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CI2 for creating and comparing confidence-intervals for time-series bivariate plots 

 

Highlights 

 CI2 quantifies the confidence-intervals (CI) of bivariate time-series plots. 

 Determines if the CI between two bivariate time-series overlap. 

 Any time-lag between two time-series can be incorporated into the analysis.  

 Knee-ankle angles plots on standard v curved treadmills differ at heel-strike. 

 Matlab code is provided to facilitate standardisation of use of CI2. 

 

Abstract 

Currently no method exists for calculating and comparing the confidence-intervals (CI) for the time-series of a 

bivariate plot. The study’s aim was to develop ‘CI2’ as a method to calculate the CI on time-series bivariate 

plots, and to identify if the CI between two bivariate time-series overlap. The test data were the knee and ankle 

angles from 10 healthy participants running on a motorised standard-treadmill and non-motorised curved-

treadmill. For a recommended 10+ trials, CI2 involved calculating 95% confidence-ellipses at each time-point, 

then taking as the CI the points on the ellipses that were perpendicular to the direction vector between the 

means of two adjacent time-points. Consecutive pairs of CI created convex quadrilaterals, and any overlap of 

these quadrilaterals at the same time or ±1 frame as a time-lag calculated using cross-correlations, indicated 

where the two time-series differed. CI2 showed no group differences between left and right legs on both 

treadmills, but the same legs between treadmills for all participants showed differences of less knee extension 

on the curved-treadmill before heel-strike. To improve and standardise the use of CI2 it is recommended to 

remove outlier time-series, use 95% confidence-ellipses, and scale the ellipse by the fixed Chi-square value 

as opposed to the sample-size dependent F-value. For practical use, and to aid in standardisation or future 

development of CI2, Matlab code is provided. CI2 provides an effective method to quantify the CI of bivariate 

plots, and to explore the differences in CI between two bivariate time-series.  
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INTRODUCTION 

Time-series data from biomechanics provides the opportunity to explore the relationship or interaction between 

multiple variables over time. In the case of two variables, each can be a function of each other (e.g. angular 

velocity and angle of one joint), or independent from each other (e.g. two joint angles). Variables can be 

explored as the ratio of each other [1], and although this facilitates comparison of the interaction between the 

two variables information is lost through changing the dimensions of the data. More commonly, data have been 

presented as phase or bivariate plots, which are often explored and summarised as a single value representing 

the entire data using the perimeter, area and perimeter:area ratio [2]. It is useful to calculate standard measures 

of variability, particularly on a point-by-point basis including using various forms of confidence-intervals (CI)[3]. 

These applications of CI have treated the abscissa (x-axis) as an “error free” variable. However, for bivariate 

plots both the abscissa and ordinate (y-axis) axes need to be treated as both containing error.  

 

Treating both axes of data as containing error and providing a measure of variability at each time-point is 

achieved using vector coding (VC). There are two main approaches that incorporate both the vector angles 

and magnitudes [4] or include just the vector angles [5]. VC has been used to explore coordination and 

functional-variability [6], but VC has not been used as a CI as it would not be suitable as the variability is of the 

point-to-point vectors rather than the space encompassed by the points. 

 

Several approaches to analysing bivariate plots exist in the area of spatial statistics, where error for both 

variables is incorporated, and requires both measures of central tendency (e.g. minimum-distance-centre, 

centroid, linear-directional-mean, weighted-mean-centre, mean-centre) and variability (e.g. area, standard-

distance, standard-deviational-ellipse, confidence-ellipse). There are various strengths and weakness of each 

method, but the mean centre (i.e. average of points for each dimension) and confidence-ellipse (i.e. semi-

major and semi-minor axes of the ellipse) are the most familiar to biomechanists often used to analyse centre 

of pressure data. In addition to the spatial aspect, time-series data includes a temporal aspect that needs to 

be incorporated into the calculation of CI for comparing any overlap between two time-series. 

 

The temporal aspect ‘within’ a times-series can be accommodated by exploring the area between the CI bands, 

which can be achieved by creating convex shapes between adjacent CI along the time-series. Two times-
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series can then be compared by analysing any overlap of the convex shapes at the same time-points. Further 

though there can be a temporal difference or time-lag ‘between’ time-series. The time-lag for univariate 

analyses can be corrected for through a time transformation [7] but these have not been validated for their 

impact on bivariate comparisons. Currently, only a simple quantification of the time-lag, such as through cross-

correlations, is advisable to determine the time-lag to incorporate into the analysis. Hence, the aim was to 

develop a method named CI2 to calculate the CI on time-series bivariate plots, and to determine any overlap 

of the CI between two bivariate time-series at the same time or incorporating any time-lag between the series.  

 

METHODS: The test data were the knee and ankle angles for running on a motorized standard-treadmill 

(Powerjog-J100, Power Sport International) and non-motorized curved-treadmill (Curve, Woodway). Healthy 

males (n=10; 21.4±4.1years; 75.6±7.0kg; 1.81±0.08m) ran for 30s at 2.11±0.05m/s (standard-treadmill) and 

2.15±0.11m/s (curved-treadmill), calculated from the left-leg posterior toe displacement and stance duration. 

Five retroreflective markers placed on each leg (lateral: greater-trochanter, femoral-epicondyle and malleolus, 

and; dorsal first: metatarsal-phalange and inter-phalange joints) were captured at 200Hz (9 Raptor cameras; 

Cortex5.2 software; Motion Analysis Corporation). Data were analysed in Matlab (2015a; Mathworks) and 

smoothed at 5Hz using a fourth-order Butterworth low-pass filter. Strides were extracted from heel-strike to 

heel-strike based on the maximum and minimum anterior-posterior velocity of the toe markers, respectively 

[8]. Strides were 148±8 frames long, hence all strides were time-normalized to a similar size of 151 data points 

using a cubic spline.  

