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ABSTRACT

The present work is divided into three parts have three proper-
ties in common ;
(1) The medium of propagation has the property of dispersion .
(2) Rach problem considered as one of initial - value problem .

(3) Each problem utilized the infinitesimal - wave theory .

Part 1

In this part we regard the fluid as an incompressible,inviscid,
the motion is irrotational and the linearized theory is used.Atthe free
surface we ﬁeglect the pressure and the surface tension. In its un-
disturbed state the fluid, which is of infinite horizontal extent ,
has uniform depth and resting or flowing with constant speed U . At
t=0,a disturbance is initiated(suddenly or smoothly) at the bottom .
The technique of Fourier and Laplace transformationsare used to get
the solution in the form of integral representation . This integral
can be evaluated asuptotically for large x & t by the method of
steepest descents. To do this we assumetﬁahh]x/t is fixed and let
t —>00.(2) x is fixed and let t becomes large. (3) x=0 and let t->oo.
i.e. we are examining the different solutions from the stand point
of én observer moving with velocity = %/t , standing at a fixed
position or at the origin respectively . The results can be inter-
preted in a striking way in terms of the notation of group velocity.
We conclude this part by discussing the same problem when the dis-

turbance at the bottom takes the form of infinite step .
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Part 11 :

It is the classical problem of initial value problem which
is associated with names Cauchy (1827) & Poisson (1815) . In this
classical problem of water waves theory , the pressure over the
- free-surface is constant, say , zero. The fluid is infinitely deep,
no obstructions are present. The initial displacement and the initial
velocity of the free surface are given then we seek the subsequent
motion. We used’ the theory of infinitesimal waves , by assuming the
various functions entering into the problem may be expanded into
power series 1in small parameter € . The coefficients of € giving the
first order theory , those of 62 the second-order theory , etc. The
solution will be carried through in out line through the third order.
The principlenmﬂwematical toolsused in solving the problem are Fourier

transform , method of stationary phase and integrals in the complex

domain .
Part 111 :

We consider a two layer model in which the fluid is inviscid
and of uniform density , the velocity profile U(z) is continuous but
the rate of sheer d/dz(U(z)) has a discontinuity at the interface of
the two layers. At t = O,a disturbance is created at the lower level.
The linearized theory is used and the technicue of Fourier and Laplace
transform is applied to obtain the solution in the integral form , the
integral evaluated asymptotically for large t . The perturbation
velocity tends to rero as t becomes large , also the vertical dis-

’

placement — 0 as t —>%, when U(z) 50 and U(z) & d/dk(p(k))lgk*

hayethe same sign . The Linearized theory fails if U(z) = O orifthe

model has a width in vwhich the mean velocity.U(z) & d/dk(B(k)), _..

hayea different sign. Where k=k*sdefined by ( kU(z)-p(k) ) =0 .
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Introduction

We are all familiar with the conceot of wave motiom in fluid,
which is one of the old@lest successful branches of fluid mechanics.
For example , a breeze blowing over a river will produce waves
that will move in the direction of the wind on the surface of the
river , even though the current may be flowing in some other dire-
ction and , at a certain time a disturbance takeplace at a point
on the surface of the fluid genefating waves ; physically this
would correspond to a stone being thrown into a still pond ..

The subject of water waves has interested a considerable number
of mathematicians beginning apparently with Lagrange, and continuing
with Cauchy and Poisson in France . Later the British school of
mathematical physicists gave the subject a good deal of attentionms,
and notable contributions were by Airy , Stokes , Kelvin , Rayleigh
and Lamb . | |

The most striking feature of waves is , without doubt , their
capability of carrying energy over long distances , as well as the
energy , they carry also disturbances through the medium without
giving the medium as a whole any permanent displacement . For the
vast bulk of wave motions occurring in the nature , however ,
the phase velocity , with which the crests and troughs are propa-
gated , and the group velocity , with which the energy is propa-
gated , have quite different magnitude (but in some simple cases,

including sound waves and waves on a flexible string , the two
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velocities are indeed the same ). The magnitudes of -the phase and
group velocities are , however , not equal for any waves whose
phase velocity takes different values for waves of different length.
This state so affairs is usually described as dispersion , because
it means that if we lmagine any general disturbance split up into
components of different wave length , all these components will
progress at different speeds and therefore will tend to get separ-
ated out , that is "dispersed" , into a large wave train with the
wave length varying rather gradually along it . In this process of
dispersion , the energy assocaited with waves of a given length is
propagated at the group velocity , say u , of those waves . Hence,
after a time t has elapsed ,'waves of that length be found a dis-
tance ut farther on .

The present work lies under the category of initial value pro-
blems , i.e. we consider the motion in which the applied wave -
maker begin "switch on" at time t = O + Anexcellent survey of
different types of initial value problems is given by Wehausen,J.V,
and Laiton , E.V, (Surface Waves 1960 ) . Pioneer contribution were
the subjects of classic memoirs by Cauchy (1827) and Poisson(1816).
Poisson consider the waves produced by an initial displacement in
water of infinite depth . The general question of one - dimenslonal
pulse propagation in dispersive medium was discussed by Rayliegh
(1909) . Thompson (Lord Kelvin) (1887) presented the method of sta-
tionary phase and applied it to determines the waves produced by a

concentrated elevation in water of infinite depth .



Most of the theory of water waves is concerned either with
explaining some general aspects of wave motion or with predicting
the behaviour of waves in the presence of some special configura-
tion of interest to hydrolic engineers, or ship designers . Unfor-
tunately , even some of the aprarently simplest problems have proved
too difficult to solve in their most complete formulation . Approx-
imation have been necessary . The nature of the approximationsused
in treating a particular problem provides a natural way of class-
ifying it . First there are the assumptions concerning the proper-
ties of the fluid : viscous or inviscid , compressible or incompr-
essible , surface tension or not . Although assuming the fluid to
be inviscid , incompressible and without surface tension simplifies
the equations ; they are still not easily manageable. Other appro-
ximationsof a differenf nature are required . These are in the
sense mathematical approximations . Thelr physical signifi cance 1is
not in restricting the nature of the fluid but in restriéting the
character of the waves . There are two principal methods of appro;
ximation ; one of two approximate theories results from the assum-
ption that the waves amplitudes are small ; the infifitesimal=-" -
wave approximation , the other from the assumption that it is the
depth of the liquid which is small ; the shallow - water approxi-
mation. ..

As we mention , in their exact form even the simplest problems
with surface waves are difficult to solve . If one neglects visco-

sity and assumes irrotational motion , the problem is reduced to

finding solutions of Laplacésequation , which is at least linear in
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the unknown. However , the problem is still difficult because of
the non - linear boundary conditions at the free surface or inter
face , The two-p;incipal mefﬁods of approximation may each be treated
as a perturbation procedure . As is mention this procedure is not
concerned with the assumptions about the nature of the fluid , but
rather with the ndture 0f the motion and its generation . The method has
been applied to water - wave problemsby Stokers (1957) and other .

. In the present work we consider the infinitesimal - wave appr-
oximation which fits into a general scheme for approximating non -
linear equations and boundary conditions by linear one . To do this,
we assumed that the various functions entering the problem may Dbe
expanded into power series in smail dimensionalless paramater ,
say € o The series are substituted into the equations and the boun-
dary conditions and grouped according to the powers of ¢ . The
coefficients of each power then yield a sequence of equations and
boundary conditions , fhe coefficions of € giving the first theory,
those of €2 the second - order theory , etc . Since we deal only
with irrotational flows , the result is a theory based on the det-
ermination of a veiocity potential in space variables and the time
as a solution of the Laplace equation satisfying certain linear

boundary and initial conditions .

The first part dealing with small disturbanceswhich drecredted at the
bottom in a stream flowing initially with uniform velocity , or in-
to still water , and with free surface , at the time t = 0 » The
technique of Laplace and Fourier transforms are used to obtain the
solutions in the form of integral representations . For estimating

the integral representation for the solution when t is large , we
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used the method of steepest descent to get an asymptotic approx—

imation for the solution .

In the second part we consider the classical case ( treated
first by Cauchy and Poisson ) of waves due to disturbances on the
free surface into a still water at the time t = O . The technique
of Fourier transform is used to obtain sulution in the form of
integral representations up to the third order theory . For this
purpose it is very useful to discuss the integral representations
by using an asymptotic approximation due to Kelvin and called the
principle , or method , of stationary phase . These results,then,
can be interpreted in a striking way in terms of the notation of

group velocity .

In the third part , we consider . a model of shear flow . Ve
investigated the different perturbation functions such as the
velocity components and the vertical elevation of any fluid part-
icle due to an infinitesmal disturbance by considering the init-
ial value problem . The techniqye of Laplace and Fourier transf-
orms are used to obtain the different functions in the form of inte-
gral representation . By the method of steepest descent we had an

asymptotic approximation for the solution when t becomes large .
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Waves On a Running Stream Due a

Disturbance At The Bottom

FORMULATION: .

Only two-dimensional flows are considered. Fig. 1
indicates th; general situation: the x-axis is taken along the
undisturbed free surface of flow with uniform speed U in x-
direction, and y-axis is taken positive upward oppisite the

force of gravity.

Ay
7(x3 >
X
—>
U
n E=1(x)g(t)

AOZ%UV//////////////ﬁf%zv//////////////////////
Fig. 1
For t<0, let the equation of the bed be given by the equation
y =-h,
when t = 0 a disturbance is suddenly éreated at the bottom which isgiven
by
E(x;t) = £(x)glt),
where g(t) is the Heaviside function and f(x) is given function.
but it is better to be symmetry about the origin x = 0; i.e.f(x)
is an even functiom.

Hence, for t>0, the bottom is given by

-h + 5(x;t) ,
-h + £f(x)g(t).

Y

i.e. Yy

Consider F(x,y;t) =y + h - £f(x)g(t) , where F(x,y;t) = O describes



the bottom for t>o &

Ve regard the fluid as incompressidle , frictionless , and
initially has a constant speed U ( from the known laws of hydro-
dynamics ) , then the resulting motion is irrotationally and

mathematically described by the velocity potential @(x,y;t)WhiCh

satisfies Laplace's differential equation

Vi’y {Kx,y;t) =0 , (1)

in the region bounded by the free surface Sf and the bottom sur-
face Sb s Where

vi’y =’02/’bx2 + ’bz/’Bya ’

and @(x,y;t) = Ux + ¢(x,y;t) ’

where ¢(x,y;t) is the potential of a small disturbance and
consider it and its derivatives to be small of the same order .
It is clear that ¢ (x,y;t) is a harmonic function . At the same
time the free surface elevation [ (x;t) ( also %(x,y;t) = the
vertical displacement of fluid particle ) and its derivatives

are also considered to be small of the same order .

THE BOUNDARY CONDITIONS:

(1) The boundary conditions at the free surface:

(a) The kinematical condition:

Let F(x,y;t) = y =7 (x;t) = o describe the free
surface Sf o« The velocity of a point (x,y) on the sur-
face in the direction of the normal to the surface is
given by - F / ( Fi + Fs)% . Here one takes the
normal in the directin ( Fo» Fy ). A particle of fluid

at the same point of the surface at that instant will
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have a velocity component in the direction of the sur-

face normal given by ¥ . grad F = v ( ¥ the velocity

vector of a fluid particle and v = (u,v) ),i.e.

o 2 . 2%
v, = (uF_+ va ) / (F, + Fy) >

where F_=0F /3x s Fy =QF /Qvy & F, =0F /3¢t .

vFor Sf to, be a bounding surface means , of course ,
that there can be no transfer of matter across the sur-
face, Consequently the following equation must be
satisfied:

qu+va=-Ft . 2)

If one defines the " material derivative " by the equatian

DF/ B't =F,  +u FX + v Fy ’

t
then (2) is the same as

DF/Dt=o0. . (2)

(b)The dynamical condition:

The case with which we chiefly concerned is that of
an inviscid fluid without surface tension . In this case
the dynamic condition reduces to the single equation
p(x,y;t) = p, , (3)
on F(x,y;t) = o , where P, 5 in most cases it is taken to be a
constant, either an assumed atmospheric pressure or zero .
But the motion is irrotational and incompressible, one may

determine p explicity (from Bernoulli's equation)

P/f+g"’l+?ft+%(u2+v2)=o. (4)



In the present problem we consider P, = O .+ Then the

dynamic condition which satisfied on F(x,y;t) = 0 is

§t + g"l+ 3( ue + v2 ) =0, (4)*

(2) The boundary condition on the bottom:

Let the equation of the bottom be given by the equation
G(x,y;t) = (y + h - &(x3t) ) =0, for t > 0 . Then in the
case of an inviscid fluid (our case) the condition to be
satisfied on G(x,y;t) = O is the same as the kinematic cond-
ition (2) :

uG +v Gy = - G (5)

i.e., the component of velocity of the fluid normal to the
surface must equal the velocity of the rigid surface in the

direction of its normal .

We complete the state-ment of the boundary conditions by invok-
ing the finiteness conditions ;
1] < oo as lx|—o

and (6)
l’l |<f°° ’ |£5|<:c0 as |x |—o0

The vertical displacement of any fluid particle be given by

H(x,y;t) = v - 8(x,y5t) =0, for t> o0,
then we have

( D/Dt )H(x,y;t) = 0 . @

In our case the motion is irrotational, hence the velocity
say ¥ = (u,v) , at a given point in the fluid may be derived from

a velocity potential @ (x,y;t) according to ;



¥ = grad § (x,y;t) ,

i.e., u="U-+ ¢x , vV = ¢y ,

substituting for u and v in terms of velocity potential in the

expressions (2)', (4)', (5)|and (7),0one finds

(=g * U+ ) = + b, =) (¥ = Uxst)) = o,
(8)

B+ BT+ E (W g 0%+ gl =0,

(= * (U + g ) = v g 50— (3 + b -5(x8) = 0, (9)

and the expression (7) becomes

(ot (U g ) v g ) (y =500uy38)) = 0« (20)

As we assumedabove , that the perturbation potential and
the vertical displacement of the free surface 'Z(X;t) relative
to its equilibrum position , y = o , are sufficiently small to
justify the neglect of all terms of second order - that is to
say , we linearize the equation of the motion and the boundary
conditions . This assumption permits the neglect of £he second
order terms such as ¢i s ¢x‘?x s +eees Hence the boundary cond-

itions reduce to

gl+ $, + U g, =0, . (11.a)

> >
(=g * U= 0= 4y - (11.1)

These conditions are now to be satisfied at y = o.

At the bottom the condition becomes

(12)

( ;:t v tgx ) fi(x;t) } ¢Y >



can be written as

( /ot + U Q/ox )E(x)g(t) = ﬁ; ; at y = -h (12)

The expression for ,é(x’,y;t) = the vertical displacement of

fluid particléis given by

( /2t + UR¥/dx )o(x,y5t) = g, - (13)

To gether the finiteness conditions

|¢|<°° ’ |7—|<°°& |§|<°° as |x|—>oo (14)

THE SOLUTION:

We attack the mathematical problem posed by ( 11 - 14) in
additional Laplacesequation vz # = 0 by invoking a Fourier
transformation with respect to x (eo< x<<5o ) and a Laplace
" transformation with respect to t (0 < t<oo)

Let

S § (x,y;t) exp(ikx) dx ,

-0

Z (k,y3t) »

Fé (x,y3t)

o{ @ (x,y;t) S g (x,y;t) exp(-iwt) at ,

F (x,y;w) ,

nd 2 >0
: 1?525 (x,y;t) = Sdt exp(-iwt) \ dx exp(ikx) 0(x,y;t),
= a(k,y;w) . (15)

Hence, integrating by parts, we obtain

TFC ate(x)/axt ) = (i)™ F(x) ,
(16)
L Cage)/at ) = (1w 2w .



where :;'implies Fourier transformation with respect to x
(oo x< 00) and.Jf implies Laplace transfomation with respect
to t (o tl=0),

Transforming Laplace equation §72 ¢ = o with the aid of
(16) we obtain

Fog - F =0, (17)

then transforming (11) , we obtain

(iw - ikU ) § + g7= o , N (18.a)

and —_ -
(iw - ikU )7 - 4, = 0, (18.D)

at y =»o.

Eliminating °] between ( 18.a & b ) , we obtain
2 7 7 .
- (w - kU) f + g ¢y =0, at y = o. (19)
Transforming the condition (12) , we get
i (w - kU) f(k) g(w) = ¢y (20)

satisfied at y = ~-h .
(17) has a solution
a.(k,y;w) = A(k;w) exp(ky) + B(k;w) exp(-ky), (21)

with A(k;w) and B(k;w) are arbitrary functions of k and w.
Substituting (21) into (19) , at y = o , and (20) , at y=-h ,

we obtain

- (w - kU)Z(A+B) + gk (A-B) = o , | (22)

i (w-kU) f(k)g(w) = k( A exp(- kXh) - B exp (kh)) (23)



Solving (22) and (23) for A and B , we obtain

i (wekU ) F(x) BG) ( gk + (w = kU)D

A(k;w) = 3

k ((W -~ kXU)° cosh kh - gk sinh kh )
and
By = ALY = W) TG) E (w) (gk = (rokD)®)

k((w - kU)2 cosh kh - gk sinh kh)

Hence , the solution (21) becomes

- . . = - 2 .
Fc;ym) = i(w-kU)T(k)z(w) égk cosh ky + (w-kU)~ sinh ky ) (1)
k((w-kU)~ cosh kh - gk sinh kh)

Transforming (13) , we obtain

(iw + (=1k)U) B(k,y;w) = g, s

by substituting for the value ¢ from (24) we get

— = - . 2
:%(k,y;w) . _fl)g(w)(gk sinh ky ; (w=kU)“~ cosh ky) . (25)
cosh kh{ (w-kU)“ -~ gk tanh kh)

let (/<(k))2 = gk tanh kh .

Hence it is better to write the expression (25) as

;g(k,y;w) - __f(k)g(w)(gk sinh ky + (w-k1)? cosh ky) (25;’
cosh kh ((w-(kU+0)) (w-(kU-K)))

From the definition , g(t) is the Heaviside function ,i.e.
g(t) = o, t< o,
g(t) 1, t > o.

This means that the disturbance is suddenly created at the bottom,

hence the Laplace transformation is
oo

glw) =Sg(t) exp(-iwt) dt
—oco
=i/ w .

]
the expression (25) now can be written as
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—

éi (k,y;w) = -if(k) (gk sinh ky + (w-—kU)2 cosh ky) , (25)"
cosh(km-((W-(kU+fi))(kU-f‘))) W

"
Taking the inverse of (25) ( for Laplace transform ) , we obtain

3 i T o AT 2
§§(k,y;t) - Zin's ~iF (k) (gksinh ky+(w-kU)“ cosh ky)exp(iwt) dw

L cosh(th(w-(kU+}£))(w—(kU-fl)))w

in the w - plane , the path L is chosen above and parallel to the

real axis ( fig. 2 )

A Imaginary
axis
=2
L
w=(kU=~ L)
* * =
w=(kU+}L) Real axis
Figure 2
W - plane

1
By Cauchy theorem and Jordon s lemma , we obtain

1

é(k yit) = -if(k)(gk sinh ky + (10)Z cosh ky)
’ ’
cosh kh (kU +/-t)(kU -Iu)

+ -i?(k)(gk sinh ky +(:u(k))2 cosh ky) exp(it(kU+fL)
cosh kh (244) (kU+H) '

_iF(x) (gk sinh ky +(M(k))Z cosh ky) exp(it(kU-M)) (26)
cosh kh (2M4)(kU-/M)

+

Now , the solution of the present problem is of course obtained

by taking the inverse - Fourier transform of (26) ,

oo _.
g(x,y;t) =(1/ 21T)S éck,y;w exp(ikx) dk .
—00

Upon examining the integrand ( the function é(k,y;t) given
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by (26) it might seem that it has singularities at zeros of the
denominators,but in reality one can easily verify that the func-
tion E;(k,y;t) has no singularities when the right hand side of
(26) is taken as a whole , i.e. the integrand is non singular .
Hence,we write the integrand as the sum of a singular integrals
as , |

— - : - 2
ceyo(=if (k) gk sinh(ly)+(kU)T cosh(ly) -1 1
5Ge,y50)=C ey vt cosh (ki) =) (g * EEve

+(-i§(k)) l:gk sinh(ky)+(l1(k))acosh(ky):lX
2|~.L cosh(kh)

it (kUM () it (k-
l:(expj HOTH00) ) (exnlisOa- ))ﬂ . ey

What we wish to do is to consider the contribution of the separate

items in the right hand side df (27) and to avoid any singularities
caused by zeros in their denominators by deforming the path in the

complex k-plane usingindented contours altong the real k-axis , and

then we can use Cauchy principal value ..

Hence, it is better to rewrite (27) as

co
- , 2 :
§(x,y;t)=(1/zn)s (‘éfﬁ‘))(g‘k Slnh(kzg“;}(ll(‘gg)c"s’h(ky))('iﬁf&z;g"‘))dk
-0

(=]
~1F (k) y £k sinh(y)+(0)%cosh (ky) | ,_exn(=ikx)
+(1/zrr)S( vl e k) ) (e
-00

~ikx 1t (kU+H(k))

(k))(gk sinh(ky)+ Macosh(ky))(e
KU+H(k)

M cosh(kh)

w -
+(1/21) S(‘éf ) dk
~00

omikx 1t (kU-fA(k) ))dk
kU-H(k)

‘°°+if(k) gk,sinh(ky)+Lkacosh(ky)
+(1/2m § (43 vl b )¢
-— O

(27)
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Discussion the different integrals:

: _
To evaluate (27) for large values of x and t , it is

]
convenient to rewrite (27) as

E(x,yst) =1+ 4 (28)
where oo
- exp(ikx)
1/ 211)~§°><|(k,y)( T &
+( 1/ 270) S X (k,y) (—XRARX)y (29)
2.0 KD - (k)
and

(=]
J=(1/ aﬁ)s X (k55 (¢ e;ﬁ(iij}(‘g‘; FUD) ) exp(-ikx) die
—_00 2

(=% .
+( 1/ 27") S )(ék,y)( 'Eﬁ“fﬁigig'/l(k)) ) exp(-ikx) dk,

where,

- 2
¢ =if(k) gk sinh ky + (kU)~ cosh ky
'Xj(k’Y) =( a,u(k)) ( cosh kh )

p o =if(k) gk sinh ky + (l—l(k))2 cosh.ky
j}%}k,y) =( 2/1(k))' ( cosh kh )

: 1
We observe that the function %l(k) =(gk tanh kh)? can

be defined as an analytic function in a neighbourhood of the

real axis , and , in addition , the function has no real zero .

except k = o . Once the function [«&(k) = ( gk tanh kh )% has
been so defined , it follows that each of( kU -/ (k) ) and
( kU +[(k) ) is an analytic function near and on the real -

axis , it is important to discuss their 2zeros.

¢30)

(31)
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Roots of the equation (kU = (k))=0 :

In the fig. 3 , we have plotted the functions yl(k) = = kU
and y,(k) = M(k) = ( gk tanh(xn))Z,
Near the origin, i.e. k is very small, the function yl(k) behaves

like (kU) and the function ya(k) behaves like (gh)%k , hence

W1/dk = U, and, dy/dak = (g%,

71892

k==k* k=k* k-
fige. 3

Roots of the equation (kU # i (k))=0
(0%/gh < 1)
As one finds, the zeros of the function (kU #* A (k)) : k = 0,
in addition real roots at k = *k* if the dimensionless parameter

(gh/U%) is greater than unity.
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Asymptotic evaluation of the wave integral:

Case :I . , the infinity depth:

In this case we consider h (the dexth ) —> oco .
But from the definition (k) = ( gk tanh kh )ir , in this

case /L((k):( gk )% .

Evaluation I @

Consider first the integral

oo
(1/ 2’h’)S X {17 Ea‘bf'ﬁ}(‘;; ) dk o
—Sa

This integral can be evaluated asymptotically for large X .
But the integrand has a simple pole at k = k* on the real
axis defined by [kU - ( gk )% =0 , i.e.
* 2
k=k =(g/U)

Note: this integrand is free from singularity at the origin.

