
THE PRAGMATIC FORMALIZATION OF

COMPUTING SYSTEMS RELATIVE TO A GIVEN

HIGH—LEVEL LANGUAGE

BY

DEREK JOHN COOKE.

Thesis submitted 6ox the degitee o6 Doctox o6 Phitosophy
of the Uravvaity ol5 London.

1

2

Abstract

Using a generalization of the 3-place operator S [116], derived

from Markov's substitution operator 	[74], we demonstrate a procedure

for specifying the semantics of high-level programming languages in

terms of a small set of fundamental operations. These intrinsic

functions are defined relative to a realistic, though not mathematically

aesthetic, model into which implementation restrictions must also be

incorporated.

Application of our system yields the specification of a computing

system as seen by the user of a high-level language; and which has

been determined partially by the language designer and partially by

the implementor of the language on the specific configuration in

question.

This thesis contains in its first 4 chapters mainly supporting
material. The reader is therefore advised that he will probably
find it easier to read if he starts his study at Ch.V. He will
then find it necessary to read Ch.III before proceeding to Ch.VII.

3

Acknowledgements

I should like to thank the Science Research Council for financing

the research reported herein by way of a research studentship. In

like manner I am most grateful to the University of London, first

at the Institute of Computer Science and then at the Department of

Computing and Control of Imperial College, for affording me facilities

for the pursuance of said research.

At a more personal level I should like to record my indebtedness

to my fellow research students, for their willingness to listen to my

ideas and eagerness to 'correct' them. Special thanks are due to

Dr. Tom Wesselkamper, also a former ICS research student, without whose

work mine may never have begun.

The biggest debt of gratitude I owe is to my supervisor, Eric

Nixon, former Dean of Research Students of the Institute. No mere

words seem adequate to describe the experience of being one of his

udents - it's certainly not an easy life but without doubt you learn

a lot. Thank you.

Last but not least, thanks to my typists, Miss Helen Knight and

Mrs. Betty Wright.

4

'Contents

1. Introduction.

2. Non-Extensible Syntax and Left-to-Right Parsing.

2.1 On Syntax Modification.

2.1.1 Introduction.

2.1.2 The Algorithm.

2.1.2.1 Derivation of Left-factored Form.

2.1.2.2 Equivalence of LFF and GNF.

2.1.2.3 Investigation of NBU Conditions.

2.1.2.4 Miscellaneous checks and reductions.

2.1.2.5 The Composite Algorithm.

2.2 . On Syntax Construction.

2.2.1 The Construction Rules.

	

2.2.1.1 	Local Rules.

	

2.2.1.2 	Global Rules.

2.2.2 Identities.

	

2.2.2.1 	Local Identities.

	

2.2.2.2 	Non-local Identities.

• 2.2.3 General Remarks and Hints.

2.2.3.1 Connectedness.

	

2.2.3.2 	Finite Generation.

2.2.3.3 Minimality.

2.2.3.4 On the occurence of A

2.2.3.4.1 Factorization.

2.2.3.4.2 	Lists and Sequences.

	

2.2.3.5 	Trivial Classes.

2.2.4 Abreviated BNF.

5

	

2.2.5 	Consequences.

	

2.2.6 	Summary.

3. The Language X : An Introduction.

3.1 Informal Description.

3.2 Verification that the given Syntax is suitable
for Left-to-right Parsing.

3.3 Executive Semantics.

4. Base Functions of the Source Language.

4.1 Markov Algorithms.

4.2 Examples of two elementary algorithms.

4.3 Extended Markov Algorithms (EMAs).

4.4 Composition of Algorithms and Embedding.

4.4.1 Sequential Composition.

4.4.2 Embedding.

4.5 Iteration and Ramification.

4.5.1 Formal derivation of RAM and PTL.

4.5.2 Examples.

5. The Program Space and the Operator .

5.1 	Informal Discussion.

5.2 Some Mathematical Definitions.

5.2.1 Lists.

5.2.2 Digraphs.

5.2.3 Finite Disjoint Unions.

5.3 Description of the Space.

5.3.1 Non-Mathematical Description.

5.3.2 Mathematical Formulation.

5.3.3 The k - completion of CPS.

6

	

. 	The Carabiner Language.

6.1 The Operator S.

6.2 The Operator k.

6.3 The Operator e.

6.4 Procedures and Functions.

6.5 On Orders of Evaluation and Control Functions.

6.5.1 Non-Control Functions.

	

6.5.2 	Control Routines.

6.5.3 Activation of Control Routines.

	

6.5.4 	The 'Next Instruction'.

6.6 Dormant Procedures.

6.6.1 Examples.

6.6.2 Discussion.

6.7 On Position Specification and Value Selection
in CPS.

6.8 Macros and Set Theory.

	

6.8.1 	Operations on CPS.

6.8.2 The S definition of set operations and
predicates.

6.8.3 On S abbreviations and pointer/value
associations.

7. Translation and a Formal Definition of X.

7.1 Parsing Strategy.

7.2 The Semantic Injections of Language X.

	

7.2.1 	Control Translations in X.

7.3 A Translated X Program.

8. Properties of the Program Space.

8.1 On Derivatives, Neighbourhoods, Relatives and
STRUCTs.

7

8.2 A Dynamic Topology for CPS.

8.3 On Stability of Programs.

8.4 On Modal Substructures and Coercions.

9. On Describing Other Programming Language Features.

9.1 Assignment and I/O.

9.2 Transfer of Control and Block Structure.

9.3 Functions and Parameters.

9.4 Type Checking.

9.5 Structured Data.

9.6 String Manipulation.

10. Closing Remarks.

References.

Appendix: The Removal of 'Goto' s.

.8

CHAPTER 1

INTRODUCTION

The main object of the research reported herein is the setting

up of a formal (pragmatic) system for describing the semantics of

computing systems.

Such a descriptive device must first deal with the syntax of

programs driving the computing system. At the present the terms

'syntax' and'semantics' seem to be redefined by researchers to

suit their individual needs; therefore, before proceeding we attempt

to clarify our position. Following Carnap [16]:-

" Every situation in which a language is employed involves
three principal factors: (1) the speaker, an organism in a
determinate condition within a determinate environment;
(2) the linguistic expressions used, these being sounds or
shapes (e.g. written characters) produced by the speaker (for
instance, a sentence consisting of certain words of the French
language); and (3) the objects, properties, states of affairs,
or the like, which the speaker intends to designate by the
expressions he produces - and which we term the designate of
the expressions (thus e.g. the colour red is the designatum of
the French word 'rouge'). The entire theory of an object
language is called the semiotic of that language; this semiotic
is formulated in the meta-language. Within the semiotic of a
language, three regions may be distinguished according to which
of the three aforementioned factors receive attention. Thus, an
investigation which refers explicity to the speaker of the
language - no matter whether other factors are drawn in or not -
falls in the region of pragmatics. If the investigation ignores
the speaker, but concentrates on the expressions of the language
and their designata, then the investigation belongs to the
province of semantics. Finally, an investigation which makes
no reference either to the speaker or to the designata of the
expression, but attends strictly to the expressions and their
forms (the ways expression are constructed out of signs in
determinate order), is said to be a formal or syntactical
investigation and is counted as belonging to the province of

(logical) syntax.

In computing terms we interpret this as follows: taking as

an example the arithmetic operation 'plus' acting on two integers,

then:

(a) the syntax specifies the string

a + S 	where a and 0 are arbitrary strings of digits,

(b) the semantics of the above is the 'abstract' notion of

a particular way of combining the quantities denoted by

the strings a and $, and

(c) the pragmatics, is a well-defined process for realizing

the semantic notion; e.g. in a machine language we may

have:

	

LOAD 	a

ADD

or, in a machine-independent form:-

Oa 4. 	E 	if 8 = 0

then a

else (if 13 > 0

then (a
+
+ R)

else -((-a) + (-0)))

- where -a denotes negation

a
+

-* a + 1
	

is the successor function and

8 -' 8 - 1 	is the predecessor function.

Our system, Carabiner, affords formal descriptions of Computing

systems based on syntactically inextensible high-level programing

languages(see [89] for classification of various types of extensibility)

10

and consists of three parts; a model of the program space, a

language and a translator. It is machine and language independent

but for any given system the model is characterised by the representation

used in the language upon which the system is based - i.e. given a

language and its implementation, then the specification of this (system-

dependent) dialect of the language via the Carabiner model enables the

exact output from any program written in the language and executed by

this implementation to be determined by means of the model. Conversely,

Carabiner may be used to define an abstract machine for the language

and hence to give a prescription for its implementation against which

the correctness of the resulting system can be tested. In this respect,

Carabiner is a definitional UNCOL [79, 98, 99].

In particular we note that there is no idealization within the

model. Arithmetic quantities are neither assumed to have boundless

range nor to be continuous.

Carabiner places no constraints upon the designer or the implementer,

save that of well-definedness, nor upon the programmer provided his

program is legal - i.e. he is permitted to write nonsense if the

language so allows.

It has been shown by Wesselkanper [1161 that the substitution

operator S, defined by:-

S a b c = 	c if a= b

a otherwise

(where a, b, c are 'values')

is sufficient for defining any n-adic operator over an nrvalued logic

for any given m.

11

By additionally using a suitable naming operator, we can thus

completely describe any stored program computer in terms of its

memory states. Hence, by defining a hierarchy of intermediate languages,

it should be possible to express the operations of any' high-level

programming language in terms of these two 'basic' operations only;

this, however, necessitates (at some stage) a translation from the

representations used in the source language into some binary

representation. Carabiner does not descend to such levels but, instead,

extends the domain and codomain (range) of S so as to be able to

manipulate assembler level operations. These in turn may be defined

by means of S or, using a high-level representation, by means of

Extended Markov Algorithms.

Wesselkamper demonstrates his Crampon system by modelling Algol - c

- a subset of Algol-60. However, the implied translation from

Algol-e to Crampon is nowhere formalised; nor for that matter is the

translation from Algol-60 into Algol- c [84, 85], Carabiner's syntax

directed translator provides the mechanism for such formalization and

yields a (Crampon-like) intermediate language; thus providing a well-

defined procedure for realising Algol-60, Algol- e and most other

programming languages in terms of the basic operations of Crampon

and Carabiner.

For any language which has an inextensible syntax [89], it may

be possible to devise a grammar by which any sentence of the language

is recognisable by a very simple 'left-to-right' parsing machine.

The conditions required for this to be so, the construction of

suitable grammars, and modifications which may be applied in an attempt

to derive suitable grammars from ones which violate the conditions are

discussed at great length in chapter 2.

12

Throughout the thesis, we use an example language, language X,

to illustrate salient points. This language is first introduced in

chapter 3, where we give its syntax and show that it is suitable for

direct recognition. We also discuss the desired semantics of X in

an informal way.

In the chapters that follow we shall assume that any grammar used

satisfies the above mentioned conditions and hence explicit mention

of this is usually avoided.

The basic functions used (ultimately) by the high-level languages

are described in a uniform way by means of Extended Markov Algorithms

as defined in chapter 4.

In chapter 5 the mathematical space, used to model the states of

the computing system, is introduced together with the first primitive

Carabiner operation k which is used as a digraph traverser. The

subsequent chapter describes the Carabiner language in full and outlines

its development into its present form.

Having made precise the language and the space in which it acts

we give, in chapter 7, a full definition of language X in an extension

of BNF. The form of this definition is not unlike the attribute

grammars of Bochmann [10, 11], but we feel that our system is more

uniform and concrete.

A topological description of the space is given in chapter 8

and is linked to the concept of the stability of a program relative

to its data.

The relevance and applicability of Carabiner to programming

features not present in language X is considered in chapter 9 by

discussing the Carabiner definition of a set of languages specially

designed to test such definitional mechanisms.

13

In the last chapter we make concluding remarks and compare our

efforts with those of other workers in the field.

Finally we note that the Carabiner language was originally

intended to be a 'structured' language and, although this constraint

is not imposed on the user, the language can be made free of explicit

goto commands. If this is done, the modelling of high-level languages

in which such a feature exists will necessitate restructuring of the

program. A simple algorithm for doing this at flow chart level is

given in the appendix.

14

CHAPTER 2

NON-EXTENSIBLE SYNTAX AND LEFT-TO-RIGHT PARSING

In order to be able to perform a syntax-directed translation

from a high-level source language into Carabiner, in such a way that

no translation actions need to be undone because of wrongly recog-

nised constructs; it is most convenient if we can parse sentences

of the language directly from left-to-right without 'backing-up'.

Any (top-down) syntax-directed translator has to deal with

this problem and, as practical evidence has shown [35] [46], the

simplest way to do this is to modify the language's syntactic

definition; or alternatively to construct the grammar in a way so

that such analysis is always possible.

Trivially, this means that all syntactic structure needs to

be known before the execution of any program in the relevant language,

and hence this precludes any syntactic extensions being made during

the execution of such a program; hence we must dictate that, as we

are using a naYve top-down parser in order to simplify the syntax

analysis as much as possible, no syntactic extensions are permissible

within the source language.

15

In §2.1 we give an algorithm which attempts to modify a

given syntax into an equivalent one which is suitable for left-to-right

no-lookahead parsing whilst in §2.2 we draw up a set of rules for

the construction of syntax which is directly parsable from left-

to-right.

These sections are, in a sense, inverses of each other and

thus either may be omitted; however we feel that greater insight is

obtained by considering both.

Though most of the work reported in §2.1 is conceptually simple,

its formalizations seems complicated; in an attempt to present the

material in a more readable form we therefore develop the arguments

by means of a series of examples of increasing complexity. Consequently

this chapter may seem disproportionately large compared with subsequent

chapters. For this, and for any duplication which may occur from

our presentation of the material of §2.1 and §2.2, we ask the

reader's forbearance.

16

2.1 On Syntax Modifications

Throughout this section we make extensive use of various

relations and their representations as digraphs and diagrams, which

enable us (i) to see the relevant structure, and (ii) to formalise

the underlying mathematical framework more easily. Of particular

note are the 'skeleton' and the 'Backup Diagram'; the skeleton

dictates the order in which several well-known modifications can

be more usefully applied and also leads to a formalization of a

locked grammar.

Theorems relating to secondary locks, and the equivalence of

Left Factored Form and Greibach Normal Form [51] conclude the first

half of the section.

For completeness, an algorithm to remove a 'lock' is given

at the end of section, although this is not the work of the author.

Our formalization of the Backup Diagram (and the associated

'following-sequence'), the usage graph and the linkage graph are

new and though most of the results obtained from them and their

associated relations are well-known the given derivation is.more

•
precise than can be obtained by a non-mathematical approach.

2.1.1 Introduction

An algorithm, SYMAL, is developed which attempts to

transform sets of BNF production rules into a form such that any

sentence generated by the grammar, defined by such a set, may be

parsed directly from left-to-right with no look-ahead.

17

It is necessary, as a first step, to obtain a grammar

in which each production is of the form:-

<PlasS> ::= t a1 la21.--lan

where: 	(i) 	n E

(ii) a
n
may be A (the void option)

a. +A: 1 Si< n

(iii) eadice.:(11)ancla.+ 11

begins with a different terminal symbol.

such a form will be known as a Left factored form (LFF).

Notice that LFF assumes the ordering of alternatives in a BNF

production is important and that the order given is that used by

the parser.

Further transformation will be required in order to

obtain a grammar such that sentences in the language may be

recognised without the necessity for 'backtracking'.

e.g. The sentence 'xx' which may be generated by the grammar:

C xCx 1 A

cannot be recognised without backtracking.

However if the grammar is transformed to the equivalent form:

C ".4 xxC 1 A

Such backtracking is not necessary.

t alternatively we use 	instead of '::='

18

Naturally the manipulations discussed herein bear a close

relationship to the formal theory of LR (left-to-right)t and LF

(left-factored) [119] grammars but our approach is more pragmatic

though several theoretical aspects have been considered.

Of the modifications presented, those related to the

'Backup Diagram' are new. Left recursion is dealt with in Greibach [49],

in fact we note that our left factored form, if it exists, is equi-

valent to Greibach Normal Form [51]; therefore, any of the identities

derived in §2.1.2.3 may be applied to any context-free grammar (via

its normal form) provided that grammar is unambiguous and that each

non-terminal of the grammar is capable of generating a terminal string

or A (i.e. any cfg which satisfies the sufficient conditions for

conversion into LFF).

The aim of SYMAL is the same as Foster's Syntax Improving

Device [46], in which back-substitution of class definitions is used

in an attempt to recover from violation of no-backup (NBU) conditions

[59]. We use this and other techniques applied to classes which are

selected by examination of suitable relations.

Throughout this chapter we shall usually denote class names

by upper case letters, subscripted where necessary, or subscripted 'C's

B, C, ... etc.

Or 	
C1,C2,C3, ... etc.

tFor discussion of the theory of general LR parsing methods, the reader
is referred to a recent survey paper by Aho & Johnson 1].

.19

Terminal strings are denoted by lower case letters or subscripted

'T's; hence we have such productions as:-

A 	: := AaIBCIDdIA

C7 ::= 	C 7 	o 	o 1 2
C
2 -, T1

C1 IC3T7T37IA

Elsewhere Greek letters are used in locally defined roles.

2.1.2 The Algorithm

There are two main parts to the algorithm, the derivation

of LFF, §2.1.2.1, and removal of NBU violations §2.1.2.3. Various

other checks and modifications which may be made at suitable points

either within or outside of the two major steps are given in §2.1.2.4,

the composite algorithm being assembled in §2.1.2.5.

2.1.2.1 Derivation of a left-factored form

We simply describe the transformations and illustrate

them by examples. Justification that such transformations exist and

preserve ambiguity is given elsewhere [49], [50].

There are two fundamental procedures, LFAC and SYNSUB.

LFAC checks for left-factors (i.e. meaningful leading common string

factors in the options of a class definition). These factors are

located and removed pairwise, a new class being created to hold the

remaining parts of the factored options.

e.g.: 	A ::= ablac

becomes 	A ::= aX

X ::= blc

and 	A ::= ablaclad

20

becomes

hence

::= aXiad

X :: bfc

A ::= aY

X ::= blc

Y ::=)(Id

We note that ambiguous grammars may give rise, ultimately t, to

productions of the form:

A ::= AIA

such a production is easily detected and causes termination of the

algorithm.

The definition of LFAC, given above, is normally sufficient

for our purposes, however trouble can occur when equivalent classes

have differing forms and LFAC will be suitably modified later.

Before describing SYNSUB (partial SYNtax SUBstitution),

we note the well-known identity used to remove left recursion:

A -4 Ablc

equivalent to:
A

X

 cX

 bXJA

or, in a more complex case:

• A Abicld

CXWX

X -4 bXIA

t either in LFAC or other routines described later.

becomes

then factorise, so:

becomes

A ::. cblablc

A ::= cXiab

X ::= biA

	

{

A. 	cbjablc

	

B 	cia

21

Here, of course, a,b,c,d, may be classes or terminals. If b = A

then the original productions for A yield ambiguous parses (of

c and d) and we require that the algorithm should halt snd fail.

The associated subroutine is called DLR.

Now, SYNSUB takes a class definition and attempts to

find a class name leading an option, if it fails then SYNSUB causes

no modification; otherwise, if the class is the same as the class

being processed then apply the identity to remove left recursion

(i.e. call DLR), if it is different then substitute the definition

of the class (expanded where necessary) for the occurrence of the

class name:

Hence:
A ::= Bb I c

B ::= cja

The resultant (current) class is then processed by SYNSUB until no

leading clatses occur in the resultant class definition.

If we combine the modifications above in the following

way we are part way to the required (sub) algorithm. Call this

version AI.

22

AI 	(i) 	(left) factorise all definitions

(ii) Remove all direct-left-recursion

(iii) Process each definition, including added definitions,

by SYNSUB. (This generally involves further factor-

ization and removal of direct left recursion of

individual definitions).

We now give some examples of simple grammars and their modifications

under the above algorithm. (Step-by-step derivations of all modi-

fications of the following examples are given elsewhere [25].)

Grammar A:

X ::= ablabclabcdlac

Under AI this yields:

1

; ::= aX
3

X1 ::= ciA

X
2
::= cX

4
IA

X
3
::= bX2Ic

X
4
::= diA

Grammar B:

tB
A ::= AbIB

 ::= Acid

Under AI this yields:

e—
A ::= dA

1
A
2

B ::= dB1

A
1' : bA1 IA

/ A
2

::= cA
1
A
2
IA

B1 ::= bA1A2IcB
2IA

B
2 . • := bA1 A2 ciciA ,

N.—

23

Grammar C:
A ::= Bak

B ::= CbIDd

C ::= Aelg

D ::= Af

Under AI this yields:

A ::= gbay2IcA1A2

B gbB2IcA1
A
2
B
3

C ::= gCl IcAlA2e

D ::= gbaA1
A
2
fIcA

1
A
2
f

A1 ::= ebaA1 IA

A2 ::= fdaA1A2IA

B1 ::= aA1
A
2ebIA

B
2

::= aA1A2B4IA

B
3
 ::= eblfd

Bk ::= eblfd

C1 	
baA

1A2elA

We now consider some less straightforward examples:

Grammar D:

tC
A ::= BaIC

B ::= b

::= dIDa

D ::= ble

Proceeding as in the previous cases gives:

24

A ::= BaIC 	synsub on A

a) A ::= balC 	synsub on A

b) A ::= baldIDa 	synsub on A

c) A ::= baidlbalea 	factorise A

d) A ::= baAildlea 	A now OK

Al ::= AIA

Whence A
1 ambiguous grammar, moreover if we trace the steps

back from d), we have

-1-

d) 	Al ;;= AIA

A ::= baA1

c) 	A ::= balba

b) 	A ::= balDa

a) 	A ::= BalC

hence, the two par:ses of 'ba' are:

A

I 	

and 	A

I
Ba 	C

/ \ 	1 b 	a
Da

/ \ b 	a

Thus, when our method detects ambiguity in a grammar, it also

exhibits an ambiguous parse.

Next we consider a non-ambiguous grammar for which the

method fails:

Grammar E:
A ::= Bla

B ::= Clb

C ::= Bd

25

Applying AI to grammar E results in the creation of an infinite

sequence of additional classes, i.e.:

A :: Bla

	

a) 	A ::= CJbJa

	

b) 	A ::= Bdlbla

	

c) 	A ::. Cdibd(hla

	

d) 	A ::= Cd(bA1 la

A1 ::= dIA

	

e) 	A ::= BddIbA1 Ia

	

f) 	A ::= CddlioddlbAl la

	

g) 	A ::= CddlbA2la

A
2
::. ddIA1

	

h) 	A ::= BdddlbA2la

	

i) 	A ::= Cdddlbddd!bA2Ia

	

{....

j) 	A ::. CdddlbA
3
 la

A
3
::= dddIA

2

synsub A

synsub A

synsub A

factorise

synbub A

synsub A

factorise

synsub A

synsub A

factorise

etc. The extension goes on for ever because the classes B and C

are mutually left-recursive. However consider what happens if

we process the productions in a different order. To achieve this

affect we do not yet modify the algorithm but change the order of

the productions of the grammar

Grammar E': 	(root is A)

B B ::. Cib

A ::= Bla

C ::,_ Bd

26

'this yields:

::= bB
1

A ::= bB
1
la

C 	bB d 1

B
1
::. dB

1
IA

Although AI fails on grammar E its success on grammar E'

now leads us to attempt modifications to the algorithm to enable

it to succeed on a larger class of grammars.

The fundamental problem that faults the simplification

technique of AI is that of removing (indirect) left recursion

between classes. If we abstract this left-recursive property

between the productions to give a relation p on C2 where C is the

set of classes in a grammar such that
C1pC2

iff C
2

occurs as the

first element of an option in the definition of Cl. We may then

represent this in the 'diagram':

Cl
	C

2

Using this symbolism, grammar B, generates the following diagram.

A

Now if we consider our algorithm after stage (ii) i.e. when all

preliminary factorization and removal of direct left-recursion has

been done then the corresponding diagram has no loops i.e. C.p(C.

27

p Cj .foranyi,andrio duplicateciarcs,i_e.ifC
1 	
.then there is

only one arrow joining C. to Cj (though there may be one in the

reverse direction). Hence we have a directed graph or digraph [52].

Using digraph notation (described in chapter 5

and elsewhere [52]), let us consider the digraphs generated by

the given grammars after stage (ii) of AI. We shall call these

graphs skeletons.

Skeleton A
	

X

Skeleton B

Skeleton C

Skeleton D

Skeleton E A

28

elf
C

Now with each node a we associate a set

s
a

= 	: apx) .

This set is sometimes called the outbundle of a.

We note at this stage that (i) for no a do we have a E sa.
a

and (ii) our ultimate aim is to reduce the skeleton to a set of

discrete points. This is equivalent to the condition sa = 0 for

all a.

From the outbundle we define an infinite sequence of sets

called successor sets.

The nth successor set, of a, s
n
a
, is defined by the

iterative identity

s
n

= (x : ypx and y E s
n
a
-1
) n > 1

and 1
sa = sa a

example: 	from the grammar D and its skeleton given above we see:

sA = sA = (B,C)

1
sB = sB = 0

sC = sC = (D)
1
sD = sD -

(the null set)

29

'hence s2
A
 = (D)

s = 0 A

n
SA =

n H
813 = P

s • =

sn =

✓ n z 3

✓ n z 1

✓ n Z 2

✓ n Z 1

Since the skeletons are not in general acyclic (definition

in §5.2), we have instances when a E s
n
a
 for some n > 1. These

are precisely the situations where we are thrown into recursive

loops. (Trivially, the characterisation of loops by the sets sicli

gives rise to a simple method of detecting such loops.) In order

for us to be able to use the routine SYNSUB successfully we have

to select nodes, a, of the skeleton with the property that every

element of s
a
(+ 0) ultimately generates either a or 0. However

we may simplify this condition:

Define the nth reduced successor set, rn , of a, by: a

1
r = s
a a

n n-1 and 	r
a
 = (x : ypx, x+a, y E ra , n > 1)

then 	(a) 	if r1
a
 = 0 there is no reduction to be done,

(b) if n > 1 st ra = 0 then SYNSUB can be applied

to a and its outbundle reduced to 0.

example: 	from grammar C we have:

rA
1 _- s 	(B)

A -

ri
B
 = s

B
 = (C,D)

30

r1C = sC = (A)

rD
1 s (A)

D _ -

- rA
2 (C,D) -

r3 - 0 A -

rB = (A)

• =

r2 - (B)

• = (D)

r4 = (A)

rg = (B) 	etc.

2 rD = (B)

r3

•

= (C)

r

•

= (A)

ri5) = (B) 	etc.

Notice that if 21n > m : rna 	and m is the number of nodes in

the graph, then lip E N st.

Defn: 	A node, a, of the skeleton such that n E 	n > 1

and rn
a
 = 0 , is called a central point of the skeleton.

Defn: 1 A node, a, of the skeleton such that r
a

= 0 is called

a loose point of the skeleton.

31

example: 	from Grammar E we have:

r1A = (B)

1 rB =

rc = (B)

rA =

r3
A
 = (B) etc.

2
rB = 0

2 r = 0

Hence the central points of grammars C and E are A, B

and B,C respectively, and there are no loose points. After a

central point has been processed by 'SYNSUB' it becomes a loose

point and need be considered no further by SYNSUB-

Defn: If at some stage in the modification of a grammar

(i) there are no central points and (ii) the number

of loose points is less than the total number of class

nodes in the current state of the skeleton for that

grammar; then the grammar is said to be locked.

We shall return to the problem of locked grammars later.

Following the previous theory on skeletons we adjust the

modification process to give algorithm AII.

AII: 	(i) (left) factorise all definitions.

(ii) Remove all direct left recursion.

(iii) Count loose points in skeleton.

32

(iv) Locate new central points in skeleton (if

non goto stage (vi)).

(v) Remove a central point by 'SYNSUB', update count

of loose points and modify skeleton. If there

are further located central points goto (v)

otherwise goto stage (iv).

(vi) If number of loose points equals current total of

nodes in skeleton goto (vii). Otherwise fail

(Grammar is locked).

(vii) Exit.

We now consider the modification of some grammars (those

given before plus new ones) under AII.

Grammar A:

X ::= ablabciabcdiac

This grammar has a loose skeleton (i.e. all nodes are loose points)

and hence gives the same result under AII as under AI, i.e.

X2 ::= cX4

•

1A

3 	2
::= X 	:= bX ic

::= X 	:= diA 4 '

Grammar B:

::= AbIB

B ::= Acid

After stage (ii) of AII this gives

.33

::= BAS

::= Acid

::= bAl lA

with skeleton.

.A1

Bt.11

Trivially Al is loose and A,B central, hence the result is as

before, i.e.

A ::. dA1
A2

B ::= dB1

::= A1 	bA1 IA

A
2

::= cA
1A2IA

B1 ::= bA1A2IcB2IA

B2
::= bA1A2cJclA

Grammar C:

Baic

CbiDb

AeIg

::= Af

This grammar has central points A and B. After they have been

loosened (i.e. processed by 'synsub' into loose points) the

skeleton becomes

. 34

A A Al 	2

B B
1
	B2 	3

Then, A,B,A1,A2,B1,B3 become loose and C,D,B2 are central. Hence

the order of simplifcation coincides with that of AI (i.e. A,B,C,D,

Al,A2,131,B2,B3,B4,C1) and thus gives the same result.

i.e.. 	A ::= gbay2IcA1A2

B ::= gbB2IcA1A2B3

C ::= gC1 IcA1A2e

D ::= gbay2ficA1A2f

::= ebaA1 IA

A2 ::= fday21A

B
1
::= aA1A2eblA

B2 ::= aA1A2B41A

B3 ::= eblfd

• ::= eblfd

C1 ::= baA1A2eIA

Grammar D:
::= BaIC

::= b

::= diDa

::= ble

Trivially B and D are loose and, A and C are central,

hence the first central point which we try to loosen is A. This,

of course, results in an ambiguity state and halts just as under Al.

.35

Grammar E:

::= Bla

::= Gib

Bd

This grammar could not be modified by AI, however under All it

generates the following

tC
A ::= bB1 la

B ::= bB
1

::= dB1 d

B
1 ::= dB1 IA

Grammar F:

::= C2a

::= C3b

::= C4cIC5d

::= Ckelf

::= C2gIC6h

::= C71

::= C8

::= C6mIC9n

::= C10PIci

C9tIx

Under the action of All this generates:

C
1
::= fC11cbC19aI xpC12n

1C
14hdbC19al

qC12n1C14hdbC19a

C
2
::= fC

11cbC19I xpC12n1C14hdbC19
I

qC12n1
C
14
hdbC

19

C3 ::= fC11cC20IxpC12n1C14
hdC

21
I

qC
12
n1C

14
hdC

22

36

C4
::=

fC11

fClicbC19g1xpC12n1C14hC231

qC12n1C14hC24

C6 ::= xpC12n1C141qC12n1C14

C7 ::= xpC12nC151qC12nC16

C8 	xPC12nC171 qC12nC18

C
9

::= xpC
12

1qC
12

C
10 ::= xC15

1qC
12
t

C11 ::= eC11 IA

C12 ::= tpC12 IA •

C13 • .:= pC12
 tIA

C
14 •

-:= m1C14 1A

C15 ::= 1C
14

mIA

C16 . • := 1C14 mIA

C17 ::= 1C14m1A

C18 • .:= 1C14
 mIA

C19 • .:= gbdC19
 IA

C
20 •

.:= bC19 gd1A

C
21 ::= bC

19gdJA

C
22

::= bC19gdlA

C23 ::= dbC19grA

C24 ::= dbC19 glA
•

The above set of classes can obviously be reduced since

some of the productions are not used and there are many duplicates.

The removal of these will be considered later. Next we consider

Grammar G.

.37

Grammar G:

A ::= BaIDb

B ::= CcJAd

C 	AeIBf

D ::= CgIh

The skeleton is

(111 	I B)C

This is locked since,

rA
4
 = (C)

r4 	' = (A C) B

r4 = 	B,D)

r4 	' = (A B'
 C)

D

Defn: Given a locked grammar in which the nodes al,...,a
n
are locked.

i.e. r
n 	

0 do
ai

theriaria.1 st.a.1 E s 	
for some i is a nest point.

1

Den:Givenanestpointa.,the nest generated by a. is
co 	 1

Cei n=1 a
U rn 	d the order of this set is called the size . an 1

of the nest.

Trivially, grammar G generates a nest of size 4, i.e. the

whole skeleton is a nest.

To unlock a nest we use a transformation given (in a slightly

different form) in [46]. Before giving the general form of

the transformation we demonstrate its use in the case of

grammar G.

38

Firstly, we write the productions in a tabular form:

(A). 	(B) 	(C) 	(D)

A ::= 	Ba! 	Db

• B ::= Ad! 	Cc

C ::= Ael 	Bf

D ::= 	CgI
	

h

Secondly, from this table we create two arrays, Y and Z.

