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ABSTRACT 

The present work is divided into three parts have three proper-

ties in common ; 

(1) The medium of propagation has the property of dispersion . 

(2) Each problem considered as one of initial - value problem 

(3) Each problem utilized the infinitesimal - wave theory . 

Part 1 :  

In this part we regard the fluid as an incompressible,inviscid, 

the motion is irrotational and the linearized theory is used.Atthefre 

surface we neglect the pressure and the surface tension. In its un-

disturbed state the fluid, which is of infinite horizontal extent , 

has uniform depth and resting or flowing with constant speed U . At 

t=0,a disturbance is initiated(suddenly or smoothly) at the bottom . 

The technique of Fourier and Laplace transformationsare used to get 

the solution in the form of integral representation . This integral 

can be evaluated asmptotically for large x & t by the method of 

steepest descents. To do this we assume that:(1) x/t is fixed and let 

t —*0o.(2) x is fixed and let t becomes large. (3) x=0 and let t.403. 

i.e. we are examining the different solutions from the stand point 

of an observer moving with velocity = x/t , standing at a fixed 

position or at the origin respectively . The results can be inter-

preted in a striking way in terms of the notation of group velocity. 

We conclude this part by discussing the same problem when the dis-

turbance at the bottom takes the form of infinite step . 
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Part 11  : 

It is the classical problem of initial value problem which 

is associated with names Cauchy (1827) & Poisson (1815) . In this 

classical problem of water waves theory , the pressure over the 

free-surface is constant, say 	zero. The fluid is infinitely deep, 

no obstructions are pre :sent. The initial displacement and the initial 

velocity of the free surface are given then we seek the subsequent 

motion. We used the theory of infinitesimal waves 	by assuming the 

various functions entering into the problem may be expanded into 

power series in small parameterE. The coefficients of E giving the 

first order theory , those of E2 the second-order theory , etc. The 

solution will be carried through in out line through the third order. 

The principle mathematical toolsused in solving the problem are Fourier 

transform , method of stationary phase and integrals in the complex 

domain . 

Part 111 :  

We consider a two layer model in which the fluid is inviscid 

and of uniform density , the velocity profile U(z) is continuous but 

the rate of shear d/dz(U(z)) has a discontinuity at the interface of 

the two layers. At t = 0,a disturbance is created at the lower level. 

The linearized theory is used and the technique of Fourier and Laplace 

transform is applied to obtain the solution in the integral form , the 

integral evaluated asymptotically for large t . The perturbation 

velocity tends to zero as t becomes large , also the vertical dis-

placement--). 0 as t --).45o, when U(z) 160 and U(z) & d/dk( p(k))k.k. 

havethe same sign . The Linearized theory fails if U(z) = 0 orifthe 

model has a width in which the mean velocity U(z) & d/dk(121(k))k=k*  

haves different sign. Where k=k*isdefined by ( kU(z)-p(k) ) = 0 . 



Introduction 

We are all familiar with the concept of wave motion in fluid, 

which is one of the oldest successful branches of fluid mechanics. 

For example a breeze blowing over a river will produce waves 

that will move in the direction of the wind on the surface of the 

river even though the current may be flowing in some other dire-

ction and , at a certain time a disturbance takeplace at a point 

on the surface of the fluid generating waves ; physically this 

would correspond to a stone being thrown into a still pond . 

The subject of water waves has interested a considerable number 

of mathematicians beginning apparently with Lagrange, and continuing 

with Cauchy and Poisson in France . Later the British school of 

mathematical physicists gave the subject a good deal of attentions, 

and notable contributions were by Airy , Stokes 2  Kelvin , Rayleigh 

and Lamb . 

The most striking feature of waves is , without doubt , their 

capability of carrying energy over long distances , as well as the 

energy , they carry also disturbances through the medium without 

giving the medium as a whole any permanent displacement . For the 

vast bulk of wave motions occurring in the nature however , 

the phase velocity , with which the crests and troughs are propa-

gated and the group velocity with which the energy is propa-

gated , have quite different magnitude (but in some simple cases, 

including sound waves and waves on a flexible string , the two 
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velocities are indeed the same ). The magnitudes of-the phase and 

group velocities are , however , not equal for any waves whose 

phase velocity takes different values for waves of different length. 

This state so affairs is usually described as dispersion , because 

it means that if we imagine any general disturbance split up into 

components of different wave length , all these components will 

progress at different speeds and therefore will tend to get separ-

ated out , that is "dispersed" , into a large wave train with the 

wave length varying rather gradually along it . In this process of 

dispersion , the energy assocaited with waves of a given length is 

propagated at the group velocity , say u , of those waves . Hence, 

after a time t has elapsed 2 waves of that length be found a dis-

tance ut farther on 

The present work lies under the category of initial value pro-

blems , i.e. we consider the motion in which the applied wave - 

maker begin "switch on" at time t = 0 . Anexcellent survey of 

different types of initial value problems is given by Wehausen2J.V„ 

and Laiton E.V, (Surface Waves 1960 ) . Pioneer contribution were 

the subjects of classic memoirs by Cauchy (1827) and Poisson(1816). 

Poisson consider the waves produced by an initial displacement in 

water of infinite depth . The general question of one - dimensional 

pulse propagation in dispersive mediu.m was discussed by Rayliegh 

(1909) . Thompson (Lord Kelvin) (1887) presented the method of sta-

tionary phase and applied it to determines the waves produced by a 

concentrated elevation in water of infinite depth . 
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Most of the theory of water waves is concerned either with 

explaining some general aspects of wave motion or with predicting 

the behaviour of waves in the presence of some special configura-

tion of interest to hydrolic engineers, or ship designers . Unfor-

tunately , even some of the apparently simplest problems have proved 

too difficult to solve in their most complete formulation . Approx-

imation have been necessary . The nature of the approximationsused 

in treating a particular problem provides a natural way of class-

ifying it . First there are the assumptions concerning the proper-

ties of the fluid : viscous or inviscid , compressible or incompr-

essible , surface tension or not . Although assuming the fluid to 

be inviscid , incompressible and without surface tension simplifies 

the equations , they are still not easily .manageable. Other appro-

ximationsof a different nature are required . These are in the 

sense mathematical approximations . Their physical significance is 

not in restricting the nature of the fluid but in restricting the 

character of the waves . There are two principal methods of appro-

ximation ; one of two approximate theories results from the assum-

ption that the waves amplitudes are small ; the infimitetimat7.--  - 

wave approximation , the other from the assumption that it is the 

depth of the liquid which is small ; the shallow - water approxi-

mation 4, 

As we mention , in their exact form even the simplest problems 

with surface waves are difficult to solve . If one neglects visco-

sity and assumes irrotational motion , the problem is reduced to 

finding solutions of Laplacdsequation , which is at least linear in 



vi - 

the unknown. However , the problem is still difficult because of 

the non - linear boundary conditions at the free surface or inter 

face . The two principal methods of approximation may eachbetrecited 

as a perturbation procedure . As is mention this procedure is not 

concerned with the assumptions about the nature of the fluid , but 

rathervdthlUnatureof the motion and its generation . The method has 

been applied to water - wave problemsby Stokers (1957) and other 

In the present work we consider the infinitesimal - wave appr-

oximation which fits into a general scheme for approximating non - 

linear equations and boundary conditions by linear one . To do this, 

we assumed that the various functions entering the problem may be 

expanded into power series in small dimensionalless paramater 

say f  . The series are substituted into the equations and the boun- 

dary conditions and grouped according to the powers of e 	The 

coefficients of each power then yield a sequence of equations and 

boundary conditions , the coefficions of C giving the first theory, 

those of (:2 the second - order theory , etc . Since we deal only 

with irrotational flows , the result is a theory based on the det-

ermination of a velocity potential in space variables and the time 

as a solution of the Laplace equation satisfying certain linear 

boundary and initial conditions . 

The first part dealing with small disturbanceswhicharecreatedat the 

bottom in a stream flowing initially with uniform velocity , or in-

to still water , and with free surface t at the time t = 0 • The 

technique of Laplace and Fourier transforms are used to obtain the 

solutions in the form of integral representations . For estimating 

the integral representation for the solution when t is large we 



used the method of steepest descent to get an asymptotic approx-

imation for the solution . 

In the second part we consider the classical case ( treated 

' first by Cauchy and Poisson ) of waves due to disturbances on the 

free surface into a still water at the time t = 0 . The technique 

of Fourier transform is used to obtain solution in the form of 

integral representations up to the third order theory . For this 

purpose it is very useful to discuss the integral representations 

by using an asymptotic approximation due to Kelvin and called the 

principle , or method , of stationary phase . These results,then, 

can be interpreted in a striking way in terms of.  the notation of 

group velocity 

In the third part we consider a model of shear flow . We 

investigated the different perturbation functions such as the 

velocity components and the vertical elevation of any fluid part-

icle due to an infinitesmal disturbance by considering the init-

ial value problem . The technique of Laplace and Fourier transf-

orms are used to obtain the different functions in the form of inte-

gral representation . By the method of steepest descent we had an 

asymptotic approximation for the solution when t becomes large 
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Waves On a Running Stream Due a 

Disturbance At The Bottom  

FORMULATION: . 

Only two-dimensional flows are considered. Fig. 1 

indicates the general situation: the x-axis is taken along the 

undisturbed free surface of flow with uniform speed U in x-

direction, and y-axis is taken positive upward oppisite the 

force of gravity. 

U 

	

y=-h 	 
/////////////////////// 	////// 1/ ///// ///////// 

Fig. 1 

For t<0, let the equation of the bed be given by the equation 

y = - h, 

when t = 0 a disturbance is suddenly created at the bottom which is given 

by 

(x;t) = f(x)g(t), 

where g(t) is the Heaviside function and f(x) is given function, 

but it is better to be symmetry about the origin x = 0; i.e.f(x) 

is an even function. 

Hence, for t>01  the bottom is given by 

y = -h +(x;t) , 

i.e. 	y = -h 	f(x)g(t). 

g=f(x)g(t) 

Consider F(x,y;t) = y 	h - f(x)g(t) , where F(xly;t) = 0 describes 
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the bottom for t >0 . 

We regard the fluid as incompressible , frictionless , and 

initially has a constant speed U ( from the known laws of hydro-

dynamics ) , then the resulting motion is irrotationally and 

mathematically described by the velocity potential (x,y;t)which 

satisfies 	Laplaces differential equation 

V:15, 1,(x,y;t) = o , 	(1) 

in the region bounded by the free surface Sf and the bottom sur- 

face Sb , where 

VX'y 
2 
	

= 7:02/ 
2x2 

 + 2)2/  -6 y2 , 

and 	(x,y;t) = Ux + '(x,y;t) , 

where 0(x,y;t) is the potential of a small disturbance and 

consider it and its derivatives to be small of the same order . 

It is clear that % (x,y;t) is a harmonic function . At the same 
time the free surface elevation . (x;t) ( also&x,y;t) = the 

vertical displacement of fluid particle ) and its derivatives 

are also considered to be small of the same order . 

THE BOUNDARY CONDITIONS: 

(1) The boundary conditions at the free surface: 

(a) The kinematical condition: 

Let F(x2y;t) = y -1I(x;t) = o describe the free 

surface Sf . The velocity of a point (x,y) on the sur-

face in the direction of the normal to the surface is 

given by - Ft  / ( F2 + F2)1 . Here one takes the x y 

normal in the directin ( Fx  , Fy  ). A particle of fluid 

at the same point of the surface at that instant will 
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have a velocity component in the direction of the sur-

face normal given by v grad F = vn  ( v the velocity 

vector of a fluid particle and v = (u,v) ),i.e. 

vn = ( uFx + vFy  ) / (F2 + Fy  ) , 

where Fx  = 	rox , Fy  =‘a F 	& Ft  =ZIF /Z t 

For Sf  to, be a bounding surface means of course , 

that there can be no transfer of matter across the sur-

face. Consequently the following equation must be 

satisfied: 

uFx +vFy =-Ft 	 (2) 

If one defines the " material derivative " by the equation 

DF/Dt= Ft +uFx +vF Y 

then (2) is the same as 

DF/Dt=o. 	(2)' 

(b)The dynamical condition:  

The case with which we chiefly concerned is that of 

an inviscid fluid without surface tension . In this case 

the dynamic condition reduces to the single equation 

p(x,y;t) = po 	 (3) 

on F(x,y;t) = o , where pc,  ; in most cases it is taken to be a 

constant, either an assumed atmospheric pressure or zero . 

But the motion is irrotational and incompressible, one may 

determine p explicity (from Bernoulli's equation) 

P /52  + 	yit 	( u2 v2 ) = o 	(4) 



IF 

In the present problem we consider pc, = 0 Then the 

dynamic condition which satisfied on F(x,y;t) = 0 is 

it + 	u2  + v2  ) = 0 
	

(f) 

(2)  The boundary condition on the bottom: 

Let the equation of the bottom be given by the equation 

G(x,y;t) = ( y + h ,(x;t.) ) = 0, for t > 0 . Then in the 

case of an inviscid fluid (our case) the condition to be 

satisfied on G(x,y;t) = 0 is the same as the kinematic cond-

ition (2) : 

u Gx + v Gy  = - Gt 	(5) 

i.e., the component of velocity of the fluid normal to the 

surface must equal the velocity of the rigid surface in the 

direction of its normal 

We complete the state-ment of the boundary conditions by invok-

ing the finiteness conditions ; 

I < 00 	 as 	I x ---> co 

and 
	 (6) 

as 	Ix I --*co 

The vertical displacement of any fluid particle be given by 

H(x,y;t) = y -g(x,Y;t) = 0 , 	for t > 0 , 

then we have 

( D/Dt )H(x,y;t) = 0 . 	(7) 

In our case the motion is irrotational, hence the velocity 

say v = (u,v) 	at a given point in the fluid may be derived from 

a velocity potential 	(x,y;t) according to ; 
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v = grad 	(x,y;t) 

u = U + fix 
	 V = 0 

substituting for u and v in terms of velocity potential in the 

expressions (2) 	(4) 	(5) and (7),one finds 

- 1(x;t)) = o2  'mat  Tht 	(U+ 	 ) 

(8) 
kt 	g + 	( (U + 5x )2 + 	 ) = o, 

	  + ( 	+ 51(x  ) 	-b x 	+ 	-75  

	

Y -by 
	) ( y + h -)S(x;t)) = o, (9) 

and the expression (7) becomes 

( -at -b  + ( U + x 	-4)  ) 	+ Y -bY ) ( Y - (x,y;t)) = o . ( 10 ) 

As we assumed above , that the perturbation potential and 

the vertical displacement of the free surface 17.,(x;t) relative 

to its equilibrum position , y = o , are sufficiently small to 

justify the neglect of all terms of second order - that is to 

say , we linearize the equation of the motion and the boundary 

conditions . This assumption permits the neglect of the second 

order terms such as x 
2 
 , ex Lx , 	Hence the boundary cond- 

itions reduce to 

gl+ 4 U  Ox = °I 
	 (11.a) 

( 	U 	 )7= oy • 	 (11.b) 

These conditions are now to be satisfied at y = o. 

At the bottom the condition becomes 

,b 	
+ U  ib 	) r4. (x;t) = Oy 	 (12) 

t 	 ax 



can be written as 

(-6/at 	UOtax )f(x)g(t) = yfy  ; at y = -h 	(12) 

The expression for ,(x,y;t) = the vertical displacement of 

fluid particle is given by 

( TY"bt 	Ir -a/ax )g(x,Y;t) = 115y 	 (13) 

To gether the finiteness conditions 

I I< 00 , I I < 00 & ICI< oo 	as 	Ixl----> 00 (14) 

THE SOLUTION: 

We attack the mathematical problem posed by ( 11 - 14) in 

additional Laplacdsequation o  2  0= 0 by invoking a Fourier 

transformation with respect to x (-00< x < 00 ) and a Laplace 

transformation with respect to t ( 0 < t<°°) 

Let 

	

0 (x,y;t) = 	0 (x,y;t) exp(ikx) dx 

	

= 	0 (k,y;t) • 
00 

	

0 (x,y;t) = 	0 (x,y;t) exp(-iwt) dt 
0 

	

= 	0 (x,y;w) 
00 	 00 

0t:41 (x,y;t) = S dt exp(-iwt) S dx exp(ikx) 0(x,y;t), 
0 	-00 

= 0(k,y;w) 	(15) 

Hence, integrating by parts, we obtain 

:r( dnf(x)/dxn  ) = (-ik)n  7(k) , 

(16) 

and 

d g(t)/dt ) = (iw) g(w) 



where g implies Fourier transformation with respect to x 
(-00<x<c>o) and 0 implies Laplace transfomation with respect 

to t ( 0 <t<00). 

Transforming Laplace 	equation V2  / = o with the aid of 

(16) we obtain 

7 

YY  - k
2  = o 

then transforming (1].) , we obtain 

(iw - ikU ) if+ 	o 

and 	
(iw - ikU );32 - 	= o 

at y = o. 

Eliminating lbetween ( 18.a & b ) , we obtain 

- ( w - kU)2  ir + g ;I; = o l  at y = o. 

Transforming the condition (12) , we get 

i (w - kU) 7(k) g(w) = /3„ 

(17) 

(19) 

(20) 

satisfied at y = -h . 

(17) has a solution 

(k,y;w) = A(k;w) exp(ky) + B(k;w) exp(-ky), 	(21) 

with A(k;w) and B(k;w) are arbitrary functions of k and w. 

Substituting (21) into (19) , at y = o 	and (20) 	at y=-h , 

we obtain 

- (w - kU)2(A+B) + gk (A-B) = o , 	(22) 

i (w-kU) Y(k)g(w) = k( A exp( kh) - B exp (kh)) 	(23) 



?(k)E(w)(gk sinh ky + (w-kU)2  cosh ky)  

cosh kh.((w-kU)2  - gk tanh kh) 
	5 ii(klY;w) - (25) 

Solving  (22) and (23) for A and B , we obtain 

A(k;w) - 

and 

i (w-kU ) 1"(k) g(w) ( gk + (w - kU)2) 

k ((W - kU)2  cosh kh - gk sinh kh ) 

B(kpl) - 	
,, 

i( W - kU) ?(k) R 	(gk 	(w-kU)
2 

 I 

Hence , the solution (21) becomes 

Pk;yy) - i(w-kU)7(k)R(w) (gk cosh ky + (w-kU)2  sinh ky )  

k((w-kU)2  cosh kh - gk sinh kh) 

Transforming  (13) 	we obtain 

(iw 	(-ik)U),g(k,y;w) = 	, 

by substituting  for the value T from (24) we get 

8- 

k((w - kU)2  cosh kh - gk sinh kh) 

(2k) 

let (/((k))2  = gk tanh kh . 

Hence it is better to write the expression (25) as 

g(k,y;w) ?(k)R(w)(gk sinh ky + (w-kU)2  cosh ky)  

cosh kh ((w-.(kU+/-))(w-(kU-P))) 
(254' 

From the definition , g(t) is the Heaviside function ,i.e. 

g(t) = o , 	t < o, 

g(t) = 1 , 	t > 0. 

This means that the disturbance is suddenly created at the bottom, 

hence the Laplace transformation is 

R(w) =Sg(t) exp(-iwt) dt 
-00 

=-i / w 

the expression (25) now can be written as 



(k,y;w) - 
-i7(k) (gk sinh ky + (w-kU)2  cosh ky)  

cosh(kh).((w-(kU+/-))(kUl))) w 
5 (25)

tt 
 

tt 
Taking the inverse of (25) ( for Laplace transform ) , we obtain 

1 	-i7(k)(gksinh ky+(w-kU)2  cosh ky)  
!;(k2y;t) 	S 

2iTT 	 -'exp(iwt) dw 
L cosh(kill((w-kku+/-4))(w-(kU-/-1)))11r 

in the w - plane the path L is chosen above and parallel to the 

real axis ( fig. 2 ) 
Imaginary 
axis 

w=(kU-1.1) 

w=(kU+1.1.) Real axis 

  

Figure 2 
w - plane 

1 
By Cauchy theorem and Jordon s lemma we obtain 

g(kor;t) _ -iT(k)(gk sinh ky + (kU)2  cosh ky)  

cosh kh (kU +112)(kU -it) 

-i?(k)(gk sinh ky +(P(k))2  cosh ky)  exp(it(kUlt) 
cosh kh (212.)(kUlt) 

-i?(k)(gk sinh ky +(/2(k))2  cosh ky)  exp(it(kU-tt)) (26) 
cosh kh (2[4.)(ku-it) 

Now , the solution of the present problem is of course obtained 

by taking the inverse - Fourier transform of (26) , 

, (x,y;t) = ( 1 / 211) S 	g(k,Y;t) exp(ikx) dk . 
—00 

Upon examining the integrand ( the function (k,y;t) given 



kU -ti(k) )dk  
exn(-ikx) 
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by (26) it might seem that it has singularities at zeros of the 

denominators,but in reality one can easily verify that the func-

tion (k,y;t) has no singularities when the right hand side of 

(26) is taken as a whole , i.e. the integrand is non singular 

Hence,we write the integrand as the sum of a singular integrals 

as 

(k,y;t)_(=i)(  gk sinh(ky)+(kU)a
(kh) 

cosh(kY))(7ekg) 	kU-k) ) cosh 

4.(-i7(k))  [Igk sinh(ky)+(1(k))2cosh(ky)li x  
21,1 	cosh(kh) 

pexp(iit=k))  ) _ (exP(Ii=k));_] 	(27) 

What we wish to do is to consider the contribution of the separate 

items in the right hand side of (27) and to avoid any singularities 

caused by zeros in their denominators by deforming the path in the 

complex k-plane using indented contours along the real k-axis , and 

then we can use Cauchy principal value 

Hence, it is better to rewrite (27) as 

QO 2 
(x,y;t)=(1/21-11

(-i 
2 FL 	cosh(kh) 
T(k))(gk sinh(ky)+(kU) cosh(ky)  

)( 
-exn(-ikx) dk  
kU+11(k) 

-00 

+012T05(-iT(k))(gk  sinh(ky)+(kU)acosh(ky))( 2 p. " 	cosh(kh) 
-00 

oo 
+(1/21-) S(zi-Iih))(Fk  sinh(ky)+1.A2cosh(ky))(e  -ikx eit(kU+11(k)) )dk 2 4 

	

	 kU+11(k) cosh(kh)  

00 	
-ikx it(kU-V'(k)) 

“1/2To S (4-i-1.(k)) Ek_sinh(ky)+1.12coshikY)  )(e 	)dk a FA- 	cosh(kh) 	kU-µ(k) 

-oo 

(27)1 



X(
1 
 k,Y) -( 2,,l(k)) ( cosh kh 

-i7(k) 	gk sinh ky + (kU)2  cosh ky 

(31) 

Discussion the different integrals: 

To evaluate (27) for large values of x and t , it is 

convenient to rewrite (27) as 

,(x,y;t) = I + J 
	

(28) 

where 0, 
I =( 1 / 2TO X(ka)( exn(ikx)) 

 dk  

-00 I 	
kU -1-",t(k) 

1 / 27T) )6k,y)( 	exP(-ikx))  dk 	(29) 
kU -/t(k) -00  

and 
00 

=( 1 / 2,1) 5 30k,y)( exiD(it(kU+Y(k)) . 	, 
kU + /..C(k) 	) exp(-ikx) dk 

-op 2 
00  

1 / 211) 	-1/(k 	-exn(it(kU-P(k))  +( 	 7J/ ( KU -pc(k) 	) exp(-ikx) dk, 	(30) 
-o  

where, 

( -i7(k)) 
X(k,Y/ -‘  

2 	
2/2(k) 

gk sinh ky + (R(k))2  cosh ky)  
cosh kh 

We observe that the function ,LL (k) =(gk tanh kh)7  can 

be defined as an analytic function in a neighbourhood of the 

real axis , and , in addition , the function has no real zero 

except k = o . Once the function /LC(k) = ( gk tanh kh )1  has 

. been so defined , it follows that each of( kU -R(k) ) and 

( kU +1,((k) ) is an analytic function near and on the real - 

axis , it is important to discuss their zeros. 
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Roots of the equation (kU * (k))=0  : 

In the fig. 3 , we have plotted the functions y1(k) = * kU 

and y2(k) =1-1-(k) = ( gk tanh(kh))1. 

Near the origin, i.e. k is very small, the function y1(k) behaves 

like (kU) and the function y2(k) behaves like (gh)lk hence 

dyl/dk = U, and, dy2/dk = (OA 

k=-k* 	 k=k* k 
fig. 3 

Roots of the equation (kU * 11(k))=0 

(U2/gh< 1) 

As one finds, the zeros of the function (kU * 1-1(k)) : k = 0, 

in addition real roots at k = ±k* if the dimensionless parameter 

(gh/U2) is greater than unity. 
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Asymptotic evaluation of the wave integral: 

Case I 	, the infinity depth:  

In this case we consider h (the depth ) 	00 . 

But from the definition 1,l(k) = ( gk tanh kh ) , in this 

case 	i.,C(k):::( gk 	. 

Evaluation I  : 

Consider first the integral 
00  

( 1 / 2PO S exp(-ikx)  
(k 3r)(  kU -14(k) ) dk 

This integral can be evaluated asymptotically for large x 

But the integrand has a simple pole at k = k on the real 

axis defined by [kU - ( gk ) ]= o , i.e. 

k = k =(g / U2) 

Note: this integrand is free from singularity at the origin. 

The convergence of the integral: 

Near the simple pole k = k , we consider 

where 

and 

k = k
* 
 + 

k=Kr +i i<1  

cexp(iO) 

H is a small complex quantity and I kl=04., 

= 	G< 1 . 

dk = d = i Q exp(ie) de 

i.e., 	dk = ik de I 

expanding i(k,y) , ( kU - p(k)) and exp(-ikx) about k = k 

we obtain 

-- 00 
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-Xl(kor) Z r)(3.(k*,y) 

(kU -1-((k))z 	d / dk (kU-114(k))k=k* 

exp(-ikx):: exp(-ik*x) exp(-iRx) 

exp(-ik x) exp(-ikrx) exp(141x) 

i.e., the integrand about k is 

X.1(kt,Y) 
	 exp(-ik x) exp(-i Kr  x) exp(_Ki  x) 

--L d/ dk(kU-14(k) )k=k* 

Hence 	the convergence depends on the sign of x in exp( Ki  

	

if x is positive 	then ki  must be negative, 

and, if x is negative , then ki  must be positive. 

Now to deform the path such that the singularity is avoided 

by making a semicircle around the simple pole , the semicircle 

must be above or below the real axis 	this depends upon the sign 

of x . Then evaluate the integral as 	00. 

(1)  x is positive :  

	

For convergence 
	Ki  o , hence 	the semicircle 

must be in the negative half of the complex plan and the 

path deformed as shown in the figure, 

then, 	
S 1 
	= p.v.5 	+ 	2 

•)/ 

i.e., 	p.v. S 
	S ... = 	1 ... . - 	... , 

L 

L ." 	
for large x leads to zero like ( 1 / x) . 

