF ek(next 
OF ATTRIB)) L BLOCK) 

then(INSERTL(BLOCK, 

h202  OF k(next OF ATTRIB)), PTL(True, 52)), 

LINK(Bool OF ATTRIB, 
51 
 OF(PTL OF BLOCK)), 

S
1
(5

2 
OF(PTL OF BLOCK), 

eCOPYL(BLOCK, k
2
(5

- 2 
OF k(next OF ATTRIB)))), 

DELR(BLOCK, 

k2(5

- 2 

 OF k(next OF ATTRIB))), 

EXIT(1) ) 

else(if(ekek(52  OF ek(next 

OF ATTRIB)) c eCOPYR(STORE,$ )) 

then LINK(next OF 

ATTRIB, k
2
(52  OF ek(next OF ATTRIB))) 

else EXIT(T)) 
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else(AUGR(BLOCK, ek(next OF ATTRIB)), 

if(eCOPYR(STORE, 
k(next OF ATTRIB)) = 0 ) 

then(AUGR(BLOCK, EXIT(1)), 

EXIT(1) 

else(ADJ(next OF ATTRIB, 
knext OF ATTRIB, next OF ATTRIB, 
eNext(STORE, knext OF ATTRIB)), 

S
1 
 (Prev(STORE, next OF 

ATTRIB, A))) 

TRIMR(STORE,$ ), 

TRIMR(ATTRIB, label OF ATTRIB)) :( 
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7.3 A translated X program. 

We give an X program, its Carabiner equivalent and descriptions 

of the CPS state at various points during the execution of the object 

program. 

The source program is:-

begin let A, B be real; 

begin let B, C be integer;  

C := 1; 

begin let D, B be integer; 

A := 3.1; 

B := 2; 

Ll 	D := C + 1; 

A := B + D; 

goto L2; 

A := B; 

L2 	C := B + C; 

goto Ll 

end 

end 

end 

With the knowledge that the above is a valid X program we may 

parse and translate it to give 

TOF (a4  OF a) IS (LOC.6), 

LOC (A), 

( S1kA, w ), 

LOC (B), 

w ), 

LINK(real OF ATTRIB, (kA, kB)), 
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LOC($), 

LOC(B), 

(S1kB, w ), 

LOC(C), 

(S1kC, w ), 

LINK(int OF ATTRIB, {kB,kC} ), 

(SikC, 1 ), 

LOC($), 

LOC(D), 

(S1kD, w ), 

LOC(B), 

w), 

LINK (int OF ATTRIB, {kD,kB}) 

(S1kA, 3.1), 

(S1— 
kB,2), 

(S
1
PTL, ( {/}, TRUE ), 

/ 

(S1kD,(S1pa14.,(ekC, el))), 

. (S
1—  
kA,(S1 

paIR' 
 (S1 paI+ ,(ekB, ekD)))), 

passes 1 and 2 

(S1— 
kC (S1 

paI+' 
 (ekB ekC ))) 

— 

TRIMR(STORE,$ ), 

TRIMR(STORE,$ ), 

TRIMR(STORE,$ ) 
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During translation the program a (i.e. kpci) is set equal to the 

preceding list of Carabiner statements, i.e. 

S kpa , w, a. 

Execution of the object program is then caused by the statement 

ea . 

a is represented by a list and the sequential execution of the constituent 

statements in the list is caused by e which distributes over a since:- 

proc e(k 1(a) 1) ATTRIB. ) 

Because of the obvious diagramatic complexities we henceforth denote 

a by its name and not by the afore-mentioned list. 

Three stages in the execution of the program are depicted; these 

correspond to the positions A and B (at 1st and 2nd pass) in the 

Carabiner object list. 	For the present we have ignored the mechanics 

of calling procedures (i.e. of copying parameters and returning values) 

and hence in the 'snapshots'
t  given below we only give details of the 

list STORE to the right of pa . 

t In concept these are not unlike the snapshots of Naur [83]. 
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CPS at Stage A  

rBooll 

a 
[void.] 

a 

rprocj 

a 
lint] 

Freall 	 

c4 E1 
Qi 

STORE IS ( IS ( ) 	, 

real 



Dooli 

[-void] 

fyrocl 

rind 

Freall 

H 
CA 
H 

STORE IS ( 

roc 

int 
.1■11•• WM. ■■■■• OMIM .1114 	 •■•■ •M=. •■■•• •■■ ,■• 	 11■• •■• ••■•• 

, pa Is ( ) 	, 

a 

• • • 

int 

CPS at Stage B on the first Pass  
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At stage B on the second pass the structure is as on the first 

pass but three node values have changed; namely, 

kA = 6.0, 

kC = 3, 

kD = 4 
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CHAPTER 8  

PROPERTIES OF THE PROGRAM SPACE (CPS)  

8.1 On Derivatives, Neighbourhoods, Relatives and STRUCTs  

From §6.8 we recall the following operations on CPS:- 

(1) deriv(x) = k-1(x)U(z : z E k(x) : x ATTRIB) 

U (z : z E k (y.)Lik 
1  (y.), (1 5 i s m) if x IS (yi,...,ym) : x0ATTRIB) 

(2) given x E STORE 

D0 (x)= deriv(x) 

and Dn
(x) = (z : z E deriv(y): y E D*n-1 (x) ) 

1 
 

D*n(x) = Dn(x) `.• STORE* for all n E N 

CO 

(3) 	Rel(x) = U D*(x)U (x) 

and 
	n=o 

Rel*(x) = Rel(x) l) ( (y,z) : y,z E Rel(x) and z = ky ) 

(4) Nhd(x) = Rel(x)N.0 Rel(y) 

y E STORE \ (x) 

(5) STRUCT(x) = Nhd(x)Li( (a,b) : (a,b) E Rel*(x) 

and (a E Nhd(x) 

or b E Nhd(x) ) 

tSTORE* = (y : y E y1  E...Eyn ESTORE) 

for all n E 
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These may be interpreted as follows: 

(1) deriv(x) is the set of all points one (k) step away from x; the 

derivative of x. 

(2) D
n
(x) is the n

th 
derivative of x. 

(3) Rel(x) is the set of all points related to x via k, k 1  and OF. 

Rel*(x) is Rel(x) together with inter-connecting links. 

(4) Nhd(x) is the 'neighbourhood' of all points related to only x. 

(5) STRUCT(x) is the neighbourhood of x, together with all internal.  

and external links. 