Y.. - 1,3

i
1

i -4 A B C D

A d e

B a f

C c g

D b

Z.
J

h

Note: Here no entry is not equivalent to an entry 'A' and, Y1. ,J

and Z. are not classes but arbitrary strings. In what follows

X.represent newly created classes which could later be
1,J

renamed to coincide with earlier notation.

The original class definitions are now transformed into:

A ::= hX
DA

B ::= hX
DB

C ::= hXDoc

D ::= hX„,
DD

39

where:-

(A) (B) (C) (D)

XAA ::=
	dXBAleXcA l 	A

X
AB 	

dXBBleXcB

X 	::.
AC 	

dXBcleXcc

XAD ::. 	dXBDIeXcD

"-BA ::= aXAA I 	fXCA

XBB ::= aXABI 	
fXCB 	A

XBC ::= aX
AC I 	fX CC

XBD ::= aXADI 	fXCD

gXD A XCA

XCB

::. cXBAI

cXBBI

XCC
::. cXBc 1

XCD
::. cXBD1

XDA

XDB

: bXAA

bXAB

XDC ::= bXAC

We note that if the Grammar G is fully defined by the given set of

classes (i.e. A,B,C,D) then 12 of the X classes and B,C,D are

redundant, hence we are left with,

A,

XAA,XBA,XcA and XDA.

The grammar G is extreme in that it only gives rise to

right-branching parse trees. An example of the parse by the original

grammar and its modified form, illustrates the power of the

transformation.

gX
DB

gXDc1 A

gXD

XDD ::= bXAD1 	A

40

Parse of 'hbdfca' under original grammar.

A

bX AA

dXBA

N
fX

Parse of 'hbdfca' under modified grammar.

Notice, if we had had (i) A ::= BIDb, then YBA = A

and XBA :.= XAA1fXcA etc., 	or (ii) D ::= Cglhlj, then ZD = hlj

and the resultant A ::= hXDAIjXDA etc.,

or (iii) A ::= BCIDb, then the parses

could involve X-productions which have their second co-ordinate not

equal to A, e.g. XBc, thus the necessity, in general, for constructing

all the X-productions.

.41

Formally, we may describe the transformation 'unlock' b.s follows:

Given a nest of locked classes,

C = (Ci :iEPc14)

each of which is defined by:

C.
1
 ::= C. Y. .IZ.

3,1

or
C.C. Y. .
1 	J11

where WI C. is left factored

(ii) 	j ranges over all classes, C. : j E P , and C.

leads an option of Ci

(iii)Y..isa string which may be 'A' and does not

include 'I'

(iv) 	Zi, if it exists, is a string which may be 'A', or

contain 'I'.

The result of the transformation is the set C'.

C' = (C! : C. E C) lJ (X. 	: C.,C. E C)
1 1 	1,3 1 j

where:
C! 	Z.X.. 	with j ranging over all Z. which exist

(i.e. are strings, including A; see

previous example).

X 	Y X. IA with j ranging over all 'Ywhich exist.
rr 	rj jr 	 rj

Xrs ::= Y
rj
.X. 	withjrangingoverallYrj

.which exist,
3s

and r s.

Apart from the complex manipulation of indices which is

involved (this is trivially similar to the summation conventions

of tensoralgebra), we must take care to distinguish between the

.42

non-occurrence of strings and the occurrence of 'A'

e.g.: A ::= BIDf

~ YAA = ¢ ~ A

YBA = A

YCA =¢=I= A

YDA = f

Before making the required modification to our algorithm we consider

the following (wildly ambiguous) grammar:

Grammar H:

p ... QIR

Q'" plR

R ..:. plQlx

The skeleton for this grammar is:

Obviously it is locked, with a nest of size 3.

we have:

If we apply the previous modifications to unlock P,Q,R

P ::= x~

Q ::= x~Q

R ::= x~

43

but,

	

Xpp ::= XQpIXRplA

etc.

XQp ::= XppIXRp

etc.

XRP ::= XPPIXQP

Hence we have 3 secondary locks (i.e. productions created to unlock

a set of productions are also locked).

The skeletons are:

X

QP
i! XRP

XPR

As mentioned before, the grammar is ambiguous. This is seen from

the parses:

R

1
x

1

Q
4

x

Moreover, we have:-

Theorem: 	Any secondary lock implies ambiguity.

44

*(This is not a bi-implication since we may have ambiguity in a

set of productions which does not constitute a lock. e.g.

but this would be detected elsewhere since it would generate'AIA'

after application of the back-substitution and factorization

routines, or give A 4 A, (i.e. A derives A)).

The proof of the ambiguity is as follows:

Since the original grammar is locked we apply the transformation

to remove the lock. In so doing it creates a set of new classes,

N = (Ni) with the property that each Ni is of the form.

Ni
 ::= a. 	

N. 	I ... I a. 	N.
J1 Jl Jn. Jn.

1
or

Ni
	Jn. J1 J1 1 	1

Now if the set N locks there must be a cycle in the skeleton (more

precisely in the restriction of the skeleton to the set N) and

hencece=Aforasuitablesetof.'s.
Yi 	 Yi

i.e. . 	 N
0 P2 	133

with 	N
p

EN, 	1 5 i 5 k
i

hence 3 option in the definitions of Nat such that we may have a parse:

45

etc. X

Removal of locks

Given a set of locked nodes we must pick out and remove

the minimal nest. To do this we calculate the size of the nest of

each nest point and select one, a., with the least size (this is not

unique). If size (ai) = p, then

p
nest(a.) = a. 	rn

J n=1 	a.

This nest is removed as described. If nest (a.) t L, where L

is the set of locked nodes, then we repeat the operation on the set

nest(a.).

We now give, as promised earlier, the definition of an

extended factorisation routine. This is followed by the final form

(AIII) of the LFF subalgorithm.

Extended factorisation: in an attempt to prevent needless extension

to the set of classes by creating new elements whose definition is

in some way equivalent to an already existing class we modify the

factorisation routine as follows:

After a factorisation which results in the creation of

a new class, C., check if this is a repetition of a previous class,

subject to any combination of the following:

46

	

(1) 	if 3C. ::= ce1 Ice2 I ... I an
and

cjf(1)laf(2) I 	laf(n)

where f is a bijection on (1,2,...,n) then C. a C.;
J 	1

name Cj by 1

delete the definition of C..

	

(ii) 	if 3C. = f(C.)

and C. = f(C.) 	, strings pi

with f(x) = pi x 42 x 43 	Pri-1 	4/1

and 	x 	pt (1 s 1L s n)

then C. 3E C.; replace the occurrence of the name C. 1

by C. . and delete the definition of C..

With this more powerful version of the factorisation routine we

give the final version of the LFF algorithm:

AIII 	(i) 	(left) factorise all definitions.

(ii) Remove all direct left recursion.

(iii) Count loose points in skeleton.

(iv) Locate central points in skeleton. If none go to (vi).

(v) Remove central points, update count of loose points,

modify skeleton and goto (iv).

(vi) If the number of nodes in skeleton equals number of

loose points then exit, else go to (vii).

(vii) If 'unlock' has been entered already then check if current

nest created by a previous 'unlock'; if so then halt

(ambiguous grammar) otherwise unlock, update count of

loose points, modify skeleton and goto (iv).

47

Since, via the 'unlock' transformation, this is a trivial extension

of All we give no examples of its usage.

2.1.2.2 Equivalence of LFF and GNF

Given a context-free language L with A ' L, defined

by a cfg, G, then G is strongly equivalent to G1 (i.e. they both

define L) where all productions of G
1 are in Greibach Normal Form,

i.e.
m) (05 m)

are classes and a is a terminal symbol.

This is proved in [51] and trivially asserts the

equivalence of LFF and GNF for any language L(A L) for which a

grammar exists such that modification to LFF is possible.

A sufficient (but not necessary) condition for the

formation of an LFF is that the grammar should be unambiguous. Hence:

Theorem:

Given a cfl L:Af'Land an associated grammar G which is unambiguous

then 3 equivalent grammars G1, G1* and G2,G2. in LFF and GNF res-

pectively which may be derived by translations.

G G1 G
2

and 	• G G
2*

G
1*

Proof: (a) G Gi

trivial by application of AIII

(b) 	Gi o G2

G
1
is in LFF. If we remove any redundant classes (see '52.1.2.4) to

give d then the grammars G
1
and a are equivalent in that they generate

the same language, L.

48

Given any class X (not the root) such that X A , then there

is a (non-looping) chain, Ci (see linkage graph in §2.1.2.4), such

that 	
C
l

c
2 	
1 C3 	C

n
. X

with Ci Ci+1 if 3 a production Ci a ci+1 0 , a,0 are strings
•

over classes and terminal symbols (U A), and C1 74 A but Ci A (i 4 1).

For any such class, X (i) back substitute as dictated by the chain,

and (ii) back substitute for all occurrences of X in any production

(4 X).

We then have the form,

C -4 a1
la
2
1...la

n

wino'. 4 A for all classes C. Moreover each ai is of the form,

411, ..., 13p : t E T

13i E TUC

where T,C are the disjoint sets of terminals and classes.

Now for all 13. 	T substitute a class name C. and define 1 	 Pi

C 	O. Cpl 	1

Then the grammar is in GNF i.e. we have the required G2.

(c) G G2*

proved. in [51].

(d) G2* G1*

by application of AIII.

2.1.2.3 Investigation of NBU Conditions

To illustrate the sort of back-up problems which arise

we consider some offending grammars.

49

(1) 	 5

bTT

T -• alaa

f
T

AIII 	S -, bTT

T-. aT1

1 -• alA

an attempt to parse lima' from left to right yields

bTT

aT1 	aT1

b a a

(2)

 I

C -4 xBy

B YIA

(in LFF)

an attempt to parse 'xy' yields

(3) 	C xCxIA 	(in LFF)

an attempt to parse 'xx' yields

50

No-backup (NBU)

We first give some definitions. In what follows we

shall use the symbols T and C to denote the set of terminal symbols

and the set of classes respectively, with

Tnc=0, A fE T LiC

If by use of a finite sequence of re-writing rules, we

can replace a class X by a string a over TUCt)(A) then we say

that X derives a and we write

X 21. oe

Trivially, X is A-producing if X A and the negation of the derivation

property is denoted by I .

If we have
X -0 Y1 IY21...IYn

	n Z 1

with Y.1
 (1 5 i < n) of the form t.1 a1

. and Y
n
. A or to an

where .L1
. E T and a.

I
 is an arbitrary string over TUC, then we

construct two relations (for each such X) on CU TUCA) as follows:

first (X) = (ti : 1 5 i < n)Ugn (X)

where 	gn(X)= 	t
o
if Y

n
 t
o
a
n

0 if Yn = A

follow (X): If, given a grammar G in which we have the non-terminal

51

(i.e. class) X, and there exist occurrences of X such that

X.1 -4 a.
x5. : 1 s s n

 1 	1

with n finite and X. E C 1

where 	
al

= t. y. , and Si, y. are arbitrary strings

(in particular we may have X E 0i, yi or Ov yi = A)

There are 3 distinct possibilities for p. 1

 pi = A

	

(ii)pi = t! 6. 	t! E T I

(iii)p = , 	X! E C i
i i 	1

Now define h. on X such that:
1

h.1
(X) = 	follow (Xi)

0

hi(X) = 	t!
 1

and 	h.1
(X) = first (X!)
 1

then 	follow (X) =

m
 h.(X)

i=1 1

if Oi = A and Xi 4 X

if pi = A and Xi = X

if pi
=t!6.

if pi = X! 6i

We now give a well-known set of sufficient conditions for an unambiguous

grammar to satisfy the NBU condition [59].

Conditionsl: (a) no left-recursion in C,

(b) for each class, the sets of left-most terminal

symbols derived from each option must be disjoint,

(c) if X -• Y1 I ... I Yn

and X -4 A
Athen Y. *74 	(1 5 i < n)

i.e. X-• A 	Yn
A

52

(d) if X Yi l...IYn

•
and Yn A

then
first(X) n follow(X) =

After phase 1 of our modifications (i.e. when the grammar is in

left-factored form) this set of conditions reduces to:

Condition 2: if X : X A

then 	first(X) 11 follow (X) = 0

We examine how this condition can be violated and give some

identities which attempt to remove the violation.

Direct violation

maybe 	I E y

maybe 	I E 8

(a) X xaX4 1 y IA

(b) X -• cax131 xylOIA

(al)
m

xn Xx I A

EX-ix
n-Fm

 XIA

m,n a 1

(a2) 	X -4 xXXa I A 	a x
m
, m z 0

11

X -, xx Yu I A

(a3) X -0 xyXx 1 A 	y x
n
, n a 0

-4.xyxY 1 A

Y yxYx 1 A

(a4) X -4 xyXxa I A

X xyxaX I A
	

if Ce = y

-4 xyxYa I A

Y yxYax I A

Y -• xYax I A

53

(a5) 	X-6 neXxPIvIA

xuY0IYIA

xZ I Yx

(b1) 	X -# tax13 I xy I 6 I A

cal3 I xy I S I A

cyYpx I 8x I xZ

yx I A

Indirect violation

X 	xal 13 IA 	(maybe I E 0)

such that x E first(X)n follow(X)

case (i): 	: Y 	yXx6 	(Y 	X)

solution; we back-substitute X into Y and factorise;

e.g. 	.4.xa I A

Y bXxc

becomes 	Y bxaxc I bxc

hence
	bxY1

Y1
-4 axc 1 c

case (ii): 	3 a sequence C1, 	Cn in C such that

3C1 ... alX ,

C2 -4 a2
C
1
,

•
• •
Cn-1

.4 a
n-1 Cn-2 '

C
n

a
n
C 	x
n-1 	n

solution; if all Cl, 	C
n
are different then back-substitute for

.54

X in C1, after a1

C1 in C2, after a2

Cn-1 in Cn
, after an

 and factorise:

If all the C1, 	C
n
are not disjoint, then back-substitute

(as above) those which are, until we reach one class for the second

time. This can happen in two ways, either

(a) when the embedded class is reached, or

(h) if 3i,j,k st * —

C.
1 -• aj C. I ak Ck

 .

(a) 	Before attempting formalization, we give 3 examples:

	

(i) 	[

X 8Xxy 1 cY

Y xa101A

i--

X -4 8X'y 1 cY

X' -• 8X'yx I cY'

Y-4 xa10IA

Y' •-• xY"10x

Y" -4 axl A

1

	

(ii) 	X -. 00 I SY

Y -4 0 I A

I

X .-4 aX'Y 1 8Y

X? -0 cato I So

Y -40IA

	

(iii) 	X -4 aX0), 1 bY

Y -40 IA

C 	x1eB
G s

felcA

A 	d 1 A

example:

I
D D "4 fBdly

55

X -• aX'y I 6Y

X' -4 avy13 I 6M

Y -BIA

We note that (iii) needs further reduction (by the case (i) rule)

to:

ilX -4 aX'y I 8Y

X' -• aX'y$ I 8aY

Y -0 13 i A

- that (i) needs further reduction if

a =
for some t E T ,

y =

and, that (i) cannot succeed if

: xnm}

	

for some n,m z 1

The following reduction may be extracted:

(c1)
	

1
X -, 8Xxy I pY 1 1

Y -4 xa I B IA

.41.11

-- X . oxii I WY I 1

XI -4 8X'yx I pYx 1 lx

Y --. xa I F! 1 A

Notice that we have X' -* pYx and Y xa 1 A so more reduction

needs to be done.

(b) In this case no problems arise and we can proceed as before

56

(A in B)

(B in C)

(C in B)

(B in D)

B -4 fClcd1c

C -. xlefClecdlec

B -* fx1fefClfecdifecicdlc

D -4 ffxd1

ffefCdl

ffecdd1

ffecd1

fcddl

fcdl

y

on factorising this gives:

D -4 fD
1
ly

D
1
 -4 fD

2
1cD
3

D
2 -4 x

•

dleD4
D3 " dD• 5

E G
1 	D4 . fCdlcdD

5

D
5
 -4 dIA

C -. xleCi

C
1
 -4 fC1cD

5

As stated, no problems arise in the above procedure, however no

advantage is achieved by cutting loops. If, in the above, we

replaced A in B then B in D we would have:

D '"' fDlly

D' -. fCdlcdA

C --■ xleB

B -4 fCIcA

A -4 dIA

57

But d E first(A)r1 follow(A) since

(d) c follow(C) c follow(B) c follow(A)

and hence we must perform another chain of back-substitutions.

i.e. (A in B), (B in C), (C in D)

After factorization this gives:

D

D'

D"

fDT IY

fD" IcdA

xdleDul

G
2

a D"'

C

C'

fCdlcdA

xleC'

fClecA

A . dIA

If we remove the trivial class D
3

from G1 then G1 G2 by the

isomorphism.

D 	4-0 D

D' " D1

D" H D
2

D"' " D

C 	c

C, t cl

A 4-'D
5

.58

This suggests that the order of application of reduction sequences

is unimportant but the amount of work involved may vary considerably.

The problem of ordering the reductions and question of convergence

of these reductions sequences is considered next.

Representation of follow and first: We consider some examples.

These are given together with related diagrams, which will be formally

defined later.

A -4 aittIbBc

B dClx

C -4 e IA

'follow' diagram Fo 	
A

A 	A

B --> c

C 	A

F the closure of FO
0

A

A

B 	c

A T

'first' digraph, Fi

59

'back-up diagram', F1(31-JF1

In this example there are no BU problems.

e.g. 2:

tY
-• aYd lb

d IA

F = F*
0 0
	 X.

Y

F :
I

a
F. U F

1
 • "

A4— 	— —+d

Here we do have problems but they are.soluble (i.e. we can modify

the grammar so that we satisfy the NBU condition).

e.g. 3: 	aXXIbY

Y.-* a I A

F0: 0 A

X
Y -->- A

F*:
A

F* U F1 : 0 	.

60

F1 :

Y

F F 0 	1 -r: A CX
AT 	

ya

Here we have violation of the NBU conditions which are not removable

by our methods.

e.g. 4: 	X -4 xxXXxlyY

Y .4)C IA

F0: 0
X Y 	A

Fs
0 :
	 X 	x

Y

A4- — --Y'

Here we have a violation which can be circumvented by our modifications.

e.g. 5:

F* U F : 1

X xXxa I A

Ai

61

- a removable violation.

e.g. 6: 	X -4xnxxm IA

F*0
 U F1: 	 x

- another removable violation

f
Y

3

X -4 aXib

X1 •-• a1
X2

X
2

-4 a2
X3

-4cY x
-+b I A

F* : 	 X 	b
o 	 At

x2
A

X3 3

F1: 	
X 	 4a

X1 	a1 1

X- — — — 4 a2
X-
3
 — — —4c

b

Fi(13 UF1 X---- -4a

— 1
tA
X2— — — 4 a2
tA
X— — — — 4c

IA
,Y

Ak

.62

this grammar is also in violation, but the violation is removable.

Formalisation of first and follow digraphs

Referring to the defn. of follow, we define a function f0
 over C

such that

A E fo(X)

t! E f0 (X)
1

X! E f0 (X)
1

if

if

if

ai

a.
1

a.
1

A

= t!
1

= X!
I

8.,
I

8., 1

t! E T 1

X! E C
1

moreoverifX.1 -,a.X01 .anda.1
 .A, then label the relation, thus

1

Xi
X 	TA

call the resultant diagram F.

Now form the closure, F;', of FD by the process:

	

If X : X 	A (and Y A), then delete the link

X ------).- A and construct a new (A-labelled) link

A

	

X 	Y

Similarly, referring to the definition of first, we define a function

f1 over C such that:

t. E f (X) if Y. 	y.a. 1 	1 	a. 	1 1

A E f1 (X) if Yn
= A

The resultant digraph we call F1 and represent it by broken lines.

Now form the disjoint union of Pc; and Fl, i.e. F'(;LJ F1 with the

natural equivalence relation between corresponding elements in the

common base set Tt..) 01.)(A) (i.e. the sets of points); further,

let F(?
o'

h) be the free monoid on F*0
 LIF

1
 generated by f0 and h, where:

t Note: F1 is a digraph but F0 may not be.

63

-1,

h : X -, 	f
0
 (X) if A E f1(X)

otherwise undefined

and T0
 is a A-labelled fo

-link.

Defn: Any element of F(f0,h) is called a following sequence.

Then, problems arise iff

3 Ti, Cj : {A, Ti} c fi(Cj)

	

and either (i) 	T. E f0 h1j (C.)

	

or (ii) 	T. E f1 f0 h2j
(C.)

where h1, h2
are following sequences.

The above conditions may be interpreted as follows:

Case (i):
	

We have a following sequence, a,

(i.e. a chain of;

X. -11' Y

4.
A

f0 X 	T. E T
1

- and starting at C.

Case (ii): 	This is a following sequence,al fromto

X, where
Y E f0(X)

and
	

T. E f1 (Y)

(i.e. C. is followed by Y which begins with T.)

Note: If the grammar is not in LFF then we may have,

- and

- ended by

T. E f1 n(Y) 1 (n> 1)

64

Defn: The diagram, F
0
* U F1 together with its associated operations

F(f0,f1) is called the Backup Diagram.

The identities given earlier, if applicable, will each remove one of

these link sequences (i.e. an element of F(f0, f1
)). If the grammar

has an (implied) infinity of such links, as in example 3, then the

transformations will attempt to create a countable infinity of

subsidiary classes to circumvent the violation; in this case, however,

we can create a bounded approximation to the grammar which in some

cases may be sufficient. An outline of how this may be done (on a

simple example) is given in Appendix 9 of [25].

If the grammar is in violation and has a finite number of link sequences

which cause the violation then these should be removed in (some)

decreasing order of length - this may not be a unique ordering, and

the removal of a linkage sequence may cause other links to change.

Removal of BU violation from a grammar in LFF may be algorithmatized

thus:

AIV: 	(i) Form the backup diagram and check for unbounded sets of

differinglink-sequencesbetweenC.andT.,as des-

cribed above - if any found then halt or make a bounded

approximation.

(ii) Remove any superfluous links by applying the first

identity (of the set al - a5, bl, cl) which is applicable

after chains have been removed. If any new links have

been created go to (i), else halt.

65

2.1.2.4 Miscellaneous checks and reductions

(a) Removal of trivial classes; any class where definition consists

of a single option is called trivial. Any such class (other than

the parse root) can easily be removed by back-substitution of the

definition for every occurrence of the class name in other pro-

ductions provided that this class is not directly self-embedding.

e.g.
C a C 	for any adEl P(I

(b) Removal of redundant classes: any (non-root) class which is

never accessed (directly or indirectly) from the root class is

redundant and cannot occur in any parse.

If a class is not redundant it is used and we abstract the property

of being used in the following way:-

For each node, a, in C we derive a set, e
a
, of links from a.

i.e. (= (0: 0 E C and 0 occurs explicitly in the

definition of a)

e.g. if C1 ::= C2albC3IcyC1 IC3

then 	
C l = (c1' C2, C3, C)

If we order the classes in such a way that the root class is number 1,

and declare an array 'used' of length ICI with this same order, then:-

AV 	(i) set used (1) = 1, used (i) = 0, (i 	1)

form e for all a E C
a

set E= Q 	 =
root 	C

l

(ii) if Q= 0 then exit

.66

(iii) if Ci E Q , then -

if used (i) = 1 goto (iv)

otherwise, set used (i) = 1

and q= (Q\ c.we c.

goto (ii)

g(iv) set Q = QA C. , goto (ii)

Since ICI is finite for any usable BNF grammar and each class

definition is finite, then all e
a

are constructable and AV must

terminate. After termination, the set of classes, Ci : used (i) =1

are clearly the only ones used by the grammar.

We may call the diagram resulting from the relation e , the usage,

graph:

e.g. 	aBcld

B cA

C -4 x

yields the usage graph:

C

i.e. C is redundant.

An alternative characterization of usage may be given thus:

define gri = e 	if n = 1
a 	a

Q if n 1
0Een -1 lit a

then C. is used iff 	m E 	m s ICI 1

and 	 C. Ee m
ci

67

(c) Recognition of non-terminating grammars: We make the

reasonable demand that any class name (linked to the root class)

should be capable of generating at least one, possibly empty,

string over TutAl. In particular this excludes productions of

the form
X 	aX0

and 	
X-+ aY

Y-+ OX

etc. where no other productions exist.

Formally we require that

	

(y : Ci 	y)(VT* k) (A))

for all C. E C, where T* is the set of non-empty strings over T.

This property can easily be checked by amending the linkage relation

Q a, so that:

ifaa-4y :aECandyis either a string overTory= A

then T E e a , where T is a special symbol.

Call the extended relation Q. over CU (T)

now let 	Q*1 = e*

	

a 	a

and Q*n = U e *0
0:0Eea* n- {T}

(n > 1)

then. C. derives a terminal string (or A) iff 3 m E N : m s ICI and

T Eq m

The diagram of the extended linkage relation e* is called the

linkage graph.

68

e.g. (i)
	-4 acid

B 	cAleC

C -0 xlyA

has the linkage graph:

This grammar has no non-terminating classes, however the following

has:

e.g. (ii)

t
C

A bBic

B -0 dC

eB

(d) Removal of duplicate classes: using the same characterisation

of equivalence of productions as given in the definition of the

extended factorization procedure we require to replace all occurrences

of the name C. by the name C. whenever,

	

(1)
	

C. ::= a1 la21...lan

and 	C. ::= af(1)
la
f(2)

1 ...la
f(n)

where f is a bijection on (1,2,...,)

or 	(ii) 	C.
1
 ::= h(Ci)

and 	C. ::= g(C.)

where g, and h are string functions which are

equivalent under (i)

69

tY

tY

-4 alb

-• bla

-4 aXib

 blaY

2.1.2.5 The Composite Algorithm

SYMAL 	(i) Remove redundant classes and check for non-termination

of grammar.

(ii) Derive LFF

(iii) Remove redundant and duplicate classes

(iv) Check and remove BU violations

(v) Remove redundant and trivial classes.

This algorithm may fail at stage (i) non-terminating grammar, stage

(ii) ambiguous grammar, and stage (iv) infinitely strong BU violation.

Details of the failures are given in the relevant subalgorithms.

We claim that the grammars produced by the algorithm are much

easier to handle from the point of view of naive left-to-right parsing

although they may be unwieldy and difficult to read. In answer to

this (implied) criticism, we remark that it would be both possible

and desirable to keep two versions (one original, one modified) of

the grammar for use by the human reader and the syntax checker res-

pectively. However a modified notation which makes these modified

grammars 'readable' is given in §2.2.

e.g.

and

.70

2.2 On Syntax Construction

Using the material of §2.1 we formulate a set of rules

which may be used in constructing the syntax of a language so that,

without modification, it is fully recognisable by a simple left-

to-right no-lookahead parser.

Notes on the specification of several common constructs

are also included.

As mentioned in the Introduction to the thesis, 'syntax'

refers to the pure syntax which can be generated by a BNF grammar

and ignores all context-sensitive semantic restraints which must

elsewhere be checked.

2.2.1 The Construction Rules

The rules are of two types, local and global, these corres-

pond to the Left-factored from (LFF) of productions and to No-backup

(NBU) grammars. A detailed examination of LFF and NBU is given in

§2.1, to which the reader is referred. Below we describe the required

forms but give no justification of their relevance.

2.2.1.1 Local Rules

If a production has the form

<x> ::= a
1
la
2la31...lan

where a. (1 s i s n) are strings of terminal and non-terminal symbols;

then we require that each ai (1 s i s n) begins with a different

terminal symbol with the possible exception of an which may be the

null string, A.

t
More properly, we use the rules for constructing the productions which
define the syntax. The rules given do not explicitly govern the syntax
but the way it is specified by a suitable grammar.

71

LLF is obtainable by using the identities of §2.2.2.1; however the

resultant production will in general be long and unwieldy. The

notation introduced in §2.2.1+ will allow these lengthy productions

to be cast into a more readable form.

2.2.1.2 Global Rule

The global rule corresponds to the set of conditions

given by Knuth [59]t and which, by virtue of the LFF of productions,

reduce to:

if 3<x> : <x> A

then we require that

first (<1>) n follow (<%>) = 0

The function5'first' and 'follow' are formally defined elsewhere

in §2.1, but may intuitively be thought of as:

first (X) = the set of terminals which begin

alternatives in the defining production rule

follow (X) = the set of all terminals which may follow

an occurrence of the class 'X' in the

grammar.

The location of all X : X -s A and the construction of the sets first (X)

are trivial.

The formation'of follow (X) is, in general, non-trivial but is made

considerably easier if lists of similar constructs within the syntax

are defined in a uniform and useful way - see §2.2.3.

tIt is conjectured that the conditions do not hold for some ambiguous
grammars, however this last point does not affect the thesis since an
ambiguous construct will only be recognised in one way by any well-
defined parser.

72

2.2.2 Identities

An extensive set of transformation identities has been

given [25] and is not repeated here. Most of those identities are

applicable only in extremely unnatural constructs. The identities

given below are considered to be the more commonly encountered and

desirable ones.

2.2.2.1 Local identities

(a) Factorization: 	if 	X : X ::= aplay

then 	X ::= aX'

X ::= OlY

where a,p,y are strings of terminals and non-terminals

and a A.

(b) Direct left recursion:

if 	X: X ::= X ali3

then 	X ::=
X'::= aVIA

where a,0 are arbitrary strings.

(c) Simple BU-violation:

e.g.: X : X' ::= xaXxOlylA

I
E follow (X)

E first (X)

violations of this type can usually be resolved 	but

meaningful equivalents can be constructed in a more systematic

way as in §2.2.3.

.73

2.2.2.2 Non-local Identities

(a) Back substitution of productions:

if X ::= a1 Ia2I.••Ian 	and

Ri (1 5 i s n) : ai 	cpi

where C is a non-terminal, then the definition of C has

to be substituted for this occurrence of C in a.. 1

So if 	
C = Y1lY21 --- 1 Ym

then X becomes

X ::=

The order in which this substitution operation is applied

to the productions is important (for details see p.26)

moreover if a suitable starting point for the substitution

cannot be found we must appeal to an alternative technique

(b).

(b) Unlocking of productions:

should (a) above not be applicable and there exist pro-

ductions which are not in terminal (i.e. LF) form; then

we must use a technique analogous to solving systems of

linear equations (see page 41). 	It is not described

here since such interlinking of non-terminals is unlikely

to occur in a 'real' language and should not occur

synthetically.

(c) General BU-violations:

usually these are very tedious to detect and are the result

of untidy syntax design. As in 2.2.2.1 (c) we refer the

reader to §2.2.3.

74

2.2.3 General Remarks and Hints:

Of what follows most is 'obvious'. The points which are of

special importance are marked by an asterisk.

2.2.3.1 Connectedness

All non-terminals (and terminals) of the grammar must be

contained in at least one sentence of the derived language.

2.2.3.2 Finite Generation

Each sentence of the language must be of finite (but

possibly unbounded) length and be generated in a finite number of steps.

2.2.3.3 Minimality

If two or more non-terminals generate the same set of

sub-sentences, then replace all occurrences of such non-terminals by a

single (possibly new) non-terminal and form a suitable defining pro-

duction. Some of the original classes will now be disconnected and

removed by 2.2.3.1.

*2.2.3.4 On the occurrence of A

As stated in §2.2.1.2 BU violations can only occur if we

have a A-producing class.

i.e. 3X : X

and by the restrictions imposed by LFF, this reduces to

773X : X-. A

i.e. 	X : X ::= a1lu21—lan-11A

Naturally, the constructs present in the syntax must to a large extent

reflect the constructs of the language and over these we have no control.

75

However the more commonly occurring instances of A-producing classes

present in 'real' languages should not give rise to BU violations if

the following guide-lines are adhered to.

*2.2.3.4.1 Factorization

BU violations can only arise from factorization if

symbols are 'misgrouped'. In non-recursive constructs a regrouping

is always possible.

Suppose 	3A : A ::= 0/14

then 	A ::=

and 	A' ::= 0IA

Now 	A' -+ A and 0 E first (A')

Violation can occur iff 0 E follow (A'). However A' only occurs in

the definition of A and A follows A' in A

so 	follow (A) = follow (A')

i.e. 	0 E follow (A')

'' 	0 E follow (A)

0 	3C : C ::= yA0

then
	C 	yA0

C ::= yupplya0

::= y451,,q3C 1

C'::= CIA

Since in the above instance the language constructs were assumed to

be non-recursive the process must ultimately end when we have re-

grouped productions of X and 0 it follow (X)-

*2.2.3.4.2 Lists and Sequences

Recursion is often used to describe a list cons-

truction even though a list is fundamentally not a recursive entity.

76

Typically we may have:

(a)
t
 <Unsigned integer> ::= <digit>I<unsigned integer> <digit>

i.e. 	X ::= diXd

Here X yields a sequence of one or more 'd's.