0 

	

=( 1 / 211) 	-)(1.(k )[ 	 
k d/edkx1)(k(U-iki-t(k))k=k* 	kde  -n/ 
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EXP(-ik x)  
=(i/2) )(1(k

*
) d/dk(kU-p((k))k=k* 

i.e. 

(1/2TY)S 	(k) 	exp(-ikx)  
1 	( kU - ft(k)) 	dk 

:X. (k*) d/dk 	
x)  

(-i/2) 1 	d/dk (kU- p(k)) 	* 	+ 0(1/x). 
k=k 

k=k* 

LI 

(2)  x is negative :  

For convergence ki  must be positive, this means that 

the path must be deformed as shown in the figure, 

k=k* 

then we get, 

(1/21Y) 
( kU - 1.((k).  ) 	

I dk S 3< (k) 	
exp (-ikx)  

i   

(1/2) -X 	*) [ 	exp(-ik x)  1(k 
	d/dk(kU-IU(k))

k=k 	
+ 0(1/x) 

_00 
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The second integral, 
00  

(1/271) S
1  (k)  ( kU
[ 	ex

+ AC
t, 	

(k
x)  dk .  

has a simple pole (real) 	k=-k , and free from singularity 

at the origin . By similar discussion about the first integral 

we can easly see, 

(1)  x is positive: 

For convergence /‹i  must be negative, and the path 

must be deformed as the figure, 

k=-k* 
L' 

we have, 

(1/2-rr)S Xi(k) [ exp (-ikx) 	IIdk ( kU +//,‘(k) ) 

(-i/2) .X (-k ) 	
exp(ik x) 	+ 0(1/x) 1 	d/dk(kU+A.C.(k))k=_k* 

(2)x is negative: 

For convergence K i  must be positive , and the path 

must be deformed as the figure 

L' 

k=-k 
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we obtain, ... 

(1/2-7-0
1 
(k) [ exP(-ikx)  

( kU +p(k) ) 	dk Z 

(i/2) X ( -k ) 	
exp(ik x) 	 + 0(l/x) . 

1[/dk(kli-y4(k))k=k* 

Now, the value of the integral I, 

C■0 

I = (1/271)SX1(k,y) dk ( 
-exp(-ikx) 	exp(-ikx)  
( kU 	,4(k)) 	( kU - b4k)) 

when x becomes large is, 

(1) x is positive  : 

I =(i/2) —y 	exp (ik x )  I _(1/2)[  exp (-ik x)  
'iNa• 	d/dk(ku+/..4(k))k=k* • ' id/dk(ku- kt(k))

k=k
*

#7' 
+ 0 (1/x) 

(2) x is negative :  

I 	 f 	exp (-ik x) 
=-(i/2)'C (-k*) d/dk(kU-Ekt(k)k=_k] 	 )k=k*-1 

+0120c(k* Td/d17(113dT-(ii-tk(kx)) 

+ 0 (l/x) . 

••••• 00  
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Evaluation J: 

Consider first the integral 

op 

(1/2TO S X.2(k 37)[1"13 (
-ikX) exp(it(kU-I-4(k))] 

(kU -Pt(k)) 	
dk 

oo 

This integral can be evaluated asimptotically for large x and t. 

To do this we assume the ratio t/x or x/t is fixed, so that the 

resulting integral contains just one large parameter, either t orx. 

Consider x = Vt, where V is fixed and representing the observer 

speed, hence, we can evaluate this integral for large t with x/t=V 

fixed. The integralcanberewriteaas 

07- 
( 1 / 2 TO 	2( (k v) 	 2 2- 

[ exp(itg(k))1 

(kU -p(k)  dk 

where , 	gi(k) = ( kU - kV -I-4(k)) 

= ( kU - kV - (gk)-1) 

The two functions i<2(k2y) and gi(k) are analytic and well behaved 

in a domain containing the real axis. The integral has 

(1) A simple pole at k=k*=(g/U2). 

(2) d/dk(gi(k))=0, this means that , there is a saddle point at 

k=k0,bedefined by 

N. 
g
1 
(k) = (kU - kV - (gk)I  12 

then d/dk(g1(k))., U - V - l(g/k)I, 

k = ko
, the saddle point, is defined by the relation 

U - V - 1-(g/k0)1  = 0, 

ko = g/(4(U-V)
2
) 

and 	d2/dk2(g1(k)) = 	(g/k3/2) , 

00 

• • 
• 

• 
• • 
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d2/dk2(gi(k0)) = 2(U - V)3/g 

One finds that the value of ko ( saddle point ) depends on 

the value of V = x/t (the observer 	speed ) 

From the values of k = k (simple pole) and k = ko  (the saddle 

point) one easly finds that k = k is a fixed value (real) in the 

same time k = ko which it is a variable value depends on x/t=V,i.e., 

by changing the value of x/t the position of ko  may be on the right 

or on the left of k as we see, 

(1) V is negative , i.e. x/t< o 	we obtain 

ko< k 

0 
	

ko 	k* 	Real axis 

(2) V is positive , i.e. x/t>0 , but less than U/2 , then 

ko < k  

0 
	

ko 	k* 	Real axis 

(3) V is positive 	i.e. x/t>0 „ but 

U/2 4 V = x/t ( U we have 

k > it 

0 
	

k* 	ko Real axis 

One finds 	that,when V = x/t (the observer 	speed ) is 

negative or positive but less than U/2 	hence ko 	it i.e. ko 
on the left of k but when V= x/t is positive and greater than 

U/2 and less than U 	therefore,ko> k ,i.e. koon the right of k 

The group velocity defined by d/dk (kU - (gk)1) 

= U - l(g/k)1  

i.e., the group velocity depends on it (the wave number) 
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Therefore, the group velocity appropriate to the wave number k=k* 

is U/2 , this means that, the position of the saddle point relative 

to the simple pole depends on the observer- speed such as, 

(a) If the observer speed is less than the group velocity , the 

saddle point lies on the left of the simple pole. 

(b) If the observer 	speed is greater than the group velocity, 

the saddle point lies on the right of the simple pole. 

Return again to the integral 

0. 	r  exp(itgl(k))1 

	

S')(2(k9Y) 	( kU igk)) dk  

expanding ,(2(k,y), ( kU -p(k)), exp(itgl(k)) about k = k* 

Consider k = k* + k where 1K k( 1 , we obtain 

X2(kor): /X2(k*,y) 

( kU - il(k) ;Z.  d/dk (kU - p.otnk.k. 3  

exp(itgl(k)):: exp(itgl(k*)) exp(it gi(k*)) 

exp(itgl(k)) exp(iticgi(k*)) exp(-tVigi(k*)) 

Hence, the convergence depends on the sign of gi(k*) , in other 

words, the semicircle round the simple pole must be in positive 

or negative half according to the sign of the function gi(k*) is 

positive or negative respectively, i.e. 

	

if gi(k*) > 0 	> 0 	and 

	

if gi(k*) 4( 0 	k i  < 0 . 

where, accents denoting differentiation with regard to k . 

From the definition 
gi(k) =[U 	V - 4-(g/k)+] 
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hence, 	g'(k*) = U - V - -Au = 3U - V. 

We find that, the sign of the function gi(k*) depends on the value 

and the direction of the observer 	velocitY,i.e. 

(1) If V is negative 	i.e. the observer moves in the upstream.  

direction , gi(k*) is positive, hence, ki  is positive, therefore 

the semicircle round the simple pole lies in the positive half in 

the complex plane as in the figure, 

	(7). 	 
0 	ko 	

k*' Real axis 

(2) If V is positive, i.e. the observer moves in the.down stream 

direction with speed less than the group velcity, gi(k*) is 

positive, hence, Riis positive also. Therefore, the semicircle 

round the simple pole lies in the positive half)  

0 
	

K0 	k* 	Real axis 

(3) If V is positive, i.e. the observer moves with the stream's 

direction with speed greater than the group velocity, gi(k*) is 

negative, hence, Ri  is negative. Therefore, the semicircle round 

the simple pole lies in the negative half. 

0 	 k* 	 k, 

  

Real axis 
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Now , deforming the path of the integration in every case to 

L1+L2+L3 
in the manner of the steepest descent , as we see in 

figures. 

Figure 3 

Deformed path when (i) V< 0 , 

(ii) 0 < V < 

L2 

k* 

ko 

L2 

Figure 4 
Deformed path when 	V > 1U 

L1  
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Corresponding to fig(3) we have 

S "" = S 	L 	L ,N 	1 	 2 	3 

i• e• S • • • 	= 	- 	• • • SL • • • 

/41 	2 
+ 0(1/t) . 

where the contributions from L1 and L3 are of order (lit). 

Then, S 
L 

exp (-ik Vt) + 0(1/0, 
[d/dk(kU -/..z(k))k=k**1

+ 
SL2 

to evaluate the integral, we use the result (Jeffreys and 
L2 

Jeffreys ) where the major contribution comes from the region 

about the saddle point defined by gi(ko) = o , hence, 

* exp( -ik Vt) 

d/dk(kU -P(k))k=k* 

exp(igi(ko)t)exp(4ATT) 	217  

	

+(1/211-)X (k0) 	(kou -i,t(k0)) 
[ 	

)( 	 
t gy o  (k) 

+ 0 ( lit ) . 

when , 

(1) V is negative. 

(2) V is positive and  lessthan -U. 

By the similar manner , the cgse in which V is positive and greater 

than 1U , we obtain 
r oc, exp(igi(k)t)] 	exp(-ik*Vt) 

(1/2T()5 X (k)[ 	dk 
i12(k  2 	( kU -p..(k)) 	d/dk(kU -/Z(k))k=k* 

(1/21r).):(k0)[710(ig l o  (k)t)exp( 	11 ) 	2 ...  
')( 	 )" 0(1/t) 

2 	( koU -/t(k0 ) 	t gl(ko) 

0.0 

(1/2TY)S‹ 
(k)[7  

-00 	2 

exp(ig (k)t) i  _ 
dk — 

1 	* 
-2-  i X (k ) 

2 ( 	kU- ti(k) 	) 
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Similarly , for the integral , 

y)[exp(-ikx)exp(it(kU + 

	

(1/2)5 	
tt(k)) 

-r-r)5 	(k, 	  dk 

	

-00 	2 	 (kU 412(k)) 

it is better to rewritetheaboveintegral as 

exp(it(g2 (k)) 

	

(i/21-05 	(k,y)( 	 )1 dk 
2 	( kU +p(k)) 

where 	g2(k) = ( -kV + kU + (gk)-1) , 	the simple Dole is defined 

by kU +/1(k) = o , leads to k = -k*4 the saddle pointisdefined by 

g2(koo>  = o . 
exp(ik Vt) 

. .(1/271) S )(- (k)E 
exp(itg2(k)) dk z  _ 	..,/ (_kt)F(  
	 ) . I'd Y.. 	) 

_00  2 	(kU +i,((k)) 	 2 	Ld/dk(kU-it(k))k..k* 

exp(ig2  (k 
00

)(  )t)expU ) 	2 --rf 
+(1/211 	

)( 
) X (k 	) + 0(1/0 2  oo 

(kooU - /A(k004)  tg"2(koo )  

when , 

(1) V is negative,  . 

(2) V is positive and less than 111 . 

and, 
0...* 

* 	exp(ik Vt) 
(1/2-1-05 y_ (k,y)

exp(itg2(k)) 
	 ]dk ::: -1-irX. ( It )[ 	  ) 

2 	( kU +/-((k)) 	 2 	d/dk(kU+)(-4(k))k„k* —0.0 

Tx..(kr,o)rx10(ig2(koo )t)exp( ) 	2 "7-r 	3: 
÷(1/211') 	 0(t 	 )2+0(1/0 

2 - 	(kU +fA(k))k.k 	tg"2(k00)., — 
00 

when V is poSitive and greater than U/2 	• 
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We have , 

°° 	-exp(itgl(k)t) 	exp(itg2(k)) 

	

J=(1/21-0(
/ 
 X (k,yi 	) + ( 	)) dk .. 

	

-00 2 	(kU -1.4(k)) 	(kU +1,((k)) 

The values of.J corresponding the different cases, 

(1) V<Zo 	i.e., the observer moves in the upstream direction 

exp(-ik Vt) exp(itg2(k)) 	

1 

	

X (k 	 )(2( -1K* ,Y)F 	  

	

2 	d/dk(kU-p(k))k=k* 	d/dk(kU+1-4(k))k=-k* 

exp(igi(ko)t)expU-TfL) 	21rr 	, 

	

-(1/2)(k 	)( 	„ 	)-21 
2 	(kU 

	

 +/A(k))k=k 	t gi(k ) 
o 

exp(ig2(koo)t)exp(27.-r0 	211.  

	

+(1/21T)X(k ,y)( 	  )( 	 )"1  + 0 ( 1/0. 2  oo 
(kU q(koo) 

	

+/-t (k) )k=k 	t  
00 

(2) The observer moves with speed V<Ill in the downstream direction 

exp(-ik'Irt) 	exp(ik Vt) 
,y) 	111:X (-kal 	  

	

2 	d/dk(kU-p(k))k=k* 	2 	d/dk(kU+14(0) k=-k*  

exp(ig1(k0)t)expUiY0 

	

-(1/21-r ) 	(k0230 

	

)( 	 

	

2 	(kU -12( )) _k.,k=k 	t gni(ko) 
0 

 

	

+(1/27-r)X(k 
3y)r(i(62(k00)0expWill) 	2 -11-  

)717+ 0(l/t). 
2 °° 	(kU + it( )) 	)( 	 

	

k, .k=k 	t g" (k 00 	2 oo 

(3)V>o,i.e.,the observer moves with the stream direction with 

speed greater than 1U and less than U (the mean velocity), 

* 
exp(-ik*Vt) * 	 * [ exp(ik Vt) 

JZizi-X.  (k ,yf 	 ] -Da (-k,Y)( 	 
d/dk(kU+11(k))k=_k  2 

	

	 2 d/dk(kU-p(k))k=k* 

exp(igl o  (k)t)exp(). 	211 
+(1/21r)3( (k ,y){(_ 	)( 	" 	) 

t gi(ko) 2 ° 	(kU - 12(k))k=ko 

.)] 
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alexp(ig2(koo)t)exp(-,Iriif ) 	21Y 	1 

	

-(1/27f)7,(k,n  	)(t 	go(k 	0(1/t), 

	

2 -- 	(kU +pt(k))k=k 	2 oo 00 

The simple pole k =-k is defined by the relation 

KU -7 	= o 

this leads to, 

X ( ik*,Y) =/X ilea) 1 	2 

Hence , the solutionsfor large t and x , in different cases,are 

Case (1) : the observer moving in the upstream direction, 

i.e., V<:o and x< o , the corresponding solution is 

Lexp( ig l ( k_MexpaiTr ) 21Y 
L(x,y;t) = -(1/21- )1(k_ ax 	u 	)( 	 

2 	(kU - t4(k))k=k 	t gl(ko) 
o 

 

[exp(ig2(koo)t)expadTr) 	21Y 
4.(1/21Y) 7X: (k ,y)( 	)( 	 oo 2 	(kU +/A(k))k=k 	t q(koo) 

oo 

+ o( lit ) . 

Le,the solution from the stand point of an observer moving opossitely 

to the stream , will decrease in amplitude because of (1/t)-1-. 

Case (2) : the observer moving with the speed V< --U in the stream 

direction, the solution for large t & x takes the form 

exp (i( -k*)x) 

	

A(x,y;t)=1-iy:(k ,y)t( 	 
1 	d/dk(kU -/4(k))k=k* 

* 
exp(ik x) 

	

+i-y: (-k ,y)( 	 
1 	d/dk(kU +//(k))k= _k* 

)] 

exp(ig(k)t)expUimr) 21-f 
-(1/21-r )j 	

i o  
(.(k,,y)( 	 )( 	 

)4.1 2 - 	(kU -p(k))k_k 	t gy(ko) 
o 
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oriexp(ig (k )t)expaiTr) 	21rf 

'2 oo 	)( 	 -1-(1/2qT) ":Ykoo 
(kU 

	

	t 	
))! 

+ Ft(k))k..k 
00 

+ 0 (1/t) 

The two first terms represent the steady-state solution and the 

	

next two terms represent 	the transient solution which behaves 

like (1/04-. 

Case (3) : the observer moving with the speed V>4-U, but ,<',U 

in the stream direction , hence ,for t&x arelarge the solutionis 

given by 

exp(ig,(k )t)expaiTr ) 	21-r 

	

S(x,y;t)=:(1/211').-X(k ly)( 	 0 	)( 	 

2 ° 	(kU -1A(k))k.k 	t g"1(k ) o 

exp(ig?(koo 	-a )t)exp(lf) 	2-irr 
-(1/2-rf ) 	(k or)( 	)( 	 2 oo 

	

(kU +/A(k))k.k oo 
	2 t g"(k oo) 

)11 

+ °(1lt) , 

whichisrepresented a transient solutionMdecays like (1/t)I 

By examining the solution we find that; 

(1) If V is negative , i.e. the observer moving in the 

oposite direction of the mean stream, he observing only a 

system of a transient waves with an amplitude modulation 

which behaves like ( lit )3 . The same result obtained for 

an observer moving in the stream direction with speed greater 

than 1U and less than U. 

(2) The steady-state solution occures only when the observer 

moving with speed less than 4-U in the same direction with 

the mean stream. 

0 
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Asymptotic evaluation of the wave integrals 

in a general case 

The solution for the present problem given by the expression 

	

coo 	-exp(-ikx) 
(x,y;t) = (1/211-)y)( (k,y) 	)jdk 

_00 	1 	( kU +1.4(k)) 

	

ca 	exp(-ikx) 
+ (1/21Y)S.X (k,y) [(. 	 

1 	
] dk 

( kU - IA- (k ) ) 

(1/2-rr)S 

	

-Co 2 	( kU + p((k)) 

co X. (Icor) (exP(it(kU+R(k) )exP(-ikx)] 

00 (k,y)[-exP(it(kU-P(k))ex-o(-ikx) 
idk (1/2-rr)SX 

	

2 	(kU -qX(k)) 

Through the previous discussion , we evaluated this integral 

asymptotically for large t & x , in the case of infinity depth 

i.e., h —>oo. We have ,12(k) = (gk tanh kh )1, in this case 

we consider it(k)=:(gk)7  .But , we like to evaluate this integ-

ral when h has a finite value. 

Evaluation the different integrals: 

We consider, 

	

=S 	
x  (Ica) 
	) dk , 
exp(-ikx) 

1 _00  1Louk - /1(k))1  

The integrand has a simple pole (k = k ) on the real axis which is 

1  defined by kU -1.0k) = o 	kU = (gk tanh kh)2' 	the same 

time it:is free from any singularity at the origin 

For the convergence , consider 

k =k+K, 

where K is a complex quantity such as IK 1<1 qnd K = exp(ifio) 

then dk = dK = i K de 

--a. 
dk 
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Expanding 
	

(k) 	(kU -1.1(k)) and exp(-ikx) about k = k , we 

obtain 

-X-(ka) == 1.(k ,y) 
1 	1 

(kU -12(k)) ==.: k d/dk (kU -1.4(k))k=k* 

exp(-ikx)=fexp(-ik*x) exp(-1.11,x) exp(Kix) , 

i.e.,the integrand about k=K can be rewritten as 

,-,/ * 	exp(-ik.x)exp(-ikrx )exp(K.x) ilL(k ,y) ( 

	

	
) 

d/dk(kU -1.1(k))k=k* 

we like to evaluate this integral for x is large , for convergence 

(1) if x> o , then Ri< o , 

(2) if x< o , then 1{i< o 
* 

deforming the path to avoid the singularity at k = k by using 
* 

indented contours , the semicircle round k lies in positive or 

negative half of a complex plane depending on the sign of x: 

(1)ifx<0,11ence,forconvergenceR.>o ,i.e. the 

semicircle lies in the positive half and the path deformed 

as in the figure 

L t 

• . S 	= 
LI L 

••• 
	+5 • •• 

rexp(-ikx) 
(1/2Tr) S 	-X"1(ka)  -00 

- 
r*N 

• • • ( 
	

ddk= 

but , S 	... its contribution is of order 0(1/t) 
LI 

i.e. 
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exp(-ik x) 

and 	= 	X (k 
1 	d/dk(kU 14(k) )k=k  

hence, 

ex ( -ik x) I1 === 	7)( ( k
*
,y )1 	'

.° 
 

1 	d/dk(kU -1,t(k))k=k* 
+ 0(1/t) . 

(2) x>o , for convergence Ki4 o , i.e., the semicircle 

must be in negative half plane and the path deformed as 

L 
	k* 

S L' 
041, 0 = S 	**0 	+ S 	000. 

i.e. in this case , 
* 

I1 = 	(k* 	
exp(-ik x) 

,y)F 	  )1+ o(1jx) . 
1 	d/dk(kU -At (k))k=k* 

The second integral, 

x (k,4 exp(-ikx) 
12 = ( 1/ 2-r1) S 	)1 dk 

—00 	1 	(kU +A4 (k) ) 

has a simple pole (real) at k:---K,bedefined by (kU + (gk tanh hk)1) 

= o , but free from any singularity at k = o . By the similar 

investigation for , I1  one finds : 

(1) x >0 , for convergence Ki( o , the deformation path is 

shown in the figure 
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* 

exp(ik x) 
12 D. X (-k* Iy)[ 	 d i- 0(1/x) . 

1 	d/dk(kU +/-t(k))k.....k* 

(2) x 4 o , this means Ki> o for convergence, and the path must 

be deformed as 

L' 

	

L 	k* 

* 
exp(-ik x) 

12 	""X_ ( -k ly)E 	 ;_14. 2 -- —I  1 	d/dk(kU +/-t(k))k,...k* 

The third integral, 

(
rxp(-ikx+it(kU-#(k)) 

1
3 
=0127-0 ,Ukor) 	 

_0 	2 	(kU -/z(k)) 	
)]dk . 

0.  

To evaluate this integral asymptotically for large value of x & 

t , to carry this we consider the ratio t/x or x/t is fixed, i.e. 

the resulting integral contains just one large parameter , either 

t or x • Consider x = Vt , where , as before , V representing the 

speed of the moving observer . It is better to rewrite the integral 

as, 

x(k,yE  exp(itgl(k)) 
1
3 

= (1/21-() S 
_ a„ 	2 	(kU -/A(k)) 

where 	g1(k) = -kV + kU - (gk tanh kh)1  . 

The two functions --X(k,y) and gi(k) are analytic and well behaved 
2 

in a domain containing the real axis,in the same time the integral 

has: 

(i) a simple pole at k=k*(rea4edefined by the relation 

	

[kU - (gk tanh kh)3-1= o 	then the principal value of the 



i.e. 

• 
• • 
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integral is applied. 

(ii) a saddle point at it =K0;bedefined by the relation 

d/dk(gi(k))= 0 • 

As the previous discussion , the deformation of the path in the 

manner of the steepest descent depends on the position of the 

saddle point ( it = ko) relative to the position of the simple 

pole ( it = k ) . For the convergence , we expand the function 

exp(itgl(k)) about it =k .To do this consider it = it + K,where 

K is small complex quantity IK I .< 1 , K = S'exp(ie) , by 

Taylor's theorem we obtain 

exp(itgl(k)) = exp(itgl(k ))exp(iKrgi(k )t)exp(-Kigi(k )t) 

but t> o 	then 	the convergence (and the position of the 

semicircle about the simple pole)depends on the sign of gi(k ), 

where accent denoting differentiation with regard to it .Considerring 

the different cases: 

(1) gi(k ) > o , for convergence K.> o , i.e. the semicircle 

lies in the positive half of the complex plane.This means that 

U - 	(k* ) - V > o 

✓ < U At° (k* ) 	 k* 

✓< d/dk(kU - Al(k))k=k* 

✓<( the group velocity appropriate to the wave number 

k = k*, 

this inequality leads to : 

(a) V ( the observer 	speed ) is negative , i.e. the observer 

moves in the upstream direction. 

or 	(b) V is positive and less than the group velocity appropr- 
iate to the wave number k=k*li.e. the observer moves in the 

downstream direction . 
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(2) gyk*) < o ,then 	K< o for convergence ,i.e. the semi- 

circle lies in the negative half of the complex plane, 

	 k* 	 

this means that, 

U - 121  (k*) - V <:ol  

. . 	V >(group velocity)k=k*  2 

this means that the observer moves with a velocity its value 

greater than the (group velocity)k=k*  in the dowenstream direction.. 

The saddle point ( k = ko),bedefined by the relation: 

d/dk( gi(k) ) = o y 

• 
• • 	d/dk(-kV +kU -/2(k)) = o 

i.e. the saddle point must satisfy the relation 

V = d/dk(Uk -/A(k))k=k ' 0  

this means that the value of the saddle point ( k=k0) depends on 

the value of V = x/t ( the observer 	speed ) . There is a connec- 

tion between V and the(group velocity)k=k, , hence we have two cases: 

(a) 	V < (groub velocity)k=k*  

V< d/dk(Uk -14.(k))k=k4, 

.6. d/dk(kU - kt(k))k=k 	d/dk( kU -iX(k))K=k* ) 0 

o
) > kit(k*) 

From the figure, d/dk( gk tanh kh ) decreases monotonically 

from (gh)7  near the origin ( k = o ) , to zero as k becomes large 

(k 	, this leads to the result: the saddle point lies on 

the left of the simple pole ,i.e. kip < k* . 
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From this discussion , the path must be deformed by the manner of 

the steepest descent as in the figure, 

L2 

L2 

L ko k* 

The integral 1
3 

has a contribution from its pole to--gether the 

contribution from the saddle point k0 , 
hence , the result is 



-35- 

exp(-ik*Vt) 
1
3 

=.1-12-i PX.  (k*,y) (  
2 	d/dk(kU

1(,1(k))k=k. 

+ (1/27f) 	(k ,Y)1(  exP(itg
l(ko) expUi7r) 	2 -rf 

) 	 
2 	(kU -112(k)) 	u(k ) k=k0 	t g 1 o 

+ 0 (l/t) . 

(b) V >(group velocity)k.k*  

i.e., d/dk(kU -)A(k))k= 0  k > d/dk(kU -/2(k))k.k. 

ke(ko) < AV(k*) 

this means that ko> k* . 

Then the path deformed as 

LZ  

L ko 

The contributions from the simple pole ( k = k* ) and the saddle 

point ( k = kpre given by 

13 	2
(k* ,y) 

exp(-ik*Vt) 

d/dk(kU -fri(k))k=kj 
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exp(itgik0)) cxpU 	1 iTf) 	27/ 
(1/271) )((k„,y)[ 	

k= 	
) ( 	)` 

2 	 (kU -/A(k)) k0 	t g"1( k o ) 

+ o ( lit ) . 