 

A 2-stage outlier detection method with settings of 0.0001 and 0.005 was applied [9] to improve the normal 

distribution resulting in 2.8±1.4 strides as times-series outliers and a further 1.5±1.4 strides as mismatching 

between joints were removed leaving 33.0±5.5 strides. In the sagittal plane angles between vector 1 (greater-

trochanter to femoral-epicondyle) and vector 2 (femoral-epicondyle to malleolus) defined the knee angle, and 

between vector 2 and vector 3 (malleolus to first metatarsal-phalange joint) defined the ankle angle. Each 

angle was offset-normalised by subtracting the mean stride, and the minimum values defined the maximum 

knee extension and maximum ankle dorsiflexion. 
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For each bivariate plot, CI2 was calculated in 4-stages (Matlab code; Supplementary material). The 95% 

confidence-ellipses were calculated (stage-1) with the CI taken as the points on the ellipse that were 

perpendicular to the direction vector, which was calculated as the ellipse axis angle minus the direction angle 

between the current and next mean points of the time-series (stage-2). Convex quadrilaterals were then 

created between each adjacent pairs of CI (stage-3). Any overlap of the quadrilaterals between the two time-

series were calculated, including a time-lag element to compare the CI at the same and adjacent time-points 

(stage-4). Using the means of both CI for both angles, the peak cross-correlation between series 1 and 2 

occurred at -0.5±1.0 frames, hence a time-lag of ±1 frame was used. The overlaps, as binary scores (yes or 

no), were calculated for four comparisons: left v right legs on standard-treadmill and curved-treadmill, and 

between legs for each treadmill. The range between CI, percentage agreement for intra-participant overlap of 

left v right legs and percentage agreement for group full-overlap and zero-overlap periods, indicating group 

similarities and differences, were calculated and presented as means±standard-deviations. The notation 

indicates the time-series and position of the element within the matrix (e.g. matrix P, series 1, positions 2 to 3 

was P(1,2:3)). 

 

1) Ellipse 

 

Based on aspects of Principal Components Analysis [10] and modified Matlab code [11] an ellipse was fitted 

to the total number (n) of abscissa (x) and ordinate (y) data from a bivariate plot using a covariance matrix and 

matrix differential equations (where, c was the index of summation, �̅� was mean of x, and �̅� was mean of y). 

 

a) Covariance matrix. 

[
𝐴 𝐶
𝐵 𝐷

]=

[
 
 
 
 
 1/(𝑛 − 1)∑(xc-x̅)2

n

c=1

1/(𝑛 − 1)∑(xc-x̅)(y
c
-y̅)

n

c=1

1/(𝑛 − 1)∑(xc-x̅)(y
c
-y̅)

n

c=1

1/(𝑛 − 1)∑(y
c
-y̅)

2
n

c=1 ]
 
 
 
 
 

 

 

b) Eigen-values (where, b=A+D and d=AD-BC), i.e. lengths of the semi axes of the ellipse. 

λ1 = (𝑏 − √𝑏2 − 4𝑑) /2 
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λ2 = (𝑏 + √𝑏2 − 4𝑑) /2 

 

c) Ellipse orientation adjustment, where if the covariance matrix elements were the same sign then e=-1, 

else e=1. 

𝑒 =
−1
1

}
𝑓𝑜𝑟 𝑠𝑔𝑛(𝐴) = 𝑠𝑔𝑛(𝐵) = 𝑠𝑔𝑛(𝐶) = 𝑠𝑔𝑛(𝐷)

𝑒𝑙𝑠𝑒
 

 

d) Eigen-vectors, i.e. direction of the ellipse axes. 

[𝑣1⃗⃗⃗⃗ 𝑣2⃗⃗⃗⃗ ] = [
𝐸 𝐺
𝐹 𝐻

] = [
B B

λ1 − 𝐴 λ2 − 𝐴
] 

 

e) Scaled eigen-vectors (sum of squared versions scaled to unity) incorporating the ellipse orientation 

adjustment (stage-1c). 

[𝑣1̂ 𝑣2̂] = [
𝐼 𝐾
𝐽 𝐿

] = [
𝑒𝐸/√𝐸2 + 𝐹2 𝐺/√𝐺2 + 𝐻2

𝑒𝐹/√𝐸2 + 𝐹2 𝐻/√𝐺2 + 𝐻2
] 

 

f) Scaling factor of the inverse of the Chi-squared cumulative distribution function for probability p for 2 

degrees of freedom (e.g. for p=0.95, k=2.4478). This fixed value scaling aids standardization as it is 

independent of sample size [12]. 

𝑘 = (−2log (1 − 𝑝))0.5 

 

g) Ellipse data, where the perimeter was divided into n points from tc=1=0 to tc=n=2π/n(n-1), hence 

tc=2π/n(c-1).  

[
𝑋𝑐=1 𝑌𝑐=1

⋮ ⋮
𝑋𝑛 𝑌𝑛

] = 𝑘. [
cos (𝑡𝑐=1) sin (𝑡𝑐=1)

⋮ ⋮
cos (𝑡𝑛) sin (𝑡𝑛)

] . [
√λ1 0

0 √λ2

] . [𝑣1̂ 𝑣2̂] + [
�̅� �̅�
⋮ ⋮

× 𝑛 × 𝑛
] 

 

2) Confidence-intervals (CI) 

 

Where the data sets of x and y repeated r times to form a time-series (Fig. 1a), first the change between the 

centres of the current set (t) to the next set of time-points (t=t+1) was calculated to determine the direction 
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angles. Second, the difference between the ellipse angle and the direction angle were used to calculate the 

two points on the ellipse as the lower and upper CI.  

 

a) Change in x and y were calculated using the single-sided difference for t=1 to t=r, and to maintain the 

same size matrix the last point equaled the change of the penultimate point. 

�́�𝑡 = {
�̅�𝑡+1 − �̅�𝑡 𝑖𝑓 𝑡 = 1 𝑡𝑜 𝑡 = 𝑟 − 1
�̅�𝑟 − �̅�𝑟−1 𝑖𝑓 𝑡 = 𝑟

 

�́�𝑡 = {
�̅�𝑡+1 − �̅�𝑡 𝑖𝑓 𝑡 = 1 𝑡𝑜 𝑡 = 𝑟 − 1
�̅�𝑟 − �̅�𝑟−1 𝑖𝑓 𝑡 = 𝑟

 

 

b) Direction angle from the current to next set of time-point data. 