(b)t <actual parameter list> ::= <actual parameter>I<actual parameter list>
<parameter delimiter><actual parameter>

i.e. 	Y ::= afYda

Here Y is a proper (i.e. non-empty) list of 'a's delimited by 'd's.

(c) X :.= XdIA

A (possibly empty) sequence of 'd's.

(d) Y ::= aY1 IA

Y1 ::= day1 IA

Y generates an empty list or a proper list of 'a's delimited by

'd's.

The above cases (a-d) can be used to generate all lists and sequences,

moreover if such combinations are terminated (explicitly or implicitly)

by a suitable terminal symbol, i.e. one which is distinguishable from

the components and/or the delimiters of the list or sequence - this is

surely a most reasonable thing to ask of any meaningful readable

language - then we may use the following (LFF) equivalents without risk

of NBU violations.

(a) ::= dX1
X'::= dX'IA

d fit follow (X)

(b) Y ::= aY'
Y'::= daY'IA

d follow (Y)

examples taken from Algol-60 revised report [823.

.77

(c) X 	dXIA

d follow (X)

(d) Y ::= aY'IA

Y'::. daY'IA

a,d fi follow (Y)

2.2.3.5 Trivial Classes

Any connected class (which is not the root) with only a

single option may be removed by substituting its definition for each

occurrence of the class name. By §2.2.3.2 such a class cannot occur

(explicitly or implicitly) in its own definition.

2.2.4 Abbreviated BNF

Constructing a syntax as described in §2.2.1-3 gives rise

to class definitions which have many (similar) options each of which

may be of considerable length. For example an Algol-60 identifier

(restricted to an upper-case alphabet) may be represented thus:

<identifier> ::= A <j.:(351
B <id'>I

Z <id'>

<id') 	A <idl>1
B

Z <id'>I
Jer<j-d'>1
<id'>I

9 <id'>I
A

78

Such productions tend to make the syntax unreadable. As a first step

to making these productions more easily understood we utilize some

set theoretic notation:

Write the set (a,b,c) as

(alblc)

then:

	

<identifier> 	(AIBI...IZ) <id'>

	

<id'> 	(AIBI...1Z1011j...19)

Extending this notion a little further:

<A> ::_ axylbxylcxyldy

becomes <A> ::. ((alblc)xid)y

Such notation will enable us to rewrite many class definitions in a

more compact form. In simple cases, e.g. <identifier> as above, the

definition will also be easily intelligible, however if nesting of

sets occurs, e.g. <A> above, then readability is impaired. To avoid

nested bracketing we introduce a new entity called a direct terminal

class.

A direct terminal class (DTC) is written thus

<name of class>

and is a class such that each option of its defining production begins

with a terminal symbol or a DTC t. A DTC is defined in the same manner

as other classes, indeed a given class may occur in a syntax as both a

DTC and an 'ordinary' class.

Using the examples as above we have:

Note that no circularity can be incurred by such a definition since
DTC's are all derived from LFF productions.

79

<identifier> ::= <alpha> <id'>
<id'> ::= <alphanumeric> <id'>IA

<alphanumeric> ::= <alpha>I<digir
<alpha> ::= AIBICI...IXIY Z
<digit> ::= 011121...1819

<A> ::= <A1>y
<A'> ::= <A">xId
<A"> ::= a:TIc

It is easily seen that the resultant syntax is comprehensible yet

it is quickly transformed to a left-to-right recognisable form.

Of course, if a stack is introduced we can parse directly left-to-

right from such a grammar.

A grammar which includes DTC's will be termed an abbreviated BNF

(AHD").

The concept of ABNF is to be found in many other systems, notably

SID ([46], [121]).

2.2.5 Consequences

Any grammar generated by SID is unambiguous, [46], and

by virtue of the similarity in strategy, so is any grammar which is

constructed in accordance with the rules of §2.2.

Formulation of a 'suitable' syntax for Algol 60 - which is

possible by [46] - will need to resolve such syntactic (see p. 8)

ambiguities as:

<primary> 	<primary>
1

<variable identifier> <ID rocedure identifier> Factual parameter part:
1

<identifier> 	<identifier> 	A

Similarly for other occurrences of implicit type attributes related to

identical syntactic constructs.

.80

Any ambiguities detected by the formation of LFF productions will

give rise to productions of the form:

X ::= AIA

These may be removed by replacing X by A wherever it occurs, any

required semantic distinction being made later.

AmbigUities incorporated in NBU violations should be detected by or,

better still, prevented by satisfaction of the 'xE follow (y)'

predicates of §2.2.3.1+.

It may also be desirable, in order to keep the number of constructs

within manageable limits, to widen the syntax so as to accept strings

which will later be rejected by other (semantic) restraints. A typical

example of this is in Algol 60 [82] where the conditional expressions:-

<if clause> <simple arithmetic expression> else <arithmetic
expression>

and 	
<if clause> <simple Boolean> else <Boolean expression>

may be usefully widened and combined to give:-

<if clause> <simple expression> else <expression>

Indeed:when dealing with polymorphic objects (e.g. 'global' identifiers

in Algol procedures) similar constructs may not be distinguishable, by

any method, before execution of a particular occurrence of that construct.

2.2.6 Summary

The rules of §2.2 provide a framework for the construction

of (context-free) syntax [16] of a large set of real programming languages:

any context-sensitive restrictions now fall into the realm of semantics

and must take the form of compile-time or run-time validation checks.

This is further discussed in later chapters.

81

CHAPTER 3

THE LANGUAGE X; AN INTRODUCTION

3.1 Informal description

X is an Algol-60-like block-structured language. The syntax

is given below in a variation of BNF. These modifications to BNF,

which were fully explained in the previous chapter, aid parsing;

however if the underlines of various non-terminals are ignored

we revert back to standard BNF, familiarity with which is assumed.

This standard BNF analogue is sufficient for the informal definition.

Language X Syntax

1. < program > ::= < block >

2. < block > ::= begin < decn >; < stmts > end

3. < decn > ::= let <. proper id list > be < type >

4. < proper id list > ::= < id > < id list >

5. <id list > ::= , < proper id list > 1 A

6. < type > ::= real 1 int

7. < stmts > ::= < stmt > < stmts 1 >

8. < stmts 1 > ::= ; < stmts > I A

9. < stmt > ::= < block > 1 goto < label > 1 < id 1 >:=<exp > 1

L < special >

82

.10. < id 1 > ::= A 1 B 1 Ct

11. < id > ::=A1B1C1 Lt

12. < label > ::= L < digit > < rest of in >

13. < special > 	< digit > < rest of in > < unlab. stmt > 1

:= < exp >

14. < digit > ::= sd 1 1 1 2 1 ... I 8 1 9

15. < rest of int. > ::= < digit > < rest of int. > 1 A

16. < unlab. stmt > ::= < block > 1 oto < label > 1 < id > := < exp >

17. < exp > ::= < token > < exp follower >

18. < exp follower > ::= + < exp > 1 A

19. < token > ::= < id > 1 . < digit > < rest of in > 1

< digit > < rest of in > < rest of number >

20. < rest of number > ::= . < rest of int. > 1 A

That this grammar for X satisfies the conditions laid down for

direct left to right recognition is verified in §3.2.

We now give.two examples of valid X programs.

I. 	begin let A, B, C be real;

A := 3.0 ;

B := A + 1 ;

C := B + 1.7 ;

begin let B, L be int ;

L := C ;

B A

end

end

tNote: < id > could be the entire alphabet and < id 1 > < id > L,
but this would add nothing to the exposition. However, notice
the importance of including 'L' and the related parsing problems.

.83

II. begin let A be real;

begin let B, C be int

C := 7;

B := 3;

L2 	A := B + 2.9;

goto L7;

L3 	B := C;

goto L2;

L7 begin let B be real;

B := A;

C := C + 7;

A := C + B

end;

goto L3.

end

end

.84

3.2 Verification that the given syntax is suitable
for left-to-right parsing

Referring to [25] and [59] and the relations 'first' and 'follow'

of Chapter 2 we recall that a necessary condition for an unambiguous

language (and its associated grammar) to be recognisable directly from

left to right is:-

If g< x > : <x > A

-then first (< x >) n follow (< x >) = Sd

This condition may be checked by using the 'Produced Head Symbols'

table and the 'C1 Matrix for Stacking Decision' produced by McKeeman's

Compiler Generating System [77].

Before discussing the usage of the tables we note that

denotes the end of input to the recogniser, and A is replaced by <empty>.

Now, first we find all non-terminals, N, such that

N <empty>

This is detected by:-

PHS(N, <empty>) = Y

Having found such an N we use the PHS table to find all terminals Ti

infirstMandtheCINIatrixACIPOtonlidallterglinalsT.in

follow (N):

i.e. 	first (N) = (x : PHS(N,x) = Y)

follow*(N) = (x : C1M(N,x) = Y,N or #)

[follow* is restricted to terminals because C1M is similarly restricted.]

85

We now check that these conditions hold in the syntax for

language X, the tables for which are given at the end of this section.

Trivially we need only consider the non-terminals numbered 38,

43, 44, 45 and 47:

i.e. 	< iden list >

< statements 1 >

< rest of number >

< rest of integer >

< expression follower >

This is because

PHS (< iden list >, < empty >) = Y (see p. 91)

etc.

	

Nowt, first (38) = (2) 	(,) 	(see p. 91)

first (43) 	(1)

first (44) = (18)

first (45) = (7, 8, ..., 15, 16)

first (47) = (17)

Similarly, from C1M we have

-follow (38) . (21) 	(see p. 92)

follow (43) 	(22)

follow (44) = (17)

follow (45) = (1, 3, 4, 5, 6, 17, 18, 26, 27)

follow (47) 	(1)

Notice that since XPL back-substitutes to the level of terminal symbols

we may ignore the second Backup Condition since

From hereon we restrict consideration of first and follow to their
terminal elements \ A, this causes no loss of generality.

86

if X E f (C.) and X non-terminal
o

then a E f1 (X) = a E fo (C.)

Now, writing C
38

for <iden list> etc. (see tables), we. examine in

turn the above classes

f1 (C38)
	(T

2'
T
28
)

= (T2, A)

f
o
1(T

2
) = (T3, 	T , C) 3 ..., 6 30

i.e. 	C38 	A
•—.

' T
• 2

1

C30

Here there is a violation iff there is a 'following-sequence' from

C38 to C. . We consider such sequences for all non-terminals later

on in this section.

f
1
(C
43) = (T1, A)

f
1
(C
44) = (T18, A)

f (C 	= (T ...T 	A) 1 45 	7 16'

f
1(C47) = (T17' A)

C32 A

T 17

T
1

C39
t C 	c

40 	T

" 	
2e

A

4.

87

The relevant sections of the backup diagram are as follows.

A4- — —
C,A A C46

.21

From these segments it can be seen that there exist no "following-

sequences",

from C38 to C 30

from C
43

to C
29

.31

etc.

from 	to C45

from C
45

to C
33

nor from C
47

to C 30

C
34

etc.

88

Hence 5(1C : foQ. (C.
1
) (1 (f1 (C.) \ A) 	0 o 	1

for any
	

C. E
-11

(A) where £ is a following sequence.

Therefore the NBU condition is satisfied.

The relevant XPL-generated information now follows:-

89

PRODUCTIONS

£ GRAMMAR FOR LANGUAGE X

1 <PROGRAM> ::. <BLOCK>

2 <BLOCK> ::. 'BEGIN' <DECLARATION> ; <STATEMENTS> 'END'

3 <DECLARATION> ::. 'LET' <PROPER IDEN LIST> 'BE' <TYPE>

4 <PROPER IDEN LIST> ::. <IDEN> <IDEN LIST>

5 <IDEN LIST> ::. , <PROPER IDEN LIST>
6 	I <EMPTY>

7 <TYPE> ::= 'REAL'
8 	I 'INT'

9 <STATEMENTS> ::. <STATEMENT> <STATEMENTS 1>

10 <STATEMENTS 1> ::= ; <STATEMENTS>
11 	1 <EMPTY>

12 <STATEMENT> ::= <BLOCK>
13 	I 'GOTO' <LABEL>
14 	I <IDEN 1> := <EXPRESSION>
15 	1 L <SPECIAL>

16 <IDEN 1> ::= A
17 	I B
18 	 I C

19 <IDEN> ::. A
20 	I
21 	1 C
22 	I L

23 <LABEL> 	L <DIGIT> <REST OF INTEGER>

24 <SPECIAL> ::. <DIGIT> <REST OF INTEGER> <UNLABELLED STATEMENT>
25 	1 := <EXPRESSION>

26 <DIGIT> ::. 0
27 	1 .
28 	2
29 	3
30
31 	5
32 	6
33 	7
34 	8
35 	9

36 <REST OF INTEGER> 	<DIGIT> <REST OF INTEGER>
37 	I <EMPTY>

90

38 <UNLABELLED STATEMENT> ::= <BLOCK>
39 	 I 'GOTO' <LABEL>
40 	 I <IDEN> := <EXPRESSION>

41 <EXPRESSION> ::. <TOKEN> <EXPRESSION FOLLOWER>

42
43

44
45
46

<EXPRESSION FOLLOWER> 	+ <EXPRESSION>
I <EMPTY>

<TOKEN> 	<IDEN>
I 	. <DIGIT> <REST OF INTEGER>
I 	<DIGIT> <REST OF INTEGER> <REST OF NUMBER>

47 <REST OF NUMBER> ::= . <REST OF INTEGER>
48 I <EMPTY>

TERMINAL SYMBOLS NONTERMINALS

1 ; 29 	<TYPE>
2 , 30 	<IDEN>
3 L 31 	<BLOCK>
4 A 32 	<LABEL>
5 B 33 	<DIGIT>
6 C 34 <TOKEN>
7 0 35 	<IDEN 1> .
8 1 36 	<PROGRAM>
9 2 37 	<SPECIAL>
10 3 38 	<IDEN LIST>
11 4 39 	<STATEMENT>
12 5 40 	<STATEMENTS>
13 6 41 	<EXPRESSION>
14 7 42 	<DECLARATION>
15 8 43 	<STATEMENTS 1>
16 9 44 	<REST OF NUMBER>
17 45 	<REST OF INTEGER>
18 . 46 	<PROPER IDEN LIST>
19 := 47 	<EXPRESSION FOLLOWER>
20 48 	<UNLABETIED STATEMENT>
21 'BE'
22 'END'
23 'LET'
24 'INT'
25 'REAL'
26 'GOTO'
27 'BEGIN'
28 <EMPTY>

<PROGRAM> IS THE GOAL SYMBOL.

91

PRODUCED HEAD SYMBOLS:

1111111 1112222222222333 3333333344444444

+124567890123456+7890123436789012+34567890123456784

1 	;
y

2 ,
3 L
4 A
5 B
6 C
7 0
8 1
9 2
10 3
11 4
12 5
13 6
14 7
15 8
16 9

17 +
18 .
19 :=
20
21 'BE'
22 'END'
23 'LET'
24 'INT'
25 'REAL'
26 'GOTO'
27 'BEGIN'
28 <EMPTY>
29 <TYPE> 	 YY Y
30 <IDEN> 	YYYY
31 <BLOCK> 	 Y Y
32 <LABEL>

33 <DIGIT> 	YYYYYYYYYY
34 <TOKEN> 	YYYYYYYYYYYYYY Y 	Y YY
35 <IDEN 1> 	yyy
36 <PROGRAM> 	 Y Y 	Y
37 <SPECIAL> 0 YYYYYYYYYY Y 	Y Y
38 <IDEN LIST>
39 <STATEMENT> 	YYYY 	yy y 	y y
40 <STATEMENTS> 	YYYY 	YY Y 	Y YY
41 <EXPRESSION> 	YYYYYYYYYYYYYY Y 	Y YY
42 <DECLARATION>
43 <STATEMENTS 1>
44 <REST OF NUMBER>
45 <REST OF INTEGER> 	yyyyyyyyyy 	y 	y
46 <PROPER IDEN LIST> 	YYYY
47 <EXPRESSION FOLLOWER>
48 <UNLABELLED STATEMENT> 	YYYY 	YY YY

	 + 	 4

92

Cl MATRIX FOR STACKING DECISION:

1 	;
2 	,

1111111
1234567890123456

YYYY
YYYY

111122222222
789012345678

YY

3 	L N 	YYYYYYYYYY N # N
4 	A N N N N
5 	B N N N N
6 	C N N N N
7 	0 NNNNNNNNNN N
8 	1 NNNNNNNNNN N
9 	2 NNNNNNNNNN N

10 	3 NNNNNNNNNN N
11 	4 NNNNNNNNNN N
12 	5 NNNNNNNNNN N
13 	6 NNNNNNNNNN N
14 	7 NNNNNNNNNN N

.15 	8 NNNNNNNNNN N
16 	9 NNNNNNNNNN N

17 	+ YYYYYYYYYYYYYY Y
18 	. YYYYYYYYYY Y
19 	: YYYYYYYYYYYYYY Y
20 Y
21 	'BE' YY
22 	'END' N N 	N
23 	'LET' YYYY
24 	'INT' N
25 	'REAL' N
26 	'GOTO' Y
27 	'BEGIN'
28 	<EMPTY> N NNNN NN 	NN 	NNN
29 	<TYPE> N
30 	<IDEN> Y N Y
31 	<BLOCK> N N N
32 	<LABEL> N N

33 	<DIGIT> YYYYYYYYYY Y
34 	<TOKEN> Y
35 	<IDEN 1> Y
56 	<PROGRAM> N
37 	<SPECIAL> N N
38 	<IDEN LIST>
39 	<STATEMENT> Y Y
40 	<STATEMENTS>
41 	<EXPRESSION> N N
42 	<DECLARATION> Y
43 	<STATEMENTS 1> N
44 	<REST OF NUMBER> N 	 N
45 	<REST OF INTEGER> N #### N# 	###
46 	<PROPER IDEN LIST>
47 	<EXPRESSION FOLLOWER> N N
48 	<UNLABELTED STATEMENT> N N

.93

3.3 Executive Semantics

The semantics of X are as follows:-

(i) the block structure is similar to that of Algol-60.

Explicit transfers across block boundaries are forbidden.

(ii) Assignment is treated as in Algol-68, i.e. we can widen

an integer to a real but not vice-versa. Similar types

can be assigned in the usual way.

(iii) Addition between mixed node quantities is valid and

integers are widened (see PS]) as required.

The problem of (semantic) validation is dealt with in chapter 7,

however we need to know about the executable semantics before we can

describe the initial CPS (Carabiner Program Space) for X, hence we

give the following (tentative) set of productions with semantic

injections. Note that these are only intended as a guide to the

run-time semantics which govern a valid X program.

1. < program > ::= < block >.
1.1

2. < block > ::= begin . block entry
< decn >

2.1

< stmts
2.2

end <1 block exit

	

3. 	< decn > ::= let
< proper id list >

3.1

be

< type > .;1link list to type
3 . 2

	

4. 	< proper id list > ::= < id > 	save name 4.1

< id list >
4.2

94

5. < is list > ::=

< proper id list > 	1 5.1
A

6. < type > ::= real

int

7. < stmts > ::= < stmt > < stmts 1 > 7.1 	7.2

8. < stmts 1 > < stmts > 	1 A
8.1

9. 	< stmts > ::= < block > 	I 9.1

goto

< label > 	generate 'goto' t 1 9.2

< id 1 9.3

< exp >9.4 . generate assignment 	1

L < special 9.5

10. 	< id 1 >::= A 1

B1

C

11. 	< id > 	A

BI

CI

L

12. 	<.label > ::= L

< digit >
12.1

< rest of int.
12.2

We merge: <1 generate 'goto' 	into a translation routine which
simplifies the whole control network within an X-block. A fuller
discussion of this is given in the appendix.

95

13. 	< special > ::= < digit >
13.1

< rest of in >
1342

< unlab. stmt > 	1
13.2

< exp > 	4 generate assignment
13.4

14. < digit > 	::= 0 	1 	1 1 	2 	1 	... 	1 	9

15. < rest of int. > ::= < digit >
16.1

< rest of int. > 	1
15.2

A

16. < unlab. stmt > ::= < block > 	1
16.1

goto

< label > 	4 generate goto 1

< id >
— 16.3

< exp > 	4 generate assignment 16,4

17. < exp > ::= < token > 	< exp follower >
17.1 	17.2

18. < exp follower > ::= +

< exp > 	4 generate addition 	1
18.1

A

19. .< token > ::= < id > 	4 take value 	1
— 19.1

•

< digit >
19.2

< rest of int. > 	1
19.3

< digit >
19.4

< rest of int. >
19.6

< rest of number >
19.6

20. 	< rest of number > ::= •

< rest of int. > 	1
20.1

1642

A

96

execution semantics:

4 block entry fl.

4 block exit

4 link list to type

4 save name is incorporated within translation

4 generate 'goto' *„(.

4 generate assignment

4 generate addition

The above 'injections' (and others concerned with validation) will

later be defined by actions in the program space specified by the

Carabiner language.

97

CHAPTER

BASE FUNCTIONS OF THE SOURCE LANGUAGE

In order that our system should (a) be definitive and (b) use

the notation of the high-level source language we use a derivative

of Markov's normal algorithms [74] to specify the 'base functions'.

These are the routines, details of which are often ignored by other

systems, that perform such functions as integer addition, subtraction

etc., similarly real operations, and also logic operations. NaiVely

we may regard them as the 'hardware' functions of the system.

At this point we note that by allowing translations into binary

representation a more pedantic set of definitions could be given by

using the substitution operator S (see Chapter 6), however, such

detail would be restrictive since by using different representation

(or types of representation, e.g. binary, binary coded decimal,

characters) equivalent processes would naturally give different

results. We take the stand that any implementation of a given function

is correct iff for each input the result (characterized as in the

source language) is the same as that produced by the defining algorithm.

This chapter contains the elements of the Theory of Markov

Algorithms together with some extensions. As we wish to present this

as concisely as is practicable it tends to consist of a set of

98

disjoint statements, rather sparse and unelaborated. Anyone

with a prior knowledge of Markov Algorithms may skip this chapter,

merely referring to it as is found necessary.

In §4.1 we define the basic terminology associated with

Markov Algorithms (MAs), giving two examples of such algorithms

in §4.2. Extended MAs are defined in §4.3, and, in §4.4-5 we

give details of how elementary MAs can be combined.

4.1 Markov Algorithms:

Our characterization of Markov's [74] scheme for the

'abstraction of potential realizability' follows closely that of

Mendelson [78] but the notation is modified to embody the concept,

of the level of an algorithm to facilitate the formation of com-

binations of algorithmic schemata.

We define the fundamentals of a Markov algorithm and describe

further notation as it becomes necessary.

Definition by equality is denoted thus:-

def
'definiens! - 'definiendum'

Defn: The input to an algorithm, the algorithm itself, and the

result of the algorithm are represented by sequences of

atomic symbols which we call letters.

Defn: A non-empty set of letters is called an alphabet. We denote

the set of all alphabets by Ab.

Given A E Ab, the set W(A) of words of A is the free monoid

generated by A under the operation of concatenation with

unit element A , defined below (see ffilg, [71]). To denote

arbitrary words we use capital letters or barred small letters.

E.g. A or a.

IfaEAEAb then we writeafor a
1
andAfor ao, VaE A.

A is called the empty word and

AFB V BE Ab

.99

100

yet

A E W(B) V B E Ab .

Defn: The product of two words is denoted and defined by juxta-

posing them, and multiples of words are represented by:-

n _
x : x E W(A)

(the bar may be omitted if x E A).

Defn: Given x E W(A), denote by l(R), the length of the word

x, i.e. the number of letters occurring in it such that:

1(a)

1(A)

n
1(x)

1(a-)

l(Xy)

def
=

def
=

def
=

def
=

def
=

1

0

n1(X)

n

1(x) + 1(y)

a E A

R E W(A)

a E A

R,Y E W(A)

We assume the existence of a denumerable number of alphabets

def
A. : i E N 	= 	C0,1,2,...)

and
(Ai : i E N) c Ab

We write A for Ao
and assume there are special symbols

L.' and '.' such that

-. , . 0A VA E Ab

Defn: Given A,B E Ab st. A c B we say that A is a subalphabet

of B, equivalently that B is an extension of A.

101

If we tentatively regard an algorithm as a function whose

value for any given argument can be found by a finite

(terminating) calculation; and if the domain of the function

f is denoted by 1)f; then, if Di.c W(A) we say that f is

an algorithm in A.

Defn: An algorithm over A is an algorithm in an extension of A.

Defn: An algorithmic schema, a , is a finite sequence of productions

(or sets of productions) denoted by:

P 	(') Qn

where, if a represents an algorithm in A(E Ab), then:

P.,Q. E W(A) (1 5 i,j s n) .

There are three types of production.

a) simple, written P

b) terminal, written P -4 .Q

c) total,

written P Q. for simple total

and 	P .Q. for terminal total.

We shall show in §4.2 that total productions may be written

in terms of simple and terminal productions and hence are

102

merely a notational convenience. The notation

P -4 (.)Q

is used for the general representation of an arbitrary

production of any of the above types a), b) or c).

Defn: Given x E W(A), let 1 = l(R) then define

th
(R) 	(1 s i s 1) to be the i letter in x

e.g.:

if 	A = (a,b,c)

and 	R ab2ca4b E W(A)

(here x is given in its canonical form) then

(i)
1
 = a

(R)2 = b

(R)
3
 = b

(R)6 = a

(R)
9 	

b

For completeness, we stipulate

- def
(x)i = A Vi> 1(x)

Then, given two words x E W(A)

E W(B)

def
R = y = (R)i = (Di Vi E

and trivially,if x = y then R,i E W(AflB).

103

Defn: If a,b E W(A) : A E Ab then we say that a occurs in E

if a c,d E W(A) such that

E = cad

and denote this by a o b otherwise a le b.

If a o b and 1 = 1(b), then let

b

a d2
2

where 1(-8.1) < 1(Zi) +1

• 1 5 i 5 j-1 - - - c. a d.
J 	J 	and 	j 5 1

- be all the representations of b in the form ci a di

with Z1., a.1
 E W(A).

Defn: Then we say that the word c1 specifies the leading occurrence

of a in E and the a immediately following Ci is that

occurrence.

The action of the algorithmic schema, a, defined by the

sequence of productions:-

P
1 	(.)Q

P.,Q. E W(A)

(1si, jsn)
Pn (')Qn

over the alphabet A, may now be described.

(The analytical notation for mapping follows [60], [65].)

Let the input to a be P E W(A)

(i.) if P. $ P Vi : 1 5 i sn then a has no effect on P

(i.e. the algorithm passes all its n stages without

action)

104

So,

a : Ps-. P

which we denote by

a :

(ii) otherwise

a j : -1“n

where

P. o P

and

P. siP Ali : lsi<j

jth The j production is then to be applied to the input in

the following way:-

Since p. o .P there is a leading occurrence of P. in P,

let this be specified by R1 such that

P 	R P
1 j

R
2

(a) If P.
J
 -4 Q. (i.e. the jth production is simple) -

then replace this occurrence of P. byQj ..

i.e.
a(.) : R P R -. 	Q R2

where

1 j 2 1 j 2

where a(i) is

the jth production in the schema for a.

Then execute the algorithmic schema once again (from

stage (1)) using this modified word as input.

(b) If P. "4 Q. (terminal) then carry out the process (a)

but instead of recycling the process, halt and exit

with the transformed word as the result.

105

(c) If P. -4 Q..
J 	J

orP.-4.Q..then the whole of the 'input' word is

replacedby. Q. and processing continued or terminated

according to whether or not the production is simple.

If a simple production is applied and transforms P

to R, say, then we write

a : pi- R

If a terminal production is applied and transforms P

to R, then the algorithm execution terminates and we

write

a : P r .R

We will have cause in the sequel to refer to many different

algorithms and we label these

th
So cri(j) represents the j 	production of the .th

algorithm.

Defn: An algorithmic schema,

a. = (a .
(j) :
	

1 	1
isn. for some n. E N)) i

is a Markov Algorithm, MA, in the alphabet A if

(a) ai(j) E Pj 	(.)Q., Pj, Qj E W(A)

Vj : 1 j ni

(b) for any P E W(A), a a sequence Ro, R1, 	Rk

such that:

106

R
o 5 P

and Rk e R (say)

and where, for 0 5 j s k- 2

a : R. 1 	j 	3+1

and either

(b')

a • R
i • —k-1 ~ Rk

and
ai : Rk

or (b")

a • R
i • -1C-1 	.Pic

If (b') then we write 	k R

If (b") then we write a. 	.R

In either case we say that the application of a.

yields R.

to P

4.2 Examples of two elementary algorithms

Having formalized the structure and action of MAs we now

give examples of the simple MAs required to evaluate simple integer

functions.

We may, as in recursive function theory, reduce the work

involved in specifying the more complex operations by first defining

the two basic functions 5 (the successor function on N) and 2 (the

predecessor function on
+
). This we do by the MAs $31 and

	
2

in figs 4.1 and 4.2.

107

Fig. 4.1 	131 (o on MT)

1) at -.6 	§a (E my
2) all -. 	.0. (110N1)

3) a .. 	0
013 -. 	.1

10 -4 	.2
2B -4 	.3
30 .4

4) Lfp - 	.5

50 -. 	.6
60 - 	.7
70 . 	.8

8p - 	.9

5) 90 - 	00

6) 0 _. 	.1

7) A -. 	ot

Fig. 4.2 B 2 (Pori IT)

1) Eeg -` ga 	(§ E 1 1)

2) &11 --. .0. 	(1)°111)
3) a06t . .0.

4) ceP& --. PO 	(PE W(111))

10 --• .0
20 •-• .1

5)

:80 . .7
9p . .8

6) 00 - 09
7) A . as

108

These examples involve further notation which is now

given, as is the formal definition of a total production.

Notn: Let NI = (0,1,2,...,8,9)

Note: No Greek letters will be allowed in the input alphabets of

our MAs and that any algorithm will be defined over the

input alphabet extended by a subset of G, where

G = (a,0,Y1s,C,-11,6,X0µ,v,§,rr,PlQ,T,X,'V1w)UG

with

G = (i : g E G)

and write for : 1 for 	etc.
a CY CY a

The characters 0,11/,x have each a special significance which

will be described in §4.4 and §4.5.

Notn: We sometimes use an abbreviated notation of the form:

P§Q 	(§ES)

to represent, in any required order, the set of productions

derived from the subalphabet S, when the cardinality of

S, 151 is such that

(a) 	ISI =n:nEN

or 	(b) 	IA \ 81 .n:nEll and A is the alphabet of

definition for the current MA

or 	(c) 	ISM 	. i.e. S is bijective with 21.

Defn: We define the total production:-

y-4 .P.

to be equivalent to the schema.

109

i)

ii)

iii)

OP
1
 yP
2

A -* 8Z

-4 .P iT
Pl ,P2

V§EA 	for suitable A

EW(A)

P1 	specifies the leading

occurrence of y in Ply

The corresponding definition of

y 	.P (i.e. simple and total)

is identical but with

ii)' 	OP1yP2
6 	P in place of ii)

With reference to 51 (fig. 4.1)

Notice: (a) that the contraction of production (4) causes no

ambiguity

(b) that production (2) is a total production

(c) that parameter type errors would usually not

reach this stage, i.e. execution, because they

would constitute syntax errors, however when we

link values to identifiers (simple names) we

will require the explicit type checks of the

kind incorporated in 13 1'
and 	(d) that Tv is a special symbol which may be thought

of as a (universal) error flag.

?2 (fig 4.2) represents the function Pon the set 111- = /1\ (0).

Since n E N n z 0 we can have no negation function 11-4 11.

This concludes the introduction to MAs proper; in the next section

we consider EMAs.

V 1 V2

110

4.3 Extended Markov Algorithms (EMAs)

We now turn to our first diadic operator, the diadic plus.

In Polish notation this would be denoted by xy+ or x, y., 5)3 (say).

We give a uniform technique for the manipulation of k-adic

operators (V k z 0). Suppose that the triple given above occupies

cells numbered

1-2, 1-1, 1

Formally we say that the function (here P3) acts on the preceding
1-1 cells. To illustrate the manipulation more fully, consider

the more general case with a list:-

1 2 	1-n

V
n

1-2 1-1 1 1+1

Let '9 be an n-adic function yielding m values (P. may be thought
of as a vector function or as a subroutine).

(a) Input: strictly speaking each production in the schema for

evaluating Pi is of the form:-

where R,! are vectors of length 1-1, each co-ordinate of which

is a word of the appropriate alphabet. We may illustrate the

input mapping by fig. 4.3.

(b) Execution: since the operation J9i is n-adic all the components
of any production

R -+ (.)g.

of the schema for P which operate on co-ordinates j : j > n
may be thought of as:-

A A

1 	2 1-n 1-2 1-1 1

Schema for p
i

-. \
1

V
2

	 IV
n

components of
vector which i
processed by a
production of

fili

>

111

Fig. 4.3

Fig. 4.4

1
R -, S1.

2
 .