*
Near the simple pole k = k , we consider

k=k+ K

where K = Kr + i Ki

= § exp(16)

d . 2 2 \F
an K is a small complex quantity and |[{|=(Kr +Ki )
= g << 1.
S, dk = dK = 1§ exp(i6) de

ioeo, dk = ine .,

expanding jgfk,y) y ( KU - [{(k)) and exp(-ikx) about k = k*,

we ohbhtain
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N Ge,y) = X Ly)
(kU - M(x))= K d/ dk (kU= (k) >

exp(-ikx) exp(-ik*x) exp(-iKx)

exp(—ik*x) exp(-ik}x) exp(P&x) ’

*
i.esy, the integrand about k is

*
'Xl (k. ’Y) *
= exp(-ik x) exp(-i Hr x) exp(_l-(i x)
- *
d / dk(kU-p(k)),
Hence , the convergence depends on the sign of x in exp( Ki x)
if x is positive , then I<i must be negative,

and, if x is negative , then |<i must be positive.

Now to deform the path such that the singularity is avoided
by making a semicircle around the simple pole , the semicircle
must be above or below the real axis , this depends upon the sign

of x . Then evaluate the integral as x —> oo,

(1) x is positive :

For convergenée Hi<: o , hence , the semicircle
must be in the negative half of the complex plan and the

path deformed as shown in the figure,

then, S t eco = pQVUS ) + S coe ’
L o/
i.e., p.V.S L ¥ 4 = S ] coee = S LN s

L S/
S ¢ oo for large x leads to zero like (1 / x) .
L .

=( 1/ 21) (k) exp(-ik*x) *]1 Kde
é —S« % [k 4/ dk (kU - (k)
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* EXP(—ik*x)
=(i/2)'>(l(k ) [ d/dk(ku../,c(k))k:k*:l.
il.e.

. = __exp(-ikx) —_

. * exp(-ik*x)
(-1/2) jKi(k )[:d/dk (U= ;4(k))k=k*] +0(1/x).

(2) x is negative :

For convergence Hi must be positive, this means that

the path must be deformed as shown in the figure,

then we get,

Qo
(1/27) S Xl(k)[ ( ig‘p_(ﬁﬁg ) } dk =
- 00

(i/2) X (k*)[ exp(-ik x) ,Zl + 0(1/%) .
1 d/dk(kU—/x(h))kzk
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-~ exp (-ikx)
(1/277) i Xl(k)[( Wk ) ]dk ,

*
has a simple pole (real) abk k=-k , and free from singularity

at the origin . By similar discussion about the first integral

we can easly see,

(1) x is positive:

For convergence Ki must be negative, and the path

must be deformed as the figure,

we have,
(1/21-\')8 Xl(k)[ ( kﬁxf/iiffxg ]dk ~

(-172) 2 (k) exn(ik x) {|+ 0(1/%)
1 |:d/dk(kU+/LL(k))k=_k

(2)X is negative:

For convergence l(i must be positive , and the path

must be deformed as the figure ,
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we obtain,

e § X o0 [ | ax 2

. * exn(ik*x)
(1/2) X, (= )I:d/dk(kU’f/u(k))kzk* ]+ 0(1/%) .

Now, the value of the integral I,

g ~exp(=ikx) ep(~ikx)
I-= (1/21-7)S'Xl(k,y> dk ( — i{?‘p+ J;u_‘((k)f S ( ligp— /l.j({k)) )

’

when x becomes large is,

(1) x is positive :

. * XD (ik*x ) . exn (—ik*x) *
I =(1/2) X (- )Ei/dk?kU-!-lu.(k))k:k:J —(l/a)E/dk(kU- LT, . ]j(l(k )
+ 0 (1/x)

(2) x is negative :

g ® X (—il*x) . * exp (ik*x) 1
L =-(w/2)X) x) d/ceikl()kU-!-/L{((k)k:_k;l+(l/2)’)<l(k ) 78 (0= 10T, 7]

+ 0 (1/x) .
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Evaluation J:

Consider first the integral

(1/2m Sooxa(k,w[""’“’(‘ik"zkﬁ"iﬁﬁl)“]‘“(k)’] ax .
o0
This integral can be evaluated asymptotically for large x and t.
To do this we assume the ratio t/x or x/t is fixed, so that the
resulting integral contains just one large parameter, either t orx.
Consider x = Vt, where V is fixed and representing the observer
speed, hence, we can evaluate this integral for large t with x/t=V

fixed. The integralcanberewriteflas

bad exp(1tg, (k)
(1/2m) S X5 (kyy) TR ]dk ;
where , gl(k) = ( kU - kV - (k)

( XU - kV - (gk)i’) .

The two functions 3<2(k,y) and gl(k) are analytic and well behaved
in a domain containing the real axis. The integral has

(1) A simple pole at k:k*:(s/UZ). 
(2) d/dk(gl(k))=0, this means that , there is a saddle point at

k=k_,be defined by

ce gy = (U - kY - ()P,

then d/dk(gl(k))= U -V - %(g/k)%,

e« o k= ko’ the saddle point, is defined by the relation

U -v- ek ) =0,

e k= g/ (4(U-V)%)

and  /af (g (k)) = # (8362,
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ot dZ/de(gl(ko)) = 2(U - V)3/g .-

One finds that the value of k ( saddle point ) depends on
the value of V = %/t (the observer speed ) .

From the values of k = k. (simple pole) and k = ko (the saddle
point) one.easly finds that k = k*is a fixed value (real) in the
same time k = ko which it is a variable value depends on x/t:V;i.e.,
by changing the value of x/t the position of ko may be on the right

or onthe left of k* as we see,

(1) V is negative , i.e. x/t< o , we obtain

k <Xk
)
0 ko Q; Real axis
(2) V is positive , i.e. x/t>O , but less than U/2 , then
K & K
6 ko k*. Real axis

(3) V is positive , i.e. x/t>0 , but
0/2< Vv = x/t< U , we have

2
k> k

0 k* ko Real axis

One finds , that,when V = x/t (the observer speed ) is
*
negative or positive but less than U/2 , hence k0<: k i.e. ko
on the left of k*, but when V= x/t is positive and greater than

*
U/2 and less than U , therefore,ko:> k ,i.e. k on the right of K,

The group velocity defined by d/dk (kU - (gk)%)
= U - He/K)?

i.e., the group velocity depends on k (the wave number) .
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Thqrefore, the group velocity appropriate to the wave number k=k*

is U/2 , this means that,the position of the saddle point relative
to the simple pole depends on the observer- speed such as,

(a) If the observer speed is less than the group velocity , the

saddle point lies on the left of the simple pole.

(b) If the observer = speed is greater than the group velocity,
the saddle point lies on the right of the simple pole.

Return again to the integral
o0 exp(itg, (k))
Sfxa(k’y) (W0 | % s
o

expanding sz(k,y), ( %0 -‘l(k)), exp(itgl(k)) about k = k* ,

Consider k = k* + K, where | K l< 1, we obtain

Xa(ksy>: ,Xz(k* sy) ’

(R0 =) & o/de (KU - A,

exP(itgl(k))ZZ exp(itgl(k*)) exp(it gi(k*))

e exP(itgl(k)) exp(itk}gi(k*)) exp(-tKigi(k*))

Hence, the convergence depends on the sign of gi(k*) , in other
words, the semicircle round the simple pole must be in positive
or negative half according to the sign of the function gi(k*) is
positive or negative respectively, i.e.

if gi(k*) > 0, Ky, > 0  and

1 gk < 0, gy < 0.

where, accents denoting differentiation with regard to k .

From the definition
gl (o) =[v - v - 3(e/i)? |
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hence, gi(k*) =0 -V -30=1%0 -V,

We find that, the sign of the function gi(k*) depends on the value

and the direction of the observer velocity,i.e.

(1) If V is negative , i.e. the observer moves in the upstream
direction , gi(k*) is pqsitive, hence,]{i is positive, therefore
the semicircle round the simple pole lies in the positive half in

the complex plane as in the figure,

o Real axis

(2) If V is positive, i.e. the observer moves in the downstream
diréction with speed less than the group velcity, gi(k*) is
positive, hence, kiis positive also. Therefore, the semicircle

round the simple pole lies in the positive half,

0] K k* Real axils

(3) 1If V is positive, i.e. the observer moves with the stream's

direction with speed greater than the group velocity, gi(k*) is

negative, hence, Ki is negative. Therefore, the semicircle round
the simple pole lies in the negative half.

0 k* ko
\/ Real axis
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Now , deforming the path of the integration in every case to

L1+L2~l~L_.5 in the manner of the steepest descent , as we see in

figures.

Figure 3

Deformed path when (i) v< 0,

(i1) o< v iv .

L,

Figure 4
Deformed path when v >iu.
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Corresponding to fig(3) we have

S S FETR SIEL S

i.e., SL = -ﬂg ces t SLZ ee. + 0(1/t)

where the contributions from Ll and L3 are of order (1/t).

_ * exo (-ik*Vt)
Then, SL cee = %17(2(1{ ) [d/dk(ku '/“(k))k—k*} SL ve. + 0(1/8),
= 2

to evaluate the integral S , we use the result (Jeffreys and
1 .
2

Jeffreys ) where the major - contribution comes from the region

about the saddle point defined by gi(ko) = o , hence,

[ exp(igl(k)t) T exp(—ik*vt)
(

o
(1/277) (k) :]dk =~ 3 (k)
_§07<2 kU - (k) ) . 7(2

exp(ig, (k )t)exp(imm) 21T

da/dk (kU _,u(k))k:k*

+(1/2W)7<2(1<o)( (k0 '/‘(ko” )(
+0 (1/t) .

when ,

(1) V is negative.

(2) V is positive anq lessthan 3U.

By the similar manner , fthe cgse in which V is positive and greater

than 3U , we obtain

"
t gy s,)

= exp(ig, (k)t) " exp(-ik Vt)
(1/2*rr)S X (k)[ L ]dk = -HY (k
—e 2 ( kU -P(k)) 2 d

/dk (kU —/u(k))kzk*

Y,

)?

exp(ig,(k_)t)exp(d ) 217 ]
+(1/'211)'X2(1{O)E L2 )( )ﬂ*o(llt)

( kU -f(k )3 t g} (k)
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Similarly , for the integral ,

oo
/27T) y )
(1 _;i'><2(k y E

exp(-ikx)exp(it (kU +f4(k))ﬁ
dk
(kU +A4(k)) ’

it is better to rewrite the above integral as

00 exp(it(g,(k))
w/z2m§ Y (k,y)|§ 2 )]dk :
—50 2 ( kU +fA(k))

where , gz(k) = ( -kV + kU + (gk)%) , .. the simple poleis defined
3*
by kU + (k) = o , leads to k = -k & the saddle pointis defined by

1 _——
52(300) = 0. .
exp(ik Vt)

o0
exp(itg,(k))
et (1/270) SX(R)[ e ﬂdk~ 31 WL( -k )E )
—co 2

(kU +[4(k)) d/dk (kU= L))y

xp(ig, (k  )t)exp(d ))( 2 -t
(kooU -fi(koo)) tg"a(koo)

o .
+(1/2711) X (k°°)l£ )ﬂ+ 0(1/t)
2
when ,‘-
(1) V is negative .

(2) V is positive ang less than 3U .

and :
’ co exp(itgz(k)) v 5 exp(ik*Vt)
(1/zmS X (k,y)& ):‘dk = -3 X (K )[
_d 2 (KU +fL(R)) 2 &/ s (0% JL (k) *
exp(ig,(k_Jt)exp( ) 2 1
*‘1/2'”>X<koo>E , 2 0‘(’ S 3) (% ( )ﬂ’o(l/t)
2 KU + ](k)), _ tg", (k,
e k=k,

when V is positive and greater than U/2 .-
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We have ,
hnd —exp(itgl(k)t) exp(itga(k))
J=(1/a¢r)(s Xa(k,y)E ) + M| ax .
e (kU - (1 (k)) (kU + Le(k))

The values of'J corresponding the different cases,
(1) v<€o , i.e., the observer moves in the upstream direction

. eXp(-ik*Vt) . exp(itga(k))
2 31 X (k mE 31 X, (i m]_z , )
| 2 4/ (=) * d/dke (kU+M(k))) o *

_ exp(ig, (k_)t)exp(Zrt) 2%
_(1/2TT)X(ko,y)E Lo ) (— )“1’]
2 (kU + M (%)), t g (k)
o o
exp(ig,(k, )t)exp(37) 277 '
+(1/2W)X(koo’y)E £—09 —)( )":‘_\ +0 ( 1/t).
2 (kU +f () t gy, )
00

(2) The observer moves with speed V<f%U in the downstream direction

ﬂ»f%i 7(2<-k:y )E

.
exp(-ik’Vt)

exp(ik*vt) ] .
d/dk (kU+H(k)), __\

J:-%i')(a(k* ,'y)E

d/dk(kU-H(k) )y, *

exp(igl(ko)t)exb(%ﬂf0) 217 )%]

(

exp(iga(k Yt)exp(ETY) 2 ar
+(1/21m) X (k% ,)E o0 ( )2 0(1/t).

_(1/2Tr)7(2(ko,y)E

(3)V>o0,i.e.,the observer moves with the stream direction with

speed greater than 3U and less than U (the mean velocity),

exp(-ik*Vt)

. : " ,exp(ik*Vt)
J:%ixa(k ’y)|§ ﬂ-%iﬂx (-k,Y)lE— ]
2 *

d/dk(kU-H(k)), _\ * d/dk(kU+H(Kk)), __\

)( m
(kU —}i(k))k=ko t gi(ko)

i t Ly 2
+(1/2m™) X (ko’y)Eexp(lgl(kn) Yexp(Lrre) i y%
2
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exp(ig,(k_ dt)exp(FiTr ) 21
=00 )( )%}+ 0(1/t).
(kU + [(K))y t g8k, )
00

-(1/211)')L(koo,y>E
2

The simple pole k iik* is defined by the relation
KU ¥ M(k)

0

this leads to,
*
jka( L,y

i

:X:( iKT,y)
2

Hence , the solutionsfor large t and x , in different cases,are

Case (1) : the observer moving in the upstream direction,

i.ee, vCo and x< o s the corresponding solution 1is

| exp(ig, (k_)t)exp(#iTl) 2ar
éé(x,y;t) = -(1/211)’)C(k0,y{5 1 o ) ( )%]

2 (6 -yt k)

o
exp(ig,(k_ )t)exp(&itr) 27"
+(1/2'Tr)'x (koo’y)E 2 00 )( )%]

2 (kU + LLCk))y t eb(k, )

00

+0( 1/t ) .

i.e.the solution from the stand point of an observer moving opossitely

to the stream , will decrease in amplitude because of (l/t)%.

Case (2) : the observer moving with the speed V< 31U in the stream

—

direction, the solution for large t & x takes the form

. exp (i(-k*)x) )
E(x,yit)=-i W (k ,y) |( : )]
1 Bd/de(kU - L))y

. exp(ik*x) |
+17 (K mE )]
1 *
k=-=k

a/dk (kU +l1(k))

exp(ig,(k Jt)exp(Fim ) 2qr
_(1/aw>’7uko,y>E o )( )
2 (kU = (k) t gy (k)
o)
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exp(ig,(k_ )t)exp(Fitl) 2 1
+(1/27) Y (x O,y)E 209 )( )’c‘]
2 ° (kU + (kD) t gk, )
(o]0]
+ 0 (l/t) .

The two first terms represent thesteady-state solution and the

next two terms represent . the transient solution which behaves :

like (1/t)%.

Case (3) : the observer moving with the speed V>3U, but ,<U

in the stream direction , hence ,for t&x are large the solutionis

given by

xp(igl(ko)t)exp(%iﬂ’) 2ar %]

e
(x,y;t) =(1/270 ) X _(k ,y)E ) ( <
S0 fXé © (kU - () t 8] (k)
o

) ( )7
(kU +}1(k))k=koo t gnk )

exp(ig,(k_ )t)exp(#iTr) 2~ P
-(l/Z’Ff)X(koo,y)E oo ]
2

+ 0(1/t)

whichis represented a transient solution¥decays like (l/t)% .

By examining the solution we find that;
(1) 1If V4is negative , i.e. the observer moving in the
éposite direction of the mean stream, he observing only a
system of a transient waves with an amplitude modulation .
which behaves like ( 1/t )% . The same result obtained for
an observer moving in the stream direction with speed greater
than +U and less thén U,
(2) The steady-state solution occures only when the observer

moving with speed less than 3U in the same direction with

the mean stream,
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Asymptotic evaluation of the wave integrals

in a general case

The solution for the present problem given by the expression

é(#,y;t)

1/ )SO:X : )[( -exp(-ikx) )
1/27¢ X, dk
-0 1 wY ( kU +H(k)) ]

exp(-ikx)
)] dk
(kU - Ja(k))
exp(it (kU+MU(k)))exp(-ikx)
( )] dk
L ( kU + M(k))
—exp(it (kU-M(k))exp(-ikx)
]

(kU - M(k))

+

(/27 (X (k,y)l:(
~— 00 1

+

(1/2'n')g X Ge,y)
-& 2

+

<1/aw)57(2<k,y)[(

Through the - previous discussion , we evaluatedthis integral

asymptotically for large t & x , in the case of infinity depth

i.e.y, h —> o9, We have }i(k) (gk tanh kh )%, in this case
1
we consider /4(k):$(gk)7 .But , we like to evaluate this integ-

ral when h has a finfite value.

Evaluation the different integrals:

We consider,

i exp(-ikx)
I, :S X(k,y)[( )]dk
do 1 (kU —}l(k))

. »*
The integrand has a simple pole (k = k ) on the real axis whichisg
1
defined by kU - (k) = o ,i.e., kU = (gk tanh kl)?din the same
time it: is Iree from any singularity at the origin .

For the convergence , consider
*
k=k + K ,
where K is a complex quantity such as |[KI<1l gnd K = §exp(i8)

then dk = dK = 1K d8 .
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*

Expanding ”Xl(k) , (kU -}i(k)) and exp(-ikx) ahout k = k , we

obtain

X yy) = X (" ,y)
1 1

(KU -p(0)) = K a/dk (W0 - (k) *

3
exp(—ikx)::exp(-ik*x) exp(-iH}x) exP(Kix) s

* .
i.e.,the integrand about k=K can be rewritten as

exp(-ikfx)exp(-ier)exp(Kix)

d/dk(kU - J(K))y "

X (s ,y) (
1

we like to evaluate this integral for x is large , for convergence

(1) if x>0 , then Ki<o ’
(2) if x<o » then K.<o ,
deforming the path to.avoid the singularity at k = k* by using
indented contours , the semicircle round k*lies in positive or
negative half of a complex plane depending on the sign of x:
(1) if x<o , hence , for convergence Hi> o ,i.e. the
semicircle lies in the positive half and the path deformed

as in the figure

L'
s A W ——
L K*
e SL' eve = SL ere +/§ eee g
i.e. (1/21'1’)_imxl(k,y)ﬁz(:i;i)))]dk= SL'... -é cee

but , S «es 1its contribution is of order 0(1/t) ,
L'
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exp(-ik*x) )]
d/dk(kU -H(k))y >

and §\... = -%i j(_(k*,y)E
1

hence,

1, =8 X <k*,y)E eip =i ) )] + 0(1/t) .
1 d/dk(kU - (k) _, *

(2) x>0 , for convergence Ki< o, i.e., the semicircle

must be in negative half plane and the path deformed as

i.e. in this case ,

1, = -31X (k" ,y)E
1

1]
AP}
o
+
N\
.
v
.

*
exp(-ik x)

):] + 0(1/x)
d/dk(kU -M (k) . *

The second integral,

oo .
exp(-ikx)
1, = aer § % )| e
- 1 (kU +H(k))
has a simple pole (real) at k:débédefined by (kU + (gk tanh hk)%)
= 0 , but free from any singularity at k = o . By the similar

investigation for . Il one finds :

(1) x>0 , for convergence Ki< o , the deformation path is

shown in the figure

W
T
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] *
exp(ik x)

I, =% X (-k*,y)E )i|+ 0(1/x) .
1 >

d/dk (kU +4 (%)), __

(2) x < o , this means Ki> o for convergence,and the pathnmst

be defdfmed as

*
exp(-ik x)

d/dk (kU +M (k) __

I, = -3 X (-k*,y)E ):|+ 0(1/x).
1 it

The third integral,

i exp(-ikx+it (kU-A(k))
Iy =(1/27) S X(k,y)E ):Idk .

To evaluate this integral asymptotically for large value of x &
t , to carry this we consider the ratio t/x or x/t is fixed, i.e.
the resulting integral contains just one large parameter , either

torx. Consider x = Vt , where , as before , V representing .the

speed of the moving observer . It is better to rewrite the integral

aS,
[~ -]

exp(itgl(k))
Iy = (1/271) S (k,y)E ):ldk .
2 (kU - M(k))

- 00

where , gl(k) = ~kV + kU -~ (gk tanh kh)% .

The two functions fXé(k,y) and gl(k) are analytic and well behaved
in a domain containing the real axis,in the same time the integral
has:

(1) a2 simple pole at k:k*(reanpedefined by the relation

[kU - (gk tanh kh)%]= o , then the principal value of the
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integral is applied.
(ii) a saddle point at k =K§bedefined by the relation

4/ di(g; ()= o .

As the previous discussion , the deformation of the path in the

manner of the steepest descent depends on the position of the
saddle point ( k = ko) relative to the position of the simpie

pole ( k = k) . For the convergence , we expand the function
exp(itgl(k)) about k -k .To do this consider k = k* + K ,where
K is small complex quantity VKl< 1 , K = ¢exp(i®) , by

Taylor's theorem we obtain

exp(itg, (k)) = exp(itg, (i ))exp(iK g} (k" )t)exp(-K gl (k )t) ,

but t > o , then the convergence (and the position of the
semicircle about the simple pole)depends on the sign of gi(k*),
where accent denoting differentiation with regard to k .€onsiderring

the different cases:

() gi(k*) > o , for convergence l<i> 0o , i.e. the semicircle
lies in the positive half of the complex plane.This means that

U-p(x*) -V >0,

I\
V< U= (k*), K*
i.e. V< d/dk(kU - /»‘(k))k=k* ,
e V< the group velocity appropriate. to the wave number

k = k*,
this inequality leads to :
(a) V ( the observer speed ) is negative , i.e. the observer
moves in the upstream direction.
or (b) V is positive and less than the group velocity appropr-

~iate to the wave number k=k*,i.e. the observer moves in the

downstream direction .
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(2) g'l(k*) < o ,then Ki‘: o for convergence ,i.e. the semi-

circle lies in the negative half of the complex plane,

Kk*
./

this means that,
U - (k*) -V <o,
* V > (group velocity)k=k* s

this means that the observer moves with a velocity its value
greater than the (group velocity)k_k* in the dowenstream direction..

The saddle point ( k = koLbedefined by the relation:

d/dk( gl(k) ) =0,
. d/dk(-kV +kU -p(k)) = o ,

* >

i.e. the saddle point myst satisfy- the relation

V = d/dk(Uk "'u(k))k=ko’
this means that the value of the saddle point ( k:ko) depends on

speed ) . There is a connec-

the value of V = x/t ( the observer
hence we have two cases:

tion between V and the(group velocity)k_k, R

(a) V< (groub velocity), .,
V< d/dk(Uk - M(k)))_,

e d/dk(kU - H(K)), . < d/dk( KU - M(k))
. o)

/l' (kO) > //" (k*) ’

From the figure, d/dk( gk tanh kh )éL decreases monotonically

\
from (gh)? near the origin ( k=0 ) , to zero as k becomes large

this leads to the result: the saddle point lies on

(k —>o0) ,
’i.e. k 4 k* L J
(o

the left of the simple pole
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Yy &y
172 y1= (k)

From this discussion , the path must be deformed by the manner of

the steepest descent as in the figure,

The integral 13 has a contribution from its pole to.-gether the

contribution from the saddle point kO , hence , the result is
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' exp(-ik*Vt)
= +i X (&*,y) |( )
2 d/dk(kU - Le(k))y 1 x
exp(itg (k ) exp(£imM) 277
+ (1/21) X (ko,y)[ 1 y ( )%]
(kU -M(k)), t g (k)
o]

+ 0 (1/t) .