By the similar manner , we can evaluate the fourth integral 1 4 ' 
00 	[exp(-ikx)exp(it(kU+)4())] 

14  = (1/27.0S -X. (k,y)( 	  dk , 
2 	 (kU +12(k)) —00 

whichcantemritten as 
oo exp (itg2(k)) 

14 (1/27Y) 
S 	(kai 	 lak 

—Co 2 	( kU +p(k)) 

for large t , where 

g2(k) = ( -kV + kU +42(k)) . 

The integral has; 

(1) simple pole (k=--kl,bedefined by the relation kU +/-1(k) = 0. 

(2) saddle point (k.kobbedefined by the relation g2 (k00= 0 - 

We obtain, 

exp(ik*Vt) 
14 ='li '-X_ (-k*,y)[( 	

)) 
. 	

d 2 	d/dk(kU+Y( k._ k=_Icv. 

expag2 (k0o )t)exp(11ilf) 	211.  
+ (l/21f)  oo 2 	 (kU +P(k))/c=k 	t g2(k00) 

00 

 

corresponding to the case . : V is negative (i.e. the observer 

moving in the upstream direction ) Qr V is positive and less than 

the group velocity appropriate to the wave number k = -k*.. 

Next,in the case 	V is positive and greater than the 

(group velocity)k.=-k* , we get 
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exp(ik*Vt) 
IIf 	(-k*,y) 	  

2 	d/dk(kU +12(k))k=-1c)4. 

exp(ig2(k00)t)expUilY) 	2-n' 
+ (1/21"f) X (k ,y)E 	)( 	 2  oo (kU 

	

	t q(koo) +/.((k))k=k  
oo 

Now,by adding the values of Il  , 12  , 13  and 14  in the different 

cases , we get 	solutions corresponding the different cases , 

Case 1 :.  

In this case,the observer moving in the upstream direction, 

the corresponding solution is 

exp(itg1  (k))exp(*il
-f) 

fs(x,y;t) ef- (1/2-11) 	(k ° ,y)[ 	)( 	)171 
(kU -,14(k))k.k 	t gy(ko) J 

0 

exp(itg2(k00))expUfnl 	21Y 	31 
+(1/2IY) -)L (k 	)( 	 

2 0° 	(kU + 	(k))k=k  . 	t q(koo) 
00 

+ 0 (1/0 . 

i.e. any one moves in the upstream direction , he will observe a 

system of transient waves tends to zero like (1/t)-1  

Case 2  : 

The observer moving with the stream direction with a speed 

less than (group velocity)k.k, , the corresponding solution is, 

, j(x,y;t) = 	(k*,y) 
1 	d/dk(kU -frt(k))k=k, 

exp(-ik*x) 
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exp(ik*Vt) 
+ i)( (-k*,y) 	 

2 	d/dk(kU +Y(k))k=_k. 

exp(itgl o  (knexpaill) 21/  
-(1/21r) 	(ko ,y)E 	  )( 	 

2 	(kU -1"(k))k k 	t g"1(ko  ) 

exp(itg2(k00)exp(41/) 	211" 
+(1/21-0X(k   )( 	 

2 00 (kU + 	,k..( )) k=k 

	

	
t g(koo)  

00 

+ 0 (1lt) . 

We find in this case , the solution corresponding the contributions 

from the simple poles gives the Steady State Solution, in the same 

time the Transient Solution comes from the contributions of saddle 

pointsandit behaves like (1/t)7  . Hence , any one moves with aspeed 

less than the group velocity appropriate to the wave number k=k*, 

in the downstream direction , he always watching a system of Steady 

waves . 

Case 3 : 

	

The moving observer has the stream direction and 	a 

velocity greater than the (group velocity )k=k*'  the solution is -  

[exp(itg2(k0))exp(4171") 	21Y 
;!)(x,y;t) = - (1/21'f) TX.  (k ,y)( 	 )( 	) 

2 ° 	(kU -i..4.(k))k=k 	t g"1(k o) 

	

exp(itg2  (k00))expairrf) 	2,1 
4- (1/2-rf ) 	(k ,y)[ 	  

(ku +Y(k))k=k 	
)( 	• 2  oo t g"(k ) 2 oo 00 

+ 0 ( 1/t ) . 

representing a system of a transient waves decaying like (1/01. 
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By examining the solution we find that; 

(1) If V is negative , i.e. the observer moving in the oposite 

direction with the mean stream , he observing only a system of a 

transient waves with an amplitude modulatin which behaves like 

( lit )1  . The same result obtained for an observer moving in the 

stream direction with speed greater than the group velocity. 

(2) The steady-state solution occures only when the observer moving 

with speed less than the group velocity in the same direction with 

the mean stream. 
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The Transition Case  

From the previous discussion we find .that 

(1) When the observer move, with a velocity less than the group 

velocity appropriate to the wave number k = k* and has the stream 

direction ( imthis case the saddle point k = ko lies on the left 

of the simple pole k = k* ) he always watching a system of a 

Steady waves • 

(2) If he moveswith a velocity greater than the group velocity 

with the stream direction ( in this case the saddle point lies on 

the right of the simple pole ) , he will watch a system of a tran-

sient waves behaves like ( 1/t1) 

The question we now answer is of the nature of the transition 

of the wave train when the saddle point becomes close as we like 

the simple pole from the two sides in other words , when the 

observer moves with a velocity its magnitude nearly equal the group 

velocity 

We have the solution 

	

r(P3 	-ikx 	00 exp(itg (k)) 	1 
(x,Y;t)=(1/2r0L) %c(ka) (kiej-pgk))  dk 	S -X2(k9Y) 	) 	ak  

-00 -00 

	

00 	 00 e-ikx 	exp(itg2(k)) 
	 dk 

	

+(1/2TOPS X1(k2Y) (kU+P.(k)) dk  4(X2(ka) 	(kU+R(k)) 
-00 	-Co

_ 
 

where , 	g1(k) = 	
-kV -1-kU -PL(k) ) 

	
and 

g2(k) = ( -kV +kU :111(k) ) , 



e-ikx Il  = (1/21) S )q(k,y) (k1J-11(k)) dk  

00 

where , 

- 

Consider first ( I1 - J1 ) : 

-CO 

the function ( kU 41(k) ) has a simple zero at k = k* , while,ykly) 

is analytic and not zero at k = k* , hence we can write 

	

Xl(k,y). 	x 1  (k*/y)  1? 

	

 
(k11-1-4(k)) 	(k-k*) d/dk(kU- F4(k))k=k* 	(ky) 

where 1)1(ky) is analytic function at k = k* 

CO 

	

I =(1/271) 	
X
1 
(k*  9y) 	e-ikx 

	 dk 1 	d/dk(kU-µ(k)) k=k* 	" 

	

- 	(k-k  

00 

	

+(1/210 	1? 1(ky) e-ikx  dk 
Co 

co 

For the integral 	S 	
e -ikx 

( k - k* ) 
-00 

dk , near the simple pole k=k* 

we put k = k* + K 2 where K = Kr  + i Ki  = f eie  and g =IKK , 

dk = dK = iK de 

exp(-ikx) = exp(-ik*x) exp(-iKx) 

= exp(ik*x) exp(-iKrx) exp(Kix) 

it is clear that the convergence depends on the sign of x ;i.e. 

(1) If x is positive , then Ki  must be negative , hence we deform 

the path as in the figure 



- 

co 

Then_ 	= P S 	S e's  
-09 

S 
-Co 	■).■ 

i.e. P S 	- -S... • • • 
o e-ik*x = -ie 	+ o(i/x) . 

= -te-ik*x  + 0(1/x) 

(2) If x is negative , then Ki  must be positive , hence we deform 

the path as in the figure 
k* 

L 
then, 

_Sa3  

00 
• • 	

S 66. 	
= P S • .. • S • • • - 3 

-00 

... 	= - 	... 	+ S ... = ja r) eikx + 0(1/x)  

. - 	L ik*x = iwe 	+ 0(1/x) . 

Hence , 
-ikx 

k-k* 	 dk = 	sgn(x) e-ik*x • 

2c1(k*,y) 
I - 	sgn(x) d/dk(kU-I-UI " kk* s'L  ' 

Therefore , 	1  -  

00 

e-ik*x + 0(1/x) 

since the integral SOD1(k'y) e-ikx dk behaves like (l/x) . 
- 00 

00 	exp(itgl(k)) 
Now , the integral, JI  =(1/2T)SX2(k,y) 	(ku -1.1(k)) dk , has 

--00 

(1) a simple pole at k =k,bedefined by the relation (kU-1-4.(k)) = o y 

(2) a saddle point at k =Vx,  defined by d/dk(gi(k)) = o 

N where , gi(k) = (-kV +kU -11(k)) 	and g 	)I (k) = (gk tanh(kh)  

for inifinity depth 1-1.(k)::(gk)I  • 

• g1  (k) = (-kV + kU -(kg)-1  ) 

d/dk(g11 	E (k)) = gi(k) =(-V+U-g/k)1) 
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and d2/dk2(gi(k)) = gy(k) = 	(g)1(k)-3/2  

In this case 
	

ko = (g/4(U-V)2
) and k* = g/U2  

X2(k,y) 
The integrand (ku-pt(k)) , where 2C2(kly) is analytic and not 

zero at k = k* 	while (kU-11(k)) has a simple zero there 	can be 

written as 

)(2(kly) 	2C(k*,Y)  
(ku 41(k)) - d/dk(ku-µ(k))k=k* 	

(K7177 42(k,y) , 

where (1)2(k,y) is analytic function 

X2(k*,y) 	(exp(itgl(k)) dk 
Now 	J1  = (l/2TO  	(k-k*) d/dk(kU-1A(k))k=k*  

oo 

+ (1/211)S 42
(k,y) exp(itgl(k)) dk . 

-oo 

exp(itgl(k)) 
First , we consider the integral J' = S dk 	 (k-k;) 

—co 
where the function g1(k) is analytic and well behaved in a domain 

containing the real axis . k* is real and the principal value of 

the integral implied . The function g1(k) has a saddle point . The 

problem is to estimate the integral ( for large t ) . Then we deform 

the path in the manner of the steapest descent, 

• • 	 J 1  = ;$ 	+ S • • • • +5 

•41 	 L2 	L3 

The contribution from the simple pole 

Near the simple pole , let k = k* + K 

then , exp(itgl(k)) = exp(itgl(k*) exp(itkrgyk*)) exp(-tKigi(k*)) 

0.0 	+SO • • 0 
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It is clear that the convergence depends on the sign of gi(k*); 

(1) If gl1(k*) is positive , then I{i must be positive , i.e. the 

semicircle round the the simple pole lies in the positive half.But 

gl(k*) =PT +d/dk(kU- (k))k=k*I  =EV + the group velocity appropr- 
iate to wave number k=k11], 

== -V + 

in this case Visless than 1U . From the values of k* and ko , we 

find that k* is greater than ko  . Since gy(ko) is positive then 

the direction of the path through the saddle point is n/4 with the 

real axis . Hence the deformed path in the complex k-plane is 

• • • J1 	+ S 5 •.• 	... 	+ 5  ••• 	+5••• . 
" 	L1 	L2 	L3 

Hence , the contribution from the simple pole is 

-ler; exp(itgl(k*)) 

= imexp(-ik*x) 
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(2) If gi(k*) is negative 	then Ki  must be negative , i.e. the 
semicircle round the simple pole lies in the negative half . Here 

gt11(k*) is negative then V >111 and ko>k* . Also g"(k o) is 

positive hence the deformed path in the complex k-plane is 

K* 

L2 

     

     

L2 

0 

J' = - S 	+ 	..• +S 

1 	12 	L3 
The contribution from the simple pole is 

- ierfIT  exp(itgl(k*)) 

= -iTTexp(-ik*x) 

In both cases , the contributions from L1  and L3 are 0(1/t) 

hence, -ik*x 	
S 

dk  exp(itgl(k)) 
= iTTsgn(k*-ko  (k-k*) 	+ 0(1/0. 

L2 

S exp(itgl(k)) 
Now we consider the integral 	(k - k*) 	 dk 

L2 
since g'1(k0)i 0 then gi(k) near the saddle point can be expanded 

in the form g1(k) 	g1(k0) + 1 (k-k0  )2 g1(k0  )  2 

• • • • • 
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let 	k - ko 	
eia 	where N is real and small , and 

el(ko) = lel(k0)1e42  but el(ko) is real and positive , 

then 15= o . 

gi(k) 	gi(ko) + 1 N2  igl(k0)1 ei2c4  

if we write 	
g1
(k) = u + iv 

then , the path through the saddle pointisdefined by; 
u - uo = A2  le(k cos 	= o 1 o)l (3) 	, 

v - vo  = 	X2  Igl(k0)1 sin(2oc) > o 

i . e . 	(200 =T/2 . 

gl(k) 	gi(ko) + 1 A2  Igl(k0)1 e*ITT  

gl(ko) 	1 N2  Igl(ko)I 

and 	X=(k-ko)e4iTT  

Then , the integral can be written as 

exp(-1t g"(k )7\2 ) o  = exp(itgl(k0)) 	dA 	(k(A)
1 
 - k*) 	(dk(A)/dX) 

A 
/dA)  

where A is a point of L2  . The function ((k(A) /k* ) can be written_ in 

the form 

(dk(A)/dA) 	(2171)-1 S (dk(s)/ds) 	ds 
(k(A) -k*) 	(k(s)-k*) 

where C1 is a contour in the s-plane which encloses A only 

By enlarging the contour C1  to C2  to enclose all singularities , 

we have 

(dk(X)/dX) F(dk(s)/ds) -1 
Is=s* 

4.(2f11)S (dk(s)/ds) ds (k(A) 	-k*) Ldk/ds (8A)- (k(s)-k ) 
C2 

(s-A) 

• 
• • 



where s* is defined by k(s*)=k* ; since k(X*)=k* ( 	s*=A* ). 

Hence, the integral can be written as 

B 	exp(-3-tq(ko)NZ) 
= exp(itgl(k0)) S 

dN 	(N - X*) 
A 

1-(2iT0-1  exp(itg1(ko)) 	exp(-1tq(k0))) 	
dk/ds 	ds  

 S (177:77 (s-X) 
A 	 C2 

Since (k(s)-k*) is bounded away from zero on C2  , the second term 

here is 0(1/J) . i.e. the first term is the most important part, 

and it can be written as 

oo 	exp(-1tg"(k )N2) 1 o exp(itgl(k0)) 	dA 	(X- X*) 
A 	oo 

since the contributions 	S + 	are 0(1/0 . 
-co 

Hence , returning to the original integral ( I, - J1  ) 	we find 

(k,Y) 1 * 	-ik*x 

	

(I1-J1) = n 'sgn(x)+sgn(k*-ko) 	d/dk(kU-V-(k))k= 	
e 

k* 

X (k* y) 00 exp(-Itg"(k )A2) 
exp(itgl(k0)) 	d)1 - 

1 o  
* a/dk(ku-Igk))k=k* 

00 	00 

+ S 401(k,y) e-ikx  dk - 	402(k,y) exp(itg1(k)) dk 
-00 	-oo 

since X 1(k*,y) = 7K2(k*,y) . Here , the controbution from the 

third term behaves like (l/x) and from the forth term behaves like 

(1/t1) 
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oo 	exp(-1-tg"(k o  )X
2) 1 Now consider the integral S 	(X -X* ) 

co 
, 

put 	ltgl(ko) X2  = 	i.e. 	X  =(2/tg1374 P. 

00  exp(-1tgt1 

(i■ 	) 

X
2
) 	

03 
exp(- ) 

• • 	S 	 d 
00 	 oo 

where , 	=(1-tgy(k0))1  A * 

=(t(gi(k*)-g1(k0 )))4.  e-i7T/4  

since X* defined by the relation 

gl(k*) = gl(ko) 	41-gil(ko) X*2  

oo 

Define v(.e) =(01)-1 	exP(4L2)  (11.4„.) 	, which is tabulated for 
oo 

complex values of the argument IA* . In terms of error fonctin we 

have, 

	

W(W) = i e-/°2  erf(iW) 	when Img!' 2> 0 

	

= i e 41*
2( erf(ill.e) - 1 ) 

	
when ImlAYK: 0 . 

It is clear that W(IL*) is discontinous across the real axis . 

Hence , the integral ( Il  - J1) can be written as 

7(1(k*,y) 
d/dk(kU- (k))k=k* 	

-iTT Fgn(x)+sgn(k*-k0)1 e-ik*x 

- 2TTeitgl(ko) wp 	(gl(k*)-gl(k o))1 

We can write 6k*-ko) and (g1  (k*)-g1(ko)) as a function of a para- 
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meter E , where o<lei<1 , if V = -12-1J(1+E) , then 

k*-ko = g/U2  - (4g/(U-V)2) 

=(2g/tt2 )(-€) , 

and 	g1(k*) - gl(ko) =(g/2U)(e
2) . 

Now , 

9(1(k*,y) 
I -J - 	 -iTTsgn(x)+sgn(-E) e-ik*x 1 1 	d/dk(kU-11(k))k.k*  

itg (k ) 	 rr - 217 e 1 o w e-  " t E (1-g/U) 

Similarly, we can get a similar expression for ( I2-J2) , where 

co  
-ikx 	

oo 	
exp(itg2(k)) 

( 12 - J2) = 59(1(s'y) (kU+-(k))dk - (:)! 2(k'Y) 	(kU1--1(k)) 
dk 

-00 	-Co 

If e # 0 , and t becomes large , i.e. I.A* is large , then the 

function v1(12.*) tends to zero and so we find the solution is 

z  7((k*or )  
d/dk(kU-11(k))k=k, 

-2irr e-ik*x  if E<o,(i.e.V<I-11) 

if 6>0 , (i.e. V> -U) (as before) 

If the difference (k*-ko) is sufficiently small , the value of 

P-* =.4 (itq(k0)) (k*-ko) exp(-1.1TO 
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is small The the solution can be expressed as , 

:(1(k*,y) 
(x,y;t) 	d/dk(ku-ii(k))kr...k. 

 

e-ik*x -in-Fgn(x)-1-sgn 

 

itg (k ) 	[-71-17 	7] - 2TT e 	I 0 	e 	t 	-z (g/U) 

i.e. in terms of the function w(IJ ) , which is tabulated , or in 

terms of error function if we write w(w) in terms of the error 

function . This provides a smooth transition from negative E. (i.e. 

when V<1U) to positive e (i.e. when V>3-U) . 
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The Asymptotic Solution When t becomes' large  

and x has one value  

Let us fix our attention upon one value of x and let t 

increases , then x/t will decrease , i.e. we examining the 

solution ,t(x;y;t) from the stand point of an observer stand-

ing at a given value of x. The solutionisgiven by 

A(x sy;t) = I + J 

where 	 ao  
- I = (1/2"rr) S 	 exp(-ikx)dk 

-00 1 	kU +1,c(k) 
00 

(1/2`K) S )(1 
(k

'Y L kU - 
exp(14

.(k)
) d dk . 

-00 
and, 	 co 

J = (1/2-rr) S12(k,y ) FexP(-ikx)exp(it(kU+i-t(k))] 
-00 	 kU I( k ) 	  dk 

(1/2-Tr) 	)(2( c ,y)  ex -lctIlx-el=,t(kU- (k))] dk . 
-oo 

Evaluation the different integrals: 

00 
Consider 	= (1/21-C) S 	"/) kU 

-p.RizikM)-] 
-12(k) 	dk 

= (1/2"1") 	Xi(k,Y)[exP(-ik(x/t)t)] kU -/1(k) dk  
00 

Firstly,the fixed value of x is positive: 

The function[X(k ly) / (kU [2(k)is analytic and well 

behave near the real axis except at a simple pole (real) k = k*, be 

defined by[k*U - 1.1(k*)]= o ; where ii(k)=(gk tanh kh)l.  .Consider 

k = k* +J{, where K is a small complex quantity,i.e. IKI< i and 

in polar coordinate 1,4 = c'exp(ie) . 
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Expanding by Taylor's theorem the functions-K(k,y) ,(kU-/4(k)) 

and exp(-ik(x/t)t) about the simple pole k = k*, we obtain 

34.(1-c.,y)zi<l(k*,Y) 

(ku- pi(k)).z 	d/dk(ku -11(k)) 
• k=k* 9  

and exp(-ik(x/t)t)Zexp(-ik(x/t)t)exp(-il.c(x/t)t)exp(Ki(x/t)t). 

(x/t) is positive and t>o , then for the convergence ki  must 

be negative . The integrand has a simple pole (real) , then the 

principal value is implied and surrounded the simple pole by 

semicircle in the negative half and the deformedpath is 

SL' ''• = SL 
i.e. 	00 

rexp(-ik(x/t)t)] dk = 	- (l/21105 (l/2/Y) 	„) 
/‘-i%rk  " 	kU -pt(k) I 

But .... 	tends to zero like 1/t and 
1' 

 

= liX(k 	exp(-ik*x)  
(1/2T) --)‹.

1(k
y)FeX

(k
P

U
( -ik(x

(
/
k

-t
))
)t)  

J. '37  f[d/dk(kU-p(k) )k=k*] 

exp(-ik*x)  Then we have I 1 	1 (k,y)(d/dk(kU-((k))k=k*)1+ 0 (1/0 / --  

SecondIthe fixed value of x is negative: 

In this case x/t approaches zero through negative values as 

t becomes large , we obtain 

exp(-i*x) 	1+ 0 (lit) 4d/dk(ku -
k
pok)) k=k. 1— — 	1(k,  

L' 

+ S • • • 



00 
_‘ (exp(-  

Consider 2 (1/211") ==e 	'"X 	jkx))dk 1(k "
i‘kU t(k) 

--00 

by the same manner we can evaluate 12  as t becomes largelwe get 

For x >o , 

2 fk iexP(i1-51X1 	 ) 0 (1/0 2  
f̀ l` ""d/dk(kU+11(k))k=k* 

for x< o , 
12 

1 0(1/t) . / 
-k*  ".2k 	

eXP(+ik*X)  

" d/dk(kU+p.(k))k=-k*
14"  

Let, 	Jl  = -(l/21f) S f(k,y)exp(igi(k)t) dk , 
—00 

where 	f(k,y) IX2(1c,y)/(kU-11(k)] is analytic round and on 
the real axis except at the zero of (kU -IA(k)) = o 	also gi(k) 

is analytic and has a saddle pointpedefined by d/dk(gl(k)) = o 

where gi(k) = (kU-µ(k)-x/t. k) 	then 

d/dk (gi(k)) = d/dk (kU-11(k)) - x/t 

= ( U 	(k) ) - x/t 

d2/dk2(gi(k)) = -p_"(k) . 
here, the primes denoting the differentiation with respect to k. 

The saddle point defined by the relation 

d/dk (gi(k)) = o , 

i.e. 	[U -1.-v(ko)]= x/t . 

(1) The fixed value of x is positive: 

As the time t increasing as 

we like , then x/t approaching to zero through the positive values. 

This means , as t--a 0°, (u-pv(10) decreasing through positive 

quantities , from the definitionjU has a constant value and 

positive (the stream velocity), hence ,pc(ko) increasing with 

the time . 
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In the case of infinity depth  : 

wk) = (gk)1  

.*. 	pu(k) = 	(g/k)1  . 

But , pV(ko) = 	(g/k0)3- increasing  as the time t increasing,this 

means that the value ko assocaited with the fixed value x will 

decrease, passing  with k* (the real simple pole ) and the mini-

mum value for ko is km
(where km  is given by the relation 111(km)=U 

then km=g/4U
2), hence, the range of ko is ( km,00) 

k m 
( y=U ) 

k* 

(fixed point) 

Consider k = k* + K, There K is a small complex quantity , 

expanding  the function expat(kU-p(k)-x/t k)) about k = k* by 

Taylor, we get 

exp(it(k*u-lAk*)-x/tk*)exp(itKr(u-p(kl-x/t)exp(-ki(u-p(k-q—x/t)t) 

The convergence depends on the sign of (u-pv(k*) -x/t) in the 

function exp(-tKi(U-pe(k*)-x/t)), t is positive 	then wehave 

two cases ; 

(1) d/dk(Uk-}A(k)).k=k„ < x/t 

i.e. the group velocity appropriate to the wave number 

k = k*less than (x/t). 



- 55 - 

U -FALI(k*) < U -10(ko) 

i.e., 	1.A.1 (k*) > ILV(ko) . 

then , the saddle point (k = ko) lies on the right of the 

simple pole ( k = K* ) . For the convergence corresponding 

to this case KJ.  must be negative , then the semicircle round 

the simple pole lies in the negative half of the complex - 

plane 	By deforming the path in the manner of the 

steepest descent as shown inthe figure 

L2 3 
L 	k* 

	

D1
1 L

2 

	

ko 

Now , we can write 

S 	= S *00 + 	+ S 
3 

Sthe contributions from 	... and 	... lead to zero like(l/t)2  
L
1 	

13 

the contribution from 
S 
 ... comes from the simple pole, 

`).1  

	

S
the contribution from 	... comes from the saddle point . 

L2 

We have , 
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J — -41X (k*  ,Y) 	
exp(i(-K*)x)  

1 	2 	dk(kU-Ii(k ) )k=k* 

[ exp(itg1(ko
flexpaiTY) 

" 	  (1/2TOX2(ko,Y)( (kU -H.(k))
k=k 	

t gn1(k 0
\) 

 
o 

+ 0 	. 

(2) pdk(KU -/.2(k))k=k41> x/t , 

i.e., the group velocity appropriate to the wave number 

k = k* greater than x/t . 

U -IX(k*) > U -1.11(ko) , 

then 	, ij.,(k*)< kti(ko) 

( km< ko< k* ) 

For convergence, Ki  must be positive ,then 	the deformation 

pathisgiven in the figure 

L2 

k* o 

L2 
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then, we get 

exio(-ik*x)  
jl 	3<-2(k*,Y)[d/dk(kU-1A(k))ic=kA 

	

[expatgl(k0)-12-fra) 	2 "T1.  +(1/27- )4(kolY) 	)( t gi(ko) (kU -/A(k))k.k  
0 

+ 0( l/t ) . 

(2) The fixed value of x is negative: 

From the definition of the saddle point we have 

U - 1,0 (ko) = (x/t) 

but , x/t is negative , .•. [U 	(k0)]< o 

i.e. 	ji'(k0) > U 	T1=kU 

   

=14.(k) 

  

   

	. k 

   

    

km 	k* 

( y=U ) 

The values of k
o 

corresponding this case are less than the value 

of k* and the path deforming as in the figure 
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J exiD(k*(-ix))  
1 	k* 1Y) [d/dk(kU-(1((k) )k=k* 

Y)X2(ko,y) ( 	 
rp(itgl(k0)40 fT 

+ (1/2/ 
	

4 	)( 
 

11._ 	

) 

0 
1,1 (kU -(k))k=k 	t 

2 

"of 

+0 	. 

By similar discussion we can evaluate the integral J2  

0c3 

(1/2'rr )5 
—00 

?xp(-ikx + it(kU+P(k));_ldk (1,((k) + kU) 

the integral has a simple pole (k=-10)0edefined by the relation 

(kU +1.4(k)) =o 	to gether a saddle point,begven by 

Pdk(kU +11(k) - x/t )1= o . 