𝜑𝑡 = 𝑎𝑡𝑎𝑛2(�́�𝑡 , �́�𝑡) 

 

c) Ellipse angle (using stage-1e). 

𝜃𝑡 = 𝑎𝑡𝑎𝑛2(𝐾𝑡, 𝐿𝑡) 

 

d) CI coordinates (for t=1 to t=r). 

[
𝐶𝐼1𝑥𝑡 𝐶𝐼1𝑦𝑡

𝐶𝐼2𝑥𝑡 𝐶𝐼2𝑦𝑡
] = 𝑘. [

cos (φ𝑡 − θ𝑡) sin (φ𝑡 − θ𝑡)
cos (φ𝑡 − θ𝑡 + 𝜋) sin (φ𝑡 − θ𝑡 + 𝜋)

] . [
√λ1𝑡 0

0 √λ2𝑡

] . [𝑣1�̂� 𝑣2�̂�] + [
�̅�𝑡 �̅�𝑡

�̅�𝑡 �̅�𝑡
] 

 

3) Convex hull of each pair of adjacent CI 

 

Where the order of the CI from time t to t+1 created a simple or concave quadrilateral (Fig. 2a), the order of 

the CI was sorted to create a convex quadrilateral (Fig. 1b). Given that there were 4 points, the principles of 

Graham's scan [13] (stages 3a-c) and Cramer’s rule (stage-3d) provided a simple solution. 

 

a) Four CI coordinates (M) were offset by subtracting the CI coordinates with the minimum-y value (or if 

a tie the coordinates with the minimum-y and minimum-x). Note, the matrix was transposed from stage-2d.  

𝑁 = 𝑀 − [min{𝑀𝑦}⋯× 4] = [
𝐶𝐼1𝑥𝑡 𝐶𝐼2𝑥𝑡

𝐶𝐼1𝑦𝑡 𝐶𝐼2𝑦𝑡

𝐶𝐼1𝑥𝑡+1 𝐶𝐼2𝑥𝑡+1

𝐶𝐼1𝑦𝑡+1 𝐶𝐼2𝑦𝑡+1
] − [min{𝑀𝑦}⋯× 4] 
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b) Two argument inverse tangent (atan2) of each of the coordinates in N. 

𝑂 = [𝑎𝑡𝑎𝑛2(𝑁1) 𝑎𝑡𝑎𝑛2(𝑁2) 𝑎𝑡𝑎𝑛2(𝑁3) 𝑎𝑡𝑎𝑛2(𝑁4)] 

 

c) M sorted from their corresponding minimum to maximum O. 

𝑃 = [𝑀𝑂(1) 𝑀𝑂(2) 𝑀𝑂(3) 𝑀𝑂(4)] 

 

d) Third point (P(3)) tested to see if it was part of the convex hull (Fig. 2; point R) by assessing if the 

segments P(1) to P(3) and P(2) to P(4) intersected, and if they intersected then P(3) was part of the hull (Fig. 

2a right), else the quadrilateral was concave (Fig. 2a middle) and P(3) was replaced with P(4).  

i) Four points created from P in the order 1, 3, 2 and 4. 

𝑄 = [
𝑃(1)𝑥

𝑃(1)𝑦
] 

𝑅 = [
𝑃(3)𝑥

𝑃(3)𝑦
] 

𝑆 = [
𝑃(2)𝑥

𝑃(2)𝑦
] 

𝑇 = [
𝑃(4)𝑥

𝑃(4)𝑦
] 

 

ii) Three vectors created for: segment QR; segment ST, and; between points RT. 

𝑄𝑅⃗⃗⃗⃗  ⃗ = 𝑅 − 𝑄 

𝑆𝑇⃗⃗ ⃗⃗ = 𝑇 − 𝑆 

𝑅𝑇⃗⃗⃗⃗  ⃗ = 𝑇 − 𝑅 

 

iii) Applying Cramer’s rule using determinants, the x and y scaling parameters U and V were calculated. 

Note, ○ and ○/ indicate Hadamard product and division on an element-by-element basis, respectively, relevant 

when the matrices contain more than one pair of elements as in stage-4b. 

𝑈 = (𝑆𝑇𝑥 ○ 𝑅𝑇𝑦 − 𝑆𝑇𝑦 ○ 𝑅𝑇𝑥) ○/(𝑄𝑅𝑥 ○ 𝑆𝑇𝑦 − 𝑄𝑅𝑦 ○ 𝑆𝑇𝑥) 

𝑉 = (𝑄𝑅𝑥 ○ 𝑅𝑇𝑦 − 𝑄𝑅𝑦 ○ 𝑅𝑇𝑥) ○/(𝑄𝑅𝑥 ○ 𝑆𝑇𝑦 − 𝑄𝑅𝑦 ○ 𝑆𝑇𝑥) 
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iv) Where segments intersected (i.e. both U and V were between 0 and 1), P(3) was retained as it was 

part of the hull else P(3) was replaced with P(4). 

𝑃(3) = {
𝑃(3) 𝑖𝑓0 ≤ 𝑈&𝑉 ≤ 1
𝑃(4) 𝑒𝑙𝑠𝑒

 

 

4) Overlap of CI quadrilaterals for two series of data 

 

The overlap of the quadrilaterals from two time-series 1 and 2 was determined as a binary score of yes or no 

overlap. To incorporate any time lag between the two series, quadrilaterals of series 1 at each time-point t (t=1 

to m, where m=r-1) were compared to the quadrilaterals of series 2 at corresponding time-points (h), where h 

incorporated the time-lag g (e.g. g=±1). Hence h=t-g to t+g (if h<0 then h=1, or if h>m then h=m). 

 

a) Combinations of the four points between the two series were created so that all four segments of the 

quadrilaterals were analysed. Hence, Q, R, S and T each contain 16 columns, where Q and R were for series 

1, and S and T were for series 2. 