(b) V > (group velocity)kzk,

i.e., d/dk(kU -,u(k))k=k > d/dk (kU - 4 (k))
o]

k=k*

« e #'(kb) < e (k*)

this means that ko> k*

Then the path deformed as

The contributions from the simple pole ( k¥ = k* ) and the saddle

point ( k = k Jare given by

exp(-ik*Vt) ]

=~ -3i X (k*,y)[(
L Ld/dk(kU - (k)

k=k*
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) (

exp(itg k_)) exp(aiTr) 2
+ (1/271) ’X(ko,y>[( L0 f{l
2 (kU - (k) t gy (k)
o]

+o(1/t>.‘

By the similar manner , we can evaluate the fourth integral I

Ly ?

e [exp(-ikx)exp(it (kU+ M(k))
I, = (1/21~f>S X (k,y)k - ]dk ,
_0 2 (kU + M (X))

whichcan.be-written as

i exp (itga(k)).
I, = (1/277) S X G,y )]dk >
& 2 ( kU + U (k))

for large t , where
go(k) = ( -kV + kU +ll-(k))' .
The integral has;
(1) simple pole (k=-k*pedefined by the relation kU +M(k) = o.

(2) saddle point (k:ko%bedefined by the relation gé(koo) =0 .

Wle obtain,

exp(ik*Vt)
14’4-’%1,)( (-k*,y)[( ):l
2 d/dk(kU+ A (k))y __yx
‘ exp(ig,(k_ Yt)exp(ZiTr) 21
+ (1/271) X (koo,wE = oo )( )“}]
2 (kU +M(k)) t gslk,,)
oo :
+0 (1/t ),
corresponding to'thecase .. ... . ¢ V is negative (i.e. the observer

moving in the upstream direction ) qr V is positive gpq less than

the group velocity appropriate to the wave number k = ~k*.,

Next,in the case .: *..".: V is positive and greater than the

(group velocity) s We get

k=-k*
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exp(ik*Vt) )]

a/dk(kU + M (k) _ ) x

I, =~ -} 'Xa(-k*,y) [(

exp(iga(koo)t)exp(%i7f)) 21t ) ]
)

(
(kU +M0k)), t gk

00

+ (1/277) Xz(koo,y)E

+0 (1/t)

1 P I3 and Ih in the different

~cases , we get = -solutions corresponding the different cases ,

Now,by adding the values of I, , I
Case 1 :.
In this case,the observer moving in the upstream direction,

the corresponding solution is

exp(itgl(k))exp(%i?f))( 2t j%]
(k,)

g(x,y;t) =~ - (1/27t) X (ko,y)E
_ 2 (kU - (k) o
o)

exp(itga(koo))exp(%rﬂ))( 2 )%]
)

+(1/27) X (x ,y)E
2 °° (U + K (k) - b osb(k
00

00

+ 0 (1/t)

j.€+ any one moves in the upstream direction , he will observe a

system of transient waves tends to zero like (l/t)% .

Case 2 :
The observer moving with the stream direction with a speed

less than (group velocity)kzk* , the corresponding solution is,

exp(-ik*x)
é()f,y,t) = —17((1{*,)')[ )]

d/ak (kU - (k) _, &
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exp(ik*Vt)
+ iX (-k*,y)[( ):’
2 4/ dk(kU +M(K)), _ yx
' exp(itg, (k_))exp(LiTr) 27t
-(1/27m)°X (kO’y)E 0 ) ( )ﬂ
- (K0 -0, t g Qk,)
(o}
exp(itg., (k_ Jexp(£iTr) 24t 1,
+<1/a'rr)7((koo,y>|-f =90 ) ( )2]
2 (kU + A (k) t g3k )
(0]¢]

+ 0 (1/t) .

We find 1in this case , the solution corresponding the'contributions
from the simple poles gives the Steady State Solution, in the same
time the Transient Solution comes from the contributions of saddle
pointsandit behaves 1like (1/t)% . Hence , any one moves with aspeed
less than the group velocity appropriate to the wave number k=k*,

in the downstream direction , he always watching a system of Steady

waves .

Case 3 :
The moving observer has the stream direction and ... a

velocity greater thanm the (group velocity )k the solution is

=k*?

xP(itgé(ko))exp(%iﬂf))( 2ty

e
Exyit) = - (v2m) X (ko,y)E
2

(kU -}i(k))k=ko togl(k)) -

exp(itg, (k_ ))exp(iT) 2
+(1/271) "X (koo,y)l-f 200 ) (— )%—1
2 (kU +;4(k))k=koo t gk, ) -

+0 (1/t) .

representing a system of a transient waves decaying like (1/t)%.
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By examining the solution we find that;

(1) If V is negative , i.e. the observer moving in the oposite
direction with the mean stream , he observing only a system of a
transient waves with an amplitude modulatin which behaves like

( 1/t )% . The same result obtained for an observer moving in the

stream direction with speed greater than the group velocity.

(2) The steady-state solution occures only when the observer moving

with speed less than the group velocity in the same direction with

the mean stream,.
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The Transition Case

From the previous discussion we find that:

(1) Whenr the observer move,with a veloclty less than the group
velocity appropriate to the ﬁave number k = k* and has the stream
direction ( in this case the saddle point k = ko lies on the left
of the simple pole k = k* ) , he always»watching a system of a

Steady waves o

(2) If he moveswith a velocity greater than the group velocity
with the stream direction ( in this case the saddle point lies on
the right of the simple pole ) , he will watch a system of a tran-

sient waves behaves like ( 1/t%) .

The question we now answer is of the nature of the transition
of the wave train when the saddle point becomes’close as we like
the simple pole from the two sides , in other words s When the
observer moveswith a velocity its magnitude nearly equal the group

velocity 3
We have the solution

. 0 —ikx bag exp(itg, (k))
& (73 0)=(1/2m[§ X, (o) ey & -5 Xa069) —gmtey
—co —co

_ %0 —ikX o exp(itg,(k))
+<1/zrr)_S X 1) ey O *sz(k’y) (IR
where , gy (k) = ( -kV +kU -Hk) ) and

go(k) = ( -kV +kU +Hk) ) .

a
ox
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Consider first ( Il -J, )

1

*® -ikx
where , I, = (1/2mW) S 3Cl(k,y) ?EﬁZFREST' dk s
—co

the function ( kU -M(k) ) has a simple zero at k = k* , whilejki(k,y)

is analytic and not zero at k = k* , hence we can write

(U-H(e)) 7 (k-k*) d/dk(eU-H(k)) ) _ + q’l(k,y) ¥

where Cpl(k,y) is analytic functiom at k = k* .

. X4 (k%) S°° o-ikx
e » I 1= ( 1/ 2-“‘) }&:1{* Z k.::-k_-)-* dk

d/ dk (kU-H(k) )

[-%)

+(1/2™m) S d)l(k,y) .
[~ ]

o0

e-ikx

Tk - rry 4k , near the simple pole k=k*

For the integral S
—00

we put k = k* + K , Wwhere K = Kr +1iK, = ¢el® anag=lKi<1 ’

ot dk = dR = 1K de

I

+"s exp(-ikx) = exp(-ik*x) exp(-iKx)

exp(ik*x) exp(-ier) exp(Kix) ’

it is clear that the convergence depends on the sign of x ;ie.
(1) If x is positive , then Ki must be negative , hence we deform

the path as in the figure

Y
.
L
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&
[0]
=
Ao
It
Law)
wN
. 8
+
\ WY

~&
m -0
ioe. P S e e = "So.u + S e e = —16 IS‘ lk*x + O(I/X) »
—co b d L
= —ime 1ETX 0(1/%)

(2) If x is negative , then Ki nust be positive , hence we deform

L
the path as in the figure e N —
k*
[- -]
o.o S.oo =PS--. + S s 00 3
L o 2
o o ikx
then.', P S oo = _§ s s + S Y = iel e + O(I/X)
-0 L
JER Y
= jwe 1ETX o(1/x) .
o .
-ikx
Hence , S T dt = -ivt sgn(x) e-ik*x .
- X (k*5¥) —1k*x
Therefore , I, -iw sgn(x) d/dk(kU"l"'(k))kzk* e + 0(1/%)

[« -]
since the integral Scbl(k,y) ™% 4 vehaves like (/%) .
— oo

exp(itgl(k))
(kU - (k)

o0 ]
Now , the integral, J, =(1/2'“)S'X2(k,y)

-— OO

dk , has
(1) a simple pole at k =K,be defined by the relation (kU-J(k)) = o ,
(2) a saddle point at k =K, be defined by d/dk(gl(k)) =0

where , gl(k) = (-kV +kU -H(k)) and M(k) = (gk tanh(kh) )% ;
for inifinity depth H(k)2 (gk)% .

e B () = (kY ¢ kD -(kp)F )

e a/ar( () = gl (k) =(-VsU-(g/100F) ,
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and a%/a?(e, (1)) = g0k = # ()T 2
In this case ko = (g/h(U-V)a) and k* = g/U2 .

R%(k,y)
The integrand Tl —H(k s, Where ;(a(k,y) is analytic and not

zero at k = k* , .while (kU-MK(k)) has a simple zero there , can be

written as

X, (k) X, (1% ,3) L b
(kU -I»Kk;j = d/dk(ku_p(k) )k:k* (k—K*) + Z(k’y) ’

where ¢E(k,y) is analytic function .

. 5 = /e X, (*,y) S""exp(itgl(kn
ow = (/2™ T dk
A | d/ ¢ dk(kU—H(k))k=k* 4 (k-k*)
co
+ (1/2“)8 (ba(k,y) exp(itgl(k)) dk .
—.w : -~
exp(itg, (k))
First , we consider the integral J!' = S dk ) ’

— 09
where the function gl(k) is analytic and well behaved in a domain

containing the real axis . k* is real and the principal value of
the integral implied . The function gl(k) has a saddle point . The
problem is to estimate the integral ( for large t ) « Then we deform

the path in the manner of the steapest descent,

The contribution from the simple pole i

Near the simple pole , let k = k* + K ’

then , exp(itgl(k)) = exp(itgl(k*) exp(itkrg'l(k*)) exp(-tKigi(k*))
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It is clear that the convergence depends on the sign of gi(k*);

(1) It gi(k*) is positive , thenl{i must be positive , i.e. the
semicircle round the the simple pole lies in the positive half,But
gi(k*) =[}V +d/dk (kU- (k))k-k*] =‘}V + the group velocity appropr-

jate to wave nunmber k=k*],
== "'V + '}U L]

in this case Visless than 2U . From the values of k* and ko y We
find that k* is greater than k, . Since gg(ko) is positive , then
the direction of the path through the saddle point is TI/4 with the

real axis . Hence , the deformed path in the copgplex k-plane is

Hence , the contribution from the simple pole is

o .
-1e|n, exp(ltgl(k*))

= i7 exp(-ik*x)
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(2) 1% gi(k*) is negative , then Ki must be negative , i.e. the
semicircle round the simple pole lies in the negative half . Here
gi(k*) is negative , them V > 1U and k0> k* . Also g'i(ko) is

positive , hence the deformed path in the complex k-plane is

The contribution from the simple pole is
0 .
- 10| exp(ltgl(k*))

= -itTexp(~-ik*x) .

In both cases , the contributions from L1 and L3 are 0(1/t) ,

hence, L o -ik*x exp(itg, (k))
J' = itrsgnlk*-k ) e + dk Gy + 0(1/t).
L2 |
exp(itg, (k))
Now , we consider the integral (k= &) dk

. 2
since gi(ko);é 0 , then gl(k) near the saddle point can be expanded

in the form — e Y2 an
g (k) S gy(k)) + % (k-k )7 gk ) ,
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let k -k =.Aeiu , where A is real and small , and

1}

ip .
n n 1}
gl(ko) Igl(ko)|e , but gl(ko) iz real and positive ,

then - B=o .
. - 2 " 12
e g ) X og (k) T AT e e ,
if we write

gl(k) =u+ iv ,

then , the path through the saddle pointﬁﬂefined by
u-u = % Aa |gg(ko)|cos(3X) =0 ,

v-v, =% G lgt (e )| sin(2e) > o
i.e. (2) =TV2 .
£, (0 = gy () + % A2 [t | T
g (k) + 3 A% jade )

and .A=(k-ko)e-%iTr -

Then , the integral can be written as

exp(-3t gg(ko))? )
A .

where A is a point of L, . The function (digﬁ){gb) can be written in

the form

(ae(N)/aA) _ osim-1 (dk(s)/ds) s,
oy g = (aam , GC)E) 5

where C, is a contour in the s-plane which encloses A only .

1
By enlarging the contour C1 to C2 to'énclose all singularities ,

we have

(ax(A)/daA) (ak(s)/ds) R |
COVET I 7 DN E NS OE ey
C2
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where s* is defined by k(s*)=k* ; since k(}*)=k* ( .°. s*=)* ).
Hence, the integral can be written as
2
I ) »
exp( aﬁgl(ko)Av)
(A - 2A")

' B
= exp(itgl(ko)) S dA
A

B

+(2am ™t exp(itg, (k )) S dA em(—%’cgg(ko))\a) (Elfé?fk*) (S(E)S\) .

G,

Since (k(s)-k*) is bounded away from zero on C, s the second term
here is O(l/t%) o il.e. ‘the first term is the most important part,
and it can be written as
2
- "
exp( gtgl(ko)A )
(A=-2a") ?

(o.¢]
exp(itg, (k )) S dA
—o0
A oo
since the contributions S + S are 0(1/t) .

— 00

Hence , returning to the original integral ( Il - J1 ) , we find

N . X (&*,y)
(Il—Jl) = -iTT |sgn(x)+sgn(lk —ko)] d/dk(kU’H(k))kzk* ¢

~-ik*x

ch(k*,y)

exp(-Ftgy (kA7)
T d/dx (kU-H(k))

A-A*

o0
exp(itg, (k )) A
K=k * 170 OSO

oo oo
+ S le(k,y) e—ikx dk - S dDZ(k,y) exp(itgl(k)) dk
- 00 — 00
since X 1(k*,y) = CKa(k*,y) « Here , the controbution from the

third term behaves like (1/x) and from the forth term behaves like
(i) .
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co exp(-ytg (k ))\)
Now consider the integral S aA

O\ =) ) ?
put 2pn s ) A% =, e A =(2/tg! )E
. S°°d exp(-:}tg A 2y _ Smdil eXp(-H-Z)
2 - ) )
where , Vi =(%tgg(ko))%)‘*

1 N
- - 1 -in/y
=(t (g (k%) =g, (5)))% e ,
since \* defined by the relation

gl(k*) = gl(k ) + %J.g (k ))\ .

Define W(Qu*) =(zrm L de- e‘('u(;tt , which is tabulated for
complex values of the argument M* . In terms of errer fonctin we
have,

2
—*
Wr) = i e ™ erf(ipr) when Imu* > 0
e-}l*z( erf(ip*) - 1) vhen Imp*< O .
It is clear that W(U*) is discontinous across the real axis .

Hence , the integral ( I, - Jl) can be written as

Xl(k*,y)
1,791 = Fax(eo- (&N

l:-i'l'l' sgn(x)+sgn(k*-k ):] o 1k*x
le=k* °

-J\
1

We can write 6k*—ko) and (gl(k*)-gl(ko)) as a function of a para-
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meter ¢ , where ogleiKl o, 1f V = 3U(1+€) , then

k*-k_ = g/U% - (1g/ (U-V)2)

:(25/{12)(-6) s

and g (%) - g (k) =(g/20)(e?) .

Now ,

Xl(k*,y)

- -ik*x
1,7d; = d/ ke (kU-H(k) ), [}iTTSgn(X)+sgn(_e) °

- 27T eitgl(ko) W [e_%irr t%e (%E/U)%:Iilo

4

Similarly, we can get a similar expression for ( I,-J,) , where

2™Y2
(=] [» ]
-ikx exp(itg,(k))
e _ 2
(1I,-J,) = éxl(k’y) Teir Ry ke = Sxe(k’y) RoepGRyy 4k
— —-w *

If € # 0 , and t becomes large , i.e. JA* is large , then the

function W({*) tends to zero and so we find the solution is

~

%)(x,y;t) ~ ><1(k*’y)

373k (KU-PCE)) -2 e 1t €<, (1.0, V< D)

k=k*

0
o

if €e>0 , (i.e. V> XU) (as before)

If the difference (k*-ko) is sufficiently small , the value of

B a/(Ftgl (k) (e*-k ) exp(-£iTn)
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is small 4 The the solution can be expressed as ,

Xl(k*,y)

EG,yit) T gy

TR
-iTngn(x)+sgn(—&)] o 1K*X
le=k*

14 1 1
- 21T oitay (k) E““‘T tZe (%g/U)?]

i.e. in terms of the function W(M*) , which is tabulated , or in
terms of errér function if we write W(Q*) in terms of the error
function . This provides a smooth transition from negative € (i.e.

when V<1U) to positive e (i.e. when V>31U) .
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The Asymototic Solution When t becomes large

and X has one value

Let us fix our attention upon one value of x and let t
increasess , then x/t will decrease , i.e. we examining the
solution j%(x;y;t) from the stand point of an observer stand-
ing at a given value of x. The solutionisgiven by

E(x,y5t) =1 + 4

where

-
1]

©o -
sz § Koo (3] a

B

+

(1/2'rr)S'Xl(k,y) (%‘%ﬁ—lﬁ—))]dk .

and,

<y
1}

(1/270 G X, ) cexﬁ-ig)fjﬁg;g(k‘l*(k)>z| ax

o+

kU - (k)

(r/27) 503(2(1;,3,) T-exp(-ikx)ex’o(it(kU—I""(k))El ik .

e

Evaluation the different integrals:

-
1}

Consider

exp(—ikx)
1 (1/21-08 'Xl(k,y)[ “(;) )| dk

(=ik(x/t)t)
(1/2«)5 X (k, )[e’“’ . ’(‘k> )| dk

)

Finstlz,the fixed value of x is positive:

The functioq[i{l(k,y) / (kU —}l(k)i]is analytic and well
behave near the real axis except at a simplé pole (real) k = k*, be
1
defined by[k*U - [A(k*)]= o ; where [(k)=(gk tanh kh)® .Consider
k = k* +K, where Kis a small complex quantity,i.e. KI< 1 gnd

in polar coordinate K = Sexp(if) .
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Expanding by Taylor's theorem the Iunctionsti(k,y) s (KU-H(k))

and exp(-ik(x/t)t) about the simple pole k = k*, we obtain

X Gey) =z X kYD),

- i~ - Yx
(kU= M(k))= K d/dk(kU - [ ))kzk*

9

and exp(-ik(x/t)t):fexp(-iﬁ(x/t)t)exp(-il@(x/t)t)exp(Ki(X/t)t)-

(x/t) is positive and t>o , then for the convergence Hi must
be negative . The integrand has a simple pole (real) , then the
principal value is implied and surrounded the simple pole by

semicircle in the negative half and the deformedpath.is
J

k-l

__—_——_—*""‘*-~__:ii%,¢—"”"-"___

It

(/270 § X, o) [(exn(-ik(x/t)t)—\ldk G O
-% L '/

1

\

i.e.

kU - (k) i

o

But , S seee tends to zero like 1/t and
Ll

xp(-ik(x/t)t) 1. exp(~-ik*x)
(1/2'”)8 Xl(k’y)‘ze(ﬁu - F(E) ﬂdk = h,xl(k’y)Ed/dk(kU-}l(k))k_k,)]
N/ =

Then we have, 11:-%ixl(k,y)\gdfgi?égfﬁfg)k k*):l+ 0 (1/t) .

Second%ﬁhe fixed value of x is negative:
In this case x/t approaches zero through negative values as

t becomes large , we obtain

~ 1 exo(-ik*x)
5= ?lxl(k’y)Ed/dk(kU -y(k))k:k*{l\+ 0 (1/t) .
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Consider I, =(l/2ﬂ1§°’xl(k,y)(%{%-)dk ,

by the same manner we can evaluate 12 as t becomes large,we get

For x >0 ,

~ . exp(ik*x)
1p~ _%I:Kl(k’y)E@/dk(kU+FKk))kzki]+ 0 /e,

for x<o ,

~ . " exp(#ik*x)

k

o

Let, Jy = -(1/277) S f(k,y)eXp(igl(k)t) dk ,
-— 00
where f(k,y) =EXé(k;yb/kkU-H(k)ﬂ js analytic round and on

the real axis except at the zero of (kU - u(k)) = o , also gl(k)
is analytic and has a saddle pointbedefined by d/dk(gl(k)) = 0 ,

where gl(k) = (kU-M(k)-x/t k) , then

) d/dk (g (k)) = d/dk (kU- (k) - x/t ,
(U -pr(x)) - x/t ,
"“"(k-) >0

here, the primes denoting the differentiation with respect to k.

a°/ax® (g, ()
The saddle point defined by the relation
d/dk (g,(k)) = o ,

i.e. (U - (e ))]= =/t

(1) The fixed value of x is positive:

As the time t ihcreasing as
we like , then x/t approaching to zero through the positive values.
This means , as t—> o2, (U;pv(g)) decreasing through positive
quantities , from the definition,U has a constant value and
positive (the stream velocity), hence ,'1'(ko) incressing with

the time .
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In the case of infinity depth @

1

(gk)-z ’

+ (g/k)% .

J(x)
e (k)

But , PU(ko) = % (5«;/1&0)%-r increasing as the time t increasing, this

means that the value ko assocaited with the fixed value x will
decrease, passing with k* (the real simple pole ) and the mimi-
mum value for k_ is k (where k is given by the relation Pk )=U

then km:g/QUa), hence, the range of k  is ( km,oo) .

> k

k k*
nm

( yé:U ) (fixed point)

Consider k = k* + K, phere K is a small complex quantity ,
expanding the function exp(it(kU-F(k)—x/t k)) about k = k* by
Taylor, we get

exp(it(k*U-M(k*)-x/tk*)exp(it Kr(U—}.u (k* ))-X/t)exp(—Ki(U—f-L' (k*3-x/t)t)

Thé convergence depends on the sign of (U-p (k*3 -x/t) in the
function exp(—tk&(U;H!(k*)-x/t», t is positive , then wehave
two cases 3
(1) d/dk(Uk—H(k);k:k,< x/t
i.e. the group velocity avnpropriate to the wave number

k = k*less than (x/t),



Wow

the

the

the

U ) U ()

ieen, UG > AN() .
then , the saddle point (k = ko) lies on the right of the
simple pole ( k = K* ) . For the convergence corresponding
to this case H& nust be negative , then the semicircle round
the simple pole lies in the negative half of the complex -

plane . By deforming the path in the manner of the

steepest descent as shown inthe figure

s We can write

contributions from eve andg «eeo lead to zero like(1l/t),
L L
3
-

contribution from S

1
contribution from S «ss comes from the simple pole,
«e« comes from the saddle point .
2

L

We have ,



L . ~ exp(i(=K*)x)
Jl"‘—%lXZ(k »Y) Ed/dk(kU',u(k))k=k*)]

exp(itgl(ko))exp(%m) 57 1
. [o)

+ 0 (1/t) .

(2) Ei/dk(KU -},{,(k))k:k*]> x/t

i.e., the group velocity appropriate to the wave number

k = k* greater than x/t .
o.o U -H' (k*) > U -}IL'(kO) ’
then , },L"(k*)< L G )

( km< k0< k* )

For convergence, Ki must be positive ,then , the deformation

pathisgiven in the figure
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then, we get

~ s * eXD(—ik*X)
Jl = 3i Xa(k »Y) [(d/dk.(kU—}i(k))l ~ *)]
=k

: eXp(itgl(k0)+-&1“lT) 5 "
+(1/2'1'r))(2(=<0,y)E 0 '/"‘(k))kzk ) (¢ 8'1'(ko) )Z
0

+ 0( 1/t ) .

(2) The fixed value of x is negative:

From the definition of the saddle point we have

U -}A‘(ko) = (x/t) |,

but , x/t is negative , .". [U —Iu'(ko)]< 0

i.e. , }4'(ko) >u , ¥y =kU
_ 75=R (k)

yll

km k*

( ¥y4=U )

The values of ko corresvonding this case are less than the value

of k* and the path deforming as in the figure
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e
t

~ . . exp(k*(-iX))
1 ?1:K2(k ’y)[}d/dk(kU7“(k))k=k*)]

xp(itg, (k )+iim)

. (12X, (k)= ) (B >‘3“‘ ”
2 %o 0Y kU -£0(6)), .t 8l (k)
[o]

By similar discussion we can evaluate the integral J2

o
i= (1/2 )S ’Xz(k’y)EExp(-ikx + it(kU+/u(k)))]dk ,
—-00

(k) + kU)

the integral has a simple pole (k=-k*pedefined by the relation
(kU +f4(k)) =0 , to gether a saddle point,begiven by
Ei/dl{(l{U + (k) - x/t )]: o .