.2Q

8
m
-3Q

3
R

n

1-n 	1 -n+m -1

112

and, because such a production is always applicable and has no

effect, it is omitted from the schema. Any void co-ordinate

production within the schema (i.e. acting on the jth co-ordinate

where 1 s j s n) must be shown but may be indicated by a long dash.

For a production (e.g.:-

R-• (.)Q •=7.

•

nR (.)n)

to be applied to a vector V = (V1,...,V
n
) we require that

.Ro V. Vi : 1 s i s n

and that no earlier production is applicable. Execution stops

when either no vector production is applicable or when every

co-ordinate of an applied vector production is terminal.

(c) Output: when n > 1 and m 1 we use the symbol e to indicate

the exit value of the function: we do this by appending 8 to

a co=ordinate of the terminal vector production e.g.

P 8.Q

When m > 1 we use g : (1 s i s m) in a similar way. The action

ofthe output mapping is illustrated by the example in diagram

in fig. 4.4.

To illustrate how these extended algorithms (EMAs) work we give, in

fig. 4.5, the schema for a function, f, which takes as input three

words in W(A), and combines them to produce two new words subject to

the rule:-

(g, E, E) 	05-6,

113

Fig. 4.5

The function f:

1)

2) {Ft 	

3) f &t 	g(Te

(t E A)

(t E A)

(§ E A)

it)

5)

YPY

0Q0

aRcx --,

A

A

A

.A

2 . Qp

e 	.RQ

00

as

(R, P, 	Q E W(A))

114

equivalently, in terms of lists

a, E, C, f

4,

EC, ab

To exemplify further, we trace the execution of. f with input list

xy, pqr, 01p, f

Y Y 0 1 p

4) 	1 	5pqr

Ei x y

•

Y 0 .7(1

2) 	1 	t3 5p q

x y

0 1 p

6) 	p q

x y

{Yo 0 1 p

8) 	p q r

p

r 3) 1

5) 2

Y

r 7)

Y

9) 3

y 0 1 y p

0 3 p q r
acrx y

y 0 1 p

OpFqr

a a x y

T, 0 1 p

0 p q r

a a x y

y 0 1 p y

ppqr5

	

0 1 p 	 yy01p

	

input {p q r 	1) 	5 	S 5pqr

	

x y 	 a Cr x y

x a y 	a x y

10) 4
• A

e2. pqr01p
1
g.xypqr 1p

x y
output q

p

r

q

0

r

1

115

Notice also, that if we require work space during the execution

of an algorithm, or we have a function f':

f' : Xn Xm 	min

extra components can be added to the vectors with indides < 0

i.e. 	
V
-3

V
-2

v-1

V
n

Then we may initialize these cells to A and henceforth treat them

in the same way as before, keeping the same input mapping technique

so as not to interfere with these cells.

4.4 Composition of Algorithms and Embedding

4.4.1 Sequential Composition

To formalize the notions of composing and nesting MAs and EMAs

(or more correctly their schemata, though we usually ignore this

distinction) we need more notation.

Defn: Given algorithms a,3 over A E Ab, then if

a (p) = 8 (p) y P EW (A)

[inclusive of the case when neither is applicable to P and hence

a (P) = P] we say that a,g3 are fully equivalent, and write a 	.

Defn: A normal algorithm ai is closed iff a a production of the
form:

a
i(J)

S7- A .Q

116

Given any arbitrary MA, a, let at- denote the closure of a

formed by adding the production

A .A

to the end of the schema for a.

Trivially

a• a

Now we consider the problem of defining the composition

o a

of the MAs, a (over A E Ab) and 46 (over B E Ab). We usually

have the case when AnB cif or even A = B and in order to deal

with these cases we define a special procedure which creates

an isomorphic copy of the required alphabet each time the MA

is activated.

For any given i E INT and A E Ab, define

C. : A 	Ai

where Al is the I
th

IM copy of A and

C. : a-. a. 	(a E A)

[The stimulus behind this is the requirement to attach a

suffix to every letter, except -4 and . used in any MA;

whenever a new MA is 'called' we increment the suffix of the

current string and of the new schema by one.]

Defn: An algorithm acting on an alphabet subscripted by i is said

to act at level i.

C. can be defined by the abbreviated schema

117

g -4 gi

A -4 .A

Obviously C. is bijective and if we denote its inverse by

-
C.

1
 then the transfer function required when entering a

nested schema is the following:

T. . Ft: C. ° C.-1
1,3 	j 	1

and for exit:

-1 	-1
T 	. PL.- C. 0 C.
1,3 	1 	j

At this stage it may seem that we are producing a circular

construction by attempting to achieve composition by defining

new functions which themselves have to be composed; however,

as will be seen, the transition functions behave differently

from arbitrary MAs and their composition is more easily defined.

We refer to C. and T.. as subalgorithms; these never stand
1 	1,3

alone nor do they have input or output in the usual sense;

they are used to formalize change of alphabets within

algorithmic schemata.

Since we have not yet defined the symbol '0' between MAs,

the preceding equivalence for T. . is vacuous; we give a
11J

schematic definition:-

T
i
 . (i < j)

1) g i ei. ei gi
2) ei g i. — ei

where § E A, 8 y2 A and

A is the union of the

alphabets of the component

algorithms in the composition

schema (see below)

E A)

j,i

Ti,
j (i > j)

118

')
2) *i gi 	gj Si

3). Si 	Ai

where

g E A,.11/ 	A

T. . is as 	(i > j) but with production 3) replaced by
1,3 	i,j

3') Si 	.A.

N.B. We even index the empty word and require that

A. ci P. 	if i 	j 	V P E W(A)
1 	j

N.B. In the schemata for T, g is a dummy variable but 0, $ are

not; they are linkage markers and are used as illustrated in

an example given below.

By their nature it is impossible to compose arbitrary MAs sequentially;

what we do is define a new schema which embodies isomorphic (slightly

modified but still isomorphic) copies of the constituent schemata

which is fully equivalent to their sequential evaluation.

Given algorithms a on A and 	on B 	we use the functions C.

and C. 	to give:
1+1

ai def = 	CL, on Ai

_ 	def 23. 	on B
i+1

We are going to define composition iteratively in pairs. The next

modification to the schemata is to ensure the correct order of

evaluation; if we are currently at level i then i+1 cannot be

executed and any combination would terminate on the completion of a i.

119

We replace all termination 'dots' of the schema

ai by e.

i
Call this the 9. termination of a and write it as:

1

Similarly for B form' 7

Now define go a at level i by the schema given below, which

consists of four ordered sets of productions.

4) 	g *i+1
Ti+1

Multiple composition is defined by the following:

if a, 19 , 	are MAs, then so is

a ogo C
where 	ao So e 	((ctoo)0 e)

At level 6 this yields the schema:-

where a o.8 at level 7 is:

1) T7,8

2) '1
8,7

3) 71%
18

4) e7

120

1) T
6,7

2) ri7,6

3) ao ct8 7417

4) 6 6o
6

The derived schema may be simplified by applying the reduction rule:-

Ti,k where i>j>k

in such a way as to minimize the total number of T's in the

resultant schema.

Defn: Consistent with our aim of trying to simplify notation and

since we are justified in introducing any abbreviations

provided only that we have a well-defined procedure for

expanding them uniquely into an EMA; we denote a sequence

of (sub) algorithms as in the preceding example by:-

a. : a : a :
j 	

a
: n

Defn: Now we can define the composition of a and0 level i by:-

450 ai clef T. 	:
' i
	: 	i+1

i,i+1 	1+1,i 	0 	*.

	

i 	1+1

where a is simple.

121

An algorithm a is simple iff

a 4 9,,Q

for any non-trivial 53, Q. . The definition thus covers all

multiple compoSitions, since:-

6.13. ai. Ti, 	 : 	a 	: Co/3 +1

	

,i+1 	i+1,i 	e. i+1
where

i+1 	 --i+1 ,7i+2
62GB 	. T. 	. 	: 11. 	. 	

i 	
:6 *.

	

1+1,1+2 	1+2,1+1 	G
+1 	1+2

Examples of 	the mechanics of sequential combination are given

at length elsewhere [23].

4.4.2 Embedding

Having defined the functions $ and 9 on Nand 11+ by

the schemata B1 and 432 (given in figs. 4.1 and 4.2) we wish to
use these to calculate 'x+y' by increasing x and reducing y until

y=0; the current value of x is then the required sum. To do this

we will need to achieve the effect of embedding one EMA within

another, i.e. to have productions of the form:-

P 	(..)Q a(n)I1 where a is an EMA

Without formality, we dictate that when such a production is invoked

we evaluate the embedded schemata (a) on the given input (n) and

then replace a(n) with the result: the evaluation of a being carried

out separately from the rest of the computation, i.e. we do not embed

the schema for a, only a 'call' to a which is denoted by the
occurrence of a.

1)

2)

3)

14)

6)

7)

122

Now: 	z = (x+y) = (a) if 	(x=0) then z:= y

else (x := x-1;

y := y+1;

goto (a))

Fi-om this definition we may extract an MA, 	3 given in fig. 4.6

Fig. 4.6

3'
addition on 11

(§ E 11.1)

(P, Q E W))

123

Proceeding in this way the other basic arithmetic functions can

be defined [23], however it is easier to appreciate what is

happening within an (E)MA if we define only the most primitive

operations by such means; using higher-level operations to

determine which sequences of basic operations should be executed

next. These are fully defined (via MAs) in §4.5.1 and, in §4.5.2

we use them to specify the fundamental arithmetic operations.

4.5 Iteration and Ramification

In this section we give two fundamental control routines.

These model the Algol-60 constructs:-

if ... then ... else

and
label: ... if ... then goto label; 	- and

may be defined in terms of MAs as we show in §4.5.1. Also, one of

the operations may be equivalently defined in terms of S as in §6.

In §4.5.2 these control routines are used to define some of

the less primitive arithmetic operations.

4.5.1 Formal derivation of RAM and PTL.

We wish to define the ramification of processes a and $

by the predicate y:-

i.e. if y then a else 0

- and the iteration of a controlled by

the predicate y :-

label: a ; if y then goto label.

In order to simplify the exposition we use a continuous indexing

scheme for denotation of levels, instead of using a system based on

124

primes (et G8del). This means that the constructions given below

are technically incorrect. However, if (at the stages marked by

an asterisk) we replace the construction by an equivalent al-

gorithm which acts at only one level, then the construction is

valid.

We now give the constructions. A commentary, to aid com-

prehension of the assembly, is included at the end of this section.

Defn: If0 is a MA on A and Ac:B, prefix the schema to/0 with

b b (b E B\A)

Call the new schema cpB•

Then 	
(1-9

B
(P) p.,10(P) V P E W(A)

B. is called the propagation ofcV onto B

Defn: Given a on A and on B with AuB =. C. Let ac and 8 c be

the propagations of a and onto C.

Then Sc o ac is the normal composition of a andg, and is

written o a.

In what follows we shall pay no particular attention to the

compatability of alphabets; any inconsistency may be easily removed

by using appropriate propagations.

Defn: Given A,B.E Ab with A c B

Then

E
B
A
: g - A (g E B\A)

is the projection of B onto A.

Defn: A predicate is a MA which yields (depending on its data)

either the logic value T or the logic value F.

125

Defn: A void predicate is formed by the composition of the MA

with a predicate, where

	

v 	.
•

•

A A

i.e. if 6:1 .voG where eisapredicate, then

G(P) = T 	C1(P) = A

e(P) = F a 631(P) = F (+ A)

Defn: We define the n-tuple algorithm at level i

Tn 	1 : P. 	1 P.+1 1 P.+2 	i+n
... P 	: P E W(A)

- by the schema of fig. 4.7

Trivially its inverse Tn
1
 is defined by the abbreviated schema:
-

-1 	.
T
n

(at i) : t j --• t. 	i<j5i+n
Fig. 4.7

T
n
:

1) a§ii+1 gi+2i+n a (g E A)

2) a --• A

3) t111jj 1
	

(i<j<a<n) (, 	E A)

4) A — a

Defn: 	Using the tupling algorithms Tn we form the juxtaposition

of a set of MAs

ai : 1 s i 5 n by

	

45 = Ti 	
: T.

1 	,..:
Ti +2,i• T.

	: +n,i 	+n-1,i 	+2,i 	+1,i

-i+1-i+1 : T
n

1+n 	1+1

and write

g =a a 	a
2 • • •

126

The major operation at which we are aiming is the ramification

of two MAs governed by a third (void predicate) MA. In the cons-

truction of a ramification we use x as a selector flag and develop the

concept by means of two lemmas.

Lemma 1: 	Given a void predicate 4 over A then 3 an algorithm

over A U (X) = B, such that:

{

XP if P E W(A) and e C(P) = A
•

(For a description of e see §6.3. Informally e C(P) means the result

of Con P.)

Construction: Take 0 	B and let C = Bu(p). Define 001 over C

by the schema

1) a 	(a E B)

2) 02 p

3) p 	.A

4) A 	.X

(*) set 4;1' 2 = #1 °C

Now if J is the identity function defined by the schema

A --• .A

Then:

c17 =°2c9

Lemma 2: 	Given MAs (*)a, (*)0 on A at level i and X 0 A then

, an MA over Au (X) such that:

1

s (x p) p,- a(p)
P E W(A)

5(P) 	Q3(P)

cv(p)
P if P E W(A) and e G(P) A

127

Construction: is defined by the schema:

1)
i

2) T.1 .
	• t 	: ei+1 • •hi

,1+1 •
• T.
	.

*1+1

Defn: Taking (*)g and (*)4) as in the Lemmas and setting

y = 5 04)

then S is called the ramification of a and governed by G.

i.e. 	a(P) if P E W(A) and e C(P) = A
Y(P) 	49(P) if P E W(A) and e C(P) 	A

Defn:
t
Using the derivation of Y and regarding P as the common (or

total), data for a,6 ande (via propagations) we define:

	

RAM (C, A, B) 	y

where P is understood.

Defn: If we now set 41.9 = J and denote the new ramification by So,

then:
CE(P) if P E W(A) and e e(P) = A

o (P) = 	
P if P E W(A) and e e(P) + A

In this case we say that yo is equivalent to a controlled

by the (void) predicate (*)47

i.e.

y (P) := if e C(P) = A then a(P)

else P

Defn: If for a given Po
E W(A) we have a sequence P1, P2, P3, 	P

n

with n E 11 such that

t This is not the same as in [23].

1Z8

e a (130) = P1 	eZ(P1) = A

e a (P1) 	 P2 1
) 	P 	e(P2) = A —

e a (p2) = P
3 	

e e(p

- 	

3) = A

e a (Pn-2) = Pn_l 	ee(Pn_i) = A

e a (Pn-1) = Pn 	e e(pn) 	A

then this may be viewed as the iteration of a controlled by the

(void) predicate c? . We now formalize such an iterative scheme:-

Given a MA (*)a and a void predicate Cover A, then

. 3a,C

the iteration of a controlled by e is an MA; we give its construction:-
Take x fl A and let B = Av[x) then349 over B such that:

tXP if P E W(A) and e C(P) = A JP (P) = 	P if P E W(A) and e a(P) 	A

let Y =40a and (*)Y is in , form the linked closure of

Y, 	where X ft F. Defines by the schema:
X

1) §R R§
	

E F)

2) Xx A

3) X •X

i+)
X

Then
	F\ (x) 0 5

Defn: From the algorithm 	Jag we define

PTL(A, C)

129

i.e. Process A (given by schema a), Test the predicate C

(evaluated by () and if True repeat processing from A,

otherwise exit.

Commentary:

RAM:- For input x; form xx

Process the leading x by f, 2 Ag 2(x) = X if 6(x) = A

(i.e. C(x) T).

This gives 41 (x) = xx

Then god1 (x) = a (x)
where a evaluates A

Alternatively C+ A so cD(x) = x

and 5os (x) .e? (x)

PTL:- Given x do a(x) giving result y,if C(y) = True then

d)(y) = xy otherwisecP(y) =

So if C(y) = True

then 	(x) contains x- and x hence by 5 we get x

- x

a (say)
X

and 5o(CY 1-■ CY 	and
-X

is repeated.

Otherwise, if C(y) = False

then 	(x) does not contain x

hence by g 	.x

and we get XP (say) on exit.

Tinally-
F\(x)

erases X giving the required result.

4.5.2 Examples:

Given j3 (5 on]IT) and 232 (.Pon N) thencR3 (addition on 1ST)

may be redefined by:-

130

J5
3(x,y)

E., RAM (x = o, y, (PTL((x := g2(x),

Y := 31(Y)),

oDI

y))

Similarly, 04 (multiplication on 1T +)

g
4'-
cx) = RAM (x = 1, y, (z 	y,

PTL((x :=A(x),

z :=03(y, z)),

(x 	1))

z))

Explicit details of the order evaluation through control constructs
are given in chapter 6.

131

CHAPTER 5

THE PROGRAM SPACE AND THE OPERATOR k

5.1 Informal Discussion

In the Carabiner Program Space (CPS) we represent all directly

addressable components of a computing system as elements of a list

which we call the STORE. These elements are referred to as Key nodes.

Another list, called ATTRIButes, holds the (abstract) properties

which may be used to characterize elements of the system.

Other components of the system must be linked in some way to

STORE, and it is via these key nodes in STORE, that they are accessed.

As a trivial example consider an Algol-60 identifier, COUNT,

which denotes an integer quantity. We wish to represent this

information by the relations:-

integer .E ATTRIB

COUNT E STORE

- where 'w' is used to denote an unassigned value.

A more complex example is given by the following (Algol-60)

procedure declaration heading:-

132

integer procedure f(x,y); 	real x;

integer y;

value y;

This may be represented thus:-

integer, procedure, real 	ATTRIB

STORE Q (OUTPUT FROM f IS (§1), f IS (§ , §2))

The meaning of 'OUTPUT FROM', 'IS' and (si) will be explained in 	1

depth in subsequent sections; however, informally:-

'OUTPUT FROM f' denotes the output from f,

'IS' is a list definition operator, and

th
denotes the i element in a list

Also it may be noted that a function is considered as a pair; the

name of the function being identified with its input (formal)

parameter list and the body, 'w' in the present example since we

only know about the procedure head, which is 'possessed' by the

name. We shall formalise these relations when we have defined

the CPS rigorously.

133

5.2 Some Mathematical Definitions

5.2.1 Lists: 	Our notation for lists is the usual one [45]

but the operations defined are tailored to meet our special re-

quirements. The definitions given below are based on set-theory

but we note that they can all be specified by Extended Markov

Algorithms as in Chapter 4 or by S as in Chapter 6.

Defn: A (double-ended) pseudo-list is a finite set, L, that is

well orderedt [72].

i.e. there is an associated order relation, which we write

<, such that if
L

x, y E L

and

x y

then

x < y or x > y (not both).
L 	L

Moreover, since L is finite, there exists an element

01
of L : 01

<x VxEL\ (01
.

L
Also, if the cardinality of L, ILI = n E 1N , then there is an

element 0
n

of L, such that

On >x V xEL\ (On) .

Selecting elements inductively by the rule

Oi : Oi <x V x E L \ (01, 02, ... ,0i)

with 1 5 i 5 n, and Oi E L

tBy the 'linearity' of a computer's store any set held within the
store has an implicit ordering.

134

or equivalently

O. : O. >x Y xEL \ (0i, Oj+1, ..., On)
3 	L

with 1 5 j 5 n and O. E L

we have:-

01 < 02
< 03

< 	< 0
n-1 <0n

.
L L L

Hence, we denote the set L by:-

(01, 02, 03, ..., On-2' On-1' On)

Defn: Since a pseudo-list, L, is a set, we use E to denote

inclusion. i.e. x E L iff L = (01, 	x, 	On)

Defn: Given a pseudo-list, L, where

L = (01'
0
2'

...
'
0
n-1'

0
n
)

we define the left-augmentation of L with an object x

by the operation AUGL such that:

AUGL (L, x) : L H (x, 01, 02, ..., 0n
).

Similarly for right-augmentation:

AUGR (L, x) : L 1-• (01, 02, ..., On, x).

Note that if M is a pseudo-list, then

AUGL (L, M) : L 	((M),01, ..., 0
n
).

Also, to augment a pseudo-list by a set of elements, the

order of which is irrelevant, we may use normal set notation,

since no ordering is implied, so:-

AUGL (L, (a, b, c}) : L r (a, b, c, 01, ..., 0n
)

i.e.

AUGL (L, {a, b, 	= AUGL (L, c)

AUGL (L, b)

AUGL (L, a)

135

but AUGL (L, (a, b, c)) : Lk ((a, b,'c), 01, ..., On)

Notice that when using AUG's, the result may not be a

pseudo-list; this leads to:-

Defn: A list is an element of the recursively defined set .C,

where:

(1:1 is a pseudo-list or

AUGL (L, x) : L k 1 or

AUGR (L, x) : L I

where L E j and x is a set)

examples: (a) (x, y, x, x, y)

x is a pseudo-list

AUGL ((x), (x,) : (x) H (x, y, x)

AUGR ((x, y, x), (x, y)) : (x, y, x) 	(x, y, x, x, y)

(b) (x, (x), y) is a pseudo-list.

Note that the elements of are not at all uniquely defined,

,e.g. (a) above.

Defn: To (re)initialize 	a list we use the definitional operator IS.

e.g. L IS(a, b, c) .

To insert an element into a list, in a specified position, we use

the following two operators:-

Defn: Given a list L , where

L IS (0 	02, ..., 0
n
)

1, 2

then INSERTL (L, 0i, p) : L 	(01, 02, 	p, 0i, ..., On)

	

provided Oi 	(Oi+1, ..., On)

and INSERTR (L, 0., p) : L 	(0 	..., 0., p 	O)
1' 	, 	n

	

provided O. 	(01'
 ... 0

i-1
)

'

136

These may be read: insert p into L to the immediate

left of O.1,

and: insert p into L to the immediate

right of Oi.

If O. 	L then

INSERTL (L, 0i, p) = AUGL (L, p)

and

INSERTR (L, 0i, p) = AUGR (L, p).

Defn: Given a list L IS (01, ..., 0n, x, pi, ..., pm) we may

duplicate a portion of L by the routines

e COPYR (L, x) = (1)1, ..., pm) if pi 	x

(1 s i s m)

e COPYL (L, x) = (01, ..., On) if Oi 	x

(1 5 i 5 n)

The list L is unchanged.

Similarly, to copy the whole list we use COPY(L).

Notice: The copy routines define an object not a mapping, and e

denotes activation of the routine (see Chapter 6).

Defn: To delete an element, x, of a list L, e.g.

L IS (01, ..., On, x, pi, ..., pm, x, q1, 	qe)

- where x 	(01, ..., On, qi, 	qe) -

we use the two operations:-

DPI', (L, x): L 	(01, ..., On, p1, ..., pm, x, q1, 	qe)

DELR (L, x): L -4 (01, ..., On, x, pi, ..., pm, q1, 	qe).

137

If x L then

DELR (L, 	: L f-■ L

and

DELL (L, x) : Lt. L

DELR s delete rightmost specified element

DELL s delete leftmost specified element.

Defn: 	To delete portions of a list I, , where

L IS 	(o 	. .., 1,

delimited by

On, 	x, 	p1, 	...,

x 	we define:

pm),

TRIMR (L, x) 	: L H 	(01, 	..., On) if 	pi 	x

(1 5 i 5 m)

TRIML (L, x) 	: L P-4 	(p1, Pm) if O. 	x

One final point with reference to inclusion in lists. By the

construction of a list, an object of that list may occur in several

different places,

e.g. (x, y, x).

Defn: We postulate a selection operator 'OF' which denotes the

right-most entry of an object in a list;

So if L IS (x, y, x, z)

then:

x OF L denotes the 3rd object in L.

Moreover, we may use the concept of the formal parameter to

yield an explicit selector function i.e.

§n
OF (01, ..., Om) = On 	

if 1 5 n s m

= w 	otherwise.

138

Defn: Given a list L IS (01, ..., 0n
)

and i: (1 s i s n)

then §. OF L yields an element of L.

Moreover, Next (L, §i) yields §i 1. 1 OF L

Prev (L, §i) yields §i _ 1 OF L.

When these operations take extreme parameters i.e.

Next (L, §n)

Prev (L, §1)

then the results are defined to be:

w : w is both an atom and an anti-atom (see §5.3.3).

5.2.2 Digraphs

As in §5.2.1 we presuppose a knowledge of elementary set theory

and familiarity with the concept of a relation such as is to be found

in most introductory texts in modern analysis (e.g. [80]).

Defn: A (finite) graph G consists of :

(a) a (finite) set of points (or nodes) P(G)

(b) a (finite) set of lines (or edges, or links) L(G)

such that:

L(G) c P(G) x P(G)

Defn: A relation p ,on a set A is a subset, A of A x A

i.e. y E p x iff 	y) E A

Defn.(i) A digraph D is a graph G,

such that (x, y) E L(G) a x y,

together with an ordering mapping

b : L(G) -+ P(G)

139

where,

if z = (x, y) E L(G)

then
b(z) E (x, y}

e.g. if G is

P1

p5

and b : (P1' P2) " p1

(P4' P2) 	P2

(P2' P3 	
p
3

(P1' P4 	1

- then the digraph D generated by G and b is

P1

p5

(In other words, the elements of L(G) are ordered and b selects

the base points of pairs in L(G).)

140

equivalently (ii) a digraph D is

(a) a (finite) set of points P

(b) an irreflexive relation p on P.

Notation: following defn.(ii) for a digraph

if D = {P, 0, then:

if x, y, E P, x L y and y E px

(i.e. xpy), then we denote this by:

x

p

or, more simply, by

x

y

Defn: Given a digraph, D 	{13, 0, then a p-link (or p-path)

joining x1
to x

n
, is a sequence in P,

xi, x2, 	xn 	: n > 1

such that x.1+1 E px.: V i : 1 5 i s n-1

Defn: A cycle in D (as above) is a p-link from x
1

to x
n

such that

x1 E pxn

Defn: An acyclic digraph is a digraph with no cycles.

Defn: Given D = {P, 0, then associated with p is its

pseudo-inverse p-lx (y:yEP andxEpy)

Defn: If D 	(13, p) and x E P, then p x is the outbundle of

x in D. The cardinality of p x is called the outdegree

of x, written 1p xl .

141

Similarly, p-lx is the inbundle of x in D and

1p-lx1 is the indegree of x.

Notn: When 1p xl = 1 we write p x = y instead of p x = (y},

and similarly when 1p-ixl = 1 we write p-ix=y.

5.2.3 	Finite Disjoint Unions

Given a collection of sets S. : i E TJ, form an isomorphic

set of cartesian products by the mapping,

d : x -4 (x, i) V x E Si V i E 26

Then, given any two sets S., Sk (j 	k) the derived sets dS. ,

dS
k

are disjoint and we write:

(3.S.UdS
k

as 	
ss

3 .LJ k .

This is called the disjoint union of S., Sk.
J k

e.g. if S1 = (a, b, c)

S
2 =

 (a, 	d}

then 	S
1
LJ S2 = (a, b, c, d)

and S1 US2 = ((a, 1), (a, 2), (b, 1),

(c, 1), (c, 2), (d, 2)).

Extending this notation in a natural way, we obtain

I 	 S. =
iEA 1 	J1 J2 	Jn

where A = (j1, 	in)

Si = S1 U S U 	USnU
iEN

142

and 	I 	j S. =
iEZZ

Lis 	... L_Is Us 	 SnLJ
-m 	-1 	1

•••

If now Si is such that a m, n E 2Z and

S. = 	i< m

and Si = ptv i> n with m s n

then we abuse the notation by regarding A as an abbreviationt

for All0 and hence write

S. for S L_Js 	Usn -1
Lis

n
iE2Z 1 	m m+1

We call i_j Si the finite disjoint Union of Si.
iE

tClearly, what we really need is an embedding not unlike the identification
of finite polynomials with formal sums, of the form c° a.x , see
e.g. [47] or rings of formal power series [73]. i=o

143

5.3 Description of the Space

5.3.1 Non-Mathematical Description

The structure of CPS is language dependent as are the trans-

formations which can take place within the structure. We believe

that CPS is capable of representing any high-level language, including

Algol-68. Since Carabiner is extensible, it may seen that we require

a metalanguage similar in power to that of the Algol-68 report [108].

However, we take the view that there must be a simpler way of

describing the facilities of such a language, e.g. along the lines

of Algol-N [55, 104, 124].

We envisage the initial mode-structure to be a simplified

representation of the diagram in [1261. In our list notation this is:-

MODE IS (mood, union of MODEn+1)

mood IS (type, stowed)

type IS (Plain, format, proc)

etc.

Ideally we should be able to start from a set of empty lists,

augmenting and linking these lists as the syntax analysis and semantic

validation of the program progresses; further extensions being made

as the (possibly recursive) declarations are executed.

The one major stumbling block of this philosophy is that all

high-level languages have an Algol-68-like prelude which needs to

be embedded within CPS. We shall consider this prelude to be part

of every program written in a particular language; hence the basic

set of empty lists together with the extensions defined by the prelude

constitute the initial CPS state for that language. A detailed

description of the full initial state for the language X is given

in chapter 7.

144

The fundamental elements of CPS are:-

(a) The lists: STORE and

ATTRIB (i.e. attributes)

and
(b) The operator k (and hence k

1
)

Defn: STORE is a list which represents both the heap (of global

entities) and the stack of local quantities.

Heap material is augmented to the left of STORE and local

material to the right. A special symbol, $, is used in

STORE to denote Carabiner (data) block entry.

Defn: ATTRIB is a list of attributes (usually types or modes) used

in a program. It contains the standard modes of the source

language and of Carabiner. ATTRIB may be augmented by mode

declarations as in Algol 68 and may also hold temporary

information required at compile time.

Notation: In the sequel we shall frequently refer to elements of

the list STORE, e.g.

x OF STORE .

Where no ambiguity arises, we denote this simply by the

name of the element i.e. x.

The initialization of STORE consists, in general, of (left)

augmentation of standard procedures, system constants and a 'nameless'

procedure pa, the body of which is undefined, but which will eventually

comprise the Carabiner 'object' program produced by the source program.

Here p generates a 'name' for the procedure a. A formal definition
is given in §5.3.2.

145

Moreover:

and if

where

OF pa = k (string of ATTRIB)

a is (al' a2' a3' a4)

a1 =
INSERTL(STORE, pa, OUTPUT FROM pa)

a2 = OUTPUT FROM pa IS (§1, 	§m)

a
3
 = LINK(string OF ATTRIB, (§ m

OF OUTPUT FROM pa))

(ak = BLOCK (T) - where T denotes the procedure (program)

body.)

where (1 5 i 5 n, 1 5 j 5 m) for some suitable n, m E 14.

[We claim that this is a reasonable way of representing a software

system based on a stored program computer. After translation of a

source program into Carabiner, the model is self-contained and only

requires e to operate on a to activate the computational process.]

a acts on a row of strings and yields a row of strings. These

strings are the I/O buffers.

Strinpj is a Carabiner mode not necessarily distinct from the language

defined modes.

Loading and unloading of buffers is outside the scope of the program

being modelled.

5.3.2 Mathematical formulation

We define CPS constructively from a void finite disjoint

union a, where
Ua. 	a. = 0 V iE 2Z

a is equivalent to STORE, with ai (i < 0) corresponding to'global

entities arid a. (0 < i) denoting local (stack) quantities, a
o
is

the component of a which represents the name of the program.

t For discussion see §7.2.

d) 0_2 =

ATTRIB IS (proc, 	int)
I

f 	IS (§1, §2)

146

In general, each non-null component of a is a k-directed graph.

This may, however, consist only of a trivial (single point and no

line) graph.

The key node of each graph, i.e. the node which represents

the entry in the list STORE, may be referred to by its own name or

(unambiguously)bythecorrespondinga,This is a further abuse of

terminology but no side effects arise.

For any 'nameless' procedure, e.g. the program a, we define

pa = k-1 a n STORE.

pa possesses a and usually is equivalent to a's input parameter list.

According to the definition of a so far given, a typical CPS

(to avoid confusion we will call the STORE 0) may be defined thus:-

a) 0 = g
ATTRIB IS (proc)

(::
b) 	00= 	pq IS ()

\I
a is (...)