- 59 -  

The Asymptotic Solution in Different Cases: 

Case 1 :  

In this case , we consider 

x/t is positive,and the group velocity,appropriate 

to the wave number equal the simple role,is,less 

than x/t , 	-Ite(k+ X/t .The correspond- 

ing solution is 

rra 	
exp(itg2(ko) + '4iTO 	21Y  )4-1 (1/2-(kly) 	 (kU -12(k))k_k 	)(t q 

2  o 	
(ko) 

o 

+ (1/2)2(koo,y)E 	
exp(itg2(k00)4i/f) 	2  .7-1, 	,1] 
(kU -y(k))k.k 	)( t gykoo))  

00 

In this case the contirbutions from the simple poles are 

cancel , then by examining the given solutionfrom standpoint 

of an observer stationed at a fixed value of x will then observe 

waves of continually decreasing wave number ( increasing wave 

length ) moving by with phase velocities appropraite to their 

lengths . The gross outline of the waves will pass the observer 

at the group velocity appropriate to the wave number present at 

the moment , and , of course , the amplitude is decreasing as 

( 	)1  . 

Case 2  : 

In this case x/t is positive but (U -1„(,1(k*)) >x/t 

and the wave number k decreasing through the interval(km,k*) 

i.e.( gAU2)< k < (g/U2) , the solutiorilsgiven by 
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(x ;t)=---% X 
ER -10(-ik*x)  

1 (k*,Y) Ed/dk(kU -IC(k))k=k* 

*x) 
+i  Xl(-k*a)[d/dk(kU

expak 
-AC(k))k=_k. 

	

exp(igi(ko)t + -4TO 	2111  
-(1/27r) -X2(ko,Y)E 	(ku -/i(k))k=k 	)(t gni(k0)/ 

 o 

	

rxp(ig2(k00)t + +1TO 	) 
+(1/21-0 X2 (koo a)( 	(ku +11(k))k=k  

00 	
' 	2' oo

) 
 ) (4- g„ (k  

+ 0 ( i/t ) . 

In this case the contirbutions from the simple poles represent-

ing a system of Steady waves , then by examining the above 

solution from the standpoint of an observer stationed at a fixed  

value of x will then observe a system of steady waves 

Case 3  : 

The fixed value of x is negative , the corresponding 

solution is given by 

(
rxp(itgl(ko) + 	2-rr  

!!)(x,y;t):1-(1/2T-r);(2(ko,y) 	(kU -12(k)k= 	)(t 
ko 	

el(ko) 

exp(itg2(k00) -47f) "1 
+(1/21) oo 	 ) 	

 )] (kU 	+/-t(k))k=k 	t g"2(koo 00 

+ 0 ( lit ) 

In this case the fixed value of x is negative , as t increase , 

then x/t will tend to zero through negative values , but 

-1X(k0)].= x/t 	/..c(t.) > U . Then , as the value of 
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x/t 	0 	the value of ko 
will increase in the interval 

( o 	g/4U2  ). By examining the solution from standpoint of an 

observer stationed at a fixed value of x (negative in this case), 

the observer will then observe waves of continually increasing 

wave number (decreasing wave length) moving by with phase veloc-

ities appropriate to their lengths. The gross outline of the waves 

will pass the observer at the group velocity appropriate to the 

wave number present at the moment , and , of course , the ampli- 

tude is decreasing at ( 	)1. 

In this problem we fixed our attention on one value of x and 

let the time t increases,then we investigated the problem in differ-

ent cases ; 

Case 1: x/t is positive and greater than ( U - 1...0(k*)) 	from 

standpoint of an observer stationed at a given value of x , the 

observer will then observe waves of continually decreasing wave 

number through the interval ( k 000) i.e. increasing wave length, 

and the amplitude is decreasing as ( 1/0. 

Case 2: x/t is positive and less than ( U -1//(k*)) 	from stand- 

point of an observer stationed at a fixed value of x, the observer 

will then observe a system of steady waves. 

Case 3: x/t is negative . An observer stationed at x will then 

observe waves of continually increasing wave number through the 

interval ( 0<k<g/4U
2) , i.e. decreasing wave length , and the 

amplitude is decreasing like ( 1/t )1. 
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Generation Of Waves In Rest Fluid (U=o)  

Due To Initial Disturbance  

At The Bottom  

In the previous discussion , we investigated the generation 

of waves on a running stream (Uio) due to initial disturbance 

(suddenly) at the bottom Now we like to discuss the same Problem 

by considering U= o ,i.e. we can estimate our solution from the 

general case 	 by putting U = o . The corresponding 

solution is given by 
00 

A(x,y;t) = (1/21-T) S rif(k)  )((gk sinh ky). 

	

(11(k))2 	cosh kh 	]exp(-ikx) dk 

ao ,7/,‘ 

	

+ (1/2
Tr

). E

2
J(-)k(:

)) 	cosh kh 2
)(gksinh ky +

1-4
?cosh ky]exp(itit(k)-ikx)dk 

00 

4-(1/21-1") ) r 
if(k) 2)(gksinh ky + 2cosh ky  

_00  2 (it( k )) cosh kh 	]exp(-ity(k)-ikx)dk 

Evaluating these integrales for large x and t 	it is clear that 

all integrands are well behaved functions and all free from any 

singularity at the origin . 

The first integral w  I, 

00 
-if 	sinh ky I1 = (1/2TO 	 dexp(-ikx) dk _00  v (11(k))2" cosh kh 

has not a saddle point , and integration by parts , one can find 

behaves like ( 1/x ) . 

The second integral 12  , 
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00, 
l  12 = (1/2N) S 	2' 

if 	) ( gk sinh cosh ky  +
kh 

 cosh ivir  exP(itp.(k)-ikx) dk, 

here , consider x = Vt , where V is held constant equal the 

	

observer 	speed . Hence 	the integral has a saddle poinLbedefined 

byld/dk(1)-(k) - VkA= o , i.e. the saddle point K=komustsatisfy the 

relation 1.„12(ko ) = V = x/t , the prime denotes the differentiation 

with respect to k , here , p2 (ko ) = the group velocity appropriate 

to the wave number k = k0  . For t is large , the asymptotic expre-

ssion for 12 given by 
2 

	

2:(1/24 	xgkosinh koy+Wko )cosh k y 
° ]expkitgl(k0)+1;f1 (t2Ak  y)-1  

2cp(k)) 	cosh koh 1 o 

where , g1(k) = (1).(k) - Vk ) . 

By similar manner , for the third integral 13  

00 1,2 
13 - (1/2T

'2(
p

((k))
2)(gk sinh ky 4-e- cosh ky 

E 	 cosh kh 

we have the asymptotic expression;be given by 

 

exp(-iJi(k)-ikx) dk, 

 

Z(1/2qT11( 17(k) 	gk sinh ky +Y?cosh 	 211' 	, 0.1ti expv.g2(koo  )+2,111 ( 
2q/(k))2 	cosh kh oo 	 t g2(koo

)) 

where , g2(k) = tt(k) + Vk . 

_ cc, 2(1).(k) ) 



(x;y;t) 	(1/211 ) ( 
 if(k) (gk sinh ky +/l2cosh ky 

iS Z 1=k ]x 2(12(k))2 	cosh kh 
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Then , the asymptotic expression for the solution t(x,y;t) as 

t and x become large,is given by 

x [exp(itgl(ko) 	
4+1-T1') (t gl(ko) 	 )71 

+ (1/21-7")[( (gk sinh ky 4.1 2cosh ky) 

2(11(k))2 	cosh kh 	k=k 
00 

x r exp(itg2(k00) + 4411)*(,- 	 

+ 0 ( 1/x 

Here , we are examining ) from the standpoint of an observer 

moving with group velocity ILV(ko) 	the gross outline of waves 

will appeareconstant in form , but decreasing in amplitude 

because of t-1  

For the values of V ( = the observer 	speed ) for which 

no solution to [d/dk (12(k) - Vk 	o exists , i.e. there is 

no saddle point 	it is easy to find , by integration by parts 

that the asymptotic expression for 	behaves like ( 1/t ) 

The solution at the free surface when U = o,be given by 

putting,in the above expression for11;(x;y;t) when U = o 	y=o 

we obtain 

It 4((c00))1-  
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x ; t) 	(x,o; t ) 
00  

S=(1/211) 	(2cosh 2cosh kh —00 
00 

+0./27-0 S 	 
2cosh kh 

expgittAk) - ikx)idk 

expg-it[k(k)-ikx] dk • 

The asymptotic expression forl(x;t) when t and x become 

large is given by holding x/t constant , then we have 

(1) If x/t satisfied the relation p/dk(11(k) - x/tk)]= o 	in 

this case The solution behaves like ( lit 	. 

(2) For values of x/t which no solution to @/dk(/j(k) - x/t kIo 

exists , the corresponding solution behaves like lit 4, 
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The Vertical Displacement Of The Free Surface  

At The Origin X=o and t ---> 

The corresponding solution is given by 

Co -( )  
10 (0; 	= (1/2/1) 	(212- kh ) exp(itp(k)) dk 

0.0 
+ (1/21T) S ( iT(k)  ) exp(-itgAk)) dk 

2cosh kh 

where , 4(k) = (gk tanh kh)1  is a monotonic function as we 

know , i.e. d/dk(pL(k)) 	o . Therefore, the asymptotic expre- 

ssion for the vertical displacement of the free surface at the 

origin behaves like 1/t 
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Generation Of Waves In Still Fluid  

Due To Initial &Smoothly Disturbance  

At The Bottom  

In all previous discussion we have investigated the wavy:• 

motions creating from initially and suddenly disturbance in the 

bed of the fluid, we used the Heaviside function to define the 

initially- suddenly deformation at the bottom. We like here to 

discuss the same problem , when the initial disturbance occurs 

smoothly,in this case we replace the Heaviside function by other 

suitable functi6n ( gi(t) - g2(t) ) , combination of two functions 

(1) gi(t) is the Heaviside function, i.e. 

g
1 
 (t) 

gl 	
1 

 

t < o 

t > o 

(2) g2(t) is defined by 

g2(t)  = o 	t < o , 

g2(t ) 4(1+cos 2t) 	o< t <1.(/2 

t>11/2 

g
1 
 (t) 

t- 

g2(t) 

g2(t )  = 0 

-FT 
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Formulation: 

We consider that the denMty and the viscosity in the 

fluid are neglected . The motion - originally started from rest-

is irrotational and can be described by a velocity potential 

Px,y;t),therefore the governed equation is 

v2xor  /(x2y)  = 

The Boundary Conditions: 

Due to the linearization theorem 	the 

boundary conditions become, 

(1) At the free surface ( y = o ) we have 

(a) -6'2(x,t)/-bt = le(y(x,o;t) , 

(b) 7b gf(x,o;t)/ -bt + g12(x;t) =0 

(2) At the bottom ( y = -h ) we have 

-6S/-bt 
Y • 

where G(x,t) = f(x)g(t) 

f(x) is defined function 

and 	g(t) = g1(t) - g2(t) . 
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To gether the finiteness conditions 

iy5 I 
	

as 	Ix1 ----> 00 

1'7.1 &LSI 
	

as Ix'  —> 00  

We note that /2 = 12(x;t) 	representcs the vertical displace- 

ment of the free surface. 

and 

	

	=,g(xly;t) representes the vertical displace- 

ment of any fluid particle at any 

depth 

Using the techinque of Fourier transformation and Laplace 

transformation 
ao 	oo 

( 	dt exp(-itw) 	dx exp(ikx) ) 
-co 

Applying this to the Laplace equation , we obtain 

YY 
- k2  = o 

provided 0 & 0x  —> o , as lx1--ac .  

This ordinary differential equation in y has a solution 

jiii(k,y;w) = A(k;w) exp(ky) + B(k;w) exp(-ky) 

where A(k;w) and B(k;w) are arbitrary constants . 

Then the transform is applied to the boundary conditions at 

the free surface (y = o) and at the bottom (y=-h) , we get 

iw,g(k,o;w) + g;1(k,w) = o , 
at y = o 

iwli(k;w) - )7 (klo;w) = o , 

iv; 7(k)g(w) = jk)-h;w) 	at y = -h 

Eliminating 	between the two conditions at y = o, we obtain 
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(iw) 	0 
2 	0% =  o  

Inserting the value of ,Vin the single condition at the free sur-

face and the condition at the bottom , we get 

- w2 ( A + B ) + gk ( A - B ) = o 

and 

iw F(k)g(w) = k ( A e-kh  - B ekh  ) . 

by solving for A(k,w) & B(k;w) 	we obtain 

A(k;w) 	Fv1(k)I7:(w)) t 	(gk + w2) 

2k 	` (w2cosh(k4 - gk sinh kh) 
and 

B(k;w) = ElvT(k
k
)(w))  ( 	(gk - w2)  

2 ]) 
( 

 (w2cosh kh - gk sinh kh) 

Hence 	the expression for T(kly;w) is 

iwY(k)E(w) (gk cosh ky + w2  sinh ky) 
(k,y;w)- 	  

k cosh(kl. (w2  - gk tanh kh) 
	• 

The vertical displacement for any fluid particle is given by 

t  (x2y;t) = yfy  (x,y;t) 

By Fourier - Laplace transformation , we obtain 

iw(k/Yiw) = ;Ty  (ka;w) 

Then 

[F(k)g(w) (gk sinh kj + w2cosh kJ) 
,g(ka;v1) - 	a cosh kh. (w - gk tanh kh) 

we have , g(t) = git) - 4t) 
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by Laplace transformation we get 

g(w) 	- g2 (w) 

7(k)gl(w) (gk sinh ky + w2cosh ky) 

( w
2 	2 (k)) cosh kh 

?(k)g2(v4 (gk sinh ky + w2cosh ky  ) +[  
( w2 -tk2(k)) cosh kh 

where 	II-1(k) = ( gk tanh kh )1  . 

One can easy find , gi(w) = -1/w ,)  and 

1 + e-iw1  
22(w) =[(i/2w)( -1,) +(iw/2)( 	

V2 

4 (iw)
2 )]. 

Rewritting  the expression of ,g(k,y;w) , we have 

7?...;(k,Y;w) - 	  L w (w-li) (w+1,1) cosh kh 

-if(k) (gk sinh ky + w2cosh ky)] 

if(k) ( e-1w*2-1) (gk sinh ky + w2cosh ky) 

[ 

	

2 w (w-1-1) (w+/-1-) cosh kh 

-iv/11/2 [77(k)  (1+ e 	) (gk sinh ky + w2cosh ky 

2(2 - w)(2 + w)(w -1-1.)(w +1-4) cosh kh 
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Taking the inverse of Laplace transformation, we obtain 

-1-(k) (gk sinh(ky) + w2cosh(ky)) e
iwt 

(k,y;t)=(1/214 ). 	 dw 
w(w 	(w +11) cosh(kh) 

L 

s 	
dw 

i1(k) (e-iw71/2 

L 	

-1) (gk sinh(ky)+w2cosh(ky) 4wt  
1-(1/2iV) 

2w (w 	(w 	cosh(kh) 

S g(k) (1+e-iwmr2  )w(gk sinh(ky)+w2cosh(ky) 
	  eiwt dw +(1/2i/f) 

2(2 -0 (2 +w) (w 	(w 	cosh(kh) L 

In w-plane,the path L is taken above and parallel to the real 

axis as in the figure 

Imaginary axis 
A 

L 

-2 	 2 	Real axis 

w - plane 



.(k,y ;t) - 

+ [-if(k) (gk sinh ky +/42cosh kh)] 
	  1-( eit/4  + e-it/4  

2/
4.2 cosh kh 	L-.. 

[17(k)(gk sinh kh+/-1.2cosh ky  
+ 	

l[  (eitit. (..1.4.e-ir0V2) + 
4 /42 cosh kh 

[ -i7(k) (gk sinh kyl  
, 2 (-ilt  ) cosh kh 

+eitP (-1 + ei71/1/2) ) 
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By Cauchy theorem and Jordon's lemma we obtain 

(k,y;t) =[ 
(gk sinh kh) ] 

e-it 

-/L2  

-if(k) 

cosh kh 

(gk sinh ky +(44)2cosh ky) 

( -/4)( -2/4) cosh kh 

+ 
[-if(k) (gk sinh ky + 142  cosh ky ) e-ite. 

(2/4) cosh kh 

[iT(k)(e-Illtr2- 1)(gk sinh ky +/.4?- cosh ky 
+ei

/4.t 
(2/4)(2 cosh kh) - 

[iT(k)(e171/4/2- 1)(gk sinh ky + (-t-)2  cosh ky 
+ 	 e-its 

,,  

2 (-/Z)(-2/4) cosh kh 

I

-iT(k)(f4)(1+e-i71/14/2)(gk sinh ky+IA2cosh ky)/ 
e
it" 

It is better to rewrite the above expression as 

2 (2/4)(2-i/4)(2+i-4) cosh kh 

+Lif(k)(-it)(1+eig114/2)(gk sinh ky+ /L2cosh kyd 
 e

-it/A 

2 (-2/)(27/4)(2±/4) cosh kh  

[ 

-i??(k)(gk sinh ky+ecosh ky] 

4(2414)(2-P) cosh kh 
([eit/4  (1 + e-iti7P/2) + 

+ e 	(1 	eilf,u/2i) 
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One can easy find that the expression for the solution ,(k,y;t) 

free from singularties when taken as a whole . It is suitable to 

write the above expression for A(kly;t) as 

if(k) (gk sinh ky) 
g(k,Y;t) = (144.2) 	( 	 

cosh kh 

i?(k)(gk sinh ky 442cosh ky) 
- ( 

	

	
)( eitp. 	e-it) 

2 cosh kh 

i?(k)(gk sinh ky+1.1
2cosh ky) 

+( 

	

	 )(eitP.(-1+e-1112) + 
4 cosh kh 

	

-1_7(k)(gk sinh ky+pi.2cosh ky) 	1 	 1 
+( 	 )( 	 

16 cosh kh 	ti+ 2 	H.- 2 

x 	eittk  (1 + e)+ e-i41(1 + eiP11/2) ) . 

Taking the inverse of the Fourier transform , we obtain the 

solution(x,y;t) 

	

ciT(k)(gk sinh ky) 	e 
42 

-ikx 
4j(x,y;t) = (1/2T()   ( 	) dk 1/.  

-00 	cosh kh 

g(k)(gk sinh ky+ 2cosh ky) 
+(1/27r) S 	  (ei41 + e-it11)+ 

2 1,1.2 cosh kh 

.1_ [eitil- (..1  + e-ip.11/2 )  + e-it4(_1  + eirr2)] e-ikx dk 

-_-_] 
00 

+ (1/21T ) 
S[

-ir(k)(Fk sinh ky+P-2cosh ky) X 

-00 	16 cosh kh 

+ 	(-1 + ei" 2)) 



[eitP- (1 + e-4 7Y2 ) e-ikx 
-.1dk 

( 2 + µ ) 

 
aa
[if(k)(gk sinh ky

2 cosh ky)] 
	  X 

16 cosh kh 

-lg.". (1 ems* e-ikx 

[ 	e  
dk 

( 	- 2) 
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all integrands are well behaved near and on the real axis 

and free from any singularities at the origin as well as at 

1-1(k) = * 2 

The corresponding expression for the free surface "Z(x;t) 

derived from the expression forjg(xly;t) by putting y = o 

°° 
"Z(x,t) =g(x,o;t) = (1/21() j  ( 	1-7(k) 	)  2 cosh kh 

-( e it1.14.  

  

- (-1+e4+/1)+e-itil(ek1 	1)) elITT  
dk 

S 
a 

ik)) 
	 - ikx 

4(1/2Tr) 	 ( l6cs: kh) 	
) e 

) dk 
- o 	(2 +I) 

 

00  

+(1/2Tr)S ( if (k)µ2  )(
e-itp,(14. 	_-k 

e 	)e  ix 

16 cosh kh 	( 2+1-4.) -00 
	) dk 

-  

This integral can be evaluated asymptotically for large x and t 

To do this we assume that the ratio t/x or x/t is fixed so that 

the resulting integral contians just one large parameter , either 

t or x . Carrying this program , we consider x = Vt where V.is 

held constant representing the observer velocity , the different 

integrals contain exponential factors like exp(ig1(t)) and 

exp(ig20:).t where g1(k) -11,k(k) - 	g2(k) 41(k) + Vk]. 
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In the complex k-plane , we must deform the paths of the 

different integrals in the the manner of the steepest descent 

passing through the saddle points whichare. define'dbY 

d/dk (g1(k)) = d/dk 01(k) - Vk ) = o 

and 	d/dk (g2(k)) = d/dk (11(k) + Vk ) = o 

hence , the saddle point k = ko  must satisfy 	the relation 

d/dk (11.(k0)) = V and the other saddle point also musst stiSfy.  

the relation d/dk ([1(k00)) = -V . This means , the observer 

velocity equal the group velocity appropriate to the wave 

number k = t ko and k = k00  . The asymptotic expression for 

(x;t)is given by 

12(x,1) f(k) 
(x,t) =(1/277) 	2

i
cosh kh ) ( -1 + ( -+ + 3 e--114-15 ) 

(16 cosh 
 1.12   )(1 	.e Oco)t+11;11.

(t g 
 2
:7( )

N 

k=ko

I  
+ 16 cosh kh 2 +pi 

1 le o 

4.(1/211) I (  1-7(k)  ) ( -1 + ( -1 + 	e-21 ) ) 2 cosh kh 

4.(17(k)r-  	)(I +e-1-4471  2 

`16 cosh khl‘ 1„1.- 2 

00 

+ 0 	. 

Let us examine the asymptotic expression ; if x/t is held - 

constant while t increases ,then clearly one must set x =1-1,(ks)t, 

where k s  =ko  or k oo,i.e. we are examining 12  from the standpoint of 

an observer moving with the group velocity FA-1(ks) . The gross 

outline decreasing in amplitude like (1/07 

k= 

ig,cit004t4 in 
-e 	r( 	 t g2(koo ))7 
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For values of x/t = V which no solution to the relation 

1.11(k) = V = x/t exists , it is easy to show,by integration by 

parts,that '1(x;t) behaves like (1/0 . 

These results are exactly identical with the previous results which 

we have obtained before , in the case of suddenly disturbance at 

the bottom . 

The Behavior Of The Vertical Displacement Of 

The Free Surface At The Origin X = o  

As t Becomes Large  

The corresponding solution is 

00 
12(0;t) =,g(0,0;t) =012-T1") S ('cosh kh)

(eitp. 	) 

+eitN-1 +1-e-4-4.17  ) +e 	(-17  +e dk 

00 

( 1 	e-12i111T) 	dk 2 + 
+012705-±7(k)11 	

eitp. 

16cosh kh' ( 

+(1/21T 	 ( 	1 -2 4. ]d k  

The integrands are well behaved near the real axis and on it in 

the k - plane 	also the function I-4-(k) =(gk tanh kh)7  is monotonic 

in k , then we have didk1.1(k) # o , by integration by parts , one 

finds that '2(0;0 behaves like ( lit ) 

-00 
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Conclusion: 

When a disturbance is initiated at the bottom of still 

fluid by suddenly or smoothely deformation of the bed , the effect 

is in general the creation of waves in the fluid and on the free 

surface . By 	. examining the asymptotic expression for the 

solution in both cases from the standpoint of 

(1) An observer moving with group velocity , the velocity which 

satisfied the relation didkl-A(k) = x/t . 

(2) An observer moving with the velocity for which the relation 

d/dk[2.(k) = x/t has not a solution. 

(3) Ah observer standing at the origin . 

the given results in.both cases are basically identical 
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Flow Over An Infinite Step At The Bed  

Of A Uniform: Stream With Free Surface  

In the present problem ( as previous problems ) we like to 

examine the creation of waves through and at the free surface* 

of the fluid , due to a suddenly appearance of a step at the 

bottom of a stream flowing with a uniform velocity U . The 

problem is based upon the usual assumptions of classical hydro-

dynamics , i.e. the fluid is invisthid and of uniform density 

and the motion is irrotational -can be described by the velocity 

potential - , nonlinear terms in the equations of the motions are 

neglected . It is also assumed that the motion is twd-dimensional. 

The governed equation; 

The governed equation is 

v2 (1)(x ly;t) = o 
x,y 

where the potential 	(x,y;t) = Ux + 0(x,y;t) 55the potential 

0(x,y;t) corresponding the disturbance velocity potential • Then 

the problem reduces to find the solution of 

2 p(x,Y;t) = o , to--gether, 
x,y 

The Boundary Conditions:  

(a) At the free surface (y=o) ; 

(i) the dynamical condition is 

U95x VI=  ° 2 
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where 12 =1'2(x,ti is the elevation of the free surface • 

(ii) the kinematic condition is 

("a/at + 	x ) 	x ; t = 	• 

The disturbance at the bed is defined by 

,(x;t) = b f(x)g(t) 	, 

where 	 f(x) = o 	x< o 

	

= 1 	o< x< L 

	

= 0 
	 x > L 

and 	the function -g(t) is the Heaviside function ( to represent 

the suddenly effect ) . 

Hence , the bottom is described by 

y = - h b f(x) g(t) 	where b <h 

therefore , the condition at the bottom ( y = - h ) is 

( -6/at + u-o/-ax ) br(x)g(t) = f53, . 