The Asymptotic Solution in Different Cases:

Case 1 :
In this case , We consider
x/t is positive,and the group velocity,appropriate
to the wave number equal the simdle pole,is.less
than x/t , i.e.,EJ —},L' (x* )]( ¥/t .The correspond-
ing solution is
3323-(1/2“T):Xé(ko’y)[}exii;tfiiiﬁz)+ %lTO"t GG ))%1
k:ko 17

exp(ite,(k  J++i7r) >t %:\
W0 e, ¢ T eate))
Qo

+ (1/2ﬁ)9<2(k00,y)|3

+0 (1/t) .

In this case the contirbutions from the simple poles are

cancel , then by exaﬁining the given solutionfrom standpoint

of an observer stationed at a fixed value of x will then observe
waves of continually decreasing wave number ( increasing wave
length ) moving by with phase velocities appropraite to their
lengths . The gross outline of the waves will pass the observer
at the group velocity appropriaate to the wave number present at

the moment , and , of course , the amplitude is decreasing as

( 1/t )le .

Case 2 :
In this case x/t is positive but (U - A k) > x/t
and the wave number k decreasing through the interval(km,k*)

iced( g/4U2)< k < (g/UZ) y the solutionds given by



Goyst)= -1 X (e, >E R g )]
5 X,y 1 1 7Y d/dk (kU —/L‘(k)>k=k*

. exp(ik*x)
+1 X (-k ’y)Ed/dk(kU —#(k))k=_k*)]

exp(ig, (k )t + #iT) 5 e ,
) (= )z
0

explig, (k )t + 4 . ;
+(1/2T() Xa(kooaY)E (kU¢+ ﬁ?k))kzk )(t gna(koo))—ﬂ
00

~(1/277) Xa(ko,y)E

+0(1/t) .

In this case the contirbutions from the simple poles represent-
ing a2 system of Steady waves , then by examining the above

solution from the standpoint of an observer stationed at a fixed

value of x will then observe a system of steady waves

Case 3 :
The fixed value of x is negative , the corresponding

solutionis given by

xp(itgl(ko) + %iTT))( >ar )%
(kU - (k) ) t gh (k)
o]

: exp(itg,(k ) + Ti7T) > 1t 1
+(1/2'TT)XZ(I‘COO,Y)E (kU +fu'(k))k=k )(t g..a(k ) )?
00

e
§;(X,y;t)==—(1/211):(2(k0,yii

+0 (1/t) .

In this case the fixed value of x is negative , as t increase ,
then x/t will tend to zero through negative values , but

U —“'(ko)]= X/t ,i.e., !_,L'(ko) > U . Then , as the value of
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x/t —> 0 _,the value of ko will increase in the interval

(o, g/L|.U2 ) By examining the solution from standpoint of an
observer stationed at a fixed value of x (negative in this case),
the observer will then observe waves of continually increasing
wave number (decreasing wave length) moving by with phase veloc-
ities appropriate to their lengths. The gross outline of the waves
will pass the observer at the group velocity appropriate to the
wave number present at the moment , and , of course , the ampli-

tude is decreasing at ( 1/t )%.

In this problem we fixed our attention on one value of X and
let the time t increases,then we investigated the problem in differ-
ent cases ;

Case 1: x/t is positive and greater than ( U - pu'(k*)) , from
standpoint of an observer stationed at a given value of x , the
observer will then observe waves of continually decreasing wave
number through the interval ( %n,oo) i.e. increasing wave length,

and the amplitude is decreasing as ( l/t)%.

Case 2: x/t is positive and less than ( U —}1'(k*)) , from stand-
point of an observer stationed at a fixed value of x, the observer

will then observe a system of steady waves.

Case 3: x/t is negative . An observer stationed at x will then
observe waves of continually increasing wave number through the
interval ( O<:k<:g/4U2) s 1.e., decreasing wave length , and the

amplitude is decreasing like ( 1/t )%.
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Generation Of Waves In Rest Fluid (U=0)

Due To Initial Disturbance

At The Bottom

In the previous discussion , we investigated the generation
of waves on a running stream ( U % o ) due to initial disturbance
(suddenly) at the bottom « Now we like to discuss the same problem
by considering U= 0 ,i.e. we can estimate our solution from ther

general case } by putting U = o « The corresponding

solutionis given by

Ex,y;t) = (1/24T)_§a (-;lijgia )((ilgsiiﬁﬁ ky))]exp(—ikx) dk

. (1/27r) S[ if(k) _y gksinh ky +#cosh ky:lexp(lt‘u(k) —ikx)dk

aqu(k)) cosh kh
+(1/2Tf) S if(k) (nglnh ky +PL2COSh ky ) .
[agu(k)) cosh kh Nexp(-itH{(k)~ikx)dk

Evaluating these integrales for large x and t , it is clear that
2ll integrands are well behaved functions and all free from any

singularity at the origin .

The first integral , I1

= (1/277) S [ lf(k) ggoiinﬁhkxi]exp(-ikx) dk
(P(k))

has not a saddle point , and integration by parts , one can find

I1 behaves like ( 1/x ) .

The second integral I2 ’
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if (k) gk sinh ky +#2 cosh ky . . .
(I/ZTr)S[Z([.L(k)) )( P _;,eXp(ltP.(k)—lkx) dk,

here , consider x = Vt , where V is held constant equal the

observer speed . Hence , the integral has a saddle point,be defined
by Ei/dk(,J.(k) - Vk:):l: o , i.e. the saddle point K=k mustsatisfy the
relation Li'(ko) = V = x/t , the prime denotes the differentiation
with respect to k , here , FL'(ko) = the group velocity appropriate
to the wave number k = ko « For t is large , the asymptotic expre-

ssion for I2 given by

2
.= . gk _sinh k_y+H(kx )cosh k y
':(1/217)E 11lc) y(Z o o Hikg 2 2

R . 211
03 e ke k] (E
where , gl(k) = (M(k) - vk ) .

By similar manner , for the third integral 13

.= . 2
= (1/277) [ if (k) )(gk sinh ky +M#“cosh kyjexp(-i (k)-ikx) dk,
_Z 2(#(}{)) cosh kh F

we have the asymptotic expressmﬁwegrven by

1;] exp 1g2(k )+41'“'J (-t—'g'i.-(:rr))
00

_ 1F(k) gk sinh ky +#Zcosh ky
~(1/2’n‘{(-2(l-((k))2. cosh kh )

where , g,(k) = (k) + Vk .
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Then , the asymptotic expression for the solution,gﬁx,y;t) as

t and x become large,isgiven by

BGyst) = (1/2«)[( iF (k) (gl sinh ky +UPcosh ky I){_k-]x
2(M(k)) cosh kh %o

X [exp(itgl(ko) + %in)'(E—gi%%zj—fz_

+ (1/2?1)[} if (k) 2(gk sinh ky +Flacosh ky) ]
2(}10{)) cosh kh kzkoo_

. . 2T %
X [.exp(ltga(koo) + %1“*)'(:E;?g3§;;;)?]

+0 ( 1/x)'§.

Here , we are examining §>from the standpoint of an observer
moving with group velocity lj!(ko) , the gross outline of waves
will appeareconstant in form , but decreasing in amplitude

because of t-% .

For the values of V ( = the observer speed ) for which
no solution to [d/dk ( (k) - Vk i]= o exists , i.e. there is
no saddle point , it is easy to find , by integration by parts

that the asymptotic expression for £ vehaves like (1/t ) .

The solution at the free surface when U = o,be given by
putting,in the above expression forgé(x;y;t) when U = 0o , y=o

we obtain
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'yz_(x;t) -_-g(x,o;t) =(]_/2’\‘f)—§°(-é-3é—z—é———§)ml—) eprit}.,((k) - ikx)]dk
+(1/277) S (Ei‘f—éﬁr) exp[(—it’.k(k)-ikx)] dk .

The asymptotic expression forﬁZ(x;t) when t and x become
largeis given by holding x/t constant , then we have
(1) If x/t satisfied the relation Ei/dk(},t(k) - x/tk)]: o , in
this case The solution behaves like ( 1/t )% .

(2) For values of %/t which no solution to El/dk(;,((k) - x/t kj)]=o

exists , the corresponding solution behaves like 1/t .
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The Vertical Displacement Of The Free Surface

At FThe Origin X=o0 and t —> o°

The corresponding solutionis given by

2cosh kh

+ (1/277) S (Ezlﬁﬁkig) exp(-itp(k)) dk .

7 (o5t) = (1/277) S () ) exp(itp(x)) ax

where , Li(k) = (gk tanh kh)% is a monotonic function as we
know , i.e. d/dk(pgk)) f 0 o Therefore, the asymptotic expre-
ssion for the vertical displacement of the free surface at the

origin behaves like 1/t .
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Generation Of Waves In Still Fluid

Due To Initial &Smoothly Disturbance

At The Bottom

In all previous discussion we have investigated the wavy;-
motidns creating from initially and suddenly disturbance in the
bed of the fluid, we used the Heaviside function to define the
initially suddenly deformation at the bottom. We like here to
discuss the same problem , when the initial disturbance occurs
smoothly,in this case.we replace the Heaviside function by other
suitable function ( gl(t) - ga(t) ) , combination of two functions

(1) gl(t) is the Heaviside function, i.e.

gl(t)' o t< o

gl(t) 1 -t >0 ,

(2) g,(t) 1is defined by

g-(t) =o t< o,

82(t) =3(1l+cos 2t) o t<W2 ,

g,(t) =o t>T/2 .
Neqy(t)
t>

|

Ne,(t)

.\ N
o Tt
2




X - 68 -

v

Formulation:

We consider that the density and the viscosity in the
fluid are neglected . The motion - originally started from rest-
is irrotational amd can be described by a velocity potential

ﬁ(x,y;t),therefore the governed equation is

Vi,y Flxy) =0 .

The Boundary Conditions:

Due to the linearization theorem , the
boundary conditions become,

(1) At the free surface ( y = o ) we have
(a)  TUx, )/t = F (x058)

(6) 7 Flx,0;t)/ Dt + g7(x;t) =0 .

(2) At the bottom ( y = -h ) we have
g, .

where &(x,t) = f(x)g(t) ,

'Bé/'bt

f(x) is defined function , -

and g(t) = gl(t) - ga(t) .
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To.gether the finiteness conditions

[¢ l as |x| —> oo

I &5 as |x| —> o °

We note that °Z='7(x;t) representes the vertical displace-
ment of the free surface,

and é; =j§(x,y;t) representes the vertical displace-

ment of any fluid particle at any

depth .

Using the techinque of Fourier transformation and Laplace

transformation ,
o

oo
( S dt exp(-itw) S dx exp(ikx) ) .
[o] —_—0
Applying this to the Laplace equation , we obtain

= 2——
Py ~ K =0,

provided p’&ﬁx —> 0 , as Ix|—> o0

This ordinary differential equation in y has a solution

Fe,y3w) = A(k;w) exp(ky) + B(k;w) exp(-ky) ,
where A(k;w) and B(k;w) are arbitrary constants .

Then the transform is applied to the boundary conditions at

the free surface (y = o) and at the bottom (y=-h) , we get

iw F(k,05w) + g(k,w) = o ,

at y = o
iwﬁi(k;w) -‘ﬁ&(k,o;w) =0 ,
iw T(k)g(w) = F(k,~h;w) at y = -h

Eliminating ’z between the two conditions at y o, we obtain
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(iw)a,@/-*- gﬁy = 0 .

Inserting the wvalue of @ in the single condition at the free sur-

face and the condition at the bottom , we get

—w (A+B)+gk (A-B)=o0,

and

iw FOOEMW) =k (A e 50 _ g P

by solving for A(k,w) & B(k;w) , we obtain

TS 2
AQksw) = E}Wféi)g(w)) ( égk + w7) ﬂ ’
(v“cosh(kl) - gk sinh kh)
and
. o= - 2
B(k;w) = E}Wf§§>g(W)) ( 2(Ek = v ) , jj .
. (w"cosh kh - gk sinh kh)

-

Hence , the expression for P(k,y;w) is

iwf(x)g(w) (gk cosh ky + w’sinh ky)']
2

ﬁ(k,y;w)=[

k cosh(kHs (" - gk tanh kh)

The vertical displacement for any fluid particle’is given by

fgt (x,y3t) = ﬂ;,(x,y;t) .

By Fourier - Laplace transformation , we obtain

iwf(k,y;w) =ﬁ'y (k,y;w) .

Then ,

f(x)g(w) (gk sinh kY + wScosh kY) ]

£@s,y;w) =[

cosh kh. (w° = gk tanh kh)

we have , g(t) = git) - 8ft)
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by Laplace transformation we get

glw) = él(w) - éa(w) ,

f(k)él(w) (gk sinh ky + w° cosh ky) ]
( W’ —flz(k)) cosh kh

-.o —g-(k,y;W) = [

[:f(k)éa(w; (gk sinh ky + w>cosh ky )J
+

( we —}La(k)) cosh kh

where M(x) = ( gk tanh kh )% .

One can easy find ,él(w) = ~i/w, and

= W,
1 + o—iW /2

!
b+ (iw)?

éa(w) =|}i/2w)( g~ iv/2 -1) +(iw/2)(

Rewritting the expression of ,g(k,y;w) , we have

— -if(k) (gk sinh ky + wacosh ky)
Ek,y;w) = [ }
w (w- ) (w+ M) cosh kh
1T (k) ( e_iwﬁye—l) (gk sinh ky + wacosh ky) 7
+
L 2w (w-M) (w+M) cosh kh .
Fiwf (k) (1+ e—iw“Va) (gk sinh ky + v®cosh ky]
+
| 22 -~ w)(2 + w)(v - (w +M) cosh kh .
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Taking the inverse of Laplace transformation, we obtain

g ~T(k) (gk sinh(ky) + wocosh(ky)) e™"®
g(kay;t)=(1/2“‘) S dw
[ wiw -}L) (w +H) cosh(kh)

if (k) (e—iwﬂ72_1) (gk sinh(ky)+w2cosh(ky)

eiwt

dw

+(1/21)
* é 2u (w - (w +}) cosh(kh)

~iwt/2

if(k) (1+e Yw(gk sinh(ky)+w2cosh(ky)

eiwt aw

+(1/24)
é 2(2 -w) (2 +w) (w =H) (w +H) cosh(kh)

In w-plane, the path L is taken above and parallel to the real

axis as 1n the figure

Imaginary axis
A

- -2 2 e Real axis

W - plane
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By Cauchy theorem and Jordon's lemma we obtain

E r-if(k) (gk sinh kh):l
(k,y;t) 4

L —/L_a cosh kh

r-if(k) (gk sinh ky +(—f")2cosh ky)‘}

-ith
H e
R (—/")(—2/“') cosh kh -
[—if(k) (gk sinh ky + }1—2 cosh ky ) it
+ e
(2/“) cosh kh -

+-i?(k)(e—i'rff72_ 1)(gk sinh ky +Fcosh ky):lei,“t
5 (2 #£)(2 cosh kh) ~
_i?(k)(ei'ﬂ/"’/a_ 1)(gk sinh ky + (- #)%cosh ky)] it
+

B 2 (_/u)(_a/t) cosh kh -

1200 () (e ™ #72) (g simn ky+ PPoosh ky)- itp
+ e

- 2 (2f)(2-p)(2+ ) cosh kh -

JEE00 (< A (1463FY2) (pi sinn wy+ PPeosh ky_)zl it
= 2 (-2f*)(2-f4) (2+f*) cosh kh

It is better to rewrite the above expression as

E(k,y;t) = [

-if(k) (gk sinh ky)]
(—/42) cosh kh

- 2

-if(k) (gk sinh ky + h kh) .

+[ i g szn y + HF cos ]E AR, -ita ):l
2/" cosh kh o

[J.?(k)(gk sinh kh+ f‘acosh ky)](
+

: [eit;t (c1re=i#2y
L /M cosh kh

v eIt (L1 4 eiﬁﬁ/ail)

2
~1¥F lk sinh k; h k i -
+[ Rl y+fi =F y)-k[eit/l'(l + e—rﬂ/‘/Z) +

4(2+/LL)(2,_/4C) cosh kh _]

b eIt (g, eiaf/‘/aﬂ)
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One can easy find that the expression for the solution %(k,y;t)
free from singularties when taken as a whole . It is suitable to

write the above expression for fg(k,y;t) as

if(1) (gk sinh ky)

E (k,y;t) = (/2 | ¢
fL cosh kh

- . 2
_ (if(k)(gk sinh ky +M“cosh ky))( eitH-_ e—it}L)

2 cosh kh
- 2
if(k)(gk sinh ky+ cosh ky) . LT
+( H y (Tt (L4~ W72y
L4 cosh kh
e omith (g 4 1HT72y,
~1T(k) (gk sinh ky+[LZcosh ky) 1 1
+( )( - }x
16 cosh kh M+ 2 M- 2

y E JAH (. iRy ath g, ipT2y ):,.

Taking the inverse of the Fourier transform , we obtain the

solutionf%(x,y;t)

*® 1T(k)(gk sinh ky) omikx
~£§(x,y;t) = (1/271T) S ( I ) dk
—00 cosh kh

2
if(k)(gk sinh ky+ sh ky)
g n co J —(eity'+ e'itFL)+

+(1/2Tr)—§L 2 }i? cosh kh

; [eit}L (-1 + o-iH72y | -itl o, eiwf/a)] g-ilkx di

L (1/27r) S[-ii‘(k)(gk sinh ky+ [UPcosh k) ] X

16 cosh kh
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SR (1 4 omIHT2 ) -ikx
: J=
(2+ M)

if(k)(gk sinh ky +}l? cosh ky)}
X

+ (l/ZTT)S [
- 16 cosh kh

e_itp'(l + e%ipjr) e ~ikx
[ ]dk s
(K -2)

all integrands are well behaved near and on the real axis

and free from any singularities at the origin as well as at

M) =x2

The corresponding expression for the free surface 4Z(x;t) sis

derived from the expression for'fi(x,y;t) by putting y = o

% 3 I3
?(X,t) =§(X,O;t) = (1/277) S .(—;'%i%m) -( elt}"'*‘ e—it}-")
—co
(et (c1ae HIT) I (FITLy ) mikx
dk

©o 1slar
1F(x) M2 _eiﬂl(lwve'?ll‘L ) e tkX
+(1/27r) S (¢ eomm ) = +}1) e

) dk

- co

+(l/ETT)S( 1T () K2 )(e_itp(1+e%ﬂx“) o—ikx
~éo 16 cosh kh C(=2+ HO)

) dk .

This integral can be evaluated asymptotically for large x and t .
To do this we assume that the ratio t/x or x/t is fixed , so that
the resulting integral contians just one large parameter , either
t or x . Carrying this program , we consider x = Vt , where V. is
ﬂeld constant representing the observer velocity , the different
integrals contain exponential factors like.exp(igl(t)) and

exp(igzﬂg)ﬁz, where glat) =HJik) - Vkjand g, (k) 4Ll(k) + Vk].

-~
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In the complex k-plane , we must deform the paths of the
different integrals in the the manner of the steepest descent
vassing through the saddle points whicharedefined by
. d/dk (M(k) - VE )

d/dk (gl(k)) o ,

1
o}
-

and d/dk (ga(k)) da/dk (}L(k) + Vk )

hence , the saddle point k = ko must satisfy . the relation
da/dk (}L(ko)) = V and the other saddle point also must stisfy
the relation d/dk (LL(kOO)) = -V ., This means , the observer
velocity eaqual the group velocity appropriate to the wave

number k = * ko and k = k » The asymptotic expression for

00

" (x;tis given by

"L (x,t) =(1/2T0) E’a‘%ﬁ“’ (-1+ (-F+3e 2T

Ky 2 ~Fip™ 1gfk Jt+EIT \
+ (—lf(k) H )(l +o ) e o i ( P )_2_
16 cosh kh 2 + T
' M e gy (k)
o
+(i?(k)PLZ ) (& ;e%iHT3 .eigﬁkoo;t+ii“< 27T 3
16 cosh kh - ¢ F_EQG{;;T
o0
+0 (/t ) .

Let us examine the asymptotic expression ; if x/t is held -
constant while t increases ,then clearly one must set x :}U(ks)t,
where ks=k0 or koo,i.e. wve are examlnlnng from the standpoint of
an observer moving with the group velocity fk'(ks) . The gross

1
outline decreasing in amplitude like (1/t)% .



- 77 .

For values of %/t = V which no solution to the relation
}L'(k) = V = x/t exists , it is easy to show,by integration by
parts,that *7(x;t) behaves like (1/t) .

These resuits are exactly identical with the previous results which
we have obtained before , in the case of suddenly disturbance at

the bottom .

The Behavior Of The Vertical Displacement Of

The Free Surface At The Oripgin X = o

As t Becomes Large

The cdrresponding solution is

7 (o;3t) = E(0,0;t) —(1/211’)8(%55_1;})175) E(eit}i comithy

+eit}1(__1_ +_3_e—'5‘i|.l."") +e—it|.l.(-%'+e%ipﬂ_):]dk

itp “JipT, -
+(1/2,W)S["lf(k)p’ ) ( el ( 1 + e ) ) dk

16cosh kh 2 + | ’]
F (K M2 '- oith (1 + %ipﬂ) N
+(1/av>8rlgcm =) ( = 5 )| ak

The integrands are well behaved near the real axis and on it in

1
the k - plane , also the function M(k) =(gk tanh xh)? is monotonic
in ¥ , then we have d/dk}l(k) 4 o , by integration by parts , one

finds that 7/ (ojt) behaves like ( 1/t )



Conclusion:

WVhen a disturbance is initiated at the bottom of still
fluid by suddenly or smoothely deformation of the bed , the effect
is in general the creation of waves in the fluid and on the free
surface . By . examining the asymptotic expression for the
solution in both cases from the standpoint of °*

(1) An observer moving with group velocity , the velocity which
satisfied the relation d/dk}i(k) = x/t .

(2) An observer moving with the velocity for which the relation
d/dk}L(k) = x/t has not a solution.

(3) Ah observer standing at the origin .

the given results in. both cases are basically identical .
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Flow Over An Infinite Step At The Bed

Of A Uniform Stream With Free Surface

In the present problem ( as previous problems ) we like to
examine the creation of waves through and at the free surface’
of the fluid , due to a suddenly appearance of a step at the
bottom of a stream flowing with a uniform velocity U . The
problem is based upon the usual assumptions of classical hydro-
dynamics , i.e. the fluid is invistid and of uniform demsity ,
and the motion is irrotational -can be described by the velocity
potential - , monlinear terms in the equations of the motions are

neglected . It is also assumed that the motion is twd-dimensional.

The governed equation;

The governed equation is

v° dxyit) = o,
y

Xy

where the potential @(x,y;t) = Ux + ¢(x,y;t) % the potential
¢(x,y;t) corresponding the disturbance velocity potential . Then

the problem reducesto find the solution of

§72 g(=,y;t) = o , to-.gether,
X,y

'~ The Boundary Conditions:

(a) At the free surface (y=o) ;

(1) the dynamical conrdition is

¢t+U¢x+g”Z:o’



where *] = "}(x,t}is the elavation of the free surface .

(ii) the kinematic condition is

(Bt +UO/3x )77(x;t) = 'dy .

The disturbance at the bed.isdefined Dby

é(x;t) = b f(x)g(t) ,

where , | f(x) =0 , x< o
=0 , x> L

and , the function -g(t) is the Heaviside function ( to represent
the suddenly effect ) .