𝑄𝑡 = [
𝑃(1,1)𝑥𝑡

⋯ ⋯ ⋯ 𝑃(1,2)𝑥𝑡
⋯ ⋯ ⋯ 𝑃(1,3)𝑥𝑡

⋯ ⋯ ⋯ 𝑃(1,4)𝑥𝑡
⋯ ⋯ ⋯

𝑃(1,1)𝑦𝑡
⋯ ⋯ ⋯ 𝑃(1,2)𝑦𝑡

⋯ ⋯ ⋯ 𝑃(1,3)𝑦𝑡
⋯ ⋯ ⋯ 𝑃(1,4)𝑦𝑡

⋯ ⋯ ⋯
] 

𝑅𝑡 = [
𝑃(1,2)𝑥𝑡

⋯ ⋯ ⋯ 𝑃(1,3)𝑥𝑡
⋯ ⋯ ⋯ 𝑃(1,4)𝑥𝑡

⋯ ⋯ ⋯ 𝑃(1,1)𝑥𝑡
⋯ ⋯ ⋯

𝑃(1,2)𝑦𝑡
⋯ ⋯ ⋯ 𝑃(1,3)𝑦𝑡

⋯ ⋯ ⋯ 𝑃(1,4)𝑦𝑡
⋯ ⋯ ⋯ 𝑃(1,1)𝑦𝑡

⋯ ⋯ ⋯
] 

𝑆ℎ = [(
𝑃(2,1)𝑥ℎ

𝑃(2,2)𝑥ℎ
𝑃(2,3)𝑥ℎ

𝑃(2,1)𝑦ℎ
𝑃(2,2)𝑦ℎ

𝑃(2,3)𝑦ℎ

𝑃(2,4)𝑥ℎ

𝑃(2,4)𝑦ℎ

)⋯ × 4] 

𝑇ℎ = [(
𝑃(2,2)𝑥ℎ

𝑃(2,3)𝑥ℎ
𝑃(2,4)𝑥ℎ

𝑃(2,2)𝑦ℎ
𝑃(2,3)𝑦ℎ

𝑃(2,4)𝑦ℎ

𝑃(2,1)𝑥ℎ

𝑃(2,1)𝑦ℎ

)⋯ × 4] 

 

b) Whether quadrilaterals overlap was calculated using Qt, Rt, Sh and Th (stage-3d ii-iv). Where any of the 

16 element-by-element U and V pairs were both between 0 and 1, then there was an overlap and so went on 

to stage-4c, else went to next stage. 

W𝑡,ℎ = {
1 𝑖𝑓 𝑎𝑛𝑦 0 ≤ 𝑈&𝑉 ≤ 1, 𝑔𝑜 𝑡𝑜 𝑠𝑡𝑎𝑔𝑒 4𝑐

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑒𝑙𝑠𝑒, 𝑔𝑜 𝑡𝑜 𝑛𝑒𝑥𝑡 𝑠𝑡𝑎𝑔𝑒
 

 

i) Checked if one quadrilateral was inside the other (Fig. 2b-c).  
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1st) Quadrilaterals’ coordinates were combined so the first point contained the minimum-y (or if a tie 

minimum-y and minimum-x), and this pair of coordinates were subtracted from all 8 points. This order meant 

that one only needed to check whether the second quadrilateral was inside the first, and so there was no need 

to check the reverse of whether the first quadrilateral was inside the second.  

𝑍 = {
[𝑃(1,1: 4) 𝑃(2,1: 4)] − [𝑃(1,1)⋯× 8] 𝑖𝑓𝑃(1,1)𝑦 < 𝑃(2,1)𝑦

[𝑃(2,1: 4) 𝑃(1,1: 4)] − [𝑃(2,1)⋯× 8] 𝑖𝑓𝑃(1,1)𝑦 > 𝑃(2,1)𝑦
 

 

2nd) Two argument inverse tangent angles were calculated for Z.  

𝛼 = [𝑎𝑡𝑎𝑛2(𝑍1) ⋯ 𝑎𝑡𝑎𝑛2(𝑍8)] 

 

3rd) Whether quadrilaterals overlap (Fig. 2b) was calculated where if all angles for quadrilateral 2 (α(5:8)) 

were between angles α(2) and α(4) then went on to next stage, else the quadrilaterals did not overlap and went 

on to stage-4c. 

W𝑡,ℎ = {
𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑖𝑓𝛼(2) < 𝛼(5: 8) < 𝛼(4), 𝑔𝑜 𝑡𝑜 𝑛𝑒𝑥𝑡 𝑠𝑡𝑎𝑔𝑒

0 𝑒𝑙𝑠𝑒, 𝑔𝑜 𝑡𝑜 𝑠𝑡𝑎𝑔𝑒 4𝑐
 

 

ii) Whether quadrilaterals overlap (Fig. 2c) was determined using U and V where if QR segment (P(1,1) 

to P(2,1) intersected either the ST segments (P(1,2) to P(1,3); P(1,3) to P(1,4)) then the quadrilaterals did not 

overlap. 

W𝑡,ℎ = {
0 𝑖𝑓0 ≤ 𝑈&𝑉 ≤ 1, 𝑛𝑜 𝑜𝑣𝑒𝑟𝑙𝑎𝑝
1 𝑒𝑙𝑠𝑒, 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

 

 

c) The overlap for series 1 with 2 (β(1)) and series 2 with 1 (β(2)) were created (where indices <1 were 

made 1, and indices >m were made m). β(1) and β(2) were the same for no time lag (g=0), but otherwise 

differed.  

𝛽(1)𝑡 = ∑ 𝑊𝑡,ℎ

𝑡=𝑚,ℎ=𝑡+𝑔

𝑡=1,ℎ=𝑡−𝑔

= [

𝑊1,𝑡−𝑔 + ⋯𝑊1,𝑡+𝑔

⋮
𝑊𝑚,𝑡−𝑔 + ⋯𝑊𝑚,𝑡+𝑔

] {𝑖𝑓𝛽(1)𝑡 ≥ 1, 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 

𝛽(2)ℎ = ∑ 𝑊𝑡,ℎ

𝑡=𝑚,ℎ=𝑡+𝑔

𝑡=1,ℎ=𝑡−𝑔

= [

𝑊1,𝑡−𝑔 + ⋯𝑊1,𝑡+𝑔

⋮
𝑊𝑚,𝑡−𝑔 + ⋯𝑊𝑚,𝑡+𝑔

] {𝑖𝑓𝛽(2)ℎ ≥ 1, 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 
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d) Quadrilaterals overlap where γ ≥ 1, determined by combining β(1) and β(2). 