ATTRIB IS (proc, real)

c) 13-1 = sin IS (§1)

a;sinIS (...)

e) 131 =

ATTRIB IS (int)

f) 132 = I
6

147

ATTRIB IS (real)

g) 0
3
 b
 1

7.1

Hence 0 is an ordered set of six disjoint k-.digraphs (the unnamed

_digraph relation is, as always, taken to be the k. In particular,

notice that

k -1 a = proc

k
-1 as.
	= proc

— sin

k
-1 a 	k

-1 a. — sin

We require that these mode indicators should be identified with

the same characterizations and hence we define an equivalence relation

overasubsetofPwhereP=UP.1
 and P. is the underlying point set

of the digraph ai. Denoting the relation by we say that

antiode mode of a. 1

and

but

whenever

and

(i) amode E ATTRIB

Equivalently, let ATTRIB be an ordered set of attributes (modes etc.)

each of which is represented by its own equivalence class;

e.g. 	ATTRIB IS (amode], [anothermode], 	•

With this characterization of ATTRIB part (i) of the definition of

should be:-

'whenever [amode] E ATTRIB' .

If we now use solid lines and arrows to denote k-links and

broken lines to indicate equivalence relations in ATTRIB, then the

CPS based on 0 as defined above may be represented by the diagram:-

proc

H
H
H

STORE IS

[proc]

H

IS (§ §2) 1' 2

real

sin IS (§1)1

a 	() sin

	 proc

(

pa is (),

V
a Is (...)

2a3S..

[real]

[int] int

real

149

.We further stipulate that, in order for k to traverse STORE if

amode E ATTRIB then

k E amode 	= 	k amode : amode E [amode).

In our example, this yields:-

k int OF ATTRIB] = 	§
2

OF f,

k (§1
 OF f),

k a)

etc.

5.3.3 The k-completiont of CPS

Defn: A CPS is k-complete iff each component of the underlying

finite disjoint union (i.e. STORE) is k-complete.

Each component of STORE is an acyclic digraph, and hence we

need to define the k-completion of such a graph but before

doing so we consider an example.

Take the digraph D with the relation k:-

D
a

the notion of completion
traditional graph theory
sequence x on D : 	E

defined here is NOT the same as in
[7, 52, 53]; however, notice that any
k x. is well defined and achieves its
—

limit after a finite number of steps; hence it is Cauchy and the
space of such sequences is complete.

150

D may be fully described by either

(i) k a = b

kb 	c, d} , k c = cf)

k d = 0

k e = c

or (ii) k-la = 0

k
1
b = a

k
1
c = { b, e }

k
1
d = b

k
1
e = 0

The nodes a and e, and c and d are peculiar in that

either their inbundles or their outbundles are empty. These

facts are easily characterised by the predicates

k x 	0

and 	k-lx = 0 .

However, the evaluation of this predicate does, in a sense,

lead us outside the domain of definition, because:

k x = 0 iff ygkx Vy in CPS.

Now since D is acyclic we are able to modify it into what we

shall call its k-completion or k-complete form. Before

defining this, we need some notation and terminology.

Defn: Given points a, b in a set, we may define one or two

k-semi-links between them. Suppose a g k
1
b and b k a,

then (a into b) is a non-invertible relation denoted by

b

fi
in the sense that the inverse relation is not defined.

151

with the effect that:

a E k
1
b

but 	b k a

Analogously:

(b outof a) is denoted by

a

and has the effect that:-

a k lb

while bEka

Now since a k-semilink is non-invertible we may define (a

into a) and (a outof a) without creating cycles.

Defn: An in-k-semiloop at a point 'a' is equivalent to the

k-semilink (a into a) and is represented by

Similarly, the out-k-semiloop at 'a' is equivalent to

(a outof a) and denoted

Given an acyclic digraph D, we form its k-completion by

the following process:-

(a) VxED: k-lx . 0

add an in-k-semiloop to D at x.

(b) VxED:kx= 0 add an out-k-semiloop to D at x.

152

Then:

k x / 0 / k-lx 	x E D.

The nodes which previously had void inbundles and/or

outbundles now have inbundles and/or outbundles which

consist of that same node and are defined to have indegree

and/or outdegree 1.

Defn: An element x of a k-complete (acyclic) digraph such that

k x = x is called an atom and an element y such that

k
1y = y is called an anti-atom.

The k-completion, Dk, of D may now be represented

Now:- k
1
c = (b, e)

,
k 2 c = (a, e)

k-3c = (a, e} 	etc.

and .
k a = b

k2a 	= (c, d)

k3a 	= (c, d) 	etc.

By introducing the natural convention thatk0x=xVxwe then

have a system which gives a valid and meaningful result for

knx when x E CPS and n E

153

Although not used in language X, we remark here that the

completion of CPS allows the definition of fixed points

(relative to k and k
1) derived from any element x (OF STORE),

thus:-

Defn: Fixed point operators K+ and K can be defined for any x

in a k-complete CPS.

st.
K+x (y:yEk

n xandky.yforasuitablen 0)

and

Kx = (y:yEk nx and k-1y = y for a suitable n Z 0)

154

CHAPTER 6

THE CARABINER LANGUAGE

The language is built on the three basic operators, S, k, and

e, which are described in the sections 6.1 to 6.3 below. These

primitive operations may be gathered together in various ways to

form procedures, functions and macros as described in §6.4 and §6.8.

Formalization of the order in which sequences of operations

are performed (and hence the central structure of Carabiner) is given

in §6.5. This is closely related to the way in which e is used to

model the OBEY command of a computing system and is defined in §6.6

The inter-relationship between k and e may be used to give a

formalization of left- and right-hand modes of evaluation as in CPL

[6, 15]. This leads to more precise characterization of S particularly

when it is used to emulate assignment commands as in §6.7.

The order in which the material is presented may be challenged,

however, after reading it will be obvious that S, k and e are so closely

inter-dependent that any order of presentation would necessitate both

forward and backward referencing between the subsections.

155

6.1 The Operator S

Related to Markov's normal Algorithms [74] is a substitution

operator E, defined on three words x, y, z by the MarkoV algorithm

thus:-
E(x, y, z) E Y 	.z

A-' A

E denotes the replacement of the leading occurrence of y in x by z;

if y x then it is undefined.

Wesselkamper [116] defined an operator S (which we shall call

S
w
) that performed a similar operation upon substructures of his

CRAMPON machine, and which was defined to be the identity if not

applicable:

S
w
x y z 	if y 'bt' x then replace it by z

otherwise do nothing

Here 'bt' means 'belongs to' in the sense of 'being a sub-

structure of the current state of the machine. Sw
was also defined

when x was not a structure but a 'value', in which case:-

Sw a b c = if a=b then c
else a

Notice that the distinction between the execution of S
w
and E

and their respective results is vague. We shall return to this in

§6.3.

The Carabiner S is developed from the 'value' definition of S
w
.

The action of S involves (i) an equality test, and possibly (ii) a

replacement.

156

By means of the operators k and e (§6.2, §6.3) we are able

to specify positions and extract values; these may then be manipulated

by S. We make the assertion that position specifiers and values

are incomparable.

Using 'v' and 'p' to denote objects of type 'value' and

'pointer' we may fully define S as follows:

Sv1v2v3

Sv
1
v
2
p
3

Svip2v3

Sy
1
p
2
p
3

Spiv2v3

Spiv2p3

yields, if v1 = v2 then v3 else v1

yields, if v1 = v2 then p3 else vl

v1

equivalent to the
identity operation

p1

Sp1p2v3 	if p1 = p2 then substitutes v3 or p3 into p1

Sp1p2p3 	otherwise it is equivalent to identity operation.

Examples of the usage of S to model conditionals and (generalised)

assignment are given in subsequent sections when other supporting

operators have been defined.

Notice, that if we denote by y the current state of the CPS and

redefine 'bt' to relate to this space t, then each Carabiner assignment:-

So/1a2a3

can be more correctly written in the form:-

S
w
ya

1
Sa

1
a
2
ce
3

tThis could be done by explicitly redefining S to act on sets and lists,
but as will be seen this is not necessary.

157

Moreover, if we have a sequence of such statements:-

Su1,1 a1,2 a1,3

Su2,1
a2,2 a2,3

•
Su a a n,1 n,2 n,3

andwedenoteby.the state of CPS before the execution, of the ith

statement then we have:-

Y1

Y2 = Sw Y1 a1,1 S a1,1 a1,2 a1,3

Y3 	Sw Y2 a2,1 S a2,1 a2,2 a2,3

Yn
= S

w Yn-1 an-1,1
Sc n-1,1 an-1,2

an-1,3

Here the final state of CPS is

y = S
w
y
n
a
n,1

Su
n,1

u
n,2

a
n,3

= S
w S

w 	Sa
w w Yn-1 an-1,1 	n-1,1 an-1,2 an-1,3

an,1 San,1 an,2 an,3
•
•
•

= S
w Sw 	

Sw y1

a1,1 Sa1,1 a1,2 a1,3

a2,1 Su2,1
a2,2 2,3

•

an,1 San,1 an,2 an,3

All this means is that each assignment changes the current state of

the space and hence the n
th assignment will act on the space as left

by the (n-1)th assignment.

.

158

Putrnathematicany,eachassigunentrepreserrtsafunctionS.1 :r r

where F is the set of all possible states of CPS. If this function
symbolises the assignment

S y. . Su. a. a.

	

w 1 1,
	1,1 1,2 1,3

then the above sequence represents the functional composition

Sn 0 Sn-1 0 ... 0 S2
0 S1 : r- r

Now, by virtue of the list format of STORE and ATTRIB (see chapter 5)

and the associated operators, specification of the subject of S via

the 'bt' relation is superfluous. Also, since

	

Rs g 	s
 (ranges domain)

we need only know the order of the operations and hence write them

as a list. i.e. S1'
S
2'

..., S
n
. We shall return to this in §6.4

6.2 The Operator k

k (or 0 was introduced into'CRAMPON as a way of relating an

identifier to the value it possessed. Each identifier was regarded

as a name-value pair and k was a projection from this pair onto its

second component.

e.g. 	k x = k (x, 3) = 3 	(say)

Formally: 	
k (<name>) = k (<name> : <value>)

= < value >

and 	k <value> = <value>

Depicting the (<name> : <value>) pair as -

159

<name>

<value>

- the extension of k to be a general graph traversing operator is

quite natural, as is the extraction of its pseudo-inverse k
1.

This was done in §5.3.

We are now able to describe fully the states of CPS which

represent more complicated constructs such as:-

{proc , 	real, 	int} g ATTRIB

(f IS 	(§1' §2)} g STORE
I 	

t

W <
()

- by k
1
k f n ATTRIB = proc OF ATTRIB

k 	(§1 OF f)

etc.

= real OF ATTRIB

Notice, however, that we may have ambiguities such as:-

STORE IS (x, y)

3 3

now kx = 3 and y = 3, but do we intend that yEk-ikx? The operator

e resolves these conflicts as will be shown in §6.7.

160

.6.3 The Operator e

Up to now we have only been concerned with describing the

execution of a validated and translated program and hence the

vital distinction between (a) a procedure, and (b) its effect,

was ignored. However, in, for example, the translation phase,

we must be able to distinguish between these notationally similar

concepts. e.g.:

Translate (f(5))

could mean (i) evaluate f at 5 and Translate the result, or

(ii) Translate the program segment representing the

function f acting on 5, or

/ (iii) the program segment representing the translation

• routine acting on the value of f at 5, or

(iv) the program segment representing the translation

routine acting on f acting on 5.

A first thought on a method of distinguishing these cases was

to extend the role of k. This would seem very desirable since there

is much similarity between the concept of a variable delivering a

value and that of a function (+ parameters) delivering a result.

However k is itself an operator and hence difficulties arise.-

To illustrate the problem, consider the expression:-

k
2a

acting on the structure:-

161

proc

i.e. 'a' is the name
of a procedure

- then k2a (= k k a) could mean:-

(i) k2a

(ii) k (k a)

= a
1

(iii) k (k a)

= k a 1

(i.e. do no activation)

(activate k acting on a)

(do a1)

etc.

The trouble here is that k is being used for two distinct (but

indistinguishable) purposes; namely as a graph-traversing operator

and as an activiation operator; moreover, the graph operation may

be the operand of the activation operator.

If we denote activation by the operator e (and use k merely

for graph traversing) then the above cases could be characterised by:-

(i)' k2a

(ii)' e k a

e (e k a)

162

Notice that in examples (ii) and (iii) the leftmost k is

replaced by e but the second k in (ii) denotes the operation to be

performed, while in (iii) the same token is activated (by e in

(iii)') to yield the operation to be performed, namely a1.

The departure from using k to relate a function to its result

seems to break with the underlying philosophy (see pages 10 and 11) that

S and k are sufficient to describe all computational processes.

If we are only attempting to define the (final) result of applying

an arbitrary Boolean function to a vector of Boolean variables, as

is the case in generating the result of executing a computer program;

then only S is necessary [116]; but when talking about the result

we (implicitly) need k to be able to say e.g.:

k < bit n> = 0 etc.

Moreover, if we regard a computing process as being defined by a

collection of functions acting on such a vector, and these functions

are combined to form a program - represented as a vector of Boolean

• values - it would seem reasonable that we require not only an

explicit activation operator but also a formalism to describe which

functions should be used at any given state. This matter is

elaborated further in §6.5 and §6.6.

The operator e may also be used to distinguish between (node)

values and position specifiers within the program space as shown in

§6.7.

Finally we note a special property of e when acting upon a

pr9cedure defined by a list of more elementary operations. In this

163

case e distributes over that list.

i.e. 	given 	x -. (x1 , ..., x
n)

and 	x E k (proc OF ATTRIB)

then 	
2-)! a (ex1 , ..., 22c2)

If the list x is derived from a 'sequence' of embedded functions ..._

(cf. S in §6.1) then this property of e is not merely convenient

but indeed necessary. Moreover this property is required to execute

'dormant' procedures as we shall see in §6.5.

6.4 Procedures and Functions

The fundamental structure associated with a procedure is its

template. Essentially this is a representation of the code sequence

required to evaluate the function, together with the mechanism for

loading its parameters and determining its order of evaluation.

Diagramatically it is represented thus:-

= OF ATTRIB

F IS (§) OF STORE

1
'"'"+(y.)

i.e. F is the name of an entity of type proc (procedure), § denotes

the formal parameter vector, and x denotes the sequence of operations

required to do the evaluation after § has been replaced by the actual

parameter vector P.

164

Any procedure used within a program has to have a template

defined either (a) by the system, i.e. in the language prelude,

or (b) by the execution of appropriate definitions within the

program.

Now consider a subroutine procedure call:

do F(v) ,

if we denote the formal parameter vector of F by § , then the

execution of the above statement goes as follows:

1. Create a copy of the procedure template of F.

2. Load §' by either substituting actual parameters, or

tt
linking § to actual parameters.

3. Activate the body of the procedure. (This acts upon

§).

4. Delete F.

If now F is a 'function' procedure, so we may have:

F(v) ,

then the operation is as before but with the extra step of creating

and loading a vector,
ttt

 OUTPUT FROM F, which is not deleted with F.

These extra steps can be included in the function definition.

(See §9.4).

The assignment to / can then be carried out as if it were:

:= OUTPUT FROM F

t
In practical cases F (i.e. its template) might be stored in a
library file.

tt
This preserves side effects but is dependent on the type of parameter
handling (name, value, reference etc.). By default we assume call
by value (but see chapter 9).

ttt
This phrase is used so as to avoid confusion with the list operator
OF (§5.2.1).

165

Using the operator k, we, may describe the situation in a more

rigorous way.

A procedure body is an entity y such that:

proc OF ATTRIB E k 1 y

i.e. y E k (proc OF ATTRIB).

Now y may be defined by either an Extended Markov Algorithm

(EMA) or by a list of moreelementaryoperations or procedures. EMA's

are described at length in chapter 4 and herein are regarded as

atomic.

If the function is defined by a list of operations then the

sequence of operations properly constituting the procedure F is:-

S A, A, STRUCT (F) t

S § OF F, § OF F, x

e k F

S STRUCT (F), STRUCT (F), A

We shall denote this by F(x)► Activation is then caused by sequential

execution of this list and is written e F(x). Note that this is

purely shorthand notation for

e S A, A, STRUCT (F)

e S § OF. F, § OF F, x

e e k F

e S STRUCT (F), STRUCT (F), A

the third term of this is then expanded to give (say):-

e ekF=ey= e(y1,...,Yn) = (e yi, 	eyn)

tSTRUCT(x) is defined in §8.1 and gives the structure within CPS which
refers only to the object x. In this context we may think of it as
the function template.

166

It is usual in mathematics for f(x) to mean the result of

applying a function f to the argument x, the actual process of

evaluating the function being taken for granted; in the 'abstract'

world of mathematical evaluations this causes no problems, however

when we are concerned with the actual mechanism of evaluation (as

we are in describing computing machines and processes), it is

sometimes necessary to talk about this process explicitly and hence

the distinction between a process and its result needs to be made.

This has been done by the operator e.

Now the classical meaning of f(x) is represented by e f(x).

This apparent clash in the use of f(x) reflects an inconsistency

of the traditional notation and makes the description of computing

processes easier and more explicit.

6.5 On Orders of Evaluation and Control Functions

6.5.1 Non-control Functions

So that we may precisely define which function should be

executed at any given point of the 'program' we specify the order

in which actual parameters are created and (non-control) functions

(defined by sequences of more elementary functions) are elaborated.

Given a 'procedure template' as in §6.4, i.e.:-

(... , proc , ...)

	 1
Y IS (Y1,..., Yn)

(... , F IS (§
1
, ..., §

m
),...)

167

If we append a pointer, PTR, to this template so that

kPTR = §
1
 OF F, we have:-

(... , proc ,

(... , F IS (§ 	' §)

	

1' 	m " PTR •

Is (Y1,-1 Yn)

Before a procedure is executed, by e, the template is copied into

a local area of STORE and the actual parameters are copied into

position; the procedure is then activated. In mathematics, these

processes are implicit and hence the order in which they are carried

out is ignored; however in computing processes it is possible for the

'evaluation' of one parameter to affect the 'evaluation' (or even

the specification) of another, hence this needs to be formalised.

The pointer, PTR, allows us to do not only this but also to dictate

the order of evaluation of sequences of functions.

Very simply, the process for dealing with the above procedure,

F, may be defined in 'pidgin Algol' as follows:-

(while k PTR E (§1 OF F,..., §111...1 OF 11

do (evaluate k PTR;

• set k PTR to next item in list);

evaluate k PTR;

set k PTR to yi OF y;

while k PTR E (yi OF y 	yn-1 OF y

do (evaluate k PTR;

set k PTR to next item in list);

evaluate k PTR)

168

Notice that in general yn will be of the form TRIMR (STORE,F)

which means erase F and its PTR, hence returning control to the

calling function and another PTR.

To facilitate description of pointer manipulation in Carabiner

we use the routines:

Advance Parameter Pointer (APP)

and Advance List Pointer (ALP)

Trivially these routines increment by one the pointer k PTR in

either the parameter list or the defining statement list. e.g.

Given

...,F IS (a,b,c,d) , PTR ,

then
APP

F IS (a,b,c,d) , PTR ,

So that none of our arguments become circular we explicitly state

that no pointer mechanism is associated with these two routines

Hence we have the Carabiner program:-

t This may seem somewhat arbitrary and indeed it is. If all
instructions (functions, procedures, operators) of the underlying
system had to be implemented by software then the system would
never work and the sequence of 'set up' functions would regress
infinitely since these 'set up' functions would need themselves
to be 'set up' etc. etc. In practical cases we bootstrap up from
hardware instructions which take zero or one parameter and are
executed by a single (atomic) action, hence they need no pointer
mechanism. Any process of 'semantic refinement' if taken to a
meaningful limit must reach such basic hardware actions.(cf.
Woodger's traversing of semantic levels [120J until he eventually
'strikes bottom'.)

169

e(TPL (e(ekPTR E (§1
 OF F,..., m-1 OF F }),

	 7 e(e k PTR APP)),

e k PTR,
tt

BREAK (PTR, k PTR), .
tt

LINK (PTR, y i OF k F) ,

TPL(e (e k PTR E (yi OF k F, 	OF k F)), e(e k PTR, ALP)),

e k PTR)

- this assumes that n,mz 1 and that the function and all its parameters

are fully evaluated. If this is not so then conditional actions have

to be embedded within the function definition, we return to this point

in §6.6.

6.5.2 Control Routines

Regardless of whether the high-level source language is block-

structured or not, we may require the resultant Carabiner program to

be 'structured' (by which we mean free of explicit 'goto' statements

- but see the appendix) and this usually requires the creation of

Carabiner blocks. To model this we use the two 'routines':

BLOCK (<block body>)

and 	EXIT (< exit depth >)

Here <block body> is the list of statements to be executed within

the BLOCK and <exit depth> is a strictly positive integer, which

specifies the number of nested blocks to be exited from, or 'T' for

terminate.

- TPL(X, Y) 	while X do Y

(defined in §6.5.2).

tt
Defined in §6.8.1.

170

Within blocks, jumps may be either (logically) forward or

backward. These two cases give rise to 'if-then-else' constructs

or (potential) loops, and are modelled by the operations RAM

(ramification).and PTL (Process, test, loop) which were formally

. defined in §4:5.1. Recall:

RAM(a, b, c) 	E if a then do b else do c

PTL(a, b) 	= do a if b then do PTL(a,b)

Although, not strictly necessary, for completeness we also give:

TPL(a, b) 	= if b then do PTL(a, b)

The templates of these routines are similar in structure to those

of non-control routines, however the associated pointer manipulations

are very different, as we shall see below.

6.5.3 Activation of Control Routines

Relating the distributivity of e to the control operations:

BLOCK, EXIT, RAM, PTL, TPL

demands special consideration because, in contrast to non-control

procedures, the parameters constitute part of the sequence of

instructions to be obeyed in executing the procedure. Because of

arguments which will be given in §6.6, these parameters cannot be

preceded by the activation operator e and hence it must be inserted

when the control routine is activated.

Strict formulation of e-manipulations relative to BLOCK-EXIT

constructs requires the specification of associated pointer handling.

The same is true of the loop routines PTL and TPL, when modelled in

a sequential environment .

While this is characteristic of current machine architecture, it
may not always be so in the future.

171 .

.Informally:-

given a = (al,...,an)

and 	
h. = (Pi , •• • ,13.)

then:-

and

(1) BLOCK (a) 	BLOCK IS (a)

e BLOCK (a) - e(a)

(ea1,...,2pen)

(2) Given BLOCK (a) as above with

al . = EXIT (1) for some (1 5 i 5 n)

then 	
ea-oskipol, (i < j 5 n) (i.e. execute as if

cy. =a) (i<jsn))
3

(3) Given RAM (p,a,h)

then e RAM (p,a,W

e e (if en -then a else 0

(4) Given PTL (a,p)

then e PTL

(z, 2(if ep then PTL (a,p)))

and
(5) Given TPL (a,p)

then eTPL (a,p)

e e (if ell then PTL (a,p))

We may achieve these effects by the following 'next instruction'

pointer manipulations:-

(1) On creation of a BLOCK, create simultaneously a pointer BPTR

(cf. BLOCK template) linked to the first element of the associated list

of instructions. Whilst this pointer exists, after execution of any

statement (kBPTR) then advance the pointer by the procedure ALP.

172

(2) On reaching EXIT(n), TRIMR STORE so as to remove n BPTR's.

This automatically leaves the rightmost pointer remaining in STORE

pointing to the next instruction to be executed. Trimming removes

any intermediate pointers associated with other control constructs

as described below.

(3) On encountering a RAM statement we must create a pointer

CPTR. If the result of evaluating the condition is True then we

set kCPTR to the first element of the 'then-clause' otherwise set

kCPTR to the first element of the 'else•clause'. If now we terminate

both clauses by an instruction to delete CPTR (and its related

STRUCTure) the required activation sequence results.

(4)/(5) The required execution sequences are achieved by

using the activation of RAM ((3) above) to model 'if-then-else'

constructs with the definitions given above.

6.5.4 The 'Next Instruction'

Although it was originally intended that there shall be no

mechanism in Carabiner for explicitly mirroring 'GOTO's; a by-product

of the formalism given for flow of control within blocks has (by

virtue of any Carabiner program being a procedure and a block) given

us the facilities to do just this.

Loosely: e k BPTR a the 'Next Instruction'

Modelling of a 'goto' statement is thus easily achieved since,

if we model labels thus:-

173

ATTRIB IS(..., label, ..., L9, ...

a is (..., w, 	x, ...)

where x is the translation of 'goto' L9, then:-

x° S k BPTR, k BPTR, e k(L9 OF ATTRIB)

Processing then continues from the point immediately after the null

statement labelled by L9.

Note: If access to these pointers is forbidden (by the designer)

and hence the Carabiner program has no explicit 'goto', then

PTL has to be included as a primitive operation just like

S, k and e.

6.6 Dormant Procedures

Any function (or procedure), f, which is not immediately

preceded by e is not (at the current stage of execution of the

system) activated and is called a dormant procedure. A dormant k

acts as a pointer (or reference) and will be discussed further

in §6.7.

Except when we are dealing with functionals [105] and in

general we are not, dormant functions would seem to be of little

use unless we can arrange for them to be 'awakened' at some later

point in the program evaluation. The operator e, described earlier,

already caters for this by virtue of the distributivity of e over

any function-defining list in the strict order dictated by k PTR.

Below we give examples of the use of dormant procedures.

174

6.6.1 Examples

The first example concerns the modes of initialization in

CPL [6, 15]. Consider the declaration statements:

let g [x] = A[i]x2

let h [x] 	B[j]x;

- the first being initialized by value, the second by reference.

In terms of e and k we have:

e k (e k i OF A) -■ 	for A[i]

k (e k j OF B) 	for B[j]
•

Obviously the above declarations represent function definitions

and to this end procedure templates must be created; in these

creation processes the parameters of e's are evaluated. Now, on

execution of h in the body of the program a specific value will

need to be extracted from the array B, hence kB will need to be

evaluated by e. We cannot write e k (e k j OF B) since this would

derive a value immediately; we need a notation which dictates that

certain specified e's should be activated at one time and others

later. One solution would be to replace each e by either el or

e
2
 (say), so that:-

e k (e k i OF A) becomes e1
- k (e

1
 k i OF A)

and
k (e k j OF B) becomes e2- k (e k j OF B)

The distinction created here needs to be interpreted. Intuitively

this is not difficult but we leave formalization until after we

have given another example.

175

Consider the following:-

L9 : x : = x + 1 ;

y : = f(Y);

if (x < 100) then goto L9;

If we wish to transform this segment of program into unoptimised

'goto-less' form (see Appendix, also [28, 29]) then, before control

modifications, the situation may be represented in the following

way
t

(..., label,..., L9,...)

(...,w, Skx,kx,e plus(e kx,e1),Sky,_syl,ef(eky),CONT(r<100,§2 ,§),w,--)

In translating this into a post-check loop we have to take the two

S-operations and form the body of the loop; extract the first para-

meter of CONT and use it for the post-check predicate; and replace

the section

by the resultant loop operation. Again we need to execute some

operations but not all. Using e1 to denote translation activation,

e2
 to denote activation associated with execution of the object

program, and informal English to describe the operations, we have:-

tCurrently irrelevant details have been ignored or simplified. CONT(x,y,z)
is used to represent a 'semi-translated' control statement which will
later give rise to a RAM or PTL.

176

e1
 (insert 0 to left of (/),

/
e1- k e1- k (52

 OF CONT)

/

e
2
 (repeat (/) until (/))

/ 	/

e1 (copy (51
OF CONT))

/

/

e1 (from (/) to (/))

/ /

/ 	/

e1 left of (CONT) -
/

/

e1 right of (e1-
k e

1-
k (5

2
 OF CONT))

delete from (e1 left of repeat () until ()) to CONT))

Here, the stroke 	is used to demonstrate the embedded structure

and has no semantic meaning.

6.6.2 Discussion

In the above cases it is possible to replace e1 and 22 by

other constructs to achieve the same effect [31]. This is done by

'move' operations which when activated do not evaluate their argument

(parameter); however, the techniques used in doing this are ad hoc.

As our purpose is strictly definitional we shall not utilize these

non-uniform methods but formally define ei.

Defn: Given an indicator modex which stipulates the mode of execution

of the system, given as a positive integer than for any f

e. f a e (if e e k modex = i then of else f)

f<

U

False

	.1■ 	

177

We explain this by two examples:

(i) 	Suppose 'modex = 3', then the evaluation of e3
 f goes:-

e
3

 f = e (if e e k modex = 3 then ef else f)

True

ef 	

The action of the e's in the definition is as follows:-

(i) 1st e activates if-then-else

(ii) 2nd e activates = (the predicate)

(iii) 3rd e activates k to yield a value

(iv) 4th e (conditionally) activates f

(ii) Under the same conditions elf

24f = e (if e e k modex = 4 then ef else f)

As it stands, the definition of e.f given above yields either

the value (result) of f or the identifier f. This we do not want -

we require either the result of f or the string e.f. Modifying

the definition would lead to a circular argument so instead we

A

178

stipulate that the elaboration of the definition of e.f is re-

executed whenever necessary, i.e. we always consider e.f and

never the result of a previous elaboration.

Defining ei allows the generation of a countable infinity of

activation operators; however, recent work on a set of test

languages [33, 34] has shown that only 2 or 3 such operators are

needed in order to specify the semantics of a wide range of commonly

occurring high-level language features.

6.7 On Position Specification and Value Selection in CPS

Taking up from the assertion at the beginning of the previous

section, that e generates a value, and k, if not immediately pre-

ceded by e is interpreted as a position specifier (pointer or

reference) within the program space, we return to our fundamental

operator S. Recall that S may be, depending on its arguments,

either a substitution operator or a selector.

As a selector:

Sxyz = e if e (x = y) then z else x.

As a substitution operator:

Sxyz m e if e (x = y) then replace x by z.

- here e(x = y) is the (boolean) result of the equality predicate

on parameters x and y, and e if ... then ... denotes the result of

the 'if' statement. Notice in particular that the result of the

substitution S is either 'w' or 'replace x by z' but not 'e replace

x by z'.

179

Now, using the above definition we cannot, in general,

distinguish between the two different usages of S. We need to

know whether the arguments of S are 'values' or 'pointers'.

Consider the assignment:

x := y

This means, substitute the value of y for the value of x. If x and

y have initial values 3 and 5 and are represented thus:

x 	y

3 5

So, kx = 3 and icy = 5, but also e k x = 3 and e k y = 5. We have a

paradox. We need to define precisely what the above assertions mean.

k x = 3 means (i) there is a position related to

x by k

i.e.

and (ii) the position specified contains a representation

of 3.

ekx = 3 means that the result of traversing the structure from x

by k is 3; and this may henceforth be manipulated as a (single) value

which no longer is related to x.

Clearly what is needed to model the effect-of the assignment

in Carabiner is

Skx, kx, eky

or more generally

S position, position, value.

180

In the case of selection operations we must have a value as

the first parameter, moreover for any comparison between the first

two parameters to be meaningful, the second should also be a value

(although when any parameter is conditional this may not be so,

as we see below). The third parameter may be of any type. This

justifies the definition of S given in §6.1.

To complete the formal distinction between pointers and values

recall that values and position specifiers are incomparable and in

the case where a specifier and a value have the same form we use e

to 'break' a value from a position. The rationale for this is:-

e x= eko x= x as a value

Recall the question posed in §6.2; given the CPS substate:-

STORE IS (x , y)

/
3 3

then k x = 3 and k y = 3 but is y E k 1 k x ?

Clearly, by the above discussion, it is not.

k
-1

k x = (x) because k x = 3 only asserts that the position k — —

from x contains the value 3, i.e.

3

hence k
-1
(this 3) = (x). Similarly for y. In fact

x 4 y 	 locations have different names

and 	k x ky 	 locations are different

but ek x = eky 	contents of the location are equal

181

.Using CPL [6] terminology a value is a right-hand value and a

position specifier is a generalised left-hand value.

As a final example, consider the bi-conditional assignment

statement:-

(a 	b, c). := 	(d --• e, f)

or, in Algolese

(if a then b else c) := (if d then e else f)

The left-hand side yields:-

eS(eS(eka, eT, kb), eF, kc)

supposing that the value of a is F(alse) then

eka' ' 	eT, 	kb

1 	1 	1
F , 	T , kb

e S(

eF, kc

	

1 	1 4

	

e S(F 	, 	F, kc)

kc

The hand side yields

eS(eS(ekd eT kf), eF kg)

Now if we write

Sx, x, y as Six , y

the whole expression can be assembled:

eSi(eS(eS(ek a, eT,kb), eF,kc),eeS(eS(ekd,eT,kf),eF,kg))

182

The operators k
1
and OF may also be used as position

specifiers. k
1 may be used together with e in the same fashion

as k; however OF always (without e!) yields a position, e being

available to break the contained value from the structure, should

this be required.

183

6.8 Macros and Set Theory.

So far we have formally defined only three basic Carabiner operations,

and described the denotations used in representing other (language - or

program-defined) procedures. Any other operations used in Carabiner,

apart from those explicitly related to a given source language, we shall

call macros. These include all the set and list operations, and some

topological functions (e.g. STRUCT etc.) which we define, together with

other operations that act upon the CPS, in §6.8.1.