Hence , the bottomis described by

y=-h+ b f(x)glt) , where b<h

therefore , the condition at the bottom (y = - h ) is

(7d/2t + UD/2x ) bf(x)g(t) = gy -

The vertical displacement for any fluid particie is given by

v =&(x,5;t)

then , we have the relation

(2t + U/ 2x ) S(x,y5t) = g, (x;7,t)
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Y

—_—
U
y=-h b

Applying Fourier - Laplace transform

oo (= <]
( S at e~ ItW S dx olkx )
(-]

— 00

on the problem , we note , the function f(x] is defined on the

interva%b( -0 x<eo) and its absolute integral is convergent,

i.e;o S ]f(x)ldx<:co , this leads to the existence of the integral
f(;? exp(ikx) dx = F(k) = (1/ik)( -1 +exp(ikL)) , then we get

—0

an expression for g(k,y;w)is givenby

i(w-kU) bf(k)g(w) ( gk simh ky + (w-kU)coan ky )]
’

Alc,y;w) =[

k( (w-kU)2 - gk tanh kh ) cosh kh

and the expression for é(k,y;w)is given by

= bf(k)g(w) ( gk simh ky + (w-kU)Zcosh ky )
B - [2050 o ]
( (w=kU)™ - gk tanh kh ) cosh kh

Substituting for T(k) & g(w) , then by the inveree theorem , we

obtain the solution



* -ib(gk sinh ky + (kU)acosh ky)
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E;(X,y;t) =(1/21T)S( —ikX gy
%o -ik(=2}) (kU+M)cosh kh
oo 2 :
-ih(gk sinh ky + (kU)“cosh ky) _
+(1/27)\( ) e 1kx dk

“°~ib(gk sinh ky+(kU)2cosh ky)

~ix(2]M) (kU-}M) cosh kh

+(1/27 IN(

—~0o

)e-ikx+it(kU+F}) dle
—ik(2M) (xU+ M) cosh kk

. . ] 2
-ib(gk sinh Ky+F*'°°Sh ky) ~ikx+it (KU~ M)
)e dk

+(1/2 )ST

-0

[ =

+(1/ 27 Y\(

~ik(=-2}L) (kU-M)cosh kh

-ib(gk sinh ky+(kU)Zcosh ky)

bl =~

)t (L=x) 4y
1k(-2L) (kU+M 3cosh kh

2
-ib(gk sinh ky+(kU)“cosh ky) _
)eik(L x)dk

+(1/211)So(°
—~0o

ik(2 L) (kU- M) cosh kh

2
-ib(gk sinh ky+M cosh ky) el (Lx)+it eue by
e

+(1/211>S?

- O

oo

ik(2M) (sU+}) cosh kh

+(1/21T)S(

First :

-ib(gk sinh ky*F*2°°Sh ky)) ik(L-x);it(kU+f‘)
e dk
ik(-2M) (kU-M)cosh kh

The representation integral for the solution f;(x,y;t) can be

evaluated asymptotically for large L,t&x . Todo this we assume

that L tends to infinity before t and x . Discussing each

integral seperately

L I, =(1/2TT)S]§

~1b(gk Sinh ky+(kU)Zcosh ky)

):I o~ Lhkx dk
-ik(2M) (kU--)cosh kh

The integral is free from any singularity at the origin and the
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integrand analytic about tﬁe real axis except at the real pole
k = k'be defined by the relation[kU - [A(k)]= o , provided v1s
less than gh ) . Near the simple pole , considér k ='k* +K,
where K is a small complex quanfity = Rr +1 Hi = Sexp(ig) .

The integrand can be written as (;ka(k,YJ/(kU-}i) )e-ikx,where

-

-ib(gk sinh ky +(kU)acosh ky)

(k,y) = ( ) s ¢
Ky, -ik (2M(k)) cosh kh ’

Expanding the different functions about k = k* by Taylor , we

obtain
X Geyy) = X (k*yy)

(U - (k) ) = K[d/dak U =P .

exp(-ikx) = exp(-ik*x) exp(-ier) exp(Kix) ,

for convergence , we have

(1) x is positive , then for convergence Ki must be negative,
therefore , the semicircle about the simple pole lies in the

negative half of the k-plane . Then the path deformdd as in the

figure
oL K -
—_— >
L'
c.- S LY = PaVS e oo + S cee ’ we have
L &

. 2
-ib(gk sinh ky + (kU)“cosh ky)
= -1/2[( )], . e XK

-~ik(2M )cosh tkhy. a/dk (kU-M)

I
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(11) x is negative, then for convergence Ki must be positive,
therefore, the semicircle about the simple pole lies in the
positive half of the k-plane . Then the path deformed as in

the figure

— Y —

.
>

-

L k*

~ib(gk sinh ky + (kU)Zcosh ky)

eI = GO Wope ¢

-ik(2M ).cosh (khy.d/dk(kU- M)

(2) The second integral I, 1s

~ -ib(gk sinh ky +(x0)2cosh hy) dlex
1, = (/2w) (¢ ) o7 axc
%o =ik(-2M) (xU+})cosh kh

is similar as I1 .

(3) The third integral I, is

3

2
-ib(gk sinh ky+M"cosh ky) y ol (~lx+ (kU-M))E

I, =(1/270) S( ax,

—ik(=-2M ) (kU~M ).cosh (kh)

to evaluate I, asymptotically for large t and x . To do this we

3

assume the x/t is fixed , i.e. the integral contains just one

large parameter , it is better to rewrite I3 as

> (k,y)
I = (1/27f)S (zxé——i—— ) e1t8y (k) 4
% kU -M(x)
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(-ib(gk sinh ky +M2cosn ky)

where , X, (k,y) =
? I3 -ik(~2M)cosh (kh

3

and g1 (k) ={(-x/¢)k + Uk -M) .

3
relation [kU - M(k)] =o and a saddle point at k =K be defined by

The integrand of I, has a simple pole at k =K§bedefined by the
the reation [d/dk(gl(k))]= o , i.e.KzK miStsatisfy ' the
relation [U -Ll'(ko)]= x/t . Expanding the different functions
of the integrand about k = k* by Taylor , we obtain an important
factor , exp(-K i( -x/t + U ~M1(k*} ) t ) , then for the

convergence we have

(1) [a/ak ( gl(k) ]k—k* is positive , then for convergence
Ki must be also positive , i.e. the semicircle round
the simple pole on the real axis lies in the positive

half in the k - plane , as in the figure

k=k*

oo la/ak (g gy U~ W k) ~x/4
then we have two cases ;

(a) x/t is positive ( i.e. the observer  speed
is positive,i.e.in the downstream direction ) in
this case we find that

[a/ dk (H(k))]kzko> [a/ak € LGN, o

here , the saddle point lies on the left of the
simple pole ( k* > ko ) , hence , we deformed
the path in the manner of the steepest descent

as in the figure
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(b) x/t is negative ( i.e. the observer- speed is
negative , in the upstream direction ) in this

case we have

/ak (U gy, >e/ak (PO Yy

here , the saddle point ( k k ) lies on the
left of the simple pole ( k = k* ) , hence ,the

path deformed as in the case ( a ) .

(1ii) [¢/ak ( gi(k)]kzk* is negative , for the convergence
Ki must be negative , i.e. the semicircle round the
simple pole on the real axis lies in the negative
half in the k-plane . Since }'(k*) less than U ,

hence , x/t is positive ,
e [d/dk (|~Jt(k))]k=k <la/ae (P ), _yw
o

i.e. the saddle point lies on the right of the simple
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pole , then the path deformed by the steepest

descent manner as in the figure

The corresponding values 3

(1) The case ( i ; a&b) , we have

-ib(gk sinhfky’+placosh kY

I; = ($1) ¢ pgr® ETE
-ik(-2M)d/dk(kU-})coshekhy =7
2
-ib(gk sinh ky+M “cosh ky) 2
+(1/271)( k—k'ei(tgl(k°)+¢“)'(z_éé%%_j)%
-ik(-2M ) (kU-}L)cosh (kh o €15

(2) The case (ii)

~ib(gk sinh ky +FL2cosh ky) —ik*x
e

I, =(-31) ( =l
5 -1k(-2LL)d/dk(kU-I*)coshxkhwkfk

2
-ib(kg sinh k h .

+(1/271)( (kg sinh ky+ | "oosh k) e1(t8y (k)42 (2 y:
~ik(-2]L) (kU-})cosh kh K=k, t

sg(ko,
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(4) The fourth integral I, is

® _ib(kg sinh ky +L12cosh ky)
= UJzﬁ)S(
—%0 =ik(2L) (kU +M) cosh kh

ei(—k.X"'t(l{U"' H ) ) dk

similar to I3 .

(5) The fifth integral I  is
® _ib(gk sinh ky +(kU)2cosh ky)

= (1/2TT)S ( . y etEl omikX 4
% ik(2M) (kU +M) cosh kh

k,y)
it is better to write I, as (1/211)8 ( ——2————— Lok,
% (U=}
where , X -ih(gk sinh ky +(kU)2cosh ky) —ikx
5(k,y) = ( > e
ik(2L) cosh kh

The integral has a simple pole at k = k*bedefined by the rela-
tion [XU -M(k)] = o.by expanding the integrand about k = k* ,
we get the important factor , exp(- KiL) » L is positive ,then
for convergence |<i must be positive ,i.e. the semicircle
round the simple pole on the real axis lies in the positive

half , the path deformed in the k - plane as in the figure

e N —

L >

.
> -

k-l

2
-ib(gk sinh ky+(kU) cosh ky) . x
. elkL e ixk + 0 ( l/L)

ik(2M)d/dk (kU-M ) cosh kh

the value of I5 independent on the sign of x



(6) The sixth integral Ip is

-ib(gk sinh ky + (kU)Zcosh ky)

o
I = (1/211)8( ) eHe(T=x) 4y
—%0 ik (-2M)(xU +]L) cosh kh

similar to I5 .

(7) The seventh integral I7 is

. 2
-ib(gk sinh ky+(kU)“cosh ky))eit(kU—}L) o-ikx ik

I, =(1/2Tr)S ( dk

_& ik(-2ML) (kU -}*) cosh kh

= X (kyy)
it is better to rewrite 17 as (1/277) S ;2Ez———z—— otEL qx ’
50 (KU = M(Kk))

-ib(gk sinh ky +(x0)%cosh ky) it (kU-~M)-ikx
) e

where X, = (
S ik(-2M) cosh kh

it is clear that the integral has a simple pole at k = k*, by
expanding the integrand about k = k* , we obtain the important
factor exp( - KiL) , whereLis positive , for convergence Ki
must be positive, then the semicircle round the simple pole

lies in the positive half in the k ~ plane as in the figure

e
> Ca
L k*
2
~-ib(gk sinh ky +M° cosh ky) _
L = o3 C . omlNE ALk

7 ik(-2M)d/dk(kU- M) cosh kh



(8) The eighth integral Ig is

oo . 2 :
) (1/2TT)S ( -ib(gk sinh ky+}“cosh ky) ) eit(kU+fL) e_ikx eikL
ik(-2M) (kU+M ) cosh kh

dk

it is similar to I, »

Now , the asymptotic expression for the solution f%(x,y;t)

in the different casesis gjven by

(a) The case in which x/t is positive and gi(k*) also positive,
where gi(k*) =[- x/t + U - 0 (k*)] , i.e. the case in which
the observer moves with a velocity less than the group velocity

appropraite to wave number k = k%, the solution is

~ib(gk sinh ky+(kU)Zcosh ky) —ik*x

E(x,y5t51)= -1 ( Y e
~ik(-2 ) (kU - M)cosh kh K=

-ib(gk sinh ky+Mcosh ky) {
(12w = < R L

-1k (-2]L ) (kU- ) coshkh  kSk b e (kg

representing a system of a steady waves .

(b) The case in which x/t is postive but g'l(k*) is negative ,
i.e. the case in which the observer moveswith veloclty greater

than the group velocity , the corresponding solution is

-ib(gk sinh kyﬂiacosh ky)

i(tgl(ko)*'?i:'”)( 27" )%

& (x,y3t31)=(1/2 ) T E )

“ik(-2M ) (kU-M Ycoshhk k=k_

representing a transient solution behaves like t-% .



(c) The case in which x/t and gi(k*) are negative , i.e. the

observer moving towards upstream , the solution is

ib(gk sinh ky+p?cosh ky)

(tiL)= ' 1(tg, (k )+dw) 270
E (x,y;t50)=(1/2m)| o 6 ) T ()

-1k(-2}) (kU-H )cosh kh  k=k

-

representing a transient solution behaves like t .



We evaluaté&ﬁ the solution fg(x,y;t;L) asymptotically for large
t,x&L ,when L becomes large before t & x . Now , we like to

evaluate the solution asymptotically when t,the time,becomes large

before x and L . Considering x = Vt , where V is the observer
speed . By the same analysis , we obtain different expressions

for the solution corresponding to the different cases.

Case 1 :

The case in which x/t ani g’l(k*) are positive , i.e.the
observer veloéity is positive and less than the group velocity ,

we obtain the solution

2
-ib(gk sinh ky+(kU)“cosh ky)
g(x,y;t;L)=-i[ ] (Lee™ "Dy oTIKTX
-ik(2M )d/dk(kU- M) cosh kh  k=xk*

+0 (/7).

rebresenting a system of a steady waves ,

Case 2 @

The case in which x/t is positive but g'(k*) is negative,

therefore x/t‘'is less than d/dk (kU -}it(k)) ,i.e. the observer

k=k*
moves with a positive velocity greater than the group velocity .

Case 3 :
The case in which x/t is negative , i.e. the observer

moving in the upstream direcition .

The corresponding solution to the cases2 & 3 is a transient

solution behaves 1like 1/t% .
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The present problem in the case of no current U = o :

The corresponding expression for the solution is

-ib(gk sinh ky)

ég(x,y;t;L) = (l/”)S(

S e—ikx dk
_& -ik(-2H)coshkh
2
® _ib(gk sinh ky+ M cosh ky) .
+(1/a¢r)S ( > ) ettM omikx gy
— oo -ik .2}1 cosh kh
co 2
-ib(gk sinh ky+[L"cosh ky)
% -ik. 2M cosh kh
>®  _~ib(sinh ky ) .
+ (1/NOS( y oik(L = x) 4y

4, ik(-2[M%)cosh kh

=9 2
+(1/2Tf)S ( -ib(gk sin: ky+ JL"cosh ky) )eitH-eik(L-x) e
—5o . ik( 2M° ) cosh kh
£o 2
-ib(gk sinh ky+ cosh ky)
+(1/2Tr)S ( z > H yo Lt Gik(L-X) 4
—oo ik ( 2}L™ ) cosh kh .

the different integrals are free from any real simple poles and
well behave at the origin .

The solution can be évaluated asymptotically for large L , t & x »
To do this , let L becomes largze before t & x and assume x/t fixed
first . Secondly , let't becomes large before L & x and assum x/t
fixed « In both cases the most contributions come from the saddle
points be defied by [d/dk( M(k)-x/t k)] =o and[d/dk(rk(k)+k x/t ] = o,
hence , by examining the solution g(x,y;t;t )'from standpoint of
an observer moves . with the group velocity appropraite to wave
number k = the saddle point , then the solution behaves like l/t%.
When the observer moves with velocity x/t such that the relation

[d/dx ( H(k))] = # x/t has no solution , by integrating by parts,
the solution behaves 1like 1/t .
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At the time t = 0 a step,of length|,iscreated at the bottom ,
of a running fluid or still one with free surface , suddenly . By
investigating the behaviour of the vertical displacement of every
fluid particle for large t , x & L , we obtain the asymptotic ex-
pression for the solution in different cases ;

(1) From the standpoint of an observer moving with a velocity less
than the group velocity , in the dowenstream direction . in this
case we obtain a Steady Solution .

(2) From the standpoint of an observer moving with a velocity gre-
ater than the group velocity , we get a Transient Solution behaves
like 1/t% .

(3) In the case in which U = O ( still fluid ) , from the stand-
point of an observer moving with group velocity , the solution be-
haves like l/t% , but when he moves with velocity for which no sol-
ution to the relation d/dk( (k)) = % x/t exists , the solution

behaves like 1/t .



Conclusion:

In this part we considered the creation of waves in a uniform
stream (U # 0) or in still fluid (U=0), due to a disturbance
created at t=o0; suddenly or smoothely at.  the bottom. We considered
a symmetry disturbance about the point beneath the origin and a
flow over an infinite step at the bed. By Fourier-Laplace technique
we got a solution in the integral expression. This integral can be

evaluated asymptotically for large x and t., To do this:
Firstly , the case in which U # 0, we assumed x/t is fixed we obtain:.'

(1) If the observer moving in the downstream direction with
velocity greater than group velocity or moving in the upstream
direction, he observes only a system of a transient waves with an

amplitude behaves like (l/t)%.

(2) The steady-state solution occures only when the observer
moving with velocity less than group velocity in the downstream

direction.

(3) In the transition case, i.e. the observer moving with velocity
near from the value of the group velocity in the downstream
direction. We can describe the nature of this case in terms of the
Error function. Hence, we see thaf the transition occures by means

of an amplitude modulation which behaves like an Error function.

Secondly, the case in which U = 0 and %/t is fixed, we had

(1) If the observer moves ' with group velocity, then the solution
behaves 1like (1/t)¥,

(2) If he moves with velocity does not equal the group velocity,
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then the solution behaves like (1/t).

Thirdly, in this case U f 0 and we are fixed our attention on one
value of x then iet t increasing, we obtained

(1) If x/t is positive and greater than the the group velocity,
the observer will observe waves of continually decreasing wave-
number , i.e. increasing wave length and the amplitude is decreasing

as (l/t)%.

(2) If x/t is negative , the observer will observe waves of
continually increasing wave number, i.e. decreasing wave length,

and the amplitude behaves like (l/t)%.

(3) If %/t is positive and less than group velocity , we have a

system of a steady waves.



PART II
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Higher-Order Theory of Infinitesimal Waves

Cauchy - Poisson Problen

Cauchy (1827) and Poisson (1815) discussed the problem of
" generation of waves " when a local disturbance is given on the
surface of deep water . The wave thus created is the so called

" Cauchy - Poisson " .

In this work we consideredthe two - dimensional case in which
the fluid extending to infinity , horizontally and downwards , the
pressure over the free surface is constant , say zero . Taking the
axis of x on the undisturbed free surface ( y = 0 ) and that y
vertically upwards . At time t = 0 a disturbance is suddenly crea-
ted on the free surface . It is required to find the displacement
and the velocity of every particle of the fluid at any future
time  The fluid being assumed incompressible and frictionless ,
its motion , starting primarily from rest by a disturbance applied
to the free surface is essentially irrotational . The modes of
irrotational motion of fluid by surface disturbance present them-
selves , as H . Lamb points out , in two forms : (1) by an init-
ial displacement of the surface without initial velocity ;

(2) by an initial impulse applied on the surface , without initial

surface displacement . In the present problem we consider the first
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case , i1.e., considering an initial small displacement of the free
surface without initial velocity‘; hence , by the infinitesmal -
wave theory and using the technique of Fourier transform we can .
obtain the solution up the third order correction . The represen-
tation integral for the solution can be evaluated asymptotically

for large x and t by the method of stationary phase ( due to Lord

Kelvin)



Formulation :

For two - dimenstional motion in the x - y plane ,
a coordinaite system is chosen with the origin on the undistu-
r%ed free surface ( y = o ) , where the y ~ axis is positive
upward and the x - axis positive to the right . Upon the usual
assumptions of classical hydrodynamics , if the motion - and
the fluid is inviscid with uniform density - is generated
originally from rest by an initial displacement_applied on the
free surface at t = o described by the relation y =”1(x,o) ’
it will be irrotational throughout all time and we may describe
the motion in terms of a velocity potential ¢(x,y;t) satisfying

Laplaces equation

2
‘7x,y ¢%x,y;t) =0 (L)
2 2 2
where , Vx y =’b/’bx2 +’b/’by2 .
?

by
initial surface displacement
£ >
| X
Homogeneous fluid

with infinite depth
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The Boundary Coditions:

(a) At the free surface we have tyo conditions:
(1) The dynamic condition (from Bernoulll's equation)is
B+ 3 (2 + @2 )+ g7(x,t) = F(B) >
t X y 4

where ¥ = "(x,t) 1s the vertical displacement of the free
surface about the undisturbed surface y = o , and F(t) is ah
arbitrary function of t , can absorbed in @, , i.e. the

condition can be written as

ﬂ; + % ( ﬁi + ¢§ ) + g (x,t) =0 (2)

and g is the constant of gravity .

(2) The kinematic condition ( state that " no transfer of
the matter across the free surface " . ) Let us suppose that
the free surface Sit)is given by the equation F(x,y;t) = o ,
where F(x,yjt) = y -"7(%;t) « Mathematically the condition can be
written as [b/Dt (y -°Z(x;t)i]= 0 ,where D/Dt is the material
derivative and =(¥t + ,G’x'b/'bx + ;fy’b/? ¥y) , hence , the

e
condition can!written as

Py - (H T+l ) =0 - (3)

We complete the statement of the boundary conditions by

invoking the finiteness conditions

| 7| < o0 - as |x|—> oo
& y—> -

(4.a)

and |"2(x, ) |< o as |x]—> oo (4.1)
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Prescribing the initial displacement y ="]/(x,0) and invoking
the assumption that the fluid is initially at rest , we obtain

the initial_conditions

g =0,

f(x) at t=o (5)

and ~1(x,0)

given,and,symetric about the origin .

We see that the boundary conditions involve non - linear terms,
for example *( ﬂi +‘¢§ ) in the dynamical condition and ﬁ;qzx in
the kinematic condition , these lead to analytical difficults
which may be overcome by expanding various functionms entering into
the problem into power series in € - small parameter - (say in the
present problem the maximamum value of the original surface dis-—. ..
placement ) . The different series are substituted into the gover-
ned equation to gether the boundary conditions at the free surface,
then grouped according to powers of € . The coefficients of each
power yields a sequence of equations and boundary conditions, the
coefficients of € giving the first - order theory , these of 62
the second - order , etce .

Carrying out this program . Let us first assume that ﬁ(x,y;t)%

'2(x;t) may be expanded in a perturbation series ing€ 4 as

Q’(x,y;t) =€ﬁ(1)(x,y;t)+ e? /d(a)(x,y;t)+ 053/0’(3)(:-1,31;1‘.)+ ese o

and (6)
M (x,t) = ef’zsl)(x;t)+ 62"]_(2)(x;t)+ QBoZSB)(x;tH cee .

It follows first of all that each of the functions @) (x,y;t)

are solutions of the Laplace equation and k = 1,2,3,... ., 1i.e.
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2
(k) . -
‘7x,y)g (x,y;t) = o (?7)

Substituting for'ﬁ(x,y;t) and’Z(x;t) in (2) and (3) , remembering
in addition that formal expansions of the following sort,for

example , hold ;
Flx,338)=F(x, 7 (x,8) ,0) = (x,038)+ U x, ) (x,058)+ .o

=e‘;d(1)(x,o;t) + eaﬁ(a)(x,o;t) + ...

+(€1£1)(X;t)+ eaﬁfa)(x,t)+...)(e ¢§1)(x,o;t)+€%¢§2)(x,o;t)+,.,)
=E¢(1)(x,0;t)+ea( ﬂ(z)(x,o;t) +°L(1)(x;t)¢§,1)(x,o;t) ) + eee

One finds that ,

}5 (x,y;3t)= €¢(1)(X ojt)+e (12(_1)(x t)¢(1)(x,o;t)+?f}((2)(x,o;t) )

DY) | (12 g

(1) (2) (3)
Pagy *T Fry + BT+ .

+€3('>Z

1) ,e2,,(1 1 2
¢y(x,y;t)=€ﬁ§ ) ve (z( ) ( ) +,d( )

18 (D G a3 f2 gD AD gD g3y

Foxyi)=eglt) + €2 (4P gL 42

+€3 (2) )Zf(l)*}( (1))2}5(1) ,%1) }5(2)

(3)
tyy )+

t

Substituting these expressions in the boundary conditions at the
the free surface ,and collecting the coefficlents of the different

powers of ¢ , one finds
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(1) The first - order boundary conditions(coeffigcientsof € )are

,dél)(x,o;t) + gél)(X;t) =0,

and

. ;451)(x,o;t) - él)(x;t) =0

(2) The boundary conditions for the second - order corrections

are,(coefficienssof 62 )

;zft Terost) + g4 eyt = o) g (@2 (%),

¢§2)(X’o;t) . ’ZEZ)(’_{;*’) - 9{}({1)7}((1) nz(l) (1)'

(3) The boundary conditions correponding the third - correction

(the coefficients of 63 ) are

yf?)(x,o;t) + géB)(x,t) ='(°‘22)ﬁ5§1)+%<”{l) 2 ﬁé:}; <1)¢(2) )

AL AVGD 2 D D120y

AP 0389 - 7P 0 = 7D 7V (9D ), @)

(7P 312 g L ) @)
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The First Order Problen

Due to the infinitesmal - wave theory , the first order
problemis defined by
(1) The partial differential equation is

2
vx’y ,d(l)(x,y;t) =0 . (2.1)

(2) The boundary conditions at the free surface (y=o) are

¢§1)(X,o;t) -7£l)(x;t) =o0 (2.2)

t(:l)(x,o;t) + S?El)(x;t) =0 (2.3)

(3) The finiteness conditions are
I,d(l) ' — o as ,X,__> co OrYy > _a(2eha)

and I '»Z(l) ] < oo as|x|—> co (2.4b)

(4) The initial condition , when t=o ,
161)(x,o) = f(x) | (2.5a)
ﬁ(l) =0 (2.5b)
Let the initial displacement be given by the function
f(x) = /(6% + %2 )

or . f(x) = aba/( ba + xa ) e
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We attack the mathematical problem posed by (2.1 - 2.5) by

invoking a Fourler transformation with respect to x . Let

Blk,y;t) = FA(x,y;t)
= S }?f(X,y;t) exp(ikx) dx .

by integrating n times by parts ,weobtain
r n n
F otk F ) = (-1P 7,

where :;zimplies Fourier transformation with respect to x
( "'°°< x<°°).