STRUCT forms the basis of the topological discussion which follows. 

8.2 A dynamic Topology for CPS  

The operator STRUCT allows us to define a dynamic topology upon 

STORE. 

Define a topology "..10  over CPS via the basis where 

B Elp 0  B= STRUCT(x) for some x 

i.e. T E
o 

44. T is the (possibly void) union of some elements of.B . 

Given such a topology, 70, then for any x E CPS the smallest neighbourhood 

N, of x is 

*(a) if .3( E STORE, then N = STRUCT(x) 

(b) if x E STRUCT(y) for some y E STORE, then N = STRUCT(y) 

(c) otherwise N 

The basis formed by this operator changes (dynamically) as the space 
states change. 
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t 
Trivially :70  is not even T0 

 as may be seen from the structure:- 

STORE IS (..., x, ...) 

3 

whence 
3 E STRUCT(x) 

so 	BU open: 3 U and x E U. 

Now if we restrict our considerations to STORE, or equivalently 

redefine (b) in 7 to yield n = 0, then we get 71 in which all 

sets are clopen
tt
, since if T E 71 then 

T .USTRUCT(i) with 3c STORE 
i E5 

so T is open 

but T = U sTRucT(i) 
i E STORE 

so T is'open and hence T is closed. 

Trivially, if all sets are open then 	is T
2 
since 

x / y, x, y E STORE 

STRUCT(x) fl STRUCT(y) 

8.3 On Stability of Programs  

Whilst we have no more than a vague idea of the mappings (as 

generated by complete programs) which act on the set, r, of all 

configurations, y, of CPS we can still make some general comments 

about the topology involved and (via separation considerations) limits 

of sequences of such mappings. 

tSee §8.3 

tt 
i.e. closed and open. 
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For a given program (homomorphic via translation to f) and 

a given initial state y. we have: 

f : 	-0F 

and 
f yj  Yi  (where f is assumed not to 'hang-up' 

on Yj  

Now, if f terminates 'normally' (i.e. STORE is TRIMRed to pa on 

t 
termination) then y

1 
 is very similar to y.; the only essential 

difference being in the contents of the Input/Output vectors (buffers). 

Defining a suitable metric (and hence a topology) on these buffers 

allows us to discuss the stability of a program about a given input 

vector: 

if: 
	

f  Yi Yi 

then: 	given any e > 0, if we can find 8 > 0 

such that: 	f(N(Yil 6)) 	N(yi, e) 

- using analytical notationt t  - then we say f is stable about y.. 

If 3 y . :y 	and f : Y
j  1-4  1 	1 

then f diverges (hangs-up) at, Yj  

t It may be justifiably argued that since modification of the contents 
of the Input buffers is the only way of effecting the outcome of the 
program, and that examining the contents of the output buffers is 
the only way of establishing the outcome of the action caused by the 
program; it makes sense to consider the following even when the pro-
gram terminates in another fashion (and also maybe when it does not 
terminate). 

Note that introducing a trace creates a new output buffer which must 
then be treated in the same manner as other buffers. 

tti.e. N(x, y) 	(z : d(x, z) < y} 

for the metric d. 
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If 	Y3  . : f : y. )-4 y1 
and 3e > 0 for which there is no 8  > 0: 

Y 6)) c N(yi, e) 

thenYj  . is a critical point of f; equivalently f is unstable about y.. 

Given that f is divergent at y and is defined by a list: 

f IS (fl, 	f
n
) 

i.e. 	f = f
n 
o fn-1 

o 	o f1 

- then it may be fruitful to examine the (internal) effect of the 

individual f.'s; in doing this we could consider the topology of a 

general state of the CPS. [Here we consider changes in buffer values 

to be external effects; change3in the STORE being termed internal  

effects.] This was done in §8.2. 

Given any convergent f. : Y. 	y4 	then topologies on yj and 
Ji 	Ji+1 

y. 	induce the product topology on y
j 	i+1 
xy

i 	
and hence (via 

Ji+1 

subset topology) on fi. A full definition of this topology and dis-

cussion of its separation is given below, but first we recall the 

separation axioms:- 

T
o 

Given a space X,: x, y E X and x / y. 

If 3U X : U open, x E U, y fE/ U 

then X is T0. 

T1 Given a space X: x, y E X and x y. 

If -3 U, V c  X :,U, V open 

x E U, y U 

x g V, y E V 

Then X is T1. 

equivalently: given x E X if (x) is closed then X is T1. 
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T
2 

(Hausdorf) Given a space X : x, y E X and x / Y. 

If 3U, V X : U, V open, x E U, y E V and u v =0 

then X is T
2
. 

Regular: Given a space X: x E X and A C X, A closed, x ft A. 

If 3 U, V c X: U, V open: x E U, A C V and U V= 0 

then X is Regular. 

T
3 

X is T
3 

if it is T1 
and Regular. 

Normal: 	Given a space X : A, B C X, X, B 

A A B= 0; if 3 U, V C X: U, V open 

ACU, BcVand UnV=0 

then X is Normal. 

T X is T
4 
if it is T1  and Normal. 

With reference to the metric on the I/O buffers, we may formulate 

the notion of functional approximation: 

given f : F r 

and any 	g :r. r 

then 

(i) g approximates f with accuracy a if for any 

: f(y) converges 

then 	g(Y) E N (f(y), 8) 	(e, > 0) 

Trivially, if g approximates f with accuracy & then f approximates g 

with the same degree of accuracy. 

(ii) g partially approximates f with accuracy 

& if for any y : f(y) and g(y) both converge 

then 	g(y) E N(f(y), a) 	(a > 0) 
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(iii) Given r1  c r such that g (partially) 

approximates f for all y E r1  then g (partially) 

approximates f over F. 

The definition of a suitable metric needs detailed consideration 

but it would seem sensible that it should be either linear i.e. 

d(x, 2) = E Ixi  .41 

and 	N(x, g) 	(y : Ixi  - 	< 8} 

or weighted to give bias to initial data, i.e. 

d(x, 2) = E ui  Ixi  - 2.11 

and 	N(x, g) . (2.  : Ixi  - 	< ai  e) 

where ai  is a decreasing positive-valued function of i. 

However, regardless of the metric, since metric spaces are T4  and 

T
4 

T
3 

T
2 

T1 T0
, we will be able to use the strongest possible 

theorems on convergence. 

The relationships between critical points, canonical forms [96, 

97] and properties of programs [39-41] demand further examination. 