𝛾 = 𝛽(1) + 𝛽(2) {𝑖𝑓𝛾𝑡 ≥ 1, 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 

 

RESULTS:  

The output from CI2 produces CI bands for each time-series, which were divided up by the quadrilaterals 

formed between adjacent pairs of CI. The CI range had low variability of ≤2° (CI range: standard-treadmill left-

leg 8±2°, right-leg 6±2°; curved-treadmill left-leg 7±1°, right-leg 6±1°) and was similar across the stride-time 

showing no clear periods of greater variability (Fig. 3). A sample bivariate plot for one participant shows good 

similarity, or overlap, in the knee-ankle angles coupling relationship for the left v right leg on the standard-

treadmill (Fig. 3a) and on the curved-treadmill (Fig. 3b). The most notable difference between treadmills was 

before heel-strike with less knee extension on the curved-treadmill. In comparing the same leg between 

treadmills there was poorer similarity, which arose from the different patterns before heel-strike and some 

temporal differences throughout the stride (Fig. 3c-d). 

 

Within participants there was good agreement between conditions (Fig. 3), which was best between legs on 

the standard-treadmill (89±9%-agreement; Table 1) and moderate within legs between treadmills (34-36%-

agreement). In contrast, there was wide inter-participant variability, which makes comparisons to the ‘mythical 

average’ trace unrepresentative of any participant [14] hence periods where all participants had the same 

overlap were determined. Between legs there was greater group similarity on the standard-treadmill at 37%-

full-overlap versus 9%-full-overlap on the curved-treadmill, which was further supported by 0%-zero-overlap 

for both treadmills (Fig. 4a-b). In contrast, between treadmills there was poorer group agreement with 0%-full-

overlap and 13-15%-zero-overlap. This period of zero-overlap where neither leg overlapped for all participants 

occurred before heel-strike (left-leg 85-100%-stride-time; right-leg 87-100%-stride-time; Fig. 4c-d).  

 

DISCUSSION:  

This paper demonstrates CI2 as an effective method for quantifying the bivariate CI and determining any 

overlap between two time-series. The CI2 method identified clear differences in the knee-ankle angles 

relationship between the two treadmills, particularly at the end of the swing phase in all participants. This was 

probably owing to the raised and inclined position of the curved-treadmill versus the lower and flat position of 
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the standard-treadmill, or contribution of the energy imparted from motorised treadmills [15]. There was large 

inter-participant variability in the coordination patterns between participants. Individuality often limits group 

comparisons, hence periods of when all participants demonstrated the same response of zero-overlap or full-

overlap were highlighted as the ‘group’ response (Fig. 4). Future research should be designed to explore these 

test data in more depth. 

 

There are a few assumptions of CI2. First, it was assumed the confidence-ellipse best encapsulates the 

variability of the data. The distribution of the data should primarily possess multivariate normality. Owing to the 

large number of ellipses it was unlikely that this assumption would be met for all ellipses. To improve this 

assumption two recommendations are proposed. First, outlier trials should be removed, for example using the 

two-stage method for time-series data that leads to the improvement in the number of time-points being 

normally distributed [9]. Second, the trial size should be at least 10, as through simulations this was found to 

provide a ‘sufficiently’ low bias in the ellipse area versus convex area [16]. Related to trial size, as 

recommended for standardisation [12], instead of using the bivariate F-distribution that varies with sample size 

[17] the ellipse was scaled using the Chi-square distribution that leads to a fixed scaling factor for all sample 

sizes. Others propose calculating CI using different F-values [e.g. 17 v 12], bootstrapping [18], randomness-

based distributions [19] and minimal detectable difference bands [2]. These would all generally lead to larger 

CI, but in this application of CI2 given the large number of ellipses and individuality across groups the fixed 

Chi-squared method with smaller CI was deemed preferable to protect against type-II errors. 

 

The presence of a time-lag between time-series was assessed through cross-correlation, which revealed a 

small time-lag of ≤1 frame that was incorporated into the analysis. Cross-correlation provides a simple solution, 

which assumes a uniform time-shift throughout the entire time-series, but this was unlikely, as evidenced from 

the matched quadrilaterals where there are varying amounts of time-lags at different time-points (Fig. 3). 

Potentially more advanced time-aligning methods could be used, although none have yet been developed for 

bivariate data. In stage-4c, any overlap of series 1 on 2 and 2 on 1 was calculated. These are the same when 

there is no time-lag, but with a time-lag introduced a series can overlap another series more often on one 

series than the other. The overlaps from both ways were therefore combined to create a single indication of 

the overlap between the two time-series.  
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There are other methodological considerations. Data are often offset-normalised, such as through subtracting 

the standing anatomical position, or as in this study, subtracting the mean trial. Some form of offset-

normalisation is advised, which, reduces spatial variability between time-series. Scale-normalisation would 

also be required where the data is of a different range, which would be more apparent in a bivariate plot of 

data with different units. The CI for each plot showed consistent variability across the stride. Larger variability 

has been found at turning points, and although potentially meaningful the possibility of a statistical artefact has 

been identified [5]. This artefact appears to be reduced in CI2, and where rapid changes of direction could lead 

to distortion of the quadrilateral in the presence of high accelerations the sampling frequency should be 

increased to reduce this impact. In comparing future studies with similar frequencies of movement, there is an 

interaction of a higher sampling frequency decreasing the time-span or width of quadrilaterals, which could be 

compensated for by increasing the time-lag.  

 

The mathematical process of CI2 can be achieved using Excel, which may be beneficial for an educational 

task using a few time-points. On a practical level, code is required to loop through the large number of 

calculations, hence Matlab code is provided (Supplementary material). This will facilitate standardisation in the 

use of CI2, where it is recommended that there are 10+ trials, data are offset-normalised, outlier time-series 

are removed, 95% confidence-ellipses are calculated, and the fixed Chi-square value is used for the scaling. 