In the subsequent section we examine the relationship between S and

set theoretic operations hence we show that the list operations of §5.2.1

are a natural consequence of our fundamental operations and do not

contradict our claim that these basic procedures are sufficient for the

description of computing systems.

184

6.8.1 Operation on CPS.

Apart from the operations of §5.3 which act on the constituent lists

and graphs (and sets) we may define new operations which act on the CPS,

as follows.

To create a new link between two elements (nodes) of CPS, we augment

the in/out-bundles of the relevant nodes i.e.:-

Defn:t LINK (x,y) : 	kx 	kx U {y}

k-1y,÷ k-1yu{x}

Similarly:

Defn: BREAK (x,y): kx kx {y}

-1 	-1 	, k 	k y\{xt

Using the operations LINK and BREAK we can easily define any number

of ADJustment operators which can be tailored to suit specific needs.

Here we define only one but suggest how two others can be derived and used.

Given four nodes, a, b, c, d in CPS such that b C ka

i.e.

Now define ADJ (a, b,

a

b

c, d) 	E

{

• d

BREAK

LINK

(a, b)

(c, 	d)

a

•b I d

t Trivially either operand of LINK may be extended from a singleton to a
larger set. This may be viewed as rejecting a graph operation onto an
operation on a related hypergraph L8].

185

Trivially, to reset the destination of a k link we could define -

ADJ1 (a, b, c) 	E 	ADJ (a, b, a, c)

- or to reset the source -

ADJ2 (a, b, c) 	E 	ADJ (a, c, b, c) etc.

One direct use of ADJ is in the specification of pointer (PTR) manipulation

described in §6.5. The routines used therein, namely

Advance Parameter Pointer (APP)

and

Advance List Pointer (ALP)

can be defined thus:-

Given an active function template, F (say), then

APP E ADJ(PTR, kPTR OF F, PTR, e(Next(F, kPTR OF F)))

ALP E ADJ(PTR, kPTR OF kF, PTR, e(Next(kF, kPTR OF kF)))

Notice here that the 4th parameter could actually modify the 2nd if

it was elaborated before the 2nd; hence the need for a definite order of

elaboration. Without formality this is defined to be strictly from left

to right.

Any element of CPS which is not in the lists STORE or ATTRIB must be

accessed by reference to these lists and the use of the operations k, k
-1

and OF (together with associated selector names). In general, this specifier

is not unique, and if further we allow the use of the equivalence relations

across ATTRIB then the set of items in CPS specifiable from a single element

of one of the fundamental lists can be very large and is of little interest.

However, we can extract some subsets of this collection of related items

which will make manipulation of the CPS easier. Conceptually these

constructs are simple but their formal definition is somewhat complex.

186

What we finally require are substructures of CPS such that given x

OF STORE the related substructure is the part of CPS which has to be

added to CPS in order to give the whole CPS from a state without x (or,

equivalently, the substructure to be deleted if we wish to remove x);

obviously this depends on the current state of CPS.

Defn. Given x C CPS

deriv(x) = k 1(x) Utz : z E li(x) : x ATTRIB}

U {z : z E k (yi)U k
1(yi), (1 a i 	m) if x IS (yi,...,ym):x ATTRIB]

The above set comprises all elements of CPS which are one (k) step

away from x without traversing the equivalences of ATTRIB.

Now, from x C STORE we may construct

Do (x)= deriv(x)

and Dn(x) = {z : z C deriv(y): y C Dn_1(x) }

twhere Dn(x) = Dn(x) \ STORE* for all n

Then Rel(x) = 	Dn(x) U {x}

Rel(x) is then all the nodes and lists in CPS which are related to x via

the relations k, k
1
and OF (but not =) without returning to STORE.

Now form Rel (x) :

*
Rel (x) = Rel(x) U { (y,z) : y,z E Rel(x) and z = ky}

*
i.e. Rel(x) yields all the elements of Rel(x) and their interconnecting

structure (given by k).

Obviously, given x1,x2 : xl # x2, and x1,x2 C STORE, the related sets

Rel (xl), Rel (x2) are in general not disjoint, however from Rel(xl) we

can abstract a suitable structure thus:- for x C STORE

let Nhd (x) = Rel (x) 	Rel (y)

y C STORE \ {x}

t STORE
*

= {y : y C y1 E 	E yn C STORE}

for allnC lN

187

than

STRUCT (x) = Nhd (x) 	(a ,b) : (a ,b) E Rel* (x)

and (a e Nhd (x)

or b C Nhd(x)) }

STRUCT yields 'open' sets around each element of STORE. (This fact may

be used to define a topological basis for CPS - see Chapter 8). In

practical terms, manipulation of STRUCT corresponds to the duplication

of a subgraph or deletion of an element in STORE; the mathematical

formulation does, nevertheless, look somewhat over-powering. In an

attempt to illustrate its inherent simplicity we give an example. The

example is not intended to represent a specific point in the execution

of a program and hence names etc. are meaningless except for STORE and

ATTRIB.

ATTRIE IS , a4 , a5 ,

STORE IS (

(al, a2 , a

/
sl' s2

)
v1

a6)

s4 IS (t4 ' t5) , s.5 , s6)

\/
v3 IS (y1 , 	w

IS (P2,

IS 	t2, t3), s3 ,

w

v2 IS (x1, x2)

i
w

189

deriv(ai OF ATTRIB) = 0 	i C (1,...,6)

deriv(si) = (a2 OF ATTRIB,

deriv(s2) = Chs2, a2 OF ATTRIB, k(t2 OF s2), k(x1
 OF ks

3
))

deriv(s3) = fks31

deriv(s4) = {ks4, a6 OF ATTRIB, k(t5 OF s4)}

deriv(s5) = {ks5}

deriv(s6) = {a6 OF ATTRIB, ks6}

Before proceding further, we note that the node names (other than

selections and elements of ATTRIB and STORE) v1,...,v4 and pl are added

for convenience and w denotes a void entity. The derived sets given above

are in their strict form but for ease of exposition we shall write, e.g.

deriv(s4) = (v3, a6, v4}

Using this principal where applicable, and also disregarding specifiers

for arguments of 'deriv', we have:-

deriv(ky = deriv(v1) = {sl, s2}

deriv(v2) = (s3' p1, is.t2
1

deriv(v3) = fa4, 54}

deriv(v4) = (a4, t5}

deriv(t1) = (a2}

deriv(t2) = {ka2}

deriv(t3) = {p1}

deriv(t4) = {a6}

deriv(t5) = {v4}

deriv(pl) = ft3, x1}

deriv(p2) = deriv(p3) = 0

deriv(yi) = deriv(y2) = 0

190

deriv(xl) = {p1}

deriv(x2) = {kx2}

deriv(kt2) = ft2, a2}

deriv(kx2) = {x2, a2}

deriv(ks5) = deriv(ks6) = {s5,

Then:—

hence:

and

D(s
1
) = {a

2'
 v1}

Do (s1) = Do(s1) = {a2, vi}

D
1
(s
1
) = 0 U {s1, s

2}-

= {s1' s2
}

D
1

(s
1
) = 0

Rel(si) = 	a2, v1}

Rel (s) is :— 	a2
2

Si

1

vl

Similarly:

Do (s2)= {v1, a2, h(t2), 131} = Do (s2)

D1(s2) = {si, s2, t2,a2, t3, x1}

D
1

(s
2
) = {a2, x

1
}

D
2
(s
2
) = {p

1
}c:D

o
(s
2
)

Rel(s2) = {s2, v1, a2 , kt2 , p1 , x1}

191

and
Rel (s2) is

3)

xl

Do (s3)

D
1(s3

)

D1 (s3)

• {v2} = Do
(s
3
)

• {s
3' p1, kx2}

1 hx2

• •

Similarly:

D
2
(s
3
) 	{t3, xl, x2, a2}

D
2 (s3) = {x1, x2, a2}

"1' 	D3(s3) D
3
(s

3
) . in Inc 	

= D

D
4
(s

3) = ft3, x
1, x2, a2)

D
4 (s3)

= {x
1,
 x2, a

2
} = D

2 (s3)

Rel(s3) = {s3,v2, p1, .19E2, a2)

Rel(s3) is:-

2

X2)

P1

Rel(s4) = {s4, v3, a4, a6, v4}

and

192

*
Rel (s4) is:—

and trivially:

*
Rel (s

5
) is 	s5

w

Then:

*
Rel (s6) is 	1.6

s6

I

Nhd(si) = fsil

Nhd(s2) = {s2, kt2}

193

Nhd(s3) = {s3, v2, 12[2}

Nhd(s4) = {s4, v3, v4, a4}

Nhd(s5) = {s5}

Nhd(s6) = {s6}

Now, finally, if we adopt the convention that elements not in

STRUCT but which must be specified so as to indicate a link (pair)

in STRUCT are depicted by encircled symbols then:-

STRUCT(si) is:-

STRUCT (s2)is:-

IS

STRUCT(s3) is:-

3
v2 IS (x1, 12

t Notice v
2
ENhd(s

3
) and by definition v

2
IS (x

1
, x2);)- this implies

x1 C Nhd(s3) although xl
e Rel(s2).

194

IS (p2, p3)

STRUCT(s5) is:—

STRUCT(s6) is

195

6.8.2 The S definition of set operations and predicates.

From the definition of S we can easily model the conditional

statement:

if a then a else y

by 	S(eS eT, eka,r3),, eT, y

where a is a Boolean value, expression or function and S, y are

not Boolean values; however, if we are in a situation where such Boolean

values can arise then we need to use the rather more complex form:

Se(eS eT, eka S) eT, e(S eka , eF, y) 2 	9

The validity of these forms can be checked by examination of truth-

tables for S or by a simple proof [96].

The conditional expression (or statement) given above may also be

written as a 'McCarthy conditional', i.e.

(eka 	0, eT 4- y)

or, less formally: -

(131 	(1)

where pl is a Boolean value and q, 	can be anything.

More complex conditionals can be built up by embedding constructs

of this type, e.g.

if pl then (if p2 then q2 else q)

becomes:-

(P1 	(P2 ÷ c12' T 	T 	A).

The derivation of an equivalent S-expression is trivial and is not

here developed.

196

We now consider the predicate E , i.e. does x C A for any given

x and A. - to make the discussion less formal we consider only values

and ignore the operators e and k

if A = {y}

then x E A •• x = y

i.e. if x = y then True else False

Now the predicate '=' may be defined in several ways.

If x and y are tBoolean then we may use the predicate x E y,

i.e.

S(STxy)T(STyx)

- if x is not tBoolean then we may use

S (SxyT)xF.

The last definition also works when x is False, the trouble arising

when x is True.

If we have a denotation, a , for an object not in the set of

program-defined elements, then we may use this to represent the value

True by

Sa T a, i.e. if a = T then a else a

hence the required equality predicate (for all program-defined parameters)

could be represented by:

(a = b) 	S (S (S a T a) (S b T a) T) (S a T a) F

t ' x is Boolean' may be checked by using

B(x) =ST (S T (S x V(x)T) F) F

where

V(x) = S T (S T x F) F.

197

Returning to sets:-

if A = {y}

then x C A iff x = y

and x ot A iff x # y

where (x # y) E ST (x = y) F

Trivially if A = 0

then xiA Vx

Given any non-void set A i.e.

A = fyl,..., yn}

then the list

A' ' (Y1,..., yn)

is derived from A and has an explicit order relation. Since any

representation
t
 of a set has an implicit ordering, from hereon we regard

sets as represented by a corresponding list.

So: x E (y1,..., yn)

• if x = yl then True else x C 	yn)

• (x = yi) V (x = y2) v 	v (x = yn)

• V (x = yi)
letin

Although the recursive definition is most informative, in the sense

that when the element is found the search stops; the iterative form

is more realistic in terms of implementation. Problems of indexing have

been ignored, but the extension of S to act on (finite but unbounded)

lists would easily circumvent these, i.e.

S x, y, z

as used in a computing system.

198

where x is {a, b, c} or (a, b, c) could be

S 	a 	, y, z

b

S a, Y, z

S b, y, z

S c, y, z

Notation and procedures for manipulating such lists would then have to

be developed.

Tacitly we assume that the length of a list is easily obtainable

from the representing system and hence we could embed any equality

predicate in a suitable loop e.g.

(for i := 1, 1, length do (if x = yi then (result:= True, exit)))

Obviously: A n B = { x: x e A, x

AliB=Ix:xeA or xEB }

A \ B = { x: x E A and x (t. B

- are all derivable in a similar way.

Now given a list A = (a1,..., a
n
) and ai, aje A, then

a. 	a. iff a. e (a ..., a.)
A -3 	1 1, 	 -1

so, within a length-bounded i-indexed loop we could have

if a. = at then (result:= True, exit)

if a1
. = a. then (result:= False, exit)

—

Hence list (and implicit set) order-related predicates are also definable

in terms of S .

199

6.8.3 On S abbreviations and pointer/value associations.

To complete our notes on macros we define the operators S
1
and S

2'

These are merely special cases of S used when the parameters of S

take particularly simple forms.

Notn: for S x, x, y write S1 x, y 	((re—)initialization)

for S x, x, eA write S2 x (deletion).

— here x, y may be general elements of CPS, elements of

STORE or STRUCTures derived from STORE elements

S1 A, x E AUGR(STORE, x)

At this point we specify the pointer/value associations of all

operations previously defined. In what follows these associations will

not be checked but may be used by the reader to clarify the meaning (effect)

of complex constructions. Here p and v denote objects of type pointer

and value respectively.

AUGL/R(p, v)

INSERTL/R(p, p, v)

COPYL/R(p, v) v

DELL/R(p, v)

TRIML/R(p, v)

v OF p p

kp 	p

Next(p, p) 	P

Prev(p, p) 	p

K p v

K p v

200

LINK (p , p)

BREAK (p , p)

STRUCT (p) 9- v

ADJ(p, P$ P9 P)

APP (P9 P)

ALP (P 9 13) •

201

CHAPTER 7

TRANSLATION AND A FORMAL DEFINITION OF X

202

7.1 Parsing Strategy

Compilation

We briefly describe the three phases of compilation, namely; parsing,

validation and translation. These may be thought of as disjoint activities

although in practice they are more efficiently performed concurrently.

The descriptions given in this section do not specifically relate to the

language X. Of particular note is the subject of type-checking validations.

These can be checked dynamically at execution time but in general are more

efficiently performed (if the language allows) statically during translation.

(see §9.4).

The syntax analysis may be performed by any suitable method; however,

the analysis is greatly simplified if sentences in the languages may be

parsed directly from left to right (see [17,46,56,57,591), The construction

of a suitable grammar (which may generate a 'larger' language than is

required) was discussed at length in Chapter 2. During parsing we develop

and, later, contract numerous inter-related trees. The nodes of these trees

are created by the parser and used in the validation and translation phases

(see below). In what follows, only nodes of trees of incomplete syntactic

classes (non-terminals) can be referred to by their syntactic index

(e.g. < >9.3), other quantities (if required) must be stored explicitly

by the compiler.

Validation

In the main, this involves the checking of attributes to ensure that

any context-sensitive restrictions which are permitted by the pure syntax

[16], but which do not make sense are detected and/or removed before the

current syntactic phrase is translated or executed. This may have to be

done at compilation time or in execution; in the latter case the appropriate

check must be embedded within the resultant Carabiner object program. We

may specify these validity checks by using S with logical parameters.

203

This would make the overall approach more uniform but less simple to

comprehend and hence we use set theoretic notation to facilitate readability.

E.g. given kxe k real OF ATTRIB

and 	kye kint OF ATTRIB

then y := x

is syntactically correct in X but invalid semantically, this check being

performed by the schema:-

no

In the above diagram the boxes drawn thus

represent translation steps.

204

We could at this stage give elaborate 'ad hoc' methods for the

validation of an X-program: however, a more rational and uniform technique

is desirable, in which 'modal substructures't of CPS may be used statically

or dynamically to validate polymorphic objects [68]. The specification

of such structures and their related operations lies beyond the scope

of the current chapter but is dealt with in §9.4.

Translation

The translation phase is merely a syntax-driven compiler [17,56,57]

which operates on 'standard' BNF and is defined by sequences of injections

(actions) implanted within the right-hand sides of the syntax productions.

These injections are delimited by meta-brackets thus:-

Any string delimited in this way is ignored by the parser but is, subject

to the satisfaction of validation predicates, added to the translator's

output stream.

This output stream, which may temporarily hold sets of partially

translated elements, ultimately consists of a sequence of Carabiner

operations and is placed at the node a of CPS. It is activated by the

distributive e operation which constitutes the execution phase of the

program.

t Informally this is a connected subgraph of CPS used to define a

complex mode type.

205

7.2 The Semantic Injections of Language X.

Initial Structure

The routines used in the validation of an X program and the execution

of the corresponding resultant Carabiner program need to be incorporated

(as part of the initial structure) in CPS. However, to keep this example

as simple as possible, we here discuss only the composition of CPS as

determined by the standard prelude for X.

We describe the construction of the initial CPS step by step and give

a diagramatic representation of the full initial state at the end of this

section.

Notation:
def

LOC(a) = AUGR(STORE, a)

def
HEAP (a) = AUGL(STORE, a)

def
AT(a) = AUGR(ATTRIB, a)

The Construction:

The fundamental objects in CPS are the lists ATTRIB and STORE

ATTRIB IS ()

STORE IS 	()

The explicit modes of language X are real and integer, so:

AT((real, integer))

The nameless procedure, pa, needs to be set in STORE. In this language

it takes no parameters and has a void
t
result, hence:

1 For a quantity of (implicit) type void we have two possibilities :-

(i) void C. ATTRIB

and
LINK(void OF ATTRIB, quantity)

(ii) void it' ATTRIB

and
ATTRIB n k-1 (quantity) = 0

Here we use the first characterization of the void mode but make no
general pronouncement on the problem.

206

HEAP (pa)

pa IS ()

Sikpa (al,a2,a3,a4)

where tt a1
 = INSERTL(STORE, pa, OUTPUT FROM pa)

tt a2
= OUTPUT FROM pa IS ()

tt a3 = LINK(void OF ATTRIB, OUTPUT FROM pa)

a4
= BLOCK(T)

AT((proc, void))

LINK(proc OF ATTRIB, a)

The most complex enhancement to the structure is the embedding of what

McCarthy calls the 'base functions' [75]. In this example these are the

X-operations of the diadic plus (for integers and reals) and the conversion

routine from integer to real, and the Carabiner operation PTLt (for details

of these see §6.5.2). The required extension to the CPS is brought about

by the following sequence of Carabiner statements:-

HEAP({pally paR+, par+})

PaIR IS (§1)

paiti. IS (§1, §2)

pal+ IS (§1, §2)

LINK(proc OF ATTRIB, tam,

aR+,
al+ })

[By virtue of the operator p, we implicity have

Sikpa, , a„

LINK (pa, , 	for for V a,

tt Since there is no I/O for an X-program it may sensibly be
subroutine instead of a function and hence these steps could
In general, of course, this is not true.
t This implies also that the 'dummy' operation CONTrol needs
a template:- 	Boolean Proc

regarded as a
be disregarded.

to be set up with

\\
1----\

CONT IS 	
0P §2' §3

)
I

w
To simplify discussion this template is ignored in the examples.

207

LINK(int OF ATTRIB, 01 OF pant,

§1 OF pal+,

§
2
OF pa

I+ })

LINK(real OF ATTRIB, {§1 OF pail ,

§2 OF paR+, })

HEAP (PTL)

PTL IS (§1,§2)

AT (Bool)

sih Pm, apm.

LINK(proc OF ATTRIB, {PTL, §1 OF PTL })

S
1
1(§

2
OF PTL), w

LINK(Bool OF ATTRIB, k(§2 OF PTL))

Diagramatically, the CPS now looks like:-

[real

[int

[

void a
Bool

	 real

int in t CIO PE= MEM •■••■ ,■■ .110 AIME. •■■■• ■•• MEM '110

roc roc roc
moo •■■■ =NO

A
TT

R
IB

 IS
 (

IS (§1' 2) ' PaI+ STORE IS (PTL

aPTL aIR

IS (g1,§2), pa IS ())

aI+ 	 a. IS (al'a2'a3 ,a4)

roc

Bool

209

Here solid lines denote the relation k and the broken lines

represent the equivalence relation generated by ATTRIButes over CPS.

SEBNF Definition of language X

Here we give the definition of X in semantically extended BNF.

In the definition the predicates are described in an informal Algol/set-

theoretic form and all type-checking and validation is done dynamically.

SEBNF is BNF together with DTC's (see Chapter 2) and the meta symbols:-

• • •
	

• • •

Occurence of a string enclosed by such brackets denotes immediate

activation of the string by a distributive e. Further definition is not

given but illustrative examples will be given later to clarify its meaning.

In what follows particular note should be taken of the use of e,

k, and the distinctions between:-

f, kf, f(x), ef(x)

1) <program> ::= <block>1.1

Si (a, sTRucT(BLocK)),

S1
 (BLOCK, A)

eeka

2) <block> ::= begin

AT($),

LOC($)

AT(label),

LOC(LOC($)) *

<decn>
2.1

<stmts>
2.2

end

210

block exit fi

3) <decn> ::= let 3: LOC(AT(declist)) *

<proper id list>3.1

be

<type>3.2

LOC(LOC(ek(declist OF ATTRIB))),

LOC(LINK(< >3.2 OF ATTRIB, ek(declist OF ATTRIB))),

S2(ek(declist OF ATTRIB)),

S
2
(declist OF ATTRIB)

4) 	<proper id list> ::= <id>4.1

LOC(< >4.1)'
LINK(declist OF ATTRIB, < >4.1)

< id list >4.2

5) <id list> ::=,

<proper id list>5.1 I

A

6) <type> ::= real I

int

7) <stmts> ::= <stmt >
7.1

<stmts 1>7.2

8) <stmts 1 >

<stmts>
8.1 1

A

In contrast to most other semantic injections, this is not realised by
only a few statements but by a rather large program which restructures
the whole of the preceding block by a subalgorithm of that given in §7.2.1.

211

9) <stmt> ::= <block>
9.1

Rota
<label>9.2

if (< >9.2 ft ek(label OF ATTRIB))

then (AT (< >9.2),

LINK(label OF ATTRIB, < >9.2 OF ATTRIB))

AUGR(BLOCK, e CONT (True, §2, A)),

LINK(Bool OF ATTRIB, §1 OF (CONT OF BLOCK)),

LINK(§2 OF (CONT OF BLOCK),< >9.2 OF ATTRIB) 	I

<id' 1>
9.3

LOC(LOC(ework)) *

<exp>9.4
t LOC(if (TYPE(< >9.3) = int)

Ma (if (TYPE(work) = int)

then (S1 (k < >9.3, ekwork))

else EXIT (T)

else (if (TYPE(< >9.3) = real)

then (if (TYPE(work) = int)

then ADJ(int OF ATTRIB, kwork, real
OF ATTRIB, kwork)

Viwork, Sipam(hwork))

TYPE (x) 	(k lkx)fl ATTRIB

The required dynamic type checks and transfers can be deduced from the
following table for x := y

TYPE (y)

TYPE (x)

;= int real other

int assign error error

real convert
assign

assign error

other error error error.

212

else (if (TYPE(work) = real)

then A

else EXIT (T)

S1 (k < >9.3' ekwork)

S2 work) :(I

L

<special>9.5

10) <id 1 > ::= A 	I

B

C

11) <id> 	::= A 	I

B I

C 	I

L

12) <label> ::= L

<digit).12.1

<rest of int>
12.2

13) <special> ::= <digit>13.1

<rest of int>
13.2

<unlab. stmt>
13.3 I

:= LOC(LOC(ework)) *

<exp>13.4

MC(if(TYPE(L) = int)

then(if(TYPE(work) = int)

then(Si(kL,ekwork))

else EXIT (T)

else(if(TYPE(L) = real)

fi

see production 9.

213

then(if(TYPE(work) = int)

then ADJ(int OF ATTRIB, kwork,

real OF ATTRIB, kwork)

Slctwork,Sipan(hwork))

else (if(TYPE(work) = real)

then A

else EXIT (T)

S1 (kL ekwork)

)

S
2
work)

14) <digit> ::= 0 	I 	1 	I 	2 	I 	... 	I 	9

15) <rest of int.> ::= <digit>15.1

<rest of int.>
15.2

A

16) <unlab. stmt> ::= <block>
16.1

i

go to

<label>
16.2

5-1(< >16.24ek
(label OF

A
TTRIB))

then (AT(
'‹ >16.2)'

LINK(label OF ATTRIB, < >16.2 OF ATTRIB)),

AUGR(BLOCK, e CONT(True,§2,A)),

LINK(Bool OF ATTRIB, §, OF(CONT OF BLOCK)),

LINK(§
2
 OF(CONT OF BLOCK, < >16.2 OF ATTRIB) 	I

qc?16.3

<exp>
16.4

LOC(if(TYPE
(< >16.3)

= int)

then (if(TYPE(work) = int)

1
see production 9.

214

then(S1(k < >16.3,ekwork))

else EXIT (T)

else (if(TYPE (< >16.3) =
 real)

then(if (TYPE (work) = int)

then ADJ(int OF ATTRIB, kwork,

real OF ATTRIB, kwork)

Sl(kwork,SlpaIR(kwork))

else (if(TYPE(work) = real)

then A

else EXIT (T)

)

S1 (k< >16.3,ekwork)

)

)

S2 work)

17) <exp> ::= <token>17.1

<exp follower>17.2

18) <exp follower> ::= +

1..0C(LOC(work))

<exp>
18.1

t LOC (if (TYPE (Prey (STORE ,work) = int)

then(if(TYPE(work) = int)

t This insertion may be more easily comprehended after consultation of
the following table:-

result := x + y
TYPE(y)

TYPE (x)

+ int real other

int aI+ Convert x+R
a
R+

.,,,

.
real Convert y+R

,51R+ aR..1.
;.K/ .

other

215

then S1
 (kPrev(STORE,work),

eS1 paI+
 (ekPrev(STORE,work),ekwork))

else (if(TYPE(work) = real)

then(ADJ(int OF ATTRIB,
kPrev(STORE,work),
real OF ATTRIB,
kPrev(STORE,WORK)),

S,kPrev(STORE,work),
e(S1IR (ekPrev(STORE,work))),

SikPrev(STOR E,work),
e(SipaR+,(ekPrev(STORE,work),ekwork))

else EXIT (T)

else (if (TYPE(Prev(STORE,work) = real)

then(if(TYPE(work) = real)

then S11 kPrev(STORE,work),
e(S1 paR+' (ekPrev(STORE,work), ekwork))

else if (TYPE(work) = int)

then(ADJ(int OF ATTRIB,
kwork, real OF ATTRIB, kwork),

Sikwork,e(Sipa, ,
(ekPrev(STORE,work), ekworkI)

else EXIT (T)

else EXIT (T)

S2work I A

19) <token> ::= <id> 19.1

S1
kwork, 211< >

19.1'

LINK(TYPE(< >l9.1)'
 kwork * I

.<digit>19.2<rest of int>19.3

3S1kwork, e(.< >19.1
< >

19.3
),

LINK(real OF ATTRIB, kwork) * I

<digit>19.4

<rest of int.> 19.5

<rest of number>19.6

216

20) <rest of number> ::= .

<rest of int.>
20.1

Olkwork, e(<
	

< >20.1)'

LINK(real OF ATTRIB, kwork) (1

A

Olkwork, e(<
>19.4< >19.5)'

LINK(int OF ATTRIB, kwork)

217

7.2.1 Control Translations in X.

To aid control translation we use a (purely notational) 'function'.

CONT(a, 0, y).

This function may accur as an item in STORE and corresponds loosely

to
RAM(a, a, y).

a is a predicate, so

ka E k Bool

a is a pointer such that

kO C STORE

or

ka E ATTRIB

and

k
2
(3 C STORE

(The latter case models a label, it, held in ATTRIB such that kt is the

first statement in the list 'named' by t.)

Similarly for y .

CONT differs from RAM in that 8, y are not arguments of the procedure

but merely pointers; moreover, if < is the list order relation of STORE

and

kf3 	CONTrol(a, 0, y)

then the resultant control routine may not be RAM but PTL (see appendix).

CONTrol is primarily used to emulate the underlying flow schema of

a program and its modification by a suitable algorithm into an equivalent

semi-structured program.

The simplicity of control commands in language X leadsto simple

equivalent Carabiner control operations and the translation is easy.

218

Before giving the algorithm, first informally and then in Carabiner,

we make some remarks and give some illustrations. These are not exhaustive

and may not be applicable to other source languages.

(1) 	There are no conditional control transfers in X so

CONT(a, g, y) 	a = True G k Bool

Y = A

hence:

(ii) goto Ll 	CONT(True, , 	A)

Ll e ATTRIB

Ll: statement Ll C ATTRIB

Aatemene C STORE

- where statement' is the translation of statement.

(iv) 	Since control flow changes can only be dictated by 'obeying'

labels, we must insert additional CONTrol indicators prior to

each label. To illustrate the need for this, consider the

following flow path.

a)

b)

219

The flow from 0 to t
1
in (a) needs to be catered for in the same

way as in (b); the difficulty being that, although in (a) the flow

from 13 to y seems to be forward, it does in fact imply a jump

back to a previously translated segment - namely. y .

A solution to this problem is to replace any label, tn, by:-

/ n

CONT(True„ A), to, ...

- then any manipulation through a label must involve explicit

manipulation of that label.

(v) 	Given the restriction on control transfers across block boundaries

(as in X), then temporary markers, $, may be used to delimit sublists

of STORE and ATTRIB such that if 'goto'<label> is the original text

then

(a) <label> e the required sublist of ATTRIB and is :(unique) in

that sublist, and

(b) k<label> e the corresponding sublist of STORE and is in

that sublist.

N.B. Of course k 1<label> need not be unique - or even exist.

From the previous observations we may formulate the following

translation procedure:

(i) On recognising the beginning of a block, set temporary

marks, $, in ATTRIB and STORE, and add label to ATTRIB.

(ii) While in the block process goto statements thus:-

given goto <label>, check that <label> t k(label OF ATTRIB)

if so then create label i.e. add <label> to ATTRIB

and set.k
-1

<label> to label

220

replace goto <label> by CONT(True, 52, A)

set k(5
2
 OF CONT) = <label> OF ATTRIB

(iii) While in the block process <label>s thus

given <label>, check that <label>ck(label OF ATTRIB)

if it is then stop (fail),

otherwise add <label> to ATTRIB

and set k 1<label> = label OF ATTRIB

add CONTrol to STORE,

set §3
OF CONT to A,

5
1
 OF CONT to True

link Boolean OF ATTRIB to 5
1
 OF CONT

add wt to STORE

set k<label> = w

link 5
2
OF CONT to w

(vi) 	On recognising the end of a block; insert Block() to left of $ in

STORE, add 'next' to ATTRIB and process the section e COPYR(STORE, $)

from left to right as follows.

(a) if the section is null then goto (e)

else goto (b)

(b) set knext to first element of section and goto (e)

(c) if knext is a CONTrol statement

then goto (d)

else add statement to BLOCK

if section from knext is null

then goto (e)

else set knext to following statement

goto (c)

w may here be regarded as the unity operation i.e.

Sx, x, x for any x .

221

(d) (CONTrol Statement)

if k2(§
2
 OF k(next)) E BLOCK

then we have a loop so generate PTL

goto

else if k
2
(§nL OF knext) C section

then set knext = that element of section

else error. stop.

goto (c)

(e) Add EXIT(1) to BLOCK

goto

(f) Trim from

Trim from label OF ATTRIB

From the above we may define the following Carabiner translation

sequences for X:

BLOCK ENTRY 1 E 3 AT(next)

LOC($)

AT(label)

LOC(LOC($))

Ott GENERATE 'GOTO' 	E if (< >9.2 . ek(label OF ATTRIB))

then W(.< >9.2),

LINK(label OF ATTRIB,< >9.2 OF ATTRIB))

else A,

AUGR(BLOCK, CONT (True,§2, A)),

LINK(Bool OF ATTRIB, §1 OF (CONT OF BLOCK)),

LINK(§2 OF (CONT OF BLOCK), < >9.2
OF ATTRIB)

LOG LABEL 1
 E 	if L < >12.1< >12.2 C ek (label OF ATTRIB)

then eEXIT (T)t

Error; label occurs twice in same block.

ttSet theoretic notation is used to aid comprehension; however, this does
not go against the philosophy of using S to specify operations; since in all
finite (practical) cases we may express set operations as S operations on
lists - see Chapter 6.