8.4 On Modal Substructures and Coercions  

Via modal chains, we define the modal substructure of x E CPS. 

This is then demonstrated by an example. 

Defn: A modal chain of x E CPS is a digraph D(z, z) where 

= y1, •--, Yn  and z = ((yi, yi+1) : (1 s i < n)) 
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such that:- (a) x = yi  

(b) yi  E ATTRIB iff i = n 

(c) y. = y. iff i= j 

(d) yi+1  E k yiU k 1  yi 	(1 s i< n) 

Defn: The Modal Substructure, MS, of x E CPS is 

MS(x) = U yi 
	where yi  is a modal chain of x and the 

natural equivalences induced by the CPS 

carry over. 

Then: 	MS(a.) 	&. 	(i = 1,2,3) 

ot
1 	 ot

3 
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MS(p4) s 0 

MS(y1) s 12 

.Y1 

MS(y2) s 

a 

MS(S1) 

Ci  

a 	a
3 

ms(C2) s MS(C3
) s 	C2 	C3 

ms(C
4
) E 0 

Now, Si  ky, ekx is only (directly) executable if 

MS(ky) s MS(kx) 

Coercions of the dereferencing kind may be modelled by allowing the 

removal of nodes from within an MS in such a way that the resulting 

digraph is still a valid MS fort-the original node considered. This 

is expounded further in §9.4 

Coercions which explicitly change node values are, of course, language 

dependent and must be dealt with individually (see §9.5). 
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CHAPTER 9  

ON DESCRIBING OTHER PROGRAMMING  
LANGUAGE FEATURES 

Here we give a brief discussion of how the language and the 

space of the Carabiner system may be used to specify characteristics 

of high-level programming languages that do not appear within our 

example language, X. The list of features examined is by no means 

exhaustive but is quite extensive, having been extracted from 

Ledgards Mini-Languages [68]. A more detailed treatment of a set 

of PLECS (Programming Languages to Exhibit Carabiner), based on the 

mini-languages is given in two technical reports [33, 34]. The 

contents of this chapter constitute a precis of these reports. 

9.1 Assignment and I/O  

By direct application of the three fundamental operators, S, k 

and e, we can model any kind of generalized assignment by a statement 

of the form:- 

5 

Here, a is a left-hand value and p a right-hand value [6, 15]. Details 

of this construction have already been given in chapter 6 and will not 

be repeated here. 
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Now consider the program element of CPS:- 

ATTRIB IS (..., proc, ...) 

STORE IS (..., OUTPUT FROM aIS(§), pa Is (§) 

Restricting our examination to the modelling of a high-level source 

language and ignoring matters relating to job organization, I/O 

spooling etc., then trivially the action of the program (i.e. 

eekpa ea), in general, will cause the items in the list a to 

be processed by e and information resulting from this computation 

will be placed in the list OUTPUT FROM a. The actual form of these 

lists depends on conventions for I/O control (i.e. line feed, space, 

page throw etc.). An immediate consequence of our representation 

of procedures, and hence of any complete program, is that I/O is 

essentially reduced to assignments to and from buffers. Input may 

be specified thus:- 

input to X : 	e COPY (§i  of a) 

or 	
S lc): e TIMIL(§ OF a, v) 

- where V denotes space (say). 

output from 	ATJGR(.§. OF OUTPUT FROM a, e kX) 

Trivially these I/O commands may be embedded within conditional 

constructs. 
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9.2 Transfer of Control and Block Structure  

As is shown in the appendix, any program may be re-structured 

so that the only control constructs required are: 

RAM (a, b, c) 	i.e. if...then...else 

t 

PTL (a, b) 
	

i.e. do...while... 

BLOCK (a) 

EXIT (a) 

If, however, we wish to leave the program structure as dictated by 

the source language, we can use the procedure template and adjust 

its 'next instruction' pointer kBPTR (see chapter 6) to change: 

BLOCK IS (a1, ..., a 	
...,

n
), BPTR 

to 

BLOCK IS (a 	a 	N
n
) BPTR 1, 	" 	, 

The related problem of scope sensitive data (e.g. locally (re-) 

declared identifiers in Algol-60) is easily solved by using a marker, 

say, which is placed before any local quantities and can later be 

used to TRIM off these quantities. 

e.g. 	BEGIN 	LOOS) 

END 	TRIMR (STORE,) 

This is exactly the same method as used in language X as described in 

chapters 3 and 7. 

tThis is always Pbssible but may not be desirable; 
e.g. 

goto (read) 	
- where read, inputs an integer (label) 
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9.3 Functions and Parameters  

Recall that a procedure (function) template is of the form: 

ATTRIB IS (..., proc, ...) 

STORE IS (..., OUTPUT FROM f IS (§), f IS (s), ...) 

- where k
1(§. OF OUTPUT FROM f) g ATTRIB 

and 
k

1 
k (§5.  OF f) g ATTRIB 

In defining a procedure we must define all the necessary (k) links 

explicitly; then, when the procedure is 'called' we may use the 

topological operator STRUCT (see chapters 6 and 8) to copy the whole 

structure, related as in the definition, into local work space, 

by e.g. 
LOC (STRUCT(f)) 	(t) 

The process of loading, executing and then deleting a function is 

elaborated in §6.4 and yields a Carabiner sequence of the form:- 

S A, A, STRUCT(f) 

S § OF f, § OF f, x 

ek f  

S STRUCT (f), STRUCT (f), A 

Loosely this represents: LOAD f 

LOAD parameters (x) 

EXEC f 

DELETE f 

Properly, we need two LOC's, the other being of the form 
LOC(STRUCT(OUTPUT FROM f)), however here this serves only to cloud 
the main issues. 
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Implicitly associated with each template is a pointer PTR which 

well defines the order in which parameters are loaded and also 

the order of evaluation (e) of the sequence, kf, of statements 

which constitute the body of f. 

The only problem that occurs in relation to parameters is 

that of emulating differing modes of calling the parameters - or 

equivalently (re)initializing identifiers within the procedure body. 

(A fuller discussion of such modes is given in CPL and related 

documentation [6, 33, 68, 86]). 