Transforming (2.,1) , we obtain
g;l)(k,y;t) - 128V e ,350) = o, (2.6)

by taking in cosideration that,

ﬂ%x,y;t) and 0 g8/Ox —> o as lxl—ﬁ> oo ¢
The second order differential equation (2.6) has a solution
U (e, 358) = AGsst) dely B(k;t) e hely ,

where A(k,t) and B(k,t) are arbitrary constants .
From the finiteness condition (2.4a) , one finds that B(k;t)=o,

hence , the required solution has the form

5(1)(k,y;t) = A(k;t) Jly (2.7)

Transforming ( 2.2 & 2,3 ) , we obtain

o
-

B ey050) - 7 st =

and j?il)(k,o;t) + g %Zl)(k;t) at y=o .

]
o
-
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Eldminating ifl)(k;t) between the above two equations, we obtain

T e 058) + g B Geyp5t) =0, at gm0 (2.8)

Substituting (2.7) into (2.8) , we get
Ay (sst) + glk|a(k;t) = o

has a solution
.
A(k;t):cﬁl)(k) cos(glkl)%t +/3(1)(k) sin(glk|)?t, (2.9)
lwhere , oél)(k) and /5(1)(k) are arbitrary functions in k .

From (2.9) and (2.7) , we obtain

P Ge,y30) = oY) costglihe + B o) sin(glk D%y ydsly,

But cél)(k) = 0 , from the initial condition (2.5a) , hence ,

(

‘ﬁ(l)(k;y;t) = /31)(k) sin(glkl)%t exp(lkly) (2.10)

By the application of the inversion theorem , we get
o
ﬂ(l)(x,y;t)z(l/ZTT)S ;#1) sianlkl)%q drly o-ikx g (2.11)
—O0

The corresponding expression for 151)(x;t) ( the first correctiop
of the vertical displacement of the fluid - level at the point
(x,0) at time t relative to the undisturbed surface y=o ) is

given by
’2(1)(}(;1:) = - (Vg) ,dél)(x,o;t) ’

from (2.11) , we obtain

1Pt = @em) C-ervert O cost e o ax (2022)
— 00
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When t = o , we have an initial displacement of the free sur-

face without initial velocity which is given by
1&1)(x;¢) = £(x) ,

it is better to consider the initial vertical displacement is

symmetric about the origin ( x = o ) , for example

£(x) = 1 /( v° + x0) ’

or f(x) a%p2 /( b2 + x2) .

i.e., f(x) is an even function ,

Then , from (2.12) , we get
£(x) = (1/211)5 (e l/g)? P(l)(k) e ax  (2.13)
—ca

i.e. , we can write ,

[+ ]
-(k /g)%p(l)(k) = S £ () oIB¥ g |
= f(l)(k) ,
therefore , /3(1)(k) = = ( g/[kl)% f(l)Ck) . (2.14)

Then , for the first order problem we have the solution

FD oy =72 f o) stnl(gieny 1Y oI g
and —:j
»f_“(mt):(l/aﬁ)s -(lkl/g)%lﬁcl)(k) cosl(glk Ty o TEX g |
-
but , f(x) is an even function , it is better to rewrite ¢(1) &

42(1) in a suitable form ,as
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’

”ﬁl)(X;t)=(RE/+0'S I'(1)(1:) cos((gk)%t) o~ 3EX g

and,

(2.15)

¢(1)(x,y;t)=(Re/%0 S —(g/k)% f(l)(k) sin((gk)%t) o lkx k¥ dk.

where, Re means the real part.
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The Second Order Problem

This problenisdefined by

(1) The second correction for the velocity potential ﬁ(a)(x,y;t)

must satisiy.: Laplace equation,i.e.,

va ﬁ(a)(x,y;t) = 0 (3.1)
X,y

(2) The boundary conditions at y = o

(a) The kinematic condition is
(2) (1) (1) (1) (1) 4(1)
72 -7 =[7x P yy] (3.2)
(b) The dynamic-al condition is given. by

1(;2)+g,é2) =|E,,Z(1)ﬂ5%) - ((/5}({1))2+ (/da(rl))a)] (3.3)

(3) The finiteness conditions ,

lﬁ(a) I“*’ 0 as |x|—> oo & y —> -co (3.4a)

7% < o as |x|—> oo (3.40)
(4) The initial condition , when t = o , we have
73 xi0) = o (3.52)

and ,0'(2) =0 | (3.5b)
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Eliminating 112)(x t) between (3.2) and (3.3) ,we obtain

@), g g2 [ 7 g g D gAY ) ) 1) ;zfﬁ ] (3.6)

valid at y = 0o «

Substituting for ﬂ(l) ,‘Z(l) and their derivatives from (2.15)
in the right hand side of (3.6),one can find that it is equal to zero,

the single condition on ¢(2) at y = o is

B 6 fP =0 (3.7)

By Fourier transform technique , then the Laplace equation (3,1)

is equivalent to

2 =(2) '
-Q—Eg;—- - x° ﬁ&a) =0 - (3.8)
dy

of which the solution which tends to zero as y —> ~%is
AP ,358) = a,0058) expl kly) (3.9)

where Aa(k;t) is an arbitrary function .
Multiplying both sides of the equation (3.7) by exp(ikx) and

integrating over the entire range of variation of x , we find
Ay (b)) + glkla(k;t) = o ,

whence it follows that

AGkst) = o&2) (k) cod(g|xl ) +p‘2’<k> sin(g|x)Y ,

where , cx(a)(k) and }3(2)(k) are constants of integration .

Initially ,att= o ; "ﬁ(a) =0 this leads to cK(a)(k) =0 ,

hence , we get
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ﬁ(a)(k,y;t) =IB(2)(k) sin[(glkl)%t] exp(lkly).

By the application the inversion theorem , we obtain

oo
¢(2)(x,y;t)=(l/2’r'r)s IB(Z)sin[(glkl)J‘rt] Jely -1kx g . (3.10)
-0

The corresponding expression for'?‘a)(x;t).( the second
correction of the vertical displacement of the fluid - level

at the point (x,0) and at time t relative the undisturbed

surface y = o) is given by the relation

1Z(a)hc,t) =(~1/g)( ”?_(l) ¢(l) * ¢f(:2) )y=o

substituting for “7_(1) , ;25(1), ,d(a) and their derivatives in the

right hand side of the above relation , we obtain
2 (x;t)= L(l/aw)g £ (1) cosf(ginl ) F] 715X dk]x
[:(1/2'1‘() Slkli‘ cos[(glk I)J“t] o~ 1hkx dk]
- (l/ZTf)S(lkl/g)%lﬁ( ) cos(glk¥Y o @k (3.11)

Initially , when t = 0 , we have 152)(x;m) =0 , from(3.11) we

get

|:<1/2’”>S -1 k] x l:(l/ZTf) S £ oikx dk:]

—0a

=(1/277) S dxl/g)? 15(2) “ikx g,
hence the function /5(2Ledefined by th
3 y e relation

(1/21-r)S (lkl/g)%lﬁ(a) gy = f(l)(x)El/Z'ﬁ) S e |FC1) omikx 4
% (3.1

g
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The Third Order Problem

This problemis defined by,

(1) The partial differential equation is

720 (x,y50) + B30 (x,358) = o (1)

(2) The boundary conditions when y = o ,

(a) The kinematic condition is
1 2 1 1 1 2
I E{( 72 gD (D) gD, g2,

(2) ¢(1) %(.Yfl))a ¢§;; et ¢(2f] (4.2)

(b) The dynamical condition 1s
(3) (2) (1) 1),2 (1) (1) (2)
O+ 6P [ PP 1 of 2 iy P 42
(1) (1) (1) (2) (1) 1) (1) (2)
S AV gl gl2) g AV g0 g )](43)

(3) The finiteness conditions are

|¢(3)l._4, o as lx|l—=> oo & y —> - oo (hoha)

- 7% < e s lxl—> oo (4o 1b)
(4) The initial condition , when t = o , given by

7 s0) =0 (4.5a)

g3 -0 (4 ,5b)
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Eliminating‘Z(S) between (4.2) and (4.3) , we obtain
(3) (3) (1),(1) (1), (1; (2) 1)y2 4(1) 1) 4(2)
v * 87 [ﬂ{yy ,d t '%g%( " Byyy - 5/ Pyy
1 1 1 2 1 1 1l 1)s(1) 1)
+g,é ),Z( )}5(1)+ g»&({ )F%({ )_ F;}({ ),,{ )1051(;50): 50’( )7 Id(
(1) 4(2) (1) ,£1) (1)
- ¢ 4820 v1rg g A V8 e g1 420

/s TP 4B 1/g PO G2 s/g g1 42

1)»(1) (1) 1)\2 (1) 1) (2) 1) 0(2)
_’Z( 71: /dtyy —%('{ ) /df'.tyy - '{ P't(:ty - 71(: ﬁjt(:y ]

(4.6)

substituting for the values in the right hand side,this condition

reduced to

éz)+s¢;3) =0 yaty=o0 (4.7)
Applying the Fourier transform to ( 4.1 ) , we obtain
73 ae,yiey -1 B it =0 (4.8)

has a solution

2%3)(k,y,t) = A(k;t) Jkly B(k;t) oIy (4.9)

where , A(k,t) and B(kx;t) are arbitrary constants. By the

condition (4.4a) we find B(k;t) = o,hence , the solution is

;7(3)(k,y;t) = A(k;t) exp(lkly) - (4.10)

The Fourier transform is next applied to the condition ( 4.7 ),

-hence , Al kjt,bedefined by the differential equation ,



- 114 -

Att(k;t) + glk|A(k;t) =0 4 « (4.11)

Finally , the initial conditions must be taken into account, and
the solution of the above equation satisfying the initial conditions

i
° AGe;t) = p(3’(k) sin( glkl)¥Y

hence, we set from (4.lo)
g3 ,y30) = BP0 sinf(glk])¥y &IV,

the inversion thetrem leads immediately to the solution
oo .. 1 ‘
293 (x,y;t) =(1/er)S P(3) sin(g k)%t 'Y KX qx . (1.12)
— oo

The corresponding expression for°2(3)(x,t) ( the third correc-
tion of the vertical displacement of the fluid ~ level atthe
poinf (x,0) and at time t relative the undisturbed surface y=o)is

given by

S _l: (1) 4, (/d(l) 2, (1) ﬁ(a) 712 7!%;

-7 g2 g ]y_o , (4.13)

substituting for the values in the right hand side , we obtain

g <3)(x;t) = El/Z'rf)S -(lkl/g)J‘“/B(l)(k) cos[(glkl)%t] o 1kx dk] X
7 2

‘:(l/aﬂ)glkl( Il )%F(l)(k) cos{(glk‘, )%t] o—ikx dk]
+g'1[(1/2ﬁ>gik|(gik| 2 BV cosl(elxn Ty e-ikxdk] x
EI/ZT‘)S (glkl)% F(a)(k) COS[(glkl )%t] e"'ikX dl;l
o ,

o0
-3 El/z‘rf)s (e ie)? ﬁ(l)cos[(glkl yhy o~ikx dk]zx

o 1 -ik
EI/Z'TT)S <|k|)2<gm>%p(1’ cosl(glkl) ¥y o Xdk]
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[~
- El/aﬁ)s ~e LD D (o cosf(g ik )Py 7 ax ] X
oo
[(1/21-1) S k] (g ikl )2 /5(2) cos[(gl kI )"}t] e "1HX dk}

o _
- I:(l/an)S (glk])?® 16(3)(1{) cosl(glkl )%t] o lkX dk] ‘ (4.14)

Initially , When t = o , ”Z(B)(x,o) = 0 ; hence , from (4.14) we

(3)(

obtain an expression for the function/8 k) which is defined by

<o
(1/2‘”’)'5 (glkl)%P(B)(k) e-ikx ik =
—%o
oo 2
e x))/g [:(1/211)3 ekl T () o 1hX dk:l
oo I K d
+|:(1/21T)S—lk|8f(l) e-ikXdLE] El/aﬁ)g (glk,)-} )5(2) e)ikxd{l
—oo 2.

oo
s 3 P2 ,}yams gk T () oLhx dk]
—Co :

-t l:(i/aw)s lkl(glkl)’}P(Z)(k) o 1EX dk:l. (4.15)
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The Asymptotic Solution

For the first order problem , we have an expression for the

potential which js'given by
(%2
4V (x,y5t) = (Res2r )S BB o) sarie 1w )P oI Y ax
)

the corresponding expression for ﬁfl)(x,y;t) is

(1) 4ty - ! | -
7P se) = e/ ) G-/t B coue 1 1M 0
)

The integral for 7(1)(x,t) can be evaluated asymptotically for
large x and t . To do this we assume that the ratio x/t is fixed.
The resulting integral contains Jjust one large parameter , t ,say.
Then we apply Kelvin'®s stationary phase formula , assuming that
t is large . To carry out this programe , first we put

x=Vt , (5.1)
where , V is constant .

It is better to write the expression for'z(l) as

oo 3
TP e = Re/2m) § - oy o LY (87 g

+

= i 1
(Re/ZTf) S —(k/g)%ls(l)(k) e-tl(kV +(gk) ) dk (5.2)

e
We begin by discussing the integral I2 , cantwritten as

I, = (Re/ZTT)oS -(k/g)%/B(l)(k) oitey (k) 4 ,
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where , ga(k) = ( kV + (gk)%) » then

[¢/dk (g,(k))] =[V + ¥ (g/k)%]aﬁ 0 ,

this means that the function ga(k) is free from any stationary
point within the range of k ( 0 ,00) . It is easy to prove by
a change of variable in the integral I2 y Bay u = ga(k) s, and

integration by parts , we find the integral behaves like (1/t).
= (
Secondely , the integral I, =(Re/ZTT)S -(k/g)%/s 1) e-itgl(k) dk ,

where , gy (k) =[kV - (g0)F],
then,  [d/dk ( gy (&))] =[V - %(g/k)%]}

therefore , the function gl(k) has a stationary point at k=kowhkhis

satisfied the relation [d/dk (kg)%]= Vand k= g/LpV2 .

Due to Kelvin method , the most contfibution comes from a small
range of k,for which gl(k) is stationary,sﬁch that (ko-‘é,ko+'5),
we consider the function (—(k/g)%/s(l)(k)) over this small range
of k 1s constant and equal (—(ko/gjifs(l)(ko)) . Then by Taylor

theory we expand gl(k) about ko , We get
- - 2 1"
g1(k) = g (k) + % (k k) By (k) + coen

hence, the contribution of the range ( ko-‘a, ko+S5) to I, 1is

given by

provide gi(ko) 75 0 , in the present case gi(ko) = - 2V3/g .

The contributions from the two ranges ( o , ko-‘é)&(ko +3, co),
over theseranges the function gl(k) is monotonic function ,i.e.
free from statlionary points , then , by integration by parts giving

a contribution of order 0(1/t)



- 118 -
(),
Hence , the asymptotic expression for‘Y (x;t) 1is

(1), ny o 1 n(1) ig, (k) t+Fisgn(gy ] s
TV (x5t) = (Re/21)(-(e /0% By 740 Y ey

fo( 1/t ) .

For the second order problem , we have

%(2)(x,y;t)=(Re/f|~r )S ﬁ(z)(k) sin(gk)‘}t ok mikx g
o

where ,5(2)(k) is an even function , the corresponding expression

for ‘2(2)(X;t) is
e 1
Y(Z)(X;t) = ERe/Z’l’f) S -(k/g)?/g(l)(k) cos[(gk)%t] e-ikX dk:lx
ooo
ERe/ZT() S —k(k/g):'z/B (1;(k) cos[(gk)%t] e-ikX dk]

-(Re/ 17 ) S (k/g)% /3(2)(k) cosng)%ﬂ e 1EX g

Like’z(l) , We evaluate asymptotically for large x and t the
expression for'z(a). Consider x = Vt , where V is constant ,-

and rewrite 42(2) as

7@ (x50)= Ene/migc-o(k/g)"}/ﬂ(l) LB ~(@0%)
+(Re/a1-r)g°?(k/g)%/3(1) it (kv +(gl)?) dk] x
- |
ERe/ZW)S"‘_’k(k/S)%IB(l) RERTEN ~(gi)?) dk
+(Re/2ﬁ)g°fk(k/g)~}/5(1) RERTEN +(gk)?) d{}

-(Re/z'n’)S(k/g)% @) -1ty -(@oh)

co +
+<Re/amS-(k/g)%/B (2) -1t(kV +(gk)®) g
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as t becomes large , we have
(1) integrals which are free from stationary points , it is

easy to show by change of variable , and integration by parts

that they behave like 1/t .
(1ii) integrals with stationary points , by the principal of
stationary phase we get their asymptotic expressions .

Hence , the asymptotic expression for ”ZFZ)(x;t) is

—

. ]

2B sz Rer2m) |-(w/g)t, P(l)]é‘itgl‘ko)**i")lc—ﬁ’—)‘l’ +0(1/t)
| L o tlgg(koﬂ
(Re/2TT) —ko(ko/g)%B(iZlJ_igl(ko)t+%iﬁj(ET§%%E—ﬁ0%+O(l/t)
— 10 —

-(Re/2TT) [(k /g)%IB(Z)] -1tgy (s )+Eim)] 2 2w o/t) .

tlgy] (k N

where , gl(k) =[kV - (gk)%] ,and , k_ 1s defined by the relation

lo/ak ( g ()]=o0 or V =[d/ak(er)?].

The third order problem given the solution

L

B3 (x,y;t) = (Re/T1 )5/5(3)&) sinf(gk)?t] XY IEX g

where the function /3(3)(k) is an even function , The correspond-

ing expression for’z_B)(x ;t) is

g (3)(x;t5 =ERe/’rf )S -(k/g)% P(l) cos[(gk)%t] o TLKX dk:l X
o
ERe/’rr )Sk(k)%/acl)(k) cosl(gk)Ft] e~ 1EX ‘“EI
+1/gERe/rf)S k(gk)‘l’P(l)(k) cosl(gke) Ft] o 1KX dk] x

Ene/mg (gx)? /B‘a*ck) coel(gl)Ft] o~ 1kX dk]

-*}[(Re/'rr)s—(k/g)%/ﬁ(l)(k) cos[(gk)”}t] o~ LhX dk] X
(o]
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F(RG/TI’)S kz(gl(.)% /B(l)(k) COS[(gk)%t] e-ikX ko
o

—

r‘ [~ )
- (Re/mg ~(/g)? /Bm(m cosl(kg) ¥t e 1H¥ qi| x

-

-

——(Re/‘l‘r)g k(gk)%/B(a)(k) cos[(gk)‘}t] e‘ikf‘ dk

- me/) § (@0 PO codamrBe) 7w

To obtain its asymptotic expression when t becomes large , it is
better to consider x/tisfixad , 1.e. x = Vt where V is constant ,
Before the evaluation the asymptotic expression for ZfB), it is

better to rewrite”z(B) in a suitable form as

g7 (x;t) = Enexzfmlsoi(k/g)i’ AU ) e['i"(]“"‘(gk)%)l dk +
+(Re/24-r)sai(k/s)%15(l)(k) ekkv*(gk)%)('i”] dk] x
ERe/a’rf:So‘zk)S/z B () e[‘it(kv‘(gk)%)] dke +
+(Re/2ﬁ)g°‘(;k)3/2/5(1)(k) e[-:L(kw(gy,:)"l’)t] dk‘]Z
+1/g ERe/aﬁ)OS“k(gk)’l’/S(l)(k) e['it(kv'(gk)%j dk +

+(Re/2’|‘l’35°;(sk)%/5(l)(k) J-st (eve (g0 dk:l x
-%I:(Re/aﬁ)osoj(k/g)%lﬁ(l)(k) ISTTAESE N
+(Re/2'ﬂj)sof(k/g)'} /B(l)(k) e[—it(kv+(gk)‘})l dk]Zx
Ene/aﬂ)osoof(gk)i’/ﬂ(l’(k) Fitter- oty o,
+(Re/2ﬁzs°;a(gk)%/g(1>(k) d-1t v (g dk]
- IERe/ZTr)ogw—(k/g)%/B(l)(k) e['it(kv‘(gk)%)] dk  +

+ (Re/2717) —(k/g)% (1)(k) Jﬁt(kv+(gk)%j 5
o k |x
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” ¥
IZRe/aﬂ-r)Sk(gk)Jc’ P(Z)(k) it (V=g )] 4 o
o oo %
v (Ro/2m) G r(go? fP o) eV dk]
o m %
- ERe/a-ﬁ)S (gk)%/B(B)(k) e[—it(kV-(gk) )| dk]+

+ l:(-Re/zT\')S (gk)%/B(B)(k) e['it(kW'(gk)E)] e

as t becomes large , we have
(1) All integrals without stationary points must behave like 1/t ,
(11i) All integrals with stationary points , we must use the method

of stationary phase to evaluate their values,

Hence , the asymptotic expression for "Z(B) is

73 (x30) = lERe/Eﬂ)(k /e P ity () kil Gl + 00/

ERe/aw><k 3/2 ) drite (s )R . 0(1/t)

m

+1/gEée/2rﬂko(gko)§6(l) eFitgl(ko)+%iﬂ](€15%f%igﬂi% +O(1/t)_ X

- [ _(1 + A(L) Litg 0:)+&Iﬁj 2T 3
%L(Re/arr). (xzo/g) /5 1 (——_tle;"l ko)‘> +o(1/tfx

(Re/ET\’)k (gk )%13(1) JFite, (s )+

%
m) +O(l/t)J

e

[(Re/ZTOk (gk )%p(a) [—itgl(k )+%1¢r>]( m)i N O(l/t):lx
0
ERe/ZTO (k /g)?f3(1) [_itgl(k ) +1im) (grg—ri—ﬂ)% +O(1/t{]
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where , gl(k) =[kV - (gk)%], and the stationary point k = ko,be

defined by[d/dk ( kV - (gk)%)]= 0 .

As we known , the velocity potential and the wave profile are

given by

g(x,y;t) =€¢(1)(x,y;t) + € szf(a)(x,y;t) v e ¢(3)(x,y;t) + eee

and

T (x;t) =€{1)(X;t) +g? ’2(2)(x;t) v e’ Q(B)(x;t) + eee

Substituting for’7(1)(x;t) s ﬁfz)(x;t) and ﬁfB)(x;t) from
their asymptotic expressions , then , to the third order the

asymptotic expression for the wave profile can written as
7 (x3£)= (Re/277) l:-(ko/g)%EéZ/B(l)(ko) v € BP0 €2 O 0e e )

~itg, (k )+dim)], 2 %
e[ 1o (t‘g"l(kox)]

+ higher order terms in ( 1/t ) .
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Evaluatign The Values QOf The Arbitrary

Functions 15(1) 5 ,B(E)and /5(3)

(1) The function ﬁﬁl)(k) :

The function A1) (kjisdefined by the

relation

oo
-(k/g)p‘l)(k) =S £ 1) (x) kX 4y (6.1)

-— 00

.

where the function f(l)(x) representing the initial elevation of

the free surface &itis given by

£ (x) =1/ 02+ 2 ),

[~
then , -t g () = S (/62 + ¥2) ) e ax

o2 ikx
= S ( e )dx
o  (x + 1b)(x -ib)
g(x)
= ( —-- ) d&x

-3 (x - 1b)

to evaluate this integral , we try to evaluate

LSG%“Z’

in the z - plane round the contour L as in the figure , Where

ikz

the function g(2) = e /(z+1ib) .
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Then , we have

SL oo = IligooSIjR”. ;S\... +|§... = 0
3 SOZ(X)/(x-ib) dx = - S g(z)/(z-ib) dz

~% A |
(/b ) o~ lHlE

teee , AP = - (/1IN ) exp(lkly)  (6.2)

(2) The function /5(2>(k)

..