The vertical displacement for any fluid particle is given by 

y =(x,y;t) 

then , we have the relation 

(a/at + UW1)x ) (x,y;t) = Xy(x;y,t) 
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y 

x 

U 

y=-h 

0 

Applying Fourier - Laplace transform 

( 	dt e -itw S dx eikx  ) 2  

0 

on the problem , we note , the function f(x) is defined on the 

interval ( -00< x<doo) and its absolute integral is convergent, 
00 

i.e. S If(x)1 dx< 0.0 , this leads to the existence of the integral 

500  -00 

f(x) exp(ikx) dx = 17(k) = (1/ik)( -1 +exp(ikL)) , then we get 

-.0 

an expression for (k,y;w)isgivsnby 

[i(w-kU) bY(k)E(w) ( gk sinh ky + (w-kU)2coah ky )] 
)7(k,y;w) _ 

	

	  

k( (w-kU)
2 

- gk tanh kh ) cosh kh 

and the expression fork,y;w)is given by 

00 	 00 

3.5(kaPi)  = 

bY(k)g(w) ( gk sinh ky + (w-kU)2cosh ky )] 

( (w-kU)2  - gk tanh kh ) cosh kh 

Substituting for Y(k) & g(w) , then by the inverse theorem , we 

obtain the solution 
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°O -ib(gk sinh ky+ 
	 ) e-ikx dk 

(kr)2cosh ky) 
,&xly;t) =(1/21T)S( 

-00 -ik(-21-1)(kU41)cosh kh 

r°°-i12(gk sinh ky + (kU)
2cosh ky) ikx dk 

+(1/21/))( 	 ) e 
-ik(21J)(kU-1,1) cosh kh 

+(1/2-1T) -ib(gk sinh ky+(kU)
2cosh ky) 	_ikx+it(kU+) dk )( 	 )e 

-00 -ik(21J)(kU+1-1)cosh kh 

e° 	
1 r-ib(gk sinh ky+I-A-2  cosh ky) _ikx+it(kU- p-)dk +(1/2-1-03( 	  )e 

-00 -ik(-21.x.)(kU-1--)cosh kh 

	

°° -ib(gk sinh ky+(kU)2cosh ky) 
)e 	dk 11 +(1/26( 	  

-00  ik(-21..x)(kU+44cosh kh 

"b( k sinh k +(kU)2cosh ky) ik(L-x) +(
1/
2
71
) 	 )e 	dk 
S 

-ib(gk 

 -00 ik(2 . 	) cosh kh 

+(1/211) c"
4
(  
c-ib(gk sinh ky+1-0cosh ky) 

1-4-  	 )eik(L-x)+it(kU+ 4dk 
- ) co ik(21-1-)(kU+E.1) cosh kh 

112 "-ib(gk sinh ky+F^ cosh ky)
)eik(L-x)+it(kU- I-4)dk +(1/2-rr)S( 

	

	  
ik(-2F1)(kU-1-1)cosh kh -00 

First : 

The representation integral for the solution 	(x,y;t) can be 

evaluated asymptotically for large L,t&x . Todo this vie assume 

that L tends to infinity before t and x . Discussing each 

integral seperately , 

00 
-ib(gk Sinh ky+(kU)2cosh ky) 

(1) I =(1/2-rOS[ 	  e-ikx dk  
1 	

-00 	-ik(21A)(kU-1-1-)cosh kh 

-00 

The integral is free from any singularity at the origin and the 



• • • • 0- • 0,41 = P.VS 
L k>,  

we have 

-ik(21-4.).coshath).d/dk(kU-P- ) 

sinh ky + (kU)2cosh ky) )] 
k=k* 
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integrand analytic about the real axis except at the real pole 

k = kl:bedefined by the relation[kU -1-1(k)]= o 	provided U2is 

less than gh .) . Near the simple pole , consider k = k* + K 1  

where K is a small complex quantity = Kr  +i ki = cexp(ie) . 

The integrand can be written as (.A1(k,y)/(kU- 1.1) )e-ikx,where 

-ib(gk sinh ky +(kU)2cosh ky) 
71/4-1(ka) = ( 	  

-ik (2F1(k)) cosh kh 

Expanding the different functions about k = k* by Taylor , we 

obtain 

Xa (k,y).--z; Xi(k*,y) , 

(kU -1-4-(k) ) c H[d/dk (kU 41-(k ))1k=k* 

exp(-ikx) 	exp(-ik*x) exp(-iKrx) exp(Kix) 

for convergence , we have 

(i) x is positive , then for convergence K J_  must be negative, 

therefore , the semicircle about the simple pole lies in the 

negative half of the k-plane . Then the path deformdd as in the 

figure 

L 

I = -i/2[( 
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(ii) x is negative, then for convergence K must be positive, 

therefore, the semicircle about the simple pole lies in the 

positive half of the k-plane . Then the path deformed as in 

the figure 

-ib(gk sinh ky + (kU)
2cosh ky) 

I1 = (-11)[ ( 	  )1=k* 
e-ixk* 

-ik(21..i).cosh(kh).d/dk(kU-1-4) 

(2) The second integral 12  is 

S -ib(gk sinh ky +(kU)2cosh hy)
) e 	dk-ikx 

12  = (1/2Tf) ( 	  
-ik(-21-4-)(kU+FI)cosh kh 

is similar as I1  . 

(3) The third integral 13  is 

	

00 	11 2 -ib(gk sinh ky+ rA cosh ky) 

	

1
3 

=(1/2-rr) 5 ( 	 ) ei(-kx+(kU-1-4.))t dk, 

	

00 	-ik(-21-4)(kU-1-4).cosh(kh) 

to evaluate 13  asymptotically for large t and x . To do this we 

assume the x/t is fixed , i.e. the integral contains just one 

large parameter it is better to rewrite 13  as 

S 
X3(k,y) 

13 = (1/2-rr)) ( 	 ) eitgl(k)  dk 
kU -11(k) 
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where , 	3 ".X.  (ka  ) - (-11)
(gk sinh ky +/J2cosh ky) 
-ik(-2 4)coshach) 

and 	g1(k) q(-x/t)k + Uk -1
-1(k)] . 

The integrand of 1
3 

has a simple pole at k =K%bedefined by the 

relation [kU -1-1(k)] =o and a saddle point at k =Ko,be defined by 

the reation [d/dk(gl(k))1= o , i.e.K=Ko mustsatisf y 	the 

relation [U 	 o )[= x/t . Expanding the different functions 

of the integrand about k = k* by Taylor , we obtain an important 

factor exp(-R i( - x/t + U 	(10q ) t ) 	then for the 

convergence we have 

(i) [d/dk ( gl(k) lk=k*  is positive 	then for convergence 

K must be also positive , i.e. the semicircle round 

the simple pole on the real axis lies in the positive 

half in the k - plane , as in the figure 

k=k* 

[d/dk (gl(k))]k=k* 	la,  (k*)) -x/t] 

then we have two cases ; 

(a) x/t is positive ( i.e. the observer 	speed 

is positivej.e.in the downstream direction ) in 

this case we find that 

[d/dk (1,4.(k))jk.k  > [d/dk ( li(k))1k.ke  

here , the saddle point lies on the left of the 

simple pole ( k* > ko 
) 	hence 	we deformed 

the path in the manner of the steepest descent 

as in the figure 
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(b) x/t is negative ( i.e. the observer 	speed is 

negative , in the upstream direction ) in this 

case we have 

[d/dk (1-1(k))]k=k  >fd/dk (1./(k)1k=k, 
o 

here , the saddle point ( It = ko  ) lies on the 

left of the simple pole ( It = k* ) , hence ,the 

path deformed as in the case ( a ) 

(ii) [d/dk ( gi(k)lk=k, is negative , for the convergence 

Ki  must be negative , i.e. the semicircle round the 

simple pole on the real axis lies in the negative 

half in the k-plane . Since 	(k*) less than U 

hence , x/t is positive , 

.'. [d/dk (ri(k)3k.k  <Ad/dk (1-1(k))]k=k* 
0 

i.e. the saddle point lies on the right of the simple 
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pole , then the path deformed by the steepest 

descent manner as in the figure 

The corresponding values  

(1) The case ( i ; a&b) , we have 

-ib(gk sinh(ky)+1,1
2cosh kyl  

13 = (41) ( 	   -ik(-21,-.)d/dk(kU-1-1)cosh(kh) k=k  

-ib(gk sinh ky+Fi2cosh ky) 	i(tg (k )4/1) 	2 g-r.  	)4' 

	

+(1/211)( 	
ky)) 

	1 o 	et g"(k ) -ik(-21-1)(kU4L)cosh(kh) 	 1 o 

(2) The case (ii) 

-ib(gk sinh ky +1-12cosh ky) 

	

13  =(-ii) ( 
	 
-ik(-2Wd/dk(ku-1-)coshlich k=k* e-ik*x  

-ib(kg sinh ky4A2cosh ky) 
+(1/211)( 	  

-ik(-41)(kU41)cosh kh 1=koei(tgl(k°)*r) (t h(k0)-)1 
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(4) The fourth integral 14  is 

	

S 	
) e 

c°  -ib(kg sinh ky +1-12cosh ky) i(-kx+t(kU41-1)) 14  = (1/2TO) (  	 dk 
-00 -ik(21.1)(kU +IA) cosh kh 

similar to 13 . 

(5) The fifth integral 15  is 

00 
-ib(gk sinh ky +(kU)2cosh ky) 

15 = (1/21-0S( 	  ) eikL e-ikx dk 

	

-00 	ik(21J)(kU +El) cosh kh 

it is better to write 15 as (l/21- )5 (')(5
(ka) 

)  e1 	dk , 
_00  (kU- ) 

where , 	-ih(gk sinh ky +(kU)2cosh ky) 
X (k y) = ( 	  4 e ikx 5 	 ik(21.1) cosh kh 

The integral has a simple pole at k = klbedefined by the rela-

tion fkU -1-1-(k)] = o,byexpanding the integrand about k = k* , 

we get the important factor , exp(- RiL) 	L is positive ,then 

for convergence K i  must be positive ,i.e. the semicircle 
round the simple pole on the real axis lies in the positive 

half , the path deformed in the k - plane as in the figure 

LI 

k* 

-ib(gk sinh ky+(kU)2cosh ky) .*. 5 	(  	ikL -ixk* I = 1=k*  e 	e 	+ OWL) 
ik(21-1-)d/dk(kU-Fk)cosh kh 

00 

the value of 15 independent on the sign of x 
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(6) The sixth integral 16  is 

4).°  -ib(gk sinh ky + (kU)2cosh ky) 	ik(L-x) 
11  16  = (1/2 ) 

S 
	

) e  
(  

	

	dk 
ik (-41.)(kU 41) cosh kh 

similar to 15  . 

(7) The seventh integral 17  is 

a*
-ib(gk sinh ky+(kU)2cosh ky) it(kU-11) -ikx ikL 

1
7 
=0121-r) S ( 	 )e 	e 	e 	dk  

-.0 ik(-21-L)(kU -1-i) cosh kh 

X7(k,y) 
	 eikL dk it is better to rewrite 1

7 
as (l/2Tf) 

-c, (kU -11(k)) 

where7 = (
-11:0(gk sinh ky +(kU)2cosh ky)

) eit(kU-1-1)-ikx 

ik(-21.1) cosh kh 

it is clear that the integral has a simple pole at k = k*I by 

expanding the integrand about k = k* , we obtain the important 

factorexp(-K.L) 	whereLis positive , for convergence Ki  

must be positive, then the semicircle round the simple pole 

lies in the positive half in the k - plane as in the figure 

la° 

L 	k* 

1, 2 -ib(gk sinh ky +m- cosh ky) 

ik(-41)d/dk(kU-1.1)cosh kh kk* e  

-ixk* eiLk* 

00 
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(8) The eighth integral 18  is 

-ib(gk sinh ky+1.12cosh ky) 
00 

18 	(Varr)S ( 	 ) eit(kU+1-1.) e-ikx eikl dk 
ik(-21-1)(kU+1,1) cosh kh 

it is similar to 17 

Now , the asymptotic expression for the solution S(x,y;t) 

in the different cases is given by 

(a) The case in which x/t is positive and gi(k*) also positive, 

where gi(k*) =1- x/t + U - pe(k*)] , i.e. the case in which 

the observer moves with a velocity less than the group velocity 

appropraite to wave number k = k*, the solution is 

-ib(gk sinh ky+(kU)2cosh ky) 
g(x,y;t;L)= 	( 	 )k= k* )k= *k* e -ik(-24)(kU -4)cosh kh 

r-ib(gk sinh ky+p?cosh ky)] 
ei(tg1(ko)4m) 21-1-  +(1/2-rq 	 (t gl(ko)) 

-ik(-211.)(kU-11)coshkh k=ko 

representing a system of a steady waves 

(b) The case in which x/t is postive but gll(k*) is negative 

i.e. the case in which the observer moveswith.voLocitY.  greater 

than the group velocity , the corresponding solution is 

)rib(gk sinh ky+lj?cosh ky] 

	

.,>(x,y;t;L)=(1/2 	 i(tg (k )+4m0 	2;11-  

-ik(-21-1)(kU-11)coshhk k=k0
e 	( 

t gi(ko)
)z 

-00 

representing a transient solution behaves like t-i 
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(c) The case in which x/t and gi(k*) are negative , i.e. the 

observer moving towards upstream , the solution is 

(x,y;t;L)=(1/2T1) 	 
-ib(gk sinh ky+P-2cosh ky) / j ei(tgl(k0)+If)(  2

"
'f  

-ik(-21-1)(kU-1-1)cosh kh k=k 	
t g 1(k o)  

representing a transient solution behaves like t-1 
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We evaluatiod-  the solution S(x,y;t;L) asymptotically for large 

t,x&L ,when L becomes large before t & x . Now , we like to 

evaluate the solution asymptotically when t,the time,becomes large 

before x and L Considering x = Vt , where V is the observer 

speed . By the same analysis we obtain different expressions 

for the solution corresponding to the different cases. 

Case 1 : 

The case in which x/t and g$1(k*) are positive , i.e.the 

observer velocity is positive and less than the group velocity , 

we obtain the solution 

	

rib(gk sinh ky+(kU)2cosh ky) 	(14.e±ik*L) e-ik*x , (x,y;t;L)=-i 	  
-ik(24)d/dk(kU-Fi)cosh kh k=k* 

+ 0 ( 	) 

representing a system of a steady waves . 

Case 2 : 

The case in which x/t is positive but g,(k*) is negative, 

therefore x/t'is less than d/dk (kU(k))k=k* ,i.e. the observer 

moves with a positive velocity greater than the group velocity . 

Case 3  

The case in which x/t is negative , i.e. the observer 

moving in the upstream direction . 

The corresponding solution to the cases2 & 3 is a transient 

solution behaves like 1/t1 
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The present problem in the case of no current U = o  : 

The corresponding expression for the solution is 

	

(x,y;t:L) = (1/Tr)S(
QO ib(gk sinh ky) 	_ ikx 
	 ) e 	dk 

-oe -ik(-21-15coshckh) 

r°° -ib(gk sinh ky+P.2cosh ky) 
+(1/2-rr )5 ( 	  

	

-ik .2El2 	
) ee-ikx dk  

 cosh kh 

c4* -ib(gk sinh ky+11
2cosh kY) 	_ite-ikx dk 

1-(1/2-TY 
)S ( 	 e 	 ) e 

pl. 

-ik. 2 	cosh kh 

.0 -ib(sinh ky ) ik(L - x) + (1/Tr)S (  	dk 
00 _ 	ik(-21,12 	

) e  

)cosh kh 

... 
+(1/29-r) S ( -ib(gk sinh ky+1.12cosh ky) 

112 

	

ik( 21-4- ) cosh k 

	  )eitPLeik(L-x) dk 

.. 

S 

-ib(gk sinh ky+1.1
2cosh ky) 	_it[Leik(L-x) dk 

+(1/2pr)) ( 	  )e 
ik ( 2 [1.2 ) cosh kh 

the different integrals are free from any real simple poles and 

well behave at the origin . 

The solution can be evaluated asymptotically for large L t & x . 

To do this , let L becomes large before t & x and assume x/t fixed 

first . Secondly , let t becomes large before L & x and assum x/t 

fixed 	In both cases the most contributions come from the saddle 

points be defined by[d/dk(1,i(k)-x/t 	=o and[d/dk(FL(k)+k x/t I = 0, 

hence , by examining the solution ,(x,y;t;L )from standpoint of 

an observer moves., with the group velocity appropraite to wave 

number k = the saddle point 	then the solution behaves like 

When the observer moves with velocity x/t such that the relation 

[d/dk ( µ(k))]= t  x/t has no solution , by integrating by parts , 

the solution behaves like l/t 

00 
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At the time t = 0 a step,of lengthOscreated at the bottom , 

of a running fluid or still one with free surface 	suddenly . By 

investigating the behaviour of the vertical displacement of every 

fluid particle for large t , x & L , we obtain the asymptotic ex-

pression for the solution in different cases ; 

(1) From the standpoint of an observer moving with a velocity less 

than the group velocity , in the dowenstream direction . in this 

case we obtain a Steady Solution 

(2) From the standpoint of an observer moving with a velocity gre-

ater than the group velocity , we get a Transient Solution behaves 

like litI  . 

(3) In the case in which U = 0 ( still fluid ) , from the stand-

point of an observer moving with group velocity the solution be-

haves like 1/ti  , but when he moves with velocity for which no sol-

ution to the relation d/dk( (k)) = * x/t exists the solution 

behaves like lit . 
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Conclusion: 

In this part we considered the creation of waves in a uniform 

stream (U # 0) or in still fluid (U=0), due to a disturbance 

created at t=o; suddenly or smoothely at-the bottom. We considered 

a symmetry disturbance about the point beneath the origin and a 

flow over an infinite step at the bed. By Fourier-Laplace technique 

we got a solution in the integral expression. This integral can be 

evaluated asymptotically for large x and t. To do this : 

Firstly , the case in which U # 0, we assumed x/t is fixed we obtain- 

(1) If the observer moving in the downstream direction with 

velocity greater than group velocity or moving in the upstream 

direction, he observes only a system of a transient waves with an 

amplitude behaves like (1/t) 

(2) The steady-state solution occures only when the observer 

moving with velocity less than group velocity in the downstream 

direction. 

(3) In the transition case, i.e. the observer moving with velocity 

near from the value of the group velocity in the downstream 

direction. We can describe the nature of this case in terms of the 

Error function. Hence, we see that the transition occures by means 

of an amplitude modulation which behaves like an Error function. 

Secondly, the case in which U = 0 and x/t is fixed, we had 

(1) If the observer moves with group velocity, then the solution 

behaves like WO. 

(2) If he moves with velocity does not equal the group velocity, 



-96 - 

then the solution behaves like (1/t). 

Thirdly, in this case U 0 and we are fixed our attention on one 

value of x then let t increasing, we obtained 

(1) If x/t is positive and greater than the the group velocity, 

the observer will observe waves of continually decreasing wave-

number , i.e. increasing wave length and the amplitude is decreasing 

as (1/t)-1-. 

(2) If x/t is negative , the observer will observe waves of 

continually increasing wave number, i.e. decreasing wave length2  

and the amplitude behaves like WO. 

(3) If x/t is positive and less than group velocity , we have a 

system of a steady waves. 



PART II 
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Higher-Order Theory of Infinitesimal Waves  

Cauchy - Poisson Problem  

Cauchy (1827) and Poisson (1815) discussed the problem of 

generation of waves " when a local disturbance is given on the 

surface of deep water . The wave thus created is the so called 

" Cauchy - Poisson " . 

In this work we consideredIhetwo - dimensional case in which 

the fluid extending to infinity , horizontally and downwards , the 

pressure over the free surface is constant , say zero . Taking the 

axis of x on the undisturbed free surface ( y = 0 ) and that y 

vertically upwards . At time t = 0 a disturbance is suddenly crea-

ted on the free surface . It is required to find the displacement 

and the velocity of every particle of the fluid at any future 

time . The fluid being assumed incompressible and frictionless , 

its motion , starting primarily from rest by a disturbance applied 

to the free surface is essentially irrotational . The modes of 

irrotational motion of fluid by surface disturbance present them-

selves , as H . Lamb points out , in two forms : (1) by an init-

ial displacement of the surface without initial velocity ; 

(2) by an initial impulse applied on the surface , without initial 

surface displacement 	In the present problem we consider the first 
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case , i.e. considering an initial small displacement of the free 

surface without initial velocity ; hence , by the infinitesmal - 

wave theory and using the technique of Fourier transform we can . 

obtain the solution up the third order correction • The represen-

tation integral for the solution can be evaluated asymptotically 

for large x and t by the method of stationary phase ( due to Lord 

Kelvin) • 
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Formulation  : 

For two - dimenstional motion in the x - y plane , 

a coordinaite system is chosen with the origin on the undistu-

rbed free surface ( y = o ) , where the y - axis is positive 

upward and the x - axis positive to the right . Upon the usual 

assumptions of classical hydrodynamics , if the motion - and 

the fluid is inviscid with uniform density - is generated 

originally from rest by an initial displacement,applied on the 

free surface at t = o described by the relation y =4/(x,o) , 

it will be irrotational throughout all time and we may describe 

the motion in terms of a velocity potential Axly;t) satisfying 

Laplace's equation 

2 
V x,y  0'(x,y;t) = o 
	(1) 

where 
2 	2 	2 2 = /13 x 	+ --6 , y2  x,y 

initial surface displacement 

Homogeneous fluid 
with infinite depth 
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The Boundary Coditions:  

(a) At the free surface we have two conditions; 

(1) The dynamic condition (from Bernoulli's equation)is 

,t I. 	( d2 	d2
y 
 ) + gl(x,t) = F(t) rx r  

where y =17(x lt) is the vertical displacement of the free 

surface about the undisturbed surface y = o , and F(t) is aft 

arbitrary function of t , can absorbed in let  , i.e. the 

condition can be written as 

PCt  + 	( 	+ y  ) 	gi2(x,t) =o 	 (2) 

and g is the constant of gravity 

(2) The kinematic condition ( state that " no transfer of 

the matter across the free surface " . ) Let us suppose that 

the free surface S(A) is given by the equation F(x,y;t) = o 

where F(x,y;t) = y -'1(x;t) 	Mathematically the conditioncan be 

written as p/Dt (y -4 )1 1(x;t)= o ,where D/Dt is the material 

derivative and =0/1)t + 	Ibrbx + '-6/1)y) , hence , the 
be 

condition canlwritten as 

PY ( P/x/x 1/2t, ) = 
	

(3) 

We complete the statement of the boundary conditions by 

invoking the finiteness conditions 

as 	00 

& Y 	-oo 
(4.a) 

and 1 .1(x , t ) < (403) 
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Prescribing the initial displacement y = 12(x,o) and invoking 

the assumption that the fluid is initially at rest , we obtain 

the initial conditions 

= 0 p 

and 
	

1.(X20) = f(x) 	at t=o 
	(5) 

= given,and,symetric about the origin . 

We see that the boundary conditions involve non - linear terms, 

for example 	
of2 4. 0(2 ) in the dynamical condition and grx'12 x  in rx  

the kinematic condition , these lead to analytical difficults 

which may be overcome by expanding various functions entering into 

the problem into power series inG - small parameter - (say in the 

present problem the maximamum value of the original surface dis-

placement ) . The different series are substituted into the goyer-

ned equation to-gether the boundary conditions at the free surface, 

then grouped according to powers ofE . The coefficients of each 

power yields a sequence of equations and boundary conditions, the 

coefficients of E giving the first .- order theory , these ofE2  

the second - order , etc. 

Carrying out this program . Let us first assume thatie(x,y;0 95 

7(x;t) may be expanded in a perturbation series inE s as 

pr(x,y;t) =Egf(1)(x,y;t)+ E2 )01((2)(x2Y;04- e3,(3)(x,y;t)+ 

and 
	

(6) 
12(x,t) = E'1.1)(x;t

)4. c2'''12)(xv04.C34.3)(x;t)+ 

It follows first of all that each of the functions 0(k)(x,y;t) 

are solutions of the Laplace equation and k = 1,2,3,... 	i.e. 
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2 
.r 
0 01, 0,x . 	= o k 2Y,t) xa (7) 

Substituting for/(x,y;t) andl(x;t) in (2) and (3) , remembering 

in addition that formal expansions of the following sort,for 

example , hold ; 

/(x,y;t)4(x,17(x,t),t)4(x,o;t)-1-7(x,t)6(x,o;t)+ 

=EV5(1)(x,o;t) +C20(2)(x,o;t) + 

4.(6.41)(x;t),I. E27(2) (x,t)+...)(€ 41) (x,o;t)+c2ify(2)(x,o;t)+...) 

=c0(1)(x$0;t).1.€2( i0(2)(x,0 ;t) +.01(1) (x;t )61) (x10 ;t) ) 	... 

One finds that , 

fox(x,y;0=e0x(1)(.,0;t)+62(,/..1)(.,t)/x(yi)(x,0;t)iix(2)(x,o;t) ) 

42)/(1) 	,(41) )2,„!3,; ÷ .2.0.)5ifx(;) 	) 

(X Y•t)'..E%(1) +E2(41) d(1) 	!(2) y 	 y 
G. yy ry 

4.e (42) 00) 4.1(1p))2 '(1) + 41) ,(2) au) ) 
YY 	-YYY L 1-57 I-Y 

/t(x,y;t)=c4i) 62 ( ii) /(1
ty

) + (2) 

	

 fert 	) 

E3( ,2(2) jzf.py.)+.3.(„2(1) )2 	4.1) jeg) 4. )43) )4. 

Substituting these expressions in the boundary conditions at the 

the free surface ,and collecting the coefficients of the different 

powers of E , one finds 
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(1) The first - order boundary conditions(coefficiontsofE)are 

K1)(x20;t) + g41)(x;t) = o , 

and 
)e l)(x,o;t) - /Z 1)(x;t) = o . 

(2) The boundary conditions for the second - order corrections 

are,(coefficientsof E2  ) 

	

g42)(x1t) = _1) 	4.1( (d(1)
x)

2+  ( d(1) )2 yt  (x20;0 	 ), 
r 	ry 

0(2)(x 0.t) _ 7(2)(x 	_ d(1)7(1) 	,y)(1) /(1) 
Y " 	

.0 
t ' rx x L 137 

(3) The boundary conditions correponding the third - correction 

(the coefficients of E.3  ) are 

43)(x,o;t) + g,1F)(x,t) = -( 2);g.)4.1( 41))2 oe.g. 

▪ 

,,,11)/;) ) 

411)(,41)0((1)44(2) ) _d(1) ( Vey.)442) ), , 
rxy rx 	-1. 

y 
A1)7.1.7(1)(...1(1) d

x
(1) 

▪ ,

x
(2) 

) (x 20;t) - 2.P)(x 2t) = 	2) 
P  

	

_( ,2(2)/(1)+  i(1(.1))2 d(1) 	 (2) ) e  

	

r yyy 	L 
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The First Order Problem 

Due to the infinitesmal - wave theory , the first order 

problemisdeftned by 

(1) The partial differential equation is 

2 
V

d 
x,y 

(1) y 	(x,y;t) = 0 (2.1) 

(2) The boundary conditions at the free surface (y=o) are 

/ 1)(x,o;t) - 1211)(x;t) = o 	 (2.2) 

41)(x,o;t)  + g  2(1) (x;  t  ) = 0 	 (2.3) 

(3) The finiteness conditions are 

and 

as ix 	00 or y 	co (2.4a)  

as i xi -4"° 	 (2.4b) 

(4) The initial condition , when to 

f )(x20 ) = f(x) 	 (2.5a) 

0,(i) = 0 	 (2.5b) 

Let the initial displacement be given by the function 

f(x) = 1/(b
2 + x2 ) , 

or 	 f(x) = ab2/( b2  + x2  ) 
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We attack the mathematical problem posed by (2.1 - 2.5) by 

invoking a Fourier transformation with respect to x . Let 

(k,y;t) = 	-5Z((x,y;t) 

Do 

=Sid (x,y;t) exp(ikx) dx . 
_00 

by integrating n times by parts ,weohtain 

7(ilkokn  ) = ( -ik)12  

where :)5 implies Fourier transformation with respect to x 

( -024( x <00). 