As an extreme example consider the 3-ary function f, with 

the three parameters called by value, reference, and name (expression) 

respectively. 

e . g. 	'f(a, b, c), value a, 

ref b, 

Now let modes of execution (modex) be as follows: 

compilation 1 

(function) definition 	2 

(program) execution 
	3 

(function) execution 	4 

The stages involved in processing a program of the form: 

define f 

• 

call f 
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are thus:- modex 1 

(compile) 

ell  LOC (22 
... ) 

• 
• 
• 

modex 2 

(process definitions) 

e2 LOC(f(e3k§1, k§2,4.1(§3) 

(also e2  LOC(24  set modex = 4 

24 set modex . 3)) 

modex 3 
• 
• 
• 

call f (2311.§1, 	e4k§3) 

modex 4- 4 

including eSk§ e k§ 4 1- 2' 4- 3 e.g. 
(originally b 	c) 

• 
• 

modex 3 

exit from f 

• 

This would cause trouble if f were recursive or occurred in an 

embedded construct, i.e. 

y 	f(a, f(b, c, d), e, g) 

Other methods utilise a 'saving' function which, like all functions, 

creates a new copy of itself and hence has to re-evaluate its 

parameter(s). This re-evaluation is just what is needed to model 
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call by name (or expression). This approach has been adopted to 

define PLEC5 [33]. 

9.4 Type Checking  

Using strictly disjoint types (or modes), pre-run type checking 

is not possible in all languages (cf. [68]). However, if we define 

suitable mode-hierarchies, we are always able to perform some degree 

of checking by an extension of traditional dictionary techniques. 

Essentially our method is a development of the de-referencing 

of Algol-68 [108] and the projections used in Algol N [55, 104, 124]. 

Here is not the place to enter into a detailed description of the 

method since the manipulations involved must be defined in terms of 

the elements and constructs of the language under consideration - 

the types involved in the language X are far too simple to justify 

the use of such a general technique and the describing of a suitable 

language would be too time and space-consuming. We enumerate the 

main features of the system:- 

We need to create a (scope sensitive) dictionary of all 

variables, function templates (as in §6.4) and attributes; 

moreover these entries should be linked to all static (i.e. 

permanent) attributes. This is achieved by execution of all 

declarative statements within the program; and in languages 

such as FORTRAN where subprograms may physically follow CALL's 

to them, this may necessitate two passes of the checker. 

II In order to be able to link items to attributes of varying 

degree we need to put some hierarchical structure on sets of 
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related attributes. For entities of fixed type there is no 

problem; we link the entity to that type. However, if, for 

example, we had a value which was always numeric but could 

alternate between being real and int(eger), then the best we 

could do at compile time would be to regard the value as 

linked to both real and int, and hence (semi-) type check by 

examining a subgraph. 

i.e. 	(..., real, ..., int, ...) 

or 
(..., real, 	rant ..., int, ...) 

- the relationship between these constructs is given in III 

below. 

Further examples can be drawn from mathematics:- 

Using the common set denotations:- 
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- from Algol 68 [108]:- 

t 
I 
4,t - 

INTEGRAL 

INTREAL 	Boolean  

PLAIN 

I 

REAL 

Character  

t 1 / 
t 1  / 
-4 It 

PROCEDURE ref to MODE format  

"NNNN'NNN'A I  TYPE 

MOOD 

i 

STOWED 

Union of MODEI14.1  

MODE 

- from a general 'type-free' language [68] 

int 	real 	proc 	Boolean  

NNN„NA 
general  

ODO etc. 

Note: Given an element, x, of CPS such that k
1x c ATTRIB 

and say - 

k-1x = (p, q) 

- then the attributes of x are p and q. 
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Clearly this is violated in the present construction since 

we may have elements which (seem to) have properties that 

are inverses of each other, e.g. 

JR and C%%JR . 

However, since we are only considering declarations and no 

values are present we can explain this apparent contradiction 

by saying that the properties of a location are that it can 

hold a value of (say) type IR or EN.P. These properties are 

not necessarily disjoint and so no conflict arises in the model; 

of course at run-time a value can only have non-conflicting 

attributes although these may be changed. This is exactly What 

is required when examining a 'Union of mode in Algol 68 [108] 

(see §9.5). 

III In order to test for the possibility of compatibility of 

attributes at run-time we define two operations; the first of 

these is a contraction. 

Consider a connected structure, A0, within CPS (e.g. Rel(x) 

for some x in STORE), then if 3 y E AO  such that y is not 

ari atom or an anti-atom then we may contract AO  about y. 

To do this we remove y and link all elements of k
-1

y to all 

elements of ky (these exist by the assumptions made about y). 

If the resultant structure is Al then we denote the relation 

between A
O 

and Al 
by 

Al  4 AO  

Al 
may then be contracted, and so on. Extending notation and 

terminology we may define the operation of contraction to include 

the removal of more than one node, i.e. 
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A. Q  A. and A. 4 Al  

Ai G  Al  . 

Since any state of CPS is finite and hence so is any sub-

structure of a state, then for any A0  we must reach a 

contraction which contains only atoms and anti-atoms. 

Although the contraction chain (i.e. the chain of contractions) 

may not be unique, the resultant (non-contractible) structure 

is unique and called the Unique Ultimate Contraction (UUC). 

e.g. 	if A is 

A1 is 

and A
2 
is 

Then A2  Q Al  Q A 

and UUG (A) is A
2
. 
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Clearly, if JTi is the set of nodes in A ,and 

A A = (a E A : a is not an atom or an anti-atom) 

then the set of contractions of A is isomorphic to. the power 

set of A and has the same related (finite) lattice. Using 

the natural isomorphism between A and A then 

A ,̂  

and 
UUC (A) — 0 . 

IV If we now allow the possibility of throwing away part of a 

structure (in order to test for possible compatibility of mode 

options.which interact but are not strictly contained one within 

another) by removing any subset of nodes (and associated k-links) 

such that the resultant structure is connected - i.e. reduce a 

structure to a connected subgraph - and still has all the original 

atoms and at least one anti-atom (denote this by c".), then we 

define a subcontraction B of A, written B 4 A, 

if 3C: 

B C  C Q A 

In some cases compatability may only be required to the extent 

that A, B are suitably compatible iff 

C 4 A and C4B 

e.g. 	int 	real int 	real 

   

\ I 	 y 

In other instances it may be required that A 41 B 

e.g. 	int 	real 	int 

\ x 	 1 
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.N.B. The relation 4 is elsewhere termed 'modal substructuring' . 

This extended dictionary technique demands that all pro-

cedures be defined with templates that have explicit output 

vectors and that the mode void be implicitly modelled. 