CI2 provides an effective method to quantify the CI of bivariate plots and to explore differences in the CI 

between two time-series.  
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Fig. 1. Overview of representing two-dimensional time-series confidence-intervals (CI) as quadrilaterals and 

determining where there is any overlap of the quadrilaterals between two sets of time series. A: data (o) at 

three sets of time-points (t1 to t3), each encompassed by 95% confidence-ellipses (solid elliptical lines), with 

ellipse axes (dotted lines) and time-series 95%CI points (*) are used to create 95%CI bands (dashed lines). 

Arrows indicate direction vectors between consecutive ellipses. B: 95%CI points (*) from adjacent time-points 

are joined to create convex quadrilaterals along the time-series. C: where corresponding quadrilaterals from 

two sets of time-series partially overlap, then the overlapping quadrilaterals from each time-series are 

considered to overlap and are shaded. 

 

Fig. 2. Checks in determining the overlap of quadrilaterals from two sets of bivariate time-series confidence-

intervals (CI). A: the extracted four 95%CI points from adjacent time-points when joined can create shapes 

classified as simple (left), concave (middle) or convex (right). Creating vectors QR and ST between various 

points are tested to see if they are simple, concave and convex, and points reordered or replaced to create a 

convex quadrilateral (see stage-3d). B: to assess if two quadrilaterals overlap where no sides of the two 

quadrilaterals intersect, first assess if all the points of the second quadrilateral (dashed lines) fall outside of the 

shaded area (none do; see stage-4bi). C: where all points fall outside of shaded areas, check if vector (dot-

dashed lines) from lower point of quadrilateral 1 (solid line) to any point on quadrilateral 2 (dashed lines) 

crosses the upper sides of the quadrilateral 1 (‘a’ does not cross hence quadrilaterals overlap; ‘b’ does cross 

hence quadrilaterals do not overlap; see stage-4bii). 

 

Fig. 3. Knee-ankle angles bivariate plots for one participant for four comparisons of two conditions (series 1 

and 2). The 95%CI for series 1 are solid lines (left-leg or standard-treadmill) and for series 2 are dashed lines 

(right-leg or curved-treadmill). Time periods of overlap are shaded (light or medium-light grey) and periods of 

no-overlap or differences between series are white, ignoring the highlighted quadrilateral every 10% of stride-

time shaded for series 1 (black) and series 2 (medium-dark grey) that illustrate the temporal alignment between 

series. Data is from heel-strike to heel-strike, moving in the direction of the arrow (indicated in D), with the 

approximate location of heel-strike (0%-stride-time) and toe-off (56.4±0.8%-stride-time; indicated in A). 

Minimum values are maximum knee extension and maximum ankle dorsiflexion. 
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Fig. 4. Periods of overlap for participant by stride-time for four comparisons of two series of knee-ankle angles 

bivariate data. Series 1 was left-leg or standard-treadmill, and series 2 was right-leg or curved-treadmill. 

Shaded regions indicate where all 10 participants for series 1 and 2 overlapped (i.e. group full-overlap; grey) 

or none overlapped (i.e. group zero-overlap; black), which indicates group similarities or differences within the 

comparison. Data were from heel-strike to heel-strike (0%-stride-time to 100%-stride-time), and toe-off occurs 

at 56.4±0.8%-stride-time. 

 

 

Table 1. Intra-participant and groups similarities presented as percentage agreement for intra-participant 

overlap, group full-overlap and group zero-overlap, for knee-ankle angles bivariate plots on a motorised 

standard-treadmill and non-motorised curved-treadmill for both legs (n=10 healthy males).  

Agreement    

 Intra-participant Group full-overlap Group zero-overlap 

Left v Right legs    

Standard 89±9% 37% 0% 

Curved 79±21% 9% 0% 

Standard v Curved    

Left-leg 36±14% 0% 15% 

Right-leg 34±16% 0% 13% 
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function [gamma,CIseries1,CIseries2]=myCI2(xAin,yAin,xBin,yBin,p,g,plotsyes,tshade) 
% output: overlap of two bivariate times-series (0 no overlap; 1 overlap); option: plots 
% input: xAin,yAin,xBin,yBin: two xy series 1 and 2; n>=3 trials in columns (same n 

within series, but n can be different between series 1 and 2) 
% input: time-points in rows same length: n>=2; good if before have removed outliers & 

offset normalised 
% input: p is probability for confidence-interval of ellipse (e.g. 0.95) 
% input: g is timelag from 0 (exact match) to g forward & backwards (so if any of series 

A overlaps B-g to B+g then identified as overlap)  
% input: option: plotsyes as 'yes' for plots; tshade=1 to r (e.g. 10 shade every 10th 

quads on plots to show any time diff between series) 
% See accompanying paper for explanations: Mullineaux DR. CI2 for creating and comparing 