(2)

The function /3 isdefined by the

relation

oo (=)
(1/211)8 (glkl )“l’ IB(Z)(k) e "1KX gy =l:<1/arr)g (I'ng)% ,6(1) g ~1kX d}{'x
) —co

EI/ZW)SII:I (glxl ) p1) oikx dk] (6.3)
sustituting (6.2) in (6.3) , we obtain

co oo
(1/21'08 (glkl)% /5(2) e “TEX gy =(g1-ra/b2) [(1/21‘1) S e—lkI b -ikx dlgl X
A ,

— OO
oo

[(1/ 2‘“)5 el exp(-ikx-l1l b) dk]

-—0Q
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= —8igTT2 ( X/(b2+xa)3 )

hence, ( glkl)2B8@) (k) = -18gr? S £(x)/(x-1b)°  dx (6.4)

. -0
where , g(x) = Xeikx/(x+ib)3

To evaluate the integral ( 6.4 ) , we try to integrate the integral

LS g(z)/ (z-i0)% dz ,

round the contour L in the z - plane , we obtain
")
§ 0/ (xo0) ax =23t e PENC /e ¢ (el ),
—co

hence, 13(2) {klisgiven by the relation

(glkl )%15(2)(}:) —(mt2g/3) e P (lkedZ/e? ¢ (k1B ) . (6.5)

(3) The function /3(3)(k) :

The function ﬁ#B%sgiven by the relation

w/zm (gt B e a1/ El/Zﬂ)S ~(iki/g)? pit) otk d}:Jx

El/zrr)S(lkl )7/ 2g7 (1) omHkx dk]z .

+1/g |(1/2m) S_(Ik,)3/ag~lv ﬁ(l)e—ikx dk]x

- 00

El/aﬁ)gozglkl )2 p(2) olkx dkl

-+ El/ZT?ioj( il /g)? p(l’ o 1EX dk—J
[(1/211) S::oa(glkl ) p(1) gmikx dk]

-3 El/a‘ff) So—a( Ikl /g)? p(l) e 1k dk:\ x

[=-]

El/Zﬁ)S (l1)3/23 p (@) -ilex dk].'
~oo (6.6)

2
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Substituting (6.2) and (6.5) in (6.6) , we obtain
(1/2m) So‘(’glkl 2 B3 () o1 ax =
(8115;b3) El/zn)gé;“k'b —1kx dki} E}/ETﬂ 89; g~ lklb -1k d%]
-(g +*/307) [(1/211) ST: o~ Ikl b-ikx dk:l El/?:rr) SZZ o—b Ikl ~ikx dk]
~(grr*/3b™) ?1/2rr)Sc: oDl kI-1kx dk:l El/Zﬂ) STkle-blkl ~ikx dk:lv
| o —o2
+(gTro/20°) —El/amg;‘b'k"ikx dk:] IZl/zn) Sxkz g~ Pkl ~Lkx cu;‘

(g3t (172 S o Pl ~ikx d{' El/ZTT) S (1) )2 7P Il -ikx dk:l

evaluating the different integrals in the right hand side,we get

A(b2-5x2)

(1/277) i(glkl 12 B3) (1) & HEX gk -
y (0% + <2yt

B(b2 - 7x°) + (=72 + 9°)

+

(2 + ¥°)°
(6.7)
where , A = - ggrt/3p° , B =8gm>
and ¢ = -16ig /3 .
hence , we have
(eie® B30 = So;(x)/(ba-bxz)[" ax S“G(x)/<b2+x2)5 ax  (6.8)
_& —

where , F(x) = A ( be - 5x2 ) o1EX ,

and  G(x) = ( B( b2 - 7x° ) + C( =7b%x + 9x° )) X%
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We can evaluate these integrals by integrating S Fl(z)/(z-ib)u dz
and SGl(z)/(z-ib)5 dz round the contour L in %he z - plane ,
where f rA(bZ _ 5z2) eikz

Fl(z) = Lv" ] ’

(z + ib)h

?

B(bZ - 72°) + C(=7b%z + 9z°))e K2
Gl(z) = ] ’

and
(z + ib)5

hence , the expressién for p(s) is
-b ikl
@xn? B0 = A ax’ - (x1)Z/b )
b
-b | ki
+( -—352—5—- YC QRN + 301k1)2/b + 3(1k1)%/p2 )
48 b
-b Ikl
+( bcae 5— ) @CED™ 30K1)%/b 431 )Z/)
48 b

+3(C 1kl )/b> ) (6.9)
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In fact , the values of the arbitrary functions P(l)(k) ’
/8(2)(1:) and F(B)(k)mdepend on the function which describe the
the initial displacement of the free surface , for example
(1) The initial displacementis given by

f(x) = 1/(b2+x2') >

the corresponding values of 15(1) , 18(2.) and p(3) are
Gui/e)t BP0 = - (T/p) o 2kl

Celk)? PPy = (grr?/3) e (xPB® + (k1)

a -blk

[
ana (slk) PO =(—E— ((wi)? + (1 ¥2/b )

=b [kl '
w(—BEo— ) (qxD% 30K17/8 + 3(161)%/6%)
48 b
poe B MKl i 3,2 2,2
+(—B€e ) (a1 ) r2( 1Kl 3776543 (11 )2 /6243 (1l )/b

where , A = —Bg‘h’q/}ba y B = 851'(3 and C = —16g""'4/3b .

(2) The initial displacementisgiven by
£(x) = ab?/(B%4x7)

the corresponding values of P(l) . p(Z) and lB(s) are

( fxl /g)% P(l) = apwe P ,

-~

(el )? B <1/3 a®pPger? eIl 2+ (rly/p ),

~blkl
ana (gl)? B3 (e (kD) + (k¥ )
8 b
pe P!kl I 3 2,2
+( 3 YC (e *+3(1kD)?/v +3(1k])5/D%)
48 b
bee P Ikl

—BCe ya(ik) M3 /b3 (1 k126243 1kl ) /60 )
48 b
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where , A =(-8abTr)(1/3 a2b351f3 ) , B = 8gb3(ah‘!‘f)3

and , C = -16/3(ab>tr)( ab°gt) .
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Some Numerical Example S

The asymptotic expression for'Z(x,t) -~ the wave profile-is

(1) (2),.3 A3 _2™ %
7 (x,t)=(Re/2m) |-k /e (€ f 48 B2+ FPaill ) ST
exp(-itgl(ko) —%iﬁ)j]

+0( 1/t ).

or Zx,t) =(-1/277) Izko/gﬁ(ep(l’wa plee® pe L. ) (Freree P
[o]
cos(xko—(gko)%)t +&“{]

+0( 1/t ).

We are examining 42(x;t) from standpoint of an observermoving vith
group velocity appropriate to the wave number k = ko ,inthis

case the gross outline has an amplitude which jsgiven by

3 (1) 2 A2) 3 (3) 2 3
_(l/a—rr)Eko/g) (eP (ko)+ € p (ko)+€ P (ko)+...) (ﬁ—tlg..l ko)|)]

i,e. it is t—% times a power series in the small parametefe with
a constant coefficients , this means that the power series must

be exist (convergence 3 , thiswhat hadproved by Levi-Civita's(1925).
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Numerical Examples:

(1) £(x) = V/(%+x®) ,k =1 and b=}

o e f(x) = 4/(1+4x2) ,

% A1) _
(k /g)* P77 (k) = = 3.809

(e /e)F pPx ) = + 75.11

]

3 R(3)
(ko/g) p (ko) -11671.819

The corresponding expression for”l(x;t) is

7 (x3£)=(1/270) (3.809€ ~75.11 € 2411671.819 € >+...) (7/ (x/t )t Feos (x-grt+4m).

(2) f(x) = 1/(b2+x2) sk =1 and b=1

.. £(x) = 1/(1+x%)

* a(1)
(k /g)® P77 (k) = - 1.155

(ko/g)J‘r P(a)(ko) =+ 7.5928

3 a(3)
(k_/8) p (k) = - 170.386

The corresponding expression foral(x;t) is

7 (x;£)=(1/270) (L. 155 € =7.5928 €2+170.386 €7+...) (7 (x/t)t) cos (x-gTt+dm).

(3) £(x) = /(v%+x%) k,=1 and b=2

.. £(x) = 1/(4+x")

¥ (1) _ .
(ko/g) /6 (ko)- .21248
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(e /0)F B2 e ) = . 52375

I}

(k /802 p) (k) = -3.05386

The corresponding expression for‘?(x;t)
"2 (x5£)=(1/21 (.21248 € ~0.52375 €2+3.05386 € +...) @1/ (x/£)t)¥
cos(x-g%t+%“0 .
(4) £(x) = ab/ (b2+x°)
a=1 4, b=1 and ko =1
* 2
- o f(X) = ]-/(l"'x )
% a(1) _
(k /g)° B~ (k) = - 1.155

75928

%+ a(2)
(k/8)° P77 (k)

(ko/g)% p(3)(ko) - 170.386

The corresponding expression for 7(x;t) is

(x;t)=(1/2m) (1.155€ _7.5928 €2+17o.388 €3+. o) (a’rf/(x/t)t)%cos(x-g%th}ﬂ).

(5) £(x) = ab>/(b>+x)
a=1 y b=2 and ko =1

- f(x) = 4/4+x2

% a(1)
(s /)% B (1))

-0.8499

% g(2)
(k /)% B9 (k) = 8.38

i

(3)
(ko/g)%,ﬁ (ko) = ~195,449
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The corresponding expression for 7(x;t) 1is

7 (x;t)=(1/2m) (.8499€ -8.38 €2+195,45 € O+ ..)(2'”/(X/t)t)%cos(}{—g%th}‘”) .

(6) £(x) = ab>/(b2+x)

Ce () = /(1)
(x /&) P () = -0.9522

3 3(2) ) y -
(5./8)% P77 (k ) = 4.69u4

¥ a(3)
(k /&) P (k)

-13600871

The corresponding expression for 7/(x;t) is

2 (x;t)=(1/2™)(0.952€ ~4.6944E 2+136.087€ .. .)(2Tf/(x/t)t)’}cos(x-g’}t+&ﬂ).
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Historical Note :

_ The form of periodic waves progressing over
deep water without change of type was determined by Stokes (1847)
to a high degree of approximation . Later Stokes (188c) added a
supplement describing a differeﬁt procedure . Rayieigh turned to
the préblem several times ( 1876 , 1911 , 1915 , 1917 ) and
introduced still another method of approximation . It should be
noted that both Stokes's second method and Rayleigh's method are
limited to two-dimensional irrototional progressive waves.

In all such computations there is the taecit assumption that
there exists an " exact solution" which is being approximated and
which can be approached more and more closely by pursuing the
selected method of approximation . Unfortunately , it is seldom
that one is able to prove the existance of an exact solution or
of convergence of the method of approximation , and , in fact ,
Burnside (1916) cast doubt upon the usefulness of the Stokes-
Rayleigh type of approximation of periodic progressive waves of
permanent type. Burnside's objection was later met by Nekrasov's
(1921 ,1922 ,1951 ) , Levi -~ Civita's (1925) and Struik's (1926)
proofs of the existence of such waves for both infinite and finite

depth .



PART III
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SHEAR WAVES

A Model of Two ILayers

of inviscid fluid

We consider a two layer model in which a homogeneous ,

incompressible ', inviscid fluid is flowing between infinite
parallel plates at z=0 and z:h2 , In a system of parallel
planes and the mean velocity is described by

U = U(z) , W=o0 . (1)
We consider only two space dimensions x,z . The axis x taken-
toward the right coinciding with the bottom (z = o) and the
axis of z beilng directed upwards. We note the mean velocity
is every where continuous on the other hand[dU(z)/dz]:, the
rate of shear_ has a discontinuity at the interface of the
two layers .
The first layer( the lower layer ) lies between

Z =0 and zZ = h1 ,

through this layer the mean velocityis given by

z (2)

U(Z) =. UO +°(1

where UO is the mean velocity at the bottom ( z = o ) and
C*l = dU(z)/dz ; always positive .

The second layer ( the upper layer ) lies between

Z =‘h1 and zZ = h2 ’

the mean velocity through this layeris given by
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U, = U) +% (z - hi) (3)

where Ul is the mean velocity at the inter-fece ( z=hl ) and

*, =[d/dz (U(z))] s mnegative(= -3y where &g is positive.

In the present problem , we consider the case in which U(z) is
a linear function in =z ,i.e.C*l (the rate of shear in the lower
layer) 1is constant and positive and C*Z ( the rate of shear in

the upper layer ) is constant and negative .

The discontinuity in the rate of shear shown in the figure

Adu/dz

1 !
! "2 .
:hl A
1
!

[« S 1S .o

2
fig.1
A 7

/////////////L,///// IR NINNRNEN)

U2 Z=h2

du/dz =

i; z=h

dU/dZ =

1

U
Y 220
T 7T 7T 77T 77T 77T 7T 777777777 Pl 7777777777777 X 2

. fig-2
A MODEL OF TWO LAYERS
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FORMULATION

Neglecting any external force as well as the viscosity , the

equations of motion and continuity may be written as

?[ut+uux+wuz:]=-px,
9at+aﬁx+aaz]=—§z’ €3
1-1.+\TI =Oo
X pA

where § is the density .
The plane Couette flow is descrived by

U=0U(z) , W=0 & P = constant .

At the time t = 0 , a disturbance is created at the bottom

or at the upper most level , let us write

u(x,z;t) = U(z) + ulx,z;t) ,
w(x,z;t) = wix,z;t) , (4)
p(x,z;t) = P + p(x,z;t) .

where u , w & p are the disturbance functions .

On substituting (4) in (3) and linearizing , we obtain the

following equations for the disturbance

- pX =9[ut + U‘(Z) u, + W UZ(Z)] ’
_pz=9wt+U(z)wx:I , (5)

+ W =
ux 2 o .
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The continuity equation implies the existence of a stream

function ~ =~(x,z;t) such that

u(x,z;t) ,

-«Pé(x,z;t)

and “Pk(x,z;t)

wix,z;t) .

Eliminating p(x,z;t) between the dynamical equations , we get

(8/9t +U(2)8/3x) (u, ~w ) =0.

X

In terms of stream function , this equation becomes
(3/3t +0(2)8/3x ) Vo (x,258) =0, (1)

2

where / is the laplacian operator, i.e.

2 ;4.2 2
vZ- 3%/ + F/az° .
The vertical displacement of a fluid particle é(x,z;t) is

defined by the relation

1]

(0/3t + U(z) 3/3 x ) E(x,z;t)

wix,z;t) ,

i.e. (3/3t + U(z)8/3x ) &(x,z;t)

b

The Boundary Conditions :

A (x,25t) . (15)

(1) At the bottom which is defined by the relation
z ="T(x,t) = £(x) g(t) ,
hence , the condition is

(3/0t +U(z)3/3x ) £(x)g(t) = wix,z;t) at z=0,

‘where U(z)lZ=O = UO .
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in terms of stream function , the conditioncan be written as

N (x,25t) = V,(x,25t) at z = 0 ,

(16)
where , ~V = is given .

(2) At the top ( 2z = h, ) , there is no vertical velocity

i.e. wix,z;t) = 0 , at z = h, ,

this condition can be written in terms of stream function as
Aké(x,z;t) =0 , at z = h, . (17)

(3) At the interface ( z = hy ) , we have

(a) The continuity of the stream function , i.e.

”Pi(x,zit)lz_,hl-o = ﬁFé(x’Z;t>Iz-»h1+O -(18)

(b) The continuity of the pressure , from the dynamical

equation in the x - direction , we get

h1+0

Ea/a t +U0(z)0/3x ) ulx,z;t) + wix,z;t) dU/dzJ

hl-O

in terms of stream function , the conditioncan'be written as

1] V4 .
(878t + 03783 )0F]y Lo - +Ihl_o ) = o, (19)
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where , the prime denotes the differentiation with respect to z,

Uy

(=4

U(hl) , the mean velocity at the interface .

the jump in the rate of shear between the two

]

~..layers apd always positive .

+
V2

the stream function in the lower layer.

the stream function in the upper layer.

The Solution:

We attack the mathematical problem posed by (14 - 19) by
invoking . Fourier transformation with respect to x and Laplace

transformation with respect to t , the time . Let

o

Fe,zsm =L F px,z3t)
- S at ¥t Sdi ey (x,258) ,

where :;'implies Fourier transformation with respect to x and511

implies Laplace transformation with respect to t . Then we define

:?[f(x)]=§.‘f’(x) e X 4x = F(r) ,

integrating n times by parts , we obtain

Fatr(x)/ax™= o® ) .

Similarity , CZ:(dnf(t)/dtn)= (-iw)?F(w) .

Transforming (14) , we obtain

S w - K02, - k) =0 (20)

if (w - kU(z)) o, we get
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A -t =0, (21)

(21) has a solution in first layer (the lower layer)isgiven by

—

Al/l(k,z;w) = a_ sinh(kz) + b sinh(k(z-h;))  (22.a)

in the second layer , the solution is

;¥é(k,z;w) = a sinh(kz) + b sinh(k(z-hl)) (22.b)

1

where a, bo and bl are arbitrary functions .

The condition at the bottom is

w(x,z;t)

(3/3¢ + U _3/3x ) "[(x,t)

AP&(x;z;t) .

Applying Fourier - Laplace transform on this condition , the equiv-

alent relation is

- Cw-w0 ) FREW = kA,

where =~ (x,0;t), , the stream function at the bottom .

:Po(k’o;“’) = |:( KU - w )/k:J F(x)glw) .+ (23)

From (16) and (23) , we get

L ,05w) = A (k05w (24)

i.e. b, stmn(k(-n)) = [ CxU) = w )k |TEW) . (25)
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KU - w f(k)
b =[}———9————-) g(w) (—————————-)J (26)
° k sinh(-kh, ) ,
At the top ( z = h, ) , we have ;;E(k,-ha,w) = 0 (27)

From (22.b) and (27) , we get the relation

a, sinh kh2 + b, sinh k(ha-hl) =0 (28)

1

Transforming (19) , we get

( kUl - W )(bl-bo) = ( -csinh khl) a,
e sinh khl
hence , bl ==( ) a, + bo o (29)
. kU1 - W

Substituting (29) into (28) , we obtain

o sinh kh. sinh k(h.-h.3
1 2™
a, | ( kU, - ) - wi =
sinh kh2
- sinh k(ha-hl)
( )(kul-w)b
sinh kh, °

By putting , o< s5inh kh, sinh k(h,-h;3

(k) = (kU - ) (30)
P . sinh kh,
we get ,
e Ml U (h,-h) / b (31)
a =(—————— - sinh k(h_,-h sinh kh,)b_ (31
o (p(k)"’ W) 2 1 2 (o]
and by = [(kUl -w)/(ls (k)-w):l b : (32)

Substituting for bo from (26) , a, and b, can be rewritten as

1l
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(kUl-w)(kU -w) - sinh(k(ha-hl) _
&, =|( &) B(w) ( (k)| - (31)!
k( f(k)-w) sinh(-kh, )sinh(kh,)
and
(K0, -w) (kU_-w)  _ _
b, = ( ) g(w) ( f(k)/sinh(-khl) ) ’ (32)
k(P (k)-w)

Substituting the values of a, s b° and b, in (22.a) and (22.b) ,

_ 1
we obtain

— - sinh(k(h,-h;)) (10, -w) (kU _-w)
Ay (e, 25w )(k) sinh(kz) ( © —)E(w)

sinh(-kh,)sinh(kh,) k(P (k)-w)
: f(k) (kU _-w)
+(———) sinh(k(Z-hl)) (—2—) z(w) (22.a)
sinh(-khl) . k

- - sinh(k(h,-h 33 : (kU =w) (kU -w)
S ACIHHE )F(k) sinh(kz) © ) E(w)
sinh(-kh, )sinh(kh,) K( £ (k)-w)

F(x) (kU -w) (KU _-w)
+( ) sinh(k(z-hy)) ( >—) g(w)| (22.p)"
sinh(-kh, ) k(B (k)-w)

Transforming (15) , we obtain
Eli,z5w) = (/(RT(2)=w) ) (k,25w) (33)

Substituting from (22.a)!' & (22.b)' in (33) , we get

- (kﬁl-w)(kU -w) _
gsl(k,z;t) =1G(k) sinh(kz) ( = ) g(w)
(/B(k)-w)(kU(z)—w)

’ (kU _-w) -
+ F(k) sinh(k(z-hy) (—>—) &) (34.a)
(kU(z)-w)
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é;a(k’z;W)=I§(k) sinh(kz) + F(k) sinh(k(z- hy ))

(kU —w)(kU -w)
B ) g(#] (34.0)
(kU (z)-w) ( B (k)-w)
where, ~sinh(k(h,-hy) _
G(k) = ( ) f(k) ’
. sinh(-khl)sinh(kha)
and (35)
F(k) = f(k)/sinh(-khl) .

U
1}

the vertical displacement of a fluid particle in the first

layer ( i.e. the lowsr layer )

e

the verticzl displacement of a fluid particle in the second

layer ( i.e. the upper layer 3 .
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Inverting , we get

M 3
= 2 i(kx-wt) =, += sinh(k(z-hy)) (k0 _-w)
§;1 =(1/4777) S dk %_dw e f(k)g(w) l::sinh(-khl) (kU —w)
—Co

+

-sinh(k(ha-hl)) sinh(kz) (kUl—w)(ka—w{:]

sinh(—khl) sinh(kha) (B-w) (kU-w)
and
2o , ~sinh(k(h,~h,)) sinh(kz)
g, =(1/577%) S dk S gy ot (kx-¥t) 'f'(k)é(w)[ 2 1
—do L sinh(-khl) sinh(kha)

+

sinh(k(z—hl)) (kUl-w)(ka—wf:]
sinh(-khl) (kU-w) (5-w)

where the path L lies in the complex w - plane .

The original equation is

(3/at +U(2)3/3x) U4 =0,

or

(3/3t +U(2)3/3x) Y, =0«
The vertical displacement é; is given by
(3/9t +U0(z)3/3x)85 =~

. (373t +U(2)3/30) Y2 (3/3t +U()3/3x)8=0.

It is clear that the expression-for é;l & é;Z satisfy .. the above

equation and .
é;l f(x)g(t) at z =0 ,

1

§,=0 at z = h, ,

2

also é;l = §;2 at z = hy ( the inter-face )
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The function g(t) :

Let the function g(t)be defined by

g(t)

1
(@]
~

tL 0,
:.1.',28—{:A t>0'
where A is a positive constant .

This definition means , at the time t = 0 , a disturbance creating
smoothly at the bottom , then decaying gradually with time . The

function g(t) behaves as in the figure

fam)

oo
.'.<JZg(t) = S t° e_tA iVt gt - glw) ,
o

i.e. g(w) = =21/ (w+i A )3 .
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The Disturbance Functions

(1) The vertical displacement in each layer :

Substituting the value of g(w) in the expression for él , We

obtain

o .
sinh(k(z-h.)) (-kU +w)
§l =(1/4172) S dkS aw eLT(RX=WE) F(p [ 1 o
~ 0o

L

+

sinh(-khl) (w—kU(z))(w+i)\)3

sinh(-khl) sinh(kha)

—sinh(k(ha—hl)) sinh(kz) (kUO-W)(kUl—w) i]

(w—ﬁ(k))(w—kU(z))(w+1)\)3

We take the path L ( as in the figure ) , in the complex w-plane,

above and parallel to the real axls to avoid any singularity on the

real axis and on the imaginary axis in

Imaginary Axis
F'y

the negative half.