In general, manipulation of the modal substructures only allows 

us to test for possible compatibility between constructs; any actual 

run time structures must match exactly even if this requires coercion 

to the structures in order to achieve a match. Of course, allowable 

coercions must be specified by the semantics of the language involved. 

9.5 Structured Data  

To illustrate the way in which (user defined) data structures 

can be represented we examine two commonly occurring constructs, 

namely a tree (of integers) and a list (again, of integers). 

Before giving these constructions, we note that the inter-

pretation of (Carabiner) lists within ATTRIB need not necessarily 

be the same as that of lists in STORE. Here we use such a list to 

represent unions of attributes, i.e. 

x IS(x
1 	

x
n
) c ATTRIB 
" 

1 

y 

. 	y is of type kJ xi  
i 

tFormally defined in §8.4. 
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If, however, elements of such a list are (k)-linked to other 

ATTRIBiates, then the elements explicitly name components of the 

composite objects of type x. e.g. given the situation above, 

then y has n components named xl, 

• 

x
n
. The following examples 

help clarify. 

define type  LIST IS UNIT OR PAIR, 

UNIT IS (ATOM IS INT) 

PAIR IS (HEAD IS INT, TAIL IS LIST). 

In the CPS this is:- 

ATTRIB IS(.., INT, LIST IS (UNIT IS (ATOM),PAIRIS(HEAD,TAIL)),-.. 

As a direct result of the construction it is obvious that no object 

manipulated by a program is a LIST - it may be either a UNIT or a 

PAIR; moreover where a type, such as LIST, is a union of other types, 

there must be provision for deciding which (sub)type is applicable. 

In most cases these types will have different structure and this can 

be used. 

e.g. 	let A,B be LIST 

A := (37) 

B := (17,(6)) 

A is a UNIT 

B is a PAIR 

and TAIL OF B is a UNIT 
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.Similarly, 

define type TREE IS LEAF OR NODE 

LEAF IS (ATOM IS INT) 

NODE IS (NUMBER IS INT, 

LEtT IS TREE, 

RIGHT IS TREE) 

is modelled thus:- 

..., INT, TREE IS (LEAF IS(ATOM), NODE IS (NUMBER, LEFT, 

then 

let A be TREE 

A := (1, (2,(5),(4)), (5, (6,(7),(8)), (9))) 

RIGHT OF A is a NODE 

RIGHT OF (RIGHT OF A) is a LEAF, value 9 

RIGHT OF (LEra' OF A) is a LEAF, value 4 

etc. 

9.6 String Manipulation  

Because Carabiner uses the (character) representations of the 

high-level source languages, and all the basic operations are defined 

(by Markov algorithms) in terms of their effects upon the string 

representations of'the given parameters; string manipulation is 

implicitly inherent within the system. 

Moreover, since string manipulation transformations are easily 

translated into MAs, any such transformation can be identified with 
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'an equivalent base function. Extension of the set of base 

functions may seem a very naive way of dealing with string mani-

pulations, however since (a) the system is designed primarily as a 

means of, defining high-level languages and (b) any non-trivial 

MA can be decomposed into explicit loops, matching predicates and, 

substitutions, we feel justified in adopting this approach. 
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CHAPTER 10  

CLOSING REMARKS 

Over the last ten years, particularly in the latter half of 

that period, there have been numerous attempts to devise practical 

means by which semantics could be defined. Below, we note the work 

of prominent researchers and groups of researchers in this field. 

This is followed by a summary of comparisons and contrasts between 

these systems and Carabiner. We conclude with a resume of work 

directly related to Carabiner and a discussion of how it may be 

developed further. 

Probably the best known experiment in defining high-level languages 

is the Vienna Definition Language, (VDL) [54, 66, 69, 70, 112] 

developed by IBM's Vienna Laboratory to specify PL/I and later used 

to provide a formal definition of Algol-60. This system incorporates 

a very general abstract syntax, developed from BNF, and uses tree 

structures to specify data, programs and the environments in which 

programs are executed. The Common Base Language [36] designed by the 

Computational Structures Group of Project MAC at MIT under the direction 

of Jack Dennis utilises VDL as the basis for an UNCOL [79, 98, 99]. 

Several methodologies have used Church's A-calculus [18] as a 

starting point. Of these the work of Landin [61-63], Rohm [13, 14] and 

early work by Strachey [101] demand mention. The formal equivalence of 

the substitution properties of A and S was also investigated by Nixon 

and Wesselkamper in the initial stages of the Crampon project [86]. 
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Caller and Perlis [481 and deBakker [5] base their systems on 

Markov Algorithms [74] and hence are in some sense definitive; moreover 

deBakker uses a meta-language (after van Wijngaarden [106, 107]) and a 

similar notation, '3 	t; to that of Carabiner. 

The most recent, and probably the most mathematically formidable, 

system has been evolved by the Programming Research Group at Oxford 

(Strachey, Scott etc. [81, 90-92, 102, 103]). This system depends 

on a considerable amount of mathematical idealisation. 

Other, less easily classifiable, work includes McCarthy's use of 

state vectors [76] to define semantic changes; Feldman's semantic 

meta-language FSL [44]; and Wirth's use of semantic phrases to define 

the language EULER [117]. 

In offering Carabiner as an alternative to the above mentioned 

systems, we put forward the following considerations:- 

that although Carabiner demands a specific syntax
t 
(VDL does not), 

an explicit order of evaluation (VDL allows some choice) and full 

definition of all functions and operations, this is no loss since 

syntax rarely, if ever, needs the generality given by VDL and any 

choice in orders of evaluation are more properly admitted to the 

Model explicitly (via axioms) instead of by default; 

that in permitting the interlinkage of any components in CPS, 

Carabiner is essentially more flexible than the M.I.T. System; 

The current restriction on the extensibility of syntax is not intrinsic. 
It is included only to simplify the translator which may later be replaced 
by a more general recogniser (cf the work of Vettes [109]). 
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that following the discussion of §6.3 any A-calculus system is 

incapable of giving information about the internal dynamics of 

a calculation; moreover we need to reflect the distinction between 

identifier/value and place-holder (as in mathematics) - see §6.2 ; 

that while the Markov-based systems, and McCarthy's, can be 

definitive about string-to-string transformations the model of 

the program space used in Carabiner allows more meaningful 

interpretations of intermediate states of a computation. Also 

the use of S to effect changes in the model makes the overall 

system more uniform; 

that despite its mathematical inelegance Carabiner is no less 

precise than the Scott-Strachey semantics and is easier to 

comprehend (c.f [81]); 

that Carabiner's (semantically ideal) intermediate language - 

without implementation specifications - facilitates easy cross-

translation between computing systems using common character sets. 