222

else A,

AT(L < >
12.1

< >12.2),

LINK(label OF ATTRIB, L < >12.1 < >12.2
OF ATTRIB),

LOC(CONT (True, 52, A)),

LINK(Bool OF ATTRIB, 51 OF (CONT OF BLOCK)),

LINK(52 OF (CONT OF BLOCK), L< >12.
1

< >12.2 OF ATTRIB),

LOC(w),

LINK(L < >
12.1

< >
12.2

OF ATTRIB, w)

BLOCK EXITS E jaNSERTL(STORE,$, BLOCK()),

AT(next),

if(COPYR(STORE,$) = 0)

then(AUGR(51 OF BLOCK, EXIT(1)))

else(LINK(next OF ATTRIB, 51 OF COPYR(STORE,$))),

BLOCK(PTL(True,(if(ek(next OF ATTRIB) = CONT())

then(if(ekek(52 OF ek(next
OF ATTRIB)) L BLOCK)

then(INSERTL(BLOCK,

h202 OF k(next OF ATTRIB)), PTL(True, 52)),

LINK(Bool OF ATTRIB,
51
 OF(PTL OF BLOCK)),

S
1
(5

2
OF(PTL OF BLOCK),

eCOPYL(BLOCK, k
2
(5

- 2
OF k(next OF ATTRIB)))),

DELR(BLOCK,

k2(5

- 2

 OF k(next OF ATTRIB))),

EXIT(1))

else(if(ekek(52 OF ek(next

OF ATTRIB)) c eCOPYR(STORE,$))

then LINK(next OF

ATTRIB, k
2
(52 OF ek(next OF ATTRIB)))

else EXIT(T))

223

else(AUGR(BLOCK, ek(next OF ATTRIB)),

if(eCOPYR(STORE,
k(next OF ATTRIB)) = 0)

then(AUGR(BLOCK, EXIT(1)),

EXIT(1)

else(ADJ(next OF ATTRIB,
knext OF ATTRIB, next OF ATTRIB,
eNext(STORE, knext OF ATTRIB)),

S
1
 (Prev(STORE, next OF

ATTRIB, A)))

TRIMR(STORE,$),

TRIMR(ATTRIB, label OF ATTRIB)) :(

224

7.3 A translated X program.

We give an X program, its Carabiner equivalent and descriptions

of the CPS state at various points during the execution of the object

program.

The source program is:-

begin let A, B be real;

begin let B, C be integer;

C := 1;

begin let D, B be integer;

A := 3.1;

B := 2;

Ll 	D := C + 1;

A := B + D;

goto L2;

A := B;

L2 	C := B + C;

goto Ll

end

end

end

With the knowledge that the above is a valid X program we may

parse and translate it to give

TOF (a4 OF a) IS (LOC.6),

LOC (A),

(S1kA, w),

LOC (B),

w),

LINK(real OF ATTRIB, (kA, kB)),

225

LOC($),

LOC(B),

(S1kB, w),

LOC(C),

(S1kC, w),

LINK(int OF ATTRIB, {kB,kC}),

(SikC, 1),

LOC($),

LOC(D),

(S1kD, w),

LOC(B),

w),

LINK (int OF ATTRIB, {kD,kB})

(S1kA, 3.1),

(S1—
kB,2),

(S
1
PTL, ({/}, TRUE),

/

(S1kD,(S1pa14.,(ekC, el))),

. (S
1—
kA,(S1

paIR'
 (S1 paI+ ,(ekB, ekD)))),

passes 1 and 2

(S1—
kC (S1

paI+'
 (ekB ekC)))

—

TRIMR(STORE,$),

TRIMR(STORE,$),

TRIMR(STORE,$)

226

During translation the program a (i.e. kpci) is set equal to the

preceding list of Carabiner statements, i.e.

S kpa , w, a.

Execution of the object program is then caused by the statement

ea .

a is represented by a list and the sequential execution of the constituent

statements in the list is caused by e which distributes over a since:-

proc e(k 1(a) 1) ATTRIB.)

Because of the obvious diagramatic complexities we henceforth denote

a by its name and not by the afore-mentioned list.

Three stages in the execution of the program are depicted; these

correspond to the positions A and B (at 1st and 2nd pass) in the

Carabiner object list. 	For the present we have ignored the mechanics

of calling procedures (i.e. of copying parameters and returning values)

and hence in the 'snapshots'
t given below we only give details of the

list STORE to the right of pa .

t In concept these are not unlike the snapshots of Naur [83].

roc

• • • pa

227

CPS at Stage A

rBooll

a
[void.]

a

rprocj

a
lint]

Freall 	

c4 E1
Qi

STORE IS (IS () 	,

real

Dooli

[-void]

fyrocl

rind

Freall

H
CA
H

STORE IS (

roc

int
.1■11•• WM. ■■■■• OMIM .1114 	 •■•■ •M=. •■■•• •■■ ,■• 	 11■• •■• ••■••

, pa Is () 	,

a

• • •

int

CPS at Stage B on the first Pass

229

At stage B on the second pass the structure is as on the first

pass but three node values have changed; namely,

kA = 6.0,

kC = 3,

kD = 4

230

CHAPTER 8

PROPERTIES OF THE PROGRAM SPACE (CPS)

8.1 On Derivatives, Neighbourhoods, Relatives and STRUCTs

From §6.8 we recall the following operations on CPS:-

(1) deriv(x) = k-1(x)U(z : z E k(x) : x ATTRIB)

U (z : z E k (y.)Lik
1 (y.), (1 5 i s m) if x IS (yi,...,ym) : x0ATTRIB)

(2) given x E STORE

D0 (x)= deriv(x)

and Dn
(x) = (z : z E deriv(y): y E D*n-1 (x))

1

D*n(x) = Dn(x) `.• STORE* for all n E N

CO

(3) 	Rel(x) = U D*(x)U (x)

and
	n=o

Rel*(x) = Rel(x) l) ((y,z) : y,z E Rel(x) and z = ky)

(4) Nhd(x) = Rel(x)N.0 Rel(y)

y E STORE \ (x)

(5) STRUCT(x) = Nhd(x)Li((a,b) : (a,b) E Rel*(x)

and (a E Nhd(x)

or b E Nhd(x))

tSTORE* = (y : y E y1 E...Eyn ESTORE)

for all n E

231

These may be interpreted as follows:

(1) deriv(x) is the set of all points one (k) step away from x; the

derivative of x.

(2) D
n
(x) is the n

th
derivative of x.

(3) Rel(x) is the set of all points related to x via k, k 1 and OF.

Rel*(x) is Rel(x) together with inter-connecting links.

(4) Nhd(x) is the 'neighbourhood' of all points related to only x.

(5) STRUCT(x) is the neighbourhood of x, together with all internal.

and external links.

STRUCT forms the basis of the topological discussion which follows.

8.2 A dynamic Topology for CPS

The operator STRUCT allows us to define a dynamic topology upon

STORE.

Define a topology "..10 over CPS via the basis where

B Elp 0 B= STRUCT(x) for some x

i.e. T E
o

44. T is the (possibly void) union of some elements of.B .

Given such a topology, 70, then for any x E CPS the smallest neighbourhood

N, of x is

*(a) if .3(E STORE, then N = STRUCT(x)

(b) if x E STRUCT(y) for some y E STORE, then N = STRUCT(y)

(c) otherwise N

The basis formed by this operator changes (dynamically) as the space
states change.

232

t
Trivially :70 is not even T0

 as may be seen from the structure:-

STORE IS (..., x, ...)

3

whence
3 E STRUCT(x)

so 	BU open: 3 U and x E U.

Now if we restrict our considerations to STORE, or equivalently

redefine (b) in 7 to yield n = 0, then we get 71 in which all

sets are clopen
tt
, since if T E 71 then

T .USTRUCT(i) with 3c STORE
i E5

so T is open

but T = U sTRucT(i)
i E STORE

so T is'open and hence T is closed.

Trivially, if all sets are open then 	is T
2
since

x / y, x, y E STORE

STRUCT(x) fl STRUCT(y)

8.3 On Stability of Programs

Whilst we have no more than a vague idea of the mappings (as

generated by complete programs) which act on the set, r, of all

configurations, y, of CPS we can still make some general comments

about the topology involved and (via separation considerations) limits

of sequences of such mappings.

tSee §8.3

tt
i.e. closed and open.

233

For a given program (homomorphic via translation to f) and

a given initial state y. we have:

f : 	-0F

and
f yj Yi (where f is assumed not to 'hang-up'

on Yj

Now, if f terminates 'normally' (i.e. STORE is TRIMRed to pa on

t
termination) then y

1
 is very similar to y.; the only essential

difference being in the contents of the Input/Output vectors (buffers).

Defining a suitable metric (and hence a topology) on these buffers

allows us to discuss the stability of a program about a given input

vector:

if:
	

f Yi Yi

then: 	given any e > 0, if we can find 8 > 0

such that: 	f(N(Yil 6)) 	N(yi, e)

- using analytical notationt t - then we say f is stable about y..

If 3 y . :y 	and f : Y
j 1-4 1 	1

then f diverges (hangs-up) at, Yj

t It may be justifiably argued that since modification of the contents
of the Input buffers is the only way of effecting the outcome of the
program, and that examining the contents of the output buffers is
the only way of establishing the outcome of the action caused by the
program; it makes sense to consider the following even when the pro-
gram terminates in another fashion (and also maybe when it does not
terminate).

Note that introducing a trace creates a new output buffer which must
then be treated in the same manner as other buffers.

tti.e. N(x, y) 	(z : d(x, z) < y}

for the metric d.

234

If 	Y3 . : f : y.)-4 y1
and 3e > 0 for which there is no 8 > 0:

Y 6)) c N(yi, e)

thenYj . is a critical point of f; equivalently f is unstable about y..

Given that f is divergent at y and is defined by a list:

f IS (fl, 	f
n
)

i.e. 	f = f
n
o fn-1

o 	o f1

- then it may be fruitful to examine the (internal) effect of the

individual f.'s; in doing this we could consider the topology of a

general state of the CPS. [Here we consider changes in buffer values

to be external effects; change3in the STORE being termed internal

effects.] This was done in §8.2.

Given any convergent f. : Y. 	y4 	then topologies on yj and
Ji 	Ji+1

y. 	induce the product topology on y
j 	i+1
xy

i 	
and hence (via

Ji+1

subset topology) on fi. A full definition of this topology and dis-

cussion of its separation is given below, but first we recall the

separation axioms:-

T
o

Given a space X,: x, y E X and x / y.

If 3U X : U open, x E U, y fE/ U

then X is T0.

T1 Given a space X: x, y E X and x y.

If -3 U, V c X :,U, V open

x E U, y U

x g V, y E V

Then X is T1.

equivalently: given x E X if (x) is closed then X is T1.

235

T
2

(Hausdorf) Given a space X : x, y E X and x / Y.

If 3U, V X : U, V open, x E U, y E V and u v =0

then X is T
2
.

Regular: Given a space X: x E X and A C X, A closed, x ft A.

If 3 U, V c X: U, V open: x E U, A C V and U V= 0

then X is Regular.

T
3

X is T
3

if it is T1
and Regular.

Normal: 	Given a space X : A, B C X, X, B

A A B= 0; if 3 U, V C X: U, V open

ACU, BcVand UnV=0

then X is Normal.

T X is T
4
if it is T1 and Normal.

With reference to the metric on the I/O buffers, we may formulate

the notion of functional approximation:

given f : F r

and any 	g :r. r

then

(i) g approximates f with accuracy a if for any

: f(y) converges

then 	g(Y) E N (f(y), 8) 	(e, > 0)

Trivially, if g approximates f with accuracy & then f approximates g

with the same degree of accuracy.

(ii) g partially approximates f with accuracy

& if for any y : f(y) and g(y) both converge

then 	g(y) E N(f(y), a) 	(a > 0)

236

(iii) Given r1 c r such that g (partially)

approximates f for all y E r1 then g (partially)

approximates f over F.

The definition of a suitable metric needs detailed consideration

but it would seem sensible that it should be either linear i.e.

d(x, 2) = E Ixi .41

and 	N(x, g) 	(y : Ixi - 	< 8}

or weighted to give bias to initial data, i.e.

d(x, 2) = E ui Ixi - 2.11

and 	N(x, g) . (2. : Ixi - 	< ai e)

where ai is a decreasing positive-valued function of i.

However, regardless of the metric, since metric spaces are T4 and

T
4

T
3

T
2

T1 T0
, we will be able to use the strongest possible

theorems on convergence.

The relationships between critical points, canonical forms [96,

97] and properties of programs [39-41] demand further examination.

8.4 On Modal Substructures and Coercions

Via modal chains, we define the modal substructure of x E CPS.

This is then demonstrated by an example.

Defn: A modal chain of x E CPS is a digraph D(z, z) where

= y1, •--, Yn and z = ((yi, yi+1) : (1 s i < n))

237

such that:- (a) x = yi

(b) yi E ATTRIB iff i = n

(c) y. = y. iff i= j

(d) yi+1 E k yiU k 1 yi 	(1 s i< n)

Defn: The Modal Substructure, MS, of x E CPS is

MS(x) = U yi
	where yi is a modal chain of x and the

natural equivalences induced by the CPS

carry over.

Then: 	MS(a.) 	&. 	(i = 1,2,3)

ot
1 	 ot

3

238

MS(p4) s 0

MS(y1) s 12

.Y1

MS(y2) s

a

MS(S1)

Ci

a 	a
3

ms(C2) s MS(C3
) s 	C2 	C3

ms(C
4
) E 0

Now, Si ky, ekx is only (directly) executable if

MS(ky) s MS(kx)

Coercions of the dereferencing kind may be modelled by allowing the

removal of nodes from within an MS in such a way that the resulting

digraph is still a valid MS fort-the original node considered. This

is expounded further in §9.4

Coercions which explicitly change node values are, of course, language

dependent and must be dealt with individually (see §9.5).

239

CHAPTER 9

ON DESCRIBING OTHER PROGRAMMING
LANGUAGE FEATURES

Here we give a brief discussion of how the language and the

space of the Carabiner system may be used to specify characteristics

of high-level programming languages that do not appear within our

example language, X. The list of features examined is by no means

exhaustive but is quite extensive, having been extracted from

Ledgards Mini-Languages [68]. A more detailed treatment of a set

of PLECS (Programming Languages to Exhibit Carabiner), based on the

mini-languages is given in two technical reports [33, 34]. The

contents of this chapter constitute a precis of these reports.

9.1 Assignment and I/O

By direct application of the three fundamental operators, S, k

and e, we can model any kind of generalized assignment by a statement

of the form:-

5

Here, a is a left-hand value and p a right-hand value [6, 15]. Details

of this construction have already been given in chapter 6 and will not

be repeated here.

240

Now consider the program element of CPS:-

ATTRIB IS (..., proc, ...)

STORE IS (..., OUTPUT FROM aIS(§), pa Is (§)

Restricting our examination to the modelling of a high-level source

language and ignoring matters relating to job organization, I/O

spooling etc., then trivially the action of the program (i.e.

eekpa ea), in general, will cause the items in the list a to

be processed by e and information resulting from this computation

will be placed in the list OUTPUT FROM a. The actual form of these

lists depends on conventions for I/O control (i.e. line feed, space,

page throw etc.). An immediate consequence of our representation

of procedures, and hence of any complete program, is that I/O is

essentially reduced to assignments to and from buffers. Input may

be specified thus:-

input to X : 	e COPY (§i of a)

or 	
S lc): e TIMIL(§ OF a, v)

- where V denotes space (say).

output from 	ATJGR(.§. OF OUTPUT FROM a, e kX)

Trivially these I/O commands may be embedded within conditional

constructs.

241

9.2 Transfer of Control and Block Structure

As is shown in the appendix, any program may be re-structured

so that the only control constructs required are:

RAM (a, b, c) 	i.e. if...then...else

t

PTL (a, b)
	

i.e. do...while...

BLOCK (a)

EXIT (a)

If, however, we wish to leave the program structure as dictated by

the source language, we can use the procedure template and adjust

its 'next instruction' pointer kBPTR (see chapter 6) to change:

BLOCK IS (a1, ..., a 	
...,

n
), BPTR

to

BLOCK IS (a 	a 	N
n
) BPTR 1, 	" 	,

The related problem of scope sensitive data (e.g. locally (re-)

declared identifiers in Algol-60) is easily solved by using a marker,

say, which is placed before any local quantities and can later be

used to TRIM off these quantities.

e.g. 	BEGIN 	LOOS)

END 	TRIMR (STORE,)

This is exactly the same method as used in language X as described in

chapters 3 and 7.

tThis is always Pbssible but may not be desirable;
e.g.

goto (read) 	
- where read, inputs an integer (label)

242

9.3 Functions and Parameters

Recall that a procedure (function) template is of the form:

ATTRIB IS (..., proc, ...)

STORE IS (..., OUTPUT FROM f IS (§), f IS (s), ...)

- where k
1(§. OF OUTPUT FROM f) g ATTRIB

and
k

1
k (§5. OF f) g ATTRIB

In defining a procedure we must define all the necessary (k) links

explicitly; then, when the procedure is 'called' we may use the

topological operator STRUCT (see chapters 6 and 8) to copy the whole

structure, related as in the definition, into local work space,

by e.g.
LOC (STRUCT(f)) 	(t)

The process of loading, executing and then deleting a function is

elaborated in §6.4 and yields a Carabiner sequence of the form:-

S A, A, STRUCT(f)

S § OF f, § OF f, x

ek f

S STRUCT (f), STRUCT (f), A

Loosely this represents: LOAD f

LOAD parameters (x)

EXEC f

DELETE f

Properly, we need two LOC's, the other being of the form
LOC(STRUCT(OUTPUT FROM f)), however here this serves only to cloud
the main issues.

243

Implicitly associated with each template is a pointer PTR which

well defines the order in which parameters are loaded and also

the order of evaluation (e) of the sequence, kf, of statements

which constitute the body of f.

The only problem that occurs in relation to parameters is

that of emulating differing modes of calling the parameters - or

equivalently (re)initializing identifiers within the procedure body.

(A fuller discussion of such modes is given in CPL and related

documentation [6, 33, 68, 86]).

As an extreme example consider the 3-ary function f, with

the three parameters called by value, reference, and name (expression)

respectively.

e . g. 	'f(a, b, c), value a,

ref b,

Now let modes of execution (modex) be as follows:

compilation 1

(function) definition 	2

(program) execution
	3

(function) execution 	4

The stages involved in processing a program of the form:

define f

•

call f

244

are thus:- modex 1

(compile)

ell LOC (22
...)

•
•
•

modex 2

(process definitions)

e2 LOC(f(e3k§1, k§2,4.1(§3)

(also e2 LOC(24 set modex = 4

24 set modex . 3))

modex 3
•
•
•

call f (2311.§1, 	e4k§3)

modex 4- 4

including eSk§ e k§ 4 1- 2' 4- 3 e.g.
(originally b 	c)

•
•

modex 3

exit from f

•

This would cause trouble if f were recursive or occurred in an

embedded construct, i.e.

y 	f(a, f(b, c, d), e, g)

Other methods utilise a 'saving' function which, like all functions,

creates a new copy of itself and hence has to re-evaluate its

parameter(s). This re-evaluation is just what is needed to model

245

call by name (or expression). This approach has been adopted to

define PLEC5 [33].

9.4 Type Checking

Using strictly disjoint types (or modes), pre-run type checking

is not possible in all languages (cf. [68]). However, if we define

suitable mode-hierarchies, we are always able to perform some degree

of checking by an extension of traditional dictionary techniques.

Essentially our method is a development of the de-referencing

of Algol-68 [108] and the projections used in Algol N [55, 104, 124].

Here is not the place to enter into a detailed description of the

method since the manipulations involved must be defined in terms of

the elements and constructs of the language under consideration -

the types involved in the language X are far too simple to justify

the use of such a general technique and the describing of a suitable

language would be too time and space-consuming. We enumerate the

main features of the system:-

We need to create a (scope sensitive) dictionary of all

variables, function templates (as in §6.4) and attributes;

moreover these entries should be linked to all static (i.e.

permanent) attributes. This is achieved by execution of all

declarative statements within the program; and in languages

such as FORTRAN where subprograms may physically follow CALL's

to them, this may necessitate two passes of the checker.

II In order to be able to link items to attributes of varying

degree we need to put some hierarchical structure on sets of

246

related attributes. For entities of fixed type there is no

problem; we link the entity to that type. However, if, for

example, we had a value which was always numeric but could

alternate between being real and int(eger), then the best we

could do at compile time would be to regard the value as

linked to both real and int, and hence (semi-) type check by

examining a subgraph.

i.e. 	(..., real, ..., int, ...)

or
(..., real, 	rant ..., int, ...)

- the relationship between these constructs is given in III

below.

Further examples can be drawn from mathematics:-

Using the common set denotations:-

247

- from Algol 68 [108]:-

t
I
4,t -

INTEGRAL

INTREAL 	Boolean

PLAIN

I

REAL

Character

t 1 /
t 1 /
-4 It

PROCEDURE ref to MODE format

"NNNN'NNN'A I TYPE

MOOD

i

STOWED

Union of MODEI14.1

MODE

- from a general 'type-free' language [68]

int 	real 	proc 	Boolean

NNN„NA
general

ODO etc.

Note: Given an element, x, of CPS such that k
1x c ATTRIB

and say -

k-1x = (p, q)

- then the attributes of x are p and q.

248

Clearly this is violated in the present construction since

we may have elements which (seem to) have properties that

are inverses of each other, e.g.

JR and C%%JR .

However, since we are only considering declarations and no

values are present we can explain this apparent contradiction

by saying that the properties of a location are that it can

hold a value of (say) type IR or EN.P. These properties are

not necessarily disjoint and so no conflict arises in the model;

of course at run-time a value can only have non-conflicting

attributes although these may be changed. This is exactly What

is required when examining a 'Union of mode in Algol 68 [108]

(see §9.5).

III In order to test for the possibility of compatibility of

attributes at run-time we define two operations; the first of

these is a contraction.

Consider a connected structure, A0, within CPS (e.g. Rel(x)

for some x in STORE), then if 3 y E AO such that y is not

ari atom or an anti-atom then we may contract AO about y.

To do this we remove y and link all elements of k
-1

y to all

elements of ky (these exist by the assumptions made about y).

If the resultant structure is Al then we denote the relation

between A
O

and Al
by

Al 4 AO

Al
may then be contracted, and so on. Extending notation and

terminology we may define the operation of contraction to include

the removal of more than one node, i.e.

249

A. Q A. and A. 4 Al

Ai G Al .

Since any state of CPS is finite and hence so is any sub-

structure of a state, then for any A0 we must reach a

contraction which contains only atoms and anti-atoms.

Although the contraction chain (i.e. the chain of contractions)

may not be unique, the resultant (non-contractible) structure

is unique and called the Unique Ultimate Contraction (UUC).

e.g. 	if A is

A1 is

and A
2
is

Then A2 Q Al Q A

and UUG (A) is A
2
.

250

Clearly, if JTi is the set of nodes in A ,and

A A = (a E A : a is not an atom or an anti-atom)

then the set of contractions of A is isomorphic to. the power

set of A and has the same related (finite) lattice. Using

the natural isomorphism between A and A then

A ,̂

and
UUC (A) — 0 .

IV If we now allow the possibility of throwing away part of a

structure (in order to test for possible compatibility of mode

options.which interact but are not strictly contained one within

another) by removing any subset of nodes (and associated k-links)

such that the resultant structure is connected - i.e. reduce a

structure to a connected subgraph - and still has all the original

atoms and at least one anti-atom (denote this by c".), then we

define a subcontraction B of A, written B 4 A,

if 3C:

B C C Q A

In some cases compatability may only be required to the extent

that A, B are suitably compatible iff

C 4 A and C4B

e.g. 	int 	real int 	real

\ I 	 y

In other instances it may be required that A 41 B

e.g. 	int 	real 	int

\ x 	 1

251

.N.B. The relation 4 is elsewhere termed 'modal substructuring' .

This extended dictionary technique demands that all pro-

cedures be defined with templates that have explicit output

vectors and that the mode void be implicitly modelled.

In general, manipulation of the modal substructures only allows

us to test for possible compatibility between constructs; any actual

run time structures must match exactly even if this requires coercion

to the structures in order to achieve a match. Of course, allowable

coercions must be specified by the semantics of the language involved.

9.5 Structured Data

To illustrate the way in which (user defined) data structures

can be represented we examine two commonly occurring constructs,

namely a tree (of integers) and a list (again, of integers).

Before giving these constructions, we note that the inter-

pretation of (Carabiner) lists within ATTRIB need not necessarily

be the same as that of lists in STORE. Here we use such a list to

represent unions of attributes, i.e.

x IS(x
1 	

x
n
) c ATTRIB
"

1

y

. 	y is of type kJ xi
i

tFormally defined in §8.4.

252

If, however, elements of such a list are (k)-linked to other

ATTRIBiates, then the elements explicitly name components of the

composite objects of type x. e.g. given the situation above,

then y has n components named xl,

•

x
n
. The following examples

help clarify.

define type LIST IS UNIT OR PAIR,

UNIT IS (ATOM IS INT)

PAIR IS (HEAD IS INT, TAIL IS LIST).

In the CPS this is:-

ATTRIB IS(.., INT, LIST IS (UNIT IS (ATOM),PAIRIS(HEAD,TAIL)),-..

As a direct result of the construction it is obvious that no object

manipulated by a program is a LIST - it may be either a UNIT or a

PAIR; moreover where a type, such as LIST, is a union of other types,

there must be provision for deciding which (sub)type is applicable.

In most cases these types will have different structure and this can

be used.

e.g. 	let A,B be LIST

A := (37)

B := (17,(6))

A is a UNIT

B is a PAIR

and TAIL OF B is a UNIT

253

.Similarly,

define type TREE IS LEAF OR NODE

LEAF IS (ATOM IS INT)

NODE IS (NUMBER IS INT,

LEtT IS TREE,

RIGHT IS TREE)

is modelled thus:-

..., INT, TREE IS (LEAF IS(ATOM), NODE IS (NUMBER, LEFT,

then

let A be TREE

A := (1, (2,(5),(4)), (5, (6,(7),(8)), (9)))

RIGHT OF A is a NODE

RIGHT OF (RIGHT OF A) is a LEAF, value 9

RIGHT OF (LEra' OF A) is a LEAF, value 4

etc.

9.6 String Manipulation

Because Carabiner uses the (character) representations of the

high-level source languages, and all the basic operations are defined

(by Markov algorithms) in terms of their effects upon the string

representations of'the given parameters; string manipulation is

implicitly inherent within the system.

Moreover, since string manipulation transformations are easily

translated into MAs, any such transformation can be identified with

254

'an equivalent base function. Extension of the set of base

functions may seem a very naive way of dealing with string mani-

pulations, however since (a) the system is designed primarily as a

means of, defining high-level languages and (b) any non-trivial

MA can be decomposed into explicit loops, matching predicates and,

substitutions, we feel justified in adopting this approach.

255

CHAPTER 10

CLOSING REMARKS

Over the last ten years, particularly in the latter half of

that period, there have been numerous attempts to devise practical

means by which semantics could be defined. Below, we note the work

of prominent researchers and groups of researchers in this field.

This is followed by a summary of comparisons and contrasts between

these systems and Carabiner. We conclude with a resume of work

directly related to Carabiner and a discussion of how it may be

developed further.

Probably the best known experiment in defining high-level languages

is the Vienna Definition Language, (VDL) [54, 66, 69, 70, 112]

developed by IBM's Vienna Laboratory to specify PL/I and later used

to provide a formal definition of Algol-60. This system incorporates

a very general abstract syntax, developed from BNF, and uses tree

structures to specify data, programs and the environments in which

programs are executed. The Common Base Language [36] designed by the

Computational Structures Group of Project MAC at MIT under the direction

of Jack Dennis utilises VDL as the basis for an UNCOL [79, 98, 99].

Several methodologies have used Church's A-calculus [18] as a

starting point. Of these the work of Landin [61-63], Rohm [13, 14] and

early work by Strachey [101] demand mention. The formal equivalence of

the substitution properties of A and S was also investigated by Nixon

and Wesselkamper in the initial stages of the Crampon project [86].

256

Caller and Perlis [481 and deBakker [5] base their systems on

Markov Algorithms [74] and hence are in some sense definitive; moreover

deBakker uses a meta-language (after van Wijngaarden [106, 107]) and a

similar notation, '3 	t; to that of Carabiner.

The most recent, and probably the most mathematically formidable,

system has been evolved by the Programming Research Group at Oxford

(Strachey, Scott etc. [81, 90-92, 102, 103]). This system depends

on a considerable amount of mathematical idealisation.

Other, less easily classifiable, work includes McCarthy's use of

state vectors [76] to define semantic changes; Feldman's semantic

meta-language FSL [44]; and Wirth's use of semantic phrases to define

the language EULER [117].

In offering Carabiner as an alternative to the above mentioned

systems, we put forward the following considerations:-

that although Carabiner demands a specific syntax
t
(VDL does not),

an explicit order of evaluation (VDL allows some choice) and full

definition of all functions and operations, this is no loss since

syntax rarely, if ever, needs the generality given by VDL and any

choice in orders of evaluation are more properly admitted to the

Model explicitly (via axioms) instead of by default;

that in permitting the interlinkage of any components in CPS,

Carabiner is essentially more flexible than the M.I.T. System;

The current restriction on the extensibility of syntax is not intrinsic.
It is included only to simplify the translator which may later be replaced
by a more general recogniser (cf the work of Vettes [109]).

257

that following the discussion of §6.3 any A-calculus system is

incapable of giving information about the internal dynamics of

a calculation; moreover we need to reflect the distinction between

identifier/value and place-holder (as in mathematics) - see §6.2 ;

that while the Markov-based systems, and McCarthy's, can be

definitive about string-to-string transformations the model of

the program space used in Carabiner allows more meaningful

interpretations of intermediate states of a computation. Also

the use of S to effect changes in the model makes the overall

system more uniform;

that despite its mathematical inelegance Carabiner is no less

precise than the Scott-Strachey semantics and is easier to

comprehend (c.f [81]);

that Carabiner's (semantically ideal) intermediate language -

without implementation specifications - facilitates easy cross-

translation between computing systems using common character sets.

This is in contrast to FSL in which it is believed the semantics

and pragmatics are intermixed to such an extent as to make such

translations almost impossible, and;

that Wirth's system lacks the well-defined pragmatic level which

is present in Carabiner.

Summarising: in order to use Carabiner to define a high-level

language programming system, one must first know the representation

to be used and have a suitable grammar which is based on the given

representation. Into this grammar we inject semantic phrases which

258

.act on our abstract program space. At this stage, elementary operations

of the language are given in terms of the source level representation

and are specified by Extended Markov Algorithms. This gives a machine

(i.e. implementation) independent description of the high-level

language in terms of an intermediate language having only a few basic

functions and acting on a realistic model that is capable of representing

intermediate states of a computation. From this description, the

implementor can determine the language designers intended semantics

which may then be interpreted as closely as is desired. Replacing the

original EMAs by ones representing the operations as implemented then

gives a definitive specification of the system implementation.

Also, the system may be 'watered down' to a form suitable for use

as a reference manual related to a specific implementation, or provide

for the direct execution interpretation of prototype languages [113].

We have attempted no formal verification of the sufficiency of

Carabiner but as evidence of the versatility of the system we cite

its use to define a set of ten high-level languages. These languages,

which we call PLECs (Programming Languages to Exhibit the use of

Carabiner) were specially designed to act as test cases for methods

of language description and are closely modelled on Ledgard's mini-

languages [68]. Documentation of these definitions is given elsewhere

[33, 34] and was abstracted in chapter 9.

Carabiner builds closely on the concepts used in the Crampon

project [86, 87, 114-116]. Although the current model is less complex

than that of Crampon, the basic elements are similar; however, Carabiner

is more pragmatic, insisting that all actions within the execution of

a program are explicitly defined.

259

Building on the work presented here and that currently being

undertaken by Snidvongs [93-97] on "S-algebras" it would seem timely

to investigate the use of S-operations to express optimization formulae,

and hence to attempt to develop a uniform theory of optimization to

extend and replace the presently used set of ad-hoc tricks and graph-

theoretic transformations.

The links between the three above mentioned projects are, at

present, notional rather than concrete. The problems of unifying

them could be investigated in an attempt to define a structured (layered)

translation scheme downwards from high-level source languages. Such

implementation investigations could possibly also cast light on finding

an alternative representation for function templates such as discussed

in chapters 6 and 9.

260

References

1. Aho, A.V. and Johnson, S.C. "LR Parsing", Computing Surveys
6(2), pp. 99-124 (1974).

2. Allen, F.E. and Cocke, J. "A Catalogue of Optimising
Transformations", in Design and Optimization of Compilers,.
Ed. Randell Rustin, pp. 1-30, Prentice-Hall 1972).

3. Ashcroft, E. and Manna, Z. "The Translation of 'goto' programs
into 'while' programs". Computer Science Department
Report CS 188, Stanford University (1971).

4. Ashcroft, E. and Manna, Z. "The Translation of 'goto' programs
into 'while' programs". Proc. IFIP Congress 71, Ljubljana
(1971).