Transforming (2.1) 	we obtain 

(1)(k,y;t) - 00(1)(k,y.
y
t) 
 o, 

YY 
(2.6 ) 

by taking in cosideration that, 

Ax,y;t) and 6j4/-bx 	o as lxl---) °° • 

The second order differential equation (2.6) has a solution 

(1)(k,y;t) = A(k;t) jkly + B(k;t) e- IklY 

where A(k,t) and B(k,t) are arbitrary constants . 

From the finiteness condition (2.4a) , one finds that B(k;t)=o, 

hence , the required solution has the form 

2(1)(k,y;t) = A(k;t) eklY 	(2.7) 

Transforming ( 2.2 & 2,3 ) , we obtain 

0,1)(k,o;t) - t11)(k;t) = o , 

and 
	X1)(k,o;t) + g 	 1)(k;t) = o , 	at y=o 
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Eliminating 1(1)  (k;t) between the above two equations, we obtain 

() 	 (1) 
Ott  (k,o;t) + g 	(k,g;t) = o at y=o 	(2.8) 

Substituting (2.7) into (2.8) , we get 

Att' (k.t) + glkiA(k;t) = o 

has a solution 
(1) 

A(k;t)= cx(1)  (k) cos(gIkI)-
-A-  t 4-)6 	(k) sin(gik1)7t, (2.9) 

where , (1)(k) and /5(1)(k) are arbitrary functions ink 

From (2.9) and (2.7) 2 we obtain 

)51/(1)(k,y;t) = 	ol)(k) cos(gfkl)it -1-,o(1)(k) sin(glk 	)jklY• 

(1) But 0( (k) = o , from the initial condition (2.5a) , hence , 

i3(1)(k;flo  = /§1)(k) sin(glkOt exp(Ikly) 
	

(2.1o) 

By the application of the inversion theorem , we get 

00  
l ,(1)(x,y;t)=(1/27-r )5 p.) sinK 	kly gikl) t] e 	e-ikx  dk (2.11) 

The corresponding expression for (1)  (x;t) ( the first correction 

of the vertical displacement of the fluid - level at the point 

(x o) at time t relative to the undisturbed surface y=o ) is 

given by 
er11)(x; t) = 	(1/g) 41)( x20; t) 

from (2.11) , we obtain 

12 1)(x1t) = 012T1)5 ( -(1kl/g)1/5(1)) cosKgjkl)4-1-4 e-ikx  dk (2.12) 
a° 
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When t = o , we have an initial displacement of the free sur-

face without initial velocity which is given by 

(1) ( x ;(1) ) = f(x) 1  

it is better to consider the initial vertical displacement is 

symmetric about the origin ( x = o ) , for example 

f(x) = 1 /( b2  + x2) , 

or 	f(x) = a2b2  /( b2  + x2) 

i.e. f(x) is an even function 

Then , from (2.12) , we get 

1(x) = (1/21.1) S —(1k1/01  f3(1)  (k) e—ikx  dk 	(2.13) 

.e. , we can write , 

ov 

-( k  /g)1 5(1 )(k) = S f(1)(x) eikx dk  

-(1) = f 	(k) $ 

/3(1)(k ) = - ( dik4)1 ?(1)(k) 

Then , for the first order problem we have the solution 

00 

d(1), 	l 
y 	oca;t)=(1/2/16 5(1) (k) sinKg1k1) , ekiv e-ikx  dk 

-00 
and 

therefore , (2.14) 

(1) (x;t)=(1/271)S -(Ikl/g)3/51(1)(k) cos[(gik1)4] e-ikx dk  2  
-00 

but 	f(x) is an even function it is better to rewrite 0(1)  & 

1(1) in a suitable form ,as 
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00 

"1,6 1)(x;t)=(Re//1 ) S ?(1)(k) cos((gk)1t) e-ikx dk 
0 

and, 
00 

(2.15) 

0(1)  (x,y;t).(Refro-(g/k)-1 f(1) (k) 

;I 

where, Re means the real part. 

sin((gk)t) e-ikx eky dk. 
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The Second Order Problem 

This problemisdefined by 

(1) The second correction for the velocity potential /(2)(x,y;t) 

must satisfj,- .  Laplace equation,i.e., 

v 2 (2)(x,y;t) = o 	(3.1) x, y 

 The boundary conditions at y = o 

(a) The kinematic condition is 

d(2) _42(1) _r(1) d(1) 	4)(1) (AU)] 
ry ct lx x 	ryy 

(b) The dynamic-al condition is given. by 

42)+g,i2) 	,11);4(ly.) _ I ((/1))24. (01))2)] 

(3.2) 

(3.3) 

(3) The finiteness conditions , 

I id ( 2) as lx1--> oo & y --> 	(3.4a) 

and 
17(2)1 < 00  as lx1---> oo 	(3.4

b) 

(4) The initial condition , when t = o , we have 

'2(2)(x;o) = o 	(3.5a) 

and 	,(2) = o 	 (3.5b) 
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2) Eliminating 'Y ( (x;t) between (3.2) and (3.3) ,we obtain 

K2t)4. g  d(2) 	41)_ g 42( 1) y yl) 	 9 .Lrl ) 	 42.0.) a3r)1 (3 . 6) 

r y 

valid at y = o 

(1) Substituting for 0 	2(1) andtheir derivatives from (2.15) 

in the right hand side of (3.6),one can find that it is equal to zero)  

hence the single condition on 40(2)  at y = o is 

0((2) 	g  d(2) 
tt 	r y 	= o  (3.7) 

By Fourier transform technique , then the Laplace equation (3,1) 

is equivalent to 

d
2 -(2) 

dye - k2 -0(2)  = 0 , 	(3.8) 

of which the solution which tends to zero as y 	-cols 

j3(2)(k,y;t) = A2(k;t) exp(Ikly) 	(3.9) 

where A2(k;t) is an arbitrary function 

Multiplying both sides of the equation (3.7) by exp(ikx) and 

integrating over the entire range of variation of x , we find 

Att(k,t) + glk1A(k;t) = 0 2  

whence it follows that 

A(k;t) = 40 2)(k) cos1Kg1k1)14 +i5(2)(k) sirip0k1)1q 

where ,(k) and p(2)(k) are constants of integration . 

Initially ,att= o ; 	
0(2) = 	this leads to el<(2)(k) = o 

hence , we get 



/(2) 	(2) 	1 y 	(ka;t) =)13 	(k) sinKgikl) 1 exp(Ikly). 

By the application 	the inversion theorem , we obtain 

/(2), p 	oca;t)=(1/2T/)S )5(2)sill(gik1)1 dkl y 
e-ikx dk • (3.10) 

1 The corresponding expression for.L(2)  (x;t) ( the second 

correction of the vertical displacement of the fluid - level 

at the point (x,o) and at time t relative the undisturbed 

surface y = o) is given by the relation 

?(2)(x;t) =(_1/
g)(  „yip) Kly.) + 012) )y=0 3  

substituting for 	oc(1) d(2) r 	r 	and their derivatives in the 

right hand side of the above relation , we obtain 

r
oe 

1(.2)(x;t)=[(1/2TO In )cosKg ikl )1t1 e-ikx dk
00. 	

ix 
- 	00 

[1/21-051k17(1)  cos[(glkOlt] e-ikx dk 
 

00 

- (1/2-rf)5( lk 1/01/5(2)  
00 

Initially , when t = o , 

get 	oo 
% 	-(1) 	-ikx [(1/2'rl'S f 	e 	dki 
00 

we 

x 
00  

cos[(glkl)I1 e-ikx  dk 

( 2) have 17 	(x;(b) = o 	, 	from(3.11) 

00 

	

-(1) 	-ikx dk [(1/211) S Iklf 	e 
00 

(3.11) 

we 

	

=(1/2/1) S  (I k l/g)-1 	(2) 	
-ikx - /3 	e 	dk 

-0  

hence , the function /5(qedefined by the relation 

oo  

(1/2-rr) S (1 k I/ g)4 - p (2) -ikx 	(1) e 	dk = f 	(x)[(1/2/1) S Ike-) e-ikx dk  

-00 	(3.12 -00 
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The Third Order Problem  

This problemisdenned by, 

(1) The partial differential equation is 

/(3) (x' 	X(3)(x,y;t) = o 	 (4.1) xx 	 YY 

(2) The boundary conditions when y = o , 

(a) The kinematic condition is 

933) ...123) .K1)2)12) V.) (.7(1) d(1) 	d(2))  
y 	t 	 rxy 	r x 

_42) d(1) _ 1(  1(1))2 d(1) _ „2(1)cs(2)] (4.2) 
r YY 	 YYY 	r YY 

(b) The dynamical condition is 

K3) 	gi3) =[(12(2),04. 	(17(1))2 d(1
y
) +01

L
(1) 0.(2) ) 

rty  

41)(41) d(1).„ '(2) ) 
r xy r x 

_a(1)(41) 
rY 	r  YY 

d(2) 
rY 	)](4.3) 

& 	y ---> (4.4a) 

oo (4.4b) 

given by 

(4.5a) 

(4,5b) 

(3) The finiteness conditions are 

I
ri(3)1 	o 	as Ix! --> oo 

and 

I2
(3 ) I  < 	 as Ix! 

(4) The initial condition , when t = o , 

12(3)(x;0) = o 

043)  = 0 
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Eliminating '2(3)  between (4.2) and (4.3) , we obtain 

/.(t3t ) 	g yfy(3) =py(;)1(1) /.(ty1)+  0y(y1 	_ig(1(1) )2 yfy(yly) 	g4,11) y5y(2y ) 

4.641).7(1Wi.  g2(1)id(2)_ /(1)41) d(1) _ 1(1) 7(1) d(1)
x 	xx r tyx rx Lx r ty 

_ 41) e 
+1/g 

 ay  1(1)1(1
3;) +1/g (1) 4(2)4. 

g  tty 

+1/g  I(1) (1) yfay) +Lig  7.(,1)(,fcbyl))2 +1/g  1(1) 

_1).,7(1)0((1) _1(41) )2 d(1) 	„51) d(2) 
Ct P tyy 	 ttyy 	rtty - It #'ty 

(4.6 ) 

substituting for the values in the right hand side,this condition 

reduced to 

d(3) g 

g % 3) 
= o Y tt 	r  Y 

, at y = o 	 (4.7) 

Applying the Fourier transform to ( 4.1 ) , we obtain 

7(3)(k rt) - k2  P(3)(k,y;t) = o 3 

YY " 

has a solution 

kly I Ar(3)(k,y;t) = A(k;t) e 	+ B(k;t) e-4IY  

(4.8) 

(4.9) 

where , A(k,t) and B(k;t) are arbitrary constants. By the 

condition (4.4a) we find B(k;t) = o,hence , the solution is 

03)(ka;t) = A(k;t) exp(Ikly) 
	

(4.1o) 

The Fourier transform is next applied to the condition ( 4.7 ), 

hence , A( k;t),bedefined by the differential equation , 
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Att' 
(k.t) + giklA(k;t) = o 
	 (4.11) 

Finally , the initial conditions must be taken into account, and 

the solution of the above equation satisfying the initial conditions 

is 	
A(k;t) = )5(3)(k) sin[( glki)lt] 

hence, we set from (4.10) 

je34(k,y;t) =i3(3)(k) sin[(g1k1)It] dkly  

the inversion theorem leads immediately to the solution 

00 

je(3)(x,y;t) =(1/2rf)S p(3)  sin[(glki)4] 
dkly eikx 

dk . (4.12) 

00 

The corresponding expression for12
(3)

(x,t) ( the third correc-

tion of the vertical displacement of the fluid - level atthe 

point (x,o) and at time t relative the undisturbed surface y=o)is 

given by 

= [711).1/g(d(1))2 4.  -1 d(1) ( ) 
g -la(3)(x;t) 

rty 	g  pty  ot2  _ l(
'
e1))2  d(1) 

Ytyy 

1(1) 	 1=.  0 , 	 (4.13) 

substituting for the values in the right hand. side , we obtain 

00 

(3)
(x•t) - [1/2-r-f) 

g 	
-(1kl/g)

1/5(1)(k) cosKgiki) 	e
-ikx 

dk 	x 

-00 	 2 

2-rr 	IkK lid )11 3(1)  (k) cosgg I kJ )IA e-ikx  dk 

I  +g-1[(1/2-rOS lk (gf k )1p(i)cos[(glkO7t] e-ikx
dk 

-00 
00 

[(:14/211)S (g I k I )i 6(2)(k) colg Ikl )1t] e-ikx  dk 
-00 

00 

liki)1/3(1)cosKg1k1)41 -4 Par( ) S (g" 	 e ikx  dk 

00 

ikxdd(1/2TT)S (lki)
2
(glki)/3

(1) 
cos[(glkl)t] e

-

_ oo 



oe 
(1/21-r) 	(glkl )-1- 3(3)(k) e-ikx dk = 

-00 
2 

(f(1)(x))/g [1(1/27f)S -gik17 (1)(k) e-ikx  
-00 

0e 

+[( hart) S xdi] Fi/arr) S _ ikiay(1) e-ik 	 p(2) e )ikx1 
00  -00 

00 
- 	(f (1)(x))2  [(1/27-0S _ gk2 y (1) (k) e-ikx  

00 
ad. 

- 
f(1)(X)  [(112-r- ) S Ik 1(glk1)1p(2)(k) e-ikx dkj. (4.15) 

— 115 - 

00 

(1/2-r ) 	 (g Ik1)1 p( 1 )(k)coK g  Ikl ) 	dk 	x r -1 	 -ikx 

—0o 

[(1/211) 5 1k1(glk1)1/8(2) cos[(gI kl 	e-ikx dk 

- P1/211)S e43(glk1)1p(3)(k) cos[(glkl Ylt] e-ikx did (4.14) 

Initially 	when t = o 	")/3)(x,o) = o ; hence 	from (4.14) we 

obtain an expression for the function/3'0) (k) which is defined by 
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The Asymptotic Solution 

For the first order problem , we have an expression for the 

potential which isgiven by 
00 

	

/(1)(x,y;0 = (Re/2r )S 15(1)(k) sinl(g k ) 	e -ikx +ky dk 

0 

the corresponding expression for "Yi7(1)(x,y;t) is 

00 

'2(1)(x;t) = (Rear ) S -(k/g)1)5(1) (k) cos[(g k )41 e-ikx  dk . 

The integral for 11!(1)(x,t) can be evaluated asymptotically for 

large x and t . To do this we assume that the ratio x/t is fixed. 

The resulting integral contains just one large parameter , t ,say. 

Then we apply Kelvin's stationary phase formula , assuming that 

t is large . To carry out this programe , first we put 

x = Vt 	 (5.1) 

where , V is constant . 

It is better to write the expression for as 

00  
(1) 	

- it(kV -(gk)1) (1) (x 2t) = (Re/21-r) (k/g)713 1(k) e 	dk 
0 

(2e4211) S7°  od )114(1)(k) e-tkkV +(gk)l) dk (5.2) g r 

be 
We begin by discussing the integral 12  , can4written as 

00 
12 = (Re/27-05 - (k/g)1/5(1)(k) e-itg2(k)  dk 

0 
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where , g2(k) = ( kV 	(gk)1) , then 

[d/dk  (g2(k))) =[ i + 	(g/k)+] 	0 

this means that the function g2(k) is free from any stationary 

point within the range of k o ,0.0) . It is easy to prove by 

a change of variable in the integral 12  , say u = g2(k) 	and 

integration by parts , we find the integral behaves like (1/t). 

Secondely , the integral I
1 

=(12e/27-05 -(k/g)1/5
(1) 

e
-itg1(k) dk , 

0 

where , 	gi(k) =[kV - (gk)1], 

then, 	[d/dk ( gi(k))] =[ V - 1(g/k)I], 

therefore , the function g1(k) has a stationary point at k=kowhich is 

satisfied the relation [d/dk (kg)1]= V and ko = g/4V2  . 

Due to Kelvin method , the most contribution comes from a small 

range of k,for which gi(k) is stationary,such that (k0-$ ,ko+S), 

we consider the function (-(k/g)1/5(1)(k)) over this small range 

of k is constant and equal 	 ,8(1)(ko)) . Then by Taylor 

theory we expand gi(k) about Ito  , we get 

gl(k)  = gl(ko) 	1 (k -ko)2 gl(ko) 	/ 

00 

hence, the contribution of the range 	ko-S, ko+5;) to I1  is 

given by 	

(Re/21-0(-(ko/g)1/3(1)(k0)) [-i gi(ko)t+e-±wsgn(0(ti:.(k00)1 

provide gl(ko) 4o in the present case gl(ko) = - 2V3/g . 

The contributions from the two ranges ( o 	ko-'g)&(k0  +1;, 00), 

over theseranges the function g1(k) is monotonic function ,i.e. 

free from stationary points then , by integration by parts giving 

a contribution of order 0(1/0 



(11 Hence , the asymptotic expression for 77.  '(x ; t) is 

'1 "_(1)(x;t) = (Re/21( )(-(ko/g)1/3(1) ) J-igi(ko)t+illsgn(g71( tl2 (k
0  )111 q   

For the second order problem , we have 

00 

91/(2)(x,y;t)=(Re/11 6 13(2)(k) sin(gk)lt ekY e-ikx  dk 
0 

where 13(2)(k) is an even function , the corresponding expression 

for 1(2)(x;t) is 

7/.(2)(x;t) = FRe/2TT) S -(k/g)4.13(1)(k) coO[(gk)It] e-ikx dkix  

Pe/2Tf) S -k(k/g) 	(k) cosi(gk) t e-ikx  dki 
0 

00 
1 -(Re/71" ) S (k/g) /5

(2) (k) cosg gk) tj e-kx  dk 

Like ( 1 ) , we evaluate asymptotically for large x and t the 

expression for 1(2). Consider x = Vt , where V is constant ,. 

and rewrite 1(2) as 

x;t)., FRe,2,-ro s _(k/g)ip (1) 
00 

+(Re/2Tr)S -(k/e)1/5(1) 

e-it(kV -(gk)l) dk 

e-it(kV +(gk)1) dkl] x 

[Re/2-rr)S -k(k/g)413 (1)  
0 

00 

+( He/2-r( )5 -k(k/g )413 (1)  

e-it(kV -(gk) ) dk 

e-it(kV +(gk)-i) di]  

00 
e-it(kV -(&)4.) -(Re/2TOS(k/g)3(2) 	 dk 

0 
.0 

+(Re/2116-(k/01/3(2) 
e-it(kV +(gk)-1-) dk 

0 
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as t becomes large , we have 

(i) integrals which are free from stationary points , it is  

easy to show by change of variable , and integration by parts 

that they behave like 1/t . 

(ii) integrals with stationary points , by the principal of 

stationary phase we get their asymptotic expressions . 

Hence , the asymptotic expression for '2(2)(x;t) is 

(2)(x;t)Z (Re/21() F(k/gilk  
[II o r 

80.1 j-itgi  (,0  )+-4-fril(  211'  
tig1(10)1 +0(1/t) x 

(Re/211) Fko(ko/g)418(1)  e-igl(ko)t4illf 	1T 	-1-1-0(1/t) `ti 2gy. o  (k r\ 

-(Re/2Tr) 	/g)p(2)V-itgi(ko)+1ri(t 
 2

g (k)   )  + 0(1/0 .ii01  

where 	g1  (k) =[kV - (gk)] ,and ko is defined by the relation 

[d/dk ( gl(k))] = o or V =[d/dk(gk)1] 

The third order problem given the solution 

00 

je(3)(x2y;t) = (Re/-r1 	p(3)  (k) sinRgk)lt] eky-ikx 
dk  

where the function /3 (3)(k) is an even function , The correspond-

ing expression for '2,(3)(3qt) is 

00 	
O g"?..(3) (x;t) =(Re/Tr )S -(k/g)1  p(i) cos[(gt] e-ikx  dk i x 

0 
00 1  , 

-:.ReiTT ) Sk(k)7P1/41)  (k) cos[(gk)It] e-ikx 1 
0 _. 00 

+1/g(Re/m) S k(gk)475(1)(k) cos[(gk)-it]e-ikx  dk] x 

00 

Pe/r0 S (gk)1)3(2 (k) coa(gk)-`t] -ikx  dk] 

-1[Re/-11) S -(k/g)313(1)(k) cost(gk)Itj e-ikx  did x 
0 
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00 
Peirr)S k2 (gk) j8(1)  (k)coe[(gk)-1-t]e-ikx  

0 
00 

- FReArOS -(k/g)413(1) (k) cos[(kg)lt] e-ikx  dk] x 

00 
EReirOS k(gk)q3(2) (k) cos[(gk)lt] e-1kx  dk 

0 
00 

- (Re/rt)S (gk)+P(3) (k) cos[(gk)It] e-ikx  dk 

To obtain its asymptotic expression when t becomes large it is 

better to consider x/t is:fixed , i.e. x = Vt where V is constant 

Before the evaluation the asymptotic expression for Z(3) , it is 

better to rewrite "Z(3) in a suitable form as 
oo 

g.
,„(3 ) (x;t) =FRet2,70S -(vg) 	 (i) 	f-it(kV-(gk)1 (k) e 	 dk + 

0 
(Re/21()S -(k/g)ip(1)(k) j(kV+(gk)1)(-iti -1-  

6 

	

	
dk] x 

00 

	

(1) 	-(g1)-( 0)1 dk + pe/2-11)S
00  
(k) 0 	3/2  p 	(k) et 	g 

	

4.( Re/211)( (k)3/213(1) 	j-i(kV+(gk)l)t] (k)  clic.  
00 

.) 

+lig (Re/aTi) Scc'k(gk)313 (1)(k) e[-it(kV-(gk)11 
. 	 dk + 

+(Re/211OS k(gk) 8  (1)(k) ei_it(kv+(gk)+1 dk] x 
00 

[Re/2-11) S -( k/g) 	(k)  
0 	

3(1) 	j 	dk + -it(kV-(13k)li ---3-
00  

0 

00 

[Re/2
-ro S k2( gk).-v3(1) (k) et-itckv-(gOi 

. ... 

+(Re/211)c k2(gk)ii5(1)(k) el-it(kV+(gk)11 
0-' 

	dk 
00 

- (Re/2I) . 
r:(k/g)13(1)(k) j-it(kv-(gk)li dk + 

00 

(Re/21.7')S _(k/g)3 (1) (k) a 	(skyil
dk x 

+(Re/21T)S - 	
-1 f(k/g)i-  p(1) (k) j-it(kV+(gk) )1 tut x  

dk + 

0 



- 121 - 
oo 

ERe/2-rr) S k(gityi pc2) ( k ) er-it (kv-(g01 dk + 
0 

+ (Re/2-rrIS k( gk)i 13(2) (k) er- it(kV+(gk)I1 dki 

- FRe/2-rOS (gk)ip(3)(k) e 	 dki + 
00 	 1 

+IRe/2'11 ) S ( gk)ip(3) (k) er-it (kV+ (gkP-1 

as t becomes large , we have 

(i) All integrals without stationary points must behave like 1/t 

(ii) All integrals with stationary points , we must use the method 

of stationary phase to evaluate their values. 

Hence , the asymptotic expression for 'Z(3)  is 

(x; t) iRe/ari) (ko/g)4. R(1) er-itgl(co )4i-rfg (t .2: (lc  )  0 1) + o(ift)ix 

ekitgi(k0 )+21.-rOl( tLg iv(koI )4.-- + 00./t) FRe/2-rr)(k0 )3/2/8(1)  

ekitgi(k0 )4±711( tle?iv(ko)().3" +0(3./t)1 x / +i/g[Re/2rr) ko  (gko  )13(1  ) 

FRe/21/)(gko)-1/3(2) e[i tgi  ko  )+ftr3 ( 2„T 
 )4-  + 0(1/t)1 t Ig"i(ko  

j-itgi(ko)4iTi3(  2  .tini(k0A) +0(1/t) x --i[ORe/2TO .-(ko/g)4-15(1  

(Re/2T1k20(gko )-1/B (1) e[-itgi(ko )++i-rr)1(t12:k  
4
) +0 (l/td 

1( 0 

+(Re/2TOko(gko)-#2) ekitgl(k0)4111” 	27T 

ti 	) + °Oltx q (k di 

+0(1/0 R 2 	ko  413(1) ktg (k )4t112 2 7T  
tle(k A 0 

- (Re/2-rf ) ( gko  )1/5 (3  ) ekitgl(ko 	( 	2 	)4.  + 0(lit) tiei(k0A 
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where , gi(k) .=[kV - (gk)-1-], and the stationary point k = ko,be 

defined by[d/dk ( kV - (gk)-1)]-= o . 

As we known , the velocity potential and the wave profile are 

given by 

gf(x2y;t) =Efri(1)(x2y;t) + E2  0(2)(x,y;t) + E,3  sZ(3)(x,y;t) + 

and 

"Z(x;t) =Eil)(x;t) + E2  ''7 2)(x;t) + E3 -1(3)(x;t) + 

Substituting for /(1)(x;t) 	ni.. 2)(x;t) and 1/3)(x;t) from 

their asymptotic expressions , then , to the third order the 

asymptotic expression for the wave profile can written as 

[7(x;t)::; (Re/210 I- (ko/g)1P/8(1)(ko ) + E2 p(24(k0 )+ E3 ,8(3)(ko )+...) 

1 jitgi (k0 )+iirrA(ti2gui(k03)1  

+ higher order terms in ( 1/t ) . 
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Evaludticin The Values Of The Arbitrary  

Functions p(1) P(2)and18(3)  

(1) The function /8(1)(k)  : 

The function 5(1)(k).idefined by the 

relation 
oo 

-(k/g))5(1)(k) = S f(1)(x) e
ikx dx 

= y(1)(k)  

(6.1) 

where the function f(1)(x) representing the initial elevation of 

the free surface Sritis given by 

f(1)(x) = 1/( b2  + x2  ) 2  

then , 

00 

-(k/e-li5(1)(k) = S (1/(b2  + x2) ) 
eikx dk  

-00 
00 	eikx 	

) dx 
(x + ib)(x -ib) 

g(x) 

= S ( 	• 	
) dx 

-.00 	(X ••• ib) 

00 

to evaluate this integral , we try to evaluate 

S
g(z)  	dz (z - ib) 

in the z - plane round the contour L as in the figure 	where 

the function g(z)  = eikz/(z+ib) 



- 121+ - 

+ R 

z - plane 

Then , we have 

S= lim 	+S 
oo)-R 

e'N 	r- 

00 

S g(x)/(x-ib) dx = - 	g(z)/(z-ib) dz 
-00 

= ( r17 b ) 	
lki b 

i.e. , 	/5(1)(k) = - ( g/Ikl(11/b ) exp(1013) 	(6.2) 

(2)  The function /5(2)(k)  

The function /3(21sdefined by the 

relation 
oo 	 00 

(1/21I) S (g I kl )i  /3(2)(k) e-ikxdk = [1/21-OS ( rkig)1 /3(1) e -ikx dli] x 
-00 	 -0.0 

oo 
[(1/2n0S1k1 (g 

iki )1-  p(i) e-ikx dd 	(6.3) 

sustituting (6.2) in (6.3) , we obtain 

 
(1/2TO (gl k )1  /3(2)  e-ikxdk = ( g-rr2  /b2 	b -ikx 

) F1/2r1) 

c'°

e x 
-o0 

00 

[( 1/211)S Lk! exp( -ikx- I kl b) dk] 
- co 

= o 
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= -8igi-  ( x/(b2+x2 )3 ) 

hence, ( glk1).1/5(2)(k) = -i8gTf 2 	g(x)/(x-ib)3 	dx 	(6.10 

where , g(x) = xeikx/ (x+ib )3 	. 