This is in contrast to FSL in which it is believed the semantics 

and pragmatics are intermixed to such an extent as to make such 

translations almost impossible, and; 

that Wirth's system lacks the well-defined pragmatic level which 

is present in Carabiner. 

Summarising: in order to use Carabiner to define a high-level 

language programming system, one must first know the representation 

to be used and have a suitable grammar which is based on the given 

representation. Into this grammar we inject semantic phrases which 
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.act on our abstract program space. At this stage, elementary operations 

of the language are given in terms of the source level representation 

and are specified by Extended Markov Algorithms. This gives a machine 

(i.e. implementation) independent description of the high-level 

language in terms of an intermediate language having only a few basic 

functions and acting on a realistic model that is capable of representing 

intermediate states of a computation. From this description, the 

implementor can determine the language designers intended semantics 

which may then be interpreted as closely as is desired. Replacing the 

original EMAs by ones representing the operations as implemented then 

gives a definitive specification of the system implementation. 

Also, the system may be 'watered down' to a form suitable for use 

as a reference manual related to a specific implementation, or provide 

for the direct execution interpretation of prototype languages [113]. 

We have attempted no formal verification of the sufficiency of 

Carabiner but as evidence of the versatility of the system we cite 

its use to define a set of ten high-level languages. These languages, 

which we call PLECs (Programming Languages to Exhibit the use of 

Carabiner) were specially designed to act as test cases for methods 

of language description and are closely modelled on Ledgard's mini-

languages [68]. Documentation of these definitions is given elsewhere 

[33, 34] and was abstracted in chapter 9. 

Carabiner builds closely on the concepts used in the Crampon 

project [86, 87, 114-116]. Although the current model is less complex 

than that of Crampon, the basic elements are similar; however, Carabiner 

is more pragmatic, insisting that all actions within the execution of 

a program are explicitly defined. 
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Building on the work presented here and that currently being 

undertaken by Snidvongs [93-97] on "S-algebras" it would seem timely 

to investigate the use of S-operations to express optimization formulae, 

and hence to attempt to develop a uniform theory of optimization to 

extend and replace the presently used set of ad-hoc tricks and graph-

theoretic transformations. 

The links between the three above mentioned projects are, at 

present, notional rather than concrete. The problems of unifying 

them could be investigated in an attempt to define a structured (layered) 

translation scheme downwards from high-level source languages. Such 

implementation investigations could possibly also cast light on finding 

an alternative representation for function templates such as discussed 

in chapters 6 and 9. 
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APPENDIX: THE REMOVAL OF 'GOTO'S  

Al. 	Introduction  

Herein we give a language-independent algorithm which acts 

on a program, characterized by afIow-chart, and creates an 

t 
equivalent program which is modular or 'structured'. 

Whilst fully recognising that (well-)'structured' programming 

[38] (otherwise called step-wise refinement [118], iterative multi-

level modelling [125], system hierarchy [37], step-wise program 

composition [39], top-down program development, etc.) is funda-

mentally concerned with program construction, we note that the 

properties of structured programs are far easier to derive and 

manipulate than those of more general programs [39, 40, 41], so 

much so, that one could justifiably spend time in obtaining a 

program that is equivalent to the original one and yet is composed 

in such a way that optimizing techniques can more readily be 

applied [2, 19-21]. A more complete discussion of the 'goto' 

problem [3, 4, 9, 12, 38, 58, 67, 88, 110, 111, 122, 123] is given 

in Carabiner working paper no. 7 [28]. That paper also contains 

an extended version of the algorithm set out below. In that 

version, several optimization stages are incorporated with the 

effect of producing results which compare favourably with a 

similar algorithm published recently [88]. 

t. 
i.e. the new program defines the same function (represented by 
input-output pairs) as the original program. 
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The algorithm presented here acts on a single entry/single 

(logical) exit flow diagram, and includes no optimizations. It 

preserves the original topology (up to identification) and intro-

duces no extra variables or predicates . The transformation 

from multi-entry/multi-exit program segments into ones with only 

one entry and one exit is usually dependent on language semantics 

and is considered elsewhere [29]. 

Throughout the appendix we shall regard Carabiner as having 

no explicit 'goto' statement and consequently PTL is included as 

a fundamental operation (as discussed in §6.5). To signify that 

we are using this restricted version of Carabiner we shall refer 

to it as Carabiner*. 

A2. Carabiner* Structure  

Carabiner* is a block-structured language with five control 

operations, two of which deal with the block entry and exit, whilst 

the others deal with control flow within blocks. We consider the 

in-block operations first. 

•In-Block Structure  

A Carabiner* block, is a linear list of statements and has no 

labels. In the absence of any explicit control directive the 

evaluation sequence is, by default, strictly linear, i.e. upon 

completion of one statement the next statement in the list is exe-

cuted. This is the first (implicit) control operation; given a 

listof(non-control)statements,S.,we will denote these by: 

such as a state vector or (implicit or explicit) Boolean variables 
[3, 4] or flags [9]. 
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Si,  S2, ...' Sn 
or 

[S1 
ES2 

[S  

and diagramatically as 

S2 

sir  
S
n 	

J L__ 	• 	 
In what follows we shall regard any strict sequence of statements . 

as above (i.e.'void of control operations)as a single execution 

sequence and we may write it as: 

[S 

and represent it as the trivial diagram: 

The other two in-block control operations correspond to forward 

and backward jumps in the flow, i.e. they emulate what in FORTRAN 

might be: 
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A = B 

7 B=C+ B 

IF (A.GT.B) GO TO 7 

or 
GO TO 3 

3 CONTINUE 

The Carabiner* operation for a forward jump is RAM([A,[B,pred) - i.e. 

the ramification of the processes [A and [B governed by the predicate 

'pred' (see .54.5) and is equivalent to the Algol-60 construct:- 

if pred then [A else [B 

Diagramatically: 

For a backward jump (i.e. a potential loop) we postulate PTL([A, pred), 

i.e. Process [A, Test pred and if truet  then Loop and repeat. 