5. de Bakker, J.W. Formal Definition of Programming Languages,
Math. Cent. Tracts 16, Mathematisch Centrum, Amsterdam (1967).

6. Barron, D.W. et al. 'The Main Features of CPL', Computer Journal
6(2), pp. 134-143 (1963).

7. Berge, C. Theory of Graphs (English translation), Methuen,
London (1962).

8. Berge, C. Graphs and Hypergraphs (English translation), North-
Holland Publishing, London (1973).

9. Bochmann, G.V. "Multiple Exits from a Loop without the GOTO",
Comm. Assoc. Comp. Mach. 17(7), pp. 443-444 (1973).

10. Bochmann, G.V. Semantics Evaluated from Left to Right, Publication
No. 135, Dept. Informatique, Universite de Montreal, Canada
(1973).

11. Bochmann, G.V. Semantic Equivalence of Syntactically Related
Attribute Grammars, Publication No. 148, Dept. Informatique,
University de Montreal, Canada (1973).

12. B8hm, C. and Jacopini, G. "Flow Diagrams, Turing Machines and
Languages with only two formulation rules", Comm.Assoc.
Comp.Mach. 9(5), pp. 366-371 (1966).

13. B8hm, C. The CUCH as a Formal and Descri tion Lan a e, ref.
[100], pp. 179-197 (1966).

14. B8hm, C. "Introduction to CUCH", in Automata Theory (Ed. E.R.
Caianiello), Academic Press, New York, (1966).

15. Buxton, J.N. et al. CPL Working Papers, Technical Report by the
University of London Institute of Computer Science and the
Mathematical Laboratory, University of Cambridge (1966).

16. Carnap, R. Introduction to Symbolic Logic and its Applications,
Dover Publications, New York (1958), p. 79.

261

17. Cheatham, T.E. and Satley, K. "Syntax Directed Compiling",
Proc. AFIPS (SJCC), 25, pp. 31-57, Washington (1964).

18. Church, A. The Calculi of Lambda-conversion, Ann.Math.
Stud. No. 6, Princeton University (1941).

19. Clint, M. and Hoare, C.A.R. "Program Proving: jumps and functions",
Acta Informatica, 1, pp. 214-224 (1972).

20. Cocke, J. and Schwartz, J.T. Programming Languages and their
Compilers, Courant Institute of Mathematical Sciences,
New York (1970).

21. Cocke, J. "Global Common Subexpression Elimination", SIGPLAN
Notices, 5(7), pp. 20-24 (1970).

22. Cooke, D.J. CARABINER Paper. I, "On Substitution Operators",
University of London Institute of Computer Science, 1st Edn.
Internal document ICSI 437 (1972), 2nd Edn. Internal document
ICSI 526 (1974).

23. Cooke, D.J. CARABINER Paper II, "On Extended Markov Algorithms",
University of London Institute of Computer Science, 1st Edn.
Internal document, ICSI 445 (1972), 2nd Edn. Internal document
ICSI 528 (1974).

24. Cooke, D.J. CARABINER Paper III, "On Control Routines", University
of London Institute of Computer Science, Internal document
ICSI 456 (1972).

25. Cooke, D.J. CARABINER Paper IV, "On Syntax Modifications",
University of London Institute of Computer Science, 1st Edn.
Internal document ICSI 482 (1973), 2nd Edn. Internal document
ICSI 527 (1974).

26. Cooke, D.J. CARABINER Paper V, "The Carabiner Program Space",
University of London Institute of Computer Science, Internal
document ICSI 525 (1974).

27. Cooke, D.J. CARABINER Paper VI, "On the Construction of BNF
Syntax", University of London Institute of Computer Science,
Internal document ICSI 499 (1973).

28. Cooke, D.J. CARABINER Paper VII, "On Carabiner Control
Translations - I", University of London Institute of Computer
Science, Internal document ICSI 512 (1973).

29. Cooke, D.J. CARABINER Paper VIII, "On Carabiner Control
Translations - II", University of London Institute of
Computer Science, Internal document ICSI 515 (1973).

30. Cooke, D.J. CARABINER Paper IX, "On the Formalization of Procedure
Activation", University of London Institute of Computer
Science, Internal document ICSI 521 (1973).

.262

31. Cooke, D.J. CARABINER Paper X, "On Parameters, Pointers and
Values", University of London Institute of Computer Science,
Internal document ICSI 523 (1974).

32. Cooke, D.J. The Carabiner Project. An Overview, University of
London Institute of Computer Science, Internal document
ICSI 529 (1974).

33. Cooke, D.J. PLECS. A set of Programming Languages to Exhibit
the use of Carabiner (part 1), University of London
Institute of Computer Science, Internal document ICSI 530
(1974).

Cooke, D.J. PLECS (part 2), Loughborough University of
Technology Dept. of Computer Studies, technical report
(in preparation 1974).

35.• Currie, I.F. et al. "ALGOL 68-R", in ALGOL-68 Implementation
Ed. J.E.L. Peck, pp. 21-34, North-Holland (1971).

36. Dennis, J.B. On the Design and Specification of a Common Base
Language, Project MAC, TR-101, M.I.T. (1972).

37. Dijkstra, E.W. "The Structure of 'THE'-multiprogramming System",
Comm.Assoc.Comp.Mach. 11(3) pp. 341-346 (1968).

38. Dijkstra, E.W. Notes on Structured Programming, Tech. Rept.
EWD249, Dept. of Mathematics, Technical University, Eindhoven
(1969).

39. Dijkstra, E.W. A Short Introduction to the Art of Programming,
Tech.Rept. EWD316, Dept. of Mathematics, Technical University
Eindhoven (1971).

40. Dijkstra, E.W. A Simple Axiomatic Basis for Programming Language
Constructs, Tech.Rept. EWD372, Dept. of Mathematics, Technical
University Eindhoven (1973).

41. Dijkstra, E.W. "The Composition of Programs Guided by their
Correctness Proofs", invited lecture given at the Second IJCC
Computer Science Colloquium, Kent (1973).

42. Engeler, E. "Structure and Meaning of Elementary Programs",
C43], pp• 89- 101 (1971).

43. Engeler, E. Symposium on Semantics of Algorithmic Languages,
Lecture Notes in Mathematics No. 188, Springer, Berlin (1971).

44. Feldman, J.A. "A Formal Semantics for Computer Languages and
its application to a Compiler-Compiler", Comm.Assoc.Comp.
Mach. 9(1), pp. 3-9 (1966).

45. Foster, J.M. List Processing, MacDonald (Computer Monographs Series
No. 1), London (1967).

263

46. Foster, J.M. "A Syntax Improving Program", Computer Journal,
11, pp. 31-34 (1968).

47. Fraleigh, J.B. A First Course in Abstract Algebra, Addison-
Wesley (1967).

48. Galler, B.A. and Perlis, A.J. A View of Programming Languages,
Addison-Wesley (1970).

49. Greibach, S.A. Inverses of Phrase-Structure Generators, Doct.
Thesis, Div. Eng. and Appl. Physics, Harvard U., Cambridge
Mass. (1963).

50. Greibach, S.A. "Formal Parsing Systems", Comm. Assoc. Comp.
Mach. 7, .PP- 499-504 (1964).

51. Greibach, S.A. "A new Normal-Form for Context-Free Phrase 	•
Structure Grammars", J.Assoc. Comp. Mach. 12(1), pp. 42-52
(1965).

52. Harary, H. et al. Structural Models, J. Wiley, New York (1965).

53- Harary, H. Graph Theory, Addison-Wesley 1969).

54. Henhapl, W. and Jones, C.B. The Block Structure Concept and
some possible Implementations with Proofs of Equivalence,
TR 25.104, IBM Vienna (1970).

55. Igarashi, S. et al. ALGOL N, Research Institute for Mathematical
Sciences, University of Kyoto, Japan, Document 66 (1969).

56. Ingerman, P.Z. A Syntax Oriented Translator, Academic Press (1966).

57. Irons, E.T. "The Structure and Use of the Syntax-Directed
Compiler", Annual Review of Automatic Programming, 3, pp.
207-227, Pergamon Press, (1963).

58. Knuth, D.E. and Floyd, R.W. "Notes on avoiding 'goto' statements",
Computer Science Dept. Report CS 148, Stanford U. (1970), and
Information Processing Letters 1, pp. 23-31 (1971).

59. Knuth, D.E. "Top-down Syntax Analysis", Acta Informatica 1(2),
pp. 79-110 (1971).

60. Kripkei B. Introduction to Analysis, W.H. Freeman, San Francisco
(1968).

61. Landin, P.J. "The Mechanical Evaluation of Expressions", Computer
Journal, 6, pp. 308-320 (1964).

62. Landin, P.J A Formal Description of ALGOL 60, [100], pp. 266-294
(1964).

63. Landin, P.J, "A Correspondence between ALGOL 60 and Church's
lambda notation", Comm. Assoc. Comp. Mach. 8, pp. 89-101
and pp. 158-165 (1965).

264

64. Lang, S. Algebra I. §8, Addison-Wesley, Reading (Mass.) (1965).

65. Lang, S. Analysis I, Addison-Wesley, Reading (Mass.) (1968).

66. Lauer, P. Formal Definition of ALGOL 60, TR 25.088, IBM
Vienna (1968).

67. Leavenworth, B.M. "Programming with(out)
Notices, 7(11), pp. 54-58 (1972).

68. Ledgard, H.F. "Ten Mini-languages", Computing Surveys 3(3),
PP- 115-146 (1971).

69. Lucas, P. Two Constructive Realizations of the Block Concept
and their Equivalence, TR 25.085, IBM Vienna (1968).

70. Lucas, P. et al. Method and Notation for the Formal Definition
of Programming Languages, TR 25.087, IBM Vienna, (1968).

71. Macialle,S.Hanology,p.122.,Lenna7.2withe..+1, Academic
Press, New York (1963).

72. MacLane, S. and Birkhoff, G. Algebra, p. 42, Macmillan, New
York (1967).

73. ibid. p. 138.

74. Markov, A.A. Theory of Algorithms, U.S.S.R. Academy of Sciences
(1954); English translation by the Israeli Program for
Scientific Translations (1961).

75. McCarthy, J. "A Basis for a Mathematical Theory of Computation",
in Computer Programming and Formal Systems, (ed. Braffort and
Hirschberg), North-Holland Publishing Co., Amsterdam (1963).

76. McCarthy, J. A Formal Description of a subset of ALGOL, [100]
pp. 1-12 (1964).

77. McKeeman, W.M. et al. A Compiler Generator, Prentice-Hall,
Englewood Cliffs, N.J. (1970).

78. Mendelson, E. Introduction to Mathematical Logic, Van Nostrand,
New York (1964)-

79. Mock, O. et al. "The Problem of Programming Communications with
changing Machines: a proposed solution", Comm. Assoc. Comp.
Mach. 1 8), pp. 12-18, 1(9), pp. 9-15 (1958).

80. Moss, R.M.F. and Roberts, G.T. A Preliminary Course in Analysis,
Chapman and Hall, London (1968).

81. Mosses, P. The Mathematical Semantics of ALGOL 60, Tech. Mon.
PRG-12, Programming Research Group, Oxford U. (1974).

the GOTO", Sigplan

265

82. Naur, P. (Editor) et al. "Revised Report on the Algorithmic
Language ALGOL-60", Comm.Assoc. Comp. Mach. 6(1), pp. 1-17
(and elsewhere) (1963).

83. Naur, P. "Proof of Algorithms by General Snapshots", BIT, 6,
pp. 310-316 (1966).

84. Nivat, M. and Nolin,L. Contribution to the Definition of
ALGOL Semantics, [100] pp. 148-159 (1964)-

85. Nivat, M. and Nolin, L. "Sur un Procede de Definition de la
Syntaxe d'ALGOL", Proc. 3rd AFCALT Congress (Toulouse), (1963).

86. Nixon, E. and Wesselkamper, T.C. CRAMPON Paper I, University
of London Institute of Computer Science, internal document
ICSI 294 (1970).

87. Nixon, E. and Wesselkamper, T.C. CRAMPON Paper II, University
of London Institute of Computer Science, internal document
ICSI 309 (1971).

88. Peterson, W.W. et al. "On the Capabilities of While, Repeat and
Exit statements," Comm. Assoc. Comp. Mach. 16(8), pp. 503-
512 (1973)•

89. Schumann, S.A. and Jorrand, P. "Definition Mechanisms in
Extensible Programming Languages", proc. F.J.C.C., AFIPS
(37), pp. 9-20 (1970)•

90. Scott, D. Outline of a Mathematical Theory of Computation,
Tech.Mon. PRG-2, Programming Research Group, Oxford U. (1970).

91. Scott, D. The Lattice of Flow Diagrams, Tech. Mon. PRG-3,
Programming Research Group, Oxford U. (1970).

92. Scott, D. and Strachey, C. Towards a Mathematical Semantics for
Computer Languages, Tech. Mon. PRG-6, Programming Research
Group, Oxford U. 0971).

93. Snidvongs, K. Towards a Calculus of S-Expressions Paper I,
"On Finite Spaces of Disjoint Elements", University of
London, Institute of Computer Science, internal document
ICSI 496 (1973).

94. Snidvongs, K. Towards a Calculus of S-Expressions Paper II,
"Over Generalized Finite Spaces", University of London
Institute of Computer Science, internal document ICSI 497 (1973).

95. Snidvongs, K. Towards a Calculus of S-Expressions Paper III,
"The Transformation of Simple Programs", University of
London Institute of Computer Science, internal document
ICSI 514 (1973).

96. Snidvongs, K. Towards a Calculus of S-Expressions Paper IV,
"On Conditional Expressions", University of London, Institute
of Computer Science, internal document ICSI 524 (1974).

266

97. Snidvongs, K. Towards a Calculus of S-Expressions Paper V,
"On Control Structures", University of London, Institute
of Computer Science, internal document ICSI 533 (1974).

98. Steel, T.B. "UNCOL", Datamation, 6(1), pp. 18-20 (1960).

99. Steel, T.B. "UNCOL: The Myth and the Fact", Annual Revue of
Automatic Programming 2, pp. 325-344 (1961).

100. Steel, T.B. (ed.) Formal Language Description Languages for
Computer Programming, Proc. IFIP Working Conference,
Vienna (1964), Pub. North-Holland (1966).

101. Strachey, C. Towards a Formal Semantics, [100], pp. 198-220
(1964).

102. Strachey, C. Varieties in Programming Languages, Tech. Mon.
PRG-10, Programming Research Group, Oxford U. (1972).

103. Strachey, C. and Wadsworth, C.P. Continuations: A Mathematical
Semantics with Full Jumps, Tech. Mon. PRG-11, Programming
Research Group, Oxford U. (1974).

104. Suzuki, N. et al. "The Implementation of ALGOL N", Proceedings
of an International Symposium on Extensible Languages,
Grenoble, France (Sept. 1971); reproduced as SIGPLAN
Notices, 6(12), pp. 15-21 (1971).

105. Taylor, A.E. Introduction to Functional Analysis, J. Wiley,
New York (1958).

106. Van Wijngaarden, A. "Generalized ALGOL", Annual Revue of
Automatic Programming, 3, pp. 17-26 (1963).

107. Van Wijngaarden, A. Recursive Definition of Syntax and Semantics
[100], pp. 13-24 (1964).

1o8. Van Wijngaarden, A. (editor) et al. Report on the Algorithmic
. Language ALGOL 68, Mathematisch Centrum Amsterdam, MR 101

(1969).

109. Vettes, F. A General Method of Automatic Syntax Analysis,
University of London, Institute of Computer Science, internal
document ICSI 531 (1974).

110. Wegner, E. "A Hierarchy of Control Structures", MOL Bulletin,
1, pp. 5-11 (1972).

111. Wegner, E. "Tree-Structured Programs", MOL Bulletin, 2, (1973)-

112. Wegner, P. "The Vienna Definition Language", Computing Surveys,
4(1), pp. 5-63 (1972).

113. Wells, M. and Denison, A. "Direct Execution of Programming
Languages", Computer Journal, 17(2), pp. 13o-134 (1974).

267

114. Wesselkamper, T.C. CRAMPON Paper
Institute of Computer Science,
(1971).

115. 	Wesselkamper, T.C. CRAMPON Paper
Institute of Computer Science,
(1972).

III, University of London,
internal document ICSI 333

IV, University of London,
internal document ICSI 367

	

-116. 	Wesselkamper, T.C. A Mathematical Model of the Computing
Process in a high Level Language, Doct. Thesis, University
of London (1972).

117. Wirth, N. and Weber, H. "EULER, a Generalization of ALGOL, and
its Formal Definition", Comm. Assoc. Comp. Mach. 9, pp. 13-23
and pp. 89-99 (1966).

118. Wirth, N. Systematic Programming: An Introduction, Prentice-
Hall (1.973).

119. Wood, D. "The Theory of Left-Factored Languages", Com uter
Journal, 12(4), pp. 349-356 and 13(1), pp. 55-62 (19 9-70)

120. Woodger, M. "On Semantic Levels in Programming", Proc. IFIP
Congress, pp. 402-407, Ljubljana (1971).

121. Woodward, P.M. A Note-on Foster's Syntax Improving Device,
RRE Memo. 2352, Royal Radar Establishment, Malvern (1966).

122. Wulf, W.A. "Programming without the fgoto", Proc. IFIP
Congress '71, Ljubljana (1971).

123. Wulf, W.A. "A Case Against the tgoto", SIGPLAN Notices, 7(11)
pp. 63-69 (1972).

124. Yoneda, N. "The Description and the Structure of ALGOL N",
Proc. International Symposium on Extensible Languages,
Grenoble, France (Sept. 1971); reproduced as SIGPLAN
Notices, 6(12), pp. 10-14 (1971).

125. Zurcher, F.W. and Randell, B. "Iterative Multi-Level Modelling -
A Methodology for Computer System Design", Proc. IFIP Congress
'68, pp. 867-871, Edinburgh (1968).

126. Golde, H. et al. "Report on Sublanguages", ALGOL Bulletin,
AB33.3.5 (1972).

268

APPENDIX: THE REMOVAL OF 'GOTO'S

Al. 	Introduction

Herein we give a language-independent algorithm which acts

on a program, characterized by afIow-chart, and creates an

t
equivalent program which is modular or 'structured'.

Whilst fully recognising that (well-)'structured' programming

[38] (otherwise called step-wise refinement [118], iterative multi-

level modelling [125], system hierarchy [37], step-wise program

composition [39], top-down program development, etc.) is funda-

mentally concerned with program construction, we note that the

properties of structured programs are far easier to derive and

manipulate than those of more general programs [39, 40, 41], so

much so, that one could justifiably spend time in obtaining a

program that is equivalent to the original one and yet is composed

in such a way that optimizing techniques can more readily be

applied [2, 19-21]. A more complete discussion of the 'goto'

problem [3, 4, 9, 12, 38, 58, 67, 88, 110, 111, 122, 123] is given

in Carabiner working paper no. 7 [28]. That paper also contains

an extended version of the algorithm set out below. In that

version, several optimization stages are incorporated with the

effect of producing results which compare favourably with a

similar algorithm published recently [88].

t.
i.e. the new program defines the same function (represented by
input-output pairs) as the original program.

269

The algorithm presented here acts on a single entry/single

(logical) exit flow diagram, and includes no optimizations. It

preserves the original topology (up to identification) and intro-

duces no extra variables or predicates . The transformation

from multi-entry/multi-exit program segments into ones with only

one entry and one exit is usually dependent on language semantics

and is considered elsewhere [29].

Throughout the appendix we shall regard Carabiner as having

no explicit 'goto' statement and consequently PTL is included as

a fundamental operation (as discussed in §6.5). To signify that

we are using this restricted version of Carabiner we shall refer

to it as Carabiner*.

A2. Carabiner* Structure

Carabiner* is a block-structured language with five control

operations, two of which deal with the block entry and exit, whilst

the others deal with control flow within blocks. We consider the

in-block operations first.

•In-Block Structure

A Carabiner* block, is a linear list of statements and has no

labels. In the absence of any explicit control directive the

evaluation sequence is, by default, strictly linear, i.e. upon

completion of one statement the next statement in the list is exe-

cuted. This is the first (implicit) control operation; given a

listof(non-control)statements,S.,we will denote these by:

such as a state vector or (implicit or explicit) Boolean variables
[3, 4] or flags [9].

270

Si, S2, ...' Sn
or

[S1
ES2

[S

and diagramatically as

S2

sir
S
n 	

J L__ 	• 	
In what follows we shall regard any strict sequence of statements .

as above (i.e.'void of control operations)as a single execution

sequence and we may write it as:

[S

and represent it as the trivial diagram:

The other two in-block control operations correspond to forward

and backward jumps in the flow, i.e. they emulate what in FORTRAN

might be:

271

A = B

7 B=C+ B

IF (A.GT.B) GO TO 7

or
GO TO 3

3 CONTINUE

The Carabiner* operation for a forward jump is RAM([A,[B,pred) - i.e.

the ramification of the processes [A and [B governed by the predicate

'pred' (see .54.5) and is equivalent to the Algol-60 construct:-

if pred then [A else [B

Diagramatically:

For a backward jump (i.e. a potential loop) we postulate PTL([A, pred),

i.e. Process [A, Test pred and if truet then Loop and repeat.

Diagramatically this is:

t .
i.e. if e k pred = True

272

Block Control

Block control is governed by the two operations BLOCK(x) and

EXIT(y), where x is the body of the required block and y is

either a positive integer (by default 1) which specifies the number

of nested blocks to be exited from, or 'T' which signifies termination

of the program, this effectively means exit to operating system

level. A FORTRAN subroutine might have the following exit identifications:

SUBROUTINE EXAMPLE(X)
•
•
•

IF (Y) STOP
•
•
•

RETURN

•

RETURN

END

EXIT (T)

EXIT(1)

EXIT(1)

The above example is an over-simplification since it treats

a subroutine as merely a block and ignores all questions related to

the passing of parameters or results. A more useful example is the

following Algol-60 program:

273

begin 	BLOCK()

begin 	BLOCK()

end; 	a EXIT()

end 	EXIT(T)

For simplicity of notation we shall use 0 for a stop or

EXIT(T) statement, or return in a subprogram.

Note: The 'in-block' operations of Carabiner* are sufficient to

model any structured program [38], and by the addition of

the EXIT(n) instruction we may also model non-structured

programs, e.g.

START

a

F p T

Fi

274

This is 'unstructurable' without destroying the topology or adding

extra Boolean or state variables [3, 4] but yields, by the al-

.gorithm of section 2 the following 'semi-structured' schema:

START

a

	p

F
	

T

exit(1) 	.

I IF

1 	
IF

I

I 	 I I
I

a
IF

275

Here we have used chain lines 	to denote blocks

and broken lines () to show completion flows: these are

never followed in the execution but serve to retain the structured

skeleton on which the incomplete segments hang.

To simplify the representations of flow diagrams we shall

use digraph representation (as in the above example) with the

natural correspondence between process boxes and 2-nodes, bi-decisions

(and flow joins) and 3 nodes etc. This realization will not be

formalized.

A3. The Translation Algorithm

The translation process and the intermediate graph constructs

used are based on Engeler's normal form [42] and consist of four

stages, each of which is described individually. The sufficiency

of the algorithm is discussed in section A5.

Stage 1

Transformation of a flow-chart into a 'linked tree'.

Defn: A linked tree is a treet with leaves labelled by integers

or a special symbol (X). (This denotes a source language

block exit, e.g. stop). To each such integer there is at

least one corresponding pointer placed between two adjacent

nodes (neither of which is a numbered leaf) elsewhere in

the tree. The links being implied by the association between

equal integers.

twith all nodes of outdegree 5 2 (see §5.2.2).

•••■• 	 ■•••• .m0
••••• ••■••

.0"

ar+

276

e.g.

a

Here the implicit links are:

Stage 1 Translation

(i) Label all nodes of the flow-chart in a suitable manner (e.g.

by lower case letters) and all flow joins by distinct integers.

Replace all multiple (>2) decisions by sequences of binary

choices.

(ii) Starting at the entry point, construct the first branch of the

tree, following the True (T) branches at predicates until

either, (a) a stop,(X), is reached or, (b) a node is encountered

for the second time; in this case do not duplicate the node but

terminate the branch by a leaf named by the respective integer.

(i.e. the one associated with the join in the flow.)

277

(iii) Taking the highest incomplete branch (i.e. the one furthest

from the root) repeat the method of (ii) to complete all

branches without duplicating any node of the original flow-

chart.

e.g. 1: Program:- [A

if B then goto lab

[C

do [D while E

lab [F

Stop

Flow-chart:-

START(

A

T

C

F

v■ 	

Stop

labelled flow-chart:-

278

Linked tree (by branches):

A

e.g. 2: program: 	if A then [B else [C

lab ED

if E then goto lab else goto lab 1

[F

lab 2 [G

Stop

lab 1 [H

goto lab 2

C B

279

Flow-chart:
START

labelled flow-chart:

280

.linked-tree (branch by branch):

Stage 2

The linked tree produced by stage 1 needs to have its links

untangled. If we regard < as the order relation implicit within

the tree so that root < node for all (non-root) nodes etc. and we

denote label n by ln such that if

1
n

p < In 	for all p < x,

x < 1
n

,

I
n
< y

1
n
< q 	for all q > y.

then

and

281

(i.e. regard In as a null node). Then we modify the tree so

that all leaves n are such that 1
n
< n. This is trivially possible

by duplicating part of the tree whenever In n.
n n'

i.e. if
	

1
n

11-1.3

♦
■

and 01
n
< n

then, delete C) and replace by the subtree whose root is ln;

so we have:

1 n

1
n

p

We now formalise the translation phase described above:

Defn: Using the 'ln' notation and the natural ordering derived

from the tree then any tree with the property that In < n

for all leaves n is called a simply-linked tree (SLT).

Stage 2 may therefore be regarded as the manipulation of a

linked tree into an equivalent simply-linked tree.

Stage 2 Translation:

Consider the leaves in the order dictated by the 'True first' rule

as in Stage 1(ii).

(i) Find the first leaf 'n' such that 1
n

n. (If there are none then

we are done), remove this leaf and replace it by the subtree whose

root is 1
n
. (This in general creates new copies of numbered leaves

and removes one leaf.) Goto (i).

e.g. 2: linked tree:

A' 	

simply-linked tree:

d

O

282

e.g. 1: linked tree:

simply-linked tree:

Notice that Stage 2 may create duplicate labels. In this case if

there is more than one on the same branch, erase the one closest

to the root.

283

This technique is called node-splitting [2, 20, 21] and preserves

topology (by identifying split nodes, any path in the LT is

transformed into an equal path, described by a sequence of node

names, in the resulting SLT).

Stage 3:

We now impose some nested blocks onto the directed graph.

Stage 3 Translation:

(i) Erase all unused labels.

(ii) The remaining labels now have a partial order relation

imposed by the (tree-like) directed graph. Draw a system

of blocks ordered in the manner determined by the remaining

fi
labels .

(iii) Upon this system of blocks superimpose the flow graph in

such a way

(a) that the entry point and all termination leaves are

outside the largest block;

(b) that entry to a block coincides with the positioning of

the corresponding label;

(c) that numbered leaves are drawn on a block boundary;

(d) that the flow only crosses a block boundary in order to

reach an outer boundary or X as in (a), and

(e) that all statements whose position is not dictated by

(a) - (d) is located in the most deeply nested block allowable.

Note that two blocks may relate to the same label but in this case the
occurrences are on different branches.

IN'NN 	 3.7".

s

a --

F

r

4

5

1

e.g.

284

0

g-

e 	k 	0

underlying block structure:

3

T

3

285

Flow mapped onto this block structure:

These broken lines
never followed

286

Stage 4:

By virtue of stage 3 part (iii)(e) we arrange that each block has

only one immediate exit, hence when we have a sequence of n (n 1)

consecutive block exits we may replace this by EXIT (n) and either

terminate the flow within the block or draw it anywhere. This

leads naturally to the completion of the flow in a structured

fashion by completing

e.g.

T

'open' if-then-else constructs.

f-- etc

13
a

exit(n)

etc

may be drawn:

F

T
a

c

b

F

Similarly, we may explicitly draw the loop control mechanism:

-a

b

These broken lines de-
 note unspecified flow.

287

Stage 4 translation:

(i) Insert explicit exit statements.

(ii) Insert explicit loop control.

(iii) Coalesce block exits.

(iv) Complete flow after exits so as to give fully structured

(lattice) flow within each implicit or explicit block.

Note: (iv) simply implies the closure of if-then-else phrases

should be in reverse order to their creation.

Where 'exit's occur this could lead to ambiguity, hence if sequences

terminate in an exit statement there are two courses of action open:

either (a) we stipulate

if exit E a then

if exit E p then

else

F1

T 	 - -

Fl
	

I

or (b) we let the existing diagram dictate the flow and only

merge after exits.

i.e. if r-
T
9

288

then:

exit(n)-----1
1
■--__

S - exit(m)-----)

etc.

i.e. let the arms of the predicate be as before.

We choose the latter.

F

L_ _

289

e.g. (as used to illustrate stage 3).

290

A4. Realization of the Carabiner* Program

Having obtained a resulting single entry/single exit diagram,

we now set about extracting a Carabiner* program
t
 . Using Greek

letters to denote arbitrary segments of flow chart and equivalent

sequences of Carabiner* statements, we use the following equivalences

to dictate the construction of the resultant program from the flow

chart after its manipulation by the four stages above.

a

[a

RAM(a,a,0)

	 a—
FT

PTL(y,b)

1

5 	 I BLOCK (6)

-.1

exit(n) — -- — — EXIT(n)

t
Of course, equivalent extractions exist for most other languages.

tThe same rules are to be applied even when broken lines are present
within the flow diagram.

Y

291

.The order of translation of the flow chart is irrelevant; however,

to be definitive, we stipulate that the flow lattice shall define

the order by beginning translation at the entry node and moving

via adjacent nodes (constructs) and expanding each greek denotation

as it arises (in RAM expand a before p).

A5., Discussion

Sufficiency of the Algorithm

As stated in the introduction to A3, the notation of an SLT

is based on Engeler's normal form [42]. An inductive proof of

the existence of a schema of this form equivalentt to a given

schema is to be found in section 1 of [42]; however the constructions

given above constitute the basis for a proof of what is essentially

the same theorem. This theorem states that, given any finite flow

diagram with one entry and one exist we can generate an equivalent

flow diagram which uses only the execution statements of the original

plus control constructs analogous to our operations of BLOCK, EXIT,

RAM and PTL; from this the generation of a program in a sufficiently

structured language is trivial, moreover validation of the theorem

is easily demonstrated.

Here we do not give a rigourous mathematical proof (although

one could easily be formulated) but argue the finite applicability

of each stage; the characterization of the output from the final

stage, being as in the statement of the theorem, will then infer

validation of the theorem.

in the sense that flow-paths (described by a sequence of node
denotations) through the schema are preserved.

292

Stage 1 Translation

Transformation of a (finite) flow chart into a linked tree.

Given a finite directed graph we start from a specific node

(the entry point) and select a (necessarily acyclic) chain the

length of which is finite.

At this stage either we finish or we have another specific

node (the highest incomplete False fork) from which to generate

another chain.

This process stops before repetition of any nodes already used

and utilizes at least one further node and/or completes another

False fork. This last paragraph is then repeated until all branches

are complete.

By virtue of the total number of nodes used (and hence predicate

nodes and False forks) being finite, this process must terminate.

Stage 2 Translation

Transformation of a linked tree into a simply-linked tree.

In a linked tree there are a finite number of used labels and

corresponding leaves. The substitutions caused by stage 2 involve

extensions to this tree; the extensions duplicate labels on distinct

branches and once a branch has all the used labels (hung) upon it

there can be no more substitutions in that branch. From the finite

original tree we derive a finite extended tree in a finite number of

steps.

The flow modifications are now complete and we have to lift

our semi-structured program from the derived tree. The blocking

293

structure of stage 3 follows directly from the tree-structured

relation between the remaining (used) labels of the SLT• Similarly

the sub-tree structure of the blocked SLT well defines the 'lattice'

completions to be made in stage 4. These final stages are purely

manipulative; they cause no extensions of any kind but merely give

a structured interpretation of the SLT already derived.

Comparison with other works

We give else where [28], stage by stage modifications of

various program schemas taken from other papers. These programs

are ones which have been considered 'awkward' by other workers.

The example (given in §A2) is taken from Ashcroft and Manna

[3, 4] and demonstrates that the inclusion of block structure

renders the use of extra (Boolean or 'state') variables unnecessary.

Other examples, taken from a well-known paper by Knuth and

Floyd [58] and from other sources have been processed by (a slightly

extended version of) the algorithm, with encouraging results.

We have shown that our construction is always applicable and

by incorporating a few fairly trivial optimizations we believe a

practical restructuring procedure could easily be developed.