To evaluate the integral ( 6.4 ) , we try to integrate the integral 

L S g(z)/(z-ib)2  dz 

round the contour L in the z - plane , we obtain 

ao 

g(x)/(x-ib)3  dx =(2iTIV3!) e-blkl  ( (1k1)2  /8b2  + (1k«/b3  ), 

hence, p(2)  (kpsgiven by the relation 

, (g1k1)4- pi,(2)(k) =(, 3g/3) e-blk1( (1k1)2  /b2  + (IkI)/b3 ) . 	(6.5) 

(3) The function /(3) (k)  : 

The function iPlsgiven by the relation 

00 	 .*0 

(1/2r1S (g1k1)4-f5(3) e-ikx 	=31g p21-1)S -( I k 1/04.  [5(1)  dk 	 e-ikx  dk x 
-.4 	 -00 .0 

1/27-r) S c ikt )3/2d-  p(l) e-ikx  dk 	9 
0. 

[1/2115 (giki )1 p (2)  e-ikx  dki 

+1/g [1/2rf) S (1k1)3/2g1  p.(1)  e- -ikx  dk 

--ip 2-roS _( i ki/0-1-  f5(1) e-ikx dkl x  
2 

1/211) S12(glkl )1 [3(1) e-ikx dk 

(Ikl/g)115(1) e-ikx 	x  
00 

[1/2-ro 	

)3/22) e-ikx dd.  

(6.6) 
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Substituting (6.2) and (6.5) in (6.6) , we obtain 

(1/2r0S(glk1)1(3)(k) e-ikx  dk = 

(131/3/0) [1/2v6 

	

	 dk] e-lklb -ikx dk 
[.1/2To S k e

-Iklb -ikx 

dk] 	
e 

2  114/50)F1/270 k e 	dF - Iklb-ikx 	-blkl-ikx 
-(g 

	dk 

-(grr4/30) E1/2rt)S k e- 	 dk] dk] [1/211)S IkIe-b Ikl -ikx blkl-ikx 

-(g1/4/3b3)(vari)S 
	d 

	dk e-blkl-ikx 

	

	e-bIkl-ikx 
k][ii/2TOS (1k1)3   

-(g114/3b4)[(1/2ro S e-blkl-ikx dk] p2T0 S oko2  dk] 
oe 

evaluating the different integrals in the right hand side,we get 

A(b2-5x2) 
(1/211 ) $0(g1k1)1 )8(3)(k) e-ikx  dk _ 	 

(b2 .4. x2)4 

B(b
2 
- 7x2) + C(-7b

2 
 + 9x3) 

(b2  + x2)5  

(6.7) 

where , A = - 8gTr4/3b2 	B = 8gT13  

and 	C = -16ig-T14/3b . 

hence , we have 

(gIkI)-1  g3)(k) = S F(x
)/(b2+x2)4 dx + 	G(x)/(b2+x2)5  dx (6.8) 

where , F(x) = A ( b2  - 5x2 ) 
eikx  

and 	G(x) = ( B( b
2 - 7x

2 ) 	c(  _7132x 9x3 )) eikx 

+(g1-1-3/20)E1/2T0a-blkl-ikx 

■ 690 

.0 	.0 

dk 
[I1/2r 

 S k
2 e-blkl-ikx dk]  
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We can evaluate these integrals by integrating 	
S  F1 

 (z)/(z-ib)4 dz 
L   

and 	5G
1 
 (z)/(z-ib)5  dz round the contour L in the z - plane , 

L 
 

where 	CA - 5z
2
) e

ikz 
[ 

[{B(b
2 

- 7z
2
) + C(-7b

2
z + 9z

3 
 ))e

ikz;  

G
1
(z) 

 

hence , the expression for p(3) is 

e
-bikl 

(g 1 k 1) p(3)  (k) = ( 	
A 	

)( (1k1)3 	(1k1)2/1) ) 
8 b

2 

B e
-blki 

+( )( Oki)4 + 3(1k1)
2
/b + 3(1k1)

2
/b
2 ) 

48 b 
 

bC e
-blkl 

)(2(1k1)4+ 30k03/1, +3(r0 )2/0> 

48 b3  

+3(1k1)/b3  ) 	(6.9) 

F
1
(z) 

and and 

(z + ib)5  
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In fact , the values of the arbitrary functions )
5(1)

(k) , 

)
5(2)

(k) and )5
(3)

(k)mtdepend on the function which describe the 

the initial displacement of the free surface , for example 

(1) The initial displacementis given by 

f(x) = 1/ (b2+x2 ) 

the corresponding values of /5(1)  , , (2)  and p(3)  are 

(Ikl/g)1  P(1)  (k) = - ( Tr/b) e-b  1k1  

 
(g1k1 )7  )5

(2) 
 (k) = (gTf3/3) e-b 1k1 

( ( 1k1 )
a
/b

2 
+ ( Ikl )/b

3
), 

a 
Ae

-b Ikl 

and (gild ) 	tY3) (k).( 	2 	)(( Ikl )3  + (11c1)2  /b ) 

S b 

	

Be 

48 	

Ikl 

	

+( 

48 b

2 	)( (Ik1)4+  3(Ik1 )3/b + 3(1k1 )2/b2 ) 

bCe-
b lkl 

	

+( 
	)(2(IkI )4+2( lkl .}3/b2+3( Ikl )2/b2+3( Ik1 )/b 

where , A = -8gTr4l3b2  B = 8g1-C3  and C = -16g-rf4/3b . 

(2) The initial displacement is given by 

f (x) = ab2/(b2+x2 ) 

the corresponding values of )5;(1) 2  /3(2)  and p(3)  are 

( Ikl /g)4. 	= abrfe 	lkl  

(g1k1)1 /8(2)  =1/3 a2b2gTr3  e-b lki  ( ( Ikl )2  + ( lk I )/b ) 

*b Ikl 
and (g1k1 	)5°)  -( 	

Ae 
2 	)( ( 	)3  + 	)2/1) ) 

	

+( 	)( ( Ikl )4+3( Ikl )3/b +3( Ikl )2/b2 ) 

48 b
3 

bCe-b l ki  

	

+( 	 )(2( Ikl )1++3(1k1)3/1D+3(1k1)2/b2+3(1k1)/b3  ) 
48 b3 



- 129- 

where , 	A =(-8ab-r0(1/3 a2b3gT(3 ) , B = 8gb3(ablY)3  

and , C = -16/3(ab3-rr)( a
2b2glr3) 
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Some Numerical  Example s 

The asymptotic expression for 7(x,t) - the wave profile-is 

[I 
2(x,t)=(Re/211 ) -(ko/gt(EfP)+E2  P 2)+0  P(34-.. ) (ti2g11,( c 	)

)
'1  

1 0 

exp(-itgi(ko) --iT-r) 

or'Z(x,t) =(-1/27f) F2colg)1(E15(1)
i. e2 )5(2)+0 p(3)+ 	)(t126, 0c0  )1-  

cos(xko-(gko)l)t 471] 

+ 0( 	) 

We are examining '7(x;t) from standpoint of an observer moving with 

group velocity appropriate to the wave number k = ko  ,inthis 

case the gross outline has an amplitude which.is- given by 

217 	‘i.] -(1/27iko/g)1  ( Gp)(k0)+ E2 g2)(k0)+ E3  pi(3)(k0)+...) kTrE737:7) 

i.e. it is t-  times a power series in the small parameters with 

a constant coefficients , this means that the power series must 

	

be exist (convergence 	thiswhat hadproved by Levi-Civitals(1925).. 



_ 131 _ 

Numerical Examples: 

(1) 	f(x) = 1/(b2+x2 ) 	ko  = 1 and b = 

f(x) = 	(1+4x2 ) • • 

p(1) 
(ko) 

a 	
(ko) = - 3.809 

(ko/g)1  8(2)(ko) = + 75.11 

(k0/g)  f 5(3)(ko) = -11671.819 

The corresponding expression for 1.(x;t) is 

(x ; t)= (1/27-r ) (3.8o9E -75.11 E 2+11671.819 E 3+...) (11/(x/t)t)2cos(x-g+t+-41T), 

(2) 	f(x) = 1/(b2+x2) 	$ ko  = 1 and b = I 

f(x) = 1/(1+x2 ) • • 

(ko/g)1  P(1)(ko) = - 1.155 

(k0/g)1 13(2)(ko) = + 7.5928 

(ko/g)i- )5(3)(ko) = - 17o.386 

The corresponding expression for t(x;t) is 

7(x; t)=(1/2.K) (1.155 E -7.5928 E 2+17o.386 C3+. • -)(rn7(x/t)t)lcos(x-glt+.41 ). 

(3) 
	f(x ) = 1

/(
324.x2) 	 , ko = 1 	and 	b = 2 

f(x) = 1/(4+x2) 
	

2 

(ko/C)73(1)(ko ) = - .21248 
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(ito/g) 13(2)(ko) = • 52375 

(ko/g)1  p(3)(k0 ) = -3.o5386 

The corresponding expression for 1(x;t) 

( x ; t )= (1/2TO ( .21248 C -o.52375 C2+3.05386 C3+...)(2177(x/t)t)I  

cos (x-iiti4-r) • 

(4) f(x) = ab2/(b2+x2 ) 

a = 1 	b = 1 and ko  = 1 

f(x) = 1i(1+x2 ) 

(ko/g)1  e(ko ) = - 1.155 

(ko/g)4.  /3(2)  (ko ) = 7.5928 

(ko/g)73(3)(k0 ) = - 17o.386 

The corresponding expression for 42(x;t) is 

4t(x; t)=(V2TT) (1.155E _7.5928 C2+17o .388 f 3+. • • ) (2/7 (x/t)t)i.cos(x-d.t++10 

(5) (x) = ab2/(b2+x2 ) 

a = 1 	b = 2 	and ko = 1 

• 	f(x) = 4/4+x2  

	

(ko/g)I  p(1)  (ko ) 	-0.8499 

(k0/g)+P(2)(k0 ) = 8.38 

(ko/g)1  P(3)(ko ) = -195.4/0 
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The corresponding expression for /(x;t) is 

'Z(x;t)=(1/2rr) (.8499E -8.38 C 2+195.45 e 3+ • ••)(211/(x/t)t)cos(x-g44-1-1) . 

(6) 
	 f(x)  = ab2/(04.x2 )  

a = 1 	b = 1 	and ko = 1 

f(x) = 1/(1+4x2 ) . • 

(ko/g)I )5(1)(ko) = -0.9522 

(ko/g)+ P(2)(ko ) = 4.6944 

(ko/g)+  p(3 )(k0 ) = -136.0871 

The corresponding expression for '2(x;t) is 

"Z(x; t)=(1/2Tr) (0.952E -4.694ke 2-F136.087c 3+...)(2117(x/t)t)lcos(x-d-t-p1). 
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Historical Note : 

The form of periodic waves progressing over 

deep water without change of type was determined by Stokes (1847) 

to a high degree of approximation . Later Stokes (188o) added a 

supplement describing a different procedure . Rayleigh turned to 

the problem several times ( 1876 , 1911 , 1915 , 1917 ) and 

introduced still another method of approximation . It should be 

noted that both Stokes's second method and Rayleigh's method are 

limited to two-dimensional irrototional progressive waves. 

In all such computations there is the tacit assumption that 

there exists an " exact solution" which is being approximated and 

which can be approached more and more closely by pursuing the 

selected method of approximation . Unfortunately , it is seldom 

that one is able to prove the existance of an exact solution or 

of convergence of the method of approximation , and , in fact , 

Burnside (1916) cast doubt upon the usefulness of the Stokes-

Rayleigh type of approximation of periodic progressive waves of 

permanent type. Burnside's objection was later met by Nekrasov/s 

(1921 ,1922 ,1951 ) , Levi - Civita's (1925) and Struik's (1926) 

proofs of the existence of such waves for both infinite and finite 

depth . 



PART III 
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SHEAR WAVES  

A Model of Two Layers  

of inviscid fluid  

We consider a two layer model in which a homogeneous , 

incompressible 2  inviscid fluid is flowing between infinite 

parallel plates at z=0 and z=h2  , in a system of parallel 

planes and the mean velocity is described by 

U = U(z) 	W = o 	• 	(1) 

We consider only two space dimensions x,z . The axis x taken -

toward the right coinciding with the bottom (z = o) and the 

axis of z being directed upwards. We note the mean velocity 

is every where continuous on the other hand[dU(z)/dz] the 

rate of shear_has a discontinuity at the interface of the 

two layers 

The first layer(  the lower layer ) lies between 

	

z = o 	and 	z = h1 

through this layer the mean velocityis given by 

U(z) = Uo +0(1Z 3 
	 (2) 

where Uo is the mean velocity at the bottom ( z = o ) and 

cKi  = dU(z)/dz ; always positive . 

The second layer ( the upper layer ) lies between 

	

z = h1 	and 	z = h2 , 

the mean velocity through this layorisgiven by 



44,dU/dz 

o1 

z 

fig.1 

///// //// ] 	/ / 4-//// /  
U2 

/ / /1/1/ t///////// 
z=h2 

dU/dz = 

z=h1 
dU/dz = 

Uo 
711 / l ilt/ 	//////[17/> 	//////////////// x 

Z=0 
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U2 = U1 +c42 (z - h-1) 
	

(3) 

where U1 
is the mean velocity at the inter-face ( z=h1 ) and 

2 =p/dz (U(z))] is negative(= -0(3), wherecx3  is positive. 

In the present problem , we consider the case in which U(z) is 

a linear function in z ,i.e.t 1 
(the rate of shear in the lower 

layer) is constant and positive and c'(2 ( the rate of shear in 

the upper layer) is constant and negative . 

The discontinuity in the rate of shear shown in the figurel 

. fig.2 

A MODEL OF TWO LAYERS 
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FORMULATION :  

Neglecting any external force as well as the viscosity , the 

equations of motion and continuity may be written as 

pit + 71 iix + 71 azil= - Px 2  

S)  [ + 11 7ix + 71 	= - Pz 9  

13 X  + 7
Z

= 0 . 

( 3 ) 

where S' is the density . 

The plane Couette flow is described by 

U = U(z) 	W = 0 	& P = constant . 

At the time t = 0 , a disturbance is created at the bottom 

or at the upper most level , let us write 

ii(x 2 z;t) = U(z) + u(x,z;t) 

W(x 2 z;t) = 	w(x,z;t) , 	 ( 1+ ) 

ii(x 2z;t) = P 	+ p(x,z;t) 

where u w & p are the disturbance functions . 

On substituting (4) in (3) and linearizing , we obtain the 

following equations for the disturbance : 

- px  = ?[..ut  + U(z) ux  + w uz(z)] 

- pz = f[tt + U(z) wx] 

	
( 5 ) 

u x  + wz  = 0 . 
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The continuity equation implies the existence of a stream 

function --1-'="1-"(x,z;t) such that 

'z
(X )Z;t) = u(x,z;t) , 

and 
	

4' 	= w(x,z ; t) . 

Eliminating p(x,z;t) between the dynamical equations , we get 

(a/at + u(z) a/a x ) ( uz  - w. ) 	o 

In terms of stream function this equation becomes 

(a/at +u(z)a /a X ) 	2+ ( X Z ; t) = 0 	1 4 ) 

where V2 is the laplacian operator, i.e. 

v2= a2  /ax2  4- a2 / a z2 

The vertical displacement of a fluid particle 	(x,z;t) is 

defined by the relation 

	

( a/a t 	U(z) aia x );(x,z; t) = w(x,z ; t) y 

i.e. 	ala t 	U(Z) a/ a X ).§(XyZ;t) = Hkx(XyZ;t) 	(15) 

The Boundary Conditions :  

(1) At the bottom which is defined by the relation 

z =1(x,t) = f(x) g(t) , 

hence , the condition is 

	

( a/ a t 	U(z) a/a x ) f(x)g(t) = w(x,z ; t) 	at z=0, 

-where 
	U(z)I

z=0 
= u 	. 
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in terms of stream function , the condition can be written as 

/111(x,z;t) = ^P0(x,z;t) 	at z = 0 , 

(16) 
where , -4,o is given • 

(2) At the top ( z = h2  ) , there is no vertical velocity 

i.e. 	w(x,z;t) = 0 	at z = h2 ' 

this condition can be written in terms of stream function as 

	

---P2(x,z;t) = 0 , 	at z = h2 . 
	

(17) 

(3) At the interface ( z = h1 	, ) 	we have 

(a) The continuity of the stream function , i.e. 

	

..,1)z;t)Izhl -0 	= +2(x'z't)  lz-o.h1
+0 •(1S) 

(b) The continuity of the pressure , from the dynamical 

equation in the x - direction , we get 

h1+0 

(a/a t 	U(z) a/a x ) u(x,z;t) + w(x,z;t) dU/dz 	= 0 

hl-0 

in terms of stream function , the condition can be.  written as 

( a / a t + 	a /a x (e.V h +0 	lh -0 ) _ -«+x (19)  1 	1 
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where , the prime denotes the differentiation with respect to z, 

U1 = U(h1
) , the mean velocity at the interface . 

0( = the jump in the rate of shear between the two 

.layers and always positive 

^1,1 	the stream function in the lower layer. 

1,2  = the stream function in the upper layer. 

The Solution:  

We attack the mathematical problem posed by (14 - 19) by 

invoking . Fourier transformation with respect to x and Laplace 

transformation with respect to t , the time . Let 

,p(k 2 z;w) --47-1,(x2z;t) 

dt eiwt S dx e-ikx lf,(x2z;t) , 
0 	..

where 27.  implies Fourier transformation 

co 

 with respect to x andL 

implies Laplace transformation with respect to t . Then we define 

oc, 

rf 	 -ikx dx  = (x)]= Sf(x) e 	F(k) 
LL 	-00 

integrating n times by parts , we obtain 

(dnf(x)/dxn)= (ik)n  F(k) 

Similarity , ondnf  (t)/dtn )= (-iw)nF(w) . 

Transforming (14) , we obtain 

—ic w — kuc zmiTzz  — k24.) = 0 	 (2o) 

if ( w - kU(z)) 36 ol  we get 
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ZZ 
- k2+ = 0 , 	 (21) 

(21) has a solution in first layer (the lower layer)isgiven by 

1 " (k z.w) = ao  sinh(kz) + bo sinh(k(z-h1)) 	(22.a) 

in the second layer , the solution is 

+2(k,z;w) = ao  sinh(kz) + b1  sinh(k(z-h1)) 	(22.b) 

where ao  , bo  and b1  are arbitrary functions 

The condition at the bottom is 

( a/a t 	uo  a/a x ) .7(x, 	= w(x,z;t) 

= ^kx(x;z;t) . 

Applying Fourier - Laplace transform on this condition , the equiv- 

alent relation is 

- ( w - kUo ) f(k)g(w) = kr-1-10  

where "P ="1.."(x20;t), 	the stream function at the bottom . 

;TIo " (k 0'w) - [( kU - w )/k] f(k)g(w) • (23) • • 

From (16) and (2'3) , we get 

411(k l();W)  = ;1'101(k20;W) , 
	(24 ) 

i.e. 	bo sinh(k(-h1)) = 	kUo - w )/kliF(k)E(w) .(25) 



b1  - ( 	 1 
o 	0 

) a + b 
kU1  - w 

cxsinh kh 
hence , (29) 

cpcsinh kh1 sinh k(h2-h1  
ao 	

4. 
kU1 

-  
sinh kh2 
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rr kU - w f(k) 
bo 	° 	) E(w) ( 	 

	

k 	sinh(-kh1) 

	

At the top ( z= h2  ) 	we have 	^Pa(kl-halw) = o 	(27) 

From (22.b) and (27) , we get the relation 

ao sinh kh2 + b1 sinh k(h2-h1) = o 	
(28) 

Transforming (19) , we get 

( kU1  - w )(b1-bo) = ( -cxsinh kh1) ao 

) (26) 

Substituting (29) into (28) , we obtain 

( 

- sinh k(h2-h1) )(kli1-w)bo sinh kh2 

By putting  

	

sinh kh sinh k(h2 	-h1  /3(k) = (kul  - 	 ) 	(30 
sinh kh2 

we get , 

a
° 
 -( 

(
1 	
- w)

) ( 	sinh k(h2-h1) 	sinh kh2)b0  (31) 
 (13(k)- w) 

and 	b1  = [(kUl  -w)/(/3 (k)-101 bo 	(32) 

Substituting for b0  from (26) , act  and b1  can be rewritten as 
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a
o 

and 

b 	
- 1 

(kU -w)(kU -w) 
1 	

° 
- sinh(k(h

2
-h
1
) 

(k) • (31)'  

(32)'  

k()6(k)-w) 

(kUl-w)(kU -w) 
° 

) 	g(w) 	( 	)f 
sinh(-kh

1 
 )sinh(kh

2
) 

) R(w) 	 ( 7 (k)/sinh(-kh) 	) i ( 
k(/3(k)-w) 

Substituting the values of ao 	1)0  and bl  in (22.a) and (22.b) 

we obtain 

^Pi(k,z;w) - 

	

- sinh(k(h
2
-h
1
)) 	(kU -w)(kU -w) 

)?(k) sinh(kz) ( 	
1 	o 	)1i(w)  

	

sinh(-kh )sinh(kh2) 	Iry (k)-w) 

7(k) 	(kU -w) 
+( 	) sinh(k(z-h

1)) ( 	° 	) i(w) 
sinh(-kh

1) 
(22.a)1  

  

- sinh(k(h
2 	
-h1).4 	

(kUl 	
° 

-w)(kU-w) 
 

4/2(k,z;VO ( 	)?(k) sinh(kz) ( 	- 	) g(w) 
sinh(-kh

1
)sinh(kh2) 	K(i6(k)-w) 

r(k) 	(kul-w)(ku -w) 
	) sinh(k(z-h )) ( 	° 	) E(w) 	(22.b)' 
sinh(-kh1) 	

1 	
k(/5(k)-w) 

Transforming (15) , we obtain 

L(k,z;w) = (k/(kU(z)-w) )4'(k,z;w) 
	

(33) 

Substituting from (22.a)' & (22.b)' in (33) , we get 

(kU -o(ku-w) 

	

(k,z;t) = G(k) sinh(kz) ( 	) R(w) 1 	
o  

(p(k)-ti:)(kU(z)-w) 

(kU -w) 
+ F(k) sinh(k(z-h1) ( 	° 	) i(w) 

(kU(z)-w) 
(34.a) 
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F
(k) sinh(kz) 	F(k) sinh(k(z-h1)) x 

	

1 	0  ku-w)(ku -w) ) 	
C

(w--]1 u(z)-w)(p(k)-w) 

2 "(k z•w)= 

(34.b ) 

where, -sinh(k(h2-h,) 
G(k) - ( 	) f(k) 

sinh(-kh1)sinh(kh2) 

and (35) 

F(k) = 7(k)/sinh(-kh1) 

1 = the vertical displacement of a fluid particle in the first 

layer ( i.e. the lowar layer ) 

2 
= the vertical displacement of a fluid particle in the second 

layer ( i.e. the upper layer ) . 
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Inverting , we get 

1 

GO  

=(1/4Tr2) S dk 	dw ei(kx-wt)  1(k)g(w) 
—00 

sinh(k(z-h l) (kU o 
sinh(-kh1) (kU -w) 

-sinh(k(h2-h1)) sinh(kz) (kU1-w)(kUo-w)1  

and 

ao 	 -sinh(k(h2-111)) sinh(kz) 
4.;i2  =(1/41-T2) S dk 	dw ei(kx-wt)  F(k)E(w) 	 

sinh(-kh1  ) sinh(kh2) 

sinh(k(z-h1)) (kUl-w)(kUo-w) 

sink(-khi) 	(kU-w) (13-w) 

where the path L lies in the complex w - plane . 

The original equation is 

( a/a t + U(z)  8/a x ) 02+ = o , 
or 	(a/at u(z) a/a x ) 72+x  = 0 . 

The vertical displacement f_› is given by 

( a/at 	u(z) a/a x 	= 

(a/at 	u(z)a/ax) 	( 8/8 t u(z) a/a x) =0 . 

It is clear that the expression- for 	& 2 	satisfy 	the above 

equation and 
= f(x)g(t) 	at z = 0 , 

2 = 0 	 at z = h2 2 

sinh(-kh1  ) sinh(kh2) 	(13-0(kU-w) 

also 	= 
	 at z = h1 

 ( the inter-face ) 
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The function g(t) : 

  

Let the function g(t) be defined by 

 

 

g(t) = 0 , 

= t2 e-tA 

t<( 0 2  

t > . 

where A is a positive constant • 

This definition means , at the time t = 0 , a disturbance creating 

smoothly at the bottom , then decaying gradually with time . The 

function g(t) behaves as in the figure 

oo 
e-tX eiwt .*. Xg(t) = S t2  dt = g(w) 2  

0 

i.e. 	E(w) 	-2i/(w+Ot )3 
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The Disturbance Functions  

(1) The vertical displacement in each layer :  

Substituting the value of g(w) in the expression for 1 , we 

obtain 

oo 
sinh(k(z-h1)) 

=(1/471-2) 	dk S dw ei(kx-wt)  Y(k)  	
(-k0o+w) 

1 	 sinh(-kh ) 	(w-kU(z))(w+i2 )3  —co 	 1 

-sinh(k(h2-h1)) sinh(kz) (kUo-w)(kU1  -w) 

sinh(-khi) sinh(kh2) 	(w-P(k))(w-kU(z))(w+iX)3  

We take the path L ( as in the figure ) , in the complex w-plane, 

above and parallel to the real axis to avoid any singularity on the 

real axis and on the imaginary axis in the negative half. 