Diagramatically this is: 

t . 
i.e. if e k pred = True 
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Block Control  

Block control is governed by the two operations BLOCK(x) and 

EXIT(y), where x is the body of the required block and y is 

either a positive integer (by default 1) which specifies the number 

of nested blocks to be exited from, or 'T' which signifies termination 

of the program, this effectively means exit to operating system 

level. A FORTRAN subroutine might have the following exit identifications: 

SUBROUTINE EXAMPLE(X) 
• 
• 
• 

IF (Y) STOP 
• 
• 
• 

RETURN 

• 

RETURN 

END 

EXIT (T ) 

EXIT(1) 

EXIT(1) 

The above example is an over-simplification since it treats 

a subroutine as merely a block and ignores all questions related to 

the passing of parameters or results. A more useful example is the 

following Algol-60 program: 
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begin 	BLOCK() 

begin 	BLOCK() 

end; 	a EXIT() 

end 	EXIT(T) 

For simplicity of notation we shall use 0 for a stop or 

EXIT(T) statement, or return in a subprogram. 

Note: The 'in-block' operations of Carabiner* are sufficient to 

model any structured program [38], and by the addition of 

the EXIT(n) instruction we may also model non-structured 

programs, e.g. 

START 

a 

F p T 

Fi 
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This is 'unstructurable' without destroying the topology or adding 

extra Boolean or state variables [3, 4] but yields, by the al-

.gorithm of section 2 the following 'semi-structured' schema: 

START 

a 

	p 

F 
	

T  

exit(1) 	. 

I IF 
 

1 	
IF 

I 

I 	 I I 
I  

a 
IF 
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Here we have used chain lines 	to denote blocks 

and broken lines ( 	) to show completion flows: these are 

never followed in the execution but serve to retain the structured 

skeleton on which the incomplete segments hang. 

To simplify the representations of flow diagrams we shall 

use digraph representation (as in the above example) with the 

natural correspondence between process boxes and 2-nodes, bi-decisions 

(and flow joins) and 3 nodes etc. This realization will not be 

formalized. 

A3. The Translation Algorithm  

The translation process and the intermediate graph constructs 

used are based on Engeler's normal form [42] and consist of four 

stages, each of which is described individually. The sufficiency 

of the algorithm is discussed in section A5. 

Stage 1  

Transformation of a flow-chart into a 'linked tree'. 

Defn: A linked tree is a treet  with leaves labelled by integers 

or a special symbol (X). (This denotes a source language 

block exit, e.g. stop). To each such integer there is at 

least one corresponding pointer placed between two adjacent 

nodes (neither of which is a numbered leaf) elsewhere in 

the tree. The links being implied by the association between 

equal integers. 

twith all nodes of outdegree 5 2 (see §5.2.2). 
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e.g. 

a 

Here the implicit links are: 

Stage 1 Translation  

(i) Label all nodes of the flow-chart in a suitable manner (e.g. 

by lower case letters) and all flow joins by distinct integers. 

Replace all multiple (>2) decisions by sequences of binary 

choices. 

(ii) Starting at the entry point, construct the first branch of the 

tree, following the True (T) branches at predicates until 

either, (a) a stop,(X), is reached or, (b) a node is encountered 

for the second time; in this case do not duplicate the node but 

terminate the branch by a leaf named by the respective integer. 

(i.e. the one associated with the join in the flow.) 
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(iii) Taking the highest incomplete branch (i.e. the one furthest 

from the root) repeat the method of (ii) to complete all 

branches without duplicating any node of the original flow-

chart. 

e.g. 1: Program:- [A 

if B then goto lab 

[C 

do [D while E 

lab [F 

Stop  

Flow-chart:- 

START( 

A 

  

T 

           

              

              

              

               

          

C 

   

             

               

               

  

F 

        

          

          

               

               

 

v■ 	 

Stop 

            

              

              

labelled flow-chart:- 
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Linked tree (by branches): 

A 

e.g. 2: program: 	if A then [B else [C 

lab ED 

if E then goto lab else goto lab 1 

[F 

lab 2 [G 

Stop  

lab 1 [H 

goto lab 2 
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Flow-chart: 
START 

labelled flow-chart: 
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.linked-tree (branch by branch): 

Stage 2  

The linked tree produced by stage 1 needs to have its links 

untangled. If we regard < as the order relation implicit within 

the tree so that root < node for all (non-root) nodes etc. and we 

denote label n by ln  such that if 

1
n  

p < In 	for all p < x, 

x < 1
n 

, 

I
n 
< y 

1
n 
< q 	for all q > y. 

then 

and 
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(i.e. regard In  as a null node). Then we modify the tree so 

that all leaves n are such that 1
n 
< n. This is trivially possible 

by duplicating part of the tree whenever In  n. 
n n' 

i.e. if 
	

1
n 

11-1.3  

♦ 
■ 

and 01
n 
< n 

then, delete C) and replace by the subtree whose root is ln; 

so we have: 

1 n 

1
n 

p 

We now formalise the translation phase described above: 

Defn: Using the 'ln' notation and the natural ordering derived 

from the tree then any tree with the property that In  < n 

for all leaves n is called a simply-linked tree (SLT). 

Stage 2 may therefore be regarded as the manipulation of a 

linked tree into an equivalent simply-linked tree. 

Stage 2 Translation: 

Consider the leaves in the order dictated by the 'True first' rule 

as in Stage 1(ii). 

(i) Find the first leaf 'n' such that 1
n 

n. (If there are none then 

we are done), remove this leaf and replace it by the subtree whose 

root is 1
n
. (This in general creates new copies of numbered leaves 

and removes one leaf.) Goto (i). 



e.g. 2: linked tree: 

A' 	 

simply-linked tree: 

 

d 

  

 

O 
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e.g. 1: linked tree: 

simply-linked tree: 

Notice that Stage 2 may create duplicate labels. In this case if 

there is more than one on the same branch, erase the one closest 

to the root. 
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This technique is called node-splitting [2, 20, 21] and preserves 

topology (by identifying split nodes, any path in the LT is 

transformed into an equal path, described by a sequence of node 

names, in the resulting SLT). 

Stage 3: 

We now impose some nested blocks onto the directed graph. 

Stage 3 Translation:  

(i) Erase all unused labels. 

(ii) The remaining labels now have a partial order relation 

imposed by the (tree-like) directed graph. Draw a system 

of blocks ordered in the manner determined by the remaining 

fi 
labels . 