confidence-intervals for time-series bivariate plots Gait Posture. 2017;xx 
% ------------------------------------------------------------------------ 
[r,~]=size(xAin); 
m=r-1; %connecting current to next CI to create quadrilaterals reduces size by 1 
%-------STAGE1&2 ELLIPSE AND ELLIPSE CONFIDENCE INTERVALS----------------- 
% calculate 2D CI for each bivariate series A and B 
[x1A,y1A,x2A,y2A]=ellipseCIts(xAin,yAin,p); 
[x1B,y1B,x2B,y2B]=ellipseCIts(xBin,yBin,p); 
CIseries1=[x1A,y1A,x2A,y2A]; 
CIseries2=[x1B,y1B,x2B,y2B]; 
% ------STAGE3 CONVEX HULL, AND PLOT OPTION------------------------------- 
% create quadrilaterals for series 1 and 2 (and option to plot data) 
switch plotsyes % creates figure where option selected 
    case 'yes'; figure; hold on;  
end 
% create matrices before loop (5 points as 4 corners +1 to close quadrilateral)  
Px1=NaN(5,m); Py1=NaN(5,m); Px2=NaN(5,m); Py2=NaN(5,m); 
for T=1:m; % T is t, but use capital version for plots 
[Px1(:,T),Py1(:,T)]=convexquad([x1A(T:T+1,1);x2A(T:T+1,1)],[y1A(T:T+1,1);y2A(T:T+1,1)]); 
[Px2(:,T),Py2(:,T)]=convexquad([x1B(T:T+1,1);x2B(T:T+1,1)],[y1B(T:T+1,1);y2B(T:T+1,1)]); 
    switch plotsyes 
        case 'yes' 
fill(Px1(:,T),Py1(:,T),'w','FaceAlpha',0.0,'EdgeColor','none') 
fill(Px2(:,T),Py2(:,T),'w','FaceAlpha',0.0,'EdgeColor','none') 
TT=mod(T,tshade); % shade/colour every tshade quad to see any time-lag between series 
        if TT<=0 
fill(Px1(:,T),Py1(:,T),'k','FaceAlpha',1,'EdgeColor','none') 
fill(Px2(:,T),Py2(:,T),'k','FaceAlpha',.5,'EdgeColor','none') 
        end 
axis equal; % NOTE: if series different units, then normalise scales for this to look ok 
plot([x1A,x2A],[y1A,y2A],'k'); 
plot([x1B,x2B],[y1B,y2B],'k','LineStyle','--'); 
    end 
end 

  
% ------STAGE4 OVERLAP OF QUADRILATERALS-------------------------------- 
% finds overlap of all quadrilaterals from series1 with all quadrilaterals from series2 
beta1=zeros(m,1); %Series 1; default zeros is no overlap 
beta2=zeros(m,1); %Series 2; default zeros is no overlap (beta1 and beta2 will be same 

if no timelag) 
Q=NaN(2,16); R=NaN(2,16);S=NaN(2,16);T=NaN(2,16);%16 to compare 4 vectors of quad1 to 2 
for t=1:m 
% STAGE4a: create combinations of the 16 vectors; series1 vectors 
Q(1,:)=[repmat(Px1(1,t),1,4),repmat(Px1(2,t),1,4),repmat(Px1(3,t),1,4),repmat(Px1(4,t),1

,4)]; 
Q(2,:)=[repmat(Py1(1,t),1,4),repmat(Py1(2,t),1,4),repmat(Py1(3,t),1,4),repmat(Py1(4,t),1

,4)]; 
R(1,:)=[repmat(Px1(2,t),1,4),repmat(Px1(3,t),1,4),repmat(Px1(4,t),1,4),repmat(Px1(1,t),1

,4)]; 
R(2,:)=[repmat(Py1(2,t),1,4),repmat(Py1(3,t),1,4),repmat(Py1(4,t),1,4),repmat(Py1(1,t),1

,4)]; 
    for hh=t-g:1:t+g 
        h=hh; %these few lines to adjust indexes to stay within ranges  



23 
 

        if hh<=0 
        h=1; 
            elseif hh>=m 
                h=m; 
        end 
S(1,:)=repmat(Px2(1:4,h)',1,4); %series2 vectors 
S(2,:)=repmat(Py2(1:4,h)',1,4); 
T(1,:)=repmat([Px2(2:4,h)',Px2(1,h)],1,4); 
T(2,:)=repmat([Py2(2:4,h)',Py2(1,h)],1,4); 
% STAGE4b: test intersect of all 16 vectors 
W=segmentcross(Q,R,S,T);  
% STAGE4bi: if no intersect, now check if quadrilateral 2 not inside quadrilateral 1 
        if W<=0  %skips this section if already know there is an overlap 
% find which quadrilaterals has lowest y value, and subtract min y from all y's 
% order so only need check 2 is inside 1 (and no need to check reverse that 1 inside 2) 
Z=[Px1(1:4,t)',Px2(1:4,h)';Py1(1:4,t)',Py2(1:4,h)']; 
[~,mincol]=min(Z(2,:)); 
Z=Z-repmat(Z(:,mincol),1,8);                        
            if mincol>=5 %switch series 1 and 2 for that with minimum 
            Z=[Z(:,5:8),Z(:,1:4)]; 
            end 
% check all points quad2ofZ are not between 2nd and 4th angles (QtoR and QtoT) of 

quad1ofZ (i.e. outside sides of quad1ofZ) 
            alpha=atan2(Z(2,:),Z(1,:)); % QQ,QR,QS,QT are angles of quad1ofZ 
            alphatest=sum(sign(alpha(5:8)-

repmat(alpha(2),1,4)))+sum(sign(repmat(alpha(4),1,4)-alpha(5:8))); %will give 8 if all 