Y

w=P(k)

.

w=-1A

w - plane

w=kU(z) Real Axis
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Manipulating the integrals , we find

[= <]

e * o1 (kx-p(k)t) 1 (lex-kU(2)t)
1=S G, (k,z) (BE) = W0(2)) dk - S G, (k,2z) (B - wW(z)) dk
—©Co

—_ OO0

oo

. S 6, ot g g

-—c0

where ,

-sinh(k(h,-h,))sinh(kz) | [(kU_-B) (kU,-P)
G, (,2)=(~1/107 (k) [: 21 () (0 j]

sinh(-khl)sinh(kha) ,Jl— (ﬁ(k)+i>\)5

G, (k,2)=(-1/M1 (k)

_-sinh(k(hz-hl) )sinh(kz):l _(kUO-kU(z) ) (kU ~kU (2) ):]

| sinh(—khl)sinh(kha) L (kU(z)+i}\)3

_ | ston(e(z-n )] [(kU(2)-kU )
G, (1, 2)= (-1/70F (k) °3
| sinh(-kh,) (xU(z)+1A)

©o

-sinh(k(h.~h.))sinh(kz)

and 1, —(e"t2m S (-2)adk F(x) el™¥ e 1 X
sinh(-khl)sinh(khz)

—
(kU +1A) (kU +iA) ~(XU,+iA
(-t2/2) "™ 17" J - it [ 1A
(ﬁ(k)+ik)(kU(z)+iA) (ﬁ+i%)(kU+iA)

-(kUO+17\) (XU _+3iA) (kU +iA) (T _+iA) (KU, +1N)
+ 0 1 + 0 1 .]
B+iM) (U+1A)  (B+iA)Z(kU+iA) (B+1A) (kU+1N)2

+

+

+
B+1iA) (1U+1A) (B+1A) (kU+iA )2 (B+iN)2 (1U+1A)

+[ 1 -(kU1+iA) —(kUl+iA)
(

-(ka+17\) - (kU _+1i}) (kU _+1A) (kU +1A)
+ + + 0 1
BN (KU+1N)T (BraN)Z(kU+N)  (B+1) (5U+1N)>

. (ka+i>\>(kU1+i)\) . (kUO+iM(kU1+i7\):[l

B+iA)7 (kU+1N) BN (U+iN) 7
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[+%)
. sinh(k(z-h_)) (XU _+1A)
+(e" N 2m S (-2)dk F(x) e XX L) Ez%t2> ( —=2
—0o

( ——emme )
sinh(-khl) (U +IA)

-1 (kU _+iX) -1 (kU _+3iX)
+(-1t) [ + —2 ~ 5 + o 3 ]
[ (kU+dN)  (kU+IN)T (KU+1A) (KU+1\)
!

Also , the expression for 532 is

o1 (kx= (K)t) o1 (lex-KkU(2)t)
5o S 6, (6:2) RGO S 65(22) Sy TmeEyy I

—o0
where,
[ ~sinh(k(h,-h. ))sinh(kz)  sinhk(z-h.) | (kU,-B) (kU _ -B)
Gq(k,z)z(-lfn)f(k) 2 1 + 1‘] 1 p g-ﬁ
(Bl1)+1M)

_ sinh(-khl)sinh(kha) sinh(-khl)

_ -Sthk(h -h, )sinh(k2) oinhk(z-hl) (kUl—kU)(ka-kU)
G5(k,z)=(-1/W)f(k)

B s1nh(-kh ) sinh(kh, y" sinh(-khl) (kU(z)+1A)3
and —th o 1kx [:-sinhk(ha—hl) sinh(kz) sinh(k(z-hl){}
+
- sinh(-kh,) sinh(kh,) sinh(-kh,)

_¢2 [CRU_+1N) (kU; +1N) - (KU, +1X) - (kU_+i})
=) [ 2 ]+ (-it) [ + 2
(B+1iN) (kU+1N) (B+iN) (kU+1A) (B+1A) (kU+1N)

(kU _+1A) (kU, +1A) (ka+1A)(kU1+iA):l [ 1
+ = + +
(p+ik)2(ku+1k) (§+1A)(kU+1A)2 (b+1A)(kU+1A)

-(kUl+1A) -(kU1+1A) - (kU +1)) —(kUO+iA)

+ + +

B2 IN) (BN (U2 (BrMERUe1N) (BN (KI+1N)2

+ +

+
(b+ix)3(kU+iA) (P+1A)(RU+1A)3 (ﬁ+iA)2(kU+iA)2

(ka+1A)(kU1+1A) (ka+1A)(kU1+LA) (kUO+1A)(kU1+1A) ]::]
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(2) The velocity comvonents :

We can obtain the vertical component of the disturbance velocity

from the relation

(9/9t +U(2)3/3x)8=w ,

then , the horizontal componehtisgivenby using the continuity

equation

In the first layer , the expression for Wy is

[=.4]
wl(x,z;t) = S F&‘k,z) exp(ikx-itP(k)) dk + I3 ,

—00
where,
-sinh(k(ha-hl))sinh(kz))((kUl—B)(ka~b)

Fl(k,z) =(X1) (k) (

sinh(-kh,)sinh(ich,) (B+i )7
and
-sinh(k(ha-hl))sinh(kz)

I3=(e_tk/2Tﬂ S (-21) dk F(k) e“¥¥ (
et sinh(—khl)sinh(kha)

[E;%ta)((ka+iA)(kU1+iA)) . (oit) [:-(ka+iA) . -(kUl+ix)

(P+iN) (B+1iA) (P+1A)
. (kUO+iA>(kU1+iA> . (kUO+1A)(kU1+1A) ]'; [ 1 . -(kUl+1A)
B+iM)2 (B+1N) (KU+1A) (B +iN) (P +iN)2
. -(kU1+iA> :(kUO+1A) . -(kUO+iA) . (kUO+iA)(kU1+iA)
B+LN) (KU+iN) @+iN)° B+1N) (U+1A) @ +iN)°
. (ka+1A)(kul+iA) . (kU0+iA)(kU1+iAJ ] :}
(§+1A)(kU+iA)2 (ﬁ+ix)2(kU+iA)

-sinh(k(ha-hl)) sinh(kz)

[>-]
+(e™%2m) S (-2) ak T(k) oM ( )

-0

sinh(-khl) sinh(kha)
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(kU_+1iN) (kU +1iN) (kU +1iA) (kU +1i\)
[(—t)( Q 1 )+ ("'i) [ Q 1 .

+
(B+1A) (U+1N) (B+iN) (KU+1N) (B+1iN) (kU+1A)

+ +

(B+iN)2(U+iA) (B+i\) (kU+i))®

(KU_+1M) (kU +4N) (U _+1)) (iU +1A) ]il

siﬁh(k(z-hl))

+(e”t /2) S (-2) dk T(k) (1) e X¥ ( ) [E-%ta) (0 _+1N)

ol sinh(kh,)
(kU_+1i)) -1 (kU _+1A)
#(it) (-1 + =2 ) + ( r——
(U-+iN) (U+1A) (U+i)) |
o . sinh(k(i;h )) B (kU _+iX)
+(e b /2 S (-2) dk (k) elX¥ ( Ly |-ty (——2)
e sinh(kh, ) (1U+1A)
-1 (kU +iN)
+(=1)( + —=2

(xU+iRX) (kU+iN)

and the expression forL%isgiven by

o0
ul(x,z;t):= S Fa(k,z) exp(ikx -itP(k)) ‘dk + Ih

-0

3

where ,
-sinh(k(ha-hl))cosh(kz))((ka-p)(kul—ﬁ) )

Fy(k,2z) =(1/m £(k) (
sinh(-kh,)sinh(kh,) p+1 )

and
-sinh(k(hz—hl))cosh(kz)

14=<e't /2 ) (-2) dk F(x) e ¢ ) X

sinh(—khl)sinh(kha)

[E;%ta) ((kUO+iA)(kUI+iA)) . (1) [ ~(kU_+1iA) . - (kU +1))

(B+iA) (B+1iA) (B+1A)
. (kUO+iA)(kUT#A)] s [ 1 . ~(kU +iN) (kU HA)
B+1X) (kU+1A)

B+1M) B+N)° (B+iA) (kU+1))



- 153 ~

-(kUO+1A) \ -(kUO+iA) . (kUO+1A)(kUl+iA) . (kUO+iA)(kU1+1A)

( +1M)%  ( +1N) (kU+1N) ¢ +1X)> ( +iN) (KU+1N)Z

+

(kUO+iA)(kU1+1A)
( +iN)Z(KU+1N)

+

e ~-sinh(k(h,~h,))cosh(kz)
+(e” W /om) S (21) dk F(k) ™% ( 2 1
— 0o sinh(—khl)sinh(kha)

(kU +iA)(kU1+iA) -(kUl+1A) -(kUO+iA)
(-t) (—= ) + (-1) [ +
( +iN) (KU+iN) ( +1iN) (U+1A) ( +1iN) (kU+1iA)

| Qe HN G N (kUO+i)\)(kUl+i>\)]

X.

( +ix)2(kU+1A) ( +iA)(kU+iA)2 )
oo sinh(k(z-h.))
we™ 72w G (-2) ax TGe) T ¢ IS R RETS)
sinh(khl)
—od

(kU _+iA) - -1 (kU _+i))
#Hit)( -l =)+ (———— ¢ ——— )

(kU+1iA) (1U+1i) (kU+1A)

it | sinh(k(z=h.)) " (kU _+1i))
+(e~tN /2T S (21) dk F(x) e X¥ ( 1) [E}t) (——)

sinh(khl)
-1 (kU _+i))
+(=1)( + 2 =)
(kU+iA ) (kU+iA)
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In the second layer , the expression for“&m given by

g

wa(x,z;t):z S 33(k,z) exp(ikx - itp(k)) dk + I5 3
og
where
FB(k,z) /) TG € s11i1hk(h2 hl)s1nhkz . s%nhk(z hl) (kUO B?(k;l B %
s1nh(-kh1)sinhkh2 s1nh(-khl) (ﬁ+1A)
and

~-sinhk(h.,-h.) sinhkz sinhk(z-h.)
I =(e~tA /2T0 (- 2i)dk T(k) eTFF ( 2 1 + )
5
sinh(-khl)sinh(kha) sinh(-khl)

[E;%ta)((kUO+iA)(kU1+iA)) v (it [ ~(kU_+1]) . - (kU; +1N)

( +1A) (B+1N) (B+il)
. (1T_+1N) (3T, +1N) . (kUO+£A)(kU1+1A)] . [ 1 X - (KU, +iN)
BN (B+4N) (kU+IN) (Brh) BN
—(kUl+ih) . =(kU_*il) - (kU _+iX) (ka+iA)(kUl+1A)
+ + +
BrM TN | (BHNZ PRGN (A

+ +

(B+iN) (kU+iA)© (P+iX)Z (kU+iN)

(k0 _+1N) (U #A) (D +iN) (kU1+iA):I :|

_tA -sinhk(hz—hl)sin(kz) sinhk(z-hl)
+(e )

o9
/2™ S (-2)dk F(k) e ( +
—oa sinh(-khl)s1nhkh2 sinh(-kh, )

(k0 +1A) (KT, +1D) - (kU +i}) ~ (kU _+iA)
(-t) (—= ) + (-1i) + o
( +1N) (KU+iA) (B+iR) (kU+1M) (B+iN) (kU+LA)

+ +

B+ 2 (kU+1A) (B+iN) (k0412

(U # 1N (U +A) eI rN) (e +4A) 1]
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and the expression for(lgsgiven by

%)
ua(x,z;t) = S F4(k,z) exp(ikx - itp(k)) dk + Iz »
— 00
where
—sinhk(ha—hl)coshkz coshk(z—hl))((ka—ﬁ)(kUl—p)

3.
T

Fq(k,z) = (i) £(x) (

sinh(-khl)sinhkh2 sinh(—khl) (ﬁ+i}\)3
and |
<o .
Y _ ikx —31nhk(h2—hl)coshkz coshk(z—hl)
I6 =(e /2m) S (-2) dk £(k) e ( inh(-kh, )sinhkh + sinh(-kh ))X
e s 1 2 1
(kU_+iA) (KU, +1iA) - = (kU _+iN) (kU +1X)
(-t%/2)( To T T ) + (-it) | —=2—— & 1
(B+i) RGEERY (B+iN)
. (kUO+iA)(kUl+iA) . (ka+iA)(ku1+iA)' . [ 1 . -(kUl+iA)
B+ N2 M Gu+ad) d L @) B+iM)°
. -(kul+iA) . -(kuo+iA) . -(kUO+1A) . (kuo+iA)(kU1+iA)
B+iA) GU+1A)  B+NZ (RrLA) (kTN (B+iN)?
. (kUO+iA)(kul+iA) . (kuo+iA)(kul+iA) ]
(B+iN) (kU+iN)° (B+1A)Z (U+1 )
> . -sinhk(h,-h,)coshkz  coshk(z-h.)
r(e~tNom S (21) dk F(x) eTF¥ ( - R - — 1y x
- sinh(—khl)sinhkh2 ‘sinh(—khl)

(1U_+iN) (e, +1A) - (kU +iX) - (kU +3N)
(-t) (—=2 ) + (-1) [ +
(B+iN) (kKU+1iA) (B+1iA) (kU+iX)  (B+iN) (kU+1iN)

.(l:U +1N) (KU +1A) (KU _+i)) (kU,+1A)
+ 0o 1 + o) 1 .]
B+1A)Z (U+iN) (B+iN) (kU+1N)%
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Evaluation the different integrals when t becomes large :

The integral expression foréél ( the vertical displacement of

a fluid particle in the first layer ) is

(>} oo

| . oikx -itP(k) - olkx -ixU(z)t
él(x,z,t) jS Gl(k,z) B -10(2)) dk - SGZ(d,z) PG = K0(2)) dk

%o —co

©0 1
+g G}(k’z) Jllx -ikU(z)t o L,
—OQ

The function (B(k)-kU(z)) has a simple zero at k = k* , where Gl(k,z)
s Ga(k,z) and G3(k,z) are analytic and not zero at k = k* , there-

fore , we can write

3 *
¢, (k,2) o TKX G, (*,2) e1l™x i
= + ¢l(k,z) e

(BUI-KU(z))  (k-k*) &/dk(BU)-KkU(2)),

and
ikx . ik*x
Gg(k,Z) e ) Gg(k ,Z) e . ¢E(ksZ) eikx.
B (k)-kU(z)) (k-k*) d/dk(ﬁ(k)-ku(z))k:k, :

where le(k,z) and cba(k,z) are analytic at k = k* .

Since Gl(k*,z) = Ga(k*,z) » the expression for é;l can be written as

G, (k*,2) % 0 ~itP(k) % -1tkU(z)
ngx,z;t) = ,S———————(k_k*) dk - % ey Ok
d/dk (P ) -k0€2)) ) ) » ~Go ~00

fo ©o
+ S¢1(k’Z) olkx=1tP ) Scpa(k,z) ollx-ikU(2)t

- 00

oo

. S 650, 2) Jkx-1k0(2)E o .

- 00
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oo

We consider first the integral %% 9%%§§§;31 dk , has a simple
pole at k = k* (real) . -
Put k = k* + K , vhere K = Kr + 1 Ki = ¢ exp(i®) ,
and S =|1KIL1 .

Then , we have ;

(1) When U(z) > O , then for convergence Hi< 0, i.e. the de-

formed path is
k*

$ 5
i.e. 8"5 +

Y L
= ~iTT exp(-1itk*U(z))

e
i

(2) When U(z) < 0 , then for convergence Kj':>() , i.e. the deformed

path becomes

L
e
ot %3 = - Ei + SL

= 17T exp(~-itk*U(z)) ..

—S exp(-1tkU(z)) qx = -1 sgn(U(z)) exp(-itk*U(z))
(k = k*)
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?  exp(-itB(k))
Now , the second integral S—dk k= &%) , Where the func-

.tion P(k) is analytic and welfﬂ%ehaved in a domain containing the
real axis . The'simple pole k* is real and the principal value of the
integral is implied . The function P(k) has a saddle point at k = k  which
isdefined by the relation d/dk(B(k)) = O . Then we deform the path in

the manner of steepest descent .

Let P(k) = P +iq , then
expEitp(k)) = exp(itp) exp(tq) , hence the deformed path through

the saddle pointisdefined by :

P=Dp, = constant , and

a < q, s Where
B(ko) = p, + iq .

Sinceﬁ"(ko) #0 , then PB(k) near the saddle point can be exp-

anded in the form

Pk) =Pl ) + F(k-k ) g'(k))

but if we write for values of k on the path , with r real and small

"o k - k, = rel® ’
and , p" (k) = ]p"(Ko)leie .
Hence , we have
p+ig=op, +iq +3% rZIP"(ko)l (240
then , %rzlg"l cos(2a4+8) = o0 ,
and %rzlﬁﬁl sin(20+8) is negative ,

e o K = "%TT"%Q LS



Here , p"(ko) is real and positive , i.e. © =0 ,

e G’—"—"%TT.

Now , if k*>k_~ i.e. PB'(k*) > 0 , hence , for convergence the
semicircle round the simple pole lies in the negative half , and the

deformed path becomes as in the figure,

e %3 = —iTTexp(-itP(k*)) + S + 0(1/t)
Lo
since the contributions from L1 and L3 are 0(1/t) .

If <k, d.e. p'(k*) < 0, then , for the convergence, the
semicircle round the simple pole lies in the positive healf , and

the deformed path becoues as in the figure,
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% = itTexp(-itp(k*)) + S + 0(1/¢)

since the contributions from Ll and L3 are 0(1/t) .-

Hence , in general case we have

L explatBlo) o - iregn(p'(x*)) exp(-1tp(xm))

N S exp(=itBa)) 41 4 oc1/t) .

(k - k*)
_L2
We therefore consider the integral S ex?égit££§)) dk . By expa-
v L,

nding P(k) into a power series in (k-k_ ) and take only the first two

terms :

Bs) =Plk) + $B"(k) (k) .

Introducing a new integration variable

o = (Gtp"(e ) () T
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1
and assuning ot = (bt "k )T (eroky) oF T

[~}
Then , we obtain for the integral % exl(’li"fiegk))- dk the

-0
. 2
approximate expression o exp(~itP(k ))S exp(-o) '
) Soo) 47

o exp(-it (ko)) (2m W*)

where W(g*) is tabulated for complex values of the argument g* .

:
If k* is not near ko then (%tb"(ko))?(k*-ko) is large , in this
case W(Of) can be replaced by the asynptotic expression which is the

same result as is obtained by the standard method of steepest descent.

If the difference (k*—ko) is sufficiently small that
(%tﬁ"(ko))%(k*—ko) is small , then the integral can be expressed ,

in terms of the function WQ;’) .

Hence,the solution in the first layer 1is

G (k* Z) eil{*x-itﬁ(k* )
: 157
‘gl(x’Z;t) = ~imsen(Pr(k,)) - sgn(U(Z){] 4/aE (B (K)-kU(2))

k=k*

6, (k*,2) ik*x-1tB(k )

*2AMMW™)  —7 (B 50 (2))

K=k
o o0
+ Scbl(k:Z) eikx-ltB(k) ik - Scpa(k’z) elk:{-ltkU(z) dk

+ S G5 (1, 2) gLhx-1tklU(z) 4
-— 0O

+ 0( e_tk ) .
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The integral expression for é;a(x,z;t) ( the vertical displace-

ment of a fluid partical in the second layer ) can be written as

Q G, (* ,2) elk"X omit (%) o-1tkU(2)
(x,25¢) = d/di(ﬁ(k)-—::U(z))k o % e % Ty 4
Oa

+ S ch(k,z) Jihx=itP (k) o _S ¢4(k’z) Slkx-1tkU(z)
A 2

-tA

+0( e ) .

where , dDB(k,z) and cPu(k,z) are analytic functions , also
Gh(k*,z) = G5(k*’z) .

Then , the solution in the second layer is
ikrx-1tp(k*)

k=lk*

G, (k*,2)
&, tx,23) = ~iT7 [san(Plic,)-sen (=) | —lrrmryrmgan

ik*x~1tP(k*)

Ga(k*,z) e
+ 2T W(g*) d/dke (B (k) -kU(2)), _, »
+Scp3(k,z) eikx-itﬁ(k) ik - S¢4(k’z) Jilx-1tkU(z)
- | 2

+0( e~tAy L
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Now , the disturbance functions , in the first layer , are

(=}

wl(x,z;t) = S Fl(k,z) eikx—itﬁ(k) dk + 0( e"tA) ’
ul(x,z;t) = S Fa(k’Z) eikx—itﬁ(k) dik + 0O e-tk) s

. | ¢, (et 2y QIR G60)
_1TTEgn(p'(k*))—sgn(U(z)):I 573 (p () R0 (2))

é\l(x,z;t)

k=k*

o1l*x-1tP(k*)

' Gl(k*,z)
Y2 et a2, .
. Scbl(k’Z) JHEx-itP() 4 _ S b, (,2) Slkx-1tkU(z)
—_ O .~
. S G4 (k,2) JLEX-1ERU(2) g | o0 omtAy |
and , in the second layer , are
wylx,2;t) = S Fy (k,2) Lx-1tB() g 4 o¢ o7BA ,
ua(x,z;t) = S Fb,(k’Z) eikx-itb(k) dk + 0 e_tA) R

| | GL}(k*’z) oLk*x-1tP(k*)
& (x,2;t) = -iTT sgn(P'(k*)-sgn(U(Z))] a7k (B (i) ~k0 (2))

k=k*

R

" 4

+

+ S ¢3(k,z) eikx-itB(k) dk - S (bb,(k’z) e:i.kx—:i.tkU(z) dk
o9 oo

+ 0( e-t}‘ )
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The functions Fl(k,z) s Fa(k,z) R FB(k,z) and Fh(k,z) are
enalytic and well behaved in a domain containing the real axis .
The function P (k) has a saddle point at k = ko . As t becomes
large , the different components of perturbation velocity ul,ua,

LY and v, tend to zero like ( 1/t% ) .

The integrals
e o
S 43]_(k’z) eikx_itﬁ(k) dk - & S ¢3(1§,Z) eikx-itﬁ(k) dk
— o3 &

have saddle points , then they tend to zero like ( 1/t% ), since
(bl(k,z) and(bé(k,z) are analytic and well behaved in a domain

containing the real axls . But the integrals

o (=)
S<b2(k,z) Hex-1tkU(z) 5, S G (k,2) SLhx-1tkU(z) .

-—_0 - 00
(%)

and S -CbLl.(k’Z) eikx—itkU(Z) ik,

— co

where the functions 432(k,z) , 4P4(k,z) and Gz(k,z) are analytic
and well behaved , they tend to zero like ( 1/t ) as t becomes large,
when U(z) # O . Hence , when the model is free from any levelwhich its
mean velocity is zero,i.e. U(z) = O , the vertical displaéement of

a fluid particle é;l(x,z;t) and é;a(x,z;t) tends to zero , provided
(sgn(k_-k*)-sgn(-tU(z)) = 0O > L.e. U(z) and d/dk(P(k)), _, , have the
same sign . Therefore , if thereisdlevel with zero velocity ( U(z)¥o)
or (sgn(k-k*)-sgn(-tU(z)) # 0 , L.e. there is a widfh in which U(z)

and d/dk(p(k)) have a different sign , él(x,z;t) and éa(x,z;t)

k=lg*
‘7L*'O , 28 £ —> © | here the linearized theory fails .
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Conclusion :

At the time t = O , some perturbation such that the
velocity components and the vertical displacement are introduced.
We use the linearized theory to see what happens for the distur-
‘bance functions as functions of time when t becomes large . From
our expressions for the components of perturbation velocity ,they
tend to zero as t becomes large like

2
(1) 1/t% , if d/dkP(k)) =0 , i.e. there is a saddle point ,

(11) 1/t , if d/dk(P(k)) # O ,i.e. the function B(k) is

monotonic .

When the model is free from any level with U(z) = 0 and
(sgn(ko-k*)—sgn(-tU(z)) =0 , i.e. the mean velocity U(z) and

d/dk(P(k))

K=k * have the same sign , hence , the vertical displace-

ment tends to zero as t becomes large . But the linearized theory
fails and the reason is that - the vertical displacement of a fluid
particle does not tend to zero as t —> %, when the model contains
a level with zero velocity ( U(z) = 0 ) , or the model has a width
in which the mean velocity U(z) and d/dk(P(k)%=k* has a different

sign .
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