(iii) Upon this system of blocks superimpose the flow graph in 

such a way 

(a) that the entry point and all termination leaves are 

outside the largest block; 

(b) that entry to a block coincides with the positioning of 

the corresponding label; 

(c) that numbered leaves are drawn on a block boundary; 

(d) that the flow only crosses a block boundary in order to 

reach an outer boundary or X as in (a), and 

(e) that all statements whose position is not dictated by 

(a) - (d) is located in the most deeply nested block allowable. 

Note that two blocks may relate to the same label but in this case the 
occurrences are on different branches. 



IN'NN 	 3.7". 

s 

a -- 

F 

r 

4 

5 

1 
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0 

g- 

e 	k 	0  

underlying block structure: 

3 



T 

3 
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Flow mapped onto this block structure: 



These broken lines 
never followed 
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Stage 4: 

By virtue of stage 3 part (iii)(e) we arrange that each block has 

only one immediate exit, hence when we have a sequence of n (n 1) 

consecutive block exits we may replace this by EXIT (n) and either 

terminate the flow within the block or draw it anywhere. This 

leads naturally to the completion of the flow in a structured 

fashion by completing 

e.g. 

T 

'open' if-then-else constructs. 

f-- etc 

13  
a 

exit(n) 

etc 

may be drawn: 

F  

T 
a 

c 

b  

F 

Similarly, we may explicitly draw the loop control mechanism: 

-a 

   

b 

   

These broken lines de- 
 note unspecified flow. 
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Stage 4 translation: 

(i) Insert explicit exit statements. 

(ii) Insert explicit loop control. 

(iii) Coalesce block exits. 

(iv) Complete flow after exits so as to give fully structured 

(lattice) flow within each implicit or explicit block. 

Note: (iv) simply implies the closure of if-then-else phrases 

should be in reverse order to their creation. 

Where 'exit's occur this could lead to ambiguity, hence if sequences 

terminate in an exit statement there are two courses of action open: 

either (a) we stipulate 

if exit E a then 

if exit E p then 

else 

F1  

T 	 - - 

Fl 
	

I 

or (b) we let the existing diagram dictate the flow and only 

merge after exits. 

i.e. if r- 
T 
9 
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then: 

exit(n)-----1  
1 
■--__ 

S - exit(m)-----)  

etc. 

i.e. let the arms of the predicate be as before. 

We choose the latter. 

F 
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e.g. (as used to illustrate stage 3). 
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A4. Realization of the Carabiner* Program  

Having obtained a resulting single entry/single exit diagram, 

we now set about extracting a Carabiner* program
t 
 . Using Greek 

letters to denote arbitrary segments of flow chart and equivalent 

sequences of Carabiner* statements, we use the following equivalences 

to dictate the construction of the resultant program from the flow 

chart after its manipulation by the four stages above. 

 

a 

 

[a 

  

 

RAM(a,a,0) 

 

	 a— 
FT 

PTL(y,b) 

1 

     

5 	 I  BLOCK (6) 

     

     

 

       

-.1 

 

        

 

exit(n) — -- — — EXIT(n) 

 

t 
Of course, equivalent extractions exist for most other languages. 

tThe same rules are to be applied even when broken lines are present 
within the flow diagram. 

Y 
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.The order of translation of the flow chart is irrelevant; however, 

to be definitive, we stipulate that the flow lattice shall define 

the order by beginning translation at the entry node and moving 

via adjacent nodes (constructs) and expanding each greek denotation 

as it arises (in RAM expand a before p). 

A5., Discussion  

Sufficiency of the Algorithm  

As stated in the introduction to A3, the notation of an SLT 

is based on Engeler's normal form [42]. An inductive proof of 

the existence of a schema of this form equivalentt  to a given 

schema is to be found in section 1 of [42]; however the constructions 

given above constitute the basis for a proof of what is essentially 

the same theorem. This theorem states that, given any finite flow 

diagram with one entry and one exist we can generate an equivalent 

flow diagram which uses only the execution statements of the original 

plus control constructs analogous to our operations of BLOCK, EXIT, 

RAM and PTL; from this the generation of a program in a sufficiently 

structured language is trivial, moreover validation of the theorem 

is easily demonstrated. 

Here we do not give a rigourous mathematical proof (although 

one could easily be formulated) but argue the finite applicability 

of each stage; the characterization of the output from the final 

stage, being as in the statement of the theorem, will then infer 

validation of the theorem. 

in the sense that flow-paths (described by a sequence of node 
denotations) through the schema are preserved. 
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Stage 1 Translation  

Transformation of a (finite) flow chart into a linked tree. 

Given a finite directed graph we start from a specific node 

(the entry point) and select a (necessarily acyclic) chain the 

length of which is finite. 

At this stage either we finish or we have another specific 

node (the highest incomplete False fork) from which to generate 

another chain. 

This process stops before repetition of any nodes already used 

and utilizes at least one further node and/or completes another 

False fork. This last paragraph is then repeated until all branches 

are complete. 

By virtue of the total number of nodes used (and hence predicate 

nodes and False forks) being finite, this process must terminate. 

Stage 2 Translation  

Transformation of a linked tree into a simply-linked tree. 

In a linked tree there are a finite number of used labels and 

corresponding leaves. The substitutions caused by stage 2 involve 

extensions to this tree; the extensions duplicate labels on distinct 

branches and once a branch has all the used labels (hung) upon it 

there can be no more substitutions in that branch. From the finite 

original tree we derive a finite extended tree in a finite number of 

steps. 

The flow modifications are now complete and we have to lift 

our semi-structured program from the derived tree. The blocking 
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structure of stage 3 follows directly from the tree-structured 

relation between the remaining (used) labels of the SLT• Similarly 

the sub-tree structure of the blocked SLT well defines the 'lattice' 

completions to be made in stage 4. These final stages are purely 

manipulative; they cause no extensions of any kind but merely give 

a structured interpretation of the SLT already derived. 

Comparison with other works  

We give else where [28], stage by stage modifications of 

various program schemas taken from other papers. These programs 

are ones which have been considered 'awkward' by other workers. 

The example (given in §A2) is taken from Ashcroft and Manna 

[3, 4] and demonstrates that the inclusion of block structure 

renders the use of extra (Boolean or 'state') variables unnecessary. 

Other examples, taken from a well-known paper by Knuth and 

Floyd [58] and from other sources have been processed by (a slightly 

extended version of) the algorithm, with encouraging results. 

We have shown that our construction is always applicable and 

by incorporating a few fairly trivial optimizations we believe a 

practical restructuring procedure could easily be developed. 