Imaginary Axis 
A 

L 

w.P(k) 
	• 
Real Axis w=kU(z) 

V1=-i 

w - plane 



[-sinh(k(h2-111))sinh(kz)[kU0-13)(kUi-.15) 
G1(k'z)=(-1/r07(k) 	 1 3 	' sinh(-kh1)sinh(kh2) 	(13(k)+ii%) 
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Manipulating the integrals , we find 

00 	 oo 
_i(kx-p(k)t) 	ei(kx-kU(z)t) 

i=S G1(k2z) 	13 	 dk - S G2(k,z) 	 dk 

00 

((k) - kU(z)) (P(k) - kU(z)) 

i(kx-kU(z)t) dk + I + S G3  e oo 

where , 

r-sinh(k(h2-h1))sinh(kz)[kUo-kU(z))(kU1-kU(z)) G2(k,z)=(-1/70T(k) 

	

sinh(-kh1)sinh(kh2) 	(kU(z)+i)3  

sinh(k(z-h,))] (kU(z)-kU0) 
G3(k 'z)=(-1/-1-01"(k)[ 

sinh(-khi) 	(kU(z)+iX)31 2  

00 
tA rsinh(k(h2 	-h1))sinh(kz)] and I1 =(e-  /2T() (-2)dk 7(k) eikx 	 X 

JJJ 	 sinh(-kh1  )sinh(kh2) 00 

L

(ku +iX)(kl+iA)  
[

-(ku FiX)
[t2/2) 

p 	

l 	
it 	

1:)-ix)(kU(z)+DO 	(ViX)(kU+ iX) 

-(kU +iA) 	(kU +00(kU1  +0) 	(kU +0)(kU1  +iN) 

(13+j-A)(kU+iA) 	(15+0)2(kU+0) 	(p+iA)(kU+0)2  

1 	-(kU +iA) 1 	-(kU1
+D) 

(13+0)(kU+0) 	(f+iX)(kU+iA)2 	(Po+iN)2(kU+0) 

-(kU +0) 	-(kU +0) 	(kU +iX)(kU +0) 1  
(15+iX)(kU+iX) 2 	(p

+iA)  
,-2 

(k1J+iA) 05+00(kU÷iN)3  

(kUo+iX)(kU1+0) 	(kUo+00 (kU1+0),1 

(13+0)3(kU+0) 	(13+0)2(kU+0)2 
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00 sinh(k(z-hi )) 
tX/21-0 

( 

(kUo+iX) 

2)  

-1 

+(e 	S 	(-2)dk 7(k) 	eikx ( 	
) sn-ih(kh 

	

--oo 	 1) 

	

[ 	-1  +(-it) 	
4. (kUo+iX) 

) (kU +IX)  

(kU+iX) 	(kU+iX)2 	(kU+0)" 

Also , the expression for 	2  is 

0.3 	ei(kx- (k)t) 	
op 

i(kx-kU(z)t) 
G (k z) e 	 dk + I G4(k2z) 	 dk 	S (15(k)-kU(z)) 	5 ' (p(k)-ku(z)) 

—cn 
where, 

-sinh(k(h2-111))sinh(kz) sinhk(z-hi) (kUl-p)(kUoR;15) 
G4(k2z)=(-1/77)7(k) 

	

	 + 	 
sinh(-kysinh(kh2) sinh(-khi) (13(k)+JA)3  

-sinhk(h2-ysinh(kz) sinhk(z-hi) (kUl-kU)(kUo-kU) 

and 

-tX5°° 	

-sinhk(h-h ) sinh(kz) 
I2 2  =(2--- 

TT
) 	(-2)dk 7(k) eikx 	1  

—oo 	 sink(-kh ) sinh(kh2) 

sinh(k(z-hl 

sinh(-kh ) 1 

[11:2 (kuo+iX)(kul+iNT (- it)  [ -(kUl+iX) 	-(kU  +i)) 
(-T-) 

(p+iN)(kli+iX) 	(13+iX)(kU+1A) 	(p+iX)(kU+iA) 

(kUe+iX)(kUl +iX) 	(kU04-1A)(kU1+IN)]  +  [ 	1 
-3 

(p+iA)c(kU+JA) 	(13+iX)(kU+iX)` 	(15+iA)(kU+1-N) 

r_ 
G5(k,z)=( -1/7)7(k) sinh(-kh) sTat7077+  sinh(-kh ) 	3 2 	1 	(kU(z)+iN) 1  

-(kU1+i?) -(kU +A) 1 	 

(ViA)2(kU+iX) 	(P-FiX)(kU+iX)2  

-(kU +1N) 	-(kU +iN) 

(15+iX)2(kU+1)0 ([31-iN)(kU4.1X)2  

(kU -fiX)(kU1  +iN) 	(kU +0)(kU +IA) 	(kU +iA)(kU +i))1 

(N+ix)3(ku+ix) 	(yfix)(ku+0)3 	(pi-iA)2(ku+iA)2 
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(2) The velocity components  : 

We can obtain the vertical component of the disturbance velocity 

from the relation 

( a/at + U(z) a/a x 	w 

then , the horizontal component is given by using the continuity 

equation 

ux + wz 	0 . 

In the first layer , the expression for Iv].  is 

00 

w1(x,z;t) = S Fl(k,z) exp(ikx-itt3(k)) dk + 1
3 2 

-00 
where, 

F (k z) =(11) Y(k) ( 

	

-sinh(k(h2 	-h1
))sinh(kz) 

)( 	
(kU,-13)(kUo-p) 

and 
00 

-sinh(k(h2-h1))sinh(kz) 

3
=(e

-t)
/2TO S (-2i) dk 7(k) e

ikx 
( 	 ) X 

00 	 sinh(-kh1)sinh(kh2) 

2 (MI+00(kU +i)) 
)( 	

1 	) + (-it) [-(kU
o+i)) 	-(kul-pi)) 

(p+i)) 	(13+00 	(154.J)) 

(kU +1_)0(kU1  +i)) 	(kU +i))(kU1 
 +i))  I [ 1 	-(kU1  +i)) + 

q5i-ix)2 	(p+i)) ocui-ix) 	(P +i)) 	+ix)2  

-(kUl+i)) 	-(kU_+00 	-(kUo+i)) 	(kU +i))(kU1  +i)) 
	n 

(15+00(kU+0 )
+ 
 (154-i))c 	(13+iX)(kU+i)) 	431+003  

(kU +00(klyi)) 	(kUo+i))(kUl+i)) 
	n 

	

([3.+iX)(kU+i))2 	(13+i))2(kU+A) 

00 
-sinh(k(h2-h1

)) sinh(kz) 
+(e

-t)
/2TO 	(-2) dk Y(k) e

ikx 
( 

-oo 	 sinh(-kh
1
) sinh(kh2) 

) 2 
1 sinh(-kh )sinh(kh2) 	(15+i )

3 ) 
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(ku +iA )(ku , 

	 ° 
+iA) 	 -(kU +iA) 	-(ku +iA )  

[(-0( 	° 	)+ (-i) 	
.  

(13+iX)(kU+iX) 	(15+iX)(kTfiX) 	(P+iX)(kU+iA) 

(kuo+iX) ( kul+iX) 	(kUo+iX)(kU1+iA) 

	

(13+iX)2(kU+iA) 	(D+iA)(k114-iX)2  

oo sinh(k(z-h 

sinh(khi) 1

)) [ 
+(e-t  /2 ) S (-2) dk f(k) (i) eikx  ( 	) (--11-t2  ) (kUo+iX) 

-.00 

(kU_I-iA) +(it)(..1 4.(kUo+iA) ) + ( 	-1 
	 + 	' 

	

(kU+tX) 	(kii+JA) 	(kU+i)02  ) 

(

::++:AX))  

oo sinh(k(z-h )) 1  ) 	t) ( 	° 	) +(e-t  /2 ) 	(-2) dk I(k) 	( 
sinh(kh ) -00 	 1 

	

-1 	(kUo+iX) +(-i)( 	 

	

(kU+iA) 	(kU+iX) 

and the expression for Lys given by 

op 
u1(x,z;t) = 1 F2(k,z) exp(ikx 	-itP(k)) dk 	I

4 
-00 

where , 
-sinh(k(h2-h1))cosh(kz) (ku o-g )ckul-15) 

F2(k,z) =(1/TIO I(k) ( 	)(  

and 
-sinh(k(h2-h1))cosh(kz) 

4
=(e-t /2 ) 	(-2) dk f(k) eikx  ( 	) X  

sinh(-kh1)sinh(kh2) 

( (kuo+iN)(kul+iX) )4.  

r (pi-iA) 

	-(kU0+0) 	-(kU 4.ix) 
	 4. 	1  

	

(viA) 	(13+i?) 

(kU0+iX)(kU  4)]  [ I 	t  -(kU1+iN) + 	-(kU1+iA) 

04-i21)(kU+i)) 	(13+iN) 	(viA)
2 	(1N+1A)(kU+1A) 

sinh(-kh1)sinh(kh ) 2 	(p+i ) 
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-(ku +iX) 	-(kU +iN) 	(kU -1-iX)(kU1 -1-  (kU i,)1)(kU1  +iN) 

 +iX)(kU+IA)2  
jnb  	

43  

(ku 4-0)(kU1  +JA) 

( 4-iX)2(kmfiA) 

ao -sinh(k(h2-h1))cosh(kz) 
+(e-tA  /2TO S (2i) dk F(k) e

ikx  ( 	) X 
-00 	sinh(-kh1)sinh(kh2) 

	

(kU +iX)(kU1 	1 	'  +iA) 	-(kU +iX) 	-(kU+IA) 
Et)( 	° 	) + (-i) 	+ 	o  

( +1A)(kU+iA) 	[I( +1A)(kU+JA) 	( +0)(kUi-iX) 

(kUo 	-1-iX)(kU1-1-iX) 	(kUo+iX)(kU1+JA)] + 	+ 
( +iX)2(kU+iX) 	( +i-A)(kU+iA)2  

ao 	sinh(k(z-h )) 
+(e-tX /211) S (-2) dk F(k) eikx ( 1  ) 	(-1t2) (kUo+IA) 

-00 sinh(kh1  ) 

	

(kU 4.1A) 	-1 	(kUo+iX) 4.(it)( -1 + 	° 	) + ( 	 + 
(kU+1A) 	(kU+iN) 	(k11-4-iX)2 

sinh(k(z-h,)) 
+(e-tA  /270 S (2i) dk 7(k) eikx ( 	) 	(-t) ( 	

(kU°+iX) 
) 

sinh(kh1) 	(kU+iX) 

-1 	(kU+iX) 
+(-i)( 	 

(kU+i)1 ) 	(kU+iX) 2 
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Inthesecondlayer/theexpressionforvi2
is given by 

rco 
wa(xlz;t) = 	F3(k,z) exp(ikx - itp(k)) dk +

5 
00 

where 

F3(k,z) = (i/TT) f(k) 

and 

-sinhk(h2-h1
)sinhkz 

sinh(-kh
1 
 )sinhkh

2 

sinhk(z-h
1
) (kU

o
-p)(kU1-13) 

)( 
(pi. )3 	) sinh(-kh

1
) 

-03 	sinh(-kh
1
)sinh(kh2) 	sinh(-kh

1
) 

I-- 	(kU +i))(kU +0)  
(-4t2)C ° 

( +D) 

1 	) + (-it) [ -(kuo
+i)0 	-(ku +0 ) 

+ 	1  

	

(p+iN) 	(p+ix) 

4_ 
ckuo+im(ku1

4-ix) 	(kU
o
+iN)(kU

1 
 +DO] 	[ I 

+  	
-(kU1 

+i)) 

(vix)2 	gyfix)(ku+i)) 	(p..iX) 	(134-i)02  

-(ku 4-JA) 
1 	

-(ku
o-Fix) 	-(kuo+i)) 	(ku

o
-Fi))(ku +i)) 1  4. 

	+ 	 , + 
	 4. 

(13-1-ix)(ku-Fi)) 	(p÷rx)- 	(p-Fix)(ku-Fih 	q54-003  

(kUo
+00(kU1+A) 	

(kU
o
+iN)(kU

1+iN)i 

	

(p+iX)(ku+iA)c- 	(p+iX)2(kU+) 

/42 	-sinhk(h2  -h1  )sin(kz) 	sinhk(z-h1  ) -  
+(e

-tX 
/2TO 5 (-2)dk f(k) e

ikx 
 ( 

	

- 	 sinh(-kh
1 
 )sinhkh2 	

sinh(-kh
1
) 00  

(kU . +00(kU
1
+0) 	[-. -(klyiN) 	-(ku +i))  

Et) ( 	° 	) + (-i) 	 + 	0  

( +0%) (ku+iN) 	(p+JA)(ku+0) 	(p+00(ku+00 

(ku +iA)(ku1+9 ) 	(kU ÷i))(kIT1+iN)] + 
J 

o  

(15-1-iX)2(kU+±h) 	(p+iN)(kU+iX)2 

Oa 

I =(e
-t) 	

-sinhk(h2-h1) sinhkz 	sinhk(z-h
1
) 

5 /2T°  S 
(-2i)dk T(k) e31-x  ( 	 
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and the expression for u  is given by 
2. 

00 

u2(x,z;t) = S F4(k2z) exp(ikx - itP(k)) dk + 16 2  
—oo 

where 

Fk(k,z) = (i/TO 7(k) 
-sinhk(h2-h1)coshkz 

( 
sinh(-kh1  )sinhkh2  

coshk(z-h1) (kU0-13)(kU1-13) 
	) ( 	 
sinh(-kh1) 	(13+iX)3  

and 

-sinhk(h2-hi)coshkz 
16  -(e_°V2TO S (-2) dk Y(k) eikx( 	 

sinh(-kh )sinhkh2 
— 	

1 

(.42/2 )  ( 	 (kUo+ j-X) (kUi+iX) 
[  

coshk(z-h1) 

sinh(-kh1)
)X 

) ( it) rkuo+ix) 	
-(kul+00 

(vix) 	L (15-1-ix) 	(r+i?) 

(kUo+0 )(kU
1 

+iN) 	(kUo+1A)(kU1+Al [ 1 	-(ku1+ix)  + 
(13-1-jA)2 	(viN)(ku-Fix) 	(IN4-ix) 	(13+0)2  

-(ku1 	+IA) 	-(kUo+D) 	-(kUo+IX) 	(kUo+iN)(kU1+iA) + 	+ 	
2 + 
	 + 

(a.+01)(kli+i) 	(13+iX)- 	(f3-FiA)(kU+iN) 	(p+003  

4. (kUo+iX)(01+iA)
+ 
 (kUo+iX)(klyiX) 

-, 
(fili-iX) (kU+iN)c- 	(130-iN )2  (kU÷i X) 	j 

oo 

+(e 	/2TO 	(2i) dk Y(k) eikx ( 
-sinhk(h2-h1)coshkz 	coshk(z-h1)) x 

-00 	sinh(-kh1)sinhkh2 	sinh(-kh1) 

(ku
°
+iN)(ku1+ix) 	[ -(klyiX) 	-(kU +D) 0  

	

(131-iN)(k114-iN) 	(13-FiX)(kU4dA) 	(13+iX)(kU-FiX) 

(kU +iX)(kU 1 +00 

(131-10)2  (kU+iA) 

(kUo+iA)(kU1+DO 

(13÷D)cku-Fix)2 

  



G1(k,z) eikx  

 

G1 	' (k* z) e
ik*x 

   

(P(k)-kU(z)) 	(k-k*) d/dk(15(k)-kU(z))k=k*  

and 
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Evaluation the different integrals when t becomes large :  

The integral expression for';', ( the vertical displacement of 

a fluid particle in the first layer ) is 

oo ikx -itP(k) 	
oo 

eikx -ikU(z)t 
x,z;t) =5 G1 ' (k z) (p(k)- 

 e  
kU(z)) dk 	SG2'  (k.z) (13(k)

e
- kU(z)) dk 

-00 	 -0, 
00 

÷ 	
G3  (k 2 

 z) eikx  
 e

-ikU(z)t dk + I1 2 
—0o 

The function (p(k)-kU(z)) has a simple zero at k = k* , where G1(k,z) 

, G2(k,z) and G3(k,z) are analytic and not zero at k = k* 	there- 

fore , we can write 

+ 01(kz) eikx  

	

G2(k2z) eikx 	G2(k*z) e
ik*x 

ilex 432(k,z) e _  

(k-k*) didk(Pm(k)-kU(z)) -- k=k* 

where 41(kz) and CI?2(kz) are analytic at k = k* 

Since G1(k*z) = G2(k*z) 	the expression for I can be written as 

G (k*2 z) eik*x 	(we-iti3(k) 	oo -itkU(z) 
1(x,z;t) = 	1  

(k-k*) 	 dk - 	e 	 (k-k*) dk 
d/dk(P(k)-kU(z))k=k* 	-co 	-00 

cd? (k z 

	

1 	
) eikx-itP(k) 	

oo 

dk 	1)(kz) e
ikx-ikU(z)t 
 dk 

-00 	 -oo 
 

Co 

+ S G (k z) e ikx-ikU(z)t dk + I 
3 1 

q3 (k)-ku ( z)) 

00 
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00 -itkU(z) 
We consider first the integral 	

e 

(k-k*) 	 dk , has a simple 
-c 

pole at k = k* (real) . 

Put k = k* + K , where K = Kr  i Ki  = 	exp(ie) 2  

and 	= 1 K 1<1 . 

Then , we have ; 

(1)WhenUW>0 2 thenforconvergence[4.<0 , i.e. the de-

formed path is 

k* 
1/4-1 

L 

	

O. • 	

= 

	

i.e. 	
= 

•=i  -iTT exp(-itk*U(z)) 

(2) When U(z) < 0 , then for convergence Ki  > 0 , i.e. the deformed 

path becomes 
L 

k* 

= - S 
(4N 

ilT exp(-itk*U(z)) 

exn(-itkU(z)) dk = -in sgn(U(z)) exp(-itk*U(z)) 
(k - k*) 
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exn(-itP(k))  
Now the second integral SrdkN - k*) 	

where the func- 

.tion 13(k) is analytic and well behaved in a domain containing the 

real axis . The simple pole k* is real and the principal value of the 

integral is implied . The function p(k) has a saddle point at k = kowhich 

is defined by the relation d/dk([3.(k)) = 0 . Then we deform the path in 

the manner of steepest descent . 

Let P(k) = P +iq , then 

exp(-itP(k)) = exp(itp) exp(tq) , hence the deformed path through ,,  

the saddle pointisdefined by : 

p = po = constant , and 

< 0 
	where 

P(ko) = Po + iq0  . 

Since p"(ko) 	
0 , then r3(k) near the saddle point can be exp- 

anded in the form 

15(k) = p(ko) 	+(k-k.) "(k0) 2 

but if we write for values of k on the path , with r real and small 

... k - k = reiec  

and 	iy(ko) = ipftmofl eie •• 

Hence , we have 

P 	Po 	r2113"(k0)1 
 e i(2a+e) 

then , 

and 

 

Ir2Ipul cos(2W-0) = o 

1-r21 r1 sin(200e) is negative 2 

 

• • cc = 	rr -i-e . 
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Here 	rko) is real and positive i.e. 0 = o , 

0( = 	TT • 

Now , if k*,>ko  i.e. pl(k*) 	0 , hence , for convergence the 

semicircle round the simple pole lies in the negative half , and the 

deformed path becomes as in the figure, 

. . 	= -iTTexp(-itr)(k*)) 	S 	0(1/0 
L2  

since the contributions from L
1 
 and L3 are 0(1/0 . 

If k*< k
o 	

i.e. pl(k*) < 0 , then , for the convergence)  the 

semicircle round the simple pole lies in the positive half , and 

the deformed path becomes as in the figure, 

• 
• • 



- 160 - 

  

k  

  

 

k* 

 

. 	= in- exp(-itr5(k*)) + 	
2 
 + 0(1/t) 

since the contributions from L1 and L3 are 0(1/0 

Hence , in general case we have 

exp(-itO(k))  dk = -iTTsgn(fil(k*)) exp(-iti3(k*)) .) 	(k - k*) 

+ S exp(-itkk))  
(k - k*) 	dk + 0(1/0 . 

L2  

xTok-iti“  We therefore consider the integral 	S e (k  = k*)k))  dk . By expe- 
l-2 

nding Pl(k) into a power series in (k-k0 ) and take only the first two 

terms : 

(k) = (k0) + p"(ko ) (k-k0 )2  . 

Introducing a new integration variable 

0- 	Ci-tlEs" (ko ).) (k-k) einhp 
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and assuming 	crt = 	"(ko ))1  (k*-ko ) eiirr  

CO 

Then , we obtain for the integral 

approximate expression. 

dk  ptS-it15(k)/ e,Ii (k  _k*) 	 the 

2 exp(-itP(k0))5 exp(-cr)  dcr 
(.0r-e) 

exp(-it (k0 )) (211) W(0.*) 

where v/(01 ) is tabulated for complex values of the argument p-* . 

If k* is not near ko then (1-43"(ko))7(k*-ko ) is large , in this 

case W(110-11 ) can be replaced by the asymptotic expression which is the 

same result as is obtained by the standard method of steepest descent. 

If the difference (k*-ko ) is sufficiently small that 

(Itir(ko ))/(k*-ko ) is small , then the integral can be expressed 

in terms of the function Vi( e) 

Hence,the solution in the first layer is 

Gl(k*'z) eik*x-itt3(k*) 

1 " (x z•t) = -irtgn(pl(k0)) - sgn(U(z) )1 j d/dk(13(k)-kU(z))k=k*  

G1  (k* z) eik*x-itgko) 
+ 21-TVI(e) 	2  d/dk(3(k)-kU(z))k=k, 

00 

(k z) e ikx-it$(k) dk 	 eikx-itkU(z) 
+ 1 ' 	cP2(k,z) 	 dk 
-Co 	 -oo 

ikx-itkU(z) + 	G3(k,z) e 	 dk 
JJJ

+ 0( e-t 	) . 



- 162- 

The integral expression for ;2(x2z;t) ( the vertical displace-

ment of a fluid partical in the second layer ) can be written as 

G (ks, 
/ 
z) e

ik*x 

	

e
-it (k) 	

00 
4 	

z 	
dk 2(x'z;t) 	d/dk(P(k)-kU( )) --k=k* 	(k-k*) 	

e-itkU(z) 

(k-k*) 

00 00 

S ikXit13(k) dk - eikx-itkU(z) 3 	-N e 	 41) (klz)  -00 	 4 	 dk 
-00 

4- 0( e-tA ) , 

where , 43(k2z) and 	4(k,z) are analytic functions , also 

G (k* 'z) = G5(k*z) . 

Then , the solution in the second layer is 

G,(k* z) eik*x-itP(k*) 

f.. 2(x2z;t) = 	gn(13(ko n-sgn(U(z)) 	9. 	 d/dk(p(k)-kqz))k=k, 

+ 211 vice) 
G (k*z) eik*x-itr)(k*) 
4  
d/dk (p (k)-kU( s z))k.k* 

00 	 00 

+5 P3(k,z) eikx-itP(k) dk - 	1). (k,z) eikx-itkU(z) dk 
-00 	 _co  4 

+ 0( e-01  ) . 

dki 
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Now , the disturbance functions , in the first layer are 

wi(x,z;t) = S F
1
(k
'
z) e 	-k)   dk + 0( e-tX  ) 

	
9 

u1 " 
(x z.t) = S F

2
(k,z) eikx-itP(k)  dk + 0( e

-t? ) 

z) e
ik

*  G (k* 	
x-it (k*) - 

(x,z;t) = -irrEgn(131(k*))-sgn(U(z))1 	1  d/dk([5(k)-kU(z))k=k, 

Gl(k*,z) e
ik*x-it0(k*) 

+ 2TT (Er* ) 

(00 	 00 
) 031(k,z) eikx-itP(k) dk 	cip

2(k2z) 
eikx-itkU(z) 

 dk 
...0. 	 --0. 

4- 	w 

0. 
S a (k z) eikx-itkU(z) dk + 0( e-t?‘  ) . 3  

and in the second layer are 

00 

w2 " (x z•t) = 
	

(k,z) e
ikx-itP(k) dk  ▪ 0( e-tA ) 

00 

u2(x,z;t) = 	F
4
(k,z) 

eikx-itP(k) dk 

 • 

0( e-tX ) 	
2 

G (k* z) e
ik*x-itp(k*) 

4  
2(x2z;t) = -iTT Egn(P(k*)-sgn(U(z))] d/dk(p(k)-kU(

z))k=k* 

G(k*,z) eik*x-it13(k" 
+ 2 TT W(co- ) 	edkg3(k)-kU(z))k.k*  

00 	 00 

eikx-itp(k) 
▪ 4)3(k)z)  

00 	
dk - 	(1) 

0, 

+ 0( e-t  X ) 

(k z) e  ikx-itkU(z) 
dk 

)) d/dk(p(k)-kU( z_.k=k*  
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The functions F1(k,z) 	F2(k,z) 	F3(k,z) and F4(k,z) are 

analytic and well behaved in a domain containing the real axis . 

The function P(k) has a saddle point at k = ko  . As t becomes 

large , the different components of perturbation velocity 	 u u_, i 2' 

w1 and w2 tend to zero like ( 1/t
I  ) 

The integrals 
oa 	 40 

S IID ,'
(k,z) e ikx-itP(k)  dk 	8,  S 

4 3 
(k 
' 
z) eikx-itP(k) dk 

have saddle points , then they tend to zero like ( 1/J ), since 

(IP1(k'z) and 13 
 (k,z) are analytic and well behaved in a domain 

containing the real axis . But the integrals 

00 

)
(1),2(k,z) eikx-itkU(z)  dk , 	G3(k,z) eikx-itkU(z) dk 

-00 	 — 00 

and 4) (k,z) e ikx-itkU(z) S . 4% 	dk 

where the functions 42(k z) ,  44(k,z) and G3(k,z) are analytic 

and well behaved , they tend to zero like ( 1/t ) as t becomes large, 

when U(z) f 0 . Hence , when the model is free from any level Which its 

mean velocity is zero,i.e. U(z) = 0 	the vertical displacement of 

a fluid particle ;1(x,z;t) and :;2(x,z;t) tends to zero , provided 

(sgn(ko-k*)-sgn(-tU(z)) = 0 , i.e. U(z) and d/dk(P(k))k=k*  have the 

same sign . Therefore , if thereisalevel with zero velocity ( U(z)=o) 

or (sgn(k-k*)-sgn(-tU(z)) 	0 , i.e. there is a width in which U(z) 

and d/dk(p(k))k=k*  have a different sign , c:),(x,z;t) and§2(xlz;t) 

77240 	as t 	°G , here the linearized theory fails . 
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Conclusion  : 

At the time t = 0 , some perturbation such that the 

velocity components and the vertical displacement are introduced. 

We use the linearized theory to see what happens for the distur-

bance functions as functions of time when t becomes large . From 

our expressions for the components of perturbation velocity ,they 

tend to zero as t becomes large like 

(i) litI  , if didk(11(k)) =0 , i.e. there is a saddle point , 

(ii) lit , if didk(13(k)) j  0 ,i.e. the function p(k) is 

monotonic . 

When the model is free from any level with U(z) = 0 and 

(sgn(ko-k*)-sgn(-tU(z)) = 0 , i.e. the mean velocity U(z) and 

didk(P(k))k=k* havethe same sign , hence , the vertical displace- 

ment tends to zero as t becomes large . But the linearized theory 

fails and the reason is that'the vertical displacement of a fluid 

particle does not tend to zero as t--->001  when the model contains 

a level with zero velocity ( U(z) = 0 ) , or the model has a width 

in which the mean velocity U(z) and didk(p(k)11=k*  has a different 

sign . 
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