points between angles QR and QT  
            if alphatest<=7 %as not all 8 + then one quad can't be inside the other  
            W=0; 
            else 
% STAGE4bii: if all 8 between, check if quad1Q to quad2Q crosses quad1RS or quad1ST 
                Q2=[Z(:,1),Z(:,1)]; % [quad1ofZ Q, quad1ofZ Q] 
                R2=[Z(:,5),Z(:,5)]; % [quad2 ofZ Q, quad2 ofZ Q] 
                S2=[Z(:,2),Z(:,3)]; % [quad1ofZ R, quad1ofZ S] 
                T2=[Z(:,3),Z(:,4)]; % [quad1ofZ S, quad1ofZ T] 
                W=segmentcross(Q2,R2,S2,T2); 
                if W>=1 %if crosses=1, then outside quadrilateral, i.e. no overlap 
                W=0; 
                else 
                W=1; %i.e. no cross, so quad2ofZ within quad1ofZ, so quads overlap 
                end 
            end 
        end 
    beta1(t)=beta1(t)+W; % STAGE4c 
    beta2(h)=beta2(h)+W; 
    end 
end 
gamma=isfinite(1./(beta1+beta2)); % STAGE4d 
%------------------------------------------------------------------------- 
switch plotsyes 
    case 'yes'% plots traces with shading/colour showing where no overlap 
fill(Px1(:,gamma),Py1(:,gamma),'k','FaceAlpha',.2,'EdgeColor','none') 
fill(Px2(:,gamma),Py2(:,gamma),'k','FaceAlpha',.2,'EdgeColor','none') 
end 
%------------------------------------------------------------------------- 
end % end of main function 
%========================================================================= 
%-------STAGE1 ELLIPSE---------------------------------------------------- 
function [XY,theta,IJKL,lambdas]=ellipse(x,y,p) %calculates ellipse 
%Input: x and y are 1 column each; p probability to scale ellipse, e.g. 0.95 
%Output: XY: ellipse data; theta: axes angles; IJKL/lambdas: eigen vectors/values 
%modified from: Duarte M, Zatsiorsky VM. Exp Brain Res 2002;146(1):60-9. 
k=(-2*log(1-p))^.5; %chi scales ellipse (e.g. otherwise 95% would be 85.35%) 
ABCD=cov(x,y); %2x2 covariance matrix of x and y 
[IJKL,lambdas]=eig(ABCD); %scaled eigen vectors and values 
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n=length(x); %number of time-points used to create circle intervals 
c=linspace(0,(2*pi)/n*(n-1),n)'; %circle intervals; bias if use (0,2*pi,n) 
XYcentered=k*[cos(c),sin(c)]*sqrt(lambdas)*IJKL; %ellipse around [0,0] 
XY=(XYcentered+repmat([mean(x),mean(y)],n,1)); %ellipse around [meanx, meany] 
theta=atan2(IJKL(2,:),IJKL(1,:)); % ellipse axes angles 
end 
%-------STAGE2 ELLIPSE CONFIDENCE INTERVALS------------------------------- 
function [CI1x,CI1y,CI2x,CI2y]=ellipseCIts(x,y,p) %calculates ellipse CI 
% input: x and y data in 1 column; p probability scaling for ellipse, e.g. 0.95 
% output: two CI for bivariate time-series. CI relative to direction of time-series 
[r,~]=size(x); 
k=(-2*log(1-p))^.5; %chi scales ellipse (e.g. otherwise 95% would be 85.35%) 
% find angle of general direction of time-series movement 
Xmean=mean(x,2); Ymean=mean(y,2); 
Xchange=diff(Xmean); Xchange=[Xchange;Xchange(1,end)]; %repeat final point 
Ychange=diff(Ymean); Ychange=[Ychange;Ychange(1,end)]; 
phi=atan2(Ychange,Xchange); 
% preset variables before loop 
CI1x=NaN(r,1); CI1y=NaN(r,1); CI2x=NaN(r,1); CI2y=NaN(r,1); 
    for t=1:r  
[~,thetas,IJKL,lambdas]=ellipse(x(t,:),y(t,:),p);% retrieve ellipse analysis 
omega2=thetas(2)-phi(t); %make ellipse angle relative to direction angle 
omega1=omega2+pi(); %find second angle relative to direction 
%calculate first and second CI (i.e. positions on ellipse relative to direction) 
CI1=k*[cos(omega1),sin(omega1)]*sqrt(lambdas)*IJKL; %matrix order correct to work 
CI1x(t)=CI1(1); CI1y(t)=CI1(2); 
CI2=k*[cos(omega2),sin(omega2)]*sqrt(lambdas)*IJKL; 
CI2x(t)=CI2(1); CI2y(t)=CI2(2); 
    end 
CI1x=CI1x+Xmean; CI1y=CI1y+Ymean; CI2x=CI2x+Xmean; CI2y=CI2y+Ymean;% add mean to CI 
end 
%-------STAGE3 CONVEX HULL------------------------------------------------ 
function [Px,Py]=convexquad(Mx,My) %convex hull of 4 points (similar to Graham's scan) 
% input: 4 x-points in 1 column; 4 y-points in 1 column;   
% output: x y in convex order (creates quadrilateral, triangle if 1 point inside hull) 
[ymint]=find(My<=min(My)); % find min y 
if length(ymint)>=2 % if >1 min(My), find min(My) with min(Mx) 
[~,ymint2]=min(Mx(ymint)); 
ymint=ymint(ymint2); 
end 
Nx=Mx-repmat(Mx(ymint,1),4,1); %subtract x for min-y point from all x points  
Ny=My-repmat(My(ymint,1),4,1); %subtract min-y  from all y points  
O=atan2(Ny,Nx); %calculate angle (range will be 0 to 180) 
[~,korder]=sort(O); %sort on angle (small to large; i.e. anti-clockwise) 
    Px=Mx(korder); Px=[Px;Px(1)]; %add first point at end to close shape 
    Py=My(korder); Py=[Py;Py(1)]; 
%check if convex (i.e. if third point within quadrilateral replace else keep) 
Q=[Px(1,1);Py(1,1)]; R=[Px(3,1);Py(3,1)]; %convex, so QR is points 1 and 3 
S=[Px(2,1);Py(2,1)]; T=[Px(4,1);Py(4,1)]; %convex, so ST is points 2 and 4 
W=segmentcross(Q,R,S,T); %test if QR intercepts ST 
    if W<=0; %convex will intercept (>=1), but if 0 no intercept so replace p3 with p4 
    Px(3,1)=Px(4,1); Py(3,1)=Py(4,1); 
    end 
end 
%-------STAGE3d & 4b & 4bii SEGMENT INTERSECT----------------------------- 
function W=segmentcross(Q,R,S,T) %calculates intersect of QR and ST using Cramer's rule 
% input: four points (QRST, x row 1, y row 2); columns n pairs of coordinates 
% output: 0 if no intersection between any n pairs; 1 if any pair of vectors intersect 
QR=R-Q; ST=T-S; RT=T-R; % create vectors from points 
U=(ST(1,:).*RT(2,:)-ST(2,:).*RT(1,:))./(QR(1,:).*ST(2,:)-QR(2,:).*ST(1,:));  
V=(QR(1,:).*RT(2,:)-QR(2,:).*RT(1,:))./(QR(1,:).*ST(2,:)-QR(2,:).*ST(1,:));  
U=(U<1) & (U>0); % reduces to 0 (not meet criteria) or 1 (meets criteria) 
V=(V<1) & (V>0); 
W=sum(sum(U+V,1)>=2); %reduces to 1 (both criteria=1) else 0, then sums for single value 
end%========================================================================= 


